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Kurzfassung

Im Bereich der Simulation von Produktionsprozessen wird neben den üblichen logistischen
Aspekten das Thema Energieverbrauch immer wichtiger. Dabei entstehen sogenannte hybride
Modelle. Dabei handelt es sich um Modelle, die sich weder rein diskret noch rein kontinuierlich
beschreiben lassen. Die genaue Spezifikation hybrider Modelle sowie eine solide Handhabung
in der Simulation stellen eine ausgesprochen schwierige Aufgabe dar. Gleichzeitigkeit von Er-
eignissen, Zustandsereignisse sowie Rückkopplungen in gekoppelten Modellen sind einige der
wichtigsten Ursachen dafür.

Ziel dieser Diplomarbeit ist es, zuerst formale Beschreibungsmethoden für hybride Modelle
vorzustellen um danach die Implementierungsmöglichkeiten für derartige Modelle in einem kon-
kreten Simulator zu untersuchen. Als Beschreibungsformalismus wird der auf Bernard Zeiglers
Formalismen DEVS und DESS für ereignisdiskrete bzw. kontinuierliche Modelle aufbauende
DEV&DESS - Formalismus von Herbert Praehofer gewählt. Eine Beschreibung dieser Forma-
lismen ist in Kapitel 2 zu finden, wo außerdem QSS (Quantised State System) erklärt wird. QSS
ist eine Sammlung von Verfahren zur ereignisdiskreten Beschreibung und numerischen Integra-
tion von kontinuierlichen Signalen und ist daher im Zusammenhang mit hybrider Modellierung
von besonderem Interesse, vor allem da er dazu verwendet werden kann, kontinuierliche Model-
le in ereignisdiskrete Modelle umzuwandeln.

PowerDEVS ist ein Simulator, der sowohl den DEVS - Formalismus als auch QSS unter-
stützt und somit sehr vielversprechend im Hinblick auf die Implementierungsmöglichkeiten von
hybriden Modellen ist. Da PowerDEVS in weiterer Folge verwendet wird, wird in Kapitel 3 eine
Einführung in dieses open-source Simulationstool gegeben.

Im 4. Kapitel wird auf diverse Problematiken eingegangen, die im Zuge der DEVS - Model-
lierung, speziell bei gekoppelten Systemen, auftreten. Die Ursachen dieser Probleme liegen in
der korrekten Auflösung von gleichzeitigen Ereignissen in Kombination mit Rückkopplungen.
Der DEVS-Formalismus überlässt diese Auflösung dem Modellierer, erzwingt jedoch keine ex-
plizite Formulierung des Modellverhaltens im Falle von gleichzeitigen Ereignissen. An diesem
Schwachpunkt von DEVS setzt die Erweiterung Parallel DEVS (P-DEVS) an. Zur Simulation
eines P-DEVS Modells wird jedoch ein eigener P-DEVS Simulator benötigt. PowerDEVS ar-
beitet jedoch mit dem ursprünglichen DEVS Formalismus. Um trotzdem die angesprochenen
Probleme in den Griff zu bekommen, werden diese in Kapitel 4 schrittweise identifiziert und es
werden Lösungsansätze entwickelt. Am Ende entsteht ein neuer generischer PowerDEVS Bi-
bliotheksbaustein namens Atomic PDEVS block, bei dessen Verwendung das Verhalten eines
Modellblocks gemäß dem P-DEVS-Formalismus definiert werden kann.

Unter Verwendung von QSS für die kontinuierlichen Anteile (Differentialgleichungsmodel-
le) werden diese in PowerDEVS ebenfalls in ereignisdiskrete DEVS Modelle umgewandelt. So-
mit können sowohl kontinuierlicher Anteil als auch diskreter Anteil eines hybriden Modells in
PowerDEVS implementiert und simuliert werden. Jedoch existiert noch kein Bibliotheksblock
mittels dem eine direkte Umsetzung eines DEV&DESS Modells in PowerDEVS möglich ist.
Die Entwicklung eines solchen Bausteins namens Atomic DEV&DESS block ist Thema des 5.
Kapitels, das mit der Implementierung eines konkreten DEV&DESS Modells unter Verwendung
dieses Bausteins abschließt.
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Abstract

In the area of production process simulation, beside the common logistical optimisation goals,
the factor energy consumption is gaining more and more importance. Since energy consumptive
processes are usually described continuously, whereas logistic models are purely discrete, con-
sidering both leads to hybrid models. A model is called hybrid when its behaviour neither can
be described purely continuously nor purely discretely or at least, not without a lot of additional
effort. The exact and well defined formulation of the behaviour of hybrid models as well as their
solid handling in simulation are very challenging tasks. Concurrent events, state events, and
feedback loops in coupled models are the major causes for problems.

