
DISSERTATION

Measurement-Based Timing Analysis
of Applications written in ANSI-C

ausgeführt zum Zwecke der Erlangung des
akademischen Grades eines

Doktors der technischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dr. Peter Puschner
Institut für Technische Informatik 182

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Bernhard Rieder
Matr. - Nr. 9325898

Forstgasse 16, 5500 Bischofshofen

Wien, im April 2009 .

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Measurement-Based Timing Analysis
of Aplications written in ANSI-C

Since the development of the �rst electronic engine control systems the applications of
electronic systems in cars have steadily increased. Currently there is a shift from mechan-
ical safety-critical systems to networks of safety-critical embedded real-time systems which
provide the potential for increased functionality and huge monetary savings. The increased
functionality comes at the cost of increased complexity. The applications running in a mod-
ern luxury car come close to a total of 100 million lines of source code, distributed over
networks of 70-100microprocessor electronic control units (ECU) from di�erent vendors.

To minimize errors in the design standardized architectures like AUTOSAR and com-
munication buses like FlexRay� or CAN are used to ensure the interoperability of modules.
Model-checkers, veri�cation and pro�ling tools are used to analyze the software of individ-
ual modules. The aspect of time is often underrated and many faults of control systems
are a direct result of timing errors. During the last years a few timing analysis tools have
emerged. Some of them use formal methods to calculate the execution-time of a task-based
on a processor model, other tools use measurements to determine an estimate for the worst-
case execution-time (WCET). Hybrid WCET analysis tools combine static analysis of the
application source code, which makes this part of the analysis hardware independent, with
execution-time measurements carried out on the target hardware to generate a hardware
speci�c timing model of the analyzed application.

This work extends the hybrid timing analysis approach introduced during the MoDECS
project to support loops, function calls and control-�ow in logic AND and OR expressions
which are required to measure the execution-time of industrial real-time applications. The
revised hybrid WCET analysis approach comprises the following steps:

Static analysis is used on the ANSI-C source code to examine the program structure. C is
commonly used in the implementation of control systems and the use of a high level language
as input makes the analysis platform independent. During the static analysis functions are
identi�ed and either expanded like C++ inline functions or analyzed in a separate analysis
run. Loops are also detected in this analysis step and checked for input data dependency.
When required, which is when the number of iterations or the control-�ow within the loop
body depends on input data, the loop bound is determined using model checking. Last but
not least additional control-�ow paths which are generated by C short-circuiting of logic
AND and OR expressions are analyzed and added to the control-�ow graph.

Control Flow Graph (CFG) Partitioning is used to automatically split programs into
smaller program segments (PS) which can be analyzed with reasonable e�ort.

Test Data Generation is used to generate test data to cover all paths within a program
segment. Paths that are not covered by random test data are examined using model checking.
Model checking is an expensive process but it can be used to generate test data to force the
execution of a speci�c path within a program segment or to identify infeasible paths.

Execution Time Measurements are used on all paths within each program segment except
the paths identi�ed as infeasible during the test data generation. This produces a timing
pro�le containing the worst-case execution-time for each program segment.

Worst Case Execution Time (WCET) Calculation uses the structural information gained
during the static analysis to combine the execution-times of individual program segments into
a WCET bound for the whole analyzed application.

Messbasierte Zeitanalyse von
ANSI-C konformen Applikationen

Seit der Entwicklung der ersten elektronischen Motorsteuerungssysteme hat die Elek-
tronik in immer schnelleren Schritten Einzug ins Automobil gehalten und ist derzeit dabei,
sicherheitskritische mechanische Systeme abzulösen. Anstatt mechanischer Systeme werden
jetzt verstärkt Netzwerke aus eingebetteten elektronischen Steuergeräten eingesetzt, welche
erhöhte Funktionalität bei verringerten Kosten versprechen. Die erweiterte Funktionalität
wird mit zunehmender Komplexität der Systeme erkauft. So beinhaltet die Elektronik eines
modernen Luxusmodells heute in etwa 100Millionen Zeilen an Programmquelltext, verteilt
auf Netzwerke aus 70-100 software-gesteuerten Steuergeräten verschiedener Hersteller.

Um Fehler im Design durch mangelnde Interoperabilität zu vermeiden, setzt man auf ver-
schiedene standardisierte Architekturen wie AUTOSAR und Netzwerke wie FlexRay� und
CAN. Die Software in den Steuergeräten wird mittels Modellprüfern, Software-Veri�kations-
und Analysetools geprüft, wobei jedoch oft die Analyse des Zeitverhaltens vernachlässigt
wird. In letzter Zeit wurden einige Werkzeuge zur Überprüfung des Laufzeitverhaltens von
Software entwickelt, wobei ein Teil auf formale Methoden und abstrakte Prozessormodelle
und der andere Teil auf Laufzeitmessungen an der Zielhardware setzt, um die maximale Aus-
führungszeit von Programmen (WCET) zu ermitteln. Hybride WCET Analyse verbindet
plattformunabhängige statische Analyse des Anwendungs-Quellcodes mit Laufzeitmessun-
gen, die die Ausführungszeit auf der Zielplattform messen und dadurch ein hardwareabhän-
giges Laufzeitpro�l der Applikation erzeugen.

Diese Arbeit erweitert die hybride Zeitanalyse, die im Zuge des MoDECS Projektes ent-
wickelt wurde, um Schleifen, Funktionsaufrufe und Kontroll�ussentscheidungen in logischen
UND und ODER Ausdrücken analysieren zu können, was für die Analyse industrieller An-
wendungen unerlässlich ist. Die erweiterte WCET-Analyse besteht aus folgenden Schritten:

Statische Analyse des ANSI-C Quellcodes, um dessen Struktur zu ermitteln. C wird oft
bei der Programmierung von Steuergeräten verwendet und macht als Ausgangsbasis für die
Analyse diese plattformunabhängig. Während der Analyse werden Funktionsaufrufe erkannt
und die aufgerufenen Funktionen ähnlich wie C++ inline-Funktionen expandiert oder in einer
getrennten Analyse untersucht. Schleifen werden in der statischen Analyse erkannt und auf
ihre Eingabedatenabhängigkeit untersucht. Bei eingabeabhängigen Iterationsbedingungen oder
eingabeabhängigem Kontrollfluss in der Schleife wird in diesem Schritt auch deren maximale
Iterationszahl mittels Modellprüfung bestimmt. Letztendlich werden bei der statischen Analyse
noch logische UND- und ODER-Ausdrücke untersucht und im Kontrollflussgraph eingetragen.

Die Partitionierung des Kontroll�ussgraph (CFG) teilt den CFG automatisch in kleinere
Programmsegmente (PS) auf, die mit vertretbarem Aufwand analysiert werden können.

Die Testdatengenerierung dient dazu, Testdaten für alle möglichen Ausführungspfade in
einem PS zu generieren. Modellprüfung wird benutzt, um Testdaten für Pfade zu �nden, die
durch die erzeugten Zufallsdaten nicht abgedeckt werden konnten und um Pfade die aufgrund
der Codesemantik unausführbar sind als unausführbar zu identi�zieen.

Laufzeitmessungen dienen zur Ermittlung der Ausführungszeit aller tatsächlich ausführ-
baren Pfade eines Programmsegments. Die Laufzeitmessungen erzeugen ein Ausführungszeit-
pro�l jedes Programmsegmentes, das unter anderem auch die WCET des PS beinhaltet.

Die Berechnung eines Wertes für die maximalen Ausführungszeit (WCET) durch Kom-
bination der einzelnen Laufzeitprofile wird unter Berücksichtigung der Strukturinformation aus
der statischen Analyse durchgeführt, um die WCET der analysierten Applikation zu erhalten.

Acknowledgements

First of all, I would like to thank my supervisor and professor Univ. Prof. Dr. Peter
Puschner who encouraged me with his helpful advice and valuable support. He supported
my work with valuable suggestions and without his help this thesis would not be �nished
yet. I would also thank my secondary advisor Univ. Prof. Dr. Jens Knoop for his willingness
to evaluate this thesis on short notice and for his suggestions how to improve it. I am also
grateful to the head of the department of the Institut für Technische Informatik, Real-Time
Systems Group, O.Univ. Prof. Dr.Hermann Kopetz who made it possible to me to work in
a highly motivated and motivating environment.

I would also like to thank all my current and former colleagues of the institute for
interesting discussions after lectures in the institute or over the occasional cup of co�ee in
the kitchen. I also thank the administrative sta� of the institute for shielding me from
administrative overhead as good as possible.

Especially I would like to mention Dr. Ingomar Wenzel with whom I worked together
on the MoDECS project, which provided a solid foundation for my research. Dr.Raimund
Kirner was also an interesting partner for discussions and supported me with valuable advice
and ideas. I would also like to thank Dr.Klaus Steinhammer who designed the hardware for
the measurement device used for the HCS12 architecture in the MoDECS project who was
a big moral uplifting in the �nal stages of this work.

As a personal note I thank my family and my friends for their support during the writing
of this thesis.

The research for this thesis has been conducted during my employment as a research
assistant at the Institut für Technische Informatik, Real-Time Systems Group within the
Vienna University of Technology which was �nanced by the FIT-IT project �MoDECS-d �
Model-based Development of distributed Embedded Control Systems� under project number
807144/7855 and the FFG project �ATDGEN � Automatic Test Data Generation for WCET
Measurements� under project number 812653/1729-GLE/BLC.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 3
1.3 Document Structure . 4

2 Basic Concepts 5
2.1 The C Language Family . 5

2.1.1 Drawbacks of ANSI/ISO-C for Embedded Programming 6
2.1.2 Language Features Support in this Thesis 7

2.2 Code Transformation and Representation 9
2.2.1 Compilation . 10
2.2.2 Lexical Analysis, Parse Tree and Abstract Syntax Tree 10
2.2.3 Basic Block . 11
2.2.4 Control Flow Graph . 12
2.2.5 Path . 12
2.2.6 Dominator and Postdominator 13
2.2.7 Program Segment . 13

2.3 Target Platform Complexity . 13
2.3.1 In�uences of the Operating System 14
2.3.2 In�uences of the Compiler . 16
2.3.3 In�uence of the Target Hardware 19
2.3.4 Hardware Optimization Techniques 19

2.4 Software Complexity . 29
2.4.1 Software Metrics . 30
2.4.2 Coding Guidelines . 31

2.5 Summary . 32

3 Execution Time Analysis 33
3.1 Why Timing Analysis . 33
3.2 Worst-Case Execution Time (WCET) 35

i

3.3 Timing analysis . 36
3.3.1 Anatomy of a WCET Analysis Framework 37
3.3.2 Syntax Analysis and CFG extraction 37
3.3.3 Static Analysis . 38
3.3.4 Dynamic Timing Analysis . 41
3.3.5 WCET Calculation . 46

3.4 The Measurement-Based or Hybrid Timing Analysis Approach 49
3.4.1 Assumptions and Prerequisites 50
3.4.2 Basic Idea - Guiding Measurements by Static Analysis 51
3.4.3 Partitioning or Segmentation of the CFG 52
3.4.4 Test data generation . 54
3.4.5 Function Calls . 55
3.4.6 Simpli�ed Data Flow Analysis 55
3.4.7 Loops . 56
3.4.8 WCET Calculation Step . 56
3.4.9 Di�erences to MoDECS V2 . 56

3.5 Summary . 57

4 Execution-Time Analysis Framework 59
4.1 Development Environment . 59
4.2 Example Application . 59
4.3 Input Parsing . 61
4.4 Code Generation . 61
4.5 CFG Generation . 61
4.6 Expression Paths . 64
4.7 Const Analysis . 66
4.8 Loop Analysis . 67

4.8.1 Loop Categorization . 67
4.8.2 Loop Bound Analysis . 69

4.9 Counting Paths Between Two Nodes 70
4.10 Dominator and Postdominator Tree . 73
4.11 Segmentation . 73
4.12 Decision Tree (dtree) . 76
4.13 Test Data Generation . 78

4.13.1 Reused Test Data . 78
4.13.2 Random Test Data . 79
4.13.3 Model Checking . 80

ii

4.14 Managing Test Data . 80
4.15 Measurements . 81

4.15.1 Generating Target and Module Code 82
4.16 Analysis Tool Usage and Output . 84

4.16.1 Parameter File . 84
4.16.2 Command Line Arguments . 85
4.16.3 Tool Output . 86

4.17 Summary . 87

5 Experiments 89
5.1 Test Setup . 89

5.1.1 Basic Block and Path Counts Explained 89
5.1.2 Selection of Case Studies . 91
5.1.3 Test Hardware and Development Software 95
5.1.4 Target Software Layout and Host-Target Communication . . . 97

5.2 Description and Goals of Tests Scenarios 100
5.3 Loops . 101

5.3.1 General Loops . 101
5.3.2 General vs. Specialized Loop Handling 101
5.3.3 Reduced Overestimation for 1:n-Loops 104

5.4 Function Inlining vs. Black-Boxing . 106
5.5 Control Flow in Expressions . 109
5.6 Results . 111

5.6.1 Loops . 111
5.6.2 Function Inlining vs. Black-Boxing 112
5.6.3 Control Flow in Expressions . 113

5.7 Summary . 114

6 Related Work 115
6.1 WCET Analysis . 115

6.1.1 Static WCET Analysis . 116
6.1.2 Measurement Based and Hybrid WCET Analysis 121
6.1.3 Overview of Current WCET Analysis Tools 126

6.2 Improving the WCET . 126
6.2.1 WCET-Oriented Programming 126
6.2.2 Single-Path Conversion . 129

6.3 Model Checking . 130
6.4 Program Analysis . 133

iii

6.5 Cache Analysis . 134
6.6 Timing Anomalies . 135
6.7 Other Publications related to this Work 138
6.8 Conclusion . 138

7 Conclusion and Outlook 141
7.1 Summary of Measurement-Based WCET Analysis 141
7.2 Lessions Learned . 142

7.2.1 Gained Experiences . 143
7.3 Applications of Hybrid WCET Analysis 143
7.4 Future Work . 144

Bibliography 147

Index 165

A List of Abbrevations 169

B Acknowledgements 171

iv

List of Figures

2.1 Code generation for Logical AND and OR Short-Circuiting 9
2.2 The Compiler Abstraction . 10
2.3 Illustration of Basic Concepts . 11
2.4 The S-task model . 16
2.5 DRAM vs. SRAM Cell and Processor Die with SRAM Cache 21
2.6 AMD Opteron® Memory Hierarchy 22
2.7 Simple MIPS Pipeline . 23
2.8 Pipelined Execution of Instructions . 24
2.9 2-bit Branch Prediction . 26
2.10 Normal Opcodes and Predicated Execution Opcodes 27
2.11 Variable Execution Times on the Intel® x86Processor Family 28
2.12 A Timing Anomalie Example . 29

3.1 Timing Requirements . 33
3.2 Response Time . 34
3.3 Execution Time Distribution of a Task 36
3.4 Overview of di�erent WCET calculation methods 47
3.5 Basic Hybrid WCET Analysis Approach 51
3.6 Concept of CFG Partitioning . 53
3.7 Test Data Generation . 54

4.1 Running Example for Chapter 4 . 60
4.2 Basic CFG building algorithm . 63
4.3 Shortcut Paths in Logical Expressions 65
4.4 Instrumentation of Logic Expressions 66
4.5 Const Analysis . 68
4.6 Model Checking for Loop Bound Calculation 70
4.7 CBMC Output for Loop Bound Checking 71
4.8 Path Counting Algorithm . 72
4.9 DOM and PDOM tree for example.c 74

v

4.10 Segmentation Algorithm . 75
4.11 DTree for the Example Application . 77
4.12 Random Value Distribution for Test Data Generation 79
4.13 Model Checking to �nd a Path inside the Loop 81
4.14 Example xml Data File . 82
4.15 Generated Loadable Module . 83
4.16 Parameter File . 85
4.17 WCET analysis Tool Help Text . 86
4.18 WCET analysis Tool Version Information 87
4.19 Tool Output . 88

5.1 Code Metrics Example . 90
5.2 Code generation options for industrial case studies 92
5.3 Olimex® LPC-H2138 Development Board and Programming Device . 95
5.4 Measurement Instructions . 98
5.5 Linker Command File for Caller . 99
5.6 1:n-Loop with ET for Di�erent Iterations 104
5.7 A complex 1:n Loop in the Binary Search Test Case 105
5.8 Inlining vs. Black-Boxing . 106
5.9 Handling of Expression Paths in V2 and V3 110
5.10 Listing of �bcall Case Study . 113

6.1 Comparison of Traditional and WCET-Oriented Programming 127
6.2 Single Path Programming . 130
6.3 Extraction of Bit-Vector Equations with CBMC 132
6.4 Timing Anomalies Examples . 136

vi

List of Tables

5.1 Description of Test Cases . 94
5.2 Analyzeable Test Cases in V2 and V3 102
5.3 Generic and Spezialized Loop Handling 103
5.4 Comparison between Inlining and Black-Boxing 108
5.5 Measurement Results for the Expression Path Example 111
5.6 E�ects of Control Flow in Expressions in Industrial Case Studies . . . 111

6.1 Overview of WCET Analysis Tools . 128
6.2 Execution time of traditional and WCET-oriented Algorithms 129

vii

Chapter 1

Introduction

The software systems of modern cars have reached a sizes of 100.000.000 lines
of code and more [Cha09], implementing or controlling more than 2000 functions
in premium cars and consuming 50 to 70 percent of the development costs of soft-
ware/hardware subsystems of cars [LLS+07]. The software is distributed among mul-
tiple networks of up to 70 Electronic Control Units (ECU s) from di�erent vendors
which have to work together as a distributed real-time system. Today distributed
real-time systems in cars are primarily used for non safety-critical functions, mainly
because these systems are still young (the �rst car series to use the FlexRay® com-
munication network was the BMW X5 in 2006) and the industry needs to evaluate
their dependability. In aviation the Time Triggered Protocol (TTP®) is the �rst
real-time communication protocol and it has been used in the cabin pressure control
system of Airbus' superjumbo A380 since 2006.

It can be expected that distributed real-time systems will be used for safety-
critical applications in the near future and are soon to replace mechanical and hy-
draulic subsystems. Current systems are time-triggered, which means that events
are periodically transmitted over the communication channel rather than only when
an event occurs. This ensures that the communication channel can handle multiple
simultaneous events without event loss. The communication schedule, which speci�es
which node sends a data frame in a speci�c communication slot during a communica-
tion cycle is speci�ed during system design, along with the de�nition of the individual
data items within the frame. This approach provides a well-de�ned interface between
communication nodes and facilitates composability and component-based design.

In well designed architectures not only the communication but also the task
scheduling in each node is time-triggered and synchronous to communication cy-
cles. This allows a safe calculation of the maximum delay between an event and
the response caused by the controlling system. When an event occurs it is precisely
known which node performs which sub-tasks of the event processing at which time,
making the system fully predictable and easily to diagnose. The cycle time is shared
between all running tasks. To ensure the execution of each task within a cycle, the
sum of the Worst Case Execution Times (WCET) of all tasks has to be less than

1

1.1 Motivation 1 Introduction

the cycle time. On small real-time systems, using only a single computation node,
cycle-based approaches are also widely used since it is easier to ensure response times
for time-triggered architectures than for event-triggered architectures. However, both
approaches require the WCET to be known to ensure a maximum response time of
the system. In time-triggered architectures the WCET is also required to

If the exact WCET is not known, which applies for most cases, an overestimation
of the WCET, which is referred to as safe upper bound, can be used for system
design. A popular approach to gain a �safe� upper bound for the execution-time is
to perform measurements of the execution-time using �typical� test data or synthetic
test data which is supposed to enforce an execution path through the program which
generates the WCET. The result, which consists of the maximum of the measured
execution-times plus a safety margin, is used as a �safe� upper bound for the WCET.
Code generator tools like the Matlab®/TargetLink® toolchain o�er to perform this
task automatically. However, there are no guarantees that the WCET is equal or less
than the worst observed execution-time plus the safety margin.

There exist many tools which allow the veri�cation of the value domain of soft-
ware, which means that the correct value of the result is checked. The time domain,
which considers the timeliness of the result, is currently neglected. At the moment
there exist only few tools for timing analysis. They are listed in Chapter 6. The
majority of these tools are feasibility studies and research prototypes. Only a small
fraction of the presented tools are commercially available, but they also have their
shortcomings. To make things worse, some tools which operate on a low abstraction
level like object code, can only be used for a speci�c target architecture. Concluding
it can be said that the current state of (integrated) timing analysis tools is more than
unsatisfactory.

1.1 Motivation

As the software portion in safety-critical areas of applications such as automotive
or avionic applications is steadily increasing, the lack of applicable timing analysis
tools, which can be embedded within an existing application development framework
for (distributed) real-time applications, becomes an increasing safety issue and a
major showstopper for the integration of embedded real-time systems in safety-critical
systems.

The goal of this work is to develop a timing-analysis method and a prototype tool
which is easy to use, operates on multiple target platforms and can be integrated into
existing development processes to �nd a good approximation the WCET. Easy usage
means that no extensive preparation like annotations or manual test data generation
shall be necessary to perform timing analysis. A basic knowledge of the matter is
however necessary to get reliable data. Platform independence is achieved by using
the source code as basis for the analysis. Only a thin hardware dependent interface
is required to perform the run-time measurements as well as basic knowledge of the
bit size of the basic data types and the endianess of the target architecture. Easy

2

1 Introduction 1.2 Contribution

integration can be achieved by a well de�ned interface of the execution-time analysis
tool to other applications.

The developed execution-time analysis method is an extension to the
measurement-based worst-case execution-time analysis (MBTA) method developed
during the MoDECs Project [WRKP05] to support loops, function calls and control-
�ow paths within boolean AND (&&) and OR (||) expressions and the conditional
expression operator (? :). The developed analysis tool is not intended as a general
WCET analysis tool but to test the developed analysis method.

Hopefully the results of this work will help to improve the timing analysis process
for embedded real-time applications.

1.2 Contribution

The major contributions of the measurement-based worst-case execution-time
analysis method presented in this thesis are:

1. Avoidance of explicit hardware modelling and target platform inde-
pendence∗ Static execution-time analysis methods require a detailed hardware
model of the processor to calculate the execution-time of a series of instruc-
tions. Dynamic methods execute the code on the target platform and obtain
the execution-time using measurements. In cases where no detailed information
about the target hardware is available static execution-time analysis cannot be
performed while dynamic execution-time analysis is still possible.

2. Automatic control-�ow generation for shortcut boolean expressions
C de�nes a feature called short-circuit code, where boolean expressions are
only evaluated as far as required. This speeds up calculation but also increases
the number of possible execution paths. WCET analysis has to handle these
expressions accordingly.

3. Parameterizable control-�ow graph (CFG) partitioning∗ The complex-
ity of the analysis can be reduced by splitting the analyzed program into pro-
gram segments (PS) as shown in Chapter 4. Increasing the number of PS
reduces the number of required measurements but may lead to overestimations
of the execution-time.

4. Automated test data generation using model checking∗ Model checking
can be used to generate the test data for all feasible paths or identify infeasible
paths within a given program segment. The coverage of all feasible paths is a
cornerstone of the proposed execution-time analysis method.

∗This has been contributed together with Ingomar Wenzel during the MoDECS project
[WRKP05].

3

1.3 Document Structure 1 Introduction

5. Detection of loop bounds using model checking In order to perform
measurements of loops the loop bound has to be known. The proposed solution
is to use model checking to �nd loop bounds [RPW08].

6. Automatic classi�cation and measurement of loops Di�erent loops re-
quire individual approaches for measurement, depending on the control-�ow
structure of their loop body and the loop iterator. The presented prototype
can automatically detect di�erent kinds of loops and perform the analysis ac-
cordingly.

7. Inlining of function calls to reduce control-�ow of functions WCET
estimates of functions may be shorter when the analysis considers the actual
context of the function call, and not just the overall maximum execution time
of the function. The presented prototype achieves this by inlining function code
during the path-analysis phase of the WCET analysis on demand.

1.3 Document Structure

This thesis is structured as follows:
Chapter 2 discusses basic features of the C programming language, basics of com-

piler construction and how the complexity of the analysis is in�uenced by the op-
erating system, the compiler and the target hardware. Then, Chapter 3 discusses
the basics and di�erent approaches of execution-time analysis and proposes a novel
measurement-based execution-time analysis (MBTA) method. Following, Chapter 4
explains how the proposed MBTA method is realized within the prototype applica-
tion. In Chapter 5 the individual experiments conducted with the WCET analysis
prototype and why they were chosen are described, followed by a short discussion
of the results. Chapter 6 explains similar work and their relation to this thesis.
Finally, Chapter 7 concludes this work and summarizes the �ndings from the MTBA
method, the prototype implementation and the conducted experiments. The chapter
ends with an outlook which shows ideas for further reseach.

4

Chapter 2

Basic Concepts

This chapter gives a closer look at the di�erent C standards and explains terms
and concepts frequently used in this thesis. In this chapter it is also shown what
makes timing analysis di�cult and how the target platform, the operating system
and the source code in�uence the complexity of the analysis. The in�uence of coding
guidelines for automotive and avionic applications on execution-time analysis is also
examined in this chapter.

2.1 The C Language Family

The C Programming Language has been continuously evolving since its early
beginnings in 1969. The following paragraphs give a short overview about the di�erent
versions of C and explains which features of the di�erent versions are supported in
the timing analysis framework prototype presented in this thesis.

K&R C

The �rst edition of �The C Programming Language� [KR78] was published in 1978
by Brian Kernighan and Dennis Ritchie. The name of the language �C� was derived
to indicate that C was designed to be a successor of the �B� programming language.
Even after C was standardized by ANSI (in 1989) and ISO (in 1990) K&R C still was
considered the de-facto standard since it was supported with all its features by the
majority of the compilers. The style of function de�nitions used by this early version
of C is not supported by the timing analysis framework.

C89 and C90

After a six year lasting standardization process the C standard was rati�ed by
the American National Standards Institute as ANSI X3.159-1989 �Programming Lan-
guage C� [C89]. This version, commonly referred to as ANSI-C or C89 was adopted

5

2.1 The C Language Family 2 Basic Concepts

by the International Organization for Standardization (ISO) as ISO/IEC 9899:1990
[C90], which is referred to as C90 with only minor modi�cations. Since this stan-
dard is currently used for the majority of embedded applications the execution-time
analysis tool presented in this thesis is currently based on this standard.

C99

The ISO/IEC 9899:1999 Standard [C99] which adds C++-style comments, inline
functions and variadic macros (macros with a variable number of arguments) was
adopted by ANSI in early 2000 and is referred to as C99. As the extensions are
usually not used for embedded and real-time programming, the language extensions
provided by C99 are not supported by the timing analysis framework presented in
this thesis.

C++

C++ which was standardized in 1998 and revised 2003 is an object-oriented ex-
tension to C. The name �C++� is an allusion to the ++-operator of C and indicates
that C++ is an enhanced successor of C. Due to its heavy use of polymorphism and
dynamic memory C++ is not suited for embedded and real-time applications and
therefore not considered in this thesis.

2.1.1 Drawbacks of ANSI/ISO-C for Embedded Programming

The C standard leaves important aspects unde�ned and includes features that
are not suited for embedded or real-time programming. Some important problems of
standard compliant ANSI/ISO-C code are listed below. A detailed list of unde�ned
and platform dependent or implementation speci�c behavior can be found in the
Annex J of the ISO/IEC C99 standard [C99].

Unde�ned Size of Data Types

The C de�nitions of integer data types are very vague. For instance a char is
composed of any number of bits as long as the number of bits is larger than or equal
to eight. Also the binary layout (big endian, little endian, or even gray) is unspeci�ed.
This restricts platform independence and portability and requires deep knowledge
about the target platform. As a result the operators working on integers are not
be well-de�ned, too. There are some libraries and target speci�c headers trying to
overcome this limitation and de�ning datatype like SINT8, UINT8, SINT16, . . . etc,
but each vendor has his own concepts and there is no standard way to write platform
independent code.

6

2 Basic Concepts 2.1 The C Language Family

Unde�ned Handling of Errors

Like the integer types some error conditions are unde�ned. What happens on
divisions by zero or on illegal memory access operations? This behavior is mostly
operating system dependant. Therefore not only precise knowledge about the target
hardware but also detailed information about the target operating system is necessary
in order to describe the complete semantics of C programs.

Weak Type Checking

The type checking in C is weak, that means any type can be interpreted as another
type using a simple type cast. While this makes it very convenient for the programmer
to manipulate binary data e�ciently or to access single bits of hardware registers on
the target it makes veri�cation di�cult. Sometimes a type cast is performed without
the programmer being aware of it. If a type with a large value range is converted to
a type with a smaller value range this can even lead to information loss (however a
compiler should issue a warning when this happens).

Dynamic Memory

Dynamic memory is a feature that is often used in C but which is very problematic
for embedded systems. First of all it can lead to memory fragmentation and second,
the time consumption of memory allocation and deallocation cannot be predicted.
This does not imply that dynamic memory cannot be used in embedded systems at
all, but all memory (de-)allocation operations have to be performed in an non real-
time initialization task. However, this makes analysis and veri�cation very di�cult
and dependent on the memory (de)allocation stategy used by the operating system.

2.1.2 Language Features Support in this Thesis

A goal of this thesis is to be as target independent as possible. Therefore the
presented Runtime Analysis Toolkit works on source code. As mentioned before,
additional knowledge about the target is necessary.

Type Quali�ers and Storage Class Modi�ers

The framework recognizes const declarations and uses the declared variables as
constants in the simpli�ed data �ow analysis. The volatile declaration is ignored,
since the proposed approach uses model checking and there is no feasible way to
represent the concept of a volatile variable in a model checker simulation. When the
value is used only in the data �ow this is no problem. When a single control-�ow
decision depends on volatile this is also no problem because the model checker will
examine all possible paths. However, a problem occurs when a path depends on

7

2.1 The C Language Family 2 Basic Concepts

changing values of volatile variables. A solution to this problem is to create multiple
variables, one for each use of the volatile variable in the control-�ow but this was not
implemented due to its little relevance.

Storage class modi�ers, especially typedefs are supported. Extern declarations are
supported as long as the declared variable exists within one of the given input �les.
Static global variables are supported and only recognized in the same source �le.
Static function variables are pre�xed with a unique ID and moved to global scope.
This is necessary since the control-�ow decisions in an application can depend on the
state of the application which is often stored in static function variables. Auto and
register have no impact on the analysis and are ignored by the analysis. However,
they are of course considered by the code generation for the target.

Pointers and Dynamic Memory

Dynamic memory is not supported since it is forbidden by the MISRA coding
guidelines [MIS98, Rule 118], which are described brie�y in section 2.4.2. Pointers
are supported as long as they are not used as static variables or function parameters
for the examined function, which means they have to be initialized to point to a
known variable or constant before they are used. A typical application for pointers
which is supported by the framework is to iterate over an array using a pointer to
access individual data elements.

Floating Point Operations and Bit Operations

Applications may contain �oating point variables and operations as long as they
do not in�uence the control-�ow (section 2.2.3). Bit operations like AND, OR and
XOR are fully supported.

Structs and Unions

Structs are supported. Unions are disencouraged by the MISRA coding guidelines
[MIS96, MIS98, MIS04] discussed in section 2.4.2 and therefore not supported.

Logical AND, OR and Conditional Expressions

Logical AND (&&) and OR (||) operators are not necessarily completely evalu-
ated in C (Short-Circuit Code [ASU86, ALSU06]). If the �rst operand evaluates to
0 (&&) or to 1 (||) the right side of the operator is skipped. This behavior, which
is called expression short-circuiting, is de�ned in [C99, Chapters 6.5.13. and 6.5.14].
Figure 2.1 shows how logical AND and OR are typically translated to object code.
This creates a conditional execution path that has to be considered by the analysis.
Since many applications rely on the feature of C shortcut evaluation it is supported

8

2 Basic Concepts 2.2 Code Transformation and Representation

x == a && b;
(a) AND expression in C

if a = 0 goto L1
if b = 0 goto L1
x← true
goto L2

L1 :
x← false

L2 :
. . .

(b) Generated Code for AND

x == a || b;
(c) OR expression in C

if a 6= 0 goto L1
if b 6= 0 goto L1
x← false
goto L2

L1 :
x← true

L2 :
. . .

(d) Generated Code for OR

Figure 2.1: Code generation for Logical AND and OR Short-Circuiting

by the presented execution-time analysis framework. Similarily the conditional ex-
pression operator (? :) introduces control-�ow paths. However, when writing �? :� it
is more obvious that additional execution paths are created.

Loops

In general loops are supported. Details about which types of loops are supported
can be found in chapter 3.4.7. Nested loops are not supported by the WCET analysis
prototype.

Library Calls and Functions

Library calls are supported as long as the library is available in source code. Not
only may the execution-time of library functions vary but the library function has
to be traceable by the model checker. The same applies to user de�ned functions.
Only a single function call per expression is supported. Therefore constructs like
outer(middle(inner(x))); or f1(x)+f2(x); are not supported. Additionally function
calls are not supported in logical expressions with espression short-circuiting.

2.2 Code Transformation and Representation

The execution-time analysis framework presented in this thesis uses methods for
program representation, analysis and transformation which are well known in the
context of compiler construction. These basic concepts of compiler construction tech-
niques are brie�y presented in this section. Some of the following de�nitions can also
be found in similar form in [Wen06]. Since the internal data representation of the
presented execution-time analysis prototype di�ers from the prototype created during
the MoDECS project some of the de�nitions have been altered to �t this version.

9

2.2 Code Transformation and Representation 2 Basic Concepts

2.2.1 Compilation

De�nition 1 Compiler
A Compiler C is a program that reads a program written in a source Language S - the
source language - and translates it into an equivalent program in another language T
- the target language. As an important part of this translation process, the compiler
reports to its user the presence of (syntactical) errors in the source program (�gure 2.2)
[ASU86, ALSU06].

S C T

error messages

Figure 2.2: The Compiler Abstraction

The compiler has to ensure that the program semantic is not changed by the
transformation. Typically a compiler generates executable code for a speci�c plat-
form which consists of operating system and hardware. Alternatively another repre-
sentation can be generated which cannot directly be executed on the target platform
but uses a platform dependent interpreter (i.e. java bytecode). Typically compilation
steps include program analysis (lexical analysis, syntax analysis, semantic analysis),
and code generation (intermediate code generation, code optimization, code genera-
tion). A compiler usually consists of three independent operating and exchangeable
parts. The frontend handles a speci�c input language and translates it to an in-
ternal representation. The middleend performs platform independent analyses (i.e.
data-�ow analysis, control-�ow a., pointer and alias a., and more) and the backend
optimizes the program for a special target architecture and generates an object �le
that can be executed on the target hardware.

2.2.2 Lexical Analysis, Parse Tree and Abstract Syntax Tree

A parse tree is a data structure that is typically generated while parsing a pro-
gram, using the output of the lexical analysis (tokens) and allowing a literal identical
reconstruction of the program (except for whitespaces) [ASU86, ALSU06]. An Ab-
stract Syntax Tree (AST) is an abstraction of a parse tree which provides semantically
equivalent information like a parse tree but does not allow the exact reconstruction of
the program source, especially literals like variable names may be replaced by more
suiting representations. As recreation of the source code is a requirement for the
introduced execution-time analysis tool, abstract syntax trees are used in this thesis
and all code modi�cations take place in this representation.

10

2 Basic Concepts 2.2 Code Transformation and Representation

1 int calc (int a,
2 int b, int c)
3 {
4 int rv;
5 rv = 0; // 1
6 if (a > 0) {
7 rv += a; // 2
8 } else {
9 rv -= a; // 3
10 }
11 if (b > 0) { // 4
12 rv += b; // 5
13 } else {b
14 rv -= b; // 6
15 }
16 if (c == 0) { // 7
17 rv = 1; // 8
18 } else {
19 if (c > 0) { // 9
20 rv *= c; // 10
21 } else {
22 rv *= -c; // 11
23 }
24
25 rv = rv+1; // 12
26 }
27 return rv; // 13
28 }

(a) Listing (b) Control Flow Graph (CFG)

Figure 2.3: Illustration of Basic Concepts

2.2.3 Basic Block

De�nition 2 Basic Block
A Basic Block BB is a linear sequence of expression statements with the following
properties:
(a) The �ow of control can only enter the basic block through the �rst instruction in
the block. That is, there are no jumps into the middle of the block.
(b) Control will leave the block without halting or branching, except possibly at the
last instruction in the block.

This de�nition can be found in similar form in [ASU86, ALSU06]. In a basic block
there are no branches in the control-�ow (see below). An example for basic blocks
can be seen in �gure 2.3. Each node in sub�gure b corresponds to a basic block. The
beginning of each basic block is marked with a comment that displays the number of
the basic block in sub�gure a.

11

2.2 Code Transformation and Representation 2 Basic Concepts

2.2.4 Control Flow Graph

De�nition 3 Control Flow
The control �ow describes the order in which the individual statements of a program
are executed or evaluated.
Control Flow Statements are statements that decide which control-�ow out of a set of
alternatives should be followed.

Preemptive multitasking, interrupts and signals also alter the control-�ow but are
out of scope of this thesis since only simple tasks (see section 2.3.1) are considered.

De�nition 4 Control-Flow Graph CFG
A control-�ow graph is a quadruple G = (N, E, s, t) consisting of a set of nodes N,
representing the BBs of a program, a set of directed edges E, representing the control-
�ow between the BBs, a dedicated entry node s ∈ N and an exit node t ∈ N . The set
of predecessor and successor nodes for a node n are de�ned as pred(n) = {(a, n) ∈ E |
∀a ∈ N} and succ(n) = {(n, b) ∈ E | ∀b ∈ N}. The entry node s has no predecessors,
i.e. pred(s) = ∅, and the exit node t does not have any successors, i.e. succ(t) = ∅.
For all ei = (n1, n2) ∈ E holds n1, n2 ∈ N . Each node n ∈ N is reachable from the
entry node s and the exit node t is reachable from each node n ∈ N by following a
�nite number of edges e ∈ E.

The example presented in �gure 2.3(b) shows a CFG generated from the listing
in �gure 2.3(a).

2.2.5 Path

De�nition 5 Paths
A path π from basic block n0 to basic block nn is a sequence of nodes π =
(n0, n1, . . . , nn) in a given CFG G = (N, E, s, t) with (ni, ni+1) ∈ E. The length
of the path π is de�ned as |π| = n.
Paths starting from n0 = s to nn = t are called execution paths and represent the
control-�ow for a single execution of a program. Π denotes the set of all possible
execution paths within G. For each n ∈ N there exists at least one execution path
πn ∈ Π where n ∈ πn.

The possible paths through the example CFG shown in �gure 2.3 are given by
Π = {(1, 2, 4, 5, 7, 8, 13), (1, 3, 4, 5, 7, 8, 13), . . . , (1, 3, 4, 6, 7, 9, 11, 12, 13)} with |Π| =
12. The number of possible execution paths |Π| increases exponentially with the size
[LME99] or number of branches in the program.

Loops and goto statements can cause basic blocks to be executed more than a
single time and generate cyclic paths πc within a CFG G. Therefore we de�ne cyclic
paths as follows:

12

2 Basic Concepts 2.3 Target Platform Complexity

De�nition 6 Acyclic and Cyclic Paths
An acyclic path πac is a path where i 6= j → ni 6= nj holds in CFG G.
A cycle θ = (ni, . . . , nj−1) is a sub-sequence of π where i 6= j ∧ni = nj. Θ(π) de�nes
the set of all cycles within a given path π. A path containing cycles, i.e. |Θ(π)| 6= 0,
is called a cyclic path πc.
The edge (nj−1, nj) ∈ E which links to a previously visited node and therefore gener-
ates the cycle is denoted as a backedge.

2.2.6 Dominator and Postdominator

Dominators (DOM) and Postdominators (PDOM) describe relations of the
control-�ow between basic blocks.

De�nition 7 Dominator
A basic block n dominates a basic block o when every path that reaches o has to pass
through n which is denoted as n = dom(o). The entry block s of a CFG G dominates
all blocks within G.

De�nition 8 Postdominator
A basic block n postdominates a basic block m when every path from m to the exit
node t has to pass through n. This can be expressed as n = pdom(m). The exit block
t of a CFG G postdominates all blocks within G.

2.2.7 Program Segment

De�nition 9 Program Segment (PS)
A program segment PS is a subset of the CFG G. Each PSi = (Ni, Ei, Si, Ti) is a
quadruple of basic blocks Ni ∈ N , directed edges Ei ∈ E, entry nodes Si ∈ N and exit
nodes Ti ∈ N where for all e = (n1, n2) ∈ Ei holds (n1, n2 ∈ Ni)∨(n1 ∈ Ti∧n2 ∈ N).

This de�nition of a PS allows multiple entry and exit nodes with the exit edges
being part of the PS . In the execution-time analysis framework presented in this
thesis only PS with |Ei| = 1| and |Si| = 1| are used. It is possible to split a whole
program down into arbitrary PS , a process which is referred to as segmentation. The
proposed approach uses non-overlapping PS ; therefore ∀i, j, i 6= j : n ∈ Ni → n /∈ Nj

applies.

2.3 Target Platform Complexity

This section discusses problems arising from the complexity of the target plat-
form which consists of a hardware component, the target hard- and �rmware, and a
software component, the operating system that runs on the target hardware and per-
forms operations like input/output, interprocess communication, task management,

13

2.3 Target Platform Complexity 2 Basic Concepts

memory management and more. It is outside the scope of this thesis to fully examine
the in�uence of the target environment on the execution-time but it it is necessary
to know the e�ects caused by the target environment and how to prevent them from
interfering with the execution-time analysis.

2.3.1 In�uences of the Operating System

In general operating systems (OS) provide an interface between hardware re-
sources, the external environment, which is often the user, and the application soft-
ware running on the computer system [Sta04, Tan01]. Real-time embedded systems
are di�erent since the range of possible input values is known a priori in most cases
and the system resources tend to be very limited for maximum cost-e�ectiveness. To
maximize the utilization of the embedded system the application runs without an
operating system in some cases, giving it full control over all resources. This ap-
proach has been followed for a long time in small isolated Electronic Control Units
(ECU s) like engine control or similar tasks. As applications tend to become net-
worked, like for instance x-by-wire applications in the automotive domain, a single
networked control device is no longer self-reliant but needs to transfer information
from and to other computing nodes in the network. It can also be noted, that it is
desired by the manufacturers to integrate an increasing number of functions within a
single device. A convenient way of adding functionality is to add independent tasks
which provide this functionality. Real-time operating systems like RTAI, QNX®,
TTP-OS® provide the required functionality, and can even be certi�ed for safety-
critical applications like LynxOS® or TTP-OS®. The following subsections examine
individual services provided by common operating systems.

Blocking System Calls

Blocking system calls suspend the execution of a task until a speci�c event occurs
or an IO operation is �nished. Due to their unpredictability they should not be used
in real-time application programming and are not supported by the WCET analysis
tool prototype presented in this work.

Concurrency and Interprocess Communication

The operating system is used to ensure isolation of concurrent tasks performing in-
dividual functions on an ECU, to allow synchronization and communication between
these tasks, and to perform scheduling, deciding when and how long the controlled
tasks run. On some systems the OS provides also memory protection, preventing a
task to access the memory assigned to another task.

Several problems arise from the concurrent execution of tasks: First, switching
between tasks is a very expensive operation, requiring a considerable overhead in
form of calculation time [LDS07, DCC07]. Additionally, schedulers for RTS have

14

2 Basic Concepts 2.3 Target Platform Complexity

to consider not only the performance of the tasks but also the timeliness of their
completion. A basic prerequisite for real-time scheduling is therefore a correct WCET
bound of the individual tasks running on the ECU. This is a requirement for both
static and dynamic scheduling.

Second, the OS has to provide means for the application to allow synchronization
and communication between individual tasks. In conventional OSs these functions
are realized as blocking system calls which is bad practice for RTS [LLS+07, chap-
ter 2.4], especially if the maximum blocking duration cannot be exactly predicted.
Therefore some real-time systems use the concept of non-blocking tasks, in which
communication channels are de�ned at the design time of the system. The concept
of time-triggered communication [Kop98, KB03] is used widely in the automotive
and avionic domain, for instance in FlexRay� [Fle], TTP� [TTP], TTCAN� and
LIN� [Lin]. The basic idea of time-triggered communication is that a communication
schedule de�nes exactly, when a message is to be sent or received. In a typical dis-
tributed real-time system all input data is stored within a portion of local memory
before a task is activated. The task writes its output to a de�ned memory location
and after the task terminates, the operating system transmits the data over the com-
munication network. In many cases the communication within a single ECU uses
the same mechanism, thus eliminating the need for other communication channels
between tasks.

Communication between Network Nodes

As described in the previous section, time-triggered protocols are the means for
providing communication between di�erent nodes on a network for real-time appli-
cations. Communication protocols like the upcoming TT-Ethernet�, which adds a
time-triggered communication layer on top of a standard ethernet, provide the com-
munication functions found in a typical standard OS. However, these functions should
not be used in real-time tasks since their timing behavior is unpredictible.

Interrupts and Signals

Interrupts may be caused by the hardware as well as the software partition of
the target platform. The operating system is responsible for the correct handling of
interrupts by providing Interrupt Service Routines (ISR) which suspend the current
task and are executed when an interrupt request arrives. When a running application
is suspended by an ISR additional control-�ow is generated. The running task is not
only delayed by the execution of the ISR, which can take relatively long when a
context switch is performed, but additionally the internal hardware state, especially
the cache and the pipeline of the CPU, is altered. Allowing interrupts anywhere
makes application impossible to predict, therefore interrupts are forbidden by the
task model used in this work (see below). An approach where interrupt handling
is delayed until the execution of a real-time task has been �nished is presented in
[JSK+07].

15

2.3 Target Platform Complexity 2 Basic Concepts

Output

Staten

Input

Staten−1

(Code)
S−task

Figure 2.4: The S-task model

The Simple-Task (S-task) Model

The work in this thesis assumes, that a running task is not interrupted by the
operating system nor uses blocking system calls, this means, a task runs uninterrupted
from the time it is executed by the OS until it terminates. This model of a task is
called a simple task (S-task) [Kop97]. Figure 2.4 shows a graphical representation of
the simple task model. The S-task depends on the state from the previous execution
staten-1 and input data. The S-task generates the state for the next execution staten
and output data. Therefore the execution-time of the S-task is fully determined by
the code of the S-task, the input and the state from the prior execution.

The concept of the simple task might appear as a crude simpli�cation. However,
this model applies for the majority of real-time systems, since the communication
is performed by the operating system at the beginning and at the end of the task
and input/output operations like reading or writing a register or hardware port are
generally non-blocking.

As counterpart to the simple task Kopetz [Kop97] also introduces the concept of a
complex task (C-task) which may contain (blocking) synchronization statements like
semaphore wait operations or a blocking read or write operation. It is important to
note that �simple� or �complex� does not state anything about the complexity of the
performed computations.

2.3.2 In�uences of the Compiler

The compiler that is used to transform the source into an executable for the target
platform has also an in�uence on the execution-time of the compiled application.
The compiler can perform optimizations which alter the control-�ow of a program
and thereby remove or introduce control-�ow paths. For example, the shift operators
� and � are likely realized as loops on simple architectures where there is no shift
opcode with variable shift operands. It is di�cult to consider all compiler speci�c
CFG transformations. Therefore we introduce the prerequisite, that the CFG may
not be altered by the compiler (see section 3.4.1).

