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Abstract

This thesis deals with an envelope detector in a test case of ePassport readers. For
the transmission between passports and readers RFID (Radio Frequency Identifica-
tion) is being used. The standard of test methods for ePassport is published in [ISO]
and contains a source code which applies an envelope detector based on Hilbert

transform to a measured input signal. The envelope has to fulfil a standardized
shape. This detector will be derived followed by an analysis of an implementation
postulated in [ISO]. This will lead to a list of properties and possible improvements.
Based on this description a test case will be discussed using a simulation developed
in Matlab®. This testbed will contain a model of the signal source whose output
signal is the input signal of a measurement path.

Keywords: Hilbert transform, complex/analytic signal, Gibbs phenomenon, win-
dows, discretization error of floating-point variables, Type A signal, RFID, harmon-
ics, non-linear system, Gaussian lowpass filter, cubic amplifier model, sampler, time
jitter, quantizer, additive Gaussian noise, mean squared error

Zusammenfassung

Diese Diplomarbeit behandelt einen Hüllkurvendetektor zum Testen eines ePassport-
Lesegeräts. Zur Datenübertragung zwischen einem Pass und einem dazugehörigen
Lesegerät wird RFID (Radio Frequency Identification) verwendet. Damit es dem
Standard [ISO] genügt, wird eine gewisse Hüllkurve des Empfangssignals gefordert.
Zur Detektion dieser wird ein Hüllkurvendetektor, basierend auf der Hilbert-
Transformation, vorgeschlagen. Im Folgenden wird dieser analysiert (Theorie, pos-
tulierter Quellkode) und ein Testbed vorgestellt, in dem der Hüllkurvendetektor
in ein Messsystem eingebettet wird. Dieses berücksichtigt Parameter in der Mess-
kette und inkludiert neben deren Modell auch eines des gemessenen Signals. Die
Simulationen werden in Matlab® implementiert.

Schlüsselwörter : Hilbert-Transformation, Analytische Signal, Gibbsphänomen,
Fenster, Diskretisierungsfehler auf Grund von Floating-Point-Variablen, Typ-A-
Signal, RFID, Harmonische, nichtlineare Systeme, gaußsches Tiefpassfilter, Kubis-
ches Verstärkermodell, Abtaster, Zeitjitter, Quantisierer, additives weißes gaußsches
Rauschen, mittlerer quadratischer Fehler (MSE)
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Motivation and problem statement

The topic of this diploma thesis deals with Radio Frequency Indentification (RFID)
applications, in particular the test case of card readers for ePassport. ePassport de-
fines a sub-standard for the transmission of data in the near field between passports
and readers. Both, ePassport and reader contain conductor loops to use induction
for the transmission in the high frequency range. All over the world readers have to
be tested to make sure that they comply the standard. The envelope of the signal
at the receiver-coil of the reader has to fulfill a shape defined in [ISO08].

In the past usually an oscilloscope2 has been used to compare the measured signal
with the defined signal shape. In ISO/IEC 10373-6:2001 Amendment 7 (Test meth-
ods for ePassport) a new solution with source code in the programming language
C has been postulated. It uses the Hilbert3 transform to calculate the envelope
of a signal. Nobody had illustrated the reason why another type had been chosen
so that the algorithm and the implementation had to be analysed. Some questions
came up:

1. Is it better than the previous used method?

2. What are the pros and cons of this detector?

3. How could the implementation be improved?

4. What is the influence of the measurement chain?

Moreover a testbed could identify the influence of parameters like sampling rate,
quantization bits or noise to the reliability of the test system. Even though param-
eters from the ePassport standard are used in this thesis to answer the questions
and to simulate the test system, the results can be applied quite generally. The sim-
ulations can be adapted easily. Thus this diploma thesis can provide some benefits
even for non-RFID applications when skipping some subsections.

Following from above this thesis is splitted into two parts which have different
focuses. The first one only deals with the envelope detector itself with pros and
cons. The second one investigates an ideal Hilbert envelope detector embedded into
a testbed to show some general influences of sampler, lowpass filter characteristic
of the measurment system, quantizer, noise, harmonics and amplifier.

2The oscilloscope shows the bandpass signal; with adjusting of the time scale one may see the
envelope.

3David Hilbert, 23th January 1862 – 14th February 1943, mathematician
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Part I

Envelope Detector
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Part 1 adresses the envelope detector based on Hilbert transform, whereas Part
2 views the envelope detector in a measurement chain. Here we will discuss two
different topics:

Chapter 1 – Representation of bandpass signals and the envelope – introduces some
theory about representations of bandpass signals with the goal to describe the
envelope of a signal.

Chapter 2 – Analysis of an envelope detector algorithm – analyses the implemen-
tation of an envelope detector based on the Hilbert transform postulated in
[ISO] and imprinted in Appendix D.

4



1 Representation of bandpass signals
and the envelope

Baseband and bandpass. A bandlimited signal with a frequency range from 0 Hz
to an upper frequency fu is called baseband or lowpass signal. This kind of signal is
complex-valued in general. In realworld channels it isn’t possible to send complex-
valued baseband signals, so one has to move it to higher frequencies. These signals
are called bandpass signals with a bandwidth between the lowest frequency fl >>
0 Hz and a highest frequency fu > fl. Usually bandpass signals are real-valued. In
the next sections we will go further into detail.

Unprofessional formulation of an envelope. An oscilloscope is often used to an-
alyze a signal. One can imagine an amplitude modulated signal where the carrier
is modified with a cosine over the time. Figure 1.1 is such an example. Without
knowledge one would expect that the first part of an envelope could be the inter-
polation of the local maxima of the signal. The second part would consist of the
interpolation of the local minima. The question come up whether it would be really
the best method since every interpolation introduces failures. We will start with
one of the first mathematical definitions with time-continuous signals, generalize it
and later discuss the problems in time-discrete systems.

Rice’s formulation of an envelope of a bandpass signal. A better definition of
the envelope of a bandpass signal than an interpolation has been formulated by S.

O. Rice which is described in paper [Dug58]. It is demonstrative so that we will
present it in this section.

He assumed a periodic signal and expressed it in the form of Fourier series:

u(t) =
c0

2
+

∞∑

n=1

cn cos(ωnt + φn). (1.1)

The constant term can be set to zero if we assume that the signal doesn’t have a
DC component.

Bandpass signals have a carrier frequency so it is very intuitive to select a fre-
quency q which is called midband frequency. He reformulated the expression to

u(t) =

∞∑

n=1

cn cos((ωn − q)t + φn + qt) (1.2)

5
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Figure 1.1: Envelope of a modulated cosine wave, called carrier, of fc = 15 Hz with a
sinus signal of f = 1 Hz.

and used the similarities to circular trigonometric functions:

u(t) =
∑

n

cn cos((ωn − q)t + φn) cos qt−
∑

n

cn sin((ωn − q)t + φn) sin qt (1.3)

= uI(t) cos qt− uQ sin qt (1.4)

Now the expression

r(t) =
√

u2
I + u2

Q (1.5)

is termed “envelope of u(t) referred to frequency q”. This formulation has disad-
vantages:

1. One must choose a midband frequency, which perhaps will be the carrier
frequency, but this isn’t clear. The question comes up whether such a special
frequency is really necessary.

2. The calculation of u(t) is a huge task. Rice’s formula doesn’t lead us to an
easy implementation.

The following section will present a much better method.
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1.1 Representations of bandpass signals

In this section the first effort is to give the derivation of the so called pre-envelope.
This will lead us to three mathematical representations of bandpass signals where
one of them represents the general definition of a signal envelope.

At the beginning we have to define some mathematical terms and notations which
may be slightly different in the literature.

Definition 1 — Fourier transform. The Fourier transform of a signal x(t) ∈ C
is

X(jω) = F{x(t)} :=

∫ ∞

−∞

x(t)e−jωtdt (1.6)

and is called frequency spectrum or “the frequency domain representation of the
signal x(t)”. The inverse Fourier transform

x(t) = F−1{X(jω)} :=
1

2π

∫ ∞

−∞

X(jω)ejωtdω (1.7)

is called “the time domain representation of the signal x(t)”. The notation x(t)←→
X(jω) denotes “x(t) correspondences to X(jω)” and j :=

√
−1.

Definition 2 — Convolution. The linear convolution of two functions x(t) and
y(t) is defined by

x(t) ⋆ y(t) :=

∫ ∞

−∞

x(τ)y(t− τ)dτ. (1.8)

Definition 3 — Analytic Signal. Let f(t) ∈ R be a bandpass signal. An
analytic signal is a function f+(t) : R 7−→ C, where f+(t) = A{f(t)}, whose Fourier
transform contains only positive frequencies:

F{f+(t)} = 0 for ω < 0 rad/s. (1.9)

It is sometimes called complex envelope or pre-envelope too. Carefully note that
this is not the definition of an analytic function!

Derivation of the analytic signal of a bandpass signal. Suppose a real-valued
waveform u(t) ∈ R which has a positive and a negative frequency component.
The first step is to cut off the negative one. The result has to be multiplied with
the factor two to retain the same energy of the signal. With the Heaviside step

7



function1

σ(jω) :=







0 ω < 0 rad/s
1
2

ω = 0 rad/s

1 ω > 0 rad/s

(1.10)

we have
U+(jω) := 2U(jω)σ(jω). (1.11)

Using the inverse Fourier transform this expression is the convolution of

2F{U(jω)} ⋆ F−1{σ(jω)}. (1.12)

With σ(jω)⇐⇒ δ(t) + j
1

πt
we get

u+(t) = u(t) ⋆ δ(t) + ju(t) ⋆
1

πt
. (1.13)

The latter term is called Hilbert transform which is named after David Hilbert.
It can be viewed as a linear time invariante (LTI) system where

1

πt
=: h(t)⇐⇒ H(jω) = −jsign(ω) =







−j ω > 0 rad/s

0 ω = 0 rad/s

j ω < 0 rad/s

(1.14)

is the impulse response and frequency response of the filter (sign(x) = x/|x|sign(0) :=
0). We note that it is a 90◦ phase shifter with |H(jω)| = 1 for ω 6= 0.

Now we can rewrite our complex-valued signal to

u+(t) = u(t) + jH{u(t)} (1.15)

where H{ · } is the Hilbert operator. We see that Equation (1.15) satisfies the
definition of the complex-valued analytic signal from above.

1.1.1 Equivalent baseband signal

The analytic signal is still in the bandpass domain. The equivalent baseband sig-
nal can be obtained by shifting to lower frequencies. According to the Fourier
correspondence

e−jω0tx(t)⇐⇒ X(j(ω + ω0)) (1.16)

we get
ue(t) = u+(t)e−jω0t. (1.17)

f0 = ω0/2π is the carrier frequency of the modulated signal.

1Since a bandpass signal doesn’t have a DC part, 1

2
at frequency ω = 0 rad/s doesn’t hurt.
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1.1.2 Canonical representations

Since ue(t) ∈ C it can be expressed as

ue(t) = uI(t) + juQ(t). (1.18)

uI(t) is called the in-phase and uQ(t) the quadrature component. The visualization
of these components is called the constellation diagram where the abscissa specifies
the in-phase term and the ordinate specifies the quadrature term.

1.1.3 Dugundji’s formulation of the envelope

In the following the notation Re( · ) specifies the real part and Im( · ) the imaginary
part of a complex-valued signal. The third respresentation of bandpass signals can
be given with the envelope

r(t) = |u+(t)| =
√

Re2(u+(t)) + Im2(u+(t)) (1.19)

and the phase

φ(t) = tan−1 Im(u+(t))

Re(u+(t))
. (1.20)

tan−1( · ) indicates the arc tangent. J. Dugundji showed in [Dug58] that this
formulation gives the same result like Rice’s one, so that r(t)|Dugundji ≡ r(t)|Rice.
The instantaneous frequency is the derivation of the phase:

ω(t) =
∂

∂t
φ(t). (1.21)

With (1.19) and (1.20) the signal can be also rewritten to

u(t) = r(t) cos (ω0t + φ(t)) (1.22)

which is the common definition in the literature.
For further reading you will find some chapters about Hilbert transform in [Dug58],

[pro96], [opp92] and [mit02].

1.2 The discrete-time Hilbert transformer

In the last section we have discussed the definition of the envelope and how to get
it from a bandpass signal. The next question is how to implement it in Matlab®2

or another programming language. One has to sample the signal and to use the
discrete-time Hilbert transform to calculate the envelope.

First we have to define the discrete-time Fourier transform.

2MATrix LABoratorym, http://www.mathworks.de
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Definition 4 — Discrete-time Fourier transform. The discrete-time Fourier
transform or frequency spectrum of a discrete-time signal (where n ∈ Z ) x[n] with

Θ = ωTs = 2π
f

fs
is

X(ejΘ) = F{x[n]} :=
∞∑

n=−∞

x[n]e−jΘn. (1.23)

fs is the sampling frequency, Ts is the sample period. The inverse discrete-time
Fourier transform is

x[n] = F−1{X(ejΘ)} :=
1

2π

∫ 2π

0

X(ejΘ)ejΘndΘ. (1.24)

With an abuse of notation we write the same symbol for discrete-time and continuous-
time Fourier transform.

With a time delay of n0 samples the frequency response of the discrete-time
Hilbert transformer can be written using (1.14) and

X(ejΘ) = F{x(nT )} =
1

T

∞∑

k=−∞

X

(

j
Θ

T
+ j

2π

T
k

)

(1.25)

as3

H(ejΘ) = −jsign(Θ)ejΘn0 =







e
−j(Θno+

π

2
)

0 < Θ < π

0 Θ ∈ {0, +π,−π}

e
−j(Θno−

π

2
)
−π < Θ < 0

, no ∈ Z (1.26)

Using the inverse discrete-time Fourier transform

F−1{H(ejΘ)} =
1

2π

∫ 0

−π

ejΘ(n−n0)+jπ/2dΘ +
1

2π

∫ π

0

ejΘ(n−n0)−jπ/2dΘ = (1.27)

=
j

2π

∫ 0

−π

ejΘ(n−n0)dΘ− j

2π

∫ π

0

ejΘ(n−n0)dΘ = (1.28)

=
1

2π(n− n0)

[(
1− e−jπ(n−n0)

)
−

(
ejπ(n−n0) − 1

)]
(1.29)

=
1

π(n− n0)

(
1− (−1)n−n0

)
(1.30)

3Cf. in German [dob08] and in English [ste96]
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Figure 1.2: Impulse response of a discrete-time Hilbert transformer truncated after N =
100 samples with delay of n0 = N/2.

we get the impulse response

h[n] =







2

π(n− n0)
n− n0 odd,

0 n− n0 even
(1.31)

for any n ∈ Z. The ideal impulse response of (1.31) with n0 = 0 has two important
properties,

1. infinite length and

2. acausality,

which brings problems when it has to be implemented as a finite impulse response
(FIR) filter. To obtain a finite-length filter one has to truncate the impulse response
after N samples which will be discussed in section 2.2 on page 13. The practical
FIR filter needs to be causal, so the Function (1.31) has to be delayed by

n0 :=

{

(N − 1)/2 N odd,

N/2 Neven
(1.32)

samples. A practical example is shown in Figure 1.2.

11



2 Analysis of an envelope detector
algorithm

In section 1.2 we discussed the discrete-time Hilbert transform, which is an al-
ternative to the commonly used IQ-demodulator for implementations of evelope
detectors. In principle there are two possible ways of implementation:

1. Time domain: Implementing the impulse response (1.31) with a Finite Im-
pulse Response (FIR) filter1 or

2. Frequency domain: transforming the signal via Discrete Fourier Transform
(DFT) into the frequency domain, applying the transfer function (1.26) and
using the Inverse Discrete Fourier Transform (IDFT) to go back into the time
domain.

The task of this section is to discuss the assets and drawbacks of the algorithm and
its implementation in [ISO]. Simulations will be done in Matlab®. The algorithm
from the ISO/IEC-paper is written in the programming language C, which will be
compiled in our case with the GNU C compiler2.

This chapter has several sections:

2.1 Concept of Analysis. This section will discuss the parts of our analysis.

2.2 Gibbs phenomenon. Here, the Gibbs phenomenon, which introduces artifacts,
will be discussed.

2.3 Deterministic signals and

2.4 Stochastic signals will recall some important definitions.

2.5 Analysis. The last section will include the analysis of the source code.

2.1 Concept of analysis

Following parts have to be analyzed to evaluate the algorithm and its implementa-
tion:

1Using fast convolution would be possible as well.
2The compiler (http://www.gnu.org) is available for most operating systems: DOS, Linux, Win-

dows, MacOS X etc.
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Type of implementation. This is the easiest part, a quick analysis of the source
code will tell us which type from above is used.

