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Abstract

This thesis is about the approximation of the price for structure �oors. The
underlying structured note consists of an arbitrary number of double barrier
options. For a small number of options, it's numerically shown by a Monte
Carlo simulation that they ful�ll a special dependency criterium. To approx-
imate the distribution of the structured note's payo�, the Chen-Stein method
is used. Using this approximation, bounds for the exact price of a structure
�oor are given. These results are implemented using the coding language
Mathematica. With this implementation, several examples are given to il-
lustrate the results.

Keywords: Poisson approximation, Chen-Stein method,
structured note, structure �oor, coupling
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Chapter 1

Introduction

Structured notes as they are considered here, consist of an arbitrary number
of coupons. The payo� of a coupon depends on an underlying stock. It only
pays, if the underlying stays between two barriers on a given time interval.
The payo� of the structure note is then the sum of the coupon's payo�s.
To guarantee that a speci�ed amount is paid, structure �oors are used. If
the structured note pays less than this amount, the structure �oor pays the
di�erence.
In the Black-Scholes model, the arbitrage-free price of such a structure �oor
is the discounted expected value of its payo�. Therefore the distribution of
the sum of the coupon's payo�s is needed to price the structure �oor. This
distribution as well as an algorithm for the computation of the exact price
are derived in [9].
The complexity of this algorithm increases, as the number of coupons in-
creases. The computation of the distribution and therefore the computation
of the exact price, has a high computational e�ort, even for a small num-
ber of coupons. Hence the distribution of the sum of the coupon's payo�s
is approximated by the Poisson distribution here. Then the price can be
computed easily. Of course the price is not exact anymore with this approx-
imation. The approximation error is bounded and lower and upper bounds
for the exact price are given. These bounds are derived using the Chen-Stein
method. It's a well known method for Poisson approximation.

This paper has the following structure. Chapter 2 gives basic de�nitions
and results of stochastic calculus. Furthermore, the Black-Scholes model is
introduced and structure �oors are formal de�ned. Theorems about the dis-
tribution of the sum of the coupon's payo�s and the exact price of a structure
�oor can be found there too.
Chapter 3 discusses the Chen-Stein method. Bounds for the total variation
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distance of a Poisson distributed and another random variable are given there.
The results of this chapter are used to approximate the point probabilities
of a random variable by the point probabilities of a Poisson distributed ran-
dom variable in chapter 4. The bounds given there depend on whether the
coupon's payo�s ful�ll some dependency criteria or not. Using the bounds
given in chapter 4, a theorem for the approximation of the price for a struc-
ture �oor is proved in chapter 5.
In chapter 6 the results of chapter 4 and 5 are applied to given problems.
For a small number of coupons, a Monte Carlo simulation is used to show
that the dependencies of their payo�'s have a special structure. Several ex-
amples are given, which illustrate the results of the previous chapters. The
last chapter contains the Mathematica code, which was used to obtain the
numerical results in chapter 6.
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Chapter 2

Mathematical Theory

In this chapter basic results of stochastic calculus are given �rst. These re-
sults refer to [7]. Next, the Black-Scholes model is introduced to de�ne a
framework, in which structured notes and especially structure �oors can be
de�ned. The references for the two subsections are [12] for the Black-Scholes
model and [1] for the theory about structure �oors.

First, a probability space must be de�ned. To do that, the terms σ-algebra
and probability measure are needed.

De�nition 2.1 A σ-algebra F on a non-empty set Ω is a family of subsets
of Ω ful�lling

(1) ∅ ∈ F ,

(2) A ∈ F ⇒ Ω\A ∈ F ,

(3) (Ai)i∈N ⊆ F ⇒
⋃
i∈NAi ∈ F .

Remark: The set of natural numbers is de�ned here as

N := {1, 2, 3, . . . } ,

while N0 denotes N ∪ {0}.

De�nition 2.2 A function P : F → [0, 1] from a σ-algebra on a non-empty
set Ω to the interval [0, 1] is called a probability measure, if

(1) P(Ω) = 1,

(2) (Ai)i∈N ⊆ F and Ai ∩ Aj = ∅, ∀i, j ∈ N with i 6= j

⇒ P(
⋃
i∈NAi) =

∑n
i=1 P(Ai).
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The probability space de�ned as follows is used throughout this whole paper.

De�nition 2.3 A probability space is a triple (Ω, F , P), where Ω is a non-
empty set, F is a σ-algebra on Ω and P is a probability measure on F .
On this probability space, random variables and other instruments of stochas-
tic modeling can be de�ned. A few basic de�nitions are given next.

De�nition 2.4 A pair (S, S), where S is a non-empty set and S is a σ-
algebra on S is called a measurable space. A function f : (Ω,F ,P)→ (S,S)
from a probability space to a measurable space is called measurable, if

f−1(A) := {ω ∈ Ω : f(ω) ∈ A} ∈ F , ∀A ∈ S.

De�nition 2.5 A measurable function X : (Ω,F ,P) → (R,B(R)), where
B(R) denotes the family of Borel sets, is called a random variable.

Remark: The family of Borel sets B(R) is the smallest σ-algebra containing
all intervals in R.

To model the available information at time t, �ltrations are used.

De�nition 2.6 A family of σ-algebras (Ft)t≥0 on a probability space with

(1) Ft ⊆ F , ∀t ≥ 0,

(2) Fs ⊆ Ft, ∀s, t ≥ 0 with s ≤ t,

is called �ltration.

With this de�nition, the expected value of a random variable at a speci�c
moment in time t is the conditional expectation of the random variable given
the �ltration at t.

De�nition 2.7 The conditional expectation of an integrable random variable
X, given a σ-algebra G is a random variable, denoted by E[X|G], ful�lling

(1) E[X|G] is measurable,

(2) E[11A(E[X|G])] = E[11A(X)], ∀A ∈ G.
Remarks: A random variable X is called integrable, if

E[X] <∞.

The indicator function for a set A is de�ned as

11A(x) =

{
1 if x ∈ A
0 if x /∈ A.

Random variables that vary in time are described by stochastic processes.
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De�nition 2.8 If for each 0 ≤ t < ∞, Xt is a random variable, the collec-
tion

X := {Xt : 0 ≤ t <∞}

is called a stochastic process. For each ω ∈ Ω the function

ω → (Xt(ω))t≥0

is called a sample path of the stochastic process X.

A special stochastic process is the Brownian motion, also called Wiener pro-
cess. It's de�ned as follows.

De�nition 2.9 A stochastic process W := {Wt : 0 ≤ t <∞} is called Brow-
nian motion, if it ful�lls

(1) W0 = 0 a.s.,

(2) the sample paths of W are continuous a.s.,

(3) for 0 < t1 < t2 < · · · < tk <∞, the increments
Wt2 −Wt1 ,Wt3 −Wt2 , . . . ,Wtk −Wtk−1

are independent,

(4) for s < t,Wt −Ws ∼ N (0, t− s).

Remark: The normal distribution with expected value µ and variance σ is
denoted by N (µ, σ).

Now the Itô stochastic integral is introduced. It is used to integrate with
respect to a Brownian motion. The de�nition takes place in two steps. First,
the integral is de�ned for random step processes as integrands. In the second
step, this de�nition is expanded to a larger class of stochastic processes.

De�nition 2.10 A random step process X is a stochastic process that can
be represented as

Xt =
n∑
j=1

ηi11(tj−1,tj ](t), (2.1)

with 0 = t0 < t1 < · · · < tn < ∞ and random variables (ηj)
n
j=1 taking

values in N0, where ηj is measurable with respect to Ftj and E[η2
j ] < ∞, for

all j ∈ {1, . . . , n}.

Now the stochastic integral can be de�ned for the class of random step pro-
cesses.
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De�nition 2.11 For a random step process X of the form (2.1), the stochas-
tic integral with respect to a Brownian motion W is de�ned by

I(X) :=
n∑
j=1

ηj(Wtj −Wtj−1
).

Using this de�nition, the integral can be de�ned for all stochastic processes
that can be approximated by random step processes.

De�nition 2.12 Let X be a stochastic process with E[X2] < ∞, for which
a sequence (X(n))n∈N of random step processes exists, such that

lim
n→∞

E
[∫ ∞

0

|Xt −X(n)
t |2dt

]
= 0. (2.2)

Then I(X) is called the Itô stochastic integral, if

lim
n→∞

E
[
|I(X)− I(X(n))|2

]
= 0.

For a clearer notation write ∫ ∞
0

XtdWt

instead of I(X). For the integration over an interval [0, T ] de�ne∫ T

0

XtdWt :=

∫ ∞
0

11[0,T ](t)XtdWt.

For this de�nition of the Itô stochastic integral holds the so called Itô formula,
which is given in the following theorem. For a proof see [7], chapter 7.

Theorem 2.13 Let W be a Brownian motion and f(t, x) be a real valued
function with continuous partial derivatives ft(t, x), fx(t, x) and fxx(t, x),
for all t ≥ 0, x ∈ R. Also assume that the process 11[0,T ](t)fx(t,Wt) can be
approximated by random step processes in the sense of (2.2), for all T ≥ 0.
Then

f(T,WT )− f(0,W0)

=

∫ T

0

ft(t,Wt)dt+
1

2

∫ T

0

fxx(t,Wt)dt+

∫ T

0

fx(t,Wt)dWt

(2.3)

holds almost sure.
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With the de�nition of the Itô stochastic integral it's also possible to de�ne
stochastic di�erential equations.

De�nition 2.14 Let f and g be real valued functions. A di�erential equation
of the form

dXt = f(Xt)dt+ g(Xt)dWt, (2.4)

where X is a stochastic process and W is a Brownian motion, is called stochas-
tic di�erential equation. Combined with an initial condition

X0 = x0 ∈ R,

it's called an initial value problem.

With these basics of stochastic calculus, the Black-Scholes model can be
de�ned in the following section.

2.1 The Black-Scholes model

The Black-Scholes model goes back to Fischer Black and Myron Scholes (see [6]).
A risk free bank account as well as a stock are modeled through stochastic
processes, which are de�ned as the solutions of di�erential equations. It
makes use of the following assumptions about the market:

(1) the market of the stock, options and cash is perfectly liquid, i.e. it's
possible to buy and sell resp. borrow and lend at any time any amount
of stocks and options resp. cash and there are no margin requirements,

(2) the interest rates of the bank account are known and constant,

(3) interest rates for borrowing and lending cash are the same,

(4) the volatility of the stock price is known and constant and

(5) there are no transaction costs or taxes.

The bank account is modeled by a stochastic process B. It continuously
increases with an interest rate r > 0. By convention, B0 = 1. Therefore, for
all t ≥ 0, B can be de�ned through

dBt = rBtdt

B0 = 1.
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It's easy to see that the solution of this ordinary di�erential equation is given
by

Bt = ert, ∀t ≥ 0.

The dynamics of the stock price S are given by the stochastic di�erential
equation

dSt = µStdt+ σStdWt, ∀t > 0, (2.5)

where µ and σ are real valued constants. They are called drift resp. volatility.
With the initial condition S0 = s0 > 0, (2.5) is an initial value problem. It
has a solution, which is given in the following theorem.

Theorem 2.15 The stochastic process given by

St = S0exp

(
σWt +

(
µ− 1

2
σ2

)
t

)
, ∀t > 0, (2.6)

with a Brownian motion W and µ, σ ∈ R is a solution of the stochastic
di�erential equation (2.5).

Proof: To show that (2.6) is a solution of (2.5), Ito's formula from theo-
rem 2.13 can be used. De�ne a stochastic process X by

Xt =

(
µ− 1

2
σ2

)
t+ σWt, ∀t > 0.

Then
St = g(Xt), ∀t > 0,

follows, where the function g is de�ned by

g : R→ R : x→ S0e
x.

With Ito's formula follows

dSt = dg(Xt)

= g′(Xt)

(
µ− 1

2
σ2

)
dt+

1

2
g′′(Xt)σ

2dt+ g′(Xt)σdWt

= g(Xt)(µdt+ σdWt)

= St(µdt+ σdWt)

= µStdt+ σStdWt,

since g(x)=g'(x)=g�(x). Therefore St given by (2.6) is a solution of (2.5).

�
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Remarks: It's also possible to show that this solution is unique (for a proof
see [12], section 3.1). A stochastic process as in (2.6) is called geometric
Brownian motion.

The following section uses this results to de�ne structure �oors and price
them. In the Black-Scholes model the arbitrage free prices are used. These
are the discounted expected returns of the considered �nancial instruments.

