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Kurzfassung

In dieser Arbeit werden Evolutionsgleichungen von verschiedenen metrischen
Blickpunkten aus untersucht. Zum einen wird die Herleitung quantenmecha-
nischer Modelle aus Lagrangeschen Prinzipien auf dem Raum der Wahrschein-
lichkeitsmaße untersucht, zum anderen die Lösung von Gradientenflussgleichun-
gen mit Hilfe numerischer Verfahren höherer Ordnung.

Im ersten Teil beschäftigen wir uns mit der oben angesprochenen Herleitung
quantenmechanischer Modelle. Wir nutzen dazu die Darstellung verschiedener
quantenmechanischer Prozesse als fluidmechanische Gleichungen. Von diesen
können wir zeigen, dass sie als Euler-Lagrange-Gleichungen gewisser Lagrange-
funktionen, auf dem Raum der Wahrscheinlichkeitsmaße, aufgefasst werden
können. Hierbei spielt die Wassersteinmetrik eine wesentliche Rolle. Wir zeigen
wie diese Lagrangefunktionen auf dem Raum der Wahrscheinlichkeitsmaße von
bekannten Lagrangefunktionen für Punktteilchen abgeleitet werden können. Wir
illustrieren die Herleitung der Modelle aus Lagrangeschen Prinzipien anhand der
elektromagnetischen Schrödingergleichung. Weiters untersuchen wir die Hamil-
tonsche Struktur der elektromagnetischen Schrödingergleichung, wie sie in un-
serer Herangehensweise zu Tage tritt. Wir vergleichen diese mit einer bekan-
nten Darstellung der elektromagnetischen Schrödingergleichung als Hamilton-
schen Fluss. Wir erweitern die Menge der Modelle, welche durch unseren Zu-
gang dargestellt werden können, indem wir Lagrangefunktionen mit dissipativen
Potentialen betrachten. Davon leiten wir exemplarisch die sogenannte Quanten-
Navier-Stokes-Gleichung ab.

Im zweiten Teil werden sogenannte One-Leg Schemata für Gradientenflüsse
auf Hilberträumen untersucht. Wir sammeln einige in der Literatur bekannte Re-
sultate, geben aber alternative Beweise an. Einerseits zeigen wir, dass Lösungen
für die die One-Leg Schemata definierenden Gleichungen eindeutig gegeben sind,
und zwar für Gradientenflüsse, deren rechte Seite durch sogenannte λ-konvexe
Entropien gegeben sind. Zum anderen geben wir einen Beweis für die Kon-
vergenzordnung der untersuchten Verfahren an, welcher nach unserer Ansicht
besser für den Fall unendlichdimensionaler Hilberträume geeignet ist. An die
Konvergenz- und Existenzanalyse schließen wir eine Untersuchung der struktur-
erhaltenden Eigenschaften der diskreten Lösung an. Genauer untersuchen wir, ob
die diskreten Lösungen die, aus physikalischer Sicht, wünschenswerte Eigenschaft
tragen, die Entropie zu dissipieren. Dies ist im Allgemeinen jedoch nicht der

iii



iv

Fall,wie wir zeigen können. Allerdings stellt sich heraus, dass eine andere Größe,
die sogenannte G-Norm, von der diskreten Lösung dissipiert wird, falls die En-
tropie ein konvexes Funktional ist. Wir schließen die Untersuchung der Gradien-
tenflüsse auf Hilberträumen mit numerischen Experimenten zur Porösen-Medien-
Gleichung in einer Raumdimension, welche durch einen Gradientenfluss bezüglich
der H−1-Norm gegeben ist. Wir wählen den Exponenten in der Porösen-Medien-
Gleichung so, dass sie einem Modell aus der Halbleitersimulation entspricht.

Im dritten Teil beschäftigen wir uns wieder mit Gradientenflüssen, dieses
Mal allerdings auf dem Raum der Wahrscheinlichkeitsmaße, ausgestattet mit der
Wassersteinmetrik. In der analytischen Untersuchung von Wassersteingradien-
tenflüssen spielt eine von dem BDF-1 Verfahren abgeleitete Zeitdiskretisierung
eine wesentliche Rolle. Ausgehend von dieser stellen wir Diskretisierungen höherer
Ordnung in der Zeit vor. Wir nutzen dann ein an das BDF-2 Verfahren an-
gelehnte Methode, um eine nichtlineare Diffusionsgleichung, welche eine For-
mulierung als Wassersteingradientenfluss zulässt, numerisch zu lösen. Um ein
vollständig diskretisiertes Problem zu erhalten verwenden wir einen Ansatz mit
finiten Elementen zweiter Ordnung in einer Raumdimension. Unsere numerischen
Untersuchungen zeigen Konvergenz zweiter Ordnung, sowohl bezüglich der Raum-
diskretisierung, als auch der Zeitdiskretisierung. Im Rahmen unserer numerischen
Experimente untersuchen wir auch die numerische Abklingrate verschiedener En-
tropiefunktionale und deren Abhängigkeit von verschiedenen numerischen Param-
etern.
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Chapter 1

Introduction

1.1 Abstract

This thesis is concerned with the investigation of evolution equations from dif-
ferent “metric” points of view. We derive quantum mechanical models from
Lagrangian principles on the so called Wasserstein space. Furthermore we study
the numerical treatment of gradient flows. Gradient flows are defined by equa-
tions of the form ut = ∇∗φ(u), where ∗ indicates the dependence of the gradient
on the underlying metric structure. Higher order fully discrete numerical schemes
in one space dimension are studied for gradient flows on Hilbert spaces, as well
as fully discrete higher order schemes in one space dimension for gradient flows
on the Wasserstein space.

1.2 Elements of optimal transport the

Wasserstein metric and Otto’s calculus

In this section we present some preliminaries on the Wasserstein metric, the
Wasserstein space and Otto’s calculus which will be needed later. The Wasser-
stein metric is a metric defined on the space of probability P(X) measures over
some spaceX. It arises as the minimal cost of an optimal transportation problem.
In optimal transport theory, as the name indicates, one is interested in transport-
ing mass in an optimal way. A mathematical description of this problem is given
by the Kantorovich problem. Let two probability spaces (X,µ) and (Y, ν) and a
cost function c : X ×Y → R be given. We call a measure π on the product space
X×Y a transport plan, and the value π(A,B) is the amount of mass transported
from A to B. The measure should be constructed so that all the mass that lies
in A is transported somewhere in Y , and conversely that all the mass that is
transported from X to B is the amount needed at B. More precisely, π is subject
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2 CHAPTER 1. INTRODUCTION

to the following conditions

π[A× Y ] = µ(A), π[X ×B] = ν(B)

for all measurable A ⊆ X and B ⊆ Y . The cost of transporting µ to ν according
to the plan π is then given by∫

X×Y
c(x, y)dπ(x, y).

We denote the set of all transport plans by Π(µ, ν). The minimal cost is

Tc(µ, ν) := min

{∫
X×Y

c(x, y)dπ(x, y) : π ∈ Π(µ, ν)

}
If (X, d) is a metric space and Y = X we can take c(x, y) = dp(x, y) and define
the p-th Wasserstein distance between µ and ν by:

W p
p (µ, ν) = min

{∫
X×Y

dp(x, y)dπ(x, y), π ∈ Π(µ, ν)

}
It can be shown that there exists a π ∈ Π(µ, ν) realizing the minimal transporta-
tion cost, see [62]. In this thesis we only consider the case p = 2 and call the W2

the Wasserstein metric for short. Determining the transport plan π minimizing
the cost answers our question of transporting mass in an optimal way. However,
the plan π just tells us how much mass has to be transported from A to B and
not which “path” each unit of mass has to take. Under suitable regularity as-
sumptions such a dynamic picture is given via the so called Benamou-Brenier
formula, see [6, 62]. We only sketch the idea. Suppose you are given a velocity
field v(t, x) on Rn and a mass density µ(t, x) flowing along this field (assuming
absolute continuity of the measure µ we by abuse of notation identify the measure
in the following with its density). At each time we define the total kinetic energy
by

E(t) =

∫
Rn

µ(t, x)|v(t, x)|2dx

and the action by

A[µ, v] =

∫ 1

0

(∫
Rn

µ(t, x)|v(t, x)|2dx
)
dt.

Consider two mass densities µ0, µ1 with compact support. Then it turns out that
W 2

2 (µ0, µ1) is obtained by minimizing the action:

W 2
2 (µ0, µ1) = inf {A[µ, v] : (µ, v) ∈ V (µ0, µ1)} ,

where V (µ0, µ1) is the set of reasonable (µ, v), for details see [61, Chapter 5].
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In other words, the Wasserstein distance is the minimal action of all velocity
fields vt pushing µ0 to µ1. The relation between the action A and the Wasserstein
metric already hints towards the Riemannian structure of P(Rn). The action
depends on the norm of the velocity vector that is calculated with respect to the
norm on the tangent space. Here we identify the tangent space TP(Rn) with the
set of all velocity vectors ∂tµ. To furnish the space of probability measures with
a geometric structure that yields the Wasserstein metric as an intrinsic metric
(i.e. geodesic distance) we define the norm of a tangent vector by

‖∂tµ‖2µ = inf
v∈L2(dµ,Rn)

{∫
Rn

µ|v|2dx : ∂tµ+ div(µv) = 0

}
.

Consequently, the norm of the velocity vector is given via the total kinetic energy,
minimized over all velocity fields for that the continuity equation ∂tµt+div(µv) =
0 holds true. Since there are many solutions to the continuity equation, it is
necessary to minimize over all admissible velocity fields. Heuristically this min-
imization is motivated as follows: The flow µt describes the flow of the particle
density and hence does not give full information about the flow of each particle. If
we want to associate to each flow of measures a velocity field, we have to choose
a velocity field which contains the “measure relevant” information. Imagine a
radially symmetric measure on the unit circle and let vr be the velocity field
of particles rotating around the origin. From a measure point of view nothing
happens, therefore vr produces the same flow as the zero vector field v0 ≡ 0. It
seems reasonable to think of v0 as the correct velocity field to the constant flow
of measures µt = µ0.
It can be shown (again under regularity assumptions on µ and v), that the infi-
mum in the definition of the norm above is attained by a unique velocity field of
gradient type ∇u. Hence we end up with the the definition

‖∂tµ‖µ =

∫
µ|∇u|2 dx; ∂tµ+ div(µ∇u) = 0.

Using this definition of a norm we get the desired identity

W 2
2 (µ0, µ1) = inf

{∫ 1

0

‖∂tµ‖2µdt; µ(0) = µ0, µ(1) = µ1

}
,

which identifies the Wasserstein metric as an intrinsic metric. Looking at this
result from a less rigorous point of view one could interpret the norm as follows.
We want to give a meaning to velocity and kinetic energy, respectively of a flow
of measures. The “mathematical” velocity ∂tµ is itself a measure and does not
contain the desired physical information. However, we can associate a vector field
to each flow via the continuity equation. This vector field contains information
of particles flowing around in such a way as the particles density changes (and
has the correct physical dimension of a velocity). Ultimately, we use the kinetic
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energy of this velocity field to define the kinetic energy of ∂tµ.
The above derivation of the Riemannian structure of the space of measures is
purely formal and taken from [61, Chapters 1,5,8]. The idea of furnishing the
space of probability measures with such a geometric structure goes back to Felix
Otto and is called Otto’s calculus. We already pointed out that to make these
ideas precise, one has to make regularity assumptions. A rigorous treatment of the
Riemannian structure of the space of measures under such regularity assumptions
is given in [43].

1.3 Summary of Chapter 1

Chapter 1 is dedicated to the formal derivation of quantum fluid models from
Lagrangian principles on the Wasserstein space. It is well known that the
Schrödinger equation, via the so called Madelung transform, admits a fluid me-
chanical description. It was shown in [55] by von Renesse that the Schrödinger
equation in its Madelung representation is a lift of Newton’s second law using
Otto’s calculus (as sketched above). Von Renesse used the formulas of Otto’s cal-
culus developed by Lott in [43] to derive a formulation of the Schrödinger equa-
tion as Newton’s second law on the space of probability measures. Inspired by
this result we pursue another direction and derive general quantum fluid models
from Lagrangian principles. Recall that in Lagrangian mechanics the equation of
motion is obtained from the principle of least action. The action is the functional∫ T

0

L(x(t), ẋ(t))dt.

where L : TM → R is the Lagrangian, and TM is the tangent bundle over
some manifold M ⊆ Rd (called the configuration space). We set M = Rd. The
criticality of a curve γ : [0, T ] → Rd is (formally) equivalent to the Euler-Lagrange
equations

d

dt

∂L

∂ẋ
(γ, γ̇)− ∂L

∂x
(γ, γ̇) = 0, t ∈ (0, T ).

We define a lift of Lagrangians L : TRd → R to Lagrangians L : TP(Rd) → R
by:

L (µ, η) := inf

{∫
L(x, v(x))µ(dx) : v ∈ C∞(Rd;Rd), η + div(µv) = 0

}
,

Compare the choice of the Lagrangian as the infimum over all “reasonable” ve-
locity fields with the definition of ‖µt‖2µ as sketched above.

We show that this definition induces the Wasserstein metric as an intrinsic
distance on the space of measures.
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We show (Theorem 2.3.1) that the lifted Lagrangian for a quantum particle
in an electromagnetic field is calculated to be

L (µ, η) =

∫
Rd

(
1

2
|∇S|2 − 1

2
|A|2 − Φ(x)− ~2

8
|∇ log µ|2

)
µ(dx)

and that the Euler-Lagrange equations are given by the continuity equation for
the particle density µ and the Hamilton-Jacobi equation for the velocity potential
S

∂tµ+ div
(
µ(∇S − A)

)
= 0,

∂tS +
1

2
|∇S − A|2 + Φ(x)− ~2

2

∆
√
µ

√
µ

= 0 in Rd, t > 0,

where, with a slight abuse of notation, ~ is the scaled Planck constant. We
introduce the wave function Ψ =

√
µ exp(iS/~) using the so-called Madelung

transform, for smooth solutions (µ, S) with positive density (or mass distribution)
µ. Then Ψ solves the Schrödinger equation with vector potential A and electric
potential Φ(x), i.e.

i~∂tΨ =
1

2

(
~
i
∇− A

)2

Ψ+ Φ(x)Ψ in Rd, t > 0.

We present a systematic analysis of the Madelung transform as a symplectic
map between Hamiltonian systems, preserving the electromagnetic Schrödinger
Hamiltonian (see Theorem 2.3.6). The term

∆
√
µ

√
µ

in the Hamilton-Jacobi equa-

tion above is called Bohm potential. The fluid mechanical representation of the
Schrödinger equation is closely related to the de Broglie-Bohm theory. One of
the main attempts of the de Broglie-Bohm theory is the formulation of quan-
tum mechanics avoiding the problem of quantum mechanical measurement. The
analysis of the interplay of optimal transport and the de Broglie-Bohm theory is
beyond the scope of this thesis and subject to further research. However, for the
reader interested in more details on the Bohmian representation of quantum me-
chanics we recommend [23, 63]. To derive a wider class of quantum fluid models
we augment the Lagrangians by dissipation potentials and show that the lifted
Euler-Lagrange equations with linear friction lead to the quantum Navier-Stokes
equations. After identifying vector fields modulo rotational components, these
equations read as (see Theorem 2.4.1)

∂tµ+ div(µv) = 0, (1.1)

∂t(µv) + div(µv ⊗ v) +∇p(µ) + µ∇Φ(x)− ~2

2
µ∇

(
∆
√
µ

√
µ

)
= α div(µD(v)),

(1.2)
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where the velocity is given by v = ∇S, v ⊗ v is a matrix with components
vjvk, p(µ) is the pressure, and D(v) = 1

2
(∇v + ∇v>) = ∇v is the symmetric

velocity gradient. Some words on the model here: This system was first derived
by Brull and Méhats [9] from the Wigner-BGK equation (named after Bhatnagar,
Gross, and Krook) using a Chapman-Enskog expansion. An alternative derivation
from the Wigner-Fokker-Planck model by just applying a moment method was
proposed in [38]. For systems including the energy equation, we refer to [38, 39].
Our approach yields a third way to derive the quantum Navier-Stokes equations.
An advantage of our method is that we can propose more general friction terms,
leading to a variety of nonlinear viscosities (see Remark 3). The selection of
quantum mechanically correct dissipation terms remains a research topic for the
future (see [3] for a Lindblad equation approach).

Surprisingly, system (1.1)-(1.2) allows for two different energies, as observed
in [36]. Indeed, a formal computation shows that the Hamiltonian

HQ =

∫
Rd

(
1

2
|v|2 + U(µ) + Φ(x) +

~2

8
|∇ log µ|2

)
µdx

is a Lyapunov functional along the solutions to (1.1)-(1.2), see Proposition 3.
Here, the internal energy U relates to the pressure p by p′(s) = sU ′′(s), s > 0.
Furthermore, the energy

H ∗
Q =

∫
Rd

(
1

2
|v + vos|2 + U(µ) + Φ(x) +

(
~2

8
− α2

2

)
|∇ log µ|2

)
µdx,

where vos = α∇ log µ is the osmotic velocity, is another Lyapunov functional. We
will explain this fact by a variant of the Noether theorem. Indeed, time invariance
of the system leads to dissipation of the Hamiltonian HQ (since we have friction,
the energy is not a constant of motion). Interestingly, a special transformation
of the variables (t, µ) leads to a Noether current which equals H ∗

Q (see Theorem
2.4.2). Thus, the existence of the second energy functional is a consequence of a
“Noether symmetry”, showing that the quantum Navier-Stokes equations exhibit
a certain geometric structure.

1.4 Summary of Chapter 2

Chapter 2 is dedicated to the study of numerical schemes for the solution of
gradient flows on Hilbert spaces, i.e. equations of the form:

ut = ∇∗φ(u),

where ∗ denotes that the gradient taken with respect to the inner product struc-
ture of the space. We collect some results regarding existence, convergence, and
dissipation of the scheme. Numerous evolution equations in science and engi-
neering turn out to admit a gradient flow formulation on a Hilbert space. Linear
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equations like the heat equation, Fisher’s equation for population dynamics or
the Allen-Cahn equation modeling phase separation in iron alloy, are known to
constitute gradient flows with respect to the L2-norm. Gradient flows with re-
spect to the L2-inner product also play a role in computer vision in active con-
tour problems. As examples of nonlinear equations (which admit a gradient flow
structure on a Hilbert space) we mention the Cahn-Hilliard equation, modeling
phase separation, which constitutes a gradient flow with respect to theH−1-norm.
Furthermore we mention the porous medium equation, which we investigate nu-
merically at the end of Chapter 2. The first part of the Chapter part is dedicated
to the analysis of so-called one-leg schemes for gradient flows on Hilbert spaces
for λ-convex entropies φ. One-leg schemes are a concept introduced by Germund
Dahlquist in order to study general multistep schemes. One-leg schemes are a well
known and well studied concept. For results on one-leg scheme we recommend
[34]. However, we give an alternative proof on the convergence of the scheme
which seem more suitable for our analysis. One-leg schemes are derived from
linear multistep schemes and related via the following definition. Given a general
linear multistep scheme

k∑
i=0

αixm+i = τ
k∑
i=0

βi∇φ(xm+i)

the corresponding one-leg scheme is defined by:

k∑
i=0

αixm+i = τ∇φ

(
k∑
i=0

βixm+i

)
.

In Theorem 3.1.9 we show the existence of solutions to the scheme for λ-convex
φ. To prove existence we use a formulation of the scheme as a minimization
problem. Therefore we call the schemes minimizing movement schemes (MMS)
as well. An other reason for this labeling is that in the theory of gradient flows on
metric spaces the schemes used to show existence of flows are called minimizing
movement schemes as well. In this sense (within this thesis) it seems consistent
to call the schemes with this familiar structure (on Hilbert or on Wasserstein
space) by the same name. In Theorem 3.1.17 we give a proof of the convergence
of the schemes and their respective order. After that, we tackle the question of
structure preserving properties of the scheme. By definition the solution of the
flow dissipates entropy. A desirable property of the scheme is that the discrete
solution dissipates the discrete entropy as well. Unfortunately this will not hold
true for general schemes. Moreover, we show that no other Lyapunov functional,
depending only on the state of the system at time tk, will be dissipated by the
discrete solution. We illustrate the violation of dissipation of the discrete solution
by a counterexample. Although there cannot exist a quantity depending on a
single value of the discrete solution we observe that the so called G-norm, a
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quantity depending on the discrete solution at several time steps is dissipated, at
least for convex functionals. The G-norm was introduced by Dahlquist for the
error analysis and is employed in our proof of the convergence of the scheme.

After analysis of the scheme we use the BDF-2 scheme (which belongs to the
class of one-leg schemes) for numerical analysis of the porous-medium equation.
We study the special case

ut = ∆u5/3, x ∈ [0, 1]; t ∈ (0, T ),

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

u(0, x) = u0, x ∈ [0, 1].

This equation arises in semiconductor modeling, see [35]. We fully discretize
the equation by a linear FEM ansatz in space. We show numerically first order
convergence of the scheme in space and the predicted second order convergence in
time. We show that the scheme, as expected, dissipates the G-norm. Moreover,
the entropy in our example is dissipated, although as mentioned above, in general
we may not hope for dissipation. We compare the decay of the G-norm and the
entropy. Finally, for the sake of completeness we give a numerical example where
the entropy is not dissipated by the scheme.

1.5 Summary of Chapter 3

In Chapter 3 we turn our attention to gradient flows on the Wasserstein space.
The investigation of Wasserstein gradient flows has become a active field of re-
search in recent years, since it turns out that a wide class of evolution equations
constitute Wasserstein gradient flows. The theory on Wasserstein gradient flows
is covered by [2]. Central to the investigation of Wasserstein gradient flows is the
minimizing movement scheme.

Minimizing movement schemes for evolution equations with an underlying
gradient-flow structure were first suggested by De Giorgi [21] in an abstract
framework. Jordan, Kinderlehrer, and Otto [40] have shown that the solution
to the linear Fokker-Planck equation can be obtained by minimizing the loga-
rithmic entropy in the Wasserstein space. Since then, many nonlinear evolution
equations have been shown to constitute Wasserstein gradient flows, for instance
the porous-medium equation [51], the Keller-Segel model [12], equations for in-
teracting gases [18], and a nonlinear fourth-order equation for quantum fluids
[31].

The aim of Chapter 3 is to study fully discrete higher order variants of mini-
mizing movement schemes in one spatial dimension on the Wasserstein space for
the nonlinear diffusion equation

∂tu = α−1∆(uα) in T d, t > 0, u(0) = u0, (1.3)
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with negative exponent α < 0, where T d is the d-dimensional torus. A short
computation reveals that equation (4.1) can be written as the gradient flow of
the entropy S[u] = (α(α − 1))−1

∫
T d u

αdx with respect to the Wasserstein dis-
tance. For the (formal) derivation of the Wasserstein gradient see Appendix A
We calculate

∇WS[u] = − div(u(∇DS[u])) = − div

(
u

1

α(α− 1)
(α(α− 1)uα−2∇u)

)
,

which yields after a straight forward calculation

−∇WS[u] = α−1∆(uα).

The minimizing movement scheme can be interpreted as an implicit Euler
semi-discretization with respect to the Wasserstein gradient-flow structure. Due
to the high computational cost, there are not many results on numerical ap-
proximations of evolution equations using this scheme. In one space dimension,
the optimal transport metric becomes flat when re-parametrized by means of
inverse cumulative functions, which simplifies the numerical solution; see e.g.
[1, 12, 44, 50]. For multi-dimensional situations, one approach is based on the
Eulerian representation of the discrete solution on a fixed grid. The resulting
problem can be solved by using interior point methods [16], finite elements [15],
or finite volumes [17]. Another approach employs the Lagrangian representation,
which is well adapted to optimal transport. Examples are moving meshes [14],
linear finite elements for a fourth-order equation [22], and entropic smoothing
using the Kullback-Leibler divergence [53]. The connection between Lagrangian
schemes and the gradient-flow structure was investigated in [41]. In this thesis,
we will use the Lagrangian viewpoint.

The minimizing movement scheme of De Giorgi is of first order in time only
since it is based on the implicit Euler method. Concerning higher-order schemes,
we are only aware of the paper [64]. There, second-order gradient-flow schemes
were suggested for the Euler equations, with finite differences in space and the
two-step BDF (Backward Differentiation Formula) method or diagonally implicit
Runge-Kutta (DIRK) schemes in time.

In this thesis, we propose a fully discrete second-order minimizing movement
scheme using quadratic finite elements in space and the two-step BDF method
in time. We consider periodic point-symmetric solutions. The finite-dimensional
minimization problem, constrained by the mass conservation, is solved by the
method of Lagrange multipliers which leads to a sequential quadratic program-
ming problem.

By construction, our numerical scheme is of second order both in time and
space, it conserves the mass and dissipates the G-norm of the Lagrangian weight
vector gk at time step k,

‖(gk+1,gk)‖2G =
5

2
(gk+1)>Mwg

k+1 − 2(gk+1)>Mwg
k +

1

2
(gk)>Mwg

k, (1.4)
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where the matrix Mw is defined in the approximation of the Wasserstein metric
on the space of the quadratic ansatz functions. We refer to Section 4.2 for details.
It turns out that numerically, the relative G-norm decays exponentially fast to
zero. Although we cannot expect for the multistep scheme that the discrete
entropy decays exponentially fast, this holds true for the numerical experiments
performed in this thesis. Furthermore, also the discrete variance of the original
variable u and the Lagrangian variable decay exponentially fast.

The dependence of the numerical decay rates on the time step size τ and the
(spatial) grid number N is somehow surprising. The numerical tests indicate
that the decay rate of the G-norm is increasing with respect to τ and N , i.e.,
the numerical values are worse for coarser meshes. Moreover, the decay rates of
the discrete entropy and the variance are decreasing in N , i.e., the discrete decay
rates are better than the corresponding value of the continuous equation. This
result is in accordance with the findings of [45] for a finite-volume approximation
of a one-dimensional linear Fokker-Planck equation.



Chapter 2

Lagrangian mechanics on
Wasserstein space

In this chapter we derive quantum fluid models from Lagrangian principles on
the Wasserstein space.

The chapter is organized as follows. The basic setup of Lagrangian mechanics
on the set of probability measures is introduced in Section 2.1. The following
sections are concerned with three applications of the Lagrangian method. For
the particle motion in a potential field, we recover the usual flow equations,
showing that our approach includes the classical case (Section 2.2). The Euler-
Lagrange equation for a charged particle in an electromagnetic field is computed
in Section 2.3, and the symplectic structure of the flow equations is analyzed.
Section 2.4 is devoted to the derivation of the quantum Navier-Stokes equations
and the relation between energy functionals and the Noether theorem.

2.1 Basic setup

In this section, we extend the classical Lagrangian mechanics to a configuration
space consisting of probability measures. A similar approach is contained in
the work of Lafferty [42]. We recall the definition of the phase space, introduce
the Lagrangians considered in this thesis, and formulate the (dissipative) Euler-
Lagrange equations.

