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Abstract

Its simple form makes linear discriminant analysis (LDA) a prevalent tool for
classification, yet the dependency on an estimate of the precision matrix is a major
drawback. In many applications more features than observations are available and
some of these observations may be contaminated, impeding use of this simple tool.
Regularization techniques, or sparse methods, are well known to give good esti-
mates of the precision matrix when the sample covariance matrix is rank-deficient
or ill-conditioned, however contamination also breaks these methods. By borrow-
ing ideas from the FAST-MCD algorithm for robust multivariate location and scale
estimation, a robust regularized estimate of the precision matrix can be obtained
and used for LDA. In consideration of the classification context, a measure similar
to the deviance measure used in other classification methods is defined and used to
obtain the optimal value for the required regularization parameter. An extensive
simulation study shows the superior performance of the new classification algorithm
for high-dimensional data and low sample size in the presence of contaminated ob-
servations, but also its high efficiency for uncontaminated data.

Zusammenfassung

Die einfache Form der linearen Diskriminanzanalyse (LDA) macht diese zu ei-
nem der meistbenutzten Werkzeuge für die Klassifikation von Objekten, wobei die
Abhängigkeit von einem Schätzer für die inverse Kovarianzmatriz einen gewichtigen
Nachteil dieser Methode darstellt. In unzähligen Anwendungen stehen sehr viele ge-
messene Merkmale einigen wenigen Beobachtungen gegenüber, wovon einige auch
kontaminiert sein können. Jede dieser Eigenschaften macht dieses einfache Werk-
zeug unbrauchbar für eine Anwendung. Regularisierung ist eine allseits bekannte
Methode um einen guten Schätzer für die inverse Kovarianzmatriz zu bekommen,
selbst wenn die Kovarianzmatrix schlecht konditioniert ist. Allerdings ist auch die-
se Methode nicht vor dem Einfluss von Kontamination gefeit und kann in diesem
Fall keine zuverlässige Schätzung liefern. Indem Ideen des FAST-MCD Algorithmus
zur Bestimmung einer robusten multivariaten Lokations- und Streuungsschätzung
aufgegriffen werden, kann allerdings eine robuste, regularisierte Schätzung der in-
versen Kovarianzmatrix durchgeführt und für LDA verwendet werden. Unter Be-
rücksichtigung des Klassifikations-Kontexts wird ein Maß, ähnlich dem Deviance-
Maß in anderen Klassifikationsmethoden, definiert und zur Bestimmung des opti-
malen Werts des benötigten Regularisierungsparameters verwendet. Eine ausführ-
liche Simulationsstudie zeigt die überragende Leistung des neuen Klassifikations-
Algorithmus’ für hochdimensionale Daten und kleiner Stichprobengröße, wenn kon-
taminierte Beobachtungen vorhanden sind, aber auch die hohe Effizienz im Falle
von nicht-kontaminierten Daten.
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Chapter 1

Introduction

Classifying objects into few categories is a natural way for humans and animals to abstract
the extremely complicated world around them. May it be for sole survival by assessing
an object as being edible and not toxic; grouping objects helps to abstract the world
and – once the object is classified – simplifies decision making in upcoming situations. If
we would have to explicitly examine every comestible for edibility, obesity would not be
a major problem anymore. In many cases, this classification is based on multitudinous
indicators and is composed of complex processes. However, humans can be easily tricked
in believing something is inedible. In a basked full of unsound and esculent plums, prunes
are also likely to be classified as inedible, even though they are just different.

Analogous to these daily situations, many applications in various research areas re-
quire classification of objects into groups. Being able to objectively classify objects is of
primary interest in most of these applications, first to have a sound argument of why
to classify an object into a certain group, and second to enable computers to perform
the classification automatically. Using quantitative measures of certain characteristics of
objects is a common way to perform objective classification.

Especially the work of Fisher (1936) is noteworthy, as it laid the foundation for a
myriad of classification methods and publications. Fisher’s motivation was a taxonomic
problem. In particular, he intended to find a simple mathematical function of four quan-
titative measures of the flowers of fifty plants from two different species, to discriminate
between these two species. In his work, he introduced a simple way to determine this linear
function merely on the given measurements, and it is the prototype of Linear Discrimi-
nant Analysis (LDA). This method is still of high use nowadays, although – or perhaps
exactly because – the function is of the simplest possible form.

Nevertheless, since Fisher published his work in 1936, the requirements for classifi-
cation methods have significantly changed. In a rising number of applications not four
measurements, as considered by Fisher, but hundreds and thousands of variables are com-
mon. However, the number of objects n for which these measurements are available is
not growing. DNA microarray data, for example, where gene expressions of thousands of
genes are recorded for only a handful samples, are often used to find out how cell types
differ from each other and how a microarray sample can be classified as one of these cell
types (for instance, if a cell is a healthy or a cancer cell). Other prominent examples
are Quantity Structure-Property Relation (QSPR) models from chemometrics, where the
property of a chemical compound (for instance, carcinogenic or not) is related to numerous
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quantitative measures of its structure. These data sets usually include several thousand
variables, but only for a few compounds. Unfortunately, classical LDA as introduced by
Fisher restricts the number of variables p to be less than the number of objects (n > p).

Fisher’s linear discriminant analysis depends on the known or estimated within-class
precision (inverse covariance) matrix. Estimating the covariance matrix with more vari-
ables than observations (n < p) yields in a rank-deficient matrix that can not be inverted.
Thus, in order to apply LDA, dimensions must be reduced prior to LDA or other tech-
niques must be used to get an estimate of the precision matrix. Dimension reduction, for
instance by applying Principal Component Analysis (PCA) to the data, has been used
extensively in classification settings. Nevertheless, in many applications dimensions are in
the thousands and sample size is in the hundreds, requiring immense reduction of dimen-
sions which may severely impair performance of classification. In recent years regular-
ization techniques for estimating the precision matrix with the original high-dimensional
data became very popular. Instead of using the classical estimate Θ̂ = S−1 based on
the empirical covariance matrix S for the precision matrix Θ, Θ̂ is calculated directly
by maximizing a penalized likelihood function. The likelihood function of the precision
matrix is modified in that the estimated parameters are restricted in size. The L1 norm
of the precision matrix is commonly used for this restriction, and as a result some pa-
rameters will be shrunken to zero. This yields a sparse precision matrix in which element
Θ̂ij is zero if features i and j are unrelated to each other, given the rest. To maximize
this penalized likelihood, a certain underlying model generating the observations must be
assumed in advance.

Because measurements can be erroneous or some samples themselves contaminated,
the assumption of a single generating model is violated in the majority of applications.
If the estimated class centers and within-class precision matrix are susceptible to small
deviations from the assumption, linear discriminant analysis can give arbitrarily bad re-
sults. Therefore, it is utterly important that the employed estimators can tolerate a small
proportion of contamination in the data. If the data has more observations than variables,
various robust methods are available to estimate location of class centers and within-class
covariance structure which can be numerically inverted. However, these methods do not
work anymore when sample size is smaller than the dimension of the data.

This thesis presents one particular algorithm for linear discriminant analysis in the
High-Dimensional Low Sample Size (HDLSS; n≪ p) setting that yields reasonable classi-
fication results even in the presence of contamination. Research on robust techniques for
regularized estimation of the precision matrix is still at its beginning and only the initial
work by Croux et al. (2010) is available. Application to linear discriminant analysis is
novel and non-trivial. Regularized estimation of the precision matrix is done according
to the work by Friedman et al. (2008), while the robust estimate is calculated in a similar
fashion as Rousseeuw and van Driessen (1999) calculate the robust MCD estimator for
multivariate location and scale.

First, Chapter 2 gives a short introduction to classical LDA and its theoretical deriva-
tion, followed by a detailed elaboration of the algorithms and methods (Chapter 3) used
as building-blocks for the robust regularized LDA (RRLDA) algorithm, which is described
in Chapter 4. The performance of the novel algorithm is assessed in Chapter 5, by ap-
plication to numerous different simulated data sets and its results are compared to the
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non-robust but regularized LDA and classical LDA. Finally, implications of the results
are discussed in Chapter 6.

1.1 Notation
Throughout this thesis a consistent naming scheme for variables and functions is employed.
X = [x1, . . . ,xn]

⊤ ∈ Rn×p denotes the data matrix with n observations and p variables,
xi ∈ Rp is the i-th observation, and xij is the j-th variable of the i-th observation (xij =
(X)ji). The set of all observations in the sample is written as X = {x1, . . . ,xn}. G =
{g1, g2, . . . , gK} is the set of all K class labels and the operator G : Rp → G maps the
given observation to the true class label, whereas the cardinality of a set A is expressed
as |A|. The matrix X(g) ∈ Rng×p denotes the subset of observations with true class label
g ∈ G, ng the number of observations with true class label g, and µ̂g is its estimated mean
vector. πg stands for the prior probability for an observation to belong to class g ∈ G and
π̂g will be its estimate, while Σg1 = · · · = ΣgK = Σ and Θ are the (common) theoretical
covariance and inverse covariance matrix of X(g) (g ∈ G), while Σ̂ respectively Θ̂ denote
their estimates.



Chapter 2

Classical Linear Discriminant
Analysis

Linear discriminant analysis is a common tool in supervised classification and numerous
different classifiers exist. As the name suggests, the function used to discriminate between
classes is linear in the observations which simplifies calculation and analysis. The two
most prevalent classifiers in statistics are motivated by the search for a projection to a
lower dimensional subspace that “best separates” the classes and by finding the optimal
classification from a decision theoretic point of view. These two classifiers are quite
different, as for the decision theoretic approach a parametric model of the underlying
distribution must be assumed, while the first approach is free from assumptions. However,
as shown below, if a normal distribution with different mean vectors for each class but a
common covariance structure is assumed, both approaches result in the same classifier.

2.1 Fisher Discriminant Analysis
The approach to search for a projection to a lower dimensional subspace in which the data
can be easier assigned to the classes dates back to the work by Fisher (1936) for K = 2
classes. It aims at finding a direction w and a threshold value c such that

w⊤xi + c < 0 if G (xi) = g1 and w⊤xi + c > 0 if G (xi) = g2

holds for as many observations as possible. Fisher therefore proposed to maximize the
ratio of between-class and within-class variances, so

w = argmax
w̃∈Rp

(
w̃⊤(µg1 − µg2)

)2
w̃⊤Σw̃

, (2.1)

where µg (g ∈ {g1, g2}) are the class mean vectors of X(g) and Σ is the common within-
class covariance matrix. To find w in (2.1), the derivative with respect to w simply has
to be set to zero

d

dw

(
w⊤(µg1 − µg2)

)2
w⊤Σw

= 2
w⊤(µg1 − µg2)

w⊤Σw

(
(µg1 − µg2)

⊤ −
w⊤(µg1 − µg2)

w⊤Σw
w⊤Σ

)
= 0
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and because w⊤(µg1
−µg2

)

w⊤Σw
is a scalar, w can be written as

(µg1 − µg2)
⊤ =

w⊤(µg1 − µg2)

w⊤Σw
w⊤Σ

⇒ w⊤ ∝ (µg1 − µg2)
⊤Θ

⇒ w ∝ Θ(µg1 − µg2). (2.2)

The constant factor in w does not matter for classification because this constant can
be incorporated in the threshold value c. Therefore, the classification error only depends
on the direction of w and not on its magnitude (Webb 2003). When identical distributions
for both classes and equal prior probabilities for belonging to either class are assumed, a
sensitive choice for the threshold c is the projection of the hyperplane between the two
class centers on the vector w (Johnson and Wichern 2007, pp. 591f), resulting in the
classification rule that x will be assigned to class g1 if

w⊤x−w⊤1

2
(µg1 + µg2) > 0 (2.3)

and to class g2 otherwise. If these assumptions can not be made, a different threshold
will generally yield a better classification result.

Fisher’s criterion in (2.1) can be generalized to the case of K > 2 classes, where the
data is projected to an at most K − 1 dimensional subspace in which classification is
simpler (Webb 2003). One possible projection is again given by maximizing the ratio of
between-class and within-class variances

w = argmax
w̃∈Rp

w̃⊤ΣBw̃

w̃⊤Σw̃
, (2.4)

where ΣB =
∑

g∈G(µg − µ̄)(µg − µ̄)⊤ and µ̄ = 1
K

∑
g∈G µg (Johnson and Wichern 2007).