2.2 Structure �oors

In this section a structured �oor consisting of an arbitrary number of coupons
n is considered. The coupons pay 1 in case the underlying stays between two
barriers during a speci�ed time interval at the end of this interval and 0 oth-
erwise. Let 0 < T0 < T1 < · · · < Tn with Tk = Tk−1 +P , for all k ∈ {1 . . . , n}
and P ∈ R. The value P de�nes the length of the time intervals. The payo�
of the coupons can be written as

Ci = 11{Blow<St<Bup,t∈[Ti−1,Ti]}, ∀i ∈ {1, . . . , n} , (2.7)

where S is the stock price of the underlying as de�ned in (2.6) and Blow resp.
Bup are the lower resp. upper barriers. These coupons can be priced using
the following theorem. The proof is omitted, it can be found in [1], section 3.

Theorem 2.16 The discounted expected value of the product of various coupon's
payo�s, de�ned as in (2.7), at t = 0 is given by

BD(S0, (Ti)i∈J , P, Blow, Bup, σ, r) : = e−rTnE

[∏
i∈J

Ci

]

= eαx+βτU(x, τ), ∀J ⊆ {1, . . . , n} ,

with the following de�nitions.

j := |J |, α := −1

2

(
2r

σ2
− 1

)
,

T̃ := (Ti)i∈J , β := −2r

σ2
− α2,
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τ :=
σ2

2
T̃j, x := log

(
S0

Blow

)
,

p :=
σ2

2
P, L := log

(
Bup

Blow

)
,

τi :=
σ2

2
(T̃j−1 − T̃i−1) and

U(x, τ) :=

∫ ∞
−∞

. . .

∫ ∞
−∞

∫ L

0

. . .

∫ L

0

∞∑
k1=0

· · ·
∞∑
kj=0

hj−1(k1, . . . , kj;x1, . . . , xj; y1, . . . , yj;x, τ)dx1 . . . dxjdy1 . . . dyj.

(2.8)

The function h is given by

hi(k1, . . . ,ki+1;x1, . . . , xi+1; y1, . . . , yi+1;x, τ)

:=

√
e−y

2
i+1

2π
11[−x,L−x]

(
yi+1

√
2(τ − (τj−i + p))

)
·gi(k1, . . . ,ki+1;x1, . . . , xi+1; y1, . . . , yi;x+ yi+1

√
2(τ − (τj−i + p)), τj−i + p)

(2.9)

with

gi(k1, . . . , ki+1;x1, . . . , xi+1; y1, . . . , yi;x, τ)

:=
2

L
sin

ki+1πxi+1

L
sin

ki+1πx

L
e−(ki+1π/L)2(τ−τj−i)

· hi−1(k1, . . . , ki;x1, . . . , xi; y1, . . . , yi;xi+1, τj−i)

and

g0(k1;x1; ;x; τ) :=
2

L
e−αx1 sin

k1πx1

L
sin

k1πx

L
e−(k1π/L)2τ .

Remarks: Because this theorem is only used for t = 0 here, some parts of
the original theorem in [1] were left out. Also the indicator function in hi
was changed. Originally it was

11[
− x√

2(τ−(τj−i+p))
, L−x√

2(τ−(τj−i+p))

](yi+1),

but since the square roots are possibly 0, this expression is not de�ned in
some cases.
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The payo� of the structured note de�ned as above is given by

W :=
n∑
i=1

Ci.

To guarantee a minimum payout, structure �oors can be used. Its payo� is
given by

(x−W )+ , (2.10)

where x > 0 is the level of the structure �oor. By combining a structured
note with a structure �oor, the minimum payo� is always x. The question
about the arbitrage-free price of such a structure �oor is answered by the
next theorem.

Theorem 2.17 The arbitrage-free price of a structure �oor de�ned as in
(2.10) at t = 0 is given by

SF (x) := e−rTnE
[
(x−W )+

]
= e−rTn

n∧bxc∑
i=0

(x− i)P(W = i) (2.11)

with
P(W = n) = BD(S0, 0; (T0), Tn − T0, Blow, Bup, 0). (2.12)

The other point probabilities P(W = i), for all i ∈ {0, . . . , n− 1}, can be ob-
tained by solving the system of equations

n∑
i=0

P(W = i) = 1

n∑
i=0

iνP(W = i) =
∑

J⊆{1,...,n}

c(ν, J)BD(S0, 0; (Tj)j∈J , P, Blow, Bup, 0),

(2.13)

for all ν ∈ {1, . . . , n}. The coe�cient function c is given by

c(ν, J) :=
∑

0≤i1,...,in≤ν
supp(i1,...,in)=J

(
ν

i1, . . . , in

)
,

where supp(i1, . . . , in) = J means that ik 6= 0, for all k ∈ J .

14



Proof: Equation (2.11) holds by de�nition of the expected value. P(W = n)
is the probability that all coupons pay 1. This means that the underlying has
to stay between the barriers for all intervals [Ti−1, Ti], i ∈ {1, . . . , n}. Since

n⋃
i=1

[Ti−1, Ti] = [T0, Tn],

the case W = n can be considered as a coupon with only one barrier on the
time interval [T0, Tn]. Therefore (2.12) holds.

The last part is to show that the equalities in the system of equations (2.13)
hold. The �rst equation is obvious. By de�nition of the k-th moment of a
random variable X, taking values in {0, . . . , n},

E[Xk] =
n∑
i=0

ikP(X = i),

the left hand side of the second equality is the ν-th moment of W , E[W ν ].
Therefore the aim is to prove

E[W ν ] =
∑

J⊆{1,...,n}

 ∑
0≤i1,...,in≤ν

supp(i1,...,in)=J

(
ν

i1, . . . , in

)E

[∏
j∈J

Cj

]
, ∀ν ∈ {1, . . . , n} .

It follows from

E[W ν ] = E

[(
n∑
i=1

Ci

)ν]

=
∑

0≤i1,...,in≤ν

(
ν

i1, . . . , in

)
E
[
Ci1

1 . . . Cin
n

]

=
∑

0≤i1,...,in≤ν

(
ν

i1, . . . , in

)
E

 n∏
j=1
ij>0

Cj



=
∑

J⊆{1,...,n}

 ∑
0≤i1,...,in≤ν

supp(i1,...,in)=J

(
ν

i1, . . . , in

)E

[∏
j∈J

Cj

]
,

for all ν ∈ {1, . . . , n}. �
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Chapter 3

The Chen-Stein method

This chapter gives the main results of the Chen-Stein method, which is used
for Poisson approximation. Although these results refer to several sources,
they can all be found in [5].

Let λ > 0 and (Ci)
n
i=1 be indicator random variables with

P(Ci = 1) = 1− P(Ci = 0) =
λ

n
, ∀i ∈ {1, . . . , n} .

Poisson's limit theorem states that the distribution of

W :=
n∑
i=1

Ci

converges to the Poisson distribution with parameter λ as n → ∞, if the
indicators (Ci)

n
i=1 are independent. Generalizing this to the case, where the

indicator random variables (Ci)
n
i=1 are not identical distributed and

P(Ci = 1) = 1− P(Ci = 0) = E[Ci], ∀i ∈ {1, . . . , n}

holds, the distribution of W can still be approximated by a Poisson distribu-
tion. The approximation error is measured by the total variation distance,
de�ned as follows.

De�nition 3.1 Let X, Y be two random variables taking values in N0 and
let L(X), L(Y ) denote their distributions. Then the total variation distance
of L(X) and L(Y ) is de�ned by

dTV (L(X),L(Y )) := sup
A⊆N0

|P(X ∈ A)− P(Y ∈ A)|.
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Le Cam proved in [11] that

dTV (L(W ), Poi(λ)) ≤ 2
n∑
i=1

E[Ci]
2,

where Poi(λ) denotes the Poisson distribution with parameter

λ :=
n∑
i=1

E[Ci].

Therefore a Poisson approximation is reasonable, if the expected values
(E[Ci])

n
i=1 are small. The Chen-Stein method generalizes this approxima-

tion to the case, where the indicators are not independent.

From now on let X denote a Poisson distributed random variable with pa-
rameter λ. The aim is to bound dTV (L(X),L(W )). To do that (see [8]),
de�ne for each A ⊆ N0 a function through

wfA(w)− λfA(w + 1) = 11A(w)− P(X ∈ A), ∀w ∈ N0. (3.1)

This function is unique except for w = 0. It is explicitly given by

fA(w) :=
(w − 1)!

λw

w−1∑
i=0

(P(X ∈ A)− 11A(i))
λi

i!
, ∀w ∈ N. (3.2)

Since fA(0) has no e�ect on the following calculations, set fA(0) = 0. Taking
expectations of (3.1) at W leads to

E[WfA(W )− λfA(W + 1)] = E [11A(W )]− P(X ∈ A)

= P(W ∈ A)− P(X ∈ A).

Although the following method to bound the left hand side was used before,
Stein was the �rst who referred to it as a method of coupling. It is described
in [13], pp. 92-93. For the error term holds

P(W ∈ A)− P(X ∈ A) = E[WfA(W )− λfA(W + 1)]

=
n∑
i=1

(E [CifA(W )]− E[Ci]E [fA(W + 1)])

=
n∑
i=1

(E[Ci]E [fA(W )|Ci = 1]− E[Ci]E [fA(W + 1)])

=
n∑
i=1

E[Ci] (E [fA(W )|Ci = 1]− E [fA(W + 1)])
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Now de�ne random variables (Vi)
n
i=1 with

(Vi + 1)
(d)
= (W |Ci = 1), ∀i ∈ {1, . . . , n} . (3.3)

From above follows

|P(W ∈ A)− P(X ∈ A)| =

∣∣∣∣∣
n∑
i=1

E[Ci]E [fA(Vi + 1)− fA(W + 1)]

∣∣∣∣∣
≤

n∑
i=1

E[Ci]E [|fA(W + 1)− fA(Vi + 1)|]

(3.4)

One way to construct (Vi)
n
i=1 is described in [4]. For every i ∈ {1, . . . , n} set

Γi := {1, . . . , n} \ {i} and de�ne indicator random variables (Jik)k∈Γi with

(Jik, k ∈ Γi)
(d)
= (Ck, k ∈ Γi|Ci = 1). (3.5)

Setting

Vi :=
∑
k∈Γi

Jik, (3.6)

Vi ful�lls (3.3), for all i ∈ {1, . . . , n}. The sequence (Vi)
n
i=1 as well as

{(Jik)k∈Γi |i ∈ {1, . . . , n}} are referred to as couplings.

Now for the right hand side of (3.4) holds

n∑
i=1

E[Ci]E[|fA(W + 1)− fA(Vi + 1)|]

≤ ‖∆fA‖
n∑
i=1

E[Ci]E [|W − Vi|]

= ‖∆fA‖
n∑
i=1

E[Ci]E

[∣∣∣∣∣Ci +
∑
k∈Γi

Ck − Jik

∣∣∣∣∣
]

≤ ‖∆fA‖
n∑
i=1

E[Ci]E

[
Ci +

∑
k∈Γi

|Ck − Jik|

]

= ‖∆fA‖
n∑
i=1

(
E[Ci]

2 +
∑
k∈Γi

E[Ci]E [|Ck − Jik|]

)
,

(3.7)

18



with
∆f(k) := f(k + 1)− f(k), ∀k ∈ N,

and
‖∆fA‖ := sup

k∈N
|f(k)− f(k + 1)|.

The following estimate for ‖∆fA‖ was proved by Barbour and Holst (see the
appendix in [3]).

Lemma 3.2 Let fA be de�ned as in (3.2) with A ⊆ N0. Then

‖∆fA‖ ≤
1− e−λ

λ
. (3.8)

Proof: The function fA de�ned as in (3.2) for A = {j} is given by

f{j}(k) =


0 if k = 0
(k−1)!
λk

λj

j!

(∑k−1
i=0

λi

i!
e−λ
)

if k ≤ j

(k−1)!
λk

λj

j!

(∑k−1
i=0

λi

i!
e−λ − 1

)
if k > j

.

Since
k−1∑
i=0

λi

i!
e−λ = P(X ≤ k − 1),

for a Poisson distributed random variable X with parameter λ, f{j}(k) is
positive and increasing for k ≤ j and negative and increasing for k > j. Hence
the only positive increment is

f{j}(j)− f{j}(j + 1) = e−λ

(
1

j

j−1∑
i=0

λi

i!
+

1

λ

∞∑
i=j+1

λi

i!

)

= e−λ

(
1

j

j∑
i=1

λi−1

(i− 1)!
+

1

λ

∞∑
i=j+1

λi

i!

)

=
e−λ

λ

(
j∑
i=1

i

j

λi

i!
+

∞∑
i=j+1

λi

i!

)

≤ e−λ

λ

(
eλ − 1

)
=

1− e−λ

λ
.
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Because of

11A(ω)− P(X ∈ A) =
∑
j∈A

(
11{j}(ω)− P(X = j)

)
in the de�nition of fA, the function can be expressed as

fA(ω) =
∑
j∈A

f{j}(ω).

