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“In the beginning the Universe was created.

This has made a lot of people very angry and been widely regarded as a bad move.”

Douglas Adams





Abstract

This thesis is concerned with a mechanical tumor growth model used to describe avas-

cular, i.e. early stage, tumor growth. In this phase, increase of tumor mass happens

via proliferation which means rapid reproduction of cells. The governing equation is a

highly non-linear two dimensional reaction-diffusion-equation with full diffusion matrix

which becomes singular at the maximal and minimal values of the two variables. This

fact makes mathematical analysis rather challenging.

Global in time existence of bounded weak solutions has been proven under certain para-

metric restrictions, and numerical solutions persist even beyond these limitations. The

shape of resulting curves gives rise to the assumption that some form of travelling wave

behaviour is occuring, which is the motivation and main point of interest for this thesis.

Therefore an introduction to travelling wave analysis is given based on a (structurally

simpler) example equation, and some notions from dynamical systems theory are in-

troduced, amongst them both heteroclinic and homoclinic orbits, which are necessary

concepts for Lin’s method. A numerical analysis of the tumor growth model follows

where Lin’s method is applied. Several obstacles arise due to the structure of the diffu-

sion matrix.

An excurse is made into singular perturbation theory. So called slow-fast-systems are

introduced and an example of how to approach them is given by means of specific types

of reaction-diffusion-equations. An attempt is made to extend the presented theory such

that it can be applied to the tumor growth model. Furthermore the concepts of wall(s)

of singularities and hole(s) in the wall are defined and it is shown how they relate to

the model.

Keywords: Tumor growth model, reaction diffusion equation, travelling waves, Lin’s

method, orbits, singular perturbation theory, slow-fast-systems, canards
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Kurzfassung

Diese Arbeit befasst sich mit einem mechanischen Tumorwachstumsmodell, welches ver-

wendet wird um avaskuläres, also im frühen Stadium befindliches, Tumorwachstum zu

beschreiben. In dieser Phase expandiert der Tumor durch Proliferation, was rasche

Vervielfältigung von Zellen bedeutet. Bei der beschreibenden Gleichung handelt es

sich um eine hochgradig nichtlineare, zweidimensionale Reaktions-Diffusions-Gleichung

mit vollbesetzter Diffusionsmatrix, die singulär wird bei den Minima bzw. Maxima

der beiden Variablen. Diese Tatsache macht eine mathematische Analyse durchaus

anspruchsvoll.

Die Existenz einer beschränkten schwachen Lösung für alle Zeiten wurde unter gewissen

Paramterbeschränkungen gezeigt, numerische Lösungen existieren sogar jenseits dieser

Limitierungen. Die Form der erhaltenen Lösungskurven lässt vermuten, dass ein Wan-

derndes Wellen Verhalten auftritt, was die Motivation und den zentralen Bezugspunkt

dieser Arbeit bildet.

Es wird daher eine Einführung in Wandernde Wellen Analyse anhand einer (strukturell

simpleren) Beispielgleichung gegeben, weiters werden einige Begriffe aus der Theorie

dynamischer Systeme vorgestellt, unter anderem sogenannte heterokline und homokline

Orbits, welche notwendige Konzepte für Lin’s Methode sind. Es folgt eine numerische

Analyse des Tumorwachstumsmodells, welche Lin’s Methode benützt. Aufgrund der

Struktur der Reaktionsmatrix treten einige Schwierigkeiten auf.

Ein Exkurs wird gemacht in das Thema der Singular Perturbation Theory, wobei soge-

nannte slow-fast-Systeme vorgestellt werden. Anhand spezifischer Typen von Reaktions-

Diffusions-Gleichungen wird ein Beispiel gegeben, wie diese zu behandeln sind. Es wird

versucht, die vorgestellte Theorie zu erweitern sodass sie auf das Tumorwachstumsmodell

angewendet werden kann. Des weiteren werden die Konzepte der wall(s) of singularites

und hole(s) in the wall vorgestellt und gezeigt in welchem Zusammenhang diese zu dem

Modell stehen.

Schlagworte: Tumorwachstumsmodell, Reaktions-Diffusions-Gleichung, Wandernde

Welle, Lin’s Methode, Orbits, Singular Perturbation Theory, slow-fast-Systeme, Ca-

nards
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Chapter 1

Introduction

To give an absolute definition of what distinguishes a tumor cell from a “regular cell” is

rather impossible, however tumors can in general be recognized by abnormal growth. In

particular, standard cellular growth-controlling mechanisms cease to elicit their proper

response from the affected tumor cells, see e.g. [FT03, p.4]. There are several ways in

which one can classify tumor cells, for instance by their malignancy ([FT03, p.4]):

• Benign tumors that act only locally but do not spread.

• In situ tumors located mainly in epithelium cells (a type of tissue lining cavities

and coating blood vessels and inner organs within the human body), which do not

invade neighbouring tissue.

• Malignant, cancerous tumors that invade and destroy surrounding structures and

may develop metastases in distant organs or lymph nodes.

A different, while related, notion is to categorize them by their growth stage ([JS12,

p.2]):

• Avascular growth. In this stage, growth occurs due to proliferation, i.e. rapid

reproduction of tumor cells. Nutrients reach the center of the tumor through

diffusion processes and become more and more sparse as the tumor expands.

• Vascular growth. To avoid deficiency of nutrients in its center, the tumor develops

its own blood vessels.

• Metastatic stage. Via the newly created circulatory system tumor cells are able to

reach distant parts of the body and create secondary tumors.
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In this thesis only the avascular stage of tumor growth is considered.

There are a number of approaches for modelling avascular tumors which can mostly

be described as either discrete cell population models, or continuum models relying

on average cell behaviour ([JS12, p.2]). An excellent overview of mathematical tumor

modelling for different growth stages is given in [QFV06, Ch.3].

1.1 The model

In this thesis, which is based on the works of Jüngel & Stelzer [JS12] as well as Stelzer

[Ste13], we regard a model for avascular tumor growth derived from the mechanical

model presented by Jackson and Byrne in [JB02]. In particular we are looking at a

continuum model using reaction-diffusion equations, where the tumor-host environment

is viewed as a mixture of the three interacting continua tumor cells in a cellular phase,

fibrous, collagen rich matrix in the extra-cellular-matrix (ECM) phase and water (a

more precise term would be interstitial fluid, which has water as its main ingredient)

in the aqueous phase, see [JS12, Secs.1-2] or [Ste13, Ch.2]. The model is based on bal-

ance laws and conservation principles from continuum mechanics, from which mass and

momentum balance equations are derived. It is closed by imposing suitable constitutive

relations for mass exchange between different phases, partial stress tensors and momen-

tum transfer equations. For a full derivation of the model we direct the inclined reader

towards the original paper [JB02] or a review thereof in e.g. [JS12] or [Ste13].

Following [JS12], let now c denote the volume fraction of tumor cells, m that of the

ECM and w that of water. As the mixture is assumed to be saturated, water can be

eliminated from the equation by setting w = 1 − c −m. Additionally, due to the fact

that we are dealing with volume fractions, the constraints 0 ≤ c,m, 1− c−m ≤ 1 apply.

The PDE that will be the main focus of this thesis, which is a scaled equation-system

in one spatial dimension, is given by the following reaction-diffusion equation:

∂

∂t

(
c

m

)
− ∂

∂x

(
A(c,m) · ∂

∂x

(
c

m

))
= R(c,m), in Ω, t > 0 (1.1)

where Ω = (0, 1) with Neumann boundary and given initial conditions

cx = mx = 0 on ∂Ω, t > 0, c(·, 0) = c0,m(·, 0) = m0 in Ω. (1.2)

2



The production term is given by

R(c,m) =

(
γc(1− c−m)− δc
αcm(1− c−m)

)
(1.3)

with tumor cell proliferation rate γ, mortality rate δ and ECM production rate α whereas

the diffusion matrix reads

A(c,m) =

(
2c(1− c)− βθcm2 −2βcm(1 + θc)

−2cm+ βθ(1−m)m2 2βm(1−m)(1 + θc)

)
(1.4)

with pressure coefficients β > 0 and θ ≥ 0.

Remark. Note that methods and results in [JS12] and [Ste13] are mostly identical. We

will thus often refer to [JS12] only. Notation in this thesis however more closely follows

[Ste13].

System (1.1) poses a few difficulties that make solving this PDE quite challenging, all of

which are related to the diffusion matrix A. We can see in (1.4) that A is a full matrix,

i.e. the non-diagonal entries do not equal zero, indicating that cross-diffusion occurs,

see also [Ste13, p.2]. Observe that the determinant of A is given by

detA(c,m) = 4βcm(1 + θc)(1− c−m), (1.5)

which will equal zero if either c, m or w = 1− c−m equal zero or one, indicating that

in these cases A becomes singular. As we are dealing with volume fractions, this may of

course happen. Lastly, for general β > 0 and θ ≥ 0, A is neither symmetric nor positive

definite, which means that standard PDE theory may not be applied.

1.2 Motivation of this thesis

All is not lost however, as [JS12] and [Ste13] show that under certain parametric re-

strictions (in particular θ < θ∗ for some specific value of θ∗) bounded weak solutions

exist globally in time, a fact that we will regard more closely in Chapter 4.1. Numerical

solutions persist even for θ > θ∗, however once θ is chosen sufficiently large, peaks begin

to form in the ECM spatial position. The production rate R vanishes, and the tumor

front as well as ECM peaks begin moving to the right as time increases, see Figure 1.1

and [JS12, p.21] as well as [Ste13, p.44].
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Figure 1.1: Volume fractions of the tumor cells (left) and the ECM (right) vs. position
using θ = 1000 at times t = 0, 1, 2, 3, 4, 5, 6. The production rate vanishes, R(c,m) = 0.
The tumor cell front and the ECM peaks are moving from left to the right as time

increases. Source: [JS12, Fig.1]

This peak formation and movement suggest a possible travelling wave behaviour of

solutions to the tumor model (1.1), which is the main focal point for this thesis. We will

thus in the following chapters examine the theory of travelling waves and apply it both

analytically as well as numerically to the model, with special attention to the influence

of the parameter θ. A short excursus is made into the theory of slow-fast-systems and

singular perturbation theory.

1.3 Thesis outline

This thesis is comprised of 5 main chapters, as well as an appendix.

Chapter 1: A general introduction to the medical term tumor as well as tumor mod-

elling is given. We introduce a tumor model (1.1) along with its derivation and problems

arising in studying it. The structure and goals of this work are defined.

Chapter 2: The theory of travelling waves is presented, starting with the simple

example of the Fisher-Kolmogorov-Petrovskii-Piskounov equation (2.3) and continuing

with a more general ODE, which is utilized to demonstrate the so-called Lin’s method.

We apply the presented concepts to the tumor model (1.1).

Chapter 3: An introduction to singular perturbation theory is given. We try to extend

the notions presented to include the necessary structures of the tumor model (1.1).

4



Chapter 4: With the concepts presented in Chapter 2 we formulate an algorithm

for Lin’s method that can be implemented in Matlab. Several key issues that pose a

problem during implementation are addressed and resolved. We give an overview over

obtained results.

Chapter 5: The work of this thesis is summarized shortly. We draw conclusions

regarding the significance of the parameter θ and present some points for future consid-

erations.

Appendix: For the implementation of the travelling wave ansatz, calculating the

steady states of (2.28) and a detailed understanding of their stability properties are

necessary. While of vital importance, this analysis is somewhat lengthy. In order to

not disrupt the flow of the text too much, it was thus placed in the appendix, with key

results remarked upon where appropriate in the respective chapters. Furthermore some

general mathematical notions are presented that some readers may not be familiar with

but which are utilized in this work.

5





Chapter 2

Theoretical analysis

In this chapter we take a look at the theory of travelling waves and introduce an impor-

tant analytical tool, the so called Lin’s method. For this purpose, a detailed analysis of

occurring steady states will be necessary.

2.1 About travelling waves

In the theory of partial differential equations we speak of travelling wave solutions, if

the solutions of a given problem propagate with a fixed speed without changing their

shape. In other words, if a moving frame of reference is applied with correct speed, the

solution appears to be stationary. Let u(x, t) be such a solution, that is travelling at

constant wave speed σ, then the following holds

u(x, t) = u(x− σt) = U(z), (2.1)

where z = x − σt is called the travelling wave variable. Note that for σ > 0 the wave

profile is said to be “right moving”, while for σ < 0 it moves “to the left”. The special

case of σ = 0 indicates a so called standing wave, see [Kue15a, p.25]. In particular

the given PDE can be reformulated with this ansatz as an ODE with the following

coordinate transformation:

∂u

∂t
= −σdU

dz
,

∂u

∂x
=
dU

dz
(2.2)

7



A classical example whose solutions exhibit travelling wave character is the non-dimen-

sionalized 1D Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) equation given by

ut = uxx + u(1− u). (2.3)

[Ibe14] provides a good summary on how to proceed, which we will follow here. After

application of the travelling wave ansatz, (2.3) reads

− σU ′ = U ′′ + U(1− U), (2.4)

with ′ = d/dz, which can be transformed into a system of first order ordinary differential

equations by setting U ′ = V :

U ′ = V

V ′ = −σV − U(1− U)
(2.5)

or in vectorized form (
U

V

)′
=

(
V

−σV − U(1− U)

)
=: f(U, V ). (2.6)

Now we would like to perform a so called phase plane analysis. This technique consists

of the following steps:

• Find nullclines,

• as well as steady states of (2.6).