As in the two-class case, the optimal direction in (2.4) does not depend on the distribution
of the data. However, if again normal distribution within each class as well as a common
covariance matrix is assumed and the prior probabilities of belonging to class g, πg are
known, the optimal classifier based on rule (2.4) (Johnson and Wichern 2007; Webb 2003)
is given by

Ĝ(x) = argmax
g∈G

log πg −
1

2

(
x− µg

)⊤
Θ
(
x− µg

)
.

2.2 Bayes Classifier
To derive a linear classifier from a decision theoretic point of view, the classifier must
minimize the expected loss. Therefore, a parametric model (xi, G (xi)) ∼ (X,Γ) and a
suitable loss function L : G × G → R have to be specified in advance. The classifier
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minimizing the expected loss

E(X,Γ)

[
L
(
Γ, Ĝ (X)

)]
= EX

[
EΓ|X

[
L
(
Γ, Ĝ (X)

)]]
= EX

[∑
g∈G

L
(
g, Ĝ (X)

)
P (G (X) = g|X)

]

is then called the Bayes classifier. For classification, the zero-one loss function

L(a, b) =

{
0 a = b
1 a ̸= b

is a reasonable choice (Hastie et al. 2009). Because it suffices to minimize the expected
loss pointwise (Hastie et al. 2009, p. 18) and due to the chosen loss function, the sum
reduces to∑

g∈G

L
(
g, Ĝ (X)

)
P (Γ = g|X) =

∑
g ̸=Ĝ(X)

P (Γ = g|X) = 1− P
(
Γ = Ĝ (X) |X

)
.

Therefore, the optimal decision according to the zero-one loss function for an observation
X is to assign the class with the highest posterior probability:

Ĝ (X) = argmax
g∈G

P (Γ = g|X) . (2.5)

In order to actually find the optimal classifier, the conditional probabilities P (Γ = g|X),
g ∈ G must be known. In contrast to the classifier obtained through the Fisher criterion,
the classifier in (2.5) can be applied to an arbitrary number of classes K directly. Using
Bayes’ theorem and the shorthand notation fg(x) = f(x|Γ = g) for the conditional den-
sity function of X given the class Γ = g, πg = P (Γ = g) for the prior probability of an
observation to belong to class g, and f(x) to denote the probability density function of
X, the conditional probability can be rewritten as

P (Γ = g|X = x) =
fg(x)πg

f(x)
∝ fg(x)πg.

In the case of two classes, the discrimination between those two classes can be done
by examining the (log) ratio between the two posterior probabilities

P (Γ = g1|X = x) > P (Γ = g2|X = x)⇔ log
P (Γ = g1|X = x)

P (Γ = g2|X = x)
> 0

⇔ log
fg1 (x)

fg2 (x)
+ log

πg1

πg2

> 0.

When again data within each class is assumed to be normally distributed with common co-
variance structure, X(g) ∼ N

(
µg,Σ

)
with fg (x) ∝ det (Θ)

1
2 exp

{
−1

2
(x− µg)

⊤Θ(x− µg)
}

,
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the classifier Ĝ assigns an observation x to class g1 if

log
exp

{
−1

2
(x− µg1)

⊤Θ(x− µg1)
}

exp
{
−1

2
(x− µg2)

⊤Θ(x− µg2)
} + log

πg1

πg2

> 0

−1

2
(x− µg1)

⊤Θ(x− µg1) +
1

2
(x− µg2)

⊤Θ(x− µg2) + log
πg1

πg2

> 0(
µg1 − µg2

)⊤
Θx− 1

2

(
µg1 − µg2

)⊤
Θ
(
µg1 + µg2

)
+ log

πg1

πg2

> 0.

It is obvious that the classifier is linear with

w = Θ
(
µg1 − µg2

)
and

c = −1

2
w⊤ (µg1 + µg2

)
+ log

πg1

πg2

(2.6)

and corresponds to the classifier for K = 2 classes obtained with Fisher’s criterion in (2.2)
and (2.3) if normality as well as equal covariance structure and prior probabilities are
assumed. According to Webb (2003) and O’Neill (1992) the linear discriminant function
still gives reasonable results when the covariance structures differ only marginally between
the classes, but it is rather susceptible to violations of the normality assumption.

For more than two classes, but normal distribution, the optimal classifier for the zero-
one loss function in (2.5) is given by

Ĝ (X) = argmax
g∈G

P (Γ = g|X) = argmax
g∈G

logP (Γ = g|X)

= argmax
g∈G

log fg(x)πg = argmax
g∈G

log πg −
1

2

(
x− µg

)⊤
Θ
(
x− µg

) (2.7)

and is equal to the classifier obtained by optimizing (2.4) under the same assumptions.
Regardless of assuming normality or not, the discriminant function and hence the

classifier Ĝ is based on the common precision matrix Θ and the different mean vectors.
Yet these parameters are rarely known, and thus have to be estimated based on observed
data X in most cases.



Chapter 3

Parameter Estimation

The parameters needed for the optimal classifier are the class centers as well as the
common precision matrix, and different strategies for estimating these parameters exist.
For the class centers µg the classical sample mean µ̂g = mg is one possible estimate. For
the precision matrix, as it is the inverse of the covariance matrix, a possible estimate Θ̂

is Σ̂
−1, shifting the problem to finding an estimate for Σ.

The estimate Σ̂ can be obtained in multiple ways. Alternative A is to estimate the
covariance matrix for each class separately and then pool these estimates

Σ̂
(A)

=
1

n−K

∑
g∈G

(ng − 1)Σ̂g (3.1)

and alternative B is to first subtract the class centers from the corresponding observations
x̃ = x − µ̂G(x), and then estimating the covariance matrix ˆ̃Σ of the centered data X̃ =

[x̃1, . . . , x̃n]
⊤

Σ̂
(B)

= ˆ̃Σ (3.2)
When using the usual sample mean mg and sample covariance

Sg =
1

ng − 1

∑
x∈X :G(x)=g

(x−mg) (x−mg)
⊤ , (3.3)

both alternatives yield the same estimate:

S = S(A) =
1

n−K

∑
g∈G

(ng − 1)Sg

=
1

n−K

∑
g∈G

∑
x∈X :G(x)=g

(x−mg) (x−mg)
⊤

=
1

n−K

n∑
i=1

x̃ix̃
⊤
i =

1

n−K
X̃

⊤
X̃ = S(B).

These estimates are the (bias corrected) maximum likelihood estimates (MLE) for Σ
and µg if all X(g)’s are normally distributed.
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In most applications, the assumption of normally distributed data will be invalid,
which causes the discriminant rule in (2.7) to be suboptimal. When the assumption is
weakened such that only the majority of the data must follow a normal distribution, the
discrimination rule is still optimal for this majority. However, the classical estimates mg

and S can not be used anymore, as a single observation deviating from the normality
assumption can render the estimates and hence the classifier arbitrarily bad (Croux and
Dehon 2001).

3.1 Robust estimates
Even in two- and three-dimensional spaces it is difficult to flag observations as outliers or as
belonging to the majority. In higher dimensions this is far more challenging, as visualizing
the data is not straightforward anymore. In these situations, robust methods can help
to uncover the outlying data points and identify the majority. Robust methods are of
great importance when the true model of the data slightly deviates from the assumptions
(Huber and Ronchetti 2009), and such robust methods have been developed for various
applications.

According to Huber and Ronchetti (2009), robust methods should exhibit three main
features (i) reasonably good efficiency at the assumed model; (ii) small deviations from the
assumed model should have only a small impairment on the performance; and (iii) larger
deviations from the assumed model should not make the method arbitrarily bad. If data is
assumed to be generated by the model F , data that slightly deviates from this assumption
(contaminated data) is then taken to be generated by the model F (ϵ) = (1 − ϵ)F + ϵG,
where ϵ is the amount of contamination and G is any other model. The upper bound
of ϵ is 0.5, because otherwise calling it “slight deviations of the assumed model” would
understate the situation and the assumptions should be revised. The breakdown point of
a method is often used to quantify its robustness to contamination and gives an upper
bound ϵ such that the results are not arbitrarily wrong.

The optimal decision rule given in (2.7) requires the data to be generated by a Gaussian
model and, as noted in Webb (2003, p. 37), is quite sensitive to deviations from this model.
If, however, the majority of data comes from a Gaussian model and only the classification
of this majority is of primary interest, the decision rule can still be used, provided a
reasonable estimate for the majority’s covariance matrix and class centers is available.

Methods for robustly estimating multivariate location and scatter have been exten-
sively studied in the literature (e.g. Filzmoser and Todorov 2013). When these robust
methods are employed in the discriminant analysis setting, the two alternatives A and
B discussed above result in different estimates. For instance, if a method allows for a
contamination of at most ϵ, using alternative A allows this contamination ϵ in each class,
while in alternative B this contamination is allowed for the entire data. In the literature
on robust methods for discriminant analysis, both alternatives have been used frequently
and different obstacles arise. Alternative A (Chork and Rousseeuw 1992; Croux and De-
hon 2001; Todorov et al. 1990; Todorov et al. 1994) requires the estimation of location and
scatter for the K classes which can be tedious if K is large, while alternative B (He and
Fung 2000; Hubert and van Driessen 2004) adds the difficulty of robustly estimating the
preliminary class centers µ̂(p)

g first (He and Fung 2000). The final estimates for the class
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centers are then given by the preliminary class centers shifted by the robust location esti-
mate obtained for the complete data set µ̂, µ̂g = µ̂(p)

g + µ̂. A comprehensive comparison
of different methods and both alternatives is given in Todorov and Pires (2007).

3.1.1 Minimum Covariance Determinant Estimator
A robust multivariate location and scatter estimator important for the proposed method
in Section 4 and also covered in Todorov and Pires (2007) is the Minimum Covariance De-
terminant (MCD) estimator first described by Rousseeuw (1985). This estimator searches
for a subset Hopt ⊆ X of size n+p+1

2
≤ h ≤ n for which the classical empirical covariance

matrix has minimum determinant. This estimator gives reasonable results for the major-
ity of observations if less than n − h observations deviate from the majority and has a
finite sample breakdown point (Donoho and Huber 1982) of n−h

n
(Filzmoser and Todorov

2013).
To find this optimal subset, all

(
n
h

)
subsets must be inspected which is very time con-

suming. To mitigate this problem and make the estimator applicable, Rousseeuw and
van Driessen (1999) proposed the FAST-MCD algorithm that speeds up the estimation
significantly. In Algorithm 1 a simplified version of the FAST-MCD algorithm proposed
by Rousseeuw and van Driessen (1999) is outlined. The presented algorithm is simpli-
fied in that some extensions used to speed up computation as well as handling of edge
cases that could break the algorithm are omitted. The algorithm starts by randomly
selecting a subset of size p + 1 and repeats a concentration-step (C-step) in which the h
data points closest to the sample mean according to the squared Mahalanobis distance
MD2(x,Θ,µ) = (x− µ)⊤Θ (x− µ) are taken as the new subset. This C-step is repeated
until the determinant of the sample covariance matrix for the new subset does not change
anymore. The key finding by Rousseeuw and van Driessen (1999) is the fact that the
determinant of the covariance matrix decreases with each C-step and equality holds iff
the estimated covariance matrix and mean vectors are equal to the previous ones.

Because the solution depends on the initial subset, the process is repeated for different
initializations and the subset resulting in the lowest determinant is taken as the final
solution. Even though the algorithm is guaranteed to converge in a finite number of
steps, the final solution of the FAST-MCD does not have to be the optimal solution. The
probability of at least one outlier-free initial subset is 1 − (1 − (1 − ϵ)p+1)J depends on
the actual contamination ϵ and the number of variables, but it is strictly positive and of
course grows with increasing number of initial subsets J (Rousseeuw and van Driessen
1999). With an increasing number of dimensions however, more and more initial subsets
are needed to get at least one outlier-free subset.

