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In recent years the development of free field radiation conditions in the time domain has become a
topic of intensive research. Perfectly matched layer (PML) approaches for the frequency domain are
well known. In the time domain, on the other hand, they suffer in many cases from highly increased
complexity or instabilities. In this paper, we introduce a PML for the conservation equations of linear
acoustics. The used formulation requires three auxiliary variables in 3D setups and circumvents
thereby convolution integrals and higher order time derivatives. Furthermore we show the weak
stability of the proposed formulation and show their good absorption properties by the means of
numerical examples.
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1. Introduction

Free field radiation boundary conditions are essential for every computational scheme for

acoustic fields. In recent years a big variety of methods were proposed to avoid reflections

on the outer boundary of the simulation domain. First order absorbing boundary conditions

are one of the simpler methods and are only capable to absorb waves impinging normal to

the boundary1. Higher order absorbing boundary conditions can overcome this limitation

and show good results for any angle of incidence2,3 but require a special treatment of corner

nodes. Another way is to use perfectly matched layers (PML). The idea is to surround the

computational domain with an absorbing layer of elements in which the wave is damped

without any reflections on the interface between propagation region and PML region. Hance

the term perfectly matched. Initially proposed by Bérenger4 for electromagnetic wave prop-

agation, the technique can be applied for frequency domain calculations in acoustics5–8.

When it comes to time domain formulations the straight forward application of the PML

technique leads to convolution integrals which would require complex and computationally

expensive schemes. This drawback can be avoided by introducing higher order time deriva-

tives9 or using additional auxiliary variables inside the PML region10–12. Recently a stable

finite difference formulation for the acoustic wave equation has been presented12 in which

1
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four additional unknowns are used for the three-dimensional case. F.Q. Hu11 also used aux-

iliary variables to obtain an unsplit PML formulation for the linearized Euler equations in

context of the finite difference method. One additional variable for each unknown is used

in this formulation.

A time domain PML for the conservation equations of linear acoustics is proposed in

this contribution. With three additional unknowns in 3D, higher order time derivatives

and convolution integrals can be avoided. The PML is incorporated in a spectral element

calculation scheme proposed by G. Cohen13 which allows efficient calculations in the time

domain with a high accuracy14.

The paper in hand is organized as follows. In section 2 we give the finite element formu-

lation of the acoustic conservation equations. The PML in frequency and time domain is

then derived in section 3. For the time dependent formulation we investigate the stability

according to15,16 in section 3.3 and show the accuracy and absorption properties by the

means of numerical examples in section 4.

2. Finite Element Formulation for the Conservation Equations

The application of the finite element method to the second order wave equation for acoustics

is well known and established. This scalar PDE can be derived from a system of partial

differential equations known as the conservation equations of linear acoustics

1

ρ0c2

∂p′

∂t
+∇ · ~v′ = F (1)

ρ0
∂~v′

∂t
+∇p′ = 0 , (2)

where p′ denotes the acoustic pressure, ~v′ the acoustic particle velocity and F some source

term. Furthermore, ρ0 and c are the density and speed of sound in the medium of propa-

gation. Equations (1) and (2) can be seen as a subset of the Euler equations for isotropic

media with no flow.

The first step in the finite element approximation is the derivation of the variational form.

Equation (1) is multiplied with a testfunction ϕ and (2) with a function ~ψ. Integration over

the computational domain Ω with boundary Γ leads to the saddle point problem

1

ρ0c2

∂

∂t

∫
Ω
p′ ϕ dΩ +

∫
Ω
∇ϕ · ~v′ dΩ−

∫
Γ
ϕ ~v · ~n dΓ =

∫
Ω
ϕ F dΩ (3)

ρ0
∂

∂t

∫
Ω
~v′ · ~ψ dΩ +

∫
Ω
∇p′ · ~ψ dΩ = 0 . (4)

In order to achieve a stable finite element approximation, the two unknowns, particle veloc-

ity and pressure, have to be defined in different Sobolev spaces17,18. Let L2 be the space of

Lebesque integrable functions, H1 the space of functions who’s first derivatives also are in

L2 and H(div) the space of functions who’s divergence is in L2. There are two stable com-

binations available which fulfill the Ladyzhenskaya-Babuška-Brezzi (or inf-sup) condition19.