• Investigate stability of these steady states.

• Determine phase plane trajectories.

In order to find the nullclines of (2.6), we have to set both components of f(U, V ) equal

to zero, and see that the U -nullcline is given by V = 0, whereas the V -nullcline is given

by V = −U(1 − U)/σ. Steady states of the system are found where the two nullclines

intersect, i.e. f(U, V ) = 0, at the points s1 = (0, 0) and s2 = (1, 0).

Next we perform a Taylor series expansion on (2.6) at the steady states, which we

truncate at second order. Let J(U∗, V ∗) be the Jacobian of of this Taylor sum evaluated

8



Figure 2.1: Phase plane (a) and solution (b) of the FKPP equation in the case of
σ ≥ 2. Source: [Ibe14]

at the steady state (U∗, V ∗), then we regard the linearised problem

(
U

V

)′
= J(U∗, V ∗) ·

(
U

V

)
=

(
0 1

−(1− 2U∗) −σ

)
·

(
U

V

)
. (2.7)

From this notation we can already see that the eigenvalues of J(U∗, V ∗) play a crucial

role in the stability of solutions. At (U∗, V ∗) = (1, 0), one eigenvalue will always be

positive, while the other will always be negative, making s2 a so called saddle node. At

(U∗, V ∗) = (0, 0) we have to regard 2 different cases dependent on σ: if σ ≥ 2, both

eigenvalues are real and negative, making s1 a stable node, whereas σ < 2 means that

the eigenvalues are complex conjugated with negative real part, and thus s1 is a stable

spiral. A full classification of all types of equilibria for 2 × 2 matrices can be found in

Chapter A.3.

We now look at the phase plane, which is determined by (2.5), see Figure 2.1 (a). Note

that for σ < 2, solutions may become negative. Dependent on the setting for which

the equation is regarded, this may not be a desirable outcome. For all σ ≥ 2 how-

ever, travelling wave solutions U exist that fulfil 0 ≤ U(z) ≤ 1, limz→−∞ U(z) = 1 and

limz→+∞ U(z) = 0 for the travelling wave variable z = x− σt, see Figure 2.1 (b).

9



2.2 Lin’s method

Let us now consider a more general case, as discussed in [Eva10, Ch.4.2.1.c], of a scalar

reaction-diffusion equation given in the form

ut = uxx + f(u) in R× (0,∞) (2.8)

where f : R→ R is smooth and satisfies

(a) f(0) = f(a) = f(1) = 0

(b) f < 0 on (0, a), f > 0 on (a, 1)

(c) f ′(0) < 0, f ′(1) < 0

(d)

∫ 1

0
f(z)dz > 0

(2.9)

for some 0 < a < 1. In particular, f is “cubic-like” shaped, or bistable (due to condition

(c)), as can be seen in Figure 2.2. This time we are interested in a wave front originating

at value 0 and with terminal value 1, i.e. limz→−∞ U(z) = 0 and limz→+∞ U(z) = 1.

0 a 1

Figure 2.2: Schematic graph of the function f . Source: [Eva10, p.180]

To clarify notation, we now introduce the following definition from [Kue15a, Def. 5.3]

(see also e.g. [Kue15b, Ch.6]):

Definition 1. Consider the ODE du
dt = f(u), u ∈ Rd, with steady states u∗ and ũ∗.

10



• A solution u(ξ) is called a periodic orbit (or periodic trajectory) of minimal

period ξT > 0 if u(ξ) = u(ξ + ξT ), and there exists no smaller ξT such that [this]

holds.

• A solution u(ξ) is called a heteroclinic orbit (or heteroclinic trajectory, or just

heteroclinic) between u∗ and ũ∗ if limξ→−∞ u(ξ) = u∗ and limξ→+∞ u(ξ) = ũ∗.

• A solution u(ξ) is called a homoclinic orbit (or homoclinic trajectory, or just

homoclinic) to u∗ if limξ→−∞ u(ξ) = u∗ = limξ→+∞ u(ξ).

There is in fact an accordance between orbits occuring for travelling wave ODEs, and the

behaviour of solutions of the PDE from which said ODE was derived, see e.g. [Kue15b,

p.114]. Figure 2.3 illustrates the different cases.

1. A periodic orbit of the travelling wave ODEs corresponds to a travelling wave

train solution of the associated PDE.

2. A homoclinic orbit of the travelling wave ODEs corresponds to a travelling pulse

solution of the associated PDE.

3. A heteroclinic orbit of the travelling wave ODEs corresponds to a travelling front

solution of the associated PDE.

In this context, the “associated PDE” refers to the original equation, from which the

ODE was derived by application of the travelling wave ansatz (2.2). Note that after

doing so, (2.8) can again be systemized and thus brought to the form of the ODE in

Definition 1 with d = 2:

− σU ′ = U ′′ + f(U), (2.10)

or in other terms with U ′ = V , u = (U, V )>,

u′ =

(
U

V

)′
=

(
V

−σV − f(U)

)
=: f̃(u) (2.11)

Remark. Observe that for any PDE of the form ut + uxx = f(u), the travelling wave

analysis will lead to a formulation as in (2.11).

In particular we are now looking for a heteroclinic orbit connecting the steady states

u∗ = (0, 0) and ũ∗ = (1, 0), i.e. a wave front travelling from 0 to 1. Note now as in

[Eva10] that for the corresponding linearisations the eigenvalues are given by

λ±0 =
−σ ±

√
σ2 − 4f ′(0)

2
, λ±1 =

−σ ±
√
σ2 − 4f ′(1)

2
, (2.12)
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uw

b1

Figure 2.3: Correspondences between ODE orbits and PDE solutions. Panel a1:
Homoclinic orbit depicted in the (u, v)-phase plane. Panel a2: The associated PDE
solutions form travelling pulses. Panel b1: Heteroclinic orbit depicted in the (u, v)-
phase plane. Note that both steady states are on the same v-level. Panel b2: The
PDE solution has a travelling front in the u component (darker curve), but a pulse in
the v component (lighter curve). Panel c1: Periodic orbit in the (u,w)-phase plane.
Solutions travel faster in de- or increasing u-direction than in w-direction as indicated
by the arrow. Panel c2: The corresponding PDE solutions show steeper gradients
in theu-component (darker curve) than in the w-component (lighter curve). Source:

Provided by C. Kühn. Figure used with permission of the author.

which due to the restrictions posed on f in (2.9) are real and have alternating signs,

making both (0, 0) and (1,0) saddle points. [Eva10, p.181f.] now introduces two curves

W u and W s. The former leaves (0,0) along the unstable eigendirection and is thus called

unstable, while the latter approaches (1,0) along the stable eigendirection and is called

stable, compare with Figure 2.4. Let in particular λ±0/1 be the eigenvectors given by

(2.12), then W u is tangent to the line V = λ+
0 U at (0, 0)

W s is tangent to the line V = λ−1 (U − 1) at (1, 0).
(2.13)

It is furthermore pointed out that λ±0 , λ
±
1 ,W

u and W s are all dependent upon the

parameter σ.

Remark. W u(u∗) and W s(u∗) are called unstable and stable manifolds of the steady

state u∗, see e.g. [Kue15a, p.8].

Remember that we were looking for a heteroclinic orbit leaving u∗ = (0, 0) and travelling

into ũ∗ = (1, 0). This is equivalent to finding a wave speed σ < 0 such that

W u = W s in {U > 0, V > 0}. (2.14)
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Figure 2.4: Stable and unstable curves. Note that v corresponds to U and w to V .
Source: [Eva10, p.182]

In order to achieve this, we apply the following procedure as e.g. presented in [Eva10,

Ch.4.2], which is is known as Lin’s method in the literature.

Let ε > 0 be fixed, and select a 1 dimensional submanifold L of the phase space given

by a vertical line through (a+ ε, 0). [Eva10, p.182f.] claims that

W u ∩ L 6= ∅, W s ∩ L 6= ∅ (2.15)

as long as σ < 0, which can be shown with the aid of the following function

E(u, v) :=
v2

2
+

∫ u

0
f(z)dz (u, v ∈ R). (2.16)

With (2.11) it follows that

d

dt
E(U(t), V (t)) = V (t)V ′(t) + f(U(t))U ′(t) = −σV 2(t), (2.17)

which means E is non-decreasing along the trajectories of (2.11) due to σ < 0. The

level sets of E are depicted in Figure 2.5.

Let now R denote the region in the phase plane that is bounded by L on the right side,

U = 0 on the left side by some (suitable) level curve of E from below as illustrated in

Figure 2.6, such that the unstable curve W u enters R from (0,0). As W u is a level curve

itself, we reason that it cannot exit through the bottom, top or left-hand side of R. We

13



Figure 2.5: Level curves of E. Note that v corresponds to U and w to V . Source:
[Eva10, p.183]

can thus conclude that W u must exit R through the line L, at a point (a + ε, V0(σ)).

Analogously, W s intersects L at a point (a+ ε, V1(σ)), which verifies (2.15).

Figure 2.6: The region R. Note that v corresponds to U and w to V . Source: [Eva10,
p.183]

Definition 2. The distance between V0(σ) and V1(σ) is called the Lin gap.

The next step is now to observe that trajectories of (2.11) are contained in level sets of

E for σ = 0, which implies

V0(0) < V1(0). (2.18)

Our goal is now to show that for σ < 0 sufficiently small,

V0(σ) > V1(σ), (2.19)
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indicating that since both V0 and V1 depend smoothly on σ there must exist at least one

σ∗ such that V0(σ∗) = V1(σ∗). (It can in fact be shown that σ∗ is unique!)

Figure 2.7: The region S. Note that v corresponds to U and w to V . Source: [Eva10,
p.184]

To achieve this let β > 0 be fixed, and define the region S to be bounded by U = 0 on

the left, L on the right, and T := {0 ≤ U ≤ a + ε, V = βU} from below as shown in

Figure 2.7. Along T , it holds that

V ′

U ′
=
−σV − f(U)

V
= −σ − f(U)

βU
≥ −σ − C

β
> β (2.20)

for σ < 0 and |σ| sufficiently large since |f(U)/U | is bounded on 0 ≤ U ≤ a + ε. In

particular, V ′ > βU ′ and we see immediately that W u cannot exit S through T where

V = βU . Therefore we conclude that

V0(σ) ≥ β(a+ ε) for σ = σ(β). (2.21)

Note however also that

V1(σ) ≤ V1(0) ∀σ ≤ 0, (2.22)

implying that since V0 and V1 depend smoothly on σ, (2.19) will follow for β sufficiently

large and then σ sufficiently negative. [Eva10] concludes this section with a short remark,

that proof of uniqueness of σ∗ is possible with a more refined analysis, which in turn

concludes our summary.
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2.2.1 The dimension of steady and unsteady manifolds

In the previous section we introduced the concept of the stable and unstable manifolds

W s and W u associated with the steady states u∗ and ũ∗ of a given ODE problem (2.11).

Recall that the eigenvalues of the linearisations of these steady states were given by

(2.12), which due to restrictions posed onto the function f in (2.9) were real and, more

importantly, non-zero. If no eigenvalues equal zero, a steady state is called hyperbolic,

see e.g. [Eva10, p.421], as was the case in Chapter 2.2.

In the case of non-hyperbolic steady states, the nomenclature has to be refined. Consider

for example the linear ODE x′ = Ax with x ∈ R3 and A given by

A =


2 −3 1

3 1 3

−5 2 −4

 . (2.23)

This ODE has a trivial steady state at x = 0, with eigenvalues given by λ1 = 1, λ2 = −2

and λ3 = 0 and associated eigenvectors v1−3. From the signs of λ1 and λ2 we can

immidiately determine that this system has an unstable eigendirection along v1, and

a stable one along v2, refer to Chapter A.3 for a more detailed explanation. In case

of a zero eigenvalue however, stability is a priorily unclear (especially if we are dealing

with the linearization of an ODE instead of a linear ODE to begin with). Consider the

following definition for stable and unstable manifolds given by [Kue15a, p.8], which is

equivalent to (2.13):

Definition 3. Let φ(u0, t) be the flow associated to an ODE u′ = f(u), u(0) = u0 ∈ Rd

with a steady state u∗. Define the stable and unstable manifolds by

W s(u∗) := {v ∈ Rd : φ(v, t)→ u∗, as t→ +∞},

W u(u∗) := {v ∈ Rd : φ(v, t)→ u∗, as t→ −∞}.
(2.24)

From Definition 3 is it apparent, that v1 ∈ W u(0) and v2 ∈ W s(0), in particular both

W u(0) and W s(0) are of at least dimension 1. But there might be further trajecto-

ries leading towards u∗ = 0 in either forward or backward time along the eigenvector v3

(or linear combinations thereof), the manifolds may therefore be of at most dimension 2.