The following sections give a short overview of the most common compiler (hard-
ware independent) and code generator (hardware dependent) optimization tech-
niques.

16

2 Basic Concepts 2.3 Target Platform Complexity

Loop Optimizations

Loop optimizations are optimizations on the loop entry/exit, the condition check
or the loop body. As loops are typically often iterated the performace boost of these
optimizations can be high, rising with the number of iterations. Loop optimizations
are performed in the middleend of the compiler.

Loop Unrolling decreases the number of required loop condition tests and jumps by
inserting multiple duplicates of the loop body. When the number of iterations
is known at compile time the loop may be completely unrolled. Care must
be taken to avoid negative e�ects caused by the increased code size, especially
when an instruction cache or shared cache is used. A popular example for
explicit software-based loop unrolling which shows also some oddities of C is
the infamous Du�'s device[Duf83]. This optimization has heavy in�uence on the
control-�ow and should therefore be turned of for measurement-based WCET
analysis.

Loop Inversion transforms a while loop into a do/while loop embedded into an
if statement reducing the number of required jumps by two assumed that the
loop body is at least executed once. Like loop unrolling this technique alters
the control-�ow and should be turned o�.

Induction Variable Analysis is used to identify variables that depend on the num-
ber of loop iterations and perform strength reduction (see below) on them.

Data Flow Optimizations

Data �ow optimizations change the way how expressions are evaluated. For these
optimization techniques a data �ow analysis is required. A simple subset of data �ow
analysis can be implemented to perform a subset of these optimizations. Data �ow
optimizations are performed in the middleend of the compiler.

Constant Folding and Propagation replaces constants like 4∗4 or arcsin(1) with
their values (16, π/2) at compile time. If the compiler is known to perform this
optimization it does not interfer with WCET analysis.

Common Subexpression Elimination (CSE) identi�es duplicate subexpres-
sions that can be substituted by a temporary variable. An expressinn like
�q=(a+b+1)/(a+b-1);� can be transformed to �t1=a+b; q=(t1+1)/(t1-1);�
eliminating one unnecessary addition. This optimization should be safe for
WCET analysis unless it is applied to logical AND or OR expressions. This
optimization can change the control-�ow of the application, especially when
logical AND or OR, or ?:-operators are involved.

17

2.3 Target Platform Complexity 2 Basic Concepts

Code Generator Optimizations

Code generator Optimizations require knowledge of the target hardware. They try
to optimize the generated code for this architecture. Code generators are able to use
special features on the target hardware, like the di�erent SSEx unit implementations
on individual Intel® x86 series processors. Since these optimizations depend strongly
on the target architecture, they are performed in the compiler backend.

Register Allocation is used to keep the most frequently used variables in CPU
registers for fast access.

Instruction Selection and Scheduling is used to select the most e�ective instruc-
tions for the operations, which shall be performed, to optimize the utilization of
the functional units of the CPU and keep the pipeline �lled. With the increasing
use of transparent hardware optimization techniques these optimization become
less e�ective because the hardware interferes with the optimizations performed
by the compiler. Since the compiler has a better global view of the application
the utilization of functional units may be better than with hardware optimiza-
tion.

Other optimizations

This list includes optimization techniques that cannot be assigned to the cate-
gories above and which may be either platform independent or not.

Inline Expansion inserts the function bodies instead of function calls. As function
calls usually include stack operations and two jump operations, possibly causing
pipeline stalls, they are rather expensive operations in terms of execution-time.
The control-�ow of the object code is changed by this optimization. If the
function is expanded before compilation in the source code, like it is done in
this thesis, the control-�ow in source and object code should not di�er.

Dead Code Elimination removes code that is never executed. This is done by
reachability analysis. Under normal conditions this should not change the
execution-time but when cache is used there might be e�ects on the execution-
time.

Reduction of Cache Collisions 2.3.4 tries to place data structures of functions in
a way to avoid cache con�icts. To perform this optimization detailed knowledge
about the cache organization on the target hardware as well and about code
relocation techniques on the target operating system is required.

Strength Reduction is a compiler optimization where a costly operation is re-
placed with an equivalent, but less expensive operation. This is often used on
binary operators where one of the operands is a constant. As an example y =
x / 2 can be replaced by y = x � 1. The control-�ow is not a�ected by this
optimization as long as no logical AND or OR, or the ?:-operator is changed.

18

2 Basic Concepts 2.3 Target Platform Complexity

The list of optimizations is far from complete. Only the most important opti-
mization techniques have been shown. A complete list of optimizations and how they
may change the control-�ow can be found in [Kir03].

2.3.3 In�uence of the Target Hardware

The hardware portion of presents target systems is even more di�cult to handle,
than the software portion. This is mainly because of the fact that it cannot be
observed what happens in the hardware. An object code �le or an OS can be analyzed
directly but to examine the processes taking place in the hardware an exact model
of the hardware or a custom implementation with a debugging interface is required.

Hardware models are di�cult to create, especially for modern processors which are
superscalar and have caches, pipelines, branch prediction, out of order execution and
speculative execution amongst other features. Some processor families use microcode
internally and even allow this microcode to be patched[MP02, SNC+07]. And last
the user manual for the target hardware is, due to intellectual property concerns, not
always complete or even erroneous. Therefore the e�ort to create exact hardware
models is high and sometimes requires reverse engineering, which is forbidden under
the legislation of some countries.

Debugging interfaces allow amongst other features to set breakpoints, to read
registers and to trace the execution of a program in real-time. Hardware debugging
is usefull for simple architectures but it does not allow to examine the contents of
caches or the processor pipeline and can therefore not be a replacement for proper
hardware models.

Runtime measurements are also a way to get information about the target. In
this process the target hardware is used instead of using a model of it [KWRP05]. To
increase the reliability of the measurements a pre-de�ned state has to be established
which can be done by �ushing the cache and stalling the pipeline, which causes the
performance to drop. Measurements performed without this precautions are less
reliable.

The following sections focus on individual hardware optimization techniques. It
will be discussed why these techniques make the analysis more complex and how they
e�ect the execution-time.

2.3.4 Hardware Optimization Techniques

The Goal of all Hardware optimization techniques is to reduce the average
execution-time, which is accomplished in the majority of the cases. This means
that the execution is optimized for the frequent executed paths and that the less
frequent executed paths are likely to su�er from increased execution-time. As the
WCET occurs generally during the execution of less frequent paths the WCET is
likely to be increased by some of the discussed hardware optimization techniques.

19

2.3 Target Platform Complexity 2 Basic Concepts

Historically the emergence of hardware optimization techniques was founded of
the lack of optimizing compilers. Since compilers did not support the features of
new processors the hardware developer tried to make optimizations independent from
compiler support. According to [Fis88] this brings a lot of disadvantages: First things
done at compile time are only done once. Even if a hardware optimization does not
increase computation time because it runs concurrently, it still needs die space and
power. Second, the analysis performed during execution cannot be as thourough as
when performed during compilation. It is also not possible to adjust optimization
settings for di�erent kinds of problems. And third, little hardware is required to
support optimizations that are performed during compile time. However, [Fis88]
points out the single advantage of hardware optimizations: Values which cannot
be determined or are very hard to determine at compile time are available in the
hardware during execution. This includes values of variables, pointers and branch
targets.

The next sections discuss common hardware optimizations and how they a�ect
execution-time analysis. The common characteristics of hardware optimizations is
that they all, with few exceptions, introduce additional complexity making execution-
time analysis harder.

Caches

Caches are one of the oldest performance enhancements dating back to the 1960s
where they were used in mainframes. Today caches are used to build up memory
hierarchies where small but fast areas of memory are located near or in the CPU
and the large but slow main memory is accessed through them. This design usually
decreases the average access time and reduces the wait-states of the CPU. The �rst
level of cache, the L1 cache, a modern computer system typically provides, is a small
on-chip instruction- and data-cache, which may be uni�ed or separated, and has a
size of 2KiB to 64KiB. The L2 cache, which is also on-chip in most cases ranges
from 128Kib to 1MiB. The L3 cache, if it exists, ranges from about 2MiB to
256MiB.

The reason why the caches are kept relatively small can be seen in �gure 2.5.
Dynamic Random Access Memory (DRAM), which is used for the main memory of
modern systems, requires only a single transistor which requires a size of 6-10F62,
where F is the Featuresize and typically 45-120nm. Reading is done by applying
a voltage to the word line (WL). Depending on the charge state of the capacitor a
logic �0� or a logic �1� can be observed at the bit line (BL). The disadvantage is, that
the capacitor su�ers from self-discharge and has to be charged at least each 64ms
according to the Joint Electron Device Engineering Councils (JEDEC), a process
during which the memory cannot be accessed. When writing the capacitor has to
be charged or discharged, a process that requires a few ns. Static Random Access
Memory (SRAM) does not have any capacities, therefore it does not need refresh
cycles and the read/ write operations are considerably quicker. The disadvantage
of SRAM is that it requires six transistors and it requires an area of 140F 2 for a

20

2 Basic Concepts 2.3 Target Platform Complexity

WL

B
L

(a) DRAM

WL

Vdd

B
L

B
L

(b) SRAM (c) Intel Peryn® Die

Figure 2.5: DRAM vs. SRAM Cell and Processor Die with SRAM Cache

single bit, which is 23 times more than for DRAM. In �gure 2.5(c) a die of a modern
processor with 2MiB of L2 cache, the Intel Peryn®, is shown. It can be seen that
the cache, which is the big area with the regular pattern at the right side, uses almost
half the die area. Therefore it is obvious that the consumed die area is the main size
limitation for the cache.

The logical architecture of a single cache level can be direct mapped, where a single
memory location can only be mapped on a single cache line,n-way set associative,
where a memory location can be mapped on one out of n possible cache lines, or direct
associative, where a memory location can be mapped to any cache line [HP06, PH98].
In combination with caches Transaction Lookaside Bu�ers (TLB) can also be used.
TLBs are used as a cache for the Memory Management Unit (MMU) which translates
the virtual addresses used in programs to physical addresses located in the RAM
[HP06, PH98], introducing yet another level of redirection.

Figure 2.6 shows the memory hierarchies in the AMD Opteron® processor family.
Instruction fetch involves the L1 cache and TLB, the L2 cache and TLB, the system
chip memory crossbar and the system DRAM, depending if the instruction can be
found in the L1 or L2 cache. A similar data �ow occurs when reading or writing
memory. For cache analysis, which is a subtask of static time analysis, this introduces
a vast complexity. As an result there are numerous works that focus on this area. An
overview of these works is given in section 6.5.

The work presented is this thesis uses the ARM® architecture for the performed
execution-time measurements. When running from the RAM there is no cache present
since the RAM is fast enough to allow single-cycle memory operations. Therefore no
cache analysis is performed in the presented work.

21

2.3 Target Platform Complexity 2 Basic Concepts

Data
<512>

Data
<512>

Victim
buffer

Virtual page
number <36> offset <12>

Data in <64>

Store queue/
data out

<64>
Instruction

<128>

<128>

<7>

<64>

<128>

<64> <64>

<40>

<15> <64>

Page

PC

CPU

=?
Address <38> Data <512>

4:1 mux

DIMM DIMM

<24>
 Tag Index

<10>
L2

C
A
C
H
E

L2
Prefetcher

M
A
I
N

M
E
M
O
R
Y

Data virtual page
number <36> offset <12>

Page

System chip
memory crossbar

<9> <6>
Index Block offset

I
C
A
C
H
E

I
T
L
B

L2

I
T
L
B

<25>

=?

2:1 mux

<4>
Prot

<1>
V

<28>
40:1 mux

4:1 mux

(2 groups of 512 blocks)

(16 groups of 1024 blocks)

(4 groups
of 128 PTEs)

(40 PTEs)

<36>
Tag

<28>
Physical address

<4>
Prot

<1>
V

V
<1>

D
<1>

V
<1>

D
<1>

Tag
<24>

16:1 mux

<29>
Tag

<28>
Physical address

=?

=?

Data
<512>

<7>

<9> <6>
Index Block offset

D
C
A
C
H
E

D
T
L
B

L2

D
T
L
B

<25>

=?

2:1 mux

<4>
Prot

<1>
V

<28>
40:1 mux

4:1 mux

(2 groups of 512 blocks)

(4 groups
of 128 PTEs)

(40 PTEs)

<36>
Tag

<28>
Physical address

<4>
Prot

<1>
V

V
<1>

D
<1>

<29>
Tag

<28>
Physical address

=?

Tag

Figure 2.6: AMD Opteron® Memory Hierarchy [HP06]

Pipelines

Pipelines are used to divide complex operations into a series of simple opera-
tions which can be completed within a shorter clock cycle, thus allowing higher clock
frequencies. The individual pipeline stages are separated by registers which are syn-
chronously updated on each clock cycle and feed the results of a pipeline stage to
the next stage, a common concept known as synchronous logic. Modern processors
can have 10-20 pipeline stages, the Intel Pentium® Prescott and Cedar Mill has a
pipeline with 31 stages.

Figure 2.7 shows a simpli�ed MIPS pipeline consisting of �ve states. The real
pipeline is more complex since it adds datapaths as shortcuts between individual
stages and has to deal with numerous exceptions, i.e. when a command uses a result
of a previous command it can be taken directly from the Arithmetic Logic Unit
(ALU) output instead of waiting for it for three additional pipeline stages.

22

2 Basic Concepts 2.3 Target Platform Complexity

Data
memory

ALU

Sign−
extend

PC

Instruction
memory

ADD

IF/ID
ID EX MEM WBIF

4

ID/EX EX/MEM MEM/WB

IR6..10

MEM/WB.IR

M
u
x

M
u
x

M
u
x

IR11..15

Registers

Branch
taken

IR

16 32

M
u
x

Zero?

Figure 2.7: Simple MIPS Pipeline [HP06]

1. Instruction Fetch (IF)
This stage fetches the next instruction from the memory and stores it in a
register. The program counter is also increased in this stage.

2. Instruction Decode(ID)
This stage decodes the instruction and prepares the registers as well as the
immediate value that may be contained in the lower 16 bits of the instruction.
This process is also known as dispatching, especially is the architecture has
multiple parallel execution units.

3. Execute (EX)
Executes the speci�ed function which may be
adding an immediate value to a register

ALU ← A + Imm;
performing a function with the two registers

ALU ← A func B;
performing an operation combining a register and an immediate value

ALU ← A op B;
adding an immediate value to the new program counter

ALU ← NPC+ (Imm << 2);

4. Memory Access and Branch Completion (MEM)
Performs load or store operations, reading register contents from the memory
or writing registers to the memory, or performs a branch, replacing the program
counter PC with the output of the Arithmetic Logic Unit (ALU).

5. Register Write Back (WB)
Writes the result to the register �le. The written value can be the ALU output
or the result of a memory read operation.

23

2.3 Target Platform Complexity 2 Basic Concepts

IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

(a)

(b)

(c)

I2 I3I1

I1
I2
I3
I4

I1
I2
I3
I4

r1← [mem]
r2← [mem]
r3← r1 + r2
[mem]← r3

(d)

Figure 2.8: Pipelined Execution of Instructions [AEBER04]: (a) Non-pipelined, (b)
Idealized Pipeline, (c) Simple MIPS Pipeline, (d) Executed Commands

Figure 2.8 shows the execution of a short command sequence shown in sub�g-
ure d on three di�erent architectures. Sub�gure a shows the execution in a simple
non-pipelined architecture where all processing steps have to be executed in series,
requiring a total 20 clock cycles. Sub�gure b shows the execution of the same com-
mands on a pipelined architecture with an idealized pipeline using eight clock cycles.
Sub�gure c depicts the execution of (d) on the MIPS pipeline as seen in �gure 2.7.
The decoding of I3 has to be delayed until the Register Write Back stage of I2 is
�nished since I3 depends on results written to the register �le from I2. For the same
reason I4 has to be delayed until I3 is �nished. During these delays, the some pipeline
stages are empty and �bubbles� are inserted. The total execution-time is 14 clock
cycles. More advanced pipelines provide mechanisms like forwarding to reduce the
described e�ect to a minimum[HP06, PH98].

Some situations, called pipeline hazards, enforce the delay of individual pipeline
stages of instructions, thus reducing the performance from the ideal performance as
shown above, a situation denoted as pipeline stall. Pipeline Hazards are categorized
in three di�erent categories.

1. Structural hazards
This kind of hazard arises from resource con�icts when di�erent stages of the
pipeline require the same resource.

2. Data hazards
Data Hazards arise when an instruction depends on results of a previous exe-
cution and needs to wait for these results to become available.

3. Control hazards
Control hazards arise from branch or jump instructions when the program
counter PC is changed by the ALU.

Pipelining allows instruction level parallelism and superscalar execution. Early
processors were scalar, which means they allowed only the dispatching of a single in-
struction per clock cycle. Todays processors are superscalar and allow the dispatching

24

2 Basic Concepts 2.3 Target Platform Complexity

and completion of multiple instructions at the same time. This can be achieved by
having multiple parallel execution units, i.e. two integer units and a �oating point
unit, which can operate in parallel. Hyperthreading, which is an Intel� proprietary
implementation of simultaneous multithreading, allows the simultaneous execution
of di�erent tasks on individual functional units of the processor. A �oating-point
intensive application could run simultaneously with a memory intensive application
without interference at the same processor.

Based on the degree of instruction level parallelism we can classify pipelined ar-
chitectures in di�erent subtypes [Wen06]:

1. Simple scalar pipelines consist of a single pipeline, e.g., as depicted in �g-
ure 2.8(a). The functionality of each stage may vary. The key characteristics of
simple scalar pipelines are that there is only one way through the pipeline and
thus a maximum of one instruction per cycle (IPC) can be achieved.

2. Scalar pipelines extend simple scalar pipelines by adding additional execution
units at some stages, e.g., there are two integer units on the execute stage.
However, at most one instruction can be issued per cycle. Multiple execution
units make sense, especially when the latencies of instructions can be multiple
cycles. For this pipeline type the condition IPC ≤ 1 holds.

3. Superscalar pipelines allow issuing more than one instruction at a time, i.e.,
IPC can be greater than 1. These machines are called multiple issue machines.
Which instructions are issued at the same time is determined statically (stati-
cally scheduled at compile time).

4. Dynamically scheduled pipelines allow the online determination of the instruc-
tion scheduling. This is the most complex type of pipeline because it allows
out-of-order execution of instructions.

As pointed out in [Wen06] this list neglects special purpose hardware designs like
digital signal processors (DSPs) and vector machines because these types are not
further relevant for the systems addressed by this thesis.

Branch Prediction

As pointed out above, conditional branches cause pipeline stalls. If the branching
condition is already available, the correct decision wether the branch is taken or not
can be forwarded to the instruction fetch unit. Otherwise a control hazard will occur.
Speculative execution is a simple way to reduce pipeline stalls. The processor predicts
if branches are taken or not and continues the execution directly at the correct point.
If the prediction proves to be incorrect, all computation past the branch point is
discarded, if it is right execution continues without any pipeline penalties.

The simplest form of branch prediction is to assume that the branch is never
taken, which is a form of static branch prediction. The compiler optimizes the code

25

2.3 Target Platform Complexity 2 Basic Concepts

11

01
Predict not taken

00
Predict not taken

10
Predict taken

Not taken

Not taken

Taken

Taken

Not taken

Taken

Not takenTaken

Predict taken

Figure 2.9: 2-bit Branch Prediction [HP06]

generation so that the branch will not be taken in most of the cases thus increasing
the number of correctly guessed branches. An other form of static branch prediction
is to assume that backward branches are always taken because they are likely to be
loop condition checks and forward branches are never taken. The later approach
works better if the compiler is not aware of the branch prediction.

Modern processors use dynamic branch prediction. An example for a simple dy-
namic branch prediction logic is a 2-bit branch prediction. The branch prediction
uses a branch-prediction bu�er or branch history table, which is an area of memory
that holds the 2-bit state of the branch prediction state machine shown in �gure 2.9
and is indexed through the lower bits of the branch instructions address. The pre-
diction is taken from the observed state of the branch prediction state machine and
after the branch condition is evaluated, the result is executed feed back into the state
machine in form of a state change. The prediction rates are well above 90% for �ve
out of seven of the SPECint benchmarks[PSR92].

Predicated Execution

Predicated execution is another way of reducing control hazards. Observing a
simple piece of source code like in �gure 2.10(a) we assume that it is translated
to something like (b). However, this few lines of code generate two jumps, from
which one of them is always executed. Predicated execution provides a very elegant
solution for this problem by executing short sections of code conditionally instead
of jumping over them. The code shown in (a) is translated into two subsequent
assignments as shown in �gure 2.10(c). Both assignments are executed within the
CPU but depending on the value of the predicate, which is denoted as condition, the
assignments are either committed or discarded during the register write back stage
of the pipeline. Thus the behavior and the internal state of the CPU are completely
independent of the predicate, unless of course a operation which modi�es the CPU
�ag register is predicated. Predicated execution is a important foundation for single
path conversion which will be presented in section 6.2.2. An important disadvantage
of predicated execution is that each instruction requires an additional bit �eld where

26

2 Basic Concepts 2.3 Target Platform Complexity

if (condition)
{

result = A;
} else {

result = B;
}

(a) Program Source

if [condition] goto L1
result← B
goto L2

L1 :
result← A

L2 :
. . .

(b) Normal Opcodes

result
[condition]←− A

result
[condition]←− B

(c) Predicated Execution

Figure 2.10: Normal Opcodes and Predicated Execution Opcodes

the predicates are stored, which is especially a problem in small embedded systems.
In contrast to most of the other optimizations techniques which introduce additional
complexity, this technique reduces the number of execution paths by eliminating
conditional jumps. Processors which provide predicated execution include the Intel®
IA-64� Architecture and the ARM� Architecture. The ARM� Thumb-2® extensions
provides even a special instruction which does nothing but to provide the predicates
for the following four instructions [Phe03].

Instruction Latency Jitter

Some instructions, especially mathematical operations like multiplication, division
and most of the �oating point operations have inconstant execution-time, depending
on the value of the operands. Figure 2.11 shows an overview of selected instructions
and their execution-time in clock cycles on di�ernet Processors of the Intel® x86
Processor Family. The operands for all operations are registers, except for the CMPS
opcode where this is not possible. It can be seen that some operations, like most of
the �oating point operations, have a highly variable execution latency while other
operations like the string search are even more complicated since they are basically
implemented as loops.

It has already been mentioned in section 2.3.2 that C shift operators may be
implemented as loops on simple architectures, but even on more sophisticated CPUs
the execution-time may vary within a wide range as long as they do not have a barrel
shifter unit. Even if they have one, rotate commands that include the carry bit are
often unable to take advantage of the barrel shifter unit.

The current execution-time analysis prototype does not take di�erent execution-
times into account. Possible workarounds are to restrict the use of functions with
variable jitter to constant operands or to add an additional time budget for these
instructions. The experiments conducted in this work avoid variable latency execu-
tions.

If variable latency instructions are used, the required margin in processor cycles
can be calculated as Tjitter = Tmax − Tmin, where Tmax and Tmin are the maximum
respectively minimum instruction latency in CPU cycles. When using the assignment

27

2.3 Target Platform Complexity 2 Basic Concepts

Opcode Interpretation 80386/7 80486 Pentium
ADD/SUB Integer Addition/Subtraction 2 1 1

MUL Unsigned Multiply 9-38 13-42 10
DIV Unsigned Divide 38 40 41
RCL Rotate Bits Left with CF 9 8-30 7-24
ROL Rotate Bits Left 3 3 4
BSF Bit Scan Forward 10+3n 6-42 6-42
BSR Bit Scan Reverse 10+3n 7-104 7-71

CMPS Compare Strings 5+9n 7+7n 9+4n
FADD/FSUB Floating Point Add/Sub 23-34 8-20 1
FMUL/FDIV FP Multiply/Divide 88-91 73 39

FYL2X Compute Y ∗ log 2(x) 120-538 196-329 22-111
F2XM1 Compute 2x − 1 211-476 140-279 13-57
FSIN Sine 122-771 257-354 16-126

Figure 2.11: Variable Execution Times on the Intel® x86Processor Family

y = sin(x) on an Intel® i80486 we would have to add a safety margin of 354−257 =
97 cycles.

Timing Anomalies

A negative impact on the global execution-time caused by a local optimization is
called a timing anomaly. Timing anomalies are in most cases the result of the dynamic
allocation of resources during execution. Like noted in section 2.3.4 the hardware has
only a local view and can therefore only perform local optimization. In some cases this
lack of global information can lead to an overall performance loss. Timing anomalies
are a relatively young area of research. The term �Timing Anomalies� was introduced
in context of task scheduling in [GG69] and �rst used for instruction scheduling and
timing analysis of single tasks in [LS99b]. According to Lundqvist a timing anomaly
occurs when a locally decreased latency results in an globally increased latency or a
locally increased latency results in a globally decreased latency [LS99b]:

Consider the execution of a sequence of instructions. Let us study two
di�erent cases where the latency of the �rst instruction is modi�ed. In
the �rst case, the latency is increased by i clock cycles. In the second
case, the latency is decreased by d cycles. Let C be the future change
in execution-time resulting from the increase or decrease of the latency.
Then:

De�nition Timing Anomaly [LS99b]
A timing anomaly is a situation where, in the �rst case, C > i or C < 0,
or in the second case, C < −d or C > 0.

That is, if C is guaranteed to be in the interval: 0 ≤ C ≤ i in the �rst
case or, d ≤ C ≤ 0 in the second case, we have no timing anomalies.

28

2 Basic Concepts 2.4 Software Complexity

IU

MCIU

LSU

IU

MCIU

LSU

1 2 3 4 5 6 7 8 9 10 11 12

Cache
hit

Cache
miss

cycles

A

A

B C

D E

B C D E

A

C B

D E

(a) Execution Unit Allocation

Disp.Label cycle Instruction

A 1 LD r4, 0(r3)
B 2 ADD r5, r4, r4
C 3 ADD r11, r10, r10
D 4 MUL r12, r11, r11
E 5 MUL r13, r12, r12
(b) Executed Instructions

Figure 2.12: A Timing Anomalie Example from [LS99b]

Figure 2.12 shows an example of a timing anomaly taken from [LS99b]. Opcode
A depends on data from B and E depends on D which depends on data from C. In
the �rst case the read operation takes advantage of the cache. After A ic completed
B is issued to the integer unit (IU). This delays the execution of C and as a result D
and E. In the second case, when a cache miss is encountered, C is issued immediately
to the IU while B waits still in the reservation station of the integer unit. When A
�nishes B is issued to the IU . This example shows how an increased execution-time
for a single operation (8 cycles) can result in a reduced execution-time for a series of
operations (1 cycle).

Timing anomalies are a complex topic and currently the e�ort in the scienti�c
community is to �nd a suitable de�nition for timing anomalies [Lun02, RWT+06,
KKP09]. The question whether timing anomalies can occur on a speci�c hardware
architecture is even more di�cult to answer generally. Wenzel de�nes the Resource
Allocation Criterion (RAC) in [Wen03] where he shows that a resource allocation
con�ict is a necessary precondition for timing anomalies, but the underlying hardware
model is very restricted since it de�nes only functional processor units as resources and
neglects timing anomalies caused by di�erent cache replacement strategies [The04] or
specular execution [RWT+06]. Section 6.6 gives an overview of recent publications
on timing anomalies.

2.4 Software Complexity

Naturally, the complexity of the analysis depends not only on compiler-, operating
system- or target speci�c elements but also on the complexity of the application which
depends on the functionality of the underlying application model and requirements.
This section gives a short overview how complexity can be measured using di�erent
software metrics and how coding guidelines can be applied to increase the reliability,
readability and maintainability of applications.

29

2.4 Software Complexity 2 Basic Concepts

2.4.1 Software Metrics

Software Metrics are used to enumerate the size, complexity, cost, reusability,
quality and other aspects of software components. In the context of this work software
metrics are used to determine if the timing behavior of a given application can be
analyzed with reasonable e�ort using the measurement-based approach. The metrics
used in this work, lines of code (LOC), Number of basic blocks and path coverage
(number of end-to-end paths) are described below. In addition the size of the source
�le is sometimes used as a measurement of complexity. However, the validity of this
number is very low.

Lines Of Code (LOC)

The source code lines are a software metric which is widely used and in this work
it is used to give a quick estimate about the size of an application. There are two
ways to measure the LOC: The �rst is to count the physical lines of code (which can
be done using a text editor). The second method is to count the number of logical
and whitespace lines, where each logical line is a single statement. Additionally the
comment lines can optionally be included in the number of LOC. The term LOC refers
to physical lines of code including comments and empty lines when used in this thesis.
The problem using LOC, especially for giving an estimate of application complexity,
is that the code lines do not take the expressivity of the source language as well as
the overhead generated by code generators or the application languae syntax.

Number of Basic Blocks (BB)

The number of basic blocks denotes the numner of conjoined sequences of ex-
pression statements without any control-�ow decision or control-�ow merges between
them. The number of BBs can provide a better estimation of application complexity
than the number of source code lines (LOC).

Cyclomatic Complexity

The cyclomatic complexity measures the linear independent paths through an
application and gives a good estimate about the overall complexity of an application.
Only linear independent paths are considered. The cyclomatic complexity can easily
be evaluated when the number of basic blocks, connection between basic blocks and
exit points is known. However, a drawback is that the cyclomatic complexity is
between the number of decision branches and the total number of end-to-end paths
Π. Therefore the cyclomatic complexity can lead to an underestimation of the timing
analysis e�ort for an application since this e�ort depends on Π.

30

2 Basic Concepts 2.4 Software Complexity

Path Coverage

Full path coverage is primarily a criteria for software testing but it can also be used
for describing code complexity. Path coverage gives the total number of distinct end-
to-end paths through an application. Since the proposed WCET analysis technique
relies heavily on full path coverage this number is used to give an estimation of the
complexity and the analysis e�ort for a given application. Special care has to be
taken with loops. When encountering a loop, the WCET analysis tool counts the
paths in the loop body, and adds one to it if the loop check is at the top of the loop.
The actual number of paths would be the iteration maximum loop times the paths
in the loop body. However, since this number is unknown at the beginning of the
analysis, and remains unknown for certain types of loops, the proposed solution gives
a quick and accurate estimate of the application complexity.

2.4.2 Coding Guidelines

Coding guidelines are used in many companies to ensure the readability and
reusability of source code. The coding guidelines essential for safety-critical appli-
cations are the Motor Industry Software Reliability Association (MISRA) guidelines
[MIS96, MIS98, MIS04] in the automotive and DO-178B [RB92] and Avionics Applica-
tion Software Standard Interface (ARINC 653) in the avionic domain. The following
paragraphs brie�y illustrate the impact of those guidelines on timing analysis.

The MISRA guidelines de�ne a subset of C that should be used for industrial
applications and consists of a set of rules to which an application has to comply.
These rules are checked statically by means of a MISRA rule checker or a MISRA-
aware compiler. The MISRA guidelines relate to WCET analysis as they disallow the
use of dynamic memory, variable number of function arguments, unreachable code
and more C language features that make WCET analysis di�cult, however they do
neither mention the concept of time nor how timing analysis shall be performed.

The DO-178B standard is used for safety-critical airborne applications. However,
the DO-178B guidelines focus on the environment under which software is developed,
which includes the software life cycle as well as process activities and design consid-
erations and their monitoring. The application itself is not focused in the DO-178B
speci�cation.

The Avionics Application Software Standard Interface (ARINC 653) describes how
components of an integrated modular system should be separated and individually
tested. Execution time analysis is mentioned brie�y but not described in detail
[APE03].

A detailed description, how the above mentioned guidelines relate to timing anal-
ysis has been published in [WKS+05].

31

2.5 Summary 2 Basic Concepts

2.5 Summary

In this chapter, the di�erent C dialects as well as unique and problematic features
of C have been pointed out. Further, the basic concepts of compiler construction
have been introduced and it has been shown how the compiler, the target OS and the
target hardware can in�uence and increase the complexity of timing analysis. Last
it has been shown, how code metrics can be used to give a coarse estimation of the
complexity of an application and how industrial coding guidelines interfere with the
timing analysis process.

32

Chapter 3

Execution Time Analysis

This chapter explains the importance of (worst-case) execution-time analysis and
introduces di�erent approaches to perform timing analysis. The main focus is on the
hybrid timing analysis for which an analysis framework prototype is implemented as
a part of this thesis.

3.1 Why Timing Analysis

A real-time system (RTS) is a system in which the correctness of a calculation
not only depends on the value of the result but also on the time when it is �nished.
RTS are subclassi�ed in soft real-time systems, which are primarily used for non
safety-critical systems such as mobile phones or the update management of �ight
planes for commercial air lines, and hard real-time systems, which are used for safety-
critical applications, where a failure would result in massive damage of property
or the loss of human life. Typical applications of hard real-time systems include
automotive applications such as X-by-wire or medical systems. In hard real-time
systems, computations are useless if the result is available too late. Soft real-time
systems tolerate late results but respond with decreased quality of service. Figure 3.1
shows the application domain of real-time systems.

Another categorization of real-time systems is how the scheduling is performed.
Event triggered RTS de�nes a set of tasks with given priorities. When an event arrives
which has higher priority than the currently executed task, the task is interrupted

Soft
real−time

System
Simulation

User
Interface

Telecom−
munication

Vehicle
Control

Aircraft
Control

Internet
video

Hard
real−time

No
real−time

Figure 3.1: Timing Requirements [LLS+07]

33

3.1 Why Timing Analysis 3 Execution Time Analysis

A BC AA A

A

t

t

Events

ET

ET

ET P=3

P=2

P=1

t

TT

A A

BB B

C

CBACBA

t response

T

t response

Figure 3.2: Response Time

and a task handling this particular event is executed. If the event has lower priority
then it will be handled when the current task has �nished and no higher priority task
is scheduled. In some event-triggered RTS the priorities of the tasks can be dynami-
cally changed to prevent the starvation of low priority tasks. Time triggered real-time
systems de�ne a �xed schedule at design time and the tasks running on the system are
activated according to the pre-de�ned schedule. Some time-triggered RTS allow mode
switches through which the system may change the prede�ned schedule to another
prede�ned schedule. Distributed systems are characterized by a set of communication
nodes which are interconnected using a communication network. The communica-
tion between nodes is either event or time-triggered according to the design of the
nodes. Time triggered communication networks use cycle-based communication and
send messages periodically resulting in a highly predictable system. Event triggered
systems send messages only on demand and are considered more �exible. A disadvan-
tage of event-triggered systems is that in the case of a fault there might be increased
network tra�c due to error handling which can lead to an overload and eventually
a breakdown of the communication system. There are also communication systems
that soften the borders between event and time-triggered communication. FlexRay
[Fle] o�ers a time-triggered (static) and an event-triggered (dynamic) part in order to
combine the advantages of both approaches, the predictability of the time-triggered
systems and the �exibility of event-triggered systems.

Figure 3.2 shows the scheduling of three tasks on two di�erent real-time systems.
The �rst timeline shows the events as they are triggered from the outside world.
Assuming event A is triggered by a switch which is bouncing. The next three lines
show the execution of individual tasks with di�erent priorities P=x on the event-
triggered system denoted with ET P=x where higher numbers have higher priorities.
Task A has the highest priority and gets executed on each event. Task B has lower
priority than A and gets interrupted each time A is executed. Task C has the lowest
priority and gets executed only when neither A nor B are scheduled. Thus the
response time (RT) of task C, which is de�ned as TR = treaction − tevent gets very
high and is eventually unbounded. The time-triggered RTS, shown in the bottom
line of �gure 3.2, uses �xed execution frames with a period of T , which is also called

34

3 Execution Time Analysis 3.2 Worst-Case Execution Time (WCET)

cycle. Under the assumption that event C occurs on the least favorable moment after
task C has been started and the event cannot be detected by the running instance of
C the response time is bounded with TRmax = T +TExecmax(C). Some time-triggered
RTS use the strategy to read inputs only at the beginning and write the outputs only
at the end of a cycle. The values are stored in memory which the individual tasks
access. This has the advantage that all task share the same view of the system state
(increasing predictability [Kop97]) and that no input/output operations are necessary
during a cycle. Additionally when using distributes real-time systems multiple tasks
can share a communication frame. In this commonly used application the response
time is bounded with TRmax ≤ 2 ∗ T .

In the previous paragraph the expression TExecmax(C) was used, which denotes
the maximum possible execution-time of task C which is also called Worst-Case
Execution Time (WCET) of C.

3.2 Worst-Case Execution Time (WCET)

When the term WCET is used in this thesis, it refers to the highest possible
execution-time (ET) of a simple task as de�ned in section 2.3.1.

The WCET is one of the most important attribute of tasks when designing real-
time systems because the scheduling depends on it. In fact the WCET is required to
determine if a given task set can be scheduled on a system:

De�nition 10 Schedulability criterion [Wir01]
A real-time system with a task set of n tasks having a worst-case execution-time of
Ci and a period of Ti is schedulable on a system with p processors if
p ≥

∑

i=1..n

Ci

Ti

The schedulability criterion is only a quick estimate since it neglects the time
required for task switches and the core functions of the operating systems. For time-
triggered RTS there is the additional condition that the WCET of each task must be
lower than the duration of its execution slot.

Figure 3.3 shows the execution-time pro�le (ETP) of a simple task. The x-axis
represents the execution-times of the task. As a unit for the execution-time clock
cycles(CC) are often used since they are independent of clock frequency drifts and
have a discrete value. Using absolute values like µs is not recommended because of
the in�uence of the oscillator drift and because of the analog value which prevent
an exact reproduction of the results. The value in the ordinate represents the fre-
quency of the observed execution-time in relative or absolute values. The average-case
execution-time (ACET) is the weighted average of all possible execution-times. The
average-case execution-time gives a good estimate about the overall performance of
an algorithm, but is of little use in real-time system design. The best-case execution-
time (BCET) denotes the lowest possible execution-time of a function or an algorithm.

35

3.3 Timing analysis 3 Execution Time Analysis

B
es

t O
bs

.
E

xe
c

T
im

e

B
es

t C
as

e
E

xe
c

T
im

e

A
vg

. C
as

e
E

xe
c

T
im

e

W
or

st
 O

bs
.

E
xe

c
T

im
e

W
or

st
 C

as
e

E
xe

c
T

im
e

S
af

e
Lo

w
er

 B
ou

nd

S
af

e
U

pp
er

 B
ou

nd

F
re

qu
en

cy
 [%

]

t [cyc]

Execution Time Jitter Overestimation

Figure 3.3: Execution Time Distribution of a Task

When execution-time measurements are performed on applications the WCET and
BCET will most likely not occur, except if the user knows which input data and
system state result in the WCET respectively BCET and uses this input data for
measurements. It is more likely that execution-times closer to the ACET are ob-
served. This execution-times are called best observed execution-time (BOET) and
worst observed execution-time (WOET).

Finding exact values for WCET and BCET is extremely di�cult therefor the goal
of WCET analysis is to �nd a safe upper bound which is guaranteed to be higher than
the WCET. In order to keep the utilization of the processor high, the overestimation
has to be as low as possible. Overestimation is mainly introduced into the analysis of
the WCET by simpli�cations of the hardware model or the �ow facts which have to
be made to keep the analysis feasible. The simpli�cations are bought at the price of
information loss which results in overestimation but also in reduced analysis e�ort.

3.3 Timing analysis

Execution time analysis is used in the development of real-time and embedded
systems to derive timing estimates required for schedulability analysis. Traditionally
there are two methods for ET analysis: Static and Dynamic analysis. Static analysis
performs analysis of applications without ever executing them, while dynamic anal-
ysis uses run-time measurements of the executed application running on the target
hardware or on a simulation. In recent years the gap between both analysis meth-
ods has been �lled by hybrid analysis methods which perform static analysis of the
application in order to guide the measurements and to achieve better results. The
following sections discuss di�erent approaches and examine the individual steps of
the analysis process.

36

3 Execution Time Analysis 3.3 Timing analysis

3.3.1 Anatomy of a WCET Analysis Framework

All execution-time analysis tools use a similar strategy which is discussed in this
section. Exceptions are WCET aware compilers (see section 6.1.1: calc_wcet_167,
TuBound and wcc) which take advantage from information present in the source
code and the knowledge of CFG transformations between source and object code.
Generally the following steps are performed:

Syntax Analysis and CFG generation is used to generate a control-�ow graph
(CFG) from source or object code in order to identify basic blocks and the execution
paths between them. For the majority of timing analysis methods the CFG is one of
the most important starting points and the foundation for all other analysis steps.
When the CFG is also used to store results from other analysis methods, i.e. the
execution-time of a basic block, it is called an annotated control-�ow graph.

Static high level analysis uses di�erent analysis methods like abstract interpre-
tation, value analysis, or loop and loop bound analysis which are performed without
execution of the program. The results are needed to identify the entities (mostly basic
blocks, sequences of BBs or paths) for which the execution-time shall be gathered in
the next step and to generate input data for the execution-time acquisition (i.e. the
memory locations for a given set of variables to perform cache analysis).

Acquisition of execution-times can be performed by using static low level anal-
ysis methods on an accurate hardware model, which may consider caches, pipelines,
branch prediction units and even timing anomalies. As an alternative the measure-
ment of execution-times on the target hardware or a cycle accurate simulator can be
used.

WCET calculation is the last step of the analysis in which the execution-times
of smaller program fragments are combined to get a WCET estimate of the whole
application. This analysis step can be integrated in the static low level analysis.

The following sections brie�y describe the individual steps needed for WCET
analysis. Section 6.1 will give an overview of WCET analysis tools and explain how
the di�erent techniques are used in static (section 6.1.1), dynamic and measurement-
based (section 6.1.2) tools.

3.3.2 Syntax Analysis and CFG extraction

Analysis tools can use di�erent levels of program representation. Some tools oper-
ate on the source code of the application. This gives them access to additional struc-
tural and control-�ow information, but due to compiler optimizations (section 2.3.2)
the CFG of the source code may di�er from the control-�ow of the application. The

37

3.3 Timing analysis 3 Execution Time Analysis

other approach is to use binary object code as basis for the ET analysis. An advantage
is that the control-�ow of the analysis and the executed program is exactly the same.
On the other hand it is more di�cult to extract the control-�ow from the object
code but this is only an implementation issue. It is of more importance, that some
information about variable ranges, which can be extracted from the source code or
are annotated by code generation tools, are lost. Of course, extracting the CGF from
the object code leads to a strong dependence on a distinct hardware architecture.
A di�erent approach, which is often used by WCET aware compilers, is to combine
both, source code and object code analysis (see table 6.1). This can also be achieved
by generating assembler output from the compiler which contains the application's
source or by embedding source line information in the generated object. The GNU
C compiler gcc can be instructed to do so by using the -g2 command line switch.
It should be noted that some optimization options will not work correctly with all
debugging options. An overview which optimization options will in�uence debugging
code generation on the GNU gcc can be found in the gcc online documentation[GCC].

3.3.3 Static Analysis

Static analysis refers to the analysis of software applications by means of formal
methods without executing them. Static analysis consists of high level or �ow analysis
bounding the software behavior and low level analysis and hardware modelling to
bound the hardware behavior. In general static analysis has to make simpli�cations
on the model because of the model complexity. These simpli�cations come at the
cost of overestimation.

High-Level or Flow Analysis

The goal of static analysis is to analyze the software behavior. High level analysis
is within certain parameters, like the size of datatypes, platform independent. High
level analysis includes techniques like variable range analysis, abstract interpretation,
loop and loop bound analysis, (infeasible) path analysis and function analysis. How-
ever it is not possible to �nd exact �ow information since this would solve the halting
problem. The following list is a short overview of methods used in static analysis.

Manual annotations are not an analysis technique but can be used to guide the
analysis and supply additional information which is only available at a higher ab-
straction level. Many analysis tools allow manual annotations. Unfortunately each
tool o�ers its own annotation language and there is no common standard [KKP+07].

Syntactical analysis on parse trees (pattern matching) are usefull on com-
piler generated loops. A given compiler always uses the same pattern when generating
the object code for loops. It is often possible to analyze a loop based on that pattern.
For simple loops it is even possible to extract the loop bound [HS02]. On source level

38

3 Execution Time Analysis 3.3 Timing analysis

there are also repeating patterns which can be observed when code generators are
used.

Presburger arithmetics is a theory of the natural numbers with addition based
on �rst-order logic. It can be extended with multiplication but only by constants.
Simple loops can be modeled in Presburger arithmetics which can easily be solved to
calculate loop bounds [HS02].

Data �ow analysis (DFA) is used to identify dependencies of variables and control-
�ow decisions. To perform data �ow analysis, data �ow equations for each node are
created. These equations are solved by following the CFG repeatedly and using the
output of the last iteration until the system stabilizes and a �xpoint is reached [SP81,
Bli02]. Data �ow analysis can also be used to �nd loop bounds [CM07, dMBCS08].
Compilers use DFA to perform liveness analysis of variables.

Symbolic execution is a software analysis technique which simulates the execution
of a program using symbolic values like variable names rather than actual values for
input data [Cow88]. The output of symbolic execution are logical or mathematical
expressions using these symbols which can be solved by means of a SAT solver.
Symbolic execution can be used to identify program paths [Zha04, ZCW04, LS99a],
analyze loop bounds [BB00, LS99a] and to generate test data for hybrid ET analysis
[OS90].

Model checking is a formal analysis if a given �nite state machine (FSM) meets
a gives speci�cation. Typically these models use a language which de�nes states
and transitions but some model checkers can also use C as input language. Model
checkers are usually used to �nd dead code or to check if given software requirements
are hold on an examined program. However model checking can too be used to detect
infeasible paths [WRKP05] and loop bounds [RPW08] as well as dead code [HJMS03].

Abstract interpretation (AI) is the mapping of the semantics of a computer
program to a model based on monotonic functions over ordered sets, especially lat-
tices. According to [CC77, CC79, CC92] an abstract interpretation is de�ned as
a non-standard (approximated) program semantics obtained from the standard (or
concrete) one by replacing the actual (concrete) domain of computation and its basic
(concrete) semantic operations with an abstract domain and corresponding abstract
semantic operations. AI has many uses in compiler construction and debugging. In
association with high level static WCET analysis it is used for (infeasible) path anal-
ysis [GE97, GEL06] and loop bound analysis [GE97, ESG+07], as well as for value
analysis and low level static analysis as discussed below.

39

3.3 Timing analysis 3 Execution Time Analysis

Value analysis is a special form of abstract interpretation. It computes ranges for
the values in the processor registers and local variables at every program point. The
value analysis is able to determine memory locations statically [FMW97, ESG+07]
which is important for a subsequent cache analysis. Value analysis is also able to
detect loop bounds and infeasible paths.

Low-Level Analysis and Hardware Modelling

Cache analysis is used to analyze the memory access patterns of an application
and statically predict cache hits or misses. It requires knowledge about memory ac-
cess patterns. The simplest method is to assume an always miss cache behavior. This
can lead to overestimations. However, from the static high level analysis the memory
access patterns of the application are often known and therefore cache analysis can be
integrated in the AI framework [AFMW96, FMW98, TF98, RM05]. The analysis uses
the classi�cations always hit, always miss and not classi�ed and de�nes merge func-
tions for di�erent cache replacement strategies to combine joining control-�ow edges.
Other tools include the classi�cations �rst hit and �rst miss. The AI-based cache
analysis can be used for instruction-, data- and combined caches. Model checking as
shown in [Met04] can also be used for low level cache analysis. The proposed method
uses an explicit model of the cache in the processor model and works currently for
small case studies but not for real-size applications.

