
A Universal Layer For Schema
Mapping Languages

DISSERTATION

zur Erlangung des akademischen Grades

Doktor/in der technischen Wissenschaften

eingereicht von

Florin Ioan Chertes
Matrikelnummer 9225499

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Reinhard Pichler

Diese Dissertation haben begutachtet:

(Dr. Reinhard Pichler) (Dr. Paolo Papotti)

Wien, 01.07.2015

(Florin Ioan Chertes)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

A Universal Layer For Schema
Mapping Languages

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor/in der technischen Wissenschaften

by

Florin Ioan Chertes

Registration Number 9225499

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Reinhard Pichler

The dissertation has been reviewed by:

(Dr. Reinhard Pichler) (Dr. Paolo Papotti)

Wien, 01.07.2015

(Florin Ioan Chertes)
Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Florin Ioan Chertes

Süssebrunnerstr. 66/4/1 , 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

I would like to express my deep gratitude to my advisor, Prof. Reinhard Pichler, for his support

and encouragement through the hard years of my studies and writing this thesis. His optimism

and capacity of helping to solve even the most difficult problems gave me power to continue,

even in those moments when I intended to give up. He opened me horizons, I never could

imagine that exist.

I would like to thank and express my gratitude to my co-author, Ingo Feinerer, for his help,

support and hard work in writing the publications upon this thesis is based. He supported my

difficult steps necessary in transforming a scientific text into a conference paper.

I would like to thank my family. My parents, my wife and my daughter, supported me with

their help and love. I am so grateful for their efforts and patience in all these years.

This thesis and the work it is based upon have been supported by the Austrian Science Fund

(FWF), project P25207-N23.

iii

Abstract

Schema mappings are central notions, both in data exchange and data integration. They provide

a precise formalism for modeling and describing the process of transforming source to target

instances of a database in an information exchange scenario. The most common formalism for

expressing schema mappings are logical formulae, typically in first-order logic or second-order

logic. The use of logics allows for exact definitions of the syntax and semantics of schema

mappings, contributing to the success of data exchange in theoretical research during the last

decade. Similarly, schema mappings have been of high importance in industrial data exchange

applications, e.g., in the well-known IBM Clio mapping tool presented by Popa et al. in 2002

and Fuxman et al. in 2006.

In the industrial context, visual languages for modeling schema mappings have gained

increasing importance over the last years. Visual languages hide logical formalisms behind

graphical notations and allow users without deep technical and mathematical background to

perform data exchange. The graphical notations are suitable interfaces in bringing together

stakeholders from different activity fields. This is especially relevant for big data applications,

as manual compilation and inspection becomes inherently complex with increasing schema and

data size. One of the most influential approaches along this line is CLIP, presented by Raffio

et al. in 2008, a visual high level language for schema mappings. CLIP defines a set of cus-

tom language elements, modeling source-to-target schema mappings and introducing structural

mappings in addition to value mappings.

Nonetheless, we observe a number of drawbacks. First, there is no unified formalism

nor standard for the actual constructs of such a visual mapping language: supported language el-

ements depend on the concrete schema mappings tool, thus, each visual language depicts its own

graphic elements differently. Second, when automatically generating code from schema map-

pings, various tools (IBM Clio, Altova MapForce, Stylus Studio, etc.) differ significantly in the

number of target languages and the concrete implementation of the rules. Finally, there is a lack

v

of easy extension mechanisms that allow the user to model additional types of schema mappings,

e.g., for second-order dependencies, or mappings in the non-relational case. Consequently, these

challenging tasks need to be addressed to foster the applicability of visual languages for schema

mapping design in industry. To the best of our knowledge, no comprehensive middleware for

visual schema mapping languages exists.

The goal of this thesis is to fill this gap. To this end, we present a new unifying layer for

visual schema mapping languages that we call UMAP, which is based on standardized Unified

Modeling Language (UML) class diagrams and Object Constraints Language (OCL) constraints.

Both, UML and OCL are standard languages of ISO and OMG, a graphical modeling language

and a constraint language, respectively. This layer is intended as a middleware, underlying high-

level visual languages like CLIP or CLIO but can also be used directly to visually design, model,

and maintain schema mappings. This thesis uses OCL as standard query language for schema

mappings in the context of data exchange. By using only standardized and well-understood

artifacts from the UML modeling language we obtain a precise syntax and semantics for our

layer. Most existing UML toolkits support the generation of code from class diagrams, which

we use for implementing our schema mappings in various target languages. This important step

towards standardization is done in the direction of interoperability between different tools and

technologies. This fosters the usability of high level schema mapping languages by opening the

access for different such languages to different reference implementations interfaced by UMAP.

Kurzfassung

Ein grundlegendes Konzept in "Data Integration" (Daten-Integration) und "Data Exchange"

(Daten-Austausch) sind " Schema Mappings " (Schema-Abbildungen). Dieses Konzept stellt

den Formalismus für die Beschreibung und Modellierung der Prozesse zur Verfügung, der Daten

von einem Quell-Schema in ein Ziel-Schema transferiert. Der übliche Formalismus, um Schema

Mappings abzubilden, sind logische Formeln der Prädikaten-Logik erster und zweiter Stufe. Die

Benutzung der Prädikaten-Logik ermöglicht eine präzise Definition der Syntax und Semantik

der Schema Mappings, ein essentieller Beitrag zum Erfolg der Forschung im Bereich der Data

Exchange des letzten Jahrzehntes. Schema Mappings sind von großer Bedeutung in den indus-

triellen Applikationen wie zum Beispiel in dem sehr bekannten IBM CLIO Schema Mappings

Produkt, das von Popa et al. in 2002 und von Fuxman et al. in 2006 präsentiert wurde.

Visuelle Sprachen für Modellierung der Schema Mappings gewinnen in den letzten Jahren

stets Bedeutung im industriellen Kontext. Diese visuellen Sprachen verstecken den logischen

Formalismus hinter den grafischen Notationen und ermöglichen damit TechnikerInnen, auch

ohne tiefe mathematische Kenntnisse, den vollen Zugang zum Data Exchange. Gleichzeitig sind

die visuellen Notationen ausgezeichnete Medien, die MitarbeiterInnen aus sehr unterschiedli-

chen Arbeitsbereichen zusammenbringen, und so eine nahtlose Zusammenarbeit ermöglichen.

Dies ist besonders im Zusammenhang mit "Big Data" Applikationen wichtig, da sich manuel-

le Umwandlung und Kontrolle, durch die Datengröße und Schema-Komplexität, sehr schwierig

gestalten. Die Applikation CLIP, die von Raffio at al. in 2008 präsentiert wurde, ist eines der ein-

flussreicheren Produkte aus dem Bereich der visuellen Sprachen für Modellierung von Schema

Mappings. CLIP definiert eine Reihe von Sprachelementen für die Modellierung von sogenann-

ten source–to–target (Quelle–zu–Ziel) Schema Mappings und ist sehr bekannt für die Einfüh-

rung der " Structural Mappings " (Strukturale Abbildungen) zusätzlich zu den schon bekannten

"Value Mappings"(Wert Abbildungen).

Nichtsdestotrotz, bemerken wir wichtige Aspekte, die noch verbessert werden können. Ers-

vii

tens gibt es weder einen einheitlichen Formalismus noch einen Standard für die Konstrukte einer

solchen visuellen Sprache aus dem Bereich Schema Mappings. Mehr als das, sind diese aktuell

etablierten Sprachkonstrukte abhängig von den dazugehörigen Applikationen, sodass konkret,

jede visuelle Sprache eigene Sprachkonstrukte hat. Zweitens, wenn Source Code von diesen un-

terschiedlichen Applikationen (IBM CLIO, Altova MapForce, Stylus Studio, etc.) erstellt wird,

dann gibt es Unterschiede in den benutzten Zielsprachen und vor allem in der angewandten

Regel, die dies produziert. Schlussendlich mangelt es an Unterstützung für Erweiterungsmecha-

nismen, besonders in Bereichen wie " SO–dependences " (zweite Stufe Abhängigkeiten) und

Schema Mappings für nicht relationale Modelle. Daraus folgt, dass Lösungen gesucht gehören,

um die industrielle Anwendbarkeit der visuellen Sprachen für Schema Mappings zu verbreiten.

Nach unserem besten Wissen gibt es keine etablierte Middleware für visuelle Sprachen aus dem

Bereich Schema Mappings.

Das Ziel dieser Dissertation ist, eine Lösung für diese gestellten Fragen zu präsentieren. Wir

führen eine " unified layer " (eine vereinigte Schicht) für visuelle Sprachen aus dem Schema-

Mappings-Bereich ein, die wir UMAP nennen, welche auf Klassendiagrammen der Standards-

pezifikation Unified Modeling Language (UML) und "constraints" (Beschränkungen) der Stan-

dardspezifikation Object Constraints Language (OCL) basieren. Die beiden UML und OCL sind

Standardspezifikationen der ISO und OMG, einer visuellen Sprache für Modellierung, bzw. ei-

ner constraints Sub-Sprache der UML. Die von uns eingeführte Schicht ist gedacht als Midd-

leware zur Unterstützung visueller Sprachen einer höheren Ebene, wie CLIP oder CLIO. Diese

Middleware kann auch direkt für Entwurf, Modellierung und Wartung von Schema Mappings

benutzt werden. Diese Dissertation benutzt OCL als standardisierte Abfragesprache für Schema

Mappings im Kontext von Data Exchange. Wir benutzen nur bestimmte visuelle Elemente der

Sprachen UML und OCL und bekommen für unsere UMAP Sprache eine präzise Syntax und

Semantik. Fast alle UML Modellierungs-Umgebungen unterstützen die Generierung von Sour-

ce Code aus Klassendiagrammen, eine Eigenschaft, die es uns ermöglicht, Data Exchange in

verschiedene Zielsprachen zu implementieren. Dieser wichtige Schritt in Richtung der Interope-

rabilität diverser Applikationen und Technologien ist nur durch konsequente Anwendung der

Standards möglich. Die Anwendbarkeit vieler wichtiger Schema Mappings Sprachen höherer

Ebenen wird steigen, indem der Zugang zu verschiedenen Referenz-Implementierungen durch

UMAP ermöglicht wird.

Contents

1 Introduction 1
1.1 State of the art . 1

1.2 Problem Statement . 3

1.3 Main Results . 4

1.4 Structure and Publications . 5

2 Preliminaries 7

3 Mapping Language 11
3.1 A simple CLIP mapping . 11

3.2 A motivating example: a simple mapping using UML and OCL 12

3.3 Translating language constructs from CLIP to UML and OCL 13

3.4 The UMAP Language . 15

3.5 UMAP Layer and Translation of CLIP Core Features 18

3.6 Conclusion . 19

4 Complex Mappings 21
4.1 Context propagation . 21

4.2 The UML structure . 23

4.3 A more complex mapping . 25

4.4 A join constrained by a Context Propagation Tree 28

4.5 A mapping with grouping and join . 31

4.6 Inverting the nesting hierarchy . 35

4.7 A mapping with aggregates . 38

4.8 Discussion on the correctness of the UMAP approach 42

4.9 Usage of Skolem functions . 44

ix

4.10 Target dependencies, target egds and tgds . 45

5 VMAP the implementation of UMAP 47
5.1 System architecture . 47

5.2 Data exchange scenario . 51

5.3 Conclusion . 53

6 OCL Compiler 55
6.1 Introduction . 55

6.2 Compiler Architecture . 56

6.3 Semantic Analysis And Code Generation . 61

6.4 Lexical and Syntactical Analysis . 64

6.5 Conclusion . 67

7 Related Work 69
7.1 Overview . 69

7.2 The SPICY System . 71

8 Conclusion and future work 79

Bibliography 81

x

CHAPTER 1
Introduction

Schema mappings are fundamental notions in data exchange and integration for relating source

and target schemas. Visual mapping languages provide graphical means to visually describe

such transformations. There is a plethora of tools and languages available. However all use

different notions and visualizations making the interoperability between them hardly extensible.

This thesis proposes a new universal layer for schema mapping languages, that we call UMAP,

which provides a unified abstraction and middleware for high-level visual mapping languages.

We use only standardized UML and OCL artifacts, which allow for easy code generation in a

number of target languages (e.g. C++ code) and for a modular extension mechanism to sup-

port complex schema mappings. We show that translating key elements of established visual

mapping languages to UMAP is possible and illustrate that UMAP has enough expressive power

to encode fundamental features of them. Moreover, we present a strategy for automating the

translation of any visual input language with a formal meta-model to UMAP.

1.1 State of the art

Schema mappings provide a precise formalism for modeling and describing the process of trans-

forming source to target instances of a database in a data exchange scenario. The most com-

mon formalism for expressing schema mappings are logical formulae, typically in first-order or

second-order logic [13]. The use of logics allows for exact definitions of the syntax and seman-

tics of schema mappings, contributing to the success of data exchange in theoretical research

during the last decade [19]. Similarly, schema mappings have been of high importance in indus-

1

trial data exchange applications, e.g., in the well-known IBM CLIO mapping tool [15, 17, 34].

Next to schema matching and schema mapping generation, the quality of the generated schema

mapping solution is a central concern of the SPICY project [20,21,24], one of the most prominent

CLIO successors.

Visual languages for schema mappings

However, in an industrial context, visual languages for modeling schema mappings have gained

increasing importance over the last years. Visual languages hide logical formalisms behind

graphical notations and allow users, without deep technical and mathematical background, to

perform data exchange. This is especially relevant for big data applications, as manual com-

pilation and inspection becomes inherently complex with increasing schema. One of the most

influential approaches along this line is CLIP [37], a visual language for explicit schema map-

pings. CLIP defines a set of custom language elements modeling source-to-target and hierarchi-

cal schema mappings. CLIP design is influenced by CLIO, but the main difference relative to its

predecessor is the introduction of structural mappings in addition to value mappings. This gives

the users greater control over the produced transformations by inferring the structural transfor-

mation from the value mappings.

Challenges of visual languages for schema mappings

Nonetheless, we observe a number of drawbacks. First, there is no unified formalism nor stan-

dard for the actual elements of such a visual mapping language: the introduced elements depend

on the concrete schema mappings supported by the tool, and every visual language uses differ-

ent visualizations for its elements. Second, in the process of automatically generating code from

schema mappings, various tools (IBM CLIO, Altova MapForce, Stylus Studio, etc.) differ sig-

nificantly in their concrete implementations, which are adapted to their own mapping language

with no concern of reusing existing ones. Finally, the transformation of a schema mapping set-

ting between two different schema mapping languages is missing. The interoperability between

different schema mapping systems is difficult, making the reuse of their components as external

modules expensive. Visual languages for schema mapping profiting from higher degree of stan-

dardisation will allow the user to model easily additional types of schema mappings, e.g., for

second-order dependencies, or mappings in the non-relational case. Consequently, these chal-

lenging tasks need to be addressed to foster the interoperability of visual languages for schema

2

mapping design in industry. To the best of our knowledge no comprehensive middleware for

visual schema mapping languages exists to fill this gap.

