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Abstract. This paper establishes a framework based on logic and au-
tomata theory in which to model and automatically verify that multiple
mobile robots, with sensing abilities, moving asynchronously, correctly
perform their tasks. The motivation is from practical scenarios in which
the environment is not completely know to the robots, e.g., physical
robots exploring a maze, or software agents exploring a hostile network.
The framework shows how to express tasks in a logical language, and ex-
hibits an algorithm solving the parameterised verification problem, where
the graphs are treated as the parameter. The main assumption that yields
decidability is that the robots take a bounded number of turns. We prove
that dropping this assumption results in undecidability, even for robots
with very limited (“local”) sensing abilities.

1 Introduction

Autonomous mobile robots are designed to achieve some task in an environment
without a central control. Foundational tasks include, for example, rendezvous
(gather all robots in a single position) and reconfiguration (move to a new config-
uration in a collision-free way) [25, 14, 15]. This paper studies robots in partially
known environments, i.e., robots do not have global information about the envi-
ronment, but may know some (often topological) information (e.g., whether the
environment is connected, or that it is a ring of some unknown size) [14]. The
motivation for studying partially known environments is that in many practical
scenarios the robots are unaware of the exact environment in which they are op-
erating, e.g., mobile software exploring a hostile computer network, or physical
robots that rendezvous in an environment not reachable by humans.

To illustrate, here is an example reconfiguration problem. Suppose that k
robots find themselves on different internal nodes of a binary tree, and each
robot has to reach a different leaf in a collision free way. Each robot can sense
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if its left (or right) child is occupied by a robot. One protocol for solving this
problem (assuming a large enough tree) is for each robot to execute ‘go to the
left child, then repeatedly go the right child’ until a leaf is reached. Each move
is guarded by a test that the child it wants to move to is not currently occupied.

As the example illustrates, we make the following modeling choices: en-
vironments are discrete (rather than continuous), robots have finite memory
(rather than being oblivious, or being Turing powerful), robots are nondeter-
ministic (rather than probabilistic), robots move asynchronously (rather than
synchronously), and robots can sense the positions and the internal states of
each robot no matter where they are, i.e., they can perform “remote” tests (but
cannot leave information at visited positions).3 The assumption that robots move
asynchronously is motivated as follows: processes in distributed systems have no
common notion of time since they may be running with different internal clocks,
and thus a standard abstraction is to assume that processes’ actions are inter-
leaved, see [26]. There are two main ways to interleave the robots: an adversary
tries to make sure that the robots do not succeed [16], and a co-operator tries
to help the robots succeed (reminiscent of schedulers in strategic reasoning [7]).

In this paper we provide a framework for modeling and verifying that multiple
mobile robots achieve a task (under adversarial and co-operative interleavings)
in a partially-known environment. We now explain how we model the fact that
environments are partially-known. Fix a class G of environments (e.g., G is the
set of all lines, or all grids, or all rings). The parameterised verification problem
states: Given robots R, decide if they solve the task T on all graphs G ∈ G.
Requiring the robots to solve the task T on all graphs from a class G is how we
model that the robots operate in partially-known environments — the robots
know they are in a graph from G, but they do not know which one. In contrast,
the classic (non-parameterised) verification problem states: Given robots R and
a graph G ∈ G, decide if robots R solve the task T on G. In that setting, the
robots can be designed to exploit the exact structure (size, etc.) of the graph.

Aims and Contributions. The aim of this work it to provide a formal frame-
work in which one can reason (both mathematically and computationally) about
multiple mobile-robots, with sensing abilities, moving asynchronously in a dis-
crete, static, partially-known environment. We prove that parameterised veri-
fication is undecidable already for line-environments, and even for robots with
limited tasks (e.g., halting) which can only detect collisions. I.e., a robot can only
sense which other robots share its current position. This undecidability result
also holds for robots that move synchronously. On the other hand, we prove that
parameterised verification is decidable for scenarios in which the number of times
that the robots take turns is bounded.4 This decidability result is very robust:

3 The ability to sense positions is a form of vision, while the ability to sense internal
states is a form of communication

4 In the example reconfiguration problem, there is some ordering of the robots that
switches turns at most k times in which the stated robot-protocol succeeds. Also, for
every ordering of the robots that switches turns a sufficiently large number of times,
the protocol succeeds (“ordering” and “switching” are formalised in Section 3).



it holds on a very general class of graphs called context-free sets of graphs which
include e.g., rings, trees, series-parallel graphs, but not grids; it also holds with
very powerful abilities called position-tests which allow each robot to remotely
test the positions of all the robots using formulas which include, e.g., the ability
to test connectivity, as well as state-tests that allow each robot to remotely test
the internal state of the other robots; it holds for tasks that are expressible using
a new logic MRTL (Multiple-Robot Task Logic), which can express many natural
tasks, e.g., reconfiguration, gathering, and “safe” variations (i.e., complete the
task without touching dangerous positions).

Related Work. The work closest to ours is [30] which also considered the
parameterised verification problem for multi-robot systems. However, in that
paper, the decidability result (and the corresponding logic RTL) was only for
one-robot systems (i.e., k = 1), and the undecidability result for k = 2 was for
multiple robots that move synchronously and have remote tests.

