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Abstract

The aim of the thesis is to combine discrete and continuous data in an algorithm to

detect complex activity patterns such as tooth brushing, food preparation or house-

hold work. These patterns are of highly complex nature, meaning they consist of

many sub-activities.

Food preparation, for instance consists of sub-activities like 'take pans out of the

cupboard','take food out of the refrigerator', 'cutting', 'cooking' and others. The

complicated parts of this task are, that the food preparation not only di�ers in the

order of the sub-activities, but also in the food which is prepared. Envision the

preparation of a three-course menu in comparison to preparing a breakfast. This

two activities di�er a lot in needed duration and sub-activities. The human activity

recognition system built in this thesis can handle these di�erences.

The InvenSense MotionFitTM Software Development Kit (SDK) is used to record

data with the MPU-9150 sensor. The MPU-9150 sensor is a nine-axis MotionTrack-

ing device, which is optimized for those kind of applications in this thesis and is

normally used in mobile devices.[20] The wearable sensor MPU-9150 is able to send

accelerometer and gyrometer data, which are later used to detect human activities

in real environments.

The frequency of the annotated data is 50Hz in all experiments. The processed ac-

tivities are 'Comb hair','Wash face', 'Wash hands', 'Tooth brushing', 'Make bed',

'Change clothes', 'Put roller blinds up/down', 'Prepare food', 'Eat' and 'Open/close

window'. Inbetween this activities a 'NULL'-class is performed, which describes the

preparation for the next activity or the closure of the previous activity. This raw

data are preprocessed via a shifted window and di�erent features. In this thesis the

window length is set to 50, equal the sampling frequency and the shift is accom-

plished with an 50% overlap. The used features are mean, variance, correlation and

fast Fourier transformation based features. The fast Fourier transformation bases

features are spectral entropy and energy.

The pattern recognition is done in MATLAB using the PMTK3 toolbox from Mur-

phy et al. [22] with real annotated data. The used classi�cation algorithms are

from supervised learning structure, meaning that they need labeled data for train-

ing. This circumstances are ful�lled for the data used in this thesis. The classi�-

cation algorithms that are used during the experimentation are continuous Hidden

Markov Model (cHMM) and k-nearest-neighbors (kNN) classi�cation. The classi-

�cation methods are described in detail and a comparison is done to discuss the

di�erences between the results. In the end the cHMM leads to the more accurate

outcomes in comparison to the kNN classi�er.
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Daily activity detection works well in the context of ambient assisted living. It can

be concluded that, the cHMM is the most proper method and comes to the best

solutions. In contrast the kNN classi�cation is much worse, because of its simplifying

assumption. Due to that the kNN classi�er is not the best classi�er to use, but for

the simpleness, acceptable results can be expected.

After validation of the model the di�erent features combinations are compared to each

other to �nd the most suitable combination. Other experiments focus on di�erent

training and test sets, the best number of sensors, the impact of �lters, the impact of

activity division and the application of discrete and continuous data. The experiments

show that the accelerometer data on their own lead to one of the best results, whereas

the �lters as well as activity division do not lead to a qualitative improvement.

The combination of discrete and continuous data improves the results a lot and leads

to di�erent activities with highest recall and precision. The precision for 'Wash hands'

is with a value of 100% the best in the continuous data case and 'Tooth brushing' in

the combined case, also with 100%. 'Eat' has one of the best recall values with 97.13%

in the continuous case, whereas the improvement in the combined case can be seen on

the recall value 100% for 'Wash hands', 'Make bed', 'Put blinds up/down', 'Prepare

food', 'Eat' and 'Open/close window'. Overall the system leads to reasonable outputs

even with a relative small dataset.
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Zusammenfassung

Das Ziel dieser Arbeit ist kontinuierliche und diskrete Daten in einem Algorithmus

zu vereinen um komplexe Aktivitäten-Muster zu erkennen, wie Zähne putzen, Zube-

reitung von Essen oder Hausarbeit. Diese Muster sind oft sehr komplex, da sie aus

vielen Untermustern bestehen.

Das Zubereiten von Essen zum Beispiel, besteht aus Untermustern wie 'Töpfe aus dem

Schrank nehmen', 'Essen aus dem Kühlschrank nehmen', 'Schneiden', 'Kochen' und

andere. Der schwierige Teil dieser Aufgabe ist, dass die Essenszubereitung sich nicht

nur in der Reihenfolge der Untermuster unterscheidet, sondern auch in den unter-

schiedlichen Speisen die zubereitet werden. Man stelle sich den Unterschied zwischen

der Vorbereitung eines Drei-Gänge-Menüs zu einem Frühstück vor. Diese beiden Ak-

tivitäten unterscheiden sich enorm in der Vorbereitungsdauer und den Untermus-

tern. Das Erkennungssystem welches innerhalb dieser Arbeit konstruiert wurde und

menschliche Aktivitäten erkennt, kann mit dieser Art von Unterschieden umgehen.

Das InvenSense MotionFitTM Software Development Kit (SDK) wird verwendet um

die MPU-9150 Sensordaten aufzuzeichnen. Der MPU-9150 Sensor ist ein neun-achsiges

MotionTracking Gerät, welches für diese Art von Anwendungen, wie in dieser Arbeit

benötigt, optimiert wurde. Dieser tragbare Sensor kann Beschleunigungssensor- und

Gyrometer-Daten senden, welche später herangezogen werden um menschliche Akti-

vitäten in realen Umgebungen zu erkennen.

Die Frequenz der annotierten Daten ist in allen Experimenten auf 50Hz gesetzt wor-

den. Die aufgenommenen Aktivitäten sind 'Haare kämmen', 'Gesicht waschen', 'Hän-

de waschen', 'Zähne putzen', 'Das Bett machen', 'Kleidung wechseln', 'Rollos rauf/ run-

ter ziehen', 'Essen zubereiten', 'Essen' und 'Fenster schlieÿen/ ö�nen'. Zwischen

diesen Aktivitäten wird eine 'NULL'-Klasse durchgeführt, welche die Vorbereitung

bzw. Nachbereitung der nächsten bzw. vorigen Aktivität beschreibt. Diese rohen Da-

ten werden mithilfe eines verschiebbaren Fensters und verschiedener Features vorver-

arbeitet. In dieser Arbeit beträgt die Fensterlänge 50, genauso wie die Frequenz beim

Aufnehmen. Die Verschiebung des Fensters wird mit einer 50%-Überlappung durch-

geführt. Die verwendeten Features sind Mittelwert, Varianz, Korrelation und die auf

schnelle Fourier-Transformation beruhenden Features, spektrale Entropie und Ener-

gie.

Die Mustererkennung wird mit MATLAB und der von Murphy et al. zur Verfü-

gung gestellten Toolbox PMTK3 [22] bewerkstelligt. Die verwendeten Klassi�kations-

Algorithmen sind supervised Lernmethoden, dies bedeutet, sie brauchen gelabelte

Daten für das Training. Dieser Umstand wird von den Daten in dieser Arbeit er-

füllt. Die Klassi�kations-Algorithmen die während der Experimente verwendet wer-
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den sind einerseits kontinuierliche Hidden Markov Modelle (cHMM) und andererseits

k-nächste-Nachbarn (kNN) Klassi�katoren. Die Klassi�kationsmethoden werden im

Detail beschrieben und ein Vergleich wird durchgeführt um Unterschiede zu erör-

tern. Die Experimente zeigen schlussendlich, dass das cHMM zu besseren Resultaten

führt, im Gegensatz zu dem kNN Klassi�kator.

Die Erkennung von Alltagsaktivitäten funktioniert gut im Zusammenhang mit Am-

bient Assisted Living. Es kann gefolgert werden, dass cHMM die geeignetste Methode

ist und zu den besten Ergebnissen führt. Verhältnismäÿig ist der kNN Klassi�kator

viel schlechter aufgrund seiner einfachen Annahme. Deshalb ist der kNN Klassi�ka-

tor nicht der beste Klassi�kator, aber trotz seiner Einfachheit können annehmbare

Ergebnisse erwartet werden.

Nach der Validierung des Models sind verschiedene Features Kombinationen vergli-

chen worden um die geeignetste Kombination zu �nden. Andere Experimente konzen-

trieren sich auf die Verwendung von verschiedenen Training- und Test-Sets, die beste

Anzahl von Sensoren, den Ein�uss von Filtern, den Ein�uss der Teilung von Aktivitä-

ten und die Anwendung von diskreten und kontinuierlichen Daten. Die Experimente

zeigen, dass die Bewegungssensor-Daten alleine, die besten Resultate liefert, während

Filter und Teilung von Aktivitäten keine qualitative Verbesserung bringen.

Die Kombination von diskreten und kontinuierlichen Daten verbessert die Resultate

erheblich und führt zu verschiedenen Aktivitäten mit bester Genauigkeit und Tre�er-

quote. Die Genauigkeit für 'Hände waschen' ist mit 100% die beste Aktivität für konti-

nuierliche Daten und 'Zähne putzen' 100% für den kombinierten Fall. 'Essen' hat eine

der besten Tre�erquoten mit 97.13% im kontinuierlichen Fall, wohingegen der kom-

binierte Fall eine Verbesserung nach sich zieht mit 100% für 'Hände waschen', 'Das

Bett machen', 'Rollos rauf/ runter ziehen', 'Essen zubereiten', 'Essen' und 'Fenster

ö�nen/ schlieÿen'. Im Allgemeinen liefert das System vertretbare Resultate sogar mit

einem relativ kleinen Datensatz.
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1. Introduction

This thesis deals with activity pattern recognition based on continuous sensor data using the

MPU9150 sensor. Activity recognition is currently a subject of intensive research, because of

it's importance in many di�erent �elds. The motivation of this work in speci�c is the growing

generation of older adults, and the need to provide them a secure and appropriate living stan-

dard. The continuous sensor data are used to recognize activities with basic machine learning

algorithms. This algorithm analysis comprises the continuous Hidden Markov Model and the k-

nearest-neighbors (kNN) classi�cation. These classi�cation algorithms are described, compared

against each other and their di�erent parameters are analyzed.

1.1. Motivation

The motivation of the thesis presented here is mainly driven by the demographic changes and

the need for ambient assisted technologies to support a longer independent living of the older

adults.[29]

The focus lies on caring for older adults, which are independent enough to live on their own, but

desire to feel more secure within their four walls. The security factor comprises, among other

things, the sending of help in case of an accident, warning from an open window or switch o�

stove before leaving the house for a longer period, inform to take adequate clothing during an

walk and knowing preferences. This factors are treated in Ambient Assisted Living (AAL) tech-

nologies and Human activity recognition can handle and meet the demand of the older adults

with those kind of needs.[39]

AAL has a wide range of applications and research topics and becomes more and more impor-

tant in society. The AAL topics includes 'AAL at home', 'AAL on-the-move' over 'AAL at

community' to 'AAL at work'.[39] This topics are from high importance for older adults. Due to

the demographic change the mentioned needs concern a higher amount of people and will even

increase in the next decades.