Query language used to specify schema mappings

Most of the database constraints studied during the 1970s and the 1980s can be expressed as

tuple-generating dependencies or equality-generating dependencies. Originally the database

constraints were not developed to be used for data exchange. Presenting an overview of the

advances in data exchange, Kolaitis [19] characterizes the tuple-generating dependencies as a

first order formulae expressing the containment of one conjunctive query in another conjunctive

query. The IBM data exchange application, CLIO, uses queries to perform data exchange [10].

There are other well-known formalisms in data exchange and data integration that use inten-

sively conjunctive queries to perform the mappings. The semantics of the visual mapping lan-

guage CLIP, is defined by a query-like language [19]. This enumeration shows the importance

of the query languages used to define the semantics of the schema mappings and consequently

used to perform the mapping.

1.2 Problem Statement

The diversity of the query languages employed to support the schema mapping languages raises

the question of query language unification and standardization without losing expressive power.

The OMG standard language OCL is designed to specify invariant conditions that must hold for

the system being modeled or queries over objects described in the model. This thesis proposes

OCL as unified standard query language for schema mappings in the context of data exchange.

The thesis illustrates that OCL together with the modeling language UML, another OMG stan-

dard, have good expressive power building together a rich language capable of introducing the

standardisation to the field of high level visual schema mappings. In particular the thesis illus-

trates how to successfully encode all CLIP mapping features including its main attributes: the

nested and structural mappings.

UMAP, the middleware for high-level visual languages

The thesis proposes and defines the syntax and semantics of the visual language UMAP, a new

unifying layer for visual schema mapping languages, based on standardized UML class dia-

grams [29] and OCL constraints [30]. This middleware could be seen also as a practical interface

3

that allows for different implementations to be used alternatively, improving the modular archi-

tecture of industrial frameworks. This layer is intended as a middleware underlying high-level

visual languages like CLIP or schema mapping toolkits like CLIO but can also be used directly

to visually design, model, and maintain schema mappings. We illustrate our layer by translating

all elements of CLIP, a recent expressive visual mapping language.

UMAP and the standards

By using only standardized and well-understood artifacts from the UML modeling language

(class diagrams, associations and aggregations) and OCL (selected constraints e.g. straightfor-

ward post-conditions and invariants) we obtain a precise syntax and semantics for our layer,

which can be translated back to logics [4, 5]. Most existing UML toolkits support OCL and

starting from class diagrams they permit the generation of source code into various target lan-

guages. Thus, UMAP is not limited to a particular toolkit in implementing schema mappings.

The translation from the high-level mapping language to UMAP is achieved using another OMG

standard: QVT, an evolving specification for Query, View, Transformation [27]. In this way,

schema mappings defined in different languages of the same expressive power as CLIP could be

translated via UMAP to a standard programming language. Source code in such a language, as

ISO-IEC C++ is compiled to an executable, that performs the mapping. UMAP can also be used

as standalone mapping language for data exchange.

1.3 Main Results

We conclude with the presentation of the main achieved results.

• We introduce UMAP, a new universal layer for schema mapping languages and present its

syntax and semantics. Schema mappings are modeled with the help of standardized UML

graphic artifacts and OCL constraints expressions, both standards having a hierarchical

and strict modular structure. By allowing as part of UMAP only certain UML and OCL ar-

tifacts, i.e., using only limited subsets of each, this restriction has still its own well-defined

syntax and semantics. Under these prerequisites, we can translate UMAP specifications to

a broad range of target implementation languages.

• We show how to model central elements occurring in common visual mapping languages

via UMAP following a generic strategy defined by the UMAP semantics. As input for our

4

system, we use the visual mapping language CLIP, a prominent and representative exam-

ple. We map the core CLIP language elements to our UMAP-based formalism, demon-

strating the translation of source-to-target mappings to UML class diagrams augmented

with OCL-constraints.

• We show the handling of more complex transformations like joins with grouping in the

context of nested schema mappings for tree-like data structures (e.g., necessary for XML

data sources) in our proposed formalism. These transformations are characterized by more

involved restructuring operations to map the source schema to the target schema. We show

that UMAP has enough expressive power to capture also these CLIP features.

• UMAP can be seen as a new middleware for high-level visual schema mapping languages.

We propose to use UMAP as a back-end when creating a new visual mapping language

with a formal meta-model as it can be easily mapped to UMAP via QVT.

• We present a reference implementation for UMAP, which could be used with any com-

patible UML-OCL modeling tool, as interactive graphical interface. Our OCL compiler

works at the heart of the implementation, designed as a plug-in for the modeling tool. It

translates the actual mapping definitions to functions in a programming language, which

perform the data exchange. The purpose of the implementation is to offer data engineers

a platform for their own visual mapping languages. We also present an implementation

that generates C++ code and shows the translation of typical CLIP language elements to

our UML-based formalism, illustrating that our approach works in practical applications.

1.4 Structure and Publications

In this section we present the structure of the rest of this thesis and the publications on which

each chapter is based.

Chapter 2 Preliminaries. We shortly introduce the notions of schema mappings and dependen-

cies. The language elements of the graphic schema mapping language CLIP are also presented.

Chapter 3 Mapping Language. We start with a CLIP schema mapping example that we trans-

form to our UMAP formalism. Based on this case, we show that UMAP can be used as a graphic

schema mapping language too. Further, we introduce all the elements of the graphic schema

mapping language UMAP. We define the syntax and semantics of this language.

5

Chapter 4 Complex Mappings. We show that UMAP, a graphic schema mapping language,

has at least the expressive power of CLIP by translating all its reference features to UMAP. We

discuss the difficulties encountered in our endeavour. This chapter and the previous two chapters

are based on the following publication:

• UMAP: A universal layer for schema mapping languages. [8]

Florin Chertes and Ingo Feinerer.

DEXA 2013.

Chapter 5 VMAP, the implementation of UMAP. UMAP is a middleware for high level schema

mapping languages. This chapter presents the architecture of VMAP, the implementation of

UMAP, that consists of a chain of executables transforming the UMAP model into an executable.

Query, View, and Transformation (QVT), an OMG standard, is introduced and we show how

various schema mapping models, designed using different high level mapping languages can be

transformed to the UMAP layer.

Chapter 6 OCL Compiler. We present the OCL compiler – the heart of the VMAP. The ar-

chitecture of the compiler is shown with important details about the semantical analysis and the

code generation. The UMAP model in XMI format (another OMG standard) is analysed and all

the information about graphic artifacts from the UMAP model are collected and used in the phase

of semantical analysis. This chapter and the previous one are based on the following publication:

• VMAP: A visual schema mapping tool. [9]

Florin Chertes and Ingo Feinerer.

ECAI-PAIS 2014.

Chapter 7 Related work. We consider prominent graphic schema mapping tools that are related

to our contribution, a step towards standardisation. The SPICY project that uses external modules

for schema mapping generation, is introduced from our perspective of UMAP and VMAP.

Chapter 8 Conclusion and future work. This chapter concludes the thesis. A summary of

our contributions is given, first about the UMAP as a new middleware and then about VMAP, its

implementation, last the future work is shortly presented.

6

CHAPTER 2
Preliminaries

Introduction

In this chapter, we give the preliminaries used in the rest of this thesis, which are based on [12,

13, 19]. We give the formal definitions for all necessary concepts, including schemas, schema

mappings and classes of dependencies. CLIP, a recent and prominent visual language for schema

mapping is introduced. The elements of the language are shortly presented.

Schemas and Schema mappings

A schema R = {R1, . . . , Rn} is a set of relation symbols Ri each of a fixed arity. An instance

I over a schema R consists of a relation for each relation symbol in R, s.t. both have the same

arity. For a relation symbol R, we write RI to denote the relation of R in I . We only consider

finite instances here. Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas with no relation

symbols in common. A schema mapping is given by a triple M = (S,T,Σ) where S is the

source schema, T is the target schema, and Σ is a set of logical formulae called dependencies

expressing the relationship between S and T.

Instances over S (resp. T) are called source (resp. target) instances. We write 〈S,T〉 to

denote the schema {S1, . . . , Sn, T1, . . . , Tm}. If I is a source instance and J a target instance,

then 〈I, J〉 is an instance of the schema 〈S,T〉.

Given a (ground) source instance I , a target instance J is called a solution for I underM if

〈I, J〉 |= Σ. The set of all solutions for I underM is denoted by Sol(I,M).

7

Dependencies

Source-to-target tuple generating dependencies (s-t tgd) are logical formulae of the form:

∀x(φ(x)→ ∃yψ(x, y)). (2.1)

We write x for a tuple (x1, . . . , xn). However, by slight abuse of notation, we also refer to

the set {x1, . . . , xn} as x. Hence, we may use expressions like xi ∈ x or x ⊆ X , etc.

Equality-generating dependencies (egds) are of the form

∀x (φ(x)→ xi = xj) (2.2)

with xi, xj ∈ x.

A second-order tuple generating dependency (SO tgd) is a logical formula of the form

∃f((∀x1(φ1 → ψ1)) ∧ · · · ∧ (∀xn(φn → ψn))) (2.3)

where:

• each member of f is a function symbol,

• each φi is a conjunction of atomic formulas of the form S(y1, . . . , yk) (with S ∈ S and

yj ∈ xi), and equalities of the form t = t′ (with t and t′ terms based on xi and f),

• each ψi is a conjunction of atomic formulas of the form T (t1, . . . , t`) (with T ∈ T where

t1, . . . , t` are terms based on xi and f), and

• each variable in xi appears in some atomic formula of φi.

Nested mappings

In [15] the authors discuss some difficulties encountered by schema mapping tools like CLIO:

redundancy in specification and underspecified grouping semantic. In order to address these

issues, they proposed an extension of the basic mappings, based on arbitrary nesting of mappings

formulas within other mapping formulas. One important characteristic of the nesting mappings

is that at each level, there are correlation between the current submappings and the upper-level

mappings, nothing is repeated from the upper level, but instead reused.

8

Visual mapping language CLIP

CLIP is a mapping language for relational and XML schemas. Schema elements are visually

connected from source to target by lines interpreted as mappings. Both structural mappings and

simple value mappings are supported. The combination of value and structural mappings in

CLIP yields expressive language elements extending those from Clio [15, 34], one of the most

prominent schema mapping tools, developed by IBM Almaden Research Center and the Univer-

sity of Toronto, and gives users fine-grained control over generated transformations. Mappings

are compiled into queries that transform the source instances into target instances. The main

CLIP language elements [37, Figure 2] are as follows.

• Value nodes store attributes and text.

• Single elements consist of a value node and have a name.

• Multiple elements represent sets of elements.

• Value mappings are thin arrows with open ends, in order to map values from source to

target.

• Builders or object mappings are thick arrows with closed ends connecting elements.

• Build nodes have at least one incoming builder and at most one outgoing builder and

express a filtering condition in terms of the variables in the builders or enforce a hierarchy

of builders if connected by context arcs.

• Grouping nodes are a special kind of build nodes used for grouping on attributes.

• Context propagation trees are trees with build nodes and context arcs.

9

CHAPTER 3
Mapping Language

3.1 A simple CLIP mapping

In this chapter we start to discuss CLIP, the visual schema mapping language. The first simple

CLIP mapping scenario is introduced. We show that the same schema mapping can be achieved

by using the standard modeling language UML and its extension OCL, a standard constraint

language. Based on these standard specifications we introduce our schema mapping language

UMAP.

A simple CLIP mapping, adapted from [37, Figure 3] is presented in Figure 3.1: an employee

is created for each regEmp whose salary is greater than 11,000. For each employee the name

is also copied from source to target. The visual mapping language CLIP depicts the schemas as

trees. The nodes are single elements or multiple elements. The source schema is on the left side

and the target schema on the right side.

In Figure 3.1, source regEmp and target employee are multiple elements, represented with

shaded icons. Each element from the source set is described by its ename, a string and its sal,

an integer, both called value nodes. Each element from the target set is described only by its

@name, a string, also a value node. Value mappings are thin arrows with open ends connecting

value nodes. To show that the name is mapped from source ename to target @name, a value

mapping is used. On the arrow a text indicates the mapped value, $r.ename.value.

However, the scenario maps multiple elements to multiple elements. An iterator is needed

and this is achieved in CLIP with builders. Builders are thick arrows with close ends connecting

elements and possibly build nodes. Build nodes have incoming and outgoing builders and can

11

filter variables in terms of the variables on the builders. In this scenario the first builder starts

from source regEmp, connects it with a filtering build node and the second builder connects

further the build node with the destination, the target employee. The text note next to the build

node defines the filtering condition, only those regEmp are selected with a value of sal greater

than 11,000. Clearly, this connection between source and target is an iterator and filter at the

same time.

In [37] it is explained that this simple mapping is still expressible also in CLIO [10], but the

rest of the CLIP mappings, despite some of them being only slightly more complex, build for

CLIO a lot of difficulties. The authors mention further that this mapping is underspecified: there

is no indication how to map the dept from the source to department on the target. Using the

notion of universal solution [13] the authors explain that there are at least two such solutions:

a universal solution with a generic department for each mapped employee or a universal solu-

tion with a single generic department for all mapped employees. By adopting the principle of

minimum-cardinality, the authors prefer the latter solution. The schema mapping scenario from

Figure 3.1 translates to the following simple tgd 3.1

∀d ∈ source.dept, r ∈ d.regEmp |

r.sal.value > 11, 000→

∃d′ ∈ target.department, e′ ∈ d′.employee |

e′.@name = r.ename.value

(3.1)

3.2 A motivating example: a simple mapping using UML and OCL

The UML class diagram in Figure 3.2 presents the structure and the OCL expressions define the

operations used to map the source to the target. For clarity we present the mapping of the source

set regEmp[0..*] to the target set employee[0..*] without the source dept and the target depart-

ment to which they belong. Thus we represent only the essential part of Figure 3 from [37]

using a class diagram in Figure 3.2. There are two classes on the source side: a class of type

regEmpSet and a class of type regEmp connected with the previous by aggregation with cardi-

nality 0..*. The class regEmp contains two attributes: ename of type string and sal of type int.

On the target side there are two classes: employeeSet and employee connected by aggregation

with the same cardinality as the previous aggregation from the source side. The class regEmpSet

from the source is connected to the class employeeSet from the target by an association class:

12

Figure 3.1: A simple CLIP mapping (adapted from [37, Figure 3])

Builder. In the same way the class regEmp from the source is connected to the class employee

from the target by an association class: ValueMap. Between these two association classes there

is an association which helps the class Builder to access the functionality of the class ValueMap.

The Builder association class iterates through the source set using the function build. In each

iteration by the help of the association class ValueMap each regEmp is mapped to an employee

using the function map. These two functions, Builder::build and ValueMap::map are defined by

OCL post-condition expressions.

3.3 Translating language constructs from CLIP to UML and OCL

Translating value nodes, single elements and multiple elements. The previously named classes

translate the CLIP structure to UML. Both Set classes: regEmpSet and employeeSet, represent

the multiple nodes in the CLIP language: regEmp[0..*] and employee [0..*]. The other two

classes regEmp and employee put together all value nodes and single elements that structurally

belong to the multiple elements such as regEmp[0..*] and employee [0..*].