Pipeline analysis is used to determine the e�ects of the pipeleine on the execution-
time of the application. The pipeline analysis depends on the results of cache analy-
sis and �ow analysis since pipeline analysis has to consider possible cache misses and
data hazards, which cause cache miss penalties or pipeline stalls [HWH95, HAM+99].
Both e�ects depend on the execution history of the processor. An abstract model is
used for the representation of the pipeline state. The model de�nes timing depen-
dencies between di�erent instructions, i.e. at which pipeline stage a register has to
be available for a given instruction so that no hazards occur. A similar approach is
described in [FHL+01, MSR02] where the pipeline simulation is integrated in the AI
framework using a formal pipeline model with de�ned update functions. A di�er-
ent approach is to use an o�-line simulation of the �ow of instructions through the
pipelines [CP01]. The discussed pipeline analysis approaches based on AI are able to
handle both in-order and out-of-order pipelines.

Branch prediction analysis is used to simulate the e�ects of branch predictors
found in modern architectures on the application timing. It is accomplished by intro-
ducing history patterns in the AI framework [MRL02, LMR05]. The branch prediction
implements a simple global 2-bit branch prediction unit as shown in �gure 2.9. The
solution proposed in [MRL02, LMR05] de�nes an update function which updates the
branch history for every conditional jump taken and computes a branch prediction for
each block based on the current execution history and the branch history. The exper-
imental results shown in [LMR05] examine two global branch prediction shemes using

40

3 Execution Time Analysis 3.3 Timing analysis

di�erent hash functions for the branch history table and branch prediction scheme
with a local branch prediction table. The experimental results are very close to the
observations from simulation runs except for the �t case study because of loop bound
dependencies on the inner loop from the outer loop of the �t algorithm [LMR05].

Static analysis of timing anomalies checks if timing anomalies may occur in an
application and tries to get a numerical estimation of the e�ects. It requires the analy-
sis of all possible instruction schedules and pipeline states within a basic block, which
would increase the analysis e�ort signi�cantly. The pipline dependencies are repre-
sented using an instruction graph [LRM04] which shows all dependencies between
individual instructions executed on the processor. To �nd the longest execution-
time (which does not correspond to the longest way through the execution graph) an
exhaustive search over all paths through the graph would be necessary. Since the pos-
sible numbers of paths through the execution graph can be very high for large basic
blocks this is often not a feasible option. A proposed solution [LRM04] is to perform
a �xed-point analysis on the time intervals (instead of concrete time instances) at
which the instructions enter/leave di�erent pipeline stages.

Symbolic simulation uses an abstract processor model to simulate the execution
of a program. The simulation is performed without input and the simulator has to be
able to work on a partly unknown states. The method introduced by Lundqvist [LS98,
LS99a, Lun02] called cycle-level symbolic execution combines �ow analysis, pipeline
analysis, instruction and data cache analysis as well as the �nal bound calculation
within a single analysis phase. The results for the WCET estimates are identical
with the results from the simulator using the worst-case input data, when optimistic
merging functions were used, which could theoretically lead to underestimations.
When using pessimistic state merging functions in the cycle-level symbolic execution
Lundqvist states that an overestimation of 4-9 times the actual WCET was observed
[Lun02].

3.3.4 Dynamic Timing Analysis

Dynamic execution-time analysis methods use measurements on the target hard-
ware to generate a timing model. There are multiple measurement methods and
design considerations which have to be considered. The following section discusses
the most important ones, but not all design issues. A more elaborate discussion can
be found in [KWRP05]. However, most dynamic execution-time analysis tools are
in fact measurement-based or hybrid WCET analysis tools since they include also
simple static analysis.

Rapita is a commercial vendor of a measurement-based WCET analysis tool. The
online presence of RapiTime [Ltd08] gives a short (maybe a little biased) overview of
WCET analysis methods:

41

3.3 Timing analysis 3 Execution Time Analysis

Measurement is the most common method of worst-case execution-time
estimation in commercial use today. Measurement techniques insert pro-
�ling code into the software, recording the end-to-end execution-time of
sub-systems, functions, or individual blocks of code.
. . .

Recognizing that the best possible model of an advanced microprocessor is
the microprocessor itself, hybrid approaches use online testing to measure
the execution-time of short sub-paths between decision points in the code.

Even if these statements are biased they point out the very important fact that a
modern processor is still the best model for a processor. Measurement-based methods
use execution-time measurements on the hardware or a cycle-accurate simulation in
order to avoid the complex hardware modelling process. The high e�ort for the imple-
mentation of a processor model with the same behavior as the processor itself is only
one out of many reasons for this. The second reason is that in order to implement a
processor model a detailed and complete documentation of the processor is necessary.
Especially on modern processors the vendors omit some implementation details from
the documentation which are crucial for understanding the correct function of a pro-
cessor model, sometimes on purpose to protect their intellectual property, sometimes
as a result of neglectfulness and sometimes because some details of the processor are
of little interest for anyone who is not trying to create an abstract model of the pro-
cessor. A short view on the errata list of a modern processor shows a second problem:
Modern processors have bugs and often lots of them. These bugs may not only cause
errors in the value domain, like the infamous Pentium® FDIV bug, but also in the
temporal domain. At this point it should be noted that an error in the value domain
might also cause a changed timing behavior as result of a changed control-�ow.

A possible solution to this problem is shown in [FMC+07]. The proposed solution
is to use the source code of the processor hardware in VHDL and extract a tim-
ing model directly from it. VHDL and Verilog are originally hardware speci�cation
languages but are now used for hardware design, too. For the proposed solution Ver-
ilog would also do �ne but [FMC+07] focuses on VHDL presumably since it is more
common in Europe. The timing model extracted from the hardware design of the
processor is used to create an abstract processor model. This has to be done since
the real model would be too big to handle in AI and the real VHDL design will only
work with concrete binary input data and cannot use an abstract representation of
the input data. The proposed approach seems to work �ne except for the fact that
there is no formal proof that the abstraction of the VHDL model will behave exactly
the same way as the processor.

Static analysis is often judged �safer� than measurement-based analysis but due
to the facts pointed out in the previous paragraph static analysis should always be
complemented by run-time measurements. The next sections show two approaches
for execution-time acquisition used in measurement-based systems. The �rst one is
simulation, which needs an accurate processor model. This implies the same problems

42

3 Execution Time Analysis 3.3 Timing analysis

as mentioned before for static analysis. The second approach are measurements which
are conducted on the target processor.

Simulation

Execution time measurements using simulation work by executing tasks on cycle
accurate processor and hardware models. The advantage is that the user has full
control over the model. Which means he can, depending on the simulator, determine
parameters like cache size, memory access cycles for cache hit/miss, enable or disable
functional units and more. The user has full access to the processor and can even
modify processor registers. The measurements have no side e�ect on the simulation
since the user can set simulation breakpoints and read out the processor time in
simulation cycles at any point.

Therefore simulators are ideal to test new approaches for WCET analysis since
complex architectural features may be enabled, disabled or changed to the likings of
the user. For the simulation of real processors there is always a remaining degree of
uncertainty if the simulation model behaves exactly like the original processor.

In case of simulations the approach developed in [FMC+07] will work since the
simulation runs on concrete input data and can be carried out by any hardware
simulator like ModelSim®. One problem remaining is the availability of the processor
source code in VHDL or Verilog. Even if the source code would be available, there
would still be performance problems for large processors. Hardware designs of simple
processors for synthesis or simulation, including the MIPS architecture which is often
used for educational purposes, are freely available from the Opencores website [Pro09].

Execution Time Measurements

For modern processors which are too complex for simulations or where the source
is unavailable, execution-time measurements on the hardware have to be made. Ex-
ecution time measurements are de�ned in [KWRP05]:

De�nition 11 Execution time measurement refers to the task of determining the
execution-time (or respectively the number of clock cycles) by executing a particular
path through a speci�c code fragment of a given program on a physical hardware.

There are multiple possible measurement techniques which can be used for this
purpose. The following classi�cation of measurement methods [Pet03, KWRP05]
gives a short overview:

Simulation is not an execution-time measurement by de�nition, but included here
for completeness. Simulation have been discussed in the previous section.

43

3.3 Timing analysis 3 Execution Time Analysis

Light-Weight Software Monitoring uses an internal counter (i.e. cycle counter
of the CPU) as time basis and relies on software instrumentations placed in the ex-
ecuted application. A possible instrumentation technique is to read the time basis
and write the result to a speci�ed memory location or variable. Light-weight soft-
ware monitoring has a neglectable impact on execution-time and instrumentations
can remain in place after the measurements are �nished so the measured and real
execution-times are the same. Light-weight software monitoring does not enforce a
known state on the hardware and should therefore only be used on simple architec-
tures [KWRP05]. The execution-time measurements in this thesis use light-weight
software instrumentations.

Heavy-Weight Software Monitoring has to be used on complex architectures
where the execution-time may be strongly a�ected by the processor state. In order
to achieve valid and reproduceable results the state of the hardware must be known,
which implies that it is eventually enforced, at the beginning of each measurement.
This hardware state modi�cation may result in increased execution-time. On ar-
chitectures where timing anomalies may occur the instrumentations have to remain
in place too, otherwise they should be removed [Pet03]. Like light-weight software
monitoring this technique relies on an internal counter.

Hardware Supported Software Monitoring places instrumentation code in the
program producing events which are observable from the outside of the measured
systems. Instrumentation points may toggle an I/O-pin or write an ID to a group of
I/O-pins. The change on the pins can be monitored using an oscilloscope or a logic
analyzer. It should be taken into account that changes from high to low can have a
di�erent timing than changes from low to high. Since the approach has little e�ect on
the execution-time the instrumentations can remain in place after the measurements
have been completed. The disadvantage of this method is that expensive external
hardware is needed.

Hardware Monitoring can be implemented either by monitoring the bus tra�c
(which will only work for architectures without internal D-cache) and analyzing the
instruction �ow on the bus or by using the debugging interface present on many
embedded chips. Using the debugging interface requires additional hardware which
comes of prices from less than 100¿ to more than 10,000¿ for trace probes with real-
time and in-circuit emulation capabilities. For hardware monitoring no alterations
on the software have to be made. The disadvantage is that cheap solutions are rather
slow and fast solutions are rather expensive.

As many measurement techniques have an impact on the execution-time, it is
favorable to increase the size of the measured fragments as much as possible. However,
when the size of the code fragments exceeds the size of the basic blocks, input data
dependent control-�ow occurs during the measurements. Since measurements are

44

3 Execution Time Analysis 3.3 Timing analysis

only meaningful when the executed path is known, the path has to be enforced for
the measurements. There are two possibilities of enforcing the execution of a speci�c
control-�ow path:

Code Modi�cations in order to replace conditional jumps by unconditional jumps
or NOPs to force a speci�c path [PF99]. This can a�ect the timing behaviour in many
ways. First, the timing of NOP, unconditional and conditional jumps are likely dif-
ferent. Second, on architectures with speculative execution the branch prediction is
altered. Therefore, code modi�cations to enforce a given control-�ow are not favor-
able.

Test Data can be used to enforce a given path. Since all conditional jumps of
feasible paths are either test data dependent or depend on static data (i.e. loop
counters) it is possible to generate test data which enforce the execution of a given
path. To measure a set of given paths test data for each path have to be generated
and the execution-time of the application running with the generated test data is
measured. Since no alterations of the application code need to be made this solution
gives more reliable results than code modi�cations.

A list of other important design considerations [KWRP05] includes multiple as-
pects which have to be considered for the selection of the measurement method and
data acquisition strategy, especially for small systems with limited resources (CPU,
memory and I/O).
Counter register location: Is a processor internal counter used or is the counter
located within an external time source?
Hardware or software instrumentation: Is hardware or software instrumenta-
tion used?
Interface data: Which data needs to be exchanged between the host and the target
system? Are complete traces or only execution-times to be stored?
Required devices: Is there special hardware needed that is dedicated to execution-
time measurements (e.g., logic analyzer)?
Persistence of code instrumentations: Do the instrumentations remain in the
code after the run-time measurements (persistent instrumentation) or are the instru-
mentations removed after the measurements (non-persistent instrumentation)?
Recording location: Where is the observed execution-time information stored? Is
it stored in the same computer system (internal) or on an external device (external
storage location)?
How often has the code to be instrumented/recompiled: Has the code to be
recompiled and downloaded to the target for each instrumentation or are all instru-
mentations placed within one executable simultaneously?
Control �ow manipulation: When using active instrumentation, the control-�ow

45

3.3 Timing analysis 3 Execution Time Analysis

is enforced by code modi�cations. On the other hand, passive instrumentation refers
to instrumentation gathering dynamic execution information.
Input data generation location: Are the input data generated on the host or on
the target?
Representation level: At which representation level are code instrumentations per-
formed (C-code, assembly code or object code level)?
Number of measurement runs: How many measurement runs can be performed
with one modi�ed execution binary (=one code image that contains instrumented
code)?
Resource consumption: How much resources, like static memory, data memory,
bandwidth, output ports (interface lines), run-time cycles are required by the selected
method?
Installation and usage e�ort: Is human installation required (e.g., plug a special
socket on a chip or add additional wires)?

Each of the listed design considerations has to be given thourough consideration.
The choice of the best measurement solution can vary-based on di�erent application
properties even on the same target hardware.

3.3.5 WCET Calculation

The �nal WCET calculation step can be done using three di�erent approaches
which are shown in �gure 3.4. The path-based method shown in sub�gure b uses ex-
plicitely speci�ed execution paths, while implicit path enumeration technique (IPET)
illustrated in sub�gure c uses implicit path information generated by system of equa-
tions to model the control-�ow and tree-based often called syntax-based methods
displayed in sub�gure d are oriented at the program structure. The discussed WCET
calculation techniques are performed by static or hybrid analysis tools. Traditional
measurement-based tools without any form of static analysis cannot perform these
WCET calculations because of the lack of �ow information and rather use end-to-end
measurements.

Tree or Syntax Based WCET Calculation

Tree-based WCET calculation techniques use static analysis or measurements to
gather the execution-times of basic blocks and combine the WCET of individual
basic blocks to an estimation of the global WCET using simple rules-based on the
structure of the application source [PS90]. On the left side of �gure 3.4d the three
transformation rules which are applied in order to calculate the WCET are shown.
They are very simple and intuitively to understand which is one of the advantages of
tree-based timing schemata. Figure 3.4d shows how the rules are iteratively applied
until the �nal WCET is calculated.

46

3 Execution Time Analysis 3.3 Timing analysis

Exit

Entry

H

maximum

10

5

5

5E

8F G

A

B

C D

7

7

3

5

loop count

(a) Example CFG
Exit

Entry

H

5

5

5E

8F G

A

B

C D

7

7

3

5

Path Timing
tpath = 37
thead = 7

WCET Calc
WCET =
thead + tpath ∗
(#loop− i) =
7 + 9 ∗ 37 =
340

(b) Path Based

XB

XE

XH

XEntry

XStartA

XEF

XFH XGH

XCE XDE

XBDXBC

XHA

XEG

XExit

XAExit

XC XD

XF XG

Entry

H

E

F G

A

B

C D

Exit

X

X

A

AB

Entry & Exit constraints
XEntry = XExit = 1

Loop constraints
XA ≤ #loop

Structural constraints
XEntry = XEntryA
XA = XEntryA +XHA = XAExit + XAB
XB = XAB = XBC + XBD
XC = XBC = XCE
XD = XBD = XDE
. . .
XG = XEG = XGH
XH = XHA = XFH + XGF
XExit = XAExit

WCET Expression
WCET = max(7∗XA +5∗XB +3∗
XC+5∗XD+5∗XE+8∗XF+5∗XG+7∗XH)
= 340

(c) IPET Based

Tree transformation rules

T(seq(S1, S2)) = T(S1)+T(S2)

T(if(Expr)thenS1elseS2) =
T(Expr)+max(S1, S2)

T(loop(Expr, Body)) =
T(Expr)+
(T(Expr)+T(Body))∗(#loop− 1)

loop

A
7

H
7

seq

loop

seq

if

B
5

D
5

C
3

if

E
5

F
8

G
5

10

A
7

H
7

340

WCET

loop

A
7

A
7

seq

seq

loop

seq

seq

seq

10

if

10

10

10 20

if

30

10(4)

(3)(2)(1)

(5)

if

13

(d) Tree Based

Figure 3.4: Overview of di�erent WCET calculation methods [Erm03]

The concepts of scopes and markers is introduced in [PK89, PS93] in order to
tighten the WCET estimate. A scope is de�ned in [PK89] as a part of a program's
instruction code, limited by a special scope language construct, that is embedded
into the syntax of a programming language. Markers are de�ned as special marks
located within a scope. They specify the maximal number the marked positions in
the program may be passed by the program �ow between entering and leaving the
scope. An arbitrary number of markers may be placed within a scope. The concept
can dramatically improve the WCET estimates because it can be used to introduce
information that is only available in a higher representation level of the application
into timing analysis.

Another extension made to the syntax or tree-based approach is the ability to
extract the syntax graph which is the basis for WCET calculation from the (non-
stripped) object code of applications and to use execution-time pro�les instead of
simple execution-times for the WCET calculation [BCP02, BCP03]. The generated
results do not only give a WCET estimation, but a full pro�le of execution-times and
the probability of their occurrence.

47

3.3 Timing analysis 3 Execution Time Analysis

Path Based WCET Calculation

In path-based WCET calculation, the upper bound for a task is determined by
computing WCET bounds for di�erent paths in the program, searching explicitly
for the path with the longest execution-time [HAM+99, HW99]. The important
characteristics of this approach is the explicit representation of the path. The WCET
analysis method developed by Healy [HAM+99, HW99] includes the static analysis
of pipeline timing and cache behavior.

Stappert et al. separate the �ow analysis from the hardware analysis [SA00]. This
makes the �ow analysis independent from the hardware and helps to reduce the
complexity of the models. A further improvement to this approach makes it able
to handle loops and �ow facts, which cause problems with the path-based method
because of the exponential growth of the number of paths. Eventually heuristic
search methods [SEE01] are required to �nd the longest path. Infeasible paths which
present a problem for path-based WCET calculation, since their infeasibility has
to be proofen, can be detected by abstract execution [GEL06] or model checking
[WRKP05].

Implicit Path Enumeration Technique

Because the Implicit Path Enumeration Technique is-based on the CFG it is
sometimes referred to as graph-based WCET calculation. The basic idea behind
IPET is to combine the program �ow information and the maximum execution-time
of basic blocks into a set of arithmetic constraints. The program �ow starts at the
entry node of the program and leaves it through the exit node. The �ow between
nodes is represented by XAB where A represents the node which has been executed
and B which will be executed next. Similar XA represents how often basic block A
is executed. For a single node j the following equation holds:

Xj =
∑

∀i
Xij =

∑

∀j
Xjk ∀i, j, k : Xij , Xjk ∈ CFG (3.1)

This equation can be created for each node of the CFG forming a set of structural
constraints. Additionally a constraint for each loop can be given assuming basic block
i is the loop head of a loop bounded by a maximum of Boundi iterations:

Xi ≤ Boundi (3.2)

The equations for the entry and exit nodes are :

XENTRY = XEXIT = 1 (3.3)

Equation 3.1 to 3.3 bound the number of executions of individual basic blocks
while allowing all possible end-to-end control-�ow paths through the program. The

48

3 Execution Time Analysis 3.4 Measurement-Based WCET Analysis

execution-time of a single basic block within the WCET path is given by the frequency
of its execution Xi times its execution-time bound Ci. To the execution-time for
the whole program the sum of all execution-times in all basic blocks is calculated∑

i Xi ∗Ci. Finally an upper bound for the ET can be calculated using equation 3.4.

WCET ≤ max

(∑

∀i
Xi ∗ Ci

)
∀i : Xi ∈ CFG (3.4)

IPET was �rst proposed by Malik [LM95, LM97, PS97] and adopted and further
developed and improved by many others [Eng02, The02a, The02b, Erm03]. IPET can
handle di�erent types of �ow information. Usually IPET is applied to a whole pro-
gram. The bound calculation is performed using an ILP solver like lp_solve [Ber97]
or the GNU Linear Programming Kit (GLPK) [FSF09] which is used in the pre-
sented approach. When �ow facts are also integrated in the IPET model constraint
programming (CP) techniques are used to solve the equation system, which grows
very fast in that case.

3.4 The Measurement-Based or Hybrid Timing Analysis
Approach

This section gives a short introduction about the theoretical ideas and concepts
behind measurement-based WCET analysis. General problems which occur during
the hybrid WCET analysis are discussed and it is explained how these problems are
concretely resolved by the WCET analysis tool kit presented in this work. Technical
details and implementation details are presented in chapter 4.

Measurement-based execution-time analysis frameworks do not need a complex
abstract processor model since they use the hardware to perform execution-time mea-
surements. It seems simple, but the most important question when performing mea-
surements is: �What do I want to measure?�. In the industrial daily routine often
end-to-end measurements are performed using test data from normal operations or
user generated test data. However, the path being measured is unknown and it is
completely coincidental if the WCET path is ever executed during these measure-
ments.

To solve this problem the measurements have to be guided to �nd the path with
the longest execution-time. The following sections describe how di�erent paths can
be identi�ed for measurement and how test data is generated to execute these paths.
Since the number of end-to-end paths grows rapidly with the application size, it be-
comes soon infeasible to perform measurements of all end-to-end paths. The proposed
solution to split the application under test into smaller parts, called program segments
(PS), is also discussed in the following sections.

49

3.4 Measurement-Based WCET Analysis 3 Execution Time Analysis

3.4.1 Assumptions and Prerequisites

For the further elaborations about the hybrid WCET analysis approach the fol-
lowing assumptions about the usage of the C language features, the compiler and the
target hardware are made:

Programs have to be structured. Loops are created with for, while or do ...
while constructs; goto and <label>: are not used for the implementation of loops.

Type quali�ers and storage class modi�ers are used correctly. The sam-
ple code from an industrial application which is used as a test case uses declarations
like extern volatile *someVariable; to declare constant values stored in the ap-
plication ROM. This causes all ROM constants to be treated like input parameters
for the simulation and increases the state space for the model checker enormously.
The WCET analysis prototype performs a very simple data �ow analysis which has
two categories for variables - const and variable. The analysis is very simple but
when used in combination with loop analysis it can signi�cantly improve both, the
analysis e�ort as well as the analysis result. Since variables are categorized by their
access patterns (LHS or RHS expression) the const modi�er is only needed for extern
variables which are initialized outside of the current source module.

Programming according to the MISRA and DO-192 guidelines, which
does for instance not allow dynamic memory. However, conforming to these guidelines
should anyway be imperative for safety-critical systems.

The compiler does not change the control-�ow. This restriction is neces-
sary because the analysis tool works on source code and makes assumptions about
di�erent control-�ow paths which are used to perform measurements of the same
paths on the target hardware. Therefore, the CFG of the source code has to match
the CGF of the object code. It is not always completely clear which compiler options
modify the control-�ow on a given compiler. Kirner [Kir03] examines di�erent opti-
mization techniques and their e�ect on control-�ow. This requirement is certainly a
disadvantage since it forbids the use of several compiler optimization techniques.

The hardware does not su�er from timing anomalies. This is important
for the separate measurement of program segments. On simple architectures like the
ARM® instrumentation points only require constant time to execute, which can be
subtracted from the measurement result. Additionally, space in application object
code and memory to store the results is required. On more complicated architectures
the measurements also have an in�uence on the cache behavior. Therefore heavy-
weight software instrumentations have to be used on these architectures, which means
that the cache has to be �ushed at the beginning of each measurement to resemble
the worst-case (under the assumption that an empty cache is the worst case). On
architectures with timing anomalies an empty cache is not necessarily the worst-case
and therefore the cache �ushes have to remain in the code after measurements which
reduces the application performance signi�cantly. Therefore the proposed WCET
analysis method should not be used on these architectures until a solution for this
problem is found.

50

3 Execution Time Analysis 3.4 Measurement-Based WCET Analysis

Path Information

Test Data Generation

WCET Bound

WCET Calculation

Measured Exec−Times

Runtime Measurements

Test Data

Test Data Specification

Source Code (C)

Object Code

CFG preserving Compiler

Static Code Analysis
CFG Partitioning

Figure 3.5: Basic Hybrid WCET Analysis Approach

3.4.2 Basic Idea - Guiding Measurements by Static Analysis

After the general requirements have been de�ned in the previous section this
section gives an overview of the proposed hybrid WCET analysis approach. Figure 3.5
shows the basic architecture of a hybrid WCET analysis tool.

The input for the analysis is the application source code in C. Based on this source
code static analysis is performed. In the basic approach which is described here this
is primarily the identi�cation of control-�ow altering variables and control-�ow paths.
Based on the identi�ed variables and the control-�ow, test data is generated to cover
all feasible control-�ow paths. At the same time the compiler generates an instru-
mented executeable of the application, which is used together with the generated
test data to conduct execution-time measurements. The resulting execution-times
are combined in the WCET calculation step to calculate a safe WCET bound. Since
the generated test data covers all paths the WCET path is certainly executed.

Figure 3.5 illustrates the individual steps of hybrid WCET analysis. A portion of
the analysis is carried out using static methods, the other portion is performed using
execution-time measurements. The individual steps are described brie�y below:

1. The �rst step is static analysis. During this step all control-�ow paths through
the application are analyzed as well as loop bounds, functions calls and control-

51

3.4 Measurement-Based WCET Analysis 3 Execution Time Analysis

�ow information which is hidden in logic expressions and cannot be seen from
the program structure. However the number of end-to-end paths is very high,
which is the �rst essential problem. The proposed solution which is anticipated
in �gure 3.5 is to split the application into smaller fragments called program
segments PS (see next item).

2. The second step, called CFG partitioning, is combined with the �rst step. Its
task is to reduce the number of end-to-end paths by splitting the applications
into smaller program segments (PS). A description, why the number of mea-
surements can be reduced using this approach, can be found in the next section.

3. The third step is test data generation. In order to obtain safe WCET results
all paths within a PS have to be covered. However, there are often infeasible
paths which cannot be executed. These paths need to be identi�ed. The test
data generation and the identi�cation of infeasible paths is the second essential
problem to be solved.

4. After the test data are been generated all paths, except infeasible paths, can
be measured. In other words, the measurements will surely cover the path with
the longest execution-time.

5. The �fthth and last step is to combine the measured execution-times from the
individual segments into a single estimate of the WCET by using the structural
information gained in steps 1 and 2.

This short description of the hybrid WCET analysis approach points out two
important problems:

Feasibility: The feasibility of this method depends on the number of end-to-end
control-�ow paths. The proposed solution works for small case studies but real appli-
cations often have a total of 1010 to 10100 control-�ow paths. If the analysis of a single
path could be performed in 100ms, including test data generation and measurement,
the analysis of 1010 paths would still take 31.7 years.

Test data generation can clearly only be performed for feasible paths. The anal-
ysis framework has to identify infeasible paths and create test data for all other paths.

The next sections will discuss how to solve these problems. Other problems occur
when function calls and loops are to be analyzed. Possible solutions for the encoun-
tered problems are discussed in the next sections, too. A description of the technical
realization for the proposed solution can be found in chapter 4.

3.4.3 Partitioning or Segmentation of the CFG

A solution to the problem of the high number of paths is to divide the control-�ow
graph in smaller parts called program segments (PS) and only analyze the subpaths
of these segments. This reduces the total number of paths.

52

3 Execution Time Analysis 3.4 Measurement-Based WCET Analysis

(a) CFG with marked PS

Segment Paths
PS1 5
PS2 3

Task Paths
segmentation 8
end-to-end 15

(b) Path Counts

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140 160 180

P
at

hs

Program Segments (PS)

(c) PS vs. Paths

Figure 3.6: Concept of CFG Partitioning

Figure 3.6 explains how partitioning works. A simple CFG is shown in sub�gure a.
Sub�gure b shows a table with the path counts for sub�gure a. In the whole task there
are 15 end-to-end paths. If the CFG is broken up into two program segments which
are marked as PS1 and PS2 and contain 5 respectively 3 paths the number of total
paths drops to 8. This comes from the fact that both PS are evaluated independently
and when analyzing PS1 the control-�ow in PS2 is not considered. The separate
analysis reduces the multiplication of path counts for consecutive segments to an
addition. The larger the programs get, the larger the reduction of path counts. This
technique makes even programs with more than 10100 end-to-end paths analyzeable.
Sub�gure c, which is taken from [WKRP08], shows the relation between the number
of paths which have to be analyzed and the number of program segments.

As shown in section 3.3.4, instrumentation for execution-time measurements can
change the behavior of the application. In order to get accurate results measurements
should be taken from larger portions of code. The analysis framework performs the
segmentation automatically using a parameterizable path bound. The path bound
denotes how many control-�ow paths may be contained within a PS before it is
broken up to smaller segments. Wenzel [Wen06] has examined the relation between

53

3.4 Measurement-Based WCET Analysis 3 Execution Time Analysis

reuse

heur

random

mc

(a) Hierarchy

Model
Checker

Counterexample holds

Model

C source code

Assertion

Path ’x’ will not
be executed

Model is Safe

Path ’x’ is infeasible

Model is Unsafe

data to execute ’x’

(b) Using Model Checking

Figure 3.7: Test Data Generation

the number of PS and control-�ow paths, and shown that a path bound of around
100 results in a good compromise between the number of paths which have to be
analyzed and the accuracy of the analysis for most applications. Therefore a path
bound of 100 has been selected for the experiments is chapter 5.

3.4.4 Test data generation

The test data generation has to be completely automatic. It is not adequate for
an analysis tool to rely on user generated or, even worse, random input patterns.
However, random patterns are used in the proposed approach, too, as part of a
data generation process which combines random generated test data, heuristics∗, and
model checking. The implementation details of test data generation are described in
section 4.13. The test data is stored and reused for consecutive runs of the analysis
tool. Figure 3.7a shows the applied hierarchy of test data generation.

Model checking applies formal methods to �nite state machines (FSM) and checks
a set of given assertions if they hold within the model or not. Model checking is
complete, which means if a model violates a given property this is guaranteed to be
detected by the model checker. The model is extracted from the C source code by the
model checker. The assertion has to be something that can be negated by the model
checker like �Path 'x' can never be executed�. As �gure 3.7b [RWSP07] shows, the
model and the assertion are used as input for the model checker. When the model
checker cannot disprove the assertion, the given path can never be executed and is
infeasible. Therefore no test data is required for measurement. If the model checker
can identify a case, where the given assertion is wrong, which means that the given
path can be executed, the counter example yields the test data required to execute
the analyzed path. The technical realization of this test data generation process is
described in section 4.13.

∗Heuristic data generation was planned to reduce the number of paths which have to be model
checked but never implemented since during the experiments the test data generation worked fast
enough without it.

54

3 Execution Time Analysis 3.4 Measurement-Based WCET Analysis

3.4.5 Function Calls

There are two possible ways to resolve function calls: First the function can be
analyzed separately. During the analysis of the calling function the function call
is replaced by a basic block and the WCET bound of the function is assigned as
execution-time to the basic block. This solution is referred to as black-boxing. Second
the function can be inlined similar to C++ inline functions, an approach which is
referred to as inlining. Inlining leads to duplication of code, which is a drawback
especially in small systems with limited memory resources. Therefore the inlining is
only done during the analysis and test data generation. The code is not inlined in
the target code when measurements are performed.

Black boxing can lead to an overestimation of the execution-time for functions
which are normally called with a limited parameter set. Especially functions which
are called with constant parameters may be unbounded without their usual parameter
set.

Inlining takes the context from which the function is called into account and ana-
lyzes the control-�ow inside the loop considering the parameters given by the caller.
The parameters may be limited in their values by the caller or even be constants
which is especially important when the called functions contain loops.

Experiments that compare the WCET estimations using black-boxing and inlining
can be found in section 5.4. The reduction of overestimation using inlining is only
small for most applications.

3.4.6 Simpli�ed Data Flow Analysis

Data �ow analysis examines the dependencies amongst variables and is a common
analysis performed in compiler construction. The presented approach uses a simpli-
�ed forward data �ow analysis, which is practically a const analysis without value
propagation. The analysis process is described in section 4.7. It can only categorize if
a variable is const or var at a given basic block, depending on the usage of the variable
in assignment expressions. Side e�ect operators e�ecting the variable are analyzed,
too. In the context of this analysis const denotes that the value of a given variable
is not input data dependent. For instance the loop iterator variable inside a loop is
treated as const if all operations on it, which are the initial assignment, the change of
its value for each iteration and the checking of the loop exit condition, depend only
on constant values. Therefore the values const and var denote the combination of
value and control-�ow dependency rather than the actual value alone.

Loops require special handling. Iterations are performed during the analysis until
a �xpoint is reached. After the simpli�ed DFA algorithm �nishes it is known for
every basic block whether a variable holds a constant or a variable value.

55

3.4 Measurement-Based WCET Analysis 3 Execution Time Analysis

3.4.7 Loops

A generic algorithm for loop timing analysis is to �nd the path with the biggest
execution-time for each iteration and to calculate the sum of these execution-times
over all iterations. It has already been described in section 3.3.3 how the loop bound
can be determined by abstract interpretation, symbolic execution, Presburger arith-
metics, pattern recognition or model checking.

The proposed solution to analyze loops is therefore to generate test data for each
iteration to cover all paths within the loop. This solution requires N ∗|ΠLoop| paths to
be analyzed where N is the loop bound and |ΠLoop| is the number of paths contained
in the loop. As the analysis of loops in section 5.3 shows, the e�ort for this approach
can be quite high.

The simpli�ed data �ow analysis can be used to categorize loops. The simplest
loop type is the single-path constant-iteration (SP/CI) loop which can be recognized
because only const-variables are involved in the control-�ow decisions of the loop
header and body. The execution-time of this loop can be measured without even
generating any test data since the control-�ow through the loop is always the same.

Single-path variable-iteration (SP/VI) loops contain no data dependent control-
�ow in the loop body, but may contain data dependencies in the iteration condition
in the loop header. For these loops test data is generated so that the loop is executed
with the maximum possible iteration limit. Like for SP/CI the loop can be measured
without instrumentations in the loop body.

Multiple-path variable-iteration (MP/VI) loops require the generic loop handling
approach discussed before. This requires an instrumentation point inside the loop
body. This is not a big issue for the ARM® architecture but for architectures with
cache this can cause serious execution-time penalties and overestimations.

3.4.8 WCET Calculation Step

The WCET calculation step is easy once the execution-times for the individual
program segments have been determined. To calculate a WCET bound a longest
path search algorithm applied on the directed graph of program segments is su�cient.
In the presented WCET analysis framework the WCET calculation is implemented
using IPET. Using IPET and creating an ILP for the �nal WCET calculation has
the advantage that �ow facts, like the mutual exclusion of paths, can be integrated
in the process. An interesting possibility would be to use n paths with the longest
execution-time from each segment and check for mutual exclusions between them
using the model checker. The result could then be considered within the IPET model
[WKRP08].

3.4.9 Di�erences to MoDECS V2

The main goal of the new prototype is to show that the analysis of loops and
function calls is possible with the hybrid WCET analysis approach developed during

56

3 Execution Time Analysis 3.5 Summary

the MoDECS project. Further the method has been extended to support multiple
compilation units with correct visibility of variables and functions. Additionally the
analysis of paths caused by C short circuiting in logical AND (&&) and OR (||)
expressions and the conditional expression operator (?:) as described in section 2.1.2
has also been integrated.

The internal data structures of the V2 implementation could not be adapted with
reasonable e�ort for the needs resulting from the new requirements, which made a
complete rewrite necessary. Some of the basic algorithms explained in [Wen06] are
still used but have also been adopted and extended to support the new data structures.

3.5 Summary

In this chapter the notion of the worst-case execution-time and their importance
for real-time systems engineering has been explained. The concepts of response time,
event-triggered and time-triggered real-time systems have been shown. The di�er-
ences between static and measurement and hybrid WCET analysis have been shown.
The keystones of high and low level static analysis have been pointed out as well as
di�erent measurement techniques for measurement-based and hybrid WCET analysis
frameworks. Last the basic ideas for the hybrid WCET analysis approach, which is
used in the presented prototype have been introduced.

57

3.5 Summary 3 Execution Time Analysis

58

Chapter 4

Execution-Time Analysis
Framework

This chapter discusses the implementation of the WCET analysis framework,
starting with the development environment. The individual steps performed by the
hybrid WCET analysis framework, their implementation and emerging problems are
also discussed. The individual stepsare illustrated using the example code shown in
�gure 4.1a. Control-�ow in expressions aka. expression short-circuiting is explained
with its own example since it would increase the complexity of the example application
considerably.

4.1 Development Environment

The WCET analysis tool was developed under Debian GNU/Linux using XEmacs
and KDevelop as programming environment. Multiple free libraries were used during
the development to perform common tasks like command line parsing, solving lp
problems and pattern matching (see appendixB). The analysis tool is written nearly
completely in C++ except for the code which runs on the target. The target code,
both manually written and generated, uses ANSI-C.

The development was done on a PC equipped with an Intel® Core�2 Duo pro-
cessor running at 2GHz and with a main memory of 2GiB RAM which was funded
from the FFG grant.

4.2 Example Application

Figure 4.1a shows the example which is used to explain the function and imple-
mentation of the analysis framework in this chapter. It includes a function call and
a loop. For simplicity reasons there are no logical expressions with possible short-
circuits present in the example. There is a separate example with logic expressions
at the end of this chapter in section 4.6.

59

4.2 Example Application 4 Execution-Time Analysis Framework

1 int a, b, c, j;
2
3 int equal (int _a , int _b)
4 {
5 int rv;
6 0 if (a==b)
7 3 rv == 1;
8 else
9 4 rv == 0;
10 2 return rv;
11 1 }
12
13 int my_main ()
14 {
15 int i;
16 int k = j-j+1;
17
18 5 c = equal(a, b);
19
20 10 for (i=1; i<=5; ++i) {
21 9 if (i == 1) {
22 12 a++;
23 13 } else if (i % 2) {
24 15 i += k;
25 } else {
26 16 b++;
27 14 }
28 11 }
29
30 8 if (a) {
31 18 if (b) {
32 20 a=0;
33 } else {
34 21 b=1;
35 19 }
36 } else {
37 22 switch (b) {
38 case 1:
39 24 a=1;
40 break;
41 case 2:
42 25 b=1;
43 case 3:
44 26 c=a;
45 break;
46 case 4:
47 28 break;
48 default:
49 30 a=b;
50 23 }
51 17 }
52 6 }

(a) Listing of example.c

5

0

3 4

2

1

10

9

13

15 16

1412

11

8

27

2218

20 21

19 25

24 26

29

31

28 30

23

17

6

PS1

PS2

PS3

PS4

PS3

(b) Segmented Control Flow Graph (CFG)

Figure 4.1: Running Example for Chapter 4

60

4 Execution-Time Analysis Framework 4.3 Input Parsing

4.3 Input Parsing

The lexical analysis of the input is based on �ex [Pro08, App99] and uses a lex
speci�cation �le based on the ANSI-C draft grammar published by Je� Lee in 1985
and updated in 1998 to conform to ANSI X3.159-1989 which is the C89 standard. The
grammar used for bison, which is the GNU version of yacc [Joh75, App99], is based
on the same source. Both �les are available from ftp://ftp.uu.net/usenet/net.
sources/ansi.c.grammar.Z. The grammer had to be extended to support typedefs.
Typedefs are by the C language de�nition a storage class for variables. However, they
do not declare variables but types instead. These types have to be recognized by the
lexer, even during the de�nition of the new data type and cannot be detected with a
LALR(1) parser. An example that cannot be processed by a LALR(1) parser is

typedef struct { char data; lptr* next; } lptr;
where the data type lptr, a type representing a single linked list, is used in its own
de�nition.

Additionally all non-ANSI extensions like __asm__, __cdecl, near, far,
__inline, etc. are ignored by the lexical analyzers and therefore they are no longer
present in the generated code. Comments are also ignored. Include-�les and de�ni-
tions are processed by calling the GNU cpp preprocessor.

4.4 Code Generation

In order to perform measurements or model checking, code has to be generated.
The code generator uses the syntax tree and reproduces the input code. Since com-
ments and empty lines as well as linebreaks are not generated, the generated code
has a di�erent layout than the input code. The code generator tries to make the code
as readable as possible. Additionally the generated code is processed by the GNU
indent tool. Some constructs are already modi�ed by the parser. Commands which
use expression statements like if (x) ++x; are altered by the parser to compound
statements like if (x) { ++x; }. This is necessary so that instrumentation code can
be inserted in the if -part of the conditional statement without altering the control-
�ow and semantics. In order to access static variables the names of static variables
are altered and moved from the function scope or one of its sub-scopes to the global
scope which is also done by the code generator. Additionally instrumentation code
can be inserted on demand. To create target code, a stub function at the end of
the application is created, which assigns the generated test data to global or static
variables. This process is described in section 4.15.

4.5 CFG Generation

The control-�ow graph is created from the syntax tree which is generated by the
parser. The CFG generation uses a recursive approach. When the CFG for a speci�c

61

ftp://ftp.uu.net/usenet/net.sources/ansi.c.grammar.Z
ftp://ftp.uu.net/usenet/net.sources/ansi.c.grammar.Z

4.5 CFG Generation 4 Execution-Time Analysis Framework

function is generated, the start and the exit nodes are allocated. The build_cfg_rec
function is called with a syntax tree node (type stn) which represents the function
declaration and the CFG node (type cfg) which represents the function start as
argument. In the following CFG refers to the control-�ow graph while cfg refers to
the cfg data structure which represents a single CFG node. The cfg data structure
includes pointers to the left and to the right successor node. The ∅ denotes the value
of pointers which do not reference to anything similar to the NULL pointer in C.

Figure 4.2 shows a simpli�ed CFG building algorithm which accepts compound
statements, expression statements, conditional statements, function calls and return
statements. The control-�ow in expression statements is not considered and the
conditional statements are limited to the form �if (. . .) A else B� where the else
part is mandatory. This is only a small subset of C but enough to explain the CFG
building algorithm.

Before build_cfg_rec is called, two cfg nodes are allocated, for the entry and exit
points of the function. By default all pointers are initialized with ∅ in the constructor
of cfg, so the address of the exit point is assigned to the left successor member variable
left_child.

When build_cfg_rec is called with stn_node pointing to a simple expression state-
ment, the statement is appended to the statement list of the entry node and a pointer
to the entry node is returned.

If stn_node is pointing to a conditional expression, then three cfg nodes are
created for the if-side, the else-side and for the control-�ow merge. The successor of
the merge node is set to the successor of the start node. The left and right successors
of the start node are set to the left and the right node. The left successor of the
left and right node are set to the merge node. This concludes the construction of
the control-�ow structure of the if statement. By calling build_cfg_rec recursively
the statements on the left and on the right control-�ow branches are �lled with the
statements from the left and the right syntax tree branch. After this is �nished the
merge point is returned to the calling build_cfg_rec function where the statements
following the if statements can be appended.

For compound statements a build_cfg_rec is called for each statement. The re-
turn value is stored in act and used as input value for the next call to build_cfg_rec
and as return value for the build_cfg_rec function. Through this method the next
statements will be appended at the merge point in case there is a conditional expres-
sion encountered. It is important for statements like return that the exit point of a
function or merge points are never changed.

For functions two new nodes are produced and integrated in the control-�ow.
Both nodes are marked specially to enforce segment boundaries. For inlined functions
build_cfg_rec is called with the �rst cfg node and the de�nition of the function in
the syntax tree. The exit point of the function is stored on a global stack. When a
return is encountered, the address held in the top value of this stack is used as target.
When the function processing is �nished the exit point is removed from the stack.
For black-boxed functions the function is called in the PS de�ned by the two newly

62

4 Execution-Time Analysis Framework 4.5 CFG Generation

build_cfg (stn* function)
stn *start=new(stn), *end=new(stn)
start.left_child = end
build_cfg_rec (function, start)
return

cfg* build_cfg_rec (stn* stn_node, cfg* start)
// add expressions directly to the actual node
if typeof(stn_node) == 'expression_statement'

start->add_statement(stn_node)
return start

// build CFG graph skeleton for if statement
// fill left and right side, then add next
// statement to CFG merge point
if typeof(stn_node) == 'selection_statement'

stn *left=new(stn), *right=new(stn), *merge=new(stn)
left->left_child = merge
right->left_child = merge
merge->left_child = start.left_child
start->left_child = left
start->right_child = right
build_cfg_rec (stn_node->left, left)
build_cfg_rec (stn_node->right, right)
return merge

// add each statement to compound statement
// consider changes of the actual CFG node
if typeof(stn_node) == 'compound_statement'

stn *act=start
for each child in stn_node.get_childs do

act = build_cfg_rec (act, child)
return act

// build CFG graph skeleton for function, perform function
// call, manage return address stack, mark nodes for PS
if typeof(stn_node) == 'function_call'

stn *fu_entry=new(stn), *fu_exit=new(stn)
fu_exit->left_child = start->left_child
start->left_child = fu_entry
fu_entry->left_child = fu_exit
global_return_stack.push(fu_exit)
build_cfg_rec (stn_node.function, fu_entry)
global_return_stack.pop()
fu_entry.mark_for_segmentation()
fu_exit.mark_for_segmentation()
return fu_exit

// jump to top element of return address stack
if typeof(stn_node) == 'return'

start.left_child = global_return_stack.top
return \emptyset

Figure 4.2: Basic CFG building algorithm

created nodes and the WCET of the PS is set to the WCET of the called function
which is speci�ed on the command line or in the parameter �le.

63

4.6 Expression Paths 4 Execution-Time Analysis Framework

The real implementation is more sophisticated since it has to check all statements
for control-�ow paths, which was omitted in the basic example. Also stacks have to
be used to store the exit points of loops and case constructs, but the principal method
of performing a top-to-bottom traversal of the syntax tree and inserting it between a
�oating start point and a �xed end point in the control-�ow graph remains the same.
The CFG generation supports unstructured constructs like goto, exit and return but
unstructured programs can prevent segmentation or sometimes crash the prototype
if it tries to perform segmentation. It is safe to use these language constructs in small
functions which are not subject to segmentation and therefore the analysis tool will
print a warning, but it will still try to perform timing analysis. However, unstructured
programming should not be used since unstructured programs are error prone and
hard to maintain.

Based on an extended version of this algorithm the CFG in �gure 4.1b has been
created. The application used to create this CFG was the application example in
�gure 4.1a. The numbering of basic blocks corresponds to the order in which the
CFG nodes are created by the described algorithm. The marked nodes 0, 8, 9 and 10
in �gure 4.1b are requested segment borders from the CFG generation algorithm. The
second set of marked nodes, node 27, 29 and 31 are nodes needed for the construction
of a case statement. Since a CFG node has only a left and a right child a case
statement has to be modelled using helper nodes which do not correspond to the
actual control-�ow. The marked nodes are ignored and not used any further except
for the transversal of the CFG. The nodes are used neither for the dominator nor for
the postdominator tree nor for the dtree. Since these nodes are only virtual nodes
instrumentations cannot be placed in them too.

4.6 Expression Paths

Paths inside expressions are an important feature of C. Expressions with control-
�ow paths are not included within the application example to keep the example
and the data structures generated from the example within reasonable size. The
minimalistic example shown in �gure 4.3 will be used to outline the expression paths
and how they are integrated in the control-�ow.

