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Image difference algorithms

SSIM

In this section we present the structural similar-

ity index measure from [1] and [2] in more detail

including all parameters used in our calculations.

For each pair of points x from image A and y from

image B a local batch of pixels of equal size and

shape around the points is taken. On this batch

the luminance is compared

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (1)

consisting of the local image signal mean

µx =
1

N

N∑
i=1

xi, (2)

where xi are the points of the batch around x and

C1 is a small constant to avoid instability when

µ2
x + µ2

y is close to zero. In the next step the local

mean is removed from the signal and subsequently

the contrast is compared. The contrast comparison

function

c(x,y) =
2σxσy + C2

σx + σy + C2
(3)

Email address: manuel.ederer@tuwien.ac.at (Manuel

Ederer)

takes a similar form to the luminance comparison

function Eq. 1 with the local signal variance

σx =
1

N − 1

N∑
i=1

(xi − µx)
2 (4)

and a small constant C2. In the next step of the

workflow the image signal is normalised by its own

standard deviation. Lastly, the structure compari-

son function is defined as

s(x,y) =
σxy + C3

σxσy + C3
(5)

with the local correlation coefficient σxy between x

and y

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (6)

and a small constant C3. Combining all three com-

parison functions of Eq. 1, Eq. 3 and Eq. 5 and

choosing C3 = C2/2 results in the original form of

the SSIM index

SSIM(x,y) = l(x,y)c(x,y)s(x,y) =

=
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σx + σy + C2)
.

(7)

In order to achieve more robustness against image

noise, the similarity index is extended to the com-

plex wavelet transform domain [2]. The continuous
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complex wavelet transform of a real signal f(x) is

given by

F (s,p) =
1

|s|1/2

∫ ∞

−∞
f(x)ψ

(
x− p

s

)∗

dx (8)

where ψ(x) is a continuous, complex function

called the mother wavelet from which the daughter

wavelets are constructed by shifting and scaling. In

our case the signal f(x) represents the image and

the 2-dimensional parameter x the pixel positions.

The position parameter p is used to scan over the

signal in pixel space and in the discrete case has

the same range as the pixels of the image. Through

the scale parameter s the wavelet transform scans

the signal over multiple (spatial) frequencies. We

choose s from the set {s|s = 1, ..., 30; s ∈ N}.

We use the complex Morlet wavelet [3] (or Gabor

wavelet) defined by

ψ(x) = π− 1
4 e−

1
2x

2

eiω0x (9)

where ω0 is the center frequency of the wavelet. For

each corresponding point p0 of the wavelet trans-

formed images being compared, the 30 coefficients

ci = F (s,p0) are used for Eq. 7. Instead of a local

batch of pixels in real space, a set of coefficients

of the wavelet transform is used for the calculation

of mean, standard deviation and correlation coeffi-

cient. Due to the bandpass nature of the wavelet

filters the coefficients have zero mean, resulting in

the original form of the complex wavelet SSIM

D̃(x,y) =
2|
∑N

i=1 cx,ic
∗
y,i|+K∑N

i=1 |cx,i|2 +
∑N

i=1 |cy,i|2 +K
(10)

where N = 30 is the number of coefficients and K

is a small, positive constant. Subsequent averag-

ing over all points leads to a total image similarity

measure, exactly as in the real space case.

SIFT

The image difference based on the scale-invariant

feature transform (SIFT) [4] is calculated according

to the workflow diagram in Fig. S1.

The first step consists of finding features in the ref-

erence image that are independent of global transla-

tions and rotations, noise and scaling of the image.

In order to ensure the last point an image pyra-

mid in scale space [5] is constructed. Each level,

or scale, of the pyramid is an increasingly more

blurred version of the original image. For a certain

scale σ the scale-space representation L(x, y, σ) of

a 2-dimensional signal I(x, y) is given by

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (11)

where ∗ is the convolution operation in x and y,

and

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(12)

is the Gaussian function. After an octave, i.e. the

doubling of σ, the Gaussian image is resampled by

a factor of 2. In each octave the difference be-

tween images of scales separated by a constant mul-

tiplicative factor k is calculated, resulting in the

difference-of-Gaussian (DoG) function

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ). (13)

Blurring an image with a Gaussian kernel sup-

presses only high-frequency spatial information.

Thus, the DoG acts like a band-pass filter, attenuat-

ing spatial frequencies outside of the range between

σ and kσ. The pyramid of Gaussians and DoG can

be schematically seen in Fig. S2. In this work we

have used 3 layers of DoG per octave which is also

the value used in [6]. Local maxima and minima
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Figure S1: Workflow diagram of the SIFT measurement
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Figure S2: Pyramid of Gaussians in scale-space. Top row: each image is the result of consecutively more blurring of the original

image. Neighbouring images are separated by a constant factor in scale-space. After an octave (doubling of σ) the image is

resampled by a factor of two. In each octave neighbouring scales are subtracted from each other resulting in the pyramid of

difference-of-Gaussian functions in the bottom row. Each pixel is then compared to its 8 neighbours at the current scale and

its 9 neighbours at the neighbouring scales each in order to find local maxima and minima.
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of the DoG images are detected by comparing each

pixel to its 8 neighbours at the same scale and to

its 9 neighbours each in the scale above and below.

