
Tool Supported Workflow
Integration of RESTful Web Services

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Alexander Bruckner

an der:
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.-Ass. Dipl.-Ing. Martin Vasko

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-

wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen

der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken

oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall

unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. 05. 2009 Alexander Bruckner

i

Abstract

The Representational State Transfer (REST) defines a set of architectural constraints for

the implementation of distributed hypertext systems, and forms the basis for the imple-

mentation of the modern World Wide Web (WWW). Web services, primarily grounded

on the principles of REST and base technologies of the WWW, such as HTTP, URI and

XML are called RESTful Web services. Due to their uniform interface, formed by the

methods of the HTTP protocol specification, the integration of such Web services is

fostered by most modern programming languages. Representing a light weight im-

plementation alternative to overly complex WS* Web services RESTful Web services

are increasingly gaining relevance in Web 2.0 environments as well as enterprise level

applications.

This thesis deals with the issues of RESTful Web service integration in formally de-

scribed, executable business workflows. Whereas the WS-BPEL specification or the

Windows Workflow Foundation framework provide established workflow models for

WS* based Web services, comparable solutions for RESTful Web services are rare in

scientific research and commercial software products. The conceptual part of the thesis

compares the theoretical foundations of the implementation styles REST and WS* and

the compliance of real world RESTful Web services with the architectural constraints of

REST, in respect of their workflow integratability. A detailed survey of description lan-

guages for RESTful Web services forms the basis for the first part of the implementati-

on - a code generation library for WADL (Web Application Description Language) and

WF (Windows Workflow Foundation) activity components, facilitating the invocation of

RESTful Web services within WF workflows. The second part of the thesis implemen-

tation introduces a Web service integration wizard, allowing for dynamic integration

of heterogeneous Web services in expressFlow, a web scale visual workflow design

application.

ii

Kurzfassung

Der Representational State Transfer (REST) definiert eine Menge architektureller Cons-

traints als Basis für die Implementierung von verteilten Hypertext Systemen und dient

als theoretische Grundlage für die Implementierung des modernen World Wide Web

(WWW). Web Services, die primär auf den Prinzipien von REST und den Basis Tech-

nologien des WWW, wie HTTP, URI and XML basieren, werden RESTful Web Services

genannt. Auf Grund ihrer einheitlichen Schnittstelle, gebildet durch die Methoden des

etablierten HTTP Protokolls, wird die Integration derartiger Services in den meisten

modernen Programmiersprachen unterstützt. Als schlanke Implementierungs Alterna-

tive zu den übermäßig komplexen WS* Web Services gewinnen RESTful Web Services

sowohl in Web 2.0 Umgebungen als auch professionellen Unternehmensanwendungen

zunehmend an Bedeutung.

Diese Diplomarbeit beschäftigt sich mit Möglichkeiten der Integration von RESTful

Web Services in formal beschriebenen, ausführbaren Business Prozessen. Während

der WS-BPEL Standard oder das Windows Workflow Foundation Framework etablierte

Workflow Modelle für WS* basierte Web Services bieten, gibt es im wissenschaftli-

chen und kommerziellen Umfeld wenige vergleichbare Ansätze für RESTful Web Ser-

vices. Im konzeptionellen Abschnitt der Arbeit werden die Grundlagen der Imple-

mentierungs Stile REST und WS* verglichen und die Einhaltung der architekturellen

Prinzipien von REST in realen Anwendungen im Hinblick auf deren Integrierbarkeit in

Workflows untersucht. Eine detaillierte Auseinandersetzung mit Beschreibungssprach-

en für RESTful Services bietet die Grundlage für den ersten Teil der Implementierung -

eine Bibliothek zur automatischen Generierung von WADL (Web Application Descrip-

tion Language) Dokumenten und WF (Windows Workflow Foundation) Aktivitäten für

den Aufruf von RESTful Web Services in WF Workflows. Ein Web Service Integrations

Wizard, zur dynamischen Integration heterogener Web Services in der Web basierten

visuellen Workflow Design Applikation expressFlow, bildet den zweiten Teil der Imple-

mentierung.

iii

Danksagungen

Ich widme diese Arbeit meiner Familie, die mir durch ihre Unterstützung immer er-

möglicht hat, mich auf die Aufgaben des Studiums zu konzentrieren und mir immer

den nötigen Rückhalt in wichtigen Entscheidungen geboten hat.

Ich möchte mich auch bei allen StudienkollegInnen und Freunden für die oft sehr pro-

duktive, immer spannende Zusammenarbeit in gemeinsamen universitären Projekten

bedanken. Das gemeinsame Lösen von Aufgabenstellungen in Gruppen war mit Si-

cherheit einer der interessantesten Aspekte meiner Studienzeit.

Ein besonderer Dank gilt auch Univ.Prof. Dr. Schahram Dustdar, der in seinen inter-

essanten Vorlesungen zum Gebiet der Service Orientierten Architekturen und Web

Service Technologien in der abschließenden Phase meines Studiums den Anstoß zur

Themenauswahl dieser Arbeit gegeben hat.

Abschließend möchte ich natürlich Martin Vasko danken, der mir durch viele gute

Ratschläge und produktive Treffen während der Implementierung und konzeptionellen

Ausarbeitung der Diplomarbeit eine optimale Betreuung geboten hat.

iv

Contents

1. Introduction 1
1.1. Problem Definition and Motivation . 2

1.2. Organization Of The Thesis . 3

2. REST & WS* - Introduction and Comparison of the Paradigms 5
2.1. Basic Definitions . 5

2.1.1. Service Oriented Architecture . 5

2.1.2. WS* based Web Services . 7

2.1.3. RESTful Web Services . 8

2.2. Hybrid Web Services - REST in Real World Scenarios 11

2.2.1. RPC Semantics in the Transmitted HTTP Payload 12

2.2.2. Negligence of HTTP Method Semantics 13

2.2.3. Ignored HTTP Header Facilities 13

2.2.4. One Endpoint Catches All . 14

2.3. REST & WS* - Criteria Based Comparison 15

2.3.1. Architectural Constraints vs. Set of Standards 15

2.3.2. Service Design Process . 16

2.3.3. Application Scenarios . 18

2.3.4. Orchestration Models . 19

3. Related Work 22
3.1. Workflow Design And Runtime Integration 22

3.1.1. JOpera for Eclipse . 22

3.1.2. Apache ODE . 24

3.2. Requirements Driven Mashup Creation 25

3.2.1. MashupAdvisor . 25

3.2.2. Wishful Search / MARIO . 26

v

Contents vi

3.3. Native Integration Of REST Semantics In BPEL 27

3.3.1. BPEL for REST . 27

3.3.2. RESTful BPEL in Apache ODE . 28

3.4. Industry Projects . 29

4. RESTful Web Service Description 30
4.1. Describing a RESTful Web Service in WADL 31

4.1.1. WADL Exemplified - The Bibsonomy Example 31

4.1.2. Strengths and Limitations . 36

4.1.3. Workflow Integration Support . 37

4.2. Describing a RESTful Web Service in WSDL 1.1 38

4.2.1. WSDL 1.1 Document Structure . 38

4.2.2. WSDL 1.1 HTTP Binding Exemplified 40

4.2.3. WSDL 1.1 HTTP Binding Limitations 43

4.3. Describing a RESTful Web Service in WSDL 2.0 45

4.3.1. Document Structure - Changes from WSDL 1.1 45

4.3.2. WSDL 2.0 HTTP Binding Exemplified 47

4.3.3. Description Capabilities and Workflow Integration 52

4.4. Alternative Approaches Summarized . 53

4.4.1. WDL . 53

4.4.2. SMEX-D . 54

4.4.3. NSDL . 54

4.4.4. RSWS . 55

5. Automatic WADL and WF Code Generation 56
5.1. Internal Architecture . 57

5.2. WADL Generation . 58

5.2.1. Result Format . 59

5.2.2. Type Estimation . 60

5.3. WF Code Generation . 61

5.3.1. RESTful Invocation through Custom WF Activities 62

5.4. Underlying Technology Stack . 65

6. Dynamic Service Integration in expressFlow 66
6.1. ExpressFlow Architecture . 66

6.1.1. Application Overview . 66

Contents vii

6.1.2. Flash Client - Internal Architecture 67

6.1.3. Server Implementation . 70

6.2. expressFlow Web Service Integration Wizard 71

6.2.1. WADL based Service Integration 73

6.2.2. Request URI based Service Integration 75

6.2.3. WSDL based Service Integration 77

6.2.4. WADL / WSDL - Specification Mapping 80

6.2.5. Service Mashup Abstraction Extensions 82

7. Evaluation and Future Work 84
7.1. Runtime Integration . 84

7.1.1. Future Work . 85

7.2. Visual Workflow Design . 86

7.2.1. Future Work . 86

7.3. Feature Comparison . 87

A. Bibsonomy WADL Description 89

B. Bibsonomy WSDL 1.1 Description 92

C. Bibsonomy WSDL 2.0 Description 95

D. Custom Workflow Activity for Google Translate 98

E. ExpressFlow Sample Workflow 101

F. Bibliography 103

List of Figures

1.1. Sample Workflow in BPEL Notation - Graphical and XML Representation 3

2.1. SOA Triangle - Involved Parties and their Relations 7

2.2. Activity vs. Resource Abstraction . 18

3.1. JOpera Visual Design Surface - Control Flow Representation 23

3.2. ODE Architectural Overview . 24

4.1. Bibsonomy API - Get Posts and Create Post 32

4.2. WSDL 1.1 Basic Elements . 40

4.3. WSDL 2.0 Basic Elements . 46

5.1. WADL and WF Code Generation - UML Class Diagram 57

5.2. WADL Generation - UML Sequence Diagram 59

5.3. WADL Generation - Type Estimation Decision Structure 60

5.4. WF Code Generation - UML Sequence Diagram 61

5.5. Visual Studio Workflow Design Surface - Property Binding 64

6.1. expressFlow General Architecture . 67

6.2. expressFlow Internal Client Architecture 68

6.3. expressFlow Service Integration Wizard - Application Flow 72

6.4. WADL, WSDL 1.1 - Specification Mapping 82

viii

List of Tables

5.1. WADL Library - Namespace Structure 58

6.1. expressFlow - ActionScript Package Structure 69

7.1. Implementation Feature Comparison . 87

ix

1. Introduction

There have always been things

which people are good at,

and things computers have been good at,

and little overlap between the two.

Tim Berners-Lee

In 1945, the last year of the second world war, an article by Vannevar Bush, about a

photo-electrical mechanic device called Memex, allowing for creating and following

links between microfilm documents, denotes the start of the history of the World Wide

Web (WWW) [93]. 20 years later Ted Nelson coins the term Hypertext in his publi-

cation A File Structure for the Complex, the Changing, and the Indeterminate, followed

two years later by the first Hypertext editing system FRESS, by Andy van Damm et al..

In 1969 the first ARPANET (Advanced Research Projects Agency Network) nodes are

connected forming the basis for the development of the Internet.

Motivated by the challenges of information distribution in complex scientific projects

at CERN, Tim Berners-Lee publishes an article about a distributed hypertext system

in 1989. One year later he implements the first web-server/-browser/-editor, called

WorldWideWeb (initially without spaces).

In 2000 Roy Fielding, one of the main authors of HTTP and co-founder of the Apache

HTTP server project, introduces the Representational State Transfer (REST) [30], an ar-

chitectural style for distributed hypermedia systems, finally segueing from the histori-

cal excursion of the WWW into one of the title worlds of this thesis.

Along with the evolvement of the web not only as distribution system for hyperme-

dia, but also as transport medium for distributed business applications, the term Web

1

1.1. Problem Definition and Motivation 2

services emerged in the early years of 2000, as an implementation technology for Ser-

vice Oriented Architectures (SOA). Based on open technology standards such as XML,

SOAP and WSDL Web services were meant to provide an ideal technology basis for

development of loosely coupled interoperable business applications.

But the overly complex technology stack, formed by the core Web services standards

and their extensions, referred to as the WS* standards, also detained many developers

from writing WS* based applications, fostering an alternative approach for Web ser-

vices implementation. So-called RESTful Web services, based on the theoretical prin-

ciples of REST and the basic technology standards of the WWW - HTTP, URI and XML,

provide a light weight alternative to WS* based Web services. The relevance of these

services is underpinned by usage statistics of main stream Web services providers,

providing their services through WS* and REST interfaces1, and recent industry efforts

[43, 44, 55].

1.1. Problem Definition and Motivation

Web service orchestration denotes the aggregation of Web services provided by one

ore more parties, into a formally described, executable workflow, from the perspective

of one controlling party [76]. Such a workflow is commonly specified within an abstract

description model (for example WS-BPEL [67], Windows Workflow Foundation [52]),

allowing for definition of its execution structure, data flow and involved parties.

A workflow specification is created by means of a visual design tool and executed

within a workflow runtime environment. Figure 1.1 depicts the graphical and XML rep-

resentations of such a specification in a simplified WS-BPEL notation.

While the integration of WS* based Web services is well fostered by existing work-

flow models and according tools, RESTful Web services are, despite their increasing

popularity, often neglected in this context. Motivated by this situation the subsequent

issues around the workflow integration of RESTful Web services will be covered in this

thesis:

1http://www.oreillynet.com/pub/wlg/3005

http://www.oreillynet.com/pub/wlg/3005

1.2. Organization Of The Thesis 3

<?xml version="1.0" encoding="UTF-8"?>

<process name="newProcess"

 <partnerLinks>

 <partnerLink name="PartnerLink2" partnerLinkType="tns:GoogleSearchPortLinkType"/>

 <partnerLink name="PartnerLink1"partnerLinkType="tns:eBayAPIInterfaceLinkType"/>

 </partnerLinks>

 <variables>

 <variable name="DoGoogleSearchOut" messageType="typens:doGoogleSearchResponse"/>

 <variable name="DoGoogleSearchIn" messageType="typens:doGoogleSearch"/>

 <variable name="AddDisputeOut" messageType="ns:AddDisputeResponse"/>

 <variable name="AddDisputeIn" messageType="ns:AddDisputeRequest"/>

 </variables>

 <sequence>

 <invoke name="Invoke1"/>

 <if name="Conditition">

 <invoke name="Invoke2"/>

 <else>

 <reply name="Reply1"/>

 </else>

 </if>

 <reply name="Reply2"/>

 </sequence>

</process>

Figure 1.1.: Sample Workflow in BPEL Notation - Graphical and XML Representation

• What are the prevailing characteristics of real world RESTful service implemen-

tations, and how does their (non-)compliance with the architectural constraints of

REST affect workflow integration ?

• How do the two implementation models for Web services, REST and WS*, differ

conceptionally ?

• Do the elements of established description formats for Web services suffice for

formal specification of RESTful Web services, in order to ease their tool sup-

ported workflow integration ?

• How can RESTful Web services be invoked from a workflow deployed into a work-

flow runtime environment, i. e. the Windows Workflow Foundation framework ?

• How can RESTful and WS* based Web services be integrated in a visual workflow

design process, abstracting from their underlying technological properties ?

1.2. Organization Of The Thesis

Chapter 2 will introduce the theoretical and technological foundations of a Service Ori-

ented Architecture (SOA), and the prevailing implementation styles REST and WS*.

1.2. Organization Of The Thesis 4

Moreover a survey of common properties of real world RESTful service APIs and their

compliance with the architectural constraints of REST is given, followed by a criteria

based comparison of REST and WS*.

In chapter 3 related work in the field of this thesis will be presented.

The most widely accepted description formats for RESTful service specification - WADL,

WSDL 2.0 and WSDL 1.1 - will be detailed in chapter 4, forming the theoretical basis for

parts of the thesis implementation. An overview of alternative approaches to RESTful

service description concludes the chapter.

The implementation of a code generation library for WADL documents and Windows

Workflow Foundation (WF) activity components, allowing for RESTful service invocation

within a WF workflow, will be presented in chapter 5.

Chapter 6 introduces the expressFlow project, a web scale graphical workflow appli-

cation, and the implementation of a service integration wizard, allowing for convenient

adding of WS* and RESTful Web services to a workflow, based on various description

formats such as WADL, WSDL 1.1 or URI.

Chapter 7 provides an evaluation of the implementation and possible feature exten-

sions, concluded by a feature comparison with related projects.

2. REST & WS* - Introduction and
Comparison of the Paradigms

This chapter presents the theoretical concepts, forming the basis for the implementa-

tion work presented later in this thesis. Furthermore a survey of the prevailing proper-

ties of real world RESTful Web service APIs and their compliance with the architectural

constraints imposed by REST is given. A comparison of various conceptual aspects of

REST and WS* based Web services concludes the chapter.

2.1. Basic Definitions

In this section the underlying theoretical concepts referred to throughout the thesis will

be outlined.

2.1.1. Service Oriented Architecture

Service Oriented Architectures (SOAs) have emerged to one of the most prevailing ar-

chitectural paradigms in enterprise level application development as well as scientific

research in the field of distributed computing over the last years. Along with the forma-

tion of the World Wide Web not only as distribution system for hypermedia content, but

also as a vital transport medium for distributed applications the notion of Web services,

as an underlying technology for implementation of SOAs, was coined. Though both

terms are often mutually used they do not necessarily translate to each other. In short

an SOA can be seen as an architectural principle in distributed computing, whereas

Web services form a set of underlying implementation technologies for the compo-

nents of an SOA based application.

5

2.1. Basic Definitions 6

In order to provide a better understanding of the technological properties of RESTful

and WS* based Web services, introduced in subsequent sections, the notion of Service,

as the core building block of an SOA, needs to be clarified on a conceptual level. In

the reference model for SOA, provided by the Organization for the Advancement of

Structured Information Standards (OASIS), a Service is defined as :

The performance of work (a function) by one for another. It combines the

capability to perform work for another, the specification of the work offered

for another and the offer to perform work for another.

Shifting the emphasis to a more technical level, Newcomer et al. [61] identify four

primary properties that need to be observed in a service implementation, independent

of the chosen implementation style (RESTful or WS*) :

• Loosely coupled. At design time of a service loose coupling denotes the preven-

tion of any affinity to potential service consumers [60]. Clients may use a service

without exact knowledge of its internal implementation specifics. They are how-

ever required to know how to accomplish valid interaction with a service and are

thus dependent on a provided service [69].

• Well-defined service contracts. A service contract provides a specification of the

capabilities of a service [61] and its technical access properties [60]. It clearly

separates the interface from technical implementation details [61]. The formal

specification of a service contract is one of the most controversial aspects in de-

bates on RESTful Web service implementations, as discussed more in depth in

chapter 4 of the thesis.

• Meaningful to service requesters. A service is specified at an appropriate level of

abstraction with adherence to the standard vocabulary of its associated business

domain while conventions specific to the implementation are kept transparent

from service requesters [61].

• Standards-based. In consequence of the compliance with established technol-

ogy standards the number of potential service consumers is increased from the

provider’s perspective. For a service consumer the variety of applicable services

rises. Furthermore the large user community around open technology standards

gains momentum due to their collaborative knowledge.

2.1. Basic Definitions 7

An SOA is then defined in [59] as a "relationship of services and service consumers, both

software modules large enough to represent a complete business function". The classical

SOA triangle depicts the traditional roles and their interaction relationships:

Service Registry

Service Requester Service Provider

Looku
p Publish

Interact

Figure 2.1.: SOA Triangle - Involved Parties and their Relations

A service provider provides a service, implementing a particular functionality within

an application domain. The service specification, describing the technical interaction

specifics and capabilities of a service are published into a service registry. A service

requester looks up the service specification in the registry and interacts with the ac-

cording service provider in order to achieve the desired application results.

2.1.2. WS* based Web Services

The term WS* based Web services commonly denotes an implementation style for

Web services relying on a set of three core standards: WSDL, SOAP and UDDI. Various

semantically equivalent terms for such services as for example Big Web services [80,

75], SOAP oriented Web Services [100] or WSDL based Web services [49] can be found

in scientific literature and debates on Web service implementation technologies.

According to [25] WS* refers to a set of "second-generation Web service specifications"

extending the basic Web service framework comprising the three aforementioned ba-

sic standards. Details of these specifications, commonly built atop of SOAP [98], will

not be covered in this thesis, however many interesting resources on the topic such as

[97, 12, 26] can be found in current literature.

2.1. Basic Definitions 8

Aligned with the abstract principles introduced in 2.1.1 the three core standards relate

to the implementation of WS* based Web services as follows:

• WSDL. The Web Services Description Language provides an "XML grammar for

specifying properties of a Web Service such as what it does, where it is located and

how it is invoked" [90]. Succeeding the widely accepted version 1.1 [16] WSDL

2.0 [8] has been released as a W3C recommendation in 2007 (see chapter 4 for

a detailed discussion of the standards).

• SOAP. SOAP is "a stateless, one-way message exchange paradigm" [98] defining a

standardized XML format for exchange of Web service messages. The XML pay-

load of a SOAP messages comprises the three portions: Envelope - for definition

of namespaces; Header (optional) - allowing for definition of auxiliary informa-

tion such as security, addressing, payment; Body - carrying the main payload of

a message, i. e. the name of an invoked service operation and its arguments.

• UDDI. UDDI [66], short for Universal Decription, Discovery and Integration pro-

vides a standardized model for implementation of a Web service registry. The

standard comprises XML schema definitions for communication with the registry

via SOAP and API specifications describing registry interaction methods [90].

While WSDL and SOAP have emerged to the prevailing core technologies for the im-

plementation of WS* based Web services, the original vision of UDDI as an open Web

service registry has not been realized [61].

2.1.3. RESTful Web Services

REpresentational State Transfer (REST) is the name of an architectural style for dis-

tributed hypermedia systems originally introduced by Roy Fielding in his dissertation

in 2000 [30]. The set of architectural constraints proposed in the dissertation essen-

tially form the basis for design and implementation of the largest deployed information

system today, the World Wide Web (WWW). Web service implementations that rely on

the theoretical principles of REST and its core technology standards are referred to as

RESTful Web services [80], providing a light weight implementation alternative to the

previously introduced notion of WS* based Web services (see 2.1.2).

2.1. Basic Definitions 9

In this section first the main principles of REST will be outlined followed by a summary

of the key technology standards for implementation of RESTful Web services.

REST Main Principles

Resource Orientation. Resources constitute the core building blocks a RESTful ar-

chitecture, described by Fielding as "the intended conceptual target of a hypertext ref-

erence" [30]. A resource represents an abstract information item of a web based ap-

plication such as a bookmark in a bookmark service or a particular event in a web

based event calendar. The concrete data element being transferred upon interacting

with a resource is called the resource representation, as for example the XML document

describing a particular bookmark resource.

Addressability. Resources are identified and accessible through a unique naming

mechanism, namely the URI concept proposed by Berners-Lee et al. [5]. Resource

URIs should be meaningful to clients interacting with a service.

Uniform Interface. Interactions between service consumers and resources are me-

diated through a fixed set of methods as provided by the HTTP protocol [80]. All HTTP

methods provided for interacting with a particular resource are specified through the

service provider. The associated method semantics for the four basic create, read,

update and delete (CRUD) operations adhere to the definitions provided by the HTTP

protocol standard [29]: GET is solely used for retrieval of information; POST is used

for creation or update of a resource identified by a server side URI; PUT is used for

creation or update of a resource identified by a URI determined by the client; DELETE

is used for deletion of an existing resource.

Statelessness. According to this constraint client-server interaction must be "state-

less in nature, such that each request from client to server must contain all of the informa-

tion necessary to understand the request" [30]. A server may not store any information

regarding the states of its invoking clients. Hence all information describing a particular

state of the client, such as authentication data, have to be transmitted in every request

[80].

2.1. Basic Definitions 10

Layered System. By introducing layers the overall complexity of a system architec-

ture shall be stemmed by allowing for encapsulation of legacy systems and protecting

components from unwanted access through clients. Furthermore scalability can be in-

creased through insertion of load balancing or caching proxy network components.

Underlying Technology Standards

HTTP. The Hypertext Transfer Protocol (HTTP) serves as the primary application

protocol for web applications and allows for the transmission of resource represen-

tations between network components. The initial version, 1.0, was released in 1996 by

Berners-Lee et al. [6]. Derived from the requirements for a modern web architecture

stated by Fielding [30] its today widely accepted successor HTTP 1.1 [29] was released

in 1999. Revisiting the uniform interface constraint of REST the HTTP protocol serves as

the uniform application level protocol for RESTful Web services. The fixed set of HTTP

methods and their interaction semantics associated with the exposed resources essen-

tially define the capabilities of a Web service. Ideally RPC semantics transmitted atop

of HTTP, for example by means of a method name request parameter, are not required

in truly RESTful implementations (see section 2.2).