The demographic changes also lead to more people su�ering from Alzheimer's and Parkinson's

disease. For example, the challenge of the increasing number of dementia patients can be ap-

proached by Ambient Assisted Living Technologies like activity recognition, as some tasks of

care givers can be eliminated or can be performed easier. This includes, among other things,

sensors which control kitchen appliances like stoves, and guarantee the appropriate usage due to

activity recognition.
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1.1.1. Demographic Changes

The population follows the trend of longer life expectancy leading to a greater demand of caring

for older adults. The average life expectancy for women living in Austria was in 2006 82.7 years

and for men 77.1 years. A sixty year old woman has 2006 a further life expectancy of 24.9 years

and for a sixty year old man it amounts 21.0 years. The life expectancy of people in older adult

age has been increased in the last decades.

This trend is an advantage for men and women, meaning that the further life expectancy for

sixty-year-old increased by 6.2 years for men and by 6.1 years for women since 1970. Due to the

higher life expectancy the statistical probability to reach an older age has increased.

The probability of a new born girl to reach age 60 lies at 94% and for newborn boys at 89%.

This values will increase till 2030 to 97% and 95%, respectively. The probability of reaching the

age of 85 has increased from 21% to 52% between 1970 to 2006. If the positive trend of the last

decades continues in diluted form a newborn girl in 2030 will reach at least the age of 85 with

73%.[38]

The share of people over 65 years on the whole population in Austria has been 14, 9% in 1990

and 18, 2% in 2013. This trend would lead to 23, 6% of the world population being at least 65

year old in 2030. The life expectancy of a newborn girl changed from 78.9 years to 83.6 years

over the course from 1970 to 2013 and will increase to 86.7 years till 2030. For a newborn boy

72.2, 78.5 and 82.3, respectively.[6]

In �gure 1 the population pyramid of Austria from 1952, 2014 and 2075 can be seen and shows

the amount of di�erent ages on the whole population. The trend in the �gures shows a prognoses

of a greater population growth with a higher percentage of older adults.[7]

AGE AGE AGE

men men menwomen women women

1952 2014 2075

Figure 1: Population Pyramid 1952 - 2014 - 2075 [7]
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The increasing by aging population leads to the following challenges for society:

• A further increase in diseases like Alzheimer's and Parkinson's disease.

• A further increase in health care costs, that is the reason why the current model will be

strained.

• shortage of care givers, meaning less professionals, leading to a responsibility of the family

members resulting in emotional distress and physical health problems.

• dependency, there will be a rise in individuals needing care.

• larger impact on society, meaning it is not possible for society to pay for older adults to live

in assisted living. Employers will have losses due to working family care givers absenteeism.

These facts and challenges underline the necessity of more Ambient Assisted Living technologies,

enable older adults to life longer independently in their own home.[34]

1.1.2. Ambient Assisted Living

Ambient Assisted Living (AAL) can be de�ned in the following way:

�Cultivating the development of innovative products, services and systems for ageing well at

home, in the community and at work, accordingly improving quality of life, autonomy, partici-

pation in social life, skills and reducing the costs of health and social care.�[39]

AAL for persons

AAL

AAL at community AAL at work

AAL at home AAL on-the-move

Figure 2: AAL classi�cation

For AAL, a system is demanded which can be adapted to di�erent living conditions like reha-

bilitation after a hospital treatment or degeneration and is useable in an easy way. The users of

the system are primary older adults, but also care givers, who might use services from their own

home.[39]

Another important aspect, which must be taken into account, is the variety of locations of as-

sistance. For example the type of living locations1, people on the move2, visiting locations3 or

location of people4.
1like family home, home for seniors, nursing home, etc.
2public transport, walking, car driving, etc.
3homes of families, workplaces, theater, etc.
4family, neighbors professional carers
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The AAL support can be classi�ed in

• 'Ageing well at home': Technologies enabling a healthier, higher quality of life, with a high

degree of independence and autonomy.

• 'Ageing well in the community ': Technologies to stay socially active, oriented toward social

networking and access to public services, reducing social isolation.

• 'Ageing well at work ': Technologies enabling to remain productive for a longer period.

This gives three main topics in AAL: AAL for persons over AAL at community to AAL at work.

AAL for persons consists of AAL at home and AAL on-the-move. The �eld of AAL for persons

contains ideas and technologies for health, rehabilitation and care. This technologies makes it

easier to cope with impairments, monitor personal activity, ensure the security of older adults and

reduce social isolation. AAL in the community covers, among other things, the social inclusion,

entertainment, leisure and mobility aspect. AAL at work includes all aspects of supporting

working-life, access to the working space and assuring environmental working conditions. Beside

the rules regulating the architecture of the working environment, standards and laws de�ne

parameters related to other environmental factors like temperature, light and change of air and

position of work-tools.[39] An overview of the AAL classi�cation can be seen in �gure 2.

1.1.3. Ambient Assisted Technologies

Ambient Assisted Technologies shall be embedded5, distributed throughout the environment,

personalized, adaptive and anticipating users' desires. The applications in the AAL �eld op-

erate within the framework of the technologies sensing, reasoning, acting, communication and

interaction.[39]

Sensing comprises sensors on-body and on-applications or in-applications for monitoring persons

and ensure safety and security within the own home. This can, for example, be done by a gas

sensor. One challenge is the creation of low power and sustainable sensors to minimize energy

consumption.[39]

In this �eld Smart Homes are from high importance, actuators and sensors are used to assist

older adults in their homes. For example, researchers at Washington State University within

the CASAS [33] project tried to provide a noninvasive environment system to assist users with

dementia. Another group of researchers at Georgia Tech within the Aware Home project [1]

tried to help older adults with a variety of sensors such as smart �oor sensors as well as assisting

robots.[34]

The other huge topic in the �eld of AAL is wearable sensors. Many di�erent sensors are used in

this context like accelerometer, gyrometer and others. In this thesis accelerometer and gyrometer

are used to detect human activities. Health status can be detected with indicators like blood

glucose, blood pressure, and cardiac activity. This indicators can be measured through wearable

5noninvasive or invisible devices
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sensors using techniques such as infrared sensing and optical sensing.[34]

Reasoning comprises the collection of data and further processing and analyzing it. The process-

ing of the data is important to make it possible to handle imperfect information and imperfect

temporal information. The analysis also comprises the transformation of data into knowledge.

This can be divided into sections of emergency situations, activity of daily living, motion, phys-

iological behavior and mental and physical constitutions.[39]

Human activity recognition is an important part in reasoning, therefore patterns must be found

describing for example jogging, running or walking. In mobile activity recognition, data from

accelerometer and gyrometer are stored and preprocessed with �lters for high frequencies, for

instance. After the preprocessing step features like mean, variance, fast Fourier transform (FFT)

coe�cients and others are extracted over a speci�c window, compare [31] and section 5. The

classi�cation predicts the activity to the features.[34]

In ambient activity recognition a whole complex of sensors is used to detect activities with the

help of supervised algorithms, compare section 3. Hidden Markov Models are very popular for

ambient activity recognition.[34]

For anomaly detection clustering-based methods, statistical methods and information theoretic

methods are used, among others.[11, 34]

Acting makes an automated control through actuators and feedback possible, comprising home

automation systems. Household robotic appliances, mechatronic robotic devices and posture and

movement support are some examples.[39] Robotics is within these topic of acting and can assist

with activities like feeding, dressing, preparing food, house keeping, social communication and

new learning. Dusty robots [44] help older adults by grabbing and �nding dropped objects from

�oor, for instance.[34]

Communication is the connection of sensors and actuators to reasoning systems. It includes for

example 'a person moving from home to a public space with a vehicle'.[39]

Interaction of people with a service or a system is another research topic, containing initiative

of the user, design processes, modality and connectivity.[39]

In the last part of this section some concrete applications are described. In health and activity

monitoring, daily activities are monitored to draw conclusions to health status and to lower

the burden of care givers. For example CASAS [33] monitors activities of daily living to see

consistency in daily routines. Tele-health devices to monitor vital signs are also important,

AMON [5] is such a wearable health monitoring system, for instance. Fall detection methods

which are another great �eld in AAL can be wearable device based, ambiance sensor based or

camera based.[26] Wearable fall detection uses accelerometer and gyrometer data to conclude

on position and motion.[25, 43] Ambient fall detections uses pressure sensors and vibration

detection.[3] The vision based fall detection uses video features.[12] Wandering prevention for
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dementia patients are provided for example by OutCare, which informs the care givers when

older adults don't walk on their daily routes.[42] Activity reminders for older adults are also

from great importance for care givers, like reminding to take medication. One system for this

demand is provided by Schulze named MEMOS.[36, 34]

1.2. Scope of the thesis

Human Activity recognition based on accelerometer and gyrometer sensor data is an important

task in the �eld of AAL technologies. The thesis focuses on the recognition of complex daily

activities like tooth brushing, dinner preparation, changing clothes and others. The annotated

data is recorded with the MPU-9150 sensor and the InvenSense MotionFitTM Software Develop-

ment Kit (SDK). Supervised classi�cation algorithms, namely continuous Hidden Markov Model

(HMM) and k-nearest neighbors (kNN) classi�cation, are used to detect the di�erent activities.

The main also lies on the comparison of the di�erent parameters in the algorithms and the per-

formance of these algorithms.

The current attempts to detect human behavior and activity can be classi�ed by the type of the

sensors used (1) body worn sensors, (2) video cameras and (3) domotic sensor networks. This

work concentrates on body worn sensors.[15] The data gained from body worn sensors consist of

accelerometer and gyrometer data.

In the literature the importance of continuous Hidden Markov Models is always highlighted and

the results in this study show the good performance of this model.

1.3. Aim

The aim of this thesis is to compare and �nd out the best algorithm and parameter combinations

to reach an appropriate result within the activity recognition process. Important in this regard

are annotated data, size of dataset, but also the used sensors and combinations of continuous

and discrete data.
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2. Related Work

There are many research studies over human activity recognition in di�erent settings. [8, 35, 18,

37, 23] Most of these works are based on acceleration data and tries to recognize daily activities

like [8, 35, 18, 23].

Each study uses di�erent sample frequencies for example Bao et al.[8] used a sample frequency

of 76.25Hz, Ravi et al.[35] as well as Shoaib et al.[37] used 50Hz and Huynh[18] used di�erent

frequency for various experiments, for example raw acceleration data of 80Hz. To get a hint

which frequency is accurate in the context of daily activity recognition, but still doesn't need too

much memory, Khusainov et al.[23] compared di�erent sampling rates and came to the conclu-

sion that most of the body movements are contained in frequency below 20Hz. The classi�cation

accuracy also stays stable starting from 20Hz. Most of the accuracy changes stay between 10Hz

and 20Hz.[23] The used sample frequency of 50Hz in this thesis is more than enough to get

appropriate results, because of the explained reasons above.

In [8] mean, energy, frequency-domain entropy, and correlation features were extracted from the

data and analyzed via decision table, instance-based learning, decision tree (C4.5), and Naive-

Bayes classi�ers included in Waikato Environment for Knowledge Analysis (WEKA)[14]. They

analyzed twenty activities like eating, bicycling, reading, walking or running.