Afterwards, points located in areas of low contrast

or along edges are discarded. The remaining key-

points are locations in scale-space marking features

that are distinctive for the image.

The next step of the SIFT image difference algo-

rithm consists of characterizing the found features,

i.e. in constructing the keypoint descriptors. In or-

der to assign a canonical orientation to the keypoint

found at scale σ0, a small circular batch of pixels

around the point in the Gaussian smoothed image

L(x, y, σ0) is taken into account. For each pixel of

this batch the local gradient magnitudem(x, y) and

gradient orientation θ(x, y) is calculated using pixel

differences:

m(x, y)2 =(L(x+ 1, y)− L(x− 1, y))2 +

+ (L(x, y + 1)− L(x, y − 1))2
(14)

θ(x, y) = arctan

(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

)
.

(15)

The local gradient angles θ(x, y) are distributed to

a histogram of 36 angle bins and weighted with the

respective magnitude m(x, y) and by a Gaussian-

weighted circular window. The highest peak of this

histogram is then taken as the canonical orientation

of the keypoint and all subsequent description will

be relative to this orientation. For the descriptor

itself a 16 × 16 pixel window around the keypoint

of the smoothed image L(x, y, σ0) is used. The area

is partitioned into 16 squares of 4 × 4 pixels and the

remaining gradients are calculated, if they have not

been already calculated in the previous step. In

each of the 16 partitions the gradient orientation

values are inserted into histograms with 8 orienta-

tion bins. In order to avoid too abrupt descriptor

changes trilinear interpolation is used to distribute

the values among an orientation bin and its adja-

cent bins. All the histograms from the partitions

together then form the keypoint descriptor vector

with 16 × 8 = 128 elements. The third step of the

SIFT image difference workflow differs significantly

from the original algorithm outlined in [4, 6]. In the

second image we do not again detect features as de-

scribed in the first step, instead we take the same

positions and scale of the keypoints in the reference

image. The areas around the positions are, how-

ever, taken from the (smoothed) second image and

the resulting orientation histograms and descriptor

vectors as well. Thus, for each feature in the ref-

erence image we arrive at a descriptor vector from

the reference image and one from the second im-

age, which are to be compared. In the final step,

we take the Frobenius norm of the difference be-

tween each pair of descriptor vectors and average

them, resulting in a total image difference.

Precipitate size determination

In this section we present the results of the ZrO2

precipitate size determination using the cw-SSIM

and the MSE image difference metric.
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Figure S3: Same as Fig. 4 but with the cw-SSIM metric.
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Figure S4: Same as Fig. 4 but with the MSE metric.

6



[2] Z. Wang, E. Simoncelli, Translation insensitive image

similarity in complex wavelet domain, Acoustics, Speech,

and Signal Processing, 1988. ICASSP-88., 1988 Interna-

tional Conference on 2 (2005) 573 – 576. doi:10.1109/

ICASSP.2005.1415469.

[3] J. Ashmead, Morlet wavelets in quantum me-

chanics, Quanta 1 (1) (2012) 58–70. doi:

10.12743/quanta.v1i1.5.

URL http://quanta.ws/ojs/index.php/quanta/

article/view/5

[4] D. G. Lowe, Object recognition from local scale-invariant

features, in: Proceedings of the Seventh IEEE Interna-

tional Conference on Computer Vision, Vol. 2, 1999, pp.

1150–1157 vol.2. doi:10.1109/ICCV.1999.790410.

[5] A. Witkin, Scale-space filtering: A new approach to

multi-scale description, in: ICASSP ’84. IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Pro-

cessing, Vol. 9, 1984, pp. 150–153.

[6] D. G. Lowe, Distinctive image features from scale-

invariant keypoints, International Journal of Com-

puter Vision 60 (Nov 2004). doi:10.1023/B:

VISI.0000029664.99615.94.

URL https://doi.org/10.1023/B:VISI.0000029664.

99615.94

7

https://doi.org/10.1109/ICASSP.2005.1415469
https://doi.org/10.1109/ICASSP.2005.1415469
http://quanta.ws/ojs/index.php/quanta/article/view/5
http://quanta.ws/ojs/index.php/quanta/article/view/5
https://doi.org/10.12743/quanta.v1i1.5
https://doi.org/10.12743/quanta.v1i1.5
http://quanta.ws/ojs/index.php/quanta/article/view/5
http://quanta.ws/ojs/index.php/quanta/article/view/5
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94

