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Digital image comparison and matching brings many advantages over the traditional subjective human
comparison, including speed and reproducibility. Despite the existence of an abundance of image difference
metrics, most of them are not suited for high-resolution transmission electron microscopy (HRTEM) images.
In this work we adopt two image difference metrics not widely used for TEM images. We compare them

SIFT s . . . . . . .
SSIM to subjective evaluation and to the mean squared error in regards to their behaviour regarding image noise
MSE pollution. Finally, the methods are applied to and tested by the task of determining precipitate sizes of a model

material.

1. Introduction

With the ever growing amount of data electron microscopes and
simulations are able to produce, automatic image evaluation becomes
more important than ever. Image evaluation can take many forms, from
determining the best parameters or circumstances for observing certain
structures in the image, to quantifying and measuring those structures.
While the trend is moving away from manually analyzing images one
by one, in many areas of electron microscopy it is still the norm. Auto-
matically evaluating high-resolution transmission electron microscopy
(HRTEM) images, however, is drastically less time consuming and
brings the additional advantages of the result being reproducible and
independent of the subjective user. To this regard, there exist a num-
ber of image analysis methods such as for the structure analysis of
carbonaceous materials [1-3], for the detection of displacements and
lattice distances from HRTEM lattice images [4-6], for model-based
quantification of high angle annular dark field images [7,8] and various
methods based on machine learning and neural networks [9-11]. While
these methods can yield excellent results, they are often only applicable
to a very specific system or require large training sets. A more general
approach for characterizing an image is by its difference to a per-
fect reference image, calculated by a difference metric. Unfortunately
however, a universally applicable image difference metric also does
not exist, only a multitude of methods with various advantages and
disadvantages [12]. In HRTEM several image comparison methods are
already in use, mainly for iterative digital image matching. These
methods include various image agreement factors, calculated with the
cross-correlation factor [13], the fractional mean absolute difference
and discrimination factor [14], or the y?> goodness-of-fit test [15].
Usually, when simulated images are compared to the experiment using

* Corresponding author.
E-mail address: manuel.ederer@tuwien.ac.at (M. Ederer).

https://doi.org/10.1016/j.ultramic.2022.113578

current methods, background noise is removed by applying Bragg filters
to the Fourier-transformed images [16]. The noise removal, however,
in turn introduces new artefacts [17]. Thus, one of our main criteria to
judge the usefulness of an image difference metric for HRTEM images is
its robustness against noise. However, robustness alone is useless when
the difference metric in turn ignores fundamental changes in the image.
The, in theory, perfect difference metric should ignore changes caused
by noise while still retaining its sensitivity to small changes of the
underlying structure of the image. We acknowledge that this criterion is
to a great extent subjective as the concept of a defining structure of an
image is ambiguous and largely dependent on the specific case which
is the reason for the multitude of existing image difference metrics. For
HRTEM images, however, the image structure often coincides with the
atomic structure of the material. Thus, among other reasons, we have
chosen our image metrics based on their ability to recognize position
and orientation of periodic shapes.

The first part of this work will deal with evaluating three promising
image difference metrics by their response and robustness to different
types of noise in the image. We put a strong focus on shot noise as it
is ever present in experimentally acquired images and even artificially
added to simulated images when the goal is direct comparison, while
other sources of noise can be reduced by cooling the detector or use
of direct detection. In the second part of this work we apply the
investigated difference metrics to the model task of automatically de-
tecting precipitate sizes in simulated high-resolution images of Nb;Sn.
While mainly serving as a further demonstration of the versatility
of the chosen difference metrics, the method can easily be extended
to experimental applications where the automatic quantification of
precipitates or similar structures is of interest.
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2. Methods

We use three different methods to gauge the difference of an image
compared to a reference image: the structural similarity index measure
(SSIM) [18], the scale invariant feature transform (SIFT) algorithm [19]
and the mean squared error (MSE). SSIM and SIFT have been chosen
based on their invariance to small translations, rotations, and noise
while still showing sensitivity for small, local changes in the periodic
structure. MSE has been chosen because of its simplicity and prevalence
as an image metric and serves as a standard.