The goal of this diploma thesis is to introduce formalisms for describing hybrid models and
to investigate the possibilities for implementing such models in a specific simulator.

As description formalism DEV&DESS, introduced by Herbert Praehofer, has been selected.
DEV&DESS is based upon the two formalisms DEVS and DESS introduced by Bernard Zei-
gler. Using DEVS discrete event models can be described, whereas DESS is designated for the
description of continuous models.

The description of these formalisms represents the first part of Chapter 2. In its second part
QSS (Quantized State System) is introduced. QSS denotes a set of methods for describing and
numerically integrating continuous signals in a discrete event manner. Thus, it is of interest
regarding the simulation of hybrid systems as it is capable of transforming continuous models
into DEVS models.

The simulator PowerDEVS supports both, the DEVS formalism, and QSS. Therefore, it
seems to be quite promising for implementing and simulating hybrid models. Since PowerDEVS
will be used in the following chapters, an introduction is given in Chapter 3.

When creating and simulating coupled DEVS models, it turns out to be a quite challenging
task to formulate a DEVS description leading to exactly the intended behaviour, particularly
in situations with concurrent events. This is caused by the way concurrent events are resolved
in coupled DEVS. Parallel DEVS (P-DEVS) denotes an extension of DEVS which exactly ad-
dresses this drawback. However, PowerDEVS does not support the implementation of P-DEVS
models.

In Chapter 4 the particular problems that occur with coupled DEVS models in combination
with concurrent events and feedback loops are systematically identified and a solution approach
for each of them is developed. This process concludes with the definition of the generic Pow-
erDEVS library block Atomic PDEVS block. It supports model description in P-DEVS manner
and is supposed to solve the problems outlined.

In PowerDEVS continuous models can be created graphically as block diagrams comparable
to Simulink or Dymola. However, there exists no library block which allows to implement a
DEV&DESS model directly. So the topic of Chapter 5 is the development of such a generic
library block named Atomic DEV&DESS block which is based on the Atomic PDEVS block
introduced in Chapter 4. Finally it is demonstrated how to implement a specific DEV&DESS
model in PowerDEVS using the Atomic DEV&DESS block.
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CHAPTER 1
Motivation and Introduction

Due to recent political and societal developments as well as rising energy-prices, it becomes
more and more interesting for industrial companies to optimize their production processes not
only in terms of logistical issues(including time, space and production goods) but also taking
energy consumption aspects into account. Additionally, low energy consumption accompanied
with low CO2 emissions can be used for advertising of the produced goods in a beneficial way.
Motivated by the reasons mentioned above BaMa project came into being (see section 1.1) and
with it this diploma thesis.

Usually modelling and simulation of logistical parts of production processes is done in a
purely discrete way, whereas most energy consumptive processes like all thermodynamical ac-
tivities are of continuous nature. Therefore, in the BaMa project a model description is needed
capable of describing both the discrete and the continuous parts. Such models consisting of
discrete as well as continuous parts are called hybrid.

That is where the DEV&DESS (Discrete Event & Differential Equation System Specification)
modelling formalism comes into play(see section 2.1). As it will be seen in section 2.1 the
DEV&DESS modelling formalism does not only fulfil the requirement of being able to describe
hybrid systems but is also fully hierarchical which is needed for the cube approach in BaMa as
will be explained in section 1.1.

However, a modelling formalism without any way to implement and simulate models for-
mulated with it would not be very useful for BaMa. Most simulators for logistical problems
though, are neither capable of simulating continuous model parts nor do they support the DEVS
formalism. On the other hand, a lot of simulators originating in the continuous area of simulation
in fact do support the discrete model parts as well, but still the handling of events there is quite
unsatisfying. This is due to the very basic mechanism of solving ODEs (Ordinary Differential
Equations) that actually forms the simulation engine in these tools and that leads to a quite
expensive iterative search for each state event appearing in a simulation run. A more detail
discussion about that follows in section 1.2.

