
Master’s Thesis

A Context Sensor Development
Framework for SOA-based

Collaborative Working
Environments

carried out at the

Information Systems Institute
Distributed Systems Group

Vienna University of Technology

under the guidance of
Univ.Prof. Mag. Dr. Schahram Dustdar

and
Mag. Christoph Dorn

as the contributing advisor responsible

by
Florian Schöllhammer

Matr.Nr. 0325948

Vienna, May 2009

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

ii

Acknowledgements

First of all, I want to express my sincere gratitude to Mag. Christoph Dorn for
his constant support, helpful advice and patience in all stages of development of this
thesis.

I am also indebted to my dear sister, Sonja Lengauer, who offered me continuous
support in all kinds of English related questions and was kind enough to proofread
this thesis.

Finally, I wish to express my deepest feelings of appreciation to my beloved
parents. Without their mental and financial support I would not have been able
to write this thesis. It is to them that I would like to dedicate this thesis.

iii

Abstract

In collaborative working environments (CWE), context describes people, artefacts,
activities and resources. One major challenge in this domain is to sense context
changes. However, the integration and deployment of context sensors often poses a
serious problem, since in pervasive SOA-based collaboration environment the sensor
developer is not able to change 3rd party services by adding sensor modalities. To
mitigate this shortcoming, our approach focuses on analysing the message exchange
between service provider and service consumer. In this thesis we design and imple-
ment a toolkit that simplifies the development and deployment of SOA-based context
sensors, filtering and forwarding SOAP messages as well as managing context data.

iv

Contents

1 Introduction 1

2 Background Information 4
2.1 Context and Context-Aware Systems 5
2.2 Collaboration and Collaborative Working Environments 7
2.3 Service Oriented Architecture (SOA) and Service Composition 9
2.4 Context Information in Collaborative Working Environments 11

3 Review of the State of Art 13
3.1 A short History of Context-Aware Systems 14
3.2 Recent Context-Aware Systems . 14

4 Problem Statement 17
4.1 The Sensing-Problem in the Software World 18
4.2 The Room Reservation Use Case . 19

4.2.1 Description . 20
4.2.2 Analysis . 20

4.3 Development of a possible Solution 21
4.3.1 Sensor Integration . 21
4.3.2 Sensor Composition . 22

4.4 A Context Sensor Development Framework 23
4.4.1 The Scope . 23
4.4.2 The Solution . 24

5 Concept of CSDF 27
5.1 The Context Sensor Development Framework 28

5.1.1 Service Interceptor . 28
5.1.2 Controller . 30
5.1.3 Session Service . 34
5.1.4 Sensor . 35
5.1.5 Generator . 41

5.2 Sensor Model . 43
5.2.1 Input/Output Specification 44
5.2.2 Control Specification . 45
5.2.3 Service Specification . 45
5.2.4 Sensor Specification . 46

v

5.2.5 Resources and Type System 46
5.3 Sensor Filtering . 48

5.3.1 What is a Filter? . 49
5.3.2 Definition of Filter . 49
5.3.3 Filters and Session Management 50
5.3.4 Filter Techniques . 51

5.4 Sensor Composition . 53
5.4.1 Composition in General . 53
5.4.2 Compatibility of Sensors . 55
5.4.3 Loop Detection . 57
5.4.4 Types of Links . 58
5.4.5 Active and Passive Sensors . 60
5.4.6 Composition at Runtime . 61

5.5 Development Circle . 64
5.5.1 Create the SensorModel . 64
5.5.2 Code Generation . 66
5.5.3 Write Business Logic . 67
5.5.4 Code Test . 67
5.5.5 Deployment . 68
5.5.6 Configuration . 68
5.5.7 Integration Test . 69
5.5.8 Activation . 70

5.6 Service Interaction . 70
5.6.1 Initialization of Controller . 70
5.6.2 Registration of a Sensor . 71
5.6.3 Service Interaction and Sensor Invocation 73

6 Sensor Model 77
6.1 Introduction . 78

6.1.1 Ecore . 78
6.1.2 SensorModel ID . 78

6.2 Static Definitions . 79
6.2.1 SensorModel . 80
6.2.2 InputOutputSpecification . 80
6.2.3 PortAbstract . 83
6.2.4 PortExtract -> PortAbstract 84
6.2.5 PortUpdate -> PortAbstract 84
6.2.6 IOInput -> IODefinition . 85

vi

6.2.7 IOOutput -> IODefinition . 85
6.2.8 IOSet -> IODefinition . 85
6.2.9 IODefinition . 86
6.2.10 DataSpecification . 87
6.2.11 Assertion . 89
6.2.12 AssertionExpression -> Assertion 90
6.2.13 AssertionXPath -> AssertionExpression 90
6.2.14 AssertionRegex -> AssertionExpression 91
6.2.15 AssertionWSOperation -> Assertion 91
6.2.16 NamespaceDefinition . 92
6.2.17 QoSAttribute . 92
6.2.18 IOReference . 93
6.2.19 ControlSpecification . 95
6.2.20 Standard . 96
6.2.21 StandardStatus -> Standard 96
6.2.22 StandardUserDefined -> Standard 97
6.2.23 ControlParameter . 97
6.2.24 ControlAccess . 99
6.2.25 ControlAccessDefault -> ControllAccess 100
6.2.26 ControlAccessUser -> ControllAccess 100
6.2.27 ControlStandardAccess . 101
6.2.28 ServiceSpecification . 101
6.2.29 ServiceDescription . 102
6.2.30 ServiceWS . 102
6.2.31 ServiceSensor . 103
6.2.32 SensorSpecification . 103
6.2.33 Resource . 105
6.2.34 ResourceWithNamespace -> Resource 105
6.2.35 ResourceSchema -> ResourceWithNamespace 106
6.2.36 ResourceSchemaXsd -> ResourceSchema 106
6.2.37 ResourceSensor -> ResourceWithNamespace 106
6.2.38 ResourceWSDL -> ResourceWithNamespace 107

6.3 Dynamic Definitions . 108
6.3.1 DataSet . 108
6.3.2 DataValue . 109
6.3.3 ParameterValue . 109
6.3.4 PortReference . 110
6.3.5 SensorInfo . 110

vii

6.3.6 SensorInfoPort . 111
6.3.7 SensorInfoIO . 112

7 CSDF Web Services 113
7.1 Sensor Services . 114
7.2 SensorIO . 114

7.2.1 GetIOSpecification . 115
7.2.2 GetPort . 115
7.2.3 ListAllForwards . 116
7.2.4 GetPortForwards . 116
7.2.5 Type: tForward . 117

7.3 SensorControl . 118
7.3.1 ListAllStandards . 118
7.3.2 GetStandard . 119
7.3.3 ListAccessForKey . 119
7.3.4 GetParameterValue . 120
7.3.5 SetParameterValue . 121
7.3.6 ListResources . 123
7.3.7 GetResourceByNamespace . 123
7.3.8 GetNamespaceByPrefix . 124

7.4 SensorService . 125
7.4.1 ListAllServices . 125
7.4.2 GetSelf . 125

7.5 SensorCore . 126
7.5.1 Invoke . 126
7.5.2 UnregistrationNotification . 128
7.5.3 IsAlive . 129

7.6 SensorManagement . 130
7.6.1 Initialize . 130
7.6.2 Activate . 131
7.6.3 IsActive . 132
7.6.4 Passivate . 133
7.6.5 Type: tServiceType . 134
7.6.6 Type: tForward . 134

7.7 Controller . 135
7.7.1 Register . 135
7.7.2 Unregister . 137
7.7.3 SetActiveStatus . 138

viii

7.7.4 ListAllServices . 139
7.7.5 ListAllServicesDetails . 139
7.7.6 GetServiceByCore . 139
7.7.7 GetServiceByRequirements . 140
7.7.8 ListAllActiveServices . 141
7.7.9 Initialize . 141
7.7.10 Shutdown . 142
7.7.11 GetCompatibleInputPorts . 143
7.7.12 GetCompatibleOutputPorts 144

7.8 Session Service . 144
7.8.1 Get . 145
7.8.2 Set . 146
7.8.3 Delete . 147
7.8.4 SessionCreate . 148
7.8.5 SessionDestroy . 149

8 How To 151
8.1 Introduction . 152
8.2 The SensorModel . 153

8.2.1 Creating a new SensorModel 153
8.2.2 Edit the SensorModel . 154
8.2.3 Adding the Input/Output Specification 154
8.2.4 Adding the Control Specification 158
8.2.5 Adding the Service Specification 160
8.2.6 Adding the Sensor Specification 161
8.2.7 The finished SensorModel . 163

8.3 Code Generation . 164
8.3.1 Setup . 165
8.3.2 Code Generation . 165

8.4 The generated Code . 166
8.4.1 Eclipse Project . 166
8.4.2 Generated Packages . 167
8.4.3 Generated Files . 169
8.4.4 Commands . 170
8.4.5 The altered SensorModel . 171
8.4.6 Extension Points . 173

8.5 Code Extension . 174
8.5.1 Writing the Extraction Port Code 174

ix

8.5.2 Writing the Update Port Code 175
8.6 Code Test . 177

8.6.1 Session-data Files . 177
8.6.2 Test of the Extraction Port 178
8.6.3 Test of the Update Port . 179

8.7 Deployment . 181
8.7.1 Deploying the Sensor . 181
8.7.2 Empty Initialization . 182
8.7.3 Overview of ConfigAssistant 183
8.7.4 Initialization via the ConfigAssistant 188

8.8 Integration Test . 189
8.8.1 SOAP Request and Response 189
8.8.2 Start the integration test . 191
8.8.3 Final Activation . 193

9 Evaluation 194
9.1 Use Case: Mailinglist . 195

9.1.1 Description . 195
9.1.2 Sensor Design . 195
9.1.3 Sensor Logic . 198

9.2 Use Case: Room Reservation . 198
9.2.1 Description . 198
9.2.2 Sensor Design . 199
9.2.3 Sensor Logic . 201

9.3 Use Case: Load Document . 202
9.3.1 Description . 202
9.3.2 Sensor Design . 202
9.3.3 Sensor Logic . 204

10 Conclusion and Outlook 206
10.1 Conclusion . 207
10.2 Summary of Contributions . 208
10.3 Outlook . 209

A Installation Guide 212
A.1 System Requirements . 214
A.2 Prerequisites . 214

A.2.1 Java JDK . 214
A.2.2 Ant . 214

x

A.2.3 Logging Service . 215
A.3 Installation . 215

A.3.1 Tomcat Apache . 215
A.3.2 Eclipse . 216
A.3.3 Eclipse Add-ons . 216
A.3.4 Axis2 . 218

A.4 Configuration . 219
A.4.1 Eclipse Settings . 219
A.4.2 Session Service . 220
A.4.3 Controller . 220

B Source Code Listing 222
B.1 Ecore Meta-Model . 223

xi

List of Figures

1 Sentient Object Model . 16
2 Use Case: Room Reservation . 20
3 CSDF Concept . 29
4 Is-Alive Concept . 31
5 Sensor Interfaces . 36
6 Schematic Overview of the Sensor . 37
7 Integration of Resources . 47
8 Sensor Composition . 54
9 Sensor Composition . 54
10 Examples of loops . 57
11 Forward Example 1 . 59
12 Forward Example 2 . 59
13 Example of active and passive Sensors 61
14 Invocation of active and passive Sensors 64
15 CSDF Development Circle . 65
16 A SensorModel created via the EMF Model Editor 66
17 Initialization using the ConfigAssistant 69
18 Controller Initialization Sequence . 71
19 Sensor Initialization Sequence . 72
20 Service Interaction and Sensor Invocation (Part 1/2) 74
21 Service Interaction and Sensor Invocation (Part 2/2) 75
22 MessageSensor - Overview . 152
23 SensorModel Wizard (Page 1) . 154
24 SensorModel Wizard (Page 2) . 155
25 SensorModel Wizard (Page 3) . 155
26 SensorModel Editor . 156
27 Input and Output Specification of SensorModel 158
28 Control Specification of SensorModel 160
29 Service Specification of SensorModel 161
30 Sensor Specification of SensorModel 163
31 Libraries in the Build Path of Project 167
32 The ConfigAssistant . 184
33 ConfigAssistant - Port Details . 185
34 ConfigAssistant - Enter Forward . 185
35 ConfigAssistant - Compatible Ports 186

xii

36 Use Case: Mailinglist . 196
37 Use Case: Room Reservation . 199
38 Use Case: Load Document . 203

1 Introduction

2

Introduction

Context, though naturally comprehended by humans, is something computers usu-
ally fail to perceive. Making computers aware of the context they are operated in
can substantially enhance their capabilities and efficiency. The device to gather as-
pects of the environment - the actual context - is called sensor. The physical world
resorts to hardware-sensors in order to measure environmental attributes such as
temperature, velocity, location, humidity, etc. Software-sensors, on the other hand,
are programs that calculate and collect data like transfer rates, service invocations,
message exchange, etc.

A Collaborative Working Environment (CWE) is a computer system that sup-
ports experts in a very heterogeneous environment (e.g. different organisations,
physical separation, multiple teams, various projects, time shift) in their work. Es-
pecially in the domain of CWE, context awareness plays a crucial role to efficiently
assist the users in the specific tasks to be accomplished.

In Service-of-Architecture (SOA)-based systems, however, becoming aware of con-
text changes proves to be a challenging task. Frequently, the sensor developer is not
authorised to extend existing software with sensory logic. Particularly when dealing
with third party services, sensor integration may not be feasible.

One way to overcome this obstacle is to extract context solely from service re-
quests and responses. Rather than directly attaching a sensor to the service provider,
the message transfer between service provider and service consumer is observed and
analysed. To support sensor developers in creating such context sensors, a develop-
ment framework is required.

Yet another problem in the context sensing domain is the composition of sensors.
Context attributes typically cannot be described by atomic, measurable aspects of
the environment, but are a combination of such. An important requirement for a
context development framework is hence the capability to compose and reuse sensors
in a flexible and dynamic way.

In this thesis, we design and implement the Context Sensor Development Frame-
work (CSDF) - a framework which allows the development and deployment of SOA-
based context sensors, based on the datamining-approach described above. Sensors
in CSDF are defined by a programming language-independent model, the so-called
SensorModel. Following the specification of the SensorModel on part of the devel-
opers, CSDF automatically generates the language-specific sensor implementation.
The only task that remains to be done is to implement the actual business logic of

3

the sensor.
The framework supports extensive mechanisms for sensor composition. Sensors

can be both producers and consumers of context information. So-called Forwards
allow for the combination of sensors in flexible ways, enabling the developer to build
up complex context extracting networks. In addition, CSDF integrates a sensor
registry, so new sensors can be added dynamically. The registry also provides a
mechanism to identify sensors compatible with a given specification, by means of
which the developer can seamlessly integrate a newly developed sensor into existing
sensor compositions.

This thesis is structured as follows: Chapter 2 and 3 are intended to give background
information and study the history of context-aware applications. Chapter 4 will see
an analysis of the problems of state-of-the-art systems as well as a solution developed
to solve these challenges. Chapter 5 is then devoted to a thorough analysis of CSDF
and its components. The following two chapters, chapter 6 and 7, will discuss the
SensorModel and Web services of CSDF in detail. A guide explaining how to develop
sensors will be provided by means of a concrete example in chapter 8. In chapter 9,
we shall evaluate the possibilities of CSDF by means of real world scenarios, whereas
the final chapter, chapter 10, will summarise the results and contributions made in
this thesis.

2 Background Information

This chapter starts with an introduction of why
context awareness is beneficial for computer ap-
plications, before moving on to the definition of
context and explaining the major concepts and
components in context-aware systems. The sec-
ond part explains the term collaborative work-
ing environment (CWE) and give examples of
frameworks. Part three offers a description of
the concepts of SOA (service oriented architec-
ture) and the final part is devoted to analysis of
context information in the setting of CWE.

2.1 Context and Context-Aware Systems 5

2.1 Context and Context-Aware Systems

In human conversation, mutual understanding is reached not solely by the informa-
tion that is conveyed through the actual communication itself, but by means of its
interpretation in the environment - the context. Natural language as a means of
human-human conversation, for instance, is interpreted according to the situation in
which it is used. Thus the significance of the word ’small’, to take an example, is
different in the context of macrocosm (e.g. ’small planet’) and zoology (e.g. ’small
bug’). For humans this is implicitly inferred due to their common understanding
of the context. The potential of human-computer dialogue, in contrast, is greatly
limited due to lack of context-awareness. A cell phone, for instance, ought to react
differently to incoming calls in different environments. If the user is outside, it may
ring; if the user is in a meeting, it should vibrate silently. Whereas this context is
obvious to the user, it is not to the computer (i.e. the mobile phone). By providing
the computer with the necessary context information, the usefulness of applications
can be improved significantly.

According to Dey and Abowd (2000) [11], there are two ways to make the com-
puter aware of the context. The first one is to have the user convey all the required
context information directly in the course of the interaction. However, it would be
tedious to transmit all additional context information, and it might also be difficult
in some situations for the user to decide on the relevance of a particular piece of in-
formation. The second approach is therefore preferred: Here the system is provided
with means to automatically determine the context itself (e.g. sensors, network in-
formation), thus putting the decisions which information is relevant into the hands of
the application developer while keeping the actual conversation with the user simple.
This approach leads to the development of so-called context-aware systems, but let
us first discuss the meaning of the word ’context’.

Although there were many attempts to specify what context is, there is no general
definition. Schilit and Theimer (1994) [34], for instance, define context as location,
identification of users, objects and object changes while Brown (1996) [7] specifies
context as all the elements of the user’s environment that the computer knows about.
Since context-awareness became more important at the emerge of mobile devices
and applications, which have to be able to adapt to rapid context changes, location
is an attribute often to be found in context definitions (e.g. Ryan et al., (1997)
[29]). However, especially in recent years many attempts were made to include other
information as well (e.g. Hull et al., (1997) [21]). As we will see, context - as
information that is considered as relevant - always depends on the application itself.

2.1 Context and Context-Aware Systems 6

But what are context-aware systems? Again there are many attempts to describe
the term context-awareness. One good definition can be found in Dey and Abowd
(2000) [11]:

A system is context-aware if it uses context to provide relevant informa-
tion and/or services to the user, where relevancy depends on the user’s
task.

Especially as a field of ubiquitous computing [47], context-aware systems become
more and more important as a means to realise pervasive computing. According to
Baldauf et al., (2007) [3] context-aware systems can be classified in various ways:

� Context Acquirement

− Direct Sensor Access. The application directly accesses and retrieves re-
quired information from sensors.

− Middleware Infrastructure. The application is built on top of a middle-
ware, which handles the sensor management and therefore hides low-level
sensor details from the application.

− Context Server. Instead of accessing sensors, the application queries a
context managements system which holds the required context informa-
tion and can be accessed by multiple clients.

� Context Management Models

− Widgets. Widgets are software components that hide the low-level sensor
access logic from the application by providing a public interface. They
are managed by a global widget manager.

− Network Services. Instead of a global widget manager, discovery mecha-
nisms are used to find sensing-services during runtime.

− Blackboard Model. In this approach, retrieved data is posted to a common
store - a blackboard - and can be retrieved by applications via subscription
mechanisms.

� Sensor Types

− Physical Sensors. Aspects of the physical world (e.g. location, volume)
are measured with hardware sensors (e.g. GPS, microphone)

− Virtual Sensors. Context data is collected by using services or software
applications (e.g. electronic calendar, email)

2.2 Collaboration and Collaborative Working Environments 7

− Logical Sensors. New information is inferred by combining data from one
or more sensors with additional data from databases or other data source
(e.g., resolving city or region name from GPS coordinates)

As described in Ailisto et al., (2002) [1], context-aware systems often show a layered
structure.

� Sensor layer. This is the lowest layer and it is responsible for accessing the
data sources (which might but must not necessarily be sensors). An example
is the driver for a hardware sensor. This layer represents some kind of API to
the next layer which can be used to retrieve data from the source.

� Raw data extraction layer. Using the API from the first layer, data is
gathered. This layer is used to define some kind of abstract component that
provides context data while hiding internal low-level details. If the definitions
are held abstract enough, it should be possible to exchange components.

� Preprocessing layer. In case that the raw data needs pre-processing, this
layer can be used. It transforms the raw data to a more usable form by methods
of combining, reasoning and inferring. Example: Resolve GPS coordinate to
region/city name.

� Management and storage layer. Here data is stored and published via a
common interface, so it can be queried by applications. This is often realised
with a context management server that does not only provide a standard query
interface but also useful functions such as history, etc. Example: Store context
in an OWL 1 database.

� Application layer. This last layer realises the client application which adepts
its behaviour to the context given.

2.2 Collaboration and Collaborative Working En-

vironments

Recent years have seen a shift from individual work to cooperative work in an as-
sembled group. Working together in a group to solve a given task might pose several

1http://www.w3.org/TR/owl-features/ (last access: 2009-03-31)

http://www.w3.org/TR/owl-features/

2.2 Collaboration and Collaborative Working Environments 8

challenges like different locations and working times, access to common resources,
sharing of knowledge, decision finding, etc. Above that, a worker might not only be
member of one group but of several, each with different settings. In order to work
cooperatively and efficiently in such a complex environment, collaboration is needed.

In Pallot et al., (2004) [26] and Pallot et al., (2005) [25] collaborations are described
in three layers:

� Communication - In the lowest layer the parties have a collaborative part-
nership. Although they still work individually, they share parts of information
with each other. What and how data is exchanged is defined in interface spec-
ifications.

� Coordination - The next step is to coordinate goals and tasks and share
common object such as calendars, agendas, etc. On this level the parties still
work separately, but they synchronise tasks with each other, all of which is
managed by a coordinator or project manager.

� Co-operation - Here at last the parties share a common workspace and work
in a cooperative manner. This does not only refer to a technical solution for
a shared workspace, but the members also need the vision and a common
understanding of cooperative work.

A collaboration working environment (CWE) [49] must support the participants on
all of these layers and enables them to efficiently perform collaboration work. Exam-
ples of existing CWE are TeamSCOPE [35], MOSAIC [30] [32] [31] or ECOSPACE
[27] [28].

A very interesting CWE project is inContext [39] [23], which tackles the problem
of dynamic team coordination. In collaborations, workers often belong to differ-
ent organisations, frequently change their locations and are part of teams that are
dynamically assembled and dissolved - all this while using a common environment
(resources, infrastructure, etc.). inContext is a CWE that efficiently supports col-
laboration and their workers in such dynamic environments.

2.3 Service Oriented Architecture (SOA) and Service Composition 9

2.3 Service Oriented Architecture (SOA) and Ser-

vice Composition

SOA is a software architecture that evolved from distributed computing. In contrast
to modular programming (software is split into different modules to realise separation
of concern [14]) and distributed computing (a program is divided into parts that run
on different machines often in a heterogeneous environment), in SOA system func-
tionality is packed into interoperable services. The services are unassociated and
loosely coupled. The heterogeneity as well as other implementation details of the
services are hidden behind a service-interface. Applications in SOA are then built
out of services, often using some form of composition [50].

Design Principles of SOA: [16] [17]

� Standardised Service Contract:
Services have a technical interface description that describes the purpose and
the capabilities of the service as well as other functional and non-functional
requirements, depending on the technology used. The interface must be public.

� Loose Coupling:
Coupling describes how much one component relies on another or what kind of
assumption it makes about it. Loose coupling therefore refers to a maximum
of loosening the relation and the dependencies between software parts, i.e.
services in SOA.

� Abstraction:
Abstraction stands for hiding - except for the public interface - internal logic
and implementation details from the outside world.

� Reusability:
Reusability plays an important role in SOA. Functionality is packed as service
with the intention to be reused.

� Autonomy:
For services to fulfil their task reliably and consistently, they need to have a
certain degree of control over the software they encapsulate.

� Statelessness:
Especially in SOA, scalability of software is an important requirement. To keep

2.3 Service Oriented Architecture (SOA) and Service Composition 10

scalability at its highest, services are to be designed in a way that requires them
to keep no (or only a minimum of) internal state.

� Discoverability:
To promote reusability, services need to be easily found by discovery mecha-
nisms. To realise this, an elaborate description of what the service does and
how it is accessed is important.

� Composability:
As complex software applications are built by composing services, services must
be designed in a way that allows easy composition.

One possible and widely used implementation of SOA are Web services. The most
basic technologies that make up the Web service model are:

� Simple Object Access Protocol (SOAP) 2 - as communication protocol
between service provider and service requester.

� Web Service Description Language (WSDL) 3 - as specification language
to describe the interface of a Web service.

� Universal Description, Discovery and Integration (UDDI) 4 - as service
registry.

An introduction to Web services and related standards will not be given in this the-
sis. For more profound information about Web services, the reader might refer to
Alfonso et al., (2004) [2].

Web-applications often consist of many diverse Web services. To master complexity
and to encapsulate extensive functionality, services can be composed [15]. According
to Alfonso et al., (2004) [2] composition models can be categorised as follows:

� Component model: It describes what kind of assumptions can be made
about the elements composed. Do the elements comply with a Web service
standard (e.g. HTTP, SOAP, WSDL) or do they just exchange data in form
of XML messages?

2http://www.w3.org/TR/soap/ (last access: 2009-03-31)
3http://www.w3.org/TR/wsdl/ (last access: 2009-03-31)
4http://uddi.org/pubs/uddi_v3.htm (last access: 2009-03-31)

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl/
http://uddi.org/pubs/uddi_v3.htm

2.4 Context Information in Collaborative Working Environments 11

� Orchestration model: It describes the language and abstractions that are
used to realise composition. The language, in turn, then specifies how, in which
order and under which conditions services are to be invoked.

� Data and data access model: It specifies how data in a composition is
defined, and how it is exchanged between services. Many systems nowadays
also support XML Schema types apart from their own system specific types
(e.g. BPEL 5).

� Service selection model: It defines how a particular service is selected for
invocation and how static or dynamic binding takes place.

� Transaction: It describes how compositions are associated with transactions
and how transactions are realised.

� Exception handling: Systems can be distinguished by the way they handle
exceptions during the flow. Is there a way to define alternatives or recovery
functionality in case of errors?

An example of a Web service composition language is BPEL4WS (Business Process
Execution Language for Web Services).

2.4 Context Information in Collaborative Work-

ing Environments

In the first part of this chapter, we analysed the term context as well as possible
context definitions. Now we are going to identify important context elements in the
setting of CWE.

Based on the VieCar project [33] and the comprehensive Context Model [42]
developed in the course of the inContext project, the following context information
is typically found in CWE:

� User - A CWE involves users/actors. Usually a user is identified by a unique
id (e.g., using FOAF 6), name, contact information as well as organisation,
team and project involvement.

5http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (last access: 2009-03-31)
6http://www.foaf-project.org/ (last access: 2009-03-31)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.foaf-project.org/

2.4 Context Information in Collaborative Working Environments 12

� Time - Events in a CWE take place at a certain point in time.

� Location - CWE involves users from different organisations who are physically
separated. The location of the user is an important aspect in CWE. It can
contain GPS-coordinates as well as the postal address of the place the user is
currently located at. The inContext Context Model also includes a concept of
mobility and relocation in their location-ontology.

� Skill - Especially for team and project assignment, it is important to know
which skills users have.

� Team - Users are organised into teams to work on a particular task. Teams
can comprise other teams.

� Role - Users have different roles in an organisation and also different roles in
different teams. This describes which roles (and maybe also which responsibil-
ities and privileges) a user has in a given setting.

� Activity - Activities - as the central part of CWE - describe a particular task
as a part of work that needs to be done. They involve team members, actions,
artefacts and resources. Activities can relate to each other or be parent/child of
another activity. They can have a start-time and duration as well as a certain
priority.

� Action or Context - This describes atomic actions which were taken by a user
as well as his/her current status (e.g. online status, location, etc.). Actions
always take place in the setting of an activity and at a certain point of time
and involve users. They are used to describe the progress of an activity as well
as the interaction between users.

� Artefact - Artefacts are objects that can be created or modified by users (e.g.
documents). Artefacts are linked to an activity and are used by users in actions.

� Resource - A resource is a very general concept and describes everything that
can be used by a user (e.g. artefacts, vehicles, rooms, tools)

3 Review of the State of Art

This section presents a short overview of the
history of context-aware systems. After briefly
surveying pioneering systems such as the Active
Badge System and giving examples of other ma-
jor contributions in this field, we will move on
to more recent context-aware applications and
describe systems like SOCAM, COBRA, CASS,
inContext and ESCAPE. These state-of-the-art
systems will be analysed with special focus on
their important features as well as the drawbacks
of their respective designs.

3.1 A short History of Context-Aware Systems 14

3.1 A short History of Context-Aware Systems

One of the first context-aware systems was the Active Badge System developed at
Olivetti Research Lab [46]. Based on the location of people, which was determined by
a special badge they were wearing, phone calls were redirected. Another interesting
project was CyberDesk [12], a framework for the dynamic integration of software ap-
plications depending on the users’ context. The context was extracted from on-screen
information like emails, dates, addresses, etc. In later versions, location-awareness
and time-information were added to the context, enabling more sophisticated usage
[36]. Projects like TEA (Technologies for Enabling Awareness) [44] and mediacups
[5] aimed at integrating context sensors into everyday objects. TEA equipped a
mobile phone with additional sensors so it would adapt its behaviour (e.g., when
to switch to silent mode) according to the user’s current situation. In Mediacup,
sensors were integrated into an ordinary coffee cup, sensing properties like temper-
ature and movement (static, cup-is-moving, drinking-out-of-the-cup). In this sense
we are gradually beginning to realise the pervasive computing vision first described
by Weiser (1999) [48].

Another example of a context management system is Kimura [45], which was an
attempt to combine physical data of hardware sensors with information of virtual
sensors. Solar [8] introduces a framework with a context-sensitive query language to
manage context-sensitive name descriptions. The Context-Toolkit [13] is a toolkit to
easily create context-processing software components. The components can interact
with each other to ultimately deliver usable context-data to the applications.

A quite interesting project was HotTown [22], which aimed at addding context-
aware service support to moving locations. In HotTown, users where equipped with
a mobile computer that hosted their personal location-aware agent - a GeoBot. A
GeoBot was aware of other bots in its surrounding area and had its own knowledge,
which he could communicate with others. The user could therefore interact with
other bots, with the environment and even with virtual users who were surfing the
webpage of HotTown at the same time.

3.2 Recent Context-Aware Systems

The Context Broker Architecture (COBRA) [10] [9] is an agent-based architecture
supporting context-aware computation. Intelligent systems, which are part of a so-

3.2 Recent Context-Aware Systems 15

called intelligent space (an existent physical place), provide the user with intelligent
context-aware services. The centre of the architecture is the Context Broker, which
manages the sharing of knowledge between its agents. For knowledge representation
OWL is used.

Embedded in the Context Broker is the context-acquisition module, which gathers
context-information from various sources (hardware sensors, sensing middleware-
infrastructures, context-servers). A drawback of this design is the inability to create
composite sensing units. Moreover, all data-processing needs to be done in the
Context Broker.

An example of a middleware to prototype context-aware service is SOCAM (Ser-
vice-Oriented Context-Aware Middleware) [20]. A central server merges the knowl-
edge it receives from distributed context providers and then represents it to the
clients. Context providers can be both physical and virtual sensors. They are regis-
tered in a service registry and can then dynamically be found by others. Applications
built on top of the middleware can then freely access context information and adept
their behaviour accordingly. Sensors in SOCAM are directly operated by context
providers, which in turn represent the context-information in form of OWL descrip-
tions. SOCAM does not provide any mechanism to compose sensors.

Another centralised middleware approach is realised in CASS (Context-Awareness
sub-structure) [18]. It is specifically designed to support context-aware applications
on low-performance mobile devices. Another feature is the high context abstraction
and the strict separation between context inference and application code. Similar to
the previously introduced systems, CASS does not support sensor composition and
furthermore lacks both sensor registry and discovery mechanisms.

The CORTEX System [6] is a context-aware middleware approach which is based
on the Sentient Object Model [19]. A Sentient Object (Figure 1) is a component
that encapsulates a context capture (which receives context and converts it into a
suitable format), a context hierarchy (which encapsulates context about actions to be
taken) and the inference engine (changing the behaviour according to the context).
A Sentient Object can be both consumer and producer of events, which enhances the
flexibility and reusability of the system tremendously. Sentient Objects in CORTEX
are programmed in STEAM (Scalable Timed Events and Mobility) [24], an event-
based middleware for mobile devices.

JCAF (Java Context Awareness Framework) [4] supports the programmer in the
development of context-aware applications in the Java framework. Context infor-
mation can be added as well as retrieved via predefined services. The framework is
based on a peer-to-peer architecture.

The ESCAPE framework [38] is a Web service-based context framework spe-

3.2 Recent Context-Aware Systems 16

Figure 1: Sentient Object Model

cially developed to add context-sensitive support to tasks in case of an emergency
or disaster. The architecture is split into a backend (storing and sharing of context-
information) and the frontend (sharing data and context-sensing). The frontend com-
ponents of ESCAPE are CIMS (context information management services), which
autonomously build up peer-networks. In each network, one CIMS will act as super-
peer. It is then responsible for gathering context data from the network and pushing
it to the back-end as well as for synchronizing context from the backend and distribut-
ing the update to the other CIMS. Thus, CIMS can both accept context-information
as well act as context-provider. Yet compared to the Sentient Object approach, it
lacks the ability for composition.

As already mentioned, the inContext project [39] [23] is also an example of a
web-based context management framework specifically designed to support team
collaborations in their work. A remarkable feature of this system is that it extracts
context from Web service interaction-logs through mining [41].

A comprehensive survey by Truong and Dustdar (2008) [37] analyses and com-
pares state-of-the-art web-based context-aware systems.

4 Problem Statement

The first part of the chapter identifies shortcom-
ings of state-of-the-art context-aware systems in
the area of software-sensing, i.e. the problems of
sensor integration and sensor composition, de-
monstrated in a sample use case. In a next step,
a general approach to solve the above challenges
will be outlined. Following a definition of the
scope of a possible solution based upon this ap-
proach, the Context Sensor Development Frame-
work (CSDF) will be presented as an adequate
solution to the given problems.

4.1 The Sensing-Problem in the Software World 18

4.1 The Sensing-Problem in the Software World

As discussed in the previous part, recent years have seen the development of a wide
range of context-aware applications. Much effort was put into the process of rendering
applications aware of the physical world, thus creating systems capable of sensing
time, location, alignment, temperature, humidity and many more properties of the
physical world (e.g. TEA, MediaCups). Subsequent systems (e.g. SOCAM) began
to integrate virtual sensors as well, which made even more complex context-driven
behaviours feasible. Later, with the popularity of Web services, some applications
were adapted to be used in SOA (service-of-architecture)-based systems. However,
a mere adapter to make applications web-enabled does not address some important
aspects that have to be considered when creating web-applications. According to
Truong and Dustdar (2008) [37], there are some major differences between ordinary
context-aware applications and Web service based ones:

� In contrast to ordinary applications, which are only used within one organi-
sation, web-based systems are often multi-organisational. As a consequence,
open standards rather than proprietary solutions must be used.

� While early context-systems are often tightly coupled, Web service based sys-
tems have to be loosely coupled.

� In Web service based systems, data-confidentiality, having played a minor role
before, becomes a central issue.

Pure Web service oriented applications (e.g. inContext) usually do not present prob-
lems like these.

The following part focuses on ’sensing’ in context-aware systems. Although many
context-aware applications already provide very sophisticated mechanisms in the
field of hardware-sensing (e.g. COBRA, SOCAM), fundamental problems remain
unsolved in the domain of software-sensing:

� Sensor Integration: In order to become aware of a certain attribute or event,
a sensor is needed. Hardware sensors measure properties of the physical world
and convert them into a computer-readable format. By either pulling (i.e., the
system directly queries the sensor and reads the current value) or by pushing
(i.e., the system is triggered by an event generated by the sensor) the appli-
cation is rendered aware of the sensor-data. In this sense, the developer of

4.2 The Room Reservation Use Case 19

a system solely has to select and install the proper sensor serving his needs,
thus being in control of the sensor. Even if the sensor is pre-installed and
cannot be changed, it is - since developed as such - equipped with either a
pushing or pulling mechanism that enables the system to sense current values
or value-changes in the measured environment.

In the software domain, this proves to be more complicated: Almost any event
could be a desired trigger for some kind of action. In order to become aware of
such an event, a sensor reactive to it has to be developed. A simple and effective
way would be to extend the examined system by attaching a sensor directly
to it. Apart from performing its work, the system would therefore also send
events to the context-aware application. This approach works fine, provided
that the surveyed system is accessible and extendable by the developer. Yet
if the system was developed by a 3rd-party and is only offered as a service,
it is out of reach of the developer and can therefore not be extended with a
sensor. This actually poses a serious problem, which is especially present in
Web service based architectures. So far, no practical solution to solve this
problem has been found.

� Sensor Composition: In many environments, a sensor might not only mea-
sure an atomic value, but sense more complex circumstances. As example
serves a mobile phone: If moving at high velocity (location sensor) and engine-
sound is present (microphone), the phone is probably located within a car. In
order to determine the setting in-car with a sensor, data of the location sensor
and the microphone must be combined.

Whereas there are many systems which allow such sensor composition in the
hardware world (e.g. Kimura), even most recent systems in the Web service
domain (e.g. SOCAM, CASS and ESCAPE) still lack the ability to compose
sensors in such a way.

4.2 The Room Reservation Use Case

A simple use case aims at illustrating the the problems stated above.

4.2 The Room Reservation Use Case 20

Figure 2: Use Case: Room Reservation

4.2.1 Description

Bob (a worker of company ABC) wants to hold a meeting to discuss and plan the
development of project A. As a first step he uses the Room Reservation Service of
company CDE to reserve a meeting room on Friday morning. Upon confirmation, he
sends out emails using the Email Service to Alice and Tom of Project A to inform
them about the time and place of the upcoming meeting. He also invites Lisa, a
member of Project B. She is needed to help in the design of a common interface used
in both projects.

A sensor-enabled CWE system supports Bob in his work. Apart from Alice and
Tom (who are already members of the project), it automatically adds Lisa as an
involved-actor to the activity-context of Project A (Figure 2).

4.2.2 Analysis

For a CWE to support such a use case, it needs to be capable of the following:

� First it has to become aware of events such as reserve-a-room and send-an-
email. Although services in a CWE may partly be developed and therefore be

4.3 Development of a possible Solution 21

extendable by the company itself, this is not always the case. In our example,
CDE - a company providing conference rooms - has no connection to ABC.
As a consequence, it is not possible to attach a software-sensor to the Room
Reservation Service.

� Secondly, events need to be coordinated. In our use case, the CWE action is
triggered if emails are sent after a successful room-reservation - all executed
by the same user in the same activity-context and probably only within a
limited time frame. The sensor for detecting emails and the sensor for room-
reservations thus have to be composed to trigger the update-action, i.e. adding
Lisa as an involved actor.

4.3 Development of a possible Solution

This chapter is devoted to the question of how a possible solution to the given
problems could look like and which additional requirements would have to be met.