Translating value mappings and builders. The semantics of CLIP value mappings and builders

is achieved in UML through artifacts of the class diagram and OCL expressions. We use in the

class diagram the association class ValueMap that connects the source type regEmp to the target

13

Figure 3.2: A UML class diagram with a simple mapping, corresponding to Figure 3.1

type employee. In the UML translation of CLIP value mapping, the generation of the target

object from the source object is done by the help of the function ValueMap::map. This mapping

function is defined in OCL as follows:

context V alueMap :: map(rEmp : regEmp) : employee

post : result = e : employee and e.name = rEmp.ename
(3.2)

In the OCLspecification [30, Section 7.6.2] it is mentioned that an operation could be defined

by a post-condition. The object that is returned by the operation can be referred to by the

keyword result. In our case the source–to–target mapping is defined by the equality of the

names. Other mapped attributes could be added here if necessary.

In the UML translation of CLIP builders, the generation of the target set from the source set is

achieved by the use of the function Builder::build. This function iterates over the set regEmpSet

generating the set employeeSet and by this models the CLIP builder. This mapping function is

defined in OCL as follows:

14

context Builder :: build(rEmpSet : regEmpSet) : employeeSet

post : result = rEmpSet.regEmps

− > select(r : regEmp | r.getSal() > 11, 000)

− > collect(r : regEmp | V alueMap.map(r) : employee)

(3.3)

The mapping definition starts from the source set regEmpSet and selects only those objects

from the source that have a salary greater than 11,000 creating a set. For this selection the

standard OCL function select is used.

In the next step we obtain another set of type employeeSet from this set. This is done by

the use of the function collect, also a standard OCL function, that applies to each object of type

regEmp the function ValueMap::map. The result is an object of type employee. Further the

function collect, by its OCL definition, inserts all these newly created objects into a set, which is

the return value of the function Builder::build. The class Builder is the translation of the CLIP

builder because it iterates on the source set, it selects the nodes to be mapped to the target by the

help of the OCL select standard function and then it creates a set of a different type, using the

OCL collect standard function. The function collect uses the association to the class ValueMap

to effectively map each object from the source to the target. The class ValueMap translates the

CLIP value mappings. The presentation of this example used implicitly the modeling language

for schema mapping that we call UMAP, which is introduced and described in the following

chapters.

3.4 The UMAP Language

The previous section showed how to reproduce some central building blocks of a visual model-

ing language just with UML and OCL constructs. However, in order to provide a well-defined

foundation for a middleware like UMAP, we need to restrict the allowed UML constructs and

provide a clear generic strategy of translating the input language constructs to UML and OCL

expressions generating the same results.

UML constructs. The UMAP language uses a small and well-defined subset of UML and OCL

constructs. The main UML building blocks:

• class,

• association class,

15

• association and a special form of it called aggregation,

as defined by the official abstract syntax of the language [29, Section 7] are used by the UMAP

language for describing the structure of the source and the target, and for the mapping from

source to target. Moreover, the OCL constructs asSet, collect, forAll, isUnique, iterate, result,

and select, are part of UMAP. According to UML [29, Section 2.1] such a visual language

consists of language units, which are adapted to a particular paradigm or formalism. Between

these language units there are no interdependencies, so they can be used one apart from the other.

Some of these language units are partitioned into multiple increments leading to a horizontal

stratification of UML. These layers of increasing capability are called compliance levels. In

UML [29] there are four compliance levels. UMAP uses the language unit Classes, and adheres

to the fourth level of compliance named L3 because a main construct of UMAP is the association

class from the meta model package Classes::AssociationClasses.

The classes of UMAP describe the structure of the source and the target. In UMAP the

aggregation (represented as an association without the diamond notation) is the only connection

inside the source or target structures. This means that the structure at the top level includes

arrays of other structures that again include arrays. This description defines the source and the

target structures as trees. The behavior of the association class is used for the actual mapping.

The only active class is the association class at the top of such a hierarchy. We use the property

described in [30, Section 7.6.3] that from an association class we can navigate the association-

ends. This comes in contradiction with [29, Section 7.3.4] that states the contrary. No matter

how this contradiction between these two standards will be solved in the future by the standard

committees, the syntax and semantics of UMAP are not affected and minor adapting changes are

necessary, only if [30, Section 7.6.3] is going to be modified and aligned with [29, Section 7.3.4].

There are two different usages of the association class: one with a function named build and

the other named map, building two types. A UMAP source–to–target schema mapping employs

these two types building a tree hierarchy. On each level of this hierarchy one of these types

is used alternatively, i.e., a build calls a map and a map calls a build. The top level of such a

hierarchy starts with the type build, called the active class, the one that triggers the mapping. The

first type connects top level structures from source–to–target. At the same time this first type is

connected through an association only to one object of the second type from a lower level in the

tree hierarchy. The second type is connected in the same way to zero or more objects of the first

type also from a lower level of the tree hierarchy.

OCL constructs. The semantics of the UMAP language describes the transformation of the

16

source into the target structure. As we claim standard compliance with UML, its semantics

uses the standard behavior [28, Section 7.11]. Using the definition of attribute grammars [25],

additional semantics of UMAP has been achieved through constraints expressed in the OCL

language for the following constructs of the UMAP language:

• behavior constructs, i.e., the functions named build and map of the construct association

class and

• structure constructs, i.e., attributes of the target structure.

The OCL expressions are implemented in a programming language that can be executed to

create and instantiate a mapping. The usage of OCL in UMAP is limited to the following basic

constructs: asSet, collect, forAll, isUnique, iterate, result, and select. For their semantics we

assume the default interpretation as defined by the OCL standard [30].

Another characterization of the semantics of the OCL constructs in UMAP is given by logics.

The translation of the OCL constructs asSet, collect, forAll, isUnique and select to first-order

predicate logic is given in [4]. The construct result is used only for defining the output. The

authors in [4] do not translate the operator iterate to first-order predicate logic but propose to

express it in higher-order logic.

The active class is the association class connecting the top level structures from the source

to the target. This association class must be from the first type so it must have a function

named build and it is an iterator on included arrays. This function is described in OCL and

makes a selection of the source objects and a transformation of them by calling the other type

of association class, which is connected by an association. On its turn the second type of the

association class using the function named map does the mapping. This is again described in

OCL. A second role of the function map is to access through the association other objects of the

association class of the first type having a function named build. This chain of these two types

calling each other executes the mapping, thus defining the semantics of the language UMAP. A

program in UMAP is a UML diagram with OCL defining the mapping functions. An input is

an instance of the source structure or an instance including such an object. The output of the

program is an instance of the target structure. The semantics of the language is the mechanism

that transforms the source into the target.

The Language Complexity. As the mappings also use OCL expressions a major concern is their

complexity, when implementing them in a programming language. UML/OCL can be translated

to first-order predicate logic [4]. The tgds that we use can be considered as first order formulae

17

expressing the containment of one conjunctive query in another conjunctive query relative to

some given database [19]. In this case, the data complexity is tractable but the query complexity

and the combined complexity are Πp
2 complete [16, 33]. However, as we restrict the allowed

constructs (as defined above) expensive queries are created in rather special cases that hardly

reflect the practical scenarios. In fact, the implementation of the OCL functions iterate, the most

general, or other more specialized as select and collect, can be done by a limited number of

nested loops. This number is bounded by the size of the tgds, which tend to be small.

3.5 UMAP Layer and Translation of CLIP Core Features

Before defining any syntax or semantics the main high-level idea behind UMAP is summarized as

follows. The UMAP layer abstracts source and target schemas as UML class diagrams. Without

loss of generality, we assume both source and target as XML schemas (since relational schemas

can be converted into XML schemas). The schemas represent trees consisting of nodes, attributes

and sets of nodes. Individual schema elements, i.e., nodes, are modeled as classes, and attributes

in the XML schema become attributes in the corresponding UML class. Sets of elements are

modeled as generic container classes encapsulating the underlying class. The actual mappings

between source and target schemas are done by association classes augmented by associations

between them. We use OCL to specify constraints (post-conditions and invariants) on the asso-

ciation class functions and class attributes to achieve the desired semantics of the mapping.

We have presented above an example translating basic features of CLIP into UMAP. The

exact definition of the UMAP language follows in the next chapter. Once we have motivated a set

of typical constructs needed, CLIP is a good representative for recent visual mapping languages

and has clearly motivated the need for the individual language constructs. We map each CLIP

artifact to a UML/OCL artifact of the UMAP layer.

• The CLIP value nodes and single elements are modeled by class attributes grouped seman-

tically in a class.

• The CLIP multiple elements are modeled in UML as generic container classes (sets of

elements).

• The value mappings are modeled in UML with the help of an association class linking

source to target. A class function named map implements the mapping.

18

• The definition of the mappings is achieved through OCL expressions, which include also

the filtering conditions. The builders or object mappings are modeled in UML also with

the help of an association class linking source to target. A class function named build

implements the iterator defined by OCL expressions.

• The associations between association classes model the hierarchy of builders.

• The context propagation tree is achieved with the help of the hierarchies of association

classes and associations between them. Each iterator modeled by a class function named

build from one level of the hierarchy triggers only a class function named map from a

lower level in this hierarchy, which maps source to target values.

• The class function named map from one level triggers zero or more class functions named

build from a lower level of the induced hierarchy of functions.

• As a general characteristic of the translation from CLIP to UML the translations of the

CLIP value mappings and builders are association classes, using functions named map or

build. Successive alternations of these two functions correspond to the CLIP feature of a

context propagation tree.

• Joins and grouping nodes are modeled with the help of the OCL expressions, defining

class functions and attributes.

3.6 Conclusion

The first important advantage of UMAP is its definition based on ISO and OMG standards for

UML and OCL. In this way, the whole range of UML and OCL tools is available. The second

important advantage of the UMAP language, when compared to the Clip GUI, is that UMAP

hasn’t its own GUI, but it can use the GUI of any a modelling tool, provided that the tool

supports at least the following standards and features:

• UML and OCL,

• export the modelled classes and their functions to various programming languages,

• export/import the UML/OCL model to XMI and

• call external executables such as VMAP.

19

Most of the current modelling tools support all these features, e.g., Enterprise Architect. There-

fore, the most important benefits of UMAP are:

• it is based on international standards,

• it is supported by most of the current modelling tools,

• it can be used as middle-ware for other high-level schema mapping modelling languages,

provided they are formal, i.e., they have a meta-model, a MOF [31] conform description

in UML and

• it can use a reference implementations as VMAP.

The Clip GUI is more intuitive because is was specifically tailored for this purpose. UMAP

brings more standardisation and can use the GUI of any available commercial modelling tool.

UMAP, due to UML/OCL, has at least the expressive power of Clip. As a benefit, all CLIP

features are represented in UMAP.

20

CHAPTER 4
Complex Mappings

4.1 Context propagation

Consider the CLIP [37] mapping with context propagation shown in Figure 4.1. For each dept

from the source a department in the target is created and for each regEmp of a dept an employee

of a department. The mapped regEmps are only those with a salary greater than 11,000. The

mapping is performed with the help of two builders, each through a build node and a context arc

Figure 4.1: A CLIP mapping with context propagation (adapted from [37, Figure 4])

21

Figure 4.2: The UMAP diagram with context propagation, corresponding to Figure 4.1

connecting the build nodes. Thus, a hierarchy of builders is created. The builder started from

dept acts as an outer iterator on the builder started from regEmp, an inner iterator. This has the

effect that all regEmps of each distinguished dept from the source are mapped as the employees

of the corresponding department in the target. If the context arc is omitted in CLIP then all the

employees are connected to each of the departments.

The semantics of this scenario translates to the following tgd:

∀d ∈ source.dept→ ∃d′ ∈ target.department |

[∀r ∈ d.regEmp | r.sal.value > 11, 000→

∃e′ ∈ d′.employee | e′.@name = r.ename.value]

(4.1)

The CLIP authors remark that this tgd is similar to the already presented tgd 3.1. But the

context propagation, the arc connecting the two build nodes, constrains the scope of the inner

mapping within the context of the outer one. This is expressed by the help of the nested tgd, in

22

square brackets. The nested tgd is coordinated with the outer tgd by references to the variables

d and d’.

4.2 The UML structure

The UML class diagram in Figure 4.2 presents the structure and the OCL expressions, define the

operations used to map the source to the target. Supplementary to the previous case, in which

only employees were mapped from source to target, in this case departments with employees are

mapped. The mapping of the employees was already presented in Chapter 3. The classes and

the associations between them are reused and we repeat only the essential facts. The employees

are represented on the source side by the help of two classes: a class of type regEmpSet and

a class of type regEmp connected with the previous by aggregation with cardinality 1..*. On

the target side there are two classes: employeeSet and employee connected by aggregation with

the same cardinality as the previous aggregation from the source side. The class regEmpSet

from the source is connected to the class employeeSet from the target by an association class:

Builder. In the same way the class regEmp from the source is connected to the class employee

from the target by an association class: ValueMap. Between these two association classes there

is an association, which helps the class Builder to access the functionality of the class ValueMap.

The Builder association class iterates through the source set using the function build. In each

iteration, the association class ValueMap maps each regEmp to an employee using the function

map. Both functions Builder::build and ValueMap::map are defined by OCL post-condition

expressions.

The association class ValueMap connects the source type regEmp to the target type employee.

The mapping function is defined in OCL as follows:

context V alueMap :: map(rEmp : regEmp) : employee

post : result = e : employee and e.name = rEmp.ename
(4.2)

The generation of the target set from the source set is achieved by the use of the function

Builder::build. This function iterates over the set regEmpSet generating the set employeeSet:

context Builder :: build(rEmpSet : regEmpSet) : employeeSet

post : result = rEmpSet.m_regEmps− > select(r | r.getSal() > 11, 000)

− > collect(r : regEmp | V alueMap.map(r) : employee)

(4.3)

23

The mapping definition starts from the source set regEmpSet and selects only those objects

from the source that have a salary greater than 11,000 creating a set. In the next step we obtain

another set of type employeeSet from this set. This is done by the use of the function collect that

applies to each object of type regEmp the function ValueMap::map. The result is an object of

type employee. Further the function collect inserts all created objects in a set which is the return

value of the function Builder::build.