When a logic AND (&&) and OR (||) expression or a conditional expression
operator (? :) is encountered during the CFG generation, an additional subgraph
within the control-�ow graph is created. Figure 4.3b shows the empty subgraph in
step 1. These nodes can also be seen as nodes 0, 2, 3 and 4 in �gure 4.3c. In the
next step the expression is evaluated from left to right. The logical �and� is put in
the structure of the CFG as it can be seen in �gure 4.3b step 2. The next logical
sub-expression, which is the �or�, is placed into the triangle T-1-F as seen in step 3.
By evaluating the logical expression in the right order, which is given by the syntax
tree, and including each logical AND, OR and conditional expression in the lower
triangle of the created sub-CFG the control-�ow of logic expressions can easily be

64

4 Execution-Time Analysis Framework 4.6 Expression Paths

1 int logic (int a, int b, int c)
2 {
3 if (a && b || c)
4 return 1;
5 else
6 return 0;
7 }

(a) Code Example

step 1 step 2 step 3

(b) Modelling the CFG of a&&b||c (c) Annotated Control Flow Graph
(CFG)

Figure 4.3: Shortcut Paths in Logical Expressions

modelled. The syntax tree considers braces and operator precedence implicitly by
applying the C grammar rules.

The analysis tool examines only logical AND and OR expressions. Therefore
the T node and the F node do not necessarily represent that the whole expression
evaluates to true or false at this control-�ow point. Therefore the merge node after
the sub-CFG of the logical expression is needed. Figure 4.3c shows an annotated
CFG of sub�gure a. It can be seen that the nodes contain no statements (stm:0)
which makes instrumentation impossible, which is annotated as (instr:false).

For random test data generation and for the model checker model the logi-
cal subexpressions have to be evaluated. During the creation of the sub-CFG,
each node is assigned a string which contains a logical expression. Node 6
holds "(a)", node 5 holds "!(a&&b)||(!a)", node 3 holds "!(a&&b)||(c)" and
node 4 holds "!(a&&b||c)". Node 2 is assigned "1" since it is always exe-
cuted. If the model checker should cover the sub-path (6,5,3,2) the statement
if(!((a)&&(!(a&&b)||(!a))&&(!(a&&b)||(c))&&(1))) return; is created.
This makes the assertion used for test data generation unreachable on a di�erent

65

4.7 Const Analysis 4 Execution-Time Analysis Framework

1 int logic (int a, int b, int c)
2 {
3 if (a && b || c) {
4 if ((a)) instr (6);
5 if (!(a&&b)||(!a)) instr (5);
6 if (!(a&&b)||(c)) instr (3);
7 if (!(a&&b||c)) instr (4);
8 if (1) instr (2);
9 instr (8);
10 return 1;
11 } else {
12 if ((a)) instr (6);
13 if (!(a&&b)||(!a)) instr (5);
14 if (!(a&&b)||(c)) instr (3);
15 if (!(a&&b||c)) instr (4);
16 if (1) instr (2);
17 instr (9);
18 return 0;
19 }
20 }

Figure 4.4: Instrumentation of Logic Expressions

execution path through the logic expression. The code for the test data generation
is similar. In each side of the if -statement the instrumentations for the nodes in the
expression are placed as shown in �gure 4.4. It should be noted that the instrumen-
tation points for node 0 and 1 are not shown in �gure 4.4 since they are in the calling
function directly before and after the call to the logic function. More information
about how instrumentations for test data generation and for model checking work
can be found in section 4.13.

4.7 Const Analysis

The const analysis is required for the categorization of di�erent loop types in the
loop analysis, which is the next analysis step. Figure 4.5 shows a pseudo language
implementation of the basic algorithm used for the simpli�ed data �ow analysis. Each
CFG node holds the const variables at the beginning and at the end of the CFG which
are stored in the class member variables const_in and const_out. Additionally the
member variable const_written holds a list of the variables which are written in the
CFG node. This is necessary to remove variables from the const list which are in the
const_out list of the parents but assigned di�erent values in each parent node. For
instance after the statement if(x) a=4; else a=4; the variable �a� would not be
considered as const since it has been updated separately in the parent CFG nodes.

Figure 4.5 does not include const analysis for loops. However this is a simple �xed
point iteration which is performed until there are no more changes of the set of const
variables in the loop header. When a loop header is encountered the set of constant

66

4 Execution-Time Analysis Framework 4.8 Loop Analysis

variables in the loop header is memorized. If the control-�ow takes the backedge after
the loop body the new set of const variables is calculated. If the memorized variable
set di�ers from the actual const variable set the new const variable set is memorized
and the loop body is processed again until a �xed point is reached. Iteration variables
are handled specially. If the initial assignment to the iteration variable is a constant
value and the iteration expression contains a constant value then the variable is
considered as const, as long as it is not modi�ed in the loop body by a non-constant
variable.

4.8 Loop Analysis

The loop analysis consists of two steps. The �rst step is the categorization of the
loop type based on data dependencies. The second step, which is not required for all
cases is the calculation of the loop bound using model checking.

4.8.1 Loop Categorization

The explanation in this section assumes a simple �for�-loop with an initial expres-
sion statement, a loop check condition and an iteration expression like

for(i=0; i<=10; ++i),
where i=0 is the initial expression, i<=10 the check condition and ++i the iteration
expression. The analysis works for other loop types too but the loop categorization
can be easier explained based on a single loop type.

The loop header and body are examined separately for control-�ow dependencies.
First the loop categorization examines if the initial expression and the iteration ex-
pression depend only on constant expressions and if the iterator variable is modi�ed
inside the loop body. Further the loop condition is checked to determine if the loop
bound is constant or variable. Last the control-�ow inside the loop is evaluated by
scanning the condition of each conditional statement in the loop body and inlined
functions in the loop body. Loops containing non-inlined function calls are considered
to have control-�ow dependent paths.

Based on the const analysis of the loop header and body the loop can be cate-
gorized in one of the three following categories. The selection of the measurement
technique for the loop is then based on this categorization.

The �rst loop type has only constants in the loop header and only constant control-
�ow decisions in the loop body, therefore the loop has only a single execution path and
a constant number of iterations (SP/CI). Since the loop does not have any control-
�ow decisions it can be replaced by a basic block for further analysis. This is done by
removing all CFG information inside the loop body so that only the CFG containing
the loop header remains. Since the code generation is based on the syntax tree the
code will still be generated correctly for test data generation and measurements.

67

4.8 Loop Analysis 4 Execution-Time Analysis Framework

analyze_const_variables (cfg *fstart)
// analyze global constants, and parameter files
set<variable*> global_const_vars
add_const_vars_defined_in_parameter_file(&global_const_vars)
add_variables_with_const_storage_class(&global_const_vars)
set<cfg*> processed
queue<cfg*> waiting
// analyze function start, add children to queue
analyze_const_in_cfg_node(fstart, global_const_vars)
processed.add(fstart)
if (fstart->left_child) then waiting.push_back(fstart->left_child)
if (fstart->right_child) then waiting.push_back(fstart->right_child)

while (! waiting.empty())
cfg *act = waiting.pop_front()
bool parents_finished = true
set<variable*> const_vars = parent[0].const_out
// process each parent
for each parent in act->parents do

// intersect const variables of parents
const_vars.intersect(parent.const_out)
// for >2 parents remove updated variables
if (parents.count() >= 2) then const_vars.subtract(parent.const_written)
// check if all parents have been processed
if (! processed[parent]) then

parents_finished = false
act_pathcount += pathcount[parent]

if parents_finished then
// process current node, add childs
analyze_const_in_cfg_node(act, const_vars)
processed.add(act)
if (act->left_child) then waiting.push_back(act->left_child)
if (act->right_child) then waiting.push_back(act->right_child)

else
// process current node later
waiting.push_back(act)

analyze_const_in_cfg_node (cfg* node, set<variable*> const_vars)
node->const_in = const_vars
// process each basic block
foreach bb in node->basic_blocks do

// find lhs and rhs variables (including sideeffects)
set<variable*> lhs = get_lhs_variables(bb)
set<variable*> rhs = get_rhs_variables(bb)
// if all rhs values are const the result is const
if is_subset(rhs, const_vars) then

const_vars.add(lhs)
node->const_written.add(lhs)

else
const_vars.subtract(lhs)

// write the set of new constants to the CFG node
node->const_out = const_vars

Figure 4.5: Const Analysis

68

4 Execution-Time Analysis Framework 4.8 Loop Analysis

The second supported loop type does not have any control-�ow decisions based
on non-const variables in the loop body but the loop check condition uses non-const
variables. If the initial expression or the iteration expression depends on non-const
values too, the loop does not match this category. Based on the analysis this loop
type is supposed to have a single control-�ow path but a variable number of iterations
(SP/VI). Like the SP/CI loop this type of loop can be reduced to a single CFG node,
but test data has to be generated in order to execute the loop with the maximum
iteration counter.

The last category does not make any assumptions on the number of iterations or
control-�ow decisions. It is designed to handle generic loops with multiple control-
�ow paths and variable iteration counts (MP/VI). In order to perform measurements
test data has to be generated to cover each path inside the loop for each iteration.
The WCET of the loop is then calculated as

∑
max(ETi) over all iterations. This

approach handles loops which execute paths based on the iteration counter like �if
(i%2) . . .� well but it overestimates loops which execute paths based on the input
data. An example would be a linear search over an array which performs some actions
when a given key is found. In this case the test data generation would search the
test data to execute the special case in each iteration. Section 5.3.3 examines this
behavior and shows that the overestimation can be quite high. When conducting the
measurements with the generated test data, two instrumentation points are placed
after the loop header. In �gure 4.1b the loop header is located in the CFG node
10 and the instrumentations are placed before node 8 and node 9. When the loop
is reached by the control-�ow, either the instrumentation in node 8 or node 9 is
triggered, if the loop is not executed at all or if the �rst iteration is performed. The
next measurement starts at node 9 and stops at node 8 when the loop condition is
false or at node 9 when another iteration is performed. For loops with a contain more
control-�ow paths than the path bound segmentation of the loop body is performed
and additional instrumentation points are placed inside the loop body.

4.8.2 Loop Bound Analysis

In order to perform measurements for SP/VI and MP/VI loops the loop bound
has to be known. To calculate loop bounds the CBMC model checker is used. Fig-
ure 4.6 shows an excerpt of the application example shown in �gure 4.1. The mod-
i�cations needed for loop analysis can easily be performed in the code generator.
The necessary alterations are the insertion of the loop counter at the beginning of
the program, shown in line 1 of �gure 4.6, the increment of the loop counter as �rst
statement inside the loop, shown in line 22, and the assertion directly after the loop
as shown in line 33.

After the needed modi�cations have been made the CBMC model checker is
used on the model to check is the maximum iteration count of the loop is less than
LOOP_MAX. The constant LOOP_MAX can be de�ned on the command line using the
-D switch. The output of CBMC is shown in �gure 4.7 for two subsequent calls,
the �rst with a path bound of 4 and the second with a path bound of 3. Since the

69

4.9 Counting Paths Between Two Nodes 4 Execution-Time Analysis Framework

1 int loopcounter = 0;
2 int a, b, c, j;
13
14 int mymain ()
15 {
16 int i;
17 int k = j-j+2;
20
21 for (i=1; i<=5; ++i) {
22 loopcounter ++;
23 if (i == 1) {
24 i += k;
25 } else {
26 if (i % 2) {
27 a++;
28 } else {
29 b++;
30 }
31 }
32 }
33 assert(loopcounter < LOOP_MAX);
57
58 }

Figure 4.6: Model Checking for Loop Bound Calculation

assertion does not hold in the second case, the veri�cation of the model fails and the
model checker generates a counter example. The model checker can be instructed
to generate xml output which is easier to parse but the plain text output is better
for a demonstration of the method. Therefore only the text output is not shown in
�gure 4.7. It is easy to perform a binary search on the loop bound, starting with
increasing values LOOP_MAX=1 . . . 2n until the veri�cation model holds. Then a binary
search can be performed on the interval [2n−1 . . . 2n] until the loop bound is found.
The search uses a maximum of 2 ∗ ld(n) steps. It is also possible to use more than
one assertion at the same time and the method has also been implemented counting
up in 1 . . . 28n steps and down using 28 search intervals instead of 2. However, since
the model checking process is fast enough, it is su�cient to use a binary search.

4.9 Counting Paths Between Two Nodes

In order to perform segmentation, the number of paths between two CFG nodes
must be known. This section introduces the path counting algorithm used in the
WCET analysis tool.

The algorithm shown in a pseudo-language implementation in �gure 4.8 works by
�executing� the control-�ow nodes and calculating the sum of paths to all predecessor
nodes which is the number of paths to the actual node. When control-�ow joins are
encountered the algorithm processes all other nodes until each parent node has been

70

4 Execution-Time Analysis Framework 4.9 Counting Paths Between Two Nodes

$ cbmc --function mymain -D LOOP_MAX =4 example.c
file example.c: Parsing
Converting
Type -checking example
Generating GOTO Program
String Abstraction
Pointer Analysis
Adding Pointer Checks
Starting Bounded Model Checking
Unwinding loop 0 iteration 1 file example.c line 21 function mymain
Unwinding loop 0 iteration 2 file example.c line 21 function mymain
Unwinding loop 0 iteration 3 file example.c line 21 function mymain
size of program expression: 46 assignments
Generated 1 claims , 0 remaining
VERIFICATION SUCCESSFUL

$ cbmc --function mymain -D LOOP_MAX =3 example.c
file example.c: Parsing
...
Generated 1 claims , 1 remaining
Passing problem to MiniSAT
Running MiniSAT
51 variables , 26 clauses
SAT checker: negated claim is SATISFIABLE , i.e., does not hold
Building error trace

Counterexample:
State 1 file example.c line 1 thread 0
--

loopcounter =0 (00000000000000000000000000000000)
...
State 38 file example.c line 21 function mymain thread 0
--

example :: mymain ::1::i=6 (00000000000000000000000000000110)

Violated property:
file example.c line 33 function mymain
assertion
loopcounter < 3

VERIFICATION FAILED

Figure 4.7: CBMC Output for Loop Bound Checking

processed. For real applications in C++ it is convenient not to access the cfg nodes
directly but to use small proxy classes which provide access functions to the left and
right child and to the vector of parent nodes. This makes the algorithm useable in
the forward and in the backward direction.

71

4.9 Counting Paths Between Two Nodes 4 Execution-Time Analysis Framework

bigint count_paths (cfg* from, cfg* to)
map<cfg*,bigint> pathcount
queue<cfg*> waiting
pathcount[from] = 1

if (from->left_child) then
waiting.push_back(from->left_child)

if (from->right_child) then
waiting.push_back(from->right_child)

while (! waiting.empty())
cfg *act = waiting.pop_front()
bool parents_finished = true
bigint act_pathcount = 0
foreach parent in act->parents do

if (! pathcount[parent]) then
parents_finished = false
act_pathcount += pathcount[parent]

if parents_finished then
pathcount[act] = act_pathcount
if (act == to) then

if (! waiting.empty()) then
return -1

else
return act_pathcount

if (act->left_child) then
waiting.push_back(act->left_child)

if (act->right_child) then
waiting.push_back(act->right_child)

else
waiting.push_back(act)

Figure 4.8: Path Counting Algorithm

As a side note it should be mentioned that the same algorithm can also be used
for end-to-end path calculations. Loops are counted to be executed with zero or
one loop iteration. However this requires special handling since the algorithm waits
at the loop header for the control-�ow to merge. Since one of the parents is the
backedge a deadlock would occur. Therefore loops are marked with a special �ag and
are executed when all parents which are not backedges have been evaluated. In the
�rst iteration the loop body is processed using the sum of all parent path counts.
When the control-�ow reaches the loop header again, the number of paths of the loop
is calculated from the sum of all parent path counts, including the backedges, and
processing continues with the CFG node following the loop exit. The loop handling
is not shown in �gure 4.8 to keep the basic algorithm small.

72

4 Execution-Time Analysis Framework 4.10 Dominator and Postdominator Tree

4.10 Dominator and Postdominator Tree

The dominator tree and postdominator tree represent control-�ow hierarchies be-
tween basic blocks as de�ned in section 2.2.6. The root of the dominator tree starts
from the entry node of the function. Each node in the tree is a dominator of all of
its child nodes and their branches. Similar to the dominator tree each node in the
postdominator tree postdominates its own children and their subtrees. The trees can
be built using the control-�ow but it is much easier to build them during the creation
of the CFG and use structural knowledge about control-�ow branches and merges
that are available at this time.

Figure 4.9 shows the dominator and postdominator tree for �gure 4.1b. The
dominator and postdominator relations are very important for the segmentation pro-
cess which is described in the next section. The de�nition of a program segment
in section 2.2.7 states that there is only one entry node and only one exit node.
Given a program segment PSi = (Ni, Ei, Si, Ti) with Si = {si} and Ti = {ti}
then si = dom(n) must hold for all n 6= si ∧ n ∈ Ni as well as ti = pdom(n)
must hold for all n 6= ti ∧ n ∈ Ni. This means the entry point is a dominator
and the exit point is a postdominator for all program segments. Node 22 and
node 23 which are specially marked in �gure 4.9 show this relation for a partic-
ular program segment. Since BB22 = dom(BB23) ∧ BB23 = pdom(BB22) holds,
there exists a PS with BB 22 as entry and BB 23 as exit point. Given a CFG
G = (N, E, s, t) a PS can be de�ned as PS3 = (N3, E3, {s3}, {t3}) where PS3 ⊆ G
and ∀n ∈ N : [BB22 = dom(n)∧BB23 = pdom(n)∧n ∈ N3]∨ [n /∈ N3]. Generally all
basic blocks in the program which are dominated by the start node of a program seg-
ment and postdominated by the exit node belong to the given PS. The other marked
nodes, 0, 8, 9 and 10 are segment borders which have been set according to syntactic
rules during the CFG generation and have to be considered during the segmentation.

4.11 Segmentation

The segmentation is based on the dominator and postdominator tree and the
path counting algorithm introduced in the previous section. Segmentation uses the
function �nd_next_match to �nd CFG nodes which can be used to create a PS so
that p = dom(find_next_match(p))∨find_next_match(p) = pdom(p). Additionally
the function check_for_marked is used to check if a node in a possible PS requests
segmentation. The path counting function count_paths(x,y) which has been de�ned
in �gure 4.8 is used to calculate the size of program segments.

The segmentation algorithm starts by �nding a possible match (as de�ned above)
to create a PS. If no match has been found, the function end or a control-�ow join
has been reached, assuming structured programming. In this case a PS is created
with a single CFG node. If a match has been found the algorithm tries to extend the
PS until the path bound is reached (count_paths(x,y) >pathbound) or a CFG node

73

4.11 Segmentation 4 Execution-Time Analysis Framework

(a
)D

om
in
at
or

Tr
ee

(b
)P

os
td
om

in
at
or

Tr
ee

Fi
gu

re
4.
9:

D
O
M

an
d
PD

O
M

tr
ee

fo
re

xa
m
pl
e.c

74

4 Execution-Time Analysis Framework 4.11 Segmentation

perform_segmentation (cfg* start, cfg *stop, function* f)
cfg* match_cfg = find_next_match(start)
// last segment of branch or function
if (!match) create_segment(start, [stop], f, 1)
else

bool extend
bigint match_paths = count_paths(start, match)
bool match_marked = check_for_marked(start, match)
do // try to grow the segment as large as possible

extend = false
if (match_paths <= pathbound && !match_marked) then

cfg* next_cfg = find_next_match(match)
bigint next_paths = count_paths(start, next)
bool next_marked = check_for_marked(start, match)
if (next_paths <= pathbound && !next_marked) then

match_cfg = next_cfg
match_paths = next_paths
match_marked = next_marked
extend = true

while extend == true
if (match_paths > pathbound || match_marked)

// split the segment
create_segment(start, [start->left_child, start->right_child], f, 1)
perform_segmentation(start->left_child, match_cfg, s)
if (start->right_child) perform_segmentation(start->right_child, match_cfg, f)
perform_segmentation(match_cfg, stop, f)

else // add the segment
create_segment(start, [match_cfg], f, match_paths)
perform_segmentation(match_cfg, stop, f)

// find a cfg t that s=dom(t) and t=pdom(s) and ensure t can be instrumented
find_next_match (cfg* s)

queue<dom*> q;
dom *s_d = bb2dom[s->id]
pdom *s_p = bb2pdom[s->id]
q.push_back(s_d->getChilds())
while not q.empty()

dom *t_d = q.pop_front()
pdom *t_p = bb2pdom[dom->cfg_id]
cfg *t = int2cfg[dom->cfg_id]
// check if s=dom(t) and t=pdom(s) and if t can be instrumented
if (is_parent(s_d,t_d) && is_parent(t_p,s_p) && t->instr) return t;
else q.push_back(t_d->getChilds())

// check if a node in the possible PS requests segmentation
bool check_for_marked (start, match)

if (start->request_segmentation)
return true;

return check_for_marked (start->left_child, match) ||
(start->right_child && check_for_marked (start->right_child, match);

Figure 4.10: Segmentation Algorithm

75

4.12 Decision Tree (dtree) 4 Execution-Time Analysis Framework

is marked as a segmentation border. If one of these events occurs the size of the PS
is not further increased.

In the case the path bound is reached or a CFG node is marked as program
segment border for the �rst call to �nd_next_match then a PS consisting of a single
node is created and the segmentation continues with the left and the right child
nodes. The segmentation continues with the next node after the segment by calling
perform_segmentation with cfg where the control-�ows from left and right child nodes
are merged.

The results of segmentation of �gure 4.1a can be seen in sub�gure b. The graphical
representation of the program segments has been manually edited since the dot-tool
from the GraphViz package does not draw them very nicely. In fact it is impossible
to create a circular line from node 9 to node 9 which covers the whole PS4. This
in�uences only the graphic representation of PS but has no e�ect on the analysis.
Experiments concerning the segmentation for di�erent path bounds can be found in
[Wen06].

4.12 Decision Tree (dtree)

The decision tree (dtree) represents all possible control-�ow decisions within a
program segment. The root of the dtree represents the start of a PS. Each decision
in the application creates a branch in the dtree. Each leaf of the dtree represents
a unique execution path through a program segment. Figure 4.11 shows the dtree
for the example application. The root of the tree representation is the analyzed
function, followed by the program segments, which represent the �rst generation of
child nodes. It can be seen in PS4 that each iteration of a MP/VI loop has its own
dtree, or set of dtrees if the loop contains more than one basic block. The dtree is
especially useful to hold test data. When each basic block in instrumented with its
own ID then it is easy to monitor the execution from the root to a leaf. When using
random test data and following the execution to the leaf, it can be seen whether test
data exists already for a speci�c leaf or not. In the latter case a reference to the
data set is stored in the dtree; further an indicator which marks the data as random
generated. Additionally a counter which is initialized to 0 before each execution of
the application and increased with the start of each encountered PS is stored in the
leaf of the dtree, denoted as n=. . . in �gure 4.11. This is important when performing
measurements and the instrumentation points carry only a time stamp and no ID as
described in section 4.15. In addition all leafs of the dtree are connected as a linked
list, which makes it easy to check which leafs hold already test data and which are
empty.

After test data generation, which is described in the following section, each leaf
node of the dtree should be reached by random data RND, model checker generated
data MC or be infeasible INF and carry a reference to a data set ds as well as
a PS counter n. Figure 4.11 shows the dtree of the example application when 100
random data sets are used. For all experiments conducted in chapter 5 10,000 random

76

4 Execution-Time Analysis Framework 4.12 Decision Tree (dtree)

Fi
gu

re
4.
11

:D
Tr

ee
fo
rt

he
Ex

am
pl
e
A
pp

lic
at
io
n

77

4.13 Test Data Generation 4 Execution-Time Analysis Framework

data sets have been used. In order to observe how the model checked test data are
integrated with the random test data this number has been reduced. It can also be
seen that many paths in the loop are infeasible since the loop is basically a single
path loop and the analysis framework has been tricked to treat it as MP/VI loop
through the use of an unknown variable as shown in �gure 4.1a line 16.

A design �aw in the decision tree implementation of the new prototype imple-
mentation is that only the children of the root node may contain iteration counters
for loops like PS4 in �gure 4.11 and hold child nodes for individual iterations. This
makes it impossible to represent nested loops in the dtree. Basically it would not be
challenging to change the underlying data structures to allow nested loops but since
the dtree is a central data structure a huge number of changes in all modules would
be required, with an estimated implementation e�ort of four weeks (including testing
and debugging).

4.13 Test Data Generation

The dtree is used to �nd out which test data set leads to the execution of a given
CFG path. By using instrumentations on all basic blocks, the dtree is also useful to
follow the execution path of the application. And the dtree can be used to create the
model checker model. The following sections describe how test data is generated and
how the dtree is used in this process. All individual test data generation methods can
be disabled by command line options: Test data reuse and model checking directly
by command line switches, random test data generation by setting the number of
random generated test data sets to zero.

4.13.1 Reused Test Data

The �rst step when generatig test data is to reuse existing test data. When
measurements are performed all test data are stored in an xml �le. On successive
measurements the saved test data are loaded from the xml �le and reused. It would
possibly be a good idea to include a representation of infeasible paths in the test data
cache too, but then there has to be ensured that the application is exactly the same,
and that the segmentation and other command line options remain exactly the same
for each analyzer run. A similar e�ect can be achieved by disabling model checking
from the command line and using cached data, since test data for the execution of
all feasible paths is stored in the cache. However, this should be handled with care.

The test data cache cannot be used to measure a set of user generated test data,
since only one data set for each execution path in a PS is used. The rest is discarded.
Therefore it would be di�cult to assign the measurement results to a unique data
set.

78

4 Execution-Time Analysis Framework 4.13 Test Data Generation

4.13.2 Random Test Data

Random test data generation uses a random number generator to generate the
test data. The random seed can be speci�ed on the command line. Since the �rst
version of the MoDECS prototype which was barely usable was executeable for the
�rst time on Christmas eve the random seed is traditionally set to 2412. The random
number generator uses two random numbers to generate a single unsigned random
number and three to generate a signed random number (see below).

The first number k which is generated defines the width of bits which should be
used for the random number. Only the lower k bits of the second random number are
used. The third random number is used to determine the sign for signed data types.
The two random numbers can be combined to a single n bit wide random number using

random() & ((1 << (random() % <n+1>)) - 1)

where n ∈ {8, 16, 32}. The goal is to modify the even distribution of random numbers
to accumulate around 0 and fall o� with increasing positive and negative values
as shown in �gure 4.12 for 1,000,000 generated unsigned and signed 8 bit random
numbers. The idea behind this distribution is that applications often use �ags or
enums which hold normally small values or zero.

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300

co
un

t

number

(a) unsigned values

 100

 1000

 10000

 100000

 1e+06

-150 -100 -50 0 50 100 150

co
un

t

number

(b) signed values

Figure 4.12: Random Value Distribution for Test Data Generation

To identify the execution paths which are taken, an instrumented version of the
target application code is generated. Each basic block is instrumented with a call-
back function that is called to log the ID of the basic block when executed. The
application is compiled and dynamically loaded and linked to the WCET analysis
framework. Therefore there may not be a function named �main� in the analyzed
source code since this prevents the module from loading correctly. When the in-
strumented application is generated a small stub-function is included in the source
�le which contains instrumentation points immediately before and after the analyzed
function. The stub function is also responsible for assigning the generated test data
to the input variables and static variables before executing the function under test.
The mechanism which is used to write the variables is explained in section 4.15 since
it is the same algorithm that is used in the created target code. Each time the func-

79

4.14 Managing Test Data 4 Execution-Time Analysis Framework

tion is executed the execution path is traced and compared to the current position in
the dtree. If a leaf node is reached, which is not already covered by a di�erent test
data set, the current test data set and PS counter n are assigned to the leaf node.

4.13.3 Model Checking

Not all paths can easily be covered by random number generators. Nested con-
ditions are hard to cover. Increasing the number of random generated test data sets
can improve the coverage a little, but this does not solve the problem. There are
infeasible paths in the dtree. Only model checking or an other formal method which
is guaranteed to be complete can prove that these paths are really infeasible and have
not only been missed during the previous test data generation steps. Model checking
for test data generation works by enforcing the execution of a given path within a
PS. The assertion used to verify the application is that the given path cannot be ex-
ecuted. If the path can be executed then the assertion fails and the counter example
contains the test data to reach a given path. The execution of a given path can easily
be forced by introducing a new variable, mc_path in line 2 of �gure 4.13, which is
increased at the beginning of each node which lies on the execution path. At the end
the variable is asserted not to be equal to the number of nodes on the path. If the
number is equal to the nodes the assertion fails and the test data can be acquired
from the counter example.

The model checker based test data generation can be extended to work on loops
too. To do this a loop counter variable is introduced and the loop counter is used to
act as guard expression to the modi�cation of the variable used to verify the execution
path as shown in �gure 4.13 in line 24, 35, 27, etc. To create test data covering control-
�ow decisions in statements the annotated conditions along the selected control-�ow
path are used as guards to increase the mc_path variable. If both, loops and control-
�ow in statements are used at the same time, the modi�cation of mc_path is guarded
by the loop counter and the annotated expressions.

When the model checker �nds a counter example, the test data can be easily
extracted from it. The model checker output looks similar to �gure 4.7; therefore it
is not shown here. However, the framework uses the xml output since it can easier
be parsed. The test data generation uses the list of dtree leaf nodes and creates a
model for each leaf without a data set assigned to it. After the model checking has
completed each dtree node without a test data set is guaranteed to be infeasible.

4.14 Managing Test Data

The test data are held in a contignuous memory area. Therefore the -s command
line parameter cannot be arbitrarily high. However, the gained coverage of an in-
creased number of test data sets is only marginal for high values of s, which is more
than 100.000�1.000.000 test data sets. During the analysis process a data structure is
created which allows access to all variables based on the data set ID and the variable

80

4 Execution-Time Analysis Framework 4.15 Measurements

1 int loopcounter = 0;
2 int mc_path = 0;
3 int a, b, c, j;
14
15 int mymain ()
16 {
17 int i;
18 int k = j-j+2;
21
22 for (i=1; i<=5; ++i) {
23 loopcounter ++;
24 if (loopcounter ==1) mc_path ++; /* BB10 */
25 if (loopcounter ==1) mc_path ++; /* BB9 */
26 if (i == 1) {
27 if (loopcounter ==1) { mc_path =-1; } /* BB12 */
28 i += k;
29 } else {
30 if (loopcounter ==1) mc_path ++; /* BB13 */
31 if (i % 2) {
32 if (loopcounter ==1) mc_path ++; /* BB15 */
33 a++;
34 } else {
35 if (loopcounter ==1) mc_path =-1; /* BB16 */
36 b++;
37 }
38 if (loopcounter ==1) mc_path ++; /* BB14 */
62 default:
63 a=b;
64 }

Figure 4.13: Model Checking to �nd a Path inside the Loop

ID or to a whole test data set in binary format. The test data class, which is named
tdata, can read and write xml �les containing the test data like the example shown
in �gure 4.14. Only the test data which are used in the current analysis remain in
the data base except for test data which have been loaded from the cache but are not
used during the current analysis. The test data class also contains a code generator,
which can create variable declarations for static variables as well as assignments from
a binary representation of the test data to variables. This is used to set the function
parameters and static variables when executing instrumented code.

4.15 Measurements

In contrast to the MoDECS WCET analysis prototype the new implementation
can handle multiple instrumentation points in a single run, which is required for loops.
Therefore there is no need to recompile a di�erent version of the target code for each
program segment. This increases the speed of the measurement process considerably.

The term measurement in this chapter does not only apply to measurements
on the target hardware but also to the execution of an instrumented version of the

81

4.15 Measurements 4 Execution-Time Analysis Framework

1 <function name="mymain" cSource="../testcases/example.c">
2 <variable id="0" name="a" size="32" type_name_host="signed int" offset="0" global="true" />
3 <variable id="1" name="b" size="32" type_name_host="signed int" offset="0" global="true" />
4 <variable id="2" name="c" size="32" type_name_host="signed int" offset="0" global="true" />
5 <variable id="3" name="j" size="32" type_name_host="signed int" offset="0" global="true" />
6
7 <recordset uniqueDatasets="14">
8 <record id="0" ps="1" n="1" fname="example.target.c">
9 <valList>

10 <val>2</val> <!-- name: a -->
11 <val>3</val> <!-- name: b -->
12 <val>0</val> <!-- name: c -->
13 <val>0</val> <!-- name: j -->
14 </valList>
15 </record>
16 <record id="0" ps="2" n="2" fname="example.target.c">
17 . . .

Figure 4.14: Example xml Data File

application on the host in order to generate test data. This section explains di�erent
aspects of code generation and how the test data can be applied on the measured
application. How the actual code generation for the tests works is not explained
here, since it is simply an in-order traversal of the syntax tree while printing the
encountered literals or lexer symbols.

4.15.1 Generating Target and Module Code

In the previous section the use of a loadable module for random test data genera-
tion was described. Figure 4.15 shows a host loadable module with instrumentations
created from the example application. The module is compiled using the system
function and gcc with the command line parameters -ggdb3 -shared. When the
compilation succeeds the module can be loaded using

dynlib = dlopen(obj_name.c_str(), RTLD_LAZY | RTLD_LOCAL);

which returns a handle to the dynamic library. The handle is required to determine
the address of the caller function using the dlsym as shown below.

caller = (void (*)(int,void*,void (*)(int),void(*)(int))) dlsym(dynlib, "caller");

After all measurements have been performed the library can be unloaded using the
dlclose function call.

dlclose(dynlib);

The functions begin and end are automatically executed since they use the attribute
constructor respectively destructor in their declaration. After the module has
been loaded using dlopen and the address of caller has been determined using dlsym
the caller function can be executed. The function parameters are the number of data
sets, the memory location of the input data and two call-back functions. One of
them is called for each instrumentation and the other one is called each time after
the execution of the analyzed function �nishes with the number of the data set.

82

4 Execution-Time Analysis Framework 4.15 Measurements

1 extern int printf(char *f, ...);
2 void (* instr) (int x);
3 void (* finish_data) (int ds);
4
5 int a, b, c, j;
6
7 int equal (int _a, int _b)
8 {
9 int rv;
10 if (a == b) {
11 instr (3);
12 rv == 1;
13 } else {
14 instr (4);
15 rv == 0;
16 }
17 instr (2);
18 return rv;
19 }
20
21 int my_main ()
22 {
23 int i;
24 int k = j-j+1;
25 instr (0);
26 c = equal(a, b);
27 instr (1);
28 instr (10);
29 for (i=1; i<=5; ++i) {
30 instr (9);
31 if (i == 1) {
32 instr (12);
33 a++;
34 } else {
35 instr (13);
36 if (i % 2) {
37 instr (15);
38 i += k;
39 } else {
40 instr (16);
41 b++;
42 }
43 instr (14);
44 }
45 instr (11);
46 }
47 instr (8);
48 if (a) {
49 instr (18);
50 if (b) {
51 instr (20);
52 a=0;
53 } else {
54 instr (21);
55 b=1;
56 }
57 instr (19);
58 } else {
59 instr (22);
60 switch (b) {
61 case 1:
62 instr (24);
63 a=1;

64 break;
65 case 2:
66 instr (25);
67 b=1;
68 case 3:
69 instr (26);
70 c=a;
71 break;
72 case 4:
73 instr (28);
74 break;
75 default:
76 instr (30);
77 a=b;
78 }
79 instr (23);
80 }
81 instr (17);
82 }
83
84 int caller (int datasets , void *data ,
85 void (* _instr) (int),
86 void (* _finish_data)(int))
87 {
88 int ds;
89 char ** signed_char_data =
90 (char **) (&data);
91 unsigned char ** unsigned_char_data =
92 (unsigned char **) (&data);
93 int ** signed_int_data =
94 (int **) (&data);
95 unsigned int ** unsigned_int_data =
96 (unsigned int **) (&data);
97
98 instr = _instr;
99 finish_data = _finish_data;
100 finish_data (-1);
101 for (ds=0; ds<datasets; ++ds) {
102 a = *((* signed_int_data)++);
103 b = *((* signed_int_data)++);
104 c = *((* signed_int_data)++);
105 j = *((* signed_int_data)++);
106 instr (5);
107 mymain ();
108 instr (6);
109 finish_data(ds);
110 }
111 }
112
113 attribute ((constructor))
114 void begin ()
115 {
116 printf ("+++ module start\n");
117 }
118
119 attribute ((destructor))
120 void end ()
121 {
122 printf ("#+++ module end\n");
123 }

Figure 4.15: Generated Loadable Module

83

4.16 Analysis Tool Usage and Output 4 Execution-Time Analysis Framework

Each test data set is extracted from a large memory area containing a binary
representation of the test data. The code which reads the data and assigns it to the
variables can be seen in lines 102 to 105 of �gure 4.15. Since this method is very
light-weight it can also be used on the target platform. The di�erence is that only
enough memory for a single data set is created and that each data set is transferred
individually from the host to the target. However, the mechanism to parse the binary
data is the same. It uses a pointer to the test data. To advance the pointer by the
right amount special pointers to data are used:

char ** signed_char_data = (char **) (&data);
short ** signed_short_data = (short **) (&data);
int ** signed_int_data = (int **) (&data);

Using these pointers the values can easily be extracted from the binary data area
since the tdata class holds information about the represented variables such as their
name and datatype.

// data is advanced by 1 byte on next read operation
my_char = *((* signed_char_data)++);
// data is advanced by 2 bytes on next read operation
my_short = *((* signed_short_data)++);;
// data is advanced by 4 bytes on next read operation
my_int = *((* signed_int_data)++);;

The caller function takes two function pointers. The �rst function is called for
each occurrence of instr(x); in the module code. The second function, �nish_data(n),
is called after data set n.

It can also be seen that the �rst instrumentation is inserted before the call to the
analyzed function and the last instrumentation is inserted after the function returns.
This is not important for test data generation but it is important for execution-time
measurements. By placing the instrumentation points in the calling function the
overhead of the function call is included in the measured execution-time.

4.16 Analysis Tool Usage and Output
This section describes the usage of the WCET analysis tool. The tool has no

graphical user interface and is designed for command line use only. To supply ad-
ditional information for the analysis a parameter �le can be used. If contradicting
options are given in the parameter �le and on the command line, the command line
overrides the parameter �le. This makes it possible to use a default setting but to
test certain options without the need to edit the parameter �le.

4.16.1 Parameter File

The parameter �le has to have the same name as the �rst source �le with the
extension .par instead of .c and has to be located in the same directory. The

84

4 Execution-Time Analysis Framework 4.16 Analysis Tool Usage and Output

parameter �le contains information on constant variables and on the handling of
functions which can used during the analysis. It is possible to use regular expressions
on the variable names. This is useful when the const keyword is used incorrectly and
constants which are in an application ROM are declared as volatile unsigned char
x;. This is the case in one of the industrial examples in chapter 5. Further it can be
decided for functions if they should be inlined or black-boxed. When functions are to
be black-boxed their WCET in cycles has to be speci�ed, since the WCET analysis
tool does not support calling itself recursively to estimate the WCET of black-boxed
functions. A parameter �le which is unrelated to the application example is shown
in �gure 4.16.

1 # treat all variables named r_... as const values
2 const r_.*
3 # treat all variables named C... as const values
4 const C.*
5
6 # use black -boxing on function my_func1 with WCET =15673 cycles
7 function my_func1 bb 15673
8 # perform inlining on function my_func2 (default)
9 function my_func2 inl

Figure 4.16: Parameter File

4.16.2 Command Line Arguments

Since the analysis tool has no user interface, all inputs have to be provided using
the command line interface. Parameters on the command line have higher priority
than commands in the parameter �le. All parameters use reasonable default values
so that the only argument which is really required is the name of a source �le to be
analyzed. Figure 4.17 shows the program's help output. Since the explanation of the
parameters is given in the output they are not discussed in detail here.

Like in the parameter �le the inlining or black-boxing of functions can be enabled
on the command line. However there is no way to specify const variables on the
command line. This can only be done in the parameter �le. The command line can
be used to disable some of the analysis features and observe how the analysis behaves
without the use of these features. For instance it can be observed how often the
WCET path is missed when disabling model checking and using only random data.
On subsequent analysis runs on the application it is possible but not recommended
to turn of model checking but only if the application has not changed.

It is important that all measurements can be reproduced. This does not only
require the same target hardware but also the same version of the WCET analysis
tool. Using wcet �version shows the CVS version of all source modules, tests and
tools which were used when the analysis tool was built as shown in �gure 4.18. The
�le version.h is modi�ed each time the analysis tool is built. It contains the build

85

4.16 Analysis Tool Usage and Output 4 Execution-Time Analysis Framework

$./wcet --help
wcet vers: v3.0 alpha (build 477)
[-h|-help|--help] .. print this help message and exit
[-r random-seed] .. use given random seed (2412)
[-s populationsize] .. use given number of random data sets (10.000)
[-p path_bound] .. use given path bound for segmentation (100)
[-dp|--show-progress] .. print the progress during processing (false)
[-da|--show-params] .. print parameters in effect (false)
[-fi|--do-inlining] <f> .. use function inlining for function f
[-nf|--no-inlining-func <f=cycle>] .. do not inline function f and use the

given time in cycles for black-boxing
(i.e. -nf reset=168:init=98:set_output=68)

[--no_expression_paths] .. disable expression paths (false)
[-m|--disable-mc] .. disable model checking (false)
[-c|--no-data-cache] .. do not use stored test data
[--strict] .. exit on unstructured programming constructs
[-t|--target] .. set the target platform (arm_olimex)

supported: arm_olimex
[-v|--version] .. print version information and exit
[-f|--function <sf>] .. the function to be analyzed (last function)
[--prefix <path>] .. use path for intermediate and result files
file[.c] file(s) to be analyzed

Figure 4.17: WCET analysis Tool Help Text

number as well as the CVS version of the source �le. Unless some �les are out of
syncronization with the CVS repository is it always possible to check out exactly the
same state and reproduce a given test result.

4.16.3 Tool Output

The output of the tool when analyzing example.c can be seen in Figure 4.19.
The option -s 100 was selected to generate only 100 random test data sets so that
some paths have to be searched using model checking. The options -da and -dp
were selected to increase the verbosity of the tool. The �rst two output lines show
the build number and the command line parameters. The third line informs the
user that no parameter �le has been found, which is not a problem. The following
lines show the actions the tool is currently performing followed by details about the
segmentation process. The terms �fstart� and �fexit� denote the segmentation borders
are the function start and exit, �PS marker � means that the CFG generation caused
segmentation at this point and �PBound �, which is not shown in this example, means
that the segmentation was caused by the path bound. The following lines show the
continuing progress of the analysis up to the lines �+++ module start� and �+++
module end � which are printed from inside the loaded module. The next lines from
line 27 to line 32 show the reached path coverage using random test data. In this
case 11 of 30 paths have been covered, leaving 19 paths for the model checker. Line

86

4 Execution-Time Analysis Framework 4.17 Summary

$./wcet -v
**
WCET Analyzer Toolv3.0 alpha (build 477)
compiled at Mar 27 2009 15:48:00 using GCC 4.3.3
**
Build Time: 2009-03-27 16:53:25
.: ANSI-C.l [1.5]
.: ANSI-C.y [1.11]
.: Makefile [1.18]
.: bigint.cc [1.7]
.: bigint.hh [1.5]
. . .
.: variable.cc [1.8]
.: variable.hh [1.8]
M: version.hh [1.2]
.: tests/01_V3/00_tests.cfg [1.1]
.: tests/01_V3/01_variables_and_data_types/01_global_variable_declaration.c [1.1]
.: tests/01_V3/01_variables_and_data_types/02_local_variable_declaration.c [1.1]
. . .
.: tools/filter_cvs_status.pl [1.3]
.: tools/gdb_commands [1.1]
.: tools/increment_buildno.pl [1.1]

Figure 4.18: WCET analysis Tool Version Information

number 34 with the dots and the pluses grouped in units of ten characters represents
the progress of the model checker. Each dot represents a safe model, this means
an infeasible path. A plus marks model checker runs for which the model is unsafe
and test data has been found. The next lines from line 36 to line 41 show the path
coverage after model checking. There are still 16 infeasible paths left. The following
lines show the progress of the measurements. The stripped object, which has a size
of 1444 bytes as shown in line 44, is downloaded and measurements are performed.
Each dot represents a single measurement. After this the execution-times for the
individual paths and the repetitions of the loop are displayed from lines 48 to 54. At
last the execution-time is printed in line 56 which is 223 clock cycles for the example
application.

4.17 Summary

In this chapter the individual building blocks of the WCET analysis framework
have been discussed. The used algorithms have been explained using a C-like pseudo
code language and the used data structures have been visualized using graphs for a
given example. Finally the usage of the WCET analysis tool has been explained and
the output for the analysis of the example has been illustrated.

87

4.17 Summary 4 Execution-Time Analysis Framework

1 $./wcet -s 100 -da -dp example.c
2 wcet vers: v3.0 alpha (build 477)
3 args: ../ wcet --show -params --show -progress -s 100 ../ tests/func.c
4 parameter file '../ tests/example.par ' not found
5 parsing input file ... done
6 building CFG ...
7 inlining equal
8 done
9 analyzing functions ...
10 main 56 paths , 2 PS markers
11 done
12 performing segmentation
13 PS1 -> 1 paths , border: fstart , PS marker
14 PS2 -> 2 paths , border: PS marker , PS marker
15 PS3 -> 2 paths , border: PS marker , PS marker
16 PS4 -> 6 paths , border: PS marker , PS marker
17 PS5 -> 7 paths , border: PS marker , fexit
18 done
19 building dtree ... PS1 PS2 PS3 PS4 PS5... done
20 analyzing constant flow ... done
21 calculating loop bounds 1,2,4,3 done
22 building module .. done
23 executing
24 +++ module start
25 using 100 random data sets
26 +++ module end
27 paths covered 11/30 (33%)
28 PS1 1/1 (100%)
29 PS2 2/2 (100%)
30 PS3 1/2 (50%)
31 PS4 3/18 (17%) @3x
32 PS5 4/7 (57%)
33 using MC on 19 paths
34+++
35 done
36 paths covered 14/30 (47%)
37 PS1 1/1 (100%) I:0
38 PS2 2/2 (100%) I:0
39 PS3 1/2 (50%) I:1
40 PS4 3/18 (17%) I:15 @3x
41 PS4 7/7 (100%) I:0
42 performing measurements
43 reseting target
44 downloading ... (1444 bytes)
45 performing 14 measurements
46
47 done
48 PS1 . max(ET)=32
49 PS2 .. max(ET)=19
50 PS3 . max(ET)=13
51 PS4@1 . max(ET)=28
52 PS4@2 . max(ET)=39
53 PS4@3 . max(ET)=40
54 PS5 max(ET)=52
55 calculating WCET
56 WCET = 223

Figure 4.19: Tool Output

88

Chapter 5

Experiments

This chapter describes the tests that were performed with the WCET analysis
prototype. The next section describes the test environment, including the selection of
test cases and the test hardware. The following sections will give a short introduction
about the e�ect that is expected to be observed in the following test runs, and a
detailed tabular listing of the actual test results. The three main topics in the process
are inlining vs. black-boxing, di�erent aspects of loops, and control-�ow paths in
expressions. The chapter concludes with a short section discussing the test results
and a chapter summary.

5.1 Test Setup

This section describes the code metrics and values such as the number of basic
blocks or the number of end-to-end paths that are used to describe the size and
complexity of the case studies and the results in this chapter. The next sections
describe the selection of test cases and the hardware as well as the software setup
of the test environment, including the application download to the target and the
host-target communication.

