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Abstract

We investigate the numerical approximation of eigenvalues and eigen-
functions of the radial Schrödinger Equation

−u′′(r) +

(
`(`+ 1)

r2
+ V (r)

)
u(r) = λu(r), r ∈ (0,∞)

with Hydrogen Atom potential, Yukawa potential and Hulthén potential
via a finite difference scheme. To apply the scheme we introduce a class of
functions t : (0,∞)→ (0, 1) to transform the infinite domain of the eigen-
functions to a finite interval. We analyze the spectrum of the transformed
radial Schrödinger Equation and discuss the results of the numerical ex-
periments for two specific transformations.

1 Introduction

An important mathematical issue, which is raised in quantum physics, is the
calculation of eigenvalues and eigenfunctions in context of the radial Schrödinger
equation

−u′′(r) +

(
`(`+ 1)

r2
+ V (r)

)
u(r) = λu(r), 0 < r <∞ (1)

with boundary conditions
u(0) = u(∞) = 0, (2)

where ` ∈ N0 := N ∪ {0} denotes the azimuthal quantum number, V (r) the
potential, λ an eigenvalue and u(r) an associated eigenfunction. There are
only a few potentials V and values of `, where explicit formulas for eigenval-
ues and eigenfunctions are known. This is the case for the Hydrogen Atom
potential V (r) = −Z/r and arbitrary ` ≥ 0, and for the Hulthén potential
V (r) = − 2α

1−e−αr , if ` = 0. In general, however, eigenvalues and eigenfunctions
of the equation need to be computed numerically.

One way to solve this problem numerically is as follows. First we compress
the infinite interval (0,∞) of the independent variable r in Equation (1) to the
finite interval (0, 1). We express the transformation by a function t : (0,∞) →
(0, 1). With the change of variable r 7→ t(r) = s we then transform Equation
(1) to

−A2(s)z′′(s) +A1(s)z′(s) +A0(s)z(s) = λz(s), 0 < s < 1, (3)

with boundary conditions
z(0) = z(1) = 0, (4)

where the coefficient functions Ai(s), i = 0, 1, 2 have singularities at s = 0
and s = 1. Eventually we want to numerically calculate the eigenfunctions
and eigenvalues of the new Equation (3) with boundary conditions (4) via a
finite difference scheme, resulting in the so-called matrix methods. However,
we still have to investigate, whether the eigenvalue problem given by (3)-(4) is
well-posed and has eigenfunctions which are smooth on the interval (0, 1).
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The case of a single singularity at the endpoints of equations of the form (3)
is a widely discussed subject in the literature ([5], [6], [18]). In our case, when
we have singularities at both endpoints of the equation, we establish a unitary
mapping L to connect the Sturm Liouville expression of the new Equation (3) to
the Sturm Liouville expression of the radial Schrödinger Equation (1). Such uni-
tary mappings can be seen as generalizations of Liouville’s transformation, they
are also suggested by [12] and [7]. It turns out that the Sturm Liouville expres-
sions of the two equations are equivalent. A detailed discussion of the original
radial Schrödinger equation then reveals that it in fact only admits boundary
conditions of the type (2) and has a non-empty set of eigenvalues. Also, local
analysis shows that the eigenfunctions are smooth functions on (0,∞). These
results can be carried over to the new Equation (3) via the unitary mapping L,
which moreover links eigenfunctions of (3)-(4) to eigenfunctions of (1)-(2) in a
one-to-one correspondence.

This thesis is organized as follows:
Section 2, Preliminaries, is subdivided in the two subsections, 2.1 Local

analysis and 2.2 Sturm Liouville theory. Subsection 2.1 deals with the local
analysis of solutions of 2nd order ordinary differential equations, where we split
the domain of the independent variable x in ordinary, regular singular and
irregular singular points. In Subsection 2.2, on the other hand, we want to give
a brief overview on Sturm Liouville theory and self-adjoint operators, which
we will use to analyze eigenfunctions and eigenvalues of the radial Schrödinger
equation as well as the unitary mapping L.

In Section 3 we deal with the existence of eigenvalues and eigenfunctions
of the original radial Schrödinger Equation (1) with boundary conditions (2),
where we consider the hydrogen atom potential, the Hulthén potential and the
Yukawa potential.

In Section 4 we introduce the unitary mapping L as well as specify the set of
transformations t, which we will consider in this thesis. We describe the above
results and show how the radial Schrödinger Equation (1) is linked to the new
Equation (3). Finally we discuss the transformed Equation (3) for two specific
transformations TCII and ATCII.

In Section 5 we deal with the numerical solution of the transformed equation
via a finite difference scheme. We present the numerical method and discuss the
results of the numerical experiments for the two specific transformations TCII

and ATCII. The matlab code can be found at the end of this section.
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2 Preliminaries

2.1 Local analysis

In this section we will study the local behaviour of the solutions of the 2nd order
ordinary differential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (5)

with arbitrary coefficient functions p, q : C → C. At this point we need to
point out that from now on all the analysis and calculations (i.e. analyticity
of functions, roots of polynomials) are supposed to take place in the complex
plane, although we eventually are applying the developed theory to a differential
equation with real valued coefficient functions.

There is a common classification for the points x0 of the domain of (5):

1. The point x0 is called ordinary point, if p(x) and q(x) are analytic at x0.

2. The point x0 is called singular point, if p(x) and/or q(x) have a singular
point at x0. Singular points can be divided in the following two subcases:

(a) The singular point x0 is called regular singular point, if the order
of the poles does not exceed 1 for p(x), or 2 for q(x).

(b) A singular point x0, which is not regular singular, is called irregular
singular point.

To classify the point x0 =∞, we apply the involution transformation t = 1
x

on Equation (5). The point x0 = ∞ then corresponds to the point t0 = 0 in
the transformed equation and is called ordinary, regular singular or irregular
singular, if t0 in the transformed equation is called likewise.

Remark 2.1. The above classification of singular points is in fact equivalent to
an alternative classification, which is widely used in the literature [5],[6],[18].

Suppose the differential equation is given by

d

dx
Y (x) = (x− x0)−α A(x) Y (x), (6)

where Y : D(⊂ C) → Rn, α ≥ 1 and the coefficient matrix A : D → Rn×n is
analytic at x0. Then in this setting we call the point x0

1. singularity of the first kind, if α = 1, or

2. singularity of the second kind, if α > 1.

In what follows we want to show that the two classifications are indeed
equivalent. Let x0 be singular point of (5), and without loss of generality assume
x0 = 0. Let α ≥ 1 so that xαp(x) =: p0(x) and x2αq(x) =: q0(x) are analytic
functions at x0. If x0 is a regular singular point, then α = 1, and if x0 is a
irregular singular point, then α > 1. We are going to rewrite (5) to take form
(6).
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We start by setting

Y =

(
Y1

Y2

)
=

(
y(x)

xαy′(x)

)
. (7)

The derivative of the first component is

d

dx
Y1 = y′ = x−αY2 (8)

For the second component, we observe that (15) is in fact equivalent to

xαy′′ = −xαqy − xαpy′, (9)

and therefore the derivation of the second component yields

d

dx
Y2 = (xα)′y′ + xαy′′ = −xαqy + ((xα)′ − xαp) y′ (10)

= x−α ·
(
−x2αqy + [(xα)′ − xαp]xαy′

)
(11)

= x−α · (−q0Y1 + [(xα)′ − p0]Y2) . (12)

Overall this yields for Y the first order system of equations

d

dx
Y = x−α

(
0 1
−q0 (xα)′ − p0

)
Y. (13)

Here we can see that regular singular points with α = 1 correspond to the
singularities of the first kind and irregular singular points with α > 1 to the
singularities of the second kind. (See also [5], [6])
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2.1.1 Ordinary points

At ordinary points the solutions are locally analytic functions. This is due to a
result by [15] (Theorem 4.2), a variation of Picard-Lindelöf’s theorem.

Theorem 2.1. Let Ω ⊂ Cn+1 be an open set and suppose f(z, w), f : Ω → C
is analytic and bounded in Ω. Then there exists a unique solution for the initial
value problem

d

dz
w = f(z, w), w(z0) = w0 (14)

which itself is analytic at z0.

As a result of this theorem we also obtain that solutions at ordinary points
are analytic functions. Suppose we have

y′′(x) + p(x)y′(x) + q(x)y(x) = 0. (15)

Rewriting (15) into a first order system we obtain

d

dx
Y =

(
0 1

−q(x) −p(x)

)
Y, Y =

(
y(x)
y′(x)

)
. (16)

With the inital conditions (1 0)T , (0 1)T we have two linearly independent an-
alytic functions. Since this is a complete set of solutions at x0, any solution at
x0 is locally analytic.

2.1.2 Regular singular points

The discussion of regular singular points goes back to Fuchs and Frobenius.
[10] Fuchs observed that at an regular singular point the solution multiplied by
an appropriate power of (x − x0)−α, α ∈ R, becomes finite. This leads to the
definition of the Frobenius series

y(x) = (x− x0)α
∞∑
n=0

an(x− x0)n. (17)

The exponent α in the Frobenius series is called indicial exponent. Moreover,
it can be shown that the Frobenius series solution has nonvanishing radius of
convergence.

This leads to the following theorem:

Theorem 2.2. Let x0 be a regular singular point of Equation (15). Then there
exists a solution in form of a Frobenius series at x0.

Proof. Without loss of generality we assume x0 = 0. Following the definition of
a regular singular point we obtain

p(x) =

∞∑
n=−1

pnx
n, q(x) =

∞∑
n=−2

qnx
n. (18)

Thus, the functions p0(x) = x · p(x) and q0(x) = x2 · q(x) are analytic at x = 0
and we define the differential operator

L = x2 d
2

dx2
+ p0(x) · x d

dx
+ q0(x), (19)
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so that the differential equation becomes Ly = 0.
We have a solution of the differential equation in Frobenius form

y(x, α) =

∞∑
n=0

anx
α+n. (20)

if and only if Ly(x, α) = 0, or, changing the order of summation and differenti-
ation,

Ly(x, α) =

∞∑
n=0

anLx
α+n. (21)

We further compute

Lxα+n = (α+ n)(α+ n− 1)xα+n + p0(x)(α+ n)xα+n + q0(x)xα+n

=
[
(α+ n)(α+ n− 1) + p0(x)(α+ n) + q0(x)

]
xα+n = P (x, α+ n)xα+n,

(22)

where the function P (x, α+ n) is defined in an appropriate way.
For n = 0 we have

P (x, α) = α(α− 1) + p0(x)α+ q0(x) (23)

= α2 + (p0(x)− 1)α+ q0(x), (24)

which is analytic at x = 0 and a polynomial of second degree in α. Therefore,
it can be expanded into the power series

P (x, α) =

∞∑
n=0

Pn(α)xn. (25)

(We could also have done this by expanding p0 and q0 into power series in
(24) and computing the coefficients manually.) For the first term the expansion
yields

P0(α) = α2 + (p0(0)− 1)α+ q0(0), (26)

the so-called indicial polynomial.
Using the above, we compute the right hand side of (21) and obtain

∞∑
n=0

anP (x, α+ n)xα+n =

∞∑
n=0

[
n∑
k=0

akPn−k(α+ k)

]
xα+n. (27)

Thus, the series (20) solves equation Ly(x, α) = 0, if and only if

n∑
k=0

akPn−k(α+ k) = 0. (28)

In other words, it is a solution to the differential equation if and only if the
coefficients ak are computed according to the recursion relation

a0P0(α) = 0, (29)

an = − 1

P0(α+ n)

n−1∑
k=0

akPn−k(α+ k). (30)
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Suppose that a0 = 0 in (29). If (20) is not the null-polynomial, there exists
N > 0 such that aN 6= 0. Suppose that N is the first integer of this kind. Hence,
the choice of α̃ = α+N as indicial exponent and (aN+n)n∈N as coefficients results
in the same Frobenius series. Therefore we can assume that a0 6= 0 and that
the indicial exponent α has to be a root of the indicial polynomial P0(α).