4.3.1 Sensor Integration

While systems such as SOCAM, CASS, ESCAPE and the like do not yet provide
a means to develop software sensors for not directly observable environments, in-
Context has already proposed a promising approach to solve the problem of sensor
integration. It assumes that at least the actual invocation of services is observable
[41]. If this is the case, the requests and responses can be logged. Extended with ad-
ditional data (timestamp, message-id, etc.) it is possible to reconstruct the original
series of invocation. Thus we can build a sensor which analyses the log and generates
desired events.

Of course, developing code for every single sensor is tedious. Some kind of frame-
work is needed which automates the sensor-base (XML parsing, sensor publishing
mechanism, etc.) so that the programmer can focus on developing the business code.
inContext, however, still lacks an efficient mechanism to create sensors for analysing
invocation logs.

The framework to be developed has to meet some additional requirements, i.e.:

� Discovery: In the area of sensor-development, not all sensors are initially
known by the system. Sensors might be added at a later date or may be

4.3 Development of a possible Solution 22

updated. Similarly, obsolete sensors might be removed from the system. To
support dynamic sensor-management, a registry is required. While systems
such as CASS still lack such a registry, others like SOCAM are already pro-
viding them in their applications. Still, certain problems remain unsolved. A
sensor developer, for instance, sometimes needs to find all sensors which provide
output compatible to a given sensor-input. A complex compatibility-operation
like this goes far beyond simple parametric search (and can therefore not be
done in SOCAM). To make it feasible, the input and output of a sensor must
be clearly specified in the first place, and secondly, a comparison algorithm
must be developed to verify whether one specification comprises another.

� Framework Independence: The systems discussed so far (e.g. ESCAPE,
SOCAM, CASS) are full-fledged context-aware middlewares. As a result, the
sensor-layer logic is tightly integrated into the whole application. Sensing,
however, is a very complex mechanism that should not be reinvented with
every new system. There is clearly a lack of a flexible and powerful sensor
development framework that can seamlessly be integrated into any middleware
using an open standard.

� Heterogeneity: Particularly in the field of CWE it has to be assumed that
sensors will be developed by different companies, using different programming
languages and different tools - an aspect not yet discussed in the systems pre-
sented so far. In order to support such a heterogeneous environment, a language
independent meta-model for sensors is needed which will define the capabilities
of the sensor as well as the sensory specification. This approach provides two
substantial benefits:

− The interface is separated from the actual implementation, which can then
be done using any technology.

− The sensor code-base can automatically be generated from the model.
This eases the development-process and also simplifies maintenance as
the code-base can easily be updated in case the meta-model changes.

4.3.2 Sensor Composition

In order to detect complex events as presented in the use case at the sensor-layer, it
is necessary to compose sensors. The Sentient Object Model used in CORTEX is an
approach which supports this. In CORTEX, the Sentient Objects are programmed
in STEAM, a language adequate in the domain of mobile devices. However, in the

4.4 A Context Sensor Development Framework 23

area of Web service based systems, communication has to rely on a more loosely
coupled and standardised technology.

Also, the Sentient Object Model itself does neither describe the input and output
values of a Sentient Object, nor does it specify how linkage of Sentient Objects takes
place. An applicable model for sensors based on the Sentient Object model thus
has to solve two challenges. The first one is to define a service-contract, i.e. a
specification describing which values the sensor accepts as input and which ones it
will produce as output. Using this information, meaningful composition of sensors
becomes feasible. Secondly, a mechanism for sensor linkage must be provided, i.e. a
means to connect the output of one sensor with the input of another. Depending on
how these challenges are solved, additional properties can be inferred:

� Exchangeability. Is it possible to replace a sensor with another without affecting
the functionality of the system or sensors dependent on it?

� Flexibility. Can the linkage of sensors be changed without altering the code?

4.4 A Context Sensor Development Framework

4.4.1 The Scope

Before developing a solution, the scope of such has to be defined:

� Sensor Development. The systems discussed so far are all full-fledged context-
aware middlewares. Yet a solution needs to be found that will solely deal with
the aspect of sensor generation and management. It will not focus on aspects
of data storage and data management, reasoning, etc. Thus, it will only realise
the sensor layer and raw data extraction layer in the model of Ailisto et al.,
(2002) [1].

� Observable Message Exchange. We consider it to be feasible to observe
the service interactions. Furthermore, we assume that the log files containing
the interactions will not be not encrypted.

� Service Invocation Sensors. Sensors generated by the framework will solely
focus on extracting context from service invocation logs. Neither hardware
sensors nor other kinds of software sensors will be supported by the solution.

4.4 A Context Sensor Development Framework 24

� Event-Based. The solution will be event based. Upon receipt, an invocation
will be analysed and respective sensors will be triggered.

� SOA-based. The solution will work in a SOA-based environment, with Web
services being used for intercommunication.

� Performance. The solution will be deployed on an average web server. There
will be no resource constraint as there would be for applications deployed on
mobile devices. The overall performance will be high, yet the goal is not to be
capable of handling hundreds of requests per second.

� Not realtime. As the solution bases on analysis of invocation logs, it will not
be realtime. At best, it will be near realtime.

� Privacy. Communication will be unencrypted and logs will contain all in-
vocation traffic. Although privacy was mentioned as an important aspect of
web-based context-aware systems in Truong and Dustdar (2008) [37], we will
not focus on it here.

4.4.2 The Solution

This chapter finally sees the presentation of an approach that solves the given
challenges within the scope defined: The Context Sensor Development Framework
(CSDF) is a sensor development framework for Web service sensors, which...

� ...bases on the data mining approach of inContext

� ...is model driven (using EMF 7)

� ...supports powerful filter-techniques for service interactions

� ...supports automatic databinding for filtered XML-segments (using ADB 8)

� ...deploys sensors as Web services

� ...integrates an elaborate sensor description

� ...supports powerful sensor-linkage and discovery mechanisms.

� ...eases integration of third-party Web services (for interaction with the context
management system)

7http://www.eclipse.org/modeling/emf/ (last access: 2009-04-08)
8http://ws.apache.org/axis2/0_93/adb/adb-howto.html (last access: 2009-04-24)

http://www.eclipse.org/modeling/emf/
http://ws.apache.org/axis2/0_93/adb/adb-howto.html

4.4 A Context Sensor Development Framework 25

Using this framework, the development effort of context sensors in the web-domain
is reduced dramatically. Code for sensing and deploying is automatically generated
from the sensor model, thus the programmer can focus on the business logic of the
sensor.

CSDF solves all the challenges presented earlier:

� Sensor Integration: CSDF bases on the data mining approach of inContext.
With the use of a logging service, all interactions of services relayed through
it will be copied and forwarded to CSDF. Sensors - previously registered with
CSDF with their filter description - will be triggered if the filter matches.

− Discovery: CSDF incorporates a sensor registry which contains all sen-
sors currently deployed. A registration record contains, among other in-
formation, the input and output specification of the sensor model. Thus
it is not only possible to search for sensors by parameters but also based
on compatibility to given specifications.

− Framework Independence: CSDF is only designed for sensor man-
agement, leaving the context management in the hands of the context
management system. With the programmer being able to invoke just any
kind of action in the logic of the sensor, it does not matter which context
management system is used. In addition, required libraries can be easily
integrated into the sensor.

Yet, since most of the recent context management systems provide some
kind of Web service, CSDF has a special support for such. If listed in
the sensor model, service-stubs and methods to invoke the service will
be automatically created and added to the code. The effort to perform
a context-update in the context management system via Web services is
thus significantly reduced.

− Heterogeneity: As already mentioned, CSDF is model-based, using
EMF. The sensor model describes all parts of the sensor on an abstract
level. The actual implementation can therefore be done in any program-
ming language, as long as it complies with the model and implements the
required Web service interfaces.

In first version of CSDF, the sensor code-base (generated from the sensor
model) is only available for Java. It is possible to re-generate the code-base
upon model-changes without overwriting the business logic.

4.4 A Context Sensor Development Framework 26

� Sensor Composition: Sensors generated by CSDF are based on the Sentient
Object approach and can thus be composed. The service-contract is inherently
given by the sensor model. The linkage of sensors is not hardcoded, but dy-
namically configured after deployment (Flexibility). Replacing a sensor with
another one that provides the same or an even stricter service-contract is also
possible (Exchangeability).

CSDF solves all given challenges. As will be demonstrated later, the given use case
can also be realised using CSDF. It is therefore a successful approach to context-sense
Web services that cannot directly be extended with sensor mechanisms.

5 Concept of CSDF

This chapter introduces the Context Sensor De-
velopment Framework (CSDF), our approach to
solve the challenges of the previous chapter. Fol-
lowing a detailed explanation of the components
of CSDF, the SensorModel - the formal specifi-
cation of a Sensor - is presented. Part three and
four then discuss the concepts of filtering and
sensor composition and their implementation in
CSDF. The final part is devoted to the devel-
opment circle and the message flow between the
components of CSDF.

5.1 The Context Sensor Development Framework 28

Preface

In this and later chapters, concepts of CSDF will be used throughout the text. The
reader will be able to easily recognise a concept by the initial capital letter in its
spelling, e.g. Controller, Session Service, Sensor. All concepts will be explained at
some point, but not necessarily before their first usage. If required, the reader is
advised to look up the respective concept using the index at the end of this thesis.

Some sections also contain references to documents included in the CSDF com-
pilation. In that case, $CSDF refers to the root of the compilation.

5.1 The Context Sensor Development Framework

As described in the last chapter, the Context Sensor Development Framework (in
short, CSDF) is a framework for the creation of software-sensors in a SOA-based
system. Based on a data-mining approach, the generated Sensors can extract context
from the message exchange between services. The diagram below visualises the
concept of CSDF (Figure 3).

When a user calls a Web service, the invocation is relayed through the Service
Interceptor. Apart from invoking the actual service, it sends a copy of the service
request and response to the Controller. Upon receiving such a notification, the
Controller compares it to the input requirements of the Sensors previously registered.
If a matching Sensor is found, the interaction data is stored to a session and the
Sensor is invoked. Sensors, created via the Generator, extract information, save and
load data to and from the session and ultimately perform a context-update in the
Context Management System.

Typically, Sensors are not stand-alone. Via Sensor composition, complex context-
extracting networks can be created by combining rather simple Sensors.

5.1.1 Service Interceptor

The Service Interceptor is a component that intercepts outgoing service invocations:
Web services are not invoked directly, but the invocation is relayed through the
Interceptor. This design makes it feasible to observe the actual invocation request
and response (from now on referred to as service interaction). As already mentioned
in the last chapter, this might violate privacy ethics, yet is required to enable software
sensing in third-party Web services.

5.1 The Context Sensor Development Framework 29

Figure 3: CSDF Concept

The Service Interceptor provides a Web service interface - the Logging Service. It
contains operations to subscribe for and unsubscribe from service interactions. A
client subscribing to the Logging Service needs to implement the Logging Subscriber
Web service. The latter contains an operation to receive one-way notifications of
service interactions.

If a Web service is invoked through the Logging Service, it will send two noti-
fications to the registered logging subscribers - one containing the request and one
containing the response. Apart from the actual SOAP document, the interaction
also contains message and correlation ids, the message type, the timestamp, etc. A
detailed specification of the service interface and the fields of a service invocation is
given in inContext D5.3 [43].

The WSDL definitions for both the Logging Service and the Logging Subscriber
can be found in $CSDF/WSDL/Logging/.

Note The Service Interceptor is not a component of CSDF, but merely a tool used
to realise context-sensing with CSDF. Thus CSDF does not contain an im-
plementation of the Service Interceptor. In our design, we used the Service

5.1 The Context Sensor Development Framework 30

Interceptor of the inContext framework. Yet, the developer is free to create
his own implementation of the Service Interceptor, provided that it follows the
specifications.

5.1.2 Controller

Being the heart of CSDF, the Controller is responsible for numerous tasks:

� Registration and interaction with the Service Interceptor

� Matching service request and response

� Providing a Sensor registry

� Management of Sensors

� Extracting additional context

� Filtering and invoking Sensors

� Session and composition management

Registration and Interaction with the Service Interceptor

Upon initialization, the Controller automatically registers at the Logging Service
interface. The Controller itself implements the Logging Subscriber interface and
thus receives all service interactions that are logged at the Service Interceptor.

Matching Service Request and Response

Request and response are sent as separate notifications and therefore need to be
combined to a complete service interaction. For this reason, the Controller has to
temporarily save the request until the matching response is received. Matching is
done via the message-correlation-id given in one of the fields of the service interaction.

The operation of the Logging Subscriber to receive notifications is defined as one-
way. Hence, there is a certain possibility that response-notifications might get lost
on the way and thus may never be received by the Controller. If requests without
responses pile up, resources of the Controller are wasted and its functionality might
get affected eventually. To prevent such a scenario, the Pending Message Timer
implemented in the Controller deletes pending requests after an adjustable time-
period.

5.1 The Context Sensor Development Framework 31

Sensor Registry

The Controller also acts as Sensor registry. Sensors developed and deployed by CSDF
automatically register at the Controller upon initialization. During the registration
process the Controller loads certain parts of the Sensor’s specification and attaches
them to the registration entry of the Sensor. Hence the Controller has comprehensive
information about all Sensors registered with it.

Access to this information is provided via a Web service interface. It provides
operations to list all Sensors registered and to get the specification of a particular
Sensor. In addition, it is possible to query Sensors for compatibility. Given a par-
ticular specification, the Controller will list all Sensors compatible to it. This is, for
instance, used in the ConfigAssistant as we will see in 8.7 Deployment.

A detailed overview of all Web services provided by the Controller can be found
in 7.7 Controller.

Sensor Management

In CSDF, Sensors are developed by different teams and deployed on different servers.
Older Sensors become obsolete as newer ones are developed. To guarantee stability
in such a dynamic environment, the Controller has to keep track of all Sensors
registered with it. Outdated registrations of Sensors have to be deleted both to
save resources and to keep the registry clean (as other services might rely on it).
Yet, as dealing with distributed systems, services might only become temporarily
unavailable. The Controller therefore has to distinguish between temporarily (e.g.,
the internet connection is down) and permanent (e.g., the server hosting the service
is removed) unavailability. An example is given in Figure 4.

Figure 4: Is-Alive Concept

5.1 The Context Sensor Development Framework 32

To realise this concept, the Controller queries its Sensors in certain time intervals. If
a Sensor is not available at one point in time, the Controller will not instantly remove
it, but rather increase its service-unavailable counter. If the service is available at one
of the next requests, the counter will be reset. Yet, if the service remains unavailable
and therefore the counter reaches a certain predefined value, the Controller will
permanently remove it. To reuse the service in such a case, it must be re-registered.
This mechanism of the Controller is called the Is-Alive concept.

Extracting additional Context

After combining a request with a response to a complete service interaction, the
Controller extracts additional context. In CWE, two context attributes play an
important role:

� User: This attribute describes the actor who invoked the service. It is coded
as an URI (email-address, URL of owl-node, etc.)

� Activity: This describes the activity in which an action took place. It is coded
as an URI (activity-URL, URL of owl-node, etc.)

The Controller will extract those two values, if given, from the service interaction.
For encoding, context tunnelling via SOAP-header fields as described in inContext
D4.1 [40] is used. An example of encoding an activity and a user in a SOAP document
shall be given below:

<?xml version=’1.0’ encoding=’UTF-8’?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>

<ns1:user_id xmlns:ns1="incontext"

soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0">

http://www.vitalab.tuwien.ac.at/projects/incontext/owl/smallcontext.owl#User8

</ns1:user_id>

<ns1:activity_id xmlns:ns1="incontext"

soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0">

http://www.in-context.eu/activity/Activity#1595

</ns1:activity_id>

</soapenv:Header>

<soapenv:Body>

...

</soapenv:Body>

</soapenv:Envelope>

5.1 The Context Sensor Development Framework 33

Filtering and invoking Sensors

In the next step, the Controller applies the Filters (see 5.3 Sensor Filtering) of the
active Sensors on the service interaction. (The concept of active and passive Sensors
will be explained later. Hence an active Sensor is just a special type of registered
Sensor). The Filter of a Sensor is given via its sensor description, which is loaded
from the Controller during registration. If the Filter matches, the corresponding
Sensor will be invoked by the Controller.

Although it puts a considerable strain on the Controller to apply the Filters of all
active Sensors onto the service interaction, this is necessary trade-off. The following
shall see an explanation of why this approach is more efficient than to leave filtering
to the Sensors.

1. Approach: No pre-filtering done in the Controller: Below find an analysis of how
many service calls are required if the Controller does not use pre-filtering:

N ... amount of active Sensors

N x create session

N x save invocation data to session

N x invoke Sensor

N x load Data from Session

4 N x service calls

2. Approach: Pre-filtering done in the Controller: The Controller will pre-filter
Sensors by using the Filter from the Sensor description:

N ... amount of active Sensors

Z ... amount of pre-filtered Sensors (Z << N)

Z x create session

Z x save invocation data to session

Z x invoke Sensor

Z x load Data from Session

4 Z x service calls

With Z being far smaller than N, pre-filtering drastically reduces the amount of
service calls needed. The drawback of this design is that the Controller has to apply

5.1 The Context Sensor Development Framework 34

N filters to each interaction received. The higher the number of active Sensors, the
greater the strain on the Controller.

After pre-filtering, all successfully selected Sensors will be invoked by the Con-
troller in their own session. The actual interaction sequence can be seen in 5.6.3 Ser-
vice Interaction and Sensor Invocation.

Session and Composition Management

An important task of the Controller is the management of invocation-sessions (not to
be confused with sessions from the Session Service) and dealing with the invocation-
chaining of Sensors. This part of the Controller will be explained in greater detail in
5.3 Sensor Filtering and 5.4 Sensor Composition.

5.1.3 Session Service

In CSDF, data is organised in sessions. The component responsible for data and
session management is the Session Service. It implements the following operations:

� Create a new session

� Delete an existing session

� Save variables in a session

� Load variables from a session

� Delete variables from a session

Note There is no operation for listing all variables stored within a session. When-
ever a client wants to load data from a session, it must exactly specify the
variables to load. This is a protection to prevent spying and data-tampering.

Sessions are accessed via a unique session-id. Also, sessions can only be deleted with
the commit-key that is decided upon creation. Hence, only the creator of a session
has the right to delete it. This prevents unauthorised deletion via third parties.

Sessions have a time-lease. After expiration, the session is automatically deleted
by the Session Service. Apart from the lease, sessions also provide a refresh-time.
On access (e.g., loading or saving data) the lease of the session is extended in case
its value is already lower than the refresh-time. Thus only sessions with low or no
access at all will be subject to deletion.

5.1 The Context Sensor Development Framework 35

Example Access to a session with a time-lease of 100 and refresh-time of 20:

Access Time Session valid until
1 0 100 (open)
2 30 100
3 70 100
4 90 110 (extended)
5 95 115 (extended)
6 110 130 (extended)
7 150 session already expired

Data in sessions is organised in variables. A variable contains the following fields:

� Dataid. The id is used to uniquely identify a variable within a session.

� Data. This is the untyped data of the variable. It may contain anything from
atomic values to complete XML documents.

� QoS-Attributes. A variable might be attributed with a list of Quality-of-
Service attributes (e.g. confidence, precision).

5.1.4 Sensor

The actual task of context-sensing and processing of CSDF is done in the Sensors.
Sensors are Web services that are created using the tools provided by CSDF. They
extract information from service interactions, accumulate data and ultimately per-
form a context-update in the Context Management System.

A schematic black-box model of a Sensor is given in Figure 5. It illustrates the five
interfaces of the Sensor:

� Input. This part serves as data input for the Sensor. Additionally, the Sensor
specifies requirements on the input data that must be met since the function-
ality of the Sensor relies on it. If data satisfying the requirements is provided,
the Sensor can be invoked.

� Output. After execution, resulting data is delivered at the output of the Sen-
sor. The specification of the Sensor exactly determines what kind of output
data the Sensor produces. This data is asserted by the Sensor and is therefore
guaranteed.

5.1 The Context Sensor Development Framework 36

Figure 5: Sensor Interfaces

Both input and output of the Sensor use the same data format. Combined with
the concept of linkage, this enables compositions similar to the Sentient Object
Model [6]. For more information about this topic, see 5.4 Sensor Composition.

� Control. This port is used to gain global invocation-independent control over
the Sensor. It provides access to information about the state of the Sensor (e.g.
number of executions) and provides control over its behaviour (e.g. switching
on/off a feature).

� Service. The Sensor might integrate other services during its execution. Such
a service can either be another Sensor or a Web service.

� Management. This interface is used to initialize the Sensor and manage its
activation-state.

This was only a simplified overview of the interfaces of a Sensor. A more compre-
hensive, schematic overview of the internal structure and external dependencies is
shown in Figure 6.

Input / Output Ports

Ports are the input and output interfaces of Sensors. A Sensor can have several ports
through which it can be invoked. Two different types of port are realised:

5.1 The Context Sensor Development Framework 37

Figure 6: Schematic Overview of the Sensor

� Extraction Port. This port is used for context extraction, i.e. extracting,
calculating or inferring additional information from the given input data. The
extracted data then serves as the output of this port type. An extraction port
provides both a specification for the input data that it requires (input port)
and the output data it delivers (output port).

� Update Port. This port is designed for context-updates. In contrast to the
extraction port, it only provides an input but no output port and therefore
does not deliver any output data. With the data given through the input port,
this port performs a context-update, i.e. altering data in a permanent data
storage (e.g., reporting a context-change to the Context Management System).

For a detailed overview of the invocation sequence during invocation, please see
5.6.3 Service Interaction and Sensor Invocation.

5.1 The Context Sensor Development Framework 38

Session Module

Data is not directly transmitted through the ports, as might be suggested by the
previous diagram. Rather, all data is managed by the Session Service. Upon invo-
cation, the Sensor loads the data specified in the input port from the Session. After
execution, it saves back the result - specified by the output port - to the session.

Compared to the process of directly transmitting data upon invocation, this approach
offers the following advantages:

� The Sensor mainly deals with variables either containing SOAP documents or
parts of SOAP or XML documents. Typically, such kinds of documents are very
large. In addition, many Sensors might be joined together in a composition in
order to extract context.

Without sessions, every invocation must include all variables. Even if a Sensor
does not need a particular variable, it still must be transmitted as subsequent
Sensors in the invocation chain might require it. This causes extensive data-
transfer as long Sensor-chains might contain many variables of considerably
large content. Using the session approach, only truly required data needs to
be loaded from the Session. So, for instance long XML documents are only
transmitted to the Sensor when really needed.

� Secondly, delivering the minimum of data to the Sensor is a contribution to
confidentiality. Without sessions, a Sensor always receives all data, which might
also contain confidential information. Using sessions, however, a Sensor only
loads data actually needed. It is not aware of the remaining data in the session.

The drawback of this design lies in the number of service-calls. If the data is ex-
changed via a session, extra service-calls to the Session Service are necessary:

Upon invocation:

1 x load input data

1 x save output data

1 x load output data (assertion)

3 x service calls

Yet, considering that comparably only little data is transmitted in session service-
calls, we believe that the advantages outweigh the drawbacks, for reasons of which
the Session Service has been introduced.

5.1 The Context Sensor Development Framework 39

Filter / Assertion

Ports provide a service contract, i.e. certain input data is required and certain output
data is guaranteed. The Sensor must be able to rely on the given input and other
Sensors might rely on its output. Thus, checking both input (before processing) and
output (after processing) is imperative. This is done via Filters (for the input) and
Assertions (for the output). If either the input check or the output check fails, the
execution is aborted. More information about Filters can be found in 5.3 Sensor
Filtering.

Databinding

Input and output data during Sensor invocation is communicated through the Ses-
sion Service. As already mentioned before, the Session Service is untyped and can
therefore only handle string-coded values. However, the specification of the input
and output ports contains a type system. Thus, the developer coding the Sensor
logic would have to work with string though the values are actually type checked.
This frequently leads to error-prone code, with neither compiler and IDE support
given.

To solve this matter, databinding is introduced: During the development process of
the Sensor, type-classes are generated for all ports. Upon invocation, the Sensor then
automatically casts the input to an object of the appropriate type and the resulting
object back to string format. The advantages brought about by this approach are as
follows:

� The programmer does not have to deal with string-coded values. Instead,
real types can be used even for complex XML-documents, which dramatically
reduces the complexity of data handling.

� The compiler / IDE supports the developer in the coding process. Invalid
data assignments result in compiler errors easily noticed by the developer, thus
rendering the program more error-proof.

More information about type systems can be found in 5.2.5 Resources and Type
System.

Extension

This part of the Sensor is the actual implementation of the ports’ specific logic.
Here the programmer codes the business logic of the Sensor: In extraction ports,

5.1 The Context Sensor Development Framework 40

new data is generated from existing data. This can be done by combining, inferring
or integrating data from other sources. In contrast, an update port performs a
permanent change in a different system, i.e. a context-update.

Global Parameter

Parameters are global attributes that hold information about the state of the Sensor
and also affect the behaviour of the extensions. Parameters are independent of
particular invocations and are mainly used in the extensions of the Sensor. They
can also be accessed from outside using the Web services of the Sensor. Examples of
Parameters are:

� Description of the functionality of the Sensor

� Number of successful / failed invocations

� Average execution time

� Precision of the Sensor

� Switching on/off a particular feature of the Sensor

Parameters might be read-only (e.g. description), write-only (e.g. switching on/off
a feature) or read-write (e.g. precision of a calculation). Sensors already implement
some default Parameters, but it is also possible to define Sensor-specific Parameters.

Example An extension of Sensor X does a mathematical approximation. The global
Parameter P controls the precision of the calculation. Decrementing P leads
to fewer calculation-iterations, while a high value of P would result in more
iterations.

Integrated Services

Extensions might need to interact with external components, for example with other
Sensors or Web services. The Sensor supports integration of such services to a certain
extent by including classes required for invocation. In other words, it automatically
generates service-client stubs. This, in turn, drastically reduces the programming
effort for the developer when using external services.

Initialization

This module deals with initialization and activation of the Sensor. During initial-
ization, the Sensor loads the SensorModel - the specification describing all elements

5.1 The Context Sensor Development Framework 41

of the Sensor - and afterwards registers at the Controller. In addition, Activation /
Passivation is also done using this component. Detailed information about the Sen-
sorModel can be found in 5.2 Sensor Model, and for information about Activation
and Passivation, please see 5.4.5 Active and Passive Sensors.

5.1.5 Generator

The Generator is a tool to create new Sensors. It is used during the development
phase and generates the Sensor code-base for a given SensorModel. This is done in
several steps:

1. Verify the SensorModel

2. Extend the SensorModel

3. Create types for the Sensor

4. Create stubs for integrated services

5. Create Sensor-specific code

6. Backup of implemented code

7. Finalise code-base

More detailed information about the SensorModel can be found in 5.2 Sensor Model.

Note The current implementation of the Generator does only support the creation
of Sensor code-bases for the Java language. Future versions of CSDF will also
support generation of Sensors in other programming languages.

Verify the SensorModel

In a first step, the SensorModel is verified. This is necessitated because there are some
constraints that cannot be checked via the EMF meta-model. In the verification-
process, the following things are checked:

� Check whether the used ids are valid (e.g. portid, standardid)

� Check whether ids are unique (e.g. port-id)

� Check if references are valid (e.g. reference to a Standard)

5.1 The Context Sensor Development Framework 42

� Check if certain fields are in a valid format (e.g. type of variables)

� Check whether there is a circular dependency in the variable definitions

Extend the SensorModel

Subsequently, the SensorModel is enhanced and additional information is included
in the code-base:

� Download referenced online resources (e.g. WSDL documents, XML Schemas)

� Extract XML Schema from WSDL resources

� Resolve reference-instructions in variable definitions

� Include default Parameter in SensorModel (e.g. author, name, description)

� Include default resources in SensorModel (e.g. XML Schema definition)

� Generate XML Schema file for the Sensor

Create Types for the Sensor

The XML Schema file generated in the last step contains a type definition of all
input and output ports and variable sets of the Sensor. This document is now used
to generate the type classes for a particular programming language. In Java, this is
done via the SchemaCompiler provided by the Axis2 framework 9.

Create Stubs for integrated Services

In order to conveniently use external services during the coding phase, the Generator
creates client-stubs for services specified in the SensorModel. In Java, this is realised
via WSDL2Java, a program provided by the Axis2 framework.

Note In some cases the compiler may be unable to generate code from a given
WSDL. Even if generation is possible, the generated code might contain minor
errors. Rather than being a bug of CSDF, this is a flaw of WSDL2Java, which
does not yet fully support the complete WSDL2 standard.

9http://ws.apache.org/axis2/ (last access: 2009-04-08)

http://ws.apache.org/axis2/

5.2 Sensor Model 43

Create Sensor-specific Code

In the next step, Sensor-specific code is generated from the SensorModel. This is
done using JET 10, a code generator of the M2T (Model To Text) project of Eclipse.
The following documents are created:

� Extension-classes of the ports

� Extension controller and supportive methods

� Axis2 service-description and WSDL files of the Sensor

Backup of implemented Code

In case that the Sensor was already generated before, the Generator automatically
creates a backup of the port-extension classes. This is very useful as the developers
can just re-generate the Sensor code-base without worrying about their code being
overwritten. Any additional files that were not part of the Sensor code-base will be
untouched by the Generator. Yet changes made in the code-base other than in the
port-extensions will be overwritten. Therefore, if changes were made in the Sensor
core, the developer is advised to perform a manual backup before re-generation.

Finalise code-base

In a last step, the Generator combines the files generated in the previous steps
with the code of Sensor implementation. The result is the code-base of the Sensor
implementing the given SensorModel. What remains to be done is to implement the
actual business-logic of the ports.

5.2 Sensor Model

Sensors are described by the SensorModel. The SensorModel is the formal specifi-
cation of a Sensor, defining ports, integrated services, resources, etc. in a language
independent model. The SensorModel thus reflects the capabilities and interfaces
of the Sensor on an abstract level. As CSDF is model-driven, the developer first
specifies the SensorModel and then generates the Sensor code-base out of it. We will

10http://www.eclipse.org/modeling/m2t/?project=jet#jet (last access: 2009-04-08)

http://www.eclipse.org/modeling/m2t/?project=jet#jet

5.2 Sensor Model 44

look at the development stages in CSDF at a later section; first, we shall discuss the
SensorModel in detail.

CSDF is based on EMF (Eclipse Model Framework) 11. The SensorModel is a
model-instance compliant to an Ecore meta-model. It is developed using the graphi-
cal model editor of EMF and serialised using XMI (XML Metadata Interchange) 12.

The SensorModel comprises the following four parts:

� Input/Output Specification

� Control Specification

� Service Specification

� Sensor Specification

5.2.1 Input/Output Specification

The specification defines the input and output ports of the Sensor. A port comprises
a list of variable definitions. In case of an input port, this expresses the data require-
ments of the port. In case of an output port, it shows the data that is produced by
the Sensor. This information will also be used as Filter during Sensor invocation.
(For more information, please see 5.3 Sensor Filtering.)

The specification contains:

� Specification of Filter attributes of the Sensor (see 5.3.4 Filter Techniques)

� Definition of extraction and update ports

� Definition of variables in the input and output parts of a port

� Definition of additional restrictions on the value domain of variables

� Definition of sets of variables

� Definition of variable-references - in variable sets, input or output ports

11http://www.eclipse.org/modeling/emf/ (last access: 2009-04-08)
12http://www.omg.org/technology/documents/formal/xmi.htm (last access: 2009-04-08)

http://www.eclipse.org/modeling/emf/
http://www.omg.org/technology/documents/formal/xmi.htm

5.2 Sensor Model 45

5.2.2 Control Specification

This part deals with the definition of Parameters and their access rights. It contains:

� Specification of a key used for Activation

� Definition of Standards, i.e. lists that contain Parameters

� Definition of Parameters

� Definition of access-rights for Standards

Standards are sets of Parameters that belong together. A default Standard supported
by all Sensors is standard.status. It specifies the following read-only attributes:

� Name and description of Sensor

� Author and time when Sensor was published

� Full service address

� Number of successful as well as failed invocations

� Last error message

� Average and latest processing time

Apart from the predefined Standard, it is also possible to define your own Standard
with Sensor-specific Parameters.

5.2.3 Service Specification

Integration of external services is done in this part of the SensorModel. It contains:

� Specification of the Controller Web service

� Definition of external Web services to integrate

� Definition of external Sensors to integrate

External services are used by the Sensor during execution. The Sensors logic might
rely on these services, therefore it is dependent on them.

5.2 Sensor Model 46

5.2.4 Sensor Specification

In here, general properties of the Sensors as well as used resources are specified. By
including an external resource, its type system is made available for usage in the
SensorModel. This specification contains:

� Specification of author, name, description and service URL of the Sensor

� Definition of external resources for integration

5.2.5 Resources and Type System

As already shown in the previous sections, the SensorModel defines the following
data containers:

� Variables in Input / Output Specification

� Parameters in the Config Specification

In order to realise such data containers, a typing concept is needed. There are three
possible approaches to deal with typing in CSDF:

No Type System:

The first approach is to provide no type system at all. All values of the respective
data containers are treated as strings. This is a very simple approach and raises the
following problems:

� As there are no types, it is not possible to constraint data containers to a
certain domain (e.g. integer, string, particular XML element). As a result, any
content is considered as ’valid’.

� Databinding, as described in 5.1.4 Sensor, is not realisable with this approach.

Self-implemented Type System:

The next approach is to implement a fixed set of basic types in CSDF. This solves
the problems of the first approach, yet has some drawbacks of its own:

� It has to be decided how many and what kind of types are needed. This proves
to be complicated as it is difficult to a priori estimate what kind of types are
necessary to efficiently and conveniently work with CSDF.

5.2 Sensor Model 47

� Is the type system flexible enough to be extended with new types? If types
are directly implemented in the SensorModel, new types cannot be added. If
the types are implemented on code level, they might vary in implementation
in different programming languages.

� The programming and testing effort for the type system is considerably high.

Usage of existing Type System:

A more sophisticated approach is to integrate an already standardised and widely-
used type system. The advantages of this approach are that comprehensible and
already tested implementations of the type system are available, and that the type
system most likely is flexible enough to serve the needs of CSDF.

On the basis of this analysis, CSDF has implemented the third approach. As a type
system, XML Schema is used. The reason for this is that it is standardised and
provides sophisticated support for XML content (which is the main form of data
CSDF deals with). In addition, it is easily extendible and several implementations
for different programming languages are already available.

Figure 7: Integration of Resources

Apart from the basic data-types that are an integral part of XML Schema, CSDF
also supports the integration of external XML Schema types. As shown in Figure 7,
CSDF can integrate the following resources into the SensorModel:

5.3 Sensor Filtering 48

XML Schema:
To add additional types to the type system of CSDF, XML Schema documents
can be included into the SensorModel. The referenced XML Schema can either
be a file or specified via an URL.

WSDL:
Upon the integration of a WSDL-file, CSDF parses the document and extracts
the schema-part out of it. The result is then automatically saved to a separate
file and included as standard XML Schema document. Hence, it is possible to
use types for SOAP messages exchanged in Web service invocations.

Sensor:
At last, it is also possible to include type systems from other Sensors. This is
done by specifying the service address of the Sensor and the namespace of the
schema to load. Every deployed Sensor provides the operation GetResource-
ByNamespace, which can be used to directly load a particular resource from
the Sensor. It is therefore possible to either include the main type system of
the specified Sensor or one of its resources.

Every resource loaded into the SensorModel is marked with a prefix. The default
prefix for the standard XML Schema type is xsd. Prefixes uniquely refer to their
corresponding type system. The type-field for both variables and Parameters has
the format <prefix> ’:’ <typename>. The typename must refer to a valid type in the
type system referred to by prefix.

Note The current implementation of CSDF does only support XSD simple types for
Parameters. Complex types cannot yet be processed by CSDF and therefore
will be treated as strings without a proper type check. Future versions of CSDF
will mitigate this shortcoming by supporting both simple and complex types
for Parameters, as is now the case with variables.

5.3 Sensor Filtering

Sensors extract context from service interactions. But not every service interaction is
suitable for every Sensor. A Sensor therefore has to define rules that determine what
kind of service interactions it is interested in. This process is referred to as filtering.
Strictly speaking, filtering does not only apply to service interactions, but generally

5.3 Sensor Filtering 49

to any kind of input of the Sensor. This is important as not all Sensors process
service interactions; passive Sensors in particular might deal with rather arbitrary
output of other Sensors when used in compositions. Compositions will be discussed
in greater detail in the next section; in the following we will focus on the aspect of
filtering.

5.3.1 What is a Filter?

The Filter of a Sensor specifies the elements (or in terms of CSDF, the variables) a
Sensor is interested in. So basically the Filter contains a list of variable definitions.
Unlike the variables used in sessions, the variables of filters do only consist of a
unique identifier and a type. There is yet no implementation of the QoS-attributes
concept for Filter variables. An example of a simple Filter is given in Table 1.

Name Type
person.name xsd:string
person.sex mt:TSex
person.age xsd:integer
person.items mt:TItemList

Table 1: Example of a simple Filter

The Filter presented in Table 1 is sensitive to data conglomerations (in short, datasets)
that include those four variables. In other words, the Sensor will only react to
datasets containing, at a minimum, the variables listed. A Filter thus specifies the
input requirements of a Sensor. Only if the Filter is satisfied, the Sensor might be
invoked. If a dataset fails to meet the Filter requirements, the Sensor cannot be
invoked.

Table 2 gives examples of datasets and shows their compatibility to the Filter
defined in Table 1. The first dataset does exactly specify all the variables of the
Filter and is therefore compatible - it matches the Filter. Dataset 2 specifies an
additional attribute, person.size, apart from the requested variables, and thus also
matches the Filter. In contrast, dataset 3 does not contain the required variable
person.age and consequently does not match the Filter.

5.3.2 Definition of Filter

Filters are indirectly defined in the Input/Output Specification of the SensorModel;
indirectly, because they are actually inferred from the port specification. A port

5.3 Sensor Filtering 50

Variable Dataset 1 Dataset 2 Dataset 3
person.name Peter Lisa Mark
person.sex male female male
person.age 20 24
person.items {glasses, book,

suitcase}
{magazine} {dog, cat}

person.size 171cm 182cm
person.weight 70kg
matches? yes yes no

Table 2: Datasets and Filter Matching

usually contains an input and an output port, both specifying a list of variables.
The variables of the input port in turn form the Filter for the Sensor. As a Sensor
might have more than one port, it can also have more than one Filter. While the
variables within a Filter are conjunctive, the Filters of a Sensor are disjunctive. In
order words, the Sensor reacts if at least one of its Filters matches a given dataset.

5.3.3 Filters and Session Management

The Controller invokes Sensors upon receival of a service interaction. Via the pre-
filtering process (see 5.1.2 Controller), it is possible for the Controller to determine
which Sensors are interested in a given interaction. As already mentioned before, the
data used during invocations is stored in sessions. In case of at least two simultaneous
invocations, the Controller has to decide how to manage the sessions for the Sensor
invocation:

Separate Session for Invocations: In this approach, a new session is created for
every invocation of a Sensor. The advantage of this design is that invocations
do not interfere with each other. On the other hand this is also a serious
drawback, as there is no way for a Sensor to extract context from two or more
sequential service interactions.