For the increments of fA with A ⊆ N0 holds

fA(m)− fA(m+ 1) =11A(m)
(
f{m}(m)− f{m}(m+ 1)

)
+
∑
j∈A
j 6=m

(
f{j}(m)− f{j}(m+ 1)

)
, ∀m ∈ N. (3.9)

Because of the properties of f{j} above, this expression is positive if m ∈ A.
If m /∈ A

fA(m)− fA(m+ 1) = fN0\A(m+ 1)− fN0\A(m)

= −
(
f{m}(m)− f{m}(m+ 1)

)
−
∑
j∈N0\A
j 6=m

(
f{j}(m)− f{j}(m+ 1)

) (3.10)

holds, because
fA(k) = −fN0\A(k), ∀k ∈ N0.

In conclusion, the absolute value of an increment ∆f(m) takes the maximum,
if A only contains m. Then the sums in (3.9) and (3.10) are 0. The lemma
follows now from

‖∆fA‖ = sup
k∈N
|fA(k)− fA(k + 1)|

≤ sup
k∈N

max
M⊆N0

|fM(k)− fM(k + 1)|

= sup
k∈N
|f{k}(k)− f{k}(k + 1)|

≤ 1− e−λ

λ
.

for any set A ⊆ N0. �
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Combining (3.4), (3.7) and lemma 3.2 leads to

|P(W ∈ A)− P(X ∈ A)| ≤ 1− e−λ

λ

n∑
i=1

(
E[Ci]

2 +
∑
k∈Γi

E[Ci]E [|Ck − Jik|]

)
Since the right hand side doesn't depend on the set A, the next theorem
follows.

Theorem 3.3 With the de�nitions above

dTV (L(W ), Poi(λ)) = sup
A⊆N0

|P(X ∈ A)− P(W ∈ A)|

≤ 1− e−λ

λ

(
n∑
i=1

E[Ci]
2 +

n∑
i=1

∑
k∈Γi

E[Ci]E [|Ck − Jik|]

)
,

(3.11)

where Poi(λ) denotes the Poisson distribution with parameter λ. �

This bound can be signi�cantly simpli�ed, if {(Jik)k∈Γi : i ∈ {1, . . . , n}} is
monotone in the sense of

Jik ≤ Ci, ∀k ∈ Γi, i ∈ {1, . . . , n} (3.12)

or
Jik ≥ Ci, ∀k ∈ Γi, i ∈ {1, . . . , n} . (3.13)

3.1 Monotone couplings

Monotone couplings were introduced by Barbour and Holst in [4]. The terms
positive and negative relation are de�ned through monotone couplings. The
results of this subsection, especially the next de�nition, refer to [10].

De�nition 3.4 The random variables (Ci)
n
i=1 are said to be negatively re-

lated, if a coupling {(Jik)k∈Γi : i ∈ {1, . . . , n}} exists, ful�lling (3.12). They
are said to be positively related, if a coupling that ful�lls (3.13) exists.

The following two theorems are extensions of theorem 3.3. They give bounds
in case the indicators (Ci)

n
i=1 are positively resp. negatively related.

Theorem 3.5 If the indicator random variables (Ci)
n
i=1 are positively re-

lated,

dTV (L(W ), Poi(λ)) ≤ 1− e−λ

λ

(
2

n∑
i=1

E[Ci]
2 + V ar(W )− λ

)
holds.
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Proof: From (3.5) follows

P(Jik = 1) = P(Ck = 1|Ci = 1), ∀k ∈ Γi, i ∈ {1, . . . , n} .

Therefore

E[Ci]E[Jik] = P(Ci = 1)P(Jik = 1)

= P(Ci = 1)P(Ck = 1|Ci = 1)

= P(Ci = 1)
P(Ck = 1, Ci = 1)

P(Ci = 1)

= P(Ck = 1, Ci = 1)

= E[CiCk], ∀k ∈ Γi, i ∈ {1, . . . , n} .

For the expected values E[Ci]E [|Ck − Jik|] on the right hand side of (3.11)
follows from above

E[Ci]E [|Ck − Jik|] = E[Ci]E [Jik − Ck]

= E[Ci]E [Jik]− E[Ci]E [Ck]

= E[CiCk]− E[Ci]E [Ck]

= Cov(Ci, Ck),

for all k ∈ Γi and all i ∈ {1, . . . , n}. The �rst equality holds, because the
indicators (Ci)

n
i=1 are positively related.

Using this, the double sum in (3.11) can be simpli�ed by

n∑
i=1

∑
k∈Γi

E[Ci]E [|Ck − Jik|] =
n∑
i=1

∑
k∈Γi

Cov(Ci, Ck)

=
n∑
i=1

n∑
k=1

Cov(Ci, Ck)−
n∑
i=1

V ar(Ci)

= V ar(W )−
n∑
i=1

(
E[C2

i ]− E[Ci]
2
)

= V ar(W )−
n∑
i=1

E[Ci] +
n∑
i=1

E[Ci]
2

= V ar(W )− λ+
n∑
i=1

E[Ci]
2.
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This proves the theorem.

�

Theorem 3.6 If the indicator random variables (Ci)
n
i=1 are negatively re-

lated,

dTV (L(W ), Poi(λ)) ≤ 1− e−λ

λ
(λ− V ar(W ))

holds.

Proof: The only di�erence to the proof of theorem 3.5 is that

E[Ci]E [|Ck − Jik|] = E[Ci]E [Ck − Jik]

= −E[Ci]E [Jik − Ck]

= −Cov(Ci, Ck), ∀k ∈ Γi, i ∈ {1, . . . , n} ,
because the random variables are negatively related. Therefore

n∑
i=1

∑
k∈Γi

E[Ci]E [|Ck − Jik|] = −
n∑
i=1

∑
k∈Γi

Cov(Ci, Ck)

= −

(
V ar(W )− λ+

n∑
i=1

E[Ci]
2

)

= λ− V ar(W )−
n∑
i=1

E[Ci]
2.

Using this in (3.11) proves the theorem. �

For the bounds given in theorem 3.5 and theorem 3.6 it's not necessary
to explicitly know a monotone coupling. The existence of such a coupling is
su�cient. The next theorem uses Strassen's theorem (see [14]) to obtain a
criterium for this existence. For a proof see [2].

Theorem 3.7 The indicator random variables (Ci)
n
i=1 are positively (nega-

tively) related if and only if

Cov(φ(C1, . . . , Ck−1, Ck+1, . . . , Cn), Ck) ≥ (≤) 0, ∀k ∈ {1, . . . n} ,

for every increasing indicator function φ : {0, 1}n−1 → {0, 1}.
Remark: A function φ : {0, 1}n−1 → {0, 1} is increasing, if φ(x) ≤ φ(y) for
all x, y ∈ {0, 1}n−1 with x ≤ y. Here the natural partial order

x ≤ y ⇔ xi ≤ yi ∀i ∈ {1, . . . , n− 1} , (3.14)

where x = (x1, . . . , xn−1) and y = (y1, . . . , yn−1), is used.
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Chapter 4

Approximation of point

probabilities

Approximation of point probabilities using the Chen-Stein method is already
discussed in [5], section 2.4. Since the results there are not very convenient
for direct calculations, some simpler considerations are used in this chapter.

The �rst section gives obvious bounds for the point probabilities. These
bounds are the worst ones possible. They are only used, if the bounds given
in the second section are not applicable, because they are too inaccurate.

In the second section the Chen-Stein method is used to obtain bounds for
the approximation error, which are easy to calculate. It contains three sub-
sections. In the �rst and second subsection bounds are given that hold, if
the random variables ful�ll some special dependencies. These dependencies
are positive and negative relation as in de�nition 3.4. The third subsection
is addressed to the point probability of the point 0. A bound, which only
holds for the approximation error of this point probability, is given there.

4.1 Trivial bounds

The bounds in the following theorem use the property that probabilities are
always greater or equal 0 and less or equal 1. They can be seen as a maximum
and minimum for the bounds in the next section.

Theorem 4.1 Let X and W be arbitrary random variables taking values in
N0. Then for all k ∈ N0 holds

P(X = k) + ε−(k) ≤ P(W = k) ≤ P(X = k) + ε+(k),
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where
ε−(k) = −P(X = k)

and
ε+(k) = 1− P(X = k).

Proof: Because of

P(W = k) ≥ 0 = P(X = k)− P(X = k)

and
P(W = k) ≤ 1 = P(X = k) + (1− P(X = k)), ∀k ∈ N0,

the theorem follows. �

4.2 The Chen-Stein method for point probabil-

ities

Throughout this section let

W :=
n∑
i=1

Ci,

λ := E [W ] =
n∑
i=1

E [Ci] > 0,

X ∼ Poi(λ),

where (Ci)
n
i=1 are indicator random variables. To obtain bounds for the point

probabilities using the Chen-Stein method, the same starting point is used as
in [5]. The Chen-Stein method is usually used to bound the total variation
distance as in (3.11). To do this, the estimate (3.4) is used. For the point
probability P(W = j), with j ∈ N0, A can be set to {j} in (3.4). Let fj
denote fA de�ned as in (3.2), with A = {j}. Then fj is explicitly given by

fj(k) =

{
0 if k = 0
(k−1)!
λk

λj

j!

(∑k−1
i=0

λi

i!
e−λ − 11N0\{0,...,k−1}(j)

)
if k ≥ 1

. (4.1)

The bound given in theorem 3.3 can now be improved, by �nding a better
estimate for ||∆fj|| than (3.8), using the special structure of fj. The following
lemma lists some useful, basic properties of fj.
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Lemma 4.2 Let fj be given by (4.1) for j ∈ N0, λ > 0. Then fj has the
following properties:

(p1) fj(k) > 0, ∀k ≤ j

(p2) fj(k) < 0, ∀k ≥ j + 1

(p3) fj(k + 1)− fj(k) > 0, ∀k 6= j

(p4) ∆fj(k)−∆fj(k + 1) ≥ 0, ∀k ≥ j + 1

Remark: It can also be shown that

∆fj(k)−∆fj(k + 1) ≤ 0, ∀k ≤ j

holds. But since this property is not used here, the proof is omitted.

Proof of Lemma 4.2: The properties (1)-(3) follow from the proof of lemma 3.2.
Property (4) is equivalent to

2fj(k + 1)− fj(k)− fj(k + 2) ≥ 0, ∀k ≥ j + 1. (4.2)

Since for k ≥ j + 1, fj can be written as

fj(k) =
(k − 1)!

λk
λj

j!

(
k−1∑
i=0

λi

i!
exp−λ−1

)

= −(k − 1)!

λk
λj

j!

∞∑
i=k

λi

i!
exp−λ,

the inequality (4.2) is equivalent to

(k − 1)!

λk

∞∑
i=k

λi

i!
+

(k + 1)!

λk+2

∞∑
i=k+2

λi

i!
− 2

(k)!

λk+1

∞∑
i=k+1

λi

i!
≥ 0

⇔ λ

k

∞∑
i=k

λi

i!
+
k + 1

λ

∞∑
i=k+2

λi

i!
− 2

∞∑
i=k+1

λi

i!
≥ 0

⇔
∞∑
i=k

1

k

λi+1

i!
+

∞∑
i=k+1

k + 1

i+ 1

λi

i!
− 2

∞∑
i=k+1

λi

i!
≥ 0, ∀k ≥ j + 1.
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The left hand side is 0 for λ = 0. It holds that it is increasing in λ, if the
�rst derivative in λ is non-negative. The �rst derivative of the left hand side
is given by

∞∑
i=k

(
i+ 1

k
+
k + 1

i+ 2
− 2

)
λi

i!
. (4.3)

Since λ > 0, (4.3) is non-negative, if the coe�cients ful�ll

i+ 1

k
+
k + 1

i+ 2
− 2 ≥ 0,

for all i ≥ k. Multiplying this inequality with k(i+ 2) leads to

(i+ 1)(i+ 2) + k(k + 1)− 2k(i+ 2) ≥ 0

⇔ i2 + 3i+ 2 + k2 − 2ki− 3k ≥ 0

⇔ (i− k)2 + 3(i− k) + 2 ≥ 0.

This is true for all i ≥ k. �

The next theorem gives a bound for the approximation error, by improv-
ing the estimate (3.8) for A = {j}.

Theorem 4.3 Let

W =
n∑
i=1

Ci, λ = E [W ] =
n∑
i=1

E [Ci] > 0,

where (Ci)
n
i=1 are indicator variables and fj be given by (4.1) for j ∈ N0. For

each i ∈ {1, . . . , n} set Γi := {1, , . . . , n} \ {i} and let the random variables
{Ck : k ∈ {1, . . . , n}} and {Jik : k ∈ Γi} be de�ned on the same probability
space with

(Jik, k ∈ Γi)
(d)
= (Ck, k ∈ Γi|Ci = 1) .

