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Abstract We take up the challenge to define a procedure to systemati-
cally evaluate natural language statements involving vagueness, as is the
case for “About half days are nice.”, which is quantified with a vague pro-
portional quantifier and applied to a vague predicate in the scope. Our
approach is embedded into an analytic game semantic framework, which
extends Giles’s game for  Lukasiewicz logic by means of a randomization
operator and the Baaz-Delta operator.
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1 Introduction

The modeling of vague proportional quantifier expressions, like “about half”, “al-
most all”, and “at least about a third”, and of vague predicates, like “tall”, and
“nice” is a great challenge taken up by many different researchers and commu-
nities, amongst which we have linguists [3,20,29], philosophers [7,32], computer
scientists [1,28], and logicians [3,12,26]. There is a huge amount of literature on
fuzzy quantification, summarized in the recent survey article [6], while there is
also a whole monograph of Glöckner [15] about this topic. Also, recent devel-
opments in the field of mathematical fuzzy logic [4,5] contribute to the matter
by addressing it using a game semantic framework, extending Giles’s game (G
game) for  Lukasiewicz logic by a randomization operator [11]. We here intend
to further extend the existing analytic game semantic framework, while follow-
ing the systematic approach of Liu and Kerre [24], who proposed to split the
problem of generalized quantification into four steps in the following way1 :

Type I: the quantifier as well as the scope predicate is crisp;
Type II: the quantifier is crisp, but the scope predicate is vague;
Type III: the quantifier is vague, but the scope predicate is crisp;
Type IV: the quantifier as well as the scope predicate are vague.

? Supported by FWF projects I1897-N25 and W1255-N23
1 Crisp here means binary, hence zero or one valued.



A Type I statement may have the form “All mothers are women.”, or “There
is a man being more than 180 cm tall.”, where the quantifiers, ∀ and ∃, are crisp
in the sense that they only take one of the two classical truth values, zero or one.
The same goes for the properties, “being a mother”, “being a man/woman”, or
“being more than 180 cm tall”, which are also taken as crisp, as each object
either completely fulfills them or not. A general Type IV statement may then be
of the more complicated form “Almost all beaches in Thailand are beautiful.”,
where the quantifier “almost all” and the scope predicate “beautiful” are vague.

To be able to model vague proportional quantifiers and vague predicates
adequately, we show how we can define a projection operator, also known as
Baaz-Delta, in our game semantic setting. Then Type I quantification already
becomes a rather easy task, and we continue to show how vague predicates can be
conceived (Type II), following particular ideas from rough set theory or analytic
philosophy [27] respectively, where vague concepts depend on several crisp ones,
as well as on finitely many agents. We then define vague proportional quantifiers,
again following ideas from rough set theory, namely the one of granular levels
[37]. This goes back to Zadeh [38], and has attracted some intensified attention
during the last years [21,35]. We apply this idea in the context of proportional
quantification (Type III) and eventually combine it with our vague predicates,
to arrive at the general level of Type IV proportional quantification.

The rest of the paper is organized as follows: Section 2 illustrates the core
aspects of the used game semantic framework and defines an important new
operator, the so called Baaz-Delta. Section 3 to Section 6 follow exactly the hi-
erarchy of Liu and Kerre, which means each section corresponds to a respective
type of quantification, as introduced just above. Section 7 summarized the con-
tribution and describes what has to be done to further augment the presented
material.

2 Giles’s game and extensions thereof

Giles’s game for  Lukasiewicz logic is a two player zero sum game of perfect
information, where the players are called P (proponent) and O (opponent). In
contrast to the more classic Hintikka game [17], in Giles’s game it is possible for
both players to have asserted multisets of formulas at each state of the game.
This feature results from the following implication rule [13]:

Game Rule 1 (R→) If P asserts F → G then O may attack by asserting F ,
obliging P to assert G.