Let α1, α2 be the roots of (24), Reα1 > Reα2. Then we have that the
recursion for an, n > 0 in (30) is well-defined for α = α1, since P0 does not have
roots at α1 + n for n > 0. Thus, we have found a solution of the differential
equation, which is in form of a Frobenius series.

Solutions of homogeneous linear differential equation form a linear space.
Hence we can also interpret the arbitrary coefficient a0 in (29) as an arbitrary
multiplicative constant of the Frobenius series solution.

Theorem 2.3. The Frobenius series (20) has a radius of convergence at least
as large as the distance to the nearest singularity of the coefficient functions
p(x), q(x).

Proof. We are going to show the result via a ratio test for an. Therefore we
take the absolute values in the nth recursion

an = − 1

P0(α+ n)

n−1∑
k=0

akPn−k(α+ k), (31)

and use the triangle inequality to conclude

|an| ≤
1

|P0(α+ n)|

n−1∑
k=0

|ak||Pn−k(α+ k)|. (32)

In order to find an upper bound for |Pn−k(α + k)|, we recall that P (x, α) =∑∞
n=0 Pn(α)xn, which yields

∂

∂x
P (x, α) =

∞∑
n=0

(n+ 1)Pn+1(α)xn. (33)

Like P (x, α), the derivative ∂
∂xP (x, α) is a real valued and analytic function.

It also has the same radius of convergence Rmax as (25). This implies that
it assumes its maximal value on the boundary of a circle with radius R, if
R < Rmax, according to the maximum principle. Thus, we have

(n+ 1)Pn+1(α)Rn ≤M(α), (34)

for all n > N for a N > 0. It follows that

Pn+1(α) ≤ 1

n+ 1
M(α)R−n < M(α)R−n, (35)

and

|an| <
1

|P0(α+ n)|

n−1∑
k=0

|ak|M(α+ k)R−(n−k)−1. (36)
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We define the right hand side as bn and observe that

bn+1 =
1

|P0(α+ n+ 1)|

(
M(α+ n)|an|+

n−1∑
k=0

|ak|M(α+ k)R−(n−k)

)

=
M(α+ n)

|P0(α+ n+ 1)|
|an|+

bn
R

|P0(α+ n)|
|P0(α+ n+ 1)|

< bn

(
M(α+ n)

|P0(α+ n+ 1)|
+

1

R

|P0(α+ n)|
|P0(α+ n+ 1)|

)
. (37)

If we replace the inequality in (37) by an equality, we are able to introduce yet
another sequence cn via the recursion relation

cn+1 = cn

(
M(α+ n)

|P0(α+ n+ 1)|
+

1

R

|P0(α+ n)|
|P0(α+ n+ 1)|

)
, c0 = 1. (38)

Obviously, an < bn < cn. The first fraction in brackets in (38) tends to zero;
we postpone the proof to the Lemma 2.1 in the appendix. The second fraction

|P0(α+ n)|
|P0(α+ n+ 1)|

(39)

tends to 1 as n→∞, because for arbitrary polynomials of second degree

lim
x→∞

x2 + ax+ b

(x+ 1)2 + a(x+ 1) + b
= lim
x→∞

x2 + ax+ b

x2 + (2 + a)x+ (1 + a+ b)
= lim
x→∞

1

1
= 1

(40)
by the L’Hôpital’s rule. It follows that

lim
n→∞

cn+1

cn
=

1

R
. (41)

The power series with coefficients cn has radius of convergence R. Recall that
R < Rmax is arbitrary. We see that the radius of convergence of (20) is at least
as large as the smaller radius of convergence of p0(x), q0(x).

At regular singular points it is not only possible to obtain a solution in
Frobenius form, but also to find the second linearly independent solution. The
structure of the second solution depends on the difference of the indicial expo-
nents α1, α2. This is the subject of the next theorem. For the proof and further
discussion of the solutions we refer to the appendix of this section.

Theorem 2.4. Let x0 be a regular singular point of the equation and α1, α2

(α1 > α2) be the roots of the indicial polynomial. Then there exists a solution
in Frobenius form

y1 = xα1 Φ1(x) (42)

where Φ1 is analytic at x0. A second linearly independent solution is given by

y2 = xα2 Φ2(x) (43)

for α1 − α2 6∈ N0, where Φ2 is analytic at x0, or

y2 = xα2 Φ2(x) + xα1 Φ1(x) log(x) (44)

for α1 − α2 = N , N ∈ N, or

y2 = xα1 Φ1(x) log(x) (45)

for α1 = α2.

8



2.1.3 Irregular singular points

At an irregular singular point it is not possible to produce a general formula
for the local behaviour. In fact at an irregular singular point there is always at
least one solution which is not of Frobenius form [3]. However it is still possible
to retrieve the leading local behaviour of the solutions as proposed in [3].

For this reason, we introduce the notation

f(x)� g(x), as x→ x0. (46)

This is a shorthand for

lim
x→x0

f(x)

g(x)
= 0 (47)

and we say that f is asymptotically small compared to g. Similarily we write

f(x) ∼ g(x), as x→ x0 (48)

instead of

lim
x→x0

f(x)

g(x)
= 1. (49)

Note that ∼ constitutes an equivalence relation.
Now [3] suggests the following steps for finding the leading behaviour of the

solutions at an irregular singular point, called method of dominant balance:

1. Replace equality with asymptotic equality and drop terms that appear
small. The remaining terms will produce the leading behaviour.

2. Solve the asymptotic relation as if it was a equation.

3. Peel off the leading behaviour by inserting a factorized ansatz into the
original equation and restart the method with the unknown factor. The
solution to the new asymptotic relation will be asymptotically small com-
pared to the previously found factor.
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2.1.4 Appendix to regular singular points

In Lemma 2.1 we give the proof for the statement in (38) in Theorem 2.3. In
the Appendix we also derive the second solution at the regular singular point
x0, as stated in Theorem 2.4.

Lemma 2.1. The term
M(α+ n)

P0(α+ n+ 1)
(50)

in (38) in Theorem 2.3 tends to 0 as n→∞.

Proof. For the numerator we recall that we have defined M(α) in (34) as the
maximal value of ∂

∂xP (x, α) for |x| ≤ R. A direct derivation of the indicial
polynomial (24) yields

∂

∂x
P (x, α) = αp′0(x) + q′0(x). (51)

Thus, we conclude that

M(α) = max
|x|=R

|αp′0(x) + q′0(x)| ≤ σ max
|x|=R

|p′0(x)|+ max
|x|=R

|q′0(x)| (52)

is bounded by a linear function of σ = |α|.
For the denominator we rewrite P0(α) = α2 +(P0(α)−α2) and use the lower

triangle inequality to obtain

|P0(α)| ≥ |α|2 − |P0(α)− α2| . (53)

Here, the definition of the indicial polynomial yields∣∣P0(α)− α2
∣∣ = |(p0(0)− 1)α+ q0(0)| ≤ |p0(0)− 1|σ + |q0(0)| . (54)

Thus, we have
|P0(α)| ≥ σ2 − |p0(0)− 1|σ − |q0(0)| . (55)

We denote the right hand side of (52) by φ1(σ) and the right hand side of (55)
by φ2(σ) and note that φ1, φ2 are strictly increasing. Moreover, |α+n| ≤ σ+n
and |α+ n+ 1| ≥ n+ 1− σ > n− σ. Hence, we conclude

M(α+ n)

P0(α+ n+ 1)
≤ φ1(|α+ n|)
φ2(|α+ n+ 1|)

<
φ1(n+ σ)

φ2(n− σ)
→ 0 as n→∞, (56)

since the numerator is of a lower grade than the denominator.

Next we are going to prove two rather technical lemmas for the Frobenius
series y(x, α), which we will need in the proof of Theorem 2.4. From now on, we
let the coefficients an depend on α as well, so that the Frobenius series becomes

y(x, α) =

∞∑
n=0

an(α)xn+α. (57)

Lemma 2.2. The series
∑∞
n=0 an(α)xn with coefficients an(α) defined by (29)-

(30) converges uniformly in x in a common α-neighborhood of the roots α1, α2

of the indicial polynomial.
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Proof. We start with the result of the proof of Theorem 2.3. There we have
found a sequence of coefficients cn in (38), such that an < cn and

cn+1 = cn

(
M(α+ n)

|P0(α+ n+ 1)|
+

1

R

|P0(α+ n)|
|P0(α+ n+ 1)|

)
, c0 = 1. (58)

To prove uniform convergence of the series
∑∞
n=0 an(α)xn we are going to

construct a sequence of coefficients dn, which is independent of α, such that
an(α) < dn.

Therefore we find the upper bound

|P0(α)| =
∣∣α2 + (p0(0)− 1)α+ q0(0)

∣∣ ≤ σ2 + |p0(0)− 1|σ + |q0(0)| , (59)

and denote the right hand side by φ3(σ). Let τ > |α1|, |α2|. With the definition
of φ1, φ2 in the previous lemma, we define a sequence dn via

dn+1 = dn

(
φ1(n+ τ)

φ2(n− τ)
+

1

R

φ3(n+ τ)

φ2(n− τ)

)
, d0 = 1, (60)

such that cn(α) < dn. Furthermore,

|P0(α+ n)|
|P0(α+ n+ 1)|

≤ φ3(|α+ n|)
φ2(|α+ n+ 1|)

<
φ3(n+ τ)

φ2(n− τ)
→ 1, as n→∞ (61)

and by the previous lemma

φ1(n+ τ)

φ2(n− τ)
→ 0, as n→∞. (62)

This shows that the radius of convergence for the power series
∑∞
n=0 dnx

n is at
least R by the ratio test.

Thus, with an(α) < dn, we have that the series
∑∞
n=0 an(α)xn converges

uniformly in x for all α in a common neighborhood of α1, α2 (cf. [10]).

Lemma 2.3. The condition (30) for the coefficients an(α) of the Frobenius
series y(x, α) is equivalent to

an(α) = a0(α) ·

[
n∏
k=1

P0(α+ k)

]−1

· hn(α) (63)

for a particular hn(α)

Proof. We prove (63) by induction. The initial step n = 1

a1(α) = − 1

P0(α+ 1)
a0(α) P1(α) (64)

holds if we set h1(α) = −P1(α).
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The step n− 1→ n holds because of

an(α) = − 1

P0(α+ n)

n−1∑
k=0

ak(α)Pn−k(α+ k) (65)

= − 1

P0(α+ n)

n−1∑
k=0

(
a0(α) · hk(α)∏k
l=1 P0(α+ l)

)
Pn−k(α+ k) (66)

= − a0(α)∏n
k=1 P0(α+ k)

n−1∑
k=0

(
n−1∏
l=k+1

P0(α+ l)

)
· hk(α) · Pn−k(α+ k) (67)

= a0(α) ·

[
n∏
k=1

P0(α+ k)

]−1

· hn(α) , (68)

if we set

hn(α) = −
n−1∑
k=0

(
n−1∏
l=k+1

P0(α+ l)

)
· hk(α) · Pn−k(α+ k). (69)

Note that hn(α) is an entire function of α.

Proof of Theorem 2.4. Without loss of generality we set x0 = 0.

1. First, let α1 − α2 /∈ N0. Then none of the numbers α1 + n, n ∈ N nor
α2 + n, n ∈ N is a root of P0. Therefore the recursion relation (29)-(30)
not only yields a Frobenius solution for α1, but also a Frobenius solution
for α2, since the coefficients of y(x, α2) are well defined. The solution
y(x, α2) has the same radius of convergence.

