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Bräuhausgasse 42-44/9

1050 Wien

Wien, im Mai 2009

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Abstract

Researchers at EMPA, St. Gallen, Switzerland cultivated an in vitro neural network on one side
of a multielectrode array and grew myofibrils on the other side to measure the activity between
them. The neural action potential signals from 60 spatially separated channels are analyzed
by using correlation functions Cij(τ) between channels i and j. Integrating the correlation
functions up to a certain value results in the correlation matrix aij which is a measure for
the strength of the correlations. Due to the asymmetry of aij an information flow can be
extracted from the network which results in a transfer matrix Aij defining a Markov process.
A set of correlation measures is established by taking aij to the power of β. By introducing
a corresponding partition function Z(β) phase-transition-like behavior near a critical βc is
studied. At early days of the experiment the network of neurons is strongly synchronized in
contrast to later times. The transitions are stronger for the asynchronous case where the peaks
of the second derivative of the partition function are much higher than for the synchronous
case.



Zusammenfassung

Forscher der EMPA in St. Gallen (Schweiz) kultivierten ein neuronales Netz in vitro auf einer
Seite eines Multielectrode Arrays mit 60 Kanälen. Auf der anderen Seite wurden Myofibril-
len angebracht, und anschließend wurde die Aktivität zwischen dem neuronalen Netz und
den Myofibrillen gemessen. Die Aktionspotentiale der Neuronen im Netzwerk wurden mittels
Korrelationsfunktionen Cij(τ) zwischen Kanälen i und j analysiert. Integration der Korrelati-
onsfunktionen bis zu einem bestimmten Wert liefert eine Korrelationsmatrix aij, die ein Maß
für die Stärke der Korrelationen bedeutet. Die Asymmetrie von aij beschreibt einen Infor-
mationsfluss im Netzwerk, welcher durch eine Transfer-Matrix Aij , die einen Markov-Prozess

definiert, dargestellt wird. Mittels aβ
ij wird eine Schar von Korrelationsmaßen eingeführt. Die

entsprechende Zustandssumme Z(β) erlaubt die Untersuchung von phasenübergangähnlichem
Verhalten. An frühen Tagen des Experiments ist das Netzwerk der Neuronen stark synchro-
nisiert, im Gegensatz zu den späteren Tagen. Die Übergänge im asynchronen Fall, die durch
große Amplituden der zweiten Ableitung der Zustandssumme charakterisiert sind, erweisen
sich als stärker als im synchronisierten Fall.
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Chapter 1

Introduction

The interfacing of in vitro neural networks with multielectrode array (MEA) chips has been
recently studied in various experiments [1–6]. MEA recordings help to understand the prop-
erties of neural networks, such as information processing, learning and plasticity. Under-
standing these properties will also lead to an improved development of neural prosthesis and
brain-computer interfaces [7].

Neural prosthesis can substitute functions which would normally be provided by a human
organ. The cochlear implant, for example, substitutes a damaged human cochlea and stimu-
lates the auditory nerves directly. While the developmental progress of cochlear implants is
quite advanced, the evolution of implants replacing motor activities is still in its incipiency.
Applications of such prosthesis include implants for people with disabled motor activities such
as epilepsy (see for example [8]) as well as neurally controlled limb prosthesis.

In order to achieve this goal it is useful to understand how the motor unit works within a
MEA environment and how muscles respond to certain activities of networks of motor neurons.
Different cultures of neural networks were analyzed with MEA experiments measuring different
bursting regimes. A recent experiment at EMPA, St. Gallen, Switzerland [6], achieved to
cultivate not only an ensemble of motor neurons on the MEA but additionally grew myofibrils
(which are the components of the muscle fibers) on the other side of the chip. The activity not
only within a cultured neural network but also activity between the neurons and the myofibrils
was measured.

An advantage of recording cultured neural networks in vitro is the improved controlled
environment in comparison to in vivo neural networks. Due to the use of drugs and chemical
analysis it is thus possible to study different regimes of activity within neural networks and
between them and associated destinations, such as myofibrils.

This thesis analyzes data from experiments described in [6]. Chap. 2 summarizes the
experimental set-up and the results of these experiments. Example data is analyzed with
the correlation integral and recurrence plots in Chap. 3 along with a tool to estimate the
number of neuron spikes per burst. In Chap. 4 correlations between different MEA channels
are investigated and asymmetric crosscorrelations are interpreted as an information flow in
the network. In addition, a correlation weighting parameter β is introduced, which defines a
partition function Z(β), representing the behavior of the network at a certain β. The explicit
form of Z(β) is used to identify transitions in the network at a critical βc. A transition denotes
a substantially change in the network flow within a small variation of β.
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Chapter 2

Neuromuscular Junction

Experiments

All experimental data presented in this thesis was taken from [6]. The goal of the experiments
was to analyze an interface between a network of cultured neurons with a multielectrode array.
In order to achieve this, A. E. Oshiorenoya et al. [6] cultivated a network of embryonic chicken
motor neurons as well as embryonic chicken myofibrils on opposite sides of a multielectrode
array chip in order to measure neural activity. This arrangement allowed an experimental
simulation of the neuromuscular junction. One objective of the experiment was to clarify how
much information is transmitted to axons depending on the activity of a neural network.

2.1 Neuromuscular Junction

Before the experiment is described in detail, the motor unit found in mammals is explained.
A motor neuron delivers information via axons from the brain to the motor unit. A typical
mammalian motor neuron (Fig. 2.1(a)) controls hundreds of muscle fibers. Together with this
muscle fiber block the motor neuron builds up the motor unit. In total a typical muscle contains
hundreds of thousands or even more than a million muscle fibers consisting of myofibrils.
The motor neuron cell bodies are located in the spinal cord (Fig. 2.1(c)) or in the brain.
Every motor neuron axon branches into hundreds of arms. The axon terminal (presynaptic

terminal) couples to the postsynaptic membrane of the muscle fiber. Together they build up
the neuromuscular junction or motor end-plate (Fig. 2.1(b)). Every muscle fiber is connected
to one motor neuron only.

2.2 Experimental Setup and Results

A multielectrode array is an arrangement of typically 60 (or more) electrodes in which neural
activities are recorded extracellularly by the electrodes. A typical topology of a multielectrode
array is shown in Fig. 2.2. The electrodes are arranged in eight rows, where every line consists
of eight electrodes, except the first and last row only consists of six electrodes. All channels
are named after their row- and column-number in the form channel ij, where i is the column
number and j is the row number. At the four edges of the grid no electrodes are arranged.
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(a) (b)

(c)

Figure 2.1: The mammalian motor unit; (a) typical motor neuron which delivers nerve impulses
via the axons to the muscle fibers (taken from [9]); (b) neuromuscular junction between a motor
neuron axon and a muscle fiber (taken from [10]); (c) a motor neuron located in the spinal
cord is connected with a large number of muscle fibers, together they build up a motor unit
(taken from [11]).
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11 81

18 88

(a) (b)

Figure 2.2: (a) Topology of a typical 8 × 8 grid; (b) experimental set-up of a MEA. The
electrode output runs via contact pads to a multichannel recording system (taken from [13]).

The channels 11, 81, 18 and 88 do not exist. An advantage of multielectrode arrays is the
spatial information one can gain from simultaneous electrode recordings.

One side of the multielectrode array was prepared with a rat collagen matrix which provides
a buffer between the chip and the myofibrils arranged on the matrix. On the other side of the
MEA the cultured network of motor neurons was placed on an area prepared with laminin. The
whole arrangement was surrounded in a chemical solution and axons grew from the cultured
neural network through the grid to the myofibrils and built up an in vitro re-aggregated
neuromuscular junction. Two different set-ups provided recording from the somas (cell bodies)
only (Fig. 2.3 right), and from the dendrites only (Fig. 2.3 left). After a few days in vitro an
interaction between the neural network (information source) and the myofibrils (information

destination) via the neurites (information channel) was observed. The motor neurons were
stimulated with chemicals which caused different regimes of neural network behavior and
different responses to the myofibrils. The motor neurons show spontaneous synchronized
network bursting activity [14], as well as asynchronous activity and regular/irregular spiking
between synchronous and asynchronous bursting.

2.3 Data Used for Analysis

Data was recorded from different set-ups at various days in vitro. All signals from all channels
were primarily recorded with a sample rate of 25 kHz. The signals are of the form of neural
spike trains containing regular spike sequences, bursts and noise.

When a neural spike train is recorded, it can be useful to simplify the information of the
neural action potential. One approach is to neglect the explicit form of the action potential
and consider only the times when a neuron is firing. There are several methods to identify
these spike times, such as thresholding, where the times are taken when a certain potential is
reached. It is clear that one cannot avoid to identify noise as a spike in this approach. The

6



Figure 2.3: (A) schematic arrangement for neurite recording; (B) schematic arrangement for
soma recording; (C)-(D) micrograph of chip with axonal network for the case shown in (A);
(E)-(F) micrograph of chip with soma re-aggregate for the case shown in (B); (all pictures
taken from [6]).
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signal one obtains from this simplification is of the form

{ti} = {t1, t2, t3, . . . , tK}, t1 < t2 < · · · < tK , (2.1)

where ti are the times a spike is detected and K is the total number of spikes recorded in a
certain time interval T . It is often useful to measure the time between to spikes in addition to
when a certain spike occurs. A sequence of interspike intervals {xi} can be constructed,

{xi} = {t2 − t1, t3 − t2, t4 − t3, . . . , tK − tK−1}, i = 1, . . . ,K − 1, (2.2)

where L = K − 1 is the number of interspike intervals. Due to the fact that a neuron stays
in a refractory period for a certain time, there is a minimum value xmin ≈ 2 ms an interspike
interval can take on.
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Figure 2.4: Spike times {ti} for channel 12 recorded at DIV5 (a), DIV7 (b) and DIV12 (c)
and corresponding interspike intervals {xi} for DIV5 (d), DIV7 (e) and DIV12 (f).

