
Diplomarbeit

GRAPH-BASED MOTION

SEGMENTATION OF OPTICAL FLOW

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs

unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze

und

Dipl.-Ing. Johann Prankl

Institut für Automatisierungs- und Regelungstechnik (ACIN)

eingereicht an der Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

von

Barbara NEUHERZ

Matr.Nr.: 9925936

Ortliebgasse 33/18, 1170 Wien

Wien, im Juni 2009

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

rau
Dipl

Abstract

In this project the usage of optical flow for motion segmentation was evaluated. The optical
flow is represented by a vector field that describes the displacement of pixels in subsequent
frames. The motion vectors hold the magnitude and direction corresponding to the movement
of the pixels. They can be either computed for every pixel in the image or just for certain,
important pixels, such as corner points. The segmentation process clusters pixels with similar
motion vectors to regions that can be used for further processing, such as tracking of objects or
collision avoidance for home-robotics.

The computation of the optical flow for every pixel in the image (dense optical flow) is
computationally extensive. Although modern graphic hardware offers the possibility of real-
time computation an attractive alternative to save resources is the computation of the motion
vectors only for certain points in the image (which is called sparse optical flow).

This work covers the theoretic fundamentals as well as a detailed description of the imple-
mented segmentation algorithm. Different image sequences produced in the lab and datasets
from an evaluation-database were taken to demonstrate the segmentation of dense optical flow
and sparse optical flow, respectively. Additionally, both methods are compared. From the results
it is concluded that the less computationally extensive sparse optical flow offers a comparable
performance and is therefore preferable over the dense optical flow.

I

Kurzfassung

Im Rahmen dieses Projects wurde untersucht, inwieweit sich Optischer Fluss zur Bewegungsseg-
mentierung eignet. Der Optische Fluss ist ein Vektorfeld, das die Bewegung jedes Pixels eines
Bildpaares beschreibt. Die Bewegungsvektoren, die mit ihrer Amplitude und Richtung diese Po-
sitionsänderung festhalten, können für jedes Pixel im Bild oder nur für einzelne, wichtige Pixel,
z.B. Eckpunkte, berechnet werden. Im Zuge der Segmentierung werden Pixel mit ähnlichen Be-
wegungsvektoren zu einheitlichen Regionen zusammengefasst, die in weiteren Verarbeitungss-
chritten z.B. zur Verfolg von Objekten oder zur Kollisionsvermeidung im Bereich der Heim-
Robotik verwendet werden können.

Die Berechnung vom Optischen Fluss für jedes Pixel im Bild (man nennt diesen dense optical
flow) ist sehr rechenintensiv, wenngleich moderne Grafik-Hardware eine Berechnung in Echtzeit
möglich macht. Die Alternative, diesen nur für ausgewählte Bildpunkte zu berechnen (dieser
wird sparse optical flow genannt), erscheint daher besonders attraktiv.

In der vorliegenden Arbeit werden zunächst die theoretischen Grundlagen erläutert sowie
der implementierte Algorithmus für die Segmentierung genau erklärt. Anhand von im Labor
aufgenommenen und aus einer Evaluierungs-Datenbank stammenden Bildsequenzen wird sowohl
die Segmentierung von dense optical flow, als auch von sparse optical flow demonstriert und ein
Vergleich beider Methoden gezogen. Es zeigt sich, dass der weniger rechenintensive sparse optical
flow oftmals ähnlich gute Resultate liefert und damit aufgrund seiner Effizienz vorzuziehen ist.

II

Acknowledgments

First and foremost, I would like to thank Prof. Dr. Markus Vincze for the realization of this
project. Special thanks goes to my supervisor DI Johann Prankl for this support and constructive
conversations during the course of the project. It was a great pleasure to experience the relaxed
atmosphere within the Vision for Robotics (V4R) group.

Furthermore, I owe many thanks to my mother and my brothers Markus and Wolfgang for
getting me involved with the field of electrical engineering. I am grateful to my sister in law
Manuela and to Christoph Natorski who enrich my life to a great extend.

I would like to express my greatest gratitude to my partner Stefan Kostner. I appreciate his
support and guidance throughout many years.

I wish to credit my close friend Antitza Dantcheva. Over the years she has become an
important person in my life. I enjoyed our numerous conversations very much.

I take the opportunity to thank my colleagues of the working group Electronics 1 at the
Institute of High Energy Physics of the Austrian Academy of Sciences for the friendly environ-
ment they have provided me during the past six years. My special thanks goes to the group
leader DI Anton Taurok for his patience and for motivating me to carry on with my studies.

Finally, I express my acknowledgment to the PhD students at the Industrial Sensor Systems
Group at ISAS/TU-Vienna for their relaxing attitude at our get-togethers.

Barbara Neuherz

III

Nomenclature

d(i, j) difference image
dcum(i, j) cumulative difference image
i, j or x, y pixel coordinates at time t

f(x, y, t) image frame
dx, dy changes in position during time dt

fx, fy, ft partial derivations of the frame f(x, y, t)
u, v velocity in x and y direction
c motion vector
grad(f) 2D image gradient
E2(x, y) squared error quantity
u2

x, u2
y, v2

x, v2
y squared partial derivatives of the velocity in x and y direction

λ Lagrange multiplier
ū, v̄ mean values of the velocity in x and y direction
H homogeneity criterion
vi ∈ V vertex; pixel in an image
(vi, vj) ∈ E edges; connection between two vertices
w((vi, vj)) edge weight dealing with the magnitude of c; measures dissimilarity

between vertices connected by that edge
wangle((vi, vj)) second edge weight dealing with the angle of c; measures dissimilarity

between vertices connected by that edge
G = (V, E) connected undirected graph; formed by vertices and edges
cut(A, B) minimum cut of two disjoint regions A and B

c(A, B) minimum mean cut considers the boundary length
Ncut(A, B) normalized cut measures dissimilarity between and similarity within

regions
τ(C) threshold function; used by the segmentation algorithm
k constant parameter used by τ(C); specified by the user
IntDif(C) internal difference; largest weight within a component
MIntDif(Ci, Cj) minimum internal difference between two components
feature space consists of adjacent pixels that can be mapped to non-neighboring

pixels in the real image
cangle constant parameter used by the cluster condition; specified by the

user

IV

Contents

1 Introduction 1

2 Theory 4
2.1 Motion analysis . 4

2.1.1 Difference image . 5
2.1.2 Optical flow . 5

2.2 Segmentation . 8
2.3 Region-based segmentation algorithms . 9

2.3.1 Region merging and region splitting . 9
2.3.2 Graph-based segmentation . 10
2.3.3 Watershed segmentation . 12

2.4 Delaunay triangulation . 12
2.4.1 Fundamental idea . 12
2.4.2 Construction of a Delaunay triangulation 13

3 Graph-based segmentation 14
3.1 Segmentation of a color image . 14

3.1.1 General definitions . 14
3.1.2 Edge weights . 14
3.1.3 Adaptive threshold and cluster condition 16
3.1.4 Algorithm . 16

3.2 Segmentation using optical flow . 17
3.2.1 Optical flow calculation . 17
3.2.2 General definitions . 17
3.2.3 Edge weights . 18
3.2.4 Adaptive thresholds and extended cluster condition 19
3.2.5 Algorithm . 20

3.3 Segmentation using color and optical flow information 22
3.3.1 Optical flow calculation . 22
3.3.2 General Definitions . 22
3.3.3 Edge weight . 23
3.3.4 Algorithm . 24

4 Comparison and interpretation of the results 26
4.1 Motion analysis of color input datasets . 26
4.2 Visualization of dense optical flow images . 28

V

CONTENTS VI

4.3 Dense optical flow images using different weight formulas 28
4.3.1 Dataset Backyard . 30
4.3.2 Dataset Dumptruck . 32
4.3.3 Dataset Box06 . 34

4.4 Sparse flow images using different weight formulas 36
4.4.1 Dataset Backyard . 37
4.4.2 Dataset Dumptruck . 38
4.4.3 Dataset Box06 . 41

4.5 Dense and sparse flow images using Euclidean distance 43
4.5.1 Dataset Backyard . 43
4.5.2 Dataset Dumptruck . 45
4.5.3 Dataset Box06 . 47

4.6 Dense and sparse flow images using exponential function 49
4.6.1 Dataset Backyard . 49
4.6.2 Dataset Dumptruck . 51
4.6.3 Dataset Box06 . 53

4.7 Color and optical flow images . 55

5 Motion segmentation of multiple subsequent frames 58

6 Discussion 62
6.1 Segmentation efficiency . 62
6.2 Outlook . 64

Chapter 1

Introduction

While a single image contains static information about an entire scene, subsequent images from
a movie (at least two frames) additionally contain dynamic information which represents the
motion of objects. Motion in general is a robust information that can be easily extracted from
two subsequent frames. It is represented by the optical flow which is a vector field that describes
the displacement of pixels. The motion vectors hold the magnitude and direction corresponding
to the movement of the pixels. They can be either computed for every pixel in the image (dense
optical flow) or just for certain, important pixels, such as corner points (sparse optical flow).

To extract information about moving objects (as opposed to moving pixels) regions of similar
motion vectors are clustered. This process is called motion segmentation. Non-moving objects
for which the motion vector is zero are clustered together and form one background region, while
each well defined moving object is represented by its own region. Compared to an image that
contains thousands of pixels, a segmentation output contains only a few regions. The focusing
on the interesting (moving) objects comes along with a dramatic reduction of data.

In the real world environment the detection of moving objects is a very important task,
because serious danger from collisions can be avoided. A comprehensive example is given in
[Twe09]: if a pedestrian crosses a street, the non-moving vehicles are of less interest, because
the threatening danger originates from the moving ones. Hence the pedestrian’s brain will
segment the motions in the scene by focusing on the moving vehicles and clustering the static
ones with the background. In this example, as well as in many applications the knowledge
that something is moving is of higher priority, than the knowledge about what is moving (in this
example a car or a bus). The wide range of applications, that are based on motion segmentation,
includes for example object detection [VJS05], object tracking [SGK00], surveillance [HHD00],
and collision avoidance for robots [OAT+07].

In this work the segmentation of sparse and dense optical flow images is evaluated. Image
sequences from an evaluation database as well as images from the lab environment are used as
inputs to test the performance of the segmentation. The results are compared and discussed
and possible improvements are highlighted.

A brief review on optical flow and motion segmentation

As outlined in [ZPB07], Horn and Schunck [HS80] first proposed the fundamental work con-
cerning the computation of optical flow from an image sequence in 1980. In the following years
based on their model further improvements were published in [NE86], [WB02], [BA93], [ADK99],

1

CHAPTER 1. INTRODUCTION 2

[PBB+06], and [ZPB07]. In general those methods are used to create dense optical flow images.
Its alternative is the sparse optical flow, that is resource-saving and robust under noise, because
motion vectors are only computed for certain pixels in the image that have high information
content (corner points). Here, the extraction of the corner points plays a major role. The
Kanade-Lucas-Tomasi (KLT) feature tracker is an established corner tracking algorithm. Its
basic idea was first published in 1981 in the early work of Lucas and Kanade [LK81] and further
improved in [TK91] and [Bou00].

In [ZLS08] the authors show that motion segmentation algorithms can be classified according
to their main attributes, e.g., feature- and dense-based, oclussion, multiple object and missing
data handling, robustness under noise, used camera model, requirements concerning prior knowl-
edge or training sequences, temporary stopping of objects. Grouping some of those attributes
allows following categorization:

• Image difference is an old and simple technique that is based on the dense-representation
of objects. A binary image contains the calculated difference of two subsequent grey-scale
frames (1 for changing pixel, 0 for static pixel). This method is sensitive to noise and
to light changes. It can handle occlusion and multiple objects, but it has difficulties with
moving cameras and temporary stopping objects. Detailed information can be found in
[CSE05], [CC06], [LYY07], [CFM07].

• Statistical approaches are also based on object’s dense-representation with the aim to assign
pixels to either the foreground or the background. These approaches can handle multiple
objects, occlusion and temporary stopping objects and is known to be robust. Additionally,
prior knowledge is often required. Following classification can be made:

– Maximum A posteriori Probability (MAP) is based on Bayes rule and is often used
with other techniques, see [RH01], [CS05], [SZHL07].

– Particle Filter (PF) constructs a sample-based probability density function to track
the variable’s changes over time, see [VTY07].

– Expectation Maximization (EM) is a iterative method with guaranteed convergence.
Observed data is represented by a parameter model where the parameters are esti-
mated by computing the Maximum Likelihood function, see [Bor04] and [SGHG08].

• Optical flow is well suited for motion segmentation [ZSWL07]. As mentioned above it is
described by a vector field that represents the displacement of pixels and was first published
in 1980 [HS80]. Optical flow has problems with temporary stopping objects and occlusion.
Additional methods are necessary to eliminate this drawbacks. Beside this, the optical
flow is sensitive to noise and light changes. Nowadays, its high computational resource
demand is a minor problem because optimized graphic processing units can be used.

• Wavelets provide a strong mathematical framework for analyzing functions at various
scales. It is a powerful tool in image processing1 (see [Wis97] and [KLGW98]). The multi-
resolution (one image at various resolutions) is used to characterize the structure of an
image. For example, information about different depth-planes can be extracted that is
used to solve the occlusion problem.

1Imagine a continuous-valued brightness function of an one-dimensional image. The idea of wavelet transfor-
mation is the approximation of this function using a discrete set of values.

CHAPTER 1. INTRODUCTION 3

• Layers are used to assign objects in an image to different planes. In 3D, the layers represent
depth-layers, where objects depending on their depth are assigned to. In 2D, objects with
similar velocity and direction are assigned to the same layer. More information can be
found in [KTZ08] or [BVZ99]. Layers are useful to solve the occlusion problem like human
beings. Unfortunately, the algorithm itself is numerically extensive.

• Factorization was first introduced in 1992 by Tomasi and Kanade [TK92]. The idea
is to use features, tracked over several frames, to recover structure and motion. For
those tracked features a trajectory matrix W can be defined, that contains the position
of the tracked features over several frames. This matrix can be separated (factorized)
into a matrix M, that holds the motion information, and a matrix S, that contains the
structure information. This method has no problem with temporary stopping objects,
because features can be extracted in any case. Since 1992 many approaches improved and
extended the basic idea, see [CK98], [YP06], [JSL+07], etc.

Once the motion segmentation is done, additional post-processes have to be executed that
interpret or re-work the segmentation output. For a person it is easy to analyze the content of a
scene and to find decisions. For a machine this is still an unsolved problem. Artificial intelligence
(AI) is a branch of computer sciences, that studies perceptual functions (e.g., decision finding)
to implement them on machines. An approach to define intelligence in general and artificial
intelligence in particular is given in [HB04, p. 12], a proposal for combination of computer
vision research from robotics and artificial intelligence is presented in [SPV09].

Chapter 2

Theory

In this chapter basic knowledge is transferred to the user. Chapter 2.1 gives an introduction to
motion analysis methods, such as difference image or optical flow, the latter used in this project.
An overview about segmentation in general is given in chapter 2.2 and about region-based
segmentation algorithms in detail in 2.3. The Delaunay triangulation method, its fundamental
idea, and construction is highlighted in 2.4.

2.1 Motion analysis

In recent years, computational power increased and new applications for motion analysis emerged.
Some robotic applications, e.g., robot navigation, are based on real-time processing. In contrast,
obtaining 3D shape and relative depth from motion is often done off-line. Prior knowledge like
time interval between consequent frames or camera motion, decreases the complexity of the anal-
ysis. Because the motion analysis technique depends on the available information no general
algorithm exist.

Three main groups of motion-related problems can be defined [SHB99, p. 679-680]:

• Motion detection,

• moving object detection and

• derivation of 3D object properties.

