

Extending HtmlUnit for Test
Automatisation of Web
Applications using AJAX

DIPLOMARBEIT

zur Erlangung des akademischen Grades

 Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Andreas Langer
Matrikelnummer 0125651

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer/Betreuerin: Univ.-Prof. Dipl.-Ing. Dr. techn. Thomas Grechenig
Mitwirkung: Dipl.-Ing. Mario Bernhart

Wien, 20.04.2009 _______________________ ______________________
 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 Hhttp://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

DIPLOMA THESIS

Extending HtmlUnit for Test
Automatisation of Web Applications

using AJAX

Submitted for the academic degree of

Diplomingenieur

(Dipl.-Ing)

carried out at the

Institute of Computer Aided Automation

Research Group for Industrial Software

Vienna University of Technology

under the guidance of

Univ.-Prof. Dipl.-Ing. Dr. techn. Thomas Grechenig and

Dipl.-Ing. Mario Bernhart

by

Andreas Langer

Freyenthurmgasse 18/1/6

1140 Wien

Vienna, April 20, 2009

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne fremde
Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den benutz-
ten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich ge-
macht habe.

Wien, am --
 Name

Acknowledgements

This work has been carried out at the research group for Industrial Software
(www.inso.tuwien.ac.at), an informal group hosted by the Institute of Automation at
the faculty of Informatics at the Vienna University of Technology.

I would like to express my sincere gratitude and appreciation to all those who made
this diploma thesis possible. Special thanks are due to my advisors Mario Bernhart
and Professor Thomas Grechenig and to the developers of HtmlUnit Daniel Gredler,
Stan Silvert and Marc Guillemot.

I am deeply indepted to my parents for supporting and motivating me throughout the
years of studying and stimulating my interest in technical science. I thank my sisters,
friends and colleagues who made the course of my studies a marvellous time to re-
member.

http://www.inso.tuwien.ac.at/

Abstract
Software testing is a part of the software development process. It is a challenging task
and testing Web-based applications may be even more difficult, due to the peculiarities
of such applications. New technologies in internet applications require adaptations of
most test frameworks. A very popular technology which is widely used from many well
known internet services is called AJAX. AJAX stands for “Asynchronous JavaScript
and XML” and is a combination of many known technologies, which allow asynchro-
nous data communication between server and client. In contrast to the standard syn-
chronous data communication, which means loading an entire web page after each re-
quest, AJAX allows dynamic refreshes of the web page and data exchange of parts of
the page. Thus testing of such internet applications is different from testing of “normal”
applications because there can be interactions with the server without the need to load a
new page. Communication is done in the background and the current page stays the
same except of minor changes.
This paper gives an overview of the basic principles of automated software tests, espe-
cially automated testing of web based applications. Furthermore it shows the influence
of AJAX concerning web development and testing of web applications. The main issue
of this paper is to extend HtmlUnit for test automation of web applications using AJAX.
Based on the used concepts it is possible to extend further test frameworks.
HtmlUnit is a test framework for internet applications. It simulates a web browser and
provides many functions to check the content of a web page. HtmlUnit doesn’t have a
graphical user interface but it is written in the programming language Java. Test cases
are written using JUnit tests but like many other test frameworks HtmlUnit has some
problems testing AJAX enabled internet applications.

keywords: test automation, AJAX, HtmlUnit, web testing

Kurzfassung

Software Testen ist ein fixer Bestandteil im Software Entwicklungsprozess. Automati-
sierte Tests können den Aufwand für das Testen der Software erheblich erleichtern.
Speziell im Bereich der Internet Applikationen gibt es eine Reihe weiterer Aspekte die
beim Testen beachtet werden müssen. Neue Technologien im Internet verlangen eine
Anpassung bei vielen Testumgebungen. Die bekannteste Technologie die zurzeit sehr
populär ist und von vielen Internet Diensten verwendet wird heißt AJAX. AJAX steht
für „Asynchrounous JavaScript and XML“ und ist eine Kombination vieler bekannter
Techniken, die zusammen asynchrone Kommunikation zwischen Client und Server er-
laubt. Im Gegensatz zum konventionellen Ansatz, dass immer eine vollständige Seite
geladen werden muss, ermöglicht AJAX den Datenaustausch von Teilen einer Webseite
oder das dynamische Nachladen von Inhalten. Dadurch verändert sich das Testen von
Internet Applikationen erheblich, da eine Interaktion mit dem Server nicht automatisch
das Laden einer neuen Seite bedeutet sondern im Hintergrund abläuft und die aktuelle
Seite, bis auf parzielle Veränderungen, dieselbe bleibt.
Diese Arbeit gibt eine Übersicht über das Automatisierte Testen von Software, im spe-
ziellen von Internet basierten Programmen. Des Weiteren werden der Einfluss von
AJAX und die damit verbundenen Veränderungen analysiert. Der Kernpunkt dieser
Arbeit ist das Erweitern von HtmlUnit, um damit auch Internet Applikationen, die
AJAX verwenden, testen zu können. Aufbauend auf diesem Konzept ist es möglich,
auch andere, ähnlich gebaute Test Werkzeuge zu erweitern.
HtmlUnit ist eine Testumgebung für Internet Applikationen. Es simuliert einen Browser
und stellt viele Funktionen zum Überprüfen von Internet Seiten zur Verfügung. HtmlU-
nit hat keine Grafische Oberfläche sondern ist komplett in der Programmiersprache Java
geschrieben. JUnit Tests bieten umfangreiche Möglichkeiten zum Testen von Applika-
tionen, aber HtmlUnit hat, wie viele andere Testumgebungen, Probleme bei Internet
Applikationen, die AJAX verwenden.

Stichwörter: Testautomatisierung, AJAX, HtmlUnit, Testen von Internet Applikatio-
nen

 I

Contents

Contents .. I

List of Figures .. IV

List of Tables .. V

1 Introduction ... 1
1.1 Problem Description ... 1
1.2 Motivation .. 1
1.3 Goals and Objectives ... 1
1.4 Organization of this Thesis .. 1

2 Foundations .. 3
2.1 Software Test Automation .. 3

2.1.1 Objectives and non-objectives of automated software tests 3
2.1.2 The promise of test automation: ... 4
2.1.3 Automated Comparison .. 5
2.1.4 Comparing different types of outcome .. 7
2.1.5 Comparison filters .. 9
2.1.6 Sensitive tests versus robust tests ... 9
2.1.7 Scripting techniques ... 10
2.1.8 Test maintenance ... 15
2.1.9 Metrics .. 17

2.2 State of the Technology ... 19
2.2.1 Automated web testing ... 19
2.2.2 AJAX (Asynchronous JavaScript and XML) 26

2.3 Selected Open Source Testing Frameworks 33
2.3.1 HtmlUnit ... 33
2.3.2 JSFUnit .. 41

3 Requirements for the Framework Extension ... 43
3.1 Criteria for a satisfying controller ... 43
3.2 Proposals for solution .. 43

3.2.1 NicelyResynchronizingAjaxController ... 44
3.2.2 AjaxHandler .. 46
3.2.3 AjaxFilterWebConnection ... 49

3.3 Summary ... 51

4 Implementation ... 52
4.1 AjaxController .. 52
4.2 AjaxHandler Implementations .. 53

 II

4.2.1 AjaxHandler .. 53
4.2.2 XMLHttpRequest .. 55
4.2.3 WebClient ... 57
4.2.4 AjaxError .. 59

4.3 AjaxFilterWebConnection .. 60

5 Case Studies for Validation ... 63
5.1 Wikipedia ... 63

5.1.1 AjaxController ... 64
5.1.2 AjaxHandler .. 64
5.1.3 AjaxHandler - improved .. 66

5.2 AJAX Login System ... 67
5.2.1 AjaxController ... 69
5.2.2 AjaxHandler – legacy mode ... 70
5.2.3 AjaxHandler – improved ... 72

5.3 XHTML live Chat .. 74
5.3.1 AjaxController ... 74
5.3.2 AjaxHandler .. 76
5.3.3 AjaxHandler - Improved .. 78

6 Validation .. 81
6.1 Wikipedia ... 81

6.1.1 AjaxController ... 81
6.1.2 AjaxHandler .. 83
6.1.3 AjaxHandler - improved .. 83
6.1.4 Summary .. 84

6.2 AJAX Login System ... 84
6.2.1 AjaxController ... 84
6.2.2 AjaxHandler .. 85
6.2.3 AjaxHandler – improved ... 86
6.2.4 Summary .. 89

6.3 XHTML Live Chat... 89
6.3.1 AjaxController ... 89
6.3.2 AjaxHandler .. 90
6.3.3 AjaxHandler – improved ... 91

6.4 Summary ... 92

7 Conclusion and Future Work ... 94

Bibliography ... 96

Websites .. 98

Appendix ... i
7.1 New Classes ... i

 III

7.1.1 AjaxError ... i
7.1.2 AjaxHandler .. ii

7.2 Modified Classes.. v
7.2.1 XMLHttpRequest .. v
7.2.2 WebClient ... xix

7.3 Test Classes .. xxvi
7.3.1 AJAXLoginTest .. xxvi
7.3.2 WikipediaTest ... xxxiv
7.3.3 AjaxChatTest ... xxxvii

 IV

List of Figures

Figure 1.1 Organisation of this Thesis .. 2
Figure 2.1 sensitive tests vs robust tests ... 10
Figure 2.2 new defects found ... 18
Figure 2.3 simple web environment .. 20
Figure 2.4 complex web environment ... 21
Figure 2.5 ready states of the XMLHttpRequest object ... 29
Figure 2.6 resynchronizing the AJAX calls .. 39
Figure 2.7 normal flow of AJAX requests ... 39
Figure 3.1 processing AJAX requests in HtmlUnit .. 44
Figure 3.2 processing AJAX requests with AjaxHandler 46
Figure 3.3 processing AJAX requests with AjaxFilter .. 49
Figure 4.1 AjaxController .. 52
Figure 4.2 AjaxHandler.. 53
Figure 4.3 XMLHttpRequest ... 55
Figure 4.4 WebClient ... 57
Figure 4.5 AjaxError ... 59
Figure 4.6 AjaxFilterWebConnection .. 60
Figure 5.1 Wikipedia screenshot ... 63
Figure 5.2 the main page of the AJAX login system .. 67
Figure 5.3: login succeed - AJAX login system ... 68
Figure 5.4: login failed - AJAX login system .. 68
Figure 5.5 XHTML live Chat ... 74
Figure 6.1 workflow of Wikipedia using AjaxController .. 82
Figure 6.2 workflow of Wikipedia using AjaxController and a sleep statement . 82
Figure 6.3 workflow of Wikipedia using AjaxHandler ... 83
Figure 6.4 workflow of Wikipedia using the improved AjaxHandler 84
Figure 6.5 workflow of AJAX Login System using AjaxController 85
Figure 6.6 workflow of AJAX Login System using AjaxHandler 86
Figure 6.7 workflow of AJAX Login System using the improved AjaxHandler ... 87
Figure 6.8 corrected workflow of AJAX Login System using the improved
AjaxHandler ... 88
Figure 6.9 error message from the AJAX Login System 89
Figure 6.10 workflow of the XHTML Live Chat using AjaxController 90
Figure 6.11 workflow of the XHTML Live Chat using AjaxHandler 91
Figure 6.12 workflow of the XHTML Live Chat using the improved AjaxHandler
 .. 92

 V

List of Tables

Table 2.1 Summary of scripting techniques ... 15
Table 2.2 server side testing - summary .. 26
Table 2.3 Wikipedia search suggest ... 32
Table 2.4 HtmlUnit sample test .. 35
Table 3.1 summary of the three solutions .. 51
Table 4.1 open method from XMLHttpRequest ... 56
Table 4.2 getResponse method from WebConnection .. 61
Table 5.1 testcase for Wikipedia.. 63
Table 5.2 testcase 1 - AjaxController .. 64
Table 5.3 testcase 1 - AjaxHandler ... 65
Table 5.4 testcase 1 – AjaxHandler improved ... 66
Table 5.5: test cases for the AJAX login system ... 68
Table 5.6: testcase 1 – AjaxController .. 69
Table 5.7: testcase 4 – AjaxController .. 70
Table 5.8 testcase 1 – AjaxHandler .. 71
Table 5.9 testcase 1 - AjaxHandler improved.. 72
Table 5.10 testcase 4 – AjaxHandler improved .. 73
Table 5.11 testcases for the XHTML Chat System .. 74
Table 5.12 testcase 1 - AjaxController.. 75
Table 5.13 testcase 1 - AjaxHandler ... 77
Table 5.14 testcase 2 - AjaxHandler improved ... 80
Table 6.1 Wikipedia test result - AjaxController .. 81
Table 6.2 additional code for the AjaxController ... 81
Table 6.3 Wikipedia test result - AjaxHandler.. 83
Table 6.4 Wikipedia test result - AjaxHandler improved .. 83
Table 6.5: AJAX Login System test results - AjaxController 85
Table 6.6 AJAX Login System test results – AjaxHandler 86
Table 6.7 AJAX Login System test results – AjaxHandler improved 87
Table 6.8 error messages from AJAX Login System ... 88
Table 6.9 XHTML Live Chat test results - AjaxController 89
Table 6.10 XHTML Live Chat test results - AjaxHandler 90
Table 6.11 XHTML Live Chat test results - AjaxHandler improved 91

Introduction 1

1 Introduction
Software Testing is a fixed component of software development. This includes creating
automated regression tests. Specifically for Web applications, there are test environ-
ments like HtmlUnit that can imitate a web browser, but they only work after the classi-
cal principle of “request and wait for the response”. New technologies like AJAX
(Asynchronous JavaScript and XML) and Flash extend the classical model and enable
asynchronous data transmissions and updating only sections of a web page. These tech-
nologies require a new approach in software testing, since the response to a request only
arrives delayed and meanwhile further actions could have been launched.

1.1 Problem Description
Asynchronous data communication in web applications increase the complexity of the
application and hence the sources of error. Responses to requests may arrive too late
because the user has already left the page or has done some other action and the re-
sponse has no more relevance. For this reason it is especially necessary to run extensive
tests in this area, and a part of these tests will be automated tests. The main problem
here is the registration of asynchronous requests, the interception of responses, the as-
signment of the correct response to the request and finally the impact on the web
browser

1.2 Motivation
The motivation of this work is to enable HtmlUnit, a very easy to use web application
testing tool, handle applications that use AJAX techniques.

1.3 Goals and Objectives
The aim of this paper is the creation of a concept how to write automated tests for appli-
cations using asynchronous data transfers. Furthermore the existing test tool HtmlUnit
is evaluated and extended to make it compatible to the new technologies.

1.4 Organization of this Thesis

After the general introduction in chapter 1 the next chapter reviews the technologies that
are needed to understand this thesis. This includes basics about automated software
tests, testing of web applications, description of all parts of AJAX especially the
XMLHttpRequest object, description of the web testing tool HtmlUnit and a short com-
parison of HtmlUnit with JSFUnit, a web testing tool especially designed to test web
applications using Java Server Faces (JSF). Chapter three to six assume the knowledge
of the foundations.
Chapter 3 presents some criteria for the enhancements in HtmlUnit, presents different
approaches and compares them to the existing one.

Introduction 2

Chapter 4 describes the implementation of the enhanced HtmlUnit.
Chapter 5 specifies three web applications and the implementation of test cases using
the old and new features of HtmlUnit.
Chapter 6 validates the test results and compares the different technologies.
Chapter 7 summarizes the key findings and presents the key benefits of the new imple-
mentation.
The appendix contains the source code of the new and the altered classes of HtmlUnit
and the testcases used in chapter 5 and 6.

Figure 1.1 Organisation of this Thesis

Foundations 3

2 Foundations
This chapter describes the technologies that are needed to understand the extension of
HtmlUnit. It is divided into three sections.
The first one explains the basics of software test automation. It provides some informa-
tion on how to write effective automated software tests and outlines some difficulties of
automated tests compared to manual tests.
The second section describes how web applictions work and what to take account of
when writing tests for web applications. It also explains the technologies used by AJAX
enabled web applications.
The third section introduces the open source tools HtmlUnit and JSFUnit.

2.1 Software Test Automation

Software testing [6] is a crucial part of the software development process. Automating
software testing can reduce the effort of adequate testing. Automated tests can be run
within minutes while doing these tests manually would take several hours. That is why
companies can save a lot of money using automated tests or at least produce better qual-
ity software more quickly.
A system has a very big number of possible tests. Only a few of them really can be im-
plemented because the tester only has limited resources so he has to choose the right
tests so that most of the defects of the software can be found. There are four criteria for
software tests that describe the quality of software tests:

1. the defect detection effectiveness
2. it should be exemplary which means it should cover more than one thing
3. the effort to write, perform, analyze and debug the test case
4. the maintenance effort of the test case when the software changes

These four criteria have to be balanced one against another. Complex test cases that
cover many issues and are very likely to detect defects normally need more effort to be
written and maintained while Simple test cases are very easy to maintain and implement
but they only cover special case and aren’t very likely to detect defects.

2.1.1 Objectives and non-objectives of automated software tests
Many managers expect software test automation to be a silver bullet that it will help to
save money and to produce better quality software in less time compared to manual test-
ing. Unfortunately this isn’t the whole truth. There are many falsely expected benefits of
test automation [7]:

• All tests will be automated:
This isn’t desirable. According to the four criteria for software tests it has to be ana-
lyzed whether the effort to implement the tests justifies automating the test case.

Foundations 4

• There will be immediate pay back from automation:
Usually the opposite happens. Building automated software tests takes more time than
doing these tests manually and the company has to invest in test ware software licenses,
training, additional hardware and other things, so first the company has to pay more
money but automatic software tests will pay back later, after they are used several times
after creation for build tests or every time the software changes or is improved.

• There is zero ramp up time:
It takes some time to automate tests. The right tools have to be selected and installed.
The testers may need some training to use these tools and it takes more time to imple-
ment an automated test than to run it once manually.

• There is one tool for test automation that fits perfectly:
There are many commercial or free automation tools that fit some organization or pro-
ject well but normally different projects require different tools. It depends on the tech-
nology used in the project to choose the right tool and the next project may require a
totally different tool or toolset.

• Test automation provides automatic defect reporting without human interaction:
The test report always has to be reviewed by the tester. It could contain error cascades
or other false detection of errors. Reviewing reports can require a lot of effort.

• The use of capture/replay tools can speed up creation of automated software
tests:

On the first sight it seems that the fastest way to produce automated tests is to use a cap-
ture tool to record the manual test. This recording can be replayed by the tool. However
capture/replay tools only work in the rare case when the product is so stable that there
will be hardly any changes in the product. It is very difficult to maintain a captured test
case and in most cases the tester just has to recapture the whole case. It is also possible
that the replayed tests fail because of some changes in the database. Just imagine the
captured test case deletes two items from a list and adds only one item. Each time the
test is replayed by the tool the list will decrease by one and finally there will be an error
because there are no items in the list that can be deleted. Some capture/replay tools even
fail when the resolution of the monitor is changed or because of system messages that
pop up. To sum up capture/replay is not test automation. There are also other forms of
automated test case creation [23] [26], but they suffer the same problems.

2.1.2 The promise of test automation:
• Existing tests can be run on a new version of a program. This is the most obvi-

ous task of automated tests and it is also the field of application of test automa-
tion where the investment pays back.

• Tests can be run more often in less time.
• Special tests like load test can be performed. Load tests would need a few hun-

dred testers but when using automated tests only a computer with enough re-

Foundations 5

sources is needed. These automated tests can be replayed while manual tests
with a few hundred testers would always differ when trying to replay them.

• The resources can be used better. Boring and repeating tests can be automated
and performed by the test tool, while the human testers can put their effort into
designing better test cases. Tests can be performed over night while the ma-
chines normally run idle.

• Consistency and repeatability of tests. Automated tests are always performed the
same way with the same inputs. They can be executed on different hardware and
software configurations which gives a consistency of cross-platform quality.

• Reuse of tests. Automated tests will be reused many times so it is worth spend-
ing time to make sure that they are reliable.

• Earlier time to market. Once the automated tests have been written, the testing
elapsed time can be shortened when building a new version.

2.1.3 Automated Comparison
Test verification [13] is the process of checking whether the software has produced the
right outcome or not. This is done by comparing the actual outcome to the expected
outcome. While some tests only need one single comparison other more complex tests
may need several. It is very important to do the right decisions which information to
compare because it has a significant impact both the effectiveness and efficiency of the
tests. When performing tests manually the tester simply has to look at what the software
is producing and decides whether the output is correct or not based on an understanding
of what the software should produce. When writing automated tests these decisions
based on the understanding of the software have to be transformed into adequate com-
parisons.
Automated comparison tools are programs that detect differences between two sets of
data, usually the test outcome data and the predicted outcome data. It depends on the
particular comparator to do comparisons as accurate as possible. Simple comparators
can only compare strings or numbers while others have extensive capabilities for com-
paring several different data formats like graphical formats or databases. Good com-
parators can highlight the differences, and provide facilities to help you browse the dif-
ferences. However a comparator can’t tell whether a test has passed because it only
compares data. Nevertheless we use it that way. It is nearly impossible to insure that a
software behaves correct in every detail because it would be too much effort to compare
every detail. We implement just the most important comparisons and assume that the
test case has passed when all of them have passed.

General comparison guidelines

• Comparisons should be kept simple to avoid false failures or missed differences.

Foundations 6

• Many small comparisons are easier to understand and maintain than one big
comparison.

• All comparisons should be documented. The script should contain a description
of what the comparison does and what it doesn’t do.

• Comparisons should be efficient. The tester has to keep in mind that some com-
parisons could take a long time and therefore he has to use efficient algorithms.

• Comparisons of bitmaps should be avoided. Hardly any tool exists that is able to
reliably compare pictures with minimum differences.

• The comparisons should be selected to obtain a good balance between robust
and sensitive tests. The precise description of robust and sensitive tests can be
found in chapter 2.1.6: Sensitive tests versus robust tests.

2.1.3.1 Dynamic comparison
Dynamic comparison is performed while the test case is running. It is the most often
used form of comparison and very similar to the way a tester would check things in
manual tests. Every output can be compared to the expected values during runtime even
when they get overwritten later. Even output which isn’t visible like the attributes of
elements of a graphical user interface can be taken and compared to expected values.
However it makes more effort to write test scripts with many dynamic comparisons be-
cause they have to be embedded into the script which makes them more complex and
increases the likeliness of errors in the test script. The maintenance costs also rise be-
cause of more script debugging. Trivial changes to the screen output can result in unim-
portant differences found by the comparator and accordingly to false error detections.

2.1.3.2 Post-execution comparison
Post-execution comparison is performed after the test case has run. It normally com-
pares outputs other than those that have been sent to the screen like files that have been
created or new entries in the database. Most test execution tools do not include this
method so additional tools have to be used in order to perform post-execution compari-
son. That’s why using this method seems more difficult to implement than using dy-
namic comparisons. Post-execution comparison helps to keep the test script short and
minor differences in the output of a program do not lead to false error detections.
Post-execution comparison can either be active or passive. When we only use the result-
ing document or the database after some fields were modified we talk about passive
comparison. For performing active comparison we have to save the output of the pro-
gram during test execution and perform comparisons afterwards. This method has a big
advantage compared to dynamic comparisons. The whole test case has already run when
the comparison starts and the tester can divide the comparisons into many groups and
sub groups and execute the subgroups only when there was no error in the first group.

Foundations 7

However when using active comparison the test script won’t get simpler compared to
the script using dynamic comparisons because the dynamic comparisons are only re-
placed by capture instructions. It is possible to use additional comparison tools and the
comparison can be done offline. The comparison can be invoked directly by the test tool
after the test execution or the tester has to invoke the post-execution comparison tool
because they often can’t be integrated well into the test tool.

2.1.3.3 Simple comparison
Simple comparison looks for identical matches. It is very easy to implement such com-
parisons so fewer mistakes are likely to be made when writing the test cases and it is
easier to understand for new team members. Thus maintaining such comparisons is also
easier then maintaining the above ones. When simple comparison is sufficient for a test
case it should be used.

2.1.3.4 Complex comparison
Complex comparisons allow us to compare actual and expected outcomes with known
differences. Common examples of where complex comparison is required are:

• dates and times
• unique identity numbers which are created every time
• different output orders
• different text formats
• different values within a range

The easiest common way to use complex comparisons is to just ignore these fields. An-
other way is to use some sort of pattern matching using regular expressions or to extract
the fields that have to be compared to an expected value.

2.1.4 Comparing different types of outcome

2.1.4.1 Disk based outcomes
Text files
Text files are the easiest type of data to compare and nearly all comparators provide
functions to scan them. Good comparators provide tools that can highlight differences
and allow the tester to browse the differences.

XML files
XML files are a special type of text files. They can be parsed using comparators for
normal test files but most testing tools provide additional tools for parsing xml files and
building up an XML tree.

Foundations 8

Non textual forms of data
These files usually need a special comparator which can read and parse the file and ex-
tract data structures.

Databases and binary files
These files also need a special comparator or a driver that can extract information from
these files which can be processed using the standard text tools.

2.1.4.2 Screen based outcomes
Character based applications
Since the screen is already an array of characters it can be addressed using the row and
column number.

GUI based applications
GUI applications offer a wide range of output styles. They use items like buttons, menu
bars, text fields, bitmaps, checkboxes and others. There are different approaches to ex-
tract data from GUI based applications. The easiest way is to use a comparator that can
handle that special application. Each application is written in a certain programming
language and there are test tools for each language that are able to deal with graphical
user interfaces.

Graphical images
Graphical images are an array of dots called pixels. It is very difficult to check and
compare images but a few test tools allow to compare them and to specify a tolerance
with the aim to ignore differences that aren’t really noticeable. Many capture/replay
tools offer bitmap comparison but they only work correctly when the tester uses a speci-
fied screen resolution and colour depth. Comparing images is a tough job and is hardly
used in automated software tests. There are many projects in universities and companies
that try to deal with image recognition.

2.1.4.3 Other types of outcome
Multimedia applications
Multimedia applications produce a test outcome that isn’t readily comparable like
sounds or videos. It is possible to use special tools that can analyze videos but testing
tools normally do not provide such capabilities

Communicating applications
These are applications that have outcomes involving communication with other applica-
tions or hardware devices and normally also require special testing tools.

Foundations 9

2.1.5 Comparison filters
Comparison filters are performed on both an expected outcome and the corresponding
outcome to translate the original data into a simpler form so that simpler comparator
tools can be used. A filter removes legitimate differences from the outcome like the
header information of a web response. The filter can be applied only to the program
outcome when the expected outcome has already the right format. A filter offers some
advantages but also a few disadvantages:

• It enables the use of text manipulating tools that are widely available instead of
complex and expensive comparison tools.

• It can be reused in many situations.
• It enables simple comparison tools performing complex comparisons.
• It simplifies debugging by dividing complex comparisons into many easy com-

parisons.
• It generally requires programming skills to create filters and they need to be

tested itself before they can be used with confidence.
• A filter simplifies the output by ignoring fields and might cause the miss of de-

fects.

2.1.6 Sensitive tests versus robust tests
We need to decide what information needs to be compared but it is hard to decide how
much of the output should be compared and how often it should be compared to ex-
pected values. Tests that do a lot of comparisons are called sensitive tests and are more
likely to fail compared to robust tests that only compare the most necessary values. On
the other hand robust tests are more likely to miss defects. The tester has to find a com-
promise solution between these two methods. Each of them has some advantages in
certain scopes:

• Susceptibility to changes:
Sensitive tests are more difficult to maintain because it is very likely that they have to
be changed when the program changes.

• Implementation effort:
Sensitive tests cause more effort to be implemented because they contain more com-
parisons than robust tests.

• Miss defects:
Robust tests are more likely to miss defects because they include fewer comparisons
and ignore a lot of the output.

• Failure analysis effort:

Foundations 10

It is easier to analyze failures in sensitive tests because they provide more feedback and
can find mistakes earlier than robust tests because the robust tests ignored the according
field.

• Storage space:
Sensitive tests need more storage space because they compare more data than robust
tests.

• Redundant errors:
When using sensitive tests it is more likely that many of them fill fail for the same rea-
son, even when there is only a minor change.

Figure 2.1 sensitive tests vs robust tests

2.1.7 Scripting techniques
Test scripts are a necessary part of test automation. It is very important to write main-
tainable scripts that can be reused. Writing scripts is very similar to programming soft-
ware applications. The tester has to spend time testing the tests, debugging and fixing
them. Changes in the application usually forces some tests to be changed. Recording a
manual test case normally results in a long linear script containing all instructions. Re-
cording many test cases produces many long scripts, which are difficult to handle be-
cause they often contain same pieces of code like a login function. In order to make
these scripts maintainable, they have to be divided into many small pieces. The best
idea is to code scripts from the scratch when starting to write automated tests. The tester
should write small scripts that each perform a specific task. A test case uses many of

Foundations 11

these scripts and additional code. The idea is to avoid duplicate scripts [5]. When the
one part of an application changes the tester normally just has to change the script using
this part of the application and all test cases using this script will work again. When you
just implement one test case after the other without making use of this technique you
will have to change the code in each test case using the modified part which may last
quite a long time. When test automation begins you will just have a fistful of scripts and
it won’t be difficult to keep track of them but when the number of scripts increases you
need a way to organize them.

There are several characteristics for good scripts:

• The size of a script should be small
• Each script should have a clear, single purpose
• Each script should contain a specific documentation
• Many scripts should be reused be different test cases
• It should be easy to see and understand the structure of scripts to be able to make

changes
• Scripts should be easy to maintain. Changes in the software should only affect a

few scripts.

2.1.7.1 Linear scripts
A linear script is the result of recording a manual test case step by step. It contains all
keystrokes and maybe additional dynamic comparisons or capture instructions. Each
test case has its own script and is completely independent from the others.

Advantages of linear scripts:

• The tester can just sit down and write the test without any upfront work.
• It provides a production log of what was actually done.
• The tester doesn’t have to be a sophisticated programmer. Capture/replay tools

can help to produce these scripts.
• It is easy to build tests for demonstrations of the application and the test tool
• The test cases are independent from each other.