The distributed-computing community has proposed and studied a number
of models of robot systems, e.g., recently [24, 18, 10, 13, 8, 17]. This literature is
mostly mathematical, and theorems from this literature are parameterised, i.e.,
they may involve graph-parameters (e.g., the maximum degree, the number of
vertices, the diameter), memory parameters (e.g., the number of internal states
of the robot protocol), and the number of robots may be a parameter. Only
recently has there been emphasis on formal analysis of correctness of robots in a
parameterised setting [22, 4, 27, 23, 30, 29]. In these formal analyses, typically it is
the number of agents that is treated as the parameter [22, 4, 27, 23]. In contrast, in
this paper (as in [30]) we apply formal methods to the parameterised verification
problem in which it is the environment that is parameterised.

Also, the formal-verification community has placed emphasis on distributed
models in which processes are stationary and interact by sending messages (e.g.,
in a broadcast or rendezvous manner) or by using guarded commands. The pa-
rameterised verification problem for such distributed processes is, in general,
undecidable [31]. By simplifying the systems (e.g., restricting the mode of com-
munication, the abilities of the processes, the specification languages, etc.) one
can get decidable parameterised verification, recently e.g., [12, 1–3].

We refer the reader to [30, Section 7] for an up-to-date and detailed discussion
of the connections between multi-robot systems, classic automata theory (i.e.,
graph-walking automata) and distributed systems (in particular, token-passing
systems). Finally, we mention that there is a smattering of work on parameterised
synthesis (called generalised planning in the AI literature) [11, 19–21].

2 Background: Automata Theory

Write B∗ and Bω for the sets of finite and infinite sequences over alphabet B,
respectively. The empty sequence is denoted ε. Write [n] for the set {1, 2, · · · , n}.

Graphs and Trees. A Σ-graph, or graph, G, is a tuple (V,E,Σ, λ) where V is
a finite set of vertices, E ⊆ V × V is the edge relation, Σ is a finite set of edge



labels, and λ : E → Σ is the edge labeling function. A ∆-ary tree (for ∆ ∈ N) is
a Σ-graph (V,E,Σ, λ) where (V,E) is a tree, Σ = [∆] ∪ {up}, and λ labels the
edge leading to the node in direction i (if it exists) by i, and the edge leading
to the parent of a node (other than the root) is labelled by up. We may rename
the labels for convenience, e.g., for binary trees (∆ = 2) we let Σ = {lc, rc, up}
where lc replaces 1 and rc replaces 2.

Monadic Second-order Logic. Formulas are interpreted in Σ-graphs G. De-
fine the set of monadic second-order formulas MSOL(Σ) as follows. Formulas of
MSOL(Σ) are built using first-order variables x, y, · · · that vary over vertices, and
set variables X,Y, · · · that vary over sets of vertices. The atomic formulas (when
interpreted over Σ-graphs) are: x = y (denoting that vertex x is the same as ver-
tex y), x ∈ X (denoting that vertex x is in the set of vertices X), edgσ(x, y) (de-
noting that there is an edge from x to y labeled σ ∈ Σ) and true (the formula that
is always true). The formulas of MSOL(Σ) are built from the atomic formulas
using the Boolean connectives (i.e., ¬,∨,∧,→) and variable quantification (i.e.,
∀,∃ over both types of variables). A variable that is not quantified is called free.
The fragment of MSOL(Σ) which does not mention set variables is called first-
order logic, denoted FOL(Σ). Write MSOLk(Σ) for formulas with at most k many
free first-order variables and no free set-variables. We abbreviate z1, · · · , zk by
z. We write φ(x1, · · · , xk) to mean that the free variables from the formula φ are
amongst the set {x1, · · · , xk} – note that the formula φ(x1, · · · , xk) does not need
to use all of the variables x1, · · · , xk. For a graph G, and v1, · · · , vk ∈ V , we write
G |= φ(v1, · · · , vk) to mean that φ holds in G with variable xi simultaneously
substituted by vertex vi (for all i ∈ [k] for which xi occurs free in φ). Here are
some examples of formulas and their meanings: The formula ∀x(x ∈ X → x ∈ Y )
means that X ⊆ Y . Similarly, there are formulas for the set operations ∪,∩,=,
and relative complement X\Y . The formula edg(x, y) :=

∨
σ∈Σ edgσ(x, y) means

that there is an edge from x to y (here Σ is assumed to be finite). The for-
mula E∗(x, y) := ∀Z[(closedE(Z) ∧ x ∈ Z) → y ∈ Z] where closedE(Z) is
∀a∀b[(a ∈ Z ∧ E(a, b)) → b ∈ Z] defines the transitive closure of E. Generally,
MSOL can express the 1-ary transitive closure operator (e.g., [30]).

The Validity Problem and Courcelle’s Theorem. A sentence is a formula
with no free variables. Let Φ be a set of sentences, and let G be a set of graphs. The
Φ-validity problem of G is to decide, given φ ∈ Φ, whether for all graphs G ∈ G, it
holds that G |= φ. Unfortunately, the MSOL(Σ)-validity problem for the set G of
all Σ-graphs is undecidable. However, Courcelle’s Theorem states that MSOL-
validity of context-free sets of graphs is uniformly decidable, i.e., there is an
algorithm that given a description of a context-free set of graphs G and an MSOL-
sentence φ decides if every graph in G satisfies φ [9]. Context-free sets of graphs
are the analogue of context-free sets of strings, and can be described by graph
grammars, equations using certain graph operations, or MSOL-transductions of
the set of trees. Formally, G is context-free if it is MSOL-definable and of bounded
clique-width [9]. Examples include, for a fixed alphabet, the set of labeled lines,
rings, trees, series-parallel graphs, cliques, but not the set of grids.