For the analysis data is used from three different days in vitro: (a) data from a relatively
early stage of the experiment, i.e. from day in vitro 5, (b) data from day in vitro 7 and (c)
data from a late stage of the experiment (day in vitro 12). In the following day in vitro is
abbreviated by DIV. Fig. 2.4 shows the spike times {ti} and the interspike intervals (ISI) {xi}
for channel 12 for MEA recording examples from DIV5-12. For DIV5 long burst sequences are
interrupted by long interburst intervals which are of the order of some seconds. This changes
at DIV7 where the burst sequences are not so clear any more and the interburst intervals are
smaller (parts of a second maximally), for DIV12 the signal is characterized by short bursts
and noise.

Data from all channels was recorded simultaneously. This is important when comparing
data from different channels at the same DIV. Chap. 3 will concentrate on the analysis of single
channels only while the analysis of the interaction between different channels is discussed in
Chap. 4.
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Chapter 3

Data Analysis of Single Signals

The analysis of the neural spike times can be accomplished at different qualitative levels,
where the general behavior of the entire network is of main interest. Due to recorded signals
being effected by noise, the analysis of neural spike times is performed by statistical methods.
Useful statistical tools from the field of nonlinear data analysis can be found in [15] or [16]. In
the following two methods, namely the correlation integral and the recurrence plot are used.
Finally a method to estimate the average length of bursts in neural spike trains is developed.

3.1 Correlation Integral

The correlation integral was first introduced by P. Grassberger and I. Procaccia to determine
the strangeness of attractors in dissipative dynamical systems [17]. It is also used for noise-
cleaning of time series [18], and it is a useful tool for finding temporal patterns in neural spike
trains [19, 20]. First the usage of the correlation integral is explained and then it is applied to
artificial and experimental data.

The correlation integral is built by using the interspike intervals {xi} (Eq. 2.2). From

this sequence embedded points ξ
(m)
k = {xk, xk+1, . . . , xk+(m−1)} are constructed, where m is

the embedding dimension. The total number of embedded points is N = L − m + 1. This
embedding procedure is called coordinate delay construction, and can be used to reconstruct
a higher dimensional object from a scalar time series measurement.

The basic idea of embedding comes from H. Whitney who showed for a generic connected
smooth d-dimensional manifold that it can be smoothly embedded in a 2d-dimensional Eu-
clidean space [21]. F. Takens showed that it is generally possible to reconstruct the state space
from scalar time series measurements {ti} [22]. A sufficient condition for a successful embed-
ding is m > 2DC , where DC is the correlation dimension of the phase space attractor (see
Eq. 3.4). T. Sauer showed that reconstruction is possible for a sequence of interspike intervals
{xi} by using an integrate and fire model [23].

Using the embedded points ξ
(m)
k the correlation integral for a specific m is now defined as

C
(m)
N (ǫ) =

1

N(N − 1)

∑

i6=j

θ
(

ǫ −
∣

∣

∣

∣

∣

∣
ξ
(m)
i − ξ

(m)
j

∣

∣

∣

∣

∣

∣

)

, (3.1)
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where θ(x) is the Heaviside step function. It is defined as

θ(x) =

{

1, x > 0

0, x ≤ 0.
(3.2)

The derivative of the step function is the Dirac δ-function, θ(x)
′

= δ(x). It is problematic
to deal with such infinities numerically. For σ ≪ 1 the following function θσ(x) gives a good
approximation for θ(x),

θσ(x) =
1

1 + e−x/σ
, (3.3)

where the limit lim
σ→0

θσ(x) → θ(x) exists. The sum in Eq. 3.1 runs over all i and j, except

for the cases where i = j. The distance d
(m)
ij,p = ||ξ

(m)
i − ξ

(m)
j ||p is the p-norm between two

embedded points ξ
(m)
i and ξ

(m)
j . Due to the fact that all norms are equivalent in R

n, one can
use any norm. To simplify calculations the maximum norm instead of the common Euclidean
norm is used. From now on the index p is skipped in all expressions.

Consider a fixed ǫ > 0. If the distance between points d
(m)
ij is larger than ǫ, the Heaviside

function yields a one, if it is smaller than ǫ, it gives a zero. After summation over all possible

pairs (i 6= j) and division by N(N − 1), one obtains Eq. 3.1. If all d
(m)
ij are smaller than ǫ,

C
(m)
N is one. This is the case when ǫ is sufficiently large, i.e. ǫ > max

i,j=1...N
d
(m)
ij . If all d

(m)
ij are

larger than ǫ, C
(m)
N is zero, which holds for ǫ < min

i,j=1...N
d
(m)
ij . With d

(m)
ij normalized between

zero and one, C
(m)
N (ǫ) assents from zero to one in the range 0 < ǫ < 1. It is useful to plot both

the correlation function and ǫ on a logarithmic scale and the resulting log C(log ǫ) diagrams
are called log-log-correlation plots. A detailed description can be found in [19] or [20]. The
natural logarithm is used being defined via exp[log x] = x for an arbitrary x. The correlation
dimension can now be defined as

D
(m)
C = lim

ǫ→0

log C
(m)
N (ǫ)

log ǫ
. (3.4)

Before applying the method of log-log-correlation plots onto experimental data, some ex-
amples show how the correlation integral can be used in noisy systems.

Example 1: In the first example the effect of the embedding dimension on the correlation
integral is considered. It is possible to determine the length of a periodic pattern in a
neural spike train. The train of interspike intervals is given by

{xi} = {14, 9, 22, 5, 20, 2, 14, 9, 22, 5, 20, 2, . . . } (3.5)

in our example. The pattern {x0
i } = {14, 9, 22, 5, 20, 2} with the length n = 6 repeats

itself, so one can write {xi} = {x0
i , x

0
i , x

0
i , . . . }. Fig. 3.1 shows log-log-correlation plots

for different embedding dimensions m. The larger the embedding dimension, the smaller
the number of steps. M. Christen et al. [20] showed how the number of steps s(m,n) for
a certain pattern length n and a given embedding dimension m can be calculated, i.e. for
n = 6 s(1, 6) = 15, s(2, 6) = 12, s(3, 6) = 9, s(4, 6) = 7, s(5, 6) = 5 and s(6, 6) = 3.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Log-log correlation plots for the sequence {xi} = {14, 9, 22, 5, 20, 2, 14, 9, . . . } with
(a) m=1, (b) m=2, (c) m=3, (d) m=4, (e) m=6, (f) m=7.

For m ≥ 6 the correlation integral does not change and the number of steps remains
at s(m, 6) = 3. Generally one obtains s(m,n) = const for a fixed n when m ≥ n. By
counting the steps for different m, one can determine the pattern length from a given
periodic sequence, such as the sequence in Eq. 3.5.

Example 2: Jitter is added to the sequence from Eq. 3.5. Jitter implies that {x0
i } is not

replicated perfectly, every interspike interval has a noise term δi,

{xi} = {14 + δ1, 9 + δ2, 22 + δ3, 5 + δ4, 20 + δ5, 2 + δ6, 14 + δ7, 9 + δ8, . . . }, (3.6)

in this example it is white noise taken from the interval (−Y, Y ), where Y > 0 defines the
strength of the added jitter. The relative jitter is defined as ± Y

mini x0

i

. Fig. 3.2(left) shows

the interspike interval sequences for different jitter strengths. For a relative jitter of 100%
(Fig. 3.2(c)) and larger it is impossible to detect the correct pattern length n = 6 by
only looking at the interspike intervals. Fig. 3.2(right) shows the corresponding log-log-
correlation plots, where plots for different m = 1, . . . , 8 are combined in every figure. The
steps get smoothed due to jitter, the steps in the correlation function are less pronounced
for large jitter. Even when the relative jitter is high (100%, Fig. 3.2(c)) one can count
the number of steps at m ≥ 6. Only when the jitter is very large (500%, Fig. 3.2(d)) it
is impossible to detect the pattern length.

Example 3: Consider the regular sequence {x0
i } = {2, 25, 10} in a noisy background. This

example was first published in [19]. Between two sequences one can have a noisy signal
with some probability. Fig. 3.3(left) shows the interspike interval sequences for added
background noise (0%, 25%, 75%). In Fig. 3.3(a) (0% noise) the log-log-correlation

11



(a)

(b)

(c)

(d)

Figure 3.2: Interspike intervals and log-log-correlation plots for the sequence {xi} = {14 +
δ1, 9+ δ2, 22+ δ3, 5+ δ4, 20+ δ5, 2+ δ6, . . . }; relative jitter is ±0% in (a), ±10% in (b), ±100%
in (c) and ±500% in (d).
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(a)

(b)

(c)

Figure 3.3: Sequence {2, 25, 10} in noisy background; log-log-correlation plots and interspike
intervals, where noise is 0% in (a), 25% in (b) and 75% in (c).
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(a) (b)

Figure 3.4: White noise with outliers; (a) interspike interval sequence; (b) log-log correlation
plot for m = 5.

plots for m = 1, . . . , 8 are shown. For m ≥ 3 only one step can be seen. With added
background noise (25% noise in Fig. 3.3(b) and 75% noise in Fig. 3.3(c)) it is not easy
to detect the lowest embedding dimension m where the number of steps is minimal,
although the log-log-correlation plots for different m are grouped. Due to the grouping
the pattern length is three in this case.

Example 4: Sometimes the log-log-correlation plot shows steps even when no periodic pattern
occurs. This is the case when outliers are embedded in a noisy sequence (Fig. 3.4(a)).
For a signal containing only white noise one would not see any steps in the plot. Adding
only a few (five in this example) outliers to a large number of interspike intervals imposes
a structure on the log-log-correlation plot (Fig. 3.4(b)).