Then for all j ∈ N0

|P(W = j)− P(X = j)|

≤ |∆fj(j)|
n∑
i=1

(
E [Ci]

2 +
∑
k∈Γi

E [Ci]E[|Ck − Jik|]

)
,

(4.4)

where X is a Poisson distributed random variable with parameter λ.
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Proof: From property (1), (2) and (3) of fj in lemma 4.2 follows

fj(k) ≤ fj(j) and

fj(k) ≥ fj(j + 1), ∀k ∈ N.

Therefore
‖∆fj‖ = |fj(j)− fj(j + 1)| = |∆fj(j)|. (4.5)

Setting A = {j} in (3.11) and using (4.5), proves the theorem. �

Remark: Since fj(j + 1) ≤ fj(j), |∆fj(j)| = fj(j)− fj(j + 1), for all j ∈ N0.

A bound that is even easier to calculate is given in the next theorem.

Theorem 4.4 Let

W =
n∑
i=1

Ci, λ = E [W ] =
n∑
i=1

E [Ci] > 0,

where (Ci)
n
i=1 are indicator variables and fj be given by (4.1) for j ∈ N0.

Then
|P(W = j)− P(X = j)| ≤ λ|∆fj(j)|, (4.6)

where X is a Poisson distributed random variable with parameter λ.

Proof: As in the proof of theorem 4.3, it holds that

fj(k) ≤ fj(j) and

fj(k) ≥ fj(j + 1), ∀k ∈ N.

Setting A = {j} in (3.4) and using this estimates for fj leads to

|P(W = j)− P(X = j)| ≤
n∑
i=1

E[Ci]E[|fj(W + 1)− fj(Vi + 1)|]

≤
n∑
i=1

E[Ci]E[|fj(j)− fj(j + 1)|]

= |∆fj(j)|
n∑
i=1

E[Ci]

= |∆fj(j)|λ,
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where {Vi : 1 ≤ i ≤ n} are random variables de�ned on the same probability
space as W with

Vi
(d)
= (W |Ci = 1), ∀i ∈ {1, . . . , n} .

�

The proof of theorem 4.4 uses

E[|fj(W + 1)− fj(Vi + 1)|] ≤ |∆fj(j)|, (4.7)

while the proof of theorem 4.3 uses (3.7) with A = {j} and (4.5) to bound
the left hand side of (4.7). Since both estimates hold, it is reasonable to take
the minimum of them. The following corollary combines theorem 4.3 and
theorem 4.4.

Corollary 4.5 Let

W =
n∑
i=1

Ci, λ = E [W ] =
n∑
i=1

E [Ci] > 0,

where (Ci)
n
i=1 are indicator variables and fj be given by (4.1) for j ∈ N0. For

each i ∈ {1, . . . , n} set Γi := {1, , . . . , n} \ {i} and let the random variables
{Ck : k ∈ {1, . . . , n}} and {Jik : k ∈ Γi} be de�ned on the same probability
space with

(Jik, k ∈ Γi)
(d)
= (Ck, k ∈ Γi|Ci = 1) .

Then for all j ∈ N0

|P(W = j)− P(X = j)|

≤ |∆fj(j)|
n∑
i=1

min

(
E[Ci],E [Ci]

2 +
∑
k∈Γi

E [Ci]E[|Ck − Jik|]

)
,

(4.8)

where X is a Poisson distributed random variable with parameter λ. �

Note that the bound given in corollary 4.5 is not just the minimum of the
bounds given in theorem 4.3 and theorem 4.4. The minimum is taken over
each summand. Therefore this estimate may be better than both of the other
two bounds.
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4.2.1 Positively related random variables

The next theorem gives a bound for the approximation errors

|P(W = j)− P(X = j)|, ∀j ∈ N0, (4.9)

if the random variables (Ci)
n
i=1 are positively related, in the sense of de�ni-

tion 3.4. Note that this bound is just an extension of the bound given in
corollary 4.5.

Theorem 4.6 Under the assumptions of corollary 4.5

|P(W = j)− P(X = j)|

≤ |∆f(j)|
n∑
i=1

min

(
E[Ci],E [Ci]

2 +
∑
k∈Γi

Cov(Ci, Ck)

)
,

(4.10)

for all j ∈ N0, if the indicators (Ci)
n
i=1 are positively related.

Proof: By de�nition of positive relation there exist random variables
{Jik : i ∈ {1, . . . , n} , k ∈ Γi}, which ful�ll the assumptions, with

Jik ≥ Ck, ∀k ∈ Γi, i ∈ {1, . . . , n} .

Therefore
E[|Ck − Jik|] = E[Jik − Ck].

In the proof of theorem 3.5 it's shown that

E[Ci]E[Jik − Ck] = Cov(Ci, Ck), ∀k ∈ Γi, i ∈ {1, . . . , n} .

Using this in (4.8) proves the theorem. �

4.2.2 Negatively related random variables

In this section let the random variables (Ci)
n
i=1 be negatively related in the

sense of de�nition 3.4, instead of positively related. The bound given in the
next theorem, is once more an extension of corollary 4.5.

Theorem 4.7 Under the assumptions of corollary 4.5

|P(W = j)− P(X = j)|

≤ |∆f(j)|
n∑
i=1

min

(
E[Ci],E [Ci]

2 −
∑
k∈Γi

Cov(Ci, Ck)

)
,

(4.11)

for all j ∈ N0, if the indicators (Ci)
n
i=1 are negatively related.
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Proof: For negatively related random variables (Ci)
n
n=1 exist random vari-

ables {Jik : i ∈ {1, . . . , n} , k ∈ Γi} ful�lling the assumptions with

Jik ≤ Ck, ∀k ∈ Γi, i ∈ {1, . . . , n} .

It follows
E[|Ck − Jik|] = E[Ck − Jik] = −E[Jik − Ck].

As in the proof of theorem 4.6, (4.8) follows from

E[Ci](−E[Jik − Ck]) = −Cov(Ci, Ck), ∀k ∈ Γi, i ∈ {1, . . . , n} .

�

4.2.3 Special case for the point 0

For the approximation of the point probability P(W = 0) the function f0,
de�ned by (4.1) with A = {0} is explicitly given by

f0(k) =

{
0 if k = 0
(k−1)!
λk

(∑k−1
i=0

λi

i!
e−λ − 1

)
if k ≥ 1

. (4.12)

Now de�ne a function by

f̃0(k) := max
i∈{1,...,n−k+1}

|f0(i)− f0(i+ k)|, k ∈ {0, . . . , n} , (4.13)

where f0 is de�ned as in (4.12). Then for the approximation error follows

|P(W = 0)− P(X = 0)| ≤
n∑
i=1

E[Ci]E[|f0(W + 1)− f0(Vi + 1)|]

≤
n∑
i=1

E[Ci]E[f̃0(|W − Vi|)]

(4.14)

from (3.4), where (Vi)
n
i=1 is de�ned as in (3.6). The following lemma gives

two properties of the function f̃0.

Lemma 4.8 Let f0 and f̃0 be de�ned as in (4.12) and (4.13), λ > 0. Then
f̃0 is increasing and

f̃0(k) = f0(1 + k)− f0(1), ∀k ∈ {0, . . . , n} .

Proof: From property (3) and (4) in theorem 4.2 follows
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(1) f0(k + 1)− f0(k) > 0, ∀k ≥ 1

(2) ∆f0(k) ≥ ∆f0(k + 1), ∀k ≥ 1

Therefore

f̃0(k) = max
i∈{1,...,n−k+1}

|f0(i)− f0(i+ k)|

= max
i∈{1,...,n−k+1}

(f0(i+ k)− f0(i))

= max
i∈{1,...,n−k+1}

k−1∑
m=0

∆f0(i+m)

=
k−1∑
m=0

∆f0(1 +m)

= f0(1 + k)− f0(1), ∀k ∈ {0, . . . , n} .

The second equality holds because of (1) and the fourth equality holds be-
cause of (2). Using this representation, it is easy to see that f̃0 is increasing,
since (1) holds for f0(k). �

For the continuous function f̂0 de�ned by

f̂0(x) = (x− bxc)f̃0(bxc) + (1− (x− bxc))f̃0(dxe), ∀x ∈ [0, n] , (4.15)

holds

(1) f̂0(k) = f̃0(k), ∀k ∈ {0, . . . , n},

(2) f̂ is linear on [k, k + 1] , ∀k ∈ {0, . . . , n− 1}.

The next lemma gives other properties of f̂ .

Lemma 4.9 The function f̂0, de�ned as in (4.15), is concave and increasing.

Proof: The �rst derivative of f̂ can be interpreted as the slope of f̂ . Since
f̂ is linear on [k, k + 1],∀k ∈ {0, . . . , n− 1}, the slope of f̂ is given by

f̂ ′0(x) = f̂0(dxe)− f̂0(bxc)

= f̃0(dxe)− f̃0(bxc)

= f0(1 + dxe)− f0(1 + bxc)

= ∆f0(bxc+ 1), ∀x ∈ (k, k + 1)
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Because the increments of f0 are decreasing, it follows for all x ∈ (k, k + 1),
y ∈ (k̃, k̃ + 1), x ≤ y, with k, k̃ ∈ {0, . . . , n− 1}

f̂ ′0(x) ≥ f̂ ′0(y). (4.16)

Now pick two arbitrary points x, y ∈ [0, n]. If they are both in the same in-
terval [k, k + 1] for an arbitrary k ∈ {0, . . . , n− 1}, f̂0 is linear between them
and therefore concave. If they are not in the same interval, draw a straight
line g from f̂0(x) to f̂0(y).

Following f̂0 from x to y the slope of f̂0 is greater than that of g in the be-
ginning. Here the points {0, . . . , n} are excepted, since the derivative doesn't
exist at these points. Going on, the slope of f̂0 decreases because of (4.16)
until g crosses f̂0 at point p. Because the slope of f̂0 is smaller than that of
g after they hit, there are no more points of intersection. This means that
p = f̂0(y).

Hence f̂0 is greater than g on [x, y]. This is also true for the points {0, . . . , n},
since f̂0 is continuous. Therefore f̂0 ful�lls

f̂0(tx+ (1− t)y) ≥ tf̂0(x) + (1− t)f̂0(y), ∀t ∈ [0, 1],

for all x, y ∈ [0, n]. Since this is the de�nition of concaveness, f̂0 is concave.

Because of lemma 4.8, f̃ is increasing. From the properties above follows
that f̂ is increasing too. �

The function f̂0 can now be used to obtain a bound for the point proba-
bility P(W = 0).

Theorem 4.10 Let

W =
n∑
i=1

Ci, λ = E [W ] =
n∑
i=1

E [Ci] > 0,

where (Ci)
n
i=1 are indicator variables and f̂0 be de�ned as in (4.15). For

each i ∈ {1, . . . , n} set Γi := {1, , . . . , n} \ {i} and let the random variables
{Ck : k ∈ {1, . . . , n}} and {Jik : k ∈ Γi} be de�ned on the same probability
space with

(Jik, k ∈ Γi)
(d)
= (Ck, k ∈ Γi|Ci = 1) .

Then

|P(W = 0)− P(X = 0)| ≤
n∑
i=1

E[Ci]f̂0

(
E

[
Ci +

∑
k∈Γi

|Ck − Jik|

])
, (4.17)
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where X is a Poisson distributed random variable with parameter λ.

Proof: As in (4.14) the approximation error can be estimated by

|P(W = 0)− P(X = 0)| ≤
n∑
i=1

E[Ci]E[f̃0(|W − Vi|)],

with (Vi)
n
i=1 de�ned as in (3.6). By de�nition of f̂0,

E[f̃0(|W − Vi|)] = E[f̂0(|W − Vi|)]

holds. Because of lemma 4.9, f̂0 is concave. Therefore Jensen's inequality

E[f̂0(|W − Vi|)] ≤ f̂0 (E[|W − Vi|])

can be applied and

|P(W = 0)− P(X = 0)| ≤
n∑
i=1

E[Ci]f̂0 (E[|W − Vi|])

≤
n∑
i=1

E[Ci]f̂0

(
E

[
Ci +

∑
k∈Γi

|Ck − Jik|

])
,

where the second inequality follows from the de�nition of (Vi)
n
i=1 and because

f̂0 is increasing. �

The following two corollaries can be obtained from theorem 4.10 the same
way as theorem 4.6 and theorem 4.7 are obtained from corollary 4.5.