QSS (Quantized State Systems – [KJ01], [Kof02], [Kof03], [Kof04], [Kof06], [Kof09]) is
the name of set of methods for discretising and numerically integrating continuous signals in a

1



2 CHAPTER 1. MOTIVATION AND INTRODUCTION

discrete event manner and thus, is supposed to overcome the problems of common continuous
simulation engines (see section 2.2).

As shown in [SP14], it is possible to implement a DEV&DESS formulated model in SIMULINK
using the SimEvents- and Stateflow-toolboxes without having those troubles with state events.
However, there is the need to program an ODE solver on your own for each single atomic
DEV&DESS model. Further there exists a Modelica DEVS library called ModelicaDEVS that
makes it possible to implement and simulate causal hybrid models in Dymola and that even
works with QSS. Yet, in [BF06] it is stated that event handling is kind of slow there compared to
PowerDEVS [BK11]. The difference lies in the simulation engine. PowerDEVS uses the DEVS
simulation engine proposed by Zeigler in [ZPK00].

So in this diploma thesis a possibility of how to implement and simulate a system model
formulated in DEV&DESS in PowerDEVS is demonstrated. PowerDEVS will be described in
detail in chapter 3.

1.1 The BaMa Project

BaMa stands for ’Balanced Manufacturing’ and is the name of a research-project funded by the
FFG (Austrian Research Promotion Agency). Several institutes of the Technical University of
Vienna and dwh GmbH – Simulation Services as well as some industrial partners are working
on the project right now.

The goal of this project is the development of a methodology on how to model and simulate
production processes with a focus on energy-consumption and the CO2 emission connected to
it. The idea is to segment a whole factory into hierarchically structured parts, called cubes, i.e.
one cube can contain several other cubes but must not overlap with other cubes. Each cube has
a well defined interface to its neighbour cubes including energy in- and outputs as well as in-
and outputs for entities. Entities are all kinds of production goods which finally end up in the
end-product.

Since a cube has energy inputs and outputs, the energy consumption of the cube can be
calculated by subtracting the output-energy from the input-energy. However, the basic principle
of BaMa cubes is that no energy is lost(there has to be an energy balance). Therefore, the
energy consumed by the cube is assigned to all entities which are currently located inside that
cube. Through this mechanism, if an entity leaves the factory as end-product, it carries a value
with it, representing the overall amount of energy that was necessary to produce it. Exactly
the same principle can be applied to optimization-factors like production-costs, time, and CO2-
consumption. Figure 1.1 shows an illustration of such a BaMa cube and its interfaces.

Actually the goals of BaMa go even further than just simulating production processes in a
factory. In addition, a methodology on how to optimize those processes in terms of costs as well
as energy-, time- and CO2-consumption with respect to given boundary conditions, while using
knowledge gained from the simulation, is planned to be developed.

Finally, the third goal is to make it possible to load actual measurements into the simulation-
model to parametrize it accordingly to the current state of the factory. So the overall goal is
to end up with the definition of a BaMa-Toolchain consisting of three modules: Monitoring,
Prediction, Optimization. For further details on BaMa-project see [PHR+14].
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Figure 1.1: Illustration of a BaMa–cube

1.2 Shortcomings with Established Simulators

The common working principle of simulators for continuous systems is to deduce an ODE from
the graphically or textually entered model and to numerically integrate it using an ODE solver.
There exists a variety of different numerical algorithms for ODE solver like explicit/implicit Eu-
ler, Heun, Runge-Kutta . . . (see [CK06], [BEBG93]). So the mathematical model the simulation
engine works with is an initial value problem(IVP) of the form:

{
ẋ(t) = f(x, t)

x(t0) = x0

(1.1)

where t denotes time and x denotes the potentially vectorial system state. Generally bold letters
will be used for vectorial variables.

Applying any numerical integration method Ψ on that IVP results in a series of approxima-
tive solution samples x0,x1,x, . . .xN which obey the following recursion:

xn+1 = Ψ(xn+1,xn, . . . ,xn−k−1, tn, tn−1, . . . , tn−k−1, f , hn) (1.2)

where k ∈ N tells us that the integration-method in use is a k-step-method. Whether Ψ really
makes use of xn+1 or not depends on Ψ being an implicit or an explicit integration method. The
values xn are numerical approximations for x(tn), where hn = tn+1− tn can either be constant
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(fix step solver) or vary with n depending on the size of the local integration error(variable step
solver).