In this way, any game state of the form [F1, ..., Fn | G1, ..., Gm], where the
F ′s are O’s and the G′s are P’s asserted formulas, gets decomposed into a state
of the form [A1, ..., An | B1, ..., Bm], where the A′s are atoms which O eventually
has to take responsibility for and the B′s are those for which P has to account
for [4]. Taking up responsibility for an assertion of an atom means to accept
having to pay 1e to the opponent player in case the atom is evaluated to false
with respect to a given interpretation I (over a finite domain U = {a1, . . . , an},



with n ∈ N) and risk value assignment 〈〉I , i.e. for every atomic formula A we
let 〈A〉I be its risk and have vI(A) = 1 − 〈A〉I . Hence, the final risk, from P’s
perspective, of a game is computed as:

〈A1, ..., An | B1, ..., Bm〉 =
∑

1≤i≤m

〈Bi〉I −
∑

1≤j≤n

〈Aj〉I (1)

Note that the truth function corresponding to the previous game rule matches
the well known truth function of  Lukasiewicz implication:

vI(F → G) =min(1, 1− vI(F ) + vI(G))

The negation of a formula F , defined as (F → ⊥), introduces role switch of
the players, and the following rule for strong conjunction the principle of limited
liability [4]:

Game Rule 2 (R&) If P asserts F&G, then, if O attacks, P has to either
assert F as well as G, or else ⊥.

Again, the truth function turns out to correspond to the known one,

vI(F&G) =max(0, vI(F ) + vI(G)− 1),

since, as well as O need not attack a by P asserted formula, also P can
hedge her/his loss of asserting more than one formula, due to the definition of
the game rule. Here, with the strong conjunction rule it is stated explicitly that
P can assert ⊥ instead of both F and G, in case they are both wrong. It be
understood that this so called principle of limited liability always be in place
throughout this paper, although it sometimes remains implicit [4]. We can give
a characterization of strong  Lukasiewicz logic via G-games as follows:

Theorem 1 ([10]). For every atomic formula A let 〈A〉 be its risk and let I
be the  L-interpretation given by vI(A) = 1− 〈A〉. Then, if both, P and O, play
rationally, any game starting in state [|F ] will end in a state where P’s final risk
is 1− vI(F ).

To generalize the game for  Lukasiewicz logic  L, the authors of [12] introduce
the following randomizing quantifier rule in contrast to the ones for the existen-
tial and universal quantifiers, where either the proponent or the opponent can
choose a witnessing constant2 c:

Game Rule 3 (RΠ) If P asserts ΠxF (x) then P has to assert F (c) for a ran-
domly picked c.

2 For simplicity we identify objects from the domain with unique constants from a set
called U again.



It’s truth function turns out to be the following:

vI(ΠxF (x)) =
∑

c∈U vI(F (c))

|U| = PropxF (x)

We now also define the so called Baaz-Delta [5], which leaves the truth value
of F unchanged in case it is 1, and projects all others to 0, in the following way3:

Game Rule 4 (R∆) If P asserts ∆F then, O attacks by choosing j ∈ N, oblig-
ing P to assert F j.

Theorem 2. A  L(R∆)-sentence ∆F , for a  L formula F is evaluated to
vM (∆F ) = x in an interpretation I iff every G-game for ∆F augmented by
rule (R∆) is (1− x)-valued for P under risk value assignment 〈·〉I , i.e. P has a
strategy to make his/her final risk at most 1− x, and O has a strategy to make
P’s final risk at least 1− x.

Now we define the following Nabla operator, which, complementary to the
Baaz-Delta, leaves the truth vahlue of F unchanged in case it is 0, and projects
all others to 1:

Definition 1. ∇F := ¬∆¬F

The Delta and Nabla Operator can be seen as tools to create discontinuous
truth functions, as they represent the limiting case of what can be expressed in
ordinary  Lukasiewicz logic, where all truth functions are continuous.

