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Kurzfassung

Kombinatorische Spezies wurden von Joyal als Methode zur konzeptuellen Behandlung von kombi-
natorischen Strukturen entwickelt. Wir betrachten eine Verallgemeinerung davon fiir die Wirkung
des Kranzproduktes einer zyklischen Gruppe der Ordnung r und einer symmetrischen Gruppe, auch
r-Spezies genannt. Einige Aspekte von r-Spezies wurden bereits von Henderson, Hetyei und Cho-
quette untersucht. In dieser Arbeit geben wir einen Uberblick iiber das Thema, wobei wir dem Ver-
halten der Zyklenindikatorreihe unter verschiedenen Operationen von r-Spezies, wie zum Beispiel
Produkt und Substitution, besondere Aufmerksamkeit schenken. Das letzte Kapitel beschéftigt
sich mit der Berechnung der Zyklenindikatorreihe von drei verschieden Arten der Substitution, von
denen eine neu ist.






Abstract

Combinatorial species were introduced by Joyal as a device for computing conceptually with com-
binatorial structures. We study a generalization of this concept for actions of the wreath product
of a cyclic group of order r and a symmetric group, called r-species. Some aspects of r-species
were previously considered by Henderson, Hetyei and Choquette. We give an overview of the topic,
concentrating on the behavior of the cycle index series and its specializations under various oper-
ations on r-species, including product and substitution. The final chapter is concerned with the
computation of the cycle index series of three kinds of substitution, one of them is new.
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CHAPTER 1

Introduction

In enumerative combinatorics species of structures are used to work with labeled (and unla-

beled) objects, that are called structures. They are defined as a functor from the category of sets
with bijections to itself. What may be a very abstract definition turns out to be very natural: We
get labeled structures and an action of the symmetric group &,, on them.
Now r-species are generalized species of structures where we not longer only consider a permuta-
tional action but a signed permutational and our labels now may have signs. In the case r = 2 the
used group is the hyperoctahedral group, the group of symmetries of an n-dimensional octahedron,
more generally we use 20,.,, := &, 1 C,., the wreath product of the symmetric and the cyclic group
C,. What we get then is a generalized theory of species of structures.

1.1. Related work

1.1.1. Ordinary Species. It was André Joyal ([Joy81] and [Joy86]) who developed the
combinatorial theory of species of structures in the eighties. Since then a wide theory was built.
For a textbook treatment see [BLL98].

1.1.2. Hyperoctahedral Species (2-Species). In [HLL98] Gébor Hetyei, Gilbert Labelle
and Pierre Leroux introduce hyperoctahedral species in a very geometrical way, using hypercube and
hyperoctahedron (therefore they call them cubical species). They develop a geometrical language
and define for example species of vertices of a hypercube, which of course is interesting under the
group of symmetries of a hypercube (which is the same as the one of a hyperoctahedron).

A more algebraic approach is presented by Philippe Choquette and Nantel Bergeron in [BC08] and
Philippe Choquette in [Chol0], where species over vector spaces are considered and some more
examples are given. However the cycle indicator series (or Frobenius character) is not introduced.

1.1.3. r-Species. The generalization of hyperoctahedral species to r-species is done by An-
thony Henderson [Hen04]. He also introduces the cycle indicator series for hyperoctahedral species
and introduce two kinds of substitutions, however he only states few examples.

1.2. Objectives

This work considers r-species and the operations sum +, product - and three kinds of substitu-
tion (all denoted by o): One between an ordinary species and an r-species, one between an r-species
and an ordinary species, like they are introduced in [Hen04] and one between two r-species as in-
troduced in [HLL98]. The objectives of this work are:

e Give a combinatorial prove, that for the cycle indicator series Zr of a species F' and the
two substitutions introduced by [Hen04] holds Zp.q = ZF o Zg.

e Consider the substitution between two r-species as in [HLL98], and establish a similar
identity.

e Understand the three kinds of substitution better by giving examples and decompose
already known species with the help of the substitution to get a better understanding and
easier calculation.



1.3. Thesis outline

e In Chapter 2 we state basic definitions and results we will need later on.

e In Chapter 3 we give an introduction to the theory of r-species and define the cycle
indicator series. Moreover we give some examples.

e In Chapter 4 we define three types of substitution, give two proofs for Zp.q = Zr o Z¢ for
the substitutions of [Hen04] and find a way to describe Zp.q = ZpoZg for the substitution
of [HLL98|]. Furthermore we give examples of species that arise from substitution.



CHAPTER 2

Basic Definitions and Results

We start with some notation:

r,n € N and ( is a primitive r*® root of unity;

C,:= ({gj 1j=0,1,...,r— 1} ,+) is a cyclic group of order r;

[n] is the set {1,2,3,...,n};

G,, is the symmetric group of n elements and Gg the group of permutations on a set S
(Note that we do not distinguish between &,, and &y,);

e Mc, = {ij:mEM,jG{O,l,...,r—l}} for a set M.

2.1. Generalized Signed Permutations

2.1.1. Wreath Product. The wreath product ! of two groups is a certain kind of a semi
direct product x, as we are only interested in the group &,,! C, and the definitions of ? and x are
quite general, we just define it for &, G (compare with [Mac95]):

DEFINITION 2.1.1. We define the wreath product of &, ¢ G, G a group, as a group on the
set G" x &,, with the action (g,0)(h,7) := (g - o(h),o7) where G" = G x G x --- x G is the
direct product of n copies of G and &,, acts on G™ by permuting the factors o(g1,92,...,9n) =
(ga—l (1)5 90—1(2)7 <o G-t (n))

DEFINITION 2.1.2. We define 20, ,, := 6,1 C,.

REMARK 2.1.3. An element w = ((§,-1(1),&5-1(2)s - - -1 €o-1(n)), 0) Of W, can be identified with
a bijection of [n]c, to itself satisfying: w(nj) = n&jo(j).
Note that now w - @ is exactly w o w:

w- @) = ((€s-11):&o-1(2)s - - &o-1m)) T (E5-1(1): Eo-12) s - - -+ E5-1(m)))> 08) (1)

= (o1 (1)éo-15-1(1):§o-12)8o-16-1(2)s - - - 1 Ea-1()Eo—16-1(n)), 7T ) (11])
= 05&05())
w(@(nj)) = wné;(j)) = niés;yo(5(4))
On the other hand every such bijection [n]c, to itself with w(nj) = n&;o(j) is an element of 20, ,

by ((§5-1(1),5-1(2)» - - »§o-1(n))> 7). From now on we will use this new notation as bijection. For
an example see subsection 2.1.2.

2.1.2. The Group 2, .

DEFINITION 2.1.4. For 20, ,,, we call an element of 20,.,, (generalized) signed permutation and
every element of C, a (generalized) sign.

REMARK 2.1.5. e Note that those signs have nothing to do with the sign of a permuta-
tion in &,,.
e Note that for r = 1 we have 20, , = &,,. Therefore everything stated here also holds for
the symmetric group.



e W, , is also called the hyperoctahedral group as it is (isomorphic to) the group of sym-
metries of an n-dimensional octahedron.

e The term ‘signed permutation’ is common for r = 2 as there C, = ({1, —1}, ) so we have
signs + and —. Through this thesis we will use the term also for general r and omit the
term ‘generalized’.

Often we do not only consider a 20, ,-action only on the set [n]c, but on more general sets, we
therefore define:

DEFINITION 2.1.6. On every set of size n - r together with a permutation n that consists of n
cycles with length r, we can define a 20, ,-action on it in that way that the permutation part of
20, ,, is defined by a permutation of a set that consists of one element per cycle, and the C,-action
of ¢ is . This action is equivariant.

We will call these sets signed sets.

REMARK 2.1.7. We often identify such a signed set with [n]c,.
EXAMPLE 2.1.8. (1) For any set M the set Mc, is a signed set with a natural 20, ,-action.
(2) Let r =3, n =2, 8 = {a,1,a,s,N,5} and n = (abs)(laN). A bijection respecting the
20, ,-action to [2]c, could be
a—1,a—Cl, N—C1,1—2 a— (2, Nw— ¢

Note that this bijection is already defined by oo+ 1 and 1+ 2.
We therefore identify S with [2]c,..

REMARK 2.1.9. A signed permutation can be also written in a two-line notation:

(1 2 .. n

w= (w(l) w(2) ... w(n))
(or in a one-line notation: (w(1)w(2)...w(n))) or in a (generalized) cycle notation:
We consider the cycles ¢ of w with z,x9,...,z;, with z; — &z;41 and x;, — &, x1. We write
(x1&129&2 -+ - 7,&;) for this cycle and write the terms of the cycles in a row.
When working with general signed sets S # Mc, we define the absolute value of an element as
one arbitrary but fixed C,-orbit and use it for the cycle notation. Note that this definition of the
absolute value is not unique and just brings easier notation sometimes.

ExAaMPLE 2.1.10. (1) r=3,n=5 w(l)=(3 w?2) =4, w3) =5 w4 =(2,w’) =%

we have:
(1 23 4 5
“mA\e3 45 2 ¢

w = (1¢3¢"5¢%)(2¢%4¢)

This appears more convenient than the traditional notation:

(1¢3¢5)(¢1¢?3¢%5)(¢*135) (24¢2¢4¢?2¢Y)
where we write the whole cycles, as the traditional notation contains redundant informa-
tion.
(2) r=2,5={{1,-2},{-1,2},{3,4},{-3, -4}, {5, -6}, {-5,6} }.
The Cpq-action is defined point wise by the elements of the sets of S. We define (for
example):
b ’{17_2}’ = ’{_172}| {_172}
b ’{374}‘ = ’{_37 _4}| {_37 _4}
o [{5, -6} = [{-5,6}| = {5, -6}

or



Now we can write ({1, -2} 4+ {-3,—4} — {5, -6} — ) instead of

> ( {1,-2} {-3,-4} {5, —6})
{-3,-4} {-5,6} {1,-2})°

2.1.3. Cycle Type. In analogy to permutations of &,, where the cycle type is defined by
the numbers of cycles with a certain length, we define the cycle type of a signed permutation the
following way: As we will see later, exactly the elements of a conjugacy class have the same cycle
type. Therefore the cycle type is sometimes defined as the conjugacy class.

DEFINITION 2.1.11. For w € 20, ,, we define the cycle type as a tuple

(wi(1),w1(€), -+ wi(¢" 5w (1), w2(C), .y wa(¢" i ws(1), .. .)

where w;(€) is the number of cycles of w with length [ and type &.
Length and type of a cycle ¢ can be defined via the smallest number . with 3¢, and w' (z) = £.2.

REMARK 2.1.12. The type of a cycle of a signed permutation on a set M, can be equivalently
defined as the product of signs of the elements in this cycle.

LEMMA 2.1.13. For a signed permutation on a set M ¢, the two definitions of the type of a cycle
are indeed equivalent.

PROOF. Let z be an arbitrary element of Mc,. Then z = £z with & = |z|. Z is mapped under
w to &1ry where z1 = |z1], 21 is mapped under w to &g, so 7 is mapped under w? to &; - 20,
Iterating this shows that # is mapped under w' to [L; &z As 2 and Z are in the same C,-orbit (I
is the length of the cycle) and are their absolute value they are equal. Thus w!(z) = ([[;&)z. O

REMARK 2.1.14. There is another way to define the cycle type of an unsigned permutation:
The cycle type of a 0 € &,, is a partition of n, so that the number of [ in this partition is the
number of cycles with length [. (Remember that a partition A of n is a sequence (A1, Ag, - - ) with
Al < A < -+ and YO A; = n.) We therefore sometimes write o = n for o is a cycle type of a
permutation in &, even when we use the original definition of a cycle type.

We can analogously define the cycle type of an w € 20,.,, by a multi-set of elements in [n]c, where
we have the number of &l in this multi-set is the number of cycles with length [ and cycle type &.
Thus |¢l| build a partition of n. We then have the following two identities:

e For (a;(¢?); ;) being the ordinary definition of a cycle type it holds that Y a;(¢?) - i = n.
e For (¢?Wa;); being a cycle type of the alternative definition it holds that 3 a; = n.

In analogy we sometimes write w -, n for w is a cycle type of a permutation in 20, , and call
(gj(i)ai)i with Y a; = n an r-partition of n.
We furthermore define the size as |w| = n and the length /(w) as the number of cycles.

EXAMPLE 2.1.15. Let r =2, n = 5 and w € 20, ,, with

(1 2 3 45
“=l2 -5 -4 3 1

then we have wa(—1) = 1, w3(1) = 1 and w;(¢?) = 0 otherwise. Thus the cycle type is (0,0;0,1;1,0;,0,0;...).

The cycle type in the alternative definition is (—2,3). Its size is 5 and its length 2.
As for &,, we have the following characterization of the conjugacy classes of 20, ,:

LEMMA 2.1.16. The conjugacy classes of 2,.,, are exactly the signed permutations with the
same cycle type.



PRrROOF. We start by showing that for 7 and w € 20,.,, with the same cycle type there exists a
o€ W,, with 7 = owo~!. Note that ¢ is not unique, we just construct one possible o
There exists a bijection between the cycles ¢ of 7 length [ and type £ and the ones of w with the
same properties as the cycle type is the same. As ocicoo™! = oci0 ocpo™! it suffices to consider
only one cycle:
A cycle ¢ of T consists of the elements 1,2, ..., z; with 2; — &2x; and the one in w consists of the

elements y1,¥2, ...,y with y; — n;y;. We define

Thus

Now, for ¢ < [ we consider

-1 m-mn2----- Ni—1 m-mz-ccc o MNi-1
owo " (x;) = ow Y | =0 | Yit+1
fy & .- in

For 7 = [ we have

As the cycle types of 7 and w are the same (and thus the fraction of the products of the signs is 1)

we can rewrite this as
& &
w (yz =o|m>y | =o(§z1) = &1
m m

For the other direction we need to show that for 7 and w € 20, ,, with 7 = owot and o € W,
have the same cycle type. Therefore we show that a cycle ¢ of w with length [ and type & has the
same properties as o(c) of 7: Let ¢ be (1§22 ... 1&) and let Hi:l & = €. We further define
y; = o(x;). Now we have
7(yi) = (owo™ ) (0(2:)) = o(w(w:)) = 0 (Ewit1) = &iyira
what shows the lemma. O
The corresponding result for G &,, can be found in [Mac95] (Chapter I, Appendix B).

In analogy to ordinary permutations we can calculate the number of signed permutations with
a given cycle type:

LEMMA 2.1.17. There are
r"n!

[Tt TG0 (k)2 ey (¢9)!

stgned permutations with cycle type

(wi(1),w1(C)s -+ wi(¢" s wa(1),wa(C), - - w2 (¢ s ws(1),...).

ProoF. We rather prove that

n r—1 ] n r—1 ]
n! H H pE=Dwr(C?) — p1pn H H rwk(¢?)
k=1 35=0 k=1 35=0



is equal to the number of the permutations times
n r—1
[T+
k=135=0
This implies the claim. (Note that > kwi(¢7) = n.)
Therefore we consider the cycle notation of w. There are n! ways to arrange [n]. When defining
the first wy(¢%) numbers as being the w(¢%) cycles with length 1 and type ¢°, the next o1(¢t)
numbers as being the cycles with length type ¢! and so on (note that for o;(¢’) we need [ positions
per cycle) we get signed permutations of [n]. For the signs we have 7*~! ways to define them: r
for each element, only the last one needs to be ¢/ divided by the product of the other signs of this
cycle as the cycle type is given with ¢7. All together the number of possible ways is
n r—1 )
H H pE=1or(¢?)
k=1 j=0
However some of this arrangements define the same permutation: As we do not distinguish the
order of the cycles of same type and it does not matter which of the elements begins in one cycle,
the number of arrangements which define the same partitions is:
n r—1

[T+ o

k=13j=0

2.2. Categories and Functors

We start with two general definitions on category theory we will need later on, for detailed
information about categories see [Awo10] or [Hun80].