Automata and Regular Expressions. Ordinary regular-expressions over a
finite alphabet B are built from the sets ∅, {ε}, and {b} (b ∈ B), and the opera-
tions union +, concatenation ·, and Kleene-star ∗. Kleene’s Theorem states that
the languages definable by regular expressions over alphabet B are exactly those
recognised by finite automata over alphabet B. An ω-regular expression over al-
phabet B is inductively defined to be of the form: expω, exp·r, or r+r′, where exp
is an ordinary regular-expression over B, and r, r′ are ω-regular expressions over
B. An ω-regular language is one defined by an ω-regular expression. A variation
of Kleene’s Theorem says that the languages definable by ω-regular expressions
over alphabet B are exactly the languages recognised by Büchi automata over
alphabet B (which are like finite automata except they take infinite words as
input, and accept if some accepting state occurs infinitely often).

3 The Model of Robot Systems

In this section we provide a framework for modeling multi-robot systems param-
eterised by their environment. Environments are modeled as Σ-graphs G and
robots are modeled as regular languages of instructions. An instruction either
tells the robot to move along an edge, or to test robot positions (e.g., a robot
can learn which other robots are at the same vertex as it is, or if there is a robot
north of it). Tests are formalised as logical formulas.

Instructions for Robots. Fix a number k of robots and a set of edge labels
Σ. A command is a symbol from {↑σ: σ ∈ Σ} ∪ {	}. The command ↑σ tells
the robot to move from its current vertex along the edge labeled σ, and the
command 	 tells the robot to stay at its current vertex. A position-test is a
formula from MSOLk(Σ). A state-test is an expression of the form “robot i is in
state q”, where i ∈ [k] and q is a symbol denoting a state of a robot (formally
we may assume that all robots have states from N, and that q ∈ N)5. A position
test τ(x1, · · · , xk) allows the robot to test that τ(x1, · · · , xk) holds in G, where
xi is the current vertex of robot Ri in G. Simple tests include “xi = xj” which
tests if robots i and j are in the same vertex (i.e., collision detection), and
“edg(xi, xj) ∨ edg(xj , xi)” which tests if robots i and j are adjacent. A test is a
state-test or a position-test. The instruction set insΣ,k consists of all expressions
of the form τ → κ where τ is a test and κ is a command.

Robots, Configurations, Runs. A k-robot ensemble is a vector of robots
〈R1, · · · , Rk〉 where each robot Ri = 〈Qi, δi〉, each Qi is a finite set of states,
and each δi ⊂ Qi × insΣ,k × Qi is a finite transition relation. For technical
convenience, we assume that robot i does not test its own state, i.e., no ins in
a transition (p, ins, q) ∈ δi contains any occurrences of state-tests of the form
“robot i is in state j”. We designate a subset Ii ⊆ Qi of the states of robot i

5 Note that, for ease of exposition, we do not explicitly allow Boolean combinations
of state-tests. However, these can be indirectly performed by chaining state-tests
(remembering the previous test results in the local state) to perform conjunctions,
and using nondeterminism for disjunctions.



as initial states, and a subset Ai ⊆ Qi of its states as accepting states. A state
p ∈ Qi is called halting if the only transition the robot has from p is (p, true, p).
Thus we model a halting robot as one that forever stays in the same state and
does not move. The halting states are denoted Hi ⊆ Qi.

Fix a Σ-graph G. A configuration c of 〈R1, · · · , Rk〉 on graph G is a pair
〈v, q〉 ∈ V k ×

∏
i∈[k]Qi. A configuration is initial if q ∈

∏
Ii. For a test τ and a

configuration c = 〈u, p〉, define c 
 τ to mean that configuration c makes τ true
in G. Formally, if τ is a position test then define c 
 τ iff G |= τ(u), and if τ is a
state-test, say “robot i is in state j”, then define c 
 τ iff pi = j. The following
definition of `i expresses that one configuration results from another after robot
i successfully executes an instruction, while the rest are idle: for i ∈ [k] and
configurations c = 〈w, q〉 , d = 〈v, p〉, write c `i d if pj = qj and wj = vj for all
j 6= i, and there exists a transition (pi, τ → κ, qi) ∈ δi (i.e., of robot Ri) such
that c 
 τ (i.e., the current configuration satisfies the test τ) and, if κ =↑σ then
λ(wi, vi) = σ, and if κ =	 then wi = vi.

Schedules and Runs. A schedule is a finite or infinite sequence S = s1s2s3 · · ·
where si ∈ [k]. A run ρ of 〈R1, · · · , Rk〉 on G starting with an initial config-
uration c according to schedule S is a finite or infinite sequence c1c2c3 · · · of
configurations such that c1 = c and for all i, ci `si ci+1. The set (resp. sequence)
of positions of a run α = 〈v1, p1〉 〈v2, p2〉 · · · is the set of positions {v1, v2, · · · }
(resp. sequence v1v2 · · · of positions) of its configurations. In a similar way define
the set (resp. sequence) of positions of robot i on a run.