One Session for all Invocations: Here all invocations of a Sensor are executed in
the same session. A Sensor can therefore extract context coded in a series of
service interactions. Yet, this approach brings about several serious problems:
First, invocations might overlap and thus overwrite each other’s result as they
access the same session. Second, older and outdated data is not deleted and
might interfere with new data. And finally, sessions become very large and use
up the resources of the Session Service as they are not deleted.

5.3 Sensor Filtering 51

As we can see, both approaches have some serious drawbacks. That is why we have
to introduce some additional parameter for a finer control of the session management.

5.3.4 Filter Techniques

To solve the problem of session management, the SensorModel provides three addi-
tional parameters:

� User-Awareness - specifies whether the Sensor is reactive to users

� Activity-Awareness - specifies whether the Sensor is reactive to activities

� Session-Frame - specifies the length of the session-time frame

User-Awareness

CWE typically involves many actors. Actions performed by one user have a higher
correlation than actions of different users, which suggests a distinction between users.
With this flag it is possible to make the Sensor aware of different users. In order
words, if user-aware, the Sensor will group interactions by users. It is therefore
possible to analyse several sequential actions of one user.

The Controller will interpret this attribute as follows: If set to user-aware-mode,
the Controller will open one session per user. Anonymous interactions will not result
in an invocation. If the flag is not set, the Controller will open only one session for
all interactions.

Example A user-aware Sensor:

Call User Session
1 James 1 (open)
2 James 1
3 Mark 2 (open)
4 James 1
5 (anonymous) -

Example A Sensor that is not user-aware:

Call User Session
1 James 1 (open)
2 James 1
3 Mark 1

5.3 Sensor Filtering 52

Activity-Awareness

Similar to the user concept, CWE typically implement some form of activity-concept.
Activities comprise actions that are directed to the same goal. We can therefore
assume that actions within an activity are more correlated to each other than actions
of different activities. Thus it makes sense to implement a mechanism to distinguish
between different activities.

Similar to user-awareness, the Controller will open one session per activity if the
Sensor is set to activity-aware-mode. In this mode, the Controller will not invoke
the Sensor for interactions outside an activity context. If the activity-mode is turned
off, the Controller will as usual create only one session for all interactions.

Example An activity-aware Sensor:

Call Activity Session
1 Project1 1 (open)
2 Project1 1
3 Management 2 (open)
4 Project1 1
5 (anonymous) -

Example A Sensor that is not activity-aware:

Call Activity Session
1 Project1 1 (open)
2 Project1 1
3 Management 1

Session-Frame

In CWE, activities contain many actions that are directed to realise a common goal.
While activities are usually too coarse for context-extraction, actions are too fine.
The intention of a user typically manifests itself in a series of actions that all are
directed to the same objective. It is reasonable to assume that such tasks are limited
in time. In order to create a layer of discrimination finer than activity and coarser
than actions, a so-called session-frame has been introduced.

The session-frame specifies a time frame for grouping service interactions. The
first interaction opens a new session. All subsequent interactions falling into the time-
frame are executed in the same session. The first interaction that occurs outside the
time-frame will open a new session with its own session-frame. A session-frame of
0 will lead to a new session for every interaction. If the Sensor has a session-frame

5.4 Sensor Composition 53

and is furthermore aware of users and/or activities, the Controller will only group
interactions that satisfy the awareness-parameters. In other words, only interactions
with the same user and/or the same activity will be grouped in a session frame.
Different users and/or activities will lead to the creation of a new session with its
own session-frame.

Example A Sensor with a session-frame of 100, user-aware but not activity-aware:

Call Time User Activity Session
1 0 James Project1 1 (open)
2 30 James Management 1
3 50 Lisa Project1 2 (open)
4 80 James Project1 1

100 1 (close)
5 120 James Project1 3 (open)
6 120 Lisa Management 2

150 2 (close)
7 200 Lisa Management 4 (open)

Note Session 1 spans from 0-100, Session 2 from 50-150,...

Example A Sensor with a session-frame of 0, both user-aware and activity-aware:

Call Time User Activity Session
1 0 James Project1 1 (open, close)
2 10 James Project1 2 (open, close)

With the help of these attributes, the developer has close control over the manage-
ment and grouping of service interactions. The approach thus successfully solves the
problems presented in the previous section. The only point that still remains to be
solved is the problem of interleaving interactions. We will deal with this problem in
section 5.4.6 Composition at Runtime.

5.4 Sensor Composition

5.4.1 Composition in General

Sensors are composable. Two Sensors are composed if the output of one Sensor serves
as the input of another Sensor. A simple example can be seen in Figure 8. Here the

5.4 Sensor Composition 54

output of Sensor 1 is delivered to Sensor 2 and Sensor 3. Invocation of Sensor 1 thus
also leads to the subsequent invocation of Sensor 2 and 3.

Figure 8: Sensor Composition

Composing Sensors has several advantages. First of all, complex extraction tasks can
be split into smaller chunks, each done by a separate Sensor. An example: Sensor A
extracts the header of emails, and Sensor B extracts the attachments of emails. We
can then build a Sensor C which adds communication-actions to the context-system
by using the sender and recipient of A and the attachment of B. Although A, B and C
are each very simple Sensors, complex functionality can be created via composition.

This already leads to the second advantage of compositions: Sensors can be
reused. Sensors like A and B can be used by various other Sensors as well. For
instance, a Sensor D could use the attachment of B, upload it to a document man-
agement service and finally add it as a resource of an activity in the Context Man-
agement System.

As a Sensor cannot only have one port, functionality can even be split within the
Sensor - each port focussing on a special task. As Figure 9 shows, a Sensor can also
be linked to itself.

Figure 9: Sensor Composition

When making use of compositions, the actual Sensor logic can often be kept very
simple with the Sensor focusing on one task only. This, in turn, results in fewer

5.4 Sensor Composition 55

bugs. In addition, it is easily possible to test Sensor-functionality with the test tools
of CSDF, as we will see in section 5.5 Development Circle.

5.4.2 Compatibility of Sensors

In the context of composition, an important point is the question of compatibility.
In order for two Sensors to be successfully linked, the corresponding ports need to
be compatible. In the following, we are going to analyse how compatibility can be
defined in the setting of CSDF.

As described in the section 5.3 Sensor Filtering, a Sensor can only be invoked if
the input data matches the Filter of the port. For a Sensor A to be compatible with
a target Sensor S, A has to provide at least all the variables specified in the input
requirements of S. If A fails to fully cover the requirements of S, it is not compatible
with S. In this sense, we can define two levels of compatibility:

� Direct Compatibility. The output port fully covers the input requirements.

� Inferred Compatibility. The accumulated output of a Sensor chain covers
the input requirements.

Direct Compatibility

This type of compatibility is given if the output specification of the first Sensor
contains at least all variables listed in the input specification of the second Sensor.
As a result, the first Sensor directly covers all the requirements of the second Sensor.

Example An example is given in Table 3: Sensor A does specify all variables re-
quired by Sensor S and is therefore compatible. Sensor B lacks the required
attribute mail.body and is therefore not compatible with S.

Inferred Compatibility

Even if no direct compatibility is given, two Sensors might still be compatible with
one other: We assume that a Sensor C, rather than being directly invoked by the
Controller, is composed with B, which is, in turn, composed with A. If this is the
case, C will be invoked as part of the invocation chain A - B - C. Each invocation of a
Sensor adds information to the session, so when C has finally finished the execution,
the data of A, B and C is stored in the session. So even if the target Sensor S is not
directly compatible with C, it might be compatible to the accumulated data of A, B
and C. Inferred Compatibility is therefore given if the required data is not directly

5.4 Sensor Composition 56

Variables A B S
mail.subject X X X
mail.sender X X
mail.recipient X X
mail.body X X
mail.attachment X
compatible? yes no

Table 3: Examples of Direct Compatibility

generated by the previous Sensor, but as the accumulated result of the invocation
chain.

Example In Table 4 Sensor C is inferred compatible with Sensor S in the invocation
chain ABC, as it accumulates all the data requested from Sensor S. On the other
hand, Sensor E is not inferred compatible with S because the invocation chain
ADE does not produce the required field leader.name.

Variables A B C ABC A D E ADE S
person.id X X X X
person.name X X X X X
person.location X X X X X
project.name X X X X X
project.person.role X X
project.budged X X X X
project.leader X X
leader.name X X X
person.hobbies X X
compatible? no no no yes no no no no

Table 4: Examples of Inferred Compatibility

Note In the current implementation of CSDF, only the detection of direct compat-
ibility is supported. In theory, the architecture of CSDF allows the detection
of inferred compatibility, yet no such algorithm has been implemented so far.
This will be the subject of future extensions of CSDF.

5.4 Sensor Composition 57

5.4.3 Loop Detection

One common problem when dealing with composition are loops. A loop is a series
of connections forming a circle. In a loop, execution does not come to an end; unless
detected, the system is therefore likely to fail or crash.

Example Some examples of loops can be seen in Figure 10:

Figure 10: Examples of loops

� Sensor 3 in the bottom left-hand corner has a link from its output port A to its
input port A. If input port A is invoked from some external source, the output
of A would be delivered to the input of A again, ... and again, ... and again,
... This is the most basic form of a loop.

� A more complex example of a loop can be seen at Sensor 2. Here port A links
to port B and port B links to port A. An invocation would lead to the execution
of A - B - A - B - A, etc. This example shows that, although Sensors can refer
to themselves, output ports have to be connected to input ports in such way
that no loop occurs.

� Naturally, loops can also occur in a sequence of Sensors. As seen in the example
of Sensor 1 and 2, the output of Sensor 2 is delivered back to Sensor 1. An
execution would lead to a never-ending sequence of executions of 1 - 2 - 1 - 2 -
1, etc.

In CSDF, composition is performed by the Controller. Therefore, loop detection is
quite simple and efficient, as the centralised Controller can detect loops in advance.
The loop-detection algorithm is implemented as follows:

5.4 Sensor Composition 58

1. In the beginning, the invocation-stack is empty. For a port of a Sensor marked
for invocation: Continue at 2.

2. Check if the current port is already listed in the invocation-stack. If yes, loop
is detected. If no, continue at 3.

3. Add the port to the invocation-stack.

4. Check for all links connected to the port. For all input ports of Sensors that
connect to the specified port: Execute 2-5. Afterwards continue at 5.

5. Delete the port from the execution-stack.

This algorithm can simply be implemented in a recursive function. Upon detection
of a loop, the Controller does the following:

Skip element
The invocation of the port which leads to the loop is aborted. Thus all elements
of the loop are executed exactly once. Other non-looping segments of the
invocation-chain are executed without interference.

Print warning
The Controller prints a warning message showing the elements which form the
loop. This can easily be reconstructed using the execution-stack.

Delete link
In a final step, the Controller deletes the link between the top-element of the
invocation-stack and the current port. Removal of this link destroys the loop.

In CSDF, links are defined directly at the Sensor. Yet, during the registration process
of the Sensor, the linkage-information is downloaded from the Controller, by means
of which centralised control of linkage as described in the algorithm becomes feasible.

5.4.4 Types of Links

In CSDF, there are two different types of links:

� Forward-To. It is defined on an output-port and forwards data to an input-
port.

� Forward-From. It is defined on an input-port and inquires data from an
output-port.

5.4 Sensor Composition 59

Figure 11: Forward Example 1

The differences between these two link-types will be discussed in a short example:

In Figure 11, a new Sensor is integrated by adding two links to existing Sensors.
In this example, the new Sensor uses the output of Sensor 1 as input and delivers
its output to Sensor 3. Both links are defined on the new Sensor: A Forward-From
is defined on the input port of the new Sensor, requesting data to be forwarded to
the port, whenever the specified port of Sensor 1 is invoked. On the output-side of
the new Sensor, a Forward-To is defined, automatically forwarding the invocation to
Sensor 3 whenever the new Sensor is invoked.

Both links are defined on the new Sensor upon initialization, so there is no need
to perform changes in the configuration of Sensor 1 or 2. This dramatically reduces
integration effort, as new Sensors can be added to the system seamlessly without
affecting the functionality of the overall system.

Figure 12: Forward Example 2

In contrast, the links in Figure 12 are defined on Sensor 1 and 2: Sensor 1 defines a
Forward-To link to automatically invoke the new Sensor whenever the specified port
of Sensor 1 is invoked. Sensor 2 defines a Forward-From on its input port and requests

5.4 Sensor Composition 60

forwarding of the invocation whenever the specified port of the new Sensor is invoked.

Both examples ultimately lead to the same result. Yet there is a fundamental differ-
ence between the link-types, as the owner of the link and the method of integration
are different.

5.4.5 Active and Passive Sensors

Using CSDF, the number of Sensors is likely to become considerably high. To be
able to use Sensors, they have to be registered at the Controller, which also serves as
Sensor registry. Upon receival of a service interaction, the Controller will execute the
pre-filter routine and invoke all matching Sensors. (The concept of pre-filtering has
been already discussed in 5.1.2 Controller). Yet, this approach raises the following
problems:

� Firstly, the Controller has to apply a Filter on every Sensor. Even though
filtering is a fast process, it is considerably costly performing it many times.
For instance, if there are 500 Sensors registered at the Sensor and there are
20 interactions per second, the Controller must execute the filter routine 2000
times per second.

� In many cases, it is not desired that a Sensor is directly invoked as the result
of a service interaction. For instance, a Sensor that converts GSP coordinates
to a region name does not need to be invoked by the Controller, but rather is
designed to be integrated by other Sensors.

To solve these matters, CSDF provides two types of Sensors:

� Active Sensors. These Sensors can be directly invoked by the Controller.
Whenever a service interaction is received, the Controller will check whether
active Sensors matches it and hence execute them.

� Passive Sensors. Passive Sensors are not directly invoked by the Controller.
They are excluded from the pre-filtering process.

Both active and passive Sensors share the same SensorModel and the same code-
base. They can both be used in compositions as well. They are practically identical,
the only difference being their activation-status at the Controller. Therefore, it is
possible to make passive Sensors active and active Sensors passive. These processes

5.4 Sensor Composition 61

are respectively called Activation and Passivation. For details about the WSDL
operations, please refer to 7.6.2 Activate and 7.6.4 Passivate.

By distinguishing between active and passive state, the amount of Sensors in-
volved in the pre-filtering process is considerably reduced. This is very important as
the Controller is also the bottleneck of CSDF.

Figure 13: Example of active and passive Sensors

Figure 13 shows an example of a Sensor configuration. There are two active Sensors 1
and 2, which will be directly invoked by the Controller. Sensor 1 forwards invocations
to Sensor 2 and 3. Sensor 2, in turn, invokes Sensor 4. In addition, the invocation of
Sensor 3 will also lead to the invocation of 5. As we can see, both active and passive
Sensors can be freely used in compositions.

5.4.6 Composition at Runtime

As already mentioned, links are directly defined at Sensors. This is done during the
initialization phase. (For more details about initialization, please see 7.6.1 Initial-
ize). Yet, more interesting is the actual handling of invocations in composed Sensors
during runtime.

There are two important questions that have to be answered:

I. How to deal with simultaneous invocations of a Sensor?

II. How to deal with invocations in case that two or more Forwards are defined on
the output of a Sensor?

Referring to I)

As can be seen in Figure 13, the Controller might receive two service interactions -
both matching active Sensor 1 - almost simultaneously. Given that the active Sensor

5.4 Sensor Composition 62

1 is configured in a way to accept two requests in one session, the Controller must
now decide how to execute Sensor 1 twice.

The problem is as follows: The Sensor does not directly receive the interaction data
from the Controller, but rather loads it from the session. After execution, it saves
back the result to the session. If the Controller decides to invoke it instantly every
time a service interaction is received, the following problems arise:

� First, the Controller has to save the data of the service interaction to the
session. As both interactions use the same variables, the second one would
immediately overwrite the data of the first. As a result, both executions of
Sensor 1 would load the data of the second interaction.

� Second, the output data of the first execution of the active Sensor 1 will be
instantly overwritten by the output data of the second execution.

� Both the first and the second point were made under the ideal assumption that
one service-call takes longer than two and that the execution time of a Sensor
is always the same. Yet this is not always the case. Race conditions make the
outcome even more unpredictable.

To solve this problem, service interactions that appear within one session must be
queued. Only when the first execution is finished, the second one can be started.

Referring to II)

As shown in Figure 13, Sensor 1 is linked to both Sensor 2 and 3. It has to be decided
how to invoke both Sensors after execution of 1.

The problems are similar to the previous ones. We have two invocations of two
different Sensors, yet only one session. If executed simultaneously, the following
problems arise:

� Both Sensors deal with data of the same session. It cannot be predicted which
Sensor is faster in loading, processing and saving the data. Results of one
Sensor might be unnoticed and directly overwritten by the other Sensor.

� Especially when considering that one of the Sensors is linked to a third one,
this becomes a serious problem. In the example given above, for instance,
Sensor 3 is linked to 5, which in return relies on the results of 3. If now

5.4 Sensor Composition 63

Sensor 2 overwrites the output of 3 before the invocation of 5 takes place, the
invocation of 5 might fail duo to violated input requirements.

To solve this problem, invocation stacks must be used. The invocation of the second
Sensor must be delayed until the invocation of the first and all subsequent invocations
are finished.

The Solution

The solution can now be programmed as follows:

UPON RECEIVAL OF SERVICE INVOCATION $si:

// pre -filtering

foreach $s in $active_sensors {

if($s->filter($si) == true) {

// if there is an open session , use it:

$sess = find_session($s, $si)

// otherwise: create session

if($sess == null)

$sess = create_session ()

// queue invocation

$sess ->exec_queue ->push($si)

}

}

INVOCATION WORKER THREAD OF SESSION $sess:

do{

// if new element in invocation queue

if($sess ->exec_queue ->size () != 0) {

$s = sess ->exec_queue ->shift ();

// start invocation procedure

invokeSensor(new stack(), $s);

}

}while(true)

ROUTINES:

invokeSensor($stack , $s) {

// implements loop -detection

if($stack ->contains($s) {

// detection of a loop

handle_loop($stack , $s)

}

else {

$stack ->push($s)

// execute port of sensor

execute($s)

foreach $ls in $s ->getForwards () {

invokeSensor($stack , $ls)

}

$stack ->pop()

}

}

5.5 Development Circle 64

This approach solves both of the problems presented above. An example can be seen
in Figure 14:

Figure 14: Invocation of active and passive Sensors

Figure 14 shows the actual invocation sequence of the example presented in Figure 13.
There are three nearly simultaneous requests R1 (for Sensor 1), R2 (for Sensor 2)
and R3 (again for Sensor 1). As the graphic shows, R2 is unrelated to the session of
R1 and R3, and can therefore be executed in its own thread. R1 and R3 - according
to the configuration of Sensor 1 - must be executed in the same session. Therefore, 6)
R3 is queued until 1)-5) R1 and all subsequent invocations are finished. In addition,
the invocation of 4) Sensor 2 is delayed until 2) Sensor 3 and linked 3) Sensor 5 is
finished.

5.5 Development Circle

In this part we will introduce the actual development cycle of CSDF Sensors. An
overview is given in Figure 15. A comprehensive guide on how to develop and deploy
an actual Sensor is then given in 8 How To.

5.5.1 Create the SensorModel

The first step in the development of CSDF Sensors is the creation of the Sensor-
Model. The SensorModel is a model instance of an Ecore meta-model. As it is
serialised using XMI, it can be coded in any common text editor. A more convenient
way to code the SensorModel is to use the graphical EMF model editor included in
the CSDF distribution (Figure 16).

5.5 Development Circle 65

Figure 15: CSDF Development Circle

A detailed overview of what the SensorModel is and what parts of the Sensor it
defines is given in 5.2 Sensor Model.

5.5 Development Circle 66

Figure 16: A SensorModel created via the EMF Model Editor

5.5.2 Code Generation

The next step is to create the Sensor code-base from the SensorModel. This is done
using the Generator. (For detailed information, please see 5.1.5 Generator). The
code generator creates the following:

� Sensor code-base (for Java)

� Enhanced SensorModel

� Java type classes for ports and variable-sets

� Java client-stubs for integrated Web services

� WSDL files for Sensor and deployment descriptor

� XML Schemas for included resources and XML Schema for Sensor

� Batch files for building, packing and deploying Sensor

5.5 Development Circle 67

5.5.3 Write Business Logic

After generation of the code-base, the developer has to implement the business logic
of the Sensor. In particular, he or she has to code the extensions containing the logic
of the respective ports. This can be done using any IDE (e.g. Eclipse).

5.5.4 Code Test

Once the ports are fully implemented, the code needs to be tested. A command-line
testing tool is already integrated in CSDF, so this task can easily be accomplished.

Before a port can be successfully invoked, the appropriate input data has to be
set in the session. This is done with the help of a so-called session-data document, an
XML document which contains a list of variables and their content, thus reflecting
the data that is set in a session.

The XML Schema for session-data documents looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://sensor.csdf.in_context.eu/tester"

xmlns:tns="http://sensor.csdf.in_context.eu/tester"

elementFormDefault="qualified">

<xsd:element name="sessiondata">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:data" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="data">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="xsd:anyType">

<xsd:attribute name="dataid" type="xsd:string" use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

</xsd:schema>

An example session-data might look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<tns:sessiondata xmlns:tns="http://sensor.csdf.in_context.eu/tester"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://sensor.csdf.in_context.eu/tester sessiondata.xsd">

5.5 Development Circle 68

<!-- specify all the variables that should be set in the session -->

<tns:data dataid="example.text">this is an example text</tns:data>

<tns:data dataid="person.name">mark</tns:data>

<tns:data dataid="person.age">25</tns:data>

<tns:data dataid="person.sex">male</tns:data>

</tns:sessiondata>

The variables defined in this file are then saved to a temporary session and the port
is executed. The test answers the following questions:

� Are the input requirements specified correctly and is the port invokable with
the given input?

� Are the output requirements correctly specified and does the extension generate
valid output?

� Is there a bug in the extension code?

5.5.5 Deployment

After code verification, the Sensor is ready for deployment. The Sensor is deployed
as Axis2 Web service. Therefore it needs to be packed into an .aar archive. The
code-base already includes batch files to automatically build and pack the Sensor.
Afterwards the finished .aar archive is uploaded to the Axis2 application of the web
server, which automatically installs it. The Sensor is then fully deployed. (For
more detailed information about the content of an .aar archive, please refer to http:

//ws.apache.org/axis2/1_4_1/quickstartguide.html#services).

5.5.6 Configuration

Before the Sensor can be used in CSDF, it needs to be initialized and registered at
the Controller. There are two ways to initialize a deployed Sensor:

Empty Initialization using a Command-Tool

The Sensor-code base already integrates a batch file to initialize the deployed Sensor.
However, this tool can only be used for empty initialization. To configure Forwards
and to reset Web service addresses, the second approach has to be chosen.

Initialization via the ConfigAssistant

The ConfigAssistant (Figure 17) is a graphical tool to initialize and configure a
deployed Sensor. It provides following features:

http://ws.apache.org/axis2/1_4_1/quickstartguide.html#services
http://ws.apache.org/axis2/1_4_1/quickstartguide.html#services

5.5 Development Circle 69

� Overview of the input and output ports of the Sensor

� Configuration of Forwards

� Resetting of service-addresses of integrated services

� Saving and loading configuration to and from a file

� Initializing the Sensor with a given configuration or loading the current config-
uration from the deployed Sensor

Figure 17: Initialization using the ConfigAssistant

5.5.7 Integration Test

Verifying the functionality of the system and the correct integration of the Sensor
can be done via integration tests. For this purpose, CSDF provides a testing tool in
the Controller. It emulates the Controller and tests the system by feeding a SOAP
request and response to it. The Controller combines it to a service interaction and
executes Sensors matching it. This test will reveal the following:

� Does the Filter of a particular Sensor match a given service interaction?

� Are the Forwards configured properly?

� Are the linked Sensors really compatible with one another?

� Is there a loop in the Sensor composition?

� Does the system correctly extract data and consequently perform the desired
context-update?

5.6 Service Interaction 70

5.5.8 Activation

Once the integration test is passed successfully, the development and integration
of the Sensor is completed. As a last step, the Sensor might be activated to di-
rectly get invoked from the Controller upon incoming service interactions. This can
conveniently be done via an included batch-file, thus successfully completing the
development cycle.

5.6 Service Interaction

To get a better understanding of the communication between the components of
CSDF, this section gives an overview of the most important interaction sequences.

5.6.1 Initialization of Controller

The Controller is the main part of CSDF. Once it is initialized, the context-extraction
with CSDF is running. The start-up sequence of the Controller involves both the
Logging Service and the Session Service. A detailed overview is given in Figure 18.

Once the user initiates the initialization-process, the Controller first verifies the
functionality of the Session Service. This is necessary because the Session Service
is a crucial part of the CSDF. If the Session is either not reachable or does not
work properly, CSDF will fail to operate. The Controller tests the Session Service by
creating a temporary session and deleting it afterwards. If this operation is successful,
the check of the Session Service is finished.

As a next step, the Controller registers at the Logging Service. By registering the
Controller will be notified about future service interactions of the Service Interceptor.
As a registration parameter the Controller passes the Web service URL of its own
implementation of the Logging Subscriber. As a result, the Controller receives the
subscription id that is needed in case of unregistration. Hereby, the initialization of
the Controller is finished and CSDF is ready for Sensor registration.
The second part of Figure 18 shows the shutdown-sequence of the Controller. Upon
shutdown-request, the Controller unregisters at the Logging Service using its sub-
scription id. In addition, it sends unregister-notifications to all registered Sensors to
inform them about their enforced removal. A Sensor receiving such a notification
switches back to the state before initialization. Finally the Controller will clean up
its internal registry and revert back to uninitialized-mode.

5.6 Service Interaction 71

Figure 18: Controller Initialization Sequence

5.6.2 Registration of a Sensor

Once CSDF is running, Sensors can be deployed and registered. The registration at
the Controller is automatically done in the initialization phase of a Sensor, as shown
in Figure 19.

As a first step in the initialization procedure, the Sensor loads the SensorModel,
which resides in the web archive of the deployed Sensor. Next, it indexes commonly
used parts of the SensorModel for faster access (e.g. ports and variables) and verifies
the validity of the Parameter default values.

After this internal initialization, the Sensor attempts to register at the Controller.
The Controller then in turn requests parts of the Sensor specification as follows:

5.6 Service Interaction 72

Figure 19: Sensor Initialization Sequence

Input/Output Specification
This contains the definition of all ports and variable sets specified in the Sen-
sorModel. With this information the Controller exactly knows the input re-
quirements and output assertions of the Sensor. This is needed in order to
pre-filter (see 5.1.2 Controller) and determine the compatibility of ports.

Service Specification
This specification contains a list of all services that are to be integrated into
the Sensor. In other words, it is an overview of all external services the Sensor
uses during execution. This information is useful when querying for Sensors
relying on a particular service.

5.6 Service Interaction 73

Sensor Specification
It contains a general description of the Sensor including name, description, au-
thor, service-URL, etc. This information is for example returned when querying
the Controller for a list of all registered Sensors.

Forward Specification
To realise service composition, the Controller needs to load the linkage infor-
mation from the Sensor. This contains a list of all Forwards the Sensor defines.

In the next step, the Controller completes the registration of the Sensor and registers
the loaded Forwards. Therefore, the Sensor is fully integrated into CSDF and its
Sensor compositions. Finally, the Controller returns the location of the Session
Service and the registration id of the Sensor. The registration id is needed in case of
unregistration from the Controller. As a last step the Sensor can be activated (see
5.4.5 Active and Passive Sensors).

5.6.3 Service Interaction and Sensor Invocation

In the following, we are going to analyse the complete workflow of CSDF starting
with the invocation of a service by the user. Once the Controller is notified of the
service interaction via the Service Interceptor, it will invoke the appropriate Sensors.
Those in turn will extract data from the interaction and ultimately perform a context
update. The whole communication process is shown in Figure 20 and Figure 21.

As illustrated in Figure 20, Web services are not invoked directly. Rather, the
invocation is relayed through the Service Interceptor. The Service Interceptor in
turn sends a copy of the request to the Controller and afterwards invokes the real
Web service. Once the execution is finished and the result is returned, it sends the
copy of the response to the Controller and delivers the result back to the user. This
whole operation is transparent for the user, i.e. he or she is not aware of the fact
that the Web service is actually not invoked directly.

As requests and response are sent separately, the Controller needs to temporarily
save the request until it receives the corresponding response. Upon its receival, both
documents are combined to a complete service interaction (see 5.1.2 Controller). In
the next step, the Controller performs the pre-filtering routine to determine all Sen-
sors that match the given interaction and must therefore be invoked (see 5.1.2 Con-
troller).

In the following, we assume that the Filter of a port of Sensor 1 matched the
service interaction (Figure 21). In this case the Controller first needs to create a new
session via the Session Service and then stores the interaction data to it. Finally the

5.6 Service Interaction 74

Figure 20: Service Interaction and Sensor Invocation (Part 1/2)

Controller invokes the port of Sensor 1. (In this step, the session id is passed in the
invocation request).

Upon invocation, the Sensor first needs to check the input requirements. To do
so, it loads all variables specified in the input part of the port from the session. If
one of the required fields has not previously been set in the session, the operation
will fail and the Sensor will abort the execution. The same applies if the subsequent
check of the loaded data fails.

If the input is valid, the execution of the Sensor can be initiated. Prior and poste-
rior to the execution of the extension logic, databinding, i.e. converting string values
of variables to appropriate programming language objects and back, is performed.
Depending on the port type, the execution differs:

5.6 Service Interaction 75

Figure 21: Service Interaction and Sensor Invocation (Part 2/2)

Extraction ports
It extracts context-information from the given data. Depending on the Sensor,
it might also integrate external Web services to perform this task.

5.6 Service Interaction 76

Update ports
It is designed to perform a context-update in the Context Management System.
This is usually done by invoking an external Web service to report the context-
change.

In case of update ports, the invocation of the Sensor is completed with the context-
update. Extraction ports, on the other hand, have to assert certain output data
defined in the port’s specification. In this case, the result of the execution is first
saved to the session. In the next step the Sensor loads all variables of the output
port. This is necessary as in some cases the output of the extension does not match
the variables of the output port. Finally, the loaded data is checked against the port’s
specification. If the check fails, the execution is aborted and an error is returned. If
it is successful, the invocation of the Sensor is complete.

Once the control is passed back, the Controller checks for Forwards involving
the executed Sensor. All Sensors found are stored to an execution queue and in-
voked sequentially. (For more information about execution in compositions, please
see 5.4.6 Composition at Runtime.)

After the invocation of all marked Sensors is finished, the Controller proceeds as
follows:

In case of single interactions
The invocation of the Sensor is complete. Subsequent interactions will be
executed in their own session. Thus the Controller can immediately delete the
session from the Session Service.

In case of session-framed interactions
Although the invocation of the Sensor is complete, subsequent interactions
might lead to invocations in the same session. Therefore the Controller cannot
delete the Session from the Session Service until the session-frame is closed and
all invocations are finished.

More detailed information about filtering and session-framed interactions can be
found in 5.3.4 Filter Techniques.

6 Sensor Model

The following chapter is devoted to the Sensor-
Model, a formal specification of all features of
the Sensor. With the first step in the creation of
a CSDF Sensor being the design of the Sensor-
Model, a comprehensive understanding of all its
parts is crucial. Thus, this chapter provides an
analysis of all classes and fields used in the Sen-
sorModel, highlighting their purpose. Selected
examples are then used to illustrate the usage of
these features.

6.1 Introduction 78

Preface

This part contains a detailed analysis of the SensorModel. Understanding all ele-
ments of the SensorModel is indispensable for developers who create Sensors using
CSDF. However, it is not imperative to read this part in order to understand later
chapters of this thesis (except for the chapter on CSDF Web Services). Therefore,
readers who are more interested in a guide on creating a sample Sensor might skip
this and the next chapter and continue reading at 8 How To.

6.1 Introduction

6.1.1 Ecore

To understand the following part, fundamental knowledge of EMF and the Ecore
model-language is necessary. It would go beyond the scope of this thesis to intro-
duce this complex framework in detail, therefore the reader is advised to read the
introduction provided at http://www.eclipse.org/modeling/emf/docs/ to get a
deeper understanding of EMF.

The most important concepts of Ecore are:

� Package. This is the root of every Ecore model. It contains all the classes.

� Class. A class defines a model-element and can contain a list of features.
Ecore-classes also support multiple heritage.

� Feature. A feature can either be a field or a reference to another class. Both
fields and references support multiplicity. Ecore distinguishes between child-
containment (the field contains the actual instance of the class) and reference-
containment (only a reference to the instance of the class is saved).

6.1.2 SensorModel ID

Both the SensorModel and the services defined by CSDF make use of various ids. For
ease of understanding we are going to explain their usage and their scope beforehand:

� portid - It is used to uniquely identify a port within the SensorModel.

http://www.eclipse.org/modeling/emf/docs/

6.2 Static Definitions 79

� ioid - It is used to uniquely identify a variable-set within the SensorModel. It
can either directly refer to a variable-set in the specs section of the SensorModel,
or it may refer to a port using <portid> ’#in’ or <portid> ’#out’.

� dataid - It is used to uniquely identify a variable within a session. It is also
used in ports to define variables required or asserted by the port.

� standardid - It is used to uniquely identify a Standard within the SensorModel.

� controlid - It is used to uniquely identify a Parameter within a particular
Standard.

� parameterid - It is used to uniquely identify a Parameter within the whole
SensorModel.

� serviceid - It is used to uniquely identify an integrated service within the
SensorModel.

� resourceid - It is used to uniquely identify a resource within the SensorModel.

� prefix - The prefix is used to refer to the type system defined in a resource of the
SensorModel. It is mainly used in the type-field of variables and Parameters.

� sessionid - It is used to uniquely identify a session of the Session Service.

6.2 Static Definitions

The static definition of the SensorModel contains structures which are used by the
user when creating a new Sensor. Its one and only root is the element SensorModel
containing the five parts which comprise the SensorModel. These are as follows:

� InputOutput-Specification: Defines inputs and outputs of the Sensor.

� Control-Specification: Defines global control parameters and access rules.

� Service-Specification: Defines external services used at runtime.

� Sensor-Specification: Defines external resources for generation of the Sensor.

6.2 Static Definitions 80

Name Type Containment Multiplicity
iospecification InputOutputSpecification child 1-1
controlspecification ControlSpecification child 1-1
servicespecification ServiceSpecification child 1-1
sensorspecification SensorSpecification child 1-1

Table 5: Class-Overview: SensorModel

6.2.1 SensorModel

This element is the root element of any SensorModel.

iospecification

This attribute contains the specification of the input/output ports of the Sensor as
well as the declaration of the session-variables.

controlspecification

This attribute specifies global properties of the sensors. Apart from built-in prop-
erties (like execution time, number of failures, etc.) it is possible to declare own
properties, defining their domain and finally specifying rules for accessing them.

servicespecification

With this attribute external services (like operations of other sensors or other Web
services) which are used by the Sensor can be specified.

sensorspecification

This specification includes the declaration of required resources like external XML
Schemas, WSDL-files, etc. for the code generation of the Sensor.

6.2.2 InputOutputSpecification

This part of the specification is used to define ports of a Sensor, which are essential
in order to be invokable by the Controller or other Sensors. There are two types of
ports:

� PortExtract

� PortUpdate

Ports can define both an input and output-part. The input part defines data nec-
essary for invocation. If the required data is not provided upon invocation, the
execution of the Sensor will be aborted immediately. On the other hand, the output

6.2 Static Definitions 81

part of the port specifies data guaranteed by the sensor upon successful invocation.
In this way a port can be seen as a kind of contract between the Sensor and its caller.

PortExtract is, as the name suggests, used for extraction of data either from
XML-documents or through combination of data from different sources. Since other
Sensors might want to make use of existing extraction operations, every extraction
port has to define both an input and an output part.

In contrast, PortUpdate is primarily used to update data of the environment.
This can of course be done in many ways, e.g. execute Web services, update data in
databases, write files, etc. Since chances of such kind are most if not all the time very
context sensitive, update ports can only be invoked from the Controller or directly
from other ports of the Sensor of which they are part. This security mechanism is
used to prevent unnoticed and unwanted updates in a complex Sensor composition.
For this reason and furthermore to not mistakenly use it for extraction purpose, this
kind of port must not define an output part.

Apart from the port definition, this specification also includes the declaration of ses-
sion variables. Those can first of all be used to directly write or read data from the
session, but also to define common sets of variables referred to by different ports.

At last global settings for the session management are also specified here. In order
for the Controller to determine whether to open a new session or to use an existing
session to invoke a given Sensor, three parameters are used:

� isuseraware - execute only in same session if user is the same.

� isactivityaware - execute only in same session if activity is the same.

� sessiontime - execute only in the same session if subsequent invocations occur
within a given time frame.

Note These parameters are only used by the Controller for session management.
There is no restrictive mechanism which would prevent an invocation among
Sensors, even though it might violate the specified rules.

isuseraware

This flag variable is used to declare the Sensor as user-aware. If it is set to false, the
Sensor is insensible to users and therefore creates only one session for all requests. If
set to true, requests of the same user are grouped and invoked in the same session
(see 5.3.4 Filter Techniques).

6.2 Static Definitions 82

Name Type Containment Multiplicity
isuseraware boolean attribute 1-1
isactivityaware boolean attribute 1-1
sessiontime boolean attribute 1-1
ports PortAbstract child 0-*
defs IOSet child 0-*

Table 6: Class-Overview: InputOutputSpecification

Note Although ’users’ can be any kind of information which serves to identify a
particular user as such, in this framework the ’user’ is defined as URI. It is
extracted by the Controller from the SOAP-header of service interactions (see
5.1.2 Controller.

isactivityaware

Similar to the userware-flag, this attribute declares the Sensor as activity-aware.
If it is set to false, the Controller will create only one session for all invocations,
regardless of the activity. In contrast, if set to true, every session of Sensor the is
limited to one and only one activity. If no activity is provided, the Sensor will not
be invoked by the Controller (see 5.3.4 Filter Techniques).

Note Similar to the concept of the ’user’, an ’activity’ can basically be anything that
serves to identify a task that users are involved in. It is up to the developer
to decide on an appropriate granularity of tasks. In the context in which
the framework has been developed, a URI is used to identify activities. It is
automatically extracted by the Controller upon receival of SOAP-notifications
(see 5.1.2 Controller).

sessiontime

This attribute controls the time frame which is used for a session. The first call of
a Sensor, which opens the session, also initializes the session-frame. Any subsequent
call occurring within the given time frame and satisfying both awareness-settings, will
be executed in the same session. Both calls outside the session frame and those not
satisfying the awareness-parameters will lead to opening a new session with its own
session frame. The value is to be interpreted in seconds. If set to 0, any call will open
a session, regardless of the values of the other awareness-flags (see 5.1.2 Controller).

ports

This variable contains a list of the ports of the Sensor. Since the type PortAbstract

6.2 Static Definitions 83

is an abstract concept, only PortExtract and PortUpdate elements can be added.
Ports which are defined here serve as entry-point to execute the Sensor. Every port
defines its own business logic, which has to be implemented by the developer after
Sensor generation.

defs

This is used to specify sets of variables that can used to read and write data from
and to the session. Therefore it can be used as a means to exchange data between
ports in case that data cannot be passed using the input and output-variables of the
port. In other words, these definitions provide a way to read and write data not
specified in the input and output-parts of the port.