The structural similarity index measure between a point x in image
A and a point y in image B is defined in the spatial domain as
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where yu, is the mean and o, the variance of a circular image batch
around x, o, the covariance between the image batches around x and
y, and C, and C, are small, positive constants. Note the difference
in normalization compared to [18] to bring the index more in line
with the other employed methods and to indicate difference rather
than similarity. The total image difference between image A and image
B is given by the average over all points. In order to achieve more
robustness against small translations, rotations, illumination changes
and noise [20,21], the similarity index is extended to the complex
wavelet (cw) transform domain [22]
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where ¢, = {c¢,;[i = 1,...,N} and ¢, = {cli = 1,...,N} are
sets of coefficients of the wavelet transform extracted at the same
spatial location in the same wavelet subbands from images A and B,
respectively, and K is a small, real, positive constant. Fig. 1(d) shows
the complex wavelet SSIM (cw-SSIM) difference map between two
unrelated example images.

In contrast to this method, the adapted scale invariant feature trans-
form (SIFT) algorithm [19] is based on automatic feature extraction of
the reference image and the subsequent comparison of feature descrip-
tors with the test image. The features are detected by finding maxima
and minima of a difference of Gaussian functions applied in scale
space. For this, the image is first smoothed by successive convolution
with a Gaussian kernel and then resampled. The differences between
neighbouring levels in scale space are calculated and a pyramid in scale
space is constructed. Extremal points in this pyramid mark regions of
high variation and are sufficient to characterize the image. In Fig. 1(c)
orange circles mark the locations and sizes of key points in real space.
At each point for each level of the pyramid the image gradient magni-
tude and orientation are calculated. The orientations are accumulated
around each key point allowing us to assign it a canonical orientation.
For the key point descriptor a set of orientation histograms is created
for a number of sub-regions around the key point, using the previously
calculated gradients. The orientation histograms are taken relative to
the key point orientation ensuring invariance to global rotations and
changes in illumination, respectively. Key point descriptors at the same
points in scale space of the test image are calculated in the same way
and subsequently the differences to the descriptors of the reference
image are averaged resulting in a total difference between reference
and test image. Note that this method is mathematically speaking not
a metric as the symmetry between the elements is lost in the last step,
i.e. the difference depends on which image is the reference and which
the test image. Nonetheless, the method is applicable and useful for
all purposes where a distinct, optimal reference image is available. A
more in-depth description of the SIFT and the (cw-)SSIM methods is
given in the supplementary information together with all parameters
and constants used in the calculations.

Dley,ey)=1- 2
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(a) (b)

0 difference 1

Fig. 1. (a), (b) HRTEM simulations of Nb;Sn and ZrO, with a projected thickness of
10.55nm and 10.18 nm, respectively. (c) The reference image from (a) with features
detected and drawn using SIFT. Feature positions and sizes are indicated by orange
circles. (d) Difference map between (a) and (b) calculated with cw-SSIM.

We define the normalized mean squared error (MSE) as
2
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where a = {q;|li = 1,...,N; a; >0} and b = {b;]i = 1,...,N; b; > 0}
are the sets of pixels of image A and B, respectively. This definition
differs from the classic MSE in a few points. First of all, the images
are individually normalized before comparison using the Frobenius
norm [23]. This is akin to normalizing TEM images by their electron
dose. Secondly, in order to make the MSE directly comparable to the
other methods we normalize by the maximal achievable value, the sum
of the individual norms squared, hence the factor 1/2.

All HRTEM images in this work have been simulated based on the
multi-slice algorithm [24,25]. Unless stated otherwise, we have used
an acceleration voltage of 80 kV and a collection semi-angle of 30 mrad.
For both of the investigated materials, Nb;Sn and ZrO,, only the [0 0O
1] crystallographic direction is considered.