In [35] mean, standard deviation, energy and correlation are used to analyze the data with base-

level classi�ers like decision tables, decision trees (C4.5), k-nearest neighbors, SVM and Naive

Bayes and meta-level classi�ers like Boosting, Bagging, Plurality Voting, Stacking with Ordinary-

Decision trees (ODTs) and Stacking with Meta-Decision trees (MDTs) available for WEKA. With

these classi�ers activities like standing, walking, running, climbing up/down stairs, sit-ups, vac-

uuming and brushing teeth are recognized without noise �ltering of the data.

In [18] more complex activities are analyzed like shopping and doing housework. The features to

classify the activities were mean, variance, energy, spectral entropy and discrete FFT coe�cients

and classi�ers like Naive-Bayes are used.

In [37] a combination of accelerometer, gyrometer and magnetometer data from a smart-phone

sensor is recorded and later six di�erent activities with seven classi�ers are analyzed using

WEKA. Walk downstairs, running, sitting, standing, walk upstairs and walking are analyzed

with classi�ers like Naive-Bayes, Support Vector Machines, k-Nearest-Neighbors. Shoaib et

al.[37] show that the combination of accelerometer and gyrometer completes the system and

gives better results during physical activity recognition. The feature calculation is kept as sim-

ple as possible and only two time domain features are considered. They handle four dimensions
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x, y, z and the magnitude
√
x2 + y2 + z2 and compute mean and standard deviation.

On top of the work from Shoaib et al.[37] the frequency domain features are included within this

research study and the aim is to �nd out the performance including more complex activities.

In [4] a feature dataset is provided which is suitable for evaluating the model in this thesis.

They recorded eight activities from a group of 30 persons with a sampling rate from 50Hz, which

equals the sampling rate of the recording in this thesis. The six activities consist of standing,

sitting, laying down, walking, walking downstairs and upstairs The volunteers were instructed to

perform all activities twice wearing a smartphone on their waste, that recorded the accelerometer

and gyrometer data.

They calculated a bundle of 561 features and experimented mainly with a multi-class Support

Vector Machine, showing an overall accuracy of 96% for test data consisting of 2947 patterns.[4]

This results could not be reached with the model in this thesis, as the recorded data set is much

smaller. The experiments in this study are based on feature data from [4] and only deals with a

small part of the whole features.

This thesis is mainly based on the work from Bulling et al. [10]. They used body-worn ac-

celerometer and gyrometer, to detect hand gestures which where commonly used in daily living

activities.

They recorded 12 activities: opening a window, closing a window, watering a plant, turning book

pages, drinking from a bottle, cutting with a knife, chopping with a knife, stirring in a bowl,

forehand, backhand and smash. Additionally, no speci�c activities are performed inbetween so

called 'NULL'-class. They used data from two persons with three sensors placed on their arms in

di�erent heights. They are placed on the top of the right hand, the outer side of the right lower

and upper arm. The data comes from a three-axis accelerometer and a two-axis gyrometer, both

recording annotated motion data at a sampling rate of 32Hz.[10]

The best results in [10] came from the combination of features mean, variance, zero crossing rate

(ZCR) and mean crossing rate (MCR), this output �ts quite well with the experience in this

thesis. The combination of all positions upper arm, lower arm and hand leads to the most exact

results.

In this thesis only one position is used with one sensor. This is why the results for the hand

sensors are compared. One of the most appropriate algorithm methods is the HMM [10], also

this work comes to this conclusion, but in this thesis only the comparison to one other model is

performed.
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3. Models

In this work supervised learning methods are used to analyze and classify daily activities using

data recorded from wearable sensors. The applied supervised models are a continuous Hidden

Markov Model (cHMM) and a k-nearest neighbors (kNN) classi�er.

Annotated training data are used to learn the supervised models. The approach is to analyze

the data with cHMM and kNN classi�ers. By comparison unsupervised learning methods deploy

a di�erent procedure to handle data.

In supervised learning methods the inputs to be learned are labeled and the output is de�ned.

This makes supervised learning a very accurate method if a su�cient large dataset is provided.

The training data are used to learn the model, which means deriving of the model parameter

values. Afterward the model should produce correct outputs for any new input.[13]

In comparison, unsupervised learning methods get input data for training, which is not labeled.

This unsupervised methods intend to build statistical representations of the data. The represen-

tations can be correlations, clusters and similarities between data over statistical probabilities,

for instance. Those can be used for decision making or prediction of future inputs.[13]

Supervised and unsupervised learning methods work with non-labeled data during application of

the trained model. Therefore the di�erence between these models focuses on the learning of the

model, meaning the training part. There is a distinction between generative and discriminative

models within the learning methods.

3.1. Generative vs. Discriminative Models

The aim behind classi�cation is to assign each input vector x to one of di�erent categories, each

of these categories are labels {yi|i ∈ C}, where C is the set of categories. The input data x are

called 'attributes' and the output data y the 'labels'. The joint probability distribution P (x, y)

gives a summary over the situation. To determinate the conditional probability P (y | x) from a

training dataset is the problem which must be solved and further gives a complete probabilistic

description.[9]

In learning algorithms generative and discriminative models have to be distinguished. Generative

models learn the joint probability P (x, y) and the discriminative model learn the conditional

probability P (y | x).[28]

3.1.1. Generative Models

In generative models the problem of determining the density P (y | x) for each label y is solved

individually and the prior class probabilities P (y) is inferred. The posterior label probabilities
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P (y | x) can be found by Bayes theorem

P (y|x) =
P (x, y)

P (x)
=
P (x|y)P (y)

P (x)
(1)

for each label y. Decision theory helps to �nd the correct label to each input x with the conditional

probability. Generative models model the distribution of input and output data employing

implicit or explicit models.[9]

3.1.2. Discriminative Models

For discriminative models the approach is di�erent, �rst the posterior label probability P (y|x) is

learned and with decision theory new x are assigned to one of the labels. Discriminative models

model the conditional probabilities directly. An approach to calculate the conditional probability

is to use the functional form of the model and to determine its parameters directly by means of

using maximum likelihood. The aim is to maximize a likelihood function de�ned through the

conditional distribution P (y|x), representing discriminative training.[9]

3.1.3. Difference between generative and discriminative models

As already pointed out generative models learn the joint probability P (x, y) and the discrimina-

tive model learns the conditional probability P (y | x). In generative models the joint probability

distribution is used to calculate the conditional probability via Bayes theorem. Hence the dis-

criminative model is more straightforward than the generative model.

The generative model has a higher asymptotic error than the discriminative model, but ap-

proaches it faster. In some cases with large datasets the generative model is more accurate due

to reaching the asymptotic error beforehand. In other cases the degenerative model is the right

choice as it reaches a lower asymptotic error than the generative model.[28] Another advantage

of the discriminative approach is that there are fewer parameters to be determined.[9]
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3.2. Hidden Markov Model

In this section the construction of a Hidden Markov Model (HMM), which is a generative model,

is discussed. This section contains the de�nition of Markov Chains, the extension to a HMM

and modi�cations to get the �nally used continuous HMM. In the thesis the continuous HMM

(cHMM) provided by the PMTK3 toolbox from Murphy et al. [22] is used to analyze human

activity recognition.

3.2.1. Discrete Markov Processes

Definition Markov Chain

A set of N states S1, . . . , SN is de�ned as a �rst order Markov Chain, if it holds the Markov

Property for all time instants, meaning the present state depends only on the past state. Higher

order Markov Chains increase the dependency towards a longer history.[41][32]

The state at any given time can be described in a Markov Chain as one state out of a set of

states Si. At each time instant a change of the state is performed, depending on the probabilities

associated with each state. The time instants correlating with state changes are described as

t = {1, 2, . . .}. The state at a speci�c time t is depicted as xt. A full probabilistic description in

the case of an one-order Markov Property requires knowledge of the present and the past state,

compare equation 2.[32]

P [xt = Sj |xt−1 = Si, xt−2 = Sk, . . .] = P [xt = Sj |xt−1 = Si] (2)

Important quantities in the Markov Chain theory are the state transition probabilities aij , which

are conditional probabilities with speci�c properties, accomplishing equations 3-5.[32][41]

aij = P [xt = Sj |xt−1 = Si] (3)

aij ≥ 0 (4)

N∑
j=1

aij = 1 (5)

Example: Markov Model

The stochastic process explained in the section above is called an observable Markov model.

The output of the process is a set of states at each point in time, where each state depicts an

observable event. An example of a Markov model with 3 states is presented in �gure 3.

This Markov model could, for example, represent a model of the weather. For instance, once a

day the weather is recorded as rainy (State 1), sunny (State 2) or cloudy (State 3) and out of
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S1

S2

S3

a22

a23
a32

a33

a13

a31

a21
a12

a11

Figure 3: A Markov Model with 3 states S1, S2, S3 and state transitions aij .[32]

this dataset a transition matrix can be built. This matrix explains the transitions from one state

to the next state during one time instant. In this example the transitions probabilities are given

by the following matrix:

A = {aij} =

0.4 0.3 0.3

0.3 0.6 0.1

0.2 0.2 0.6


Assume the initial weather is sunny on day 1, meaning π2 = P [x1 = S2] = 1, then the observation

sequence O = {S2, S3, S2, S1, S2, S2, S3, S1}, namely sunny(initial state), cloudy, sunny, rainy,

sunny, sunny, cloudy, rainy, can be expressed as

P (O|Model) = P [S2, S3, S2, S1, S2, S2, S3, S1|Model]

= P [S2] · P [S3|S2] · P [S2|S3] · P [S1|S2] · P [S2|S1] · P [S2|S2] · P [S3|S2] · P [S1|S3]
= π2 · a23 · a32 · a21 · a12 · a22 · a23 · a31
= 1 · (0.1)(0.2)(0.3)(0.3)(0.6)(0.1)(0.2)

= 2.16× 10−5

Assume the model is in a known state, what is then the probability that it stays in exactly that

state for d days. This problem can be answered by the probability of the observation sequence

O = {Si, Si . . . , Si︸ ︷︷ ︸
d×

, Sj}, where Sj 6= Si, which is

P (O|Model, x1 = Si) = ad−1ii (1− aii) = pi(d).

The quantity pi(d) is called the probability density function with a duration d in state i. This

duration density is characteristic of the state duration in a Markov chain. Now it is possible
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to calculate the expected duration of staying in one speci�c state, with the property that this

speci�c state is the starting state.

di =
∞∑
d=1

d · pi(d)

=
∞∑
d=1

d · (aii)d−1(1− aii)

=
1

1− aii

Therefore the expected number of consecutive rainy days is 1.67, sunny days is 2.5 and cloudy

days is 2.5.[32]

3.2.2. Extension to a Hidden Markov Model

In the section above only states which are observable events where considered. Now this model

is extended to include the case where the observation is a probabilistic function of the state.