6.2.3 PortAbstract

This type is the abstract base class of any port-type. Realised port-types are:

� PortExtract - extract / combine data

� PortUpdate - update / write data persistently

A port serves as a contract between the Sensor and the caller. For more information
please see 6.2.2 InputOutputSpecification.

Name Type Containment Multiplicity
portid string (alphanumeric, .,) attribute 1-1
input IOInput child 0-1
output IOOutput child 0-1

Table 7: Class-Overview: PortAbstract

portid

Any port has to be uniquely identifiable by its id.

input

Using this variable, data required upon invocation is specified. The data has to be
set in the session by the caller before invoking the Sensor. If not present in the
session, the execution will be aborted immediately. The data specified here will be
compiled to a type-class of the programming language and used in the extensions.

Note All the data which is required for execution should be specified here. Op-
tional data, on the other hand, should be specified using the defs-field from

6.2 Static Definitions 84

InputOutputSpecification and loaded from the session manually during execu-
tion.

output

This field specifies the output assertions. In other words, the Sensor (in particular the
business logic of the port) has to ensure that the data specified here is properly set
in the session at the end of the execution. The Sensor itself will check its own output
assertions after execution. In case of violation, it will cancel execution prematurely
with an error. Similar to the input-field, the data specified here will be compiled to
a type-class.

Note Only data which can be guaranteed after execution should be specified here.
Optional data should be specified using the defs field from InputOutputSpeci-
fication and saved to the session manually during execution.

Note Only PortExtract ports might define an output part. PortUpdate must not
use this field.

6.2.4 PortExtract -> PortAbstract

This port-type is used to gather data and provide it for other ports or Sensors by
saving it to the session. Gathering data can be done in many ways, e.g. extracting
data from XML-documents, querying Web services, combining data already stored
in the session, etc.

Name Type Containment Multiplicity
no fields defined

Table 8: Class-Overview: PortExtract

For more information about the fields, please see 6.2.3 PortAbstract.

Note Extraction ports can be called by the Controller, the Sensor itself, and any
other Sensor.

6.2.5 PortUpdate -> PortAbstract

The update port is used to update data in the context in which CSDF is used.
Possible ways to do so are, for instance, to update values in a database, execute
update operations in Web services, save data to files, etc.
For more information about the fields, please see 6.2.3 PortAbstract.

6.2 Static Definitions 85

Name Type Containment Multiplicity
no fields defined

Table 9: Class-Overview: PortUpdate

Note Since updates might be very context sensitive, update-ports can be only called
by the Controller and by ports of the Sensor itself. Sensors cannot directly
execute update-ports of other Sensors.

6.2.6 IOInput -> IODefinition

This type describes the input part of a port.

Name Type Containment Multiplicity
no fields defined

Table 10: Class-Overview: IOInput

For more information about the fields, please see 6.2.9 IODefinition.

6.2.7 IOOutput -> IODefinition

This type describes the output part of a port.

Name Type Containment Multiplicity
no fields defined

Table 11: Class-Overview: IOOutput

For more information about the fields, please see 6.2.9 IODefinition.

6.2.8 IOSet -> IODefinition

This class defines a set of variables which can be used to exchange data with the
Session Service as well as a common definition that can be included by other ports
and/or other Sensors.
For more information about the fields, please see 6.2.9 IODefinition.

readable

If this flag variable is set to true, the Generator will generate methods to load in-
stances of the data defined here from the session. Using these, the developer can

6.2 Static Definitions 86

Name Type Containment Multiplicity
readable boolean attribute 1-1
writeable boolean attribute 1-1

Table 12: Class-Overview: IOSet

freely load data from the session during the execution of the business logic. If the
variable is set to false no such methods will be generated.

writeable

If this flag variable is set to true, the Generator will generate methods to save in-
stances of the data defined here to the session. The developer can then manually
save data to the session during the execution of the business logic. If the variable is
set to false no such methods will be generated.

6.2.9 IODefinition

This abstract type defines a set of variables which will be compiled by the Generator
to a type-class of the chosen programming language. This type will then be used by
the developer to exchange data with the Session Service.

There are two ways to add variables:

� Explicit definition - variables are defined directly

� Include instruction - variables are loaded from another IODefinition

Name Type Containment Multiplicity
ioid string (alphanumeric, ., , #) attribute 1-1
specs DataSpecification attribute 0-*
includes IOReference attribute 0-*

Table 13: Class-Overview: IODefinition

ioid

Any IODefinition needs to have a unique id, the so-called ioid. While the developer
might omit this id when defining input and output-parts of ports (the Generator will
automatically alter it to properly fit the portid), it must be specified when creating
IOSets.

6.2 Static Definitions 87

specs

This field is used to define variables in the set directly.

includes

Using this attribute, variable-definitions from other sets can be loaded. Instead of
defining the same sets of variables over and over again, it is recommended to define
them once and include them when needed.

6.2.10 DataSpecification

This type is used for variable specification within the SensorModel. A variable con-
sists of the following parts:

� Id - unique identifier of variable

� Type - a domain that defines what is to be considered as a valid value

� Assertions - additional constraints on the domain of the variable

� QoS-attributes - quality of service attributes

Variables are used to hold atomic pieces of data. Although the Session Service allows
exchange of single variables, the developer is urged to use the predefined methods
for data-exchange of whole variable-sets defined via IODefinition. A comprehensive
introduction to the type system of variables is given in 5.2.5 Resources and Type
System.

Name Type Containment Multiplicity
dataid string (alphanumeric, .,) attribute 1-1
datatype string (prefix ’:’ type) attribute 1-1
description string attribute 0-1
assertion Assertion child 0-*
qos QoSAttribute child 0-*

Table 14: Class-Overview: DataSpecification

Note The DataSpecification is a variable specification and DataValue is the actual
value of a variable.

6.2 Static Definitions 88

dataid

This id is used to uniquely identify a DataSpecification within an IODefinition. Fur-
thermore it is used in DataValue to refer to the definition of variables.

datatype

This field specifies the type of the variable. The format of this value is as follows:
<prefix> ’:’ <typename>. prefix has to be declared in a resource in SensorSpecifica-
tion, while typename has to refer to a valid type within that resource. The only prefix
which need not and must not be specified as a resource is xsd, which refers to the
standard XML Schema datatypes. It will be automatically added to the SensorModel
during code generation.

� When referring to types from XML Schemas, typename has to refer to a valid
type within that schema.

� When using WSDL-resources, typename has to match an operation of that
WSDL-Schema. It is important to use an AssertionWSOperation when us-
ing types from a WSDL-resource.

� When using Sensor-resources, typename has to refer to a valid IODefinition
within that Sensor.

Example Examples of valid types, given the following resources:

Namespace Prefix Type
http://mytypes.com mt ResourceSchemaXsd
http://mailinglist.in context.eu ml ResourceWSDL
http://types.othersensor.com tos ResourceSensor

6.2 Static Definitions 89

Type Valid Explanation
xsd:string true simple XML Schema ’string’-type
xsd:anyType true complex XML Schema ’anyType’-type
mt:Project true XML-Schema ’Project’-type in namespace

’http://mytypes.com’
ml:CreateList true operation ’CreateList’ in given WSLD docu-

ment
tos:DocumentData true IOSet ’DocumentData’ in given Sensor
tos:PortA#out true IOOutput of port ’PortA’ in given Sensor
tos:PortSend#in true IOInput of port ’PortSend’ in given Sensor
mx2:Project false unbound prefix ’mx2’
tos:PortA#xyz false undefined sequence ’#xyz’
mt:xsd:abc false wrong format
string false missing prefix

description

This is an optional field describing the variable specification.

assertion

Using assertions it is possible to restrict the domains of variables even further,
e.g. by introducing additional checks with regular expressions or evaluating XPath-
expressions on XML instance data.

qos

QoS-attributes are used to express metadata about variables. It is possible to define
additional requirements such as reliability or timeliness. Unfortunately, the current
databinding of CSDF does not support QoS-attributes in extensions. This will be
adapted in future version of CSDF.

6.2.11 Assertion

This abstract type is the base of all assertion-classes. By means of assertions it is
possible to further restrict the domain of variables defined by DataSpecification. The
different types of assertions are as follows:

� AssertionXPath - evaluate XPath statements on XML data

� AssertionWSOperation - check for specific operation in SOAP document

� AssertionRegex - perform regular expression check on strings

6.2 Static Definitions 90

Note Though DataSpecification defines types for variables, the Sensor core handles
variable instances as DataValue, therefore the actual data is treated as string
when applying the assertions. Only later, before and after execution of the
extensions, databinding is performed.

Name Type Containment Multiplicity
description string attribute 0-1

Table 15: Class-Overview: Assertion

description

This is an optional field describing the assertion.

6.2.12 AssertionExpression -> Assertion

This is an abstract base class for expression-based assertions.

Name Type Containment Multiplicity
no fields defined

Table 16: Class-Overview: AssertionExpression

For more information about the fields, please see 6.2.11 Assertion.

6.2.13 AssertionXPath -> AssertionExpression

This assertion type is used to evaluate XPath statements on variables. In order to
realise that, the data is first converted to an XML document and the compiled XPath
statement is executed thereafter. This assertion fails if the data does not contain
valid XML or if the XPath does not match any node of the XML document.

Name Type Containment Multiplicity
xpath string attribute 1-1
nsaware boolean attribute 1-1
nsmap NamespaceDefinition child 0-*

Table 17: Class-Overview: AssertionXPath

For more information about the fields, please see 6.2.12 AssertionExpression -> As-
sertion.

6.2 Static Definitions 91

xpath

This field holds the actual XPath statement.

nsaware

This flag indicates whether the XPath expression is namespace-aware or not. If
set to true, the statement is interpreted as namespace-aware. If set to false, the
namespace-prefix of nodes in the XPath expression is treated as part of the node
name itself.

nsmap

With this field, namespaces can be defined for the XPath statement. In case that no
prefix is given, the namespace is treated as default namespace.

6.2.14 AssertionRegex -> AssertionExpression

With this type, regular expressions can be performed on variables. The assertion
fails if the regular expression does not match the given data.

Name Type Containment Multiplicity
regex string attribute 1-1

Table 18: Class-Overview: AssertionRegex

For more information about the fields, please see 6.2.12 AssertionExpression -> As-
sertion.

regex

This field holds the regular expression.

6.2.15 AssertionWSOperation -> Assertion

This assertion is used to check whether a given input data parsed as SOAP XML
document contains a particular Web service call. Although this could also be done
using an XPath statement, it is recommended to use this assertion in case of SOAP
data, as it is also responsible for cutting out the SOAP request/response relevant data
from the SOAP envelope. If a variable uses a type from a WSDL-document without
using this assertion, the data cannot properly be converted during the databinding-
process and therefore the execution might fail.

Note For that reason always use AssertionWSOperation when using types from
WSDL-documents.

6.2 Static Definitions 92

This assertion fails if the data cannot be successfully parsed as XML document or if
it does not contain the specified SOAP request or response.

Name Type Containment Multiplicity
operation string attribute 1-1
request boolean attribute 1-1

Table 19: Class-Overview: AssertionWSOperation

For more information about the fields, please see 6.2.11 Assertion.

operation

This field describes the WSDL-operation which should be checked for when evaluat-
ing the SOAP document.

request

This flag has to be set to true in case of a SOAP request and false in case of a SOAP
response.

6.2.16 NamespaceDefinition

This class is used to define a namespace (e.g. in AssertionXPath). Namespaces are
defined with a prefix and a URL of the namespace. In case that no prefix is given,
the namespace is assumed to be the default namespace.

Name Type Containment Multiplicity
namespace string attribute 1-1
prefix string attribute 0-1

Table 20: Class-Overview: NamespaceDefinition

namespace

This field describes the namespace URL.

prefix

This optional field defines a prefix for the namespace.

6.2.17 QoSAttribute

QoS-attributes are used to annotate data instances with metadata and/or to specify
functional and non-functional requirements. To simplify matters, the domain of

6.2 Static Definitions 93

QoS-attributes is limited to values between 0 and 1, expressing the degree the QoS
attribute is served. A value close to 0.0 means no strong connection to the given
QoS, while a value near 1.0 expresses a tight relationship. Thus both discrete and
continuous domains have to be resampled to a value between 0 and 1 before usage.

Name Type Containment Multiplicity
qosid string (alphanumeric, .,) attribute 1-1
value double (0.0-1.0) attribute 1-1

Table 21: Class-Overview: QoSAttribute

qosid

Any QoSAttribute needs to be uniquely identifiable within the given DataSpecifica-
tion.

value

This value expresses the degree of congruence resampled to values between 0 and
1. 0 expresses the lowest value in the original domain, while 1 expresses the highest
possible value.

6.2.18 IOReference

This type refers to the input or output part of a port or a variable set. The reference
can be either local (reference within the Sensor) or external (reference to another
Sensor). It is used to include variable definitions and therefore supports the concept
of reusability.

Note The Generator tries to resolve references on best effort base. If all references
form a non-circular graph, they will be resolved correctly regardless of the order
they appear in. In case of circular references, the Generator produces an error
and aborts the generation.

Name Type Containment Multiplicity
ioid string (alphanumeric, ., , #) attribute 1-1
nsprefix string attribute 1-1

Table 22: Class-Overview: IOReference

ioid

This id specifies which IODefinition should be included. For IOSet, the id is simply

6.2 Static Definitions 94

copied. To refer to parts of port, the id of the port appended by #in for the input
part and respectively #out for the output part is used.

Example Examples of valid references for the given Sensor:

Port-ID IOSet-ID
SendMessage
StoreData

MessageData

Ioid Valid Explanation
MessageData true references IOSet ’MessageData’
SendMessage#in true references input part of port ’SendMessage’
StoreData#out true references output part of port ’StoreData’
MessageData#in false IOSets do not have input and output parts
Project false ’Project’ is not defined
StoreData#all false ’#all’ is not a valid suffix

nsprefix

The prefix is used to identify the Sensor which the variable definitions should be
included from. In case of a local inclusion it has to be set to self. If the developer
intends to include definitions from other Sensors, the desired Sensor first has to be
included as a ResourceSensor in the SensorSpecification and is then referenced via
its prefix.

Example Examples of valid references for the given Sensor-resources:

Type location namespace prefix
ResourceSensor http://.../Sen1 s1
ResourceSensor http://.../Sen2 http://.../Sen2/types s2a
ResourceSensor http://.../Sen2 http://mytypes.com s2b

Nsprefix Valid Explanation
self true local reference
s1 true references ’http://.../Sen1’
s2a true references ’http://.../Sen2’
s2b false ’s2b’ does not include the type system of the

Sensor itself but another resource
s3 false unbound prefix ’s3’

6.2 Static Definitions 95

6.2.19 ControlSpecification

Sensors can have global Parameters which provide status information about the
Sensor or a means to influence the behaviour of the Sensor. For more information
about Parameters, please see 5.1.4 Sensor.

Apart from Parameter definition, this specification also enables the developer to
define access rules on Parameters. In some cases it might be reasonable to allow only
specific users - identified via a secret key - to read or write sensitive Parameters of a
Sensor.

Name Type Containment Multiplicity
standard Standard child 0-*
access ControlAccess child 0-*
activationkey string attribute 1-1

Table 23: Class-Overview: ControlSpecification

standard

This field defines the Standards which are used by the Sensor. A Standard is a set of
Parameter definitions. In the current stage of development, there are two different
kinds of Standards:

� StandardStatus - a common set of Parameters for all Sensors

� StandardUserDefined - an extension base for user-defined Parameter definitions

access

As mentioned before, it is possible to control access on Standards. This field enables
the developer to define both default and specific access rules on Standards. There
are currently two ways to define access:

� ControlAccessDefault - default access for any user (no authentication required)

� ControlAccessUser - access for authenticated users (via password)

Note Though there is no limit to the amount of access definitions, this specification
must not contain more than one ControlAccessDefault definition.

activationkey

Although it most cases it might not be necessary to restrict Activation (see 5.4.5 Ac-
tive and Passive Sensors), it is possible to define a key for activating/passivating a
Sensor. If this security mechanism is not required, the field should be left blank.

6.2 Static Definitions 96

6.2.20 Standard

This is the abstract base class for all Standards. A Standard is a set of Parameter
definitions which can either be programmatically generated or user defined. A stan-
dard can be seen as a grouping mechanism for Parameters that belong together and
for which common access rules apply.

Name Type Containment Multiplicity
standardid string (alphanumeric, .,) attribute 1-1
description string attribute 0-1
parameter ControlParameter child 0-*

Table 24: Class-Overview: Standard

standardid

Each standard has to be identifiable by a unique id. This id then is also used as a
prefix for Parameters to uniquely identify them within the whole Sensor.

Example Standard standard.status with Parameter no of invocations becomes
standard.status.no of invocations.

description

This field contains the description of the Standard.

parameter

Here the Parameters of the Standard are defined.

6.2.21 StandardStatus -> Standard

This type provides a set of common Parameters which will automatically be assimi-
lated by the Generator and are already integrated in the logic of the Sensor. The id
of this Standard is standard.status and it contains the following Parameters:

� name - name of Sensor (taken from SensorSpecification)

� author - author of Sensor (taken from SensorSpecification)

� published - time and date when Sensor was initialized

� description - description of Sensor (taken from SensorSpecification)

6.2 Static Definitions 97

� service - service address from Sensor (taken from SensorSpecification)

� no of invocations - number of successful invocations of Sensor since start-up

� no of errors - number of invocations that failed because of an internal or ex-
ternal error

� last error - descriptive message of last error

� avg processtime - average processing time of an invocation

� latest processtime - processing time of last invocation

Name Type Containment Multiplicity
no fields defined

Table 25: Class-Overview: StandardStatus

For more information about the fields, please see 6.2.20 Standard.

Note Developers must not extend this Standard with additional Parameters in the
SensorModel.

6.2.22 StandardUserDefined -> Standard

This type is intended to be used by developers to introduce their own Sensor specific
Parameters.

Name Type Containment Multiplicity
no fields defined

Table 26: Class-Overview: StandardUserDefined

For more information about the fields, please see 6.2.20 Standard.

6.2.23 ControlParameter

A Parameter is a means to retrieve status information from the Sensor and to set
control flags to influence the behaviour of a Sensor on a level independent from single
invocations. Parameters, which can be both read and written via the Sensors Web
service, are typically tightly integrated into the business logic of the Sensor. The

6.2 Static Definitions 98

Name Type Containment Multiplicity
controlid string (alphanumeric, .,) attribute 1-1
description string attribute 0-1
type string (prefix ’:’ type) attribute 1-1
default string attribute 1-1
readable boolean attribute 1-1
writeable boolean attribute 1-1

Table 27: Class-Overview: ControlParameter

value domain of a Parameter is defined via XML Schema Types. At the current
stage of development only simple types are allowed, though.

controlid

This is a unique id to identify a Parameter within the Standard. To uniquely identify
Parameters on Sensor-level the standardid of the Standard and this controlid are
combined with ’.’ to form a so-called parameterid.

Example Standard standard.status with Parameter no of invocations becomes
standard.status.no of invocations.

description

This optional field is intended to describe the purpose of the Parameter and explains
how it affects the working process of the Sensor.

type

This field specifies the type of the Parameter. The format of this value is as follows:
<prefix> ’:’ <typename>. prefix has to be declared in a resource in SensorSpecifica-
tion, while typename has to refer to a valid type within that resource. The prefix xsd

might be used to refer to standard XML Schema datatypes.

Note Unlike the datatype field in DataSpecification, this type can only refer to XML
Schema simple types.

Example Examples of valid types given the following resources:

Namespace Prefix Type
http://mytypes.com mt ResourceSchemaXsd

6.2 Static Definitions 99

Type Valid Explanation
xsd:string true simple XML Schema ’string’-type
xsd:anyType false no complex types allowed
mt:MySimpleType true XML-Schema ’MySimpleType’-type in

namespace ’http://mytypes.com’
mt:MyComplexValue false no complex types allowed
mx2:Project false unbound prefix ’mx2’
mt:xsd:abc false wrong format
string false missing prefix

default

With this field, the default value, which is assigned to the Parameter during the
initialization phase, can be assigned.

Note It is crucial that the default value is valid according to the domain specified
via type.

readable

This attribute sets the readable-flag of the Parameter. If set to true, the Parameter
can be read via the Web service. If set to false, it is not possible to load the value
of the Parameter via the Web service.

writeable

This attribute sets the writeable-flag of the Parameter. If set to true, the Parameter
can be written via the Web service. If set to false, it is not possible to set the value
of the Parameter via the Web service.

6.2.24 ControlAccess

This class is the abstract base for access restriction definitions. It specifies read and
write-access to Standards on either a default or a user-specific setting.

Name Type Containment Multiplicity
no fields defined

Table 28: Class-Overview: ControlAccess

6.2 Static Definitions 100

6.2.25 ControlAccessDefault -> ControllAccess

In case that no specific access rules for Standards are needed, this class can be used.
It grants read and write-access of all defined Standards to anyone. In case that
special rules are required, the use of ControlAccessUser is recommended. Of course
it is also possible to combine both settings, with the only limitation that there must
not be more than one ControlAccessDefault defined in the ControlSpecification of a
Sensor.

Name Type Containment Multiplicity
no fields defined

Table 29: Class-Overview: ControlAccessDefault

6.2.26 ControlAccessUser -> ControllAccess

If special access rules for Standards are needed, this class should be used. It defines
access rules on Standards using a password for authentication. In case that default
access to Parameters without authentication is needed, the use of ControlAccessDe-
fault is recommended.

Name Type Containment Multiplicity
standardaccess ControlStandardAccess attribute 0-*
key string attribute 1-1

Table 30: Class-Overview: ControlAccessUser

standardaccess

This list defines specific access rules for Standards.

Note Although there is no limit to access rules for Standards, there must not be
two rules which refer to the same Standard.

key

This is the authentication key which must be provided by the caller upon access of
Parameters. In case that no ControlAccessDefault is defined, the key might be left
blank to define default access, otherwise it must be a non-empty string.

6.2 Static Definitions 101

Name Type Containment Multiplicity
standard Standard reference 1-1
readable boolean attribute 1-1
writeable boolean attribute 1-1

Table 31: Class-Overview: ControlStandardAccess

6.2.27 ControlStandardAccess

This type is used to specify access for a specific, previously defined Standard.

standard

This element is a reference to a Standard which was previously defined in Control-
Specification.

readable

This attribute indicates whether Parameters of the referred Standard can be read
accessed or not. If set to true, read access to Parameters is possible. If set to false,
Parameters cannot be read using this access definition.

Note It is understandable that only Parameters that are marked as readable in
their ControlParameter definition can be accessed this way.

writeable

This attribute indicates whether Parameters of the referred Standard can be write
accessed or not. If set to true, write access to Parameters is possible. If set to false,
Parameters cannot be written using this access definition.

Note It is understandable that only Parameters, which are marked as writeable in
their ControlParameter definition can be accessed this way.

6.2.28 ServiceSpecification

To perform its task, the Sensors might integrate third party services e.g. Web ser-
vices. For more detailed information about integrated services, please see 5.1.4 Sen-
sor.

This specification furthermore specifies the location of the Controller Web service.
Upon initialization the Sensor will attempt to register itself at the Controller. If the
Controller service cannot be accessed, the Sensor will fail to initialize.

6.2 Static Definitions 102

Name Type Containment Multiplicity
controllerservice string attribute 1-1
services ServiceDescription child 0-*

Table 32: Class-Overview: ServiceSpecification

controllerservice

This field specifies the address of the Controller Web service.

services

This list contains all the services that are to be integrated by the Generator and
which might be used in the logic of the Sensor.

6.2.29 ServiceDescription

This class is the abstract base for all service types.

Name Type Containment Multiplicity
serviceid string (alphanumeric,) attribute 1-1
description string attribute 0-1

Table 33: Class-Overview: ServiceDescription

serviceid

Every service specification must have a unique id.

description

This optional field is intended to describe the kind of service and the way it is
integrated into the Sensor logic.

6.2.30 ServiceWS

With this type Web services can be integrated into the Sensor. The Generator will
automatically generate client-stubs for the service specified via the WSDL file.

Name Type Containment Multiplicity
wsdl URL attribute 1-1

Table 34: Class-Overview: ServiceWS

For more information about the fields, please see 6.2.29 ServiceDescription.

6.2 Static Definitions 103

wsdl

This is the location of the WSDL-document of the Web service.

6.2.31 ServiceSensor

This specification is used to integrate other Sensors as services. It allows the devel-
oper to specify both the service address of the Sensor and the port that should be
executed. The Generator will then automatically generate a method for invocation
of the specified Sensor.

Note It is possible to leave one or even both fields blank, as they can be set during
the initialization phase of the Sensor. Thus it is possible to react to changes of
the location of Sensors without altering the SensorModel.

Name Type Containment Multiplicity
serviceurl URL attribute 0-1
portid string (alphanumeric, .,) attribute 0-1

Table 35: Class-Overview: ServiceSensor

For more information about the fields, please see 6.2.29 ServiceDescription.

serviceurl

This attribute specifies the location of the SensorCore Web service of the Sensor for
integration.

portid

This field is used to specify which port of the addressed Sensor should be used.

6.2.32 SensorSpecification

This type contains general information about the Sensor, for instance the service
address at which it will be deployed, a description, the author, etc. Furthermore, it
provides fields to integrate external resources into the SensorModel. Resources might
appear similar to the services of ServiceDescription, but they are both fundamentally
different. Services are used to integrate real services (like Web services, database-
services, etc.) into the Sensor and are invoked at runtime. Resources on the other
enrich the Sensor and SensorModel, e.g. by adding a type system, which might then
be referred to within the SensorModel. For more information about type systems,
see 5.2.5 Resources and Type System.

6.2 Static Definitions 104

Name Type Containment Multiplicity
name string (alphanumeric,) attribute 1-1
description string attribute 0-1
serviceurl URL attribute 1-1
author string attribute 1-1
resources Resource child 0-*

Table 36: Class-Overview: SensorSpecification

name

This is the name of the Sensor, which will also be used as service name when publish-
ing the Sensor as Web service. For this reason it might only contain alphanumeric
characters and underscores.

Note It is crucial that the name matches the last part of the servicurl that describes
the deployment address of the Sensor.

description

This optional field is used to describe the purpose of the Sensor.

serviceurl

This field specifies the location at which the Sensor will be available after deployment.

Note It is important that the last part of the serviceurl matches the name that will
be used as name of the Web service.

Example If a Sensor named MySensor is published on a host http://myhost.com:8080,
the serviceurl might look like http://myhost.com:8080/axis2/MySensor.

author

This is the name or the email of the developer of the Sensor and might be used
in times of failures, updates or maintenance to determine who is responsible for
developing the Sensor.

resources

Resources are external documents which are integrated into the SensorModel and
might be referred to from within the model itself. Currently supported resources
are identified via a namespace and a unique prefix, but future versions of the CSDF
might support other kinds of resources as well.

6.2 Static Definitions 105

Note A Sensor must not have two resources with the same id or the same prefix.

The following types of resources are supported at the current stage of development:

� ResourceSchema - include a schema (e.g. XML Schema) into the SensorModel

� ResourceWSDL - include a WSDL resource and its types

� ResourceSensor - include types or resources of another Sensor

6.2.33 Resource

This abstract type is the root of all resource-type classes. A resource is a data source
that provides additional information or extends the SensorModel.

Name Type Containment Multiplicity
resourceid string (alphanumeric,) attribute 1-1
location string attribute 1-1
local boolean attribute 1-1

Table 37: Class-Overview: Resource

resourceid

Any service must have a unique id that is used for identification.

location

This is the location of the service. It can either be either a URL or a local file.

local

This flag indicates whether the location has to be interpreted as URL or as relative
local file. If set to true, the resource is loaded as a file relatively from the location
of the SensorModel-file. If set to false, the location is interpreted as URL.

6.2.34 ResourceWithNamespace -> Resource

This abstract type provides the base for all namespace based resources. A resource
which resides in a particular namespace can be addressed within the SensorModel
by its unique prefix.
For more information about the fields, please see 6.2.33 Resource.

namespace

This is the namespace of the resource.

6.2 Static Definitions 106

Name Type Containment Multiplicity
namespace string attribute 1-1
prefix string attribute 1-1

Table 38: Class-Overview: ResourceWithNamespace

prefix

Using this prefix the resource can be identified within the SensorModel.

Note The SensorModel must not contain two resources with the same prefix.

6.2.35 ResourceSchema -> ResourceWithNamespace

This resource is the abstract base for all schema resource types. Schemas provide
additional types which can be used in, for instance, DataSpecification or ControlPa-
rameter.

Name Type Containment Multiplicity
no fields defined

Table 39: Class-Overview: ResourceSchema

For more information about the fields, please see 6.2.34 ResourceWithNamespace
-> Resource.

6.2.36 ResourceSchemaXsd -> ResourceSchema

This resource is used to include an XML Schema into the SensorModel.

Name Type Containment Multiplicity
no fields defined

Table 40: Class-Overview: ResourceSchemaXsd

For more information about the fields, please see 6.2.34 ResourceWithNamespace
-> Resource.

6.2.37 ResourceSensor -> ResourceWithNamespace

With this resource type, the data types of another Sensor or one of its resources can
be loaded and integrated into the SensorModel. In order to do so, the location of the

6.2 Static Definitions 107

resource has to be set to the address of the Sensor from which a resource should be
included. To include the type system of the Sensor itself (in other words, the types
which are generated from the InputOutputSpecification of the Sensor), the namespace

field has to be set to the namespace of the type system (<serviceurl> ’/types’) or can
just be left blank. To load an external resource, the namespace is set to the namespace
of the resource which should be included.

Name Type Containment Multiplicity
no fields defined

Table 41: Class-Overview: ResourceSensor

For more information about the fields, please see 6.2.34 ResourceWithNamespace
-> Resource.

Example Given a Sensor at http://x.com/axis2/Sen1 with the following resources:

Type Namespace Prefix
ResourceSchemaXsd http://mytypes.com typ
ResourceWSDL http://mailinglist.in context.eu mail

The following ResourceSensor could be defined at another Sensor:

Location Local Namespace Valid
http://x.com/axis2/Sen1 false http://x.com/axis2/Sen1/types

trueor:
http://x.com/axis2/Sen1 false
http://x.com/axis2/Sen1 false http://mytypes.com true
http://x.com/axis2/Sen1 false http://mailinglist.in context.eu true
http://x.com/axis2/Sen1 false http://notype.com false

6.2.38 ResourceWSDL -> ResourceWithNamespace

This resource type is used if the Sensor has to deal with SOAP requests of a Web ser-
vice. If included as a resource, the Generator will automatically extract the schema
of the WSDL document, store them as a separate XML Schema resource and gener-
ate type-classes for it. Therefore at runtime the data in SOAP requests and response
can be directly converted to a typed object. This does not only reduce the imple-
mentation effort of the developer, since real objects can be used instead of manually
extracting information of a SOAP envelope, but also eliminates possible error sources.

6.3 Dynamic Definitions 108

Name Type Containment Multiplicity
convertSchemaElementToSchemaType boolean attribute 1-1

Table 42: Class-Overview: ResourceWSDL

For more information about the fields, please see 6.2.34 ResourceWithNamespace
-> Resource.

convertSchemaElementToSchemaType

Messages in the WSDL document always refer to XML Schema elements, but the
SensorModel only uses XML Schema types. For this reason an automatic element-
to-type conversion can be performed in the Generator. If this flag is set to true, all
global elements in the WSDL schema part are converted to XML Schema types. If
set to false, no such conversion takes place.

6.3 Dynamic Definitions

The dynamic definitions are not directly used when creating a SensorModel, but are
rather needed for communication purpose (especially as transfer-objects) between
Sensor, Controller and Session Service.

6.3.1 DataSet

A dataset can be viewed as a collection of DataValue objects. It is used to exchange
a set of variables between services.

Name Type Containment Multiplicity
data DataValue child 0-*

Table 43: Class-Overview: DataSet

data

This field contains the variables that belong to the collection.

6.3 Dynamic Definitions 109

6.3.2 DataValue

The DataValue can be seen as an instance of the variable-type defined by DataSpec-
ification. The instance holds the data in string representation as well as a dataid,
thus it can be matched with the corresponding DataSpecification.

Name Type Containment Multiplicity
dataid string (alphanumeric, .,) attribute 1-1
value string attribute 1-1
qos QoSAttribute child 0-*

Table 44: Class-Overview: DataValue

dataid

The id is used to identify the DataSpecification to which the variable belongs.

value

This field holds the actual value of the variable. It is stored in string representation
and must conform to the type that is defined by the corresponding DataSpecification.

qos

Although not used in the current state of CSDF, variables can be annotated with
metadata. For instance, the reliability or the precision of the data can be coded in
QoS-attributes attached to the actual data.

The DataSpecification defines which QoS-attributes are required and how high
their values have to be. In contrast, the qos here describes the actual value of a
QoS-parameter.

6.3.3 ParameterValue

The ParameterValue is the actual instance of a Parameter defined by ControlParam-
eter. Via the parameterid, it can be matched with its definition.

Name Type Containment Multiplicity
parameterid string (alphanumeric, .,) attribute 1-1
value string attribute 1-1

Table 45: Class-Overview: ParameterValue

parameterid

6.3 Dynamic Definitions 110

The id is used to identify both the Standard and the ControlParameter defining the
Parameter.

value

This is the actual value of the Parameter, stored in string representation. It must
conform to the type defined in ControlParameter.

6.3.4 PortReference

This type is used to refer to a particular port of a Sensor using the address of the
Sensor service and the name of the port.

Name Type Containment Multiplicity
serviceuri string attribute 1-1
portid string (alphanumeric, .,) attribute 1-1

Table 46: Class-Overview: PortReference

serviceuri

This is the address of the Sensor - the location where the Sensor is deployed.

portid

This is the name of the port. It should refer to a valid port of the Sensor that is
addressed via serviceuri.

6.3.5 SensorInfo

The SensorModel is too complex and contains sensitive data (such as passwords),
therefore it cannot be exchanged via Web services. To be able to exchange important
aspects of the SensorModel in a compact way, the SensorInfo is used. It describes
the ports as well as the Forward definitions of a Sensor.

Name Type Containment Multiplicity
sensor ServiceSensor child 1-1
ports SensorInfoPort child 0-*
services string attribute 0-*

Table 47: Class-Overview: SensorInfo

sensor

This field contains an instance of ServiceSensor which does not describes an inte-

6.3 Dynamic Definitions 111

grated service of the Sensor, but rather the Sensor itself. The portid field is left
blank and the serviceid is set to the name of the Sensor defined in SensorSpecifica-
tion.

ports

This field contains a collection of all ports of the Sensor.

services

This is a list of all integrated services of the Sensor.

6.3.6 SensorInfoPort

This type is a compact version of the port definition via PortAbstract, enhanced
with data concerning the Forward specification of the port. For more information
about Forwards, see 5.4.4 Types of Links.

Name Type Containment Multiplicity
update boolean attribute 1-1
portid string (alphanumeric, .,) attribute 1-1
inputs SensorInfoIO child 0-*
outputs SensorInfoIO child 0-*
forwardto PortReference child 0-*
forwardfrom PortReference child 0-*

Table 48: Class-Overview: SensorInfoPort

update

This flag determines the kind the port. If it is set to true, the port is an update
port (PortUpdate). In contrast, false indicates a port used for data extraction
(PortExtract).

portid

This field is used to identify the port. It corresponds to the portid in PortAbstract.

inputs

This field is a collection of all input variable definitions of the described port.

outputs

This field is a collection of all output variable definitions of the described port.

forwardto

6.3 Dynamic Definitions 112

A Forward that links the Sensor’s output with another Sensor’s input port is stored
in this field.

forwardfrom

A Forward that links another Sensor’s output with this’ Sensor’s input is stored in
this field.

6.3.7 SensorInfoIO

This type is a simplified version of DataSpecification and describes an input or out-
put variable of a port. Since the complex types of DataSpecification could not be
interpreted, as they refer to resources of the SensorModel, the datatype is split into
the namespace and the actual typename.

Name Type Containment Multiplicity
ns string attribute 1-1
type string attribute 1-1
dataid string (alphanumeric, .,) attribute 1-1

Table 49: Class-Overview: SensorInfoIO

ns

This describes the namespace of the type being used. It is retrieved by looking up
the prefix in the resources in SensorSpecification.

type

The second part of the original datatype is stored in this field and it describes the
actual type within the given namespace.

dataid

This id is used as unique identifier of the data in the current session. It is obtained
from DataSpecification.

7 CSDF Web Services

The Controller, the Session Service and the Sen-
sor communicate via Web services. To compre-
hend the actual message exchange between these
components, a fundamental knowledge of these
services is necessary. This chapter introduces all
Web service interfaces in detail. It contains a
list of all operations, the data being transmitted
as well as possible faults. Additionally, it gives
an insight into how the respective operations are
used in the workflow of CSDF.

7.1 Sensor Services 114

Preface

This chapter deals with the Web services of CSDF. Although it gives a deep insight
into the workflow and the communication patterns of CSDF, it is not imperative to
read this part in order to understand later chapters of this thesis. Therefore, read-
ers who are more interested in a guide on creating a sample Sensor might skip this
chapter and continue reading at 8 How To.

Web services of CSDF commonly make use of parts of the SensorModel. To un-
derstand the data which is actually conveyed in a service call, it is suggested to
study chapter 6 Sensor Model before reading this section. Furthermore, global ids
described in 6.1.2 SensorModel ID are also used throughout the text.

7.1 Sensor Services

This part will introduce the Web services of the Sensor. A Sensor provides five
service interfaces which are as follows:

� SensorIO - operations to query port and Forward definitions of Sensor

� SensorControl - operations to get and set Parameters

� SensorService - operations to query integrated services

� SensorCore - operations for invocation and is-alive queries

� SensorManagement - operations to initialize, activate and passivate Sensor

7.2 SensorIO

This service deals with port and Forward definitions of the Sensor. It provides
operations to query input requirements and output assertion of a port and to list a
detailed specification of all Forwards defined at the Sensor.

This functionality is mainly used by the Controller upon registration of the Sen-
sor. To construct an adequate Filter for the registering Sensor, the Controller loads

7.2 SensorIO 115

both port specifications and Forward definitions. Though not yet implemented, this
information could be used to realise dynamic service composition and to visualise
Sensor composition. The first stands for an algorithm that automatically identifies
an adequate chain of Sensors capable of processing a service interaction, given only
the specification of the input and the desired output. The latter describes a tool
providing functionality to visualise the actual Sensor composition in a graph.

7.2.1 GetIOSpecification

This operation is used to load the whole InputOutputSpecification of a Sensor that
contains all information about port and variable definitions.

This service is used...

� ...by the Controller to retrieve the input and output specifications of the Sensor
upon registration.

Name Type Multiplicity
Input -

Output specification InputOutputSpecification 1-1

Table 50: Service-Overview: GetIOSpecification

Output:

specification

This field contains the port and variable specification of the Sensor.

7.2.2 GetPort

Given a portid, this operation returns the port definition in an instance of PortAb-
stract. It can be used to query information about a particular port.

Name Type Multiplicity
Input portid string 1-1

Output
update boolean 1-1
port PortAbstract 1-1

Fault UnknownIdentifierFault

Table 51: Service-Overview: GetPort

7.2 SensorIO 116

Input:

portid

This is the id of the port that should be loaded.