3

2.1. Application to test cases

A difference metric, especially when it is used to determine optimal
theoretical and experimental parameter ranges, is only useful when the
edge cases are known, i.e. when one has a clear understanding how
an image with 1, 0.5 or 0.25 difference to the reference image looks
like. A representative selection of images is shown in Fig. 2 together
with the respective values calculated with the image difference metrics
introduced earlier. An HRTEM image of Nb;Sn serves as reference
image [Fig. 2(a)] and demonstrates the only case where a difference
metric can result in 0, i.e. when the test and reference image are the
same. A large translation of the image is shown in Fig. 2(b). All image
difference metrics except for cw-SSIM result in a significant difference
above 0.5 for this case, highlighting that proper alignment of the
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(a)

(b)

SIFT = 0.00, MSE = 0.00,
cw-SSIM = 0.00, SSIM = 0.00

SIFT = 0.64, MSE = 0.69,
cw-SSIM = 0.31, SSIM = 0.57
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SIFT = 0.11, MSE = 0.04,
cw-SSIM = 0.21, SSIM = 0.04

(d) (e)

(f)
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SIFT = 0.62, MSE = 0.43,
cw-SSIM = 0.70, SSIM = 0.55

SIFT = 0.95, MSE = 0.38,
cw-SSIM = 0.67, SSIM = 0.50
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SIFT = 0.77, MSE = 0.78,
cw-SSIM = 0.12, SSIM = 0.88

(i)

(9) (h)

SIFT = 0.67, MSE = 0.65,
cw-SSIM = 0.72, SSIM = 0.49

SIFT = 0.71, MSE = 0.37,
cw-SSIM = 0.99, SSIM = 0.49

SIFT = 0.71, MSE = 1.00,
cw-SSIM = 1.00, SSIM = 0.50

Fig. 2. (a) Reference image: Nb;Sn with a projected sample thickness of 21.1 nm. (b) Horizontal shift of half a unit cell. (c) Defocus of —2 nm. (d) ZrO, with a projected sample
thickness of 20.36 nm. (e), (f) Images maximizing the SIFT or SSIM difference, respectively. (f) Noise with a Gaussian distribution. (¢) White image. (f) Black image.

images is necessary when images with the same structure are compared.
For Fig. 2(c) a small defocus was applied to the original image. This
case shows the sensitivity of the individual methods to small but
noticeable changes in the image. Based on the general behaviour of the
image difference metrics we choose a subjective threshold of 0.18 for
SIFT, 0.16 for cw-SSIM and 0.07 for the MSE. Below this threshold the
difference is basically negligible and, thus, image difference metrics can
be used to find parameter ranges such as defocus where the resulting
image is still acceptable. Of note here is the strong indifference of
the real space SSIM and the MSE and the strong sensitivity of the
cw-SSIM relative to this type of image modulation. Fig. 2(d) with an
HRTEM image of ZrO, represents a case where both the images and
the crystal lattices have an arbitrary different structure. The resulting
image differences highlight the fact that, while all the metrics have a
theoretical maximum difference of 1, the difference for unconnected
HRTEM images lies typically between 0.5 and 0.75—with the notable
exception of the MSE. The next two images show the results of Monte

Carlo simulations with the goal of maximizing the image difference of
a specific metric for the given reference image. Fig. 2(e) results in the
largest possible distances of local ensembles of image gradient vectors
in each feature of the respective images, thus maximizing the metric
based on SIFT. Fig. 2(f) closely resembles the contrast reversal of the
reference image with a few exceptions and results in the highest real
space SSIM image difference possible for the given reference image.
While the MSE and the SIFT method also result in a high image
difference, the cw-SSIM method results in negligible difference, lower
even than the defocus case. This highlights the fact that, while in most
cases cw-SSIM is preferable to its real space counterpart, for defocus
series and other image sets where a contrast reversal is possible, any of
the other methods is a better choice than cw-SSIM. The third row of test
images in Fig. 2 depicts how the difference metrics react to Gaussian
noise and to a completely white or black image, the latter resulting in
maximum image difference for the MSE and cw-SSIM methods.
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(a)