Gibbs phenomenon/Window. This artefact is a result in Method (1) when trun-
cating the impulse response of the Hilbert transformer. In Method (2) the
DFT causes it. It will be discussed in Section 2.2.

Fast Fourier Transformation. On the one hand if Method (2) of the above list is
used the implementation of the discrete Fourier transform is important since
there are many methods of calculating it. On the other hand the convolution
of Method (1) would be implemented using a FIR filter or a fast convolution
(which uses the discrete Fourier transform to multiply the spectral of the signal
with the transfer function of the Hilbert transformer instead of calculating the
convolution in the time domain).

Used signals. The main analysis will be done with uniformly distributed random
signals (noise) and later with standard signals. In practice Pulse Ampli-
tude Modulation (PAM) with two symbols in the linear signal space3 is used.
The notation is {s(1), s(2)} which reflects the levels of the amplitudes of both
symbols. Thus we will focus upon this type of signal. This kind of modula-
tion is also called Amplitude Shift Keying (ASK) or On-Off-Keying (OOK)
if s(2) ≡ 0. The calculation of the envelope will be compared with a program
in Matlab® and the reference envelope to discuss the difference. This will
be done visually using the autocorrelation, energy spectrum density or power
spectrum density or with numerical values like mean, variance or norm.

Source code analysis. The analysis of the implementation in [ISO] should also
involve errors and problems in the code of the C program.

2.2 Gibbs phenomenon

This is an important characteristic so we go further into details.

Discontinuities. The Gibbs phenomenon, which is named after Josiah Willard

Gibbs, exists at jump discontinuities of time-continuous signals since it is not possi-
ble to approximate discontinuous functions with continuous functions. The results
are oscillations (also called ripples) and overshoots are close to an edge. The phe-
nomenon exists in time-discrete systems, too, except for (jump) discontinuities of
periodic time-discrete signals that don’t cause it (Cf. with[dob08] at page 21ff).

3The signal space is a Hilbert space and the graphical visualisation is called constellation diagram.
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Windows. If implementation (1) is used, the impulse response of the Hilbert trans-
former has to be truncated because it has infinite length. The DFT implementation
(2) has the same phenomenon since it is applied over a finite number of samples
and is called Leakage. Let h[n] be the impulse response and w[n] a so called window
sequence:

ht[n] = h[n]w[n]. (2.1)

In the theoretical case we have an infinite window, thus4 w[n] = 1 ∀n. In the
frequency domain this corresponds to

Ht(e
−jΘ) = δ2π(Θ) ⋆ H(e−jΘ). (2.2)

With the identity X(e−jΘ) ≡ X(e−jΘ) ⋆ δ2π we note that there is no modification of
the signal. In practice one has a window with finite length, which is in the simplest
case a rectangle

w[n] = wR[n] :=

{

1 0 6 n 6 M

0 otherwise,
(2.3)

where M + 1 is the length of the window. Thus ht[n] becomes

ht[n] =

{

h[n] 0 6 n 6 M

0 otherwise.
. (2.4)

Two jump discontinuities follow which result in the presence of large oscillations.
In the frequency domain the rectangle window is

W (e−jΘ) = F−1{w[n]} =

sin

(

(M + 1)
Θ

2

)

sin
Θ

2

e
−jΘ

M

2 (2.5)

where W (e−j0) = 1. Thus the frequency response of the truncated signal is

Ht(e
−jΘ) =

sin

(

(M + 1)
Θ

2

)

sin
Θ

2

e
−jΘ

M

2 ⋆ H(e−jΘ). (2.6)

We note that the convolution in (2.6) modifies the original signal. The window part
is responsible for that so we have to look closer at the frequency response of the
window.

In Figure (2.1) we see a main lobe close to Θ = 0. If M increases, the width
of the lobes decreases and the lobes tend to δ2π(Θ). Thus M should be as large as

4∀... ”for all”
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Figure 2.1: Frequency response of a rectangle window with the length of 50.

possible. On the other hand the computation (time) increases, so we wish a small
M .

Note that since the area under the lobes is constant the amplitude of the ripples
will remain constant too! Thus if M increases, the oscillations are faster but aren’t
reduced. The amplitudes of the ripples don’t become smaller (approximately 9% of
the jump).

Frequency response of a time-discrete Hilbert transform. At page 11 we have
discussed about the Hilbert transformer and have seen the impulse response. Owing
to the lobes of the transfer function of the window sequence we are expecting ripples
in the frequency domain. Figure 2.2 shows the corresponding transfer function.

2.2.1 Generalized cosine window

To avoid this problem other windows can be used which should have a smoother
slope and the maxima of the side lobes should be as small as possible. A very
important class of such windows is the generalized cosine window :

w[n] := wc[n] =

{

a− b cos 2πn
N−1

+ c cos 4πn
N−1

0 6 n 6 N − 1

0 elsewhere
a, b, c ∈ R. (2.7)
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Figure 2.2: Transfer function of a discrete-time Hilbert transformer truncated after N =
100 samples with delay of n0 = N/2 (rectangular window).

window a b c
rectangle 1 0 0
Hann 0.5 0.5 0
Hamming 0.54 0.46 0
Blackman 0.42 0.5 0.08

Table 2.1: Parameters a, b and c of equation (2.7) of some important windows.

Equation (2.7) generalizes many important and well-known windows shown in Ta-
ble 2.1. Other more complex windows are the Kaiser window and the Chepyshev
window where one parameter is the amplitude of the ripples.

2.2.2 Design of Optimal filters

With the Parks-McClellan algorithm it is possible to design equi-ripple (ripple with
constant peak amplitude) linear-phase FIR filters which minimize the peak absolute
value of the weighted error, called Chebyshev criterion,

ǫ := arg max
ω
|E(ω)| = arg max

ω
|W (ejΘ)

(

H̃(ejΘ)−H(ejΘ)
)

| (2.8)

where W (ejΘ) is the weighting function, H̃(ejΘ) the desired frequency response of
the filter and H(ejΘ) the approximated filter. In Matlab® the function firpm()
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can be used. The length of those filters is minimal in this sense.

2.2.3 Frequency-domain least-squares filter design

Another filter design method is the so called Frequency-Domain Least-Squares (FDLS)
method. In this paragraph the idea behind FDLS will be briefly presented.

The frequency response of a filter consists of magnitude A[k] and phase φ[k]
which will be denoted by Ak and phase φk. k is the frequency index. Therefore at
a frequency ωk the amplitude of the output is multiplied by Ak and the phase is
shifted by φk. If the input signal xk[n] = cos(ωkTsn) with the sample period Ts the
output signal will be yk[n] = Ak cos(ωkTsn + φk).

Let us assume that the filter is causal and that there exists a (finite) difference
equation

yk[n] = −a1yk[n− 1]− · · · − aDyk[n−D] + b0xk[n] + · · ·+ bNxk[n−N ] =

(
−yk[n− 1] · · · −yk[n−D] xk[n] · · · xk[n−N ]

)












a1
...

aD

b0
...

bN












, (2.9)

where a and b factors are real-valued filter coefficients and y and x are output and
input signals. D and N are real-valued and has to finite since the equation has to
be finite. Thus the output value yk[n] consists of the current and past input and
output signals.

It can be formulated in matrix notation by






y1[0]
...

yM [0]




 =






−y1[−1] · · · −y1[−D] x1[0] · · · x1[−N ]
...

...
...

...
−yM [−1] · · · −yM [−D] xM [0] · · · xM [−N ]

















a1
...

aD

b0
...

bN












(2.10)

with M ∈ N. Equation (2.10) can be written as

y = Xa.

Since this is an overdetermined system a can only be calculated by the pseudo-
inverse; hence the filter coefficients

a ≈ (XT X)−1Xy, (2.11)

where ·
T denotes the transposed matrix. In Matlab® the function firls() can be

used. For deeper understanding one good paper is [Ber07].
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2.3 Review: Deterministic signals

In this section we recall some important definitions and notations which we will use
in further sections. You may want to skip it.

Definition 5 — Discrete Fourier Transform and Fast Fourier Transform.
The Discrete Fourier Transform (DFT) of a time-discrete sequence with N complex-
valued numbers is another complex-valued sequence of length N and is defined as

X[k] =
N−1∑

n=0

x[n]e−j2πkn/N 0 ≦ k ≦ N − 1. (2.12)

Similarly, the Inverse Discrete Fourier Transform (DFT) becomes

x[n] =
1

N

N−1∑

k=0

X[k]ej2πkn/N 0 ≦ k ≦ N − 1. (2.13)

There are some very time-saving algorithms which implement the DFT as Fast
Fourier Transformation (FFT).

Definition 6 — Temporal correlation function and autocorrelation. The
temporal correlation of two complex-valued signals x1[n] and x2[n] is

Rx1,x2[n] :=

∞∑

k=−∞

x∗
1[k]x2[n + k]. (2.14)

If x1[k] ≡ x2[k] then Rxx will be called the temporal autocorrelation of a signal.

Definition 7 — Energy spectrum density. The Fourier transform of the tem-
poral autocorrelation of a signal x,

Sxx(e
jΩ) := F{Rx} = |X(ejΩ)|2, (2.15)

is called energy spectrum density.

2.4 Review: Stochastic signals

Since we will use stochastic signals in this paper to show several probabilities of the
algorithm we have to recall and define some elementary functions and notations.
With an abuse of notation random variables will be written with upper-case symbols
(i.e. X) in the following. You may want to skip it.
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2.4.1 Introduction

Definition 8 — Cumulative distribution and probability density function.
The cumulative distribution function (cdf) of a random variable X is defined as
the probability that X ≦ x:

FX(x) := P{X ≦ x}. (2.16)

The probability density function (pdf) is written as

fX(x) :=
d

dx
FX(x). (2.17)

The pdf can be used to calculate the probability of the event that the variable X
is in the interval (a; b]:

P{a < X ≦ b} =

∫ b

a

fX(x)dx. (2.18)

Definition 9 — Mixed moments. The moments of a complex-valued random
variable X are

m
(k)
X := E{Xk} =

∫ ∞

−∞

xkfX(x)dx. (2.19)

2.4.2 Two random variables

Definition 10 — Mixed moments. The mixed moment of two complex-valued
random variables X1 and X2 for k1, k2 ∈ Z is

m
(k1,k2)
X1,X2

; = E{Xk1
1 Xk2

2

∗} =

∫ ∞

−∞

∫ ∞

−∞

xk1
1 xk2

2

∗
fX1,X2(x1, x2)dx1dx2. (2.20)

Definition 11 — Correlation function. The correlation of two random vari-
ables X1 and X2 is

RX1,X2 := E{X1X
∗
2} = m

(1,1)
X1,X2

. (2.21)

2.4.3 Discrete-time random process

A discrete-time random process is a sequence of random variables X[n] with n ∈ Z:

...X[−1], X[0], X[1], X[2], X[3]... (2.22)

19



Definition 12 — Autocorrelation function. The autocorrelation of two ran-
dom variables X[n1] and X[n2] is

R[n1, n2] := RX[n1],X[n2] = E{X[n1]
∗X[n2]} =

∫ ∞

−∞

∫ ∞

−∞

x∗
1x2fX[n1],X[n2](x1, x2)dx1dx2.

(2.23)

Wide-sense stationarity. In the following we assume that the signals will be wide-
sense stationary5, so that the second-order statistic property RX [n1, n2] only de-
pends on the difference m = n2 − n1:

rX [m] := RX [n1, m + n1]. (2.24)

Definition 13 — Power spectrum density. The power spectrum density (pds)

SX(ejΘ) := F{rX [m]}m→Θ =

∞∑

m=−∞

rX [m]e−jΘm. (2.25)

The latter two formulas are correct for estimations too.

2.4.4 Estimation of Moments

The pdf of a random variable is often unknown. But if the random experiment is
performed N times and N samples are observed then all moments can be estimated.
Estimations are denoted with a hat .̂.

Definition 14 — Estimated sample moments. Using the observed variables
xn the estimated sample moment m

(k)
X

m̂
(k)
X :=

1

N

N∑

n=1

xk
n. (2.26)

The estimated central sample moments m
(k)
X−µX

are defined as

m̂
(k)
X−µX

:=
1

N

N∑

n=1

(xn − µ̂X)k. (2.27)

5Strict-sense stationarity means that all order statistic properties depend only on the difference
n2 − n1.
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Two very important moments are the sample mean and the sample variance:

σ̂2
X := m

(2)
X−µX

, (2.28)

µ̂X := m
(1)
X . (2.29)

Definition 15 — Sample autocorrelation. In the case of wide-sense station-
arity the estimated temporal sample autocorrelation r̂X [m] is defined as

r̂X [m] :=
1

N

N∑

n=1

xnx∗
n+m. (2.30)

Definition 16 — Sample power spectrum density. The sampled power spec-
trum density (pds)

ŜX(ejΘ) := F{r̂X[m]}m→Θ =
∞∑

m=−∞

rX [m]e−jΘm (2.31)

and is also called periodogram.

2.4.5 Distributions

There are many time-continuous pdfs so in this subsection two very important pdfs
will be recalled which will be usefull in the following sections.

Definition 17 — Uniform distribution. A random signal X is uniformly dis-
tributed over the interval [a; b] when

fX [n] =

{
1

b−a
n ∈ [a; b]

0 otherwise.
(2.32)

Definition 18 — Normal/Gaussian distribution. With the mean µX and the
variance σ2

X the pdf of a Gaussian random variable is

fX(x) =
1

√

2πσ2
X

e
(x−µx)2

2σ2
x (2.33)

and is denoted as X ∼ N (µX , σ2
X).

2.5 Analysis

In the folowing the implementation of the envelope detector will be analyzed and
stochastic properties of the source code will be estimated.
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2.5.1 Type of implementation

The source code of [ISO] uses the algorithm of Method (2) whose block diagram
is shown in Figure 2.3. Note that sampled time-discrete signals are used, where
u[n] = u(nT ) and r[n] correspond to Equation (1.19) at Page 9. n ∈ Z is the
time index and T the sample period. The sampling of the real-world signal will be
discussed in Part II.

u[n]
U [n] U+[n] u+[n]

r[n]FFT HT IFFT | · |

Figure 2.3: Block diagram of the algorithm under evaluation as described in [ISO].
Upper-case symbols represent signals in the frequency domain.

2.5.2 Analysing of the postulated source code

The flowchart of the source code is drawn in Figure 2.4. Bold symbols represent
vectors or signal sequence. Note the correspondence of

u(nT ) = u[n]←→ u =










...
u[−1]
u[0]
u[1]

...










. (2.34)

The source code expects that an input file with 5000 samples is available. The input
file contains one tuple of time and amplitude per line. If there are less than 5000
samples available there is no error message. The information of time isn’t used and
thus could be omited.

The code uses a radix 2 Fast Fourier Transform (FFT which is a fast implemen-
tation of the DFT) so it can only use data of length 2n, where n ∈ N \ {1, 2}. Thus
it uses the FFT of length 8192.

Instead of 8192 values the program writes 5000 tuples in an output file. So the
interval (5000, 8192] is cut away. If a step exists at the beginning of the signal, the
last samples of the envelope include artifacts from the Gibbs phenomenon which
are thrown away. This may be neglected since these are some artifacts from the
Gibbs phenomenon.

Since a vector of length 5000 is used to calculate the envelope, the DFT leads
to a rectangular window. We have seen in a previous section that this is the worst
type of a window and results in ripples with high amplitudes.
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Start

reading ũ

FFT

HT

IFFT

| · |

writing r

Stop

u = (ũ 0 0 · · ·0)

U

U+

u+

r

Figure 2.4: Flowchart of the implemented C source code. A vector ũ =
(u[0]u[1]u[2] · · · u[N ]) with N ≦ 5000 samples is read from a file or other
stream. First zeros are added (Zero-padding) to get a vector u = (ũ 0 0 · · · 0)
of length 8192 ≡ 213. Applying the Fast Fourier Transform (FFT), the
Hilbert transform (HT), the Inverse Fast Fourier Transform (IFFT) and the
modulo operator gives the evelope sequence r which is written to a output
file or stream.
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The program doesn’t include code to support more than 5000 samples or a stream
of samples. This feature could be done using Overlap-add or Overlap-save, cf. with
[dob08].