Orderings. A (finite) k-ordering is a string α ∈ [k]+, say of length N + 1, such
that αi 6= αi+1 for 1 ≤ i ≤ N . Write ||α|| = N to mean that |α| = N + 1,
and say that α is N -switching. E.g., 171 is 2-switching. Say that a schedule S

follows α if S is in α1
∗α2
∗ · · ·αN ∗αN+1

∗ or α1
∗α2
∗ · · ·αN ∗αN+1

ω, i.e., robot α1

is scheduled for some (possibly no) time, then robot α2 is scheduled, and so on,
until αN+1 which can be scheduled forever. Similarly, an infinite k-ordering of
k robots is a string α ∈ [k]ω such that αi 6= αi+1 for all i ∈ N. In this case write
||α|| =∞. A schedule follows α if the schedule is in the set α1

∗α2
∗ · · · .

Robot Tasks. Robots should achieve some task in their environment. We give
some examples of foundational robot tasks [25]: A robot ensemble deploys or
reconfigures if they move, in a collision-free way, to a certain target configuration.
A robot ensemble gathers if, no matter where each robot starts, there is a vertex
z, such that eventually every robot is in z. A robot ensemble collaboratively
explores a graph if, no matter where they start, every node is eventually visited
by at least one robot. All of these tasks have safe variations: the robots complete
their task without entering certain pre-designated “bad” nodes.

Multi-Robot Task Logic — MRTL. We now define MRTL, a logic for formally
expressing robot tasks. We first define the syntax and semantics, and then we
give some example formulas. Later (in Lemma 1) we prove that, when restricted
to bounded-switching orderings, MRTL formulas (and therefore many interesting
natural tasks) can be converted into MSOL formulas over graphs.



MRTL Syntax. Fix k ∈ N and Σ. Formulas of MRTLk are built, as in the
definition of MSOL(Σ) from Section 2, from the following atomic formulas: x = y,
edgσ (for σ ∈ Σ), x ∈ X, true, and the following additional atomic formulas
(with free variables X,x, y each of size k) ReachQ, Halt

K
Q , InftyQ and ReptKQ

where Q ∈ {∃,∀} and ∅ 6= K ⊆ [k]. Denote by MRTL the set of formulas
∪kMRTLk.

MRTL Semantics. Formulas of MRTLk are interpreted over graphs G, and
with respect to k-robot ensembles R and a set of orderings Ω. Define the satis-
faction relation |=R,Ω :

– G |=R,Ω Reach∃(X,x, y) iff there is an ordering α ∈ Ω and there is a finite

run of R on G that uses a schedule that follows α, such that the run starts
with some initial configuration of the form 〈x, p〉 (i.e., p ∈

∏
Ii), ends with

a configuration of the form 〈y, q〉 (i.e., q ∈
∏
Qi), and for each i ∈ [k], the

set of positions of robot i on this run is contained in Xi.
– G |=R,Ω HaltK∃ (X,x, y) means the same as Reach∃ except that the last

tuple of states q has the property that i ∈ K implies that qi ∈ Hi (i.e., every
robot in K is in a halting state).

– G |=R,Ω Infty∃(X,x, y) means the same as Reach∃ except that the run is
infinite and, instead of ending in y, it visits y infinitely often.

– G |=R,Ω ReptK∃ (X,x, y) means the same as Reach∃ except that the run is
infinite, and infinitely often it reaches a configuration of the form 〈y, q〉 such
that i ∈ K implies that qi is an accepting state (i.e., qi ∈ Ai).

– G |=R,Ω Reach∀(X,x, y) is the same as Reach∃ except replace “there is an

ordering α ∈ Ω and there is a finite run...” by “ for every ordering α ∈ Ω
there is a finite run ...”. In a similar way, define HaltK∀ , Infty∀ and ReptK∀ .

Extend the satisfaction relation to all formulas of MRTLk in the natural way.

Example 1. The statementG |=R,Ω (∀x)(∃y)(∃X)Reach∃(X,x, y)∧(∧i,jyi = yj)
means that, no matter where the robots start in G, there is an ordering α ∈ Ω,
and a run according to a schedule that follows α, such that the robots R gather
at some vertex of the graph G. Replacing Reach∃ by Reach∀ means, no matter
where the robots start in G, for every ordering α ∈ Ω, the robots have a run
according to a schedule that follows α such that the robots gather at a vertex of
the graph. Note that by conjuncting with ∧iXi ∩ B = ∅ where B is an MSOL-
definable set of “bad” vertices, one can express “safe gathering”.

Example 2. Consider the statement G |=R,Ω (∀x)(∃y)[nonleaf(x)∧diff(x)→
(leaf(y) ∧ diff(y) ∧ Reach∀(V k, x, y)] where G is a tree, nonleaf(x) is an
MSOL-formula expressing that every xi is not a leaf, leaf(y) is an MSOL-formula
expressing that every yi is a leaf, and diff(z) is an MSOL-formula expressing
that zi 6= zj for i 6= j. The statement says that, as long as the robots start
on different internal nodes of the tree G, for every ordering α ∈ Ω there is a
run of the robots R according to a schedule that follows α in which the robots
reconfigure and arrive at different leaves.



4 Reasoning about Robot Systems

We formalise the parameterised verification problem for robot protocols and
then study its decidability. The parameterised verification problem depends on
a (typically infinite) set of graphs G, a set of k-robot ensembles R, a k-robot task
written as an MRTLk formula T, and a set of k-orderings Ω.

Definition 1. The parameterised verification problem PVPT,Ω(G,R) is:
given a robot ensemble R from R, decide whether for every graph G ∈ G, G |=R,Ω

T (i.e., the robots R achieves the task T on G with orderings restricted to Ω).