Disadvantages of linear scripts:

• Every test case has to be built from scratch, except when using copy and paste.
• The test input and all comparisons are hard coded inside the script
• There is no reuse or sharing of the scripts except when using copy and paste.
• These scripts are vulnerable to software changes.
• These scripts are very expensive to maintain because after a software change all

scripts using the changed part of the software need to be rewritten or changed.

Foundations 12

2.1.7.2 Structured scripts
Structured scripts are very similar to linear scripts but they additionally contain special
instructions to control the execution of the script. There are three basic control struc-
tures:

• sequence control structure
The sequence is just a linear list of instructions which are performed one after the other.

• selection control structure
The selection provides the script the ability to make decisions. The best known selection
structure is the “if” statement.

• iteration control structure
The iteration control structure allows the script to repeat some instructions a specific
number of times or until a certain condition is met. This control structure is also known
as “loop”.
Furthermore structured scripts can call other scripts.

The advantages and disadvantages of structured scripts are very similar to the ones from
linear scripts except:

• Structured scripts are more robust because they can check for specific things
which would cause the linear scripts to fail.

• The tester requires at least basic programming skills.

2.1.7.3 Shared scripts
Shared scripts are shared or used by more than one test case. The idea is to write many
small scripts with a clear, single purpose each. When a test case needs the functionality
of a script it simply calls the script. It makes sense to use shared scripts for rapidly
changing software because they do not require long and expensive maintenance. Shared
scripts can be created from linear scripts by dividing them into several parts. Hard
coded strings have to be replaced by variables. The tester needs programming skills to
create shared scripts and also needs to organize and document them. When using shared
scripts the number of these scripts can increase very fast. Furthermore they support the
use of control structures like the sequence, selection and iteration control structure.
Shared scripts can either be application-specific or application-independent. Applica-
tion-independent scripts can be used for many software applications, so they may be
useful for a long term and they are worth putting additional effort into. Typical exam-
ples for application-independent scripts are logging, input retrieval, results storage, error
recovery, checking and comparison scripts.
Application-specific scripts cover individual screen or window routines and the naviga-
tion in the application.

Foundations 13

Advantages of shared scripts:
• Similar tests take less effort to implement because the shared scripts of other test

cases can be used.
• The maintenance costs are lower than for linear or structured scripts
• Test code duplications are eliminated.
• It is worth investing more time into creating shared scripts especially when they

get used from hundreds of test cases.

Disadvantages of shared scripts:

• The tester has to keep track of a large number of scripts and has to find the right
shared scripts when implementing the test cases.

• The tester needs programming skills.
• They require more time for planning.

2.1.7.4 Data-driven scripts
Data-driven scripts [8] store the input data in a separate file. The test script reads the
data from the file when the test is executed. The data file can be exchanged in order to
run the test with different input values. Normally the data file contains many sets of data
for the same test case and the test case is executed once for each data set. The scripts
have to be created by a tester with good programming skills because they contain addi-
tional instructions to read the data from the file. They only contain variables and no
hard coded input values. The data file can be created by anyone without any program-
ming skills. Using data-driven scripts enables the tester to implement many more tests
with minimal effort. The data-driven approach can be combined with the techniques
used for shared scripts or structured scripts.

Advantages of data-driven scripts:

• It is easy to create additional tests with different input values.
• The writer of the data files doesn’t have to be a programmer.
• One test script is used for many tests and only the script has to be maintained

when the application changes.

Disadvantages of data-driven scripts:

• The scripts have to be written by someone with a technical background.
• The set-up of data-driven tests takes more effort than using the script techniques

mentioned before.
• It is only useful for applications with many tests.

Foundations 14

2.1.7.5 Keyword-driven scripts
Keyword-driven scripts are data-driven scripts with some extensions. While data-driven
scripts can be divided into a logic part, the control script, and a data part, the data file,
which have to be synchronized, keyword-driven scripts allow the tester to put some
control information into the data file. The tester should be able to specify automated test
cases without having to specify all execution detail. The data file describes what the
script should test but not how it should be tested. Keywords are used to identify the
function that should be tested followed by some input data and expected outcomes. Of
course the tester has to provide supporting scripts that can be referenced by the key-
words.
The control script just reads the extended data script and calls the function referenced
by the keyword using the additional information provided by the data file. The data file
specifies the order of the test execution. The advantage of this approach is that the test
cases can be developed separately from the test scripts without using a programming
language. However first the keywords have to be specified and a good programmer has
to implement the supporting scripts.

Advantages of keyword-driven tests:

• The number of supporting scripts is independent from the number of test cases
because it is only dependent on the size and the functionality of the software ap-
plication that has to be tested.

• The test cases are written in a separate file and are independent from the testing
tool.

• No programming skills are needed to write the test cases.
• It is easy to create additional tests with different input values.
• The writer of the data files doesn’t have to be a programmer.
• One test script is used for many tests and only the script has to be maintained

when the application changes.

Disadvantages of keyword-driven tests:

• The scripts have to be written by someone with a technical background.
• The initial set-up can take a lot of effort
• It is only useful for applications with many tests.

Foundations 15

2.1.7.6 Summary of scripting techniques

 Linear Structured Shared Data-
driven

Keyword-
driven

structured
or unstruc-

tured
unstruc-

tured structured structured structured structured

script con-
tains

con-
stants constants

constants
and va-
riables

variables
variables
and key-

words

script ap-
proach intel-

ligence
none ifs and loops ifs and

loops

ifs, loops
and data
reading

ifs, loops,
data read-

ing and
keyword

interpreter

program-
ming skills none low medium good/none good/none

mainten-
ance costs

very
high high low low low

test set-up
effort very low low medium high very high

effort of
writing addi-
tional tests

high high low very low very low

reusability
of the
scripts

none low high high very high

estimated
ratio

(scripts:test
cases)

1:1 1:1 1:5 1:7 1:10

Table 2.1 Summary of scripting techniques

Table 2.1 summarizes all scripting techniques and gives a brief overview of the advan-
tages and disadvantages of each technique. It also contains the estimated ratio between
scripts and test cases of each technique which can be very helpful for finding the right
technique for the particular project.

2.1.8 Test maintenance
There are some attributes that affect the maintainability of tests.
The number of test cases

Foundations 16

The more tests there are the more tests will have to be maintained when the software
changes. This effort can be reduced when using an adequate scripting technique. Nor-
mally the effort for maintenance grows indirectly proportional to the number of test
cases.
The quantity of test data
Using lots of test data increases the effort of maintenance when data structures or types
used in the software application are changed.
The test data format
Some software applications use special data formats. Test cases need generators or other
tools to generate these data structures and these tools also have to be adopted when the
software application changes. The text format data is the most flexible data format and
should be used whenever it is possible.
The time to run a test case
Test cases which take a long time to execute usually perform many comparisons and
other things. The chance for an error increases when the test case takes longer and a lot
of tests aren’t executed when the error occurs in the middle of the test. This means the
tester has to debug the test case and rerun it at least once. When possible the test cases
should be as short as possible and only test a single particular function of the software
application.
The debug-ability of test cases
When a test case fails it is important to find the reason why it fails. Therefore additional
information has to be added to the test protocol. A tester should always keep in mind
what information may be needed to understand a test failure and add some debugging
information.
Independences between tests
Some test cases use the output of a former test case as input. It goes without saying that
when the former test case fails the following test cases that try to use its output will also
fail. When a test case has to be changed all other tests that use its output also have to be
changed.
The naming convention
When the quantity of people in the software testing team exceeds the number of two it
is strongly recommended to adopt some naming conventions. Otherwise the testers will
need more time to find the right scripts or even write duplicate scripts which leads in
higher maintenance efforts and costs.
Test complexity
Complex software tests are harder to understand and to maintain. They should be
avoided when possible. Whenever you want to automate a complex test you should first
compare the effort for writing and maintaining it to the effort likely to be saved later.
Sometimes it is more reasonable to perform complex tests as manual tests.
Test documentation

Foundations 17

In every software project it is very important to have a good documentation. Test auto-
mation is also a project and needs to be documented to save time and money when
maintaining the tests.

2.1.9 Metrics
In software testing many things can be measured [10] to determine whether a choice
that has been done was a good choice or whether the testing process in general is effec-
tive. These measurements help to evaluate choices and find the right decisions, monitor
changes in the testing process, compare the software to other software projects and even
predict problems.

Here is a list of things that can be measured in software projects and especially in soft-
ware testing projects:

• lines of code
• number of classes, methods, functions
• size of compiled code
• time for writing and executing the tests
• number of developers
• number of tests
• code coverage
• number of defects found while testing
• number of defects found after testing
• total number of known defects
• number of defects fixed
• number of scripts
• number of automated tests
• costs of licenses, effort

Using only one of these metrics doesn’t make much sense because for example a big
number of defects found can either mean that the testing was thorough and only a few
bugs remain or that the software simply has a lot of bugs. But when taking and combin-
ing these metrics, some important information can be calculated.

Defect Detection Percentage (DDP)

defectsknowntotal
beforetestingbyfounddefectsDDP

release

=

DDP specifies the percentage of defects that were found by testing compared to the total
number of known defects. The total number of known defects normally increases as
time goes on so the DDP gets down. The end value isn’t known before the software

Foundations 18

product is retired but as the number of new defects found gets lower as time goes on, it
is possible to estimate the end value. When the development of a software application is
finished and the product gets economically used all known defects so far have been
found by testing but it is ridiculous to assume that the DDP is 100%. At this point it is
important to estimate a DDP based upon the defects found so far and maybe the code
coverage of the test cases. It is possible to compare this estimated DDP to DDPs of
other software projects, which used a different test process, and to find improvements.

Figure 2.2 new defects found

After a short period the DDP becomes more precise and allows drawing a conclusion
whether the new test process has been an advancement compared to the old one.

Defect Fix Percentage (DFP)

defectsknowntotal
beforefixeddefectsDDP

release

=

DFP is very similar to DDP. Not all defects that are found get fixed before the release
and DFP only counts the fixed ones. DFP can never be higher than DDP but both values
can be equal when all found defects are fixed. DFP is more important for software qual-
ity than DDP because in having a high DFP means that most defects were fixed while
having a high DDP only shows that a lot of defects were found but it doesn’t ensure that
they were corrected.

However a high DFP and DDP need not automatically mean that the software testing
was successful. There are some pitfalls when using these techniques:

• When the testing is really poor and no defects are found or the software applica-
tion is really without defects the denominator of the division could be 0 which
would cause an error. It is very unlikely that this will ever happen, but this in
that case DFP and DDP should get the value 1.

Foundations 19

• When testing after the release is very poor the DDP and DFP might keep at a
higher level than they should.

• A small amount of reported errors can also be a result of unhappy users who do
not like that software.

• The exact final result will never be reached because in a complex application
there are always at least minor bugs that will never be found.

• The first results of these measures can’t be obtained before the application is re-
leased.

• DFP and DDP are dependent on the number of people using the software and the
amount of testing. Poor testing and a small number of users lead to high DDPs.

2.2 State of the Technology

2.2.1 Automated web testing
The testing of Web-based applications [3] [17] [18] has much in common with the test-
ing of desktop systems: You need to test the usual functionality, configuration, and
compatibility, as well as performing all the standard test types. But Web application
testing is more difficult because complexities are multiplied by all the distributed sys-
tem components that interact with the application. When we see an error in a Web envi-
ronment, it's often difficult to pinpoint where the error occurs, and, because the behavior
we see or the error message we receive may be the result of errors happening on differ-
ent parts of the Web system, the error may be difficult to reproduce.

Foundations 20

Figure 2.3 simple web environment

Figure 2.3 shows a client running a web browser gathering static html pages from a sin-
gle server over the internet. When an error occurs there are different components that
could have caused the error:
Client:

• the configuration of the browser
• the operating system of the client

Internet:
• routing problems

Server:
• internal error
• page not found

Foundations 21

Figure 2.4 complex web environment

Figure 2.4 shows a more complex web configuration. There are several redundant web
servers and database servers and an additional server for handling incoming requests.
When an error occurs the reason could be one of the reasons mentioned before or de-
fects in the server network or one of the servers.
When testing web applications it is very important to distinguish between [22]:

• Server programs with state-independent behavior
• Server programs with state-dependent behavior

Web applications are software projects with the following characteristics [25]:

• Web applications have short delivery times.
• Web applications are subject to a tremendous pressure for change.
• Turn over of Web application developers is high.
• Complexity and criticality of Web applications are increasing.
• User needs evolve quickly.

Foundations 22

Here are five fundamental considerations of web application testing: [4]

1. Is it an error or a symptom?
Without diagnosing the environment, we can’t be certain what causes a symptom to
appear. If one of the environment-specific variables from either the client side or the
server side is removed or altered, we might not be able to reproduce the problem.

2. Is the error environment-dependent?
To reproduce an environment-dependent error we have to perfectly replicate both the
exact sequence of activities and the environment conditions (operating system, browser
version, add-on components, database server, Web server, third-party components,
server/client resources, network bandwidth and traffic, etc.) in which the application
operates
Environment independent errors, on the other hand, are relatively easier to reproduce
it’s not necessary to replicate the operating environment. With environment-
independent errors, all that need be replicated is the steps that reveal the error. More
commonly, we refer to environment-independent errors as functionality-specific errors.

3. Is it a coding error or a configuration problem?
Errors may be resolved with code fixes or system reconfiguration. Don’t jump too
quickly to the conclusion that it’s a bug!

4. Which layer really causes the problem?
Errors in Web systems are often difficult to consistently reproduce because of the many
variables introduced by the distributed nature of client/server architecture. There are at
least three usual suspects in a Web environment: The client, the server, and the network.
Both the client and the server carry configuration and compatibility issues that are simi-
lar to PC environments, where all components are in one box. Issues multiply within
client/server systems, however, because there may be many clients and servers con-
nected on a network.
The network offers another set of variables. The network affects the Web application in
several ways, including timing-related issues (race conditions, performance, time-outs,
etc.) due to bandwidth and latency, potential configuration and compatibility issues due
to hardware devices such as gateways and routers, and side effects related to security
implementations.

5. Static and dynamic operating environments are different.
In general, there are two classes of operating environments. Each with its own unique
testing implications:

Foundations 23

Static Environments (i.e., configuration and compatibility errors) in which incompatibil-
ity issues may exist regardless of variable conditions such as processing speed and
available memory.
Dynamic Environments (i.e., resource and time-related errors) in which otherwise com-
patible components may exhibit errors due to memory-related errors and latency condi-
tions.

2.2.1.1 Testing the application
There are two different options to write test cases for a web application [20] [21]:

• Program-Based Testing
The web application is splitted into its technical parts and each part gets tested seperate-
ly. Afterwards some tests have to be written using interactions of these parts.

• User-Session-Based Testing
A user session is a sequence of user requests, which can also be seen as http requests.

Basically both forms should be used and combined as described in [24].

2.2.1.2 Client side testing [3] [15]
• HTML Coding

The HTML of a web page should be standard HTML or XHTML as specified by the
World Wide Web Consortium (W3C). The W3C provides online tools that can check
and validate web pages. Browser specific extensions shouldn’t be used because they
may cause severe side effects on other browsers and they also fail the validation. There
are also offline tools that are able to validate web pages and that can be used for auto-
mated software tests.

• Design testing
Design includes the layout and also graphical elements of the site. The design can hard-
ly be tested by automated tests. It is also dependant on the rendering engine of the
browser. One further aspect of design is the ability to print out information from the
page. Many web pages provide extra links that render a more printer friendly page.

• Usability testing
Usability is tightly coupled with the design of a web page. Usability can only be tested
by humans. There are many options to test the usability but I only want to present the
usability testing with prototypes to give a basic idea how to do such tests. Prototypes
can be non functional html pages or just made of paper. The test supervisor has to speci-
fy some scenarios and observe the test candidates performing these scenarios on the

Foundations 24

prototype. Together with a closing interview these usability tests can give some great
feedback by identifying inconsistencies.

• Performance testing
Performance testing [11] can be divided into two groups:

1. Qualitative:
Many generated web pages include lots of tags which raises the file size and according-
ly also the internet traffic. Web browsers need more time to render big pages. However
this issue becomes unimportant nowadays because the CPU speed of modern computers
is far beyond the needed speed for rendering internet pages and people use broadband
internet connections instead of modems. Automatic software tests can measure the time
that is needed to receive and render a page.

2. Quantitative:
Part of server side testing.

• Client-side script testing
Many internet pages use client-side scripts like VBScript or JavaScript. When such
scripts cause an error usually a message pop up appears and prints out an error message.

There are three types of script problems:

1. compilation errors:
They occur as soon as a web page is loaded.

2. runtime errors:
They occur as soon as some action is performed which executes the bad script.

3. logic errors:
When a user enters an unexpected value like a string instead of a number the function
causes a logical error.

Script testing can be done in automated software tests, as long as the test framework
supports the scripts.

2.2.1.3 Server side testing
• Performance testing

Quantitative:
Many clients connect to one server. This can be done by many people testing concur-
rently one web application or it can be done by automated software tests, which should
be preferred because automated tests can be repeated more easily with the same confi-
gurations while coordinating a great many of tester is nearly impossible.

• Black box testing

Foundations 25

The client performs several tests. It sends requests to the server and inspects the results.
Black box tests are the basic tests when writing automated tests for web applications.

• Reliability / stability testing
Reliability or stability can be quantified in the uptime of the server under certain condi-
tions. First a reasonable number of users, the system should be able to handle, has to be
specified and then some kind of stress test has to be executed. The uptime of a system
normally is measured in percentage of uptime over a year. An uptime of 99.9% allows a
downtime of less than 9 hours per year. It is important to run these tests over a long pe-
riod of time under real world conditions but it is hard to simulate real world conditions
in a lab and it is unrealistic to be able to perform a stability test even one month long
before release. Therefore this kind of testing has to be mapped to a short period auto-
mated stress test which is performed in a lab. However the final results can’t be ob-
tained until the system has been released and has run a long time.

• Scalability testing
Scalability testing occurs on a complete system rather than on a single server. Not all
applications scale as expected. The behavior of the system before and after scaling is
tested by automated tests.
There are two ways that a system can scale:

1. scale up:
This means that changes in the current machine are done like upgrading the CPU or
adding more memory. This type of scaling doesn’t add any redundancy to the system.

2. scale out:
New machines are added to offload the processing. This type of scaling provides some
redundancy but on the other hand it can cause additional failures because it is difficult
to share the state across different machines.

• Security testing
Web applications can be accessed by a large number or users, mostly by anyone who is
connected to the internet. That’s why security testing is a very important part in web
testing. Security vulnerabilities can have two origins, they can be caused by architectur-
al problems concerning the servers on which the application is deployed or they can be
caused by coding problems. There are special security scanners that are able to scan the
system for known bugs like nessus [47] but they do not cover all architectural issues.
Vulnerabilities caused by coding problems can be found by testing the application con-
centrating on the parts that are relevant for security. Most security holes are caused by
typical coding mistakes and in web applications there are several additional kinds of
security holes:

• unchecked input data
• SQL Injections

Foundations 26

• Cross-Site Scripting
• Denial of Service
• Encryption related issues

tests manual automatic

HTML coding no yes

design yes no

usability yes no

performance - qualitative yes yes

performance - quantitative no yes

script yes yes

black box yes yes

reliability no partly

scalability no yes

security yes yes
Table 2.2 server side testing - summary

2.2.2 AJAX (Asynchronous JavaScript and XML)
AJAX [48] stands for “asynchronous JavaScript and XML” and is a collection of web
development techniques used to create interactive web applications. With AJAX the
web application can retrieve data from the server asynchrony in the background while
the display of the existing page isn’t interfered.
The main technologies used in AJAX are [2] [19]:

• XHTML and CSS for presentation of the data
• Document Object Model for dynamically modifying the web page
• JavaScript for interacting with all other techniques
• XML and XSLT for data exchange with the server
• XMLHttpRequest object for asynchronous communication

However it has been noted that some of these technologies can be replaced by others. It
isn’t necessary to use XML for the data exchange, so many applications use plain text,
preformatted HTML or JavaScript Object Notation as an alternative format. Instead of
JavaScript developers can use VBScript.

Foundations 27

AJAX modifies the communication between client and server significantly. Without
AJAX after each request to the server, a whole new web page is sent as response, or
when using frames the whole content of at least one frame is sent. The user can’t work
on the page until the new site has been received. On the other side AJAX requests are
processed in the background and the response from the server is added to the page dy-
namically. No new page is loaded and the user can keep working on the page and trig-
ger more AJAX requests while everything is processed in the background.

AJAX has many advantages compared to the classic web applications using just re-
quest/response but it also causes some problems [40] :
Advantages:

• AJAX reduces the amount of data that is transferred between server and client it
doesn’t send the whole page but only the necessary parts that change.

• AJAX is supported by all popular browsers without the need to install a plug-in
• Using AJAX makes the user interface more interactive. It is possible to develop

web based office applications that behave very similar to locally installed ones
or to check input data of a form while the user still fills it and mark mistakes.

• There are no license costs for AJAX
• AJAX uses no new technologies so there is no need to learn additional pro-

gramming languages for web developers.
Disadvantages:

• The back button of the browser doesn’t work with AJAX because no new page
has been loaded.

• It is difficult or impossible to bookmark a certain state of a web page when using
AJAX.

• JavaScript has to be enabled which could lead to other security problems.
• Search engines normally don’t execute JavaScript code so they can’t index the

parts of a web application that can only be reached using AJAX.
• AJAX complicates web applications and raises the chance for errors.
• Many web testing tools can’t handle AJAX and therefore can’t be used for test-

ing AJAX enabled web applications.

2.2.2.1 XMLHttpRequest
The most important part of AJAX is the XMLHttpRequest [39] which is responsible for
the communication and which collects the response data from the server. Instead of
AJAX request we can also use the term XMLHttpRequest.

Foundations 28

2.2.2.1.1 Methods
abort()

Cancels the current request.
getAllResponseHeaders()

Returns the complete set of HTTP headers as a string.
getResponseHeader(headerName)

Returns the value of the specified HTTP header.
open(method, URL, async, userName, password)

Specifies the method, URL, and other optional attributes of a request.
• The method parameter can have a value of GET, POST, HEAD, PUT, DE-

LETE, or a variety of other HTTP methods listed in the W3C specification.
• The URL parameter may be either a relative or complete URL.
• The async parameter specifies whether the request should be handled asyn-

chronously or not – true means that script processing carries on after the
send() method, without waiting for a response, and false means that the
script waits for a response before continuing script processing.

send(content)
Sends the request. content can be a string or reference to a document.

setRequestHeader(label, value)
Adds a label/value pair to the HTTP header to be sent.

2.2.2.1.2 Properties
onreadystatechange

Specifies a reference to an event handler for an event that fires at every state
change

readyState
Returns the state of the object as follows:
• 0 = unsent – open() has not yet been called.
• 1 = open – send() has not yet been called.
• 2 = headers received – send() has been called, headers and status are availa-

ble.
• 3 = loading – Downloading, responseText holds partial data (although this

functionality is not available in IE)
• 4 = done – Finished.

responseText
Returns the response as a string.

responseXML
Returns the response as XML. This property returns an XML document object,
which can be examined and parsed using W3C DOM node tree methods and
properties.

Foundations 29

status
Returns the HTTP status code as a number (e.g. 404 for "Not Found" and 200
for "OK").

statusText
Returns the status as a string (e.g. "Not Found" or "OK").

Figure 2.5 ready states of the XMLHttpRequest object

The XMLHttpRequest has to be in one of the following five states:

• Unsent or 0
• Opened or 1
• Headers received or 2
• Loading or 3
• Done or 4

When an XMLHttpRequest object is created the initial state is “unsent”. When the
open() method is called the state is changed to “opened”. In the open method the user
can specify whether the request should be executed synchrony or asynchrony. Synchro-
ny requests will block the current thread, mostly the main thread, until the full response
has been received while asynchrony requests are executed in the background in an own
thread so the user can continue working with the application and initiate further re-

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Foundations 30

quests. In this state the request headers can be set using the setRequestHeader method
and finally the send() method is called to send the request to the server.
Once all response headers have been received the status is changed to “headers re-
ceived” and later when the first byte of the response entity body has been received or
when there is no response entity body the status is switched to “loading”.
Finally when the request has successfully completed the status is switched to “done”.
After each status switch a readystatechange-event is dispatched which notifies the asso-
ciated function which is responsible for processing the received information. Most ap-
plications just wait till the “done” status has been fired and process the whole data at
once, which is adequate for small data amounts, but especially for large amounts of data
it is advisable to show the user some kind of progress bar or even present the data which
has already been received.
The response entity body can be read with the method responseText or responseXML.
ResponseXML can only be called when the status is “done” because otherwise the re-
sulting fragment xml document wouldn’t be a well-formed xml document while respon-
seText can also be called when the state is “loading”. As the response entity body
doesn’t need to be an xml document the responseXML method may also return a null
string.

2.2.2.2 AJAX Example
Here is an example code from Wikipedia [44]
/*
2 This is the JavaScript file for the AJAX Suggest Tutorial
3
4 You may use this code in your own projects as long as this
5 copyright is left in place. All code is provided AS-IS.
6 This code is distributed in the hope that it will be useful,
7 but WITHOUT ANY WARRANTY; without even the implied warranty of
8 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
9
10 For the rest of the code visit http://www.DynamicAJAX.com
11
12 Copyright 2006 Ryan Smith / 345 Technical / 345 Group.
13
14 */
15 //Gets the browser specific XmlHttpRequest Object
16 function getXmlHttpRequestObject() {
17 if (window.XMLHttpRequest) {
18 return new XMLHttpRequest();
19 } else if(window.ActiveXObject) {
20 return new ActiveXObject("Microsoft.XMLHTTP");
21 } else {
22 alert("Ihr Browser ist schon etwas aelter.\nEventuell sollten Sie

einmal ueber ein Update nachdenken...");
23 }
24 }
25
26 //Our XmlHttpRequest object to get the auto suggest
27 var searchReq = getXmlHttpRequestObject();

Foundations 31

28 var searchLang = "de";
29
30 //Called from keyup on the search textbox.
31 //Starts the AJAX request.
32 function searchSuggest(lang) {
33 searchLang = lang;
34 if (searchReq.readyState == 4 || searchReq.readyState == 0) {
35 var str = escape(document.getElementById('txtSearch').value);
36 searchReq.open("GET", 'suggest.php?lang=' + searchLang +

'&search=' + str, true);
37 searchReq.onreadystatechange = handleSearchSuggest;
38 searchReq.send(null);
39 }
40 }
41
42 //Called when the AJAX response is returned.
43 function handleSearchSuggest() {
44 if (searchReq.readyState == 4) {
45 var ss = document.getElementById('search_suggest')
46 document.getElementById('search_suggest').style.visibility =

"visible";
47 ss.innerHTML = '';
48 //ss.innerHTML += '<a href=""

onclick="document.getElementById(\'search_suggest\').style.vi
sibility = \'visible\'; return false;">[x]';

49 var str = searchReq.responseText.split("\n");
50 if (str.length > 1) {
51 var entry = str[0].split("\t");
52 ss.innerHTML += '<div class="suggest_link">Treffer für "' +

entry[0] + '"</div>';
53 var searchString = entry[0];
54
55 for(i=1; i < str.length - 1; i++) {
56 var entry = str[i].split("\t");
57 //alert (entry);
58 //Build our element string. This is cleaner using the DOM, but
59 //IE doesn't support dynamically added attributes.
60 var suggest = '<div onmouseover="javascript:suggestOver(this);"
';
61 suggest += 'onmouseout="javascript:suggestOut(this);" ';
62 //suggest += 'onclick="javascript:setSearch(this.innerHTML);" ';
63 suggest += 'class="suggest_link"><a href="/go?l='+ searchLang

+'&q=' + entry[0] + '">';
64
65 if (document.getElementById('txtSearch').value == entry[0]) {
66 suggest += '' + entry[0] + '';
67 } else {
68 suggest += entry[0];
69 }
70
71 suggest += ' ';
72 //suggest += entry[1];
73 suggest += '</div>';
74 // suggest += ' ' + entry[1] + '</div>';
75 ss.innerHTML += suggest;
76 }
77 ss.innerHTML += '<hr noshade size=1 style="background-

color:#ffffff;">';
78 }
79

Foundations 32

80 if (searchString) {
81
82 ss.innerHTML += '<div class="suggest_link">"' + searchString + '"

in Wikipedia suchen mit</div>';
83
84 var suggest = '<div onmouseover="javascript:suggestOver(this);"
';
85 suggest += 'onmouseout="javascript:suggestOut(this);" ';
86 suggest += 'class="suggest_link"><img src="/favicon.ico"

width="16" height="16" title="Suchen mit Wikipedia"
border="0" > <a href="/go?l=' + searchLang +
'&e=wikipedia&s=search&q=' + searchString +
'">wikipedia.org</div>';

87 ss.innerHTML += suggest;
88
89 if (searchLang == "de") {
90
91 var suggest = '<div onmouseover="javascript:suggestOver(this);"
';
92 suggest += 'onmouseout="javascript:suggestOut(this);" ';
93 suggest += 'class="suggest_link"><img src="/img/t-online.ico"

width="16" height="16" title="Suchen mit T-Online" border="0"
/> <a href="/go?l=' + searchLang + '&q=' +
searchString + '&e=t-online&s=search">t-online.de</div>';

94 ss.innerHTML += suggest;
95
96 var suggest = '<div onmouseover="javascript:suggestOver(this);"
';
97 suggest += 'onmouseout="javascript:suggestOut(this);" ';
98 suggest += 'class="suggest_link"><img src="/img/web.de.ico"

width="16" height="16" title="Suchen mit web.de" border="0"
/> <a href="/go?l=' + searchLang + '&q=' +
searchString + '&e=web.de&s=search">web.de</div>';

99 ss.innerHTML += suggest;
100
101 var suggest = '<div onmouseover="javascript:suggestOver(this);"
';
102 suggest += 'onmouseout="javascript:suggestOut(this);" ';
103 suggest += 'class="suggest_link"><img src="/img/exalead.ico"

width="16" height="16" title="Suchen mit exalead" border="0"
/> <a href="/go?l=' + searchLang + '&q=' +
searchString + '&e=exalead&s=search">exalead.de</div>';

104 ss.innerHTML += suggest;
105 }
106
107 }
108
109
110
111 }
112 }

Table 2.3 Wikipedia search suggest

This script suggests Wikipedia articles matching the user input in the search field.
The XMLHttpRequest object is created by the function getXmlHttpRequestObject() on
line 16 and stored in the variable searchReq on line 27. As there is only one request ob-
ject, Wikipedia can handle only one AJAX request at once.