Note that if signal of length 5000 is used the calculation will be able to be made
after all samples are available. Thus a FIR filter could be better.

To mention the code style there are many global variables. Thus using it in
projects is Gordian. The style looks like a one-to-one conversion from an old Fortran
program to a C.
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2.5.3 Error of the whole implemented algorithm compared with
an implementation in Matlab®

Analysis of errors compared with an implementation in Matlab®. First we
are interested in errors of the algorithm in [ISO] compared with an alternative
implementation in Matlab®. This software is used as a reference since it is widely-
used and it accesses the so called Fastest Fourier Transform in the West6 (FFTW).
It is an open source portable software library under GPL and it’s produced norm
of the error7 is smaller than 10−17.

Our analysis will contain following steps, cf. with Figure 2.5:

1. The error of the code will be calculated using noise as input signal of L = 5000
different realizations. As output we want to get the temporal histogram from
the mean of L realizations.

2. As input sequence for a realization l we are using a uniformly distributed
random vector

Xl = (Xl[0]Xl[1]Xl[2]...Xl[N ])T 1 ≦ l ≦ L (2.35)

with the length of N = 5000 samples. The Matlab® function rand is used
to get these uniformly distributed vectors Xl with values in the interval
[−0.5; 0.5].

3. This signal will be used as input sequence for the implementation in [ISO]
and the “ideal” one in Matlab®.

4. We will call the difference of the output8 ∆Yl = Yl,M−Yl,C of both algorithms
the error of [ISO].

5. The mean of the realizations will be calculated, thus we get a vector µ̂∆Y .

6. The histogram of µ̂∆Y is used to estimate and specify the probability density
function (pdf) of the signal.

6The design and implementation is discussed in [FJ05]. The homepage can be found at
http://www.fftw.org/.

7We will specify it below in Subsection 2.5.4.
8The subscript C specifies the output signal of the Code presented in [ISO], the subscript M the

one from the Matlab® version.
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Figure 2.5: Block diagram of the error measurement of the code in [ISO]. It shows
L branches from L realisations where the errors of the C-code against a
Matlab® version are calculated. From the results we get the sample mean
µ̂∆Y which is still a vector. The histogram of this sample mean is plotted
in Figure 2.6.

Results. At first step the estimated sample mean of realizations is calculated:

µ̂∆Y =
1

L

L∑

l=1

∆Yl. (2.36)

The number of calculated realizations L = 1000. Figure 2.6 presents the histogram
and estimated pdf of the error vector. The estimated sample mean is calculated
with

µ̂ =
1

N

N∑

n=1

(µ̂∆Y)n (2.37)

and the estimated sample variance with

σ̂2 =
1

N

N∑

n=1

((µ̂∆Y )n − µ̂)2. (2.38)
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Figure 2.6: Histogram of the resulting noise after L = 5000 iterations and estimated
probability density function of the continuous signal.

The notation ( · )n specifies the nth element of the vector. With the result

µ̂ = −1.1041 ∗ 10−5 and (2.39)

σ̂ = 9.4577 ∗ 10−6 (2.40)

follows the estimated confidence intervals (cf. with Appendix A) in Table 2.2.

Confidence interval Systematic error µ̂ Pseudo-random error
95% −1.1041 ∗ 10−5 ±1.2121 ∗ 10−5

99.99999980% −1.1041 ∗ 10−5 ±5.6746 ∗ 10−5

Table 2.2: CI of the defined error of the code under evaluation.

The results demonstrate a rather big error. Since the heart of the implementation
of the envelope detector is the Fast Fourier Transform we will analyze this part in
the next subsection.

2.5.4 Implementation of the Fast Fourier Transformation

Error of the FFT. One method to test an implementation of IFFT and FFT is
to calculate

y[n] = F−1{F{x[n]}}. (2.41)
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Figure 2.7: Block diagram of the error measurement of a FFT and IFFT routine used
in this paper.

Normally y[n] ≡ x[n] if no error exists. In the following two properties are shown
which illustrate the error y[n]− x[n].

As input vector we are using a vector of length 1024 which is uniformly distributed
noise like in the last subsection. The error y[n] − x[n] is calculated 1000 times to
obtain later the estimated mean vector µ̂Y −X of the L = 1000 realizations:

µ̂Y −X =
1

L

L∑

l=1

(Yl −Xl) (2.42)

Figure 2.7 shows the corresponding blockdiagram.
From µ̂Y −X we get the estimated power spectrum density. On the top Figure

2.8 shows the estimated psd9 of [ISO] and at the bottom the one from Matlab®

(FFTW). The difference of both curves is approx. 200 dB!
We can also specify the norm of the error:

||µ̂Y −X||2 :=

√
√
√
√

N∑

n=1

|( ˆµY −X)n|2 = 9.7691 · 10−07 (2.44)

Cause of the error. Analysing the source code of the file fftrm.c according to
[ISO] leads us to the error. All variables of the FFT routine use the data type float

9A variable x in dB (Decibel) is defined as

x

dB
:= 10 log

(x

1

)

. (2.43)
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↑ Implementation under evaluation

↓ Corrected implementation u.e.

↑ FFTW (Matlab)
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Figure 2.8: The curves show the estimated power spectrum densities from the errors of
the three FFT implementations. The difference between the top and the
middle curve averages 166 dB, i.e. correcting the float-double bug decreases
the bug about 166 dB!

(single-precision). The parameters of the functions however are of type double

(double-precision). Casting a double-precision type to single-precision type causes
heavy errors. The next paragraph explains this behavior.

Single-precision and double-precision floating-point sets. Defined in the paper
[flo85] of IEEE, a single- or double-precision floating-point number x is represented
by

x = (−1)s
· 2e−b

· m (2.45)

where s ∈ {0, 1} is the sign, e the exponent, m the mantissa and b the exponent
bias. The correspond exponent bias and the length of all bit-fields are written in
Table 2.3. The mapping τ : Q64 → Q32 is surjective and therefore produces errors.
On the one hand the mantissa has to be rounded, on the other hand a run-time
overflow can occur since the length of the exponent changes.

If all float declarations are changed to double and the simulation from above
is repeated one gets the middle curve of Figure 2.8. It shows that the improved
FFT routine is much better now. The norm of the error

||µ̂Y −X||2 = 4.7871 · 10−15. (2.46)

Discretization error of multiplications and additions of floating-point variables.
As we have observed even FFTW introduces errors. The reason are round-off errors
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Properties float double

total length (in bit) 32 64
length of sign s (in bit) 1 1
length of exponent e (in bit) 8 11
length of fraction m (in bit) 23 52
exponent bias b 127 1023
set {(−1)s

· 2e−b
· m; NaN; INF} Q32 Q64

volume of set 4 294 967 296 18 446 744 073 709 551 616

Table 2.3: Difference of float and double data type. NaN denotes “not a number”,
INF “infinitiy”.

and chopping in the computation of the Discrete Fourier Transform via the Fast
Fourier Transform algorithm owing to the use of floating-point variables. The set
of double-precision floating-point 64-bit values Q64 ⊂ Q ⊂ R. If two variables
x1 ∈ Q64 and x2 ⊂ Q64 are multiplied,

x1x2 =
[
(−1)s12e1−1023m1

]
∗

[
(−1)s22e2−1023m2

]
=

(−1)s1+s22e2+e1−2026m1m2, (2.47)

in general m1m2 has double number of digits. Thus the product x1x2 * Q64 in
general and has to be rounded or chopped. The relative error ε∗ is defined in
[KL71] by

fl{x1x2} = (x1x2)(1 + ε∗) (2.48)

where fl{ · } denotes the result using floating-point operations.
The sum of x1 and x2

x1 + x2 =
[
(−1)s12e1−1023m1

]
+

[
(−1)s22e2−1023m2

]
(2.49)

isn’t in the subset Q64 too since 2e1−1023 6= 2e2−1023 in general. Thus the mantissa
m1 has to be right shifted by (e2 − e1) places and introduces an error ε1 since the
last digits are rounded or chopped, as the case may be:

m12
−(e2−e1) + ε1 (2.50)

The left term can introduce another error ε2 when a runtime overflow occurs (right
shift L = −1) or a renormalization is needed (left shift by L ≧ 0):

2−L
[
2L

[
(−1)s1m12

−(e2−e1) + (−1)s1ε1 + m2

]
+ ε2

]
(2.51)

We define the relative error ε+ by

fl{x1 + x2} = (x1 + x2)(1 + ε+) ≡
(−1)s22−L

[
2L

[
(−1)s1m12

−(e2−e1) + ε1 + m2

]
+ ε2

]
2e2−1023. (2.52)
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Since every implementation of FFT contains many additions and multiplications
errors occur. In the following these errors of floating-point operations will be ne-
glected. More results of errors in floating-point arithmetic can be found in [KL71].

Another general view provides [pro96]. The paper [Ram71] is of interest, which
derives upper bounds for the error and [TL77] describes a statistical model for
round-off errors in floating point FFTs.

2.5.5 Specification of the Gibbs phenomenon with a simulation

The second cause of an error of the used Hilbert transform is the Leakage. The
error occurs with the real-world Hilbert transform filter since the impulse response
of the infinite Hilbert transform filter has to be cut off to make it finite. This is
similar to multiplying the impulse response with a rectangle window. If the detector
is realized in the frequency domain like in Annex 7 of [ISO] the FFT causes the
same error. We have seen that this Gibbs phenomenon can be reduced with other
windows or an Optimal FIR filter (only in the time domain).

Note that the following specified error isn’t because of a bad code in Annex 7
of [ISO]. Instead we will show that a general modification of the used Hilbert
transform could improve the detection of the envelope.

Now two ways will be simulated and compared with the case of a rectangular
window:

1. Optimal FIR filter

2. Blackman window

For the simulations a real-world example of an RFID transmission will be used with
an ideal rectangular baseband pulse and an idealized sampler.

Optimal FIR Filter. The Optimal FIR filter which will be utilized in the sim-
ulation below uses the Parks-Mc-Clellan algorithm. The desired periodic10

frequency response

|H̃(ejΩ)| :=







1 0.015π ≦ |Ω| ≦ 0.985π

0 Ω = 0 and Ω = ±π

undefined elsewhere.

(2.53)

The algorithm calculates an optimal filter |H(ejΩ)| for the desired frequency re-
sponse. Optimal means that the maximum error between the calculated frequency
response and the desired one is minimised (Cf. with Eq. (2.8) at Page 16). The

10The frequency response is described only in the interval [−π; π].
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resulting FIR filter should have odd symmetry, thus the phase of positive frequen-
cies is −90◦ and of negative +90◦. The impulse responses will be calculated for 401
samples since the algorithm doesn’t work for a length of 8192 samples:

|H̃[k]| :=







1 3 ≦ |k| ≦ 197

0 k = 0 and k = ±200

undefined elsewhere,

(2.54)

and

∠H̃[k] :=







+90 −200 < k < 0

−90 0 < k < 200

0 elsewhere.

(2.55)

Later the Blackman window will also have a length of 401 samples to be able to
compare both types of realization.

Real-world discrete frequency response of an Optimal FIR filter. The transfer
function of a Hilbert transformer without special window sequence or Optimal FIR
filter has been drawn in Figure 2.2 at Page 16. Since in practice only FFTs are
being used the frequency response is discrete such as drawn in Figure 2.9, cf. with
Definition 5. Only the first 20 frequency points H [0] · · ·H [19] are shown due to the
fact that it is better to present. The ripples are the same near n = 200 and at
negative frequencies anyway.

With the Parks-Mc-Clellan algorithm the transfer function of Equations (2.54)
and (2.55) looks like Figure 2.10. The slope is flatter than in Fig. 2.9 and the
oscillations are much slower. Thus no frequency components of the signal exist
which are boosted by the Hilbert transformer.

Simulation 1 — Simulation of the envelope error. In the following a simu-
lation will be made to show the advantage of an Optimal FIR filter and later of a
Blackman window. It will include ideal uniform sampling which will be discussed
later. The input signal for the simulation is defined as a bandpass PAM11 signal (Cf.
with Appendix B) of a RFID system. The blockdiagram of our theoretic simulation
is shown at Figure 2.11 with following properties:

The ideal transmitter contains this setup:

• lowband↔ bandpass transformation: The carrier frequency fc := 13.56 MHz.

• Length of a bit is tb = 32
fc

= 2.36 µs as defined in [ISO].

• According to [ISO08] sequences for Type A communication (PCD to
PICC) should be used. The information {“Start of communication”,
“logical 0”, “logical 0”} should be sent.

11In the real-world implementation Load Modulation is often used.
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Figure 2.9: FFT of the impulse response of a Hilbert transformer (“rectangular win-
dow”). The order or length of the FIR filter is 400 samples.

k

|H
[k

]|

k

∠
H

[k
]

in
◦

0 5 10 15 20

0 5 10 15 20

−100

−50

0

0

0.5

1

Figure 2.10: FFT of an Optimal FIR filter of a Hilbert transformer. The order or length
of the FIR filter is 400 samples.
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The ideal channel includes the whole path between transmitter and receiver. In
our case it introduces no kind of distortion, i.e. the output of the LP↔BP
transformation u(t) isn’t modified.

The ideal receiver which is simulated in Matlab®:

• Sampler: The bandpass signal is ideally sampled at the rate fs,a :=
200 MS/s to get u[n] = u(nT ) with T = 1/fs,a.

• The output of the Envelope Detector r[n] = |u+[n]| and the spectrum of
the Analytic Signal F{u+[n]} = F{u[n] +H{u[n]}} will be analyzed.

a[n]
uLP (t) u(t)

u(t) u[n]
r[n]

u(t)
pulse shaper LP ↔ BP ideal channel

sampler env. detector

ideal transmitter

ideal receiver

Figure 2.11: Block diagram of simulation.

The corresponding signal of {“Start of communication”, “logical 0”, “logical 0”}
is according to [ISO08] uLP(t) = gZ(t) + gX(t− T ) + gY(t− 2T ) where

gX(t) = rect

(

t− tb
4

;
tb
4

)

+ rect

(

t− tb
2
− t1 −

tb/2− t1
2

;
tb/2− t1

2

)

, (2.56)

gY(t) = rect

(

t− tb
2

;
tb
2

)

and (2.57)

gZ(t) = rect

(

t− tb − t1
2

;
tb − t1

2

)

. (2.58)

t1 can be between 8
fc

and 10
fc

. We are choosing t1 = 8
fc

. The obtained curve uLP(t)

which is sent12 as baseband signal is plotted in Figure 2.12. After a lowpass
↔ bandpass transformation the obtained signal u(t) is sent over an ideal channel

12It can also be viewed as the envelope of the bandpass signal.
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Figure 2.12: Baseband transmit signal. It has to be shifted into the bandpass signal
and contains Sequences {Z,X,Y}.

which doesn’t modify the signal. The receiver consists of an ideal sampler and of our
envelope detector. The second received symbol (Sequence Y in [ISO08]) is shown
in Figure 2.13 for a rectangular window and improvements like an Optimal FIR
filter. One of the detected envelopes r[n] is plotted in Figure 2.13 in relation to the
original signal uLP (t), cf. with Appendix C. In Figure 2.14 the rise in the second
symbol (pulse shape X) and in Figure 2.15 the fall in the same symbol is zoomed.