DEFINITION 2.2.1. A category C is a class of objects (denoted by A, B,C,... ) together with a
class of morphisms (denoted by f,g,h,...) where:
(1) for each morphism f there exist two objects A B (called the domain and codomain, denoted
by f: A— B).
(2) for each object A there exists a distinguished morphism 14 : A — A.
(3) there exists a composition go f : A — C for any f: A — B, g: B — C with the following
properties:
(a) Associativity: for f: A — B, g: B — C, h: C — D it holds that ho(gof) = (hog)of.
(b) Identity: for f : A — B it holds that 1o f = fand foly = f.

The following definition gives some examples of categories we will use frequently:

DEFINITION 2.2.2. We define B as the category of sets with bijections. Hence, the morphisms
going from a set to itself are permutations.
We define B, as the category of signed sets. In other words it is the category of sets, that have a
20, , - action with bijections respecting this action.

REMARK 2.2.3. Note that B = B;.
Another term of category theory which we will use soon is the one of a functor:

DEFINITION 2.2.4. For two given categories C and D we define a functor F' as a mapping
between the objects of C and D and the morphisms of C and D with the following properties:

(1) F(f:A— B)=F(f): F(A) —» F(B)



(2) F(go f)=F(f)oFl(g)
(3) F(1a) = 1p(a
2.3. Symmetric Functions

2.3.1. Definitions. We state here only a very rough definition. A more formal definition and
more information about symmetric functions can be found in [Sta99] or [Mac95].

DEFINITION 2.3.1. We define a symmetric function as formal power series on the set of inde-
terminates x = {x1,x2,x3,... } over C as a formal power series:

f(z) = Z acex™
Where

e « are infinite weak compositions of natural numbers n, (infinite tuples of numbers in N
with ), a; = ng)

o 2% =][,z}" and ¢, € C

® f(To1)s To(2)s---) = f(w1,72,...) for all permutations o of N.

In other words a symmetric function is a formal power series in infinitely many variables with
finite summands.

THEOREM 2.3.2. The symmetric functions form a C-algebra.

We call this C-algebra A. A proof can be found in [Sta99] or [Mac95].

We now define two different bases of A:

DEFINITION 2.3.3 (Power Sum Symmetric Functions). For A a partition of n we define:
pi = 296; and px = px,Px, - - -
J

DEFINITION 2.3.4 (Complete Homogeneous Symmetric Functions). For A a partition of n we
define:

hi — Z ‘le ..... x]l and h)\ = h)\lh)\2 . e

J1<<gi

2.3.2. The C-Algebra A(r). We define A(r) as in [Hen04] or [Mac95] without the use of
symmetric functions. However we will see later that the point of view of symmetric functions is
useful sometimes.

DEFINITION 2.3.5. We define A(r) as the C-algebra generated by {pi(Cj) 1i,j € N}.
DEFINITION 2.3.6. For an r-partition A, = (§a;); we define py. := [[ pa, (&)-
EXAMPLE 2.3.7. r = 3, A, = ((2,(2,(?2,¢°1) then py, = p2(¢)*p2(¢*)p1(¢0).

DEFINITION 2.3.8. For a signed permutation w € 2., we define p,, as p, ), where p(w) is the
alternative cycle type and thus an r-partition.

EXAMPLE 2.3.9. Once again we consider the case r =2, n =5 and w € 20,.,, with
(1 2 3 45
YT 2 -5 -4 3 1)
We already know that the cycle type in the alternative definition is (—2, 3), thus p,, = pa(—1)-p3(1).

8



REMARK 2.3.10. For r = 1 we write p; instead of p;(1) and we identify A(1) with A, and p;

with the i*® power sum symmetric function.
One can, in analogy with this case, define p;(¢) as the i*" power sum symmetric function on
indeterminates x;¢ and analogously for h;(£). (Note that then h;¢ = h; o p1(£). We will define o
later.) Here we stress the point of view of symmetric functions. In particular, using different bases
of A(r) will be very convenient.
In the case r = 2 we can consider not only p;(1) and p;(—1), we also have power sum symmetric
functions corresponding to the trivial and nontrivial character of Cy p;(x) and p;(y). For an exact
definition see [Mac95] (Chapter I, Appendix B). We will use them only in some examples, so for
us it is sufficient to know how to perform a change of variables:

e pi(1) =pi(z) + pi(y)

e pi(—1) =pi(z) — pi(y)
More generally:

pi(y) = D v (Epi(6)
£eCr

Here ¢ is the size of the centralizer of £ in C, which is r, and 7(c) is the value of the character
on the conjugacy class of c¢. In case of the trivial character z, this value is always 1 and we get:

pi(z) = > %pi(ﬁ)

§EC






CHAPTER 3
r-Species

3.1. Definition and Examples
The definition of a species is a very theoretical one, however the concept is quite intuitive:

DEFINITION 3.1.1. We define an ordinary species as a functor F : B — B.
In analogy we define an r-species as a functor F' : B, — B;.

REMARK 3.1.2. (1) When defining an r-species we often just state the objects as the
morphisms are defined in a natural way. Morphisms from one r-set to another are less
important than those of 20,.,, on one r-set M. We call the way Fw] (for w € 20, ,,) acts
on F[M] the w-action, and the way F[20, ,] acts the 20, ,-action on this species.

(2) Note that we often write F[n]c, instead of F[[n]c
sometimes skip the outer brackets.

| and F[n] instead of F[[n]], so we

r

EXAMPLE 3.1.3 (r-sets). We define &, the species of r-sets with n - r elements (n > 0), as

M M|=1r-
& B, — By, M (M} (M =r-n
0 otherwise

We furthermore define £" as the species of all r-sets: £ : B, — By, M — {M}. This species
corresponds to the trivial representation of 23,,,. We write € for £ and £, for the species of non
empty sets.

The unique &2 structure is [3]c, (= {1, -1,2,-2,3,-3}).

EXAMPLE 3.1.4 (Vertices). We define V), the species of vertices as:
Vilnlc, = {{¢"1,¢"2,...,¢{""n} 1i; € {0,1,2,...,r — 1}}.
The 20, ,-action is defined point wise.

Note that in the case r = 2 those are the vertices of an n-dimensional cube.
For example V) [3|c, =

(11,2,3),{-1,2,3}, {1, -2,3}, {1,2, -3}, {~1, -2,3}, {—1,2, —3}, {1, -2, -3}, {~1,-2,~3}}.
For w = (142 — 3+) we have
Vil = ({1,2,31{1,2, ~3}{ 1,2, -3} {1, -2, —3}{—1, ~2,3}{1, —2,31) ({1, -2, ~3}{—1,2,3}).

For a graphical representation see figure 1.

ExaMPLE 3.1.5 (Signed Cycles). We define C", the species of (oriented, nonempty) signed
cycles, we also sometimes call them r-cycles, as
C"[Mc,] = {(j1&14281 - - - Jnén) : & € Cr, i € M, jiy # Jiy if i1 # i2} [~
where
(J1€15261 - - - inén) ~ (kamikanz .. knin)
11



(-1,-1,1) & {-1,-2,3}
\/j
/A\

~[(—1,2,3} (1,1,1) = {},2,3}

(1,-1,1)={1,-2,3}

(71’ ’1)
K (_17_1’\_1\w7_3} 1,-1,-1)={1,-2,-3}

T

ﬁ—171,—1)g{—1,2,—3} (1,1,—-1) = {1,2,-3}

w=(1+2-34)

Vrw] = ((1,1,1),(1,1,-1),(-1,1,-1),(-1,-1,-1),(-1,-1,1),(1,-1,1))((1, -1, -1),(-1,1,1))

FIGURE 1. Vertices of a 3-dimensional cube and an w-action.

if 31 with

(Gi&gi1&rr - - Jnénin&afobe - .- im1&i—1) = (kimkanz . knnp).
This cycles can be represented as cycles where the positions are labeled with elements of M and
the arcs between them are labeled with signs. Furthermore, we can identify such a cycle with a
cycle of a signed permutation. The 20, ,-action is then defined as C"[w](c) = w o cow™!. This
corresponds to the adjunct representation of 20, ,,. We also write C for cl.
This action can be calculated by a re-labeling in the first step (a&b turns into w(a){w(b), note that
w(a) and w(b) may have signs) and a changing of signs in a second step (w(a)w(b) turns into
(w(@)] (sem (e (a)) ™ s (0 (1)) ()]
An example of a structure in [5]c, is (3¢1¢°2¢°5¢%4¢?). The C3w]-image for w = (1)(2¢3¢%)(4)(5¢)
then is (2¢1¢3¢5¢%4¢?).
A graphical representation can be seen in figure 2.
Note that we do not allow empty cycles.
When working with general signed sets S # Mc, we use the absolute values for labeling the
positions.

There is an easy way to convert an r-species into a normal species (compare with [HLL98]).
Therefore we need the natural embedding of &,, to ;..

DEFINITION 3.1.6. We define a natural embedding e : &,, — 20,.,, by defining e(c) € 20, ,, as
the signed permutation &x — o (). We often write o instead of e(o).

DEFINITION 3.1.7. For an r-species F' we define the restriction AF' by:

o AF[M] = F[Mc,]

12



1

G/ ’ ‘\Cm

CT[W}CT = as am
CZl é-mfl/
as —— .
Cs

- (w(a))Esgn(w (b))
waction: am 5 T N wle) S w) 2 o)l )

2
NG YN YRR

1 4 v 1 4 ~ 1 4

1\ /1T TN\ /1 ¢\ /e
2 — 5 B3>0 8 /> 5

1
FIGURE 2. A general signed cycle and an example of C3[5]c, together with an w-action.

e AF[o] = Flo]

REMARK 3.1.8. In other words when creating AF we just take the structures of F' and ‘forget’
the 20, ,-action, that is not part of &,,.

EXAMPLE 3.1.9 (Vertices). We consider AV): The structures are the same as those of V) :
AVin] = {{¢"1,¢"?2,...,¢"n} 1 i; €{0,1,2,...,r — 1}}.

However we only have a &,-action, so for example {—1,2,3} and {1,2,3} are not in the same
orbit. More generally: exactly the elements that have the same number of the same signs are in
one G,-orbit.

3.2. The Cycle Indicator Series

One can regard the cycle indicator series as a generalization of generating functions as it has
both, the information about the exponential generating function (egf) of labeled objects and the
type generating function (tgf) for unlabeled objects.

DEFINITION 3.2.1. For an r-species F' we define the cycle index series (also called Frobenius

character) as:
1
Zr=Y i 3 fixFlelip

n>0 weW,,

LEMMA 3.2.2. The number of fized points of F|w| depends only on the cycle type of the (signed)
permutation w.

Proor. Exactly if 7 and w € 2, ,, have the same cycle type there exists a o € 20, ,, so that
7 = owo ! (note that o is not unique, compare with lemma 2.1.16). A fixed point f of 7 is thus
fixed under owo ™! so o71(f) is fixed under w: w(o~L(f)) = (e 7o) (c71(f)) = o ro07L(f) =
o 17(f) = o71(f). This relationship is bijective as o is a bijection.
Now we do not consider fixed points of 7 and w but those of F[r] and Flw] for F' being an
(r—)species. But as F[r] = Flowo™!| = Flo]F[w]F[o]™" with F[r], Flo], Flw] € S g = Wi 15w,
this holds. O

13



EXAMPLE 3.2.3 (r-Sets). We now calculate Zgr. Therefore we need the number of fixed points
under a signed permutation. As every set M is fixed under any signed permutation and there is
only one structure ({M}), this number is 1 for every w.

Z‘S‘T:anlrn Z ’ﬁxgr[w”pwzzn&rn Z l-pw

7’120 ) wewr,n TLZO ’ we%r,n

We can use lemma 2.1.17 and 3.2.2 and just consider the cycle types of w. (Recall that wy(¢7) is
the number of cycles of length k and type (7. Therefore, for & > n holds wy(¢7) = 0.)

1 r"n!
_ZWZH“H 7

o (k)2 (¢9))!

n>0 wken
n r—1 wk(gj)
_nzzg)wzh:nnk 1H] owk ,Hg( )

We now do some reordering to obtain an exponential form by considering m =), ;W (¢7) instead

of n=7>%, kwy (¢7):

XYt T (A

m>0 Zk wi (¢I)=m

1 m L () )
- mzzo m! s, %Cj):m (wl(CO)M(Cl) —wi(Cw2(C0) - > I;I 1 < k(' 7“))
Applying the multinomial theorem we obtain:
L (= Saen) L elc?) o
= ml > Lor =exp | > L-r Z(:) kz

m>0 " \k>0j=0 k>0 j=0

In some cases this result is good for further calculations, however we will here calculate further on
to get a result in complete homogeneous symmetric functions h;, therefore, we interpret the pg(¢?)

as y xf] (Compare with remark 2.3.10.)
r—1 j
On this point we could also use pg(z) = M (compare with remark 2.3.10) and get a
slightly different result, which we will state in the end of the calculation.

_ﬁexp< 3 J):;f[:expc;log(l_l%)):;ﬁ:exp log (Hl_livm)

S 1=

j=0 k>0 1 i
1
r—1 r — % r—1 T
- Hl—x H HZ% ZH E E Tig,j -+« Lin,j
J=0 \ i R = J=0 \ n 1< <in

:H(Zh gﬂ)lx

14



Alternatively: (The steps we are skipping are analogous to the ones we did before.)

r—1 ;
—ep (3 pllz('C;) — exp pk]ia:) — =Y )

k>n j=0 k>n

EXAMPLE 3.2.4 (Vertices). To calculate Zyr we need to know how many fixed points V; [n]c
has under V; [w]. Therefore we consider the cycles of w.
First we consider a cycle of length [ and type 1. We only need to consider the cycle that only has
¢° as signs: The number of fixed points only depends on the type (compare with lemma 3.2.2) and
therefore is the same for all cycles with type ¢°: If and only if the [ elements of this cycle have
the same sign in a vertex, this vertex is a fixed point. Therefore, we get r fixed points, for we can
choose one sign for all elements in this cycle.
If we consider a fixed point of any other cycle ¢ with length [ and type &, it will need to be a fixed
point under ¢ = £id too. As the w-action is defined point wise, no element can be a fixed point of
d = &id.
Therefore the number of fixed points of w is [[}_; k(D) if it consists only of cycles with type 1.
Otherwise there are no fixed points. Now we can calculate Zyr:

1 rn!
= — wk(l)
ZVn n!rn Z |ﬁX F[ |pw '7'7’1 Z H kwk ka 1)wk(1)' ]Jr pw(l)

_ pr(1)
—an el H

Now we can do the same calculations as we did with the r-sets (example 3.2.3) and get (if we
consider also the empty vertex):

Zyr _exp Zpk Zh

EXAMPLE 3.2.5 (Signed Cycles). For calculating Z¢» we once again need to consider fixed points
under the w-action:
We start with considering a structure (a cycle) of C". In the first step we only consider the elements,
not their signs: For being a fixed point under w, w needs to introduce a shift on the elements (then
and only then image and pre-image are equivalent under ~ and therefore the same structure). The
number of cycles, w can have, depends on the size of the shift. Let our cycle have length [., and let
the shift be s, then the number of cycles of w is ged(l, s), their length is = lem(l, s)

r

l . l
ged(l,s) S ged(l,s)
and therefore wm is the smallest power of w whose action on the cycle is the identity, therefore
this is the length of the cycle. The number of cycles follows immediately. (For graphical examples
see figure 3.)

It follows that the only w that can have fixed points are those where all cycles have the same length
. Let the number of such cycles be k. We now count the possible ways to build an r-cycle that
is a fixed point. Without loss of generality, we set 1 to position 0. We next consider |w™1(1)|:
We can put it on every k*'-position that is coprime to I. Exactly then w' is the first power that
is the identity. The rest of the elements of this cycle of w is determined, too. We so far have
¢(1) possible choices (where ¢ denotes Euler’s Phi-function). Next we consider the cycle with the
smallest element not used so far: We have [ - (k — 1) possible positions for it. The rest of this w
cycle is determined by this position and the choice of |w™1(1)|. The rest of the cycles is treated
analogously. All together we have ¢(1)I*~!(k —1)! possible fixed points (without signs so far). Note

15



ged with 5 respectively 12
length of shift

FiGURE 3. Two examples of cycles and an w-action, where those cycles are fixed points.

