
Diplomarbeit

Combinatorial r-Species and their Substitution

Ausgeführt am
Institut für Diskrete Mathematik und Geometrie

der Technischen Universität Wien

unter der Anleitung von

Privatdoz. Dr.rer.nat. Martin Rubey

durch

Judith Braunsteiner
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Kurzfassung

Kombinatorische Spezies wurden von Joyal als Methode zur konzeptuellen Behandlung von kombi-
natorischen Strukturen entwickelt. Wir betrachten eine Verallgemeinerung davon für die Wirkung
des Kranzproduktes einer zyklischen Gruppe der Ordnung r und einer symmetrischen Gruppe, auch
r-Spezies genannt. Einige Aspekte von r-Spezies wurden bereits von Henderson, Hetyei und Cho-
quette untersucht. In dieser Arbeit geben wir einen Überblick über das Thema, wobei wir dem Ver-
halten der Zyklenindikatorreihe unter verschiedenen Operationen von r-Spezies, wie zum Beispiel
Produkt und Substitution, besondere Aufmerksamkeit schenken. Das letzte Kapitel beschäftigt
sich mit der Berechnung der Zyklenindikatorreihe von drei verschieden Arten der Substitution, von
denen eine neu ist.
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Abstract

Combinatorial species were introduced by Joyal as a device for computing conceptually with com-
binatorial structures. We study a generalization of this concept for actions of the wreath product
of a cyclic group of order r and a symmetric group, called r-species. Some aspects of r-species
were previously considered by Henderson, Hetyei and Choquette. We give an overview of the topic,
concentrating on the behavior of the cycle index series and its specializations under various oper-
ations on r-species, including product and substitution. The final chapter is concerned with the
computation of the cycle index series of three kinds of substitution, one of them is new.
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CHAPTER 1

Introduction

In enumerative combinatorics species of structures are used to work with labeled (and unla-
beled) objects, that are called structures. They are defined as a functor from the category of sets
with bijections to itself. What may be a very abstract definition turns out to be very natural: We
get labeled structures and an action of the symmetric group Sn on them.
Now r-species are generalized species of structures where we not longer only consider a permuta-
tional action but a signed permutational and our labels now may have signs. In the case r = 2 the
used group is the hyperoctahedral group, the group of symmetries of an n-dimensional octahedron,
more generally we use Wr,n := Sn oCr, the wreath product of the symmetric and the cyclic group
Cr. What we get then is a generalized theory of species of structures.

1.1. Related work

1.1.1. Ordinary Species. It was André Joyal ([Joy81] and [Joy86]) who developed the
combinatorial theory of species of structures in the eighties. Since then a wide theory was built.
For a textbook treatment see [BLL98].

1.1.2. Hyperoctahedral Species (2-Species). In [HLL98] Gábor Hetyei, Gilbert Labelle
and Pierre Leroux introduce hyperoctahedral species in a very geometrical way, using hypercube and
hyperoctahedron (therefore they call them cubical species). They develop a geometrical language
and define for example species of vertices of a hypercube, which of course is interesting under the
group of symmetries of a hypercube (which is the same as the one of a hyperoctahedron).
A more algebraic approach is presented by Philippe Choquette and Nantel Bergeron in [BC08] and
Philippe Choquette in [Cho10], where species over vector spaces are considered and some more
examples are given. However the cycle indicator series (or Frobenius character) is not introduced.

1.1.3. r-Species. The generalization of hyperoctahedral species to r-species is done by An-
thony Henderson [Hen04]. He also introduces the cycle indicator series for hyperoctahedral species
and introduce two kinds of substitutions, however he only states few examples.

1.2. Objectives

This work considers r-species and the operations sum +, product · and three kinds of substitu-
tion (all denoted by ◦): One between an ordinary species and an r-species, one between an r-species
and an ordinary species, like they are introduced in [Hen04] and one between two r-species as in-
troduced in [HLL98]. The objectives of this work are:

• Give a combinatorial prove, that for the cycle indicator series ZF of a species F and the
two substitutions introduced by [Hen04] holds ZF◦G = ZF ◦ ZG.
• Consider the substitution between two r-species as in [HLL98], and establish a similar

identity.
• Understand the three kinds of substitution better by giving examples and decompose

already known species with the help of the substitution to get a better understanding and
easier calculation.
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1.3. Thesis outline

• In Chapter 2 we state basic definitions and results we will need later on.
• In Chapter 3 we give an introduction to the theory of r-species and define the cycle

indicator series. Moreover we give some examples.
• In Chapter 4 we define three types of substitution, give two proofs for ZF◦G = ZF ◦ZG for

the substitutions of [Hen04] and find a way to describe ZF◦G = ZF ◦ZG for the substitution
of [HLL98]. Furthermore we give examples of species that arise from substitution.
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CHAPTER 2

Basic Definitions and Results

We start with some notation:

• r, n ∈ N and ζ is a primitive rth root of unity;
• Cr := (

{
ζj : j = 0, 1, . . . , r − 1

}
, ·) is a cyclic group of order r;

• [n] is the set {1, 2, 3, . . . , n};
• Sn is the symmetric group of n elements and SS the group of permutations on a set S

(Note that we do not distinguish between Sn and S[n]);

• MCr :=
{
ζjm : m ∈M, j ∈ {0, 1, . . . , r − 1}

}
for a set M .

2.1. Generalized Signed Permutations

2.1.1. Wreath Product. The wreath product o of two groups is a certain kind of a semi
direct product o, as we are only interested in the group Sn oCr and the definitions of o and o are
quite general, we just define it for Sn oG (compare with [Mac95]):

Definition 2.1.1. We define the wreath product of Sn o G, G a group, as a group on the
set Gn × Sn with the action (g, σ)(h, τ) := (g · σ(h), στ) where Gn = G × G × · · · × G is the
direct product of n copies of G and Sn acts on Gn by permuting the factors σ(g1, g2, . . . , gn) =
(gσ−1(1), gσ−1(2), . . . , gσ−1(n)).

Definition 2.1.2. We define Wr,n := Sn oCr.

Remark 2.1.3. An element ω = ((ξσ−1(1), ξσ−1(2), . . . , ξσ−1(n)), σ) of Wr,n can be identified with
a bijection of [n]Cr to itself satisfying: ω(ηj) = ηξjσ(j).
Note that now ω · ω̃ is exactly ω ◦ ω̃:

ω · ω̃(ηj) = ((ξσ−1(1), ξσ−1(2), . . . , ξσ−1(n))σ((ξ̃σ̃−1(1), ξ̃σ̃−1(2), . . . , ξ̃σ̃−1(n))), σσ̃)(ηj)

= ((ξσ−1(1)ξ̃σ−1σ̃−1(1), ξσ−1(2)ξ̃σ−1σ̃−1(2), . . . , ξσ−1(n)ξ̃σ−1σ̃−1(n)), σσ̃)(ηj)

= ηξσ̃(j)ξ̃jσσ̃(j)

ω(ω̃(ηj)) = ω(ηξ̃j σ̃(j)) = ηξ̃jξσ̃(j)σ(σ̃(j))

On the other hand every such bijection [n]Cr to itself with ω(ηj) = ηξjσ(j) is an element of Wr,n

by ((ξσ−1(1), ξσ−1(2), . . . , ξσ−1(n)), σ). From now on we will use this new notation as bijection. For
an example see subsection 2.1.2.

2.1.2. The Group Wr,n.

Definition 2.1.4. For Wr,n, we call an element of Wr,n (generalized) signed permutation and
every element of Cr a (generalized) sign.

Remark 2.1.5. • Note that those signs have nothing to do with the sign of a permuta-
tion in Sn.
• Note that for r = 1 we have Wr,n = Sn. Therefore everything stated here also holds for

the symmetric group.
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• W2,n is also called the hyperoctahedral group as it is (isomorphic to) the group of sym-
metries of an n-dimensional octahedron.
• The term ‘signed permutation’ is common for r = 2 as there Cr = ({1,−1}, ·) so we have

signs + and −. Through this thesis we will use the term also for general r and omit the
term ‘generalized’.

Often we do not only consider a Wr,n-action only on the set [n]Cr but on more general sets, we
therefore define:

Definition 2.1.6. On every set of size n · r together with a permutation η that consists of n
cycles with length r, we can define a Wr,n-action on it in that way that the permutation part of
Wr,n is defined by a permutation of a set that consists of one element per cycle, and the Cr-action
of ζ is η. This action is equivariant.
We will call these sets signed sets.

Remark 2.1.7. We often identify such a signed set with [n]Cr .

Example 2.1.8. (1) For any set M the set MCr is a signed set with a natural Wr,n-action.
(2) Let r = 3, n = 2, S = {α, 1, a, s,N, 5} and η = (α5s)(1aN). A bijection respecting the

Wr,n-action to [2]C3 could be

α 7→ 1, a 7→ ζ1, N 7→ ζ21, 1 7→ 2, a 7→ ζ2, N 7→ ζ2.

Note that this bijection is already defined by α 7→ 1 and 1 7→ 2.
We therefore identify S with [2]Cr .

Remark 2.1.9. A signed permutation can be also written in a two-line notation:

ω =

(
1 2 . . . n

ω(1) ω(2) . . . ω(n)

)

(or in a one-line notation: (ω(1)ω(2) . . . ω(n))) or in a (generalized) cycle notation:
We consider the cycles c of ω with x1, x2, . . . , xlc with xi 7→ ξixi+1 and xlc 7→ ξlcx1. We write
(x1ξ1x2ξ2 · · ·xlcξl) for this cycle and write the terms of the cycles in a row.
When working with general signed sets S 6= MCr we define the absolute value of an element as
one arbitrary but fixed Cr-orbit and use it for the cycle notation. Note that this definition of the
absolute value is not unique and just brings easier notation sometimes.

Example 2.1.10. (1) r = 3, n = 5, ω(1) = ζ3, ω(2) = 4, ω(3) = 5, ω(4) = ζ2, ω(5) = ζ21
we have:

ω =

(
1 2 3 4 5
ζ3 4 5 ζ2 ζ21

)

or
ω = (1ζ3ζ05ζ2)(2ζ04ζ)

This appears more convenient than the traditional notation:

(1ζ3ζ5)(ζ1ζ23ζ25)(ζ2135)(24ζ2ζ4ζ22ζ4)

where we write the whole cycles, as the traditional notation contains redundant informa-
tion.

(2) r = 2, S =
{
{1,−2}, {−1, 2}, {3, 4}, {−3,−4}, {5,−6}, {−5, 6}

}
.

The C2-action is defined point wise by the elements of the sets of S. We define (for
example):
• |{1,−2}| = |{−1, 2}| = {−1, 2}
• |{3, 4}| = |{−3,−4}| = {−3,−4}
• |{5,−6}| = |{−5, 6}| = {5,−6}
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Now we can write
(
{1,−2}+ {−3,−4} − {5,−6} −

)
instead of

σ =

(
{1,−2} {−3,−4} {5,−6}
{−3,−4} {−5, 6} {1,−2}

)
.

2.1.3. Cycle Type. In analogy to permutations of Sn where the cycle type is defined by
the numbers of cycles with a certain length, we define the cycle type of a signed permutation the
following way: As we will see later, exactly the elements of a conjugacy class have the same cycle
type. Therefore the cycle type is sometimes defined as the conjugacy class.

Definition 2.1.11. For ω ∈Wr,n we define the cycle type as a tuple

(ω1(1), ω1(ζ), . . . , ω1(ζr−1);ω2(1), ω2(ζ), . . . , ω2(ζr−1);ω3(1), . . . )

where ωl(ξ) is the number of cycles of ω with length l and type ξ.
Length and type of a cycle c can be defined via the smallest number lc with ∃ξc and ωlc(x) = ξcx.

Remark 2.1.12. The type of a cycle of a signed permutation on a set MCr can be equivalently
defined as the product of signs of the elements in this cycle.

Lemma 2.1.13. For a signed permutation on a set MCr the two definitions of the type of a cycle
are indeed equivalent.

Proof. Let x be an arbitrary element of MCr . Then x = ξx̃ with x̃ = |x|. x̃ is mapped under
ω to ξ1x1 where x1 = |x1|, x1 is mapped under ω to ξ2x2, so x̃ is mapped under ω2 to ξ1 · ξ2x2.
Iterating this shows that x̃ is mapped under ωl to

∏
i ξixl. As xl and x̃ are in the same Cr-orbit (l

is the length of the cycle) and are their absolute value they are equal. Thus ωl(x) = (
∏
i ξi)x. �

Remark 2.1.14. There is another way to define the cycle type of an unsigned permutation:
The cycle type of a σ ∈ Sn is a partition of n, so that the number of l in this partition is the
number of cycles with length l. (Remember that a partition λ of n is a sequence (λ1, λ2, · · · ) with
λ1 ≤ λ2 ≤ · · · and

∑
λi = n.) We therefore sometimes write σ ` n for σ is a cycle type of a

permutation in Sn even when we use the original definition of a cycle type.
We can analogously define the cycle type of an ω ∈Wr,n by a multi-set of elements in [n]Cr where
we have the number of ξl in this multi-set is the number of cycles with length l and cycle type ξ.
Thus |ξl| build a partition of n. We then have the following two identities:

• For (ai(ζ
j)i,j) being the ordinary definition of a cycle type it holds that

∑
ai(ζ

j) · i = n.

• For (ζj(i)ai)i being a cycle type of the alternative definition it holds that
∑
ai = n.

In analogy we sometimes write ω `r n for ω is a cycle type of a permutation in Wr,n and call

(ζj(i)ai)i with
∑
ai = n an r-partition of n.

We furthermore define the size as |ω| = n and the length l(ω) as the number of cycles.

Example 2.1.15. Let r = 2, n = 5 and ω ∈Wr,n with

ω =

(
1 2 3 4 5
−2 −5 −4 3 1

)

then we have ω2(−1) = 1, ω3(1) = 1 and ωi(ζ
j) = 0 otherwise. Thus the cycle type is (0, 0; 0, 1; 1, 0; , 0, 0; . . . ).

The cycle type in the alternative definition is (−2, 3). Its size is 5 and its length 2.

As for Sn we have the following characterization of the conjugacy classes of Wr,n:

Lemma 2.1.16. The conjugacy classes of Wr,n are exactly the signed permutations with the
same cycle type.
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Proof. We start by showing that for τ and ω ∈Wr,n with the same cycle type there exists a
σ ∈Wr,n with τ = σωσ−1. Note that σ is not unique, we just construct one possible σ:
There exists a bijection between the cycles c of τ length l and type ξ and the ones of ω with the
same properties as the cycle type is the same. As σc1c2σ

−1 = σc1σ
−1σc2σ

−1 it suffices to consider
only one cycle:
A cycle c of τ consists of the elements x1, x2, . . . , xl with xi 7→ ξixj and the one in ω consists of the
elements y1, y2, . . . , yl with yi 7→ ηiyj . We define

σ−1(xi) :=
η1 · η2 · · · · · ηi−1

ξ1 · ξ2 · · · · · ξi−1
yi.

Thus

σ(yi) =

(
η1 · η2 · · · · · ηi−1

ξ1 · ξ2 · · · · · ξi−1

)−1

xi =
ξ1 · ξ2 · · · · · ξi−1

η1 · η2 · · · · · ηi−1
xi.

Now, for i < l we consider

σωσ−1(xi) = σω

(
η1 · η2 · · · · · ηi−1

ξ1 · ξ2 · · · · · ξi−1
yi

)
= σ

(
ηi
η1 · η2 · · · · · ηi−1

ξ1 · ξ2 · · · · · ξi−1
yi+1

)

=
ξ1 · ξ2 · · · · · ξi
η1 · η2 · · · · · ηi

ηi
η1 · η2 · · · · · ηi−1

ξ1 · ξ2 · · · · · ξi−1
xi+1 = ξixi+1.

For i = l we have

σωσ−1(xl) = σω

(
η1 · η2 · · · · · ηl−1

ξ1 · ξ2 · · · · · ξl−1
yl

)
.

As the cycle types of τ and ω are the same (and thus the fraction of the products of the signs is 1)
we can rewrite this as

σω

(
ξl
ηl
yl

)
= σ

(
ηl
ξl
ηl
yl

)
= σ(ξlx1) = ξlx1.

For the other direction we need to show that for τ and ω ∈ Wr,n with τ = σωσ−1 and σ ∈ Wr,n

have the same cycle type. Therefore we show that a cycle c of ω with length l and type ξ has the

same properties as σ(c) of τ : Let c be (x1ξ1x2ξ2 . . . xlξl) and let
∏l
i=1 ξi = ξ. We further define

yi = σ(xi). Now we have

τ(yi) = (σωσ−1)(σ(xi)) = σ(ω(xi)) = σ(ξixi+1) = ξiyi+1

what shows the lemma. �

The corresponding result for G oSn can be found in [Mac95] (Chapter I, Appendix B).
In analogy to ordinary permutations we can calculate the number of signed permutations with

a given cycle type:

Lemma 2.1.17. There are
rnn!∏n

k=1

∏r−1
j=0(kr)ωk(ζj)ωk(ζj)!

signed permutations with cycle type

(ω1(1), ω1(ζ), . . . , ω1(ζr−1);ω2(1), ω2(ζ), . . . , ω2(ζr−1);ω3(1), . . . ).

Proof. We rather prove that

n!
n∏

k=1

r−1∏

j=0

r(k−1)ωk(ζj) = n!rn
n∏

k=1

r−1∏

j=0

r−ωk(ζj)

6



is equal to the number of the permutations times

n∏

k=1

r−1∏

j=0

kωk(ζj)σk(ζ
j)!.

This implies the claim. (Note that
∑
kωk(ζ

j) = n.)
Therefore we consider the cycle notation of ω. There are n! ways to arrange [n]. When defining
the first ω1(ζ0) numbers as being the ω1(ζ0) cycles with length 1 and type ζ0, the next σ1(ζ1)
numbers as being the cycles with length type ζ1 and so on (note that for σl(ζ

j) we need l positions
per cycle) we get signed permutations of [n]. For the signs we have rk−1 ways to define them: r
for each element, only the last one needs to be ζj divided by the product of the other signs of this
cycle as the cycle type is given with ζj . All together the number of possible ways is

n∏

k=1

r−1∏

j=0

r(k−1)σk(ζj).

However some of this arrangements define the same permutation: As we do not distinguish the
order of the cycles of same type and it does not matter which of the elements begins in one cycle,
the number of arrangements which define the same partitions is:

n∏

k=1

r−1∏

j=0

kσk(ζj)σk(ζ
j)!.

�

2.2. Categories and Functors

We start with two general definitions on category theory we will need later on, for detailed
information about categories see [Awo10] or [Hun80].

Definition 2.2.1. A category C is a class of objects (denoted by A,B,C, . . . ) together with a
class of morphisms (denoted by f, g, h, . . . ) where:

(1) for each morphism f there exist two objects A B (called the domain and codomain, denoted
by f : A→ B).

(2) for each object A there exists a distinguished morphism 1A : A→ A.
(3) there exists a composition g ◦ f : A→ C for any f : A→ B, g : B → C with the following

properties:
(a) Associativity: for f : A→ B, g : B → C, h : C → D it holds that h◦(g◦f) = (h◦g)◦f .
(b) Identity: for f : A→ B it holds that 1B ◦ f = f and f ◦ 1A = f .

The following definition gives some examples of categories we will use frequently:

Definition 2.2.2. We define B as the category of sets with bijections. Hence, the morphisms
going from a set to itself are permutations.
We define Br as the category of signed sets. In other words it is the category of sets, that have a
Wr,n - action with bijections respecting this action.

Remark 2.2.3. Note that B = B1.