URI. Uniform Resource Identifiers (URI) provide a standard mechanism for uniquely

identifying and addressing resources in a REST architecture. The URI standard [5]

is a superset of two specifications: Uniform Resource Locator (URL) [7] - defining

resource identification via its primary access mechanism (e.g. http://address.org/1,

ftp://address.org/2/); Uniform Resource Names (URN) [86] - stating requirements for

globally unique and persistent naming of resources.

XML. The Extensible Markup Language (XML) [94] was developed by members of

the World Wide Web Consortium (W3C) in 1996. Derived from its initial design goals

such as simplicity, broad application support or easy producible XML documents XML

has emerged to one of the most favored formats for data exchange in Web service

applications. XML documents are easy readable for humans and can be automatically

processed in most modern programming languages with little effort. Aligned with the

resource orientation principle of RESTful Web services, an XML formatted document

2.2. Hybrid Web Services - REST in Real World Scenarios 11

constitutes the concrete representation of a resource to be transmitted upon interacting

with a service.

JSON. The JavaScript Object Notation (JSON) [21] is a light weight text format allow-

ing for data-exchange in network based applications. Though the format is considered

programming language independent it is especially advantageous in JavaScript imple-

mentations as JSON structures can easily be accessed in an object oriented manner by

means of the JavaScript eval() function. Many main stream Web service providers, such

as Google or Yahoo, provide JSON formatted data complementary to XML in their REST

APIs. Analogous to XML, JSON serves as a data format for transmission of a resource’s

representation.

2.2. Hybrid Web Services - REST in Real World

Scenarios

An important aspect during the implementation of a Web service integration wizard

for expressFlow (see section 6.2) was the analysis of real world RESTful Web service

APIs, providing the basis for requirements analysis and implementation testing. Many

of these Web services, referred to being RESTful throughout the thesis, do not strictly

adhere to all of the architectural constraints proposed in Fielding’s dissertation [30].

The REST inventor even urges to avoid the term REST in the context of such Web ser-

vices, which he believes have little in common with the originally proposed REST prin-

ciples1.

The formal identification of recurring problems and according solutions in real world

software development scenarios, given in this section, is also referred to as "AntiPat-

terns" [11, 84]. Conceptually related to the notion of a Software Pattern, AntiPatterns

"are a method for efficiently mapping a general situation to a specific class of solutions",

they "provide real-world experience in recognizing recurring problems in the software in-

dustry" and they "provide a common vocabulary for identifying problems and discussing

solutions" [11].

1In his blog Fielding repeatedly expresses his dissatisfaction with the application of his concepts in
current implementations: http://roy.gbiv.com/untangled/

http://roy.gbiv.com/untangled/

2.2. Hybrid Web Services - REST in Real World Scenarios 12

Coming back to the identification of recurring misconceptions in real world RESTful

Web service implementations, in [80] the term Hybrid Web Services is introduced for

Services often created by programmers who know a lot about real-world

web applications, but not much about the theory of REST.

Subsequently the most prevalent properties of such Hybrid Web Services and their

implications on the issues of workflow integration dealt with in this thesis will be de-

tailed.

2.2.1. RPC Semantics in the Transmitted HTTP Payload

Problem Definition An essential implication of the uniform interface constraint of

REST is the utilization of HTTP as application-level protocol of a Web service. Many im-

plementations ignore this principle and use HTTP rather as an envelope encompassing

an operation request specified via a request parameter. The delete photo operation of

Flickr’s REST API2 illustrates this issue. In order to delete a photo, an HTTP POST re-

quest including a parameter method=flickr.photos.delete is required instead of a sim-

ple HTTP DELETE at the photo resource.

Implication on Workflow Integration The specification of a desired service op-

eration by means of a method request parameter essentially leads to an intermingling

of two types of parameters within a request. While the method parameter has a fixed

value that may not be altered in order to avoid invalid service requests, a dynamic

parameter as for example the input text parameter for a translation service may be

assigned an arbitrary value during workflow execution. The lack of a formal differen-

tiation between these two parameter types basically imposes two consequences on

successful visual service integration. One is the increase of complexity due to a higher

number of parameters presented, which could possibly overstrain a user. The other is

an increased probability of adding faulty invoke elements to a workflow, due to binding

fixed parameters to invalid values. To overcome this issue particular parameters could

be marked by means of a special attribute (fixed={true|false}) in a formal interface

specification such as WADL or WSDL 2.0(see 4). WADL provides a default attribute

2http://www.flickr.com/services/api/flickr.photos.delete.html

http://www.flickr.com/services/api/flickr.photos.delete.html

2.2. Hybrid Web Services - REST in Real World Scenarios 13

for a param declaration being utilized in expressFlow for default parameter values in

request URIs.

2.2.2. Negligence of HTTP Method Semantics

Problem Definition In the HTTP specification methods are classified by two crite-

rias [27]. Safe methods such as GET and HEAD are intended solely for retrieving infor-

mation from a resource, while unsafe methods such as POST, PUT and DELETE might

cause changes on a resource’s state. A method is called idempotent if its repeated

execution (N > 1) has the same effect on a resource as a single execution. Though not

calling itself RESTful the delicious HTTP API3 provides a good exemplification of how

this constraint can be ignored completely. Essentially all operations provided by the

service, including such causing a change to a resource state such as posts/delete are

called via HTTP GET.

Implication on Workflow Integration Due to a negligence of the proposed HTTP

method semantics in existing service APIs automatic analysis facilities for integration of

provided services in workflow tools are confined. This can best be explained by means

of an example. Consider a user adding a service invoke element associated with a non-

idempotent HTTP method to a workflow. Due to the definition of idempotence the state

of the resource might change in consequence of its invocation. If during execution

of a workflow this resource is invoked repeatedly, for example within a loop, its state

might differ between two invocations possible leading to unexpected workflow results.

A static workflow analysis tool might reveal this flaw, however analysis would fail if the

non-idempotent POST would be masked by an idempotent GET.

2.2.3. Ignored HTTP Header Facilities

Problem Definition Many service implementations tend to define custom query pa-

rameters in order to specify request properties for which standardized HTTP header

fields exist. The desired response format of a request for example can be specified

3http://delicious.com/help/api

http://delicious.com/help/api

2.2. Hybrid Web Services - REST in Real World Scenarios 14

in the HTTP Accept header field. Authentication information can be passed in the Au-

thorization header (the field name is rather unfortunate), rather than within the query

string. A sample request URI taken from the ebay item search API illustrates this issue:

http://open.api.ebay.com.shopping?callname=FindItems&responseencoding=XML&appid=

Alexande1234567. Authentication information is passed in the appid parameter, the re-

sponseencoding parameter specifies XML as the desired result format.

Implication on Workflow Integration Essentially the flexibility gained by deviating

from provided header mechanisms imposes a rise of complexity of workflow integra-

tion of a RESTful service. Comparably to the aforementioned RPC issue (see section

2.2.1) the encoding of authentication and format parameters within the query string

causes more complex query strings that might become unreadable and error-prone.

Furthermore the associated semantics of such declared parameters (e. g. parameter1

specifies the result format, parameter2 provides authentication information) cannot be

automatically discovered by a workflow tool. Hence a user would have to provide nec-

essary request properties, such as the desired result format of a service request, man-

ually to a workflow run time in order to gain working results. A valuable application

of specifying sensible authentication information in a standardized way could be the

ability to keep such information transparent in the visual representation of a workflow,

comparable to the masking of user passwords in many applications.

2.2.4. One Endpoint Catches All

Problem Definition In the URI syntax specification [5] a "/" character is proposed for

denoting sub path components of a hierarchical resource URI. A violation of this prin-

ciple commonly seen in existing implementations is that essentially all resources pro-

vided by the service are accessible through a single URI. Particular resources are differ-

entiated by means of query parameters appended to the URI. The REST API4 of upcom-

ing, a social event calendar application provided by Yahoo elucidates the issue: All ser-

vice resources are provided through a single base URI, http://upcoming.yahooapis.com/se-

rvices/rest , supplemented by the desired information category such as method=event.ge-

tInfo or method=venue.getList encoded within a query string parameter.

4http://upcoming.yahoo.com/help/w/Example_REST_URLs

http://upcoming.yahoo.com/help/w/Example_REST_URLs

2.3. REST & WS* - Criteria Based Comparison 15

Implication on Workflow Integration Dynamic resource URIs possibly possibly

created by means of a PUT request during execution of a workflow cannot be dis-

covered automatically. A workflow designer would have to rely on a static URI scheme

being defined in the API specification resulting in a tight coupling of the workflow appli-

cation and its included services. In order to create for example a new event in the afore-

mentioned upcoming service one could issue a PUT onto /events/category/eventId. In

a truly RESTful implementation the created event resource would subsequently be ad-

dressable by means of its creation URI. However in the upcoming service the resource

is accessible via a fixed base URI supplemented by the resource identification encoded

within a query string parameter, as for example method=event.getInfo&event_id=20849.

2.3. REST & WS* - Criteria Based Comparison

In this section a comparison of the two Web service implementation paradigms REST

and WS* is drawn, based on a set of four criteria, reflecting the primary conceptual

distinctions between both styles.

2.3.1. Architectural Constraints vs. Set of Standards

As previously intimated in this chapter, an inherent disparity in the conceptual defini-

tion of the two paradigms REST and WS* exists. Roy Fielding states in his thesis that

"An architecture’s properties are created by the application of constraints" [30]. Whereas

REST is a highly constrained architectural style, based on a clearly defined set of ab-

stract principles, WS* services lack such a theoretical basis almost completely. Con-

straints for WS* style Web services mainly stem from a set of standard specifications,

collectively denoted as the WS* standards stack [50]. Commonly these standards are

designed and maintained through standards bodies such as the World Wide Web Con-

sortium (W3C) and the Organization for the Advancement of Structured Information

Standards (OASIS), or industry consortiums comprising leading software vendors.

Critics of the WS* stack state, that many of its specifications are bloated, ambiguous

and too complex in order to efficiently yield interoparable components. REST on the

other hand fosters the implementation of loosely coupled architectures, independent

2.3. REST & WS* - Criteria Based Comparison 16

of concrete implementation technologies and standard interpretations. While this ar-

gumentation might approve for the programmatic integration of RESTful services it is

only partly applicable on the issues of workflow integration. A glimpse at real world

RESTful implementations (see section 2.2) reveals a large diversity in the interpretation

of the REST constraints, highly impeding their tool supported integration in workflow

environments. The standardized interface descriptions and data exchange formats of

WS* based services, fostering the implementation of according software tools, seem to

be superior to the theories of REST in this regard. Chapter 4 of this thesis will examine

how this conflict can be mitigated by applying standardized description languages to

RESTful services.

2.3.2. Service Design Process

Based on the two different SOA implementation paradigms the set of decisions required

for designing a RESTful service varies significantly from the design process of a WS*

based service. In [80] the primary steps traversed during design of a RESTful service

are described as follows:

1. Resource Definition - Based on the given data set exposed by the service, the core

elements of every RESTful service, its resources have to be identified. According

to [80] these can be divided into three categories: Predefined one-off resources,

required by all remaining resources (typically the base URI of a service), Exposed

data objects (for example a bookmark), Processing results of an algorithm applied

to a set of resources (for example the text returned from a translation service).

2. Resource Naming / URI Design - In order to formally identify the specified re-

sources and expose them to potential service consumers an URI scheme has to

be defined. Among the best practice recommendations for a meaningful URI

design are: Hierarchical structures are denoted through path variables (/smith/-

bookmarks/bm1); Flat hierarchies can be expressed through matrix parameters

separated by a ";" character (bm1/tags/tag1;tag2); Algorithmic input parameters

are expressed through query string parameters (?method=a¶m1=val1).

3. Interaction Semantics Definition - Aligned with the method semantics specified in

the HTTP protocol specification the allowed HTTP methods and their intended

function have to be determined for the previously created set of resources (GET

2.3. REST & WS* - Criteria Based Comparison 17

on resource A retrieves the resource representation, PUT on URI B creates a new

resource at this location).

4. Resource Relationships - Aligned with the Hypermedia as the Engine of Application

State principle of REST, resources returned upon interacting with a service are

interconnected through hyper links. As stated in [75] these links could specify

the intended state transitions traversed by a client interacting with a service.

5. Resource Representation - Finally the data format returned upon requesting a re-

source representation and accepted for creation of new resources has to be stip-

ulated. In most data-centric implementations this is either XML or JSON.

Additionally a number of secondary properties, such as HTTP response codes and the

(optional) authentication mechanism have to be specified. However as these questions

are not strictly bounded to RESTful service design they will be omitted in this compar-

ison.

Pautasso et al. [75] identify three primary decisions required for WS* based service

design, essentially centered around the definition of its WSDL interface description:

1. Data Modeling - Commonly within the types section of a WSDL document the

structure of exchanged XML data has to be defined. In a contract-last approach,

where a WSDL document is automatically generated from an existing implemen-

tation this structure is derived from the data type definitions of the underlying

programming language.

2. Message Exchange Pattern Definition - Essentially the message exchange pattern

constitutes whether a service operation yields a response message, i. e. request-

response or is defined as request-only operation. The latter type allows a client

for immediate continuation of its execution after issuing a service request.

3. Operations Enumeration - The exposed operations represent the capabilities pro-

vided by the service provider. Operation names must depict the provided busi-

ness functionality in a meaningful way to potential service consumers. Related

operations may be grouped in portTypes by various criteria as for example se-

curity requirements, functional domain or organizational factors.

2.3. REST & WS* - Criteria Based Comparison 18

2.3.3. Application Scenarios

A typical criteria used in comparisons of REST and WS* is the intended area of ap-

plication. Whereas the extensive set of WS* standards addresses many of the issues

required in complex enterprise scenarios the light weight nature of RESTful services

seems to align well with the ad hoc integration facilities of RESTful services in Web 2.0

applications. A closer look at the current real world service landscape reveals that this

argumentation is only partly appropriate. While the ideas behind many of the specifi-

cations defined in the WS* stack [12], such as WS-Security, WS-ReliableMessaging or

WS-AtomicTransaction, are assuredly valuable in business related scenarios, also ap-

plications stemming from the Web 2.0 world and consequently their associated RESTful

APIs increasingly find their way to the enterprise [14]. The relevance of RESTful inte-

gration in business surroundings is also underpinned by recent software products, such

as Lotus Mashups [44] or IBM WebSphere sMash [43] (see section 3.4).

Resource - OrientatationActivity - Orientation

+GetAllInvoices(ein u_id:ID)

+RetrieveInvoice(ein u_id:ID, ein i_id:ID)

+CreateNewInvoice(ein u_id:ID)

+UpdateInvoice(ein u_id:ID, ein i_id:_ID)

+DeleteInvoice(ein u_id:ID, ein i_id:ID)

OnlinePaymentService

+ListTransactions(ein u_id:ID)

+CreateTransaction(ein u_id:ID, ein amount:Double)

+GetAccount(ein u_id:ID, ein a_id:ID)

+GetAllAccounts()

+CreateAccount(ein u_id:ID)

AccountManagementService

GET

POST

PUT

DELETE

Resource

GET - return invoices list

POST - create new invoice

PUT - unused

DELETE - unused

/invoices

GET - return invoice

POST - unused

PUT - update invoice

DELETE - delete invoice

/invoices/[id]

GET - return transactions list

POST - create new transaction

PUT - unused

DELETE - unused

/transactions

GET - return accounts list

POST - create new account

PUT - unused

DELETE - unused

/accounts

Vs.

Figure 2.2.: Activity vs. Resource Abstraction

Another aspect mentionable in this context is the intended type of application to be

solved by a Web service implementation. Snell compares resource-oriented (REST)

to activity-oriented (WS*) services [85]. Whereas RESTful services, centered around

the core abstraction of a resource, seem to fit better with data-oriented applications,

2.3. REST & WS* - Criteria Based Comparison 19

the notion of WS* services is focused on actions that can be carried out by a service

provider. Figure 2.2 depicts these varying concepts in an UML like notation based on

[70]. However this rationale holds only partially true, as real world implementations

taken from the programmableWeb directory [58], such as Moneybird5 or Iron Money6

demonstrate. Though providing their functionalities through a REST interface these

services provide typical functions commonly allocated to the WS* domain.

2.3.4. Orchestration Models

The orchestration models for RESTful and WS* based Web services are often referred

to as orthogonal concepts in terms of their underlying behavioral model. Whereas

the traditional emphasis in combining RESTful Web services lies on their aggregation

in a shared namespace, in order to form new content, WS* based Web services are

commonly meant to be composable in a time axis [77], by means of a formally defined

executable workflow. Subsequently recently introduced mashup concepts in academic

and industrial research will be contrasted to traditional workflow models as provided

by the Windows Workflow Foundation framework and WS-BPEL.

Web Service Aggregation in Namespace - Mashup Concepts

Web 2.0 Mashups. The notion of web 2.0 mashups commonly denotes the aggre-

gation of web content supplied either by RESTful Web services APIs or standardized

feed formats (RSS,Atom), in order to form a new application. The aggregation process

may either be located at the client- (web browser) or the server side (web server).

Existing client side mashup solutions are mostly implemented as browser extensions

[45, 48], extending the browser functionality by custom definable macro commands or

enhancing displayed web pages by interfering in the page rendering process. Server

side mashup implementations are fostered through web application frameworks or tai-

lored products allowing for non programmatic creation of mashup sites [44].

5An online billing service available at http://www.moneybird.nl/help/api
6A finance application providing personal account management available at https://ironmoney.
com/api/documentation/

http://www.moneybird.nl/help/api
https://ironmoney.com/api/documentation/
https://ironmoney.com/api/documentation/

2.3. REST & WS* - Criteria Based Comparison 20

Service Mashups. Benslimane et al. [4] introduce the notion of Service Mashups as

a novel concept for end user service compositions. New challenges arise from the uti-

lization of semantic web technologies (RSS, RDFa, SAWSDL7) for Web service mashup

creation. The authors underpin the necessity of semantic annotations for Web services,

essentially yielded through four dimensions of heterogeneity: "data (input/output), func-

tional (behavioral), nonfunctional(quality of service, policy) and execution (runtime, in-

frastructure, exceptions)". Due to the increasing popularity of RESTful services and Web

APIs compared to traditional WS* based implementations, new solutions for semantic

description of such services such as hRESTS [37] or SA-REST (Semantic Annotations of

RESTful services) [83] will take on greater significance in the future, according to [4].

Workflow Oriented Web service Orchestration

WS-BPEL. The Web Services Business Process Execution Language (WS-BPEL) is a

standardized XML language allowing for the formal specification of abstract and ex-

ecutable business processes [67]. WS* based Web services may be invoked from

within a BPEL process, after linking their WSDL interface description to the process

definition by means of a <partnerLink> element. Particular input-/output-elements

of invoked service operations, being defined in the WSDL description, are accessi-

ble within the process scope and may be stored within process variables by means of

the <assign> / <copy> construct. Structured activity elements allow for the spec-

ification of repetitive (<while>) or conditional (<if>) execution of simple process

activities. BPEL documents are commonly created by means of a visual design tool (for

example [78]), abstracting from the complex XML structure. A process is deployed into

a BPEL engine (for example [33]), that interprets the BPEL description and its associ-

ated WSDL documents, and executes the process on demand.

Windows Workflow Foundation. The Windows Workflow Foundation (WF) pro-

vides an implementation and execution framework [52] for business workflows com-

parable to WS-BPEL. The WF workflow component model comprises a set of simple

and structured activities in order to define the execution structure of a workflow and

allows for the integration of WS* based Web services. A workflow specification may

either be expressed solely by means of the declarative Extensible Application Markup

7http://www.w3.org/2002/ws/sawsdl/

http://www.w3.org/2002/ws/sawsdl/

2.3. REST & WS* - Criteria Based Comparison 21

Language (XAML) or as a combination of an XAML and an associated code behind file

(for example written in C#, Visual Basic). Notably is the extensibility of the WF compo-

nent model, being utilized for the integration of RESTful Web services in WF workflows,

detailed in section 5.3.1 of this thesis.

3. Related Work

In this chapter related work in the field of this thesis will be presented. The introduced

approaches address the issues dealt with in the thesis implementation either directly

(3.1, 3.3) or provide alternative strategies for mashup creation, partly stemming from

the field of theoretical computer science (3.2). A glimpse at current industry imple-

mentations concludes the chapter.

3.1. Workflow Design And Runtime Integration

Workflow design and runtime integration addresses issues of dynamic integration of

RESTful services in a graphical workflow design tool (3.1.1) and their invocation during

execution of a formally described workflow in a workflow runtime.

3.1.1. JOpera for Eclipse

Pautasso et al. propose JOpera for Eclipse , an Eclipse based workflow application

comprising a visual workflow designer and an integrated run time allowing for imme-

diate execution of a workflow. The implementation relies on the JOpera Visual Composi-

tion Language [73], describing a process as a set of directed graphs. Nodes of a graph

represent tasks of a workflow and associated data parameters. Edges represent control

flow or data flow dependencies between tasks. The JOpera process model provides

two abstract representations of a process: the data flow representation describes the

input- and output-parameters of tasks/service invocations within a workflow and their

relationships through data flow bindings; the control flow representation depicts the

tasks of a workflow and its execution structure.

22

3.1. Workflow Design And Runtime Integration 23

Particularly interesting in the field this thesis is the facility for orchestration of RESTful

and WS* based Web services within a JOpera process. The abstraction of service im-

plementation specifics is achieved through so called adapters linking a service compo-

nents with its parent process. The HTTP adapter for integration of RESTful Web services

allows for specifying the core properties of a RESTful service invocation, i. e. request

URI, HTTP header fields and message body elements. Dynamic request elements (for

example process parameters) may be denoted through template expressions.

Figure 3.1.: JOpera Visual Design Surface - Control Flow Representation

While JOpera introduces some promising features for heterogeneous service compo-

sition such as the flexible integration mechanism for RESTful Web services and the

integrated workflow run time for immediate testing of generated workflows the Eclipse

based architecture induces some flaws as well. The viable service adapter compo-

nents providing support for various kinds of service resources are hidden behind the

overly complex standard Eclipse GUI structure making its usage rather unpalatable

especially to non experts. Furthermore the necessity for local installation on a client

computer may detain a user from using the application. Also currently the integration

of formally described (for example by a WADL description) RESTful Web services is

not supported.

3.1. Workflow Design And Runtime Integration 24

3.1.2. Apache ODE

Apache ODE (Orchestration Director Engine) [33] is an open source BPEL engine with

support for RESTful service integration in BPEL processes. The application is imple-

mented in Java and can be deployed either as a JBI [89] service assembly (using for ex-

ample Apache ServiceMix [34] as container) or as Apache Axis2 Web service [32].

Figure 3.2 depicts the application architecture, comprising three core components: the

BPEL Compiler converts BPEL artifacts into an executable representation; execution

tasks such as process instantiation, concurrency management and persistence of exe-

cution state are implemented in the BPEL runtime component; the integration layer ties

ODE to its application container.

Figure 3.2.: ODE Architectural Overview

ODE fully implements the WS-BPEL 2.0 standard [67], RESTful services are integrable

via the WSDL 1.1 HTTP binding. In order to overcome the limitations of WSDL 1.1

regarding the description of RESTful Web services (see 4.2) 4 extensions of its HTTP

binding mechanism are proposed:

3.2. Requirements Driven Mashup Creation 25

• The HTTP verb is pushed down from the binding- to the operation-level, by intro-

ducing an additional element <odex:binding verb="method name"> as

child of the binding operation element.

• The request uri is specified in the address element of a port definition. The

urlReplacement mechanism allowing for definition of dynamic URI components

through template expressions is extended in order to allow for partitioning dy-

namic request elements into request-URI and -body.

• A <header> element as child of a binding level operation definition allows for

mapping operation part names to HTTP request-/response-header fields (e.g.

Authorization).

• In order to enable fault handling a fault element is required within the abstract

(portType) and concrete (binding) parts of an operation definition. The ODE run-

time will then raise an exception if an HTTP error status code is returned from an

invoked service. The exception name is inferred from the XML message payload

of the error response.

Furthermore an extension for RESTful BPEL in ODE is proposed, in order to allow for a

more native integration of RESTful services (see section 3.3.2), however no implemen-

tation exists yet.