3 Type I - the most simple case

As mentioned in the introduction we follow the systematics of Liu and Kerre,
and start with defining crisp quantifiers which may only be applied to crisp
predicates. We define them in terms of our game semantic connectives, which
we have introduced in section 2. The resulting quantifiers behave as expected,
in the sense that they are merely a reformulation of respective quantifiers as
they are well known from the literature [15]. The main difference here, from
the more computational approaches there, is that we embed quantifiers into an
analytic framework, instead of just giving the computation rule without relating
them to a logical theory. The proportional quantifiers which we define in the
present section evaluate for a given number k ∈ [0, 1] to true if and only if the
proportion of elements of the domain that fulfill the scope predicate is k, and to
false otherwise, and we denote them by Q[=k]:

Definition 2. ∀k ∈ [0, 1] we define Q[=k]xF̂ (x) = ∆(ΠxF̂ (x)↔ k)

F̂ denotes a crisp formula, i.e. one composed of crisp (zero or one valued)
predicates only. For formulas F and G, F ↔ G is defined as (F → G)&(G→ F ),
and for k ∈ [0, 1], k denotes the truth constant with the value k.

3 For a formula F , F j means F& . . .&F , j times.



Note that we can express the universal and existential quantifier as follows:

∀xF (x) = ∆(ΠxF (x))

∃xF (x) = ∇(ΠxF (x))

So far, we can deal with statements like “Exactly half (of the elements of the
domain) are students.”, or “Exactly a third (of the elements of the domain) are
mothers.”, as being a student, or mother respectively, is supposed to be a crisp
property fully possessed or not by each element of the domain. The next section
is devoted to augmenting the framework to predicates which need not be of this
kind.

4 Type II - adding vague predicates

Vague predicates, such as “tall”, “friendly“, or “nice” are notoriously difficult to
model, since it is not objectively determinable what makes competent speakers
judge objects to possess such a property. There is a lot discussion to be found in
the literature, coming from the linguists side [19] as well as from the side of fuzzy
logicians, who also give models for vague predicates [23]. We here relate our ap-
proach to the so called rough set theory [31], and show how we can model vague
predicates within our game semantic framework, following the convincing ideas
of rough sets theorists [27,36], as well as those of linguists and philosophers
[19,32], or computer scientists [14], still staying in a neat and uniform logical
framework. We understand vague predicates as dependent on a finite number of
crisp predicates in the following way:

Definition 3. A vague predicate Pv comes with a set {P 1
v , . . . , P

mv
v } of crisp

predicates, where mv ∈ N, such that for all c ∈ U it holds:

vI(Pv(c)) = r
mv

iff vI(P
i
v(c)) = 1 for r indices i ∈ {1, . . . ,mv}

As game rule this may be formalized as follows:

Game Rule 5 (R1
Pv

) If P asserts Pv(c), then, if O attacks, i ∈ {1, . . . ,mv}
gets picked randomly, and then P has to assert P iv(c).

The corresponding truth function can be determined as:

vI(Pv(c)) =
∑mv

i=1 vI(P
i
v(c))

mv

For simplicity we here assume the influence of each crisp predicate to be the
same, hence describe an unweighted scenario. The weighted case can be achieved
through allowing for multiple occurrences of the same indices in the sample space
of the above rule.



Hence, a vague atomic formula evaluates to (completely) true if and only if
all crisp atomic formulas relevant to the vague one evaluate to true. In this sense
we can talk about lower approximations in the sense of rough set theory. Also, a
vague atomic formula evaluates to a truth value greater than zero, if and only if
there is a crisp atomic formula relevant to it, which is true. This corresponds to
the idea of an upper approximation with regard to rough set theory. Only in case
all relevant crisp atomic formulas evaluate to false, the respective vague atomic
formula also evaluates to false. We use the following example, to illustrate how
this translates into the language of the theory:

4.1 Example

We define the vague predicate “tasty” through the following three crisp predi-
cates: “salami”, “mushrooms”, and “garlic”. Let two universes U1, U2 consist of
100 meals each. For the first universe we have 50 portions of pasta, and 50 pizzas,
all of which have salami, mushrooms, and garlic on top (hence are tasty!). For
the second universe we have 50 portions of pasta, 17 pizzas with only salami and
garlic on top, and 33 with only mushrooms on top. Now consider the following
statement:

“Exactly 50% of all meals are (fully) tasty pizzas.”