The department is represented on the source side by the help of two classes: a class of type

deptSet and a class of type dept connected with the previous by aggregation with cardinality

1..*. On the target side there are two classes: departmentSet and department connected by

aggregation with the same cardinality as the previous aggregation from the source side. The class

deptSet from the source is connected to the class departmentSet from the target by an association

class: deptBuilder. In the same way the class dept from the source is connected to the class

department from the target by an association class: deptMap. Between these two association

classes there is an association, which helps the class deptBuilder to access the functionality

of the class deptMap. The deptBuilder association class iterates through the source set using

the function deptBuilder::build. In each iteration, the association class deptMap maps each

dept to a department using the function deptMap::map. Both functions deptBuilder::build and

deptMap::map are defined by OCL post-condition expressions.

context deptMap :: map(dep : dept) : department

post : result = d : department and

d.m_employeeSet = Builder.build(dep.m_regEmpSet)

(4.4)

The input object of this operation is of type dept and the object that results is of type de-

partment. The input object includes a set of source type regEmpSet, which is mapped to a set

of target type employeeSet. This is done by the function Builder::build, already presented. If

needed, other target attributes, based on source attributes, could be defined here. The translation

of the CLIP construct builder, generating a department set from a dept set is done by the function

deptBuilder::build. This function iterates over the source set, generating the target set and so

translating the CLIP builder:

context deptBuilder :: build(dSet : deptSet) : departmentSet

post : result = dSet.m_depts− > asSet()

− > collect(r : dept | deptMap.map(r) : department)

(4.5)

24

The post-condition starts from the source set deptSet and selects only those departments

fulfilling some conditions. In this particular case, there are no conditions, so all the departments

are selected. The next step is to obtain from this set another set of type departmentSet. This is

done by the function collect that applies to each object of type dept the function deptMap::map.

The result is an object of type department. Further the function collect inserts all these newly

created objects in a set, which is the return value of this function. The class deptBuilder is the

translation of the CLIP builder because it iterates on the source set, it selects the nodes to be

mapped to the target by the help of the OCL select standard function and then it creates a set of

a different type, using the OCL collect standard function.

4.3 A more complex mapping

A more complex CLIP mapping is presented in Figure 4.3. The hierarchy of builders, i.e.,

builders connected by context arcs, enforces the propagation of the outer iterator context to the

inner iterators on Proj and regEmp. The authors explain in [37] that CLIP can achieve, through

this configuration, the mapping of depts with Projs and regEmps from the source to the target

without loss of the structure what no other state-of-the-art-tools like Clio can do.

The semantics of the scenario presented in Figure 4.3 translates to the following tgd:

∀d ∈ source.dept→ ∃d′ ∈ target.department |

[∀p ∈ d.Proj → ∃p′ ∈ d′.project |

p′.@name = p.pname.value] ∧

[∀r ∈ d.regEmp | r.sal.value > 11, 000→

∃e′ ∈ d′.employee | e′.@name = r.ename.value]

(4.6)

The main idea of translating from CLIP into UML, developed in the previous case, is used

and the results are presented in the class diagram Figure 4.4. The class diagram has on the

source side six classes: dept, Proj and regEmp and the set variant of each. The association class

deptBuilder using the other association class deptMap triggers the two inner iterators of the asso-

ciation classes Builder and projBuilder. At each outer iteration step, the function deptMap::map

is triggered and the inner iteration transforms all the qualified regEmp and Proj objects from the

source to employee and project objects of the target types. Then the outer iteration inserts them

into the corresponding department on the target. Both inner iterators, the association classes:

25

Figure 4.3: A more complex CLIP mapping (adapted from [37, Figure 5])

projBuilder and Builder are triggered using the associations existing between them and the as-

sociation class: deptMap, the outer iterator. All the functions are defined in OCL and are similar

to those used in the precedent two cases.

The OCL expressions for the mappings included in the association classes ValueMap and

Builder were already presented in the first two cases. The corresponding OCL expressions for

the association classes projMap and projBuilder are presented next.

context projMap :: map(p : Proj) : project

post : result = pr : project and pr.name = p.pname
(4.7)

This OCL expression defines the function projMap::map which maps a source object of type

Proj to a target object of type project.

context projBuilder :: build(pSet : ProjSet) : projectSet

post : result = pSet.m_Projs

− > Set()− > collect(r : Proj | projMap.map(r) : project)

(4.8)

This OCL expression defines the function projBuilder::build which maps a source set of Proj

objects to a target set of project objects.

26

Figure 4.4: The UMAP diagram with a more complex mapping, corresponding to Figure 4.3

27

The OCL expression for the association class deptMap is similar to that of the second case.

This function has to define the mapping of two sets at the same time.

context deptMap :: map(dep : dept) : department

post : result = d : department and

d.m_employeeSet = Builder.build(dep.m_regEmpSet) and

d.m_projectSet = projBuilder.build(dep.m_ProjSet)

(4.9)

The translations of the CLIP builders or value mappings to UML are association classes using

respectively functions named build or map. These association classes are used alternatively

at successive levels developing a hierarchy of functions. The function named build is always

situated at the top level of the hierarchy and map at the bottom level. The function build from

the top level or from another level of the hierarchy calls always only one function named map

from a successive lower level and vice versa: a map function calls one ore more functions named

build from a successive lower level. As already mentioned the function at the lowest level, the

bottom level of the hierarchy, is always named map. These successive levels of alternations

using functions named build and map translate the CLIP feature called Context Propagation

Tree (CPT) to UML.

The OCL expression of the function deptBuilder::build is identical to the one with the same

name in the second case above.

This illustrates again that UML diagram produces the same mapping as the CLIP diagram.

In contrast to the previous CLIP features, the next mappings join multiple source elements

and create multiple target elements. This means that both functions map and build create sets of

the same type, with the consequence that both association classes containing these functions are

connected on the target side to the same class. The function map uses the join to map from target

to source, while the function build iterates over the set deptSet and inserts target sets produced

by the function map into the union of target sets.

4.4 A join constrained by a Context Propagation Tree

When a build node is reached from two or more source schema nodes, as in Figure 4.6, CLIP

computes the Cartesian product of the sources selected by each builder. A filtering condition can

be added on the label of the build node. If this condition involves two different variables, CLIP

computes a join between the source data selected by the build node. The topmost build node

28

Figure 4.5: A CLIP mapping with a join constrained by a CPT (adapted from [37, Figure 6])

has no output builder. The context arc as shown in Figure 4.5 restricts the Cartesian product of

Projs and regEmps to nodes within the same dept. The result is a flattened list of employees and

projects, in which they work. The UMAP class diagram in Figure 4.6 has on the target side the

class project_empSet. As in CLIP, dept is not mapped in the target.

The semantics of this CLIP scenario transforms to the following tgd:

∀d ∈ source.dept→

[∀p ∈ d.Proj, r ∈ d.regEmp | p.@pid = r.@id→

∃p′ ∈ target.project_emp |

p′.@pname = p.pname.value,

p′@ename = r.ename.value]

(4.10)

The UML translation is based on the definition of the Cartesian Product in OCL by [1]. The

association class project_empSetBuilder starts the iteration over the elements of the set deptSet.

Each iteration maps one object of type dept to a set of objects project_emp obtained from the join

of the Proj and regEmp objects of each dept on the attribute pid. The OCL expressions define the

join by constructing first a Cartesian Product and then a selection of the elements with the same

attribute pid associating each employee with the projects, in which she works. In this case, the

29

Figure 4.6: The UMAP diagram with a join, corresponding to Figure 4.5

association class deptMap creates from each object dept a set of project_emp. The association

class project_empSetBuild using this functionality maps the set of dept objects to the union of

sets of proj_emp objects. We define the OCL expression for the function deptMap::map as

context deptMap :: map(dep : dept) : project_empSet

def : projProdEmp = dept.mP rojSet

− > collect(p : Proj | dept.m_regEmpSet

− > collect(e : regEmp | Proj_regEmp : TupleProj, regEmp))

(4.11)

This is the Cartesian Product of the two sets included in a dept. The result is a set of tuples

composed of a regEmp and a Proj each.

30

def : projJoinP idEmp = projProdEmp

− > select(Proj_regEmp |

Proj_regEmp.Proj.pid = Proj_regEmp.regEmp.pid)

(4.12)

The join is obtained by its definition from the Cartesian Product by selecting those tuples

with the same pid.

post : result = projJoinP idEmp− > collect(Proj_regEmp | project_emp(

Tuple{pname = Proj_regEmp.Proj.pname,

ename = Proj_regEmp.regEmp.ename}))

(4.13)

The result of this operation is a set of project_emp objects containing the name of the project

and the name of the employee working in that project. The OCL definition of the function

project_empSetBuilder::build uses the function deptMap::map.

context project_empSetBuilder :: build(dSet : deptSet) : project_empSet

post : result = dSet.m_depts− > Set()− > iterate(r : dept;

peS : project_empSet = Bag | peS.pushBackProject_emp(deptMap.map(r)))

(4.14)

This function iterates over the set of dept objects and produces from each of them a set of

project_emp objects and these sets are inserted in the project_empSet, a union of sets. This

ensures that the CLIP join and the described UML class diagram produce the same mapping.

4.5 A mapping with grouping and join

In CLIP, group nodes are used to group source data on attributes. Figure 4.7 depicts such a con-

struct. The result of a group node is a sequence of elements selected by the grouping attributes.

The number of created sequences on the target equals the number of distinct values of the group-

ing attributes from the source. In Figure 4.7 the Projs are grouped by pname. The Projs and

regEmps are joined by pid and finally the employees on the target are created and added to the

project by name independently of the dept, in which they work.

The semantics of this CLIP scenario translates to the following tgd:

31

Figure 4.7: A CLIP mapping with grouping and join (adapted from [37, Figure 7])

Figure 4.8: The UMAP diagram with grouping and join, corresponding to Figure 4.7

32

∃group_by

(∀d ∈ source.dept, p ∈ d.Proj →

∃p′ ∈ target.project |

p′ = group_by(⊥, [p.pname.value]),

p′.@name = p.name.value,

[∀d2 ∈ source.dept, p2 ∈ d2.P roj, r ∈ d2.regEmp |

p2.@pid = r.@pid→

∃e′ ∈ p′.employee | e′.@name = r.ename.value])

(4.15)

The class diagram in Figure 4.8 is the corresponding translation to UMAP for the CLIP

mapping scenario with join and grouping. The association class projectSetBuilder starts the

iteration over the elements of the set deptSet. Each iteration using the function deptMap::map

maps one object of type dept to an object of type projectSet. This set is obtained from the join of

the Proj and regEmp objects of each dept on the attribute pid. On the target each project includes

its employees. The function deptMap::map inserts each project into the projectSet. Each insert

groups the project objects by name. In this case OCL expressions do not give a constructive

solution but the OCL constraints define the possible implementations. The attribute m_projects

of the type projectSet from the target is specified in OCL by the following expression:

context projectSet.m_projects

inv : self− > isUnique(p : project | p.name)
(4.16)

This means that the elements of the set, the project objects, are unique by name. In this way

the grouping by project name is achieved. In the UML diagram the type project has a set of

objects of type employee. Because of this structure the only possible grouping is to attach all the

employees to the project, in which they work. If two or more projects have the same name by

the uniqueness of the project name the employees of these projects are again grouped together.

This is valid by the structure of the UML diagram also for projects in different departments. The

OCL expressions give the definition of the join by constructing first a Cartesian Product and

then a selection of the elements with the same attribute pid associating each employee with the

projects, in which she works. It follows the OCL expression for the function deptMap::map:

33

context deptMap :: map(dep : dept) : projectSet (4.17)

The OCL expressions defining the Cartesian Product and the join on pid have already been

presented in the previous subsection.

def : result_lhs = projJoinP idEmp− > collect(Proj_regEmp |

Tuple{pname = Proj_regEmp.Proj.pname,

ename = Proj_regEmp.regEmp.ename})

(4.18)

This OCL expression creates all the tuples from the source that are to be grouped on project

name in the target by the mapping,

def : result_rhs = projectSet.m_projects

− > collect(p | p.m_employeeSet.m_employees

− > collect(e | proj_emp : Tuple{p : project, e : employee}))

(4.19)

creates the Cartesian Product of the tuples from the target, and

post : result = projectSet(result_lhs) and

result_lhs− > forAll(pe |

result_rhs− > exists(proj_emp |

proj_emp.pname = pe.pname and

proj_emp.ename = pe.ename))

(4.20)

defines the constraint that all tuples from the source must have a correspondent in the target.

All elements from the target are created only from the source so it is not necessary to show

that all elements from the target are only those that are created by the mapping. Every possible

implementation must fulfill these constraints. The association class deptMap connects the class

dept from the source with class projectSet from the source. The function deptMap::map trans-

forms a dept to a projectSet. The association class projectSetBuilder connects the class deptSet

from the source with class projectSet from the target.

34

Figure 4.9: A CLIP mapping with inverting the nesting hierarchy (adapted from [37, Figure 8])

context projectSetBuilder :: build(dSet : deptSet) : projectSet

post : result = dSet.m_depts− > Set()− > iterate(r : dept;

pS : projectSet = Bag{} |

pS.pushBackProjectSet(deptMap.map(r)))

(4.21)

The function projectSetBuilder::build transforms the source to the target. The OCL defini-

tion of the function projectSetBuilder::build uses the function deptMap::map.

4.6 Inverting the nesting hierarchy

Another CLIP feature, a group node with inverted hierarchy is presented in Figure 4.9. The

source data is mapped to the target and as in the previous example, grouped on attributes, i.e., the

mapping groups the projects by name. The departments are nested under the grouped projects,

recall that in the source the depts have nested Projs hence, the inverted hierarchy. This CLIP

scenario translates to the following tgd:

35

Figure 4.10: The UMAP diagram with inverting the nesting hierarchy, corresponding to Fig-
ure 4.9

∃group_by

(∀d ∈ source.dept, p ∈ d.Proj →

∃p′ ∈ target.project |

p′ = group_by(⊥, [p.pname.value]),

p′.@name = p.name.value,

[∀d2 ∈ source.dept→

∃d′ ∈ p′.department | d′.@name = d2.ename.value])

(4.22)

36

The class diagram in Figure 4.10 translates the grouping with inverted hierarchy from CLIP

to UMAP. The mapping is started by the iterator from the association class projectSetBuilder on

the elements of the set of deptSet.

The function deptMap::map in each iteration maps one object of type dept to an object of

type projectSet.

This set is obtained from the Proj elements of the current dept of the iteration. The current

department is inserted to each project object created by mapping from a Proj object. This

operation actually inverts the hierarchy. Each inserted project is grouped by name. In this

case OCL expressions do not give a constructive solution but the OCL constraints define the

possible implementations. OCL allows us to express constraints, which must be satisfied by the

implementation.

The attribute m_projects of the type projectSet from the target is specified by the following

OCLexpresion.

context projectSet.m_projects

inv : self− > isUnique(p : project | p.name)
(4.23)

This means that the elements of the set, the project objects, are unique by name. In this way

the grouping by project name is achieved.

In the UML diagram the type project has a set of objects of type department. Because of this

structure, the only possible grouping is to attach all the departments to the project belonging to it.

If two ore more projects have the same name by the uniqueness of the project name the different

departments are again grouped together. This is valid by the structure of the UML diagram also

for projects in different departments.

We present next the OCL expression defining the function deptMap::map.

context deptMap :: map(dep : dept) : projectSet

def : result_lhs = dept.m_ProjSet

− > collect(Proj | Tuple{pname = Proj.pname,

dname = dept.dname})

(4.24)

This expression creates a set of tuples containing the name of the current department and

each of the names of the projects of the current department that are to be inverted in this iteration.