Foundations 33

After each key press from the user the function searchSuggest on line 32 is called. On
line 34 the script checks whether the ready state of searchReq is “done” or “unsent”
because any other state would indicate that there is already a running search and the
current search would be cancelled. This means that the suggest search won’t be really
executed after each key press as long as the response of the pending search request
hasn’t been received.
If the searchReq object is ready for a new search request the open method is called on
line 36 where the http method, the URL with the search string and language parameters
and a Boolean variable indicating to process the request asynchrony are passed to the
object. Further request headers aren’t needed so the next step is to specify the function
handleSearchRequest() to be called after each state change. The function itself is speci-
fied on line 43. Now the request is sent with “null” as content because the search string
is embedded in the URL.
The function handleSearchRequest() only processes the received data when the ready
state has been set to “done” (line 44). All other state changes are ignored.
From line 45 to 47 the prepared element on the webpage which presents the search re-
sults is set visible and old search results are deleted.
On line 49 the search result is read using the method responseText() and afterwards the
results get surrounded by some html tags and presented on the page.

2.3 Selected Open Source Testing Frameworks

2.3.1 HtmlUnit

HtmlUnit [41] is a web browser written in java which allows manipulating web pages. It
was designed for test automation of web applications. It doesn’t have a graphical user
interface so the user can’t observe the program while executing the tests. HtmlUnit isn’t
a test framework itself but it is intended to use HtmlUnit within a test framework like
JUnit or TestNG.
The key features of HtmlUnit are

• Support for the HTTP and HTTPS protocols.
• Support for cookies
• Ability to specify whether failing responses from the server should throw excep-

tions or should be returned as pages of the appropriate type
• Support for submit methods POST and GET (as well as HEAD, DELETE, ...)
• Ability to customize the request headers being sent to the server
• Support for HTML responses
• Wrapper for HTML pages that provides easy access to all information contained

inside them

Foundations 34

• Support for submitting forms
• Support for clicking links
• Support for walking the DOM model of the HTML document
• Proxy server support
• Support for basic and NTLM authentication
• Good support for JavaScript

This means that HtmlUnit supports all “normal” web pages, but there is no support for
further plug-ins like Adobe Flash or Microsoft Silverlight.
HtmlUnit is not a stand-alone application, but it depends on many other projects:

• JUnit: is used as test framework
• Mozilla: the Rhino JavaScript engine for java has been adopted for HtmlUnit
• Apache: provides the http-client and many utility classes
• Xerces: is used as XML parser
• Many others

The central class in HtmlUnit is the WebClient. It can be instantiated with arguments
specifying a proxy server and a specific browser version. Supported browsers are Inter-
net Explorer, Netscape and Mozilla, but this list can be easily extended. The default
browser is Internet Explorer 6.0.
The web-client further contains:

• WebConnection
• JavaScriptEngine
• CredentialProvider
• Some JavaScript handlers
• Some internet settings

The web-client provides many methods to let the user interact like in a real browser.
When the user wants to load a page he just has to call the method getpage(). HtmlUnit
provides for each html-tag an equivalent class which offers all setter methods, getter
methods and interactions the tag offers. The user has to cast the return values into the
right class explicitly. Elements of a web page can be found and extracted by searching
for them using their ids or names or by getting a collection of all elements of a certain
type and taking the one in the right position.

Here is a simple test example taken from the HtmlUnit homepage:
public void testHomePage() throws Exception {
 final WebClient webClient = new WebClient();
 final HtmlPage page = (HtmlPage)

webClient.getPage("http://htmlunit.sourceforge.net");
 assertEquals("HtmlUnit - Welcome to HtmlUnit",

Foundations 35

page.getTitleText());
}

Table 2.4 HtmlUnit sample test

First a default web-client is created. This means that this web-client behaves like Inter-
net Explorer 6.0.
The method getPage() is called with the URL of the desired web page as argument and
the result is casted to an HtmlPage object.
At the end there is a simple assertion using a JUnit method whether the title of the page
is the expected one.

HtmlUnit doesn’t have a graphical user interface which makes it very difficult or im-
possible to observe the tests. It isn’t possible to make assertions about the layout of a
web page, only the document object model and the data can be verified. On the other
hand HtmlUnit consumes hardly computer resources. It is possible to run many in-
stances of this program in parallel and with just a little effort it is possible to use the
test-cases written in HtmlUnit for performance tests, which is also very important for
internet applications. Many other test frameworks for web pages provide the user a
graphical user interface and just record the user interaction. They record the coordinates
of the mouse pointer and just do a replay when they execute the tests. This seems very
easy and useful at first sight because it is very fast and easy to record such tests and the
person who records the tests only needs little knowledge about the structure of the web
page or the application as far as he gets a sheet with the instructions of the test cases he
has to implement. In HtmlUnit or other test frameworks without a graphical user inter-
face it takes more time to implement these test cases and the person implementing the
test cases has to study the html code of the web page and find the right ids and names of
the html elements he needs to access. On the other hand these test cases are more likely
to work after changes in the application because HtmlUnit doesn’t care about the posi-
tion of text-fields or command-buttons, it only needs to know their names or ids to ad-
dress them and to execute the test case the way they have been implemented. Test
frameworks that just replay the recorded coordinates and clicks will fail as soon as the
field they want to access moves by a few pixels.
As automatic tests are normally done for incremental testing for continuous builds of
applications it is very important that they work as long as possible or even forever after
they were implemented because automatic tests should support software testers by tak-
ing away some tasks from the testers but as soon as they have to be corrected or even
rewritten by the testers too often there would be no benefit by investing in automatic
tests.
The conclusion of this paragraph is that it is more important to implement robust auto-
matic tests which may be quite a lot of work and consume some time but will work for a
long time instead of using “fast” techniques that are very likely to fail soon because of
further development and changes in the design of the internet application. First it seems

Foundations 36

that it isn’t too comfortable to use HtmlUnit but after implementing the first few test-
cases you will become familiar with the program and you will value the program.

HtmlUnit is an open source project which is released under the Apache 2 license [49]
and there are many developers and contributors fixing bugs, extending the applicability
of HtmlUnit and answering technical questions which are asked in the mailing list.

HtmlUnit offers handlers for the following protocols:

• JavaScript
• About (only about:blank is supported yet)
• File
• Data (only in Netscape mode)
• All other prefixes are handled like web-requests (http, https)

Requests are stored in objects of the type RequestSettings and before sending the re-
quest a WebResponse object is created to store the response data. The web-connection
object is called to handle the request and receiving the response. The web-connection
uses the web-client from the apache project for low level communications.
HtmlUnit first checks the status code of the response and either throws an exception
because something went wrong, resends the request to another URL because the loca-
tion of the requested page has changed or processes the response and presents the new
page to the user. Redirection is handled without notifying the web-client like in real web
browsers and the result is always a web page with an error code or the requested page.
Everything is done in a single thread so it is quite easy for the user to find the right posi-
tion in the test case for making the assertions.

2.3.1.1 HtmlUnit and AJAX
Processing AJAX requests is a bit more complicated. First the user activates a java-
script function and therefore the java-script engine has to be activated. Then it depends
on the script how the program proceeds. The function could just be a local JavaScript
function which calculates the result of a calculation and writes the result into a field but
the function could also create an XMLHttpRequest object and send an AJAX request to
the server. These requests are handled in their own thread so the main thread with the
web-client can continue. This is the point where software testing becomes tricky be-
cause it is impossible to forecast how much time it will take till the AJAX request is
finished. Assertions can only be done in the main thread but there is no notification
from HtmlUnit that the child thread has finished so the tester doesn’t know when to
check whether the result is as expected. It is even possible that the main thread of a test
case finishes before the child thread of the asynchronous request has finished and possi-
ble errors in the child case will never show up.

Foundations 37

There is a workaround [50] to do a timeout for a few seconds in the main thread and do
the assertions afterwards, but this is still no assurance that the AJAX thread has been
finished till then and the workaround also prolongates the execution time of the tests
because these timeouts stop the main thread longer than necessary.
Another workaround is very similar to the one above. Its idea is to stop the main thread
only for a short time and to check whether there exist certain elements that should be
created by the AJAX call. If these elements don’t exist it can be assumed that the call
hasn’t finished yet and the main thread again stops for a short time and then rechecks
for these elements until they finally appear. This should indicate that the AJAX call has
finished and all wanted assertions can be done now.
This workaround solves the main problems from the first one:

• The main thread stops exactly as long as necessary
• Execution time is faster

On the other hand the tester has to find appropriate indications in his program that relia-
bly show the end of the call. It depends on the particular java-script function whether it
is easy to find or not. Most AJAX calls create elements to present their results but when
a certain function is called several times with different arguments these elements might
stay visible and only the content of these elements is changed, so it is no use to wait for
these elements to appear because they already exist.
The third workaround pursues the same strategy but it uses a more technical approach.
The idea is to resynchronize the asynchronous AJAX calls. HtmlUnit has already im-
plemented this solution. There is a class called NicelyResynchronizeAjaxController
[50] which extends the class AjaxController. AjaxController is just a dummy class
which is activated by default but doesn’t change anything in the operation sequence.
NicelyResynchronizeAjaxController can be initialized by the tester and passed to the
central web-client to replace the default controller. Just before creating the child process
for the AJAX call the new controller checks whether the request was performed from
the main thread and just executes the call in the main thread instead of creating it’s own
one. This means that the main thread can not proceed till the AJAX call has finished.
This technique has the big advantage that the user need not check for an indicator,
which signals the end of the AJAX call, to appear because the main thread won’t pro-
ceed the execution till the call has finished. Technically HtmlUnit tries to use the open
method of the XMLHttpRequest object with the parameter “synchronous” instead of
“asynchronous”.
However the implementation of resynchronizing AJAX calls in HtmlUnit has some li-
mitations. The AJAX controller isn’t called until an XMLHttpRequest object is created
and ready for being transmitted. The controller checks whether the request still takes
place in the main thread and synchronizes the request but it is possible and very com-
mon to embed the AJAX request in the JavaScript function setTimeout() or setInterval()
which causes the browser to create a new thread for the embedded JavaScript. In this
case the built in AJAX controller of HtmlUnit won’t be able to synchronize the request

Foundations 38

because it is already running in its own thread and can’t be controlled by the main
thread that easily.

• setTimeout(FunctionX(), timeout)
This method waits a certain amount of milliseconds specified by “timeout” before
the function “FunctionX()” is called. This method is often used by auto complete
forms which use AJAX to suggest some matching according to the users input, for
example in Wikipedia. Without that method typing the letters “xmlhtt” would cause
an AJAX request for each letter, but with a small timeout of half a second the re-
quest will only be executed when the user makes a short break and a lot of unneces-
sary internet traffic will be saved. While filling the form with letters, each new letter
aborts the before AJAX request and starts a new one until nothing is changed in the
form for 500 milliseconds.
• setInterval(FunctionY(), timeout)
This method calls the function “FunctionY()” again and again every milliseconds
specified by “timeout” and returns an identifier for the interval-method which is
needed to stop it by the method stopInterval(identifier).

These three workarounds can solve some issues concerning software testing of web
pages with asynchronous calls but they have a big disadvantage in common. They all try
to turn the multithreaded application into a single-threaded application with different
approaches and it is true that they allow the tester to do assertions at calls that couldn’t
be done before but on the other hand they change the whole application flow. When a
user triggers many different AJAX calls in a web page which take different times to be
finished it is very likely that some fast calls are finished before the long time processing
calls, even when they were triggered afterwards. The web-page of the internet user be-
haves different from the web page of the test program. It is possible that the automatic
tests just work fine because the asynchronous calls were synchronized but when a user
wants to work on the page with an ordinary web browser the application fails.

Foundations 39

Figure 2.6 resynchronizing the AJAX calls

Figure 2.7 normal flow of AJAX requests

Foundations 40

The main aim of this paper is to find a way to implement test cases for web applications
using AJAX without changing the application flow and to find a way for resynchroniz-
ing all AJAX calls, even for those that are embedded in setInterval() or setTimeout()
methods.

2.3.1.2 Techniques supported by HtmlUnit:
Testing techniques:

• HTML coding
HtmlUnit tests automatically whether the HTML page is well formed and provides ad-
ditional assertion methods.

• Scripts
The scripting engine creates error and warning messages automatically.

• Performance – qualitative
The execution time can be measured using the standard Java tools.

• Performance – quantitative
HtmlUnit consumes hardly any resources so it is possible to run many instances simul-
taneously and perform load and stress tests.

• Black box
HtmlUnit is basically used to write JUnit tests.

• Reliability
Stress tests can be done to simulate long time running issues.

• Scalability
The performance tests to measure scalability can be written using HtmlUnit.

• Security
Security vulnerabilities affecting the source code of the application can be tested with
black box tests.

Scripting techniques:

• Linear scripts:
HtmlUnit doesn’t support capture/replay of test cases but it is possible to write test cas-
es instruction by instruction just like working with a common web browser.

• Structured scripts:
HtmlUnit tests are written in Java so they support many kinds of selection control struc-
tures and iteration control structures.

• Shared scripts:
Java is an object-oriented programming language so all necessary techniques are sup-
ported.

• Data-driven scripts:
See shared scripts.

Foundations 41

• Keyword-driven scripts:
See shared scripts.

2.3.2 JSFUnit
JSFUnit [1][16] is a testing framework for JSF (Java Server Faces) applications. It is
designed to allow complete integration testing and unit testing of JSF applications using
a simplified API. JSFUnit tests run inside the container, which provides the developer
full access to managed beans, the FacesContext, EL Expressions, and the internal JSF
component tree. At the same time, you also have access to parsed HTML output of each
client request.
It supports the Sun and MyFaces JSF implementations and also the Java Server Pages
technology.

JSFUnit offers many ways to test JSF applications:

• Static analysis
JSFUnit can check attributes, methods and interfaces of managed beans, configuration
issues and JSF tags.

• Performance analysis
It provides tools to measure the time it takes to complete for a task or a subtask

• Black box tests
It is possible to perform black bock tests from a client-centric view. JSFUnit is used
with additional tools like HtmlUnit. A tester can mix up JSFUnit and HtmlUnit state-
ments as long as the main page is initialized by JSFUnit.

• White box tests
Server based classes can be tested without running the whole application. Therefore it
needs mock classes which however can change the behaviour of the whole application

• Grey Box Tests
Grey box tests are a combination of black box and white box tests. It is possible to test
the client side html and the server side state at the same time.

2.3.2.1 JSFUnit and AJAX
JSF offers a rich component library for easy integration of AJAX capabilities into the
applications [42][43]. This component is called RichFaces and is based on the open
source framework Ajax4Jjsf. JSFUnit has its own RichFacesClient that offers to invoke

Foundations 42

AJAX functions directly on the server. Contrary to HtmlUnit JSFUnit doesn’t directly
use an XMLHttpRequest object but it allows watching all changes inside the bean.
JSFUnit won’t be discussed in this paper because it is specialized in testing only JSF
application while we look for a client based test tool that can be used with any AJAX
enabled technology. On the other hand it is important to know that there exist many
tools for nearly every internet technology that can be used to directly test the server
classes.

Requirements for the Framework Extension 43

3 Requirements for the Framework Extension
This chapter specifies the critera for the new controller that is able to handle AJAX re-
quests. Thereafter the already existing NicelyResynchronizingAjaxController and two
new solutions are described and checked whether they satisfy all criteria.

3.1 Criteria for a satisfying controller
I worked out requirements for an AJAX-controller together with some developers of the
HtmlUnit developer team.
Irrespective of the implementation the ideal AJAX-controller should satisfy following
criteria:

1. It should work with all AJAX requests, independent from other JavaScript func-
tions in which the request is embedded

2. It should be able to retrieve the status of the request any time from the test-case
3. The AJAX request should run in its own thread
4. Every XMLHttpRequest object should have its own controller
5. It should be possible to view the payload that is about to be send
6. It should be possible to modify the payload that is about to be send
7. It should be possible to view the response before it is handled by the JavaScript

engine
8. It should be possible to modify the response before it is handled by the Java-

Script engine
9. It should be possible to add assertions to the controller
10. It should be possible to get a callback when the request has finished

According the design of HtmlUnit there are three different ideas for implementations
that handle AJAX requests:

1. NicelyResynchronizingAjaxController
2. AjaxHandler
3. AjaxFilterWebConnection

The first one is already implemented in HtmlUnit but suffers from poor support for the
criteria while the other two have to be newly developed.

3.2 Proposals for solution
The first solution is just a review of the already built in AJAX controller, while the oth-
er two solutions are based on suggestions from some developers of the HtmlUnit
project. I called the first new solution AjaxHandler to avoid confusions with the built in
controller. The last solution is called AjaxFilterWebConnection according to the naming
conventions of HtmlUnit. HtmlUnit normally uses the class HttpWebConnection which
will be replaced by the enhanced AjaxFilterWebConnection.

Requirements for the Framework Extension 44

3.2.1 NicelyResynchronizingAjaxController

Figure 3.1 processing AJAX requests in HtmlUnit

The central class of HtmlUnit is the WebClient. It creates a default web-connection,
stores all windows, pages and html-elements and provides a JavaScript engine and sev-
eral parsers and listeners. When a test-case fires an event that releases an AJAX request
the corresponding JavaScript code is passed to the WebClient which invokes the Java-
Script engine.
The JavaScript engine uses an external engine from the Mozilla project to decode and
execute the JavaScript. As soon as an XMLHttpRequest object has to be created the real

Requirements for the Framework Extension 45

AJAX execution starts. HtmlUnit offers a simple AJAX controller called NicelyResyn-
chronizingAjaxController which prevents the AJAX request to create its own thread.
However there is no way to influence the controller and it also has some problems when
the AJAX code is embedded in another JavaScript function. The XMLHttpRequest ob-
ject sends the AJAX request to the web-server using the web-connection from the
WebClient and the HttpClient from the apache project and receives the response. The
response data is passed to the JavaScript engine which executes the corresponding func-
tion which changes the content of the web-window.
However the test-case is neither informed about the status of the AJAX communication
during the whole procedure nor about the successful or unsuccessful finish of it. At least
when resynchronizing of AJAX requests is enabled and possible the test-case pauses the
execution till the AJAX request has finished but it is desirable to have a more reliable
option to deal with such requests.

The criteria for a satisfying controller are based upon the NicelyResynchronizingAjax-
Controller to improve handling of AJAX requests so this controller hardly fulfills any of
them:

1. It doesn’t work with all AJAX requests. When the JavaScript engine creates a
new thread before instancing the XMLHttpRequest object the controller can’t
handle it

2. The status of the request can’t be retrieved
3. The AJAX request runs in the main thread unless the controller isn’t able to

handle it
4. There is only one controller for the whole program
5. The payload can’t be viewed
6. The payload can’t be modified
7. The response can’t be viewed
8. The response can’t be modified
9. No assertions can be added
10. There is no callback when the request has finished

Requirements for the Framework Extension 46

3.2.2 AjaxHandler

Figure 3.2 processing AJAX requests with AjaxHandler

In Figure 3.2 the simple AJAX controller is replaced by a completely different AJAX-
handler. The handler satisfies all criteria mentioned above.
It is created and configured from within a test-case, so the tester just has to keep a refer-
ence to the object to be able to retrieve all data from the XMLHttpRequest object which
of course first has to be connected to the handler. The tester has no direct access to the
XMLHttpRequest object so he can’t assign the handler to it. The solution to this prob-
lem is to invert the assign process. The XMLHttpRequest should assign to the handler

Requirements for the Framework Extension 47

as soon as it gets created but therefore it needs the handler to be registered at a place
where it can easily be found. The best place is the WebClient object because there is
exactly one of it in every browser instance and it already stores all html elements, lis-
teners and parsers. So before raising the event the AJAX-handler has to be registered at
the WebClient and the XMLHttpRequest class has to be modified to automatically
search for the handler, register it and automatically notify the handler whenever some-
thing changes inside the class.

Only two classes have to be modified and two classes have to be created to implement
the AJAX handler:

New classes:

1. AjaxHandler
This class has to be newly developed and needs a reference to the XMLHttpRequest
object and many set and get methods for manipulating that object. In addition it needs
methods that are called from the XMLHttpRequest object whenever a state change ap-
pears and that can be overwritten by the tester to add assertions directly into the handler.

2. AjaxError
This class stores all error messages and warnings that occurred while processing the
AJAX calls. It is created automatically and called either by the AjaxHandler class or the
XMLHttpRequest class. It doesn’t need any configuration thus the tester doesn’t need to
worry about it but it is advisable to check its content after each test case.

Classes that have to be modified:

1. WebClient
The WebClient class needs additional methods to store and retrieve the handlers and
errors.

2. XMLHttpRequest
Many methods have to be adopted. It has to look for an AJAX-handler when it gets
created and it also has to notify the handler whenever its state changes

The AjaxHandler satisfies all criteria:

1. It works with all AJAX requests, because each request creates an XMLHttpRe-
quest object which of course has to be adopted to automatically register the
handler.

2. The handler is created by the tester and the tester can retrieve the status of the
request any time as long as he keeps a reference to the handler object.

3. The handler doesn’t influence the workflow so the AJAX request runs in its own
thread.

Requirements for the Framework Extension 48

4. Each XMLHttpRequest object gets its own AJAX-handler as long as the tester
creates and registers the handlers.

The XMLHttpRequest object always notifies the handler when something changes
so it is possible to:
5. view the payload
6. modify the payload
7. view the result
8. modify the result
9. add assertions concerning payload, result or state
10. get callbacks.

Requirements for the Framework Extension 49

3.2.3 AjaxFilterWebConnection

Figure 3.3 processing AJAX requests with AjaxFilter

The idea of this approach is that all communication with the web server is done using
the web connection of HtmlUnit. The web connection has to be extended with a filter
that filters out all AJAX traffic and reports it to a handler. As all traffic is handled by
the web connection all packages have to be parsed and analyzed to distinguish normal
http traffic from AJAX traffic which is a hard job to do. The handler has to unpack the
payload and offer nearly the some methods as the XMLHttpRequest object with addi-
tional methods for easier manipulation of the payload.

Requirements for the Framework Extension 50

Only one class has to be created and one has to be modified to implement the filter:
AjaxFilterWebConnection
The basic WebConnection class has to be extended. The payload of all packages has to
be parsed before it gets transmitted to the server and

The AjaxFilterWebConnection satisfies nearly all criteria:

1. It works with all AJAX requests, independent from other JavaScript functions in
which the request is embedded

2. It isn’t able to retrieve the state of the request any time from the test-case be-
cause the state is stored in the XMLHttpRequest object and the AjaxFilterWeb-
Connection doesn’t keep references to these objects.

3. The AJAX request runs in its own thread
4. Every XMLHttpRequest object has its own controller
5. It is possible to view the payload that is about to be send but the request has to

be recognized as an AJAX request
6. It is be possible to modify the payload that is about to be send
7. It is possible to view the response before it is handled by the JavaScript engine
8. It is possible to modify the response before it is handled by the JavaScript en-

gine
9. It is possible to add assertions to the controller
10. It is possible to get a callback when the request has finished

Requirements for the Framework Extension 51

3.3 Summary

Criteria NicelyResynchro-
nizingAjaxController AjaxHandler AjaxFilterWebConnection

1
works with
all AJAX
requests

no yes yes

2 retrieve
status no yes no

3
AJAX runs
in its own

thread
no yes yes

4

one con-
troller for
each ob-

ject

no yes yes

5 view payl-
oad no yes partly

6

modify
payload
before

sending

no yes partly

7 view re-
sponse no yes partly

8

modify
response

before
further

processing

no yes partly

9 add asser-
tions no yes partly

10
send call-
back when

finished
no yes partly

 ease of
use easy easy -

medium medium - hard

Table 3.1 summary of the three solutions

The AjaxHandler seems to be the best solution for handling AJAX requests. It is nearly
as simple to use as the NicelyResynchronizingAjaxController but offers a lot more set-
ting options. The AjaxFilterWebConnection approach is the hardest to implement and
doesn’t meet all criteria.

Implementation 52

4 Implementation
This chapter shows the implementation of the already existing NicelyResynchronizin-
gAjaxController and the implementation of the new AjaxHandler. The whole source-
code is provided in the appendix.

4.1 AjaxController

Figure 4.1 AjaxController

Every WebClient has an integrated AjaxController. It provides one dummy method
“processSynchron” which always returns “false” independent of the arguments passed
to that method. It is called from the XMLHttpRequest object just before sending the
request to the server to determine whether to try to resynchronize the request.
The standard controller is created automatically but the tester can exchange it with the
NicelyResynchronizingAjaxController which extends the basic controller. It keeps a
weak reference to the thread where the test case is running in. The method “processSyn-
chron” compares the stored thread to the thread of the calling object and returns “true”
when they are the same to signal that resynchronization is possible.
There is no possibility for further adjustments of the controller. As soon as it gets acti-
vated the controller is used for every XMLHttpRequest object but it the tester can re-
place it with the default dummy controller any time to deactivate it.

Implementation 53

4.2 AjaxHandler Implementations

4.2.1 AjaxHandler

Figure 4.2 AjaxHandler

The AjaxHandler is created by the tester and registered in the WebClient. An
XMLHttpRequest object gets the handler from the web-client and registers itself using
“setXMLHttpRequest()”. There methods of the AjaxHandler can be divided into three
groups:
Methods for receiving information from the associated XMLHttpRequest(XHR) object

• getState(): returns the current state of the XHR. Possible values are zero to four
representing the states unsent, opened, headers-received, loading and done.

• getResponseText(): returns the content of the response as a string object
• getResponseXML(): returns an XML document containing the parsed content of

the response
• getResponseHeader(): returns the header information of the response
• getXMLHttpRequest(): returns the whole XHR object

Methods for showing the internal status
• used(): shows whether the handler is already associated with an XHR object

Implementation 54

• isFinished(): shows whether the AJAX request has finished
Methods for manipulating the AJAX request
These methods are called from the XHR object and should be overwritten by the tester
to insert assertions and instructions.

• onActivation(): is called when an XHR object registes at the handler
• onChange(state): is called every time the state of the XHR object changes
• onError(): is called when an error occurs
• onFinish(): is called when the AJAX request has finished
• beforeSend(): is called just before the request is sent to the server. This method

allows manipulations to the request settings.
• setFinished() is used by the XHR object to reset the finished flag

Implementation 55

4.2.2 XMLHttpRequest

Figure 4.3 XMLHttpRequest

Implementation 56

The XHR object is responsible for the main part of an AJAX request. Some of its meth-
ods have to be extended to collaborate with the handler and it also needs a reference to
the handler. Each AJAX request has its own XHR object but it is also possible to reuse
an XHR object or to abort a running AJAX call.
When the XHR object is created firstly there is no information about the task it has to
perform. The method jsxFunction_open passes all request settings to the object.
01 public void jsxFunction_open(final String method, final String
url,
02 final boolean async,
03 final String user, final String password) {
04 // (URL + Method + User + Password) become a WebRequestSettings
instance.
05 containingPage_ = (HtmlPage)
getWindow().getWebWindow().getEnclosedPage();
06 try {
07 final URL fullUrl = containingPage_.getFullyQualifiedUrl(url);
08 final WebRequestSettings settings = new
WebRequestSettings(fullUrl);
09 settings.setCharset("UTF-8");
10 settings.addAdditionalHeader("Referer",
11
containingPage_.getWebResponse().getUrl().
12 toExternalForm());
13 final HttpMethod submitMethod =
HttpMethod.valueOf(method.toUpperCase());
14 settings.setHttpMethod(submitMethod);
15 if (user != null) {
16 final DefaultCredentialsProvider dcp = new
DefaultCredentialsProvider();
17 dcp.addCredentials(user, password);
18 settings.setCredentialsProvider(dcp);
19 }
20 requestSettings_ = settings;
21 }
22 catch (final MalformedURLException e) {
23 getLog().error(
24 "Unable to initialize XMLHttpRequest using malformed URL
'" +
25 url + "'.");
26 return;
27 }
28 // Async stays a boolean.
29 async_ = async;
30 // Change the state!
31 setState(STATE_LOADING, null);
32 }

Table 4.1 open method from XMLHttpRequest

Implementation 57

4.2.3 WebClient

Figure 4.4 WebClient

Figure 4.4 shows only the additional fields and methods of the class WebClient that
were added for integrating the AjaxHandler. The WebClient basically stores informa-
tion and references about the handlers and acts as a hub connecting the XMLHttpRe-
quest, AjaxHandler, AjaxError and test objects. The methods can be assigned to a spe-
cific class.

Methods that can be assigned to the testcase class:

• addAjaxHandler()
The tester adds an AjaxHandler object to the system using this method. The web client
stores a reference in a stack object called ah temporary until an XMLHttpRequest object
fetches the handler, and a second reference is stored permanently in another stack called
allAjaxHandlers.

• allAjaxHandlersFinished()

Implementation 58

The tester calls this method to assert that all requests have finished just before ending
the test.

• getNumberOfAjaxErrors()
This method is used to retrieve the number of errors, exceptions and warnings that oc-
cured inside the AjaxHandler during execution.
getNumberOfAjaxErrorsWithoutWarnings()
This method retrieves only the number of errors and exceptions but ignores the warn-
ings.

• getAjaxErrors()
Returns the string representation of all errors, exceptions and warnings that occurred
during execution. The message contains the type of error, the description of the error
and the request url of the XMLHttpRequest object that caused that error message.
resetAjaxErrors()
Deletes all error messages that have been stored.