Output:

update

This flag is set to true, if the loaded port is an update port (PortUpdate) and false,
if the port is an extraction port (PortExtract).

port

This contains the definition of the port being requested.

Fault:

UnknownIdentifierFault

If no port with the given id is defined, this fault will be returned.

7.2.3 ListAllForwards

This operation lists all Forward definitions of a Sensor.

This service is used...

� ...by the Controller to load the Forwards of all ports of the Sensor. The Con-
troller then uses this information to integrate the Sensor in the compositions
of CSDF.

Name Type Multiplicity
Input -

Output forwards tForward 0-*

Table 52: Service-Overview: ListAllForwards

Output:

forwards

This field contains all Forwards defined at the Sensor.

7.2.4 GetPortForwards

This operation lists all Forwards that are defined on a particular port of the Sensor.

7.2 SensorIO 117

Name Type Multiplicity
Input portid string 1-1

Output
input tForward 0-1
output tForward 0-1

Fault UnknownIdentifierFault

Table 53: Service-Overview: GetPortForwards

Input:

portid

This id specifies the port from which the Forwards should be loaded.

Output:

input

This field contains a list of all Forward-Froms defined on the input port, if any.

output

This field contains a list of all Forward-Tos defined on the output port, if any.

Fault:

UnknownIdentifierFault

If no port with the given id is defined, this fault will be returned.

7.2.5 Type: tForward

This type is used to describe the data of a Forward.

Name Type Multiplicity
input boolean 1-1
portid string 1-1
forward PortReference 1-*

Table 54: Type-Overview: tForward

input

This flag indicates the type of Forward being defined. If set to true, the Forward
is defined on the output port and references an input port (Forward-To). If set
to false, the Forward is defined on the input port and references an output port
(Forward-From).

7.3 SensorControl 118

portid

This is the id of the port at which the Forward is defined.

forward

This is a list of references to ports of other Sensors. Combined with input and portid

of the local port, the Forward definition can be completed.

7.3 SensorControl

This service deals with Standards, Parameters, access rules and resources: It provides
operations to query all Standards of a Sensor and to list all Parameters of a selected
Standard. Also, it is possible to retrieve access rules defined for a particular access
key.

The service furthermore offers operations to read and values of Parameters. Thus,
control over the workflow of a Sensor during runtime by a user or even by another
Sensor becomes feasible. For instance: Sensor A invokes Sensor B and receives the
result of a calculation. Yet, according to the quality-criteria of A, the result is not
precise enough. In this case, A could adjust the precision-Parameter of B using this
service and re-execute the calculation.

The last part of this service deals with resources. On request the Sensor can
return a list of all resources that are defined in the SensorModel. Moreover, it is
even possible to load the content of a resource directly via a Web service call. This
tremendously enhances the flexibility of the system, as resources need not have to
be shared between Sensors beforehand - Sensors can just load resources on the fly.

7.3.1 ListAllStandards

This operation lists all Standards including their Parameters.

Name Type Multiplicity
Input -

Output standards Standard 0-*

Table 55: Service-Overview: ListAllStandards

7.3 SensorControl 119

Output:

standards

This is a list of all Standards defined in the SensorModel.

7.3.2 GetStandard

With this operation a particular Standard and its Parameters can be queried.

Name Type Multiplicity
Input standarid string 1-1

Output standard Standard 1-1
Fault UnknownIdentifierFault

Table 56: Service-Overview: GetStandard

Input:

standarid

This id specifies the Standard to be returned.

Output:

standard

This variable contains the Standard that was specified by the id.

Fault:

UnknownIdentifierFault

If no Standard with the given id is defined, this fault will be returned.

7.3.3 ListAccessForKey

Using this operation access rules for a particular key can be queried.

Name Type Multiplicity
Input controlkey string 1-1

Output standards ControlStandardAccess 0-*
Fault UnknownIdentifierFault

Table 57: Service-Overview: ListAccessForKey

7.3 SensorControl 120

Input:

controlkey

This key is used for authentication of a user. It must be identical to key of Control-
AccessUser for which the access rules should be listed.

Output:

standards

This list contains all rules defined for the given key.

Fault:

UnknownIdentifierFault

If no ControlAccessUser with the given key is defined, this fault will be returned.

7.3.4 GetParameterValue

This operation returns the current values of Parameters.

Note In special cases it might be desired to calculate the value of Parameters at
the time queried instead of returning a pre-saved value (e.g. time the Sensor is
running in seconds). This can be realised in the extension part of the Sensor.
The developer can add code which dynamically calculates the value of a Pa-
rameter upon request. It has to be made sure that the returned value is valid
according to the type of the Parameter.

Name Type Multiplicity

Input
controlkey string 1-1
parameterid string 1-*

Output parameters ParameterValue 1-*

Fault

InvalidAccessKeyFault
ParameterAccessFault
NoAccessFault
UnknownIdentifierFault

Table 58: Service-Overview: GetParameterValue

Input:

controlkey

This key is used for authentication. In case of default access via ControlAccess-

7.3 SensorControl 121

Default, the field must be left blank. To access via a particular ControlAccessUser,
the respective key has to be set.

parameterid

This field specifies all Parameters of which the values should be loaded.

Output:

parameters

This array contains the current values of the requested Parameters.

Fault:

InvalidAccessKeyFault

If no access definition matches the provided key, this fault will be returned.

ParameterAccessFault

If a Parameter to be set is not defined as readable, this fault will be returned.

NoAccessFault

If a Parameter is marked as readable, but the loaded access definition does not
include the necessary read-access rights, this fault will be returned.

UnknownIdentifierFault

If one of the given ids refers to a non-existent Parameter, this fault will be returned.

7.3.5 SetParameterValue

This method is used to set new values of Parameters.

Note If an error occurs due to invalid input (e.g. non-existent parameter ids, invalid
new values, insufficient access rights), the operation will be aborted and none
of the Parameters will be set to a new value.

Note In some cases it might be desired to react to new values of Parameters instan-
taneously. Again, this can be realised by writing code in the extension of the
Sensor, which will then automatically be executed upon SetParameterValue-
requests.

Input:

controlkey

This key is used for authentication. In case of default access via ControlAccess-

7.3 SensorControl 122

Name Type Multiplicity

Input
controlkey string 1-1
parameters ParameterValue 1-*

Output -

Fault

InvalidAccessKeyFault
ParameterAccessFault
NoAccessFault
UnknownIdentifierFault
ValueInvalidFault

Table 59: Service-Overview: SetParameterValue

Default, the field must be left blank. To access via a particular ControlAccessUser,
the respective key has to be set.

parameters

This field contains a list of the new values of the Parameters. It is important that all
ids refer to existing Parameters and that the values are valid according to the types
of the Parameters.

Fault:

InvalidAccessKeyFault

If no access definition matches the provided key, this fault will be returned.

ParameterAccessFault

If a Parameter to be set is not defined as writeable, this fault will be returned.

NoAccessFault

If a Parameter is marked as writeable, but the loaded access definition does not
include the necessary write-access rights, this fault will be returned.

UnknownIdentifierFault

If one of the given ids refers to a non-existent Parameter, this fault will be returned.

ValueInvalidFault

If the new value of a Parameter is not valid according to the type of the Parameter,
this fault will be returned.

7.3 SensorControl 123

7.3.6 ListResources

This operation returns all resource definitions specified in the SensorModel.

Name Type Multiplicity
Input -

Output resources Resource 0-*

Table 60: Service-Overview: ListResources

Output:

resources

This field contains the resource definitions.

7.3.7 GetResourceByNamespace

This operation returns the content of a resource. The resource to be loaded is
identified by its namespace. No wrapping XML elements are used, so it is possible
to directly process the content of the resource (especially when using REST).

Note When developers use ResourceSensor in their SensorModel, the XML Schema
of the Sensor will contain include-instructions that use the REST interface to
load resources from the referenced Sensors.

This service is used...

� ...by Sensors integrating resources of other Sensors. Rather than sharing re-
sources beforehand, they are loaded dynamically via this interface when needed.

Name Type Multiplicity
Input namespace string 1-1

Output content of the resource

Fault
ResourceUnknownFault
ResourceFault

Table 61: Service-Overview: GetResourceByNamespace

Input:

namespace

The namespace specifies which resource of the Sensor should be loaded.

7.3 SensorControl 124

Output:

The content of the resource is output directly without any wrapping XML element.

Fault:

ResourceUnknownFault

If no resource for the given namespace is defined, this fault will be returned.

ResourceFault

If the resource cannot be found or cannot be loaded for any reason, this fault will be
returned.

7.3.8 GetNamespaceByPrefix

This operation is used to resolve a prefix into the namespace of a resource. For
instance, it might be used when looking up the type prefixes of DataSpecification,
which were loaded using the services of SensorIO.

Name Type Multiplicity
Input prefix string 1-1

Output namespace string 1-1
Fault PrefixUnknownFault

Table 62: Service-Overview: GetNamespaceByPrefix

Input:

prefix

This is the prefix to be resolved into a namespace.

Output:

namespace

This is the namespace defined for the given prefix.

Fault:

PrefixUnknownFault

If no resource for the given prefix is defined, this fault will be returned.

7.4 SensorService 125

7.4 SensorService

This Web service handles the integrated services of the Sensor. Moreover, it provides
functionality to retrieve a description of the Sensor itself.

7.4.1 ListAllServices

This operation returns a list of all integrated services of the Sensor which are defined
in the SensorSpecification of the SensorModel.

This service is used...

� ...by the Controller in registration process to load the integrated services of the
Sensor.

Name Type Multiplicity
Input -

Output
controllerservice string 1-1
sessionservice string 1-1
services ServiceDescription 0-*

Table 63: Service-Overview: GetParameterValue

Output:

controllerservice

This is the location of the Controller Web service.

sessionservice

This is the location of the Session Service Web service.

services

This field contains all integrated services of the Sensor.

7.4.2 GetSelf

Using this operation a short description of the Sensor can be retrieved.

This service is used...

� ...by the Controller to get the description of the registering Sensor.

7.5 SensorCore 126

Name Type Multiplicity
Input -

Output sensor ServiceSensor 1-1

Table 64: Service-Overview: GetSelf

Output:

sensor

This field contains the description of the Sensor. The portid field is left blank and
serviceid is set to the name of the Sensor.

7.5 SensorCore

The interfaces for an actual invocation of the business logic are provided in this Web
service. Given a session containing the required variables specified by the InputOut-
putSpecification, the port of the Sensor can be invoked and executed. Depending on
the type of port, results might be written back to the session.

Apart from invocation, this service offers an operation to query whether a Sensor
is still available and a notification method to inform about unregistration from the
Controller.

7.5.1 Invoke

This is the most important operation of the Sensor. Using it, it is possible to invoke
a particular port of a Sensor and execute its business logic. In order to do so,
two requirements must be met. First of all, an open session is needed. Second,
the variable requirements of the InputOutputSpecification of the chosen port must
be met. Thus, all required variables must previously be set in the session. Upon
invocation, the port will then load the variables from the session and check them
for validity. If either a variable is not set or its value is not valid, the execution of
the port will be cancelled prematurely. The same will happen if the Sensor has not
been initialized beforehand or if the provided session is invalid or closed. For more
information, please refer to 5.6.3 Service Interaction and Sensor Invocation.

7.5 SensorCore 127

This service is used...

� ...by the Controller to invoke active Sensors in case that their Filter matches
an incoming service interaction.

� ...by the Controller to invoke Sensors being part of a composition.

� ...by Sensors invoking other Sensors as integrated service.

Name Type Multiplicity

Input

sessionid string 1-1
portid string 1-1
userid string 0-1
activityid string 0-1

Output success boolean 1-1

Fault

ControllerServiceFault
SessionServiceFault
InputRequirementFault
OutputAssertionFault
ProcessFault
NotInitializedFault
DependentServiceFault

Table 65: Service-Overview: Invoke

Input:

sessionid

The session-id has to refer to a valid and already opened session of the Session
Service.

portid

With this field the port to be executed is specified. It has to refer to a valid port of
the Sensor.

userid

This optional field enables the caller to pass a user as context information.

activityid

This optional field enables the caller to pass an activity as context information.

7.5 SensorCore 128

Output:

success

This flag indicates whether the invocation was successful or not. It will be true

because in cases of errors, respective faults will be returned.

Fault:

ControllerServiceFault

This is a reserved fault for errors encountered in the Controller. In the current
development stage of CSDF, a Sensor does not communicate with the Controller
during invocation, so this fault will never be returned.

SessionServiceFault

If the Session Service cannot be reached or the given session is not valid, this fault
will be returned.

InputRequirementFault

If either the specified port is invalid or the required input data is not set in the
session or not valid, this error will be returned.

OutputAssertionFault

If the output assertions of the Sensor cannot be met after invocation, this error will
be returned. This usually means that the developer failed to properly set the output
data in the extension.

ProcessFault

If problems occur during the execution of the business logic, this error will be re-
turned. The reason for this usually is faulty code or insufficient exception handling.

NotInitializedFault

If the Sensor has not been initialized prior to the invocation, this error will be
returned.

DependentServiceFault

If an error occurs not in the Sensor code itself, but in services on which the Sensor
depends on, this fault will be returned.

7.5.2 UnregistrationNotification

This interface is used to inform the Sensor about unregistration from the Controller.
If successful, the Sensor will revert to uninitialized-status.

7.5 SensorCore 129

Note It is necessary to provide the key received during registration. This is a secu-
rity mechanism to prevent arbitrary shutdown of Sensors by third parties. By
providing the registration key the authenticity of the Controller is guaranteed.

This service is used...

� ...by the Controller upon shutdown-request and following Sensor removal.

Name Type Multiplicity

Input
registerkey string 1-1
managementservice string 0-1

Output -
Fault RegisterKeyFault

Table 66: Service-Overview: UnregistrationNotification

Input:

registerkey

This is the key received by the Controller during Initialize.

managementservice

This is the location of the service which was responsible for registration management,
i.e. the Controller.

Fault:

RegisterKeyFault

If the provided key does not match the key used during registration, this fault will
be returned.

7.5.3 IsAlive

This operation is mainly used by the Controller to check whether the Sensor is still
available. If the Sensor fails to reply IsAlive-requests for a certain number of times,
it will get removed by the Controller. For more information about this mechanism,
please see 5.1.2 Controller

This service is used...

� ...by the Controller to perform the Is-Alive algorithm.

7.6 SensorManagement 130

Name Type Multiplicity
Input -

Output -

Table 67: Service-Overview: IsAlive

7.6 SensorManagement

This Web service of the Sensor is intended to be directly operated by the developer.
After deploying a Sensor, it has to be initialized in order to be used. During the
process of initialization the Sensor will itself register at the Controller and can then
optionally be activated. For more information about registration please refer to
5.6.3 Service Interaction and Sensor Invocation.

7.6.1 Initialize

After deployment, the Sensor has to be initialized, otherwise it cannot be invoked.
The initialization of a Sensor will lead to its registration at the Controller. For more
information about initialization, see 5.6.3 Service Interaction and Sensor Invocation.

The initialization-request also contains the Forward specification as well as op-
tional binding entries of integrated services. For more information about forwards,
please refer to 5.4.4 Types of Links. Service location and port of integrated services
must either be specified in the SensorModel or contained in the initialization-request,
otherwise the initialization of the Sensor will fail. Entries in the initialization-request
will override default values of the SensorModel.

Note Since both the Forward mappings and the Sensor-bindings might change,
they can easily be altered simply by specifying new values and invoking this
operation again. This mechanism enhances the flexibility of the system tremen-
dously, as there is no need to alter the SensorModel on changes of the linkage
of Sensors. Every time the Initialize operation is invoked, the Controller will
reset the Sensor to passive mode, so it might have to be activated again.

This service is used...

� ...by the user to initialize the Sensor.

7.6 SensorManagement 131

Name Type Multiplicity

Input
services tServiceType 0-*
forwardfroms tForward 0-*
forwardtos tForward 0-*

Output -

Fault
ControllerServiceFault
InitializeFault

Table 68: Service-Overview: Initialize

Input:

services

This field specifies the actual binding of all ServiceSensor. At minimum all services
not fully specified in the SensorModel have to be listed here.

forwardfroms

This field describes all Forward-Froms of the Sensor.

forwardtos

This field describes all the Forward-Tos of the Sensor.

Fault:

ControllerServiceFault

If the Controller is not initialized or if there are other problems on the part of the
Controller, this fault will be returned.

InitializeFault

If not all the services are fully specified, this error will be returned. It usually
expresses that services did not contain all necessary services bindings.

7.6.2 Activate

With this operation a Sensor can be marked as active on the Controller. Active
Sensors are directly invoked by the Controller in case that an adequate service inter-
action is received. For more information about this topic, please refer to 5.4.5 Active
and Passive Sensors.

This service is used...

� ...by the user to activate the Sensor.

7.6 SensorManagement 132

Name Type Multiplicity
Input activationkey string 1-1

Output -

Fault
NotInitializedFault
ControllerServiceFault
ActivationKeyFault

Table 69: Service-Overview: Activate

Input:

activationkey

This field contains the activation key specified in ControlSpecification. This is a secu-
rity mechanism to prevent arbitrary activation of Sensors by third parties. Only the
developer of a Sensor should know the activation key specified in the SensorModel.

Fault:

NotInitializedFault

If the Sensor is not initialized, this fault will be returned.

ControllerServiceFault

If the Controller is not initialized or if there are other problems on the part of the
Controller, this fault will be returned.

ActivationKeyFault

If the provided activation key does not match the one specified in the SensorModel,
this fault will be returned.

7.6.3 IsActive

This operation returns the actual activation status of the Sensor.

Name Type Multiplicity
Input -

Output isactive boolean 1-1
Fault NotInitializedFault

Table 70: Service-Overview: IsActive

7.6 SensorManagement 133

Output:

isactive

This field indicates whether the Sensor is marked as active or not. If true, the
Sensor is active and might be invoked by the Controller directly, if false, the Sensor
is passive.

Fault:

NotInitializedFault

If the Sensor is not initialized, this fault will be returned.

7.6.4 Passivate

This operation is used to set the Sensor back to passive on the Controller. A passive
Sensor can only be invoked in the course of a Sensor composition or via a direct
service call from another Sensor. For more information, please see 5.4.5 Active and
Passive Sensors.

This service is used...

� ...by the user to passivate the Sensor.

Name Type Multiplicity
Input activationkey string 1-1

Output -

Fault
NotInitializedFault
ControllerServiceFault
ActivationKeyFault

Table 71: Service-Overview: Passivate

Input:

activationkey

This field contains the activation key which is specified in ControlSpecification. This
is a security mechanism to prevent arbitrary passivation of Sensors by third par-
ties. Only the developer of a Sensor should know the activation key specified in the
SensorModel.

7.6 SensorManagement 134

Fault:

NotInitializedFault

If the Sensor is not initialized this fault will be returned.

ControllerServiceFault

If the Controller is not initialized or if there are other problems on the part of the
Controller, this fault will be returned.

ActivationKeyFault

If the provided activation key does not match the one specified in the SensorModel,
this fault will be returned.

7.6.5 Type: tServiceType

This type is used to specify the actual binding of the ServiceSensor entries defined
in ServiceSpecification.

Name Type Multiplicity
serviceid string 1-1
serviceuri string 1-1
portid string 1-1

Table 72: Type-Overview: tServiceType

serviceid

With this id the ServiceSensor to be bound is specified.

serviceuri

This is the actual service location of the Sensor.

forward

This field specifies the port to be used.

7.6.6 Type: tForward

This type is used to define Forwards on the local Sensor.

portid

This is the id of the local port of the Sensor.

7.7 Controller 135

Name Type Multiplicity
portid string 1-1
forward PortReference 1-*

Table 73: Type-Overview: tForward

forward

This field contains a list of all the Forwards defined on the local port. It specifies
both service location and port of the external Sensors.

7.7 Controller

This service interface is used to interact with the Controller. It contains methods
to manage the registration of Sensors, search and browse registered Sensors, find
compatible ports as well as management routine for the Controller itself. For a
general overview of the tasks of the Controller, see 5.1.2 Controller.

7.7.1 Register

This operation is used to register a Sensor at the Controller. It is invoked by the Sen-
sor automatically upon initialization via Initialize. During the registration process,
the Controller will query the Sensor for the following data:

� InputOutputSpecification - definition of ports, variables and Forwards

� ServiceSpecification - definition of integrated services

� ServiceSensor - a description of the Sensor

For more information about the registration of a Sensor, please refer to 5.6.2 Regis-
tration of a Sensor.

Note If a Sensor with the given service address is already registered at the Con-
troller, any subsequent invocation of this operation will overwrite previous reg-
istrations. This is necessary, as the Sensor might be re-initialized in order to
update mappings and bindings. For more information, please see 7.6.1 Initialize

Note Sensors are always set to passive-status after registration.

7.7 Controller 136

This service is used...

� ...by the Sensor upon initialization.

Name Type Multiplicity

Input

ioservice string 1-1
controlservice string 1-1
serviceservice string 1-1
coreservice string 1-1

Output
sessionservice string 1-1
sensorkey string 1-1

Fault
ServiceFault
NotInitializedFault
ConfigurationFault

Table 74: Service-Overview: Register

Input:

ioservice

This is the location of the SensorIO Web service of the Sensor. It usually has the
value <sensor-core> ’IO’.

controlservice

This is the location of the SensorControl Web service of the Sensor. It usually has
the value <sensor-core> ’Control’.

serviceservice

This is the location of the SensorService Web service of the Sensor. It usually has
the value <sensor-core> ’Service’.

coreservice

This is the location of the SensorCore Web service of the Sensor.

Output:

sessionservice

This is the location of the Session Service Web service.

sensorkey

This is the key which the Sensor will use to authenticate itself when using other
operations of the Controller.

7.7 Controller 137

Fault:

ServiceFault

If the Controller cannot request and retrieve the above data from the Sensor, this
fault will be returned.

NotInitializedFault

If the Controller is not initialized, this fault will be returned.

ConfigurationFault

If there is an error in the configuration of the Sensor, this fault will be returned.

7.7.2 Unregister

This is used to unregister a Sensor from the Controller. By unregistering it, the
Controller will delete all data in relation to the Sensor (e.g. Forwards, ports).

Name Type Multiplicity

Input
coreservice string 1-1
sensorkey string 1-1

Output -

Fault
SensorKeyInvalidFault
ServiceNotRegisteredFault
NotInitializedFault

Table 75: Service-Overview: Unregister

Input:

coreservice

This is the location of the SensorCore Web service of the Sensor.

sensorkey

This is the key that the Sensor received during registration via Register.

Fault:

SensorKeyInvalidFault

If the provided key does not match the one received during registration, this fault
will be returned.

ServiceNotRegisteredFault

If the specified Sensor is not registered at the Controller, this fault will be returned.

7.7 Controller 138

NotInitializedFault

If the Controller is not initialized, this fault will be returned.

7.7.3 SetActiveStatus

Using this method it is possible to activate and passivate a Sensor. Passive Sensors
will only be invoked within Sensor compositions while active Sensors will also be
invoked by the Controller if an adequate service interaction matches its Filter. For
more information, please see 5.4.5 Active and Passive Sensors.

This service is used...

� ...by the Sensor upon Activation and Passivation via Activate and Passivate.

Name Type Multiplicity

Input
coreservice string 1-1
sensorkey string 1-1
active boolean 1-1

Output -

Fault
SensorKeyInvalidFault
ServiceNotRegisteredFault
NotInitializedFault

Table 76: Service-Overview: SetActiveStatus

Input:

coreservice

This is the location of the SensorCore Web service of the Sensor.

sensorkey

This is the key that the Sensor received during registration via Register.

active

This field specifies the activation-status of the Sensor. If set to true, the Sensor will
be activated, if set to false, it will be passivated.

Fault:

SensorKeyInvalidFault

If the provided key does not match the key received during registration, this fault
will be returned.

7.7 Controller 139

ServiceNotRegisteredFault

If the specified Sensor is not registered at the Controller, this fault will be returned.

NotInitializedFault

If the Controller is not initialized, this fault will be returned.

7.7.4 ListAllServices

This operation returns a list of all Sensors currently registered at the Controller,
regardless of their activation-status.

Name Type Multiplicity
Input -

Output services ServiceSensor 0-*

Table 77: Service-Overview: ListAllServices

Output:

services

This field contains a list of all currently registered Sensors.

7.7.5 ListAllServicesDetails

This operation returns detailed specifications of all Sensors currently registered at
the Controller, regardless of their activation-status.

Name Type Multiplicity
Input -

Output services SensorInfo 0-*

Table 78: Service-Overview: ListAllServicesDetails

Output:

services

This field contains a list of all currently registered Sensors.

7.7.6 GetServiceByCore

Given service location, this operation returns a detailed specification of the respective
Sensor.

7.7 Controller 140

Name Type Multiplicity
Input coreservice string 1-1

Output services SensorInfo 1-1
Fault ServiceUnknownFault

Table 79: Service-Overview: GetServiceByCore

Input:

coreservice

This is the location of the SensorCore Web service of the Sensor to be loaded.

Output:

services

This field contains a list of all currently registered active Sensors.

Fault:

ServiceUnknownFault

If no Sensor with the given service location is registered at the Controller, this fault
will be returned.

7.7.7 GetServiceByRequirements

This operation makes it possible to search for registered Sensors by particular require-
ments. This means that all Sensors will be returned which meet the requirements
and not only those that exactly match them. The inputids and outputids are ap-
plied pairwise to each port, but it is already sufficient that only one port meets the
requirements in order for the Sensor to be included in the resulting list.

Name Type Multiplicity

Input
inputids string 0-*
outputids string 0-*
services string 0-*

Output services SensorInfo 0-*

Table 80: Service-Overview: GetServiceByRequirements

7.7 Controller 141

Input:

inputids

This is a list of dataids that must appear in the input part of the PortAbstract.

outputids

This is a list of dataids that must appear in the output-part of the PortAbstract.

services

This is a list of all service locations that must appear in the ServiceSpecification.

Output:

services

This field contains all Sensors that meet the given requirements.

7.7.8 ListAllActiveServices

This operation returns a list of all Sensors currently activated at the Controller.

Name Type Multiplicity
Input -

Output services SensorInfo 0-*

Table 81: Service-Overview: ListAllActiveServices

Output:

services

This field contains all active Sensors.

7.7.9 Initialize

To start context extraction with CSDF, the Controller must be initialized first. This
is done using this operation. An overview of the initialize-procedure of the Controller
can be seen at 5.6.1 Initialization of Controller.

This service is used...

� ...by the user to initialize the Controller.

7.7 Controller 142

Name Type Multiplicity
Input -

Output -

Fault
SubscriptionServiceFault
SessionServiceFault

Table 82: Service-Overview: Initialize

Fault:

SubscriptionServiceFault

If there is a problem during the registration at the Logging Service, this fault will be
returned.

SessionServiceFault

If the Session Service cannot be reached or sessions cannot be created, this fault will
be returned.

7.7.10 Shutdown

This operation will shutdown the Controller and set it back to un-initialized status.
5.6.1 Initialization of Controller gives an overview of the shutdown-procedure of the
Controller.

This service is used...

� ...by the user to shutdown the Controller.

Name Type Multiplicity
Input shutdownkey string

Output -
Fault ShutdownKeyInvalidFault

Table 83: Service-Overview: Shutdown

Input:

shutdownkey

This is the shutdown-key of the Controller. It must match the key specified in the
properties file of the Controller.

7.7 Controller 143

Fault:

ShutdownKeyInvalidFault

If the provided key does not match the key specified in the properties file of the
Controller, this fault will be returned.

7.7.11 GetCompatibleInputPorts

This operation is used to find compatible input ports for a given output port de-
scription. For an input port to be compatible the following requirements must be
fulfilled:

� The assertions given in specs cover at least the requirements of the input port.

A detailed introduction concerning the concept of compatibility is given at 5.4.2 Com-
patibility of Sensors.

This service is used...

� ...by the ConfigAssistant to identify compatible input ports.

Name Type Multiplicity
Input specs SensorInfoIO 1-*

Output
direct PortReference 0-*
inferred PortReference 0-*

Table 84: Service-Overview: GetCompatibleInputPorts

Input:

specs

This field contains the variable specifications. They are interpreted as assertions of
an output port.

Output:

direct

This is the list of direct compatible input ports.

inferred

This is the list of inferred compatible input ports. (This feature has not yet been
implemented so this list will always be empty).

7.8 Session Service 144

7.7.12 GetCompatibleOutputPorts

This operation is used to find compatible output ports for a given input port de-
scription. For an output port to be compatible the following requirements must be
fulfilled:

� The output port assertions must at least cover all requirements given by specs.

A detailed introduction concerning the concept of compatibility is given at 5.4.2 Com-
patibility of Sensors

This service is used...

� ...by the ConfigAssistant to identify compatible output ports.

Name Type Multiplicity
Input specs SensorInfoIO 1-*

Output
direct PortReference 0-*
inferred PortReference 0-*

Table 85: Service-Overview: GetCompatibleOutputPorts

Input:

specs

This field contains a list of variable specifications. They are interpreted as require-
ments of an input.

Output:

direct

This is the list of direct compatible output ports.

inferred

This is the list of inferred compatible output ports. (This feature has not yet been
implemented so this list will always be empty).

7.8 Session Service

Sessions are used as common data store to enable information exchange between
Controller and Sensors. They are short lived and will be deleted either on request

7.8 Session Service 145

or automatically after a certain time lease. For more detailed information about
sessions and the tasks of the Session Service, see 5.1.3 Session Service.

7.8.1 Get

This operation returns the current values of selected variables and is used to read
data from a session.

This service is used...

� ...by the Sensor to load input data of a port from the session.

� ...by the Sensor to load output data of a port from the session for a final check
of the output assertions.

Name Type Multiplicity

Input
sessionkey string 1-1
required boolean 1-1
dataid string 0-*

Output data DataSet 1-1

Fault
SessionInvalidFault
UnknownIdentifierFault

Table 86: Service-Overview: Get

Input:

sessionkey

This is the identifier of the session.

required

This flag indicates whether all requested values are required or not. If set to true, a
fault will be generated if one or more requested variables are not set in the session.
If set to false, not defined variables will simply not be contained in the result.

dataid

This field specifies the variables to be loaded from the session.

Output:

data

This field contains the requested data from the session.

7.8 Session Service 146

Fault:

SessionInvalidFault

If no session is defined for the provided session key, this fault will be returned. The
id might either be wrong or the lease ran out and the session therefore expired.

UnknownIdentifierFault

If required is set to true, this fault will be generated if one or more requested variables
are not defined in the session.

7.8.2 Set

With this operation data of a session can be set. This method works with incremental
data changes.

Example Example of changes of the data in a session upon invocation of this op-
eration:

Session (before) Set Session (after)
ID Value ID Value ID Value

name Oliver name Oliver
age 23 age 24 age 24

hair brown hair brown
work student work teacher work teacher

subject English subject English
income 2300 income 2300

This service is used...

� ...by the Controller to save data of the service invocation to the session.

� ...by the Sensor to save output data of a port to the session.

Name Type Multiplicity

Input
sessionkey string 1-1
data DataSet 1-1

Output -
Fault SessionInvalidFault

Table 87: Service-Overview: Set

7.8 Session Service 147

Input:

sessionkey

This is the identifier of the session.

data

This field contains all variables to be set in the session.

Fault:

SessionInvalidFault

If no session is defined for the provided session key, this fault will returned. The id
might either be wrong or the lease ran out and the session therefore expired.

7.8.3 Delete

Using this operation, variables can be deleted from the session. This method works
with incremental data changes.

Example Example of changes of the data in a session upon invocation of this op-
eration:

Session (before) Delete Session (after)
ID Value ID ID Value

name Oliver name Oliver
age 23 age

work student work teacher
income 2300 income

Name Type Multiplicity

Input
sessionkey string 1-1
dataid string 0-*

Output -

Fault
SessionInvalidFault
UnknownIdentifierFault

Table 88: Service-Overview: Delete

Input:

sessionkey

This is the identifier of the session.

7.8 Session Service 148

dataid

This list specifies variables to be deleted from the session.

Fault:

SessionInvalidFault

If no session is defined for the provided session key, this fault will returned. The id
might either be wrong or the lease ran out and the session therefore expired.

UnknownIdentifierFault

If one or more variables that are specified are not defined in the session, this fault
will be generated.

7.8.4 SessionCreate

This operation opens a new session. It is possible to define the lifespan of the session
as well as the refresh time. The latter specifies to which point the lifespan should
be extended in case of access. Both parameters are just treated as suggestions. It is
up to the Session Service itself to decide on values for both parameters. For more
details about session leases, see 5.1.3 Session Service.

This service is used...

� ...by the Controller to create a new session before invoking Sensors matching
an incoming service interaction.

Name Type Multiplicity

Input
lease integer 1-1
refresh integer 1-1

Output
sessionkey string 1-1
commitkey string 1-1
lease integer 1-1

Table 89: Service-Overview: SessionCreate

Input:

lease

This field specifies the suggested lifespan in seconds.

refresh

This field specifies the suggested refresh time in seconds.

7.8 Session Service 149

Output:

sessionkey

This is the id of the new session.

commitkey

This key is needed for deletion of a session via SessionDestroy.

lease

This is the actual lease of the session in seconds.

7.8.5 SessionDestroy

This operation is used to manually close a session and discard all its data. To suc-
cessfully delete a session, the commitkey is needed which was obtained upon creation.
This is a security mechanism, so only the creator of the session can actually delete
it.

This service is used...

� ...by the Controller to delete a session.

Name Type Multiplicity

Input
sessionkey string 1-1
commitkey string 1-1

Output -

Fault
SessionInvalidFault
CommitKeyInvalid

Table 90: Service-Overview: SessionDestroy

Input:

sessionkey

This is the identifier of the session.

commitkey

This is the key provided upon creation of the session.

7.8 Session Service 150

Fault:

SessionInvalidFault

If no session is defined for the provided session key, this fault will be returned. The
id might either be wrong or the lease ran out and the session therefore expired.

CommitKeyInvalid

If the provided key does not match the one generated upon creation of the session,
this fault will be returned.

8 How To

After the successful installation of CSDF, we can
start to create our first Sensor. The first part of
this chapter is devoted to the design of a Sen-
sorModel using the graphical model editor. In a
next step the Sensor code-base is generated via
the Generator. After coding the business logic
of the ports, their functionality is tested in sim-
ple code tests. The Sensor is then deployed and
initialized using the ConfigAssistant before un-
dergoing a final integration test.

8.1 Introduction 152

Preface

This part provides a very detailed tutorial explaining how to work with CSDF.
Readers who are more interested in the results might skip this chapter and continue
reading at 9 Evaluation.

In order to follow the instructions of this section the installation of CSDF is required.
A comprehensive guide dealing with the setup of CSDF can be found in A Installation
Guide.

8.1 Introduction

Figure 22: MessageSensor - Overview

In this part we will create a simple Sensor which will be sensitive to messages sent
via the Email Service. Figure 22 shows how the Sensor will work. (This diagram

8.2 The SensorModel 153

is simplified. Components like the Session Service, other Sensors as well as the
components of the Context Management System are omitted). The Sensor will be
both user aware and activity aware. If it receives an email invocation, it will use the
Team Context Aggregation Service to add a new communication action and append
it to the activity context it is executed in. Furthermore the Sensor will have a copy
function, which can be enabled via a control parameter.

The source code of our Sensor, the SensorModel as well as the WSDL specifica-
tions can be found in $CSDF/Examles/MessageSensor/.

8.2 The SensorModel

The SensorModel contains all the vital information of the Sensor. Its structure is
clearly defined by an EMF specification and the model itself is serialised using XMI.
Thus it is possible to code the SensorModel in any standard text editor, because it
is - after all - only XML. Still, there is a much more convenient and failure proof
method to do so. The SensorModel-plugin for Eclipse provides all the tools to load,
edit and save SensorModels in a richly featured graphical editing environment. Using
this editor creating and altering a SensorModel becomes an easy task.

8.2.1 Creating a new SensorModel

We will use Eclipse to create a new SensorModel.

1. Start Eclipse and create a new Project or select an existing Project in which
we will create the SensorModel.

2. Click File / New / Others... and choose Example EMF Model Creation Wizards
/ Sensormodel Model from the dialog and click Next > (Figure 23).

3. Specify a folder for the SensorModel, name it MySensorModel.sensormodel and
click Next > (Figure 24).

4. For Model Object choose Sensor Model and for XML Encoding choose UTF-8,
then click Finish (Figure 25).

Eclipse will now generate a new SensorModel-file and open it in the graphical editor
(Figure 26).

8.2 The SensorModel 154

Figure 23: SensorModel Wizard (Page 1)

8.2.2 Edit the SensorModel

The editor is a graphical tool to display, alter and extend a SensorModel:

� Right-click on a node in the tree and choose New Child / xxx to create a new
sub-element.

� Right-click on a node in the tree and choose New Sibling / xxx to create a
sibling element.

� Right-click on a node in the tree and choose Show properties view to view and
edit the fields of an element.

For detailed information about the elements and fields, please refer to SensorModel.

8.2.3 Adding the Input/Output Specification

Now we will create two ports for our Sensor. The first one will be an extraction port
to receive and extract information from an email invocation. The second one will be
an update port to realise the context-update and the copy-function.

8.2 The SensorModel 155

Figure 24: SensorModel Wizard (Page 2)

Figure 25: SensorModel Wizard (Page 3)

1. Add a new child Input Output Specification to Sensor Model.

� Set Isactivetyaware to ”true”. This will cause the Sensor to be sensitive

8.2 The SensorModel 156

Figure 26: SensorModel Editor

to activities.

� Set Isusweraware to ”true”. This will make the Sensor sensitive to users.

2. Add a new child Port Extract to Input Output Specification. This port
will be used to extract the receiver, the subject and the body of a sendMessage-
request. Every port needs a unique id, so set its Portid to ”extract message”.

3. Add a new child IO Input to Port Extract. This is the input part of the
port. The field Ioid can be left blank, because it will be automatically filled in
by the Generator.

4. Add a new child Data Specification to IO Input.

� Set Dataid to ”request.message”. Although ids can be chosen freely, this
is a special id, which is used to receive the SOAP request message from
the Controller.

� Set DataType to ”mes:sendMessage”. This field will hold a SOAP request
from the type sendMessage. We will later define the prefix mes as Resource-
Sensor.

� Set Description to ”sendMessage request”.

5. Add a new child Assertion WS Operation to Data Specification.

� Set Description to ”sendMessage operation”.

8.2 The SensorModel 157

� Set Operation to ”sendMessage”. This will cause the Controller to only
filter out messages of the type sendMessage. Furthermore it enables the
Sensor to cast SOAP requests to typed object in Java.

� Set Request to ”true”.

6. Add a new child IO Output to Port Extract.

7. Add a new child Data Specification to IO Output.

� Set Dataid to ”message.receiver”. This field will store the receiver of the
sendMessage-request.

� Set DataType to ”xsd:string”.

� Set Description to ”message receiver”.

8. Add a new child Data Specification to IO Output.

� Set Dataid to ”message.subject”. This field will store the subject of the
sendMessage-request.

� Set DataType to ”xsd:string”.

� Set Description to ”message subject”.