Another term of category theory which we will use soon is the one of a functor:

Definition 2.2.4. For two given categories C and D we define a functor F as a mapping
between the objects of C and D and the morphisms of C and D with the following properties:

(1) F (f : A→ B) = F (f) : F (A)→ F (B)

7



(2) F (g ◦ f) = F (f) ◦ F (g)
(3) F (1A) = 1F (A)

2.3. Symmetric Functions

2.3.1. Definitions. We state here only a very rough definition. A more formal definition and
more information about symmetric functions can be found in [Sta99] or [Mac95].

Definition 2.3.1. We define a symmetric function as formal power series on the set of inde-
terminates x = {x1, x2, x3, . . . } over C as a formal power series:

f(x) =
∑

αcαx
α

Where

• α are infinite weak compositions of natural numbers nα (infinite tuples of numbers in N
with

∑
i αi = nα)

• xα =
∏
i x

αi
i and cα ∈ C

• f(xσ(1), xσ(2), . . . ) = f(x1, x2, . . . ) for all permutations σ of N.

In other words a symmetric function is a formal power series in infinitely many variables with
finite summands.

Theorem 2.3.2. The symmetric functions form a C-algebra.

We call this C-algebra Λ. A proof can be found in [Sta99] or [Mac95].

We now define two different bases of Λ:

Definition 2.3.3 (Power Sum Symmetric Functions). For λ a partition of n we define:

pi =
∑

j

xij and pλ = pλ1pλ2 . . .

Definition 2.3.4 (Complete Homogeneous Symmetric Functions). For λ a partition of n we
define:

hi =
∑

j1≤···≤ji

xj1 · · · · · xji and hλ = hλ1hλ2 . . .

2.3.2. The C-Algebra Λ(r). We define Λ(r) as in [Hen04] or [Mac95] without the use of
symmetric functions. However we will see later that the point of view of symmetric functions is
useful sometimes.

Definition 2.3.5. We define Λ(r) as the C-algebra generated by
{
pi(ζ

j) : i, j ∈ N
}

.

Definition 2.3.6. For an r-partition λr = (ξiai)i we define pλr :=
∏
pai(ξi).

Example 2.3.7. r = 3, λr = (ζ2, ζ2, ζ22, ζ01) then pλr = p2(ζ)2p2(ζ2)p1(ζ0).

Definition 2.3.8. For a signed permutation ω ∈Wr,n we define pω as pρ(ω), where ρ(ω) is the
alternative cycle type and thus an r-partition.

Example 2.3.9. Once again we consider the case r = 2, n = 5 and ω ∈Wr,n with

ω =

(
1 2 3 4 5
−2 −5 −4 3 1

)
.

We already know that the cycle type in the alternative definition is (−2, 3), thus pω = p2(−1)·p3(1).
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Remark 2.3.10. For r = 1 we write pi instead of pi(1) and we identify Λ(1) with Λ, and pi
with the ith power sum symmetric function.
One can, in analogy with this case, define pi(ξ) as the ith power sum symmetric function on
indeterminates xj,ξ and analogously for hi(ξ). (Note that then hi,ξ = hi ◦ p1(ξ). We will define ◦
later.) Here we stress the point of view of symmetric functions. In particular, using different bases
of Λ(r) will be very convenient.
In the case r = 2 we can consider not only pi(1) and pi(−1), we also have power sum symmetric
functions corresponding to the trivial and nontrivial character of C2 pi(x) and pi(y). For an exact
definition see [Mac95] (Chapter I, Appendix B). We will use them only in some examples, so for
us it is sufficient to know how to perform a change of variables:

• pi(1) = pi(x) + pi(y)
• pi(−1) = pi(x)− pi(y)

More generally:

pi(γ) =
∑

ξ∈Cr

ψ−1
ξ γ(ξ)pi(ξ)

Here ψξ is the size of the centralizer of ξ in Cr which is r, and γ(c) is the value of the character γ
on the conjugacy class of c. In case of the trivial character x, this value is always 1 and we get:

pi(x) =
∑

ξ∈Cr

1

r
pi(ξ)

9





CHAPTER 3

r-Species

3.1. Definition and Examples

The definition of a species is a very theoretical one, however the concept is quite intuitive:

Definition 3.1.1. We define an ordinary species as a functor F : B→ B.
In analogy we define an r-species as a functor F : Br → B1.

Remark 3.1.2. (1) When defining an r-species we often just state the objects as the
morphisms are defined in a natural way. Morphisms from one r-set to another are less
important than those of Wr,n on one r-set M . We call the way F [ω] (for ω ∈Wr,n) acts
on F [M ] the ω-action, and the way F [Wr,n] acts the Wr,n-action on this species.

(2) Note that we often write F [n]Cr instead of F [[n]Cr ] and F [n] instead of F [[n]], so we
sometimes skip the outer brackets.

Example 3.1.3 (r-sets). We define Ern, the species of r-sets with n · r elements (n ≥ 0), as

Ern : Br → B1, M 7→
{
{M} |M | = r · n
∅ otherwise

We furthermore define Er as the species of all r-sets: Er : Br → B1,M 7→ {M}. This species
corresponds to the trivial representation of Wr,n. We write E for E1 and E+ for the species of non
empty sets.
The unique E2

3 structure is [3]C2(= {1,−1, 2,−2, 3,−3}).
Example 3.1.4 (Vertices). We define Vrn, the species of vertices as:

Vrn[n]Cr =
{
{ζi11, ζi22, . . . , ζinn} : ij ∈ {0, 1, 2, . . . , r − 1}

}
.

The Wr,n-action is defined point wise.
Note that in the case r = 2 those are the vertices of an n-dimensional cube.
For example Vrn[3]C2 =

{{1, 2, 3}, {−1, 2, 3}, {1,−2, 3}, {1, 2,−3}, {−1,−2, 3}, {−1, 2,−3}, {1,−2,−3}, {−1,−2,−3}}.
For ω = (1 + 2− 3+) we have

Vrn[ω] = ({1, 2, 3}{1, 2,−3}{−1, 2,−3}{−1,−2,−3}{−1,−2, 3}{1,−2, 3})({1,−2,−3}{−1, 2, 3}).
For a graphical representation see figure 1.

Example 3.1.5 (Signed Cycles). We define Cr, the species of (oriented, nonempty) signed
cycles, we also sometimes call them r-cycles, as

Cr[MCr ] = {(j1ξ1j2ξ1 . . . jnξn) : ξi ∈ Cr, ji ∈M, ji1 6= ji2 if i1 6= i2} /∼
where

(j1ξ1j2ξ1 . . . jnξn) ∼ (k1η1k2η2 . . . knηn)

11



Vr[ω] =
(
(1, 1, 1), (1, 1,−1), (−1, 1,−1), (−1,−1,−1), (−1,−1, 1), (1,−1, 1)

)(
(1,−1,−1), (−1, 1, 1)

)
ω = (1 + 2− 3+)

(1, 1, 1) ∼= {1, 2, 3}(−1, 1, 1) ∼= {−1, 2, 3}

(−1, 1,−1) ∼= {−1, 2,−3} (1, 1,−1) ∼= {1, 2,−3}

(1,−1,−1) ∼= {1,−2,−3}(−1,−1,−1) ∼= {−1,−2,−3}

(−1,−1, 1) ∼= {−1,−2, 3}
(1,−1, 1) ∼= {1,−2, 3}

Figure 1. Vertices of a 3-dimensional cube and an ω-action.

if ∃l with
(jlξljl+1ξl+1 . . . jnξnj1ξ1j2ξ2 . . . jl−1ξl−1) = (k1η1k2η2 . . . knηn).

This cycles can be represented as cycles where the positions are labeled with elements of M and
the arcs between them are labeled with signs. Furthermore, we can identify such a cycle with a
cycle of a signed permutation. The Wr,n-action is then defined as Cr[ω](c) = ω ◦ c ◦ ω−1. This
corresponds to the adjunct representation of Wr,n. We also write C for C1.
This action can be calculated by a re-labeling in the first step (aξb turns into ω(a)ξω(b), note that
ω(a) and ω(b) may have signs) and a changing of signs in a second step (ω(a)ξω(b) turns into

|ω(a)|
(

sgn (ω (a))−1 ξsgn (ω (b))
)
|ω(b)|).

An example of a structure in [5]C3 is (3ζ1ζ02ζ05ζ04ζ2). The C3[ω]-image for ω = (1)(2ζ3ζ0)(4)(5ζ)
then is (2ζ1ζ3ζ05ζ24ζ2).
A graphical representation can be seen in figure 2.
Note that we do not allow empty cycles.
When working with general signed sets S 6= MCr we use the absolute values for labeling the
positions.

There is an easy way to convert an r-species into a normal species (compare with [HLL98]).
Therefore we need the natural embedding of Sn to Wr,n:

Definition 3.1.6. We define a natural embedding e : Sn → Wr,n by defining e(σ) ∈ Wr,n as
the signed permutation ξx 7→ ξσ(x). We often write σ instead of e(σ).

Definition 3.1.7. For an r-species F we define the restriction 4F by:

• 4F [M ] = F [MCr ]

12



ζ1

|ω(a)|

Cr[m]Cr =

a1

a2

a3

am

...

ζ2

ζ3

ζm−1

ζm

ω-action: a b
ξ

ω

ω(a)
ξ

ω(b) ∼=
sgn(ω(a))ξsgn(ω(b))

|ω(b)|

3
ζ

1 4

1

ζ2

2 5
1

1

2
ζ

1 4

1

ζ2

ζ3 ζ5
1

1

2
ζ

1 4

ζ

ζ2

3 5
1

ζ2

ω ∼=

Figure 2. A general signed cycle and an example of C3[5]C3 together with an ω-action.

• 4F [σ] = F [σ]

Remark 3.1.8. In other words when creating 4F we just take the structures of F and ‘forget’
the Wr,n-action, that is not part of Sn.

Example 3.1.9 (Vertices). We consider 4Vrn: The structures are the same as those of Vrn:

4Vrn[n] =
{
{ζi11, ζi22, . . . , ζinn} : ij ∈ {0, 1, 2, . . . , r − 1}

}
.

However we only have a Sn-action, so for example {−1, 2, 3} and {1, 2, 3} are not in the same
orbit. More generally: exactly the elements that have the same number of the same signs are in
one Sn-orbit.

3.2. The Cycle Indicator Series

One can regard the cycle indicator series as a generalization of generating functions as it has
both, the information about the exponential generating function (egf) of labeled objects and the
type generating function (tgf) for unlabeled objects.

Definition 3.2.1. For an r-species F we define the cycle index series (also called Frobenius
character) as:

ZF =
∑

n≥0

1

n!rn

∑

ω∈Wr,n

|fixF [ω]| pω.

Lemma 3.2.2. The number of fixed points of F [ω] depends only on the cycle type of the (signed)
permutation ω.

Proof. Exactly if τ and ω ∈ Wr,n have the same cycle type there exists a σ ∈ Wr,n so that
τ = σωσ−1 (note that σ is not unique, compare with lemma 2.1.16). A fixed point f of τ is thus
fixed under σωσ−1 so σ−1(f) is fixed under ω: ω(σ−1(f)) = (σ−1τσ)(σ−1(f)) = σ−1τσσ−1(f) =
σ−1τ(f) = σ−1(f). This relationship is bijective as σ is a bijection.
Now we do not consider fixed points of τ and ω but those of F [τ ] and F [ω] for F being an
(r−)species. But as F [τ ] = F [σωσ−1] = F [σ]F [ω]F [σ]−1 with F [τ ], F [σ], F [ω] ∈ SF [n] = W1,|F [n]|
this holds. �
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Example 3.2.3 (r-Sets). We now calculate ZEr . Therefore we need the number of fixed points
under a signed permutation. As every set M is fixed under any signed permutation and there is
only one structure ({M}), this number is 1 for every ω.

ZEr =
∑

n≥0

1

n!rn

∑

ω∈Wr,n

|fix Er[ω]|pω =
∑

n≥0

1

n!rn

∑

ω∈Wr,n

1 · pω

We can use lemma 2.1.17 and 3.2.2 and just consider the cycle types of ω. (Recall that wk(ζ
j) is

the number of cycles of length k and type ζj . Therefore, for k > n holds wk(ζ
j) = 0.)

=
∑

n≥0

1

n!rn

∑

ω`rn

rnn!∏n
k=1

∏r−1
j=0(kr)ωk(ζj)ωk(ζj)!

pω

=
∑

n≥0

∑

ω`rn

1∏n
k=1

∏r−1
j=0 ωk(ζ

j)!

n∏

k=1

r−1∏

j=0

(
pk(ζ

j)

k · r

)ωk(ζj)

We now do some reordering to obtain an exponential form by considering m =
∑

k,j ωk(ζ
j) instead

of n =
∑

k,j kωk(ζ
j):

=
∑

m≥0

1

m!

∑
∑
k,j ωk(ζj)=m

m!∏
k

∏r−1
j=0 ωk(ζ

j)!

∏

k

r−1∏

j=0

(
pk(ζ

j)

k · r

)ωk(ζj)

=
∑

m≥0

1

m!


 ∑

∑
k,j ωk(ζj)=m

(
m

ω1(ζ0)ω1(ζ1) . . . ω1(ζr)ω2(ζ0) . . .

)∏

k

r−1∏

j=0

(
pk(ζ

j)

k · r

)ωk(ζj)



Applying the multinomial theorem we obtain:

=
∑

m≥0

1

m!


∑

k>0

r−1∑

j=0

pk(ζ
j)

k · r



m

= exp


∑

k>0

r−1∑

j=0

pk(ζ
j)

k · r


 = exp



r−1∑

j=0

∑

k>0

pk(ζ
j)

k · r




In some cases this result is good for further calculations, however we will here calculate further on
to get a result in complete homogeneous symmetric functions hi, therefore, we interpret the pk(ζ

j)
as
∑

i x
k
i,j . (Compare with remark 2.3.10.)

On this point we could also use pk(x) =
∑r−1
j=0 pk(ζj)

r (compare with remark 2.3.10) and get a
slightly different result, which we will state in the end of the calculation.

=

r−1∏

j=0

exp

(
1

r

∑

k>0

∑

i

xki,j
k

)
=

r−1∏

j=0

exp

(
1

r

∑

i

log

(
1

1− xi,j

))
=

r−1∏

j=0

exp


log



(∏

i

1

1− xi,j

) 1
r






=
r−1∏

j=0

(∏

i

1

1− xi,j

) 1
r

=
r−1∏

j=0

(∏

i

∑

k

xki,j

) 1
r

=
r−1∏

j=0


∑

n

∑

i1≤···≤in

xi1,j . . . xin,j




1
r

=
r−1∏

j=0

(∑

n

hn(ζj)

) 1
r
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Alternatively: (The steps we are skipping are analogous to the ones we did before.)

= exp


∑

k≥n

r−1∑

j=0

pk(ζ
j)

k · r


 = exp


∑

k≥n

pk(x)

k


 = · · · =

∑

n

hn(x)

Example 3.2.4 (Vertices). To calculate ZVrn we need to know how many fixed points Vrn[n]Cr
has under Vrn[ω]. Therefore we consider the cycles of ω.
First we consider a cycle of length l and type 1. We only need to consider the cycle that only has
ζ0 as signs: The number of fixed points only depends on the type (compare with lemma 3.2.2) and
therefore is the same for all cycles with type ζ0: If and only if the l elements of this cycle have
the same sign in a vertex, this vertex is a fixed point. Therefore, we get r fixed points, for we can
choose one sign for all elements in this cycle.
If we consider a fixed point of any other cycle c with length l and type ξ, it will need to be a fixed
point under cl = ξid too. As the ω-action is defined point wise, no element can be a fixed point of
cl = ξid.
Therefore the number of fixed points of ω is

∏n
k=1 r

ωk(1) if it consists only of cycles with type 1.
Otherwise there are no fixed points. Now we can calculate ZVrn :

ZVrn =
1

n!rn

∑

ω∈Wr,n

|fixF [ω]|pω =
1

n!rn

∑

ω`n

rnn!∏n
k=1 k

ωk(1)rωk(1)ωk(1)!

∏

k

rωk(1)pω(1)

=
∑

ω`n

1∏n
k=1 ωk(1)!

∏

k

pk(1)

k

Now we can do the same calculations as we did with the r-sets (example 3.2.3) and get (if we
consider also the empty vertex):

ZVr = exp
(∑

k

pk(1)

k

)
=
∑

n

hn(1)

Example 3.2.5 (Signed Cycles). For calculating ZCr we once again need to consider fixed points
under the ω-action:
We start with considering a structure (a cycle) of Cr. In the first step we only consider the elements,
not their signs: For being a fixed point under ω, ω needs to introduce a shift on the elements (then
and only then image and pre-image are equivalent under ∼ and therefore the same structure). The
number of cycles, ω can have, depends on the size of the shift. Let our cycle have length lc, and let
the shift be s, then the number of cycles of ω is gcd(l, s), their length is l

gcd(l,s) : s · l
gcd(l,s) = lcm(l, s)

and therefore ω
l

gcd(l,s) is the smallest power of ω whose action on the cycle is the identity, therefore
this is the length of the cycle. The number of cycles follows immediately. (For graphical examples
see figure 3.)
It follows that the only ω that can have fixed points are those where all cycles have the same length
l. Let the number of such cycles be k. We now count the possible ways to build an r-cycle that
is a fixed point. Without loss of generality, we set 1 to position 0. We next consider |ω−1(1)|:
We can put it on every kth-position that is coprime to l. Exactly then ωl is the first power that
is the identity. The rest of the elements of this cycle of ω is determined, too. We so far have
φ(l) possible choices (where φ denotes Euler’s Phi-function). Next we consider the cycle with the
smallest element not used so far: We have l · (k − 1) possible positions for it. The rest of this ω
cycle is determined by this position and the choice of |ω−1(1)|. The rest of the cycles is treated
analogously. All together we have φ(l)lk−1(k−1)! possible fixed points (without signs so far). Note
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Figure 3. Two examples of cycles and an ω-action, where those cycles are fixed points.
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ω = (1− 2− 4+)(3− 9 + 7+)(5 + 6 + 8−)

Figure 4. Example of constructing the elements of a fixed r-cycle.

that the cycles alternate in the sense that after an element of lets say cycle 1, there is always an
element of cycle 2, then one from cycle 3 and so on, and after the one of cycle k there follows the
next element of cycle 1. (For graphical examples see figure 4.)
In the second step we concentrate on the signs: For each ω-cycle we can choose exactly one sign,
the rest is determined, only ω where all the cycles have the same sign can possibly have fixed points
(this gives us rk choices):
We start with choosing ξa1 and call the cycle of a1 cycle a, then a1ξ1b1 (b1 was chosen before
and is from another cycle of ω, we call it cycle b) is part of our cycle c. Remember that c is our
signed cycle (so this is the structure) and a and b are cycles of ω, the morphism. As c = ωcω−1

we know that c(ω(a1)) = ξ1ω(b1) so we define a2 := |ω(a1)|, ξ2 := sgn
(
ω(a1)

)−1
ξ1sgn

(
ω(b1)

)
and

b2 := |ω(b1)|. We iterate this until we have m with am = a1. Now it is necessary that ξm = ξ1.
Due to construction we know that

ξm = sgn
(
ω(am1)

)−1 · · · sgn
(
ω(a1)

)−1
ξ1sgn

(
ω(b1)

)
· · · sgn

(
ω(bm−1)

)

= (type of cycle a)−1ξ1(type of cycle b).

Now exactly if cycle a and cycle b have the same type, this construction is feasible. (For graphical
examples see figure 5.)
Now we can calculate ZCr :

ZCr =
∑

n>0

1

n!rn

∑

ω∈Wr,n with pω=(plω (ξω))kω

φ(lω)rkω lkω−1
ω (kω − 1)!plω(ξ)kω
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Figure 5. Example of constructing the signs of a fixed r-cycle.