2.1.1 Phase space

Let P(Rd) (d ≥ 1) be the set of probability measures on Rd. Obviously, the space
Rd is embedded in P(Rd) via the Dirac masses x 7→ δx. A physical interpretation
of µ ∈ Rd is that µ represents a (possibly diffuse) distribution of mass with fixed
total amount. The following arguments may be made rigorous on the set P∞(Rd)
of absolutely continuous probability measures with smooth positive density and
finite exponential moments, as pointed out by Lott [43]. However, similarly to

11
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the previous works [43, 51, 52, 55], we shall not try to find the maximal subset
of P(Rd) on which our formulas remain valid, and therefore, we assume that the
measures µ ∈ P(Rd) are sufficiently smooth for the formulas to hold. In the
following, we often identify the measure µ ∈ P(Rd) with its density dµ/dx ' µ
and we write P instead of P(Rd).

Given µ ∈ P we introduce the tangent space of P at µ by

TµP = {η ∈ S ′(Rd) : ∃v ∈ C∞(Rd;Rd), η + div(µv) = 0},
where S ′(Rd) is the dual of the Schwartz space, which is the collection of in-
finitesimal variations of µ by smooth flows. The tangent bundle

TP =
⋃
µ∈P

TµP

serves as the physical phase space for our Lagrangian mechanics of mass distribu-
tions. We remark that the motion of a single particle with velocity u is included
in our formalism by means of the representation η = − div(δxv), where v is any
vector field on Rd satisfying v(x) = u. We also notice that in Hamiltonian me-
chanics, the phase space is defined by the pairs of generalized coordinates in TP
and generalized momenta in the dual space T ∗P. We refer to Section 2.3.2 for
details.

We note that the case of concentration of measures on singular sets may be
more delicate. Therefore, we restrict ourselves to the case of absolutely contin-
uous probability measures with smooth positive density and finite exponential
moments. The concept of geometric tangent cones [2, Section 12.4] may help to
reformulate some of the ideas presented here.

2.1.2 Lagrangians

A function L : TP → R is called a Lagrangian. Below, we shall mostly be
concerned with Lagrangians L , which are obtained as lifts from classic Lagrange
functions L : Rd × Rd → R, defined by

L (µ, η) = inf

{∫
Rd

L(x, v(x))µ(dx) : v ∈ C∞(Rd;Rd), η + div(µv) = 0

}
, (2.1)

where µ ∈ P and η ∈ TµP. The infimum is necessary since the map
v 7→ − div(µv) ∈ TµP is generally not injective (compare the choice of a min-
imizing velocity v for the lifted Lagrangian L with the choice of a minimizing
velocity v for the definition of the norm of ‖∂tµ‖ in 1.2). We prefer the nota-
tion L (µ, η) instead of the simpler (and geometrically more consistent) notation
L (η) in order to emphasize the importance of the referring base point for η in
TµP. Notice that the classical case is embedded in this situation since

L (δx,− div(δxv)) =

∫
Rd

L(x, v(x))δ(dx) = L(x, v(x)).

We present some examples studied in this thesis.
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Single-particle dynamics.

We lift the kinetic energy L(q, q̇) = 1
2
|q̇|2 to P(Rd) and show that the lifted La-

grangian L is by definition consistent with Otto’s geometric structure on P(Rd)
as derived in the Introduction 1.2. A standard duality argument shows that
the infimum in (2.1) is attained. Indeed, we compute formally, for µ ∈ P and
η ∈ TµP:

L (µ, η) = inf
v
sup
χ

∫
Rd

(
1

2
|v|2 + ηχ

µ
− v · ∇χ

)
µ(dx)

= sup
χ

inf
v

∫
Rd

(
1

2
|v −∇χ|2 − 1

2
|∇χ|2 + ηχ

µ

)
µ(dx).

The infimum is realized at v = ∇χ:

L ∗ = L (µ, η) = sup
χ

∫
Rd

(
ηχ

µ
− 1

2
|∇χ|2

)
µ(dx).

Defining S = argsupL ∗ and inserting v = ∇S, χ = S into L , we find that

L (µ, η) =
1

2

∫
Rd

|∇S|2µ(dx).

We recall that S : Rd → R is the (up to constants) unique solution to
− div(µ∇S) = η in Rd. The function S is called the velocity potential of the
variation η with respect to the state µ. We introduce the notation

∆µS = div(µ∇S) in Rd. (2.2)

The minimizer defines a quadratic form on the tangent space TµP:

‖η‖2TµP =

∫
Rd

|∇S(x)|2µ(dx).

This is Otto’s Riemannian tensor on TP and shows the consistency of the lifted
L with Otto’s Calculus.

Charged particles in an electromagnetic field.

The Lagrange function L(q, q̇) = 1
2
|q̇|2 + q̇ · A − Φ(x) models the motion of a

charged particle in an electromagnetic field, where A : Rd → Rd is the magnetic
vector potential [58, Section 12.6] and Φ : Rd → R is the electric potential. By a
similar computation as in the previous example, for µ ∈ P and η ∈ TµP,

L (µ, η) = sup
χ

inf
v

∫
Rd

(
1

2
|v + (A−∇χ)|2 − 1

2
|A−∇χ|2 + ηχ

µ
− Φ(x)

)
µ(dx).
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Then, taking v∗ = ∇χ − A to realize the infimum and S = argsupL , χ = S, it
holds that

L (µ, η) =

∫
Rd

(
1

2
|∇S − A|2 + (∇S − A) · A− Φ(x)

)
µ(dx)

=

∫
Rd

(
1

2
|∇S|2 − 1

2
|A|2 − Φ(x)

)
µ(dx), (2.3)

and S : Rd → R is the (up to constants) unique solution to

η = − div(µv∗) = − div(µ(∇S − A)) = − div(µ∇S) + div(µA) in Rd.

With the notation (2.2), we have S = −∆−1
µ (η − div(µA)) in Rd.

Charged quantum particles.

Subtracting from the kinetic energy of the previous example the Fisher informa-
tion I(µ), defined by

I(µ) =

∫
Rd

|∇ log µ|2µ(dx), (2.4)

the lifted Lagrangian

L (µ, η) =
1

2
‖η‖2TµP − V (µ)− ~2

8
I(µ) (2.5)

was considered by Lafferty [42] and von Renesse [55] to formulate the Schrödinger
equation by means of the Madelung equations. We remark that Feng and Nguyen
[26] employed −I(µ) instead of I(µ) to derive compressible Euler-type equations
from minimizers of an action functional defined on probability measure-valued
paths. One may augment L also by the internal energy term

−
∫
Rd

U(µ)µ(dx), (2.6)

where U : R → R is the (smooth) internal energy potential.

2.1.3 Smooth curves in P

Let µ : [0, T ] → P be a smooth curve, i.e., its time derivative µ̇t := ∂tµ(t)
exists in the distributional sense and µ̇t ∈ TµtP for all t ∈ [0, T ]. For instance,
µ̇t ∈ S ′(Rd) may be defined for each t ∈ [0, T ] by

∂t〈µt, ξ〉 = 〈µ̇t, ξ〉 for all ξ ∈ S (Rd),

where 〈·, ·〉 is the dual product between S ′(Rd) and S (Rd).
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Let µ : [0, T ] → P be a smooth curve. If µ̇t ∈ S ′(Rd) is regular and
µt ∈ P∞(Rd) (see Section 2.1.1 for the definition of P∞(Rd)), standard elliptic
theory provides the existence of (up to an additive constant) unique smooth
solution St : Rd → R to the problem

− div(µt∇St) = µ̇t in Rd.

In particular, the curve µ̇ : (0, T ) → TP, t 7→ ηt := µ̇t = − div(µt∇St) is
well defined and, by definition of the tangent space, ηt ∈ TµtP. Again, the
single-particle motion c : [0, T ] → Rd is included by taking γt = δc(t) and
ηt = − div(vtδc(t)) ∈ S ′(Rd), where vt is some vector field such that vt(x) = ċ(t)
for x ∈ Rd.

2.1.4 Action functional and critical points

Given a Lagrangian L on P (see Section 2.1.2), we define the action functional
on smooth curves γ : [0, T ] → P by

A (γ) =

∫ T

0

L (γt, γ̇t)dt.

A critical point of A is a curve γ which satisfies

d

ds
A (γs)

∣∣∣
s=0

= 0

for all smooth variations γ : [−ε, ε]× [0, T ] → P, (s, t) 7→ γst , satisfying γ
0
t = γt

for t ∈ [0, T ]. Hence, assuming differentiability of L , a curve is a critical point if
and only if it satisfies the Euler-Lagrange equation

d

dt

∂L

∂η
(γ, γ̇)− ∂L

∂µ
(γ, γ̇) = 0, (2.7)

where ∂L /∂η and ∂L /∂µ are the variational derivatives of L with respect to η
and µ, respectively (see Section 2.3.1). A Lagrangian system on P with friction
is modeled by means of a dissipative potential D : TP → R:

d

dt

∂L

∂η
(γ, γ̇)− ∂L

∂µ
(γ, γ̇) +

∂D

∂η
(γ, γ̇) = 0. (2.8)

Von Renesse identified in [55] the flow (2.7), with L given by (2.5), with the
Schrödinger equation in its Madelung representation. We extend this concept in
the following sections for more general Lagrangians.



16 CHAPTER 2. LAGRANGIAN MECHANICS ON WASSERSTEIN SPACE

2.2 Example 1: Particle motion in a potential

field

We show that the formalism of Section 2.1 includes as a special case the motion
of a single particle in a potential Φ(x). Indeed, choosing the Lagrangian as the
lift of the classical Lagrangian L(q, q̇) = 1

2
|q̇|2 − Φ(x), the arguments in Section

2.1.2 yield, for vector fields v ∈ C∞(Rd;Rd),

L (δx,− div(δxv)) = L(x, v(x)) =
1

2
|v(x)|2 − Φ(x).

Elementary computations show that curves γt = δxt with ẍt = −∇Φ(xt) are
critical flows for the corresponding lifted action functional A , i.e., γt is a critical
point for A (see Section 2.1.4).

Clearly, the case of a collection of point masses moving in a joint potential
is more interesting. When the particle system is coalescing (corresponding to
inelastic particle collisions), the system may eventually collapse to single Dirac
measures moving along a classical particle trajectory. This situation is described
by the above Lagrangian. An example is the chemotactic movement of cells
modeled by a Keller-Segel system, which may exhibit finite-time blow-up. After
blow-up, collapsed parts seems to consist of evolving Dirac measures.

2.3 Example 2: The electromagnetic

Schrödinger equation

We consider the motion of a charged quantum particle in an electromagnetic field
with magnetic vector potential A. According to Section 2.1.2, the Lagrangian
reads as

LM(µ, η) =

∫
Rd

(
1

2
|∇S|2 − 1

2
|A|2 − Φ(x)− ~2

8
|∇ log µ|2

)
µ(dx), (2.9)

where µ ∈ P, η ∈ TµP, and S = −∆−1
µ (η−div(µA)). The corresponding action

functional becomes

AM(γ) =

∫ T

0

LM(γt, γ̇t)dt, (2.10)

where γ : [0, T ] → P is a smooth curve.

2.3.1 Electromagnetic Madelung equations

We show that the critical points for AM solve Madelung-type and quantum hy-
drodynamic equations.
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Theorem 2.3.1 (Electromagnetic Madelung equations). A smooth curve µ :
[0, T ] → P is a critical point for AM, i.e.

d

dt

∂LM

∂η
− ∂LM

∂µ
= 0, (2.11)

if and only if the flow of the generalized momenta St : Rd → R, t ∈ [0, T ], of

∂tµ+ div
(
µ(∇S − A)

)
= 0 in Rd (2.12)

solves the Hamilton-Jacobi equation

∂tS +
1

2
|∇S − A|2 + Φ(x)− ~2

2

∆
√
µ

√
µ

= 0 in Rd. (2.13)

For the proof of the above theorem, we need an auxiliary result. Let denote

M =

{
ξ smooth signed measure on Rd : 〈ξ, 1〉 = 0,∫
Rd

eα|x||ξ|(dx) <∞ for all α > 0

}
the set of smooth signed measures with zero mean and finite exponential absolute
moments. Here, 〈·, ·〉 denotes the dual product between the space of finitely
additive measures on Rd and the space L∞(Rd). Then, for µ ∈ P and S ∈ S (Rd),
the differential operator ∆µ(S) = div(µ∇S) is well defined. Furthermore, we
write

δ∗F (µ, ξ) =
d

dε
F (µ+ εξ)

∣∣∣
ε=0
, µ ∈ P, ξ ∈ M ,

for the first variation of F at µ in the direction of ξ. If δ∗F (µ, ξ) =
∫
Rd Gξdx, we

set G = ∂F/∂µ, the variational derivative of F with respect to µ.

Lemma 2.3.2. For smooth measures µ ∈ P, the operator-valued functions
µ 7→ ∆µ and µ 7→ ∆−1

µ are differentiable in the direction of ξ ∈ M , and their
first variations are given by

δ∗∆(µ,ξ) = ∆ξ, δ∗∆
−1
(µ,ξ) = −∆−1

µ ∆ξ∆
−1
µ .

Proof. The first claim follows from

δ∗∆(µ,ξ)(S) =
d

dε
div
(
(µ+ εξ)∇S

)∣∣∣
ε=0

= div(ξ∇S) = ∆ξS.

To prove the second claim, we notice that ∆(µ,ξ)∆
−1
(µ,ξ)(S) = S implies, by the

Leibniz rule, that

0 = δ∗
(
∆(µ,ξ)∆

−1
(µ,ξ)

)
(S) = δ∗∆(µ,ξ)(∆

−1
µ S) + ∆µδ∗∆

−1
(µ,ξ)(S).

By the first claim, this can be written as

0 = ∆ξ∆
−1
µ S +∆µδ∗∆

−1
(µ,ξ)(S),

and multiplication by ∆−1
µ from the left shows the result.
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Proof of Theorem 2.3.1. The theorem is proved by calculating the derivatives in
the Euler-Lagrange equation (2.11). To this aim, we set L = T − V , where

T (µ, η) =
1

2

∫
Rd

|∇S|2µ(dx) = 1

2

∫
Rd

|∇∆−1
µ (η − div(µA))|2µ(dx),

V (µ) =

∫
Rd

(
1

2
|A|2 + Φ(x) +

~2

8
|∇ log µ|2

)
µ(dx)

are the “kinetic energy” and “potential energy” terms. First, we find that, for
fixed µ ∈ P and for any ξ ∈ M ,

δ∗T (η, ξ) =
1

2

d

dε

∫
Rd

|∇∆−1
µ (η − div(µA) + εξ)|2µ(dx)

∣∣∣
ε=0

=

∫
Rd

∇∆−1
µ (η − div(µA)) · ∇∆−1

µ ξµ(dx)

= −
∫
Rd

∇S · ∇∆−1
µ ξµ(dx) = −

∫
Rd

µ∇S · ∇∆−1
µ ξdx.

Then, by integrating by parts and using the definition of ∆µ,

δ∗T (η, ξ) =

∫
Rd

∆−1
µ div(µ∇S)ξdx =

∫
Rd

∆−1
µ (∆µS)ξdx =

∫
Rd

Sξdx,

showing that ∂T /∂η = S. The expression V does not depend on η, and hence,
∂V /∂η = 0. Thus,

∂LM

∂η
= S. (2.14)

Next, we compute ∂T /∂µ. To illuminate the dependency of T on µ and
especially on ∆−1

µ we observe that T can be reformulated as

T (µ, η) =
1

2

∫
Rd

µ∇S · ∇Sdx = −1

2

∫
Rd

div(µ∇S)Sdx

= −1

2

∫
Rd

S∆µSdx = −1

2

∫
Rd

(η − div(µA))∆−1
µ (η − div(µA))dx,

using S = −∆−1
µ (η − div(µA)). Hence, the first variation reads as

δ∗T (µ, ξ) = −1

2

d

dε

∫
Rd

(
η − div((µ+ εξ)A)

)
∆−1
µ+εξ

(
η − div((µ+ εξ)A)

)
dx
∣∣∣
ε=0
.

We employ the product rule and Lemma 2.3.2 to compute ∆−1
µ :

δ∗T (µ, ξ) =

∫
Rd

div(ξA)∆−1
µ (η − div(µA))dx

+
1

2

∫
Rd

(η − div(µA))∆−1
µ ∆ξ∆

−1
µ (η − div(µA))dx.
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The first term becomes, after an integration by parts,∫
Rd

div(ξA)∆−1
µ (η − div(µA))dx = −

∫
Rd

div(ξA)Sdx =

∫
Rd

(A · ∇S)ξdx.

For the second term, we find that, by the definition of ∆ξ,

1

2

∫
Rd

(η − div(µA))∆−1
µ ∆ξ∆

−1
µ (η − div(µA))dx

=
1

2

∫
Rd

∆−1
µ (η − div µA) div

(
ξ∇∆−1

µ (η − div(µA))
)
dx

= −1

2

∫
Rd

∇∆−1
µ (η − div µA) ·

(
ξ∇∆−1

µ (η − div(µA))
)
dx

= −1

2

∫
Rd

|∇S|2ξdx.

We conclude that

δ∗T (µ, ξ) =

∫
Rd

(
(A · ∇S)− 1

2
|∇S|2

)
ξdx

and therefore, the variational derivative equals

∂T

∂µ
= A · ∇S − 1

2
|∇S|2. (2.15)

It remains to calculate ∂V /∂µ. The first two terms in the integral of V
depend only linearly on µ which shows that

∂

∂µ

∫
Rd

(
1

2
|A|2 + Φ(x)

)
µdx =

1

2
|A|2 + Φ(x).

The first variation of the Fisher information becomes

δ∗

(∫
Rd

|∇ log µ|2µdx

)
(µ, ξ) =

d

dε

∫
Rd

|∇ log(µ+ εξ)|2(µ+ εξ)dx
∣∣∣
ε=0

=
d

dε

∫
Rd

|∇ log µ|2(µ+ εξ)dx
∣∣∣
ε=0

+
d

dε

∫
Rd

|∇ log(µ+ εξ)|2µdx
∣∣∣
ε=0

=

∫
Rd

|∇ log µ|2ξdx+ 2
d

dε

∫
Rd

∇ log(µ+ εξ) · ∇(log µ)µdx
∣∣∣
ε=0

=

∫
Rd

|∇µ|2

µ2
ξdx+ 2

∫
Rd

∇ ξ

µ
· ∇µdx

=

∫
Rd

(
|∇µ|2

µ
− 2∆µ

)
ξ

µ
dx = −4

∫
Rd

∆
√
µ

√
µ
ξdx.
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We infer that
∂

∂µ

~2

8

∫
Rd

|∇ log µ|2µdx = −~2

2

∆
√
µ

√
µ
.

Summarizing, we conclude that

∂V

∂µ
=

1

2
|A|2 + Φ(x)− ~2

2

∆
√
µ

√
µ

(2.16)

and for the Lagrangian

∂LM

∂µ
= A · ∇S − 1

2
|∇S|2 − 1

2
|A|2 − Φ(x) +

~2

2

∆
√
µ

√
µ

= −1

2
|∇S − A|2 − Φ(x) +

~2

2

∆
√
µ

√
µ
,

which finishes the proof.

We call (2.12)-(2.13) the electromagnetic Madelung equations. The expres-
sion (~2/2) ×∆

√
µ/

√
µ is referred to as the Bohm potential. It is the quantum

correction to the (electromagnetic) hydrodynamic equations. Via the Madelung
transformation Ψ =

√
µ exp(iS/~), smooth solutions (µ, S) to (2.12)-(2.13) with

initial data µ(·, 0) = µ0, S(·, 0) = S0 in Rd yield solutions to the electromagnetic
Schrödinger equation

i~∂tΨ =
1

2

(
~
i
∇− A

)2

Ψ+ Φ(x)Ψ, t > 0, Ψ(·, 0) = √
µ0 exp(iS0/~) in Rd.

(2.17)

Remark 1. Taking the gradient of (2.13), multiplying the resulting equation by
µ and employing (2.12) similarly as in the proof of Theorem 14.1 in [35], we find
the quantum hydrodynamic equations

∂tµ+ div(µv) = 0,

∂t(µv) + div(µv ⊗ v)− ~2

2
µ∇

(
∆
√
µ

√
µ

)
+ µ∇Φ(x) = 0, t > 0,

µ(·, 0) = µ0, (µv)(·, 0) = µ0(∇S0 − A) in Rd,

where v = ∇S − A and v ⊗ v denotes the matrix with components vjvk. Here,
we have used the fact that A does not depend on time. Thus the dynamics of
a charged particle in an electromagnetic field is formally the same as that of a
charged particle in an electric field, with different initial conditions and a different
velocity function v.
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Remark 2. Including the internal energy (2.6) into the Lagrangian (2.3), without
electromagnetic field,

L (µ, η) =

∫
Rd

(
1

2
|∇S|2 − U(µ)− Φ(x)− ~2

8
|∇ log µ|2

)
µ(dx), S = ∇∆−1

µ η,

we can derive the nonlinear Schrödinger equation. Indeed, curves of the corre-
sponding action functional are critical if and only if (µ, S) solves

∂tµ+ div(µ∇S) = 0,

∂tS +
1

2
|∇S|2 + Φ(x) + U ′(µ)− ~2

2

∆
√
µ

√
µ

= 0.

Taking the gradient, multiplying by µ, and setting Ψ =
√
µ exp(iS/~), we arrive

at the nonlinear Schrödinger equation

i~∂tΨ = −~2

2
∆Ψ + f(|Ψ|2)Ψ + Φ(x)Ψ,

where f is defined by f(s) = s−1/2U ′(s) (s > 0).

2.3.2 Almost symplectic equivalence of measure and wave
function dynamics

We have mentioned in Section 2.3.1 that solutions (µ, S) to (2.12)-(2.13) yield
solutions to the electromagnetic Schrödinger equation (2.17) via the Madelung
transform (µ, S) 7→ Ψ =

√
µ exp(iS/~). Similarly to the treatment of the stan-

dard Schrödinger case in [55], we shall now give a systematic analysis of this
transformation as a symplectic map between two Hamiltonian systems, which
turn out to be almost equivalent, as specified in Theorem 2.3.6 below.

Hamiltonian formulation of the electromagnetic Madelung flow.

The first step is to identify the Hamiltonian description of the Lagrangian flow
(2.12)− (2.13) by means of the Legendre transform on TP induced by the lifted
Lagrangian (2.9). Since in the current situation, LM is no longer quadratic in
η ∈ TµP, its induced Legendre transform is not a simple Riesz isomorphism on
the Hilbert space (TµP, ‖ · ‖TµP). As a consequence, the distinct roles played
by tangent space TP of generalized coordinates and its dual space T ∗P of
generalized momenta become apparent.

We recall that the cotangent bundle T ∗P consists of all pairs (µ, F ), where
µ ∈ P and F : TµP → R is linear. From the definition of the tangent space
TµP follows that any distribution η in TP annihilates the constant functions.
Therefore, in our situation, T ∗P can be defined by

T ∗P =
{
(µ, f) : µ ∈ P, f ∈ S0(Rd)

}
,
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where
S0 = {f = φ+ c : φ ∈ S , c ∈ R}/∼

is the space of equivalence classes of shifted Schwartz functions, with f ∼ g if
and only if f − g = const. Note that the density of the measure µ is supposed to
be positive.

In analogy to the classical approach, one defines the Hamiltonian
HM : T ∗P → R associated to the Lagrangian LM : TP → R as its Legendre
transform, i.e.

HM(µ, f) = sup
η∈TµP

(
〈η, f〉 − LM(µ, η)

)
,

where (µ, f) ∈ P × S0(Rd) and 〈·, ·〉 denotes the dual bracket in S ′(Rd) and
S (Rd). Thanks to the strict convexity of LM, the supremum is attained at
η∗ ∈ TµP which is the unique solution to f = (∂LM/∂η)(µ, η

∗), and hence,

HM(µ, f) = 〈η∗, f〉 − LM(µ, η
∗).

Now, the variational derivative ∂LM/∂η has been computed in Section 2.3.1,
see formula (2.14). Therefore, f = (∂LM/∂η)(µ, η

∗) = S∗, where
S∗ = −∆−1

µ (η∗−div(µA)), and S∗ is unique as a solution in S0(Rd). As a result,
we have identified the change of coordinates

TP → T ∗P, (µ, η) 7→ (µ, S), S = −∆−1
µ (η − div(µA)),

as the Legendre transform from the physical phase space of variations TP to the
space of generalized momenta T ∗P.

Inserting the identification η∗ = −∆µS
∗+div(µA) into the Hamiltonian gives

an explicit expression for HM:

HM(µ, S
∗) = 〈−∆µS

∗ + div(µA), S∗〉 − LM(η
∗, µ)

= −
∫
Rd

div
(
µ(∇S∗ − A)

)
S∗dx− LM(η

∗, µ).

Integrating by parts in the first integral and using the definition of LM gives

HM(µ, S
∗) =

∫
Rd

µ|∇S∗|2dx−
∫
Rd

µA · ∇S∗dx

−
∫
Rd

(
1

2
|∇S∗|2 − 1

2
|A|2 − Φ(x)− ~2

8
|∇ log µ|2

)
µdx

=
1

2

∫
Rd

|∇S∗ − A|2µdx+
∫
Rd

Φ(x)µdx+
~2

8

∫
Rd

|∇ log µ|2µdx.

We see that the Hamiltonian is, as expected, the sum of the magnetic, potential,
and quantum energies, respectively. Indeed, the classical electromagnetic Hamil-
tonian is HM = 1

2
|p−A|2+Φ(x), where p is the momentum. In the lifted version,
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the momentum becomes ∇S, and therefore, HM,mag = 1
2

∫
Rd |∇S − A|2µ(dx),

which is the above expression.

As a second ingredient for a Hamiltonian description of the associated flow of
generalized momenta on T ∗P, we introduce a symplectic form on T ∗P, similarly
as in [55] on the physical phase space TP. We recall that a symplectic form ω on
a vector space is a skew-symmetric, non-degenerate, bilinear form, i.e. ω(v, w) =
−ω(w, v) for all u, v and ω(v, w) = 0 for all w implies that v = 0.

Lemma 2.3.3 (Symplectic form on T ∗P). Each pair (φ, ψ) ∈ S0(Rd)×S0(Rd)
induces a vector field Vφ,ψ : T ∗P → TT ∗P via

Vφ,ψ(µ, f) = (− div(µ∇ψ), φ) ∈ T(µ,f)T
∗P, (µ, f) ∈ T ∗P.

Furthermore, T ∗P is endowed with a unique symplectic form ω, defined on the
above vector fields by

ω(Vφ1,ψ1 , Vφ2,ψ2) =

∫
Rd

(∇φ1 · ∇ψ2 −∇φ2 · ∇ψ1)µ(dx), (2.18)

where (φj, ψj) ∈ S0(Rd)× S0(Rd), j = 1, 2.

Proof. Expression (2.18) clearly defines a skew-symmetric bilinear form. Fur-
thermore, an elementary calculation shows that ω is non-degenerate. Uniqueness
follows from the fact that for given (µ, f) ∈ T ∗P, the set of tangent vectors
{Vφ,ψ(µ, f) : φ, ψ ∈ D0(Rd)} is total in T(µ,f)T

∗P.

Recall that a Hamiltonian flow on a manifold M with symplectic form ω
is induced by an energy function ϕ : M → R via the integral curves of the
corresponding Hamiltonian vector field Xϕ on M . The latter is uniquely defined
by the requirement that in any p ∈M , it holds that

ω(Xϕ, Z) = dϕ(Z) for all Z ∈ TpM.