2. Next, let α1 − α2 = N ∈ N. This means the indicial polynomial has
roots at α2 and α2 + N = α1. Clearly it is not possible to calculate the
coefficients for α2 according to (30), since the computation of the Nth
coefficient aN is not well defined.

However, it is possible to circumvent this problem if we let an depend
on α and switch to the alternative recursion (63). There we set the first
coefficient to

a0(α) :=

N∏
k=1

P0(α+ k) · C(α) (70)

for some arbitrary function C(α), so that (63) becomes

an(α) = C(α) ·

{∏N
k=n+1 P0(α+ k) · hn(α) if n ≤ N,[∏n
k=N+1 P0(α+ k)

]−1 · hn(α) if n > N.
(71)

Hence an(α2) is well defined for all n ∈ N. To find the second solution of
the differential equation we recall from the proof of Theorem 2.2

L

∞∑
n=0

an(α)xn+α = a0(α)P0(α)xα. (72)

12



Here it holds that

P0(α+N) = (α+N − α1)(α+N − α2)

= (α− α2)(α+ α1 − 2α2), (73)

and therefore the right hand side of (72) reads:

a0(α)P0(α)xα

=

(
N∏
k=1

P0(α+ k)

)
· C(α) · (α− α1)(α− α2) · xα (74)

=

(
N−1∏
k=1

P0(α+ k)

)
C(α) · (α− α1)(α− α2)2(α+ α1 − 2α2)xα. (75)

The right hand side has a double root at α2 and hence[
d

dα
a0(α)P0(α)xα

]
α=α2

= 0 (76)

holds. Taking the derivative with respect to α on the left hand side of
(72) yields

∂

∂α
L

(
xα

∞∑
n=0

an(α)xn

)
= L

(
∂

∂α
xα

∞∑
n=0

an(α)xn

)
(77)

= L

(
log(x)xα

∞∑
n=0

an(α)xn + xα
∞∑
n=0

a′n(α)xn

)
. (78)

Here we used the uniform convergence from Lemma 2.2. When we set
α = α2 we obtain the second solution of Ly = 0,

v(x, α2) log(x) + w(x, α2), (79)

with

v(x, α2) =

∞∑
n=0

an(α2)xn+α2 , w(x, α2) =

∞∑
n=0

a′n(α2)xn+α2 . (80)

For more details on the coefficients and the solution in this case as well as
the role of the arbitrary function C(α) we refer to [10] and [3].

3. Finally, let α1 = α2. Then the indicial polynomial is P0(α) = (α − α1)2.
To find the second solution in this case we use the same trick as before.
From the proof of Theorem 2.2 we have that

L

∞∑
n=0

anx
n+α = a0P0(α)xα = a0(α− α1)2xα. (81)

We derive both sides with respect to α and set α = α1. The right hand
side vanishes because it has a double root at α1. The derivation of the
right hand side yields

∂

∂α
L

(
xα

∞∑
n=0

anx
n+α

)
= L

(
log(x)xα

∞∑
n=0

anx
n

)
. (82)
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Thus, log(x)y(x, α1) with

y(x, α1) =

∞∑
n=0

anx
n+α1 (83)

is a second, linear independent solution of the differential equation.
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2.2 Sturm Liouville theory

Another way to discuss linear homogeneous ordinary differential equations of
2nd order is within the framework of the Sturm Liouville (SL) theory. Here we
view the differential equation as differential expression of an operator, albeit
we are particularly interested in the self-adjoint versions. This proves to be
especially helpful for eigenvalue problems like the radial Schrödinger equation.
The set of eigenvalues of the eigenvalue problem then can be described by the
discrete spectrum of a specific self-adjoint operator A.

In this section we want to give a brief introduction into the Sturm Liouville
theory. In particular we will deal with Sturm Liouville expressions τ , the max-
imal and minimal operators T and T0, self-adjoint extensions A of the minimal
operator, singular SL expressions and the discrete spectrum σd(A) of self-adjoint
extensions.

The core element of Sturm Liouville theory is the SL expression τ , which is
used to describe differential equations of the form

− d

dr

(
p(r)

d

dr
u(r)

)
+ q(r)u(r) = λw(r)u(r), r ∈ I = (a, b), (84)

where p, q, w : I → R are arbitrary coefficient functions and λ is an (unknown)
eigenvalue. With the SL expression τ , Equation (84) can be written as

τu = λu, (85)

where τ is given by the expression

τ =
1

w(r)

(
− d

dr
p(r)

d

dr
+ q(r)

)
, r ∈ I = (a, b). (86)

Example 2.1. The radial Schrödinger equation is given by

−u′′(r) +

(
`(`+ 1)

r2
+ V (r)

)
u(r) = λu(r), r ∈ (0,∞). (87)

Using τ , we can rewrite it as
τu = λu, (88)

when the Sturm Liouville expression τ is given by

τ = − d2

dr2
+

(
`(`+ 1)

r2
+ V (r)

)
, r ∈ (0,∞). (89)

Alternatively, τ is given by (86) and the coefficient functions

p(r) = 1, q(r) =
`(`+ 1)

r2
+ V (r), w(r) = 1 (90)

on I = (0,∞).
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We study SL expressions τ for functions u in the Hilbert space L2(I, w),
that is the space of all measurable functions u, such that∫ b

a

|u(r)|2w(r)dr <∞.

This space can be equipped with the scalar product

(u, v) :=

∫ b

a

u · v wdr, u, v ∈ L2(I, w).

As in [17], we require that the coefficient functions p, q, w in (86) satisfy the
following conditions:

1. p, q, w are measurable functions with 1/p, q, w ∈ L1
loc(I) (integrable on

every compactum [α, β] ⊂ I).

2. p(r) 6= 0, w(r) > 0 for almost every r ∈ I.

The maximal domain of functions u, on which the differential expression τ
makes sense, is the set

Dmax = {u : I → C | u, pu′ ∈ ACloc(I), u, τu ∈ L2(I, w)}. (91)

The operator

Tmax :

{
Dmax → L2(I, w)

u 7→ τu

is called the maximal operator.
The adjoint operator T ∗max of the maximal operator, that is the operator

defined as

(u, Tmaxv) = (T ∗maxu, v), u ∈ D(T ∗max), v ∈ D(Tmax),

is called the minimal operator T0. Formally it is defined as the closure of the
preminimal operator [19]

T ′min :

{
D0 → L2(I, w)

u 7→ τu

defined on the set

D0 = {u ∈ Dmax | u has compact support in I}. (92)

When the operators T0, T are viewed as subsets of L2(I, w)×L2(I, w), it holds
that T0 ⊂ T [17].

Furthermore T0 is a symmetric operator

(u, T0v) = (T0u, v), u, v ∈ D0, (93)
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because for u, v ∈ D0 we have u(a) = v(a) = u(b) = v(b) and therefore

(u, T0v) =

∫ b

a

u(r) · (τv)(r) · w(r) dr =

∫ b

a

u
1

w
(−(pv′)′ + qv)w dr

=

∫ b

a

−u(pv′)′dr +

∫ b

a

uqv dr = − [u pv′]
b
a +

∫ b

a

u′pv′dr +

∫ b

a

uqv dr

=

∫ b

a

u′pv′dr +

∫ b

a

uqv dr. (94)

For (T0u, v) a similar calculation yields

(T0u, v) =

∫ b

a

pu′v′dr +

∫ b

a

uqv dr, (95)

which completes the proof.
Finally, we say that an operator A is a symmetric extension of T0, if

T0 ⊂ A ⊂ A∗ ⊂ T. (96)

A symmetric extension, which satisfies A = A∗, is called self-adjoint realization
of τ . [17]

This is how far we can get before looking closer at the coefficient functions
of τ . The SL expression τ is called

• regular at a, if −∞ < a and 1/p, q, w ∈ L1([a, c]) for one/any c ∈ I, and
similarly

• regular at b, if b <∞ and 1/p, q, w ∈ L1([d, b]) for one/any d ∈ I.

If τ is regular at a and b, it is called regular.
If τ is not regular at a (resp. b), it is called singular at a (resp. b). Ex-

pressions, which are singular at least at one endpoint, are called singular SL
expressions. ([17], pp.38-39)

One reason for this classification is that for regular τ the self-adjoint realiza-
tions A have purely discrete spectrum (see also Definition 2.2). ([17], 13.14c)

For singular problems we cite Weyl’s famous alternative (cf. [17], 13.18):

Theorem 2.5 (Weyl’s Alternative). Let τ be Sturm-Liouville differential ex-
pression on I = (a, b), and, without loss of generality, fix one endpoint, say a.
Then either holds

1. for all z ∈ C every solution u of (τ − z)u = 0 is in L2([a, c], w) (Limit-
Circle case; LC), for one/any c ∈ I, or

2. for all z ∈ C exists at least one solution of (τ − z)u = 0, which is not in
L2([a, c], w) (Limit-Point case; LP), for one/any c ∈ I.
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In this framework regular endpoints are classified as LC endpoints.

For the next two theorems we need the definition of the deficiency indices of
a SL expression τ . The pair of deficiency indices for τ is defined as

N+ = dim(T0 + i), (97)

N− = dim(T0 − i). (98)

Theorem 2.6 ([17], 13.19). Let τ be SL expression on I = (a, b). The deficiency
indices (N+, N−) for τ are

1. (2, 2), if LC at both endpoints,

2. (1, 1), if LP on one endpoint and LC on the other,

3. (0, 0), if LP at both endpoints.

Theorem 2.7 ([16], 10.10). Let S be a closed symmetric operator in complex
Hilbert space with finite and equal deficiency indices (m,m). Then it holds that

1. The symmetric extension T of S is self-adjoint, if and only if T is m-
dimensional extension of S.

2. The symmetric restriction T of S∗ is self-adjoint, if and only if T is m-
dimensional restriction of S∗.

This means, according to 2.6 and 2.7, that when we have LP at both end-
points and consider the maximal and minimal operators of the problem T0, T ,
any self-adjoint realization A of τ is a 0-dimensional extension of T0, and a
0-dimensional restriction of T . In other words, T0 = A and A = T . Also,
the maximal and the minimal operator then collapse into the single operator
T0 = T ([17], proof of 13.19). Therefore, in the case of LP at both endpoints,
there exists only one self-adjoint realization A of τ , which equals to

A = T0 = T. (99)

This result will becomes especially useful in Section 3, when we discuss self-
adjoint operators of the radial Schrödinger equation, which is LP at both end-
points.

The reason we look for self-adjoint realizations A of τ is of course the spectral
theorem for self-adjoint operators, which essentially states that all the informa-
tion of a self-adjoint operator A can be stored in its associated spectral measure.

Theorem 2.8 ([14], 3.7, Spectral Theorem). To every self-adjoint operator A
there corresponds a unique projection-valued measure PA such that

A =

∫
R
λdPA(λ). (100)
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Another way to store the spectral information of a self-adjoint operator A
is via its spectrum and the associated subspaces of the Hilbert space L2(I, w).
The spectrum is usually defined through it’s complementary set, the resolvent
set of A.

Here we want to cite the Definition (2.4) from [14],

Definition 2.1. Let A be a (densely defined) closed operator. The resolvent set
of A is defined by

ρ(A) =
{
z ∈ C | (A− z)−1 is a bounded linear operator

on the Hilbert space L2(I, r)
}
. (101)

More precisely, z ∈ ρ(A) if and only if (A − z) : D(A) → H is bijective and its
inverse is bounded. The complement of the resolvent set is called the spectrum
of A,

σ(A) = ρ(A)c. (102)

In particular, z ∈ σ(A) if A−z has a nontrivial kernel. A function ψ ∈ ker(A−z)
is called an eigenfunction and z is called an eigenvalue in this case.