=
∑

ξ∈Cr

∑

n>0

1

n!rn

∑

l,k with l·k=n

( n!rn

lkrkk!

)
φ(l)rklk−1(k − 1)!pl(ξ)

k

=
∑

ξ∈Cr

∑

n>0

∑

l,k with l·k=n

φ(l)

lk
pl(ξ)

k =
∑

ξ∈Cr

∑

l,k>0

φ(l)

lk
pl(ξ)

k

=
∑

ξ∈Cr

∑

l>0

φ(l)

l

∑

k>0

pl(ξ)
k

k
=
∑

ξ∈Cr

∑

l>0

φ(l)

l
log

(
1

1− pl(ξ)

)

3.2.1. Specializations. As mentioned before, the cycle indicator series contains information
about numbers of objects in the species.
In analogy to r = 1, we define an exponential generating series, that counts the (labeled) objects
and a type generating series that counts the unlabeled objects, in other words the orbits of the
Wr,n-action:

Definition 3.2.6. We call
∑

n |F [n]Cr | z
n

rnn! generalized exponential generating series (egs) and
write it as F (z). Furthermore, we call

∑
n |F [n]Cr/Wr,n|zn type generating series (tgs) and write

it as F̃ (x).

Theorem 3.2.7 (Specializations). By setting

(1) p1(1) = z and pi(ξ) = 0 otherwise
(2) pi(ξ) = zi

(3) p1(ξ) = z and pi(ξ) = 0 otherwise

(4) pi(1) = zi

ri−1 and pi(ξ) = 0 otherwise

the cycle indicator series transform into

(1)
∑

n |F [n]Cr | z
n

rnn! = F (z) which is the generalized exponential generating series

(2)
∑

n |F [n]Cr/Wr,n|zn = F̃ (z) which is the type generating series (it counts Wr,n-orbits)

(3)
∑

n |F [n]Cr/Cr| z
n

n! =: F̃Cr(z)

(4)
∑

n |F [n]Cr/Sn| z
n

rn =: F̃S•(z).

For the proof of this theorem we need ‘Burnside’s Lemma’, which can be found (together with
a proof) for example in [Sta99] or [BLL98].
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Lemma 3.2.8 (Cauchy-Frobenius). Let M be a finite set and Γ be a subgroup of SM . Then

|M/Γ| = 1

|Γ|
∑

σ∈Γ

| fixσ|.

In other words the number of Γ-orbits in M times |Γ| is the sum over all fixed points of elements
in Γ (counted with multiplicities if they are fixed point of more than one element in Γ).

Proof of Theorem 3.2.7. (1) By setting p1(1) = z and pi(ξ) = 0 otherwise the only
pω 6= 0 is pid. What we get then is

∑

n

1

n!rn
|fixF [id]|zn.

As every structure is a fixed point under the identity, we have indeed a generalized expo-
nential generating function.

(2) By setting pi(ξ) = zi we get
∑

n

zn
1

n!rn

∑

ω∈Wr,n

| fixF [ω]|.

Now we interpret Wr,n as a subgroup of S[n]Cr
, use ‘Burnside’s Lemma’ and get

∑

n

(number of Wr,n-orbits)zn.

(3) The proof is a combination of the previous two points, note that those ω with pω =∏r−1
j=0 p1(ζj)ij define the Cr-action.

(4) Analogous as before, note that we want only such ω that define the Sn-action. Exactly
one of the ri−1 cycles of length i with sign 1 defines it. (The one that consists of 1 as signs
only.)

�

Example 3.2.9 (Signed Cycles). We calculate the specializations of signed cycles (remember

that ZCr =
∑

l,k>0
φ(l)
lk pl(1)k):

(1) We get Cr(z) =
∑

k>0
φ(1)
1k z

k =
∑

k(k−1)!rk zk

k!rk
. By calculating directly how many signed

cycles we have, we get indeed (k − 1)!rk (k! possible arrangements with rk signs, every
shift defines the same cycle, there are k shifts).

(2) We get C̃r(z) =
∑

ξ∈Cr
∑

l,k>0
φ(l)
lk z

l·k = r
∑

n>0
zn

n

∑
l|n φ(l). Gauß proved that

∑
l|n φ(l) =

n so we get
∑

n rz
n which is exactly the generating function of cycle types of cycles. (As

ω ◦ c ◦ω−1 always has the same type as c, the orbits of the Wr,n-action are those with the
same type.)

(3) We get C̃rCr(z) =
∑

ξ∈Cr
∑

k>0
φ(1)
1k z

k =
∑

k r(k−1)! z
k

k! . There are indeed (k−1)! unsigned
cycles for each type.

(4) We get C̃rS•(z) =
∑

l,k>0
φ(l)
lk

(
zl

rl−1

)k
=
∑

l,k>0
φ(l)
lk

zl·k

rl·k−k
=
∑

n
zn

rn
1
n

∑
l|n φ(l) · r nl . This is

the number of necklaces with n beads and r colors.

Example 3.2.10 (r-Sets). The specializations of r-Sets are (ZEr = exp
(∑r−1

j=0

∑
k>0

pk(ζj)
k·r

)
):

(1) Er(z) =
∑

n
zn

rnn!

(2) Ẽr(z) =
∑

n z
n

(3) ẼrCr(z) =
∑

n
zn

n!
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(4) ẼrS•(z) =
∑

n
zn

rn

Example 3.2.11 (Vertices). The specializations of vertices are (ZVr = exp
(∑

k
pk(1)
k

)
):

(1) Vr(z) =
∑

n
zn

n!

(2) Ṽr(z) =
∑

n z
n

(3) ṼrCr(z) =
∑

n
zn

n!

(4) ṼrS•(z) =
∑

n
(n+1)zn

rn

Another kind of specialization is the way we convert a cycle indicator series ZF into Z4F :

Lemma 3.2.12.

Z4F =
∑

n

rnZFn
|pj(ζk)=

0 if k 6= 0
1

rj−1 pj otherwise

= ZF |pλ(1)=rl(λ)pλ,pj(ξ)=0 for ξ 6= 1

= ZF |pk(1)=rpk,pj(ξ)=0 for ξ 6= 1

= ZF |pj(x)=pj(y)=···=pj

Proof. We compare Z4F and ZF :

Z4F =
∑

n

1

n!

∑

σ∈Sn

|fixσ|pσ, ZF =
∑

n

1

rnn!

∑

ω∈Wr,n

| fixω|pω.

As for every σ ∈ Sn the number of fixed points is the same when we consider it as an element of
Wr,n we need to extract the terms of ZF that come from such a σ and multiply then by rn. Every
such pσ has only type 1, so we set pj(ξ) 7→ 0 for ξ 6= 1.
Now we consider a cycle c with length l of σ ∈ Sn. By choosing signs for c we get a cycle of an
element of Wr,n. As we want type 1 only, there are rl−1 ways to choose it. Every element of Wr,n

with only type 1 cycles can be built this way from a unique s. So we set pc(1) 7→ pc
1

rl−1 .
This proves the fist equality. For the second and third one we calculate what happens with a pλ(1):

pλ(1) =

l(λ)∏

k=1

pλkk (1) 7→ r|λ|
l(λ)∏

k=1

pλkk
1

rλk−1
=

l(λ)∏

k=1

pλkk r = rl(λ)pλ

This proves the second and third equality. The fourth one we only prove for r = 2:

pλ(1) =

l(λ)∏

k=1

pλkk (1) =

l(λ)∏

k=1

pλkk (x) + pλkk (y) 7→
l(λ)∏

k=1

2pλkk = rl(λ)pλ

So for only type 1 signed permutation this holds. Now we consider any pk(−1):

pk(−1) = pk(x)− pk(y) 7→ pk − pk = 0

This shows the fourth equality. �

Example 3.2.13 (Vertices). We calculate Z4Vr :

Z4Vr = ZVr |pk(1)=rpk,pj(ζk)=0⇔k 6=0

=
(

exp
(∑

k

pk(1)

k

))
|pk(1)=rpk,pj(ζk)=0⇔k 6=0
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= exp
(∑

k

rpk
k

)

We can also calculate specializations of 4: For example for r = 2 we have:

(4Vr)(z) = exp(2z).

3.3. Sum and Product

In analogy to ordinary species we define sum and product of r-species:

Definition 3.3.1. For F , G being r-species, we define (F + G)[M ] = F [M ] ∪ G[M ] and the
ω-action point wise. Therefore an (F +G)-structure is either an F -structure or a G-structure.

Remark 3.3.2. As it follows from the definition that the sum is associative (and commutative),
we can consider sums of k r-species too.
The neutral element regarding + is the empty species 0[M ] := ∅.

Theorem 3.3.3. For F , G being r-species, it holds that ZF+G = ZF + ZG as well as:

• (F +G)(x) = F (x) +G(x),

• ˜(F +G)(x) = F̃ (x) + G̃(x),

• ˜(F +G)Cr(x) = F̃Cr(x) + G̃Cr(x),

• and ˜(F +G)
S•

(x) = F̃S•(x) + G̃S•(x).

Proof. For calculating ZF+G we need to consider fixed points of F + G. As every structure
of F + G is either in F or in G, it is a fixed point if and only if it is a fixed point in F or G,
therefore, the number of fixed points of F + G is exactly the sum of the fixed points of F and G,
so ZF+G = ZF + ZG .
In the same way the number of structures and their Wr,n-orbits sum up and we get the result for
the exponential generating function and the type generating function as well. �

Example 3.3.4. We consider Er≤k =
∑k

n=0 Ern. The species of r-sets with a maximum of r · k
elements.
Note that Er can be seen as

∑
n≥0 Ern, however, we will not discuss this further, for more information

about limit values and convergence of species see [BLL98].

Definition 3.3.5. We define (F · G)[M ] =
⋃
M1∪M2=M,M1∩M2=∅,M1,M2∈Br F [M1] × G[M2] and

the ω-action point wise. Therefore an (F · G)-structure is a tuple of an F -structure and a G-
structure.

Remark 3.3.6. It follows that · is associative, commutative (up to isomorphism) and distribu-
tive over +.
The neutral element regarding · is the species 1 := Er0 .

Theorem 3.3.7. For F , G being r-species, it holds that ZF ·G = ZF · ZG as well as:

• (F ·G)(x) = F (x) ·G(x),

• ˜(F ·G)(x) = F̃ (x) · G̃(x),

• ˜(F ·G)Cr(x) = F̃Cr(x) · G̃Cr(x),

• and ˜(F ·G)
S•

(x) = F̃S•(x) · G̃S•(x).

Proof. We start with calculating the fixed points of (F · G)[ω]: For a fixed point, both the
F -part and the G-part need to bee fixed. Therefore, it is necessary that each cycle of ω permutes
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only elements that are all contained in either F or G. So we can construct every possible fixed
point by choosing cycles ωF = c1, . . . , cj and define ωG as the rest of the other cycles:

ZF ·G =
∑

n,ω`rn
| fixω|pω

1∏
k,ξ ωk(ξ)!(rk)ωk(ξ)

As there are
(ωk(ξ)

ωFk (ξ)

)
possible ways to choose ωFk (ξ) cycles of length k and type ξ for F we get:

=
∑

n,ω`rn


 ∑

ωFωG=ω

| fixωF ||fixωG|
∏

k,ξ

(
ωk(ξ)

ωFk (ξ)

)
 pω

1∏
k,ξ ωk(ξ)!(rk)ωk(ξ)

Note that ωk(ξ) = ωFk (ξ) + ωGk (ξ) holds.

=
∑

n,ω`rn

∑

ωFωG=ω

|fixωF ||fixωG|pωF pωG
1

∏
k,ξ ω

F
k (ξ)!ωGk (ξ)!(rk)ω

F
k (ξ)+ωGk (ξ)

=


 ∑

l,ωF`rl

|fixωF |pFω
1

∏
k,ξ ω

F
k (ξ)!(rk)ω

F
k (ξ)


 ·


 ∑

l,ωG`rl

|fixωG|pGω
1

∏
k,ξ ω

G
k (ξ)!(rk)ω

G
k (ξ)




= ZF · ZG
�

Example 3.3.8 (k-Faces). We consider the species of k-faces of an n-dimensional cube Frk,n
(compare with [HLL98]): We already know the 0-faces which are the vertices. Now we can
represent a k-face of a cube as a set of vertices that share n− k signs, we can write it as a set of k
labels with free signs together with an (n− k)-dimensional vertex.
For example an edge in a three dimensional cube (in F2

1,3) could be
{
{1, 2,−3}, {−1, 2,−3}

}
but

not
{
{1, 2,−3}, {1,−2, 3}

}
. We can represent

{
{1, 2,−3}, {−1, 2,−3}

}
also as ({±1}, {2,−3}). So

it holds that:

Frk,n = Erk · Vrn−k
We therefore can calculate the cycle indicator series easily:

ZFrk,n = ZErk · ZVrk−1
= hk(x)hn−k(1)

Furthermore we can calculate the exponential generating series and the type generating series:

Frk,n(z) = Erk(z) · Vrn−k(z) =
zk

rkk!
· zn−k

(n− k)!
=

zn

rnn!
rn−k

(
n

k

)

F̃rk,n(z) = Ẽrk(z) · Ṽrn−k(z) = zk · zn−k = zn

Note that a k-face of a cube can be associated with an (n−k)-face with a hyperoctahedron as they
are dual (for a graphical example see figure 6)

Example 3.3.9 (Fixed Point Free signed Permutations). Consider the Species Wr
FPF of fixed

point free signed permutations. The calculation of its associated series may be difficult to calculate,
however we haveWr = Er ·Wr

FPF which makes calculating easier. HereWr is the species of signed
permutations as it will be introduced in example 3.4.3.
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Figure 6. A cube and an octahedron.

3.4. Examples of r-Species

Example 3.4.1 (Type C Parking Functions). For more information about type C parking
functions see [ST14].
A type C parking function can be defined as a vector f = (f1, f2, . . . , fn) where we have fi ∈
{−n,−n+ 1, . . . ,−1, 0, 1, 2, . . . , n}. They can also be represented by a labeled lattice path from
(0, 0) to (n, n) with only north and east steps where the north steps are labeled by i1, i2, . . . , in ∈
{±1,±2, · · · ± n} with |ik| 6= |il|, i1 = |i1| and |ij | > |ij+1| if there is no east step between the jth

and the (j + 1)th north step. For fl = ±k we know that ±l occurs after k east steps, with this
information we can build the path (by sorting numbers in the same row we get the last condition).
The ω-action is defined by permuting the positions and changing the signs. (Compare with figure 7.)
All together we get P [n]C2 = {(f1, f2, . . . , fn) with fi ∈ {−n,−n+ 1, . . . ,−1, 0, 1, 2, . . . , n}}.
For calculating ZP we need to consider fixed points: Only numbers with the same absolute value
can be interchanged in the vector notation and only numbers in the same row can be mapped to
each other in the path notation.
We now consider a cycle with length l and type 1. As the number of fixed points only depends on
the cycle type we only consider the cycle where all signs are 1: A parking function is a fixed point
if on all positions of this cycle there is the same number with the same sign. Therefore, we get
2n+ 1 fixed points.
Now we consider a cycle with length l and type −1. Once more we only consider particular cycles,
those where exactly one −1 occurs as a sign. Under such a permutation exactly one of the signs is
changed, so we only get a fixed point if all positions are 0.
Now we can calculate ZP :

ZP =
∑

n

1

2nn!

∑

ω∈W2,n

(2n+ 1)
∑n
k=1 ωk(1)pω

=
∑

n

1

2nn!

∑

ω`2W2,n

2nn!∏n
k=1(2k)ωk(1)+ωk(−1)ωk(1)!ωk(−1)!

(2n+ 1)
∑n
k=1 ωk(1)pω

=
∑

n,ω`2W2,n

(2n+ 1)
∑n
k=1 ωk(1)

∏n
k=1(2k)ωk(1)+ωk(−1)ωk(1)!ωk(−1)!

n∏

k=1

pk(1)ωk(1)pk(1)ωk(−1)

=
∑

λ,µ

(2n+ 1)|λ|
pλ(1) · pµ(−1)∏
k(2k)µk+λkλk!µk!
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generating the labeled path of f = (−2,−3, 2, 0): an ω-action:

ω = (1 + 4− 2−)(3+), (−2,−3, 2, 0) 7→ (3, 0, 2,−2)

ω

0 1 2 3 4
0

1

2

3

4

4

−1

3

−2

Figure 7. A parking function and an ω-action.

The exponential generating function is given through:

P (x) =
∑

n

zn

rnn!
(2n+ 1)n

Example 3.4.2 (Diagonals). Similar to the vertices we define the species of diagonals as the
diagonals of V2 the following way:

D[MC2 ] =
{{
i1, i2, . . . , i|M |

}
: il ∈MC2 , |il 6= ik|

}
/(−M)

The W2,n-action is defined point wise. This is well defined as −ω(i) = ω(−i).
When describing objects of D[n]C2 we use the representative of an equivalence class that contains
1 for describing it.
For example:

D[3]C2 =
{
{1, 2, 3}, {1, 2,−3}, {1,−2, 3}, {1,−2,−3}

}

For ω = (1 + 2− 3+) we get:

D[ω] =
(
{1, 2, 3}{1, 2,−3}{1,−2, 3}

)(
{1,−2,−3}

)

For a graphical representation see figure 8.
For calculating ZD we once again need to consider the fixed points: However there are two

different kinds of fixed points: There are those where even the vertices are fixed and those where
the vertices of one diagonal are interchanged. The first ones are already analyzed by example 3.2.4.
Note that as we have two vertices per diagonal, the number of fixed points is exactly the half of
it. The other ones occur under exactly the same signed permutations composed with the mapping
ψ : i 7→ −i ∀i. Composing a cycle c with ψ simply changes all the signs (in both notations).
Therefore, when the number of elements is even, the cycle type will be the same, and if it is odd,
it will have the same length but a different (as there are only two, the other) sign:
For example (1 + 2 + 3+) has cycle type (0, 0; 0, 0; 1, 0), this goes composed with ψ to (1− 2− 3−)
and has now cycle type (0, 0; 0, 0; 0, 1) and (1 + 2+) goes to (1 − 2−) where both mappings have
cycle type (0, 0; 1, 0).
Therefore, we get the following numbers of fixed points: For the first type we get:

1

2

n∏

k=1

2ωk(1)
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D[ω] =
(
{1, 2, 3}{1, 2,−3}, {1,−2, 3}

)(
{1,−2,−3}

)
ω = (1 + 2− 3+)

{1,−2, 3}

{1, 2, 3}

{1,−2,−3}

{1, 2,−3}

Figure 8. Diagonals in a 3-dimensional space and an ω-action.

for all ω consisting of only cycles with type 1 and for the second we get:

1

2

n∏

k=1

2ωk((−1)k)

for all ω consisting of only even-length cycles with type 1 and odd-length cycles with type −1.
Now we can calculate ZD[n]C2

:

ZD =
∑

n

1

2nn!

1

2







∑

ω∈Wr,n

pω=
∏
k(pk(1))ωk(1)

n∏

k=1

2ωk(1)pω


+




∑

ω∈Wr,n,

pω=
∏
k(pk((−1)k))ωk((−1)k)

n∏

k=1

2ωk((−1)k)pω







We now only consider the cycle type of ω. Through the even/odd condition all we need to know is
how many cycles of ω with length k there are. Therefore, we consider ω ` n. Note that the second
product may arise from a different ω:

=
∑

n

1

2nn!

1

2

∑

ω`n

n!2n∏n
k=1(2k)ωkωk!

((
n∏

k=1

2ωkpk(1)ωk

)
+

(
n∏

k=1

2ωkpk((−1)k)ωk

))

Now we use pk(1) = pk(x) + pk(y) and pk(−1) = pk(x)− pk(y) (compare with Remark 2.3.10), and
cancel some terms:

=
∑

n

1

2

∑

ω`n

1∏n
k=1(k)ωkωk!

