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Zusammenfassung

In der vorliegenden Arbeit werden zwei auf den ersten Blick unabhängig erscheinende
Techniken, “Energieverlust magnetisch chiraler Dichroismus” (EMCD) und “Energiever-
luste durch kanalisierte Elektronen” (ELCE), unter dem gemeinsamen Prinzip der inter-
ferometrischen “Elektronenenergieverlustspektrometrie” (EELS) beschrieben. Dazu wer-
den die theoretischen Formulierungen der interferometrischen EELS, ELCE und EMCD
dargestellt. Sowohl für ELCE als auch für EMCD werden Simulationen durchgeführt,
die elastische und inelastische Streueeffekte verbinden, um den Einfluss der dynamischen
Beugung und Strahlkonvergenz auf die experimentellen Ergebnisse zu untersuchen.

Weiters wird EMCD im Rahmen von ausführlichen TEM-Untersuchungen von unter-
schiedlichen Heusler-Verbindungen und Magnetit verwendet. Dabei wird die Zuverlässig-
keit in Hinblick auf den “täglichen Gebrauch” der Technik diskutiert. Die ausgewählten
Materialien zeigen einen magnetostrukturellen Phasenübergang, der unter Verwendung
von EMCD in-situ untersucht werden kann, um mehr Informationen über die Ände-
rung der magnetischen Eigenschaften zu erhalten. Die Verbindung von Simulationen
und Experimenten ermöglicht es, den magnetischen Phasenübergang für Materialien in
der Spintronic maßzuschneidern.

Die ELCE Technik wird angewendet um die Änderung der Feinstruktur in Rutil bei
Anregung von Endzuständen unterschiedlichen Charakters ortsspezifisch zu untersuchen.
Kombinierte Blochwellen- und DFT-Simulationen zeigen exzellente Übereinstimmung
mit den experimentellen Spektren.

Die vorliegende Arbeit zeigt, dass die Kombination von Simulationen dynamischer
Beugungseffekte und Berechnungen der elektronischen Struktur notwendig ist um die
Ergebnisse von ELCE und EMCD Messungen zu interpretieren. Diese Techniken kön-
nen in zukünftigen Experimenten angewendet werden um z.B. die magnetischen Ei-
genschaften von Oberflächen und Grenzflächen zu untersuchen und um ortsabhängige
Informationen über die Bindungen in Kristallen zu erhalten. Sie stellen hochentwickelte
Mittel für elektronenmikroskopische Analysen in Gebieten wie funktionelle Materialien,
Spintronics und Katalyse bereit.



Abstract

In this work, two seemingly unrelated techniques, energy-loss magnetic chiral dichro-
ism (EMCD) and energy losses by channelled electrons (ELCE), are described under
the unifying principle of interferometric electron energy loss spectrometry (EELS). To
this end, the theoretical formulations of interferometric EELS, ELCE and EMCD are
presented. For both, ELCE and EMCD, simulations combining elastic and inelastic
scattering effects are performed to discuss the influence of dynamical diffraction and
beam convergence on the experimental results.

Furthermore, EMCD is applied in course of a thorough TEM investigation of different
Heusler alloys as well as magnetite, discussing its reliability concerning a “daily use”. The
chosen materials exhibit a magnetostructural phase transition which can be investigated
in-situ using EMCD gaining knowledge about the changes of the magnetic properties.
Combining simulations and experiments paves the way for tailoring of the magnetic
phase transition of materials for use in spintronics.

The ELCE technique is applied to site-specifically investigate the change of the fine-
structure as final states of different character are probed in rutile. It is shown that a
combined Bloch wave and DFT simulation exhibits excellent agreement with the exper-
imental spectra.

The presented work shows that the combination of simulations of dynamical diffraction
effects and electronic structure calculations is necessary to interpret results of ELCE
and EMCD measurements. These techniques can be applied in future experiments to
investigate for example the magnetic properties at surfaces and interfaces and to gain
site-specific information about the bonding situation in crystals. Thus, they provide
sophisticated means for electron microscopical analyses in fields like functional materials,
spintronics and catalysis.
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1. Introduction

1.1. Transmission Electron Microscopy

The foundations of modern transmission electron microscopy were laid in the early
1930ies in Berlin, where the first transmission electron microscope (TEM) was inven-
ted and built by Knoll and Ruska [1]. The first commercial TEMs were available in
1936 manufactured by Siemens in Germany. In 1942 the Vienna University of Techno-
logy started to operate its first transmission electron microscope. Thus, the University
performed high-end research using most modern technology. After a short time of op-
eration, the TEM was removed to protect it frome war damage. 1946 it was put back
into operation, and remained at the Vienna University of Technology until the end of
its life-time. The research pursued using the microscope focused mainly on biological,
medical and chemical topics. A new TEM (Siemens ELMISKOP 1A) was acquired in
1965 and with it, the research focus changed from biological and medical question to
materials science and solid state physics. As the trend in electron microscopy went to
increasing accelerating voltages, 1975 the first 200 kV TEM in Austria was put into op-
eration at the TU Wien. Since 1981 a Siemens ELMISKOP 1A was equipped with an
electron energy-loss spectrometer. This instrument remained in use until 1996.

Not only experimental work was performed at the Vienna University of Technology.
There was also a lot of progress achieved in the theoretical description of electron optics
and electron scattering. Walter Glaser’s research work focussed on electron optics which
he pursued from 1949 until his death in 1960. In the last thirty years, Peter Schatt-
schneider was responsible for the theoretical work on inelastic electron scattering. The
current research focus includes magnetic chiral dichroism and vortex beams.

In 1999, the university service centre for transmission electron microscopy (USTEM)
was established, uniting the operation of all transmission electron microscopes of the
university in a joint pool. The acquisition of a new field emission TEM followed in 2001.
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1. INTRODUCTION 3

This microscope is located in one of the world’s most exposed sites, in the 8th floor of
one of the university’s buildings. The influence of three subway and three tram lines are
minimised using an active magnetic field compensation system. In 2008 a new transmis-
sion and a new scanning electron microscope were installed, while two old instruments
were dismantled. A few years ago, the oldest TEM at the Vienna University of Tech-
nology was finally taken out of service after 31 years. The primary task of USTEM are
microscopical and nano-anlytical studies for various institutions and companies, as well
as the training of students at the microscopes. The pool of instruments at USTEM is
held up-to-date by modernising them and additional equipment were purchased. The
newest acquisition in 2015 was a TEM sample holder with which cathodoluminescense
experiments can be performed. Additional to the theoretical works mentioned above,
the research focus of USTEM lies in low acceleration voltage transmission electron mi-
croscopy. In this field, it is one of the leading research groups.

A transmission electron microscope works in a very similar way as an optical micro-
scope. Both consist of a source of light or electrons, respectively, a condenser system, an
objective system and finally an imaging system. The difference to an optical microscope
is that in a TEM electrons are used to form the image instead of light. The electrons
are emitted from a thermionic source, which is a metal filament that is heated to a
temperature TC, such that the conduction electrons can overcome the material’s work
function. It is evident that the melting point Tm of the cathode material needs to be
higher than TC. Historically, Tungsten filaments were used in electron microscopes, with
the filament’s working temperature TC = 2500 K to 3000 K while the melting point is
Tm = 3650 K [2]. LaB6 filaments, which are used nowadays, exhibit a lower work func-
tion, thus the cathodes are heated to a temperature TC = 1400 K to 2000 K. Applying
an additional electrical field at the cathode further reduces the work function, which
is called Schottky effect. Such Schottky emitters are Tungsten filaments covered with
ZrO. The ZrO coating additionally reduces the work function of the Tungsten filament,
leading to a working temperature of TC = 1800 K for Schottky emission [2]. If the tip
of a Tungsten filament has a radius below 0.1 µm, the potential barrier becomes so nar-
row that the electrons can be emitted by tunnelling through the barrier. Such emitters
are called field emission guns (FEG). Field emission emitters are available as heated
filaments or as a so-called cold FEG. The heating of a FEG is mainly to prevent ad-
sorption of material on the filament [2]. The energy distribution of electrons emitted by
heated filaments can be described by a combination of a Gaussian and Lorentz distribu-
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tion [3]. The electrons emitted from a cold FEG can be described by a Fowler-Nordheim
distribution, which is typical for the quantum mechanical tunneling effect [4].

Making use of the fact that electrons are charged particles, they are accelerated using
electric fields and the magnetic lenses of the condenser-, objective- and projective-system
are used to propagate the electron beam through the sample until it reaches the imaging
system. This could consist of either a fluorescent screen or a charge-coupled device
(CCD). Depending on the operating mode of the magnetic lenses, either a magnified
image of the sample or a diffraction pattern can be made visible. Changing a TEM from
imaging mode to a mode where diffraction patterns can be acquired, is facilitated easily
by simply pushing a button. This is because of the fact that in magnetic lenses the focal
length can be tuned continuously. A schematic of a TEM is shown in figure 1.1.

The reason for using electrons instead of light is the possibility of a higher spatial
resolution, determined by the Abbé limit [1]. It is noteworthy that at the time of the
invention of the electron microscope, Ernst Ruska was not aware of the wave nature of
the electrons and he used a description applying geometrical optics. Only later a wave
optical approach was used. As with all optical instruments, magnetic lenses suffer from
similar problems and show lens aberrations, which worsen the achievable resolution.
The point resolution of a FEI Tecnai G2 TF 20 for example, is 0.21 nm. What was
available for optical systems for a long time, became available for TEMs only in recent
years: aberration corrector systems. They use a system of multipole magnetic lenses
in order to correct for the lens aberrations. A JEOL JEM-ARM200F microscope using
a corrector system for the condenser system as well as the objective system, achieves
a point resolution of 0.11 nm in TEM mode and a spatial resolution of 0.08 nm in the
scanning TEM mode.

A modern TEM is a versatile tool for materials science, as it provides a wide vari-
ety of analytical techniques. Additionally to the capabilities of imaging and diffraction
techniques, energy dispersive x-ray (EDX) analysis, as well as electron energy-loss spec-
trometry (EELS) can be performed. These two techniques are complementary, as EELS
is advantageous for investigating materials with low or medium atomic number Z, while
EDX has advantages when examining materials with higher values of Z. Both techniques
give the possibility for a chemical investigation of TEM samples.



1. INTRODUCTION 5

Gun

Condenser Lenses

Condenser Apperture

Cs Corrector (Probe)

Condenser Mini Lens

Objective Lens, Sample,
Objective Apperture

Cs Corrector (Image)

Selected Area Apperture

Intermediate Lenses

Projector Lenses

HAADF Detector

Viewing Screen

Post-Column Filter

Figure 1.1.: Schematic of a transmission electron microscope.
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1.2. Analytical techniques

Electrons on their way through the sample do not only experience elastic interaction
with the sample atoms but also inelastic scattering. Electrons of the sample atoms are
excited and characteristic X-rays are emitted as soon as these atoms relax into their
ground state. The emitted radiation gives information about the samples’ constituents
and makes elemental quantification possible. One should keep in mind that the relative
errors for elemental quantification are ca. 5-10% [1].

Another analytical technique used quite often is EELS. Again, beam electrons ex-
perience inelastic scattering but now the energy of these electrons itself is recorded in a
spectrum. This is usually done by separating electrons of different energies using a sector
magnet. These devices can either be mounted below the viewing screen (post-column
energy filter) or inside the microscope column in between the objective and projective
lens system (in-column filter).

Using EELS, quantification of the elemental composition of a TEM sample is also
possible, with an error of 1-5% [3]. Moreover, besides elemental analysis, EELS enables
to calculate the sample thickness (with an accuracy of ca. 10%) and to investigate the
chemical environment of the probed atoms in the sample by analysing the fine-structure
of the respective core-loss elemental edges. The latter technique includes detailed in-
vestigation of the energy-loss near edge structure (ELNES). For a detailed description
of the possibilities of EELS, see [3].

When performing EELS experiments, energy resolution is important. With modern
TEMs using a LaB6 cathode or a FEG, values of 0.5 eV to 1.0 eV are achieved. When
a monochromator is installed, values of 0.1 eV to 0.3 eV are obtained. Using a cold
FEG as electron source, an energy resolution below 0.35 eV is available without the
use of a monochromating device. The current optimum using the Nion Hermes micro-
scope, equipped with an monochromator and a sophisticated stabilisation system of the
microscope’s high tension, is an energy resolution of ca. 10 meV [1, 3].

Advanced methods in EELS provide the possibility to gain information about the
chemical environment of atoms in the sample as well as knowledge about bonding situ-
ations. Furthermore, magnetic properties can be investigated at the atomic scale and
site-specific information can be retrieved. All this is of paramount importance when it
comes to studying e.g. materials for catalysis, spintronics and magnetostructural phase
transitions or functional materials. Nevertheless, performing these techniques can be
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quite demanding and cause problems. Mainly it is the lack of signal intensity that has
to be dealt with. Furthermore, on has to work very thoroughly and compare the results
with simulations in order to interpret them.

1.3. Coherence effects in the TEM

Coherence effects in the TEM can be observed every time phase contrast imaging is
used. For example, every high resolution TEM image relies on coherence effects [1].
Interferometry in the TEM is nothing to be established in a sophisticated way, it rather
“happens” every time one investigates a crystalline sample. The crystal itself acts as a
coherent beam splitter, creating interfering electron waves [5].

The effects of coherence on inelastic scattering processes have been under investigation
for more than 30 years. Kohl and Rose published their work on image formation using
inelastically scattered electrons in 1985 [6]. In their work, the mixed dynamic form factor
(MDFF) was introduced. Using the MDFF, inelastic coherence can best be modelled.
There is an alternative approach by Allen and co-workers [7, 8]. Inelastic coherence was
studied repeatedly leading to the descritption of interferometric EELS. The possibility
of interferometric EELS as well as some applications were elucidated in [5, 9, 10]. The
first application of interferometric EELS reported was the technique called energy losses
by channelled electrons (ELCE), while in 2003 another technique, energy-loss magnetic
chiral dichroism (EMCD), was described.

1.4. Simulations

For both techniques, ELCE and EMCD, one has to consider dynamical diffraction ef-
fects, which can significantly influence the measured signal. Therefore, the experimental
energy-loss spectra have to be compared with simulations in order to interpret the results
of the measurements. This is done using a simulation software that makes use of the
Bloch wave formalism. The change of the relative intensities of elemental core-loss edges
due to channelling effects can be calculated. Furthermore, the modulation of the meas-
ured EMCD effect with respect to sample thickness and orientation can be simulated.
Details on the simulation programm can be found in [11].

Other simulation software packages, capable of modelling a material’s electronic struc-



1. INTRODUCTION 8

ture, can be used to calculate energy-loss spectra. In this work, we used the density
functional theory (DFT) simulation package WIEN2k. Details on this software can be
found in [12, 13]. Some information about how this program can be used for electron
microscopy and EELS are found for example in [14, 15]. The DFT software packages
are, in contrast to the simulation programs described in the above paragraph, ignoring
the dynamical scattering effects in a crystal. Therefore, in order to fully describe the
acquired spectra when performing ELCE or EMCD, one needs to combine both simu-
lation softwares. This was reported in [16, 17] and it is also described in the following
work.

1.5. Outline

In this work, the basic formulations underlying the theory of interferometric EELS are
described (chapters 2 and 3). Furthermore, two at the first sight seemingly unrelated
methods are described and applied under the unifying aspect of interferometric EELS.
The theory of ELCE and EMCD can be found in chapters 4 and 5. The application of
EMCD in a thorough electron microscopical investigation of Heusler alloys is described
in chapter 6 and the reliability of the technique, concerning a “daily use” is discussed.
Additionally, EMCD measurements on magnetite can be found in chapter 7. The tech-
nique ELCE is applied to site-specifically investigate the fine structure of the oxygen
K-edge of rutile, which is presented in chapter 8. This chapter is based on an article
published in the peer-reviewed journal Micron [17].
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2. Diffraction theory

2.1. Kinematic theory of diffraction

Considering scattering at the crystal lattice, Bragg’s law describes the situation of con-
structive interference of the electron beams and thus the existence of reflections in the
observed diffraction pattern:

2dhkl sin θB = n · λ. (2.1)

The distance of lattice planes with Miller indices (h k l) is given by dhkl, θB is the Bragg
angle, λ is the wave length of the electron beam and n denotes an integer. Using recip-
rocal lattice vectors, one can find an equivalent, vectorial description of this situation:

k − k0 = q = g, (2.2)

with k0 the incident wave vector, k the diffracted wave vector, q the momentum transfer
vector and g a reciprocal lattice vector. Using the concept of the Ewald sphere, one can
easily visualise the situation and that exact Bragg conditions are fulfilled every time
the Ewald sphere intersects a point in the reciprocal lattice (see figure 2.1). From the
figure it also becomes clear that the vectorial description of equation (2.2) is equivalent
to equation (2.1), keeping in mind that |k − k0| = (4π sin θB)/λ and g = (2π)/dhkl.

The amplitude of the scattered wave can be calculated using the formula [2]:

F (q) =
n∑
k=1

fk exp[−i(k − k0) · rk] ·
∑
m

∑
n

∑
o

exp[−i(k − k0) · rg] = Fcell ·G, (2.3)

with rk = uka1 + vka2 + wka3 denoting the position of the atoms present in the unit
cell and rg = ma1 + na2 + oa3 the translation vector describing the origins of the unit
cells. The first factor in equation (2.3) is called structure amplitude while the second
factor is named lattice amplitude. For details on the derivation see e.g. [2] and [18].

10



2. DIFFRACTION THEORY 11

Figure 2.1.: Sketch illustrating the exact Bragg condition in which the Ewald sphere
intersects a reciprocal lattice point. The sphere has a radius of 1/λ (u0 and
u are unit vectors in the respective directions), the reciprocal lattice vector
g is normal to the corresponding lattice plane (h k l) with g = 1/dhkl. From
the sketch it can also be seen that |k − k0| = (2 sin θB)/λ. Taken from [2].
On has to keep in mind that in this sketch a different convention is used
with k = 1/λ instead of k = (2π)/λ. Thus the values in this figure have to
be multiplied by 2π to get the same results as in the text.



2. DIFFRACTION THEORY 12

Figure 2.2.: The excitation error s describes the deviation from the exact Bragg condi-
tion. The elongated shape of the diffraction spots’ intensity Ig (“relrods”),
present for example in thin TEM samples, is shown on the right hand side.
Image taken from [2].

The structure amplitude gives certain restriction on which reflections in the diffraction
pattern are excited and which are suppressed, depending on the actual crystal structure.

The lattice amplitude on the other hand, is responsible for the fact that in actual
TEM experiments diffraction spots are excited even if the Bragg condition is not exactly
fulfilled. To understand this behaviour, first the excitation error s is introduced, which
describes the deviation from the exact Bragg condition (see figure 2.2). The excitation
error points from the reciprocal lattice point g towards the Ewald sphere in a direction
parallel to the incident wave vector. The magnitude of s is defined as

s = g∆θ, (2.4)

with ∆θ the tilt angle out of the exact Bragg condition. In such a case with a small tilt
out of the Bragg condition, one gets for the lattice amplitude [2]:

G =
∑
m,n,o

exp[−is · rg]. (2.5)
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Replacing the sum with an integral over the crystal volume V = L1L2L3, the diffracted
intensity becomes:

Ig ∝ |Fcell|2
4 sin2(sxL1/2)

(sxa1)2

4 sin2(syL2/2)

(sya2)2

4 sin2(szL3/2)

(sza3)2
. (2.6)

Taking a closer look on the factor describing the z direction, which is per definition
corresponding to the thickness t of the TEM sample, on can easily find that it has its
maximum value at sz = 0, while it first becomes zero at sz = (2π)/L3 = (2π)/t. The
same behaviour is found for the x and y direction with the factors becoming zero at
much lower excitation errors sx = (2π)/L1 and sz = (2π)/L2. This behaviour gives rise
to the needle shaped intensity of the reciprocal lattice points. Consequently, it allows
the excitation of diffraction spots for not-exact Bragg conditions as the Ewald sphere
can intersect the “relrods” with an excitation error s 6= 0.

In [2], Fresnel diffraction is used to calculate the contribution of a layer dz of the TEM
sample to the amplitude of the diffracted beam, which leads to the introduction of the
important quantity called extinction distance ξg. The amplitude is found to be:

ψg = i
π

ξg
exp[2πik0t]

∫ t

0

exp[−2πisz]dz, (2.7)

with the extinction distance
ξg =

πVe
λF (θ)

. (2.8)

Ve is the volume of the unit cell, λ the wave length of the electron beam and F (θ)

is the structure amplitude, with θ = 2θB being the scattering angle. Calculating the
diffracted intensity leads to the same behaviour for the excitation error s as found in
equation (2.6):

Ig =
π2

ξ2
g

sin2(πts)

(πs)2
. (2.9)

Typical values for the extinction distance ξg are given in table 7.2 of reference [2]. A
few of them are exemplarily given here in table 2.1. It can be seen that the extinction
distance ξg is material dependent, as well as strongly dependent on the Bragg reflection.
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Table 2.1.: Extinction distances ξg in [nm] for electrons with an energy of 100 keV in
different elements and for different Bragg reflections. Values taken from [2].

hkl 111 200
Al 56.3 68.5
Cu 28.6 32.6
Ni 26.8 30.6
hkl 110 200
Cr 28.8 42.3
Fe 28.6 41.2

2.2. Dynamical theory of diffraction

In order to describe situations typical for TEM experiments, one has to go beyond the
description of the kinematic theory of diffraction. Instead, the dynamical diffraction
theory has to be used to describe elastic scattering of the electron beam in the sample.
The reason for this is the kinematic theory being valid for thin films only. In the
kinematic approximation Ig = π2t2/ξ2

g holds for the exact Bragg condition (s = 0) which
results in an untypically large value of Ig compared to I0 when the sample thickness is
increased. Therefore, in the two-beam case the kinematic theory is applicable for sample
thicknesses of t < ξg/10. In the n-beam case it is restricted to even thinner samples [2].
Typical values for ξg are shown in Table 2.1. For thicker samples (as they are present in
the investigations performed in this work) the dynamical theory is used, as it overcomes
the aforementioned restrictions. On the one hand, it is possible to formulate this theory
as a system of differential equations (done so by Howie and Wheelan [19, 20]). On the
other hand, it can a be described as an Eigenvalue problem (the Ansatz of Bethe [21]),
which is used in the following derivation using the nomenclature given in [2].