The examples above can be used as a guide to analyze the neural spike train data. For
this purpose the interspike intervals recorded from channel 12 at DIV7 (see Fig. 2.4(b) and
Fig. 2.4(e)) are considered. In Fig. 3.5(a) the correlation integrals are plotted for m = 1, . . . , 10.
Several steps in the plot can be seen but they do not reach a minimum at a certain mmax.
Instead the number of steps remains the same for all m. Due to the fact that in a higher
embedding dimension noisy effects get minimized, the steps become more and more visible
with increasing m. The large interspike intervals (outliers) are responsible for the steps and
it is not possible to detect a periodic pattern with the correlation integral method. Even
with m > 10 (not shown in Fig. 3.5(a)) no periodicity can be seen. Fig. 3.5(b) shows the
derivative ∆ log C1

N (ǫ) of the correlation function for m = 1. Every peak corresponds to a step
in Fig. 3.5(a).

The correlation-integral method is useful for finding periodic patterns in a noisy background
or within jittered signals. This was shown in the examples no. 1, 2 and 3 (additional examples
can be found in [19] and [20]). However the occurrence of outliers destroys the structure
which one would have seen without them. Analyzing data which contains short intra-burst
intervals and large inter-burst intervals (which is a common case), one cannot find periodic

patterns by counting the number of steps in the log-log-correlation plots. The distances d
(m)
ij

between a large-valued embedded point ξ
(m)
i (corresponding to a large inter-burst interval)

14



(a) (b)

Figure 3.5: (a) log-log-correlation plots for DIV7, channel 12 for m = 1, . . . , 10; (b) derivative

∆ log2 C
(1)
N (ǫ) for m = 1 shows peaks belonging to the steps in (a).

and small-valued points ξ
(m)
j (corresponding to small intra-burst intervals) will be almost the

same for all j ∈ {intra-burst states}. So the distances appear in groups around the lengths of
the inter-burst intervals and produce steps in the log-log-correlation plots. Thus, if there is a
periodic pattern within a burst one would not be able to see it. It would become invisible due
to the large interspike intervals.

Thus, if no outliers occur, the correlation integral is a good method to find periodic pat-
terns. If the noise contains outliers, the method becomes less useful.

3.2 Recurrence Plots

Another method for finding patterns in neural spike trains is that of recurrence plots, first
introduced by J.-P. Eckmann in 1987 [24] to study the recurrence of trajectories {~xi} in phase
space. Marwan et al. applied this method not only to nonlinear dynamical systems but also
to problems from neuroscience, the financial market or geophysics [25]. The original concept
goes back to Henri Poincaré who introduced the concept of recurrences in conservative systems
already in his famous work Sur le probleme des trois corps et les équations de la dynamique

in 1890 [26].
A recurrence plot is the visualization of the recurrence matrix, defined as

Rij =

{

1, |~xi − ~xj| < ǫ

0, else
(3.7)

or,
Rij(ǫ) = θ(ǫ − ||~xi − ~xj ||), (3.8)

where θ(·) is the Heaviside step function and {~xi} is the phase space trajectory. To simplify
calculations the maximum norm ||·||∞ is often used. A continuous signal ~x(t) is transferred to
a discrete signal, where t takes on only the discrete values t = i∆t, i = 1, . . . , N , so ~x(t) → ~xi.

The recurrence plot is symmetric by definition,

Rij = Rji, Rii = 1 (line of identity). (3.9)
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The determination of an appropriate ǫ is a nontrivial task. If ǫ is too small, the density of
points in the plot is too low, i.e.

1

n2

n
∑

i,j=1

Rij ≪ 1 (3.10)

and one cannot see the recurrence structure if there is one. When ǫ is too large, a lot of points
are neighbors to almost all other points which cause artificial recurrences.

Additionally it would also be possible to calculate cross-recurrence matrices R~x~y
ij between

two different phase space trajectories {~xi} and {~yi}, i.e.

R~x~y
ij (ǫ) = θ(ǫ − ||~xi − ~yj||). (3.11)

In Fig. 3.6(a,b) the recurrence plots for a white noise signal {~xi}, i = 1, . . . , 500 are shown.
The noisy signal, embedded in an m-dimensional phase space, causes a noisy recurrence as
seen in Fig. 3.6(b) for m = 3. Depending on m and ǫ the quantitative amount of points
changes but the qualitative picture remains the same. In Fig. 3.6(c) the signal follows a noisy
log-normal distribution p(x) ∼ exp[−a(log x)2], a > 0, and the qualitative picture does not
change compared to the white noise signals. Fig. 3.6(d) shows the recurrence plot for the
sequence shown in Eq. 3.5, where i = 1, . . . , 200. Due to the fact that every value recurs after
six steps, one can see diagonal lines, spaced by six units. It is a general feature of recurrence
plots that periodicities are characterized by diagonal lines. In Fig. 3.6(e,f) jitter is added to
the sequence (10% and 100%). For the 10% jitter case the diagonal lines are smeared and some
additional points show up between them. If ǫ would be decreased, some of the fluctuations
could be partly removed but on the other hand the diagonal lines would become sparser and
the periodicity could not be seen so well any more. If ǫ would be increased, more and more
fluctuations would occur. So it is indeed an important task to determine a proper ǫ. For 100%
jitter it is still possible to see (or at least to guess) the periodicity.

From a sequence of interspike intervals {xi} embedded in an m-dimensional space the
trajectory {ξi} was constructed from the recorded data. Fig. 3.7 shows recurrence plots for
three different series of data. In Fig. 3.7(a,b) the interspike interval sequence {xi} of channel
no. 14 from DIV5 was embedded in dimension m = 7 and m = 14. To plot a reasonable
amount of points, ǫ was chosen as ǫ = 5 ms and ǫ = 10 ms. Due to the fact that the distances
are larger in higher dimensions, it is opportune to increase ǫ with increasing m. Because of
the large burst lengths an embedding in a high dimension shows clear structures, where the
colored boxes on the diagonal represent the bursts. For Fig. 3.7(c,d) data from channel no. 14
from DIV7 was analyzed. For a larger embedding dimension (Fig. 3.7(d)) the bursts in the
recurrence plot occur more regularly than in the low-dimensional case (Fig. 3.7(c)). At DIV12
(Fig. 3.7(e)) the typical burst lengths are relatively small. When the embedding dimension
is too high, it is almost impossible to see the bursts, but it is still possible to see a regular
pattern (Fig. 3.7(f)).

In summery the recurrence plot is a tool to visualize the behavior of a phase space tra-
jectory. It is an alternative for detecting periodicities in the trajectory by finding diagonals
and measuring their distance. It does have however two major disadvantages compared to
the correlation-integral method: First one has to find a proper ǫ which is a nontrivial task, as
mentioned in [25]. While ǫ is a simple variable, 0 < ǫ < 1, in the correlation integral method,
ǫ has to be reasonably selected in order to generate reliable recurrence plots. Secondly the
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Figure 3.6: Different examples of recurrence plots; (a) white noise ∈ (0, 1) with m = 1,
ǫ = 0.02 and (b) m = 3, ǫ = 0.1; (c) randomly distributed log-normal distribution
exp[−0.5(log x)2] with m = 1, ǫ = 0.02; (d) periodically replicated sequence {xi} =
{14, 9, 22, 5, 20, 2, 14, 9, 22, 5, 20, 2, . . . }, (e) with ±10% jitter and (f) with ±100% jitter.
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Figure 3.7: Recurrence plots for experimental data DIV5-12; (a) DIV5, channel no. 14, m = 7,
ǫ = 5 ms; (b) DIV5, no. 14, m = 14, ǫ = 10 ms; (c) DIV7, channel no. 14, m = 4, ǫ = 5 ms;
(d) DIV7, no. 14, m = 7, ǫ = 10 ms; (e) DIV12, channel no. 13, m = 7, ǫ = 30 ms; (f)
DIV12, no. 13, m = 4, ǫ = 30 ms.
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identification of periodic patterns is much easier in the log-log-correlation plots, one has just
to count the number of steps. In the recurrence plots it is sometimes only possible to guess

the periodicity, as in Fig. 3.6(f). For a quantitative result one has to use averaging methods
for the recurrence matrix to determine the periodicity [25].

Further, the detection of periodicities in intra-burst sequences is not possible with the
recurrence plot. If the periodicities are interrupted by (long) inter-burst intervals, the recur-
rences are different for every burst in the plot. Averaging methods would not succeed in this
case.

3.3 Average Burst Length Detection

Now a method to determine the average burst length is developed. The number of spikes per
burst is calculated with statistical methods. The determination is nontrivial if the bursts are
not clearly separated because sometimes inter-burst intervals are filled with noise.