3.2. Requirements Driven Mashup Creation

Requirements driven mashup creation denotes a strategy for composing services es-

sentially relying on concepts stemming from the field of theoretical computer science,

such as probabilistic methods, and automated planing techniques. The work presented

in this section is less focused on the technical issues of integrating various service styles

but on the automatic creation of mashups based on user provided criteria.

3.2.1. MashupAdvisor

Elmeleegy et al. propose MashupAdvisor [24], an AI based mashup creation tool, aid-

ing the mashup design process through automated recommendations based on the

3.2. Requirements Driven Mashup Creation 26

given user input and a repository of existing services and mashups matching this in-

put. A typical design process aided by MashupAdvisor comprises three basic steps

that are iteratively repeated in order to create a desired mashup. First a user defines

an input, identified by a name, e. g. email. In basis of the input definition the recom-

mendation process is initiated, yielding a list of recommended outputs that match the

given input. An output can be an existing service, such as WhitePages service, or an

existing mashup stored in the mashup repository. Finally the user chooses an output

from the list, upon which the best plan for linking the selected output with the given

input is computed. The resulting partial mashup can be extended by repeating these

steps iteratively.

The focus in MashupAdvisor is on the automatic composition of services and data

feeds based on statistical and semantic analysis of their formal input-/output-properties.

Though the integration of RESTful services is theoretically supported the technical is-

sues of dynamic service integration and editing of existing mashups are not addressed.

The authors propose the extension of existing editing tools such as Yahoo Pipes [99],

Google Mashup Editor [38] or Microsoft PopFly [51] (see section 3.4) through the rec-

ommendation facilities provided by MashupAdvisor instead.

3.2.2. Wishful Search / MARIO

Wishful Search / MARIO (Mashup Automation with Runtime Orchestration and Invoca-

tion) [79], introduced by Riabov et al., allows for automatic service composition through

iterative specification of desired mashup composition goals. The composition model re-

lies on three abstract concepts:

• Objects, Tags, Taxonomies - resources within a mashup such as services or feeds

are represented as objects described by a set of tags together forming a taxon-

omy. Tags may be hierarchically related - for example GoogleTranslate::Translation.

• Queries - a tag query is the formal specification of a desired composition result -

for example {Translation, English, German}.

• Operators - operators represent the building blocks of a mashup, i. e. the formal

representation of a particular service or a news feed. An operator description

comprises the specification of service variables (for example language) and the

3.3. Native Integration Of REST Semantics In BPEL 27

describing tags partitioned into input- (for example InEnglish) and output-tags

(for example InGerman).

The mashup creation process is then formally described as composition problem com-

prising these three concepts that has to be satisfied by applying a planning algorithm.

For a detailed discussion of the highly formal description of this process the interested

reader may refer to [79].

The tool implementation includes a web based user interface that presents a user with

an input field for interactive specification of composition goals, a graphical represen-

tation of the proposed mashup and an output field displaying the generated mashup

results. As in MashupAdvisor (see 3.2.1) issues specific to concrete service imple-

mentations (RESTful or WS* based) are not further covered by the approach.

3.3. Native Integration Of REST Semantics In BPEL

In this section two approaches for RESTful BPEL, i. e. the native integration of REST se-

mantics in WS-BPEL [67] based process definitions, are introduced. Cesare Pautasso,

also involved in the implementation of JOpera (see section 3.1.1), proposes a set of ele-

ments extending the WS-BPEL standard vocabulary in order to express the invocation

of RESTful services in BPEL based processes. The second presented approach de-

scribes an extension of the aforementioned Apache ODE (see section 3.1.2) project.

3.3.1. BPEL for REST

In order to overcome the limitations of WS-BPEL [67] regarding the integration of REST-

ful Web services Pautasso proposes a set of standard extensions for native integration

of REST semantics in WS-BPEL based processes [72]. Among the mentioned flaws

forming the rationale for the proposed extensions is the tight coupling of WS-BPEL and

WSDL 1.1, providing only rudimentary support for RESTful service description. WSDL

2.0 on the other hand solves the description problem theoretically but is currently only

rarely deployed in real world service implementations and formally not supported by

3.3. Native Integration Of REST Semantics In BPEL 28

the WS-BPEL standard specification. Furthermore the author argues, that REST seman-

tics should not be hidden behind a WSDL description due to the different interaction

models of REST and WS* based services.

The proposed extensions are grouped into three categories:

• Resource Invocation - In order to specify the interaction with a REST resource the

<invoke> element of WS-BPEL is replaced by four elements derived from the

four basic HTTP CRUD method names: <get>, <post>, <put>, <delete>.

The request URI and the optional request-/response-payload are declared by

means of the attributes url, request and response. HTTP Header fields may

be declared within a <head> child element, a <catch> element allows for han-

dling error code conditions.

• Resource Publishing - Resources may be published dynamically upon reaching a

<resource> element during execution of a process. Its child elements <onGet>,

<onPost>, <onPut> and <onDelete> specify request handlers, corresponding

to the request HTTP method, in which arbitrary BPEL structured activities may be

declared. The result data sent back to a client invoking a published resource is

declared within a <respond> element.

• Minor Extensions - All published resources are discarded upon reaching the BPEL

<exit/> activity. The strong typing imposed by the messageType variable at-

tribute of BPEL is relaxed, in favour of optional element and type elements refer-

encing XML schema type declarations of invoked resources.

3.3.2. RESTful BPEL in Apache ODE

Within the Apache ODE project (see section 3.1.2) an extension for RESTful BPEL has

been proposed [35]. The WS-BPEL extension introduces a variant of the <invoke>

activity, including two attributes specific to REST interaction: resource - allows for

identification of an invoked resource via a BPEL variable containing the request URI;

method - defines the HTTP method of the request. Dynamic URI strings may be con-

structed by means of two additional XPath functions, combine-url (combines base-

and relative-URI components URI) and compose-url (allows for building an URI from

template expressions). Moreover a RESTful variant of the WS-BPEL <receive> activity

is proposed, allowing for exposing dynamic process resources.

3.4. Industry Projects 29

3.4. Industry Projects

The integration of RESTful Web services into custom applications is also addressed

by numerous industry projects, some of which will be briefly summarized in this sec-

tion. Among the tools allowing for a workflow oriented aggregation of REST resources

and data feeds are Yahoo Pipes [99] and Microsoft Popfly [51]. Yahoo Pipes comprises

an impressive JavaScript based workflow editor, allowing for integration and manip-

ulation of arbitrary data feeds and other XML based data sources, and an integrated

runtime, immediately presenting a user with the results of a created workflow. The

Silverlight1 based Microsoft Popfly provides a comprehensive web front end with 3D

elements, however its integration facilities for external data sources do not seem to

be very elaborated yet (the application is currently officially considered beta). Very

promising, though not based on the notion of workflow like integration of services, are

Mozilla Ubiquity [48] and Intel Mash Maker [45], allowing for client side creation of

data mashups through extending the browser functionality. Ubiquity allows for defining

custom natural language like instructions, such as translate this page, linking together

arbitrary web resources, such as a news site and a translation service. Mash Maker ex-

tends existing web sites by so called widgets that hook into currently visited web sites.

Such a widget could then display the geographic location of a user’s Facebook friends

within the actual browser tab by interconnecting the Facebook API with the Google

Maps service. Lotus Mashups [44] allows for creation of personalized sites, assembling

various web resources, to be shared within an enterprise environment for example.

1http://silverlight.net/

http://silverlight.net/

4. RESTful Web Service Description

In order to foster the integration facilities for RESTful Web services in workflow applica-

tions, a machine processable service specification entails numerous advantages over

the textual service description provided in many RESTful Web service API documen-

tations. From a user’s point of view the initial barrier for adding a RESTful Web service

in a visual workflow design application is lowered. Due to an abstraction of techni-

cal service specifics, such as the request-/response-serialization rules or the message

payload format, the focus within a workflow design process remains on the functional

integration of a Web service rather than technical issues. As demonstrated in the imple-

mentation of a Web service integration wizard, detailed in chapter 6 of this thesis, the

formal enumeration of Web service parameters also allows for data binding between

respective Web service components of a workflow.

This chapter provides an investigation of current description standards, allowing for

formal specification of RESTful Web services. The concepts introduced in detail are :

• WADL (Web Application Description Language) - A light weight description lan-

guage, aligned with the resource orientation principle of REST and intended

solely for the specification of RESTful Web services.

• WSDL (Web Services Description Language) 1.1 - The de facto description stan-

dard for WS* based Web services, including rudimentary support for specifica-

tion of RESTful Web service characteristics.

• WSDL 2.0 - The rarely deployed follow-up specification to WSDL 1.1, comprising

many elements required for RESTful Web service description.

The introduction of the respective language concepts is complemented by a descrip-

tion of two real world Web service operations, taken from the social bookmark system

Bibsonomy [91]. The complete description documents, based on the textual descrip-

tion provided in the API documentation, have been created in order to gain a deeper

30

4.1. Describing a RESTful Web Service in WADL 31

understanding of the language specifications, in the course of writing the thesis. To

complete the picture, the chapter concludes with a summary of various alternative at-

tempts, dealing with particular issues of RESTful Web service description.

4.1. Describing a RESTful Web Service in WADL

WADL (Web Application Description Language) [42], is an XML description language

for web resources, first introduced by Marc Hadley[40] in a blog entry in 2005. Hadley

is Senior Staff Engineer at Sun Microsystems and is working among others on JSR 311,

the Java API for development of RESTful Web services, better known as JAX-RS [56].

WADL provides an XML vocabulary for hierarchical description of resources and their

request-/response-behavior. The original motivation for its specification was to pro-

vide a machine processable description format for RESTful Web services comparable

to WSDL. Though still not being wide spread in mainstream web APIs today, WADL is

one of the most promising approaches to solve the REST description problem. It facil-

itates many of the attributes indispensable to complete RESTful Web service descrip-

tion and is well supported by tools compared to other description approaches [65].

In the reference implementation for JAX-RS, Jersey [55], WADL is integrated by auto-

matic generation of WADL descriptions for deployed resources [54]. Rest Describe &

Compile is a WADL based open source project by Google Software Engineer Thomas

Steiner [87]. Parts of the library implementation, detailed in section 5, are based on its

WADL generation algorithm.

4.1.1. WADL Exemplified - The Bibsonomy Example

Accompanied by a description of two Web service operations provided by the Bibson-

omy API [91], the potentialities of WADL for detailed request-/response-specification of

a RESTful Web service are elucidated. Bibsonomy is a web scale social bookmarking

service, allowing for saving web URIs and literature lists on a central server. Bookmarks

may be enhanced by descriptive tags and published among the user community. The

functionality of the chosen operations, Get Posts by a User and Create Post is depicted

4.1. Describing a RESTful Web Service in WADL 32

in figure 4.1. A Get Posts request is invoked via HTTP GET , passing the user name, as-

sociated tags and the resource type (bookmark or bibtex). The list of resources match-

ing the request are returned within an XML document. In order to save a bookmark

by means of the Create Post operation, an HTTP POST request is required, passing the

XML formatted resource (bookmark or bibtex) in the request body.

Bookmarks Resource

Bookmark 1

GET /api/posts?user=bruckner&tags=workflow&resourcetype=bookmark

HTTP 200

<bibsonomy>

 <posts>

 <post description="interesting project"

postingdate="2009-22-04">

 <user name="bruckner"/>

 <tag name="workflow"/>

 <tag name="rest"/>

 <bookmark url="http://expressflow.com"/>

 </post>

 </posts>

</bibsonomy>

POST /api/users/bruckner/posts

<bibsonomy>

 <post description="interesting project"

postingdate="2009-22-04">

 <user name="bruckner"/>

 <tag name="workflow"/>

 <tag name="rest"/>

 <bookmark url="http://expressflow.com"/>

 </post>

</bibsonomy>

HTTP 200

Figure 4.1.: Bibsonomy API - Get Posts and Create Post

The subsequently used language constructs are excerpted from the full Web service

description, to be found in appendix A of the thesis. Namespace declarations and

prefixes have been omitted for better readability.

Schema Import

<a p p l i c a t i o n >
<grammars>

<inc lude h r e f =" h t t p : / / www. bibsonomy . org / help / doc / xmlschema . xsd " / >
</grammars>

Listing 4.1: WADL Application and Grammar Definition

4.1. Describing a RESTful Web Service in WADL 33

Succeeding an application element, forming the root of each WADL specification,

an XML schema document, describing the exchanged data is referenced via include.

WADL does not restrict the format of this definition, although it is very common in many

API documentations. This schema definition for exchanged XML data can be compared

to the declaration of message types in WSDL. Elements defined within a schema spec-

ification can subsequently be referenced throughout a WADL description (see section

4.1.1 for an example).

Resource Definition

<resources base =" h t t p : / / www. bibsonomy . org / " >
<resource path =" api " >

<resource path =" pos ts " >
</ resource >
<resource path =" users / { username } / pos ts " / >

</ resources >

Listing 4.2: Resource Definition

The resources element forms the root of a hierarchically organized set of resources.

Its base attribute usually marks a server address preceding all subsequent resource

URIs. Subsequent URI parts are defined in the path attribute of a resource element.

The resource node with path="api" followed by a child resource with path="posts"

is concatenated to api/posts in the final URI. This could represent the file system

structure of a web server as well as a URI template declared in a WCF REST service

[31]. Values of path may also contain slashes, so that the api/posts path could

equivalently be declared within a single resource element. The hierarchical structure

allows for efficient and easy processable declaration of arbitrary sets of resources. Its

generation is described in section 2.5.1 of the WADL specification. The according

resource URI for the Get Posts operation is http://www.bibsonomy.org/api/posts.

The URI path for a Create Post operation is defined within a single resource element.

Notable is the usage of an embedded template parameter [47] username en-

closed by curly brackets "{}". The actual value of the parameter is inserted at runtime

upon performing a request on the resource. The hierarchical resource description as

demonstrated for Get Posts is now replaced by a flat definition.

4.1. Describing a RESTful Web Service in WADL 34

Request Definition

<!−− Get Pos t s Request−−>
<method name="GET" >

<request >
<param name=" user " type =" xsd : s t r i n g " s t y l e =" query " / >
<param name=" tags " type =" xsd : s t r i n g " s t y l e =" query " / >
<param name=" resourcetype " type =" xsd : s t r i n g "
s t y l e =" query " / >

</ request >
</method>
<!−−Create Pos t Request−−>
<method name="POST" >

<request >
<r e p r e s e n t a t i o n mediaType=" a p p l i c a t i o n / xml "

element =" bib : post " / >
</ request >

</method>

Listing 4.3: Request Definition

Method denotes the HTTP method to be used on performing a request on a resource

followed by the parameter definition through param elements. Used attributes are

name (required), style (optional) and type (optional). Style distinguishes differ-

ent parameter styles allowing for the definition of a query string parameter or a HTTP

header field. Amazon’s Simple Storage Service, S3 utilizes the Authentication

header to pass authentication information. The Accept header could indicate the ex-

pected data format for a request.

Concatenated to the resource definition the complete query string for the Get Posts

operation is now http://www.bibsonomy.org/api/posts?user=<user>&tags=<tags>

&resourcetype=<resourcetype>.

A Create Post operation expects XML formatted input, indicated by the mediaType

attribute value of its representation definition. The element attribute value refer-

ences an element post, declared in the included XML schema definition(see section

4.1.1).

4.1. Describing a RESTful Web Service in WADL 35

Response

<!−−Get Pos t s Response−−>
<response>

<r e p r e s e n t a t i o n mediaType=" a p p l i c a t i o n / xml "
element =" bibsonomy" >
<param name=" pos tda te " s t y l e =" p l a i n "

path = " / bibsonomy / pos ts / post / @post ingdate " / >
</ r e p r e s e n t a t i o n >

< f a u l t s t a t u s ="400" mediaType=" a p p l i c a t i o n / xml "
element =" bibsonomy" >
<param name=" statusName " s t y l e =" p l a i n "

path = " / bibsonomy / @s ta t " / >
</ f a u l t >

</ response>
<!−−Create Pos t Response−−>
<response>

<r e p r e s e n t a t i o n mediaType=" a p p i c a t i o n / xml "
s t a t u s ="201" / >

</ response>

Listing 4.4: Response definition

Enclosed by a response element the resource representation returned on per-

forming the request is defined. The mediaType attribute indicates an XML document

with a root element bibsonomy. Param denotes a particular element within the re-

sult. Its path attribute contains an XPath expression yielding an element’s value. This

explicit element specification eases the selection of desired result elements in visual

workflow design, preventing a user from manually typing XPath expressions.

A fault element indicates possible invocation errors where the value of the status

attribute defines the HTTP error code. A param element denotes a single result node

within the XML payload identical to the definition of result nodes in the representation.

For a Create Post response a generic XML document (mediaType="applica

tion/xml") with an associated HTTP status code of 201 is specified.

4.1. Describing a RESTful Web Service in WADL 36

4.1.2. Strengths and Limitations

WADL allows for detailed specification of the interaction behavior of almost arbitrary

web resources. The description format closely follows the semantics of REST while

being highly flexible and easy processable. In respect of a workflow integration of

web resources described through WADL the exact specification of input- and output-

parameters including their primitive types and the declaration of particular XML result

elements via XPath expressions are among the most viable benefits of the description

language.

In his release statement of the current version Hadley mentions two issues he consid-

ers important in future versions. One is the declaration of authentication mechanisms,

which is currently completely disregarded. Due to a high diversity of techniques in ac-

tual REST APIs going beyond easy describable basic HTTP authentication the author

believes that more research on this topic will be necessary. The second issue men-

tioned is an improved support for specific data formats, as for example JSON. Consid-

ering the integration of XML schema definitions and the specification of single output

elements via XPath expressions are especially relevant to successful service integra-

tion, these functionalities would assuredly be desirable for JSON too, being the standard

data format in many main stream service implementations today.

Though generative URIs not fully known until runtime are supported by denoting pa-

rameter names with curly braces 1, dynamic URIs being generated at runtime can be

viewed as a flaw in the static resource description concept of WADL. A resource URI

created during execution of a workflow through a HTTP PUT for instance cannot be

known in advance to be included in a WADL description. Hence further references

to such a resource within the workflow would have to be specified manually during

workflow design. A promising approach addressing this issue is the dynamic WADL

mechanism introduced in the latest release of Jersey [41].

Another issue associated with the description of fixed resources is yielded by the con-

cept of virtual URI names, utilized for example in the Amazon Simple Storage Service,

S32. In S3 a virtual URI, requiring a unique base URI component (http://bruckner.s3.am-

azonaws.com) unambiguously defines a bucket providing a data storage location. In

1refer to section 2.5.1 in the WADL specification [42] for examples
2https://s3.amazonaws.com/

https://s3.amazonaws.com/

4.1. Describing a RESTful Web Service in WADL 37

order to provide a WADL specification of the service, a custom description would have

to be generated for each individual bucket.

4.1.3. Workflow Integration Support

Having now exemplified WADL’s opportunities for exact description of RESTful Web

services, its benefits for workflow integration remain to be clarified. In debates 3 on

the necessity of description languages for REST considerations on improved workflow

integration capabilities facilitated by a RESTful service description are rather rare. A

consensus among REST advocates is to retain the light weight character of REST in

favour of a set of description standards comparable to the WS* stack. The header of

W3C’s mailing list on the topic4 states that REST description shall in contradiction to

WSDL not be aimed at the description of Web services unlike Marc Hadley’s original

description of WADL in his introductory web log entry [40]:

WADL is designed to provide a simple alternative to WSDL for use with

XML/HTTP Web applications.

However it is clear that the formal service description provided by WADL can be a

viable foundation for its initial workflow integration. Though currently no standardized

workflow description language allowing for native integration of WADL exists we be-

lieve that especially for resource interactions requiring a more complex description

than a GET request, a POST request carrying an XML message payload for example,

a formal description is indispensable. In our implementation (5) we show how Win-

dows Workflow Foundation (WF)- components are automatically generated based on

arbitrary WADL descriptions. Though this injective integration process omits the ini-

tial WADL description in the final workflow, as service attributes are translated into C#

source code, it eases workflow design considerably. Without a service description the

integration of RESTful services in WF would require programming skills, as currently

no support for direct REST integration comparable to WS* is provided.

In the service integration wizard of the expressFlow, described in section 6.2 WADL

plays a vital role as well. The resource definitions of a WADL document are parsed dy-

namically in order to be presented in a selection list of available request URIs. The ex-

3http://www.infoq.com/news/2007/06/rest-description-language
4http://lists.w3.org/Archives/Public/public-web-http-desc/

http://www.infoq.com/news/2007/06/rest-description-language
http://lists.w3.org/Archives/Public/public-web-http-desc/

4.2. Describing a RESTful Web Service in WSDL 1.1 38

act specification of input parameters and their according type definitions contained in

a WADL description allow for the data binding specification between various services

invoked within a workflow. Input parameters are presented equivalently to WSDL mes-

sage type elements abstracting from the different description standards for RESTful and

WS* based Web services. An output element of a WSDL based Amazon item search

request could be bound to the input text parameter of a Google Translate service re-

quest described in a WADL document for example. The parameter type definitions of

a WADL resource description may be utilized for design time validation of parameter

compatibility in future versions of the wizard implementation. In custom WF activities

for RESTful service invocation, detailed in section 5.3, parameter type validation is fa-

cilitated through the strongly typed Dependency Properties (see section 5.3.1).

4.2. Describing a RESTful Web Service in WSDL 1.1

The Web Service Description Language (WSDL) provides a standard XML format for

syntactical description of Web services. It was developed by Microsoft, IBM and Ariba

and submitted to the World Wide Web Consortium (W3C) in 2001. Despite the fact

that its by far most popular version 1.1 is still not considered an official W3C standard

but a note mainly released for discussion purposes (as stated in [16]) it has evolved

to a major foundation in SOA implementations, with a broad tooling and programming

language support.

In this section the capabilities of WSDL 1.1 for description of RESTful Web services

will be detailed preceded by a brief summary of its basic document structure. In the

subsequent section the revised facilities for RESTful service description introduced in

WSDL 2.0 will be outlined. The introduction of the according language elements is

accompanied by excerpts of the example Bibsonomy service description.

4.2.1. WSDL 1.1 Document Structure

WSDL 1.1 defines five basic elements, conceptually grouped into an abstract (types,

message, portType) and a concrete (binding, service) part:

4.2. Describing a RESTful Web Service in WSDL 1.1 39

• <types> : Encloses the type description of parts (parameters) of the exchanged

messages. Typically XML schema is used as description format, as it is also

marked as preferred in the W3C recommendation. While it provides a very flex-

ible and powerful mechanism for description of almost arbitrary data structures,

its parsing can be cumbersome as the experience during the implementation of

a WSDL parsing component for expressFlow showed. Other type definition sys-

tems may be included via extensibility elements.

• <message> : Here the signature of input-/output-messages is defined via mes-

sage part elements. A part type can either be declared directly as simple XML

schema type (xsd:int, xsd:string,..) via a type attribute or reference an element

definition within the types section of the document. While the specification pro-

vides a high degree of flexibility in this part, it also increases the complexity of

automatic parsing and mapping the provided information to other description for-

mats such as WADL (see section 6.2.4).

• <portType> : PortTypes define sets of abstract operation definitions, i. e.

the named methods provided by a service and their associated input-/output-

messages. Fault messages can also be declared here, commonly being trans-

lated to runtime exception definitions by WSDL tool kits.

• <binding> : Binding defines the format and transport protocol of exchanged

data for a certain portType. Mostly SOAP over HTTP is used, defined via a child

element <soap:binding> with a transport attribute value of

http://schemas.xmlsoap.org/soap/http. For RESTful Web service de-

scription the HTTP binding 5, examined in section 4.2.2, is particularly important.

• <service> : A service aggregates a binding and a communication end-

point into a port definition.

A common practice is to depict the separation of abstract and concrete elements in the

file structure of a WSDL description. The WSDL document is partitioned into two files,

where the abstract document is imported in the concrete document.