37

def : result_rhs = projectSet.m_projects

− > collect(p | p.m_departmentSet.m_departments

− > collect(d | Tuple{pname = p.name,

dname = d.name}))

(4.25)

This OCL expression computes the Cartesian Product of the target.

post : result_lhs− > forAll(dp | result_rh

− > exists(DP | dp.pname = DP.pname and

dp.dname = DP.dname))

(4.26)

The constraint that we impose, is that the elements from the source to be inverted in this

iteration are included in the target. The uniqueness of the project name and the UML structure

assure that the target actually inverts the hierarchy. All the elements from the target are the

result of the mapping, so no supplementary element exists in the target to those created by the

mapping.

The association class projectSetBuilder connects the class deptSet from the source with class

projectSet from the target. The function projectSetBuilder::build transforms the source to the

target.

The OCL definition of the function projectSetBuilder::build uses the function deptMap::map.

context projectSetBuilder :: build(dSet : deptSet) : projectSet

post : result = dSet.m_depts− > Set()− > collect(r : dept;

pS : projectSet = Bag{} |

pS.pushBackProjectSet(deptMap.map(r)))

(4.27)

The UML solution produces also in this case the same final result as CLIP.

4.7 A mapping with aggregates

Aggregate functions are presented in the last CLIP mapping, Figure 4.11.

The CLIP scenario from this diagram translates to the following tgd:

38

Figure 4.11: A CLIP mapping with aggregates (adapted from [37, Figure 9])

∃count, avg

(∀d ∈ source.dept→

∃d′ ∈ target.department |

d′.@name = d.dname.value,

d′.numProj = count(d.Proj),

d′.numEmps = count(d.regEmp),

d′.avg_sal = avg(d.regEmp.sal.value))

(4.28)

The class diagram Figure 4.12 translates this mapping to UMAP. The dept objects from the

source are mapped to the target as department objects. Target aggregate values are calculated

for the source nested elements: Projs and regEmps.

The function deptBuilder::build starts the mapping iterating over the deptSet. In each it-

eration a dept object is mapped from the source to the target creating a department object.

In this way the source deptSet is mapped to the target departmentSet. The mapping function

is depMap::map. This function calls the functions that create the aggregates having as input

sets. In a dept object there are two sets included: ProjSet and regEmpSet. The two functions

39

Figure 4.12: The UMAP diagram with aggregates, corresponding to Figure 4.11

40

projBuilder::build and Builder::build create the aggregate objects projectProperties and respec-

tively employeeProperties, which are again in the object department included. We present next

the OCL expressions, defining the mapping starting from the function creating aggregates for the

regEmpSet.

context Builder :: buildNumEmps(rEmpSet : regEmpSet) : int

post : result = rEmpSet.m_regEmps− > size()
(4.29)

This OCL expression defines a function taking as input a regEmpSet and returning the size

of the set.

contest Builder :: buildAvgSal(rEmpSet : regEmpSet) : int

post : result = rEmpSet.m_regEmps

− > collect(r : regEmp | sal)− > sum/

rEmpSet.m_regEmps− > size()

(4.30)

This OCL expression defines a function using the same input and returning an average salary.

context Builder :: build(rEmpSet : regEmpSet) : employeeProperties

post : result = employeeProperties and

employeeProperties.m_avg_sal = buildAvgSal(rEmpSet) and

employeeProperties.m_numEmps = buildNumEmpsl(rEmpSet)

(4.31)

Now we use the previous two results in creating an employeeProperties object from

a regEmpSet. The following OCL expression describes the creation of an object projectProper-

ties containing the number of the projects belonging to a dept object.

context projBuilder :: build(pSet : ProjSet) : projectProperties

post : result = projectProperties and

projectProperties.m_numProj = pSet− > size()

(4.32)

Now we have all the elements for mapping the source to the target creating a department

from a dept.

41

context depMap :: map(de : dept) : departament

post : result = departement and

department.m_employeeProperties = Builder.build(de.m_regEmpSet) and

department.m_projectProperties = projBuilder.build(de.m_ProjSet)

(4.33)

The functions Builder.build and projBuilder.build create the desired aggregated values. The

mapping of sets of dept to sets of department is presented in the following expression.

context deptBuilder :: build(dSet : deptSet) : departamentSet

post : result = deptSet.m_depts− > Set()

− > collect(r|deptMap.map(r))

(4.34)

As in the previous cases the UML/OCL translation describes the same mapping as the CLIP

mapping.

After discussing all these complex features in detail, we show a general result that the ex-

pressive power of UMAP captures all language features of CLIP.

4.8 Discussion on the correctness of the UMAP approach

In this chapter, we have shown a translation of all CLIP schema mapping features presented

in [36, 37] to UMAP. Let M = (S,T,Σst) be a schema mapping where Σst denotes a set

of CLIP s-t tgds. Let I be a source instance over S and let J be a universal solution over T

satisfying M, i.e., 〈I, J〉 |= Σst, obtained via CLIP. As a successor of CLIO, CLIP produces

universal solutions [35]. CLIO is built directly on the formal foundations of the data exchange

problem [11, 13, 15, 34]. By limiting the class of possible mappings to the ones studied in these

works, it is possible to affirm that the resulting transformations are sound and complete. Let Σ′
st

be constraints materialised as OCL expressions obtained by our construction from CLIP con-

strains Σst. Their semantics follow the CLIP constraints by construction. Then, when UMAP is

applied to the same input instance I over S there exists a universal solution J ′ over T, which

satisfies Σ′
st, i.e., 〈I, J ′〉 |= Σ′

st. We claim that both constraints produce homomorphically

equivalent solutions, thus, there is a homomorphism from J ′ to J . In the following, we dis-

cuss all the presented translations from CLIP to UMAP and illustrate the equivalence of the two

schema mappings.

42

• A simple CLIP mapping, presented in Section 3.1 and Figure 3.1, is by construction equiv-

alent to the UMAP translation presented in Figure 3.2. The value mapping and the function

map have the same functionality, by mapping values to values. The builders and the build

nodes construction define an iterator identically to the UMAP function build. In this case

the s-t tgds, Σst, require that all elements of the source satisfying a certain condition are

to be mapped to the target. The exact mapping is also defined. Both CLIP and UMAP

implement the same s-t tgds.

• CLIP mapping with one context propagation, presented in Section 4.1 and Figure 4.1, is by

construction equivalent to the UMAP solution, presented in Figure 4.2. The basic concept

of UMAP uses associations to connect the association classes situated in two different

levels of the model hierarchy. This connecting element between these two hierarchy levels

simulate the context propagation.

• CLIP mapping with multiple context propagations, presented in Section 4.3 and Figure 4.3

is by construction equivalent to the UMAP solution, presented in Figure 4.4. The previous

concept can be easily extended when we change from one context propagation to many

context propagations building a hierarchy.

• CLIP mapping with a join constrained by a Context Propagation Tree (CPT) is presented

in Section 4.4 and Figure 4.5. Its UMAP translation is depicted in Figure 4.6. The se-

mantics of these two mappings are defined by their s-t tgds. In this case, the CLIP join

is by definition and construction identical to the UMAP defined join. The discussion in

Section 4.4 gives moreover details about this case.

• CLIP mapping with a grouping and join is presented in Section 4.5 and Figure 4.7. Its

UMAP translation is illustrated in Figure 4.8 and its s-t tgds define this mapping using a

different technique. The CLIP mapping uses a Skolem function and the UMAP mapping

uses, supplementary to the already presented s-t tgds, target conditions. In UMAP, the

mapping function is defined by the conditions imposed on the resulting target instance.

A detailed description of this case is given in Section 4.5, so that we can always find a

homomorphism between the solutions obtained from CLIP and UMAP.

• CLIP mapping with inverting the nesting hierarchy, is presented in Section 4.6 and Fig-

ure 4.9, its translation to UMAP is shown in Figure 4.10. This translation uses the same

43

technique as the previous case, CLIP uses a Skolem function and the UMAP mapping func-

tionality is deduced by the s-t tgds and target conditions.

• CLIP mapping with aggregates is presented in Section 4.7 and Figure 4.11, the UMAP

translation in Figure 4.12 uses again different technics obtaining the same target instance.

CLIP uses Skolem functions and in UMAP creates the mapping using the definitions of the

aggregate functions.

The formal prove of our claim should be given by future work.

4.9 Usage of Skolem functions

In [34], the authors consider the schema mapping problem defined as translating an instance of

the source schema to an instance of the target schema. The primary path is defined as the set of

elements, found on the path from the root to an intermediate node or leaf in the tree structure of

the source and target. The mapping is materialized with the use of correspondences: elements

of source and target connected with arrows. The correspondences are modeled as interpreta-

tions, source–to–target referential constraints or dependencies [34]. In this context the nested

referential integrity constraint is presented and defined using the primary path, a large class

of referential constraints that include relational foreign key and XML schema’s key references.

Nested dependencies support the translation of the nested structure of the source and the target.

These source–to–target dependencies are compiled into low level, language independent rules.

These rules are used to obtain the transformations in concrete languages like XSLT or XQuery

for XML Schemas or SQL for relational schemas. For the creation of the new values in the

target that are not specified, one-to-one Skolem functions are used. In [15], the authors, based

on [34], introduce nested mappings. The mappings are defined by lines, correspondences con-

necting the source elements with target elements. Constraints, describing the mapping can be

generated from these lines by tools like Clio or directly by human experts. The nested mapping

is introduced allowing common subexpressions to be factored out. Grouping is another feature

introduced by the use of nested mappings. The nested mappings are strictly more expressive

than the mappings from [34] but less expressive than languages used for composition of s-t tgds

as presented in [13, 26]. The authors note that for the relational model the nested mappings

are a sub-language of the second-order tgds (SO tgds): every nested mapping can be rewritten,

via Skolemization into an equivalent SO tgd but not vice-versa [15]. In [37] the authors, based

on [15, 34], introduce more complex mappings using second-order logical formulas expressing

44

grouping and aggregates by means of functions. Recall the nested tgds of Figure 7, the group-

ing, from CLIP [37, IV. Language Semantics] expressing the fact that for each join on pid from

the source there must be an employee nested inside of a project of the target. The correlation

between the outer mapping and the inner mapping is achieved through the variable p′, a project

on the target, defined in the outer mapping and used in the inner mapping (more, the name of

the project must be unique). This correlating element p′ is the grouping element of the mapping.

This could be expressed in first-order logic but the structure of the nested tgds is not preserved.

This was the reason why a special Skolem function was introduced to solve this problem.

Our UMAP approach using UML class diagrams and OCL constraints does not explicitly

use nested mappings [15], a sub-language of SO tgds, as CLIP [37] does. Instead the diagram

structure and the constraints define the possible query implementations that execute the mapping.

A translation of UML/OCL to first-order predicate logic is given in [4]. The UMAP mapping,

translated to first-order logic, could be compared with the nested mappings used by CLIP. CLIP

introduces a special kind of Skolem function to express the grouping and the aggregates. A

translation of the UML/OCL to nested tgds via a translation to first-order logic would need the

same special Skolem function, showing the equivalence of the both mappings.

4.10 Target dependencies, target egds and tgds

UMAP allows the use of target egds and target tgds. The definition of an explicit mapping by

nested tgds from [37, IV. Language Semantics] uses two expressions: C1 and C2. The first is a

source expression. The second has three kinds of target conditions and could be used as s-t tgds

but, by their definition, not as target egds or target tgds. In our translation, constraints could be

defined for each element in the target schema. An element of the target schema defined using

an OCL expression to be unique is an example of using a target egd. The usage of target tgds is

possible through an OCL expression on the target. Special measures must be taken to limit the

infinite cascading of tuples created in the target by restricting the target tgds to a weekly acyclic

set of tgds [11].

45

CHAPTER 5
VMAP the implementation of UMAP

5.1 System architecture

To show the usability of our visual schema mapping language UMAP, we present VMAP, its

reference implementation. VMAP consists of a chain of specializes components that transforms

a schema mapping scenario depicted using the UMAP visual language into an executable capa-

ble of creating a target instance from a source instance. UMAP has enough expressive power

to capture the main features of common high-level visual schema mapping languages (see, e.g.,

Chapter 4 for a translation of all major CLIP constructs to UMAP), which is an essential prereq-

uisite for such a middleware. Nonetheless, an interface needs to be implemented to provide the

bridge between the high-level language and the UMAP middleware.

Fortunately, this interface can be automatically generated for any high-level language, which

has a so-called formal meta-model (in UML terminology). Then Query, View, and Transforma-

tion, QVT [27], an evolving standard, provides a methodology for automatic transformation.

QVT is an OMG standard, that describes model-to-model transformations. An application that

implements QVT takes as input a schema mapping model, in our case represented using the

schema mapping language Clip and produces as output a model represented using the schema

mapping language UMAP. The scripts using the QVT transformation languages perform actually

the model-to-model transformation. QVT has for this purpose three categories of languages that

could be employed to achieve the desired result. QVT works on modelling languages that are

formal, i.e., they have a MOF [31] conform description in UML, the formal meta-model. In this

thesis we do not employ QVT for the transformations. The transformations have been performed

47

Figure 5.1: VMAP process flow.

manually with respect to the presented transformation rules. The future work mentions the need

to create the Clip meta-model for a QVT transformation.

For our discussion we assume that this transformation has already been executed, either by

hand or via QVT. So we have the UMAP model, as a UML class diagram containing the source

and target structures with the mapping functions defined as OCL expressions. We achieve this by

designing the classes with the help of a UML modeling tool and augment them with functions for

reading the source from and writing the target to XML files. Further, functions for the mapping

are added and defined with the help of OCL expressions. The activity diagram in Figure 5.1, a

UML artefact, presents the VMAP work flow consisting of four tasks:

• UMAP to implementation,

• export UML/OCL to XMI,

• parse XMI and compile OCL to mapping functionality and

48

Figure 5.2: VMAP process flow, its usage in Enterprise Architect (EA).

• extend UMAP implementation with mapping functionality.

The first two tasks use the modeling tool to export the UMAP diagram and create the imple-

mentation skeleton. The last two tasks represent the VMAP, they transform an empty function

skeleton to implementation by adding the mapping functionality. VMAP is called from the mod-

eling tool as an external function, presented in Figure 5.2. The input of the first task is the

UMAP schema mapping model. The output of the last task is the result of VMAP, the implemen-

tation of the mapping functions, ready to be transformed into an executable. In Figure 5.1 we

also present the intermediary outputs of the tasks, subsequently used as inputs by other tasks.

Further we present these tasks in detail.