We thus define the strongly stable manifold W ss(u∗) that is spanned only by the eigen-

vectors of negative eigenvalues at u∗, and the center stable manifold W cs(u∗) which

is spanned by eigenvectors of negative and zero eigenvalues, as well as their unstable
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counterparts respectively. In case of the ODE given by (2.23) this amounts to

1 = dim(W ss(0)) ≤ dim(W s(0)) ≤ dim(W cs(0)) = 2,

as well as

1 = dim(W su(0)) ≤ dim(W u(0)) ≤ dim(W cu(0)) = 2.

Observe that for hyperbolic steady states the three types of stable/unstable manifolds

coincide.

2.3 Phase plane analysis and steady states of the tumor

model

As we have seen in the previous sections, in order for heteroclinic orbits to exist, we

require one steady state with an unstable eigendirection and one with a stable eigendi-

rection. This suggests that a stability analysis for any possible steady states of our

tumor model (1.1) is necessary.

We recall that (1.1) is given by

∂

∂t

(
c

m

)
− ∂

∂x

(
A(c,m) · ∂

∂x

(
c

m

))
= R(c,m)

which we transform with travelling wave ansatz z = x− σt, ′ = d/dz to

− σ

(
c

m

)′
−

A(c,m) ·

(
c

m

)′′ = R(c,m). (2.25)

Let U = (c,m)> and subsequently V = U ′ then we can rewrite (2.25) to U ′ = V

A(U) · V ′ = (−σ · Id − (A(U))′) · V −R(U)
(2.26)

where Id denotes the identity matrix. (2.26) is problematic because of the term A(U)

multiplied to V ′ in the second line. As we have seen in Chapter 1.2, A(U) = A(c,m)

becomes singular whenever c,m or 1− c−m equal 0 or 1. In particular, we know that

it is not invertible.
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To avoid this we revert to the (c,m) notation instead of U and V and define

(
p

q

)
:= A(c,m) ·

(
c

m

)′
.

Invertibility of A(c,m) is still not given, however we now apply a formal coordinate

transformation:

z = detA(c,m) · η, (2.27)

and note that A−1 = (detA)−1 · cof(A)>, see Chapter A.4 for further details. Let

˙ = d/dη, then (2.25) becomes

(
ċ

ṁ

)
= cof(A)> ·

(
p

q

)
(
ṗ

q̇

)
= −σ · cof(A)> ·

(
p

q

)
− detA ·R.

(2.28)

Recall that σ was wave speed. The cofactor matrix cof(A)> = cof(A(c,m))> is given by

cof(A)> =

(
2βm(1−m)(1 + θc) 2βcm(1 + θc)

2cm− βθm2(1−m) 2c(1− c)− βθcm2

)
.

Consider (2.28) to be abstractly of the form ẏ = F (y), then we are now looking for

steady states given by F (y) = 0. The calculation steps for this are listed in Chapter

A.1. It turns out that we can in fact not identify isolated points as steady states for this

systems, but rather whole families, i.e. manifolds of steady states:

F (y) = 0⇔

y ∈




0

1

p

q

 ,


1

0

p

q

 ,


0

0

p

q

 ,


0

m

0

q

 ,


c

0

p

0

 ,


c

1− c
p

−p




(2.29)

Let the six families in (2.29) be denoted y1 to y6 from left to right, then y1 = (0, 1, p, q)>

indicates that F (y1) = 0 for any value of p and q. Since we have found whole families of

steady states instead of single points, a closer look at their properties is necessary. The

following are some key features:
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• y1−3 appear to be the most “natural” families of steady states as they are the

only ones independent of p and q in the sense that these values may be chosen

arbitrarily. They would still be steady states for the un-transformed system (2.26).

• y6 occurs artificially due to the variable transformation (2.27), while y4 and y5 are

both rather degenerate (they each have a zero, i.e. generalized, eigenvector).

• We have therefore decided to restrict ourselves to searching for heteroclinics (or

homoclinics) between y1−3.

• y1−3 each have two zero and two general eigenvalues (in the sense that they are

given by - as yet unspecified - functions, not to be confused with generalized

eigenvalues). None of these depend on σ, and θ influences the stability properties

only for y1.

A detailed analysis of the properties and behaviours of the families of steady states y1−6

can be found in Chapter A.2.

The methods presented in Chapters 2.1-2.2 were both based on two dimensional systems

of first order ODEs, where varying one parameter, i.e. the wave speed σ, was sufficient

to find intersections between steady/unsteady trajectories and a codimension one sub-

manifold of the phase space. In our case, the system of first order ODEs (2.28) is of

dimension four, the codimension one submanifold subsequently of dimension three. We

will vary σ as well as θ which was shown to be a critical parameter in [JS12] and [Ste13].

The other parameters should be kept fixed, as we wish to stay as closely as possible to

the example shown in Figure 1.1, which served as the cause for this thesis.

A variant of Lin’s method for higher dimensional problems has been discussed in [KR08],

which we will not use as it would go beyond the scope of this thesis. We will argue in

Chapter 4 that heteroclinics likely exist between the two steady states y1 = (0, 1, p, q)>

and y2 = (0, 1, p, q)>.
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Chapter 3

A geometric approach

As an alternative way of analysing the existence and behaviour of possible travelling

waves, several researchers chose more geometric approaches to the problem, amongst

them G. Pettet and M. Wechselberger in their individual PhD theses, [Wec98] and

[Pet96] respectively. While both works originated independently at approximately the

same time, the authors in 2010 published a paper together, [WP10], showing how the

ideas and techniques applied coincide, and linking both methods. [WP10] uses geometric

singular perturbation techniques to study the existence of travelling waves in coupled

advection-reaction-diffusion (ARD) models, where both smooth and sharp interfaces

might occur. A perk of this method is that it includes and explains jump and entropy

conditions known to apply for shocks in PDE-theory (namely the Rankine-Hugoniot and

Lax entropy conditions). A special focus is given to a particular type of solutions called

canards.

Harley et al (amongst them both Pettet and Wechselberger) in 2014 revisited this tech-

nique and further expanded on how it is linked to the theory of walls of singularities,

singularities in a given problem that may occur after a transformation from PDE to

ODE by travelling wave ansatz, passable only by solutions going through the hole in the

wall, [HVHM+14].

We will discuss both approaches in this chapter and subsequently see how they may be

applied to the tumor model (1.1).
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3.1 On “Folds, canards and shocks in advection-reaction-

diffusion models”

In [WP10], Wechselberger and Pettet consider a class of nonlinear ARD models of the

the form

Wt + {G(W )}x = F (W ) + εWxx, (3.1)

where W ∈ Rk, F (W ), G(W ) ∈ Rk sufficiently smooth with k = 3 and 0 < ε � 1,

implying that the diffusion is considered “small”1. As the authors remark, systems like

(3.1) represent coupled balance laws with small viscous perturbations when regarded in

the classical PDE setting. The limit ε → 0 may cause physical shocks due to dissipa-

tive mechanisms, see [WP10, p.1950]. Their ansatz combines solutions obtained from

singular limit subsystems to a solution of the full system, which persist under small

perturbations. Both the Rankine-Hugoniot and Lax entropy conditions are fulfilled.

Furthermore it is commented upon how this theory fits in with the concepts of walls

of singularities and holes in the walls, two highly linked notions that we will explain

and regard more thoroughly in Chapter 3.3. Additionally the role of canards, which

are a special type of solutions that may occur when regarding singular perturbations

problems, is studied. We shall now review and summarize some parts of [WP10, Sec.

2], and then reproduce the calculation steps from [WP10, Sec. 3] in a slightly alternate

version such that they may be applied to the tumor model (1.1). In particular, any ideas,

calculation steps or results presented in Chapters 3.1.1-3.1.2 are taken or immediately

follow from [WP10], if not explicitly stated otherwise.

3.1.1 ARD models motivated by haptotactic cell migration

The basic form of the analysed model is given by(
u

w

)
t

+

(
0

g(u,w)ux

)
x

=

(
h(u,w)

f(u,w)

)
+ ε

(
u

w

)
xx

(3.2)

with (x, t) ∈ R × R representing spatial domain and time, and W = (u,w)> ∈ R2

denoting a feedback and a density variable. The term J = (0, g(u,w)ux)>, called the

advective flux term, indicates that the so-called feedback variable u has no advective

component, but its gradient works as a driving factor for the density variable w. In

particular this means that u functions as a chemoattractant in this case. The source

1Note that W in this chapter corresponds to U in the previous chapter. This is due to a difference
in notation in the cited sources.
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term (also known as production/degradation or birth/death rate in biological models) is

given by F = (h(u,w), f(u,w))>, where we consider nonlinear functions h and f . Since

ε� 1, diffusion is small, meaning that the flux term is dominant for w. In the absence

of any advection-reaction terms, diffusion however small is still dominant for u.

Now a new variable v = ux is inserted, which enables us to write the flux term J without

second order derivations.
u

v

w


t

+


0

−h(u,w)

g(u,w)v


x

=


h(u,w)

0

f(u,w)

+ ε


u

v

w


xx

(3.3)

Observe that (3.3) exactly fulfils the form of (3.1) with W = (u, v, w)>.

As the main interest lies in travelling wave solutions, we now introduce a travelling wave

coordinate z = x− σt with wave speed σ. Recall that for the case of σ > 0, the wave is

considered to be right moving. In this new coordinate system, (3.3) becomes stationary

(i.e. an ODE, as the spatial domain was considered one dimensional only), and can thus

be rewritten as

{εuz + σu}z = −h(u,w)

{εvz + σv + h(u,w)}z = 0 (3.4)

{εwz + σw − g(u,w)v}z = −f(u,w),

which allows us to perform a Liénard transformation (see e.g. [Kue15b, p.9]) where we

define

û := εuz + σu

v̂ := εvz + σv + h(u,w) (3.5)

ŵ := εwz + σw − g(u,w)v.
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With this notation we finally obtain a singularly perturbed system in Liénard form

ûz = −h(u,w)

ŵz = −f(u,w)

εuz = û− σu (3.6)

εvz = v̂ − σv − h(u,w)

εwz = ŵ − σw + g(u,w)v

with (u, v, w) ∈ R3 denoting so-called fast variables, (û, ŵ) ∈ R2 slow variables and v̂ a

fixed parameter. In fact, v̂ = 0, which can be seen when setting v = uz in the second

line of (3.4) and plugging this into the definition of v̂ in (3.5). The independent variable

z is considered to be a “slow” travelling wave coordinate. Thus a rescaling of z = εy in

(3.6) gives the equivalent fast system

ûy = −εh(u,w)

ŵy = −εf(u,w)

uy = û− σu (3.7)

vy = −σv − h(u,w)

wy = ŵ − σw + g(u,w)v.

3.1.2 The viscous limit ε → 0 - reduced and layer problem

“The basic idea of geometric singular perturbation theory is to study the singular limit

ε → 0 of the slow system (3.6) and the fast system (3.7) which are distinct lower di-

mensional subsystems [...]. We then concatenate solutions of these two distinct lower

dimensional subsystems and show that these solutions persist as (sufficiently) smooth

solutions of the full (five-dimensional) system for sufficiently small perturbations ε� 1.”

([WP10, p.1953])

Beginning with the fast system (3.7), the limit ε→ 0 leads to the so-called layer problem

ûy = 0

ŵy = 0

uy = û− σu (3.8)

vy = −σv − h(u,w)

wy = ŵ − σw + g(u,w)v
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where the slow variables (û, ŵ) are invariant under y and are thus considered parameters.

It follows that the layer flow occurs along three-dimensional fast fibres {(û, ŵ, u, v, w) ∈
R5 : û = k1, ŵ = k2}, and that the set of equilibria of the layer problem takes the form

of a two-dimensional critical manifold

S := {(û, ŵ, u, v, w) ∈ R5 : û = σu, v = −h(u,w)/σ, ŵ = σw − g(u,w)/σ}. (3.9)

To ascertain the stability of the set of equilibria we now have to compute the eigenvalues

of the Jacobian of the layer problem, and evaluate them along the critical manifold S.

The Jacobian matrix of (3.8) is given by
−σ 0 0

−hu −σ −hw
guv g −σ + gwv

 (3.10)

with eigenvalues λ1 = −σ < 0 and λ2/3 = −σ + (gwv ±
√

(gwv)2 − 4hwg)/2 where

λ2 < λ3. Here Wechselberger and Pettet impose a set of assumptions2 ([WP10, p.1954])

on the functions g(u,w) and h(u,w) as well as the wave speed σ.