5.1.1 Basic Block and Path Counts Explained

Figure 5.1 is used to show how the code properties used in this section are cal-
culated. These explanations are important to understand the tables of measurement
results within this chapter. It can be easily seen that this example has 17 LOC and
with a little counting a program size of 204 bytes (including whitespaces and line-
breaks) can be determined. In the main function there is one basic block and one
end-to-end path. In the nsum function there are four basic blocks. Each of the lines
4, 5, 6, and 7 forms an individual BB. The counting of paths is done at a time where
loop bounds and �ow facts are unknown. To be able to give a meaningful number for
end-to-end paths the loop is assumed to have zero or one repetitions, which means the

89

5.1 Test Setup 5 Experiments

loop creates a path for �no repetitions� and one path for �one repetition�. Therefore
we get a total of two end-to-end paths for nsum.

1 /* calculate sum of 1 .. n */
2 int nsum (int n) {
3 int i, sum;
4 sum = 0;
5 for (i = 1; i<=n; ++i)
6 sum++
7 return sum;
8 }
9
10 /* the main function */
11 int main()
12 {
13 int n;
14 n=4;
15 nsum (4);
16 return 0;
17 }

(a) Code Metrics Example

Bytes 204
LOC 17
BB 5

Paths EE 3
PS 4

Paths meas 4
Paths MC 0
Paths inf 0

(b) Code Properties

Figure 5.1: Code Metrics Example

The basic blocks (BB) and end-to-end paths (Paths EE) are summarized to get
the numbers for the whole case study. Therefore we get a total of 204 bytes, 17 LOC,
5 BB and 3 Paths EE in �gure 5.1.

However, during analysis more knowledge of the function is gained. It can be
seen during analysis that the loop in nsum is unbounded. Therefore nsum has to be
inlined. Additionally the data �ow analysis tells us n← const and for the loop header
i← const. Since all other values in the loop header are const the loop has a constant
number of iterations. As the loop body is also variable independent, in fact it consists
only of a single BB, the whole loop can be reduced to a single statement. Thus, after
analysis only a single path remains to be measured. However, the segmentation still
is determined by the number of syntactically existing paths and the occurrence of
function calls and loops. Therefore we have still 4 program segments PS = 4. Since
the end-to-end path that has to be measured lead through 4 program segments we
have 4 paths to measure (Paths meas = 4). A single path is always covered by
�random� data generation (Paths rnd = 3) and there are no paths that have been
found using model checking (Paths MC = 0) or infeasible paths (Paths inf = 0).
Consequently the time for generating test data using model checking (T MC) and
the time for �nding loop bounds (T LB) are zero.

It is important to note the di�erence between �Paths EE �, which is the sum of all
syntactical possible end-to-end paths and �Paths meas� which denotes the number of
paths which are local to a single program segment and equals the number of paths
that have to be measured to get a full coverage and a complete timing model of the
case study.

90

5 Experiments 5.1 Test Setup

5.1.2 Selection of Case Studies

The test cases used in this section are generic test cases that point out an expected
e�ect and make it observable, the Mälardalen benchmark suite [Gro06] as well as three
small to medium sized industrial applications from a former research partner during
the MoDECS project.

The purpose of the generic test cases is to verify the presence of an expected
e�ect and to observe the impact of this e�ect in a very simple setting so that it can
be isolated from other interfering e�ects. Due to the fact that the described e�ect
may change other application properties, such as the modi�cation of program seg-
ment bounds or the total number of end-to-end control-�ow paths, this may result in
adverse e�ects, which compensate the described e�ect or even will reverse it. There-
fore it is convenient when the test case is small enough to understand it and trace it
manually.

The Mälardalen benchmarks are a set of mostly generic benchmarks which are
used for WCET analysis. They are widely used in the WCET community, even if the
majority of them is hand-written and they often use structures which are completely
di�erent from software generated applications. However, two of the benchmarks,
nsichneu and statemate, are software-generated and resemble the industrial bench-
marks described below in their structure. What makes the Mälardalen benchmarks
interesting for the reseach-community is that they are available free of charge and
not encumbered with usage restrictions. This means that anybody can use them for
her/his own projects and publications or have a look at them when they are used as
tests cases or examples in a publication.

The industrial examples, which are applications that are actually used in current
car series, were kindly provided by a former research partner whose core business
is the automotive industry. These test cases are generated by TargetLink® which
is an addon to Matlab/Simulink® and widely used for model-based design in the
(automotive) industry. As these test cases are the only applications investigated that
are actually used in commercial embedded real-time systems, they are used whenever
possible.

Figure 5.2 shows the code generation options used to generate the industrial
examples. It is important that Assembler statements are turned o�, since otherwise
optimized assembler code would be generated for arithmetic functions, which are not
supported by the target architecture. These optimized functions cannot be analyzed
with a source code oriented analysis framework. However, the assembly code is
not inserted directly into the source code by TargetLink® but inserted by means
of macro de�nitions which are expanded using the C-preprocessor. These macro
de�nitions contain the assembly code but can be replaced with functionally identical
de�nitions for the test data generation. When performing run-time measurements the
original macros can be used again. The Clean code option produces better human
readable code when enabled but since the execution-time analysis framework is to be
tested under realistic conditions (when possible), this option is turned o�. Inlining
threshold controls the size in statements up to which a series of statements is inlined

91

5.1 Test Setup 5 Experiments

1 *** CODE GENERATOR OPTIONS:
2 *** Compiler : COSMIC44
3 *** Target : HCS12
4 *** ANSI -C compatible code : yes
5 *** Optimization level : 2
6 *** Constant style : decimal
7 *** Clean code option : disabled
8 *** Logging mode : Acc. to block -spec. data
9 *** Linker sections : disabled
10 *** Assembler statements : disabled
11 *** Variable name length : 31 chars
12 *** Separate lookup search function : disabled
13 *** Use global bitfields : disabled
14 *** Stateflow: use of bitfields : enabled
15 *** State activity encoding limit : 5
16 *** Omit zero inits in restart function : disabled
17 *** Share fcns between TL subsystems : disabled
18 *** Generate 64bit functions : enabled
19 *** Inlining Threshold : 20
20 *** Line break limit : 100
21 *** Target optimized boolean data type : enabled
22 *** Keep saturation elements : disabled
23 *** Extended variable sharing : disabled

Figure 5.2: Code generation options for industrial case studies

(below and equal to threshold) or a function containing the common code is created
(above threshold). Last it is also obvious that the code was originally created for a
HSC12 processor using the COSMIC® compiler. As the WCET analysis framework
is strongly oriented on ANSI-C code the option ANSI-C compatible code should also
be turned on.

Other test cases were considered, like the specint test suite, but because of their
program structure these tests have been prooven unusable as WCET benchmarks
[Eng99].

In addition to the conducted tests there exist many regression tests that have
been used during the development process of the timing analysis framework. This
tests have been used to verify speci�c components of the analysis framework like the
parser, the data �ow analysis and the loop categorization algorithm. The test cases
are all mostly very speci�c to certain problems or bugs which have occurred during
the development. A small fraction of these regression tests is used to imitate code
constructs which are commonly used by code generators. However, since there are
now �ve machine generated test cases, there is no need to use the regression tests for
experiments and execution-time measurements.

Table 5.1 shows an overview of all evaluated test cases. The �rst column is the test
name, which is identical to the source module name. The second column denotes the
source of the test case. I is used for industrial andM for Mälardalen benchmark suite.

92

5 Experiments 5.1 Test Setup

Te
st

N
am

e
Sr
c

Te
st

D
es
cr
ip
tio

n
B
yt
es

LO
C

B
B

Pa
th
s

ad
pc

m
M

Ad
ap

tiv
e
pu

lse
co
de

m
od

ul
at
io
n
al
go

rit
hm

.C
om

pl
et
ely

we
ll-
st
ru
ct
ur
ed

co
de

.
25

97
7

87
8

12
5

73
bs

M
Bi
na

ry
se
ar
ch

fo
rt

he
ar
ra
y
of

15
in
te
ge
re

lem
en
ts
.C

om
pl
et
ely

st
ru
ct
ur
ed

.
42

48
11

4
8

6
bs
or
t1
00

M
Bu

bb
les

or
tp

ro
gr
am

.T
es
ts

th
eb

as
ic
lo
op

co
ns
tr
uc

ts
,i
nt
eg
er

co
m
pa

ris
on

s,
an

d
sim

pl
e

ar
ra
y
ha

nd
lin

g
by

so
rt
in
g
10

0
in
te
ge
rs

27
79

11
4

12
6

cn
t

M
Co

un
ts

no
n-
ne

ga
tiv

e
nu

m
be

rs
in

a
m
at
rix

.N
es
te
d
lo
op

s,
we

ll-
st
ru
ct
ur
ed

co
de

.
28

80
26

7
14

4
co
m
pr
es
s

M
D
at
a
co
m
pr
es
sio

n
pr
og

ra
m
.

Ad
op

te
d

fro
m

SP
EC

95
fo
r
W

CE
T-

ca
lcu

la
tio

n.
O
nl
y

co
m
pr
es
sio

n
is

do
ne

on
a
bu

�e
r(

sm
al
lo

ne
)c

on
ta
in
in
g
to
ta
lly

ra
nd

om
da

ta
.

13
41

1
50

8
63

32
4

co
ve
r

M
Pr

og
ra
m

fo
rt

es
tin

g
m
an

y
pa

th
s.

A
lo
op

co
nt
ai
ni
ng

m
an

y
sw

itc
h
ca
se
s.

50
26

24
0

39
7

19
6

cr
c

M
Cy

cli
cr

ed
un

da
nc

y
ch
ec
k
co
m
pu

ta
tio

n
on

40
by

te
so

fd
at
a.

Co
m
pl
ex

lo
op

s,
lo
ts

of
de

-
cis

io
ns
,l
oo

p
bo

un
ds

de
pe

nd
on

fu
nc

tio
n
ar
gu

m
en
ts
,f
un

ct
io
n
th
at

ex
ec
ut
es

di
�e

re
nt
ly

th
e
�r
st

tim
e
it
is

ca
lle

d.

51
68

12
8

29
25

9

du
�

M
U
sin

g
"D

u�
's

de
vi
ce
"
fro

m
th
e
Ja

rg
on

�l
e
to

co
py

43
by

te
ar
ra
y.

U
ns
tr
uc

tu
re
d
lo
op

wi
th

kn
ow

n
bo

un
d,

sw
itc

h
st
at
em

en
t

23
74

86
26

12

ed
n

M
Fi
ni
te

Im
pu

lse
Re

sp
on

se
(F

IR
)
fil
te
r
ca
lcu

la
tio

ns
.
A

lo
t
of

ve
ct
or

m
ul
tip

lic
at
io
ns

an
d

ar
ra
y
ha

nd
lin

g.
10

56
3

28
5

47
21

ex
pi
nt

M
Se

rie
se

xp
an

sio
n
fo
rc

om
pu

tin
g
an

ex
po

ne
nt
ia
li
nt
eg
ra
lf
un

ct
io
n.

In
ne

rl
oo

p
th
at

on
ly

ru
ns

on
ce
,s

tr
uc

tu
ra
lW

CE
T

es
tim

at
e
gi
ve
s
he

av
y
ov
er
es
tim

at
e.

42
88

15
7

26
13

fa
c

M
R
ec
ur
siv

e
fa
ct
or
ia
lc

al
cu

la
tio

n.
39

8
26

8
4

fd
ct

M
Fa

st
D
isc

re
te

Co
sin

eT
ra
ns
fo
rm

.A
lo
to

fc
al
cu

la
tio

ns
ba

se
d
on

in
te
ge
ra

rr
ay

ele
m
en
ts
.

88
63

23
9

10
5

�t
1

M
10

24
-p
oi
nt

Fa
st

Fo
ur
ier

Tr
an

sfo
rm

us
in
g
th
e
Co

ol
y-
Tu

rk
ey

al
go

rit
hm

.A
lo
to

fc
al
cu

-
la
tio

ns
ba

se
d
on

�o
at
in
g
po

in
ta

rr
ay

ele
m
en
ts
.

62
44

21
9

56
33

�b
ca
ll

M
Si
m
pl
e

ite
ra
tiv

e
Fi
bo

na
cc
i
ca
lcu

la
tio

n,
us
ed

to
ca
lcu

la
te

�b
(3
0)
.

Pa
ra
m
et
er
-

de
pe

nd
en
tf

un
ct
io
n,

sin
gl
e-
ne

st
ed

lo
op

34
99

72
7

7

�r
M

Fi
ni
te

im
pu

lse
re
sp
on

se
fil
te
r(

sig
na

lp
ro
ce
ss
in
g
al
go
rit

hm
s)

ov
er

a
70
0
ite

m
sl
on

g
sa
m
-

pl
e.

In
ne
rl
oo
p
wi
th

va
ry
in
g
nu

m
be
ro

fi
te
ra
tio

ns
,l
oo
p-
ite

ra
tio

n
de
pe
nd

en
td

ec
isi
on

s.
11

96
5

27
6

15
6

in
se
rt
so
rt

M
In
se
rt
io
n
so
rt

on
a
re
ve
rs
ed

ar
ra
y
of

siz
e
10

.
In
pu

t-d
at
a
de

pe
nd

en
t
ne

st
ed

lo
op

wi
th

wo
rs
t-c

as
e
of

(n
2
)/
2
ite

ra
tio

ns
(t
ria

ng
ul
ar

lo
op

).
38

92
92

8
3

ja
nn

e_
co
m
pl
ex

M
N
es
te
d
lo
op

pr
og

ra
m
.

Th
e
in
ne

r
lo
op

s
nu

m
be

r
of

ite
ra
tio

ns
de

pe
nd

s
on

th
e
ou

te
r

lo
op

s
cu

rr
en
ti
te
ra
tio

n
nu

m
be

r.
15

64
64

18
15

jfd
ct
in
t

M
D
isc

re
te
-c
os
in
e
tr
an

sfo
rm

at
io
n
on

a
8x

8
pi
xe
lb

lo
ck
.L

on
g
ca
lcu

la
tio

n
se
qu

en
ce
s(

i.e
.,

lo
ng

ba
sic

bl
oc
ks
),
sin

gl
e-
ne

st
ed

lo
op

s.
16

02
8

37
5

13
6

lcd
nu

m
M

R
ea
d
te
n
va
lu
es
,o

ut
pu

th
al
ft

o
LC

D
.L

oo
p
wi

th
ite

ra
tio

n-
de

pe
nd

en
t�

ow
.

16
78

64
22

19
lm

s
M

LM
S
ad

ap
tiv

e
sig

na
le

nh
an

ce
m
en
t.

Th
e
in
pu

ts
ig
na

li
sa

sin
e
wa

ve
wi

th
ad

de
d
wh

ite
no

ise
.A

lo
to

f�
oa

tin
g
po

in
tc

al
cu

la
tio

ns
.

77
20

26
1

56
23

Ta
bl
e
5.
1
�D

es
cr
ip
tio

n
of

Te
st

Ca
se
s�

is
co
nt
in
ue

d
on

th
e
ne

xt
pa

ge
→

93

5.1 Test Setup 5 Experiments
Te

st
N
am

e
Sr
c

Te
st

D
es
cr
ip
tio

n
B
yt
es

LO
C

B
B

Pa
th
s

lu
dc

m
p

M
LU

de
co
m
po

sit
io
n
al
go

rit
hm

.
A

lo
t
of

ca
lcu

la
tio

ns
ba

se
d
on

�o
at
in
g
po

in
t
ar
ra
ys

wi
th

th
e
siz

e
of

50
ele

m
en
ts
.

51
60

14
7

50
45

m
at
m
ul
t

M
M
at
rix

m
ul
tip

lic
at
io
n
of

tw
o
20

x2
0
m
at
ric

es
.

M
ul
tip

le
ca
lls

to
th
e
sa
m
e
fu
nc

tio
n,

ne
st
ed

fu
nc

tio
n
ca
lls
,t
rip

le-
ne

st
ed

lo
op

s.
37

37
16

3
15

11

m
in
ve
r

M
In
ve
rs
io
n
of

�o
at
in
g
po

in
tm

at
rix

.F
lo
at
in
g
va
lu
e
ca
lcu

la
tio

ns
in

3x
3
m
at
rix

.N
es
te
d

lo
op

s
(3

lev
els

).
58

05
20

1
81

13
2

nd
es

M
Co

m
pl
ex

em
be

dd
ed

co
de

.
A

lo
t
of

bi
t
m
an

ip
ul
at
io
n,

sh
ift
s,

ar
ra
y
an

d
m
at
rix

ca
lcu

-
la
tio

ns
.

73
45

23
1

38
14

3

ns
M

Se
ar
ch

in
a
m
ul
ti-

di
m
en

sio
na

la
rr
ay
.
R
et
ur
n
fro

m
th
e
m
id
dl
e
of

a
lo
op

ne
st
,d

ee
p

lo
op

ne
st
in
g
(4

lev
els

).
10

43
6

53
5

14
7

ns
ich

ne
u

M
Si
m
ul
at
e
an

ex
te
nd

ed
Pe

tr
i
N
et
.

A
ut
om

at
ica

lly
ge
ne

ra
te
d

co
de

co
nt
ai
ni
ng

la
rg
e

am
ou

nt
s
of

if-
st
at
em

en
ts

(m
or
e
th
an

25
0)
.

11
83

51
42

53
12

59
1.
7e
12

0

pr
im

e
M

Ch
ec
k
if
a
nu

m
be

ri
s
a
pr
im

e
nu

m
be

r.
Lo

op
,s

im
pl
e
po

in
te
ro

pe
ra
tio

ns
86

3
46

16
19

qs
or
t-e

xa
m

M
N
on

-re
cu

rs
iv
e
ve
rs
io
n
of

qu
ick

so
rt

al
go

rit
hm

.
Th

e
pr
og

ra
m

so
rt
s
20

�o
at
in
g
po

in
t

nu
m
be

rs
in

an
ar
ra
y.

Lo
op

ne
st
in
g
of

3
lev

els
.

45
35

12
1

39
63

qu
rt

M
R
oo

tc
om

pu
ta
tio

n
of

qu
ad

ra
tic

eq
ua

tio
ns
.T

he
re
al

an
d
im

ag
in
ar
y
pa

rt
s
of

th
e
so
lu
-

tio
n
ar
e
st
or
ed

in
ar
ra
ys
.

48
98

16
6

18
10

re
cu

rs
io
n

M
A

sim
pl
e
ex
am

pl
e
of

re
cu

rs
iv
e
co
de

.S
elf

-re
cu

rs
io
n
an

d
m
ut
ua

lr
ec
ur
sio

n.
62

0
41

14
13

se
lec

t
M

A
fu
nc

tio
n
to

se
lec

tt
he

nth
la
rg
es
tn

um
be

ri
n
a
�o

at
in
g
po

in
ta

rr
ay
.A

lo
to

f�
oa

tin
g

va
lu
e
ar
ra
y
ca
lcu

la
tio

ns
,l
oo

p
ne

st
in
g
(3

lev
els

).
44

94
11

4
39

86

sq
rt

M
Sq

ua
re

ro
ot

fu
nc

tio
n
im

pl
em

en
te
d
by

Ta
yl
or

se
rie

s.
Si
m
pl
e
nu

m
er
ica

lc
al
cu

la
tio

n.
35

67
77

15
7

st
M

St
at
ist

ics
pr
og

ra
m
.
Th

is
pr
og

ra
m

co
m
pu

te
s
fo
r
tw

o
ar
ra
ys

of
nu

m
be

rs
th
e
su
m
,t

he
m
ea
n,

th
e
va
ria

nc
e,

an
d
st
an

da
rd

de
vi
at
io
n,

an
d
th
e
co
rr
ela

tio
n
co
e�

cie
nt

be
tw

ee
n

th
e
tw

o
ar
ra
ys
.

38
57

17
7

18
13

st
at
em

at
e

M
A
ut
om

at
ica

lly
ge
ne

ra
te
d
co
de

.G
en

er
at
ed

by
th
e
ST

At
ec
ha

rt
R
ea
l-t

im
e-
Co

de
ge
ne

r-
at
or

ST
A
RC

.
52

61
8

12
76

49
7

4.
2e
7

A
kt
ua

to
rM

ot
or
re
gl
er

I
En

gi
ne

co
nt
ro
l
ap

pl
ica

tio
n

su
bm

od
ul
e
fro

m
a
fo
rm

er
pr
oj
ec
t
pa

rt
ne

r
an

d
us
ed

in
ac
tu
al

ca
rs

er
ies

.A
ut
om

at
ica

lly
ge
ne

ra
te
d,

co
m
pl
ex

co
nt
ro
l-�

ow
,l
oo

ps
55

74
9

12
38

32
0

1.
6e
18

Ad
cK

on
v

I
In
pu

t/
O
ut
pu

tc
on

ve
rs
io
n
su
bm

od
ul
eu

se
d
do

na
te
d
fro

m
a
fo
rm

er
pr
oj
ec
tp

ar
tn
er

an
d

in
ac
tu
al

ca
rs

er
ies

.A
ut
om

at
ica

lly
ge
ne

ra
te
d,

no
lo
op

s
15

26
5

36
5

31
14

4

A
kt
ua

to
rS
ys
Ct

rl
I

En
gi
ne

co
nt
ro
l
ap

pl
ica

tio
n

su
bm

od
ul
e
do

na
te
d

fro
m

a
fo
rm

er
pr
oj
ec
t
pa

rt
ne

r
an

d
us
ed

in
ac
tu
al

ca
rs

er
ies

.A
ut
om

at
ica

lly
ge
ne

ra
te
d,

no
lo
op

s
14

58
7

30
6

54
97

Ta
bl
e
5.
1:

D
es
cr
ip
tio

n
of

Te
st

Ca
se
s

94

5 Experiments 5.1 Test Setup

Figure 5.3: Olimex® LPC-H2138 Development Board and Programming Device

The third column gives a short functional and structural description about the test
case, which is taken from [Gro06] for the Mälardalen benchmarks. The next columns
give the size of the test case in bytes, lines of code (LOC) and basic blocks where only
BBs containing expressions are counted (empty BBs created from logical expressions
or control-�ow joins are not counted in this column). The last column gives the
number of end-to-end paths through the application, including paths generated by
logical expression shortcuts.

5.1.3 Test Hardware and Development Software

All tests were performed on an Olimex® ARM evaluation board LPC-H3128
[OLI07] with a LPC-2138 Microcontroller. The LPC2138 contains a 16/32-bit
ARM7TDMI-S CPU, 32k SRAM, 512k �ash, two Universal Asynchronous Receive/-
Transmit Units (UARTS) and two 32 bit timers and 47 general purpose I/O lines
[PHI06]. The ARM core can either execute 32 bit instructions or variable length
thumb instructions. Further features are a tiny size and low power consumption.

An Olimex® ARM-USB-OCD [OLI06] programming device was used to provide
a JTAG interface to program the FLASH of the ARM. Additionally a USB-to-Serial
interface and a power supply for the target hardware is provided by the programming
device, which is connected to the host computer using a USB port.

Figure 5.3 shows the ARM evaluation board and the programming device. The
blue DIP switch on the evaluation board can be con�gured to provide a special
programming interface to the microcontroller which allows to program the device
over the serial port. This is a very useful feature especially since the JTAG pins can
be con�gured to work as normal IO pins and it is easily possible to disable the JTAG

95

5.1 Test Setup 5 Experiments

interface when experimenting with the device. In this case the serial programming
interface can be used to regain access to the device. The descriptions and schematics
for both devices can be downloaded from the Olimex® web site.

The Olimex® prototype board and programming device were chosen because they
provide a serial connection which makes the communication to the target system very
easy. Also the hardware is well documented. The development environment works
under Linux using the Open On-Chip Debugger (OpenOCD) [R+, Rat05] which can
be used as a GNU debugger (gdb) server allowing remote debugging of the target
using the JTAG interface, to program and verify the �ash, to set breakpoints and to
run the application.

The application was compiled with Version 4.3.3 of the GNU ARM Toolchain
[Tea09] which consists of GNU binutils, GNU compiler set (GCC) including a C and
a C++ compiler and debugger (Insight or GDB). Newlib is used for the C library.
The command line optimization parameter used for the compiler was -O0 to prevent
control-�ow modi�cations for all test cases except for nsichneu and statemate which
were compiled with -Os to �t into the SRAM.

The �ash provides a capacity of 512kB while the SRAM is only 32kB in size.
There are two reasons for using the SRAM in favor over the �ash. First, during the
measurements each program segment gets instrumented separately, which causes at
least as many downloading cycles as there are program segments in the application.
Since the lifespan of a �ash memory is limited to a few thousand erase cycles the
microcontroller might soon die. Second, the LPC2138 provides a caching mechanism
for the �ash. This cache is not needed for the SRAM since it is fast enough to allow
single-cycle access, but the �ash can only be accessed up to 20MHz in a single cycle.
For higher frequencies up to 60MHz which is the maximum operating frequency of
the LPC2138 additional wait state cycles are introduced. The LPC2138 contains
a unit named Memory Acceleration Module (MAM) that reduces this delay using
a combination of caching and prefetching. The e�ects of the MAM are similar to
a cache. However, there is also a bug caused by the MAM implementation of the
LPC213x-series [NXP07], which might corrupt data read if a data fetch is initiated
from SRAM while code is running on the on-chip �ash. There are two workarounds
for this issue which can be found in the errata sheet. Running the application from
the SRAM avoids the MAM problem and lets the application run without the e�ects
of a cache.

There are two physical connections between the host and the target system, both
utilizing the Olimex® ARM-USB-OCD programming device. The �rst connection
uses the JTAG interface and is used to control the target microcontroller and to
download data into the �ash. The second connection uses the USB-to-Serial converter
which is contained in the programming device to transfer the compiled application
which shall be measured as well as the test data from the host to the target and
the measurement results back from the target to the host. The exact communication
process is described in the following section.

96

5 Experiments 5.1 Test Setup

The host system on which the analysis for all tests were performed is a PC using an
Intel� Core® 2 Duo CPU (T7200) running at 2GHz with a memory of 2GB running
under a Debian GNU/Linux system with Kernel revision 2.6.27.6. This system was
also used for the development of the WCET analysis prototype.

5.1.4 Target Software Layout and Host-Target Communication

When powering up, the target system starts at 0x00000000. The operation usu-
ally located at this address is ldr PC, Reset_Addr which will jump to the reset
handler located in the �ash. The reset handler sets up the stack and di�erent opera-
tion modes as de�ned in [Mar06], where also a more detailed description of the boot
process can be found. After the basic set up the reset handler jumps to the main
function which contains the user generated code.

The main function sets up the UART communication and sends a command
prompt to the host using the serial communication line. When the host receives
the prompt, it sends the compiled application which shall be measured to the target.
The target stores it at 0x40000200 which is at the start of the usable SRAM since
the memory range from 0x40000000 to 0x400001ff is reserved for the Philips boot
loader. When the application has been completely received it is sent back to the
host which can verify the transmission. If there has been a transmission failure the
host resends the application until the failure is corrected. This part of the target
application is called the loader since it is used to download the second part of the
framework, the caller, and the target frame to the SRAM of the LPC2138.

After the veri�cation the host signals the target to start the application. However,
this is not directly the software under test but a small stub, the caller, which receives
the test data and writes it on the variables used by the target frame, then executes
the target frame for a single test data set and sends the measured execution-time back
to the host. This part of the target software is referred to as caller since it calls the
target frame. The host can send a new test data set to perform measurements or quit
the caller and return to the loader. For the program an executeable binary is compiled
which contains the caller, as well as the instrumented target application code. The
caller function which is automatically generated by the WCET analysis framework
to set the variables for the code under test is described in section 4.15.1. In contrast
to the MoDECS prototype multiple measurements can be taken at once, therefore
only one version of the target code is necessary. In the MoDECS implementation a
separately instrumented target frame was needed for the instrumentation of each PS.

The time basis for the measurements is the timer T0 which is set to run at
the CPU clock frequency. Before a frame is executed, the timer is restarted using
the PREPARE_MEASUREMENT macro. Figure 5.4 shows the code used to perform the
instrumentations. Each time IP_MEASUREMENT is called, the value of the counter
T0TC which is located at 0xE0004008 is read, and the obtained value is written to
0x40000044 + [0x40000040] where 224 bytes of unused RAM are located. The
memory holds up to 55 measurement values and one pointer to the next free space

97

5.1 Test Setup 5 Experiments

1 #define MSTART ((volatile uint32_t *) 0x40000040)
2
3 #define PREPARE_MEASUREMENT \
4 *MSTART = MSTART; \
5 T0TCR = 0x00000002; \
6 T0TCR = 0x00000001;
7
8 #define IP_MEASUREMENT \
9 asm volatile (\
10 " push {r2 ,r3} \n\t" \
11 " mov r2 , #1073741824 \n\t" \
12 " ldr r3 , [r2, #64] \n\t" \
13 " add r3 , r3, #1 \n\t" \
14 " str r3 , [r2, #64] \n\t" \
15 " mov r2 , # -536870912 \n\t" \
16 " add r2 , r2, #16384 \n\t" \
17 " ldr r2 , [r2, #16] \n\t" \
18 " str r2 , [r3] \n\t" \
19 " pop {r2,r3} \n\t" \
20 : \
21 : \
22 : "cc") ;

Figure 5.4: Measurement Instructions

which is located at 0x40000040 and increased every time a measurement has been
taken. Basically the assembler code in �gure 5.4 is the C statement *(++dest) =
TOTC;. It is written in assembler for two reasons: First, the compiler cannot optimize
it. Therefore it is always the same sequence with the same execution-time. Second, it
does not alter the register state, which the compiler can detect by the empty clobbered
registers list. It is important that the list of clobbered registers is empty to prevent
the compiler from changing the code generation. It is not entirely empty since the
processor status register is a�ected by the instrumentation. Both used registers, r2
and r3 are secured on the stack and restored when the measurement is completed.
When setting two instrumentation points directly in series the di�erence between both
counter values is 26 clock cycles. This value is used to calibrate the measurement
process. It is subtracted by the target from each execution-time transmitted back to
the host.

An important task is to make the loader and the caller collaborate. In the loader it
is easy to specify the location of caller by using its address in the prototype declaration

int (*_caller)(void) = (void*)0x40000200;

but there is no easy way to get the linker to place a function at an exact memory
location. As a second problem the caller uses some serial I/O functions de�ned by the
loader to conserve SRAM space and needs to know where these functions are located
in the �ash. The �rst problem requires an individual linker command �le. In [Mar06]
it is described where to place di�erent segments of the application when compiling for
the execution from �ash or SRAM. Unfortunately the speci�c chapters in the book

98

5 Experiments 5.1 Test Setup

only explain the process using the graphical interface which is rather expensive and
runs on MicrosoftWindows® only. To perform the same task using the GNU linker
ld requires a command �le as shown in �gure 5.5.

1 ENTRY(caller) /* specify the entry point */
2
3 MEMORY /* specify the LPC2138 memory areas */
4 {
5 flash : ORIGIN = 0x00000000, LENGTH = 512K /* FLASH ROM */
6 ram_low : ORIGIN = 0x40000040, LENGTH = 223 /* free memory */
7 ram_isp_l : ORIGIN = 0x40000120, LENGTH = 223 /* Philips ISP bootloader */
8 ram : ORIGIN = 0x40000200, LENGTH = 32224 /* free RAM area */
9 ram_isp_h : ORIGIN = 0x40007FE0, LENGTH = 32 /* Philips ISP bootloader */
10 }
11
12 _stack_end = 0x40007EDC; /* define a global symbol _stack_end */
13
14 SECTIONS /* define the output sections */
15 {
16 . = 0; /* set location counter to address zero */
17 .t0 : /* this goes to the start of the SRAM */
18 {
19 *(.text_0)
20 } >ram /* put all the above into SRAM */
21 .text : /* collect remaining SRAM sections */
22 {
23 *(.text) /* all .text sections (code) */
24 *(.rodata) /* all .rodata sections (constants, strings, etc.) */
25 } >ram /* put all the above into SRAM */
26 .data : /* collect all initialized .data for SRAM */
27 {
28 *(.data) /* all .data sections */
29 } > ram /* put all the above into SRAM */
30 .bss : /* collect all initialized .data sections for SRAM */
31 {
32 *(.bss) /* all .bss sections */
33 } > ram /* put all the above into SRAM */
34 _end = .; /* end of application SRAM */
35 }

Figure 5.5: Linker Command File for Caller

The solution to guarantee that caller is always placed at 0x40000200 is to create
a new text section which contains only caller and use the __attribute__ extension
in the function de�nition like shown in the line below:

int caller (void) attribute((section (".text_0")));

This instructs the compiler to place caller in the segment text_0 which is the �rst
segment placed in the SRAM starting at 0x40000200. It is important to generate a
separate segment for caller. Placing the text_0 segment at the beginning of the .text
segment will not work since the linker will likely place variables before functions.

99

5.2 Description and Goals of Tests Scenarios 5 Experiments

The calls to functions created by the loader part of the software can be resolved by
adding -Rloader.out to the command line arguments when linking the caller. This
causes the linker to scan the object �le loader.out for exported symbols and allows
the caller to refer to these symbols and to use the declared functions and variables
provided by the loader.

The test data are also transferred over the serial connection to the my_frame
function, which is individually generated for each application and writes the individual
values which are located in an unstructured memory area to the global and static
variables. The global variables are automatically substituted by global variables so
that they behave like static variables but can be written from my_frame. This is
done by the tdata class described in section 4.15.1. After all variables have been
initialized the target instrumented application is executed and my_frame gives the
control back to caller which transfers the measurement results back to the host.

5.2 Description and Goals of Tests Scenarios

The selected test scenarios are primarily used to evaluate features that are unique
to the new execution-time measurement prototype V3. Features that have been
evaluated with the predecessor version V2 are only covered coarsely.

The �rst series of tests focuses on the processing of loops and is divided into three
parts. The �rst part examines how well loops are handled in general and which types
of loops are supported. The second part examines how the deactivation of optimized
loop handling techniques a�ects the processing of loops. The third part examines,
how a special handler for a type of loop where exactly one iteration forces a di�erent
path would a�ect the loop performance. As this loop handler is not implemented
in the analysis tool yet, this part uses the framework to measure the di�erent paths
through the loop but the quantitative estimate of the e�ect are done by manual
calculation.

The second test series compares inlining and black-boxing, the two methods pro-
vided for function handling. Not only the WCET results but also the analysis time
is compared. These tests showed that it is important to provide both methods since
not all functions can be inlined and not all functions can be black-boxed.

The third series of tests examine how the control-�ow paths inside expressions
which were neglected in the MoDECS project in�uence the analysis time as well as
the quality of the calculated WCET bound. The experiments conducted in section 5.5
show that the expected e�ect can be observed but is not as strong as anticipated.

A further interesting area is to investigate the correlation between the size of
program segments and the required number of measurements. This has already been
elaborated by Wenzel [Wen06]. Based on his results a path bound of 100 has been
selected for all tests described in this chapter.

100

5 Experiments 5.3 Loops

5.3 Loops

The tests in this section cover di�erent aspects of the loop handling mechanisms
provided in the newly developed WCET analysis prototype.

5.3.1 General Loops

The main di�erence between the MoDECS WCET analysis prototype and the
new version presented within this work is the ability to analyze loops. The tests per-
formed in this section compare the ability of the presented WCET analysis prototype
(V3) to the prototype developed during the MoDECS project (V2). The test cases
�ADCKonv� and �AktuatorSysCtrl� are also included even if they do not contain
loops in order to present a full overview of the WCET analysis tool performance for
all test cases. Table 5.2 shows the analysis results for all test cases. The �rst column
shows the name of the test case. Columns V2 and V3 indicate if the test case works
using V2 respectively V3. The next column shows the calculated WCET. The overall
model checking time, which includes the time to �nd loop bounds and the time to
generate test data, is displayed in column TMC. The last column explains why the
test case could not be analyzed. About half of the Mälardalen test cases could not
be analyzed because they contain nested loops. This is not per se a limitation of the
analysis method but the analysis of nested loops using the proposed analysis method
requires a vast implementation e�ort. This is caused by a weak design decision when
imlementing the dtree class and is described in section 4.12. The second frequent
reason for failure were �oating point variables in control-�ow decisions. All tests in
table 5.2 have been made using black-boxing unless otherwise noted in the footnotes.

5.3.2 General vs. Specialized Loop Handling

Loop handling is based on the structure of the loop. The goal of the tests per-
formed in this section is to compare the special loop handling methods for single path
const iteration and single path variable iteration loops to the generic loop handling
method by disabling the special loop handling techniques. Most of the functions have
only a single execution path when they are called from main using a �xed function
parameter. This is not typical or realistic for normal applications but widely used
in the Mälardalen benchmarks. All measurements have been performed on the main
function using function inlining. Loops, which do not �t in any category for special-
ized loop handling are not included in the results shown in table 5.3, because the goal
in this section is to compare specialized and generic loop handling.

The �rst column in table 5.3 shows the name of the test case. The WCET is shown
in the second column. Since there are no test results for the ARM architecure with
the GNU compiler and the same compiler switches available, it is impossible to make
assumptions about the tightness of the analysis. As mentioned above the WCET
would likely di�er amongst the individual loop handling techniques for complex target

101

5.3 Loops 5 Experiments

Testcase V2 V3 WCET TMC Reason for Failure[cyc] [s]
adpcm n n nested loop
bs n y 313 132
bsort100 n n nested loop
cnt n n nested loop
compress n n unstructured loop with goto
cover n y 5749 0
crc n ya 113858 129
du� n n nested loop
edn n n nested loop
expint n n nested loop
fac n n recursive functions
fdct n y 9886 0
�t1 n n nested loop
�bcall n y 1250 32
�r n n nested loop
insertsort n n nested loop
janne_complex n n nested loop
jfdctint n y 12144 0
lcdnum n yb 601 3
lms n n uses �oat in branch decision
ludcmp n n nested loop
matmult n n nested loop
minver n n nested loop
ndes n n c

ns n n nested loop
nsichneu n y 646 73000
prime n y 368305 24
qsort-exam n n nested loop
qurt n n uses �oat in branch decision
recursion n n uses recursion
select n n nested loop
sqrt n n uses �oat in branch decision
statemate n y 1916 1284
AktuatorMotorregler yd y 4142 1182
ADCKonv y y 574 134 e

AktuatorSysCtrl y y 82 27 e
∑

Testcases: 35 3 10 ∼21h
arequires inlining (icrc) and black-boxing (icrc1)
banalysis does not consider the e�ect of volatile
ccannot be inlined (→ nested loop) nor black-boxed (free function argument pointer)
dloops were resolved manually
etest case does not contain loops but is included for a complete overview of test cases

Table 5.2: Analyzeable Test Cases in V2 and V3

102

5 Experiments 5.3 Loops

Testcase
SP/CI SP/VI MP/VI

WCET Paths TMC Paths Paths Paths TMC

[cyc] meas [s] meas MC inf [s]
bs 313 4 2 14 4 10 132
cover 5749 3 73a 14801b 0 14797 24238
fdct 9886 5 36c 19 0 0 36
�bcall 1250 3 12 86 29 27 186
jfdctint 12144 4 32d 81 0 0 32

a32, 25, and 16 for loops in functions swi120, swi50 and swi10
b14400, 3000 and 100 in functions swi120, swi50 and swi10 + 1 path in main
c18+18 in function fdct
d8 in function main, 12+12 in function jpeg_fdct_islow

Table 5.3: Generic and Spezialized Loop Handling

architectures. The third column shows the number of paths that have to be measured
for the single-path constant-iteration (SP/CI) loop type. Since there is only a single
path, which is always covered by the random-generated test data the time required
for model checking is always 0 for this loop type. For all of the shown test cases
there is only a single end-to-end path. Since this path spans across multiple program
segments it is measured for each PS individually. For all test cases there are no
paths which require model checking or are infeasible using the SP/CI loop type. The
next column shows the test results for the single-path variable-iteration (SP/VI)
loop type. For the number of paths which need to be measured the same applies
as for the single-path constant-iteration loop type. The main di�erence between
SP/CI and SP/VI is that the loop bound is unknown in the second case and has
to be determined using model checking. The application is then executed with the
generated test data so that the maximum loop iterations are actually executed. The
time TMC which is displayed in this column is the time required to �nd the loop
bound using model checking. The next four columns show the results for the generic
loop approach which covers multiple-path variable-iteration (MP/VI) loop type. For
this loop type the longest path for each iteration is searched. The sum of these
per-iteration WCET paths is the WCET of the whole loop. The drawback of this
approach is that at least one instrumentation point per iteration, which means in
the loop body, is required. This can introduce a high instrumentation overhead for
other hardware architectures, especially for all architectures using a memory cache.
The �rst column shows the number of paths that have to be measured to cover each
path inside the loop for each iteration. The test cases bs and �bcall introduce some
control-�ow inside the loop header. The paths introduced by the expressions in the
header can partly be reached. This is shown in the column Paths MC, which gives the
number of paths discovered using model checking. The majority of paths is infeasible
and their number is shown in the column named Paths inf. The last column, TMC

shows the time required to cover all paths or mark them as infeasible using model
checking. On the ARM® architecture the special loop handling algorithms only
speed up analysis but on other architectures they might as well tighten the WCET

103

5.3 Loops 5 Experiments

bound since fewer instrumentation points are required for the special loop handling
algorithms.

5.3.3 Reduced Overestimation for 1:n-Loops

The term 1:n-loops is used to describe loops that execute the same path for
each iteration except for a single iteration which behaves di�erently. A special loop
measurement logic was considered but not implemented for this kind of loop because
of the limited project time. The results in this section are calculated from manual
measurements which have been performed for individual paths of the examples.

1 int lut[] = {
2 4, 5, 7, 3, 6, 2, 1, 0
3 };
4
5 int find (int key) {
6 int i, found =-1;
7 int sz = sizeof(lut)
8 / sizeof(int);
9
10 for (i=0; i<sz; ++i)
11 if (lut[i]== key)
12 found=i;
13 return found;
14 }

(a) Original Listing

Iter ET
1 29
2 33
3 29
4 29
5 29
6 29
7 29
8 27

(b) ET for di�erent
Iterations for key=3

1 int spec_loop =0;
2 int lut[] = {
3 4, 5, 7, 3, 6, 2, 1, 0
4 };
5
6 int find (int key) {
7 int i, found=-1;
8 int sz = sizeof(lut)
9 / sizeof(int);
10
11 for (i=0; i<sz; ++i)
12 if (lut[i]==key) {
13 ++ spec_loop;
14 found=i;
15 }
16 assert(spec_loop <= 1);
17 return found;
18 }

(c) CBMC Model

Figure 5.6: 1:n-Loop with ET for Di�erent Iterations

Figure 5.6 is a typical example for a 1:n-loop. If the search key matches a value in
the lut array the index is stored in found and returned at the end of the function. This
special handling takes four cycles more than any other iteration of the loop. When
checking the control-�ow of the loop body the data �ow analysis identi�es key as
variable and therefore concludes that the control-�ow in the loop is data dependent.
This assumption, although it is correct, leads to the generic loop handling, searching
the maximum execution-time for each iteration. When performing measurements on
the loop the result is 11 cycles for the loop header. For the loop body, including the
jump to the loop head, the result is 22 cycles if the if branch is taken, respectively
18, when it is not taken. Therefore the calculated execution-time of the loop is
WCETgenloop = 8 ∗ 11 + 7 ∗ max(22, 18) = 242 cycles instead of WCETgoptloop =
8 ∗ 11 + 6 ∗ 18 + 22 = 218 cycles. This imprecision can be avoided by restricting
the number of executions for the special path. Figure 5.6c shows how this can be
accomplished easily using a model checker. Using the model �gure 5.6c the model
checker needs less than a second to verify the given assertion in line 16.

104

5 Experiments 5.3 Loops

After the e�ects of 1:n loops have been demonstrated using a small example
the e�ects shall be examined on the basis of the binary search example bs of the
Mälardalen benchmarks as shown in �gure 5.7. The given example has been altered
to favor the worst and average case instead of the best case by checking if the element
has been at the end of the loop, a modi�cation we would make when optimizing
for minimal WCET. After this modi�cation we can measure a WCET of 262 cycles
instead of 282 cycles for the binary_search function since it is known that the contents
of the key array are constant as well as the value of key = 2 it can be concluded that
the control-�ow within the loop is also constant and needs only the measurement of
a single path.

1 int binary_search(int x)
2 {
3 int fvalue , mid , up, low ;
4
5 low = 0;
6 up = 14;
7 fvalue = -1 /* all data are positive */ ;
8 while (low <= up) {
9 mid = (low + up) >> 1;
10 if (data[mid].key > x) {
11 up = mid - 1;
12 } else if (data[mid].key < x) {
13 low = mid + 1;
14 } else {
15 up = low - 1;
16 fvalue = data[mid]. value;
17 }
18 }
19 }

Figure 5.7: A complex 1:n Loop in the Binary Search Test Case

Consider the more interesting case when key = unknown. In this case it cannot
be assumed that the control-�ow in the loop body is constant, instead the generic
approach has to be used, calculating the loop bound and searching the longest
execution-time for each iteration of the loop. Since the exit criteria might match
at each iteration, the longest path for each iteration is the path marked in cur-
sive font in �gure 5.7. The WCET for the whole loop the would be calculated as
WCETloop = |Num.Iterations| ∗WCET(Iteration). What the control logic of the
generic approach does not (yet) know, is that the longest path can be executed only
once since afterwards the loop is exited. Measuring the individual paths within the
loop we get 10 cycles for the loop header, 33 cycles for the shortest path, 49 for
the intermediate path and 63 for the longest path. By applying the same procedure
as shown in �gure 5.6 it can be determined that the longest path can only be exe-
cuted once. However, since it remains unknown, how often the remaining paths can
be executed, the path with the highest execution-time is chosen from the remaining
paths.

105

5.4 Function Inlining vs. Black-Boxing 5 Experiments

As last step, the WCET of the whole loop is calculated. Using the generic ap-
proach and a maximum of three iterations we get an execution-time of

WCETgenloop = 4 ∗ 10 + 3 ∗max(33, 49, 63) = 229 cycles

instead of

WCETgoptloop = 4 ∗ 10 + 2 ∗max(33, 49) + 63 = 201 cycles.

5.4 Function Inlining vs. Black-Boxing

The V3 WCET calculation prototype o�ers two types for function handling, in-
lining and black-boxing. Inlining means that the whole function is expanded in the
code during the path analysis and test data generation while black-boxing means that
the WCET of the function is determined independently from the calling function and
inserted in an individual PS which is created for the function call. Inlining o�ers
the bene�t that the context from which the function is called (i.e. possible value
ranges for arguments) can be considered but increases the complexity of the analyzed
application. On the other hand, black-boxing hides the complexity of the function
but might overestimate the execution-time of the function in a speci�c context. Fig-
ure 5.8 demonstrates how the calling environment can in�uence the execution-time
of the called function.