3.1.2 Outlier Detection
One popular way of detecting points deviating from the majority is to inspect an ob-
servation’s distance to the center of the data in the space transformed by the estimated
covariance matrix, the Mahalanobis distance. However, if the estimated location and
scatter are themselves influenced by the outliers, these estimates can not help to detect
the outliers – they are masked (Becker and Gather 1999). To unmask the outliers, robust
estimates for location and scatter are used instead. These estimates are supposedly not
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Algorithm 1 Simplified FAST-MCD algorithm after Rousseeuw and van Driessen (1999)

Input: X = [x1,x2, . . . ,xn]
⊤ with xi ∈ Rp, h ∈ N (n+p+1

2
≤ h ≤ n), number of initial

subsets J
for j = 1, . . . , J do

Generate random initial subset: H0 ←
{
xi1 , . . . ,xip+1

}
⊆ X

m0 ← 1
p+1

∑
x∈H0

x

S0 ← 1
p

∑
x∈H0

(x−m0) (x−m0)
⊤

k ← 0
repeat

dx ← (x−mk)
⊤ S−1

k (x−mk) ∀x ∈ X
k ← k + 1
Hk ← {xi1 , . . . ,xih} such that dx ≤ dy ∀x ∈ Hk,y /∈ Hk

▷ Hk is the set of h observations with smallest distance to mk

mk ← 1
h

∑
x∈Hk

x

Sk ← 1
h−1

∑
x∈Hk

(x−mk) (x−mk)
⊤

until det(Sk) = det(Sk−1)
if j = 1 or det(Sk) < det(Sopt) then

Sopt ← Sk

mopt ←mk

Hopt ← Hk

end if
end for
return Sopt, mopt, and Hopt

affected by the outliers and thus the robust distances RDi =

√
(xi − µ̂)⊤ Σ̂

−1
(xi − µ̂)

can be used to identify outliers (Filzmoser et al. 2008). The disadvantage of using this
robust distance measure is that with increasing dimension, it is increasingly difficult to
calculate, for two reasons. The first reason is the necessity of inverting the estimated
covariance matrix with a lower bound of computational complexity Ω(p2 log p) (Cormen
et al. 2009, pp. 828f). Second, robust estimates for location and scatter are generally
computationally more expensive than classical estimates. Although in low dimensions
computation time is bearable, in higher dimensions it can quickly become infeasible. The
FAST-MCD algorithm, for instance, requires matrix inversion in every C-step and with
higher dimensions, a growing number of initial subsets is needed as well. Therefore, in
high dimensions other outlier detection methods are needed.

Filzmoser et al. (2008) proposed the method PCout based on principal components
and univariate robust methods without the need of matrix inversion, in exchange for a
single eigenvector decomposition.

With the robust univariate median and median absolute deviation

MAD(x1, . . . , xn) = 1.4826med
j
|xj −med

i
xi| (3.4)
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they first rescale the data in each direction to

x∗
ij =

xij −medi xij

MAD(x1j, . . . , xnj)
, j = 1, . . . , p (3.5)

and calculate the principal components Z̃, the orthogonal directions with maximum vari-
ance along each direction, of these semi-robustly sphered data. Of these p principal com-
ponents, only the first p∗ components accounting for at least 99 percent of total variance
are retained. In case n < p, p∗ is guaranteed to be smaller than n, leading to a full-rank
matrix Z. The principal components are again centered and scaled by the median and
MAD according to

z∗ij =
zij −medi zij

MAD(z1j, . . . , znj)
, j = 1, . . . , p∗. (3.6)

The transformed and sphered data set Z∗ is then scanned in two phases for location and
scale outliers, while after each phase an observation receives a weight according to its
outlyingness in either term.

In phase one, weights w̃j for each component are calculated based on the component’s
semi-robust kurtosis measure given by

w̃j =

∣∣∣∣∣ 1n
n∑

i=1

(
z∗ij −medi z

∗
ij

MAD(z∗1j, . . . , z
∗
nj)

)4

− 3

∣∣∣∣∣ , j = 1, . . . , p∗. (3.7)

These component-weights are then normed by w̃j/
∑

w̃j to sum to one and only take
values in the range of 0 ≤ w̃j ≤ 1. If no location outlier is present in component j, the
kurtosis will be close to zero, while higher values of w̃j indicate the presence of outliers.
Based on these weights for the components, a weighted norm for each observation is
calculated according to

d
(1)
i = d̃i

√
χ2
p∗;0.5

medi d̃i
where d̃i =

√√√√ p∗∑
j=1

(
w̃jz∗ij

)2
, i = 1, . . . , n. (3.8)

The weight for location outlyingness w
(1)
i is then calculated with these distances and the

translated biweight function by

w
(1)
i =


0 if d(1)i ≥ c(
1−

(
d
(1)
i −M

c−M

)2
)2

if M < d
(1)
i < c

1 if d(1)i ≤M

. (3.9)

The translated biweight function assigns full weight to observations with distance smaller
than a threshold M and weight 0 if the distance is larger than cutoff value c. For PCout,
the threshold M is chosen as the 100/3-rd empirical quantile of the distances {d1, . . . , dn}.
Hence, one-third of the data receives full weight. On the other end, observations with
distances larger than c = medi(di) + 2.5MAD(d1, . . . , dn) will receive weight 0. This
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completes phase one.
The second phase then determines the outlyingness in terms of scale. The same scaled

principal components Z∗ as in phase one are used, but now the unweighted Euclidean
norms for each observation are used to calculate the distances

d
(2)
i = d̃i

√
χ2
p∗;0.5

medi d̃i
where d̃i =

√√√√ p∗∑
j=1

z∗ij
2, i = 1, . . . , n (3.10)

The same translated biweight function as in (3.9) is utilized to calculate weights w(2)
i , but

with different threshold M (2) = χ2
p∗,0.25 and cutoff c(2) = χ2

p∗,0.99.
The final weight is then given by combining both weights to one measure of general

outlyingness

wi =
(w

(1)
i + s)(w

(2)
i + s)

(1 + s)2
. (3.11)

Adding a constant s prevents an observation of receiving weight 0 if only one of the weights
w

(k)
i , k = 1, 2, is 0. A weight of one means definitively no outlier and weight s2

(1+s)2
is

assigned to highly outlying data points.
PCout works very well for identifying outliers even in high-dimensional data, but in

order to apply the LDA rule, the precision matrix must also be estimated.

3.2 High-Dimensional Data
Modern applications of discriminant analysis often involve data from very high dimensions
while only a small number of samples are available (Marron et al. 2007). Data for which
the number of variables greatly exceeds the number of observations (p ≫ n), sometimes
referred to as High-Dimensional Low Sample Size (HDLSS) data, further complicate es-
timation of the classifier. Although the sample covariance matrix can be estimated for
HDLSS data, the precision matrix can not be obtained from this estimate, as the rank
of the estimated covariance matrix (robust or classical) Σ̂ ∈ Rp×p is rk(Σ̂) ≤ n−K < p
and thus the estimated covariance matrix is singular. One simple solution is to use the
Moore-Penrose pseudo-inverse Σ̂

† of Σ̂ (Webb 2003, p. 440) that can be easily calculated
from the singular value decomposition of Σ̂ = UDV⊤ as Σ̂

†
= VD−1U⊤, using only

those singular vectors that correspond to positive singular values. The disadvantage of
this simple solution is the large expected classification error, as proved by Raudys and
Duin (1998).

However, the problem of estimating the precision matrix and the mean vector can also
be viewed from another vantage point. If a Gaussian model for the data is assumed, the
classical estimates m and S−1 maximize the log-likelihood function

L(µ,Θ) = −n log 2π +
n

2
log det(Θ)− 1

2

n∑
i=1

(xi − µ)⊤ Θ (xi − µ)

∝ log det(Θ)− 1

n

n∑
i=1

(xi − µ)⊤Θ (xi − µ) .

(3.12)
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Because maximization of the likelihood does not yield a precision matrix in the case
of HDLSS data, many alternatives have been presented in the literature. Instead of
maximizing (3.12), Yuan and Lin (2007) proposed to penalize the likelihood and maximize
this regularized likelihood

L(µ,Θ) ∝ log det(Θ)− 1

n

n∑
i=1

(xi − µ)⊤Θ (xi − µ)− λ∥Θ∥1, (3.13)

where λ > 0 is a scalar regularization parameter and ∥Θ∥1 =
∑n

i=1

∑p
j=1 |Θij| is the L1-

norm of matrix Θ that forces entries to be zero. The magnitude of λ controls how much
weight is put on the penalty and therefore how many entries are shrunken to zero. If S is
positive definite and λ = 0, the classical maximum likelihood estimate would be the result
to (3.13). On the other hand, λ =∞ would result in the matrix with all zeros. If S is not
positive definite, there exists a λ0 > 0 such that for all λ ≥ λ0 maximizing (3.13) yields
an invertible covariance matrix Σ̂ and hence a valid estimate of the precision matrix Θ̂
(Banerjee et al. 2008). Banerjee et al. (2008) also show that Θ̂ij will be zero, if Sij ≤ λ.
From this result and the fact that S is symmetric, the λ resulting in full sparseness can
be explicitly given by

λsp = max
i={1,...,p}

max
j={1,...,i−1}

|Sij| . (3.14)

The MLE estimator for µ in (3.13) is still the coordinate-wise arithmetic mean of
the data µ̂ = 1

n

∑n
i=1 xi, as the penalty does not affect µ, but the optimization problem

for Θ in (3.13) is nontrivial due to the positive-definiteness constraint and nonlinearity
(Yuan and Lin 2007). Many methods have been proposed in the literature for solving
this optimization problem. Yuan and Lin (2007) adapt an interior-point algorithm from
Vandenberghe et al. (1998), while Banerjee et al. (2008) and Friedman et al. (2008) use
block coordinate descent methods, and Hsieh et al. (2011) apply quadratic programming.
Despite the advanced algorithms, solving the optimization problem in (3.13) is computa-
tional intense and takes significantly longer than the classical estimates, especially when
p gets larger.

Additionally, regularization of the likelihood function helps to eliminate the influence
of noise variables. If Θij = 0, variables i and j are conditionally independent given the
other variables. Even if the sample covariance matrix is invertible, S−1 might not be
sparse and conditionally independent variables would not be detected as such (Banerjee
et al. 2008). Therefore, by forcing small values in Θ̂ to be zero, conditionally independent
variables are uncovered.

A desired property for any estimator of scatter is for it to be affine equivariant, which
means that the estimator is “transformed properly under rotations of the data as well as
changes in location and scale” (Wilcox 2011). This means, that the estimated precision
matrix ˆ̃Θ of the transformed data X̃ = [Ax1 + b, . . . ,Axn + b]⊤ should equal ˆ̃Θ =

A−1Θ̂A−1⊤ and the estimated centers of the transformed data ˆ̃µ should be equal to
ˆ̃µ = Aµ+ b. This property is of course true for the sample mean, and Theorem 1 shows
that the estimator obtained by maximizing the penalized likelihood function is invariant
to location shifts.

Theorem 1. Let X̃ be the location shifted data X̃ = [x1 + b, . . . ,xn + b]⊤ and ˆ̃Θ the
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estimate for the precision matrix maximizing the penalized likelihood (3.13) for the shifted
data denoted by L̃(µ̃, Θ̃). If µ̂ and Θ̂ maximize (3.13) for the original data, then ˆ̃Θ = Θ̂.

Proof. Because ˆ̃µ = µ̂+ b and Θ̂ maximize L(µ,Θ),

L(µ̂, Θ̂) ∝ log det(Θ̂)− 1

n

n∑
i=1

(xi − µ̂)⊤ Θ̂ (xi − µ̂)− λ∥Θ̂∥1

∝ log det(Θ̂)− 1

n

n∑
i=1

(
xi + b− ˆ̃µ

)⊤
Θ̂
(
xi + b− ˆ̃µ

)
− λ∥Θ̂∥1

∝ L̃(ˆ̃µ,Θ)

Θ̂ maximizes the likelihood for the shifted data X̃. □

In contrast to the empirical mean and empirical sample covariance matrix as well as
its inverse (if it exists), the estimator maximizing (3.13) is not invariant to rotations or
scaling. This can be easily shown by optimizing the penalized likelihood for scaled data

X̃ = XA with a diagonal scaling matrix A =

( a1 0...
0 ap

)
. For the estimator to be affine

equivariant, ˆ̃Θ = A−1Θ̂A−1 would have to maximize

L̃(µ̃, Θ̃) ∝ log det(Θ̃)− 1

n

n∑
i=1

(x̃i − µ̃)⊤ Θ̃ (x̃i − µ̃)− λ∥Θ̃∥1

∝ log det(A−1ΘA−1)− 1

n

n∑
i=1

(Axi −Aµ)⊤ A−1ΘA−1
(
A−1xi −A−1µ

)
− λ∥A−1ΘA−1∥1

∝ log det(Θ)− 2 log det(A)− 1

n

n∑
i=1

(xi − µ)⊤Θ (xi − µ)− λ
∑
i,j

∣∣∣∣Θij

aiaj

∣∣∣∣
∝ L(µ,Θ)− 2 log det(A)− λ

∑
i,j

|Θij|
1− |aiaj|
|aiaj|

.