Methods that can be assigned to the XMLHttpRequest:

• hasAjaxHandler()
The XHR object checks whether there is an unused handler using this method before it
trys to fetch one.

• getAjaxHandler()
The XHR object fetches a handler using this method. The handler is removed from the
stack of the available handlers when calling this method.

• addAjaxError()
Stores an AjaxError object containing the error type, error message and the request url.

Methods that can be assigned to the AjaxHandler

• addAjaxError()
Stores an AjaxError object containing the error type, error message and the request url.

Implementation 59

4.2.4 AjaxError

Figure 4.5 AjaxError

The AjaxError class is a helper class storing error information. It saves the error type,
the error message and the request URL of the affected XHR object.
There are three types of errors:

1. Warning messages occur when an XHR object gets interrupted by an AJAX re-
quest while processing another AJAX request. The first request has to be aborted
without waiting for the final response and the new one is started. These error
messages are created by the XHR object. The description contains besides the
interruption message the URL of the old AJAX request.

2. Error messages are created by an AjaxHandler object. When assertions inside
the handler fail the error is caught by the handler and an AjaxError object is cre-
ated including the error message and stored at the web client. It is important to
catch the error because otherwise the AJAX thread would fail without informing
the main thread of the test case and the test case might signal that it passed al-
though an error occurred.

3. Exception messages are also created by an AjaxHandler object. Whenever an
exception is thrown inside the handler it gets caught by the handler and instead
of the exception an AjaxError object is passed to the web client.

The toString() method returns a string representation of the error using the following
format:
AJAX $TYPE: $MESSAGE \n
URL: $URL

Implementation 60

It is very important for the tester to check whether errors occurred when using Ajax-
Handler before the test case ends and to read the error messages or at least write them
into a log file.

4.3 AjaxFilterWebConnection

Figure 4.6 AjaxFilterWebConnection

HtmlUnit offers a basic interface for a web-connection. The most important method of
that interface is the getResponse() method which is used for all communication between
HtmlUnit and the web server. HtmlUnit has two different implementations of that inter-
face:
MockWebConnection
This class isn’t really a web connection. It just stores responses mapped to certain URLs
and returns the adequate response to the request URL whenever it receives a request.
HttpWebConnection
This class is used by default. It uses the httpclient from the apache project to send and
receive data. This class is also the source for the AjaxFilterWebConnection. It offers
additional methods for creating the header information which is also needed for the
AjaxFilter. There Filter has to be added to the method getResponse which takes a We-
bRequestSettings object, delivers it to the server and returns a WebResponse object.
The filter has to intercept the workflow on several positions.
01 public WebResponse getResponse(final WebRequestSettings
webRequestSettings) throws
02 IOException {
03
04 final URL url = webRequestSettings.getUrl();
05
06 final HttpClient httpClient = getHttpClient();
07
08 final HttpMethodBase httpMethod = makeHttpMethod(webRequestSettings);
09 try {
10 final HostConfiguration hostConfiguration = getHostConfiguration(
11 webRequestSettings);
12 final long startTime = System.currentTimeMillis();
13 final int responseCode = httpClient.executeMethod(hostConfiguration,

Implementation 61

14 httpMethod);
15 final long endTime = System.currentTimeMillis();
16 return makeWebResponse(responseCode, httpMethod, webRequestSettings,
17 endTime - startTime,
18 webRequestSettings.getCharset());
19 }
20 catch (final HttpException e) {
21 if (url.getPath().length() == 0) {
22 final StringBuilder buffer = new StringBuilder();
23 buffer.append(url.getProtocol());
24 buffer.append("://");
25 buffer.append(url.getHost());
26 buffer.append("/");
27 if (url.getQuery() != null) {
28 buffer.append(url.getQuery());
29 }
30 //TODO: There might be a bug here since the original encoding type
is lost.
31 final WebRequestSettings newRequest = new WebRequestSettings(new
URL(
32 buffer.toString()));
33 newRequest.setHttpMethod(webRequestSettings.getHttpMethod());
34
newRequest.setRequestParameters(webRequestSettings.getRequestParameters());
35
newRequest.setAdditionalHeaders(webRequestSettings.getAdditionalHeaders());
36 return getResponse(newRequest);
37 }
38 e.printStackTrace();
39 throw new RuntimeException("HTTP Error: " + e.getMessage());
40 }
41 finally {
42 onResponseGenerated(httpMethod);
43 }
44 }

Table 4.2 getResponse method from WebConnection

First a handler has to be registered at the web-client.
line 03: The AjaxFilter has to get a reference to the handler and pass the request setting
object to the handler to allow it to check or manipulate the settings.
line 16: The response must not be returned immediately. First it has to be stored in a
temporary object inside of the method. Then the handler has to be informed that the
state has changed and the response object has to be passed to the handler so it can vali-
date and manipulate the response. Adjusting these two lines should be enough to meet
the demands for the tester.
Unfortunately there are some major problems when trying to implement the AjaxFil-
terWebConnection.
The httpclient from the apache project has some bugs. It is possible that it throws an
exception just because a slash is missing although other web browsers have no problems
sending the same request. That’s why the method catches the exception on line 20 re-
forms the request settings and resends the new request by calling the getResponse
method recursively.

Implementation 62

It is impossible to distinguish between AJAX requests and normal web requests like
page reload. The tester has to register the handler right before firing the AJAX request
and unregister it afterwards because otherwise all other requests would also use the
handler.
These issues make the AjaxFilter become stale when compared to the AjaxHandler
which is quite easier to handle. That’s why the idea of the AjaxFilterWebConnection is
rated useless and the development is stopped. The focus now lies upon the AjaxHandler.

Case Studies for Validation 63

5 Case Studies for Validation
This chapter contains three simple web applications using AJAX and simple test cases
for them. Each test case is implemented in three different ways:

1. Using the old NicelyResynchronizingAjaxController.
2. Using the new AjaxHandler by simply resynchronizing the AJAX calls.
3. Using the new AjaxHandler with all newly available features.

5.1 Wikipedia
Wikipedia [44] is a free, multilingual encyclopaedia project. The start page contains a
search field which uses AJAX techniques to suggest topics according to the user input.

Figure 5.1 Wikipedia screenshot

After each keystroke an event is fired and a query is sent to the server which returns up
to ten hits matching with the user input. These matches are presented on the webpage as
web-links and can directly be used. When the user appends more characters a new
AJAX event is fired and the matches on the web page are replaced by the new ones.

Testcases:

Id Item Input Output Depends

1 suggest “XMLHtt”

List including
“XMLHttpRequest”

none

Table 5.1 testcase for Wikipedia

Case Studies for Validation 64

5.1.1 AjaxController
1. public void testCase_1_AjaxController() throws Exception {
2. // create default firefox browser
3. final WebClient webClient = new WebClient(BrowserVersion.
4. FIREFOX_2);
5. // initialize and register AjaxController
6. AjaxController ac = new NicelyResynchronizingAjaxController();
7. webClient.setAjaxController(ac);
8. // connect to Wikipedia.at
9. final HtmlPage page = (HtmlPage) webClient.getPage(
10. "http://www.wikipedia.at");
11. HtmlPage page2;
12. WebAssert.assertTitleContains(page, "wikipedia.at");
13. // parse the document for the HtmlInput field
14. HtmlForm form = (HtmlForm) page.getForms().get(0);
15. HtmlInput input = form.getInputByName("q");
16. // write into the field and fire keyup event
17. input.setValueAttribute("XMLHtt");
18. input.keyup();
19. // parse result and click on XMLHttpRequest Link
20. HtmlElement search_suggest = (HtmlElement)
page.getElementById(
21. "search_suggest");
22. WebAssert.assertTextPresentInElement(page, "XMLHttpRequest",
23. "search_suggest");
24. List li = search_suggest.getByXPath("div/a");
25. assertFalse(li.isEmpty());
26. HtmlAnchor link = (HtmlAnchor) li.get(0);
27. System.err.println(link.asXml());
28. page2 = (HtmlPage) link.click();
29. WebAssert.assertTitleContains(page2, "XMLHttpRequest");
30. }

Table 5.2 testcase 1 - AjaxController

This table shows a default testcase using HtmlUnit with the already built in AjaxCon-
troller. The controller is initialized and activated in the lines six and seven. In line 17
the word to search for is specified and in line 18 the AJAX request is fired. The built in
AjaxConroller resynchronizes the AJAX request and continues processing the testcase
when the response has been received. In the rest of the testcase some asserts are done
and the link “XMLHttpRequest” is clicked.

5.1.2 AjaxHandler
1. public void testCase_1_AjaxHandler() throws Exception {
2. // create default firefox browser
3. final WebClient webClient = new WebClient(BrowserVersion.
4. FIREFOX_2);
5. // initialize and register the default AjaxHandler

Case Studies for Validation 65

6. AjaxHandler ah = new AjaxHandler();
7. webClient.addAjaxHandler(ah);
8. // connect to wikipedia.at
9. final HtmlPage page = (HtmlPage) webClient.getPage(
10. "http://www.wikipedia.at");
11. HtmlPage page2;
12. WebAssert.assertTitleContains(page, "wikipedia.at");
13. // parse the document for the HtmlInput field
14. HtmlForm form = (HtmlForm) page.getForms().get(0);
15. HtmlInput input = form.getInputByName("q");
16. // write into the field and fire keyup event
17. input.setValueAttribute("XMLHtt");
18. input.keyup();
19. do {
20. synchronized (this) {
21. wait(600);
22. }
23. }
24. while (!ah.isFinished());
25. // parse result and click on XMLHttpRequest Link
26. HtmlElement search_suggest = (HtmlElement)
page.getElementById(
27. "search_suggest");
28. System.err.println(page.asXml());
29. WebAssert.assertTextPresentInElement(page, "XMLHttpRequest",
30. "search_suggest");
31. List li = search_suggest.getByXPath("div/a");
32. assertFalse(li.isEmpty());
33. HtmlAnchor link = (HtmlAnchor) li.get(0);
34. System.err.println(link.asXml());
35. page2 = (HtmlPage) link.click();
36. WebAssert.assertTitleContains(page2, "XMLHttpRequest");
37. assertEquals(0, webClient.getNumberOfAjaxErrors());
38. }

Table 5.3 testcase 1 - AjaxHandler

The AjaxHandler works very similar to the AjaxController. The first difference is that
no AjaxController is initialized but instead of it a default AjaxHandler is initialized and
registered in the lines six and seven. The AjaxHandler doesn’t resynchronize the AJAX
request so the test case needs some other instructions to wait with the assertions until
the response of the AJAX request has arrived. In line nineteen to twenty-four a loop
checks every 600 milliseconds whether the AJAX request has finished by asking the
AjaxHandler. The AjaxHandler is automatically assigned to the AJAX request as soon
as the request is fired. The rest of the testcase is exactly the same as the testcase using
the AjaxController.

Case Studies for Validation 66

5.1.3 AjaxHandler - improved
 public void testCase_1_AjaxHandlerImproved() throws Exception {
 // create default firefox browser
 final WebClient webClient = new WebClient(BrowserVersion.
 FIREFOX_2);
 // initialize and register the default AjaxHandler
 AjaxHandler ah = new AjaxHandler() {
 @Override
 public void onChange(int state) {
 if (state == 4) {
 assertTrue(getXMLHttpRequest().jsxGet_responseText().
 indexOf(
 "XMLHttpRequest") >= 0);
 }
 }
 };
 webClient.addAjaxHandler(ah);
 // connect to wikipedia.at
 final HtmlPage page = (HtmlPage) webClient.getPage(
 "http://www.wikipedia.at");
 HtmlPage page2;
 WebAssert.assertTitleContains(page, "wikipedia.at");
 // parse the document for the HtmlInput field
 HtmlForm form = (HtmlForm) page.getForms().get(0);
 HtmlInput input = form.getInputByName("q");
 // write into the field and fire keyup event
 input.setValueAttribute("XMLHtt");
 input.keyup();
 do {
 synchronized (this) {
 wait(600);
 }
 }
 while (!ah.isFinished());
 // parse result and click on XMLHttpRequest Link
 HtmlElement search_suggest = (HtmlElement) page.getElementById(
 "search_suggest");
 System.err.println(page.asXml());
 List li = search_suggest.getByXPath("div/a");
 assertFalse(li.isEmpty());
 HtmlAnchor link = (HtmlAnchor) li.get(0);
 page2 = (HtmlPage) link.click();
 WebAssert.assertTitleContains(page2, "XMLHttpRequest");
 assertTrue(webClient.allAjaxHandlerFinished());
 assertEquals(0, webClient.getNumberOfAjaxErrors());
 }

Table 5.4 testcase 1 – AjaxHandler improved

Case Studies for Validation 67

In this testcase more features of the AjaxHandler are used. While the first testcase using
the ajaxhandler just copied the behaviour of the AjaxController this one goes one step
further. In the lines six to thirteen an AjaxHandler is initialized but the method on-
Change is overridden. While onChange() basically is an empty method in the default
AjaxHandler this time it asserts that the text “XMLHttpRequest” is part of the response
of the AJAX request. This assertion is executed when the state of the XMLHttpRequest
is four which means that the request has finished. The rest of the testcase is the same as
in the first one except of the last assertion which checks whether no errors have oc-
curred inside the AjaxHandler threads. When an error or exception is raised in an other
thread than the main thread it isn’t recognized by the main thread and the test might
pass although some error occurred. That’s why these errors are stored in the WebClient
and at the end of the testcase the tester has to assure that no error messages are stored.

5.2 AJAX Login System
The AJAX Login System [45] is a small application created by James Dam. It uses
AJAX for validating the username and password from a login form without doing a
page refresh.

Figure 5.2 the main page of the AJAX login system

Actually the web page contains two different AJAX functions. The first one is fired
when the username or the password field get the focus and a random seed is received
from the server to encrypt the password when finished. The second AJAX function is
activated when the username or the password field loose the focus and both fields con-
tain non empty strings. The password is encrypted using the seed and sent together with
the username to the server. The response from the server is either the real name for the
given password and username combination or an error message saying that the user has
entered an invalid combination.

Testcases

Case Studies for Validation 68

Id Item Input Output Depends

1 log-in username = “user1”
password = “pass1”

John Doe logged in

2 log-
out

press “logout” log-in screen 1

3 log-in username = “user1”
password = “wrongpass”

invalid u/p combination

4 log-in username = “user”
no password

no changes (no AJAX
request)

5 log-in no username
password = “pass1”

no changes (no AJAX
request)

Table 5.5: test cases for the AJAX login system

There are two possible results:
Login succeeded

Figure 5.3: login succeed - AJAX login system

Login failed

Figure 5.4: login failed - AJAX login system

Case Studies for Validation 69

5.2.1 AjaxController
1. public void testCase_1_AjaxController() throws Exception {
2. final WebClient webClient = new WebClient(BrowserVersion.
3. FIREFOX_2);
4. //register NicelyResynchronizingAjaxController
5. AjaxController ac = new NicelyResynchronizingAjaxController();
6. webClient.setAjaxController(ac);
7. //load Page
8. final HtmlPage page = (HtmlPage) webClient.getPage(
9. "http://www.jamesdam.com/ajax_login/login.html");
10. WebAssert.assertTitleContains(page, "AJAX Login System");
11. // get form and get username and password field
12. HtmlForm form = (HtmlForm) page.getForms().get(0);
13. HtmlInput user = form.getInputByName("username");
14. HtmlInput pass = form.getInputByName("password");
15. //set username
16. user.focus();
17. user.setValueAttribute("user1");
18. user.blur();
19. //set password
20. pass.focus();
21. pass.setValueAttribute("pass1");
22. pass.blur();
23. //do assertions
24. WebAssert.assertTextPresentInElement(page, "Logged in as",
25. "login");
26. WebAssert.assert John Doe", "login"); TextPresentInElement(page, "
27. WebAssert.assert ogout"); LinkPresentWithText(page, "l
28. }

Table 5.6: testcase 1 – AjaxController

The AjaxController just has to be activated. On line 5 the built in controller gets initial-
ized and on line 6 it is passed to the web client where it replaces the default non-

ompare it to the page after focusing and leaving one of these
elds but the result can only prove that the content of the page hasn’t changed and not

functional controller. There is nothing else the tester can do with the controller. The rest
of the testcase is a standard HtmlUnit testcase.
The first 3 test cases are easy to implement and very similar to the first one but the last
two exceed the capabilities of the built in AjaxController. The program shouldn’t start
an AJAX request when either the username or the password field is empty. There is no
possibility to check whether an AJAX call is performed. The tester can only take a
snapshot of the page and c
fi
that no request was fired.

1. public void testCase_4_AjaxController() throws Exception {
2. final WebClient webClient = new WebClient(BrowserVersion.
3. FIREFOX_2);

Case Studies for Validation 70

4. AjaxController ac = new NicelyResynchronizingAjaxController();
5. webClient.setAjaxController(ac);
6. final HtmlPage page = (HtmlPage) webClient.getPage(
7. "http://www.jamesdam.com/ajax_login/login.html");
8. WebAssert.assertTitleContains(page, "AJAX Login System");
9. HtmlForm form = (HtmlForm) page.getForms().get(0);
10. HtmlInput user = form.getInputByName("username");
11. HtmlInput pass = form.getInputByName("password");
12. user.focus();
13. user.setValueAttribute("user1");
14. user.blur();
15. pass.focus();
16. pass.setValueAttribute("");
17. String savePage = page.asXml();
18. pass.blur();
19. assertEquals(savePage, page.asXml());
20. }

Table 5.7: testcase 4 – AjaxController

The testcase just saves the whole page in a string object on line 17 just before the pass-
word field looses the focus. Normally this action would activate an AJAX request but in
this case the password field only contains an empty string so nothing happens. On line
9 the saved page is compared to the actual page. The 5th test case is very similar to this
ne.

1
o

5.2.2 AjaxHandler – legacy mode
1. public void testCase_1_AjaxHandler() throws Exception {
2. final WebClient webClient = new WebClient(BrowserVersion.
3. FIREFOX_2);
4. //register AjaxHandler
5. AjaxHandler ah = new AjaxHandler();
6. webClient.addAjaxHandler(ah);
7. //load Page
8. final HtmlPage page = (HtmlPage) webClient.getPage(
9. "http://www.jamesdam.com/ajax_login/login.html");
10. WebAssert.assertTitleContains(page, "AJAX Login System");
11. // get form and get username and password field
12. HtmlForm form = (HtmlForm) page.getForms().get(0);
13. HtmlInput user = form.getInputByName("username");
14. HtmlInput pass = form.getInputByName("password");
15. //set username
16. user.focus();
17. do {
18. synchronized (this) {
19. wait(100);

Case Studies for Validation 71

20. }
21. }
22. while (!ah.isFinished());
23. user.setValueAttribute("user1");
24. user.blur();
25. //set password
26. pass.focus();
27. pass.setValueAttribute("pass1");
28. pass.blur();
29. do {
30. synchronized (this) {
31. wait(100);
32. }
33. }
34. while (!ah.isFinished());
35. //do assertions
36. WebAssert.assertTextPresentInElement(page, "Logged in as",
37. "login");
38. WebAssert.assertTextPresentInElement(page, "John Doe", "login");
39. WebAssert.assertLinkPresentWithText(page, "logout");
40. }

Table 5.8 testcase 1 – AjaxHandler

This test case shows the use of AjaxHandler imitating the AjaxController. The Ajax-
Controller resynchronizes the AJAX calls so the main thread has to wait until the re-
quest has finished before it can continue. The AjaxHandler on the opposite doesn’t re-
synchronize the AJAX calls. The main test thread would continue execution so the
tester has to build in some kind of pause. This is done from the lines 17 to 22 and from

 to the controller. It really works with all AJAX calls while the

the lines 29 to 34. The test case is stopped using a loop that waits for the AJAX handler
to be finished.

Initializing and registering the AjaxHandler is very similar to the procedure using the
AjaxController. The tester just has to use another method for registering. Normally
every AJAX request has its own handler but in the AJAX login system implementation
only one XMLHttpRequest object is created and used for both AJAX functions. When
the username field gets the focus on line 16 the XHR object catches the AjaxHandler
object from the web client and updates the handler every time a state change happens.
When the response has been received the handler is notified that AJAX has finished and
the main test thread can go on. On line 28 the second AJAX request is fired and the
same XHR object is taken and just updated with the new request settings. The XHR
object has already a handler so it just notifies that a new job has arrived and executes
the request.
At first sight the AjaxHandler just seems to be more difficult to use compared with the
AjaxController because the tester just has to write more code but the handler has a very
big advantage compared

Case Studies for Validation 72

controller might not be able to resynchronize all calls. In this case the controller appar-
ntly had no problems.

e

5.2.3 AjaxHandler – improved
This time we try to use the full abilities of the AjaxHandler.
1. public void testCase_1_AjaxHandlerImproved() throws Exception {
2. final WebClient webClient = new WebClient(BrowserVersion.
3. FIREFOX_2);
4. //create AjaxHandler
5. AjaxHandler ah = new AjaxHandler() {
6. @Override
7. public void onChange(int state) {
8. if (state == 4) {
9. assertTrue(getXMLHttpRequest().jsxGet_responseText().
10. indexOf("John Doe") >= 0);
11. }
12. }
13. };
14. //load Page
15. final HtmlPage page = (HtmlPage) webClient.getPage(
16. "http://www.jamesdam.com/ajax_login/login.html");
17. WebAssert.assertTitleContains(page, "AJAX Login System");
18. // get form and get username and password field
19. HtmlForm form = (HtmlForm) page.getForms().get(0);
20. HtmlInput user = form.getInputByName("username");
21. HtmlInput pass = form.getInputByName("password");
22. //set username
23. user.focus();
24. user.setValueAttribute("user1");
25. user.blur();
26. //set password
27. pass.focus();
28. pass.setValueAttribute("pass1");
29. webClient.addAjaxHandler(ah);
30. pass.blur();
31. do {
32. synchronized (this) {
33. wait(100);
34. }
35. }
36. while (!ah.isFinished());
37. assertEquals(; 0, webClient.getNumberOfErrors())
38. }

Table 5.9 testcase 1 - AjaxHandler improved

Case Studies for Validation 73

This time the main assertions aren’t done in the test case itself but they are integrated
into the AjaxHandler. The method onChange() is replaced by our own method from the
lines 6 to 13. When the state of the XHR object is four which means that the response
has been received the content of the response can directly be viewed and it is easy to do
assertions using the content. However the handler must not be registered at once be-
cause the first AJAX request which gets fired on line 23 would connect to that handler
and cause an assertion error because instead of a username that request only returns a
random seed. The handler has to be registered just before using firing the second AJAX
request on line 30. At the end of the test case the test thread has to wait until the AJAX
request has finished because otherwise it would end the test end possible errors in the
AJAX thread won’t be recognized. There are many possibilities to wait for all AJAX

. The test
 be adapted.

requests to be finished. Another idea is to use the allAjaxHandlerFinished() method
from the WebClient class or to add a notify() to the onFinish() method in the AjaxHan-
dler.
The last thing the tester should do is to check whether no errors have occurred
cases two and three can be solved the same way, just the assertions have to
1. public void testCase_4_AjaxHandler() throws Exception {
2. final WebClient webClient = new WebClient(BrowserVersion.
3. FIREFOX_2);
4. AjaxHandler ah = new AjaxHandler();
5. final HtmlPage page = (HtmlPage) webClient.getPage(
6. "http://www.jamesdam.com/ajax_login/login.html");
7. WebAssert.assertTitleContains(page, "AJAX Login System");
8. HtmlForm form = (HtmlForm) page.getForms().get(0);
9. HtmlInput user = form.getInputByName("username");
10. HtmlInput pass = form.getInputByName("password");
11. user.focus();
12. webClient.addAjaxHandler(ah);
13. user.setValueAttribute("user1");
14. user.blur();
15. assertFalse(ah.used());
16. pass.focus();
17. pass.setValueAttribute("");
18. pass.blur();
19. assertFalse(ah.used());
20. }

Table 5.10 testcase 4 – AjaxHandler improved

The fourth test case is really easy to implement using the AjaxHandler. We just need to

ate a basic handler and register it after the first AJAX request has been fired. When
e statement on line 18 fires an AJAX request the XHR object would use the handler.
o the tester just has to check whether the handler is being used.

cre
th
S

Case Studies for Validation 74

5.3 XHTML live Chat
The XHTML live Chat [46] is a web based chat system. Anyone can post messages that
appear after a few seconds on all other web browsers where this web page is active. All
data communication is implemented using AJAX.

Figure 5.5 XHTML live Chat

The chat system uses two XHR objects. One is responsible for sending the message
when clicking on submit while the other one is executed automatically every four to
five seconds to get the latest posts from the server and present them on the page.

Testcases

Id Item Input Output

1 post & re-
ceive

Post message “AJAX
Test” with user name
“Andi”

The posted message

2 post & mul-
tiple receive

Start two web browsers.
Post message “AJAX
Test 2” with user name
“Andi” from browser one.

The posted message is
shown on both brows-
ers

Table 5.11 testcases for the XHTML Chat System

5.3.1 AjaxController
1. public void testCase_1_AjaxController() throws Exception {

Case Studies for Validation 75

2. //configure the browser
3. final WebClient webClient = new WebClient(BrowserVersion.
4. FIREFOX_2);
5. // create default ajax controller
6. AjaxController ac = new NicelyResynchronizingAjaxController();
7. webClient.setAjaxController(ac);
8. AjaxHandler ah = new AjaxHandler();
9. webClient.addAjaxHandler(ah);
10. //connect to the page and find all necessary elements
11. final HtmlPage page = (HtmlPage) webClient.getPage(
12. "http://chat.plasticshore.com/");
13. WebAssert.assertTitleContains(page, "live chat");
14.
15. HtmlForm form = (HtmlForm) page.getFormByName("chatForm");
16. HtmlInput name = form.getInputByName("name");
17. HtmlInput input = form.getInputByName("chatbarText");
18. HtmlSubmitInput submit = (HtmlSubmitInput)
form.getInputByName(
19. "submit");
20. //set username and message and send everything
21. String nameString = "con1";
22. name.setValueAttribute(nameString);
23. input.focus();
24. String message = "hello!";
25. input.setValueAttribute(message);
26. submit.click();
27. // workaround: the program has to wait some time until
28. // the new messages have been received
29. Thread.currentThread().sleep(6000);
30. // parse the outputlist for the first element
31. List list =
page.getByXPath("//ul[attribute::id='outputList']/li");
32. assertFalse(list.isEmpty());
33. HtmlListItem li = (HtmlListItem) list.get(0);
34. HtmlUnorderedList ul = (HtmlUnorderedList) page.getByXPath(
35. "//ul[attribute::id='outputList']").get(0);
36. System.err.println(ul.asXml());
37. assertTrue(ul.asXml().contains(message));
38. assertTrue(ul.asXml().contains(nameString));
39. assertTrue(li.asXml().contains(message));
40. assertTrue(webClient.getNumberOfAjaxErrorsWithoutWarnings() ==
0);
41. }

Table 5.12 testcase 1 - AjaxController

Again the default AjaxController is initialized and registered. In the lines twenty-two to
twenty-six a message is sent and afterwards the web page is scanned for the just written
message. It takes some time until the message really arrives on the web page because
there is a JavaScript function which catches all new messages periodically and that’s

Case Studies for Validation 76

why the execution of this thread has to be paused some time. There is no possibility to
get the exact amount of time the function will need so on line 29 the testcase stops for 6
seconds. Normally the web page shouldn’t need more than one second to update but
several tries showed that it can last up to four seconds so we take six seconds to be on
the safe side. Without this stop the testcase would fail for sure.

5.3.2 AjaxHandler
1. public void testCase_1_AjaxHandler() throws Exception {
2. //configure the browser
3. final WebClient webClient = new WebClient(BrowserVersion.
4. FIREFOX_2);
5. // create two default ajax handler: one for receiving
6. // and one for sending chet messages
7. AjaxHandler ah2 = new AjaxHandler();
8. webClient.addAjaxHandler(ah2);
9. AjaxHandler ah = new AjaxHandler();
10. webClient.addAjaxHandler(ah);
11. //connect to the page and find all necessary elements
12. final HtmlPage page = (HtmlPage) webClient.getPage(
13. "http://chat.plasticshore.com/");
14. WebAssert.assertTitleContains(page, "live chat");
15. //force loading all current messages
16. do {
17. synchronized (this) {
18. wait(100);
19. }
20. }
21. while (ah.isFinished());
22. // wait until the XHR for receiving finishes
23. do {
24. synchronized (this) {
25. wait(100);
26. }
27. }
28. while (!ah.isFinished());
29. HtmlForm form = (HtmlForm) page.getFormByName("chatForm");
30. HtmlInput name = form.getInputByName("name");
31. HtmlInput input = form.getInputByName("chatbarText");
32. HtmlSubmitInput submit = (HtmlSubmitInput)
form.getInputByName(
33. "submit");
34. //set username and message and send everything
35. String nameString = "qwe";
36. name.setValueAttribute(nameString);
37. input.focus();
38. String message = "aghdf";
39. input.setValueAttribute(message);

Case Studies for Validation 77

40. submit.click();
41. //wait until sending has finished
42. do {
43. synchronized (this) {
44. wait(100);
45. }
46. }
47. while (!ah2.isFinished());
48. //wait until the next receiving thread starts
49.
50. do {
51. synchronized (this) {
52. wait(100);
53. }
54. }
55. while (ah.isFinished());
56.
57. // wait until the XHR for receiving finishes
58. do {
59. synchronized (this) {
60. wait(100);
61. }
62. }
63. while (!ah.isFinished());
64. // parse the outputlist for the first element
65. List list =
page.getByXPath("//ul[attribute::id='outputList']/li");
66. assertFalse(list.isEmpty());
67. HtmlListItem li = (HtmlListItem) list.get(0);
68. HtmlUnorderedList ul = (HtmlUnorderedList) page.getByXPath(
69. "//ul[attribute::id='outputList']").get(0);
70. assertTrue(ul.asXml().contains(message));
71. assertTrue(ul.asXml().contains(nameString));
72. assertTrue(li.asXml().contains(message));
73. assertTrue(webClient.getNumberOfAjaxErrorsWithoutWarnings() ==
0);
74. }

Table 5.13 testcase 1 - AjaxHandler

Using the AjaxHandler is a bit more complicated. First the tester has to investigate the
program code. The chat application uses two XMLHttpRequest objects. One is called
automatically every five seconds to receive the new messages while the other one is
used for sending the message. That’s why two AjaxHandlers are needed. When loading
the page the XHR object that is responsible for receiving new messages has to load the
last 60 messages to fill the webpage and to show the user the actual topic. That’s why in
the lines sixteen to twenty-five the testcase waits until the AJAX request starts and fin-
ishes. From the lines forty-two to sixty-three the testcase again waits until the message
has been sent and the receiving has finished. Afterwards several assertions can be done.