Motion detection is the simplest problem. It uses a static camera that records any detection.
Thus it is often used for security purposes.

The moving object detection is more difficult compared to motion detection and is most
complex if both camera and object move. The detection of moving objects is based on motion-
based segmentation algorithms. It is also possible to detect not the moving object itself but the
trajectory of its motion or to predict its future location.

A comprehensive summary of approaches dealing with the derivation of 3D object properties
from a set of two dimensional projections can be found in [SHB99, p. 680].

The difference image and the optical flow are two common methods to detect movements in
an image and are described in the following.

4

CHAPTER 2. THEORY 5

a) b) c)

Figure 2.1: a) Artificial image at time t. b) Image at time t + dt. c) Corresponding optical flow
and computed motion vectors (marked for certain pixels).

2.1.1 Difference image

The calculated difference between two subsequent grey-scale frames can be used to create the
difference image d(i, j) (see [SHB99, p. 682]) that is a binary image where zero values represent
non-moving pixels and non-zero values represent moving pixels,

d(i, j) =

{

0 if |f1(i, j) − f2(i, j)| < ǫ

1 otherwise,
(2.1)

where f1(i, j) and f2(i, j) are the subsequent frames, i and j are the pixel coordinates and ǫ is
a threshold to ignore very small movements caused by noise or inaccuracies.

The difference image contains the information if a pixel position changed1 between the sub-
sequent frames but it does not contain the direction of the motion. Therefore the cumulative
difference image dcum(i, j) can be constructed from n subsequent frames ([SHB99, p. 683]) with
the first frame as reference image,

dcum(i, j) =
n

∑

k=1

ak|f1(i, j) − fk(i, j)|, (2.2)

where fk(i, j) are the subsequent frames and ak is a factor to weight the frames.
This method has two major disadvantages [SHB99, p. 684]:

• For example, if a rectangular object without pattern moves horizontal and parallel to its
object boundary motion of only the left and right hand side are detected. The same is
true for an object that moves vertical. In this case motion of the upper and bottom side
are detected.

• If only a part of a boundary of the first frame is visible in the second frame the motion
can not be determined correctly. This is called aperture problem.

2.1.2 Optical flow

The optical flow is represented by a vector field that describes the displacement of pixels in
subsequent frames (within a defined time interval dt), see [SHB99, p. 685]. The motion vectors
hold the magnitude and direction corresponding to the movement of the pixels. Fig. 2.1 shows
an artificial example of two subsequent images and its corresponding optical flow2.

1Non-zero values represent pixels with motion.
2In this example the motion vectors are computed for certain pixels in the image thus it is called sparse optical

flow.

CHAPTER 2. THEORY 6

Optical flow computation

The optical flow computation is based on following assumptions ([SHB99, p. 686]):

• The brightness of objects is constant and

• neighboring pixels move in similar manner.

A continuous, grey-scale image f(x, y, t) can be expressed as Taylor series,

f(x + dx, y + dy, t + dt) = f(x, y, t) + fxdx + fydy + ftdt + O(δ2), (2.3)

where x and y are the pixel coordinates at time t, dx and dy are the changes of position during
time dt, fx, fy and ft are the partial derivations of the frame f(x, y, t) and O(δ2) is a place
holder for the higher order terms.

The location of a moving pixel in the two subsequent frames can be written as

f(x + dx, y + dy, t + dt) = f(x, y, t). (2.4)

If dx, dy and dt are very small the higher order terms can be ignored and eq. 2.3 can be
rearranged to

−ft = fx
dx

dt
+ fy

dy

dt
= fxu + fyv = grad(f)c, (2.5)

see [SHB99, p. 687], where u and v are the velocity in x and y direction that can be summarized
as motion vector c and grad(f) is the two dimensional image gradient.

To solve eq. 2.5, which is an equation in two unknowns, a further constraint, the so called
smoothness constraint, has to be defined. The detailed approach can be found in [HS80] but it
turns out to minimize following formula:

E2(x, y) = (fxu + fyv + ft)
2 + λ(ux

2 + uy
2 + vx

2 + vy
2), (2.6)

where E2(x, y) is the squared error quantity, u2
x, u2

y, v2
x and v2

y are the squared partial derivatives
and λ is a Lagrange multiplier. The first term represents eq. 2.5 and the second term represents
the smoothness criterion. Minimizing eq. 2.6 yields to two differential equations

(λ2 + f2
x)u + fxfyv = λ2ū − fxft and (2.7)

fxfyu + (λ2 + f2
y)v = λ2v̄ − fyft, (2.8)

where ū and v̄ are the mean values of the velocity in x and y direction. A solution for the
differential equations eq. 2.7 and 2.8 is

u = ū − fx
P

D
and (2.9)

v = v̄ − fy
P

D
and (2.10)

where
P = fxū + fyv̄ and D = λ2 + fx

2 + fy
2. (2.11)

The determination of the optical flow is based on Gauss-Seidel iteration method.

CHAPTER 2. THEORY 7

a) b) c) d)

Figure 2.2: a) Translation at constant distance. b) Translation in depth. c) Rotation at constant
distance. d) Rotation perpendicular to the view axis. [SHB99, p. 693, fig. 15.9]

If dx, dy and dt are not small3 the higher order terms in eq. 2.3 can not be ignored. At
least the second order terms have to be considered in the Taylor series and makes the optical
flow computation rather complex. See [SHB99, p. 689] for more details.

Very important for the optical flow computation is the contrast. For example if a smooth
sphere rotates under constant illumination the optical flow is zero because the change is not
noticed [SHB99, p. 693].

The optical flow can be either computed for every pixel in the image or just for certain,
important pixels, such as corner points. The former is called dense optical flow, the latter sparse
optical flow.

In this project for the computation of the dense optical flow used for further processing the
Win32 library from [ZPB07] was used.

Optical flow in motion analysis

Optical flow is used to study the use cases:

• Moving object and static camera,

• static object and moving camera and

• moving object and camera.

Motion can be a combination of translation and rotation (compare [SHB99, p. 693]). De-
pending on the movement the following basic motion vectors can be defined:

• Translation at constant distance from the camera: parallel motion vectors.

• Translation in depth relative to the camera: motion vectors with common focus of expan-
sion (FOE)4.

• Rotation at constant distance about the view axis: concentric motion vectors.

• Rotation perpendicular to the view axis: motion vectors starting from straight line seg-
ment.

An illustration of the above statements are shown in fig. 2.2.
Compared to the difference image, see chapter 2.1.1, the optical flow computation has the

advantage that each optical flow field calculated from two subsequent images contains motion
vectors with defined magnitude and direction. Unfortunately it holds the same disadvantages
like the difference image.

3This is the case if the time interval between subsequent images is not small enough.
4For the translation at constant distance from the camera the common focus of expansion is at infinity.

CHAPTER 2. THEORY 8

a) b)

Figure 2.3: a) Color input image to be segmented. b) Complete segmentation by clustering
pixels with similar color value.

a) b) c)

Figure 2.4: a) Color input image at time t. b) Color input image at time t+dt. c) Partial
segmentation by clustering pixels with similar motion vector hence the moving objects (ball
in the upper left, three persons in the middle) result while non-moving objects (background,
ground) are clustered together.

2.2 Segmentation

Segmentation is a process at which an image is split into meaningful areas (such as areas of similar
color) to reduce and simplify the information content. The basic requirement for segmentation
can be expressed as

R =
S
⋃

i=1

Ri Ri ∩ Rj = 0 i 6= j, (2.12)

where S is the total number of segmented regions Ri, see [SHB99, p. 124].
Since the smallest entity of an image is a pixel, segmentation means the clustering of pixels

with similar characteristics to form one region. There is a difference between complete and
partial segmentation. While complete segmentation means that each object in the image has
its corresponding region in the segmented output, see fig. 2.35, partial segmentation reduces
information such that different objects in the image can be merged to one region in the output,
see fig. 2.46.

Important cues for segmentation are the pixel characteristics, e.g., brightness, color, and
motion. Furthermore the important property of the surface of objects is its homogeneity. Ho-

5Images were taken from [FH04].
6Color input images were taken from the optical flow evaluation database, see

http://vision.middlebury.edu/flow/data/.

CHAPTER 2. THEORY 9

mogeneity and pixel characteristic together provide a reliable clustering algorithm.
The main problem of segmentation is the ambiguity of information in the image caused by

noise or aperture problems. To avoid this the image quality should be as high as possible. This
can be achieved by taking images at constant illumination with high-quality cameras.

Segmentation algorithms can be divided into three groups that depend on the features they
use:

• Global knowledge,

• edge-based and

• region-based.

If global knowledge about the objects in the image is available a simple thresholding method7

can be used to segment the image. This method suits best for images where objects have to be
separated from the background.

Edge-based and region-based methods use the pixel characteristics. Hence every region has its
own boundary and every closed boundary describes a region the results of the segmentation may
differ. A good result yields a combination of both methods [SHB99, p. 123]. The region-based
methods, used in this work, are explained more detailed in following section.

2.3 Region-based segmentation algorithms

Region-based segmentation methods are best suited for noisy images where detection of borders
is very difficult and thus edge-based segmentation methods yield bad results [SHB99, p. 176].

The important property of surfaces of objects is their homogeneity. A homogeneity criterion
H can be defined such that every segmented region has to satisfy eq. 2.12 as well as following
conditions:

H(Ri) = TRUE i = 1, 2, ..., S and (2.13)

H(Ri ∪ Rj) = FALSE i 6= j Ri adjacent to Rj , (2.14)

where H(Ri) is the homogeneity evaluation of region Ri, see [SHB99, p. 177]. The homogeneity
criterion can use for example an average grey-level, color or texture properties, and direction
and magnitude of motion vectors.

Methods discussed in the following deal with images in two dimensions and can be extended
to three dimensions of course. The regions obtained in three dimensions are volumes while in
two dimensions are planar.

2.3.1 Region merging and region splitting

Region Merging

This segmentation approach is applied to the raw image data. Every pixel represents its own
region8 and has its own region description, that can be computed. During the merging process
the region descriptions of adjacent regions are compared. If they match both regions are joined

7E.g., grey-level thresholding.
8This regions fulfill eq. 2.13 but not probably eq. 2.14.

CHAPTER 2. THEORY 10

to form a new one otherwise the process continues with the next adjacent region [SHB99, p.
178].

This merging condition is very rigorous and should be lightened such that the region de-
scriptions have to match within a certain range ±∆x,

f(xi − ∆x) ≤ f(xj) ≤ f(xi + ∆x), (2.15)

where f(xi) and f(xj) are the region descriptions of region Ri and Rj respectively and f(xi−∆x)
and f(xi + ∆x) is the lower and the higher threshold, respectively.

Equivalent to the comparison of region descriptions is the definition of edges between adjacent
regions and a weight assigned to the edge9. Using this weight and a preset threshold an edge is
going to be determined as weak or strong,

vij =

{

0 if wij = |f(xi) − f(xj)| < T

1 otherwise
(2.16)

where vij = 0 and vij = 1 indicates a weak10 and a strong edge respectively and T the certain
threshold [SHB99, p. 179]. The merging condition then is formulated such that pixels of weak
edges, vij = 0, are merged together.

Region splitting

In case of region splitting the whole image is defined as one region11 and is subsequently split
into sub-regions until eq. 2.13 is satisfied.

This approach seems to be dual to region merging but like in case of edge-based and region-
based segmentation methods the results here differ even if the homogeneity criterion is the
same.

Region splitting and merging

This approach combines the advantages of region splitting and region merging and defines pyra-
mid levels. First the whole image is defined as one region with a pyramid of the same size. This
region does not satisfy eq. 2.13 hence it is split into four child-regions and a new pyramid of
one-fourths size is defined. If any of the four child-regions does not satisfy eq. 2.13 they are
split into four child-regions again and so on. Fig. 2.5 demonstrates this with an artificial image.

The splitting process can be continued as long as either a segmentation with acceptable error
or a certain resolution is achieved. If the splitting process is stopped the merging process starts
and joins all adjacent regions with similar values of homogeneity [SHB99, p. 182].

2.3.2 Graph-based segmentation

Graph-base segmentation is an efficient12 clustering algorithm. It needs to define vertices vi ∈ V

which corresponds to the pixel in the image and edges (vi, vj) ∈ E between vertices. A weight
w((vi, vj)) can be assigned to each edge which measures the similarity between neighboring
pixels. Vertices and edges together form the connected, undirected graph G = (V, E). The aim

9This definition is used by the graph-based segmentation, see sec. 2.3.2.
10Weak edges are also called crack edges.
11This region does not fulfill eq. 2.13
12In respect of computing time and achievable success.

CHAPTER 2. THEORY 11

a) b) c) d) e)

Figure 2.5: a) Artificial image to be segmented with a pyramid of the same size. b-d) Splitting
of regions if eq. 2.13 is not fulfilled with smaller pyramids. e) Segmented output after merging
adjacent regions with similar characteristics.

is to build a graph such that vertices which belong together are connected. A set of vertices
provides a lot of possibilities how to connect them. Hence a constraint has to be expressed to
lower the possibilities and to provide only one graph at best. The constraint can take the edge
weights into account and is expressed as a cost function that has to be minimized. Examples
for cost functions are the minimum cut, the minimum mean cut, and the normalized cut.

Minimum cut

For the minimum cut cut(A, B) the sum of the edge weights between two disjoint regions has
to be a minimum. Its cost function can be expressed as

cut(A, B) =
∑

vi∈A,vj∈B

w((vi, vj)), (2.17)

where A and B are two disjoint regions (A∪B = V) and w((vi, vj)) is the edge weight between
the vertices vi and vj .

Minimum mean cut

The cost function of the minimum mean cut c(A, B) extends the minimum cut by considering
the boundary length ([DW01]). It can be expressed as

c(A, B) =
cut(A, B|w((vi, vj)))

cut(A, B|l)
, (2.18)

where A and B are two disjoint regions (A ∪ B = V), cut(A, B|w((vi, vj))) is the cost function
for the minimum cut (see eq. 2.17) and cut(A, B|l) is the cut boundary length.

Normalized cut

The normalized cut criterion Ncut(A, B) explained in [SM00] measures the total dissimilarity
between regions as well as the total similarity within regions and puts them into relation. The
cost function is expressed as

Ncut(A, B) =
cut(A, B)

assoc(A, V)
+

cut(A, B)

assoc(B, V)
, (2.19)

where assoc(A, V) =
∑

vi∈A,vj∈V w((vi, vj)) is the total connection between vertices inside and

outside region A, assoc(B, V) is defined similar and cut(A, B) is the minimum cut (see eq. 2.17).

CHAPTER 2. THEORY 12

a) b)

Watersheds

Catchment

basins

Figure 2.6: a) One-dimensional grey-level relief. b) Region edges correspond to high watersheds
and region compounds correspond to catchment basins. Figure based on [SHB99, p. 187].

Figure 2.7: The Delaunay triangulation in a two-dimensional space with empty circumcircles.

2.3.3 Watershed segmentation

Any grey-level image can be considered as topographical surface where the grey-level value
of the pixels is interpreted as their height. In this grey-level relief region edges correspond
to high watersheds and region compounds correspond to catchment basins, see fig. 2.6. The
segmentation can be illustrated by filling this surface with water. Pixels belonging to the same
catchment basin are homogeneous and represent a region [SHB99, p. 186].

2.4 Delaunay triangulation

The Delaunay triangulation is used to create a mesh of triangles from a set of points in a two-
or three-dimensional space [GB98, p. 33].

2.4.1 Fundamental idea

The main-issue of the Delaunay triangulation is the constitution of triangles. Any triangle
formed by its three corner points in a two-dimensional space has to have a circumcircle such
that there are no other points located inside [GB98, p. 38], see fig. 2.7. Other points are only
allowed at the perimeter.