However, due to the different penalization of the values in Θ with λ
|aiaj | instead of λ in the

transformed data’s likelihood function, A−1Θ̂A−1 is in general not maximizing L̃(µ,Θ).

3.2.1 Graphical Lasso
The graphical lasso (glasso) was introduced by Friedman et al. (2008) based on the work
of Banerjee et al. (2008) to solve the optimization problem (3.13). Instead of solving
(3.13) directly for Θ, they search for a solution of Σ by utilizing a dual problem instead
of the primary problem. The estimate Σ−1 can then be obtained in an efficient way using
parameters calculated during estimation of Σ. For that, W = Θ̂

−1 denotes the wanted
estimate of the covariance matrix and S the classical covariance estimate. These matrices
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can be partitioned as

W =

(
W11 w12

w12 w22

)
, Θ =

(
Θ11 θ12

θ12 θ22

)
, S =

(
S11 s12
s12 s22

)
.

As proved in Friedman et al. (2008) the subgradient equation for maximizing (3.13) with
respect to Θ is

W − S− λΓ = 0 (3.15)
where the entries of Γ are Γij = sign(Θij) if Θij ̸= 0 and some number in [−1; 1] otherwise.

Friedman et al. (2008) go on to show that the optimal solution to (3.13) can therefore
be obtained by optimizing the dual problem

min
β

{
1

2
∥W1/2

11 β −W
−1/2
11 s12∥22 + λ∥β∥1

}
(3.16)

and setting w12 = W11β for all columns of W. In order to get an estimate for each
column of W, the matrix must be reorganized such that every column is last once. When
all columns are estimated, the procedure is repeated until the relative change of all entries
in W is small enough. From (3.15), the optimal value for the diagonal entries is obviously
Wii = Sii + λ as Θii > 0 and thus Γii = 1.

Equation (3.16) has the form of a least squares regression of W1/2
11 on W

−1/2
11 s12 with

a lasso-type penalty on the parameter vector. Because W11 is symmetric, efficient algo-
rithms using the inner products

(
W

1/2
11

)⊤
W

1/2
11 = W11 and

(
W

1/2
11

)⊤
W

−1/2
11 s12 = s12 are

available to solve this regression problem. The popular coordinate descent algorithm by
Friedman et al. (2007) updates every coordinate j = 1, . . . , p, 1, . . . , p, . . . of the parameter
vector β = [β1, . . . , βp]

⊤ with

β̃j =
T
(
(s12)j −

∑
k ̸=j (W11)kj β̃k, λ

)
(W11)jj

(3.17)

where T (x, λ) = sign(x)(|x| − λ)+

until the relative change of all entries in β̂ is negligible. This is repeated for each column
in W as long as the relative change of all entries in W is not too small.

Due to the partitioning and the fact that WΘ = Ip, the entries of the precision matrix
can be estimated by solving the two equations

W11θ12 +w12θ22 = 0

w⊤
12θ12 + w22θ22 = 1.

By noting that β̂ = W−1
11 w12, the solutions to these equations are

θ̂22 =
1

w22 −w⊤
12β̂

(3.18)

θ̂12 = −β̂θ̂22. (3.19)
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The computation of Θ̂ is only done once after the algorithm converged to a solution
for W to avoid the unnecessary computation after each step. Thus, the parameter vectors
β must be stored for each of the p regression problems resulting in additional p2 storage
requirement. Although (3.18) and (3.19) give the inverse of W if W and the parameter
vectors are the exact solutions, stopping the iteration after a convergence threshold is
reached results in an estimate Θ̂ that is not exactly the inverse of W. Rolfs and Rajarat-
nam (2012) also note that the indirection of first estimating Σ̂ to obtain Θ̂ has the major
drawback of no guaranteed precision of Θ̂. The convergence of the algorithm is solely
determined by the change of W and not Θ̂, so the final solution Θ̂ may not be sym-
metric. Nevertheless, because discriminant analysis does not depend on the symmetric
property of Θ̂, the speed improvements of avoiding numerical inversion of W outweighs
this inaccuracy.

Since the original version of the glasso algorithm was introduced, several refinements
were developed. One of great use is the publication by Witten et al. (2011). They show
that entries of the regularized precision matrix Θ̂jj′ are zero, if |Sjj′| ≤ λ. Furthermore,
they proved if a set of variables Cu are completely unconnected to all other variables,
the precision matrix can be estimated separately for the connected variables Cc, therefore
reducing the number of variables to q = |Cc| for the glasso and hence computational
complexity. Variable j is considered unconnected to the rest and thus j ∈ Cc iff |Sjj′| ≤ λ
for all j′ ̸= j. When the variables are permuted such that the first |Cc| variables are
connected and the last p − q = |Cu| are unconnected, the solution to the glasso can be
written as

Θ̂ =


Θ̂c

(Sj1j1 + λ)−1

. . .
(Sjp−qjp−q + λ)−1


where jk ∈ Cu, k = 1, 2, . . . , p − q and Θc is the precision matrix for the variables in Cc.
While the original glasso has computation complexity of O(p3) (Friedman et al. 2008),
this screening procedure reduces the complexity to O(q3) (Witten et al. 2011). Thus,
the actual speedup depends on the sparseness of the covariance structure, but it can
significantly improve the speed of the graphical lasso, in particular when many variables
are unconnected.

One disadvantage of the idea in general is the assumption of normality. To mitigate this
problem, Croux et al. (2010) proposed a robust variant of the above method, maximizing
the regularized likelihood not for the entire, but only for the majority of the data.

3.3 Robust Regularized Precision Matrix Estimation
As already elaborated above, the normality assumptions does not hold in many applica-
tions and the relaxed assumption of only the majority of data being normal is more realis-
tic. Optimization of the penalized likelihood requires all data points to be generated by a
Gaussian model, which is why Croux et al. (2010) instead proposed a method that incor-
porates the ideas of the FAST-MCD estimator into regularized estimation. Instead of opti-
mizing (3.13) for all observations, it is only optimized for a subset H = {xi1 , . . . ,xih} ⊆ X
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of the data, which results in the maximum likelihood function

L(H,µ,Θ) ∝ log det(Θ)− 1

h

∑
x∈H

(x− µ)⊤ Θ (x− µ)− λ∥Θ∥1. (3.20)

For fixed H, maximizing (3.20) is the same as maximizing (3.13) and the same meth-
ods, for instance the graphical lasso, can be employed. However, determining the optimal
subset Hopt exacerbates the estimation. This optimal subset can be obtained in a simi-
lar fashion as in the FAST-MCD algorithm because the same C-step also improves the
solution to (3.20) as shown in Theorem 2.

Theorem 2. Given a subset of the data H0 ⊆ X of size h and let µ̂k, Θ̂k be the estimates
satisfying L

(
Hk, µ̂k, Θ̂k

)
≥ L (Hk,µ,Θ) for all other µ, Θ.

If H1 ⊆ X is the set of h observations with smallest Mahalanobis distances to the
estimated center µ̂0 according to Θ̂0:

(x− µ̂0)
⊤ Θ̂0 (x− µ̂0) ≤ (y − µ̂0)

⊤ Θ̂0 (y − µ̂0) ∀x ∈ H1,y ∈ X \ H1,

then L
(
H1, µ̂1, Θ̂1

)
≥ L

(
H0, µ̂0, Θ̂0

)
.

Proof. This follows directly from the definitions of µ̂1, Θ̂1, and H1. Because µ̂1 and Θ̂1

maximize the penalized likelihood, L
(
H1, µ̂1, Θ̂1

)
≥ L

(
H1, µ̂0, Θ̂0

)
. Furthermore, H1

contains the observations with smallest distances to the center µ̂0 with respect to Θ̂0.
Therefore, the sum of the Mahalanobis distances is less than for any other subset of size
h including H0 ∑

x∈H1

(x− µ̂0)
⊤ Θ̂0 (x− µ̂0) ≤

∑
x∈H0

(x− µ̂0)
⊤ Θ̂0 (x− µ̂0)

and hence L
(
H1, µ̂0, Θ̂0

)
≥ L

(
H0, µ̂0, Θ̂0

)
. □

The RegMCD algorithm (Croux et al. 2010; Gschwandtner and Filzmoser 2013) to ob-
tain the robust, regularized covariance estimate is outlined in Algorithm 2 and is similar
to the FAST-MCD algorithm given in Algorithm 1. The differences are that the precision
matrix is estimated directly by maximizing the penalized likelihood and that instead of
repeating C-steps until the likelihood function does not change anymore, a threshold for
convergence is used. This is necessary, because maximizing the likelihood is computa-
tionally more expensive than calculating the sample covariance as for the FAST-MCD.
Therefore, the algorithm stops when the likelihood does not improve much after a C-step
in order to speed up computation.

By employing the RegMCD estimator when the majority of the data comes from a
Gaussian model with equal covariance structure across all classes, the optimal decision
rule (2.7) can be used for contaminated HDLSS data to get a classifier for this majority.
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Algorithm 2 RegMCD algorithm after Croux et al. (2010)

Input: X = [x1,x2, . . . ,xn]
⊤ with xi ∈ Rp, h ∈ N (n

2
≤ h ≤ n), a threshold for deter-

mining convergence T (0 < T < 1), number of initial subsets J
for j = 1, . . . , J do

q ← ⌊h
2
⌋ where ⌊h

2
⌋ denotes the largest integer less than or equal to h

2

Generate random initial subset: H0 ←
{
xi1 , . . . ,xiq

}
⊆ X

m0 ← 1
q

∑
x∈H0

x

Θ̂0 ← argminΘ L(H0,m0,Θ)
O0 ← L(H0,m0, Θ̂0)
k ← 0
repeat

dx ← (x−mk)
⊤ Θ̂ (x−mk) ∀x ∈ X

k ← k + 1
Hk ← {xi1 , . . . ,xih} such that dx ≤ dy ∀x ∈ Hk,y /∈ Hk

▷ Hk is the set of h observations with smallest distance to mk

mk ← 1
h

∑
x∈Hk

x

Θ̂k ← argminΘ L(Hk,mk,Θ)
Ok ← L(Hk,mk, Θ̂k)

until 1− Ok−1

Ok
< T

if j = 1 or Oopt < Ok then
Oopt ← Ok

Θ̂opt ← Θ̂k

mopt ←mk

Hopt ← Hk

end if
end for
return Θ̂opt, mopt, and Hopt



Chapter 4

Proposed Algorithm

To finally utilize the RegMCD estimator for linear discriminant analysis, some obstacles
must be overcome. Algorithm 2 requires the regularization parameter λ to be fixed before
(3.20) can be optimized. Opposed to the size h of the subset, which is simply the assumed
number of “good” observations, the regularization parameter λ can not be chosen by
intuition. Therefore, a data-driven approach is necessary to get a reasonable value for λ.
Another major obstacle is the non-invariance of the estimator to transformations of the
data. In general, the scales of the p variables are arbitrarily different and hence will be
unequally penalized in (3.20). Variables with low variance are more likely to be considered
uncorrelated to other variables than variables with larger variance. These two issues are
interlaced and must be explicitly dealt with when utilizing the RegMCD estimator for
linear discriminant analysis.