PR PR PR PN PN ~

. . . . ° ° 9 . 9 L4 9 8
/ \ v \ Y \ v/ \ v/ \ /
. . . . ° 3 . 3 5 3 5
\ f \ f \ ) \ ) \ f \
2 ° 2 4 2 4 2 4 2 4 2

\° — . 7 \' [ 7 \. —_ o 7 h 7T — e 4 b 7T — @ 7 N 7 — 6 4

w=1-2-4+)3-9+T7+)(5+6+8-) choices determined

FI1GURE 4. Example of constructing the elements of a fixed r-cycle.

that the cycles alternate in the sense that after an element of lets say cycle 1, there is always an
element of cycle 2, then one from cycle 3 and so on, and after the one of cycle k there follows the
next element of cycle 1. (For graphical examples see figure 4.)

In the second step we concentrate on the signs: For each w-cycle we can choose exactly one sign,
the rest is determined, only w where all the cycles have the same sign can possibly have fixed points
(this gives us r* choices):

We start with choosing &,, and call the cycle of a; cycle a, then a1&,b1 (by was chosen before
and is from another cycle of w, we call it cycle b) is part of our cycle c. Remember that ¢ is our
signed cycle (so this is the structure) and a and b are cycles of w, the morphism. As ¢ = wew™!
we know that c(w(a1)) = §w(br) so we define ay 1= |w(ay)|, & = sgn(w(al))_lflsgn(w(bl)) and
by := |w(by)|. We iterate this until we have m with a,, = a;. Now it is necessary that &, = .
Due to construction we know that

Em = sgn(w(am,)) " - -sen(w(an) " asgn(w(br) - sen(w(bn1))

= (type of cycle a)~1&; (type of cycle b).

Now exactly if cycle a and cycle b have the same type, this construction is feasible. (For graphical
examples see figure 5.)
Now we can calculate Z¢r:

Zer =) : > d(l) e 1B (kyy — 1)Ipy, (€)F

n>0 WEWy,n, with pu,=(py, (Cw))*
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choices

determined

FIGURE 5. Example of constructing the signs of a fixed r-cycle.

=2 Zn,lrn > (ZZ;Z;)qﬁ(l)rkl’“*(k— ()"

£eCrn>0 1 Lk with l-k=n
o(1) o(1)
= Z Z Z B Wpl(f)k: Z Z Wpl(f)k
£eC, n>01,k with I-k=n £eCy 1L,k>0
_ o(l) = (&) o(1) 1
DA SIS

3.2.1. Specializations. As mentioned before, the cycle indicator series contains information
about numbers of objects in the species.
In analogy to r = 1, we define an exponential generating series, that counts the (labeled) objects
and a type generating series that counts the unlabeled objects, in other words the orbits of the
20, ,-action:

DEFINITION 3.2.6. We call 3, |F[n]c,|-Z-; generalized exponential generating series (egs) and
write it as F'(z). Furthermore, we call ) |F[n]c, /20, ,|2" type generating series (tgs) and write

it as F(x).

THEOREM 3.2.7 (Specializations). By setting
(1) p1(1) = 2 and p;(§) = 0 otherwise
(2) pi(§) = 2"
(3) p1(§) = 2 and pi(§) = 0 otherwise
(4) pi(1) = Tf—_zl and p;(§) = 0 otherwise
the cycle indicator series transform into
(1) >, |Fn]c, rﬁ—l, = F(z) which is the generalized exponential generating series
(2) 32, |F[n]c, /2|2 = F(2) which is the type generating series (it counts 20, ,-orbits)
(3) S0 Flnle, /G2 = FO(2)
4) X, [Flnle, /Gnl i =t FO(2).
For the proof of this theorem we need ‘Burnside’s Lemma’, which can be found (together with
a proof) for example in [Sta99] or [BLL98].

17



LEMMA 3.2.8 (Cauchy-Frobenius). Let M be a finite set and T’ be a subgroup of &pr. Then

WINE |F|j£j|ﬁxow
cel
In other words the number of I'-orbits in M times |U'| is the sum over all fized points of elements
in T' (counted with multiplicities if they are fixved point of more than one element in T).

PROOF OF THEOREM 3.2.7. (1) By setting p1(1) = z and p;(§) = 0 otherwise the only
Dw 7 018 pig. What we get then is

1 Cn
ZWIEXF[lde

As every structure is a fixed point under the identity, we have indeed a generalized expo-
nential generating function.

(2) By setting p;(£) = 2* we get

S S [ Fll

weWr n

Now we interpret 20, ,, as a subgroup of &, c,» use ‘Burnside’s Lemma’ and get

Z(number of 2, ,,-orbits)z"
n

(3) The proof is a combination of the previous two points, note that those w with p, =
H;;é p1(¢7)% define the C,-action.

(4) Analogous as before, note that we want only such w that define the &y-action. Exactly
one of the 7'~ ! cycles of length i with sign 1 defines it. (The one that consists of 1 as signs
only.)

O

ExAMPLE 3.2.9 (Signed Cycles). We calculate the specializations of signed cycles (remember
!
that Zer = Y 4s0 S2m(1)F):

(1) We get C"(2) = > _1~0 11? k=3 (k=1)r k,kk By calculating directly how many signed
cycles we have, we get indeed (k — 1)!7* (k! possible arrangements with 7% signs, every
shift defines the same cycle, there are k shifts).

(2) WegetCr(2) =3 ccc, 2ik>0 %zl'k =7 0 % > ¢(1). Gauf proved that 3, ¢(1) =
n so we get » . rz" which is exactly the generating function of cycle types of cycles. (As
wocow ! always has the same type as ¢, the orbits of the 20, ,-action are those with the
same type.)

(3) We get C~TCT( ) =2 ecC, 2ok>0 d)—kz =>4 r(k—l)!%’;. There are indeed (k—1)! unsigned
cycles for each type.

5.Ge l o(l Ik n ..
(4) We get C7°(2) = ¥ 4m0 G (Tl, ) = Yipo S = X & 2t $(1) 7. This is
the number of necklaces with n beads and r colors.

EXAMPLE 3.2.10 (r-Sets). The specializations of r-Sets are (Zgr = exp (E Zk>0 pkk(f ))
(1) €"(2) = &, 7
(2) 57“(02) =2 "
3) & () =20

18
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EXAMPLE 3.2.11 (Vertices). The specializations of vertices are (Zyr = exp (Y p’“kﬂ)):

—~

(1) V'(2) =3, &

(2) V”gz) =>,2"

(B) V' (z) =3, 5

@) V¥ (z) = Y, R

Another kind of specialization is the way we convert a cycle indicator series Zp into Zap:
LEMMA 3.2.12.
Zng =) 1"Zr, if k#0
F=1Dj otherwise

= ZF|py(1)=ripx p; (€)=0 for € # 1

= ZF|pk(1):7“pk7pj(€):0 for §#1

= ZF|p;(w)=p; (y)==p;
PrOOF. We compare Zap and Zp:

ZAF:Z Z | fix o|pe, ZF—Z g Z | fix w|pe-

n ' ceG, wewrn

As for every o € &,, the number of fixed points is the same when we consider it as an element of
20, , we need to extract the terms of Zr that come from such a ¢ and multiply then by r". Every
such p, has only type 1, so we set p;(§) — 0 for £ # 1.

Now we consider a cycle ¢ with length | of ¢ € G,,. By choosing signs for ¢ we get a cycle of an
element of 2J,.,,. As we want type 1 only, there are 7'~! ways to choose it. Every element of 23,
with only type 1 cycles can be built this way from a unique s. So we set p.(1) — pcrl%l.

This proves the fist equality. For the second and third one we calculate what happens with a py(1):

1)
= [[r*(0) H>7“'A‘HPA’“ Hp r=ril
k=1

This proves the second and third equality. The fourth one we only prove for r = 2:

1(\) (N LX)

H pr(1) = [[ ot (@) + 02 () = ] 2025 = r'Ppa
k=1

k=1
So for only type 1 signed permutatlon this holds. Now we consider any p(—1):

pr(—1) = pi(2) = pr(y) = Pk — Pk =0
This shows the fourth equality. O

EXAMPLE 3.2.13 (Vertices). We calculate Zayr:

ZAVT = 2V |py (1) =rpi p; (CF)=0k£0

_ pr(1)
—(exp(zk: k ))ka(l):rphpj(é“’“):O@k#O
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= exp (Y F)

k
We can also calculate specializations of A: For example for r = 2 we have:

(AV")(z) = exp(2z).

3.3. Sum and Product
In analogy to ordinary species we define sum and product of r-species:

DEFINITION 3.3.1. For F', G being r-species, we define (F' + G)[M] = F[M]U G[M] and the
w-action point wise. Therefore an (F' + G)-structure is either an F-structure or a G-structure.

REMARK 3.3.2. As it follows from the definition that the sum is associative (and commutative),
we can consider sums of k r-species too.
The neutral element regarding + is the empty species 0[M] := 0.

THEOREM 3.3.3. For F', G being r-species, it holds that Zr,q = Zr + Zg as well as:

o (F+G)(x) =F(x) + G(a),

(F+G)( ) = F(z) +G(x),

o (F+Q)% () = FO(a) + GO (a),

Ge ~
o and (F+G) (x) = FS(z) + G®(x).
PrROOF. For calculating Zr, g we need to consider fixed points of F' 4+ G. As every structure

of F 4+ G is either in F or in G, it is a fixed point if and only if it is a fixed point in F or G,
therefore, the number of fixed points of F' + G is exactly the sum of the fixed points of F' and G,
S0 Zpyg =24+ Zg .

In the same way the number of structures and their 20, ,,-orbits sum up and we get the result for
the exponential generating function and the type generating function as well. (Il

EXAMPLE 3.3.4. We consider £, = Zszo &l. The species of r-sets with a maximum of r - k

elements.
Note that £” can be seen as ) _, - &, however, we will not discuss this further, for more information

about limit values and convergence of species see [BLL98]|.

DEFINITION 3.3.5. We define (F - G)[M] = Upp, Unr=nram,ndto=0.00, e, F[Mi] < G[Mo] and
the w-action point wise. Therefore an (F' - G)-structure is a tuple of an F-structure and a G-
structure.

REMARK 3.3.6. It follows that - is associative, commutative (up to isomorphism) and distribu-
tive over +.
The neutral element regarding - is the species 1 := &].
THEOREM 3.3.7. For F, G being r-species, it holds that Zp.c = Zp - Zg as well as:
o (F-G)(x) = F(x) - G(),
(F G)(z) = F(2) - G(x),
.« (F-G)O(a )6 Or(x) - G (),
e and (F-G) (x) = FS+(z) G ().

PRrROOF. We start with calculating the fixed points of (F' - G)[w]: For a fixed point, both the
F-part and the G-part need to bee fixed. Therefore, it is necessary that each cycle of w permutes

/-\/\
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only elements that are all contained in either F' or G. So we can construct every possible fixed

point by choosing cycles w! = ¢, ... ,¢; and define w@ as the rest of the other cycles:

ZF-G: Z ‘ﬁxw‘pw

n,wkrn

1
[15 e wr(©)!(rk)=+©

As there are (:jf”(é))) possible ways to choose w,f (&) cycles of length k and type £ for F' we get:
k

= xw!'|| fixw® wk () .
=2 | 2 IExTs |H<w,§(§)) T r(©1rk)+®

nwhkrn \wlwG=w k,&

Note that wi (&) = wi (&) + wf (€) holds.

1
= | fix w|| fix w|p,rp,c
ngl;rnngG:w [i.e wf (©)lwf ()1 (rk)<t O+
DI > ixep
LTl [Trewi ( szh [Tk g i (k)=

U

EXAMPLE 3.3.8 (k-Faces). We consider the species of k-faces of an n-dimensional cube F
(compare with [HLL98]): We already know the O-faces which are the vertices. Now we can
represent a k-face of a cube as a set of vertices that share n — k signs, we can write it as a set of k
labels with free signs together with an (n — k)-dimensional vertex.

For example an edge in a three dimensional cube (in ]-"12,3) could be {{1,2,-3},{-1,2,-3}} but
not {{1,2,-3},{1,-2,3}}. We can represent {{1,2,—3},{-1,2,-3}} also as ({1}, {2, —3}). So
it holds that:

‘FT - 5]43 n k

We therefore can calculate the cycle indicator series easily:
Z]_—;;n = Zgr Z];]vC L= hk(x)hn_k(l)

Furthermore we can calculate the exponential generating series and the type generating series:

T r T Zk 2" k P nep T
Fhn(#) = E(2) Vi) = o = = vt k<k:>
fg,n(z) = 57;(2’) : ~,,1;_k(2’) = Zk . ank = "

Note that a k-face of a cube can be associated with an (n — k)-face with a hyperoctahedron as they
are dual (for a graphical example see figure 6)

EXAMPLE 3.3.9 (Fixed Point Free signed Permutations). Consider the Species Wi of fixed
point free signed permutations. The calculation of its associated series may be difficult to calculate,
however we have W™ = £" - W[ pp which makes calculating easier. Here W is the species of signed
permutations as it will be introduced in example 3.4.3.
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FIGURE 6. A cube and an octahedron.

3.4. Examples of r-Species

EXAMPLE 3.4.1 (Type C Parking Functions). For more information about type C parking
functions see [ST14].
A type C parking function can be defined as a vector f = (f1, fo,..., fn) where we have f; €
{-n,—n+1,...,-1,0,1,2,...,n}. They can also be represented by a labeled lattice path from
(0,0) to (n,n) with only north and east steps where the north steps are labeled by i1, i2,...,i, €
{£1,£2,--- £ n} with |ig| # |is], i1 = |i1] and |ij| > |ij41] if there is no east step between the ;B
and the (j + 1) north step. For f; = 4k we know that 4l occurs after k east steps, with this
information we can build the path (by sorting numbers in the same row we get the last condition).
The w-action is defined by permuting the positions and changing the signs. (Compare with figure 7.)
All together we get P[n|c, = {(f1, f2,..., fn) with f € {—n,—n+1,...,-1,0,1,2,...,n}}.
For calculating Zp we need to consider fixed points: Only numbers with the same absolute value
can be interchanged in the vector notation and only numbers in the same row can be mapped to
each other in the path notation.
We now consider a cycle with length [ and type 1. As the number of fixed points only depends on
the cycle type we only consider the cycle where all signs are 1: A parking function is a fixed point
if on all positions of this cycle there is the same number with the same sign. Therefore, we get
2n + 1 fixed points.
Now we consider a cycle with length [ and type —1. Once more we only consider particular cycles,
those where exactly one —1 occurs as a sign. Under such a permutation exactly one of the signs is
changed, so we only get a fixed point if all positions are 0.
Now we can calculate Zp:

2= gy 3t Fy,

UJEQUQ M

270! n
Z? W2 T @Oy (i (D)

_ Z (2n + 1)22:1 wi(1) ﬁ Wk )wk(—l)

e T (2R)<e Dy (1)l (-

= Z(Qn + M PA(L) - pu(=1)

2 [T (2R 8 A g
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generating the labeled path of f = (-2, -3, 2,0): an w-action:

4 4 4
3 3 3
- w
2 2 1 2
I
1 1 1
4 [ A e 4 Ve 2
0 * 0 0
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

w=(14+4-2-)34+),(-2,-3,2,0) — (3,0,2,—2)
Fi1cURE 7. A parking function and an w-action.

The exponential generating function is given through:

n

Pz)=Y rin! (2n +1)"

EXAMPLE 3.4.2 (Diagonals). Similar to the vertices we define the species of diagonals as the
diagonals of V? the following way:

'D[MCQ] = {{il,iQ,...,i'M‘} 11 € MCgalil #ZM}/(—M)

The 2 ,-action is defined point wise. This is well defined as —w(i) = w(—1).

When describing objects of D[n]c, we use the representative of an equivalence class that contains
1 for describing it.