In three dimensions instead of a circumcircle a circumscribed sphere has to be empty.

CHAPTER 2. THEORY 13

a) b)

A

B

C

D

B

D

AC

Figure 2.8: a) An arbitrary triangulation that does not fulfill the Delaunay condition of empty
circumcircles. b) Flipping the common edge from BD to AC leads to a Delaunay triangulation.

2.4.2 Construction of a Delaunay triangulation

A well known method of the construction of a Delaunay triangulation is the diagonal swapping
in two dimensions [GB98, p. 46].

First an arbitrary mesh of triangles is created. Afterwards it is checked if each triangle
fulfills the Delaunay condition of the empty circumcircle. If the condition fails it always fails
for a multiple of two triangles with a common edge, see fig. 2.8. Swapping the common edge
diagonally creates two triangles that fulfill the Delaunay condition [GB98, p. 46].

From the edge swapping an important property concerning the angles can be derived: If the
sum of the angles in opposite of the common edge of two triangles is less than or equal to 180◦

the triangles fulfill the Delaunay condition [GB98, p. 47], see fig. 2.8 for demonstration. In fig.
2.8 a) the sum of the angles (α + γ) > 180◦ while after flipping in fig. 2.8 b) the sum of the
angles (β + δ) < 180◦.

This method can not be applied for a Delaunay triangulation in three dimensions. Although
similar methods exist the construction of such a triangulation is not trivial [GB98, p. 48].

In this work the Delaunay triangulation is used to build the connected, undirected graph
G = (V, E) for the sparse optical flow segmentation.

Chapter 3

Graph-based segmentation

This chapter explains the implemented graph-based segmentation algorithms coded in C++.
The segmentation of color images is described in sec. 3.1 and of optical flow images in sec. 3.2.
Sec. 3.3 explains the algorithm if both images are used as input.

While the color segmentation needs only one color frame as input the segmentation of the
optical flow images needs at least two (subsequent) grey-scale frames. Furthermore two different
formulas for the calculation of the edge weights between neighboring nodes are introduced. In
case of optical flow images the information of the direction of the motion vectors is optionally
used.

Each section also provides an example output image in order to show how such a result looks
like. A detailed comparison of the different algorithms for different image sequences is given in
chapter 4.

3.1 Segmentation of a color image

This section describes the implemented segmentation algorithm for color images. First general
definitions are introduced. Two different formulas for the calculation of the edge weight are
highlighted and their pros and cons are briefly summarized. The cluster condition and its
dependencies are discussed and finally the algorithm itself is described.

The C++ implementation of the segmentation algorithm was taken from [FH04] and is also
explained in the following.

3.1.1 General definitions

Vertices vi ∈ V are defined that represent the pixels in the image which have to be segmented
and edges (vi, vj) ∈ E that connect vertices and neighboring pixels. Four edges per vertex1

are sufficient to connect each vertex with all of its neighbors, see fig. 3.1. Vertices and edges
together form the connected undirected graph G = (V, E).

3.1.2 Edge weights

A non-negative weight w((vi, vj)) assigned to each edge measures the dissimilarity between the
two vertices connected by that edge. There are different ways to determine the dissimilarity.

1In case of pixels located at the border of the image only edges to existing neighbors are defined.

14

CHAPTER 3. GRAPH-BASED SEGMENTATION 15

a)

edge

vertice

b)

Figure 3.1: a) Definition of four edges for a single vertex. b) Four edges per vertex are sufficient
to connect each vertex with all of its neighbors.

b)

x

w(x)

a)

x

w(x)

similar

pixels

dissimilar

pixels

Figure 3.2: a) If the weight is calculated with the Euclidean distance the whole range is flat. b)
The area of similar and dissimilar pixels are more dominant in case that the weight is calculated
as exponential function.

[FH04] defines a weight formula such that the weight is low if the connected vertices are in the
same component only. If not, the value becomes high.

Two different weight formulas have been implemented and tested. The first formula calcu-
lates the weight as Euclidean distance,

weuc =
√

(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2, (3.1)

where r1, g1 and b1 are the color values of the first vertex and r2, g2 and b2 are the respective
values for the second vertex connected by that edge.

An alternative weight formula uses the exponential function that can be expressed as

wexp = 1 − e
−(weuc

σrgb
)2

, (3.2)

where weuc is the similarity of the vertices calculated with eq. 3.1 as Euclidean distance and
σrgb defines the width of the Gauss-shaped curve. Tests yield a reasonable value of σrgb = 44,
which is 10% of the maximum value2 of x.

Compared to the Euclidean distance the exponential function has the advantage that the
area of similar and dissimilar pixels are more dominant than the area in between, see fig. 3.2.
This makes the splitting into components and therefore the segmentation more robust.

2Eq. 3.1 yields for two totally dissimilar vertices, (r1, g1, b1) = (0, 0, 0) and (r2, g2, b2) = (255, 255, 255) a
maximum value of 441 and for two totally similar vertices (r1, g1, b1) = (r2, g2, b2) = (255, 255, 255) a minimum
value of 0.

CHAPTER 3. GRAPH-BASED SEGMENTATION 16

3.1.3 Adaptive threshold and cluster condition

A threshold function τ(C) is used by the segmentation algorithm to decide wether pixels have
to be joined to build a component or not. It is calculated as follows

τ(C) =
k

|C|
. (3.3)

k is a constant parameter specified by the user and |C| is the size of the component. Note that
τ(C) depends on the component size and therefore has to be re-calculated (adapted) with each
joining.

In addition an internal difference IntDif(C) for every component is defined as

IntDif(C) = max
e∈C

w(e), (3.4)

which is the largest weight, e.g., the largest dissimilarity, within the component.
Using eq. 3.3 and 3.4 the minimum internal difference MIntDif(Ci, Cj) between compo-

nents is defined as

MIntDif(Ci, Cj) = min[IntDif(Ci) + τ(Ci), IntDif(Cj) + τ(Cj)], (3.5)

where Ci and Cj are the disjoint components. The segmentation algorithm uses the minimum
internal difference in its cluster condition that has to be fulfilled to join two vertices.

The cluster condition3 says

w((vi, vj)) ≤ MIntDif(Ci, Cj) ∧ Ci 6= Cj (3.6)

and in words:

• Weight w((vi, vj)) has to be smaller than the minimum internal difference MIntDif(Ci, Cj)
calculated with eq. 3.5 and

• vertices vi and vj have to be from different components Ci and Cj .

3.1.4 Algorithm

First the connected undirected graph G = (V, E) has to be created from the input color frame
and the resulting edges E have to be sorted in non-decreasing weight order.

Beginning with the smallest edge weight all edges are checked if they fulfill the cluster condi-
tion, eq. 3.6. If this is the case the two components are merged and the threshold function τ(C),
the internal differences IntDif(C) and the minimum internal difference MIntDiff(Ci, Cj) are
re-calculated. The algorithm continues with checking the next edge weight. If the cluster con-
dition is not fulfilled the algorithm continues with the next edge.

After all edges have been checked a post-process for small4 components starts. This process
removes small regions by checking their size and merging them with one of their adjacent lager
regions.

Fig. 2.3 shows an example output (segmentation parameters: edge weight = Euclidean
distance, k = 500, min = 50). Pixels belonging to one component are given the same color for
illustration.

3The cluster condition can be considered as the cost function introduced in sec. 2.3.2 to build a graph.
4The post-process removes components smaller than a given minimum number of vertices per component given

by the user.

CHAPTER 3. GRAPH-BASED SEGMENTATION 17

3.2 Segmentation using optical flow

This section describes the implemented segmentation algorithm for dense and sparse optical flow
input images that can be computed from two grey-scale frames5.

After making some general definitions6 different edge weights, thresholds, a cluster condition
and its dependencies are introduced and the algorithm itself is explained.

The magnitude and optionally the angle of the motion vector can be used. If only the
magnitude of the motion vector is considered the definitions are similar to the definitions of sec.
3.1 for color images except that a pixel in the flow image represents velocity in x and y direction
respectively and this denotes that the formulas have to be adjusted slightly.

If also the angle of the motion vector is applied the definitions have to be extended. An
additional formula for a second edge weight and a second adaptive threshold are introduced.
This asks for a extended cluster condition and modified dependencies that are described as well.

For the dense optical flow calculation an existing Win32 library and a sample program from
[ZPB07] were taken. The computation of the sparse optical flow is implemented in C++ and
can be found in my self-made class ImageProcessingTools. For the C++ implementation of the
segmentation algorithm parts of the code from [FH04] were taken and extended.

3.2.1 Optical flow calculation

Dense optical flow calculation

For the calculation of the dense optical flow an existing Win32 library and a sample program
from [ZPB07] were taken. Furthermore the sample program has been extended such that the
computed dense optical flow is saved as binary .flo file, which is used as input for the segmen-
tation algorithm.

Sparse optical flow calculation

The implemented C++ code computing the sparse optical flow image from two frames uses
methods from Intel’s Open Source Computer Vision (OpenCV) library [BK08]. First, this
algorithm converts the color frames into grey-scale frames. After extracting the corner points
from the first grey-scale frame those points are used to search for the appropriate corner points
in the second frame. With the knowledge of the positions of the corner points in both frames
the related motion vectors can be calculated which forms the sparse optical flow image.

It is important to consider, that sparse optical flow images are identical to dense optical flow
images except that the motion vectors are only computed for certain (important) pixels in the
image.

3.2.2 General definitions

The optical flow image is handled similar to the color image. The only difference is the meaning
of their pixels. The pixels in the color image represent the r, g and b values, while the pixels in
the dense optical flow image represent the motion vectors. In case of the sparse optical flow one
has to consider that the motion vectors are not computed for all pixels in the image.

5If color images are applied as input they have to be converted into grey-scale images first.
6Wherever the definitions for the dense optical flow differ from the sparse optical flow images, a distinction is

made.

CHAPTER 3. GRAPH-BASED SEGMENTATION 18

a) b)

x

y 7/7 21/7

7/14 21/14

7/7
21/7

7/14
21/14 Position in

image

Position in

feature space
1 2 3 4

Figure 3.3: a) Synthetic image with non-neighboring corner points of a rectangle (dashed line).
The positions are given as x/y coordinates of the real image. b) Pseudo-dense flow image with
adjacent pixels after transformation into the feature space.

Vertices vi ∈ V for each pixel with computed motion vector can be defined. This implicates
for sparse optical flow images that the total number of vertices is smaller than the number of
pixels in the image.

Edges for dense optical flow

The edges (vi, vj) ∈ E connecting vertices and their neighbors can be defined just as for color
images. This means that four edges per vertex are sufficient to connect each vertex with all of
its nine neighbors, see fig. 3.1.

Edges for sparse optical flow

For the sparse optical flow it is not assured that each vertex has a fixed number of neighbors.
Beside this the location of the nearest neighbors is unknown. The neighbors can be determined
using the Delaunay triangulation introduced in sec. 2.4 which assigns nearest neighbors to each
vertex to constitute the edges (vi, vj) ∈ E.

Usually those neighbors are not nearby located but can be transformed into a so-called
feature space. The feature space consists of adjacent pixels that can be mapped to the real
pixels in the image, see fig. 3.3. The order of the mapping is not important. The major aim of
this transformation is to obtain a pseudo-dense flow image in the feature space. This offers the
possibility to use the segmentation algorithm as for real dense optical flow images in the end.

The C++ implementation of the determination of neighbor pixels can be found in my self-
made class ImageProcessingTools.

3.2.3 Edge weights

Just as for the color image a weight w((vi, vj)) greater than or equal to zero can be assigned to
each edge which measures the dissimilarity between the involved vertices. If the same weight
definition is used (the weight between vertices in the same component is low and between vertices
in different component is high) the same segmentation algorithm can be used as for the color
image.

The weight formulas calculated as Euclidean distance (eq. 3.1) and exponential function (eq.
3.2) respectively using the motion vectors can be re-written as:

weuc =
√

(u1 − u2)2 + (v1 − v2)2 and (3.7)

CHAPTER 3. GRAPH-BASED SEGMENTATION 19

c1

c2

cnew

Figure 3.4: Second edge weight wangle((vi, vj)) calculated as mean value of the connected motion
vectors.

wexp = 1 − e
−(weuc

σuv
)2

, (3.8)

where u1 and v1 are the changes of position in x and y of the first vertex respectively, u2 and
v2 are the changes of position in x and y direction of the second vertex respectively connected
by that edge, weuc is the similarity of the vertices calculated with eq. 3.7 and σuv defines the
width of the Gauss-shaped curve. Tests yield a reasonable value of σuv = 3, which is 1% of the
maximum value7 of x.

Eq. 3.7 and 3.8 only covers the magnitudes of the motion vector which additionally holds
a direction. Therefore an additional edge weight wangle((vi, vj)) using the directions can be
defined and has been implemented as mean angle of the two motion vectors

wangle((vi, vj)) =
ϕ1 + ϕ2

2
(3.9)

where ϕ1 and ϕ2 are the angles of the two motion vectors connected by that edge (see fig. 3.4).

3.2.4 Adaptive thresholds and extended cluster condition

Due to the similarity between optical flow images and color images8 the same definitions for the
threshold function, the internal difference and the minimum internal difference as for the color
image can be made.

Remember the threshold function τ(C) is calculated as

τ(C) =
k

|C|
, (3.3)

where k is a constant parameter specified by the user and |C| is the size of the component.
The largest weight within the component called internal difference IntDif(C) is defined as

IntDif(C) = max
e∈C

w(e). (3.4)

7Both the Win32 library for the computation of the dense optical flow as well as the implemented code for
calculating the sparse optical flow yield good results as long as the change in position is less than approximately
100 pixels. If the movement exceeds 100 pixels the computed results are wrong. Thus eq. 3.7 yields for two
totally dissimilar vertices, (u1, v1) = (0, 0) and (u2, v2) = (100, 100) a maximum value of 282 and for two totally
similar vertices (u1, v1) = (u2, v2) = (100, 100) a minimum value of 0.

8Except that color pixels represent color values and dense optical flow pixels represent motion vectors.

CHAPTER 3. GRAPH-BASED SEGMENTATION 20

a)

c1

c2

cnew

b)

c1

c2

cnew

Figure 3.5: Illustrations of eq. 3.10. wangle((vi, vj)) has to be located in both shaded areas. a)
Tolerance around angle ϕ1. b) Tolerance around angle ϕ2.

The minimum internal difference MIntDif(Ci, Cj) between components is expressed as

MIntDif(Ci, Cj) = min[IntDif(Ci) + τ(Ci), IntDif(Cj) + τ(Cj)]. (3.5)

Only if the angle of the motion vector is considered a second adaptive threshold for the angle
of the components has to be defined and re-calculated after each merging.

The cluster condition for color images,

w((vi, vj)) ≤ MIntDif(Ci, Cj) ∧ Ci 6= Cj , (3.6)

has to be extended if the additional edge weight is used:

(ϕ1 − cangle) ≤ wangle((vi, vj)) < (ϕ1 + cangle) ∧

(ϕ2 − cangle) ≤ wangle((vi, vj)) < (ϕ2 + cangle),
(3.10)

where ϕ1 and ϕ2 are the angles of the two motion vectors and cangle defines the tolerance around
the angle ϕ1 and ϕ2 respectively where wangle((vi, vj)) has to be located in.

Fig. 3.5 illustrates eq. 3.10 and together with 3.6 the cluster condition can be formulated in
words as:

• Weight w((vi, vj)) has to be smaller than the minimum internal difference MIntDif(Ci, Cj),

• vertices vi and vj have to be from different components Ci and Cj and

• the second edge weight wangle((vi, vj)) has to be located within the areas defined by cangle.

3.2.5 Algorithm

If the segmentation of the optical flow image ignores the direction information of the motion
vectors the segmentation algorithm is totally equal to the segmentation algorithm of the color
images (see section 3.1.4).