The form (2.18) for M = T ∗P allows us to study Hamiltonian flows for various
energy functions ϕ on T ∗P. For ϕ = HM, we arrive at the following statement,
which is the analogue of Proposition 3.4 in [55] (also see Corollary 3.5 in that
paper).

Theorem 2.3.4 (Critical points and Hamiltonian flow). A smooth curve of mea-
sures γ : [0, T ] → P, t 7→ γt, is a critical point of the action functional AM,
defined in (2.10), if and only if the corresponding curve (γt, St) ∈ T ∗P in the
space of generalized momenta, where St = ∆−1

γt (γ̇t − div(γtA)), is a Hamiltonian
flow on (T ∗P, ω) associated to the Hamiltonian HM.
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Proof. It suffices to compute the corresponding Hamiltonian vector field XHM
on

M := T ∗P. To this aim, fix p = (µ, f) ∈ T ∗M and choose
Z = Vφ,ψ(µ, f) ∈ TT ∗P as in Definition 2.3.3. Then

dHM(Vφ,ψ(µ, f)) =
d

dε
HM((µ− ε div(µ∇ψ), f + εφ))

∣∣∣
ε=0

=

∫
Rd

((∇f − A)µ) · ∇φdx− 1

2

∫
Rd

|∇f − A|2 div(µ∇ψ)dx

−
∫
Rd

Φdiv(∇ψµ)dx+ ~2

2

∫
Rd

(
∆
√
µ

√
µ

)
div(∇ψµ)dx.

=

∫
Rd

(∇f − A) · ∇φµdx+ 1

2

∫
Rd

∇|∇f − A|2 · ∇ψµdx

+

∫
Rd

∇Φ · ∇ψµdx− ~2

2

∫
Rd

∇
∆
√
µ

√
µ

· ∇ψµdx.

To reveal the structure of the Hamiltonian flow we reformulate the first integral
as follows∫

Rd

(∇f − A) · ∇φµdx = −
∫
Rd

div((∇f − A)µ)φdx

= −
∫
Rd

∆µ∆
−1
µ (div((∇f − A)µ))φdx =

∫
Rd

∇(∆−1
µ div((∇f − A)µ))∇φµdx.

This yields

dHM(Vφ,ψ(µ, f)) =

∫
Rd

∇(∆−1
µ div((∇f − A)µ))∇φµdx

+
1

2

∫
Rd

∇|∇f − A|2 · ∇ψµdx

+

∫
Rd

∇Φ · ∇ψµdx− ~2

2

∫
Rd

∇
∆
√
µ

√
µ

· ∇ψµdx.

Comparing with (2.18), we find that

XHM
(µ, f) =

(
−∆−1

µ div((∇f − A)µ),
1

2
|∇f − A|2 + Φ− ~2

2

∆
√
µ

√
µ

)
.

Hence, a smooth curve t 7→ (µt, St) ∈ T ∗P is an integral curve for XHM
if and

only if the corresponding flow of variations t 7→ µ̇t ∈ TP solves (2.12)-(2.13).

Hamiltonian structure of the electromagnetic Schrödinger flow.

Let us recall the basic fact that the electromagnetic Schrödinger equation has
a Hamiltonian structure, too. Indeed, denoting by C = C∞(Rd;C) the linear
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space of smooth complex-valued functions on Rd and identifying as usual the
tangent space over an element Ψ ∈ C with the space C , the tangent bundle TC
is naturally equipped with the symplectic form

ωC(F,G) = −2

∫
Rd

=(F ·G)(x)dx,

where =(z) is the imaginary part of z ∈ C and z is its complex conjugate. This
way (C , ~ωC) becomes a symplectic space. On C we define the energy function
HC : C 7→ R by

HC(Ψ) =
1

2

∫
Rd

∣∣∣∣(~
i
∇− A

)
Ψ

∣∣∣∣2 dx+ ∫
Rd

Φ(x) |Ψ|2(x) dx,

which is the electromagnetic Schrödinger Hamiltonian.

Proposition 1. A smooth flow of wave functions t 7→ Ψt ∈ C solves the elec-
tromagnetic Schrödinger equation (2.17) if and only if it is a Hamiltonian flow
induced from the energy function HC on the symplectic space (C , ~ωC).

Proof. We only sketch the proof of this classical but mostly forgotten fact. For
Ψ, ζ ∈ C , we find by a straightforward computation that

d

dε
HC(Ψ + εζ)

∣∣∣
ε=0

= <
∫
Rd

((
~
i
∇− A

)2

+ 2Φ

)
Ψ · ζdx

= =
∫
Rd

i

((
~
i
∇− A

)2

+ 2Φ

)
Ψ · ζdx

= ωC

(
− i

~

(
1

2

(
~
i
∇− A

)2

+ Φ

)
Ψ, ζ

)
.

This shows that the Hamiltonian vector field XHC
associated to HC on (C , ωC)

is

XHC
(Ψ) = − i

~

(
1

2

(
~
i
∇− A

)2

+ Φ

)
Ψ.

Hence, solutions to the electromagnetic Schrödinger equation (2.17) are precisely
the integral curves of the Hamiltonian vector field XHC

.

Madelung transform: Precise definition and symplectic properties.

Let C∗ = {Ψ ∈ C :
∫
Rd |Ψ|2dx = 1, Ψ(x) 6= 0 for all x ∈ Rd} be the set

of smooth nowhere vanishing normalized wave functions. Each Ψ ∈ C∗ admits
a decomposition Ψ = |Ψ| exp(iS/~), where the smooth function S : Rd → R
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is uniquely defined up to an additive constant of the form 2π~k, k ∈ N. In
particular, the Madelung transform is well defined

σ : C∗ → T ∗P, σ(Ψ) = (|Ψ(x)|2dx, S) ∈ P × S0(Rd). (2.19)

Recall that by the definition of S0(Rd) as the space of equivalence classes of
shifted Schwartz functions, the map σ is not injective. However, we may apply
the abstract notion of a symplectic submersion (see [55]) which is a generalization
of a symplectic isomorphism where the injectivity assumption is dropped.

Definition 2.3.5 (Symplectic submersion on manifolds). Let (M,ωM), (N,ωN)
be symplectic manifolds equipped with the symplectic forms ωM , ωN , respectively,
and let s : M → N be a smooth map. Then s is called a symplectic submersion
if its differential s∗ : TM → TN is surjective and satisfies ωN(s∗X, s∗Y ) =
ωM(X, Y ) for all X, Y ∈ TM .

Similarly to the isomorphism case one may easily see that Hamiltonian flows
are stable under sympletic submersions. This is stated in the following proposi-
tion, cf. [55, Prop. 4.2].

Proposition 2 (Submersions between Hamiltonian flows). Let M , N be sym-
plectic manifolds equipped with the symplectic forms ωM , ωN , respectively, and let
s : M → N be a symplectic submersion. If the Hamiltonians F ∈ C∞(M) and
G ∈ C∞(N) are related by F = G ◦ s, the submersion s maps Hamiltonian flows
associated to F on (M,ωM) to Hamiltonian flows associated to G on (N,ωN).

We are now ready to state the main result of this section which asserts that
the Madelung transform is a symplectic submersion from C∗ to T ∗P.

Theorem 2.3.6 (Madelung transform as symplectic submersion). The Madelung
transform σ : C∗ → T ∗P, defined in (2.19), is a symplectic submersion from
(C∗, ~ωC) to (T ∗P, ω), preserving the electromagnetic Schrödinger Hamiltonian,

HC = HM ◦ σ.

Proof. Since the proof is very similar to the proof of Theorem 4.3 in [55], we
give only a sketch. First, we restrict the phase S/~ in |Ψ| exp(iS/~) to the
interval [0, 2π~) by defining an appropriate bijection. We can prove that the
differential s∗ is surjective. A calculation shows that ωT ∗P(s∗Vφ1,ψ1 , s∗Vφ2,ψ2) =
~ωC(Vφ1,ψ1 , Vφ2,ψ2) for all vector fields Vφ1,ψ1 , Vφ2,ψ2 . Thus, s is a symplectic
submersion. The remaining part HC = HM ◦σ is a computation; see [55, Section
4] for details.

In light of Proposition 2 and Theorem 2.3.6, the electromagnetic Schrödinger
equation (2.17) for wave functions can be interpreted as the lift of the physically
intuitive Lagrangian flow on probability measures (or mass distributions) (2.13)
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to the larger space of complex wave functions. The lifted Hamiltonian system is
the familiar electromagnetic Schrödinger equation for wave functions and has the
advantage that it is linear. However, a disadvantage is that a new and unphysical
degree of freedom, incorporated in the constant phase shift for wave functions
and describing the same physical state, is introduced.

2.4 Example 3: Quantum Navier-Stokes equa-

tions

In this section, we consider the quantum Lagrangian

LQ(µ, η) =

∫
Rd

(
1

2
|∇S|2 − U(µ)− Φ(x)− ~2

8
|∇ log µ|2

)
µ(dx), (2.20)

where µ ∈ P, η ∈ TµP, S = −∆−1
µ η, and U(µ) denotes the internal energy which

is assumed to be a smooth function. Here, we are interested in the Lagrangian
flow with dissipation

D(µ, η) =
α

2

∫
Rd

|∇v|2µ(dx),

where α ≥ 0, and v = ∇S is the unique potential velocity field inducing the
variation η of the state µ.

2.4.1 Quantum Navier-Stokes equations

We show that the dissipative Lagrangian flow on P can be related to the Navier-
Stokes equations including the Bohm potential and a density-depending viscosity.
Our result reads as follows.

Theorem 2.4.1 (Quantum Navier-Stokes equations). A smooth curve µ : [0, T ] →
P satisfies

d

dt

∂LQ

∂η
(µ, µ̇)− ∂LQ

∂µ
(µ, µ̇) +

∂D

∂η
(µ, µ̇) = 0 (2.21)

if and only if the mass flux t 7→ µtvt with v = −∇∆−1
µ η solves the quantum

Navier-Stokes equation

∂t(µv)+div(µv⊗v)+∇p(µ)+µ∇Φ(x)−~2

2
µ∇

(
∆
√
µ

√
µ

)
= αµ∇∆−1

µ (∇2 : (µ∇v)).

(2.22)
Here, v⊗v is a tensor with components vjvk; the pressure function p(µ) is defined
through p′(s) = sU ′′(s) for s ≥ 0; and the product “:” signifies summation over
both indices. Identifying vector fields modulo rotational components, we can write
this equation as

∂t(µv)+div(µv⊗v)+∇p(µ)+µ∇Φ(x)− ~2

2
µ∇

(
∆
√
µ

√
µ

)
≡ α div(µD(v)), (2.23)
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where A ≡ B if and only if div(A− B) = 0, and D(v) = 1
2
(∇v +∇v>) = ∇v is

the symmetric velocity gradient.

The system of quantum Navier-Stokes equations is given by (2.22) and the
continuity equation

∂tµ+ div(µv) = 0. (2.24)

In this model, the viscous stress tensor is S = νD(v), where the viscosity ν = αµ
depends on the particle density µ. For variants of the stress tensor, see Remark
3.

Proof. We write LQ = T − V , where

T (µ, η) = ‖η‖2TµP =

∫
Rd

|∇∆−1
µ η|2µ(dx)

corresponds to the “kinetic energy” and

V (µ, η) =

∫
Rd

(
Φ(x) + U(µ) +

~2

8
|∇ log µ|2

)
µ(dx) (2.25)

corresponds to the “potential energy”. By the proof of Theorem 2.3.1 (see (2.16)
with A = 0), we have

∂V

∂µ
= Φ(x) + U ′(µ)− ~2

2

∆
√
µ

√
µ
. (2.26)

Since V does not depend on η, it follows that ∂V /∂η = 0. Furthermore, by
(2.14) and (2.15) (with A = 0),

LQ

∂η
=
∂T

∂η
= S,

∂T

∂µ
= −1

2
|∇S|2. (2.27)

It remains to compute ∂D/∂η. To this end, let ξ ∈ M and set ζ = ∆−1
µ ξ.

Since v = ∇S = −∇∆−1
µ η, we infer that

δ∗D(η, ξ) =
α

2

d

dε

∫
Rd

|∇2∆−1
µ (η + εξ)|2µ(dx)

∣∣∣
ε=0

=
α

2

d

dε

∫
Rd

|∇2(∆−1
µ η + ε∆−1

µ ξ)|2µ(dx)
∣∣∣
ε=0

=
α

2

d

dε

∫
Rd

∇2(−S + εζ) : ∇2(−S + εζ)µ(dx)
∣∣∣
ε=0

= −α
∫
Rd

∇2S : ∇2ζµdx = −α
∫
Rd

∆−1
µ (∇2 : (µ∇2S))ξdx.

This implies that
∂D

∂η
= −α∆−1

µ (∇2 : (µ∇2S)). (2.28)
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Inserting this expression as well as (2.26) and (2.27) into (2.21) gives

∂tS +
1

2
|∇S|2 + Φ(x) + U ′(µ)− ~2

2

∆
√
µ

√
µ

= α∆−1
µ ∇2 : (µ∇2S).

We take the gradient, multiply this equation by µ, and replace ∇S = v:

µ∂tv+
1

2
µ∇|v|2+µ∇Φ(x)+µU ′′(µ)∇µ− ~2

2
µ∇

(
∆
√
µ

√
µ

)
= αµ∇∆−1

µ ∇2 : (µ∇v).

Then, employing the continuity equation v∂tµ + v div(µv) = 0 and rearranging
terms, we obtain

∂t(µv)+div(µv⊗v)+µ∇Φ(x)+∇p(µ)−~2

2
µ∇

(
∆
√
µ

√
µ

)
= αµ∇∆−1

µ ∇2 : (µD(v)),

which equals (2.22). The final step is the projection on the space of curl-free
fields by taking the divergence which leads to (2.23). Indeed, observing that

div
(
µ∇∆−1

µ ∇2 : (µD(v))
)
= ∆µ∆

−1
µ (∇2 : (µD(v)) = div

(
div(µD(v))

)
,

we conclude the proof.

Remark 3. The Lagrangian approach allows us to choose other dissipation terms.
We consider two simple examples:

D1(µ, η) =
α

p

∫
Rd

|∇v|pµ(dx), p ≥ 2,

D2(µ, η) =
1

2

∫
Rd

g(µ)
(
ν1|∇v|2 + ν2(div v)

2I
)
µ(dx),

where g : R → [0,∞) is some function and ν1, ν2 > 0. The variational derivatives
are computed similarly as in the proof of Theorem 2.4.1. The results are as
follows:

∂D1

∂η
= −α∆−1

µ ∇2 : (µ|D(v)|p−2D(v)),

∂D2

∂η
= −∆−1

µ ∇2 :
(
µg(µ)(ν1D(v) + ν2(div v)I)

)
.

The viscous term in the quantum Navier-Stokes equations is obtained after taking
the gradient, multiplying by µ, and projecting it on the space of curl-free vectors:

div

(
µ∇∂D1

∂η

)
= −α div

(
µ∇∆−1

µ ∇2 : (µ|D(v)|p−2D(v))
)

= −α div
(
div(µ|D(v)|p−2D(v))

)
,
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and similarly for the second expression. The viscous stress tensors become

S1 = αµ|D(v)|p−2D(v), S2 = µg(µ)(ν1D(v) + ν2(div v)I).

The viscosity ν1 = αµ|D(v)|p−2 depends not only on the particle density but also
on the velocity gradient. When we choose g(µ) = 1/µ, the viscosities are constant,
which corresponds to the case of Newtonian fluids (see, e.g., [25, Formula (1.16)]).

2.4.2 Energy-dissipation identities and Noether currents

According to Section 2.3.2, the Hamiltonian HQ : T ∗P → R associated to the
Lagrangian LQ : TP → R, defined in (2.20), is given by

HQ(µ, S) = 〈η, S〉 − LQ(µ, η),

where S = (∂LQ/∂η)(µ, η) = −∆−1
µ η. Inserting η = −∆µS and the definition

(2.20) of LQ into this expression, we find that

HQ(µ, S) =

∫
Rd

|∇S|2µdx− LQ(µ, η)

=

∫
Rd

(
1

2
|∇S|2 + U(µ) + Φ(x) +

~2

8
|∇ log µ|2

)
µdx, (2.29)

which is the sum of the kinetic, internal, potential, and quantum energies. In
this section, we derive energy-dissipation identities for smooth solutions to the
quantum Navier-Stokes equations (2.22) and (2.24).

Proposition 3 (Energy-dissipation identity). Let (µ, v) be a smooth solution to
(2.22) and (2.24). Then

dHQ

dt
+ α

∫
Rd

µ|∇v|2dx = 0. (2.30)

Proof. Multiplying (2.22) by v and (2.24) by

−1

2
|v|2 + U ′(µ) + Φ(x) + (~2/2)(∆

√
µ/

√
µ)

and adding the resulting equations, a straightforward computation yields

d

dt

∫
Rd

(
1

2
|v|2 + U(µ) + µΦ(x) +

~2

8
µ|∇ log µ|2

)
dx

= α

∫
Rd

µv · ∇∆−1
µ (∇2 : (µv))dx.
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The left-hand side equals dHQ/dt. The right-hand side can be rewritten, using
v = ∇S and integration by parts, as

−α
∫
Rd

div(µ∇S)∆−1
µ (∇2 : (µ∇2S))dx = −α

∫
Rd

∆µS∆
−1
µ (∇2 : (µ∇2S))dx

= −α
∫
Rd

∆−1
µ ∆µS(∇2 : (µ∇2S))dx

= −α
∫
Rd

∇2S : (µ∇2S)dx = −α
∫
Rd

µ|∇v|2dx,

proving the claim.

Remark 4. Proposition 3 is the counterpart of the energy dissipation law for
classical damped Lagrangian systems in Rn in which case the analogue of (2.21)
reads as

d

dt

∂L

∂q̇
(q, q̇)− ∂L

∂q
(q, q̇) +

∂D

∂q̇
(q, q̇) = 0. (2.31)

Writing the dynamics in Hamiltonian coordinates t 7→ (q(t), p(t)) via the Legen-
dre transform, i.e. p = p(q, q̇) = (∂L/∂q̇)(q, q̇), for the Hamiltonian we obtain

H(q, p(q, q̇)) = 〈q̇, ∂L
∂q̇

(q, q̇)〉 − L(q, q̇),

which yields, after differentiation with respect to t and inserting (2.31),

dH

dt
(q(t), p(t)) = −〈q̇, ∂D

∂q̇
(q, q̇)〉.

In our case, by the same computation and using (2.28), it follows that

dHQ

dt
= −〈η, ∂D

∂η
〉 = −α〈∆µS,∆

−1
µ (∇2 : (µ∇2S)〉 = −α

∫
Rd

|∇2S|2dµ,

which equals (2.30).

It has been shown in [36] that the projected system (2.23)-(2.24) possesses a
second energy functional,

H ∗
Q (µ, S) =

∫
Rd

(
1

2
|w|2 + U(µ) + Φ(x) +

(
~2

8
− α2

2

)
|∇ log µ|2

)
µdx, (2.32)

where w = v + vos and vos = α∇ log µ is the osmotic velocity first introduced by
Nelson [49, Formula (26)]. More precisely, let (µ, v) with v = ∇S = −∇∆−1

µ η be
a smooth solution to

∂tµ+ div(nv) = 0, x ∈ Rd, t > 0, (2.33)

∂t(µv) + div(µv ⊗ v) +∇p(µ) + µ∇Φ(x)− ~2

2
µ∇

(
∆
√
µ

√
µ

)
= α div(µD(v)).

(2.34)
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Then a formal computation [36] shows that

dH ∗
Q

dt
+ α

∫
Rd

(
µ|∇w|2 + U ′′(µ)|∇µ|2 +

(
~2

8
− α2

2

)
µ|∇2 log µ|2

)
dx = 0,

which provides additional estimates for the solutions if ~2/4 > α2. We wish to
understand why system (2.33)-(2.34) possesses two dissipative laws.

A first partial answer was given in [38]. There it was shown that the osmotic
velocity emerges from gauge field theory by introducing the local gauge trans-
formation ψ 7→ φ = exp(−iα log µ)ψ, where ψ is a given quantum state. This
transformation leaves the particle density invariant but it changes the mass flux
nv = −=(ψ∇ψ) according to

nw = −=(φ∇φ) = −=(ψ∇ψ − iαµ∇ log µ) = µ(v + α∇ log µ).

Our goal is to show that the new velocity w can be interpreted as a special
transformation of (t, µ) and that the Hamiltonian H ∗

Q can be interpreted as the
Noether current associated to this transformation.

To this end, we recall some basic facts from classical Noether theory (see,
e.g., [10, Chapter 9]). Let a Lagrangian L(t, q, q̇) be given. We introduce the
transformations T (t, q; s) and Q(t, q; s), where s > 0 is a parameter, such that
t = T (t, q; 0) and q = Q(t, q; 0). Setting

δt =
∂T

∂s
(t, q; 0), δq =

∂Q

∂s
(t, q; 0),

Taylor’s expansion gives T (t, q) = t + sδt + O(s2) and Q(t, q) = q + sδq + O(s2)
as γ → 0. For infinitesimal small s > 0, we can formulate the transformation as
t 7→ t+ δt and q 7→ q + δq. Now, the Noether current is defined as

J = δt

(
∂L

∂q̇
q̇ − L

)
− δq

∂L

∂q̇
.

If the Lagrangian density L(t, q, q̇) is invariant under the above transformation,
Noether’s theorem states that the Noether current is constant along any extremal
of the action integral over L.

On the space of probability measures, we define the lifted Noether current as

J (µ, η) = δt
〈∂L
∂η

(µ, η), η
〉
− δtL (µ, η)−

〈∂L
∂η

(µ, η), δµ
〉
, (µ, η) ∈ TP,

where 〈·, ·〉 denotes the dual product in suitable spaces. We prove the following
result.

Theorem 2.4.2 (Noether currents). Let the Lagrangian LQ be given by (2.20).
Then
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• δt = 1, δµ = 0: J = HQ, defined in (2.29);

• δt = 1, δµ = α∆µ: J = H ∗
Q , defined in (2.32).

Proof. The theorem follows by inserting the transformations into the definition of
the Noether current. We recall from (2.27) that ∂LQ/∂η = S, where S = −∆−1

µ η.
Then, if δt = 1, δµ = 0, we find that

J =

∫
Rd

Sηdx− LQ =

∫
Rd

µ|∇S|2dx− LQ = HQ.

Next, if δt = 1, δµ = α∆µ, we compute

J =

∫
Rd

(Sη − α∆µS)dx− LQ

=

∫
Rd

(
1

2
µ|∇S|2 + U(µ) + ψ(x) +

~2

8
µ|∇ log µ|2 + α∇µ · ∇S

)
dx

=

∫
Rd

(
1

2
µ|∇(S + α log µ)|2 +

(
~2

8
− α2

2

)
µ|∇ log µ|2 + U(µ) + ψ(x)

)
dx

= H ∗
Q ,

completing the proof.

Notice that Noether’s theorem, which yields energy conservation, can be ap-
plied only if α = 0, otherwise we have dissipation of energy. For a classical
Noether theory including dissipative terms, we refer to [20, 57] or the more recent
works [29, 30]. The extension of this theory to our context is an open question.
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Chapter 3

Gradient flows on Hilbert spaces

In this chapter we collect results on so called one-leg schemes for gradient flows
and investigate entropy dissipating properties of the discrete solution.

The Chapter is organized as follows. First in section 3.1.1 we give prerequisites
on λ-convex functions. Then in 3.1.3 we define the one-leg schemes and show that
a unique solution to the scheme exists. In section 3.1.4 we answer the question
of the convergence order of the schemes. In 3.2 we investigate the structure
preserving properties of the scheme. In 3.3 we investigate the porous medium
equation numerically.

Remark 5. As mentioned in the introduction the existence and convergence of
one-leg schemes is known (see e.g. [34]), however we give an alternative proof,
which in our opinion is more suitable in the case of a general Hilbert space. The
existence analysis is based on the proof of [24, Chapter 9.6, Theorem 1], however,
we extent the result from convex to λ-convex functionals.

3.1 Existence and convergence

3.1.1 Prerequisites

We collect the basic definitions and useful properties of λ-convex functions in
this section. In the following we consider H to be a Hilbert space and
φ : H → (−∞,∞] to be:

• proper, i.e.
φ is not identically equal to ∞

• lower semicontinuous, i.e.
xk → x in H ⇒ φ(x) ≤ lim inf

k→∞
φ(xk), and

• λ-convex, i.e.
φ(x+ t(y − x)) ≤ φ(x) + t(φ(y)− φ(x))− λ

2
t(1− t)‖x− y‖2

for x, y ∈ H, t ∈ [0, 1], and λ ∈ R.

35
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Remark 6. Assume φ : R → R to be C2. Then the λ in the definition of
the λ-convexity is nothing else but a lower bound for the second derivative, i.e.
φ′′(x) ≥ λ. In this sense the inequality above is a second order “Taylor estimate”.
Note furthermore that λ ∈ R is arbitrary, i.e. can also be negative.

Above we allowed φ(x) = ∞, which should symbolize states which are not
accessible. We define the domain of φ as the set of accessible points.

Definition 3.1.1. The domain of φ : H → (−∞,∞] is given by

D(φ) := {x ∈ H : φ(x) <∞}.

For the concept of a gradient flow, we need the concept of subdifferential for
λ-convex functionals.

Definition 3.1.2. For a λ-convex and proper functional φ : H → (−∞,∞] we
define the subdifferential of φ at x ∈ H by:

∂φ(x) := {v ∈ H : φ(x) + 〈v, y − x〉+ λ

2
‖x− y‖2 ≤ φ(y);∀y ∈ H}.

We define the domain of ∂φ to be:

D(∂φ) := {x ∈ H : ∂φ(x) 6= ∅}.

Note that if φ is C1 the set ∂φ(x) is single valued and coincides with the usual
gradient. Before we come to the investigation of the gradient flow we show the
following useful lemma.

Lemma 3.1.3. Let φ : H → (−∞,∞] be proper, lower semicontinuous and
λ-convex. Then

• D(∂φ) ⊂ D(φ).

• Let x, y ∈ D(∂φ). If v ∈ ∂φ(x), and w ∈ ∂φ(y), then

〈v − w, x− y〉 ≥ λ‖x− y‖2.

• For λ ≥ 0

φ(x) = min
y∈H

φ(y) ⇔ 0 ∈ ∂φ(x).

Proof. 1. Let x ∈ D(∂φ), v ∈ ∂φ(x). The definition of the subdifferential for
λ-convex functionals yields:

φ(y) ≥ φ(x) + 〈v, y − x〉+ λ

2
‖x− y‖2.
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For all y ∈ H. Since φ is proper there exists ỹ, so that c = φ(ỹ) <∞. Therefore,
c ≥ φ(x) + 〈v, ỹ − x〉 + λ

2
‖x − ỹ‖2. From here it follows that φ(x) 6= ∞ and by

definition x ∈ D(φ).
2. To show the second result assume v ∈ ∂φ(x), w ∈ ∂φ(y) for x, y ∈ D(∂φ).

Again by the definition of the subdifferential for λ-convex functionals we get

φ(y) ≥ φ(x) + 〈v, y − x〉+ λ

2
‖x− y‖2

φ(x) ≥ φ(y) + 〈w, x− y〉+ λ

2
‖x− y‖2

Adding up the two inequalities we get:

φ(y) + φ(x) ≥ φ(y) + 〈v, y − x〉+ λ

2
‖x− y‖2 + φ(x) + 〈w, x− y〉+ λ

2
‖x− y‖2.