The overall structure of WSDL seems to be overly complex at first sight due to its struc-

ture aimed at decoupling and high reuseability of its components. The separation of

abstract operation definitions in a portType and its concrete protocol bindings aims at

5http://www.w3.org/TR/wsdl#_http

http://www.w3.org/TR/wsdl#_http

4.2. Describing a RESTful Web Service in WSDL 1.1 40

<types>

<message>
<portType>

<operation>
u

s
e

s

includes

<binding>

D
e

fi
n

e
s

P
ro

to
c
o

l

<service>

<port>
Defines

network address

a
b

s
tr

a
c
t

c
o

n
c
re

te

Figure 4.2.: WSDL 1.1 Basic Elements

providing a means for defining multiple message transport protocols as for example

HTTP and SMTP. The decoupling of messages from their associated operations allows

for their reuse among multiple operations of a service interface. In fact this results in

highly complex service descriptions being completely unreadable to human users and

causing difficulties in WSDL tool implementations. During implementation of a WSDL

processing component for this thesis the 4 mega bytes ebay WSDL document induced

message buffer overflows at various points of the application regularly.

4.2.2. WSDL 1.1 HTTP Binding Exemplified

In this section the capabilities for RESTful service description provided by the WSDL

1.1 HTTP binding specification will be clarified on the basis of the Bibsonomy example,

introduced in section 4.1.1.

4.2. Describing a RESTful Web Service in WSDL 1.1 41

Types Definition

<types >
<xs : schema targetNamespace =" h t t p : / / example . org / Bibsonomy /WSDL2.0" >

<xs : inc lude schemaLocation=
" h t t p : / / www. bibsonomy . org / help / doc / xmlschema . xsd " / >

</ xs : schema>
</ types >

Listing 4.5: Extract Bibsonomy Types Definition

Type definitions for messages exchanged during interaction with the service are en-

closed by the types element. In order to allow for the specification of XML message

payloads as for example a bookmark element formatted in XML, the Bibsonomy XML

schema definition is imported via an XML schema include statement. This results in a

more compact description compared to an inline definition of message types.

Message Definition

<message name=" GetA l lPos tsReques t " >
<p a r t name=" user " type =" xsd : s t r i n g " / >
<p a r t name=" tags " type =" xsd : s t r i n g " / >
<p a r t name=" resourcetype " type =" xsd : s t r i n g " / >

</message>

<message name=" GetAl lPostsResponse " >
<p a r t name=" pos ts " type =" t n s : pos ts " / >

</message>

Listing 4.6: Bibsonomy Message Definition

A Get Posts request requires three input parameters represented by according message

part elements defined in the GetAllPostsRequest message. The message definition

does not contain declarations specific to the HTTP request, as for example the parame-

ter syntax, keeping the WSDL description generic in this part. All HTTP-/REST-specific

definitions are included within the binding and service definitions.

In the GetAllPostsResponse message, returning an XML formatted lists of posts match-

ing the request, a single part element references the posts XML element defined in

the imported XML schema document.

4.2. Describing a RESTful Web Service in WSDL 1.1 42

The definition of associated portType definitions can be found in the complete WSDL

1.1 document in Appendix B.

Binding and Service Definition

<serv ice name=" BibsonomyPostsService " >
<por t name=" BibsonomyGetPostsPort "

binding =" t n s : BibsonomyGetPostsBinding " >
< h t t p : address l o c a t i o n =" h t t p : / / bibsonomy . org " / >

</ port >
. . .

</ service >

<binding name=" BibsonomyGetPostsBinding " type =" t n s : P o s t s P o r t " >
< h t t p : binding verb ="GET" / >
<opera t ion name=" G e t A l l P o s t s " >

< h t t p : opera t ion l o c a t i o n =" pos ts " / >
<input >

< h t t p : urlEncoded / >
</ input >
<output >

<mime : c on te n t type =" t e x t / xml " / >
</ output >

</ operat ion >
</ binding >

Listing 4.7: Bibsonomy Binding and Service Definition

The location attribute of the http:address element contained in a port definition

defines the base component of a service URI, comparable to resources base in a

WADL description. Its value is prepended to the location value of an http:opera-

tion element in the binding. The complete request URI minus input parameters for

a GetPosts request is now http://bibsonomy.org/posts.

In order to complete the request definition finally its input parameter syntax has to

specified. The WSDL HTTP binding provides two alternative mechanisms for this task:

• http:urlEncoded specifies the encoding of all message parts either into the

query string or into the body of a POST message. This definition is mutually ex-

clusive, meaning that parts of a single message cannot be separated into query

4.2. Describing a RESTful Web Service in WSDL 1.1 43

string and body parts - see section 4.2.3 for a more detailed discussion. The syn-

tax of a final URI follows the standard name1=value1&name2=value2 convention.

A "?" character prefixes the parameter enumeration by default.

• http:urlReplacement allows for the definition of URI patterns within a HTTP

request. Message parts are defined using their names as defined in the message

definition enclosed by parenthesis "()". The search patterns are included within

the relative URI part, defined in the location attribute of http:operation, as for

example location="api/posts/(user)". This limits the flexibility of the mechanism

in respect of POST / PUT support, where dynamic request elements would have

to be included in the request body as well. However adhering to the URI template

principle [47] the mechanism supports meaningful resource URIs (http://endpoint-

.uri/posts/johnsmith/) and provides syntactical alternatives to the syntax conven-

tion of urlEncoded requests.

In the example http:urlEncoded is used enclosed by an input element within the

operation definition of the binding. The resulting request URI is http://www.bibson-

omy.org/api/posts?user=<user>&tags=<tags>&resourcetype=<resourcetype>.

The output format is defined as plain XML via the type attribute <mime:content>.

For messages containing more than one output part the format of each part has to be

declared separately using a <mime:content> element with a part attribute refer-

encing the message part name.

The appropriate HTTP method is defined in the <http:binding> element via the

verb attribute. Though its value is formally not restricted to GET and POST 6, the

specification title ("HTTP GET & POST Binding") and the limitations mentioned in the

subsequent section show that the HTTP binding mechanism is in fact limited to only a

small subset of possible HTTP GET and POST based resource interaction scenarios.

4.2.3. WSDL 1.1 HTTP Binding Limitations

1. Supported HTTP methods - The limitation of supported HTTP methods to GET

and POST is one of the major drawbacks of the HTTP binding concept in WSDL

1.1. In order to support the uniform interface principle of REST at least PUT and

6http://www.w3.org/TR/wsdl#_http:binding

http://www.w3.org/TR/wsdl#_http:binding

4.2. Describing a RESTful Web Service in WSDL 1.1 44

DELETE would have to be supported as well, however requiring more flexible

mechanisms for request syntax specification.

2. Missing Support for HTTP Header Specification - Another vital REST service char-

acteristic omitted in the WSDL 1.1 HTTP binding is the HTTP header. Standard-

ized HTTP header fields, allowing for example passing authentication information

(Authorization) or the specification of a desired response format (Accept) cannot

be specified.

3. Missing Fault Declaration Support - The specification considers fault declaration

only for operations with a SOAP binding. In the HTTP binding a fault declaration

concept allowing for mapping HTTP status codes and optional XML payloads to

invocation error conditions is completely omitted. In the HTTP binding extensions

of Apache ODE, an open source BPEL engine implementation with basic support

for RESTful service invocation, a solution mainly based on the XML content of an

error response [33] is proposed. However processing of the HTTP status code is

also neglected there.

4. Binding Level Method Specification - The HTTP method for an operation is defined

at the top level of a binding definition, permitting only one method per binding.

This leads to considerable overhead in cases where multiple HTTP methods are

allowed for one single resource. For each method associated with this resource

a separate binding would have to be defined. A preferable alternative would be

the integration of the HTTP method into the operation definition of a binding, as

demonstrated in the following example:

<binding name=" BibsonomyPostsBinding " type =" t n s : P o s t s P o r t " >
<opera t ion name=" CreatePost " >

< h t t p : binding verb ="POST" / >
< h t t p : opera t ion l o c a t i o n =" pos ts " / >

</ operat ion >
<opera t ion name=" Dele tePos t " >

< h t t p : binding verb ="DELETE" / >
< h t t p : opera t ion l o c a t i o n =" pos ts / (post ID) " / >

</ operat ion >
</ binding >

Listing 4.8: Defining the HTTP Method at Operation Level

4.3. Describing a RESTful Web Service in WSDL 2.0 45

4.3. Describing a RESTful Web Service in WSDL 2.0

4.3.1. Document Structure - Changes from WSDL 1.1

Subsequently the major changes in the basic document structure of WSDL 2.0 from

WSDL 1.1 will be elucidated preceding a detailed view on its improved HTTP binding

mechanism. A good starting point into the complete specification is the primer [8],

offering a less formal and better exemplified standard description compared to the

core and adjuncts part. However the creation of a complete WSDL 2.0 description for

the aforementioned Bibsonomy example a deeper look into the adjuncts part [13] of

the specification was required as well.

• The root element name of a WSDL 2.0 document is <description>. It includes

a mandatory targetNamespace attribute, comparable to an XML schema tar-

getNamespace. All definitions contained in a WSDL 2.0 description, such as

interface- , binding- and service- definitions are associated with this namespace.

The import- and inheritance- facilities, permitting linkage of multiple WSDL doc-

uments and referencing of abstract interface definitions constitute the necessity

of a targetNamespace declaration. Its recommended value is a URI identifying

the address of the document.

• A simplification compared to WSDL 1.1 is the omittance of the <message> el-

ement. Data types of exchanged messages are still described via XML schema

but can now be referenced directly from within an operation declaration. Thus the

reuse effect of type definitions is retained while gaining a more compact descrip-

tion.

• The <portType> element is renamed to <interface>. The interface mech-

anism allows for inheritance via an extends attribute. The declaration of opera-

tion faults has been shifted one level up to the interface level, allowing for reuse

of fault definitions across the operations of an interface. Combined with the in-

heritance mechanism this can for example be utilised for describing an interface

containing common fault declarations to be extended by subsequent interface

definitions within the description, as illustrated in the following example taken

from the WSDL 2.0 Primer [8]:

4.3. Describing a RESTful Web Service in WSDL 2.0 46

< i n t e r f a c e name=" c r e d i t C a r d F a u l t s " >
< f a u l t name=" cancel ledCredi tCard "

element =" cc : CancelledCreditCard " / >
< f a u l t name=" expiredCreditCard "

element =" cc : ExpiredCreditCard " / >
</ i n t e r f a c e >

< i n t e r f a c e name=" r e s e r v a t i o n " extends =" t n s : c r e d i t C a r d F a u l t s " >
<opera t ion name=" makeReservation " > . . . < / operat ion >

< o u t f a u l t r e f =" t n s : cancel ledCredi tCard " messageLabel =" Out " / >
< o u t f a u l t r e f =" t n s : expiredCreditCard " messageLabel =" Out " / >

</ i n t e r f a c e >

Listing 4.9: Utilization of the inheritance concept for abstract fault declarations

• A <binding> element may be implicitly declared reusable by omitting a ref-

erence to a particular interface. A reusable binding is then associated with an

interface in the <service> element, grouping a binding and an according in-

terface into an <endpoint>. The latter replaces the <port> element of WSDL

1.1.

<types>

<binding>

D
e

fi
n

e
s

P
ro

to
c
o

l

a
b

s
tr

a
c
t

c
o

n
c
re

te
<interface>

<operation>

<service>

<endpoint>
Defines

network address

uses

Figure 4.3.: WSDL 2.0 Basic Elements

4.3. Describing a RESTful Web Service in WSDL 2.0 47

4.3.2. WSDL 2.0 HTTP Binding Exemplified

As in preceding sections the introduction of WSDL 2.0 and its HTTP binding mechanism

is accompanied by excerpts from the complete service description, to be found in

Appendix C of this thesis.

Types Definition

<types >
<xs : schema targetNamespace =" h t t p : / / example . org / Bibsonomy /WSDL2.0" >

<xs : inc lude
schemaLocation =" h t t p : / / www. bibsonomy . org / help / doc / xmlschema . xsd " / >

<xs : element name=" userPos ts " type =" t G e t P o s t s I n " / >

<xs : complexType name=" t G e t P o s t s I n " >
<xs : sequence>

<xs : element name=" user " type =" xsd : s t r i n g " / >
<xs : element name=" tags " type =" xsd : s t r i n g " / >
<xs : element name=" resourcetype " type =" xsd : s t r i n g " / >

</ xs : sequence>
</ xs : complexType>

</ types >

Listing 4.10: WSDL 2.0 Types Definition

The types definition mechanism in WSDL 2.0 has not changed from WSDL 1.1 syntac-

tically, but is now the core location for message type declaration. Due to an omis-

sion of the message construct input and output message details are fully declared

within the types section. The schema import mechanism, being now explicitly de-

scribed in the WSDL 2.0 specification, prescribes the declaration of a schema with a

targetNamespace declaration, for import of schemas missing this attribute. Hence

a schema element is defined inside the types declaration, where the referenced Bib-

sonomy schema is integrated via an include element. The use of include instead

of import makes an element declared in the imported schema available for reference

using its q-name7.

7A very detailed yet understandable explanation is given in the WSDL 2.0 Primer: http://www.w3.
org/TR/wsdl20-primer/#more-types-schema-import

http://www.w3.org/TR/wsdl20-primer/#more-types-schema-import
http://www.w3.org/TR/wsdl20-primer/#more-types-schema-import

4.3. Describing a RESTful Web Service in WSDL 2.0 48

The userPosts element specifies the input message type for the getPosts operation.

According to the specification a message type has to be declared as single element

with an arbitrary8 substructure. The type attribute references a complexType with

a sequence enumerating the query parameters of the operation. HTTP serialization

rules, defining whether input message parts are contained in the query string, or the

message body for instance, are specified in the bindings section (see section 4.3.2).

Interface and Operation Definition

< i n t e r f a c e name=" P o s t s I n t e r f a c e " >

< f a u l t name=" unauthor izedRequest " / >
< f a u l t name=" badRequest " / >

<opera t ion name=" G e t A l l P o s t s "
p a t t e r n =" h t t p : / / www. w3 . org / ns / wsdl / in−out "
s t y l e =" h t t p : / / www. w3 . org / ns / wsdl / s t y l e / i r i "
wsdlx : s a f e =" t r u e " >

<i n p u t messageLabel =" i n "
element =" t n s : userPos ts " / >

<outpu t messageLabel =" out "
element =" t n s : pos ts " / >

< o u t f a u l t r e f =" t n s : badRequest " messageLabel =" out " / >
< o u t f a u l t r e f =" t n s : unauthor izedRequest " messageLabel =" out " / >

</ operat ion >
</ i n t e r f a c e >

Listing 4.11: WSDL 2.0 Interface and Operation Definition

The interface element provides an abstract specification of the operations provided

by a service. Apart from its name change it differentiates from the portTypes con-

cept of WSDL 1.1 by introducing interface inheritance. Via the extends attribute an

interface may be derived from other interfaces.

The GetAllPosts operation introduces new operation attributes, two of which are partic-

ularly important for services with a HTTP binding. The first one is the style attribute

8Though the type is claimed to be arbitrary in the Primer, the element structure partly depends on the
style attribute value of its referencing operation (see 4.3.2)

4.3. Describing a RESTful Web Service in WSDL 2.0 49

indicating an Internationalized Resource Identifier(IRI) style, basically defining the fol-

lowing restrictions9 for the XML schema representation of operation parameters:

• The element referenced in an operation must be a single schema element (i. e.

userPosts).

• This element is defined as a complex type including a sequence. No other struc-

ture elements such as xs:choice are allowed.

• Elements of this sequence are local elements with a simple type (for example

xs:string, xs:int).

Due to these declaration restrictions the serialization of input parameters into an ac-

cording request URI string is ensured. A sequence of simple elements can be mapped

to a query string unambiguously, as discussed more detailed in section 4.3.2.

The second operation attribute important to RESTful service description is wsdlx:safe.

An operation denoted as safe can essentially be characterized through not entailing any

obligations to a client invoking this operation. For a REST architecture this implies an

HTTP request not causing a change to a resource’s state. Most likely this will be a GET

request, as in our example, though the HTTP method name is not restricted by the

concept [46].

In the pattern attribute of an operation element a message exchange pattern is ex-

plicitly set. WSDL 2.0 provides eight predefined patterns and allows for the definition

of new patterns, identified by a unique URI.

A conceptual improvement from WSDL 1.1 is the dissociation of fault declarations

from operations, providing their reuse throughout multiple operations of an interface.

Operation faults are declared abstract and referenced within infault or outfault

elements of an operation declaration. The interface binding (see section 4.3.2) de-

scribes protocol specifics of a fault, such as the status code of an HTTP response mes-

sage.

9The trivial requirements as defined in the specification are left out for brevity. Refer to the adjuncts
for a complete list: (http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626/#_
operation_iri_style)

http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626/#_operation_iri_style
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626/#_operation_iri_style

4.3. Describing a RESTful Web Service in WSDL 2.0 50

HTTP Binding and Endpoint Definition

<binding name=" Pos t sB ind i ng "
type =" h t t p : / / www. w3 . org / ns / wsdl / h t t p "
i n t e r f a c e =" t n s : P o s t s I n t e r f a c e "
whttp : methodDefaul t ="GET"
whttp : queryParameterSeparatorDefau l t ="&">

< f a u l t r e f =" t n s : badRequest " whttp : code ="400" / >
< f a u l t r e f =" t n s : unauthor izedRequest " whttp : code ="401" / >

<opera t ion r e f =" t n s : G e t A l l P o s t s "
whttp : i n p u t S e r i a l i z a t i o n =" a p p l i c a t i o n / x−www−form−urlencoded "
whttp : l o c a t i o n = " / api / pos ts / { userPos ts } " / >

<opera t ion r e f =" t n s : CreatePost "
whttp : i n p u t S e r i a l i z a t i o n =" m u l t i p a r t / form−data "
whttp : method="POST " whttp : l o c a t i o n = " / api / users / { user / } / pos ts " / >

</ binding >

<serv ice name=" Pos t sServ ice "
i n t e r f a c e =" t n s : P o s t s I n t e r f a c e " >

<endpoint name=" Pos tsEndpoin t "
binding =" t n s : Pos t sB ind in g "
address =" h t t p : / / www. bibsonomy . org "
whttp : au thent ica t ionScheme =" bas ic "
whttp : a u t h e n t i c a t i o n R e a l m =" BibSonomyWebService " / >

</ service >

Listing 4.12: WSDL 2.0 HTTP Binding

Apart from the style- and safe-attributes of the operation definition the service descrip-

tion does not contain REST specific elements so far. All definitions specific to RESTful

interaction description go into the HTTP binding and its associated endpoint definition.

As subsequently demonstrated, WSDL 2.0 is syntactically sufficient for technical de-

scription of all characteristics of the Bibsonomy API, including the authentication spec-

ification.

The binding type is set in the type attribute of the binding element. Its attributes

methodDefault and queryParameterSeparatorDefault specify default prop-

erties affecting all operations of an interface associated with the binding. These default

4.3. Describing a RESTful Web Service in WSDL 2.0 51

rules may be overridden in particular operation definitions, as in the CreatePost oper-

ation, where POST is defined as HTTP method instead of GET.

A fault element specifies according HTTP status codes for the abstract error defini-

tions introduced in the interface definition.

The definition concept for input serialization of HTTP requests has improved signifi-

cantly from WSDL 1.1. It allows among others for partitioning input message elements

into URI string and body components. The language elements required for exact spec-

ification of request URI and message body format are:

• The optional style attribute of an interface level operation definition, putting

syntactical restrictions on the XML schema representation of an input message.

This implicitly affects the request format, as for example a value of style/iri is re-

quired for serialization of input message elements into query string parameters.

• QueryParameterSeparator defines the separation character for query pa-

rameter enumerations of a query string or an application/x-www-form-urlencoded

message body. Most commonly a "&" character is used.

• The inputSerialization attribute, indicating the serialization data format of

a request. The attribute value multipart/form-data, used in the CreatePost opera-

tion definition, indicates an XML formatted input message body.

• The location attribute of an operation allows for a detailed syntactical descrip-

tion of the request URI. Dynamic URI components are denoted by curly braces

"{}" and are replaced with instance data at run time. A viable improvement from

WSDL 1.1 is the optional partition of request parameters into the query string

and the message body: If the name of a template parameter is prepended with

a "/", for example {user/}, all succeeding parameter values are serialized into the

message body10.

All remaining service properties are specified within the endpoint element. The

address element defines a base address component prepended to all operation lo-

cations. The attributes authenticationScheme and authenticationRealm are

used to declare a basic HTTP authentication mechanism.

10http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/#more-bindings-http

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/#more-bindings-http

4.3. Describing a RESTful Web Service in WSDL 2.0 52

4.3.3. Description Capabilities and Workflow Integration

Improved Description Concepts. As compared to the specification facilities for

RESTful Web services provided by the HTTP binding concept of WSDL 1.1, the range

of supported REST characteristics has widened significantly in WSDL 2.0. Among the

notably conceptual improvements are the operation attributes style, allowing for a for-

mal mapping of the XML schema type definitions to the request serialization of an HTTP

request, and the safe attribute. The explicit designation of safe operations through the

latter attribute could be utilized in static workflow analysis, in order to reveal design

flaws caused be repetitive unsafe requests onto a particular resource during execution

of a workflow (refer to section 2.2 for a detailed discussion of this issue).

WSDL 2.0 is also superior to WADL regarding the specification capabilities for HTTP

authentication. An endpoint definition may be complemented by a specification of the

required authentication mechanism, being either HTTP basic or digest authentication

[36].

Moreover the greater flexibility of the serialization rules for request input parameters

can be considered as a major advantage of the WSDL 2.0 specification. Comparable to

the parameter definition concept of WADL (see section 4.1.1) request parameters may

be serialized into parts of the request URI as well as the message body.

Workflow Integration. Though approaches for native integration of REST semantics

into WS-BPEL based workflow definitions have been recently proposed [71, 68] WSDL

2.0 should not be neglected in considerations of workflow integration for RESTful Web

services. Due to its conceptual resemblances to WSDL 1.1, being already satisfactory

supported in existing WS-BPEL based workflow applications WSDL 2.0 might emerge

to a viable concept in future solutions. However the relevance of the specification in this

context will mainly depend on the future acceptance of WSDL 2.0 in RESTful and WS*

based Web service implementations, and its implication on future versions of the WS-

BPEL standard specification. Among related workflow solutions previously introduced

in this thesis (see section 3.1.2) currently only Apache ODE [33] provides basic support

for WSDL 2.0 endpoint references.

4.4. Alternative Approaches Summarized 53

4.4. Alternative Approaches Summarized

To complete an overview of the REST description language landscape this section pro-

vides a glimpse at alternative approaches for machine processable REST service de-

scriptions. Many of them are more or less ad hoc concepts solving only small subsets

of the REST description problem while omitting software implementations completely.

The introduced concepts represent a selection of David Orchard’s list of REST descrip-

tion languages [63].

4.4.1. WDL

David Orchard has been the Web standards lead at BEA systems until its acquisition

by Oracle in 2008 and committed to the HTTP binding specification of WSDL 2.0. He

proposes the Web Description Language (WDL). The main concept behind WDL is the

description of a Web application as a set of resources, instead of interfaces associated

with bindings and endpoint definitions as known from WSDL 2.0. Hence the proposal

tries to avoid specification overhead by focusing on description of RESTful services

only. Essentially a WDL description is a set of resources, each of which may include 4

attributes:

• location

• authenticationType

• authenticationRealm

• httpVersion

The definition of operations, included within a resource definition, reminds of the WSDL

2.0 HTTP binding concept. URI path components are denoted by template expressions

and replaced through schema instance data at runtime, instead of specifying each pa-

rameter separately. Input and output elements may include specifications for HTTP

header components and HTTP status codes. An output element may declare its type

by referencing a schema type definition. An example WDL description of Yahoo’s news

search can be found at the specification site [64].

4.4. Alternative Approaches Summarized 54

4.4.2. SMEX-D

In May 2005 Tim Bray, Director of Web Technologies at Sun Microsystems, proposed

SMEX-D [10], an XML language for description of SOAP and REST based Web ser-

vices. SMEX-D stands for Simple Message Exchange Descriptor, according to the

message exchange behaviour being a basic characteristic of every Web service. The

main elements of a SMEX-D instance are <request> and <response>. A request may

have three different formats: a list of name value pairs, a Non SOAP XML (NSX) mes-

sage and a SOAP message. A response may be empty in case of a one way operation,

or contain either an NSX or a SOAP formatted response. <Pair> elements contained

within a request may have an explicitly declared primitive XML schema type or con-

tain an enumeration of allowed values included in <enum> elements. Their request

encoding is only informally regulated by following the common encoding mechanisms

for HTTP GET and POST. Request response messages declared as NSX or SOAP may

reference XML schema descriptions. However an exact specification of response ele-

ments is omitted, making the description rather unfeasible to workflow integration pur-

poses. A SMEX-D example description of Amazon’s ItemSearch is provided at [9].