Assumption 1. The functions g(u,w) and h(u,w) of system (3.3) together with the

wave speed σ > 0 have the following properties:

(i) The inequality (gw(−h/σ))2 > 4hwg holds in the domain of interest U ⊆ {(u,w) ∈
R2}, i.e. all eigenvalues of the layer problem (3.8) are real.

(ii) The three real eigenvalues of the layer problem (3.8) are distinct in U.

In particular, Assumption 1 implies that the corresponding conservation law of (3.1) is

a strictly hyperbolic PDE problem, in the sense of being diagonisable, compare to e.g.

[Eva10, p.421]. In order to determine stability properties of the critical manifold S, we

have to look at several cases:

• If hwg > 0 and gwh > 0 in U , then λ2 < λ3 < λ1 = −σ. In this case, S is called

an attracting critical manifold.

• If hwg > 0 but −2σ2 < gwh < 0 in U , then λ1 < λ2 < λ3, where λ1/2 < 0 but λ3

may change sign.

• If hwg < 0 in U , then λ2 < λ1 < λ3, where again λ1/2 < 0 and λ3 may change

sign.

2Note that these assumptions ascertain the existence of canard solutions and may not be strictly
necessary for other types of travelling wave solutions.
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In the instances where λ3 changes sign in U , S can no longer be called attracting. Instead

we find that along the 2D critical manifold, one or several codimension one bifurcation-

curve(s) occur. In general, S is locally folded, with fold curve(s) Lj corresponding to

saddle-node bifurcations of the layer problem. These are defined by the condition

σ2 + {g(u,w)h(u,w)}w = 0, (3.11)

which we obtain by setting λ3 = 0, keeping in mind that v = −h(u,w)/σ. These fold

curves separate attracting from repelling parts of the critical manifold, the former ones

characterized by the condition λ1/2/3 < 0, the latter ones by λ1/2 < 0 but λ3 > 0.

Let us now look at the slow system (3.6). By letting ε → 0 we obtain the reduced

problem

ûz = −h(u,w)

ŵz = −f(u,w)

0 = û− σu (3.12)

0 = −σv − h(u,w)

0 = ŵ − σw + g(u,w)v

where again v̂ = 0. Through (3.12) we can describe the behaviour of the slow variables

(û, ŵ) along S. In this sense the critical manifold works as an interface between the

reduced and layer problem. Note that S is defined over U ⊆ {(u,w) ∈ R2} which

is independent of g(u,w) and h(u,w), thus we need to examine the reduced flow on

S over U . The reduced vector field has to be tangent to S by definition, which is

accomplished by differentiating line 3 and 5 of (3.6) and inserting the results into lines

1 and 2 respectively. Under the condition v = −h(u,w)/σ, this yields the projection of

the reduced vector field onto U(
σ 0

1
σ{g(u,w)h(u,w)}u σ + 1

σ{g(u,w)h(u,w)}w

)(
uz

wz

)
=

(
−h(u,w)

−f(u,w)

)
, (3.13)

which we observe is equivalent to the non-diffusive limit ε → 0 of (3.4) in travelling

wave coordinates. (3.13) is singular where σ + 1
σ{g(u,w)h(u,w)}w = 0, or in other

terms where λ3 = 0, i.e. along the fold curve(s) Lj .
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We would now like to learn more about the behaviour of the reduced flow, in particular

(uz, wz)
>, in the phase plane (u,w). As was the case earlier, we cannot get rid of the

matrix term on the lhs entirely, for invertibility can not be assumed in general, so again

we multiply system (3.13) from the left side with the transpose of the co-factor matrix,(
σ + 1

σ{g(u,w)h(u,w)}w 0

− 1
σ{g(u,w)h(u,w)}u σ

)
,

giving

(σ2 + {g(u,w)h(u,w)}w)

(
uz

wz

)
=

(
−σh(u,w)− 1

σh(u,w){g(u,w)h(u,w)}w
−σf(u,w) + 1

σh(u,w){g(u,w)h(u,w)}u

)
. (3.14)

System (3.14) becomes singular when (σ2 +{g(u,w)h(u,w)}w) = 0, which as in Chapter

2.3 is the determinant of the matrix on the lhs in (3.13). In order to desingularize, we

rescale and define z = (σ2 + {g(u,w)h(u,w)}w)z to finally obtain(
uz

wz

)
=

(
−σh(u,w)− 1

σh(u,w){g(u,w)h(u,w)}w
−σf(u,w) + 1

σh(u,w){g(u,w)h(u,w)}u

)
. (3.15)

[WP10] explain now how (and why) the phase portraits of the reduced problem (3.13)

and the desingularized problem (3.15) are equivalent up to parametrization change of

the independent variable z in domains where the determinant of the lhs matrix in (3.13)

is negative. In particular, singularities of (3.15) correspond to singularities of (3.13) and

fall in two different categories:

• Equilibria of the desingularized problem (3.15) occuring where f(u,w) = h(u,w) =

0. These correspond directly to equilibria of the reduced problem (3.13) and

include the asymptotic states (u±, w±) of travelling waves.

• Equilibria of (3.15) defined by

{g(u,w)h(u,w)}wf(u,w) + {g(u,w)h(u,w)}uh(u,w) = 0.

These are in general not equilibria of the reduced problem (3.13) but correspond

to so-called folded singularities which can be found on fold-curves Lj . Depending

on their behaviour as singularities of the desingularized problem (3.15), they are

classified as folded saddles, folded nodes and folded foci.

Any of these cases may provide for ‘interesting’ behaviour, for the folded foci in par-

ticular generic solutions will always terminate at a fold curve, as a blow-up occurs in
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Figure 3.1: Example of reduced flow on the critical manifold S near a folded saddle
singularity: (a) ‘5D’ view, (b) projection of the reduced flow onto (u,w) space. There
exist two canard solutions; one crosses from Sa to Sr through the folded singularity

while the other crosses in the opposite direction. Source: [WP10, Fig.1]

finite time (either forward or backward time). In the case of folded saddles or nodes

on the other hand, a so called singular canard may occur, where certain trajectories

of the reduced flow cross from one branch of the critical manifold to the other branch

in finite time, an example of which can be seen in Figure 3.1. [SW01, p.421] describes

the phenomenon of canards as follows: “A canard solution is a solution of a singularly

perturbed system which follows an attracting slow manifold, passes close to a bifurcation

point of the critical manifold and then follows, rather surprisingly, a repelling slow mani-

fold for a considerable amount of time. In geometric terms a canard solution corresponds

to the intersection of an attracting and a repelling slow manifold near a non-hyperbolic

point of [the critical manifold] S.” Note that folded foci do not provide this opportunity.

At this point the authors impose another set of assumptions defining minimum require-

ments on system (3.3) such that canard type travelling waves with smooth and sharp

interfaces will occur, which gives a good overview over minimal requirements for canard

solutions ([WP10, p.1956f.]):

Assumption 2. “Given system (3.3). The (sufficiently smooth) functions f(u,w),

g(u,w) and h(u,w) along with wave speeds σ > 0 lead to the following properties:

(i) In the domain of interest U , there are two negative eigenvalues λ1/2 < 0 along the

critical manifold S of the layer problem (3.8). The third eigenvalue λ3 changes

sign.

(ii) The 2D critical manifold S = Sa ∪ L ∪ Sr (3.9) is a folded surface, i.e. there

exists a fold-curve L = {(û, ŵ, u, v, w) ∈ S : λ3 = 0}, hence the layer problem has

a saddle-node bifurcation along L. Sa denotes the attracting branch of S where

λ3 < 0, while Sr denotes the repelling branch of S where λ3 > 0.
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(iii) The reduced problem (3.12) possesses two ordinary singularities (u±, w±) which

are equilibrium states of the reaction terms, i.e. f(u±, w±) = h(u±, w±) = 0, away

from the fold-curve L. One equilibrium, (u−, w−), has at least a one-dimensional

unstable eigendirection (saddle, unstable node/focus) and the other equilibrium,

(u+, w+), has at least a one-dimensional stable eigendirection (saddle, stable node/-

focus). These equilibria (u±, w±) are the asymptotic states of travelling waves

under study.

(iv) The reduced problem also possesses a folded singularity (uf , wf ) which is either a

folded saddle or a folded node.”

Throughout [WP10, Sec. 2.3] several examples are presented that exhibit travelling

waves with smooth and sharp interfaces, while [WP10, Sec. 2.4] is concerned with show-

ing how the Lax and RH entropy conditions hold for canard solutions. We refer the

interested reader directly to the original paper for these considerations.

Lastly, in [WP10, Sec. 2.5] it is shown how travelling waves with smooth and sharp

interfaces persist under sufficiently small perturbations with 0 < ε � 1. This property

is critical in making singular perturbation theory a powerful analytical tool, and is

shown using Fenichel theory (see e.g. [Fen79]), which states that for the full systems in

Liénard-form (3.6) and fast form (3.7) the respective attracting and repelling branches

Sa,ε and Sr,ε away from L are within O(ε) to the unperturbed Sa and Sr. The flow

on the perturbed branches is a smooth perturbation of O(ε) of the reduced flow, and

hyperbolic equilibria away from L are persistent under sufficiently small 0 < ε � 1 as

well.

3.1.3 Coupled ARD models

Of particular interest for us is [WP10, Sec. 3], where Wechselberger and Pettet look at

a (dimensionless) system of two coupled ARD equations,(
u

w

)
t

+

(
g1(u,w)

g2(u,w)

)
x

=

(
f1(u,w)

f2(u,w)

)
+ ε

(
u

w

)
xx

. (3.16)

Put into vector form this is equivalent to

Wt + {G(W )}x = F (W ) + εWxx, (3.17)

where x ∈ R represents the spatial domain, t ∈ R time and ε � 1 indicates that diffu-

sion is “small”. Note that (3.17) is identical to (3.1). W = (u,w)> ∈ R2 is a densitiy
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function, G = (g1(u,w), g2(u,w))> denotes the flux. F = (f1(u,w), f2(u,w))>, which is

nonlinear, models the kinetic (reaction) term. Note that setting g1(u,w) ≡ 0 does not

give us the form of system (3.2), as the second part of the flux term would have to read

g2(u,w)ux instead of g2(u,w).

Let us recall the basic form of our tumor model, (1.1) :

∂

∂t

(
c

m

)
− ∂

∂x

(
A(c,m) · ∂

∂x

(
c

m

))
= R(c,m)

or in other terms by setting W = (c,m)>,

Wt = R(W ) + {A(W )Wx}x (3.18)

It is clear that there are parallels between (3.17) and (3.18), and indeed the authors

remark that their arguments carry through when assuming a diffusion term of the form

εBWxx with diffusion constant B = (B1, B2)> ∈ R2
+ or even ε(B(W )Wx)x with appro-

priate viscosity matrix B(W ) = (B1(W ), B2(W ))>, but concede that this was omitted

as calculations would become tedious (see [WP10, p.1963]). We will at this point depart

from our previous approach of mainly reviewing [WP10] and instead try to extend the

calculations from [WP10, Sec. 3] to include the mentioned viscosity matrix, keeping in

mind that G ≡ 0 and ε ≡ 1 in our model. Let us now consider the following system,

Wt + {G(W )}x = F (W ) + ε{B(W )Wx}x, (3.19)

or after introducing the travelling wave coordinate z = x− σt and a re-arrangement of

terms

{σW + εB(W )Wz −G(W )}z = −F (W ). (3.20)

By setting Ŵ := σW + εB(W )Wz −G(W ) we obtain: Ŵz = −F (W )

εB(W )Wz = Ŵ − σW +G(W )
(3.21)

Even though they look quite similar in structure, we remember that the Liénard form

defined in (3.6) is different from (3.21) in not containing the factor B(W ) on the right-

hand-side of line 2. As it was the case in Chapter 2.3, invertibility of the viscosity matrix

is one of the major problems we encounter, as it can not a priorily be guaranteed. Two
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approaches appear plausible: we can either keep the viscosity term on the left-hand-

side and see whether (or rather, where) this gives rise to further problems; or we may

follow our approach from Chapter 2.3 and eliminate B(W ) from the left-hand-side by

multiplying the first line of (3.21) with det(B(W )) and the second line with cof(B(W ))>,

giving  det(B(W ))Ŵz = −det(B(W ))F (W )

εdet(B(W ))Wz = cof(B(W ))>(Ŵ − σW +G(W )).