We collect the λ
2
‖x− y‖2 terms to get

φ(y) + φ(x) ≥ φ(y) + φ(x) + 〈v, y − x〉+ 〈w, x− y〉+ λ‖x− y‖2.

We now subtract φ(y) + φ(x) to arrive at 0 ≥ 〈v, y− x〉+ 〈w, x− y〉+ λ‖x− y‖2.
Hence 0 ≥ 〈w−v, x−y〉+λ‖x−y‖2, which is equivalent to the desired inequality
〈v − w, x− y〉 ≥ λ‖x− y‖2.

3. (⇐) Let 0 ∈ ∂φ(x), by Definition 3.1.2 this is equivalent to

φ(y) ≥ φ(x) + 〈0, y − x〉+ λ

2
‖x− y‖2

for all y ∈ H. As we assumed λ ≥ 0 it follows that φ(y) ≥ φ(x) for all y ∈ H,
hence φ(x) is minimal.
(⇒) Let φ(x) = miny∈H φ(y). Assume to the contrary 0 /∈ ∂φ(x), i.e. there exists
y ∈ H, so that φ(x) + λ

2
‖x− y‖2 > φ(y). Hence there exists a ε > 0, so that

λ

2
‖x− y‖2 − ε > φ(y)− φ(x). (3.1)

Recall now the definition of λ-convexity

φ(x+ t(y − x)) ≤ φ(x) + t(φ(y)− φ(x))− λ

2
t(1− t)‖x− y‖2.

Using inequality (3.1) and expanding the last term we arrive at:

φ(x+ t(y − x)) < φ(x) + t

(
λ

2
‖x− y‖2 − ε

)
− λt

2
‖x− y‖2 + λt2

2
‖x− y‖2.

Collecting terms depending on t (and ignoring the negative term −λt
2
‖x − y‖2)

we arrive at:

φ(x+ t(y − x)) < φ(x) + t

(
λt

2
‖x− y‖2 − ε

)
︸ ︷︷ ︸

c(t)

.
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This inequality should hold true for all t ∈ [0, 1] by definition. But if we choose
t̃ < 2ε

λ‖x−y‖2 , c(t̃) becomes negative and hence φ(x + t̃(y − x)) < φ(x), which

contradicts the minimality of φ(x).

3.1.2 The schemes

We turn to the investigation of the numerical schemes. To define the gradient
flow on a Hilbert, assume for a moment that H is finite dimensional and that the
entropy φ is C1. In this case a gradient flow with initial point x0 is a solution to

{
ẋ(t) = −∇φ(x(t)),
x(0) = x0.

In analogy we define a gradient flow for λ-convex functionals on a possibly infinite
Hilbert space as follows

Definition 3.1.4. We call x : (0,+∞) → H a gradient flow for φ : H → R
starting at x0 ∈ H if it is locally absolutely continuous and

{
ẋ(t) = −∂φ(x(t)),
lim
t↓0

x(t) = x0.

The analytical treatment of gradient flows on Hilbert spaces is covered by
[8]. What we are going to do next is to introduce the one-leg schemes already
mentioned in the introduction. Recall that a general k-step multistep method is
of the form

k∑
i=0

αixn+i = −τ

(
k∑
i=0

βi∂φ(xn+i)

)
, (3.2)

where τ denotes the time step size. As usual given an initial point x0 the k − 1
initial points for the k-step scheme will be generated by lower step schemes. The
coefficients αi, βi define the generating polynomials:

ρ(ζ) :=
k∑
i=0

αiζ
i; σ(ζ) :=

k∑
i=0

βiζ
i.

The corresponding one-leg scheme is given via
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Definition 3.1.5. Let a k-step multistep scheme be given, such that the gener-
ating polynomials

ρ(ζ) :=
k∑
i=0

αiζ
i; σ(ζ) :=

k∑
i=0

βiζ
i.

are relatively prime. Moreover we assume the normalization β :=
∑k

i=0 βi = 1.
We then call the scheme

k∑
i=0

αixn+i ∈ −τ∂φ

(
k∑
i=0

βixn+i

)
(3.3)

the associated one-leg scheme ore one leg method.

3.1.3 Existence and uniquness

To show the existence of a unique solution to (3.3) we rewrite this equation in a
more suitable way. To illustrate this we consider first the BDF-1 approximation
of a gradient flow, i.e. xn+1 is defined as a solution to x − xn ∈ −τ∂φ(x). A
general one-leg scheme (3.3) can be rewritten in a BDF-1 like way where xn is
replaced by a vector η known at time tn and x is replaced by x̃ via a simple
change of variables. Hence the solution to (3.3) is equivalent to a solution to

x̃+ η ∈ −τ̃ ∂(x̃). (3.4)

The reason for this reformulation is that a solution to the scheme in the form
(3.4) is shown more easily. We now show how to derive (3.4). Let us start with
a general one-leg scheme, i.e. xn+k is given as the solution to

αkx+
k−1∑
i=0

αixn+i ∈ −τ∂φ

(
βkx+

k−1∑
i=0

βixn+i

)
.

Now we perform a change of variables x 7→ x̃ = βkx+
∑k−1

i=0 βixn+i to arrive at

αk
1

βk

(
x̃−

k−1∑
i=0

βixn+i

)
︸ ︷︷ ︸

x

+
k−1∑
i=0

αixn+i ∈ −τ∂φ (x̃) .

We separate the new variable x̃ from the variables xn+k−1..., xn known at time tn.
This yields

αk
βk
x̃+

1

βk

(
−

k−1∑
i=0

βixn+i

)
+

k−1∑
i=0

αixn+i ∈ −τ∂φ (x̃) .

Multiplying by αk

βk
yields
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x̃+ αk

(
−

k−1∑
i=0

βixn+i

)
+
βk
αk

(
k−1∑
i=0

αixn+i

)
︸ ︷︷ ︸

η

∈ − βk
αk
τ︸︷︷︸

τ̃

∂φ (x̃) ,

the desired form:

x̃+ η ∈ −τ̃φ(x̃). (3.5)

In theorem 3.1.9 below we show that a unique solution x̃ to (3.5) exists. Then
the solution x to (3.3) is given by:

x :=
1

βk

(
x̃−

k−1∑
i=0

βixn+i

)
.

Before we can show the existence of a unique solution to (3.5) we give 3 lemmas
which we need in the proof.

Lemma 3.1.6. Assume that φ : H → (−∞,+∞] is convex and lower semi-
continuous in the strong topology. Then φ is lower semicontinuous in the weak
topology.

Proof. A proof is given in [7, Corollary 3.9]

Lemma 3.1.7. Assume that φ : H → (−∞,+∞] is convex and lower semicon-
tinuous. Then there exists a C ∈ R+ so that:

φ(x) ≥ −C − C‖x‖.

Proof. Assume to the contrary that there exists a sequence xk ∈ H, so that

φ(xk) ≤ −k − k‖xk‖.

If the sequence xk is bounded, we subtract a weakly convergent subsequence:
xk ⇀ x. But then by Lemma 3.1.6 it follows that φ(x) = −∞. Therefore assume
‖xk‖ → ∞. Let now x0 ∈ H be so that φ(x0) <∞, and define

x̃k :=
xk
‖xk‖

+

(
1 +

1

‖xk‖

)
x0,

then by convexity of φ

φ(x̃k) ≤
φ(xk)

‖xk‖
+

(
1 +

1

‖xk‖

)
φ(x0) ≤ −k + φ(x0).

Now x̃k is bounded. Subtracting a convergent subsequence: x̃k ⇀ x̃ we again
derive the contradiction: φ(x̃) = −∞.
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Lemma 3.1.8. Assume that φ : H → (−∞,+∞] is λ-convex and lower semi-
continuous. Then φ̃(x) : H → (−∞,+∞] defined by:

φ̃(x) := φ(x)− λ

2
‖x‖2

is convex and lower semicontinuous.

Proof. We first show the identity

‖x+ t(y − x)‖2 = ‖x‖2 + 2t〈y − x, x〉+ t2‖y − x‖2

= ‖x‖2 + 2t〈y, x〉 − 2t‖x‖2 + t2‖y − x‖2

= (1− t)‖x‖2 + 2t〈y, x〉 − t‖x‖2 + t2‖y − x‖2

+ t‖y‖2 − t‖y‖2

= (1− t)‖x‖2 + t‖y‖2 − t(‖x‖2 − 2〈y, x〉+ ‖y‖2)
+ t2‖y − x‖2

= ‖x‖2 + t(‖y‖2 − ‖x‖2)− t‖y − x‖2 + t2‖y − x‖2

= ‖x‖2 + t(‖y‖2 − ‖x‖2)− t(1− t)‖y − x‖2

This means, that λ
2
‖x‖2 is ”exactly” λ-convex:

λ

2
‖x+ t(y − x)‖2 = λ

2

(
‖x‖2 + t(‖y‖2 − ‖x‖2)− t(1− t)‖y − x‖2

)
Now it is easy to see that:

φ̃(x+ t(y − x)) = φ(x+ t(y − x))

− λ

2

(
‖x‖2 + t(‖y‖2 − ‖x‖2)− t(1− t)‖y − x‖2

)
≤ φ(x) + t(φ(y)− φ(x))− λ

2
t(1− t)‖y − x‖2

− λ

2

(
‖x‖2 + t(‖y‖2 − ‖x‖2)

)
+
λ

2
t(1− t)‖y − x‖2

= φ(x) + t(φ(y)− φ(x))− λ

2

(
‖x‖2 + t(‖y‖2 − ‖x‖2)

)
= φ̃(x) + t(φ̃(y)− φ̃(x)).

Hence φ̃ is convex. The lower semicontinuous of φ̃ follows by the lower semicon-
tinuous of φ and the continuity of 1

2
‖x‖2.

Now we are prepared to show the desired existence to (3.5).

Theorem 3.1.9. Assume a functional φ : H → (−∞,∞] which is proper, lower
semicontinuous and λ-convex. Then a unique solution to

x+ η ∈ −τ̃ ∂φ(x)

exists if τ̃λ > −1, with τ̃ = βk
αk
τ , τ > 0, and η ∈ H.
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Proof. The proof works as follows. Lemma 3.1.6, 3.1.7 and 3.1.8 shows that the
functional ψ(x) := 1

2
‖x+η‖2+ τ̃φ(x) attains a minimum xM . We then show that

xM is a solution to (3.5). Uniqueness follows by λ-convexity. Lemma 3.1.7 and
3.1.8 yield the estimate

φ(x) ≥ −C − C‖x‖+ λ

2
‖x‖2. (3.6)

For ψ(x) := 1
2
‖x+η‖2+ τ̃φ(x) inequality (3.6) yields ψ(x) ≥ 1

2
‖x+η‖2+ τ̃λ

2
‖x‖2−

τ̃C‖x‖ − τ̃C. Therefore the behavior of ψ(x) for ‖x‖ → ∞ is dominated by the
quadratic term 1+τ̃λ

2
‖x‖2. Hence for τ̃λ > −1

lim
‖x‖→∞

ψ(x) = ∞. (3.7)

Now choose a minimizing sequence xn for ψ(x), i.e. ψ(xn) → infx∈H ψ(x) = m.
Now (3.7) (together with φ(x) 6= −∞) implies that m is a finite number. There-
fore the minimizing sequence (xn) is bounded and we can extract a weakly conver-
gent subsequence xnk

⇀ xM . Lemma 3.1.6 shows that ψ is lower semicontinuous
with respect to the weak topology and therefore attains its minimum at xM . We
now show that xM is the desired solution. With the above assumptions on τ it is
easy to show that ψ(x) is λ̃-convex with λ̃ = 1 + τ̃λ > 0. By point 3 in Lemma
3.1.3 we conclude that 0 ∈ ∂ψ(xM). By the definition of the subdifferential this
is equivalent to

ψ(xM) + 〈0, y − xM〉+ 1 + τ̃λ

2
‖y − xM‖2 ≤ ψ(y),

for all y ∈ H. We use the definition of ψ to get

1

2
‖xM + η‖2 + τ̃φ(xM) + 〈0, y − xM〉+ 1 + τ̃λ

2
‖y − xM‖2 ≤ 1

2
‖y + η‖2 + τ̃φ(y).

We collect terms on the left hand side

1

2

(
‖xM + η‖2 − ‖y + η‖2

)
+ τ̃φ(xM) + 〈0, y − xM〉+ 1 + τ̃λ

2
‖y − xM‖2 ≤ τ̃φ(y)

and rewrite the left hand side as follows

1

2

(
‖xM + η‖2 − ‖y + η‖2 + ‖y − xM‖2

)
︸ ︷︷ ︸

=:A

+τ̃φ(xM) +
τ̃λ

2
‖y − xM‖2 ≤ τ̃φ(y).

A straight forward expansion of A yields A = −〈xM + η, y − xM〉 Hence

τ̃φ(xM)− 〈xM + η, y − xM〉+ τ̃λ

2
‖y − xM‖2 ≤ τ̃φ(y).
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Again by definition of the subdifferential −η − xM ∈ τ̃φ(xM) or equivalently
xM + η ∈ −τ̃φ(xM). It remains to show uniqueness. Let us assume x+ τ̃ v = −η,
and y + τ̃w = −η for v ∈ ∂φ(x), w ∈ ∂φ(y). By Lemma 1 it follows that

λ‖x− y‖2 ≤ 〈x− y, v − w〉 = 〈x− y,
y − x

τ̃
〉 = −1

τ̃
‖x− y‖2,

which is a contradiction to our assumption τ̃λ > −1.

Definition 3.1.10. Let φ : H → (−∞,∞], be proper lower semicontinuous and
λ-convex, and k − 1 points xn+k−1, ..., xn ∈ H be given. We define

x̃ := argmin
x∈H

{
‖x+ η‖2

2
+ τ̃φ(x)

}
, (3.8)

and

xn+k :=
x̃−

∑k−1
i=0 βixn+i
βk

,

where η :=
∑k−1

i=0

(
αiβk
αk

− βi

)
xn+i and τ̃ := τ βk

αk
s.t. τ̃λ > −1. Here the αi

and βi are the coefficients of the generating polynomials as defined in Definition
3.1.5. We call the procedure (3.8) minimizing movement scheme or minimizing
movement method.

3.1.4 Convergence

We show the convergence of discrete solutions obtained by minimizing movement
schemes as given by definition 3.8 to the exact solution (see definition 3.1.4).
Consider the sequence xj generated by a minimizing movement scheme. To in-
vestigate the convergence of the scheme we introduce the concept of G-stability.
As the solution at time step n + k depends upon k − 1 steps in the past we will
consequently investigate a quantity depending on Xn := (xn+k−1, ..., xn). This
was the idea of Dahlquist who defined the G-norm as a norm for Xn as follows.

Definition 3.1.11. Let xn+k−1, ..., xn ∈ H, and Xn := (xn+k−1, ..., xn). The
G-norm of Xn is defined by

‖Xn‖2G :=
k∑
i=1

k∑
j=1

gij〈xn+i−1, xn+j−1〉,

where G = (gij)i,j=1,...,k is supposed to be real, symmetric and positive definite.

We call a one-leg scheme G-stable, if the errors are contractive in the G-norm.
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Definition 3.1.12. The method (3.3) is called G-stable, if there exists a real,
symmetric and positive definite matrix G, so that for two numerical solutions xn
and yn to a gradient flow with convex entropy (i.e. λ = 0) we have

‖Xn+1 − Yn+1‖G ≤ ‖Xn − Yn‖G,

for all τ > 0.

We mention that the BDF-2 method belongs to the class of G-stable one-leg
methods. We give some auxiliary results which will be employed in the proof of
convergence of G-stable schemes.

Lemma 3.1.13. For a G-stable one leg method the following equality holds true:

〈
k∑
i0

αien+i,

k∑
i=0

βien+i〉 = ‖En+1‖2G − ‖En‖2G + ‖
k∑
i=0

aien+i‖2,

for ai ∈ R, where en+i = x(tn+i) − xn+i, ‖En+1‖G = ‖Xn+1 −X(tn)‖G and x(t)
is the exact solution.

Proof. A proof can be found in [5]

Lemma 3.1.14. Let Xn = (xn+k−1, ....xn) and a G-norm be given by

‖Xn‖2G =
k∑
i=1

k∑
j=1

gij〈xn+i−1, xn+j−1〉 =
k∑
i=1

gii‖xn+i−1‖2 +
∑
i6=j

gij〈xn+i−1, xn+j−1〉.

Then there exists a positive constant C, so that

‖
k∑
i=0

aixn+i‖2 ≤ C(‖Xn+1‖2G + ‖Xn‖2G).

where ai ∈ R.

Proof. We want to show that:

C(‖Xn+1‖2G + ‖Xn‖2G)− ‖
k∑
i=0

aixn+i‖2 ≥ 0 (3.9)

for some C ∈ R+. We first show that ‖
∑k

i=0 aixn+i‖2 ≤ C̃
∑k

i=0 ‖xn+i‖2 by a
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straightforward computation.

‖
k∑
i=0

aixn+i‖2 ≤

(
k∑
i=0

‖aixn+i‖

)2

=
k∑
i=0

|ai|2‖xn+i‖2 +
∑
i6=j

|ai||aj| ‖xn+i‖‖xn+j‖︸ ︷︷ ︸
≤‖xn+i‖2+‖xn+j‖2

≤ max
i≤k

|ai|2
(

k∑
i=0

‖xn+i‖2 +
∑
i6=j

(‖xn+i‖2 + ‖xn+j‖2)

)

≤ max
i≤k

|ai|2
(

k∑
i=0

‖xn+i‖2 + 2(k − 1)
k∑
i=0

‖xn+i‖2
)

≤ (max
i≤k

|ai|2)(2k − 1)︸ ︷︷ ︸
=:C̃

k∑
i=0

‖xn+i‖2.

So (3.9) holds true if C(‖Xn+1‖2G+ ‖Xn‖2G)− C̃
∑k

i=0 ‖xn+i‖2 ≥ 0. The first term
is the sum of G-norms. The second can be written as the sum of G-norms with
matrix CI where I is the identity. We use this and absorb the constants C and
C̃ in a new matrix and then argue by the eigenvalues of this new matrix. We
estimate the left hand side by

C(‖Xn+1‖2G + ‖Xn‖2G)− C̃

k∑
i=0

‖xn+i‖2

= C(‖Xn+1‖2G + ‖Xn‖2G)− C̃

k∑
i=1

‖xn+i‖2 − C̃‖xn‖2

≥ C‖Xn+1‖2G − C̃

k∑
i=1

‖xn+i‖2 + C‖Xn‖2G − C̃

k−1∑
i=0

‖xn+i‖2

= ‖Xk+1‖2CG − ‖Xk+1‖2C̃I + ‖Xk‖2CG − ‖Xk‖2C̃I
= ‖Xk+1‖2CG−C̃I + ‖Xk‖2CG−C̃I .

The matrix CG− C̃I is symmetric and real. We only have to show that CG− C̃I
is positive definite for some C. Let λmin be the minimal eigenvalue of G. Then
Cλmin is the minimal eigenvalue of CG. As C̃I is just a multiple of the identity
the minimal eigenvalue of CG − C̃I is given by λ̃min = Cλmin − C̃. Hence the
matrix CG− C̃I is positive definite if λ̃min > 0, i.e. if we choose C, so that:

C ≥ C̃

λmin

=
(max |ai|2)(2k − 1)

λmin

.

Remark 7. As C(‖Xn+1‖2G+‖Xn‖2G) ≤ C(‖Xn+1‖G+‖Xn‖G)2 also the inequality
‖
∑k

i=0 aixn+i‖ ≤
√
C(‖Xn+1‖G + ‖Xn‖G) holds true.
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Lemma 3.1.15. Assume a, b, Ĉ, C̃1, C̃2, λ ∈ [0,+∞), so that

a2 ≤ (1 + Ĉτλ)b2 + C̃1τ
(p+1)(a+ b) + C̃2τ

2(p+1).

Then there exists M ∈ [0,+∞), so that a ≤ (1 + Ĉτλ)b+Mτ p+1.

Proof. To collect now all terms depending on a on the left and all terms depending
on b on the right we complete the squares:(

a− C̃1τ
p+1

2

)2

−

(
C̃1τ

p+1

2

)2

≤

((√
1 + Ĉτλ

)
b+

C̃1τ
p+1

2
√

1 + Ĉτλ

)2

−

(
C̃1τ

p+1

2
√
1 + Ĉτλ

)2

+ C̃2τ
2(p+1).

We drop the negative term on the right and bring the second term on the left to
the right: (

a− C̃1τ
p+1

2

)2

≤

((√
1 + Ĉτλ

)
b+

C̃1τ
p+1

2
√
1 + Ĉτλ

)2

+

(
C̃1τ

p+1

2

)2

+ C̃2τ
2(p+1)

As all the terms on the r.h.s are non-negative we use the elementary inequality√
x2 + y2 ≤ x+ y for x, y > 0 to arrive at

a− C̃1τ
p+1

2
≤
(√

1 + Ĉτλ

)
b+

C̃1τ
p+1

2
√

1 + Ĉτλ
+
C̃1τ

p+1

2
+

√
C̃2τ

(p+1).

Hence a ≤
(√

1 + Ĉhλ
)
b+ 3C

2
τ p+1 +

√
C̃2τ

p+1. Define M := max{3C̃1

2
,
√
C̃2} so

that

a ≤
(√

1 + Ĉτλ

)
b+Mτ p+1 ≤

(
1 + Ĉτλ

)
b+Mτ p+1,

where the second inequality holds because τλ ≥ 0.

Before we now can tackle the convergence result, there is one last definition
we need in the proof.

Definition 3.1.16. Let x : [0, T ] → H. We define the differentiation error δD
and the integration error δI by:

δD :=
k∑
i=0

αix(t+ iτ)− τ ẋ(t+ βτ); δI :=
k∑
i=0

βix(t+ iτ)− x(t+ βτ);

where β =
∑k

i=0 iβi.
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We are now prepared to show the following convergence result.

Theorem 3.1.17. Let x(t) be the exact solution to a gradient flow with λ-convex
entropy φ and xn the solution generated by a minimizing movement scheme. De-
fine en := x(tn)− xn. If then the scheme is G-stable and the error δD is of order
p and δI is of order p-1. Then

‖en‖ < C max
i=0,...,k

‖ek‖+Mτ p.

For some C > 0 and τ λ̃ < 1 where λ̃ = Kmax{0, λ} and K some constant
depending on the G-matrix of the scheme.

Proof. Let x(t) be the exact solution to a gradient flow. Then x(t) is a solution
to:

k∑
i=0

αix(t+ iτ)− δD ∈ −τ∂φ

(
k∑
i=0

βix(t+ iτ)− δI

)
.

Now the procedure would be to compare this with the approximation (3.3). The
order of the error then depends on δD and δI . However, we now turn to another
perturbed problem of the form:

k∑
i=0

αix̂(t+ iτ)− δ̂D ∈ −τ∂φ

(
k∑
i=0

βix̂(t+ iτ)− δ̂I

)
. (3.10)

Where we define x̂(t) := x(t)− δI(t), and

δ̂D(t) := δD −
k∑
i=0

αiδD(t+ iτ); δ̂I(t) := δI −
k∑
i=0

βiδI(t+ iτ).

We do this because the order of δ̂I is higher than the order of δI whereas the
order of δ̂D is the same as the order of δD:

ord(δ̂I) = ord(δI) + 1, ord(δ̂D) = ord(δD). (3.11)

Gaining one order in δ̂I allows us to assume δI to be only of order p − 1. It is
an easy calculation to show that the error of the approximation to the perturbed
problem ‖ên‖ = ‖xn − x̂(tn)‖ is of the same order as the error as the original
error ‖en‖ = ‖xn − x(tn)‖, which concludes the proof. The idea of investigating
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problem (3.10) goes back to Hundstorfer & Steininger (see [33]).

δ̂I(t) = δI(t)−
k∑
i=0

βiδI(t+ iτ)

= δI(t)−
k∑
i=0

βi

(
p∑
j=0

1

j!
δ
(j)
I (t)τ jij +O(τ p+1)

)

= δI(t)−
p∑
j=0

(
k∑
i=0

βi

)
1

j!
δ
(j)
I (t)τ jij +O(τ p+1)

= δI(t)− δI(t)

(
k∑
i=0

βi

)
−

p∑
j=1

(
k∑
i=0

βi

)
1

j!
δ
(j)
I τ jij +O(τ p+1).

Recall that in the definition of the one-leg scheme we assumed the normalization∑k
i=0 βi = 1. Hence

δ̂I(t) = δI(t)− δI(t)−
p∑
j=0

(
k∑
i=0

βi

)
1

j!
δ
(j)
I τ jij +O(τ p+1).

For every j we we set Cj :=
∑k

i=0
βii

j

j!
and arrive at δ̂I(t) = −

∑p
j=1Cjδ

(j)
I τ j +

O(τ p+1). The δ
(j)
I are given by: δ

(j)
I (t) =

∑k
i=0 βix

(j)(t + iτ) − x(j)(t + βτ).
As this term is of order p − 1 for every function smooth enough, we see, that∑p

j=1Cjδ
(j)
I τ j +O(τ p+1) is of order p and hence δ̂I is of order p. A similar calcu-

lation shows, that δ̂D is of order p for δD = O(τ p+1):

δ̂D = δD −
k∑
i=0

αiδI(t+ iτ)

= δD −
k∑
i=0

αi

(
p∑
j=0

1

j!
δ
(j)
I τ jij +O(τ p+1)

)

= δD −

(
k∑
i=0

αi

)
︸ ︷︷ ︸

=0

δI(t)−

(
p∑
j=1

k∑
i=0

αi
1

j!
δ
(j)
I τ jij +O(τ p+1)

)

= δD −

(
p∑
j=1

Cjδ
(j)
I τ j +O(τ p+1)

)
.

As we assumed δD to be of order p and the second term in the last line again is
of order p, we see, that δ̂D is of order p. Now we estimate the error between x̂(t)
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and the discrete solution xn generated by the minimizing movement scheme.

k∑
i=0

αi (xn+i − x̂(t+ iτ))︸ ︷︷ ︸
=:ên+i

−δ̂D ∈ − τ∂φ

(
k∑
i=0

βix(tn + iτ)− δ̂I

)

− τ∂φ

(
k∑
i=0

βixn+i

)
.

Next we take advantage of the monotonicity inequality (point 2 in Lemma 3.1.3).
Therefore we consider the inner product:

〈
k∑
i=0

αiên+i − δ̂D,
k∑
i=0

βiên+i − δ̂I〉. (3.12)

By (3.10) we know that
∑k

i=0 αiên+i − δ̂D = −τ(v − w) for some

v ∈ ∂φ(
∑k

i=0 βix̂(tn + ih)− δI) and w ∈ ∂φ(
∑k

i=0 βixn+i). Now (3.12) becomes

−τ〈v − w,

k∑
i=0

βiên+i − δ̂I〉.