4.4.3. NSDL

Norm’s Service Description Language, NSDL, was introduced by Norman Walsh, Prin-

cipal Technologist at Mark Logic Corporation in his blog [95] in 2005. The initial moti-

vation for developing the language was the authors struggle with WSDL during his de-

velopment of a sample Web service called WITW (Where in the World). NSDL aims at

describing services accessible via HTTP GET and POST, omitting many of the concepts

contained in WSDL as for example abstract port type definitions or protocol bindings.

A <service> element defines the intended HTTP method as well as a URI and encloses

subsequent <request> and <response> definitions. A request declaration allows for

enumeration of input parameters associated with an XML schema type. Support for

POST requests containing an HTTP body is ensured by an optional <body> element

to be included in a request definition. It may contain XML content, parameters are

bound through template expressions. The designation of result elements of interest is

facilitated by XPath select statements contained in the <result> and <fault> children

of a response declaration. Along with the specification Walsh provides three Perl mod-

4.4. Alternative Approaches Summarized 55

ules NSDL::Request, NSDL::Response and NSDL::UA (User Authentication), allowing for

transparent programmatic access to service operations.

4.4.4. RSWS

Richard Salz, among other internet standard activities contributor to HTTP 1.0 and HTTP

1.1, proposed a concept called Really Simple Web Service Descriptions, RSWS [81],

separating a service description essentially in three parts:

• The message schema definition

• An interface definition containing provided operations

• A location definition, describing the actual service location

The container element for these parts is <description>, containing a name attribute

defining a URI. The three child elements <schema>, <interface> and <location> may

be shared among descriptions through reference via their id attribute. In order to sup-

port arbitrary schema languages the schemaType may be declared in a schema def-

inition. An <operation> contained within an interface definition includes subsequent

<input>, <output> elements, implicitly constituting a request-response message ex-

change pattern. Transport specific information, such as the service URI, the protocol

(for example soap over http) and encryption requirements go into the <provides>

child element of a location definition.

5. Automatic WADL and WF Code
Generation

This chapter details the implementation of a WADL- and Windows Workflow Founda-

tion [52] code-generation library, forming the basis for URI based service integration in

the expressFlow Service Integration Wizard (see section 6.2). The original implemen-

tation1, emerging from an internship at the Distributed Systems Group of the Vienna

University of Technology, provided both functionalities through a WS* Web service in-

terface. The focus of this chapter is on WADL and WF Code generation components,

all service oriented interface aspects will be omitted subsequently.

Parts of the implementation result from a porting of Thomas Steiner’s "Rest Describe &

Compile" project [28] into C#. The Java source code of the application, implemented

with the Google Web Toolkit [39], is released under the Apache License 2.0. Due to

the strong similarity of the two languages, regarding the language syntax as well as

library functions, the C# port fully depicts the original functionality. Minor modifica-

tions have been made to the regular expressions used in the type estimation of request

parameters.

Section 5.1 details the internal architecture of the library including a description of the

contained C# namespaces and an UML class diagram depicting the main implemen-

tation classes and their relations. In sections 5.2 and 5.3 core features and according

implementation issues of the WADL and WWF Activity code generation components

are described. A summary of the underlying technology stack in section 5.4 concludes

the chapter.

1The complete source code and documentation is available from the Google Code project site [28]

56

5.1. Internal Architecture 57

5.1. Internal Architecture

Figure 5.1 shows an UML class diagram of the classes involved in WADL processing

and code generation. Each supported WADL language element is encapsulated in

a corresponding class named after its element name. The Analyzer class provides

processing of a provided URI and HTTP method into a corresponding WADL descrip-

tion. TypeEstimator implements type guessing based on parameter names and

their values.

In the WadlXml class a mapping between WADL specification elements and imple-

mentation constructs is defined, in order to convert the memory WADL representation

into a corresponding XML string. This process is inverted in the WadlParser class,

where a given WADL document is parsed into a memory WADL representation. Finally

the CodeGenerator class implements the generation of Windows Workflow Founda-

tion Activities from a WADL description.

+analyze() : ApplicationNode

Analyzer

ApplicationNode

ResourcesNode

-base

1

1

MethodNode

-name

1 *

RequestNode ResponseNode

1

*

1

*

ParamNode

-name

-style

-type

-default

1

*

ResourceNode

-path

1

*

+dump() : string

WadlXml

+parse() : ApplicationNode

WadlParser

+generate()

CodeGenerator

+ActivityFiles

+DesignerFiles

WADL Document

Representation

WADL and WWF

Code Generation

+estimate()

TypeEstimator

RepresentationNode

-mediaType

1

*

Figure 5.1.: WADL and WF Code Generation - UML Class Diagram

The implementation is internally split into three main components, a WADL namespace

implementing WADL creation and parsing, a CodeGeneration namespace providing

5.2. WADL Generation 58

Namespace Provided Functionality

RestDescribe.CodeGeneration Creation of Workflow Components from a pro-
vided WADL file. Mapping of XML schema to
C# types.

RestDescribe.Util Estimation of query paramter types. URI parsing.
Declaration of custom exceptions.

RestDescribe.Wadl WADL language element mapping. URI anaylsis.
WADL document parsing.

Table 5.1.: WADL Library - Namespace Structure

C# code generation and a Util namespace, providing helper functions to the other

components. Table 5.1 summarizes these namespaces and their according functional-

ities.

5.2. WADL Generation

In order to initiate WADL generation first a RestDescribe.Wadl.Analyzer has to

be instantiated, passing the request URI to the constructor. Its analyze method, taking

the intended HTTP method as input parameter, launches the creation process. Starting

with a RestDescribe.Wadl.ApplicationNode the nodes of a WADL representa-

tion matching the given URI and HTTP method are instantiated. Each node is associated

to its successor, with the ApplicationNode forming the root of this structure. URI pars-

ing is implemented in the RestDescribe.Util.Uri utility class, providing the following URI

components: base (http://endpoint.org), path (/some/resource/a/) and queryParameters

(?method=a&value1=b&value2=c). A standard query string syntax is presumed, with

a "/" as path separator, a parameter list prepending the resource path with a leading "?"

and a "&" as parameter separator.

Each element contained in the queryParameters list is associated to an XML schema

type using the RestDescribe.Util.TypeEstimator class. The estimation mech-

anism mainly based on a regular expression matching of parameter-names and -values

is introduced in section 5.2.2.

5.2. WADL Generation 59

Analyzer ApplicationNode

<<create>>

ResourcesNode

<<create>>

ResourceNode

<<create>>

MethodNode

<<create>>

RequestNode

<<create>>

ParamNode

<<create>>

TypeEstimator

estimate

ResponseNode

<<create>>

Figure 5.2.: WADL Generation - UML Sequence Diagram

5.2.1. Result Format

In order to determine the expected data format of an invocation response, a sample

request to the provided Web service address is issued during WADL generation. De-

pending on the first character of the returned payload, being either "<" or "{", XML and

JSON formats may be differentiated. The format specification is integrated into the gen-

erated WADL description by adding a RestDescribe.Wadl.ResponseNode with a

subsequent RestDescribe.Wadl.RepresentationNode containing a mediaType

attribute defining the response format. While the mechanism widens the number of

support Web service APIs, it is on the other hand confined to operations not causing a

change on a resource’s state (for example data retrieval via HTTP GET).

The result format specified in a WADL document is then kept transparent in generated

Workflow Activities (see section 5.3) through conversion of JSON formatted results into

XML formated data at runtime. WF Activities provide a Web service invocation result

through a uniform XML interface in two ways:

• A special WantedNodes property returning a System.XML.XmlNodeList contain-

ing nodes of interest. The desired element name can be set dynamically in the

WF design surface via a String Property WantedElement.

5.2. WADL Generation 60

• A System.XML.XmlDocument containing the complete invocation result, allowing

for arbitrary programmatic processing of result elements, for example in work-

flow code components.

5.2.2. Type Estimation

The definition of service parameter types can be vital especially for integration pur-

poses, allowing for static type checking at design time. However a service description

solely based on its request URI does not include any explicit information about its pa-

rameter types. To overcome this issue a type estimation mechanism based on a fall

through hierarchy of regular expressions is proposed in the original implementation.

Following the decision path each parameter-value and -name is matched against a reg-

ular expression associated with a certain xml schema type. To express levels of cer-

tainty the three valued estimateQuality attribute is added to a type estimation result. In

the final WADL document estimation quality information is included via a <doc> ele-

ment of a <param> definition. Figure 5.2.2 shows an excerpt of the type estimation

mechanism, refer to [88] for the full diagram.

value is „true“, „false“,

„1“, „0“, „yes“, or „no“

parameter-

value & -name

value is „1“or „0“

name starts with

„is“, „has“ or ends

with „ed“

xsd:boolean

value is „true“, „false“,

„yes“, or „no“

xsd:integer

xsd:boolean

Figure 5.3.: WADL Generation - Type Estimation Decision Structure

5.3. WF Code Generation 61

5.3. WF Code Generation

In order to generate Windows Workflow Foundation Activities from a WADL file, an

instance of type RestDescribe.Wadl.WadlParser is created first. The parse

method, taking a string parameter representing a WADL document initiates the parsing

process. In case of success a RestDescribe.Wadl.ApplicationNode instance is

returned that can be passed to the constructor of a RestDescribe.CodeGenerati-

on.CodeGenerator. The WADL document tree is processed in a top down manner.

Upon reaching a request node the createActivity method is called where the ac-

tual code generation takes place.

Due to expressing the source code of a generated activity through a System.CodeDom

[18] graph complex string expressions can be avoided. The CodeDom concept allows

for abstract representation of a syntax tree first that can be put out in a desired .NET pro-

gramming language. Theoretically C#, VB.NET, C++, J#, and JScript code can be gen-

erated from a CodeDom representation. In Microsoft Visual Studio 2008, used as IDE

and test environment during implementation, C# and VB.NET based workflow projects

are supported.

WadlParser ApplicationNode CodeGenerator HTTPError Parameter TypeMapper

parse

<<create>>

<<create>>

generate

<<create>>

<<create>>
getType

createActivityClass

Figure 5.4.: WF Code Generation - UML Sequence Diagram

5.3. WF Code Generation 62

5.3.1. RESTful Invocation through Custom WF Activities

A Custom Workflow Activity essentially is a software component to be integrated within

a WF workflow, usually dealing with a particular issue not addressed by the standard

workflow components, contained in the component library. The minimal steps required

for implementation of such a component include:

1. Creation of a .NET Class Library- or alternatively a Sequential Workflow-Project

serving as a container for custom activities.

2. Creation of a class derived from either System.Workflow.ComponentModel.

Activity in case of a simple activity, or System.Workflow.ComponentMo-

del.CompositeActivity for a complex activity encompassing several basic

activities. The source code of the class is split into two files, following the partial

class concept of C#2

3. Overriding the Execute method, containing the functionality to be carried out

upon reaching the component during execution of a workflow. Through a com-

prehensive .NET library support for HTTP conversation and XML processing the

implementation of a RESTful service invocation is comparatively easy.

4. After compilation of the project containing the activity within Visual Studio the

activity becomes available in the workflow designer toolbox, to be dragged onto

the designer surface analogous to other pre-defined components.

JSON Handling

For processing of JSON formatted invocation results Json.NET [62] by James Newton-

King is used. The .NET library available through Microsoft’s open source project site

CodePlex3 allows among others for serialization of .NET objects to and from JSON and

as a vital feature to the thesis implementation conversion of JSON formatted data to and

from XML. The subsequent listing depcits the necessary steps for run time conversion

of a JSON result to an XML document:

2Refer to the C# Programming Guide, available at [20], for an explanation of partial classes in C#
3http://www.codeplex.com/

http://www.codeplex.com/

5.3. WF Code Generation 63

StreamReader reader =
new StreamReader (response . GetResponseStream ()) ;

JsonTextReader j r = new JsonTextReader (reader) ;
JObjec t j o R e s u l t = JObjec t . Load (j r) ;
J P r o p e r t y jpRoot = new J P r o p e r t y (" r o o t " , j o R e s u l t) ;
JObjec t joCon ta iner = new JObjec t () ;
joCon ta iner . Add(jpRoot) ;
XmlNode node =

J a v a S c r i p t C o n v e r t . Deserial izeXmlNode (joCon ta iner . ToS t r ing ()) ;

Listing 5.1: Conversion of JSON to XML by means of the Json.NET api

The library elements forming the basis for the conversion are JObject, representing a

JSON object (the top level container for JSON formatted data, enclosed by curly braces

"{","}") and JProperty the container for a JSON key-value pair. Unlike a hierarchi-

cal organized XML document a typical JSON structure does not have a root element.

Hence in order to convert JSON to XML such an element has to be created first. This

is done in line 4, where a JProperty (jpRoot) is declared with a key name "root" and a

value representing the actual JSON result. The property is added to a JObject instance

(joContainer) that can then be converted to an according XML document by means of

the JavaScriptConvert class.

Dependency Properties

In order to make workflow design more palatable to non-programmers the parameters

of a custom activity are provided through so called Dependency Properties. Different

from a standard property, where the property value is stored within an instance variable

of an object, the value of a Dependency Property is stored in a central repository main-

tained by the property system. As a consequence of adhering to the mechanism the

property becomes available in the workflow design surface and workflow runtime.

Three types of Dependency Properties are differentiated4: metadata properties being

immutable at workflow runtime, attached properties allowing for access from another

activity within the workflow and instance properties. In the generated custom activities

the latter type is used. Essentially it allows for Activity Binding, i.e. the binding of an

activity property value to data not known until workflow runtime. This can either be

the value of a property of another activity within the workflow, a field, a property or

4http://msdn.microsoft.com/en-us/library/ms734499.aspx

http://msdn.microsoft.com/en-us/library/ms734499.aspx

5.3. WF Code Generation 64

a method. For affiliation of multiple service invocation activities within a workflow the

binding of one activity’s output to an input property of another activity is perhaps the

most important application of the concept.

Figure 5.5.: Visual Studio Workflow Design Surface - Property Binding

A major benefit of using Dependency Properties in combination with the Visual Studio

Workflow Designer is the built in support for checking type compatibilities of activity

bindings at design time of a workflow. One drawback of this combination is the in-

ability for dynamically referencing array elements using an index variable in a bind

expression. For example an expression like XmlResultElements[i], where i represents

a counter variable, is not valid. Hence the dynamic selection of a particular element

from an XML node list returned by a service invocation is not possible in a convenient

manner. To overcome this confinement a code expression for programmatic selection

of a desired XML element would have to be inserted in the workflow.

The C# source code for a Dependency Property definition can be found in the example

custom activity for the invocation of the Google Translate service in Appendix D.

5.4. Underlying Technology Stack 65

5.4. Underlying Technology Stack

To complete the first part of the implementation description this section takes a glimpse

at the underlying technology stack. For a description of Rest Describe & Compile

omitted subsequently the reader may refer to the extensive project documentation

[88, 87].

All functional components, i. e. the WADL processing and WF code generation classes,

as well as sample workflow projects are implemented in C#. For XML parsing the

System.XML namespace of the .NET Framework 3.5[19] class library is used instead

of System.XML.Linq, due to its closer syntactical similarity to the Google Web Toolkit

XML API[39].

The Windows Workflow Foundation [17], being in its most recent version a part of .NET

Framework 3.5, is used as the underlying workflow framework. It provides an ex-

tendable programming model, which we considered as a major advantage over BPEL

based open source workflow engines, being overly complex and not aiming at exten-

sion of its workflow component model. Furthermore due to its tight integration with

Visual Studio 2008 including according workflow project templates and an integrated

workflow engine rapid testing of the implementation was well supported. The testing of

the generated Custom Activities was simplified as well through their immediate avail-

ability within the integrated visual workflow designer just after their compilation. How-

ever we also faced the boundaries of the closed source technology during investigation

of possible extension points of the design surface [22], influencing the technological

decisions for the Service Integration Wizard introduced in the following chapter.

6. Dynamic Service Integration in
expressFlow

This chapter details the integration of a wizard based approach for dynamic service

integration in the expressFlow visual workflow designer1. ExpressFlow is a web based

workflow application, developed at the Distributed Systems Group of the Vienna Uni-

versity of Technology. It provides a visual design surface for the Service Mashup Ab-

straction introduced in [92] as well as comprehensive support for collaborative work-

flow design. Collaborative aspects are facilitated through the web based architecture

as well as a tightly integrated user-/role model allowing for sharing of workflow infor-

mation among registered users.

6.1. ExpressFlow Architecture

6.1.1. Application Overview

Figure 6.1 depicts the high level architecture of expressFlow. The application is essen-

tially split up into two main components, a Flash client implemented with the Adobe

Flex Framework [3] (refer to section 6.1.2 for the detailed architectural description)

and an ASP.NET [53] server application. The client application is delivered as SWF

file to the user workstation after successful authentication at the application website.

It comprises the workflow design surface including the Service Wizard introduced in

section 6.2 and the process- and role-administration interface. Due to large parts of

the application, including resource intensive XML parsing components for WSDL and

1A prototype of the application is deployed at the project website, http://expressflow.com, and
can be tested after signing up for a test account

66

http://expressflow.com

6.1. ExpressFlow Architecture 67

WADL processing, being carried out at the client side performance and scalability is

increased.

However as one of the aims of expressFlow is support for collaborative workflow design

a server component for persistent storage and exchange of application data between

clients is required. The ASP.NET web application, detailed in section 6.1.3, fulfills two

roles: One is the login portal from which the Flash client is launched after success-

ful user authentication. Particularly interesting is its second function, a WebORB.NET

based proxy to the underlying data base and the WADL processing library, introduced

in section 5.2.

Client-Server communication is carried out as asynchronous remote procedure calls

by means of the Flex Remote Object API and WebORB .NET [57]. Transmitted data is

encoded into the Action Message Format, AMF 3 [1], a compact binary format allowing

for serialization of ActionScript objects, first introduced by Adobe in Flash Player 6 in

2001.

Client

Web Browser

Flash Player

SWF Application

Server

ASP.NET enabled IIS

ASP.NET Application

SQL Server

expressFlow

DB
AMF over HTTP

WebORB .NET

WADL Library,

DB Access

Components

Application

Portal,

Project Site

Figure 6.1.: expressFlow General Architecture

6.1.2. Flash Client - Internal Architecture

The internal architecture of the Flex application partly adheres to the principles of

Cairngorm [96]. Cairngorm is an open-source architectural framework providing con-

cepts for organizing and partitioning code and packages and assigning functionality

6.1. ExpressFlow Architecture 68

Remove-

Element Event

Value objects contains

element attributes

Valu object holds

data for a WSDL

invoke element

WSDLInvokeVO is

data payload for the

event

CairngormEventDispatcher

Dispatches the

event to controller

V
ie
w

M
o
d
e
l

click

SystemModelLocator

UserVO

DesignerModelLocator

Roles Processes Element Names

vo Package

RESTInvokeVO WSDLInvokeVO
...

C
o
n
tr
o
ll
e
r RemoveElement

Command

remove element

from name list

PCFController

CreateProcess

Command

DesignerController

Process

Delegate

WSDLInvokeVO

ServiceLocator

Create a Process

via Remote

Process Service

Cairngorm component

where Remote Services

are registered

Figure 6.2.: expressFlow Internal Client Architecture

and roles to components of a Flex project. Basically a Model View Controller archi-

tecture is proposed aiming at a strict separation of concerns; a concept that is well

fostered in the Flex framework through its technical separation of GUI logic being writ-

ten in MXML2 while business logic is written in ActionScript. Among the main aims

of the framework are the enhancement of code maintainability and easier feature ex-

tendibility while allowing for parallel development of GUI and business logic.

Figure 6.2 depicts the implementation of the main Cairngorm concepts in expressFlow.

The graphic illustrates how the data attributes of a workflow element (InvokeEl-

ement) initially retrieved from the server via de-serialization of the process XML repre-

sentation are represented in a value object (WSDLInvoke) on the client side. A click on

the Remove button dispatches an event (RemoveElementEvent) to the correspond-

ing controller responsible for updating the model layer (DesignerModelLocator).

Server communication is kept solely at the controller level, implemented as a chain be-

tween the Controller (PCFontroller), the desired command (CreateProcessCom-

2An XML language describing the GUI layout of a Flex application

6.1. ExpressFlow Architecture 69

mand), a delegate (ProcessDelegate) where the actual RPC call is issued and the

registry of Remote Services (ServiceLocator). In order to gain a more complete

picture of the client architecture the reader may refer to [92]. The paper provides a

slightly different architectural view focusing on the class model and the design issues

raised by the application architecture involving a highly decoupled RIA client and a

server application enabling collaborative aspects. Table 6.1 summarizes the essential

packages of the Flex application and their provided functionality.

Package Provided Functionality

business Includes delegate classes providing a local proxy to
server functions.

commands Provides non-GUI functions: Creation of a new pro-
cess; Retrieval of user name and roles of a logged in
user. Server functions are accessed through the dele-
gate classes.

components.servicewizard GUI logic for service integration wizard

elements Implementation of workflow components available in
the design surface toolbox. Each contained element
provides (de)serialization methods from and to its
XML representation (see section 6.2.5).

events Definition of event classes derived from the
CairngormEvent base class. Each event cor-
responds to a command.

interfaces Interfaces implemented in workflow elements and
structures.

util Common helper classes. Among others deserializa-
tion of process XML representation. WSDL parsing
used in the service wizard.

vo Contains value object classes, i.e. container classes
holding the data of application entities (user, process,
workflow element, ...).

Table 6.1.: expressFlow - ActionScript Package Structure

6.1. ExpressFlow Architecture 70

6.1.3. Server Implementation

The server component of expressFlow serves as an application portal for the Flash

client and enables persistent storage of workflow data created at the client. The user

/ role model enabling all collaborative aspects, such as participative workflow design,

workflow change notifications and shared service descriptions (WSDL and WADL doc-

uments) is modelled in a relational data base3. The underlying SQL data model is

mapped to implementation classes by means of Linq to SQL, an object relational map-

ping library introduced by Microsoft as part of the .NET Framework 3.5.

Client access to the data base server is accomplished by proxy classes to be invoked

via RPC by means of WebORB.Net [57]. Furthermore the framework provides access

to the following business components:

• A WADL generation library, previously introduced in chapter 5, required for inte-

gration of a RESTful service described by a request URI. The URI string is passed

to the proxy returning an according WADL description that can be processed at

the client. Generated WADL documents are stored in the data base for future use

and can also be declared public in order to share them with other users.

• An external data proxy component allows to overcome the same origin policy

limitation at the client. Basically the security mechanism, originally introduced

in Netscape Navigator 2.0, prevents a script (such as ActionScript or JavaScript)

executed at the client originating from one origin to load data from a different ori-

gin4. The concept has mainly emerged as a consequence of a security vulnera-

bility commonly known as cross site scripting5. Loading external data at the client

is required in order to gain information on the response data structure of a service

request. Typically in a URI based service integration scenario this information is

completely missing. However in order to improve service integration capabilities

a means for visual selection of result elements is desirable. The client therefore

issues a sample request to the service by means of the data proxy at workflow

design time and presents the list of returned (XML) nodes to the user. A more

detailed discussion of the mechanism is given in section 6.2.

3For easier integration with the .NET based server application Microsoft SQLServer is used as DBMS.
4See https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript for

an exemplified explanation
5http://www.cert.org/advisories/CA-2000-02.html

https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://www.cert.org/advisories/CA-2000-02.html

6.2. expressFlow Web Service Integration Wizard 71

6.2. expressFlow Web Service Integration Wizard

In order to improve the service integration capabilities of expressFlow a wizard based

client extension has been implemented as part of this thesis. The wizard replaces

the workflow elements RESTInvoke and WSDLInvoke originally intended for integration

of Web services in the visual designer. The motivation for developing a solution for

integration of heterogeneous Web services mainly arised from the flaws of popular

workflow design tools regarding this task. In the current version of the Visual Studio in-

tegrated Workflow Designer, providing a convenient design surface for WF workflows,

the term REST6 is omitted completely. Service invocations are solely restricted to WS*

services, for which a wizard is provided.