In this thesis we are mainly interested in the discrete part of the spectrum
σ(A), the so-called discrete spectrum of A, which is the set of eigenvalues. Again
we cite [14], (6.4)

Definition 2.2 ([14]). The discrete spectrum σd(A) is the set of all eigenvalues
which are discrete points of the spectrum and whose corresponding eigenspaces
are finite dimensional.

Remark 2.2. It should be noted that the complement of the discrete spectrum
is called the essential spectrum σess(A) = σ(A)\σd(A). For more information
on the essential spectrum we refer to [14], (6.4), respectively [16], (9.2).
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3 The radial Schrödinger equation

In this section we prove the existence of eigenvalues and eigenfunctions for the
radial Schrödinger equation

− d2

dr2
u(r) +

(
`(`+ 1)

r2
+ V (r)

)
u(r) = λu(r), 0 < r <∞, (103)

with some potential V (r). We are particularly interested in three different
potentials:

• the Coulomb or Hydrogen potential for a charge Z > 0,

V (r) = −Z
r

(104)

(Equation (103) then is also a model for the Hydrogen Atom),

• the Yukawa potential with parameter α > 0,

V (r) = −2e−αr

r
, (105)

• and the Hulthén potential with parameter α > 0,

V (r) = − 2αe−αr

e−αr − 1
. (106)

In the literature the free parameter α in the Yukawa and the Hulthén potential
is also referred to as the screening parameter and is usually further restricted to
αc > α > 0. Here, αc stands for the critical value of the screening parameter.
The critical value is the greatest value of α for which Equation (103) still has
at least one eigenvalue.

In Subsection 3.1, we see that the eigenfunctions u satisfy the boundary
conditions u(0) = u(∞) = 0 in a natural way. Also the eigenfunctions turn out
to be smooth functions on I = (0,∞).

In Subsection 3.2, we derive the exact eigenfunctions and eigenvalues for
Equation (103) in the Hydrogen Atom model.

In Subsection 3.3, we discuss the set of eigenvalues for the Yukawa and
Hulthén potential. These potentials can be written as perturbations of the
Coulomb potential, and we discuss the spectral properties of Equation (103),
following mainly the extensive literature in [16],[17] and [14]. The main focus
of course lies on the discrete spectrum, which is the set of eigenvalues here.
Additionally we consider the role of the critical value of the parameter α. In
this case we mainly cite the results from [13] and [4]. Finally, we would like to
point out that in the special case of the Hulthén potential with ` = 0, formulas
of the exact eigenfunctions and eigenvalues are known and can be found in [9].
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3.1 Local behaviour of the eigenfunctions

In this section we study the local behaviour of the eigenfunctions of Equation
(103), which we write in more convenient form as

d2

dr2
u(r) =

(
−λ+ V (r) +

`(`+ 1)

r2

)
u(r). (107)

In particular we will see, that the eigenfunctions satisfy u(0) = u(∞) = 0 and
are smooth functions on I = (0,∞).

To carry out the analysis, we classify the points of the domain according to
Section 2.1 as ordinary, regular singular or irregular singular points. For this
reason, we first need to find the full behaviour of the coefficient function in
Equation (107).

The Coulomb, Yukawa and Hulthén potential have a first order pole at the
origin, vanish at infinity and are analytic throughout the interval (0,∞). For
the eigenvalue λ, we assume for now that λ < 0.1 Thus the coefficient function
in Equation (107) has a singularity at r = 0, tends to λ for r → ∞ and is
analytic throughout the interval (0,∞). The singularity at r = 0 is a first order
pole, if ` = 0, and a second order pole, if ` > 0.

According to Section 2.1, this means that r = 0 is a regular singular point,
0 < r <∞ are ordinary points and r =∞ is an irregular singular point.

We first treat the singularity at r = 0. The indicial polynomial at this point
is

f(ρ) = −ρ(ρ− 1) + `(`+ 1) = −(ρ− (`+ 1))(ρ+ `), (108)

which yields that the indicial exponents are ρ1 = `+ 1 and ρ2 = −`. According
to the results of Section 2.1, the set of solutions of Equation (107) at r = 0
behaves like

u←1 (r) = r`+1 v1(r), for r → 0, (109)

u←2 (r) = r−` v2(r) + r`+1 v1(r) log(r), for r → 0, (110)

where v1, v2 are analytic functions at r = 0 with v1(0) 6= 0 and v2(0) 6= 0. The
notation here means that u←i (r) = f(r) if and only if limr→0 ui(r) = O(f(r))
for some function f(r). From the set of solutions only u←1 satisfies the boundary
condition u(0) = 0.

On the other hand, at the irregular singular point r =∞, we drop the terms
in Equation (107) which are asymptotically small for r →∞ and obtain

d2

dr2
u(r) = −λu(r). (111)

Since λ < 0, we write |λ| instead of −λ from now on and set λ1 :=
√
|λ|.

According to Section 2.1, we now expect the leading behaviour of the solutions
of Equation (107) to be

u→1 (r) = e−λ1r, for r →∞, (112)

u→2 (r) = eλ1r, for r →∞. (113)

1In Section 3.3 we will see that this is indeed the case.
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Similar to above, the notation here means that u→i (r) = f(r) if and only if
limr→∞ ui(r) = O(f(r)) for some function f(r). From the set of solutions only
u→1 satisfies the boundary condition limr→∞ u(r) = 0.

Additionally, only u←1 and u→1 are square integrable at the respective end-
points in general. This is particularly the case for ` > 0. On the other
hand, we demand in Section 2.2 that eigenfunctions are square integrable func-
tions on the whole interval (0,∞), and thus in particular at the endpoints.
Therefore the eigenfunctions of Equation (107) satisfy the boundary conditions
u(0) = u(∞) = 0 for ` > 0, since the behaviour of the eigenfunctions at the
endpoints can be described by the functions u←1 and u→1 .

When ` = 0, the function u←2 is square integrable at r = 0 too. However,
eigenfunctions associated with u←2 are commonly excluded in physics via the
boundary condition u(0) = 0 (see also the proof of Theorem 10.8 in [14]).

Furthermore, the above yields that according to Theorem 2.5 the endpoint
r = 0 is Limit-Circle and r =∞ Limit-Point for ` = 0, and both endpoints
are Limit-Point, when ` > 0.

Finally, the smoothness of the eigenfunctions on I = (0,∞) follows, if we
recall from Section 2.1 that at ordinary points there exists a (locally) analytic
solution to every initial value problem. Since this implies that the fundamental
system of solutions is analytic as well, this carries over to arbitrary solutions
at this point. Thus, for any solution u of Equation (107), we obtain that u ∈
C∞(I), since analyticity is a local property.
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3.2 The Hydrogen Atom

The radial Schrödinger equation of the Hydrogen Atom is probably among the
most famous equations in quantum mechanics. Formulas for the eigenfunctions
and eigenvalues can be derived explicitely. They can be found in many textbooks
on quantum mechanics, e.g. [11], [14]. The derivation here mainly follows the
methods and notation that were used in [11].

The radial Schrödinger equation for the Hydrogen Atom is given by

d2

dr2
u(r) =

(
−λ− Z

r
+
`(`+ 1)

r2

)
u(r), r ∈ (0,∞). (114)

First, division by λ2
1 and the scale transformation ρ = λ1r simplifies it to

d2

dρ2
u(ρ) =

(
1− ρ0

ρ
+
`(`+ 1)

ρ2

)
u(ρ), ρ ∈ (0,∞), (115)

where we have set

ρ0 =
Z

λ1
. (116)

From the discussion in Subsection 3.1 we can conclude that the overall solution
looks like

u(ρ) = ρ`+1 v(ρ) e−ρ, (117)

where v is an analytic function on (0,∞). The computation of the second order
derivative of the right hand side in (115) yields (the primes denote derivatives
with respect to ρ)[(

`(`+ 1)

ρ2
+ 1 +

v′′

v

)
+ 2

(
−`+ 1

ρ
+
`+ 1

ρ

v′

v
− v′

v

)]
u. (118)

Thus, the proposed solution reduces the entire Equation (115) to[
v′′

v
+ 2

(
−`+ 1

ρ
+
`+ 1

ρ

v′

v
− v′

v

)]
u = −ρ0

ρ
u. (119)

Factoring off u 6≡ 0 this is equivalent to a differential equation for v given as

ρ
d2

dρ2
v + (2(`+ 1)− 2ρ)

d

dρ
v + (ρ0 − 2(`+ 1)) v = 0. (120)

With yet another scale transformation x = 2ρ this becomes

x
d2

dx2
v + (2(`+ 1)− x)

d

dx
v +

(ρ0

2
− (`+ 1)

)
v = 0. (121)

Fortunately, for specific values of ρ0, this differential equation is known as
the differential equation for the associated Laguerre polynomial Lkn.

Laguerre’s differential equation itself is given by

x
d2

dx2
y(x) + (1− x)

d

dx
y(x) + ny(x) = 0, (122)

where n ∈ N0. Its solution are the so-called Laguerre polynomials, which are
given by the Rodrigues formula

Ln(x) =
ex

n!

dn

dxn
(xne−x). (123)
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The nth Laguerre polynomial Ln(x) is a polynomial of nth grade.
Still, this does not suffice to reproduce the solutions for (121). The kth

associated Laguerre polynomial is defined as

Lkn(x) = (−1)k
dk

dxk
Ln+k(x). (124)

It is a solution for the differential equation

xy′′(x) + (k + 1− x)y′(x) + ny(x) = 0, n = 0, 1, . . . k ≤ n. (125)

Thus, the solution for (121) can be expressed in terms of associated Laguerre
polynomials if ρ0

2 − (`+ 1) = n ∈ N0, or

ρ0 = 2(n+ `+ 1), n ∈ N0. (126)

With (116) and λ1 =
√
|λ| this becomes the formula for the eigenvalues

λn = −
(

Z

2(n+ `+ 1)

)2

, n ∈ N0, (127)

known as Bohr ’s formula. [11]
To see that these are indeed all eigenvalues, let us assume the factor v in (117)

to be a power series
∑∞
n=0 anρ

n. (From Section 3.1 we know that v1 = ve−ρ is
analytic at ρ = 0). It solves (120) or, equivalently,

ρv′′ + 2(`+ 1)v′ = 2ρv′ + (2(`+ 1)− ρ0)v. (128)

Inserting the related power series the left hand side becomes

∞∑
n=0

n(n− 1)anρ
n−1 +

∞∑
n=0

2(`+ 1)nanρ
n−1

=

∞∑
n=0

an+1(n+ 1) (n+ 2(`+ 1)) ρn. (129)

The right hand side is

∞∑
n=0

2nanρ
n +

∞∑
n=0

(2(`+ 1)− ρ0)anρ
n

=

∞∑
n=0

an (2(n+ `+ 1)− ρ0)) ρn. (130)

Comparing powers of ρ yields

an+1(n+ 1) (n+ 2(`+ 1)) = an (2(n+ `+ 1)− ρ0)) . (131)

The fraction
an+1

an
=

2(n+ `+ 1)− ρ0

(n+ 1)(n+ 2(`+ 1))
(132)

shows that the series becomes finite (and is the associated Laguerre polynomial)
if and only if ρ0 is chosen as above. Suppose ρ0 6= 2(n+ `+ 1). Since

an+1

an
=

2

n+ 1
− ρ0 + 2(`+ 1)

(n+ 1)(n+ 2(`+ 1))
(133)
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behaves like 2
n+1 for large n, this means that

v(ρ) ∼ e2ρ, for ρ→∞. (134)

But this would imply that the overall solution in (117) behaves like

u(ρ) ∼ ρ`+1 · eρ for ρ→∞, (135)

which clearly violates the boundary condition

lim
r→∞

u(r) = 0. (136)

Therefore, ρ0 = 2(n+ `+ 1) and all eigenvalues of (114) are given by (127).
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3.3 Eigenvalues of the Yukawa and Hulthén potential

In the case of hydrogen atom (Coulomb potential), we were able to compute
the eigenvalues and corresponding eigenfunctions explicitely. In this section
however, we look at the radial Schrödinger equation from a Sturm Liouville
point of view. This will enable us to discuss the radial Schrödinger equation
with Yukawa and Hulthén potentials, where, in general, no explicit formulas for
the eigenvalues and corresponding eigenfunctions are known.