((
n∏

k=1

(pk(x) + pk(y))ωk

)
+

(
n∏

k=1

(pk(x) + (−1)kpk(y))ωk

))
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=
1

2




 ∑

n,ω`n

n∏

k=1

1

ωk!

(
pk(x) + pk(y)

k

)ωk

+


 ∑

n,ω`n

n∏

k=1

1

ωk!

(
pk(x) + (−1)kpk(y)

k

)ωk





Now we use the same calculations for both sums as we used for r-sets (example 3.2.3) and get:

=
1

2

(
exp

(∑

k

(pk(x) + pk(y))

)
+ exp

(∑

k

(
pk(x) + (−1)kpk(y)

)))

=
1

2

(
exp

(∑

k

pk(x)

)
· exp

(∑

k

pk(y)

)
+ exp

(∑

k

pk(x)

)
· exp

(∑

k

(−1)kpk(y)

))

Once again we use the same calculations as we used for r-sets (example 3.2.3) and get the following.
We therefore use (−1)kpk(y) = pk(−y) and (−1)khk(y) = hk(−y):

=
1

2

((∑

k

hk(x)

)(∑

k

hk(y)

)
+ (−1)k

(∑

k

hk(x)

)(∑

k

hk(y)

))

=
1

2

((∑

n

∑

k

hn−k(x)hk(y)

)
+ (−1)k

(∑

n

∑

k

hn−k(x)hk(y)

))

=
∑

n

∑

k

hn−2k(x)h2k(y)

The specializations for diagonals are:

(1) D(z) =
∑

n
zn

rn!

(2) D̃(z) =
∑

n z
n

(3) D̃Cr(z) =
∑

n
zn

n!

(4) D̃S•(z) =
∑dn+1

2 e z
n

rn

Example 3.4.3 (Signed Permutations). Note that we also call them r-permutations. We con-
sider Wr,n as an example of an r-species:

Wr[n]Cr = Wr,n, Wr[ω](τ) = ω ◦ τ ◦ ω−1

If we use the cycle notation we can interpret a Wr-structure as a set of Cr-structures, what we will
do later when we consider substitution of r-species.
Now we are interested in the cycle indicator series, so we need to consider fixed points under an
ω ∈ Wr,n: For a τ ∈ Wr being a fixed point, it is necessary that all elements of one cycle are
mapped to the elements of another (or the same) cycle with same size, therefore, elements in one
cycle of τ need to be in a cycle of ω with same length. Analogous as in Cr, we need the same types
for cycles of ω that occur in such of τ .
We now construct any possible fixed point of ω: We consider the elements of ω-cycles with length
l and type ξ (elements of other ω-cycles need to be in different τ -cycles), their number is ωl(ξ):
Therefore, we sort the ω-cycles by their smallest element and call these elements e1, e2, . . . , eωl(1).
Then we start with element e1, choose the first element of the ω-cycle of e1 that occurs in the
τ -cycle of e1, and in a second step we choose the sign ξe1 . There are l · r possible choices (the l-st
possibility is the one of e1 being a fixed point so far) and therewith the positions (and their signs)
in τ of the other elements of the ω-cycle of e1 are determined. (Compare with the construction
of fixed points in Cr.) Note that if this element is k positions in the ω-cycle away from e1, the
elements will be in gcd(l, k) cycles.
Now consider e2: e2 can either be in a new cycle ore in one of the cycles already constructed by
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ω = (123456), possible fixed points:

3

1 2

4

5 6

1

3

1

2

4

6

5

3

1

2

4

5

6

3

1
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ω = (1234)(5678)(9 10 11 12), construction of two possible fix points:

3

2

4

5 6

3 4

1 2

7 8

1
b b b b

5 6

3 4

1 2

7 8

b b

b b

b b

b b

or 4 on their own
or 4 on their own

7

9

3

11

5

1

8

10

4

12

6

2

11

9 10

12

5 6

3 4

1 2

7 8

ω = (1− 2 + 3 + 4+)(5 + 6− 7− 8−), construction of the signs:

5 6

3 4

1 2

7 8

+6 −7

+4 +1

−2 +3

−8 −5

+

5 6

3 4

1 2

7 8

+6 −7

+4 +1

−2 +3

−8 −5

+

+ −

. . .

5 6

3 4

1 2

7 8

+6 −7

+4 +1

−2 +3

−8 −5

+

+ −

+

+

−

−

−

. . .

−

5 6

3 4

1 2

7 8

+ −

+ −− −

+ +

choices
determined

ω

Figure 9. Examples of constructing fixed r-permutations.

e1, in the first case, we get, like before, l · r possible choices, in the second case we can chose the
element of the e1-ω-cycle of which e2 is the nearest follower as well its sign. The rest is determined.
All together we get 2lr possibilities.
For e3, we once more get l · r possibilities for a new cycle, and 2lr for an already constructed one
(lr for being the follower of an e1-cycle element and lr for those of the e2-cycle, no matter if they
share cycle or not), thus all together 3lr possibilities.

Iterating this gives us ωl(ξ)!l
ωl(ξ)rωl(ξ). Therefore, we get

∏
l ωl(ξ)!l

ωl(ξ)rωl(ξ) fixed points. (For
graphical examples see figure 9.)
Now we can calculate ZWr :

ZWr =
∑

m≥0

1

rmm!

∑

ω∈Wr,n

∏

l

ωl(ξ)!l
ωl(ξ)rωl(ξ)pω

=
∑

m≥0

1

rmm!

∑

ω`rm

∏

ξ,l

ωl(ξ)!l
ωl(ξ)rωl(ξ)pω

m!rm∏
l,ξ(lr)

ωl(ξ)ωl(ξ)!
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=
∑

m≥0,ω`m
pω

The exponential generating function isWr(Z) =
∑

n z
n and the type generating function W̃r(Z) =∑

n z
n|{w `r n}|.

3.4.1. Set Partitions. We define two new kinds of set partitions we will need later as r-
species.

Definition 3.4.4. We define if r = 1 and an ordinary set S and Par[S] as the species of all set
partitions of S. For general r we define two kinds of partitions for a set M ∈ Br.

(1) We define ParCr [M ] as the set of all partitions, where the sets are stable under the Cr-
action. Therefore, for a block b of π x ∈ b, j ∈ N⇒ ζjx ∈ b.

(2) We define ParBr [M ] as the set of all partitions π which are preserved under the Cr-action
and where π as an object of Br. In other words, for every set N ∈ π the set ζ ·N is also
in π.

Example 3.4.5. Let M = 5C3 . A partition of [5] is for example
{
{1, 3}, {2, 4, 5}

}
.

(1) A partition of M in ParC3 [M ] is for example:
{
{1, ζ1, ζ21, 3, ζ3, ζ23}, {2, ζ2, ζ22, 4, ζ4, ζ24, 5, ζ5, ζ25}

}
.

(2) A partition of M in ParB3 [M ] is for example:
{
{1, ζ3}, {ζ1, ζ23}, {ζ21, 3}, {2, ζ24, ζ25}, {ζ2, 4, 5}, {ζ22, ζ4, ζ5}

}
.

As the previous example motivates and the following lemma shows, there is a natural bijection
between Par[S] and ParCr [S], and that there is a strong connection between Par[S] and ParBr [S]:

Lemma 3.4.6. Let S be an ordinary set, so that SCr = M and let π be a set partition of S, then
every partition of one of the two kinds of set partitions can be constructed with the help of π:

(1) We define π̃ ∈ ParCr [M ] as the set of all sets bCr with b ∈ π.
(2) We choose arbitrary signs ξx ∈ Cr for all j ∈ S and define π̃ ∈ ParBr [M ] as the set of all{

ξx · ζix : x ∈ b
}

with b ∈ π, i = 0, 1, 2, . . . (r − 1).

Proof. We need to show that our construction leads indeed to such a partition and that every
such partition can be constructed this way:

(1) Any bCr is by definition stable under the Cr-action.
For a given π̃ ∈ ParCr [M ], we can define π as the set of all {|x| : x ∈ b}. As for |x| = |y|
holds that ∃ξ ∈ Cr : x = ξy, and therefore, x and y are in the same block, this leads to a
partition of S. (|x| is here the element of {ξx : ξ ∈ Cr} with sign 1.)

(2) Any
{
ξx · ζix : x ∈ b

}
under the action of ζj ∈ Cr is

{
ξx · ζi·jx : x ∈ b

}
, and therefore, it

is still in the partition, and our partition is a Br-set.
For a given π̃ ∈ ParCr [M ], we can once more define π as the set of all {|x| : x ∈ b}. (Note
that some of the b will define the same set, but as it is a set of sets this does not matter.)

�

Definition 3.4.7. We define nπ as:

(1) |π| if π ∈ Par[M ] or π ∈ ParCr [M ];

(2) |π|r if π ∈ ParBr [M ],

and the sizes of the blocks b and the number of blocks with that size as:

(1) |b| and their number if π ∈ Par[M ],

(2) |b|r and their number if π ∈ ParCr [M ],
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(3) |b| and their actual number times 1
r if π ∈ ParBr [M ].
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CHAPTER 4

Substitution and Plethysm

4.1. Substitution

For the substitution of ordinary species there are three different kinds of generalizations, two of
them (the first two ones), which are both between an ordinary and an r-species and where we know
how the corresponding cycle index series behaves, can be found in [Hen04]. The third substitution
can be found in [HLL98] and is between two r-species.

Definition 4.1.1 (Type 1). Let F be an ordinary (1-)species and G an r-species. We define:

(F ◦G)[M ] =
∑

π∈ParCr [M ]

(
F [π]×

∏

N∈π
G[N ]

)
.

The definition on morphisms is natural and will be formulated later.

Example 4.1.2 (Signed Permutations). We want to analyze E ◦ Cr:
Therefore, we need to consider an E ◦ Cr structure on a set M . This structure is a tuple (π, f, g =
(gb)b∈π) where π is in ParCr [M ], f is the set of elements of π and therefore π itself, and the gb are
cycles of elements that are in one set of π. In other words we have a set of cycles, which is a signed
permutation.
To see that Wr = E ◦ Cr, we consider a Wr-structure w on a set M . This structure is a
signed permutation, so it consists of various cycles c1, c2, . . . , ck. A cycle ci can be written as
(ei,1ξi,1ei,2ξi,2 . . . ei,ji , ξi,ji).
We now state an isomorphism Φ :Wr → E ◦ Cr:
Now Φ(w) = (πw, fw, gw) where:

• πw = {{ei,1, ei,2, . . . , ei,ji}Cr : i = 1, 2, . . . , k}
• fw = {{ei,1, ei,2, . . . , ei,ji}Cr : i = 1, 2, . . . , k}
• gw = {c1, c2, . . . , ck}

That Φ is indeed an isomorphism (bijective, compatibile with the Wr,n-action) can be seen easily
by recalculating.
For a graphical example see figure 1. Detailed information about the Wr,n-action will be given
later.

g =
5 4 3

ζ

ζ

1 ζ2 ζ2
2 1

Φ
(
(1ζ23ζ2)(2ζ5ζ4ζ0)

)
= (π, f, g) with:

f =
{
{1, ζ1, ζ21, 3, ζ3, ζ23}, {2, ζ2, ζ22, 4, ζ4, ζ24, 5, ζ5, ζ25}

}

Figure 1. A Wr-structure and the associated E ◦ Cr-structure.
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π =
{
{1, ζ3}, {ζ1, ζ23}, {ζ21, 3}, {2, ζ24, ζ25}, {ζ2, 4, 5}, {ζ22, ζ4, ζ5}

}

f =
{
{ζ21, 3}, {ζ2, 4, 5}

}
g =

2

5 4

1

3

Figure 2. A Vr ◦ C-structure.

Definition 4.1.3 (Type 2). Let F be an r-species and G an ordinary (1)-species. We define:

(F ◦G)[M ] =
∑

π∈ParBr [M ]

(
F [π]×

∏

O∈πCr

G[O]
)

where:

• O ∈ πCr are the orbits of the Cr-action in π.

• G[O] :=
{

(gN )N∈O : bξṄ = G[ξ](bN ),∀N ∈ O, ξ ∈ Cr

}
.

The definition on morphisms is natural and will be formulated later.

Example 4.1.4 (Vertices of Cycles). We analyze Vr ◦ C:
A structure of Vr ◦ C[n]Cr is a tuple (π, f, (gN )N∈O) where:

• π ∈ ParBr [[n]Cr ]
• f ∈ Vr[π]
• gN = C[N ]

An example for a structure h in F ◦G[5]C3 is the tuple h = (π, f, g = (gb)b∈π) where

• π =
{
{1, ζ3}, {ζ1, ζ23}, {ζ21, 3}, {2, ζ24, ζ25}, {ζ2, 4, 5}, {ζ22, ζ4, ζ5}

}

• f =
{
{ζ21, 3}, {ζ2, 4, 5}

}

• g = {(254), (13)}
Note, that for shorter notation we write here {(13)} instead of {(1ζ03ζ), (1ζ3ζ2), (1ζ23ζ0)} as we
can construct the latter with help of π and f .
Note that this r-species is not the same as Wr, even though one can associate these structures.
Nevertheless, the Wr,n-action is different as we will see later on. Detailed information about the
Wr,n-action will be given later.
For a graphical example see figure 2.

The third substitution can be found in [HLL98] and is between two r-species. Note that
[HLL98] considers only the case of hyperoctahedral species (r = 2). His definition, however, can
be easily generalized:

Definition 4.1.5 (Type 3). Let F and G be r-species. We define:

(F ◦G)[MCr ] =
∑

π∈Par[M ]

(
FπCr ]×

∏

N∈π
G[NCr ]

)
.

The definition on morphisms is natural and will be formulated later.

Example 4.1.6 (Vertices of Signed Cycles). We analyze Vr ◦ Cr (this species can be seen as
signed permutations that have an extra sign):
A structure of Vr ◦ Cr[n]Cr is a tuple (π, f, (gb)bπ) where:

• π ∈ Par[[n]]
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g =
5 4 3

π =
{
{1, 3}, {2, 4, 5}

}

f =
{
ζ2{1, 3}, {2, 4, 5}

} 2ζ

ζ

1
1 ζ2 ζ2

Figure 3. A Vr ◦ C-structure.

• f ∈ Vr[πCr ]
• gb = Cr[bCr ]

An example for a structure h in Vr ◦ Cr is the tuple h = (π, f, g = (gb)b∈π) where:

• π =
{
{1, 3}, {2, 4, 5}

}

• f =
{
ζ2{1, 3}, {2, 4, 5}

}

• g = {(2ζ5ζ4ζ02), (1ζ23ζ2)}
Detailed information about the Wr,n-action will come later.
For a graphical example see figure 3.

Lemma 4.1.7. Any substitution of type 1 and 2 is associative in that sense that (F ◦G) ◦H =
F ◦ (G ◦H) holds no matter what type(s) of substitution we have (up to isomorphism).

Proof. We proof it by example for the case that F,G are normal species and H is an r-species
and only for the set of structures. That it also holds for the morphisms will be clear when defining
them precisely. The other cases are analogous.

(
F ◦ (G ◦H)

)
[M ] =

∑

π1∈ParCr [M ]

F [π1]
∏

b1∈π1

(G ◦H)[b1]

=
∑

π1∈ParCr [M ]

F [π1]
∏

b1∈π1


 ∑

π2∈ParCr [b1]

G[π2]
∏

b2∈π2

H[b2]




=
∑

π1∈ParCr [M ]

∑

π2∈ParCr [b1]

F [π1]
∏

b1∈π1

G[π2]
∏

b2∈π2

H[b2]

Now π1 consists of Cr-parts of M and π2 of parts of these. We define π3 as union of π2 that come
from the same π1 and get π3 ∈ ParCr [M ]. We define π4 as partition of π3 in that way that the
union of the parts are the parts of π1. Then F [π1] ∼= F [π4] and the former π2 are now the parts of
π4. (For a graphical example see figure 4.) Then we get:

=
∑

π3∈ParCr [M ]


 ∑

π4∈Par[π3]

F [π4]
∏

b4∈π4

G[b4]


 ∏

b3∈π3

H[b3]

=
∑

π3∈ParCr [M ]

(F ◦G)[π3]
∏

b3∈π3

H[b3]

=
(
(F ◦G) ◦H

)
[M ]

�

Remark 4.1.8. • X := E1
1 is the neutral element regarding ◦.
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b b

bb

b
b

b

b

b

b

b

b b

b
b

b

b

b
b

b

ζjx∀j

π1/π4

π2/π3

Figure 4. Partitions of F ◦G ◦H.

• ◦ is linear in the first argument.
• For any ordinary species F it holds that Vr1 ◦ F = F ◦ Vr1 .
• We have 4(G◦F ) = G◦4F whenever G is an ordinary species and F an r-species but not

necessarily 4(G ◦ F ) = 4G ◦ F whenever G is an r-species and G and ordinary species.

In the case r = 1 the literature (see for example in [BLL98]) tells us that not only the following
lemma for the exponential generating series holds, but also a similar result for the cycle indicator
series, to which we will come later.

Theorem 4.1.9. For F (x), G(x) generating functions of F , G being (r-)species, it holds that

• (F ◦G)(x) = F (G(x)) in type 1 or type 2
• and (F ◦G)(x) = F (rG(x)) in type 3.

Remark 4.1.10. Note that the third equation is new. ([HLL98] defines the exponential gen-
erating function in a slightly different way (skipping 1

rn ) and does not consider cycle indicator
series.)

Example 4.1.11 (Signed Permutations). We want to show that E(Cr(x)) =Wr(x): Therefore,
we need the exponential generating functions (compare with theorem 3.2.7):

(1) We start with the species of sets:

E(x) = exp


∑

k≥0

pk
k



|p1(1)=x,pi(ξ)=0

= exp(x)

which states that there is exactly one set for each size in E which is indeed true.
(2) For the signed cycles we already know (example 3.2.9) that:

Cr(x)) =
∑

n

zn

n

(3) For the signed permutations we get:

Wr(x) =
∑

n,ω`rn
pω |p1(1)=x,pi(ξ)=0 =

∑

n

xn

which states that we have n!2n signed permutations, which is indeed true.

Now we can calculate E(Cr(x)):

E(Cr(x)) = exp

(∑

n

xn

n

)
= exp

(
− log(1− x)

)
=

1

1− x =
∑

n

xn =Wr(x)
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Proof of theorem 4.1.9. Although this will follow immediately out of the theorems about
the cycle indicator series (4.3.1, 4.3.2, 4.4.21) and through the fact, that the exponential generating
function is a specialization of it (subsection 3.2.1), we will proof this directly by counting the
number of F ◦G-structures.
Let F (x) =

∑
fkx

k 1
k!rk

(and r = 1 at type 1) and G(x) =
∑
gkx

k 1
k!rk

(and r = 1 at type 2). Let
further be ji the number of blocks with size i as defined before. For a fixed partition π of [k] or
[k]Cr , depending on the case the number, of such structures is fk(g1)j1(g2)j2 · · · · · (gm)jm . These
structures have size m =

∑
iji (note that k =

∑
ji).

The number of partitions with ji blocks of size i is (compare with lemma 4.3.25):

• Type 1: m!∏
i(i!)

jiji!

• Type 2: m!∏
i(i!)

jiji!
·∏i r

(i−1)·ji = m!∏
i(i!)

jiji!
· rm−k

• Type 3: m!∏
i(i!)

jiji!

Therefore, the term with xm is:

• Type 1: fk(g1)j1(g2)j2 · · · · · (gm)jm m!∏
i(i!)

jiji!
xm

m!rm

• Type 2: fk(g1)j1(g2)j2 · · · · · (gm)jm m!∏
i(i!)

jiji!
· rm−k xm

m!rm

• Type 3: fk(g1)j1(g2)j2 · · · · · (gm)jm m!∏
i(i!)

jiji!
xm

m!rm

Now we calculate (F (G(x)) for type 1 or type 2 and F (rG(x)) for type 3:

• Type 1:

F (G(x)) =
∑

k

fk
k!