Now, if during a simulation you need to trigger an event at a certain point in time te you have
to force the ODE solver to calculate a solution sample at tn = te. This is actually not much of
a problem because you just have to adapt the step-size to end up with a solution-sample at time
te. Events of this kind are called time events. However, if you have to handle state events, i.e.
an event whose occurrence time te depends on the model state x itself, problems arise.

For example imagine the probably most simple case of a state event where the event-time
te is defined as point in time where one of the state variables xi has its next zero crossing
(x = (x1, x2, x3, . . . , xd)), i.e. xi(te) = 0. Since you do not have the analytical solution xi(t)
but only approximative samples xi(tn) of it at specific points in time tn you only know, that the
state event has happened, when the new sample xi(tn+1) has another sign than its predecessor
xi(tn), aside from the unlikely case when the solver accidentally calculates a sample exactly at
the event time te or at least very close to it.

Now the usual way to encounter that problem is to iteratively search in the interval [tn, tn+1]
for the time te of the zero crossing of xi. Common methods for this iterative search are Newton,
Bisection, Secant-Method or Regula-Falsi. However, all of these methods need to calculate a
solution sample of the whole state x for each single iteration, even if ẋi(t) = fi(x, t) possibly
only depends on xi, that is ẋi(t) = fi(xi, t), or only on a few entries of x = (x1, x2, x3, . . . , xd).
This and the iterative nature of the event location make state events in those simulators for
continuous systems unattractive. QSS is promising a way out of this dilemma like we will see
in section 2.2.



CHAPTER 2
Theoretical Basis

2.1 Modelling Formalism

Bernard Zeigler proposed in his book ‘Theory Of Modeling and Simulation’ [ZPK00] a clas-
sification of dynamic system models into three basic types:Discrete Event -, Discrete Time -
and Differential Equation - systems(DEV,DTS,DES). The first one means system models which
are usually simulated using an event scheduler. The second one denotes system models where
changes of state values are happening in equidistant instances of time, like in digital circuits
used in all digital computers. The third one covers purely continuous models described with
differential equations.

For each type Zeigler introduced a system-specification-formalism called DEV-, DTS- and
DES-Specification (DEVS,DTSS and DESS) and he showed that actually DTSS is a subtype of
DEVS. That is, for each system model in form of a DTSS exists a DEVS describing exactly the
same system-behavior.

In addition, a fourth formalism called DEV&DESS was introduced by Praehofer [Pra91],
with DEV&DESS standing for Discrete Event and Differential Equation System Specification.
DEV&DESS is intended to describe hybrid systems. In this context, hybrid system means a
system consisting of both a discrete and a continuous part. However, DEV&DESS describes
only a method for formally specifying the behaviour of a hybrid system, but it does not tell how
to deduce a simulatable model from such a specification. Since simulation is performed mostly
on digital computers which work in completely discrete way, discretisation is necessary for each
DESS and for the DESS-part of each DEV&DESS to be able to simulate them. For pure DESS
models usually ODE solver algorithms are used to numerically solve the differential equations,
i.e. to simulate the DESS model. Therefore, the DESS model in combination with the used
ODE solver constitutes a DEVS model, approximating the DESS model. This resulting DEVS
model, as each DEVS model, can then be simulated error free on a digital computer, apart from
the error due to the finite representation of real numbers.

Very important properties of all four mentioned formalisms are their hierarchical nature and
their ‘closure under coupling’. That is, an atomic model of each formalism has inputs and out-

5



6 CHAPTER 2. THEORETICAL BASIS

puts which can be coupled with inputs and outputs of other atomic blocks or with the inputs
and outputs of an overlying non-atomic model which inhabits these atomic models (hierarchi-
cally). The resulting overlying model now behaves exactly like an atomic model (closure under
coupling) of the particular formalism and therefore again can be coupled with other atomic and
non-atomic models.

atomic atomic

atomic

atomic

b

non-atomic

atomic

non-atomic

atomic

Figure 2.1: Graphical illustration of the hierarchical coupling-property of each of the formal-
ism DEVS, DTSS, DESS and DEV&DESS.

Over years many extensions and specialisations of DEVS have been developed. Ideas from
one of them called Parallel DEVS (P-DEVS) will be used in section 4.1 to overcome some
modelling difficulties arising when simulating coupled DEVS models.