Windows and Optimal FIR filter. The next question is whether using a special
window sequence like Blackman window or an Optimal FIR filter would reduce
the error better. In our case the envelope detector is implemented in the time
domain with Matlab®. Therefor it is possible to compare the three types: The
rectangular window, the Blackman window and of course the Optimal FIR filter
have a length of 401 samples. Thus the resulting Hilbert transformer also has 401
samples. The reason why 5000 samples hasn’t been chosen is that it isn’t possible
to realize Optimal FIR filter of that length. A window with length of 5000 samples
would have better results but the settling time of the FIR filter would be worse. To
see the difference between the three implementations look at Figure 2.16.
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Figure 2.13: Ideal and detected envelopes of the second symbol (Sequence X). The
graphic of the envelope r(t) will be the same if a rectangular window,
Optimal FIR filter or Blackman window is used since the difference is too
small for this plot.
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Figure 2.14: First jump between the amplitudes of 0 and 1 of ideal envelope and real-
world envelope. The graphic of the envelope r(t) is here the same for a
rectangular window, Optimal FIR filter or Blackman window since the
differences are too small for the plot! tr specifies the rise time, and hovs

the overshoot (cf. with Appendix C).
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Figure 2.15: First fall between the amplitudes of 1 and 0 of ideal envelope and real-
world envelope. The graphic of the envelope r(t) is here the same for a
rectangular window, Optimal FIR filter or Blackman window since the
differences are too small for the plot! tf specifies the fall time and hovs the
overshoot (cf. with Appendix C).
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Figure 2.16: Difference between rectangular window, Blackman window and Optimal
FIR filter. The center of the “pause” of the second symbol with pulse
Sequence X is plotted. The pause is defined as the interval of the signal
where it should be 0.
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Errors of an Optimal FIR filter. We will analyze it further. Figure 2.18 shows
the difference in dB of the calculated envelopes:

∆

dB
= 20 log10(

detected envelope − ideal envelope

1
) (2.59)

∆W specifies the difference using the rectangular window, ∆O the Optimal FIR
filter and ∆B the Blackman window. One can distinguish these plots in three parts.
The left and right parts are failures which are produced when the amplitude is 1.
In the interval between 4.5 µs and 5.13 µs the signal should be zero.

Comparing both Figures 2.17 and 2.18 shows that indeed an Optimal FIR Hilbert
filter is better. While the Optimal Filter is the best alternative with respect to
Equation (2.8) other windows can be very good too.

t in µs

∆
W
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d
B
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−200
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−50

0

Figure 2.17: Difference (Error) between calculation of the envelope with rectangular
window and ideal envelope.
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Figure 2.18: Difference (Error) between calculation of the envelope with Optimal filter
and ideal envelope. Cf. with Figure 2.17 to see the improvement from the
Optimal FIR filter.
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Figure 2.19: Spectrum of the analytic signal if an ideal bandpass filter existed. Com-
ponents at negative frequencies aren’t suppressed perfectly.

Spectrum of the Analytic Signal. To complete the analysis of the Optimal FIR
filter the magnitude of the spectrum |U+(jω)| of the analytic signal (cf. with Equa-
tion (1.11) at Page 8) with and without Optimal FIR Hilbert transformer is plotted
in Figure 2.19. The plot shows some interesting facts:

1. The signal components at negative frequencies aren’t suppressed.

2. An Optimal FIR filter reduces these components (It can be shown that special
windows sequences do the same).

Errors of a Blackman window. In the next Figure 2.20 the same setup for an
implementation with a Blackman window is used — cf. with Figure 2.16.

Conclusion. We have seen that indeed the rectangular window of the Fast Fourier
Transform produces the worst result. But if one wants to decide which filter or
window is used following items have to be defined first:

Time domain / frequency domain. Implementation in the time domain via a FIR
filter or in the frequency domain using the FFT.

Max. length of the FIR filter or FFT. The Optimal FIR filter is only possible
with “short” length, ie. the algorithm doesn’t work for length of 5000 samples.
Note that the length of a FIR filter corresponds to the delay of the filter.
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Figure 2.20: Errors between detected envelope using a Blackman window and ideal FIR
filter. Cf. with Figures 2.16.

Bandwidth of the signal or pulse shape of the transmit filter. Since Hilbert
transformers with different windows or Optimal FIR filters have different effec-
tive bandwiths the pulse shape is important. Effective bandwiths correspond
to the rise of the frequency responses.

Note that we have used an Optimal FIR filter length of only 401 samples. If another
type, length or bandwidth of the PAM signal would be used it isn’t assured that
the Blackman window would be better. Since the parameters of the Optimal FIR
filter are variable it can be trimmed to very good results.

For the source code of Annex 7 of [ISO] the following constraint is important:
Since the FFT of 5000 samples is applied the artfacts are smaller than in the previous
simulation and can be even more reduced with a non-rectangular window.

2.6 Summary

The source code of [ISO] uses the FFT to implement the Hilbert transform which
can be easily used for bandpass system — no bandpass ↔ lowpass transform is
necessary. But it can only calculate max. 5000 samples. Thus if one likes to
improve it, one will have to use Overlap-add or Overlap-save. Another way would
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be to use a FIR filter. Neither of them are generally better, the hardware decides
the better variant.

We differentiated three kinds of errors:

• Since the source code should only give an idea how an envelope detector could
be implemented there are some errors in the source code. These restrict the
usage heavily. Only less than 5001 samples can be processed, but it has a
8192-points FFT. The big error is, that only 5000 samples are returned, so
the rest is cut off. This leads to errors since the DFT (FFT) is periodic and
some samples can be discarded. To avoid this the signal can be shifted, what
has been done in the figures, but then the signal has to be shorter than 5000
samples. The source code uses many global variables, thus it would be very
hard to use it in a project.

• Another part of the source code, in a separate file, is the FFT routines. The
code is very inefficient and would lead to a slow implementation. The big
problem is that it mixes float and double declarations of variables! Without
them the result of the FFT and IFFT isn’t that bad but could be improved
with other kinds of implementation. Note that even with data types of double
errors exist since multiplications and additions introduce them.

• One issue of the DFT is the so called Leakage. It results in a failure because
using 5000 samples of a signal is like multiplying the signal with a rectangular
window sequence (which is a sinc-function in the frequency domain). In the
time domain it would be the same, the Hilbert transform FIR filter has to
be cut off. A solution could be another window function or an Optimal FIR
filter.
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Part II

Influence of the analogue-to-digital
conversion chain
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In Part two we will discuss the developed envelope detector in a measurement
system containing two models which have to be specified:

1. the source

2. the measurement path

The source should emulate the signal which is the input of the measurement path.
It may be an oscilloscope in the simplest case.

Therefore the chapters are arranged like in following list:

Chapter 3 — Sampling and bandwidth of an oscilloscope — introduces some theory
about sampling and oscilloscopes.

Chapter 4 — Models — describes a model for the signal source and of the mea-
surement path.

Chapter 5 — Model implementation — goes into details and describes the imple-
mentation of the two models.

Chapter 6 — Common setup of source model — specifies parameters which will
be used in Chapter 7.

Chapter 7 — Results of simulation and Conclusions — provides graphics and re-
sults of simulations.
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3 Sampling and bandwidth of an
oscilloscope

First we start with a short review of sampling which will be necessary in the fol-
lowing.

Definition 19 — Uniform sampling. Let u(t) be a time continuous analogue
signal. Uniform sampling is described by the relation

u[n] := u(nT ) ∀n ∈ Z. (3.1)

Thus the sequence {u[n]} consists of samples which are taken from the analogue
signal every T seconds. T is called the sampling period or sampling interval and
fs = 1/T the sampling frequency (rate) with the pseudo-unit [fs] = S/s.

One consequence is that the bandpass signal in Equation(1.22) can be sampled
like the following equation:

u[n] ≡ u(nT ) = r(nT ) cos (2πf0nT + φ(nT )) =

r[n] cos

(

2π
f0

fs
n + φ[n]

)

=: r[n] cos (Ωn + φ[n]) . (3.2)

Ω = 2π f0

fs
∈ [0; 2π] is a normalized frequency. The corresponding discrete-time

Fourier transform was defined in Eq. (5).

Theorem 1 — Nyquist theorem. A continuous-time baseband1 signal u(t)
which is bandlimited with highest frequency fu can be uniquely recovered from its
sample sequence {u[n]} if the sampling frequency fs ≧ 2fu.

Aliasing. If the continuous-time signal is not bandlimited, ie. fu ≧ fs/2, then all
frequencies |f | > fs/2 will appear in the interval [0; 2π] of the normalized frequency
of the sampled signal. Reconstructing of the original signal won’t be possible since
sampling won’t be bijective anymore. This unwanted effect is called aliasing.

1A continuous-time bandpass signal u(t) with a bandwidth B can be uniquely recovered if fs ≧ 1

B
.

Note that the bandwith of our signal won’t be limited.
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In some applications, like in the environment of RFID, the bandwidth of a signal
isn’t restricted. The whole measurement (f.e. an oscilloscope) acts like a low- or
bandpass filter. So we have to discuss them in the next section.

3.1 Sampling techniques

There are three types of sampling techniques:

Real-time sampling technique. The uniform sampling discussed above is — if
implemented in the real-world — the so called real-time or single-shot technique.
All samples are taken from a single trigger.

The advantage of this technique is that repetitive and non-repetitive signals can
be sampled. T has to be as exact as possible.

Equivalent-time sampling technique. The signal is assumed to be repetitive and
it can be sampled more than once with a time shift between the periods. Thus
more than one trigger has to be used. By way of example we could have a pe-
riodic signal u(t) and two triggers. The first one samples the first period and
gets {u[0], u[2], u[4], u[6]}. The second trigger samples the second period to obtain
{u[1], u[3], u[5], u[7]}. Therefore the waveform is built up after the second step to
{u[0], u[1], u[2], u[3], u[4], u[5], u[6], u[7]}.

The big advantage is that the effective sampling rate T can be achieved with
triggers of period time 2T , hence the resolution fs,e can be much higher than the
one from the real-time sampling:

fs,e = nfs ∀n ∈ N (3.3)

But it is also a source of errors since the triggers have to be separated exactly by
T/n seconds.

Sequential sampling technique. Sequential sampling is an extreme case of equiv-
alent sampling, where each trigger takes only one sample of the period. This is the
final type of sampling and allows sample frequencies fs > 20 GS/s.

RFID. In the field of RFID repetitive or periodic signals cannot be assumed, so
one has to use the real-time technique.

3.2 Bandwidth of frontend hardware

Lowpass filter. Beside the sampling rate the bandwidth of the frontend is an
important property of the system. The ideal transfer function of the frontend
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hardware can be assumed to be a lowpass filter Hh(jω) which is defined by

Hh(jω) :=

{

C |ω| ≦ ωc

0 |ω| > ωc

(3.4)

where ωc = 2πfc is the cut-off angular frequency and C ≦ 0 dB a constant. Note
that in the real-world the fall is finite and so the cut-off angular frequency is defined
by

ω−3 dB := ω|Hh(jω)=C−3 dB = 2πf−3 dB. (3.5)

In the case of an oscilloscope f−3 dB of the probe would be important since — in a
theoretically point of view — the sampling frequency

fs

!
> 2 min {fc, fu}. (3.6)

Bandwidth of probe and scope. Oscilloscopes with bandwidth specifications
f−3 dB < 1 GHz have the same frequency response like a Gaussian filter. According
to [Rap02] the Gaussian filter is defined by

hLP,G(t, α) :=

√
π

α
e−(πt

α )
2

(3.7)

with the frequency response

HLP,G(jω, α) = e−(αω
2π )

2

(3.8)

and

α =
0.5887

f−3 dB

. (3.9)

If the probe has the same property then the cut-off frequency can be easily cal-
culated with

f−3 dB =
1

(
1

f
−3 dB,probe

)2

+
(

1
f
−3 dB,scope

)2 . (3.10)

If the oscilloscope has a bandwidth with f−3 dB & 1 GHz the frequency response will
be — the so called — flat frequency response. Below f−3 dB the response is flatter
than that from Gaussian filter and the roll-off near the point where the magnitude
has reduced to −3 dB is sharp-edged. On the other side the disadvantage exists
that one cannot calculate the whole bandwidth of the measurement chain and has
to ask the vendor. For the sake of simplicity we will use a Gaussian frequency
response in the following and note that the systems with flat frequency response
are generally better.
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Required bandwidth. According to [agia] we can introduce the “knee” frequency
fknee of a signal which is defined as the “maximum practical frequency component”.
It is defined as

fknee :=
0.5

tr
(3.11)

where tr is the rise time from 10% to 90% of the signal. To calculate the required
bandwidth f−3 dB of the oscilloscope (including the probe) Table 3.1 can be used.

required accuracy Gaussian response maximally-flat response
20% f−3 dB = fknee f−3 dB = fknee

10% f−3 dB = 1.3fknee f−3 dB = 1.2fknee

3% f−3 dB = 1.9fknee f−3 dB = 1.4fknee

Table 3.1: Calculation of the bandwidth f−3 dB of a signal.

Required bandwidth of the signal The paper [ISO08] defines the maximum rise
time (worst case) tr := 0.442 µs. Since in the following we are analyzing the band-
pass system tr := 12 ns. With Equation (3.11) and Table 3.1 we get the val-
ues provided in Table 3.2. Note that nowadays all oscilloscopes have bandwiths
f−3 dB > 100 MHz.

required accuracy f−3 dB of Gaussian response f−3 dB of maximally-flat response
20% 41.7 MHz 41.7 MHz
10% 54.2 MHz 50 MHz
3% 79.2 MHz 58.3 MHz

Table 3.2: Calculated values of the bandwidth f−3 dB of the signal defined in [ISO].

Minimum sampling frequency. According to [agia] a conservative calculation of
the minimum sampling frequency which is necessary can be calculated with

fs,min = 4f−3 dB. (3.12)

3.3 Real-world sampling

Aperture time. Equation (3.1) can also be written as

u[n] = u(nT ) =

∫ ∞

−∞

u(t)δ(t− nT )dt ∀n ∈ Z. (3.13)
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In the real-world case a Dirac impulse δ(t) isn’t possible, therefore it has to be
rewritten using a weight-function

w(t) = C(t) rect

(
t− Tap

2
; Tap

)

=

{

C(t) −Tap/2 ≦ t ≦ Tap/2

0 elsewhere
(3.14)

where Tap is the duration of the aperture which is called aperture time. C(t) is a
function of time. Equation (3.1) enhances to

u[n] =

∫ −∞

−∞

u(t)w(t− nT )dt ∀n ∈ Z. (3.15)

The transfer function of w(t) has a sin(x)/x shape which has a lowpass characteristic
and therefore introduces errors.

Aperture jitter. Another problem is the random aperture jitter εT in seconds2.
It is an uncertainty of the sample time nT + εT whereby wrong amplitudes are
sampled and the whole error increases with increasing sampling frequency.

Real-world sampling Both errors lead to a better mathematican description of
the sampling:

u′[n] := u(nT + εT ) =

∫ ∞

−∞

u(t)w(t − nT + εT )dt =

∫ Tap

2
−nT+εT

−
Tap

2
−nT+εT

C(t)u(t)dt.

(3.16)

Note that εT is random and the local oscillator (LO) defines the pdf fεT
.

2With an abuse of notation upper-case letters don’t specify random variables in this section.
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4 Models

4.1 Envelope Detectors applied to real-world signals

uBP(t)

uc(t)

uLP(t)
u′′

BP(t)

u1(t)

fc

LP Signal
Highpass F.

Figure 4.1: Source generation.

u1(t) u2(t) u3(t) u4(t) u5[n] u[n]
S

Lowpass F. Amplifier Sampler Quantizer

H

Env. Detector

no(t)

r[n]

Figure 4.2: Measurement chain.

In our previous discussions we have observed that the implementation of an enve-
lope detector has many aspects and many errors can be introduced. The simulations
have used ideal samplers and ideal quantization has been assumed. This chapter
will discuss the whole conversion chain from analogue to digital signals before an en-
velope detector. This could be for example an oscilloscope, where the chain includes
a prefilter (probe), an amplifier, a sampler and a quantizer. It will include amongst
others aliasing effects, the sampling rate, the bandwidth of the whole chain, the
quantization error and noise.
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4.1.1 Source generation

Oscillator. The transmitter is plotted in Figure 4.1. The source produces a
complex-valued normalized signal with an in-phase and a quadrature component1:

uc(t) = ejωct = uc,I(t) + juc,Q(t), (4.1)

[uc,I(t)] = [uc,Q(t)] = 1, (4.2)

ie. the signal is normalized and thus proportional to voltage. We write uc(t), but
note that an analogue signal can only be simulated using a discrete-time signal with
very high sampling rate!

Phase noise. Since we want to emulate a real-world oscillator, phase noise Nsignal(t)
is added to uc(t). According to [SMMW00] the noise source in electrical circuits
can be split into two groups.