For example:

D[3]c, = {{1,2,3},{1,2,-3},{1,-2,3},{1,-2,-3}}
For w= (142 — 3+) we get:

D[w] = ({17 2, 3}{17 2, _3}{17 -2, 3}) ({17 -2, _3})

For a graphical representation see figure 8.

For calculating Zp we once again need to consider the fixed points: However there are two
different kinds of fixed points: There are those where even the vertices are fixed and those where
the vertices of one diagonal are interchanged. The first ones are already analyzed by example 3.2.4.
Note that as we have two vertices per diagonal, the number of fixed points is exactly the half of
it. The other ones occur under exactly the same signed permutations composed with the mapping
¥ i — —i Vi. Composing a cycle ¢ with ¢ simply changes all the signs (in both notations).
Therefore, when the number of elements is even, the cycle type will be the same, and if it is odd,
it will have the same length but a different (as there are only two, the other) sign:

For example (1+ 2+ 3+) has cycle type (0,0;0,0;1,0), this goes composed with ¥ to (1 —2—3—)
and has now cycle type (0,0;0,0;0,1) and (1 4+ 2+4) goes to (1 — 2—) where both mappings have
cycle type (0,0;1,0).

Therefore, we get the following numbers of fixed points: For the first type we get:

1 n
L7 90
k=1
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1,-2,3}

{1,2,

{1,-2,-3}

{1,2,-3}

w=(1+2-37)

Dlw] = ({1,2,3}{1,2,-3},{1,-2,3})({1,-2,-3})
FicURE 8. Diagonals in a 3-dimensional space and an w-action.

for all w consisting of only cycles with type 1 and for the second we get:

ﬁwk(l

for all w consisting of only even-length cycles with type 1 and odd-length cycles with type —1.
Now we can calculate Zpj, Cs

L\’)M—t

11 = "
S oE 1 | D VR | XU B D SR | EE
n ’ WEW, k=1 WEW; n, k=1
Peo=ITx (pr(1))+ po=ITx (Pr((—1)%))r (D)

We now only consider the cycle type of w. Through the even/odd condition all we need to know is
how many cycles of w with length k£ there are. Therefore, we consider w - n. Note that the second
product may arise from a different w:

— Ll L - Wi Wik - Wi _ 1)k \wk
_ZH:an!Q%HZI(Qk)wkwk! ((};[[12 pk(l) >+<kl_[12 pk(( 1)) ))

Now we use pi(1) = pr(z) + pr(y) and pr(—1) = pr(x) — pr(y) (compare with Remark 2.3.10), and
cancel some terms:

-5 Y ((H( (@) + Dily ) " (H e ’“pk<y>>Wk>>

w)—n k=1 k=1
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:% 3 HC% <pk +pk(y)> ARy HC% (pk (k 1)’“pk(y)>w’“

n,wkn k=1 n,wkn k=1

Now we use the same calculations for both sums as we used for r-sets (example 3.2.3) and get:

-l (exp (Z (p() +pk<y>>> +exp (Z (put) + ))

k k

= % (eXp (?m(@) - exp (;M@) +exp (Zm ) exp ( )>>

Once again we use the same calculations as we used for r-sets (example 3.2.3) and get the following.
We therefore use (—1)*pp(y) = pe(—y) and (—=1)*hi(y) = h(—y):

— % ((Zk: hk(:n)) (Zk: hk(y)> + (1) (Zk: hk(w)> <Zk: hk(l/)))
! ((ZZhnk(m)hk(g/)> e @ghnk(x)hk(y)))

_Zzhn 2k () hok (y)

The Spe(nahzatlons for diagonals are:

n

(2) D(z) =2, 2"
(3) DO (=) = ¥, 2
(4) D% (2) = X[ 5=
EXAMPLE 3.4.3 (Signed Permutations). Note that we also call them r-permutations. We con-
sider 20, ,, as an example of an r-species:

W'lnlc, = W, n, W' w|(T) =worTo wt

If we use the cycle notation we can interpret a YW -structure as a set of C"-structures, what we will
do later when we consider substitution of r-species.

Now we are interested in the cycle indicator series, so we need to consider fixed points under an
w € W,,: For a 7 € W" being a fixed point, it is necessary that all elements of one cycle are
mapped to the elements of another (or the same) cycle with same size, therefore, elements in one
cycle of 7 need to be in a cycle of w with same length. Analogous as in C", we need the same types
for cycles of w that occur in such of 7.

We now construct any possible fixed point of w: We consider the elements of w-cycles with length
[ and type £ (elements of other w-cycles need to be in different 7-cycles), their number is w;(&):
Therefore, we sort the w-cycles by their smallest element and call these elements ey, eg, ..., €, (1)
Then we start with element e;, choose the first element of the w-cycle of e; that occurs in the
T-cycle of e1, and in a second step we choose the sign &, . There are [ - r possible choices (the [-st
possibility is the one of e; being a fixed point so far) and therewith the positions (and their signs)
in 7 of the other elements of the w-cycle of e; are determined. (Compare with the construction
of fixed points in C".) Note that if this element is k positions in the w-cycle away from e;, the
elements will be in ged(l, k) cycles.

Now consider es: eo can either be in a new cycle ore in one of the cycles already constructed by
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w = (123456), possible fixed points:

1
1 2 1 1
o O < I /\ It /N NN
2 6 3 .5 4 9 5 —> 3 6 2
¢ o ol s
3 5 3 5
N 7
5 6 Ny 7 / N\ it /\ 1
(1234)(5678)(9 1011 12), construction of two possible fix points:
L ' 1 2 sl TN
L] L ] L] ) 5 9 6 10
° ) o o \ ° 5/ \ 6/ V} — 5 7 6 8 l 1 ‘ 1
L.t 11 712 8

or 4 on their own )
or 4 on their own

5/1\7 6/2*2 C/g C/m
\3/ \4/ C/H C}u

w=(1-24+3+4+)(5+6—7—8—), construction of the signs:

2 1 2
S 6/*; +/1\ y \7 AN +/ ‘\+ —/\
5. 7
7 N\ N 7 o f\/* \/_

+3 —
AN 2 N\ choices
-8 -7 -5 +6 -8 -5 determined
7 N/ N Vi
+4 +1 +4 +1

FIGURE 9. Examples of constructing fixed r-permutations.

e1, in the first case, we get, like before, [ - r possible choices, in the second case we can chose the
element of the ej-w-cycle of which es is the nearest follower as well its sign. The rest is determined.
All together we get 2Ir possibilities.

For eg, we once more get [ - r possibilities for a new cycle, and 2Ir for an already constructed one
(Ir for being the follower of an ej-cycle element and Ir for those of the es-cycle, no matter if they
share cycle or not), thus all together 3lr possibilities.

Tterating this gives us wy (&)U« &r<i®) . Therefore, we get [, wi (&)1« @r«1©) fixed points. (For
graphical examples see figure 9.)

Now we can calculate Zyyr:

1
Zyr = o Z le(f)!lwl(g)r“l(g)pw
mEOT m: wEWrpn 1
1 mlr™
_ - wl(g)!lwz(f)rwl(f)pw
0 7 w;nls_l[ [ (try= O (O)!
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- Y W

m>0,wk-m

The exponential generating function is W' (Z) = 3, 2™ and the type generating function Wr(Z) =
>on 2" H{w Fr n}l.

3.4.1. Set Partitions. We define two new kinds of set partitions we will need later as r-
species.

DEFINITION 3.4.4. We define if r = 1 and an ordinary set S and Par[S] as the species of all set
partitions of S. For general r we define two kinds of partitions for a set M € B,.
(1) We define Parc, [M] as the set of all partitions, where the sets are stable under the C,-
action. Therefore, for a block bof m z € b,j € N= (Jz € b.
(2) We define Parg, [M] as the set of all partitions 7 which are preserved under the C,-action
and where 7 as an object of B,. In other words, for every set N € 7 the set ¢ - N is also
in 7.

EXAMPLE 3.4.5. Let M = 5¢,. A partition of [5] is for example {{1,3},{2,4,5}}.
(1) A partition of M in Parc,[M] is for example:

{{1,¢1,¢%1,3,¢3,¢%3},{2,¢2,¢%2,4,(4,(%4,5,(5,(°5} }.
(2) A partition of M in Parp,[M] is for example:

{{1,¢3},{¢1, ¢33}, {¢?1, 3}, {2, (*4, ¢*5}, {¢2, 4,5}, {¢*2, (4, (5} .

As the previous example motivates and the following lemma shows, there is a natural bijection
between Par[S] and Parc, [S], and that there is a strong connection between Par[S] and Parg, [S]:

LEMMA 3.4.6. Let S be an ordinary set, so that Sc, = M and let m be a set partition of S, then
every partition of one of the two kinds of set partitions can be constructed with the help of m:
(1) We define 7 € Parc,.[M] as the set of all sets be, with b € 7.
(2) We choose arbitrary signs & € C, for all j € S and define © € Parg [M] as the set of all
{& ('wiaxeb} withber, i=0,1,2,...(r—1).

Proor. We need to show that our construction leads indeed to such a partition and that every
such partition can be constructed this way:
(1) Any b, is by definition stable under the C,-action.
For a given 7 € Parc, [M], we can define 7 as the set of all {|z|: z € b}. As for |z| = |y|
holds that 3¢ € C, : x = £y, and therefore, z and y are in the same block, this leads to a
partition of S. (]z| is here the element of {{z : £ € C,} with sign 1.)
(2) Any {§x (lx:xe b} under the action of ¢/ € C, is {fx (Hxix e b}, and therefore, it
is still in the partition, and our partition is a B,-set.
For a given 7 € Parc,[M], we can once more define 7 as the set of all {|z| : x € b}. (Note
that some of the b will define the same set, but as it is a set of sets this does not matter.)

O

DEFINITION 3.4.7. We define n, as:
(1) || if # € Par[M] or w € Parc, [M];
() 2L if x € Parg, [M],
and the sizes of the blocks b and the number of blocks with that size as:
(1) |b] and their number if 7 € Par[M],

(2) @ and their number if 7 € Parc, [M],
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(3) |b] and their actual number times 1 if 7 € Parg, [M].
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CHAPTER 4

Substitution and Plethysm

4.1. Substitution

For the substitution of ordinary species there are three different kinds of generalizations, two of
them (the first two ones), which are both between an ordinary and an r-species and where we know
how the corresponding cycle index series behaves, can be found in [Hen04]. The third substitution
can be found in [HLL98] and is between two r-species.

DEFINITION 4.1.1 (Type 1). Let F' be an ordinary (1-)species and G an r-species. We define:
(Fo@)M]= > (Fla]x [] GIN]).
meParc,. [M] Nem

The definition on morphisms is natural and will be formulated later.

EXAMPLE 4.1.2 (Signed Permutations). We want to analyze £ o C":
Therefore, we need to consider an £ o C" structure on a set M. This structure is a tuple (7, f,g =
(98)ber) where 7 is in Parc, [M], f is the set of elements of 7 and therefore 7 itself, and the g; are
cycles of elements that are in one set of 7. In other words we have a set of cycles, which is a signed

permutation.
To see that W™ = & o C", we consider a W"-structure w on a set M. This structure is a
signed permutation, so it consists of various cycles ci1,c2,...,ck. A cycle ¢; can be written as

(€in&in€in&ia---€ij;,&iji)
We now state an isomorphism @ : W™ — £ o C":
Now ®(w) = (7w, fw, gw) Where:

® Ty — {{€i71,€i72, . 7€i,ji}Cr 1= 1,2, . ,k}
[ ] fw = {{6@1,6@2, .. '7ei,ji}cr 1= 1,2,. . .,k}
® gy ={c1,¢2,..., 1}

That & is indeed an isomorphism (bijective, compatibile with the 20, ,-action) can be seen easily
by recalculating.

For a graphical example see figure 1. Detailed information about the 20, ,-action will be given
later.

O((1¢*3¢%)(2¢5¢4¢°)) = (, f, g) with:
f = {{17 C]‘7 <2]‘7 37 <37 <23}7 {27 <27 C22’ 47 C4’ 424? 57 C57 C25}}

1
g N et e
5?4 3

FIGURE 1. A W"-structure and the associated £ o C"-structure.
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™= {{1,¢3},{¢1,¢*3},{¢?1, 3}, {2, %4, (5}, {(2, 4,5}, {¢®2,¢4, (5} }

2 1
o D RV I

FIGURE 2. A V" o C-structure.

DEFINITION 4.1.3 (Type 2). Let F' be an r-species and G an ordinary (1)-species. We define:
(Fo@)Ml= > (Fla]x ] clo))
meParg, [M] Oeng,
where:
e O € ¢, are the orbits of the C,-action in 7.
o GlO] = {(gN)Ne@ :beN = G[€](by), YN € O, ¢ € cr}.
The definition on morphisms is natural and will be formulated later.

EXAMPLE 4.1.4 (Vertices of Cycles). We analyze V" o C:
A structure of V" o C[n|c, is a tuple (m, f, (9n)N.o) Where:
o 7 € Parg, [[n]c,]
. f eV
* gy =C[N]
An example for a structure h in F' o G[5]c, is the tuple h = (7, f, g = (gs)per) Where

o m={{1,¢3},{C1,¢*3},{¢*1,3},{2, (%4, (*5}, {(2, 4,5}, {¢?2, (4, (5}

o f={{¢*1,3}{¢2,4,5}}

e g=1{(254),(13)}
Note, that for shorter notation we write here {(13)} instead of {(1¢%3¢), (1¢3¢?), (1¢23¢%)} as we
can construct the latter with help of = and f.
Note that this r-species is not the same as W, even though one can associate these structures.
Nevertheless, the 20, ,-action is different as we will see later on. Detailed information about the
20, ,-action will be given later.
For a graphical example see figure 2.

The third substitution can be found in [HLL98] and is between two r-species. Note that
[HLL98| considers only the case of hyperoctahedral species (r = 2). His definition, however, can
be easily generalized:

DEFINITION 4.1.5 (Type 3). Let F' and G be r-species. We define:
(FoG)Mc,]= > (Frc]x ] GINe,)).
mePar[M] Nem
The definition on morphisms is natural and will be formulated later.
ExXAMPLE 4.1.6 (Vertices of Signed Cycles). We analyze V" o C" (this species can be seen as

signed permutations that have an extra sign):
A structure of V" o C"[n]c, is a tuple (7, f, (gp)s,) Where:

e 71 € Par[[n]]
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m={{1.3}.{2.4,5}}

) 1
e SSNE et e
f={¢*{1,3},{2,4,5}} g 5 — 4 3 C

¢

FIGURE 3. A V" o C-structure.

° f < VT[TFCT]
* g =C"[bc,]
An example for a structure h in V" o C" is the tuple h = (7, f, g = (gp)per) Where:
o m={{1,3},{2,4,5}}
o f={¢*{1,3},{2,4,5}}
o g ={(2¢5¢4¢"2), (1¢*3¢%)}
Detailed information about the 20, ,-action will come later.
For a graphical example see figure 3.

LEMMA 4.1.7. Any substitution of type 1 and 2 is associative in that sense that (F o G)o H =
F o (G o H) holds no matter what type(s) of substitution we have (up to isomorphism).

PRrROOF. We proof it by example for the case that F, G are normal species and H is an r-species
and only for the set of structures. That it also holds for the morphisms will be clear when defining
them precisely. The other cases are analogous.

(Fo(GoM)M= >  Flm] [[ (GoH)b]
w1 €Parg,. [M] biem
= Y Fml]] > Glm [ Hiba
T GParcT_ [M} biEMm 7T2€Parcr [bﬂ boEma
= Y > Fim] [] Glml [ Hibal
1 GParCT [M} WQEParCT [bﬂ biem boEmo

Now 71 consists of C,-parts of M and 7o of parts of these. We define 73 as union of w9 that come
from the same m and get m3 € Parc,[M]. We define 74 as partition of 73 in that way that the
union of the parts are the parts of ;. Then F[m] = F[r4] and the former 79 are now the parts of
m4. (For a graphical example see figure 4.) Then we get:

= > Y. Flm] [T Gleal | T Hbs]

ﬂgEParCr[M} 7T4€Par[7r3} byETY bzems
= Y (FoQ)m] [] Hlbsl
m3€Parc,. [M] bzems

= ((FoG)oH)[M]

REMARK 4.1.8. e X := &} is the neutral element regarding o.
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. Cj v

o 71'1/71'4

° 71'2/71'3

FIGURE 4. Partitions of FFoG o H.

e o is linear in the first argument.

e For any ordinary species F' it holds that V] o F' = F o V.

e We have A(GoF) = GoAF whenever G is an ordinary species and F' an r-species but not
necessarily A(G o F') = AG o F whenever G is an r-species and G and ordinary species.