Another motivating design tool was the BPEL designer integrated in the Netbeans IDE

[78]. The designer fully implements the WS-BPEL standard and fosters rapid testing

of designed processes through a tight integration with the Glassfish application server

[15]. However the integration of RESTful Web services is not solved by the tool, prob-

ably also due to the lack of support for RESTful Web service invocation in the current

version of WS-BPEL. Another flaw making the workflow design error prone and rather

unpalatable for non experts is the strict mapping of the WS-BPEL standard in the design

process. Consequently a user designing a process must be familiar with the standard

elements in order to gain valid workflows. Adding for example a service invocation el-

ement to the workflow does not trigger the addition of corresponding Assign elements

for input parameter binding. Hence the user must know the required elements from the

standard and add them manually.

Resulting from the mentioned flaws in existing solutions the main aims for the service

wizard implementation are as follows:

1. Allowing for integration of heterogeneous Web services, i. e. WS* based and

RESTful Web services. RESTful Web services may be described by a WADL

document or a request URI. A request URI is processed into a corresponding

WADL document at workflow design time.

2. Abstraction from the technical interface characteristics in the designer surface.

Only one ServiceInvoke element is available in the toolbox. The user is lead in a

few steps through the integration process. Apart from a differentiation regarding

6The issue could possibly be addressed in the upcoming .NET version as [82] suggests.

6.2. expressFlow Web Service Integration Wizard 72

the service description language further technical terms are kept transparent to

the user.

3. Affiliation of WSDL and RESTful services through abstraction of input-/output-

element syntax (see section 6.2.4).

4. Dynamic result element selection for RESTful services through sample requests

at workflow design time. An element format description is not required in ad-

vance. This fosters a light weight integration approach where a service is solely

described by its request URI at first.

5. Design of valid workflows - Automatically add Assign Elements for input param-

eter binding for a WSDL Invoke Element. Maintain default parameter values for

REST URIs while allowing for binding parameters to workflow variables where

necessary. Provide automatic deletion of automatically added Assign Elements

upon changing the service operation / the request URI.

6. Reuse of existing implementations and seamless integration: Allowing for XML

serialization of workflows containing a Service Invoke element in order to store a

process at the expressFlow server; Extension of the Service Mashup Abstraction

[92] through according Service Invoke Elements; Reuse of the .NET based WADL

processing library in the Flex Client.

Figure 6.3 depicts the basic steps traversed using the wizard:

 Select Service

 Description Format:

 - WSDL

 - WADL

 - Request URI

 - Choose existing

 WADL/WSDL

 - Load new WADL/

 WSDL

1. Enter Request URI

2. Select HTTP method

WADL / WSDL Request URI

1. Select Available

Operations,

Resource URIs

2. Fill out / Bind

Parameter Values

WADL is generated

Invoke Element and

associated Variables,

Assignments are

added to the workflow

Start Wizard

WADL / WSDL is loaded

Wizard is

finished

Figure 6.3.: expressFlow Service Integration Wizard - Application Flow

6.2. expressFlow Web Service Integration Wizard 73

6.2.1. WADL based Service Integration

WADL based service integration provides adjacent to URI based integration a sec-

ond means of integration RESTful services into expressFlow workflows. The idea is

to combine the capabilities of WADL for detailed resource description including input

parameters and output format, both of which are essential for tool supported workflow

design, with the lightweight nature of RESTful Web services. Through the enumera-

tion of request parameters and their according data types contained in the resource

description of a WADL document the user can be presented with a parameter binding

form at design time. Though not being integrated in the current version, static check-

ing of type compatibilities yet at design time would certainly be a further benefit of the

approach.

Furthermore describing RESTful services through a WADL document also provides a

mechanism for building up a repository of service resources at the server. A user can

reuse his WADL documents and publish them for reuse among other users. A means

for editing existing WADL documents in order to include additional resource URIs or

complement existing resource descriptions by a result format specification would be

an interesting enhancement for future versions.

The encapsulation of a service specification within a WADL document also facilitates a

compacter workflow XML representation. Within an Invoke Element for RESTful service

invocation the corresponding WADL description can simply be referenced (see section

6.2.5), thus preserving all required service information while avoiding redundancy and

overly complex workflow descriptions. Aspects of the concept can be compared to

the Partner Link mechanism [76] of WS-BPEL, where a WSDL document containing

the required operation descriptions of a service is referenced within a BPEL process

description.

Subsequently the implementation aspects of WADL integration in the Flex application

will be detailed.

Implementation

All GUI components related to WADL integration in the service wizard are part of the

components.servicewizard package. For transitions between wizard steps the

6.2. expressFlow Web Service Integration Wizard 74

convenient View States7 concept of Flex is used. It allows for declaration of states of a

GUI component, such as ’Select a WADL file’ followed by ’Select a Resource URI’, in

the MXML code. Used in combination with Adobe Flex Builder8 different GUI states

can be previewed in a design view during implementation. Existing WADL documents

are presented in an mx:DataGrid element. The corresponding data is retrieved via

asynchronous RPC by means of the WebApplication.WebORB.ProcessService class lo-

cated at the server. External WADL documents may also be retrieved from external

web resources using the server side WebApplication.WebORB.ExternalDataProxy to

overcome the same origin policy limitation (see section 6.1.3). Furthermore files can

be loaded from the local file system using the FileReference API class contained in

ActionScript3. Each successfully loaded WADL document is uploaded to the server in

order to be available for future workflow design.

All WADL XML parsing tasks are implemented by means of the ActionScript 3 XML

class. The class implements the ECMAScript for XML (E4X) specification [23] and

provides an efficient mechanism for processing a WADL document. Remarkable is

the speed at which the XML structure is parsed. A wizard user is presented with the

processing result without noticeable delay at the client.

The serialization from and to a workflow XML representation is implemented in the

RESTInvokeElement class, all node values descend from its associated value object

RESTInvokeVO. Again the task is alleviated by the E4X compliant ActionScript API,

allowing for native declaration of XML nodes as the following code excerpt demon-

strates:

var xmlData :XML = <Invoke name={ c on te n t . name } type ={ co n t en t . type }
method={method}>
<WADL>{ wadlSrc } </WADL>
</ Invoke >;

Listing 6.1: Native declaration of a new XML Element in ActionScript 3

The data attributes of a WADL based Invoke Element are encapsulated in an according

value object, represented by the content instance variable in listing 6.1. The value

object implementation is also responsible for issuing a sample request at the given

request URI. The returned XML payload is processed into an array of elements avail-

able for visual selection in the workflow designer. A major advantage of implementing

7http://livedocs.adobe.com/flex/3/html/using_states_1.html
8An Eclipse based IDE for Flex applications by Adobe

http://livedocs.adobe.com/flex/3/html/using_states_1.html

6.2. expressFlow Web Service Integration Wizard 75

this task in ActionScript is the pass by reference behaviour[2] for non primitive types.

Hence a request can be issued at instantiation time of a value object without block-

ing the design process while awaiting the response. Usually the response elements

of a value object become available for parameter binding in a subsequent workflow

element in time.

A final implementation aspect worth mentioning is the mechanism for determination

of available output elements as contained in Service Invoke Elements within the actual

Element’s scope. The scope of a RESTInvoke element is processed bottom up starting

at the actual element. All output elements found in the scope are stored in a drop down

list that can be presented to the user for binding of output values from other elements

to the input parameters of the current element. The according algorithm is sketched

below in pseudo code:

1: function GETRESULTPARTSINSCOPE(actualElement)
2: p = actualElement.parent
3: result = new Array()
4: for all p.children do
5: if child != actualElement and child is ServiceInvokeElement then
6: if child.valueObject.type == RESTInvokeVO then
7: for all RESTResultElements in valueObject.resultParts do
8: add RESTResultElement to result
9: if child.valueObject.type == WSDLInvokeVO then

10: for all SchemaDisplayElements in valueObject.resultParts do
11: add SchemaDisplayElement to result

12: return result.concat (parent.GetResultPartsInScope(acutalElement)

6.2.2. Request URI based Service Integration

Providing a means for service integration solely based on a given request URI is from

our point of view the most vital feature for real world RESTful service integration. Though

WADL or WSDL 2.0 based service descriptions theoretically provide a far more com-

prehensive specification of a service’s characteristics, as discussed in chapter 4, their

availability in real world service APIs is rather sparse. This may partly result from

the fact that description languages for RESTful services are either not standardized

(WADL) or poorly supported by according tools (WSDL 2.0). On the other hand REST

advocates believe that having a description atop of a RESTful service contradicts the

6.2. expressFlow Web Service Integration Wizard 76

inherent light-weight nature of REST. Debates on the topic often seem to be ideolog-

ically grounded9, however the lack of machine processable interface descriptions in

real world REST APIs is a fact.

In the expressFlow service wizard implementation we propose a combination of the

minimal service description represented through a request URI and the comprehen-

sive specification capabilities provided by WADL. This is achieved by generating a

WADL description from the provided URI string at design time. The WADL document

is generated at the server by means of the WADL library introduced in chapter 5. Sup-

plementary to the URI string only the HTTP method has to be specified as input to

the generation process. On success the generated document is stored at the server,

while at the client the user is presented with a form allowing for resource selection and

parameter binding identical to step two of the WADL based service integration (see

section 6.2.1).

The intermediate step for generation of a service description offers a range of advan-

tages over direct service integration solely based on the request string:

• Generated service descriptions can be stored in a repository to be reused and

shared among other users. Through storing WADL documents instead of URI

strings service descriptions can subsequently be used in the WADL based inte-

gration approach previously described (6.2.1).

• WADL documents can be supplemented with additional service characteristics

and/or corrected once stored at the server. Such additions could for example be

a description of the response format for a request, further resource definitions or

documentation properties for existing elements.

• A determination of the request parameters and their according data types forms

the basis for a convenient parameter value binding mechanism at the client. The

user is presented with a list of parameters that can be bound to literal values

or workflow variables. The specification of data types contained in the WADL

description can be utilized for static type compatibility checking.

• The WADL generation library issues a request to the provided URI in order to

guess the associated response format (XML, JSON), an information that is most

9See the following resources for discussions on the exigence of description languages for
REST: http://www.infoq.com/news/2007/06/rest-description-language, http://
www.artima.com/forums/flat.jsp?forum=276&thread=207471

http://www.infoq.com/news/2007/06/rest-description-language
http://www.artima.com/forums/flat.jsp?forum=276&thread=207471
http://www.artima.com/forums/flat.jsp?forum=276&thread=207471

6.2. expressFlow Web Service Integration Wizard 77

likely not contained in the request URI. Though the specification of the response

format is not necessarily required at workflow design time, it has to be specified

to the runtime environment of a workflow. A sample request could also be uti-

lized for server side determination of the result elements of a request, currently

implemented at the client.

Implementation

The implementation for request URI based service integration supplements the previ-

ously described WADL integration component by an additional input form allowing for

input of the URI string and HTTP method. All steps following the retrieval of a generated

service description are implemented as previously described in section 6.2.1.

6.2.3. WSDL based Service Integration

A third Web service description format supported in the expressFlow wizard is WSDL.

Though not directly addressing the issues of RESTful service integration in workflows

it entails some interesting challenges to the wizard implementation. As already men-

tioned in the introduction of this section a major flaw of many visual workflow design

tools supporting WSDL based service integration is the requirement to be familiar with

the standard terminology in order to achieve valid results. Among the usually required

tasks succeeding the addition of a service by importing a WSDL description are:

• Creation of input-/output-variables associated with the added service invoke el-

ement.

• Selection of a desired service operation provided by the service description.

• Binding of operation input-/output-elements to literal-values/workflow-variables.

In BPEL based workflows this step requires the addition of an Assign element first

enclosing a set of Copy elements representing the actual variable assignment.

Given these tedious tasks a main aim of the wizard implementation is increasing the us-

ability of workflow design by divesting the user of as many manual input steps as possi-

ble while still gaining valid workflow results. Furthermore through abstraction of inter-

face description semantics for WADL and WSDL the implementation aims at providing

6.2. expressFlow Web Service Integration Wizard 78

a convenient integration of heterogeneous services within a workflow. Subsequently

the main objectives and their according implementation issues will be detailed.

Keep Unneeded Service Characteristics Transparent

Displaying all elements of the complex description standard, such as binding informa-

tion or message type definition according to the hierarchical structure of the WSDL

document would very likely overstrain a user. Hence the wizard reduces the amount

of information presented to the user to a minimum required during workflow design, i.

e. the contained operations and their associated input parameters. Operations are pre-

sented in a selection list, the display of associated parameters is updated dynamically

upon changing the operation selection. A challenging aspect during the implemen-

tation was the correct parsing of XML schema message type definitions. The parsing

component implemented in ActionScript has been successfully tested with real world

service descriptions taken from main stream APIs such as Google, Amazon or Ebay.

Automate Addition of Obligatory Associated Elements

In order to gain valid workflow design results the input parameters of a WSDL Invoke

Element have to be bound to values preceding their execution within the workflow. In

contrast to a REST Invoke Element where all parameter values are probably encoded

in the initially provided request string already, for WSDL based services this step is

always required. The wizard automates this task by adding an Assignment Element

preceding the newly created Invoke Element automatically. It encloses a set of Copy

Elements containing the user defined bindings in the final wizard step. A Copy Element

is implemented in a self contained implementation class equivalently to other workflow

elements and becomes associated to its enclosing Assignment by means of an array

instance variable of an Assignment. This programmatic association is important for

(de)serialization of the process description, as the Mashup Language does not per-

mit a syntactical linkage of the elements. Furthermore a newly created WSDL Invoke

Element is supplemented with according In-/Output Variable elements.

6.2. expressFlow Web Service Integration Wizard 79

Simplify Parameter Binding

Parameter binding is the essential mechanism allowing for data transfer between dif-

ferent services of a workflow. The idea is to present the user with a drop down list

populated with available output variable parts in the element scope (see section 6.2.1

for a description of the mechanism). In order to allow for binding to literal values the

box is declared editable. Through integration of the binding step into the wizard the

creation of valid Invoke Elements is fostered, superseding complicated subsequent

binding steps.

Provide Editing Capabilities

The application permits editing of all created components. Copy Elements may be

modified by editing their From and To attribute values directly, allowing for maximum

flexibility. The editing of a Service Invoke element constitutes a more elaborate task, as

its semantically associated Assignment elements are formally not linked to the Invoke

element. In the Mashup Abstraction [92] such an association is not provided, in order

to allow for the reuse of an Assignment in multiple Invoke Elements. Hence the wizard

is not capable of restoring its state before creation of the Invoke element including the

defined variable binding expressions being declared within an Assignment element.

Alternatively the application presents a user with the option to automatically delete

previously created Assignment elements, as upon changing a WSDL operation or a

REST resource URI the signature of a request may be altered and consequently the

associated Assignment may become invalid. Once a user requests a change of an

operation / a resource URI the wizard tries to determine the associated Assignment

element based on three conditions:

1. The number of nested Copy Elements matches the number of input message

elements.

2. The input variable name of the Copy Element matches the input variable name

of the edited Invoke Element.

3. The input message part name matches the message part name component of the

copy expression.

6.2. expressFlow Web Service Integration Wizard 80

If a matching Assignment element is found and the user confirms its deletion it will be

removed from the workflow immediately. The wizard is then launched with the previ-

ously selected service description and the operation/resource URI.

6.2.4. WADL / WSDL - Specification Mapping

In order to allow for the integration of WS* and RESTful services in an equal measure

an abstraction of their characteristics as provided through their interface descriptions

is defined. From a usability point of view the abstraction allows for keeping technical

specifics of the different service paradigms transparent from the user during the de-

sign process. The required steps and their associated GUI representation are basically

equivalent for both types of services.

Moreover the specification mapping fosters the syntactical linkage of heterogeneous

service sources in a workflow description language and subsequently a workflow run-

time environment. By mapping the request-/response-parameters defined in WADL to

the input-/output message parts/elements of WSDL the syntax of a corresponding Copy

Element for describing the data flow between services can be kept simple. A demand-

ing aspect of mapping WSDL message parts arises from the flexibility of WSDL 1.1

regarding the definition of message structures10. The structure of a complex message

can essentially be declared in three ways:

1. The message definition includes one message part, referencing a complex XML

schema type via its type attribute. In the complex type several simple message

elements (xsd:int, xsd:string,..) are declared, as the subsequent excerpt from the

Amazon Item Search definition illustrates:

<message name=" KeywordSearchRequest " >
<p a r t name=" KeywordSearchRequest " type =" typens : KeywordType " / >

</message>
<xsd : complexType name="KeywordType" >

<xsd : a l l >
<xsd : element name="keyword " type =" xsd : s t r i n g " / >
<xsd : element name="page " type =" xsd : s t r i n g " / >
<xsd : element name="mode " type =" xsd : s t r i n g " / >
. . .

Listing 6.2: Amazon Item Search - message definition

10http://www.w3.org/TR/wsdl#_messages

http://www.w3.org/TR/wsdl#_messages

6.2. expressFlow Web Service Integration Wizard 81

2. The elements of a message structure are declared subsequent to the message

definition via multiple part definitions, each of which represents a simple XML

schema type. The following example from a Google Search WSDL document

depicts the mechanism:

<message name=" doGoogleSearch " >
<p a r t name=" key " type =" xsd : s t r i n g " / >
<p a r t name="q " type =" xsd : s t r i n g " / >
<p a r t name=" s t a r t " type =" xsd : i n t " / >
. . .

Listing 6.3: Google Search - Message Definition

3. In the message part declaration an XML schema element is referenced. Besides

an additional required step for resolving the name of the type definition associ-

ated with the element the parsing implementation is equivalent to the aforemen-

tioned processing of complex type definitions.

In the WSDL description of the Google Search service the specification concepts are

mixed up even within a single operation. However given the abstraction scheme the

range of supported service descriptions mostly depends on the capabilities of the

WSDL parsing component.

Figure 6.4 illustrates the mapping of the specification elements between WADL and

WSDL 1.1. A WADL request definition is decomposed into its Resource (identified by a

unique URI path) associated with an HTTP method and a list of query parameters. The

WSDL equivalent is an Operation, declared within a Port Type definition. Its request

parameters are either declared as Message Parts with an inline type definition or via a

complex Xml Schema Types definition. The response declaration is analogous to the

request specification.

6.2. expressFlow Web Service Integration Wizard 82

HTTP method

(GET, POST, PUT,..)

Resource
(Identified by

unique URI path)
+

Request Param
(Defined within

Request element)

Message Part
(Defined within

a PortType Message)

XML schema element
(Defined in the

Types Definition

WADL WSDL 1.1

Operation
(Defined in

Port Type)

R
e

q
u

e
s
t

R
e

s
p

o
n

s
e

Message Part
(Defined within

a PortType Message)

XML schema element
(Defined in the

Types Definition

Param
(Defined within

a Response Element)

XML schema element
(Defined in the

Types Definition

Figure 6.4.: WADL, WSDL 1.1 - Specification Mapping

6.2.5. Service Mashup Abstraction Extensions

Vasko et al. propose a Service Mashup Abstraction [92] providing the underlying ab-

stract specification for XML serialization of a workflow created by means of the express-

Flow designer. The abstraction is based on a meta-model identifying three main do-

mains: Collaboration, Orchestration and Service Integration. A transformation scheme

provides a rule set for transformation of a WS-BPEL based orchestration description

into the Service Mashup Abstraction. Essential items of the scheme for the service

wizard implementation are the notions of Invoke, Assignment and Copy. Subse-

quently the complements and modifications from the original specification in order to

support the elements created by the service wizard will be detailed.

1. An Invoke Element declares the invocation of an external Web service within a

workflow. Besides the standard activity attributes (name, type, benefit, cost) it

is linked to the Input-/Output-Variable elements automatically created for each

Invoke element. In order to express the service type (REST, WS*) the child el-

6.2. expressFlow Web Service Integration Wizard 83

ements, Resource (RESTful invocation) and WSDL (WS* invocation) are defined

supplementary to the original specification:

<Invoke standardAttributes i n p u t =" Var iable1 " ou tpu t =" Var iable2 " >
[<Resource u r i ={ u r i } wadlID ={ wadlId } / > |

<WSDL id ={ wsdlId } opera t ion =" KeywordSearchRequest " / >]
</ Invoke >

2. A Variable Element is automatically created upon finishing the service wizard. It
has a unique name and provides the type information for input-/output messages
of a service:

<Var iab le name=" Var iable1 " type ={ TypeDef in i t ionRe ference }/ >

3. An Assignment Element, encloses a set of Copy Elements, used to assign literal-

or variable-values to a variable. It is automatically created for each WSDL Invoke

Element and for a RESTful Invoke Element with at least one defined parameter

binding expression. Due to the encapsulation of multiple Copy Elements within

one Assignment a more compact visual representation of a workflow is facilitated:

<Assignment standardAttributes>
<Copy name="Copy " type =" A c t i v i t y " copy_from ="Mac Book "

copy_to =" $Var iable1 . keyword " previous =" n u l l " next =" n u l l " / >
<Copy name="Copy " type =" A c t i v i t y " copy_from =" pr ice "

copy_to =" $Var iable1 . s o r t " previous =" n u l l " next =" n u l l " / >
</ Assignment>

7. Evaluation and Future Work

7.1. Runtime Integration

The integration of RESTful service invocations into the Windows Workflow Foundation

framework, through automatic generation of custom components, entails numerous ad-

vantages. From a user’s point of view such a component encapsulates the functionality

of a service and abstracts from the technical specifics required for valid service inter-

action. A custom service component can be provided in the palette of the workflow

design application as an ordinary component equivalently to other workflow building

blocks.

The publishing of component parameters through Dependency Properties (see section

5.3.1) fosters the service integration in two ways. On the one hand parameters can be

bound dynamically by a user, as dependency properties are presented in a special

toolbox integrated in the designer surface. On the other hand multiple services may

be affiliated through binding their input-/output-parameter values at runtime.

Moreover the component integration approach meets with the requirements imposed

by the large diversity of real world RESTful service APIs. As pointed out in section 2.2,

the originally proposed architectural constraints [30] of REST are often neglected, lead-

ing to individual solutions awkward to integrate in workflow environments. Specifics of

particular service APIs, such as a custom authentication mechanism, can be tackled

through programmatic extension of created components. However as this step requires

programming skills it needs to be carried out be an expert user in advance allowing

for subsequent convenient use of the component in a visual design process.

WADL descriptions, generated by the WADL library component, form the basis for

the subsequent generation of workflow components. The detailed WADL specification

of a RESTful service, allows for the translation of complex REST interaction semantics,

84

7.1. Runtime Integration 85

including for example requests with an XML payload in the message body into the C#

source code specification of a custom workflow component.

7.1.1. Future Work

Automatically generated workflow components and WADL descriptions for real world

service APIs have been successfully tested during the implementation phase. Resulting

from these tests a number of requirements, to be addressed by future versions, have

emerged:

• The result element structure of a service request, i. e. the concrete XML/JSON el-

ements and optionally associated data type definitions, can be analyzed through

a sample service request in the WADL generation phase. Currently only the result

format, being either XML or JSON is automatically specified.

• A means for formal differentiation of fixed parameters (for example a method

name) and dynamic parameters (for example a search string) in request defi-

nitions shall be provided. Fixed parameters could then be excluded from the

binding mechanism in the workflow design surface.

• Further HTTP methods have to be supported in custom workflow components in

addition to GET and POST.

• Basic support for standardized authentication mechanisms (for example HTTP

basic authentication) shall be integrated into custom WF code components. As

previously mentioned in this thesis (see section 4.1.2) WADL currently does not

permit the specification of authentication elements, due to a high diversity of con-

cepts implemented in real world scenarios. The future integration of Web service

authentication in WF components could be achieved either based on the facil-

ities provided in future WADL versions or by means of ancillary input parame-

ters for the code generation process (authentication_method, user_name,

password).

7.2. Visual Workflow Design 86

7.2. Visual Workflow Design

The service integration wizard for expressFlow, introduced in section 6.2, proves to

be a viable solution to the issues of dynamic integration of heterogeneous services in

visual workflow design. By hiding as many technical details as possible from the user,

the entry barrier to workflow design is lowered compared to other approaches that

require a detailed understanding of the involved technology standards (for example

WS-BPEL, WSDL).

Due to allowing addition of formally described services, possibly required for more

complex service invocations, as well as ad hoc style integration by simply providing a

request URI, the initial flexibility of the design process is increased.

Service descriptions may be loaded from external or local resources and are stored

in a repository located at the server. Hence such descriptions can be shared among

other users, fostering the collaborative aspects of workflow design.