(
∑

l

gl
xl

rll!
)k =

∑

k

fk
k!

∑
∑
ji=k

k!∏
i ji!

gj11 · · · · · gjmm
xm

rm
∏
i i!

ji

• Type 2:

F (G(x)) =
∑

k

fk
k!rk

(
∑

l

gl
xl

l!
)k =

∑

k

fk
k!rk

∑
∑
ji=k

k!∏
i ji!

gj11 · · · · · gjmm
xm∏
i i!

ji

• Type 3:

F (rG(x)) =
∑

k

fk
k!rk

(r
∑

l

gl
xl

l!rl
)k =

∑

k

fk
k!rk

rk
∑

∑
ji=k

k!∏
i ji!

gj11 · · · · · gjmm
xm

rm
∏
i i!

ji

which is the same. �

4.2. Plethysm

As in the case of ordinary (1-)species, there are plethystic operations for the cycle index series
of substituted species for the two cases which can be found in [Hen04]:

[Hen04] claims that it is not possible to define a plethysm ◦ : Λ(r) × Λ(r) → Λ(r), however,
he defines a plethysm ◦ : Λ(1)× Λ(r)→ Λ(r) and one ◦ : Λ(r)× Λ(1)→ Λ(r):

Definition 4.2.1 (Type 1). We define ◦ : Λ(1)× Λ(r)→ Λ(r) uniquely as follows:

(1) ∀ g ∈ Λ(r), the map Λ(1)→ Λ(r) : f 7→ f ◦ g is a C-algebra homomorphism:(
∀ g ∈ Λ(r), f1, f2 ∈ Λ(1): (f1 + f2) ◦ g = f1 ◦ g+ f2 ◦ g and (f1 · f2) ◦ g = (f1 ◦ g) · (f2 ◦ g)

)

(2) ∀ i ∈ N, the map Λ(r)→ Λ(r) : g 7→ pi ◦ g is a C-algebra homomorphism:(
∀ i ∈ N, g1, g2 ∈ Λ(r): pi ◦ (g1 + g2) = pi ◦ g1 +pi ◦ g2 and pi ◦ (g1 · g2) = (pi ◦ g1) · (pi ◦ g2)

)

(3) pi ◦ pj(ξ) = pij̇(ξ)

This can be defined in another way (compare [BLL98]):
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Lemma 4.2.2.

ZF (p1, p2, p3, . . . ) ◦ ZG(p1(1), p1(ζ), p1(ζ2), . . . , p1(ζr−1), p2(1), . . . , p2(ζr−1), p3(1), . . . )

=ZF (ZG(p1·1(1), p1·1(ζ) . . . , p1·1(ζr−1), p2·1(1), . . . ), ZG(p1·2(1), . . . , p1·2(ζr−1), p2·2(1), . . . ),

ZG(p1·3(1), . . . , p1·3(ζr−1), p2·3(1), . . . ), . . . )

In other words, we substitute for every pi in ZF a modified ZG, where we have substituted for every
pj(ξ) a pi·j(ξ).

Proof. We want to calculate ZF ◦ ZG, for an easier reading we write ZF =
∑

n,λ`n aλpλ and

ZG =
∑

n,µ`rn bµpµ:

ZF ◦ ZG = (
∑

n,λ`n
aλpλ) ◦ (

∑

n,µ`rn
bµpµ)

Now we use (f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g and (f1 · f2) ◦ g = (f1 ◦ g) · (f2 ◦ g). Note that we here
use the cycle type definition of a partition:

=
∑

n,λ`n
(aλpλ) ◦ (

∑

n,µ`rn
bµpµ) =

∑

n,λ`n
aλ
∏

i∈λ
(pi ◦ (

∑

n,µ`rn
bµpµ))

Now we have on the left side of ◦ only pi, so we an use g1, g2 ∈ Λ(r): pi ◦ (g1 + g2) = pi ◦ g1 + pi ◦ g2

and pi ◦ (g1 · g2) = (pi ◦ g1) · (pi ◦ g2):

=
∑

n,λ`n
aλ
∏

i∈λ
(
∑

n,µ`rn
pi ◦ (bµpµ)) =

∑

n,λ`n
aλ
∏

i∈λ

∑

n,µ`rn
bµ

∏

j(ξ)∈µ

pi ◦ pj(ξ)

=
∑

n,λ`n
aλ
∏

i∈λ

∑

n,µ`rn
bµ

∏

j(ξ)∈µ

pi·j(ξ)

This is exactly the formula stated above. �

Now we do the same for the second case:

Definition 4.2.3 (Type 2). We define ◦ : Λ(r)× Λ(1)→ Λ(r) uniquely as follows:

(1) ∀ g ∈ Λ(1), the map Λ(r)→ Λ(r) : f 7→ f ◦ g is a C-algebra homomorphism.(
∀ g ∈ Λ(1), f1, f2 ∈ Λ(r): (f1 + f2) ◦ g = f1 ◦ g+ f2 ◦ g and (f1 · f2) ◦ g = (f1 ◦ g) · (f2 ◦ g)

)

(2) ∀ i ∈ N, ξ ∈ Cr, the map Λ(1)→ Λ(r) : g 7→ pi(ξ) ◦ g is a C-algebra homomorphism.(
∀ i ∈ N, ξ ∈ Cr, g1, g2 ∈ Λ(r): pi(ξ) ◦ (g1 + g2) = pi(ξ) ◦ g1 + pi(ξ) ◦ g2 and pi(ξ) ◦ (g1 · g2)

= (pi(ξ) ◦ g1) · (pi(ξ) ◦ g2)
)

(3) pi(ξ) ◦ pj = pij̇(ξ
j)

This also can be defined in another way (compare [BLL98]):

Lemma 4.2.4.

ZF (p1(1), p1(ζ), p1(ζ2), . . . , p1(ζr−1), p2(1), . . . , p2(ζr−1), p3(1), . . . ) ◦ ZG(p1, p2, p3, . . . )

=ZF (ZG(p1(11), p2(12), p3(13), . . . ), ZG(p1(ζ1), p2(ζ2), p3(ζ3), . . . ), . . . ,

ZG(p1(ζ(r−1)·1), p2(ζ(r−1)·2), p3(ζ(r−1)·3), . . . ),

ZG(p1·2(11), p2·2(12), . . . ), ZG(p1·2(ζ1), p2·2(ζ2), . . . ), . . . , ZG(p1·2(ζ(r−1)·1), p2·2(ζ(r−1)·2), . . . ),

ZG(p1·3(11), p2·3(12), . . . ), ZG(p1·3(ζ1), p2·3(ζ2), . . . ), . . . )

In other words, we substitute for every pi(ξ) in ZF a modified ZG, where we have substituted for
every pj a pi·j(ξ

j).
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Proof. The proof is analogous to that of type 1 (lemma 4.2.2). �

Examples to the plethystic substitution will come in section 4.5.

Remark 4.2.5. For the third type we have no classical plethysm, however, we will find a new
way to describe the substitution of the cycle indicator series later.

4.3. Theorems of Type 1 and 2

Theorem 4.3.1 (Type 1). Let F be an ordinary (1-)species and G an r-species.
Then ZF◦G = ZF ◦ ZG.

Theorem 4.3.2 (Type 2). Let F be an r-species and G an ordinary (1-)species.
Then ZF◦G = ZF ◦ ZG.

For examples see section 4.5.

Remark 4.3.3. This is already proven in [Hen04] by means of polynomial functors and charac-
ters. We present a direct proof by computation. For r = 1, another proof can be found in [BLL98]
(chapter 4.3), using the type generating function.

We will proof the two theorems simultaneously, as the proofs are quite similar, and some of the
arguments are even the same.
For the proofs of theorem 4.3.1 and theorem 4.3.2 we consider a typical F ◦G structure, similar as
in [BLL98].
In type 1 such a structure h is a tupel h = (π, f, (gb)b∈π) where:

(1) π is a set partition in ParCr [[n]Cr ]
(2) f is an F -structure on π
(3) gb are G-structures on b;

In type 2 such a structure h is a tuple h = (π, f, (gO)O∈πCr ):

(1) π is a set partition in ParBr [[n]Cr ]
(2) f is an F -structure on π
(3) gO = (gb)b∈O are tuples of G-structures, where O is a Cr-orbit of π

Now it is time to define F ◦G[ω] on a F ◦G-structure:

Definition 4.3.4 (Type 1). We define

F ◦G[ω]((π, f, (gb)b∈π)) = (ω(π), F [σ](f), (G[ω|b](gb))b∈π)

where

(1) ω(π) is defined pointwise, so each block b ∈ π maps to ω(b). Thus, the result is a set
partition with the same sizes of the blocks and, still in ParCr [[n]Cr ].

(2) We define σ as the bijection between π and ω(π) where σ(b) := ω(b).

Definition 4.3.5 (Type 2). We define

F ◦G[ω]((π, f, (gb)b∈π)) = (ω(π), F [σ](f), (G[ω|b](gO))O∈πCr )

where:

(1) ω(π) is defined pointwise, so each block b ∈ π maps to ω(b). Thus, the result is a set
partition with the same sizes of the blocks, and still in ParBr [[n]Cr ].

(2) We define σ as the bijection between π and ω(π) where σ(b) := ω(b). Note that here σ is
a signed permutation σ ∈Wr,nπ .

(3) G[ω|b]gO = (G[ω|b]gb)b∈O. Note that, as a Cr-orbit is mapped to a Cr-orbit, the tuples of
(G[ω|b]gb)b∈O belong to the Cr-orbit (G[ω|b]b)b∈O.
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Example 4.3.6. (1) Let F be the species of sets and G the species of r-cycles. An example
for a structure h in F ◦G[5]C3 = E ◦ Cr[5]C3 (we have seen that this is isomorphic to the
species of signed permutations) is the tuple h = (π, f, g = (gb)b∈π) where
• π =

{
{1, ζ1, ζ21, 3, ζ3, ζ23}, {2, ζ2, ζ22, 4, ζ4, ζ24, 5, ζ5, ζ25}

}

• f =
{
{1, ζ1, ζ21, 3, ζ3, ζ23}, {2, ζ2, ζ22, 4, ζ4, ζ24, 5, ζ5, ζ25}

}

• g = {(2ζ5ζ4ζ0), (1ζ23ζ2)}
Note that if π is obvious by knowing f and g we sometimes omit it. For a graphical
representation see figure 5.
Now consider a signed permutation

ω =

(
1 2 3 4 5
ζ21 ζ3 2 5 ζ4

)
= (1ζ2)(2ζ3ζ0)(4ζ05ζ),

then F ◦G[ω]h is given through:
• π′ =

{
{1, ζ1, ζ21, 2, ζ2, ζ22}, {3, ζ3, ζ23, 4, ζ4, ζ24, 5, ζ5, ζ25}

}

• f ′ =
{
{1, ζ1, ζ21, 2, ζ2, ζ22}, {3, ζ3, ζ23, 4, ζ4, ζ24, 5, ζ5, ζ25}

}

• g′ = {(3ζ4ζ05ζ3), (1ζ02ζ)}
(2) Let F be the species of vertices and G the species of ordinary cycles. Note that this

r-species is not the species of signed permutations, even though it does have equivalent
structures, as the Wr,n-action is different, as we will see in this example). An example for
a structure h in F ◦G[5]C3 is the tuple h = (π, f, g = (gb)b∈π) where
• π =

{
{1, ζ3}, {ζ1, ζ23}, {ζ21, 3}, {2, ζ24, ζ25}, {ζ2, 4, 5}, {ζ22, ζ4, ζ5}

}

• f =
{
{ζ21, 3}, {ζ2, 4, 5}

}

• g = {(254), (13)}
Remember, that we write here {(13)} instead of {(1ζ03ζ), (1ζ3ζ2), (1ζ23ζ0)}, again.
For a graphical representation of this see figure 6.
Now consider once again a signed permutation:

ω =

(
1 2 3 4 5
ζ21 ζ3 2 5 ζ4

)
= (1ζ2)(2ζ3ζ0)(4ζ05ζ)

Then F ◦G[ω]h is given through:
• π′ =

{
{ζ21, ζ2}, {ζ1, ζ22}, {ζ1, 2}, {ζ3, ζ55, 4}, {ζ23, 5, ζ4}, {3, ζ5, ζ24}

}

• f ′ =
{
{ζ1, 2}, {ζ33, 5, ζ4}

}

• g′ = {(345), (12)}

Remark 4.3.7. Note that ω ∈Wr,n with ω(π)=π induces a permutation σ ∈ Sπ of the blocks
b: with σ(b) := ω(b) we define a bijection between π and ω(π); as π = ω(π) we get a permutation.
By convention we will allways use the letter σ to denote the permutation induced by ω.

Example 4.3.8. Consider r = 2, n = 5 and the partition {{1, 2}, {3, 4}, {5}} of [n].

(1) Type 1: Let π = {{1,−1, 2,−2}, {3,−3, 4,−4}, {5,−5}} and ω =

(
1 2 3 4 5
−3 −4 −2 1 −5

)
,

then we have σ = ({1,−1, 2,−2}{3,−3, 4,−4})({5,−5}).
(2) Type 2: Let π = {{1,−2}{−1, 2}, {3, 4}, {−3,−4}, {5}, {−5}} and ω =

(
1 2 3 4 5
−3 4 −2 1 −5

)
,

then we have σ =

(
{1,−2} {3, 4} {5}

−{3, 4}(= {−3,−4}) {1,−2} −{5}(= {−5})

)
that is a signed per-

mutation of the blocks.

Note that a permutation that fixes a Cr-partition does not necessarily fix a Br-partition that
belongs to the same ordinary partition as we see in this example.
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g =
5 4 3

ζ

ζ

1 ζ2 ζ2
2 1

f =
{
{1, ζ1, ζ21, 3, ζ3, ζ23}, {2, ζ2, ζ22, 4, ζ4, ζ24, 5, ζ5, ζ25}

}

ζ4 5 2

ζ

ζ

1 ζ2 ζ2
ζ3 ζ21

∼=

g′ =
54 2

ζ ζ

1

ζ1
3 1

f ′ =
{
{1, ζ1, ζ21, 2, ζ2, ζ22}, {3, ζ3, ζ23, 4, ζ4, ζ24, 5, ζ5, ζ25}

}

ω = (1ζ2)(2ζ3ζ0)(4ζ05ζ)

Figure 5. ω-Action on a substitution of type 1.

g =
5 4 3

2 1

f =
{
{ζ21, 3}, {ζ2, 4, 5}

}

g′ =
54 2

3 1
f ′ =

{
{ζ1, 2}, {ζ33, 5, ζ4}

}

ω = (1ζ2)(2ζ3ζ0)(4ζ05ζ)

Figure 6. ω-Action on a substitution of type 2.

For the cycle indicator series ZF◦G, we need to consider, under which conditions such a structure
is a fixed point under a signed permutation:

Lemma 4.3.9 (Type 1). A structure h ∈ (F ◦G)[n]Cr is a fixed point of (F ◦G)[ω] if and only
if:

(1) ω(π) = π (Therefore, the parts belonging to one cycle of σ need to have the same size.)
(2) f needs to be a fixed point under F [σ].
(3) G[ω](gb) = gω(b).

Proof. The first two conditions are obvious.
For the third we want (gb)b∈π to be fixed under the action of ω. We know that ω permutes the
blocks b, so the G-structure with labels of ω(b) is be G[ω](gb), and therefore, G[ω](gb) = gω(b). �

Remark 4.3.10. For the case of type 2 this lemma and its proof is almost the same. Note that,
as mentioned in lemma 4.3.5, the gb of one Cr-orbit are mapped to the same Cr-orbit.

Lemma 4.3.11 (Type 1). Let σ be a permutation and π ∈ ParCr [[n]Cr ]. Let ω be a signed
permutation that induces σ on π and ω(π) = π.
Then we can construct the fixed points of ω in the following way:

(1) Let f be any fixed point of F [σ].
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(2) For every cycle of σ with length l take an arbitrary block b belonging to this cycle, let gb
be an arbitrary fixed point of (ωl)|b and gω(b) = ω(gb)(= σ) for the other blocks belonging
to the same cycle.

The number of fixed points is

| fixF [σ]| ·
∏

c a cycle of σ

| fixG[(ωlc)|bc ]|

where pc is an arbitrary block belonging to c, and lc is the length of c.

Proof. The construction is well defined: As block b belongs to a cycle of σ with length l,
(ωl)|b : b→ b. Furthermore, ω is a bijection of b and ω(b), hence, ω(gb) is indeed a G-structure.
By construction, f and b are fixed under the action of ω, and ω(gb) = gω(b) holds. It remains to
show, that every fixed point can be constructed this way: If we iterate G[ω](gb) = gω(b) we get

ωl(gb) = gωl(b) = gb, so being a fixed point of (ωl)|b is necessary for any fixed point. �

Remark 4.3.12. This lemma and its proof are identical for type 2 if one just changes π ∈
ParCr [[n]Cr ] into π ∈ ParBr [[n]Cr ] and bc into Oc.

Definition 4.3.13 (Type 1). For τ ∈Wr,n with cycle type

(τ1(ζ0), τ1(ζ1), . . . , τ1(ζr−1); τ2(ζ0), . . . , τm(ζr−1))

and a power sum symmetric function belonging to τ

pτ = p
τ1(ζ0)
1 (ζ0) · pτ1(ζ1)

1 (ζ1) · · · · · pτ1(ζr−1)
1 (ζr−1) · pτ2(ζ0)

2 (ζ0) · · · · · pτm(ζr−1)
m (ζr−1)

we define for l ∈ N:

pτ∗1l = p
τ1(ζ0)
1·l (ζ0) · pτ1(ζ1)

1·l (ζ1) · · · · · pτ1(ζr−1)
1·l (ζr−1) · pτ2(ζ0)

2·l (ζ0) · · · · · pτm(ζr−1)
m·l (ζr−1) = pl ◦ pτ .

Remark 4.3.14. This means that by transforming pτ into pτ∗1l we simply replace every pi(ξ)
with pi·l(ξ).

Definition 4.3.15 (Type 2). For τ ∈ S with cycle type

(τ1, τ2, τ3 . . . , τm)

and a power sum symmetric function belonging to τ

pτ = pτ11 · pτ22 · pτ33 · · · · · pτmm
we define for l ∈ N and ξ ∈ Cr:

pτ∗2ξl = pτ11·l(ξ
1) · pτ22·l(ξ

2) · pτ33·l(ξ
3) · · · · · pτmm·l(ξm) = pl(ξ) ◦ pτ .

Remark 4.3.16. This means that by transforming pτ into pτ∗2ξl we simply replace every pi
with pi·l(ξ

i).

Remark 4.3.17. What may be a little bit confusing is, that we here multiply with l, respectively
ξl from right, as in fact pτ∗1l = pl ◦ pτ respectively pτ∗2ξl = pl(ξ) ◦ pτ holds where pl respectively
pl(ξ), is multiplied from left. We could define it the other way around but later on it will be easier
to read.

Lemma 4.3.18 (Type 1). Let ω ∈Wr.n, σ ∈ Sπ induced by ω on π and π ∈ ParCr [[n]Cr ], then

pω =
∏

c cycle of σ

p
(ωlc|bc

)∗1lc =
∏

c cycle of σ

plc ◦ pωlc|bc

where lc is the length of a cycle c and bc an arbitrary block of π belonging to c.
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ω = (1 − 4− 2− 5+)(3 + 6+)

τ = (4 + 5−)(6)
b

2 5 σ = ({±1,±2,±3}{±4,±5,±6})

−
−

−

+

+
+

ω

σ

+

+

−

τ

Figure 7. An example of a ∗1-operation.