A better segmentation result can be obtained if the direction of the motion vectors is used.
In this case the segmentation algorithm differs from the algorithm of color images. First the
connected undirected graph G = (V, E) has to be created in the same manner and the edges has
to be sorted in non-decreasing weight order. The second edge weight wangle((vi, vj)) that takes
the direction of the motion vectors into account is just an extension for the cluster condition.
For the sorting the first edge weight w((vi, vj)) dealing with the magnitude of the motion vector
is of interest.

CHAPTER 3. GRAPH-BASED SEGMENTATION 21

a) b) c)

Figure 3.6: Segmentation output example. The inner box moves 5 pixels to the right. a) Input
images at time t and t+dt respectively. b) Segmentation output of the dense optical optical flow.
The motion vectors are calculated for each pixel. Only the inner box moves. The output contains
two objects, the moving box in cyan and the non-moving frame and background in violet. c)
Segmentation output of the sparse optical optical flow. The motion vectors are calculated for
each feature point. Feature points with the same motion vector are connected by lines which
gives a set of triables that are filled. The output contains two components, the moving box in
cyan and the non-moving frame in orange. Because the background (white) has no structure no
feature points can be extracted.

Beginning with the smallest edge weight all edges are checked if they satisfy the extended
cluster condition eq. 3.6 and 3.10. If this is the case the two components are merged and
the threshold function τ(C), the internal differences IntDif(C) and the minimum internal
difference MIntDiff(Ci, Cj) are re-calculated. In addition a new angle for the whole component
calculated as mean value from all motion vectors that build this component is calculated. If the
cluster condition fails the algorithm continues with the next edge.

After all edges have been checked a post-process for small9 components starts. This process
merges regions of small size to larger neighboring regions. In respect of the angle the smaller
component gets the angle of the larger one.

In case of sparse optical flow input images the achieved output contains pixels located in the
feature space. Therefore the real pixel coordinates in the image have to be recovered by a back
transformation which gives a scatterplot.

Fig. 3.6 shows an artificial example output for a dense and a sparse optical flow input file
(dense segmentation parameters: edge weight = Euclidean distance, angle of motion vector is
ignored, k = 200, min = 3, sparse segmentation parameters: edge weight = Euclidean distance,
angle of motion vector is ignored, k = 500, min = 50). For illustration pixels belonging to one
component are given the same color. In the scatterplot of the segmented sparse optical flow
image the non-neighboring pixels of one component are connected by lines which gives a set of
triangles that are filled.

9If the component is smaller than a given minimum number of vertices per component given by the user.

CHAPTER 3. GRAPH-BASED SEGMENTATION 22

3.3 Segmentation using color and optical flow information

This section is an extension to sec. 3.1 and 3.2 such that instead of a single color or optical flow
image both are used as input images for the segmentation algorithm.

At least two color input frames are necessary for the computation of the optical flow. The
optical flow image together with the first color image are used as input for further processing

Except the first edge weight, that has to consider the color information as well as the mo-
tion information in a single formula using exponential functions, this section makes the same
definitions as for optical flow images. All equations are not just referred but also re-written for
convenience.

3.3.1 Optical flow calculation

Dense optical flow calculation

As already introduced in sec. 3.2.1 for the computation of the dense optical flow the existing
Win32 library and the modified sample program from [ZPB07] were used to create the binary
.flo file used as one input for the segmentation algorithm.

Sparse optical flow calculation

For the computation of the sparse optical flow a C++ code was implemented that uses methods
from the Open Source Computer Vision (OpenCV) library [BK08]. For an in-depth explanation
of the algorithm please refer to sec. 3.2.1.

3.3.2 General Definitions

Vertices vi ∈ V can be defined in the same manner as for color or optical flow images. The only
difference is that especially in the case of sparse optical flow images the count of vertices is less
than the count of pixels in the image. Of course the meaning of the pixels of color and optical
flow images is different and should be kept in mind but for the definition of the vertices only
the count of potential pixels are of interest.

Edges for dense optical flow

Since the motion vectors of a dense optical flow image are calculated for each pixel in the image
edges (vi, vj) ∈ E can be defined in the same manner as for color images10. This means that
four edges per vertex are sufficient to connect all pixels together, see fig. 3.1.

Edges for sparse optical flow

The computed sparse optical flow alone holds no information about the neighbors of a given
vertex. They can be determined with a Delaunay triangulation, see fig. 3.2.2, that assigns
nearest neighbors to the vertices. With this information edges (vi, vj) ∈ E can be defined.
Because the vetices are not adjacent a transformation of the scattered pixels into the feature
space is recommended to get a pseudo-dense flow.

Each pixel in the color image holds color information while only certain pixels (corner points)
in the sparse optical flow image hold a computed motion vector. For the combination of color

10All pixels in the color image hold a color information.

CHAPTER 3. GRAPH-BASED SEGMENTATION 23

and motion information the values of the appropriate vertex positions specified by the sparse
optical flow are taken.

3.3.3 Edge weight

A non-negative edge weight w((vi, vj)) can be assigned to each edge that mirrors the similarity
between vertices connected by that edge. The weight formula, including the color and the motion
information, is defined such that edges between vertices in different components are assigned a
high weight value while vertices in the same component receive a low value.

The implemented formula that takes into account color and motion information can be
expressed as

w = 1 − e
−(

weuc,rgb

σrgb
)2

e
−(

weuc,uv

σuv
)2

, (3.11)

where weuc,rgb and weuc,uv are the similarities of the vertices of the color and the flow image
respectively calculated as Euclidean distance,

weuc,rgb =
√

(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2 and (3.1)

weuc,uv =
√

(u1 − u2)2 + (v1 − v2)2 (3.7)

where r1, g1 and b1 are the values of the red, green and blue fraction and u1 and v1 are the
changes of position in x and y of the first vertex respectively, r2, g2, b2, u2 and v2 are defined
similar for the second vertex, σrgb and σuv define the width of the Gauss-shaped curve and were
set to σrgb = 44 and σuv = 3 (see sec. 3.1.2 and 3.2.3 for details).

According to optical flow images a second edge weight wangle((vi, vj)) dealing with the angle
of the motion vector can be defined. As mentioned in sec. 3.2.3 it can be computed as mean
angle,

wangle((vi, vj)) =
ϕ1 + ϕ2

2
(3.9)

where ϕ1 and ϕ2 are the angles of the two motion vectors connected by that edge, see fig. 3.4.

Adaptive threshold and cluster condition

The definitions of the threshold and the cluster condition are the same as for color or optical
flow images (see sec. 3.1.3 and 3.2.4) and are highlighted in the following paragraph.

The threshold function τ(C) can be calculated as

τ(C) =
k

|C|
, (3.3)

where k is a constant parameter specified by the user and |C| is the size of the component.
The internal difference IntDif(C) is defined as the largest weight within the component,

IntDif(C) = max
e∈C

w(e). (3.4)

The minimum internal difference MIntDif(Ci, Cj) between disjoint components Ci and Cj

is expressed as

MIntDif(Ci, Cj) = min[IntDif(Ci) + τ(Ci), IntDif(Cj) + τ(Cj)]. (3.5)

CHAPTER 3. GRAPH-BASED SEGMENTATION 24

As long as the angle of the motion vector is used a second adaptive threshold is defined for
each component and re-calculated after every joining.

The cluster condition considering only the color information and the magnitude of the motion
vector can be formulated as for the segmentation of the color image

w((vi, vj)) ≤ MIntDif(Ci, Cj) ∧ Ci 6= Cj (3.6)

and is extended in the case that the angle of the motion vector is also considered to:

(ϕ1 − cangle) ≤ wangle((vi, vj)) < (ϕ1 + cangle) ∧

(ϕ2 − cangle) ≤ wangle((vi, vj)) < (ϕ2 + cangle),
(3.10)

where ϕ1 and ϕ2 are the angles of the two motion vectors and cangle defines the tolerance around
ϕ1 and ϕ2, see fig. 3.5.

3.3.4 Algorithm

If the resolution of the color image and the optical flow image differs the larger one is re-sized11.
The segmentation algorithm for the combination of color and optical flow images is the same

as for optical flow images and is explained briefly. In the following it is assumed that the angle
of the motion vector is considered12.

The connected undirected graph G = (V, E) has to be created and the edges have to be
sorted13. Beginning with the smallest edge weight the cluster condition 3.6 and its extension
3.10 are evaluated for each edge. If the equations are satisfied the two components are merged
and the threshold function τ(C), the internal differences IntDif(C) and the minimum internal
difference MIntDiff(Ci, Cj) are re-calculated. An angle calculated as mean value from all
motion vectors that build this component is computed and assigned to that new component. If
the cluster condition or its extension is not satisfied the algorithm continues with the next edge.

Finally a post-process is removing small regions by checking their size and merging them
with one of their adjacent bigger regions. In respect of the angle the smaller component gets
the angle of the bigger one.

The combination yields an output which is finer than the output of the segmentation of the
dense optical flow and rougher than the segmentation output of the color image.

Fig. 3.7 shows an example for a color image together with an segmented dense optical flow
and segmented sparse optical flow image respectively (dense segmentation parameters: angle of
motion vector is ignored, k = 3, min = 100, σrgb = 44, σuv = 3, sparse segmentation parameters:
angle of motion vector is considered, k = 3, min = 5, σrgb = 44, σuv = 3, cangle = 30◦). For
visualization of the segmentation output a color value is assigned to the pixels whereas pixels
of the same component hold the same color value. If the dense optical flow image was used as
one input for the segmentation the result can be illustrated by directly plotting the pixels. If
an sparse optical flow input image was used the edges have to be transformed into the feature
space thus the real pixel coordinates have to be recovered by a back transformation. For better
illustration pixels forming one component in this scatterplot are connected by lines which gives
a set of triangles that are filled.

11Due to inaccuracies at calculation it can happen that the resolution of the computed optical flow image
differs from the color input images (few pixels too many in width and height). The downsizing is implemented
by removing columns (rows) at the end of the line (file). This can cause minor deflections which can be ignored.

12If the angle of the motion vector is ignored the extensions for the cluster condition and the calculation of the
mean angle for the component are invalid.

13In non-decreasing weight order.

CHAPTER 3. GRAPH-BASED SEGMENTATION 25

a) b) c) d)

Figure 3.7: Segmentation output example. a) Color input images at time t and t+dt respectively.
b) Computed dense optical flow for images in a). c) Segmentation output with images in a) and
b) as input. d) Segmentation output of the combination of color and sparse optical flow image.
The conjunction of the color and the optical flow image refines the segmentation output of the
optical flow image and roughs the segmentation output of the color image.

Chapter 4

Comparison and interpretation of

the results

This chapter compares the results of the different segmentation algorithms using different input
image sequences and discusses the results. First, sec. 4.1 analyzes the motions in the used
datasets which helps to interpret the segmentation results. As extension the visualization of the
dense optical flow images is introduced with the color circle in sec. 4.2. Sec. 4.3 and 4.4 discuss
and qualitatively compare the segmentation results of the dense and sparse optical flow input
images respectively using different edge weight formulas. The segmentation results compared
among each other for same edge weight formulas are shown in sec. 4.5 and 4.6. Here the results
are qualitatively as well as quantitatively compared1. Finally, sec. 4.7 briefly highlights the
segmentation output of color and optical flow images during an excursus.

Concerning the segmentation parameters for each dataset the parameters were adjusted for
the first frame to yield the best segmentation result. Using this parameters the rest of the frames
were segmented. It can be assumed that this parameter sets can be used for any un-tested image
sequence with similar content (e.g., same velocity of the objects, settings2, frame-rate, image
quality) because of their high similarity.

4.1 Motion analysis of color input datasets

For a serious comparison between the different segmentation algorithms standard datasets from a
database3 were used. Each dataset there contains eight frames. Additionally an image sequence
from the lab with more than 30 frames was used. All of them are described in the following.

Dataset: Backyard

Motion characterization of the objects (order from left to right), see fig. 4.1:

• Ball: falls down to the ground; motion vector points downwards.

1The quantitative comparison was only drawn for the datasets Backyard and Box06.
2For example if the set of parameters was found for a road scenario it can be used for any other road scenario.
3Optical flow evaluation database of the Middlebury Computer Vision Page,

http://vision.middlebury.edu/flow/data/.

26

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 27

a) b) c) d)

e) f) g) h)

Figure 4.1: Dataset Backyard from the optical flow evaluation database. Camera and objects
move. a) to h) Subsequent frames.

• Children in the left: jump into the air; a closer look shows that the motion vector of the
bodies points upwards and of the legs to the left and the right respectively for the first
frames.

• Child in the middle: walks from right to left; the motion vector points to the left.

• Child in the right: turns from left to right; the motion vector points to the right.

• Camera: moves slowly from left to right; the motion vector points to the left.

Because the camera moves in this sequence the total motion is a superposition of the move-
ment of the objects itself and the camera.

Dataset: Dumptruck

Motion characterization of the objects (order from top to bottom), see fig. 4.2:

• Truck on the top: coasts from right to left; motion vector points to the left.

• Both cars in the middle: drive from left to right; motion vector points to the right.

• Car in the front: coasts into the image; motion vector points almost perpendicular to the
drawing plane. A projection to the axis (assume that x and y span the drawing plane, z

is perpendicular) yields a very small component in x- and y-direction.

• Camera: stands still.

Dataset: Box06

This dataset is an image sequence from the lab and consists of more frames than the dataset
Backyard and Dumptruck. The image quality is worse than of the images from the database.
For lack of space only eight images are shown in fig. 4.3. Its motion can be characterized as the
following:

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 28

a) b) c) d)

e) f) g) h)

Figure 4.2: The dataset Dumptruck from the optical flow evaluation database. Camera stands
still, objects move. a) to h) Subsequent frames.

• Box of the cookies: In the images displayed here the hand lifts the box. Its trajectory runs
upwards following a circular path (that is more defined in the following frames).

• Camera: stands still.

4.2 Visualization of dense optical flow images

An introduction into the color representation of the computed dense optical flow image is given
in the following.

A dense optical flow image is a binary image that contains motion vectors with certain
magnitude and direction. A binary image can not be displayed in general. To make it visible a
color mapping can be used. The color represents the direction and the intensity the magnitude
of the motion vector. Fig. 4.4 shows the color circle that is used for definition. The less the
saturation the smaller the magnitude. Black regions in the optical flow image correspond to
motion vectors with evanescent magnitude. In those regions the magnitude is very small and
not necessarily zero. This means that an angle for the motion vector can be computed that
holds a random value in fact. This has to be handled by the segmentation algorithm.

Especially if the dense optical flow image contains regions where the optical flow can not
be discovered correctly it can be helpful to have a closer look to the components of the flow.
With the modified sample program from [ZPB07], as introduced in sec. 3.2, those images can
be plotted as grey-scale images. For the u-component white and black represent a movement
to the right and left, respectively. For the component v white and black represent movement
downwards and upwards, respectively. Fig. 4.5 shows an example for the dense optical flow and
its components computed for the first two frames of the dataset Backyard.

4.3 Dense optical flow images using different weight formulas

In this section the datasets described in sec. 4.1 were used to create segmentation results for
different parameters. Concerning the edge weight that deals with the magnitude of the motion

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 29

a) b) c) d)

e) f) g) h)

Figure 4.3: The dataset Box06 from the lab. Camera stands still, objects move in linear and
slightly circular motion. a) to h) Subsequent frames.