4.1 Robust Regularized LDA
For this section the regularization parameter λ is considered to be fixed. The first task
for robust regularized LDA (RRLDA) is to obtain a preliminary estimate of the class
centers. The arithmetic mean of the observations in each class is suboptimal due to its
sensitivity to outliers. Because the coordinatewise median is not orthogonally equivariant
(Filzmoser et al. 2008), a better suited estimate is the L1 median introduced by Haldane
(1948) which is defined as

µ̂(p)
g = argmin

µ∈Rp

∑
x∈X :G(x)=g

∥x− µ∥ (4.1)

where ∥.∥ is the Euclidean norm. The L1 median still has a breakdown point of 50 percent
and fast algorithms exist to compute it (Fritz et al. 2012). With these preliminary class
centers, the data X can be centered to X̃, where

x̃i = xi − µ̂G(xi)
i = 1, . . . , n. (4.2)

Once the data has been centered, the variables should be transformed to a common
scale. Again, as the sample variance is greatly influenced by outliers, a more robust
measure is necessary. Additionally, during RegMCD the graphical lasso is applied to
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different subsets of size h and the set of h observations with highest weights according
to the PCout outlier detection method can be used as an initial guess for the optimal
subset Hopt. Therefore, the RRLDA calculates the MAD (3.4) for each coordinate, but
only considering the h observations with highest weights obtained with the PCout outlier
detection method. The centered and scaled data

X∗ = X̃Â with Â =

σ̂−1
1

. . .
σ̂−1
p

 (4.3)

is then used as input to the RegMCD algorithm. RegMCD considers different subsets until
it arrives at the optimal subset and each subset would result in different scale estimates.
Hence, it is important that scaling must be done before the RegMCD algorithm can be
applied to the data, because otherwise variables would be penalized differently for every
subset.

The RegMCD algorithm described in the previous chapter was enhanced in several
ways. First, similar to optimizations implemented for the FAST-MCD algorithm by
Rousseeuw and van Driessen (1999), selective iteration was added to speed up compu-
tation. Selective iteration means that for all initial subsets a small predefined number
of C-steps is performed. After these C-steps are done for all initial subsets, only the b
best subsets are retained and iteration of C-steps is continued for those b subsets only.
Rousseeuw and van Driessen (1999) mention, robust and non-robust subsets can be dis-
tinct after only a few C-steps, and the same observation was made for the RegMCD
algorithm, hence computation can be significantly accelerated without loosing precision.
This can be enhanced further by storing all subsets obtained after each C-step for every
initial subset. When another C-step results in a subset already considered by C-steps for
another initial subset, C-step iteration can be stopped immediately and the next initial
subset processed.

The second variation of the original RegMCD algorithm concerns the selection of the
initial subsets. Instead of using a haphazard random guess as the initial subset, weights
obtained via the PCout algorithm described in Section 3.1.2 are used as guidance. The
first initial subset consists always of the ⌊h

2
⌋ observations with largest weights. For the

other – randomly chosen – initial subsets, the probability for an observation to being
selected is proportional to its weight. This increases the chance of outlier-free initial
subsets and hence speeds up convergence of the algorithm.

Despite these improvements, the RegMCD algorithm still has the glasso algorithm
as bottleneck. The glasso algorithm developed by Friedman et al. (2008) and refined by
Witten et al. (2011) is implemented in Fortran and available as a supplemental package
(Friedman et al. 2014) for the statistical computing environment R (R Core Team 2015).
The glasso algorithm used for this work is a corrected and optimized version of the C im-
plementation of the refined algorithm published in the R package huge (Zhao et al. 2014).
For the optimized version, as many calculations as possible were outsourced to an exter-
nal BLAS library (Blackford et al. 2001), because highly optimized and hardware-tailored
implementations for this library are available to significantly accelerate the computation.

The resulting estimation of the precision matrix Θ̂
∗ and mean vector µ̂∗ are then used

to reconstruct the precision matrix at the original scale as well as to adjust the preliminary
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estimate of the center, to arrive at the final estimates

Θ̂ = Â
−1
Θ̂

∗
Â

−1 (4.4)
µ̂g = µ̂(p)

g + (σ̂1, σ̂2, . . . , σ̂p)
⊤ ⋆ µ̂∗ (4.5)

with ⋆ as the element-wise multiplication. These estimations are in turn used to derive
the classifier Ĝ (.).

To summarize, robust regularized linear discriminant analysis is performed in 8 steps:

Step 1: Specify the robustness parameter α (h = αn) based on the expected quality
of the data and a regularization parameter λ.

Step 2: Compute the L1 medians as preliminary location estimates µ̂(p)
g for each

class g ∈ G and center the data pursuant to (4.2) to arrive at X̃.

Step 3: Compute robust scale estimates σ̂j for all variables j = 1, . . . , p based on the
inner h points using the MAD and define the scaling matrix Â according
to (4.3).

Step 4: Apply the RegMCD algorithm with the optimized glasso algorithm to the
scaled and centered data X∗ = X̃Â using h and λ as defined in the first
step. This results in a robust estimate of the precision matrix Θ̂

∗ and mean
vector µ̂∗.

Step 5: Obtain Θ̂ by back-transforming the estimated precision matrix as defined
in (4.4).

Step 6: Update the preliminary group centers obtained in step two with the esti-
mated center µ̂∗ according to (4.5) resulting in µ̂g for every class g ∈ G.

Step 7: Derive the LDA classifier Ĝ (.) from (2.7) with Θ̂ and µ̂g, g ∈ G, calculated
in steps 5 and 6.

4.2 Regularization Parameter
To apply RRLDA as defined in the previous section, the regularization parameter λ must
be specified in advance. For choosing this λ, estimation of the precision matrix and
classification of objects can be treated separately or conjoined.

If the search for λ is considered independent from discriminant analysis, it is a model
selection where estimation is done by maximizing the log-likelihood. In this setting, the
Bayes Information Criterion (BIC) is a popular choice to select the optimal value for
λ. The classical BIC for a model Ψ is a compromise between fit to the data and model
complexity, and is defined as

BIC(Ψ) = −2 logL(Ψ) + κ(Ψ) log n (4.6)

(Hastie et al. 2009), where a lower BIC is preferable. The function κ(Ψ) denotes the num-
ber of estimated parameters in the model Ψ. In the case of regularized inverse covariance
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estimation, the degrees of freedom are determined by the number of non-zero elements in
Θ̂ (Leng and Wang 2009) plus a term for the estimated p-dimensional centers of the K
classes

κ(λ) = Kp+

p∑
i,j=0

êij(λ), êij(λ) =

{
0 if Θ̂ij = 0

1 if Θ̂ij ̸= 0
. (4.7)

Due to the additive effect of λ on the log-likelihood in (3.20), this log-likelihood is not
appropriate for the BIC criterion. Therefore, Croux et al. (2010) proposed an adjusted
log-likelihood

L̃(Hopt, Θ̂, µ̂g1 , . . . , µ̂gK
) =

h

2
log det(Θ̂)− 1

2

∑
g∈G

∑
x∈Hg

(
x− µ̂g

)⊤
Θ̂
(
x− µ̂g

)
(4.8)

with Hg = Hopt ∩ {x ∈ X : G (x) = g} for model selection, which results in the adjusted
BIC criterion

BIC(λ) = −2 log L̃(Hopt, Θ̂, µ̂g1 , . . . , µ̂gK
) + κ(λ) log h. (4.9)

The BIC can be calculated without much additional computational costs, as the ad-
justed log-likelihood can be obtained from the original log-likelihood and the number of
non-zero entries in Θ̂ can be counted in the last step of the glasso, during calculation of
Θ̂. However, the BIC may not give adequate results for λ, as only the fit to the sample
at hand is assessed. To get a more appropriate value for λ, cross-validation (CV) can be
applied. For cross-validation, the entire sample is split into C disjoint random segments
Vc (c = 1, . . . , C), such that each segment comprises approximately ng

C
observations from

every class g ∈ G and
∪C

c=1 Vc = X . The RegMCD algorithm is then applied to C different
data sets X ∗

c = X \ Cc, c = 1, . . . , C, where each time one segment is omitted. For each
data set, a BIC value can be computed with the log-likelihood of the fit to the omitted
data

BIC(CV)
c (λ) = −|Vc| log det(Θ̂) +

∑
g∈G

∑
x∈Vc∩Hg

(
x− µ̂g

)⊤
Θ̂
(
x− µ̂g

)
+ κ(λ) log |Vc|

(4.10)

and then aggregated to the final cross-validated BIC value

BIC(CV)(λ) =
C∑
c=1

BIC(CV)
c (λ) (4.11)

which leads to a more appropriate value of λ. When performing cross-validation for
RRLDA, it is important to estimate the scale of the variables prior to CV, because oth-
erwise the regularization parameter would be not comparable between CV splits.

As already elaborated in the previous chapter, RegMCD is computationally expensive
and searching for the optimal value of λ further aggravates this issue, as many different
models must be fit to the data and compared. Because cross-validation requires C runs
of the RegMCD algorithm for every value of λ, it may be infeasible for large p.
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When the BIC is used to select the optimal value of λ, the actual application of
the precision matrix for discriminant analysis is ignored. Classification optimizes for the
misclassification rate and this measure is not equivalent to the log-likelihood of the data,
regardless of the probability model (Hastie et al. 2009), so the BIC can not be used. The
most palpable measure to use instead is the misclassification rate of the classifier obtained
with the precision matrix estimated for a particular choice of λ. The misclassification rate,
however, is unsuitable for selecting the optimal value of λ, as it is highly discontinuous
and assigns equal weights to outlying and non-outlying observations.

To consider the classification setting in selecting the optimal value of λ, a smoother and
more robust measure must be defined. To increase robustness, observations too far away
from the class center should be given less weight than the other observations. However,
only using these weights for a weighted misclassification rate does not yield a smoother
measure. Nevertheless, the weighted misclassification rate can be made smoother by
noting that the estimated probability that an observation x belongs to the true class
P (Γ = G (X) | X = x) is less than or equal to 1/2 if the observation is misclassified. Hence,
for misclassified observations, the ratio of the logarithm to base 2 is at least 1 and in-
creases monotonically, the farther the estimated probability is away from guaranteed
proper classification. These considerations lead to the measure

D(λ) =− 1

n

∑
x∈X :G(x)̸=Ĝ(x)

W (x) log2 P (Γ = G (X) | X = x)

+ c2
1

n

∑
x∈X :G(x)=Ĝ(x)

(1−W (x))
(4.12)

with hard-rejection weight function

W (x) =

{
0 if

(
x− µ̂G(x)

)⊤
Θ̂
(
x− µ̂G(x)

)
> c1

1 otherwise
(4.13)

and c1 > 0, 0 ≤ c2 ≤ 1.
The first term in D(λ) is similar to a deviance, trimmed to misclassified observations

closer than c1 to the class center, while the second term rewards observations far away
from the class center but nevertheless correctly classified, weighted by c2. The constant
c1 determines the trimming of the deviance sum. Because the observations for which
the robust precision matrix was estimated are assumed to come from a Gaussian model,
the squared Mahalanobis distance is approximately χ2

p distributed (Johnson and Wichern
2007, p. 163). Hence, a quantile of the χ2

p distribution, for instance the 95 percent
quantile χ2

p(0.95), would be a sensible choice for the cutoff value. Another possibility
is to use an empirical quantile of the squared distances as cutoff value, although this
has the disadvantage that a certain percentage of the data is always marked as too far
away. In practice, the χ2

p quantile did not perform well as with bad regularization, the
estimated precision matrix is unreliable and thus the squared distances far away from
being χ2

p distributed. Because an assumption on the number of outliers was already made
by specifying h, a reasonable choice for c1 is therefore the h/n empirical quantile of the
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squared distances d2i =
(
xi − µ̂G(xi)

)⊤
Θ̂
(
xi − µ̂G(xi)

)
c1 = d2(h) where d2(1) ≤ d2(2) ≤ · · · ≤ d2(n).

The influence of the second term is controlled by constant c2. If c2 = 1, one correctly
classified outlier compensates for one almost correctly classified “good” data point, while
for c2 = 0 proper classified outliers do not matter. The more outliers are assumed to be
present, the better it is to assign this outlier the right class. Hence, a sensible choice for
c2 is to use prior knowledge on the number of outliers and set c2 = 1− h

n
.

Identical to the BIC, a small value of the deviance-based measure D is preferable.
Also, D only assess the fit to the current sample, so cross-validation can improve the
reliability of the resulting λ, again at the cost of computation time. The deviance can
again be computed for the left out segment Vc

D(CV)
c (λ) =− 1

|Vc|
∑

x∈Vc:G(x)̸=Ĝ(x)

W (x) log2 P (Γ = G (X) | X = x)

+ c2
1

|Vc|
∑

x∈Vc:G(x)=Ĝ(x)

(1−W (x))
(4.14)

and then aggregated to get the cross-validated deviance

D(CV)(λ) =
C∑
c=1

D(CV)
c (λ). (4.15)

The proposed method was implemented in the R package rrlda2, which provides an
easy to use interface, similar to classical LDA available from the popular R package MASS
(Venables and Ripley 2002).