Example 3. Let G be the set of all binary trees, R be the set of all k-robot
ensembles, let Ωb := {α ∈ [k]∗ : ||α|| = b} be the set of b-switch orderings, and
let T be the task expressing that if the robots start on different internal nodes of
a tree then they eventually reconfigure themselves to be on different leaves of the
tree, no matter which ordering from Ωb is chosen (cf. Example 2). We will see
later that one can decide PVPT,Ωb(G,R) given b ∈ N. So, one can decide, given
b, whether the protocol from the reconfiguration example (in the Introduction)
succeeds for every ordering with b switches.

In Section 4.1 we show that the PVP is undecidable even on lines, for sim-
ple tasks, and allowing the robots very restricted testing abilities, i.e., a robot
can sense which of the other robots shares the same position with it, called “lo-
cal collision tests”. In Section 4.2 we show that we can guarantee decidability
merely by restricting the scheduling regime while allowing the robots full testing
abilities, including testing positions and states of other robots “remotely”.

4.1 Undecidability of Multi-Robot Systems on a Line

Our undecidability proof proceeds by reducing the halting problem of two counter
machines to the parameterised verification problem. An input-free 2-counter ma-
chine (2CM) [28] is a deterministic program manipulating two nonnegative in-
teger counters using commands that can increment a counter by 1, decrement a
counter by 1, and check whether a counter is equal to zero. We refer to the “line
numbers” of the program code as the “states” of the machine. One of these states
is called the halting state, and once it is entered the machine halts. Observe that
a 2CM has a single computation, and that if it halts then the values of both
counters are bounded by some integer n. The non-halting problem for 2CMs is
to decide, given a 2CM M, whether it does not halt. This problem is known to
be undecidable [28], and is usually a convenient choice for proving undecidabil-
ity of problems concerning parameterised systems due to the simplicity of the
operations of counter machines.

Let G be the set of all graphs that are finite lines. Formally, for every n ∈ N
there is a graph Ln = (Vn, En, Σ, λn) ∈ G, where Σ = {l, r}, Vn = [n], En =
∪i<n{(i, i + 1), (i + 1, i)}, and the label λn of an edge of the form (i, i + 1) is
r, and of the form (i + 1, i) is l. We now describe how, given a 2CM M, one



can construct a robot ensemble R which can, on long enough lines, simulate the
computation of M. Our robots have very limited sensing abilities: a robot can
only sense if it at one of the two ends of the line or not, and it can sense which of
the other robots are in the same node as it is (“collision detection”). Note that
a robot does not know that another robot has collided with it (and then moved
on) if it is not scheduled while they both occupy the same node.

The basic encoding uses two counter robots C1 and C2. The current position
of Ci on the line corresponds to the current value of counter i, and it moves to
the right to increment counter i and to the left to decrement it. Each of these
robots also stores in its finite memory the current state of the 2CM. One dif-
ficulty with this basic encoding is how to ensure that the two counter robots
always stay synchronised in the sense that they both agree on the next com-
mand to simulate, i.e., we need to prevent one of them from “running ahead”.
A second difficulty is how to update the state of the 2CM stored by a counter
robot when it simulates a command that is a test for zero of the other counter.
Note that both of these difficulties are very easy to overcome if one robot can
remotely sense the state/position of the other robot. Since we disallow such
powerful sensing these difficulties become substantially harder to overcome. The
basic idea used to overcome the first difficulty is to add synchronisation robots
and have a counter robot move only if it has collided with the appropriate syn-
chronization robot. Thus, by arranging that the synchronization robots collide
with the counter robots in a round-robin way the latter alternate their sim-
ulation turns and are kept coordinated. In order to enforce this round-robin
behavior we have to change the encoding such that only every other position on
the line is used to encode the counter values. Thus, an increment or a decrement
is simulated by a counter robot moving two steps (instead of one) in the correct
direction. The basic ingredient in addressing the second difficulty is to add a
zero-test robot that, whenever one counter is zero, moves to the position of the
other counter’s robot, thus signaling to it that the first counter is zero.

Theorem 1. For every 2CM M, there is a robot ensemble R which, for every
n ≥ 5, simulates on the line Ln any prefix of the computation of M in which the
counters never exceed the value (n− 3)/2.

Proof. The ensemble R consists of 9 robots: the counter robots C0, C1, four
synchronisation robots R0, R1, R2, R3, a zero-test robot T , a zero robot Z that
marks the zero position of the counters, and a mover robot M whose role is
to ensure that the robots can simulate more than one command of M only if
their starting positions on the line are as in the initialised configuration escribed
below ((‡)). The value of a counter is encoded as half the distance between the
corresponding counter robot and the Z robot (e.g., if Z is in node 3 and C1 is
in node 7 then the value of counter 1 is 2).

(‡) (initialised configuration): robots R2, R3 are in node 1, robots R0, R1 are
in node 2, and the rest are in node 3.

The definition of the transitions of the robots has the important property
that there is only one possible run starting from the initialised configuration,



i.e., at each point in time exactly one robot has exactly one transition with a
test that evaluates to true. We assume that each robot remembers if it is at an
odd or even node. This can be done even without looking at the node by storing
the parity of the number of steps taken since the initialised configuration (‡).