The Schrödinger equation for the probe electron has to be solved for a crystal-periodic
potential. In a relativistically corrected, stationary form the equation reads [2]:[

~2

2m
∇2 + E∗ − V (r)

]
ψ(r) = 0 with E∗ = E

2E0 + E

2(E0 + E)
, (2.10)

while for smaller energies of the electrons the non-relativistic equation can be used. E0

denotes the rest energy, E the kinetic energy and m the relativistic mass of the electron.
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Due to its periodicity, the potential V (r) can be written as a Fourier sum:

V (r) = −
∑
g

Vg exp(ig · r) = − h2

2m

∑
g

Ug exp(ig · r). (2.11)

The g are vectors in the reciprocal space and correspond to points in the reciprocal
lattice, r are real space vectors. The Vg and the Ug can be related to the structure
amplitude F (θ) and to the extinction distance ξg = 1/(λUg) (see also equation (2.8)).
To solve the Schrödinger equation for this problem, equation (2.11) is inserted into
equation (2.10) and an Ansatz with plane waves for the wave function that shows the
same periodicity of the lattice is made:

b
(j)
k0

(r) = µ(j)(r) · exp[ik
(j)
0 · r] (2.12)

µ(j)(r) =
∑
g

C(j)
g · exp[ig · r]. (2.13)

The solutions are then called Bloch waves:

b
(j)
k0

(r) =
∑
g

C(j)
g · exp[i(k

(j)
0 + g) · r]. (2.14)

The sum over g covers the infinite number of all reciprocal lattice vectors. In practice
the sum is limited to n excited reflections g = g1, . . . , gn including the beam transmitted
in the direction of incidence g = 0. The C(j)

g are called amplitude factors or plane wave
amplitudes and the µ(j)(r) are referred to as Bloch functions. The k(j)

0 are the wave
vectors of the plane waves and k(j)

g = k
(j)
0 + g are the wave vectors of the Bloch waves.

The final solution of the Schrödinger equation is itself a superposition of j = 1, . . . , n

Bloch waves
ψtot(r) =

∑
j

ε(j)b
(j)
k0

(r) (2.15)

with amplitudes ε(j), in order to satisfy given boundary conditions at the vacuum-crystal
interface. When substituting the formulation of the Bloch waves and the Fourier expan-
sion of the potential into the Schrödinger equation (2.10), together with the abbreviation

K =

[
2m0E(1 +

E

2E0

) + 2m0V0(1 +
E

E0

)

]1/2

· 1

h
(2.16)
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for the wave vector inside the crystal, one gets

∑
g

[
K2 − (k

(j)
0 + g)2 +

∑
h6=0

Uh exp[ih · r]

]
×

C(j)
g · exp[i(k

(j)
0 + g) · r] = 0. (2.17)

For this set of equations all coefficients of the term exp[i(k
(j)
0 + g) · r] have to be zero

separately (as it is assumed that the exponential function is non-zero). This leads to the
fundamental equations of the dynamical scattering theory[

K2 − (k
(j)
0 + g)2

]
C(j)

g +
∑
h6=0

UhC
(j)
g−h = 0. (2.18)

After introducing the approximations

K +
∣∣∣k(j)

0 + g
∣∣∣ ' K + k(j)

z ' 2K (2.19)

and
K −

∣∣∣k(j)
0 + g

∣∣∣ ' sg −
(
k(j)
z −K

)
' sg − γ(j) (2.20)

(see figure 2.3) one gets for the first factor in equation (2.18):[
K2 −

(
k

(j)
0 + g

)2
]

=
(
K +

∣∣∣k(j)
0 + g

∣∣∣) (K − ∣∣∣k(j)
0 + g

∣∣∣) ' 2K
(
sg − γ(j)

)
. (2.21)

The approximations (2.19) and (2.20) are justified as K � g holds (for 200 kV electrons
the radius of the Ewald sphere is 1/λ ≈ 2505 nm−1 compared to g(1 1 1) ≈ 26.1 nm−1 in
NiO [2, 3, 15]. With this, the fundamental equations can be formulated as an Eigenvalue
problem in matrix form


A11 . . . A1n

... . . . ...
An1 . . . Ann



C

(j)
1

C
(j)
2

. . .

C
(j)
n

 = γ(j)


C

(j)
1

C
(j)
2

. . .

C
(j)
n

 for j = 1, . . . , n (2.22)

with the matrix elements A11 = 0, Agg = sg, A∗hg = Agh = Ug−h/2K = 1/(2ξg−h). The
matrix A has n Eigenvalues γ(j) with orthonormal Eigenvectors C(j)

g with j = 1, . . . , n
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Figure 2.3.: Sketch of the dispersion surface and its construction. Image taken from [2].

and g = g1, . . . , gn. If the matrix C and the diagonal matrix {γ} are introduced,
such that Cgj = C

(j)
g and the diagonal elements of {γ} are the Eigenvalues γ(j), the

equation (2.22) can be written as:

A ·C = {γ} ·C. (2.23)

The matrix A is Hermitian by construction and symmetric for centrosymmetric crys-
tals [2]. The Eigenvectors are orthogonal and satisfy the relations∑

g

C(i)∗
g C(j)

g = δij;
∑
j

C(j)∗
g C

(j)
h = δgh. (2.24)

Each Eigenvalue γ(j) corresponds to a Bloch wave (2.14) with a set of wave vectors
k

(j)
0 + g. The total wave function as a solution to equation (2.10) is a superposition of

different Bloch waves with the Bloch wave amplitudes ε(j):

ψtot(r) =
∑
j

ε(j)b
(j)
k0

(r) =
∑
j

ε(j)
∑
g

C(j)
g exp[i(k

(j)
0 + g) · r]. (2.25)
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The amplitude of a reflection g can be determined by summing over all j = 1, . . . , n for
the particular lattice point g, which leads to

ψg(r) =
∑
j

ε(j)C(j)
g exp[i(k

(j)
0 + g) · r]. (2.26)

The boundary conditions require the incident plane wave in the vacuum and the Bloch
waves in the crystal to be continuous, i.e. to be equal at the entrance plane of the
specimen, which leads to

ψ0(0) =
∑
j

ε(j)C
(j)
0 = 1,

ψg(0) =
∑
j

ε(j)C(j)
g = 0 for all g 6= 0. (2.27)

Together with the orthogonality relations (2.24) this leads to ε(j) = C
(j)∗
0 for normal

incidence. For the n-beam case the equations (2.27) can be written as

C · ε = ψ(0), (2.28)

with ε ond ψ(0) being column vectors with n entries (ε(j), j = 1, . . . , n and ψg(0), g =

g1, . . . , gn). When solving equation (2.22) for the 2-beam case, the solutions for the
Eigenvalues are:

γ(j) =
1

2ξg

[
w − (−1)j

√
1 + w2

]
(2.29)

with w = sξg characterising the tilt out of the Bragg condition (s being the excitation
error). Using the calculated γ(j), the amplitudes ε(j)C

(j)
g = C

(j)∗
0 C

(j)
g can be determined:

C
(j)∗
0 C

(j)
0 =

1

2

[
1 + (−1)j

w√
1 + w2

]
, C

(j)∗
0 C(j)

g = −1

2

(−1)j√
1 + w2

. (2.30)

With (2.30) one obtains [2]:

ψ0(t) =
2∑
j=2

C
(j)∗
0 C

(j)
0 exp[ik(j)

z t] (2.31)
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Figure 2.4.: The thickness dependence of the transmitted and reflected beam in a two-
beam case. a) The exact Bragg condition is fullfilled (w = 0), b) the same for
a tilted case. c) and d) shows the intensity of the reflected beam intensity
with respect to sample tilt for different sample thicknesses. Image taken
from [2].

and

ψg(t) =
2∑
j=2

C
(j)∗
0 C(j)

g exp[ik(j)
z t] · exp[igx]. (2.32)

Using (2.29) and (2.30) the reflection R (intensity of the diffracted beam Ig) and trans-
mission T (intensity of the transmitted beam I0) can be calculated as:

R = ψgψ
∗
g = 1− T = 1− ψ0ψ

∗
0 =

1

1 + w2
sin2

(
π
√

1 + w2
t

ξg

)
. (2.33)

In the exact Bragg condition (w = 0) the intensity oscillates between the transmitted and
diffracted beam as R = sin2 (πt/ξg). Thus, the periodicity with respect to the sample
thickness is given by the extinction distance ξg, leading to the so-called Pendellösung
of the dynamical scattering theory (see figure 2.4). For w 6= 0 this periodicity can be
described by the effective extinction distance ξg,eff = ξg/

√
1 + w2. The dependence of

transmission T and reflection R on the sample tilt leads to the so-called “rocking-curves”
(see figure 2.4).
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The n-beam case can be treated by numerically solving equation (2.22). In order
to calculate the effects in an experiment using the technique called Atom Location by
Channelling Enhanced Microanalysis (ALCHEMI, [22]), the treatment of the beam elec-
trons up to now would be sufficient. However, for ELCE experiments, the inelastically
scattered electrons of the beam have to be propagated through the crystal until they
reach the exit plane of the specimen. In order to facilitate this, one can make use of
the reciprocity theorem [23]. This theorem states that one can exchange electron source
and detector in an electron microscope when describing the propagation of the electrons,
which can be used, for example, when describing the ray paths of a TEM in comparison
to a scanning TEM (STEM) [2]. At first sight, it seems that the reciprocity theorem can
only be used for the description of elastic scattering, as time inversion symmetry is obvi-
ous in this case. Nevertheless, the theorem can be applied to inelastic scattering also, as
was shown in [24]. Using the reciprocity theorem for the simulations performed in this
work, the outgoing electron wave is again described as a superposition of Bloch waves,
defined by the detector position. Similar to the boundary conditions of the incoming
wave, the boundary conditions now require for the outgoing wave to be continuous with
a plane wave in the vacuum at the exit surface of the crystal. Invoking reciprocity, this
corresponds to a plane wave originating from a pointlike detector in the farfield.



3. The mixed dynamic form factor

3.1. The double differential scattering cross section

Making use of Fermi’s golden rule, in first order Born approximation the probability of
a transition from an initial state |Ψi〉 to a final state |Ψf〉 can be written as [25]:

Wi→f =
2π

~

∣∣∣〈Ψf |V̂ |Ψi〉
∣∣∣2 dvf · δ (E|f〉 − E|i〉) , (3.1)

with the perturbation operator V̂ and dvf representing a phase space element around
the final state |Ψf〉. The system is described in its initial state with energy E|i〉 by

|Ψi〉 = |ψi〉 ⊗ |i〉 , (3.2)

while the final state with energy E|Ψf 〉 is described by

|Ψf〉 = |ψf〉 ⊗ |f〉 , (3.3)

with |ψi,f〉 being the state of the probe electron and |i〉 , |f〉 the states of the target
system. It is assumed that the system can be factorised into eigenstates of the probe
electron and the target electron subsystems. This assumption is made due to the large
difference in kinetic energy, which allows to neglect exchange and correlation effects
between the electrons of the two subsystems [5]. The energy loss E of the probe is
defined by

E := E|f〉 − E|i〉, (3.4)

hence the transition rate can be written as

Wi→f =
2π

~

∣∣∣〈ψf | 〈f |V̂ |i〉 |ψi〉∣∣∣2 dvf · δ (E|f〉 − E|i〉 − E) . (3.5)

21
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In a TEM experiment it is assumed that the initial state of the probe is known exactly
by preparation of the electron beam and it is possible to measure the final state to
a sufficient accuracy. To determine the transition probability without observing the
target, the sum over all possible target states is performed, accounting for conservation
of energy and averaging over the initial target states with the occupation probabilities
pi. This leads to the expression:

Wi→f =
2π

~
∑
i

pi
∑
f

∣∣∣〈ψf | 〈f |V̂ |i〉 |ψi〉∣∣∣2 dvf · δ (E|f〉 − E|i〉 − E) . (3.6)

The differential particle current of free electrons scattered into dEdΩ is given by

dj =
2π

~
∑
i

pi
∑
f

∣∣∣〈ψf | 〈f |V̂ |i〉 |ψi〉∣∣∣2 kfm~2
dEdΩ · δ

(
E|f〉 − E|i〉 − E

)
, (3.7)

as the differential phase space element is given by dvf = k2
fdkfdΩ and using that the

energy of free electrons is E = ~2k2
f/(2m). It was used that the final probe electron

states can be described as plane waves. Here plane wave scattering in a single free atom
was assumed. For a more realistic situation, i.e. a Bloch wave scattering on an atom in
crystalline environment, see section 3.2.3 and [16]. For a crystal The relativistic mass of
the electron is denoted as m = γme and kf is the wave vector of the final probe state.
The differential scattering cross section measured by the detector is given by

dj = dσ(E,Ω) · ji, (3.8)

with dσ being the scattering cross section and ji the incident particle current dens-
ity. Combining (3.7) with (3.8) leads to the double differential scattering cross-section
(DDSCS):

dσ(E,Ω) =
∑
i

pi
∑
f

∣∣∣〈ψf | 〈f |V̂ |i〉 |ψi〉∣∣∣2 2πkfm

~3ji
dEdΩ · δ

(
E|f〉 − E|i〉 − E

)
. (3.9)

Assuming that the incoming electrons can also be described as a plane wave, the incident
particle current density can be written as

ji =
~ki

(2π)3m
(3.10)
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with ki being the wave vector of the initial probe state, resulting in

∂2σ

∂E∂Ω
=

(
2π

~

)4

m2kf
ki

∑
i

pi
∑
f

∣∣∣〈ψf | 〈f |V̂ |i〉 |ψi〉∣∣∣2 · δ (E|f〉 − E|i〉 − E) . (3.11)

3.2. Models for the DDSCS

3.2.1. Single plane wave

The initial and final states of the probe electron are now described as plane waves, as
it was already assumed in the previous section. This is justified in a classical setting of
scattering experiments, as the electron source, as well as the detector, is placed far away
from the scattering centre. Thus, the probe states can be written as

|ψi〉 = |ki〉 , |ψf〉 = |kf〉 , (3.12)

and projected onto the real space ψi,f (r) = 〈r|ψi,f〉:

ψi(r) =
1

(2π)3/2
exp[ikir], ψf (r) =

1

(2π)3/2
exp[ikfr]. (3.13)

The perturbation V̂ is described by the Coulomb interaction potential between the probe
electron at position r and the target electrons at Rj and nuclei at ak:

V̂ =
1

4πε0

(∑
k

−Ze2

|r − ak|
+
∑
j

e2

|r −Rj|

)
. (3.14)

Considering the Born-Oppenheimer approximation, the probe electron wave functions
are independent of the nuclei wave functions. Thus, only the second term of equation
(3.14) has to be considered, leading to

〈kf | 〈f |V̂ |i〉 |ki〉 =
e2

4πε0

∑
j

〈
f

∣∣∣∣ ((2π)−3

∫
d3re−ikfr

1

|r −Rj|
eikir

) ∣∣∣∣ i〉 . (3.15)

The integral can be evaluated using the shift theorem for Fourier transformations, yield-
ing ∫

d3re−ikfr
1

|r −Rj|
eikir =

∫
d3reiQ·r

1

|r −Rj|
=

4π

Q2
eiQ·Rj , (3.16)
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introducing the scattering vector

Q = ki − kf . (3.17)

The scattering vector consists of the lateral momentum transfer q = (qx, qy) and the
characteristic momentum transfer for inelastic scattering qE [15]:

Q =

qxqy
qE

 . (3.18)

The characteristic momentum transfer is defined as [3]:

qE = k0
E

E0

(
E0 +mec

2

E0 + 2mec2

)
, (3.19)

with k0 being the incoming electron wave vector, E the investigated energy loss and E0

the energy of the incoming electrons. For an acceleration voltage of the beam electrons of
200 kV, one gets k0 = 2505 nm−1. The characteristic momentum transfer for an oxygen
K-edge at 531 eV is qE = 4.34 nm−1.

Using the above results of the evaluation for the Fourier transformation, the DDSCS
reads:

∂2σ

∂E∂Ω
=

e4m2

~4ε2
04π2Q2

kf
ki

∑
i

pi
∑
f

∑
j

∣∣〈f ∣∣ eiQ·Rj
∣∣ i〉∣∣2 · δ (E|f〉 − E|i〉 − E)

=
4γ2

a2
0

kf
ki

∑
i

pi
∑
f

∑
j

∣∣〈f ∣∣ eiQ·Rj
∣∣ i〉∣∣2 · δ (E|f〉 − E|i〉 − E) , (3.20)

with the Bohr radius a0 = 4πε0~2
mee2

and accounting for the relativistic mass correction m =

γme using γ = 1√
1−v2e/c2

= 1√
1−β2

. It is convenient to introduce another abbreviation:

S(Q, E) =
∑
i

pi
∑
f

∑
j

∣∣〈f ∣∣ eiQ·Rj
∣∣ i〉∣∣2 · δ (E|f〉 − E|i〉 − E) , (3.21)

which is called the dynamic form factor (DFF). Inserting equation (3.21) into equa-
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tion (3.20) the DDSCS becomes:

∂2σ

∂E∂Ω
=

4γ2

a2
0

kf
ki
S(Q, E). (3.22)

3.2.2. Superposition of plane waves

The initial state of the electron probe is now taken as a superposition of two plane waves,
as it is introduced in [5, 6], where the concept of interferometric EELS is described. The
initial probe state reads

|ψi〉 = a1 |k1〉+ a2 |k2〉 , |a1|2 + |a2|2 = 1, (3.23)

while the final probe state |kf〉 remains a plane wave. Nelhiebel described how a crys-
talline sample could be used to facilitate such a beam splitting and thus perform inter-
ferometric EELS [5]. The sketch shown in figure 3.1 describes the realisation of such a
Mach-Zehnder interferometer using the crystal. The DDSCS can then be written as

∂2σ

∂E∂Ω
=

(
2π

~

)4

m2kf
ki

∑
i

pi
∑
f

∣∣∣〈ψf | 〈f |V̂ |i〉 (a1 |k1〉+ a2 |k2〉)
∣∣∣2 · δ (E|f〉 − E|i〉 − E)

=

(
2π

~

)4

m2kf
ki

∑
i

pi
∑
f

[
|a1|2

∣∣∣〈kf | 〈f |V̂ |i〉 |k1〉
∣∣∣2 + |a2|2

∣∣∣〈kf | 〈f |V̂ |i〉 |k2〉
∣∣∣2

+ 2<
[
a1a

∗
2 〈kf | 〈f |V̂ |i〉 |k1〉 〈k2| 〈i|V̂ |f〉 |kf〉

]]
· δ(E|f〉 − E|i〉 − E). (3.24)

Inserting the Coulomb interaction by means of equation (3.15) and (3.16) yields

∂2σ

∂E∂Ω
=

4γ2

a2
0

kf
ki

∑
i

pi
∑
f

[∑
j

|a1|2

Q4

∣∣〈kf | 〈f |eiQ·Rj |i〉 |k1〉
∣∣2

+
∑
j′

|a2|2

Q′4

∣∣∣〈kf | 〈f |e−iQ′·Rj′ |i〉 |k2〉
∣∣∣2

+ 2<
[∑

j

∑
j′

a1a
∗
2

Q2Q′2
〈kf | 〈f |eiQ·Rj |i〉 |k1〉 〈k2| 〈i|e−iQ

′·Rj′ |f〉 |kf〉
]]

· δ(E|f〉 − E|i〉 − E). (3.25)
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Figure 3.1.: Realisation of a Mach-Zehnder interferometer using a crystalline sample.
The beam-splitting is achieved by Bragg diffraction. The distance d between
the atoms would lead to a change of phases in the ionisation process. Sketch
taken from [5].
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The scattering vectors are defined as

Q = k1 − kf , Q′ = k2 − kf . (3.26)

Using the definition of the dynamic form factor, equation (3.25) can be rewritten as

∂2σ

∂E∂Ω
=

4γ2

a2
0

kf
ki

[
|a1|2

1

Q4
S(Q, E) + |a2|2

1

Q′4
S(Q′, E)

+ 2<
[
a1a

∗
2

1

Q2Q′2
S(Q,Q′, E)

]]
. (3.27)

In the equation above, the mixed dynamic form factor (MDFF) was introduced:

S(Q,Q′, E) =
∑
i

pi
∑
f

∑
j

〈f |eiQ·Rj |i〉
∑
j′

〈i|e−iQ′·Rj′ |f〉 · δ
(
E|f〉 − E|i〉 − E

)
. (3.28)

It should be noted that the scattering from different |i〉 or to different |f〉 is incoherent,
but the scattering between differen Q and Q′ is incoherent. In principle, the sum over
all initial and final states of all atoms has to be included in the MDFF. However, this
can be reduced to an incoherent sum over a number of MDFFs, each for a single atom
of the crystal. This is due to the fact that the initial states of the target are highly
localised in real space and that the MDFF shows the same periodicity as the crystal.
This is shown in [23, 26]. Therefore in the following

S(Q,Q′, E) =
∑
i

∑
f

〈f |eiQ·R|i〉 〈i|e−iQ′·R|f〉 · δ
(
E|f〉 − E|i〉 − E

)
(3.29)

is used for the MDFF. The DFF can be retrieved by setting Q′ = Q, thus leading to
S(Q,Q, E) = S(Q, E). The DFF can be interpreted as the diagonal elements of the
MDFF, with the off-diagonal elements describing the influence of interference effects on
the measured signal. To calculate this influence, in [5] the expression

∂2A

∂E∂Ω
=

4γ2

a2
0

kf
ki

Sj(Q,Q
′, E)

Q2Q′2
(3.30)

was introduced. There are some useful properties of the MDFF derived in [6] and
summarised in [23]:

• it is hermitian: S(Q,Q′, E)∗ = S(Q′,Q, E),



3. THE MIXED DYNAMIC FORM FACTOR 28

• for targets with inversion symmetry S(Q,Q′, E) = S(−Q,−Q′, E) holds,

• if the target is invariant under time-reversal transformation, the MDFF obeys the
rule S(Q,Q′, E) = S(−Q′,−Q, E).