With the Sturm Liouville terminology of Section 2.2 the right hand side of
the radial Schrödinger Equation (103) on the interval I = (0,∞) becomes the
Sturm-Liouville expression

τ` = −∆ +
`(`+ 1)

r2
+ V (r). (137)

Here we denote d2

dr2 by the Laplacian ∆. In Section 3.1 we have seen that this SL
expression has LP endpoints at r = 0, r = ∞, when ` > 0, and a LC endpoint
at r = 0 and LP endpoint at r = ∞, when ` = 0, where we additionally set
the boundary condition u(0) = 0. According to the Theorems 2.6 and 2.7 we
now have that there exists only one self-adjoint realization of τ`, which we will
denote by A`.

For a start, we discuss the self-adjoint operator A` with the Coulomb poten-
tial V (r) = −Z/r. In the previous section, we already have found the discrete
part of the spectrum of A`, the set of eigenvalues σd(A`), which are given by
(127). In Theorem 3.5 we cite a result from [14], which will give us a complete
picture of the spectrum of A` with the Coulomb potential. On the basis of the
operator A` with the Coulomb potential, we now embark on a discussion of A`
with the Yukawa and Hulthén potential.

Rewriting the Yukawa potential

−2e−αr

r
= −2

r
+

2(1− e−αr)
r

, (138)

as well as the Hulthén potential

− 2α

eαr − 1
= −2

r
· αr

eαr − 1
= −2

r
+

2

r

(
1− αr

eαr − 1

)
(139)

reveals that the potentials can be seen as perturbations of the Coulomb potential.
For α → 0+ the perturbations vanish and the potentials descend into the

Coulomb potential, as can be easily seen for the Yukawa potential in (138). For
the Hulthén potential this can be seen from

lim
α→0+

− 2α

eαr − 1
= lim
α→0+

− 2

reαr
= −2

r
. (140)

We denote the perturbations by

W1 =
2(1− e−αr)

r
(141)

and

W2 =
2

r

(
1− αr

eαr − 1

)
. (142)
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The perturbations are almost everywhere bounded functions, W1,W2 ∈
L∞(I), as can be seen from

lim
r→0

W1(r) = lim
r→0

2αe−αr

1
= 2α (143)

lim
r→0

W2(r) = lim
r→0

2

r

(eαr − 1− αr)
(eαr − 1)

= lim
r→0

2α2eαr

2αeαr + rα2eαr
= α (144)

Furthermore, they also tend to 0 as r →∞ and hence W1,W2 ∈ L∞0 (I), since

lim
r→∞

W1(r) = lim
r→∞

2(1− e−αr)
r

= 0 (145)

for W1; for W2 consider

lim
r→∞

αr

eαr − 1
= lim
r→∞

α

αeαr
= 0, (146)

therefore we have

lim
r→∞

W2(r) =

(
lim
r→∞

2

r

)
·
(

1− lim
r→∞

αr

eαr − 1

)
= 0. (147)

To study the influence of perturbations in more detail, we define the multi-
plication operator for L∞(I) perturbations on L2(I) as

MW :

{
L2(I) → L2(I),

u 7→W · u.
(148)

As a shorthand notation, we will also write W instead of MW , even though we
really mean the multplication operator with W on L2(I). Because of

‖MWu‖L2(I) = ‖W · u‖L2(I) ≤ ‖W‖L∞(I) · ‖u‖L2(I) (149)

the multiplication operator with perturbation W ∈ L∞(I) is not only well-
defined, but also a bounded operator. For real-valued perturbations it is also
symmetric

(u,Wv) =

∫ ∞
0

u(r)W (r)v(r)dr =

∫ ∞
0

W (r)u(r) v(r)dr = (Wu, v). (150)

Before we get to our first result on perturbations of self-adjoint operators,
we need the following definition.

Definition 3.1 (Teschl, [14], 6.1). An operator V is called T -bounded or rel-
atively bounded with respect to T , if D(T ) ⊆ D(V ) and if there are constants
a, b ≥ 0 such that

‖V u‖ ≤ a‖u‖+ b‖Tu‖, u ∈ D(T ). (151)

The infimum of all b for which a corresponding a exists such that the above
equation holds is called the T -bound of V .

Also, we define the sum T + V of two operators T : D(T ) → L2(I), V :
D(V )→ L2(I) as the pointwise sum of the operators on the domain D(T+V ) =
D(T ) ∩ D(V ).
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Theorem 3.1 (Kato-Rellich, [16], 9.2).

1. Let T be self-adjoint and V be symmetric and T -bounded with T -bound
less than 1. Then T + V is self-adjoint.

2. Let T be essentially self-adjoint and V be symmetric and T -bounded with
T -bound less than 1. Then T+V is essentially self-adjoint, T + V = T+V .

So, by Kato-Rellich we know that the above perturbed Coulomb potentials
correspond to self-adjoint operators on the same domain as the self-adjoint op-
erator of the unperturbed Coulomb potential.

The perturbations also preserve another important feature of the Coulomb-
potential, the boundedness from below, which implies that the spectrum of
the self-adjoint operators is bounded from below as well (cf. [16], 8.26). This
also implies the existence of a lowest eigenvalue λ0, which is referred to as the
ground state of the Schrödinger operator (cf. [14], 10.5). Before we get to our
result on the stability of the half-boundedness, we cite the following definition
of half-bounded operators.

Definition 3.2 ([14], before 2.12). A symmetric operator T is called bounded
from below, if

(u, Tu) ≥ γ‖u‖2, u ∈ D(T ) (152)

for some γ ∈ R.

Theorem 3.2 (Stability of half-boundedness, [16], 9.7). Let T be self-
adjoint and bounded from below with lower bound γT . Let V be symmetric and
T -bounded with T -bound less than 1. Then T +V is bounded from below as well.

More exactly, let

‖V u‖ ≤ a‖u‖+ b‖Tu‖, u ∈ D(T ) (153)

with b < 1, then

γ := γT −max

{
a

1− b
, a+ b|γT |

}
is a lower bound of T + V (this lower bound is by no means optimal).

The lower bound γT of the self-adjoint operator with Coulomb potential has
already been found. It is the lowest eigenvalue λ0.

The third of our main results will show that the discrete spectrum of the
considered operators is indeed contained in [γ, 0] (where γ is the lower bound),
since the essential spectrum for the above perturbations will always stay the
same, namely [0,∞). Recall that the spectrum of self-adjoint operators is real-
valued and σ(T ) = σd(T ) ∪̇ σess(T ). Before we formulate the result, we cite the
following definition of T -compact operators.

Definition 3.3 ([16], before 9.12). Let T, V with D(T ) ⊆ D(V ). The operator
V is called T-compact or relatively compact with respect to T , if

V |D(T ) : (D(T ), ‖.‖T )→ L2(I) (154)

is a compact operator2. Equivalently, V is called T -compact, if for any sequence

2Here ‖.‖T is the restriction of ‖.‖ to D(T )
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xn ∈ D(V ), where ‖xn‖T is bounded, there exists a subsequence xnk such that
V xnk converges.

Theorem 3.3 (Stability of the essential spectrum, [16], 9.14). Let T
be self-adjoint, V symmetric and T -compact, then T + V is self-adjoint and it
holds that σess(T + V ) = σess(T ).

Theorem 3.3 states that as long as the perturbations are symmetric and T -
compact, the essential spectrum of the operators T and T+V is the same. To see
that W1 and W2 are relatively compact with respect to the self-adjoint operator
T for the Coulomb potential, we will cite a result given in [14]. However, this
result is stated for the Schrödinger equation in three dimensions. This equation
is actually the origin of the radial Schrödinger equation. A detailed description,
how the radial Schrödinger equation is derived from the Schrödinger equation
in 3D, can be found in chapter 4 of [11] and in chapter 10.4 of [14].

As the name already suggests, the Schrödinger equation in 3D is defined for
functions ψ : R3 → R, instead of u : I = (0,∞) → R for the radial equation.
Similarly, in the 3D case we consider SL expressions of the form

τ = −∆ + V (x), x ∈ R3 (155)

instead of

τ = −∆ +
`(`+ 1)

r2
+ V (r), r ∈ I. (156)

In [14] the operator with SL expression (155) and the 3D-version of the
Coulomb potential

V (x) = − Z

|x|
, x ∈ R3 (157)

is itself viewed as a perturbation of the free Schrödinger operator with SL ex-
pression τ = −∆. For this operator the following theorem holds:

Theorem 3.4 ([14], 7.8). The free Schrödinger operator T = −∆ with core
C∞c (R3), the set of smooth, compactly supported functions on R3, is self-adjoint
and its spectrum is characterized by

σd(T ) = ∅, σess(T ) = [0,∞). (158)

Now we can give the result by [14], which states that the operators with SL
expression (155) and the 3D versions of the potentials considered in this thesis
are relatively compact with respect to the free Schrödinger operator, and hence
inherit its essential spectrum.

Theorem 3.5 ([14], 10.2). Let V = V1 + V2 be real-valued with V1 ∈ L2(R3)
and V2 ∈ L∞0 (R3). Then V is relatively compact with respect to T = −∆. In
particular T +V is self-adjoint, bounded from below and σess(T +V ) = σess(T ).

Formally, of course, we need to make a distinction between the potential V
in Equation (137) and the corresponding 3D version of V in Equation (155).
However, following the convention from [17] on page 224 in Chapter 18.3, we
refer to both by the same symbol V .
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The condition in Theorem 3.5 can be rewritten for radial potentials. In [14] it
is claimed that for spherically symmetric potentials (just as the ones considered
above) the condition becomes V (r) = V1(r) + V2(r), where

V1(r) ∈ L2(I, w), V2(r) ∈ L∞0 (I). (159)

Here, w denotes the weight function w(r) = r2. The Coulomb potential for
instance can be partitioned like

V1(r) =

{
−Zr r ≤ c
0 c < r,

V2(r) =

{
0 r ≤ c
−Zr c < r,

(160)

where c ∈ I is arbitrary. Since the Hulthén and the Yukawa potential differ
from the Coulomb potential only by the L∞0 (I)-functions W1 and W2, the re-
sult follows.

Next, we cite a result from [17], which says that for α 6= 0 the perturbed
Coulomb potentials only have finitely many eigenvalues.

Theorem 3.6 (Weidmann [17],18.15). Let the function V : I → R be locally
bounded with

(i) V (r) ≥ −c/r2 with c < 1/4 for large r,

(ii) r3/2V (r)→ 0 for r → 0,

(iii) V (r) ∈ L2([0, c], w(r)), where w(r) = r2 and c ∈ I.

Then the preminimal operator T ′min, produced by τ = −∆ + V (|x|) on C∞0 (R3),
is essentially self-adjoint, and T0 = T ′min has at most finitely many negative
eigenvalues, with finite geometric multiplicity.