This means a Hidden Markov Model (HMM) is a double embedded stochastic process, which

has an underlying stochastic process that is hidden, but can be observed over another bundle of

stochastic processes that produces the sequence of observations. For a clear understanding two

examples are explained.[32]

Example: Coin Toss Model

Assume there are two rooms, in one room stands an observer in the other room an experi-

menter. The observer doesn't know what exactly happens in the other room, except from the

task of the experimenter. This experimenter performs a coin tossing experiment, using a �xed

number of coins. The observer has no information about the exact experimental setup and cir-

cumstances, but only over the result of the coin �ips. According to that a sequence of 'hidden'

coin toss experiments is conducted, which leads to an observation sequence consisting of a se-

ries of head and tails. For example the observation sequence can look like O = O1O2 . . . OT =

KKTTKTKTTTTKKK . . .K, where K displays the experimental outcome 'head' and T dis-

plays the experimental outcome 'tail'.[32]

According to this scenario a HMM is constructed to explain the observation sequence. First the

decision has to be made, what the states in the model correspond to, and afterwards the number

of states in the model have to be de�ned.

If only a single coin is tossed, then the model could be explained trough a 2-state model, where

the states correspond to 'head' and 'tail'. This is an observable model and the only unknown

parameter which must be adjusted is the bias, namely the probability of saying heads.

The scenario can also be explained by a 2-state model, where each state corresponds to a di�erent

coin. Each state has probabilities for head and tail as well as for transitions from one state to
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the next state. The selection of transition probabilities is done by a set of independent coin

tosses, but can also be done trough some other probabilistic event. This model has 4 unknown

parameters.

Another explanation can be given by a 3-state model, each state standing for one coin, where

choosing among the three is based on some probabilistic event. This model has 9 unknown

parameters.

To choose the best �tting model among the three, the greater degree of freedom seems to be

an adequate characteristic. This assumption is theoretically true, but has some limitations.

Assuming only one coin is used and the 3-state model is utilized. This choice is an underspeci�ed

system, as the actual physical events do not correspond to the model which is used.

Example: Urn and Ball Model

Assume that there are N transparent glass urns each �lled with a lot ofM distinct colored balls.

The process of obtaining observations is done in the following way:

A independent person in the room chooses an initial urn, according to some random process, and

draws a ball randomly. The color from a random ball in the urn is recorded as the observation

and put back in the same urn. Another di�erent urn is chosen, according to the random selec-

tion process associated with the present urn, and the step with the ball is repeated. The entire

process generates a �nite observation sequence, describing the colors of the drawn balls from the

urns. This sequence is the observable output from a HMM.

The simplest HMM that describes the urn and ball model is one in which each state correspond

to a speci�c urn, and where a color probability is de�ned for each state. The urn choice is

dedicated by the state transition matrix of the HMM.[32]

3.2.3. Fundamentals of a Hidden Markov Model

A Hidden Markov Model(HMM) can be described by the following parameters:

1. N , number of states within the model

2. M , number of di�erent observation symbols per state

3. A, transition matrix

4. B, the observation matrix

5. π, the initial distribution vector

The number of states in the model N , are hidden, but for many practical applications there is

some physical signi�cance related to states or set of states. Compare the urn and ball model,

where the states correspond to the urns. In these models the states are connected to each
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other in a way that each state can be reached by any other state. But also other interconnec-

tions are possible. The states are described as S = {S1, S2, . . . , SN} and the state at time t as xt.

The number of di�erent observation symbols per stateM is synonymous to the discrete alphabet

size. The di�erent observation symbols correspond to the physical output of the system which

is to be modeled. For the urn and ball model the observation symbols were the di�erent colors.

The individual symbols are described as V = {v1, v2, . . . , vM}

The transition matrix A is displayed as

A = {aij} = P [xt+1 = Sj |xt = Si].

In an ergodic model each aij ful�lls aij > 0, because a transition from each state to all other

states is possible. In contrast models with other interconnections allow cases where aij = 0 for

one or more entries in the transition matrix.

The observation matrix B is described as follows

B = {bj(k)}

where bj(k) is

bj(k) = P [vk at t|xt = Sj ], 1 ≤ j ≤ N, 1 ≤ k ≤M.

The initial distribution vector π is described as follows

π = {πi}

where πi is

πi = P [x1 = Si], 1 ≤ i ≤ N

The HMM, described with the 5-tuple (N,M,A,B, π), can be used to generate an observation

sequence

O = O1O2 . . . OT

where each Ot is a symbol from V and T is the number of observations in the sequence. This

concept follows the procedure:

1. First an initial state x1 = Si is chosen, according to the initial distribution vector π.

2. Then t is set to 1.
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3. According to the symbol probability distribution bi(k) in state Si, Ot = vk is selected.

4. Afterward the transition step to a new state is executed xt+1 = Sj pursuant to the state

transition probability distribution aij for the state Si.

5. t is set to t+ 1 and the steps start by 3 again, as long as t < T . Otherwise the procedure

terminates.

This procedure is used as a generator of observations and as a model for how a given observation

sequence was generated by an appropriate HMM.[32]

A complete description of the characteristics of a HMM requires speci�cation of the two parameter

N and M , of observation symbols and of the probability measures A,B and π. This can be

written in a compact form.[32]

λ = (A,B, π)

3.2.4. Continuous Hidden Markov Model

Most often HMM with discrete observations are discussed, but there exist cases where this ap-

proach does not lead to the right solution. This is the case when the observations are continuous

vectors. Therefore the de�nition must be expanded and some restrictions must be made.

The observation symbol probability distribution is represented as a �nite mixture of the form

bj (O) =

M∑
m=1

cjm N [O,µjm, Ujm], 1 ≤ j ≤ N (6)

where O is the vector being modeled, cjm is the mixture coe�cient for the mth mixture in state j

and N is a log-concave or elliptically symmetric density, most often Gaussian, with mean vector

µjm and covariance matrix Ujm. Each cjm ful�lls the following conditions

M∑
m=1

cjm = 1, 1 ≤ j ≤ N (7)

cjm ≥ 0, 1 ≤ j ≤ N, (8)

1 ≤ m ≤M (9)

so that the probabilistic density function is adequately normalized,∫ ∞
−∞

bj (x) dx = 1, 1 ≤ j ≤ N (10)

The probability density function 6 can be used to approximate any �nite, continuous density

function, arbitrarily close. Therefore it can be applied to a wide area.[32] For more details about

continuous Hidden Markov Models compare [32].
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3.3. K-nearest neighbors classification

Nearest-neighbor classi�ers follow a discriminative model and are based on the principle, that

test tuple and training tuples, which are similar to each other, are compared. The training tuples

are sets of n attributes, where each tuple displays a point in a n-dimensional space. Therefore all

training tuples are represented as a n-dimensional pattern space. Assume the k-nearest neighbors

(kNN) classi�er gets an unknown test tuple, then the classi�er searches for the k nearest tuples

in the pattern space, which are the most closest to this test tuple. This k searched training

tuples are called k nearest neighbors of the unknown test tuple.[16]

The vague term 'closeness' mentioned in the paragraph above is de�ned in terms of a distance

metric. The Euclidean distance between two pointsX = (x1, x2, . . . , xn) andY = (y1, y2, . . . , yn)

is de�ned as [16]

dist(X,Y) =

√√√√ n∑
i=1

(xi − yi)2 (11)

The value of each attribute is normalized before using equation 11, to prevent outweighing of

attributes with smaller range at the begin by attributes with larger range. For example, min-max

normalization can be used to transform a value m of an attribute A into a value m′ ∈ [0, 1] by

calculating

m′ =
m−minA

maxA−minA
,

where minA and maxA describe the maximum and minimum value of A.[16]

The unknown test tuples are classi�ed as the most common class in the k-nearest neighborhood.

In the special case of k = 1, the test tuple gets the label of the training tuple which is the closest

in the pattern space. Also numeric prediction is possible with a kNN classi�er, as it returns then,

the average value of the real labels in the k-nearest neighborhood.[16]

A missing value of an attribute A in tuple X or Y can be handled with the maximum possible

di�erence. Because of normalization, the range of the attributes lie between 0 and 1.

A more di�cult problem is the right choice of the parameter k. In this study the experimental

approach is used. The classi�er starts with k = 1, and with the test set, the error rate is cal-

culated. Due to iterations, by incrementing k by one, the model with the lowest error rate is

found and chosen. Typically k increases with increasing training set. If the size of the training

set reaches in�nity and k = 1, the error can't be bigger than twice the Bayes error rate, which

depicts the theoretical minimum. If both size of trainings set and k reaches in�nity, the error

rate approaches the Bayes error rate.[16]

kNN classi�ers are based on distance comparisons, and in practice assign equal weight to each

attribute. That is the reason why they often result in low accuracy, due to noisy irrelevant
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attributes. Also the Euclidean distance metric is a drawback, which can be dealt with by using

other measurements like Manhattan distance.[16]

Another drawback of the kNN classi�er is the commonly slow classi�cation of test tuples. If T

is a dataset of |T | tuples and k = 1, then O(|T |) comparisons are required to classify the test

tuple. The comparisons can be reduced to O(log(|T |)) by sorting and arranging the tuples into

search trees. Parallel implementation reduces the runtime even to a constant O(1), dependent

on |T |.

In this thesis the most easiest kNN classi�er provided by the PMTK3 toolbox from Murphy et

al. [22] is used.
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4. Sensor

4.1. Description

The InvenSense MotionFitTM Software Development Kit (SDK) is used to record data. It enables

sensor solutions designed for �tness, health and sports applications and consists of Hardware and

Software components. It is able to track 10 degree-of-freedom, with the MPU-9150 (consisting

of gyrometer, accelerometer and compass), a pressure sensor, a microcontroller and a Bluetooth

radio module. The MPU-9150 is a nine-axis MotionTracking device optimized to ful�ll the pur-

poses for this sort of wearable sensor applications in this thesis.[20]

InvenseSense MPU-9150 is a single-chip Micro-Electro-Mechanical system (MEMS). The MEMS

with nine-axis integrated circuit composes a three-dimensional accelerometer, three-dimensional

gyrometer and a compass.

A nine-axis Motion Fusion inside the MPU is performed through an integrated Processor. A

temperature sensor for temperature compensation for gyro bias is integrated in the MPU-9150

as well as a compass sensor, which detects terrestrial magnetism in all three axes by unifying

magnetic sensors.[20] The SDK structure can be seen in �gure 4.

Figure 4: MPU 9150 MotionFitTM Board [19]

Another important aspect which must be accounted for in the experiments is the orientation.

The diagrams in �gure 5 show the orientation of the axes of sensitivity and polarity of rotation.

The pin 1 is symbolized by a black point on the upper side of the picture.[21]
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Figure 5: Left: Orientation of Axes of Sensitivity and Polarity of Rotation for Accelerometer and
gyrometer.[21] Right: Orientation of axes of sensitivity for Compass.[21]

The MSP430 Microcontroller is from Texas Instruments (TI), supporting Code composer Studio

(CCS) tool chain for software development. The device has a powerful 16-bit reduced instruction

set computing (RISC), a Central Processing Unit (CPU), 16-bit registers and constant genera-

tors that lead to maximum code e�ciency.[20]

The BMP085 Processor sensor is from Bosch and is based on piezo resistive technology for elec-

tromagnetic compatibility (EMC) robustness, high accuracy, linearity and long term stability.