3.2.3. Bloch waves

Using the Bloch wave formalism, the wave function of the incoming electron wave in a
periodic crystal can be described by [2]:

ψ(r) =
∑
j

∑
g

ε(j)C(j)
g · exp[i(k

(j)
0 + g) · r] (3.31)

and the outgoing electron wave by:

ψ̃(r) =
∑
l

∑
h

ε̃(l)C̃
(l)
h · exp[i(k

(l)
0 + h) · r]. (3.32)

This is a generalisation of what is given in section 3.2.2. More details on the Bloch wave
formalism can be found in section 2.2. The momentum transfer vectors become

Q = Qjl
gh = (k

(j)
0 + g)− (k

(l)
0 + h) = k

(j)
0 − k

(l)
0 + g − h (3.33)

and
Q′ = Qj′l′

g′h′ = k
(j′)
0 − k(l′)

0 + g′ − h′. (3.34)

The Bloch wave vectors inside the crystal fullfill the condition

k
(j)
0 = k + γ(j) · n, (3.35)

with n the surface normal vector of the crystal surface and k the wave vector of the
incoming electron wave and γ(j) called “Anpassung”. Using these formulas in equation
(3.20), the double differential scattering cross section becomes:

∂2σ

∂E∂Ω
=

4γ2

a2
0

kf
ki

∑
x

∑
j,j′,l,l′

g,g′,h,h′

Xjlj′l′

ghg′h′(x)
Sx(Q,Q′, E)

Q2Q′2
, (3.36)
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with ki the incoming and kf the outgoing electron wave vector and

Xjlj′l′

ghg′h′(x) = ε(j)C(j)
g (ε̃(l)C̃

(l)
h )∗(ε(j′)C

(j′)
g′ )∗ε̃(l′)C̃

(l′)

h′ · ei(Q−Q
′)·x · eid(γ̃(l)−γ̃(l′)) (3.37)

includes all the prefactors of the incoming and outgoing Bloch waves. The vectors x
denote the positions of the target atoms in the sample where the inelastic scattering
process occurs. Thus, Sx(Q,Q′, E) describes the MDFF for each of the target atoms.
The summation over all reciprocal vectors and Bloch wave indices ensure that not only
the indirect terms (MDFF) are included in equation (3.36), but also the direct terms
(DFF). For equation (3.36) a boundary condition for the Bloch waves was used, such that
at the crystal surfaces they are described as plane waves. Furthermore, the reciprocity
theorem was invoked, describing the outgoing wave as the solution of the time inversed
Schrödinger equation with the EELS detector taking the place of the electron source [27].
More details can be found in [9].

3.3. The MDFF for crystals

In order to actually calculate the DDSCS, one needs a description of the MDFF suitable
for the considered problem. This task comes down to describing the initial and final
states |i〉 , |f〉 of the target, which is usually a crystalline TEM sample. As in core-loss
EELS the initial states are highly localised at the atomic nuclei, it is favourably to
work with spherical harmonics centered at the atomic positions. Thus, the exponential
functions can be rewritten using the Rayleigh expansion [23]:

eiQR = 4π
∞∑
λ=0

λ∑
µ=−λ

iλY µ
λ (Q/Q)∗Y µ

λ (R/R)jλ(QR), (3.38)

with Y µ
λ the spherical harmonics and jλ the spherical Bessel function of first kind. The

MDFF then reads:

S(Q,Q′, E) = 16π2
∑
λλ′

iλ−λ
′∑
µµ′

∑
i

pi
∑
f

Y µ
λ (Q/Q)∗Y µ′

λ′ (Q′/Q′)×

〈f |Y µ
λ (R/R)jλ(QR)|i〉 〈i|Y µ′

λ′ (R/R)jλ′(Q
′R)|f〉 δ(E|f〉 − E|i〉 − E). (3.39)
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For crystal wave functions, which are the most suitable description for the work presented
here, the initial state can be described as follows [23]:

|i〉 = |n, l, 1/2, j, jz〉

=
∑
ms

|n, l,m, 1/2, s〉 〈l,m, 1/2, s|j, jz〉

=
∑
ms

(−1)−l+
1
2
−jz
√

2j + 1

(
l 1

2
j

m s −jz

)
|n, l,m, 1/2, s〉 . (3.40)

The initial states are eigenstates of the total angular momentum operator and typically
the overlap of the core states of neighbouring atomis is negligible. The unoccupied
final states are usually found in the conduction band. They are described using the
set of quantum numbers |ν〉, which in the band structure formalism contains the band
index and the wave number. For the matrix elements appearing in the MDFF, only
the part of the final states that shows significant overlap with the initial states is of
importance. Therefore, the muffin-tin approximation as used in the DFT simulation
software WIEN2k [12] can be applied. In this case, the final states are expanded into
eigenstates of the angular momentum:

|ν〉 =
∑
LMS

Dν
LMS(Eν) |ν, L,M, 1/2, S〉 . (3.41)

For the actual calculation of the MDFF, the initial and final states are usually pro-
jected onto the real space, leading to:

〈R|n, l,m〉 = ul(R)Y m
l (R/R)

〈R|ν, L,M〉 = uL(R)Y M
L (R/R), (3.42)

with ul(R) and uL(R) being radial wave functions. For possible models and approxima-
tions how to calculate these wave functions in a simulation, see [12, 13, 15]. Linking the
description of the final states in equation (3.41) to the formalism used in WIEN2k leads
to the result that the local charge density with L,M character in the atomic sphere
centered around the atom with index t can be written as

ρtν,L,M,S(R) = |Dν,t
LMS(Eν)uL(Eν , R)Y M

L (R/R)|2. (3.43)
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The local partial charge can be obtained by integration over the sphere t:

qtν,L,M,S = |Dν,t
LMS(Eν)|2. (3.44)

The local partial density of states (DOS) is calculated by summing over all partial
charges for the same energy E but different band states ν:

χtLMS(E) =
∑
ν

|Dν,t
LMS(Eν)|2δ(E − Eν). (3.45)

Inserting the assumptions for the initial and final states into equation (3.39) and following
the elucidations in [23], one arrives at the following evaluation of the MDFF:
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)(
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m′ S ′ −jz

)
×

(Dν
LMS)∗(Dν

L′M ′S′)δ(E|f〉 − E|i〉 − E). (3.46)

In this context, it is noteworthy to mention the definiton of the cross density of states
(XDOS) in comparison with the DOS given in equation (3.45):

XLMS,L′M ′S′(E) :=
∑
ν

(Dν
LMS)∗Dν

L′M ′S′δ(E − Eν). (3.47)

The existence of L,M, S crossterms is related to the fact that the states in the system
under investigation can not be described as L,M, S eigenstate. The above formulas
show that usually it is in general not sufficient to use the DOS without the crossterms.
However, as the XDOS und thus the appearance of crossterms is dependent on the
symmetry of the investigated material as well as the choice of the coordinate system.
Thus, a clever choice of the coordinate system can simplify the calculations. For more
details on this see [5, 16, 23].



4. ELCE

4.1. Simulations

In order to illustrate the strong dependence of the results of ELCE measurements on
the samples’ constituents, simulations for a NiO crystal and a TiO2 crystal (rutile) are
compared. The crystal structures of NiO and rutile are given in table 4.1. The respective
Bloch wave amplitudes, as given in equation (2.15), for exact channelling conditions are
depicted in figure 4.1. For the calculation of both materials the [1 1 0] zone axis was
used. A slight tilt out of the zone axis was set up in order to reach exact channelling
conditions. A thickness of 70 nm and a superposition of five Bloch waves were used in
the calculations. In both cases the Laue circle centre was chosen such that a systematic
row condition was obtained. It can be seen that the amplitude shows maxima in the
rows containing the heavier element of the structure. Furthermore, a repetition of the
amplitude distribution with respect to the sample thickness is evident. It is also visible
that for the two materials, the depth at which this repetition starts is different as this
phenomenon depends on the extinction distance, which itself is material dependent.

The effect of tilting the sample with respect to the electron beam on the channelling

Table 4.1.: Crystallographic data of NiO and TiO2 as it was used for the conducted
simulations. Data taken from [28].
NiO Lattice type Lattice parameters Atom positions

R a = b = 2.97Å Ni1: (0 0 0)
c = 14.53Å Ni2: (0.5 0.5 0.5)

α = β = γ = 90◦ O: (0.25 0.25 0.25)
TiO2 Space group Lattice parameters Atom positions

P42/mnm (136) a = b = 4.59Å Ti: (0 0 0)
c = 2.96Å O: (0.3 0.3 0.3)

α = β = γ = 90◦

32
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Figure 4.1.: Comparison of the Bloch wave amplitudes, as given in equation (2.15), in
NiO and rutile. For both materials the simulations were performed for a
sample tilted out of the [1 1 0] zone axis in order to obtain systematic row
conditions. The repetition of the amplitude distribution with respect to the
z-axis occurs at different sample depths as it depends on ξg which in turn is
material dependent.

conditions is shown in figure 4.2 to figure 4.6. In the first simulation, the Laue circle
centre (LCC) is shifted to a position of (0 0 20) in order to obtain a systematic row
condition. In the subsequent simulations the position of the Laue circle centre was
changed along the systematic row in order to simulate sample tilt. Depicted are the
results of simulations were the LCC was shifted 0.25, 0.5, 0.75 and 1.0 of the distance
between the 0 and the G reflection. The change in the amplitude distribution und thus
the change in the channelling conditions is evident. Furthermore, it becomes clear that
the change of the channelling effects with respect to sample tilt is not straightforward to
interpret. Even more, as for interferometric EELS experiments not only the incoming
wave has to be taken into account but also the outgoing wave, which itself shows different
channelling conditions in general.

In figure 4.7 to figure 4.10 the hypothetical inelastic scattering intensity distribution
is shown with respect to different channelling conditions. These simulations illustrate,
how much an atom at a certain position inside the unit cell would contribute to the
measured EELS signal, if a respective elemental edge would be investigated. The change
in channelling conditions were achieved by changing the position of the spectrometer with
respect to the diffraction pattern, thus changing the direction of the outgoing wave. The
position of the detector was changed along the systematic row condition between the 0

and the G reflection. The results of the simulations with detector positions of 0.25, 0.5,
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Figure 4.2.: Map of Bloch wave amplitudes in rutile. The sample is tilted out of the
[1 1 0] zone axis, such that the Laue circle centre position is at (0 0 20), in
order to obtain systematic row conditions. The plot of the Bloch wave
amplitudes is the same as the left part of figure 4.1 and is given here to
facilitate comparison with the following figures. On the left hand side, a
sketch of the scattering condition used in this simulation is shown.

Figure 4.3.: Map of Bloch wave amplitudes in rutile. The Laue circle centre is tilted
along the systematic row direction a fourth of the distance between 0 and
G spot to change the channelling conditions inside the crystal. On the left
hand side, a sketch of the scattering condition for this simulation can be
seen.
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Figure 4.4.: Map of Bloch wave amplitudes in rutile. The Laue circle centre is tilted
along the systematic row direction half of the distance between 0 and G
spot to change the channelling conditions inside the crystal.

0.6 and 0.75 of the mentioned distance are shown. Once again, it is evident that the
interpretation of the results would not be that straightforward as it was thought in the
beginning of ELCE.

The simulation program used for the calculation of the Bloch wave intensities is de-
scribed in [11]. It is written in object-oriented C++ code and takes its input parameters
from an extensible markup language (XML) configuration file while the output is plain-
text based. The different sections of the configuration file specify the crystal parameters
as well as the atom positions, the microscope specific values and finally the experimental
setup. The program has three possible output modes. The first is to calculate the Bloch
wave amplitudes inside the crystal of a specified thickness with a certain position of
the Laue circle centre, corresponding to a certain tilt of the sample with respect to the
electron beam. The second mode is to calculate some kind of hypothetical intensity
map, which describes how much a specific position inside the crystal would contribute
to the detected energy-loss signal if there were an atom present at this position (whose
electrons could be excited with the given energy-loss of the beam). Additionally to the
input values of the first mode, it takes the position of the detector. The position has to
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Figure 4.5.: Map of Bloch wave amplitudes in rutile. The Laue circle centre is tilted
along the systematic row direction 3/4 of the distance between 0 and G
spot to change the channelling conditions inside the crystal.

be given in a coordinate system that takes the distance between the 0 and G reflection
as unit distance in x-direction, and the y-direction perpendicular to it. The third mode
takes the calculated scattering intensities mentioned above and sums up the contribution
at the position of the atoms, which contribute to the scattering process.

The second and third modes take as an input value a switch that controls how the
inelastic scattering processes are treated. In early versions of the simulation program,
only a simple dipole approximation was implemented [11]. In the current version, it is
also possible to use a model for the MDFF that combines the Bloch wave formalism
with calculations done using WIEN2k. One has to extract the radial wave functions as
well as the XDOS from a WIEN2k calculation. This is done for a specific energy-loss, so
it has to be repeated until the full interval of energy-loss one is interested in is covered.
The resulting spectrum is unbroadend, utilizing a WIEN2k subroutine instrumental
broadening as well as finite lifetime broadening can be accounted for. For details see
[12]. Using this procedure, the ELNES affected by the desired channelling conditions
can be calculated.
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Figure 4.6.: Map of Bloch wave amplitudes in rutile. The Laue circle centre is tilted along
the systematic row direction to change the channelling conditions inside the
crystal.

4.2. Early use of ELCE

Taftø, Spence and Krivanek first combined electron channelling with analytical transmis-
sion electron microscopy (TEM) and reported it in a series of papers in 1982 [22, 29–34].
When performing energy dispersive X-ray analysis, the technique was called Atom Loca-
tion by Channelling Enhanced Microanalysis (ALCHEMI) [22] and it was used to identify
crystallographic sites of atomic species and for analysing impurities. In combination with
EELS the technique was named energy losses by channelled electrons (ELCE) [22].

The principle of both techniques is rather simple. The wave function of the probe
electrons in the crystal can be described in a Bloch waves basis [1, 18] (see also section
2.2). The Bloch waves differ, in the location of their intensity-maxima. Depending on
the orientation of the crystal with respect to the electron beam, these Bloch waves are
weighted differently. Thus, the intensity distribution of the electron beam inside the
sample shows a distinct pattern of maxima and minima. Whenever the position of an
atom coincides with these intensity maxima, the X-ray signal or the energy-loss signal
originating from its site will be enhanced (which is then called site-specificity).
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Figure 4.7.: Calculated instensities of inelastic scattering in rutile. The Laue circle centre
was placed at (0 0 20) and the detector was placed at a point 1/4 of the
distance between 0 and G reflection.

Figure 4.8.: Calculated instensities of inelastic scattering in rutile. The detector was
placed at a point 1/2 of the distance between 0 and G reflection.
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Figure 4.9.: Calculated instensities of inelastic scattering in rutile. The detector was
placed at a point 0.6 of the distance between 0 and G reflection.

Figure 4.10.: Calculated instensities of inelastic scattering in rutile. The detector was
placed at a point 3/4 of the distance between 0 and G reflection.
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ALCHEMI is easier to perform and to interpret than ELCE, as only the incoming
electron wave has to be considered. The reason for this being the much weaker interaction
of the outgoing characteristic X-rays with the sample material. For ELCE, not only the
incoming wave but also the outgoing electron wave, which both undergo inelastic and
elastic scattering processes, have to be considered. Thus, the initial enthusiasm with
ELCE faded away when it was realised that the detailed description turned out to be
more difficult than expected. As the spectrometer is usually placed off axis in ELCE
experiments, long acquisition times are necessary and spectra often show a low signal-
to-noise (S/N) ratio. Due to these theoretical and instrumental shortcomings, ELCE
was not widely used until recently, except for works described by Nüchter and Sigle in
1995 [35–39].

In recent experiments, measurements are usually performed under systematic-row
condition in order to have a small definite set of Bragg spots excited which in turn
give rise to a small set of significantly excited Bloch waves. Thus, it is easier to get
reproducible experimental conditions which allow to compare theory and measurements
more easily. The Bloch wave intensity distribution in systematic row conditions has been
studied extensively by numerous authors (e.g. [1, 5]). It was found that it is strongly
dependent on sample thickness and beam tilt. Hence, numerical simulations for the
experimental set of parameters have to be performed to interpret ELCE measurements.

The ELCE technique can be used to study the fine-structure of ionisation edges
(ELNES) in detail to investigate atomic orbitals with site-specificity. Nelhiebel invest-
igated the fine-structure by choosing a single (high intensity) direction in the diffraction
plane [10]. The experiments shown in the work presented here go beyond Nelhiebel’s
approach. By analysing the differences in the site-specific ionisation edge fine-structure
for different detector positions, it is possible to probe different orientations of the final
state orbitals. It is noteworthy that despite the fact that electron microscopists tend
to use the phrase “atomic orbitals” in a crystal environment, due to the band struc-
ture formalism applied in the calculations, what is probed in the experiments are rather
unoccupied states in energy bands of a certain character (e.g. px, py, pz for O K-edge
excitations) above the Fermi level.
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5.1. The revealing of EMCD and its progress

A common spectroscopic method for investigating magnetic properties is X-ray magnetic
circular dichroism (XMCD). This technique relies on the fact that the absorption cross-
section for magnetic samples depends on the helicity of the probe. Keeping the similarity
of EELS and X-ray absorption spectroscopy (XAS) in mind, one can understand that
ELNES and X-ray absorption near edge structures (XANES) give access to the same
physical properties. That said, information about the magnetic properties of a sample
should be available by means of “dichroic” EELS.

Energy-loss magnetic chiral dichroism was first proposed in 2003 [40], when it was
found that one does not need spin-polarised electrons but instead can rely on the equi-
valence of the polarisation vector ε of XAS and the momentum transfer vector q of
EELS. To gain proof of this equivalency and the proposed EMCD effect, first experi-
ments were conducted 2006 on a Fe-sample in a FEI Tecnai G2 TF20 TEM at the Vienna
University of Technology [41]. For comparison, XMCD measurements were performed
on the very same sample.

Soon after the first EMCD experiments, the underlying theoretical description was
refined and accompanying simulations were performed [27]. Dynamical diffraction effects
were treated using a Bloch wave Ansatz. It was found that these effects can enhance or
diminish the measured EMCD signal, bringing a dependence on the sample thickness into
the game. The calculation methods were consequently developed and improved [11, 42].
Furthermore, sum-rules which allow the determination of spin and orbital magnetic
moments (ms and ml) were derived [43, 44]. Due to the dynamical diffraction effects,
calculating ml and ms separately would require the exact knowledge of all information
related to these dynamical effects [44]. Therefore, it is more reasonable to determine the
fraction ml/ms, which is independent of the dynamical diffraction effects.

41
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On the experimental side, in the years after the first EMCD measurements, the chal-
lenge was to drive the spatial resolution to better values. Starting from a resolution of
200 nm, it was pushed down to 10 nm using a Co sample [45] and further to 2 nm [46]
using a sample consisting of subsequent Fe and Au layers of variable layer-thickness. In
recent years, the interest went on to techniques beyond “standard” EMCD, like energy
filtered diffraction patterns [47] and STEM-EMCD [48]. The aim of further increasing
spatial resolution to reach atomic resolution would include tuning the electron beam’s
wavefront phases by means of a probe CS-corrector in a STEM. An actual atomic-
resolution STEM-EMCD measurement was reported by [49] but signal to noise ratio is a
severe problem for such EMCD experiments. It is noteworthy that most of the reported
experimental work on EMCD are some sort of “proof of concept” experiments. Only
a few reports exist where EMCD was actually used in the course of material analysis
investigation, e.g. [50–52].