The conditions in Theorem 3.6 hold for the Hulthén and Yukawa potential,
but not for the Coulomb potential, which has an infinite number of eigenvalues,
as we see in Equation (127). Just as the Coulomb potential, the Hulthén and
the Yukawa potential have a first order pole at r = 0. Therefore, (ii) and (iii)
are clearly satisfied. To see that (i) holds, consider in the Yukawa case

−2e−αr

r
≥ − c

r2
⇔ 2

α
x ≤ cex, x = αr →∞, (161)

and in the Hulhtén case

− 2α

eαr − 1
≥ − c

r2
⇔ 2

α
x2 ≤ c (ex − 1) , x = αr →∞. (162)

Finally, we deal with the question, whether the discrete spectrum of the
perturbed Coulomb potentials contains any eigenvalues at all. In general, the
Hulthén and the Yukawa potential lie above the Coulomb potential, because the
perturbations W1,W2 are positive functions. For α → ∞, the potentials tend
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to 0 and the operators converge to the free Schrödinger operator. Therefore the
critical value αc of the parameter α, which guarantees that there is at least one
eigenvalue, is of special interest.

The critical value for the Hulthén respectively Yukawa potential has been
calculated by Lassaut and Lombard in [13]. The relevant values (2/αc = γc) are

γc = π2/6, (Hulthén, ` = 0), (163)

γc ≈ 1.6798, (Yukawa, ` = 0). (164)

In particular, Lassaut and Lombard made the transformation x = αr in

− d2

dr2
u(r) +

(
`(`+ 1)

r2
+ V (r)

)
u(r) = λu(r) (165)

to obtain

− d2

dx2
u(x) +

(
`(`+ 1)

x2
+

2

α
Ṽ (x)

)
u(x) = λ̃u(x), (166)

where λ̃ = λ/α and

Ṽ (x) = −e
−x

x
(167)

in the Yukawa case and

Ṽ (x) = − 1

ex − 1
(168)

for the Hulthén potential, and calculated the critical value of the parameter
γ = 2/α.

Another way to find an upper bound for αc in the Yukawa case can be found
in [4] by Bylicki, Stachów, Karwowski and Mukherjee. They propose that as a
necessary condition for the potential to hold bound states, the effective potential

Veff(r) =
`(`+ 1)

r2
+ V (r) (169)

needs to have roots in the positive real numbers and take negative values in
between.3 For the Yukawa potential the effective potential is

Veff(r) =
`(`+ 1)

r2
− e−αr

r
. (170)

Making the transformation x = αr yields

Ṽeff(x) =
p

x2
− e−x

x
, (171)

where p = `(`+ 1)/α. The above function has a minimum at x when

−2px−3 + e−xx−1 + e−xx−2 = 0

⇔ 2p = (x2 + x)e−x = g(x). (172)

3In WKB theory, the roots of the effective potential are called turning points of the equa-
tion.
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This means that Ṽeff(x) has a minimum at xmin when 2p is chosen not larger
than the maximum of g(x), which becomes zero for x = 0 and x → ∞ and is
positive in between. Substituting (172) into (171) yields

Ṽeff(xmin) = (xmin − 1)
e−xmin

2xmin
, (173)

which means that Ṽeff(x) has negative values if xmin < 1 or

p < g(1)/2 = e−1 ≈ 0.367879. (174)
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Figure 1: Plot of the effective potential Ṽeff(x) (Yukawa) given in (171) for
different values of p = `(`+ 1)/α. Here, we see that the effective potential has
negative values as long as p ≤ e−1 ≈ 0.367879, which is a necessary condition
for the potential to allow eigenvalues for the radial Schrödinger equation. (See
also [4])
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4 The transformed radial Schrödinger equation

In the last section we proved the existence of eigenvalues and eigenfunctions of
the radial Schrödinger equation

−u′′(r) +

(
`(`+ 1)

r2
+ V (r)

)
u(r) = λu(r) (175)

on the domain r ∈ (0,∞). In this section we are going to apply a change
of the independent variable r 7→ s that transforms the infinite interval (0,∞)
to the finite interval (0, 1) and thus create a new, transformed equation for
s ∈ (0, 1). Therefore our main interest in this section is whether and how
eigenfunctions and eigenvalues of the original problem on (0,∞) are carried
over to the transformed problem on (0, 1).

In the paragraphs following the introduction we specify the transformations
we consider in this thesis and give a brief overview on the topic of this section.

In Subsection 4.1 we describe the steps of transforming the equation and
provide a Sturm Liouville expression of the transformed equation.

In Subsection 4.2 we will see that the two equations share the same set of
eigenvalues and that the eigenfunctions of the individual equations correspond
to each other in a one-to-one fashion.

In Subsections 4.4 and 4.3 we apply the results of the previous subsections
on the radial Schrödinger equation with the two specific transformations TCII

(transformation compressing the infinite interval) and ATCII (alternative trans-
formation compressing the infinite interval).

The set of transformations t that we consider in this thesis can be specified
as follows

t :

{
(0,∞) → (0, 1),

r 7→ t(r) =: s,
t ∈ C∞((0,∞)), bijective. (176)

We then apply the change of variable r 7→ s = t(r) in (175), so that (175)
becomes

−a(s)z′′(s)− b(s)z′(s) + c(s)z(s) = λz(s), s ∈ (0, 1), (177)

where a(s), b(s), c(s) are yet to be determined coefficient functions and z(s) is
defined by u(r) = z(t(r)). The relationship between u, z and t can also be seen
in the following commutative diagram

r ∈ (0,∞) s ∈ (0, 1) z(s), u(r) ∈ R.
t(r)

t−1(s)

u(r)

z(s)

In Section 3.1 we have seen that the eigenfunctions of (175) are characterized
by the boundary conditions

u(0) = u(∞) = 0. (178)
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The equivalent set of boundary conditions for (177) is given by

z(0) = z(1) = 0. (179)

These boundary conditions characterize the eigenfunctions of the transformed
problem (177) in exactly the same way as the boundary conditions (178) char-
acterize the eigenfunctions of the original problem. This will become apparent
in Lemma 4.2 in Section 4.2, where we will see that the eigenfunctions of (177)
are exactly the transformed eigenfunctions of the original problem (175). Ad-
ditionally, we will see that the eigenfunctions of the transformed equation are
again smooth functions on the entire interval.

The specific transformations of type (176) that we study in this section are
the TCII transformations (transformation compressing the infinite interval)

tξ :

{
(0,∞) → (0, 1),

r 7→ r
r+ξ = 1− (1 + r

ξ )−1,
(180)

where ξ > 0 is a free parameter of the transformation, and the ATCII transfor-
mations (alternative transformation compressing the infinite interval)

tβ :

{
(0,∞) → (0, 1),

r 7→ 1− (1 + r)−β ,
(181)

with the free parameter β > 0.
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4.1 Transformation by a change of the independent vari-
able

The substitution r 7→ s = t(r) transforms the radial Schrödinger equation on
r ∈ (0,∞) to a second-order, linear ODE with eigenvalue λ on s ∈ (0, 1). Both
eigenvalue problems can be represented by their SL expressions. In this section
we carry out the steps of the transformation to connect them to each other.

Following the notation of the last paragraph in Subsection 3.3 we denote the
coefficient of u(r) as Veff, so that (175) is of the form

−u′′(r) + Veff(r)u(r) = λu(r), r ∈ (0,∞). (182)

The left-hand side of this equation is equivalent to the SL expression

τ1 =
1

w1(r)

(
− d

dr
p1(r)

d

dr
+ q1(r)

)
, r ∈ (0,∞), (183)

where the coefficients are given by

p1(r) = 1, q1(r) = Veff(r), w1(r) = 1. (184)

We replace u(r) by (z ◦ t)(r) := z(t(r)), where t is given by (176), and obtain

− (z′′ ◦ t)(r) · (t′(r))2 − (z′ ◦ t)(r) · (t′′(r))
+ Veff(r) (z ◦ t)(r) = λ(z ◦ t)(r), r ∈ (0,∞), (185)

according to the conventional chain rule of calculus. The substitution t(r) = s,
r = t−1(s) now yields

− z′′(s) ·
(
(t′ ◦ t−1)(s)

)2 − z′(s) · (t′′ ◦ t−1)(s)

+ (Veff ◦ t−1)(s) z(s) = λz(s), s ∈ (0, 1). (186)

Hence, we retrieved an eigenvalue problem given on the domain (0, 1).
We can find the suitable SL expression τ2 for the left hand side of (186), so

that the whole equation becomes τ2z = λz, if we multiply the equation with an
appropriate integrating factor. The integrating factor for a general, linear 2nd
order ODE of the form

−a(s)z′′(s)− b(s)z′(s) + c(s)z(s) = λz(s) (187)

is given by

m(s) :=
1

a(s)
exp

(∫ s

s0

b(x)

a(x)
dx

)
. (188)

Collecting terms then gives the following Sturm Liouville form

− (a(s)m(s) · z′(s))′ + c(s)m(s) · z(s) = λ ·m(s) · z(s). (189)

(see also [12], p.36; [8], 2.1, p.24)
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With the coefficients of Equation (186) we have∫ s

s0

b(x)

a(x)
dx =

∫ s

s0

t′′ ◦ t−1(x)

(t′ ◦ t−1(x))2
dx =

∫ s

s0

(
t′′

t′

)
◦ t−1(x) · 1

t′ ◦ t−1(x)
dx

=

∫ t−1(s)

t−1(s0)

t′′(x)

t′(x)
dx = log

(
(t′ ◦ t−1)(s)

)
, (190)

which yields the integrating factor

m(s) =
1

a(s)
exp

(∫ s

s0

b(x)

a(x)
dx

)
=

t′ ◦ t−1(s)

(t′ ◦ t−1(s))2
=

1

t′ ◦ t−1(s)
. (191)

Thus, the eigenvalue problem given by (186) can be rewritten as

− d

ds

(
(t′ ◦ t−1)(s) · d

ds
z(s)

)
+
Veff ◦ t−1(s)

t′ ◦ t−1(s)
· z(s)

= λ
1

(t′ ◦ t−1)(s)
z(s), s ∈ (0, 1) (192)

or τ2z = λz, where τ2 is given by

τ2 =
1

w2(s)

(
− d

ds
p2(s)

d

ds
+ q2(s)

)
, s ∈ (0, 1) (193)

and the SL coefficients are defined as

p2(s) = t′ ◦ t−1(s), q2(s) =
Veff ◦ t−1(s)

t′ ◦ t−1(s)
, w2(s) =

1

t′ ◦ t−1(s)
. (194)

36



4.2 Connecting the equations via a Liouville transforma-
tion L

More formally, we can describe the step from (186) to (192) by a special uni-
tary mapping L, a generalization of Liouville’s transformation [12]. This will
enable us to connect the set of eigenvalues and the eigenfunctions of the ra-
dial Schrödinger equation to the set of eigenvalues and the eigenfunctions of the
transformed equation. In fact, we will see that the two equations share the same
set of eigenvalues and that the eigenfunctions of the two equations correspond
to each other in a one-to-one fashion.

For transformations of type (176) we define the associated Liouville trans-
formation as

L :

{
L2(I) → L2(J,w2),

u 7→ z = u ◦ t−1,
(195)

where we have set I = (0,∞) and J = (0, 1) (see also [12], 3.1).
First of all, L is well-defined and isometric. This can be seen from the

following (where we apply the rule of integration by substitution)

‖z‖2L2(J,w2) =

∫
J

u2(t−1(s)) · 1

t′(t−1(s))
ds

=

∫
t−1(J)

u2(r)dr =

∫
I

u2(r)dr = ‖u‖2L2(I). (196)

From the definition it can also be seen that L is linear and that its inverse
is the Liouville transformation

L−1 :

{
L2(J,w2) → L2(I),

z 7→ u = z ◦ t.
(197)

Hence, L is bijective.