1. Device noise includes thermal, shot and flicker noise.

2. Interference includes substrate and supply noise.

Noise due to an oscillator. Since the signal is generated using an oscillator phase
noise is a very important property. The output on an idea oscillator would be

U(t) = A cos(ω0t + φ) (4.3)

while in reality amplitude A and phase φ are functions of time written as

U(t) = A(t) cos(ω0t + φ(t)) = A(t) cos ((ω0 + ∆ω(t))t) . (4.4)

One consequence is that instead of two spectral components ±ω0 the signal has
sidebands. One characteristic is the single sideband noise spectral density defined2

by

L(∆ω) : = Lphase(∆ω) + Lamplitude(∆ω) = 10 · log

(
Psideband(ω0 + ∆ω)

Pcarrier

)

, (4.5)

[L] = 1 dBc/Hz. (4.6)

Psideband(ω0 + ∆ω) is the single sideband power at a frequency offset of ∆ω in
respect to the carrier frequency ω0 with a bandwidth of 1 Hz. It can be shown (cf.
[SMMW00]) that Lphase contains 3 different parts with constants c′, c′′, c′′′:

Lphase(∆ω) = c′
︸︷︷︸

temperature

+
c′′

∆ω2
︸︷︷︸

quality of loading

+
c′′′

∆ω3
︸︷︷︸

flicker noise

. (4.7)

The flicker noise is defined by the quality of the crystal; the (∆ω)2 term by the
circuit.

1This is done to be able to enhance the simulation easily.
2 P

1 dBc
:= 10 · log

(
P

Pcarrier

)
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Modulation. Then the data stream modulates the I-part of the signal, while the
Q-part uc,Q(t) := 0. This means that we are using ASK. This makes it possible
to simulate phase shifts of the complex signal. It would reduce the energy of the
I-component and would increase the energy of the Q-component.

The lowpass signal uLP(t) is generated by a signal shaper which generates the
signal specified in [ISO08]. Since this would introduce some errors caused by the
Gibbs phenomenon owing to points of discontinuity the signal has to be smoothed.
This is done by a lowpass filter.

Non-linearity system. There is a branch which attenuates the signal uBP(t) and
adds non-linearity signal components owing to Shockley diodes. The character-
istic curve of this type of diode is defined by

ID = IS

(

e
UD

n UT − 1

)

(4.8)

where UD is the voltage across the diode, ID the diode current, UT is the thermal
voltage, IS the saturation current and n the emission coefficient. One will expect
that a characteristic curve of the input-output-relation of the block is proportional
to ex − 1 if x := UD

n UT
. Thus the third-order Taylor series approximation

ex − 1 =

∞∑

n=0

xn

n!
− 1 = x + x2/2 + x3/6 + O{x4} (4.9)

can be used. If we substitute x by a function or signal x(t) = sin(2πft) then Eq.
(4.9) would produce new frequency components at 2f , 3f , etc. This could be easily
verified by calculating of sin(2πft)+(sin (2πft))2 /2+(sin (2πft))3 /6 using addition
theorems.

Since in our simulation we want to be able to define the signal strength of each
frequency component separately, the characteristic curve can be generalized and
written by

c′x + c′′x2 + c′′x3 + O{x4} c′, c′′, c′′′ ∈ R. (4.10)

Now the input-output-relation is

u′
BP(t) = u′

BP,I(t) + ju′
BP,Q(t) with (4.11)

u′
BP,I(t) = c′uBP,I(t) + c′′u2

BP,I(t) + c′′′u2
BP,I(t) and (4.12)

u′
BP,Q(t) = c′uBP,Q(t) + c′′u2

BP,Q(t) + c′′′u2
BP,Q(t). (4.13)

Note that we have splitted the complex signal into a real and a imaginary part to
apply the equation separately. The constants c′,c′′ and c′′′ are our three parameters
of the block which can be changed for every specific simulation.
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Highpass filter. A highpass filter is required since u′
BP(t) has many frequency

components close to 0 Hz which shouldn’t exist.

u′′
BP(t) = HLP ⋆ u′

BP(t) (4.14)

where HLP is the frequency response of the lowpass filter.

Summation – complex-valued to real-valued signal. Later u′′
BP(t) is added to

uBP(t) to get the corrupted signal. Since we can only transmit real-valued signals
we have to translate it using a function f : C→ R:

u1(t) =f (u′′
BP(t) + uBP(t)) (4.15)

=|u′′
BP(t) + uBP(t)| cos (φ(t)) , (4.16)

φ(t) = tan−1

(
Im (u′′

BP(t) + uBP(t))

Re (u′′
BP(t) + uBP(t))

)

(4.17)

4.1.2 Measurement chain

Noise. The whole noise N(t) contains a sum of different types: The noise from
a) the received signal (phase and temperature noise), b) the probe, c) the attenua-
tion, d) the amplifier e) the sampler and f) from the quantization.

N(t) =Nsignal(t) + Nprobe(t) + Namplifier(t)+ (4.18)

Nattenuation(t) + Nsampler(t) + Nquantizer(t). (4.19)

The noise of the received signal Nsignal(t) of an proximity coupling device — PCD
— contains phase noise from the oscillator. In a datasheet of an oscilloscope often
only the whole noise is specified. Therefore we can only use one function No(t) and
assume due to the central limit theorem additive white Gaussian noise (AWGN)
with zero mean and variance σ2

No
. In the end we get two noise components:

N(t) = Nsignal(t) + No(t). (4.20)

Additive white Gaussian noise. Additive white Gaussian noise No(t) is identified
as the noise from the digital sampling oscilloscope and will be added:

u2(t) = u1(t) + No(t). (4.21)

Lowpass filter. Figure 4.2 contains all blocks from the measurement path (os-
cilloscope). The first block contains the lowpass filter which has a specified cut-off
frequency3 f−3 dB. It is the combined frequency response of probe and oscilloscope.

3Here it can be also called “bandwidth of the oscilloscope”.
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In the common case we can assume that the filter is a Gaussian filter. There are
oscilloscopes with steeper but non-specified slopes. It follows

u3(t) = u2(t) ⋆ HLP,G (4.22)

using Definition (4.2).

Non-linear elements. The following non-linear block contains three blocks of an
oscilloscope — the attenuation, the amplifier and the non-linearities of the quan-
tizer.

We are using a very common model. The cubic model is described in [Che06]
where the input-output-relation is defined by

u4(t) = au3(t)− bu2
3(t)− cu3

3(t). (4.23)

a = G is the linear gain. For the sake of simplicity the coefficient b := 0 since it
doesn’t produce intermodulation products close to the frequencies of the signal and
is assumed that they are filtered out. A common parameter describing an amplifier
is the third order input intercept point IIP3.

Let the input signal of an amplifier contain two tones

u3(t) := A [cos(ω1t) + cos(ω2t)] . (4.24)

Inserting it into Equation (4.23) and applying some trigonometric identities gives

u4(t) = aA [cos(ω1t) + cos(ω2t)]

= bA2 + b
A2

2
[cos(2ω1t) + cos(2ω2t)]

− bA2 [cos(ω1t + ω2t) + cos(ω1t− ω2t)]

− c
9

4
A3 [cos(ω1t) + cos(ω2t)]

− c
1

4
A3 [cos(3ω1t) + cos(3ω2t)]

− c
3

4
A3 [cos(2ω1t + ω2t) + cos(2ω2t + ω1t)]

− c
3

4
A3 [cos(2ω1t− ω2t) + cos(2ω2t− ω1t)]

(4.25)

The terms involving 2ω1−ω2 and 2ω2−ω1 are components of third order which are
close to ω1 and ω2 and are therefore important. The IIP3 is the input amplitude
where components of first and third order are equal:

aA ≡ 3

4
cA3 (4.26)
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Thus

c =
4a

3A2
. (4.27)

Note that

IIP3 := 10 log10

[

A21000

2R

]

,

[IIP3] = dBm,

[R] = Ω,

[A] = V,

(4.28)

where R is the reference resistance4. Here [ · ] specifies the unit of the quantity5.

Sampler. Since the time-continuous signal u4(t) can only be simulated as discrete-
time signal, the sampling rate fs,a = 1/Ts,a of the pseudo-analogue signal has to be
very high. Therefore in this case the sampler is transrating to a sampling rate of
fs = 1/T . Note that fs,a ≫ fs. Transrating, which is also called re-sampling, is the
same as the conversion of a discrete signal to a analog signal, which then will be
sampled with the new sampling rate. Thus aliasing can occur.

Thus we have to substitute t by mTs,a

u4(t) = u4(mTs,a) =: u4[m] (4.29)

The reconstruction of an analog signal from a sampled signal is

ua(t) =

∞∑

m=−∞

u4[m]g(t−mTs,a) (4.30)

with6

g(t) = sinc

(
π

Ts,a
t

)

. (4.31)

g(t) is called the interpolation function which avoids aliasing (= rectangle in the
frequency domain). If this signal is sampled again with fs = 1/T we will get the
following equation:

u5[n] := ua(mT ) =
∞∑

m=−∞

u4[m]g(nT −mTs,a) (4.32)

4The factor 2 relates peak value A to the root mean square value (RMS).
5A physical quantity X can be expressed as product of numerical value {X} and physical unit

[X ]: X = {X} [X ]
6sinc(x) := sin(x)/x with sinc(0) := 1.
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In the following we will simplify the process and assume that R = T/Ts,a = L/M ∈
Q (R is a rational factor). It can be shown that this leads us to

u5[n] =
∞∑

m=−∞

u4[m]g(nM −mL) =
∞∑

m=−∞

u4[m]sinc (θg(nM −mL)) (4.33)

with θg = min
(

π
L
, π

M

)
.

In our case we want to simulate only the sampler without an anti-aliasing filter
with a re-sampler. Therefore aliasing is possible. We also don’t need interpolation,
since fs,a ≫ fs or T ≫ Ts,a. This leads us with g(t) = F−1{1} = δ(t) to the very
simple input-output relation:

u5[n] := u4[mR] = u4(mTs,aR). (4.34)

The sampler introduces noise caused by the time jitter of the ADC. The reason of
the jitter is the non-ideal oscillator of the sampler. Oscilloscopes have very accurate
oscillators included. An Agilent oscilloscope from the 3000 series has a jitter about
15 ps. The effect is time jitter of the trigger and amplitudes of the sampled signal
have failures, denoted by Nsampler(t). We will assume that due to the central limit
theorem the distribution of the time jitter can be assumed as Gaussian.

There is also a short approximation of the amplitude error due to the time jitter.
Since we sample a bandpass signal the highest rise of the signal (= derivation of
the signal) can be calculated with a sinus. In the non-modulated case we have at
13.56 MHz the maximum rise:

kmax = cos(2πft)2πf |f=13.56 MHz,t=0 s = 85.2 MHz (4.35)

In our simulation the pseudo sample period of the analogue signal Ts,a = 1/fs,a =
1/13.56 GHz = 73.746 ps. Thus the amplitude failure would be 0.314% of the
amplitude by a time jitter of Ts,a/2 = 36.87 ps. If the Agilent oscilloscope (3000
series) was used then the amplitude error would be 0.13%.

Quantizer. Since 8 bit analog-digital-converter are very common an 8 bit quantizer
is used by default. It can be improved to 12 bit or 16 bit. We will write these sets of
numbers Ik = {0 · · ·2k − 1} with the number k of bits. An interesting paper which
collects the history and practice of the quantization can be found in [GN91].

Since the signal is assumed to be symmetric around zero, the quantization interval
of a k-bit ADC with the amplitude limits of the input signal −a/2 and a/2 is

q = a/2k−1. (4.36)

Then the output of the quantizer block is

u[n] =







−a/2 u5[n] ≦ −a/2

[u5[n]/q] q −a/2 < u5[n] < a/2

a/2 u5[n] ≧ a/2

(4.37)
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[ · ] denotes the round function. Note that small errors occur since an injective
mapping τ̃ : Ik → Q64 is automaticly done. The new signal is u[n] ∈ Q64. It is the
input of the following.

Envelope detector. The well-known Hilbert envelope detector (H) is the next
element in the chain where its output is the detected envelope r[n]. Note that the
envelope detector uses a 64 bit double precision floating point data type with the
set of numbers Q64 instead of a fixed point data type which is used as output from
the quantizer:

r[n] = |A{u[n]}|∈ Q64. (4.38)

Going into details and using Equation (1.31) on Page 11 gives one possibility of an
implementation:

r[n] = |F−1{F{u[n]} ·F{h[n]}}|. (4.39)
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5 Model implementation

uBP[m]

uc[m]

uLP[m]
u′′

BP[m]

u1[m] u2[m]

u2[m]
u3[m] u4[m] u5[n] u[n]

fc

LP signal: fs,a, fc, a, ks

tb, tx, t1, t5, t6, t6,max

NL HPq−D0

(c′, c′′, c′′′)

rS

f3 dB IIP3, R fs, σjitter a0, k

H

No[m] ∼ N(µ, σ2)

Nsignal(t) ∼ L(∆ω)

r[n]

(a) Main simulation.

uLP,ideal[m] uLP,ideal[n]
rS

fs, σjitter := 0

q−D1

ideal LP signal:

fs,a, fc, a, ks, tb, tx, t1

uref[n]

(b) Reference path.

Figure 5.1: Blockdiagram of the testbed. NL is a non-linear system, HP is a highpass
filter, rS denotes re-sampling and H the Hilbert envelope detector. The vari-
ables below the blocks specify the parameters which can be easily changed
for the simulation.

This chapter will enhance the models provided in the previous Chapter 4 to get a
mathematical description which can be implemented in Matlab® or another script
language. Thus the time-continuous part will be formulated in the time-discrete

58



domain and a reference path will be added to calculate a quantity called error. The
overall system is shown in Figures 5.1 and will be discussed in the following.

5.1 Source model

The blockdiagram of the source model is plotted in Figure 5.1a.

LP signal. The signal is generated by two steps. First a “Type A” signal u′
LP[m] is

shaped according to the RFID standard [ISO08]. The time parameters tb, tx, t1, t5, t6
and t6,max from there are all given in periods (cycles) of carrier, thus [t] = 1. The
resulting signal

u′
LP[m] =

{

0 m < 0 and m > M

A[m] 0 ≦ m ≦ M
(5.1)

with normalized amplitudes A[m] at time indices m. M is an arbitrary time index
which we define sloppily as “end of the signal”; whereas we define m = 0 as “start
of the signal”.

One disadvantage is the existence of points of discontinuity in the pulse shape
due to the definitions in [ISO08]. To get a better model of a real-world signal it has
to be smoothed. This is done by an N -order Gaussian FIR filter with a bandwidth
of f−3 dB := 107 Hz and frequency response HLP,G:

uLP[m] = u′
LP[m] ⋆ HLP,G (5.2)

The lowpass filter introduces a delay of

D =

{
N−1

2
N odd

N
2

N even
(5.3)

samples. The samples of time index m ≦ D are transient oscillations and therefore
can be set to zero. But the signal has also transient osciallations after D samples,
which will be taken into account later.

Bandpass signal. The carrier signal is defined by

u′
c[m] := cos

(

2π
fc

fs,a

m + Φ[m]

)

. (5.4)

We assume small phase noise. According to Equation (4.6) at Page 51 we define
the shape of L(∆ω) in the spectrum with frequency-amplitude tuples:

(∆ω, L) (5.5)
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From these tuples the discrete single sideband noise spectral density L[∆m] can be
calculated approximately. Applying it to Equation 5.4 the generated carrier signal
is written as

uc[m] = cos

(

2π
fc

fs,a
m + F−1{L[∆m]}

)

. (5.6)

In the next step the lowpass signal is multiplied by the carrier to get the bandpass
signal:

u′
BP[m] = uLP[m] · uc[m]. (5.7)

There are transient oscillations close to m = 0 because of the lowpass filter denoted
in Equation (5.2). Thus the signal has to be modified to avoid phase jumps when
continued. This takes into account the circular convolution in the measurement
path and avoids the Gibbs phenomenon at the beginning and the end of the signal.
To incorporate this and using Equation (5.3) gives1

uBP[m] =







0 m ≦ D
2

+ ⌊3fs,a

4fc
⌋

u′
BP[m] D

2
+ ⌊3fs,a

4fc
⌋ < m ≦ M

0 m > M.

(5.8)

fs,a

fc
are the number of samples of one carrier period. Finally we get

uBP[m] =






0 m ≦ D
2

+ ⌊3fs,a

4fc
⌋

(u′
LP[m] ⋆ HLP,G) · cos

(

2π fc

fs,a
m + F−1{L[∆m]}

)
D
2

+ ⌊3fs,a

4fc
⌋ < m ≦ M

0 m > M.