5.2. Theoretical description

As already mentioned in section 5.1, the theoretical description of EMCD relies on the
equivalence of ε and Q. In a dipole and single particle approximation, the double
differential scattering cross-section of EELS reads:

∂2σ

∂E∂Ω
=
∑
i,f

4γ2

a2
0q

4

kf
ki
|〈f |Q ·R|i〉|2 δ(Ei − Ef + E), (5.1)

while the absorption cross section of XAS can be written as:

σ =
∑
i,f

4π2~αω |〈f |ε ·R|i〉|2 δ(E + Ei − Ef ), (5.2)

with α = e2/(4πε0~c) the fine structure constant, ε the polarisation vector and ω the
photon radial frequency [41]. From these two equations, the equivalency of ε and Q/Q
can be seen. One can also understand that there is no need for spin-polarised electrons if
it is kept in mind that it is the circular polarised phonons that trigger the excitation in an
XMCD experiment by coupling to the angular momentum of the excited atom [45]. Thus,
for EMCD, the circular polarisation of the virtual photons [53], which are exchanged in
the inelastic electron scattering process, are important [53, 54].
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Figure 5.1.: Equivalency of a circular polarised electric field caused by photons and elec-
trons. The phase shift of±π/2 is induced via Bragg diffraction by the crystal
itself. The EELS detector is positioned such that q ⊥ q′. Taken from [55].

Instead of using (virtual) photons, one can describe the transition process using a
circular polarised electric field E, which is parallel to the polarisation vector ε and
antiparallel to the momentum transfer vector q [41, 55]. A circular polarised wave can
be described by two perpendicular linear polarised waves with a phase shift of ±π/2.
This corresponds to a polarisation vector ε± i ·ε′ with ε ⊥ ε′ and a momentum transfer
vector q ± i · q′ with q ⊥ q′. These relations are depicted in figure 5.1. In EMCD, the
phase shift is introduced through the crystal itself by means of Bragg diffraction [9, 41].
A such prepared electron beam would lead to a1 = 1 and a2 = ±i in equation (3.25) and
therefore to:

σ± =
∂2σ

∂E∂Ω
=

4γ2

a2
0q

4

kf
ki

[
1

Q4
S(Q, E) +

1

Q′4
S(Q′, E)± 2=

[ 1

Q2Q′2
S(Q,Q′, E)

]]
. (5.3)

As becomes clear from equation (5.3), only the part including the MDFF changes when
the helicity is reversed. The dichroic signal is defined as the difference of two measure-
ments with reversed helicity. It is usually given as the percentage:

∆σ

σ
:= 2 · σ

+ − σ−

σ+ + σ−
= 2 · 2= [S(Q,Q′, E)/(Q2Q′2)]

S(Q, E)/Q4 + S(Q′, E)/Q′4
. (5.4)

If the phase shift is not exactly π/2, this corresponds to an elliptically polarised wave.
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In such a case, the measured effect as given in equation (5.4) becomes smaller.
In order to take a closer look at the MDFF in a typical EMCD experiment, we recall

it being calculated for crystal wave functions in equation (3.46). A fully spin-polarised
case is assumed, which would be the case with a material, whose magnetisation is fully
saturated in the magnetic field of the objective lens of the TEM. With the magnetic field
of almost 2 T in the FEI Tecnai microscope, this is a reasonable assumption for most
magnetic materials. The spins are then quantised along the direction of the external
magnetic field of the TEM, whis is defined as the z-axis. This leads to [56]:

S(Q,Q′, E) =
∑
ν

∑
L

AνnjL(E) · 〈j1(Q)〉νnjL 〈j1(Q′)〉νnjL
(
Q ·Q′

QQ′
+ i

CjlL
2

(Q×Q′)z
QQ′

)
(5.5)

with

AνnjL(E) =
3

2
(2L+ 1)(2j + 1)

(
L 1 l

0 0 0

)2

|Dν
L|2δ(Ef − Ei − E) (5.6)

and

CjlL =

−(− l
l+1

)(L−1)( 3
2
−|L−j|) j, l, L ≥ 0, L = l ± 1, j = l ± 1

2
,

0 otherwise.
(5.7)

The two terms in the bracket can be approximated as:

<[S(Q,Q′, E)] ∝ (Q ·Q′), (5.8)

=[S(Q,Q′, E)] ∝ (Q×Q′) ·M
M
, (5.9)

with M the net magnetic moment of the scattering atom. As mentioned above, M
M

=

eB = ez holds for a typical EMCD experiment.
Due to the circular polarisation, a selction rule ∆ml = ±1 is induced in the inelastic

scattering process present in EMCD [57, 58]. In virtually all cases the L2,3 edge is
investigated, which means that the initial states in the process are 2p1/2 and 2p3/2

states. Because of the spin-orbit coupling, the states are described using |j,mj〉 as
good quantum numbers and n = 2, l = 1 and s = 1/2 fixed. This gives rise to the
Wigner 3j symbol present in equation (5.6), which has to be used in order to calculate
the transition probabilites [57]. Furthermore, one has to keep in mind the difference
in the spin-up and spin-down DOS above EF in magnetic materials. This gives rise to
different intensities in the L2 and the L3 edge for measurements with opposite helicity.
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Figure 5.2.: Sketch of the setup for an EMCD experiment using a two-beam case. For
the two measurement positions at the Thales-circle the condition q ⊥ q′

and q = q′ holds, and a phase shift of ±π/2 is assumed. This gives opposite
helicity for the two measurements. Image taken from [53, 57].

5.3. Experimental setup

5.3.1. EELS detector setup

As mentioned in the previous section, two perpendicular momentum transfer vectors
q ⊥ q′ with a phase shift of ±π/2 are necessary to measure an EMCD effect. To
facilitate this in an actual experiment, a basic geometry of a two-beam case with the
transmitted beam and an excited G-reflection is required. The Bragg diffraction in the
crystal itself creates the phase shift between the two beams. Placing the spectrometer
entrance aperture on the Thales-circle in the centre of the two reflections would give a
condition with the momentum transfer vectors perpendicular and q = q′. Changing the
position of the SEA to its mirrored position using the systematic row defined by 0 andG
as mirror axis gives the possibility to measure the signal with opposite helicity. A sketch
of the two measurement positions as well as the helicity of the electronic excitation is
shown in figure 5.2.

It would also be possible to measure an EMCD effect using different positions of the
SEA with respect to the Bragg reflections. The only conditions to be kept in mind are
q ∦ q′ and the phase shift being different from n · π. Nevertheless, the measured EMCD
effect would be smaller than when measured at the optimal positions.
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Figure 5.3.: Sketch of the three-beam EMCD setup with the four EMCD positions
marked as ±1 and ±2.

Another experimental setup uses a systematic row condition in a three-beam case (or
even more reflections excited). In this case, there are four positions for the SEA aperture
to perform EMCD measurements. A sketch of this setup is shown in figure 5.3. Two
positions are on each side of the systematic row, on the Thales-circle amidst the 0 and
G and amidst the 0 and −G reflection, respectively. In an ideal case, two measurement
positions, denoted as +1 and +2 as well as −1 and −2 in figure 5.3, would give the same
signal at a time. In reality, there exists an asymmetry between the positions at different
sides of the systematic row, due to the fact that because of the sample tilt the Laue
circle center is positioned at one side of the systematic row. This experimental setup
was used for all the measurements reported in this work.

A third method for measuring the EMCD effect makes use of the E-q diagram of
the spectrometer. This method allows to acquire the signals with both chiralities at
the same time. When switching to the spectrometry mode, the GIF camera records an
E-q diagram. The qx axis is replaced by the energy-dispersive axis E, while the qy axis
is retained. The qx information is integrated for each qy value. There are two ways to
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Figure 5.4.: The left part shows an energy filtered diffraction pattern using a slidt of
20 eV width at the energy of the Co L2,3 edge. Next to the diffraction
pattern the acquired E-q diagram is depicted. The right part shows the
acquired EMCD spectra. Images are courtesy of Michael Stöger-Pollach
and were taken from [57].

record EMCD spectra using this method. The frist one uses a two-beam case with the two
reflections aligned parallel to the energy dispersive axis of the EELS spectrometer. The
SEA and the camera length are chosen such that both reflections enter the spectrometer.
After acquiring the E-q diagram, the EMCD effect can be retrieved by extracting the line
spectra at the two EMCD positions from the diagram and comparing them according to
equation (5.4). The acquired E-q diagram and EMCD spectra of the Co L2,3 edge using
this experimental setup can be seen in figure 5.4. There is another way using a three-
beam case. The camera length as well as the size of the SEA are chosen such that the
three reflections 0 and ±G enter the spectrometer but now the systematic row including
the reflections is set perpendicular to the spectrometer’s energy dispersive axis. That
way the EMCD positions +1 and −1 from figure 5.3 are measured.

The advantages of the E-q method are that both chiralities can be measured at the
same time. This is a huge benefit when investigating a beam sensitive or unstable
specimen. Furthermore, the signal-to-noise ratio can be reduces by taking not only
one line spectrum for each EMCD position but rather integrating over several lines. A
drawback of the method is the need for aligning the diffraction pattern at a certain
angle with respect to the energy dispersive axis of the spectrometer. This can be done
for example using a rotational sample holder, which would not be available during in-situ
investigations using a heating or cooling sample holder. In such cases, on would need
to rotate the diffraction pattern using the microscope’s projection lens system. This in
turn, changes the camera length and also the shape of the beam off the optical axis of
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the instrument. One has to keep in mind that the exact effects of changing a single lens
of the micrsocpe’s lens systems are usually not disclosed due to confidentiality of the
manufacturing companies. Some more details on the E-q diagram method can be found
in [57].

5.3.2. Beam convergence

The theoretical description of EMCD assumes parallel illumination of the sample, as
it is used for acquiring diffraction patterns. This would limit the spatial resolution to
the size of the used selected area aperture (SAA). In the FEI Tecnai microscopes used
in this work, the resolution would therefore be limited to 200 nm. In order to improve
not only the spatial resolution but also the signal-to-noise ratio and to gain a higher
signal intensity, the beam was somewhat converged on the sample. Thus, the spatial
resolution for the reported measurements could be improved sucht that it was in the
region of 10 nm. The convergence was chosen such that the diffraction spots would be
smaller than the SEA or the same size at the maximum. This leads to a setting where
collection and convergence semi-angle are of the same size about 1 mrad. This setting
can be seen in figure 5.5. Changing the convergence of the beam is also altering the
positions where the optimal EMCD signal could be recorded. As long as the diffraction
spots do not touch each other or even overlap, the standard positions at the Thales-circle
are still sufficient. This has also be kept in mind if one uses the scanning mode of the
microscope in order to increase spatial resolution. More details on this can be found in
section 5.4.2.

In [57] some other acquisition methods, for example the large angle convergent dif-
fraction (LACDIF) and the convergent beam electron diffraction (CBED) method, are
described. The CBED method corresponds to the method described above and used
throughout this work.

As mentioned in section 5.1, using a converged beam, a spatial resolution down to
2 nm was achieved and discussions are ongoing about how to use aberration-corrected
STEM to achieve atomic resolution. It was found that there are two necessary condi-
tions to measure EMCD at the atomic scale [48]: the convergence of the electron beam
has to be large enough to create overlapping diffraction discs and the phase of the beam
in reciprocal space must not be invariant under the mirror symmetries of the crystal.
The second condition can be facilitated by shaping the electron beam using a probe Cs-
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Figure 5.5.: Image of the 0-reflection with the SEA visible as circular aperture limiting
the momentum transfer to q ≤ 0.35 nm−1. The collection and convergence
semi-angle was 0.9 mrad. The bottom part of the figure shows a linescan of
the intensity across the aperture.
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corrector. Another approach to perform atomic resolution EMCD experiments includes
the generation of electron vortex beams, which are carrying orbital angular momentum,
using a phase mask. This Ansatz is described for example in [59]. A third way of
achieving such a high resolution when mapping spin-polarised transition was reported
in [49]. This experiment was performed at the SuperSTEM laboratory in Daresbury.
While scanning across the atomic positions, an energy-filtered diffraction pattern would
change its shape. By recording these intensity modulations, one could retrieve inform-
ation about the spin-polarised transition process. Nevertheless, the latter experiment
as well as experiments including the generation of vortex beams, suffer from a lack of
signal intensity. Thus, beam damage of the sample and the stability of the microscope
are crucial effects and have to be dealt with.

5.4. Simulations

5.4.1. Thickness dependence of the EMCD signal

As shown in section 4.1, dynamical diffraction effects can have a huge impact on EELS
measurements. Not only channelling experiments are influenced by these effects, but
also EMCD measurements. Therefore, simulations of the EMCD effect as a function
of sample thickness were performed for different materials. A list of the calculated
materials is given in table 5.1. For the simulations the Bloch wave software package
described in [11] was used. A short description of its abilities is also given in [15].

In the input file the crystal structure of the investigated material was given, as well
as the experimental settings, which includes zone axis, Laue circle centre and which
reflection of the systematic row was used as reference point for the EMCD measurement
positions. The given reflection acts as the G-reflection, as shown in figure 5.3, in which
the four EMCD positions are also shown. Furthermore, the number of incoming and
outgoing Bloch waves was chosen. For all simulations 3 incoming and 4 outgoing Bloch
waves were used. Increasing the number of Bloch waves does not change the results but
results only in higher calculation time. Finally, the calculation of a “thickness map” was
set up, using a sample thickness of up to 80 nm and the elemental edge for which the
EMCD signal is to be calculated was chosen. To calculate the EMCD signal, the two
measurement positions denoted in figure 5.3 as +1 and −1 were used.

Table 5.2 gives the experimental conditions used in the simulations, while figure 5.6
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Table 5.1.: Crystal structure of the simulated materials. The structure is taken from
[28], the lattice parameter was determined experimentally via diffraction ex-
periments. Details are given in section 6.5.
Material Space group acub Element Wyckoff position
Ni2MnIn 225 Fm3̄m 0.607 nm Ni 8c

Mn 4b
In 4a

Ni2MnSn 225 Fm3̄m 0.599 nm Ni 8c
Mn 4b
Sn 4a

Ni2MnGa 225 Fm3̄m 0.578 nm Ni 8c
Mn 4b
Ga 4a

Co2MnSi 225 Fm3̄m 0.565 nm Co 8c
Mn 4b
Si 4a

Co2CrAl 225 Fm3̄m 0.573 nm Co 8c
Cr 4b
Al 4a

to 5.15 show the resulting thickness dependence of the EMCD signal as given in equa-
tion (5.4). It can be seen that for different systematic row conditions the thickness de-
pendence is quite different. In all simulations it can be seen that the EMCD signal can
be enhanced or decreased due to the effects of dynamical diffraction. Taking Ni2MnIn
as an example, in zone axis [0 0 1] using a systematic row condition including the (2 0 0)

reflection, the Ni and Mn EMCD signals show a quite large window of sample thickness
in which an optimal effect can be measured. Furthermore, the sign of the signal is re-
versed for the two elements. Only at a very small sample thickness and at about 65 nm

the EMCD signal is diminished or even vanishes. Upon further increasing the sample
thickness, the EMCD signal changes its sign. Taking a look on the simulation using the
(2 2 0) reflection in the systematic row, the EMCD signal is similar for both elemental
edges. In contrast to the first simulation, the latter shows a quite large variation of the
signal with respect to the sample thickness. The periodicity of between signal maxima
and minima is ∼ 20 nm. EMCD measurements at sample thicknesses corresponding to
signal maxima would reveal a clearly positive EMCD signal while those at the minima
would reveal a very small but negative EMCD signal. These results resemble the differ-
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Table 5.2.: Scattering conditions used for the simulations shown in this section. The
column “G-reflection” denotes the reflection which was included in the re-
spective systematic row and used as reference to define the positions of the
EMCD measurements.

Zone axis Laue circle centre G-reflection
[0 0 1] (0 12 0) (2 0 0)

(12 12 0) (2 2 0)

[1 1 0] (12 12 0) (0 0 2)

(0 0 12) (2 2 0)

(6 6 12) (1 1 1)
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Figure 5.6.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Ni2MnIn sample with zone axis [0 0 1] and a
systematic row condition including the a) (2 0 0), b) (2 2 0) reflection was
used.
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Figure 5.7.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Ni2MnIn sample with zone axis [1 1 0] and a sys-
tematic row condition including the a) (0 0 2), b) (2 2 0), c) (1 1 1) reflection
was used.
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Figure 5.8.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Ni2MnSn sample with zone axis [0 0 1] and a
systematic row condition including the a) (2 0 0), b) (2 2 0) reflection was
used.
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Figure 5.9.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Ni2MnSn sample with zone axis [1 1 0] and a sys-
tematic row condition including the a) (0 0 2), b) (2 2 0), c) (1 1 1) reflection
was used.
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Figure 5.10.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Ni2MnGa sample with zone axis [0 0 1] and a
systematic row condition including the a) (2 0 0), b) (2 2 0) reflection was
used.
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Figure 5.11.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Ni2MnGa sample with zone axis [1 1 0] and
a systematic row condition including the a) (0 0 2), b) (2 2 0), c) (1 1 1)
reflection was used.
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Figure 5.12.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Co2MnSi sample with zone axis [0 0 1] and a
systematic row condition including the a) (2 0 0), b) (2 2 0) reflection was
used.
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Figure 5.13.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Co2MnSi sample with zone axis [1 1 0] and
a systematic row condition including the a) (0 0 2), b) (2 2 0), c) (1 1 1)
reflection was used.
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Figure 5.14.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Co2CrAl sample with zone axis [0 0 1] and a
systematic row condition including the a) (2 0 0), b) (2 2 0) reflection was
used.
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Figure 5.15.: Simulation of the EMCD signal, as defined in equation (5.4), as a function
of the sample thickness. A Co2CrAl sample with zone axis [1 1 0] and
a systematic row condition including the a) (0 0 2), b) (2 2 0), c) (1 1 1)
reflection was used.
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ent dynamical diffraction effects when changing the scattering conditions. Simulations
for different materials but the same settings for zone axis and systematic row, exhibit
similar results, i.e. similar shapes of the EMCD signal when plotted with respect to the
sample thickness.

When for example comparing figures 5.6 and 5.8, one can see that the shape of the
plots are the same, only the thickness dependence is shifted for about 10 nm. This
can be seen easily when comparing the position of the intersection of the Ni and Mn
EMCD signal in the plot a) of both figures. The reason for this similarity can be found
in the proximity of In and Sn in the periodic table, thus leading to similar dynamical
diffraction effects. When comparing figures 5.6 and 5.7, one can also see that for the
same systematic row conditions but different zone axes, the results are also quite similar.
The same results as those described above can be seen in the plots of the other calculated
materials. The differences in the plots, i.e. in the thickness dependence of the EMCD
signal is more pronounced the larger the distance of the elemental constituents of the
Heusler alloys in the periodic table is.

In figure 5.16 the simulations of zone axis [0 0 1] and systematic row reflection (2 0 0)

are compared for different Heusler alloys. It can be seen that the results are similar
for Ni2MnIn and Ni2MnSn. The dynamical diffraction effects depend on the scattering
conditions and the extinction distance, which in turn shows an elemental dependence.
Thus, the results of the simulations are quite similar for the previously mentioned ma-
terials, as In and Sn are next to each other in the periodic table. On the contrary, the
simulations for the other materials yield quite different results.

For Ni2MnIn, simulations using 7 incoming and 6 outgoing Bloch waves were per-
formed and compared to the simulations using 3/4 Bloch waves. The comparison for
two different scattering conditions is shown in figure 5.17. As can be seen, only minor
differences are visible up to a thickness of about 60 nm. Therefore, the simulations us-
ing the lower number of Bloch waves are sufficient as predictions to compare with the
experimental spectra for samples with a moderate thickness.

5.4.2. Effects of beam convergence

As was mentioned in section 5.3, changing the beam convergence alters the experi-
mental conditions for EMCD measurements. While the actual experiments reported in
this work where all conducted with a somewhat converged electron beam, the Bloch
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Figure 5.16.: Comparison of the thickness dependent EMCD simulation for different ma-
terials. All calculations are made using the same experimental conditions.
The scattering geometry uses zone axis [1 0 0] and a systematic row condi-
tion including the (2 0 0) reflection. In each graph the calculated material
is denoted. Thus, the similarities and differences can be figured out easily.
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Figure 5.17.: Comparison of the thickness dependent EMCD simulation for a different
number of incoming and outgoing Bloch waves. All calculations are made
using the zone axis [1 0 0]. Comparing the simulations for a systematic
row condition including the (2 0 0) reflection, the calculation shown in a)
used 3 incoming and 4 outgoing Bloch waves, while in b) 7 incoming and
6 outgoing Bloch waves were used. The same holds for the simulations
shown in c) and d), respectively. It is evident that the results are quite
similar, only for thicker sample (60 nm and more), clear differences can be
seen.
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Figure 5.18.: Multislice simulation of the EMCD signal calculated using formula 5.4
if two positions mirrored across the systematic row are compared. The
experimental settings for the simulations are given in the text. The beam
convergence angle was 0.0 mrad, the centre of the electron beam was located
at the position of an atomic column. The transmitted beam and the (2 0 0)
reflection are marked with black dotted circles, while the Thales-circles
for the “standard” EMCD measurement positions are marked with white
dashed circles. As can be seen easily, the EMCD position at the thales
circle give a good EMCD signal.

wave simulations take a incoming plane wave as granted. Therefore, the effect of beam
convergence on the EMCD signal is investigate in order to determine, whether the plane
wave approximation is sufficient for comparison with the experiments.