Set x =
∑k

i=0 βix̂(tn + ih)− δI and y =
∑k

i=0 βixn+i to write (3.12) as
−τ〈v−w, x− y〉 with v ∈ ∂φ(x) and w ∈ ∂φ(y). By the monotonicity inequality
(point 2 in Lemma 3.1.3) we get −τ〈v − w, x − y〉 ≤ −τλ‖x − y‖2. Using the
relations for v, w, x, y we get:

〈
k∑
i=0

αiên+i − δ̂D,

k∑
i=0

βiên+i − δ̂I〉 ≤ −τλ‖
k∑
i=0

βiên+i − δ̂I‖2.

For further calculations it will be convenient to expand the left hand side. This
yields

〈
k∑
i=0

αiên+i,
k∑
i=0

βiên+i〉 − 〈
k∑
i=0

αiên+i, δ̂I〉 − 〈δ̂D,
k∑
i=0

βiên+i〉+ 〈δ̂D, δ̂I〉

≤ −τλ‖
k∑
i=0

βiên+i − δ̂I‖2.

We want to get rid of the first term on the left and substitute it by a G-norm
dependent term. To this end we use Lemma 3.1.13 to get

〈
k∑
i=0

αiên+i,

k∑
i=0

βiên+i〉 = ‖Ên+1‖2G − ‖Ên‖2G + ‖
k∑
i=0

aiên+i‖2,
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and hence ‖Ên+1‖2G − ‖Ên‖2G ≤ 〈
∑k

i=0 αiên+i,
∑k

i=0 βiên+i〉. Therefore

‖Ên+1‖2G − ‖Ên‖2G − ‖
k∑
i=0

αiên+i‖‖δ̂I‖ − ‖
k∑
i=0

βiên+i‖‖δ̂D‖ − ‖δ̂D‖‖δ̂I‖

≤ −τλ

(
‖

k∑
i=0

βiên+i − δ̂I‖2
)
,

where for the line in the middle we employed the Cauchy-Schwarz inequality. The
“bad” case would be, that λ < 0. We therefore use from here on the inequality:

‖Ên+1‖2G − ‖Ên‖2G − ‖
k∑
i=0

αiên+i‖‖δ̂I‖ − ‖
k∑
i=0

βiên+i‖‖δ̂D‖ − ‖δ̂D‖‖δ̂I‖

≤ −τλ

(
‖

k∑
i=0

βiên+i − δ̂I‖2
)
,

where we define λ := max{0,−λ}. Using the triangle inequality on the right-hand
side we arrive at

‖Ên+1‖2G − ‖Ên‖2G − ‖
k∑
i=0

αiên+i‖‖δ̂I‖ − ‖
k∑
i=0

βiên+i‖‖δ̂D‖ − ‖δ̂D‖‖δ̂I‖

≤ τλ

(
‖

k∑
i=0

βiên+i‖+ ‖δ̂I‖

)2

.

We collect the errors on the left hand side which yields

‖Ên+1‖2G − ‖Ên‖2G ≤ ‖
k∑
i=0

αiên+i‖‖δ̂I‖+ ‖
k∑
i=0

βiên+i‖‖δ̂D‖+ ‖δ̂D‖‖δ̂I‖

+ τλ

(
‖

k∑
i=0

βiên+i‖2 + ‖δ̂I‖2 + 2‖
k∑
i=0

βiên+i‖‖δ̂I‖

)
.

So far we derived an inequality between errors in the G-norm ‖En‖G and errors
in ‖en‖. We use Lemma 3.1.14 and remark 7 above to show that the terms
‖
∑k

i=0 αiên+i‖ and ‖
∑k

i=0 βiên+i‖ can be estimated by ‖Ên‖G+‖Ên+1‖G, as well
as ‖

∑k
i=0 βiên+i‖2 can be estimated by ‖Ên‖2G + ‖Ên+1‖2G, and hence deduce an

inequality in terms of the G-norm, only. More precisely:

‖
k∑
i=0

αiên+i‖ ≤ C1(‖Ên+1‖G + ‖Ên‖G); ‖
k∑
i=0

βiên+i‖ ≤ C2(‖Ên+1‖G + ‖Ên‖G);

‖
k∑
i=0

βiên+i‖2 ≤ K(‖Ên+1‖2G + ‖Ên‖2G).
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Using this we get

‖Ên+1‖2G − ‖Ên‖2G ≤ Kτλ(‖Ên+1‖2G + ‖Ên‖2G) (3.13)

+ τλ2C2(‖Ên+1‖G + ‖Ên‖G)‖δ̂I‖ (3.14)

+ τλ‖δ̂I‖2 (3.15)

+ C1(‖Ên+1‖G + ‖Ên‖G)‖δ̂I‖ (3.16)

+ C2(‖Ên+1‖G + ‖Ên‖G)‖δ̂D‖ (3.17)

+ ‖δ̂I‖‖δ̂I‖. (3.18)

The lines (3.16) and (3.17) are of order p, the line (3.14) is of order p+1. Hence for
τ < 1 we can estimate the 3 lines by a term of the form Caτ

p+1(‖Ên+1‖G+‖Ên‖G).
The line (3.15) is of order 2(p+ 1) + 1 and (3.18) is of order 2(p+ 1). Hence for
τ < 1 we estimate them by a term Cbτ

2(p+1). We define λ̃ := Kλ and we derive
the inequality

‖Ên+1‖2G − ‖Ên‖2G ≤ τ λ̃
(
‖Ên+1‖2G + ‖Ên‖2G

)
+ C1τ

p+1(‖Ên+1‖G + ‖Ên‖G)

+ C2τ
2(p+1).

Next we collect the ‖En+1‖2G on the left and the ‖En‖2G on the right and divide
by (1− τ λ̃) to arrive at

‖Ên+1‖2G ≤ (1 +
2τ λ̃

1− τ λ̃
)‖Ên‖2G +

C1

1− τ λ̃
τ p+1(‖Ên+1‖G + ‖Ên‖G)

+
C2

1− τ λ̃
τ 2(p+1)

where we used 1+τλ̃
1−τλ̃ = 1 + 2τλ̃

1−τλ̃ . Assume now τ λ̃ < 1 to get

‖Ên+1‖2G ≤ (1 + Ĉτ λ̃)‖Ên‖2G + C̃1τ
p+1(‖Ên+1‖G + ‖Ên‖G)

+ C̃2τ
2(p+1).

This is an inequality of the form in Lemma 3.1.15. Therefore it follows that

‖Ên+1‖G ≤
(
1 + Ĉτ λ̃

)
‖Ên‖G + M̃τ p+1. We now apply a discrete version of

Gronwall’s lemma to get ‖Ên+1‖G ≤ e(Ĉλ̃T )‖Ê0‖G + M̃τ p. It is easy to see (by
equivalence of norms), that ‖Ê0‖G < comaxi=0,...,k ‖êi‖, as well as ‖ên+1‖ <

cn+1‖Ên+1‖G. We arrive at ‖ên+1‖ ≤ Ĉmaxi=0,...,k ‖êi‖ + M̃τ p. for some Ĉ > 0.
So far we estimated the error between the discrete solution xn and the exact
solution of the perturbed problem x̂(t). It remains to estimate ‖en‖ by ‖ên‖. To
this end recall the definition x̂(t) := x(t)− δI(t). We get
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‖en‖ = ‖xn − x(tn)‖ = ‖xn − x̂(tn)− δI‖ < ‖xn − x̂(tn)‖+ ‖δI‖
< C max

i=0,...,k
‖êk‖+ M̂τ p.

It remains to compare ‖ek‖ and ‖êk‖

‖êk‖ = ‖xk − x̂(tk)‖ = ‖xk − x̂(tk) + δI − δI‖ < ‖xk − x(tk)‖+ ‖δI‖
< ‖ek‖+ ‖δI‖.

Finally we infer the desired result ‖en‖ < Cmaxi=0,...,k ‖ek‖ + Mτ p, for some
C > 0 and some M > 0.

Remark 8. As we defined λ := max{0,−λ}, we can set C = 1 for convex (i.e.
λ ≥ 0) entropies.

Remark 9. We made several assumption on τ . For the solution of (3.3) we
assumed τ βk

αk
λ > −1. In the proof of convergence of the scheme we needed

Kτ max{0,−λ} < 1, as well as τ < 1, and τ λ̃ < 1. We choose

τ < min

{
1

| βk
αk
λ|
,

1

|Kλ|
, 1,

1

λ̃

}
.

Hence these 4 conditions do not yield any contradiction.

3.2 Entropy properties

By definition, the solution x(t) to the equationẋ(t) ∈ −∂φ(x(t))
lim
t↓0

x(t) = x0.

dissipates the entropy φ, i.e. φ(xt1) < φ(xt2), for t1 < t2. Unfortunately such a
property will not hold true for the discrete solution obtained by a one-leg scheme
in general. We want to illustrate this fact by the following counterexample. We
show that even on R the dissipation property will not hold true. Set

φ(x) :=

{
−bx, x ≤ 0

ax, x > 0
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3.2.1 Violation of entropy dissipation

We now want to generate a discrete solution to the problem:{
ẋ(t) ∈ −∂φ(x(t))
x(0) = x0

by the BDF 2 scheme. The G-stability of the scheme can be shown easily (see
e.g. [34]). The coefficients or the BDF-2 scheme are given by

• α0 =
1
2
, α1 = −2, α2 =

3
2
,

• β0 = β1 = 0, β2 = 1.

By definition 3.1.10 we have to solve first the minimization problem

x̃ := argmin
x∈H

{
‖x+ η‖2

2
+ τ̃φ(x)

}
,

and then find xn+k by

xn+k :=
x̃−

∑k−1
i=0 βixn+i
βk

.

Using the definition of βi it follows that xn+2 = x̃. Hence the problem is to find

xn+2 := argmin
x∈H

{
‖x+ η‖2

2
+ τ

2

3
φ(x)

}
︸ ︷︷ ︸

ψ(x)

. (3.19)

Using the definition of the αi we get η := 1
3
xn − 4

3
xn+1. Assume for the moment

that xn, xn+1 are chosen in such a way that so that xn+2 = 0. Now the solution
should not move away from 0 as this is the state of minimal entropy. Think of the
BDF-2 approximation in the form (3.19) as a BDF-1 approximation with initial
condition −η for the entropy 2

3
φ. If the entropy is too flat the flow starting at −η

will be too slow to reach 0 within one time step. Hence xn+3 6= 0 and consequently
φ(xn+3) > 0. We now show that this is possible for any τ . Therefore let τ be
given. Let

x0 ∈ ((n+ 1)τa+
1

3
τa, (n+ 2)τa)

where n > 2. We find x1 by a BDF-1 approximation, i.e.

x1 = argmin
x∈H

{
‖x− x0‖2

2
+ τφ(x)

}
.

We first show that x1 ∈ R+. Assume to the contrary x1 ≤ 0, then

ψ(x) >
‖x1 − x0‖2

2
>

‖x0‖2

2
=

(τam)2

2
,
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for m ∈ (n+ 1 + 1
3
, n+ 2). As n > 2, it follows that m

2
≥ 1, hence

(τam)2

2
= (τa)

m

2
τam ≥ (τa)τam = τax0 = τφ(x0) = ψ(x0).

Hence if x1 ∈ R\R+ it can not be the minimum and therefore x1 ∈ R+. On
R+ the entropy φ is smooth and we find the minimum by calculating the first
derivative and setting it zero. This yields x1 = x0 − τa. We calculate x2. To this
end we first calculate η = 1

3
x0 − 4

3
x1 = −x0 + (1 + 1

3
)τa. We have to solve the

problem:

x2 = argmin
x∈H

{
‖x− (−η)‖2

2
+ τφ(x)

}
.

As −η ∈ (n+ 1
3
, n+1), by the same arguments as above we find that x2 ∈ R+ and

x2 = x1 − τa = x0 − 2τa. Repeating the arguments we find that for 2 < i ≤ n:
xi = x0 − iτa. For xn+1 we find

xn+1 = x0 − (n+ 1)τa ∈ ((n+ 1)τa+
1

3
τa, (n+ 2)τa)− (n+ 1)τa = (

1

3
τa, τa).

The η for the calculation of xn+2 is given by

η =
1

3
xn −

4

3
xn+1

=
1

3
(x0 − nτa)− 1

3
(x0 − (n+ 1)τa)− (x0 − (n+ 1)τa)

=
1

3
τa− x0 + (n+ 1)τa

∈ −((n+ 2)τa,−1

3
τa− (n+ 1)τa) +

1

3
τa+ (n+ 1)τa

= (−2

3
τa, 0).

We now show that η is such that xn+2 = 0. As φ is not differentiable at zero we
have to solve the minimization problem. Assume x ∈ (−∞, 0) then

ψ(x) =
x2 +

>0︷︸︸︷
2xη +η2

2
+ τ

2

3

>0︷︸︸︷
bx >

η2

2
= ψ(0).

On the other hand let x ∈ (0,∞) then

ψ(x) =
x2 + 2xη + η2

2
+ τ

2

3
ax =

x2 + η2

2
+ xη︸︷︷︸

>−τ 2
3
ax

+τ
2

3
ax >

η2

2
= ψ(0).



3.2. ENTROPY PROPERTIES 55

So xn+2 = 0. We show that xn+3 < 0. The new η is given by 1
3
xn+1. We have

xn+1 ∈ (1
3
τa, τa). Let now b be so that τ 2

3
b < η

2
. For ψ(x) we get

ψ(x) =
x2 + η2

2
+ xη − τ

2

3
bx =

x2 + η2

2
+ x

(
η − τ

2

3
b

)
︸ ︷︷ ︸

> η
2

.

If x < 0 we get

ψ(x) <
η2

2
+
x2 + xη

2︸ ︷︷ ︸
A

.

If x ∈ (−η
2
, 0) A is negative, hence

ψ(x) <
η2

2
= ψ(0); ∀x ∈ (−η

2
, 0).

Hence xn+3 6= 0 (in fact xn+3 = −η
2
) and the scheme does not dissipate the energy

as

φ(xn+3) = −bxn+3 > 0 = φ(xn+2).

Remark 10. We derive a relation between a and b which allows for the violation
of energy dissipation. Above we set xn+1 ∈

(
1
3
τa, τa

)
. We observed that η in the

critical step is given by η = 1
3
xn+1, i.e. η ∈

(
1
9
τa, 1

3
τa
)
. We observed that the

entropy is not dissipated if τ 2
3
b < η

2
. This holds true iff τ 2

3
b < 1

18
τa, i.e. b < a

12

revealing that the condition is independent of τ .

3.2.2 The G-norm: A discrete entropy

We now want to find some quantity that is dissipated by the discrete solution.
The example above shows that even if xn is already the point of minimal energy
xM , it is possible that in the next step we get some other point xn+1. If we would
take some other quantity as an entropy which is evaluated at one point only,
then for this quantity let’s say ϕ(x) it should hold true that xM is also the point
where ϕ(x) attains its unique minimum. But then this quantity can as well not
be an entropy for the discrete solution (as ϕ(xn+1) > ϕ(xn)). Therefore we need
a function of several xi. For example a function depending on the k points of
the scheme. It turns out that the G-norm, which we used to show convergence of
the scheme, is dissipated by the discrete solution. At least for convex functionals
(i.e. λ ≥ 0), as the following calculation shows. Assume we are given a convex
function φ(x), and a gradient flow with respect to φ, i.e. ẋ(t) ∈ −∂φ(x(t)). By
the third point in Lemma 3.1.3 we get

〈ṽ − w̃, x− y〉 ≥ λ‖x− y‖2 ≥ 0
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for ṽ ∈ ∂φ(x), w̃ ∈ ∂φ(y). Hence for v ∈ −∂φ(x), w ∈ −∂φ(y) we get:

〈v − w, x− y〉 ≤ 0 (3.20)

Assume without loss of generality φ(0) = minx∈X{φ(x)} and let

k∑
i=0

αixn+i ∈ −h∂φ

(
k∑
i=0

βixn+i

)
.

Then by (3.20) 〈v − w,
∑k

i=0 βixn+i − 0〉 ≤ 0 where v ∈ −∂φ(
∑k

i=0 βixn+i) and
w ∈ −∂φ(0). We know, as φ(0) is the minimum, that: 0 ∈ ∂φ(x). Therefore set
v :=

∑k
i=0 αixn+i and w := 0 Using this in inequality (3.20) we arrive at

〈
k∑
i=0

αixn+i,
k∑
i=0

βixn+i〉 ≤ 0. (3.21)

From Lemma 3.1.13 we know that

〈
k∑
i=0

αixn+i,
k∑
i=0

βixn+i〉 = ‖Xn+1‖2G − ‖Xn‖2G + ‖
k∑
i=0

aixn+i‖. (3.22)

From (3.21) and (3.22) we infer the inequality ‖Xn+1‖2G ≤ ‖Xn‖2G. We have
shown the following lemma.

Lemma 3.2.1. Let φ be convex and let xn be the discrete solution toẋ(t) ∈ −∂φ(x(t)),
lim
t↓0

x(t) = x0,

generated by a G-stable one-leg scheme. Then the G-norm

‖Xn‖G =

(
k∑
i=1

k∑
j=1

gij〈xn+i−1, xn+j−1〉

) 1
2

of the discrete solution decays monotonically, i.e. ‖Xn+1‖G ≤ ‖Xn‖G.

3.3 Numerics

3.3.1 The H−1-norm

So far we investigated minimizing movement schemes for gradient flows. What
we are interested in is to apply these schemes to partial differential equations. To
this end we have to find a gradient flow formulation of the equation in question. It
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would be convenient if the problem could be interpreted as a gradient flow on the
most simple Hilbert space L2(Ω). However, it turns out that the more interesting
cases (i.e. non-linear partial differential equation) correspond to gradient flows
on spaces equipped with a more complicated norm e.g. H−1-norm. It is well
known that the porous medium equation

ut = ∆um, x ∈ Ω; t ∈ (0, T ),

u(t, x) = 0, x ∈ ∂Ω; t ∈ [0, T ],

u(0, x) = u0, x ∈ Ω.

constitutes a gradient flow for the entropy

φ(u) =
1

m+ 1

∫
Ω

um+1(ω)dω,

with respect to the H−1-norm. We sketch the derivation of the gradient flow
formulation. Recall that the gradient of a functional is defined via the inner
product. To this end we first sketch the derivation of the H−1 inner product. Let
the inner product on H1

0 (Ω) be defined via

〈f, g〉 :=
∫
Ω

∇f(ω)∇g(ω)dω.

Let now H−1(Ω) be the dual space to H1
0 (Ω). By Riesz’s representation theorem

we know that for u ∈ H−1(Ω) there exists a f ∈ H1
0 (Ω), so that

u(g) = 〈u, g〉 =
∫
Ω

∇f(ω)∇g(ω)dω, ∀g ∈ H1
0 (Ω).

In this sense we identify u and −∆f . We now define the H−1 inner product by:

〈u, v〉H−1 =

∫
Ω

∇(∆−1u(ω))∇(∆−1v(ω))dω.

Recall that the gradient of a functional with respect to a given inner product is
the co-vector ∇φ so that

Dφ(u)(v) = 〈∇φ(u), v〉, ∀v ∈ H.

Let u, v ∈ H−1(Ω). An easy calculation shows that the variation of φ(u) =
1

m+1

∫
Ω
um+1(ω)dω with respect to v is given by:

Dφ(u)(v) =

∫
Ω

um(ω)v(ω)dω.
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We now show that ∇φ(u) with respect to 〈·, ·〉H−1 is given by −∆um.

Dφ(u)(v) =

∫
Ω

um(ω)v(ω)dω =

∫
Ω

um(ω)∆∆−1v(ω)dω

= −
∫
Ω

∇um(ω)∇∆−1v(ω)dω = −
∫
Ω

∇∆−1 ∆um(ω)︸ ︷︷ ︸
=:∇φ

∇∆−1v(ω)dω

= 〈∇φ(u), v〉H−1 .

Hence−∆um is the gradient of φ(u) and we can write the porous medium equation
as a gradient flow, i.e.:

ut = −∇φ(u) = ∆um.

3.3.2 Discretization

Space discretization

For our numerical experiments we choose Ω := [0, 1]. We use a uniform gird ΩN

with:

ΩN :=

{
ωi :=

i

N
; for i = 1, ..., N

}
.

We define the set of ansatz functions by AN := {ϕi : 1 ≤ i ≤ N − 1} where:
ϕi(ω) :=

ω−ωi−1

ωi−ωi−1
; ω ∈ [ωi−1, ωi]

ϕi(ω) :=
ωi+1−ω
ωi+1−ωi

; ω ∈ [ωi, ωi+1]

ϕi(ω) := 0; else

For the sake of convenience we define the shape functions:{
ϕri (ω) := ϕi(ω)|[ωi,ωi+1]

ϕli(ω) := ϕi(ω)|[ωi−i,ωi]

Recall that by Definition 3.1.10 solving the gradient flow via a minimizing move-
ment scheme is to find first

ũ := argmin
u∈H

{
‖u+ η‖2

2τ
+
βk
αk
φ(u)

}
︸ ︷︷ ︸

ψ(u)

and then to set

un+k =
ũ−

∑k−1
i=0 βiun+i
βk

.

To this end we calculate the discrete version of ψ(u).



3.3. NUMERICS 59

Discrete H−1-norm

We split the functional ψ in its summands and first discretize the norm part. The
discretized version (u+ η)d of u+ η is given by:

(u+ η)d =: ua =
N−1∑
i=1

aiϕi(ω),

where ai = u(ωi) + η(ωi). Above we have shown that the H−1-norm is given via:

‖ua‖H−1
0

=

∫
∇f∇fdx.

Where ua = −∆f with homogeneous Dirichlet boundary conditions. Hence to
calculate the norm, we have to solve the elliptic problem{

ua = −∆f

ua(0) = ua(1) = 0.

We assume f as well to be a linear combination of our ansatz functions, i.e.
f =

∑N−1
i=1 fiϕi(ω). The problem in its weak form then reads to be

∫ 1

0

(
N−1∑
i=1

aiϕi(ω)

)
ϕj(ω)dω =

∫ 1

0

∇

(
N−1∑
i=1

fiϕi(ω)

)
∇ϕj(ω)dω, (3.23)

for every ϕj, j ∈ {1, ..., N − 1}. Pick an arbitrary ϕj. As supp(ϕi) = [ωi−1, ωi+1]
and supp(ϕj) = [ωj−1, ωj+1] we get:

ϕiϕj = 0, for i 6∈ {j − 1, j, j + 1},
ϕiϕ1 = 0, for i 6∈ {1, 2},

∇ϕi∇ϕj = 0, for i 6∈ {j − 1, j, j + 1},
∇ϕi∇ϕN−1 = 0, for i 6∈ {N − 2, N − 1}.

Hence the left hand side of (3.23) for ϕj reads to be:

aj−1

∫ ωj

ωj−1

ϕj−1(ω)ϕj(ω)dω︸ ︷︷ ︸
Aj−1,j

+aj

∫ ωj+1

ωj−1

ϕj(ω)ϕj(ω)dω︸ ︷︷ ︸
Aj,j

+aj+1

∫ ωj+1

ωj

ϕj+1(ω)ϕj(ω)dω︸ ︷︷ ︸
Aj+1,j

.
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Whereas the right-hand side becomes:

fj−1

∫ ωj

ωj−1

∇ϕj−1(ω)∇ϕj(ω)dω︸ ︷︷ ︸
Bj−1,j

+fj

∫ ωj+1

ωi−j

∇ϕj(ω)∇ϕj(ω)dω︸ ︷︷ ︸
Bj,j

+fj+1

∫ ωi+1

ωi

∇ϕj+1(ω)∇ϕj(ω)dω︸ ︷︷ ︸
Bj+1,j

.

In matrix form the discrete problem then is given by:

B−1Aa = f. (3.24)

Where the coefficients of A and B are easy to be calculated. See Appendix B.
By (3.24) we get the weights fi. To finally get the norm, we have to calculate:∫ 1

0

‖∇
N−1∑
i=1

fiϕi(ω)‖2dω =

∫ 1

0

‖
N−1∑
i=1

fi∇ϕi(ω)‖2dω

=

∫ 1

0

N−1∑
j=1

N−1∑
i=1

fifj∇ϕi(ω)∇ϕj(ω)dω

=
N−1∑
j=1

N−1∑
i=1

fifj

∫ 1

0

∇ϕi(ω)∇ϕj(ω)dω︸ ︷︷ ︸
Ci,j

.

This is a quadratic form with respect to the matrix C. Comparing the Ci,j with
the Bi,j we find that both coincide (C = B). So the norm of f is given by:

‖f‖H1
0
= fTBf

As by (3.24) f = B−1Aa we end up with

‖ua‖H−1 = (B−1Aa)TBB−1Aa = aTAT (B−1)TBB−1Aa = aTAT (B−1)TAa

= aTMa,

a simple quadratic form in the weights a.

Discrete entropy

We now derive the discrete entropy. We call the discrete form of u:

ub(ω) :=
N−1∑
i=1

uiϕi(ω, )
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where ui := u(ωi). We calculate the entropy in its discrete form for a general F:

∫ 1

0

F (ub)dω =

∫ 1

0

F

(
N−1∑
i=1

uiϕi(ω)

)
dω

=
N−1∑
j=0

(∫ ωj+1

ωj

F

(
N−1∑
i=1

uiϕi(ω)

)
dω

)

=

∫ ω1

ω0

F (u1ϕ1(ω))dω

+
N−2∑
j=1

(∫ ωj+1

ωj

F (ujϕj(ω) + uj+1ϕj+1(ω)) dω

)

+

∫ ωN

ωN−1

F (uN−1ϕN−1(ω))dω

=

∫ ω1

ω0

F

(
u1
ω − ω0

ω1 − ω0

)
dω︸ ︷︷ ︸

Φ1

+
N−2∑
j=1


∫ ωj+1

ωj

F

(
uj
ωj+1 − ω

ωj+1 − ωj
+ uj+1

ω − ωj
ωj+1 − ωj

)
dω︸ ︷︷ ︸

Φj+1


+

∫ ωN

ωN−1

F

(
uN−1

ωN − ω

ωN − ωN−1

)
dω︸ ︷︷ ︸

ΦN

.

For the porous medium equation, i.e. F (u) = 1
m+1

um+1 we get the coefficients:

Φ1 =
um+1
1 (ω1 − ω0)

(m+ 1)(m+ 2)
,

Φj+1 =
(um+2

j+1 − um+2
j )(ωj+1 − ωj)

(m+ 1)(m+ 2)(uj+1 − uj)
,

ΦN =
um+1
N−1(ωN − ωN−1)

(m+ 1)(m+ 2)
.

The calculations can be found in in the Appendix B.
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Minimizing the discrete functional

Summing up the results above we are given the discrete functional Ψ(u) by

Ψ =
1

2τ
aTMa+

βk
αk

um+1
1 (ω1 − ω0)

(m+ 1)(m+ 2)
+
βk
αk

N−2∑
i=1

(um+2
i+1 − um+2

i )(ωi+1 − ωi)

(ui+1 − ui)(m+ 1)(m+ 2)

+
βk
αk

um+1
N−1(ωN − ωN−1)

(m+ 1)(m+ 2)
.

Recall that ai = u(ωi) + η(ωi). As Ψ is smooth we find the minimum by finding
the zero of the gradient:

∇Ψ(u) =
1

τ
Ma+∇Φ(u).