Corollary 4.11 With the same assumptions as in theorem 4.10,

|P(W = 0)− P(X = 0)| ≤
n∑
i=1

E[Ci]f̂0

(
E [Ci] +

∑
k∈Γi

Cov(Ci, Ck)

E[Ci]

)
.

if the random variables (Ci)
n
i=1 are positively related. �

Corollary 4.12 With the same assumptions as in theorem 4.10,

|P(W = 0)− P(X = 0)| ≤
n∑
i=1

E[Ci]f̂0

(
E [Ci]−

∑
k∈Γi

Cov(Ci, Ck)

E[Ci]

)
.

if the random variables (Ci)
n
i=1 are negatively related. �
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Chapter 5

Price approximation for structure

�oors

In this chapter bounds for the price of a structure �oor are given, where
the point probabilities of the payo� of the underlying structured note are
approximated. The following theorem is the result of this chapter.

Theorem 5.1 Let W be the payo� of a structured note taking values in
{0, 1, ..., n}, n be the number of coupons in the structured note, x be the level
of a structure �oor, X be a Poisson distributed random variable and f be
given by

f(k) := x− k, ∀k ∈ {0, . . . , n ∧ bxc} .
If for sequences (ε−(k))nk=0 and (ε+(k))nk=0

P(X = k) + ε−(k) ≤ P(W = k) ≤ P(X = k) + ε+(k)

holds, then for the price SF of the structure �oor holds

e−rTn

(
E[f(X)] +

n∑
k=0

f(k)ε̂−(k)

)
≤ SF (x)

≤ e−rTn

(
E[f(X)] +

n∑
k=0

f(k)ε̂+(k)

)
,

(5.1)

with r and Tn as described in section 2.2. In (5.1), (ε̂−(k))nk=0 and (ε̂+(k))nk=0

are given by

ε̂−(k) =


ε−(k) if k = 0, . . . , j − 1

1−
∑n

i=0 P(X = i)−
∑j−1

i=0 ε−(i)−
∑n

i=j+1 ε+(i) if k = j

ε+(k) if k = j + 1, . . . , n
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where j ful�lls(
1−

n∑
i=0

P(X = i)−
j−1∑
i=0

ε−(i)−
n∑

i=j+1

ε+(i)

)
∈ [ε−(j), ε+(j)],

and

ε̂+(k) =


ε+(k) if k = 0, . . . , j − 1

1−
∑n

i=0 P(X = i)−
∑j−1

i=0 ε+(i)−
∑n

i=j+1 ε−(i) if k = j

ε−(k) if k = j + 1, . . . , n

where j ful�lls(
1−

n∑
i=0

P(X = i)−
j−1∑
i=0

ε+(i)−
n∑

i=j+1

ε−(i)

)
∈ [ε−(j), ε+(j)].

Proof: If
ε(k) := P(W = k)− P(X = k), ∀k ∈ {0, . . . , n}

denotes the true error, then

ε(k) ∈ [ε−(k), ε+(k)], ∀k ∈ {0, . . . , n} . (5.2)

Another condition for (ε(k))nk=0 can be obtained by observing that W can
only take values from 0 to n. Therefore

1 =
n∑
k=0

P(W = k) =
n∑
k=0

(P(X = k) + ε(k)),

what implies
n∑
k=0

ε(k) = 1−
n∑
k=0

P(X = k). (5.3)

The bounds for the expectation can now be written as

n∑
k=0

f(k)P(X = k) + inf A ≤ E[f(W )] ≤
n∑
k=0

f(k)P(X = k) + supA, (5.4)

where

A :=

{
n∑
k=0

f(k)ε(k) : ε(i) ∈ [ε−(i), ε+(i)] ∀i ∈ {0, . . . , n} ,

n∑
k=0

ε(k) = 1−
n∑
k=0

P(X = k)

}
.
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By setting
ε̂+(k) := ε+(k), ∀k ∈ {0, . . . , n}

and

E :=
n∑
k=0

f(k)ε̂+(k),

E is the greatest possible error without the additional condition (5.3). Ob-
viously it holds that

n∑
k=0

ε̂+(k) ≥ 1−
n∑
k=0

P(X = k). (5.5)

Since f is positive, E will decrease if ε̂+(k) is reduced, for any k. Because
f is decreasing, the least change of E is achieved by reducing ε̂+(n). To
obtain the supremum in (5.4), reduce ε̂+(n) until equality in (5.5) holds
or ε̂+(n) = ε−(k). In the latter case, ε̂+(n) can't be reduced anymore.
Otherwise the condition

ε̂(n) ∈ [ε−(n), ε+(n)]

wouldn't be ful�lled. Now the least change of E is achieved by reducing
ε̂+(n− 1). Repeating this steps until equality in (5.5) holds, leads to

ε̂+(k) =


ε+(k) if k = 0, . . . , j − 1

1−
∑n

i=0 P(X = i)−
∑j−1

i=0 ε+(i)−
∑n

i=j+1 ε−(i) if k = j

ε−(k) if k = j + 1, . . . , n

where j ful�lls(
1−

n∑
k=0

P(X = k)−
j−1∑
k=0

ε+(k)−
n∑

k=j+1

ε−(k)

)
∈ [ε−(j), ε+(j)].

It holds that
E = supA.

For the in�mum in (5.4) the same procedure can be used. Just set

ε̂−(k) := ε−(k), ∀k ∈ {0, . . . , n}

and increase some of these ε̂−(k) as described above. Then ε̂−(k) is given by

ε̂−(k) =


ε−(k) if k = 0, . . . , j − 1

1−
∑n

i=0 P(X = i)−
∑j−1

i=0 ε−(i) +
∑n

i=j+1 ε+(i) if k = j

ε+(k) if k = j + 1, . . . , n
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where j ful�lls(
1−

n∑
k=0

P(X = k)−
j−1∑
k=0

ε−(k)−
n∑

k=j+1

ε+(k)

)
∈ [ε−(j), ε+(j)].

From the de�nition of the price for a structure �oor (2.11) at level x follows

SF (x) = e−rTnE
[
(x−W )+

]
= e−rTnE[f(W )].

Hence multiplying (5.4) with e−rTn proves the theorem. �

Remark: Here the assumption that the approximating random variable is
Poisson distributed is made. This is not necessary. The considerations in
this chapter are also true for an arbitrary random variable.
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Chapter 6

Numerical results

This chapter is addressed to the numerical calculation of the bounds given
in chapter 4 and 5. The aim is to approximate the price of a structure �oor,
since the computational e�ort for the calculation of the exact price given in
theorem 2.17 is very high.

Throughout the whole chapter, let a structure note with payo� W be de-
�ned as in section 2.2 consisting of coupons (Ci)

n
i=1 de�ned as in (2.7) and

SF (x) := e−rTnE
[
[(x−W )+

]
∀x ∈ [0, n] (6.1)

denotes the exact price of a structure �oor at level x, as given by theorem
2.17. Furthermore let SFX be the price of the structure �oor (6.1), where
W is substituted by a Poisson distributed random variable X with parame-
ter E[W ]. The expected values

BD(S0, (Ti)i∈I , P, Blow, Bup, σ, 0) = E

[∏
i∈I

Ci

]
, I ⊆ {0, . . . , n} (6.2)

can be computed using theorem 2.16.

Remark: For the calculation of the values (6.2), the corrected Mathematica-
function BDMult from [9] is used. In the original function, wrong integration
bounds are used. The corrected Mathematica function can be found in the
appendix.

The computational e�ort of these values increases signi�cantly, as the num-
ber of elements in I increases. To calculate the bounds from the previous two
chapters, only the values (E[Ci])

n
i=1 and (E[CiCj])

n
i,j=1) are needed. Therefore
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the computational e�ort for the approximation is much less than that for the
exact price. Since

E[CiCj] = E[CjCi], ∀i, j ∈ {1, . . . , n}

and
E[CiCi] = E[Ci], ∀i ∈ {1, . . . , n}

the n values (E[Ci])
n
i=1 and n2−n

2
values (E[CiCj])

i−1
j=1 for all i ∈ {1, . . . , n}

must be computed. Hence the computational e�ort for the approximation is
high too, for large n. Since theorem 4.4 only uses

∑n
i=1 E[Ci], the bounds

given there can be used in cases where n is large. Then only the n values
(E[Ci])

n
i=1 must be computed.

An improvement for the approximation in all cases can be made, by not-
ing that

E

[
n∏
i=1

Ci

]
= E

[
C̃1

]
,

where C̃1 is de�ned as C1 with barrier length nP . Therefore

E

[
n∏
i=1

Ci

]
= BD(S0, (Ti)

n−1
i=0 , P, Blow, Bup, σ, 0)

= BD(S0, (T0), nP,Blow, Bup, σ, 0),

as also used in theorem 2.17.

6.1 A general coupling

The bounds given in theorem 4.3 and corollary 4.5 use random variables
{Jik : i ∈ {1, . . . , n} , k ∈ {1, . . . , n} \ {i}}, which are de�ned on the same
probability space as {Ci : i ∈ {1, . . . , n}} and ful�ll

(Jik, k ∈ Γi)
(d)
= (Ck, k ∈ Γi|Ci = 1), (6.3)

where Γi := {1, . . . , n} \ {i} for all i ∈ {1, . . . , n}.

One way to construct such indicator random variables is to simply de�ne
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their joint distribution by (6.3) and let them be independent from the ran-
dom variables (Ci)

n
i=1. Then for all k ∈ Γi, i ∈ {1, . . . , n} follows

P(Jik = 1) = 1− P(Jik = 0) = P(Jik = 1, Jil ≤ 1, l ∈ Γi\ {k})

= P(Ck = 1, Cl ≤ 1, l ∈ Γi\ {k} |Ci = 1)

= P(Ck = 1|Ci = 1)

=
P(Ck = 1, Ci = 1)

P(Ci = 1)

=
E[CkCi]

E[Ci]
.

The expected values E[|Ck − Jik|], i ∈ {1, . . . , n}, k ∈ Γi, which are used in
the bounds of theorem 4.3 and corollary 4.5, are then given by

E[|Ck − Jik|] = P(|Ck − Jik| = 1)

= P(Ck = 1, Jik = 0) + P(Ck = 0, Jik = 1)

= P(Ck = 1)P(Jik = 0) + P(Ck = 0)P(Jik = 1)

= E[Ck]

(
1− E[CkCi]

E[Ci]

)
+ (1− E[Ck])

E[CkCi]

E[Ci]

= E[Ck] +
E[CkCi]

E[Ci]
(1− 2E[Ck])

The third equality holds, because of the assumption of independence.

This construction can be used for any parameters of (Ci)
n
i=1 and is easy

to calculate.

6.2 A general example

In this section an example is given, to show how the results of chapter 4
and 5 can be applied to a given problem. Set n = 7, r = 0.02 and let the
parameters of the coupons (Ci)

7
i=1 be given by

S0 = 100, T0 = 1,
P = 1, Blow = 85,

Bup = 115, σ = 0.18.
(6.4)

41



For all i ∈ {1, . . . , 7}, j ∈ Γi := {1, . . . , 7} \ {i}, the �rst and second moments
of the coupons are given by

E[Ci] = BD(100, (Ti), 1, 85, 115, 0.18, 0), and

E[CiCj] = BD(100, (Ti, Tj), 1, 85, 115, 0.18, 0),

where BD is de�ned as in theorem 2.16.

The aim is to approximate the expected value on the right hand side of
(6.1). To do this, it's necessary to approximate the point probabilities of

W :=
7∑
i=1

Ci

�rst. The following table gives the expected values E[CiCj], for all i, j ∈ {1, . . . , 7}.

C1 C2 C3 C4 C5 C6 C7

C1 0.0882 0.0153 0.0073 0.0055 0.0045 0.0039 0.0035
C2 0.0153 0.0641 0.0111 0.0053 0.0040 0.0033 0.0029
C3 0.0073 0.0111 0.0527 0.0091 0.0044 0.0033 0.0027
C4 0.0055 0.0053 0.0091 0.0458 0.0079 0.0038 0.0028
C5 0.0045 0.0040 0.0044 0.0079 0.0409 0.0071 0.0034
C6 0.0039 0.0033 0.0033 0.0038 0.0071 0.0373 0.0065
C7 0.0035 0.0029 0.0027 0.0028 0.0034 0.0065 0.0344
Table 1: Expected values E[CiCj]

Since (Ci)
7
i=1 are indicator variables,

E[CiCi] = E[Ci], ∀i ∈ {1, . . . , 7}

holds. Therefore the diagonal elements of table 1 are the expected values
of (Ci)

7
i=1. Using the general coupling from the previous section, table 2

gives the expected values E[|Ck − Jik|], for all i ∈ {1, . . . , 7} and k ∈ Γi.