By encapsulating the interface specifications of integrated services in according ser-

vice descriptions that are only referenced within a process definition, a clear separation

of concerns is accomplished. This could be utilized in the transformation of express-

Flow workflow definitions into another workflow format, as for example WS-BPEL, or a

Windows Workflow Foundation process.

7.2.1. Future Work

By shifting many of the tedious tasks required for heterogeneous service integration in

a workflow from the user into the implementation many issues of the task have already

been solved. However some features stated in the original vision and emerged during

the implementation evaluation remain to be solved in future versions:

• The type definitions provided by WSDL and WADL service descriptions may be

utilized for checking static type compatibilities of bound parameters yet at design

time. A mapping of compatible types and a workflow validation step are required

for this purpose.

• Editing facilities for submitted/generated WADL/WSDL documents may be added,

in order to enhance, adopt or view interface descriptions located at the server.

7.3. Feature Comparison 87

• The implementation of XML schema type parsing for WSDL documents is not fully

implemented in the current version. Though the parsing component has been

successfully tested with real world WSDL documents taken from Amazon, Ebay

and Google APIs, it deserves some further work.

• Future versions shall allow for integration of WS* and RESTful services based on

a WSDL 2.0 service description.

7.3. Feature Comparison

Table 7.1 depicts a feature comparison between the thesis implementation and related

projects, introduced in chapter 3. The projects included in the comparison - JOpera

[74] and Apache ODE [33] - were chosen due to their functional overlapping with the

thesis implementation.

Feature expressFlow WF JOpera ODE
Description Format:

WSDL 1.1 ! ! ! !

WSDL 2.0 % % % !

WADL ! % % %

URI ! % ! %

Runtime Invocation:
WS* % ! ! !

REST % (!) ! !

Design Process:
Single User ! ! ! %

Collaborative ! % % %

Other:
Web Scale Design ! % % %

Table 7.1.: Implementation Feature Comparison

As the comparison reveals WSDL 1.1 is supported by all projects, while WSDL 2.0- and

WADL-based service integration are only facilitated by the expressFlow service wizard

(WADL) and Apache ODE (WSDL 2.0). URI-based service integration is confined to the

tools with a graphical design surface including REST support (expressFlow, JOpera),

7.3. Feature Comparison 88

as this integration type requires manual configuration steps opposed to WSDL/WADL

based integration.

ExpressFlow falls behind the compared projects in terms of runtime service invocation,

as a run time environment for designed workflows is currently not integrated. RESTful

service invocation in the Windows Workflow Foundation (WF) is supported indirectly

through import of custom activity components (see section 5.3.1).

Collaborative and web scale workflow design are unique features of expressFlow, and

are not considered in the implementation architectures of the compared projects.

A. Bibsonomy WADL Description

<?xml vers ion = " 1 . 0 " encoding =" u t f −8"?>
< a p p l i c a t i o n
xmlns =" h t t p : / / research . sun . com / wadl / 2 0 0 6 / 1 0 "
xmlns : x s i =" h t t p : / / www. w3 . org / 2 0 0 1 /XMLSchema−i n s t a n c e "
xmlns : xsd =" h t t p : / / www. w3 . org / 2 0 0 1 /XMLSchema "
xmlns : bib =" h t t p : / / bibsonomy . org "
x s i : schemaLocation =" h t t p : / / research . sun . com / wadl /2006/10 wadl . xsd " >

<grammars>
<inc lude h r e f =" h t t p : / / www. bibsonomy . org / help / doc / xmlschema . xsd " / >

</grammars>

<resources base =" h t t p : / / www. bibsonomy . org / " >

<resource path =" api " >
<resource path =" pos ts " >

<!−− Get Pos t s Request−−>
<method name="GET" >

<request >
<param name=" user " type =" xsd : s t r i n g " s t y l e =" query " / >
<param name=" tags " type =" xsd : s t r i n g " s t y l e =" query " / >
<param name=" resourcetype " type =" xsd : s t r i n g "
s t y l e =" query " / >

</ request >
<!−−Get Pos t s Response−−>
<response>

<r e p r e s e n t a t i o n mediaType=" a p p l i c a t i o n / xml "
element =" bibsonomy" >

<param name=" pos tda te " s t y l e =" p l a i n "
path = " / bibsonomy / pos ts / post / @post ingdate " / >
<param name=" user " s t y l e =" p l a i n "
path = " / bibsonomy / pos ts / post / user " / >
<param name=" bookmarkurl " s t y l e =" p l a i n "
path = " / bibsonomy / pos ts / post / bookmark / @url " / >

</ r e p r e s e n t a t i o n >
< f a u l t s t a t u s ="400" mediaType=" a p p l i c a t i o n / xml "
element =" bibsonomy" >

89

90

<param name=" statusName " s t y l e =" p l a i n "
path = " / bibsonomy / @s ta t " / >
<param name=" error " s t y l e =" p l a i n "
path = " / bibsonomy / error " / >

</ f a u l t >
< f a u l t s t a t u s ="401" mediaType=" a p p l i c a t i o n / xml "
element =" bibsonomy" >

<param name=" statusName " s t y l e =" p l a i n "
path = " / bibsonomy / @s ta t " / >
<param name=" error " s t y l e =" p l a i n "
path = " / bibsonomy / error " / >

</ f a u l t >
</ response>

</method>
</ resource >

<resource path =" users / { username } / pos ts " >

<!−−Create Pos t Request−−>
<method name="POST" >

<request >
<r e p r e s e n t a t i o n mediaType=" a p p l i c a t i o n / xml "
element =" bib : post " / >

</ request >
<!−−Create Pos t Response−−>
<response>

<r e p r e s e n t a t i o n mediaType=" a p p i c a t i o n / xml "
s t a t u s ="201" / >

< f a u l t s t a t u s ="400" mediaType=" a p p l i c a t i o n / xml "
element =" bibsonomy" >

<param name=" statusName " s t y l e =" p l a i n "
path = " / bibsonomy / @s ta t " / >
<param name=" error " s t y l e =" p l a i n "
path = " / bibsonomy / error " / >

</ f a u l t >
< f a u l t s t a t u s ="401" mediaType=" a p p l i c a t i o n / xml "
element =" bibsonomy" >

<param name=" statusName " s t y l e =" p l a i n "
path = " / bibsonomy / @s ta t " / >
<param name=" error " s t y l e =" p l a i n "
path = " / bibsonomy / error " / >

</ f a u l t >
</ response>

</method>
</ resource >

</ resource >

91

</ resources >
</ a p p l i c a t i o n >

Listing A.1: WADL description of Bibsonomy Get All Posts and Create Post Operations

B. Bibsonomy WSDL 1.1
Description

<?xml vers ion = " 1 . 0 " ?>
< d e f i n i t i o n s targetNamespace =" h t t p : / / example . org / Bibsonomy /WSDL1 . 1 "

xmlns : t n s =" h t t p : / / example . org / Bibsonomy /WSDL1 . 1 "
xmlns : xsd =" h t t p : / / www. w3 . org / 2 0 0 1 /XMLSchema "
xmlns : h t t p =" h t t p : / / schemas . xmlsoap . org / wsdl / h t t p / "
xmlns : mime=" h t t p : / / schemas . xmlsoap . org / wsdl / mime / "
xmlns =" h t t p : / / schemas . xmlsoap . org / wsdl / " >

<!−− message types − import bibsonomy schema −−>
<types >

<xs : schema targetNamespace =" h t t p : / / example . org / Bibsonomy /WSDL2.0" >
<xs : inc lude schemaLocation =" h t t p : / / www. bibsonomy . org / help / doc /
xmlschema . xsd " / >

</ xs : schema>
</ types >

<!−− i npu t− / output−messages −−>
<message name=" GetA l lPos tsReques t " >

<p a r t name=" user " type =" xsd : s t r i n g " / >
<p a r t name=" tags " type =" xsd : s t r i n g " / >
<p a r t name=" resourcetype " type =" xsd : s t r i n g " / >

</message>

<message name=" GetAl lPostsResponse " >
<p a r t name=" pos ts " type =" t n s : pos ts " / >

</message>

<message name=" CreatePostRequest " >
<p a r t name=" post " type =" t n s : post " / >

</message>

<message name=" CreatePostResponse " >
<p a r t name=" response " type =" xsd : s t r i n g " / >

</message>

<!−− por t types f o r Get Pos t s and Create Pos t −−>

92

93

<portType name=" P o s t s P o r t " >
<opera t ion name=" G e t A l l P o s t s " >

<i n p u t message=" t n s : GetA l lPos tsReques t " / >
<outpu t message=" t n s : GetAl lPostsResponse " / >

</ operat ion >
<opera t ion name=" CreatePost " >

<i n p u t message=" t n s : CreatePostRequest " / >
<outpu t message=" t n s : CreatePostResponse " / >

</ operat ion >
</ portType>

<!−−serv ice aggregates bindings and d e f i n e s an address endpoint−−>
<serv ice name=" BibsonomyPostsService " >

<por t name=" BibsonomyGetPostsPort "
binding =" t n s : BibsonomyGetPostsBinding " >

< h t t p : address l o c a t i o n =" h t t p : / / bibsonomy . org " / >
</ port >
<por t name=" BibsonomyCreatePostPort "
binding =" t n s : BibsonomyCreatePostBinding " >

< h t t p : address l o c a t i o n =" h t t p : / / bibsonomy . org " / >
</ port >

</ service >

<!−− bindings de f ine HTTP method and request / response format −−>
<binding name=" BibsonomyGetPostsBinding " type =" t n s : P o s t s P o r t " >

< h t t p : binding verb ="GET" / >
<opera t ion name=" G e t A l l P o s t s " >

< h t t p : opera t ion l o c a t i o n =" pos ts " / >
<input >

< h t t p : urlEncoded / >
</ input >
<output >

<mime : c on te n t type =" t e x t / xml " / >
</ output >

</ operat ion >
</ binding >

<binding name=" BibsonomyCreatePostBinding " type =" t n s : P o s t s P o r t " >
< h t t p : binding verb ="POST" / >
<opera t ion name=" CreatePost " >

< h t t p : opera t ion l o c a t i o n =" api / users / johnsmi th / pos ts " / >
<input >

<mime : c on te n t type =" t e x t / xml " / >
</ input >
<output >

<mime : c on te n t type =" t e x t / xml " / >

94

</ output >
</ operat ion >

</ binding >
</ d e f i n i t i o n s >

Listing B.1: WSDL 1.1 Description of Bibsonomy Get All Posts and Create Post
Operations

C. Bibsonomy WSDL 2.0
Description

<?xml vers ion = " 1 . 0 " encoding =" u t f −8" ?>
<d e s c r i p t i o n xmlns =" h t t p : / / www. w3 . org / ns / wsdl "

targetNamespace =" h t t p : / / example . org / Bibsonomy /WSDL2 . 0 "
xmlns : t n s =" h t t p : / / example . org / Bibsonomy /WSDL2 . 0 "
xmlns : xs =" h t t p : / / www. w3 . org / 2 0 0 1 /XMLSchema "
xmlns : wsdlx =" h t t p : / / www. w3 . org / ns / wsdl−ex tens ions " >

<types >
<xs : schema targetNamespace =" h t t p : / / example . org / Bibsonomy /WSDL2.0" >

<xs : inc lude schemaLocation =" h t t p : / / www. bibsonomy . org / help / doc /
xmlschema . xsd " / >

<xs : element name=" userPos ts " type =" t G e t P o s t s I n " / >

<xs : complexType name=" t G e t P o s t s I n " >
<xs : sequence>

<xs : element name=" user " type =" xsd : s t r i n g " / >
<xs : element name=" tags " type =" xsd : s t r i n g " / >
<xs : element name=" resourcetype " type =" xsd : s t r i n g " / >

</ xs : sequence>
</ xs : complexType>

<xs : element name=" newPost " type =" tNewPost " / >

<xs : complexType name=" tNewPost " >
<xs : sequence>

<xs : element name=" user " type =" xsd : s t r i n g " / >
<xs : element name=" post " type =" t n s : post " / >

</ xs : sequence>
</ xs : complexType>

</ xs : schema>
</ types >

< i n t e r f a c e name=" P o s t s I n t e r f a c e " >

95

96

< f a u l t name=" unauthor izedRequest " / >
< f a u l t name=" badRequest " / >

<opera t ion name=" G e t A l l P o s t s "
p a t t e r n =" h t t p : / / www. w3 . org / ns / wsdl / in−out "
s t y l e =" h t t p : / / www. w3 . org / ns / wsdl / s t y l e / i r i "
wsdlx : s a f e =" t r u e " >

<i n p u t messageLabel =" i n "
element =" t n s : userPos ts " / >

<outpu t messageLabel =" out "
element =" t n s : pos ts " / >

< o u t f a u l t r e f =" t n s : badRequest " messageLabel =" out " / >
< o u t f a u l t r e f =" t n s : unauthor izedRequest " messageLabel =" out " / >

</ operat ion >

<opera t ion name=" CreatePost "
p a t t e r n =" h t t p : / / www. w3 . org / ns / wsdl / in−out "
s t y l e =" h t t p : / / www. w3 . org / ns / wsdl / s t y l e / m u l t i p a r t " >

<i n p u t messageLabel =" i n "
element =" t n s : newPost " / >

<outpu t messageLabel =" out "
element ="#any " / >

< o u t f a u l t r e f =" t n s : badRequest " messageLabel =" out " / >
< o u t f a u l t r e f =" t n s : unauthor izedRequest " messageLabel =" out " / >

</ operat ion >

</ i n t e r f a c e >

<binding name=" Pos t sB ind i ng "
type =" h t t p : / / www. w3 . org / ns / wsdl / h t t p "
i n t e r f a c e =" t n s : P o s t s I n t e r f a c e "
whttp : methodDefaul t ="GET"
whttp : queryParameterSeparatorDefau l t ="&">

< f a u l t r e f =" t n s : badRequest " whttp : code ="400" / >
< f a u l t r e f =" t n s : unauthor izedRequest " whttp : code ="401" / >

<opera t ion r e f =" t n s : G e t A l l P o s t s "
whttp : i n p u t S e r i a l i z a t i o n =" a p p l i c a t i o n / x−www−form−urlencoded "
whttp : l o c a t i o n = " / api / pos ts / { userPos ts } " / >

<opera t ion r e f =" t n s : CreatePost "

97

whttp : i n p u t S e r i a l i z a t i o n =" m u l t i p a r t / form−data "
whttp : method="POST " whttp : l o c a t i o n = " / api / users / { user / } / pos ts " / >

</ binding >

<serv ice name=" Pos t sServ ice "
i n t e r f a c e =" t n s : P o s t s I n t e r f a c e " >

<endpoint name=" Pos tsEndpoin t "
binding =" t n s : Pos t sB ind in g "
address =" h t t p : / / www. bibsonomy . org "
whttp : au thent ica t ionScheme =" bas ic "
whttp : a u t h e n t i c a t i o n R e a l m =" BibSonomyWebService " / >

</ service >

</ d e s c r i p t i o n >

Listing C.1: WSDL 2.0 Description of Bibsonomy Get All Posts and Create Post
Operations

D. Custom Workflow Activity for
Google Translate

namespace com . googleapis . a jax
{

using System ;
using System . Workflow ;
using System . Workflow . ComponentModel ;
us ing System . IO ;
using System . Net ;
us ing System . Text ;
us ing System . Workflow . A c t i v i t i e s ;
us ing System . Xml ;
us ing System .Web;
using Newtonsof t . J son ;
us ing Newtonsof t . J son . Converters ;
us ing Newtonsof t . J son . Linq ;

pub l ic p a r t i a l c l a s s CustomAct iv i ty1 : A c t i v i t y
{

p r i v a t e s t a t i c XmlDocument xmlDoc = new XmlDocument () ;

pub l ic s t a t i c DependencyProperty WantedElementProperty =
DependencyProperty . R e g i s t e r (" WantedElement " , t ypeo f (S t r i n g) ,

typeo f (Cus tomAct iv i ty1)) ;

pub l ic s t a t i c DependencyProperty QProperty =
DependencyProperty . R e g i s t e r ("Q" , typeo f (S t r i n g) ,

typeo f (Cus tomAct iv i ty1) ,
new PropertyMetadata (" maus ")) ;

pub l ic CustomAct iv i ty1 ()
{

t h i s . I n i t i a l i z e C o m p o n e n t () ;
}

pub l ic s t a t i c XmlDocument XmlDoc
{

get

98

99

{
r e t u r n xmlDoc ;

}
}

[System . ComponentModel . D e s c r i p t i o n A t t r i b u t e (" WantedElement ")]
[System . ComponentModel . C a t e g o ry A t t r i b u te (" WantedElement Category ")]
[System . ComponentModel . Bro ws ab leA t t r i bu t e (t r u e)]
[System . ComponentModel . D e s i g n e r S e r i a l i z a t i o n V i s i b i l i t y A t t r i b u t e (

System . ComponentModel . D e s i g n e r S e r i a l i z a t i o n V i s i b i l i t y . V i s i b l e)]
pub l ic v i r t u a l s t r i n g WantedElement
{

get
{
r e t u r n ((S t r i n g) (base . GetValue (CustomAct iv i ty1 .
WantedElementProperty))) ;
}
s e t
{
base . SetValue (CustomAct iv i ty1 . WantedElementProperty , value) ;
}

}

pub l ic v i r t u a l XmlNodeList WantedNodes
{

get
{
r e t u r n xmlDoc . GetElementsByTagName (t h i s . WantedElement) ;
}

}

pub l ic v i r t u a l i n t WantedNodesLength
{

get
{
r e t u r n t h i s . WantedNodes . Count ;
}

}

/ / f o r b r e v i t y the dependency property d e f i n i t i o n s
/ / f o r the query parameters V , Q and LANGPAIR are
/ / omi t ted . t h e i r d e f i n i t i o n i s analogous t o the
/ / subsequent d e f i n i t i o n o f the Q parameter

[System . ComponentModel . D e s c r i p t i o n A t t r i b u t e ("Q")]
[System . ComponentModel . C a t e g o ry A t t r i b u te ("Q Category ")]

100

[System . ComponentModel . Bro ws ab leA t t r i bu t e (t r u e)]
[System . ComponentModel . D e s i g n e r S e r i a l i z a t i o n V i s i b i l i t y A t t r i b u t e (

System . ComponentModel . D e s i g n e r S e r i a l i z a t i o n V i s i b i l i t y .
V i s i b l e)]

pub l ic v i r t u a l S t r i n g Q
{

get
{

r e t u r n ((S t r i n g) (base . GetValue (CustomAct iv i ty1 . QProperty))) ;
}
s e t
{

base . SetValue (CustomAct iv i ty1 . QProperty , value) ;
}

}

pro tec ted overr ide A c t i v i t y E x e c u t i o n S t a t u s Execute (
A c t i v i t y E x e c u t i o n C o n t e x t co n t ex t)

{
HttpWebRequest request = ((HttpWebRequest) (WebRequest . Create (

" h t t p : / / a jax . googleapis . com / a jax / serv ices /
language / t r a n s l a t e ?v="+ H t t p U t i l i t y . UrlEncode (
Convert . ToS t r ing (V) , new UTF8Encoding ()) + " & q="+
H t t p U t i l i t y . UrlEncode (Convert . ToS t r ing (Q) , new
UTF8Encoding ()) + " & l a n g p a i r ="+ H t t p U t i l i t y . UrlEncode (

Convert . ToS t r ing (LANGPAIR) , new UTF8Encoding ()) + " & "))) ;
HttpWebResponse response = ((HttpWebResponse) (
request . GetResponse ())) ;
StreamReader reader = new StreamReader (response .
GetResponseStream ()) ;
JsonTextReader j r = new JsonTextReader (reader) ;
JObjec t j o = JObjec t . Load (j r) ;
J P r o p e r t y jp = new J P r o p e r t y (" r o o t " , j o) ;
JObjec t jo1 = new JObjec t () ;
jo1 . Add(jp) ;
XmlNode node = J a v a S c r i p t C o n v e r t . Deserial izeXmlNode (
jo1 . ToS t r ing ()) ;
xmlDoc . LoadXml (node . OuterXml) ;
r e t u r n A c t i v i t y E x e c u t i o n S t a t u s . Closed ;

}
}

}

Listing D.1: Custom Activity for Invocation of Google Translate

E. ExpressFlow Sample Workflow

<Process e f i d ="129 a 8 f f 0−d5eb−49d8−bb10−eee036f54b33 "
name="amazon_ebay " type =" A c t i v i t y " b e n e f i t = " 0 " c o s t = " 0 "
c r e a t o r =" a lex " >

<Var iables >
<Var iab le name=" Var1 " type =" var1Type " >
<Var iab le name=" Var2 " type =" var2Type " / >
<Var iab le name=" Var3 " type =" var3Type " / >
<Var iab le name=" Var4 " type =" var4Type " / >

</ Var iables >
<Assignment name=" Assignment1 " type =" A c t i v i t y " >

<Copy name="Copy " type =" A c t i v i t y " b e n e f i t = " 0 " c o s t = " 0 "
copy_from ="Mac Book " copy_to =" $Var1 . keyword " / >
<Copy name="Copy " type =" A c t i v i t y " copy_from ="12"
copy_to =" $Var1 . page " / >
<Copy name="Copy " type =" A c t i v i t y " copy_from ="mixed "
copy_to =" $Var1 . mode" / >
<Copy name="Copy " type =" A c t i v i t y " copy_from ="no "
copy_to =" $Var1 . tag " / >
<Copy name="Copy " type =" A c t i v i t y " copy_from =" search "
copy_to =" $Var1 . type " / >
<Copy name="Copy " type =" A c t i v i t y " copy_from =" what "
copy_to =" $Var1 . devtag " / >
<Copy name="Copy " type =" A c t i v i t y " copy_from =" pr ice "
copy_to =" $Var1 . s o r t " / >
<Copy name="Copy " type =" A c t i v i t y " copy_from ="no "
copy_to =" $Var1 . v a r i a t i o n s " / >
<Copy name="Copy " type =" A c t i v i t y " copy_from ="de "
copy_to =" $Var1 . l o c a l e " / >

</ Assignment>
<Invoke name="WSDLInvoke1 " type ="WSDLInvoke " b e n e f i t = " 0 " c o s t = " 0 "
i n p u t =" Var1 " ou tpu t =" Var2 " >

<WSDL id ="369596e1−101e−4dea−bb45−dac2562d212d "
opera t ion =" KeywordSearchRequest " / >

</ Invoke >
<While name=" While1 " type =" A c t i v i t y " b e n e f i t = " 0 " c o s t = " 0 "
previous ="WSDLInvoke1 " next =" n u l l " expression =" i " >
<Var2 . ou tpu t . l e n g t h " r o l e =" n u l l " user =" n u l l " >

<Assignment name=" Assignment " type =" A c t i v i t y " >

101

102

<Copy name="Copy " type =" A c t i v i t y " b e n e f i t = " 0 " c o s t = " 0 "
copy_from =" $Var2 . ListName [i] " copy_to =" $Var3 . QueryKeywords "
previous =" n u l l " next =" n u l l " / >

</ Assignment>
<Invoke name=" RESTInvoke1 " type =" RESTInvoke "
i n p u t =" Var3 " ou tpu t =" Var4 " >

<Resource u r i =" h t t p : / / open . api . ebay . com / shopping ?
cal lname=FindI tems&responseencoding=XML
&appid=<appid>&s i t e i d =0&vers ion =517
&QueryKeywords={QueryKeywords}& MaxEntries =50"
wadlID ="15910 a54e48 " / >

</ Invoke >
</ While>

</ Process >

Listing E.1: XML Listing of an expressFlow designed workflow containing two types of
service invoke elements

F. Bibliography

[1] Adobe. Action Message Format - AMF 3, Specification. http://download.
macromedia.com/pub/labs/amf/amf3_spec_121207.pdf, 2006.

[2] Adobe. ActionScript 3, Language Specification. http://livedocs.adobe.
com/flex/201/html/03_Language_and_Syntax_160_19.html, 2007.

[3] Adobe. Adobe Flex 3. http://www.adobe.com/de/products/flex/,
2009.

[4] Djamal Benslimane, Schahram Dustdar, and Amit Sheth. Service Mashups, The
New Generation of Web Applications. IEEE Internet Computing, 2008.

[5] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource Identifiers
(URI): Generic Syntax. http://www.ietf.org/rfc/rfc2396.txt, 1998.