The entries of ∇Φ for general mesh and one-leg scheme can be found in the
Appendix B. For the BDF-2 scheme with uniform grid the entries are given by:

∂Φ

∂u1
=

2h

3

(
um1

m+ 2
− um+1

1

(m+ 1)(u2 − u1)
+

um+2
2 − um+2

1

(m+ 1)(m+ 2)(u2 − u1)2

)
,

∂Φ

∂ul
=

2h

3(m+ 1)

(
− um+1

l

ul+1 − ul
+

um+2
l+1 − um+2

l

(m+ 2)(ul+1 − ul)2
+

um+1
l

ul − ul−1

)
− 2h

3(m+ 1)

(
um+2
l − um+2

l−1

(m+ 2)(ul − ul−1)2

)
,

∂Φ

∂uN−1

=
2h

3

(
um+1
N−1

(m+ 1)(uN−1 − uN−2)
−

um+2
N−1 − um+2

N−2

(m+ 1)(m+ 2)(uN−1 − uN−2)2

)
+

2h

3

(
umN−1

(m+ 2)

)
.

Here h is the mesh size. The gradient of Φ is not linear (except for m = 1). To
find the zero of

∇Ψ =
1

τ
Ma+∇Φ = 0

we use Newton’s method. Therefore we need the Hessian of Ψ:

Hess(Ψ) =
1

τ
M +Hess(Φ).

Find again the coefficients for the general case in the Appendix B. For the BDF-2
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scheme with uniform grid we get:

∂Φ

∂u1∂u1
=

2h

3

(
mum−1

1

m+ 2
− um1

(u2 − u1)
− um+1

1

(m+ 1)(u2 − u1)2

)
+

2h

3

(
− um+1

1

(m+ 1)(u2 − u1)2
2(um+2

2 − um+2
1 )

(m+ 1)(m+ 2)(u2 − u1)3

)
,

∂Φ

∂u2∂u1
=

2h

3(m+ 1)

(
(um+1

1 + um+1
2 )

(u2 − u1)2
− 2(um+2

2 − um+2
1 )

(m+ 2)(u2 − u1)3

)
,

∂Φ

∂ul−1∂ul
=

2h

3(m+ 1)

(
(um+1

l + um+1
l−1 )

(ul − ul−1)2
−

2(um+2
l − um+2

l−1 )

(m+ 2)(ul − ul−1)3

)
,

∂Φ

∂ul+1∂ul
=

2h

3(m+ 1)

(
(um+1

l + um+1
l+1 )

(ul+1 − ul)2
−

2(um+2
l+1 − um+2

l )

(m+ 2)(ul+1 − ul)3

)
,

∂Φ

∂ul∂ul
=

2h

3

(
− uml
(ul+1 − ul)

− 2um+1
l

(m+ 1)(ul+1 − ul)2

)
,

+
2h

3

(
uml

(ul − ul−1)
− 2um+1

l

(m+ 1)(ul − ul−1)2

)
+

2h

3

(
2(um+2

l+1 − um+2
l )

(m2 + 3m+ 2)(ul+1 − ul)3
+

2(um+2
l − um+2

l−1 )

(m2 + 3m+ 2(ul − ul−1)3

)
∂Φ

∂uN−2∂uN−1

=
2h

3(m+ 1)

(
(um+1

N−1 + um+1
N−2)

(uN−1 − uN−2)2
−

2(um+2
N−1 − um+2

N−2)

(m+ 2)(uN−1 − uN−2)3

)
,

∂Φ

∂uN−1∂uN−1

=
2h

3

(
umN−1

(uN−1 − uN−2)
−

2um+1
N−1

(m+ 1)(uN−1 − uN−2)2

)
,

+
2h

3

(
2(um+2

N−1 − um+2
N−2)

(m2 + 3m+ 2)(uN−1 − uN−2)3
+
mum−1

N−1

m+ 2

)
.

3.3.3 Implementation

Let the solution u at the nth time step be given and let u(0) := u. The iteration
is as follows:

u(s+1) := u(s) + (δu)(s+1),

where (δu)(s+1) is the solution to the linear system

H(u(s))(δu)(s+1) = −G((u(s))),

where H(u(s)) is Hess(Ψ(u(s))) and G(u(s)) is ∇Ψ((u(s))). The iteration is stopped
if the norm of (u(s+1)) is smaller than a certain threshold (see Section 3.4 for
details), We assume that the solution u ≥ 0. If a weight in the Newton scheme is
calculated to be negative u(ωi) < 0 we set the weight to zero u(ωi) := 0, because
in this case the global minimum is out of the domain of our problem and hence
the minimum within the domain is on the boundary (recall that the functional
to be minimized in every time step is convex and hence the minimum is unique).
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3.4 Numerical experiments

3.4.1 The porous medium equation for m = 5/3

In this section we want to present some numerical results for the porous medium
equation with m = 5/3, i.e.

ut = ∆u5/3, x ∈ [0, 1]; t ∈ (0, T ),

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

u(0, x) = u0, x ∈ [0, 1].

by employing the BDF-2 scheme with linear ansatz functions. This equation
arises as a high-density limit for a semiconductor drift diffusion model. For more
on the model see [35]. An exact solution to the porous medium equation is given
by the well known Barenblatt solution:

B(t) :=
1

tα

((
C − m− 1

2m
β
|x|2

t2β

)+
) 1

m−1

,

where

α :=
n

n(m− 1) + 2
β :=

1

n(m− 1) + 2.

Here n is the space dimension. For n = 1 this yields

B(t) =
1

8
√
t3

((
C − 3

40

|x|2
4
√
t3

)+
)3/2

.

Note that for t < 1
3
√

( 160C
3

)4
≈ 1.04 the Barenblatt profile corresponds to the

homogeneous Dirichlet boundary conditions. Figures 3.1 and 3.2 below illustrate
the temporal evolution of the numerical solution with starting profile u(0, x) =
B(1) and end time T = 1, i.e. u(1, x) = B(2), where we set C = 0.008.
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Figure 3.1: Evolution of the numerical solutions un(0, x) left, and un(0.25, x)
right, compared with the exact solution u(T, x) = B(2) (dotted line).
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Figure 3.2: Evolution of the numerical solutions un(0.5, x) left, and un(1, x) com-
pared with the exact u(T, x) = B(2) (dotted line). On the right the dotted line
is invisible as the numerical solution covers graphically the analytical solution
B(2).

Figure 3.3 shows the relative l2-error of the scheme with respect to the time
step size τ and the space mesh size h. We observe a second order decay in time
as predicted and first order decay in space.

Time mesh size
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1

Figure 3.3: Left: Relative l2-error with respect to τ . Due to the dominance of the
space error under a certain threshold of τ the curve becomes flat. Right: Relative
l2-error with respect to h.

We observed the numerical evolution with a Barenblatt starting profile to
verify the convergence order of the scheme. More interesting from the applied
side is to do numerical simulations of an evolution starting with some initial
u(0, x) which can not be solved exactly. In Figure 3.4 on the left the evolution
with initial condition{

u(0, x) = max(sin(2πx)2 − sin(2π0.2)) for x ∈ (0.2, 0.8),

u(0, x) = 0 else.
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The plot on the right-hand side shows the evolution with initial condition u(0, x) =
sin(πx4).
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Figure 3.4: Simulation for symmetric and asymmetric initial conditions.

Recall that we showed that in general the entropy φ will not be dissipated
by a higher order scheme. However this phenomenon seems to occur in more
or less pathological situations. In the numerical analysis of the porous medium
equation we found that the entropy is numerically decayed in any setting we
studied. Figure 3.5 shows the decay of the entropy on the left and the decay of
the G-norm on the right. The initial condition was u(0, x) = sin(πx4), and end
time was set to T = 10.

Time
0 5 10

φ
(u

)

10 -15

10 -10

10 -5

10 0

Time
0 5 10

G
-n

or
m

10 -10

10 -5

10 0

Figure 3.5: Decay of the entropy φ(u) compared with the decay of the G-norm.

3.4.2 Numerical violation of entropy decay

Finally we want to illustrate the violation of dissipation numerically for some
functional φ : L2([0, 1]) → R. Let f ∈ L2([0, 1]) and define the functional φ by:

φ(f) := a

∫
f>0

f(x)dx− b

∫
f<0

f(x)dx; a, b > 0. (3.25)
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This entropy pushes f to 0, but with different speed depending on whether f < 0
or f > 0. It is a generalization of the 1-d problem we discussed in the first part.
We first show that φ is convex.

Lemma 3.4.1. Let φ : L2([0, 1]) → R be defined by

φ(f) := a

∫
f>0

f(x)dx− b

∫
f<0

f(x)dx

where a, b ∈ R+, then φ is convex.

Proof. We show that the convexity inequality holds ture. We start with

φ(tf1 + (1− t)f2) = a

∫
tf1>(t−1)f2

tf1 + (1− t)f2dx

− b

∫
tf1<(t−1)f2

tf1 + (1− t)f2dx

We now split the integrals to get:

= ta

∫
tf1>(t−1)f2

f1dx+ (1− t)a

∫
tf1>(t−1)f2

f2dx

− tb

∫
tf1<(t−1)f2

f1dx− (1− t)b

∫
tf1<(t−1)f2

f2dx.

Next we split the sets over which we take the integrals in the intersection of the
set with the quadrants:

{tf1 > (t− 1)f2} ={f1, f2 > 0, f1 >
t−1
t
f2} ∪ {f1 > 0, f2 < 0, f1 >

t−1
t
f2}

∪ {f1 < 0, f2 > 0, f1 >
t−1
t
f2} ∪ {f1, f2 < 0, f1 >

t−1
t
f2}︸ ︷︷ ︸

A

{tf1 < (t− 1)f2} ={f1, f2 < 0, f1 <
t−1
t
f2} ∪ {f1 > 0, f2 < 0, f1 <

t−1
t
f2}

∪ {f1 < 0, f2 > 0, f1 <
t−1
t
f2} ∪ {f1, f2 > 0, f1 <

t−1
t
f2}︸ ︷︷ ︸

B

As t < 1 the sets A and B are empty. We now split the integrals with respect to
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to the remaining sets:

= ta

∫
f1,f2>0

f1dx+ ta

∫
f1>0,f2<0,f1>

t−1
t
f2

f1dx+ ta

∫
f1<0,f2>0,f1>

t−1
t
f2

f1dx︸ ︷︷ ︸
<0

+ (1− t)a

∫
f1,f2>0

f2dx+ (1− t)a

∫
f1<0,f2>0;f1>

t−1
t
f2

f2dx

+ (1− t)a

∫
f1>0,f2<0,f1>

t−1
t
f2

f2dx︸ ︷︷ ︸
<0

−tb
∫
f1,f2<0

f1dx− tb

∫
f1<0,f2>0;f1<

t−1
t
f2

f1dx

− tb

∫
f1>0,f2>0f1<

t−1
t
f2

f1dx︸ ︷︷ ︸
>0

−(1− t)b

∫
f1,f2<0

f2dx

− (1− t)b

∫
f1>0,f2<0;f1<

t−1
t
f2

f2dx− (1− t)b

∫
f1<0,f2>0;f1>

t−1
t
f2

f2dx︸ ︷︷ ︸
>0

We drop the negative terms and arrive at:

≤ ta

∫
f1,f2>0

f1dx+ ta

∫
f1>0,f2<0;f1>

t−1
t
f2

f1dx+ (1− t)a

∫
f1,f2>0

f2dx

+ (1− t)a

∫
f1<0,f2>0;f1>

t−1
t
f2

f2dx− tb

∫
f1,f2<0

f1dx− tb

∫
f1<0,f2>0;f1<

t−1
t
f2

f1dx

− (1− t)b

∫
f1,f2<0

f2dx− (1− t)b

∫
f1>0,f2<0;f1<

t−1
t
f2

f2dx.

The sum above already looks familiar to tφ(f1) + (1 − t)φ(f2). However the
domains of integration should be of the from fi > 0(fi < 0 respectively). It is
easy to see, that if we change the domains the sum only can get larger. (replace
for example {f1, f2 > 0} by{f1 > 0}). We arrive at:

≤ ta

∫
f1>0

f1dx+ (1− t)a

∫
f2>0

f2dx− tb

∫
f1<0

f1dx− (1− t)b

∫
f2<0

f2dx

= t

(
a

∫
f1>0

f1dx− b

∫
f1<0

f1dx

)
+ (1− t)

(
a

∫
f2>0

f2dx− b

∫
f2<0

f2dx

)
= tφ(f1) + (1− t)φ(f2).

Space discretization

We again use an equidistant mesh ΩN := {ω0, ..., ωN ;ωi =
2πi
N
} but for simplicity

we use a set of piecewise constant ansatz functions A := {ϕi; 1 ≤ i ≤ N} where



3.4. NUMERICAL EXPERIMENTS 69

ϕi := 1[ωi−1,ωi), with equidistant grid, i.e. ωi+1 − ωi = h. The discrete function is

then given by
∑N

i=1 u
iϕi. where u

i := f(ωi−1+ωi

2
). The calculation of the L2-norm

yields

‖u‖2 = ‖
N∑
i=1

uiϕi‖2 =
∫ 1

0

(
N∑
i=1

uiϕi

)2

dω =
N∑
i=1

(ui)2
∫ ωi

ωi−1

ϕ2dω = h
N∑
i=1

(ui)2.

We calculate the entropy to be:

φ(u) = a

∫ ωN

ω0

∑
ui>0

uiϕidω − b

∫ ωN

ω0

∑
ui<0

uiϕidω = ah
∑
ui>0

ui − bh
∑
ui<0

ui.

We again employ the BDF-2 scheme to solve the problem. Therefore the func-
tional to be minimized is given by

Ψ(u) :=
‖u+ η‖2

2
+

2

3
τφ(u) = h

(
N∑
i=1

(ui + ηi)2 +
2

3
τ

(
a
∑
ui>0

ui − b
∑
ui<0

ui

))

= h

(
N∑
i=1

(
(ui + ηi)2 +

2

3
τ max{aui,−bui}

))
. (3.26)

Where η := 1
3
un − 4

3
un−1. It is clear that the minimum in (3.26) is minimal

if every single summand is minimal. Therefore the problem is to solve N − 1
independent minimization problems exactly like in the counter example in section
3.1. We chose a = 12, b = 1 (this is the limit relation derived in Remark 10)
dt = 1/100, T = 0.5, N = 100. The initial condition is defined by u(0, x) = sin(x),
for x ∈ (0, 2π).
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Figure 3.6: Illustriation of violation of dissipation of the entropy in contrast to
the dissipation of the G-norm.
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Chapter 4

Higher order Wasserstein
gradient flow schemes in one
space dimension

In this chapter we present a second order in time and space discretization in one
space dimension for a non-linear diffusion equation interpreted as a Wasserstein
gradient flow.

The Chapter is organized as follows. The global existence result and the
exponential decay of the solutions to the constant steady state as well as some
basic properties of the Wasserstein distance for periodic functions are stated in
Section 4.1. Section 4.2 is devoted to the description of the numerical scheme,
and some numerical experiments are presented in Section 4.3. The appendix
contains the calculations of the coefficients of the matrix Mw and the Hessian of
the discrete entropy.

4.1 Prerequisites

4.1.1 Existence of solutions and large-time asymptotics

Let us briefly review the literature for the diffusion equation

∂tu = α−1∆(uα) in T d, t > 0, u(0) = u0, (4.1)

with α < 0. Equation (4.1) with α = −1 appears in the modeling of heat conduc-
tion in solid Helium, where the solution u corresponds to the inverse temperature
[56]. When this equation is considered in the whole space or in a bounded do-
main with homogeneous Dirichlet boundary conditions, it is sometimes called the
super-fast diffusion equation [60, Chap. 9]. The critical exponent of this equation
in one space dimension is α = −1. For α > −1 and u0 ∈ L1(R), we have a
smoothing property, namely u(t) ∈ L∞(R) for any t > 0 [60, Section 9.1]. For

71
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α ≤ −1, no solutions exist with data in L1(R). The non-existence range in di-
mensions d ≥ 2 contains even all negative exponents, α < 0 [59]. However, if
d = 1 and α ≤ −1, there is a weak smoothing effect. Indeed, given u0 ∈ Lploc(R)
for p = (1 − α)/2, the solution u exists and is locally bounded in R × (0,∞).
Furthermore, if u0 ∈ Lp(R) then there is instantaneous extinction, i.e. u(t) = 0
in R for all t > 0 [60, Theorem 9.3],

Clearly, such results cannot be expected when the super-fast diffusion equation
is considered on the torus. We expect that global-in-time weak solutions exist,
which converge to the constant steady state as t → ∞. Since we could not find
any results on the existence and large-time asymptotics in the literature in that
situation and since the use of negative exponents is less standard, we provide a
(short) proof for completeness.

Equation (4.1) on the torus T d does not possess the non-existence or instan-
taneous extinction properties of the super-fast diffusion equation in the whole
space since mass cannot get lost. In fact, we expect that for any α < 0, there
exists a global weak solution. If the initial datum u0 is nonnegative only, (4.1) is
still a singular diffusion equation. However, because of the fast diffusion, the so-
lution becomes positive for all positive times and, by parabolic regularity theory,
also smooth.

Theorem 4.1.1 (Existence of weak solutions). Let α < 0 and let u0 ∈ L∞(T d)
satisfy u0 ≥ 0. If α = −1, we assume additionally that

∫
T d log u

0dx > −∞. Then
there exists a unique weak solution to (4.1) satisfying uα ∈ L2(0, T ;H1(T d)),
∂tu ∈ L2(0, T ;H1(T d)′) for all T > 0, and 0 ≤ u(x, t) ≤ supT d u0 for x ∈ T d,
t ≥ 0.

The proof of this theorem is based on a standard regularization procedure but
we need to distinguish carefully the cases −1 < α < 0, α = −1, and α < −1.

Proof. The existence proof is based on a regularization of the initial datum and
a fixed-point argument. Let 0 < ε < 1 and u0,ε = u0 + ε. Let QT = T d × (0, T )
and M = supT d u0, Set

K = {u ∈ L2(QT ) : ε ≤ u ≤M, ‖u‖L2(0,T ;H1(T d)) + ‖∂tu‖L2(0,T ;H1(T d)′) ≤ C},

where C > 0 will be determined later. The set K is convex and, by Aubin’s
lemma, compact in L2(QT ). Let v ∈ K and let u ∈ L2(QT ) be the weak solution
to

∂tu = div(vα−1∇u) in T d, t > 0, u(0) = u0,ε. (4.2)

This defines the fixed-point operator Z : K → L2(QT ), v 7→ u. Standard argu-
ments show that Z is continuous. We verify that Z(K) ⊂ K. By the maximum
principle, ε ≤ u ≤ M . Using u as a test function in the weak formulation of
(4.2) shows that ‖u‖L2(0,T ;H1(T d)) ≤ C1(ε), where C1(ε) > 0 is some constant
depending on ε. Moreover, ‖∂tu‖L2(0,T ;H1(T d)′) ≤ ‖vα−1∇u‖L2(QT ) ≤ C2(ε). Thus,
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setting, C := C1(ε) + C2(ε), we infer that u ∈ K. By the fixed-point theorem of
Schauder, there exists a fixed point uε of Z.

In order to perform the limit ε→ 0, we need to derive ε-independent estimates
for uε. To this end, we need to distinguish several cases. First, let α = −1.
Employing the test function 1− 1/uε in the weak formulation of (4.2) with u =
v = uε, we find that∫

T d

(uε(t)− log uε(t)) dx+

∫ t

0

∫
T d

|∇u−1
ε |2 dxds =

∫
T d

(u0 + ε− log(u0 + ε)) dx.

The right side is uniformly bounded as we assumed that −
∫

T d log u
0 dx < ∞.

Since |∇u−1
ε |2 ≥M−4|∇uε|2, we infer uniform estimates for uε in L

2(0, T ;H1(T d))
and also in H1(0, T ;H1(T d)′).

Next, let α 6= −1. The test function uαε in the weak formulation of (4.2) gives

1

α+ 1

∫
T d

uε(t)
α+1 dx+

1

α

∫ t

0

∫
T d

|∇uαε |2 dxds =
1

α+ 1

∫
T d

(u0 + ε)α+1 dx,

If −1 < α < 0, we write this equation as∫ t

0

∫
T d

|∇uαε |2 dxds = − α

α+ 1

∫
T d

uε(t)
α+1 dx+

α

α+ 1

∫
T d

(u0 + ε)α+1 dx

≤ − α

α+ 1

∫
T d

Mα+1 dx.

If α < −1, we obtain

1

−α− 1

∫
T d

uε(t)
α+1 dx+

1

−α

∫ t

0

∫
T d

|∇uαε |2 dxds =
1

−α− 1

∫
T d

(u0 + ε)α+1 dx.

In both cases, since u0 is assumed to be bounded, we infer a uniform bound
for uαε in L2(0, T ;H1(T d)) and consequently also for ∂tuε in L

2(0, T ;H1(T d)′).

Moreover, in view of |∇uαε |2 = α2u
2(α−1)
ε |∇uε|2 ≥ α2M2(α−1)|∇uε|2, it follows that

(uε) is bounded in L2(0, T ;H1(T d)).
We infer for all α < 0 the following bounds:

‖uε‖L∞(0,T ;L∞(T d)) + ‖uαε ‖L2(0,T ;H1(T d)) + ‖uε‖L2(0,T ;H1(T d)) + ‖∂tuε‖L2(0,T ;H1(T d)′)

≤ C3.

By Aubin’s lemma, there exists a subsequence which is not relabeled such that
uε → u strongly in L2(QT ). Moreover, uαε ⇀ uα weakly in L2(0, T ;H1(T d)) and
∂tuε ⇀ ∂tu weakly in L2(0, T ;H1(T d)′). Thus, we may pass to the limit ε → 0
in the weak formulation which shows that u solves (4.1).

For t → ∞, the (smooth) solution converges to the constant steady state.
Since this constant is positive, diffusion slows down when time increases. There-
fore, we cannot expect instantaneous extinction phenomena. Still, we are able to
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prove that the convergence is exponentially fast with respect to the L1-norm. We
introduce the entropy

Hβ[u] =

∫
T d

uβ dx−
(∫

T d

u dx

)β
, β > 1.

The steady state of (4.1) is given by u∞ =
∫

T d u
0 dx if vol(T d) = 1.

Theorem 4.1.2 (Exponential decay). Let u be a smooth positive solution to (4.1)
and let vol(T d) = 1. Then

‖u(t)− u∞‖L1(T d) ≤ CβHβ[u
0]1/β‖u0‖1/2

L1(T d)
e−λt,

where Cβ > 0 and for α < 0, 1 < β ≤ 2,

λ =
2(β − 1)

βCB
(sup

T d

u0)α−1,

and CB > 0 is the constant in the Beckner inequality (4.3); for −1 ≤ α < 0,
β = 2(1− α),

λ =
2(1− 2α)

(1− α)‖u0‖1−α
L1(T d)

.

In the first result, the decay rate λ depends on supT d u0, which seems to be
not optimal. The decay rate in the second result depends on the L1-norm of u0

only but we need a particular value of β. The proof is based on the entropy
method. Stronger decay results have been derived for the fast-diffusion equation
in the whole space or in bounded domains; see, e.g., [13, 60]. However, our proof
is very elementary and just an illustration for the qualitative behavior of the
solutions to (4.1).

Proof. Employing (4.1) and integration by parts, we find that

dHβ

dt
= −β(β − 1)

∫
T d

uα+β−3|∇u|2 dx = − 4

β
(β − 1)

∫
T d

uα−1|∇uβ/2|2 dx.

We employ the bound u ≤ M = supT d u0 and the Beckner inequality [11] (note
that we assumed that vol(T d) = 1),∫

T d

uβ dx−
(∫

T d

u dx

)β
≤ CB

∫
T d

|∇uβ/2|2 dx for uβ/2 ∈ H1(Ω), 1 < β ≤ 2,

(4.3)
to obtain

dHβ

dt
≤ −4(β − 1)

βCB
Mα−1

(∫
T d

uβ dx−
(∫

T d

u dx

)β)
= −4(β − 1)

βCB
Mα−1Hβ.
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Then by Gronwall’s lemma H[u(t)] ≤ H[u0]e−λt with λ = −4(β−1)Mα−1/(βCB)
for 1 < β ≤ 2.

For the second result, let −1 ≤ α < 0 and β = 2(1− α). Similarly as above,
we find that

dHβ

dt
= − 4β(β − 1)

(α+ β − 1)2

∫
T d

|∇u(α+β−1)/2|2 dx

≤ −8(1− 2α)

1− α

∫
T d

(∫
T d

uα+β−1 dx−
(∫

T d

u dx

)α+β−1)
= −8(1− 2α)

1− α
Hβ/2[u],

since α+β− 1 = β/2 ∈ (1, 2]. Using the inequalities ‖uβ/2‖L2(T d) ≥ ‖uβ/2‖L1(T d)

and ‖uβ/2‖L2(T d) = ‖u‖β/2
Lβ(T d)

≥ ‖u‖β/2
L1(T d)

(again we employ vol(T d) = 1 here),

it follows that

Hβ[u] = ‖uβ/2‖2L2(T d) − ‖u‖β
L1(T d)

=
(
‖uβ/2‖L2(T d) + ‖u‖β/2

L1(T d)

)(
‖uβ/2‖L2(T d) − ‖u‖β/2

L1(T d)

)
≥
(
‖uβ/2‖L2(T d) + ‖u‖β/2

L1(T d)

)(
‖uβ/2‖L1(T d) − ‖u‖β/2

L1(T d)

)
≥
(
‖uβ/2‖L1(T d) + ‖u‖β/2

L1(T d)

)
Hβ/2[u] ≥ 2‖u‖β/2

L1(T d)
Hβ/2[u].

Since the solution to (4.1) conserves mass, ‖u(t)‖L1(T d) = ‖u0‖L1(T d), and we end
up with

dHβ

dt
≤ − 4(1− 2α)

(1− α)‖u0‖β/2
L1(T d)

Hβ[u].

Then Gronwall’s lemma shows that Hβ[u(t)] ≤ Hβ[u
0]e−λt with λ = 4(1 −

2α)/((1− α)‖u0‖1−α
L1(T d)

).

Finally, the statement of the theorem follows after applying the generalized
Csiszár-Kullback inequality in the form

‖u− v‖2L1(T d) ≤ Cβ‖v‖L1(T d)

(∫
T d

uβ −
(∫

T d

u dx

)β)
, 1 < β ≤ 2.

for functions u, v ∈ Lβ(T d) such that
∫

T d u dx =
∫

T d v dx. The proof is a slight
generalization of the proof of Theorem 1.4 in [32] taking ϕ(t) = tβ.

4.1.2 The Wasserstein distance for periodic functions

In the introduction 1.2 we defined the Wasserstein metric for general metric
spaces. On R, there exists an explicit formula to computeW . Let X = (a, b) ⊂ R
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be a (possibly infinite) interval, and let µ1, µ2 ∈ P(X) be two measures. We
define their distribution functions

Ui : (a, b) → [0,M ], Ui(x) = µi((a, x]), i = 1, 2.

As these functions are right-continuous and monotonically increasing, they pos-
sess right-continuous increasing pseudo-inverse functions Gi : [0,M ] → [a, b],
given by

Gi(ω) = inf{x ∈ (a, b) : Ui(x) > ω}, i = 1, 2.