With respect to U1 this statement is true, since the defining properties of
“tasty” are (completely) fulfilled for exactly half of the elements of the domain.
Formally, we express this statement as:

∆(Πx(∆Ptasty(x) ∧ pizza(x))↔ .5))

With respect to U2 we still have exactly 50% meals with a tasty-value greater
than zero, hence we can still evaluate the following statement as true:

“Exactly 50% of all meals are kind of tasty pizzas.”

This “kind of” - hedge gets formally represented in the following way:

∆(Πx(∇Ptasty(x) ∧ pizza(x))↔ .5)

We are now able to express a much greater range of statements, namely
also those that involve vague predicates. Also we have described the vague lin-
guistic hedge “kind of”, which in natural language expresses a certain kind of
uncertainty of the speaker regarding the definition of vague predicates present
in some utterance. This becomes possible through the nabla operator ∇, defined
in section 2, using the delta operator ∆.



4.2 Definitions and a multi agent extension

Definition 4. crisp quantifier, vague predicates/formulas

Q[=k]x(fully F (x)) := ∆(Πx(∆F (x))↔ k)

Q[=k]x(kind of F (x)) := ∆(Πx(∇F (x))↔ k)

We can also think of the following generalization of the just described ap-
proach to vague predicates. Instead of taking one particular set of crisp predi-
cates, relevant to describe the meaning of a vague predicate, we may think of
many different such, reflecting the fact that different agents (competent speak-
ers) may have different reasons to judge an object as “nice”, or the like. This
more general setting can be achieved through simply changing the respective
game rule in the following way, after we fixed some notation, to be able to refer
to different agents:

Definition 5. An agent aj, j ∈ {1, . . . ,ma} comes with a set of crisp properties

{P 1
v,aj , . . . , P

mv,aj
v,aj } for any vague predicate Pv, mv,aj ∈ N, such that for all c ∈ U

it holds:

vI(Pv,aj (c)) = r
mv,aj

iff vI(P
i
v,aj (c)) = 1 for r indices i ∈ {1, . . . ,mv,aj}

The general game rule for vague predicates now is:

Game Rule 6 (R2
Pv

) If P asserts Pv(c), then, if O attacks, j ∈ {1, . . . ,ma}
gets picked randomly, followed by a random pick of i ∈ {1, . . . ,mv,aj}, and then
P has to assert P iv,aj (c).

Similarly to the first rule for vague predicates, we can determine the truth
function as:

vI(Pv(c)) =

∑ma
j=1

∑mv
i=1 vI(P

i
v,aj

(c))

mamv,aj

Again, the weighted case, where the influence of crisp predicates to a vague
one, or of the different agents to the evaluation respectively, is not uniform, can
easily be achieved, as described above.

5 Type III - vague proportional quantifiers, crisp scope

Modeling vague proportional quantifiers is, as argued by Liu and Kerre [24], as
well as by Glöckner and others [12,15], best performed in a step by step manner,
first focusing on the quantifiers and only later showing how they can then be
applied to formulas which may involve vague atomic subformulas. Following this
approach, we now develop a way of evaluating vague proportional quantifiers,
again being inspired by rough set theory, while staying in our game semantic



framework. Hence, in this section, we assume the scope formulas of quantifiers
to be crisp again, and only combine it all together in the next section.