The two possibilities are:
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(1) Choose p′ ∈ H(div) and ~v′ ∈ H1

(2) Choose p′ ∈ H1 and ~v′ ∈ L2

The first choice could be realized by using Raviart-Thomas elements20. A better suited

choice is presented by G. Cohen13 for nodal Lagrange elements. This method has advantages

in time domain computaitons which is discussed briefly in the following.

Assume a domain, discretized by N quadrilateral or hexahedral finite elements K, Ω =

∪Nj=1Kj . Furthermore, there is a bijective mapping Fj to transform the grid element Kj to

the reference element K̂j . Then the discrete spaces of approximation are defined as

p′h, ϕh ∈ Ukh =
{
q ∈ H1

0

∣∣∣ q|Kj ◦ Fj ∈ Qk(K̂j) and q = 0 on Γ
}

(5)

v′h, ψh ∈ V k
h =

{
w ∈ [L2]d

∣∣∣ 1

|Jj |
Jj w|Kj ◦ Fj ∈

[
Qk(K̂j)

]d}
. (6)

Where Jj is the Jacobian of element Kj and Qk(K̂j) is the set of Lagrange polynomials of

degree k and dimension d on K̂j .

It is important to notice, that the space V k
h is define with the H(div)-conforming Piola

transform20 form the grid element to the reference element, i.e. vh = 1/Jj Jj v̂h. Because of

this, the identity ∫
Kj

∇ϕh · ~v′h dKj =

∫
K̂j

∇̂ϕ̂h · v̂′h dK̂j , (7)

holds for the stiffness integral in (3) and similarly for the corresponding integral in (4).

Thereby, the element matrix is independent of the geometry and the global stiffness matrix

is sparse and only depends on the connectivity of the elements in the grid.

Another important consequence is related to the choice of the discontinuous space L2.

Whereas the pressure unknowns are approximated continuously, the velocity unknowns are

defined locally on each element. The practical effect of this fact is depicted in Fig. 1.

Fig. 1: Definition of unknowns due to mixed approximation

In a last step, spectral finite elements (s-FEM)21 of arbitrary order are used to discretize

the domain. In this approach Lagrange polynomials are used in combination with a Gauss-

Lobatto integration rule. For quadrilateral and hexahedral elements the extension of the

Shape functions can be obtained by a tensor product of the one dimensional functions.
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Triangular and tetrahedral spectral elements require a more sophisticated construction and

are still a matter of research22,23.

The finite element discretization leads to the matrix system

(
D 0

0 B

)(
ṗ′

v̇′

)
+

(
0 −R

RT 0

)(
p′

v′

)
=

(
F

0

)
. (8)

Where the stiffness matrix is sparse and the mass matrix is (block-)diagonal due to the

spectral element approximation.

It is obvious that a finite element solution of the conservation equations requires much

more computational effort due to the fact that one has to compute also the discontinuous

velocity unknowns in the domain. Nevertheless, this drawback can be overcome by utilizing

the properties of the matrices and using explicit time stepping schemes thus giving an

efficient time domain method which can be an alternative to computations on the second

order wave equation14.

In order to make the scheme usable for a wider range of applications free field radiation

boundary conditions are of great importance. A first order absorbing boundary condition for

the time domain can be incorporated easily into the scheme. The boundary integral in (3)

can be rewritten using the relation ~v′ · ~n = (1/Za)p
′, where Za is the acoustic impedance

of the medium24. By using the characteristic impedance of the medium, Za = Z0 = ρ0c, we

obtain the equality

∫
Γ
ϕ ~v′ · ~n dΓ =

∫
Γ

1

Z0
ϕ p′ dΓ . (9)

It should be noted, that this approximation is only exact for plane waves impinging orthog-

onal on the boundary and a more sophisticated approach is needed to achieve absorption

at any angle of incidence of more complex waveforms.

3. Perfectly Matched Layer

Perfectly matched layers have been proven to show excellent absorption properties for waves

at any angle of incidence4. Here, we follow Chew et al.7 and introduce a complex coordinate

stretching. The space derivative in x-direction is thereby written as

∂

∂x
→ jω

jω + σx

∂

∂x
= ζx

∂

∂x
. (10)

Analogously, this is done for the other two space dimensions y and z. In the frequency

domain, this change of variables can be directly applied to (1) and (2) thus obtaining the

PML formulation.
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3.1. Frequency Domain Formulation

First we investigate the time dependent integral of (3). To evaluate the integral on the

reference element K̂j we apply a transformation using the Jacobian determinant and get