Then [61],

W [u1, u2]
2 =

∫ M

0

(G1(ω)−G2(ω))
2dω. (4.4)

This formula does not extend to X = T ' (0, 1) because of the topology
induced by the periodic boundary conditions, d(x, y) = min{|x− y|, 1− |x− y|}.
The reason is that mass can be transported either clock- or counter-clockwise (see
[22] for details). However, if the densities u1 and u2 are point-symmetric, (4.4)
still holds. More precisely, let ui(x) = ui(1− x) for x ∈ (0, 1) and i = 1, 2. Then
(4.4) holds, where Gi : [0,M ] → [0, 1] is the inverse function of Ui(x) =

∫ x
0
ui(y)dy

[22, Lemma 2.2].

4.2 Time discretization and Lagrangian coordi-

nates

4.2.1 The semi-discrete BDF scheme

We introduce the second-order minimizing movement scheme. First, we explain
the underlying idea for the finite-dimensional gradient flow

ẋ = −∇φ(x), t > 0, x(0) = x0, (4.5)

where φ : Rd → R is a smooth potential. This equation can be approximated by
the following minimization problem:

xn+1 = argminx∈Rd Φ(x), Φ(x) =
1

2τ
‖x− xn‖2 + φ(x),

where τ > 0 is the time step size and xn is an approximation of x(nτ). The
minimizer xn+1 is a critical point and thus,

0 = ∇Φ(xn+1) =
1

τ
(xn+1 − xn) +∇φ(xn+1),

which corresponds to the implicit Euler scheme.
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Instead of the Euler scheme, we wish to discretize (4.1) by a multistep method.
As an example, consider the two-step BDF (or BDF-2) method,

1

τ

(
3

2
xn+2 − 2xn+1 +

1

2
xn
)

= −∇φ(xn+2),

where xn and xn+1 are given. Writing this scheme as

1

2
(xn − xn+2)− 2(xn+1 − xn+2) = −τ∇φ(xn+1),

we see that xn+2 is a critical point of the functional

Φ(x) = − 1

4τ
‖xn − x‖2 + 1

τ
‖xn+1 − x‖2 + φ(x).

More generally, the BDF-k approximation of (4.5),

k∑
i=0

aix
n+i = −τ∇φ(xn+k),

for given xn, . . . , xn+k−1 can be formulated as

−τ∇φ(xn+k) =
k−1∑
i=0

aix
n+i + akx

n+k =
k−1∑
i=0

ai(x
n+i − xn+k),

since
∑k

i=0 ai = 0, or as the minimization problem

xn+k = argminx∈Rd Φ(x), Φ(x) = − 1

2τ

k−1∑
i=0

ai‖xn+i − x‖2 + φ(x), (4.6)

In a similar way, we may formulate general multistep methods. We recall that
BDF-k schemes are consistent if

∑k
i=0 ai = 0,

∑k
i=1 iai = 1 and zero-stable if and

only if k ≤ 5 [54, Section 11.5].
The same idea as above is applicable to gradient flows in the Wasserstein

distance. For this, we replace the L2-norm by the Wasserstein distance. For
equation (4.1), scheme (4.6) turns into

un+k = argminu∈P(T ) Φ(u), Φ(u) = − 1

2τ

k−1∑
i=0

aiW [un+i, u]2 + S[u], (4.7)

where S[u] = (α(α−1))−1
∫

T
uα dx. Scheme (4.7) can be interpreted as a BDF-k

minimizing movement scheme.
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4.2.2 Lagrangian coordinates

Before introducing the spatial discretization, we rewrite the scheme (4.7) in a
more explicit manner, using the inverse distribution functions G and G∗ of u and
u∗, respectively, which were introduced in Section 4.1.2. The numerical procedure
is similar to that in [22] but our higher-order scheme introduces some changes.
We call ω = U(x) ∈ [0,M ] the Lagrangian coordinate, which is conjugate to the
Eulerian coordinate x ∈ T , and we refer to the inverse distribution function G
as the associated Lagrangian map. For a consistent change of variables, we need
to express the entropy S[u] in terms of the Lagrangian coordinates. With the
formula for the differential of an inverse function,

u(x) = ∂xU(x) =
1

∂ωG(ω)
,

and the change of unknowns x = G(ω) under the integral in S[u], we obtain

S[u] =
1

α(α− 1)

∫
T

u(x) dx

u(x)1−α
=

1

α(α− 1)

∫
T

g(ω)1−α dω,

where g(ω) = ∂ωG(ω). Note that the exponent in the integrand is positive since
α < 0. In terms of g, the expression for the Wasserstein distance in (4.4) becomes
(see [22, Section 2.3])

W [u, u∗]2 =

∫ M

0

(G(ω)−G∗(ω))2 dω =

∫ M

0

(∫ ω

0

(g(η)− g∗(η))dη

)2

dω

=

∫ M

0

∫ M

0

(M −max{η, η′})(g(η)− g∗(η))(g(η′)− g∗(η′)) dη dη′.

This expression is simply a quadratic form in g − g∗ and thus easy to implement
in the numerical scheme. We summarize our results which slightly generalize
Lemma 2.3 in [22].

Lemma 4.2.1. Let the initial datum u0 : T → R be point-symmetric. Then the
solution un+k to the BDF-k scheme (4.7) is in one-to-one correspondence to the
solution gn+k obtained from the inductive scheme

gn+k = argming Ψ(g), (4.8)

with initial condition g0 = 1/u ◦ G and given g1, . . . , gn+k−1 obtained from a
lower-order scheme. The argmin has to be taken over all measurable functions
g : [0,M ] → (0,∞) satisfying the mass constraint

∫M
0
g(ω) dω = 1, and the
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function Ψ(g) is given by

Ψ(g) = (4.9)

− 1

2τ

∫ M

0

∫ M

0

(M −max{η, η′})
k−1∑
i=0

ai(g(η)− gn+i(η))(g(η′)− gn+i(η′)) dη dη′

(4.10)

+
1

α(1− α)

∫ M

0

g(ω)1−α dω.

Moreover, Φ(u) = Ψ(g) and the functions un and gn are related by

un(xω) =
1

gn(ω)
, xω =

∫ ω

0

gn(η) dη. (4.11)

In Lagrangian coordinates, the problem has become a minimization problem
in Ψ(g) which is the sum of a quadratic form and a convex functional, hence it is
convex. In the special case α = −1, the second integral in (4.9) is quadratic too
which simplifies the numerical discretization. Therefore, we will consider mainly
numerical examples with α = −1 in Section 4.3.

4.2.3 Spatial discretization

We approximate the infinite-dimensional variational problem (4.8) by a finite-
dimensional one. Minimization in (4.8) is performed over the finite-dimensional
space of quadratic ansatz functions. This generalizes the approach in [22], where
only linear ansatz functions were used. We define the ansatz space as follows.

Let N ∈ N and a mesh {x0, . . . , xN} on [0, 1] be given with x0 = 0 and
xN = 1. Using (4.11), we construct the mesh ΩN = {ω0, ω1 . . . , ωN} of [0,M ].
Then ω0 = 0, ωN = M , ωi < ωi+1, and ωN−i = M − ωi (point-symmetry), where
i = 1, . . . , N − 1. Since we wish to introduce quadratic ansatz functions, we add
the grid points ωj+1/2 = (ωj+1 + ωj)/2 for j = 0, . . . , N − 1.

The basis functions φj : T → R are defined by

φj(ω) =


ω−ωj−1

ωj−ωj−1
for ω ∈ [ωj−1, ωj],

ωj+1−ω
ωj+1−ωj

for ω ∈ [ωj, ωj+1],

0 otherwise,

j = 1, . . . , N − 1,

φN(ω) =


ω1−ω
ω1

for ω ∈ [0, ω1],
ω−ωN−1

M−ωN−1
for ω ∈ [ωN−1,M ],

0 otherwise.

This set of piecewise linear functions is supplemented by the following piecewise
quadratic basis functions:

φN+j(ω) =

{
1−

(2ω−(ωj−1+ωj)

ωj−ωj−1

)2
for ω ∈ [ωj−1, ωj],

0 otherwise,
j = 1, . . . , N.
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The ansatz space is the set of all positive, piecewise quadratic functions g :
[0,M ] → R+ of the form

g(ω) =
2N∑
j=1

gjφj(ω). (4.12)

We call g := (g1, . . . , g2N) ∈ [0,∞)2N the associated weight vector. By definition
of φj, we have g(ωj) = gj for j = 1, . . . , N . Moreover, as g is point-symmetric,
g0 = gN .

Now, for given massM > 0 and grid ΩN ⊂ [0,M ], we define the setGN
M ⊂ R2N

+

as the set of weight vectors g for which the associated interpolation g from (4.12)
satisfies the mass constraint,

1 =

∫ M

0

g(ω) dω =
N∑
j=1

(
gj−1 + gj

2
+

2

3
gN+j

)
(ωj − ωj−1). (4.13)

The Wasserstein metric for functions approximated in this way becomes

W [u, u∗]2 =∫ M

0

∫ M

0

(M −max{η, η′})
2N∑
i=1

(gi − g∗i )φi(η)
2N∑
j=1

(gj − g∗j )φj(η
′) dη dη′

=
N∑

i,j=1

(gi − g∗i )(gj − g∗j )aij +
N∑

i,j=1

(gN+i − g∗N+i)(gj − g∗j )bij

+
N∑

i,j=1

(gi − g∗i )(gN+j − g∗N+j)bji +
N∑

i,j=1

(gN+i − g∗N+i)(gN+j − g∗N+j)cij,

where

aij =

∫ M

0

∫ M

0

(M −max{η, η′})φi(η)φj(η′) dη dη′,

bij =

∫ M

0

∫ M

0

(M −max{η, η′})φN+i(η)φj(η
′) dη dη′, (4.14)

cij =

∫ M

0

∫ M

0

(M −max{η, η′})φN+i(η)φN+j(η
′) dη dη′.

The coefficients aij, bij, and cij can be computed explicitly. The explicit expres-
sions are given in Appendix C.1. Setting A = (aij), B = (bij), C = (cij), and
defining the matrix

Mw = (Mij) =

(
A B>

B C

)
, (4.15)

we can formulate the above sum as

W [u, u∗]2 =
2N∑
i,j=1

Mij(gi − g∗i )(gj − g∗j ).
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As the matrices A and C are symmetric, Mw is symmetric, too. The matrix A
corresponds to the linear approximation considered in [22].

4.2.4 Minimization

The numerical scheme consists of the following finite-dimensional variational
problem:

gn+k = argming∈GN
M
ΨN(g), (4.16)

where ΨN(g) = − 1

2τ

k−1∑
`=0

a`

2N∑
i,j=1

Mij(gi − gn+`i )(gj − gn+`j ) + SN [g],

and where g = (g1, . . . , g2N),

SN [g] =
1

α(α− 1)

N−1∑
i=0

∫ ωi+1

ωi

(
giφi + gi+1φi+1 + gN+iφN+i

)1−α
dω. (4.17)

The functions ΨN(g) and Ψ(g) from (4.9) are related by ΨN(g) = Ψ(g) with a
piecewise quadratic function g defined from g by (4.12). Since ΨN is convex for
α < 0 and the set GN

M is convex, there exists a unique minimizer of (4.16).

4.2.5 Fully discrete Euler-Lagrange equations

The minimizer gn+k in (4.16) is subject to the mass constraint (4.13), by definition
of the set GN

M . Therefore, instead of working on the set GN
M , it is more convenient

to consider (4.16) as a constrained minimization problem for g on the larger set
R2N , which is solved by the method of Lagrange multipliers λ using the Lagrange
functional

L(g, λ) = ΨN(g)− λ

(
1−

N∑
j=1

(
gj−1 + gj

2
+

2

3
gN+j

)
(ωj − ωj−1)

)
.

A critical point of L satisfies the 2N conditions

0 = Gj :=
∂L

∂gj
= −1

τ

k−1∑
`=0

a`

2N∑
i=1

Mij(gi − gn+`i ) +
∂SN
∂gj

, j = 1, . . . , 2N.

The precise values for ∂SN/∂gj are given in Appendix C.2 for α = −1. The
condition for the constraint is recovered from

0 = G2N+1 :=
∂L

∂λ
= 1−

N∑
j=1

(
gj−1 + gj

2
+

2

3
gN+j

)
(ωj − ωj−1).
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The vector G[g, λ] = (G1, . . . ,G2N+1) ∈ R2N+1 is the gradient of L(g, λ) with
respect to (g, λ). We approximate a critical point numerically by applying the
Newton method to the first-order optimality condition G[g, λ] = 0. This leads
to a sequential quadratic programming method, since at every Newton iteration
step a quadratic subproblem has to be solved.

4.2.6 Implementation

Let the solution g at the nth time step be given and let g(0) := g, λ(0) := 0. The
iteration is as follows:

g(s+1) := g(s) + (δg)(s+1), λ(s+1) := λ(s) + (δλ)(s+1),

where ((δg)(s+1), (δλ)(s+1)) is the solution to the linear system

H[g(s), λ(s)]((δg)(s+1), (δλ)(s+1)) = −G[g(s), λ(s)],

whereH[g(s), λ(s)] denotes the Hessian of ΨN , whose entries are given in Appendix
C.2 for α = −1. The iteration is stopped if the norm of ((δg)(s+1), (δλ)(s+1)) is
smaller than a certain threshold (see Section 4.3 for details). In this case, we
define gn+1 := g(s+1) and λn+1 := λ(s+1) at the (n + 1)th time step. For the
BDF-k scheme, the values g1, . . . ,gk−1 are computed from a lower-order scheme.
In the numerical section below, we employ the BDF-2 scheme only such that g1

is calculated by the implicit Euler method.
Note that the constrained minimization problem is exactly mass conserving

by construction, but the Newton iteration introduces a small error which depends
on the tolerance imposed in the Newton method.

In each iteration step, we need to invert the dense matrix H which is the
sum of Mw and the Hessian of SN . This is not a numerical challenge in the one-
dimensional case we consider but it may become critical in multi-dimensional
discretizations on fine grids. For α = −1, however, Mw and the Hessian of SN
are constant matrices which significantly simplifies the Newton scheme.

4.2.7 Choice of the initial condition

In order to compute the initial condition in Lagrangian coordinates, we need to
make precise the values g0i of the vector g ∈ GN

M and the points x0j of the spatial
lattice which is moving as the solution evolves. Let the mesh {x00, . . . , x0N} be
given and set g0(ωj) = 1/u0(xj). Approximating the initial function by a linear
ansatz function, we obtain

x0j = G0(ωj) =
1

2

j∑
i=1

(ωj − ωj−1)(g
0
i−1 + g0i ), j = 1, . . . , N. (4.18)
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This is a system of linear equations in ω1, . . . , ωN . Choosing the uniform grid
x0j = j/N , we can solve this system explicitly. Indeed, since

1

N
= x0j+1 − x0j =

1

2
(ωj+1 − ωj)(g

0
j+1 + g0j ),

which can be solved for ωj+1:

ωj+1 = ωj +
2

N
(g0j+1 + g0j )

−1, j = 0, . . . , N − 1.

As u0 is assumed to be point-symmetric, this is true for (ωi) too. Finally, we
approximate g0(ωj+1/2) by the arithmetic mean 1

2
(g0j−1 + g0j ), j = 1, . . . , N . Con-

sequently, the weights g0N+i vanish for i = 1, . . . , N in the expansion g0(ω) =∑2N
j=0 g

0
jφj, which is consistent with our approximation (4.18). We also refer to

the discussion in [22, Section 2.8].

4.3 Numerical experiments

In this section, we present some numerical results for (4.1) with α = −1, by
employing the BDF-2 method with quadratic ansatz functions. We choose a
uniform grid for x ∈ [0, 1] with N = 100 grid points, and the time step size
τ = 10−5. The Newton iterations are stopped if both the relative `∞ error in the
g-variables and the `2-norm of G[g(s), λ(s)] are smaller than 10−8.

Figure 4.1 illustrates the temporal evolution of the solution u(x, t) with the ini-
tial conditions u0(x) = cos(2πx)2 +0.01(left) and u0(x) = 5

√
|x− 0.5|+ 0.0001−

0.1 (right). We observe that, as expected, the solutions converge to the con-
stant steady state. Because of the negative exponent α, very small initial values
increase quickly in time.
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Figure 4.1: Time evolution of the solution to the diffusion equation (4.1) with
α = −1 for two different initial conditions.
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A nice feature of the Wasserstein gradient flow scheme is that we may inter-
pret the evolution as a process of redistribution of particles with spatio-temporal
density u(x, t) on T under the influence of a nonlinear particle interaction, which
is described by S. The way in which the initial density u0 is “deformed” during
the time evolution is illustrated in Figure 4.2. We have chosen 50 “test particles”
for the solutions to (4.1) for the initial conditions chosen above. We stress the fact
that the density of trajectories can generally be not identified with the density u
of the solution.
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Figure 4.2: Particle trajectories in the Wasserstein gradient flow scheme, corre-
sponding to the solutions of Figure 4.1 with N = 50.

We verify that the discretization is indeed of second order. Figure 4.3 shows
the `∞-error for various numbers of grid points N . We have chosen the initial
datum u0(x) = cos(2πx)2 + 0.1, the end time T = 0.004, and the time step size
τ = 10−7. The reference solution is computed by using N = 500, and τ = 10−7.
The differences g(·, T )− gref(·, T ) and u(·, T )− uref(·, T ) in the `∞-norm feature
the expected second-order dependence on N .

Next, we fix the number of grid points N = 100 and compute the L∞(τ ∗, T ;
L2(T )) error for varying time step sizes τ ; see Figure 4.4. Because of the ap-
proximation of the initial datum as detailed in Section 4.2.7, the error is not of
second order initially. Therefore, we compute the error in the interval (τ ∗, T )
with τ ∗ = 10−4. The errors are of second order, as expected.
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Figure 4.3: `∞-error for (g− gref)(T ) (left) and (u− uref)(T ) (right) at T = 0.004
for various numbers of grid points.
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Figure 4.4: L∞(τ ∗, T ;L2(T ))-error for g−gref (left) and u−uref (right) for various
time step sizes, with τ ∗ = 10−4.

The time decay of the discrete version of the relative entropy S[u]− S[u∞] is
presented in Figure 4.5 (left) for various grid numbers. We observe that the decay
is exponential until saturation. The saturation comes from the spatial error and
the error from the Newton iteration. The decay rate is estimated in the linear
regime from the difference quotient

λ ≈ 1

τ

(
logS[u(t+ τ)]− logS[u(t)]

)
.

The numerical decay rates for α = −1,−2 are shown in Figure 4.6. The rate
for α = −2 (right) is much larger than the corresponding one for α = −1 (left),
since a smaller exponent yields a larger diffusion coefficient (if u < 1) and thus,
diffusion becomes faster. We also see that the decay rates become larger on a
finer spatial grid. This behavior seems to confirm recent analytical results for
spatial discretizations of Fokker-Planck equations; see [45, Section 5]. One may
ask if a similar behavior can be observed for the decay rate as a function of the
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Figure 4.5: Discrete relative entropy S[u(t)]−S[u∞] versus time with α = −1 for
various N .

time step size. However, our numerical experiments do not show a monotonic
dependence (figures not presented); rather the decay rates vary in a small range
which seems to be determined by the other numerical error parts.
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Figure 4.6: Estimated decay rate of the entropy versus number of grid points N
for α = −1 (left) and α = −2 (right).

In Figure 4.7, the decay of the square of the relative G-norm is presented. The
G-norm is calculated according to (1.4), where the argument is given by g − g∞
and g∞ is the weight vector corresponding to the constant steady state. Again,
the decay is much faster for α = −2 because of the faster diffusion.

Finally, we present some results on the time decay of the discrete variance of
un and gn at time τn, defined by

Var(un)2 =
N+1∑
i=1

(uni − E)2(xi − xi−1),

where E is the expectation value of un (which equals the mass and is therefore
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Figure 4.7: Relative G-norm versus time for various grid numbers N (left) and
for two values of the exponent α (right).

constant in time). The discrete variance of gn is defined in a similar way. Inter-
estingly, the variances are exponentially decaying (Figure 4.8), although it is not
clear how to prove this property analytically.
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Figure 4.8: Discrete variance of un (left) and gn (right) versus time for various
grid numbers N .
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Appendix A

Wasserstein gradient

In Chapter 3 we investigate numerical schemes for gradient flows on the Wasser-
stein space. To give a meaning to a gradient flow, we need a definition of a
gradient. To this end we give here a (formal) derivation of the Wasserstein gra-
dient. Remember that on a manifold with inner product 〈·, ·〉M the gradient of
some function f :M → R in direction v is defined via

〈∇Mf, v〉M = Df(v).

In the same manner we want to define the Wasserstein gradient ∇WF of some
functional F : P(M) → R. To this end, we have to define an inner product on
the tangent space of P(X). Following the derivation of the norm of a velocity
vector ∂tµ (associating a velocity field ∇u to each velocity vector ∂tµ) in the
introduction 1.2 we set

〈∂tµ, ∂tµ∗〉W =

∫
µ〈∇u,∇u∗〉L2dx,

where u, u∗ solve

∂tµ+ div(µ∇u) = 0, ∂tµ
∗ + div(µ∇u∗) = 0.

We now turn to the calculation of the gradient with respect to this inner product.
Recall that the infinitesimal variation of a functional F in direction ∂tµ is given
by

δF (∂tµ) =

∫
DF (µ)∂tµ dx,

where DF is the Fréchet derivative. We want to define ∇W so that the identity

〈∇WF, ∂tµ〉W =

∫
DF (µ)∂tµ dx

holds true. The gradient is then obtained by a straight forward calculation:∫
DF (µ)∂tµdx = −

∫
DF (µ) div(µ∇u)dx =

∫
µ∇DF (µ)∇udx

= 〈− div(µ∇DF ), ∂tµ〉Wdx = 〈∇WF, ∂tµ〉Wdx

89
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In the first line we used the identification ∂tµ = − div(µ∇u∗). The second
line already is in the form of a Wasserstein inner product for some vector η =
− div(µ∇DF (µ)). Consequently, we set ∇WF = η = − div(µ∇DF (µ)).



Appendix B

Discretizations needed in
Chapter 2

B.1 The H−1-norm

We calculate the entries for the matrix of the discrete H−1-norm to be

Aj−1,j =

∫ ωj

ωj−1

ϕj−1(ω)ϕj(ω)dω =

∫ ωj

ωj−1

ωj − ω

ωj − ωj−1

ω − ωj−1

ωj − ωj−1

dω

=
ωj − ωj−1

6
.

Aj,j =

∫ ωj+1

ωj−1

ϕj(ω)ϕj(ω)dω

=

∫ ωj

ωj−1

(
ω − ωj−1

ωj − ωj−1

)2

dω +

∫ ωj+1

ωj

(
ωj+1 − ω

ωj+1 − ωj

)2

dω

=
wj+1 − wj−1

3
.

Aj−1,j =

∫ ωj+1

ωj

ϕj+1(ω)ϕj(ω)dω =

∫ ωj+1

ωj

ω − ωj
ωj+1 − ωj

ωj+1 − ω

ωj+1 − ωj
dω

=
ωj+1 − ωj

6
.

Bj−1,j =

∫ ωj

ωj−1

∇ϕj−1(ω)∇ϕj(ω)dω =

∫ ωj

ωj−1

−1

ωj − ωj−1

1

ωj − ωj−1

dω

= − 1

ωj − ωj−1

.

91
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Bj,j =

∫ ωj+1

ωj−1

ϕj(ω)ϕj(ω)dω

=

∫ ωj

ωj−1

(
1

ωj − ωj−1

)2

dω +

∫ ωj+1

ωj

(
−1

ωj+1 − ωj

)2

dω

=
1

ωj − ωj−1

+
1

ωj+1 − ωj
.

Bj−1,j =

∫ ωj+1

ωj

ϕj+1(ω)ϕj(ω)dω =

∫ ωj+1

ωj

1

ωj+1 − ωj

−1

ωj+1 − ωj
dω

= − 1

ωj+1 − ωj
.

B.2 The entropy Φ

We calculate Φ1,Φj+ and ΦN starting with

Φ1 =
1

m+ 1

∫ ω1

ω0

(
u1
ω − ω0

ω1 − ω0

)m+1

dω

=
1

m+ 1

(
1

ω1 − ω0

)m+1

︸ ︷︷ ︸
c1

∫ ω1

ω0

 u1︸︷︷︸
c3

ω−u1ω0︸ ︷︷ ︸
c2

m+1

dω

= c1

∫ ωj+1

ωj

(c2 + c3ω)
m+1 dω.

Setting y = c2 + c3ω yields

Φ1 =
c1
c3

∫ c2+c3ω1

c2+c3ω0

ym+1dy =
c1

c3(m+ 2)
ym+2|c2+c3ω1

c2+c3ω0

=
(u1ω1 − u1ω0)

m+2

(ω1 − ω0)m+1(u1)(m+ 1)(m+ 2)
=

um+2
1 (ω1 − ω0)

(m+ 1)(m+ 2)u1

=
um+1
1 (ω1 − ω0)

(m+ 1)(m+ 2)
.

We calculate Φj+1 in the same way:
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Φj+1 =
1

m+ 1

∫ ωj+1

ωj

(
uj
ωj+1 − ω

ωj+1 − ωj
+ uj+1

ω − ωj
ωj+1 − ωj

)m+1

dω

=
1

(m+ 1)(ωj+1 − ωj)m+1︸ ︷︷ ︸
c1

∫ ωj+1

ωj

(ujωj+1 − uj+1ωj︸ ︷︷ ︸
c2

+(uj+1 − uj)︸ ︷︷ ︸
c3

ω)m+1dω

= c1

∫ ωj+1

ωj

(c2 + c3ω)
m+1 dω.

Setting y = c2 + c3ω yields

Φj+1 =
c1
c3

∫ c2+c3ωj+1

c2+c3ωj

ym+1dy =
c1

c3(m+ 2)
ym+2|c2+c3ωj+1

c2+c3ωj

=
(um+2

j+1 − um+2
j )(ωj+1 − ωj)

(m+ 1)(m+ 2)(uj+1 − uj)
.

Finally we calculate ΦN

ΦN =
1

m+ 1

∫ ωN

ωN−1

(
uN−1

ωN − ω

ωN − ωN−1

)m+1

dω

=
1

m+ 1

(
1

ωN − ωN−1

)m+1

︸ ︷︷ ︸
c1

∫ ωN

ωN−1

uN−1ωN︸ ︷︷ ︸
c2

−uN−1︸ ︷︷ ︸
c3

ω

m+1

dω

= c1

∫ ωN

ωN−1

(c2 + c3ω)
m+1 dω.