Another advantage is the low attitude noise of 0.25m at fat conversion.[20]

The Radio Module has a reaching area of up to 10m distance and low power consumption modes,

in particular 50mA in active mode and 30µA in deep sleep mode.

Other components are the Serial Flash, Rechargeable Battery and the Micro USB connector.

The 100mAh rechargeable battery provides more than 24 hours of activity logging and 4 hours

of streaming time. The Micro USB controller is designed for charging the battery and wired

connectivity.

In this thesis the accelerometer and gyrometer data are relevant and used for analysis. Therefore

the basic details for accelerometer and gyrometer are described in the sections below.
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4.2. Accelerometer

4.2.1. Accelerometer basics

Newton's second law of motion helps to describe the translational acceleration of a body. The

acceleration is described with the following equation

F = ma. (12)

Equation 12 describes that a force F on an object having mass m causes acceleration a of the

object with respect to the system of inertia.

It is not practical to describe the acceleration of the whole object. Therefore only for a small

part of the object the force is measured. This part is called seismic mass and consists in the

primary element of an acceleration sensor, compare �gure 6.

The proof mass of an accelerometer tends to resist changes in movement caused by acceleration

along its sensitive axis. The tension of the spring balances the force acting on the mass. A further

extension of the spring leads to a measure of the applied force proportional to acceleration. The

total force can be described as

F = ma = mf +mg (13)

where g denotes the gravitational constant and f is acceleration produced by forces except the

gravitational �eld. An accelerometer is insensitive to gravitational acceleration so the output is

proportional to the non-gravitational force to which the sensor is subjected.[27]

displacement pick-off

signal proportional to
specific force (f)

spring

proof mass

case

acceleration
with respect to 
inertial space

a

Figure 6: A simple accelerometer [27]
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4.2.2. Accelerometer Features

The triple-axis MEMS accelerometer which is used in this thesis and is integrated into the MPU-

9150 has the following features [21]:

• Digital output 3-axis accelerometer with a programmable full scale range of ±2g,±4g, ±8g

as well as ±16g

• An integrated 16-bit Analog-to-Digital-Converters (ADCs) makes simultaneous sampling

of accelerometers possible, while no external multiplexer is required.

• Orientation detection and signaling

• Tap detection

• User-programmable interrupts

• High-G interrupt

• User self-test

4.3. Gyrometer

4.3.1. Gyrometer basics

The gyrometer consists of a mass connected to a frame through springs. This frame is connected

to a �xed outer frame with springs. These two frames have Coriolis sense �ngers pointing to

each other, compare �gure7.

The mass moves constantly sinusoidal along the inner springs. Rotation leads to Coriolis accel-

eration in the mass, resulting in a movement towards the direction of the outer springs. If the

mass moves away from the axis of rotation, the mass is pushed perpendicular in one direction. If

the mass is driven back in the direction of the axis of rotation, the mass is pushed in the opposite

direction. This is caused by the Coriolis force, which has an impact on the mass.

When the mass is moved by the Coriolis force, a change in the capacitance can be measured,

because of the smaller distance between the sensing �ngers. If the mass is moved in the opposite

direction, other sensing �ngers have a smaller distance inbetween. In that way the sensor can

measure the magnitude and the direction of the angular velocity within the system.[27]
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mass drive direction

inner frame

resonating mass

spring

coriolis sense finger

Figure 7: A simple gyrometer [27]

4.3.2. Gyrometer Features

The triple-axis MEMS gyrometer which is used in this thesis and is integrated into the MPU-

9150 has the following features [21]:

• Digital-output X,Y,Z-axis angular rate sensors (gyrometers), with a programmable full-

scale range of ±250,±500,±1000 and ±2000 ◦/sec

• External sync signal connected to the FSYNC pin supports images, video and GPS syn-

chronization

• Integrated 16-bit ADCs makes simultaneous sampling of gyrometers possible

• The need of user calibration is reduced by enhanced bias and sensitivity temperature sta-

bility

• Improved low-frequency noise performance

• Digitally-programmable low-pass �lter

• Factory calibrated sensitivity scale factor

• User self-test
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5. Activity recognition

The activity recognition consists of various steps. First the sensor (for details compare section

4) is placed, next the raw data are recorded. In the following step preprocessing is done, which

means data segmentation and �lters are applied. During feature extraction, features are calcu-

lated. Finally, the training and classi�cation is done with a continuous HMM model (cHMM) or

a k-nearest neighbors (kNN) classi�cation. The activity recognition chain is displayed in �gure

8. The following sections will explain these steps in more detail.

Sensor placement Recording Preprocessing Feature Extraction Training Classification

Figure 8: Activity recognition chain

5.1. Data

5.1.1. Placement

The MPU-9150 sensor is always placed on the left hand, with which the daily activities are mostly

executed. There is only one left-handed person recorded, which ensures that normalizing of the

data is unnecessary. For instance, if there is the need to compare left-handed and right-handed

persons normalization is inevitable. The sensor is always located at the left hand wrist, with the

DIP switch (compare �gure 4) on the left, pointing towards the �ngertips.

5.1.2. Recording

A three-dimensional accelerometer and gyrometer is used to record activities of daily living in

di�erent time units. For further details about the sensor compare section 4.

In table 1 common daily activities [30] are displayed, which are recorded during this study and

accomplished by one person. An example of a typical sampling frequency is GPS with 5Hz,

whereas acceleration is sampled at frequencies of 25Hz or more.[10] In this thesis a sampling

frequency of 50Hz is chosen. The data are gathered in a 59m2 �at from one left-handed person.

The data are recorded in many sessions and each activity is saved with their 3-axis accelerometer

and 3-axis gyrometer data. Inbetween all activities a 'NULL'-activity is performed, which consists

of preparing the next activity and closing the preceding activity. The data gathering extends over

days, which is the reason why the sessions are put together to one dataset for further analysis.

The structure of the dataset can be seen in �gure 9, where the labeled activities are displayed.
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labels activities

1 NULL
2 comb hair
3 wash face
4 wash hands
5 brush teeth electric non electric
6 make bed
7 change clothes
8 put blinds up/down
9 prepare food
10 eat with folk spoon chopsticks
11 open/close window
12 read newspaper read book
13 putting shoes on
14 drink from/with straw mug cup

Table 1: List of daily activities, which are performed during recording
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Figure 9: Labeled activities in the dataset

5.2. Data Segmentation

The data segmentation is needed to identify the segments of the data stream containing informa-

tion about activities. Segmentation of a continuous sensor stream is di�cult, as activities blur

into each other more likely than separating it with pauses.

Another problem is the de�nition of the activities with its boundaries.[10] For example, 'Tooth

brushing', might start with taking the tooth brush or putting toothpaste on it or raise the tooth

brush to one's mouth or brushing.

In this thesis segmentation is performed via annotation during recording. This process saves
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information over the start and the duration of the activity. The annotation of the data is

automated via an app, which allows the recording within speci�c time units. This time units are

determined by the user and the annotation of the data accords to the user's purpose.

5.3. Preprocessing

5.3.1. Fundamentals

In the �rst attempt the data are analyzed and only data which are recorded more than once are

used for analysis. This is done with one of two methods.

The �rst method cuts out 'read newspaper/read book', 'putting shoes on' and 'drink from/with

straw/mug/cup' from the whole dataset. Be aware that the 'NULL'-classes between the activities

remain in the dataset. The second method rede�nes the labels of those classes to the label of

the 'NULL'-class.

Some of the other activities are put together to one: 'Tooth brushing electric' and 'Tooth brush-

ing non electric' get label 5 as well as 'Eat with folk', 'Eat with spoon' and 'Eat with chopsticks',

which are assigned label 10.

Each sensor records data in three dimensions and a fourth dimension for each sensor is added.

This fourth dimension describes the magnitude
√
x2 + y2 + z2. For each dimension the features

are calculated. This means the feature calculation gives four values per sensor, except from

one feature, the correlation. The correlation gives 3 values per sensor, because the magnitude

correlates of course with the three other dimensions.

5.3.2. Signal Processing

Raw sensor data can be interrupted by artifacts and noises. This is a �aw which has to be

eradicated as much as possible.

In the preprocessing step the artifacts and noises are reduced and the signal is prepared for later

feature extraction.[10] The noise and artifacts are disturbances which can corrupt the human

activity recognition.

Filters play a major role to get rid of artifacts and noises during preprocessing. In this thesis

experiments are done with a median �lter and a 3rd order low-pass Butterworth �lter. This

�lters are also used among others in [4], that is the reason why those are chosen. The 3rd

order low-pass Butterworth �lter has a cuto� frequency of 20Hz. This rate is su�cient, as the

frequency of human body motions is 99% below 15Hz.[4] Details about the experiments with

�lters can be found in section 6.2.2.
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Median filter

Median �lters have a broad application area, because their behavior is well known. The non-linear

median �lter is able to �lter out noise without blurring edges or other sharp details. Median

�lters are most likely to get applied, if the noise pattern consists of strong, spike-like components.

The median �lter considers each entry of the array and looks at nearby neighbors to decide the

representative character of its surrounding. It replaces the values with the median of the values

in the surrounding. The median is calculated by sorting the values into numerical order and then

the median of these values is assigned to the representing value. The application of the �lter

causes a smoothing of the picture. The smoothing e�ect on the data of this thesis can be seen

in �gure 10 below, where a small part of the data is displayed. The original data is displayed in

blue color and the median �ltered data is displayed in red color.[2]
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Figure 10: 3rd order one-dimensional median �lter: segment of the dataset

Butterworth filter

A Butterworth �lter has a maximally �at amplitude response in the pass-band. The attenuation

level is −3db and −20db. The design of the Butterworth �lter is easy, meaning if it is designed

in analog domain, it can be easily converted into a digital �lter. Also in higher order the Butter-

worth �lter maintains the main shape. The �lter is described with two parameters, which are the

cuto� frequency and the number of poles. Butterworth �lters are used in this thesis for cutting

high frequencies and therefore behaving as Low Pass Filters. In small scale, the functionality of

a 3rd order low pass Butterworth �lter with 20Hz cuto� frequency is shown in �gure 11.[24]
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Figure 11: 3rd order low pass Butterworth �lter, 20Hz cuto� frequency: segment of the dataset

5.4. Feature Mapping

In the feature extraction step the raw data are converted into features. This features are calcu-

lated over each annotated activity with a shifted window. This window of size 50 (containing

50 data vectors) is shifted with a 50% overlap, which is the most signi�cant value for overlap in

past works.[40][8] The mean, standard deviation, correlation[8][35], energy[8][35] and frequency

domain entropy[8] are calculated for this data, as those are the most popular features for accel-

eration signal in activity recognition.[18]

The features can be divided into time domain features and frequency domain features. Time

domain features are mean, standard deviation and correlation. Frequency domain features are

energy and entropy. The energy and entropy calculation is much more expensive in comparison

to the time domain features, because of the Fourier transformation (FFT).[37]

A periodic function in time is described with a direct current (DC) component. The DC com-

ponent over the window is the mean value. Standard deviation is important for the reason

of di�erent range of values for di�erent activities. Periodicity in the data is saved in the en-

ergy feature. Correlation between axes is useful to di�erentiate activities with translation in

one dimension. As example, walking and stair climbing can be distinguished over correlation

data.[8][35]

In table 2 the calculation methods for the di�erent features are depicted. It is important to

use a minimum number of features that allow good performance and at the same time minimize

computational costs and memory.[10]

Experimenting with the features showed that entropy doesn't improve the results. That is the

reason why it is not pointed out in the descriptions of section 6. The best combination of features

are mean, standard deviation and correlation. For details refer to section 6.2.
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Features calculation variables

mean µ = 1
w

∑w
j=1 xj w . . . window length

xj . . . values

standard dev. σ =
√

( 1
w

∑w
j=1(xj − µ)2) µ . . . mean

energy energy= 1
w

∑w
j=1 | xj |2 xj . . . discrete FFT components

correlation cov(x, y) = 1
w

∑w
j=1(xi − µx)(yi − µy) cov . . . Covariance

corr(x, y) = cov(x,y)
σxσy

entropy Frequency-domain entropy is calculated as the normalized information
entropy of the discrete FFT component magnitudes of the signal.[8]

Table 2: Features

5.5. Training

This thesis deals with cHMM and kNN models, for further details of the experiments compare

section 6.2. The supervised models need to get trained before operating.[10] Therefore the data

has to be split into training and test data.