The multislice program ixchel was used to do the calculations [16]. A simple bcc-
Fe sample was given as input, with a thickness of 100Å and a step size of 1Å. The
energy loss was set to that of the Fe L3-edge at 707 eV. The convergence angle of the
electron beam was changed from 0.0 mrad (a plane wave) to 20.0 mrad (used in aberration
corrected STEMs with down to 70 pm resolution) in steps of 2.0 mrad. The centre of
the electron beam was set to be at the position of an atomic column. The results of
some of the simulations are shown exemplarily in figures 5.18 to 5.23. A second series
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Figure 5.19.: Same as figure 5.18 but the beam convergence angle was changed to
2.0 mrad.
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Figure 5.20.: Same as figure 5.18 but the beam convergence angle was changed to
4.0 mrad.
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Figure 5.21.: Same as figure 5.18 but the beam convergence angle was changed to
6.0 mrad.
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Figure 5.22.: Same as figure 5.18 but the beam convergence angle was changed to
10.0 mrad.
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Figure 5.23.: Same as figure 5.18 but the beam convergence angle was changed to
16.0 mrad.

of simulations was performed. The settings were the same except for the centre of the
electron beam which was positioned between the atomic columns. Figures 5.24 and 5.25
show the results for convergence angle 0.0 mrad and 16.0 mrad. Comparing figures 5.18
and 5.24, no differences are visible. As these simulations resemble parallel illumination
of the sample in the TEM, this is exactly what was expected. However, comparing
figures 5.23 and 5.25, one can clearly spot differences in the calculated EMCD signal.
This is also expected, as the convergence angle of 16.0 mrad would allow for a spatial
resolution in the order of the distance between the atomic columns. When the beam
is located at the atomic columns, the “standard” measurement positions at the Thales-
circle would not yield a sufficient EMCD signal (see figure 5.23). When the centre
of the electron beam is positioned between two atomic columns, the above mentioned
“standard” detector positions would result in an EMCD signal with higher intensity
compared to the setting shown in figure 5.23. In both cases, the ideal measurement
positions are not at the Thales-circle anymore, but just above and below the intersection
of the 0 and G reflection.

As can be seen from the figures, the plane wave approximation is sufficient for the
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Figure 5.24.: Same as figure 5.18 but the position of the centre of the electron beam was
between the atomic columns.
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Figure 5.25.: Same as figure 5.24 but the beam convergence angle was changed to
16.0 mrad.
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measurements discussed in this work. The convergence angle used in the experiments is
in all cases smaller than 2.0 mrad. The simulation for such a convergence angle shows
that the measurement positions at the Thales-circle still give a good EMCD signal.

If one would like to conduct EMCD with atomic resolution, one has to take a look at
the simulations for 16 mrad. Positioning the EELS detector at the Thales-circle would
not yield a sufficient EMCD signal, if any. On the contrary, one would need to take
measurements further off the systematic row. As mentioned above, the simulations show
that the ideal detector position would be at the intersection of the 0 and G reflection.
As mentioned in section 5.3.2 atomic resolution EMCD could aso be achieved using the
generation of vortex beams or investigating variations in the energy filtered diffraction
pattern.

5.5. Calculating magnetic moments

In order to understand the magnetic behaviour of materials, the magnetic moment of
individual atoms is an important quantity to investigate. Sum rules to calculate the
spin magnetic moment ms and orbital magnetic moment ml of an atom can be applied
to XMCD spectra [58]. These XMCD sum rules can be written as [60]:∫

L3
σM(~ω)dω − 2

∫
L2
σM(~ω)dω∫

L3+L2
(σo(~ω) + σ+(~ω) + σ−(~ω))dω

=
2

3nh
〈Sz〉+

7

3nh
〈Tz〉 (5.10)∫

L3
σM(~ω)dω +

∫
L2
σM(~ω)dω∫

L3+L2
(σo(~ω) + σ+(~ω) + σ−(~ω))dω

=
〈Lz〉
2nh

, (5.11)

with 〈Lz〉 and 〈Sz〉 the ground state expectation values of the orbital momentum and
spin momentum operators. 〈Tz〉 is the magnetic dipole term. The absorption spectrum
with the photon spin parallel to the sample magnetisation is denoted by σ+, σ− is the
absorption spectrum with antiparallel orientation of the photon spin. If the photon spin
is orthogonal to the magnetisation, the absorption spectrum is described by σ0. The
magnetic dichroic signal is defined as σM = σ+ − σ−. As the above formula is valid for
excitations into d-states, nh describes the number of valence d holes.

Soon after the development of the EMCD technique, similar sum rules were derived
for use in the TEM [43, 44]. As a recurrent issue for all techniques making use of
interferometric EELS, the effect of the crystalline sample itself on the measured spectra
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is not negligible. The EMCD sum rules can be written as:∫
L3

(σ+ − σ−)dE − 2
∫
L2

(σ+ − σ−)dE∫
L3+L2

(σ+ + σ−)dE
= K

(
2

3

〈Sz〉
Nh

+
7

3

〈Tz〉
Nh

)
(5.12)∫

L3+L2
(σ+ − σ−)dE∫

L3+L2
(σ+ + σ−)dE

= K
1

2

〈Lz〉
Nh

, (5.13)

with 〈Sz〉
Nh

, 〈Lz〉
Nh

and 〈Tz〉
Nh

being the ground-state expectation value of the spin moment,
orbital moment and magnetic-dipole operators per electron hole in the d-bands, re-
spectively. The XMCD and EMCD sum rules look quite similar if they are compared.
Nevertheless, there is a quite important difference, which makes calculations much more
demanding when using the EMCD sum rules. Only for EMCD there is a coefficient K
which contains all information caused by dynamical diffraction effects in the crystalline
sample. As it is an almost hopeless endeavour to accurately describe K for an actual
experiment [44], one can obtain a formulation independent of K by taking the ratio of
the two previous equations:∫

L3
(σ+ − σ−)dE − 2

∫
L2

(σ+ − σ−)dE∫
L3+L2

(σ+ − σ−)dE
=

4 〈Sz〉+ 14 〈Tz〉
3 〈Lz〉

. (5.14)

As the contribution of the magnetic-dipole operator is usually very small [43], equation
(5.14) allows a direct evaluation of the ratio 〈Lz〉

〈Sz〉 from the acquired EMCD spectra. The
spin and orbital magnetic moments can be evaluated as [58]:

ml

ms

=
2

3

∫
L3+L2

(σ+ − σ−)dE∫
L3

(σ+ − σ−)dE − 2
∫
L2

(σ+ − σ−)dE
. (5.15)

A common problem seen in many EMCD measurements concerns the magnitude and
sign of the EMCD effect at the L2 edge. In XMCD, the effect at the L3 and L2 edge show
different sign, with the effect at the L2 edge being smaller in magnitude, which would also
be the expectation for EMCD. Apart from dynamical diffraction effects, which influence
both L-edges in a similar manner, it can be seen that in many measurements the effect
at the L2 edge is much smaller than expected or even has the same sign as the effect
at the L3 edge. Up to now, this behaviour is not fully understood [57]. Closely related
to this effect is the problem of an overestimation of the ratio ml

ms
compared to results

obtained with XMCD [44, 57, 61, 62]. In [62] these observations are explained to be
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Figure 5.26.: Sketch of the effect of convolution of the low-loss signal with the core-loss
signal, leading to an additional peak. If the L2 edge is near the L3 edge, it is
enhanced with a fraction of plural scattering signal from the L3 excitation.
Taken from [62].

related to multiple scattering effects. The convolution of the core-loss signal (L3 and
L2 edge) with the low-loss region leads to additional signal intensity (and eventually a
double peak structure) a few eV after the L2,3 edge due to the plasmon peak, see figure
5.26. If the L2 edge is near the L3 edge, it is enhanced with a fraction of plural scattering
signal from the L3 excitation. The fractions of the measured core-loss signal and their
origin can be described as follows:

σ+ =

L3︷ ︸︸ ︷
NL3 +ML3 +[

L2 net︷ ︸︸ ︷
NL2 +ML2 +

plural scattering︷ ︸︸ ︷
k(NL3 +ML3)] (5.16)

σ− = NL3 −ML3︸ ︷︷ ︸
L3

+ [NL2 −ML2 + k(NL3 −ML3)]︸ ︷︷ ︸
L2 total

, (5.17)

with N and M denoting the non-magnetic and magnetic fraction of the measured signal
and k = APl/AZLP is the ratio of the energy integral of zero-loss peak AZLP and plasmon
peak APl [62]. The EMCD signal (difference spectrum) can be written as

∆σ = 2ML3︸ ︷︷ ︸
L3

+ [2ML2 + 2kML3 ]︸ ︷︷ ︸
L2

. (5.18)

When evaluating the influence of plural scattering in the EMCD sum rules, one arrives
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Figure 5.27.: Sum and difference of the Mn L2,3-edge energy-loss spectra of Ni2MnIn
acquired at the two EMCD positions are shown. Furthermore, the back-
ground fit used for the calculation of the magnetic moments is depictec.

at an expression [62]:
ml

ms

∣∣∣∣
obs

≈ ml

ms

∣∣∣∣
net

(
1 +

4k

3

)
+

2k

9
, (5.19)

describing the change of the observed ratio of magnetic moments due to plural scattering
effects.

The spin and orbital magnetic moments are calculated for the Mn L2,3-edge of an
Ni2MnIn Heusler alloy, taken exemplarily for the measured EMCD spectra in this work.
In figure 5.27 the sum and difference of the energy-loss spectra acquired at the two EMCD
positions are shown, as well as the background fit used to determine the integration limit
as described in [63]. For the fit-function the following formula was used [57]:

f = h

[
2

3

(
1

2
+

1

π
arctan

E − L3

δE

)
+

1

3

(
1

2
+

1

π
arctan

E − L2

δE

)]
, (5.20)

with L3 and L2 the energies of the respective core-loss edges, δE the energy resolution
and h a fit parameter determined by the intensity of the post-edge background.

Using equation (5.15), the measured spectra yield a ratio of ml/ms = 1.21 ± 2.66,
with an error higher than expected. The value of ml/ms should lie between 0.05 and
0.14, as it was determined by means of XMCD [64]. The errors given for the result of
the calculation of ml/ms arise mainly from the spectral noise in the spectra used for
evaluation, as described in [65]. Assuming poisson noise and subsequent propagation of
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Figure 5.28.: Sum and difference of the Fe L2,3-edge energy-loss spectra of magnetite
acquired at the two EMCD positions are shown. Furthermore, the back-
ground fit used for the calculation of the magnetic moments is depictec.

errors in formula (5.15) yield the errors given above. Considering the effect of multiple
scattering, equation (5.19) can be used to calculated a corrected value of the ratio of
magnetic moments. As the sample thickness was ∼ 50 nm, a value of k = 0.3 was
assumed, in analogy to [62]. This leads to ml/ms = 0.66, which is still too high.

It can be seen from figure 5.27 that there is no EMCD effect visible at the L2 edge.
The reason for this behaviour is still unclear [57]. Including multiple scattering effects
in the calculation improves the determined values for ml/mS, but for measurements
exhibiting no EMCD effect at the L2 edge, the calculated values are still considered to
be unreliable.

The sum and difference of the Fe L2,3-edge energy-loss spectra of magnetite, acquired
at the same EMCD positions as above is shown in figure 5.28. The depicted measure-
ments exhibit an EMCD effect at the L3 edge as well as at the L2 edge. The ratio
of the orbital and spin magnetic moments can be determined as ml/ms = 0.12 ± 0.02

using equation (5.15). This value fits quite good to values acquired by means of DFT
simulations [66] (ml/ms = 0.11) and it is similar to the ratio of the magnetic moments
determined by XMCD [66] (ml/ms = 0.18). Thus, one can see that for magnetite, the
methods for calculating the ratio of the orbital and spin magnetic moments from EMCD
measurements give satisfying results. It is evident that in contrast to the Ni2MnIn meas-
urements shown in figure 5.27, the magnetite experiments exhibit an EMCD effect on
both edges, L3 and L2 (figure 5.28).



Part III.

Applications

71



6. EMCD investigation of Heusler
alloys

6.1. Introduction

The following chapter describes investigations performed as part of a german project
called “Ferroic cooling” in which a number of universities and research institutions col-
laborate. The aim of the project is to investigate and design possible materials for
ferroic cooling applications. The most promising materials turned out to be Heusler
alloys. Sections 6.2, 6.3 and 6.4 give an overview of Heusler compounds as well as their
magnetocaloric properties.

In collaboration with the Bielefeld University, TEM investigations were conducted
at the Vienna University of Technology. The goal of these microscopical studies was
to characterise the materials produced by the collaborating institutions and to decide
whether or not they are suitable for the required tasks in the project. Therefore, beyond
standard TEM investigations, EMCD measurements were performed, as it is a versatile
method to investigate the magnetic properties of samples on a nanoscale. The technique
was applied to a number of Heusler alloys to investigate the change of magnetic mo-
ments across a magnetostructural phase transition. The results of these experiments are
described in section 6.5. Furthermore, the reliability of the EMCD technique applied to
this specific task will be discussed.

6.2. Heusler compounds

Heusler alloys are a versatile class of materials as they exhibit a variety of magnetic
properties, such as magneto-optical, magneto-structural and magneto-caloric effects [67].
A number of Heusler compounds can be characterised as half-metals, which show a

72



6. EMCD INVESTIGATION OF HEUSLER ALLOYS 73

semiconducting nature for electrons of one spin direction while they are conducting for
electrons of the other spin direction. Nota bene: one should not confound half-metals
with semi-metals nor with metalloids which in German are referred to as “Halbmetalle”.
In general, one can distinguish between Half-Heusler materials with a stoichiometry of
1 : 1 : 1 and (full) Heusler alloys with a 2 : 1 : 1 stoichiometry. The following descriptions
will deal with the properties of the full Heusler materials, as only such alloys were in the
focus of investigation.

Heusler materials can be described by the formula X2YZ with X and Y usually be-
ing transition metals and Z as a main group element. These compounds crystallise
in the cubic space group Fm3̄m (space group no. 225), the X-element occupies the
Wyckoff position 8c (1/4, 1/4, 1/4), the Y-element position 4a (0, 0, 0) and Z the 4b
(1/2, 1/2, 1/2) position. This structure is also referred to as L21 structure according
to the “Strukturberichte”-nomenclature and the prototype material is Cu2MnAl [67].
The described phase is the Heusler’s austenitic or high-temperature state. A schematic
of the unit cell is shown in figure 6.1. Upon decreasing the temperature, the com-
pounds can undergo a phase transition into the martensitic state with a number of
possible structures [68]. For NiMn based Heusler compounds, especially those with a
non-stoichiometric concentration of the Z-element, the transformation results in a tetra-
gonal L10 structure, as this is the structure of Ni50Mn50 in its ground state. Moreover,
modulated structures can be found below the martensitic transformation temperature Tf,
mostly for compounds with a higher concentration of the Z-element. The most common
modulated structures are referred to as “5M” and “7M” or sometimes also called “10M”
and “14M”, respectively. The “M” refers to the monoclinicity present in the distortions
connected with the modulation [68]. A sketch of the modulated structures can be seen
in figure 6.2, a HRTEM image of the austenitic and the martensitic phase in a NiMnSn
Heusler is shown in figure 6.3.

According to [68], Ni2MnSn is the only stoichiometric Heusler alloy that shows no
volume change during the martensitic transition, while other Heusler compounds do
show such a volume change. Figure 6.4 shows the dependence of the martensitic trans-
ition temperature on the elemental concentration of the Z-element for three different
Heusler compounds. The elemental concentration of Z also governs the valence electron
concentration per atom (e/a). As will be shown, this value is a very important one
to characterise the properties of a Heusler compound. Alloys containing different ele-
ments but the same valence electron concentration show very similar properties. The
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Figure 6.1.: Schematic of the Fm3̄m structure of Heusler alloys, using Ni2MnSn as ex-
ample material. This schematic holds for all stoichiometric Heusler com-
pounds in the austenitic phase with the X element occupying the blue po-
sitions, the Y and Z elements the brown and green positions, respectively.
This figure was taken from [51].

Figure 6.2.: Sketch of the “5M” (left) and “7M” (right) modulated structures in a top
view. This figure was adapted from [68].
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Figure 6.3.: HRTEM image of a Ni2MnSn Heusler showing martensitic (top) and aus-
tenitic regions. The contrast of the modulated structure of the martensitic
phase can be seen easily. In the austenitic phase no such modulations are
visible.

Figure 6.4.: Structural phase diagram of NiMnZ Heusler alloys for three different Z-
elements: Sn (a), In (b) and Ga (c). On the top edge, the concentration
of the Z-element in atomic percent is given, while on the bottom edge the
corresponding valence electron concentration per atom (e/a) is given. This
graph was taken from [68].
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figure also shows the regions where the cubic parent structure, the “10M”-modulated,
the “14M”-modulated structure and the L10 tetragonal phase are formed.

The formation of the energy levels in Heusler compounds is described in [67] using the
example of a Fe2VAl Heusler. The s and p orbitals of Fe and Al form hybridised bonding
and antibonding a1 and t2 levels while the iron’s d orbitals split into e and t2 energy
levels. This electronic structure can be seen as that of an [FeAl] compound which in turn
hybridises with the remaining Fe and V atoms. The e and t2 states of the two Fe atoms
form then a pair of e and t2g states (bonding and antibonding) while the V d states are
inserted inbetween this pair of energy levels close to the Fermi level, also as e and t2g

states. The density of states near the Fermi level determines the semiconducting and
magnetic properties of the Heusler alloy. There happens to be a “24-electron-rule” for
Heusler-alloys incorporating more than one transition metal [67]. This rule states that a
compound is semiconducting as long as it has 24 valence electrons. Changing the number
of the valence electrons turns the Heusler alloy into a paramagnetic or ferromagnetic
metal. The electronic structure of a number of Heusler-alloys and their corresponding
properties are also described and calculated in [69] using density functional theory. In
that work it is shown that in order to calculate the electronic properties using DFT,
care has to be taken which kind of exchange-correlation functional is chosen.

Concerning the magnetic properties, similar to the Slater-Pauling rule for binary al-
loys, an analogue formula can be used to calculate the magnetic moment per formula
unit:

mX2Y Z = NV − 24, (6.1)

with NV the number of valence electrons per formula unit [67]. The Heusler compounds
consist of two magnetic sublattices which can show a ferromagnetic or antiferromagnetic
interaction.

Even a small atomic disorder in the structure leads to a quite different electronic struc-
ture and thus to different magnetic properties. Therefore, analysing the structure of the
investigated compounds is crucial to interpret their behaviour. This can be done for ex-
ample by combining electronic structure calculations and XAS [70]. For the investigated
materials in this work, usually x-ray diffraction patterns were recorded by the producing
institutions before the beginning of the sample preparation for TEM investigations.
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Figure 6.5.: Schematic of the hybridisation of orbitals/energy bands in Heusler materials
using the example of Fe2VAl. In the upper part (a) the hybridisation of Fe
and Al is shown, while in the lower part (b) the hybridised energy bands
of the combination of [FeAl] with V and the second Fe atom is depicted.
Taken from [67].
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6.3. Magnetocaloric effect

In a review article [68], the magnetocaloric properties of ferromagnetic Heusler com-
pounds are described in detail using NiMn-based alloys as example materials. Mag-
netocaloric effects can be found in any magnetic material due to the connection of
thermal and magnetic material properties. The effects can be measured as a temperature
change (if the process is adiabatic) or an entropy change (if the process if isothermal)
when changing an external magnetic field. Heusler-alloys are an interesting class for
making use of the magnetocaloric properties, as the observable effects can be tuned by
changing the elemental composition of the compounds.

The magnetocaloric effect shows up in the vicinity of the martensitic transition of
Heusler compounds. The conventional magnetocaloric effect shows a negative entropy
change for this transition, while the inverse effect is defined by a positive entropy change.
As an interesting example, Ni2MnGa is a material that exhibits the inverse effect for
applied magnetic fields below 1 T while it shows the conventional effect for higher field
strengths. However, there are other NiMn-based Heusler-alloys showing the inverse
magnetocaloric effect for the whole range of the studied magnetic fields [68].

Some general formulations of the magnetocaloric effect are given here, following the
deduction in [68] and [71]. In general, a system can be described using generalised
displacement variables {X i}, i = 1, . . . , n and their corresponding conjugated generalised
forces or fields {xi}, i = 1, . . . , n. For example, the conjugated fields for the displacement
variables volume, magnetisation and polarisation are pressure, magnetic field and electric
field, respectively. The internal energy of the examined system is then

U = U(S, {X i}), (6.2)

with S being the entropy of the system. The temperature as the conjugated variable to
the entropy is defined as

T =

(
∂U

∂S

)
{Xi}

(6.3)

and the other conjugated general forces or fields are given by

xi =

(
∂U

∂X i

)
S,{Xj 6=i}

. (6.4)
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The tensorial product xi · dX i describes the work connected with a differential change
of the generalised displacement caused by the corresponding generalised field.

The dependence of {X i} on the entropy gives rise to the observed caloric effects, thus
leading to

dS =
C

T
dT +

n∑
i=1

(
∂X i

∂T

)
xj=1,...,n

· dxi, (6.5)

making use of the definiton of the heat capacity(
∂S

∂T

)
xj=1,...,n

=
C

T
(6.6)

and the generalised Maxwell relations(
∂S

∂xi

)
T,xj 6=i

=

(
∂X i

∂T

)
xj=1,...,n

. (6.7)

The isothermal change of entropy by changing a generalised field xi from a value 0 to
xi,f is given by

∆S0→xi,f
=

∫ xi,f

0

ξi · dxi, (6.8)

while the adiabatic temperature change is described by

∆T0→xi,f
= −

∫ xi,f

0

T

C
ξi · dxi, (6.9)

with ξi =
(
∂Xi

∂T

)
xj=1,...,n

. The function ξi is called response function and quantifies
entropy changes resulting from ordering and disordering effects induced by the corres-
ponding field [68]. For the magnetocaloric effect, the relevant field is the magnetic field
µ0H, the generalised displacement is the magnetisation M and the response function is
described by ξM =

(
∂M
∂T

)
H,...