Now by substituting z = det(B(W ))z̃ we finally obtain Ŵz̃ = −det(B(W ))F (W )

εWz̃ = cof(B(W ))>(Ŵ − σW +G(W )).
(3.22)

In order to best see where problems or advantages arise from either approach, we elect

to apply both variants, which is feasible as several subsequent calculation steps can

be performed on either variant simultaneously. To provide for easier reading, we will

try to align both versions directly above each other wherever possible, separated by a

horizontal line, starting with the systems derived from (3.21). This makes the output

appear as follows:  Ŵz = −F (W )

εB(W )Wz = Ŵ − σW +G(W )
(3.21)

 Ŵz̃ = −det(B(W ))F (W )

εWz̃ = cof(B(W ))>(Ŵ − σW +G(W )).
(3.22)

3.1.4 Reduced and layer problems for coupled ARD models

As before, W = (u,w) ∈ R2 represents fast variables and Ŵ = (û, ŵ) ∈ R2 slow ones.

Rescaling the (slow) independent variable z = εy in (3.21), z̃ = εỹ in (3.22) resp., leads

us to the equivalent fast systems: Ŵy = −εF (W )

B(W )Wy = Ŵ − σW +G(W )
(3.23)

 Ŵỹ = −ε det(B(W ))F (W )

Wỹ = cof(B(W ))>(Ŵ − σW +G(W )).
(3.24)
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Beginning with the fast subsystems (3.23-3.24), we obtain the layer problems by applying

the limit ε→ 0  Ŵy = 0

B(W )Wy = Ŵ − σW +G(W )
(3.25)

 Ŵỹ = 0

Wỹ = cof(B(W ))>(Ŵ − σW +G(W )),
(3.26)

making Ŵ a parameter. In particular, the flow occurs along two-dimensional fast fibres

{(Ŵ ,W ) ∈ R4, Ŵ = const}. The critical manifolds S1 and S2 resp. that define the set

of equilibria are given by

S1 := {(Ŵ ,W ) ∈ R4, Ŵ = σW −G(W )} (3.27)

S2 := {(Ŵ ,W ) ∈ R4, cof(B(W ))>Ŵ = cof(B(W ))>(σW −G(W ))} (3.28)

As before, we now need to consider the stability of the critical manifolds Si, which is

dependent on the eigenvalues of their respective Jacobians

JS1 :=(DWG− σI)

JS2 :={DW cof(B(W ))>(Ŵ − σW +G(W )) + cof(B(W ))>(DWG− σI)}

= cof(B(W ))>(DWG− σI),

by definition of Ŵ . DWG denotes the component wise derivative of the function G =

(g1(u,w), g2(u,w))> wrt. W = (u,w), i.e.

DWG =

(
g1,u g1,w

g2,u g2,w

)
. (3.29)

Once again, in order to ascertain hyperbolicity of the problem, we require that the eigen-

values λi1/2, i = 1, 2, of the layer problems (3.25-3.26) are real and distinct in the domain

of interest U . Similar to the results from Chapter 3.1.2, an eigenvalue crosses zero where

det JSi = 0. If we assume that λi2 changes sign in U , then as before a codimension one

bifurcation curve L has to exist, along which λi2 = 0 holds. The authors further remark

that the generic case are saddle-node bifurcations, see [WP10, p.1963].
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Returning to the systems (3.21-3.22) given in Liénard-form, we obtain the reduced prob-

lems by letting ε→ 0:  Ŵz = −F (W )

0 = Ŵ − σW +G(W )
(3.30)

 Ŵz̃ = −det(B(W ))F (W )

0 = cof(B(W ))>(Ŵ − σW +G(W ))
(3.31)

Again this system describes the evolution of a slow variable Ŵ along a 2D critical

manifold Si and is given as a graph over U which is structurally independent of G(W ).

In order to understand the projection of the reduced vector fields onto U , we need to

differentiate Si with respect to z or z̃ and plug the resulting equation into the first line

of system (3.30) or (3.31) respectively. In particular, this yields

JS1Wz = F (W ) (3.32)

JS2Wz̃ = det(B(W ))F (W ), (3.33)

with the JSi defined as above. These systems are singular along the fold-curves Lij ,

which were defined by λi2 = 0, meaning that we cannot simply eliminate the matrices

JSi on the lhs. As seen before, we can however multiply these systems from the left

with the appropriate transposed co-factor matrices cof(JSi)
>, resulting in

det JS1Wz = cof(JS1)>F (W ) (3.34)

det JS2Wz̃ = cof(JS2)> det(B(W ))F (W ). (3.35)

Now we finally rescale once more by setting z = detJS1z or z̃ = detJS2z̃ respectively

to obtain the desingularized flows:

Wz = cof(JS1)>F (W ) (3.36)

Wz̃ = cof(JS2)> det(B(W ))F (W ). (3.37)

Here we observe that indeed all calculations and considerations we presented in this

chapter mostly correspond to what was done in [WP10, Sec. 3]. In fact, the resulting

equation (3.36) exactly corresponds to (36) in [WP10]. This suggests that the second

approach, leading to (3.37), might have been the more sensible one as there the presence

of a diffusion matrix B(W ) actually plays a role for our outcome. We will regard this

issue further when we apply the results from this chapter to our tumor model in Chapter
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3.2. However, note that all further conclusions concerning phase portraits and equilibria

of reduced and desingularized problems do not differ from what is presented by Wech-

selberger and Pettet. Hence at this point we return to reviewing and summarizing the

remainder of [WP10, Sec. 3-4].

As before in the case of haptotactically driven ARD models, the phase portraits of

the reduced (3.32-3.33) and desingularized problems (3.36-3.37) are equivalent up to a

change of parametrization where det JSi < 0. Singularities of (3.36-3.37) correspond to

those of (3.32-3.33) in two ways:

• Equilibria W i
e of the desingularized problems that fulfil F (W i

e) = 0 and for which

JSi evaluated at W i
e has no zero eigenvalue. Asymptotic states W±,ie of travelling

waves fall in this category.

• Equilibria W i
f of the desingularized problems where JSi evaluated at W i

f has a zero

eigenvalue λi2 = 0. These are in general not eigenvalues of the reduced problems but

correspond to folded singularities, on fold-curves Lji , ji = 1, ..., jimax. Depending

on the singularities of the desingularized problems, these are considered folded

saddles, folded nodes or folded foci.

The following assumption from [WP10, p.1965] defines minimum requirements on system

(3.16) such that canard type travelling waves as defined by [SW01] with smooth and

sharp interfaces (shocks) may be observed.

Assumption 3. Given system (3.16). The (sufficiently smooth) functions F and G

together with wave speeds σ > 0 lead to the following properties:

(A1) In the domain of interest U , there is one negative eigenvalue λ1 < 0 of the layer

problem. The second eigenvalue λ2 changes sign.

(A2) The 2D critical manifold S = Sa ∪ L ∪ Sr is a folded surface, i.e. there exists a

fold-curve L = {(Ŵ ,W ) ∈ S : λ2 = 0}, i.e. the layer problem has a saddle-node

bifurcation along L. Sa denotes the attracting branch of S where λ2 < 0, while Sr

denotes the repelling branch of S where λ2 > 0.

(A3) The reduced problem possesses two ordinary singularities W±e which are equilibrium

states of the reaction term, i.e. F (W±e ) = 0, away from the fold-curve L. The

equilibrium W−e has at least a one-dimensional unstable eigendirection (saddle,

unstable node/focus) while W+
e has at least a one-dimensional stable eigendirection

(saddle, stable node/focus).
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(A4) The reduced problem also possesses a folded singularity Wf which is either a folded

saddle or a folded node.

Once again the geometric results are compared to shock conditions from classical PDE

theory in [WP10, Sec. 3.4], followed by a brief remark about how small viscious pertur-

bations with ε 6= 0 persist, see [WP10, Sec. 3.5]. This concludes our summary.

3.2 Application of the Geometric Perturbation Method

We now want to apply the results from the previous section to the tumor model (1.1),

∂

∂t

(
c

m

)
− ∂

∂x

(
A(c,m) · ∂

∂x

(
c

m

))
= R(c,m)

or in equivalent form, by setting W = (c,m)>, (3.18),

Wt = R(W ) + {A(W )Wx}x.

As shown in [WP10], Assumption 3 defines minimum requirements on a given ARD-

system such that canard type travelling waves may occur, hence we want to analyse

(3.18) accordingly. We see immediately that with the notation from [WP10], we get

F (W ) = R(W ), G(W ) ≡ 0, B(W ) = A(W ). On the first glance it appears that in our

case ε ≡ 1, which may definitely not be considered ‘small’. Note however that we have

not specified any boundaries for x. We can therefore always scale x by setting x = x̃ ·
√
ε.

Let us thus regard the adjusted version where have we scaled x and B(W ) accordingly,

and immidiately dropped the tilde again for conveniency:

Wt = F (W ) + ε{B(W )Wx}x, (3.38)

We remember that our analysis required the eigenvalues of the layer problems (3.25-3.26)

to be real and distinct in the domain of interest U = (0, 1)2 ⊂ R2. These eigenvalues

are the ones of JS1 = (DWG − σI) and JS2 = cof(B(W ))>(DWG − σI) respectively.

At this point we see already that our first approach, which was ‘keeping’ the diffusion

term on the lhs in the Liénard-form (3.21), is not applicable here as the eigenvalues of

JS1 = (DWG− σI) = −σI (since G ≡ 0) are given by λ1 = λ2 = −σ and are thus not

distinct, nor will either of them ever change sign. The second variant however yields

eigenvalues λ1/2 dependent on JS2 = −σ cof(B(W ))>. One can show that they are in

fact real and distinct in U for a reasonable range of parameters σ and θ. It also follows
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that the smaller eigenvalue, which we denote by λ1, fulfils λ1 < 0 in U , while λ2 changes

sign where det cof(B(W ))> = 0, thus sufficing (Ass.3.A1).

The next requirement, (Ass.3.A2) is immediately satisfied as well, as the fold curve

L = {(Ŵ ,W ) ∈ S : λ2 = 0} is given by det(cof(B(W ))>) = 0 which indeed is a subset

of S2 = {(Ŵ ,W ) ∈ R4 : cof(B(W ))>Ŵ = σ cof(B(W ))>W}. Problems arise however

when we have to identify equilibrium states W±e of the reaction term F (W ) = R(W ),

as all of them are found along L, which is a violation of (Ass.3.A3).

In particular, the tumor model given by (1.1) does not exhibit travelling wave behaviour

of the canard type that [WP10] were investigating, since all equilibrium points are to

be found along the fold curve of the critical manifold. Systems of this type are not

easily investigable, which is consistent to the results found in Chapter 2 where we only

managed to determine families of steady states instead of discreet equilibrium points.

Note that other, more complicated canard solutions may still exist.

3.3 On “Existence of travelling wave solutions for a model

of tumor invasion”

In [HVHM+14], K. Harley et al. (including both G. Pettet and M. Wechselberger) revisit

the techniques presented above for a concrete example, and link it to the concept of walls

of singularities and hole(s) in the wall. The following is a (very brief) overview of their

results. In general they regard PDE problems that can by travelling wave ansatz be

brought to the form
∂u

∂z
= R(u,w)

P (u,w)
∂w

∂z
= Q(u,w).

(3.39)

It is possible to study equations of this type using dynamical systems theory, analysing

solutions in the (u,w) phase plane. Note however that problems arise where P (u,w) = 0

while Q(u,w) 6= 0. (Compare this to the formulation in (3.21)) For sufficiently smooth

P and Q, this occurs along a curve in the phase plane that we denote by the wall of sin-

gularities. Solution trajectories can only cross it at the hole in the wall, the point where

P (u,w) = Q(u,w) = 0 and thus (3.39) is no longer singular. Systems that exhibit sev-

eral walls of singularities or multiple holes in the wall are not regarded in [HVHM+14].
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The model considered in [HVHM+14] is a tumor growth model given by

∂u

∂t
= −u2w

∂w

∂t
= w(1− w)− ∂

∂x

(
∂u

∂x
w

)
,

(3.40)

with boundary conditions

lim
x→−∞

u(x, t) = 0, lim
x→∞

u(x, t) = û, lim
x→−∞

w(x, t) = 1, lim
x→∞

w(x, t) = 0,

where (x, t) ∈ R × R+. u(x, t) denotes the extracellular matrix (ECM) concentration

and w(x, t) the invasive tumor cell population. After application of the travelling wave

ansatz with z = x− σt, (3.40) can be rearranged to

∂u

∂z
=
u2w

σ(
2u2w

σ
− σ

)
∂w

∂z
= w(1− w)− 2u3w3

σ2
.