Consider the first Ns = 280 spikes from the data recorded at DIV7. A burst-like structure
can be seen in Fig. 3.8(a), where both the spike times {ti} and the interspike intervals {xi}
are plotted. A burst is defined by a sequence of small consecutive intra-burst intervals {xb

i} =
{xb

1, . . . xb
l}, where l is the length of the burst, i.e. the number of spikes within this burst. The

foregoing interspike interval xb
0 and the following one xb

l+1 are the large inter-burst intervals.
Whereas the product of two intra-burst intervals is small (and the product between an intra-
burst interval and an inter-burst interval as well), the product between two inter-burst intervals
is large and it can be used for a measure of the burst length. For this purpose xi+s vs. xi is
plotted for a fixed s > 0 (Fig. 3.8(b)). Additionally, hyperbola

(x − xmin)(y − ymin) = p, (3.12)

for different focal parameters p = {10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3, 3 · 10−3} are plotted.
As already discussed in Sec. 2.3, the duration of an interspike interval can never be smaller

than 2 ms, so the offset xmin = 2 ms and ymin = 2 ms were chosen. The interesting points
x̃s

i := (xi, xi+s) are those belonging to two different inter-burst intervals, i.e. which have large
components both in the x- and in the y-direction. These are points located above a hyperbola,
whereas most of the points are located below the hyperbola. In order to calculate how far the
points above the hyperbola are away from it, two regions U and W are defined, where U is
the region below and W the region above the hyperbola with a certain p,

(xi − xmin)(xi+s − xmin) < p → x̃s
i ∈ U, (3.13)

and
(xi − xmin)(xi+s − xmin) > p → x̃s

i ∈ W. (3.14)

The distance of a point located in W from the hyperbola is determined and a sum over all of
these distances adds up to the function

fp
Ns

(s) =
1

Ns

∑

x̃s

i
∈W

((xi − xmin)(xi+s − xmin) − p) . (3.15)
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Figure 3.8: (a) Spike times (red) and interspike intervals (blue) for data recorded at channel
no. 12 at DIV7. The red curve shows a burst-like structure; (b) xi vs. xi+20 with hyperbola
y = ymin + p

x−xmin
; fp

Ns
(s) for p = 0.00001 (c), p = 0.00005 (d), p = 0.0001 (e), p = 0.0005 (f),

p = 0.001 (g) and p = 0.003 (h).
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Fig. 3.8(c-h) shows fp
Ns

(s) for different p. The larger p, the less points are in W . In Fig. 3.8(c-e)
there are points x̃s

i ∈ W for all s because p is small enough. The distance between two peaks
gives the average burst length. There are 20 events per burst on average. In Fig. 3.8(f,g) p is
too large to identify the average burst length clearly, in Fig. 3.8(h) it is impossible.

The above calculations were performed with respect to the interspike intervals and not
in the time domain. This makes it possible to calculate how many events per burst occur in
contrast to the temporal lengths of the bursts. Also in simple neuron models like the integrate-
and-fire-model the number of predecessor spikes in one burst is decisive and determines when
the neuron is firing again.
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Chapter 4

Spatiotemporal Data Analysis

In Chap. 3 data for a specific channel at a specific DIV was analyzed. The comparison
of different, simultaneously recorded signals allows a spatiotemporal analysis of the entire
network. For this analysis only pairwise interactions between two channels are considered.

4.1 Autocorrelation Function

The autocorrelation function compares an arbitrary real valued signal function x̄(t), t ∈ (0, T ),
with the same signal shifted in time x̄(t + τ). It can be useful for finding special structures in
the signal, e.g. periodicities, even within a noisy environment.

With the mean value

〈x̄〉T =
1

T

∫ T

0
x̄(t) dt, (4.1)

one can rewrite the signal x(t) = x̄(t) − 〈x̄〉T leading to

〈x〉T = 0. (4.2)

An easy way to compare the signal at time t and the delayed signal at t + τ (τ > 0) is to
multiply them. To get detailed information, this multiplication is done for all times t ∈ (0, T̄ ),
T̄ = T − τ , and integrated over all t. To get a result which is independent of the time scaling,
the integral is divided by T̄ . In the end one obtains the autocorrelation function

C̃xx(τ) =
1

T̄

∫ T̄

0
x(t)x(t + τ) dt = 〈x(t)x(t + τ)〉T̄ . (4.3)

This definition generally only makes sense for T ≫ τ . It is a measure how much the signal
knows about itself at an earlier time. It is clear that the maximum of C̃xx(τ) is for τ = 0,

max
τ

C̃xx(τ) = C̃xx(0) =
1

T

∫ T

0
x2(t)) dt = 〈x2(t)〉T , (4.4)

which is used as a normalization factor, so

Cxx(τ) =
C̃xx(τ)

C̃xx(0)
=

〈x(t)x(t + τ)〉T̄
〈x2(t)〉T

, (4.5)
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which is the normalized autocorrelation function.
In reality one can never measure x(t) for all times. Usually the signal is recorded at discrete

times ti = i∆t, i = 1, . . . , N , and so one uses discrete values ξi = x(i∆t). The recording time
is divided into N bins: T = N∆t. Instead of integration one sums over all i ∈ (0, N̄ ), where
N̄ = N − nτ and nτ is defined via τ = nτ∆t, so

C̃ξξ(τ) =
1

N̄

N̄
∑

i=1

ξiξi+nτ
= 〈ξiξi+nτ

〉N̄ . (4.6)

The normalization procedure is similar to the continuous case,

max
τ

C̃ξξ(τ) = C̃ξξ(0) =
1

N

N
∑

i=1

ξ2
i = 〈ξ2

i 〉N (4.7)

and so

Cξξ(τ) =
C̃ξξ(τ)

C̃ξξ(0)
=

〈ξiξi+nτ
〉N̄

〈ξ2
i 〉N

. (4.8)

Examples of autocorrelations for a continuous and a discrete signal are shown in Fig. 4.1.
The continuous Gaussian function x(t) = exp[−(x − 4)2] and a delayed function x(t + τ) are
plotted in Fig. 4.1(a) for τ = 1. The autocorrelation function again has a Gaussian shape
(Fig. 4.1(b)). The second example shows the autocorrelation of a discrete noisy sin-function
ξi = sin(i∆t) + η(i∆t), where η ∈ (0, 0.2) is white noise (Fig. 4.1(c)). A delayed function
is also plotted (τ = 1.5). Since the signal is almost periodic, the autocorrelation function is
periodic as well (Fig. 4.1(d)).
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Figure 4.1: (a) Continuous signal x(t) and shifted signal x(t+1) for a Gaussian; (b) correspond-
ing autocorrelation function ; (c) discrete signal xi with added white noise; (d) autocorrelation
function for the noisy sin function.

4.2 Crosscorrelation Function

Consider two signals x(t) and y(t) which are recorded in the same time interval T . The
multiplication x(t)y(t) for all times and the following average (integration and division by T )
is now a measure how strong the two signals are correlated with each other. Again one can delay
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one of the signals with τ and calculate the dependence on τ , which gives the crosscorrelation

function

C̃xy(τ) =
1

T̄

∫ T̄

0
x(t)y(t + τ) dt = 〈x(t)y(t + τ)〉T̄ . (4.9)

For the comparison of different functions the maximum does not have to be at τ = 0. It is
possible that the signals are strongest correlated at τ > 0 or at τ < 0. To illustrate this,
consider two Gaussian signals x(t) = 2 exp[−(x−4)2] and y(t) = exp[−5(x−5)2] (Fig. 4.2(a)).
For τ = 1 the maxima of both signals are at t = 4 (Fig. 4.2(b)). This constellation leads to
the highest correlation, i.e. maxτ C̃xy(τ) = C̃xy(1). In Fig. 4.2(c) one can clearly see that the
maximum of the crosscorrelation function is at τ = 1. With the normalization factor

1

T

√

∫ T

0
x2(t) dt

√

∫ T

0
y2(t) dt =

√

〈x2(t)〉T
√

〈y2(t)〉T (4.10)

the normalized crosscorrelation function is given by

Cxy(τ) =
〈x(t)y(t + τ)〉T̄

√

〈x2(t)〉T
√

〈y2(t)〉T
, (4.11)

consistent with the definition of the autocorrelation function (Eq. 4.5).
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Figure 4.2: (a) Two different signals recorded at the same time. The maxima are separated
from each other; (b) for τ = 1 the maxima reach the same position in time; (c) the crosscorre-
lation function shows a maximum at τ = 1; (d) crosscorrelation function for two sin-functions
with different amplitudes and phases.

For time-discrete signals a similar procedure as in Sec. 4.1 results in the crosscorrelation
function between signals ξi and ρi,

Cξρ(τ) =
C̃ξρ(τ)

√

C̃ξξ(0)
√

C̃ρρ(0)
=

〈ξiρi+nτ
〉N̄

√

〈ξ2
i 〉N

√

〈ρ2
i 〉N

. (4.12)

In Fig. 4.2(d) the crosscorrelation function for ξi = sin(i∆t) + η1(i∆t) and ρi = 2 sin(i∆t +
1.5) + η2(i∆t) with η1,2 ∈ (0, 0.2) is plotted where the maxima are shifted.

Allowing a delay in the negative time direction, i.e. τ → −τ , one must be careful with the
integration limits. Instead of tlow = 0 and tup = T − τ we now have to shift the limits to
tlow = τ and tup = T . Due to the fact that it matters which signal is in front or behind the
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other signal, the crosscorrelation function is not symmetric under the exchange of x(t) and
y(t). Instead

C̃xy(τ) = C̃yx(−τ), (4.13)

which can be shown easily:

C̃xy(−τ) =
1

T − τ

∫ T

τ
x(t)y(t − τ) dt =

1

T − τ

∫ T−τ

0
x(t + τ)y(t) dt = C̃yx(τ). (4.14)

Only the autocorrelations are symmetric,

C̃xx(−τ) = C̃xx(τ). (4.15)

4.3 Correlations between Neural Network Spike Frequencies

Spike times of the cultured neural network were measured with a multielectrode array where
the signal was recorded separately for every channel. The auto- and crosscorrelation functions
were then used to compare the different channels.