1 2 3 4 5 6 7
1 −−− 0.2150 0.1270 0.1020 0.0881 0.0787 0.0718
2 0.2842 −−− 0.2076 0.1211 0.0977 0.0848 0.0822
3 0.2025 0.2477 −−− 0.2030 0.1171 0.0945 0.0027
4 0.1864 0.1656 0.2313 −−− 0.1998 0.1141 0.0920
5 0.1794 0.1488 0.1485 0.2217 −−− 0.1975 0.1117
6 0.1755 0.1412 0.1311 0.1383 0.2153 −−− 0.1956
7 0.1729 0.1369 0.1232 0.1205 0.1314 0.2107 −−−
Table 2: Expected values E[|Ck − Jik|]
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These values can now be used to apply theorem 4.3, theorem 4.4 and corol-
lary 4.5. Let (ε(k))7

k=0 denote the approximation errors,

ε(k) := P(W = k)− P(X = k), ∀k ∈ {0, . . . , 7} ,
where X is a Poisson distributed random variable with parameter

λ :=
7∑
i=1

E[Ci] = 0.363411.

Then

P(W = k) = P(X = k) + (P(W = k)− P(X = k))

= P(X = k) + ε(k), ∀k ∈ {0, . . . , 7} .
The three general bounds from chapter 4 are given by

theorem 4.3 theorem 4.4 corollary 4.5
|ε(0)| 0.286325 0.3047 0.282254
|ε(1)| 0.286325 0.3047 0.282254
|ε(2)| 0.167604 0.17836 0.165221
|ε(3)| 0.113649 0.120942 0.112033
|ε(4)| 0.0853644 0.0908424 0.0841505
|ε(5)| 0.0682989 0.0726818 0.0673276
|ε(6)| 0.0569161 0.0605685 0.0561067
|ε(7)| 0.0487852 0.0519159 0.0480915
Table 3: General bounds from chapter 4 with σ = 0.18

In this example the �rst bound is better than the second one. The third
bound is even better than the �rst one. This is because the third bound is
not just the minimum of the �rst and second one, as described in chapter 4.
But there are also many cases (if not most) in which the third bound turns
out to be the minimum of the �rst two ones.

Setting σ = 0.14 in (6.4) gives the following bounds.

theorem 4.3 theorem 4.4 corollary 4.5
|ε(0)| 1.18326 0.602055 0.602055
|ε(1)| 1.18326 0.602055 0.602055
|ε(2)| 0.822923 0.418713 0.418713
|ε(3)| 0.592137 0.301287 0.301287
|ε(4)| 0.451249 0.229601 0.229601
|ε(5)| 0.362018 0.184199 0.184199
|ε(6)| 0.301809 0.153564 0.153564
|ε(7)| 0.258707 0.131634 0.131634
Table 4: General bounds from chapter 4 with σ = 0.14
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Now the second bound is better than the �rst one and the third estimate is
the minimum of the �rst and second one. So it depends on the parameters of
the coupons, if the bound given in corollary 4.5 is just the minimum of the
other two bounds or not. It also depends on the parameters of the coupons, if
the bound given in theorem 4.3 is better than the bound given in theorem 4.4
or vice versa.

Going on with σ = 0.18, table 5 lists the trivial bounds for the approximation
error, given by theorem 4.1.

lower bound upper bound
ε(0) −0.69530044 0.30469956
ε(1) −0.25267999 0.74732001
ε(2) −0.04591337 0.95408663
ε(3) −0.00556181 0.99443819
ε(4) −0.00050531 0.99949469
ε(5) −0.00003673 0.99996327
ε(6) −2.22449 · 10−6 0.99999778
ε(7) −1.15486 · 10−7 0.99999988
Table 5: Trivial bounds for the

approximation errors

For all lower bounds except the �rst one, the trivial bounds are better than
the ones given in table 3. Therefore it is reasonable to take the smallest
values from the tables above.

Table 6 gives the best lower and upper bounds for the approximation er-
rors of the point probabilities, using the best values of table 3 and table 5.

lower bound upper bound
ε(0) −0.282254 0.282254
ε(1) −0.25267999 0.282254
ε(2) −0.04591337 0.165221
ε(3) −0.00556181 0.112033
ε(4) −0.00050531 0.0841505
ε(5) −0.00003673 0.0673276
ε(6) −2.22449 · 10−6 0.0561067
ε(7) −1.15486 · 10−7 0.0480915
Table 6: Best bounds for the

approximation errors

Some of these bounds can still be improved. The next step is to tighten
the bounds for the approximation error ε(0) by using theorem 4.10. In sec-
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tion 4.2.3 the functions f̃0 and f̂0 are de�ned, which are used in the proof of
this theorem.

Figure 1 and 2 show these functions, de�ned as in (4.13) and (4.15).
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Figure 1: Function f̃0 as de�ned in (4.13)
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Figure 2: Function f̂0 as de�ned in (4.15)

It's easy to see that f̂ is concave, as proved in lemma 4.9. Therefore Jensen's
inequality can be applied in the proof of theorem 4.10. Using the general
coupling from the previous section and (4.17) gives

|P(W = 0)− P(X = 0)| ≤ 0.150333

as a bound for the approximation error of the point 0.

The last step for the approximation of the point probabilities is to calcu-
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late the exact value of P(W = 7) as described above. It is given by

P(W = 7) = E

(
7∏
i=1

Ci

)
= BD(100, (1), 7, 85, 115, 0.18, 0)

= 2.37285 · 10−6.

To include this in the setting above, just take

2.37285 · 10−6 − P(X = 7)

as the lower and upper bound for the approximation error of P(W = 7). Then

2.37285 · 10−6 ≤ P(W = 7) ≤ 2.37285 · 10−6

holds.

The �nal bounds for the approximation errors are given in table 7.

lower bound upper bound
ε(0) −0.150333 0.150333
ε(1) −0.25267999 0.282254
ε(2) −0.04591337 0.165221
ε(3) −0.00556181 0.112033
ε(4) −0.00050531 0.0841505
ε(5) −0.00003673 0.0673276
ε(6) −2.22449 · 10−6 0.0561067
ε(7) 2.25736 · 10−6 2.25736 · 10−6

Table 7: Final bounds for the
approximation errors

Figure 3 shows the point probabilities of a Poisson distributed random vari-
able with parameter λ (black dots) and the lower respectively upper bounds
for the point probabilities of W (gray dots).
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Figure 3: Point probabilities of X and bounds

This approximations of the point probabilities can now be used in theorem 5.1
to approximate SF . Table 8 gives the values of SFX(x) for x ∈ {0, . . . , 7}
and bounds for the real price SF as de�ned in (6.1).

x
lower bound
for SF (x)

SFX(x)
upper bound
for SF (x)

0 0.00 0.00 0.00
1 0.464391 0.592496 0.720601
2 0.928781 1.40031 1.57274
3 1.50336 2.24725 2.42488
4 2.17815 3.09893 3.27703
5 2.92507 3.95104 4.12917
6 3.7294 4.80318 4.98131
7 4.58154 5.65533 5.83345
Table 8: Approximated price and bounds for

the real price

Note that SFX and SF are continuous functions. Therefore table 7 only gives
the values of the functions at a few points. Figure 4 shows the approximated
price SFX (black line) and the lower and upper bounds for the real price SF
(gray lines).
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Figure 4: Approximated price SFX and
bounds for the real price SF

6.3 Positive relation

Theorem 3.7 states that the random variables (Ci)
n
i=1 are positively related,

if

Cov(φ(C1, . . . , Ck−1, Ck+1, . . . , Cn), Ck) ≥ 0, ∀k ∈ {1, . . . , n} , (6.5)

for every increasing function φ : {0, 1}n−1 → {0, 1}. Every increasing φ is
clearly determined by a set of (n− 1)-tuples

I := {i = (i1, ..., in−1) : φ(i) = 1, φ(l) = 0, ∀l < i} ,

where < is the natural partial order, given by (3.14). Then

J :=
{
j ∈ {0, 1}n−1 : ∃i ∈ I with i ≤ j

}
is the index set of all points j with φ(j) = 1. By de�nition of the partial
order <,

j̃ ≥ j ⇔ j̃i = 1,∀i ∈ {l : jl = 1} , ∀j, j̃ ∈ {0, 1}n−1

holds. Let k ∈ {1, . . . , n} and Γk := {1, . . . , n} \ {k}. Then

(Cl, l ∈ Γk) ≥ i⇔ Cl = 1,∀l ∈ Lki, ∀i ∈ {0, 1}n−1 , (6.6)

where Lki is de�ned by

Lki := {l ∈ Γk : (l = j with j < k ∧ ij = 1) ∨ (l = j + 1 with j ≥ k ∧ ij = 1)} .
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The de�nition of Lki takes into account that k is not in the index set of the
coupon's payo�s. Now de�ne an index set for all points of I using (6.6) by

Ĩk := {{j ∈ Γk : j ∈ Lki} : i ∈ I} . (6.7)

Then the left hand side of condition (6.5) is equivalent to

E[φ(Ci, i ∈ Γk)Ck]− E[φ(Ci, i ∈ Γk)]E[Ck]

= P(φ(Ci, i ∈ Γk) = 1, Ck = 1)− P(φ(Ci, i ∈ Γk) = 1)P(Ck = 1)

= P

(⋃
j∈Jk

{(Ci, i ∈ Γk) = j} ∩ {Ck = 1}

)

− P

(⋃
j∈Jk

{Ci, i ∈ Γk) = j}

)
P(Ck = 1)

= P

⋃
I∈Ĩk

⋂
i∈I

{Ci = 1} ∩ {Ck = 1}


− P

⋃
I∈Ĩk

⋂
i∈I

{Ci = 1}

P(Ck = 1).

(6.8)

The right hand side can now be approximated by a Monte Carlo simulation.
To approximate a probability P(Ci = 1), i ∈ Γk, a large number of paths
of St (de�ned as in (2.6)) are determined. Every path that ful�lls Ci = 1 is
counted as a valid path.

Example of a valid path

Set n = 5, k = 2 and let φ be clearly determined by the set

{(1, 1, 0, 0), (0, 0, 0, 1)} .

Then Ĩ2 as de�ned in (6.7) is given by

Ĩ2 := {{1, 3} , {5}} .

Approximating

E[φ(C1, C3, C4, C5)] = P

⋃
I∈Ĩ2

⋂
i∈I

{Ci = 1}


= P (({C1 = 1} ∩ {C3 = 1}) ∪ {C5 = 1}) ,

49



a path is valid if C1 and C3 equal 1 or C5 = 1. Figure 5 gives an example for
a valid path.

0 1 2 3 4
t

90

100

110

120

St

Figure 3: Example of a valid path

The number of valid paths divided by the number of all paths gives an ap-
proximation of the probability. Since the number of functions φ increases, as
n increases, the computational e�ort is high for large n.

Let the indicator variables (Ci)
n
i=1 be de�ned through the parameters

S0 = 100, T0 = 1,
P = 0.5, Blow = 85,
Bup = 115, σ = 0.2.

(6.9)

The next table gives the results of the Monte Carlo simulations for n up
to 5. For the computations a modi�cation of the Mathematica function
BDMC in [9] was used. The function BDMC approximates the function BD,
as de�ned in theorem 2.16, by a Monte Carlo simulation. The code of the
modi�ed function can be found in chapter 7.

n number of functions φ
number of functions φ

ful�lling (6.5)
2 1 1
3 4 4
4 18 18
5 159 159
Table 9: Results of the Monte Carlo simulation
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Since (6.5) is ful�lled for all increasing indicator functions φ, it can be as-
sumed that the random variables (Ci)

n
i=1 with parameters given in (6.9) are

positively related, for n ∈ {2, . . . , 5}.

6.4 Several Examples

In this section three examples for the approximation of SF are given. For all
examples set r = 0.02. The �rst example uses the assumption that the ran-
dom variables (Ci)

n
i=1 are positively related. The second example compares

bounds, if the assumption of positive relation is made or not. If n is large,
the only bound that can be easily calculated is the one given in theorem 4.4.
This is what the third example is addressed to.

Example 6.1 Set n = 5 and let the parameters of the coupons be de�ned as
in (6.9). Then

λ =
5∑

n=1

E[Ci] = 0.595488.

As shown in the previous section it is reasonable to assume that the random
variables (Ci)

5
i=1 are positively related. Therefore theorem 4.6 can be applied.

Table 10 gives the �nal bounds for the approximation errors of the point
probabilities. Theorem 4.1, theorem 4.10 and the exact value for P(W = 5)
were used as described in section 6.2.

lower bound upper bound

ε(0) −0.171094 0.171094
ε(1) −0.311458 0.311458
ε(2) −0.097746 0.197521
ε(3) −0.0194022 0.136926
ε(4) −0.00288844 0.103262
ε(5) 0.00172288 0.00172288
Table 10: Final bounds for the

approximation errors

Now theorem 5.1 can be used to approximate the price of the structure �oor.
The results are illustrated in �gure 6. The black line represents the approxi-
mated price of the structure �oor SFX . The gray lines are the bounds for the
real price.
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Figure 6: Approximated price and bounds
for the real price with n = 5

Remark: Although the assumption of positive relation is made in this exam-
ple, the bounds in section 6.2 are tighter than the ones here. This is because
the parameters and the number of coupons are di�erent.