In the case r = 1 the literature (see for example in [BLL98]) tells us that not only the following
lemma for the exponential generating series holds, but also a similar result for the cycle indicator
series, to which we will come later.

THEOREM 4.1.9. For F(z), G(x) generating functions of F, G being (r-)species, it holds that

o (FoG)(r)=F(G(x)) in type 1 or type 2
o and (F o G)(x) = F(rG(x)) in type 3.
REMARK 4.1.10. Note that the third equation is new. ([HLL98] defines the exponential gen-

erating function in a slightly different way (skipping %n) and does not consider cycle indicator
series.)

EXAMPLE 4.1.11 (Signed Permutations). We want to show that £(C"(x)) = W' (z): Therefore,
we need the exponential generating functions (compare with theorem 3.2.7):

(1) We start with the species of sets:

E(x) = exp Z % = exp(x)

20 T (=i ()=0
which states that there is exactly one set for each size in £ which is indeed true.
(2) For the signed cycles we already know (example 3.2.9) that:

ca) =3

(3) For the signed permutations we get:
Wi(@) = D Puppy=emi(er=0 = D"
n,wkrn n
which states that we have n!2" signed permutations, which is indeed true.
Now we can calculate £(C"(z)):

" 1

E(C"(x)) = exp (Z $n> =exp (—log(l —z)) = == Z:c” =W"(z)

n
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PROOF OF THEOREM 4.1.9. Although this will follow immediately out of the theorems about
the cycle indicator series (4.3.1, 4.3.2, 4.4.21) and through the fact, that the exponential generating
function is a specialization of it (subsection 3.2.1), we will proof this directly by counting the
number of F' o G- structures.

Let F(z) = fra® k' - (and r = 1 at type 1) and G(z) = >_ gpa® k, - (and r = 1 at type 2). Let
further be j; the number of blocks with size i as defined before. For a fixed partition 7 of [k] or
[k]c,, depending on the case the number, of such structures is fx(g1)71(g2)?2 - -+ - (gm)’™. These
structures have size m = ) ij; (note that k = >_ j;).

The number of partitions with j; blocks of size i is (compare with lemma 4.3.25):

m/!

e Type 1:

IL (Z')jlj !
* Tvve 2 iy ILr = g
* Type 3 i
Therefore, the term with z™ is:
o Type 1: fu(g1)(92)2 -+ (gm)™ (g e
o Type 2: fy(g1)* (g2)% -+ (gm)m s "
o Type 3: fu(g)? (92)7% - (gm)™ [y oo
Now we calculate (F'(G(z)) for type 1 or type 2 and F(rG(x)) for type 3:
e Type 1:
f k! 71 G ™
e Type 2
Ix ! k fx k! j - ™
F(G(QT)):ZW(ZQZH) :ZW ]_['jz'!gll””'g’]n TT, iV
k l k S ji=k -t ¢
e Type 3
FrG) = 3 Yot = Y0 ket S gl g
= k'?"k gll' i — 'Tk H ]z'gl gm TmH ’L'Jz
k l k S ji=k L
which is the same. O

4.2. Plethysm

As in the case of ordinary (1-)species, there are plethystic operations for the cycle index series
of substituted species for the two cases which can be found in [Hen04]:
[HenO04| claims that it is not possible to define a plethysm o : A(r) x A(r) — A(r), however,
he defines a plethysm o : A(1) x A(r) — A(r) and one o : A(r) x A(1) — A(r):
DEFINITION 4.2.1 (Type 1). We define o : A(1) x A(r) — A(r) uniquely as follows:
(1) V g € A(r), the map A(1) — A(r) : f — fogis a C-algebra homomorphism:

(VgeAr), fi,fa€ AM1): (fi+ f2)og= fiog+ faogand (fi-f2)og=(fiog)-(f209))
(2) Vi €N, the map A(r) = A(r) : g — p; o g is a C-algebra homomorphism:

(VieN, g1,92 € A(r): pio(g1+92) =piogi+pioge and pio(gi-g2) = (picg1)- (picgsa))
(3) piop;(&) =p;(8)

This can be defined in another way (compare [BLL98]):
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LEMMA 4.2.2.
Zp(p1:p2,p3, ) © Za(1(1),p1(¢), p1(¢)s -, 1 (¢ 1), p2(1), - a(C ), p3(1)s - )
=Zp(Za(p11(1);p11(C) -+, p1a (¢ ), 21 (1), ), Za(pra(1), -, pra(C ), p22(1), ),
Za(p13(1),...,p13(¢" 1), pas(1),...),...)
In other words, we substitute for every p; in Zr a modified Zg, where we have substituted for every
p;(€) api;(§).
PrROOF. We want to calculate Zp o Zg, for an easier reading we write Zp = Zn)\,_n a)py and
Za =7, s bupy:

ZpoZg = Z axpy) Z bupu

n,A\Fn n,ukrn

Now we use (f1 + fo)og= fiog+ feogand (fi-f2)og=(fiog)-(f20g). Note that we here
use the cycle type definition of a partition:

= Z axpy) Z bupy) = Z a)\H(pio( Z bupu))

n,A\Fn n,ubrn n,A\kn PEN n,u-rn

Now we have on the left side of o only p;, so we an use g1, g2 € A(r): pio(g91+92) =picgi+pioge
and p; o (91 - g2) = (pi o g1) - (pi © g2):

=Y ax[[( D pioup) =D ax][ D bu [] piopi€

n,A\Fn 1EX n,ubrn n,A\Fn TEA N, J()en
- S Il 5 b T e
n,AFn i€An,u-rn j(E)Ep

This is exactly the formula stated above. O
Now we do the same for the second case:

DEFINITION 4.2.3 (Type 2). We define o : A(r) x A(1) — A(r) uniquely as follows:
(1) V g € A(1), the map A(r) — A(r) : f — fogis a C-algebra homomorphism.
(VgeA), fi,fa€Ar): (fi+f2)og=fiog+ faogand (fi-fa)og=(fiog) (f209))
(2) VieN, ¢ € C,, the map A(1) = A(r) : g — pi(§) o g is a C-algebra homomorphism.
(VieN, € Cy,g1,92 € A(r): pi(§) o (g1 + 92) = pi(§) 0 g1 +pi(€) 0 g2 and p; (€) o (g1 - g2)
= (pi(§)og1) - (pi’(f) o 92))
(3) pi(§) op;j = p;;(&7)
This also can be defined in another way (compare [BLL98]):
LEMMA 4.2.4.
ZF(p1(1)7p1(€)7p1(C2)7 s 7p1(<7'71)7p2(]-)7 o 7p2(cril)7p3(1)7 o ) o ZG(p17p27p37 cee )
:ZF(ZG(pl(11)7]72(12)7]73(13), oo )7 ZG(Pl(C1)7P2(42),p3(€3)7 s )7 ER)
Za(pr (¢TI, pa(¢U2), pa (¢, L),
ZG(p1~2(11)7p2~2(12)7 ce. )’ ZG(pl-Q(CI)’p2~2(C2)7 cee )a DRI ZG(plQ(C(r_l)'l)apQ-Z(C(T_l)'Q)v o )a
Za(pr3(1'), p2s(1?),...), Za(p13(¢H), p23(¢?), .. ), . -)
In other words, we substitute for every pi(§) in Zr a modified Zg, where we have substituted for
every pj a pi.;(&7).
34



PROOF. The proof is analogous to that of type 1 (lemma 4.2.2). O
Examples to the plethystic substitution will come in section 4.5.

REMARK 4.2.5. For the third type we have no classical plethysm, however, we will find a new
way to describe the substitution of the cycle indicator series later.

4.3. Theorems of Type 1 and 2

THEOREM 4.3.1 (Type 1). Let F be an ordinary (1-)species and G an r-species.
Then ZFoG = ZF o Zg.

THEOREM 4.3.2 (Type 2). Let F be an r-species and G an ordinary (1-)species.
Then ZFoG = ZF @) ZG.

For examples see section 4.5.

REMARK 4.3.3. This is already proven in [Hen04] by means of polynomial functors and charac-
ters. We present a direct proof by computation. For r = 1, another proof can be found in [BLL98]
(chapter 4.3), using the type generating function.

We will proof the two theorems simultaneously, as the proofs are quite similar, and some of the

arguments are even the same.
For the proofs of theorem 4.3.1 and theorem 4.3.2 we consider a typical F o G structure, similar as
in [BLL98].
In type 1 such a structure h is a tupel h = (m, f, (gp)per) Where:

(1) 7 is a set partition in Parc,_[[n]c,]

(2) fis an F-structure on m

(3) g are G-structures on b;

In type 2 such a structure h is a tuple h = (7, f, (90)0enc, ):

(1) 7 is a set partition in Parg_[[n]c, ]
(2) fis an F-structure on m
(3) go = (gb)pco are tuples of G-structures, where O is a C,-orbit of 7

Now it is time to define F' o G[w] on a F' o G-structure:
DEFINITION 4.3.4 (Type 1). We define
F o Gl((m, £, (9p)vex)) = (w(m), Flo](f), (Glwip](95))bex)

where

(1) w(m) is defined pointwise, so each block b € m maps to w(b). Thus, the result is a set
partition with the same sizes of the blocks and, still in Parc, [[n]c, ]
(2) We define o as the bijection between m and w(7) where o(b) := w(b).

DEFINITION 4.3.5 (Type 2). We define
F o Gl((m, £, (9p)vex)) = (w(m), Flol(f), (Glwpl(90))oenc, )

where:
(1) w(m) is defined pointwise, so each block b € m maps to w(b). Thus, the result is a set
partition with the same sizes of the blocks, and still in Parg_[[n]c,].
(2) We define o as the bijection between 7 and w(7) where o(b) := w(b). Note that here o is
a signed permutation o € W,.,, ..
(3) Glwplgo = (Glwplgs)seo- Note that, as a C,-orbit is mapped to a C,-orbit, the tuples of
(G[W\b]gb)be(’) belong to the C,-orbit (G[W|b]b)b€@.
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EXAMPLE 4.3.6. (1) Let F' be the species of sets and G the species of r-cycles. An example
for a structure h in F o G[5]c, = £ o C"[5]c, (we have seen that this is isomorphic to the
species of signed permutations) is the tuple h = (, f, g = (gs)per) Where

o m={{1,(1,¢%1,3,(3,(*3},{2,(2,¢?2,4,¢4,(*4,5,(5,(?5} }

o f={{1,(1,¢°1,3,(3,¢*3},{2,(2,(?2,4,(4,(?4,5,(5,¢*5}

o g = {(205¢4C), (1¢23¢?)}
Note that if 7 is obvious by knowing f and g we sometimes omit it. For a graphical
representation see figure 5.
Now consider a signed permutation

w:<<%1 4“23 g ;L g54>:(142)(24340)(44050,

then F o Glw]h is given through:
o ' = {{1,¢1,¢*1,2,(2,¢*2},{3,(3,(?3,4,(4,(*4,5,(5,(*5} }
o f'={{1,¢1,¢*1,2,¢2,¢*2},{3,(3,¢?3,4,(4,¢?4,5,(5, (5} }
o o = {(3¢4C°5¢3), (1C°20)}

(2) Let F' be the species of vertices and G the species of ordinary cycles. Note that this
r-species is not the species of signed permutations, even though it does have equivalent
structures, as the 20, ,-action is different, as we will see in this example). An example for
a structure h in F o G[5]¢, is the tuple h = (7, f, 9 = (9b)ber) Where

o m={{1,¢3}, {C1, ¢33}, {C21, 3}, {2, (%4, (25}, {C2, 4,5}, {€?2, ¢4, 5}

o f={{C’1,3},{¢2.4,5}}

o g={(254),(13)}
Remember, that we write here {(13)} instead of {(1¢°3¢), (1¢3¢?), (1¢23¢°)}, again.
For a graphical representation of this see figure 6.
Now consider once again a signed permutation:

©T (Cgl (23 ; g 454> = (1¢*)(2¢3¢%)(4¢"¢)
Then F'o Gw]h is given through:
o T = {{CQL 42}7 {Cl, C22}7 {Cl, 2}7 {C37 C55, 4}, {C237 5, C4}7 {3’ <57 C24}}

o /1= {{¢1,2},{¢?3,5,¢4}}
o g ={(345),(12)}

REMARK 4.3.7. Note that w € 20,.,, with w(7)=7 induces a permutation o € &, of the blocks
b: with o(b) := w(b) we define a bijection between 7 and w(w); as m = w(mw) we get a permutation.
By convention we will allways use the letter ¢ to denote the permutation induced by w.
EXAMPLE 4.3.8. Consider r = 2, n =5 and the partition {{1,2},{3,4},{5}} of [n].

(1) Type 1: Let m = {{1,~1,2,—2},{3,~3,4, -4}, {5, =5} andw = | L, 2 3 1 5),

then we have o = ({1, —1,2,-2}{3, —3,4, —4})({5, —5}).
(2) Type2: Let m = {{1, —2}{—1,2},{3,4},{-3, -4}, {56}, {-5}} and w = <_13 i _32 411 _55>,

_ {1,-2} {3,4} {5} : .
then we have o = (_{374}(: (=3,-4)) {1,—2} —{5}(= {_5})> that is a signed per-

mutation of the blocks.

-3 -4 -2 1 -5

Note that a permutation that fixes a C,-partition does not necessarily fix a B,-partition that
belongs to the same ordinary partition as we see in this example.
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1
F={{1,¢1,¢%1,3,¢3,¢?3},{2,(2,¢*2,4,¢4,(%4,5,¢5,¢%5} } 9= C/\l LS

5 — 4 3
¢
3 <!
w = (1¢2)(2¢3¢°)(4¢°5¢) igﬂ 1 ¢ 12 I ¢
¢

1
fr={{1.¢1,¢71,2,¢2,(*2}, {3,¢3,¢?3,4, (4, (*4,5,¢5, (5} } 9 = ‘ /g\c 1ite
FIGURE 5. w-Action on a substitution of type 1.

N
f={13){¢2,4.5}} (A T 3

w = (162)(2¢3¢°)(4¢"5¢)

1
7= {{¢1,2),{¢%3,5,¢4}) g/{ 4/ N |

FIGURE 6. w-Action on a substitution of type 2.

For the cycle indicator series Zrog, we need to consider, under which conditions such a structure
is a fixed point under a signed permutation:

LEMMA 4.3.9 (Type 1). A structure h € (F o G)[n]¢, is a fized point of (F o G)[w] if and only
if:
(1) w(mw) =7 (Therefore, the parts belonging to one cycle of o need to have the same size.)
(2) f needs to be a fized point under F|o].
(3) Glwl(gb) = Gu(v)-

PROOF. The first two conditions are obvious.
For the third we want (gs)per to be fixed under the action of w. We know that w permutes the
blocks b, so the G-structure with labels of w(b) is be G|w](gp), and therefore, G[w](gy) = gur)- O

REMARK 4.3.10. For the case of type 2 this lemma and its proof is almost the same. Note that,
as mentioned in lemma 4.3.5, the g, of one C,-orbit are mapped to the same C,-orbit.

LEMMA 4.3.11 (Type 1). Let o be a permutation and m € Parg,[[n]c.]. Let w be a signed
permutation that induces o on m and w(w) = 7.
Then we can construct the fixed points of w in the following way:

(1) Let f be any fixed point of F[o].
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(2) For every cycle of o with length | take an arbitrary block b belonging to this cycle, let g,
be an arbitrary fized point of (wl)|b and g, (b) = w(gy)(= o) for the other blocks belonging
to the same cycle.