Example 4.3.19. Let ω = (1−4−2−5+)(3+6+) and π = {{±1,±2,±3}, {±4,±5,±6, }}. Then
we have pω = p2(1)·p4(−1). σ consists of one cycle with length 2 (σ = ({±1,±2,±3}{±4,±5,±6})).
Let bc = {±4,±5,±6} and τ = ω2

|bc =

(
4 5 6
5 −4 6

)
. Because, pτ = p1(1) · p2(−1), we have

pω = pτ∗12 = p1·2(1) · p2·2(−1), which indeed coincides with pω.
For a graphical representation see figure 7.

Proof. Let ξd ∈ Cr be the type of the cycle d. As ω induces σ, every cycle of ω is fully
contained in the blocks of one of the cycles of σ. Therefore, we can sort the pi(ξ) according to the
cycle of σ they belong to:

pω =
∏

d cycle of ω

pld(ξd) =
∏

c cycle of σ

∏

d cycle of ω,
part of c

pld(ξd)

Now consider a cycle d of ω with length ld, part of a cycle c of σ with length lc: The length of the

cycle dlc is ld
lc

. Now we have (dlc)
ld
lc (x) = dld(x) = ξdx, hence the type of dlc is the same as the one

of d. It follows that:

pld(ξd) = p ld
lc
∗1lc

(ξd) = pdlc∗1lc .

Furthermore, ωlc|bc consists of all such cycles d, hence

p
(ωlc|bc

)∗1lc =
∏

d cycle of ω,
part of c

pdlc∗1lc .

�

Here, type 2 is a little more complicated and we need some more work preparing it:

Definition 4.3.20. Consider a cycle c of σ with length l and type ξ. Then ωl|O maps O to
O. We define a permutation τc on the set Sc of all tuples of elements that belong to one Cr-cycle
τc((ζ

ix)i=1,2,...,(r−1)) := (ωl(ζix))i=1,2,...,(r−1).

Remark 4.3.21. Note that τ is an ordinary permutation and ωl is a signed one!

Lemma 4.3.22. (1) |fixG[(ωlc)|O]| = |fixG[τc]|.
(2) The number of cycles c with length l is the same of τ and ωl|O.

Proof.
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(
{1, i2}, {i1,−2}, {−1,−i2}, {−i1, 2}

)

(
{3, 4}, {i3, i4}, {−3,−4}, {−i3,−i4}

)

(
{5,−6}, {i5,−i6}, {−5, 6}, {−i5, i6}

)

σ

ω = (1i3− 5− i2 + 4 + 6+)

τ = (12)

σ =
(
{1, i2}+ {i3, i4}+ {−i5, i6}i

)

ω

Figure 8. An example of a ∗2-operation.

This follows directly from the definition: As τ is defined by the pointwise action of ω a tuple is
a fix point under ω if and only if it is under τ .

Every cycle of τ comes from a cycle of ωl|O. We just ‘forget’ the signs of ω. The length of the
cycle remains. �

Lemma 4.3.23 (Type 2). Let ω ∈ Wr.n, σ ∈ Wr,nπ induced by ω on π and π ∈ ParBr [[n]Cr ],
then

pω =
∏

c cycle of σ

pτc∗2ξclc =
∏

c cycle of σ

plc(ξc) ◦ pτc

where lc is the length and ξc the type of a cycle c and bc an arbitrary block of π belonging to c.

Example 4.3.24. r = 4, n = 6:

π = {{1, i2}, {i1,−2}, {−1,−i2}, {−i1, 2}, {3, 4}, {i3, i4}, {−3,−4}, {−i3,−i4},
{5,−6}, {i5,−i6}, {−5, 6}, {−i5, i6}}

and ω = (1i3− 5− i2 + 4 + 6+), or in other notation ω =

(
1 2 3 4 5 6
i3 4 −5 6 −i2 1

)
. We therefore

have τ = (12) and σ =

(
{1, i2} {i3, i4} {−i5, i6}
{i3, i4} {−i5, i6} {i1,−2}

)
. Then lemma 4.3.23 claims that pω =

p6(−1) = pτ∗i3 = p2·3(i2), as σ has one cycle of length 3 and sign i, and τ one cycle with length 2.
The 2 · 3 has exactly the same reason as in type 1. The i2 is because σ is just one ‘round’ of ω,
however, the length of τ tells us that there are two ‘rounds’.
For a graphical representation see figure 8.

Proof. The proof is similar to that of type 1 (lemma 4.3.18). As ω induces σ, every cycle of ω
is fully contained in the blocks of one of the cycles of σ. Therefore, we can sort the pi(ξ) according
to the cycle of σ they belong to:

pω =
∏

d cycle of ω

pld(ξd) =
∏

c cycle of σ

∏

d cycle of ω,
part of c

pld(ξd)

Now consider a cycle d of ω with length ld and type ξd, part of a cycle c of σ with length lc and
type ξc: The length of the cycle dlc is ld

lc
.
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For calculating the type we consider the definition which does not use the product. The type of c is
ξc with ξcb = ωlc(b) where b is a block of π. The type of d can be seen as ξdx = ωld(x) with x ∈ b.
If we consider ξcb = ωlc(b) under the action of ω

ld
lc
−1, we get ξ

ld
lc
c b = ω

ld
lc
lc(b) = ωld(b) as we have

ξkc (b) = ωklc(b). Now the elements of b are mapped to ones of the same Cr-cycle, thus ξ
ld
lc
c = ξd. It

follows that:

pld(ξd) = p ld
lc
·lc

(ξ
ld
lc
c ) = p ld

lc
∗2ξlc

.

Furthermore, ωlc|bc consists of all such cycles d. What we need are the lengths of the cycles of ωlc|bc ,

which are the same as those of τc, hence

pτc∗2ξclc =
∏

d cycle of ω,
part of c

p ld
lc
∗2ξlc

.

�

Lemma 4.3.25. The number of partitions of [n] with ji blocks of size ui is

n!∏
i(ui!)

jiji!
.

Remark 4.3.26. This number looks similar to the number of permutations with the same cycle
type and is proven similarly. There is one difference though: note that there is a ui factorial.
Note further, that the number of partitions in ParCr [[n]Cr ] is the same, and the number of parti-

tions in ParBr [[n]Cr ] is the number of partitions in Par[[n]] times
∏
i r

(ui−1)·ji , as we have r(ui−1)

possibilities for the signs in the set of ParBr [[n]Cr ], where 1 has sign 1. Then all the other sets are
determined. (Compare with lemma 3.4.6.)

Proof. We rather proof that n! is equal to the number of the partitions times
∏
i(ui!)

jiji!:
There are n! ways to arrange [n], when defining the first j1 numbers as being the j1 blocks of size
one, the next j2 · 2 numbers as being (each two of them) the blocks of size two and so on we get
partitions of [n].
However, some of this arrangements define the same partition: As we do not distinguish the
order of the blocks of same size, nor the order of the elements in one block, there are

∏
i(ui!)

jiji!
arrangements which define the same partitions. �

Definition 4.3.27 (Type 1). We define si,l as the number of cycles of σ with length l and
blocks of size ui. Furthermore, we define ti,l,τ as the number of cycles with length l, with blocks of

size ui, and with τ = (ωl)|bc , where bc is one (arbitrary but fixed) part of the cycle.

Lemma 4.3.28. There are three identities following directly from definition 4.3.27:

(1)
∑

i si,l = σl
(2)

∑
τ ti,l,τ = si,l

(3)
∑
si,l · l is the number of blocks with size ui (= ji).

Definition 4.3.29 (Type 2). We define si,l,ξ as the number of cycles of σ with length l, type
ξ and blocks of size ui.
Furthermore we define ti,l,ξ,τ as the number of cycles with length l type ξ with blocks of size ui,

and with τ = (ωl)|bc , where bc is one (arbitrary but fixed) part of the cycle.

Lemma 4.3.30. Again, there are three identities following directly from definition 4.3.29:

(1)
∑

i si,l,ξ = σl(ξ)
(2)

∑
τ ti,l,τ,ξ = si,l,ξ
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(3)
∑

l,ξ si,l,ξ · l is the number of blocks with size ui (= ji).

Remark 4.3.31. Note that if we have ti,l,τ , with a given τ we also know i, so we sometimes
omit it (with τ we also know the size of blocks, of which τ is a permutation).

Lemma 4.3.32 (Type 1). For fixed σ and π the number of different ω which induce the same
multiset of (ωlc)|bc for every cycle c (with length lc and an arbitrary but fixed block bc belonging to
this cycle c) where a signed permutation of this multiset can belong to any proper cycle c is:

∏

i,l

ui!
si,l(l−1)ruisi,l(l−1) · si,l!∏

τ ti,l,τ !
.

Remark 4.3.33. In other words we have given a multiset of signed permutations, lets call them
τi, we know σ and π and we want to know the number of ω they could induce them. Then we have
to choose how they act on ‘their ’ cycle and on which cycle they act.
Note that the notation (ωlc)|bc may be a little bit confusing as it seems that for each signed
permutation the cycle c is already chosen, however it is not!

Proof. For a given ωlc|bc , we can construct ω on the blocks ωm(bc), m = 1, 2, . . . , l − 1, in

uc!
(lc−1)ruc(lc−1) different ways: We have uc!r

u
c ways to define ω|bc : bc → σ(bc), another uc!r

uc

ways to define ω|σbc, and so on. Only for ω|σl−1(bc) we are forced to define in a way that we get ωl|bc .

All together we have uc!
(lc−1)ruc(lc−1) for one cycle, considering all cycles, the factors multiply, and

give us the fist part of our formula.
Now we show the second part: We can permute the ωlc|bc between the different cycles with same

size, permuting some with same ωlc|bq = τ will make no difference, hence we have
si,l!∏
τ ti,l,τ ! possible

ways to do so. Again, multiplying up everything gives us the related part of this formula. �

Lemma 4.3.34 (Type 2). For fixed σ and π the number of different ω which induce the same
multiset of (τc) for every cycle c (with length lc) where a permutation of this multiset can belong to
any proper cycle c is:

∏

i,l,ξ

ui!
si,l,ξ(l−1) · si,l,ξ!∏

τ ti,l,τ,ξ!
.

Proof. Compare with remark 4.3.33! For one given τc, we can construct ω on a Cr-orbit (b)∈O
of π in uq!

(l−1) different ways: We have ui! ways to define ω|(b)b∈O for an arbitrary tuple (b)b∈O (the
signs are defined trough the signs of σ and the partition π), another uq! ways to define ω|σ(bc), and

so on. Only for ω|σl−1(bc) we are forced to define in a way that we get ωl|bc . All together, we have

uq!
(l−1)ruq(l−1) for one cycle, considering all cycles, the factors multiply, and give us the fist part of

our formula.
The second part of the proof is exactly the same as the one for type 1. �

Lemma 4.3.35. The number of permutations σ with the same cycle type on π and the same
term pω (with notation as before) is:

(1) for type 1 ∏
i ji!∏

i,l si,l!l
si,l
.

(2) and for type 2 ∏
i ji!∏

i,l,ξ si,l,ξ!l
si,l
·
∏

i,l,ξ

rsi,l,ξ(l−1)
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.

Proof. We just prove it for type 1, the proof for type 2 is very similar.
We have given partition, cycle type and pω. The latter tells us how many cycles with length l and
blocks of size ui we need to have, so with that point of view si, l is also given.
Now we consider for any i only blocks with size ui: The cycle type of σ restricted to those parts is
(
si,1
1 ,

si,2
2 ,

si,3
3 . . . ) as si,l is the number of cycles with length l and size of the blocks ui. Therefore,

their number is:
ji!

si,l!l
si,l
.

Multiplying over all i leads to the desired formula. �

Proof of Theorem 4.3.1 (Type 1). Now we are ready to transform ZF◦G into ZF ◦ ZG.

ZF◦G =
∑

n∈N,ω∈Wr,n

1

n!rn
| fix(F ◦G)[ω]|pω

=
∑

n∈N

∑

π∈ParCr [[n]Cr ]

∑

σ∈S|π|

∑

ω induces σ on π

1

n!rn
|fixπ(F ◦G)[ω]|pω

Where fixπ(F ◦G)[ω] denotes those fixed points that have π as their partition.
Lemma 4.3.11 tells us the number of fixed points appearing in this term, due to lemma 4.3.18

we can transform pω appropriately. Here bl,m is an arbitrary but fixed block belonging to the mth

cycle with length l of σ.
Note that if we sum over all ω, we sum over all ω in Wr,n for all possible n, analogous for π

and σ. n is then determined by σ, π, and ω:

=
∑

π

∑

σ

∑

ω

1

n!rn

∏

l

σl∏

m=1

|fixG[(ωl)|bl,m ]| · p(ωl)|bl,m∗1l
· | fixF [σ]|

We use lemma 4.3.32 and consider from now on only τ = (ωl)|bl,m and σ. For the manipulation of
the next three lines we use lemma 4.3.28:

=
∑

π,σ

|fixF [σ]| 1

n!rn

∏

i,l

ui!
si,l(l−1)ruisi,l(l−1)si,l!

∏

τ

(|fixG[τ ]|pτ∗1l)ti,l,τ
1

ti,l,τ !

=
∑

π,σ

|fixF [σ]| 1

n!rn

∏

i,l

ui!
si,llrui(si,ll)si,l!ui!

−
∑
τ ti,l,τ r−ui!(

∑
τ ti,l,τ )

∏

τ

(|fixG[τ ]|pτ∗1l)ti,l,τ
1

ti,l,τ !

=
∑

π,σ

|fixF [σ]| 1

n!rn

∏

i

ui!
jiruiji

∏

l

si,l!
∏

τ

(| fixG[τ ]|pτ∗1l
1

ui!rui
)ti,l,τ

1

ti,l,τ !

Next we use lemma 4.3.35 so from now on we only consider the cycle type of σ:

=
∑

k,σ`k
|fixF [σ]|

∑

π

1

n!rn

∏
i ji!∏

i,l si,l!l
si,l

∏

i

ui!
jiruiji

∏

l

si,l!
∏

τ

(|fixG[τ ]|pτ∗1l
1

ui!rui
)ti,l,τ

1

ti,l,τ !

=
∑

k,σ`k
|fixF (σ)|

∑

π

1

n!rn
rn
∏

i

ji!ui!
ji
∏

l

1

lsi,l

∏

τ

(|fixG[τ ]|pτ∗1l
1

ui!rui
)ti,l,τ

1

ti,l,τ !
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Now we use lemma 4.3.25 (together with remark 4.3.26), and from now on just consider the sizes
of the parts of π:

=
∑

k,σ`k
|fixF [σ]|

∑

π with sizes ui

∏

i,l

1

lsi,l

∏

τ

(|fixG[τ ]|pτ∗1l
1

ui!rui
)ti,l,τ

1

ti,l,τ !

=
∑

k,σ`k
|fixF [σ]|

∑

π with sizes ui

∏
l σl!∏
l σl!

∏

l

1

l
∑
i si,l

∏

i

∏

τ

(| fixG[τ ]|pτ∗1l
1

ui!rui
)ti,l,τ

1

ti,l,τ !

=
∑

k,σ`k
|fixF [σ]|

∑

π with sizes ui

1∏
l σl!

∏

l

1

lσl
σl!∏

i,τ ti,l,τ !

∏

i,τ

(|fixG[τ ]|pτ∗1l
1

ui!rui
)ti,l,τ

=
∑

k,σ`k
|fixF [σ]| 1∏

l σl!l
σl

∑

π with sizes ui

∏

l

σl!∏
i,τ ti,l,τ !

∏

τ,i

(| fixG[τ ]|pτ∗1l
1

ui!rui
)ti,l,τ

The sizes ui and the number of their appearance are fully determined by the sums of the ti,l,τ :

=
∑

k,σ`k
|fixF [σ]| 1∏

l σl!l
σl

∑
∑
τ t1,τ=σ1,

∑
τ t2,τ=σ2,

...,
∑
τ tm,τ=σm

∏

l

σl!∏
τ tl,τ !

∏

τ

(| fixG[τ ]|pτ∗1l
1

ui(τ)!r
ui(τ)

)tl,τ

Now we change the order of product and sum: (In the term above we have a sum over all possible
products of terms, depending on l, and in the term below we have a product over sums of all
possible terms, belonging to a fix l.)

=
∑

k,σ`k
|fixF [σ]| 1∏

l σl!l
σl

∏

l

∑
∑
τ tl,τ=σl

σl!∏
τ tl,τ !

∏

τ

(| fixG[τ ]|pτ∗1l
1

ui(τ)!r
ui(τ)

)tl,τ

We use the multinomial theorem and get:

=
∑

k,σ`k
|fixF [σ]|1

k

k!∏
l σl!l

σl

∏

l

(
∑

τ

| fixG[τ ]|pτ∗1l
1

ui(τ)!r
ui(τ)

)σl

As we have here the number of σ with the same cycle type we can go back to considering every
different σ:

=
∑

σ

|fixF [σ]| 1

nπ

∏

l

(
∑

τ

| fixG[τ ]|pτ∗1l
1

ui(τ)!r
ui(τ)

)σl

As pτ∗1l is just another notation for replacing pj(ξ) with pj·l(ξ), this is precisely the plethystic
substitution.

=


 ∑

n,σ∈Sn

|fixF [σ]| 1
n!
pσ


 ◦


 ∑

n,τ∈Wr,n

| fixG[τ ]| 1

n!rn
pτ




= ZF ◦ ZG
�

The proof of type 2 is very similar:

Proof of Theorem 4.3.2 (Type 2). Now we are ready to transform ZF◦G into ZF ◦ ZG.

ZF◦G =
∑

n,ω∈Wr,n

1

n!rn
| fix(F ◦G)[ω]|pω
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=
∑

n

∑

π∈ParBr [[n]Cr ]

∑

σ∈Wr,|π|

∑

ω induces σ on π

1

n!rn
| fixπ(F ◦G)[ω]|pω

Where fixπ(F ◦G)[ω] denotes those fixed points that have π as their partition.
Lemma 4.3.11 (together with 4.3.12) tells us the number of fixed points appearing in this

term, due to lemma 4.3.23 and lemma 3.2.2 we can transform pω appropriately. Here Sc is in
definition 4.3.20 belonging to a cycle c of σ.

Note that if we sum over all ω, we sum over all ω in Sn for all possible n, analogous for π and
σ. n is then determined by π,σ and ω:

=
∑

π

∑

σ

∑

ω

1

n!rn

∏

c

|fixG[τc]| · pτc∗2ζj l · | fixF [σ]|

We use lemma 4.3.34 and consider from now on only τ and σ. For the manipulation of the next
three lines we use lemma 4.3.30:

=
∑

π,σ

| fixF [σ]| 1

n!rn

∏

i,l,ξ

ui!
si,l,ξ(l−1) · si,l,ξ! ·

∏

τ

(| fixG[τ ]|pτ∗2ξl)ti,l,ξ,τ
1

ti,l,ξ,τ !

=
∑

π,σ

| fixF [σ]| 1

n!rn

∏

i,l,ξ

ui!
si,l,ξlui!

−
∑
τ ti,l,ξ,τ · si,l,ξ! ·

∏

τ

(|fixG[τ ]|pτ∗2ξl)ti,l,τ
1

ti,l,ξ,τ !

=
∑

π,σ

| fixF [σ]| 1

n!rn

∏

i,ξ

ui!
ji
∏

l,ξ

si,l,ξ! ·
∏

τ

(|fixG[τ ]|pτ∗2ξl ·
1

ui!
)ti,l,τ

1

ti,l,ξ,τ !