Figure 4.4: Color circle used to display the angle and magnitude of a motion vector. The color
value represents the direction (=angle) and the intensity the magnitude.

a)

b) c) d)

Figure 4.5: a) First two frames of the dataset Backyard. b) Computed dense optical flow for
images in a). c) Component u of the dense optical flow. White and black represent a movement
to the right and left, respectively. d) Component v of the dense optical flow. White and black
represent movement downwards and upwards, respectively.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 30

a) b) c)

d) e)

f) g)

Figure 4.6: a) and b) First two frames of the dataset Backyard. c) Computed dense optical flow
for images in a) and b). d) Segmented output (Euclidean distance, without angle). e) Segmented
output (Euclidean distance, with angle). Marked deflection encircled. Error caused by the
segmentation due to moderate flow computation encircled. f) Segmented output (Exponential
function, without angle). g) Segmented output (Exponential function, with angle).

vector both the Euclidean distance and the exponential function were used, see sec. 3.2.3. If
the angle of the motion vector was considered it was calculated as mean angle of the involved
vectors.

The results of each dataset are qualitatively compared.

4.3.1 Dataset Backyard

Fig. 4.6 shows the first two color frames (a, b) that were used to calculate the dense optical
flow4 (c). Fig. 4.6 (d-g) show the resulting output images if the dense optical flow was used as
input for segmentation.

Fig. 4.6 c) shows the computed dense optical flow image. Because in this dataset both the
objects and the camera move the resulting motion vectors are a superposition of the objects
movement and the movement of the camera5. The flow computation is inaccurate near object
borders or for objects without texture, e.g. the ball in the upper left or the legs of the children
in the left.

To generate the results the following sets of segmentation parameters were applied:

4Because the optical flow computation expects grey-scale images the input images from fig. 4.6 (a-b) were
converted first.

5The theory concerning this superposition was introduced in sec. 2.1.2, Optical flow in motion analysis.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 31

• Fig. 4.6 d): edge weight = Euclidean distance, angle of motion vector is ignored, k = 110,
min = 50.

• Fig. 4.6 e): edge weight = Euclidean distance, angle of motion vector is considered,
k = 110, min = 50, cangle = 20◦.

• Fig. 4.6 f): edge weight = Exponential function, angle of motion vector is ignored, k = 3,
min = 50, σuv = 3.

• Fig. 4.6 g): edge weight = Exponential function, angle of motion vector is considered,
k = 3, min = 50, σuv = 3, cangle = 20◦.

Comparison: Euclidean distance, with/without motion direction, fig. 4.6 d) and e)

In fig. 4.6 d) all (moving) objects from the input image are clustered together to form one
component. This clustering is caused by the similar magnitude of the motion vectors of the
children. By considering the angle, fig. 4.6 e), this component splits into parts as desired.

Note the area of the legs of the leftmost children in fig. 4.6 e): As can be seen in fig. 4.6 c)
the direction of the motion is different for the right legs and the rest of the body. Thus the legs
represent their own component. Especially the left legs should build a separate component too
because the color and thus the direction is different from the right legs. This improper behavior is
most likely caused by the segmentation algorithm in combination with the edge weight calculated
as Euclidean distance. Using the exponential function for the weight calculation this effect
disappears, see fig. 4.6 g).

Comparison: Exponential function, with/without motion direction, fig. 4.6 f) and
g)

Compared to the weight computed as Euclidean distance, see fig. 4.6 d), here the results in fig.
4.6 f) already represents the objects from the input even if the angle of the motion vector is
ignored. This means that the exponential function in combination with the used parameters is
more sensitive. Tests showed that slightly altering the parameters k or σuv yield totally different
segmentation output6.

Because of the similar magnitude of the motion vectors of the leftmost children the body and
the legs are clustered to one component in fig. 4.6 f) and split, because of the different directions
in fig. 4.6 g). Additionally, the left legs of the leftmost children form their own component.

Comparison: Euclidean distance and exponential function, with motion direction,
fig. 4.6 e) and g)

While the segmentation based on the edge weight calculated as Euclidean distance appears to
have a lower performance in areas where the optical flow computation is ambiguous (see the area
of the left legs of the leftmost children in fig. 4.6 c)) the weight formula using the exponential
function gives better results.

6If the weight is calculated as Euclidean distance a small adjustment of those parameters does not have the
same strong effects.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 32

Summary

For this specific dataset the segmentation output using the exponential function for the edge
weight calculation yields better results, especially in areas where the flow calculation is moderate
or bad. However, the Euclidean distance has the advantage over the exponential function that
the adjustment of the value k is easier to handle and thus it is preferable.

4.3.2 Dataset Dumptruck

Fig. 4.7 shows the used input frames (a-b), the computed dense optical flow (c) and the seg-
mentation results (d-g).

Because in this image sequence the camera stands still the background of this image is
colored black in the optical flow image in fig. 4.7 c). The magnitude of the computed motion
vector is not exactly zero in this region but very small (e.g., < 0.003). Due to this non-vanishing
magnitude an angle can be calculated for this motion vector witch holds a random value. The
segmentation algorithm would cluster those non-zero motion vectors with angels to non-existing
components. The workaround is the limitation of the magnitude. This is valid because it can
be assumed that a computation of motion vectors with this accuracy is not possible. If it is
smaller than a certain value both the magnitude and the angle will be set to zero. Within an
existing component the magnitude of the motion vector can also vary slightly. If this magnitude
is smaller than the threshold for the limitation the information of this pixel is removed. This
causes a splitting of existing objects into several regions. See chapter 6.2 for improvements to
handle this disadvantage.

For the segmentation following parameter sets were used:

• Fig. 4.7 d): edge weight = Euclidean distance, angle of motion vector is ignored, k = 10,
min = 450.

• Fig. 4.7 e): edge weight = Euclidean distance, angle of motion vector is considered,
magnitude limitation = 0.0075, k = 10, min = 450, cangle = 20◦.

• Fig. 4.7 f): edge weight = Exponential function, angle of motion vector is ignored, k = 3,
min = 50, σuv = 2.

• Fig. 4.7 g): edge weight = Exponential function, angle of motion vector is considered,
magnitude limitation = 0.003, k = 3, min = 250, σuv = 2, cangle = 20◦.

Because of the very small magnitude of the motion vectors of some of the cars the value k, used
for the calculation of the threshold, had to be chosen very small. Since a small value of k causes
many components the value min, used for the post-process to remove small components, had to
be set accordingly high.

Comparison: Euclidean distance, with/without motion direction, fig. 4.7 d) and e)

In the segmentation output of fig. 4.7 d) and e) the form of the four major objects can be seen.
They are represented as components split into several parts. Especially the car in the front and
the truck in the back, that have very small motion vectors, are split inside their areas in fig.
4.7 e). This splitting is caused by the very restrictive limitation of the magnitude of the motion
vector.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 33

a) b) c)

d) e)

f) g)

Figure 4.7: a) and b) First two frames of the dataset Dumptruck. c) Computed dense optical
flow for images in a) and b). d) Segmented output (Euclidean distance, without angle). Marked
deflection encircled. e) Segmented output (Euclidean distance, with angle). Marked deflection
encircled. f) Segmented output (Exponential function, without angle). g) Segmented output
(Exponential function, with angle).

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 34

Note the area of the windows of the left car in the middle (encircled in fig. 4.7 d) and e)).
Those parts are clustered with the adjacent vehicles. This is because of the bad computation
of the flow. Here the segmentation algorithm creates components that are very small and are
removed by the post-process by merging them with the adjacent bigger areas.

Comparison: Exponential function, with/without motion direction, fig. 4.7 f) and
g)

For the edge weight formula using the exponential function no parameter set could be found
that makes the car in the front visible. A closer look to the movement of this car shows that
the motion vector points almost perpendicular to the drawing plane. The components in x-
and y-direction of the motion vector are very small7. The calculated weight is very small and is
clustered with the background8.

Also the splitting inside the components and frazzles caused by the limitation of the algorithm
can be seen in the cars in the middle.

Comparison: Euclidean distance and exponential function, with motion direction,
fig. 4.7 e) and g)

Here the usage of the exponential function has the disadvantage that the segmentation output
does not contain all objects from the input image. The edge weight calculated using the Eu-
clidean distance yields the better results for image sequences of this type (e.g., motion vectors
that point into the drawing plane, very slow motions in general).

Summary

For objects with motion vectors that point almost perpendicular to the drawing plane the
projection to the axis yields very small components for the x- and y-direction9. The edge weight
calculated as Euclidean distance yields definitely better results.

4.3.3 Dataset Box06

Fig. 4.8 shows the first two color images (a, b) and the computed dense optical flow (c). The
segmentation results for different edge weights and angle considerations are shown in (d-g).

Following sets of parameter were used to generate the segmentation results:

• Fig. 4.8 d): edge weight = Euclidean distance, angle of motion vector is ignored, k = 60,
min = 100.

• Fig. 4.8 e): edge weight = Euclidean distance, angle of motion vector is considered,
magnitude limitation = 0.07, k = 60, min = 100, cangle = 20◦.

• Fig. 4.8 f): edge weight = Exponential function, angle of motion vector is ignored, k = 2,
min = 100, σuv = 2.

7The projection of this motion vector to the axis of a three-dimensional plane yields very small components
for x and y and a large component for z (x and y span the drawing plane, z is perpendicular).

8Tests showed that the disappearance of the car in the front is not caused by the limitation of the magnitude.
9This assumes that x and y span the drawing plane.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 35

a) b) c)

d) e)

f) g)

Figure 4.8: a) and b) First two frames of the image sequence Box06 from the lab. c) Com-
puted dense optical flow for images in a) and b). d) Segmented output (Euclidean distance,
without angle). e) Segmented output (Euclidean distance, with angle). f) Segmented output
(Exponential function, without angle). g) Segmented output (Exponential function, with angle).

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 36

• Fig. 4.8 g): edge weight = Exponential function, angle of motion vector is considered,
magnitude limitation = 0.001, k = 2, min = 100, σuv = 2, cangle = 20◦.

Note that the camera does not move thus without the workaround, explained in sec. 4.3.2,
the segmentation output would contain components in the background that do not exist. The
magnitude of the motion vectors had to be limited. The magnitude and the angle of the vector
are set to zero if its magnitude is smaller than the limitation value.

Comparison: Euclidean distance, with/without motion direction, fig. 4.8 d) and e)

The dense optical flow in fig. 4.8 c) shows a movement upwards. The form of the box together
with the hand can be recognized quite good. Beside of the box the dense optical flow shows
motion vectors computed for the shadows.

The frazzled object boundary in fig. 4.8 e) is caused by the limitation of the magnitude.
Anyway, the form of the component is the same like in fig. 4.8 d). Here both results are the
same independently from the angle. A difference can be expected if the scene contains at least
two objects with similar velocity but in different directions. Ignoring the angles would cluster
those components. They would not be split until the angle is considered. In general, for a more
complex scene the segmentation using the direction information of the motion vector yields the
better results.

Comparison: Exponential function, with/without motion direction, fig. 4.8 f) and
g)

Calculating the edge weight with the exponential function makes the segmentation more sensi-
tive. For example, the object border is more split in fig. 4.8 f) as well as in g). The form is
similar to the one in the input image.

Comparison: Euclidean distance and exponential function, with motion direction,
fig. 4.8 e) and g)

Fig. 4.8 g) contains more details, especially at the object border, as fig. 4.8 e), caused by
the limitation of the magnitude. The forms of both segmentation results corresponds with the
objects in the input image. Both edge weight formulas appear to be suitable for segmentation.

Summary

The components in the results correspond quite good with the objects in the input image. The
qualitative comparison yields the result that both weight formulas create components that are
frazzled at the object border. Whereas the weight computed as Euclidean distance in fig. 4.8 e)
creates less deflections.

4.4 Sparse flow images using different weight formulas

In this section the segmentation output of sparse optical flow images for different edge weight
formulas (Euclidean distance and exponential function, see sec. 3.2.3) are shown and qualita-
tively compared. If the angle was considered, it was calculated as mean angle of the motion
vectors connected by that edge. The image sequences from sec. 4.1 were used as inputs.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 37

a) b) c)

d) e)

f) g)

Figure 4.9: a) and b) First two frames of the dataset Backyard. c) Computed dense optical flow
for images in a) and b). d) Segmented sparse optical flow output (Euclidean distance, without
angle). e) Segmented sparse optical flow output (Euclidean distance, with angle). f) Segmented
sparse optical flow output (Exponential function, without angle). g) Segmented sparse optical
flow output (Exponential function, with angle).

4.4.1 Dataset Backyard

Fig. 4.9 shows the segmentation inputs and corresponding results. The first two color frames
of the sequence are shown in fig. 4.9 (a-b). The computed dense optical flow for those input
images are shown for the sake of completeness in fig. 4.9 c)10. Fig. 4.9 (d-g) show the results of
the segmentation for different parameter sets. As input for the sparse optical flow segmentation
acted the image sequence from fig. 4.1.

For the calculation of the sparse optical flow the corner points of an image were extracted.
In case of objects that do not have a texture almost no corner points within the objects can
be extracted. In this image sequence this is the case for the ball and the legs of the leftmost
children. In most cases corner points for objects without texture can be extracted at the object
boundary at the best. The assignment of those points to the object itself or its neighbor is
difficult. If the corner points are assigned to the neighbor it can happen that the object itself
disappears or parts of it are merged with the adjacent regions in the segmentation output.

To generate the results following segmentation parameters were used:

• Fig. 4.9 d): edge weight = Euclidean distance, angle of motion vector is ignored, k = 90,
min = 5.

10The dense optical flow image highlights the components that should be included in the segmented sparse
optical flow image.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 38

• Fig. 4.9 e): edge weight = Euclidean distance, angle of motion vector is considered, k = 90,
min = 5, cangle = 20◦.

• Fig. 4.9 f): edge weight = Exponential function, angle of motion vector is ignored, k = 3,
min = 5, σuv = 3.

• Fig. 4.9 g): edge weight = Exponential function, angle of motion vector is considered,
k = 3, min = 5, σuv = 3, cangle = 20◦.

Comparison: Euclidean distance, with/without motion direction, fig. 4.9 d) and e)

All objects from the input image are represented as components in the segmentation output.
The right leg of the leftmost child are clustered together with the body in fig. 4.9 d) because

the magnitude of the motion vector is similar. If the direction is considered it forms its own
component in fig. 4.9 e). This was already the case in fig. 4.6 d) and e).

The left legs of the leftmost children get lost anyway. This is caused by the corner points
extracted only at the object border that are assigned to the background. The grid is spanned
in front of the legs.

Comparison: Exponential function, with/without motion direction, fig. 4.9 f) and
g)

Here the results differ slightly from the inputs. For example, the head of the leftmost child is
separated as one component. The dense optical flow shows that it should be clustered with
the body. Here the same effect as for the segmentation of the dense optical flow using the
exponential function (sec. 4.3.1) appears.

Comparison: Euclidean distance and exponential function, with motion direction,
fig. 4.9 e) and g)

Except the head of the leftmost child in fig. 4.9 g) that is split into its own component both
results are equal.

Summary

Both segmentation results represent the objects from the input quite good. Even if the leftmost
children are split into two components an additional post-process is needed anyway. The ex-
tracted corner points and thus the form of the segmentation results fit good to the form of the
real objects. For image sequences where the objects and the camera move both edge weights
yield good results.

4.4.2 Dataset Dumptruck

Fig. 4.10 (a-b) show the first two frame of the image sequence. In fig. 4.10 c) the computed
dense optical flow of the images in fig. 4.10 (a-b) is shown. The images fig 4.10 (d-e) show
the segmented output for the edge weight calculated as Euclidean distance with and without
consideration of the motion direction. Fig. 4.10 (f-g) show the output if the exponential function
is used. The inputs for the segmented sparse optical flow images are the color images in fig. 4.2.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 39

a) b) c)

d) e)

f) g)

Figure 4.10: a) and b) First two frames of the dataset Dumptruck. c) Computed dense optical
flow for images in a) and b). d) Segmented sparse optical flow output (Euclidean distance,
without angle). e) Segmented sparse optical flow output (Euclidean distance, with angle). f)
Segmented sparse optical flow output (Exponential function, without angle). g) Segmented
sparse optical flow output (Exponential function, with angle).