As some activities are not so common it is not possible to divide the data (see �gure 9) in usual

way like 20% test data and 80% training data. In this study one activity is cut out from each

activity class, with the 'NULL'-class behind. Those activities are put together as test data. The

rest of the data is used as training data. The structure of one sort of training and test data can

be seen in �gure 12 and 13.
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Figure 12: Training data
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Figure 13: Test data
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The training needs a training set {(Xi, yi)}Ni=1 consisting of N pairs of feature vectors Xi with

corresponding labels yi. In cHMMs (compare sections 3.2) the model parameters θ = (π,A,B)

are learned by minimizing the classi�cation error.[10] In this thesis the parameter A, transition

matrix, can be calculated with the labeled training data. The parameter B is a list of pairs

(µ,Σ) that de�ne the distributions, which can also be calculated. Only π has to be guessed and

the model is de�ned by means of these parameters.

In contrast, nonparametric classi�ers like kNN models employ as parameters the labeled training

set and match the label of the k-nearest neighbors to the test sample, details can be found in

section 3.3.[10]

5.6. Classification

The classi�cation consists of two steps.

The �rst one maps a set of class labels to each feature vector of the test data with corresponding

scores.[10]

In the second step the scores are used in this thesis to calculate the maximum score and take

the corresponding class label yi as the classi�cation output.[10]

5.7. Performance Evaluation

The classi�cation of the activities can be either correct 'True Positive'(TP) and 'True Neg-

ative'(TN) or wrong 'False Negative'(FN) and 'False Positive'(FP). The performance metric

which is used for this model is a confusion matrix, with accuracy, sensitivity(=recall), speci�city

and precision. The calculation formulas of the characteristics are displayed in �gure 3.[10]

calculation

accuracy
TP+TN

TP+TN+FP+FN

sensitivity = recall
TP

TP+FN

speci�city
TN

TN+FP

precision
TP

TP+FP

Table 3: Calculation of performance parameters
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5.7.1. Confusion Matrix

The confusion matrix gives a breakdown of the misclassi�ed activities by the model. The rows

show the instances in each actual activity class (de�ned by the ground truth) and the columns

show the instances for each predicted activity class (de�ned by the classi�cation output).[10]

The values in one row are the results from the comparison of all ground truth instances, from

the actual class, to the predicted class labels.[10] The ground truth is the accurate labeling of all

activities.[17] An example of an simple confusion matrix can be seen in table 4, where the last

column describes the recall values, the last row the precision values and the last box describes

the accuracy.

In the confusion matrix accuracy, precision, recall and speci�city are calculated for each activ-

ity class. For comparison reasons the 'NULL'-class calculations of the characteristic (accuracy,

precision, recall, speci�city) are quoted in the discussions of the experiments in section 6.2.

If the dataset is unbalanced, for example when the number of ground truth instances vary signif-

icantly, the overall accuracy is not representative for the whole classi�er. A normalized confusion

matrix inhibits this problem by using percentage of the total number of ground truth activity

instances.[10] This problem occurs also in small scale in this thesis, that is the reason why all

parameters are included in performance evaluation and no normalization is done.

activity 1 activity 2 activity 3 recall

activity 1 11 2 0 84.62
activity 2 0 4 0 100
activity 3 1 0 5 83.33
precision 91.67 66.67 100 86.96

Table 4: Simple confusion matrix
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6. Discussion

In this section di�erent experiments with the recorded data are discussed in detail. In the �rst

attempt a validation with the provided data from Bulling et al. [10] and Anguita et al. [4] is

accomplished to justify the use of the continuous Hidden Markov Model (cHMM). In further

work various experiments are done to re�ect the behavior of the recorded data.

Filters are normally used to improve the results. In this case Butterworth �lter and median �lter

are applied, compare section 5.3, but no qualitative improvement can be recognized. Instead it

increases the computation costs, what makes the application of �lters unnecessary for this study.

Another attempt to get an improvement is to introduce sub-activities. This is done by applying a

cHMM with more than one state for certain activities, depending on the best accuracy. Of course

an improvement is recognized, which implies an increase in runtime. As this step is parameter

sensitive it is not worth the e�ort.

The results show that gyrometer data are super�uous for the sort of daily activities recognized in

this study. In general, there is an important aspect of gyrometer data when considering walking

upstairs and downstairs, for instance. Accelerometers are able to handle rotation changes and

linear movement, where gyrometers are limited to rotation only.[10]

The most important outcome of this thesis is that considering continuous and discrete data is

most e�ective and should be paid attention in further research.

6.1. Validation

A validation is inevitable to get an overview of the correctness of the described cHMM and the

legitimacy to use it in further experiments.

In this section the validation and its results are discussed in detail. The cHMM is validated with

the data of Bulling et al. [10] and the data of Anguita et al. [4]. The results are compared with

those results from [10] and [4], respectively and entitles the use of the cHMM.

6.1.1. Data provided by Bulling et al. [10]

Bulling et al. provides data for person-dependent (pd) training and person-independent (pi)

training. The pd training means training a model with data from one person and pi training

means training one model with data from more than one person. The results in �gure 14 [10]

show that the pd training circumstances lead to more appropriate results than the pi training.

This is of course comprehensible, as di�erent activities can be accomplished in various ways and

this a�ects the precision and recall. For example preparing dinner can have a lot of sequences,

putting out the needed foods for cooking at once or taking the foods step by step. To evaluate

the applied cHMM it is useful to compare the results to those from pd training.

In [10] data from 2 persons performing 12 activities are recorded: opening a window, closing
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Figure 14: Precision and recall for person-dependent and person-independent evaluation using a single
accelerometer attached to the right hand [10].

a window, watering a plant, turning book pages, drinking from a bottle, cutting with a knife,

chopping with a knife, stirring in a bowl, forehand, backhand and smash. Additionally, a non-

speci�c activity was performed called 'NULL'-class.[10]

The inertial measurement unit (IMU) is placed on 3 positions, the upper arm, the lower arm

and the hand wrist on the right side. For evaluation, the hand position is used, as in this study

only hand movement is recorded. With the IMU, data from a 3-axis accelerometer and a 2-axis

gyrometer is collected with a 32Hz sampling rate.[10] The features for evaluation are mean, stan-

dard deviation, correlation and energy, compare table 5.

activities features sampling rate

opening a window mean 32Hz

closing a windows variance

watering a plant correlation

turning book pages energy

drinking from a bottle

cutting with a knife

chopping with a knife

stirring in a bowl

forehand

backhand

smash

NULL

Table 5: Speci�cation of the data of Bulling et al. [10]
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6.1.2. Data provided by Anguita et al. [4]

Anguita et al. gathered data from 30 volunteers between 19 and 48 years old, which followed a

de�ned protocol of activities. This protocol consists of six activities, which are standing, sitting,

laying down, walking, walking downstairs and upstairs, which are collected via a Galaxy S II.

smartphone on their waist. Accelerometer and gyrometer data are recorded with a sampling rate

of 50Hz and 5 seconds break between two activities.[4] An overview of the di�erent activities,

features and the sampling rate can be seen in table 6.

In this thesis only a part of the 561 features vector of the provided data is picked for evaluating

the constructed cHMM. The feature data is already noise reduced by a median �lter and a 3rd

order low-pass Butterworth �lter with a 20Hz cuto� frequency and others.[4] In particular the

data of mean, standard deviation and correlation is used from accelerometer and gyrometer for

all three axes X,Y, Z. This features are the most similar features to the calculations performed

in this thesis.

activities features sampling rate

standing mean 50Hz

sitting standard deviation

laying down correlation

walking

walking downstairs

walking upstairs

NULL

Table 6: Speci�cation of the data of Anguita et al. [4]

6.1.3. Results from cHMM compared with results from Bulling et al. [10]

In this section the results of Bulling et al. [10] are discussed. This means data provided by

Bulling et al. [10] are used to calculate the features: mean, standard deviation, correlation and

energy for all 7 axes. This 7 axes come from the 3-axes accelerometer and 2-axes gyrometer

gathered data, including one axis for each sensor, representing the magnitude. This features are

further used to calculate the cHMM model introduced in this thesis.

The calculated results from the cHMM are compared with the results in Bulling et al. [10]. This

circumstances are shown in �gure 15, where precision and recall of pd evaluation is compared to

the applied cHMM in this thesis using the same dataset. The same characteristic, namely lower

recall than precision, can be seen. The di�erent values between results of Bulling et al. [10]
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and this thesis are mostly caused by the number of features and the model used in [10]. They

only calculated two features, mean and standard deviation and the classi�cation algorithm uses

a folding step.[10] In comparison this thesis takes into account the mean, standard deviation,

energy and correlation features.
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Figure 15: Precision and recall for pd evaluation with sensor placement on the right hand and cHMM
used in this thesis.