The number of fixed points is
(fixFlo]l- [T [fxGlw')p,]]
c a cycle of o
where p. is an arbitrary block belonging to ¢, and . is the length of c.

PROOF. The construction is well defined: As block b belongs to a cycle of o with length [,
(wl)|b : b — b. Furthermore, w is a bijection of b and w(b), hence, w(gp) is indeed a G-structure.
By construction, f and b are fixed under the action of w, and w(gy) = g.(») holds. It remains to
show, that every fixed point can be constructed this way: If we iterate Gw](gs) = gup) We get
Wgy) = 9l (v) = 9b, SO being a fixed point of (wl)|b is necessary for any fixed point. O

REMARK 4.3.12. This lemma and its proof are identical for type 2 if one just changes m €
Parc,[[n]c,] into m € Parg, [[n]c,] and b. into O..

DEFINITION 4.3.13 (Type 1). For 7 € 20,.,, with cycle type
(Tl (Co)v Tl(€1)7 <y T (Cril); 72(C0)7 B Tm(cril))

and a power sum symmetric function belonging to 7

T T 71" 2(¢° pr " r—
pr = pP () pT (Y o P ety L 0y rm(CN (¢
we define for [ € N:
T r—1 r— T Tm r—1 T—
Prav = P (C0) POty - T ety (0 T Yy = o,

REMARK 4.3.14. This means that by transforming pr into pry,; we simply replace every p;(§)
with p;.;(§).
DEFINITION 4.3.15 (Type 2). For 7 € & with cycle type
(7—177—27 T3 ... 77_777,)

and a power sum symmetric function belonging to 7

T2

p pl .p .p3 ..... p;;;n

we define for [ € N and ¢ € C,:
Presel = P14 (EY) - pR(€2) - pEY(ED) - - pir (€7) = pu(€) o pr-
REMARK 4.3.16. This means that by transforming p; into p;.,s we simply replace every p;
with p;.(&").

REMARK 4.3.17. What may be a little bit confusing is, that we here multiply with [, respectively
&l from right, as in fact pr.;; = p; o pr respectively pry,ea = pi(§) o pr holds where p; respectively
(&), is multiplied from left. We could define it the other way around but later on it will be easier
to read.

LEMMA 4.3.18 (Type 1). Let w € W, 0 € S induced by w on m and 7 € Parg,[[n]c,], then

P = H p(w‘llfc)*llc - H Pi.© P, fg(

¢ cycle of o c cycle of o

where l. is the length of a cycle ¢ and b. an arbitrary block of m belonging to c.
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w

w w=(1-4-2-5+)(3+6+)
<
i o= ({£1,£2,+£3}{+4, £5,46})

] =\ T=(44+5-)(6)

e
g

FIGURE 7. An example of a *j-operation.

EXAMPLE 4.3.19. Let w = (1—4—2—5+)(3+6+) and 7 = {{£1, £2, £3}, {4, 45, 26, } }. Then
we have p, = p2(1)-pa(—1). o consists of one cycle with length 2 (o = ({£1, £2, £3}{£4, £5, £6})).
Let b, = {£4,45,£6} and 7 = wfbc = <;1 _54 g) Because, pr = pi1(1) - p2(—1), we have
Pw = Prey2 = P1.2(1) - p2.2(—1), which indeed coincides with p,,.

For a graphical representation see figure 7.

PROOF. Let & € C, be the type of the cycle d. As w induces o, every cycle of w is fully
contained in the blocks of one of the cycles of o. Therefore, we can sort the p;(£) according to the
cycle of o they belong to:

ro= J[ ru= 1] I ru

d cycle of w c cycle of o d cycle of w,
part of ¢

Now consider a cycle d of w with length [;, part of a cycle ¢ of o with length [.: The length of the
l

cycle d'e is é—d. Now we have (dlC)ﬁ(m‘) = dl(x) = &4z, hence the type of d' is the same as the one

of d. Tt follows that:
pld (gd) = pé*d*llc (gd) — pdlc*llc'

le

1be consists of all such cycles d, hence

Furthermore, w

R | G

d cycle of w,
part of ¢

Here, type 2 is a little more complicated and we need some more work preparing it:

DEFINITION 4.3.20. Consider a cycle ¢ of ¢ with length I and type €. Then w!|©® maps O to
O. We define a permutation 7. on the set S, of all tuples of elements that belong to one C,-cycle

7e((CPx)iz12, . (rm1)) = (W'(('T))iz12,.. (r—1)-
REMARK 4.3.21. Note that 7 is an ordinary permutation and w' is a signed one!

LEMMA 4.3.22. (1) |ﬁxG[(wlC)|O]| = | fix G[¢]|.
(2) The number of cycles ¢ with length | is the same of T and w‘lo.

PROOF.
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({3,4}, ){—3, —4},{—i3, —i4})

({5, —6},{i5, —i6},{—5,6}, %
w=(1i3—5—1i2+4+6+)

o= ({1,i2} + {i3,i4} + {—i5,i6}4)
T =(12)

FIGURE 8. An example of a *o-operation.

This follows directly from the definition: As 7 is defined by the pointwise action of w a tuple is
a fix point under w if and only if it is under 7.

Every cycle of 7 comes from a cycle of w!|{0. We just ‘forget’ the signs of w. The length of the
cycle remains. O

LeMMA 4.3.23 (Type 2). Let w € Wy, 0 € W, induced by w on m and m € Parg [[n]c,],

then
Pw = H pTc*QEclc = H plc (50) ° pTc

¢ cycle of o ¢ cycle of o

where l. is the length and &. the type of a cycle ¢ and b. an arbitrary block of w belonging to c.
EXAMPLE 4.3.24. r =4, n = 6:
m={{1,2}, {1, -2}, {—1, =2}, {—i1,2}, {3, 4}, {i3,i4}, {—3, —4}, {—i3, —id},

{5,—6},{ib, —i6},{—5,6},{—i5,i6}}

. . . . 1 2 3 4 5 6

and w = (143 — 5 — 92+ 4 4 6+), or in other notation w = <i3 A 5 6 —i2 1

_ [ {1,2}  {i3,i4} {—ib,i6}

have 7 = (12) and o = <{i3,i4} {—i5,i6} {il, -2}

p6(—1) = prv;3 = p2.3(12), as o has one cycle of length 3 and sign 4, and 7 one cycle with length 2.

The 2 - 3 has exactly the same reason as in type 1. The i? is because o is just one ‘round’ of w,
however, the length of 7 tells us that there are two ‘rounds’.

For a graphical representation see figure 8.

) . We therefore

>. Then lemma 4.3.23 claims that p,, =

PROOF. The proof is similar to that of type 1 (lemma 4.3.18). As w induces o, every cycle of w
is fully contained in the blocks of one of the cycles of o. Therefore, we can sort the p;(§) according
to the cycle of o they belong to:

ro= J[ ru&= 1] I ru

d cycle of w c cycle of o d cycle of w,
part of ¢

Now consider a cycle d of w with length [ and type &4, part of a cycle ¢ of ¢ with length [. and
type &: The length of the cycle dle is é—i.
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For calculating the type we consider the definition which does not use the product. The type of c is
¢ with b = w'e(b) where b is a block of m. The type of d can be seen as {gr = w'é(z) with = € b.

1d 1
If we consider £.b = w'*(b) under the action of w%_l, we get b = wflc(b) = wl(b) as we have
id

€F(b) = w*e(b). Now the elements of b are mapped to ones of the same C,-cycle, thus £ = &g It
follows that: l
d

_ ley —
p1y(8a) = Pla, (&) = Pla e,

le le

Furthermore, w¢ consists of all such cycles d. What we need are the lengths of the cycles of Wi,

[be
which are the same as those of 7, hence
Presaele = H pi—‘j*QElc'
d cycle of w,
part of ¢

LEMMA 4.3.25. The number of partitions of [n] with j; blocks of size u; is
n!
[T ()7t

REMARK 4.3.26. This number looks similar to the number of permutations with the same cycle
type and is proven similarly. There is one difference though: note that there is a u; factorial.
Note further, that the number of partitions in Parc,[[n]c,] is the same, and the number of parti-
tions in Parg, [[n]c,] is the number of partitions in Par[[n]] times [[; r(“~17 as we have r(%i—1)
possibilities for the signs in the set of Parg, [[n]c,], where 1 has sign 1. Then all the other sets are
determined. (Compare with lemma 3.4.6.)

PROOF. We rather proof that n! is equal to the number of the partitions times [T, (w;!)’j;!:
There are n! ways to arrange [n], when defining the first j; numbers as being the j; blocks of size
one, the next js - 2 numbers as being (each two of them) the blocks of size two and so on we get
partitions of [n].

However, some of this arrangements define the same partition: As we do not distinguish the
order of the blocks of same size, nor the order of the elements in one block, there are [, (u;!)7 ;!
arrangements which define the same partitions. (]

DEFINITION 4.3.27 (Type 1). We define s;; as the number of cycles of o with length [ and
blocks of size u;. Furthermore, we define ¢;; - as the number of cycles with length [, with blocks of
size u;, and with 7 = (wl)|bc, where b, is one (arbitrary but fixed) part of the cycle.

LEMMA 4.3.28. There are three identities following directly from definition 4.3.27:

(1) 2581 = 01
(2) 2o titr = siy
(3) >_siy -1 is the number of blocks with size u; (= j;).

DEFINITION 4.3.29 (Type 2). We define s;; ¢ as the number of cycles of o with length [, type
& and blocks of size u;.
Furthermore we define #;; ¢ as the number of cycles with length [ type { with blocks of size u;,
and with 7 = (wl)|bc, where b, is one (arbitrary but fixed) part of the cycle.

LEMMA 4.3.30. Again, there are three identities following directly from definition 4.3.29:

(1) >, si0e = 01(§)
(2) Do titre = Sise
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(3) Zl,g Si1¢ - 1 is the number of blocks with size u; (= j;).

REMARK 4.3.31. Note that if we have ¢;; -, with a given 7 we also know ¢, so we sometimes
omit it (with 7 we also know the size of blocks, of which 7 is a permutation).

LEMMA 4.3.32 (Type 1). For fized o and w the number of different w which induce the same
multiset of (wlC)|bc for every cycle ¢ (with length l. and an arbitrary but fized block b. belonging to
this cycle c) where a signed permutation of this multiset can belong to any proper cycle c is:

Hu 'Szll 1) ulszl(l 1)
Hq—tle'

REMARK 4.3.33. In other Words we have given a multiset of signed permutations, lets call them
7;, we know o and 7 and we want to know the number of w they could induce them. Then we have
to choose how they act on ‘their ’ cycle and on which cycle they act.
Note that the notation (wlC)|bc may be a little bit confusing as it seems that for each signed
permutation the cycle ¢ is already chosen, however it is not!

ProOOF. For a given w‘lgc, we can construct w on the blocks w™(b.), m = 1,2,...,1l — 1, in

ule=puelle=1) different ways: We have uclr? ways to define w|b, : b — o(b.), another wu,lrte
ways to define w|ob,, and so on. Only for Wgi-1(p,) We are forced to define in a way that we get wllbc.
All together we have wu,!tle=Dpuclle=1) for one cycle, considering all cycles, the factors multiply, and
give us the fist part of our formula.

Now we show the second part: We can permute the wllg between the different cycles with same

size, permuting some with same wllb = 7 will make no difference, hence we have s ; | possible
ways to do so. Again, multiplying up everything gives us the related part of this formula O
LEMMA 4.3.34 (Type 2). For fized o and w the number of different w which induce the same

multiset of (1.) for every cycle ¢ (with length l.) where a permutation of this multiset can belong to
any proper cycle ¢ is:

[Tt _Sitg!
ax: L fiie!

PrOOF. Compare with remark 4.3.33! For one given 7., we can construct w on a C,-orbit (b)co
of  in uq!(l_l) different ways: We have ;! ways to define wj), ., for an arbitrary tuple (b)sco (the
signs are defined trough the signs of o and the partition ), another u,! ways to define w,,), and
so on. Ounly for wjsi-1(;,) we are forced to define in a way that we get w‘lbc. All together, we have
uq!(lfl)r“q(lfl) for one cycle, considering all cycles, the factors multiply, and give us the fist part of
our formula.

The second part of the proof is exactly the same as the one for type 1. O

LEMMA 4.3.35. The number of permutations o with the same cycle type on w and the same
term p,, (with notation as before) is:

(1) for type 1
Hi ]z'
IL;, sigltss
(2) and for type 2

H]l sie(l—1)
'lzl H’r e

Hl l f Zalvg 7 l 5
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PROOF. We just prove it for type 1, the proof for type 2 is very similar.
We have given partition, cycle type and p,. The latter tells us how many cycles with length [ and
blocks of size u; we need to have, so with that point of view s;,[ is also given.
Now we consider for any ¢ only blocks with size u;: The cycle type of ¢ restricted to those parts is
(%, 32,22 ) as s is the number of cycles with length [ and size of the blocks u;. Therefore,
their number is:

Ji!
Siyl!lsivl '

Multiplying over all ¢ leads to the desired formula. O

PrROOF OF THEOREM 4.3.1 (TYPE 1). Now we are ready to transform Zp.g into Zp o Zg.

ZFOG = Z

neN,weW, n

=D D DD SRS DR S CYC %[

neENrcParg,.[[n]c,] €S| | w induces o on 7

(F'o G)[w]|pu

Where fix,(F o G)[w] denotes those fixed points that have 7 as their partition.

Lemma 4.3.11 tells us the number of fixed points appearing in this term, due to lemma 4.3.18
we can transform p,, appropriately. Here b;,, is an arbitrary but fixed block belonging to the mth
cycle with length [ of o.

Note that if we sum over all w, we sum over all w in 20,.,, for all possible n, analogous for =
and o. n is then determined by o, 7, and w:

—ZZZWHH\ﬁxG Nl Pty ot X Flo]

I m=1

We use lemma 4.3.32 and consider from now on only 7 = (wl)|bl ., and o. For the manipulation of
the next three lines we use lemma 4.3.28:

_Z’ﬁXF |7Hu|s”l 1) puisii(l—= 151l'H|ﬁXG |pT*1l)ZlT

= Z]ﬁxF |—Hu psialpuisial) . 1 Ju =2 tid U !(Z-rti,l,'r)H(‘ﬁXG[T”pT*Il)ti,l,'ri

tigr
- X larie HHM T [5G ,ulymtl,

"
i,l,7"

Next we use lemma 4.3.35 so from now on we only consider the cycle type of o:

= 3 x| 3 i Ll r T T8 Gl gy

n'r” s; 1[50 !
k,otk H Bl il T

oy 1,
= > |fixF(o nHJi!“i!J Hlsu H(‘ﬁXG[T”pT*Iluz’!T“Z’) T

I
kot i ! T UL

1
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Now we use lemma 4.3.25 (together with remark 4.3.26), and from now on just consider the sizes
of the parts of m:

=Y |fixFlo]| > HZSZHmXG 7| Dress ml)tw 1'

k,oFk m with sizes u; 1,l tzvlvT'
[, 0! " 1
=D IfixFlo]l > s LI B Gtrllpr ™
| 1 l i |
k,oFk 7 with sizes u; Hl o lz ot i tl,lﬂ"
1 1 ,
=D IExFlell > g U,H,;—,H [ Crllprast g )47
k,oFk 7 with sizes u; s l l’l’T ©,T

Z |ﬁXF o'llllal Z HHZ’T le' H |ﬁXG ”pT*ll }ui)ti’lYT

k,oFk 7 with sizes u; T
The sizes u; and the number of their appearance are fully determined by the sums of the ¢;; .

1
= Z |ﬁXF[U”7Hl T Z H 8 t ‘H | fix G[r |p7.*1l ‘r — )

k,otk Y tl,r=01,27 t2,r =02,
.-4,27 t'm,‘r:Um

Now we change the order of product and sum: (In the term above we have a sum over all possible
products of terms, depending on [, and in the term below we have a product over sums of all
possible terms, belonging to a fix [.)