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 40

As already mentioned in sec. 4.3.2 due to the non-moving camera the computed motion
vectors for the background should be zero but are very small in fact. The limitation of the
magnitude was also applied here. Those limitation causes splitting of the components, as it can
be seen in fig. 4.10 e) and g), e.g., for the background or the truck in the back.

Following sets of parameters were used for the segmentation:

• Fig. 4.10 d): edge weight = Euclidean distance, angle of motion vector is ignored, k = 30,
min = 3.

• Fig. 4.10 e): edge weight = Euclidean distance, angle of motion vector is considered,
magnitude limitation = 0.2, k = 30, min = 10, cangle = 20◦.

• Fig. 4.10 f): edge weight = Exponential function, angle of motion vector is ignored, k = 3,
min = 5, σuv = 2.

• Fig. 4.10 g): edge weight = Exponential function, angle of motion vector is considered,
magnitude limitation = 0.005, k = 3, min = 10, σuv = 2, cangle = 20◦.

Comparison: Euclidean distance, with/without motion direction, fig. 4.10 d) and
e)

The cars in the middle in fig. 4.10 d) as well as in e) are split into two components as it is the
case in fig. 4.10 c). The splitting of the background and the truck in the back in fig. 4.10 e) is
caused by the limitation of the magnitude (see sec. 4.3.2).

Comparison: Exponential function, with/without motion direction, fig. 4.10 f) and
g)

In fig. 4.10 f) the truck in the back is split into several components while it should be represented
as one component. This is caused by the segmentation parameters. With the used parameters
the best segmentation output was achieved. The car in the front is represented as one component.
As shown in fig. 4.7 f) or g) the segmented dense optical flow image could not detect the car in
the front. The cars in the middle concerning their splitting as well as their forms look good. If
the motion direction is considered (fig. 4.10 g)) the background is split due to the magnitude’s
limitation (see sec. 4.3.2). Additionally parts of the car in the front and the truck in the back
are clustered together that should not be the case.

Comparison: Euclidean distance and exponential function, with motion direction,
fig. 4.10 e) and g)

The segmentation using the Euclidean distance for edge weight calculation appears to has the
better result (fig. 4.10 e)) than the segmentation using the exponential function. Objects from
the input are split into several components but they can be merged by a post-process. The
output in fig. 4.10 g) merges wrong components (parts of the truck in the back and of the car in
the front). Even if the segmentation parameters are adjusted a better segmentation result can
not be achieved.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 41

a) b) c)

e) f)

g) h)

d)

Figure 4.11: a) and b) First two frames of the image sequence Box06 from the lab. c) Computed
dense optical flow for images in a) and b). d) v-component of the dense optical flow in c). e)
Segmented sparse optical flow output (Euclidean distance, without angle). f) Segmented sparse
optical flow output (Euclidean distance, with angle). g) Segmented sparse optical flow output
(Exponential function, without angle). h) Segmented sparse optical flow output (Exponential
function, with angle).

Summary

For images sequences with moving and non-moving objects the segmentation of sparse optical
flow images yields better results if the edge weight is calculated as Euclidean distance. The usage
of the exponential function causes segmentation results with more details but that impairs the
result.

4.4.3 Dataset Box06

Fig. 4.11 shows the first two color images (a, b) and the computed dense optical flow (c). The
segmentation results for different edge weights and angle considerations are shown in (d-g).

Here the camera stands still which makes the usage of the workaround for limitation of the
magnitude necessary. This limitation causes splitting of components that belong together. For
an in-depth explanation of the workaround see sec. 4.3.2.

For the segmentation following sets of parameter were used:

• Fig. 4.11 d): edge weight = Euclidean distance, angle of motion vector is ignored, k = 10,
min = 5.

• Fig. 4.11 e): edge weight = Euclidean distance, angle of motion vector is considered,
magnitude limitation = 0.5, k = 10, min = 5, cangle = 20◦.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 42

• Fig. 4.11 f): edge weight = Exponential function, angle of motion vector is ignored, k = 3,
min = 5, σuv = 2.

• Fig. 4.11 g): edge weight = Exponential function, angle of motion vector is considered,
magnitude limitation = 0.05, k = 3, min = 5, σuv = 2, cangle = 20◦.

Comparison: Euclidean distance, with/without motion direction, fig. 4.11 e) and
f)

The non-moving objects (background, table and boxes in the right) are represented as one
component in fig. 4.11 e) while they are split in fig. 4.11 f). Additionally in fig. 4.11 f) the
shadow on the right side of the box as well as the fingers (as far as corner points are available)
build their own component. This splitting is caused by the limitation of the magnitude (see sec.
4.3.2). The segmentation output in fig. 4.11 f) was the best one that could be achieved with
the used parameter set.

In both results the hand is separated from the box. A closer lock to the u- and v-component,
see especially fig. 4.11 d) for the v-component, of the dense optical flow shows that the compo-
nents of the motion vector for the box and the hand are different. Therefore also the calculation
of the angles for these objects is different and causes the splitting by consideration of the angle.

Because of the missing texture of the hand not enough corner points could be extracted to
create a component with a form that looks more similar to the original one. This is a known
problem but does not matter because in the overall vision framework a skin color detector is
used that ignores skin colored regions and their unstable features11.

Comparison: Exponential function, with/without motion direction, fig. 4.11 g) and
h)

Fig. 4.11 h) shows the same high degree of splitting as 4.11 f). Here it is also caused by the
limitation of the motion vector’s magnitude . The segmentation output in fig. 4.11 g) looks quite
good so it can be assumed that with an improved limitation-algorithm also by consideration of
the angle the results will look better.

Comparison: Euclidean distance and exponential function, with motion direction,
fig. 4.11 e) and g)

In this special case12 the segmentation results of fig. 4.11 e) and g) are compared. Both results
contain the the same moving objects as the input. The very small different in the motion vectors
of the box and the hand can be used to split them into two components.

Summary

Both formulas for calculating the edge weights appear to yield very good segmentation results.
To find out which formula is the better one a segmentation over several frames has to be made.

11For example, if a robot grasps at an object it knows its hand and can remove it from the image that has to
be segmented.

12One object (hand and box) move in one direction. The consideration of the angle does not change the
segmentation result.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 43

4.5 Dense and sparse flow images using Euclidean distance

In this section the datasets from sec. 4.1 were used. While the parameters for the segmentation
of the first dense optical flow and sparse optical flow images respectively were chosen such that
the resulting segmentation output was best, those parameter sets were used for the segmentation
of the remaining flow images. In the following the segmentation results for dense and sparse
optical flow images for both edge weight formulas considering the direction of the motion vector
are compared.

For details of the used parameter sets for the segmentation of dense optical flow files please
refer to the appropriate dataset in sec. 4.3. For the segmentation of sparse optical flow images
the parameters from the appropriate dataset in 4.4 were used.

4.5.1 Dataset Backyard

Fig. 4.12 shows the results of the segmentation of dense optical flow and sparse optical flow
images. The images in fig. 4.12 a) are the inputs for the dense optical flow segmentation while
the inputs for the sparse optical flow segmentation are the color images from fig. 4.1.

Qualitative comparison

Here the results of the segmentation of dense optical flow and sparse optical flow images were
qualitatively compared with the computed dense optical flow input image and described in
the following table. The first column contains the items that were checked. The second and
third column contain the comparison results between the output images in fig. 4.12 b) and c)
respectively and the input image in fig. 4.12 a).

Item of comparison Segm. dense OF Segm. sparse OF

All components exist 6/7 6/7
1 component lost 1/7 1/7
2 components merged into 1 1/7 1/7
1 components split in several parts 3/7 4/7

Especially the comparison of the output from the segmentation of the sparse optical flow
with the computed dense optical flow is allowed because the latter acts as a guideline. As already
mentioned, in the sparse optical flow image the motion vectors are computed for corner points.
For regions with missing texture (e.g., the legs in this example) the extraction of corner points
is difficult and a known problem. For this region corner points are extracted basically for the
border and not for the object body thus the object itself can get lost. However, to draw a
reasonable comparison those regions in the image are omitted. In particular this is the ball and
the legs of the leftmost children.

The segmentation results are very similar. While in fig. 4.12 b) the component in frame
three gets lost it is contained in the corresponding sparse segmentation output, fig. 4.12 c). On
the other hand the component that get lost in frame seven in fig. 4.12 c) exists in fig. 4.12 b).
Also the behavior concerning splitting is similar.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 44

a) b) c)

1)

2)

3)

4)

5)

6)

7)

Figure 4.12: Segmentation results of dense and sparse optical flow images. Edge weight was
calculated as Euclidean distance and the angle was considered. a) Computed dense optical flow
images from the dataset Backyard for the input images in fig. 4.1. b) Segmented dense optical
flow after using images from a) as input. c) Segmented sparse optical flow after converting
images from fig. 4.1 into grey-scale images and computing the sparse optical flow used as input
for the segmentation.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 45

Quantitative comparison

For this comparison frame number two in fig. 4.12 was analyzed. The legs of the left children
and the ball were not considered. The three objects from the color image and the corresponding
components from the dense and sparse optical flow image were cut out. A degree of matching
between each object and its corresponding component was calculated using following formula:

Match =
Icol(Ci) ∧ Iflo(Ci)

Icol(Ci) ∨ Iflo(Ci)
· 100%, (4.1)

where Icol(Ci) is a binary image that contains one object from the color image, Iflo(Ci) is
a binary image that contains the corresponding component from the segmented optical flow
image. In the binary images the pixels forming the object or component respectively have the
value 1 (other pixels have zero value). The logic operation ∧ (conjunction) is applied on every
pixel in the images and the result value is 1 if both pixels have the value 1, otherwise zero. The
logic operation ∨ (disjunction) is also applied on every pixel and the result value is 1 if at least
one pixel has the value 1, otherwise zero. The number of pixels with the value 1 within the
images are counted and the ratio is computed.

To determine the information about the segmentation performance for the whole frame the
mean value of the partial results is calculated.

The following table summarizes the results. The first column shows the object that was
selected. The second and third column show the degree of matching for the dense and sparse
optical flow image, respectively.

Object of comparison Match (dense OF) Match (sparse OF)

children, left 77.6% 74.1%
child, middle 61.4% 58.4%
child, right 72.9% 75.6%
image 70.6% 69.4%

Summary

The segmentation performance of dense and sparse optical flow images yield equally satisfactory
results. However, the latter implementation is preferable because of its lower demand for com-
putational power. The ideal value of 100% is never reached because only parts of the compared
object move.

4.5.2 Dataset Dumptruck

Fig. 4.13 a) shows the dense optical flow images. The corresponding segmentation results are
shown in fig. 4.13 b). The results of the segmentation of sparse optical flow images can be seen
in fig. 4.13 c).

Qualitative comparison

For the comparison the splitting caused by the limitation of the magnitude was ignored. It can
be distinguished from the splitting caused by a small value of k because the borders are frazzled.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 46

a) b) c)

1)

2)

3)

4)

5)

6)

7)

Figure 4.13: Segmentation results of dense and sparse optical flow images. Edge weight was
calculated as Euclidean distance and the angle was considered. a) Computed dense optical flow
images from the dataset Dumptruck for the input images in fig. 4.2. b) Segmented dense optical
flow after using images from a) as input. c) Segmented sparse optical flow after converting
images from fig. 4.2 into grey-scale images and computing the sparse optical flow used as input
for the segmentation.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 47

The results of a qualitative comparison of the segmented dense optical flow images and
segmented sparse optical flow images respectively with the dense optical flow image are given
in the next table. The first column contains the items that were checked. The second and
third column contain the comparison results between the output images in fig. 4.13 b) and c)
respectively and the input image in fig. 4.13 a).

Item of comparison Segm. dense OF Segm. sparse OF

All components exist 7/7 7/7
1 component lost 0/7 0/7
2 components merged into 1 0/7 3/7
1 components split in several parts 7/7 6/7

Unfortunately almost all components, that should represent one object from the input image,
are split into several parts (note, that the splitting caused by the algorithm is ignored). This
is caused by the very small value for k, which is necessary to make the car in the front visible.
In fig. 4.13 b) the cars in the middle are split into several parts though the flow computation
looks good. The truck and the car in the front form one component each. In fig. 4.13 c) it is
the other way around. The cars in the middle form their own component as in the dense optical
flow image while the other vehicles are broken apart.

Summary

This image sequence is difficult to analyse because of the slow motions of the objects. The
segmentation of both dense and sparse optical flow images yield similar results. From the object
detection point of view the sparse optical flow image is preferable because its output is less
detailed than the segmented dense optical flow.

4.5.3 Dataset Box06

The dense optical flow images used as one input for the segmentation are shown in fig. 4.14 a).
The corresponding results can be seen in fig. 4.14 b). From the input images in fig. 4.3 the
sparse optical flow was computed and segmented. Those results are shown in fig. 4.14 c).

Different to the datasets Backyard and Dumptruck here the results for the segmentation
ignore the direction of the motion vector. If the angle is considered the workaround for the lim-
itation of the smallest magnitude is necessary. This limitation causes a splitting of components
that makes the evaluation of the segmentation results quite difficult. In this image sequence
the moving objects move into the same direction. Additionally the segmentation of the dense
optical flow and sparse optical flow used the same parameter set even if the angle was considered
or not. So the results are the same and this justifies the approach to compare the results with
ignored direction information of the motion vector.

Qualitative comparison

For the qualitative comparison of the segmentation results in fig. 4.14 b) the dense optical flow
images were used. The segmentation results of fig. 4.14 c) were compared with the color images
in fig. 4.3.

This image sequence contains hundreds of color and optical flow images. The optical flow
computed for eight subsequent frames of them are shown in fig. 4.14 a).

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 48

a) b) c)

1)

2)

3)

4)

5)

6)

7)

Figure 4.14: Segmentation results of dense and sparse optical flow images. Edge weight was
calculated as Euclidean distance and the angle was ignored. a) Computed dense optical flow
images from the dataset Box06 for the input images in fig. 4.3. b) Segmented dense optical flow
after using images from a) as input. c) Segmented sparse optical flow after converting images
from fig. 4.3 into grey-scale images and computing the sparse optical flow used as input for the
segmentation.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 49

Following table holds the results of the comparison. The first column contains the items that
were checked. The second column contains the comparison results between the output images
in fig. 4.14 b) and the input image in fig. 4.14 a). Column three contains the results between
images in fig. 4.14 c) and input images in fig. 4.3.

Item of comparison Segm. dense OF Segm. sparse OF

All components exist 7/7 7/7
1 component lost 0/7 0/7
2 components merged into 1 7/7 0/7
1 components split in several parts 0/7 3/7

The form of both segmentation results look good. The segmented sparse optical flow has the
advantage that each moving object from the input image is represented as a single component
in the output.

Quantitative comparison

For this analysis frame number two in fig. 4.14 was observed. The hand was not considered
for this comparison. The box from the color image and the corresponding component from the
dense and sparse optical flow image were cut out. The degree of matching was calculated using
eq. 4.1.

The following table shows the results. The first column indicates the object that was selected.
The second and third column show the degree of matching for the dense and sparse optical flow
image, respectively.

Object of comparison Match (dense OF) Match (sparse OF)

box=image 76.6% 88.9%

Summary

While the computed dense optical flow shows that the box and the surrounding shadow are
defined as one object, the corner points extracted for the sparse optical flow computation define
only the box. Thus the segmentation result of the sparse optical flow image yields the clearly
better result. Since the object borders are only approximated the ideal value of 100% is never
reached.