An idea going back to Zadeh [38], being carried out much in recent years,
is granular computing [2]. The idea is to attach a level of granularity to certain
scenarios, hence making objects indistinguishable with respect to some (equiv-
alence) relation. This idea, applied to vague concepts [37], is here extended to
vague quantification in an seemingly obvious way. We apply the simple idea of
tolerance intervals around some crisp value. Take the quantifier expression“about
half”, which can be associated to several such, e.g. [37, 5%, 62, 5%], [45%,55%],
[49,5%,50,5%], or others. We can partition the unit interval in many different
ways, where each partitioning then corresponds to some level of granularity.
Having several such levels, we can talk about a granular hierarchy [21,35,37].
However, following everyday experience, we propose the following systematic
refinement procedure:

– 3-partitioning: This can be associated to the common classification into three
categories, e.g. “‘small”,“medium”, and “large”

– partitioning intervals: [0, 13 ), [ 13 ,
2
3 ), [ 23 , 1]

– 5-partitioning: Five categories, say “tiny”, “small”, “medium”, ‘large”, “huge”

– partitioning intervals: [0, 15 ), . . . , [ 45 , 1]

– 7-partitioning: E.g. “almost none”,“few”,“several”,“about half”,“most”,
“many”,“almost all”

– partitioning intervals: [0, 17 ), . . . , [ 67 , 1]

– tenner-partitioning: (About) 0%, 10%, 20%, . . . , 90%, 100%

– partitioning intervals: [0, 1
20 ), [ 1

20 ,
3
20 ), . . . , [ 1720 ,

19
20 ), [ 1920 , 1]

– fiver-partitioning: (About) 0%, 5%, 10%, 15%, . . . , 90%, 95%, 100%

– partitioning intervals: [0, 1
40 ), [ 1

40 ,
3
40 ), . . . , [ 3740 ,

39
40 ), [ 3940 , 1]

– oner-partitioning: (About) 0%, 1%, 2%, 3%, . . . , 98%, 99%, 100%

– partitioning intervals: [0, 1
200 ), [ 1

200 ,
3

200 ), . . . , [ 197200 ,
199
200 ), [ 19940 , 1]

– decimal place-partitioning: (About) 0%, 0.1%, 0.2%, 0.3%, . . . , 99.8%, 99.9%, 100%

– partitioning intervals: [0, 1
2000 ), [ 1

2000 ,
3

2000 ), . . . , [ 19972000 ,
1999
2000 ), [ 19992000 , 1]



All these classifications are, of course, somehow freely defined, and may hence
be changed accordingly. To describe the semantics of some vague proportional
quantifier Q, we need to fix a finite number of such levels of granularity, say
GL1, . . . , GLmQ

, mQ ∈ N, with respect to which we can evaluate respective
statements. In the present case, for statements “about half (of the domain ele-
ments) fulfill property F̂” we then have acceptance intervals4 as follows:

– [ 13 ,
2
3 ) (3-partitioning)

– [ 25 ,
3
5 ) (5-partitioning)

– [ 37 ,
4
7 ) (7-partitioning)

– [45, 55) (tenner-partitioning)
– [47.5, 52.5) (fiver-partitioning)
– [49.5, 50.5) (oner-partitioning)
– [49.95, 50.05) (decimal place-partitioning)

Definition 6. A granularity level GL corresponds to a partitioning of the real
unit interval [0, 1] into finitely many disjoint intervals z1, . . . , zmGL

, such that⋃mGL

i=1 zi = [0, 1].

Definition 7. A vague proportional quantifier Q comes with a set {GL1, . . . , GLmQ
}

of granularity levels, where mQ ∈ N, such that each such level has an unique ac-
ceptance interval for Q, i.e. for all granularity levels GLi, i ∈ {1, . . . ,mQ} there
is exactly one interval zQ,GLi

of the corresponding partitioning such that it holds:

vI(QGLi
xF̂ ) = (∆(ΠxF̂ (x)→ z+Q,GLi

))&(∆(z−Q,GLi
→ ΠxF̂ (x)))

If for some fixed vague proportional quantifier Q and granularity level GL,
zQ,GL is the acceptance interval for Q, we set z+Q,GL, z

−
Q,GL the upper, and lower,

boundary of the interval. QGLi
denotes the quantifier Q restricted to one partic-

ular granularity level GLi.

As a game rule, we can express this definition in the following way:

Game Rule 7 (R
[≈k]
GL,III)

If P asserts QxF̂ (x), then, if O attacks, i ∈ {1, . . . ,mQ} gets chosen randomly,

and then P has to assert (∆(ΠxF̂ (x)→ z+Q,GLi
))&(∆(z−Q,GLi

→ ΠxF̂ (x))).