1

= z | fix F[o] T, ! lozH Z H tzT'H | ix G[r Hprnlw)tl’f

k,o-k L Y. b= T

We use the multinomial theorem and get:
g,
kz;k\ﬁxp kH Uﬂl"l H Z]ﬁxG NP — ,r%)) l

As we have here the number of ¢ with the same cycle type we can go back to considering every
different o

1 1 "
=3 ﬁxF[a]|n—7T 1:[(2 | fix G[7] |pT*1zW) l

As pr,,; is just another notation for replacing p;(£) with p;(€), this is precisely the plethystic
substitution.

1 1
Sl D IRE LGS Y I S ENC

n,0€S, n,TEWr n
= ZF o ZG

The proof of type 2 is very similar:
PrROOF OF THEOREM 4.3.2 (TYPE 2). Now we are ready to transform Zp.g into Zp o Zg.
1
Zroc = Z W|ﬁX(FOG)[W]|Pw
n,we€Wy n '
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" neParp,[[n]c,] 0EW,. |x| w induces o on m

Where fix;(F o G)[w] denotes those fixed points that have 7 as their partition.

Lemma 4.3.11 (together with 4.3.12) tells us the number of fixed points appearing in this
term, due to lemma 4.3.23 and lemma 3.2.2 we can transform p, appropriately. Here S, is in
definition 4.3.20 belonging to a cycle ¢ of o.

Note that if we sum over all w, we sum over all w in &,, for all possible n, analogous for m and
o. n is then determined by 7,0 and w:

- Z Z Z n!lrn H | fix G[7]| “Proxocil | fix F[o]]

We use lemma 4.3.34 and consider from now on only 7 and o. For the manipulation of the next
three lines we use lemma 4.3.30:

1 ) _ .
= Z | fix F[U”W Huz‘!s”’g(l Dosipe!- H(’ fix G[7]|prager) 67

tiser!
1
= Z [fx Flo]| Hu el =2 tter sy gl - T (1 fix Gl Iprage)' 7 ——
Z7l7€ T 1713577—'
1 1
= Z | fix F[o s Hullh H Si ¢! H | fix G[7] ‘pT*le . ")tz,l,Tﬁ
0 75 l£ Ui ZzlvaT'

Next we use lemma 4.3.35 so from now on we only consider the cycle type of 0. Again we use
lemma 4.3.30 for formula manipulation:

= Z | fix F[o]| Z I1; ji! o H u; Vi H Si’l’glrsi,z,g(l—l) H (
1€ T

| fix G[7]]| LJZ?!“ )ti,l,T

k’?(ﬂ_crk n'rn H l g s l E tivlvgﬂ-!
) ﬁ G Prxoél ti,l,T
= Z | fix F[o]] Z ! Hji!ui!ﬁ Hrsi,z,slrsi,z,s 1 H (Hfix Glr] =)
nlrm 2. [sie tiser!
k,obc,k s 7 1,¢ T

Now we use lemma 4.3.25 (together with 4.3.26), and from now on just consider the sizes of the
parts of m. Again we use lemma 4.3.30 for formula manipulation:

= Y el Y IIr HT”HT‘WF}&H

(| fix Glr]| 73 ) s

. !
k,otc,.k m with sizes u; i tl,l,ﬁ,r-
T
= > Iwerell > [Tl
i, . |
k,otc,.k m with sizes wu; 4,[,§ l b t%l,fﬂ"
pT* .
= Z | fix Fo]| Z [Li e 01(8)! H 1 H (| ﬁxG[T]]ﬁ)tm:
k,otc,.k 7 with sizes u; Hi,l,f O-l(g)' (7’ ’ Z)ZZ Silg 5 ti,l,E,T!

= X Flo 1 pT*g{l il
= 2 |6l I, 0@ 2 HHH fier .H (1fix Gl =)

k,otc,k " with sizes u; 1,€
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The sizes u; and the number of their appearance are fully determined by the #; ;¢ -.

1 T*2 7
- Z ‘ﬁXF[U”Hl{(r.l)ffz(ﬁ)gl(,gy Z HH |H|ﬁ Glr p él)z

kotc, k VLES, te.r=0u(€ ri il 7

Now we change the order of product and sum: (In the term above we have a sum over all possible
products of terms, depending on [ and £ and in the term below we have a product over sums of all
possible terms, belonging to fix [ and &.)

o < Flo pT*g{l tir
= Y JfixF] ]|Hl€(r o H > I W,H\ﬁ X Gl )

kotc,k ' LE 3, tre,r=01(8) T

Now we use the multinomial theorem and get:

Ly k 1
_ L ©wa(®
Z ‘ﬁX F[ ”k'rk H (T l)al(f)o.l ! 1;[ 2 ‘ﬁXG ”pr*zél UZ(T)')) 1

kotc, k :

As we have here the number of ¢ with the same cycle type we can go back to considering every
different o:

= Pl TTOD( i Gl
o 1,€ T t :

As pri,¢ is just another notation for replacing p;(§) with pii(€F), this is precisely the plethystic
substitution:

1 1
= > [fix Plo]|——ps | o > |fixG[o] —pr
n7UEQH7‘,n n7T667"«
=ZrpoZg

4.4. Substitution of the Cycle Indicator Series of Type 3

We now analyze type 3 in the same way to find a possible definition of a substitution for type
3:
Again, we first consider a typical F' o G-structure. Such a structure h is a tuple h = (7, f, (9)ber)
where:
(1) 7 is a set partition in Par[[n]]
(2) fis an F-structure on mc,
(3) gp are G-structures on bc, ;

Now it is time to define F' o G[w]| for w € 2,.,,, acting on [n]|c, on an F' o G-structure:
DEFINITION 4.4.1. We define

FoGwl((m, f, (g)vex)) = (w(m), Flol(f), (Glwpc, 1(95) Jver)

where

(1) w(n) is defined pointwise via k — |w(k)]|, so each block b € m maps to w(b). The result is
thus a set partition with the same sizes of blocks.

(2) We define o(b) := [, sgn(w(x)) - w(b) with w(7) as before, and ¢(£b) = £o(b), so that
we get a signed permutation on 7c,..
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F={¢{1,3},{2,4,5}} 1= N\ |
S NN ¢ l
<21 CO2 C3 (()5 44 , <21
*><'2_€Ozc2 %C'CO'CQZCZ C/ 1 <2 1T <2
(4d—>5 2
¢
w = (1¢3)(2¢3¢°)(4¢°5¢) o
1
£ ={¢{1,21,¢*{3,4,5}} ,o e e
4 —5 2

FIGURE 9. w-action on a substitution of type 3.

EXAMPLE 4.4.2. Let F be the species of r-vertices and G the species of r-cycles (this species
can be seen as signed permutations that have an extra sign). An example for a structure h in
F o G[[5]c,] is the tuple h = (7, f,9 = (g»)per) Where

o m={{1,3},{2,4,5}}
o [={¢*{1,3},{2,4,5}}
o g ={(2¢5¢4¢"2), (1¢*3¢*)}

Now consider once again a signed permutation:
(1 2 3 4 5\ .9 0 0
o= (1 & 3 8 &) = (OEEOECS)

Then F o Glw]h is given through:

o ' ={{1,2},{3,4,5}}
o fl= {4{172}7C2{3’4’ 5}}
o g ={(3¢4¢"50)}, {(1¢"2¢)}

For a graphical representation of this, see figure 9.

REMARK 4.4.3. Note that w € 20,,, with w(7)=m, in the sense as before induces a signed
permutation o € 20, , on 7. Remember that w and ¢ have this strong connection!

EXAMPLE 4.44. r =2, n =5 Let 7 = {{1,2},{3,4},{5}} and w = <_13 i :; le _55>
1,2} {3,4} {5}>
Then o = {, ’ .
For the cycle indicator series Zpoc, we need to consider under which conditions such a structure
is a fixed point under a signed permutation (for a proof see lemma 4.3.9, the proofs are identical):

LEMMA 4.4.5. For a fized point h € F o G[n]¢,. under w the following must hold:

(1) w(m) =7 (therefore the parts belonging to one cycle of o need to have the same size)
(2) f needs to be a fixed point under F|o]

(3) Glwl(gb) = Guv)
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LEMMA 4.4.6. Let o be a signed permutation and m € Par[[n]c,]. Let w be a signed permutation
that induces o on 7, and w(mw) = .
Then we can construct the fixed points of w in the following way:
(1) f be any fized point of F[o]
(2) for every cycle of o with length | take an arbitrary block b belonging to this cycle, let g, be
an arbitrary fized point of (Wl)|bcr and g,(b) = w(gy)(= o) for the other blocks belonging
to the same cycle.

The number of fized points is
(fixFlo]l- J]  1ixGlw")p,]]

c a cycle of o

where p. is an arbitrary block belonging to ¢ and l. is the length of c.

REMARK 4.4.7. The proof of this lemma is identical to the one of lemma 4.3.11. Note that it
is necessary that w induces o!

The definition of %3 might be a little unintuitive. The reason why we define it that way will
become clear later on.

DEFINITION 4.4.8. For 7 € 20, ,, with cycle type

(Tl (CO)’ 71 (€1)7 - T (Cr_l)v TQ(CO)v SRR I ’Tm(cr_l))
and the power sum symmetric function associated with 7
T 0 T 1 T r—1 r— T 0 T r—1 r—
pr =07 ) ) T ) T
we define
T 0 T r—1 e T 0 T r—1 e . i\ T ;

pser = AP T ) ) T () =€

e 0 otherwise

REMARK 4.4.9. This means that by transforming p, into pr.,; we transform every pi(¢7) into a
pi1(¢7), if the product of the signs of the elements of the signed permutation they are coming from
are the same as £ and otherwise we set it zero.

LEMMA 4.4.10. Let w € Wy, 0 € Wy, induced by w on m and © € Par[[n]], then

Pw = H p(wf,fc)*3§clc

c cycle of o

where 1. is the length of a cycle ¢, and b. an arbitrary block of m belonging to c.

REMARK 4.4.11. Note that in the case of a species the condition Hkvj(Cj)Tk(Cj) = ¢ is always
fulfilled as 7 and ¢ are induced by the same w.
We need it, however, to formulate theorem 4.4.21 in a reasonable way.

EXAMPLE 4.4.12. Let w = (_14 _25 2 _42 ? g) and 7 = {{1,2,3},{4,5,6,}}. Then we

have p,, = p2(1) - p4(—1). o consists of one cycle with length 2 and type —. We then have
o = ({1,2,3} + {4,5,6}-)) and 7 = w?|{&4, 45, %6, } = <§ % 2) .

We have p, = p1(1)-pa(—1). The lemma claims that p, = pres_2 = p1.2(1) -poa(—1) as 11 (=1)! =

—1, which is obviously true in this case.
For a graphical representation see figure 10.
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w=(1-4-2-5+)(3+6+)

o= ({1,2,3} +{4,5,6}—)

T=(4+5-)(6)

FI1GURE 10. An example of a x3-operation.

ProoF. If ¢ is induced by w, the condition HkJ(Cj)pk(Cj) = ¢, for £ being the type of a cycle in
o, and p being the symmetric function of wlbc is fulfilled, so all terms in this product are non-zero.

Therefore, every x3&.l. acts like *1l., so the rest of the proof is exactly the same as the proof of
lemma 4.3.18. O

DEFINITION 4.4.13. We define s;; ¢ as the number of cycles of o with length [, type £, blocks of
size u;. Furthermore, we define ¢;;¢ » as the number of cycles with length [, type &, blocks of size
u;, and with 7 = (w! )b, Where b, is one (arbitrary but fixed) block of the cycle.

LEMMA 4.4.14. There are three identities following directly through definition 4.4.13:

(1) 22 sipe = a(§)
(2) 2o, tiger = sise
(3) > sine - is the number of blocks with size u; (= ji).

REMARK 4.4.15. Note that for ¢;; ¢ with a given 7, ¢ is also given, so we sometimes omit it
(with 7 we also know the size of blocks of which 7 is a signed permutation).

LEMMA 4.4.16. For fired o and ™ the number of different w which induce o and the same
multiset of (wlc)|bc for every cycle ¢ (with length l. and an arbitrary but fized block b. belonging to
this cycle c) where a signed permutation of this multiset can belong to any proper cycle c is

.
H ui!&',z,g(l—l)r(ui—l)si,l,g(l—l) . %
x: il LT THLeT

REMARK 4.4.17. For better understanding compare with type 1. (See lemma 4.3.32 and par-
ticularly remark 4.3.33!)
le
lbe?
ule=Dptelle=1) Jifferent ways: We have u!r ways to define wl|b. : b, — o(b.) (we can choose
u. — 1 signs, but the last one is defined by o, as the product of the signs need to be the sign of
o (be)), another u !re~! ways to define wjy;,, and so on. Only for Wigi-1(p,) We are forced to define

PRrROOF. For a given w , we can construct w on the blocks w™(b.), m = 1,2,...,1 — 1, in

Ue—1

in a way that we get wfbc, as w‘lbc also defines the sign of the ¢ in o the right way (o is induced by w,

the cycle type can be defined as the product over all signs or as & with £z = w!(z)). All together,
we have u,!le=Dpuclle=1) for one cycle, considering all cycles, the factors multiply and give us the
fist part of our formula.

The second part is, once more, analogous to that of lemma 4.3.32. ]
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LEMMA 4.4.18. The number of permutations o with the same cycle type on ™ and the same
term p,, (with notation as before) is:

H.]’L S; ll
'lzl HT lg

1_[7, l 5 S’L)lag 'L 1 g

PrROOF. Note that here the cycle type is given so ¢ is a possible choice for being induced by
an w with p,. Therefore, the rest of the proof is analogous to the one of lemma 4.3.35. O

Now we will transform Zp.o to get a formula that defines Zp o Zg for type 3 in a reasonable
way:

ZFOG = Z

n,wEWr n

=2 > > >

n  wePar([n]] cEW,. || w induces o on 7

(Fo G)[w]pw

(F'o G)[w]|pe

Where fix,(F o G)[w] denotes those fixed points that have 7 as their partition.

lemma 4.4.6 tells us the number of fixed points appearing in this term, due to lemma 4.4.10
we can transform p,, appropriately. b. is here an arbitrary but fixed block belonging to the cycle ¢
with length [, and type & of o.

Note that if we sum over all w, we sum over all w in 20,.,, for all possible n, analogous for =
and o. n is then determined by o,7 and w:

“YYY e T IGUD pny e, - ix o)

c cycle of o

We use lemma 4.4.16 and consider, from now on, only 7 = (wl)‘bc and o. For the manipulation of
the next lines we use lemma 4.4.14:

~ 3" |fix Flo] ,nnuwa B ] e

1,€
1 ity D (155 Gl
N Z | ﬁXF[J”n!r” H wilr ti g p(ui=1) (3, tige,r Sl H

tig 'r
177 775

= 3" Ifix Flo]| - [Leatr® 2 T e H

L€

biglr!

,8,0,7

(| fix G[r]| Lradty yhuser

wglri

tigr!

Next we use lemma 4.4.18, so from now on, we only consider the cycle type of o:

(e Gr] it r)es -

1 Hiji!'Hilgrsi’l’g(l_l) g
L) i (u
_Z‘ﬁ F |Zn‘rn H‘lgsilfllsi’l’g H’U@' r l_ISZl5 H
2, "y

o_'_ k i l§ i7l7€77—'
Ji fix G T*Sfl tiler
— Z ‘ﬁXF |Z HT,’IM 1).71 "LL UzH — T _ H(| X [ ” T)
otk ‘7’” 1, renhelTe T i’g’l’T'
Prxgel  \t; -
— fix Flo 1 i gy 1 1 (|ﬁXG[THu¢!ﬁ“i r)tet
| | _ Ji- Ui y T
= r2¢ sl L L [ine 1 tiler
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Now we use lemma 4.3.25 and from now on just consider the sizes of the parts of :

1
= > |fixFlo] e ® > stzst

o,k 7 with sizes wu; 7,[,&

1 ngal g
- fix F |
> [fix [U”Hl,g o€ site 2 [L¢ (9! I

obrk 7 with sizes u; l g i, 757177"

. 1 p‘l‘*grfl i0,6,7
= Z ‘ﬁXF[J]|Hlfo‘l(g)!rol(é)lal() Z H H |H | fix G[7 gl )it

otk 7 with sizes u; [,£ 1,7 Z’l’§ T T

(| fix G[r Pragél 2 ytiar
(I u

ilrti

tiglr!