∂

∂t

∫
Kj

1

ρ0c2
p′ ϕ dKj =

∂

∂t

∫
K̂j

1

ρ0c2
|Jj | p̂′ ϕ dK̂j . (11)

The Jacobian determinant implies the computation of global derivatives which are trans-

formed according to (10). By applying a Fourier transform we get the mass integral for the

three dimensional case

jω

∫
K̂j

1

ρ0c2
ζxζyζz|Jj | p̂′ ϕ dK̂j . (12)

Analogously, we have to apply this to the time dependent integral of (4). Special at-

tention has to be paid definition of the functional space for the velocity unknowns. When

mapping the integral onto the reference element we obtain

∂

∂t

∫
Kj

ρ0
~ψ · ~v′ dKj = ρ0

∂

∂t

∫
K̂j

1

|Jj |
JjJ Tj ~̂ψ · ~̂v′ dK̂j . (13)

By using again the coordinate stretching and the Fourier transform we arrive at

jω

∫
K̂j

ρ0
1

ζxζyζz|detJj |
[ζ]Jj ([ζ]Jj)T ~̂ψ · ~̂v′ dK̂j , (14)

with

[ζ] =

 ζx 0 0

0 ζy 0

0 0 ζz

 . (15)

The stiffness integrals do not need any special treatment because they are independent

of the element geometry. Also the mass matrices remain (block-) diagonal due to the usage

of the s-FEM. Thereby, the sparsity pattern of the matrices is not altered.

As stated above, the main advantage of the method is in time domain computations.

When trying to transform the frequency formulation directly back into the time domain we

observe convolution integrals or higher order time derivatives both of which would increase

the complexity of the scheme significantly. In the next section we derive a time domain

PML without these drawbacks.

3.2. Time Domain Formulation

In a first step we investigate (2) in its homogeneous frequency domain formulation. The

introduction of stretched coordinates for each space direction reads as

jωρ0~v
′ + [ζ]∇p′ = 0 . (16)
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A multiplication with [ζ]−1 then yields a PDE which can easily be transformed back into

the time domain. By considering the definition of the damping matrix [ζ] we obtain

jω ρ0~v
′ + ρ0 [σ]~v′ +∇p = 0 , (17)

in which we use the matrix of real valued damping factors

[σ] =

σx 0 0

0 σy 0

0 0 σz

 . (18)

In a second step, we consider (1) in its frequency domain formulation with the stretched

coordinate transformation (10)

jω
1

ρ0c2
p′ + ζx

∂v′x
∂x

+ ζy
∂v′y
∂y

+ ζz
∂v′z
∂z

= 0 . (19)

Now we add to (19) the neutral term

± σx
jω + σx

∂v′x
∂x
± σy
jω + σy

∂v′y
∂y
± σz
jω + σz

∂v′z
∂z

, (20)

and obtain the relation

jω
1

ρ0c2
p′ +

(
∂v′x
∂x
− σx
jω + σx

∂v′x
∂x

)
+

(
∂v′y
∂y
− σy
jω + σy

∂v′y
∂y

)
+

(
∂v′z
∂z
− σz
jω + σz

∂v′z
∂z

)
= 0 .

(21)

The transformation of (21) back to the time domain is still not possible without convolution

integrals or higher order time derivatives. To obtain a better suited form, we introduce an

auxiliary variable for each space direction

qx =
1

jω + σx

∂v′x
∂x

; qy =
1

jω + σy

∂v′y
∂y

; qz =
1

jω + σz

∂v′z
∂z

. (22)

By incorporating ~q = (qx, qy, qz)
T into (21) we get the following system

jω
1

ρ0c2
p′ +∇ · ~v′ + (σx, σy, σz)

T · ~q = 0 ,

qx −
1

jω + σx

∂v′x
∂x

= 0 ,

qy −
1

jω + σy

∂v′y
∂y

= 0 ,

qz −
1

jω + σz

∂v′z
∂z

= 0 .

(23)
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Now it is possible to transform each component into the time domain which yields the final

system of partial differential equations

1

ρ0c2

∂p′

∂t
+∇ · ~v′ + (σx, σy, σz)

T · ~q = 0

ρ0
∂~v′

∂t
+ ρ0 [σ]~v′ +∇p′ = 0

∂~q

∂t
+ [σ] ~q − B ~v′ = 0 .