The recording time T was split into N bins and within ∆t = T/N the number of spikes
was counted. We denote the relative spike frequencies for every channel c in the i-th bin by
f c

i , where i = 1, . . . , N . As mentioned in Sec. 4.1 it is reasonable to analyze a shifted signal,
which has its mean around zero. Calculating the mean 〈f c〉N for every channel,

〈f c〉N =
1

N

N
∑

i=1

f c
i , (4.16)

with
F c

i = f c
i − 〈f c〉N , (4.17)

results in

〈F c〉N =
1

N

N
∑

i=1

(f c
i − 〈f c〉N ) =

1

N

(

N
∑

i=1

f c
i − N〈f c〉N

)

=
1

N
(N〈f c〉N − N〈f c〉N ) = 0. (4.18)

Fig. 4.3 shows the vector F j
i for channels j = 11, 21 measured at different DIV. The network is

highly synchronized at DIV5 (Fig. 4.3(a)), so the normalized relative frequencies for different
channels are similar. The high frequency bins indicate four clear burst sequences. In Fig. 4.3(b)
(DIV7) the signals are synchronized as well. For the about first 50 bins the frequencies seem
to be rather random, at later times burst sequences occur. At DIV12 (Fig. 4.3(c)) the signals
are not synchronized any more.

The correlation function between channels j and k is given by

Cjk(τ) =
1

Cjk(0)

1

N̄

N̄
∑

i=1

F j
i F k

i+nτ
=

〈F j
i F k

i+nτ
〉N̄

√

〈(F j
i )2〉N

√

〈(F k
i )2〉N

, (4.19)
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Figure 4.3: F j
i /
√

〈(F j
i )2〉N for different channels measured at DIV5 (a), DIV7 (b) and DIV12

(c).

where N̄ = N − nτ , τ = nτ∆t, nτ = 0, 1, 2, . . . . The normalization factor is given by

Cjk(0) =

√

√

√

√

1

N

N
∑

l=1

(F j
l )2

√

√

√

√

1

N

N
∑

m=1

(F k
m)2 =

√

〈(F j
i )2〉N

√

〈(F k
i )2〉N . (4.20)

Fig. 4.4 shows examples of auto- and crosscorrelation functions, C1,1(τ), C1,2(τ) and C23,52(τ).
For DIV5 (Fig. 4.4(a)) all correlations decay similarly with τ . The correlation time is defined
via

Cjk(τc) :=
1

2
max

τ
Cjk(τ), (4.21)

and yields τc ≈ 0.25 s for DIV5(Fig. 4.4(a)), τc ≈ 80 ms for DIV7 (Fig. 4.4(b)) and about
τc ≈ 20 ms for DIV12.
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Figure 4.4: Different correlation functions for different days in vitro: C1,1(τ) (blue), C1,2(τ)
(red), C23,52(τ) (green) for DIV5 (a), DIV7 (b) and DIV12 (c).

4.4 Correlation Matrix and Network Dynamics

Sec. 4.3 illustrated the usefulness of the correlations Cjk(τ) between all channels. The strength

of the correlations is characterized by two quantities. On the one hand the height of the
crosscorrelation function indicates how strong two signals are correlated at a specific τ . On
the other hand the correlation time τc is a measure how fast the correlations decay.
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An appropriate way to take both quantities of correlation strength measures into account
is to integrate the correlation function up to a boundary τ0 = n0∆t. Due to the fact that
the correlation function (Eq. 4.19) can also take negative values, it is useful to take the time
average of the squared function. This results in

aij :=
√

〈C2
ij〉n0

=

√

√

√

√

1

n0

n0
∑

n=1

C2
ij(n∆t), (4.22)

where τ0 has to be chosen properly. If τ0 < τc, long time information is lost, if τ0 ≫ τc, noise
dominates the correlations for large τ . A rule of thumb is to set τ0 a few times larger than τc,
keeping in mind that τ0 has to be the same for all correlation pairs.

The correlation matrix a with the entries aij gives a measure for the correlations between
all channels. It can be visualized by plotting the entries aij in different colors belonging to
different correlation strengths (Fig. 4.5(left)). For every plot the values are scaled such that
the maximum value is dark red, the minimum value is dark blue, and the values between are
yellow and white. So a red (and yellow) spot means strong correlation and blue means weak
correlation. In Fig. 4.5(a) (DIV5) vertical and horizontal red lines indicate that some channels
are strongly correlated with most of the other channels, and the few blue lines show that some
channels are correlated weakly with most of the other ones. The fact that the autocorrelations
do not dominate over the crosscorrelations denotes a highly synchronized network. At DIV7
(Fig. 4.5(c)) a diagonal line emerges which means that the autocorrelations become more
dominant and the network is not so strongly synchronized any more. This effect becomes even
more drastic at DIV12 (Fig. 4.5(e)), where the network is not synchronized any more and the
autocorrelations strongly dominate over the crosscorrelations.

In order to explain the network dynamics, Eq. 4.22 is applied to a system containing
only two clear signals, namely x(t) and y(t) from Fig. 4.2(a). Assuming the two signals were
recorded at two different spatially separated locations, in analogy to different sites in a neural
network. The analysis of this simple system allows to interpret the asymmetry of a.

Fig. 4.6(a) shows all possible correlation functions Cij(τ), i = x, y, j = x, y. The autocor-
relations Cxx (blue) and Cyy (red) are symmetric with respect to τ . Due to the fact that x(t)
is broader than y(t), Cxx is broader than Cyy, or axx > ayy, i.e. ”x is more strongly correlated

than y”, which can be seen quantitatively via integration (τ0 = 4),

axx =

√

1

τ0

∫ τ0

0
C2

xx(τ) dτ = 0.969, ayy =

√

1

τ0

∫ τ0

0
C2

yy(τ) dτ = 0.638. (4.23)

Even more interesting is the interpretation of the cross terms Cxy and Cyx. The peak of x(t)
heads that of y(t) which is delayed. This can be seen in Fig. 4.6(a), where Cxy (orange) has
the peak at τ > 0 and Cyx (green) has its peak at τ < 0. After integration,

axy =

√

1

τ0

∫ τ0

0
C2

xy(τ) dτ = 1.050, ayx =

√

1

τ0

∫ τ0

0
C2

yx(τ) dτ = 0.188, (4.24)

and the full correlation matrix is determined by

a =

(

0.969 1.050
0.188 0.638

)

. (4.25)
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Figure 4.5: Correlation matrix aij for DIV5 (a), DIV7 (c) and DIV12 (e) and transfer matrix
Aij for DIV5 (b), DIV7 (d) and DIV12 (f).
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As axy > ayx, ”x strongly affects y” and ”y weakly affects x”. If a signal ỹ(t) appears after x̃(t)
has already vanished, ayx = 0, and one would say ”x totally affects y” and ”y does not affect

x at all”. There is a net-information flow from site one (with the corresponding signal x(t)) to
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A(2,2)A(1,1)
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Figure 4.6: (a) Correlation functions Cxx(τ) (blue), Cxy(τ) (orange), Cyx(τ) (green) and Cyy(τ)
(red) for x(t) = 2 exp[−(x− 4)2] and y(t) = exp[−5(x− 5)2]; (b) Markov process from transfer
matrix A(i, j).

site two (with corresponding signal y(t)). This reflects the fact that the correlation matrix is
asymmetric. Additionally, if the autocorrelations are much stronger than the crosscorrelations,
no information is transported. And if all entries in a are almost the same, the sites are highly
synchronized.

In general, information at site i can stay at site i with probability pii and it can move with
probability pij , j 6= i, where the probabilities have to fulfill the normalization condition

∑

j

pij = 1 ∀i. (4.26)

The entries from a are now associated with probabilities. The larger the entries aij in the
correlation matrix, the larger the probabilities pij. For this purpose a is normalized as well
and one can define a transfer matrix A (see for example [27]),

Aij =
aij
∑

jaij
, (4.27)

that fulfills
∑

j

Aij = 1 ∀i, 0 ≤ Aij ≤ 1 ∀i, j, (4.28)

and the entries Aij can be identified as the probabilities pij. The transfer matrix defines a
Markov process, which generates the spatiotemporal dynamics of the system. For our example
(Fig. 4.2(a), Fig. 4.6(a)) the transfer matrix A corresponding to a (Eq. 4.25) is given by

A =

(

0.480 0.520
0.228 0.772

)

. (4.29)
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The Markov process is schematically shown in Fig. 4.6(b).
Now this method is applied to recorded data for DIV5-12. The transfer matrix A is plotted

in Fig. 4.5(right) where every colored spot stands for a probability. For DIV5 (Fig. 4.5(b))
some red vertical lines which characterize absorbing sites within the network can be seen. Blue
vertical lines indicate sites which are unlikely to be reached. In terms of a Markov process the
information flows to the absorbing states. At DIV7 (Fig. 4.5(d)) a red and yellow diagonal
line appears which indicates that the information is now more likely to stay on its site. The
red vertical lines have vanished, there are no global absorbing states any more. For DIV12
(Fig. 4.5(d)) all transition probabilities are much smaller than the diagonal entries of the
transfer matrix. So the probabilities to stay at a certain site dominate. Information is not
flowing any more which means that the network is not synchronized.

It is illustrative to examine the eigenvalue spectrum λi of A as well. The Perron-Frobenius
theorem, which holds for N × N matrices with real non-negative entries Aij ≥ 0, states that
there is a real largest eigenvalue λmax > |λi| for which the following proposition holds:

min
i

∑

j

Aij ≤ λmax ≤ max
i

∑

j

Aij . (4.30)

Due to Eq. 4.28, the largest eigenvalue λmax = 1, and the spectrum of eigenvalues is restricted
to

1 = λmax ≥ · · · ≥ |λk| ≥ · · · ≥ |λmin| ≥ 0. (4.31)

4.5 Correlation Weighting

With Eq. 4.22 a way to calculate the correlation strengths aij was defined. This is of course only
one possible choice. With a different correlation measure one would generally get a different
matrix a. To take this into account a more general correlation matrix is introduced. One
way to do this is re-weighting the correlations. This allows to tune the correlation measure.
Instead of only considering aij , the correlations are taken to the power of a β ∈ R,

aij → aβ
ij. (4.32)

Tuning β from −∞ to +∞ gives different relative weights of the correlations. For β = 1 one
gets the natural correlation matrix. When β is larger than one, the larger entries are more
important than the smaller ones. At β = 0 all correlations contribute with the same weight,
i.e.

a0
ij = 1 ∀i, j, (4.33)

no matter how the actual correlations look like. For β < 0 the smaller correlations become
more important than the larger ones. This is a way for finding out which correlations are less
dominant in the network.