The definition of the Liouville transformation makes it easier to connect
the radial Schrödinger equation to the transformed equation. In fact, we can
reiterate the steps in Subsection 4.1 in terms of u, λ, τ1, τ2 and L. Starting with

τ1u = λu (198)

in (182), Equation (186) then becomes

Lτ1u = λLu, (199)

which is finally transformed to

τ2Lu = λLu (200)

in (192). Thus, we can describe the relation between τ1, τ2 and L as

Lτ1u = τ2Lu (201)

when u ∈ Dmax(τ1), Lu ∈ Dmax(τ2).
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The mapping L also links the maximal domains of τ1 and τ2. This is the
content of the following lemma.

Lemma 4.1. Let L, τ1, τ2 be given, so that (201) holds. Then L maps the
maximal domain of τ1 on the maximal domain of τ2,

L(Dmax(τ1)) = Dmax(τ2). (202)

Proof. In Section 2.2, (91) we defined the maximal domain of a Sturm Liouville
expression τ in the following way

Dmax = {u : I → C | u, pu′ ∈ ACloc(I), u, τu ∈ L2(I)}. (203)

With this the desired statement follows from the equalities

LDmax(τ1) = L {u : I → C | u, p1u
′ ∈ ACloc(I), u, τ1u ∈ L2(I)}

= {Lu : J → C | Lu,L(p1u)′) ∈ ACloc(J), Lu, Lτ1u ∈ L2(J,w2)}
= {Lu : J → C | Lu, p2(Lu)′ ∈ ACloc(J), Lu, τ2Lu ∈ L2(J,w2)}
= {z : J → C | z, p2z

′ ∈ ACloc(J), z, τ2z ∈ L2(J,w2)}
= Dmax(τ2).

Finally, we formulate the main result, which links eigenfunctions and eigen-
values of τ1 and τ2 via the Liouville transformation L.

Lemma 4.2. Let Sturm Liouville expressions τ1, τ2 and Liouville transforma-
tion L be given, so that (201) holds.

Then L maps eigenfunctions of τ1 for eigenvalue λ on the eigenfunctions of
τ2 for eigenvalue λ in a one-to-one correspondence.

In particular, we say that u is an eigenfunction of τ1 with eigenvalue λ,

τ1u = λu, (204)

if and only if z = Lu is eigenfunction of τ2 to the eigenvalue λ,

τ2z = λz. (205)

Proof. This directly follows from (201). Suppose u is an eigenfunction of τ1
with eigenvalue λ. Then

τ2z = τ2Lu = Lτ1u = Lλu = λLu = λz. (206)

reveals that z as well is an eigenfunction of τ2 with eigenvalue λ.
Conversely, if z is eigenfunction of τ2 with eigenvalue λ, then

τ1u = L−1Lτ1u = L−1τ2Lu = L−1τ2z = L−1λz = L−1λLu = λu. (207)

shows that u as well is an eigenfunction of τ1 for the eigenvalue λ.
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As a consequence of Lemma 4.2, we can characterize the smoothness of the
eigenfunctions z of τ2. In Section 3.1 we have seen that the eigenfunctions u of
τ1 are smooth functions on the entire interval I = (0,∞). Also, transformations
t : I → J = (0, 1) of type (176) are bijective and smooth and therefore have an
inverse t−1 : J → I, which is bijective and smooth as well. With this it follows
that the eigenfunctions z of τ2, which are exactly the images of u under L, are
smooth as composition of smooth functions, z = Lu = u ◦ t−1.
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In the last two subsections of this section, we discuss the transformed radial
Schrödinger equation for two specific transformations of type (176).

4.3 A transformation compressing the infinite interval -
TCII

The first transformation that we study here is

tξ :

{
(0,∞) → (0, 1),

r 7→ r
r+ξ ,

(208)

where ξ > 0 is a free parameter of the transformation.
At first we are going to calculate the coefficients of the transformed Equation

(192) with transformation tξ. Here, the derivative is given by

t′ξ(r) =
(r + ξ)− r

(r + ξ)2
=

ξ

(r + ξ)2
(209)

Since the transformation tξ can be rewritten as

tξ(r) =
1

1 + (ξ/r)
=

(
1 +

ξ

r

)−1

(210)

the inverse function is given by

t−1
ξ (s) = ξ ·

(
1

s
− 1

)−1

= ξ · s

1− s
, s ∈ (0, 1). (211)

With this it also holds that

t−1
ξ (s) + ξ = ξ

(
s

1− s
+ 1

)
= ξ · 1

1− s
. (212)

Thus, the computation of the coefficient t′ξ ◦ t
−1
ξ (s) yields

t′ξ ◦ t−1
ξ (s) =

(1− s)2

ξ
. (213)

Finally, the transformed Equation (192) with transformation tξ is given by

−
(

(1− s)2

ξ
z′
)′

+
ξVeff

(
ξs

1−s

)
(1− s)2

z = λ
ξ

(1− s)2
z, s ∈ (0, 1). (214)

However, the numerical calculations have been carried out via the equivalent
equation

− (1− s)4

ξ2
z′′ +

2(1− s)3

ξ2
z′ + Veff

(
ξs

1− s

)
z = λz, s ∈ (0, 1), (215)

which we obtain from Equation (214) by multiplying with (1 − s)2/ξ, and the
boundary conditions

z(0) = z(1) = 0. (216)

For later use we denote the coefficients of Equation (215) in the following way:

a2 = − (1− s)4

ξ2
, a1 =

2(1− s)3

ξ2
, a0 = Veff

(
ξs

1− s

)
. (217)
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4.4 An alternative transformation compressing the infi-
nite interval - ATCII

The second transformation is given by

tβ :

{
(0,∞) → (0, 1),

r 7→ 1− (1 + r)−β ,
(218)

where β > 0 is a free parameter of the transformation. For the numerical
calculations we set β = 1

2 .
The coefficients of the transformed Equation (192) with transformation tξ

are calculated as follows. Here we have

t′β(r) = β(1 + r)−(β+1) (219)

and

t−1
β :

{
(0, 1) → (0,∞),

s 7→ (1− s)−1/β − 1,
(220)

which yields

t′β ◦ t−1
β (s) = β(1− s)1+1/β =

(1− s)1+k

k
, (221)

where we have set 1/β = k for convenience. Hence, the transformed Equation
(192) with transformation tβ is given by

−
(

(1− s)1+k

k
z′
)′

+
kVeff

(
(1− s)−k − 1

)
(1− s)1+k

z = λ
k

(1− s)1+k
z, s ∈ (0, 1).

(222)
Here, again, we carried out the numerical calculations via the equivalent

equation

− (1− s)2k+2

k2
z′′ +

(1 + k)(1− s)2k+1

k2
z′ + Veff

(
(1− s)−k − 1

)
z = λz,

s ∈ (0, 1), (223)

which we obtain from Equation (222) by multiplication with (1− s)1+k/k, and
the boundary conditions

z(0) = z(1) = 0. (224)

For later use we denote the coefficients of Equation (223) as

a2 = − (1− s)2k+2

k2
, a1 =

(1 + k)(1− s)2k+1

k2
,

a0 = Veff

(
(1− s)−k − 1

)
. (225)

41



5 Numerical solution

In this section we present a way how to compute the eigenvalues and eigen-
functions of the radial Schrödinger equation numerically. We will use a finite
difference scheme and apply it to the transformed equations (215) and (223) that
we have derived in the last section. The continuous eigenvalue problem then
becomes an algebraic eigenvalue problem, which we can solve by the Matlab
function eig for instance.

5.1 The finite difference scheme

For the finite difference scheme we use the uniform mesh

ti = ih, i = 0, . . . , N, h =
1

N
, (226)

on the interval [0, 1]. For the value of z at the meshpoints we use the notation

zi = z(ti).

From the boundary conditions (224) and (216) we know that the eigenfunctions
z vanish at the endpoints of the mesh

z0 := z(t0) = z(0) = 0, zN := z(tN ) = z(1) = 0. (227)

The first and second derivative are approximated by special 2k-step central
difference formulas, which are introduced in [2]. We consider only the derivatives
of the inner meshpoints i = 1, . . . , N − 1. At the innermost meshpoints i =
k, . . . , N − k we approximate the derivatives by the arithmetic means

z′(ti) ≈
1

h

k∑
j=−k

βj+kzi+j , z′′(ti) ≈
1

h2

k∑
j=−k

αj+kzi+j , (228)

with weights αi, βi ∈ R. However, when k > 1, we cannot use the above
formulae for the first and last (k− 1) meshpoints. In this case we then add the
approximations (αij , βij ∈ R)

z′(ti) ≈
1

h

2k∑
j=1

βijzj , z′′(ti) ≈
1

h2

2k+1∑
j=1

αijzj , (229)

for the meshpoints with indices i = 1, . . . , k − 1, and

z′(ti) ≈
1

h

N−1∑
j=N−2k

βijzj , z′′(ti) ≈
1

h2

N−1∑
j=N−(2k+1)

αijzj , (230)

for the meshpoints with indices i = N − (k − 1), . . . , N − 1.

This finite difference scheme has consistency order 2k, when the weights
αi, αij , βi, βij are chosen in a specific way [2]. In fact, the finite difference
scheme then also becomes symmetric in the sense that

αj = α2k−j , βj = β2k−j , j = 0, . . . , k, (231)
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and
αij = αN−1−i,N−1−j , βij = −βN−1−i,N−1−j (232)

for i, j = 1, . . . , k − 1.
To describe the linear dependence of the above approximations on

z = (z1, . . . , zN−1)T in terms of matrices, we set

αij =

{
αj−i+k, i ≤ j ≤ 2k,

0, else
and βij =

{
βj−i+k, i ≤ j ≤ 2k,

0, else
(233)

for i = k, . . . , N − k and store the weights in the matrices A = (αij)
N−1
i,j=1 and

B = (βij)
N−1
i,j=1. For k = 2 they are for example given by

A =
1

12h2



−15 −4 14 −6 1
16 −30 16 −1
−1 16 −30 16 −1

. . .
. . .

. . .
. . .

. . .

−1 16 −30 16 −1
−1 16 −30 16

1 −6 14 −4 −15


(234)

and

B =
1

12h



−10 18 −6 1
−8 0 8 −1

1 −8 0 8 −1
. . .

. . .
. . .

. . .
. . .

1 −8 0 8 −1
1 −8 0 8
−1 6 −18 10


, (235)

where we have indicated the rows where the derivatives are approximated by
(229) and (230).

This enables us eventually to discretize the differential equations (215) and
(223) by replacing z, z′ and z′′ with z, Bz and Az. The resulting algebraic EVP
is given by

Rz = (D2A+D1B +D0) z = λz, (236)

where we have stored the coefficient functions ai(t) given by (217) and (225) in
the matrices

Di = diag (ai(t1), . . . , ai(tN−1)) , i = 0, 1, 2. (237)

Note that the matrices are well-defined since we have excluded the singularities
at t0 = 0 and tN = 1 via the boundary conditions (227).

5.2 Numerical experiments

In the following we compare how the two transformations TCII and ATCII in-
fluence the computation of the eigenvalues of the radial Schrödinger equation,
when we apply the finite difference scheme presented in the subsection above.
Here we used the same choice for the free parameter ξ in TCII as in [1],

ξ = (1.35)p(`+ 1), (238)
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where p = 2k denotes the order of the finite difference scheme, and set β = 1/2
in ATCII.