Each command of the 2CM M is simulated by the ensemble using 4 phases.
For every i ∈ {0, 1, 2, 3}, phase i has the following internal stages: (1) the syn-
chronization robots arrange themselves to signal to robot Ri that it can start
moving to the right (this mechanism is described below (?)). (2) robot Ri moves
to the right until it collides with robot Cj (where j = i mod 2). It is an invariant
of the run that this collision is at an even node if i is odd, and vice-versa. (3)
robot Cj moves one step to the left or to the right, in order to simulate the
relevant half of the current command of M, as described below (†). (4) robot
Ri moves to the right until it reaches the end of the line. Observe that if during
this stage Ri collides with Cj then (unlike in stage 2) it is on a node with the
same parity as i (by the invariant, and since Cj moved one step in stage 3). This
parity information is used by Cj to know that it should not move, and by Ri to
know that it can continue moving to the right. (5) robot Ri moves to the left
until it reaches the beginning of the line (see (?)), which ends the phase (here,
as in the previous stage, the parity information is used to ignore collisions with
Cj). In case the other counter (i.e., counter 1 − j) is zero, stage (2) of phases
0, 1 are modified as follows: when robot Ri enters node 3 from the left it collides
with Z,C1−j and T ; then, T and R1 move to the right together, where T always
goes first, and then Ri follows in lock-step; at the end of stage 2 both T and Ri
collide with Cj , thus signalling to the latter that counter 1− j is zero. A similar
modification to stages (4) and (5) makes T and Ri move in lock-step fashion all
the way to the right and then back to the left depositing T back in node 3.

(†): The operation performed by Cj in stage (3) of each phase is as follows.
In phase 0 robot C0 simulates the first half of the command, in phase 1 robot
C1 simulates the first half of the same command, in phase 2 robot C0 simulates
the second half of the command and in phase 3 C1 does so. For example, if the
command is “increment counter 0” then in phase 0 robot C0 moves right one step
(and updates its simulated state of M to be the next command of M), in phase 1
robot C1 moves right one step (and updates its simulated state of M), in phase
2 robot C0 moves again one step to the right (thus encoding an incremented
counter), and in phase 3 robot C0 moves left one step (thus, returning to its
previously encoded value). Simulating the other three increment and decrement
commands is done similarly. The only other command we need to simulate is of
the form ”if counter i is zero goto state p else goto state q”. Since this command
does not change the value of any counter it is simulated by each counter robot
going right in the first half of the simulation and left in the second half. The
internal state of M is updated to p or q depending on the value of the counter.
When simulating the first half of the command, robot Cj knows that counter j
(resp. 1− j) is zero iff it sees Z (resp. T ) with it.

(?): We now show that every arrangement of the synchronization robots
uniquely determines which one of them its turn it is to move. Let next(i) :=



i+ 1 mod 4,prev(i) := i− 1 mod 4. An initial arrangement for phase i is of the
following form: Rprev(prev(i)), Rprev(i) are in node 1, and Ri, Rnext(i) are in node
2. Note that the initialised configuration (‡) contains the initial arrangement for
phase 0. We let the initial arrangement for phase i signal that the next robot
to move is Rprev(prev(i)), which moves to the right, thus completing stage (1) of
phase i. Hence, at the beginning of stage 2 the arrangement is such that only
Rprev(i) is left in node 1, which signals that Ri is the next robot to move, as
needed for stage (2). Just before the end of stage (5), robot Ri returns to node 2
from the left, and the above arrangement repeats itself. Hence, again it is Ri that
moves, however, this time to the left (as indicated by its now different internal
memory). The resulting arrangement at the end of phase i is thus: Rprev(i), Ri are
in node 1 and Rnext(i), Rprev(prev(i)) are in node 2. Observe that this is exactly
the initial arrangement for phase next(i), as required. Note that since robots
have collision tests a robot can tell by sensing which other robots are with it
(and which are not) exactly which arrangement of the ones described above it
is in, and thus if it is allowed to move or not.

Finally, we describe how to amend the construction above by incorporating
the robot M to ensure that robots can only simulate the 2CM if they happen
to begin in the initialised configuration (‡), and otherwise the system deadlocks
after a few steps without any robot entering a halting state.6 Add to every
transition of robot Ri, for i ∈ {0, 1, 2, 3}, the additional guard that M is on
the same node with it. Thus, M enables the synchronisation robots to move,
and if M ever stops, then so does the simulation. Robot M behaves as follows.
It first verifies that the rest of the robots are in the initialised configuration by
executing the following sequence (and stopping forever if any of the conditions in
the sequence fail to hold): check that it is alone on the right-hand side of the line,
move left until it collides with C0, C1, Z, T , move one step left and check that it
collides with R0, R1, move one step left and check it is on the left-hand side of the
line and collides with R2, R3. Once it verified that the robots are on the nodes
specified by (‡), it starts “chasing after” the currently active synchronisation
robot, i.e., it remembers which robot is active and the direction it moves in, and
moves in that direction (if it does not currently collide with that robot). ut

From the previous theorem we can easily deduce that M halts iff there is a
run of the ensemble R (on a long enough line, and that fully simulates the run
of M) and in which the robots C0, C1 halt. We thus get:

Corollary 1. Let k = 9, G be the set of lines, R the set of k-robot ensembles
consisting of robots whose only tests are local collision tests and the ability to test
the left (resp. right) end of the line, Ω the set of all k-orderings, and T the MRTL

formula (∀x)(∀y)(∀X)¬Halt{1}∃ (X,x, y).7 Then PVPT,Ω(G,R) is undecidable.

6 One can modify the construction to remove the need for the M robot, however we
find the exposition with M clearer.

7 The formula expresses“for every initial configuration, and every scheduling of the
robots, robot 1 never enters a halting state”.