Using the UML modeling tool we generate the implementation of the UMAP classes and

the skeletons of the mapping functions. The implementation language used is the programming

language C++, which needs for a class two files: a header file, defining the class and an imple-

mentation file for the member functions of that class. The complete UMAP model is exported

using the modeling tool to XMI, which stands for XML Metadata Interchange, an OMG standard

for representing object-oriented information using XML. This XMI file representation of the

UMAP model is standardized and does not depend on the concrete UML modeling tool, used to

create it. We parse this XMI file and extract the OCL expressions together with the referenced

variables. Towards evaluating these OCL expressions, we developed an OCL compiler, spe-

cific to our context of schema mappings and data exchange. The compiler transforms the OCL

expressions to functions of a programming language, in our particular case C++, inspired by

49

compilation techniques of OCL to a programming language as presented in [38]. For the lexical

and syntactical analysis we use the tools Flex [14] and Bison [6]. From the UMAP model we

extract the variables used in the OCL expressions. Together with the key words of OCL and the

grammar we parse the stream of tokens from our expressions into an abstract syntax tree. The

usage of OCL constructs in UMAP is limited to a few and the resulting expressions are simple.

The translation is also limited to a few idioms of the target language, and as a consequence, only

a subset of its constructs are used. The functionality created by our OCL compiler augments the

initially empty generated skeletons of the mapping functions. The UML modeling tool generates

only the skeletons of the mapping functions and their functionality is implemented through the

compilation of the corresponding OCL expressions.

Using an integrated development environment the main function, a C++ specific artifact, is

created. The main function is extended to use the topmost classes generated from the model:

the source, the target and the mapping class. The generated files are then transformed into an

executable. The execution of the created program then loads the input file, an XML file defining

the source instance, and transforms it to another XML file, the target instance, thus executing the

mapping.

The main tools used for VMAP are:

• as operating system (OS) Microsoft Windows (WIN32),

• as UML modeling tool, the well known and appreciated product Sparx Systems’ Enterprise

Architect (EA),

• as integrated development environment (IDE) for C++ Microsoft Visual C++ 2010 Ex-

press (MSVC),

• as XML parser the well known tool Xerces [39], and

• as lexical and syntactic analyzers the tools Flex [14] and Bison [6], well known for their

performance in generating syntax trees in compiler construction.

No proprietary WIN32, EA or MSVC specific features are used in creating VMAP. This

makes the implementation OS, modeling tool, and IDE independent. The implementation only

uses standardized constructs: standard XML and XMI, standard UML and OCL, and the stan-

dardized target programming language C++11. At the same time the C++ features employed are

limited to those that are also found in other common languages like JAVA, so that the implemen-

tation language of VMAP could be easily exchanged if desired.

50

5.2 Data exchange scenario

We present the work of a data engineer executing data exchange, using our tool chain with

VMAP. The following steps are construction steps common for all scenarios presented here.

The source, target and mappings are defined with the EA tool. The source and target instances

are stored as XML file. The standard data exchange scenarios that we present are similar to

those shown in [37]. The OCL compiler used in this context, one of our main contributions, is

integrated in EA and called as an external function, presented in Figure 5.2. The compilation

error messages and warnings are presented in an log file.

We start with the UMAP model, constructed with the EA tool, and saved in a file of type EAP

(Enterprise Architect Project). Using MSVC, the chosen IDE, we create a project, an MSVC

specific artifact. The project is saved in two files of type SLN (Microsoft Visual Studio Solution)

and VCXPROJ (Microsoft Visual Studio Project), the MSVC build environment. We add the EA

generated files to the project. VMAP uses the exported UMAP model to XMI to parse it and to

extract the OCL expressions. The generated files are OS (Windows, Linux) and IDE (MSVC,

Eclipse) independent. The MSVC IDE can immediately create an executable.

Let us consider the following OCL expression for a source to target mapping. The OCL

select function is used to iterate over the source set of regEmp. Only those employees are

selected with a salary greater than a certain value. The OCL collect function is used to

transform the selected source set into the target set of type employee:

context

Builder::build(rEmpSet: regEmpSet): employeeSet

post: result = rEmpSet.m_regEmps

->select(r | r.getSal() > 11000)

->collect(r: regEmp | ValueMap.map(r): employee)

The modeling tool EA creates from the UMAP model the empty function. The content of the

function, the mapping functionality, is the result of our OCL to C++ compiler that creates the

following function:

employeeSet const

Builder::build(const regEmpSet& rEmpSet) const

{

employeeSet eS;

51

std::vector<regEmp> const& rmS = rEmpSet.getRegEmpSet();

std::vector<regEmp>::const_iterator i = rmS.begin();

std::vector<regEmp>::const_iterator e = rmS.end();

for (; i != e; ++i)

{

regEmp const& currRegEmp = *i;

if(currRegEmp.getSal() > 11000)

{

ValueMap valueMap;

const employee& e = valueMap.map(currRegEmp);

eS.pushBackEmployee(e);

}

}

return eS;

}

The semantics of the C++ function is similar to that of the OCL expression. The selection of the

source elements is followed by the mapping and the resulting target elements are inserted into a

target set, in this case, in a language specific generic vector.

Further we consider all the cases of mappings presented in [37].

• A mapping with context propagation. The parsing of the OCL expressions determines the

variables, the loops, the nested loops and transformations using these variables. These

patterns are identified and the corresponding code is created. The OCL expressions are

compiled to C++ as in the motivating example. The case of multiple context propagation

is similar and our concept can easily be extended to fulfill the supplementary requirements.

• A mapping with join. The OCL expressions are compiled using the same techniques as

already presented. The join is in OCL specified as a nested loop. This pattern is recognized

and used in the translation to the target language.

• A mapping with grouping and join and a mapping with inverting the nesting hierarchy.

This case is much more complex and the OCL expression formulates only the constraints

without suggesting an implementation roadmap as in previous cases. This is a conse-

quence of using the OCL function ’exists’. Thus, the created function must fulfil the

52

constraints expressed by the OCL expression. The automatic generation of such functions

requires careful design which is left for future work.

• A mapping with aggregates. Here the OCL expressions can be directly compiled to C++.

The simple patterns recognized in the OCL expression are used by the translation to the

target language.

5.3 Conclusion

We have presented VMAP, the reference implementation for UMAP, a recent underlying layer

and middleware for high-level visual schema mapping languages. UMAP can be used as a visual

mapping language itself or as middleware, having at least the expressive power of CLIP [8].

UMAP is based on the well known and standardized OMG specifications: UML and OCL. UMAP

can use as interactive graphical interface any UML/OCL modeling tool, thus providing the graph-

ical interface for VMAP. UMAP builds only on standard specifications, fact used intensively by

VMAP. For this reason, VMAP works only with schema mapping models represented as UMAP

models. VMAP is not designed to work directly with logical formulas, even if they are translated

to OCL. OCL, a full fledged constraint language, is not very useful without UML, because it

loses context information supplied by UML; that is why OCL must be embedded in UML dia-

grams. VMAP extracts its input from a file in XMI [32] format. This file includes the whole

schema mapping model represented as a UML diagram and its OCL expressions exported by

the modeling tool. VMAP identifies the functions that are relevant for the schema mapping and

their OCL expressions, the OCL supplementary semantics of the UMAP model. These expres-

sions are compiled via the OCL-to-C++ compiler to functions. Finally, VMAP puts in place

these functions containing code in a standard programming language, ready to be used by the

build environment, responsible for the production of the executable as final result. The purpose

of VMAP is to offer data engineers an implementation platform for their own visual mapping

languages.

53

CHAPTER 6
OCL Compiler

6.1 Introduction

We have presented the architecture of VMAP in Chapter 5. Its most important part, our OCL

compiler works at its heart. The compiler translates the actual mapping definitions to functions

of a programming language, which after compilation execute the data exchange. In this chapter,

we present the OCL [30] compiler in much more detail. The OCL expressions are extracted

from the UMAP model and transformed into source code of a specific programming language.

In our case the programming language is C++. The created source code is compiled using a

build environment. Further, we discuss the phases preceding the creation of the source code and

succeeding it. The input is the UMAP data exchange scenario and the output is the source code,

representing the data exchange functionality.

Figure 6.1: VMAP compile architecture concept

55

In Figure 6.1 the fundamental building blocks, on which the VMAP compilation process is

based, are presented. The most difficult part in designing this architecture was to choose only

standardized elements and to bind them with clear structured interfaces. The VMAP compiler

consists of a pipeline of executables, each of them solving well–defined elementary problems.

In this way, the test of these executables can be done in isolation with minimal knowledge of

the tasks, solved by the surrounding executables. This architecture creates the condition for a

simple construction capable of promptly reacting to extensions, changes and defects.

6.2 Compiler Architecture

In Figure 5.1, VMAP, the implementation of the UMAP, is presented. The complex activity,

named: parse XMI and compile OCL to mapping functionality, depicts the compilation process

and it is detailed in Figure 6.2. This process has as input the data exchange model in XMI format

and as output the source code representing the functionality. In the rest of this chapter we discuss

in detail the three phases of the compilation process:

• the XMI model parsing, followed by the extraction of the OCL expressions and the source

and target types,

• each OCL expression is compiled to an abstract syntax tree (AST) and then transformed

to flat OCL AST by traversing the tree in pre-order and

• the code generation from the flat OCL AST together with all other type information.

The first executable is the XMI model parser

Recall the data exchange scenario, depicted as UMAP model in Section 3.1. This model is ex-

ported from the Enterprise Architect (EA) tool to the standardized XMI format, which ensures

the tool independency. The UMAP model in XMI format is an XML file. To parse it, we use

the well–known XML parser: Xerces [39]. The XMI format, an OMG standard, is very suitable

for the description of a UML data model. Every construct of the UML graphical language is de-

scribed in XML. UMAP defines the data exchange scenario using the UML construct association

class. In this context, the source and target are depicted as UML classes and their attributes. All

these constructs and their details are included in the XMI format model description.

56

Figure 6.2: XMI to functionality.

OCL expressions

The most important role in UMAP is played by the classes called mappers and builders. They

have already been presented in Section 3.1. These classes are extracted from the XMI model by

parsing. They are uniquely identified by the following properties:

• only one instance function, which includes in its name the verbs: map or build,

• only this function is in UMAP described by an OCL expression,

• these classes have no state, i.e., no instance variables and

• these classes are modeled as association classes.

The classes named mappers and builders are of such importance because they contain the

whole data exchange description. The OCL expressions define how the source is transformed

into the target. The signature, i.e., the input and the output types of these functions are the

data exchange source and target types, respectively. Next to the OCL expressions, these types

are also extracted, together with their attributes. Algorithm 6.1 presents the work flow of this

57

Data: UMAP scenario as XMI model
Result: a summary file with all the class and function names and a file for each OCL

expression
1 Parse the UMAP model in XMI format;
2 select all nodes that represent a class and its attributes in the container M ;
3 forall the elements of M do
4 if current element has an OCL expression then
5 create a file for this OCL expression;
6 the name of the file is the class and function name;
7 add the class and function names to the summary file;
8 add the input and output types of this function to the summary file;
9 select the function input and output types in the container stType;

10 forall the elements of M do
11 if type name is in stTaype then
12 select all the subtypes of this type;
13 add all these subtypes to the summary file;
14 end
15 end
16 end
17 end

Algorithm 6.1: The XMI model parsing and OCL expressions extraction.

phase. The outer loop looks for association classes and their OCL expression. The inner loop

collects the source and target types as they are needed in the process of the OCL compilation

to the programming language. The result of this phase is a summary of the functions to be

implemented, together with a file for each OCL expression. At this point the road map for the

rest of the executables is in place and they add their contribution to the final result.

The second executable is the OCL parser

Towards evaluating the OCL expressions, we develop an OCL compiler specific to our context of

schema mappings and data exchange. The usage of OCL constructs in UMAP is limited to a few

and the resulting expressions are simple. The translation is also limited to a few idioms of the

target language, and as a consequence, only a subset of its constructs are used. For the lexical and

syntactical analysis we use the widely accepted and well tested tools: Flex [14] and Bison [6],

which transform a grammar into a parser. We have developed an OCL grammar restricted to

our specific expressions. Only the used language constructs are defined, thus our grammar is

a lot simplified. The OCL standard specification has a very general character under which our

58

interpretation is valid. The variable types, detected by compilation of the OCL expressions, are

already known. They are extracted from the UMAP model in the previous phase. Together with

the key words of OCL and the grammar we parse the stream of tokens from our expressions into

an abstract syntax tree. The Bison generates an LALR(1) parser, well suited for our purpose.

The parser creates for each OCL expression the abstract syntax tree, an example is presented in

Figure 6.3. This activity checks if the OCL expression is syntactically correct and belongs to

the UMAP limited expected expressions. Each OCL expression belongs to a function and this

correspondence is known from the previous phase. The abstract syntax tree is traversed using

the method depth first in pre-order, and the nodes are listed together with their supplementary

information. We call this list the flat abstract syntax tree, i.e., the flat AST, an example is

presented in Listing 6.2. The nodes, representing operations and variables, have assigned a

unique identifier. The output of this second executable are the flat AST.

Simple OCL expression compilation

We consider the following OCL expression, already presented in (3.2).

post : result = (e : employee) and (e.name = rEmp.ename) (6.1)

This expression defines the data exchange process at the lowest possible level. It assumes first

that a target instance is created. This is defined by the following OCL construct, named descrip-

tor.

e : employee (6.2)

The type of this target instance is employee and its name is e. This type, known from the previous

phase, is the return type of the initial OCL expression. It is taken from the summary file, and is

not part of the compilation. Thus the compilation is made much simpler at this stage. The data

exchange is contained in the following part of the OCL expression.

e.name = rEmp.ename (6.3)

This expression defines the assignment of the attribute name, that belongs to the target instance

e, mentioned above, with the attribute ename of the source instance rEmp. This instance is

the only argument of the function for which we provide the functionality, the source instance,

rEmp is taken from the definition of the original OCL expression (3.2). In this particular case

the data exchange is limited to only a string value: the source variable ename. The source

instance defined by the source type: regEmp and its name: rEmp are known from the previous

phase and again reduce the compiling effort.

59

Figure 6.3: The AST of the OCL expression (6.1)

1 E AND ;
2 G = ;
3 D ;
4 0 e ;
5 N employee ;
6 G = ;
7 Y ;
8 N e ;
9 X ;

10 0 name ;
11 Y ;
12 N rEmp ;
13 X ;
14 0 ename ;

Listing 6.2: The flat AST of the AST presented in Figure 6.3

Simple OCL iterator expression compilation

The original CLIP expression is more complex then the already analysed OCL counterpart. The

main difference between the two expressions consists in the capability of explicit iterating over

sets in the OCL case. The OCL equivalent has been presented in (3.3), it is extracted by our XML

60

parser and here presented.

post : result = rEmpSet.regEmps− > select(r : regEmp | r.sal() > 11, 000)

− > collect(r : regEmp | V alueMap.map(r))
(6.4)

This expression uses two OCL language constructs as iterators: select and collect. The first

selects only certain source tuples that satisfy a given condition and the second transforms the

tuple from the source to the target structure. The type: ValueMap, an association class, is

instantiated. Its function map is employed to achieve the data exchange, which was presented

in (6.1).

Compiler description

The phases of our compiler are: the lexical analyzer, the syntax analyzer, the semantic ana-

lyzer and the intermediate code generator. The final product of the compilation is source code

in a programming language. Actually our compiler is a compile front end. The back end of

the compiler, the part of the compiler that depends on the target machine, is delegated to the

programming language which is the product of our compiler.