9. Add a new child Data Specification to IO Output.

� Set Dataid to ”message.body”. This field will store the message body of
the sendMessage-request.

� Set DataType to ”xsd:string”.

� Set Description to ”message body”.

10. Add a new child Data Specification to IO Output.

� Set Dataid to ”message.type”. This field will describe the kind of message.

� Set DataType to ”mt:tMessageType”. We will later declare a
ResourceSchemaXsd for this prefix and use it to include our own XML
Schema.

� Set Description to ”message type”.

11. Add a new child Port Update to Input Output Specification. This port
will initiate the context-update. The data we extracted in the previously de-
fined port will serve as input. Set Portid to ”update message”.

8.2 The SensorModel 158

12. Add a new child IO Input to Port Update.

13. Add a new child IO Reference to IO Input. We have already defined all
necessary variables in the extraction port, so we just include them here.

� Set Ioid to ”extract message#out”. This is a reference to the output part
of the extraction port.

� Set Nsprefix to ”self”. self is a special prefix and used for local references
i.e. addressing within the SensorModel itself.

We have now defined all ports needed for our Sensor. The SensorModel should now
look like this (Figure 27).

Figure 27: Input and Output Specification of SensorModel

8.2.4 Adding the Control Specification

To control our Sensor, we will define three Parameters. The first one will simply be
used to count the number of messages that the Sensor processes. With the second
one the copy-function can be enabled/disabled. Finally the last one will specify the
email address to which the copies should be sent.

1. Add a new child Control Specification to Sensor Model. Leave the fields
to their default values.

8.2 The SensorModel 159

2. Add a new child Standard Status to Control Specification. This adds the
basic Parameters for general information about the Sensor.

3. Add a new child Standard User Defined to Control Specification. Here
we will add our own Parameters.

� Set Standardid to ”standard.message”.

� Set Description to ”message parameters”.

4. Add a new child Control Parameter to Standard User Defined. This is
the Parameter to count messages.

� Set Controlid to ”count”.

� Set Default to ”0”.

� Set Description to ”number of messages”.

� Set Readable to ”true”.

� Set Writeable to ”false”.

� Set Type to ”xsd:integer”.

5. Add a new child Control Parameter to Standard User Defined. This is
the Parameter to enable and disable the copy-functionality.

� Set Controlid to ”copy”.

� Set Default to ”false”.

� Set Description to ”switch copy function on or off”.

� Set Readable to ”true”.

� Set Writeable to ”true”.

� Set Type to ”xsd:boolean”.

6. Add a new child Control Parameter to Standard User Defined. This
Parameter specifies the email address where copies of messages should be sent
to.

� Set Controlid to ”copy to”.

� Set Default to ”webmaster@localhost.com”.

� Set Description to ”recipient of copy”.

8.2 The SensorModel 160

� Set Readable to ”true”.

� Set Writeable to ”true”.

� Set Type to ”xsd:string”.

7. Add a new child Control Access Default to Control Specification. This
will grant any user access to Parameters.

The SensorModel should now look like this (Figure 28).

Figure 28: Control Specification of SensorModel

8.2.5 Adding the Service Specification

In the next step we can add integrated service to the Sensor. In our case we will
include the Email Service to send copies as well as the Team-Context Aggregation
service to perform the context-update.

1. Add a new child Service Specification to Sensor Model. Set Controllerser-
vice to the location of the Controller. If the Controller is deployed on the same
machine, the location might look like this:
”http://localhost:8080/axis2/services/ControllerService”.

2. Add a new child Service WS to Service Specification. Here we add the
Email Service.

� Set Description to ”email service”.

� Set Serviceid to ”service email”.

8.2 The SensorModel 161

� Set Wsdl to ”http://localhost:8080/axis2/services/
ContextAwareEmailService?wsdl”.

Note This refers to your own implementation of the service. The WSDL
for can be found in $CSDF/Examples/MessageSensor/wsdl/. Instead of
using the WSDL of the deployed service, you can alternatively use
the local WSDL file, but please be careful to use file:// as prefix and
the absolute path if you refer to local files.

3. Add a new child Service WS to Service Specification. Here we add the
Team Context Aggregation Service.

� Set Description to ”team context aggregation service”.

� Set Serviceid to ”service teamcas”.

� Set Wsdl to ”http://localhost:8080/axis2/services/
TeamContextAggregationService?wsdl”.

Note This refers to your own implementation of the service. The WSDL
for can be found in $CSDF/Examples/MessageSensor/wsdl/. Instead of
using the WSDL of the deployed service, you can alternatively use
the local WSDL file, but please be careful to use file:// as prefix and
the absolute path if you refer to local files.

The SensorModel should now look like this (Figure 29).

Figure 29: Service Specification of SensorModel

8.2.6 Adding the Sensor Specification

The last step is to enter information about the Sensor itself and include additional
resources (e.g. external XML Schema files).

8.2 The SensorModel 162

1. Add a new child Sensor Specification to Sensor Model.

� Set Author to something like ”test@localhost.com”.

� Set Description to ”adds emails as communication-messages”.

� Set Name to ”MessageSensor”.

� Set Serviceurl to the location where the Sensor will be finally deployed.
If you are deploying on your local machine, the location might look like
this:
http://localhost:8080/axis2/services/MessageSensor.

Note The Name and the last part of Serviceurl must be the same.

2. Add a new child Resource Schema Xsd to Sensor Specification. Here we
will include a local XML Schema with the prefix mt. We referred to this schema
earlier by using mt:tMessageType in the output variable message.type.

� Set Local to ”true”.

� Set Location to ”MessageSchema.xsd”. This refers to the XML Schema at
$CSDF/Examples/MessageSensor/MessageSchema.xsd. We will copy the file to
the appropriate directory later.

� Set Namespace to ”http://localhost/types/messages”. The namespace has
to be exactly the same as the one defined in the XML Schema.

� Set Prefix to ”mt”.

� Set Resourceid to ”schema messagetype”.

3. Add a new child Resource WSDL to Sensor Specification. We will now
include the Email Service as resource. This is necessary because we used the
type mes:sendMessage in the input variable request.message.

� Set Local to ”false”.

� Set Location to ”http://localhost:8080/axis2/services/
ContextAwareEmailService?wsdl”.

Note This refers to your own implementation of the service. The WSDL
for can be found in $CSDF/Examples/MessageSensor/wsdl/. Instead of
using the WSDL of the deployed service, you can alternatively use
the local WSDL file, but please be careful to set Local to ”true” in
that case.

8.2 The SensorModel 163

� Set Namespace to ”http://service.emailservice.ns.www.in context.eu”.
The namespace has to be exactly the same as the one used in the types-
section of the WSDL document.

� Set Prefix to ”mes”.

� Set Resourceid to ”wsdl messageservice”.

� Set Convert Schema Element To Schema Type to ”true”. This will auto-
matically convert XML Schema element definitions to XML Schema type
definitions.

The SensorModel should now look like this (Figure 30).

Figure 30: Sensor Specification of SensorModel

8.2.7 The finished SensorModel

The source code of your SensorModel should now look similar to this:

<?xml version="1.0" encoding="UTF-8"?>

<sm:SensorModel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:sm="http://sensormodel.csdf.in_context.eu">

<iospecification isuseraware="true" isactivityaware="true">

<ports xsi:type="sm:PortExtract" portid="extract_message">

<input>

<specs dataid="message.request" datatype="mes:sendMessage" description="sendMessage request">

<assertions xsi:type="sm:AssertionWSOperation" description="sendMessage operation"

operation="sendMessage" request="true"/>

</specs>

</input>

<output>

<specs dataid="message.receiver" datatype="xsd:string" description="message receiver"/>

8.3 Code Generation 164

<specs dataid="message.subject" datatype="xsd:string" description="message subject"/>

<specs dataid="message.body" datatype="xsd:string" description="message body"/>

<specs dataid="message.type" datatype="mt:tMessageType" description="message type"/>

</output>

</ports>

<ports xsi:type="sm:PortUpdate" portid="update_message">

<input>

<includes ioid="extract_message#out" nsprefix="self"/>

</input>

</ports>

</iospecification>

<controlspecification>

<standards xsi:type="sm:StandardStatus"/>

<standards xsi:type="sm:StandardUserDefined" standardid="message.parameters"

description="standard.message">

<parameter controlid="count" description="number of messages" type="xsd:integer"

default="0" readable="true"/>

<parameter controlid="copy" description="switch copy function on or off"

type="xsd:boolean" default="false" readable="true" writeable="true"/>

<parameter controlid="copy_to" description="recipient of copy" type="xsd:string"

default="webmaster@localhost.com" readable="true" writeable="true"/>

</standards>

<access xsi:type="sm:ControlAccessDefault"/>

</controlspecification>

<servicespecification controllerservice="http://localhost:8080/axis2/services/ControllerService">

<services xsi:type="sm:ServiceWS" serviceid="service_email" description="email service"

wsdl="http://localhost:8080/axis2/services/ContextAwareEmailService?wsdl"/>

<services xsi:type="sm:ServiceWS" serviceid="service_teamcas"

description="team context aggregation service"

wsdl="http://localhost:8080/axis2/services/TeamContextAggregationService?wsdl"/>

</servicespecification>

<sensorspecification name="MessageSensor" description="adds emails as communication-messages"

serviceurl="http://localhost:8080/axis2/services/MessageSensor" author="test@localhost.com">

<resources xsi:type="sm:ResourceSchemaXsd" resourceid="schema_messagetype"

location="MessageSchema.xsd" local="true" namespace="http://localhost/types/messages"

prefix="mt"/>

<resources xsi:type="sm:ResourceWSDL" resourceid="wsdl_messageservice"

location="http://localhost:8080/axis2/services/ContextAwareEmailService?wsdl"

namespace="http://service.emailservice.ns.www.in_context.eu" prefix="mes"

convertSchemaElementToSchemaType="true"/>

</sensorspecification>

</sm:SensorModel>

8.3 Code Generation

In this section we will deal with the code generation, which is performed by the
Generator.

8.3 Code Generation 165

8.3.1 Setup

Before we can invoke the Generator, the files which are referred from the SensorModel
have to be gathered. The directory of the SensorModel will from now on be referred
as $MODEL DIR.

1. Copy $CSDF/Examples/Resources/MessageSchema.xsd to $MODEL DIR. If you have in-
cluded local WSDL documents in your SensorModel, copy them as well.

8.3.2 Code Generation

Now we can start the Generator. This is done via an Ant script. Note that the
Eclipse Ant runner is needed to execute the script. The normal Ant runner is not
able to handle JET instructions and therefore would fail.

To make it easier to invoke the Generator, we will write a short shell script. This
can be used again, for instance, if the developer makes changes in the SensorModel
and wants to regenerate the code-base.

1. Create the file $CSDF/Development/Generator/MessageSensor.bat and write the fol-
lowing code:

$ECLIPSE_HOME/eclipsec -data ./.. -consoleLog -application org.eclipse.ant.core.antRunner

-Dmodelfile=$MODEL_DIR/MySensorModel.sensormodel -Dtargetdir=../MessageSensor setup

Make sure to set the correct paths to the Eclipse- and the SensorModel-
directory.

2. Execute $CSDF/Development/Generator/MessageSensor.bat

This should invoke the Eclipse Ant runner, which will start the JET transforma-
tion and the code generation. Furthermore resources will be loaded both online and
offline and stubs will be generated for included WSDL services, so the whole code
generation might take a few minutes. Once the generation is finished, the code-base
will be available at $CSDF/Development/MessageSensor.

If the code generation fails, check the following list:

� Check the paths of your shell script.

� Check the referred resources and services of your SensorModel. All local re-
sources are relative to $MODEL DIR.

8.4 The generated Code 166

� Check whether you forgot to fill in some values of the SensorModel. Some fields
are required and must be filled in, otherwise the SensorModel is not valid. Refer
to the SensorModel-documentation for details.

� If you included online services or resources, check whether they are really avail-
able. Check if internet connection is available.

� Check if the setup of the development machine is correct. Have all required
plugins been installed and has the Generator environment been properly con-
figured? Refer to the Installation-guide for details.

� Check the Eclipse error-log. You will find it in the in .metadata/.log at your
workspace directory.

8.4 The generated Code

8.4.1 Eclipse Project

The Sensor code-base was now generated by the Generator. It is available at
$CSDF/Development/MessageSensor. We will include it as a project in Eclipse and take
a look at the generated code.

1. Start Eclipse and create a new Java Project and name it MessageSensor. The
location for this project will be $CSDF/Development/MessageSensor.

After project creation you will notice that Java fails to compile the project.
The reason for this is that required libraries are still missing, thus we will
include them now.

2. Right-click on the Project MessageSensor / Properties, change to Java Build
Path and open the tab Libraries.

3. Click Add Library... / User Library, check both Emf and Axis2 and click Finish.
It should now look like this (Figure 31).

After closing the dialog, Java should recompile the project and the errors should
disappear. If there are still errors in the project, check the following list:

� Check if the setup of the development machine is correct. Have all required
plugins been installed and has the user library setup been done properly? Refer
to the Installation-guide for details.

8.4 The generated Code 167

Figure 31: Libraries in the Build Path of Project

� WSDL2Java, which compiles the WSDL document of the integrated services
to Java stubs might produce a slightly faulty code (especially if the type
xsd:anyType is used). Check whether it is just a small error in one of the
generated stubs.

8.4.2 Generated Packages

Now we will take a short look at the generated packages. For details about the
content of each package, refer to the API-documentation of CSDF available at
$CSDF/Documentation/javadoc.

eu.in context.csdf.axis.sensormodel

This contains the SensorModel-classes which were generated by Axis2. They are
used for ADB with Axis.

eu.in context.csdf.configassistant

eu.in context.csdf.configassistant.gui

These packages contain the ConfigAssistant - a GUI tool for initializing the Sensor,
as we will see later.

eu.in context.csdf.conversion

Here you will find classes for conversion between Axis2 and EMF model objects and
furthermore the class for ADB conversion.

eu.in context.csdf.sensor

This class contains the main application and the startup-code of the Sensor.

8.4 The generated Code 168

eu.in context.csdf.sensor.exception

This class defines exceptions classes used by the Sensor.

eu.in context.csdf.sensor.extension

This is the part of the Sensor which is to be extended by the developer. We will
later work with the classes in here.

eu.in context.csdf.sensor.resource

This package deals with the integrated resources as well as XML Schema manage-
ment.

eu.in context.csdf.sensor.services

In here you will find the actual implementation of the Web services offered by the
Sensor.

eu.in context.csdf.sensor.sensor.types

These classes were generated from the port and variable definitions. They are used
for databinding.

eu.in context.csdf.sensor.sensormodel

eu.in context.csdf.sensor.sensormodel.impl

eu.in context.csdf.sensor.sensormodel.util

These are the SensorModel-classes generated by EMF.

eu.in context.csdf.sensor.services.controller

In here are the Axis2 stub classes for the Controller Web service.

eu.in context.csdf.sensor.services.sensorcontrol

In here are the Axis2 stub and server classes for the SensorControl Web service.

eu.in context.csdf.sensor.services.sensorcore

In here are the Axis2 stub and server classes for the SensorCore Web service.

eu.in context.csdf.sensor.services.sensorio

In here are the Axis2 stub and server classes for the SensorIO Web service.

eu.in context.csdf.sensor.services.sensormanagement

In here are the Axis2 stub and server classes for the SensorManagement Web service.

eu.in context.csdf.sensor.services.sensorservice

In here are the Axis2 stub and server classes for the SensorService Web service.

8.4 The generated Code 169

eu.in context.csdf.sensor.services.session

In here are the Axis2 stub classes for the Session Service Web service.

eu.in context.csdf.tools

This package contains useful functions used in various parts of the Sensor.

eu.in context.www.ns.emailservice.service

eu.in context.www.ns.emailservice.service.xsd

These packages were generated by Axis2 and contain the stub classes for the inte-
grated Email Service.

eu.in context.www.ns.emailservice.service.teamcontextaggregationservice

These packages were generated by Axis2 and contain the stub classes for the inte-
grated Team-Context Aggregation Service.

localhost.axis2.services.messagesensor.types

localhost.types.messages

This package was generated by Axis2 for ADB.

8.4.3 Generated Files

Next we will take a look at the kind of files included in the Project. You might want
to open them to gain some insight into their content.

src/0MessageSchema.xsd

This is the XML Schema we included as resource.

src/1wsdl mes.xsd

This file contains the XML Schema, which was extracted from the Email Service.
This was done because we included the Email Service as resource.

src/self local.xsd

This file contains the type definitions for the SensorModel. It was generated from
the port and variable definitions.

src/self.xsd

This file is strikingly similar to self local.xsd, exept for the fact that the XSD in-
clude-instructions are made ’online’. It is possible to refer to this XML Schema from
external sources because the include-instructions can be resolved once the Sensor is
deployed.

8.4 The generated Code 170

src/sensormodel.xml

This file contains the altered SensorModel. Later we will explain the difference to
the originally defined SensorModel.

src/xmlschema.dtd

src/xmlschema.xsd

These are the DOCTYPE and the XML Schema definition for XML Schema itself.

test/sessiondata.xsd

test/example.xml

These are files used for testing the Sensor as we will see later.

ant.properties

This file contains the paths to the libraries which are used to compile the Sensor
with Ant.

Note You might want to adjust the settings in here, so Ant can compile and deploy
the Sensor.

build.xml

This file contains the Ant tasks to build and deploy the Sensor.

*.bat

These files are shellscripts to execute Ant tasks.

8.4.4 Commands

The Sensor comes with a few command-files which help to build, pack and deploy
the Sensor.

clean.bat

This command is used to delete all the files that were generated during the build.

create-jar.bat

With this command the Sensor will be compiled and packed as .aar-archive, which
can be deployed in Axis2.

deploy.bat

This command will deploy and pack the Sensor and copy it to the hot-deployment
directory of Axis2. Understandably, this can only be done if the web server is running
on the same machine or is directly accessible.

8.4 The generated Code 171

undeploy.bat

This command will delete the packed Web service archive from the Axis2 deployment
directory and thus undeploy the Sensor. Understandably, this can only be done if
the web server is running on the same machine or is directly accessible.

sensor-init.bat

Upon execution this will invoke the Initialize-operation of the already deployed Sen-
sor.

Note The initialization will fail if parts of the SensorModel were not fully specified.
In such cases it is suggested to use the ConfigAssistant for initialization.

config-assistant.bat

This will start the ConfigAssistant, which is a GUI application for configuring and
initializing the deployed Sensor.

sensor-activate.bat

After initialization, this command might be used to mark the deployed Sensor active
at the Controller.

sensor-passivate.bat

After initialization, this command might be used to set the deployed Sensor passive
at the Controller.

8.4.5 The altered SensorModel

As mentioned before the CodeGenerator has slightly altered the SensorModel:

� The ioid of the input- and output-parts have been set.

� The IOReference-instructions have been resolved and have been replaced by
DataSpecification, as can be seen in the specs of PortUpdate.

� The Parameters of StandardStatus have been included.

� The previously defined resources are slightly altered and some additional re-
sources (like the type definition of the Sensor itself or the XML Schema defi-
nition) have been added.

8.4 The generated Code 172

<?xml version="1.0" encoding="ASCII"?>

<sm:SensorModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:sm="http://sensormodel.csdf.in_context.eu">

<iospecification isuseraware="true" isactivityaware="true">

<ports xsi:type="sm:PortExtract" portid="extract_message">

<input ioid="extract_message#in">

<specs dataid="request.message" datatype="mes:sendMessage" description="sendMessage request">

<assertions xsi:type="sm:AssertionWSOperation" description="sendMessage operation"

operation="sendMessage" request="true"/>

</specs>

</input>

<output ioid="extract_message#out">

<specs dataid="message.receiver" datatype="xsd:string" description="message receiver"/>

<specs dataid="message.subject" datatype="xsd:string" description="message subject"/>

<specs dataid="message.body" datatype="xsd:string" description="message body"/>

<specs dataid="message.type" datatype="mt:tMessageType" description="message type"/>

</output>

</ports>

<ports xsi:type="sm:PortUpdate" portid="update_message">

<input ioid="update_message#in">

<specs dataid="message.receiver" datatype="xsd:string" description="message receiver"/>

<specs dataid="message.subject" datatype="xsd:string" description="message subject"/>

<specs dataid="message.body" datatype="xsd:string" description="message body"/>

<specs dataid="message.type" datatype="mt:tMessageType" description="message type"/>

</input>

</ports>

</iospecification>

<controlspecification activationkey="">

<standards xsi:type="sm:StandardStatus" standardid="standard.status"

description="Standard for default control parameter, as well as authoring information">

<parameter controlid="name" description="Name of Sensor"

type="xsd:string" default="MessageSensor" readable="true"/>

<parameter controlid="author" description="Author of Sensor"

type="xsd:string" default="test@localhost.com" readable="true"/>

<parameter controlid="published" description="Published Date"

type="xsd:dateTime" default="2009-01-14T11:14:01" readable="true"/>

<parameter controlid="service" description="Address of service"

type="xsd:anyURI" default="http://localhost:8080/axis2/services/MessageSensor"

readable="true"/>

<parameter controlid="description" description="Description of Service"

type="xsd:string" default="receives messages and copies them" readable="true"/>

<parameter controlid="no_of_invocations"

description="Indicates number of successful invocations"

type="xsd:nonNegativeInteger" default="0" readable="true"/>

<parameter controlid="no_of_errors"

description="Indicates how often the service failed during execution"

type="xsd:nonNegativeInteger" default="0" readable="true"/>

<parameter controlid="last_error" description="Last Error Message occured during Invocation"

type="xsd:string" default="" readable="true"/>

<parameter controlid="avg_processtime"

description="Average Process-Time of Service in Milliseconds"

type="xsd:nonNegativeInteger" default="0" readable="true"/>

<parameter controlid="latest_processtime" description="Process-Time of last Invocation"

type="xsd:nonNegativeInteger" default="0" readable="true"/>

</standards>

<standards xsi:type="sm:StandardUserDefined" standardid="standard.message"

description="message parameters">

8.4 The generated Code 173

<parameter controlid="count" description="number of messages"

type="xsd:integer" default="0" readable="true"/>

<parameter controlid="copy" description="switch copy function on or off"

type="xsd:boolean" default="false" readable="true" writeable="true"/>

<parameter controlid="copy_to" description="recipient of copy"

type="xsd:string" default="webmaster@localhost.com" readable="true" writeable="true"/>

</standards>

<access xsi:type="sm:ControlAccessDefault"/>

</controlspecification>

<servicespecification controllerservice="http://localhost:8080/axis2/services/ControllerService">

<services xsi:type="sm:ServiceWS" serviceid="service_email" description="email service"

wsdl="http://localhost:8080/axis2/services/ContextAwareEmailService?wsdl"/>

<services xsi:type="sm:ServiceWS" serviceid="service_teamcas"

description="team context aggregation service"

wsdl="http://localhost:8080/axis2/services/TeamContextAggregationService?wsdl"/>

</servicespecification>

<sensorspecification name="MessageSensor" description="adds emails as communication-actions"

serviceurl="http://localhost:8080/axis2/services/MessageSensor" author="test@localhost.com">

<resources xsi:type="sm:ResourceSchemaXsd" resourceid="schema_messagetype"

location="0MessageSchema.xsd" local="true" namespace="http://localhost/types/messages"

prefix="mt"/>

<resources xsi:type="sm:ResourceWSDL" resourceid="wsdl_messageservice"

location="http://localhost:8080/axis2/services/ContextAwareEmailService?wsdl"

namespace="http://service.emailservice.ns.www.in_context.eu" prefix="mes_wsdl"

convertSchemaElementToSchemaType="true"/>

<resources xsi:type="sm:ResourceSchemaXsd" resourceid="1wsdl_mes.xsd" location="1wsdl_mes.xsd"

local="true" namespace="http://service.emailservice.ns.www.in_context.eu/xsd" prefix="mes"/>

<resources xsi:type="sm:ResourceSchemaXsd" resourceid="xmlschema.xsd" location="xmlschema.xsd"

local="true" namespace="http://www.w3.org/2001/XMLSchema" prefix="xsd"/>

<resources xsi:type="sm:ResourceSchemaXsd" resourceid="self.xsd" location="self.xsd"

local="true" namespace="http://localhost:8080/axis2/services/MessageSensor/types" prefix="self"/>

</sensorspecification>

</sm:SensorModel>

8.4.6 Extension Points

There are two places for the developer to extend the generated code.

� Ports - For every defined port a Java source code file is generated in
eu.in context.csdf.sensor.extension. The developer writes the code there that
should be executed upon invocation of that port. In case of an extraction port,
data should be gathered or calculated and saved to the session. In case of an
update port, the developer is free to update data or execute data-manipulation
services.

� Global Configuration - In here the Parameters of the Sensor are managed.
Parameters should usually have an impact on the business logic of the Sensor.
They are independent of particular invocations and are used to configure the
global behaviour of the Sensor.

8.5 Code Extension 174

8.5 Code Extension

In this section we will write the business logic of the sensor. The fully programmed
Sensor can be found at $CSDF/Examples/MessageSensor/MessageSensor source.zip.

8.5.1 Writing the Extraction Port Code

First we will write the code for extracting data after invocation by the Controller.
The input of this port is - as defined in the SensorModel - a sendMessage SOAP
request and the output is a list of message variables.

1. Open eu.in context.csdf.sensor.extension.ExtractExtract message in Eclipse. It
contains the logic for the extraction port.

If you look at the input and output parameters of the invoke() method you
will immediately notice that the Generator already converted the SOAP input
request to appropriate Java types. It is thus an easy task to extract data from
the request and save it to the output variable.

Note Always set all fields of the output variable! The Sensor execution will
fail if you forget to fill in fields as they are required. The reason is that
those fields are assertions and must be guaranteed by the Sensor, because
Sensors later in the invocation-chain will depend on them.

2. Fill in the following code into the invoke() method:

public void invoke(Extract_messageIn in, Extract_messageOut out)

throws ProcessException , DependentServiceException {

System.out.println("Extract: ’http :// localhost :8080/ axis2/services/

MessageSensor ’ - Operation: ’extract_message ’");

// extract data from SOAP request and save to out

out.setMessage_body(in.getRequest_message (). getBody ());

out.setMessage_receiver(in.getRequest_message (). getTo ());

out.setMessage_subject(in.getRequest_message (). getSubject ());

out.setMessage_type(TMessageType.EMail);

// increase message counter

int counter = Integer.parseInt(GlobalConfiguration.getConfiguration ()

.getParameter("standard.message.count"));

counter ++;

GlobalConfiguration.getConfiguration (). setParameter(

"standard.message.count", "" + counter);

}

This script does nothing else but copy the data from the SOAP messages stored
in the variable in to the output variable out. This will then automatically be

8.5 Code Extension 175

saved to the session and can be used by other ports. Furthermore we increase
the message counter by one for every message we receive. Although values of
Parameters are type checked we have to work with strings here. Maybe later
versions of CSDF will support real Java types for Parameters.

As we can see, thanks to the Generator and the data binding, it becomes really easy
to access even complex data structures of SOAP documents. Moreover, the developer
usually does not even have to access the session directly, as the input and output
data is automatically loaded from and saved to the session.

8.5.2 Writing the Update Port Code

In the next step we will code the logic of the update port. First it should add a
command-action to the activity-context (using the Team-Context Aggregation Ser-
vice). Furthermore it should send a copy of the message to a specifiable email
address.

1. Open eu.in context.csdf.sensor.extension.UpdateUpdate message in Eclipse. It
contains the logic of the update port.

Note The port only contains an input variable, as update ports are not sup-
posed to save data to the session.

2. Fill in the following code into the invoke() method:

public void invoke(Update_messageIn in)

throws ProcessException , DependentServiceException {

System.out.println("Update: ’http :// localhost :8080/ axis2/services/

MessageSensor ’ - Operation: ’update_message ’");

try {

// add action to team context aggregation service

TeamContextAggregationServiceStub stub =

new TeamContextAggregationServiceStub ();

AddAction action = new AddAction ();

TActionData data = new TActionData ();

action.setIn(data);

TCommunicationAction tcom = new TCommunicationAction ();

tcom.setActionURI(new URI("message:" + new Date (). toString ()));

tcom.setExecutedByFoafAgent(new URI[] {new URI(this.getUser ())});

tcom.setNotificationType(TNotificationType.Unknown);

tcom.setToFoafAgent(new URI[] {new URI("mailto:"

+ in.getMessage_receiver ())});

tcom.setFromFoafAgent(new URI(this.getUser ()));

tcom.setDescribesActivityURI(new URI(this.getActivity ()));

tcom.setTimestamp(new GregorianCalendar ());

data.setAction(tcom);

8.5 Code Extension 176

stub.addAction(action);

} catch (AxisFault e) {

throw new DependentServiceException(

"[Update Port] Action -Service failed - Axis Fault", e);

} catch (RemoteException e) {

throw new DependentServiceException(

"[Update Port] Action -Service failed - Remote Exception", e);

} catch (MalformedURIException e) {

throw new ProcessException(

"[Update Port] Malformed URL Exception", e);

}

// if the copy function is enabled ...

if("true".equals(GlobalConfiguration.getConfiguration ()

.getParameter("standard.message.copy"))) {

// ... send copy of message to specified receiver

String receiver = GlobalConfiguration.getConfiguration ()

.getParameter("standard.message.copy_to");

try {

// send email via Email -WebService

EmailServiceStub stub = new EmailServiceStub ();

SendMessage message = new SendMessage ();

message.setTo(receiver);

message.setSubject("[MessageSensor] - Copy of ’"

+ in.getMessage_subject () + "’");

message.setBody(

"ORIGINAL MESSAGE :\n" +

"Receiver: " + in.getMessage_receiver () + "\n"+

"Subject: " + in.getMessage_subject () + "\n"+

"Type: " + in.getMessage_type () + "\n"+

"Content: " + in.getMessage_body ());

stub.sendMessage(message);

} catch (AxisFault e) {

throw new DependentServiceException(

"[Update Port] EMail -Service failed - Axis Fault", e);

} catch (RemoteException e) {

throw new DependentServiceException(

"[Update Port] EMail -Service failed - Remote Exception", e);

} catch (SendMessageFault e) {

throw new DependentServiceException(

"[Update Port] EMail -Service failed - SendMessageFault", e);

}

}

}

In the first part, it uses the service-stubs to add a command-action to the
activity-context. The current user and activity context can easily be loaded
via this.getUser() and this.getActivity(). This is because we declared our
Sensor as user and activity aware (in the SensorModel).

In the next part, the email is sent in case the copy-function is enabled. The
recipient is loaded from the Parameter standard.message.copy to.

8.6 Code Test 177

As we can see, the stubs for the Web service were automatically generated by the
Generator, because we defined them as integrated services. In this example of course
the execution of the sendMessage-operation will always fail, because we do not have
the required access rights to execute the service. (For details refer to the actual
documentation of the Email Service).

8.6 Code Test

After writing the Sensor-logic, the next step is to test the code. Once the Sensor is
deployed, finding errors via remote debugging is really cumbersome, therefore local
testing should be done wherever possible. This saves a lot of time during Sensor
development.

8.6.1 Session-data Files

Port can only be invoked if a session filled with proper data is available. For local
testing, we need to emulate such a session. This is done via session-data files. You
will find an example at test/example.xml.

1. Make a copy the file test/example.xml and name it test/sendMessage.xml.

We will now write a session configuration which will be similar to the one which
is present before the invocation of the extraction port. In order words: We will
imitate the Controller and directly invoke the extraction port of the Sensor.
In order to do so, we first need to set the data in the session just like the
Controller would do. The actual configuration of the session-data is done with
this file.

2. Fill in the following code:

<?xml version="1.0" encoding="UTF-8"?>

<tns:sessiondata

xmlns:tns="http://sensor.csdf.in_context.eu/tester"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://sensor.csdf.in_context.eu/tester sessiondata.xsd">

<tns:data dataid="request.message">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://service.emailservice.ns.www.in_context.eu/xsd">

<soapenv:Header/>

8.6 Code Test 178

<soapenv:Body>

<xsd:sendMessage>

<xsd:to>test@example.com</xsd:to>

<xsd:subject>Test message</xsd:subject>

<xsd:body>The content of the message</xsd:body>

</xsd:sendMessage>

</soapenv:Body>

</soapenv:Envelope>

</tns:data>

<tns:data dataid="response.message">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header/>

<soapenv:Body>

<ns:sendMessageResponse

xmlns:ns="http://service.emailservice.ns.www.in_context.eu/xsd">

<ns:return>true</ns:return>

</ns:sendMessageResponse>

</soapenv:Body>

</soapenv:Envelope>

</tns:data>

</tns:sessiondata>

This file contains the SOAP request and the SOAP response. The dataids are
set to request.message and request.response - the same ids the Controller uses
to save SOAP documents to the session.

Normally we would observe a sample invocation of the service and use the request
and response for the session file. In doing so, the code test becomes more valid.

8.6.2 Test of the Extraction Port

Next, we will run the test for the extraction port.

1. Start the Tomcat Apache server if it is not already running.

2. Deploy the Session Service if it is not already deployed.

3. In Eclipse, click Run / Run Configurations... and add a new Java Application.

� Set Name to ’MessageSensor Test Extract ’.

� Set Project to ’MessageSensor ’.

� Set Main class to ’eu.in context.csdf.sensor.Tester ’.

� Switch to the tab Arguments.

� Set Program arguments to the following value:

8.6 Code Test 179

http://localhost:8080/axis2/services/SessionService

-a http://www.in-context.eu/activity/Activity#1595

-u http://www.vitalab.tuwien.ac.at/projects/incontext/owl/smallcontext.owl#User8

-o test/portExtract.xml

test/sendMessage.xml extract_message

The first parameter is the address of the Session Service. Alter it according
to your environment. The next two parameters define the environment
the Sensor is executed in: The activity is set to http://.../Activity#1595

and the user is set to http://.../#User8. The next parameter specifies
that the output should be saved to the file portExtract.xml. The last two
parameters belong together and specify the session file to load and the
port to execute.

4. Apply the changes and run the application.

If the port is successfully executed, something like this should be printed to the
console:

Loaded file://E:\Diplomarbeit\Development\System\MessageSensor\src/sensormodel.xml

Extract: ’http://localhost:8080/axis2/services/MessageSensor’ - Operation: ’extract_message’

The result is written to portExtract.xml and it should look like this:

<tns:sessiondata xmlns:tns="http://sensor.csdf.in_context.eu/tester"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://sensor.csdf.in_context.eu/tester sessiondata.xsd">

<tns:data dataid="message.receiver">test@example.com</tns:data>

<tns:data dataid="message.subject">Test message</tns:data>

<tns:data dataid="message.body">The content of the message</tns:data>

<tns:data dataid="message.type">EMail</tns:data>

</tns:sessiondata>

This file describes the session variables after the port was executed. As we can no-
tice, it only contains the variables directly set by the output. The reason for this
is that there is - for security reasons - no method in the Session Service to list all
variables stored in the session. So it is just possible to load known variables. In our
case, these are the output-variables.

This file is all we need to execute the update port in the next step.

8.6.3 Test of the Update Port

We can now test the update port of the Sensor, which would usually be invoked after
the extraction port via a Forward.

8.6 Code Test 180

1. Start the Tomcat Apache server if it is not already running.

2. Deploy the Session Service if it is not already deployed.

3. In Eclipse, click Run / Run Configurations... and add a new Java Application.

� Set Name to ’MessageSensor Test Update’

� Set Project to ’MessageSensor ’

� Set Main class to ’eu.in context.csdf.sensor.Tester ’

� Switch to the tab Arguments

� Set Program arguments to the following value:
http://localhost:8080/axis2/services/SessionService

-a http://www.in-context.eu/activity/Activity#1595

-u http://www.vitalab.tuwien.ac.at/projects/incontext/owl/smallcontext.owl#User8

test/sendMessage.xml extract_message

test/portExtract.xml update_message

The first parameter is the address of the Session Service. Alter it according
to your environment. The second and the third parameter specify the
context. The next two parameters specify the session file and the port
extract message for the first invocation. After the execution is finished,
the second session file will be loaded and the update message port will be
executed.

4. Apply the changes and run the application.

If the port is successfully executed, something like that should be printed to the
console:

Loaded file://E:\Diplomarbeit\Development\System\MessageSensor\src/sensormodel.xml

Extract: ’http://localhost:8080/axis2/services/MessageSensor’ - Operation: ’extract_message’

Update: ’http://localhost:8080/axis2/services/MessageSensor’ - Operation: ’update_message’

As you can see, you can specify a series of invocations for a Sensor. The required
session files can either be written manually or be generated from the output as we
did before.

Note As the update port was executed, a context-update was performed. Be careful
that the updates of the tests do not interfere with relevant data of the Context
Management System.

Next we can also test the invocation of the Email Service. For this we first need to
set the Parameter standard.message.copy to true. This is done via the option -p.

8.7 Deployment 181

1. Change the previously defined run environment or create a new and enter the
following program arguments:

http://localhost:8080/axis2/services/SessionService

-a http://www.in-context.eu/activity/Activity#1595

-u http://www.vitalab.tuwien.ac.at/projects/incontext/owl/smallcontext.owl#User8

-p "standard.message.copy=true|standard.message.copy_to=my@email.com"

test/sendMessage.xml extract_message

test/portExtract.xml update_message

2. Save the changes and run the application.

This should generate an exception in the invoke() method of the update port and
the following should be printed to the console:

Loaded file://E:\Diplomarbeit\Development\System\MessageSensor\src/sensormodel.xml

Extract: ’http://localhost:8080/axis2/services/MessageSensor’ - Operation: ’extract_message’

Update: ’http://localhost:8080/axis2/services/MessageSensor’ - Operation: ’update_message’

Exception in thread "main" java.lang.Exception: Failed during Invocation

at eu.in_context.csdf.sensor.Tester.invoke(Tester.java:417)

at eu.in_context.csdf.sensor.Tester.<init>(Tester.java:221)

at eu.in_context.csdf.sensor.Tester.main(Tester.java:143)

Caused by: eu.in_context.csdf.services.sensorcore.Invoke_DependentServiceFault:

[Update Port] EMail-Service failed - Axis Fault

...

Caused by: org.apache.axis2.AxisFault: Not Authorized

...

As we are not authorised an exception is returned upon invocation of the Email
Service.

Note Although this result would of course not be satisfactory under normal circum-
stances, we will leave it like that. After all, this is just a tutorial explaining
the possibilities of CSDF. In normal working environments, Sensors with such
a fundamental flaw should never be deployed.

8.7 Deployment

Finally, we will deploy and initialize the Sensor on the Controller.

8.7.1 Deploying the Sensor

The necessary build files for deployment are already included in the Sensor package,
so deployment is quite easy.

If the web server directory is directly accessible, we can directly deploy the sensor:

8.7 Deployment 182

1. Start Apache Tomcat, if not yet running.

2. Open ant.properties and set the correct deployment directory for Axis2.

3. Execute deploy.bat

In case the web server is on another server and cannot be accessed directly:

1. Start Apache Tomcat, if not yet running.

2. Execute create-jar.bat

3. Copy the generated MessageSensor.aar to the deployment directory of your
Axis2 web application.

If deployment is successful, Apache Tomcat should generate the following message
in the console:

[INFO] Deploying Web service: MessageSensor.aar

On the service-listing page of Axis2, usually found at http://YOUR HOST/axis2/services

/listServices, you will find the following new services:

� MessageSensorIO - the SensorIO Web service

� MessageSensorControl - the SensorControl Web service

� MessageSensorService - the SensorService Web service

� MessageSensorManagement - the SensorManagement Web service

� MessageSensor - the SensorCore Web service

8.7.2 Empty Initialization

Before the Sensor can be used in CSDF, it needs to be initialized. At first we will
discuss the initialization without configuration.