(24)

The differential operator B is defined as

B =

 ∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

 . (25)

Transferring (24) to its weak formulation and using spectral elements then leads to the

matrix system D 0 0

0 B 0

0 0 M

 ṗ′

v̇′

q̇

+

 0 −R Rq

RT ρ0Bσ 0

0 −Rv Mσ

p′

v′

q

 =

0

0

0

 . (26)

It can be seen immediately that the global stiffness matrix is no longer symmetric. But the

mass matrix M on the other hand is a diagonal matrix due to the s-FEM discretization.

Therefore, it is still possible to use explicit time discretization schemes in which the in-

convenient structure of the stiffness matrix has only minor influence on the computational

time. Furthermore, the auxiliary variable and the additional matrices have to be evaluated

and stored only inside the PML domain.

3.3. Stability

For the usability, the stability of the proposed formulation is of great importance. To give

not only numerical examples for the stability we follow the theory for hyperbolic systems

as stated by D. Appelö et al.15.

For discussion, we consider the constant coefficient Cauchy problem

∂u(~x, t)

∂t
= P (∂/∂~x)u(~x, t) , u(~x, 0) = u0(~x) , ~x ∈ Rd , 0 < t < T , (27)

with the constant coefficient operator P (∂/∂~x). To perform the analysis, a Fourier trans-

form in space is applied to the operator P which leads to a system of ordinary differential

equations

∂u(~k, t)

∂t
= P

(
i~k
)
u(~k, t) , u(~k, 0) = u0(~k) , ~k ∈ Rs , 0 < t < T . (28)

Weak and strong stability are then defined by15:
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Definition 3.1. The Cauchy problem (27) is

(1) strongly stable if all solutions satisfy an estimate

‖u(·, t)‖L2 ≤ K‖u(·)‖L2 . (29)

(2) weakly stable if all solutions satisfy an estimate

‖u(·, t)‖L2 ≤ K(1 + t)s‖u(·)‖Hs , (30)

where s > 0.

The condition

Re
{
λj

(
P (i~k)

)}
≤ 0 , (31)

on the real part of all eigenvalues λj of P (i~k) is necessary and sufficient to ensure weak

stability of the formulation. If all eigenvalues have a strictly negative real part, strong

stability can be shown. Even for the case of eigenvalues with real part equal to zero, strong

stability can also be shown if the corresponding eigenvectors span their respective invariant

subspace, i.e. there is a full set of eigenvectors.

3.3.1. Two-dimensional case

For a better readable analysis (24) is written in the form

Ut = AUx +BUy +D , (32)

where

U = (p, vx, vy, qx, qy)
T , (33)

and the coefficient matrices are defined as

A =


0 −c2ρ0 0 0 0

−1/ρ0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

 , B =


0 0 −c2ρ0 0 0

0 0 0 0 0

−1/ρ0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

 ,

D = −


0 0 0 σx σy
0 σx 0 0 0

0 0 σy 0 0

0 0 0 σx 0

0 0 0 0 σy

 .
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According to16 we calculate the eigenvalues and eigenvectors of the principal part of P (ik)

and observe that the eigenvalues are

λ1,2,3 (P (ik)) = 0 , λ4,5 (P (ik)) = ±i c
√
kx + ky . (34)

Therefore the system is weakly stable. Still, the zero eigenvalue has multiplicity three. As

the set of eigenvectors is also incomplete, we cannot state strong stability.

3.3.2. Three-dimensional case

As done above, the system is written in the form

Ut = AUx +BUy + CUz +D . (35)

For the three dimensional case, the matrices are defined as

A =



0 −c2ρ0 0 0 0 0 0

−1/ρ0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, B =



0 0 −c2ρ0 0 0 0 0

0 0 0 0 0 0 0

−1/ρ0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0


,

C =



0 0 0 −c2ρ0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−1/ρ0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0


, D = −



0 0 0 0 σx σy σz
0 σx 0 0 0 0 0

0 0 σy 0 0 0 0

0 0 0 σz 0 0 0

0 0 0 0 σx 0 0

0 0 0 0 0 σy 0

0 0 0 0 0 0 σz


.

The eigenvalues of the principle part are calculated as

λ1,..,5 (P (ik)) = 0 , λ6,7 (P (ik)) = ±i c
√
kx + ky + kz . (36)

Similar to the two dimensional case weak stability is thereby shown.

4. Three dimensional numerical analysis

In this section, the PML should be investigated in terms of accuracy and efficiency. As

the properties of the proposed formulation are very similar between two and three space

dimensions, all investigations will be done for a three dimensional setup discussed in the

following.
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4.1. Setup

For a detailed analysis, the setup depicted in Fig. 2 (a) should be considered.