Again one can define a transfer matrix, similar as in Eq. 4.27,

Aij(β) =
aβ

ij
∑

ja
β
ij

. (4.34)
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So there are different Markov processes for different β. For β → +∞ only the largest proba-
bility per row in A will survive, whereas at β = 0 one gets uniform probabilities,

Aij(0) =
a0

ij
∑

ja
0
ij

=
1

N
= const, (4.35)

every path of a Markov process has the same probability. In fact one gets a different Markov
process for every β. High β means considering the more probable paths.

The eigenvalue spectrum λi for A is now β dependent. Due to the fact that the Perron-
Frobenius theorem (Eq. 4.30) still holds, the largest eigenvalue is still one for every β, all other
eigenvalues change with β.

One way to describe the Markov process with a global property is the trace of A,

TrA(β) =

N
∑

i=1

Aii(β) =

N
∑

i=1

λi(β). (4.36)

Due to the fact that A (and its trace) is real valued, all possible complex eigenvalues have
to show up in pairs λk = Re(λk) + iIm(λk) and λ̄k = Re(λk) − iIm(λk). So one only has to
consider the summation over the real parts of the eigenvalues in Eq. 4.36. Denoting the trace
by Z(β), one gets

Z(β) = TrA(β) =

N
∑

i=1

Re(λi(β)). (4.37)

The eigenvalues can be interpreted as microstates of the underlying system whereas Z(β) is
a global property of A. It is the sum over all microstates and plays the rôle of a partition

function (Zustandssumme).
In statistical physics the partition function is an important tool to calculate thermodynamic

quantities. The real parameter β is a thermal variable such as the inverse temperature or any
other intensive variable (see for example [27]). Usually the partition function is not fully known
due to the large number of particles (≈ 1023).

4.6 Phase Transitions

In physics phase transitions (for an overview see for example [28]) occur, if by a change
of a thermal variable the behavior of the system changes drastically. This happens at a
so-called critical point. It is also possible that systems have more than one of such points.
Important examples are transitions between solid, liquid and gas states, transitions in magnetic
systems (e.g. between paramagnetic and ferromagnetic states), transitions between normal and
superconducting states or the transition between normal and superfluid He4.

Mathematically phase transitions are characterized by a non-analyticity of the partition
function or the derivative of it. In physics usually the non-analyticity of derivatives of the free

energy of a system is the quantity to look at. A phase transition of the order l occurs when
the l-th derivative of log Z with respect to the thermal variable does not exist, whereas the
(l-1)-th derivative exists. Due to the fact that the partition function is a sum of N smooth
functions of β, a non-analyticity only occurs in the limit N → ∞ (thermodynamic limit). In
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real systems N is very large (≈ 1023) but finite. The phase transition is then not characterized
by a non-analyticity but by a continuous change in the system.

In analogy to physics, the behavior of log Z(β) with respect to β is a measure to detect
transitions in the neural network. Due to the small N = 60 one is not able to see a real phase
transition. Nevertheless the slope of log Z is employed to detect these ”non-analyticities”. At
a critical point the slope changes drastically, and in analogy to physics, the system is changing
from one phase to another one. The strength of the transition is given by the change of the
slope of log Z at the critical point, i.e. by the second derivative of log Z.

Now log Z(β) for a sufficiently large range of β is considered and the first and second
derivatives are calculated to detect possible transitions. Fig. 4.7 shows log Z(β) (blue), the
first derivative (red) and the second derivative (brown) for DIV5-12, where the values of the
derivatives are rescaled for better visualization.

At DIV5 (Fig. 4.7(a)) log Z(β) is shown for positive and negative β, where log Z(β) =
log TrA(β) increases with increasing β, so the entries in the diagonal become more and more
important. With higher β the probability to move from one site to another shrinks on average.
In Fig. 4.8(a) the transfer matrix is plotted for five different values of β. The blue picture
in the middle is at β = 0 where every process occurs with the same probability. For β = 10
absorbing sites occur (red and yellow vertical lines) and at β = 40 one specific site attracts
most of the flow. For β → +∞ we would get a completely blue picture with except one red
spot per line in the matrix. For negative β only one channel becomes dominant in the limit
β → −∞. The derivate of log Z in Fig. 4.7(a) now tells us how the system is changing by
varying β. It shows a step-like structure which indicates a critical point. The second derivative
hints at βc ≈ −14. The height hc ≈ 0.025 of the second derivative at βc is a measure for the
strength of the transition, i.e. for the curvature of log Z at the critical point.

For DIV7 (Fig. 4.7(b)) log Z saturates faster with increasing β, compared to DIV5. The
Markov process converges faster to a specific process and the amount of red spots in Fig. 4.8(b)
for β = 40 is higher than for DIV5. The derivative in Fig. 4.7(b) shows two slopes correspond-
ing to three different phases. The second derivate has two peaks at βc1 ≈ −7 and βc2 ≈ 10,
where the heights hc1 ≈ 0.15 and hc2 ≈ 0.08 are much larger than for DIV5. So the transitions
are stronger, the system is more sensitive to a change of β.

DIV12 (Fig. 4.7(c)) is even more drastic, again one can detect two transitions at βc1 ≈ −1.8
and βc2 ≈ 2.1 with hc1 ≈ 1.1 and hc2 ≈ 2.3. Due to the small βc the transitions occur very
fast. The diagonal elements of A are already much larger than the off-diagonal terms for β = 1
(see Fig. 4.5(f)), and the picture does not change for higher β (see Fig. 4.8(c)). The partition
function converges to

log Z(β → ∞) → log N ≈ 4.1, (4.38)

because all crosscorrelations die out with high β, so

Aii(β → ∞) → 1 and Aji(β → ∞) → 0 for i 6= j. (4.39)

To illustrate the differences between the three data sets more precisely, the corresponding
log Z and its derivatives are displayed in one plot on the same scale, respectively. Fig. 4.9(a)
shows log Z for DIV5 (blue), DIV7 (red) and DIV12 (green). Due to the fact that

log Z(β = 0) = log 1 = 0, (4.40)
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Figure 4.7: Partition function log Z (blue) and its first (red) and second (brown) derivative
for DIV5 (a), DIV7 (b), DIV12 (c).
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(a) (b) (c)

Figure 4.8: Transfer matrix A(β) for different β. In line one β = −40, in line two β = −10, in
line three β = 0, in line four β = 10 and in line five β = 40. (a) DIV5; (b) DIV7; (c) DIV12.
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the curves cross each other at β = 0. Fig. 4.9(b) shows the first derivative of log Z. While for
DIV5 and DIV7 the steps are not well pronounced, indicating that the phases are not clearly
separated, the steps for DIV12 are quite steep, so three phases can be seen. This is reflected
by the second derivative (Fig. 4.9(c)) which has the highest peaks for DIV12.

The correlation weighting parameter β is a variable which provides different ways of mea-
suring the correlations. Depending on β, a certain Markov processes reflects the spatiotemporal
evolution of the system. Choosing a small positive β, the correlations aij do not differ much,
while a larger β implies larger differences in the correlations and for the transfer matrix, re-
spectively. Far away from the critical point the result is rather insensitive to a specific β. Close
to a transition point the correlations change drastically with β, especially for an asynchronous
network. The less synchronized the network the more sensitive the correlation measurement
around the critical βc. A synchronized network is less sensitive to the correlation measure, the
transition from one phase to another proceeds slowly.
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Figure 4.9: (a) log Z for DIV5 (blue), DIV7 (red) and DIV12 (brown); (b) ∂ logZ
∂β for DIV5

(blue), DIV7 (red) and DIV12 (brown); (c) −∂2 logZ
∂β2 for DIV5 (blue), DIV7 (red) and DIV12

(brown).
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Chapter 5

Summary and Outlook

This work analyzed neural spike time signals from cultured in vitro neural networks. The data
results from multielectrode array (MEA) experiments which have been carried out at EMPA.
An in vitro neural network of chicken motor neurons was cultured on one side of the MEA
and myofibrils were grown on the opposite side to measure the activity between the neurons
and the myofibrils. Due to the spatial separation of the recorded channels, a spatiotemporal
analysis of the neural signals in the network has been performed.

Statistical methods such as the correlation integral and recurrence plots were used to eval-
uate interspike intervals resulting from a specific MEA channel. To analyze the interspike
intervals they were embedded in an m-dimensional space. While these methods work in many
examples, their application to the neural data does not result in satisfying new insights. Out-
liers (large interspike intervals) between bursts are responsible for artificial structures in the
correlation integral.

Considering the spatial structure, simultaneously recorded signals from all channels have
been compared by calculating correlation functions Cij(τ) between two channels i and j.
Integrating C2

ij results in a correlation matrix aij which is a measure for the strength of the
correlations. Due to the fact that the crosscorrelation functions are asymmetric, which results
in an asymmetric aij as well, one can define a net-information flow between two channels. By
interpreting the flow as a Markov process, a corresponding transfer matrix Aij was defined
which describes a spatiotemporal dynamics in the network.

Taking the correlations aij to the power of a real parameter β reflects different ways
to measure the correlations resulting in different Markov processes. By considering the β-
dependent trace of the matrix aij the system can be characterized by a single quantity, the
partition function Z(β). In analogy to statistical physics, transitions in the system occur by
changing β.