6.3 Semantic Analysis And Code Generation

The third executable is the code generator

In Figure 6.3 we present the abstract syntax tree (AST) of the OCL expression as shown in (6.1).

This OCL expression corresponds partially to the CLIP expression (3.1). This third executable

takes the flat abstract syntax tree, the flat AST, with the supplementary information and by com-

parison with an existing collection of patterns, flat AST patterns, determines which functionality

corresponds to the current flat AST. The unique codes of the AST nodes are actually compared,

i.e., the flat AST structure is used to identify the source code suitable for the current OCL ex-

pression. The supplementary information, e.g., types, relational operators and other constructs,

are taken from the AST or from the summary file. These both sources are used to optimize the

code generation. Thus the source code patterns collection is used and augmented with types

discovered by both XML and OCL parsing.

The functionality is the result of this third executable. The semantic analysis of our compiler

works in two steps of granularity. Our algorithm checks if the flat AST resulting from the

phases: lexical and syntactical analysis matches one of the predefined patterns from a collection.

61

If this is the case, then the pattern is used to generate code. The flat AST contains enough

information about the input and output types or about the selection criteria used to perform

the data exchange. The code pattern is augmented with the missing elements to obtain the

functionality in a programming language. If the pattern for the whole flat AST is not recognised,

then our algorithm checks portions of the flat AST that could be recognised. The source code is

created for the identified portions of the flat AST and the portions of the code are concatenated.

Recall Figure 6.3 and the related flat AST, shown in Listing 6.2. Both represent the parsing

of the OCL expression (6.1). The root of the abstract syntax tree is identified as the logical

operator: and, which connects the two parts of the OCL expression. Left and right to the root

are depicted the declarator and the data exchange part, respectively. The data exchange part uses

as root the assignment operator the relational operator "=", which is positioned between: the

target and the source, to the left and to the right, respectively. They are both identified as postfix

expressions. This means that they are of the following form: e.name and rEmp.ename. At this

moment the whole semantics behind the syntax is discovered and the code generation begins.

This semantics analysis is flexible enough to cover extended expressions, as the following

example shows. If the data exchange scenario includes also the transfer of the salary to the

target, supplementary to the name, then the OCL extended expression is the following.

post : result = (e : employee) and

(e.name = rEmp.ename) and

(e.salary = rEmp.sal)

(6.5)

This change of the OCL expression is reflected by the AST and also by the flat AST changes.

This modification of the flat AST can be easily analysed in Listing 6.3

The code generation executable is designed to extension

In the particular case of the two OCL expressions already presented the modification of the first

expression with more than one attribute copied from the source to the target has been presented.

A more complex expression, at this stage, could use the source attributes to calculate the target

attributes, besides only copying them from source to target. For the iterator part of the OCL

expression the condition is easily extendable for a sequence of conditions connected by logical

operators.

62

1 E AND ;
2 E AND ;
3 G = ;
4 D ;
5 0 e ;
6 N employee ;
7 G = ;
8 Y ;
9 N e ;

10 X ;
11 0 name ;
12 Y ;
13 N rEmp ;
14 X ;
15 0 ename ;
16 G = ;
17 Y ;
18 N e ;
19 X ;
20 0 salary ;
21 Y ;
22 N rEmp ;
23 X ;
24 0 sal ;

Listing 6.3: The flat AST of the AST presented in (6.5)

The fourth executable matches the skeleton functions with the functionality

This activity is not part of the compilation process but is so close to it that is important to

mention a few facts about it here. This activity puts the compiled functionality in place. The

last executable uses this functionality and the list of classes and functions from the first step to

match the function skeletons with the constructed functionality. Recall from the activity diagram

in Figure 5.1 the last activity, which corresponds to this executable. The UML modeling tool

generates only the skeletons of the mapping functions and their functionality is implemented

through the compilation of the corresponding OCL expressions.

63

6.4 Lexical and Syntactical Analysis

The used OCL Grammar

We present the concrete syntax of OCL using an extended Backus-Naur format. The grammar is

limited to the used production rules. The grammar described here is a context-free grammar that

can be compiled with an LALR(1) parser. The start symbols are <expression>. The reserved

keywords of OCL are presented in the table.

and if or
body implies package

context in post
def init pre

derive inv self
else invalid static

endif let then
endpackage not true

false null xor

Table 6.1: OCL reserved keywords

Syntax

<expression> ::= <expression> (<relational_op> <expression>)*

<expression>::= <expression> (<logical_op> <expression>)*

<expression> ::= <expression> (<add_op> <expression>)*

<expression> ::= <expression> (<multiply_op> <expression>)*

<expression> ::= "(" <expression> ")"

<expression> ::= <declarator>

<expression> ::= <declarator_list>

64

<expression> ::= <feature_call_parameters>

<expression> ::= <feature_iterator>

<expression> ::= <feature_call>

<expression> ::= <postfix_expression>

<expression> ::= <NAME> "=" <expression>

<expression> ::= <NAME> "(" <exp_list> ")"

<expression> ::= <NAME> "{" <exp_list> "}"

<expression> ::= <NUMBER>

<expression> ::= <NAME>

<postfix_expression> ::= <expression>

(<navigation_op> <feature_call>)*

<feature_call> ::= <path_name> <feature_call_parameters> |

<path_name> "(" <expression> ")" |

<path_name> "()" |

<path_name> |

<path_name> <feature_iterator>

<path_name> ::= <NAME>

<feature_iterator> ::= "(" <declarator_list> "|"

<actual_parameter_list> ")"

<feature_call_parameters> ::= "(" <declarator> "|"

65

<actual_parameter_list> ")"

<declarator_list> ::= <declarator> |

<declarator> ";" <declarator_list>

<declarator> ::= <NAME> ":" <simple_type_specifier>

<actual_parameter_list> ::= <expression_list>

<simple_type_specifier> ::= <expresion>

<expression_list> ::= <expresion> |

<expresion> "," <expression_list>

Lexicon

<logical_op> ::= "and" | "or" | "xor" | "implies"

<relational_op> ::= "=" | ">" | "<" | ">=" | "<=" | "<>"

<add_op> ::= "+" | "-"

<multiply_op> ::= "*" | "/"

<navigation_op> ::= "." | "->"

<NUMBER> ::= <digit> (<digit>)+

<NAME> ::= <letter> (<char>)+

<char> ::= <letter> | <digit> | "_"

<digit> ::= "0".."9"

<letter> ::= <upper> | <lower>

<upper> ::= "A".."Z"

<lower> ::= "a".."z"

66

6.5 Conclusion

We have presented the OCL compiler, the heart of VMAP implementation. The OCL constraints

language extends the expressivity of visual modeling language UML. The code generation from

models like UML is long known and used prerequisite of every UML modeling tool. The OCL

expressions define the semantics of our schema mapping language UMAP and the implementa-

tion of OCL compiler has been necessary to show the usability of our concept.

The implementation, VMAP, consists of a chain of components that transform a UMAP

schema mapping model in XMI [32] format into an executable, which is responsible for the data

exchange. The implementation of the code generation (the compiler back-end) is in the phase of

proof of concept. All seven Clip scenarios presented in [37] are supported. As implementation

language, C++ was used, because it is best known to the author and the build environment has

no dependencies on other tools. In this phase of the UMAP/VMAP, no particular performance

measures have been done. The most important achievement is the implementation of an end-to-

end solution starting from a graphical UML/OCL model and producing source code ready to be

used by a build environment.

At the moment of our research no standard OCL compiler was available with support for

our restricted field of schema mapping. The code generation from OCL is a supplementary

benefit that extends the value of a UML/OCL modeling tool by using directly the requirements

to generate prototypes. The future work should be directed towards extending the area of OCL

expressions that could be compiled and towards the growth of the compilation performance.

67

CHAPTER 7
Related Work

7.1 Overview

Today, there are many commercially available products on the market of schema mapping tools.

IBM InfoSphere Data Architect, MS BizTalk, Altova Mapforce (www.altova.com/mapforce)

and Stylus Studio (www.stylusstudio.com) are examples of commercial mapping systems. IBM

InfoSphere Data Architect is well known for its many features. Some of them are related to

our work: data model transformation and mapping relations between data models. Altova Map-

force is another prominent commercial product appreciated for the source-to-target visual data

mapping and code generation for data transformation.

Important research is presented in [18] with respect to the translation data-metadata. In this

case, the the target schema is not a priori known. Some data from the source is used to augment

the metadata of the target.The opposite situation is presented, the metadata-data transformation

maps some metadata from the source in data of the target. This work introduced the novel con-

cept of nested dynamic output schemas, which are nested schemas that may only be partially

defined at compile time. Data exchange with nested dynamic output schemas involves the ma-

terialization of a target instance and, additionally, the materialization of a target schema that

conforms to the structure dictated by the nested dynamic output schema.

Traditional approaches for designing schema mappings are either manual or performed

through a user interface from which a schema mapping is interpreted from correspondences be-

tween attributes of the source and target schemas. These correspondences are either specified by

the user or automatically derived by applying schema matching on the two schemas. In [2], an al-

69

ternative approach is presented that allows a user to follow the “divide-design-merge” paradigm

for specifying a schema mapping. The user designs portions of the schema mappings that are

finally merged by the system to obtain the desired result.

In the frameworks of the CLIO project [34], the authors introduce the schema mapping prob-

lem, defined as translating an instance of the source schema to an instance of the target schema.

They present the original schema mapping algorithm, applied to a nested relational model to

handle relational and XML data. The mapping is materialized with the use of value correspon-

dences: elements of source and target connected with arrows. The primary path is defined as the

set of elements found on the path from the root to an intermediate node or leaf in the tree struc-

ture of the source and target. A logical relation results by chasing a primary path. Based on the

correspondence and logical relation an interpretation is computed. Thus correspondences are

modeled as interpretations, source–to–target referential constraints. In this context the nested

referential integrity constraint is presented and defined using the primary path, a large class

of referential constraints that include relational foreign key and XML schema’s key reference.

Nested dependencies support the translation of the nested structure of the source and the target.

These source–to–target dependencies are compiled into low level, language independent rules.

These rules are used to obtain the transformations in concrete languages like XSLT or XQuery

for XML Schemas or SQL for relational schemas. For the creation of the new values in the target

that are not specified, one–to–one Skolem functions are used.

In [7, 22, 23] SPICY and +SPICY, schema mapping systems are introduced, a contribution

to bridge the gap between the practice of mapping generation and the theory of data exchange.

SPICY/+SPICY/++SPICY is an evolution of the same system from a schema matching tool to a

schema mapping generation and rewriting tool. The importance of CLIP for our visual schema

mapping language UMAP was presented in Chapter 3. The importance of the SPICY system is

even greater for our UMAP and its implementation, VMAP. If UMAP/VMAP is used as middle-

ware by the SPICY system we gain its capability to bring together expressive mapping generation

algorithms with an efficient strategy to the computation of core solutions. The ++SPICY system

brings successful results, where other tools exhibit some serious limitations that prevent their

adoption in real-life scenarios. Some of these drawbacks are the limited support for target con-

straints and limited support for relational scenarios. By using UMAP/VMAP as middle-ware

layer below the SPICY system, we can combine the powerful functionality of ++SPICY with the

our concern towards standardisation of UMAP/VMAP.

70

7.2 The SPICY System

SPICY system and its evolution to ++SPICY is presented in a row of recent papers. Starting

with [7] the new system is introduced. The notion of mapping quality plays an important role.

The new approach consists of a three-layer architecture:

1. the schema matching module, relying on value correspondences is used to provide the

input for

2. the second module, the schema mapping generation and

3. the third module, the mapping verification module, which checks the candidate mappings,

choosing the ones that represent better transformations of the source into targets.

This three-layer system is used to address the problem of the schema mapping quality. Schema

matching is a very challenging problem with no definitive solution. As a consequence, outputs

of the attribute matching phase are hardly ready to be used for the schema mapping generation

module. The mapping systems usually produce all the alternatives and offer the possibility to

choose a preferred result. The major contribution of the SPICY approach in opening the way for

automated schema mapping generation is the introduction of the mapping verification, based on

the notion of mapping quality, a phase after the schema mapping generation.

The mapping quality

The mapping quality could be defined in terms of the mapping views, their efficiency, the ex-

pressive power of the mapping language, etc. The SPICY definition of quality starts with the

system input:

1. besides the source and target schemas,

2. a source and a target instance

are given, these instances are considered canonical instances.

Definition 1. Given the canonical instances of a mapping, the mapping quality is determined by

running the schema mapping on the canonical source instance and by comparing the resulting

target instance with the canonical target instance. The more similar the two target instances are,

the higher the mapping rank is.

71

The SPICY Architecture

Figure 7.1: SPICY architecture concept

In the Figure 7.1, the three modules are depicted, they transform the above mentioned input

into the output and thus executing the data exchange. The first module is the mapping matcher.

Given the variety of schema matching systems available, SPICY can integrate any one. The

mapping generation module takes the sets of correspondences discovered at the previous step

and generates the mappings as source to target tuple generating constraints s-t tgds [34]. SPICY

uses a version of CLIO’s mapping algorithms [34] to derive the s-t tgds. The mapping verification

module selects the best mapping from the available set.

The Mapping Verification Example

After the schema matching module runs and produces a number of correspondence candidates,

the set of possible schema mappings is created. At this stage it is common to represent the source

and target schemas using an abstract graph–base model, essentially a tree–based representation

of a nested–relational model, in which set and tuple nodes alternate. The resulting s-t tgds use

the syntax adopted in [34]. In Figure 7.2, the running mapping example from [7] is depicted and

SPICY yields the following s-t tgd:

72

for d in companyDB.divisions, m in d.managers,

p in companyDB.projects

where p.project.manager = m.manager.id

exists p′ in projectDB

where p′.project.manager = p.project.projectName and

p′.project.budget = p.project.budget and

p′.project.manager = m.manger.name

UNION

for d in companyDB.divisions, m in d.managers,

exists p′ in projectDB

p′.project.manager = m.manger.name

(7.1)

The transformation is the union of two tgds. The first one constructs the target instance

using a join between projects and managers. The new produced tuples contain, besides the

project name and the budget, the name of the manager instead of its identification number, as

in the source instance. The second s-t tgd produces tuples containing only the names of the

managers. Such supplementary tuples exist, only if some managers do not manage any project

and thus, they are not already selected by the previous join.