Next we use lemma 4.3.35 so from now on we only consider the cycle type of σ. Again we use
lemma 4.3.30 for formula manipulation:

=
∑

k,σ`Crk
|fixF [σ]|

∑

π

1

n!rn

∏
i ji!∏

i,l,ξ si,l,ξ!l
si,l,ξ

∏

i

ui!
ji
∏

l,ξ

si,l,ξ!r
si,l,ξ(l−1)

∏

τ

(| fixG[τ ]|pτ∗2ξlui!
)ti,l,τ

ti,l,ξ,τ !

=
∑

k,σ`Crk
|fixF [σ]|

∑

π

1

n!rn

∏

i

ji!ui!
ji
∏

l,ξ

rsi,l,ξlr−si,l,ξ
1

lsi,l,ξ

∏

τ

(| fixG[τ ]|pτ∗2ξlui!
)ti,l,τ

ti,l,ξ,τ !

Now we use lemma 4.3.25 (together with 4.3.26), and from now on just consider the sizes of the
parts of π. Again we use lemma 4.3.30 for formula manipulation:

=
∑

k,σ`Crk
|fixF [σ]|

∑

π with sizes ui

1

rn

∏

i

r(ui−1)·ji
∏

i

rji
∏

l,ξ

r−si,l,ξ
1

lsi,l,ξ

∏

τ

(|fixG[τ ]|pτ∗2ξlui!
)ti,l,τ

ti,l,ξ,τ !

=
∑

k,σ`Crk
|fixF [σ]|

∑

π with sizes ui

∏

i,l,ξ

r−si,l,ξ
1

lsi,l,ξ

∏

τ

(|fixG[τ ]|pτ∗2ξlui!
)ti,l,τ

ti,l,ξ,τ !

=
∑

k,σ`Crk
|fixF [σ]|

∑

π with sizes ui

∏
i,l,ξ σl(ξ)!∏
i,l,ξ σl(ξ)!

∏

l,ξ

1

(r · l)
∑
i si,l,ξ

∏

i,τ

(|fixG[τ ]|pτ∗2ξlui!
)ti,l,τ

ti,l,ξ,τ !

=
∑

k,σ`Crk
|fixF [σ]| 1∏

l,ξ(r · l)σl(ξ)σl(ξ)!
∑

π with sizes ui

∏

l,ξ

σl(ξ)!∏
τ,i ti,l,ξ,τ !

∏

τ,i

(| fixG[τ ]|pτ∗2ξl
ui!

)ti,l,τ
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The sizes ui and the number of their appearance are fully determined by the ti,l,ξ,τ .

=
∑

k,σ`Crk
|fixF [σ]| 1∏

l,ξ(r · l)σl(ξ)σl(ξ)!
∑

∀l,ξ:
∑
τ tl,ξ,τ=σl(ξ)

∏

l,ξ

σl(ξ)!∏
τ,i ti,l,ξ,τ !

∏

τ,i

(| fixG[τ ]|pτ∗2ξl
ui!

)ti,l,τ

Now we change the order of product and sum: (In the term above we have a sum over all possible
products of terms, depending on l and ξ and in the term below we have a product over sums of all
possible terms, belonging to fix l and ξ.)

=
∑

k,σ`Crk
|fixF [σ]| 1∏

l,ξ(r · l)σl(ξ)σl(ξ)!
∏

l,ξ

∑
∑
τ tl,ξ,τ=σl(ξ)

σl(ξ)!∏
τ tl,ξ,τ !

∏

τ

(|fixG[τ ]| pτ∗2ξl
ui(τ)!

)tl,τ

Now we use the multinomial theorem and get:

=
∑

k,σ`Crk
|fixF [σ]| 1

k!rk
k!rk∏

l,ξ(r · l)σl(ξ)σl(ξ)!
∏

l,ξ

(
∑

τ

(|fixG[τ ]|pτ∗2ξl
1

ui(τ)!
))σl(ξ)

As we have here the number of σ with the same cycle type we can go back to considering every
different σ:

=
∑

σ

| fixF [σ]| 1

k!rk

∏

l,ξ

(
∑

τ

(| fixG[τ ]|pτ∗2ξl
1

ui(τ)!
))σl(ξ)

As pτ∗2ξl is just another notation for replacing pi(ξ) with pi·l(ξ
k), this is precisely the plethystic

substitution:

=


 ∑

n,σ∈Wr,n

| fixF [σ]| 1

n!rn
pσ


 ◦


 ∑

n,τ∈Sn

| fixG[σ]| 1
n!
pτ




= ZF ◦ ZG
�

4.4. Substitution of the Cycle Indicator Series of Type 3

We now analyze type 3 in the same way to find a possible definition of a substitution for type
3:
Again, we first consider a typical F ◦G-structure. Such a structure h is a tuple h = (π, f, (gb)b∈π)
where:

(1) π is a set partition in Par[[n]]
(2) f is an F -structure on πCr
(3) gb are G-structures on bCr ;

Now it is time to define F ◦G[ω] for ω ∈Wr,n, acting on [n]Cr on an F ◦G-structure:

Definition 4.4.1. We define

F ◦G[ω]((π, f, (gb)b∈π)) = (ω(π), F [σ](f), (G[ω|bCr ](gb))b∈π)

where

(1) ω(π) is defined pointwise via k 7→ |ω(k)|, so each block b ∈ π maps to ω(b). The result is
thus a set partition with the same sizes of blocks.

(2) We define σ(b) :=
∏
x∈b sgn(ω(x)) · ω(b) with ω(π) as before, and σ(ξb) = ξσ(b), so that

we get a signed permutation on πCr .
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g =
5 4 3

ζ

ζ

1 ζ2 ζ2
2 1

f =
{
ζ2{1, 3}, {2, 4, 5}

}

ζ4 5 2

ζ

ζ

1 ζ2 ζ2
ζ3 ζ21

∼=

g′ =
54 2

ζ ζ

1

ζ1
3 1

f ′ =
{
ζ{1, 2}, ζ2{3, 4, 5}

}

ω = (1ζ2)(2ζ3ζ0)(4ζ05ζ)

ζ21 ζ02 ζ3 ζ05 ζ4

→ ζ2 · ζ0 = ζ2 → ζ · ζ0 · ζ2 = ζ2

Figure 9. ω-action on a substitution of type 3.

Example 4.4.2. Let F be the species of r-vertices and G the species of r-cycles (this species
can be seen as signed permutations that have an extra sign). An example for a structure h in
F ◦G[[5]C3 ] is the tuple h = (π, f, g = (gb)b∈π) where

• π =
{
{1, 3}, {2, 4, 5}

}

• f =
{
ζ2{1, 3}, {2, 4, 5}

}

• g = {(2ζ5ζ4ζ02), (1ζ23ζ2)}
Now consider once again a signed permutation:

ω =

(
1 2 3 4 5
ζ21 ζ3 2 5 ζ4

)
= (1ζ2)(2ζ3ζ0)(4ζ05ζ)

Then F ◦G[ω]h is given through:

• π′ =
{
{1, 2}, {3, 4, 5}

}

• f ′ =
{
ζ{1, 2}, ζ2{3, 4, 5}

}

• g′ = {(3ζ4ζ05ζ)}, {(1ζ02ζ)}
For a graphical representation of this, see figure 9.

Remark 4.4.3. Note that ω ∈ Wr,n with ω(π)=π, in the sense as before induces a signed
permutation σ ∈Wr,n on πr. Remember that ω and σ have this strong connection!

Example 4.4.4. r = 2, n = 5: Let π = {{1, 2}, {3, 4}, {5}} and ω =

(
1 2 3 4 5
−3 4 2 1 −5

)
.

Then σ =

(
{1, 2} {3, 4} {5}
−{3, 4} {1, 2} {5}

)
.

For the cycle indicator series ZF◦G, we need to consider under which conditions such a structure
is a fixed point under a signed permutation (for a proof see lemma 4.3.9, the proofs are identical):

Lemma 4.4.5. For a fixed point h ∈ F ◦G[n]Cr under ω the following must hold:

(1) ω(π) = π (therefore the parts belonging to one cycle of σ need to have the same size)
(2) f needs to be a fixed point under F [σ]
(3) G[ω](gb) = gω(b)
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Lemma 4.4.6. Let σ be a signed permutation and π ∈ Par[[n]Cr ]. Let ω be a signed permutation
that induces σ on πr and ω(π) = π.
Then we can construct the fixed points of ω in the following way:

(1) f be any fixed point of F [σ]
(2) for every cycle of σ with length l take an arbitrary block b belonging to this cycle, let gb be

an arbitrary fixed point of (ωl)|bCr and gω(b) = ω(gb)(= σ) for the other blocks belonging
to the same cycle.

The number of fixed points is

| fixF [σ]| ·
∏

c a cycle of σ

| fixG[(ωlc)|bc ]|

where pc is an arbitrary block belonging to c and lc is the length of c.

Remark 4.4.7. The proof of this lemma is identical to the one of lemma 4.3.11. Note that it
is necessary that ω induces σ!

The definition of ∗3 might be a little unintuitive. The reason why we define it that way will
become clear later on.

Definition 4.4.8. For τ ∈Wr,n with cycle type

(τ1(ζ0), τ1(ζ1), . . . , τ1(ζr−1), τ2(ζ0), . . . , . . . , τm(ζr−1))

and the power sum symmetric function associated with τ

pτ = p
τ1(ζ0)
1 (ζ0) · pτ1(ζ1)

1 (ζ1) · · · · · pτ1(ζr−1)
1 (ζr−1) · pτ2(ζ0)

2 (ζ0) · · · · · pτm(ζr−1)
m (ζr−1)

we define

pτ∗3ξl :=

{
p
τ1(ζ0)
1·l (ζ0) · · · · · pτ1(ζr−1)

1·l (ζr−1) · pτ2(ζ0)
2·l (ζ0) · · · · · pτm(ζr−1)

m·l (ζr−1) if
∏
k,j(ζ

j)τk(ζj) = ξ

0 otherwise
.

Remark 4.4.9. This means that by transforming pτ into pτ∗3l we transform every pi(ζ
j) into a

pi·l(ζ
j), if the product of the signs of the elements of the signed permutation they are coming from

are the same as ξ and otherwise we set it zero.

Lemma 4.4.10. Let ω ∈Wr.n, σ ∈Wr,nπ induced by ω on π and π ∈ Par[[n]], then

pω =
∏

c cycle of σ

p
(ωlc|bc

)∗3ξclc

where lc is the length of a cycle c, and bc an arbitrary block of π belonging to c.

Remark 4.4.11. Note that in the case of a species the condition
∏
k,j(ζ

j)τk(ζj) = ξ is always
fulfilled as τ and σ are induced by the same ω.
We need it, however, to formulate theorem 4.4.21 in a reasonable way.

Example 4.4.12. Let ω =

(
1 2 3 4 5 6
−4 −5 6 −2 1 3

)
and π = {{1, 2, 3}, {4, 5, 6, }}. Then we

have pω = p2(1) · p4(−1). σ consists of one cycle with length 2 and type −. We then have

σ = ({1, 2, 3}+ {4, 5, 6}−)) and τ = ω2|{±4,±5,±6, } =

(
4 5 6
5 −4 6

)
.

We have pτ = p1(1) ·p2(−1). The lemma claims that pω = pτ∗3−2 = p1·2(1) ·p2·2(−1) as 11 · (−1)1 =
−1, which is obviously true in this case.
For a graphical representation see figure 10.
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b

b

b

1

3

b

b

4

6

ω = (1 − 4− 2− 5+)(3 + 6+)

τ = (4 + 5−)(6)
b

2 5 σ = ({1, 2, 3}+ {4, 5, 6}−)

−
−

−

+

+
+

ω

σ

+

+

−

τ

+

−

Figure 10. An example of a ∗3-operation.

Proof. If σ is induced by ω, the condition
∏
k,j(ζ

j)pk(ζj) = ξ, for ξ being the type of a cycle in

σ, and p being the symmetric function of ωl|bc is fulfilled, so all terms in this product are non-zero.

Therefore, every ∗3ξclc acts like ∗1lc, so the rest of the proof is exactly the same as the proof of
lemma 4.3.18. �

Definition 4.4.13. We define si,l,ξ as the number of cycles of σ with length l, type ξ, blocks of
size ui. Furthermore, we define ti,l,ξ,τ as the number of cycles with length l, type ξ, blocks of size

ui, and with τ = (ωl)|bc , where bc is one (arbitrary but fixed) block of the cycle.

Lemma 4.4.14. There are three identities following directly through definition 4.4.13:

(1)
∑

i si,l,ξ = σl(ξ)
(2)

∑
τ ti,l,ξ,τ = si,l,ξ

(3)
∑
si,l,ξ · l is the number of blocks with size ui (= ji).

Remark 4.4.15. Note that for ti,l,ξ,τ with a given τ , i is also given, so we sometimes omit it
(with τ we also know the size of blocks of which τ is a signed permutation).

Lemma 4.4.16. For fixed σ and π the number of different ω which induce σ and the same
multiset of (ωlc)|bc for every cycle c (with length lc and an arbitrary but fixed block bc belonging to
this cycle c) where a signed permutation of this multiset can belong to any proper cycle c is

∏

i,l,ξ

ui!
si,l,ξ(l−1)r(ui−1)si,l,ξ(l−1) ·

∏

i,l,ξ

si,l,ξ!∏
τ ti,l,ξ,τ !

.

Remark 4.4.17. For better understanding compare with type 1. (See lemma 4.3.32 and par-
ticularly remark 4.3.33!)

Proof. For a given ωlc|bc , we can construct ω on the blocks ωm(bc), m = 1, 2, . . . , l − 1, in

uc!
(lc−1)ruc(lc−1) different ways: We have uc!r

uc−1 ways to define ω|bc : bc → σ(bc) (we can choose
uc − 1 signs, but the last one is defined by σ, as the product of the signs need to be the sign of
σ(bc)), another uc!r

uc−1 ways to define ω|σbc and so on. Only for ω|σl−1(bc) we are forced to define

in a way that we get ωl|bc , as ωl|bc also defines the sign of the c in σ the right way (σ is induced by ω,

the cycle type can be defined as the product over all signs or as ξ with ξx = ωl(x)). All together,

we have uc!
(lc−1)ruc(lc−1) for one cycle, considering all cycles, the factors multiply and give us the

fist part of our formula.
The second part is, once more, analogous to that of lemma 4.3.32. �
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Lemma 4.4.18. The number of permutations σ with the same cycle type on π and the same
term pω (with notation as before) is:

∏
i ji!∏

i,l,ξ si,l,ξ!l
si,l
·
∏

i,l,ξ

rsi,l,ξ(l−1).

Proof. Note that here the cycle type is given so σ is a possible choice for being induced by
an ω with pω. Therefore, the rest of the proof is analogous to the one of lemma 4.3.35. �

Now we will transform ZF◦G to get a formula that defines ZF ◦ ZG for type 3 in a reasonable
way:

ZF◦G =
∑

n,ω∈Wr,n

1

n!rn
| fix(F ◦G)[ω]|pω

=
∑

n

∑

π∈Par[[n]]

∑

σ∈Wr,|π|

∑

ω induces σ on π

1

n!rn
| fixπ(F ◦G)[ω]|pω

Where fixπ(F ◦G)[ω] denotes those fixed points that have π as their partition.
lemma 4.4.6 tells us the number of fixed points appearing in this term, due to lemma 4.4.10

we can transform pω appropriately. bc is here an arbitrary but fixed block belonging to the cycle c
with length lc and type ξc of σ.

Note that if we sum over all ω, we sum over all ω in Wr,n for all possible n, analogous for π
and σ. n is then determined by σ,π and ω:

=
∑

π

∑

σ

∑

ω

1

n!rn

∏

c cycle of σ

|fixG[(ωl)|bc ]| · p(ωl)|pc∗3ξclc · | fixF [σ]|

We use lemma 4.4.16 and consider, from now on, only τ = (ωl)|bc and σ. For the manipulation of
the next lines we use lemma 4.4.14:

=
∑

π,σ

| fixF [σ]| 1

n!rn

∏

i,l,ξ

ui!
si,l,ξ(l−1)r(ui−1)si,l,ξ(l−1)si,l,ξ!

∏

τ

(| fixG[τ ]|pτ∗3ξl)ti,l,ξ,τ
1

ti,ξ,l,τ !

=
∑

π,σ

| fixF [σ]| 1

n!rn

∏

i,l,ξ

ui!
si,l,ξlr(ui−1)si,l,ξl

ui!
∑
τ ti,l,ξ,τ r(ui−1)(

∑
τ ti,l,ξ,τ )

si,l,ξ!
∏

τ

(|fixG[τ ]|pτ∗3ξl)ti,ξ,l,τ
ti,l,ξ,τ !

=
∑

π,σ

| fixF [σ]| 1

n!rn

∏

i

ui!
jir(ui−1)ji

∏

l,ξ

si,l,ξ!
∏

τ

(|fixG[τ ]| pτ∗3ξl
ui!rui−1 )ti,l,ξ,τ

ti,ξ,l,τ !

Next we use lemma 4.4.18, so from now on, we only consider the cycle type of σ:

=
∑

σ`rk
|fixF [σ]|

∑

π

1

n!rn

∏
i ji! ·

∏
i,l,ξ r

si,l,ξ(l−1)

∏
i,l,ξ si,l,ξ!l

si,l,ξ

∏

i

ui!
jir(ui−1)ji

∏

l,ξ

si,l,ξ!
∏

τ

(| fixG[τ ]|pτ∗3ξlui!rui
r)ti,l,ξ,τ

ti,l,ξ,τ !

=
∑

σ`rk
|fixF [σ]|

∑

π

1

n!rn

∏

i

r(ui−1)jiji!ui!
ji
∏

l,ξ

rji

rsi,l,ξ lsi,l,ξ

∏

τ

(| fixG[τ ]|pτ∗3ξlui!rui
r)ti,l,ξ,τ

ti,ξ,l,τ !

=
∑

σ`rk
|fixF [σ]|

∑

π

1

n!rn
rn

1∏
l,ξ r

∑
i si,l,ξ

∏

i

ji!ui!
ji
∏

l,ξ

1

lsi,l,ξ

∏

τ

(|fixG[τ ]|pτ∗3ξlui!rui
r)ti,ξ,l,τ

ti,l,ξ,τ !
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Now we use lemma 4.3.25 and from now on just consider the sizes of the parts of π:

=
∑

σ`rk
|fixF [σ]| 1∏

l,ξ r
σl(ξ)

∑

π with sizes ui

∏

i,l,ξ

1

lsi,l,ξ

∏

τ

(| fixG[τ ]|pτ∗3ξlui!rui
r)ti,l,τ

ti,ξ,l,τ !

=
∑

σ`rk
|fixF [σ]| 1∏

l,ξ r
σl(ξ)l

∑
i si,l,ξ

∑

π with sizes ui

∏
l,ξ σl(ξ)!∏
l,ξ σl(ξ)!

∏

l,ξ,i,τ

(| fixG[τ ]|pτ∗3ξlui!rui
r)ti,l,ξ,τ

ti,ξ,l,τ !

=
∑

σ`rk
|fixF [σ]| 1∏

l,ξ σl(ξ)!r
σl(ξ)lσl(ξ)

∑

π with sizes ui

∏

l,ξ

σl(ξ)!∏
i,τ ti,l,ξ,τ !

∏

i,τ

(|fixG[τ ]|pτ∗3ξl
ui!rui

r)ti,l,ξ,τ

The sizes ui and the number of their appearance are fully determined by the sums of the ti,ξ,l,τ :

=
∑

σ`rk
|fixF [σ]| 1∏

l,ξ σl(ξ)!r
σl(ξ)lσl(ξ)

∑

∀l,ξ:
∑
τ tl,ξ,τ=σl(ξ)

∏

l,ξ

σl(ξ)!∏
i,τ ti,l,ξ,τ !