1. Start Apache Tomcat, if not yet running.

2. Initialize the Controller (see A.4 Configuration).

3. Execute sensor-init.bat.

8.7 Deployment 183

If the setup was done properly and the Sensor is deployed, the following message will
be printed to the console:

[input] Press any key to continue...

The Sensor is now successfully registered at the Controller. For instance, a query
via the ListAllServices-operation will return this Sensor amongst others.

If the script fails and the Sensor cannot be initialized, check the following:

� Is Tomcat Apache running and Axis2 properly configured with all required
libraries?

� Are the Controller, the Session Service and the Sensor deployed?

� Is the Controller initialized?

� Does the SensorModel contain unspecified fields (e.g. addresses of services)? If
so, it cannot be initialized. In such cases the ConfigAssistant has to be used.

Although the Sensor is registered at the Controller now, the Forward between the ex-
traction and the update port is not yet set. To do that, we need a more sophisticated
tool - the ConfigAssistant.

8.7.3 Overview of ConfigAssistant

A more flexible approach to initialize the Sensor is provided with the ConfigAssistant.
It is a graphical tool used not only to initialize the Sensor, but also to configure the
Forwards and reset service addresses.

1. Start Apache Tomcat if it is not already running

2. Initialize the Controller (see A.4 Configuration)

3. Execute config-assistant.bat. This will start the ConfigAssistant for this Sen-
sor.

The ConfigAssistant will open in a new window (Figure 32).

Input Ports

In the top left corner you will see the input ports for this Sensor. In our case we
have two ports which can be used for input:

8.7 Deployment 184

Figure 32: The ConfigAssistant

� extract message - The PortExtract-port of the Sensor

� update message - The PortUpdate-port of the Sensor

Here we can select input ports and define Forward-Froms on them:

Input Ports / Details...
This action will show the details of the selected input port. If you select
extract message and click details, a new window with the exact specification
will open (Figure 33)

You can see the variable requirements of the input part of the port, as well as
the asserted variables for the output part.

Input Ports / Forward...
This will let you define your own Forward-From via input of an address. The
input format of the target address is <port> ’@’ <service> (Figure 34).

Input Ports / Compatible...
This is a very useful feature of the ConfigAssistant, as it allows the user to find
compatible output ports of the selected input port (Figure 35).

8.7 Deployment 185

Figure 33: ConfigAssistant - Port Details

Figure 34: ConfigAssistant - Enter Forward

Direct compatibility is given when the outputs of the found Sensor provide
at least all required input variables for the input port. Inferred compatibility
means that the Controller found compatibility through accumulating output
variables in a chain of linked Sensors. For more information about compatibil-
ity, please refer to 5.4.2 Compatibility of Sensors.

Note The inferred compatibility is yet not realised at the current development
of CSDF. It is a subject of future extensions.

It is then possible to view details of a compatible port or add a mapping to the
port - a Forward-From. (To find compatible ports, the ConfigAssistant queries
the Controller. In the beginning no Sensor is registered at the Controller, so
both lists will be empty).

Input Ports / Connect...
This operation creates a Forward-From using the selected port in Output Ports
as source and the selected Input Port as destination.

8.7 Deployment 186

Figure 35: ConfigAssistant - Compatible Ports

Output Ports

Here the output ports are listed. PortUpdate-ports do not have an output part so
only the PortExtract-ports are shown here. Using the options here, it is possible to
define Forward-Tos.

Output Ports / Details...
This shows the detailed specification of the selected output port.

Output Ports / Forward...
Analogously to the input side, this lets the developer define a Forward-To
by entering the address and the port of the Sensor to which data should be
forwarded.

Output Ports / Compatible...
Analogously to the input side, compatible input ports for the selected output
port will be listed. The details can be viewed and Forward-To mappings can
be created.

Output Ports / Connect
This automatically creates a Forward-To using the selected input port as source
and the selected output-port as destination.

8.7 Deployment 187

Mappings

Here the current mappings of Forward-Froms and Forward-Tos are listed. For more
information about Forwards, please refer to 5.4.4 Types of Links.

� Forward-To - The local port is listed on the left side and indicated by @self.
Data is forwarded to the port on the right side.

� Forward-From - The local port is listed on the right side and indicated by
@self. Data is inquired from the port on the left side.

Note Two different mappings might lead to the same result, but will still be listed
separately here for this is the logic of the Forwards:

extract_message@self ==> update_message@http://localhost:8080/axis2/services/MessageSensor

...will produce the same result as...

extract_message@http://localhost:8080/axis2/services/MessageSensor ==> update_message@self

The first is a Forward-To which forwards data to another port of the same
Sensor. The second is a Forward-From which inquires data from another port
of the same Sensor. The Controller will of course detect such mappings and
will only forward the data once. Yet the logic behind it is different, so the
mappings are handled separately in the ConfigAssistant.

Mappings / Details...
This will list the detailed specification of the referred external port.

Mappings / Edit...
Here the address of the referred port can be changed.

Mappings / Delete
This will delete the currently selected mapping.

Options

In the bottom of the window you will find the general options.

Options / Load...
Load a mapping configuration of the Sensor from a file.

Options / Save...
Save the current mapping configuration of the Sensor to a file.

8.7 Deployment 188

Options / Refresh from Sensor
Query the Sensor and load its current configuration.

Options / Initialize Sensor
Initialize the Sensor with the current mapping.

Options / Services...
Set or override the addresses and ports of services of the SensorModel. This
option can be used in case ServiceSensor are included in the SensorModel.

8.7.4 Initialization via the ConfigAssistant

After this short overview, we will use the ConfigAssistant to create the mapping
between the extraction and the update port.

1. Select ’update message’ in Input Ports.

2. Select ’extract message’ in Output Ports.

3. Create a Forward-From by clicking Connect in Input Ports.

A new entry will appear in mappings:

extract_message@http://localhost:8080/axis2/services/MessageSensor ==> update_message@self

This Forward-From connects the output of the extraction port with the input of the
update port. The update port will now inquire data from the extraction port and
therefore always be invoked after a successful invocation of the extraction port.

We could now use this mapping to initialize the Sensor. But instead, we will try
another approach which will probably be used in CSDF environments with already
many Sensors deployed:

1. Delete all mappings.

2. Click Initialize Sensor. The Sensor will now be initialized without any mapping.
You should see a message box which says that the Sensor has been successfully
initialized.

3. Now select the update message of the Input Ports and click Compatible.... In
the new window, you should see the following entry in Direct Compatibility.

8.8 Integration Test 189

extract_message@http://localhost:8080/axis2/services/MessageSensor

If you look closely at the address of the Sensor, you will notice that this is the
Sensor we are currently configuring. The Controller found that the selected
update port is compatible to the extract message port of the given - this -
Sensor.

4. Create a mapping by clicking Add to Mapping and close the window. You will
now see that a new mapping is listed in Mappings.

5. Now click Initialize Sensor to configure the Sensor.

As we can see, it is easy to check whether ports are really compatible by using the
feature described above. If non-compatible ports are connected with Forwards, the
Controller will automatically delete the mapping upon invocation. Although this
will be reported in the console, the developer is likely to fail to notice such messages.
Therefore configuration should be done with care, so there will be no need for the
Controller to delete faulty mappings afterwards.

8.8 Integration Test

The Sensor is already deployed, configured and registered at the Controller. Now it
is time to do integration testing. CSDF supports integration tests for Sensors which
are directly invoked by the Controller - so-called activated Sensors. For such cases a
testing environment is directly included in the Controller. It enables the developer
to locally emulate the Controller and simulate service interactions to test the system.
For Sensors which are not directly linked to the Controller (and are not supposed
to be set to active), no such environment exists. In such cases the developer might
use any active Sensor linked to the one to be tested and perform the integration test
with it instead. In the invocation chain the desired Sensor will be invoked eventually
and can thus be tested too.

8.8.1 SOAP Request and Response

The first step to integration testing is creating the SOAP request and response mes-
sages for the simulated service interaction:

8.8 Integration Test 190

1. In $CSDF/Development/ControllerService/serviceinteractions/ create a new file
and name it ’sendmessage request.xml’.

2. Fill it with the following code:

<?xml version=’1.0’ encoding=’UTF-8’?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>

<ns1:user_id xmlns:ns1="incontext"

soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0">

http://www.vitalab.tuwien.ac.at/projects/incontext/owl/smallcontext.owl#User8

</ns1:user_id>

<ns1:activity_id xmlns:ns1="incontext"

soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0">

http://www.in-context.eu/activity/Activity#1595

</ns1:activity_id>

</soapenv:Header>

<soapenv:Body>

<ns1:sendMessage

xmlns:ns1="http://service.emailservice.ns.www.in_context.eu/xsd">

<ns1:to>test@example.com</ns1:to>

<ns1:subject>Test message</ns1:subject>

<ns1:body>The content of the message</ns1:body>

</ns1:sendMessage>

</soapenv:Body>

</soapenv:Envelope>

Normally you would get the code of this service interaction by actually invoking
the service, for example via soapUI 13.

3. In $CSDF/Development/ControllerService/serviceinteractions/ create a new file
and name it ’sendmessage response.xml’.

4. Fill it with the following code:

<?xml version=’1.0’ encoding=’UTF-8’?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header />

<soapenv:Body>

<ns:sendMessageResponse

xmlns:ns="http://service.emailservice.ns.www.in_context.eu/xsd">

<ns:return>true</ns:return>

</ns:sendMessageResponse>

</soapenv:Body>

</soapenv:Envelope>

We have now created the request and the response which will be used to simulate a
service interaction at the Controller.

13http://www.soapui.org/ (last access: 2009-04-19)

http://www.soapui.org/

8.8 Integration Test 191

8.8.2 Start the integration test

Now we will feed the request and the response to the test environment of the Con-
troller, which will process it like a real service interaction received by the logging
service. We will thus be able to check two things:

� Firstly, the test will immediately show whether the port configuration was done
properly. If the input specification is already slightly different from the actual
SOAP request, the Sensor will not be invoked by the Controller.

� Secondly, we will be able to see whether the Forward configuration is working
properly:

− The Controller will produce errors for non existing references or circular
references.

− The Controller will show if invocation failed because of incompatible ports.

− We can deduce from the console output which port was actually invoked
and which was not. Maybe some important mappings were forgotten
during configuration.

Note It must be clear that although the Controller is emulated offline, the Sensors
are not. This means that any service interaction, which leads to an invocation
of the Sensor, might result in unwanted context-updates. The developer has
to keep that in mind when doing integration tests.

1. Make sure that Tomcat Apache is running and all services including the Sen-
sors are deployed. The Controller must be initialized and the Sensor must be
configured and initialized with the actual mapping. The Sensor should not be
marked active.

2. In Eclipse, click Run / Run Configurations... and add a new Java Application.

� Set Name to ’I-Test MessageSensor ’

� Set Project to ’Controller ’

� Set Main class to ’eu.in context.csdf.controller.TesterController ’

� Switch to the tab Arguments

� Set Program arguments to the following value:

8.8 Integration Test 192

-a http://localhost:8080/axis2/services/MessageSensor

-aonline

-ronline

serviceinteractions/sendmessage_request.xml

serviceinteractions/sendmessage_response.xml

With -ronline all Sensors registered at the real Controller are imported.
The option -aonline then also sets all Sensors to active which are marked
active on the real Controller. Additionally, the first parameter sets the
MessageSensor as active. This is the service we want to test. It is not
marked active on the real Controller, so we have to activate it in the test
environment. The last two parameters specify the SOAP requests and
responses which should be wrapped in service interactions and sent to the
Controller. Of course it would be possible to specify not only 2, but also
4, 6, ... documents, which will always be processed pairwise.

Note Not only the Sensors but also their current Forward configuration is
automatically loaded. So with both options -ronline and -aonline, the
emulated Controller is exactly configured as the real Controller.

3. Apply the changes and run the application.

If the test is successfully executed, the following output should be generated

Received Request

Received Response

=> ’extract_message@http://localhost:8080/axis2/services/MessageSensor’ matched requirements

+ extract_message@http://localhost:8080/axis2/services/MessageSensor

+ update_message@http://localhost:8080/axis2/services/MessageSensor

Finished

The lines with + indicate that the given port has been executed. If not indented, the
Sensor was directly invoked by the Controller. If the line is indented compared to
the previous one, it expresses that the port is executed through a Forward as in the
case of update message.

Of course we can now also change the Parameters of the Sensor and execute the
Test again. To change the Parameters, tools like soapUI might be used.

All in all, we can see that the Sensors reacted to the service interaction and that
the Forward was properly configured. With this the integration test is over and the
Sensor can be activated.

8.8 Integration Test 193

8.8.3 Final Activation

The integration of a new Sensor is usually completed through its activation. Of
course this does not apply to Sensors which are not supposed to be directly invoked
by the Controller but are instead executed through Forwards.

We will now activate the Sensor:

1. Execute sensor-activate.bat.

The following message will be printed to the console:

[input] Press any key to continue...

The Sensor is now activated and will be invoked from the Controller if suitable ser-
vice interactions are received.

If the script fails and the Sensor cannot be activated, check the following:

� Is Tomcat Apache running and has Axis2 been properly configured with all
required libraries?

� Are the Controller, the Session Service and the Sensor deployed?

� Has the Controller been initialized?

� Has the Sensor been properly initialized?

9 Evaluation

This section looks at three situations common in
the setting of CWE and analyses how a context-
aware application could support the user in his
work: The first and the second use case deal
with context-extraction from two separate ser-
vice interactions, the third one, on the contrary,
directly processes data extracted from a single
service invocation. In a next step, a possible
solution to the given problem and its implemen-
tation in CSDF is presented.

9.1 Use Case: Mailinglist 195

Preface

This part introduces use cases which are likely to occur in the context of CWE. The
WSDL for all services used in this section can be found at $CSDF/WSDL. The reader is
advised to study them for a deeper understanding of the scenarios presented.

9.1 Use Case: Mailinglist

9.1.1 Description

At a regular meeting, Tom gets elected to be the coordinator of the new subproject
A1 of project A. After getting back to his workplace, Tom immediately sets up a new
workspace for project A1. He does that by creating a new activity X which should
contain all information, tasks and events regarding project A1. As a next step, he
sends out emails to all members of the project, in this case Lisa, Bob and Alice, to
inform them about the new workspace he created.

A CWE supports Tom in his work. As it is very likely that notification-emails like
this one are sent again in the course of the project, the CWE automatically creates
a mailing-list for project A1 containing all its members (Tom, Lisa, Bob and Alice).
The mailing list is created via the Mailinglist Service and finally added as a resource
to the new activity X (Figure 36).

9.1.2 Sensor Design

To solve this scenario, we could create two small Sensors sensitive to the event
create-activity and the event send-email respectively. Then, we could create a third
Sensor that combines them and performs the context-update. Yet, for demonstration
purposes we choose a simpler approach: We will create one Sensor with two ports,
one for create-activity events and the other for send-email events and the context-
update. We therefore need:

� One Sensor with 2 Ports - one extraction port (create-activity) and one update
port (send-email)

� Session Framing - 5 minute session-frame between create-activity and send-
email-event

9.1 Use Case: Mailinglist 196

Figure 36: Use Case: Mailinglist

� User-awareness - both actions are performed by the same user

� No activity-awareness - the actions do not take place in a common activity-
scope

The SensorModel now looks like this:

<?xml version="1.0" encoding="UTF-8"?>1

<sm:SensorModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"2

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"3

xmlns:sm="http://sensormodel.csdf.in_context.eu">4

<iospecification isuseraware="true" isactivityaware="false" sessiontime="300">5

<ports xsi:type="sm:PortExtract" portid="addactivity">6

<input>7

<specs dataid="request.message" datatype="act:addActivities" description="...">8

<assertions xsi:type="sm:AssertionWSOperation" description="..."9

operation="addActivities" request="true"/>10

</specs>11

<specs dataid="response.message" datatype="act:addActivitiesResponse" description="...">12

<assertions xsi:type="sm:AssertionWSOperation" description="..."13

operation="addActivities" request="false"/>14

</specs>15

</input>16

<output>17

<includes nsprefix="self" ioid="activity" />18

</output>19

9.1 Use Case: Mailinglist 197

</ports>20

<ports xsi:type="sm:PortUpdate" portid="sendmail">21

<input>22

<specs dataid="request.message" datatype="ema:sendMessage" description="...">23

<assertions xsi:type="sm:AssertionWSOperation" description="..."24

operation="sendMessage" request="true"/>25

</specs>26

</input>27

</ports>28

<defs ioid="activity" readable="true" writeable="true">29

<specs dataid="activity.url" datatype="xsd:string" description="activity url" />30

<specs dataid="activity.statusnew" datatype="xsd:boolean"31

description="flag variable, only set if activity was created" />32

</defs>33

</iospecification>34

<controlspecification>35

<standards xsi:type="sm:StandardStatus"/>36

<access xsi:type="sm:ControlAccessDefault"/>37

</controlspecification>38

<servicespecification controllerservice="http://localhost:8080/axis2/services/ControllerService">39

<services xsi:type="sm:ServiceWS" serviceid="mailinglistservice"40

description="Mailinglist-Service"41

wsdl="http://localhost:8080/axis2/services/MailingList?wsdl" />42

<services xsi:type="sm:ServiceWS" serviceid="activityservice"43

description="Activity-Service"44

wsdl="http://localhost:8080/axis2/services/activityservice?wsdl" />45

</servicespecification>46

<sensorspecification name="TestScenario1" description="mailinglist usecase"47

serviceurl="http://localhost:8080/axis2/services/TestScenario1" author="florian">48

<resources xsi:type="sm:ResourceWSDL" resourceid="activityservice"49

location="http://localhost:8080/axis2/services/activityservice?wsdl"50

local="false" namespace="http://www.in-context.eu/activityservice/"51

prefix="act" convertSchemaElementToSchemaType="true" />52

<resources xsi:type="sm:ResourceWSDL" resourceid="emailservice"53

location="http://localhost:8080/axis2/services/EmailService?wsdl"54

local="false" namespace="http://service.emailservice.ns.www.in_context.eu/xsd"55

prefix="ema" convertSchemaElementToSchemaType="true" />56

</sensorspecification>57

</sm:SensorModel>58

Line 5: This is the definition of a session-framed user-aware Sensor.

Line 8-15: This is the input-port of the create-activity event. It defines variables
for the SOAP request and response. Both variables already use the types of
the Active Service WSDL via prefix act.

Line 18: This line defines the output of the create-activity port. It loads the variable
definition from line 29-33.

Line 23-26: Here is the input-port of the send-email event. It defines a variable for
the SOAP request already using the proper WSDL type via prefix ema.

9.2 Use Case: Room Reservation 198

Line 29-33: Here is the definition of two variables for exchanging activity data. It is
used in the output of the extraction port and will also be loaded in the update
port.

Line 40-45: As we want to use the Mailinglist Service (to create a mailinglist) and
the Activity Service (to add the mailinglist as a resource), we add them as
integrated services.

Line 49-56: Here we include both the Activity Service and the Email Service as
resources to use their WSDL types in the input and output ports.

9.1.3 Sensor Logic

After generating the Sensor code-base from the SensorModel given above, we can
start to implement the code for both ports:

ExtractAddactivity : In this port we just need to set the properties of the activity
in the output variable.

UpdateSendmail : First we load the activity-data from the session. Then we
create a new mailinglist using the service-stubs from the Mailinglist Service.
Finally, we add the new mailinglist to the activity as a resource using the
service-stubs of the Activity Service.

In the next step we deploy the Sensor and initialize it. The Sensor does not need to
be configured. Both ports will directly be invoked by the Controller, so we do not
need to set any Forwards. The final step is to activate the Sensor, by means of which
the scenario is solved.

Files for this scenario can be found at $CSDF/Examples/Scenario1.

9.2 Use Case: Room Reservation

9.2.1 Description

Note This is the use case that was presented earlier in the Problem Statement (see
4.2 The Room Reservation Use Case). For the sake of convenience, the use
case description is included here again.

9.2 Use Case: Room Reservation 199

Bob (a worker of company ABC) wants to hold a meeting to discuss and plan the
development of project A. As a first step he uses the Room Reservation Service of
company CDE to reserve a meeting room on Friday morning. Upon confirmation, he
sends out emails using the Email Service to Alice and Tom of Project A to inform
them about the time and place of the upcoming meeting. He also invites Lisa, a
member of Project B. She is needed to help in the design of a common interface used
in both projects.

A sensor-enabled CWE system supports Bob in his work. Apart from Alice and
Tom (who are already members of the project), it automatically adds Lisa as an
involved-actor to the activity-context of Project A (Figure 37).

Figure 37: Use Case: Room Reservation

9.2.2 Sensor Design

The design of this Sensor is similar to the previous one. We will create a Sensor with
two ports, the first one sensitive to room-reservations and the second one to react to
send-email events. Thus we need:

9.2 Use Case: Room Reservation 200

� One Sensor with 2 Ports - one extraction port (room-reservation) and one
update port (send-email)

� Session Framing - 3 minute session-frame between room-reservation and email-
event

� User-awareness - both actions are performed by the same user

� Activity-awareness - both actions take place in the same activity-context

The SensorModel looks like this:

<?xml version="1.0" encoding="UTF-8"?>1

<sm:SensorModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"2

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"3

xmlns:sm="http://sensormodel.csdf.in_context.eu">4

<iospecification isuseraware="true" isactivityaware="true" sessiontime="180">5

<ports xsi:type="sm:PortExtract" portid="reserveroom">6

<input>7

<specs dataid="request.message" datatype="met:ReserveRoom" description="...">8

<assertions xsi:type="sm:AssertionWSOperation" description="..."9

operation="ReserveRoom" request="true"/>10

</specs>11

<specs dataid="response.message" datatype="met:ReserveRoomResponse" description="...">12

<assertions xsi:type="sm:AssertionWSOperation" description="..."13

operation="ReserveRoom" request="false"/>14

</specs>15

</input>16

<output>17

<includes nsprefix="self" ioid="meetingroom" />18

</output>19

</ports>20

<ports xsi:type="sm:PortUpdate" portid="sendmail">21

<input>22

<specs dataid="request.message" datatype="ema:sendMessage" description="send mail request">23

<assertions xsi:type="sm:AssertionWSOperation" description="send message"24

operation="sendMessage" request="true"/>25

</specs>26

</input>27

</ports>28

<defs ioid="meetingroom" readable="true" writeable="true">29

<specs dataid="meetingroom.id" datatype="xsd:string" description="room id" />30

<specs dataid="meetingroom.statusreservation" datatype="xsd:boolean"31

description="flag variable, only set if rooms is reserved" />32

</defs>33

</iospecification>34

<controlspecification>35

<standards xsi:type="sm:StandardStatus"/>36

<access xsi:type="sm:ControlAccessDefault"/>37

</controlspecification>38

<servicespecification controllerservice="http://localhost:8080/axis2/services/ControllerService">39

<services xsi:type="sm:ServiceWS" serviceid="activityservice" description="Activity-Service"40

wsdl="http://localhost:8080/axis2/services/activityservice?wsdl" />41

</servicespecification>42

9.2 Use Case: Room Reservation 201

<sensorspecification name="TestScenario2" description="..."43

serviceurl="http://localhost:8080/axis2/services/TestScenario2" author="florian">44

<resources xsi:type="sm:ResourceWSDL" resourceid="roomservice"45

location="http://localhost:8080/axis2/services/MeetingRoom?wsdl" local="false"46

namespace="http://meetingroom.www.in_context.eu" prefix="met"47

convertSchemaElementToSchemaType="true" />48

<resources xsi:type="sm:ResourceWSDL" resourceid="emailservice"49

location="http://localhost:8080/axis2/services/EmailService?wsdl"50

local="false" namespace="http://service.emailservice.ns.www.in_context.eu/xsd"51

prefix="ema" convertSchemaElementToSchemaType="true" />52

</sensorspecification>53

</sm:SensorModel>54

Line 5: This is the definition of a session-framed user- and activity-aware Sensor.

Line 8-15: This is the input-port of the room-reservation event. It defines variables
for the SOAP request and response using the appropriate WSDL-types via
prefix met.

Line 18: This line defines the output of the room-reservation port. It loads the
variable-definition from line 29-33.

Line 23-26: Here is the input-port of the send-email event. It defines a variable for
the SOAP request using the proper WSDL-type via prefix ema.

Line 29-33: This is the definition of two variables for exchanging room-reservation
data. We use it in the extraction port and will also load it in the logic of the
update port.

Line 40-41: We add the Activity Service as integrated service because we will use
it to add involved actors to the activity.

Line 45-52: In this part we include the Room Reservation Service and the Email
Service as resources in order to use their types in the input and output ports
of the Sensor.

9.2.3 Sensor Logic

In a next step, we generate the code-base from the SensorModel. After generation
has finished, we start to code the extensions of the Sensor:

ExtractReserveroom : We just copy the reservation-data to the output variable.

9.3 Use Case: Load Document 202

UpdateSendmail : First, we load the reservation-data from the Session. Then we
use the Activity Service to add the recipients of the email as involved actors
to the current activity-context.

After coding the extension logic, we can deploy and initialize the Sensor. The Sensor
does not need any extra configuration, so we can directly activate it at the Controller
and thus successfully solve the scenario.

Files for this scenario can be found at $CSDF/Examples/Scenario2.

9.3 Use Case: Load Document

9.3.1 Description

Alice is a worker of company ABC and involved in project A. The goal of project A
is to develop the new product X. Alice now needs a few technical specifications from
company CDE, which delivers some of the parts of product X. For this purpose, she
uses the Document Service. This web-interface is provided by CDE for its customers
to enable them to load technical specifications of all their products.

A context-aware CWE system supports Alice in this task: Whenever a document
is loaded using the Document Service, the CWE automatically adds it as a resource
to the activity-context of Project A (Figure 38).

9.3.2 Sensor Design

This is a rather simple use case that can easily be solved with one Sensor. Again, we
will use two ports, one to react to load-document events and the other to perform
the desired context-update.

� One Sensor with 2 Ports - one extraction port (load-document) and one update
port (add-resource)

� No Session-framing - this Sensor only supports single interactions

The SensorModel looks like this:

<?xml version="1.0" encoding="UTF-8"?>1

<sm:SensorModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"2

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"3

9.3 Use Case: Load Document 203

Figure 38: Use Case: Load Document

xmlns:sm="http://sensormodel.csdf.in_context.eu">4

<iospecification isuseraware="true" isactivityaware="true" sessiontime="0">5

<ports xsi:type="sm:PortExtract" portid="loaddocument">6

<input>7

<specs dataid="request.message" datatype="doc:LoadDocument" description="...">8

<assertions xsi:type="sm:AssertionWSOperation" description="..."9

operation="LoadDocument" request="true"/>10

</specs>11

<specs dataid="response.message" datatype="doc:LoadDocumentResponse" description="...">12

<assertions xsi:type="sm:AssertionWSOperation" description="..."13

operation="LoadDocument" request="false"/>14

</specs>15

</input>16

<output>17

<specs dataid="document.url" datatype="xsd:string" description="room id" />18

<specs dataid="document.statusload" datatype="xsd:boolean"19

description="flag variable, only set if document is loaded" />20

</output>21

</ports>22

<ports xsi:type="sm:PortUpdate" portid="adddocumentasresource">23

<input>24

<includes nsprefix="self" ioid="loaddocument#out" />25

</input>26

</ports>27

</iospecification>28

<controlspecification>29

9.3 Use Case: Load Document 204

<standards xsi:type="sm:StandardStatus"/>30

<access xsi:type="sm:ControlAccessDefault"/>31

</controlspecification>32

<servicespecification controllerservice="http://localhost:8080/axis2/services/ControllerService">33

<services xsi:type="sm:ServiceWS" serviceid="activityservice" description="Activity-Service"34

wsdl="http://localhost:8080/axis2/services/activityservice?wsdl" />35

</servicespecification>36

<sensorspecification name="TestScenario3" description="..."37

serviceurl="http://localhost:8080/axis2/services/TestScenario3" author="florian">38

<resources xsi:type="sm:ResourceWSDL" resourceid="documentservice"39

location="http://localhost:8080/axis2/services/DocumentManagement?wsdl" local="false"40

namespace="http://documentmanagement.www.in_context.eu" prefix="doc"41

convertSchemaElementToSchemaType="true" />42

</sensorspecification>43

</sm:SensorModel>44

Line 5: This is the definition a single-interaction Sensor.

Line 8-15: Here is the input port of the load-document event defining variables for
both SOAP request and response. The variables use WSDL-types via the prefix
doc.

Line 18-20: The output of extraction port delivers information about the document
being loaded.

Line 25: The variables of the input of the update port are imported from the output
of the extraction port.

Line 34-35: We add the document as a resource, therefore we must add the Activity
Service as integrated service.

Line 39-42: We used WSDL-types in the port definition and thus have to include
the Document Service as a resource.

9.3.3 Sensor Logic

After generating the code-base of the Sensor, we can code the business logic of the
extensions:

ExtractLoaddocument : This port just saves the data from the document to the
output variable.

UpdateAdddocumentasresource : Here, we use the data from the input variable
and add a new resource to the activity-context using the Activity Service client
stubs.

9.3 Use Case: Load Document 205

After coding the extension logic, we can deploy the Sensor. The initialization is done
using the ConfigAssistant, which we use to define the following mapping:

loaddocument@self ==> adddocumentasresource@http://localhost:8080/axis2/services/TestScenario3

This Forward-To connects the output of the extraction port to the input of the up-
date port. At last, we can activate the Sensor at the Controller and thus successfully
solve the scenario.

Files for this scenario can be found at $CSDF/Examples/Scenario3.

10 Conclusion and Outlook

This final chapter summarises the main aspects
of this thesis and suggests ideas for possible fu-
ture research. The first part provides a conclud-
ing overview of the primary concepts of CSDF.
Part two focuses on the contributions of this the-
sis for scientific research in that particular field
of study. The last section analyses shortcomings
in the current implementation of CSDF and pro-
poses extensions for possible future releases.

10.1 Conclusion 207

10.1 Conclusion

This section provides a summary of the results of this thesis:

I. Problem solved : The problems described in chapter 4 have been solved. CSDF,
based on the datamining-approach described in section 5.1, makes it feasible to
context-sense Web services in SOA-based environments, where context sensors
cannot directly be attached to the Web service of interest.

II. Fully automated Generation: The framework provides a computer-supported
approach to develop Sensors for web environments. Using the Generator pre-
sented in section 5.1.5, a fully functional code-base for Sensors can be generated.
The only task that remains to be done is to code the actual business logic of
the Sensors and deploy it.

III. Model-driven: The creation of new Sensors is model-driven. The SensorModel,
described in chapter 6, is used to define Sensors on an abstract level. With this
specification being language-independent, Sensors can be implemented in any
programming language. However, the current version of CSDF only provides
a code generation mechanism for the Java language.

IV. Sensors as Web Services: The entire communication between Controller, Ses-
sion Service and Sensors relies on the loosely coupled SOA-architecture. As
described in chapter 7, Sensors implement a comprehensive Web service in-
terface. Thus, they can be developed and deployed on any server using any
programming language.

V. Dynamic Sensor Management: The Controller as the central part of CSDF
manages Sensor registration. As illustrated in section 5.1.2, Sensors can be
added and removed dynamically during runtime. In addition, as also shown
in 5.1.2, the Controller implements an algorithm to automatically remove a
Sensor in case that it cannot be reached for a certain period of time.

VI. Flexible Sensor Composition: Sensors are typically designed in a way to focus
on one simple task only. Even so, complex functionality can be achieved by
using Sensor composition as described in 5.4. Similar to the Sentient Object
Model presented in 3.2, Sensors can be both producers and consumers of data.
Linkage information, as shown in section 5.4.4, is defined directly on the Sensor
itself. Thus, seamless integration, i.e. integration without the need to alter the
configuration of existing Sensors, becomes feasible.

10.2 Summary of Contributions 208

VII. Composition Support: As illustrated in section 5.4.2 and 5.4.3, the Controller
offers additional mechanisms to support Sensor composition. First, it auto-
matically detects loops in existing Sensor networks. Second, it provides an
interface to query all Sensors compatible with a given specification.

VIII. Extraction from several Interactions: CSDF also enables context extraction
from a series of Web service invocations. As presented in 5.3.4, special at-
tributes in the SensorModel control how incoming service interactions are
grouped in sessions for context extraction.

10.2 Summary of Contributions

This part describes the contributions for scientific research made in the course of this
thesis:

I. Context Sensors in SOA-based Environments : As outlined in chapter 3, many
context-aware applications have been developed in recent years. Although
considerable effort has gone into research in the area of perceiving aspects
of the physical world, technologies on software-sensors are a rather new branch
of study. As analysed in chapter 4, one fundamental problem in web based
context-aware applications is the integration of the sensor: Third party Web
services cannot be modified and thus not directly extended with a sensing
unit. In this thesis, we proposed an approach that mitigates this shortcoming.
Upon the assumption that at minimum the service request and response are
observable, we presented a framework for the creation of sensors capable of
analysing and extracting context solely from messages exchanged in a service
invocation.

II. Flexible Sensor Composition: Context-aware applications use sensor-devices to
become aware of aspects of the physical or virtual world. As presented in an ex-
ample in chapter 4, ’context’ often comprises several such facts. Many context-
sensitive applications introduce a reasoning layer to overcome this problem.
However, if complex aspects could already be detected on sensory level, the
overlying logic would be drastically reduced in complexity. Our approach in-
troduced an architecture which allows for flexible sensor composition: Sensors
can be reused, similar to the Sentient Object Model described in 3, and com-
plex context-extraction networks can be built by combining many small sensing
units.

10.3 Outlook 209

III. Computer-supported Development : Though software-sensors measure a wide
range of possible aspects of their environment, they typically share a com-
mon infrastructure; for instance, mechanisms to publish data, a description
for integration into a service registry and an interface to query common and
specific parameters of the sensor. As these parts and others are practically
identical, regardless of the actual logic of the sensor, they can automatically
be generated by a framework rather than being coded by the developer. This
tremendously reduces the development effort of sensors. In this thesis, we pro-
posed a model-driven architecture which enables automated sensor generation
via the SensorModel, the language-independent model description of a Sen-
sor. Although currently only implemented in Java, any kind of sensor base
can theoretically be generated from a given SensorModel. Especially in the
setting of CWE, which involves multiple companies and different technologies,
this proves to be an important requirement.

10.3 Outlook

With this being the first release of CSDF, there is still room for improvement. This
section gives a short overview of aspects of CSDF that have not been implemented
yet or parts that could be enhanced:

Inferred Compatibility: A feature of CSDF that has not yet been implemented
is the detection of inferred-compatible ports, as described in section 5.4.2. All
necessary information already residues in the Controller and an adequate Web
service is implemented too, thus only the implementation of the actual algo-
rithm remains to be done. An algorithm solving the given problem could look
as follows:

1. Initially, the accumulated context is empty. For all active-nodes: Execute
2-4.

2. Add the output of the current node to the accumulated context.

3. If the current node is the target node, save the node-path.

4. Identify all Sensors compatible with the current accumulated context. For
every compatible node: Execute 2-4.

All paths leading to the target node indicate compositions with inferred com-
patibility. Of course some kind of loop detection is needed, otherwise the

10.3 Outlook 210

execution of the algorithm might not come to an end. With regard to process-
ing, this algorithm is rather costly if executed on request-basis. An alternative
would be to identify all inferred compatibility paths during start-up and save
the results in a list. Naturally, the algorithm must then be executed again
every time the Sensor composition changes.

Dynamic Service Composition: Based on the inferred compatibility detection,
dynamic service composition can be implemented. Thus, the developer just
specifies the given input and the required output, upon which the Controller
will try to automatically find a suitable combination of Sensors that would
satisfy both requirements. This would be useful for CSDF with a high number
of primitive Sensors deployed. The developer could just implement the context-
update and leave the routing of an adequate context extracting composition in
the hands of the Controller.

Visualisation of Composition: Although the current version of CSDF allows for
flexible service compositions, it does not provide any tools to monitor the
linkage of Sensors. With the number of registered Sensors at the Controller
tending to become considerably high, a tool visualising the actual configuration
would be very helpful. The tool could load all Sensor specifications and Forward
definitions of the Controller via its Web service and then use this information
to generate a graph displaying the actual composition of Sensors. Especially in
cases of faulty linkage, this tool would prove highly beneficial to quickly locate
errors in the Forward configurations.

Stress Test of Controller: The bottleneck of CSDF is the Controller. For this
reason, a stress test would be very valuable as it would provide information
about the number of Sensors the Controller can effectively work with and the
number of simultaneous service interactions it can cope with.

Typed Session Service: In the current design of CSDF, the Session Service is
untyped. Therefore, data must be parsed and cast to the adequate types upon
execution of a port of the Sensor. A future extension of CSDF could introduce
a typed version of the Session Service or even replace it by another technology,
for instance, a shared data store or a tuple space.

Extension of Parameter Types: The definition of Parameters is currently lim-
ited to simple types of the type system. In addition, no databinding has yet
been implemented for Parameters.

10.3 Outlook 211

Quality-of-Service Attributes: The designs of the SensorModel and the Session
Service already include a concept of QoS attributes. However, the current
implementation of the databinding algorithm does not yet support it. QoS
parameters might prove very useful to annotate extracted context with addi-
tional information, therefore the databinding mechanism should be extended
in a way to be able to handle such data.

Programming Language Support: Given a particular SensorModel, the Gener-
ator of CSDF is used to generate the code-base of a Sensor. In the current
version, only Java is supported as target language. Future extensions of CSDF
might also support generation of other programming languages, e.g. C#.

Analysing Complex Flows of Interactions: CSDF was developed to ease the
development of Sensors analysing the message flow between Web services. It
already provides some mechanisms to extract context from a series of inter-
actions joined together by either a user, an activity and/or by the time of
invocation. This might prove to be sufficient in most cases, yet sometimes
context is coded in a more complicated series of interactions (e.g. workflow).
To identify such complex patterns, a sophisticated description mechanism be-
yond the capabilities of the SensorModel is required. Basic patterns of such
workflows are analysed in inContext D1.2 [41].

A Installation Guide

This chapter sees a step-by-step installation of
CSDF. Following an overview of the system re-
quirements, the manual provides instructions on
how to install additional and required software
components. Part three then covers the set-up
of CSDF for both the development machine as
well as the web server used for deployment. The
final part focuses on the deployment and initial-
ization of CSDF and guides through the neces-
sary configuration of Eclipse.

213

Preface

This part contains a step-by-step installation guide for CSDF. To simplify matters,
basic terminology will be introduced at this stage. The following terms should be
kept in mind when reading this section:

Term Explanation
development machine The machine at which new Sensors for CSDF will

be developed.
web server The machine deploying the Controller, the Session

Service and the Sensors of CSDF.
$JAVA HOME The base directory of the Java JDK installation.