Realisation in UMAP connected to SPICY

The high–level graphic schema mapping language CLIP [37] has the expressive power to repre-

sent this mapping example. The corresponding UMAP mapping is depicted in Figure 7.3. The

corresponding s-t tgds in form of OCL expressions are the following:

73

context value_map :: map(t : Tuple{p : project, ds : divisions}) : project_manager

post : result = p_m : project_manager and

p_m.name = t.p.name and

p_m.budget = t.p.budget and

p_m.manager = t.ds− > collect(d : division | d.managers− > Set())

− > select(m : manager | m.id = t.p.manager).name

(7.2)

context builder :: build(c_db : company_db) : project_db_set

def : project_managers = c_db.project_set.projects− > Set()

− > iterate(p : project; pms : project_managers = Bag{}

| pms− > including(value_map.map(Tupel{p, c_db.division_set.divisions})))

post : result = project_db_set(project_managers)

(7.3)

UMAP uses for the nested mappings two kinds of association classes named builder and

value_map. In this example the builder iterates over the project elements and for each of them

calls the function map that belongs to the association class with the name value_map. The

argument of this function is an OCL Tuple containing the current project and a reference to the

set of divisions. The function map can easily map the values for the project’s name and budget,

but for the manager’s name it has to iterate over all divisions and managers of each division to

select the managers name, corresponding to the id delivered by the current project.

The UMAP solution separates SPICY s-t tgd (7.1) in two very different s-t tgds: the builder

s-t tgd (7.3) and the value_map s-t tgd (7.2). They correspond to the CLIP graphical mapping

language constructs: value mappings, responsible for the conversion of the source values to

target values and builders responsible for structural transformation, acting as iterators. In UMAP

they are both modeled as UML association classes and the OCL expression specializes them.

The value_map tgd (7.2) takes as input an OCL standard tuple, consisting of the current project

and the set of all divisions and returns as output a project with the manager’s id, replaced by

its name. The optimisations are delegated to the actual implementation. The OCL expression

shows only the navigation to the manager’s name using:

1. its id,

74

2. the set of divisions and

3. the set of managers belonging to each division.

By the help of the Figure 7.3 it is easier to follow the OCL expression. The OCL standard

function collect iterates all the divisions and flattens each nested set of managers to a unique

set of managers. Then, by the help of the OCL standard function select it identifies the desired

manager using its id. Finally the manager’s name is selected and transferred to the resulting

tuple. The expressivity of OCL is very high and an extension of this tgd can give a solution,

even if the manager’s name is not found, i.e., no manager has the current id. For simplicity, the

presented expression does not consider this case.

The s-t tgd builder (7.3), an iterator, uses the previously described s-t tgd, the value_map

(7.2) as subroutine. The s-t tgd builder has as input the top level tuple node of the source schema:

company_db and as output the top level tuple node of the target schema: project_db_set. The

two s-t tgds are connected by an association witch permits the access from builder to value_map.

Recall the expression (7.3). In this expression the s-t tgd builder defines the set of

project_managers, used further to obtain the final result the target tuple project_db_set. It uses

a function named iterate, not surprisingly, the most general form of the OCL iterators. This

function iterates the projects set and defines the output set project_managers. The output set

is initialized as OCL empty standard Bag. The next OCL standard function, called includes,

shows how is constructed each element of this set. This function calls the already described

function map applied to an OCL standard Tuple containing the current project element and the

whole division set. This description restricts itself to the definition of the transformation and

delegates to the implementation the optimization of the process. The differences compared to

the SPICY syntax consist in the separation of the iterators from the mappers in two different

expressions. An iterator expression can call one mapper expression and a mapper expression

can call many iterator expressions. This concept is similar to the context propagation tree from

CLIP [37]. SPICY studies the tree-based, representations of nested-relational model, in which

set and tuple nodes alternate, the UMAP representation separates strictly the nested levels, thus

the complexity of the OCL expressions do not depend on their number. This is very important

in industrial applications where the number of successive levels could be very high.

The usage of UMAP is as difficult as the usage of every high level programming language.

A supplementary difficulty arises from the necessity to identify the elements from the source

and target that must be connected by the association classes. The succession of the two kinds

75

of this association classes named builder and mappers needs some experience to understand its

flexibility.

The SPICY system has a mapping generation module. The flexible SPICY architecture allows

such a module to be external. UMAP middleware platform offers a standard solution for such an

external module with a standard implementation provided by VMAP.

Figure 7.2: SPICY schema mapping

76

Figure 7.3: SPICY schema mapping using UMAP

77

CHAPTER 8
Conclusion and future work

In this thesis, we have introduced UMAP, a new universal layer for schema mapping languages

and VMAP, its implementation. Schema mappings are modeled by standardized UML class dia-

grams and OCL expressions. By restricting the UML artifacts to well-understood elements (e.g.,

classes, associations, aggregations, class functions, and straightforward post-conditions and in-

variants), there is a well-defined semantics. This allows us to translate UMAP specifications

to a broad range of target languages (like C++). We have modeled a set of common schema

mapping operations in UMAP, like basic source-to-target dependencies, join, and grouping op-

erations. We have translated all core features of CLIP to UMAP. There is also an implementation

available (see http://www.dbai.tuwien.ac.at/research/project/umap) gen-

erating C++ code showing the translation of typical CLIP language elements to our UML-based

formalism, illustrating that our approach works in practical usage. UMAP can be seen as a new

middleware for high-level visual schema mapping languages. We propose to use UMAP as a

back-end when creating a new visual mapping language. This language, equipped with a for-

mal meta-model can be automatically translated to UMAP via QVT, an evolving standard for

Query/View/Transformation. The high-level process for using QVT with UMAP is described in

Chapter 5.

We give a summary of the main achieved results.

• First, this thesis presents the syntax and semantics of the UMAP layer. We have shown

how to model central elements occurring in common visual mapping languages via UMAP,

following a generic strategy defined by the UMAP semantics. As a recent and prominent

79

http://www.dbai.tuwien.ac.at/research/project/umap

example we use CLIP as input language: we map the core CLIP language constructs to

our UMAP formalism, demonstrating the translation of source-to-target mappings to UML

class diagrams, augmented with OCL-constraints.

• Second, we show the handling of more complex transformations like joins, with grouping

in the context of nested schema mappings for tree-like data structures. These transfor-

mations are characterized by more involved restructuring operations to map the source

schema to the target schema. We show that UMAP has enough expressive power to cap-

ture all features of CLIP.

• Last, this thesis presents VMAP, the implementation of UMAP. VMAP consists of a

pipeline of executables that transforms a UMAP data exchange model into an executable

that creates the target database from the source. The OCL compiler, at the heart of VMAP,

performs the semantic analysis and generates source code.

We conclude with directions of future work. Future work includes steps in the direction

of extending the use of QVT, the bridge that connects our contribution to potential users: the

high level schema mapping tools. The schema mapping languages used together with UMAP

must be formal, by the OMG definition, they must have a meta model, a UML description of the

language. This is a prerequisite in employment of QVT as a vehicle for model transformation of

a particular schema mapping language to UMAP.

In Chapter 4 a translation of the Skolem functions to UMAP is given by the introduction of

supplementary constraints that guarantee that some attribute is unique. The proper definition of

the resulting Skolem function is delegated to the implementation. Future work should investigate

the possibility of using similar constraints for the target tgds and egds. This could show the

flexibility of the UMAP language.

In Chapter 6 is presented our VMAP implementation. The present implementation is re-

stricted to the needs of VMAP. The implementation performance must be analysed using the

STBanchmark [3] which offers a great variety of mapping scenarios with nested sources. Fur-

ther work is needed to extend the compiler to the whole OCL language. Research could extend

the OCL compiler to a standalone module, to be used outside our project. OCL is a widely ac-

cepted standard in software engineering for requirements gathering. Generating source code for

prototyping from requirements is a supplementary benefit.

80

Bibliography

[1] David H. Akehurst and Behzad Bordbar. On querying UML data models with OCL. In

UML 2001, volume 2185 of LNCS, pages 91–103. Springer, 2001.

[2] Bogdan Alexe and Wang-Chiew Tan. A new framework for designing schema mappings.

In In Search of Elegance in the Theory and Practice of Computation - Essays Dedicated to

Peter Buneman, pages 56–88, 2013.

[3] Bogdan Alexe, Wang Chiew Tan, and Yannis Velegrakis. Stbenchmark: towards a bench-

mark for mapping systems. PVLDB, 1(1):230–244, 2008.

[4] Bernhard Beckert, Uwe Keller, and Peter Schmitt. Translating the Object Constraint Lan-

guage into first-order predicate logic. In VERIFY, FLoC, 2002.

[5] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on UML class

diagrams. Artificial Intelligence, 168(1–2):70–118, 2005.

[6] Bison, Parser Generator. Official Homepage. http://www.gnu.org/software/

bison/bison.html.

[7] Angela Bonifati, Giansalvatore Mecca, Alessandro Pappalardo, Salvatore Raunich, and

Gianvito Summa. The spicy system: towards a notion of mapping quality. In Proceedings

of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008,

Vancouver, BC, Canada, June 10-12, 2008, pages 1289–1294, 2008.

[8] Florin Chertes and Ingo Feinerer. UMAP: A universal layer for schema mapping lan-

guages. In Hendrik Decker, Lenka Lhotská, Sebastian Link, Josef Basl, and A Min Tjoa,

editors, Proceedings of DEXA2013, Prague, Czech Republic, August 26–29, 2013, volume

8056 of Lecture Notes in Computer Science, pages 349–363. Springer-Verlag, 2013.

81

http://www.gnu.org/software/bison/bison.html
http://www.gnu.org/software/bison/bison.html

[9] Florin Chertes and Ingo Feinerer. VMAP: A visual schema mapping tool. In ECAI 2014

- 21st European Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech

Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014), pages

1223–1224, 2014.

[10] Ronald Fagin, Laura M. Haas, Mauricio A. Hernández, Renée J. Miller, Lucian Popa, and

Yannis Velegrakis. Clio: Schema mapping creation and data exchange. In Conceptual

Modeling: Foundations and Applications, pages 198–236, 2009.

[11] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:

Semantics and query answering. In ICDT, pages 207–224. Springer, 2003.

[12] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:

semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[13] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Composing

schema mappings: Second-order dependencies to the rescue. ACM TODS, 30(4):994–

1055, 2005.

[14] Flex, Lexical Analyzer. Official Homepage. http://flex.sourceforge.net.

[15] Ariel Fuxman, Mauricio A. Hernandez, Howard Ho, Renee J. Miller, Paolo Papotti, and

Lucian Popa. Nested mappings: schema mapping reloaded. In VLDB, pages 67–78, 2006.

[16] Georg Gottlob and Pierre Senellart. Schema mapping discovery from data instances. J.

ACM, 57(2), 2010.

[17] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa, and Mary Roth. Clio

grows up: from research prototype to industrial tool. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Baltimore, Maryland, USA, June 14-16,

2005, pages 805–810, 2005.

[18] Mauricio A. Hernández, Paolo Papotti, and Wang Chiew Tan. Data exchange with data-

metadata translations. PVLDB, 1(1):260–273, 2008.

[19] Phokion G. Kolaitis. Schema mappings, data exchange, and metadata management. In

PODS, pages 61–75, 2005.

82

http://flex.sourceforge.net

[20] Bruno Marnette, Giansalvatore Mecca, Paolo Papotti, Salvatore Raunich, and Donatello

Santoro. ++spicy: an opensource tool for second-generation schema mapping and data

exchange. PVLDB, 4(12):1438–1441, 2011.

[21] Giansalvatore Mecca and Paolo Papotti. Schema mapping and data exchange tools: Time

for the golden age. it - Information Technology, 54(3):105–113, 2012.

[22] Giansalvatore Mecca, Paolo Papotti, and Salvatore Raunich. Core schema mappings. In

Proceedings of the ACM SIGMOD International Conference on Management of Data, SIG-

MOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 655–668, 2009.

[23] Giansalvatore Mecca, Paolo Papotti, Salvatore Raunich, and Marcello Buoncristiano. Con-

cise and expressive mappings with +spicy. PVLDB, 2(2):1582–1585, 2009.

[24] Giansalvatore Mecca, Paolo Papotti, Salvatore Raunich, and Donatello Santoro. What

is the IQ of your data transformation system? In 21st ACM International Conference

on Information and Knowledge Management, CIKM’12, Maui, HI, USA, October 29 -

November 02, 2012, pages 872–881, 2012.

[25] Bertrand Meyer. Introduction to the Theory of Programming Languages. P.-H., 1990.

[26] Alan Nash, Philip A. Bernstein, and Sergey Melnik. Composition of mappings given by

embedded dependencies. In PODS 2005, pages 172–183. ACM, 2005.

[27] OMG. MOF 2.0 Query, View, and Transformation, 2011. www.omg.org.

[28] OMG. Unified Modeling Language Infrastructure 2.4.1, 2011. www.omg.org.

[29] OMG. Unified Modeling Language Superstructure 2.4.1, 2011. www.omg.org.

[30] OMG. Object Constraint Language 2.3.1, 2012. www.omg.org.

[31] OMG. Meta Object Facility 2.4.2, 2014. www.omg.org.

[32] OMG. XML Metadata Interchange 2.4.2, 2014. www.omg.org.

[33] Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive

queries. In Proceedings of the 5th Alberto Mendelzon International Workshop on Founda-

tions of Data Management, Santiago, Chile, May 9-12, 2011, 2011.

83

www.omg.org
www.omg.org
www.omg.org
www.omg.org
www.omg.org
www.omg.org

[34] Lucian Popa, Yannis Velegrakis, Mauricio A. Hernández, Renée J. Miller, and Ronald

Fagin. Translating web data. In VLDB 2002, pages 598–609. Morgan Kaufmann, 2002.

[35] Alessandro Raffio. Schema Mapping for Semi-structured Data. PhD thesis, Politecnico di

Milano Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32 I 20133

— Milano, 2008.

[36] Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and Mauricio A. Hernán-

dez. Clip: a tool for mapping hierarchical schemas. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC,

Canada, June 10-12, 2008, pages 1271–1274, 2008.

[37] Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and Mauricio A. Hernán-

dez. Clip: a visual language for explicit schema mappings. In ICDE 2008, pages 30–39,

2008.

[38] Tamás Vajk, Gergely Mezei, and Tihamer Levendovszky. An incremental OCL compiler

for modeling environments. Electronic Communication of the European Association of

Software Science and Technology, 15, 2008.

[39] Xerces, Parser Generator. Official Homepage. http://xerces.apache.org/

xerces-c/.

84

http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/

	Introduction
	State of the art
	Problem Statement
	Main Results
	Structure and Publications

	Preliminaries
	Mapping Language
	A simple Clip mapping
	A motivating example: a simple mapping using Uml and Ocl
	Translating language constructs from Clip to Uml and Ocl
	The UMAP Language
	UMAP Layer and Translation of Clip Core Features
	Conclusion

	Complex Mappings
	Context propagation
	The Uml structure
	A more complex mapping
	A join constrained by a Context Propagation Tree
	A mapping with grouping and join
	Inverting the nesting hierarchy
	A mapping with aggregates
	Discussion on the correctness of the Umap approach
	Usage of Skolem functions
	Target dependencies, target egds and tgds

	VMAP the implementation of UMAP
	System architecture
	Data exchange scenario
	Conclusion

	OCL Compiler
	Introduction
	Compiler Architecture
	Semantic Analysis And Code Generation
	Lexical and Syntactical Analysis
	Conclusion

	Related Work
	Overview
	The Spicy System

	Conclusion and future work
	Bibliography