The corresponding truth function is the following:

vI(QxF̂ (x)) =
∑mQ

i=1 vI(∆(ΠxF̂ (x)→z+Q,GLi
)&∆(z−Q,GLi

→ΠxF̂ (x)))

mQ

The range of statements we can express now includes all those that start
with quantifier expression like “about halt”, “about a third”, or “almost all”. By
means of combining them, using the logical ∨ connective, we can also express

4 I.e. the statement is true if PropxF̂ (x) is an element of this acceptance interval.



statements like “at least about half”, or “at most about a third”, by simply
linking respective statements together. This allows for an even wider range of
quantification than Type II, and hence augments the applicability enormously, as
many natural language statements in real life are of this form. In a last remaining
step we combine Type II and Type III quantifiers, and end up with the final
Type IV quantifiers, which are able to systematically evaluate statements that
are vaguely quantified and have vague scope formulas at the same time.

6 Type IV - combining it all together

As our game semantic framework analytically decomposes formulas down to
atomic subformulas, quantification, with respect to formulas potentially build by
vague atomic subformulas, is rather straightforward, as we only need to combine
game rule 5 (or 6) with game rule 7 of the present paper. Hence we may restate
game rule 7 with the only adjustment of dropping the hat of the formerly crisp
scope formula F̂ .

Game Rule 8 (R
[≈k]
GL,IV )

If P asserts QxF (x), then, if O attacks, i ∈ {1, . . . ,mQ} gets chosen randomly,

and then P has to assert (∆(ΠxF (x)→ z+Q,GLi
))&(∆(z−Q,GLi

→ ΠxF (x))).

If we want to determine the truth function, we find the following:

vI(QxF (x)) =
∑mQ

i=1 vI(∆(ΠxF (x)→z+Q,GLi
)&∆(z−Q,GLi

→ΠxF (x)))

mQ

We are now able to evaluate all sort of vague statements, like “At most about
a third (of all domain elements) are nice”, or “Almost all (of the domain ele-
ments) are friendly or tall”, as long as the involved quantifiers and predicates
are well defined. This allows for a great deal of flexibility, and particularly em-
beds evaluations into a neat logical machinery, which is fully linked to recent
developments in the field of mathematical fuzzy logic [4].

7 Conclusion and Outlook

We defined a way to systematically evaluate natural language statement within
an analytic game semantic framework. Our approach follows the hierarchy pre-
scribed by Liu and Kerre and focuses first on crisp quantification with respect
to crisp scope formulas. In a next step we described how vague predicates can
be defined and show how we can quantify over vague formulas. We then intro-
duce granular levels and define vague proportional quantification based on this
notion, followed by a final step, where we combine all together.

The presented procedure may be extended into at least two important di-
rections. One of them is the multi arity of quantifiers, as usually natural lan-
guage statements are at least binary, as is the case with “Almost all children are



friendly.”. It has been pointed out [15] that even higher arities may be of impor-
tance, and hence we focus on this aspect in ongoing work. Another important
augmentation is introducing non-proportional quantifiers, which may depend on
intensional matters, like “many” and “few” [22,25]. These are closely linked to
modal logics, but may also be integrated into the present game semantic setting
as we will show in future work.

References

1. S. Aguzzoli, P. Codara, D. Valota, T. Flaminio, and B. Gerla. Querying with
 Lukasiewicz logic. In Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Con-
ference on, pages 1–8. IEEE, 2015.

2. Andrzej Bargiela and Witold Pedrycz. Granular computing: an introduction, vol-
ume 717. Springer Science & Business Media, 2012.

3. J. Barwise and R. Cooper. Generalized quantifiers and natural language. Linguis-
tics and philosophy, 4(2):159–219, 1981.

4. P. Cintula, C.G. Fermüller, and C. Noguera, editors. Handbook of Mathematical
Fuzzy Logic - Volume 3. College Publications, 2015.
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