As an initial condition an acoustic pressure pulse at time t = 0 is chosen with exponential

distribution around the domains center at r =
√
x2 + y2 + z2 = 0 given by

p(t = 0, r) = − 1

4B
e−B r2 , (37)

~v(t = 0, r) = ~0 . (38)

For the actual simulation B is set to 0.5 which leads to the initial acoustic pressure dis-

tripution shown on the left hand side of Fig. 2 (b) along the x-axis of the propagation

region. For the numerical investigation, we discretize the propagation region of dimension

−5 0 5
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

x−position [m]

A
c
o

u
s
ti
c
 p

re
s
s
u

re
 [

P
a

]

 

 

Presssure distribution

(a) Pressure distribution along thex-axis (b) Cut through PML and propagation re-
gions including iso-surface of initial acoustic
pressure

Fig. 2: Three dimensional setup.

[−λ, λ]3 with 103 elements, which corresponds to approximately 5 elements per wavelength.

Due to this coarse discretization, linear finite elements are assumed to provide inaccurate

results. As a consequence, computations with spectral elements of order two and three are

performed as well.

As the mass matrix in (26) can be inverted analytically it is easily possible to apply

explicit time stepping schemes. Here, a fourth order Runge-Kutta time stepping scheme

is used for all simulations. The time step size is chosen to be one tenth of the limiting

Courant-Friedrichs-Lewy (CFL) condition25 and the speed of sound is assumed to be c = 1

m/s.
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4.2. First numerical results

In a first step, the performance of the proposed formulation should be tested qualitatively

with the setup described above.

For the damping parameter σ we choose a quadratic profile inside the PML as analysed

in section 4.3. Due to the coarse discretization of only 5 elements per wavelength we choose

quadratic spectral elements for the spacial discretization. Snapshots of the acoustic pulse

Fig. 3: Contour plots of acoustic pressure in the domain at different time levels.

propagation through the computational domain at different time levels are displayed in

Fig. 3.

It is noticeable the wave enters the damping layer and is completely absorbed without

any visible reflections at the end of the computation. For a better visibility, the color scale

is adapted to meet the actual maximum and minimum amplitude of the pulse at each time.

To further investigate the properties of the scheme, a detailed analysis is performed in

the following sections.
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4.3. Choice of damping profile

Still an open question is the optimal choice for the damping profile inside the PML. Lets

assume a damping layer with length L. Four different schemes to calculate the damping

coefficient at position j inside the layer (0 ≤ j ≤ L) should be compared.

Constant damping

In this case, the damping parameter is constant over the complete domain and calculated

as1

σ0 = −c lnR

2L
, (39)

where c is the speed of sound and R the reflection coefficient.

Quadratic damping

When using a quadratic damping function, the parameter σi starts with a value of zero at

the interface between damping region and propagation region and is increased in j direction

by the functional

σqj = σq0
j2

L2
, (40)

where the constant factor σqi is chosen as

σq0 = −3c lnR

2L
. (41)

Inverse distance damping

Here, the damping profile is increased towards the boundary by

σij =
c

L− j
. (42)

Special attention has to be paid to this case in combination with the Gauss-Lobatto quadra-

ture as used in the spectral element method. As there is an integration point at j = L the

damping factor becomes infinity here. To circumvent this problem, homogeneous boundary

conditions on all variables are applied at the outer boundary of the PML.

Alternative damping

With the last function considered, the damping factor is zero at the interface and approaches

a maximum value at the outer boundary. This profile is given as12

σaj = σa0

 j

L
−

sin
(

2πj
L

)
2π

 . (43)
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The constant factor is calculated depending on the dimension of the layer by

σa0 =
c

L
log

(
1

R

)
q . (44)

In all the simulation we choose R = 10−3 and calculate the acoustic energy inside the

region of propagation according to

wa =
1

2

(
ρ0 ~v

′ · ~v′ + 1

ρ0c2
p′2
)
. (45)

The expected result is that the acoustic energy decays rapidly as the wave leaves the propa-

gation region into the PML. From the theoretical point of view, the energy should approach

its minimal value after approximately eleven seconds. The rate of energy decay can thereby

serve as an indicator for the performance of the chosen damping function.