(5.9)

Non-linear system. The modulated bandpass signal uBP[m] is splitted into two
branches in Figure 5.1a.. The dashed block contains three subblocks according to
Subsection 4.1.1 at Page 52:

1. the non-linear system,

2. a delay of D0 samples and

3. a highpass filter to remove components close to 0 Hz.

The non-linear system is approximated by

u′
BP[m] =

(
c′ · uBP[m] + c′′ ·u2

BP[m] + c′′′ ·u3
BP[m]

)
(5.10)

with three coefficients c′, c′′ and c′′′. c′′ is proportional to components close to 2fc,
c′′′ to 3fc. The highpass filter with frequency response HHP delays the signal DHP

1The factor 3

4
is arbitrary.
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samples (cf. with the previous paragraph). In the end the output of the non-linear
system block

u1[m] = u′′
BP[m−D0 + DHP/2] + uBP[m] (5.11)

with

u′′
BP[m] = (u′

BP[m] ⋆ HHP) ·

{

1 D/2 < m < M

0 else.
(5.12)

5.2 Measurement path model

AWGN. Additive white Gaussian noise is added in the first block of the measure-
ment path:

u2[m] = u1[m] + N0[m]. (5.13)

Take into account that the unit of N0[m] is normalized like the signal itself.

Gaussian lowpass filter. The shape of the frequency response is Gaussian, there-
fore the used lowpass filter is Gaussian,

u3[m] = u2[m] ⋆ HLP,G, (5.14)

with an introduced delay of DLP,G samples.

Amplifier. The cubic model of an amplifier is according to Equation (4.23) on
Page 54

u′
4[m] = au3[m]− cu3

3[m]. (5.15)

a is the linear gain, c = 4a
3AIIP3

with AIIP3 =
√

2R10IIP3/10/1000. R is the reference
resistance. The maximum input amplitude u3,max is the one, where the slope goes
to zero:

u3,max = |
√

a

3c
|. (5.16)

The correspond maximum output amplitude

u4,max :=
2a

3
u3,max. (5.17)

The input-output relation of the whole amplifier

u4[m] =







u′
4[m] |u′

3[m]| < u3,max

u4,max u′
3[m] ≧ u3,max

−u4,max u′
3[m] ≦ −u3,max.

(5.18)
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With an abuse of notation the pseudo-unit of IIP3 is dBm but all other quantities
are normalized, i.e. the units are 1. Therefore we define

IIP3

1 dBm∗
:= 10 log10

1000
A2

IIP3

1

2R
. (5.19)

The input-output-relation of this amplifier model is plotted in Figure 5.2 with
different IIP3 parameters and R := 1. The cubic amplifier has been derived using
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Figure 5.2: Input-output-relation with different values of IIP3. The star (*) denotes that
the signal is normalized. The typical interval of the input signal without
noise and errors is [−1; 1] in our simulations.

two tones ω1 and ω2. An interesting diagram plots the output versus the input
power of one fundamental (at ω1 or ω2) and one third-order component (at 2ω2−ω1

or 2ω1 − ω2) in Figure 5.3.

Re-sampler. The implementation of the re-sampler is very basic. The standard
deviation of the uniform time jitter is only given in number of samples and a round
function discretizes the random time jitter to samples. The ratio or re-sample factor
R ∈ Q is defined by

R :=
fs,a

fs
(5.20)
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Figure 5.3: Input-power versus output-power simulated with an IIP3 of 30 dBm∗.

and the input-output relation:

u5[n] = u4[nR + [Nsampler]]. (5.21)

The inner-brackets denote the round function [ · ] : Q64 → Z and the random
variable Nsampler has a Binomial distribution which is the approximation of a normal
distribution N (0, σ2

jitter) for time-discrete signals.

Quantizer. The Quantizer is described on Page 56 and we recall Equation (4.37)
to get

u[n] =







−a/2 u5[n] ≦ −a/2

[u5[n]/q] q −a/2 < u5[n] < a/2

a/2 u5[n] ≧ a/2.

(5.22)

[ · ] : Q64 → Z denotes the round function and u[n] ∈ {−a/2, · · · ,−q = −a/2k−1, 0, q =
a/2k−1, · · · , a/2} ⊂ Q64.

Hilbert envelope detector. Implementing the filter in the frequency domain has
been chosen with the hilbert command in Matlab®, thus one gets the input-
output-relation from Equation (4.39) on Page 57:

r[n] = |F−1{F{u[n]}
︸ ︷︷ ︸

U [n]

· F{h[n]}
︸ ︷︷ ︸

H[n]

}| ∈ Q64. (5.23)
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Let N be the length of the signal in samples then — cf. with [hel07] —

H [n] =







0 n < 0

1 n = 0 and n = N/2

2 0 < n < N/2.

(5.24)

Of course this can be enhanced using a different window like an Optimal FIR filter
etc. You will see later that this implementation will cause an error floor.

5.3 Reference path

To get an error of the envelope r[n] it has to be compared with an ideal signal.
For our purpose this would be uLP[m]. Since the measurement path includes a
re-sampler, this has to be done too. It follows a reference path which is plotted in
Figure 5.1b.

In general the reference signal is undefined, so the source signal is denoted as
uideal[m]. It has to be re-sampled to get the same sampling rate like the detected
envelope r[n]. Since the measurement path includes delays in the pseudo-analogue
part of the path uideal[n] has to be delayed too. According to Equation (4.34)
the delay has to be multiplied with the re-sample factor R to get the delay D1

corresponding to the sampling rate fs:

5.3.1 Implementation

uideal[m] is implemented like in the source model, the upper part of Figure 5.1a.

uideal[m] =







0 m ≦ D
2

+ ⌊3fs,a

4fc
⌋

[u′
LP[m] ⋆ HLP,G] D

2
+ ⌊3fs,a

4fc
⌋ < m ≦ M

0 m > M.

(5.25)

D is the delay in samples of a Gaussian filter with frequency response HLP,G. M is
the length of the signal in samples. The following block re-samples using Equation
(5.20):

uideal[n] = uideal[nR]. (5.26)

Since the measurement path introduces a delay DLP,G (cf. with Section 5.2) due to
the Gaussian lowpass filter, uideal[n] has to be delayed too. The last block considers
this:

uref[n] = uideal[n−D1/2] (5.27)

with

D1 =

[
DLP,G

R

]

. (5.28)

[ · ] : Q64 → Z denotes the round function again.
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5.3.2 Error

To measure the error of the whole chain we are using the root-mean-squared er-
ror between the outcome of the measurement path (r[n]) and the reference path
(uref[n]).

Definition 20 — Root-mean-squared error. Let r = (. . . , r[0], r[1], r[2], . . .)†

and uref = (. . . , uref[0], uref[1], uref[2], . . .)† be the signal vectors of the detected enve-
lope and the ideal lowpass signal, both with N elements. We define the root-mean-
squared error by

εRMS :=
||r − uref||√

N
. (5.29)

An error is often used in decibel which we will consider in this paper:

ε = 20 log10

( ||r − uref||√
N

)

= 10 log10

N∑

n=1

(r[n]− uref[n])2

N
. (5.30)

Note that this isn’t the root-mean-squared error anymore, so we are using only ε
from now on.

5.3.3 Additional notes to the implementation in Matlab®

All developped equations and relations have to be implemented in Matlab®. We
will give some special comments:

• A semi-object-oriented programming style has been chosen to be as compatible
as possible. The concept is the same as of an object-oriented programming
style but developped with structures and functions.

• This implies that every block can be programmed and tested separately.

• In every simulation three main files exist:

1. the main file, where all parameters are defined in a structure,

2. an implementation of the source model,

3. an implementation of the measurement model and of the reference path.

• Thus different parameters of different simulations need only a change of the
source code in the main file.

• A verbose mode makes it possible to few the time signal and spectrum of most
signals (simulation steps) in the paths.

A coarse flowchart is shown in Figure 5.4.
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Start

Initialization

Signal generation

Simulation

Error calculation

Display

End

Main file

Signal generation file

Simulation file

Figure 5.4: Coarse flowchart of the developed simulations. Only the “Initialization”
and “Display” parts are being changed for each different simulation. “Sig-
nal generation” consists of several blocks for generating a defined bandpass
signal, adding phase noise and adding harmonics with the non-linear sys-
tem. “Simulation” contains the measurement paths, where every block of
Blockdiagram 5.1a corresponds to one block in this flowchart.
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6 Common setup of source model

The parameters for all following simulations are printed in Table 6.1 for the signal
source model. If a simulation uses another parameter it will be listed separately.

parameters of source model value

type type A
carrier frequency fc 13.56 MHz
pseudo sampling ratea fs,a 13.56 GS/s
simulated sequences 10 times “Sequence X”
data rate fc/16 = 847.5 kbit/s
tb 16/fc

tx 8/fc

t1 5/fc

t5 4/fc

t6 6/fc

a 0.6
carrierb 0 dBc :↔ c′ = −300 dB
2nd harmonic −40 dBc↔ c′′ = 10 dB
3rd harmonic −50 dBc↔ c′′′ = −10 dB
D0 0

Shapec of L(∆ω)

(1 kHz,−113.92 dB),
(10 kHz,−122.72 dB),
(100 kHz,−130.87 dB),
(1 MHz,−140.23 dB)

aGS/s specifies 109 samples per second.
bc′′ is the second harmonic, c′′′ the third. dBc denotes decibels relative to carrier.
cSingle sideband noise spectral density; shape specified via tuples: (offset from fc, amplitude)

Table 6.1: Parameters of the source model.

6.1 Spectrum of the signal produced by the source

model.

The spectrum of u1[m] with parameters specified in Table 6.1 is plotted in Figure
6.1 between 0 Hz and 50 MHz. The signal components close to 27.12 MHz and
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40.68 MHz are the effect of the non-linear system in the source model.
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Figure 6.1: Spectrum of modulated source with amplitude of harmonics of −40 dBc and
−50 dBc.

6.2 Example: Agilent’s DSO7052A

As an example we are using an oscilloscope of Agilent (DSO7052A with passive
probe 10073C, specified in [Agi09]) and we choose the parameters of the measure-
ment path like in Table 6.2. The bandwidth of the Gaussian lowpass filter has
been chosen using Equation (3.10) on Page 47 which takes into account the used
probe. For the sake of simulation the pseudo sampling rate is set to 80 GS/s. Since
the noise of the oscilloscope is 0.5% of “full screen” we assume that the signal fills
the display. Therefore the noise is chosen to be 0.5% of the normalized signal. The
same assumption is made for the limit of the amplitude of the quantizer.

The result is plotted in Figure 6.2 without 2nd and 3th harmonics, a zoomed
version with 2nd and 3th harmonics in Figure 6.3 and the error of the latter one
separately in Figure 6.4. The value of the whole error is (cf. with Equation (5.30))

ε ≈
{

−51 dB without harmonics

−41 dB with 2nd and 3th harmonics (−40 dBc and −50 dBc).
(6.1)
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setup of measurement path value

Gaussian noise:
µ 0
σ2 (0.005)2

f−3 dB of Gaussian LP filter 353.55 MHz
non-linearities of oscilloscope:
IIP3 100 dBm (arbitrary)
reference resistance 1
sampling rate (re-sample) 4 GHz
quantizer:
σ2

jitter 1.2↔ 15 ps
quantization bits 8 bit
limit of amplitude 1.1

Table 6.2: Setup of the simulations of Agilent’s DSO7052A [Agi09].
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Figure 6.2: Input signal of measurement path (u1(t)) without second and third har-
monic, detected envelope r(t) and resulting error |u1(t)− r(t)|.
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Figure 6.3: Input signal of measurement path (u1(t)) with 2nd and 3th harmonics, de-
tected envelope r(t) and resulting error |u1(t) − r(t)|. The error is very
small and is mainly due to harmonics close to 27.12 MHz and the Gibbs
phenomenon.
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Figure 6.4: Error of measurement path (u1(t)) with 2nd and 3th harmonics, detected
envelope r(t) and resulting error |u1(t)− r(t)|. The error is very small and
is mainly due to harmonics close to 27.12 MHz and the Gibbs phenomenon.
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7 Results of simulation and
Conclusions

Let us assume an ideal system with no noise, no time jitter, no quantization noise
etc. What will happen if one parameter is switched on, like the noise? Or if the
sampling rate changes? This and some other questions will be asked in this chapter,
and with corresponding simulations and error curves will be presented.

7.1 Influence of harmonics to the received signal

The influence of the first and second harmonic to the error is plotted at Figure 7.1.
The simulation sweeps one harmonic while the other one is set to −∞ dBc. The
diagram shows an error floor at −60 dB mainly caused by the Gibbs phenomenon
of the Hilbert envelope detector.
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Figure 7.1: Error of different second and third harmonics.
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7.2 Influence of the intermodulation within the

oscilloscope

The non-linearities in the oscilloscope cause intermodulation. We have introduced
the cubic model which has the IIP3 as the parameter of non-linearity (cf. Equation
(5.15) on Page 61). The diagram in Figure 7.2 shows the error vs. IIP3. Note
that in the simulation a normalized signal is used, hence the unit of the amplitudes
is 1. The same applies for the reference resistance R. In the following c′′ = 10 dB
doesn’t only imply a 2nd harmonic but a 3rd as well. c′′ = −300 dB results in source
model with switched off non-linearities.
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Figure 7.2: The error vs. IIP3.

7.3 Influence of the sampler

The influence of the (re-)sampler is plotted in Figure 7.3 with fs,a = 54.24 GS/s.
The curves are zigzagging due to the random sample phase. Anyway, it gives a
good impression where the mean of the errors is close to the error floors.

Later we will discuss different bandwidths of the Gaussian filter using different
sampling rates and will see that even if the differences aren’t great, higher data
rates will improve the result.
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Figure 7.3: Error introduced by different sampling rates.

7.4 Influence of Gaussian noise

The error of different Gaussian noise is plotted in Figure 7.4. The assumption is
that the mean is zero (µ = 0). Since the signal-to-noise ratio (SNR) is sometimes
more interesting than the used mean and variance of the noise, one has to calculate
it by

SNR :=
Psignal

Pnoise
=

σ2
X + µ2

X

µ2 + σ2
=

σ2
X + µ2

X

σ2
. (7.1)

σ2
X and µX are the variance and the mean of the signal.
With SNR = 40 dB it follows a mean squared error of about −40 dB.

7.5 Influence of quantization

What should be the lower bound of the number of bits of the quantizer? Figure
7.5 shows the introduced error for different numbers of bits and different variances
σ2 of Gaussian noise No[m] ∼ N (0, σ2). The SNR is calculated using Equation
(7.1). Note that an SNR ≈ 50 dB is a typical value for an oscilloscope. Therefore
a quantizer of 8 bit works quite well in most cases.

A quantizer should have at least 8 bit since the mean squared error is about
−50 dB without noise and harmonics.
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Figure 7.4: Error introduced by Gaussian noise.

 

 

SNR = 112.67 dB

SNR = 92.67 dB

SNR = 52.67 dB

without noise

ε/
d
B

k/bit
2 4 6 8 10 12 14 16

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

Figure 7.5: Quantization error for different Gaussian noise.
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7.6 Influence of the time jitter of the sampler

We assume a Gaussian distribution of the time jitter. The simulation is done with
a time-discrete signal, hence this distribution has to be discretized. It is called a
Binomial distribution. Figure 7.6 shows the introduced error which increases very
fast with increasing time jitter. If the trigger of the sampler has a time jitter of
about 15 ps the error will be about −50 dB.
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Figure 7.6: Error introduced by time jitter.

7.7 Influence of delay of harmonics

In the previous sections we have assumed that the signals of second and third
harmonics aren’t delayed. But how does a delay influence the error? Figure 7.7
gives the answer.

7.8 Influence of the frequency response of the

oscilloscope

The lowpass filter has a Gaussian shape in the frequency response; thus the influence
of the bandwidth is interesting. Figures 7.8 to 7.11 show different simulations
depending on noise (SNR ≈ −53 dB is a typical value for an oscilloscope) and
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Figure 7.7: Different phase shifts of second and third harmonics.

harmonics. For these simulations the pseudo sampling rate has been set to fs,a =
54.24 GS/s.

Illustration of the figures.

1. In Figure 7.8 the influence of the bandwith is shown without harmonics and
noise. Note the error at lower bandwidths owing to asymmetrical1 attenuation
of the signal.

2. The following Figure 7.9 plots the same simulation with noise. As a result the
error increases at higher bandwidths again.