We have shown that at early stage (day five) of the in-vitro experiment the neural network
is strongly synchronized, while at later times (day twelve) the network is less synchronized.
This is reflected by the strengths of the transitions, i.e. by the peaks of the second derivatives
of log Z(β), which turned out to be much higher for the data recorded at the twelfth day than
for the fifth day. Our analysis has shown that the transitions in a synchronous network are
rather weak, while an asynchronous network shows phase-transition-like behavior at critical
βc. In the latter case the correlation measurements at slightly different values of β result in
large differences for the correlations near a critical βc. Since the number of channels is 60 only,
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we were not able not detect sharp phase transitions.
For future investigations it would be interesting to study systems which are stimulated

locally but not globally by a chemical solution as in the underlying experiments. An advantage
of MEAs is that they both measure action potentials and can also be used to stimulate neurons.
With such a local stimulation it should be possible to determine a direction of information flow.
As a result, one may obtain some knowledge about the transport mechanism of electric signals
within the network. Maybe it would hence be possible to detect spatiotemporal patterns,
e.g. avalanches [29].
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Appendix A

Mathematica Code

In[1]:= div5 := Import@
"�home�andreas�Desktop�DA090305�Diplomarbeit�ExperimentData�DIV5�DIV5-60.xls",
"XLS"D;

In[2]:= div7 := Import@
"�home�andreas�Desktop�DA090305�Diplomarbeit�ExperimentData�DIV7�DIV7-60.xls",
"XLS"D;

In[3]:= div12 := Import@
"�home�andreas�Desktop�DA090305�Diplomarbeit�ExperimentData�DIV12�DIV12-60.xls"
, "XLS"D;

In[4]:= d = 7;

In[5]:= div = Which@d � 5, div5, d � 7, div7, d � 12, div12D;

In[6]:= divStr = "div" <> ToString@dD;

In[7]:= nomin = 1; H*channel no. Start*L

In[149]:= nomax = Which@d � 5, 57, d � 7, 58, d � 12, 59D;

In[10]:= bord = Which@d � 5, 0.6, d � 7, 0.4, d � 12, 0.2D;
H*Integration time_max for correlation averaging*L

In[11]:= NBins = Which@d � 5, 100, d � 7, 200, d � 12, 400D;H*no. of bins*L
taumin = 0; taumax = Which@d � 5, NBins�10, d � 7, NBins�20, d � 12, NBins�40D;

In[14]:= T = Which@d � 5, 11.3, d � 7, 9.6310, d � 12, 12.D;

In[15]:= deltaT = T�NBins;

In[16]:= loc0 = "�home�andreas�Desktop�DA090305�Diplomarbeit�";

In[17]:= loc1 = loc0 <> "ExperimentResults�adjDIV" <> ToString@dD <> "�";

In[18]:= loc2 = "�local�d0�zoettl�adjDIV" <> ToString@dD <> "�";

In[19]:= ext1 = "." <> ToString@nominD <> "to" <> ToString@nomaxD <> "." <> divStr <> ".dat";

In[20]:= ext3 = "." <> ToString@nominD <> "to" <> ToString@nomaxD <> "." <> divStr <> ".eps";
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In[21]:= asf = ColorData@"TemperatureMap"D;

In[22]:= BinStr = ".N" <> ToString@NBinsD;
In[23]:= cutz = 0;

In[50]:= mmin = 1; mmax = 1; mstep = 1; H* Embadding dimension m; for output normIJ.dat *L
m0 = 1; H* actual embadding dimension m He.g. for recurrence plotsL *L
ch = nomin; H* selected channel *L
maxISI = 1000.; minISI = 0.; tmin = 0.; tmax = 10005.0;
nmin = 1; ncut = 30000; H* ISI cutoff *L
normIJout = 0; H* =1: embadded points output, e.g. for Corr-Integral*L
spar = 0; smax = 100; sval = 20; H* =1: create x_i vs x_8i+s< plots;
s-range Hsmin=0L and specific s *L
H*p=80.00001,0.00005,0.0001,0.0005,0.001,0.003,0.05<;*L
p = 80.0004, 0.001, 0.005, 0.01, 0.03, 0.05<; delta = 0.002;
parn = p@@4DD;H* hyperbola xy=p; for x_i vs x_8i+s< plots; *L
outpar = 0; H* =1: times and ISI output *L
recplpar = 0; H* =1: create recurrence plots *L
ps = PlotStyle -> PointSize@0.01D;

In[36]:= emb := Module@8m, i, j, hh, k<, Print@"Start Embedding"D; lnumb = Length@data@@noDDD;
nnumb := lnumb - m + 1; pp = Table@data@@no, iDD, 8i, lnumb<, 8j, 1<D;
Do@
ll = pp;
k = 1;
While@
k < m,
ll = Table@Append@ll@@hhDD, data@@no, hh + kDDD, 8hh, nnumb<D;
k++D; bTab@mD = ll; aTab@mD = Prepend@ll, 8m, nnumb<D; bTL@mD = Length@bTab@mDD,
8m, mmin, mmax, mstep<D; Print@"End Embedding"DD;

In[37]:= normM := Module@8m<, Print@"Start Norm"D; Do@norm@mD =
Table@Max@Abs@bTab@mD@@iDD - bTab@mD@@jDDDD, 8i, 1, bTL@mD<, 8j, 1, bTL@mD<D;
maxnorm@mD = Max@norm@mDD, 8m, mmin, mmax, mstep<D; Print@"End Norm"DD;

In[38]:= corrIntM := Module@8i, j<, Print@"Start Correlation Integral"D;
eps0min = -3; eps0max = 0; eps0step = 0.05;
CorrInt = Table@8eps, Log@H1�HbTL@mD*HbTL@mD - 1LLL*

HSum@UnitStep@Exp@epsD - norm@mD@@i, jDD� maxnorm@mDD,
8i, 1, bTL@mD<, 8j, 1, bTL@mD<D - bTL@mDLD<,

8m, mmin, mmax, mstep<, 8eps, eps0min, eps0max, eps0step<D;
Print@"End Correlation Integral"D
D

In[39]:= dataB :=
Module@8j<, data = Append@data, Select@Table@div1c@@no, j + 1DD - div1c@@no, jDD,

8j, 1, nmax - nmin<D, minISI < ð < maxISI &DDD;
In[46]:= recplM := Module@8rec, rec2, recpl, i, j, eps<, emb; normM; eps = 0.001;

rec = Flatten@Table@8norm@m0D@@i, jDD, i, j<, 8i, 1, bTL@m0D<, 8j, 1, bTL@m0D<D, 1D;
rec2 = Cases@rec, 8x_ �; x < eps, _, _<D@@All, 82, 3<DD;
Print@recpl = ListPlot@rec2, PlotStyle ® 8PointSize@0.001D<DD;
outname0 = ToString@noD <> "." <> ToString@noD <> "." <> divStr;
RecPlOut = "recpl." <> outname0 <> ".m" <> ToString@m0D <>
".e" <> ToString@eps*1000D <> "eps"; Export@RecPlOut, recplD;D
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sxii := Module@8s, k<,
xii = 8<; xiiS = 8<; xiiT = 8<; xiipl = 8<; Do@
xii = Append@xii,
Table@8data@@no, kDD, data@@no, k + sDD<, 8k, 1, Length@data@@noDDD - s<DD;

sel := Cases@HHxii@@s, All, 1DD - deltaL*Hxii@@s, All, 2DD - deltaL - parnL,
x_ �; x > 0.D;

xiiS = Append@xiiS, selD;
xiiT =
Append@xiiT, Sum@sel@@kDD, 8k, 1, Length@selD<D�Length@xii@@s, All, 1DDDD;

outfile2 = "xii." <> divStr <> "." <> "cut" <> ToString@minISID <>
"." <> "s" <> ToString@sD <> "." <> "eps";

xiipl = Append@xiipl, ListPlot@xii@@s, AllDD, psDD;
H*Export@outfile2,ListPlot@xii2@@s,ch,AllDD,
PlotRange®880.,Max@data@@chDDD+0.01<,80.,Max@data@@chDDD+0.01<<DD*L,

8s, 1, smax<D;
xii2 = Append@xii2, xiiD; xii2S = Append@xii2S, xiiSD;
xii2T = Append@xii2T, xiiTD; xiipl2 = Append@xiipl2, xiiplD;D

In[42]:= splots := Module@8s1<,
Print@s1 = ListPlot@xii2T@@chDD, Joined ® True, PlotRange ® 80, Max@xii2T@@chDDD<DD;
D

In[161]:= data = 8<; delta0 = 8<; delta1 = 8<; delta2 = 8<; spcor = 8<; div1c = 8<;
jk = 8<; div1d = 8<; new = 8<; xii2 = 8<; xii2S = 8<; xii2T = 8<; xiipl2 = 8<;
If@nomin > 1, data = Table@8<, 8i, nomin - 1<D; div1c = data; div1d = data; jk = data;
new = data; xii2 = xii2S = xii2T = xiipl2 = delta0 = delta1 = delta2 = data;D;

Do@
appChannel = ToString@div@@1, 1, noDDD;
appDIV = ToString@divD; div1 = Append@Drop@div@@1, All, noDD, 1D, 0.D;
n = 1; While@div1@@n + 1DD >= div1@@nDD && div1@@n + 1DD £ tmax, n++D;
nmax = Min@8n, ncut<D;
div1c = Append@div1c, Take@div1, 8nmin, nmax<DD;
dataB;
If@spar � 1 , sxiiD;
If@normIJout � 1 , emb; normM; corrIntMD;
If@recplpar == 1 , recplMD,
8no, nomin, nomax<D;

In[165]:= ext2 := "." <> ToString@iD <> "." <> ToString@jD <> "." <> divStr <> ".dat"
In[166]:= outcorrpar = 0; outfreqpar = 0; outFpar = 0;