Suitable changes to the construction in Theorem 1 yield that other tasks, such
as “certain robots gather” or “certain robots reconfigure”, are also undecidable.

Remark 1. Note that in the construction, starting from the initialised configu-
ration, at most one robot can move at any time. Thus, allowing all robots that
can act to act, as in the synchronous model, does not change anything. So, with
minor modifications to deal with the initialisation phase, the theorem also holds
for the synchronous model. This strengthens the previously known fact that the
PVP is undecidable for synchronous robots on a line with remote testing abilities
(i.e., robot l can test if “robots i and j are in the same node”) [30].

4.2 Decidability of Multi-Robot Systems with Bounded Switching

The previous section shows that decidability cannot be achieved in very lim-
ited situations. However, we now suggest a limitation on the orderings which
guarantees decidability without requiring any other restrictions. Thus it works
on many classes of graphs, robots, and tasks. We first describe, at a high level,
the approach we use to solve (restricted cases of) the parameterised verification
problem PVPT,Ω(G,R), cf. [30]. Suppose we can build, for every k-ensemble R of
robots, a formula φR,T,Ω such that for all graphs G ∈ G the following are equiva-

lent: i) G |= φR,T,Ω and ii) R achieves task T on G with orderings restricted to Ω.
Then, for every R and G, we would have reduced the parameterised verification
problem PVPT,Ω(G,R) to the ΦR,T,Ω-validity problem for G where ΦR,T,Ω is the
set of formulas {φR,T,Ω : R ∈ R}. We now show how to build an MSOL-formula
φR,T,Ω in case T is a formula of MRTL and Ω is a finite set of finite orderings.

We begin with a lemma that will be used as a building block. In the simplest
setting, the lemma says that for every i ∈ [k] there is an MSOL formula with
free variables x, y that holds on a graph G if and only if robot i can move in G
from xi to yi while all the other robots are frozen, i.e., xj = yj for j 6= i.

Lemma 1 (From Robots to MSOL). Fix k, and let R be a k-robot en-
semble over instruction set insΣ,k. For every p, q ∈

∏
Qi (k-tuples of states)

and ordering α ∈ [k]+, one can effectively construct an MSOL(Σ) formula
ψα,p,q(X,x, y) with free variables Xi, xi, yi (i ∈ [k]) such that for every graph G:
G |= ψα,p,q(X,x, y) if and only if there exists a run c of R on G according to a
schedule that follows α, starting from configuration c1 = 〈x, p〉 and reaching, for
some T ∈ N, the configuration cT = 〈y, q〉, such that for all i ∈ [k], the set of
positions of robot i on c1c2 · · · cT is contained in Xi.

Similarly one can construct ψ∞α,p,q(X,x, y) so that for every graph G: G |=
ψ∞α,p,q(X,x, y) if and only if there exists a run c of R on G according to a
schedule that follows α, starting from configuration c1 = 〈x, p〉 and reaching the
configuration 〈y, q〉 infinitely often, and such that the set of positions of robot i
on the run is contained in Xi (i ∈ [k]).

Proof. Fix k andR. We start with an auxiliary step. For i ∈ [k], states pi, qi ∈ Qi,
and s = (s1, · · · , si−1, si+1, · · · , sk) with sj ∈ Qj , we define an MSO-formula



φi,pi,qi,s with free variables X,x, y, z where z = (z1, · · · , zi−1, zi+1, · · · , zk) such
that G |= φi,pi,qi,s if and only if the k-ensemble robot R has a run according to
a schedule in i∗ in which robot i starts in position x and state pi, and reaches
position y and state qi while only visiting vertices in X, and for j 6= i, robot
j is in vertex zj and state sj and does not move or change state. This is done
as follows. Each robot Ri = 〈Qi, δi〉 is a finite automaton (without initial or
final states) over the finite alphabet insΣ,k. By Kleene’s theorem, we can build
a regular expression expi (that depends on pi, qi, s) over insΣ,k for the language
of the automaton Ri with initial state pi and final state qi. By induction on the
regular expressions we build MSOL formulas (with free variables X,x, y, z):

– ϕ∅ := false and ϕε := x = y ∧ x ∈ X,
– if τ ∈ MSOLk(Σ) is a position-test then

– ϕτ→↑σ := τ(z1, · · · , zi−1, x, zi+1, · · · , zk) ∧ edgσ(x, y) ∧ x, y ∈ X,
– ϕτ→	 := τ(z1, · · · , zi−1, x, zi+1, · · · , zk) ∧ x = y ∧ x ∈ X,

– if τ is a state-test, say “robot j is in state l” (for j 6= i and l ∈ Qj) then, if
sj = l then

– ϕτ→↑σ := edgσ(x, y) ∧ x, y ∈ X,
– ϕτ→	 := x = y ∧ x ∈ X,

and otherwise if sj 6= l, then ϕτ→↑σ and ϕτ→	 are defined to be false,
– ϕr+s := ϕr ∨ ϕs,
– ϕr·s := ∃w [ϕr(X,x,w, z) ∧ ϕs(X,w, y, z)],
– ϕr∗ := ∀Z[(clϕr (X,Z, z)∧x ∈ Z)→ y ∈ Z] where clϕr (X,Z, z) is defined as
∀a, b [(a ∈ Z ∧ ϕr(X, a, b, z))→ b ∈ Z].