(d)

(9)

(b)

SIFT = 0.00, cw-SSIM = 0.00,
MSE = 0.00

(e)

SIFT = 0.20, cw-SSIM = 0.49,
MSE = 0.23

SIFT = 0.07, cw-SSIM = 0.23,
MSE = 0.05
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SIFT = 0.11, cw-SSIM = 0.35,
MSE = 0.12

(f)

SIFT = 0.24, cw-SSIM = 0.33,
MSE = 0.07

SIFT = 0.29, cw-SSIM = 0.58,
MSE = 0.35
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Fig. 3. Comparison of image difference measures for various types of noise. (a) Reference image: Nb;Sn with a projected sample thickness of 21.1 nm and 128 x 128 pixel. (b)
Shot noise with 15000 e~/nm?. (c) Shot noise with 5000 e~/nm”. (d) Shot noise with 5000 e /nm> with additional Gaussian noise with ¢ = 2 e~. (e) Gaussian blurring with
Opr = 3 pixel = 0.049 nm. (f) Noise distortions of (d) and (e) combined. (g) Image difference to the reference image as function of the electron dose with additional Gaussian noise.

3. Results and discussion
3.1. Influence of noise

We compare the HRTEM image of pristine Nb;Sn [Fig. 3(a)] to
various images distorted by noise. This serves as a way to gauge the
realistic conditions necessary in order to still get reliable measures
from the difference metrics. We have forgone comparison with more
classic image distortions like translation, rotation, spatial scaling or a
luminance shift, as one in practice should be able to eliminate these
distortions by properly aligning, cutting or normalizing the images.
Instead, we put focus on different kinds of noise pollution. Fig. 3(b)
and (c) show the 128 x 128 pixel reference image with a finite electron
dose of 15000 and 5000 e~/nm?, respectively. While 15000 e~/nm? is
relatively high compared to the low electron dose regime, the cw-SSIM
difference is already higher than the previously mentioned threshold of
discernibility. Such high sensitivity to shot noise indicates that cw-SSIM
is less suited than the other methods for this particular type of noise,
as the perfect image difference metric should be as little as possible
influenced by noise and still be able to detect the same underlying

crystal structure of both images. Gaussian noise, used to model read-
out noise, electronic noise, etc., results in a strong response for all
the metrics [Fig. 3(d)]. Gaussian blurring, used to model instrumental
broadening due to the partial coherence of the electron source [26],
shows a different trend than the other image modifications. For Gaus-
sian blurring the MSE image difference is significantly lower compared
to the other metrics, making it the first choice when blurring alone
is of concern. When combining shot noise, Gaussian noise and Gaus-
sian blurring [Fig. 3(f)] it becomes evident that the image difference
contributions of the individual noise types are, at least to some degree
and for small image modulations, additive for all employed metrics.
This is favourable, as Fig. 3(f) also shows the biggest difference to the
reference image using subjective evaluation.

We find that for extremely low electron doses (below 100 e~/nm?)
the SIFT image difference metric systematically results in a lower
difference compared to cw-SSIM and MSE [ Fig. 3(g)]. This behaviour
is expected, as the image difference should converge towards the value
for the black image [Fig. 2(f)] when the electron dose approaches
zero and no other type of noise is present. When Gaussian noise is
added, even an almost negligible amount, all of the applied image
difference metrics approach a value around 0.7 with the electron
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(a) infinite electron dose (b)

SIFT = 0.11, cw-SIMM = 0.16,
MSE = 0.05 MSE = 0.18

(d) (e)
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Fig. 4. (a), (b), (c) Nb;Sn with a spherical precipitate of ZrO, with a diameter of 10 unit cells (5.2 nm) in the centre, for a total sample thickness of 21.1 nm. Image difference
calculated relative to the pristine reference image in Fig. 3(a). (d), (e), (f) SIFT image difference of each unit cell of the images in (a), (b) and (c), respectively, to the reference
image. (g) Detected diameter of the ZrO, precipitate determined using the SIFT difference metric for various precipitate radii and electron doses. The black line shows the actual
precipitate size. The filled area around the lines indicates the standard deviation of the detected diameter calculated from repeatedly applying the shot noise.