(3.41)

The wall of singularities is defined by the zeros of the term next to the w derivative, or

alternatively

w =
σ2

2u2
=: F (u). (3.42)

The hole in the wall is defined by the intersection of F (u) with the nontrivial w-nullcline,

and is given by

(uH , wH) =

(
σ

4
(σ +

√
σ2 + 8),

1

1 + uH

)
. (3.43)

The authors now perturb the system (3.40) with a small diffusive term and follow the

calculations from [WP10, Sec. 2], obtaining analogous general and problem-specific

results. A nondegeneracy and a transversality condition are formulated that ensure the

foldedness of the critical manifold S ([HVHM+14, p.376]):

• p · (D2
UUG)(U, Û)(q, q) 6= 0

• p · (DÛG)(U, Û) 6= 0

Keeping the notation from Chapter 3.1, U = (u, v, w), Û = (û, ŵ) and G = (uy, vy, wy),

while the vectors p and q are the respective left and right null vectors of J satisfying

q · q = p · q = 1. It is further remarked that the fold curve of the critical manifold S

where λ2 = 0 exactly corresponds to the wall of singularities (3.42).
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Harley et al. identify four different types of travelling wave solutions for their model,

represented by singular heteroclinic orbits. Those are characterized in the following way

([HVHM+14, p.372]):

• Type I: any smooth travelling waves

• Type II: waves that exhibit a shock in w and have infinite support

• Type III: waves that exhibit a shock in w with semicompact support in w

• Type IV: waves that exhibit a shock and have a negative component in w

Type IV waves are nonphysical and were not observed numerically in [HVHM+14]. Fig-

ure 3.2 provides an illustration of the four different types of waves. Lastly, [HVHM+14,

Sec. 4] is concerned with numerical estimations of the wave speed required such that

travelling wave solutions may occur in the PDE setting.

Figure 3.2: Illustration of the four types of travelling wave solutions identified. The
lighter curves represent the ECM concentration u, the darker ones the tumor cells w.

Source: [HVHM+14, Fig.2]

Remark. For the tumor model given in (1.1), an analysis in terms of the wall of

singularities and hole in the wall is not possible in a straightforward manner.

Recall that the vectorized form of (1.1) is given by (3.18)

Wt − {A(W )Wx}x = R(W ),

or after application of the travelling wave ansatz z = x− σt by

− σWz − {A(W )Wz}z = R(W ). (3.44)

Set V = Wz then we can systemize this to read
Wz = V

A(W )Vz = −σV −
(
∂

∂z
A(W )

)
V −R(W ).

(3.45)
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Observe that the wall of singularities for system (3.45) is given by the three points

(c,m) ∈ {(0, 1), (1, 0), (0, 0)} only instead of by a curve, which is conceptionally very

different from what Harley et al. presented in [HVHM+14]. The approach that we used

in Chapter 2 is not helpful either, since we have to substitute A(c,m)·(cz,mz)
> = (p, q)>

as before to avoid division by zero where detA(c,m) = 0. Recall that this yields

(
p

q

)′
= −σ

(
c

m

)′
−R(c,m)

A(c,m)

(
c

m

)′
=

(
p

q

)

where we have yet to express (c′,m′)> in the first line by means of (p, q)>. The alleged

wall of singularities in this form is in fact a definition that by construction holds true

for all (c,m).

As we have seen, the notions of wall of singularities and hole in the wall are quite

closely linked to the concepts of singular perturbation theory, a fact that is remarked

upon both in [WP10] and [HVHM+14]. In both cases we were not able to apply the

methods presented to the tumor model (1.1) owing to structural discrepancies.
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Chapter 4

Numerical approach

In this chapter we leave singular perturbation theory behind and return to the more

straight forward methods presented in Chapter 2. First we take a closer look at the

entropy method employed in [JS12] and [Ste13], and illustrate why it was rejected for

the travelling wave analysis. Since methods and results are equivalent in both sources,

we will refer only to [JS12]. Observe however that notation may differ slightly. A moti-

vation and description of the final algorithm as well as the obtained results follow.

All calculations were done on a personal computer (Intel Core i5, 3.4-GHz CPU with

8-GB RAM), the model was implemented in Matlab R© version 8.0.0.783 (R2012b). Ad-

ditional computations utilized MapleTM 18.01.

4.1 The entropy method

As we have already remarked, [JS12] have shown that under certain parameter restric-

tions and initial conditions, a bounded weak solution to (1.1) exists globally in forward

time, which is stated as

Theorem 1 ([JS12]). Let α, γ, δ ≥ 0, β > 0, 0 ≤ θ ≤ 4/
√
β [=: θ∗], and let c0,m0 ∈

L1(Ω) satisfy c0 ≥ 0,m0 ≥ 0, c0 +m0 ≤ 1 in Ω, and H(c0,m0) <∞. Then there exists

a weak solution c,m ∈ L2
loc(0,∞;H1(Ω))∩H1

loc(0,∞; (H1(Ω))′) to (1.1)-(1.2) satisfying

c,m ≥ 0 and c+m ≤ 1 in Ω× (0,∞).
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Here, the function H(c,m) is a logarithmic entropy defined as follows (with entropy

density h(c,m)):

H(c,m) =

∫
Ω
h(c,m)dx

=

∫
Ω
c(log c− 1) +m(logm− 1) + (1− c−m)(log(1− c−m)− 1)dx.

As [JS12, p.4] points out, system (1.1)-(1.2) possesses an entropy functional as long as

θ < θ∗ := 4/
√
β, which is essential for the proof.

With this notation, it is possible to introduce entropy variables

u =
∂h

∂c
= log

c

1− c−m
, v =

∂h

∂m
= log

m

1− c−m
, (4.1)

with inverse formulation

c =
eu

1 + eu + ev
, m =

ev

1 + eu + ev
, (4.2)

and thus rewrite (1.1) to

∂

∂t

(
c(u, v)

m(u, v)

)
− ∂

∂x

(
L(u, v) · ∂

∂x

(
u

v

))
= R(c(u, v),m(u, v)). (4.3)

Note that (u, v)> = ∇h(c,m) where the gradient is taken wrt. (c,m). L is defined as

L(c,m) := A(c,m) · (∇2h(c,m))−1 (with Hessian matrix ∇2h of h). The entropy formu-

lation is beneficial in several aspects, namely that for θ = 0 and c > 0 and m > 0 such

that c+m < 1, L becomes symmetric and positive definite, as well as that due to the in-

verse transformation (4.2), the maximum principle (which is not available) is no longer

necessary since we automatically get positive volume fractions satisfying c + m < 1.

([JS12, p.4f.])

In particular, we do not have to concern ourselves with boundedness of c,m and 1−c−m
in this formulation. However it has become apparent that for numerical travelling wave

analysis this method is not favourable. To understand this, recall that the steps for a

travelling wave analysis will transform PDEs of the form ut + (A(u) · ux)x = f(u) into

first order systems  U ′ = V

A(U) · V ′ = −σV − f(U).
(4.4)
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Should A be invertible, which is the case for A(U) = L(u, v) with u, v 6= ±∞ in (4.3)

then we now have to identify steady states ofU ′ = V

V ′ = −σA(U)−1 · V −A(U)−1 · f(U).
(4.5)

Naturally, for any steady state we require V = 0 and subsequently f(U) = 0 since we

noted already that A should be a regular matrix. In (4.3), f(U) = R(c(u, v),m(u, v))

can be expressed in terms of (u, v) as

R(u, v) =
1

(1 + eu + ev)3

(
(1 + eu + ev)eu(γ − δ − δeu − δev

αeuev

)
. (4.6)

We can now immediately see that the second line of R(u, v) will become zero if and only

if either u or v equal −∞, which is a case we initially excluded, since L would no longer

be invertible. The necessity that for possible steady states of (4.3) either u and/or v

have to tend to −∞ in fact corresponds to c or m becoming 0. While we have shown this

to be true (except for y6, which occurred due to transformation with the determinant

of A), it is problematic in a numerical simulation, as “convergence to −∞” is not well

defined and can not be distinguished from numerical error or non-convergence with a

specific sign.

4.2 Implementation in Matlab

As we have seen in the previous chapter, the entropy formulation (4.3) of the tumor

model has its advantages for the theoretical analysis performed in [JS12] and [Ste13],

but is unfortunately not applicable in numerical travelling wave analysis. Regardless of

notation, we wish to apply Lin’s method to find possible orbits between steady states.

The final algorithm should thus include the following steps:

1. Out of the families of steady states select one and fix initial values of (c,m, p, q)

where necessary such that the steady state has an unstable eigendirection.

2. Perturb the steady state a little bit along the unstable eigenvector.

3. Repeat with a stable steady state.

4. Compute the strongly unstable and stable trajectories W su and W ss.

5. Chose a submanifold L of the phase space, vary σ and θ to minimize the Lin Gap

on L.
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During implementation key issues arose for every step, which we will shortly address in

the following sections.

4.2.1 Choice of steady states and initial points

As we have discussed in Chapter 2.3, the tumor model in it’s ẏ = F (y)-formulation

(2.28) does not have isolated steady states, but rather six families y1−6 of them, with

stability properties varying in y = (c,m, p, q) ∈ (0, 1)× (0, 1)×R×R. Even discounting

the changing stabilities aspect, this allows for 15 possible pairs in searching for hetero-

clinic orbits, or 21 if we include homoclinics, which is quite a large number, and most

likely not all possible combinations will exhibit travelling wave behaviour in any case.

We therefore need to make an educated choice as to which steady states we want to

select, and in which range of starting values.

Based on the results presented in Chapter A.2 we shall restrict ourselves to searching

orbits between y1−3. This still leaves the question of starting points which, as can be

seen in Figure A.1 and Figure A.2 have critical impact on the stability of the eigenvalues

λ1−3. Here a “trial and error” approach was chosen. The best results were achieved when

starting from y1 and y2 in regions where they both act as saddle nodes.

4.2.2 Calculation of eigenvalues and eigenvectors

Next we need to consider how we wish to calculate eigenvalues and eigenvectors. As we

are working in Matlab, a natural idea is to implement the Jacobian dF (y), evaluate it

at y1−6 and then use the inbuilt eigs-function to calculate eigenvalues and eigenvectors

at the respective starting points. A downside of this method is that we can not directly

control “which eigenvalue is which”: The Matlab-documentation states that “D=eigs(A)

returns a vector of A’s 6 largest magnitude eigenvalues” where it is implied that they are

sorted by magnitude of absolute value. In particular, the order in which the eigenvalues

are returned may change in z = (c,m, p, q), which is not necessarily a problem but we

have to keep this in mind nontheless. Note that [V,D]=eigs(A) returns eigenvectors as

well as eigenvalues of a given matrix A.

Another issue arising with using the inbuilt eigs-function is that in order to better un-

derstand the behaviour of the families of steady states we do not want to evaluate dF (y)

at one specific value of y but rather over a whole range. This can of course be realised in

matlab but requires a large number of function calls which may be quite costly in terms
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of computation time. The second issue with eigs is that it requires the Jacobian dF (y)

entered by hand, which is prone to error. Making use of Matlab’s Symbolic Math tool-

box to avoid this was briefly considered, but rejected due to problems with reconversion

of the obtained symbolic functions.

Alternatively, since for some of the families of steady states the eigenvalues are relatively

“nice” functions (see Table A.2), one could argue that a sensible approach is to have

them calculated symbolically by appropriate programmes such as Maple or Mathemat-

ica and then import these functions into Matlab. This guarantees control over the order

of eigenvalues, must however be handled with suitable care. Another downside of this

ansatz is that we need eigenvectors as well as eigenvalues, which in general are no longer

“nice” functions but can get rather complicated. Importing these from an external pro-

gramme seemed not advisable at this point.

In the end we decided to use both methods. Importing the eigenvalues as functions from

Maple seemed to be the appropriate choice for the stability analysis which is presented in

Chapter A.2, while when needing information on eigenvalues and eigenvectors at specific

points (see next section), eigs was applied.

4.2.3 Perturbation of the initial points along their eigenvectors

When provided with appropriate starting values, our algorithm should permute the

given starting points “a little bit” along the desired eigenvector, such that the ODE-

solver starts “near” an equilibrium point. As discussed above, we need access to the

Jacobian dF (y0) evaluated at the given starting value y0 for this, and then use eigs to

calculate its eigenvalues and eigenvectors. Since we have already decided to allow only

the first three families of steady states y1−3 as possible starting points, we know that

eigs will always return 2 general1 and 2 zero eigenvalues. Depending on the choice of

y0 we can thus exactly predict what sign the 2 general eigenvalues will have and decide

accordingly along which eigenvector we want to perturb.

Consider for example the case of starting at y1 = (0, 1, p, q), for some fixed value of θ.

As we can see in Figure A.1, the signs of the 2 eigenvalues (and thus the stability of y1)

critically depend on the choice of p0 and q0. Say we would like this point to act as a

saddle and perturb along the unstable eigenvector, then we may choose p0 > 0 such that

1A general eigenvalue denotes an eigenvalue that is given by some function, but 6≡ 0. This is not to
be confused with a generalized eigenvalue!
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p0 + q0 < 0. It is now easy to find the positive eigenvalue λ and select the corresponding

eigenvector v, which is provided in a normalized form. Multiplying v with a given ε ≤ 1

of our choice and adding it to y0 will provide us with the proper starting value for the

ODE-routine.