∏

i,τ

(|fixG[τ ]|pτ∗3ξl
ui!rui

r)ti,ξ,l,τ

Now we change the order of product and sum: (In the term above we have a sum over all possible
products of terms, depending on l and ξ, and in the term below we have a product over sums of
all possible terms, belonging to fix l and ξ.)

=
∑

σ`rk
|fixF [σ]| 1∏

l,ξ σl(ξ)!r
σl(ξ)lσl(ξ)

∏

l,ξ

∑
∑
τ tl,ξ,τ=σl(ξ)

σl(ξ)!∏
τ tl,ξ,τ !

∏

τ

(|fixG[τ ]| pτ∗3ξl
ui(τ)!r

ui(τ)
r)tl,ξ,τ

As we defined in definition 4.4.8 ∗3ξl as zero for any τ that does not have the right signs, we can
take here the sum over every τ . Moreover we use the multinomial theorem:

=
∑

σ`rk
|fixF [σ]| 1∏

l,ξ σl(ξ)!r
σl(ξ)lσl(ξ)

∏

l,ξ

(
∑

τ

(| fixG[τ ]| pτ∗3ξl
ui(τ)!r

ui(τ)
r))σl(ξ)

=
∑

σ`rk
|fixF [σ]| 1

k!rk
k!rk∏

l,ξ σl(ξ)!r
σl(ξ)lσl(ξ)

∏

l,ξ

(
∑

τ

(|fixG[τ ]| pτ∗3ξl
ui(τ)!r

ui(τ)
r))σl(ξ)

As we here have the number of σ with the same cycle type, we can go back to considering every
different σ:

=
∑

σ

| fixF [σ]| 1

k!rk

∏

l,ξ

(
∑

τ

(| fixG[τ ]| pτ∗3ξl
ui(τ)!r

ui(τ)
r))σl(ξ)

=
∑

σ

| fixF [σ]| 1

k!rk

∏

l,ξ

(r
∑

τ

(|fixG[τ ]|pτ∗3ξl
1

ui(τ)!r
ui(τ)

))σl(ξ)

This result leads to the following definition. Note that the factor r was more or less expected,
as it is necessary, also in the substitution of the exponential generating series: compare with
lemma 4.1.9. Furthermore, this definition is the best we could have expected as [Hen04] wrote
that there is no way to define a plethysm Λ(r) × Λ(r) → Λ(r), as at least three of the four
homomorphism rules are fulfilled.

Definition 4.4.19. We define f ◦ g for type 3 uniquely as follows:
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(1) ∀ g ∈ Λ(r), the map Λ(1)→ Λ(r) : f 7→ f ◦ g is a C-algebra homomorphism.

(∀g ∈ Λ(r), f1, f2 ∈ Λ(1) : (f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g and (f1 · f2) ◦ g = (f1 ◦ g) · (f2 ◦ g))

(2) ∀ i, j ∈ N, the map Λ(r)→ Λ(r) : g 7→ pi ◦ g is regarding to addition a homomorphism.

(∀i ∈ N, g1, g2 ∈ Λ(r) : pi ◦ (g1 + g2) = pi ◦ g1 + pi ◦ g2)

(3) pi(ξ) ◦
∏
k,j pk(ζ

j)τk,j =

{
r
∏
k,j pk·i(ζ

j)τk,j
∏
k,j(ζ

j)τk,j = ξ

0 otherwise
.

This can be defined in another way (compare [BLL98]):

Lemma 4.4.20. If Z̃Gξ are the terms of ZG where the products of the signs fulfill
∏
k,j(ζ

j)pk(ζj) =
ξ it holds that:

ZF (p1(1), p1(ζ), p1(ζ2), . . . , p1(ζr−1), p2(1), . . . , p2(ζr−1), p3(1), . . . )

circZG(p1(1), p1(ζ), p1(ζ2), . . . , p1(ζr−1), p2(1), . . . , p2(ζr−1), p3(1), . . . )

=ZF (rZ̃G1(p1·1(1), p1·1(ζ) . . . , p1·1(ζr−1), p2·1(1), . . . ), rZ̃Gζ (p1·1(1), p1·1(ζ) . . . , p1·1(ζr−1), p2·1(1), . . . )

. . . rZ̃Gζr−1 (p1·1(1), p1·1(ζ) . . . , p1·1(ζr−1), p2·1(1), . . . ), rZ̃G1(p1·2(1), . . . , p1·2(ζr−1), p2·2(1), . . . ), . . .

rZ̃G1(p1·3(1), . . . , p1·3(ζr−1), p2·3(1), . . . ), . . . )

In other words we substitute every pi(ξ) in ZF by a modified ZG, where we have substituted every
pτ into a pτ∗3ξi.

Proof. The first part of the prove is analogous to that of type 1 (lemma 4.4.20).
When we get to the last part, where we consider pi ◦ (bµpµ), we now use pi(ξ) ◦

∏
k,j pk(ζ

j)τk,j ={
r
∏
k,j pk·i(ζ

j)τk,j
∏
k,j(ζ

j)τk,j = ξ

0 otherwise
where the condition

∏
k,j(ζ

j)τj,k is fulfilled by the definition

of Z̃Gξ. Therefore, the lemma holds. �

With that we can proof the following theorem of type 3:

Theorem 4.4.21 (Type 3). Let F and G be r-species. Then ZF◦G = ZF ◦ ZG.

Proof. We have already shown that

ZF◦G =
∑

σ

|fixF [σ]| 1

k!rk

∏

l,ξ

(r
∑

τ

(|fixG[τ ]|pτ∗3ξl
1

ui(τ)!r
ui(τ)

))σl(ξ).

Now, with the help of lemma 4.4.20 we see that this is nothing different as:

=


 ∑

n,σ∈Wr,n

|fixF [σ]| 1

rnn!
pσ


 ◦


 ∑

n,τ∈Wr,n

| fix[σ]| 1

n!rn
pτ


 = ZF ◦ ZG.

�

For examples see the following section( 4.5).
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4.5. Examples

Example 4.5.1 (Signed Permutations). We want to recalculate ZE◦Cr = ZE ◦ ZCr directly:

ZE ◦ ZCr =

(
exp

(∑

k>0

pk
k

))
◦


∑

ξ∈Cr

∑

l,j>0

φ(l)

lj
pl(ξ)

j


 = exp

(∑

k>0

pk
k

)

|pk=
∑
ξ∈Cr

∑
l,j>0

φ(l)
lj
pl·k(ξ)j

= exp


∑

k>0

∑
ξ∈Cr

∑
l,j>0

φ(l)
lj pl·k(ξ)

j

k


 = exp


∑

k>0

∑

ξ∈Cr

∑

l,j>0

φ(l)

jlk
plk(ξ)

j




We substitute kl by m and use
∑

l|m φ(l) = m:

= exp


∑

ξ∈Cr

∑

m,j>0

pm(ξ)j

jm


∑

l|m

φ(l)




 = exp


∑

ξ∈Cr

∑

m,j>0

pm(ξ)j

j




= exp


∑

ξ∈Cr

∑

m>0

log
1

1− pm(ξ)


 =

∏

ξ∈Cr

∏

m>0

exp

(
log

1

1− pm(ξ)

)

=
∏

ξ∈Cr

∏

m>0

1

1− pm(ξ)
=
∏

ξ∈Cr

∏

m>0

∑

k>0

pkm(ξ)

=
∑

n,ω`rn
pω =ZWr = ZE◦Cr

Furthermore, we want to show an equivalent way to build signed permutations by showing E ◦Cr ∼=
Er ◦ Cr: An Er ◦ Cr-structure is a tuple (π, f, (gb)b∈π) where:

(1) π
(2) f = π
(3) gb = Cr[bCr ]

As there is a natural bijection to the Cr-partitions (see lemma 3.4.6), and bCr = b′ for b ∈ π and b′

the associated block in the associated Cr-partition, we can easily build an isomorphism to E ◦ Cr.
We want to calculate ZEr ◦ ZCr as another example of the plethysm of type 3:

ZEr ◦ ZCr =


exp



r−1∑

j=0

∑

k>0

pk(ζ
j)

kr




 ◦


∑

ξ∈Cr

∑

l,j>0

φ(l)

lj
pl(ξ)

j




=


exp



r−1∑

j=0

∑

k>0

pk(ζ
j)

kr





|pk(1)=


∑

ξ∈Cr
∑

l,j>0
φ(l)
lj pl·k(ξ)

j
∏r−1
n=0 ζ

n·j = 1

0 otherwise

As
∏r−1
n=0 ζ

n·j = ζj
∑r−1
n=0 n = ζj1/2r(r−1) = 1 we get:

= exp


r
∑

k>0

∑
ξ∈Cr

∑
l,j>0

φ(l)
lj pl·k(ξ)

j

rk



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This is just the second line of the calculation above so we obtain:

=
∑

n,ω`rn
pω = ZWr

Example 4.5.2 (Vertices of Cycles). We now calculate ZVr◦C by using theorem 4.3.1:

ZVr◦C = ZVr ◦ ZC =

(
exp

(∑

k>0

pk(1)

k

))
◦


∑

l,j>0

φ(l)

lj
pjl




= exp

(∑

k>0

pk(1)

k

)

|pk(ξ)=
∑
l,j>0

φ(l)
lj
pl·k(ξl)j

= exp


∑

k>0

∑
l,j>0

φ(l)
lj pl·k(1

l)j

k




Now we do the same calculations as in Example 4.5.1 and get:

=
∑

n,ω`n
pω(1)

Example 4.5.3 (Vertices of Signed Cycles). We now calculate ZVr◦C by using theorem 4.3.1:

ZVr◦Cr = ZVr ◦ ZCr =

(
exp

(∑

k>0

pk(1)

k

))
◦


∑

ξ∈Cr

∑

l,j>0

φ(l)

lj
pl(ξ)

j




= exp

(∑

k>0

pk(1)

k

)

|pk(1)=


∑

ξ∈Cr
∑

l,j>0
φ(l)
lj pl·k(ξ)

j
∏r−1
n=0 ζ

n·j = 1

0 otherwise

Again
∏r−1
n=0 ζ

n·j = ζj
∑r−1
n=0 n = ζj1/2r(r−1) = 1, so we get:

= exp


r
∑

k>0

∑
ξ∈Cr

∑
l,j>0

φ(l)
lj pl·k(ξ)

j

k


 = exp


∑

k>0

∑

ξ∈Cr

∑

l,j>0

φ(l)

jlk
plk(ξ)

j



r

Now we do the same calculations as in Example 4.5.1 and get:

=


 ∑

n,ω`rn
pω



r

Example 4.5.4 (r-Sets). We consider the species of r-sets. This species can also be seen as E◦Er1 :

Er ∼= E ◦ Er1 [[CrM ]] =
∑

π∈ParCr [M ]

(
E ×

∏

N∈π
Er1 [N ]

)

As Er1 [N ] = ∅ if |N | 6= r and {N} otherwise, we get the set {{π, f, gb}} with:

(1) π = {{|x|}Cr}
(2) f = π
(3) g{|x|}Cr = {|x|}Cr
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This is isomorphic to Er.
Now we can calculate ZE ◦ ZEr1 directly:

ZE ◦ ZEr1 =


exp


∑

k≥n

pk
k




 ◦



r−1∑

j=0

p1(ζj)


 = exp


∑

k≥n

∑r−1
j=0 p1·k(ζ

j)

k


 = exp



r−1∑

j=0

∑

k≥n

pk(ζ
j)

k · r




Example 4.5.5 (Vertices). Analogously, we can identify Vr with E ◦ Vr1 : We get the set E ◦
Vr1 [MCr ] = {{π, f, gb}} with:

(1) π = {{|x|}Cr}
(2) f = π
(3) g{|x|}Cr = {x}

This is isomorphic to Er.
Now we can calculate ZE ◦ ZVr1 directly:

ZE ◦ ZEr1 =


exp


∑

k≥n

pk
k




 ◦ (p1(1)) = exp


∑

k≥n

p1·k(1)

k




Furthermore, we can identify 4V with E ◦ {4Vr1}.
Example 4.5.6 (Diagonals). We can identify D with Er1 ◦ E :

Er1 ◦ E [MCr ] = {{π, f, gb}} with

(1) π ∈ ParBr [MCr ] with size 1
(2) f = π
(3) ‘gb = b’

Therefore, we can define r-diagonals as Dr = Er1 ◦ E . We now calculate ZDr :

ZDr = ZEr1 ◦ ZE =


1

r

r−1∑

j=0

p1(ζj)


 ◦


exp


∑

k≥n

pk
k






=
1

r

r−1∑

j=0

exp


∑

k≥n

pk·1(ζj·k

k




Example 4.5.7 (Set Partitions). We can identify the three kinds of set partitions as substitu-
tions of species too:

(1) Par[S] ∼= E ◦ E+[S]
(2) ParCr [S] ∼= E ◦ Er+[S]
(3) ParBr [S] ∼= Er ◦ E+[S]

Therefore we have:

ParBr [S] ∼= (E ◦ Er1 ) ◦ E+ = E ◦ (Er1 ◦ E+) = E ◦ Er1 ◦ E+

This holds, as for a tuple (π, f, g) in the substitution in all three cases π = f is exactly the partition,
and g consists of the parts of this partition. With the help of this, we can easily calculate the cycle
indicator series.

Example 4.5.8. (Signed Cycles) We have seen that signed cycles have r Wr,n-orbits: In every
such orbit there are exactly the signed cycles with the same type. Therefore the signed cycles can
be represented as the sum of r-species of signed cycles of type ξ ∈ Cr. Unfortunately for types not
equal 1 this is quite complicated.
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However there is a way to represent the r-species of signed cycles with type 1 as they are Er1 ◦ C:
Therefore we consider Er1 ◦ C-structures. Such a structure is a tuple (π, f, (gO)) where:

• π is a Br-partition,
• f an Er1 -structures,
• g a set of tuples of C-structures.

As the only Er1 -structures come from r-sets of size r, π can only have one Cr-cycle. g then is a
tuple of cycles on the elements of π. This tuple can be interpreted as the traditional cycle notation
for signed cycles with type 1. (Every element is the only one with its absolute value in its cycle
and is therefore mapped under cl to itself.)
We have for example:

• π =
{
{1, ζ2, ζ23, ζ4}, {ζ1, ζ22, 3, ζ24}{ζ21, 2, ζ3, 4}

}

• f = π =
{
{1, ζ2, ζ23, ζ4}, {ζ1, ζ22, 3, ζ24}{ζ21, 2, ζ3, 4}

}

• g = (1ζ23ζ4ζ2)(ζ13ζ24ζ22)((ζ1ζ342) = (1ζ33ζ24ζ02ζ2)

Example 4.5.9. We can use the substitution also for calculating the cycle indicator series. We
can consider, for example the different types of set compositions, decompositions and partitions
defined in [Cho10], two kinds of partitions are exactly our ParCr [M ] and ParBr [M ]. We consider
the others:

• We define a decomposition of a signed set S of length l as a sequence (S1, S2, . . . , Sl) of
disjoint Br-subsets, whose union is S.
For example decompositions of S = [2]C2 of length 2 are:

(∅, {±1,±2}), ({±1}, {±2}), (∅, {±2,±1}), ({±1,±2}, ∅)
We can interpret decompositions of a signed set S of length l as lists of length l of r-
sets and get Ll ◦ Er. The cycle indicator series for Ll is well known (see for example in
[BLL98]): ZLl = pl1. Then the cycle indicator series for decompositions of a signed set S
of length l is:

pl1 ◦ exp



r−1∑

j=0

∑

k>0

pk(ζ
j)

k · r


 = exp


l

r−1∑

j=0

∑

k>0

pk(ζ
j)

k · r




= pl1 ◦
∑

k>0

hk(x) =

(∑

k>0

hk(x)

)l

• We define set compositions as sequences of nonempty disjoint Br-subsets, whose union is
S.
For example set compositions of S = [2]C2 are:

({±1,±2}), ({±1}, {±2}), ({±2}, {±1})
We can interpret them as lists of nonempty r-sets and get Ll ◦ Ern>0. We also know the

cycle indicator series L = 1
1−pl and get as cycle indicator series for set compositions:

1

1− p1
◦


exp



r−1∑

j=0

∑

k>0

pk(ζ
j)

k · r


− 1


 =

1

2− exp
(∑r−1

j=0

∑
k>0

pk(ζj)
k·r

)

=
1

1− p1
◦
∑

n>0

hn(x) =
∑

k≥0

(∑

n>0

hn(x)

)k
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• We define a new kind of partition of MCr in that way that we consider a partition of M
and then chose signs for the elements in the sets.
For example those partitions of S = [2]C2 are:

{
{1, 2}

}
,
{
{1,−2}

}
,
{
{−1, 2}

}
,
{
{−1,−2}

}
,
{
{1}, {2}

}
,
{
{1}, {−2}

}
,
{
{−1}, {2}

}
,
{
{−1}, {−2}

}

We can interpret them as sets of vertices E ◦ Vrn>0 and get as cycle indicator series:

exp

(∑

k>0

pk
k

)
◦
(

exp
(∑

k

pk(1)

k

)
− 1
)

• We define a new kind of set composition in analogy with the previous kind of set partition.
For example those set compositions of S = [2]C2 are:

({1, 2}), ({1,−2}), ({−1, 2}), ({−1,−2}), ({1}, {2}), ({2}, {1}), ({1}, {−2}), ({−2}, {1}),
({−1}, {2}), ({2}, {−1}), ({−1}, {−2}), ({−2}, {−1})

We can interpret them as lists of nonempty vertices L ◦ Vrn>0 and get as cycle indicator
series:

1

1− p1
◦
(

exp
(∑

k

pk(1)

k

)
− 1

)
=

1

2− exp
(∑

k
pk(1)
k

)

=
1

1− p1
◦
∑

n>0

hn(x) =
∑

k≥0

(∑

n>0

hn(x)

)k
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CHAPTER 5

Conclusion and Future Work

r-Species are just like species a useful tool to analyze combinatorial objects. In the first part
of this thesis we gave an introduction to the theory of r-species and considered a set of examples
to work with.

The second part concentrated on different generalizations of the substitution of species and
the associated operation the plethysm. We proved the relation between them (ZF◦G = ZF ◦ ZG)
by means of computation and used similar methods for establishing a similar operation for the
substitution of two r-species:

(1) ∀ g ∈ Λ(r), the map Λ(1)→ Λ(r) : f 7→ f ◦ g is a C-algebra homomorphism.

(2) ∀ i, j ∈ N, the map Λ(r)→ Λ(r) : g 7→ pi ◦ g is regarding to addition a homomorphism.

(3) pi(ξ) ◦
∏
k,j pk(ζ

j)τk,j =

{
r
∏
k,j pk·i(ζ

j)τk,j
∏
k,j(ζ

j)τk,j = ξ

0 otherwise
.

However, the last condition is not very natural, so there is the question, whether there is a more
sophisticated and more natural way to define a substitution of two r-species.

Furthermore, we stated examples for a better understanding of the substitution. For example,
we proved that ‘signed permutations are sets of signed cycles’. Examples like this are important
for getting an intuition for the substitution.
After all, species that are the substitution of two other species can be easier treated when they are
considered as such, as we have seen in the end of the work. Associated series, that are often hard
to calculate, can be combined for example, by plethysm.

Still, there are various open problems related with r-species, two examples are:

• For ordinary species there are a lot more operations, some of them are already considered
for hyperoctahedral species for example, in [HLL98]. Generalizing and analyzing them,
and the associated operations on the cycle indicator series, would strengthen the theory
of r-species.
• When working with the substitutions, we sometimes get unexpected isomorphisms, for

example, ‘r-sets of signed cycles’ are isomorphic to ‘sets of signed cycles’. It would be
interesting to consider isomorphisms, finding rules when they occur, and analyzing the
relations between the substitutions.
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