The next example compares two approximations with the same parameters
for the coupons. One approximation uses the assumption of positive relation,
while the other one does not.

Example 6.2 In this example set n = 20 and let the parameters for the
coupons again be given by (6.9). If the assumption of positive relation is
made, theorem 4.6 can be used instead of corollary 4.5. Figure 7 shows the
upper bounds (ε+(k))nk=0 for the approximation errors of the point probabil-
ities, if theorem 4.6 is used (gray dots) and if corollary 4.5 is used (black
dots).
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ε+ (k)

Figure 7: Upper bounds for the approximation
errors with n = 20
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In this example, the di�erences are pretty small. This is because n is quite
large. For comparison, �gure 8 shows the upper bounds for n = 5, as in
example 6.1.

1 2 3 4 5
k
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0.3
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ε+ (k)

Figure 8: Upper bounds for the approximation
errors with n = 5

For small n it makes a big di�erence, if the coupons are positively related or
not.

Going on with n = 20, the lower bounds are the same in both cases. The
best lower bounds are the trivial bounds given by theorem 4.1. By proceeding
as described in section 6.2, the lower and upper bounds can be improved.

For the approximation of the structure �oor's price, theorem 5.1 can be ap-
plied. Figure 9 and 10 show the approximated prices SFX (black lines) and
the bounds for the real prices SF (gray lines). Note that SFX is the same in
both cases, only the bounds vary.
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Figure 9: Approximation results without
assumption of positive relation
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Figure 10: Approximation results with
assumption of positive relation

It is easy to see that the approximations are almost the same. Note that the
bounds in example 6.1, with n small, are much better.

In conclusion, if n is large, there's not a big di�erence, if the assumption
of positive relation is made or not. If n is small, the di�erence is much big-
ger. From section 6.3 follows that it is reasonable to make this assumption,
if n is small.

Since the computational e�ort for the calculation of the expected values
E[|Ck − Jik|] is very high as n grows, the bound given in corollary 4.5 can't
be used for large n. Theorem 4.4 can be used instead. For increasing n, the
number of summands in (4.4) increase. Therefore the larger n, the looser the
bound given in theorem 4.3. It follows that the bound given in corollary 4.5
equals the bound given in theorem 4.4 for su�ciently large n.

The following example shows the results for large n.

Example 6.3 Let now be n = 60. By using the bound given in theorem 4.4,
only the expected values E[Ci], for all i ∈ {1, . . . , 60} must be computed.

Remark: The improvement for the point 0 is also not used here, as it would
need further calculations with high computational e�orts.

The trivial bounds given in theorem 4.1 and the exact point probability
P(W = 60) can be used as described in section 6.2. Figure 11 shows the point
probabilities of a Poisson distributed random variable with parameter

λ =
60∑
n=1

E[Ci] = 2.901277,
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as well as the lower and upper bounds for the point probabilities P(W = j),
for all j ∈ {0, . . . , 60}.

10 20 30 40 50 60
j

0.2

0.4

0.6

0.8

1.0

ℙ(X= j)

Figure 11: Point probabilities of X and bounds

The results after applying theorem 5.1 to approximate the price of the struc-
ture �oor are illustrated in �gure 12.

As in the previous examples, the approximated price SFX is represented by
the black line, while the upper resp. lower bounds of the real price SF are
represented by the gray lines.
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Figure 12: Approximated price and bounds
for the real price, with n = 60
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Chapter 7

Implementation in Mathematica

7.1 Functions fj, f̃j and f̂j

The function fj computes the values of fj de�ned as in (4.1). The �rst in-
put parameter λ is the sum of the expectations of the coupons (Ci)

n
i=1 as

described in section 4.2. The second parameter j is the point of which the
point probability should be approximated. The third and last parameter k
is the point at which the function fj is evaluated. The output is fj(k) with
parameter λ.

fj[λ_, j_, k_] := Ifk ⩵ 0, 0,

(k - 1)!

λk

λj

j!
Sum

λi

i!
Exp[-λ], {i, 0, k - 1} - Boole[j ≤ (k - 1)] ;

The function f̃j de�ned by (4.13) is evaluated by the function ftilj. The
input parameters λ, j and k are the same as for the function fj. The pa-
rameter n is the number of coupons. Its output is f̃j(k) with parameter λ.

ftilj[λ_, j_, k_, n_] := If[k ⩵ 0, 0,

Max[Table[Abs[fj[λ, j, i] - fj[λ, j, i + k]], {i, 1, n - k + 1}]]];

The values of the third function f̂j de�ned as in (4.15), are computed by
the function fhatj. The point at which the function should be evaluated
is given by the input parameter x. In contrast to function fj and f̃j, f̂j is
continuous. The other parameters λ, j and n are the same as for function
ftilj. The output is f̂j(x) with parameter λ.

56



fhatj[λ_, j_, x_, n_] := (x - Floor[x]) ftilj[λ, j, Ceiling[x], n] +

(1 - (x - Floor[x])) ftilj[λ, j, Floor[x], n];

7.2 Error bounds for the approximation of point

probabilities

The following functions compute the bounds given in chapter 4. They ba-
sically all use the same input parameters. The parameter j is the point
for which the approximation error bounds should be calculated, n is the
number of coupons and ECiCk is a two dimensional list with the expected
values E[CiCk], for all i, k ∈ {1, . . . n}, of the coupon's payo�s (Ci)

n
i=1. The

diagonal elements of this list are the elements of the list ECi. The input pa-
rameter λ is the sum of the elements in ECi. The last parameter that is used
is ECkmJik. It is a two dimensional list with the expected values E[Ck − Jik],
for all i, k ∈ {1, . . . n}, where the random variables Jik are de�ned as in (3.5).
Since the expected values for i = k are not de�ned (and not used), they are
set to 0 in ECkmJik.

The output of the function TrivialBounds is a list with the trivial bounds
given by theorem 4.1 as elements.

TrivialBounds[λ_, j_] := {PDF[PoissonDistribution[λ], j],

1 - PDF[PoissonDistribution[λ], j]};

The function FirstGeneralBound computes the bound given in theorem 4.3.

FirstGeneralBound[λ_, j_, ECi_, ECkmJik_, n_] :=

(fj[λ, j, j] - fj[λ, j, j + 1])

SumECi[[i]]2 + Sum[ECi[[i]] ECkmJik[[i]][[k]],

{k, Delete[Table[m, {m, 1, n}], i]}], {i, 1, n};

The second bound in chapter 4, given in theorem 4.4, is evaluated by the
function SecondGeneralBound.

SecondGeneralBound[λ_, j_] := λ (fj[λ, j, j] - fj[λ, j, j + 1]);

The function GeneralBound has the bound given in corollary 4.5 as its out-
put.
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GeneralBound[λ_, j_, ECi_, ECkmJik_, n_] :=

(fj[λ, j, j] - fj[λ, j, j + 1]) SumMinECi[[i]],

ECi[[i]]2 + Sum[ECi[[i]] ECkmJik[[i]][[k]],

{k, Delete[Table[m, {m, 1, n}], i]}], {i, 1, n};

The following two functions, PosRelBound and NegRelBound, compute the
bounds given in theorem 4.6 and theorem 4.7, if the coupon's payo�s are
positively or negatively related.

PosRelBound[λ_, j_, ECi_, ECiCk_, n_] :=

(fj[λ, j, j] - fj[λ, j, j + 1]) SumMinECi[[i]],

ECi[[i]]2 + Sum[ECiCk[[i]][[k]] - ECi[[i]] ECi[[k]],

{k, Delete[Table[m, {m, 1, n}], i]}], {i, 1, n};

NegRelBound[λ_, j_, ECi_, ECiCk_, n_] :=

(fj[λ, j, j] - fj[λ, j, j + 1]) SumMinECi[[i]],

ECi[[i]]2 - Sum[ECiCk[[i]][[k]] - ECi[[i]] ECi[[k]],

{k, Delete[Table[m, {m, 1, n}], i]}], {i, 1, n};

The bounds for the point 0 are calculated by the next three functions. The
�rst one, ZeroBound, has the bound given in theorem 4.10 as its output. The
second and third function, NegRelZeroBound and PosRelZeroBound, com-
pute bounds, if the coupon's payo�s are negatively resp. positively related.

ZeroBound[λ_, ECi_, ECkmJik_, n_] := Sum[ECi[[i]] fhat[λ, 0,

(ECi[[i]] + Sum[ECkmJik[[i]][[k]],

{k, Delete[Table[m, {m, 1, n}], i]}])[[1]], n], {i, 1, n}];

PosRelZeroBound[λ_, ECi_, ECiCk_, n_] := SumECi[[i]] fhatλ, 0,

ECi[[i]] + Sum
ECiCk[[i]][[k]] - ECi[[i]] ECi[[k]]

ECi[[i]]
,

{k, Delete[Table[m, {m, 1, n}], i]} [[1]], n, {i, 1, n};
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NegRelZeroBound[λ_, ECi_, ECiCk_, n_] := SumECi[[i]] fhatλ, 0,

ECi[[i]] - Sum
ECiCk[[i]][[k]] - ECi[[i]] ECi[[k]]

ECi[[i]]
,

{k, Delete[Table[m, {m, 1, n}], i]} [[1]], n, {i, 1, n};

7.3 Bounds for the price of a structure �oor

The function PriceBounds calculates the error terms in (5.1). According
to theorem 5.1, j is chosen for the lower and the upper bound before the
sequences (ε̂−(k))nk=0 and (ε̂+(k))nk=0 are de�ned. The input parameters are
the values of f as a list f, the sum of the point probabilities

n∑
k=0

P(X = k)

of the arbitrary random variable sopp, the lower and upper error bounds
for the point probabilities as a two dimensional list ε and n, the number of
coupons. The output is a list with the lower error term as the �rst and the
upper error term as the second element.

PriceBounds[f_, sopp_, ϵ_, n_] :=

Module[{j, ϵhatminus = Table[0, {n + 1}],

ϵhatplus = Table[0, {n + 1}]},

Do[If[ϵ[[1]][[jt + 1]] ≤

(1 - sopp - Sum[ϵ[[1]][[i + 1]], {i, 0, jt - 1}] -

Sum[ϵ[[2]][[i + 1]], {i, jt + 1, n}]) ≤ ϵ[[2]][[jt + 1]], j = jt],

{jt, 0, n}] ;

Do[ϵhatminus[[l + 1]] = If[l < j, ϵ[[1]][[l + 1]],

If[l > j, ϵ[[2]][[l + 1]],

1 - sopp - Sum[ϵ[[1]][[i + 1]], {i, 0, j - 1}] -

Sum[ϵ[[2]][[i + 1]], {i, j + 1, n}] 1]], {l, 0, n}];

Do[If[ϵ[[1]][[jt + 1]] ≤

(1 - sopp - Sum[ϵ[[2]][[i + 1]], {i, 0, jt - 1}] -

Sum[ϵ[[1]][[i + 1]], {i, jt + 1, n}]) ≤ ϵ[[2]][[jt + 1]], j = jt],

{jt, 0, n}] ;
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Do[ϵhatplus[[l + 1]] = If[l < j, ϵ[[2]][[l + 1]],

If[l > j, ϵ[[1]][[l + 1]],

1 - sopp - Sum[ϵ[[2]][[i + 1]], {i, 0, j - 1}] -

Sum[ϵ[[1]][[i + 1]], {i, j + 1, n}]]], {l, 0, n}];

Sum[f[[i + 1]] {ϵhatminus[[i + 1]], ϵhatplus[[i + 1]]}, {i, 0, n}]]

7.4 Approximation of the price for a structure

�oor

The function PriceApproximation uses the functions from the previous sec-
tions and BDMult from [9] to compute a lower and upper bound for the price
of the strucure �oor. It proceeds as described in section 6.2.

The input parameters are the number of coupons n and the parameters of the
coupons S0, T0, P, Blow, Bup, σ as well as the interest rate r. Furthermore
is x the level of the structure �oor and posRel a Boolean value, which should
be set to true if the assumption of positive relation is made. Otherwise it
should be set to false. In the latter case, the general coupling from sec-
tion 6.1 is used for the calculations. The input parameter lim is used by the
function BDMult. For a detailed description of lim see [9].

The output is a list with three elements. The �rst resp. third element is
the lower resp. upper bound for the exact price SF . The second element is
the approximated price SFX .