3. Figure 7.10 shows the simulation without noise but with second and third
harmonics. Again, we see an increasing error at higher frequencies due to the
harmonics. Thus the error tends to a constant (= new error floor).

4. Both, harmonics and noise lead us to Figure 7.11.

Enhanced simulations. By comparing the figures with second and third harmon-
ics as a rule of thumb one can specify f−3 dB > 50 MHz. In Figures 7.12 and 7.13

1Asymmetrical means that the signal components with a frequency f < fc are attenuated less
than the signal components with a frequency f > fc.
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the simulation is done for four different sampling rates (the sampler uses random
sample phases). It is obvious that higher sampling rates improve the result. As a
rule of thumb for measurements with second and third harmonics — according to
Equation (3.12) the sampling rate should beat least four times the bandwidth of
the Gaussian filter —, the sampling rate should be > 200 MS/s:

max
(
ε(200 MS/s)− ε(400 MS/s)

)
< 1.52 dB. (7.2)
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Figure 7.8: Influence of different bandwidths of Gaussian lowpass filter without second
and third harmonics and without noise.
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Figure 7.9: Influence of different bandwidths of Gaussian lowpass filter without second
and third harmonics and with noise.
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Figure 7.10: Influence of different bandwidths of Gaussian lowpass filter with second
and third harmonics and without noise.
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Figure 7.11: Influence of different bandwidths of Gaussian lowpass filter with second
and third harmonics and with noise.
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Figure 7.12: Influence of different bandwidths of Gaussian lowpass filter with second
and third harmonics, noise and four different sample frequencies. Note
that the sample phase is random.
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Figure 7.13: Influence of different bandwidths of Gaussian lowpass filter with noise and
four different sample frequencies. Note that the sample phase is random.
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8 Summary and conclusion

The postulated source code (cf. with Appendix D) of the envelope detector based
on Hilbert transform can be improved very easily by

• using another FFT implementation like FFTW,

• reducing the Gibb’s phenomenon and

• enhancing the allowed length of the signal.

With an implementation in the time domain, using, for example, an Optimal FIR
filter the latter two items could be easily managed. Note that the sample period
has to be very accurate because the bandpass signal is sampled directly.

Comparing all figures from the previous chapter shows an important fact. There
exists an error floor mainly due to Gibbs phenomenon depending on the harmonics:

harmonics error floor
first −60 dB
first, second and third −40 dB

In addition following facts are:

• The non-linearities of the measurement path have to be very small.

• From the noise of a typical oscilloscope the lower bound of quantization bits
follows with 8 bit.

• The measurement result is very sensitive to time jitter.

• As a rule of thumb f−3 dB > 50 MHz if the frequency response of the mea-
surement path has a Gaussian shape. Note that there is a minimum of error
close to 75 MHz.

• Another rule of thumb exists for the sampling frequency, which should be
> 200 MS/s.
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A Confidence Interval

The value of the confidence interval of a random variable X specifies the probability
P (a ≦ X ≦ b) that a realization x of the random process falls into the interval [a; b].
It can be calculated if the pdf fX(x) of the random value X is known with

∫ b

a

fX(x)dx = P (a ≦ X ≦ b).

If the probability density function has a Gaussian distribution the interval is defined
symmetrically around the mean. Since the pdf of a Gaussian random value is only
defined by the first and second order properties, the mean and variance are used to
define the confidence interval (CI):

Probability of values in CI Interval
95% µ± 1.28155 ·σ
99.99999980% µ± 6 ·σ

Note that in our case the CI is estimated using L different realizations. Thus µ and
σ must be replaced with µ̂ and σ̂. The law of large numbers has to be considered
which tells that if L→∞ the estimation will tend close to the real-world stochastic
properties.
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B Pulse amplitude modulation

Recall that the signal which is sent over a channel in the baseband system is defined
as

uLP (t) =

∞∑

k=−∞

a[k]gk(t− kT )

where a[k] ∈ {s(n)} is the complex-valued symbol at time index k and gk(t) is the
impulse response of the time continuous transmit filter with length of T . In our
examples the pulse shapes are rectangular and are defined in [ISO08] (Sequences Z,
X, Y). Note that rectangular pulse shapes aren’t possible in the real world since the
transmit bandwidth has to be infinite. For real-valued bandpass signals one needs
a lowband ↔ bandpass transform

u(t) = Re
(√

2uLP (t)ejω0t
)

=

√
2

2
(uLP (t)ejω0t + u∗

LP (t)e−jω0t)

where fc = ωc/2π is the carrier frequency.
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C Rise time, settle time and
overshoot

A jump function with oscillations close to the point of discontinuity like in Figure
2.14 on Page 36 can be written as a function

f(t) := f∞(1 + ejωte−ρt)σ(t) (C.1)

with the unit jump

σ(t) :=

{

1 t ≧ 0

0 elsewhere
, f∞ := lim

t→∞
f(t) (C.2)

and an attenuation factor ρ < 1. f∞ is called the final value of f(t). Then the settle
time

ts,2% := t||f(t)−f∞|=0.02f∞. (C.3)

It means, that the difference between the oscillation and the desired final value
f∞ is 2% of the desired value. This property is important, to know how fast the
oscillation reduces. The ratio

o := max f(t)/f∞ (C.4)

is called the overshoot of a step jump. Removing is impossible. The rise time is the
time f(t) takes from 10% to 90% of the final value f∞ of the function,

tr := f−1(0.9f∞)− f−1(0.1f∞), (C.5)

where f−1( · ) is the inverse of f( · ). Note: Since in our case a discrete-time signal is
analyzed, both time properties are measured in samples. In our case it is multiplied
by the sample period to compare it with the continuous-time signal, thus it is an
approximation.
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D Source Code

For the sake of completeness the source code of the envelope detector in Annex 7
of [ISO] is re-printed.

D.1 (I)FFT

D.1.1 Header

1 #i f n d e f FFTRM H
#de f i n e FFTRM H

3 #de f i n e RE( z ) ( ( z ) . r )
#de f i n e IM( z ) ( ( z ) . i )

5 typede f f l o a t real ;
typede f double doub l e r ea l ;

7 typede f s t r u c t { real r , i ; } complex ;
typede f s t r u c t { doub l e r ea l r , i ; } doublecomplex ;

9 i n t z f f t s ( i n t debug , doublecomplex ∗X, i n t M) ;
i n t z i f f t s ( i n t debug , doublecomplex ∗X, i n t M) ;

11 void z f f t rmc ( doublecomplex ∗X, i n t M, i n t P, f l o a t D) ;
vo id rmpo ( i n t ∗rv , i n t ∗ rvp ) ;

13 #end i f

D.1.2 Source file

1 #inc lude <s td i o . h>
#inc lude <math . h>

3 #inc lude <malloc . h>
#inc lude ” f f t rm . h”

5 /∗ #i f n d e f M PI ∗/
#de f i n e M PI 3.1415926535897932384626433832795

7 /∗ #end i f ∗/
f l o a t ∗WR;

9 f l o a t ∗WI;
doub l e r ea l ∗DWR;

11 doub l e r ea l ∗DWI;
void rmpo( i n t ∗rv , i n t ∗ rvp )

13 {
i n t va lue h ;

15 i n t n ;
n = 1 ;
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17 ∗ rvp = −1;
va lue h = 1 ;

19 while ( va lue h > 0 ) {
va lue h = ∗ rv − n ;

21 (∗ rvp )++;
n += n ;

23 }
}

25 void z f f t rmc ( doublecomplex ∗X, i n t M, i n t P, f l o a t D )
{

27 i n t MV2,MM1, J , I ,K,L ,LE,LE1 , IP , IQ , IND, IND1 ,R;
i n t I1 , J1 , IPOTR;

29 f l o a t A,B;
f l o a t WCOS,WSIN;

31 f l o a t VR, VI ;
f l o a t ARG;

33 s t a t i c i n t IPOTC;
s t a t i c f l o a t DALT;

35 IPOTR = 0 ;
DWR = ( doub l e r ea l ∗) c a l l o c (M, s i z e o f ( doub l e r ea l ) ) ;

37 DWI = ( doub l e r ea l ∗) c a l l o c (M, s i z e o f ( doub l e r ea l ) ) ;
/∗ i f (IPOTC == P & D == DALT) goto warmstart ; ∗/

39 IPOTC = P;
DALT = ( f l o a t )D;

41 LE = 1 ;
IND = 0 ;

43 for (L=1;L<=P;L++) {
LE1 = LE;

45 LE = LE∗2 ;
DWR[ IND ] = 1 . 0 ;

47 DWI[ IND ] = 0 . 0 ;
ARG= ( f l o a t )M PI/( f l o a t )LE1 ;

49 WCOS = ( f l o a t ) cos (ARG) ;
WSIN = ( f l o a t ) (D∗ sin (ARG) ) ;

51 for (R=1;R<=LE1 ;R++) {
IND1 = IND+1;

53 A = ( f l o a t )DWR[ IND ] ;
B = ( f l o a t )DWI[ IND ] ;

55 DWR[ IND1 ] = A∗WCOS − B∗WSIN;
DWI[ IND1 ] = B∗WCOS + A∗WSIN;

57 ++IND ;
}

59 }
/∗ warmstart : ∗/

61 MV2=M/2 ;
MM1=M−1;

63 J=1;
for ( I =1; I<=MM1; I++) {

65 i f ( I >= J)
goto P1 ;

67 J1 = J−1;
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I1 = I−1;
69 VR = ( f l o a t )RE(X[ J1 ] ) ;

VI = ( f l o a t )IM(X[ J1 ] ) ;
71 RE(X[ J1 ] ) = RE(X[ I1 ] ) ;

IM(X[ J1 ] ) = IM(X[ I1 ] ) ;
73 RE(X[ I1 ] ) = VR;

IM(X[ I1 ] ) = VI ;
75 P1 : K = MV2;

P2 : i f (K >= J) goto P3 ;
77 J = J−K;

K = K/2 ;
79 goto P2 ;

P3 : J = J+K;
81 }

IND = 0 ;
83 LE = 1 ;

for (L=1; L<=P; L++) {
85 LE1 = LE;

LE = LE∗2 ;
87 for (R=0; R<LE1 ; R++) {

WCOS = ( f l o a t )DWR[ IND ] ;
89 WSIN = ( f l o a t )DWI[ IND ] ;

IND = IND+1;
91 for ( IQ=R; IQ<M; IQ+=LE) {

IP = IQ+LE1 ;
93 A = ( f l o a t )RE(X[ IP ] ) ;

B = ( f l o a t )IM(X[ IP ] ) ;
95 VR = A∗WCOS − B∗WSIN;

VI = B∗WCOS + A∗WSIN;
97 RE(X[ IP ] ) = RE(X[ IQ ] ) − VR;

IM(X[ IP ] ) = IM(X[ IQ ] ) − VI ;
99 RE(X[ IQ ] ) = RE(X[ IQ ] ) + VR;

IM(X[ IQ ] ) = IM(X[ IQ ] ) + VI ;
101 }

}
103 }

f r e e (DWR) ;
105 f r e e (DWI) ;

}
107

i n t z f f t s ( i n t debug , doublecomplex ∗X, i n t M )
109 {

i n t P ;
111 f l o a t D;

D = −1.0;
113 rmpo( &M, &P) ;

i f ( debug ) {
115 p r i n t f (”P = %d\n” ,P) ;

p r i n t f (”FFT . . . \ n”) ;
117 }

z f f t rmc ( X, M, P, D) ; /∗ f f t rm . c ∗/
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119 return 0 ;
}

121
i n t z i f f t s ( i n t debug , doublecomplex ∗X, i n t M )

123 {
i n t i ;

125 i n t P ;
f l o a t D;

127 D = 1 . 0 ;
rmpo( &M, &P) ;

129 i f ( debug ) {
p r i n t f (”P = %d\n” ,P) ;

131 p r i n t f (”IFFT . . . \ n”) ;
}

133 z f f t rmc ( X, M, P, D) ; /∗ f f t rm . c ∗/
/∗ Mul t i p l y with 1/M ∗/

135 for ( i =0; i<M; i++) {
RE(X[ i ] ) /= ( doub l e r ea l )M;

137 IM(X[ i ] ) /= ( doub l e r ea l )M;
}

139 return 0 ;
}/∗End o f f f t rm . c∗/

D.2 Hilbert detector

The following listing is using the FFT from above and calculates the envelope of
the modulated carrier. The comments haven’t been included in the listings:

• It need an input file which has to contain two columns to describe the modu-
lated signal. The first describes the time, the second the correspond amplitude
of the signal. The time difference between the time points has to be equidis-
tant.

• The compiled program has to be started at the command line by the program
name followed by the input file (standard name of input file is input.txt.).
The result is written to output.txt.

1 # inc lude <s td i o . h>
# inc lude <math . h>

3 # inc lude <malloc . h>
#inc lude <ctype . h>

5 #inc lude <s t r i n g . h>
# inc lude ” f f t rm . h”

7 #de f i n e MAX POINT 5000
#de f i n e M PI 3.1415926535897932384626433832795

9 i n t debug=0;
i n t f f tdebug =0;

11 double ∗Gvalue ;
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double ∗Gtime ;
13 double ∗Gr ;

double ∗Gi ;
15 double ∗∗G; /∗Phase Changed∗/

double ∗Gc ;
17 doublecomplex ∗ G t i f f t ;

/∗ F i l e conta in ing the input data∗/
19 char ∗ InputFileName =”input . txt ” ;

/∗This function r eads the sampled data recorded in the f i l e ∗/
21 i n t ReadData( void ) ;

/∗This function function per forms the f o u r i e r transform ∗/
23 void Fft ( vo id ) ;

/∗This function per forms the nece s sa ry phase s h i f t ∗/
25 void PhaseSh i f t ing ( void ) ;

/∗This function per forms the i nv e r s e f o u r i e r t r a n s f o r ∗/
27 void I f f t ( vo id ) ;

/∗Envelope r e c on s t r u c t i o n i s done by t h i s function ∗/
29 i n t Enve lopeReconstruction ( void ) ;

/∗For f o u r i e r and inv e r s e f o u r i e r t r ans fo rmat i on the s e two func t i o n s
are used ∗/

31 /∗These func t i o n s are de f ined in f f t rm . c ∗/
i n t z f f t s ( i n t debug , doublecomplex ∗X, i n t M ) ; /∗Defined in f f t rm . c∗/

33 i n t z i f f t s ( i n t debug , doublecomplex ∗X, i n t M ) ; /∗Defined in f f t rm . c∗/
i n t SampledPoints=0;

35 i n t N;
i n t row ;

37 const i n t c o l =2;
i n t ReadData( void )

39 {
f l o a t a , b ;

41 i n t i =0,num1 ;
FILE ∗ fp1 ;

43 i =0;
i f ( ( fp1 = fopen ( InputFileName , ” r ”) ) == NULL)

45 {
p r i n t f (”Cannot open input f i l e .\n”) ;

47 return 1 ;
}

49 p r i n t f (”\nReading data from f i l e . . . . . . . . .%s\n” , fp1 ) ;
while ( ! feof ( fp1 ) )

51 {
fscanf ( fp1 , ”%e,%e\n” , &a , &b ) ;

53 Gtime [ SampledPoints ] = a ;
Gvalue [ SampledPoints ] = b ;

55 SampledPoints++;
i f ( SampledPoints>= MAX POINT) break ;

57 }
fc lose ( fp1 ) ;

59 fp1=fopen (” i n p u t f i l e . txt ” ,”w”) ;
i f ( ! fp1 )

61 {
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fprintf ( stdout , ”Cann ’ t wr i t e the sampled data in i n p u t f i l e . txt . \n”) ;
63 return 1 ;

}
65 for ( i =0; i<SampledPoints ; i++)

fprintf ( fp1 , ”%e\n” , Gvalue [ i ] ) ; /∗Gtime [ i ] has been omit t ed∗/
67 fc lose ( fp1 ) ;

i f ( debug )
69 {

fp1=fopen (” inputtime . txt ” ,”w”) ;
71 i f ( ! fp1 )

{
73 fprintf ( stdout , ”Cann ’ t wr i t e the sampled data in inputtime . txt . \n”) ;

return 1 ;
75 }

for ( i =0; i<SampledPoints ; i++)
77 fprintf ( fp1 , ”%e\n” ,Gtime [ i ] ) ; /∗Gtime [ i ] has been omit t ed∗/

fc lose ( fp1 ) ;
79 }

i f ( debug )
81 {

i f ( ( fp1=fopen (” i n p u t f i l e . bin ” ,”wb”) ) !=NULL) {
83 num1=fwrite (Gvalue , s i z e o f ( double ) , SampledPoints , fp1 ) ;

fc lose ( fp1 ) ;
85 }

}
87 i f ( SampledPoints<N)