Chapter 5

Simulation Study

The usefulness and performance of the proposed method is assessed by an extensive sim-
ulation study. The robust regularized linear discriminant analysis (RRLDA) is compared
to classical linear discriminant analysis using the Moore-Penrose pseudo-inverse if n > p
(referred to as LDA) as well as classical regularized LDA (denoted as CRLDA). CRLDA
is the special, non-robust variant of RRLDA, where α = 1 and the classical standard
deviation and arithmetic mean are used as the initial scale and location estimates. It is
noteworthy that for CRLDA, Step 4 of RRLDA can be replaced by one single call to the
optimized glasso algorithm with the sample covariance matrix, instead of performing the
entire RegMCD procedure.

Because for RRLDA, the majority of data within the classes is assumed to be normally
distributed, the simulation design is rather simple.

5.1 Simulation Design
The simulation study is based on the design used by Todorov and Pires (2007) in their
extensive comparison of robust methods for linear discriminant analysis, with only minor
modifications. For K = 2, 3 classes, data is generated from a multivariate normal distri-
bution in p = 32, 128, 256, 512, 1024 dimensions with two different class sizes ng = 50, 100.
In all cases, the covariance matrix within each class is the same. The first K dimensions
are correlated with a correlation factor of 0.7, while all other dimensions are uncorrelated.
To also test how the algorithm can handle unequal scales of the variables, the scales are
randomly generated from a Weibull distributionW (Johnson et al. 1994) with probability
density function depending on shape a and scale b:

fW(x; a, b) =
a

b

(x
a

)b−1

exp

{
−
(x
a

)b}
x ≥ 0, a, b > 0. (5.1)

For this simulation study, the parameters are chosen as a = 0.5 and b = 20, which results
in a heavy tailed Weibull distribution from which the scales are generated, thus increasing
the chance for some dimensions to have large variation. The center of the first class is at
the origin, while the other classes’ centers are three standard deviations away from the
origin and orthogonal to all others.
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An observation Xg in class g ∈ G is therefore generated by the model

Xg ∼ N
(
µg,Σ

)
(5.2)

where

Σ = A

(
ΣK 0
0 Ip−K

)
A with A =

σ1

. . .
σp

 ,

σj ∼ W(0.5, 20),Σ2 =

(
1 0.7
0.7 1

)
,Σ3 =

 1 0.7 0.7
0.7 1 0.7
0.7 0.7 1

 ,

and

µg1 = (0, 0, 0, . . . )

µg2 = (3σ1, 0, 0, . . . )

µg3 = (0, 3σ2, 0, . . . ) .

Because robustness was one of the main goals when designing the estimator, the esti-
mator’s properties under contamination are of primary interest. Therefore, location and
scale contamination is considered as well. Contamination is generally done by replacing a
proportion ϵ = 0.1, 0.25, 0.4 of the data by data points from a different model. For scale
contamination, ϵ ·ng, g ∈ G, observations in each class are replaced by observations follow-
ing a normal distribution with inflated covariance matrix leading to the data-generating
model

Xg ∼ (1− ϵ)N
(
µg,Σ

)
+ ϵN

(
µg, κΣ

)
g ∈ G (5.3)

with κ = 9, 100 being the magnitude of inflation. The innermost points from the contami-
nation model may still be considered “good” data, as the center is the same. Nevertheless,
most data points from the contamination model are far away from the class centers and
completely intersect with the other groups, even in the discriminating dimensions. Scale
contaminated data may not influence the location estimator, but if the outliers are not
uncovered, the estimated covariance matrix would also be inflated and discrimination
between the classes would be almost impossible.

Location contamination is done by replacing ϵ · ng observation in each class by points
generated from a normal distribution shifted in the first ⌊p/2⌋ directions and densely
concentrated around this point:

Xg ∼ (1− ϵ)N
(
µg,Σ

)
+ ϵN

(
µ̃g, 0.25

2Σ
)
g ∈ G (5.4)
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where

µ̃g = µg +
(
νσ1Q

∗
p, . . . , νσ⌊p/2⌋Q

∗
p, 0, 0, . . .

)⊤
Q∗

p =

√
χ2
p;0.001

⌊p/2⌋
.

The magnitude of the shift is determined by the unit measure Q∗
p (see Rocke and Woodruff

1996) and is varied by ν = 5, 10. Adding a shift only in the first ⌊p/2⌋ directions makes
the contaminated data more difficult to unmask and therefore more challenging for the
estimators. Location contamination may affect both, location and scale estimation. In
case these outliers are not unmasked, the estimated covariance matrix would be highly
skewed and inflated in ⌊p/2⌋ dimensions, including the discriminating dimensions. Again,
discrimination with these wrong estimates would not be attainable.

By varying the simulation parameters K, p, ng, ϵ, κ, ν, a total of 260 different settings
are considered, whereas in 20 of these settings clean data is generated.

5.2 Simulation Procedure
Individually for each setting, the regularization parameter λ must be chosen first. This is
done by performing five-fold cross-validation (C = 5) for a sequence of increasing values
of λ. In lower dimensions (p ≤ 512), a fine search grid for λ = 0.005, 0.010, . . . , 0.500
is chosen, while for p = 1024, the sequence was thinned out to λ = 0.01, 0.02, . . . , 0.50
in order to reduce computation time. The cross-validated BIC defined in (4.11) and the
cross-validated deviance criterion in (4.12) are then calculated for every value of λ and
separately for both algorithms CRLDA and RRLDA. For RRLDA, two initial subsets
are used during each run. Especially for small λ and high p, the graphical lasso may
not converge. When this happens for all initial subsets of a single cross-validation subset
X ∗

c , this λ is not further considered for this simulation setting and method (RRLDA or
CRLDA). To also compare the performance of the decision criteria, two optimal values of
λ are chosen according to the minimum BIC and the minimum deviance:

λBIC = argmin
λ

BIC(CV)(λ)

λD = argmin
λ

D(CV)(λ).

In the rare case that the path of the deviance or BIC is still clearly decreasing at λ = 0.5,
the grid is expanded to λ = . . . , 0.5, 0.51, 0.52, . . . , 0.8, which then covers the optimal
value in all simulations.

Before RRLDA can be applied to data, not only λ, but also α, the expected proportion
of clean observations must be specified. The prior knowledge about contamination for each
simulation setting can be exploited. For no and small contamination (ϵ ≤ 0.1), 75 percent
of the data is expected to be clean, while in settings with more contamination (ϵ ≥ 0.25),
α = 0.6 is chosen.

Once the optimal values of λ according to either criterion is determined, the perfor-
mance of the classifier must be judged. This is done by analyzing the prediction perfor-
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mance of the resulting classifier. Because the data-generating model specified in (5.2) is
known, new data can be easily generated. Hence, a test set Y = {y1, . . . ,yN} containing
N = 2000 non-contaminated observations per class are generated according to the same
model as the training set, the data the classifier was trained on. The classifier is then
applied to the test set and the Test Error Rate (TER), the relative number of misclassified
observations, is calculated as

TER =

∣∣∣{y ∈ Y : Ĝ (y) ̸= G (y)
}∣∣∣∑

g∈G ng

. (5.5)

This is repeated B = 100 times to obtain the Overall Probability of Misclassification
(OPM) as the arithmetic mean of the test error rates in these 100 replications:

OPM =
1

B

B∑
b=1

TERb. (5.6)

The estimated classifier is of course highly dependent on the training data. To assess
the variability of the estimation in this respect, for simulation settings in low dimensions
p ≤ 256, the estimation of the classifier and calculation of OPM is repeated five times,
while for higher dimensions p ≥ 512, two replications are considered. The final OPM is
then the averaged over these five respectively two OPM values.

A criterion for every classifier is that it at least be better then chance. In the case where
all groups have equal number of observations, the expected value of correctly classified
observations by assigning the class by chance is ng. Thus, in the simulation settings
considered here, this means OPM values should at least be less than K−1

K
to consider

the classifier better than random assignment. In the two-class simulation settings, the
theoretical probability of misclassification can be easily calculated. The random quantity
w⊤X is normally distributed with mean − 32

1−0.72
and variance 32

1−0.72
, where the optimal

threshold for assigning the observation to class g1 is c = − 32

2(0.72−1)
, so the theoretical

probability of misclassification is 3.57 percent. If a classifier obtains an OPM below
this theoretical probability of misclassification, the estimated precision matrix and class
centers match the truth almost perfectly, thus it can be regarded as optimal classifier.

5.3 Simulation Results
With replications, 988 simulations are performed in total. For each simulation, the optimal
value of λ is chosen according to the procedure described above. To showcase the selection
of the optimal value of λ, the deviance- and BIC-curve are investigated here for one
simulation. Figure 5.1 shows the path of the deviance and BIC as well as the optimal
value according to each criterion for both RRLDA and CRLDA. It can be seen that
the path of the BIC is smoother than that of the deviance which was observed in most
runs. Both measures are quite large for very small λ values and then show a steep
descent. All but one paths then reach a minimum and the measures start to increase
again. In this situation, the optimal value of λ is clearly distinguishable. The deviance
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Figure 5.1: Exemplary path of the deviance measure D(λ) and the BIC(λ) obtained in one
simulation with location contamination and simulation settings p = 512, ng = 100, ϵ = 0.1,
ν = 10, and K = 3, calculated with 5-fold CV.

measure of RRLDA increases after the minimum, but the slope is rather small. The
value of RRLDA’s BIC measure, does not change altogether after some point and no
clear minimum can spotted. This behavior can be observed quite often. It is due to λ
getting so large that the estimate of the precision matrix is diagonal, except for the truly
correlated variables. Further regularization only shrinks these few remaining elements, i.e.,
estimated variances of the variables increase and estimated correlations decrease. Thus,
the degrees of freedom stay the same and the likelihood, if only the “good” observations
are considered as in RRLDA, also remains relatively unchanged, if this precision matrix
is optimal. The deviance behaves similar, but the “badness” of misclassification is more
sensible to changes in the precision matrix, as the number of misclassified observations
is generally much lower than the total number of observations. In these situations where
D(λ) or BIC(λ) have no global minimum, the best choice for λ is to use the smallest
penalization resulting in an almost diagonal precision matrix.

Even though the deviance measure does not optimize the precision matrix directly, the
estimated precision matrix Θ̂ should be close to the truth to give a reasonable classifier.
Figure 5.2 shows the structure of the estimated precision matrices from RRLDA and
CRLDA in one particular simulation setting for K = 3 classes. The value of λ is derived
from the deviance measure and, except for a few false positives, the robust variant reflects
the independence structure very well. The true dependence is between the first three
dimensions, which is also reflected by the robust estimate. The classical estimate on
the other hand is perfectly diagonal and the diagonal elements are smaller than the
corresponding elements in the robust estimate. This means that the classical estimates of
scale are larger than the robust estimates. The covariance matrix is significantly inflated
by the scale outliers and thus the true dependency structure is not uncovered.

The overall probability of misclassification shown in Figure 5.3 and reported in Ta-
ble A.2 clearly shows the good performance of robust regularized LDA compared to the
other two methods. Classical LDA performs well when no contaminated data is present
and the number of observations is larger than the number of variables. As expected,
contamination in the data and too many variables quickly break classical LDA and OPM
values explode. For clarity, the graph only shows OPM values up to 35 percent, even
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RRLDA CRLDA

Figure 5.2: Exemplary conditional dependencies obtained from RRLDA (left) and CRLDA
(right) for the entire training data with λ estimated by 5-fold CV and the deviance mea-
sure. The settings used in this simulation are p = 128, ng = 100, and K = 3, with scale
contamination of ϵ = 0.25 and κ = 100. The shade of an element indicates the size of its
value. The darker the element in the picture, the larger its absolute value.

though classical LDA often yields values far out of this range, as shown by tables listed in
Appendix A. These tables also reveal that LDA often has an OPM value close to 50 per-
cent for two classes and close to 66.6 percent for three classes. Thus, in most simulation
settings LDA was worse or only negligibly better than chance.

Classical regularized LDA shows better performance than classical LDA when the
data has more variables than observations. In low dimensions and when data is well
conditioned, CRLDA also seems to be relatively resistant to outliers. Nevertheless, once
dimensions are too high, contamination has a drastic effect also on CRLDA and OPM
values soar. This seems to be especially the case for highly scattered outliers, as can be
seen in Table A.3. The inflation has such a strong influence on the estimation of the
precision matrix that CRLDA performs as bad as LDA and virtually as bad as random
assignment of classes.