Then, define φi,pi,qi,s to be ϕexpi(X,x, y, z). To prove the lemma proceed by
induction on the length l of α. Base case: For α = i ∈ [k], define ψi,p,q(X,x, y) by∧
j 6=i xj = yj ∧Xj = {xj}∧φi,pi,qi,s(Xi, xi, yi, x1, · · · , xi−1, xi+1, · · · , xk), where

s = (p1, · · · , pi−1, pi+1, · · · , pk), if qj = pj for all j 6= i, and otherwise the formula
is defined as false. Inductive case: For α ∈ [k]+, i ∈ [k], define ψα·i,p,q(X,x, y) by
∃z
∨
r

[
ψα,p,r(X,x, z) ∧ ψi,r,q(X, z, y)

]
and r varies over

∏
Qi. This completes

the construction of ψα. The construction of ψ∞α is similar. ut

In Lemma 1, a variable Xi designates a set containing – but not necessarily
equal to – the positions of robot i along the run. If one wishes Xi to designate the
exact set of positions visited by robot i (in order to express, e.g., “exploration”),
then one needs to modify the construction of φi,pi,qi,s in the proof of the lemma.8

The required modifications are straightforward except for those to the definition
of ϕr∗ , which are more complicated.9

8 In [30] it is wrongly stated that one can transform an MSOL formula that says that
there is a run (satisfying some property) that stays within a set X, to one that says
that it also visits all of X, by simply requiring that X be a minimal set for which a
run satisfying the property exits.

9 Recall that ϕr∗ has free variables X,x, y, z, and its semantic in this case is that robot
i can reach y from x (with the other robots’ positions being z), visiting exactly X,
using a concatenation of sub-paths each satisfying ϕr. Intuitively, ϕr∗ existentially
quantifies over the stitching points of these sub-paths and uses appropriate sub-
formulas that are all satisfied iff one can find sub-paths that can be stitched to lead
from x to y and that cover all the positions in X.



Observe that this lemma can be used to express both collaborative and ad-
versarial scheduling. For instance, if Ω is a finite set of orderings, the formula∨
α∈Ω ψα,p,q(X,x, y) says that there is an ordering α ∈ Ω that the robots can

follow to go from x to y while staying in X, i.e., the ordering is chosen col-
laboratively, while

∧
α∈Ω ψα,p,q(X,x, y) expresses that the ordering is chosen

adversarially.
Putting everything together, we solve the PVP for finite sets of orderings (and

thus for adversarial or co-operative b-switch orderings Ωb := {α : ||α|| = b}).

Theorem 2. There is an algorithm that given an edge-label set Σ, a number of
robots k ∈ N, a formula T of MRTLk, a finite set Ω of finite k-orderings, and a
description of a context-free set of Σ-graphs G, decides PVPT,Ω(G,R), where R

is the set of all k-ensembles of robots over insΣ,k.

Proof. Given R ∈ R build the formula φR,T,Ω by replacing every atomic for-

mula in T by its definition with respect to R. E.g., Reach∃(X,x, y) is replaced
by
∨
α∈Ω

∨
p

∨
q ψα,p,q(X,x, y), where p varies over

∏
i∈[k] Ii and q varies over∏

i∈[k]Qi. Now, a routine induction on the structure of the formula T shows that

G |=R,Ω T if and only if G |= φR,T,Ω . By Lemma 1 the formula φR,T,Ω is in
MSOL(Σ). Finally, apply the fact that the MSOL-validity problem for context-
free sets of graphs G is uniformly decidable [9]. ut

5 Discussion

In [6, 30] (see also the discussion before Theorem 1) it was shown that the PVP is
undecidable for two synchronous robots on a line, reachability tasks, and allow-
ing the robots “remote” position-tests. In Section 4.1 we substantially strengthen
this result and prove that the problem is still undecidable even if we only allow
robots “local” position-tests or even just local “collision tests”, both for robots
that move synchronously and asynchronously. The fact that the proof works for
both the synchronous and asynchronous models (Remark 1), strongly suggests
that limiting the robots’ sensing capabilities may not be a very fruitful direc-
tion for decidability. In Section 4.2 we showed that for asynchronous robots, if
one imposes a bound on the number of times the robots can switch, then PVP
is decidable for very general tasks (i.e., those expressible in a new logic called
MRTL), large classes of graphs (i.e., the context-free sets of graphs), and allowing
robots very powerful testing abilities (i.e., MSOL position-tests and state-tests).
This is the first parameterised decidability result of the PVP for multiple robots
where the environment is the parameter. Thus, our work indicates that if prac-
titioners want formal guarantees on the correctness of the robot protocols they
design, then they could design them in the framework given in this paper (i.e.,
finite-state, bounded-switching, powerful testing abilities).

A main limitation of our decidability result is the fact that the set of grids
is not context-free — grids are the canonical workspaces since they abstract
2D and 3D real-world scenarios. However, this limitation is inherent and not



confined to our formalisation since the parameterised verification problem even
for one robot (k = 1) on a grid with only “local” tests is undecidable [6, 30]. A
second limitation is that robots do not have a rich memory (e.g., they cannot
remember a map of where they have visited). Extending the abilities to allow
for richer memory and communication will result in undecidability, unless it is
done in a careful way. Also, the complexity of the decision procedure we gave
is very high. Again this is inherent in the problem since, e.g., already for one
robot on trees the PVP with the “explore and halt” task is ExpTime-complete
[30]. We leave for future research the problem of finding decidability results with
reasonable complexity for multi-robot systems that are rich enough to capture
protocols found in the distributed computing literature, e.g., [5, 24, 14, 15].
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