dose approaching zero. This specific value corresponds to the image
difference of the reference image to an image without structure with
only Gaussian noise [Fig. 2(d)]. All three difference metrics assign this
case a lower image difference than that of a completely black image,
hence the curiosity that for low electron doses Gaussian noise results in
a lower image difference compared to the absence of Gaussian noise.
In order to further gauge the usefulness of the difference metrics in the
low electron dose regime we compare the dose dependent difference
of Nb;Sn to the reference image (same material) to the dose dependent
difference of ZrO, to the reference image (different material). When
the image difference from noise alone approaches the image difference
due to the change of crystal structure the metric cannot effectively
discern between the materials and is, thus, no longer useful. According
to this, of the three investigated metrics, the metric based on the SIFT
algorithm emerges as best suited for extremely low electron doses.

The individual performance of the metrics for images heavily mod-
ified by noise, especially shot noise, serves not only as a way for us to
characterize and rank them compared to each other. On the contrary,
an ever growing interest in the characterization of beam-sensitive
materials is emerging [27]. These materials include organic materials
usually in the context of cryogenic-TEM techniques [28-30], organic—
inorganic hybrid materials such as metal-organic frameworks [31-33],
zeolites [34,35], and low-dimensional materials [36-38]. The fragile
nature of these materials makes them highly vulnerable to knock-on
damage, radiolysis, amorphization or decomposition of covalent bonds.
Thus, only extremely low electron doses (100-3000 electrons/nm?) are
possible and only images with a low signal-to-noise ratio are available.
In order to perform any automated image characterization, detection or
image evaluation for these materials, it is crucial that the used image
metric can still produce reliable comparisons under these conditions.
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3.2. Detectability of precipitates

In order to demonstrate the usefulness as well as the limits of the
chosen difference metrics we use them to determine the size of ZrO,
precipitates in a Nb;Sn substrate. This model task, while primarily
serving as a performance test for the difference metrics, can easily
be extended to real life applications. Thus, this method could auto-
mate size determination of various precipitates or nano materials from
HRTEM images. Further and complementary, for a given noise level the
size underestimation based on visual inspection can be characterized.

We choose Nb;Sn as our substrate material for a number of reasons.
NbsSn is well-known for its superconducting properties. It is used in
the construction of a new generation of superconducting wires [39]
with higher critical magnetic fields than previous generations and
considered for the high demands of a post-LHC (Large Hadron Collider)
particle accelerator at CERN [40-42]. As it is a type II superconductor,
a large part of its effectiveness is determined by the materials ability
to pin the flux lines, i.e. the normal conducting tubes of magnetic flux
through the material [43-45]. This, in turn, is presumedly determined
by the number and size distribution of nano-precipitates in the material,
e.g. of ZrO, [42]. Thus, an image analysis method that automatically
measures precipitate sizes and over- or underestimation for a given
noise level is crucial.

In order to demonstrate the feasibility of the approach, we take the
pristine Nb;Sn crystal from Fig. 3 and replace an increasingly growing
sphere of unit cells in the centre with ZrO, unit cells and subsequently
apply shot noise [Fig. 4(a)-(c)]. The resulting image is then compared
individually for each unit cell to the reference image [Fig. 4(d)-(f)].
We only present results obtained with the SIFT difference metric as
it proved to be the most suitable for the task, mainly due to the
aforementioned better response to shot noise. Results for the MSE and
cw-SSIM metrics can be found in the SI. The downside to using the SIFT
algorithm is, however, that a large number of pixels in the images is
necessary in order to still reliably detect features, as we only compare
small fractions of the image. We choose to simulate the images with
1024 x 1024 pixels, resulting in 64 x 64 pixels per unit cell. This
number appears to be sufficiently high while still keeping computation
times manageable. Note, however, when shot noise is involved the
appearance of an image can vary strongly with the number of pixels
despite having the same electron dose.