(lfix G| ] ]Zf,*ifl r)liter

The sizes u; and the number of their appearance are fully determined by the sums of the ¢; ¢ ;:

1 T .
- Z ‘ﬁXF[ ngUl( )'ra'l )lo'l() Z HH 'H ‘ﬁ G p ;’55 )175%7

s VLES . te.r=0y (€ i biler 52

Now we change the order of product and sum: (In the term above we have a sum over all possible
products of terms, depending on [ and &, and in the term below we have a product over sums of
all possible terms, belonging to fix [ and &.)

Prx:
= |fix F[o] eone 'To_l e H > H tng 10 6xGlr U,( )';fi(T)T)tl,g,T

otk LE X ter=01(8) T

As we defined in definition 4.4.8 3£l as zero for any 7 that does not have the right signs, we can
take here the sum over every 7. Moreover we use the multinomial theorem:

B 1 Drsél o1(¢)
= > | fixFlo] Hw( sirer@@ 112 fix Gl ki)

otk e T
=Y |fixFo] fhr” H(Z(|ﬁXG[T]|MT»UZ(£)
frug ! k"rk Hlsal( &) lror©)]ou(€) e 5 Uiy I

As we here have the number of o with the same cycle type, we can go back to considering every
different o:

Drs3él o
- 5 e gk TS 2t

1
L e
= Z | fix Flo |]<J' A H Z | fix G[r ”pT*gﬂ ui(r)!rw(ﬂ )™

This result leads to the following definition. Note that the factor » was more or less expected,
as it is necessary, also in the substitution of the exponential generating series: compare with
lemma 4.1.9. Furthermore, this definition is the best we could have expected as [Hen04] wrote
that there is no way to define a plethysm A(r) x A(r) — A(r), as at least three of the four
homomorphism rules are fulfilled.

DEFINITION 4.4.19. We define f o g for type 3 uniquely as follows:
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(1) ¥V g € A(r), the map A(1) — A(r) : f+— fogisa C-algebra homomorphism.

(Vg eA(r), f1,f2€ A1) : (fi+ fo)og=fiog+ faogand (fi-fa)og=(fiog) (f209))
(2) Y i,j €N, the map A(r) — A(r) : g — p; o g is regarding to addition a homomorphism.

(Vi € N,g1,92 € A(r) : pio (g1 +g2) =piog1+pioge)

[y pralG) ™ Ty (@) =€

otherwise

(3) pi(€) o [Iyjpr(¢I)™9 = {

This can be defined in another way (compare [BLL98]):

LEMMA 4.4.20. If Zgg are the terms of Z¢ where the products of the signs fulfill Hkyj(fj)pk(cj) =
& it holds that:

Zr(pr1(1),p1(0), p1(¢?), - p1(¢" ) p2(1), -, pa(CT ) p3(1), )
cireZa(p1(1),p1(¢), p1(¢%), - p1(¢" 1), p2(1), -, p2(¢" ), p3(1), )
=Zp(rZe1(pra(1),pra(Q) -, p1a(C" ), p21 (1), ), 7 Za (pra(1), pra(Q) -, pra (¢ ), p2a (1), )
..TZGCTfl(pl.l(l),pl.l(C)...,pl.l(CT_l),pg.l(l),...),rZGl(pl.g(l), ..,pl.g(gr_l),pg.g(l),...),...
TZGl(pl.g(l),...,p1.3(CT_1),p2.3(1),...),...)

In other words we substitute every p;(§) in Zp by a modified Zg, where we have substituted every
Dr INLO G Prysgi-

PROOF. The first part of the prove is analogous to that of type 1 (lemma 4.4.20). '
When we get to the last part, where we consider p; o (b,p,), we now use p;(§) o ijpk(gﬂ)ﬂc,j =

D (CT)Thid (¢ Thd = .
Py pei ()™ Tk (C) '=¢ where the condition ], ;(¢?)™* is fulfilled by the definition
0 otherwise 7

of Z~G§. Therefore, the lemma holds. O

With that we can proof the following theorem of type 3:
THEOREM 4.4.21 (Type 3). Let F and G be r-species. Then Zpog = Zp o Zg.

PROOF. We have already shown that

1 g
Zpoc = Z!ﬁXF k:' PO H > (fixGlr ]!Pr*saw)) 1@,

Now, with the help of lemma 4.4.20 we see that this is nothing different as:

1 1
= > |fix Flo]|—— o | o > (fix[o]| ——pr | = Zro Za.

n,0€Wy n n,7€Wr n

For examples see the following section( 4.5).
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4.5. Examples

EXAMPLE 4.5.1 (Signed Permutations). We want to recalculate Zgoer = Zg o Zer directly:

Zgchr:<exp<ZZZ€>>o chb £y :eXp<ZIZf

k>0 £eC, 1,5>0 k>0 ) Pe=ccc, X ]>0 pz w(€)7

= exp Z dec’“ Zl,jz() %Dpl'k(g)j = exp Z Z Z ¢y

k>0 k>0£€C, 1550 7

We substitute kI by m and use 3y, (1) = m:

oo (X3 2 (an e Y 3 2

£eCr m,j3>0 llm £eCrm,j3>0
= exp Z Z log = H H exp <log )
£€C, m>0 — Pm(§) £€Cy m>0 Pm(€)
=1 Il =& =11 I >-»h©
¢eC, m>0 pm(§ £eC, m>0k>0
Z Puw :ZWT = ZEOCT
n,wkyn

Furthermore, we want to show an equivalent way to build signed permutations by showing £ oC" =
E"oC": An & o C"-structure is a tuple (7, f, (gp)per) Where:

(1) =

(2) f=m

(3) 9o =C"[bc, ]
As there is a natural bijection to the C,-partitions (see lemma 3.4.6), and bc, = b for b € m and ¥/

the associated block in the associated C,-partition, we can easily build an isomorphism to £ o C".
We want to calculate Zgr o Zpr as another example of the plethysm of type 3:

r—1

pr(¢? ¢ ;
Zero o= | | L) o | 3 50 Sney
§=0 k>0 §€Cr 1,j>0
r—1 i
j
I o
=0 k>0 e )2 ece, Zz,po T pek(€) L= ¢™7 =1
0 otherwise

As T 1 an ¢l Shlon — gﬂ/%(“l) =1 we get:

l .
D€eC, 221,550 %)Plk(ﬁ)]
=exp | r Z —

k>0
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This is just the second line of the calculation above so we obtain:

= Z pw:ZWT

n,wkyn

EXAMPLE 4.5.2 (Vertices of Cycles). We now calculate Zyro¢ by using theorem 4.3.1:

Zyroc = Zyr 0 Zg = <exp < pk]il)>> . ZZ d)lgl)P{

k>0 >0

() 1Nj
o 7= prE(1)7
:eXp(E pk]il) = exp E ZI’J>O l;ﬂ (1)

k>0 > k() =51 ;50 2P 1k () k>0

Now we do the same calculations as in Example 4.5.1 and get:
= 2 n)
n,wkn

EXAMPLE 4.5.3 (Vertices of Signed Cycles). We now calculate Zyro¢ by using theorem 4.3.1:

Zyrocr = Zyr 0 Zgr = (6Xp (k . pké”)) o Y (bl(;)pl (€

£eC, 1,5>0

pr(1)
= exp A N
<k>0 k > pk(l)_{z&ecr Zl,j>0 %jl)pl-k(g)] Hn:%)g 7 =1

o otherwise

Again H;;% (v =( Yhoon = ¢IV2rr=1) = 1, s0 we get:

oW ()i \
o 0 Zece T PN (57 57 5 9,

k>0 k>0£€C, 1,j>0

Now we do the same calculations as in Example 4.5.1 and get:

T

= >

n,wkyn

EXAMPLE 4.5.4 (r-Sets). We consider the species of r-sets. This species can also be seen as Eo&7:

g=éofilloM]= 3 (Ex]]&)
mEParc,. [M] Nem
As E[N] =0 if [N| # r and {N} otherwise, we get the set {{r, f, g»}} with:
(1) m={{lz[}c,}
(2 f=m
(3) 9{ehyo, = {lzl}c.
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This is isomorphic to £.
Now we can calculate Z¢ o Zg{ directly:

r—1 r—1 j r—1 ;

e . > i—o P1k(¢7) Pr(¢?

Zeo Zeg = [exp [ ST | o [ op(e) | mexp | Y = | = exp =
k>n 7=0 k>n 7=0 k>n

EXAMPLE 4.5.5 (Vertices). Analogously, we can identify V" with £ o V]: We get the set € o
VilMe,] = {{r, f.gu}} with:
(1) m={{lzl}c,}
(2) f=m
3) 9qzpe, = {2}
This is isomorphic to €.
Now we can calculate Zg o Zyr directly:

(1
ZgoZgr = | exp Z% o (pi1(1)) = exp Zp“;()

k>n k>n

Furthermore, we can identify AV with £ o {AV]}.

EXAMPLE 4.5.6 (Diagonals). We can identify D with & o &:
& o E[Mc,| = {{m, f,g}} with
(1) 7 € Parg, [Mc,] with size 1
(2) f=m
(3) ‘gp =10
Therefore, we can define r-diagonals as D" = £7 o £. We now calculate Zpr:

1 j Pk
Zpr=ZgoZe= | ZPl(C]) o | exp Z T
j=0 k>n

1 (¢
= ew | X

k>n

EXAMPLE 4.5.7 (Set Partitions). We can identify the three kinds of set partitions as substitu-
tions of species too:
(1) Par[S] = o0 &L]Y]
(2) Parc, 8] = € o £1[8]
(3) Parg, [S] = & o £415]
Therefore we have:

Parg [S] = (Eo0&[)oéf =Eo0(El0&y)=E0& 0 &y

This holds, as for a tuple (m, f, g) in the substitution in all three cases m = f is exactly the partition,
and g consists of the parts of this partition. With the help of this, we can easily calculate the cycle
indicator series.

ExAMPLE 4.5.8. (Signed Cycles) We have seen that signed cycles have r 20, ,-orbits: In every
such orbit there are exactly the signed cycles with the same type. Therefore the signed cycles can
be represented as the sum of r-species of signed cycles of type £ € C,.. Unfortunately for types not
equal 1 this is quite complicated.
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However there is a way to represent the r-species of signed cycles with type 1 as they are £] o C:
Therefore we consider & o C-structures. Such a structure is a tuple (7, f, (go)) where:

e 7 is a B,-partition,

e f an &f-structures,

e g a set of tuples of C-structures.

As the only &f-structures come from r-sets of size r, m can only have one C,-cycle. g then is a
tuple of cycles on the elements of 7. This tuple can be interpreted as the traditional cycle notation
for signed cycles with type 1. (Every element is the only one with its absolute value in its cycle
and is therefore mapped under ¢ to itself.)

We have for example:

o m={{1,¢2,¢?3,¢4},{C1,¢%2,3,(*4}{¢?1, 2,¢3,4} }
b f ::ﬂ-::{{17C27C23ac4}7{ClvC22737<24}{C21727C374}}
o g = (1¢?3¢42)(C13¢%4¢72)((C1¢342) = (1¢73¢?4¢"2¢?)

EXAMPLE 4.5.9. We can use the substitution also for calculating the cycle indicator series. We
can consider, for example the different types of set compositions, decompositions and partitions
defined in [Cho10], two kinds of partitions are exactly our Parc, [M] and Parp, [M]. We consider
the others:

e We define a decomposition of a signed set S of length [ as a sequence (S, Se,...,S;) of
disjoint B,-subsets, whose union is S.
For example decompositions of S = [2]¢, of length 2 are:

(0, {1, +2}), ({1}, {£2}), (0, {£2,£1}), ({£1, £2},0)

We can interpret decompositions of a signed set S of length [ as lists of length [ of r-
sets and get £; 0 E". The cycle indicator series for £; is well known (see for example in
[BLL9S)): Z., = pll. Then the cycle indicator series for decompositions of a signed set S
of length [ is:

l § - 2 15§ 2k
proexp |} > S e (1) D S
J=0k>0 §=0 k>0
l
~she Do) = (Lo
k>0 k>0
e We define set compositions as sequences of nonempty disjoint B,-subsets, whose union is

S.

For example set compositions of S = [2]c, are:

({£1,£2}), ({1}, {+2}), ({£2}, {£1})

We can interpret them as lists of nonempty r-sets and get £; o £/ ,. We also know the

cycle indicator series £ = 1%1)[ and get as cycle indicator series for set compositions:
-1 .
1 e el 1
o | exp E g — | -1 = -
_ . -1 J
1=m j=0 k>0 foer 2 —exp (Z;:o Zk>0 pkk(% ))

k
1
T1op PBAGEDD <Z hn(m))

n>0 >0 \n>0
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e We define a new kind of partition of M, in that way that we consider a partition of M
and then chose signs for the elements in the sets.
For example those partitions of S = [2]¢, are:

{{17 2}}7 {{17 *2}}a {{*17 2}}7 {{*1’ *2}}’ {{1}7 {2}}7 {{1}7 {*2}}7 {{*1}a {2}}’ {{*1}7 {*2}}

We can interpret them as sets of vertices £ o V)., and get as cycle indicator series:

xp (;f;:) (e (32754 )

e We define a new kind of set composition in analogy with the previous kind of set partition.
For example those set compositions of S = [2]¢, are:

({1,2}), ({1, =2}), ({=1,2}), ({=1, =2}), ({1}, {2}), ({2}, {1}), ({1}, {=2}), ({ =2}, {1}),
(=15 {2}, ({2} {=1}), (=1} {=2}), ({ =2}, {-1})

We can interpret them as lists of nonempty vertices £ o V), and get as cycle indicator

series:
1 Z pr(1) _ 1
1—p1o<eXp(k k )_1>_

2_eXP(Zk pk}T(l))

k
- _1p1 oS @)=Y (Z hn(x)>

n>0 k>0 \n>0
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CHAPTER 5

Conclusion and Future Work

r-Species are just like species a useful tool to analyze combinatorial objects. In the first part
of this thesis we gave an introduction to the theory of r-species and considered a set of examples
to work with.

The second part concentrated on different generalizations of the substitution of species and
the associated operation the plethysm. We proved the relation between them (Zpoq = Zr o Zg)
by means of computation and used similar methods for establishing a similar operation for the
substitution of two r-species:

(1) V g € A(r), the map A(1) — A(r) : f — fogis a C-algebra homomorphism.

(2) Vi,j €N, the map A(r) — A(r) : g = p; o g is regarding to addition a homomorphism.
. . . ] Tk,j ) ] Thyj —
(3) pl(é) [e) Hk,] pk‘(C])Tk’j — {T Hk;J pk"L(C ) J Hk‘g (C ) J é’

0 otherwise
However, the last condition is not very natural, so there is the question, whether there is a more
sophisticated and more natural way to define a substitution of two r-species.

Furthermore, we stated examples for a better understanding of the substitution. For example,
we proved that ‘signed permutations are sets of signed cycles’. Examples like this are important
for getting an intuition for the substitution.

After all, species that are the substitution of two other species can be easier treated when they are
considered as such, as we have seen in the end of the work. Associated series, that are often hard
to calculate, can be combined for example, by plethysm.

Still, there are various open problems related with r-species, two examples are:

e For ordinary species there are a lot more operations, some of them are already considered
for hyperoctahedral species for example, in [HLL98]. Generalizing and analyzing them,
and the associated operations on the cycle indicator series, would strengthen the theory
of r-species.

e When working with the substitutions, we sometimes get unexpected isomorphisms, for
example, ‘r-sets of signed cycles’ are isomorphic to ‘sets of signed cycles’. It would be
interesting to consider isomorphisms, finding rules when they occur, and analyzing the
relations between the substitutions.
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