Set y = c2 + c3ω

ΦN =
c1
c3

∫ c2+c3ωN

c2+c3ωN−1

ym+1dy =
c1

c3(m+ 1)
ym+2|c2+c3ωN

c2+c3ωN−1

=
um+1
N−1(ωN − ωN−1)

(m+ 1)(m+ 2)
.
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B.3 Gradient of Φ

We turn to the calculation of the gradient. Therefore note that only Φ1 and Φ2

depend on u1. We sum up the two terms and calculate the derivative as follows:

∂Φ
∂u1

=
∂

∂u1

βk
αk

(
um+1
1 (ω1 − ω0)

(m+ 1)(m+ 2)

)
+

∂

∂u1

βk
αk

(
um+1
N−1(ωN − ωN−1)

(m+ 1)(m+ 2)

)
=
βk
αk

(
um1 (ω1 − ω0)

(m+ 2)
− um+1

1 (m+ 1)(ω1 − ω0)(u2 − u1)(m+ 1)(m+ 2)

(u2 − u1)2(m+ 1)2(m+ 2)2

)
+
βk
αk

(
(um+2

2 − um+2
1 )(ω1 − ω0)(m+ 1)(m+ 2)

(u2 − u1)2(m+ 1)2(m+ 2)2

)
=
βk
αk

(
um1 (ω1 − ω0)

(m+ 2)
− um+1

1 (ω1 − ω0)

(u2 − u1)(m+ 1)
+

(um+2
2 − um+2

1 )(ω1 − ω0)

(u2 − u1)2(m+ 1)(m+ 2)

)
In the same way as only Φ1 and Φ2 depend on u1, only Φl−1 and Φl depend

on ul. We sum up the terms and calculate

∂Φ
∂ul

=
∂

∂ul

βk
αk

(
(um+2

l+1 − um+2
l )(ωl+1 − ωl)

(ul+1 − ul)(m+ 1)(m+ 2)
+

(um+2
l − um+2

l−1 )(ωl − ωl−1)

(ul − ul−1)(m+ 1)(m+ 2)

)
= −βk

αk

(
um+2
l (m+ 1)(ωl+1 − ωl)(ul+1 − ul)(m+ 1)(m+ 2)

(ul+1 − ul)2(m+ 1)2(m+ 2)2

)
+
βk
αk

(
(um+2

l+1 − um+2
l )(ωl+1 − ωl)(m+ 1)(m+ 2)

(ul+1 − ul)2(m+ 1)2(m+ 2)2

)
+
βk
αk

(
um+1
l (m+ 2)(ωl − ωl−1)(ul − ul−1)(m+ 1)(m+ 2)

(ul − ul−1)2(m+ 1)2(m+ 2)2

)
− βk
αk

(
(um+2

l − um+2
l−1 )(ωl − ωl−1)(m+ 1)(m+ 2)

(ul − ul−1)2(m+ 1)2(m+ 2)2

)
= −βk

αk

(
um+1
l (ωl+1 − ωl)

(ul+1 − ul)(m+ 1)
+

(um+2
l+1 − um+2

l )(ωl+1 − ωl)

(ul+1 − ul)2(m+ 1)(m+ 2)

)
+
βk
αk

(
um+1
l (ωl − ωl−1)

(ul − ul−1)(m+ 1)
−

(um+2
l − um+2

l−1 )(ωl − ωl−1)

(ul − ul−1)2(m+ 1)(m+ 2)

)
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We sum up ΦN−1 and ΦN and calculate:

∂Φ
∂uN−1

=
∂

∂uN−1

(
βk
αk

(um+2
N−1 − um+2

N−2)(ωN−1 − ωN−2)

(uN−1 − uN−2)(m+ 1)(m+ 2)
+
um+1
N−1(ωN − ωN−1)

(m+ 1)(m+ 2)

)
=
βk
αk

(
(m+ 2)um+1

n−1 (ωN−1 − ωN−2)(m+ 1)(m+ 2)(uN−1 − uN−2

(uN−1 − uN−2)2(m+ 1)2(m+ 2)2

)
− βk
αk

(
(um+2

N−1 − um+2
N−2)(m+ 1)(m+ 2)(ωN−1 − ωN−2)

(uN−1 − uN−2)2(m+ 1)2(m+ 2)2

)
+
βk
αk

(
(m+ 1)umN−1(ωN − ωN−1)

(m+ 1)(m+ 2)

)
=
βk
αk

(
um+1
N−1(ωN−1 − ωN−2)

(uN−1 − uN−2)(m+ 1)
−

(um+2
N−1 − um+2

N−2)(ωN−1 − ωN−2)

(uN−1 − uN−2)2(m+ 1)(m+ 2)

)
+
βk
αk

(
umN−1(ωN − ωN−1)

(m+ 2)

)

B.4 Hessian of Φ

The calculation of the gradient above showed that we only have to collect the
terms depending on certain variables. Summing up the terms for the different
derivatives we calculate:

∂Φ
∂ul−1∂ul

=
βk
αk

∂

∂ul−1

(
um+1
l (ωl − ωl−1)

(ul − ul−1)(m+ 1)
−

(um+2
l − um+2

l−1 )(ωl − ωl−1)

(ul − ul−1)2(m+ 1)(m+ 2)

)
=
βk
αk

(
um+1
l (ωl − ωl−1)(m+ 1)

(ul − ul−1)2(m+ 1)2

)
+
βk
αk

(
(m+ 2)um+1

l (ωl − ωl−1)(ul − ul−1)
2(m+ 1)(m+ 2)

(ul − ul−1)4(m+ 1)2(m+ 2)2

)
− βk
αk

(
(um+2

l − um+2
l−1 )(ωl − ωl−1)2(ul − ul−1)(m+ 1)(m+ 2)

(ul − ul−1)2(m+ 1)2(m+ 2)2

)
=
βk
αk

(
um+1
l (ωl − ωl−1)

(ul − ul−1)2(m+ 1)
+

um+1
l (ωl − ωl−1)

(ul − ul−1)2(m+ 1)

)
− βk
αk

(
(um+2

l − um+2
l−1 )(ωl − ωl−1)2

(ul − ul−1)(m+ 1)(m+ 2)

)
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∂Φ
∂ul∂ul

= −βk
αk

∂

∂ul

(
um+1
l (ωl+1 − ωl)

(ul+1 − ul)(m+ 1)
+

(um+2
l+1 − um+2

l )(ωl+1 − ωl)

(ul+1 − ul)2(m+ 1)(m+ 2)

)
+
βk
αk

∂

∂ul

(
um+1
l (ωl − ωl−1)

(ul − ul−1)(m+ 1)
−

(um+2
l − um+2

l−1 )(ωl − ωl−1)

(ul − ul−1)2(m+ 1)(m+ 2)

)
= −βk

αk

(
(m+ 1)uml (ωl+1 − ωl)(ul+1 − ul)(m+ 1)

(ul+1 − ul)2(m+ 1)2

)
− βk
αk

(
um+1
l (ωl+1 − ωl)(m+ 1)

(ul+1 − ul)2(m+ 1)2

)
− βk
αk

(
(m+ 2)um+1

l (ωl+1 − ωl)(ul+1 − ul)
2(m+ 1)(m+ 2)

(ul+1 − ul)4(m+ 1)2(m+ 2)2

)
+
βk
αk

(
(um+2

l+1 − um+2
l )(ωl+1 − ωl)2(ul+1 − ul)(m+ 1)(m+ 2)

(ul+1 − ul)4(m+ 1)2(m+ 2)2

)
+
βk
αk

(
(m+ 1)uml (ωl − ωl−1)(ul − ul−1)(m+ 1)

(ul − ul−1)2(m+ 1)2

)
− βk
αk

(
um+1
l (ωl − ωl−1)(m+ 1)

(ul − ul−1)2(m+ 1)2

)
− βk
αk

(
(m+ 2)um+1

l (ωl − ωl−1(ul − ul−1)
2(m+ 1)(m+ 2))

(ul − ul−1)4(m+ 1)2(m+ 2)2

)
+
βk
αk

(
(um+2

l − um+2
l−1 2(ul − ul−1)(m+ 1)(m+ 2))(ωl − ωl−1)

(ul − ul−1)4(m+ 1)2(m+ 2)2

)
= −βk

αk

(
uml (ωl+1 − ωl)

(ul+1 − ul)
+

um+1
l (ωl+1 − ωl)

(ul+1 − ul)2(m+ 1)
+

um+1
l (ωl+1 − ωl)

(ul+1 − ul)2(m+ 1)

)
+
βk
αk

(
(um+2

l+1 − um+2
l )(ωl+1 − ωl)2

(ul+1 − ul)3(m+ 1)(m+ 2)
+
uml (ωl − ωl−1)

(ul − ul−1)

)
− βk
αk

(
um+1
l (ωl − ωl−1)

(ul − ul−1)2(m+ 1)
+

um+1
l (ωl − ωl−1)

(ul − ul−1)2(m+ 1)

)
+
βk
αk

(
(um+2

l − um+2
l−1 )2(ωl − ωl−1)

(ul − ul−1)3(m+ 1)(m+ 2)

)



B.4. HESSIAN OF Φ 97

∂Φ
∂ul+1∂ul

= −βk
αk

∂

∂ul+1

(
um+1
l (ωl+1 − ωl)

(ul+1 − ul)(m+ 1)
−

(um+2
l+1 − um+2

l )(ωl+1 − ωl)

(ul+1 − ul)2(m+ 1)(m+ 2)

)
=
βk
αk

(
um+1
l (ωl+1 − ωl)(m+ 1)

(ul+1 − ul)2(m+ 1)2

)
+
βk
αk

(
(m+ 2)um+1

l+1 (ωl+1 − ωl)(ul+1 − ul)
2(m+ 1)(m+ 2)

(ul+1 − ul)4(m+ 1)2(m+ 2)2

)
− βk
αk

(
(um+2

l+1 − um+2
l )(ωl+1 − ωl)2(ul+1 − ul)(m+ 1)(m+ 2)

(ul+1 − ul)4(m+ 1)2(m+ 2)2

)
=
βk
αk

(
um+1
l (ωl+1 − ωl)

(ul+1 − ul)2(m+ 1)
+

um+1
l+1 (ωl+1 − ωl)

(ul+1 − ul)2(m+ 1)

)
− βk
αk

(
(um+2

l+1 − um+2
l )(ωl+1 − ωl)2

(ul+1 − ul)3(m+ 1)(m+ 2)

)
∂Φ

∂u1∂u1

=
βk
αk

∂

∂u1

(
um1 (ω1 − ω0)

(m+ 2)
− um+1

1 (ω1 − ω0)

(u2 − u1)(m+ 1)
+

(um+2
2 − um+2

1 )(ω1 − ω0)

(u2 − u1)2(m+ 1)(m+ 2)

)
=
βk
αk

(
mum−1

1 (ω1 − ω0)

(m+ 2)
− um+1

1 (ω1 − ω0)(m+ 1)

(u2 − u1)2(m+ 1)2

)
− βk
αk

(
(m+ 1)um1 (ω1 − ω0)(u2 − u1)(m+ 1)

(u2 − u1)2(m+ 1)2

)
− βk
αk

(
(m+ 2)(um+1

1 )(ω1 − ω0)(u2 − u1)
2(m+ 1)(m+ 2)

(u2 − u1)4(m+ 1)2(m+ 2)2

)
+
βk
αk

(
(um+2

2 − um+2
1 )(ω1 − ω0)2(u2 − u1)(m+ 1)(m+ 2)

(u2 − u1)4(m+ 1)2(m+ 2)2

)
=
βk
αk

(
mum−1

1 (ω1 − ω0)

(m+ 2)
− um1 (ω1 − ω0)

(u2 − u1)
− um+1

1 (ω1 − ω0)

(u2 − u1)2(m+ 1)

)
− βk
αk

(
um+1
1 )(ω1 − ω0)

(u2 − u1)2(m+ 1)
− (um+2

2 − um+2
1 )(ω1 − ω0)2

(u2 − u1)3(m+ 1)(m+ 2)

)
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∂Φ
∂u2∂u1

= −βk
αk

∂

∂u2

(
um+1
1 (ω1 − ω0)

(u2 − u1)(m+ 1)
− (um+2

2 − um+2
1 )(ω1 − ω0)

(u2 − u1)2(m+ 1)(m+ 2)

)
= +

βk
αk

(
um+1
1 (ω1 − ω0)(m+ 1)

(u2 − u1)2(m+ 1)2

)
+
βk
αk

(
(m+ 2)um+1

2 (ω1 − ω0)(u2 − u1)
2(m+ 1)(m+ 2)

(u2 − u1)4(m+ 1)2(m+ 2)2

)
− βk
αk

(
(um+2

2 − um+2
1 )(ω1 − ω0)(u2 − u1)(m+ 1)(m+ 2)

(u2 − u1)4(m+ 1)2(m+ 2)2

)
=
βk
αk

(
um+1
1 (ω1 − ω0)

(u2 − u1)2(m+ 1)
+

um+1
2 (ω1 − ω0)

(u2 − u1)2(m+ 1)

)
− βk
αk

(
(um+2

2 − um+2
1 )(ω1 − ω0)2

(u2 − u1)3(m+ 1)(m+ 2)

)
∂Φ

∂uN−2∂uN−1

=
βk
αk

∂

∂uN−2

(
um+1
N−1(ωN−1 − ωN−2)

(uN−1 − uN−2)(m+ 1)
−

(um+2
N−1 − um+2

N−2)(ωN−1 − ωN−2)

(uN−1 − uN−2)2(m+ 1)(m+ 2)

)
= +

βk
αk

(
um+1
N−1(ωN−1 − ωN−2)(m+ 1)

(uN−1 − uN−2)2(m+ 1)2

)
+
βk
αk

(
(m+ 2)um+1

N−2(ωN−1 − ωN−2)(uN−1 − uN−2)
2(m+ 1)(m+ 2)

(uN−1 − uN−2)4(m+ 1)2(m+ 2)2

)
− βk
αk

(
(um+2

N−1 − um+2
N−2)(ωN−1 − ωN−2)2(uN−1 − uN−2)(m+ 1)(m+ 2)

(uN−1 − uN−2)4(m+ 1)2(m+ 2)2

)
= +

βk
αk

(
um+1
N−1(ωN−1 − ωN−2)

(uN−1 − uN−2)2(m+ 1)
+

um+1
N−2(ωN−1 − ωN−2)

(uN−1 − uN−2)2(m+ 1)

)
− βk
αk

(
(um+2

N−1 − um+2
N−2)(ωN−1 − ωN−2)2

(uN−1 − uN−2)3(m+ 1)(m+ 2)

)
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∂Φ
∂uN−1∂uN−1

=
βk
αk

∂

∂uN−1

(
um+1
N−1(ωN−1 − ωN−2)

(uN−1 − uN−2)(m+ 1)

)
− βk
αk

∂

∂uN−1

(
(um+2

N−1 − um+2
N−2)(ωN−1 − ωN−2)

(uN−1 − uN−2)2(m+ 1)(m+ 2)

)
+
βk
αk

∂

∂uN−1

(
umN−1(ωN − ωN−1)

(m+ 2)

)
=
βk
αk

(
(m+ 1)umN−1(ωN−1 − ωN−2)(uN−1 − uN−2)(m+ 1)

(uN−1 − uN−2)2(m+ 1)2

)
− βk
αk

(
um+1
N−1(ωN−1 − ωN−2)(m+ 1)

(uN−1 − uN−2)2(m+ 1)2

)
− βk
αk

(
(m+ 2)um+1

N−1(ωN−1 − ωN−2)(uN−1 − uN−2)
2(m+ 1)(m+ 2)

(uN−1 − uN−2)4(m+ 1)2(m+ 2)2

)
+
βk
αk

(
(um+2

N−1 − um+2
N−2)(ωN−1 − ωN−2)2(uN−1 − uN−2)(m+ 1)(m+ 2)

(uN−1 − uN−2)4(m+ 1)2(m+ 2)2

)
+
βk
αk

(
mum−1

N−1(ωN − ωN−1)

(m+ 2)

)
=
βk
αk

(
umN−1(ωN−1 − ωN−2)

(uN−1 − uN−2)
−

um+1
N−1(ωN−1 − ωN−2)

(uN−1 − uN−2)2(m+ 1)

)
− βk
αk

(
um+1
N−1(ωN−1 − ωN−2)

(uN−1 − uN−2)2(m+ 1)
−

(um+2
N−1 − um+2

N−2)(ωN−1 − ωN−2)2

(uN−1 − uN−2)3(m+ 1)(m+ 2)

)
+
βk
αk

(
mum−1

N−1(ωN − ωN−1)

(m+ 2)

)
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Appendix C

Discretizations needed in
Chapter 3

In this appendix, we detail the calculations for the coefficients of the matrix
(4.14), and the Hessian of the discrete entropy (4.17), both in the case α = −1.

C.1 Computation of the coefficients Mij

We compute the coefficients of the matrix (4.15), i.e. the coefficients aij, bij, and
cij defined in (4.14). In the following, we set

δj = ωj − ωj−1, ∆j =
1

2
(ωj+1 − ωj−1), σj =

1

3
(ωj+1 + ωj + ωj−1).

Lemma C.1.1 (Coefficients aij). The coefficients of the symmetric matrix A =
(aij), defined in (4.14), read as

ajj = ∆2
j(M − σj)−

∆j

60
(12∆1

j + δ2j + δ2j+1), 1 ≤ j ≤ N − 1,

aj,j+1 = ∆j∆j+1(M − σj+1)−
δ3j
120

, 1 ≤ j ≤ N − 1,

ajk = ∆j∆k(M − σk), j + 2 ≤ k ≤ N − 1,

a1N =
1

2
∆1∆N

(
M − ω2

3

)
− ∆3

N

120
,

ajN =
1

2
∆j∆N

(
M − σj +

δN
3

)
, 2 ≤ j ≤ N − 2,

aN−1,N =
1

2
∆N−1∆N

(
M − 1

3
(ωN−2 + 2ωN−1)

)
− ∆3

N

120
,

aNN =
M

4
∆2
N +

∆3
N

10
.

101



102 APPENDIX C. DISCRETIZATIONS NEEDED IN CHAPTER 3

Proof. We reformulate the integral in (4.14):

ajk =M

∫ M

0

φj(η) dη

∫ M

0

φk(η
′) dη′ −

∫ M

0

φj(η) dη

∫ M

0

η′φk(η
′) dη′ − Jjk,

where Jjk =

∫ M

0

∫ M

0

(η − η′)+φj(η)φk(η
′) dηdη′,

where (η − η′)+ := max{0, η − η′}. The first two integrals become∫ m

0

φj(η) dη = δj,

∫ M

0

η′φk(η
′) dη′ = ∆kσk.

Since A is symmetric, it is sufficient to consider 1 ≤ j ≤ k. If j + 2 ≤ k < N ,
the support of φj(η)φk(η

′) is contained in [ωj−1, ωj+1]× [ωk−1×ωk+1]. Hence, the
support is non-vanishing if η ≤ ωj+1 ≤ ωk−1 ≤ η′, but then (η − η′)+ = 0 except
for η = η′. We conclude that Jjk = 0 and it is sufficient to compute only Jjj and
Jj,j+1:

Jjj =

∫ ωj+1

ωj−1

φj(η)

(∫ η

ωj−1

(η − η′)φj(η
′) dη′

)
dη =

∆j

60
(12∆2

j + δ2j + δ2j+1),

Jj,j+1 =

∫ ωj+1

ωj−1

φj(η)

(∫ max{η,ωj}

ωj−1

(η − η′)φj(η
′) dη′

)
dη =

δ3j
120

.

Next, let k = N . Then the support of φN is contained in [0, ω1] ∪ [ωN−1,M ],
and we compute:

ajN =M

∫ M

0

φj(η) dη

∫ M

0

φN(η
′) dη′ −

∫ M

0

ηφj(η) dη

∫ ω1

0

φN(η
′) dη′

−
∫ M

0

φj(η) dη

∫ M

ωN−1

η′φN(η
′) dη′ −K+

j −K−
j

=
1

2
∆j∆N

(
M − σj +

δN
3

)
−K+

j −K−
j ,

where

K+
j :=

∫ M

0

∫ ω1

η

(η′ − η)+φj(η)φN(η
′) dηdη′,

K−
j :=

∫ M

0

∫ M

ωN−1

(η − η′)+φj(η)φN(η
′) dηdη′.

For 2 ≤ j ≤ N −2, the supports of φj and φN do not intersect such that K±
j = 0.

For j = 1, we have K−
1 = 0 and K+

1 = ∆3
N/120, whereas for j = N − 1,
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K+
N−1 = 0 and K−

N−1 = ∆3
N/120. Furthermore, K±

N = ∆3
N/30. Moreover, since

δN = ωN − ωN−1 = (M − ω0)− (M − ω1) = ω1,

M − σ1 +
δN
3

=M − 1

3
(ω0 + ω1 + ω2) +

1

3
ω1 =M − ω2

3
.

Collecting these results, the lemma follows.

Lemma C.1.2 (Coefficients bij). The coefficients of the matrix B = (bij), defined
in (4.14), read as

bjj =
2

3
δj(M∆j − δjσj) + βjj, 1 ≤ j ≤ N,

bj+1,j =
1

3

(
2Mδj+1∆j − (ω2

j+2 − ω2
j+1)∆j

)
+ βj+1,j, 1 ≤ j ≤ N − 1,

bjk =
2

3
(Mδj∆k − δjδkσk), 1 ≤ j < k ≤ N,

bjk =
1

3

(
2Mδj∆k − (ω2

j+1 − ω2
j )∆k

)
, j ≥ k − 2,

b1N =
2

3
δ1∆N − 1

6
(ω2

2 − ω2
1)δN − 1

9
(2ω2

N − ω2
N−1 − ωN−1ωN)δ1 − β1N ,

bjN =
2

3
δj∆N − 1

6
(ω2

j+1 − ω2
j )δN

− 1

9
(2ω2

N − ω2
N−1 − ωN−1ωN)δj, 2 ≤ j ≤ N − 1,

bNN =
2

3
δN∆N − 1

6
(ω2

N − ω2
N−1)δN − 1

9
(2ω2

N − ω2
N−1 − ωN−1ωN)δN − βNN ,

where

βjj = − 1

45
ω2
j+1 +

1

90
ω2
j+1ωj +

1

18
ω2
j+1ωj+2 −

1

15
ωj+1ω

2
j +

1

9
ωj+2ωj+1ωj

− 1

9
ω2
j+2ωj+1 +

7

90
ω3
j −

1

6
ω2
jωj+2 +

1

9
ωjω

2
j+2,

βj+1,j =
1

45

(
ω3
j+2 − ω3

j+1 + 3(ω2
j+1ωj+2 − ω2

j+2ωj+1)
)
,

β1N =
1

45

(
ω2
2 − ω2

1 + 3(ω2ω
2
1 − ω2

2ω1)
)
,

βNN =
1

45

(
ω3
N+1 − ω3

N + 3(ω2
NωN+1 − ω2

N+1ωN)
)
.

Proof. The computation is similar to the previous proof. We write the integral
for bjk with j, k ≤ N − 1 and for j < k as

bjk =M

∫ M

0

φN+j(η) dη

∫ M

0

φk(η
′) dη′ −

∫ M

0

φN+j(η) dη

∫ M

0

η′φk(η
′) dη′ − J−

jk,
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and for j > k as

bjk =M

∫ M

0

φN+j(η) dη

∫ M

0

φk(η
′) dη′ −

∫ M

0

ηφN+j(η) dη

∫ M

0

φk(η) dη
′ − J+

jk,

where

J−
jk =

∫ M

0

∫ M

0

(η − η′)+φN+j(η)φk(η
′) dηdη′,

J+
jk =

∫ M

0

∫ M

0

(η′ − η)+φN+j(η)φk(η
′) dηdη′.

We compute∫ M

0

φN+j(η) dη =
2

3
δj,

∫ M

0

ηφN+j(η) dη =
1

3
(ω2

j+1 − ω2
j ).

The integrals J±
jk vanish if k 6= j − 1, j since (η− η′)+ and (η′ − η)+ vanish. This

proves the expressions for bjk with j ≤ k − 1 and j ≥ k + 2. The coefficients bjj
and bj+1,j are calculated in the same way.

It remains to compute the matrix coefficients coming from the boundary el-
ements. The computation of bjN is straightforward as the support of φ2N is
contained on the single subinterval [ωN−1,M ]. For the boundary elements bjN ,
we take into account that the support of φN is contained in [ωN−1,M ] and [0, ω1],
which yields

bjN =M

∫ M

0

φN+j(η) dη

∫ M

0

φN(η
′) dη′ −

∫ M

0

ηφN+j(η) dη

∫ ω1

0

φN(η
′) dη′

− β1N − βNN ,

where

β1N =

∫ M

0

∫ ω1

0

(η′ − η)+φN+j(η)φN(η
′) dηdη′,

βNN =

∫ M

0

∫ M

ωN−1

(η − η′)+φj(η)φN(η
′) dηdη′,

and the computation is as before.

Lemma C.1.3 (Coefficients cij). The coefficients of the symmetric matrix C =
(cij), defined in (4.14), read as

cjj =
8

9
δ2j −

2

9
δj(ω

2
j+1 − ω2

j )

− 2

35

(
ω3
j+1 − ω3

j − 3ωj+1ωj(ωj+1 − ωj)
)
, 1 ≤ j ≤ N,

cjk =
8

9
δjδk −

2

9
δj(ω

2
k+1 − ω2

k), 1 ≤ j < k ≤ N.
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Proof. We compute

cjk =M

∫ M

0

φN+j(η) dη

∫ M

0

φN+k(η
′) dη′ −

∫ M

0

φN+j(η) dη

∫ M

0

η′φN+k(η
′) dη′

− γjk,

where γjk =

∫ M

0

∫ M

0

(η − η′)+φN+j(η)φN+k(η
′) dηdη′.

As before, we find that γjk = 0 for all j 6= k. Moreover,

γjj =

∫ ωj

ωj−1

φN+j(η) dη

∫ η

ωj

(η − η′)φN+j(η
′) dη′

=
2

35

(
ω3
j+1 − ω3

j − 3(ωj+1ωj(ωj+1 − ωj)
)
,

which finishes the proof.

C.2 Computation of the coefficients of the Hes-

sian of SN

We compute the gradient and Hessian of the discrete entropy (4.17) for the case
α = −1. We set for k = 0, . . . , N − 1:

SN,k[g] =
1

2

∫ ωk+1

ωk

(
gkφk(ω) + gk+1φk+1(ω) + gN+kφN+k(ω)

)
dω,

where g = (g1, . . . , g2N) ∈ GN
M . Furthermore, we abbreviate ∂kSN,j = ∂SN,j/∂gk

and ∂j,kSN,` = ∂SN,`/∂gj∂kg. A computation shows that

∂kSN,k[g] =
δk+3

3

(
2(gN+k + gk) + gk+1

)
,

∂kSN,k−1[g] =
2

3
δk(gk − gk−1 − gN+k−1),

∂N+kSN,k[g] = δk+1

(
(gk+1 + gk) +

8

5
gN+k

)
.

As SN,k and SN,k−1 depend on gk, we obtain (recall (4.17))

∂kSN = ∂kSN,k + ∂kSN,k−1, ∂N+kSN = ∂N+kSN,N+k.

The second-order derivatives become

∂k,k−1SN,k−1 = −2

3
δk, ∂k,kSN,k−1 =

2

3
δk, ∂k,kSN,k = −2

3
δk+1,

∂k,k+1SN,k =
1

3
δk+1, ∂k,N+k−1SN,k−1 = −2

3
δk, ∂k,N+kSN,k =

2

3
δk+1,

∂N+k,k+1SN,k =
2

3
δk+1, ∂N+k,N+kSN,k =

16

15
δk+1.
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Then the elements of the Hessian of SN read as

∂k,k−1SN = ∂k,k−1SN,k−1, ∂k,kSN = ∂k,kSN,k + ∂k,kSN,k−1,

∂k,k+1SN = ∂k,k+1SN,k, ∂k,N+kSN = ∂k,N+kSN,k,

∂k,N+k−1SN = ∂k,N+k−1SN,k−1, ∂N+k,k+1SN = ∂N+k,k+1SN,k,

∂N+k,N+kSN = ∂N+k,N+kSN,k.
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