To perform the analysis, a PML thickness of λ/4 is chosen which leads to three second

order spectral elements in thickness direction. The results of the analysis are displayed
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Fig. 4: Damping profiles (left) and acoustic energy decay in the propagation domain (right).

in Fig. 4 along with the damping profile for each considered method. It can be seen, that

inverse distance and quadratic damping performs best when applied to the proposed scheme.

Among these two, the latter shows a better performance in the range between 12 and 20

seconds. This is most likely due to the fact, that the inverse distance damping starts of

with a jump of the damping coefficient on the interface between propagation and damping

region which could cause reflections.
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4.4. Numerical accuracy

For the setup under investigation, the analytical solution can be given as26

p(t, r) = − 1

4 B

(
r + t

2r
e−B(r+t)2 − r − t

2r
e−B(r−t)2

)
. (46)

Therefore it is possible to compute the l2 error inside the region of propagation which gives

an impression of the accuracy of the scheme and the influence of different PML configura-

tions. This measure of error can be given as:

El2 =

√√√√ 1

N

N∑
i=1

(p′hi − p
′
i)

2 , (47)

where N is the number of nodes inside the domain and p′i denotes the analytical and p′i the

numerical solution at node i.

The following three setups are investigated along with different element orders:

(1) PML 1: Width of λ/4 with 1 element inside the layer.

(2) PML 2: Width of λ/2 with 3 elements inside the layer.

(3) PML 3: Width of λ with 5 elements inside the layer.

The setup is chosen such that the wave enters the PML after 5 seconds. Pictured in Fig. 5

are the results of the analysis for different approximation orders. Its obvious that the ac-

curacy of the computations is increased significantly when choosing higher order elements

for approximation. Whereas, the error of the first order computation is in the range of 1%

its reduced to 0.05% for the second order case and to 0.005% when using elements of order

three. Starting from t = 5 seconds, the effect of the different PML setups becomes visible.

For all element types we observe an improvement of the absorption properties by choosing

more elements inside the damping layer. For PML 1 with only one element the high error

after the wave enters the PML indicates many reflections and bad absorption properties. In

difference to this, it is visible that that the error is much smaller if there are more elements

inside the PML. At worst the error is in the range of the approximation error which leads to

the conclusion that the PML gives only minor reflections and does not decrease the accuracy

of the computation.

4.5. Stability

The last investigation is subjected to the stability. Even though the analysis in section 3.3

has already shown weak stability of the formulation and no signs of instability occurred in

the performed computations, it seems reasonable to test the scheme with longer simulation

times and a constant sine excitation. For the pulse excitation, the acoustic energy inside

the complete domain should decrease constantly over the simulation time. For the constant

excitation, a stable scheme should provide a steady state oscillation of acoustic energy. As

pictured in Fig. 6 both assumptions are verified for different orders of approximation. Even

for much longer simulation times no instabilities occurred and the energy remains finite.
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Fig. 5: Numerical error inside the propagation region for different PMLs and orders of

approximation
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Fig. 6: Long term simulation of acoustic pulse (left) and constant sine excitation (right)

5. Conclusion

The basic computational scheme as introduced in section 2 has already shown its excellent

approximation properties and performance. Now, the paper in hand proposes a novel per-
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fectly matched layer in the time domain for this scheme. The formulation requires only three

auxiliary variables and does not require the evaluation of higher order time derivatives. After

an mathematical investigation in which it was possible to show the stability of the scheme

the formulation was tested against a numerical benchmark problem. It was possible to show

that a quadratic damping profile is the best choice for the proposed method. Nevertheless,

the quality of absorbtion with inverse distance damping was in the same range.

Numerical accuracy has been investigated in terms of acoustic energy and in comparison

with an analytical solution. The results show that the performance of the PML also benefitts

from a higher order approximation and that the maximum error wich is caused by reflections

is in the range of the overal accuracy of the approximation. It was shown that one should

use at least two layeres of absorbing elements are necessary to avoid reflections.

Finaly, the stability was investigated for a longer simulation time for pulse and constant

sine excitation. No instabilities occured for the cases investigated.

The proposed PML shows excellent absorption properties, allows a straight forward

implementation and improves the initial scheme to be applicable to freee field radiation

problems in the time domain.

References

1. M. Kaltenbacher. Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin,
2. edition, 2007. ISBN: 978-3-540-71359-3.

2. Thomas Hagstrom, Assaf Mar-Or, and Dan Givoli. High-order local absorbing conditions for
the wave equation: Extensions and improvements. Journal of Computational Physics, 227:3322–
3357, 2007.
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