The unit cell resolved difference map for infinite electron dose
[Fig. 4(d)] shows a high difference in the centre of the ZrO, circle and
a lower difference at the edge due to the decreasing projected thickness
of the precipitate. Nevertheless, there is a clear cut between Nb;Sn
and ZrO,, more so than the HRTEM image would indicate. An image
difference threshold can be found so that the algorithm detects each
replaced unit cell and thus the exact precipitate size. For an infinite
electron dose and the SIFT algorithm we have chosen a difference of
0.18 as the threshold. Upon decreasing the electron dose the shot noise
results in a background difference for the non-replaced Nb;Sn unit
cells compared to the reference image with infinite dose. The average
difference due to shot noise alone is determined and added to the
threshold for automatic unit cell counting, allowing us to still detect the
ZrO, unit cells in the centre of the precipitate without wrongly counting
unreplaced, albeit noisy, Nb;Sn unit cells. The clear cut between base
material and precipitate, however, vanishes for increasing shot noise.
Generally, this leads to an underestimation of the counted unit cells
and subsequently the determined precipitate size. Further, when the
electron dose gets too low or the precipitate too small, the image
difference from the ZrO, unit cells can no longer be distinguished from
the image difference background due to noise. In this case the detection
algorithm is no longer valid and no reliable particle diameter can be
determined. Fig. 4(g) indicates that above an electron dose dependent
particle size the detected diameter increases linearly with increasing
diameter. Thus, the detected precipitate diameter is underestimated by
an approximately constant value for a given electron dose.
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Fig. 5. Same initial conditions as in Fig. 4 but with a dose dependent image difference
threshold more optimized to the specific problem at hand. In comparison with the
detected diameter by manually counting unit cells by subjective evaluation.

The error in counting for lower doses is not primarily a result of the
inability of the SIFT image difference metrics to distinguish between
the different crystal structures, as it would be for the cw-SSIM metric
(see Fig. S3). It is, however, a consequence of the chosen threshold and,
in turn, the algorithm responsible for counting the unit cells which we
wanted to keep as general as possible. For completeness, we present the
detected precipitate diameters when an electron dose dependent thresh-
old function more optimized to the specific problem is used (Fig. 5).
The new threshold function is an empirically found combination of the
base threshold, the average difference due to shot noise and the contrast
in the image difference map. While the detected ZrO, diameters also
generally underestimate the true value, the error is negligible except
for very small diameters or electron doses. Further improvement could
still be achieved by implementing a priori knowledge of the precipitate
shape or by not counting single ZrO, unit cells. The results, however,
already surpass the method of manually counting unit cells by accuracy
and, more important, by efficiency and time duration of the procedure.

While all three of the chosen image difference methods can be
successfully used for automatic detection or quantification of certain
features in HRTEM images, SIFT has yielded the best results for this
specific task involving low electron doses. As the SIFT method only
takes key features into account and not the visual structure of the
whole image it is more resilient to shot noise compared to the other
two methods. None of the three methods, however, has emerged as the
best suited for all type of images, as they all have situations in which
one works better or worse. When images modified by various types of
noise are used and compared to the pristine reference image, all three
methods show characteristics comparable to those of subjective human
image evaluation, which is one of the main requirements of an image
difference metric. The effectiveness of a method here is not determined
by how well it can evaluate the image quality but by how well it can
ignore the noise and compare the underlying images.

4. Conclusion

In this work we have examined the feasibility of applying difference
metrics to tasks involving HRTEM images. We find that the three
chosen methods, SIFT, cw-SSIM and MSE, while in general providing
similar results, all have different areas where one outshines the oth-
ers. With this in mind we have successfully applied the SIFT metric
to the task of automatically detecting the size of ZrO, precipitation
particles in Nb;Sn. In the future we plan on using the investigated
image difference metrics on energy-filtered maps with the intent of
parameter optimization for orbital mapping [46], where an automatic
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image analysis method can replace the need of manually investigating
thousands of images.
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