1 const int lut_x [] = {
2 1, 2, 4, 8, 16, 0
3 };
4
5 int lut(int value)
6 {
7 const int *xptr = lut_x;
8 int index = 0;
9 while (value > *xptr
10 && *xptr) {
11 xptr ++;
12 index ++;
13 }
14 if(! *xptr)
15 index =-1;
16 return index;
17 }
18
19 int my_main ()
20 {
21 return lut (3);
22 }

(a) Listing

int ET
value [cyc]

1 68
2 101
4 134
8 167
16 200
32 240

(b) lut Execution Times

Figure 5.8: Inlining vs. Black-Boxing

106

5 Experiments 5.4 Function Inlining vs. Black-Boxing

Te
st

C
as
e/
Fu

nc
tio

n
FC

P
S

Pa
th
s

Pa
th
s

Pa
th
s

Pa
th
s

Pa
th
s

T
im

e
W

C
ET

EE
m
ea
s

rn
d

M
C

in
f

M
C

[s]
[c
yc
]

bs
bi
na

ry
_
se
ar
ch

0
3

5
14

4
0

10
13

2
28

2
B:

m
ai
n

1
3

1
3

3
0

0
0

31
3

I:
m
ai
n

0
4

5
4

4
0

0
0

31
2

co
ve
r sw

i1
20

0
1

12
2

1
1

0
0

0
37

66
sw

i5
0

0
1

61
1

1
0

0
0

15
96

sw
i1
0

0
1

12
1

1
0

0
0

35
6

B:
m
ai
n

3
5

1
5

5
0

0
0

57
49

I:
m
ai
n

0
3

89
30

4
3

3
0

0
0

57
49

cr
c

icr
c1

0
3

3
17

12
4

1
5

40
4

B:
icr

c
0

6
ca
nn

ot
be

bl
ac
k-
bo

xe
d:

un
bo

un
de

d
lo
op

I:
m
ai
n

1
12

25
6

28
2

24
2

13
2

11
38

58
fd
ct

B:
m
ai
n

1
3

ca
nn

ot
be

bl
ac
k-
bo

xe
d:

po
in
te
ri

n
fu
nc

tio
n
ca
ll

I:
m
ai
n

0
5

4
5

5
0

0
0

98
86

�b
ca
ll �b

0
3

6
6

2
1

3
3

12
19

B:
m
ai
n

1
3

1
3

3
0

0
0

12
50

I:
m
ai
n

0
3

6
3

3
0

0
0

12
50

jfd
ct
in
t jp
eg
_
fd
ct
_
isl
ow

0
4

4
2

2
0

0
0

12
11

4
B:

m
ai
n

1
3

2
1

1
0

0
0

12
14

4
I:

m
ai
n

0
6

4
4

4
0

0
0

12
14

4

Ta
bl
e
5.
4
�C

om
pa

ris
on

be
tw

ee
n
In
lin

in
g
an

d
Bl
ac
k-
Bo

xi
ng

�
is

co
nt
in
ue

d
on

th
e
ne

xt
pa

ge
→

107

5.4 Function Inlining vs. Black-Boxing 5 Experiments
Te

st
C
as
e/
Fu

nc
tio

n
FC

P
S

Pa
th
s

Pa
th
s

Pa
th
s

Pa
th
s

Pa
th
s

T
im

e
W

C
ET

EE
m
ea
s

rn
d

M
C

in
f

M
C

[s]
[c
yc
]

lcd
nu

m nu
m
_
to
_
lcd

0
1

16
16

2
1

13
3

56
B:

m
ai
n

1
3

3
3

3
0

0
0

60
1

I:
m
ai
n

0
1

16
17

0
16

0
15

4
0

60
1

pr
im

e di
vi
de

s
0

1
1

1
1

0
0

0
16

78
ev
en

1
1

1
1

1
0

0
0

93
6

pr
im

e
2

2
un

bo
un

de
d
lo
op

sw
ap

0
1

1
1

1
0

0
0

64
B:

m
ai
n

2
n.
a.

ca
nn

ot
be

bl
ac
k-
bo

xe
d:

pr
im

e
is

un
bo

un
de

d
I:

m
ai
n

0
1

45
45

1
0

44
0

36
83

05
st
at
em

at
e

in
te
rfa

ce
0

3
5.
6e
5

26
8

26
34

20
8

12
1

26
3

in
it

0
1

1
1

1
0

0
0

14
3

ge
ne

ric
_
K
IN

D
ER

SI
CH

ER
U
N
G
_
CT

RL
0

6
84

72
14

2
34

3
10

5
16

5
75

ge
ne

ric
_
FH

_
TU

ER
M
O
D
U
L_

CT
RL

0
9

4.
2e
7

68
2

27
6

5
40

1
50

2
20

1
ge
ne

ric
_
EI

N
K
LE

M
M
SC

H
U
TZ

_
CT

RL
0

1
27

27
1

0
26

14
71

ge
ne

ric
_
BL

O
CK

_
ER

K
EN

N
U
N
G
_
CT

RL
0

3
12

4
86

15
9

62
82

71
FH

_
D
U

4
11

84
06

5
50

2
95

1
40

6
38

2
14

80
B:

m
ai
n

3
1

1
1

1
0

0
0

19
16

I:
m
ai
n

0
21

4.
3e
26

18
32

24
6

68
15

18
12

04
2

18
43

A
kt
ua

to
rM

ot
or
re
gl
er

Ta
b1

D
S0

I2
T2

08
4_

A
kt
M
ot
Re

g
0

3
8

38
16

10
12

8
67

4
B:

A
kt
ua

to
rM

ot
or
re
gl
er

3
1.
6e
18

71
2

71
2

52
22

63
8

11
74

41
42

I:
A
kt
ua

to
rM

ot
or
re
gl
er

0
3.
2e
20

76
7

76
7

71
18

67
8

15
24

40
52

Ta
bl
e
5.
4:

Co
m
pa

ris
on

be
tw

ee
n
In
lin

in
g
an

d
Bl
ac
k-
Bo

xi
ng

108

5 Experiments 5.5 Control Flow in Expressions

Figure 5.8a shows the listing of a short look-up table function, which uses an array
of integers to calculate bld2(value)c for the range 0 to 64. However, the main function
does not use the whole input range, in fact it uses a constant value. Figure 5.8b shows
the execution-time of lut for di�erent values. It can be seen that the execution-time
for the input values 2, which is 101 cycles, and 32, which is 240 cycles and equal to
the WCET of the function, di�er by 139 cycles. The WCET of the main function
includes an additional calling overhead of 30 cycles. Thus we get a WCET estimate of
131 cycles when using inlining versus an estimation of 270 when using black-boxing.

It has been shown in the previous example that there can be a big overestimation
when using black-boxing. Table 5.4 shows results from a selection of the Mälardalen
benchmarks as well as on industrial application (the other two case studies do not
contain function calls).

The �rst column contains the name of the test case. The indented lines contain
the names of analyzed functions within each test bench. The lines pre�xed with �B:�
and �I:� represent the main function of the application and the analysis results for
black-boxing respectively inlining. Functions called from other functions have been
analyzed using black-boxing (this is only the case in statemate). The next column
shows the number of function calls in the analyzed function followed by the number
of program segments �PS�. The next column titled �Paths EE� shows the number of
end-to-end paths. The paths that need to be measured are shown in the next column
described as �Paths meas�. Due to paths in loop iterations this number may be greater
than the number of program segments. �Paths rnd�, �Paths MC� and �Paths inf� give
the number of paths covered by random test data and model checking, respectively
the number of infeasible paths. The next column �Time MC� shows the time required
for model checking, which includes the time for loop bound analysis and the time for
test data generation. Finally the last column �WCET� gives the calculated estimate
for the WCET in cycles.

5.5 Control Flow in Expressions

In this section the di�erent handling of control-�ow paths inside expressions in the
V2 prototype and the V3 prototype is examined. Control �ow in expressions arises
from C short-circuiting in logical AND (&&) and OR (||) expressions as well as from
the use of the conditional expression operator (?:) as described in section 2.1.2. The
e�ect can be observed best using a small example like the one shown in �gure 5.9a.
The generated CFG using V2 is shown in �gure 5.9b and the CFG generated for V3 is
shown in �gure 5.9c. Since V2 ignores the CFG inside expressions, the resulting CFG
is simpler than the CFG of the V3 prototype and consists only of a representation
of the if -statement in BB 0, the if -branch in BB 3, the else-branch in BB 4 and the
function exit in BB 1. The CFG built using V3 also includes the if -statement in BB
0, the if -branch in BB 8, the else-branch in BB 9 and the function exit in BB 1.
Additionally it includes the CFG nodes 3, 4, 5, 6, and 2, which do not represent basic

109

5.5 Control Flow in Expressions 5 Experiments

1 int logic (
2 int a,
3 int b,
4 int c)
5 {
6 if (a && b || c)
7 return 1;
8 else
9 return 0;
10 }

(a) Listing (b) V2 CFG (c) V3 CFG

Figure 5.9: Handling of Expression Paths in V2 and V3

blocks but are used to model the control-�ow within the logic expression as described
in section 4.6.

The results of the WCET analysis using V2 and V3 are shown in table 5.5. The
same colors for V2-1/V3-1 and for V2-2/V3-5 indicate corresponding test cases. It
can be seen that the WCET case V3-2 has not been reached and that the WCET has
been underestimated using the V2 prototype. In fact, V3-1, V3-2 and V3-4 which
all have di�erent control-�ows are all represented by V2-1 and V3-3 and V3-5 are
represented by V2-2. When using V2 it is decided by the random-generated test data
which actual control-�ow path is chosen through the logic expression when measuring
it. As logic expressions are commonly used in (industrial) C applications this can lead
to underestimation of these applications, which is a serious problem. The possible
underestimation increases with the complexity of the logical expression. As there are
always the same structures used to build complex logic expressions we can expect
an underestimation of 2-3 cycles per shortcut taken, except when function calls in
logic expressions are used. In this case, the observed e�ect is likely to be much
higher. However, they have not been observed in any test case, except in prime.c
from the Mälardalen Benchmark suite where the expressions return ((prime(x) &&
prime(y))) can be found at the end of the main function. V3 does not support
function calls in expression paths. The Black-Box function approach does not work
for these cases since it requires instrumentation points placed before and after the
function call, which is not possible in this case.

Table 5.6 shows the results when applied to a subset of the test cases. Black-
boxing was used to resolve function calls. The di�erences, which are likely caused by
the underestimation of expression paths, are small but measureable and undetectable
using V2. An other source for di�erent WCET results is the di�erent segmentation

110

5 Experiments 5.6 Results

Nr Path a b c ET[cyc]
V2 1 0,3,1 -2767 -6 194 66

2 0,4,1 0 6659 0 67

V3

1 0,6, 3,2,8,1 3356 -31 -9 66
2 0,6,5,3,2,8,1 12 0 75321 70
3 0,6,5,4,2,9,1 -2 0 0 69
4 0, 5,3,2,8,1 0 0 7328 67
5 0, 5,4,2,9,1 0 23 0 67
6 0,6, 3,2,9,1 - - - n.a.
7 0,6,5,3,2,9,1 - - - n.a.
8 0,6,5,4,2,8,1 - - - n.a.
9 0, 5,3,2,9,1 - - - n.a.
10 0, 5,4,2,8,1 - - - n.a.

Table 5.5: Measurement Results for the Expression Path Example

which moves PS borders and may hide some infeasible paths but make others de-
tectable. In large test cases it is not always possible to identify the source of di�erent
WCET estimates.

V2 V3
Testcase Paths PS Paths WCET Paths PS Paths WCET

EE Meas [cyc] EE Meas [cyc]
nsichneu 1.2e+106 62 1308 618 1.7e+120 73 5103 646
statemate 8.5e+5 28 586 1522 4.2e+7 35 1709 1510
AktuatorMotorregler 1.9e+11 14 234 4136 1.6e+18 21 712 4142
ADCKonv 144 2 74 572 2102 4 102 574
AktuatorSysCtrl 97 1 97 82 388 5 51 82

Table 5.6: E�ects of Control Flow in Expressions in Industrial Case Studies

5.6 Results

This section presents a discussion of the results from the test runs described in
the previous three sections. Signi�cant results are explained and it is also discussed
why the observed e�ect was only very weak in some cases.

5.6.1 Loops

It can be seen from table 5.2 that about half of the tests contain nested loops and
cannot be analyzed with the presented WCET analysis tool. This is not a limitation

111

5.6 Results 5 Experiments

of the proposed analysis method, but a result of a bad design decision during the
prototype implementation which is described in section 4.12. However, one third of
the test cases can be analyzed and due to the used loop analysis techniques the model
checking e�ort is low.

It is shown by the di�erent analysis times for the specialized and the generic
loop handling techniques in table 5.3 that the analysis performance bene�ts strongly
from the specialized loop handling techniques. What cannot be seen on the ARM®

architecture is that this bene�ts not only the analysis performance but also the quality
which is in this case the tightness of the resulting WCET bound. This can be assumed
based on the fact that less instrumentation points (inside loops) are required whe
using the specialized loop handling techniques. Additional instrumentation points
have to be inserted in the loop body for the generic loop analysis method, each
requiring to �ush the cache and the pipeline, for complex hardware architectures. In
this case the analysis overhead for small loops which would normally �t completely
into the cache can expected to be huge.

The e�ect of the 1:n-loop optimization described in section 5.3.3 is also consid-
erable but it could not be directly observed in the used test benches. The analysis
in this section was performed manually because due to the limited project time the
analysis framework does not have support for this loop analysis optimization.

5.6.2 Function Inlining vs. Black-Boxing

The conducted tests compare two strategies to resolve function calls. The �rst
strategy, inlining, replaces the function call with the code in the called function, creat-
ing local variables as necessary and works similar to C++ inline functions. However,
this inlining is only virtual to calculate control-�ow paths and program segments.
When performing measurements a function call is performed like usual. The second
strategy is called black-boxing. The idea is to perform WCET analysis for individual
functions. When a function is called it is simply treated as a black-box with unknown
internal structure but a known WCET time.

Both analysis methods have advantages and disadvantages. Inlining generates
a high degree of complexity and analysis e�ort and is bene�cial for small functions
while black-boxing reduces the complexity and analysis e�ort but can lead to overes-
timations. The largest observed overestimation was in statemate with 3.96%. In the
same test case the model checking time was increased from 1284s for black-boxing
to 12060s using function inlining. When analyzing single path applications even an
opposite e�ect can be observed like in �bcall where the model checking time is 32s
with black-boxing and 0s with inlining. A look at �gure 5.10 explains why inlining
works better for this test case than black-boxing. When analyzing �b(int n) n is
a free variable. However, the single-path constant-iteration loop (SP/CI) handling
method can only be used when there are no data dependent control-�ow decisions
within the loop body and the number of iterations is constant. Since the number
of iterations depends on the unbound variable n the single-path variable-iteration

112

5 Experiments 5.6 Results

1 int fib(int n)
2 {
3 int i, Fnew , Fold , temp , ans;
4
5 Fnew = 1; Fold = 0;
6 for (i = 2; i <= 30 && i <= n; i++)
7 {
8 temp = Fnew;
9 Fnew = Fnew + Fold;
10 Fold = temp;
11 }
12 ans = Fnew;
13 return ans;
14 }
15
16 int main()
17 {
18 int a;
19
20 a = 30;
21 fib(a);
22 return a;
23 }

Figure 5.10: Listing of �bcall Case Study

(SP/VI) loop handling has to be used. Model-checking has to be used to calculate
the loop bound and the test data to reach it. In some cases a loop contained in a
called function might even be unbounded when no function parameter is given and
black-boxing will fail. The penalty for free function parameters is even higher if the
loop body has multiple paths. The generic loop handling algorithm checks each path
through the loop body for each iteration, which leads to 14400, 3000, and 100 paths
which have to be analyzed for the swi120, swi50 and swi10 functions in the cover
test case, requiring a total model checking time of 14797 seconds.

5.6.3 Control Flow in Expressions

The last series of tests covered control-�ow in logical AND (&&) and OR (||)
expressions as well as the conditional expression operator (? :). The consideration
of C-shortcircuit paths for logical expressions can increase the number of end-to-end
paths dramatically. A taken shortcircuit causes an underestimation of the WCET.
In most of the test cases except for statemate the WCET is a few cycles higher when
taking the control-�ow inside expressions into account. The problem is that the
consideration of control-�ow paths can change the segmentation of the application.
When PS are changed, this can lead to cases where new infeasible paths are detected
because mutually exclusive paths are moved from separated segments into the same
PS. The opposite, that mutually exclusive paths are moved from the same PS to
di�erent PS, allowing them to be executed at the same program run, might also

113

5.7 Summary 5 Experiments

happen. The reduced WCET bound in statemate might be caused by one of the
described e�ects.

It is important to note that the analysis of expression paths is safe with the V3
prototype because all paths that are created by the logical expression are coverd by
measurements. Due to the movement of PS borders the calculated WCET estimate
of the V3 prototype can be lower than estimate of the V2 prototype as it can be seen
in table 5.6. This artifact is caused by infeasible paths but the result from the V3
prototype implementastion is still safe.

5.7 Summary

In this chapter the test environment, both hard- and software has been described.
The test cases have been introduced and the test results for various test scenarios
have been shown to test di�erent e�ects when analyzing loops, function calls and
control-�ow in expressions. The chapter has been concluded by a short discussion of
the results from the individual measurements.

114

Chapter 6

Related Work

This chapter gives an overview of current work related to WCET analysis and
other topics relevant to this work like WCET oriented programming, model checking,
loop and cache analysis and timing anomalies.

When a application is described in one of the following sections, the authors of the
application and their a�liation as well as an URL of the application's web presence
is listed. However, if a project cannot be assigned to one or more persons or their
a�liation is unknown, this information is omitted.

6.1 WCET Analysis

In this section di�erent static and dynamic or hybrid WCET analysis projects are
discussed. Some of the presented projects are only at their beginning stage and are
doing basic research, others have already emerged into commercial products. Major
parts of the overview are from an ACM survey article by Wilhelm et al. [WEE+08]
where a more detailed description of some of the tools can be found. Some addi-
tions and updates to this survey article have been made to re�ect new tools and the
changes to the existing tools made since the publication of the article. Especially all
participants of the WCET tool challenge 2008 [HGB+08] have been included in this
section. The described analysis tools are categorized in static WCET analysis, where
no execution of the code is involved, and measurement-based or hybrid analysis where
the examined application is executed either on the target hardware or a simulation of
the target hardware. A more complete classi�cation of WCET analysis tools can be
found in [KP05] where a classi�cation of tools based on the representation level on
which the tools operate, the analysis of �ow facts and the execution-time modelling
is introduced. At the end of this section there is an overview table which lists the
target platforms supported by the individual WCET analysis tools.

115

6.1 WCET Analysis 6 Related Work

6.1.1 Static WCET Analysis

This section gives an overview of current WCET analysis tools implementing static
WCET analysis. This list might not be complete but it should include all major
projects. AiT developed by AbsInt Angewandte Informatik GmbH and Bound-T
developed by Tidorum Ltd. are commercial products. All other tools are prototypes
from academic research projects.

AiT

Originator: AbsInt Angewandte Informatik, Saarbrücken, Germany and Reinhard
Wilhelm, Programming Languages and Compiler Construction, Saarland University,
Germany
URL: http://www.absint.com/ait/
AbsInt is a spin-o� company of the Saarland University. Research on the WCET
analysis tool is done at AbsInt, which makes the tool available commercially, and
at the Saarland University. AbsInt's AiT timing analysis tool operates on object
code level and obtains upper bounds for execution-times of code fragments which
are usually functions of an application. The advantage of performing the analysis
on object code is that all registers and memory locations are known and a very
precise static analysis is possible. Information that cannot be extracted from the
executable �le can be provided by the user, either using a separate parameter �le or
using annotations in the source code. The tool uses line number information which is
contained in the object �le to assign the source annotations to speci�c locations in the
executable. The user annotations may not only contain information like loop bounds
and �ow facts but also the value of registers and variables. This feature is used to
check applications which can run in multiple di�erent modes depending on the value
of a register (i.e. startup, diagnostics mode, or normal operation). The analysis starts
by reconstructing an annotated control-�ow graph (CFG) from the object code. The
next step is the value analysis using abstract interpretation (AI) [FW99] and, based
on that, the loop bound analysis and the pointer analysis. The cache analysis which
is also based on abstract interpretation uses the memory addresses found in the value
analysis and categorizes memory access in sure hits and possible misses. The next
analysis step is pipeline analysis which gives an upper bound for the execution-time
of each basic block. The last step, the bound calculation, uses the local WCET of
the basic blocks to determine the WCET path using ILP.

In cases where the automatic loop bound calculation and the jump analysis for in-
direct jumps and branches does not work user annotations are required. Additionally
the tool relies on the architecture speci�c calling conventions.

calc_wcet_167

Originator: Raimund Kirner and Peter Puschner, Real Time Systems group at Vienna
University of Technology, Austria

116

http://www.absint.com/ait/

6 Related Work 6.1 WCET Analysis

URL: http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
calc_wcet_167 reads wcetC source code, which is written in a subset of ANSI-
C with annotation extensions for loop bounds and infeasible paths [Kir02]. The
tool works with a modi�ed version of a compiler which generates object code and
additional information for the WCET analyzer. The tool can be integrated within
the Matlab/Simulink toolchain [KLFP02] where it modi�es the code generation to
include annotations in the generated code. The compiler keeps track of control-
�ow information during code transformations so timing analysis for highly optimized
code can be performed [KP03, Kir03]. The execution-times are calculated using ILP
under consideration of infeasible paths [PS97]. The results can be imported into
Matlab/Simulink models via dedicated WCET blocks.

The tool requires manual annotations and therefore the analysis quality depends
on the quality of the annotations (especially for infeasible paths).

Bound-T

Originator: Tidorum Ldt., Helsinki, Finland
URL: http://www.tidorum.fi/bound-t/
Bound-T was developed by State Space Finland under contract with the European
Space Agency (ESA) and further developed by Tidorum Ldt. The tool uses an
application binary with included debugging information to determine an upper bound
for the execution-time of a function, including all called sub-functions, as well as an
upper bound for the stack usage. Loop bounds are extracted from typical software-
generated loop patterns or provided as code annotations, which have to be written in a
separate text �le and not in the source code. The annotations refer to the program via
named entities (labels, subroutines) or structural properties (loops, calls). Like AiT,
Bound-T is independent of the programming language since it uses compiled code.
Bound-T has general facilities for modeling control-�ow and integer arithmetic, but
requires specialized processor models for each supported processor. From the object
code an annotated CFG is extracted where the edges contain the WCET for the basic
block they represent. Counter-based loops are modelled using Presburger arithmetic
as a set of equations or inequalities. To bound loop iterations, Bound-T tries to
identify loop counter variables, which are modi�ed by a �nite value on each iteration.
When Bound-T identi�es the initial and �nal value of the loop counter variable,
the number of iterations can easily be calculated. The generated equation set is
analyzed and solved using the omega calculator from Maryland University [Pug91].
The WCET is calculated using implicit path enumeration techniques (IPET) using
the lp_solve tool [Ber97] by M.Berkelaar. The result of the computation is an upper
WCET bound in an easy parsable text �le and graph �les showing call graphs and
annotated CFG graphs in the DOT [GN99] format.

As a requirement for the analysis the analyzed functions must not be recursive and
the control-�ow must be reducible. Dynamic jumps are analyzed based on commonly
used compiler patterns but not all constructs are supported. The aliasing analysis

117

http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
http://www.tidorum.fi/bound-t/

6.1 WCET Analysis 6 Related Work

(pointer analysis) is only very basic. Loop bound analysis does not handle multipli-
cation and bit-operations (and, or, not, shift, . . .). Like AiT Bound-T depends on
the architecture speci�c calling conventions.

Chalmers University Prototype

Originator: High-Performance Computer Architecture Group, Department of Com-
puter Engineering, Chalmers University of Technology, Göteborg, Sweden
URL: http://www.ce.chalmers.se/research/group/hpcag/project/wcet.html
The tool analyzes Power-PC binaries and derives safe upper bounds for a subset
of the Power-PC instruction-set. The tool integrates path and timing analysis in a
cycle-accurate hardware-model which is extended to handle unknown input values
[Lun02]. Before the simulation is started, all data �ow and control-�ow information
that can be statically derived from the application, which is all input-independent
information, is analyzed. When the simulator encounters an input-dependent branch
decision, both paths are executed, leading to the well known path explosion problem.
Therefore the control-�ow is merged again. How often the control-�ow is merged
again is a trade-o� between analysis e�ort and analysis quality. Timing anomalies
are avoided by applying code transformation techniques. The cache analysis can iden-
tify data structures that can be safely cached. This improves the worst-case cache
performance. It is also possible to determine the worst-case data-cache performance
for predictable data structures when the exact access scheme is known a priori, even
if the exact location is statically unknown [Lun02].

Loops with unknown bounds (i.e. input dependent) are not recognized - the user
has to provide annotations for them. Path-merging has a negative impact on the
analysis quality. To achieve tight WCET bounds long-running simulations should be
run at the �nal stage of the application developed.

Chronos

Originator: Xianfeng Li, Yun Liang, Tulika Mitra and Abhik Roychoudhury, National
University of Singapore, Singapore
URL: http://www.comp.nus.edu.sg/~rpembed/chronos/
χρóνoς is the ancient Greek god of time and also the name of the WCET analysis tool
of the National University of Singapore [LLMR07]. Chronos uses a C-source �le and
the target processor con�guration as input. Based on the source a data-�ow analysis
is performed to determine the loop bounds of the analyzed application. When the
analysis fails the user has to provide annotations. The analysis results can also be
improved by user-generated infeasible-path information. The analyzer core operates
on the object code of the application. The �rst analysis step is the reconstruction
of the CFG from the object �le. Chronos supports out-of-order pipelines, dynamic
branch prediction and instruction caches. The analysis determines the upper bound
for the execution-time by calculating the cache miss/hit cases and jump predictions
based on operations in the previous basic blocks and within the current basic block

118

http://www.ce.chalmers.se/research/group/hpcag/project/wcet.html
http://www.comp.nus.edu.sg/~rpembed/chronos/

6 Related Work 6.1 WCET Analysis

[LMR05]. To avoid timing anomalies all possible instruction schedules have to be
analyzed. Chronos avoids this by a �xed-point analysis of the time intervals at which
instructions enter and leave individual pipeline stages [LRM04]. The instruction
cache is modeled using an ILP-based technique [LMW99]. As a last step IPET is
used to combine loop bounds and user annotated infeasible paths information.

Chronos does not analyze data caches and the data �ow analysis and loop bounds
computation are limited. The tool relies on user input to detect infeasible paths.

Heptane

Originator: A. Colin and I. Puaut, Institut de recherche en informatique et systèmes
alátoires (IRISA), Rennes, France
URL: http://www.irisa.fr/aces/work/heptane-demo/heptane.html
The Heptane (Hades Embedded Processor Timing ANalyzEr) tool analyzes source
code on which a tree-based analysis can be performed and/or binary �les which can be
analyzed using ILP. The tree-based analysis is fast but can produce overestimation
while the ILP method requires higher computing power but yields tighter results.
For loop bounds Heptane relies on user annotations which support non-linear or
even non-rectangular nested loops and use Maple and Maxima, two computer algebra
tools, for the tree-based method and lp_solve and CPLEX for the ILP-based analysis.
Pipelines are analyzed using an o�-line simulation of the instruction �ow through the
pipeline. Cache e�ects are examined using an extended approach of Frank Mueller's
static cache simulation [Mue00]. Finally a branch prediction based on the cache of
recently taken branches is used [CP00]. The pipeline, instruction cache and branch
predictor are implemented in a microarchitecture-independent formalism, allowing
the whole framework to be easily retargeted to a new architecture [CP01].

The Heptane tool o�ers no kind of �ow analysis. Therefore all loop bounds must
be annotated manually. There is also no detection of infeasible or mutually exclusive
paths leading to pessimistic upper WCET bounds. The tree-based bound calculation
(timing schemata) relies on the compiler keeping the control-�ow speci�ed in the
syntax tree when creating the control-�ow graph like V3 does. The tool supports no
data caches.

SPARTA

Originator: David Whalley, Florida State University, USA, and Frank Mueller, North
Carolina State University, USA, and Chris Healy, Furman University, USA
URL: http://moss.csc.ncsu.edu/~mueller/sparta.html
To perform timing analysis of a single task or function the user compiles the source
code with a modi�ed compiler which includes the number of loop iterations, control-
�ow, and instruction characteristics in the object �le. During the compilation loop
analysis is performed. The loop analysis can handle non-rectangular nested loops

119

http://www.irisa.fr/aces/work/heptane-demo/heptane.html
http://moss.csc.ncsu.edu/~mueller/sparta.html

6.1 WCET Analysis 6 Related Work

by summations [HSR+00]. The cache analysis supports direct-mapped and set-
associative caches [Mue00] and uses data-�ow analysis to categorize the cache behav-
ior of each instruction. For function calls instances are created so that an individual
categorization for each instance can be used. The cache categorization is used to
analyze pipeline stalls and cache miss delays during the pipeline simulation which
obtains the upper bound for each path [HWH95]. The worst-case path is found by an
iterative search using a �xed point analysis as stopping criterion [Mue00, AMWH94].

Loop bounds for outer loops in non-rectangular loop nests have to be known
statically. They do not have to be known when using parametric timing analysis
support. There is no support for pointer analysis or dynamic allocations. Recursion
is forbidden. The timing analyzer o�ers only support for simple architectures like the
Atmel® ATMega� microcontroller. Since the prototype works on entire end-to-end
paths the performance ranges from minutes for small applications to hours/days for
entire systems.

TuBound

Originator: Albrecht Kadlec and Raimund Kirner, Institute of Computer Engineer-
ing, Vienna University of Technology, Austria, and Jens Knoop and Adrian Prantl
and Markus Schordan, Institute of Computer Languages, Vienna University of Tech-
nology, Austria
URL: http://costa.tuwien.ac.at/tubound.html
TuBound [PSK08] is part of the CoSTA (Compiler Support for Timing Analysis)
project. The project goal is to create a compiler which supports timing analysis.
Flow facts can best be analyzed on the source code level but exact timing analysis
requires the object code of the application. A timing analysis supporting compiler
can transform �ow facts from source code to object code. This way both, �ow fact
extraction and timing analysis can be performed on the optimal representation level.
The compiler can even perform optimizations that change the �ow facts as long as it
updates the �ow annotations in the object code according to these transformations.
A WCET aware compiler can produce code that does not allow timing anomalies,
which is a second important goal of the project. TuBound is the prototype implemen-
tation of an integrated WCET analysis tool and a compiler. The �rst analysis step is
the CGF generation. After the CFG generation follows the interval analysis, which
determines possible variable ranges for all program locations. Based on the variables
a set of symbolic equations is generated and solved by a term-based loop bounder
(TeBo) which is written in Prolog. The WCET calculation tool calc_wcet_167
uses IPET to calculate the WCET from a CFG whose edges are annotated with the
maximum execution-time of the respective basic blocks. Another goal within the
CoSTA project is the development of a standardized annotation language which con-
tains the strengths of the currently available WCET annotation languages. At the
moment each tool has its own annotation language and performing WCET analysis
with multiple tools requires annotations for each individual tool.

120

http://costa.tuwien.ac.at/tubound.html

6 Related Work 6.1 WCET Analysis

TuBound is in an early development phase. However, the project team partici-
pated in the WCET tool challenge 2008 conducted by the Real-Time Research Center
at Mälardalen University [HGB+08].

wcc

Originator: Design Automation for Embedded Systems Group, Computer Science,
Chair 12, TU Dortmund, Germany
URL: http://ls12-www.cs.tu-dortmund.de/research/activities/wcc/
motivation/index.html
Similar to TuBound wcc [PLM08] is not a WCET analysis tool but a WCET
aware compiler framework. Wcc uses the ICD-C compiler framework to generate
a high level intermediate representation (ICD-C IR) for C code and to perform
optimizations like dead-code elimination or loop unrolling. The ICD-C IR code
is used for loop analysis which uses abstract interpretation (AI), interprocedural
program slicing and polyhedral loop evaluation. As a next step, the code selector
transfers the ICD-C IR to a low level intermediate representation (LLIR). The �ow
fact analysis works on both, ICD-C IR and LLIR to calculate loop iteration counts,
recursion depths and execution frequencies of instructions, relative to some other
instructions. AiT is used to generate the timing model. CRL2 is AiT's internal
representation of control-�ow. Wcc uses a LLIR to CRL2 translator (LLIR2CRL) to
translate the low level representation of the code to AiT, which calculates the timing
model for a given section of code and uses a CRL2 to LLIR translator (CRL2LLIR)
to translate the results back to wcc. WCC allows to generate optimized code for and
to statically analyze arbitrarily distributed program objects within a freely de�nable
memory hierarchy by making information on the memory model available in the
optimization stages at the ICD-LLIR level. Additionally wcc performs some WCET
targeted optimizations: Procedure Cloning (also known as Function Specialization)
is an optimization for functions that are often called with constant arguments. In
this case, the arguments can be removed and imported into the called function.
Procedure Positioning is a well known compiler optimization with the goal to
improve I-cache behavior by reducing the number of cache con�ict misses. This
can be accomplished by smart placement of functions. Loop Nest Splitting is an
optimization technique that can reorder the nesting of loops to improve (WCET)
performance. Wcc also supports scratchpad memories and I-Cache locking.

6.1.2 Measurement Based and Hybrid WCET Analysis

This section describes the currently available and developed WCET analysis tools
implementing measurement-based analysis and hybrid analysis, which means that the
WCET analysis process includes a static and a measurement-based or a simulator-
based portion. A separation between these two categories is virtually impossible
since each tool includes at least some static analysis steps which would make it

121

http://ls12-www.cs.tu-dortmund.de/research/activities/wcc/motivation/index.html
http://ls12-www.cs.tu-dortmund.de/research/activities/wcc/motivation/index.html

6.1 WCET Analysis 6 Related Work

automatically a hybrid approach. In the following section the term measurement-
based analysis will be used for tools where there is virtually no static analysis and
hybrid analysis for implementations that focus equally on static and measurement-
based analysis methods. RapiTime is a commercial product developed at Rapita
Systems Ldt., the other tools are research projects.

FORTAS

Originator: Real Time Systems Group at Vienna University of Technology, Austria
and Formal Methods in Systems Engineering Group at Technische Universität Darm-
stadt, Germany
URL: http://www.fortastic.net/about.html
The FORTAS project [BT08] is concerned with the analysis of embedded software,
especially the timing analysis of control software written in C. FORTAS is designed
to provide a tool for testing which is more reliable and predictable than the usual
ad hoc testing and faster and more convenient than classical static analysis, which
requires detailed knowledge about the target hardware as well as signi�cant human
e�ort. It is planned that the tool does not only cover timing analysis but also does
analysis of power consumption and energy uptake. FORTAS uses abstraction meth-
ods from software model checking to generate test data for execution-time or power
measurements. The measurement results are stored in a database to generate a tim-
ing model and an annotated state machine. The tool uses an abstraction re�nement
loop to achieve the required granularity.

FShell (FORTAS Shell) [HSTV08] provides a frontend for the measured data as
well as the model checker and measuring process. It supports interactive use and
a rich scripting language. FShell reads queries and extracts the results from the
measurement database. If there are no su�cient data for a given query the FShell
causes the analysis framework to perform abstraction re�nement, test data generation
and measurements so that the query can be answered. The data generated during
this process is added to the data base.

Currently the project is at an early stage but some of the tools provided already
have a limited functionality.

MoDECS V2

Originator: Ingomar Wenzel, Bernhard Rieder, Raimund Kirner and Peter Puschner,
Real Time Systems group at Vienna University of Technology, Austria
URL: http://www.modecs.cc
The MoDECS V2 prototype [WKRP05] is similar to the prototype presented in this
work. It uses model checking for test data generation and execution-time measure-
ments on automatic generated program segments with parametric size to gather tim-
ing information. The �nal WCET calculation is performed by a longest path search
or using ILP with lp_solve [Ber97, Lps]. Besides the CBMC model checker the

122

http://www.fortastic.net/about.html
http://www.modecs.cc

6 Related Work 6.1 WCET Analysis

MoDECS prototype supports the SAL model checker which has completely di�erent
semantics than C and is far inferior to CBMC when generating counter examples for
C applications. Therefore only CBMC is supported in the V3 prototype.

The MoDECS prototype cannot analyze code containing loops or function calls.
Also the control-�ow inside logic and and or expressions and conditional expressions
is neglected which makes the WCET estimations highly unreliable for code containing
these code constructs.

OTAWA

Originator: TRACES team at IRIT labs, University of Toulouse, France
URL: http://www.otawa.fr/
OTAWA [CS06] is a framework of C++ classes dedicated to static analysis of pro-
grams in machine code and to the computation of WCET. OTAWA provides state of
the art WCET analysis methods like IPET and a lot of facilities to work on binary
programs (control-�ow graphs, loop detection, . . .).

While OTAWA is aimed to be a framework to assist WCET analysis there exist
already some tools. The most important is the RANGE tool [dMBCS08] which
extracts �ow facts and detects loop bounds from source code by �ow analysis and
abstract interpretation. The ARM® pipeline analysis uses execution graphs [RS07].
The project participated in the WCET challenge 2008 [HGB+08].

RapiTime

Originator: Rapita Systems Ltd., York, United Kingdom
URL: http://www.rapitasystems.com/rapitime
Rapitime is a commercial measurement-based timing analysis and pro�ling system
targeted at medium to large industrial applications. Measurements are taken for a
section of code (usually a basic block) using user generated test data or test data
generated during the operation of the analyzed system. According to the structure
of the application the measurement results are combined to estimate the WCET
for the whole application. In addition to the timing information RapiTime generates
probability distributions as well as the BCET for the individual sections and the whole
application [BCP02, BCP03, BBN05]. The timing information can be collected using
a software instrumentation library, a lightweight software instrumentation combined
with external measurement hardware or pure hardware instrumentation (like Nexus
or ETM). In addition to measurements on the target hardware simulators can be
used to gather the timing information. Users can add annotations to guide the
measurements (i.e. loop bounds). RapiTime is a spin-o� of the University of York
where the pWCET tool has been developed.

RapiTime cannot analyze programs with recursion and with non-statically ana-
lyzable function pointers. The main di�erence between V3 and RapiTime is that the
segmentation is based on a selectable path bound in V3 and on �xed syntactic rules

123

http://www.otawa.fr/
http://www.rapitasystems.com/rapitime

6.1 WCET Analysis 6 Related Work

in RapiTime. Further RapiTime requires user generated test data which makes the
quality of the analysis dependant on the quality of the test data. If the test data are
unfavorable there might even be a high underestimation of the WCET. In contrast
to RapiTime, V3 does the test data generation by itself and ensures the coverage of
each path within all program segments.

SWEET

Originator: Björn Lisper, Programming Languages Group, Mälardalen Research and
Technology Centre (MRTC) and Mälardalen University (MDH), Sweden
URL: http://www.mrtc.mdh.se/index.php?choice=projects&id=0017
SWEET, the SWEdish Execution-Time Tool, was initially a joint project of
Mälardalen University (SE), C-Lab in Paderborn (DE), and Uppsala University (SE)
and has now fully moved to Mälardalen University. As a result of the geographical
separation of the research facilities SWEET became developed very modular, allowing
di�erent analyzers and tools to work rather independently [Gus00, Eng02, Erm03].
Like TuBound and wcc, SWEET is embedded in a research compiler. The �ow
analysis is performed on the intermediate code (IC) of the compiler after structural
optimizations have heen made which ensures that the analyzed structure of the IC
is the same as in the object �le. First comes program slicing which restricts �ow
analysis only to those parts of the application which may change the control-�ow.
A value analysis combined with pattern matching is used to identify constructs like
simple loops. Complicated constructs are handled using abstract execution [Gus00]
which is a form of symbolic execution based on abstract interpretation. The abstract
execution is able to calculate both loop bounds and infeasible-path information auto-
matically. The processor analysis is implemented as a two phase approach. The �rst
phase, the memory access analysis, identi�es memory accesses by di�erent instruc-
tions and performs an instruction-cache analysis similar to Ferdinand and Wilhelm
[FW99] producing execution facts like cache hit/miss predictions or branch prediction
outcomes. The second phase, the pipeline analysis, uses the execution facts to per-
form a cycle-accurate simulation of object code sequences executed on the CPU. For
data-dependent instruction latencies the worst-case timing is assumed unless the exe-
cution facts specify otherwise. It is possible to use standard CPU simulators as CPU
models as long as they are cycle-accurate and can be forced to simulate given code
sequences under given preconditions (execution facts) and do not su�er from timing
anomalies. To locate timing e�ects across sequences of two or more basic blocks con-
secutive simulation runs starting at the same basic block are executed. The resulting
WCET estimate can either be computed using a path-based technique, a global IPET
technique or a hybrid clustered technique which uses local IPET- and/or path-based
calculations. The results are graphically visualized using the DOT application from
the GraphViz [GN99] package.

The �ow analysis can handle ANSI-C programs including pointers, unstructured
code, and recursion as long as the application is compiled with the research compiler.
In other cases �ow facts can be supplied manually. The hardware analysis does not

124

http://www.mrtc.mdh.se/index.php?choice=projects&id=0017

6 Related Work 6.1 WCET Analysis

handle data caches or out-of-order pipelines or timing anomalies. The path-based
WCET calculation requires a well-structured program while the other calculation
schemes are not subject to such limitations.

SymTA/P

Originator: Rolf Ernst, Institute of Computer and Network Engineering, Technical
University Braunschweig, Germany and Symtavision, Braunschweig, Germany
URL: http://www.ida.ing.tu-bs.de/forschung/projekte/symtap/
Symatavision is a commercial spinn-o� of the Technical University Braunschweig
which o�ers a wide set of scheduling analysis tools. However, from the internet repre-
sentation of Symtavision it seems that they no longer o�er WCET analysis tools. The
SymTA/P tool can still be downloaded from the Institute of Computer and Network
Engineering of the Technical University Braunschweig. SymTA/P, which stands for
SYMbolic Timing Analysis for Processes, is a hybrid analysis tool which combines
platform-independent path analysis and platform-dependent measurements using a
cycle-accurate simulator or an evaluation board. The �rst step is a static analysis
to identify basic blocks. Additionally single feasible execution paths (SFP) are in-
troduced. SFPs are series of basic blocks without any input dependent control-�ow
decision [WEY01, EY97]. An example for a SFP would be a fast Fourier trans-
formation (FFT) or a �nite impulse response (FIR) �lter. These examples contain
loops with nested if statements generating numerous control-�ow decisions. When
performing symbolic analysis, which is the proposed solution in SymTA/P, it can
be seen that all the control-�ow decisions are in fact data independent and only a
single feasible execution path (SFP) exists for the FFT or FIR function and that the
FFT or FIR algorithm can be reduced to a single node. After the symbolic analy-
sis all nodes are subject to execution-time measurements. The measurement is the
platform-dependent part of the analysis. Measurements can be a simple readout of
the internal clock of a simulator or the communication with an in-circuit debugger
like Nexus or ETM. For a complete timing analysis input data providing full branch
coverage has to be supplied. To avoid the requirement for full path-coverage test data
a conservative overhead for pipelining e�ects, which is the same as starting with an
empty pipeline, is added for each node. To consider cache e�ects the instruction- and
data-cache behavior is analyzed [WKE01] and annotated in the according node. The
longest path is calculated using IPET where the timing for each node consists of the
measured execution-time plus the annotated static cache-access behavior.

The measurements get inaccurate for small basic blocks because of the constant
time delays added to cover pipeline e�ects. This leads to overestimation. Data depen-
dent execution-times are not considered and it is assumed that the user generated test
data covers the worst execution-time for individual instructions. Test data covering
all branch decisions have to be supplied by the user, as well as the loop bounds for
loops with input-dependent loop conditions. Like for all measurement-based timing
analysis systems the quality of the applied measurement method has a high impact
on the quality of the result.

125

http://www.ida.ing.tu-bs.de/forschung/projekte/symtap/

6.2 Improving the WCET 6 Related Work

6.1.3 Overview of Current WCET Analysis Tools

Table 6.1 shows an overview of the WCET analysis tools presented in section 6.1.1
and section 6.1.2.The �rst column contains the name of the tool followed by the �ow
analysis method used by the tool. The third column describes the hardware modeling,
which can be static analysis, measurement-based or a combination of both methods.
The fourth column describes how the �nal WCET is estimated after the execution-
times have been acquired. The �fth column describes the language level on which the
tool operates. This can be S for C source code (except for RapiTime which accepts C
and Ada) or O for object code or both. The last column contains a list of supported
target architectures.

6.2 Improving the WCET

Both techniques introduced in this chapter aim at reducing or eliminating input-
data dependent control-�ow branches. To achieve this, an architecture which supports
predicated execution is required. While this feature is not commonly found on mod-
ern processors which target the average execution-time, some architectures like the
ARM® processor series or the Intel® Itanium� series provide predicated execution.
Without predicated execution there is still control-�ow generated even if it is camou-
�aged by the use of conditional expressions. The problem is that it is unknown for the
user when predicated code is generated. Modern compilers like the gcc compiler o�er
automatic if-conversion which is actually an essential part of single-path conversion.
However, the concept of predicated execution is unfamiliar in C and there exist no
ANSI-C language feature to control predication.

6.2.1 WCET-Oriented Programming

The goal of common programming techniques is to reduce the average execution-
time at the cost of the best- and worst-case execution-time. The idea behind WCET-
oriented programming techniques is that a real-time system has to be designed ac-
cording to the WCET. The best-case or average execution-time is irrelevant, at least
if there is no low priority background task which runs during the idle phase of the
real-time tasks. Puschner [Pus03a, Pus03b] de�nes WCET-oriented programming as
follows:

WCET-oriented programming (i.e., programming that aims at gener-
ating code with a good WCET) tries to produce code that is free from
input-data dependent control-�ow decisions or, if this cannot be com-
pletely achieved, restricts operations that are only executed for a subset
of the input-data space to a minimum.

Figure 6.1 [Pus05] shows a comparison between traditional average-case oriented
programming and WCET-oriented programming. To achieve better performance for

126

6 Related Work 6.2 Improving the WCET

1 int binSearch_avg(int key , int a[])
2 {
3 int left = 0, right = SIZE -1, idx , inc;
4 int found = 0;
5 do {
6 idx = (right + left) >> 1;
7 if (a[idx] == key) {
8 found = 1;
9 } else if (a[idx] < key) {
10 left = idx +1;
11 } else {
12 right = idx -1;
13 }
14 } while (! found && (right >= left));
15 if (found) {
16 return idx;
17 } else {
18 return -1;
19 }
20 }

(a) Traditional Programming

1 static int binSearch_wcet(int key , int a[])
2 {
3 int left = 0, right = SIZE -1, idx , inc;
4 idx = (right + left) >> 1;
5 for(inc = SIZE; inc > 0; inc = inc >> 1) {
6 right = (key < a[idx] ? idx - 1 : right);
7 left = (key > a[idx] ? idx + 1 : left);
8 idx = (right + left) >> 1;
9 }
10 return idx;
11 }

(b) WCET-oriented Programming

Figure 6.1: Comparison of Traditional and WCET-Oriented Programming [Pus05]

127

6.2 Improving the WCET 6 Related Work
To

ol
N
am

e
Fl
ow

A
na

ly
si
s

H
ar
dw

ar
e

W
C
ET

In
pu

t
A
rc
hi
te
ct
ur
es

M
od

el
lin

g
C
al
cu

la
tio

n
Le

ve
l

A
iT

Va
lu
e
an

al
ys
is

St
at
ic

an
al
ys
is

IP
ET

O
M
ot
or
ol
a
Po

we
rP

C,
M
ot
or
ol
a
Co

ld
Fi
re
,A

R
M
7,

H
CS

12
fa
m
.,
TM

S3
20

C3
3,

C1
66

/S
T1

0,
R
en

es
as

M
32

C/
85

,I
n�

ne
on

Tr
iC

or
e

Bo
un

d-
T

Li
ne

ar
lo
op

bo
un

ds
an

d
Ω
-T
es
ts

St
at
ic

an
al
ys
is

IP
ET

pe
r

fu
nc

tio
n

O
In
te
l-8

05
1,

A
D
SP

-2
10

20
,A

TM
EL

ER
C3

2,
R
en

es
as

H
8/

30
0,

AV
R
,A

Tm
eg
a,

A
R
M
7

ca
lc_

wc
et
_
16
7

us
er

an
no

ta
tio

ns
St
at
ic

an
al
ys
is

IP
ET

S,
O

M
68

00
0,

M
68

36
0,

C1
67

Ch
al
m
er
s

�
M
od

i�
ed

Si
m
ul
at
io
n

St
ru
ct
ur
e-

ba
se
d

O
Po

we
rP

C

Ch
ro
no

s
un

sp
ec
i�
ed

lo
op

an
al
ys
is

St
at
ic

an
al
ys
is

IP
ET

O
Si
m
pl
eS

ca
la
ro

ut
-o
f-o

rd
er

pr
oc
es
so
rm

od
el

wi
th

M
IP

S-
lik

e
in
st
ru
ct
io
n-
se
ta

rc
hi
te
ct
ur
e
(P

IS
A
)

FO
RT

A
S

M
ea
su
re
m
en
ts

S
H
ep

ta
ne

us
er

an
no

ta
tio

ns
St
at
ic

an
al
ys
is

St
ru
ct
ur
e-

ba
se
d,

IP
ET

S,
O

Pe
nt
iu
m
1,

St
ro
ng

A
R
M

11
10

,H
ita

ch
iH

8/
30

0

M
oD

EC
S
V
2

sim
pl
e
D
FA

M
ea
su
re
m
en
ts

Pa
th
-b
as
ed

S
H
CS

12
fa
m
.,
Pe

nt
iu
m

O
TA

W
A

A
I

ex
ec
ut
io
n
gr
ap

hs
IP

ET
S,

O
Po

we
rP

C,
A
R
M
7

R
ap

iT
im

e
n.
a.