Once contaminated data is present in the training set, RRLDA clearly outperforms
either of the two other methods. Additionally, RRLDA also shows very competitive
efficiency when data is not contaminated. Figure 5.3 and Table A.1 show that RRLDA
performs even better than classical LDA for 32 variables when no contamination is present,
even though classical LDA and the classical estimates for location and scale should give the
optimal decision rule in this setting. CRLDA gives slightly better results than RRLDA,
showing that regularization can also improve the estimates in well-conditioned problems
by reducing the influence of noise in the data on the estimates. Nevertheless, when data
is contaminated, RRLDA lives up to its full potential. OPM values are significantly lower
for RRLDA than for both other methods in all considered contamination settings.

With increasing dimensionality of the data, classification is more and more difficult.
First of all this can be seen in OPM values of CRLDA and non-contaminated data (Ta-
ble A.1). For a low sample size and high dimension, CRLDA has an OPM of 23.5 percent
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Figure 5.3: Overall probability of misclassification for classification with K = 2 classes and dif-
ferent proportions of scale contaminated observations with moderately inflated covariance
structure (κ = 5). The optimal values for λ in CRLDA and RRLDA are obtained with
the deviance measure. The Moore-Penrose pseudo-inverse of S is used for LDA in case of
n > p.

in the two-class case and 26.5 percent in the three-class case. With larger sample size,
these numbers go down again to around 15.4 percent. RRLDA shows similar properties in
high dimensions with an OPM up to 40.3 percent with low sample size and three classes
(Table A.3). This might seem as a rather high OPM at first glance, but given the close
class centers and that only 60 percent of the observations (90 observations in total) are
non-outliers, the result is still acceptable. When sample size is increased to ng = 100,
OPM drops to very good 30 percent.

Additionally, it is noteworthy that RRLDA can cope particularly well with location
outliers. Location outliers seem to have less influence on the estimate than scale outliers,
and with a larger number of observations, RRLDA has almost the same OPM for con-
taminated data as for clean data. For two classes with ng = 100 observations each and
256 variables, the OPM of 7.7 percent with 40 percent contaminated data is almost as
good as the OPM of 7.4 percent with uncontaminated data.

The difference between the deviance measure and the BIC to select the optimal value
for λ is also noteworthy. In Appendix A, OPM values for all simulation settings and both
selection criteria are presented. For two thirds of the considered settings, the optimal
penalization parameter obtained via the deviance measure for RRLDA resulted in a more
than 10 percent better OPM compared to the RRLDA result from BIC. In 92 percent
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Figure 5.4: Total runtime of RRLDA (a) and proportion of runtime spent on the glasso to
estimate the precision matrix (b) for simulated data with different dimensions and regu-
larization. The reported values are averaged over 20 runs and in plot (a) the total runtime
is scaled with the cubic root for clarity.

of the different simulations it is at least as good as the model with λ selected by BIC
and in only 2 percent (5 simulation settings) it is more than 10 percent worse. These 5
settings are solely with large proportion of contamination (ϵ = 0.4) and high dimensions
(512 and 1024). For CRLDA and uncontaminated data, the deviance measure also gives
significantly better results than BIC. When data is contaminated, the influence of the
choice of λ on CRLDA seems diminutive compared to the influence of outliers. Almost 32
percent of all simulation settings with contaminated data resulted in a more or less equal
OPM, regardless of the measure used to determine λ. Overall, the deviance measure is
superior to the BIC in selecting the optimal regularization parameter for RRLDA.

5.4 Computation Time
In previous chapters the computational speed of RegMCD and RRLDA have already
been discussed. Because estimation of the precision matrix is the main bottleneck of the
algorithm, computation time for RRLDA is primarily determined by the effective number
of variables q. The effective number of variables is the number of columns in the covariance
matrix the graphical lasso is applied to. Due to the work of Witten et al. (2011), glasso
can be applied to only those variables which have a covariance higher than λ with at least
one other variable. Thus, the effective number of variables depends on the dimensions of
the data, the regularization parameter λ, and the actual covariance structure.

In Figure 5.4 the timings for RRLDA applied to simulated data with 25 percent
location contamination and varying number of variables are shown. The two lines in
Figure 5.4a for the two different values of the regularization parameter appear almost
linear. Because the total runtime (vertical axis) is scaled by the cubic root, the plot
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nicely shows that computational complexity for RRLDA is approximately the same as
for the graphical lasso, O(p3). Although q should be considerable smaller than p as the
true covariance structure is highly sparse, the covariance matrix for a subset of the data
will only be sparse if it comprises no outliers. Hence, due to the need of multiple initial
subsets and iterations until the optimal subset is found, speed gains through the screening
procedure are outweighed. Nevertheless, without the screening procedure, computational
complexity would be even higher. In addition to the indirect effect on computational
complexity, the regularization parameter also affects total runtime of RRLDA. Although
computational complexity is still cubic in the number of variables for larger λ, the multi-
plicative constant and hence runtime is considerably lower. The number of initial subsets
and iterations until convergence also directly affects the multiplicative constant in the
runtime, but the number of iterations solely depends on the data and hence no upper
bound can be given. The only possible assertion is that it is finite. Figure 5.4b shows
the actual proportion of total runtime spent on graphical lasso. The graph confirms that
glasso is the bottleneck for RRLDA, especially when dimensions are high. Thus, the algo-
rithm can be significantly accelerated with speeding up glasso, for instance by leveraging
hardware-tailored implementations of the BLAS library as discussed in section 4.1.



Chapter 6

Discussion

As shown in the beginning, the popular linear discriminant analysis method for classi-
fication suffers from the shortcoming of being only applicable to data sets with enough
observations (n > p) and clean samples. If either of the requirements is not satisfied,
classical LDA gives arbitrary and futile results.

To overcome these issues, robust regularized LDA was developed. By utilizing regular-
ization techniques to estimate the precision matrix, the requirement of a well-conditioned
covariance matrix is lifted. In a second step, this regularized estimator is robustified
following the idea of the FastMCD algorithm. Several issues must be dealt with when
employing RegMCD as estimator in LDA. First, due to the non-invariance of RegMCD to
transformations, the scaling of the data must be carefully handled before RegMCD can
be applied. Second, the choice of the optimal regularization parameter is non-trivial and
considering the classification setting leads to a better selection.

As shown in the extensive simulation study, the deviance measure which appraises the
estimated precision matrix in the context of classification by aggregating the severity of
misclassification of the innermost points outperforms the common BIC in most settings.
Because the deviance measure is as easy to calculate as the BIC, the deviance measure
is the preferable method to choose the optimal regularization parameter in RRLDA. The
main drawback of RRLDA currently is the high computation time it requires. A single
run of RRLDA can already be time consuming, but the added complexity of determining
the optimal regularization parameter from a large set of possible values requires numerous
runs of RRLDA. However, this is an embarrassingly parallel problem which can be easily
distributed to multiple processing units. As processing power is very cheap nowadays, one
processing unit for every considered value of λ is feasible, hence reducing the computation
time again to a single run of RRLDA. If further speed-up is required, RegMCD can also
be parallelized by tracing each initial subset on a separate processing unit.

The simulation study also clearly shows the advantages of RRLDA. When the assump-
tions for RRLDA, the majority of the data is generated by a Gaussian model and equal
within-class covariance structure, are fulfilled, its performance is superior to classical LDA
and classical regularized LDA in the presence of outliers and in high dimensions. Despite
the small distance between class centers, RRLDA is able to correctly classify the majority
of the data in all considered settings. Robust regularized LDA performs even better than
classical LDA when data is uncontaminated and considerably more observations than fea-
tures are available. Although the overall probability of misclassification rises with growing
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number of dimensions, these number can probably be lowered by considering more than
two initial subsets to compensate for the lower probability of getting an outlier free initial
subset in high dimensions.
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Appendix A

Simulation Results

Following is a list of tables comprising the overall probability of misclassification for
classical LDA, non-robust regularized LDA, and robust regularized LDA. OPM values
are reported in percent, rounded to the nearest tenth. For CRLDA and RRLDA two
different methods to determine the optimal value of λ were considered and the respective
columns are annotated by λBIC and λD. λBIC stands for the classifier using λ which results
in minimum BIC value, while λD results in a minimum for the deviance measure. The
first Table A.1 lists results for uncontaminated data, while the following Tables A.2 – A.5
contain results for different types of contaminations.
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Table A.1: Overall probability of misclassification (reported in percent) for uncontaminated
data.

K = 2 K = 3
LDA CRLDA RRLDA LDA CRLDA RRLDA

p λBIC λD λBIC λD λBIC λD λBIC λD

ng = 50

32 5.1 5.2 3.3 6.4 4.6 3.3 4.1 2.7 5.2 3.0
128 31.8 10.2 8.7 10.4 8.8 30.9 9.2 7.3 10.8 8.5
256 34.7 14.2 13.1 16.0 15.1 45.6 14.0 10.1 16.0 11.5
512 39.3 19.8 17.2 19.9 18.7 54.7 19.2 16.3 21.2 17.6

1024 42.3 23.0 23.5 24.5 23.9 58.8 27.9 26.5 28.6 28.1

ng = 100

32 3.0 3.7 2.5 4.4 2.7 2.2 2.4 2.2 2.9 2.3
128 12.6 5.6 4.4 6.7 5.0 7.3 4.5 3.0 5.1 3.4
256 31.6 8.4 6.5 9.6 7.4 29.3 7.1 4.5 7.9 4.7
512 32.1 11.5 10.0 12.7 10.1 43.5 9.9 7.8 11.6 9.0

1024 39.1 16.4 15.3 18.6 17.8 53.6 18.8 15.4 20.5 16.7
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Table A.2: Overall probability of misclassification (reported in percent) for data contaminated
with scale outliers and an inflation factor of κ = 9.

K = 2 K = 3
LDA CRLDA RRLDA LDA CRLDA RRLDA

ϵ p λBIC λD λBIC λD λBIC λD λBIC λD

ng = 50

0.10 32 9.4 9.5 8.1 8.0 4.0 9.2 10.6 7.4 6.4 2.7
0.10 128 32.3 18.4 18.0 11.3 9.4 36.1 17.5 13.5 12.1 7.1
0.10 256 36.8 20.7 19.1 12.7 11.6 51.6 27.7 24.9 18.3 12.9
0.10 512 43.0 28.0 25.8 21.5 19.7 59.1 37.5 34.8 26.2 22.7
0.10 1024 45.0 32.9 32.9 26.9 26.6 63.6 44.3 42.2 32.9 28.2

0.25 32 16.8 11.9 12.2 6.6 4.1 16.8 16.4 15.5 7.8 3.6
0.25 128 37.3 24.6 23.3 13.1 10.8 45.2 32.1 31.8 14.1 9.4
0.25 256 42.5 29.8 29.8 17.1 16.2 55.1 36.9 35.6 21.2 17.4
0.25 512 47.2 36.1 36.1 23.4 23.8 60.3 45.6 45.7 27.8 25.6
0.25 1024 48.6 40.5 40.5 29.3 29.4 65.0 50.1 50.1 37.2 37.0

0.40 32 18.5 14.9 14.9 7.9 5.4 27.2 25.0 25.2 8.5 7.4
0.40 128 39.4 28.6 28.6 15.8 13.5 47.5 37.4 37.4 16.0 11.7
0.40 256 45.6 34.7 34.5 17.3 16.2 59.2 46.5 46.5 22.4 21.7
0.40 512 48.1 40.3 40.3 22.8 23.1 62.9 51.0 51.0 32.2 31.4
0.40 1024 47.1 39.7 39.7 34.6 34.2 65.6 56.9 56.9 39.0 38.7

ng = 100

0.10 32 8.1 8.3 7.1 6.5 2.9 7.2 7.8 5.7 6.4 2.0
0.10 128 16.7 11.7 9.5 8.2 4.5 15.5 13.0 10.0 8.0 3.6
0.10 256 32.7 17.0 16.1 12.2 8.3 36.5 19.7 15.7 12.5 6.3
0.10 512 37.8 21.9 21.9 13.1 11.2 49.8 25.1 20.5 13.3 10.3
0.10 1024 44.8 27.8 26.7 20.7 17.5 58.7 33.0 33.0 18.6 14.3

0.25 32 12.2 11.0 10.8 6.8 3.3 11.9 13.2 11.3 8.1 2.2
0.25 128 27.5 18.6 18.6 9.2 5.9 24.9 22.2 20.5 9.6 4.3
0.25 256 37.0 23.3 23.3 12.0 9.3 45.4 28.9 28.9 13.7 6.8
0.25 512 43.8 30.4 29.7 15.7 13.4 56.2 36.6 37.1 14.6 11.9
0.25 1024 45.0 31.9 31.2 19.8 17.5 61.5 45.4 45.4 26.1 21.3

0.40 32 14.0 12.5 12.5 6.2 3.4 18.4 17.6 17.4 7.5 2.7
0.40 128 31.3 25.1 25.2 9.3 6.8 35.3 31.0 30.9 11.8 6.9
0.40 256 42.3 31.4 31.4 14.1 10.6 49.4 37.0 37.0 15.4 9.8
0.40 512 44.5 34.6 34.6 15.8 15.6 59.6 46.3 46.3 20.6 15.8
0.40 1024 47.2 39.2 39.2 26.3 26.4 62.5 49.8 49.8 27.1 23.0
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Table A.3: Overall probability of misclassification (reported in percent) for data contaminated
with scale outliers and an inflation factor of κ = 100.