Since ultimately we are interested in DEV&DESS and its simulation, in the following we
will shortly describe first the DEVS- and P-DEVS- then the DESS- and finally the DEV&DESS-
formalism.

2.1.1 Modelling Formalism for Discrete Systems

2.1.1.1 Atomic DEVS

DEVS stands for Discrete Event System Specification and is the name of a formalism for de-
scribing models of systems that allow changes only at discrete points in time. Such changes are
called events. Since DEVS models can be coupled, we distinguish atomic and coupled DEVS.
An atomic DEVS is specified by the following 7-tuple.

DEV Satomic =< X,Y, S, δext, δint, λ, ta >
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where

X . . . set of possible inputs(e.g. Rn)

Y . . . set of possible outputs(e.g. R+ × N× Rm)

S . . . set of possible states(=state space)

Q ={(s, e)|s ∈ S, e ∈ [0, ta(s)]}
δext : Q×X → S . . . external state transition function

δint : S → S . . . internal state transition function

λ : S → Y . . . output function

ta : S → R+
0 ∪∞ . . . time advance function (“lifespan of a state”)

Figure 2.2 shows a graphical illustration of an atomic DEVS and its working principle.

s ∈ S
e ∈ [0, ta(s)]x ∈ X y ∈ Y

s := δext(s, e, x) s := δint(s)

y := λ(s)

DEVS

e > ta(s)

tlastEv := t

e = t− tlastEv

tlastEv := t

Figure 2.2: Graphical illustration of an atomic DEVS.

As already mentioned, in a system described by a DEVS, only at discrete points in time
something can change. Such changes can be caused by two things: either an input message
arrives on one of the input ports or an internal time event occurs.

In the first case, as result of the arrival of a value x at the input, the external state transition
function δext is executed and updates the internal state s with respect to x, the old value of s and
the time e since the last event occurrence. Afterwards the value of e is set back to zero.

In the second case, the value of e reaches the upper limit for the age of the current state s
which is given with ta(s). As consequence, first the output function λ is executed, which may
lead to an output y (y = ∅ is also possible, meaning no output) and then the internal state transi-
tion function δint is executed. δint again updates the internal state on basis of the old state value
and resets e to zero.

A DEVS is called legitimate, if for each possible set of initial conditions, there is only a
finite number of events occurring during a finite amount of time. In this case, a DEVS is well
defined.
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2.1.1.2 Coupled DEVS

The graphical illustration in Figure 2.2 shows only one input port. Nevertheless, it is possible for
an atomic DEVS to have as many input ports as necessary. Since the input values x are elements
of a very general set of possible inputs X , for example X could be Rn × {0, 1, 2}, meaning
that the corresponding DEVS possesses 3 inputs, with each being able to receive n dimensional
real valued vectors. Each input message would then consist of a 2 tuple, where the first value is
element of Rn and the second value gives the port of arrival (0,1 or 2). The same holds for the
outputs and the set of possible output values Y .

Now a network of coupled DEVS can be described by the following:

N =< X,Y,D, {Md}d∈D, {Id}d∈D∪{N}, {Zi,d}i,d∈D∪{N}, Select >

X . . . set of possible inputs

Y . . . set of possible outputs

D . . . set of involved ‘child DEVS’ denominators

Md . . . child DEVS of N for each d ∈ D
Id ⊂ D ∪ {N} . . . influencer set of d, d /∈ Id

Zi,d . . . output translation function

Select : 2D∪{N} → D ∪ {N} . . . tie breaking function

for each i ∈ Id:

Zi,d :





X → Xd , if i = N

Yi → Y , if d = N

Yi → Xd , if i, d ∈ D

Select is necessary to resolve simultaneous events. Imagine two atomic DEVS blocks with an
output to input coupling, having an internal event at the same time. This would result in internal
state transitions in both blocks and therefore possibly in an output of the first DEVS block. These
three actions actually take place at the same time, but it makes a difference in which order they
are executed. For example, let us assume that at first the internal state transition of the first block
is executed, producing an output and therefore an external state transition in the second block.
This external state transition in the second block changes its state s and thus ta(s), which may
lead to the internal state transition of the second block not being executed at all. On the other
hand, if the internal state transition of the second block is treated at first, the second block would
first update its internal state and may produce an output, which, however, does not affect the first
block. Afterwards the internal state transition of the first block is executed, producing an output
which triggers an external state transition in the second block.