In �gure 16 the original labeled path is represented in red color and the result after applying the

cHMM is represented in blue color, which is called Viterbi path [32]. It can be seen, that the

Viterbi path �ts the original path quite well.
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Figure 16: Viterbi path compared to original label path

In table 7 the confusion matrix of the cHMM is illustrated. In [10] the precision lies by 87.2% in

the pd case using the sensor placed on the hand wrist. This relates to the results of an accuracy

of 81.71% and good recall and precision values for each activity class. Therefore it follows, that

the used cHMM is accurate.
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NULL 11 2 0 0 0 1 0 2 4 1 0 1 50
Open window 0 4 0 0 0 0 0 0 0 0 0 0 100
Drink 1 0 5 0 0 0 0 0 0 0 0 0 83.33
Water plant 0 0 0 6 0 0 0 0 0 0 0 0 100
Close window 0 0 0 0 6 0 0 0 0 0 0 0 100
Cut 2 0 0 0 0 6 0 0 0 0 0 0 75
Chop 0 0 0 0 0 0 5 1 0 0 0 0 83.33
Stir 0 0 0 0 0 0 0 6 0 0 0 0 100
Book 0 0 0 0 0 0 0 0 9 0 0 0 100
Forehand 0 0 0 0 0 0 0 0 0 3 0 0 100
Backhand 0 0 0 0 0 0 0 0 0 0 3 0 100
Smash 0 0 0 0 0 0 0 0 0 0 0 3 100

Precision (%) 78.57 66.67 100 100 100 85.71 100 66.67 69.23 75 100 75 81.71

Table 7: Confusion matrix of cHMM

6.1.4. Results from cHMM compared with results from Anguita et al. [4]

In �gure 17 the periodic character of the provided training data can be seen. The original labeled

path is colored red and the resulted Viterbi path of the model is colored blue. The outcome shows

a good �t from the calculated Viterbi path to the original labels and con�rms the presumption

that the model works correct.
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Figure 17: Viterbi path compared to original label path
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In table 8 the confusion matrix of the cHMM used in this thesis is depicted. In table 9 the results

of the experiment in the paper of Anguita et al. [4] is reproduced. The rows represent the actual

class, the columns the predicted class and the last box represents the accuracy of the model.[4]

In contrast to the cHMM applied in this study, Anguita et al. used a multiclass Support Vector

Machine (MC-SVM). The di�erent accuracy can be attributed to the less used features, the usage

of only one accelerometer and one gyrometer dataset, and the more complex MC-SVM model in

[4].
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Walking 422 0 74 0 0 0 85.07
W.Upstairs 0 400 71 0 0 0 84.93
W.Downstairs 0 39 381 0 0 0 90.71
Sitting 2 1 3 406 68 11 82.69
Standing 6 9 5 26 468 18 87.97
Laying Down 0 0 2 298 44 193 35.94

Precision (%) 98.14 89.09 71.08 55.62 80.69 86.94 77.03

Table 8: Confusion matrix of cHMM
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Walking 492 1 3 0 0 0 99.12
W.Upstairs 18 451 2 0 0 0 95.75
W.Downstairs 4 6 410 0 0 0 97.62
Sitting 0 2 0 432 57 0 87.98
Standing 0 0 0 14 518 0 97.37
Laying Down 0 0 0 0 0 537 100

Precision (%) 95.72 98.04 98.80 96.86 90.09 100 96

Table 9: Confusion matrix of MC-SVM [4]
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6.2. Experiments

First, activities which appear only once during recording are either put into the 'NULL'-class

or cut out from the overall activities. Some activities like 'Tooth brushing electric' and 'Tooth

brushing non-electric' are put together to become more appropriate results compare 5.3.

Therefore, eleven activities are tested against each other with di�erent sorts of test and training

data and di�erent features. The form of the test data and training data di�ers. It is not so

accurate to leave 20% for testing, because of the small training sample and the recording type

of the data. That is the reason why for each activity one of the overall events is cut out with

'NULL'-class behind each activity or with 'NULL'-class in front of each activity. The structure

of the whole dataset can be seen in �gure 9 and an example of a training and test set can be

seen in �gure 12 and 13.

The di�erent training sets lead to di�erent results, whereby the best result is supplied by the

test set, consisting of the 3-rd of each activity class and the following 'NULL'-classes.

In the next step the di�erent features are tested, answering the question which combination of

features �ts best. The conclusion is, that the combination of mean, variance and correlation is

the best combination. Also, the accelerometer and the gyrometer data are tested against each

other. In this case accelerometer data on their own produce more accurate results, whereas

gyrometer data corrupt the good results to some degree. During the experiments a cHMM

is �tted, to get sub-activities from the 'NULL'-class, searching for the best number of states

over cross-correlation. Overall nothing improves, but if cHMMs for sub-activities from di�erent

classes are combined an improvement of nearly one percent can be expected. As this is not a

huge improvement and the aim is a short run time combined with a huge accuracy, the cHMM

�t is not used in further attempts.

The next step is the inclusion of a feature vector, de�ning the room in which each activity is

performed. This leads to a huge improvement and lets presume that the combination of smart

home sensor data and data from wearable sensors should be combined to get the best results.

In this case the 'NULL-'classes have the half room number of the previous activity and half the

room number of the following activity. Of course this are not the exact room numbers, as the

'NULL'-activities can be performed in more than one room during executing. But this �ctive

example allows the statement of improvement, when room sensors are included.

6.2.1. Experiment with different training and test sets

In this section, the experiment of using di�erent sort of training and test data partitions is ana-

lyzed. For example, the test data includes the third repetition of each single activity class and

takes either the 'NULL'-class behind or in front of each cut activity. Another approach uses the

second repetitions, again with either the 'NULL'-class in front of the activities or behind. The

results of these experiments are compared to each other and the conclusion is, that the third
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repetition, with the 'NULL'-class behind each activity, leads to the best results.

Figure 18 and 19 show the results of the Viterbi path (blue) compared to the original labeled

path (red), for the 3rd repetitions, with the 'NULL'-class either behind (�gure 18) or in front

(�gure 19). The greatest di�erence can be seen in the area of activity 7, namely 'Putting blinds

up/down'. This is the case here, because a di�erent 'NULL'-class is in front of activity 7.
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Figure 18: 3rd activities with 'NULL'-class
behind
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Figure 19: 3rd activities with 'NULL'-class
in front

Figure 20 and �gure 21 show the 2nd repetitions with 'NULL'-class behind and in front, re-

spectively. The visible di�erence can be seen, for instance, between activity 6, 'Make bed' and

activity 9, 'Prepare food'.
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Figure 20: 2nd activities with 'NULL'-class
behind
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Figure 21: 2nd activities with 'NULL'-class in
front
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In table 10 the changing accuracy, speci�city and sensitivity is illustrated. Therefore, the con-

clusion must be drawn, that the 3rd activities with 'NULL'-class behind, implies the best results.

In table 11 di�erent feature combinations are constructed and the accuracies are compared.

'Whole' means the whole dataset is used in this analysis step, namely mean, variance, correlation

as well as energy for all axes X,Y, Z and the magnitude. For more details compare section 5.3.

'Cut magnitude and energy' means that this features are left out and an improvement can be

recognized. 'Cut energy' only operates with the features mean, variance and correlation with the

magnitude. 'Cut magnitude' deals with the features mean, variance, correlation and energy, but

without the magnitude. It can be noticed that the dataset 'Cut magnitude and energy' leads

to the best accuracy, except for the used 2nd repetition with 'NULL'-class in front, where the

dataset 'Cut magnitude' is the most accurate.
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3rd back 80.24 89.08 63.81
3rd front 79.84 88.35 61.25
2nd back 63.99 82.66 67.91
2nd front 64.67 85.48 56.18

Table 10: Accuracy, speci�city and sensitivity
for di�erent train and test sets.

Experiment w
ho
le

cu
t
m
ag
.
&
en
er
gy

cu
t
en
er
gy

cu
t
m
ag
ni
tu
de

3rd back 73.52 80.24 77.07 74.77
3rd front 72.15 79.84 76.50 74.94
2nd back 64.15 63.99 60.48 66.27
2nd front 64.48 64.67 60.74 68.41

Table 11: Comparison of di�erent features for
di�erent train and test sets.

6.2.2. Experiment with filter and no filter

In this section a median �lter and a 3rd order low pass Butterworth �lter with a corner frequency

of 20Hz is used to remove noise, based on the paper of Anguita et al. [4]. The impact of the

median �lter and Butterworth �lter can be seen in detail in �gure 10 and 11. For more details

compare section 5.3.

In table 12 accuracy, speci�city and sensitivity of �ltered and non-�ltered data are represented.

If �lters are applied, the sensitivity gets better, but the accuracy and speci�city gets worse.

This reaction makes �lters in this study unnecessary. In table 13 an improvement is realized,

when di�erent combinations of features are used. The results of 'Whole' data as well as 'Cut

magnitude' are improved while applying �lters.
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Filters are not necessary for the dataset in this study, as the smallest amount of features with

the best result is search for, which leads to a reduction in runtime.
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no �lter 80.24 89.08 63.81
�lter 79.53 88.26 67.62

Table 12: Accuracy, speci�city and sensitivity
for �ltered and non �ltered data
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no �lter 73.52 80.24 77.07 74.77
�lter 74.19 79.53 76.07 75.23

Table 13: Comparison of di�erent features for
�ltered and non �ltered data

6.2.3. Experiment with Accelerometer/gyrometer

In this experiment accelerometer and gyrometer data are analyzed on their own and as one com-

bined dataset. The outcomes of the accelerometer and gyrometer data on their own are further

compared with the results of Bulling et al. [10].
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Figure 22: Precision and Recall of gyrometer
and accelerometer data provided
by Bulling et al. [10]
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Figure 23: Precision and Recall of the gyrom-
eter and accelerometer data in this
study

The accelerometer data on it is own is more accurate than only using the gyrometer data. This

results coincide with those of Bulling et al. [10]. In [10] the gyrometer data on their own is also

worse than the accelerometer data on their own. These circumstances are illustrated in �gures
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22 and 23, where precision and recall are symbolized as blue and red bars. The left �gure 22

shows the result of one accelerometer sensor located on the right hand wrist, provided by Bulling

et al. [10]. The right �gure 23 shows the results of the data in this study. It can be noticed,

that the results in the study of Bulling et al. [10] reach higher level of precision and lower level

of recall than the results in this study. This is mostly caused by the greater dataset in [10]. The

results in this study are not worse, but di�er in activities as well as range and sort of recording.

The combination of accelerometer and gyrometer data is less accurate, therefore the conclusion

can be drawn that gyrometer data is unnecessary in this case, compare table 14.

Experiment accuracy speci�city sensitivity = recall precision

accelerometer 83.08 91.39 65.08 53.39
gyrometer 63.87 86.96 37.46 30.33
acc. & gyr. 80.24 89.08 63.81 46.96

Table 14: Accuracy, speci�city and sensitivity for gyrometer, accelerometer and whole data

In �gure 24 a good phenomena can be seen, namely the misclassi�cation of one activity class

with another. In this case activity 9 ('Prepare food') is often misclassi�ed as activity 10 ('Eat').

Also the much worse �t in �gure 24 is visible, contrary to �gure 25. Figure 25 shows, by far, the

better �t of the Viterbi path (blue) to the original labeled path (red). In �gure 26 the results of

the combined accelerometer and gyrometer data are depicted.
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Figure 24: Gyrometer
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Figure 25: Accelerometer
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Figure 26: Whole dataset

6.2.4. Experiment with extra cHMM

In this experiment activities are divided in sub-activities with an extra cHMM. This is accom-

plished in the following way:

For each often misclassi�ed activity-class, a cHMM is applied to divide the activities in sub-

activities. The number of sub-activities depends on the number of states in the cHMM. Hence

an iteration is done, constructing a 2-state to 5-state cHMM and choosing the cHMM with best

accuracy. If the accuracy is higher in the present step than the previous step, the present model

is taken as new model. This iteration is proceeded till the previous model is better than the

present model. Than the iteration terminates and the previous model is �nally chosen.