K = 2 K = 3
LDA CRLDA RRLDA LDA CRLDA RRLDA

ϵ p λBIC λD λBIC λD λBIC λD λBIC λD

ng = 50

0.10 32 20.4 33.2 24.6 7.4 4.2 25.5 37.6 28.6 7.2 2.5
0.10 128 41.0 40.2 37.6 12.9 10.1 37.1 51.9 37.4 13.7 7.7
0.10 256 48.7 42.1 39.5 18.7 16.3 62.0 57.4 53.1 20.0 13.9
0.10 512 49.0 43.2 44.6 19.4 20.2 66.2 56.3 58.8 25.2 24.0
0.10 1024 49.9 46.3 46.8 27.5 27.3 66.4 58.4 59.8 32.1 31.0

0.25 32 37.9 43.1 42.0 8.5 4.7 50.3 55.9 55.7 8.7 3.5
0.25 128 44.2 44.1 43.8 13.1 11.2 47.5 61.0 61.0 17.6 11.5
0.25 256 49.1 47.3 47.3 16.8 16.2 65.7 62.6 62.6 22.9 18.7
0.25 512 49.7 47.3 47.3 24.7 24.6 66.6 64.1 64.1 30.1 26.2
0.25 1024 49.5 48.5 48.5 30.3 30.2 66.7 64.8 64.8 34.3 30.8

0.40 32 46.0 46.0 46.0 10.1 9.8 59.8 60.7 60.8 10.4 7.0
0.40 128 48.5 47.8 47.8 17.5 16.1 59.9 63.5 63.5 22.2 20.2
0.40 256 49.8 48.3 48.3 19.5 18.7 66.0 64.8 64.8 30.1 28.2
0.40 512 49.9 49.0 49.0 30.6 28.8 66.8 65.1 65.1 36.7 35.6
0.40 1024 50.3 49.2 49.2 35.6 34.2 66.6 65.5 65.5 40.6 40.3

ng = 100

0.10 32 19.2 22.0 20.0 7.0 3.3 26.1 31.8 27.9 7.1 2.0
0.10 128 21.4 37.8 32.5 7.6 4.4 25.0 46.9 30.9 10.0 3.9
0.10 256 40.7 40.0 34.4 11.1 7.4 39.7 53.3 38.6 12.3 5.7
0.10 512 47.8 40.0 39.5 12.4 10.5 60.3 49.6 45.3 14.1 11.6
0.10 1024 50.1 44.5 45.7 19.9 17.2 65.9 57.2 59.2 21.9 16.6

0.25 32 37.4 40.6 40.2 6.5 3.5 47.1 50.6 50.3 9.1 2.6
0.25 128 34.3 44.4 44.4 9.4 5.6 50.9 58.8 58.8 11.6 4.8
0.25 256 46.3 46.0 46.0 13.4 9.4 48.9 61.2 61.2 17.5 9.7
0.25 512 49.6 46.9 46.9 18.9 16.4 65.3 62.5 62.5 18.1 14.0
0.25 1024 50.1 48.2 48.2 26.3 26.7 66.6 63.9 63.9 25.9 22.1

0.40 32 42.4 44.1 44.1 7.9 4.9 54.4 57.1 57.1 7.4 6.8
0.40 128 44.6 46.8 46.8 14.6 11.5 60.6 62.1 62.1 13.0 12.9
0.40 256 49.7 48.0 48.0 17.0 16.1 59.6 63.7 63.7 18.0 14.8
0.40 512 49.9 48.4 48.4 22.4 24.0 66.2 64.5 64.5 23.4 29.3
0.40 1024 49.8 49.0 49.0 29.4 28.0 66.5 65.2 65.2 33.0 29.9
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Table A.4: Overall probability of misclassification (reported in percent) for data contaminated
with location outliers at a distance of ν = 5.

K = 2 K = 3
LDA CRLDA RRLDA LDA CRLDA RRLDA

ϵ p λBIC λD λBIC λD λBIC λD λBIC λD

ng = 50

0.10 32 4.8 7.5 3.9 6.7 3.5 3.3 4.2 3.4 5.1 2.4
0.10 128 36.8 14.2 10.3 11.3 8.0 31.6 12.8 7.6 11.6 6.3
0.10 256 46.8 21.2 21.0 16.8 14.8 58.0 21.3 15.7 17.9 12.3
0.10 512 49.5 26.4 28.2 16.6 16.6 64.4 30.8 28.0 25.8 21.6
0.10 1024 49.6 31.9 32.4 23.7 23.4 65.6 37.9 37.2 29.9 27.0

0.25 32 6.2 6.9 4.2 5.1 3.9 3.2 5.3 2.6 4.2 3.5
0.25 128 36.1 20.0 13.6 11.9 9.7 33.6 19.8 10.3 9.9 8.8
0.25 256 45.8 28.3 22.9 15.0 12.2 58.1 30.8 20.5 16.7 14.3
0.25 512 48.9 37.7 36.4 25.7 26.0 64.5 46.8 34.5 19.5 17.9
0.25 1024 49.7 38.2 36.3 26.1 24.5 66.6 49.5 49.2 33.1 30.9

0.40 32 5.6 10.1 4.8 6.8 5.8 4.1 7.2 3.0 7.0 4.2
0.40 128 35.3 22.3 10.4 9.1 7.5 28.1 25.6 9.5 14.5 7.3
0.40 256 46.3 31.5 19.7 13.7 10.0 56.4 34.7 27.4 15.2 9.8
0.40 512 49.0 37.3 29.2 21.5 14.7 65.2 38.8 29.0 18.8 13.4
0.40 1024 49.7 39.4 40.4 27.7 28.3 66.2 49.7 48.8 30.8 30.7

ng = 100

0.10 32 3.3 3.6 2.8 5.8 2.6 2.2 2.5 2.0 3.3 2.0
0.10 128 12.5 7.7 5.8 7.2 4.3 8.0 7.0 4.2 4.9 3.6
0.10 256 36.5 11.9 8.7 8.5 6.3 30.6 11.4 6.7 6.5 4.9
0.10 512 47.3 16.2 16.4 10.2 9.0 59.4 16.7 11.4 12.5 9.3
0.10 1024 48.7 25.3 25.9 19.9 18.0 64.7 27.3 26.9 21.3 19.8

0.25 32 3.3 5.0 2.9 4.1 3.9 2.0 3.1 2.0 3.2 2.3
0.25 128 14.2 12.4 8.2 6.9 6.8 8.4 9.8 3.8 4.2 3.9
0.25 256 35.2 19.3 13.5 10.0 9.4 30.6 19.0 8.7 8.3 6.4
0.25 512 46.0 29.9 19.8 11.4 12.4 58.2 23.7 16.9 12.5 9.3
0.25 1024 48.8 31.4 26.8 18.6 17.5 64.7 38.1 31.3 21.0 19.3

0.40 32 4.1 5.4 3.0 5.1 3.7 2.4 3.8 2.4 3.6 2.6
0.40 128 14.4 13.1 5.1 7.9 5.4 10.2 11.7 4.4 7.0 3.7
0.40 256 34.0 20.6 9.9 8.5 7.1 28.8 20.8 9.2 8.7 6.0
0.40 512 46.3 23.1 23.0 12.8 14.7 56.2 25.1 16.4 13.5 8.7
0.40 1024 48.8 34.3 30.3 18.5 20.5 65.0 41.8 30.1 18.2 13.4
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Table A.5: Overall probability of misclassification (reported in percent) for data contaminated
with location outliers at a distance of ν = 10.

K = 2 K = 3
LDA CRLDA RRLDA LDA CRLDA RRLDA

ϵ p λBIC λD λBIC λD λBIC λD λBIC λD

ng = 50

0.10 32 4.6 9.7 4.7 7.0 3.6 3.1 7.5 3.5 7.8 3.2
0.10 128 39.3 25.5 22.2 13.6 11.2 31.1 25.1 10.9 8.8 6.5
0.10 256 48.3 32.0 29.9 12.7 11.8 63.0 35.9 25.1 12.9 11.3
0.10 512 49.4 39.8 38.2 20.5 19.2 66.4 51.8 43.7 24.5 21.1
0.10 1024 50.4 42.0 44.8 28.9 28.6 66.6 52.4 52.9 29.1 28.0

0.25 32 5.4 13.7 6.2 5.6 5.0 3.5 16.4 3.9 3.7 3.0
0.25 128 39.0 34.4 24.1 13.5 10.8 29.4 38.7 14.7 12.3 8.6
0.25 256 48.7 39.6 39.8 15.8 15.5 62.2 48.9 34.5 17.5 17.4
0.25 512 50.0 40.2 44.3 22.3 21.1 66.2 48.2 55.3 20.4 17.5
0.25 1024 50.1 44.3 47.8 30.9 32.5 66.7 57.7 62.1 35.0 34.2

0.40 32 6.4 23.0 7.1 8.1 6.4 4.0 15.6 4.1 8.4 3.9
0.40 128 37.5 39.3 24.7 11.9 8.3 27.6 49.1 12.1 9.9 10.2
0.40 256 49.4 39.3 39.8 17.2 15.9 62.3 51.5 37.3 16.6 15.3
0.40 512 49.8 36.0 44.1 18.0 16.7 66.5 49.8 57.2 24.2 21.1
0.40 1024 49.9 44.0 48.6 32.8 35.3 66.6 58.1 63.6 32.8 38.3

ng = 100

0.10 32 3.0 5.2 3.2 6.3 2.7 2.3 3.7 2.4 7.1 2.3
0.10 128 13.3 14.4 7.2 5.5 4.7 6.6 12.5 4.0 3.8 3.4
0.10 256 39.7 23.3 16.1 7.6 7.2 31.4 22.8 10.4 7.1 5.8
0.10 512 47.8 34.6 27.9 10.9 9.1 62.5 27.3 21.0 11.7 9.0
0.10 1024 50.0 36.6 40.0 22.4 20.4 66.0 42.3 38.8 19.2 16.0

0.25 32 3.3 8.7 4.9 3.9 3.3 2.2 4.4 2.2 2.5 2.1
0.25 128 13.8 23.1 8.3 5.7 5.4 8.5 23.4 5.4 5.2 4.8
0.25 256 38.0 32.8 21.2 10.5 9.3 30.7 36.7 13.3 9.0 7.1
0.25 512 48.8 32.3 37.8 13.9 14.3 62.4 36.3 38.6 13.0 10.0
0.25 1024 50.0 40.8 43.7 19.7 21.4 66.3 51.4 52.1 19.8 19.3

0.40 32 3.0 7.2 4.9 6.6 3.8 2.7 5.6 2.8 5.5 2.8
0.40 128 15.5 27.1 10.6 7.6 6.6 9.5 20.3 5.8 6.2 3.7
0.40 256 37.8 34.0 22.1 9.8 7.7 28.9 40.9 16.0 10.3 7.1
0.40 512 49.5 33.4 34.6 16.4 18.7 62.7 39.6 36.2 16.5 12.7
0.40 1024 50.1 44.1 42.2 21.8 22.9 66.4 60.8 64.8 22.0 22.6
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