4.6 Dense and sparse flow images using exponential function

4.6.1 Dataset Backyard

The results of the segmentation of dense optical flow and sparse optical flow images can be seen
in fig. 4.15 b) and c) respectively. Fig. 4.15 a) shows the computed dense flow images that were
the inputs for the segmentation of the dense optical flow. The color images in fig. 4.1 were the
inputs for the sparse flow segmentation.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 50

a) b) c)

1)

2)

3)

4)

5)

6)

7)

Figure 4.15: Segmentation results of dense and sparse optical flow images. Edge weight was
calculated as exponential function and the angle was considered. a) Computed dense optical
flow images from the dataset Backyard for the input images in fig. 4.1. b) Segmented dense
optical flow after using images from a) as input. c) Segmented sparse optical flow after converting
images from fig. 4.1 into grey-scale images and computing the sparse optical flow used as input
for the segmentation.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 51

Qualitative comparison

The following table shows the results of the qualitative comparison between the segmented
dense optical flow and segmented sparse optical flow images respectively and the computed
dense optical flow input images. The first column of the table contains the items that were
checked while the second and third column contain the comparison results between the output
images in fig. 4.15 b) and c) respectively and the input image in fig. 4.15 a).

Item of comparison Segm. dense OF Segm. sparse OF

All components exist 6/7 7/7
1 component lost 1/7 0/7
2 components merged into 1 0/7 1/7
1 components split in several parts 3/7 4/7

As already mentioned in sec. 4.5.1 because a sparse optical flow is computed for corner
points in an image especially regions in the image without corner points have to be omitted for
this comparison. In particular this is the ball and the legs of the leftmost children.

The segmentation results are very similar. One difference is the missing component in frame
three of of fig. 4.15 b) which exists in c). Also the splitting behavior is similar.

Quantitative comparison

In this inspection the legs of the left children and the ball were not considered. The three objects
from the color image and the corresponding components from the dense and sparse optical flow
image were cut out from frame number two in fig. 4.15. For the calculation of the degree of
matching eq. 4.1 was used. The overall segmentation performance for the whole frame was
calculated as mean value of the partial results.

The following table summarizes the results. The first column shows the object that was
selected. The second and third column show the degree of matching for the dense and sparse
optical flow image respectively.

Object of comparison Match (dense OF) Match (sparse OF)

children, left 79.2% 69.8%
child, middle 61.8% 58.4%
child, right 76.6% 75.6%
image 72.5% 67.9%

Summary

Here, the segmentation of the dense optical flow is slightly better than the segmentation of the
sparse optical flow. Anyway, the ideal value of 100% is not reached.

4.6.2 Dataset Dumptruck

The segmentation inputs and their results can be seen in fig. 4.16. The corresponding segmen-
tation results of the dense optical flow images (fig. 4.16 a)) can be seen in fig. 4.16 b). The
segmentation results in fig. 4.16 c) used the images from fig. 4.2 as input.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 52

a) b) c)

1)

2)

3)

4)

5)

6)

7)

Figure 4.16: Segmentation results of dense and sparse optical flow images. Edge weight was
calculated as exponential function and the angle was considered. a) Computed dense optical
flow images from the dataset Dumptruck for the input images in fig. 4.2. b) Segmented dense
optical flow after using images from a) as input. c) Segmented sparse optical flow after converting
images from fig. 4.2 into grey-scale images and computing the sparse optical flow used as input
for the segmentation.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 53

Qualitative comparison

The following table shows the results of the qualitative comparison between the dense optical
flow and sparse optical flow images respectively and the computed dense optical flow input
images. The first column of the table contains the items that were checked while the second and
third column contain the comparison results between the output images in fig. 4.16 b) and c)
respectively and the input image in fig. 4.16 a).

Item of comparison Segm. dense OF Segm. sparse OF

All components exist 0/7 5/7
1 component lost 7/7 2/7
2 components merged into 1 0/7 5/7
1 components split in several parts 7/7 7/7

For the comparison the splitting caused by the algorithm due to its limitation of the magni-
tude was ignored. It can be distinguished from the splitting caused by the set of segmentation
parameters by its border. Components split by the workaround have frazzled boarders.

The segmentation results in fig. 4.16 b) can not detect the car in the front13 while the output
in c) can. An additional post-processes can improve the output in fig. 4.16 c) but it can not
insert missing components.

Due to the small value of k the same effects concerning splitting of components occur, see
sec. 4.5.2 for more details.

Nevertheless it appears that the segmentation of sparse optical flow images yields better re-
sults because all objects form the input have corresponding components in the output (although
they are split into several components).

Summary

For datasets like this where objects move very slowly the calculation of the edge weights using
the exponential function is not suited.

4.6.3 Dataset Box06

The segmentation inputs as well as the results are shown in fig. 4.17. The dense optical flow
images can be seen in fig. 4.17 a). Fig. 4.17 b) shows the segmented dense optical flow and
c) the segmented sparse optical flow. For the computation of the sparse optical flow the input
images from fig. 4.3 were used.

Equivalent to sec. 4.5.3 for the generation of the segmentation results the direction of the
motion vector was ignored. Otherwise the workaround would cause splitting of components that
make the comparison difficult. This approach is valid as long as the same set of parameter is
used for segmentation and there is only one motion direction of the objects.

Qualitative comparison

The results of the qualitative comparison can be seen in the next table. The first column contains
the items that were checked. The second column contains the comparison results between the

13This was already mentioned in sec. 4.3.2.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 54

a) b) c)

1)

2)

3)

4)

5)

6)

7)

Figure 4.17: Segmentation results of dense and sparse optical flow images. Edge weight was
calculated as exponential function and the angle was ignored. a) Computed dense optical flow
images from the dataset Box06 for the input images in fig. 4.3. b) Segmented dense optical flow
after using images from a) as input. c) Segmented sparse optical flow after converting images
from fig. 4.3 into grey-scale images and computing the sparse optical flow used as input for the
segmentation.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 55

output images in fig. 4.17 b) and the input images in fig. 4.17 a). Column three contains the
results between images in fig. 4.17 c) and input images in fig. 4.3.

Note that the image sequence contains hundreds of color images and optical flow images.
Seven dense optical flow images of them are shown in fig. 4.17 a).

Item of comparison Segm. dense OF Segm. sparse OF

All components exist 6/7 7/7
1 component lost 1/7 0/7
2 components merged into 1 6/7 0/7
1 components split in several parts 0/7 1/7

Using the dense optical flow for segmentation in one output frame the major component
(box and hand clustered together) is lost, see fig. 4.17 b), frame 6. The segmentation output of
the sparse optical flow contains all objects from the input. Similar to fig. 4.14 c) in fig. 4.17 c)
the output contains also the objects from the input split into corresponding components.

Quantitative comparison

For this comparison the frame number two in fig. 4.17 was observed. The hand was not
considered for this comparison. The box from the color image and the corresponding component
from the dense and sparse optical flow image were cut out. The degree of matching was calculated
using eq. 4.1.

The following table shows the results. The first column indicates the object that was selected.
The second and third column show the degree of matching for the dense and sparse optical flow
image respectively.

Object of comparison Match (dense OF) Match (sparse OF)

box=image 80.2% 88.6%

Summary

The extraction of corner points and thus the computation of the sparse optical flow is more
exact than the computation of the dense optical flow. In the latter parts of the surrounding
shadows are added to the box to form one object. The segmentation result of the sparse optical
flow image yields the clearly better result. The ideal value of 100% is not reaches because of the
approximation of the object border.

4.7 Color and optical flow images

This section describes the excursus concerning the segmentation of color and optical flow im-
ages14. The theory therefore was already mentioned in sec. 3.3. Because the major aim of this
work is the analysis and evaluation of sparse and dense optical flow segmentation, the segmen-
tation of combined images is briefly discussed and was only tested with the dataset Backyard.

14They are called combined images in the following.

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 56

a) b)

d)

c)

e) f)

Figure 4.18: Segmentation results of combined images. a) and b) First two frames of dataset
Backyard. c) Computed dense optical flow for images in a) and b). d) Segmented output
(Euclidean distance, without angle) with image a) as input. e) Segmentation output with
images in a) and c) as input. Differences to d) encircled. f) Segmentation output with images
in a) and b) as input.

Fig. 4.18 shows all relevant input and output images. The input images in fig. 4.18 (a-b)
were used for the calculation of the dense optical flow image in fig. 4.18 c) and for the sparse
optical flow image. Fig. 4.18 d) shows the output if the color image in fig. 4.18 a) was used for
segmentation. The segmentation result if the color image from fig. 4.18 a) and dense optical
flow image from fig. 4.18 c) were used can be seen in fig. 4.18 e). The segmentation result of
color and sparse optical flow image is shown in fig. 4.18 f). For the latter the color images from
fig. 4.18 (a-b) were used as input.

Following segmentation parameters were used:

• Fig. 4.18 e): edge weight = Euclidean distance, k = 200, min = 150.

• Fig. 4.18 f): edge weight = Exponential function, angle of motion vector is considered,
k = 3, min = 100, σrgb = 44, σuv = 3, cangle = 20◦.

• Fig. 4.18 g): edge weight = Exponential function, angle of motion vector is considered,
k = 3, min = 5, σrgb = 44, σuv = 3, cangle = 20◦.

Compared to the segmented color image in fig. 4.18 d) the segmentation output for the
combined image using the dense optical flow (fig. 4.18 e)) contains less details. Beside this
the components are clustered different which achieves better the form of the real objects. This
implies that adding the motion information improves the segmentation output of the color images
alone. For example, the hairs of the left children are clustered together in fig. 4.18 e) because
of similar color (and motion). The hairs of the right child is separated to one component. Parts
of the background are clustered.

Compared to the segmented dense optical flow image in fig. 4.6 c) the segmentation result
of the combined image using the dense optical flow in fig. 4.18 e) contains more details.

The degree of refinement and the count of components within a segmentation output depend
on the application. For example, if segmentation is used for robot navigation the profile of the

CHAPTER 4. COMPARISON AND INTERPRETATION OF THE RESULTS 57

moving objects is more important than the details itself. For this scenario the segmentation of
optical flow images is better qualified than the segmentation of combined images.

Fig. 4.18 f) shows the segmentation result for a color and sparse optical flow image. Here
the same conclusions as for fig. 4.18 e) can be drawn.

Chapter 5

Motion segmentation of multiple

subsequent frames

The segmentation of single optical flow images is very detailed covered in ch. 4. This chapter
highlights the excursus of the segmentation of several optical flow images, used for the detection
of objects with consistent motion over several frames.

In the following the applied parameters, the algorithm and the results are discussed for the
dataset Box06. It is shown that sparse optical flow images as well as dense optical flow images
can be used as input.

Segmentation parameter and overlapping

For the segmentation of the optical flow images the same parameter sets as in sec. 4.3.3 and
4.4.3 were applied:

• Dense optical flow: edge weight = Exponential function, angle of motion vector is ignored,
k = 2, min = 100, σuv = 2.

• Sparse optical flow: edge weight = Exponential function, angle of motion vector is ignored,
k = 3, min = 5, σuv = 2.

Due to the hard threshold for the limitation of the motion vector’s magnitude and the special
image sequence the angle is ignored. See sec. 4.5.3 for further details.

For the comparison of the components in the subsequent segmentation results an overlapping
by 75% was requested.

Algorithm

First a given set of input images is segmented and the components in their results are saved. The
components from the first segmentation output are used for initialization of the reference image
at the beginning. Thereafter a comparison between the objects from the adjacent segmentation
output and the reference image is drawn. The overlapping for each component is calculated and
if it is greater than or equal to the threshold this component is used for initialization of the
new reference frame used for the next comparison. In this manner all segmentation results are
checked.

58

CHAPTER 5. MOTION SEGMENTATION OF MULTIPLE SUBSEQUENT FRAMES 59

a) b) c) d)

e) f) g) h)

Figure 5.1: Example to demonstrate the robust handling of splitting. a) One component in
the reference image. b) Corresponding component split into four parts (segmented optical flow
image). c) Pixel-wise conjunction of two components, Iref (C)∧ Isegm(C1). d) Resulting compo-
nent for the new reference image. e) Four components in the reference image. f) Corresponding
component in the segmented optical flow image. g) same to c). h) same to d).

The formula for the overlapping can be expressed as

overlapping =
Iref (Ci) ∧ Isegm(Ci)

I(Ci)
· 100%, (5.1)

where Iref (Ci) is a binary image that contains one component from the reference image, Isegm(Ci)
is a binary image that contains the component from the segmented optical flow image and I(Ci)
is also a binary image that contains the smaller component of that two. In the binary images
the pixels forming the component have the value 1 (other pixels have zero value). The logic
operation ∧ (conjunction) is applied on every pixel in the images and the result value is 1 if
both pixels have the value 1, otherweise zero. The number of pixels with the value 1 within the
images are counted and the ratio is computed.

Fig. 5.1 illustrates the overlapping formula. Fig. 5.1 a) shows the component of the reference
image, fig. 5.1 b) shows the corresponding, split component in the segmented optical flow image,
fig. 5.1 c) shows the pixel-wise conjunction of the components, Iref (C) ∧ Isegm(C1) and fig. 5.1
d) shows the component that is used for initialization of the new reference image. The sub
figures in 5.1 (e-h) show the example if a split component in the reference image is merged
together in the segmented flow image.

The algorithm is based on following assumptions:

• The position of objects changes very slow.

• If the corresponding component from the reference image is split into several parts in the
segmented flow image (fig. 5.1 (a-d)) it is assumed that this parts belong together.

• Split components in the reference image belong together if they can be represented as one
component in the segmented flow image (fig. 5.1 (e-h)).

• Due to robust handling of component splitting, a component get only lost if the overlapping
condition is not satisfied.

CHAPTER 5. MOTION SEGMENTATION OF MULTIPLE SUBSEQUENT FRAMES 60

Results

The results of segmentation over several frames (max. 15 out of 30) are shown in fig. 5.2. Fig.
5.2 a) and c) show the results for segmented dense optical flow images and b) and d) show the
results for segmented sparse optical flow images. In fig. 5.2 a1) two dense optical flow images, in
fig. 5.2 a2) three dense optical flow images were segmented and so on. If fig. 5.2 a7) is reached
it continues with c1) where 9 dense flow images were segmented. Fig. 5.2 (a1-a7) and (c1-c7)
are defined similar for sparse optical flow images.

Note the results in fig. 5.2 a5) and a6), for example. For some reasons the moving objects
(box and hand) get lost in fig. 5.2 a5) (it is clustered with the background), that represents the
reference image for the next comparison. Now it is the same situation as in the example in fig.
5.1 (a-b). The component, lost in fig. 5.2 a5) is back in fig. 5.2 a6).

In the results for the sparse optical flow in fig. 5.2 b) and d) the box can be seen quite good.
Also the hand can be recognized even if the form is (because of missing corner points) totally
different.

Following conclusions can be made for the resulting output:

• The result only contains components that were already available in the first segmentation
output.

• Components that appear at a later segmentation output do not have a corresponding com-
ponent in the reference image. Thus the calculated overlapping is less than the threshold
and the component gets lost.

• Uncorrelated components in the segmentation results, that are generated by mistake, also
get lost.

• The result only contains components with consistent motion over all input images.

CHAPTER 5. MOTION SEGMENTATION OF MULTIPLE SUBSEQUENT FRAMES 61

a) b)

1)

2)

3)

4)

5)

6)

7)

c) d)

Figure 5.2: Results of multiple frames segmentation. a) and c) Subsequent results if dense
optical flow images are used as input. b) and d) Subsequent results if sparse optical flow images
are used as input. a1) and b1) Result after 2 flow images. a2) and b2) Result after 3 flow images
and so on. c1) and d1) Result after 9 flow images, c2) and d2) Result after 10 flow images and
so on.