Example: c:/java/jdk1.6.0 03

$APACHE HOME The base directory of the Apache Tomcat installa-
tion.
Example: c:/apache-tomcat-6.0.14

$APACHE WEB The directory with the web applications of Apache
Tomcat.
Example: $JAVA HOME/webapps

$AXIS2 HOME The base directory of the Axis2 installation.
Example: c:/axis2-1.3

$AXIS2 WEB The directory where Axis2 is deployed as web ap-
plication on Apache Tomcat.
Example: $APACHE WEB/axis2

$ANT HOME The base directory of the Ant installation.
Example: c:/ant-1.7.1

$EMF LIB The location of the .jar-libraries of the EMF in-
stallation.
Example: c:/emf-libs

$JET LIB The location of the .jar-libraries of the JET instal-
lation.
Example: c:/jet-libs

$ECLIPSE HOME The base directory of the Eclipse installation.
Example: c:/eclipse

$CSDF The base directory of the CSDF compilation.
$DEV The abbreviation for $CSDF/Development.

Table 91: Common Terms

A.1 System Requirements 214

A.1 System Requirements

CSDF was both developed and tested on a desktop computer. Although it works
fine even on normal computers, it is recommended to use a more powerful machine
for deployment. There is no stress test for CSDF available, so it is not possible
to say how many resources it actually needs and how well it performs and scales.
For testing purposes it is sufficient to install it on an average desktop machine, but
if many service interactions are expected, a real web server would probably be the
better choice.

As a Windows platform was chosen to develop CSDF, this whole guide deals
with the installation on a Windows platform. Installation on other platforms might
slightly differ. The software has only been tested on Windows platforms so far, but
there are no platform specific components, so it should theoretically work on any
platform. This will be a matter of tests in future.

A.2 Prerequisites

There are some prerequisites before beginning the setup of CSDF.

A.2.1 Java JDK

CSDF has been developed in Java, thus a Java JDK has to be installed on the devel-
opment machine. Furthermore an environment variable needs be set: The variable
must have the name ’JAVA HOME’ with the value of $JAVA HOME.

Version: 1.6 or higher (developed using: 1.6.0 03)

Download: http://java.sun.com/javase/downloads/index.jsp

Windows: The $JAVA HOME/bin directory must be added to the class path. This is
necessary to be able to directly invoke Java commands from the command shell.

A.2.2 Ant

Some of the components of CSDF rely on Ant, so it has to be installed on the
development machine.

http://java.sun.com/javase/downloads/index.jsp

A.3 Installation 215

Version: Any version should work (developed using: 1.7.1)

Download: http://ant.apache.org/bindownload.cgi

Windows: The $ANT HOME/bin directory must be added to the class path. This is
necessary to be able to directly invoke Ant from the command shell.

A.2.3 Logging Service

In order for CSDF to work properly, a Logging Service must be installed, running
and available. All the services to be processed by CSDF must be relayed through
the Service Intercepter and logged by the Logging Service. CSDF will then on start-
up automatically register at the Logging Service and therefore receive copies of all
service interactions.

The Logging Service was initially designed in the course of the inContext [23]
project. For more detailed information, see 5.1.1 Service Interceptor. The WSDL
specification of the Logging Service can be found at $CSDF/WSDL/Logging/.

A.3 Installation

A.3.1 Tomcat Apache

Tomcat Apache is a popular web server by Apache. CSDF is a collection of Web
services which are deployed under an Axis2 web application. To deploy Axis2 we use
Tomcat Apache, so the first step is to install it on the web server. It is available as
.zip archive and can be used immediately after unpacking it.

Steps on the web server:

1. Download Apache Tomcat

2. Unpack it to $APACHE HOME

3. Start the web server via $APACHE HOME/bin/startup.bat. The server should be
running on port 8080 on localhost.

4. Test it by loading http://localhost:8080/ in any browser. You should see the
welcome page of Apache Tomcat.

Version: 3.4 (developed using: 6.0.14)

Download: http://tomcat.apache.org/download-60.cgi

http://ant.apache.org/bindownload.cgi
http://tomcat.apache.org/download-60.cgi

A.3 Installation 216

A.3.2 Eclipse

Eclipse is a state-of-the-art programming environment for the Java language. Al-
though the reader might use another environment to code the Sensor logic, the
installation of Eclipse is still required. The reason for this is that the Generator uses
the JET technology to perform Model-to-Text transformations. Unfortunately JET
is tightly integrated into Eclipse and cannot be used without an operable Eclipse in-
stallation. Furthermore the graphical interface for creating and editing SensorModels
is only available as Eclipse plugin.

Steps on the development machine:

1. Download Eclipse

2. Unpack it to $ECLIPSE HOME/..

Version: 3.4.x (developed using: ganymede-SR1-win32)

Download: http://www.eclipse.org/downloads/

A.3.3 Eclipse Add-ons

In case the downloaded Eclipse compilation does not include all the necessary plugins,
these can be installed separately. If the reader chooses a higher version than the
suggested Eclipse compilation, he/she has to be careful to select compatible versions
of the add-ons.

EMF-SDO-XSD

This packet includes the Eclipse Modeling Framework (EMF) as well as classes for
XSD.

Steps on the development machine:

1. Download EMF-SDO-XSD

2. Unpack it to $ECLIPSE HOME/..

3. Temporarily unpack it and copy eclipse/plugins/*.jar to $EMF LIB

Version: 2.4.x (developed using: All-in-One SDK 2.4.1)

Download: http://www.eclipse.org/modeling/emf/downloads/

http://www.eclipse.org/downloads/
http://www.eclipse.org/modeling/emf/downloads/

A.3 Installation 217

GEF

This is the Graphical Editing Framework (GEF) of Eclipse. It is used to create and
use graphical user interfaces to work with Eclipse models.

Steps on the development machine:

1. Download GEF

2. Unpack it to $ECLIPSE HOME/..

Version: 3.4.x (developed using: All-in-One SDK 3.4.1)

Download: http://www.eclipse.org/gef/downloads/

JET

JET is a part of the Model-to-Text (M2T) project of Eclipse. It is used to generate
code from an EMF model.

Steps on the development machine:

1. Download JET

2. Unpack it to $ECLIPSE HOME/..

3. Temporarily unpack it and copy eclipse/plugins/*.jar to $JET LIB

Version: 0.9.x (developed using: SDK 0.9.1)

Download: http://www.eclipse.org/modeling/m2t/downloads/?project=jet

WTP

The Web Tools Platform (WTP) contains tools for creating and publishing Web
services in Eclipse.

Steps on the development machine:

1. Download WTP

2. Unpack it to $ECLIPSE HOME/..

Version: 3.0.x (developed using: 3.0.3-20081113)

http://www.eclipse.org/gef/downloads/
http://www.eclipse.org/modeling/m2t/downloads/?project=jet

A.3 Installation 218

Download: http://download.eclipse.org/webtools/downloads/

SensorModel

To be able to load and edit SensorModels, the following plugins have to be installed.

Steps on the development machine:

1. Copy $CSDF/Plugins/*.jar to $ECLIPSE HOME/plugins

Version: 1.0.0

A.3.4 Axis2

Axis2 is a Web service engine deployed as a web application on Apache Tomcat. It
will be used to host the Sensors, the Controller and the Session Service of CSDF.

Steps on the development machine:

1. Download Axis2 as .zip

2. Unpack it to $AXIS2 HOME

Steps on the web server:

1. Download Axis2 as .war

2. Copy the .war-file to $APACHE WEB

3. Start Apache Tomcat - it will automatically install Axis2 as web application.

4. Copy $EMF LIB/*.jar in $AXIS2 WEB/WEB-INF/lib - This will enable Axis2 to work
with EMF classes.

Version: 1.3 or higher (developed using: 1.3)

Download: http://ws.apache.org/axis2/download.cgi

Windows: The $AXIS2 HOME/bin directory must be added to the class path. This is
necessary to be able to directly invoke Wsdl2Java from the command shell.

http://download.eclipse.org/webtools/downloads/
http://ws.apache.org/axis2/download.cgi

A.4 Configuration 219

A.4 Configuration

A.4.1 Eclipse Settings

In order to work with the different components of CSDF and to develop Sensors,
Eclipse must be configured. We will set up a new workspace which we will use for
Sensor development and testing.

Steps on the development machine:

1. Start Eclipse.

2. Click File / Switch Workspace / Other... and enter $DEV for Workspace. Once
you click OK, Eclipse should restart and load an empty workspace.

3. Open the Windows / Preferences dialog in the menu.

4. Navigate to Java / Build Path / User Libraries.

5. Create a new User Library, name it ’Axis2’ and add $AXIS2 HOME/lib/*.jar

6. Create a new User Library, name it ’Emf’ and add $EMF LIB/*.jar

7. Create a new User Library, name it ’Jet’ and add $JET LIB/*.jar and close the
dialog.

8. Click File / Import..., choose General / Existing Project into Workspace and
enter $DEV as root directory. A list with projects should appear. Check the
following projects:

� Common

� ConfigAssistant

� ControllerService

� SensorService

� SessionService

� Generator

The imported project should compile without any errors. If there are any errors,
check the following list:

� Have all the required plugins been installed for Eclipse?

A.4 Configuration 220

� The projects might refer to a wrong or non-existing version of the Java runtime
environment. In this case correct the setting in the ’building paths ’-page of the
project.

� Do the user libraries contain the correct libraries and are their names identical
to the ones specified above?

A.4.2 Session Service

First we configure and deploy the Session Service to the web server.

Steps on the web server:

1. Start Apache Tomcat, if not yet running.

Steps on the development machine:

1. Edit $DEV/SessionService/ant.properties and set the correct paths.

2. Edit $DEV/SessionService/session.properties and adept the properties to your
needs.

3. Execute $DEV/SessionService/create-jar.bat. This will compile the component
as .aar Web service.

4. Copy $DEV/SessionService/SessionService.aar to $AXIS2 WEB/WEB-INF/services -
The service should automatically be deployed from Axis2. You can check this
by looking at the output messages in the console of Apache Tomcat.

A.4.3 Controller

Next the Controller has to be deployed.

Steps on the development machine:

1. Edit $DEV/ControllerService/ant.properties and set the correct paths.

2. Edit $DEV/ControllerService/controller.properties and set the correct locations
of the Controller service itself, the subscription service, the logging service and
the Session Service.

3. Execute $DEV/ControllerService/create-jar.bat, which will compile the compo-
nent as .aar Web service.

A.4 Configuration 221

4. Copy $DEV/ControllerService/ControllerService.aar to
$AXIS2 WEB/WEB-INF/services - The service should automatically be deployed
from Axis2. You can check this by looking at the output messages in the
console of Apache Tomcat.

5. Execute $DEV/ControllerService/controller-init.bat. This will invoke the Ini-
tialize operation on the deployed Controller. The initialization was successful
if you can see the message ’Press Return key to continue...’.

In case you experience problems initializing the Controller:

� Check if Apache Tomcat is running.

� Check if the settings in $DEV/ControllerService/controller.properties are cor-
rect. If the location of one of the services is faulty, the Controller will not start
or not work properly.

� Check if the Session Service is deployed properly and is accessible.

� Check if the Logging Service is running and accessible.

Note After initialization the Logging Service will forward copies of service invoca-
tions to the Controller. If both services are not deployed on the same server,
the Controller must be reachable from outside. In case, check your firewall
settings to allow access to the web server from outside.

B Source Code Listing

B.1 Ecore Meta-Model 223

B.1 Ecore Meta-Model

<?xml version="1.0" encoding="UTF-8"?>

<ecore:EPackage xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="sensormodel"

nsURI="http://sensormodel.csdf.in_context.eu" nsPrefix="sm">

<eClassifiers xsi:type="ecore:EClass" name="SensorModel">

<eStructuralFeatures xsi:type="ecore:EReference" name="iospecification" lowerBound="1"

eType="#//InputOutputSpecification" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="controlspecification" lowerBound="1"

eType="#//ControlSpecification" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="servicespecification" lowerBound="1"

eType="#//ServiceSpecification" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="sensorspecification" lowerBound="1"

eType="#//SensorSpecification" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="QoSAttribute">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="qosid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="value" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EDouble"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Assertion" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="description"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="AssertionExpression" abstract="true"

eSuperTypes="#//Assertion"/>

<eClassifiers xsi:type="ecore:EClass" name="AssertionXPath"

eSuperTypes="#//AssertionExpression">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="xpath" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="nsaware" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="nsmap" upperBound="-1"

eType="#//NamespaceDefinition" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="AssertionRegex"

eSuperTypes="#//AssertionExpression">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="regex" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

defaultValueLiteral=""/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="AssertionWSOperation"

eSuperTypes="#//AssertionExpression">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="operation" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="request" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="NamespaceDefinition">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="namespace" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="prefix"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

B.1 Ecore Meta-Model 224

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="InputOutputSpecification">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="isuseraware" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="isactivityaware" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="sessiontime" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"

defaultValueLiteral="0"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="ports" upperBound="-1"

eType="#//PortAbstract" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="defs" upperBound="-1"

eType="#//IOSet" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="PortAbstract" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="portid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="input" eType="#//IOInput"

containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="output" eType="#//IOOutput"

containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="PortExtract" eSuperTypes="#//PortAbstract"/>

<eClassifiers xsi:type="ecore:EClass" name="PortUpdate" eSuperTypes="#//PortAbstract"/>

<eClassifiers xsi:type="ecore:EClass" name="IODefinition" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="ioid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="specs" upperBound="-1"

eType="#//DataSpecification" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="includes" upperBound="-1"

eType="#//IOReference" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="IOReference">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="ioid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

defaultValueLiteral=""/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="nsprefix" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="IOInput" eSuperTypes="#//IODefinition"/>

<eClassifiers xsi:type="ecore:EClass" name="IOOutput" eSuperTypes="#//IODefinition"/>

<eClassifiers xsi:type="ecore:EClass" name="IOSet" eSuperTypes="#//IODefinition">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="readable" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="writeable" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="DataSpecification">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="dataid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="datatype" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="description"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="assertions" upperBound="-1"

eType="#//Assertion" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="qos" upperBound="-1"

eType="#//QoSAttribute" containment="true"/>

B.1 Ecore Meta-Model 225

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ControlSpecification">

<eStructuralFeatures xsi:type="ecore:EReference" name="standards" upperBound="-1"

eType="#//Standard" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="access" upperBound="-1"

eType="#//ControlAccess" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="activationkey" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ControlParameter">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="controlid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="description"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="default" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="readable" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="writeable" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ControlAccess" abstract="true"/>

<eClassifiers xsi:type="ecore:EClass" name="ControlAccessDefault"

eSuperTypes="#//ControlAccess"/>

<eClassifiers xsi:type="ecore:EClass" name="ControlAccessUser" eSuperTypes="#//ControlAccess">

<eStructuralFeatures xsi:type="ecore:EReference" name="standardaccess" upperBound="-1"

eType="#//ControlStandardAccess" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="key" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ControlStandardAccess">

<eStructuralFeatures xsi:type="ecore:EReference" name="standard" lowerBound="1"

eType="#//Standard"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="readable" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="writeable" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ServiceSpecification">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="controllerservice" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="services" upperBound="-1"

eType="#//ServiceDescription" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ServiceDescription" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="serviceid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="description"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ServiceWS" eSuperTypes="#//ServiceDescription">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="wsdl" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ServiceSensor" eSuperTypes="#//ServiceDescription">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="serviceuri"

B.1 Ecore Meta-Model 226

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="portid"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Standard" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="standardid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="description"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="parameter" upperBound="-1"

eType="#//ControlParameter" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="StandardStatus" eSuperTypes="#//Standard"/>

<eClassifiers xsi:type="ecore:EClass" name="StandardUserDefined" eSuperTypes="#//Standard"/>

<eClassifiers xsi:type="ecore:EClass" name="SensorSpecification">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="description"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="serviceurl" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="author" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

defaultValueLiteral=""/>

<eStructuralFeatures xsi:type="ecore:EReference" name="resources" upperBound="-1"

eType="#//Resource" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Resource" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="resourceid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="location" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

defaultValueLiteral=""/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="local" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ResourceWithNamespace" abstract="true"

eSuperTypes="#//Resource">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="namespace" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="prefix" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ResourceSchema" abstract="true"

eSuperTypes="#//ResourceWithNamespace"/>

<eClassifiers xsi:type="ecore:EClass" name="ResourceSchemaXsd" eSuperTypes="#//ResourceSchema"/>

<eClassifiers xsi:type="ecore:EClass" name="ResourceSensor"

eSuperTypes="#//ResourceWithNamespace"/>

<eClassifiers xsi:type="ecore:EClass" name="ResourceWSDL"

eSuperTypes="#//ResourceWithNamespace">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="convertSchemaElementToSchemaType"

lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="DataSet">

<eStructuralFeatures xsi:type="ecore:EReference" name="data" upperBound="-1"

eType="#//DataValue" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="DataValue">

B.1 Ecore Meta-Model 227

<eStructuralFeatures xsi:type="ecore:EAttribute" name="dataid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="value" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="qos" upperBound="-1"

eType="#//QoSAttribute" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ParameterValue">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="parameterid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="value" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="PortReference">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="serviceuri" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="portid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="SensorInfo">

<eStructuralFeatures xsi:type="ecore:EReference" name="sensor" lowerBound="1"

eType="#//ServiceSensor" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="ports" upperBound="-1"

eType="#//SensorInfoPort" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="services" upperBound="-1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="SensorInfoPort">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="update" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="portid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="inputs" upperBound="-1"

eType="#//SensorInfoIO" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="outputs" upperBound="-1"

eType="#//SensorInfoIO" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="forwardto" upperBound="-1"

eType="#//PortReference" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="forwardfrom" upperBound="-1"

eType="#//PortReference" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="SensorInfoIO">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="ns" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="dataid" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

</ecore:EPackage>

REFERENCES 228

References

[1] Ailisto, H., Alahuhta, P., Haataja, V., Kylloenen, V., and Lind-
holm, M. Structuring context aware applications: Five-layer model and exam-
ple case, 2002. 7, 23

[2] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web Services.
Concepts, Architectures and Applications. Springer-Verlag Berlin Heidelberg,
2004. 10

[3] Baldauf, M., Dustdar, S., and Rosenberg, F. A survey on context-
aware systems. Int J. Ad Hoc and Ubiquitous Computing, Vol.2, No.4 (2007),
263–277. 6

[4] Bardram, J. The java context awareness framework (jcaf) - a service infras-
tructure and programming framework for context-aware applications. Pervasive
(2005), 98–115. 15

[5] Beigl, M., Gellersen, H., and Schmidt, A. Mediacups: Experience with
design and use of computer-augmented everyday objects. Computer Networks,
Vol. 35. No. 4. Elsevier (2001), 401–409. 14

[6] Biegel, G., and Cahill, V. A framework for developing mobile, context-
aware applications. Proceedings of the 2nd IEEE Conference on Pervasive Com-
puting and Communication (2004), 361–365. 15, 36

[7] Brown, P. The stick-e document: a framework for creating context-aware
applications. Proceedings of the Electronic Publishing, Palo Alto (1996), 259–
272. 5

[8] Chen, G., and Kotz, D. Context-sensitive resource discovery. First IEEE
International Conference on Pervasive Computing and Communications (2003),
243–252. 14

[9] Chen, H. Phd-thesis - an intelligent broker architecture for pervasive context-
aware systems, 2004. 14

[10] Chen, H., Finin, T., and Joshi, A. An ontology for context-aware pervasive
computing environments. Special Issue on Ontologies for Distributed Systems,
Knowledge Engineering Review, Vol. 18. No. 3 (2004), 197–207. 14

REFERENCES 229

[11] Dey, A., and Abowd, G. Towards a better understanding of context and
context-awareness, 2000. 5, 6

[12] Dey, A., Abowd, G., and Wood, A. Cyberdesk: a framework for providing
self-integrating context-aware services, 1998. 14

[13] Dey, A., Salber, D., and Abowd, G. A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Human-
Computer Interaction Journal, Vol. 16. No. 2-4 (2001), 97–166. 14

[14] Dijkstra, E. On the role of scientific thought. Selected writings on Computing:
A Personal Perspective, New York, USA (1982), 60–66. 9

[15] Dustdar, S., and Schreiner, W. A survey on web service compositions.
Int. J. Web and Grid Services, Vol. 1, No. 1, 2005 (2005), 1–30. 10

[16] Erl, T. Service-Oriented Architecture: Concepts, Technology and Design.
Prentice Hall/PearsonPTR, 2006. 9

[17] Erl, T. Soa principles, 2009. http://www.soaprinciples.com/. 9

[18] Fahy, P., and Clarke, S. Cass: Middleware for mobile context-aware ap-
plications. ACM MobiSys Workshop on Context Awareness (2004). 15

[19] Fitzpatrick, A., Biegel, G., Clarke, S., and Cahill, V. Towards a
sentient object model, 2002. 15

[20] Gu, T., Pung, H., and Zhang, D. A service-oriented middleware for building
context-aware services. Journal of Network and Computer Applications (JNCA).
Vol. 28. No. 1. (2005), 1–18. 15

[21] Hull, R., Neaves, P., and Bedford-Roberts, J. Towards situated com-
puting. Proceeding of the First International Symposium of Wearable Computers
(ISWC ’97) (1997), 146. 5

[22] Kanter, T. Attaching context-aware services to moving locations. IEEE
Internet Computing, Vol. 7. No. 2. (2003), 43–51. 14

[23] Kendal, P. Effective team collaboration via collaborative software - incontext,
2009. http://www.in-context.eu. 8, 16, 215

[24] Kuhn, T. Webservices, steam und iceberg, 2005. 15

http://www.soaprinciples.com/
http://www.in-context.eu

REFERENCES 230

[25] Pallot, M., Prinz, W., and Schaffers, H. Future workplaces, towards
the ’collaborative’ web, 2005. 8

[26] Pallot, M., Salminen, V., Pillai, B., and Pawar, K. Business semantics:
Collaboration? the magic instrument enabling plug & play, 2004. 8

[27] Prinz, W., Löh, H., Schaffers, H., Skarmeta, A., and Decker, S.
Ecospace - towards an integrated collaboration space for eprofessionals, 2008. 8

[28] Prinz, W., and Pallot, M. Ecospace - ami@work communities wiki, 2009.
http://www.ami-communities.eu/wiki/ECOSPACE. 8

[29] Ryan, N., Pascoe, J., and Morse, D. Enhanced reality fieldwork: the
context-aware archaeological assistant. Proceeding of the 25th Anniversary Com-
puter Applications in Archaeology (1997). 5

[30] Schaffers, H., Brodt, T nd Pallot, M., and Prinz, W. The Future
Workspace - Perpectives on Mobile and Collaborative Working. Telematica In-
stituut, 2006. 8

[31] Schaffers, H., and Pallot, M. Mosaic - ami@work communities wiki,
2009. http://www.ami-communities.eu/wiki/MOSAIC. 8

[32] Schaffers, H., Prinz, W., Pallot, M., and Fernando, T. Mobile and
collaborative workplaces: An agenda for innovation, 2005. 8

[33] Schall, D., Dorn, C., Dustdar, S., and Dadduzio, I. Viecar - enabling
self-adaptive collaboration services, 2007. 11

[34] Schilit, B., and Theimer, M. Disseminating active map information to
mobile hosts. IEEE Network, Vol. 8, No. 5 (1994), 22–32. 5

[35] Steinfield, C., Jang, C.-Y., and Pfaff, B. Supporting virtual team
collaboration: The teamscope system, 1999. 8

[36] Strimpakou, M., Roussaki, I., Pils, C., Angermann, M., Robertson,
P., and Anagnostou, M. Context modelling and management in ambient-
aware pervasive environments, 2005. 14

[37] Truong, H., and Dustdar, S. A survey on context-aware web service sys-
tems. International Journal of Web Information Systems (2008). 16, 18, 24

http://www.ami-communities.eu/wiki/ECOSPACE
http://www.ami-communities.eu/wiki/MOSAIC

REFERENCES 231

[38] Truong, H., Juszczyk, L., Manzoor, A., and Dustdar, S. Escape
- an adaptive framework for managing and providing context information in
emergency situations. Smart Sensing and Context, Second European Conference,
EuroSSC 2007 (2007), 207–222. 15

[39] Truong at al., H.-L. incontext: a pervasive and collaborative working envi-
ronment for emerging team forms, 2008. 8, 16

[40] TUV (Vienna University for Technology). incontext -
d4.1 - principles and mechanisms for ’context tunneling’, 2006.
http://www.in-context.eu/uploads/files/20061215D4.1v1.

0Principles20and20Mechanisms20for20Context20Tunnelling.pdf. 32

[41] TUV (Vienna University for Technology). incontext - d1.2
- discovering service-interaction patterns - methods and mining algo-
rithms, 2007. http://www.in-context.eu/uploads/files/20061106D1.2v1.
1Service20Interaction20Patterns.pdf. 16, 21, 211

[42] TUV (Vienna University for Technology). incontext - d2.2 - de-
sign and proof-of-concept implementation of the incontext context model ver-
sion 1, 2007. http://www.in-context.eu/uploads/files/20070627D2.2v1.

0Context20model20design20and20prototype20implementation.pdf. 11

[43] TUV (Vienna University for Technology). incontext - d5.3 - design
and implementation of pcsa intermediate prototype, 2007. 29

[44] Van Laerhoven, K. Technology for enabling awareness (tea), 1998. http:

//www.teco.edu/tea/. 14

[45] Voida, S., Mynatt, E., MacIntyre, B., and Corso, G. Integrating
virtual and physical context to support knowledge workers. IEEE Pervasive
Computing, Vol. 1. No. 3. (2002), 73–79. 14

[46] Want, R., Hopper, A., Falcao, V., and Gibbons, J. The active badge
location system. ACM Transactions on Information Systems. Vol. 10. No 2.
(1992), 91–102. 14

[47] Weiser, M. Ubiquitous computing, 1996. 6

[48] Weiser, M. The computer for the 21st century, 1999. 14

http://www.in-context.eu/uploads/files/20061215D4.1v1.0Principles20and20Mechanisms20for20Context20Tunnelling.pdf
http://www.in-context.eu/uploads/files/20061215D4.1v1.0Principles20and20Mechanisms20for20Context20Tunnelling.pdf
http://www.in-context.eu/uploads/files/20061106D1.2v1.1Service20Interaction20Patterns.pdf
http://www.in-context.eu/uploads/files/20061106D1.2v1.1Service20Interaction20Patterns.pdf
http://www.in-context.eu/uploads/files/20070627D2.2v1.0Context20model20design20and20prototype20implementation.pdf
http://www.in-context.eu/uploads/files/20070627D2.2v1.0Context20model20design20and20prototype20implementation.pdf
http://www.teco.edu/tea/
http://www.teco.edu/tea/

REFERENCES 232

[49] Wikipedia. Collaborative working environment, 2009. http://en.wikipedia.
org/wiki/Collaborative_Working_Environment. 8

[50] Wikipedia. Service-oriented architecture, 2009. http://en.wikipedia.org/

wiki/Service-oriented_architecture. 9

http://en.wikipedia.org/wiki/Collaborative_Working_Environment
http://en.wikipedia.org/wiki/Collaborative_Working_Environment
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture

Index

Activate, 131
Activation, 60
Active Sensor, 60
Activity Service, 195
Activity-Awareness, 52
Assertion, 89
AssertionExpression, 90
AssertionRegex, 91
AssertionWSOperation, 91
AssertionXPath, 90

CASS, 15
COBRA, 14
Collaborative Working Environment, see

CWE
Composition, 53

Algorithm, 63
ConfigAssistant, 68
Context Management System, 28
Context Sensor Development Framework,

see CSDF
Control Specification, 45
ControlAccess, 99
ControlAccessDefault, 100
ControlAccessUser, 100
Controlid, 78
Controller, 30

Context, 32
Filtering, 33
Initialization, 70

ControlParameter, 97
ControlSpecification, 95
ControlStandardAccess, 101
CORTEX, 15
CSDF, 28

CWE, 8

Dataid, 78
DataSet, 108
DataSpecification, 87
DataValue, 109
Delete, 147
Development Circle, 64
Direct Compatibility, 55
Document Service, 202

Ecore, 78
Email Service, 20, 195, 199
ESCAPE, 15
Extraction Port, 36

Filter, 49
Filtering, 48
Forward, 58
Forward-From, 58
Forward-To, 58

Generator, 41, 66
Get, 145
GetCompatibleInputPorts, 143
GetCompatibleOutputPorts, 144
GetIOSpecification, 115
GetNamespaceByPrefix, 124
GetParameterValue, 120
GetPort, 115
GetPortForwards, 116
GetResourceByNamespace, 123
GetSelf, 125
GetServiceByCore, 139
GetServiceByRequirements, 140
GetStandard, 119

INDEX 234

inContext, 8, 16
Inferred Compatibility, 55
Initialize, 130, 141
Input/Output Specification, 44
InputOutputSpecification, 80
Integrated Service, 45
Invoke, 126
IODefinition, 86
Ioid, 78
IOInput, 85
IOOutput, 85
IOReference, 93
IOSet, 85
Is-Alive Concept, 31
IsActive, 132
IsAlive, 129

JCAF, 15

ListAccessForKey, 119
ListAllActiveServices, 141
ListAllForwards, 116
ListAllServices, 125, 139
ListAllServicesDetails, 139
ListAllStandards, 118
ListResources, 123
Logging Service, 28
Logging Subscriber, 28
Loop Detection, 57

Mailinglist Service, 195

NamespaceDefinition, 92

Parameterid, 78
ParameterValue, 109
Passivate, 133
Passivation, 60
Passive Sensor, 60
Pending Message Timer, 30

PortAbstract, 83
PortExtract, 84
Portid, 78
PortReference, 110
PortUpdate, 84

QoSAttribute, 92

Register, 135
Resource, 46, 105
ResourceSchema, 106
ResourceSchemaXsd, 106
ResourceSensor, 106
ResourceWithNamespace, 105
ResourceWSDL, 107
Room Reservation Service, 20, 199

Sensor, 35
Activation, 70
Compatibility, 55
Composition, see Composition
Databinding, 39
Extension, 39
Filtering, see Filtering
Integrated Services, 40
Invocation, 73
Parameter, 40
Port, 36
Registration, 71
Session Module, 38

Sensor Specification, 46
SensorInfo, 110
SensorInfoIO, 112
SensorInfoPort, 111
SensorModel, 43, 80
SensorSpecification, 103
Sentient Object Model, 15
Service Interceptor, 28
Service Orientied Architecture, see SOA

INDEX 235

Service Specification, 45
ServiceDescription, 102
Serviceid, 78
ServiceSensor, 103
ServiceSpecification, 101
ServiceWS, 102
Session Service, 34
Session-Data File, 67
Session-Frame, 52
SessionCreate, 148
SessionDestroy, 149
Sessionid, 78
Set, 146
SetActiveStatus, 138
SetParameterValue, 121
Shutdown, 142
SOA, 9
SOCAM, 15
Standard, 96
StandardStatus, 96
StandardUserDefined, 97

Test
Code, 67
Integration, 69

Type System, 46

Unregister, 137
UnregistrationNotification, 128
Update Port, 36
User-Awareness, 51

Variable, 87

	1 Introduction
	2 Background Information
	2.1 Context and Context-Aware Systems
	2.2 Collaboration and Collaborative Working Environments
	2.3 Service Oriented Architecture (SOA) and Service Composition
	2.4 Context Information in Collaborative Working Environments

	3 Review of the State of Art
	3.1 A short History of Context-Aware Systems
	3.2 Recent Context-Aware Systems

	4 Problem Statement
	4.1 The Sensing-Problem in the Software World
	4.2 The Room Reservation Use Case
	4.2.1 Description
	4.2.2 Analysis

	4.3 Development of a possible Solution
	4.3.1 Sensor Integration
	4.3.2 Sensor Composition

	4.4 A Context Sensor Development Framework
	4.4.1 The Scope
	4.4.2 The Solution

	5 Concept of CSDF
	5.1 The Context Sensor Development Framework
	5.1.1 Service Interceptor
	5.1.2 Controller
	5.1.3 Session Service
	5.1.4 Sensor
	5.1.5 Generator

	5.2 Sensor Model
	5.2.1 Input/Output Specification
	5.2.2 Control Specification
	5.2.3 Service Specification
	5.2.4 Sensor Specification
	5.2.5 Resources and Type System

	5.3 Sensor Filtering
	5.3.1 What is a Filter?
	5.3.2 Definition of Filter
	5.3.3 Filters and Session Management
	5.3.4 Filter Techniques

	5.4 Sensor Composition
	5.4.1 Composition in General
	5.4.2 Compatibility of Sensors
	5.4.3 Loop Detection
	5.4.4 Types of Links
	5.4.5 Active and Passive Sensors
	5.4.6 Composition at Runtime

	5.5 Development Circle
	5.5.1 Create the SensorModel
	5.5.2 Code Generation
	5.5.3 Write Business Logic
	5.5.4 Code Test
	5.5.5 Deployment
	5.5.6 Configuration
	5.5.7 Integration Test
	5.5.8 Activation

	5.6 Service Interaction
	5.6.1 Initialization of Controller
	5.6.2 Registration of a Sensor
	5.6.3 Service Interaction and Sensor Invocation

	6 Sensor Model
	6.1 Introduction
	6.1.1 Ecore
	6.1.2 SensorModel ID

	6.2 Static Definitions
	6.2.1 SensorModel
	6.2.2 InputOutputSpecification
	6.2.3 PortAbstract
	6.2.4 PortExtract -› PortAbstract
	6.2.5 PortUpdate -› PortAbstract
	6.2.6 IOInput -› IODefinition
	6.2.7 IOOutput -› IODefinition
	6.2.8 IOSet -› IODefinition
	6.2.9 IODefinition
	6.2.10 DataSpecification
	6.2.11 Assertion
	6.2.12 AssertionExpression -› Assertion
	6.2.13 AssertionXPath -› AssertionExpression
	6.2.14 AssertionRegex -› AssertionExpression
	6.2.15 AssertionWSOperation -› Assertion
	6.2.16 NamespaceDefinition
	6.2.17 QoSAttribute
	6.2.18 IOReference
	6.2.19 ControlSpecification
	6.2.20 Standard
	6.2.21 StandardStatus -› Standard
	6.2.22 StandardUserDefined -› Standard
	6.2.23 ControlParameter
	6.2.24 ControlAccess
	6.2.25 ControlAccessDefault -› ControllAccess
	6.2.26 ControlAccessUser -› ControllAccess
	6.2.27 ControlStandardAccess
	6.2.28 ServiceSpecification
	6.2.29 ServiceDescription
	6.2.30 ServiceWS
	6.2.31 ServiceSensor
	6.2.32 SensorSpecification
	6.2.33 Resource
	6.2.34 ResourceWithNamespace -› Resource
	6.2.35 ResourceSchema -› ResourceWithNamespace
	6.2.36 ResourceSchemaXsd -› ResourceSchema
	6.2.37 ResourceSensor -› ResourceWithNamespace
	6.2.38 ResourceWSDL -› ResourceWithNamespace

	6.3 Dynamic Definitions
	6.3.1 DataSet
	6.3.2 DataValue
	6.3.3 ParameterValue
	6.3.4 PortReference
	6.3.5 SensorInfo
	6.3.6 SensorInfoPort
	6.3.7 SensorInfoIO

	7 CSDF Web Services
	7.1 Sensor Services
	7.2 SensorIO
	7.2.1 GetIOSpecification
	7.2.2 GetPort
	7.2.3 ListAllForwards
	7.2.4 GetPortForwards
	7.2.5 Type: tForward

	7.3 SensorControl
	7.3.1 ListAllStandards
	7.3.2 GetStandard
	7.3.3 ListAccessForKey
	7.3.4 GetParameterValue
	7.3.5 SetParameterValue
	7.3.6 ListResources
	7.3.7 GetResourceByNamespace
	7.3.8 GetNamespaceByPrefix

	7.4 SensorService
	7.4.1 ListAllServices
	7.4.2 GetSelf

	7.5 SensorCore
	7.5.1 Invoke
	7.5.2 UnregistrationNotification
	7.5.3 IsAlive

	7.6 SensorManagement
	7.6.1 Initialize
	7.6.2 Activate
	7.6.3 IsActive
	7.6.4 Passivate
	7.6.5 Type: tServiceType
	7.6.6 Type: tForward

	7.7 Controller
	7.7.1 Register
	7.7.2 Unregister
	7.7.3 SetActiveStatus
	7.7.4 ListAllServices
	7.7.5 ListAllServicesDetails
	7.7.6 GetServiceByCore
	7.7.7 GetServiceByRequirements
	7.7.8 ListAllActiveServices
	7.7.9 Initialize
	7.7.10 Shutdown
	7.7.11 GetCompatibleInputPorts
	7.7.12 GetCompatibleOutputPorts

	7.8 Session Service
	7.8.1 Get
	7.8.2 Set
	7.8.3 Delete
	7.8.4 SessionCreate
	7.8.5 SessionDestroy

	8 How To
	8.1 Introduction
	8.2 The SensorModel
	8.2.1 Creating a new SensorModel
	8.2.2 Edit the SensorModel
	8.2.3 Adding the Input/Output Specification
	8.2.4 Adding the Control Specification
	8.2.5 Adding the Service Specification
	8.2.6 Adding the Sensor Specification
	8.2.7 The finished SensorModel

	8.3 Code Generation
	8.3.1 Setup
	8.3.2 Code Generation

	8.4 The generated Code
	8.4.1 Eclipse Project
	8.4.2 Generated Packages
	8.4.3 Generated Files
	8.4.4 Commands
	8.4.5 The altered SensorModel
	8.4.6 Extension Points

	8.5 Code Extension
	8.5.1 Writing the Extraction Port Code
	8.5.2 Writing the Update Port Code

	8.6 Code Test
	8.6.1 Session-data Files
	8.6.2 Test of the Extraction Port
	8.6.3 Test of the Update Port

	8.7 Deployment
	8.7.1 Deploying the Sensor
	8.7.2 Empty Initialization
	8.7.3 Overview of ConfigAssistant
	8.7.4 Initialization via the ConfigAssistant

	8.8 Integration Test
	8.8.1 SOAP Request and Response
	8.8.2 Start the integration test
	8.8.3 Final Activation

	9 Evaluation
	9.1 Use Case: Mailinglist
	9.1.1 Description
	9.1.2 Sensor Design
	9.1.3 Sensor Logic

	9.2 Use Case: Room Reservation
	9.2.1 Description
	9.2.2 Sensor Design
	9.2.3 Sensor Logic

	9.3 Use Case: Load Document
	9.3.1 Description
	9.3.2 Sensor Design
	9.3.3 Sensor Logic

	10 Conclusion and Outlook
	10.1 Conclusion
	10.2 Summary of Contributions
	10.3 Outlook

	A Installation Guide
	A.1 System Requirements
	A.2 Prerequisites
	A.2.1 Java JDK
	A.2.2 Ant
	A.2.3 Logging Service

	A.3 Installation
	A.3.1 Tomcat Apache
	A.3.2 Eclipse
	A.3.3 Eclipse Add-ons
	A.3.4 Axis2

	A.4 Configuration
	A.4.1 Eclipse Settings
	A.4.2 Session Service
	A.4.3 Controller

	B Source Code Listing
	B.1 Ecore Meta-Model