In Figures 2, 3 and 4 we plotted the relative error for several eigenvalues of
Hydrogen Atom potential, Hulthén potential and Yukawa potential against the
number of meshpoints N in the finite difference scheme. As the true value in
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Figure 2: Relative errors for eigenvalues of the radial Schrödinger equation with
Hydrogen Atom potential and transformation TCII (left) or ATCII (right).
As can be seen in the plots the eigenvalues converge faster when using TCII,
particularly for high values of `.
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the relative error we used the known exact eigenvalues of the Hydrogen Atom
potential and the Hulthén potential with ` = 0, or the reference eigenvalues that
are calculated from the finite difference scheme with order p = 8 and N = 1500.
The plots on the right hand side are related to TCII, while those on the left
hand side to ATCII.
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Figure 3: Relative errors for eigenvalues of the radial Schrödinger equation with
Hulthén potential (α = 0.02) and transformation TCII (left) or ATCII (right).
As can be seen in the plots the transformation TCII proves to be advantageous
over the alternative transformation ATCII.
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Figure 4: Relative errors for eigenvalues of the radial Schrödinger equation with
Yukawa potential (α = 0.005) and transformation TCII (left) or ATCII (right).
Apart from the case with ` = 0 and high values of n, the transformation TCII

again appears to be advantageous over the alternative transformation ATCII.
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5.3 Numerical Code

finiteDifferences.m

function [lambda,Y,t] = finiteDifferences(param,N,n)

% [lambda,Y,t] = finiteDifferences(param,N,n)

% This function returns eigenvalues of the transformed radial

% Schrödinger equation according to a finite difference scheme.

%

% Input:

% param ... Parameter object (see Parameter.m), which stores the

% values of l, alpha, xi and beta as well as the potential

% (Hydrogen Atom, Hulthén or Yukawa potential) and the used

% transformation (TCII or ATCII).

% N ... number of meshpoints

% n ... indices of desired eigenvalues

%

% Output:

% lambda ... desired eigenvalues

% Y ... matrix of columns of associated eigenfunctions

% t ... mesh

% After the application of the change of variable the EVP reads

% A2(t)*y’’(t) + A1(t)*y’(t) + A0(t)*y(t) = \lambda*y(t)

[A2,A1,A0] = equationCoefficients(param);

% compute the uniform mesh over [0,1] and the stepsize

t = linspace(0,1,N+2);

t([1 end]) = [];

h = t(2)-t(1);

% evaluate the coefficient functions at the interior meshpoints

D2 = diag(feval(A2,t));

D1 = diag(feval(A1,t));

D0 = diag(feval(A0,t));

% compute the coefficients of the difference schemes which

% approximate the second and the first order derivative

[A,B] = coeffMatrices(param.order,N+1);

% these columns can be removed due to the condition y(0)=y(1)=0

A(:,[1 end]) = [];

B(:,[1 end]) = [];

% assemble the matrix of the algebraic EVP

R = D2*A/h^2 + D1*B/h + D0;

% Compute the numerical eigenvalues

[Y,lambda] = eig(R);

lambda = diag(lambda);
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% Remove any infinite eigenvalues

i = (abs(lambda)==inf);

lambda(i)=[]; Y(:,i)=[];

% Sort the numerical eigenvalues by increasing real part

[~,i]=sort(real(lambda)); lambda=lambda(i); Y=Y(:,i);

% compute the indices of the eigenvalues

n = n - param.l;

n = n(n>0);

% Extract the eigenvalues and the eigenfunctions with the

% desired indexes

lambda=lambda(n);

Y=Y(:,n);

end

Parameter.m

% This class stores the essential information about the

% particular radial Schroedinger equation and the transformation

% as well as the order of the finite difference scheme.

classdef Parameter

properties

l

potentialName

potential

alpha

order

transformationName

beta

xi

end

methods

function this = set.potentialName(this,in)

if ismember(in,[’Hydrogen Atom’,’Hulthen’,’Yukawa’])

this.potentialName = in;

else

error(’potential must be either Hydrogen Atom, ’ ...

’Hulthen or Yukawa’);

end

end

function V = get.potential(this)

switch this.potentialName

case ’Hydrogen Atom’, V = @(r) -2./r;

case ’Hulthen’, V = @(r) -2*this.alpha* ...

exp(-this.alpha*r)./(1-exp(-this.alpha*r));
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case ’Yukawa’, V = @(r) -2*exp(-this.alpha*r)./r;

end

end

function out = get.xi(this)

out = (1.35)^(this.order)*(this.l+1);

end

function this = set.transformationName(this,in)

if ismember(in,[’TCII’,’ATCII’])

this.transformationName = in;

else

error(’transformation must be either set to TCII ...

or ATCII’);

end

end

end

end

equationCoefficients.m

function [A2,A1,A0] = equationCoefficients(param)

% [A2,A1,A0] = equationCoefficients(param)

% This functions returns the coefficient functions

% of a radial Schrödinger equation given by param.

%

% A2 ... coefficient of the second derivative

% A1 ... coefficient of the first derivative

% A0 ... coefficient of the linear term

switch param.transformationName

case ’TCII’

rxi = 1/param.xi;

A2=@(t) - rxi^2 * (1-t).^4;

A1=@(t) 2*rxi^2 * (1-t).^3;

A0=@(t) rxi^2 * param.l*(param.l+1)*((1./t)-1).^2 ...

+ param.potential(param.xi*(t./(1-t)));

case ’ATCII’

k = 1/param.beta;

A2=@(t) - param.beta^2.*(1-t).^(2*k+2);

A1=@(t) param.beta*(param.beta+1).*(1-t).^(2*k+1);

A0=@(t) param.l*(param.l+1)*(1-t).^(2*k)./ ...

(1-(1-t).^k).^2 + param.potential((1-t).^(-k)-1);

end

end
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coeffMatrices.m

function [A,B]=coeffMatrices(p, N)

% [A,B]=coeffMatrices(p, N)

% This function computes the coefficients of the difference

% quotients which approximate the first and second derivative

% on a equidistant mesh with N meshpoints.

%

% Input:

% p ... order of the difference scheme

% N ... number of mehspoints.

%

% Output:

% A ... matrix of rows of coefficients for the second derivative

% B ... matrix of rows of coefficients for the first derivative

k=p/2;

load(’coeff.mat’);

C2L = secondDerivative{k,1};

C2 = secondDerivative{k,2};

C2R = reshape(C2L(end:-1:1),size(C2L));

C1L = firstDerivative{k,1};

C1 = firstDerivative{k,2};

C1R = -reshape(C1L(end:-1:1),size(C1L));

A = [C2L; repmat([C2 0], N-p, 1); [0 C2]; C2R];

B = [C1L; repmat(C1, N-p+1, 1); C1R];

[NA,MA] = size(A);

[NB,MB] = size(B);

I = repmat((1:NA)’,1,MA);

J = repmat( 1:MA ,NA,1);

temp = min(N-k-1,I);

temp = max(0,temp-k);

J = J+temp;

A = sparse(I,J,A(:));

I = repmat((1:NB)’,1,MB);

J = repmat( 1:MB ,NB,1);

temp = min(N-k,I);

temp = max(0,temp-k);

J = J+temp;

B = sparse(I,J,B(:));

end
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exactEigenvalue.m

function lambda = exactEigenvalue(param,n)

% lambda = exactEigenvalue(param,n)

% This function returns sufficiently accurate eigenvalues to the

% indices n for a radial Schroedinger equation given by param.

% For the Hydrogen Atom potential and the Hulthen potential with

% l=0 this function relies on the exact formulas, in all other

% cases it computes the eigenvalues via ’finiteDifferences’

% with order p=8 and N=1500.

if strcmp(param.potentialName,’Hydrogen Atom’)

lambda = -(n).^(-2);

elseif strcmp(param.potentialName,’Hulthen’) && param.l==0

if param.alpha < 2

lambda = -(n.^(-1) - n*(param.alpha/2)).^2;

else

lambda = [];

end

else

param.order = 8;

lambda = finiteDifferences(param,1500,n);

end

end
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Table 1: Cell entries of the variable firstDerivative in coeff.mat:

{1,2} 1
2 ·

[
−1 0 1

]
{2,1} 1

12 ·
[
−3 −10 18 −6 1

]
{2,2} 1

12 ·
[

1 −8 0 8 −1
]

{3,1} 1
60 ·

[
−10 −77 150 −100 50 −15 2

2 −24 −35 80 −30 8 −1

]
{3,2} 1

60 ·
[
−1 9 −45 0 45 −9 1

]
{4,1} 1

840 ·

 −105 −1338 2940 −2940 2450 −1470 588 −140 15
15 −240 −798 1680 −1050 560 −210 48 −5
−5 60 −420 −378 1050 −420 140 −30 3


{4,2} 1

840 ·
[

3 −32 168 −672 0 672 −168 32 −3
]

{5,1} 1
2520 ·


−252 −4609 11340 −15120 17640 −15876 10584 −5040 1620 −315 28

28 −560 −3069 6720 −5880 4704 −2940 1344 −420 80 −7
−7 105 −945 −1914 4410 −2646 1470 −630 189 −35 3

3 −40 270 −1440 −924 3024 −1260 480 −135 24 −2


{5,2} 1

2520 ·
[
−2 25 −150 600 −2100 0 2100 −600 150 −25 2

]

{6,1} 1
27720 ·


−2310 −55991 152460 −254100 381150 −457380 426888 −304920 163350 −63525 16940 −2772 210

210 −5040 −39611 92400 −103950 110880 −97020 66528 −34650 13200 −3465 560 −42
−42 756 −8316 −27599 62370 −49896 38808 −24948 12474 −4620 1188 −189 14

14 −224 1848 −12320 −17589 44352 −25872 14784 −6930 2464 −616 96 −7
−7 105 −770 3850 −17325 −8580 32340 −13860 5775 −1925 462 −70 5


{6,2} 1

27720 ·
[

5 −72 495 −2200 7425 −23760 0 23760 −7425 2200 −495 72 −5
]
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Table 2: Cell entries of the variable secondDerivative in coeff.mat:
{1,2}

[
1 −2 1

]
{2,1} 1

12 ·
[

10 −15 −4 14 −6 1
]

{2,2} 1
12 ·

[
−1 16 −30 16 −1

]
{3,1} 1

180 ·
[

126 −70 −486 855 −670 324 −90 11
−11 214 −378 130 85 −54 16 −2

]
{3,2} 1

180 ·
[

2 −27 270 −490 270 −27 2
]

{4,1} 1
5040 ·

 3044 2135 −28944 57288 −65128 51786 −28560 10424 −2268 223
−223 5274 −7900 −2184 10458 −8932 4956 −1800 389 −38

38 −603 6984 −12460 5796 882 −952 396 −90 9


{4,2} 1

5040 ·
[
−9 128 −1008 8064 −14350 8064 −1008 128 −9

]
{5,1} 1

25200 ·


13420 29513 −234100 540150 −804200 888510 −731976 444100 −192900 56825 −10180 838
−838 23476 −25795 −49740 125340 −140504 114198 −68280 29290 −8540 1517 −124

124 −2326 31660 −53075 11640 27132 −25928 15990 −6900 2010 −356 29
−29 472 −4240 38040 −67430 34608 336 −2960 1635 −520 96 −8


{5,2} 1

25200 ·
[

8 −125 1000 −6000 42000 −73766 42000 −6000 1000 −125 8
]

{6,1} 1
831600 ·


397020 1545544 −11009160 29331060 −53967100 76285935 −83567088 70858920 −46112220 22619850 −8099080 8585828603265023

4294967296 −304260 21535
−21535 698510 −414141 −3170420 7774525 −10854030 11616330 −9658968 6189315 −2999150 1063315 − 8945214286725119

34359738368 39359 −2770
2770 −60315 950580 −1422421 −397650 2228985 −2535720 2109690 −1340658 643775 − 7778357571747839

34359738368 55035 −8270 579
−579 10876 −113004 1161336 −2002000 761508 8422396507717633

17179869184 −548592 370953 −181500 64196 −15624 2346 −164
164 −2875 25800 −172700 1325500 −2330328 1254000 −72600 −56100 42625 −17336 4500 −700 50


{6,2} 1

831600 ·
[
−50 864 −7425 44000 −222750 1425600 −2480478 1425600 −222750 44000 −7425 864 −50

]
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