Case Studies for Validation 78

The testcase pauses several times but it needs only exactly the time the web application
needs to finish the AJAX requests so that the assertions can be done.

5.3.3 AjaxHandler - Improved
1 public void testCase_2_AjaxHandlerImroved() throws Exception {
2 final String nameString = "me";
3 final String message = "hurra!";
4 //configure the browser
5 final WebClient webClient_1 = new WebClient(BrowserVersion.
6 FIREFOX_2);
7 // create two default ajax handler: one for receiving
8 // and one for sending chet messages
9 AjaxHandler ah_1_s = new AjaxHandler();
10 webClient_1.addAjaxHandler(ah_1_s);
11 AjaxHandler ah_1_r = new AjaxHandler();
12 webClient_1.addAjaxHandler(ah_1_r);
13 AjaxHandler ah_1_r_2 = new AjaxHandler() {
14 @Override
15 public void onChange(int state) {
16 if (state == 4) {
17 assertTrue(getXMLHttpRequest().jsxGet_responseText().
18 indexOf(nameString) >= 0);
19 assertTrue(getXMLHttpRequest().jsxGet_responseText().
20 indexOf(message) >= 0);
21 }
22 }
23 };
24 //the same with the second browser
25 //configure the browser
26 final WebClient webClient_2 = new WebClient(BrowserVersion.
27 FIREFOX_2);
28 // create two default ajax handler: one for receiving
29 // and one for sending chet messages
30 AjaxHandler ah_2_s = new AjaxHandler();
31 webClient_2.addAjaxHandler(ah_2_s);
32 AjaxHandler ah_2_r = new AjaxHandler();
33 webClient_2.addAjaxHandler(ah_2_r);
34 //connect to the page and find all necessary elements
35 final HtmlPage page_1 = (HtmlPage) webClient_1.getPage(
36 "http://chat.plasticshore.com/");
37 WebAssert.assertTitleContains(page_1, "live chat");
38 final HtmlPage page_2 = (HtmlPage) webClient_2.getPage(
39 "http://chat.plasticshore.com/");
40 WebAssert.assertTitleContains(page_2, "live chat");
41 //force loading all current messages
42 do {
43 synchronized (this) {
44 wait(100);

Case Studies for Validation 79

45 }
46 }
47 while (ah_1_r.isFinished());
48 // wait until the XHR for receiving finishes
49 do {
50 synchronized (this) {
51 wait(100);
52 }
53 }
54 while (!ah_1_r.isFinished());
55 HtmlForm form_1 = (HtmlForm) page_1.getFormByName("chatForm");
56 HtmlInput name = form_1.getInputByName("name");
57 HtmlInput input = form_1.getInputByName("chatbarText");
58 HtmlSubmitInput submit = (HtmlSubmitInput)
form_1.getInputByName(
59 "submit");
60 //set username and message and send everything
61 name.setValueAttribute(nameString);
62 input.focus();
63 input.setValueAttribute(message);
64 submit.click();
65
66 ah_1_r.removeHandler();
67 webClient_1.addAjaxHandler(ah_1_r_2);
68 //wait until sending has finished
69 do {
70 synchronized (this) {
71 wait(100);
72 }
73 }
74 while (!ah_1_s.isFinished());
75 //wait until the next receiving thread starts
76
77 do {
78 synchronized (this) {
79 wait(100);
80 }
81 }
82 while (ah_1_r_2.isFinished());
83 // wait until the XHR for receiving finishes
84 do {
85 synchronized (this) {
86 wait(100);
87 }
88 }
89 while (!ah_1_r_2.isFinished());
90 // parse the outputlist for the first element
91 List list_1 = page_1.getByXPath(
92 "//ul[attribute::id='outputList']/li");
93 assertFalse(list_1.isEmpty());

Case Studies for Validation 80

94 HtmlListItem li_1 = (HtmlListItem) list_1.get(0);
95 HtmlUnorderedList ul_1 = (HtmlUnorderedList) page_1.getByXPath(
96 "//ul[attribute::id='outputList']").get(0);
97 assertTrue(ul_1.asXml().contains(message));
98 assertTrue(ul_1.asXml().contains(nameString));
99 assertTrue(li_1.asXml().contains(message));
100 assertTrue(webClient_1.getNumberOfAjaxErrorsWithoutWarnings()
==
101 0);
102 // the same with the second client
103 int i1 = 0;
104 do {
105 synchronized (this) {
106 wait(100);
107 }
108 i1++;
109 }
110 while (ah_2_r.isFinished());
111 // wait until the XHR for receiving finishes
112 int i2 = 0;
113 do {
114 synchronized (this) {
115 wait(100);
116 }
117 i2++;
118 }
119 while (!ah_2_r.isFinished());
120 List list_2 = page_2.getByXPath(
121 "//ul[attribute::id='outputList']/li");
122 System.err.println(i1 + " : " + i2);
123 assertFalse(list_2.isEmpty());
124 HtmlUnorderedList ul_2 = (HtmlUnorderedList)
page_2.getByXPath(
125 "//ul[attribute::id='outputList']").get(0);
126 assertTrue(ul_2.asXml().contains(message));
127 assertTrue(ul_2.asXml().contains(nameString));
128 assertTrue(webClient_2.getNumberOfAjaxErrorsWithoutWarnings()
==
129 0);
130 }

Table 5.14 testcase 2 - AjaxHandler improved

Using the improved AjaxHandler is very similar to the above testcase. There is one
main difference. The XMLHttpRequest objects are used several times. When such an
object is associated with an AjaxHandler that executes some assertions these assertions
will be executed every time the XHR object is used. In this case the special AjaxHan-
dler object parses the response from the receiver object whether it contains the just sent
message. These assertions will fail every time except the one time our message really is

Validation 81

sent. That’s why first a dummy AjaxHandler is initialized and gets associated with the
XHR object that is responsible for receiving the new messages. In the lines sixty-six to
sixty-seven the dummy AjaxHandler is removed and the special handler is registered so
the XHR object takes the new handler for the next object. In this testcase a second
browser is started and just assures that it really receives the message which was sent
from the first browser.

6 Validation
This chapter validates the testcases from chapter 5 and explains why some test cases
failed.

6.1 Wikipedia
In chapter 2.2.2.2 we already got to know Wikipedia and so we know that the AjaxCon-
troller might have problems testing this application because it uses the JavaScript func-
tion “setTimeout”.

6.1.1 AjaxController
Test results:

Id Item Input Output pass/fail

1 suggest “XMLHtt” List including
“XMLHttpRequest”

failed

Table 6.1 Wikipedia test result - AjaxController

Surprisingly the test fails when using the already built in AjaxController. For any reason
the AjaxController couldn’t resynchronize the call. When adding a statement to wait
some seconds after the AJAX request has been sent in the testcase it passes the test.
18. input.keyup();
 Thread.currentThread.sleep(5000); //new
19. // parse result and click on XMLHttpRequest Link

Table 6.2 additional code for the AjaxController

Validation 82

Figure 6.1 workflow of Wikipedia using AjaxController

Figure 6.1 shows why the testcase using the AjaxController failed. The AJAX request
“search-suggest“ isn’t fired at once but the JavaScript function setTimeout is called
which creates a new thread and executes the AJAX request after the given timeout. The
AjaxController can’t resynchronize this request because it already runs in its own thread
so the main thread continues parsing the elements and doing the assertions before the
response is received. When implementing the workaround in the testcase the workflow
is as follows:

Figure 6.2 workflow of Wikipedia using AjaxController and a sleep statement

The time for pausing the main thread has to be long enough to be sure that the response
has arrived. As communication over the internet can take some time in the peak time the

Validation 83

break should last a few seconds although one second would be enough most of the
times.

6.1.2 AjaxHandler
Test results:

Id Item Input Output pass/fail

1 suggest “XMLHtt” List including
“XMLHttpRequest”

passed

Table 6.3 Wikipedia test result - AjaxHandler

Figure 6.3 workflow of Wikipedia using AjaxHandler

Using the AjaxHandler handler solves the problem. The main thread polls the AjaxHan-
dler as long as it signals that the response has finished. The main thread doesn’t con-
tinue exactly when the response arrives but the next time it polls for the status so it de-
pends on the poll interval.

6.1.3 AjaxHandler - improved
Test results:

Id Item Input Output pass/fail

1 suggest “XMLHtt” List including
“XMLHttpRequest”

passed

Table 6.4 Wikipedia test result - AjaxHandler improved

Validation 84

Figure 6.4 workflow of Wikipedia using the improved AjaxHandler

The improved AjaxHandler works very similar to the first one. The only difference is
that the handler itself contains the assertions and executes them at the time when the
response arrives. Further assertions are done in the main thread.

6.1.4 Summary
The AjaxController is the easiest way to deal with AJAX requests but it doesn’t satisfy
the needs. In this case it failed a test just because it wasn’t able to cope with the request
which was embedded in another JavaScript function. The AjaxHandler on the other side
passed the test. The code of their testcases is a bit longer than the code of the AjaxCon-
troller testcase but on the other hand it assures that the testcase is executed exactly how
the tester intended.

6.2 AJAX Login System
The AJAX Login System doesn’t use JavaScript code, which creates new threads, exept
the XmlHttpRequest object, so all testcases should pass.

6.2.1 AjaxController
Test results:

Validation 85

Id Item Input Output pass/fail

1 log-in username = “user1”
password = “pass1”

John Doe logged in passed

2 log-
out

press “logout” log-in screen passed

3 log-in username = “user1”
password = “wrongpass”

invalid u/p combination passed

4 log-in username = “user”
no password

no changes (no AJAX
request)

passed*

5 log-in no username
password = “pass1”

no changes (no AJAX
request)

passed*

Table 6.5: AJAX Login System test results - AjaxController
* page didn’t change

Figure 6.5 workflow of AJAX Login System using AjaxController

In this web application everything seems to work fine when using the AjaxController.
In opposite to the Wikipedia test case this time the controller succeeds in resynchroniz-
ing the calls. Everything is executed in the main thread and all assertions pass because
all responses have already arrived when executing them.
The testcases four and five also pass but there is no certainty that really no AJAX re-
quest has been sent. We can only prove that the web page hasn’t changed but it is also
possible that there has been an AJAX request which just hasn’t changed anything on the
page.

6.2.2 AjaxHandler
Test results:

Validation 86

Id Item Input Output pass/fail

1 log-in username = “user1”
password = “pass1”

John Doe logged in passed

2 log-
out

press “logout” log-in screen passed

3 log-in username = “user1”
password = “wrongpass”

invalid u/p combination passed

4 log-in username = “user”
no password

no changes (no AJAX
request)

passed*

5 log-in no username
password = “pass1”

no changes (no AJAX
request)

passed*

Table 6.6 AJAX Login System test results – AjaxHandler
* page didn’t change

Figure 6.6 workflow of AJAX Login System using AjaxHandler

In this case the AjaxHandler is just used to copy the functionality of the AjaxController.
This is again done by polling for the response. This time the execution time of the
AjaxHandler is a bit longer than the execution time of the AjaxController but the differ-
ence amounts only a few milliseconds and can be neglected.

6.2.3 AjaxHandler – improved
Test results:

Validation 87

Id Item Input Output pass/fail

1 log-in username = “user1”
password = “pass1”

John Doe logged in failed

2 log-
out

press “logout” log-in screen failed

3 log-in username = “user1”
password = “wrongpass”

invalid u/p combination failed

4 log-in username = “user”
no password

no changes (no AJAX
request)

passed

5 log-in no username
password = “pass1”

no changes (no AJAX
request)

passed

Table 6.7 AJAX Login System test results – AjaxHandler improved

Figure 6.7 workflow of AJAX Login System using the improved AjaxHandler

In this test case we try to implement everything without synchronizing or polling. The
first three testcases fail and when looking at Figure 6.7 it is quite clear why. The asser-
tions are done before all responses have arrived so at least at the end of the testcase we
need to poll for the response of the check. When doing this the first three testcases still
don’t work.

Validation 88

Figure 6.8 corrected workflow of AJAX Login System using the improved AjaxHandler

An assertion error occurs inside the AjaxHandler. The response from the server isn’t
“OK; John Doe” but “Unknown error (hacking attempt)”. So why do we get an error
message when using our new AjaxHandler while the old AjaxController works fine?
The answer is obvious. This time we didn’t resynchronize the AJAX calls so the failure
has something to do with the multithreaded execution. The best way to find the reason
is to take a look at the error messages. Two messages have been stored:
AJAX WARNING: ajax request http://www.jamesdam.com/ajax_login/
login.php?task=getseed was interrupted!
URL: new url: login.php?task=checklogin&username=user1
&id=0&hash=2764bc1c2acd79685d987880344f1261
AJAX ERROR: null
URL: http://www.jamesdam.com/ajax_login/
login.php?task=checklogin&username=user1&id=0&
hash=2764bc1c2acd79685d987880344f1261

Table 6.8 error messages from AJAX Login System

The first one is a warning that the first AJAX request which tried to get a random seed
was interrupted by another AJAX request which tries to authenticate the user.
The second message is an assertion error when analyzing the response from the second
AJAX request.
The problem occurred because the authentication has been started before receiving the
random seed which is needed for encrypting the password. Indeed the failure can be
reproduced on the web page. When the user types in his username and password really
fast the web page returns the following message:

Validation 89

Figure 6.9 error message from the AJAX Login System

This error shows that simplifying the workflow can prevent the program to find errors.
The testcases four and five are really easy to implement using the AjaxHandler. The
tester just has to assure that the AjaxHandlers stay inactive.

6.2.4 Summary
This testcases demonstrate further weaknesses of the AjaxController. Firstly it isn’t pos-
sible to implement all testcases and secondly it isn’t possible to find the software error
in this web application. Using the new AjaxHandler eliminates all weaknesses of the
AjaxController so far.

6.3 XHTML Live Chat
The XHTML Live Chat also uses the JavaScript function “setTimeout” but this time we
already added the necessary sleep command when using the AjaxController so all test
cases should pass.

6.3.1 AjaxController

Id Item Input Output pass/fail

1 post &
receive

Post message “AJAX Test”
with user name “Andi”

The posted message passed

2 post &
multiple
receive

Start two web browsers.
Post message “AJAX Test
2” with user name “Andi”
from browser one.

The posted message
is shown on both
browsers

passed

Table 6.9 XHTML Live Chat test results - AjaxController

Validation 90

Figure 6.10 workflow of the XHTML Live Chat using AjaxController

The AjaxController isn’t able to resynchronize periodically executed AJAX request so
the main thread has to sleep some time to wait for the responses. The first AJAX request
for receiving the messages can be resynchronized but after this one the program uses the
JavaScript function setTimeout(). The other AJAX request which is responsible for
sending the message can always be resynchronized.

6.3.2 AjaxHandler

Id Item Input Output pass/fail

1 post &
receive

Post message “AJAX Test”
with user name “Andi”

The posted message passed

2 post &
multiple
receive

Start two web browsers.
Post message “AJAX Test
2” with user name “Andi”
from browser one.

The posted message
is shown on both
browsers

passed

Table 6.10 XHTML Live Chat test results - AjaxHandler

Validation 91

Figure 6.11 workflow of the XHTML Live Chat using AjaxHandler

The main thread synchronizes three times with the handlers. The first time it waits until
all initial messages have been received. The second time it observes the sending process
and afterwards waits for the next process that catches the just sent message. All test
cases pass.

6.3.3 AjaxHandler – improved

Id Item Input Output pass/fail

1 post &
receive

Post message “AJAX Test”
with user name “Andi”

The posted message passed

2 post &
multiple
receive

Start two web browsers.
Post message “AJAX Test
2” with user name “Andi”
from browser one.

The posted message
is shown on both
browsers

passed

Table 6.11 XHTML Live Chat test results - AjaxHandler improved

Validation 92

Figure 6.12 workflow of the XHTML Live Chat using the improved AjaxHandler

The improved AjaxHandler can’t be associated with the XMLHttpRequest object from
the beginning because this would cause assertion errors the first 2 times it is used.
That’s why first a default AjaxHandler is initialized and gets replaced by the improved
one just after the “send message” button is pressed.

6.4 Summary
These use cases demonstrate many advantages of the AjaxHandler compared to the
AjaxController. Of course these use cases weren’t chosen by random by they cover a
very big scope of using AJAX. The web applications tested are very small applications
because it is easier to explain issues when the complexity stays low but even big web
applications using AJAX like Google docs use the same techniques and just have a lot
more local JavaScript code.
The following techniques were used:

• embedded AJAX requests in JavaScript code
• periodically executed AJAX requests
• AJAX requests using data from former AJAX requests
• static XMLHttpRequest objects
• dynamic XMLHttpRequest objects

The AjaxContoller has been developed by the HtmlUnit team to add at least some
AJAX functionality to the test suite but the use cases showed up several weaknesses:

• some tests failed although the web application worked correct
• some test passed although there was a software fault in the application

Validation 93

• tests normally need longer execution time compared to manual tests or tests us-
ing the AjaxHandler because of many sleep statements

• some tests can’t be implemented using just HtmlUnit with the AjaxController
In one case the execution time of the AjaxController was faster than the execution time
of the AjaxHandler that just copied its functionality but that was only a matter of a few
milliseconds and after all this testcase passed although it should have failed because of
an application error.
The AjaxHandler can be used in different ways. The first one is to copy the functional-
ity of the AjaxController which means to poll till the response arrives and which is only
another form of resynchronizing the calls. Although these calls are executed in their
own thread it is technically the same as using the AjaxController except of one thing:
the AjaxHandler always works.
The second way to use the AjaxHandler is to override some methods of the class and to
add assertions or create debug information of the tests. This is the preferred way be-
cause it doesn’t resynchronize the AJAX calls.

Conclusion and Future Work 94

7 Conclusion and Future Work
The aim of this paper was to extend HtmlUnit to be able to test internet applications that
use AJAX which was achived by the AjaxHandler. The solution sounds quite simple:
the AjaxHandler provides the tester direct access to the XMLHttpRequest object which
is part of all AJAX requests and enables the tester to use this object to get additional
information for comparisions or to do some synchronization between the threads. The
validation showed that using just simple tricks like waiting a certain amount of time or
resynchronizing AJAX calls isn’t enough to handle AJAX applications and only web
testing frameworks that provide access to the XMLHttpRequest object or at least pro-
vide some information about this object, are able to handle all internet applications us-
ing AJAX. However HtmlUnit is a stand alone web browser and, as in all other web
browsers, there can be compatibility issues with some web pages especially when they
use non standard conform javascript code. The tester needs to have basic knowledge
about the application he is testing to be able to use the AjaxHandler correctly, because
he has to know which functions use AJAX and how many XmlHttpRequest objects are
used by the web application.
The old AjaxContoller has been developed by the HtmlUnit team to add at least some
AJAX functionality to the test suite but the case studies showed up several weaknesses,
which were corrected by the new AjaxHandler:

• some tests failed although the web application worked correct
• some tests passed although there was a software fault in the application
• tests normally need longer execution time compared to manual tests or tests us-

ing the AjaxHandler because of many sleep statements
• some tests can’t be implemented using just HtmlUnit with the AjaxController

The AjaxHandler satisfies all criteria specified in chapter 3.1. It makes the implementa-
tion of test cases a bit more complex but this isn’t a surprise because web applications
using AJAX are simply more complex than applications that do not use this technique.

The extension presented in this work hasn’t been integrated into the HtmlUnit project
yet, but there will be some discussion with the project team about what to do with the
extension. The best thing would be a complete integration of the extension while in the
worst case the extension would stay in a separate, poorly maintained package. Another
solution would be to integrate a modified version, which doesn’t modify the WebClient
that much, into the project.
This work presents only a very basic AjaxHandler which is rather an interface than a
class because most methods are empty and have to be overwritten by the tester. Future
versions could extend this class and provide a collection of methods that can automati-

Conclusion and Future Work 95

cally extract the XML payload or provide a callback interface to get rid of polling for
the result.

 96

Bibliography
[1] Alexander Jesse, “JSFUnit Introduction”, Jazoon 08 International Conference on

Java Technology, June 23-26, 2008, Zurich
[2] Alessandro Marchetto, Filippo Ricca, Paolo Tonella, "A case study-based com-

parison of web testing techniques applied to AJAX web applications", Interna-
tional Journal on Software Tools for Technology Transfer, Volume 10, Issue 6,
Pages 477-492, 2008

[3] Di Lucca, G.A., "Testing Web-based applications: the state of the art and future
trends", Computer Software and Applications Conference, 2005. COMPSAC
2005. 29th Annual International, Volume 2, Pages: 65 - 69, July 2005

[4] Hung Nguyen, "Testing Web-based Applications", STQE Magazine Issue:
May/Jun 2000 (Vol. 2 Issue 3)

[5] Whittaker, J.A., "What is software testing? And why is it so hard?", Software,
IEEE, Volume 17, Issue 1, Pages:70 - 79, Jan/Feb 2000

[6] Fewster Mark, Graham Dorothy, “Software Test Automation: Effective use of
test execution tools”, ACM Press Addison-Wesley, June 1999

[7] Douglas Hoffman, “Cost Benefit Analysis of Test Automation”, Software Quality
Methods, STARW ‘99, 1999

[8] Kaner, C. “Pitfalls and strategies in automated testing”, Computer Magazine,
Vol. 30, April 1997

[9] Kung, D.C.; Chien-Hung Liu; Pei Hsia “ An Object-Oriented Web Test Model
for Testing Web Applications”, First Asia-Pacific Conference on Quality Soft-
ware, Proceedings, 2000, Pages: 111-120

[10] G.A. Di Lucca, A.R. Fasolino, F. Faralli, U. De Carlini, "Testing Web applica-
tions", International Conference on Software Maintenance, 2002 Proceedings,
2002, Pages: 310 - 319

[11] Weyuker, E.J. “Can we measure software testing effectiveness”, First Interna-
tional Software Metrics Symposium, Proceedings, 21-22 May 1993, Pages: 100 –
107

[12] Ali Mesbah, Arie van Deursen, “ Migrating Multi-page Web Applications to Sin-
gle-page AJAX Interfaces”, CSMR Proceedings of the 11th European Conference
on Software Maintenance and Reengineering, 2007, Pages: 181-190

[13] Elaine J. Weyuker, Stewart N. Weiss, Dick Hamlet, “Comparison of program
testing strategies”, International Symposium on Software Testing and Analysis,
1991, Pages: 1-10

[14] Smith, K., “Simplifying Ajax-style Web development”, Computer Magazine,
Vol. 39, Issue 5, May 2006, Pages: 98 – 101

[15] Filippo Ricca, Paolo Tonella, “Analysis and testing of Web applications”, Pro-
ceedings of the 23rd International Conference on Software Engineering, 2001,
Pages: 25 – 34

 97

[16] Stan Silvert, "Testing JSF Applications", JBoss World, Orlando 2008
[17] Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang, William C. Chu, "An Object-

Oriented Architecture Supporting Web Application Testing", 23rd International
Computer Software and Applications Conference, 1999, Page: 122

[18] Lei Xu, Baowen Xu, Zhenqiang Chen, Jixiang Jiang, Huowang Chen, "Regres-
sion testing for Web applications based on slicing", Computer Software and Ap-
plications Conference, COMPSAC 2003, Proceedings, 27th Annual International,
3-6 Nov. 2003 Pages: 652 – 656

[19] Ali Mesbah, Arie van Deursen, "An Architectural Style for Ajax", WICSA, Pro-
ceedings of the Sixth Working IEEE/IFIP Conference on Software Architecture,
2007, Page 9

[20] Sreedevi Sampath , Sara Sprenkle , Emily Gibson , Lori Pollock , Amie Souter
Greenwald, “Applying Concept Analysis to User-Session-Based Testing of Web
Applications”, IEEE Transactions on Software Engineering, v.33 n.10, p.643-
658, October 2007

[21] Mohammadreza Mollahoseini Ardakani , Mohammad Morovvati, “A multi-agent
system apporach for user-session-based testing of web applications”, Proceedings
of the 7th WSEAS international conference on Distance learning and web engi-
neering, p.326-331, September 15-17, 2007, Beijing, China

[22] Filippo Ricca , Paolo Tonella, “Web application quality: supporting maintenance
and testing”, Information modeling for internet applications, Idea Group Publish-
ing, Hershey, PA, 2003

[23] Jessica Sant , Amie Souter , Lloyd Greenwald, “An exploration of statistical
models for automated test case generation”, ACM SIGSOFT Software Engineer-
ing Notes, v.30 n.4, July 2005

[24] Sreedevi Sampath , Sara Sprenkle , Emily Gibson , Lori Pollock, “Integrating
customized test requirements with traditional requirements in web application
testing”, Proceedings of the 2006 workshop on Testing, analysis, and verification
of web services and applications, p.23-32, July 17-17, 2006, Portland, Maine

[25] Filippo Ricca , Paolo Tonella, “Testing Processes of Web Applications”, Annals
of Software Engineering, v.14 n.1-4, p.93-114, December 2002

[26] William G. J. Halfond , Alessandro Orso, “Improving test case generation for
web applications using automated interface discovery”, Proceedings of the the
6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, September
03-07, 2007, Dubrovnik, Croatia

[27] Yuetang Deng , Phyllis Frankl , Jiong Wang, “Testing web database applica-
tions”, ACM SIGSOFT Software Engineering Notes, v.29 n.5, September 2004

[28] Sebastian Elbaum , Srikanth Karre , Gregg Rothermel, “Improving web applica-
tion testing with user session data”, Proceedings of the 25th International Confe-
rence on Software Engineering, May 03-10, 2003, Portland, Oregon

 98

[29] Gary Wassermann , Dachuan Yu , Ajay Chander , Dinakar Dhurjati , Hiroshi
Inamura , Zhendong Su, Dynamic test input generation for web applications, Pro-
ceedings of the 2008 international symposium on Software testing and analysis,
July 20-24, 2008, Seattle, WA, USA

[30] Carlo Bellettini , Alessandro Marchetto , Andrea Trentini, “TestUml: user-
metrics driven web applications testing”, Proceedings of the 2005 ACM sympo-
sium on Applied computing, March 13-17, 2005, Santa Fe, New Mexico

[31] Shay Artzi , Adam Kiezun , Julian Dolby , Frank Tip , Danny Dig , Amit Parad-
kar , Michael D. Ernst, “Finding bugs in dynamic web applications”, Proceedings
of the 2008 international symposium on Software testing and analysis, July 20-
24, 2008, Seattle, WA, USA

[32] C. Stringfellow , Z. Kurunthottical, “Analysis of the effectiveness of students' test
data”, Journal of Computing Sciences in Colleges, v.21 n.4, p.223-229, April
2006

[33] Jianhua Hao , Emilia Mendes, “Usage-based statistical testing of web applica-
tions”, Proceedings of the 6th international conference on Web engineering, July
11-14, 2006, Palo Alto, California, USA

[34] Larson, J.: Testing ajax applications with selenium. InfoQ magazine (2006)
[35] Lei Xu, Baowen Xu, Jixiang Jiang, “Testing web applications focusing on their

specialties”, ACM SIGSOFT Software Engineering Notes, Vol 30 , Issue 1, Jan-
uary 2005

[36] Rudolf Ramler, Edgar Weippl, Mario Winterer, Wieland Schwinger, Josef Alt-
mann, "A quality-driven approach to web testing", Proceedings of ICWE’02 Con-
ference, Santa Fe, Argentinia, September 2002, pages 81-95

[37] Lihua Ran , Curtis Dyreson , Anneliese Andrews , Renée Bryce , Christopher
Mallery, Building test cases and oracles to automate the testing of web database
applications, Information and Software Technology, v.51 n.2, p.460-477, Febru-
ary, 2009

[38] Paolo Tonella , Filippo Ricca, A 2-Layer Model for the White-Box Testing of
Web Applications, Proceedings of the Web Site Evolution, Sixth IEEE Interna-
tional Workshop on (WSE'04), p.11-19, September 11-11, 2004

Websites
[39] The XMLHttpRequest object: http://www.w3.org/TR/XMLHttpRequest/

(10.03.2009), 2008
[40] Brett McLaughlin: Ajax meistern, Teil 1:

http://www.oreilly.de/artikel/ajax1/index.html (10.03.2009), 2005
[41] HtmlUnit: http://htmlunit.sourceforge.net/ (10.03.2009), 2008
[42] JSFUnit: http://www.jboss.org/jsfunit/ (10.03.2009), 2009

http://www.w3.org/TR/XMLHttpRequest/
http://www.oreilly.de/artikel/ajax1/index.html
http://htmlunit.sourceforge.net/
http://www.jboss.org/jsfunit/

 99

[43] RichFaces Demo: http://jsfunit.demo.jboss.com/jboss-jsfunit-examples-richfaces/
(10.03.2009), 2008

[44] Wikipedia: http://www.wikipedia.at/ (10.03.2009), 2006
[45] AJAX Login System: http://www.jamesdam.com/ajax_login/login.html

(10.03.2009), 2005
[46] XHTML Live Chat: http://chat.plasticshore.com/ (10.03.2009), 2008
[47] nessus – the network vulnerability scanner: http://www.nessus.org/nessus/
[48] AJAX: http://en.wikipedia.org/wiki/AJAX (10.03.2009), 2009
[49] Apache 2 License: http://www.apache.org/licenses/LICENSE-2.0.html

(10.03.2009), 2004
[50] HtmlUnit blog: http://mguillem.wordpress.com/category/htmlunit/ (10.03.2009),