In[167]:= DT = div1c;

In[168]:= FreqM := Module@8i, k, j, m0, no<,
f0 = Table@0, 8j, 1, nomax<, 8k, 1, NBins<D;
mean0 = Table@"", 8l, 1, nomax<D;
Normf0 = Table@0, 8l, 1, nomax<D; delta0 = Table@"", 8j, 1, nomax<, 8k, 1, NBins<D;
Do@nmax = Length@DT@@no, AllDDD; i = nmin;
Do@
While@
DT@@no, iDD < m0*deltaT && i £ Hnmax - nminL,
f0@@no, m0DD = f0@@no, m0DD + 1; i = i + 1D;

, 8m0, 1, NBins<D;
mean0@@noDD = Sum@f0@@no, kDD, 8k, 1, NBins<D�NBins;
Normf0@@noDD = Sqrt@Sum@Hf0@@no, jDD - mean0@@noDDL^2, 8j, 1, NBins<DD;
Do@delta0@@no, m1DD = N@Hf0@@no, m1DD - mean0@@noDDL�Normf0@@noDDD,
8m1, 1, NBins<D, 8no, 1, nomax<DD;
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In[169]:= CorrM := Module@8v, i, j, k<, Cut = NBins;
CorrFunct = Table@8i*T�NBins,
HNBins�HCut - iLL*N@Sum@delta0@@j, vDD*delta0@@k, v + iDD, 8v, 1, Cut - i<DD<,
8i, taumin, taumax<, 8j, 1, nomax - nomin + 1<, 8k, 1, nomax - nomin + 1<D

D;
In[170]:= FreqM;

In[171]:= ch1 = 43; ch2 = 26;

In[172]:= Fplot = ListPlot@8delta0@@ch1, AllDD, delta0@@ch2, AllDD<, PlotRange ® Full,
Mesh ® Full, Joined ® True, PlotRange ® Full, PlotStyle ® 8Thick<,
PlotLabel ® Style@"FH" <> ToString@ch1D <> "L, FH" <> ToString@ch2D <> "L", LargeD,
AxesLabel ® 8"i", None<,
Ticks ® 880, NBins�4, NBins�2, 3*NBins�4, NBins<, 8-0.1, 0, 0.1, 0.2, 0.3<<,
LabelStyle ® Directive@Black, LargeD,
AxesOrigin ® 80, Min@8delta0@@ch1, AllDD, delta0@@ch2, AllDD<D<D;

In[174]:= CorrM;

Ndelta0 = N@delta0D;

In[177]:= ListPlot@8CorrFunct@@All, 34, 34DD, CorrFunct@@All, 1, 2DD<,
PlotRange ® 8-0.4, 1.4<, Joined ® TrueD;

In[178]:= outa1par = 0; outc2par = 0;

In[180]:= Integrate2M := Module@8<,
a = Table@0, 8l, nomin, nomax<, 8k, nomin, nomax<D;
Do@
p = 1;
While@DT2@@p, l, k, 1DD < bord, a@@l, kDD =
a@@l, kDD + deltaT*HDT2@@p, l, k, 2DDL^2; p++D; a@@l, kDD = Sqrt@a@@l, kDDD

, 8l, nomin, nomax<, 8k, nomin, nomax<D;
D

In[182]:= DT2 = N@CorrFunctD;

In[183]:= Integrate2M

In[184]:= ch01 = 1; ch02 = 2; ch03 = 23; ch04 = 52;

In[185]:= corrpl = ListPlot@8DT2@@All, ch01, ch01, AllDD, DT2@@All, ch01, ch02, AllDD,
DT2@@All, ch03, ch04, AllDD<, Joined ® True, PlotRange ® Full,
PlotStyle ® 8Thick<, PlotLabel ® Style@"CH" <> ToString@ch01D <> "," <>

ToString@ch01D <> "L, CH" <> ToString@ch01D <> "," <> ToString@ch02D <>
"L, CH" <> ToString@ch03D <> "," <> ToString@ch04D <> "L", LargeD,

AxesLabel ® 8"t", None<, Ticks ® 880, 0.1, 0.2, 0.3, 0.4, 0.5<, 80.5, 1<<,
LabelStyle ® Directive@Black, LargeD
D;

In[187]:= ArrayPlot@a, ColorFunction ® asf, ColorFunctionScaling® TrueD;

In[256]:= maxTD = Which@d � 5, 20, d � 7, 10, d � 12, 5D;

In[191]:= outa2par = 0; trafterpar = 0; outnewpar = 0; discoutpar = 0;
discimppar = 0; spectpar = 0; spectimppar = 0; abetaout = 0;
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In[257]:= cutCh = Which@d � 5, 84<, d � 7, 84<, d � 12, 84<D;
In[193]:= DT3 = N@a, 20D;

In[195]:= ArrayPlot@DT3, ColorFunction ® asf, ColorFunctionScaling® TrueD;
In[196]:= Do@DT3 = Transpose@Drop@Transpose@Drop@DT3, 8cutCh@@lDD<DD, 8cutCh@@lDD<DD;,

8l, 1, Length@cutChD<D
In[258]:= nomax = Length@DT3D;

In[259]:= bmin = Which@d � 5, -40, d == 7, -40, d == 12, -40D;

In[260]:= bmax = Which@d � 5, 40, d == 7, 40, d == 12, 40D;

In[261]:= bstep = Which@d � 5, 0.1, d == 7, 0.1, d == 12, 0.1D;

In[202]:= ArrayPlot@DT3, ColorFunction ® asf, ColorFunctionScaling® TrueD;
In[203]:= truncpl = DT3;

Do@If@DT3@@i, jDD � 0, DT3@@i, jDD = BlackD, 8i, 1, nomax<, 8j, 1, nomax<D
In[205]:= a0pl = ArrayPlot@truncpl, ColorFunction ® asf, ColorFunctionScaling® TrueD;

In[206]:= beta = Table@j, 8j, bmin, bmax, bstep<D; bL = Length@betaD;
In[207]:= DT300 = Table@DT3@@k, pDD^beta@@bDD, 8k, 1, nomax<, 8p, 1, nomax<, 8b, 1, bL<D;

In[209]:= norma00 = Table@Sum@DT300@@k, p, bDD, 8p, 1, nomax<D, 8k, 1, nomax<, 8b, 1, bL<D;

In[210]:= aaaa00 = Table@If@norma00@@k, bDD � 0, 0, DT300@@k, p, bDD�norma00@@k, bDDD,
8k, 1, nomax<, 8p, 1, nomax<, 8b, 1, bL<D;

In[263]:= bbsp = HbL + 1L�2;

In[215]:= norma = Table@N@Sum@DT3@@k, pDD, 8p, 1, nomax<DD, 8k, 1, nomax<D;
In[216]:= aaaa =

Table@If@norma@@kDD � 0, 0, DT3@@k, pDD�norma@@kDDD, 8k, 1, nomax<, 8p, 1, nomax<D;
In[217]:= apl = ArrayPlot@aaaa, ColorFunction ® asf, ColorFunctionScaling® TrueD;

In[218]:= abetapl = Table@ArrayPlot@aaaa00@@All, All, actbDD, ColorFunction ® asf,
ColorFunctionScaling® TrueD, 8actb, 1, bL, HbL - 1L�8<D;

In[264]:= abL = Length@abetaplD;

In[221]:= abetapl;

In[265]:= Det@aaaa00@@All, All, bbspDDD;

In[266]:= Det@aaaaD;

In[267]:= Tr@aaaa00@@All, All, bbspDDD;

In[268]:= Tr@aaaaD;

In[228]:= tra = Table@Tr@aaaa00@@All, All, bDDD, 8b, 1, bL<D;

In[269]:= parE = Which@d � 5, 3, d == 7, 5, d == 12, 1D;

In[270]:= parS = Which@d � 5, 15, d == 7, 10, d == 12, 5D;
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In[271]:= maxp = Which@d � 5, 1, d � 7, 4, d == 12, 5D;

In[272]:= minp = Which@d � 5, -1, d � 7, -4, d == 12, -5D;
In[235]:= logZ = Table@8beta@@bDD, Log@tra@@bDDD<, 8b, 1, bL<D;

In[236]:= Energy = Table@
8beta@@bDD, -parE*HlogZ@@b - 1, 2DD - logZ@@b + 1, 2DDL�H2*bstepL<, 8b, 2, bL - 1<D;

In[237]:= EnergyOrg =
Table@8beta@@bDD, -HlogZ@@b - 1, 2DD - logZ@@b + 1, 2DDL�H2*bstepL<, 8b, 2, bL - 1<D;

In[238]:= susc = Table@8beta@@b + 1DD,
parS*HEnergy@@b - 1, 2DD - Energy@@b + 1, 2DDL�H2*bstepL<, 8b, 2, bL - 3<D;

In[239]:= suscOrg = Table@
8beta@@b + 1DD, HEnergy@@b - 1, 2DD - Energy@@b + 1, 2DDL�H2*bstepL<, 8b, 2, bL - 3<D;

In[247]:= trapl00 = ListPlotB8logZ, Energy, susc<, PlotRange ® 88bmin, bmax<, 8minp, maxp<<,

PlotLabel ® StyleB"Log@ZD, " <> ToString@parED <> "* ����������������������d Log@ZD
dΒ

, " <>

ToString@parSD <> "* ����������������������������-d2 Log@ZD
dΒ2

"F, PlotStyle ® 8Thick<,

AxesLabel ® 8"Β", None<, Joined ® True, LabelStyle ® Directive@Black, LargeDF;

In[248]:= ListPlot@suscOrg, PlotRange ® AllD;

In[255]:= ListPlot@EnergyOrgD;
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