Chapter 6

Discussion

In this chapter some practical issues concerning the project are discussed. Sec. 6.1 covers
the segmentation efficiency of sparse and dense optical flow images as well as the achievable
segmentation accuracy relating to object borders. Also the two different implementations for
the edge weight formula (Euclidean distance and exponential function) are analyzed. Possible
improvements for the segmentation algorithm and a short outlook are given in sec. 6.2.

6.1 Segmentation efficiency

The segmentation efficiency can be determined from different point of views. The following
shows the analysis of the execution time for the computation of the optical flow as well as the
segmentation. Furthermore the accuracy of the object borders in the segmentation results and
the performance using the different edge weight formulas are covered.

Execution time

The execution time for the segmentation of a dense optical flow image with a resolution of
640x480 pixels and 1.220.972 edges is in the range of approximately 1s1. The segmentation of a
sparse optical flow image with circa 3.000 edges takes approximately 2ms. From the values can
be seen that the execution time for segmentation scales linearly with the number of edges.

The computation of a dense optical flow image from two subsequent grey-scale images with
the same resolution as above takes about 0.12s2 and for a sparse optical flow image with circa
1000 corner points takes approximately 0.04s. Here, the computation time of the optical flow
does not scale linearly with the number of pixels. The computation of the dense optical flow
image is much faster than of the sparse optical flow image. This is caused by the different imple-
mentations of the flow calculation algorithm. The dense optical flow computation is a graphic
processing unit (GPU) accelerated implementation [ZPB07]. This means that the computation-
ally intensive calculation is done by the graphics card that is more efficient than the central
processing unit (CPUs) of a computer. On the other hand, the computation of sparse optical
flow images is coded in C++ and calculated by the CPU without any timing optimization.

1Hardware configuration: Intel(R) Core(TM)2 Duo CPU, 2.66GHz; 2GB RAM; operating system Linux;
nVidia GeForce 9800GT.

2In [ZPB07] the computation time in [Frames/s] are given for different image resolutions. The linear rela-
tionship was used to calculate the computation time for an image with a resolution of 640x480 pixels.

62

CHAPTER 6. DISCUSSION 63

Accuracy

From the results in ch. 4 can be seen that both optical flow segmentation methods have their
advantages and shortcomings at certain circumstances.

Segmentation of dense optical flow images:

+ Object borders can be segmented with high accuracy if the quality of the images and the
frame rate3 is accordingly high.

- If the conditions concerning high image quality and frame rate are not satisfied the com-
putation of the dense flow is erroneous and thus the segmentation becomes impossible.

- The computation of a motion vector for every pixel in the image is computationally inten-
sive.

Segmentation of sparse optical flow images:

- Because of the limited number of corner points by which the object border is approximated
the outline of the component is somewhat different from the object itself.

+ The extraction of corner points is quite robust even in images with low quality, thus the
image quality plays a minor role here. This means, that this segmentation delivers results
even if the segmentation of dense optical flow images fails.

+ Motion vectors are only computed for certain pixels in the image which is resource-saving4.

Depending on which objective is most important, object border accuracy, computational
efficiency, or desired image quality, one of the segmentation algorithms mentioned above (dense
optical flow or sparse optical flow) is preferable. For example, if only the detection of a moving
object is desired, the segmentation of sparse optical flow images is adequate because the accurate
position of object borders is not of interest. However, if object borders have to be precisely
segmented most likely dense optical flow images have to be used.

Edge weight formulas

For the computation of the edge weights, used by the segmentation algorithm to build a graph,
two different formulas were implemented and tested. The theory was introduced in sec. 3.2.3
and the results were shown in ch. 4.

The advantages and disadvantages of the edge weight calculated as exponential function over
the Euclidean distance is shown in following list:

- A small change of the value k, used for the calculation of the threshold, causes totally
different segmentation results. This means that the variation of k for the segmentation
using the Euclidean distance does not have the same strong effect as for the segmentation
using the exponential function.

3In general a frame rate of 25Hz is used.
4Therefore it has to be assumed that the implementation of the sparse optical flow computation is also carried by

the GPU (and not the CPU). Otherwise a serious comparison between sparse and dense optical flow computation
can not be drawn.

CHAPTER 6. DISCUSSION 64

+ Components in the segmentation output are more likely split into several parts. Thus,
the segmentation result contains more details that can easily be merged in a post-process
that is needed anyway. Note that it would be much more difficult to split components in
a post-process that were merged by mistake.

Depending on the motion of the image sequence and the quality of the frames one of the two
edge weight formulas has to be preferred. This is also mirrored in the tables of the qualitative
and quantitative comparisons in ch. 4.

6.2 Outlook

The implemented segmentation algorithm and its results shown in the previous chapters are
satisfying but there is still some room for improvements.

Limitation of the motion vector’s magnitude

For image sequences with a static camera the magnitude of the motion vectors in regions of
non-moving objects is not exactly zero, but very small and has an arbitrary angle. The imple-
mentation in this work uses a fixed threshold to re-set the magnitude which is a disadvantage
(see sec. 4.3.2). The overall result can be improved by using a two-stage implementation. In the
first step a certain threshold determined with the optical flow computation accuracy is applied
to the magnitude. Those pixels smaller than this threshold are re-set with the calculated mean
value of motion vectors within a defined neighboring surrounding. This makes sure that outliers
within a component caused by the thresholding are eliminated. In a second thresholding step
the angle of pixels of low magnitude is set to a constant value in order to make sure that they
can be segmented as a continuous component. Additionally, the magnitude of those pixels is set
to zero.

Identical parameter sets

A closer look on the parameter sets used for the segmentation of the different image sequences
in ch. 4 shows that they are different for each dataset but quite similar within a dataset for
segmented dense and sparse optical flow images, respectively. The following table illustrated
this for the dataset Backyard and Box06 5:

Backyard dense OF, euc dense OF, exp sparse OF, euc sparse OF, exp

k 110 3 90 3
min 50 50 5 5
σuv - 3 - 3

Box06 dense OF, euc dense OF, exp. sparse OF, euc sparse OF, exp

k 60 2 10 3
min 100 100 5 5
σuv - 2 - 2

5The dataset Dumptruck was not considered, because the segmentation of dense optical flow images using the
exponential function for edge weight calculation failed. Beside this, the dataset Box06 is from the same style
(static camera, moving objects).

CHAPTER 6. DISCUSSION 65

As far as the direction of the motion vector was considered, the tolerance angle was set to
cangle = 20◦.

The differences between the parameters of sparse and dense optical flow segmentation within
a dataset is caused by the different number of edges. For example, the value min that is used
by the post-process to remove small components, has to be smaller in case of sparse optical flow
images where only a few pixels (corner points) form a component.

Within one dataset the parameters for the segmentation of the dense optical flow images are
the same for both edge weight formulas except for the value k. The same holds true for sparse
optical flow images. The different values for k are caused by the different output range of the
weight functions. As mentioned in sec. 3.2.3 the maximum value for the edge weight between
two totally dissimilar pixels calculated as Euclidean distance is weuclid,max = 282, while it is
wexp,max = 1 if the weight is calculated using the exponential function. Similar parameter sets
are expected if the output range of the weight functions would be normalized.

Bibliography

[ADK99] G. Aubert, R. Deriche, and P. Kornprobst. Computing optical flow via variational
techniques. SIAM Journal on Applied Mathematics, 60(1):156–182, 1999.

[BA93] M. J. Black and P. Anandan. A framework for the robust estimation of optical flow.
International Conference on Computer Vision, pages 231–236, 1993.

[BK08] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly, 2008.

[Bor04] S. Borman. The expectation maximization algorithm - a short tutorial. July, 2004.

[Bou00] J.-Y. Bouguet. Pyramidal implementation of the lucas kanade feature tracker. 2000.

[BVZ99] Y. Boykov, O. Veksler, and R. Zabihn. Fast approximate energy minimization via
graph cuts. International Conference on Computer Vision, pages 377–384, 1999.

[CC06] F.-H. Cheng and Y.-L. Chen. Real time multiple objects tracking and identication
based on discrete wavelet transform. Pattern Recognition, 39(6):1126–1139, 2006.

[CFM07] A. Colombari, A. Fusiello, and V. Murino. Segmentation and tracking of multiple
video objects. Pattern Recognition, 40(4):1307–1317, 2007.

[CK98] J. P. Costeira and T. Kanade. A multibody factorization method for independently
moving objects. International Journal of Computer Vision, 29(3):159–179, 1998.

[CS05] D. Cremers and S. Soatto. Motion competition: A variational approach to piece-
wise parametric motion segmentation. International Journal of Computer Vision,
62(3):249–265, May, 2005.

[CSE05] A. Cavallaro, O. Steiger, and T. Ebrahimi. Tracking video objects in cluttered
background. IEEE Transactions on Circuits and Systems for Video Technology,
15(4):575–584, 2005.

[DW01] Song Wang Department and Song Wang. Image segmentation with minimum mean
cut. In IEEE Computer Society, pages 517–524, 2001.

[FH04] P. F. Felzenzswalb and D. P. Huttenlocher. Efficient graph-based image segmenta-
tion. International Journal of Computer Vision, 59(2), 2004.

[GB98] P. L. George and H. Borouchaki. Delaunay Triangulation and Meshing. Hermes,
1998.

66

BIBLIOGRAPHY 67

[HB04] J. Hawkins and S. Blakslee. On intelligence. Times Books, Henry Holt and Company,
LLC, 1st edition, 2004.

[HHD00] I. Haritaoglu, D. Harwood, and L. S. Davis. W4: Real-time surveillance of people
and their activitie. IEEE Transaction on Pattern Analysis and Machine Intelligence,
22(8):809–830, August, 2000.

[HS80] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence,
17:185–203, March, 1980.

[JSL+07] C. Julia, A. Sappa, F. Lumbreras, J. Serrat, and A. Lopez. Motion segmentation
from feature trajectories with missing data. Iberian Conference on Pattern Recog-
nition and Image Analysis, pages I:483–490, 2007.

[KLGW98] M. Kong, J.-P. Leduc, B. Ghosh, and V. Wickerhauser. Spatio-temporal continuous
wavelet transforms for motion-based segmentation in real image sequences. Pro-
ceedings of the International Conference on Image Processing, 2:662–666, Octobr,
1998.

[KTZ08] M. P. Kumar, P. H. Torr, and A. Zisserman. Learning layered motion segmentations
of video. International Journal of Computer Vision, 76(3):301–319, 2008.

[LK81] B. D. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. International Joint Conference on Artificial Intelligence,
pages 674–679, 1981.

[LYY07] R. Li, S. Yu, and X. Yang. Efcient spatio-temporal segmentation for extracting
moving objects in video sequences. IEEE Transactions on Consumer Electronics,
53(3):1161–1167, August, 2007.

[NE86] H.-H. Nagel and W. Enkelmann. An investigation of smoothness constraints for the
estimation of displacement vector fields from image sequences. IEEE Transaction
on Pattern Analysis and Machine Intelligence, 8:565–593, 1986.

[OAT+07] E. Ohashi, T. Aikoand, T. Tsuji, H. Nishi, and K. Ohnishi. Collision avoidance
method of humanoid robot with arm force. IEEE Transaction on Industrial Elec-
tronics, 54(3):1632–1641, June, 2007.

[PBB+06] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert. Highly accurate
optic flow computation with theoretically justified warping. International Journal
of Computer Vision, 67(2):141–158, April, 2006.

[RH01] C. Rasmussen and G. D. Hager. Probabilistic data association methods for track-
ing complex visual objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(6):560–576, 2001.

[SGHG08] R. Stolkin, A. Greig, M. Hodgetts, and J. Gilby. An em/e-mrf algorithm for adaptive
model based tracking in extremely poor visibility. Image and Vision Computing,
26(4):480–495, 2008.

BIBLIOGRAPHY 68

[SGK00] H. S. Sawhney, Y. Guo, and R. Kumar. Independent motion detection in 3d scenes.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 22(10):1191–1199,
October, 2000.

[SHB99] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine
Vision. PWS, 2nd edition, 1999.

[SM00] J. Shi and J. Malik. Nomalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8), 2000.

[SPV09] M. J. Schlemmer, J. Prankl, and M. Vincze. Vision for situated robot companions
- fusing top-down knowledge and bottom-up data. 2009.

[SZHL07] H. Shen, L. Zhang, B. Huang, and P. Li. A map approach for joint motion estima-
tion, segmentation, and super resolution. IEEE Transactions on Image Processing,
16(2):479–490, 2007.

[TK91] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical
report, Carnegie Mellon University, Technical Report CMU-CS-91-132, April, 1991.

[TK92] C. Tomasi and T. Kanade. Shape and motion from image streams under orthogra-
phy: a factorization method. International Journal of Computer Vision, 9(2):137–
154, 1992.

[Twe09] David S. Tweed. Motion Segmentation Across Image Sequences. PhD thesis, De-
partment of Computer Science, University of Bristol, April, 2009.

[VJS05] P. A. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of
motion and appearance. International Journal of Computer Vision, 63(2):153–161,
July, 2005.

[VTY07] N. Vaswani, A. Tannenbaum, and A. Yezzi. Tracking deforming objects using par-
ticle ltering for geometric active contours. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(8):1470–1475, 2007.

[WB02] J. Weickert and T. Brox. Diffusion and regularization of vector- and matrix-valued
images. Inverse Problems, Image Analysis ans Medical Imaging. Contemporary
mathematics, 313:251–268, 2002.

[Wis97] L. Wiskott. Segmentation from motion: Combining gabor- and mallat-wavelets to
overcome aperture and correspondence problem. Proceedings of the 7th International
Conference on Computer Analysis of Images and Patterns, 1997.

[YP06] J. Yan and M. Pollefeys. A general framework for motion segmentation: Inde-
pendent, articulated, rigid, non-rigid, degenerate and non-degenerate. European
Conference on Computer Vision, pages IV:94–106, 2006.

[ZLS08] L. Zappella, X. Llado, and J. Salvi. Motion segmentation: A review. 2008.

[ZPB07] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l1 optical
flow. In Pattern Recognition (Proc. DAGM), pages 214–223, Heidelberg, Germany,
2007.

BIBLIOGRAPHY 69

[ZSWL07] J. Zhang, F. Shi, J. Wang, and Y. Liu. 3d motion segmentation from straight-line
optical ow. Multimedia Content Analysis and Mining, pages 85–94, 2007.

	Introduction
	Theory
	Motion analysis
	Difference image
	Optical flow

	Segmentation
	Region-based segmentation algorithms
	Region merging and region splitting
	Graph-based segmentation
	Watershed segmentation

	Delaunay triangulation
	Fundamental idea
	Construction of a Delaunay triangulation

	Graph-based segmentation
	Segmentation of a color image
	General definitions
	Edge weights
	Adaptive threshold and cluster condition
	Algorithm

	Segmentation using optical flow
	Optical flow calculation
	General definitions
	Edge weights
	Adaptive thresholds and extended cluster condition
	Algorithm

	Segmentation using color and optical flow information
	Optical flow calculation
	General Definitions
	Edge weight
	Algorithm

	Comparison and interpretation of the results
	Motion analysis of color input datasets
	Visualization of dense optical flow images
	Dense optical flow images using different weight formulas
	Dataset Backyard
	Dataset Dumptruck
	Dataset Box06

	Sparse flow images using different weight formulas
	Dataset Backyard
	Dataset Dumptruck
	Dataset Box06

	Dense and sparse flow images using Euclidean distance
	Dataset Backyard
	Dataset Dumptruck
	Dataset Box06

	Dense and sparse flow images using exponential function
	Dataset Backyard
	Dataset Dumptruck
	Dataset Box06

	Color and optical flow images

	Motion segmentation of multiple subsequent frames
	Discussion
	Segmentation efficiency
	Outlook