2009

http://jsfunit.demo.jboss.com/jboss-jsfunit-examples-richfaces/
http://www.wikipedia.at/
http://www.jamesdam.com/ajax_login/login.html
http://chat.plasticshore.com/
http://www.nessus.org/nessus/
http://en.wikipedia.org/wiki/AJAX
http://www.apache.org/licenses/LICENSE-2.0.html
http://mguillem.wordpress.com/category/htmlunit/

 i

Appendix

7.1 New Classes

7.1.1 AjaxError
1. package com.gargoylesoftware.htmlunit;
2.
3. /**
4. * <p>Description: model for storing ajax error messages</p>
5. *
6. * <p>Copyright: Copyright (c) 2008</p>
7. *
8. * <p>Organisation: TU Wien</p>
9. *
10. * @author Andreas Langer
11. * @author Mario Bernhart
12. * @author Thomas Grechenig
13. * @version 1.0
14. */
15. public class AjaxError {
16. public static final int WARNING = 1;
17. public static final int EXCEPTION = 2;
18. public static final int ERROR = 3;
19. private String newline = System.getProperty("line.separator");
20. private int type;
21. private String description;
22. private String url;
23. /**
24. *
25. * @param type int type of the ajax error; possible values:
AjaxError.WARNING,
26. * AjaxError.EXCEPTION, AjaxError.ERROR
27. * @param description String description of the error
28. * @param url String request url of the ajax request
29. */
30. public AjaxError(int type, String description, String url) {
31. this.type = type;
32. this.description = description;
33. this.url = url;
34. }
35.
36. /**
37. * returns the type of the error
38. * @return int
39. */
40. public int getType() {
41. return type;
42. }
43.
44. /**
45. * returns the description of the error
46. * @return String
47. */
48. public String getDescription() {
49. return description;
50. }

 ii

51.
52. /**
53. * returns the url of the ajax request
54. * @return String
55. */
56. public String getUrl() {
57. return url;
58. }
59.
60. /**
61. * builds and returns a string containing all information about
the error
62. * @return String
63. */
64. public String toString() {
65. switch (type) {
66. case WARNING:
67. return "AJAX WARNING: " + description + newline +
68. "URL: " +
69. url;
70. case EXCEPTION:
71. return "AJAX EXCEPTION: " + description + newline +
72. "URL: " +
73. url;
74. case ERROR:
75. return "AJAX ERROR: " + description + newline + "URL: " +
76. url;
77. default:
78. return "INTERNAL ERROR! " + description + newline +
79. "URL: " +
80. url;
81. }
82. }
83. }

7.1.2 AjaxHandler
1. package com.gargoylesoftware.htmlunit;
2.
3. import java.io.Serializable;
4. import com.gargoylesoftware.htmlunit.javascript.host.
5. XMLHttpRequest;
6.
7. /**
8. *
9. * <p>Headline: AjaxHandler</p>
10. *
11. * <p>Description: </p>
12. *
13. * <p>Copyright: Copyright (c) 2008</p>
14. *
15. * <p>Organisation: TU Wien</p>
16. *
17. * @author Andreas Langer
18. * @author Mario Bernhart
19. * @author Thomas Grechenig
20. * @version 1.0
21. */
22. public class AjaxHandler

 iii

23. implements Serializable {
24.
25. private static final long serialVersionUID =
26. 2170842485774504546L;
27. public static final int ON_ACTIVATION = 1;
28. public static final int ON_CHANGE = 2;
29. public static final int ON_FINISH = 3;
30. public static final int ON_ERROR = 4;
31. private XMLHttpRequest xml;
32. private boolean finished;
33. private WebClient webClient;
34.
35. public AjaxHandler() {
36. finished = true;
37. }
38.
39. public boolean used() {
40. return (xml != null);
41. }
42.
43. public void callFunction(int type, int status) {
44. try {
45. switch (type) {
46. case ON_ACTIVATION:
47. onActivation();
48. break;
49. case ON_CHANGE:
50. onChange(status);
51. break;
52. case ON_ERROR:
53. onError();
54. break;
55. case ON_FINISH:
56. onFinish();
57. break;
58. }
59. }
60. catch (junit.framework.AssertionFailedError ex) {
61. String url = xml.getRequestSettings().getUrl().
62. toExternalForm() +
63. " " + xml.getRequestSettings().getRequestBody();
64. ex.printStackTrace();
65. webClient.addAjaxError(AjaxError.ERROR, ex.getMessage(),
66. url);
67. }
68. catch (Exception ex) {
69. String url = xml.getRequestSettings().getUrl().
70. toExternalForm() +
71. " " + xml.getRequestSettings().getRequestBody();
72. ex.printStackTrace();
73. webClient.addAjaxError(AjaxError.EXCEPTION, ex.getMessage(),
74. url);
75. }
76. }
77.
78. public WebRequestSettings callBeforeSend(WebRequestSettings
79. wrs) {
80. try {
81. return beforeSend(wrs);
82. }

 iv

83. catch (junit.framework.AssertionFailedError ex) {
84. String url = xml.getRequestSettings().getUrl().
85. toExternalForm() +
86. " " + xml.getRequestSettings().getRequestBody();
87. ex.printStackTrace();
88. webClient.addAjaxError(AjaxError.ERROR, ex.getMessage(),
89. url);
90. }
91. catch (Exception ex) {
92. String url = xml.getRequestSettings().getUrl().
93. toExternalForm() +
94. " " + xml.getRequestSettings().getRequestBody();
95. ex.printStackTrace();
96. webClient.addAjaxError(AjaxError.EXCEPTION, ex.getMessage(),
97. url);
98. }
99. return wrs;
100. }
101.
102. public void onActivation() {
103. }
104.
105. public void onChange(int status) {
106. System.err.println("!!!!!!!!!!!!!!!!CHANGE!!!!!!!!!!!!!: " +
107. status);
108. }
109.
110. public void onError() {
111. }
112.
113. public void onFinish() {
114. }
115.
116. public WebRequestSettings beforeSend(WebRequestSettings wrs) {
117. System.err.println(wrs.getUrl().toExternalForm() + " " +
118. wrs.getRequestBody());
119. return wrs;
120. }
121.
122. public void setFinished(boolean fin) {
123. finished = fin;
124. if (fin)
125. callFunction(ON_FINISH, 0);
126. }
127.
128. public boolean isFinished() {
129. return finished;
130. }
131.
132. public int getState() {
133. return xml.jsxGet_readyState();
134. }
135.
136. public String getResponseText() {
137. System.err.println(xml.jsxGet_responseText());
138. return xml.jsxGet_responseText();
139. }
140.
141. public Object getResponseXML() {
142. return xml.jsxGet_responseXML();

 v

143. }
144.
145. public String getResponseHeader() {
146. return xml.jsxFunction_getAllResponseHeaders();
147. }
148.
149. public void setXMLHttpRequest(XMLHttpRequest x) {
150. xml = x;
151. callFunction(ON_ACTIVATION, 0);
152. }
153.
154. public XMLHttpRequest getXMLHttpRequest() {
155. return xml;
156. }
157.
158. public void removeHandler() {
159. if (xml != null) {
160. xml.removeAjaxHandler();
161. xml = null;
162. }
163. if (!finished) {
164. String url = xml.getRequestSettings().getUrl().
165. toExternalForm() +
166. " " + xml.getRequestSettings().getRequestBody();
167. webClient.addAjaxError(AjaxError.WARNING,
168. "removing unfinished ajax handler!",
169. url);
170. finished = true;
171. }
172. }
173.
174. public void setWebClient(WebClient wc) {
175. webClient = wc;
176. }
177. }

7.2 Modified Classes

7.2.1 XMLHttpRequest
1. /*
2. * Copyright (c) 2002-2008 Gargoyle Software Inc.
3. *
4. * Licensed under the Apache License, Version 2.0 (the "License");
5. * you may not use this file except in compliance with the License
6. * You may obtain a copy of the License at
7. * http://www.apache.org/licenses/LICENSE-2.0
8. *
9. * Unless required by applicable law or agreed to in writing,
software
10. * distributed under the License is distributed on an "AS IS"
BASIS,
11. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied.
12. * See the License for the specific language governing

 vi

permissions and
13. * limitations under the License.
14. */
15. package com.gargoylesoftware.htmlunit.javascript.host;
16.
17. import java.io.*;
18. import java.net.*;
19. import java.util.*;
20.
21. import org.apache.commons.httpclient.*;
22. import org.apache.commons.lang.*;
23. import org.mozilla.javascript.*;
24. import com.gargoylesoftware.htmlunit.*;
25. import com.gargoylesoftware.htmlunit.HttpMethod;
26. import com.gargoylesoftware.htmlunit.html.*;
27. import com.gargoylesoftware.htmlunit.javascript.*;
28. import com.gargoylesoftware.htmlunit.util.*;
29. import com.gargoylesoftware.htmlunit.xml.*;
30.
31. /**
32. * A JavaScript object for a XMLHttpRequest.
33. *
34. * @version $Revision: 3129 $
35. * @author Daniel Gredler
36. * @author Marc Guillemot
37. * @author Ahmed Ashour
38. * @author Stuart Begg
39. * @author Andreas Langer
40. * @author Mario Bernhart
41. * @author Thomas Grechenig
42. * @see <a href="http://developer.apple.com/internet/
webcontent/xmlhttpreq.html">Safari documentation
43. */
44. public class XMLHttpRequest
45. extends SimpleScriptable {
46.
47. private static final long serialVersionUID =
48. 2369039843039430664L;
49.
50. /** The object has been created, but not initialized
(the open() method has not been called). */
51. public static final int STATE_UNINITIALIZED = 0;
52. /** The object has been created, but the send() method has
not been called. */
53. public static final int STATE_LOADING = 1;
54. /** The send() method has been called, but the status and
headers are not yet available. */
55. public static final int STATE_LOADED = 2;
56. /** Some data has been received. */
57. public static final int STATE_INTERACTIVE = 3;

 vii

58. /** All the data has been received; the complete data is
available in responseBody and responseText. */
59. public static final int STATE_COMPLETED = 4;
60.
61. private int state_;
62. private Function stateChangeHandler_;
63. private Function errorHandler_;
64. private WebRequestSettings requestSettings_;
65. private boolean async_;
66. private int threadID_;
67. private WebResponse webResponse_;
68. private String overriddenMimeType_;
69. private HtmlPage containingPage_;
70. //private boolean enabledAjaxHandler;
71. private AjaxHandler ah;
72.
73. /**
74. * Creates a new instance. JavaScript objects must have
a default constructor.
75. */
76. public XMLHttpRequest() {
77. state_ = STATE_UNINITIALIZED;
78.
79. }
80.
81. public void removeAjaxHandler() {
82. ah = null;
83. }
84.
85. /**
86. * JavaScript constructor.
87. */
88. public void jsConstructor() {
89. // Empty.
90. }
91.
92. /**
93. * Returns the event handler that fires on every state change
94. * @return the event handler that fires on every state change
95. */
96. public Function jsxGet_onreadystatechange() {
97.
98. return stateChangeHandler_;
99. }
100.
101. /**
102. * Sets the event handler that fires on every state change.
103. * @param stateChangeHandler the event handler that fires
on every state change
104. */

 viii

105. public void jsxSet_onreadystatechange(final Function
106. stateChangeHandler) {
107. stateChangeHandler_ = stateChangeHandler;
108. if (state_ == STATE_LOADING) {
109. setState(state_, null);
110. }
111. }
112.
113. /**
114. * Sets the state as specified and invokes the state change
handler if one has been set.
115. * @param state the new state
116. * @param context the context within which the state change
handler is to be invoked;
117. * if <tt>null</tt>, the current thread's
context is used.
118. */
119. private void setState(final int state, Context context) {
120. state_ = state;
121. /*if (ah != null){
122. ah.onChange(state);
123. }*/
124. //Firefox doesn't trigger onreadystatechange handler for
sync requests
125. final boolean isIE = getBrowserVersion().isIE();
126. if (stateChangeHandler_ != null && (isIE || async_)) {
127. if (context == null) {
128. context = Context.getCurrentContext();
129. }
130. final Scriptable scope = stateChangeHandler_.
131. getParentScope();
132. final JavaScriptEngine jsEngine = containingPage_.
133. getWebClient().
134. getJavaScriptEngine();
135.
136. final int nbExecutions;
137. if (async_ && STATE_LOADING == state) {
138. // quite strange but IE and Mozilla seem both to fire
state loading twice
139. // in async mode (at least with HTML of the unit tests)
140. nbExecutions = 2;
141. }
142. else {
143. nbExecutions = 1;
144. }
145.
146. for (int i = 0; i < nbExecutions; i++) {
147. getLog().debug(
148. "Calling onreadystatechange handler for state " +
149. state);

 ix

150. jsEngine.callFunction(containingPage_,
151. stateChangeHandler_,
152. context,
153. this, scope,
154. ArrayUtils.EMPTY_OBJECT_ARRAY);
155. getLog().debug("onreadystatechange handler: " +
156. context.
157. decompileFunction(stateChangeHandler_,
4));
158. getLog().debug(
159. "Calling onreadystatechange handler for state " +
160. state +
161. ". Done.");
162. }
163. }
164.
165. if (ah != null) {
166. ah.callFunction(AjaxHandler.ON_CHANGE, state);
167. }
168.
169. }
170.
171. /**
172. * Returns the event handler that fires on error.
173. * @return the event handler that fires on error
174. */
175. public Function jsxGet_onerror() {
176.
177. return errorHandler_;
178. }
179.
180. /**
181. * Sets the event handler that fires on error.
182. * @param errorHandler the event handler that fires on error
183. */
184. public void jsxSet_onerror(final Function errorHandler) {
185. errorHandler_ = errorHandler;
186. }
187.
188. /**
189. * Invokes the onerror handler if one has been set.
190. * @param context the context within which the onerror
handler is to be invoked;
191. * if <tt>null</tt>, the current thread's
context is used.
192. */
193. private void processError(Context context) {
194. if (ah != null) {
195. ah.callFunction(AjaxHandler.ON_ERROR, 0);
196. }

 x

197.
198. if (errorHandler_ != null && !getBrowserVersion().isIE()) {
199. if (context == null) {
200. context = Context.getCurrentContext();
201. }
202. final Scriptable scope = errorHandler_.getParentScope();
203. final JavaScriptEngine jsEngine = containingPage_.
204. getWebClient().
205. getJavaScriptEngine();
206.
207. getLog().debug("Calling onerror handler");
208. jsEngine.callFunction(containingPage_, errorHandler_,
209. context, this,
210. scope, Arra-
yUtils.EMPTY_OBJECT_ARRAY);
211. getLog().debug("onerror handler: " +
212. context.decompileFunction(errorHandler_,
4));
213. getLog().debug("Calling onerror handler done.");
214. }
215. }
216.
217. /**
218. * Returns the current state of the HTTP request. The
possible values are:
219. *
220. * 0 = uninitialized
221. * 1 = loading
222. * 2 = loaded
223. * 3 = interactive
224. * 4 = complete
225. *
226. * @return the current state of the HTTP request
227. */
228. public int jsxGet_readyState() {
229. return state_;
230. }
231.
232. public WebRequestSettings getRequestSettings() {
233. return requestSettings_;
234. }
235.
236. /**
237. * Returns the WebResponse object containing the data
retrieved from the server.
238. * @return the WebResponse object containing the data
retrieved from the server
239. */
240. public WebResponse jsxGet_webResponseObject() {
241. if (webResponse_ != null) {

 xi

242. return webResponse_;
243. }
244. return null;
245. }
246.
247. /**
248. * Returns a string version of the data retrieved from
the server.
249. * @return a string version of the data retrieved from
the server
250. */
251. public String jsxGet_responseText() {
252. if (webResponse_ != null) {
253. return webResponse_.getContentAsString();
254. }
255. getLog().debug("XMLHttpRequest.responseText was retrieved
before the response was available.");
256. return "";
257. }
258.
259. /**
260. * Returns a DOM-compatible document object version of the
data retrieved from the server.
261. * @return a DOM-compatible document object version of the
data retrieved from the server
262. */
263. public Object jsxGet_responseXML() {
264. if (webResponse_.getContentType().contains("xml")) {
265. try {
266. final XmlPage page = new XmlPage(webResponse_,
267. getWindow().
268. getWebWindow());
269. final XMLDocument doc;
270. if (getBrowserVersion().isIE()) {
271. doc = ActiveXObject.buildXMLDocument(null);
272. }
273. else {
274. doc = new XMLDocument();
275. doc.setPrototype(getPrototype(doc.getClass()));
276. }
277. doc.setParentScope(getWindow());
278. doc.setDomNode(page);
279. return doc;
280. }
281. catch (final IOException e) {
282. getLog().warn("Failed parsing XML document " +
283. webResponse_.getUrl() + ": " +
284. e.getMessage());
285. return null;
286. }

 xii

287. }
288. getLog().debug(
289. "XMLHttpRequest.responseXML was called but the "
290. "response is "+ webResponse_.getContentType());
291. return null;
292. }
293.
294. /**
295. * Returns the numeric status returned by the server, such
as 404 for "Not Found"
296. * or 200 for "OK".
297. * @return the numeric status returned by the server
298. */
299. public int jsxGet_status() {
300. if (webResponse_ != null) {
301. return webResponse_.getStatusCode();
302. }
303. getLog().error("XMLHttpRequest.status was retrieved
before the response was available.");
304. return 0;
305. }
306.
307. /**
308. * Returns the string message accompanying the status code,
such as "Not Found" or "OK".
309. * @return the string message accompanying the status code
310. */
311. public String jsxGet_statusText() {
312. if (webResponse_ != null) {
313. return webResponse_.getStatusMessage();
314. }
315. getLog().error("XMLHttpRequest.statusText was retrieved
before the response was available.");
316. return null;
317. }
318.
319. /**
320. * Cancels the current HTTP request.
321. */
322. public void jsxFunction_abort() {
323. getWindow().getWebWindow().getThreadManager().stopThread(
324. threadID_);
325. }
326.
327. /**
328. * Returns the labels and values of all the HTTP headers.
329. * @return the labels and values of all the HTTP headers
330. */
331. public String jsxFunction_getAllResponseHeaders() {
332. if (webResponse_ != null) {

 xiii

333. final StringBuilder buffer = new StringBuilder();
334. for (final NameValuePair header :
335. webResponse_.getResponseHeaders()) {
336. buffer.append(header.getName()).append(": ").append(
337. header.
338. getValue()).append("\n");
339. }
340. return buffer.toString();
341. }
342. getLog().error("XMLHttpRequest.getAllResponseHeaders() was
called before the response was available.");
343. return null;
344. }
345.
346. /**
347. * Retrieves the value of an HTTP header from the response
body.
348. * @param headerName the (case-insensitive) name of the
header to retrieve
349. * @return the value of the specified HTTP header
350. */
351. public String jsxFunction_getResponseHeader(final String
352. headerName) {
353. if (webResponse_ != null) {
354. return webResponse_.getResponseHeaderValue(headerName);
355. }
356. getLog().error("XMLHttpRequest.getResponseHeader() was
called before the response was available.");
357. return null;
358. }
359.
360. /**
361. * Assigns the destination URL, method and other optional
attributes of a pending request.
362. * @param method the method to use to send the request to
the server (GET, POST, etc)
363. * @param url the URL to send the request to
364. * @param async Whether or not to send the request to the
server asynchronously
365. * @param user If authentication is needed for the specified
URL, the username to use to authenticate
366. * @param password If authentication is needed for the
specified URL, the password to use to authenticate
367. */
368. public void jsxFunction_open(final String method,
369. final String url,
370. final boolean async,
371. final String user,
372. final String password) {
373. WebClient wc = ((HtmlPage) getWindow().getWebWindow().

 xiv

374. getEnclosedPage()).
375. getWebClient();
376. if ((wc.hasAjaxHandler()) && (ah == null)) {
377. ah = wc.getLastAjaxHandler();
378. ah.setXMLHttpRequest(this);
379. }
380. if (ah != null) {
381. if (!ah.isFinished()) {
382. wc.addAjaxError(AjaxError.WARNING,
383. "ajax request " +
384. requestSet-
tings_.getUrl().toExternalForm() +
385. " was interrupted!", ("new url: " +
url));
386. }
387. ah.setFinished(false);
388. }
389. // (URL + Method + User + Password) become a
WebRequestSettings instance.
390. containingPage_ = (HtmlPage) getWindow().getWebWindow().
391. getEnclosedPage();
392. try {
393. final URL fullUrl = containingPage_.getFullyQualifiedUrl(
394. url);
395. final WebRequestSettings settings = new WebRequestSettings(
396. fullUrl);
397. settings.setCharset("UTF-8");
398. settings.addAdditionalHeader("Referer",
399. containingPage_.
400. getWebResponse().
401. getUrl().
402. toExternalForm());
403. final HttpMethod submitMethod = HttpMethod.valueOf(method.
404. toUpperCase());
405. settings.setHttpMethod(submitMethod);
406. if (user != null) {
407. final DefaultCredentialsProvider dcp = new
408. DefaultCredentialsProvider();
409. dcp.addCredentials(user, password);
410. settings.setCredentialsProvider(dcp);
411. }
412. requestSettings_ = settings;
413. }
414. catch (final MalformedURLException e) {
415. getLog().error(
416. "Unable to initialize XMLHttpRequest using malformed
URL '" +
417. url + "'.");
418. return;
419. }

 xv

420. /*WebClient wc = ((HtmlPage) getWin-
dow().getWebWindow().getEnclosedPage()).
421. getWebClient();
422. if ((wc.hasAjaxHandler())&&(ah == null)) {
423. ah = wc.getLastAjaxHandler();
424. ah.setXMLHttpRequest(this);
425. ah.setFinished(false);
426. }*/
427.
428. // Async stays a boolean.
429. async_ = async;
430. // Change the state!
431. setState(STATE_LOADING, null);
432. }
433.
434. /**
435. * Sends the specified content to the server in an HTTP
request and receives the response.
436. * @param content the body of the message being sent with
the request
437. */
438. public void jsxFunction_send(final Object content) {
439. prepareRequest(content);
440. if (ah != null) {
441. requestSettings_ = ah.callBeforeSend(requestSettings_);
442. }
443. final AjaxController ajaxController = getWindow().
444. getWebWindow().
445. getWebClient().getAjaxController();
446. final HtmlPage page = (HtmlPage) getWindow().getWebWindow().
447. getEnclosedPage();
448. final boolean synchron = ajaxController.processSynchron(page,
449. requestSettings_, async_);
450. if (synchron) {
451. doSend(Context.getCurrentContext());
452. }
453. else {
454. // Create and start a thread in which to execute the re-
quest.
455. final Object startingScope = getWindow();
456.
457. final ContextAction action = new ContextAction() {
458. public Object run(final Context cx) {
459. cx.putThreadLocal(JavaScriptEngine.KEY_STARTING_SCOPE,
460. startingScope);
461. doSend(cx);
462. return null;
463. }
464. };
465. final Runnable t = new Runnable() {

 xvi

466. public void run() {
467. ContextFactory.getGlobal().call(action);
468. }
469. };
470.
471. getLog().debug(
472. "Starting XMLHttpRequest thread for asynchronous re-
quest");
473. threadID_ = getWindow().getWebWindow().getThreadManager().
474. startThread(t, "XMLHttpRequest.send");
475. }
476. }
477.
478. /**
479. * Prepares the WebRequestSettings that will be sent.
480. * @param content the content to send
481. */
482. private void prepareRequest(final Object content) {
483. if (HttpMethod.POST == requestSettings_.getHttpMethod()
484. && content != null
485. && !Context.getUndefinedValue().equals(content)) {
486. final String body = Context.toString(content);
487. if (body.length() > 0) {
488. getLog().debug("Setting request body to: " + body);
489. requestSettings_.setRequestBody(body);
490. }
491. }
492. }
493.
494. /**
495. * The real send job.
496. * @param context the current context
497. */
498. private void doSend(final Context context) {
499. final WebClient wc = getWin-
dow().getWebWindow().getWebClient();
500. try {
501. setState(STATE_LOADED, context);
502. final WebResponse webResponse = wc.loadWebResponse(
503. requestSettings_);
504. getLog().debug("Web response loaded successfully.");
505. if (overriddenMimeType_ == null) {
506. webResponse_ = webResponse;
507. }
508. else {
509. webResponse_ = new WebResponseWrapper(webResponse) {
510. @Override
511. public String getContentType() {
512. return overriddenMimeType_;
513. }

 xvii

514. };
515. }
516. setState(STATE_INTERACTIVE, context);
517. setState(STATE_COMPLETED, context);
518. if (ah != null) {
519. ah.setFinished(true);
520. }
521. }
522. catch (final IOException e) {
523. getLog().debug(
524. "IOException: returning a network error response.");
525. webResponse_ = new NetworkErrorWebResponse(
526. requestSettings_);
527. setState(STATE_COMPLETED, context);
528. processError(context);
529. }
530. }
531.
532. /**
533. * Sets the specified header to the specified value. The
<tt>open</tt> method must be
534. * called before this method, or an error will occur.
535. * @param name the name of the header being set
536. * @param value the value of the header being set
537. */
538. public void jsxFunction_setRequestHeader(final String name,
539. final String value) {
540. if (requestSettings_ != null) {
541. requestSettings_.addAdditionalHeader(name, value);
542. }
543. else {
544. throw Context.reportRuntimeError(
545. "The open() method must be called before setRe-
questHeader().");
546. }
547. }
548.
549. /**
550. * Override the mime type returned by the server (if any).
This may be used, for example, to force a stream
551. * to be treated and parsed as text/xml, even if the server
does not report it as such.
552. * This must be done before the send method is invoked.
553. * @param mimeType the type used to override that returned
by the server (if any)
554. * @see <a href="http://xulplanet.com/references/objref/
XMLHttpRequest.html#method_overrideMimeType">XUL Planet
555. */
556. public void jsxFunction_overrideMimeType(final String mimeType)
{

 xviii

557. overriddenMimeType_ = mimeType;
558. }
559.
560. private static final class NetworkErrorWebResponse
561. implements WebResponse {
562. private final WebRequestSettings webRequestSettings_;
563.
564. private NetworkErrorWebResponse(final WebRequestSettings
565. webRequestSettings) {
566. webRequestSettings_ = webRequestSettings;
567. }
568.
569. public int getStatusCode() {
570. return 0;
571. }
572.
573. public String getStatusMessage() {
574. return "";
575. }
576.
577. public String getContentType() {
578. return "";
579. }
580.
581. public String getContentAsString() {
582. return "";
583. }
584.
585. public InputStream getContentAsStream() throws IOException {
586. return null;
587. }
588.
589. public URL getUrl() {
590. return webRequestSettings_.getUrl();
591. }
592.
593. public HttpMethod getRequestMethod() {
594. return webRequestSettings_.getHttpMethod();
595. }
596.
597. public List<NameValuePair> getResponseHeaders() {
598. return Collections.emptyList();
599. }
600.
601. public String getResponseHeaderValue(final String headerName)
{
602. return "";
603. }
604.
605. public long getLoadTimeInMilliSeconds() {

 xix

606. return 0;
607. }
608.
609. public String getContentCharSet() {
610. return "";
611. }
612.
613. public byte[] getResponseBody() {
614. return new byte[0];
615. }
616.
617. public WebRequestSettings getRequestSettings() {
618. return webRequestSettings_;
619. }
620. }
621. }

7.2.2 WebClient
1. /*
2. * Copyright (c) 2002-2008 Gargoyle Software Inc.
3. *
4. * Licensed under the Apache License, Version 2.0 (the "License");
5. * you may not use this file except in compliance with the License.
6. * You may obtain a copy of the License at
7. * http://www.apache.org/licenses/LICENSE-2.0
8. *
9. * Unless required by applicable law or agreed to in writing,
software
10. * distributed under the License is distributed on an "AS IS"
BASIS,
11. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
12. * See the License for the specific language governing permissions
and
13. * limitations under the License.
14. */
15. package com.gargoylesoftware.htmlunit;
16.
17. import static com.gargoylesoftware.htmlunit.attachment.
18. Attachment.
19. isAttachment;
20.
21. import java.io.BufferedInputStream;
22. import java.io.ByteArrayInputStream;
23. import java.io.File;
24. import java.io.FileInputStream;
25. import java.io.IOException;
26. import java.io.InputStream;
27. import java.io.Serializable;
28. import java.net.MalformedURLException;
29. import java.net.URL;
30. import java.net.URLConnection;
31. import java.net.URLStreamHandler;

 xx

32. import java.security.GeneralSecurityException;
33. import java.util.ArrayList;
34. import java.util.BitSet;
35. import java.util.Collections;
36. import java.util.HashMap;
37. import java.util.HashSet;
38. import java.util.List;
39. import java.util.Map;
40. import java.util.Set;
41. import java.util.Stack;
42. import java.util.StringTokenizer;
43.
44. import org.apache.commons.codec.DecoderException;
45. import org.apache.commons.httpclient.HttpStatus;
46. import org.apache.commons.httpclient.NameValuePair;
47. import org.apache.commons.httpclient.URI;
48. import org.apache.commons.httpclient.URIException;
49. import org.apache.commons.httpclient.auth.CredentialsProvider;
50. import org.apache.commons.httpclient.cookie.CookiePolicy;
51. import org.apache.commons.httpclient.protocol.Protocol;
52. import org.apache.commons.httpclient.protocol.
53. ProtocolSocketFactory;
54. import org.apache.commons.httpclient.util.URIUtil;
55. import org.apache.commons.io.FileUtils;
56. import org.apache.commons.io.IOUtils;
57. import org.apache.commons.lang.StringUtils;
58. import org.apache.commons.logging.Log;
59. import org.apache.commons.logging.LogFactory;
60.
61. import com.gargoylesoftware.htmlunit.attachment.
62. AttachmentHandler;
63. import com.gargoylesoftware.htmlunit.html.FrameWindow;
64. import com.gargoylesoftware.htmlunit.html.HTMLParser;
65. import com.gargoylesoftware.htmlunit.html.HTMLParserListener;
66. import com.gargoylesoftware.htmlunit.html.HtmlElement;
67. import com.gargoylesoftware.htmlunit.html.HtmlPage;
68. import com.gargoylesoftware.htmlunit.javascript.
69. HtmlUnitContextFactory;
70. import com.gargoylesoftware.htmlunit.javascript.JavaScriptEngine;
71. import com.gargoylesoftware.htmlunit.javascript.host.Event;
72. import com.gargoylesoftware.htmlunit.javascript.host.HTMLElement;
73. import com.gargoylesoftware.htmlunit.javascript.host.Window;
74. import com.gargoylesoftware.htmlunit.protocol.data.
75. DataUrlDecoder;
76. import com.gargoylesoftware.htmlunit.ssl.
77. InsecureSSLProtocolSocketFactory;
78. import com.gargoylesoftware.htmlunit.util.UrlUtils;
79. import java.util.Iterator;
80. import java.util.Vector;
81.
82. /**
83. * The main starting point in HtmlUnit: this class simulates a web
browser.
84. * <p>
85. * A standard usage of HtmlUnit will start with using the {@link
#getPage(String)} method
86. * (or {@link #getPage(URL)}) to load a first {@link Page}
87. * and will continue with further processing on this page
depending on its type.
88. * </p>

 xxi

89. * Example:

90. *

91. * <code>
92. * final WebClient webClient = new WebClient();

93. * final {@link HtmlPage} startPage = ({@link HtmlPage})
webClient.getPage("http://htmlunit.sf.net");

94. * assertEquals("HtmlUnit - Welcome to HtmlUnit", startPage.{@link
HtmlPage#getTitleText() getTitleText}());
95. * </code>
96. *
97. * @version $Revision: 3186 $
98. * @author Mike
Bowler
99. * @author Mike J.
Bresnahan
100. * @author Dominique Broeglin
101. * @author Noboru Sinohara
102. * @author Chen
Jun
103. * @author David K. Taylor
104. * @author Christian Sell
105. * @author Ben Curren
106. * @author Marc Guillemot
107. * @author Chris Erskine
108. * @author Daniel Gredler
109. * @author Sergey Gorelkin
110. * @author Hans Donner
111. * @author Paul King
112. * @author Ahmed Ashour
113. * @author Bruce Chapman
114. * @author Sudhan Moghe
115. * @author Andreas Langer
116. * @author Mario Bernhart
117. * @author Thomas Grechenig
118. */
119. public class WebClient
120. implements Serializable {
121.
122. private static final long serialVersionUID = -
123. 7214321203864969635L;
124.
125. /**
126. * HtmlUnit's cookie policy is to be browser-compatible. Code
which requires access to
127. * HtmlUnit's cookie policy should use this constant, rather
than making assumptions
128. * and using one of the HttpClient {@link CookiePolicy}
constants directly.
129. */
130. public static final String HTMLUNIT_COOKIE_POLICY =
131. CookiePolicy.
132. BROWSER_COMPATIBILITY;
133.
134. private transient WebConnection webConnection_;
135. private boolean printContentOnFailingStatusCode_ = true;
136. private boolean throwExceptionOnFailingStatusCode_ = true;
137. private CredentialsProvider credentialsProvider_ = new
138. DefaultCredentialsProvider();
139. private ProxyConfig proxyConfig_;
140. private JavaScriptEngine scriptEngine_;

 xxii

141. private boolean javaScriptEnabled_ = true;
142. private boolean cookiesEnabled_ = true;
143. private boolean cssEnabled_ = true;
144. private boolean popupBlockerEnabled_;
145. private String homePage_;
146. private final Map<String, String> requestHeaders_ =
147. Collections.
148. synchronizedMap(new HashMap<String, String> (89));
149. private IncorrectnessListener incorrectnessListener_ = new
150. IncorrectnessListenerImpl();
151.
152. public static String newline = System.getProperty(
153. "line.separator");
154. private Stack<AjaxHandler> ah = new Stack<AjaxHandler> ();
155. private Stack<AjaxHandler> allAjaxHandlers = new Stack<
156. AjaxHandler> ();
157. private Vector<AjaxError> ajaxErrors = new Vector<AjaxError>
();
158.
159. /**
160. * Like Firefox default value for network.http.redirection-
limit
161. */
162. private static final int ALLOWED_REDIRECTIONS_SAME_URL = 20;
163.
164. private AlertHandler alertHandler_;
165. private ConfirmHandler confirmHandler_;
166. private PromptHandler promptHandler_;
167. private StatusHandler statusHandler_;
168. private AttachmentHandler attachmentHandler_;
169. private AjaxController ajaxController_ = new AjaxController();
170.
171. private BrowserVersion browserVersion_;
172. private boolean isRedirectEnabled_ = true;
173. private PageCreator pageCreator_ = new DefaultPageCreator();
174.
175. private final Set<WebWindowListener> webWindowListeners_ = new
176. HashSet<WebWindowListener> (5);
177. private final List<WebWindow> webWindows_ = Collections.
178. synchronizedList(new ArrayList<WebWindow> ());
179.
180. private WebWindow currentWindow_;
181. private Stack<WebWindow> firstWindowStack_ = new Stack<
182. WebWindow> ();
183. private final Stack<WebWindow> windows_ = new Stack<WebWindow>
();
184. private int timeout_;
185. private HTMLParserListener htmlParserListener_;
186. private OnbeforeunloadHandler onbeforeunloadHandler_;
187. private Cache cache_ = new Cache();
188.
189. private static URLStreamHandler JavaScriptUrlStreamHandler_
190. = new com.gargoylesoftware.htmlunit.protocol.javascript.
191. Handler();
192. private static URLStreamHandler AboutUrlStreamHandler_
193. = new
com.gargoylesoftware.htmlunit.protocol.about.Handler();
194. private static URLStreamHandler DataUrlStreamHandler_
195. = new
com.gargoylesoftware.htmlunit.protocol.data.Handler();

 xxiii

196.
197. /**
198. * URL for "about:blank".
199. */
200. public static final URL URL_ABOUT_BLANK;
201. static {
202. URL tmpUrl = null;
203. try {
204. tmpUrl = new URL(null, "about:blank",
205. AboutUrlStreamHandler_);
206. }
207. catch (final MalformedURLException e) {
208. // impossible
209. e.printStackTrace();
210. }
211. URL_ABOUT_BLANK = tmpUrl;
212. }
213.
214. //singleton WebResponse for "about:blank"
215. private static final WebResponse WEB_RESPONSE_FOR_ABOUT_BLANK =
new
216. StringWebResponse("", URL_ABOUT_BLANK);
217.
218. private ScriptPreProcessor scriptPreProcessor_;
219.
220. private Map<String, String> activeXObjectMap_ = Collections.
221. emptyMap();
222. private RefreshHandler refreshHandler_ = new
223. ImmediateRefreshHandler();
224. private boolean throwExceptionOnScriptError_ = true;
225.
226. /**
227. * Creates a web client instance using the browser version
returned by
228. * {@link BrowserVersion#getDefault()}.
229. */
230. public WebClient() {
231. this(BrowserVersion.getDefault());
232. }
233.
234. /**
235. * Creates a web client instance using the specified {@link
BrowserVersion}.
236. * @param browserVersion the browser version to simulate
237. */
238. public WebClient(final BrowserVersion browserVersion) {
239. WebAssert.notNull("browserVersion", browserVersion);
240.
241. homePage_ = "http://www.gargoylesoftware.com/";
242. browserVersion_ = browserVersion;
243. proxyConfig_ = new ProxyConfig();
244. try {
245. scriptEngine_ = createJavaScriptEngineIfPossible(this);
246. }
247. catch (final NoClassDefFoundError e) {
248. scriptEngine_ = null;
249. }
250.
251. // The window must be constructed after the script engine.
252. addWebWindowListener(new CurrentWindowTracker());

 xxiv

253. currentWindow_ = new TopLevelWindow("", this);
254. HtmlUnitContextFactory.putThreadLocal(browserVersion);
255. }
256.
257. /**
258. * Creates an instance that will use the specified {@link
BrowserVersion} and proxy server.
259. * @param browserVersion the browser version to simulate
260. * @param proxyHost the server that will act as proxy
261. * @param proxyPort the port to use on the proxy server
262. */
263. public WebClient(final BrowserVersion browserVersion,
264. final String proxyHost, final int proxyPort) {
265. WebAssert.notNull("browserVersion", browserVersion);
266. WebAssert.notNull("proxyHost", proxyHost);
267.
268. homePage_ = "http://www.gargoylesoftware.com/";
269. browserVersion_ = browserVersion;
270. proxyConfig_ = new ProxyConfig(proxyHost, proxyPort);
271. try {
272. scriptEngine_ = createJavaScriptEngineIfPossible(this);
273. }
274. catch (final NoClassDefFoundError e) {
275. scriptEngine_ = null;
276. }
277. // The window must be constructed after the script engine.
278. currentWindow_ = new TopLevelWindow("", this);
279. HtmlUnitContextFactory.putThreadLocal(browserVersion);
280. }
281.
282. /**
283. * Adds an AjaxHandler that will be used by an XMLHttpRequest
object
284. * @param ac AjaxHandler: the AjaxHandler for the next
XMLHttpRequest object
285. */
286. public void addAjaxHandler(AjaxHandler ac) {
287. ac.setWebClient(this);
288. this.ah.push(ac);
289. allAjaxHandlers.push(ac);
290. }
291.
292. /**
293. *
294. * @param i int
295. * @return AjaxHandler
296. */
297. public AjaxHandler getAjaxHandler(int i) {
298. return ah.get(i);
299. }
300.
301. /**
302. * returns an AjaxHandler for an XMLHttpRequest object
303. * @return AjaxHandler: handler for an XMLHttpRequest object
304. */
305. public AjaxHandler getLastAjaxHandler() {
306. return ah.pop();
307. }
308.
309. /**

 xxv

310. * Checks whether there are any AjaxHandlers available
311. * @return boolean
312. */
313. public boolean hasAjaxHandler() {
314. if (!ah.isEmpty()) {
315. AjaxHandler ah = this.ah.peek();
316. if (!ah.used()) {
317. return true;
318. }
319. }
320. return false;
321. }
322.
323. /**
324. * Checks whether all Ajax requests have finished
325. * @return boolean
326. */
327. public boolean allAjaxHandlerFinished() {
328. for (Iterator<AjaxHandler> i = allAjaxHandlers.iterator();
329. i.hasNext();) {
330. AjaxHandler a = i.next();
331. if (a.used() && ! (a.isFinished())) {
332. return false;
333. }
334. }
335. return true;
336. }
337.
338. public void addAjaxError(AjaxError message) {
339. ajaxErrors.add(message);
340. }
341.
342. public void addAjaxError(int type, String message, String url)
{
343. ajaxErrors.add(new AjaxError(type, message, url));
344. }
345.
346. public String getAjaxErrors() {
347. String ret = "";
348. for (Iterator<AjaxError> i = ajaxErrors.iterator();
349. i.hasNext();) {
350. ret = ret + i.next().toString() + newline;
351. }
352. return ret;
353. }
354.
355. public int getNumberOfAjaxErrors() {
356. return ajaxErrors.size();
357. }
358.
359. public int getNumberOfAjaxErrorsWithoutWarnings() {
360. int ret = 0;
361. for (Iterator<AjaxError> i = ajaxErrors.iterator();
362. i.hasNext();) {
363. if (i.next().getType() != AjaxError.WARNING) {
364. ret++;
365. }
366. }
367. return ret;
368. }

 xxvi

369.
370. public void resetAjaxErrors() {
371. ajaxErrors.removeAllElements();
372. }
...
2284.

7.3 Test Classes

7.3.1 AJAXLoginTest
1. package com.gargoylesoftware.htmlunit.test;
2.
3. import com.gargoylesoftware.htmlunit.*;
4. import com.gargoylesoftware.htmlunit.html.*;
5. import junit.framework.*;
6.
7. public class AJAXLoginTest
8. extends TestCase {
9. public AJAXLoginTest() {
10. }
11.
12. public void testCase_1_AjaxController() throws Exception {
13. final WebClient webClient = new WebClient(BrowserVersion.
14. FIREFOX_2);
15. //register NicelyResynchronizingAjaxController
16. AjaxController ac = new NicelyResynchronizingAjaxController();
17. webClient.setAjaxController(ac);
18. //load Page
19. final HtmlPage page = (HtmlPage) webClient.getPage(
20. "http://www.jamesdam.com/ajax_login/login.html");
21. WebAssert.assertTitleContains(page, "AJAX Login System");
22. // get form and get username and password field
23. HtmlForm form = (HtmlForm) page.getForms().get(0);
24. HtmlInput user = form.getInputByName("username");
25. HtmlInput pass = form.getInputByName("password");
26. //set username
27. user.focus();
28. user.setValueAttribute("user1");
29. user.blur();
30. //set password
31. pass.focus();
32. pass.setValueAttribute("pass1");
33. pass.blur();
34. //do assertions
35. WebAssert.assertTextPresentInElement(page, "Logged in as",
36. "login");
37. WebAssert.assertTextPresentInElement(page, "John Doe",
"login");
38. WebAssert.assertLinkPresentWithText(page, "logout");
39. }
40.
41. public void testCase_1_AjaxHandler() throws Exception {
42. final WebClient webClient = new WebClient(BrowserVersion.
43. FIREFOX_2);
44. //register AjaxHandler
45. AjaxHandler ah = new AjaxHandler();
46. webClient.addAjaxHandler(ah);

 xxvii

47. //load Page
48. final HtmlPage page = (HtmlPage) webClient.getPage(
49. "http://www.jamesdam.com/ajax_login/login.html");
50. WebAssert.assertTitleContains(page, "AJAX Login System");
51. // get form and get username and password field
52. HtmlForm form = (HtmlForm) page.getForms().get(0);
53. HtmlInput user = form.getInputByName("username");
54. HtmlInput pass = form.getInputByName("password");
55. //set username
56. user.focus();
57. do {
58. synchronized (this) {
59. wait(100);
60. }
61. }
62. while (!ah.isFinished());
63. user.setValueAttribute("user1");
64. user.blur();
65. //set password
66. pass.focus();
67. pass.setValueAttribute("pass1");
68. pass.blur();
69. do {
70. synchronized (this) {
71. wait(100);
72. }
73. }
74. while (!ah.isFinished());
75. //do assertions
76. WebAssert.assertTextPresentInElement(page, "Logged in as",
77. "login");
78. WebAssert.assertTextPresentInElement(page, "John Doe",
"login");
79. WebAssert.assertLinkPresentWithText(page, "logout");
80. }
81.
82. public void testCase_1_AjaxHandlerImproved() throws Exception {
83. final WebClient webClient = new WebClient(BrowserVersion.
84. FIREFOX_2);
85. //create AjaxHandler
86. AjaxHandler ah = new AjaxHandler() {
87. @Override
88. public void onChange(int state) {
89. if (state == 4) {
90. assertTrue(getXMLHttpRequest().jsxGet_responseText().
91. indexOf("John Doe") >= 0);
92.
//System.err.println(getXMLHttpRequest().jsxGet_responseText());
93. }
94. }
95. };
96. AjaxHandler dummyAH = new AjaxHandler();
97. webClient.addAjaxHandler(dummyAH);
98. //load Page
99. final HtmlPage page = (HtmlPage) webClient.getPage(
100. "http://www.jamesdam.com/ajax_login/login.html");
101. WebAssert.assertTitleContains(page, "AJAX Login System");
102. // get form and get username and password field
103. HtmlForm form = (HtmlForm) page.getForms().get(0);
104. HtmlInput user = form.getInputByName("username");

 xxviii

105. HtmlInput pass = form.getInputByName("password");
106. //set username
107. user.focus();
108. do {
109. synchronized (this) {
110. wait(100);
111. }
112. }
113. while (!dummyAH.isFinished());
114. user.setValueAttribute("user1");
115. user.blur();
116. //set password
117. pass.focus();
118. pass.setValueAttribute("pass1");
119. dummyAH.removeHandler();
120. webClient.addAjaxHandler(ah);
121. pass.blur();
122. do {
123. synchronized (this) {
124. wait(100);
125. }
126. }
127. while (!ah.isFinished());
128. }
129.
130. public void testCase_2_AjaxController() throws Exception {
131. final WebClient webClient = new WebClient(BrowserVersion.
132. FIREFOX_2);
133. AjaxController ac = new
NicelyResynchronizingAjaxController();
134. webClient.setAjaxController(ac);
135. final HtmlPage page = (HtmlPage) webClient.getPage(
136. "http://www.jamesdam.com/ajax_login/login.html");
137. WebAssert.assertTitleContains(page, "AJAX Login System");
138. HtmlForm form = (HtmlForm) page.getForms().get(0);
139. HtmlInput user = form.getInputByName("username");
140. HtmlInput pass = form.getInputByName("password");
141. user.focus();
142.
143. user.setValueAttribute("user1");
144. user.blur();
145. pass.focus();
146. pass.setValueAttribute("pass1");
147. pass.blur();
148.
149. WebAssert.assertTextPresentInElement(page, "Logged in as",
150. "login");
151. WebAssert.assertTextPresentInElement(page, "John Doe",
"login");
152. WebAssert.assertLinkPresentWithText(page, "logout");
153.
154. HtmlAnchor logout = page.getFirstAnchorByText("logout");
155. HtmlPage page2 = (HtmlPage) logout.click();
156.
157. WebAssert.assertTextNotPresent(page2, "Logged in as");
158. WebAssert.assertTextNotPresent(page2, "John Doe");
159. WebAssert.assertLinkNotPresentWithText(page2, "logout");
160. WebAssert.assertTextPresent(page2,
161. "Enter your username and password to log in");
162. }

 xxix

163.
164. public void testCase_2_AjaxHandler() throws Exception {
165. final WebClient webClient = new WebClient(BrowserVersion.
166. FIREFOX_2);
167. AjaxHandler ah = new AjaxHandler();
168. webClient.addAjaxHandler(ah);
169. final HtmlPage page = (HtmlPage) webClient.getPage(
170. "http://www.jamesdam.com/ajax_login/login.html");
171. WebAssert.assertTitleContains(page, "AJAX Login System");
172. HtmlForm form = (HtmlForm) page.getForms().get(0);
173. HtmlInput user = form.getInputByName("username");
174. HtmlInput pass = form.getInputByName("password");
175. user.focus();
176. do {
177. synchronized (this) {
178. wait(100);
179. }
180. }
181. while (!ah.isFinished());
182. user.setValueAttribute("user1");
183. user.blur();
184. pass.focus();
185. pass.setValueAttribute("pass1");
186. pass.blur();
187. do {
188. synchronized (this) {
189. wait(100);
190. }
191. }
192. while (!ah.isFinished());
193. WebAssert.assertTextPresentInElement(page, "Logged in as",
194. "login");
195. WebAssert.assertTextPresentInElement(page, "John Doe",
"login");
196. WebAssert.assertLinkPresentWithText(page, "logout");
197.
198. HtmlAnchor logout = page.getFirstAnchorByText("logout");
199. HtmlPage page2 = (HtmlPage) logout.click();
200.
201. WebAssert.assertTextNotPresent(page2, "Logged in as");
202. WebAssert.assertTextNotPresent(page2, "John Doe");
203. WebAssert.assertLinkNotPresentWithText(page2, "logout");
204. WebAssert.assertTextPresent(page2,
205. "Enter your username and password
to log in");
206. }
207.
208. public void testCase_2_AjaxHandlerImproved() throws Exception {
209. final WebClient webClient = new WebClient(BrowserVersion.
210. FIREFOX_2);
211. AjaxHandler ah = new AjaxHandler() {
212. @Override
213. public void onChange(int state) {
214. if (state == 4) {
215. assertTrue(getXMLHttpRequest().jsxGet_responseText().
216. indexOf(
217. "John Doe") >= 0);
218. }
219. }
220. };

 xxx

221. AjaxHandler dummyAH = new AjaxHandler();
222. webClient.addAjaxHandler(dummyAH);
223. final HtmlPage page = (HtmlPage) webClient.getPage(
224. "http://www.jamesdam.com/ajax_login/login.html");
225. WebAssert.assertTitleContains(page, "AJAX Login System");
226. HtmlForm form = (HtmlForm) page.getForms().get(0);
227. HtmlInput user = form.getInputByName("username");
228. HtmlInput pass = form.getInputByName("password");
229. user.focus();
230. do {
231. synchronized (this) {
232. wait(100);
233. }
234. }
235. while (!dummyAH.isFinished());
236. user.setValueAttribute("user1");
237. user.blur();
238. pass.focus();
239. pass.setValueAttribute("pass1");
240. dummyAH.removeHandler();
241. webClient.addAjaxHandler(ah);
242. pass.blur();
243. do {
244. synchronized (this) {
245. wait(100);
246. }
247. }
248. while (!ah.isFinished());
249.
250. WebAssert.assertLinkPresentWithText(page, "logout");
251. ah.removeHandler();
252. HtmlAnchor logout = page.getFirstAnchorByText("logout");
253. HtmlPage page2 = (HtmlPage) logout.click();
254.
255. WebAssert.assertTextNotPresent(page2, "Logged in as");
256. WebAssert.assertTextNotPresent(page2, "John Doe");
257. WebAssert.assertLinkNotPresentWithText(page2, "logout");
258. WebAssert.assertTextPresent(page2,
259. "Enter your username and password
to log in");
260. }
261.
262. public void testCase_3_AjaxController() throws Exception {
263. final WebClient webClient = new WebClient(BrowserVersion.
264. FIREFOX_2);
265. AjaxController ac = new
NicelyResynchronizingAjaxController();
266. webClient.setAjaxController(ac);
267. final HtmlPage page = (HtmlPage) webClient.getPage(
268. "http://www.jamesdam.com/ajax_login/login.html");
269. WebAssert.assertTitleContains(page, "AJAX Login System");
270. HtmlForm form = (HtmlForm) page.getForms().get(0);
271. HtmlInput user = form.getInputByName("username");
272. HtmlInput pass = form.getInputByName("password");
273. user.focus();
274. user.setValueAttribute("user1");
275. user.blur();
276. pass.focus();
277. pass.setValueAttribute("wrongpass");
278. pass.blur();

 xxxi

279. WebAssert.assertTextPresentInElement(page,
280. "Invalid username and password combination", "login");
281. WebAssert.assertLinkNotPresentWithText(page, "logout");
282.
283. }
284.
285. public void testCase_3_AjaxHandler() throws Exception {
286. final WebClient webClient = new WebClient(BrowserVersion.
287. FIREFOX_2);
288. AjaxHandler ah = new AjaxHandler();
289. webClient.addAjaxHandler(ah);
290. final HtmlPage page = (HtmlPage) webClient.getPage(
291. "http://www.jamesdam.com/ajax_login/login.html");
292. WebAssert.assertTitleContains(page, "AJAX Login System");
293. HtmlForm form = (HtmlForm) page.getForms().get(0);
294. HtmlInput user = form.getInputByName("username");
295. HtmlInput pass = form.getInputByName("password");
296. user.focus();
297. do {
298. synchronized (this) {
299. wait(100);
300. }
301. }
302. while (!ah.isFinished());
303. user.setValueAttribute("user1");
304. user.blur();
305. pass.focus();
306. pass.setValueAttribute("wrongpass");
307. pass.blur();
308. do {
309. synchronized (this) {
310. wait(100);
311. }
312. }
313. while (!ah.isFinished());
314. WebAssert.assertTextPresentInElement(page,
315. "Invalid username and password combination", "login");
316. WebAssert.assertLinkNotPresentWithText(page, "logout");
317. }
318.
319. public void testCase_3_AjaxHandlerImproved() throws Exception {
320. final WebClient webClient = new WebClient(BrowserVersion.
321. FIREFOX_2);
322. AjaxHandler ah = new AjaxHandler() {
323. @Override
324. public void onChange(int state) {
325. if (state == 4) {
326. assertTrue(getXMLHttpRequest().jsxGet_responseText().
327. indexOf(
328. "Invalid username and password
combination") >=
329. 0);
330. }
331. }
332. };
333. AjaxHandler dummyAH = new AjaxHandler();
334. webClient.addAjaxHandler(dummyAH);
335. final HtmlPage page = (HtmlPage) webClient.getPage(
336. "http://www.jamesdam.com/ajax_login/login.html");
337. WebAssert.assertTitleContains(page, "AJAX Login System");

 xxxii

338. HtmlForm form = (HtmlForm) page.getForms().get(0);
339. HtmlInput user = form.getInputByName("username");
340. HtmlInput pass = form.getInputByName("password");
341. user.focus();
342. do {
343. synchronized (this) {
344. wait(100);
345. }
346. }
347. while (!ah.isFinished());
348. user.setValueAttribute("user1");
349. user.blur();
350. pass.focus();
351. pass.setValueAttribute("wrongpass");
352. dummyAH.removeHandler();
353. webClient.addAjaxHandler(ah);
354. pass.blur();
355. do {
356. synchronized (this) {
357. wait(100);
358. }
359. }
360. while (!ah.isFinished());
361. System.err.println("OOOOOOOOOOOOOOOO " +
webClient.getAjaxErrors() +
362. "00000000000000");
363. System.err.println(webClient.getNumberOfAjaxErrors());
364.
System.err.println(webClient.getNumberOfAjaxErrorsWithoutWarnings());
365. WebAssert.assertLinkNotPresentWithText(page, "logout");
366. assertEquals(0, webClient.getNumberOfAjaxErrors());
367. }
368.
369. public void testCase_4_AjaxController() throws Exception {
370. final WebClient webClient = new WebClient(BrowserVersion.
371. FIREFOX_2);
372. AjaxController ac = new
NicelyResynchronizingAjaxController();
373. webClient.setAjaxController(ac);
374. final HtmlPage page = (HtmlPage) webClient.getPage(
375. "http://www.jamesdam.com/ajax_login/login.html");
376. WebAssert.assertTitleContains(page, "AJAX Login System");
377. HtmlForm form = (HtmlForm) page.getForms().get(0);
378. HtmlInput user = form.getInputByName("username");
379. HtmlInput pass = form.getInputByName("password");
380. user.focus();
381. user.setValueAttribute("user1");
382. user.blur();
383. pass.focus();
384. pass.setValueAttribute("");
385. String savePage = page.asXml();
386. pass.blur();
387. assertEquals(savePage, page.asXml());
388. }
389.
390. public void testCase_4_AjaxHandler() throws Exception {
391. final WebClient webClient = new WebClient(BrowserVersion.
392. FIREFOX_2);
393. AjaxHandler ah = new AjaxHandler();
394. webClient.addAjaxHandler(ah);

 xxxiii

395. final HtmlPage page = (HtmlPage) webClient.getPage(
396. "http://www.jamesdam.com/ajax_login/login.html");
397. WebAssert.assertTitleContains(page, "AJAX Login System");
398. HtmlForm form = (HtmlForm) page.getForms().get(0);
399. HtmlInput user = form.getInputByName("username");
400. HtmlInput pass = form.getInputByName("password");
401. user.focus();
402. do {
403. synchronized (this) {
404. wait(100);
405. }
406. }
407. while (!ah.isFinished());
408. ah.removeHandler();
409. webClient.addAjaxHandler(ah);
410. user.setValueAttribute("user1");
411. user.blur();
412. assertFalse(ah.used());
413. pass.focus();
414. pass.setValueAttribute("");
415. pass.blur();
416. assertFalse(ah.used());
417.
418. }
419.
420. public void testCase_4_AjaxHandlerImproved() throws Exception {
421. testCase_4_AjaxHandler();
422. }
423.
424. public void testCase_5_AjaxController() throws Exception {
425. final WebClient webClient = new WebClient(BrowserVersion.
426. FIREFOX_2);
427. AjaxController ac = new
NicelyResynchronizingAjaxController();
428. webClient.setAjaxController(ac);
429. final HtmlPage page = (HtmlPage) webClient.getPage(
430. "http://www.jamesdam.com/ajax_login/login.html");
431. WebAssert.assertTitleContains(page, "AJAX Login System");
432. HtmlForm form = (HtmlForm) page.getForms().get(0);
433. HtmlInput user = form.getInputByName("username");
434. HtmlInput pass = form.getInputByName("password");
435. user.focus();
436. user.setValueAttribute("");
437. user.blur();
438. pass.focus();
439. pass.setValueAttribute("pass1");
440. String savePage = page.asXml();
441. pass.blur();
442. assertEquals(savePage, page.asXml());
443. }
444.
445. public void testCase_5_AjaxHandler() throws Exception {
446. final WebClient webClient = new WebClient(BrowserVersion.
447. FIREFOX_2);
448. AjaxHandler ah = new AjaxHandler();
449. webClient.addAjaxHandler(ah);
450. final HtmlPage page = (HtmlPage) webClient.getPage(
451. "http://www.jamesdam.com/ajax_login/login.html");
452. WebAssert.assertTitleContains(page, "AJAX Login System");
453. HtmlForm form = (HtmlForm) page.getForms().get(0);

 xxxiv

454. HtmlInput user = form.getInputByName("username");
455. HtmlInput pass = form.getInputByName("password");
456. user.focus();
457. do {
458. synchronized (this) {
459. wait(100);
460. }
461. }
462. while (!ah.isFinished());
463. ah.removeHandler();
464. webClient.addAjaxHandler(ah);
465. user.setValueAttribute("");
466. user.blur();
467. assertFalse(ah.used());
468. pass.focus();
469. assertFalse(ah.used());
470. pass.setValueAttribute("pass1");
471. pass.blur();
472. assertFalse(ah.used());
473. }
474.
475. public void testCase_5_AjaxHandlerImproved() throws Exception {
476. testCase_5_AjaxHandler();
477. }
478.
479. public void main(String[] args) {
480. try {
481. TestSuite ts = new TestSuite();
482. AJAXLoginTest at = new AJAXLoginTest();
483. ts.addTest(at);
484. TestResult tr = new TestResult();
485. ts.run(tr);
486.
487. }
488. catch (Exception ex) {
489. ex.printStackTrace();
490. }
491. }
492. }