[6] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk Nielsen. Hypertext Transfer
Protocol - HTTP/1.0. http://www.ietf.org/rfc/rfc1945.txt, 1996. last
accessed April 2009.

[7] Tim Berners-Lee, Larry Masinter, and Mark McCahill. Uniform Resource Loca-
tors (URL). http://www.w3.org/Addressing/rfc1738.txt, 1994. last
accessed April 2009.

[8] David Booth and Canyang Kevin Liu. Web Services Description Language
(WSDL) Version 2.0, Part 0: Primer. http://www.w3.org/TR/2007/
REC-wsdl20-primer-20070626/, 2007.

[9] Tim Bray. SMEX-D Description of Amazon ItemSearch. http://www.tbray.
org/ongoing/When/200x/2005/05/03/Amazon.smex, 2005. last ac-
cessed, February 2009.

[10] Tim Bray. SMEX-D, Simple Message Exchange Descriptor. http://www.
tbray.org/ongoing/When/200x/2005/05/03/SMEX-D, 2005. last ac-
cessed, February 2009.

[11] William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and Thomas J.
Mowbray. AntiPatterns - Refactoring Software, Architectures, and Projects in Cri-
sis. John Wiley & Sons, Inc., 1998.

[12] Michele Leroux Bustamante. Making Sense of all these Crazy Web Service Stan-
dards. Information Queue, 2007.

103

http://download.macromedia.com/pub/labs/amf/amf3_spec_121207.pdf
http://download.macromedia.com/pub/labs/amf/amf3_spec_121207.pdf
http://livedocs.adobe.com/flex/201/html/03_Language_and_Syntax_160_19.html
http://livedocs.adobe.com/flex/201/html/03_Language_and_Syntax_160_19.html
http://www.adobe.com/de/products/flex/
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.w3.org/Addressing/rfc1738.txt
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/
http://www.tbray.org/ongoing/When/200x/2005/05/03/Amazon.smex
http://www.tbray.org/ongoing/When/200x/2005/05/03/Amazon.smex
http://www.tbray.org/ongoing/When/200x/2005/05/03/SMEX-D
http://www.tbray.org/ongoing/When/200x/2005/05/03/SMEX-D

F. Bibliography 104

[13] Roberto Chinnici, Hugo Haas, Amelia A. Lewis, Jean-Jacques Moreau, David
Orchard, and Sanjiva Weerawarana. Web Services Description Language
(WSDL) Version 2.0, Part 2: Adjuncts. http://www.w3.org/TR/2007/
REC-wsdl20-adjuncts-20070626/, 2007.

[14] Michael Chui, Andy Miller, and Roger P. Roberts. Six ways to make Web 2.0
work. McKinsey Consulting, 2009.

[15] Java.Net Developer Community. GlassFish - Open Source Application Server.
https://glassfish.dev.java.net/, 2009.

[16] World Wide Web Consortium. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001. last accessed, January 2009.

[17] Microsoft Corporation. Windows Workflow Foundation Overview. http://
msdn.microsoft.com/en-us/library/ms734631.aspx, 2007. last ac-
cessed, February 2009.

[18] Microsoft Corporation. Dynamic Source Code Generation and Compilation.
.NET Framework Developer’s Guide, 2008.

[19] Microsoft Corporation. .NET Framework 3.5. http://msdn.microsoft.
com/en-us/library/w0x726c2.aspx, 2008. last accessed, February 2009.

[20] Microsoft Corporation. C# Programming Guide, Partial Class Defini-
tions. http://msdn.microsoft.com/en-us/library/wa80x488(VS.
80).aspx, 2009. last accessed, February 2009.

[21] Douglas Crockford. JavaScript Object Notation (JSON). http://tools.ietf.
org/html/rfc4627, 2006. last accessed April 2009.

[22] Vihang Dalal. Windows Workflow Foundation: Everything About Re-Hosting the
Workflow Designer. MSDN Library, 2006.

[23] ECMA. Standard ECMA-357, ECMAScript for XML (E4X) Specification.
http://www.ecma-international.org/publications/standards/
Ecma-357.htm, 2005.

[24] Hazem Elmeleegy, Anca Ivan, Rama Akkiraju, and Richard Goodwin. Mashu-
pAdvisor: A Recommendation Tool for Mashup Development. IEEE International
Conference on Web Services, Beijing, China, 2008.

[25] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, 2005.

[26] Thomas Erl. SOA Specifications. http://www.soaspecs.com/, 2009.

[27] Roy Fielding et al. HTTP 1.1 Method Definitions. http://www.w3.org/
Protocols/rfc2616/rfc2616-sec9.html, 1999.

http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626/
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626/
https://glassfish.dev.java.net/
http://www.w3.org/TR/wsdl
http://msdn.microsoft.com/en-us/library/ms734631.aspx
http://msdn.microsoft.com/en-us/library/ms734631.aspx
http://msdn.microsoft.com/en-us/library/w0x726c2.aspx
http://msdn.microsoft.com/en-us/library/w0x726c2.aspx
http://msdn.microsoft.com/en-us/library/wa80x488(VS.80).aspx
http://msdn.microsoft.com/en-us/library/wa80x488(VS.80).aspx
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.soaspecs.com/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

F. Bibliography 105

[28] Thomas Steiner et al. Rest Describe & Compile, Project Website. http://
code.google.com/p/rest-api-code-gen/, 2009. last accessed, Febru-
ary 2009.

[29] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk Nielsen, Larry Masin-
ter, Paul Leach, and Tim Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1.
http://www.w3.org/Protocols/rfc2616/rfc2616.html, 1999. last
accessed April 2009.

[30] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD Thesis, University of California, Irvine, CA, 2000.

[31] Jon Flanders. An Introduction To RESTful Services With WCF. MSDN Magazine,
2009.

[32] Apache Foundation. Apache Axis 2. http://ws.apache.org/axis2/. last
accessed April 2009.

[33] Apache Foundation. Apache ODE (Orchestration Director Engine). http://
ode.apache.org. last accessed April 2009.

[34] Apache Foundation. Apache ServiceMix. http://servicemix.apache.
org/home.html. last accessed April 2009.

[35] Apache Foundation. RESTful BPEL in Apache ODE. http://ode.
apache.org/restful-bpel-part-i.html,http://ode.apache.
org/restful-bpel-part-ii.html, 2009. last accessed, March 2009.

[36] John Franks, Phillip Hallam-Baker, Jeff Hostetler, Scot Lawrence, Paul Leach, Ari
Luotonen, and Lawrence Stewart. HTTP Authentication: Basic and Digest Access
Authentication. IETF RFC 2617, 1999.

[37] Karthik Gomadam, Amit P. Sheth, Jacek Kopecký, and Tomas Vitvar. hRESTS:
HTML Microformat for Describing RESTful Web Services and APIs. Technical
Report, Wright State University, 2008.

[38] Google. Google Mashup Editor. http://code.google.com/intl/de-DE/
gme/. last accessed April 2009.

[39] Google. Google Web Toolkit API Reference. http://
google-web-toolkit.googlecode.com/svn/javadoc/1.5/index.
html, 2009.

[40] Marc Hadley. Introducing WADL. http://weblogs.java.net/blog/
mhadley/archive/2005/05/introducing_wad.html, 2005. last ac-
cessed, January 2009.

[41] Marc Hadley. WADLing in Jersey. http://weblogs.java.net/blog/
mhadley/archive/2007/12/wadling_in_jers.html, 2007. last ac-
cessed, January 2009.

http://code.google.com/p/rest-api-code-gen/
http://code.google.com/p/rest-api-code-gen/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://ws.apache.org/axis2/
http://ode.apache.org
http://ode.apache.org
http://servicemix.apache.org/home.html
http://servicemix.apache.org/home.html
http://ode.apache.org/restful-bpel-part-i.html
http://ode.apache.org/restful-bpel-part-i.html
http://ode.apache.org/restful-bpel-part-ii.html
http://ode.apache.org/restful-bpel-part-ii.html
http://code.google.com/intl/de-DE/gme/
http://code.google.com/intl/de-DE/gme/
http://google-web-toolkit.googlecode.com/svn/javadoc/1.5/index.html
http://google-web-toolkit.googlecode.com/svn/javadoc/1.5/index.html
http://google-web-toolkit.googlecode.com/svn/javadoc/1.5/index.html
http://weblogs.java.net/blog/mhadley/archive/2005/05/introducing_wad.html
http://weblogs.java.net/blog/mhadley/archive/2005/05/introducing_wad.html
http://weblogs.java.net/blog/mhadley/archive/2007/12/wadling_in_jers.html
http://weblogs.java.net/blog/mhadley/archive/2007/12/wadling_in_jers.html

F. Bibliography 106

[42] Marc Hadley. Web Application Specification Language (WADL), Specification
and Tools. https://wadl.dev.java.net/, 2009. last accessed, January
2009.

[43] IBM. IBM WebSphere sMash. http://www-01.ibm.com/software/
webservers/smash/. last accessed April 2009.

[44] IBM. Lotus Mashups. http://www-01.ibm.com/software/lotus/
products/mashups/. last accessed April 2009.

[45] Intel. Intel Mash Maker. http://mashmaker.intel.com/web/. last ac-
cessed April 2009.

[46] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume
One. W3C Recommendation, 2004.

[47] Marc Hadley Joe Gregorio and mark Nottingham. URI Template In-
ternet Draft. http://bitworking.org/projects/URI-Templates/
draft-gregorio-uritemplate-00.html, 2006. last accessed, January
2009.

[48] Mozilla Labs. Mozilla Ubiquity. http://labs.mozilla.com/2008/08/
introducing-ubiquity/. last accessed April 2009.

[49] MSDN Library. Web Service Endpoints Based on WSDL Files. http://msdn.
microsoft.com/en-us/library/bb385701.aspx, 2008. last accessed,
April 2009.

[50] MSDN Library. Web Services Specifications. http://msdn.microsoft.
com/en-us/webservices/aa740689.aspx, 2009. last accessed April
2009.

[51] Microsoft. Microsoft PopFly. http://www.popfly.com/. last accessed April
2009.

[52] Microsoft. Windows Workflow Foundation (WF). http://msdn.microsoft.
com/en-us/library/ms735967.aspx. last accessed, February 2009.

[53] Microsoft. ASP.Net. http://www.asp.net/, 2009.

[54] Sun Microsystems. Jersey and WADL. http://wikis.sun.com/display/
Jersey/WADL, 2008. last accessed, January 2009.

[55] Sun Microsystems. Jersey. https://jersey.dev.java.net/, 2009. last
accessed, January 2009.

[56] Sun Microsystems. JSR311. https://jsr311.dev.java.net/, 2009. last
accessed, January 2009.

[57] Midnightcoders. WebORB for .NET. http://www.themidnightcoders.
com/products/weborb-for-net/overview.html, 2009.

https://wadl.dev.java.net/
http://www-01.ibm.com/software/webservers/smash/
http://www-01.ibm.com/software/webservers/smash/
http://www-01.ibm.com/software/lotus/products/mashups/
http://www-01.ibm.com/software/lotus/products/mashups/
http://mashmaker.intel.com/web/
http://bitworking.org/projects/URI-Templates/draft-gregorio-uritemplate-00.html
http://bitworking.org/projects/URI-Templates/draft-gregorio-uritemplate-00.html
http://labs.mozilla.com/2008/08/introducing-ubiquity/
http://labs.mozilla.com/2008/08/introducing-ubiquity/
http://msdn.microsoft.com/en-us/library/bb385701.aspx
http://msdn.microsoft.com/en-us/library/bb385701.aspx
http://msdn.microsoft.com/en-us/webservices/aa740689.aspx
http://msdn.microsoft.com/en-us/webservices/aa740689.aspx
http://www.popfly.com/
http://msdn.microsoft.com/en-us/library/ms735967.aspx
http://msdn.microsoft.com/en-us/library/ms735967.aspx
http://www.asp.net/
http://wikis.sun.com/display/Jersey/WADL
http://wikis.sun.com/display/Jersey/WADL
https://jersey.dev.java.net/
https://jsr311.dev.java.net/
http://www.themidnightcoders.com/products/weborb-for-net/overview.html
http://www.themidnightcoders.com/products/weborb-for-net/overview.html

F. Bibliography 107

[58] John Musser, Andres Ferrate, Raymond Yee, and Kevin Farnham. Pro-
grammable Web - Mashups, APIs, and the Web as Platform. http://www.
programmableweb.com/. last accessed April 2009.

[59] Yefim V. Natis. Service-Oriented Architecture Scenario. Gartner Consulting,
2003.

[60] YefimV. Natis and Roy W. Schulte. Introduction to Service-Oriented Architecture.
Gartner Consulting, 2003.

[61] Eric Newcomer and Greg Lomow. Understanding SOA with Web Services. Ad-
dison Wesley Professional, 2004.

[62] James Newton-King. Json.NET. http://www.codeplex.com/Json, 2008.

[63] David Orchard. List of REST Description Languages. http://www.
pacificspirit.com/Authoring/REST/, 2005.

[64] David Orchard. Web Description Language, WDL. http://www.
pacificspirit.com/Authoring/WDL/, 2005. last accessed, February
2009.

[65] David B. Orchard. List of REST Description Languages. http://www.
pacificspirit.com/Authoring/REST/, 2005. last accessed, January
2009.

[66] OASIS Organization for the Advancement of Structured Information Stan-
dards. UDDI Version 3.0.2. http://www.oasis-open.org/committees/
uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm, 2004. last ac-
cessed April 2009.

[67] OASIS Organization for the Advancement of Structured Information Stan-
dards. Web Services Business Process Execution Language Version
2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.html, 2007. last accessed April 2009.

[68] Hagen Overdick. Towards Resource-Oriented BPEL. 2nd ECOWS Workshop on
Emerging Web Services Technology, 2007.

[69] Mike P. Papazoglou. Service -Oriented Computing: Concepts, Characteristics
and Directions. Proceedings of the Fourth International Conference on Web In-
formation Systems Engineering, WISE, 2003.

[70] Michael Parkin. If Web Services are the Answer, What’s the Question? IMG
Seminar, Manchester, 2007.

[71] Cesare Pautasso. BPEL for REST. In BPM ’08: Proceedings of the 6th International
Conference on Business Process Management, pages 278–293, Berlin, Heidel-
berg, 2008. Springer-Verlag.

http://www.programmableweb.com/
http://www.programmableweb.com/
http://www.codeplex.com/Json
http://www.pacificspirit.com/Authoring/REST/
http://www.pacificspirit.com/Authoring/REST/
http://www.pacificspirit.com/Authoring/WDL/
http://www.pacificspirit.com/Authoring/WDL/
http://www.pacificspirit.com/Authoring/REST/
http://www.pacificspirit.com/Authoring/REST/
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

F. Bibliography 108

[72] Cesare Pautasso. RESTful Web service composition with BPEL for REST. Data
and Knowledge Engineering, 2009.

[73] Cesare Pautasso and Gustavo Alonso. JOpera: A Toolkit for Efficient Visual Com-
position of Web Services. International Journal of Electronic Commerce, Vol. 9,
No. 2, pp. 107–141, 2004.

[74] Cesare Pautasso, Biörn Biörnstad, Thomas Heinis, Francesco Lelli, Andreas Bur,
Lucia Rusconi, and Adnan Al Hariri. JOpera for Eclipse. http://jopera.org,
2009.

[75] Cesare Pautasso, Olaf Zimmermann, and Frank Leyman. RESTful Web Services
vs. "Big" Web Services: Making the Right Architectural Decision. WWW 2008,
Beijing, China, 2008.

[76] Chris Peltz. Web Services Orchestration and Choreography. IEEE Computer,
vol.36, no.10, pp. 46-52, 2003.

[77] Ganesh Prasad. Namespace-Time: Why REST and SOAP Composition Mod-
els are so Different. http://wisdomofganesh.blogspot.com/2008/01/
namespace-time-why-rest-and-soap.html, 2008.

[78] Netbeans Project. Netbeans IDE 6.5, SOA Features. http://www.netbeans.
org/features/soa/index.html, 2009.

[79] Anton V. Riabov, Eric Bouillet, Mark D. Feblowitz, Zhen Liu, and Anand Ran-
ganathan. Wishful Search: Interactive Composition of Data Mashups. WWW
2008, Beijing, China, 2008.

[80] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly, 2007.

[81] Richard Salz. Really Simple Web Service Descriptions. http://
webservices.xml.com/pub/a/ws/2003/10/14/salz.html, 2003. last
accessed, February 2009.

[82] Holger Schwichtenberg. Microsoft schreibt Workflow Foundation komplett neu.
heise online, 2008. last accessed, February 2009.

[83] Amit P. Sheth, Karthik Gomadam, and Jon Lathem. SA-REST: Semantically Inter-
operable and Easier-to-Use Services and Mashups. IEEE Internet Computing,
Vol. 11, No. 6., pp. 91-94., 2007.

[84] Connie U. Smith and Lloyd G. Williams. Software Performance AntiPatterns.
WOSP ’00: Proceedings of the 2nd international workshop on Software and per-
formance, Ottawa, Ontario, Canada, 2000.

[85] James Snell. Resource-Oriented vs. Activity-Oriented Web Services.
IBM developerWorks, 2004. http://www.ibm.com/developerworks/
webservices/library/ws-restvsoap/.

http://jopera.org
http://wisdomofganesh.blogspot.com/2008/01/namespace-time-why-rest-and-soap.html
http://wisdomofganesh.blogspot.com/2008/01/namespace-time-why-rest-and-soap.html
http://www.netbeans.org/features/soa/index.html
http://www.netbeans.org/features/soa/index.html
http://webservices.xml.com/pub/a/ws/2003/10/14/salz.html
http://webservices.xml.com/pub/a/ws/2003/10/14/salz.html
http://www.ibm.com/developerworks/webservices/library/ws-restvsoap/
http://www.ibm.com/developerworks/webservices/library/ws-restvsoap/

F. Bibliography 109

[86] Karen Sollins and Larry Masinter. Functional Requirements for Uniform Resource
Names. http://www.w3.org/Addressing/rfc1737.txt, 1994. last ac-
cessed April 2009.

[87] Thomas Steiner. Rest Describe & Compile. http://code.google.com/p/
rest-api-code-gen/, 2007. last accessed, January 2009.

[88] Thomas Steiner. REST description languages. http://docs.google.com/
View?docid=dgdcn6h3_38fz2vn5, 2007.

[89] Ron Ten-Hove and Peter Walker. JSR 208: Java Business Integration (JBI). http:
//www.jcp.org/en/jsr/detail?id=208, 2005. last accessed April 2009.

[90] Aphrodite Tsalgatidou and Thomi Pilioura. An Overview of Standards and Re-
lated Technology in Web Services. Distributed and Parallel Databases, Volume
12 , Issue 2-3, p. 135-162, 2002.

[91] Knowledge University of Kassel and Data Engineering Group. BibSonomy.
http://www.bibsonomy.org/, 2009. last accessed, January 2009.

[92] Martin Vasko and Schahram Dustdar. Towards collaborative Service Mashup de-
sign - Actual challenges in collaborative web-scale workflow design. Technical
Report, 2009.

[93] World Wide Web Consortium (W3C). A Little History of the World Wide Web.
http://www.w3.org/History.html, 2000.

[94] World Wide Web Consortium (W3C). Extensible Markup Language
(XML) 1.1 (Second Edition). http://www.w3.org/TR/2006/
REC-xml11-20060816/, 2006. last accessed April 2009.

[95] Norman Walsh. Norm’s Service Description Language, NSDL. http://
norman.walsh.name/2005/03/12/nsdl, 2005. last accessed, February
2009.

[96] Steven Webster and Leon Tanner. Developing Flex RIAs with Cairngorm mi-
croarchitecture. Flex Developer Centers, 2008.

[97] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Don-
ald F. Ferguson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall
PTR, 2005.

[98] W3C World Wide Web Consortium. SOAP Version 1.2, Part 0: Primer. http:
//www.w3.org/TR/2007/REC-soap12-part0-20070427/, 2007. last ac-
cessed March 2009.

[99] Yahoo. Yahoo Pipes. http://pipes.yahoo.com/pipes/. last accessed
April 2009.

http://www.w3.org/Addressing/rfc1737.txt
http://code.google.com/p/rest-api-code-gen/
http://code.google.com/p/rest-api-code-gen/
http://docs.google.com/View?docid=dgdcn6h3_38fz2vn5
http://docs.google.com/View?docid=dgdcn6h3_38fz2vn5
http://www.jcp.org/en/jsr/detail?id=208
http://www.jcp.org/en/jsr/detail?id=208
http://www.bibsonomy.org/
http://www.w3.org/History.html
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://norman.walsh.name/2005/03/12/nsdl
http://norman.walsh.name/2005/03/12/nsdl
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://pipes.yahoo.com/pipes/

F. Bibliography 110

[100] Michael zur Muehlen, Jeffrey V. Nickersona, and Keith D. Swensonb. Developing
Web Services Choreography Standards - The Case of REST vs. SOAP. Decision
Support Systems 37, Elsevier, North Holland, 2004.

	1 Introduction
	1.1 Problem Definition and Motivation
	1.2 Organization Of The Thesis

	2 REST & WS* - Introduction and Comparison of the Paradigms
	2.1 Basic Definitions
	2.1.1 Service Oriented Architecture
	2.1.2 WS* based Web Services
	2.1.3 RESTful Web Services

	2.2 Hybrid Web Services - REST in Real World Scenarios
	2.2.1 RPC Semantics in the Transmitted HTTP Payload
	2.2.2 Negligence of HTTP Method Semantics
	2.2.3 Ignored HTTP Header Facilities
	2.2.4 One Endpoint Catches All

	2.3 REST & WS* - Criteria Based Comparison
	2.3.1 Architectural Constraints vs. Set of Standards
	2.3.2 Service Design Process
	2.3.3 Application Scenarios
	2.3.4 Orchestration Models

	3 Related Work
	3.1 Workflow Design And Runtime Integration
	3.1.1 JOpera for Eclipse
	3.1.2 Apache ODE

	3.2 Requirements Driven Mashup Creation
	3.2.1 MashupAdvisor
	3.2.2 Wishful Search / MARIO

	3.3 Native Integration Of REST Semantics In BPEL
	3.3.1 BPEL for REST
	3.3.2 RESTful BPEL in Apache ODE

	3.4 Industry Projects

	4 RESTful Web Service Description
	4.1 Describing a RESTful Web Service in WADL
	4.1.1 WADL Exemplified - The Bibsonomy Example
	4.1.2 Strengths and Limitations
	4.1.3 Workflow Integration Support

	4.2 Describing a RESTful Web Service in WSDL 1.1
	4.2.1 WSDL 1.1 Document Structure
	4.2.2 WSDL 1.1 HTTP Binding Exemplified
	4.2.3 WSDL 1.1 HTTP Binding Limitations

	4.3 Describing a RESTful Web Service in WSDL 2.0
	4.3.1 Document Structure - Changes from WSDL 1.1
	4.3.2 WSDL 2.0 HTTP Binding Exemplified
	4.3.3 Description Capabilities and Workflow Integration

	4.4 Alternative Approaches Summarized
	4.4.1 WDL
	4.4.2 SMEX-D
	4.4.3 NSDL
	4.4.4 RSWS

	5 Automatic WADL and WF Code Generation
	5.1 Internal Architecture
	5.2 WADL Generation
	5.2.1 Result Format
	5.2.2 Type Estimation

	5.3 WF Code Generation
	5.3.1 RESTful Invocation through Custom WF Activities

	5.4 Underlying Technology Stack

	6 Dynamic Service Integration in expressFlow
	6.1 ExpressFlow Architecture
	6.1.1 Application Overview
	6.1.2 Flash Client - Internal Architecture
	6.1.3 Server Implementation

	6.2 expressFlow Web Service Integration Wizard
	6.2.1 WADL based Service Integration
	6.2.2 Request URI based Service Integration
	6.2.3 WSDL based Service Integration
	6.2.4 WADL / WSDL - Specification Mapping
	6.2.5 Service Mashup Abstraction Extensions

	7 Evaluation and Future Work
	7.1 Runtime Integration
	7.1.1 Future Work

	7.2 Visual Workflow Design
	7.2.1 Future Work

	7.3 Feature Comparison

	A Bibsonomy WADL Description
	B Bibsonomy WSDL 1.1 Description
	C Bibsonomy WSDL 2.0 Description
	D Custom Workflow Activity for Google Translate
	E ExpressFlow Sample Workflow
	F Bibliography