{
89 for ( i=SampledPoints ; i<=N; i++)

{
91 Gvalue [ i ] = 0 ;

}
93 }

fprintf ( stdout , ”\ nInput f i l e name = %s\n” , InputFileName) ;
95 fprintf ( stdout , ”Number o f sampled data = %d\n” , SampledPoints ) ;

return 0 ;
97 }/∗End Of Function ReadData ;∗/

void Fft ( vo id )
99 {

doublecomplex ∗ Gt freq ;
101 FILE ∗ fp1 ,∗ fp2 ,∗ fp3 ;

i n t k , num1 , num2 , num3 , z1 ;
103

Gt freq = ( doublecomplex ∗) c a l l o c ( s i z e o f ( doublecomplex ) , row) ;
105 p r i n t f (”\ nPerforming FFT . . . . . . . . . \ n”) ;

/∗ FFT Procedure S ta r t s for Sampled Data∗/
107 for ( k=0;k<=N; k++){

RE( Gt freq [ k ] )=Gvalue [ k ] ;
109 IM( Gt freq [ k ] ) =0 .0 ; [ 1 50 , 100 ,90 , 70 , 50 , 6 , 5 ]

}
111 i f ( debug ) {

i f ( ( fp3=fopen (” f . bin ” ,”wb”) ) !=NULL) {
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113 num3=fwrite (Gvalue , s i z e o f ( double ) , row , fp3 ) ;
fc lose ( fp3 ) ;

115 }
}

117 z1=z f f t s ( f f tdebug , Gt freq , row) ;/∗FFT i s done in s p a t i a l c o o r d i c a t e
∗/

for ( k=0;k<=N; k++) {
119 Gr [ k]=RE( Gt freq [ k ] ) ;

Gi [ k]=IM( Gt freq [ k ] ) ;
121 }

/∗ FFT Procedure Ends for Sampled Data∗/
123 /∗ Writing The Real And Imaginary Part Of Re f l e c t ed Part for Debuging

∗/
/∗ Writing the real part o f sampled data∗/

125 i f ( debug ) {
i f ( ( fp1=fopen (”Gr . bin ” ,”wb”) ) !=NULL){

127 num1=fwrite (Gr , s i z e o f ( double ) , row , fp1 ) ;
fc lose ( fp1 ) ;

129 }
else

131 fprintf ( stdout , ”Cann ’ t Open Gr . bin ”) ;
/∗ Writing the img part o f sampled data ∗/

133 i f ( ( fp2=fopen (”Gi . bin ” ,”wb”) ) !=NULL) {
num2=fwrite (Gi , s i z e o f ( double ) , row , fp2 ) ;

135 fc lose ( fp2 ) ;
}

137 else
fprintf ( stdout , ”Cann ’ t Open Gi . bin ”) ;

139 fprintf ( stdout , ”Num o f Real Part Data a f t e r FFT = %d\n” ,num1) ;
fprintf ( stdout , ”Num o f Img Part Data a f t e r FFT = %d\n” ,

num2) ;
141 }

f r e e ( Gt fr eq ) ;
143 }/∗ End Of The Function Fft ∗/

void PhaseSh i f t ing ( void )
145 {

double ∗tempr , ∗ tempi ;
147 i n t k , num1 ;

FILE ∗ fp1 ;
149 p r i n t f (”\ nPerforming phase s h i f t . . . . . . . . . \ n”) ;

tempr = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;
151 tempi = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;

for ( k=0; k<=N; k++ )
153 {

tempr [ k]=Gr [ k ] ;
155 tempi [ k]=Gi [ k ] ;

}
157 for ( k=0; k<=ce i l (N/2) ; k++ )

{
159 Gr [ k ] = tempi [ k ] ;

Gi [ k ] = −tempr [ k ] ;
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161 }
for ( k=( i n t ) ce i l (N/2)+1; k<=N; k++ )

163 {
Gr [ k ] = −tempi [ k ] ;

165 Gi [ k ] = tempr [ k ] ;
}

167 i f ( debug ) {
i f ( ( fp1=fopen (” f f r p t . bin ” ,”wb”) ) !=NULL) {

169 num1=fwrite (Gr , s i z e o f ( double ) , row , fp1 ) ;
fc lose ( fp1 ) ;

171 }
i f ( ( fp1=fopen (” f f i p t . bin ” ,”wb”) ) !=NULL) {

173 num1=fwrite (Gi , s i z e o f ( double ) , row , fp1 ) ;
fc lose ( fp1 ) ;

175 }
}

177 f r e e ( tempr ) ;
f r e e ( tempi ) ;

179 }/∗End o f PhaseShi f t ( ) function ∗/
void I f f t ( vo id )

181 {
double ∗Gt tmp ; /∗ I t takes the real part o f R i f f t ∗/

183 double ∗Gt tmpi ;
FILE ∗ fp1 ;

185 i n t k , i , z1 , num1 ;
Gt tmp = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;

187 Gt tmpi = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;
p r i n t f (”\ nPerforming IFFT . . . . . . . . . \ n”) ;

189 for ( k=0;k<=N; k++){
G t i f f t [ k ] . r=Gr [ k ] ;

191 G t i f f t [ k ] . i=Gi [ k ] ;
}

193 z1=z i f f t s ( f f tdebug , G t i f f t , row) ;/∗ IFFT o f the s i g n a l in s p a t i a l
coo rd ina te ∗/

p r i n t f (”\nEnd o f IFFT . . . . . . \ n”) ;
195 for ( k=0;k<=N; k++) {

Gt tmp [ k]= G t i f f t [ k ] . r ;
197 }

i f ( debug ) {
199 fp1=fopen (” i f f t . txt ” ,”w”) ;

i f ( ! fp1 )
201 fprintf ( stdout , ”Cann ’ t wr i t e in %s\n” , fp1 ) ;

for ( i =0; i<=N; i++)
203 fprintf ( fp1 , ”%.4 e\n” ,( G t i f f t [ i ] . r ) ) ;

fc lose ( fp1 ) ;
205 }

p r i n t f (”\ nPerforming IFFT wr i t ing . . . . . . . . . \ n”) ;
207 i f ( debug ) {

i f ( ( fp1=fopen (” i f f r p t . bin ” ,”wb”) ) !=NULL) {
209 num1=fwrite (Gt tmp , s i z e o f ( double ) , row , fp1 ) ;

fc lose ( fp1 ) ;
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211 }
i f ( ( fp1=fopen (” i f f i p t . bin ” ,”wb”) ) !=NULL) {

213 num1=fwrite (Gt tmpi , s i z e o f ( double ) , row , fp1 ) ;
fc lose ( fp1 ) ;

215 }
}

217 f r e e (Gt tmp ) ;
f r e e ( Gt tmpi ) ;

219 }/∗ End Of Function I f f t ∗/
i n t Enve lopeReconstruction ( void )

221 {
FILE ∗ fp1 ;

223 i n t k ;
doublecomplex ∗G; /∗ Input s i g n a l readed from input f i l e in complex

form∗/
225 doublecomplex ∗ Gana ly t i ca l ; /∗ Ana ly t i ca l function o f our input

s i g n a l ∗/
double ∗ t e s t ;

227 double ∗ s q r t r ;
double ∗ s q r t i ;

229 G= ( doublecomplex ∗) c a l l o c ( s i z e o f ( doublecomplex ) , row) ;
Gana ly t i ca l = ( doublecomplex ∗) c a l l o c ( s i z e o f ( doublecomplex ) , row) ;

231 t e s t = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;
s q r t r=(double ∗) c a l l o c ( s i z e o f ( double ) , row) ;

233 s q r t i =(double ∗) c a l l o c ( s i z e o f ( double ) , row) ;
p r i n t f (”\ nPerforming enve lope ex t r a c t i o n . . . . . . . . . \ n”) ;

235 for ( k=0;k<=N; k++){
RE(G[ k ] ) = Gvalue [ k ] ;

237 IM(G[ k ] ) = 0 . 0 ;
}

239 for ( k=0;k<=N; k++){
RE( Gana ly t i ca l [ k ] )=G[ k ] . r ;

241 IM( Gana ly t i ca l [ k ] )=G t i f f t [ k ] . r ;
}

243 for ( k=0;k<=N; k++){
s q r t r [ k]=sqrt ( Gana ly t i ca l [ k ] . r∗ Gana ly t i ca l [ k ] . r+Gana ly t i ca l [ k ] . i ∗

Gana ly t i ca l [ k ] . i ) ;
245 }

fp1=fopen (” output . txt ” ,”w”) ;
247 i f ( ! fp1 )

{
249 fprintf ( stdout , ”Cann ’ t wr i t e ex t r a c ted enve lope in

output . txt .\n”) ;
f r e e (G) ;

251 f r e e ( Gana ly t i ca l ) ;
f r e e ( t e s t ) ;

253 f r e e ( s q r t r ) ;
f r e e ( s q r t i ) ;

255 return 1 ;
}

257 for ( k=0; k<SampledPoints ; k++)
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fprintf ( fp1 , ”%e,%e\n” ,Gtime [ k ] , s q r t r [ k ] ) ;
259 p r i n t f (”\ nExtracted enve lope i s wr i t t en in %s\n” ,” outpu t . t x t

”) ;
fc lose ( fp1 ) ;

261 f r e e (G) ;
f r e e ( Gana ly t i ca l ) ;

263 f r e e ( t e s t ) ;
f r e e ( s q r t r ) ;

265 f r e e ( s q r t i ) ;
return 0 ;

267 }
/∗Main Function ∗/

269 i n t ma in h i lbe r t ( i n t argc , char ∗argv [ ] )
{

271 i n t s t a tu s=0, i =1;
char fname [ 2 5 6 ] , c ;

273 i f ( argc==2)
{

275 p r i n t f (”\ nInput F i l e Name: ”) ;
/∗ s can f (”%s , InputFileName”) ; ∗/

277 s t r cpy ( fname , argv [ 1 ] ) ;
InputFileName= fname ;

279 p r i n t f (”%s\n” , InputFileName) ;
}

281 else
{

283 p r i n t f (”\nUse de f au l t f i l e : %s\n” , InputFileName) ;
}

285 /∗ Reading the sampled data∗/
do

287 {
N=( in t )pow(2 , i )−1;

289 i++;
}while (MAX POINT > N) ;

291 i f ( debug )
{

293 p r i n t f (”N= %d\n” ,N) ;
}

295 row=N+1;
Gvalue = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;

297 Gtime = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;
Gr = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;

299 Gi = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;
G t i f f t= ( doublecomplex ∗) c a l l o c ( s i z e o f ( doublecomplex ) , row) ;

301 Gc = ( double ∗) c a l l o c ( s i z e o f ( double ) , row) ;
s t a tu s = ReadData ( ) ;

303 i f ( s t a tu s== 1) goto MainExit ;
/∗Does FFT∗/

305 Fft ( ) ;
/∗Appropr iate Phahe has been Sh i f t e d ∗/

307 PhaseSh i f t ing ( ) ;
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/∗Does IFFT∗/
309 I f f t ( ) ;

/∗Envelope Reconstruct ion ∗/
311 s t a tu s = Enve lopeReconstruct ion ( ) ;

i f ( s t a tu s== 1) goto MainExit ;
313 p r i n t f (”\n\n==================================\n\n”) ;

p r i n t f (” Input f i l e name : %s \n” , InputFileName) ;
315 p r i n t f (”Output f i l e name output . txt \n”) ;

p r i n t f (”\n==================================\n\n”) ;
317 MainExit :

f r e e ( Gvalue ) ;
319 f r e e (Gtime ) ;

f r e e (Gr) ;
321 f r e e (Gi ) ;

f r e e ( G t i f f t ) ;
323 f r e e (Gc) ;

p r i n t f (”\n\nPress any key to e x i t .\n”) ;
325 s can f (”%c”,&c ) ;

return (0 ) ;
327 }/∗End Of Main∗/
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Index

aliasing, 45, 55
Analytic Signal

definition, 7
Spectrum, 7, 39

complex envelope, 7
confidence interval, 82
convolution, 7
correlation, 18, 19

data types
double, 28

errors of an addition, 30
errors of an multiplication, 29

float, 28

envelope, 5

Fast Fourier Transform
definition, 18
errors, 14, 27, 29

filter design
Frequency-Domain Least-Squares,

17
Optimal Filters, 16

Fourier transform
continuous, 7
discrete, 18
discrete-time, 10
fast Fourier transform, 18

frequency response
flat, 47
Gaussian, 47

Frequency-Domain Least-Squares Fil-
ter Design, 17

Gibbs phenomenon, 13, 31

Blackman window, 16, 40
Discontinuities, 13
error floor, 71
Frequency-Domain Least-Squares,

17
Generalized cosine window, 15
Leakage, 14
Optimal Filters, 16
Optimal filters, 31
Window sequence, 14

input third order intercept point, 54,
61, 72

jump function
overshoot, 84
rise time, 84
settle time, 84

noise, 53
AWGN, 53
single sideband noise spectral den-

sity, 51, 59
non-linearity system, 52

Optimal Filters, 16
Optimal filters, 31

PCD, 53
pre-envelope, 7
pulse amplitude modulation, 83

quantization, 56, 72, 73
quantization interval, 56

sampling, 45
aperture jitter, 49
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aperture time, 48
equivalent-time, 46
in simulation, 55
real-time, 46
sequential, 46
single shot, 46

signal-to-noise ratio, 73
spectrum

energy spectrum density, 18
power spectrum density, 20

stochastic, 18
estimation of moments, 20
moments, 19
statistic distributions, 21

Taylor series, 52
third order intercept point, 54

Zero-padding, 23
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Nomenclature

:= “defined as”

[ · ] (physical) unit of (physical) quantity or nearest integer function.

·
T “transposed of”

≡ “identity of”

fl{ · } “floating-point result of”

∀ “for all”

F{ · } Fourier transform, discrete time Fourier transform, FFT or DFT

·̂ estimated quantity

Im( · ) “imaginary part of”

Ik {0 · · ·2k − 1} with a const. k

N set of natural numbers

Q set of rational numbers

Q64 subset of rational numbers defined by 64-Bit data type double. Q64 ⊂ Q

R set of real numbers

Z set of integers

A{ · } “Analytic Signal of”

H{ · } “Hilbert transform of”

X matrix

µX mean of random variable X

Re( · ) “real part of”

→ “tends to”
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σ standard deviation

σ(jω) Heaviside step

σ2
X variance of of random variable X

sign( · )

⋆ convolution

dBc P
1 dBc

:= 10 · log
(

P
Pcarrier

)

dBm∗ P
1 dBm∗

:= 10 · log (1000P ) with [P ] = 1 (normalized signal)

x vector

{ · } sequence or set

f−1( · ) inverse of f( · )

FX(x) Cumulative Distribution Function of X

fX(x) Probability Density Function of X

m
(k1,k2)
X1,X2

mixed moment of random variables X1 and X2 with order k1 and k2

m
(k)
X kth moment of random variable X

P{ · } “Propability of”

R reference resistance or resample factor

R[n1, n2] ≡ RX[n1],X[n2] autocorrelation

rX [m] wide-sense stationarity autocorrelation

SX(ejΘ) power spectrum density

X ∼ N (µX , σ2
X) normal/Gaussian distribution of random variable X

X(ejΘ) “discrete-time Fourier transform of x[n]”

X(t) random variable

x(t) continuous-time signal

X[n] “discrete Fourier transform of x[n]”

x[n] descrete-time signal with time index n

105



AWGN Additive White Noise

cdf Cumulative Distribution Function

CI confidence interval

DFT Discrete Fourier Transformation

FDLS frequency-domain least-squares

FFT Fast Fourier Transform

FIR Finite Impulse Response

HT Hilbert transform

IDFT Inverse Discrete Fourier Transformation

IFFT Inverse Fast Fourier Transform

IIP3 third order input intercept point

IP3 third order intercept point

LTI Linear Time Invariante

PAM pulse amplitude modulation

PCD Proximity Coupling Device

pdf Probability Density Function

psd Power Spectrum Density

RFID Radio Frequency Identification

SNR signal-to-noise ratio
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