. The isothermal entropy and adiabatic thermal changes are
then given by

∆S0→Hf
= µ0

∫ Hf

0

ξM · dH (6.10)

and

∆T0→Hf
= −µ0

∫ Hf

0

T

C
ξM · dH. (6.11)

In [68] it is pointed out that the response function ξM in general is negative, giving
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the conventional magnetocaloric effect. Nevertheless, positive values for the response
function are not thermodynamically forbidden, which in turn gives rise to the inverse
magnetocaloric effect where a magnetic field causes increasing entropy and decreasing
temperature.

For magnetostructural phase changes where magnetic and structural changes occur,
near the transition the magnetisation can be described as [68]:

M(H,T ) = M0 + ∆M(H)F
[
T − Tt(H)

∆T (H)

]
. (6.12)

M0 is assumed to be constant independent of all temperature and field dependencies of
the magnetisation outside the transition region and ∆M is the change of magnetisation
when switching between the low temperature and high temperature phases of the Heusler
compound. F is a function that varies between 0 and 1 in the interval ∆T (H) and
Tt is the estimated transition temperature which is usually taken from experimental
magnetisation curves. For an ideal transition no hysteresis would occur leading to ∆T →
0 and lim∆T→0F = Θ(T − Tt). For the isothermal entropy change one gets

∆S =

−
µ0∆M
|α| for T ∈ [Tt(0), Tt(H)],

0 for T /∈ [Tt(0), Tt(H)],
(6.13)

with α = dTt
dH

. α is related to the magnetic analogon of the Clausius-Clapeyron equation

dTt
dH

= −µ0
∆M

∆St
, (6.14)

which indicates that the field-induced entropy change corresponds to the transition en-
tropy change ∆St [68, 72]. The shift of the transition temperature Tt(H) with the
magnetic field is

∆Tt = Tt(H)− Tt(0) = −µ0
∆M

∆St
H. (6.15)

For ∆M > 0 and α > 0 the conventional magnetocaloric effect is present, while for
∆M < 0 and α < 0 the inverse magnetocaloric effect is observed [68]. The inverse effect
can occur, for example, if the magnetisation in the lower temperature phase is lower than
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that of the higher temperature phase. The maximal change of temperature is given by

∆Tmax '
T∆St
C

. (6.16)

Usually, magnetostructural transitions can be observed over a certain temperature range,
which can be traced back to the existence of composition gradients, defect structures,
etc.

The experimental determination of the field induced entropy change for a temperature
T can be facilitated by the measurement of the magnetisation M as a function of the
field H. In principal, this corresponds to numerically integrating equation (6.10) [71].
However, in practice, such a procedure would introduce a significant error in the result.
Therefore, calculating the entropy change for an average temperature in an interval
Tav = (Tu − Tl)/2 by measuring two magnetisation isotherms at the temperatures Tu
and Tl is the method of choice [71]:

∆SM(Tav)∆H =

∫ HF

HI

(
∂M(H)Tav

∂T

)
H

dH (6.17)

with ∆H = HF −HI . Another way to determine the entropy change would include the
determination of the heat capacity [71]:

S(T )H =

∫ T

0

C(T )H
T

dT + S0,H , (6.18)

with S0,H as the zero-temperature entropy. The magnetic entropy change for ∆H can
be calculated as the isothermal differece of equation (6.18) for H = HI and H = HF :
∆SM(T )∆H = [S(T )HF

− S(T )HI
]T . The adiabatic temperature change can also be

calculated as ∆Tad(T )∆H
∼= [T (S)HF

− T (S)HI
]S, for details see [71].

Temperature dependent measurements of the magnetisation reveal some properties of
the investigated Heusler alloys. In figure 6.6 the magnetisation of a NiMnIn Heusler is
plotted with respect to the temperature. From the shape of the magnetisation curve a
number of important temperature regions can be deduced. When decreasing the tem-
perature of the austenitic Heusler, the magnetisation rises as the ferromagnetic ordering
sets in. Upon further decrease of the temperature, at some point the magnetisation
also decreases, which marks the beginning of the martensitic transformation. When the
transformation is finished, the magnetisation curve reaches a local minimum. Finally,
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Figure 6.6.: Field cooling and field heating magnetisation measurements of a
Ni50Mn34.5In15.5 Heusler compound. Different colours correspond to dif-
ferent magnetic fields in which the measurements were conducted. Data
provided by TU Darmstadt.

an increase of the magnetisation is seen, as the ferromagnetic ordering of the martensitic
state occurs. When going through this process in the reverse direction by heating up the
sample, a hysteresis can be clearly seen. From such measurements, the transformation
temperature Tt can be deduced.

As mentioned in section 6.2, the valence electron concentration per atom (e/a) governs
the temperature range in which the martensitic transformation occurs. Thus, the trans-
formation temperature is different for Heusler compounds of different elemental com-
position and also for different concentrations of the constituents if non-stoichiometric
compounds are taken into consideration.

6.4. Ferroic cooling

The investigations of Heusler alloys reported in this work are part of a priority pro-
gramme of the “Deutsche Forschungsgemeinschaft” (DFG), which deals with the question
of how to use diffusionless transformations in cooling applications most efficiently. The
method of choice turned out to be the usage of materials exhibiting a magnetocaloric
effect as described in section 6.3. Therefore, a number of different Heusler compounds
are in the focus of investigation in order to determine their magnetic properties and
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Figure 6.7.: Schematic drawing of the principle of a cooling cycle. Adopted from [73].
The details of the magnetocaloric cooling cycle are described in the text.

suitability for the aforementioned task.
Figure 6.7 shows the principle of a magnetocaloric cooling cycle. Starting at the bot-

tom left, the material is in its austenitic state at a certain temperature. Applying a
magnetic field induces the martensitic transformation. For a material exhibiting the
conventional magnetocaloric effect, this includes a decrease of the entropy and an in-
crease of temperature. This heat is released to an external reservoir (top right in the
sketch). After removal of the external magnetic field, the material cools down as it
transforms back in its austenitic state. It can then be connected to the reservoir which
has to be cooled. For a material with inverse magnetocaloric properties, the effect of
applying and removing the magnetic field would be interchanged.

This process is referred to as “ferroic cooling”. It is noteworthy that the possible
temperature change achieved in such a process is in the range of a few Kelvin [73].
The application of this technique is considered to lie in the field of spintronics and
nanotechnology.

The goal of the Bielefeld University’s project part was the production and investigation
of the magnetic properties of different Heusler alloys. Furthermore, the possibility of
the usage of multilayered systems incorporating materials with conventional and inverse
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Table 6.1.: Overview of the investigated Heusler-alloys. The given stoichiometry is the
nominal one as stated by the producing workgroup. Tt denotes the trans-
ition temperature between the martensitic and the austenitic phase of the
Heusler-alloys. The column “Producer” mentions the institution where the
respective sample was produced and the column “EMCD” states whether
EMCD measurements were performed on the respective sample.

Sample Tt Producer EMCD
Ni2MnSn – IFW Dresden yes
Ni52Mn33.3Sn14.7 235 K Uni Bielefeld yes
Ni50Mn34.5In15.5 120 K TU Darmstadt yes
Ni2MnSn – Ni2MnGa double layer – Uni Bielefeld yes
Ni49.4Mn36.9Sn13.7 – gradient 290 K Uni Bielefeld yes
Ni41Co10.4Mn34.8Al13.8 348 K Uni Bielefeld no
Co2CrAl on GaAs – Uni Bielefeld no
Ni56.1Mn17.3Ga26.6 – gradient 290 K Uni Bielefeld no
Sn–Ga–Sn Heusler triple layer – Uni Bielefeld no

magnetocaloric effects was in the focus of the investigation. The tasks reported in this
work included the structural and elemental analysis of the produced materials using
electron microscopical studies. Furthermore, the technique EMCD was applied to gain
more knowledge about the magnetic properties of the investigated materials across the
phase transition by performing in-situ EMCD studies while respective heating or cooling
of the samples was conducted.

In the next section, an overview of the investigated samples is given, followed by the
respective results.

6.5. Investigation of Heusler alloys

6.5.1. Overview of the investigated samples

A list of the investigated samples is given in table 6.1. The transition temperature Tt
is given for each sample (if applicable), as well as the institution which has produced
the respective material. All samples were grown on MgO as a substrate except one,
which was grown on GaAs and is marked in the table as such. Furthermore, it is men-
tioned, whether EMCD measurements were performed on a sample. Those samples, on
which EMCD experiments were conducted, are discussed in more detail in the following
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subsections. For the other samples, a short discussion is given afterwards.
If not mentioned otherwise, the samples were prepared for TEM analysis by cutting

and polishing. This procedure was followed by subsequent thinning using a Gatan PIPS
ion mill system. Some of the samples were instead prepared using a focused ion beam
(FIB) system (FEI Quanta 200 3D Dual-beam FIB), followed by subsequent milling
using a TechnoorgLinda Gentlemill system.

All investigations were performed using a FEI Tecnai G2 TF20 transmission electron
microscope operated at 200 kV. It is equipped with an EDAX Octane SDD EDX detector
and a Gatan GIF Tridiem imaging filter. In regular operating conditions, the magnetic
field of the objective lens system is about 2 T. This has to be kept in mind for the
investigation of the magnetocaloric effect, as this is the field applied to the Heusler
samples during measurements.

For all samples reported in this work, a thorough structural and elemental analysis was
performed. These investigations included standard TEM imaging, high resolution TEM
imaging, acquisition of diffraction patterns, as well as energy dispersive X-ray (EDX)
analyses and EELS analyses. Not only is this information important for characterising
the Heusler alloys for possible ferroic cooling applications but also necessary for EMCD
measurements, as these factors are of great influence on the detected EMCD signal.

The analysis of the EDX data was performed using the TEAM software version 4.2
by EDAX. The analysis of all images, diffraction patterns and EEL spectra was done
using the Digital Micrograph software, in its version GMS 2.3 by Gatan.

6.5.2. Ni2MnSn and Ni52Mn33.3Sn14.7

The Ni2MnSn sample provided by the Leibniz Institute for Solid State and Materials
Research (IFW) Dresden is ideally suited to compare the experiments with theoretical
predictions as its nominal elemental composition is that of a stoichiometric full Heusler
alloy. The sample produced at the Bielefeld University has a nominal composition which
is not stoichiometric but as it would be used in ferroic cooling applications. Therefore,
comparing the results of both samples, the applicability of the methods used for invest-
igation can be studied.

An overview bright field TEM image of the Ni2MnSn sample provided by the IFW
Dresden is shown in figure 6.8 a) and an overview of the Ni52Mn33.3Sn14.7 sample provided
by the University of Bielefeld in figure 6.8 b). The Bielefeld sample was prepared for
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Figure 6.8.: a) Bright field TEM image of the investigated region of the IFW sample
(Ni2MnSn). b) HRTEM image of the Bielefeld sample (Ni52Mn33.3Sn14.7).
The bottom area shows the MgO substrate, in the central region of the
image the 30 nm thick Ni52Mn33.3Sn14.7 layer is visible and the top region
shows residual adhesive from the preparation process. In the Heusler layer
the modulated structure of the martensitic phase is evident.

Table 6.2.: Comparison of the nominal and the experimentally determined elemental
compositions of the two Ni2MnSn samples.

Ni [at%] Mn [at%] Sn [at%]
Nominal IFW: 50.00 25.00 25.00
IFW: 57.30± 5.70 24.94± 2.50 17.76± 1.80
Nominal Bielefeld: 52.00 33.30 14.70
Actual Bielefeld: 59.70± 1.44 33.94± 1.00 6.34± 1.84

TEMmeasurements using a FIB system, while the IFW sample was prepared by “conven-
tional” polishing. It is evident from the images that the IFW sample is in its austenitic
phase, while the Bielefeld sample shows a modulated (“fishbone-like”) structure typical
for the martensitic phase. The diffraction patterns presented in figure 6.9 give rise to the
same conclusion. Both samples were investigated at room temperature which indicates
that for the two samples the transition temperature Tt is different.

The reason for this behaviour can be found in the different elemental composition of
the two samples. Table 6.2 lists these elemental compositions as determined by EDX
spectrometry and compares it to the nominal one. The IFW sample shows a slightly
larger amount of Ni and a lower one of Mn and Sn compared to the nominal values.
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Figure 6.9.: a) Diffraction pattern of the austenitic Ni2MnSn Heusler sample. b) Diffrac-
tion pattern of the martensitic Ni52Mn33.3Sn14.7 sample acquired by means
of a FFT of a HRTEM image.

Furthermore, the Bielefeld sample has again a lower concentration of Sn compared to
the nominal values while the Ni and Mn concentrations are higher. This would raise
the transition temperature compared to the IFW sample (see also the middle panel of
figure 6.4).

EMCD measurements of the two samples are compared in table 6.3. For each EMCD
measurement the respective sample thickness is given. It was determined using low
loss EELS and the log-ratio method. An example for the EMCD measurements on
the IFW Ni2MnSn Heusler alloy is shown in figures 6.10 and 6.11, which correspond
to the measurement No. 7 in table 6.3. Background subtraction was performed using
a power-law fit, alignment of the spectra was done by the integral over the post-edge
background.

In figure 6.12 and 6.13 the experimentally determined values for the EMCD signal in
the IFW sample are plotted and compared to the respective simulations. The simula-
tions were performed using a simulation program developed at the Vienna University of
Technology [11]. The actual thickness of the sample lies within a window of 10% around
the value determined using low-loss EELS. The standard deviation for the EMCD signal
was determined by subsequent propagation of the calculated standard deviations of a
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Table 6.3.: Measured EMCD signals on the Mn-L2,3 edge and the Ni-L2,3 edge of the two
investigated Ni2MnSn samples.

IFW sample Mn: 640 eV Ni: 855 eV
Pos. EMCD signal EMCD signal Thickness
1 2.2% 0.9% 28 nm
2 −1.6% 2.3% 28 nm to 43 nm
3 9.3% 2.2% 43 nm
4 −8.8% 9.5% 38 nm
5 −11.9% −3.0% 29 nm
6 23.1% 6.3% 42 nm
7 19.9% −0.5% 42 nm
8 19.3% 13.7% 38 nm
9 5.1% −12.5% 62 nm

Bielefeld sample Mn: 640 eV Ni: 855 eV
Pos. EMCD signal EMCD signal d
1 19.0% −12.0% for all pos. ca. 45 nm
2 −2.0% 13.0%
3 5.0% 5.0%
4 12.0% −4.0%
5 7.0% −3.0%
6 4.0% −16.0%
7 2.0% 12.0%
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Figure 6.10.: EMCD measurements on the Mn-L2,3 edge of the Ni2MnSn Heusler sample
provided by the IFW Dresden. Background subtraction was performed and
the spectra were aligned by integral of the post-edge background.
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Figure 6.11.: EMCD measurements on the Ni-L2,3 edge of the IFW Ni2MnSn sample.
Background subtraction was performed and the spectra were aligned by
integral of the post-edge background.

pre-edge background region of the measured spectra. The difference between the two
figures is that a different systematic row was set up for the measurements no. 6 to 9 in
table 6.3. The measurements conducted with the systematic row including the (2 2 0)

reflection (figure 6.12) show a quite good agreement of the Mn EMCD signal with the
predictions of the thickness dependence. The Ni EMCD signal, on the contrary, is quite
different from the simulated values. The measurements shown in figure 6.13 show a
similar behaviour. The Mn measurements follow in general the shape of the simulation.
The Ni measurements exhibit far more deviation from the calculated numerical values.
Figure 6.14 shows the experimentally determined EMCD signals of the Bielefeld sample
in comparison to the simulation. In this case, some of the experimental values for Mn
fit to the simulations. Nevertheless, there are more measurements that deviate from the
predicted values than with the stoichiometric Ni2MnSn sample. For the EMCD meas-
urements at the Ni L2,3-edge, the results are quite similar to those of the stoichiometric
sample. Only a few measurements correspond to the simulated values.

6.5.3. Ni50Mn34.5In15.5

In figure 6.15 an overview of the investigated area of the Ni50Mn34.5In15.5 sample is shown
together with a high resolution zoom in of the region. The lattice planes are clearly vis-
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Figure 6.12.: Comparison of the experimentally determined EMCD values of the
Ni2MnSn sample provided by the IFW Dresden with the calculated pre-
diction of the thickness dependence of the EMCD signal.
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Figure 6.13.: Comparison of the experimentally determined EMCD values of the
Ni2MnSn sample provided by the IFW Dresden with the calculated pre-
diction of the thickness dependence of the EMCD signal.
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Figure 6.14.: Comparison of the experimentally determined EMCD values of the
Ni52Mn33.3Sn14.7 sample provided by the Bielefeld University with the cal-
culated prediction of the thickness dependence of the EMCD signal.

Table 6.4.: Nominal elemental composition of the NiMnIn Heusler alloy compared to the
experimentally determined compositions, which were acquired using EDX
spectrometry at different positions on the sample.

Ni [at%] Mn [at%] In [at%]
Nominal: 50 34.5 15.5
EDX 2: 57.45± 5.86 19.35± 2.78 23.20± 4.20
EDX 3: 66.50± 4.53 17.14± 2.10 16.36± 4.14

ible in the HRTEM image and no modulations, which are typical for the martensitic
phase, are present. This indicates that the Heusler alloy is in its austenitic state at
room temperature. This is also indicated by the diffraction pattern shown in figure 6.16.
Using EDX analysis, the elemental composition of the sample in two different regions
was determined, see table 6.4. The measurements show that in contrast to the nom-
inal composition provided by the TU Darmstadt, the Mn concentration is (significantly)
lower than expected, while the Ni concentration is enhanced. Furthermore, the In con-
centration is very inhomogeneously distributed in the sample. This suggests that the
temperature of the martensitic transition Tt is changed compared to that of the nominal
Heusler alloy. Comparing with figure 6.4, a higher amount of In would suggest a de-
creased transition temperature and vice versa. Furthermore, due to the inhomogeneous
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Figure 6.15.: a) Bright field TEM image of the investigated sample region of the
Ni50Mn34.5In15.5 sample. The dark contrasts and lines visible in the image
are bending contours, the brighter regions indicate smaller sample thick-
ness than the surrounding area. b) High resolution TEM image of the
investigated area. The lattice planes are visible. This indicates on the one
hand that the sample is crystalline in this region, on the other hand that
the sample is in its austenitic state at room temperature as the typical
martensitic modulations of the lattice planes are missing.
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Figure 6.16.: Diffraction pattern of the Ni50Mn34.5In15.5 sample acquired at a camera
length of 300 mm. The pattern shows the systematic row conditions that
were used for the EMCD measurements. According to the pattern, the
sample is slightly tilted out of the the [0 0 1] zone axis and the systematic
row includes the (2 2 0) reflection.
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Figure 6.17.: Bright field image of the Ni50Mn34.5In15.5 sample after cooling down to
120 K. The streaks running from the center to the bottom left part of the
image are the sample regions which already transformed to the martensitic
phase.

elemental distribution, the transition is expected to occur in different sample regions at
varying temperatures.

In figure 6.6 field cooling and field heating magnetisation curves, measured in the
workgroup of O. Gutfleisch at the TU Darmstadt, are shown. The temperature de-
pendent magnetisation curves measured at different magnetic fields exhibit a thermal
hysteresis between 220 K and 260 K. As already mentioned in section 6.3, from mag-
netisation measurements the martensitic transition temperature Tt can be determined
as ∼ 240 K.

For further investigations, the sample was cooled down below the transition temper-
ature Tt using a Gatan cooling sample holder. In figure 6.17 a bright field image of
the investigated sample region at a temperature of 120 K is shown. There are some
“lamellae” or streaks visible in the image. These are the sample regions which already
transformed to the martensitic state, while the rest of the sample is still in its aus-
tenitic phase. There are several reasons, why not the whole sample has transformed
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Figure 6.18.: Series of bright field image of the Ni50Mn34.5In15.5 sample taken while heat-
ing up to room temperature. The streaks representing the martensitic
phase of the sample become fainter while heating up. This indicates that
the martensitic phase is transforming back to the austenitic state.

already. One is that, as mentioned above, the elemental composition was determined to
be different from the nominal one and quite inhomogeneous. Thus, the actual transition
temperature has changed as its value strongly depends on the composition of the Heusler
compound. Another fact that has an influence on the observed phase transformation, is
that the temperature is measured at the tip of the sample holder and not at the sample
itself. Therefore, due to thermal conduction effects, the sample’s actual temperature is
somewhat higher than the one stated by the sample holder cooling control unit.

Figure 6.18 shows a series of bright field images, recorded during heating the sample
back to room temperature. From these images it can be seen that the martensitic streaks
are shrinking and fainting until they vanish completely at room temperature. This would
indicate that the whole sample region has transformed back to its austenitic state.