To specify sign conventions consider the following example (case Ia from Table 4.1):

Let y1 = (0, 1, 6,−7) and choose θ = 0.2 and σ = 8.08. eigs in this case returns the

eigenvalues {−1281.9, 1.9, 0, 0} along with eigenvectors
−0.1222 0.0799 0 0

0.0120 −0.0933 0 0

0.9877 −0.6454 0 1

−0.0972 0.7539 1 0

 .

The case we are interested in is therefore λ = 1.9 with v = (0.08,−0.09,−0.64, 0.75)>.

Multiplying v with 0 < ε � 1 thus provides the appropriate perturbation without

resulting in the c or m component leaving the interval [0, 1].

4.2.4 Stable and unstable trajectories

The next step is to calculate the trajectories originating from the two modified starting

values. Since we perturbed the modified starting points along their respective eigenval-

ues, in case of the unstable steady state the solution thus obtained coincides with the

strongly unstable manifold W su, a fact that holds true for any given ODE system. How-

ever perturbation along a stable eigendirection yields solutions tending back towards the

original point, which is no surprise as we specifically chose a (partially) stable equilib-

rium as starting point.

A reasonable approach to this problem seems to be backwards integration, which is easily

done for ODEs in Matlab by simply calling the solver with a negative time interval.

Observe however that integrating backwards in time reverts stability and may cause

problems by numerical error. This can be circumvented if we choose a grid of starting

points close to the initial one, and calculate a trajectory from each grid point. By

interpolation between these solutions we can thus find the desired stable trajectory, i.e.

W ss. It turns out however that this method is not necessary. The reason for this is linked

to the applied variable transformation (2.27), where we multiplied with the determinant

of the diffusion matrix:

z = detA(c,m) · η.
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As we have seen in Chapter 3.1 this transformation has to be considered when comparing

phase portraits of the original, untransformed ODE with the transformed one. In areas

where detA(c,m) is negative, trajectories of the original version change direction which

implies a change of stability properties as well. Hence it is feasible to select two unsta-

ble starting points and compute unstable trajectories - corresponding to their strongly

unstable manifolds W su - for both, as long as detA(c,m) will be negative along the

one and positive along the other. Fortunately for us, y1 and y2 exhibit exactly such be-

haviour when parameters σ and θ as well as the initial p0’s and q0’s are chosen correctly,

see Chapter A.2. We shall in the following refer to the computed W su with negative

determinant as W ss, since it serves as the strongly stable manifold for all intents and

purposes. Likewise, the associated starting point will be called the stable steady state.

4.2.5 Selecting a suitable L

In the examples presented in Chapters 2.1 - 2.2 it was comparatively easy to identify

a convenient codimension one submanifold L of the phase space and then vary the

wave speed σ such that the distance between the intersection points of the stable and

unstable manifolds W s and W u with L tends to zero. However, there the ODE system

was hyperbolic and only two-dimensional, and L thus one-dimensional. In our case the

model (2.28) has four independent variables and the steady states are not hyperbolic

either. The necessary dimension for L is calculated in the following way:

dim(W cu) + dim(W cs) − dimension of the ODE = dim(L)

3 + 3 − 4 = 2
(4.7)

Somewhat unexpectedly the variable transformation (2.27) is supplying a convienient

candidate for L. The choices of starting values and parameters leading to solutions with

alternating sign of the determinant, which we exploited in the previous section 4.2.4,

provide us with trajectories that eventually converge to the family y6 of steady states

where m = 1 − c, q = −p and detA(c,m) = 0, which is in fact a two-dimensional

submanifold of the phase space. In theory variation of σ and θ will lead (very closely) to

a concurrence of the intersections of W cu and W cs with L, i.e. a closure of the Lin gap.

Note however that we previously elected to perturb only along W su and W ss, and might

therefore not exactly achieve said concurrence. In practice we may fail also if solutions

cease to exist for certain values of σ and/or θ, or if the minimal distance occurs e.g. for

some θ < 0.
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4.2.6 The variation of θ and σ

As discussed, once suitable starting values have been selected and perturbed along their

eigenvectors, and we have determined L, the variation of θ and σ will hopefully give

us heteroclinic orbits or at least solutions that come close to this notion. Since θ is

a parameter that occurs with several fixed values in [JS12] it seems feasible to fix a

few values and vary σ for each one. We do this by letting the algorithm run several

times, each with a slightly increased value of σ, and noting the solution where the Lin

gap becomes smallest. Should this return either end of the predefined interval as an

optimum, the interval has to be adjusted accordingly and the simulation restarted. In

this manner, we can find a local minimum for the Lin gap.

4.3 Results

As we have already mentioned, the best results in terms of minimizing the Lin gap

were obtained when choosing y1 = (0, 1, p, q) and y2 = (1, 0, p, q) as starting points.

For 0 < p0 < −q0, y1 has an unstable eigendirection with positive sign of detA, while

y2 has an unstable eigendirection with negative detA for 0 < −q0 < p0, making it a

substitute for a starting point with stable eigendirection. Both y1 and y2 act as saddle

points here, with trajectories from either starting point terminating in the submanifold

L of the phase space defined by y6 = (c, 1− c, p,−p), which can be realised in Matlab by

terminating the ODE routine with an appropriate Events argument. Table 4.1 as well

as Figures 4.1-4.2 show examples of solutions obtained with different choices of starting

values for p0 and q0 as well as parameters σ and θ.

From Table 4.1 it seems that simulation IIa) at θ = 0.2 is the best option in the sense

that at L, the Lin gap is smallest. Hoewever from the associated plot (Figure 4.1) we

can see that the trajectory leaving y1(1, 0, 6,−7) in the beginning overshoots, i.e. c > 1.

Such ‘solutions’ are non-physical, and would not appear in the original PDE setting

(1.1). Their occurence in the travelling wave setting is presumably an artifact resulting

from the variable transformation (2.27). The overshoot can not be avoided, however it

can be significantly reduced by choosing different p0 and q0, e.g. as is done in simulation

Ia). Unfortunately, that specific set of starting values results in a quite large gap in

L in the c-component, see Figure 4.2. An optimization which minimizes Lin gap and

overshoot simultaniously may probably be found if one perturbs along further directions

in W cs and W cu, which we however omitted.
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During the numerical simulation runs it became apparent that the algorithm is not very

stable regarding parameter and starting value variations, in the sense that solutions

often yielded severe numerical errors, oscillating trajectories or no convergence of the

ODE routines at all when even one value was adjusted a little bit too much. The best

outcomes where attained with p0 and −q0 approximately within distance 2 or less, as

well as low values of θ. Choosing σ too large or small also caused troubles, but here trial

and error was the only way to determine ‘good’ ranges.

Since selecting an appropriate L is rather difficult, no heteroclinics or homoclinics were

obtained with different sets of starting conditions.

Simul.
y1 y2 θ optimal σ

Lin gap at L = (c, 1− c, p,−p)
no. |c1 − c2| |p1 − p2| sum

I (0,1,6, -7) (1,0,1.2, -1)
0.2 8.08 0.2577 0.0082 0.2659
0.4 10.84 0.3545 0.9930 1.3476
1.0 13.56 0.4421 1.5620 2.0041

II (0,1,6, -7) (1,0,3, -0.5)

0.2 6.40 0.0173 0.0128 0.0301
0.4 6.72 0.0309 0.0143 0.0451
1.0 7.48 0.1297 0.0105 0.1402
1.5 7.96 0.1827 0.0055 0.1882

III (0,1,6.5, -7) (1,0,0.65, -0.5)

0.2 13.08 0.5030 0.0020 0.5050
0.4 13.32 0.5118 0.0035 0.5153
1.0 13.76 0.5280 0.0041 0.5321
1.5 14 0.5358 0.0002 0.5360

Table 4.1: Results for various starting and parameter values. The optimal σ is decided
by the algorithm in order to minimize distance between the respective trajectories in

L (with an error margin of ε = 10−4).
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Figure 4.1: Trajectories starting from y1(0, 1, 6,−7) (solid line) and y2(1, 0, 3,−0.5)
(dashed line) with θ = 0.2 and σ = 6.4 (IIa). (a) shows components c and m, (b) p and
q. A small jump (=Lin gap) is visible in L, i.e. where the dashed and solid lines meet,

making this solution a heteroclinic only up to some error. Note the overshoot in c.
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Figure 4.2: Trajectories starting from y1(0, 1, 6,−7) (solid line) and y2(1, 0, 1.2,−1)
(dashed line) with θ = 0.2 and σ = 8.08 (Ia). (a) shows components c and m, (b) p
and q. Compared to Figure 4.1 the overshoot in c is drastically reduced, but the Lin
gap (i.e. the distance at transition from solid to dashed lines) is considerably higher.
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Chapter 5

Conclusion

In this thesis we took a look at a tumor growth model (1.1) in the form of a reaction-

diffusion equation as presented in [JS12] and [Ste13]. They could prove the existence of

global in time bounded weak solutions as long as a certain parameter, θ, did not exceed

a specific value. We applied a travelling wave analysis and Lin’s method, which were

introduced in Chapters 2.1 and 2.2 respectively, and numerically searched for so called

heteroclinic orbits (see Def. 1) in Chapter 4. This search was complicated by the fact

that at all equilibrium points of (1.1), its diffusion matrix becomes singular. A variable

transformation was thus necessary, however this had the effect that the transformed

system (2.28) now possessed six whole families of steady states instead of a number of

distinguished equilibrium points.

Nevertheless, we saw in Table 4.1 and Figures 4.2-4.1 that heteroclinic orbits exist in

some sense between the families of steady states y1 and y2. However these solutions

were far from optimal in terms of either the jump in L between the trajectories being

considerably large, or in there being a notable overshoot in the c-variable. Ideally, we

do not want any overshoot at all, as such a solution has to be regarded as non-physical.

With a different set of starting conditions, this might still hold.

A short excurse was made into singular perturbation theory and so called slow-fast

systems in Chapter 3. We presented [WP10], who worked with a reaction-diffusion-

equation that was structurally related to (1.1), and extended their theories to include

our case, as well as [HVHM+14], who defined the notions of wall of singularities and

hole in the wall. These concepts are closely related to our model as well, however their

methods were not directly applicable due to structural discrepancies.
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5.1 θ as a critical parameter

In Chapter 4.3 we saw that the optimal choice of σ and θ in order to minimize the Lin

gap, i.e. the distances between both trajectories in L, strongly depends on the initial

values p0 and q0, as well as on each other. For fixed starting values, increasing θ means

that most certainly the optimal value for σ will increase as well. From Table 4.1 we

can see that in general, lower values of θ seem to be preferable. Still, contrary to [JS12]

and [Ste13] we could not affirm greater significance to the case where θ reaches/crosses

θ∗ := 0.4.

5.2 Outlook

Points that are yet left open for future analysis therefore first and foremost include the

continued search for better starting conditions. Maybe there exist solutions for large

values of θ (say around 1000), if p0 and q0 are chosen accordingly. We have restricted

ourselves to perturbations along eigenvectors from W ss and W su, which is not necessary.

Further variation here may provide better, physiological results.

What would also be of interest is to analyse what happens in the regions around the

solutions we found. They all had in common that they would break down when tweaking

any of p0, q0, θ or σ just a little bit too much. Is there an “area of stability” around the

selected starting conditions? If so, how does this relate to stability of the (families of)

steady states, if at all?

A different issue would be finding the optimal value of σ. The algorithm we utilized

selects an optimal value of σ from a given, pre-defined range, which we altered should

either of the extrema be the result. This method may have only provided us with local-

ized minima, with little to no chance to determine whether there could be a different,

maybe even global, minimum elsewhere.

Lastly, there may of course exist heteroclinics or even homoclinics between other sets

of steady states. With a reasonable idea what to use as L, one could search for those

solutions.
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Appendix

In this chapter we present calculations that are necessary for this thesis but of no greater

interest in themselves, and which were taken out of the main text due to being rather

lengthy. Some general mathematical notions follow that are utilized in this work, but

which may not be familiar to all readers.