PriceApproximation[S0_, T0_, P_, Blow_, Bup_, σ_, r_, n_, x_,

posRel_, lim_] :=

Module[{secMomTmp, ECiCk, ECi, λ, gBound, ECkmJik, zBound,

lowerBounds, upperBounds, ppn, fval, sopp, SFX},

secMomTmp = Table[Table[

If[j ≤ i, If[j ⩵ i, BDMult[S0, 0, {T0 + i * P}, P, Blow, Bup,

0, σ, lim], BDMult[S0, 0, {T0 + j * P, T0 + i * P}, P,

Blow, Bup, 0, σ, lim]], 0], {j, 0, n - 1}], {i, 0, n - 1}];

ECiCk = Table[Table[secMomTmp[[Max[i, j]]][[Min[i, j]]], {j, 1, n}],

{i, 1, n}];

ECi = Table[ECiCk[[i]][[i]], {i, 1, n}];

λ = Sum[ECi[[i]], {i, 1, n}];
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IfposRel,

gBound = Table[PosRelBound[λ, j, ECi, ECiCk, n] , {j, 0, n}];

zBound = PosRelZeroBound[λ, ECi, ECiCk, n][[1]],

ECkmJik =

Table

TableIfi ⩵ k, 0, ECi[[k]] +
ECiCk[[i]][[k]]

ECi[[i]]
(1 - 2 ECi[[k]]),

{k, 1, n}, {i, 1, n};

gBound = Table[GeneralBound[λ, j, ECi, ECkmJik, n] , {j, 0, n}];

zBound = ZeroBound[λ, ECi, ECkmJik, n][[1]];

lowerBounds =

Table[- Min[TrivialBounds[λ[[1]], j][[1]], gBound[[j + 1]]],

{j, 0, n}];

upperBounds =

Table[Min[TrivialBounds[λ[[1]], j][[2]], gBound[[j + 1]]],

{j, 0, n}];

lowerBounds[[1]] = Max[lowerBounds[[1]], -zBound];

upperBounds[[1]] = Min[upperBounds[[1]], zBound];

ppn = BDMult[S0, 0, {T0}, n * P, Blow, Bup, 0, σ, lim];

lowerBounds[[n + 1]] =

(ppn - PDF[PoissonDistribution[λ[[1]]], n])[[1]];

upperBounds[[n + 1]] = (ppn - PDF[PoissonDistribution[λ[[1]]], n])[[

1]];

fval = Table[If[i ≥ x, 0, x - i], {i, 0, n}];

sopp = Sum[PDF[PoissonDistribution[λ[[1]]], j], {j, 0, n}];

SFX = Sum[fval[[j + 1]] PDF[PoissonDistribution[λ[[1]]], j],

{j, 0, n}];

Exp[-r * (T0 + n * P)]

{SFX + PriceBounds[fval, sopp, {lowerBounds, upperBounds}, n][[1]],

SFX, SFX + PriceBounds[fval, sopp, {lowerBounds, upperBounds}, n]

[[2]]}
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7.5 Monte Carlo simulation

This section contains four functions, GBMPathCompiled is from [9]. The func-
tions ECkMC and PathTest are modi�ed versions of the functions BDMultMC
and PartialBarrierTest in [9].

ECkMC approximates the probabilities in (6.8). If the parameter k is set to 0,
the second probability on the right hand side is calculated. Otherwise the
function computes the �rst probability, with k as in the input parameter k.
The other parameters are the parameters of the coupons S0, T0, P, Blow, Bup
and σ, the number of paths that should be evaluated pathNum, the number
of points that are evaluated per path dt and fct. The last parameter is a
list with the elements of Ĩk, de�ned as in (6.7).

The function pathTest is used by ECkMC to evaluate, if a path is counted
as a valid path or not. The output is a Boolean value with true for a valid
path and false otherwise.

The fourth function PosRelTest uses the three functions above to test,
whether a sequence of payo�s of coupons is positively related or not. To
do that, it generates all possible functions φ by generating sets as de�ned
in (6.7). The input parameters are again the number of coupons n, the pa-
rameters of the coupons S0, T0, P, Blow, Bup, σ the number of paths that
should be evaluated pathNum, the number of points that are evaluated per
path dt and the expected values of the coupon's payo�s as a list ECi. The
output is a list with the number of functions φ as the �rst element and the
number of this functions that ful�ll condition (6.5) as the second element.

GBMPathCompiled =

Compile[{{S0, _Real}, {drift, _Real}, {diff, _Real},

{nSteps, _Integer}}, FoldList[(#1 drift Exp[diff #2]) &,

S0, RandomVariate[NormalDistribution[0, 1], nSteps]]];

ECkMC[S0_, T0_, P_, Blow_, Bup_, σ_, n_, pathNum_, dt_, fct_, k_] :=

Module[{T, drift, diff, paths, τ, remainingPaths, value, j},

T = T0 + n * P;

{drift, diff} = {Exp[(-σ ^2 / 2) dt], diff = σ Sqrt[dt]};

paths = Table[GBMPathCompiled[S0, drift, diff, (T / dt)], {pathNum}];
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τ = Table[{Floor[(T0 + (i - 1) * P) / dt], Floor[(T0 + i * P) / dt]},

{i, 1, n}];

remainingPaths = Select[paths, PathTest[#, τ, Blow, Bup, fct, k] &];

value = N
Length[remainingPaths]

pathNum
;

PathTest[path_, τ_, L_, U_, fct_, k_] :=

Module[{pathIndex = False, index, min, max, tmpFct},

Do[

index = True;

If[k > 0, tmpFct = Append[fct[[j]], k], tmpFct = fct[[j]]];

Do[

min =

Min[path[[τ[[tmpFct[[i]]]][[1]] ;; τ[[tmpFct[[i]]]][[2]]]]];

max =

Max[path[[τ[[tmpFct[[i]]]][[1]] ;; τ[[tmpFct[[i]]]][[2]]]]];

If[Or[min < L, max > U], index = False];

, {i, 1, Length[tmpFct]}];

If[index, pathIndex = True];

, {j, 1, Length[fct]}];

pathIndex

];

PosRelTest[S0_, T0_, P_, Blow_, Bup_, σ_, ECi_, n_, pathNum_, dt_] :=

Module[{index, points, permutations, functions, results, ϕ,

functionResults},

index = Table[i, {i, 1, n - 1}];

points = Drop[DeleteDuplicates[Permutations[index, n - 1],

Union[#1, #2] ⩵ #1 &], 1];

permutations =

Drop[DeleteDuplicates[Permutations[points, n - 1],

Union[#1, #2] ⩵ #1 &], 1];
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functions =

Table[If[i > n - 1, DeleteDuplicates[permutations[[i]],

Intersection[#1, #2] == #1 &], permutations[[i]]],

{i, 1, Length[permutations]}];

functions = DeleteDuplicates[functions];

results = Table[Table[0, {i, 1, Length[functions]}], {k, 1, n}];

Do

ϕ = functions +

CeilingFloor functions
k

, n - 1

n - 1
;

results[[k]] =

Table[

Boole[

(ECkMC[S0, T0, P, Blow, Bup, σ, n, pathNum, dt, ϕ[[i]], k] -

ECkMC[S0, T0, P, Blow, Bup, σ, n, pathNum, dt, ϕ[[i]], 0]

ECi[[k]])[[1]] ≥ 0], {i, 1, Length[ϕ]}];

, {k, 1, n};

functionResults = Sum[results[[k]], {k, 1, n}];

{Length[functions], Sum[Boole[functionResults[[ϕ]] ⩵ n],

{ϕ, 1, Length[functions]}]}
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Appendix A

Appendix

A.1 Corrected function BDMult

The corrected function BDMult from [9] for the calculation of BD as described
in theorem 2.16 is given here. Originally the indicator function in (2.9) was
left out and the integration boundaries of y in (2.8) were changed.

Since theorem 2.16 uses only parts of this code, the parts that are not used
are left out. Also the auxiliary functions, which weren't changed (namely τj,
g0, gj) are omitted. They can be found in the appendix of [9].

The following two functions h0 and hj are the modi�ed auxiliary functions,
which are used by BDMult.

hj[kj__, xj__, yj__, x_, τ_, τj_, p_, j_, α_, L_, n_] :=

Ifj ⩵ 0, h0[kj, xj, yj, x, τ, τj, p, j, n, α, L],

hj[kj, xj, yj, x, τ, τj, p, j, α, L, n] =

Module{yjp1 = yj〚j + 1〛, τjnmj = τj〚n - j〛},

1

2 π

Exp-
yjp12

2
 *

Boole-x ≤ yjp1 2 (τ - (τjnmj + p)) ≤ L - x *

gjkj, xj, Most[yj], x + yjp1 2 (τ - (τjnmj + p)) ,

τjnmj + p, τj, p, j, α, L, n;
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h0[k1_, x1_, y1_, x_, τ_, τj_, p_, 0, n_, α_, L_] :=

1

2 π

Exp-
y12

2
 *

Boole-x ≤ y1[[1]] 2 (τ - (τj〚n - 0〛 + p)) ≤ L - x *

g0k1, x1, 0, x + y1 2 (τ - (τj〚n - 0〛 + p)) , τj〚n - 0〛 + p,

τ, p, 0, α, L;

Next, the modi�ed function BDMult is given.

BDMult[S_, t_, Ti_, P_, Blow_, Bup_, r_, σ_, lim_] :=

Module{n, x, τ, α, β, p, L, tj, gxvars, gxrange, gyvars,

gyrange, gkvars, gkrange, hxvars, hxrange, hyvars, hyrange,

hkvars, hkrange, expression0, expression1, j, value, i, k},

n = Length[Ti];

x = NLog
S

Blow
; τ =

1.

2.
σ2 (Ti〚n〛 + P - t);

α = -
1.

2.

2. r

σ2
- 1 ; β = -

2. r

σ2
- α2; p =

σ2 P

2.
;

L = NLog
Bup

Blow
; tj = 1. / 2. * σ ^2 * τj[Ti];

If[Length[Pick[#, tj[[n - (# - 1)]] + p < τ < If[# ⩵ n, Infinity,

tj[[n - (#)]]] & /@ #] &[Range[Length[tj]]] - 1] != 0,

j = Pick[#, tj[[n - (# - 1)]] + p < τ < If[# ⩵ n, Infinity,

tj[[n - (#)]]] & /@ #] &[Range[Length[tj]]] - 1,

j = Pick[#, tj[[n - (#)]] <= τ ≤ tj[[n - (#)]] + p & /@ #] &[

Range[0, Length[tj] - 1]]];

j = j[[1]];

hxvars = Table[Symbol["x" <> ToString[i]], {i, 1, j + 1}];

hxrange = Table[{hxvars[[i]], 0, L}, {i, 1, j + 1}];

hyvars = Table[Symbol["y" <> ToString[i]], {i, 1, j + 1}];
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hyrange =

AppendTableIf(tj〚n - k〛 - (tj〚n - k + 1〛 + p)) ⩵ 0,

{hyvars[[k]], -∞, ∞},

hyvars[[k]], -
L

2 (tj〚n - k〛 - (tj〚n - k + 1〛 + p))
,

L

2 (tj〚n - k〛 - (tj〚n - k + 1〛 + p))
, {k, 1, j},

hyvars[[j + 1]], -
x

σ Ti[[n - j]]
,

L - x

σ Ti[[n - j]]
;

hkvars = Table[Symbol["k" <> ToString[i]], {i, 1, j + 1}];

hkrange = Table[{hkvars[[i]], 0, lim}, {i, 1, j + 1}];

If[tj[[n - j]] ≤ τ && tj[[n - j]] + p >= τ,

If[j ⩵ 0,

expression0 =

Sum[gj[gkvars, gxvars, gyvars, x, τ, tj, p, j, α, L, n],

Evaluate[Sequence @@ gkrange]];

expression1 = Integrate[expression0, Sequence @@ gxrange];

value = Re[Exp[α * x + β * τ] * expression1],

expression0 =

Sum[gj[gkvars, gxvars, gyvars, x, τ, tj, p, j, α, L, n],

Evaluate[Sequence @@ gkrange]];

expression1 = Integrate[expression0, Sequence @@ gxrange];

value = Re[Exp[α * x + β * τ] * NIntegrate[expression1,

Evaluate[Sequence @@ gyrange],

Method → {Automatic, "SymbolicProcessing" → 0}]]],

expression0 =

Sum[hj[hkvars, hxvars, hyvars, x, τ, tj, p, j, α, L, n],

Evaluate[Sequence @@ hkrange]];

expression1 = Integrate[expression0,

Evaluate[Sequence @@ hxrange]];

value = Re[Exp[α * x + β * τ] * NIntegrate[expression1,

Evaluate[Sequence @@ hyrange],

Method → {Automatic, "SymbolicProcessing" → 0}]]]
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