So in the first case the new state of the second block would be δext(s, e, x) or maybe
δint(δext(s, e, x)), however, in the second case the new state would be δext(δint(s), e, x).
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DEVS is a very general formalism. As a result it can be shown that a lot of other discrete
event formalisms, as for example Event Graphs, Statecharts, Petri Nets, and even Cellular Au-
tomata describe subclasses of the set of all systems describable with DEVS. That is why Zeigler
proposes the so called DEVS Bus as common interface for multi formalism simulation. For
more details see [ZPK00].

2.1.1.3 Atomic Parallel DEVS

The resolution of concurrent events in a coupled DEVS model is accomplished by the select
function which defines a total order among all the DEVS blocks connected with each other in a
coupled DEVS. According to this order, concurrent events are treated. Therefore, the behaviour
of an atomic DEVS model in a coupled DEVS depends on the select function. Parallel DEVS (P-
DEVS) is an approach to localize concurrent events handling to the atomic blocks themselves,
making the behaviour of atomic P-DEVS independent from their coupling environment. An
atomic P-DEVS is described by the following 8-tuple:

P −DEV Satomic =< X,Y, S, δext, δint, δconf , λ, ta >

where

X . . . set of possible inputs(e.g. Rn)

Y . . . set of possible outputs(e.g. R+ × N× Rm)

S . . . set of possible states(=state space)

Q ={(s, e)|s ∈ S, e ∈ [0, ta(s)]}
δext : Q×Xb → S . . . external state transition function

δint : S → S . . . internal state transition function

δconf : S ×Xb → S . . . confluent transition function

λ : S → Y . . . output function

ta : S → R+
0 ∪∞ . . . time advance function (“lifespan of a state”)

As it can be seen there are only two differences recognisable compared to an atomic DEVS
definition. The first is the domain of δext which consists of Q and Xb. Xb is simply the set
of all multisets (bags) over X . The reason for this will be explained later. The second is the
additional confluent transition function δconf . It is a different treatment of concurrent internal
and external events compared to DEVS that makes this δconf necessary. While with DEVS those
concurrencies are resolved at the coupled DEVS level using the select function, with P-DEVS
they are resolved individually for every single atomic P-DEVS using δconf . I.e., whenever at
the same time both an external and an internal event is triggered, an atomic P-DEVS executes
δconf which decides in each case separately how to handle the collision. For example, δconf
could be defined as δconf (s, xb) = δext(δint(s), x

b, 0) which would mean: always treat first the
internal event and afterwards the external event. On the other hand, δconf could also be defined
as δconf (s, xb) = δint(δext(s, x

b, ta(s))) which would mean: always treat first the external event
and afterwards the internal event. Anyway, δconf can also be defined completely differently and
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its definition could also depend on the current state s in such a way, that for some states s first
the internal and then the external transition function is executed and for other states the other
way round. Or δconf does not make use of δint and δext at all. Everything is possible.

There is a second difference between DEVS and P-DEVS which concerns execution of cou-
pled models and causes that bag formulation of inputs and outputs. It will be addressed in the
next subsection.

2.1.1.4 Coupled Parallel DEVS

The same way atomic DEVS can be coupled, atomic P-DEVS can be coupled, which results in
a coupled P-DEVS, described by the following 6-tuple.

N =< X,Y,D, {Md}d∈D, {Id}d∈D∪{N}, {Zi,d}i,d∈D∪{N} >

X . . . set of possible inputs

Y . . . set of possible outputs

D . . . set of involved ‘child P-DEVS’ denominators

Md . . . child P-DEVS of N for each d ∈ D
Id ⊂ D ∪ {N} . . . influencer set of d, d /∈ Id

Zi,d . . . output translation function

for each i ∈ Id:

Zi,d :





Xb → Xb
d , if i = N

Y b
i → Y b , if d = N

Y b
i → Xb

d , if i, d ∈ D
While in coupled DEVS at one instance of time for each arriving input message at an atomic
DEVS the external transition function is applied separately, in coupled P-DEVS all concurrent
input messages of an atomic P-DEVS are gathered in a bag and afterwards δext or δconf is
applied only once on the whole bag. The attentive reader may ask now, how can these bags of
input messages be provided without executing δint or δconf of the imminent blocks, since we
know from DEVS that λ is only executed right before an internal transition (imminent blocks
are atomic DEVS, that are currently scheduled for an internal event). The answer is, that when
simulating a coupled P-DEVS model, first of all each atomic block that experiences an internal
event at the current simulation time (=imminent block) will execute λ but won’t continue with
executing δint or δext immediately. Thus all outputs can be gathered before executing the state
transitions.