A.1 Identifying the families of steady states

We wish to calculate the steady states of (2.28) which we recall was given by

(
ċ

ṁ

)
= cof(A)> ·

(
p

q

)
(
ṗ

q̇

)
= −σ · cof(A)> ·

(
p

q

)
− detA ·R,

or abstractly ẏ = F (y), with wave speed σ,

cof(A)> ·

(
p

q

)
=

(
2βm(1−m)(1 + θc)p+ 2βcm(1 + θc)q

2cmp− βθm2(1−m)p+ 2c(1− c)q − βθcm2q

)
, (A.1)

and

detA ·R = 4βcm(1 + θc)(1− c−m) ·

(
γc(1− c−m)− δc
αcm(1− c−m)

)
. (A.2)

Since detA = det cof(A) = det cof(A)> (see Chapter A.4), it is feasible to first look for

equilibria where detA = 0, i.e. either c, m or 1− c−m = 0. The following cases arise:

1) c = 0: (A.1) requires m = 0, m = 1 or p = 0

2) c = 1: (A.2) requires m = 0

3) m = 0: (A.1) requires c = 0, c = 1 or q = 0
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4) m = 1: (A.2) requires c = 0

From these considerations we can already see that y1 = (0, 1, p, q)>, y2 = (1, 0, p, q)> and

y3 = (0, 0, p, q)> are steady states, where p and q may be chosen arbitrarily in R. In fact,

as p and q are not fixed values, we have found whole families of steady states instead of

single equilibrium points. Analogously we see that we can define y4 = (0,m, 0, q)> and

y5 = (c, 0, p, 0)>.

The case where 1− c−m = 0 is a bit of a speciality. Obviously here (A.2) immidiately

becomes zero, however (A.1) now reads(
2β(1− c)c(1 + θc) 2βc(1− c)(1 + θc)

2c(1− c)− βθ(1− c)2c 2c(1− c)− βθc(1− c)2

)
·

(
p

q

)
,

where we have set m = 1 − c. This becomes zero when chosing q = −p. We can thus

identify y6 = (c, 1− c, p,−p). To summarize, we get

F (y) = 0⇔

y ∈




0

1

p

q

 ,


1

0

p

q

 ,


0

0

p

q

 ,


0

m

0

q

 ,


c

0

p

0

 ,


c

1− c
p

−p




A.2 A detailed study of the eigenvalues and eigenvectors

In order to better understand and maybe to some point predict the behaviour of system

(2.28) in simulations, we want to analyse the eigenvalues generated by plugging the six

families of equilibrium points y1−6 calculated in Chapter A.1 into the Jacobian dF of

the rhs F = F (c,m, p, q) of (2.28). To avoid calculation errors, this was done using a

symbolic math program. For this analysis as well as further numerical simulations, the

parameter set listed in Table A.1, used also in [JS12, p.23] was applied.

Parameter value

α 0.1
β 100
γ 1
δ 0.35

Table A.1: Parameter values used for numerical simulation as stated in [JS12]
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The wave speed σ as well as θ, which appears to be a critical parameter in relation to

β in [JS12] and [Ste13] were varied. Let further ei denote the ith euclidian vector that

is equal to 1 in the ith component and zero elsewhere, and vji be a general non-zero

eigenvector associated with the jth eigenvector of yi, λ
j
i . We first take a look at the

Jacobians dF (yi).

dF (y1) =


2βq −2βp 0 0

2(p+ q)− βθq βθp 0 0

−2σβq 2σβp 0 0

−σ(2p+ 2q − βθq −σβθp 0 0



dF (y2) =


0 2β(1 + θ)(p+ q) 0 0

−2q 2p 0 0

0 −2σβ(1 + θ)(p+ q) 0 0

2σq −2σp 0 0



dF (y3) =


0 2βp 0 0

2q 0 0 0

0 −2σβp 0 0

−2σq 0 0 0



dF (y4) =


2βmq 0 2βm(1−m) 0

2q − βθm2q 0 −βθ(1−m)m2 0

−2σβmq 0 −2σβm(1−m) 0

−σ(2q − βθm2q) 0 σβθ(1−m)m2 0



dF (y5) =
0 2β(1 + θc)p 0 0

0 2cp 0 2c(1− c)
0 −2σβ(1 + θc)p− 4βc(1− c)(1 + θc)(γc(1− c)− δc) 0 0

0 −2σcp 0 −2σc(1− c)



dF (y6) =
−2β(1− c)(1 + θc)p −′′− 2βc(1− c)(1 + θc) −′′−
2cp+ βθ(1− c)2p −′′− 2c(1− c)− βθc(1− c)2 −′′−

2σβ(1− c)(1 + θc)p− 4βc2(1− c)(1 + θc)δ −′′− −2σβc(1− c)(1 + θc) −′′−
−2σcp− σβθ(1− c)2p −′′− −2σc(1− c) + σβθc(1− c)2 −′′−
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Note that the second and fourth columns of dF (y6) are exactly the same as the first and

third ones, which for brevity’s sake is indicated by ditto signs (−′′−). As we can see,

dF is singular in all six cases. dF (y5) and dF (y6) are however the only instances, where

the third and fourth line are not simply obtained by multiplying the first and second

line respectively by −σ. In the case of y6 this slight structural difference occurs due

to transformation of the travelling wave variable with detA which we know to become

singular whenever c,m or 1− c−m equal 0 or 1.

When looking at eigenvalues and eigenvectors of dF (y1−6) as listed in Table A.2, we see

that the families of steady states indeed structurally fall into three different groups:

1. y1 − y3. These three represent the “most natural” families of steady states, as

without reverting to (c,m, p, q) notation they would be actual points rather than

families of points. This is reflected in them having 2 zero and 2 nonzero eigenvalues

each, and their eigenvectors 3 and 4 being given by the standard euclidian unit

vectors e3 and e4.

2. y4 & y5. These two are rather degenerate, as they both have 3 zero eigenvalues

and even a zero eigenvector. The nonzero eigenvalues are dependent on σ.

3. y6. A special case resulting, as mentioned, from a variable transformation. y6 is the

only family that has 4 eigenvectors that are different from standard euclidian unit

vectors. (Note hoewever that the eigenvectors corresponding to zero eigenvalues

are given by v6
3 = (−1, 1, 0, 0)> and v6

4 = (0, 0,−1, 1)>.) The nonzero eigenvalues

are dependent on σ.

Since we are interested in the stability of the respective steady states, we have to ex-

amine where, if at all, the general non-zero eigenvalues change sign. The corresponding

conditions are listed in Table A.3. Note hoewever that a change of sign may also occur

adjacent to an area with complex values. For y1-y3, a change of sign is dependent only on

p and q (assuming at this point that θ is a fixed parameter). For y4 and y5 zero-crossing

is dependent on σ, but as we have seen these two families and their eigenvalues appear

to be rather degenerate, see also Figures A.1-A.3.

Of further interest for us may be the various variable ranges such that the families of

eigenvalues have complex parts. These areas are shaded light green in Figures A.1-A.3.

Observe that the location of areas with complex parts depends on θ only for y1.
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Figure A.1: Zero-crossings and complex areas of λ11 (red) and λ12 (blue) for different
values of θ. Shaded areas represent the presence of complex parts, these vanish for

θ > 2. Observe that zero-crossing conditions also change for θ > 2.
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Re(λ) in the given area.
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Eigenvalue zero-crossing conditions

λ1
1 {p = 0, q ≤ 0} {p ≤ 0, q = 0} {p = −q, q(1− θ/2) ≤ 0}
λ1

2 {p = 0, q ≥ 0} {p ≤ 0, q = 0} {p = −q, q(1− θ/2) ≥ 0}
λ2

1 {p ≤ 0, q = 0} {p ≤ 0, q = −p} {p = 0, q}
λ2

2 {p ≥ 0, q = 0} {p ≥ 0, q = −p} {p = 0, q}
λ3

1,2 {p = 0, q} {p, q = 0} -

λ4
1 {m = 0, q} {m, q = σ(1−m)} -
λ5

1 {c = 0, p} {c, p = σ(1− c)} -
λ6

1 {c = 0, p} {c = 1, p} -

Table A.3: Variable ranges such that the real part of an in general nonzero eigenvalue
of the steady states y1−6 equals zero. Note that zero crossing may also occur adjacent

to complex areas

0 0.5 1

0

0.1

0.3

0.5

+

−

m or c

q or p

zero−crossing of λ
1
4 and λ

1
5 dependent upon different values of σ

 

 

  1
0.5
0.1
  0

Figure A.3: Zero-crossings of λ41 occur at m = 0 or q = σ(1 − m), those of λ51 at
c = 0 or p = σ(1 − c) (note the axis label change). The eigenvalues have no complex
parts, and take positive values above, and negative values below the respective lines as

indicated by the + and − symbols.
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A.3 Stability of eigenvalues - a classification

Sources: [Szm13, Ch. 5.2], [Kuz04, Ch. 2.2], [Tse08].

In general, a full classification of all cases of stability of eigenvalues is not possible,

especially for nonlinear systems. We will take a look at the case of autonomous linear

systems in 2 variables, which can be fully classified in the trace - determinant plane of

the describing matrix. Let therefore A be a real 2 × 2 matrix, then the system

x′ = Ax

has the trivial equilibrium point at x = 0. The eigenvalues λ1,2 of A are given by

λ1,2 =
t

2
±
√
t2

4
− d,

where t := trace A and d := detA. We can distinguish between three cases depending

on the sign of the discriminant:

1. λ1,2 ∈ R, λ1 6= λ2 where t2

4 − d > 0, wlog. λ1 < λ2,

2. λ1,2 ∈ R, λ1 = λ2 where t2

4 − d = 0,

3. λ1,2 ∈ C, λ1 = λ2 where t2

4 − d < 0,

If two eigenvectors v1, v2 exist, the general solution will be given by

x(t) = c1eλ1tv1 + c2eλ2tv2, c1, c2 ∈ R.

Contingent upon the sign of Re(λi), several subcases arise, which are listed in Table A.4.

Schematics of the respective phase portraits can be seen in Figure A.4, cases where one

or both eigenvalues equal zero are however omitted there. Note that there is a difference

between stable and assymptotically stable points x. For the first case, all trajectories

stay within finite distance of the critical point for all times (positive and negative).

They never converge to the critical point. This is only the case for purely imaginary

eigenvectors. In the assymptotically stable cases however, the trajectories converge to

the critical point as t→∞.

For inhomogenious linear systems and nonlinear systems see e.g. [Tse08].
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Figure A.4: Topological classification of hyperbolic equilibria on the plane. (n+, n−)
indicate the number of eigenvalues with positive or negative real part respectively. The
position of the eigenvalues in the plane is indicated schematically in the 2nd column.
Note that cases with one or two eigenvalues equalling zero are omitted. Source: [Kuz04,

Fig. 2.5]

Eigenvalues t d stability properties

λ1 6= λ2, λ1,2 ∈ R:
λ1 < λ2 < 0 t < 0 d > 0 stable node, x = 0 is asymptotically stable
λ1 < λ2 = 0 t < 0 d = 0 x = 0 stable, attractant along v1

λ1 < 0 < λ2 - d > 0 saddle node, x = 0 unstable
0 = λ1 < λ2 t > 0 d = 0 x = 0 unstable, repellant along v2

0 < λ1 < λ2 t > 0 d > 0 unstable node, x = 0 unstable

λ1 = λ2 = λ ∈ R - distinguish between A diagonizable (i)/not diag. (ii):
λ < 0 t < 0 - (i) stable star, (ii) stable improper node
λ = 0 t = 0 d = 0 (i) stable, (ii) unstable, very degenerate
λ > 0 t > 0 - (i) unstable star, (ii) unstable improper node

λ1/2 = α± iβ ∈ C, α = t/2, β 6= 0:

α < 0 t < 0 - stable spiral, x = 0 asymptotically stable
α = 0 t = 0 - center, x = 0 stable
α > 0 t > 0 - unstable spiral, x = 0 unstable

Table A.4: Full classification of stability for 2× 2-matrices (Source: [Szm13])
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A.4 Concerning cofactor-matrices and matrix inversion

Sources: Any standard volume on linear algebra, e.g. [Hav08] or [Hog07].

Definition 4. Let A = (ai,j)
n
i,j=1 ∈ Rn×n, n ∈ N be an n × n matrix. Define for

i, j ∈ {1, ..., n} the number mi,j, called the (i, j)-minor, by mi,j := detA({i}, {j}), where

A({i}, {j}) is the sub-matrix of A obtained by deleting the ith row and the jth column.

Equivalently, mi,j = det Ã where

Ãk,l :=


1 if (k, l) = (i, j)

0 if k = i or l = j

ak,l else

Define further the (i, j)-cofactor of A by ci,j := (−1)i+jmi,j. Then the cofactor-matrix

is given by cof(A) := (ci,j)
n
i,j=1.

For 2× 2 matrices this means

A =

(
a11 a12

a21 a22

)
⇔ cof(A) =

(
a22 −a21

−a12 a11

)
,

and in particular, detA = det(cof(A)).

Observe that the transpose of the cofactor-matrix is sometimes called the adjugate

matrix, adj(A). Laplace’s formula states that for any i ∈ {1, ..., n},

detA =
n∑
j=1

(−1)i+jai,jmi,j =
n∑
j=1

ai,jci,j .

From this it also follows, that

A · cof(A)> = cof(A)> ·A = detA · In,

with (n × n)-identity matrix In or equivalently, if A is a regular matrix i.e. invertible,

that
1

detA
· cof(A)> = A−1.
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