M
ea
su
re
m
en
ts

St
ru
ct
ur
e-

ba
se
d

S,
O

M
ot
or
ol
a
Po

we
rP

C
fa
m
ily

,H
CS

12
fa
m
ily

,A
R
M
,

N
ec
V
85

0,
M
IP

S3
00

0
Sp

ar
ta

un
sp
ec
i�
ed

lo
op

an
al
ys
is

St
at
ic

an
al
ys
is

Pa
th
-b
as
ed

O
M
icr

oS
PA

RC
I,
In
te
lP

en
tiu

m
,S

ta
rC

or
e
SC

10
0,

At
m
el

At
m
eg
a,

PI
SA

/M
IP

S
SW

EE
T

Va
lu
e
an

al
ys
is,

ab
st
r.

ex
ec
.,
sy
nt
.a

na
ly
sis

St
at
ic

an
al
.f

or
I-c

ac
he

s,
pi
pe

lin
es
im

ul
at
io
n

Pa
th
-b
as
ed

,
IP

ET
,

clu
st
er
ed

S
A
R
M
9
co
re
,N

EC
V
85

0E

Sy
m
TA

/P
Si
ng

le
fe
as
ib
le

pa
th

an
al
ys
is

St
at
ic

an
al
.f

or
I/
D
-c
ac
he

,
m
ea
su
re
m
en
ts

fo
r

se
gm

en
ts

IP
ET

S
Va

rio
us

A
R
M

(R
ea
lV

iew
Su

ite
),

Tr
iC

or
e,

i8
05

1,
C1

67

Tu
Bo

nd
te
rm

-b
as
ed

lo
op

bo
un

de
r

St
at
ic

an
al
ys
is

IP
ET

S,
O

C1
67

wc
c

A
I,
In
te
rp
ro
c.

Pr
og

r.
Sl
ici

ng
,P

ol
yh

ed
ra
l

Lo
op

Ev
al
.

U
se
s
A
iT

U
se
s
A
iT

S,
O

In
�n

eo
n
Tr

iC
or
e
1.
3

Ta
bl
e
6.
1:

O
ve
rv
iew

of
W

CE
T

A
na

ly
sis

To
ol
s

128

6 Related Work 6.2 Improving the WCET

the average case (which assumes that there are a few iterations needed to �nd the
key), it would be better to move the check for equality in �gure 6.1a line 7 down
and check for less and greater keys �rst. However, it is intuitive for programmers
to think �rst about the loop exit condition before implementing the rest of the loop
body. Programmers are used to the design pattern they know and nobody would
implement a binary search like �gure 6.1b since it is not the way the binary search
algorithm is taught or implemented normally.

traditional WCET-oriented
Algorithm AVG WCET AVG WCET

[cyc] [cyc] [cyc] [cyc]
bubble 599 724 609 663
�nd-�rst 68 122 103 103
bin-search 94 124 105 106

Table 6.2: Execution time of Traditional and WCET-Oriented Algorithms [Pus05]

Table 6.2 [Pus03a] shows a comparison between traditional and WCET-oriented
algorithms. The algorithms tested were bubble sort with an array of 9 elements,
�nd-�rst (�nd the �rst appearance of a key in an array with 10 elements) and bin-
search (binary search within an array of 10 elements). The �rst column lists the
test name, followed by the average and worst-case execution-time in CPU cycles
for the traditional algorithm and the average and worst-case execution-time for the
WCET-oriented approach. It can be seen that the average execution-time of the
WCET-oriented implementation is always higher than the average execution-time of
the traditional approach. On the other hand, the WCET of the WCET-oriented
algorithm is always lower than the WCET of the traditional approach. For real-
time systems which always have to be designed for the worst-case execution-time
the WCET-oriented programming techniques are better suited. However, there are
no libraries providing WCET optimized versions of standard algorithms and even
professional code generation tools often generate code which is optimized for the
average case.

Additionally, WCET-oriented approaches produce a smaller jitter of execution-
times which makes them well suited for control systems. They may also o�er a
smaller number of (input dependent) control-�ow paths or even may have only a
single execution path.

6.2.2 Single-Path Conversion

The single-path conversion [Pus02] is a di�erent approach towards the predictabil-
ity of execution-times. The goal is to write applications which provide only a sin-
gle input data independent execution path. While the results may look similar to
WCET oriented programming, the single-path conversion is applied after the code
has been implemented [Pus05]. The single-path conversion uses conversion rules to

129

6.3 Model Checking 6 Related Work

convert applications with input-data dependent control-�ow into applications with a
single execution path. Basically the input dependent branches are executed in se-
quence and the assignment to a given variable depends on a predicate which is the
branch condition. These transformations increase the execution-time and reduce the
execution-time jitter. However, support on the target architecture and the compiler
is required to create real single-path applications.

1 static int binSearch_sp(int key , int a[])
2 {
3 int left = 0, right = SIZE -1, idx , inc;
4 idx = (right + left) >> 1;
5 for(inc = SIZE; inc > 0; inc = inc >> 1) {
6 |key <a[idx]|: right = idx -1;
7 |key >a[idx]|: left = idx +1;
8 idx = (right + left) >> 1;
9 }
10 return idx;
11 }

Figure 6.2: Single Path Programming

Figure 6.2 shows the binary search algorithm from �gure 6.1a implemented for
single-path programming. The di�erence to the WCET-oriented approach in �g-
ure 6.1a is that the WCET-oriented approach uses conditional expressions to perform
only a single assignment. However, the single-path method always calculates the ad-
dition or subtraction but depending on the value of the predicate the result is either
written to left respectively right or discarded, with exactly the same timing and the
same hardware state. An observer who monitors the hardware at line 9 could not tell
if any of the predicated instructions have been performed or not, except for looking
at the CPU �ags. However, when memory write instructions are predicated there will
be a di�erence in the cache. A nice performance bene�t is that there is only a single
comparison operation (key-a[idx]) needed and the predication can use the ZERO
and SIGN �ags to determine key<a[idx] and key>a[idx].

6.3 Model Checking

The presented work uses model checking to calculate test data and loop bounds.
The following list presents model checkers which were considered to be used for this
work and explains why the decision was made in favor of CBMC .

Model checking refers the analysis of a given property within a model which can
be formulated as a �nite state machine. The given property can either fail or hold.
Some model checkers include the input values which lead to the violation of the given
property in their output data. There are di�erent approaches for model checking:

130

6 Related Work 6.3 Model Checking

Symbolic model checking avoids ever building the graph for the FSM. The FSM
graph is represented indirectly by a formula in propositional logic which is mapped
on a binary decision tree (BDD) [McM93].

Bounded model checking uses the FSM and unrolls it for a �xed number of n steps
transforming it into a Boolean satis�ability problem (SAT) and using a SAT solver
to prove or disprove the properties or assertions given within the model. The number
of n can be increased until all possible violations of the model are ruled out.

Abstraction-based model checkers create a simpli�ed copy of the model where the
variables are partitioned into a �visible� and an �invisible� subset and try to verify
the given properties on the simpli�ed model. The real and the abstract model are
Galois connected. This means if we have a model Ψ and an abstraction of the given
model Ψ′, then we have an abstraction function η and a concretion function θ so that
η(θ(Ψ′)) = Ψ′ and θ(η(Ψ)) ⊇ Ψ. Therefore when the abstraction does not satisfy
a given property it does not necessarily mean that the same property actually fails
in the real model. The counter examples have to be checked against the real model
to determine if they are correct. The abstraction-re�nement loop [CGL94] works by
creating an abstract model and model checking it. If there is a counter example in
the abstraction it is checked if it is also a counter example in the real model. If the
counter example works on the real model the process is �nished. In the other case
variables leading to a dead end space are identi�ed and added to the model and a new
iteration of the abstraction-re�nement loop begins. The worst-case scenario happens
when all variables are visible in the abstraction and Ψ′ = Ψ.

SAL

Originator: Leonardo de Moura et al. Computer Science Laboratory of SRI Interna-
tional, USA
URL: http://sal.csl.sri.com/
The Symbolic Analysis Laboratory (SAL) provides a symbolic and a bounded model
checker and was used as �rst model checker in the V2 prototype [WKRP05] imple-
mentation. SAL does not support modulo data types. This means when the operation
255 + 1 is performed on an 8 bit integer in C the result is 0, while SAL produces an
over�ow when the datatype is de�ned in the range [0..255] or 256 when the datatype
can hold that value. Additionally none of the bit operators like and, or, xor, not and
shift is supported by SAL. SAL does not support C datatypes and arithmetics since
C operates on modulo sets (i.e. a 8 bit character generates a modulo 256 set). Ad-
ditionally SAL requires a complicated model generation and performs badly for the
generated models [WRKP05]. Therefore SAL is not included in the V3 tool version.

Blast

Originator: The BLAST 2.0 Team - Dirk Beyer (SFU), Thomas A. Henzinger (EPFL),
Ranjit Jhala (UCSD), and Rupak Majumdar (UCLA), USA

131

http://sal.csl.sri.com/

6.3 Model Checking 6 Related Work

URL: http://mtc.epfl.ch/software-tools/blast/
BLAST, the Berkeley Lazy Abstraction Software Veri�cation Tool, uses an
abstraction-based method [HJMS02] to perform model checking of C applications
which are the models used for input. Due to the abstraction-based algorithm Blast
is very fast and has been used to check large programs [HJMS03, BCH+04, BHJM05,
BHJM07] for dead code, memory safety and other (potential) errors. However, at the
beginning of the implementation of the V3 analysis tool Blast provided no way for
including the input variables in the counter-example traces and could therefore not
be used for test data generation.

CBMC

Originator: Daniel Kroening, ETH Zurich, Switzerland and Edmund Clarke, Com-
puter Science Department, Carnegie Mellon University, United Kingdom
URL: http://www.cprover.org/cbmc/
CBMC is a Bounded Model Checker for ANSI-C and C++ programs [CKL04]. The
basic veri�cation is to perform loop unwinding and pass the results to a SAT solver.
The list of supported language features includes all basic types including �oat types,
all integer operations including bit operations and basic �oat operations, type casts,
side e�ects, function calls, control-�ow statements (goto, return, break, continue,
switch), arrays, structs, unions, pointers (deferencing, arithmetic, relational opera-
tors, pointer type casts and pointers to functions), as well as dynamic memory (malloc
and free functions) [CKL, CK06]. The almost complete support of all ANSI-C fea-
tures makes it possible to perform model checking on virtually all applications.

The basic function of the tool is to transform the application to static single
assignment form (SSA), extract the bit-vector equations and use a SAT solver to
calculate the results [CKL04] like shown in �gure 6.3.

1 x=x+y;
2 if (x!=1)
3 x=2;
4 else
5 x++;
6
7 assert(x <=3);

(a) Source

=⇒

1 x1=x0+y0;
2 if (x1!=1)
3 x2=2;
4 else
5 x3=x1+1;
6
7 x4=(x1!=1)?x2:x3;
8
9 assert(x4≤3);

(b) SSA

=⇒

C := x1=x0+y0 ∧
x2=2 ∧
x3=x1+1 ∧
x4=(x1!=1)?x2:x3

P := x4≤3

(c) Bit-Vector Equations

Figure 6.3: Extraction of Bit-Vector Equations with CBMC [CKL04]

CBMC was chosen as a model checker for the new developed V3 timing analy-
sis prototype for multiple reasons: First of all it supports ANSI-C directly and no
complicated code transformations are necessary and second, virtually the complete
ANSI-C language standard is supported. Additionally CBMC o�ers superior perfor-

132

http://mtc.epfl.ch/software-tools/blast/
http://www.cprover.org/cbmc/

6 Related Work 6.4 Program Analysis

mance and last but not least it is available for free under a relatively open license
[CK].

6.4 Program Analysis

This section discusses di�erent static analysis methods used in the WCET anal-
ysis tools presented in section 6.1.1 and section 6.1.2 to calculate loop bounds and
infeasible paths.

Loop Bound Analysis

Loop bounds can be derived using Presburger arithmetics [HS02], abstract in-
terpretation [The04, GEL05, GESL06], symbolic execution [LS99a], model checking
[RPW08], specialized data �ow analyzes [CM07], and syntactical analysis on parse-
trees [FW99, HSR+00]. Each method has individual drawbacks and advantages. Syn-
tactical analysis for instance is very fast but can only detect speci�c loop patterns.
This is in case of object code based implementations often limited to an individual
compiler version. However it is usually very fast. Presburger analysis is also very
fast but limited to basic mathematic operators for iteration variables and works only
for integer-based iteration variables. Symbolic execution and abstract interpretation
are both fast but have weaknesses with pointers as loop iteration variables. Model
checking covers the widest variety of loop types but is relatively slow. There are also
some approaches which depend on user annotations or let the user supply additional
annotations.

Infeasible Paths

To tighten WCET analysis only feasible paths should be considered in the WCET
path. The application of value dependent constraints which detect iteration-based
constraints as well is described in [HW99]. A method based on partially-known vari-
ables, which is a special form of variable range analysis, is used in [APT00] to identify
infeasible paths. Abstract interpretation which contains also a variable range analy-
sis is used by [GESL06, GEL06] to identify loop bounds and infeasible paths using
con�icting pairs of basic blocks. A similar approach [CMRS05] is also creating pairs
of con�icting basic blocks. Con�icts are detected by simple assignments followed
by a branch, i.e. x=5; con�icts with the following if (i==0) {. . .}. The detec-
tion works only for statements of the form variable = constant ; and variable
relational-operator constant . A combination of symbolic execution and path
enumeration is used in [KS06] to �nd loop bounds and infeasible paths at the same
time.

133

6.5 Cache Analysis 6 Related Work

6.5 Cache Analysis

Caches come not only in di�erent sizes but also with completely di�erent archi-
tectural characteristics. Basic attributes of a cache are whether the cache is used
for instructions, data or uni�ed, the mapping (direct or n-way set-associative) of the
cache and the replacement strategies. The most frequently used replacement tech-
niques are last recently used (LRU), pseudo LRU, and round robin (RR). In addition
to the �rst level cache (L1) there might be a L2 and sometimes even a L3 cache.

Since cache analysis relies on the cache architecture it can only be performed for
a speci�c processor design or a family of processors having the same cache properties.
In order to analyze the caching behavior for a series of memory-access operations
the exact memory locations of the individual data items have to be known, which is
only the case in object code. While the di�erence between cache hits and misses are
quite large [WM05] the most problematic property of cache is the cache state at the
beginning of the analysis. It has long been assumed that the worst-case is an empty
cache which causes in a cache miss, but [RWT+06] shows that caches can be a source
of timing anomalies.

Abstract Interpretation

Most approaches now use �ow-analysis based on abstract interpretation (AI)
[CC77, AFMW96]. AI is used to calculate invariants for a speci�c program point. Dif-
ferent execution paths lead to di�erent invariants; therefore multiple invariants which
are speci�c for a set of execution paths, the calling context, can be calculated. The
invariants hold static knowledge about cache, pipeline and branch prediction logic
contents and can be used for cache analysis. The cache access is classi�ed in always
hit, always miss and unclassi�ed [TFW00]. For each memory access the cache has
to be updated with an update function and at control-�ow joins the cache contents
are merged with the merge function. The merge and update function both depend
on the cache organization and replacement strategy. For set associative caches using
LRU the data-�ow-based approach works well but the predictability drops for other
replacement strategies like pseudo-round robin (ColdFire MCF processor family) or
pseudo-LRU (PowerPC 7xx family) which are often used in hardware because they
are easy to implement and provide high performance.

Implicit Path Enumeration Techniques (IPET)

Another possible implementation of cache analysis is to include the cache analysis
in implicit path enumeration (IPET) techniques [LMW95, KS07]. The IPET-based
cache analysis uses Cache Con�ict Graphs (CCG), one for each con�ict. A con�ict
occurs when two or more basic blocks map di�erent memory locations to the same
cache line. The problem with this method is that the IPET constraints and therefore
the ILP problems get much bigger through introducing the CCGs in the program

134

6 Related Work 6.6 Timing Anomalies

model as noted in [Wil03]. For now the method works for small applications but it
is currently far away from practical application for industrial size applications.

Model Checking (MC)

Model checking has been used in [Met04] for WCET analysis including instruction
cache analysis. The methods for cache access and replacement modelling and the
merge functions have been implemented similarly to cache analysis methods based on
abstract interpretation. The proposed method has the advantage that it can consider
concrete execution paths during model checking which reduces the overestimations
that are sometimes made by AI or IPET and produces good results at increased
analysis cost. In fact the results shown in [Met04] are slightly tighter than results
gained from AI.

6.6 Timing Anomalies

Timing anomalies describe unexpected behavior of a local reduction of execution-
time that causes a globally increased execution-time or vice versa which can be ob-
served on modern architectures. Term �Timing anomalies� has �rst been introduced
by [LS99b] using a simpli�ed PowerPC architecture without �oating point units. The
architecture uses a multiple-issue pipeline which can dispatch two instructions each
clock cycle as well as separate instruction and data caches. Each functional unit has
two reservation stations, which hold already dispatched functions until their operands
become available, allowing out-of-order execution of instructions. To avoid unneces-
sary data hazards register renaming is used. Results are written back in-order by
means of a completion unit with a reorder bu�er updating the register �le from the
renaming bu�ers. However the register renaming unit and completion unit are not
required to show the appearance of timing anomalies. The functional units include an
integer unit (IU), a multiple-cycle integer unit (MCIU), and a load/store unit (LSU).
All modelled resources are in-order resources except the IU and the MCIU, which
makes timing anomalies as shown in Figure 6.4 [LS99b] possible.

Figure 6.4a and sub�gure b show an example where the cache miss which increases
the latency of a single operation by 8 cycles reduces a the latency of a series of �ve
instructions by one cycle. The slower execution of the �rst command results in
a more favorable dispatching of the instructions on the di�erent functional units.
An opposite e�ect is shown in �gure 6.4c and sub�gure d where the latency is also
increased by 8 cycles but the global e�ect is an increased latency of 12 cycles. In this
case the observed delay is much higher expected. The delayed �rst instruction causes
a bad distribution of operations among the functional units of the processor. A very
interesting domino e�ect is shown in �gure 6.4e and sub�gure f. The notation EA

in sub�gure f denotes the instance when instruction A is executed and DA the time
when it is dispatched. In this example A should be executed every �fth cycle within
a loop with n iterations. B is dispatched four cycles after the dispatchment of A

135

6.6 Timing Anomalies 6 Related Work

IU

MCIU

LSU

IU

MCIU

LSU

1 2 3 4 5 6 7 8 9 10 11 12

Cache
hit

Cache
miss

cycles

A

A

B C

D E

B C D E

A

C B

D E

(a) Example 1: Execution Unit Allocation

Disp.Label cycle Instruction

A 1 LD r4, 0(r3)
B 2 ADD r5, r4, r4
C 3 ADD r11, r10, r10
D 4 MUL r12, r11, r11
E 5 MUL r13, r12, r12

(b) Example 1: Executed Instructions

Cache
hit

Cache
miss

cycles1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

A B C D

MCIU

LSU

LSU

MCIU

A

B

C

D

A

D B

C

(c) Example 2: Execution Unit Allocation

Disp.Label cycle Instruction

A 1 LD r4, 0(r3)
B 2 MUL r5, r4, r4
C 3 LD r6, 0(r5)
D 10 MUL r11, r10, r10

(d) Example 2: Executed Instructions

Disp. ExecuteLabel cycle cycle Instruction

A EA+5 Immediate LD r4, 0(r3)
B DA+4 DA+6 ADD r5, r4, r4
(e) Example 3: Executed Instructions

cycles

cycles

slow

fast

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

A B

A B A B B BA A A

A AB B A B A

B A

IU

IU A A B A A AB B B

A AB AB AB AB

A B

(f) Example 3: Execution Unit Allocation

Figure 6.4: Timing Anomalies Examples from [LS99b]

because of data dependencies. In the fast case A is executed immediately after it has
been dispatched and B is executed six cycles later, just after A has been dispatched
and executed for the second iteration. In the second case, the �rst execution of A
is delayed for a single cycle maybe because of data dependencies on r3. This causes
a delay of one cycle in the dispatch operation for the next iteration of A. However,
B is executed in the cycle where the second iteration of A is now dispatched and
therefore the execution of A has to be delayed for a clock cycle. This is repeated for
each iteration. In the bottom line each iteration introduces a delay of one clock cycle
and therefore a loop with n iterations results in a delay of n clock cycles.

As Lundqvist noted in [LS99b] timing anomalies cannot occur in processors con-
taining only in-order resources. However, he shows in his thesis [Lun02] that timing

136

6 Related Work 6.6 Timing Anomalies

anomalies can also occur in processors containing only in-order resources depending
on the cache replacement policy.

Schneider developed an integrated WCET analysis framework for the PowerPC
755 [Sch03]. With this framework the appearance of timing anomalies on real pro-
cessors have been shown, including the domino e�ect which was shown by Lundqvist
[LS99b] on theoretical processor models before.

Wenzel de�nes the Resource Allocation Criterion (RAC) [Wen03, WKPR05]
which is a necessary but not su�cient condition for the occurance of timing anoma-
lies. As a consequence it is safe to assume that hardware without possible dynamic
resource allocation decisions does not su�er the impact of timing anomalies. However,
the formal de�nition of the RAC is too restrictive since in covers only cases where
exactly one instruction changes its timing behavior.

A �rst formal de�nition of timing anomalies has been made in [RWT+06]. This
work classi�es timing anomalies into scheduling, speculation and cache timing anoma-
lies and gives a formal de�nition of timing anomalies. Their formal de�nition is based
on a processor model where timing anomalies occur when a local WCET path is not
part of the global WCET path. The formal de�nition is rather complex making it
di�cult to integrate in a WCET analysis tool.

A more practical formal de�nition of timing anomalies is introduced by Kirner
et al. [KKP09]. Kirner et al. de�ne a timing relevant system state (TRSS) which
covers the whole system including, but not limited to, the state of the processor
(including cache), I/O, memory, and external cache. The timing relevant dynamic
computer state (TRDCS) is the portion of the TRSS which is not given by the system
hardware or con�guration and therefore dynamic. To reduce the complexity of the
analysis series decomposition and parallel decomposition are introduced. The series
decomposition is the calculation of the longest execution-time for each control-�ow
node but instead calculating k output states for k input states a state approximation
for the output state is calculated, which is then forwarded as input state to the next
node. Parallel decomposition is to calculate the WCET of an instruction sequence in
two steps. The TRDCS is partitioned into a state space A and B for two hardware
components like the instruction cache and the pipeline which may be overlapping. The
timing of component A is analyzed and a state is chosen. Based on the results the state
space of B is explored and a cumulative timing is calculated. The result of the analysis
is a three dimensional function of the timing behavior of the whole system T =
f(hwA, hwb) for hwA ∈ A and hwB ∈ B. Timing anomalies are categorized in weak
and strong series timing anomalies (because they challenge series decomposition) and
parallel inversion or ampli�cation (because they challenge parallel decomposition).
For strong series and parallel inversion timing anomalies an increased latency of a
sub-series of instruction or a hardware component causes a decreased latency of the
whole series of instructions or the hardware system. For weak series and parallel
ampli�cation timing anomalies an increased latency of a sub-sequence or sub-system
causes a more increased latency of the whole instruction sequence respectively system.

137

6.7 Other Publications related to this Work 6 Related Work

6.7 Other Publications related to this Work

Tree-Based Timing Schema for Loops

Basically tree- or syntax-based loop analysis works by using a timing schema
[PBB04]. Given a basic block i preceding and a basic block k following the loop,
as well as a loop head j a simple timing schema for the WCET of a loop would
be Ci,k = Ci,j ⊗ (Cj,j ¯ n) ⊗ Cj,k, where ⊗ represents an additive operator and
¯ a multiplicative operator. For simple execution-times the operators would be an
addition and a multiplication. When using probability-based time distributions like
RapiTime [PBB04] these operations would be a convolution and a power operator.
This approach is also used to calculate the execution-time of loops in this work. It
works good for single path loops or loops which contain paths of similar execution-
time. In other cases overestimation may occur.

Comparison of Execution Time Measurement Methods

A good overview and comparison of methods for measurement-based WCET Anal-
ysis can be found in [Pet03]. The measurement methods are classi�ed in simulation,
light-weight software monitoring, heavy-weight software monitoring, hardware sup-
ported software monitoring, (software supported) hardware monitoring. The article
explains the di�erent methods and discusses their individual strengths and weak-
nesses. The measurement technique used in this thesis is, according to [Pet03], a
light-weight software monitoring technique.

Are ILP and MC bad as Stand-Alone Tecniques?

In his essay [Wil03] Wilhelm demonizes model checking and ILP as standalone
technique and explains why both techniques are bad when used as stand-alone tech-
niques. His main critique is the increasing complexity and the state space explosion
of the problems when hardware e�ects are considered. At the moment he is still right
regarding ILP. But he does not consider that resourceful minds always manage to �nd
solutions or workarounds for challenging problems and in fact his postulate is proven
wrong for model checking in [Met04]. In his work Metzner uses model checking to
calculate the WCET of di�erent small to medium sized case studies using a model
which contains a cache abstraction with 128 sets of 4 instructions (each 4 bytes) per
line and an associativity of two, resulting in a total of 8KB. The achieved results are
compared to those of [Wil03] and generate tighter WCET bounds in all cases at the
cost of a larger but still reasonable analysis time.

6.8 Conclusion

In this chapter other WCET analysis tools have been described and new ap-
proaches to WCET-oriented programming have been shown. A short introduction

138

6 Related Work 6.8 Conclusion

of di�erent model checkers has demonstrated why CBMC was chosen for the WCET
analysis prototype. Furthermore two important elements of static analysis which have
also been implemented for the introduced prototype, loop bound analysis and infeasi-
ble paths analysis, which is implemented implicitly on the level of individual program
segments, have been described. An overview of current cache-analysis techniques has
been given and current research about timing anomalies has been presented.

139

6.8 Conclusion 6 Related Work

140

Chapter 7

Conclusion and Outlook

This work has shown in theory and by a prototype implementation that the hybrid
WCET analysis approach is not only restricted to simple acyclic applications but can
also be extended to support loops and function calls.

7.1 Summary of Measurement-Based WCET Analysis

This section gives a brief roundup of the measurement-based WCET analysis
approach which has been extended in this thesis to support loops and function calls
as well as control-�ow in logic expressions.

The presented measurement-based or hybrid WCET analysis method combines
static and dynamic measurement analysis methods. The steps performed in the
analysis are:

Static Analysis: During this step all control-�ow paths through the application
are analyzed. Functions are inlined or replaced by a black box, depending on the
command line arguments when executing the analysis tool. During the construction
of the CFG the �ow information of logic expressions are evaluated and integrated in
the CFG. All variables are analyzed whether they are input or state dependent or
not. In the next step the result of the variable analysis is used to determine if loop
headers or bodies are control-�ow dependent. For control-�ow dependent loops the
loop bound is analyzed using model checking.

Control Flow Graph Partitioning: The segmentation of the CFG reduces the
number of paths to analyze so that applications with 1030 and more end-to-end paths
can be analyzed using a few hundred measurements. The CFG partitioning has to
avoid path segment boundaries, where instrumentation points will be placed during
the execution-time measurements, in loops and function calls.

141

7.2 Lessions Learned 7 Conclusion and Outlook

Test Data Generation: For each path π within a program segment the execution-
time has to be known or it has to be ensured that π is infeasible. Test data is reused
from previous runs and generated randomly. For all paths which have not been
covered by reused test data and random test data, model checking is used in order
to create a counter example holding the necessary test data or prove the infeasibility
of the given path.

Execution Time Measurements: After the test data has been generated the
execution-time of all paths can be measured. Only the execution-time of infeasible
paths cannot be measured. This ensures that the path with the longest execution-
time is executed during the measurements.

Final WCET Calculation: The �nal step is the calculation of the WCET of
the whole application. This is done by combining the measured execution-times from
individual program segments into a single estimate of the WCET using the structural
information from the static analysis and the segmentation step.

7.2 Lessions Learned

The V3 prototype implementation introduces three new features to the
measurement-based analysis method:

Analysis of Loops The majority of applications contains loops or nested loops.
A WCET analysis tool without proper loop support is of little practical use for the
analysis of industrial applications. The results of the loop analysis in section 5.3
show that the loop bound analysis using model checking in combination with the
loop handling based on the categorization of loops is a convenient approach for loop
handling. It is fast and requires less implementation e�ort than implementations
based on abstract interpretation. It has also been shown that the use of specialized
loop handling methods speeds up the analysis considerabely in comparison to the
generic loop analysis method.

Analysis of Function Calls The analysis of function calls is an essential require-
ment for a WCET analysis tool. This work has shown that both methods introduced
in this thesis, inlining and black-boxing, have their individual advantages and disad-
vantages. The increased tightness of the WCET bound was not as high as anticipated.
The observed maximum of the e�ect was a 4% lower WCET estimate. The real ben-
e�t of function inlining is that loops which are unbounded in the called function are
often bounded by the context of the calling function. This makes functions that
cannot be analyzed using black-boxing analyzeable using function inlining.

142

7 Conclusion and Outlook 7.3 Applications of Hybrid WCET Analysis

Analysis of Control Flow in Expressions The analysis of control �ow in ex-
pressions is important since the WCET is probably underestimated if the control �ow
is ignored. Even if these underestimation are often small, since the logic expressions
are usually simple, they are a serious threat to the safety of the WCET analysis.
It has ben shown in section 5.5 that this underestimation occurs in real scenarios.
Therefore the control-�ow analysis of expressions is an important new feature for a
WCET analysis tool.

7.2.1 Gained Experiences

This section contains results and personal insights which are not directly related
to the measurement-based analysis method but which the author of this thesis would
like to share.

An experience learned from the prototype implementation is the importance of
well-considered design decisions. While the analysis method supports nested loops
in practice, they are not supported in the prototype due to a bad design decision
described in section 4.12. A multiple of the time invested in considering data types
and algorithms is gained during the implementation phase of an application.

A further insight gained during the project is, that some hardware optimization
techniques can be considered in the analysis but the majority requires detailed knowl-
edge of the hardware and memory locations of variables. When simulating hardware
e�ects on source code level the e�ort is very high and the uncertainness how the
compiler translates a speci�c code construct still remains. Flow-facts on the other
hand can better be analyzed on the source code level than on the object code level.
The future of WCET analysis tools will probably be to use of source code and object
code representation, which can be well integrated within a compiler framework.

It can also be seen that the interdependencies between multiple analysis methods
is very strong and in�uences the WCET analysis. In section 5.5 it has been shown that
the analysis of control �ow in expressions changes the segmentation of the application.
This changes the set of analyzed paths and has more impact on the WCET estimate
than the consideration of control �ow paths in the analysis.

7.3 Applications of Hybrid WCET Analysis

The developed WCET analysis works well for simple architectures without cache.
It is positioned between fast but insecure execution-time measurements and complex
static analysis. A major drawback of the proposed hybrid analysis method is the
requirement that the control-�ow is not altered by the compiler, which is not possible
in some cases. For instance in architectures without barrel shifters a command like
x�y will almost certainly result in a loop or x/y will cause a subroutine call on object
code level. Hopefully this gap will be �lled by WCET aware compilers like TuBound
or wcc that produce �ow information in the generated object �le.

143

7.4 Future Work 7 Conclusion and Outlook

For architectures with caches the proposed method can be used to acquire a fast
but insecure WCET estimation using light-weight instrumentation, or to use heavy-
weight instrumentation and sacri�ce performance for the safety of the analysis. The
integration of cache and pipeline analysis in the proposed method would also be an
interesting challenge.

Another important use of the tool is the automatic generation of test data which
may not only be used for WCET analysis but can also be very useful for debugging
or pro�ling.

7.4 Future Work

While this thesis extends the measurement-based WCET analysis approach to
work with industrial applications there remain still a few open topics which are an
interesting and challenging area of research. Some of them have been mentioned in
the previous sections.

The most important task would be to change the dtree implementation so that
nested loops can be analyzed. The supporting of nested loops the majority of test
cases from the Mälardalen benchmarks would be analyzeable. The realization of
a wider range of specialized loop-analysis techniques would also be an interesting
opportunity to improve the WCET analysis tool. During the measurements it has
been observed that the performance of the application is severely reduced without
optimizations. An integration of the hybrid WCET analysis method with a WCET-
aware compiler would greatly improve the usability of the analysis tool.

The support for function calls in paths with control-�ow or multiple (nested)
function calls is another topic for further research. The current implementation places
instrumentations only between statements. This prevents the analysis of these code
constructs. In order to allow function calls anywhere in the code a way to place
instrumentation points not only between but also inside statements has to be found.

The consideration of control-�ow di�erences between the application source code
and object code, which is very important for an analysis based on the source-code
level, can be resolved by the integration of �ow information into the compiler and
annotating all �ow transformations in the generated object �le. The integration of
hardware optimizations in the analysis process is also a challenging research topic.
While the cache analysis could possibly be done at a platform independent level the
pipeline analysis requires detailed hardware knowledge and the framework partially
loses its platform independence.

When measurement-based analysis methods are used for more complex architec-
tures additional hardware features like caches and pipelines have to be considered. It
is relatively easy to consider caches when it is assumed that an empty cache is the
worst case. In combination with timing anomalies it has been shown that an empty
cache is not always the worst case. A challenging task for further research is to �nd a

144

7 Conclusion and Outlook 7.4 Future Work

solution for this problem and make measurement-based timing analysis safely usable
for complex hardware architectures.

Finally there remains one question: Is it safe to integrate processors from the
consumer market into dependable embedded real-time systems? The processors are
cheap and o�er high performance but the complexity of the designs will always be
a possible source for faults, as will the decreasing feature size since it makes proces-
sors more susceptible to radiation and electrical surges. It is unthinkable that it is
impossible to develop simple yet powerful designs that can be used for safety-critical
applications. However, until a switch to safer systems is made, we have to live with
the current situation and do our best to create predictable systems from unpredictable
hardware.

145

7.4 Future Work 7 Conclusion and Outlook

146

Bibliography

[AEBER04] Mostafa Abd-El-Barr and Hesham El-Rewini. Fundamentals of Com-
puter Organization and Architecture. Wiley-Interscience, 12 2004. ISBN
9-780-471-46741-0.

[AFMW96] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wil-
helm. Cache Behavior Prediction by Abstract Interpretation. In Static
Analysis Symposium (SAS), LNCS 1145, pages 52�66. Springer, 1996.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman.
Compilers: Principles, Techniques, and Tools. Addison Wesley, 2nd
edition, 2006. ISBN 0-321-48681-1.

[AMWH94] Robert D. Arnold, Frank Mueller, David Whalley, and Marion Har-
mon. Bounding Worst-Case Instruction Cache Performance. In Proc.
15th Real-Time Systems Symposium (RTSS), pages 172�181, Brookline,
Massachusetts, Dec. 1994.

[APE03] APEX Working Group. Draft 3 of Supplement 1 to ARINC Speci�cation
653: Avionics Application Software Standard Interface, 2003.

[App99] Andrew W. Appel. Modern Compiler Implementation in C. Press Syn-
dicate of the University of Cambridge, New York, NY, USA, 1999. ISBN
0-521-58390-X.

[APT00] H.A. Aljifri, A. Pons, and M.A. Tapia. Tighten the computation of
worst-case execution-time by detecting feasible paths. In Proceeding of
the IEEE International Performance, Computing, and Communications
Conference, 430�436, Feb. 2000.

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers, Principles,
Techniques, and Tools. Addison-Wesley, June 1986. ISBN 0-201-10088-
6.

[BB00] Guillem Bernat and Alan Burns. An approach to Symbolic Worst-Case
Execution Time Analysis. In Proc. 25th Workshop on Real-Time pro-
gramming, Palma, Spain, May 2000.

147

BIBLIOGRAPHY BIBLIOGRAPHY

[BBN05] Guillem Bernat, Alan Burns, and Martin Newby. Probabilistic timing
analysis: An approach using copulas, volume 1 of Journal of Embedded
Computing, Real-Time Systems (Euromicro RTS-03), pages 179�194.
IOS Press, 2005. ISSN1740-4460.

[BCH+04] D. Beyer, A. Chlipala, T.A. Henzinger, R. Jhala, and R. Majumdar. The
Blast query language for software veri�cation. In SAS: Static Analysis,
Lecture Notes in Computer Science 3148, pages 2�18. Springer, 2004.

[BCP02] Guillem Bernat, Antoine Colin, and Stefan M. Petters. WCET Analy-
sis of Probabilistic Hard Real-Time Systems. In Proc. 23rd Real-Time
Systems Symposium, pages 279�288, Austin, Texas, USA, Dec. 2002.

[BCP03] Guillem Bernat, Antoine Colin, and Stefan M. Petters. pWCET: a Tool
for Probabilistic Worst-Case Execution Time Analysis of Real-Time Sys-
tems. Technical Report YCS-2003-353, Department of Computer Sci-
ence, University of York, 2003.

[Ber97] M Berkelaar. lp solve: a mixed integer linear program solver, 1997.
ftp://ftp.es.ele.tue.nl/pub/lp solve.

[BHJM05] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. Checking mem-
ory safety with Blast. In FASE: Fundamental Approaches to Soft-
ware Engineering, Lecture Notes in Computer Science 3442, pages 2�18.
Springer, 2005.

[BHJM07] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker Blast: Applications to software engineering. Software
Tools for Technology Transfer, 9:505�526, 2007.

[Bli02] Johann Blieberger. Data-Flow Frameworks for Worst-Case Execution
Time Analysis. Real-Time Systems, 22:183�227, 2002.

[BT08] Sven Bünte and Michael Tautschnig. A Benchmarking Suite for
Measurement-Based WCET Analysis Tools. In First International Con-
ference on Software Testing, Veri�cation and Validation (ICST), Lille-
hammer, Norway, April 2008. IEEE Computer Society Press.

[C89] American National Standards Institute, X3J11, 1430 Broadway, New
York, NY 10018, USA. American National Standards Programming Lan-
guage C, ANSI X3.159-1989 (C89).

[C90] International Organization for Standardization (ISO), WG14, ch. de la
Voie-Creuse, Case postale 56, Geneva 20, Switzerland. International Or-
ganization for Standardization ISO 9899:1990 Programming Languages
- C (C90).

148

BIBLIOGRAPHY BIBLIOGRAPHY

[C99] International Organization for Standardization (ISO), WG14, ch. de la
Voie-Creuse, Case postale 56, Geneva 20, Switzerland. International Or-
ganization for Standardization ISO 9899:1999 Programming Languages
- C (C99).

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni�ed
lattice model for static analysis of programs by construction or approxi-
mation of �xpoints. In POPL '77: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages
238�252, Los Angeles, California, 1977. ACM Press, New York, NY.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analy-
sis frameworks. In Conference Record of the 6th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
269�282, San Antonio, Texas, 1979.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511�547, Aug. 1992.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM Transactions on Programming Languages and
Systems (TOPLAS), 16(5):1512�1542, 1994. ISSN 0164-0925.

[Cha09] Robert N. Charette. This Car Runs on Code, Feb 2009.
http://spectrum.ieee.org/feb09/7649.

[CK] Edmund Clarke and Daniel Kroening. CBMC Software License.
http://www.cprover.org/cbmc/LICENSE.

[CK06] Edmund Clarke and Daniel Kroening. ANSI-C Bounded Model Checker
User Manual. Carnegie Mellon University, Pittsburgh, PA 15213, August
2nd 2006. http://www.cprover.org/cbmc/doc/manual.pdf.

[CKL] Edmund Clarke, Daniel Kroening, and Flavio
Lerda. CBMC Supported Language Features.
http://www.cprover.org/cbmc/language_features.html.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Check-
ing ANSI-C Programs. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes
in Computer Science, pages 168�176. Springer, 2004.

[CM07] Christoph Cullmann and Florian Martin. Data-Flow Based Detection of
Loop Bounds. In Christine Rochange, editor, Proceedings of 7th Inter-
national Workshop on Worst-Case Execution Time (WCET) Analysis,
July 2007.

149

BIBLIOGRAPHY BIBLIOGRAPHY

[CMRS05] T. Chen, T. Mitra, A. Roychoudhury, and V. Suhendra. Exploiting
branch constraints without exhaustive path enumeration. In Proceed-
ings of the 5th International Workshop on Worst-Case Execution Time
Analysis, pages 40�43, July 2005.

[Cow88] P.D. Coward. Symbolic execution systems-a review. 3(6):229�239, 1988.

[CP00] Antoine Colin and Isabelle Puaut. Worst Case Execution Time Analysis
for a Processor with Branch Prediction. RTS, 18(2):249�274, May 2000.

[CP01] Antoine Colin and Isabelle Puaut. A Modular and Retargetable Frame-
work for Tree-based WCET Analysis. In Proc. 13th Euromicro Confer-
ence on Real-Time Systems, pages 37�44, Delft, Netherland, June 2001.
Technical University of Delft.

[CS06] H Cassé and P Sainrat. OTAWA, a Framework for Experimenting
WCET Computations. In 3rd European Congress on Embedded Real-
Time Software, 2006.

[DCC07] Francis M. David, Je�rey C. Carlyle, and Roy H. Campbell. Context
switch overheads for Linux on ARM platforms. In ExpCS '07: Proceed-
ings of the 2007 workshop on Experimental computer science, page 3,
New York, NY, USA, 2007. ACM.

[dMBCS08] M. de Michiel, A. Bonenfant, H. Casse, and P. Sainrat. Static Loop
Bound Analysis of C Programs Based on Flow Analysis and Abstract
Interpretation. In Embedded and Real-Time Computing Systems and
Applications, 2008, pages 161�166, Aug. 2008. ISBN: 978-0-7695-3349-
0.

[Duf83] Tom Du�. A description of Du�'s Device on Wikipedia.
http://en.wikipedia.org/wiki/Du�'s_device, 1983.

[Eng99] Jakob Engblom. Why SpecInt95 Should Not Be Used to Benchmark
Embedded Systems Tools. In Proc. ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Tools for Embedded Systems, Atlanta, Georgia,
USA, May 1999.

[Eng02] Jakob Engblom. Processor Pipelines and Static Worst-Case Execution
Time Analysis. PhD thesis, Acta Universitatis Upsaliensis, Uppsala,
Sweden, Apr. 2002.

[Erm03] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case Execu-
tion Time Analysis. PhD thesis, Acta Universitatis Upsaliensis, Uppsala,
2003.

[ESG+07] Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde,
and Björn Lisper. Loop Bound Analysis based on a Combination of
Program Slicing, Abstract Interpretation, and Invariant Analysis. In

150

BIBLIOGRAPHY BIBLIOGRAPHY

Seventh International Workshop on Worst-Case Execution Time Analy-
sis, (WCET'2007), Pisa, Italy, July 2007.

[EY97] Rolf Ernst and W. Ye. Embedded program timing analysis based on path
clustering andarchitecture classi�cation. In IEEE/ACM International
Conference on Computer-Aided Design, pages 598�604, 1997.

[FHL+01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian
Martin, Michael Schmidt, Henrik Theiling, Stephan Thesing, and Rein-
hard Wilhelm. Reliable and Precise WCET Determination for a Real-
Life Processor. In Proc. of the 1st International Workshop on Embedded
Software (EMSOFT 2001), pages 469�485, Tahoe City, CA, USA, Oct.
2001.

[Fis88] J.A. Fisher. Replacing hardware that thinks (especially about paral-
lelism) with a very smart compiler. Design and Application of Parallel
Digital Processors, 1988., International Specialist Seminar on the, pages
153�159, Apr 1988.

[Fle] The FlexRay Communications System Speci�cation, The Flexray Con-
sortium. http://www.�exray.com/.

[FMC+07] Christian Ferdinand, Florian Martin, Christoph Cullmann, Marc
Schlickling, Ingmar Stein, Stephan Thesing, and Reinhold Heckmann.
New Developments in WCET Analysis. In Program Analysis and Compi-
lation, Theory and Practice, volume 4444 of Lecture Notes in Computer
Science, pages 12�52. Springer Berlin / Heidelberg, June 2007. ISBN
978-3-540-71315-9, ISSN 0302-9743.

[FMW97] Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Applying
Compiler Techniques to Cache Behavior Prediction. In Proc. Work-
shop on Language, Compiler and Tool Support for Real-Time Systems
(LCTRTS), pages 37�46. ACM, June 1997.

[FMW98] Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Cache
Behavior Prediction by Abstract Interpretation. Science of Computer
Programming, 1998. Selected for special issue SAS'96.

[FSF09] FSF. GLPK (GNU Linear Programming Kit). WWW, 2009.
http://www.gnu.org/software/glpk/.

[FW99] Christian Ferdinand and Reinhard Wilhelm. E�cient and Pre-
cise Cache Behavior Prediction for Real-Time Systems, vol-
ume 17, pages 131�181. Springer Netherlands, November 1999.
http://www.springerlink.com/content/v0173k6006513gl1.

151

BIBLIOGRAPHY BIBLIOGRAPHY

[GCC] GCC development team, Free Software Foundation (FSF). GNU
gcc compiler command line options for Optimizations and Deug-
ging. http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html.

[GE97] Jan Gustafsson and Andreas Ermedahl. Automatic derivation of path
and loop annotations inobject-oriented real-time programs. In Proceed-
ings of the Joint Workshop on Parallel and Distributed Real-Time Sys-
tems, pages 257�262, 1997.

[GEL05] J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a �ow analysis for
embedded system C programs. In Proceedings of the 10th IEEE Inter-
national Workshop on Object-Oriented Real-Time Dependable Systems,
pages 287�297, Feb 2005. ISSN 1530-1443.

[GEL06] Jan Gusta�son, Andreas Ermedahl, and Björn Lisper. Algo-
rithms for Infeasible Path Calculation. In Frank Mueller, edi-
tor, 6th Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis, Dagstuhl, Germany, 2006. Internationales Begegnungs- und
Forschungszentrum f"ur Informatik (IBFI), Schloss Dagstuhl, Germany.
http://drops.dagstuhl.de/portals/WCET06/fulltext_link.php?id=667.