EMCD experiments were performed in the TEM mode using a converged beam with a
convergence angle of about 1 mrad. The SEA was positioned at the two EMCD positions
on the Thales circle spanned by the 0 and G reflection of the systematic row (see figure
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Table 6.5.: Measured EMCD signals on the Mn-L2,3 edge and the Ni-L2,3 edge of the
Ni50Mn34.5In15.5 sample. The sample temperature is given in the first column,
“RT” denotes room temperature.
Sample pos. 1 Mn: 640 eV Ni: 855 eV
T EMCD signal EMCD signal Comment
RT 0% −2%
RT −13% −9%
RT 16% 20% after cooling
RT 15% 12% after cooling
RT −2% −2% after cooling
120 K 17% bad S/N ratio
120 K 5% −5% bad S/N ratio
120 K 10% 13%
240 K −18% −24%
240 K −7% −1%
240 K 7% −9%

Sample pos. 2 Mn: 640 eV Ni: 855 eV
T EMCD signal EMCD signal Comment
RT 1% 0%
RT 16% 2%
RT 11% 2%
RT 1% 4% after cooling
RT 5% −3% after cooling
RT 7% −2% after cooling
160 K 2% 4%
160 K −2% 8% bad S/N ratio
160 K 1% 2% bad S/N ratio

6.16 as well as the nomenclature in figure 5.3 and section 5.3). The beam was converged
in order to improve the signal to noise ratio and to reduce the acquisition time. Usually,
the maximal beam convergence in the experiments wa s chosen such that α ≈ β, with α
being the convergence semi-angle and β the collection semi-angle. The sample thickness
was determined using low loss EEL spectra applying the log-ratio method [3]. The
thickness was found to be between 30 nm and 35 nm. Measurements were done at room
temperature as well as during cooling the sample. Table 6.5 gives an overview of the
measured EMCD signals. The measurements at sample position 1 were performed in
a systematic row condition including the (2 2 0) reflection, while those at position 2
included the (2 0 0) reflection in the systematic row. The values for the EMCD signal
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Figure 6.19.: EEL spectra of the Mn-L2,3 edge of Ni50Mn34.5In15.5 acquired at the two
EMCD positions as given in figure 5.3 (EMCD Plus, EMCDMinus) and the
difference spectrum representing the measured EMCD effect. The spectra
were acquired at room temperature and exhibit an effect of ∼ 16%. Back-
ground subtraction was performed and the spectra were aligned by the
integral of the post-edge background.

were calculated using the formula 2 · (σ+ − σ−)/(σ+ + σ−), see also section 5.2. From
the values given in the table, it can be seen that for measurements performed at the
same temperature, in general there are similar results. However, some of the results
show EMCD signals far off the other measurements. Furthermore, the S/N ratio is an
important factor for the reliability of the calculated EMCD signal. The S/N ratio is
worse especially when investigating the cooled sample as the sample stability is also
worse when using the cooling sample holder, which requires shorter acquisition times.
Keeping all this in mind, one has to perform a large number of EMCD measurements in
order to see a trend in the results. In figure 6.19 one of the EMCD measurements at room
temperature is shown exemplarily. The spectra of the Mn-L2,3 edge taken at the two
EMCD positions can be seen, as well as the difference spectrum clearly exhibiting the
EMCD effect. The pre-edge background of the spectra was subtracted using a power-law
fit [3] and they were aligned by the integral of the post-edge background. The Ni-L2,3

edge EMCD spectrum of the same measurement is shown in figure 6.20. In figure 6.21
the experimentally determined EMCD signals of sample position 1 at room temperature
are shown in a plot together with a calculation of the thickness dependence of the
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Figure 6.20.: EEL spectra of the Ni-L2,3 edge of Ni50Mn34.5In15.5 acquired at the two
EMCD positions (EMCD Plus, EMCD Minus) and the difference spectrum
representing the measured EMCD effect. The spectra were acquired at
room temperature and exhibit an effect of∼ 20%. The spectra were aligned
by the integral of the post-edge background.

EMCD signal. In figure 6.22 the same is done for the room temperature measurements
at sample position 2. In both cases it can be seen that the experimental values differ
from the calculated EMCD signal. Nevertheless, a trend can be identified in both cases.
In figure 6.22 the values for the EMCD signal for the Ni-L2,3 edge and the Mn-L2,3 edge
are quite similar, which is also the case in the simulation. In figure 6.21 it can be seen
that the values for the Mn edge are higher than that for the Ni edge. The actual values
for Mn in the experiment are somewhat lower than the prediction of the simulation. For
the Ni EMCD signals, the simulation predicts a negative signal of the same magnitude
as the positive signal in Mn but the experiments show that the actual values all lie
around 0%.

6.5.4. Ni2MnSn – Ni2MnGa double layer

A sample consisting of a Heusler double layer was produced in order to investigate its
behaviour at the interface as well as the effect of a Pt barrier layer. The aim was to
create two clearly separated Heusler layers without interdiffusion. The sample consists
of a MgO substrate on which a sequence of a 30 nm Ni2MnSn Heulser layer, a 1.5 nm

Pt barrier layer and a 30 nm Ni2MnGa Heusler layer was grown. Figure 6.23 shows an
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Figure 6.21.: Calculation of the thickness dependence of the EMCD signal in austenitic
Ni2MnIn. The simulations were performed for a sample slightly tilted out
of zone axis [0 0 1] and a systematic row condition including the (2 2 0)
reflection. The experimentally determined values for the EMCD signal
given in table 6.5 are marked in the plot.
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Figure 6.22.: Calculation of the thickness dependence of the EMCD signal in austenitic
Ni2MnIn. The simulations were performed for a sample slightly tilted out
of zone axis [0 0 1] and a systematic row condition including the (2 0 0)
reflection. The experimentally determined values for the EMCD signal
given in table 6.5 are marked in the plot.
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Figure 6.23.: TEM bright field images showing the investigated area of the Ni2MnSn –
Ni2MnGa double layer sample. On the top the MgO substrate is visible.

overview of the investigated sample. It can be seen that both Heusler layers consist of
martensitic and austenitic regions at room temperature. From a high resolution TEM
image shown in figure 6.24 it is evident that the martensitic phase can extend across the
Pt-barrier layer.

An EDX linescan was performed in order to investigate the actual elemental composi-
tion of the Heusler layers but also to verify the functionality of the Pt barrier layer. The
results of this linescan are shown in figure 6.25 and in table 6.6. Although the martensitic

Table 6.6.: Comparison of the nominal and the experimentally determined elemental
composition of the Heusler layers in the Ni2MnSn – Ni2MnGa double layer
sample.

NiMnSn layer NiMnGa layer
Ni [at%] Mn [at%] Sn [at%] Ni [at%] Mn [at%] Ga [at%]

Nominal: 50.0 25.0 25.0 50.0 25.0 25.0
EDX: 44.0± 2.0 30.0± 1.5 26.0± 2.4 59.0± 2.6 18.0± 1.9 23.0± 2.0
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Figure 6.24.: High resolution TEM image of the Ni2MnSn – Ni2MnGa double-layer. The
martensitic nucleus of the Ni2MnSn Heusler extends across the Pt barrier
layer into the Ni2MnGa Heusler layer.

Figure 6.25.: Results of an EDX linescan across the two Heusler layers and the Pt barrier
layer of the Ni2MnSn – Ni2MnGa double layer sample. It can be seen that
the Pt layer efficiently prevents diffusion between the two Heusler layers.
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Table 6.7.: Measured EMCD signals on the Mn-L2,3 edge and the Ni-L2,3 edge of the two
Heusler layers.

Ni2MnSn layer Mn: 640 eV Ni: 855 eV
Temp. EMCD signal EMCD signal
RT 11.8% −11.4%
473 K 14.2% 15.5%

Ni2MnGa layer Mn: 640 eV Ni: 855 eV
Temp. EMCD signal EMCD signal
RT 11.7% 9.9%
473 K −17.6% 0.3%

nucleus extends across the Heusler layer interface, the EDX scan shows that no diffusion
between the two layers is present, thus illustrating the functionality of the Pt barrier.
The sample was heated up to 473 K but no changes in the structure was visible. This
leads to the assumption that the local elemental composition in the martensitic regions
is such that the transition temperature Tt is above 473 K.

EMCD measurements were performed in both Heusler layers at room temperature and
at elevated temperature. The results are summarised in table 6.7. In figures 6.26 and
6.27 these values are plotted together with the simulations for the Ni and Mn EMCD
signals of the two layers. It can be seen that the measurements in the Ni2MnGa layer
agree quite well with the calculations, while for the Ni2MnSn layer the trend (positive
signal for Mn, a negative one for Ni) is resembled but the absolute values are too low.

6.5.5. Ni2MnSn gradient layer

A Ni2MnSn Heusler layer with a gradient in its elemental composition was produced
by the Bielefeld University in order to investigate the ability of producing such samples
with a defined gradient in their elemental composition. This gradient would in turn give
rise to a gradient of the phase transition temperature Tt across the sample. The sample
was prepared for TEM investigation by means of a FIB system. An overview bright
field image is shown in figure 6.28. The image indicates that austenitic and martensitic
regions are present at room temperature at the same time. The MgO substrate is visible
in the bottom part of the image, while a protective layer, used in the FIB preparation
step, is seen in the top part.

To investigate the gradient in the composition a number of EDX linescans were per-
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Figure 6.26.: Comparison of the experimentally determined EMCD values of the
Ni2MnSn – Ni2MnGa double-layer with the calculated prediction of the
thickness dependence of the EMCD signal in the Ni2MnSn layer.
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Figure 6.27.: Comparison of the experimentally determined EMCD values of the
Ni2MnSn – Ni2MnGa double-layer with the calculated prediction of the
thickness dependence of the EMCD signal in the Ni2MnGa layer.
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Figure 6.28.: Bright field image showing an overview of the investigated region of the
Ni2MnSn gradient sample. It can be seen that the sample has martensitic
and austenitc areas present at room temperature. The positions of two
conducted EMCD measurements is marked in the image and the corres-
ponding sample thickness is given.
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Table 6.8.: Elemental composition of the Ni2MnSn gradient sample measured with EDX
at different positions along the interface with the substrate. The measured
gradients along a scan across the layer is also given.

Ni [at%] ∇[at%
µm

] Mn [at%] ∇[at%
µm

] Sn [at%] ∇[at%
µm

]

1: 46.65± 1.47 −30.0 28.95± 0.93 +2.2 24.41± 1.33 +28.0
2: 42.80± 0.32 −3.0 28.84± 0.35 +3.7 28.36± 0.35 −0.8
3: 43.21± 0.47 −6.0 29.54± 0.85 +1.0 27.25± 0.79 +5.1

formed. All scans exhibit a negative gradient in the Ni concentration with the scanning
direction from the substrate to the top of the Heusler layer. As with all the other invest-
igated Heusler samples, the elemental composition is inhomogeneous across the layer.
The elemental composition at the interface with the substrate, as it was determined
using EDX, is listed in table 6.8.

EMCD measurements were conducted at different regions of the sample. In figure
6.28 the positions of two EMCD measurements, which were performed in an austenitic
and a martensitic region, is marked. Figure 6.29 shows a bright field image of the
sample area where the other two EMCD experiments were performed. For the EELS
measurements of the EMCD experiments, the detector was subsequently placed at all
four EMCD positions (see section 5.3). The two positions on each side of the systematic
row reflections (∆σ1 and ∆σ2, respectively) were compared to calculate the EMCD
signal. The results are given in table 6.9. From the values in the table it can be seen
that the measurements on either side of the systematic row reflections result in quite
different EMCD signals, although the signals should be the same. The reason for this
discrepancy can be found in the not ideal excitation of the systematic row reflections.
There is an asymmetry “above” and “below” the systematic row, arising from the Ewald
sphere, and the fact that the Laue circle center lies on one side of the systematic row.
This leads to different excitations of the reflections (different excitation errors) of the
adjacent systematic rows, which in turn affects the measured EELS signal at the four
EMCD positions.

6.5.6. Other investigated samples

Some more Heusler alloys were investigated in the TEM during the project but no EMCD
measurements were performed on these samples. Nevertheless, the results of the TEM
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Figure 6.29.: Bright field TEM image of the Ni2MnSn gradient sample’s region where
the other two EMCD experiments were performed. The sample thickness
was ca. 50 nm

Table 6.9.: Measured EMCD signals on the Mn-L2,3 edge and the Ni-L2,3 edge of the
Ni2MnSn gradient sample. The signal measured at the EMCD positions on
either side of the systematic row (∆σ1 and ∆σ2 respectively, see section 5.3)
are denoted respectively in the column “EMCD-Pos.”. Sample position 1
and 2 denote the measurements performed in the austenitic and martensitic
phase, respectively, shown in figure 6.28. Sample positions 3 and 4 were
acquired at the region shown in figure 6.29.

Mn: 640 eV Ni: 855 eV
Sample-Pos. EMCD-Pos. EMCD signal EMCD signal Thickness
1 ∆σ1 −7.8% −20.0% 62 nm
1 ∆σ2 −13.9% 13.2% 62 nm
2 ∆σ1 −1.9% −14.3% 54 nm
2 ∆σ2 −13.0% 4.9% 54 nm
3 ∆σ1 14.6% −7.3% 50 nm
3 ∆σ2 −3.4% 10.7% 50 nm
4 ∆σ1 −14.3% −20.9% 50 nm
4 ∆σ2 0.1% 10.8% 50 nm



6. EMCD INVESTIGATION OF HEUSLER ALLOYS 107

Table 6.10.: Comparison of the nominal and the experimentally determined elemental
composition of the sample. EDX 1 and 2 refer to the measurements at
different NiCoMnAl Heusler samples.

Ni [at%] Co [at%] Mn [at%] Al [at%]
Nominal: 41.00 10.40 34.80 13.80
EDX 1: 36.50± 3.70 6.90± 1.50 30.90± 3.60 25.70± 3.50
EDX 2: 55.44± 3.68 9.06± 2.41 27.85± 3.44 7.65± 3.19

investigation of two samples is described in the following section, as it shows why these
samples are not suitable for ferroic cooling applications.

In the NiCoMnAl sample no phase transition could be triggered in the investigated
temperature range. Figure 6.30 shows diffraction patterns recorded at different tem-
peratures during heating the sample. No significant change could be observed indicat-
ing that no phase transition occured. As became clear from EDX measurements, the
stoichiometry of the samples was quite different to the nominal elemental composition
(table 6.10). This shifted the transition temperature to a region, which was not reached
during our investigation.

The CoCrAl sample grown on GaAs showed that the GaAs substrate is not suitable
to produce Heusler alloys for ferroic cooling applications. A lot of the Heusler ma-
terial diffused into the substrate resulting in a large change of stoichiometry as well
as an inhomogeneous elemental distribution in the Heusler layer. Figure 6.31 shows a
combination of an HAADF STEM image and an EDX elemental map, from which the
polycrystalline structure and the measured elemental composition of the sample can be
deduced. A similar segregation into different phases as can be seen in figure 6.31 was
also reported for other Heusler alloys including Cr and Co [74, 75].

6.6. Interpretation

6.6.1. Results of the investigations

In the previous sections, the results of the TEM investigations of Heusler alloys designed
for the “Ferroic cooling” project were shown. EMCD was applied in the course of these
investigations to gain information about the magnetic properties of the different Heusler
materials, especially across the martensitic phase transition. To our knowledge, it is
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Figure 6.30.: Diffraction pattern of the NiCoMnAl Heusler-alloy at different temper-
atures, ranging from 130 ◦C to 280 ◦C. The patterns were acquired in-situ
during heating up the sample. No significant change in the patterns is seen,
indicating that no transformation into the austenitic phase takes place.
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Figure 6.31.: Top: HAADF STEM image of a CoCrAl Heusler compound grown on
GaAs substrate. Bottom: Elemental maps of the sample as obtained by
means of EDX mapping. The diffusion of Co and Cr into the substrate cn
be seen clearly.
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the first time that EMCD was applied as part of a thorough electron microscopical
investigation for such a large number of different materials.

An important finding of the analytical TEM investigation was that the elemental com-
position of the Heusler alloys is quite inhomogeneous and, therefore, the properties of
the materials (e.g. transition temperature) are different across the samples. When it
comes to the interpretation of the EMCD results, one has to keep in mind that EMCD is
a local investigation method. The spatial resolution depends on the illuminated sample
region, which is the same region from which the magnetic information is retrieved. As
the samples are inhomogeneous in their composition, the measured EMCD signal is in
turn different for each measurement position in a sample. Furthermore, the compar-
ability with the calculated predictions strongly depends on the elemental composition.
The simulations were performed for the nominal composition of the Heusler alloys. If
the composition changes, the elements are distributed statistically across the atomic
positions. This can not be modelled with the simulation software used in this work.
Furthermore, it would require a completely different Ansatz for the calculations.

The comparison of the experimental results with the simulations shows that if the
elemental composition is similar to the nominal Heusler composition, the match is quite
good, but it becomes worse if the composition of the material changes. Additionally, it
can be seen that the results for the Mn EMCD signal show better agreement with the
calculations than the Ni EMCD signal. This observation is related to the fact that the Ni
in the investigated Heusler alloys is not fully spin-polarised. Ther are only a few Heusler
materials exhibiting an almost full spin-polarisation. One of which is Co2MnSi [76]. The
simulations account for a fully saturated magnetisation. If this is not the case in the
investigated material and if, for example, the easy axis does not correspond with the
z-axis of the TEM, the absolute value of the measured EMCD effect would be smaller
than for a fully saturated case.

The effect of beam damage also influences the measured EMCD spectra. In some
cases the electron beam drilled a hole during the measurements, essentially making those
useless. Whether the electron beam has changed the sample during the measurements
can be checked easily by taking a look onto the pre-edge background of the spectra. The
background changes for example when the thickness of the sample position has changed.
Only those spectra whose background at the two EMCD measurement positions look
the same were taken for evaluation.
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6.6.2. Proposed workflow for EMCD experiments

Despite the difficulties mentioned in the previous section, it is possible to employ EMCD
as part of a thorough electron microscopical study of magnetic materials, as long one
keeps in mind a few things. Therefore, a possible workflow for EMCD studies is proposed:
At first, the structure of the investigated material has to be studied in detail. This can
be facilitated e.g. by a combination of bright field and high resolution imaging as well
as the acquisition of diffraction patterns. Secondly, the elemental composition of the
sample has to be known. Therefore EDX and EELS analyses are necessary. In case
of possibly inhomogeneous compositions, this has to be done in a sufficient number of
sample regions. With this information, detailed simulations of the EMCD signal in the
investigated material should be done. From the results of these calculations one can
find ideal settings for the EMCD experiments, such as sample orientation and sample
thickness. The actual EMCD measurements have to be performed by carefully observing
stability of the sample and the microscope as well as paying attention to beam induced
sample damage. The thus acquired EMCD spectra can then be compared with the
performed simulations in order to interpret the results.



7. EMCD investigation of magnetite

7.1. The Verwey transition in magnetite

Magnetite is of interest in physics as well as in chemistry, for example because of its
surface chemistry [77, 78]. To design the catalytic function of metal nanoparticles, a
suitable support material has to be chosen. There is a number of supports that interact
with the metal particles by the so-called strong metal support interaction (SMSI). As the
full understanding of the SMSI is still missing, these materials are under investigation,
for example using abberation corrected transmission electron microscopy. To that end,
the interface of magnetite and Pt-nanoparticles were studied [78].

Not only the chemical properties of magnetite are interesting, also the investigation
of the magnetic properties is worthwhile. The material exhibits a Verwey transition,
named after E.J.W. Verwey, at 125 K [79]. Magnetite exhibits a drop in its magnetisa-
tion if cooled down below the transition temperature. Alongside the magnetism, also
the electronic properties and the structure changes. The mechanism of the transform-
ation is still under discussion. The question remains, whether the electronic transition
is driven by the structural change or vice versa [80]. At the transition temperature the
cubic phase changes to a monoclinic phase inducing a twinned structure in the material.
The first real space images of the magnetite surface in the transformed state were re-
corded using scanning tunneling microscopy and are reported in [80]. Furthermore, the
change of the magnetic domains during cooling and heating across the Verwey trans-
ition and their interaction with crystallographic twins were investigated using Lorentz
transmission electron microscopy [81].

In the following section, an in-situ TEM investigation of magnetite is reported in
which the change of the magnetic properties were investigated on the nanoscale using
EMCD.
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Figure 7.1.: Bright field overview image of the magnetite sample. The streaks in the left
hand area mark the transformed regions. Two investigated areas are marked
with circles and it is noted whether the region was already transformed or
not. This was checked using diffraction patterns.