7.3.2 WikipediaTest
1. package com.gargoylesoftware.htmlunit.test;
2.
3. import com.gargoylesoftware.htmlunit.*;
4. import com.gargoylesoftware.htmlunit.html.*;
5. import com.gargoylesoftware.htmlunit.javascript.host.MouseEvent;
6.
7. import junit.framework.*;
8. import java.awt.event.KeyEvent;
9. import org.w3c.dom.Element;
10. import java.util.Iterator;
11. import java.util.List;
12.
13. public class AJAXWikipediaTest
14. extends TestCase {
15. public AJAXWikipediaTest() {
16. }
17.

 xxxv

18. public void testCase_1_AjaxController() throws Exception {
19. // create default firefox browser
20. final WebClient webClient = new WebClient(BrowserVersion.
21. FIREFOX_2);
22. // initialize and register AjaxController
23. AjaxController ac = new NicelyResynchronizingAjaxController();
24. webClient.setAjaxController(ac);
25. // connect to wikipedia.at
26. final HtmlPage page = (HtmlPage) webClient.getPage(
27. "http://www.wikipedia.at");
28. HtmlPage page2;
29. WebAssert.assertTitleContains(page, "wikipedia.at");
30. // parse the document for the HtmlInput field
31. HtmlForm form = (HtmlForm) page.getForms().get(0);
32. HtmlInput input = form.getInputByName("q");
33. // write into the field and fire keyup event
34. input.setValueAttribute("XMLHtt");
35. input.keyup();
36. // parse result and click on XMLHttpRequest Link
37. HtmlElement search_suggest = (HtmlElement)
page.getElementById(
38. "search_suggest");
39. WebAssert.assertTextPresentInElement(page, "XMLHttpRequest",
40. "search_suggest");
41. List li = search_suggest.getByXPath("div/a");
42. assertFalse(li.isEmpty());
43. HtmlAnchor link = (HtmlAnchor) li.get(0);
44. System.err.println(link.asXml());
45. page2 = (HtmlPage) link.click();
46. WebAssert.assertTitleContains(page2, "XMLHttpRequest");
47. }
48.
49. public void testCase_1_AjaxHandler() throws Exception {
50. // create default firefox browser
51. final WebClient webClient = new WebClient(BrowserVersion.
52. FIREFOX_2);
53. // initialize and register the default AjaxHandler
54. AjaxHandler ah = new AjaxHandler();
55. webClient.addAjaxHandler(ah);
56. // connect to wikipedia.at
57. final HtmlPage page = (HtmlPage) webClient.getPage(
58. "http://www.wikipedia.at");
59. HtmlPage page2;
60. WebAssert.assertTitleContains(page, "wikipedia.at");
61. // parse the document for the HtmlInput field
62. HtmlForm form = (HtmlForm) page.getForms().get(0);
63. HtmlInput input = form.getInputByName("q");
64. // write into the field and fire keyup event
65. input.setValueAttribute("XMLHtt");
66. input.keyup();
67. do {
68. synchronized (this) {
69. wait(600);
70. }
71. }
72. while (!ah.isFinished());
73. // parse result and click on XMLHttpRequest Link
74. HtmlElement search_suggest = (HtmlElement)
page.getElementById(
75. "search_suggest");

 xxxvi

76. System.err.println(page.asXml());
77. WebAssert.assertTextPresentInElement(page, "XMLHttpRequest",
78. "search_suggest");
79. List li = search_suggest.getByXPath("div/a");
80. assertFalse(li.isEmpty());
81. HtmlAnchor link = (HtmlAnchor) li.get(0);
82. System.err.println(link.asXml());
83. page2 = (HtmlPage) link.click();
84. WebAssert.assertTitleContains(page2, "XMLHttpRequest");
85. assertEquals(0, webClient.getNumberOfAjaxErrors());
86. }
87.
88. public void testCase_1_AjaxHandlerImproved() throws Exception {
89. // create default firefox browser
90. final WebClient webClient = new WebClient(BrowserVersion.
91. FIREFOX_2);
92. // initialize and register the default AjaxHandler
93. AjaxHandler ah = new AjaxHandler() {
94. @Override
95. public void onChange(int state) {
96. if (state == 4) {
97. assertTrue(getXMLHttpRequest().jsxGet_responseText().
98. indexOf(
99. "XMLHttpRequest") >= 0);
100. }
101. }
102. };
103. webClient.addAjaxHandler(ah);
104. // connect to wikipedia.at
105. final HtmlPage page = (HtmlPage) webClient.getPage(
106. "http://www.wikipedia.at");
107. HtmlPage page2;
108. WebAssert.assertTitleContains(page, "wikipedia.at");
109. // parse the document for the HtmlInput field
110. HtmlForm form = (HtmlForm) page.getForms().get(0);
111. HtmlInput input = form.getInputByName("q");
112. // write into the field and fire keyup event
113. input.setValueAttribute("XMLHtt");
114. input.keyup();
115. do {
116. synchronized (this) {
117. wait(600);
118. }
119. }
120. while (!ah.isFinished());
121. // parse result and click on XMLHttpRequest Link
122. HtmlElement search_suggest = (HtmlElement)
page.getElementById(
123. "search_suggest");
124. System.err.println(page.asXml());
125. List li = search_suggest.getByXPath("div/a");
126. assertFalse(li.isEmpty());
127. HtmlAnchor link = (HtmlAnchor) li.get(0);
128. page2 = (HtmlPage) link.click();
129. WebAssert.assertTitleContains(page2, "XMLHttpRequest");
130. assertTrue(webClient.allAjaxHandlerFinished());
131. assertEquals(0, webClient.getNumberOfAjaxErrors());
132. }
133.
134. public void main(String[] args) {

 xxxvii

135. try {
136. AJAXWikipediaTest at = new AJAXWikipediaTest();
137. //at.testCase_1_AjaxController();
138. }
139. catch (Exception ex) {
140. ex.printStackTrace();
141. }
142. }
143. }

7.3.3 AjaxChatTest
1. package com.gargoylesoftware.htmlunit.test;
2.
3. import com.gargoylesoftware.htmlunit.*;
4. import com.gargoylesoftware.htmlunit.html.*;
5. import com.gargoylesoftware.htmlunit.javascript.host.MouseEvent;
6.
7. import junit.framework.*;
8. import java.awt.event.KeyEvent;
9. import java.util.List;
10.
11. public class AJAXChatTest
12. extends TestCase {
13. public AJAXChatTest() {
14.
15. }
16.
17. public void testCase_1_AjaxController() throws Exception {
18. //configure the browser
19. final WebClient webClient = new WebClient(BrowserVersion.
20. FIREFOX_2);
21. // create default ajax controller
22. AjaxController ac = new NicelyResynchronizingAjaxController();
23. webClient.setAjaxController(ac);
24. AjaxHandler ah = new AjaxHandler();
25. webClient.addAjaxHandler(ah);
26. //connect to the page and find all necessary elements
27. final HtmlPage page = (HtmlPage) webClient.getPage(
28. "http://chat.plasticshore.com/");
29. WebAssert.assertTitleContains(page, "live chat");
30.
31. HtmlForm form = (HtmlForm) page.getFormByName("chatForm");
32. HtmlInput name = form.getInputByName("name");
33. HtmlInput input = form.getInputByName("chatbarText");
34. HtmlSubmitInput submit = (HtmlSubmitInput)
form.getInputByName(
35. "submit");
36. //set username and message and send everything
37. String nameString = "con1";
38. name.setValueAttribute(nameString);
39. input.focus();
40. String message = "hello!";
41. input.setValueAttribute(message);
42. submit.click();
43. // workaround: the program has to wait some time until
44. // the new messages have been received
45. Thread.currentThread().sleep(6000);
46. // parse the outputlist for the first element

 xxxviii

47. List list =
page.getByXPath("//ul[attribute::id='outputList']/li");
48. assertFalse(list.isEmpty());
49. HtmlListItem li = (HtmlListItem) list.get(0);
50. HtmlUnorderedList ul = (HtmlUnorderedList) page.getByXPath(
51. "//ul[attribute::id='outputList']").get(0);
52. System.err.println(ul.asXml());
53. assertTrue(ul.asXml().contains(message));
54. assertTrue(ul.asXml().contains(nameString));
55. assertTrue(li.asXml().contains(message));
56. assertTrue(webClient.getNumberOfAjaxErrorsWithoutWarnings() ==
0);
57. }
58.
59. public void testCase_1_AjaxHandler() throws Exception {
60. //configure the browser
61. final WebClient webClient = new WebClient(BrowserVersion.
62. FIREFOX_2);
63. // create two default ajax handler: one for receiving
64. // and one for sending chet messages
65. AjaxHandler ah2 = new AjaxHandler();
66. webClient.addAjaxHandler(ah2);
67. AjaxHandler ah = new AjaxHandler();
68. webClient.addAjaxHandler(ah);
69. //connect to the page and find all necessary elements
70. final HtmlPage page = (HtmlPage) webClient.getPage(
71. "http://chat.plasticshore.com/");
72. WebAssert.assertTitleContains(page, "live chat");
73. //force loading all current messages
74. do {
75. synchronized (this) {
76. wait(100);
77. }
78. }
79. while (ah.isFinished());
80. // wait until the XHR for receiving finishes
81. do {
82. synchronized (this) {
83. wait(100);
84. }
85. }
86. while (!ah.isFinished());
87. HtmlForm form = (HtmlForm) page.getFormByName("chatForm");
88. HtmlInput name = form.getInputByName("name");
89. HtmlInput input = form.getInputByName("chatbarText");
90. HtmlSubmitInput submit = (HtmlSubmitInput)
form.getInputByName(
91. "submit");
92. //set username and message and send everything
93. String nameString = "qwe";
94. name.setValueAttribute(nameString);
95. input.focus();
96. String message = "aghdf";
97. input.setValueAttribute(message);
98. submit.click();
99. //wait until sending has finished
100. do {
101. synchronized (this) {
102. wait(100);
103. }

 xxxix

104. }
105. while (!ah2.isFinished());
106. //wait until the next receiving thread starts
107.
108. do {
109. synchronized (this) {
110. wait(100);
111. }
112. }
113. while (ah.isFinished());
114.
115. // wait until the XHR for receiving finishes
116. do {
117. synchronized (this) {
118. wait(100);
119. }
120. }
121. while (!ah.isFinished());
122. // parse the outputlist for the first element
123. List list =
page.getByXPath("//ul[attribute::id='outputList']/li");
124. assertFalse(list.isEmpty());
125. HtmlListItem li = (HtmlListItem) list.get(0);
126. HtmlUnorderedList ul = (HtmlUnorderedList) page.getByXPath(
127. "//ul[attribute::id='outputList']").get(0);
128. assertTrue(ul.asXml().contains(message));
129. assertTrue(ul.asXml().contains(nameString));
130. assertTrue(li.asXml().contains(message));
131. assertTrue(webClient.getNumberOfAjaxErrorsWithoutWarnings()
== 0);
132. }
133.
134. public void testCase_1_AjaxHandlerImproved() throws Exception {
135. //configure the browser
136. final WebClient webClient = new WebClient(BrowserVersion.
137. FIREFOX_2);
138. // create two ajax handler: one for receiving
139. // and one for sending chet messages
140. final String nameString = "ajaxtester";
141. final String message = "hello world!";
142. AjaxHandler ah2 = new AjaxHandler();
143. webClient.addAjaxHandler(ah2);
144. AjaxHandler ah3 = new AjaxHandler() {
145. @Override
146. public void onChange(int state) {
147. if (state == 4) {
148. assertTrue(getXMLHttpRequest().jsxGet_responseText().
149. indexOf(nameString) >= 0);
150. assertTrue(getXMLHttpRequest().jsxGet_responseText().
151. indexOf(message) >= 0);
152. }
153. }
154. };
155. AjaxHandler ah = new AjaxHandler();
156. webClient.addAjaxHandler(ah);
157.
158. //connect to the page and find all necessary elements
159. final HtmlPage page = (HtmlPage) webClient.getPage(
160. "http://chat.plasticshore.com/");
161. WebAssert.assertTitleContains(page, "live chat");

 xl

162. //force loading all current messages
163. do {
164. synchronized (this) {
165. wait(100);
166. }
167. }
168. while (ah.isFinished());
169.
170. // wait until the XHR for receiving finishes
171. do {
172. synchronized (this) {
173. wait(100);
174. }
175. }
176. while (!ah.isFinished());
177. HtmlForm form = (HtmlForm) page.getFormByName("chatForm");
178. HtmlInput name = form.getInputByName("name");
179. HtmlInput input = form.getInputByName("chatbarText");
180. HtmlSubmitInput submit = (HtmlSubmitInput)
form.getInputByName(
181. "submit");
182. //set username and message and send everything
183. name.setValueAttribute(nameString);
184. input.focus();
185. input.setValueAttribute(message);
186. submit.click();
187. ah.removeHandler();
188. webClient.addAjaxHandler(ah3);
189. //wait until sending has finished
190. do {
191. synchronized (this) {
192. wait(100);
193. }
194. }
195. while (!ah2.isFinished());
196. //wait until the next receiving thread starts
197.
198. do {
199. synchronized (this) {
200. wait(100);
201. }
202. }
203. while (ah3.isFinished());
204.
205. // wait until the XHR for receiving finishes
206. do {
207. synchronized (this) {
208. wait(100);
209. }
210. }
211. while (!ah3.isFinished());
212. ah3.removeHandler();
213. // parse the outputlist for the first element
214. List list =
page.getByXPath("//ul[attribute::id='outputList']/li");
215. assertFalse(list.isEmpty());
216. HtmlListItem li = (HtmlListItem) list.get(0);
217. HtmlUnorderedList ul = (HtmlUnorderedList) page.getByXPath(
218. "//ul[attribute::id='outputList']").get(0);
219.

 xli

220. assertTrue(ul.asXml().contains(message));
221. assertTrue(ul.asXml().contains(nameString));
222. assertTrue(li.asXml().contains(message));
223.
224. System.err.println(webClient.getAjaxErrors());
225. assertTrue(webClient.getNumberOfAjaxErrorsWithoutWarnings()
== 0);
226.
227. }
228.
229. public void testCase_2_AjaxController() throws Exception {
230. //define the input strings
231. String message = "hurra!";
232. String nameString = "me";
233. //configure the browser
234. final WebClient webClient_1 = new WebClient(BrowserVersion.
235. FIREFOX_2);
236. // create default ajax controller
237. AjaxController ac1 = new
NicelyResynchronizingAjaxController();
238. webClient_1.setAjaxController(ac1);
239.
240. //the same with the second browser
241. //configure the browser
242. final WebClient webClient_2 = new WebClient(BrowserVersion.
243. FIREFOX_2);
244. // create default ajax controller
245. AjaxController ac2 = new
NicelyResynchronizingAjaxController();
246. webClient_2.setAjaxController(ac2);
247. //connect to the page and find all necessary elements
248. final HtmlPage page_1 = (HtmlPage) webClient_1.getPage(
249. "http://chat.plasticshore.com/");
250. WebAssert.assertTitleContains(page_1, "live chat");
251. final HtmlPage page_2 = (HtmlPage) webClient_2.getPage(
252. "http://chat.plasticshore.com/");
253. WebAssert.assertTitleContains(page_2, "live chat");
254.
255. HtmlForm form_1 = (HtmlForm)
page_1.getFormByName("chatForm");
256. HtmlInput name = form_1.getInputByName("name");
257. HtmlInput input = form_1.getInputByName("chatbarText");
258. HtmlSubmitInput submit = (HtmlSubmitInput)
form_1.getInputByName(
259. "submit");
260. //set username and message and send everything
261. name.setValueAttribute(nameString);
262. input.focus();
263. input.setValueAttribute(message);
264. submit.click();
265. //workaround
266. Thread.currentThread().sleep(6000);
267.
268. // parse the outputlist for the first element
269. List list_1 = page_1.getByXPath(
270. "//ul[attribute::id='outputList']/li");
271. assertFalse(list_1.isEmpty());
272. HtmlListItem li_1 = (HtmlListItem) list_1.get(0);
273. HtmlUnorderedList ul_1 = (HtmlUnorderedList)
page_1.getByXPath(

 xlii

274. "//ul[attribute::id='outputList']").get(0);
275. assertTrue(ul_1.asXml().contains(message));
276. assertTrue(ul_1.asXml().contains(nameString));
277. assertTrue(li_1.asXml().contains(message));
278. assertTrue(webClient_1.getNumberOfAjaxErrorsWithoutWarnings()
==
279. 0);
280. // the same with the second client
281. List list_2 = page_2.getByXPath(
282. "//ul[attribute::id='outputList']/li");
283. assertFalse(list_2.isEmpty());
284. HtmlUnorderedList ul_2 = (HtmlUnorderedList)
page_2.getByXPath(
285. "//ul[attribute::id='outputList']").get(0);
286. assertTrue(ul_2.asXml().contains(message));
287. assertTrue(ul_2.asXml().contains(nameString));
288. }
289.
290. public void testCase_2_AjaxHandler() throws Exception {
291. //configure the browser
292. final WebClient webClient_1 = new WebClient(BrowserVersion.
293. FIREFOX_2);
294. // create two default ajax handler: one for receiving
295. // and one for sending chet messages
296. AjaxHandler ah_1_s = new AjaxHandler();
297. webClient_1.addAjaxHandler(ah_1_s);
298. AjaxHandler ah_1_r = new AjaxHandler();
299. webClient_1.addAjaxHandler(ah_1_r);
300. //the same with the second browser
301. //configure the browser
302. final WebClient webClient_2 = new WebClient(BrowserVersion.
303. FIREFOX_2);
304. // create two default ajax handler: one for receiving
305. // and one for sending chet messages
306. AjaxHandler ah_2_s = new AjaxHandler();
307. webClient_2.addAjaxHandler(ah_2_s);
308. AjaxHandler ah_2_r = new AjaxHandler();
309. webClient_2.addAjaxHandler(ah_2_r);
310. //connect to the page and find all necessary elements
311. final HtmlPage page_1 = (HtmlPage) webClient_1.getPage(
312. "http://chat.plasticshore.com/");
313. WebAssert.assertTitleContains(page_1, "live chat");
314. final HtmlPage page_2 = (HtmlPage) webClient_2.getPage(
315. "http://chat.plasticshore.com/");
316. WebAssert.assertTitleContains(page_2, "live chat");
317. //force loading all current messages
318. do {
319. synchronized (this) {
320. wait(100);
321. }
322. }
323. while (ah_1_r.isFinished());
324. // wait until the XHR for receiving finishes
325. do {
326. synchronized (this) {
327. wait(100);
328. }
329. }
330. while (!ah_1_r.isFinished());
331. HtmlForm form_1 = (HtmlForm)

 xliii

page_1.getFormByName("chatForm");
332. HtmlInput name = form_1.getInputByName("name");
333. HtmlInput input = form_1.getInputByName("chatbarText");
334. HtmlSubmitInput submit = (HtmlSubmitInput)
form_1.getInputByName(
335. "submit");
336. //set username and message and send everything
337. String nameString = "me";
338. name.setValueAttribute(nameString);
339. input.focus();
340. String message = "hurra!";
341. input.setValueAttribute(message);
342. submit.click();
343. //wait until sending has finished
344. do {
345. synchronized (this) {
346. wait(100);
347. }
348. }
349. while (!ah_1_s.isFinished());
350. //wait until the next receiving thread starts
351.
352. do {
353. synchronized (this) {
354. wait(100);
355. }
356. }
357. while (ah_1_r.isFinished());
358. // wait until the XHR for receiving finishes
359. do {
360. synchronized (this) {
361. wait(100);
362. }
363. }
364. while (!ah_1_r.isFinished());
365. // parse the outputlist for the first element
366. List list_1 = page_1.getByXPath(
367. "//ul[attribute::id='outputList']/li");
368. assertFalse(list_1.isEmpty());
369. HtmlListItem li_1 = (HtmlListItem) list_1.get(0);
370. HtmlUnorderedList ul_1 = (HtmlUnorderedList)
page_1.getByXPath(
371. "//ul[attribute::id='outputList']").get(0);
372. assertTrue(ul_1.asXml().contains(message));
373. assertTrue(ul_1.asXml().contains(nameString));
374. assertTrue(li_1.asXml().contains(message));
375. assertTrue(webClient_1.getNumberOfAjaxErrorsWithoutWarnings()
==
376. 0);
377. // the same with the second client
378. int i1 = 0;
379. do {
380. synchronized (this) {
381. wait(100);
382. }
383. i1++;
384. }
385. while (ah_2_r.isFinished());
386. // wait until the XHR for receiving finishes
387. int i2 = 0;

 xliv

388. do {
389. synchronized (this) {
390. wait(100);
391. }
392. i2++;
393. }
394. while (!ah_2_r.isFinished());
395. List list_2 = page_2.getByXPath(
396. "//ul[attribute::id='outputList']/li");
397. System.err.println(i1 + " : " + i2);
398. assertFalse(list_2.isEmpty());
399. HtmlUnorderedList ul_2 = (HtmlUnorderedList)
page_2.getByXPath(
400. "//ul[attribute::id='outputList']").get(0);
401. assertTrue(ul_2.asXml().contains(message));
402. assertTrue(ul_2.asXml().contains(nameString));
403. assertTrue(webClient_2.getNumberOfAjaxErrorsWithoutWarnings()
==
404. 0);
405. }
406.
407. public void testCase_2_AjaxHandlerImroved() throws Exception {
408. final String nameString = "me";
409. final String message = "hurra!";
410. //configure the browser
411. final WebClient webClient_1 = new WebClient(BrowserVersion.
412. FIREFOX_2);
413. // create two default ajax handler: one for receiving
414. // and one for sending chet messages
415. AjaxHandler ah_1_s = new AjaxHandler();
416. webClient_1.addAjaxHandler(ah_1_s);
417. AjaxHandler ah_1_r = new AjaxHandler();
418. webClient_1.addAjaxHandler(ah_1_r);
419. AjaxHandler ah_1_r_2 = new AjaxHandler() {
420. @Override
421. public void onChange(int state) {
422. if (state == 4) {
423. assertTrue(getXMLHttpRequest().jsxGet_responseText().
424. indexOf(nameString) >= 0);
425. assertTrue(getXMLHttpRequest().jsxGet_responseText().
426. indexOf(message) >= 0);
427. }
428. }
429. };
430. //the same with the second browser
431. //configure the browser
432. final WebClient webClient_2 = new WebClient(BrowserVersion.
433. FIREFOX_2);
434. // create two default ajax handler: one for receiving
435. // and one for sending chet messages
436. AjaxHandler ah_2_s = new AjaxHandler();
437. webClient_2.addAjaxHandler(ah_2_s);
438. AjaxHandler ah_2_r = new AjaxHandler();
439. webClient_2.addAjaxHandler(ah_2_r);
440. //connect to the page and find all necessary elements
441. final HtmlPage page_1 = (HtmlPage) webClient_1.getPage(
442. "http://chat.plasticshore.com/");
443. WebAssert.assertTitleContains(page_1, "live chat");
444. final HtmlPage page_2 = (HtmlPage) webClient_2.getPage(
445. "http://chat.plasticshore.com/");

 xlv

446. WebAssert.assertTitleContains(page_2, "live chat");
447. //force loading all current messages
448. do {
449. synchronized (this) {
450. wait(100);
451. }
452. }
453. while (ah_1_r.isFinished());
454. // wait until the XHR for receiving finishes
455. do {
456. synchronized (this) {
457. wait(100);
458. }
459. }
460. while (!ah_1_r.isFinished());
461. HtmlForm form_1 = (HtmlForm)
page_1.getFormByName("chatForm");
462. HtmlInput name = form_1.getInputByName("name");
463. HtmlInput input = form_1.getInputByName("chatbarText");
464. HtmlSubmitInput submit = (HtmlSubmitInput)
form_1.getInputByName(
465. "submit");
466. //set username and message and send everything
467. name.setValueAttribute(nameString);
468. input.focus();
469. input.setValueAttribute(message);
470. submit.click();
471.
472. ah_1_r.removeHandler();
473. webClient_1.addAjaxHandler(ah_1_r_2);
474. //wait until sending has finished
475. do {
476. synchronized (this) {
477. wait(100);
478. }
479. }
480. while (!ah_1_s.isFinished());
481. //wait until the next receiving thread starts
482.
483. do {
484. synchronized (this) {
485. wait(100);
486. }
487. }
488. while (ah_1_r_2.isFinished());
489. // wait until the XHR for receiving finishes
490. do {
491. synchronized (this) {
492. wait(100);
493. }
494. }
495. while (!ah_1_r_2.isFinished());
496. // parse the outputlist for the first element
497. List list_1 = page_1.getByXPath(
498. "//ul[attribute::id='outputList']/li");
499. assertFalse(list_1.isEmpty());
500. HtmlListItem li_1 = (HtmlListItem) list_1.get(0);
501. HtmlUnorderedList ul_1 = (HtmlUnorderedList)
page_1.getByXPath(
502. "//ul[attribute::id='outputList']").get(0);

 xlvi

503. assertTrue(ul_1.asXml().contains(message));
504. assertTrue(ul_1.asXml().contains(nameString));
505. assertTrue(li_1.asXml().contains(message));
506. assertTrue(webClient_1.getNumberOfAjaxErrorsWithoutWarnings()
==
507. 0);
508. // the same with the second client
509. int i1 = 0;
510. do {
511. synchronized (this) {
512. wait(100);
513. }
514. i1++;
515. }
516. while (ah_2_r.isFinished());
517. // wait until the XHR for receiving finishes
518. int i2 = 0;
519. do {
520. synchronized (this) {
521. wait(100);
522. }
523. i2++;
524. }
525. while (!ah_2_r.isFinished());
526. List list_2 = page_2.getByXPath(
527. "//ul[attribute::id='outputList']/li");
528. System.err.println(i1 + " : " + i2);
529. assertFalse(list_2.isEmpty());
530. HtmlUnorderedList ul_2 = (HtmlUnorderedList)
page_2.getByXPath(
531. "//ul[attribute::id='outputList']").get(0);
532. assertTrue(ul_2.asXml().contains(message));
533. assertTrue(ul_2.asXml().contains(nameString));
534. assertTrue(webClient_2.getNumberOfAjaxErrorsWithoutWarnings()
==
535. 0);
536. }
537.
538. }

	INF_Diplomarbeits-Deckblatt-1.pdf
	DIPLOMA THESIS korr
	Eidesstattliche Erklärung
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.2 Motivation
	1.3 Goals and Objectives
	1.4 Organization of this Thesis

	2 Foundations
	2.1 Software Test Automation
	2.1.1 Objectives and non-objectives of automated software tests
	2.1.2 The promise of test automation:
	2.1.3 Automated Comparison
	2.1.3.1 Dynamic comparison
	2.1.3.2 Post-execution comparison
	2.1.3.3 Simple comparison
	2.1.3.4 Complex comparison

	2.1.4 Comparing different types of outcome
	2.1.4.1 Disk based outcomes
	2.1.4.2 Screen based outcomes
	2.1.4.3 Other types of outcome

	2.1.5 Comparison filters
	2.1.6 Sensitive tests versus robust tests
	2.1.7 Scripting techniques
	2.1.7.1 Linear scripts
	2.1.7.2 Structured scripts
	2.1.7.3 Shared scripts
	2.1.7.4 Data-driven scripts
	2.1.7.5 Keyword-driven scripts
	2.1.7.6 Summary of scripting techniques

	2.1.8 Test maintenance
	2.1.9 Metrics

	2.2 State of the Technology
	2.2.1 Automated web testing
	2.2.1.1 Testing the application
	2.2.1.2 Client side testing [3] [15]
	2.2.1.3 Server side testing

	2.2.2 AJAX (Asynchronous JavaScript and XML)
	2.2.2.1 XMLHttpRequest
	2.2.2.1.1 Methods
	2.2.2.1.2 Properties

	2.2.2.2 AJAX Example

	2.3 Selected Open Source Testing Frameworks
	2.3.1 HtmlUnit
	2.3.1.1 HtmlUnit and AJAX
	2.3.1.2 Techniques supported by HtmlUnit:

	2.3.2 JSFUnit
	2.3.2.1 JSFUnit and AJAX

	3 Requirements for the Framework Extension
	3.1 Criteria for a satisfying controller
	3.2 Proposals for solution
	3.2.1 NicelyResynchronizingAjaxController
	3.2.2 AjaxHandler
	3.2.3 AjaxFilterWebConnection

	3.3 Summary

	4 Implementation
	4.1 AjaxController
	4.2 AjaxHandler Implementations
	4.2.1 AjaxHandler
	4.2.2 XMLHttpRequest
	4.2.3 WebClient
	4.2.4 AjaxError

	4.3 AjaxFilterWebConnection

	5 Case Studies for Validation
	5.1 Wikipedia
	5.1.1 AjaxController
	5.1.2 AjaxHandler
	5.1.3 AjaxHandler - improved

	5.2 AJAX Login System
	5.2.1 AjaxController
	5.2.2 AjaxHandler – legacy mode
	5.2.3 AjaxHandler – improved

	5.3 XHTML live Chat
	5.3.1 AjaxController
	5.3.2 AjaxHandler
	5.3.3 AjaxHandler - Improved

	6 Validation
	6.1 Wikipedia
	6.1.1 AjaxController
	6.1.2 AjaxHandler
	6.1.3 AjaxHandler - improved
	6.1.4 Summary

	6.2 AJAX Login System
	6.2.1 AjaxController
	6.2.2 AjaxHandler
	6.2.3 AjaxHandler – improved
	6.2.4 Summary

	6.3 XHTML Live Chat
	6.3.1 AjaxController
	6.3.2 AjaxHandler
	6.3.3 AjaxHandler – improved

	6.4 Summary

	7 Conclusion and Future Work
	Bibliography
	Websites
	Appendix
	7.1 New Classes
	7.1.1 AjaxError
	7.1.2 AjaxHandler

	7.2 Modified Classes
	7.2.1 XMLHttpRequest
	7.2.2 WebClient

	7.3 Test Classes
	7.3.1 AJAXLoginTest
	7.3.2 WikipediaTest
	7.3.3 AjaxChatTest