[GESL06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn
Lisper. Automatic Derivation of Loop Bounds and Infeasible Paths for
WCET Analysis Using Abstract Execution. In RTSS '06: Proceedings
of the 27th IEEE International Real-Time Systems Symposium, pages
57�66, Washington, DC, USA, 2006. IEEE Computer Society.

[GG69] R. L. Graham and R. L. Grahamt. Bounds on Multiprocessing Timing
Anomalies. SIAM J. Appl. Math, 17:416�429, 1969.

[GN99] Emden R. Gansner and Stephen C. North. An Open
Graph Visualization System and Its Applications. Soft-
ware - Practice and Experience, 30:1203�1233, 1999.
http://www.graphviz.org/Documentation/GN99.pdf.

[Gro06] Mälardalen WCET Research Group. Mälardalen WCET Benchmarks,
2006. http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[Gus00] Jan Gustafsson. Analysing Execution-Time of Object-Oriented Programs
Using Abstract Interpretation. PhD thesis, Uppsala University, Uppsala,
Sweden, May 2000.

[HAM+99] Christopher A. Healy, Robert D. Arnold, Frank Mueller, David Whal-
ley, and Marion G. Harmon. Bounding Pipeline and Instruction Cache
Performance. IEEE Transactions on Computers, 48(1), Jan. 1999.

152

BIBLIOGRAPHY BIBLIOGRAPHY

[HGB+08] Niklas Holsti, Jan Gustafsson, Guillem Bernat, Clément Bal-
labriga, Armelle Bonenfant, Roman Bourgade, Hugues Cassé, Daniel
Cordes, Albrecht Kadlec, Raimund Kirner, Jens Knoop, Paul
Lokuciejewski, Nicholas Merriam, Marianne de Michiel, Adrian
Prantl, Bernhard Rieder, Christine Rochange, Pascal Sainrat,
and Markus Schordan. WCET Tool Challenge 2008: Re-
port. In Raimund Kirner, editor, 8th Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis, Dagstuhl, Germany, 2008.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.
http://drops.dagstuhl.de/opus/volltexte/2008/1663.

[HJMS02] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In Proceedings of the 29th Annual Symposium on Principles of
Programming Languages, pages 58�70. ACM Press, 2002.

[HJMS03] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software ver-
i�cation with Blast. In SPIN: Model Checking of Software, Lecture
Notes in Computer Science 2648, pages 235�239. Springer, 2003.

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 4 edition, 9 2006. ISBN
9-780-123-70490-0.

[HS02] N. Holsti and S. Saarinen. Status of the Bound-T WCET tool. In
Proceedings of the 2nd International Workshop on Worst-Case Execution
Time Analysis (WCET), 2002.

[HSR+00] Christoper A. Healy, Mikael Sjödin, Viresh Rustagi, David Whalley,
and Robert van Engelen. Supporting Timing Analysis by Automatic
Bounding of Loop Iterations. Real-Time Systems, pages 121�148, May
2000.

[HSTV08] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut
Veith. FShell: Systematic Test Case Generation for Dynamic Analysis
and Measurement. In Proceedings of the 20th International Conference
on Computer Aided Veri�cation (CAV 2008), Lecture Notes in Com-
puter Science, Princeton, NJ, USA, July 2008. Springer.

[HW99] Christopher A. Healy and David B. Whalley. Tighter Timing Pre-
dictions by Automatic Detection and Exploitation of Value-Dependent
Constraints. In Proceedings of the 5th IEEE Real-Time Technology and
Applications Symposium, pages 79�88. IEEE, June 1999.

[HWH95] Christopher A. Healy, David B. Whalley, and Marion G. Harmon. Inte-
grating the Timing Analysis of Pipelining and Instruction Caching. In
Proc. 16th IEEE Real-Time Systems Symposium (RTSS), pages 288�297,
Los Alamitos, California, 1995. IEEE CS Press.

153

BIBLIOGRAPHY BIBLIOGRAPHY

[Joh75] Stephen C. Johnson. YACC � Yet Another Compiler Compiler. Tech-
nical Report 32, Computing Science Research Center, AT&T Bell Lab-
oratories, Murray Hill, 1975.

[JSK+07] Jinkyu Jeong, Euiseong Seo, Dongsung Kim, Jin-Soo Kim, Joonwon
Lee, Yung-Joon Jung, Donghwan Kim, and Chong Sang Kanghee Kim.
Software Technologies for Embedded and Ubiquitous Systems, chapter
Transparent and Selective Real-Time Interrupt Services for Performance
Improvement, pages 283�292. Springer Berlin / Heidelberg, 2007.

[KB03] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings
of the IEEE, 91(1):112�126, 2003.

[Kir02] Raimund Kirner. The Programming Language wcetc. Technical re-
port, Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2002.

[Kir03] Raimund Kirner. Extending Optimising Compilation to Support Worst-
Case Execution Time Analysis. PhD thesis, Technische Universität
Wien, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, May 2003.

[KKP+07] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and
Ingomar Wenzel. WCET Analysis: The Annotation Language Chal-
lenge. In Proc. 7th International Workshop on Worst-Case Execution
Time Analysis, Pisa, Italy, July 2007.

[KKP09] Raimund Kirner, Albrecht Kadlec, and Peter Puschner. Worst-Case Ex-
ecution Time Analysis for Processors showing Timing Anomalies. Re-
search report, Technische Universität Wien, Institut für Technische In-
formatik, 01 2009.

[KLFP02] Raimund Kirner, Roland Lang, Gerald Freiberger, and Peter Puschner.
Fully Automatic Worst-Case Execution Time Analysis for Mat-
lab/Simulink Models. In Proc. 14th Euromicro International Conference
on Real-Time Systems, pages 31�40, June 2002.

[Kop97] Hermann Kopetz. Real-Time Systems - Design Principles for Distributed
Embedded Applications. Kluwer, 1997.

[Kop98] Hermann Kopetz. The Time-Triggered Architecture. In Proc.
ISORC'98, Kyoto, Japan, Apr. 1998.

[KP03] Raimund Kirner and Peter Puschner. Transformation of Meta-
Information by Abstract Co-Interpretation. In Proc. 7th International
Workshop on Software and Compilers for Embedded Systems, pages 298�
312, Vienna, Austria, Sep. 2003.

154

BIBLIOGRAPHY BIBLIOGRAPHY

[KP05] Raimund Kirner and Peter Puschner. Classi�cation of WCET Analysis
Techniques. In Proc. 8th IEEE International Symposium on Object-
oriented Real-time distributed Computing, pages 190 � 199, May 2005.

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice Hall, 2 1978. ISBN 978-0131101630.

[KS06] Djemai Kebbal and Pascal Sainrat. Combining Symbolic Ex-
ecution and Path Enumeration in Worst-Case Execution Time
Analysis. In Frank Mueller, editor, 6th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis, Dagstuhl, Ger-
many, 2006. Internationales Begegnungs- und Forschungszen-
trum f"ur Informatik (IBFI), Schloss Dagstuhl, Germany.
http://drops.dagstuhl.de/portals/WCET06/fulltext_link.php?id=675.

[KS07] Raimund Kirner and Martin Schoeberl. Modeling the function cache for
worst-case execution time analysis. In DAC '07: Proceedings of the 44th
annual conference on Design automation, pages 471�476, San Diego,
California, 2007. ACM Press, New York, NY, USA. isbn = 978-1-59593-
627-1,.

[KWRP05] Raimund Kirner, Ingomar Wenzel, Bernhard Rieder, and Peter
Puschner. Using Measurements as a Complement to Static Worst-
Case Execution Time Analysis. In Intelligent Systems at the Service
of Mankind, volume 2. UBooks Verlag, Dec. 2005.

[LDS07] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying The Cost of Con-
text Switch. In ExpCS '07: Proceedings of the 2007 workshop on Exper-
imental computer science, page 2, New York, NY, USA, 2007. ACM.

[Lin] The Local Interconnect Network (LIN) Spezi�cation, The LIN Consor-
tium. http://www.lin-subbus.org/.

[LLMR07] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury.
Chronos: A Timing Analyzer for Embedded Software, volume Special
issue on Experimental Software and Toolkit of Science of Computer Pro-
gramming. 2007.

[LLS+07] Insup Lee, Joseph Y-T. Leung, Sang H. Son, et al. Handbook of Real-
Time and Embedded Systems. Computer and Information Science Series.
Chapman & Hall/CRC, 1 edition, 7 2007. ISBN 1-58488-678-1, 800
pages.

[LM95] Yau-Tsun Steven Li and Sharad Malik. Performance Analysis of Em-
bedded Software Using Implicit Path Enumeration. In Proc. 32nd
ACM/IEEE Design Automation Conference, pages 456�461, June 1995.

155

BIBLIOGRAPHY BIBLIOGRAPHY

[LM97] Y.-T.S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 16(12):1477�1487, Dec 1997.

[LME99] Yau-Tsun Steven Li, Sharad Malik, and Benjamin Ehrenberg. Perfor-
mance Analysis of Real-Time Embedded Software. Springer, 1999. ISBN
0-792-38382-6.

[LMR05] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Modeling Control
Speculation for Timing Analysis. Real-Time Systems Journal, 29(1):27�
58, January 2005.

[LMW95] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance
Estimation of Embedded Software with Instruction Cache Modeling. In
Proc. IEEE/ACM International Conference on Computer-Aided Design,
pages 380�387, Nov. 1995.

[LMW99] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance
estimation of embedded software with instruction cache modeling. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
4(3):257�279, 1999. ISSN 1084-4309.

[Lps] lp_solve, planning, project_planning, website. Website.
http://lpsolve.sourceforge.net/.

[LRM04] Xianfeng Li, A. Roychoudhury, and T. Mitra. Modeling Out-of-Order
Processors for Software Timing Analysis. In IEEE Real-Time Systems
Symposium (RTSS), pages 92�103. IEEE Computer Society Washington,
DC, USA, 2004. ISBN: 0-7695-2247-5.

[LS98] Thomas Lundqvist and Per Stenström. Integrating Path and Timing
Analysis using Instruction-Level Simulation Techniques. In Proc. ACM
SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 1�15, June 1998.

[LS99a] Thomas Lundqvist and Per Stenström. An Integrated Path and Timing
Analysis Method based on Cycle-Level Symbolic Execution. Real-Time
Systems, 17(2/3):183�207, Nov. 1999.

[LS99b] Thomas Lundqvist and Per Stenström. Timing Analysis in Dynami-
cally Scheduled Microprocessors. In Proc. 20th IEEE Real-Time Systems
Symposium (RTSS), pages 12�21, Dec. 1999.

[Ltd08] Rapita Systems Ltd. RapiTime Website - Description of WCET analysis
methods, 2006-2008. http://www.rapitasystems.com/wcetmethods.

[Lun02] Thomas Lundqvist. A WCET Analysis Method for Pipelined Micropro-
cessors with Cache Memories. PhD thesis, Dept. of Computer Engineer-
ing, Chalmers University of Technology, Sweden, June 2002.

156

BIBLIOGRAPHY BIBLIOGRAPHY

[Mar06] Trevor Martin. Introduction to the LPC2000. HITEX Ldt., Sir William
Lyons Road, University Of Warwick Science Park, Coventry, CV4 7EZ,
�rst edition, February 2006. ISBN: 0-9549988-1.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Norwell, MA, USA, 1993. ISBN:0792393805.

[Met04] Alexander Metzner. Why Model Checking Can Improve WCET Anal-
ysis. In Computer Aided Veri�cation, volume 3114 of Lecture Notes in
Computer Science, pages 334�347, 2004.

[MIS96] The Motor Industry Software Reliability Association MISRA. Develop-
ment Guidelines For Vehicle Based Software: C Sub-set. Draft Version
0.1, Issued only to the MISRA and X-By-Wire Consortia for comment
and contributions, Dec. 1996.

[MIS98] The Motor Industry Software Reliability Association MISRA. Guidelines
For The Use Of The C Language In Vehicle Based Software. MISRA,
Apr. 1998.

[MIS04] MISRA The Motor Industry Software Reliability Association. Guidelines
for the Use of the C Language in Critical Systems, Oct 2004.

[MP02] Kevin J. McGrath and James K. Pickett. Microcode patch device and
method for patching microcode using match registers and patch routines.
United States Patent 6438664, August 20 2002. Advanced Micro Devices
Inc.

[MRL02] Tulika Mitra, Abhik Roychoudhury, and Xiafeng Li. Timing Analysis
of Embedded Software for Speculative Processors. In Proc. 15th ACM
International Symposium on System Synthesis, pages 126�131, Kyoto,
Japan, 2002. ACM New York, NY, USA. ISBN:1-58113-576-9.

[MSR02] Langenbach Marc, Thesing Stephan, and Heckmann Reinhold. Pipeline
Modeling for Timing Analysis. In SAS '02: Proceedings of the 9th Inter-
national Symposium on Static Analysis, volume 2477 of Lecture Notes In
Computer Science, pages 294�309, London, UK, 2002. Springer-Verlag.
ISBN 3-540-44235-9.

[Mue00] Frank Mueller. Timing Analysis for Instruction Caches. Real-Time Sys-
tems Journal, 18(2/3):209�239, May 2000.

[NXP07] NXP Semiconductors (founded by PHILIPS).
LPC2138 Errata Sheet Rev. 1.8, July 2007.
http://www.nxp.com/acrobat_download/erratasheets/ES_LPC2138_1.pdf.

[OLI06] OLIMEX Ltd., Plovdiv, Bulgaria. OLIMEX ARM-USB-
OCD Programming Device Description and Schematic, 2006.
http://www.olimex.com/dev/arm-usb-ocd.html.

157

BIBLIOGRAPHY BIBLIOGRAPHY

[OLI07] OLIMEX Ltd., Plovdiv, Bulgaria. OLIMEX LPC-H2138 De-
velopment Board Description and Schematic Rev. B, 2007.
http://www.olimex.com/dev/lpc-h2138.html.

[OS90] A.J. O�utt and E.J. Seaman. Using symbolic execution to aid automatic
test data generation. In Computer Assurance, 1990. COMPASS '90,
'Systems Integrity, Software Safety and Process Security'., Proceedings
of the Fifth Annual Conference on, pages 12�21, 1990.

[PBB04] Stefan M. Petters, Adam Betts, and Guillem Bernat. A New Timing
Schema for WCET Analysis. In 4th Int. Workshop on Worst-Case Exe-
cution Time (WCET) Analysis, pages 39�42, 2004.

[Pet03] Stefan Petters. Comparison of Trace Generation Methods for Measure-
ment Based WCET Analysis. In Workshop on WCET Analysis, 2003.

[PF99] Stefan M. Petters and Georg Färber. Making worst case execution time
analysis for hard real-time tasks on state of the art processors feasible.
In Sixth International Conference on Real-Time Computing Systems and
Applications (RTCSA), pages 442�449, 1999.

[PH98] David A. Patterson and John L. Hennessy. Computer Organization and
Design. Morgan Kaufman Publishers, 2nd. edition, 1998.

[Phe03] Richard Phelan. Improving ARM Code Density and Performance � New
Thumb Extensions to the ARM Architecture. Technical report, ARM
Ldt, 2003.

[PHI06] PHILIPS. LPC213X User Manual Rev. 2, July 2006.

[PK89] Peter Puschner and Christian Koza. Calculating the Maximum Execu-
tion Time of Real-Time Programs. The Journal of Real-Time Systems,
1:159�176, 1989.

[PLM08] Sascha Plazar, Paul Lokuciejewskiand, and Peter Marwedel. A Retar-
getable Framework for Multi-objective WCET-aware High-level Com-
piler Optimizations. In Proceedings of The 29th IEEE Real-Time Sys-
tems Symposium (RTSS) WiP, volume 29, Barcelona / Spain, December
2008. http://ls12-www.cs.tu-dortmund.de/publications/papers/2008-
rtss.pdf.

[Pro08] The Flex Project. �ex: The Fast Lexical Analyzer, 2008.
http://�ex.sourceforge.net/.

[Pro09] The Open Cores Project. Open Cores Project. WWW, 2009.
http://www.opencores.org.

[PS90] C. Park and A.C. Shaw. Experiments with a Program Timing Tool based
on a Source-Level Timing Schema. In Real-Time Systems Symposium,
1990. Proceedings., 11th, pages 72�81, 1990.

158

BIBLIOGRAPHY BIBLIOGRAPHY

[PS93] Peter Puschner and Anton Schedl. A Tool for the Computation of Worst
Case Task Execution Times. In Proc. 5th Euromicro Workshop on Real-
Time Systems, pages 224 � 229, Jun. 1993.

[PS97] Peter Puschner and Anton V. Schedl. Computing Maximum Task Ex-
ecution Times � A Graph-Based Approach. The Journal of Real-Time
Systems, 13:67�91, 1997.

[PSK08] Adrian Prantl, Markus Schordan, and Jens Knoop. TuBound
- A Conceptually New Tool for Worst-Case Execution Time
Analysis. In Raimund Kirner, editor, 8th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis, Dagstuhl, Germany,
2008. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many. http://drops.dagstuhl.de/opus/volltexte/2008/1661, ISBN 978-
3-939897-10-1, also published in print by Austrian Computer Society
(OCG) under ISBN 978-3-85403-237-3.

[PSR92] Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. Improving the
accuracy of dynamic branch prediction using branch correlation. In
ASPLOS-V: Proceedings of the �fth international conference on Archi-
tectural support for programming languages and operating systems, pages
76�84, New York, NY, USA, 1992. ACM. 0-89791-534-8.

[Pug91] William Pugh. The Omega test: a fast and practical integer program-
ming algorithm for dependence analysis. In Supercomputing '91: Pro-
ceedings of the 1991 ACM/IEEE conference on Supercomputing, pages
4�13, New York, NY, USA, 1991. ACM.

[Pus02] Peter Puschner. Transforming Execution-Time Boundable Code into
Temporally Predictable Code. In Bernd Kleinjohann, K.H. (Kane) Kim,
Lisa Kleinjohann, and Achim Rettberg, editors, Design and Analysis of
Distributed Embedded Systems, pages 163�172. Kluwer Academic Pub-
lishers, 2002. IFIP 17th World Computer Congress - TC10 Stream on
Distributed and Parallel Embedded Systems (DIPES 2002).

[Pus03a] Peter Puschner. Algorithms for Dependable Hard Real-Time Systems. In
Proc. 8th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, Jan. 2003.

[Pus03b] Peter Puschner. Hard Real-Time Programming is Di�erent. In Proc.
17th IEEE International Parallel and Distributed Processing Symposium,
11th International Workshop on Parallel and Distributed Real-Time Sys-
tems, page 116, Apr. 2003. invited paper for special session.

[Pus05] P. Puschner. Experiments with WCET-Oriented Programming and the
Single-Path Architecture. InObject-Oriented Real-Time Dependable Sys-
tems, 2005. WORDS 2005. 10th IEEE International Workshop on, pages
205�210, 2005.

159

BIBLIOGRAPHY BIBLIOGRAPHY

[R+] Dominic Rath et al. Open On-Chip DEbugger (OpenOCD) Online Docu-
mentation. Free and Open On-Chip Debugging, In-System Programming
and Boundary-Scan Testing, http://openocd.berlios.de/web/.

[Rat05] Dominic Rath. Open On-Chip Debugger, Design and Implementation
of an On-Chip Debug Solution for Embedded Target Systems based on
the ARM7 and ARM9 Family. Master's thesis, University of Applied
Sciences Augsburg, Department of Computer Science, 2005.

[RB92] RTCA/DO-178B. Software considerations in airborne systems and
equipment certi�cation, 1992.

[RM05] H. Ramaprasad and F. Mueller. Bounding Worst-Case Data Cache Be-
havior by Analytically Deriving Cache Reference Patterns. In Real Time
and Embedded Technology and Applications Symposium, 2005. RTAS
2005. 11th IEEE, pages 148�157, 2005.

[RPW08] Bernhard Rieder, Peter Puschner, and Ingomar Wenzel. Using Model
Checking to derive Loop bounds of general Loops within ANSI-C ap-
plications for measurement based WCET analysis. In Proceedings
of the Sixth Workshop on Intelligent Solutions in Embedded Systems
(WISES'08), 2008.

[RS07] Christine Rochange and Pascal Sainrat. A Context-Parameterized
Model for Static Analysis of Execution Times. Transactions on
High-Performance Embedded Architectures and Compilers, 2(3):109�128,
2007.

[RWSP07] Bernhard Rieder, Ingomar Wenzel, Klaus Steinhammer, and Peter
Puschner. Using a Runtime Measurement Device with Measurement-
Based WCET Analysis. In Proceedings of the International Embedded
Systems Symposium 2007, pages 15�26, Amsterdam, Netherlands, June
2007.

[RWT+06] Jan Reineke, Björn Wachter, Stefan Thesing, Reinhard Wil-
helm, Ilia Polian, Jochen Eisinger, and Bernd Becker. A
De�nition and Classi�cation of Timing Anomalies. In Frank
Mueller, editor, 6th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.
<http://drops.dagstuhl.de/opus/volltexte/2006/671> [date of citation:
2006-01-01].

[SA00] Friedhelm Stappert and Peter Altenbernd. Complete worst-case execu-
tion time analysis of straight-line hard real-time programs. Journal of
Systems Architecture, 46(4):339�355, 2000.

160

BIBLIOGRAPHY BIBLIOGRAPHY

[Sch03] Jörn Schneider. Combined Schedulability and WCET Analysis for Real-
Time Operating Systems. PhD thesis, Universität des Saarlandes, Ger-
many, Jun. 2003. ISBN: 3-8322-1594-8.

[SEE01] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. E�cient
Longest Executable Path Search for Programs with Complex Flows and
Pipeline E�ects. In Proc. 4th International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems, Atlanta, Georgia,
USA, Nov. 2001.

[SNC+07] Smruti Sarangi, Satish Narayanasamy, B. Carneal, Abhishek Tiwari,
B. Calder, and J. Torrellas. Patching Processor Design Errors with
Programmable Hardware. IEEE Micro, 27(1):12�25, 2007.

[SP81] Micha Sharir and Amir Pnueli. Program Flow Analysis: Theory and
Application, chapter 7, Two approaches to interprocedural data �ow
analysis, pages 189�233. Prentice Hall, 1981.

[Sta04] William Stallings. Operating Systems. Number 5th edition. Prentice
Hall, New Yersey, USA, 2004. ISBN 0-131-479-547.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems. Number 2nd edi-
tion. Prentice Hall, New Yersey, USA, 2001. ISBN 0-135-881-870.

[Tea09] GCC Development Team. GCC, the GNU Compiler Collection V4.3.3.
The GNU Project, January 2009. http://gcc.gnu.org/.

[TF98] Henrik Theiling and Christian Ferdinand. Combining abstract interpre-
tation and ILP for microarchitecture modelling and program path anal-
ysis. In The 19th IEEE Real-Time Systems Symposium, pages 144�153,
1998.

[TFW00] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and
Precise WCET Prediction by Separated Cache and Path Analyses. Real-
Time Systems, 18(2/3):157�179, 2000.

[The02a] Henrik Theiling. Control Flow Graphs For Real-Time Systems Analysis.
Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 2002.

[The02b] Henrik Theiling. ILP-based Interprocedural Path Analysis. In Proceed-
ings of the Workshop on Embedded Software, Grenoble, France, October
2002.

[The04] Stephan Thesing. Safe and Precise WCET Determination by Abstract
Interpretation of Pipeline Models. PhD thesis, Universität des Saarlan-
des, 2004.

[TTP] The TTP Protocols, Real-Time Systems Research Group, Insti-
tute of Computer Engineering, Vienna University of Technology.
http://www.vmars.tuwien.ac.at/projects/ttp/ttpmain.html.

161

BIBLIOGRAPHY BIBLIOGRAPHY

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian
Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Muller, Is-
abelle Puaut, Peter Puschner, Jan Staschulat, and Per Sten-
ström. The Worst-Case Execution-Time problem - Overview
of Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems (TECS), 7(3):1�53, April 2008.
http://www.mrtc.mdh.se/index.php?choice=publications&id=1485.

[Wen03] Ingomar Wenzel. Principles of Timing Anomalies in Superscalar Pro-
cessors. Master's thesis, Technische Universität Wien, Vienna, Austria,
2003.

[Wen06] Ingomar Wenzel. Measurement-Based Timing Analysis of Superscalar
Processors. PhD thesis, Technische Universität Wien, Institut für Tech-
nische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2006.

[WEY01] Fabian Wolf, Rolf Ernst, and Wei Ye. Path clustering in software timing
analysis. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 9(6):773�782, 2001.

[Wil03] ReinhardWilhelm. Why AI + ILP is good for WCET, but MC is not, nor
ILP alone, volume Veri�cation, Model Checking, and Abstract Interpre-
tation of Lecture Notes in Computer Science, pages 309�322. Springer
Berlin / Heidelberg, Berlin / Heidelberg, 2003. ISBN 978-3-540-20803-7,
http://www.springerlink.com/content/wlv2w75db57yn77q.

[Wir01] Niklaus Wirth. Embedded Systems and Real-Time Programming, volume
2211. January 2001.

[WKE01] Fabian Wolf, Judita Kruse, and Rolf Ernst. Segment-Wise Timing and
Power Measurement in Software Emulation. In Proc. IEEE/ACM De-
sign, Automation and Test in Europe Conference, Designers' Forum,
pages 165�169, Munich, Germany, Mar. 2001.

[WKPR05] Ingomar Wenzel, Raimund Kirner, Peter Puschner, and Bernhard
Rieder. Principles of Timing Anomalies in Superscalar Processors. In
Proceedings of the Fifth International Conference on Quality Software
(IEEE), Melbourne, Australia, Sep. 2005.

[WKRP05] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter
Puschner. Measurement-Based Worst-Case Execution Time Analysis.
In SEUS '05: Proceedings of the Third IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems (SEUS'05),
pages 7�10, Washington, DC, USA, 2005. IEEE Computer Society.

162

BIBLIOGRAPHY BIBLIOGRAPHY

[WKRP08] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter
Puschner. Measurement-Based Timing Analysis. In Proc. 3rd Int'l Sym-
posium on Leveraging Applications of Formal Methods, Veri�cation and
Validation, Porto Sani, Greece, Oct. 2008.

[WKS+05] Ingomar Wenzel, Raimund Kirner, Martin Schlager, Bernhard Rieder,
and Bernhard Huber. Impact of Dependable Software Development
Guidelines on Timing Analysis. In The International Conference on
Computer as a Tool (EUROCON), volume 1, pages 575�578, Nov 2005.

[WM05] L. Wehmeyer and P. Marwedel. In�uence of memory hierarchies on
predictability for time constrained embedded software. In Design, Au-
tomation and Test in Europe, 2005. Proceedings, pages 600�605 Vol. 1,
2005.

[WRKP05] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter
Puschner. Automatic Timing Model Generation by CFG Partitioning
and Model Checking. In DATE '05: Proceedings of the conference on
Design, Automation and Test in Europe, pages 606�611, Washington,
DC, USA, 2005. IEEE Computer Society.

[ZCW04] Jian Zhang, X. Chen, and Xiaoliang Wang. Path-oriented test data gen-
eration using symbolic execution and constraint solving techniques. In
Software Engineering and Formal Methods, 2004. SEFM 2004. Proceed-
ings of the Second International Conference on, pages 242�250, 2004.

[Zha04] Jian Zhang. Symbolic execution of program paths involving pointer
structure variables. In Quality Software, 2004. QSIC 2004. Proceedings.
Fourth International Conference on, pages 87�92, 2004.

163

BIBLIOGRAPHY BIBLIOGRAPHY

164

Index

?:, 8, 64, 109, 113
&&, 8, 64, 109, 113

function
black-boxing, 106

WCET, 35
worst-case execution-time

measurement-based analysis, 121

abstract interpretation, 39, 116, 133
cache analysis, 134

abstract syntax tree, 10
ACET, see average-case execution-time
AI, see abstract interpretation
ALU, see arithmetic logic unit
AND, 8, 64, 109, 113
ANSI-C, 5
ARINC, see avionics application software

standard interface
arithmetic logic unit, 22
AST, see abstract syntax tree
average-case execution-time, 35
avionics application software standard in-

terface, 31

basic block, 11
number of BBs, 30

BB, see basic block
BCET, see best-case execution-time
best observed execution-time, 36
best-case execution-time, 35
bit operations, 8
black-boxing, 55
BOET, see best observed execution-time
branch prediction, 25

branch history table, 26
bu�er, 26

C++, 6
C-task, see complex task
C89, 5
C90, 5
C99, 6
cache, 20, 40, 134

analysis, 133
abstract interpretation, 134
implicit path enumeration, 134

cache con�ict graphs, 134
cacheanalysis

model checking, 134
CC, see clock cycle
CCG, see cache con�ict graphs
CFG, see control-�ow graph
clock cycle, 35
code

representation, 9
transformation, 9, 10

code complexity, see complexity
code generator optimizations, 18
coding guidelines, 31
compiler, 10
compiler optimizations, 16
complex task, 16
complexity, 13, 29
concurrency, 14
conditional expression operator, 8, 64,

109, 113
control hazard, see pipeline hazard, 25, 26
control-�ow graph, 12

generation, 37
segmentation, 52

cycle-level symbolic execution, 41
cyclomatic complexity, 30

data �ow analysis, 133

165

INDEX INDEX

simpli�ed, 55
data hazard, see pipeline hazard
data hazards, 40
data types, 6
data-�ow optimizations, 17
decision tree, 76
DO-178B, 31
DOM, see dominator
dominator, 13
dtree, see decision tree
dynamic memory, 7, 8
dynamic random access memory, 20
dynamic resource allocation, 28
dynamic timing analysis, 41

ECU, see electronic control unit
electronic control unit, 1, 14
error handling, 7
ET, see event-triggered, see execution-

time
ETB, see execution-time pro�le
event-triggered, 33
execute, 23
execution-time, 35

analysis, 36
analysis framework, 37
best observed, 36
best-case, 35
hardware simulation, 43
measurements, 43
worst observed, 36
worst-case, 35

execution-time pro�le, 35
expression short-circuiting, 8, 64, 109,

113

feasibility, 52
�oating point operations, 8, 27
function

black-boxing, 112
inlining, 106, 112

function calls, 55
functions, 9

hardware, 19
hardware optimization techniques, 19

hazard, see pipeline hazard
hybrid WCET analysis, 49

basic concept, 51
hyperthreading, 24

implicit path enumeration
cache analysis, 134

infeasible paths, 133
inlining, 55
instruction decode, 22
instruction fetch, 22
instruction latency jitter, 27
instructions per cycle, 25
interprocess communication, 14
interrupts, 15
IPC, see interprocess communication, see

instructions per cycle
ISO/IEC-C, 6

JTAG, 96

lexical analysis, 10
library calls, 9
lines of code, 30
LOC, see lines of code
loop bound analysis, 133
loop optimizations, 17
loops, 9, 56, 101, 111

1:n, 104
general, 101
MP/VI, 56, 69, 103
nested, 101
SP/CI, 56, 67, 103
SP/VI, 56, 69, 103
specialization, 101
tree-based timing schema, 137

MAM, see memory acceleration module
measurement-based WCET analysis, 49
measurements

comparison of methods, 138
observed execution-times, 36

memory acceleration module, 96
memory access, 23
memory allocation, 7, 8
memory management unit, 21

166

INDEX INDEX

MISRA, see motor industry software reli-
ability association

MMU, see memory management unit
model checking, 54

abstraction-based, 131
bounded, 130
cache analysis, 134
symbolic, 130

motor industry software reliability associ-
ation, 31

operating system, 13, 14
OR, 8, 64, 109, 113
OS, see operating system
other compiler optimizations, 18
out-of-order execution, 25
overestimation, 36

parse tree, 10
path, 12
path coverage, 30
PDOM, see postdominator
pipeline, 21�25, 40

hazard, 24
stall, 24

pointers, 8
postdominator, 13
predicated execution, 26
presburger analysis, 133
program segment, 13
program segments, 52
PS, see program segment

RAC, see resource allocation criterion,
see resource allocation criterion

real-time system, 33
event-triggered (ET), 33
hard, 33
soft, 33
time-triggered (TT), 34

register write back, 23
resource allocation criterion, 29, 136
response time, 34
RT, see response time
RTS, see real-time system

S-task, see simple task
safe upper bound, 36
scalar, 24
segmentation, 13, 52
signals, 15
simple task, 16
simultaneus multithreading, 24
single path conversion, 129
speculative execution, 25
static analysis

�ow analysis, 38
hardware modelling, 40
high level, 38
low level, 40

static random access memory, 20
static WCET analysis, 38
structs, 8
structural hazard, see pipeline hazard
superscalar, 24
symbolic execution, 133
syntactical analysis, 133
syntax analysis, 37
system calls, 14

target platform, 13
test results, 111
time-triggered, 34
timing anomalies, 28, 135
timing relevant dynamic computer state,

137
timing relevant system state, 137
TRDCS, see timing relevant dynamic

computer state
TRSS, see timing relevant system state
TT, see time-triggered
type checking, 7

unions, 8

WCET, see worst-case execution-time
WCET analysis

hybrid, 49
measurement-based, 49
static, 38

WOET, see worst observed execution-
time

167

INDEX INDEX

worst observed execution-time, 36
worst-case execution time

overview of analysis tools, 126
worst-case execution-time, 35

calculation, 46
implicit path enumeration tech-
nique (IPET), 48

path-based, 48
syntax-based, 46
tree-based, 46

hybrid analysis, 121
static analysis, 116

write back, see register write back

168

Appendix A

List of Abbrevations

ACET average-case execution-time, 35
AI abstract interpretation, 39
ALU arithmetic logic unit, 22
ARINC avionics application software standard interface, 31
AST abstract syntax tree, 10
BB basic block, 11
BCET best-case execution-time, 35
BOET best observed execution-time, 36
C-task complex task, 16
CC clock cycle, 35
CCG cache con�ict graphs, 134
CFG control-�ow graph, 12
cfg cfg data structure, represents a single CFG node, 62
DOM dominator, 13
DRAM dynamic random access memory, 20
dtree decision tree, 76
ECU electronic control unit, 14
ET event-triggered, 33
ET execution-time, 35
ETB execution-time pro�le, 35
GiB Gibibyte, 1030 Bytes, 20
IPC instructions per cycle, 25
IPET implicit path enumeration technique, 46
kB kilobyte, 1.000 Bytes, 20
KiB Kibibyte, 1010 Bytes, 20
LOC lines of code, 30
MAM memory acceleration module, 96
MB Megabyte, 1.000.000 Bytes, 20
MiB Mebibyte, 1020 Bytes, 20
MISRA motor industry software reliability association, 31
MMU memory management unit, 21
NOP No Operation, delay instruction, 45
OS operating system, 14
PDOM postdominator, 13

169

A List of Abbrevations

PS program segment, 13
RAC resource allocation criterion, 29
RAC resource allocation criterion, 136
RT response time, 34
RTS real-time system, 33
S-task simple task, 16
SRAM static random access memory, 20
stn Syntax Tree Node, 62
TRDCS timing relevant dynamic computer state, 137
TRSS timing relevant system state, 137
TT time-triggered, 34
WCET worst-case execution-time, 35
WOET worst observed execution-time, 36
xml Extended Meta Language, 78

170

Appendix B

Acknowledgements

Most of the implementation work as well as the writing of this thesis has been
done using free software from the GNU project running under the Linux kernel. This
work would not have been possible without the help of these great applications.

�Nanos gigantum humeris insidentes� and as scientists are dwarfs standing on the
shoulders of giants so are software developers worldwide using and implementing free
software.

Special thanks go to the following projects which provided the development library
as well as a valuabe code base on which to build a project.

� The GNU project for their complete C toolchain including gcc, cpp, as, ld,
binutils, make, the programming libraries libc, libstdc++, the compiler tools
�ex and yacc and many more invaluable tools.

� The Linux Kernel Project for providing the development OS.

� The CVS development team.

� Xemacs and KDevelop for providing the programming environment.

� Kile and LATEXfor the superb type-setting environment.

� GraphViz for the graph plotting application dot.

� PERL for providing the scripting environment.

� The CBMC model checker.

� The GLPK (GNU Linear Programming Kit)

� The Cxxtools C++ tools library

� The PCRE Perl Compatible Regular Expressions Library

171

Bernhard Rieder
Curriculum Vitae

Personal Information
Nationality: austrian
Date of Birth: 03.11.1972
Place of Birth: Schwarzach im Pongau
Marital Status: unmarried
Address: Forstgasse 16,

A-5500 Bischofshofen
Reachability: e-mail: bernhard@ratte.dhs.org
Military Service: completed

Education
6/'03-ongoing Vienna University of Technology, Ph.D. Thesis,

�Measurement-Based Execution Time Analysis of
ANSI-C Applications�

10/'03-ongoing Medical University of Vienna, Human Medicine (2.
section)

10/'93-6/'03 Vienna University of Technology, Computer
Engineering, Master Thesis: �Xerxes Error Behavior �,
A simulation and theoretical analysis of the error
behaviour of the Xerxes encoding using systematic fault
injection

9/'86-6/'92 Technical high school Braunau, Graduated in Electrical
and Power Engineering with distinction

9/'82-6/'86 Secondary school, Privatgymnasium St. Rupert,
Bischofshofen

Professional and Practical Experience
11/'06-11/'08 Vienna University of Technology (VUT), project

assistant on the ATDGEN project, execution-time
analysis of C-applications with function calls and loops
and implementation of an execution-time analysis
framework for the ARM9 target platform

4/'04-8/'05 VUT, project assistant on the MoDECS project,
worst-case execution-time analysis of real-time
C-applications, implementing of an execution-time
analysis framework for embedded real-time applications
in C/C++ for the HCS12 target platform

6/'01-2/'04 Decomsys GmbH, Vienna, software- and
hardware-design using Perl and VHDL on Altera
FPGAs, implementation of a test framework for quality
and regression tests for FlexRay communication
controllers

2/'99-11/'99 Festo GmbH, Vienna, database engineer using Oracle 8
and MS SQL Server, implementing alarm- and
noti�cation modules for a database based process
control application

6/'93-9/'93 R&E Weinberger GmbH, Tenneck, database engineer
using Oracle 7, generating quality management and
controlling reports

Bernhard Rieder � Forstgasse 16, A-5500 Bischofshofen � e-mail: bernhard@ratte.dhs.org

Voluntary Services
2/'06-ongoing Verein Wiener Sozialprojekte (VWS) and Clinical

Institute for Medical Chemistry and Laboratory
Diagnostics of the Vienna General Hospital (KIMCL),
Database design and data analysis for the project
�Spritzen-Check III�

3/'02-6/'02 VWS and KIMCL, Database design and data analysis
for the project �Spritzen-Check II�

1/'99-1/'00 VWS and KIMCL, Database design and data analysis
for the project �Spritzen-Check I�

Skills
Operating Systems: Linux, Windows
Database Systems: Oracle, PostgreSQL, MS SQL Server
Programming C, C++ mit STL, Java basic knowledge,

Languages: Perl, Tcl/Tk, bash, awk, sed
Hardware-design: VHDL with ModelSim, Symplify Pro and Quartus
Microcontroller: 8051-Family, AVR-Family
Bus Systems: LIN, FlexRay, TTP
Miscellaneous: GNU Toolchain, CVS, HTML, XML
Language Skills:

German native
English �uent

Publications
2008 Bernhard Rieder, Peter Puschner, and Ingomar Wenzel. Using

Model Checking to derive Loop bounds of general Loops within
ANSI-C applications for measurement-based WCET analysis. In
Proceedings of the Sixth Workshop on Intelligent Solutions in
Embedded Systems (WISES'08), 2008
Bernhard Rieder and Peter Puschner. Using Hybrid Timing
Analysis for ANSI-C Applications with Loops and Function Calls.
In Hans K. Kaiser and Raimund Kirner, editors, Proceedings of the
Junior Scientists Conference 2008, page 101 �. TU Wien, 2008
Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter
Puschner. Measurement-Based Timing Analysis. In Proc. 3rd Int'l
Symposium on Leveraging Applications of Formal Methods,
Veri�cation and Validation, Porto Sani, Greece, Oct. 2008

2007 Bernhard Rieder, Ingomar Wenzel, Klaus Steinhammer, and Peter
Puschner. Using a Runtime Measurement Device with
Measurement-Based WCET Analysis. In Proceedings of the
International Embedded Systems Symposium 2007, pages 15�26,
Amsterdam, Netherlands, June 2007
Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter
Puschner. Cross-Platform Veri�cation Framework for Embedded
Systems. In SEUS '07: Proceedings of the Fifth IEEE Workshop on
Software Technologies for Future Embedded and Ubiquitous Systems
(SEUS'05), May. 2007

Bernhard Rieder � Forstgasse 16, A-5500 Bischofshofen � e-mail: bernhard@ratte.dhs.org

2006 Raimund Kirner, Peter Puschner, Ingomar Wenzel, and Bernhard
Rieder. Portable Data Exchange for Remote-Testing Frameworks.
In accepted for the 9th IEEE International Symposium on
Object-oriented Real-time distributed Computing, Gyeongju, Korea,
Apr. 2006

2005 Raimund Kirner, Ingomar Wenzel, Bernhard Rieder, and Peter
Puschner. Using Measurements as a Complement to Static
Worst-Case Execution Time Analysis. In Intelligent Systems at the
Service of Mankind, volume 2. UBooks Verlag, Dec. 2005
Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter
Puschner. Measurement-Based Worst-Case Execution Time
Analysis. In SEUS '05: Proceedings of the Third IEEE Workshop on
Software Technologies for Future Embedded and Ubiquitous Systems
(SEUS'05), pages 7�10, Washington, DC, USA, 2005. IEEE
Computer Society
Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter
Puschner. Automatic Timing Model Generation by CFG
Partitioning and Model Checking. In DATE '05: Proceedings of the
conference on Design, Automation and Test in Europe, pages
606�611, Washington, DC, USA, 2005. IEEE Computer Society
Ingomar Wenzel, Raimund Kirner, Martin Schlager, Bernhard
Rieder, and Bernhard Huber. Impact of Dependable Software
Development Guidelines on Timing Analysis. In Proceedings on the
International Conference on �Computer as a Tool�, Nov. 2005
Ingomar Wenzel, Raimund Kirner, Peter Puschner, and Bernhard
Rieder. Principles of Timing Anomalies in Superscalar Processors.
In Proceedings of the Fifth International Conference on Quality
Software (IEEE), Melbourne, Australia, Sep. 2005

Bernhard Rieder � Forstgasse 16, A-5500 Bischofshofen � e-mail: bernhard@ratte.dhs.org

	Title
	Abstract
	Kurzfassung
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Document Structure

	Basic Concepts
	The C Language Family
	K&R C
	C89 and C90
	C99
	C++

	Drawbacks of ANSI/ISO-C for Embedded Programming
	Undefined Size of Data Types
	Undefined Handling of Errors
	Weak Type Checking
	Dynamic Memory

	Language Features Support in this Thesis
	Type Qualifiers and Storage Class Modifiers
	Pointers and Dynamic Memory
	Floating Point Operations and Bit Operations
	Structs and Unions
	Logical AND, OR and Conditional Expressions
	Loops
	Library Calls and Functions

	Code Transformation and Representation
	Compilation
	Lexical Analysis, Parse Tree and Abstract Syntax Tree
	Basic Block
	Control Flow Graph
	Path
	Dominator and Postdominator
	Program Segment

	Target Platform Complexity
	Influences of the Operating System
	Blocking System Calls
	Concurrency and Interprocess Communication
	Communication between Network Nodes
	Interrupts and Signals
	The Simple-Task (S-task) Model

	Influences of the Compiler
	Loop Optimizations
	Data Flow Optimizations
	Code Generator Optimizations
	Other optimizations

	Influence of the Target Hardware
	Hardware Optimization Techniques
	Caches
	Pipelines
	Branch Prediction
	Predicated Execution
	Instruction Latency Jitter
	Timing Anomalies

	Software Complexity
	Software Metrics
	Lines Of Code (LOC)
	Number of Basic Blocks (BB)
	Cyclomatic Complexity
	Path Coverage

	Coding Guidelines

	Summary

	Execution Time Analysis
	Why Timing Analysis
	Worst-Case Execution Time (WCET)
	Timing analysis
	Anatomy of a WCET Analysis Framework
	Syntax Analysis and CFG extraction
	Static Analysis
	High-Level or Flow Analysis
	Low-Level Analysis and Hardware Modelling

	Dynamic Timing Analysis
	Simulation
	Execution Time Measurements

	WCET Calculation
	Tree or Syntax Based WCET Calculation
	Path Based WCET Calculation
	Implicit Path Enumeration Technique

	The Measurement-Based or Hybrid Timing Analysis Approach
	Assumptions and Prerequisites
	Basic Idea - Guiding Measurements by Static Analysis
	Partitioning or Segmentation of the CFG
	Test data generation
	Function Calls
	Simplified Data Flow Analysis
	Loops
	WCET Calculation Step
	Differences to MoDECS V2

	Summary

	Execution-Time Analysis Framework
	Development Environment
	Example Application
	Input Parsing
	Code Generation
	CFG Generation
	Expression Paths
	Const Analysis
	Loop Analysis
	Loop Categorization
	Loop Bound Analysis

	Counting Paths Between Two Nodes
	Dominator and Postdominator Tree
	Segmentation
	Decision Tree (dtree)
	Test Data Generation
	Reused Test Data
	Random Test Data
	Model Checking

	Managing Test Data
	Measurements
	Generating Target and Module Code

	Analysis Tool Usage and Output
	Parameter File
	Command Line Arguments
	Tool Output

	Summary

	Experiments
	Test Setup
	Basic Block and Path Counts Explained
	Selection of Case Studies
	Test Hardware and Development Software
	Target Software Layout and Host-Target Communication

	Description and Goals of Tests Scenarios
	Loops
	General Loops
	General vs. Specialized Loop Handling
	Reduced Overestimation for 1:n-Loops

	Function Inlining vs. Black-Boxing
	Control Flow in Expressions
	Results
	Loops
	Function Inlining vs. Black-Boxing
	Control Flow in Expressions

	Summary

	Related Work
	WCET Analysis
	Static WCET Analysis
	AiT
	calc_wcet_167
	Bound-T
	Chalmers University Prototype
	Chronos
	Heptane
	SPARTA
	TuBound
	wcc

	Measurement Based and Hybrid WCET Analysis
	FORTAS
	MoDECS V2
	OTAWA
	RapiTime
	SWEET
	SymTA/P

	Overview of Current WCET Analysis Tools

	Improving the WCET
	WCET-Oriented Programming
	Single-Path Conversion

	Model Checking
	SAL
	Blast
	CBMC

	Program Analysis
	Loop Bound Analysis
	Infeasible Paths

	Cache Analysis
	Abstract Interpretation
	Implicit Path Enumeration Techniques (IPET)
	Model Checking (MC)

	Timing Anomalies
	Other Publications related to this Work
	Tree-Based Timing Schema for Loops
	Comparison of Execution Time Measurement Methods
	Are ILP and MC bad as Stand-Alone Tecniques?

	Conclusion

	Conclusion and Outlook
	Summary of Measurement-Based WCET Analysis
	Lessions Learned
	Gained Experiences

	Applications of Hybrid WCET Analysis
	Future Work

	Bibliography
	Index
	List of Abbrevations
	Acknowledgements
	Curriculum Vitae