7.2. In-situ EMCD investigation

A magnetite sample was prepared for TEM investigation by means of a FIB system and
subsequent thinning using an ion milling system “Gentlemill” (see also section 6.5.1). A
cooling holder was used to examine the sample at room temperature and at a temper-
ature below 125 K, at wich the Verwey transition takes place. In figure 7.1 a bright field
overview image of the sample at a temperature of 89 K is shown. On the left hand side of
the image a number of streaks can be seen, indicating the transformed regions. Accord-
ing to [80] these regions exhibit a twinned structure, induced by the structural changes
of the Verwey transition. In the image, two areas are marked with circles, representing
the position of the acquired EMCD spectra. In both regions diffraction patterns were
acquired, showing that one of them alread transformed, while the other one is still in the
state before the Verwey transition. The diffraction patterns are shown in figure 7.2. The
fact that not the whole sample exhibits the transformed state indicates that there are
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Figure 7.2.: a) Diffraction pattern acquired in [1 0 0] zone axis of the sample region
marked with “Verwey” in figure 7.1. b) Diffraction pattern acquired in [1 0 0]
zone axis at the region marked with “Non-Verwey” in figure 7.1, exhibiting
the diffraction pattern of cubic Fe3O4.

variations from the perfect magnetite stoichiometry Fe3O4 across the sample [79, 80].
The corresponding EMCD measurements of the two regions are shown in figures 7.3

and 7.4. In both cases, the raw spectral data of both measurement positions were com-
pared. The spectra were aligned at the energy of the Fe L3-edge in order to compensate
for small energy drifts in the spectrometer. It can be seen that the pre-edge as well as
the post-edge background fit almost perfectly. In figure 7.4 an EMCD effect is clearly
visible, while in figure 7.3 the effect has vanished. These measurements were repeated
at different sample positions as well as after additional heating and cooling cycles of
the sample, triggering the Verwey transitions. In all measurements, the same result was
found indicating vanishing magnetic moments below the Verwey transition temperature.
The calculation of the ratio of the orbital and spin magnetic moments ml/ms from the
acquired EMCD spectra is described in section 5.5.
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Figure 7.3.: EMCD spectra acquired in the non transformed sample region. The sample
was tilted out of the [1 0 0] zone axis into a systematic row condition includ-
ing the (0 2 2) reflection. The raw spectra were aligned at the the Fe L3-edge
and compared. The difference spectrum, exhibiting the EMCD effect, is also
shown.
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Figure 7.4.: EMCD spectra acquired in the transformed sample region. The sample was
tilted out of the [1 0 0] zone axis into a systematic row condition includ-
ing the (0 2 2) reflection. The raw spectra were aligned at the Fe L3-edge
and compared. No EMCD effect was visible, indicating vanishing magnetic
moments below the Verwey transition temperature of 125 K.



8. ELCE investigation of rutile

8.1. The crystal structure of rutile

Parts of the following sections are based on [17]. Rutile (TiO2) was investigated because
due to the symmetry of the orbitals caused by its tetragonal unit cell, it is suitable
to examine the site-specificity of the ionisation edge fine-structure using channelling
effects. In figure 8.1, a schematic of the rutile unit cell is shown. The arrows depict each
atom’s local coordinate system as it is used in the DFT simulation software package
WIEN2k. The crystallographic structure’s space group gives rise to the fact that the
local coordinate systems of some of the oxygen atoms are rotated by 90◦ with respect
to those of the other oxygen atoms. A detailed description of the bonding situation in
rutile as well as a visualisation using electron density plots is is given in [82], where it
is shown that the metal atoms in the structure are octahedraly coordinated by anions.
Therefore, the titanium atoms show an eg–t2g splitting. Although the octahedra are
slightly distorted, it is still justified to use the “eg” and “t2g” classification rather than
that of a lower symmetry. The difference in the distance of the top/bottom vertices and
the basal vertices from the centre is about 1.7% [82]. Due to the hybridisation between
Ti and O orbitals, the splitting can also be seen in the oxygen projected partial density
of states (pDOS), which is plotted in figure 8.2. This gives rise to the assumption that by
using distinct channelling conditions, the influence of different orbitals on the measured
energy-loss spectra can be varied.

8.2. Simulations

The oxygen pDOS was calculated using the density functional theory (DFT) simulation
package WIEN2k [12]. The parameters of the unit cell for the calculation can be found
in table 4.1.
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Figure 8.1.: Schematic of the rutile unit cell. Titanium atoms are plotted in grey while
oxygen atoms are plotted in red and yellow. The arrows depict each atom’s
local coordinate system due to the structure’s symmetry (red: x-axis, green:
y-axis, blue: z-axis).
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Figure 8.2.: Oxygen projected density of states of rutile above the Fermi-energy. The
calculation was performed using WIEN2k.
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Figure 8.3.: Calculation of the Bloch wave amplitudes in a 70 nm thick rutile crystal.
The simulations were performed for a specimen that was tilted out of the
[1 1 0] zone axis in order to obtain a systematic row condition including the
G = (1 1 0) diffraction spot. The vertical axes correspond to the (4 4 0)
planes. Left: Incoming electron wave. Right: Outgoing electron wave. The
detector is at a position displaced from the origin of the diffraction pattern
in the direction of G, at a position 1/3 of the distance to this reflection.

For the calculation, 1000 k-points were used and the value for RMTKmax was set to 7.
The muffin tin radii RMT for the oxygen and titanium atoms were chosen to be 1.72 a.u.
and 1.94 a.u., respectively. Due to calculational details (using DFT, the calculation of
L-edges is not as reliable as calculating K-edges [83]), in the following work we keep the
focus on the oxygen K-edge, see [84] and [83].

A combination of two simulation software packages was applied to calculate the effects
of different channelling conditions on the measured oxygen K-edge electron energy-loss
spectra. The first program package uses the Bloch wave formalism for treating elastic
scattering [11], while it uses the mixed dynamic form factor (MDFF) [6] to describe
inelastic scattering events. The DDSCS used in the Bloch wave program is calculated
as given in equation (3.36). For more details on this formula see section 3.2.3 and for
example [5, 16, 42].

Using the program, the distribution of the Bloch waves inside a crystal can be calcu-
lated. In figure 8.3 (left), the Bloch wave distribution of the incoming electron wave in
70 nm thick rutile in [1 1 0] projection is plotted. In figure 8.3 (right), the Bloch wave
distribution of the outgoing electron wave that reaches the EELS detector is plotted for
the same crystal specifications. The details of the experimental setup were chosen such
that, starting from the [1 1 0] zone axis, a systematic row condition including the (1 1 0)
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diffraction spot was established by tilting the specimen. A combination of 5 incoming
and 4 outgoing Bloch waves was used.

One can easily see that for the two electron waves the amplitude distribution inside the
crystal shows distinct changes. As the interaction of the beam electrons with the sample
happens mainly at the regions in the crystal where the amplitudes have their maxima,
interpretation of the measured spectra is not straightforward any more. Therefore, de-
tailed simulations are necessary for measurement interpretation. In order to simulate the
effects on the energy-loss spectra caused by these changes of the amplitude distribution,
the MDFF, as given in equation (3.46), has to be calculated.

In order to investigate the changes in the ionisation edge fine-structure, WIEN2k was
used to describe the target states occurring in the MDFF. The MDFF needed in the
first simulation package was calculated based on the XDOS and the wave functions of
the target electron by TELNES.3 subroutines implemented in WIEN2k, see [9, 27, 41].

For the simulations on rutile shown in this work, the crystallographic data as given in
Table 4.1 was used in the input file for the Bloch wave program. For the simulation of
the oxygen K-edge energy-loss spectra in the desired energy range of 525 eV to 539 eV,
the wave functions of the target electrons and the cross-density of states at a certain
energy-loss value have to be extracted from a previous WIEN2k calculation. Then, the
DDSCS for this energy-loss value is calculated using the Bloch wave program. Finally,
these steps were repeated until the desired energy-loss range was covered.

When changing the channelling conditions, the amplitudes of the Bloch waves inside
the crystal are altered (see also section 4.1). This in turn changes how much different
columns of oxygen atoms are probed when investigating the oxygen K-edge ELNES. A
sketch of the scattering conditions is shown in figure 8.4. For dipole allowed transitions
in the scattering process, those states that lie parallel to the momentum transfer vector
q (in figure 8.4 the vectors q and q′) are probed predominantly, as can be seen from
the inner product of the momentum transfer vector and the position vector in the ex-
ponential function in 〈f |eiq·R|i〉, which is part of equation (3.29). Thus, by changing
either the channelling conditions or the direction of the momentum transfer vectors,
different states can be probed. In our case, changing the channelling conditions, such
that adjacent columns of oxygen atoms would be probed differently (conditions “A” and
“B” in figure 8.5) and keeping the momentum transfer vectors, would result in probing
predominantly the states that lie in the same direction but in different columns. (e.g.
as depicted in figure 8.5 the “blue” states in the yellow column and the “green” states in



8. ELCE INVESTIGATION OF RUTILE 120

q q'

k0 kG
k'

θ θ'

0 G

A

B

C

Figure 8.4.: Sketch of the scattering geometry. k0, kG and k′ are momentum vectors,
while q and q′ are momentum transfer vectors. θ and θ′ are the corresponding
scattering angles. 0 and G denote Bragg reflections, while “A”, “B” and “C”
depict the detector positions as they were used in the experiments.

the red column). While keeping the channelling conditions the same but changing the
direction of the momentum transfer vector would result in probing different states in
the same column. Usually, a combination of both effects is observed in the experimental
measurements. This is because in the actual experiment we change the position of the
spectrometer entrance aperture with respect to the diffraction pattern by shifting the
pattern. This shift changes the direction of the outgoing electron wave and therefore
changes the channelling conditions. At the same time, the direction of the momentum
transfer vector is changed, as it always “points” from the diffraction spots to the position
of the SEA.

To elucidate the measured effects, a short “back of the envelope” calculation is done.
As a starting point, the MDFF as shown in equation (3.29) is taken. The transition
matrix elements in dipole approximation [85] read

rlm =
∑
i,f

〈i|rl|f〉 〈f |rm|i〉 δ(E|f〉 − E|i〉 − E), (8.1)

with the transition matrix
R̂ = {rlm}. (8.2)
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Figure 8.5.: Sketch of the (1 1 0) planes in the rutile crystal and the local coordinate
systems of the oxygen atoms (x-axis – red, y-axis – green and z-axis – blue
arrows). These coordinate systems correspond to the directions in which the
px, py and pz states lie. By using different channelling conditions, different
oxygen columns (red or yellow, respectively) are probed predominantly. In
each case, the states parallel to the momentum transfer vector (in figure 8.4
the vectors q and q′) give the dominant contribution. For the direction in
the actual experiment see figure 8.4.
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Thus, the MDFF can be written as

S(Q,Q′, E) = QR̂Q′. (8.3)

One can find an orientation of the rutile crystal in which the transition matrix becomes
diagonal with the diagonal elements p2

x, p2
y and p2

z [23]. The MDFF for scattering events
in one of the oxygen columns shown in figure 8.5 reads:

S1(Q,Q′, E) = Q

p
2
y 0 0

0 p2
z 0

0 0 p2
x

Q′, (8.4)

while the MDFF for the other oxygen column is given by

S2(Q,Q′, E) = Q

p
2
z 0 0

0 p2
y 0

0 0 p2
x

Q′. (8.5)

The choice of p2
x, p2

y and p2
z was made corresponding to the coordinate system shown

in figure 8.5. For the scattering conditions depicted in figure 8.4, the EELS detector
was placed at 1/3 of the distance g between the 0 and G reflections. For the three
measurements, it was additionally shifted 0.1g, 0.2g and 0.3g away from the systematic
row (conditions “A”, “B” and “C”). Thus, one gets for the MDFF in the different atomic
colums:

S1(Q,Q′, E) = −2

9
g2 · p2

y + c2g2 · p2
z + q2

E · p2
x (8.6)

and
S2(Q,Q′, E) = −2

9
g3 · p2

z + c2g2 · p2
y + q2

E · p2
x, (8.7)

with c2 a number changing with the different detector positions, in the given example
c2 = {0.01, 0.04, 0.09}. The factor −2/9 arises from the fact that qx = 1/3 and q′x =

−2/3, while qE is the characteristic momentum transfer for the oxygen K-edge in this
example.

In order to model the effects of different channelling conditions, the MDFFs of the
two oxygen columns have to be summed with prefactors taking different excitations
due to channelling into account. For example, a hypothetical channelling condition in
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which only the column labelled with subscript 1 is probed (thus S2(Q,Q′, E) does not
contribute), would lead to the following MDFFs:

S1(Q,Q′, E) = g2 ·


−2/9p2

y + 0.01p2
z + 0.16p2

x for detector position A

−2/9p2
y + 0.04p2

z + 0.16p2
x for detector position B

−2/9p2
y + 0.09p2

z + 0.16p2
x for detector position C.

(8.8)

The prefactor 0.16 arises from the fact that g = g(1 1 0) ≈ 9.7 nm−1, thus qE ≈ 4.34 nm−1 ≈
0.4 · g. Note that the negative contribution of py states in this example should not cause
any concern, as only the interference terms are described by equation (8.8).

Comparing the above results with figure 8.2, it becomes clear that the measured
energy-loss spectra would exhibit an increasing contribution of pz-states when changing
from detector position A to position C. For different channelling conditions, one needs to
take into account the contribution of S2(Q,Q′, E) as well. However, the basic underlying
principle remains the same.

8.3. Experimental setup

The rutile sample was prepared in [1 1 0] zone axis using a focused ion beam (FIB) and
subsequentially thinned using a GATAN PIPS ion mill. The experiments were conducted
using a FEI TECNAI G2 TF20 operated at 200 kV and a FEI TITAN operated at 300 kV.
Both instruments have a Gatan GIF Tridiem attached.

The specimen was tilted out of the [1 1 0] zone axis in order to obtain a systematic
row condition including the (1 1 0) diffraction spot. Different channelling conditions
were established by shifting the diffraction pattern such that the position of the SEA
was changed with respect to the diffraction spots. Due to the Lorentzian behaviour of
the DDSCS, the intensity of the acquired energy-loss spectra decreases very fast when
moving the SEA away from the diffraction spots [86]. By increasing the convergence
angle, sufficient intensity was gained. As a consequence, the diffraction spots were spread
so that the convergence semi-angle was approximately equal to the collection semi-angle
(in our experiments about 1 mrad). Under these conditions, the experimental spectra are
still comparable to the simulated ones, for which an incoming plane wave was assumed. A
more convergent beam would require a different calculation (e.g. multislice simulations).
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Figure 8.6.: Simulated electron energy-loss spectra calculated using the experimental
parameters described in the previous section depicted as filled areas. The
experimental spectra are plotted in the corresponding colour on top of the
simulated ones. The spectra are all normalised to the maximum of the first
peak for easier comparison.

A sketch of the scattering geometry is shown in figure 8.4. Three different measurement
positions are marked “A” to “C”. The SEA was placed a third of the distance between
the 0 and the G reflection away from the 0 reflection (0.3 0G) and shifted 0.1 0G, 0.2 0G

and 0.3 0G perpendicular to the systematic row for measurement postitions “A”, “B” and
“C”, respectively.

The energy-loss spectra were acquired using a 2.0 mm SEA, a dispersion of 0.2 eV

per pixel and an acquisition time of 30 s. The spectral resolution was determined to be
1.0 eV by measuring the full width at half maximum of the zero loss peak. The specimen
thickness of ∼ 70 nm was determined using low loss EELS and the Log-ratio method [3].

8.4. Results

Figure 8.6 shows, as filled areas, the calculated spectra as they arise from the three
measurement positions depicted in figure 8.4. In order to facilitate comparison of the
three spectra, they are normalised to the maximum of the first peak, which is necessary
as the total intensities for the different detector positions are different. It can be seen
that by changing the scattering conditions, the relative heights of the peaks at energy-
losses of about 528 eV (corresponding to EF + 4 eV in figure 8.2) and about 531 eV



8. ELCE INVESTIGATION OF RUTILE 125

(corresponding to EF + 7 eV in figure 8.2) can be inverted. As mentioned above, this is
due to the change of the direction of the momentum transfer vector q and the subsequent
change of the influence of the probed orbitals. At position “A”, the py orbitals are probed
predominantly while at position “C”, the influence of the px and pz orbitals is increased.
At scattering condition “B”, both orbitals contribute such that the fine-structure exhibits
two equally high peaks.

The experimentally acquired spectra are plotted on top of the simulations. The meas-
ured spectra are also normalised to the maxima of the first peaks. The inversion of the
peak height by using scattering conditions “A” and “C” can be seen clearly. The calcu-
lated spectra match the changes in the peak heights as well as the relative intensities of
the peaks around 528 eV and around 531 eV of the experimental spectra very well.

Thus, ELCE can be used to investigate and interpret the site-specific ionisation edge
fine-structure in terms of orbitals and their influence on the energy-loss spectra at dif-
ferent scattering conditions. It therefore illustrates new possibilities for chemical and
structural analyses in the TEM using interferometric EELS.



Part IV.

Summary
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9. Conclusion and Outlook

9.1. Summary

In the TEM, coherence effects can be observed every time phase contrast imaging is used,
for example when acquiring high resolution TEM images. Such interferometry in the
TEM does not have to be implemented in a sophisticated experimental setup, it rather
“happens” automatically when investigating a crystalline sample. Going beyond elastic
scattering effects, coherence in inelastic scattering processes have been studied for more
than 30 years. Those investigations subsequently led to the conception of interferometric
EELS. The techniques EMCD and ELCE can be seen as special cases of interferometric
EELS, which are best described using the concept of the MDFF. In order to simulate and
interpret the results of these two techniques, a unified theory including the combination
of electronic structure calculations and elastic scattering calculations has to be used.

In this work, EMCD was applied in the context of a thorough TEM investigation of
Heusler alloys produced for “ferroic cooling” aplications. As EMCD is a local analytical
technique, it gives information about the sample’s magnetic properties on a nm scale. At
the same time, the results are therefore strongly dependent on the local elemental com-
position of the sample. It has been shown that many of the investigated Heusler alloys
are very inhomogeneous in their composition, with a stoichiometry different from the
standard full Heusler alloy. Therefore, the simulations of the EMCD measurement and
the actual experimental spectra show a discrepancy for these materials. For those ma-
terials, on the other hand, that are similar to the standard Heusler alloys, the prediction
of the simulations and the experimental spectra fit quite well.

Multislice simulations were performed to investigate the influence of beam conver-
gence on the measured EMCD spectra. In the actual experiments, the beam is slightly
converged in order to enhance the signal-to-noise ratio and thus reduce the acquisition
time, which is crucial for beam sensitive materials. Furthermore, a converged beam also
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enhances the spatial resolution of the EMCD measurements. It was shown that for con-
vergence angles up to 2.0 mrad one can achieve sufficient EMCD signal intensity at the
“standard” EMCD positions on the Thales-circle. Only for higher convergence angles
alternative measurement positions have to be used.

Concerning the calculation of the ratio ml/ms of the spin and orbital magnetic mo-
ment, it was discussed that multiple scattering effects influence the retrieved values. For
samples thicker than 10 nm, plural scattering causes erroneous values for ml/ms. An
EMCD measurement of the Mn L2,3-edge of an Ni2MnIn Heusler was used exemplarily
to calculate ml/ms and investigate the effect of sample thickness. However, even when
accounting for plural scattering due to the sample thickness of about 50 nm, the calcu-
lated value was far too high. The reason for this is the fact that the EMCD effect at
the L2-egde is in many cases not visible or has the same sign as the EMCD effect at the
L3-edge. The cause for this behaviour is still under discussion. One aspect contributing
to this are artefacts from plasmon scattering, as described above. Calculating the ratio
ml/ms for magnetite on the contrary gives results in agreement with simulations and
XMCD measurements. For this material an EMCD effect with opposite sign is visible
at both, the L2 and L3 edge.

EMCDmeasurements were also used to investigate the Verwey transition in magnetite.
According to the expected behaviour, the EMCDmeasurements show vanishing magnetic
moments after cooling down below the Verwey transition temperature.

ELCE was used to site-specifically investigate the change of the fine-structure when
free states of different character (px, py and pz in the example discussed) are probed.
It was shown that the experimental spectra and a combined Bloch wave and DFT sim-
ulation exhibit excellent agreement. Thus, the technique is an ideal means to site-
specifically investigate the chemical environment (in the sense of probing particular final
states) of materials.

Concluding, one can say that the description of EMCD and ELCE under a unified
theory, combining the simulation of dynamical diffraction effects and electronic structure
calculations, is necessary for an accurate interpretation of experimental spectra. Using
the currently implemented software, this works fine for stoichiometric samples and the
experimental spectra show very good agreement with the calculations.
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9.2. Future experiments and theoretical approaches

Concerning EMCD, the trend is the same as the general one in electron microscopy:
higher spatial resolution using TEMs and STEMs with sophisticated aberration correc-
tion systems are of interest. As has been shown in the multislice simulations, when using
a highly converged beam (as it is present in atomic resolution STEM investigations) the
standard EMCD positions cannot be used any more. A measurement position further
away from the systematic row has to be used. Alternatively, one could change the phase
of the electron beam using an aberration correction system for the condenser lenses.
Other possibilities to achieve atomic resolution for EMCD would need the generation
of Vortex beams or the investigating variation in the energy filtered diffraction pattern.
Studying surfaces and interfaces using EMCD would be worthwhile to gain information
about the change of magnetic properties at the surface/interface compared to the bulk
material.

ELCE can be used in future experiments to investigate the bonding situation in ma-
terials that are used for catalysis. Thus, information about the catalytic active sites
could be retrieved, which in turn would enhance the understanding of the catalytic pro-
cesses. As ELCE makes use of the sample’s periodic structure, there would be no need
for highly focused probes. Thus, such investigations would circumvent the problems of
beam damage or contamination of the sample as they frequently occur when performing
atomic resolved STEM.

Concerning the simulations two tasks can be coped with in future works. On the
one hand, the used DFT simulations are not sufficient for calculating states of highly
correlated electron systems and, for example, the L-edges of transition metal oxides.
These L-edges are of interest in EMCD measurements. Thus, a method beyond DFT
e.g. using the Bethe-Salpeter-Equation (BSE) could improve the situation. On the
other hand it was shown that the calculations for stoichiometric systems do not fit to
measurements in off-stoichiometric materials. Therefore, different means to calculate
such systems with a statistical distribution of the elements inside the unit cell would
be desirable. The question remains, to what extent such systems would still fullfil the
necessary periodicity in order to use a Bloch wave Ansatz and channelling experiments.
As an alternative, simulation programs that do not need a periodic structure (for example
FEFF or ORCA) could be implemented.
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