For example, assume 'Prepare food' is divided in 2 sub-activities, then the activity becomes two

classes [9, 10] instead of one [9]. All following classes are accommodated to �t the number-chain

1-12, in comparison to the original number-chain 1-11.

The experiments show that the output becomes better, if activities, which are connected before,

are automatically divided into sub-activities, like tooth-brushing.

Tooth-brushing is the obvious candidate where it makes sense, to use sub-activities. This is the

case, as the classes 'Tooth brushing' and 'Tooth brushing electric' are put together during pre-

processing. This activity afterwards consists of two classes [5, 6] instead of one [5]. The original

classes from 6 to 11 are accommodated.

The improvement when using the divided 'Tooth brushing' class is obvious, as tooth-brushing

with an electric tooth-brush has a higher frequency, contrary to non-electric tooth-brushing and

therefor is easy to divide.

In table 15 the di�erence between accuracy, speci�city and sensitivity for normal cHMM and

cHMM with sub-activities is shown. The sub-activities are constructed for 'Tooth brushing' and

'Putting blinds up/down'. It can be recognized that accuracy and speci�city gets better, but not
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as much to justify much higher runtimes. For that reason, it is decided not to use sub-activities.
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cHMM 80.24 89.08 63.81
cHMM: Tooth & Blinds 82.62 90.67 61.90

Table 15: Accuracy, speci�city and sensitivity for cHMM and extra cHMMs

In table 16 the parameter sensitivity can be seen in small scale. Parameter sensitivity means

dependence of accuracy on certain parameters. During the experiments only the parameter, for

'k'-fold cross-validation and the parameter, number of activity classes divided, are considered.

But also a change in tolerance and of maximal iterations within the cHMM a�ects the outcome.

The tolerance is always set to 1e−5 and the maximal iteration is set to 10. Three cases are

pointed out in table 16, �rst the 'Tooth brushing' and 'Putting blinds up/down' are divided with

5-fold cross validation, later on with 10-fold cross-validation. The last case is the combination of

three divided classes 'Tooth brushing', 'Putting blinds up/down' and 'Prepare food' with 5-fold

cross-validation. It can be seen that the best accuracy of those three cases resulted during the

experiment with three divided activities and 5-fold cross-validation.

activities cl
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l
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Tooth & Blinds 2 5 82.62
Tooth & Blinds & Food 3 5 83.08
Tooth & Blinds 2 10 82.62

Table 16: Di�erent combinations of parameters for the extra cHMMs

In �gures 28 to 30, the results of table 15 are displayed as Viterbi path (blue) correlating with

the original labeled path (red). Those paths �t quite well to each other. Figure 27 points out

the di�erence to the original model with no sub-activities. From the original activities 'Tooth

brushing'(5),'Putting blinds up/down'(8) and 'Prepare food'(9) in �gure 27 to �gures 28 - 30,

a �uctuation can be recognized. This �uctuations are caused by the new sub-activities. The

results with sub-activities show a better �t to the original path in that region.
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Figure 27: Whole dataset without magni-
tude and energy and without sub-
activities
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Figure 28: Extra cHMM for tooth brush-
ing and putting blinds up/down,
cross-val:5
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Figure 29: Extra cHMM for tooth brushing,
putting blinds up/down and pre-
pare food, cross-validation:5
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Figure 30: Extra cHMM for tooth brush-
ing and putting blinds up/down,
cross-validation:10

6.2.5. Experiment with continuous and discrete data

In the experiments above, the dataset is cut with method two, which is described in the prepro-

cessing, compare section 5.3. That means the activities which occur only once in the recording

period are contained in the 'NULL'-class activities. In this section the �rst cutting method is

used, which is described in section 5.3. There the once recorded classes are cut out of the whole

dataset, leading to an one percent improvement. In real environmental applications this makes

just a small di�erence and therefore is unnecessary to be performed.

The combination of continuous data and discrete data is analyzed in this section. The test and
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training data get an additional column. This column consists of the room number, where the

activities are performed during recording. The 'NULL'-class activities become half the room

label from the previous activity and half the room label from the following activity.

This process represents the usage of smart home sensors in combination with wearable sensors.

An improvement of the results can be recognized and justify the detailed occupation with this

topic in further research work.

In table 17 accuracy, speci�city and sensitivity of continuous data and the combination of con-

tinuous and discrete data is displayed. The outcomes show that accuracy improves about 9%

and sensitivity about 10%, while speci�city stays nearly the same. This justi�es the e�ort of

collecting both data, continuous and discrete.

Experiment accuracy speci�city sensitivity

continuous 81.21 99.66 79.03
continuous & discrete 88.75 100 91.39

Table 17: Accuracy, speci�city and sensitivity for continuous and continuous & discrete data

A great improvement can also be seen in the comparison of the Viterbi path colored blue and

the original labeled path colored red in �gure 31 and 32. The left �gure 31 shows the continuous

data results and the right �gure shows the combined continuous and discrete data results. The

di�erences can be seen, for instance, in the region of activity 'Prepare food'(9) and 'Change

clothes'(7). This great di�erences are con�rmed by considering the confusion matrices in table

18 and 19.
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Figure 31: Continuous data
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Figure 32: Continuous and discrete data

The confusion matrices show the detailed improvement from using continuous data only to
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operating with the combined dataset, consisting of continuous and discrete data, compare table

18 and 19.

For example, 'Open/close window' is often misclassi�ed as 'NULL'-class and as 'Changes clothes'

in the continuous data case. After taking discrete sensor labels into account, it improves to

100% right classi�cation. Another good example is the activity class 'Prepare food', which is

misclassi�ed in the continuous dataset with 'NULL'-class, 'Wash face', 'Tooth brushing', 'Make

bed', 'Change clothes', 'Put blinds up/down' and 'Eat'. After the combination with discrete

data, the classi�cation improves to 100%.

Overall the classes are not so likely misclassi�ed as 'NULL'-class anymore.

One drawback is that the 'NULL'-class is much more likely misclassi�ed as other activities, which

can be seen in the �rst row in �gure 19.

6.3. Comparison with kNN-model

In this section a small insight, into other models, is given. For this a cHMM is compared to a

k-nearest neighbors (kNN) classi�er, with the same dataset. The kNN classi�er is used, because

of its easy �ne-tuning. This guarantees an accurate representation of comparing di�erent models.

The kNN classi�er is iterated with k between 1 and 20. The model with the lowest error rate,

in this case with k = 19, is compared to the cHMM with the best accuracy.

In �gure 33 the left bar displays the cHMM model with an accuracy of 80.24% and the right

bar displays the kNN classi�er with an accuracy of 32.16%. As expected, it is obvious that the

cHMM model works much better than the kNN classi�er. The conclusion is that cHMMs are

more accurate than kNN classi�ers. Therefore they have a broader application area in the �eld

of activity recognition.
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Figure 33: Comparison of cHMM and kNN classi�er
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NULL 183 10 0 2 0 17 5 0 14 10 0 75.93
Hair 10 44 0 0 0 0 0 0 0 0 0 81.48
Hands 5 0 27 0 0 0 0 0 0 0 0 84.38
Face 7 0 0 25 0 0 0 0 0 0 2 73.53
Tooth 19 0 0 0 211 1 8 0 26 0 2 79.03
Bed 16 0 0 0 0 148 0 0 0 0 0 90.24
Clothes 18 0 0 0 0 0 34 20 0 0 0 47.22
Blinds 20 0 0 0 0 2 0 52 0 0 0 70.27
Food 116 0 0 2 7 10 2 21 378 33 0 66.43
Eat 16 0 0 0 0 0 0 0 7 778 0 97.13
Window 5 0 0 0 0 0 3 0 0 0 4 33.33

Prec. (%) 44.10 81.48 100 86.21 96.79 83.15 65.38 55.91 88.94 94.76 50 81.21

Table 18: Confusion matrix for continuous data

N
U
L
L

C
om

b
ha
ir

W
as
h
ha
nd
s

W
as
h
fa
ce

T
oo
th

br
us
hi
ng

M
ak
e
b
ed

C
ha
ng
e
cl
ot
he
s

P
ut

bl
in
ds

up
/d
ow

n

P
re
pa
re

fo
od

E
at

O
p
en
/c
lo
se

w
in
do
w

R
ec
al
l
(%

)

NULL 16 9 23 37 0 21 20 37 50 20 8 6.64
Hair 1 47 6 0 0 0 0 0 0 0 0 87.04
Hands 0 0 32 0 0 0 0 0 0 0 0 100
Face 1 0 4 29 0 0 0 0 0 0 0 85.29
Tooth 2 0 4 17 244 0 0 0 0 0 0 91.39
Bed 0 0 0 0 0 164 0 0 0 0 0 100
Clothes 1 0 0 0 0 0 71 0 0 0 0 98.61
Blinds 0 0 0 0 0 0 0 74 0 0 0 100
Food 0 0 0 0 0 0 0 0 569 0 0 100
Eat 0 0 0 0 0 0 0 0 0 801 0 100
Window 0 0 0 0 0 0 0 0 0 0 12 100

Prec. (%) 76.19 83.93 46.38 34.94 100 88.65 78.02 66.67 91.92 97.56 60 88.75

Table 19: Confusion matrix for continuous and discrete data
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7. Conclusion and Outlook

This thesis deals with human activity recognition in Ambient Assisted Living (AAL). A MPU-

9150 sensor is used to record data, which includes a 3-axis gyrometer and a 3-axis accelerometer.

This raw data are preprocessed and split into test and training data. Later on features are

extracted. Based on these features a continuous Hidden Markov model (cHMM) is constructed.

The cHMM model is validated with provided data and results from Bulling et al. [10] and An-

guita et al. [4]. Afterwards di�erent experiments were accomplished to get the best results.

These experiments contain feature selection, training and test data splitting, impact of �lters,

sensor selection, impact of splitting single activities and insertion of additional discrete data.

The outcome shows, that using only accelerometer data with mean, variance and correlation

leads to the best results. The conclusion is that gyrometer data are unneeded for good results

and the usage of �lters does not really contribute to any signi�cant improvement in this thesis.

The activity splitting with extra HMM improves the results, but is not worth the drawback of

slower runtime. The most important outcome of the experiments is, that the combination of

discrete and continuous data considerably improves the results.

The experiments conclude with a comparison between a cHMM and a k-nearest neighbors clas-

si�er (kNN). The outcome of this experiment show the greater importance of HMMs in human

activity recognition, in comparison to the not so accurate kNN classi�er .

The results of the experiments have to be treated with caution, as the dataset is not big enough

to get general statements and is only recorded from one person. Another drawback of the data

is, the recording session. It is not recorded in one session, but instead in di�erent sessions with

breaks inbetween. Still real environment application is possible.

Further research should focus on the combination of discrete data from binary sensors and con-

tinuous data from wearable sensors. The research in this direction will lead to a more robust

and trustable model.

Another approach to get more accurate outcomes is, to record a bigger dataset with more dif-

ferent activities and to include more people in the study. This broader consideration will maybe

change the results, but de�nitely lead to results which allow to imply more general statements.
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