And still there remains a question: what if there are Mealy type blocks among the receiving
blocks, i.e. blocks that immediately produce output in reaction of a received input? Output
messages produced by such blocks are not available before executing δext or δconf . Actually I
didn’t find an answer to that in literature. The way the P-DEVS simulator proposed by Zeigler
in [ZPK00] handles this is to simply treat those, due to execution of δext or δconf newly created
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imminents separately in a second repetition. Figure 2.3 shows an example where this may lead
to an unintended behaviour.

Figure 2.3: An example where the in [ZPK00] proposed P-DEVS simulator may lead to an
unintended behaviour.

A possible way out of this dilemma will be discussed in section 4.1.

2.1.2 Modelling Formalism for Continuous Systems

2.1.2.1 Atomic DESS

DESS stands for Differential Equation System Specification and is the name of a formalism for
describing models of systems with purely continuous behaviour. An atomic DESS is described
by the following 5-tuple:

DESSatomic =< X,Y,Q, f, λ >

where

X . . . set of possible inputs(e.g. C
(
R+
0 ; Rn

)
)

Y . . . set of possible outputs(e.g. C1(R+
0 ; Rm))

Q . . . set of possible states(=state space)

f : Q×X → Q . . . rate of change function (‘right side’ of an ODE system)

λ : Q→ Y . . . output function (Moore type)

or

λ : Q×X → Y . . . output function (Mealy type)
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q ∈ Qx(t) ∈ X y(t) ∈ Y

DESS

∫
dtf

λ
Mealy-type

b

Moore-type

Figure 2.4: Graphical illustration of an atomic DESS.

The requirements for the input signal x(t) are to be bounded and piecewise continuous and
thus, for coupling reasons, the output signal y(t) has to fulfil these requirements as well. Since
the core issue of a DESS actually is to solve the ODE

q̇(t) = f(q(t), x(t))

for the existence of a unique solution q(t) we also need f to fulfill the Lipschitz condition:

‖f(q, x)− f(q′, x)‖ < k · ‖q − q′‖ ∀q, q′ ∈ Q and x ∈ X (2.1)

for a constant k ∈ R+.

2.1.2.2 Coupled DESS

The coupling mechanism for DESS works exactly in the same manner as for DEVS. Therefore,
a coupled DESS is described by a tuple:

N =< X,Y,D, {Md}d∈D, {Id}d∈D∪{N}, {Zd}d∈D∪{N} >

The meaning of the tuple entries is the same as in section 2.1.1.2 except for Zd, now called
interface map for d:

for d ∈ D ∪ {N}: Zd : ×
i∈Id

Y Xi → XYd, where

Y Xi =

{
X , if i = N

Yi , if i ∈ D

and

XYd =

{
Y , if d = N

Xd , if d ∈ D
The difference to the output translation function Zi,d of section 2.1.1.2 is that now for the

calculation of the input signal of block d all output signals of each influencing block i ∈ Id
are needed, whereas with coupled DEVS, each influencing block i ∈ Id can produce an input
message for block d independently of the other influencer. Therefore, when coupling DEVS
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blocks it is possible to connect several outputs of different blocks to one input of another block.
However, if those outputs provide messages at the same time, it is essential in which order they
are treated at the receiving input. This order can be controlled with the tie breaking function
Select. In case of P-DEVS there is no order among the concurrent input signals, since they
are treated all at once. Concerning DESS, simultaneousness is a thing we do not need to worry
about.

One issue that must be taken care of when coupling DESS are algebraic loops. As depicted
in figure 2.4 we distinguish two kinds of DESS: Moore and Mealy type. Since with Mealy type
DESS, the input directly influences the output of the system, when coupling Mealy type DESS,
a circular dependency of output from input values – a so called algebraic loop – can arise. For
this reason, to be able to ensure a coupled DESS to be well defined, each circular coupling needs
to contain at least one Moore type block, i.e. the coupled DESS needs to be free of algebraic
loops.

Actually the legitimacy-criterion for DEVS is closely related to the algebraic loop issue
mentioned in the context of DESS. As DEVS blocks of type Mealy, that are blocks that may
immediately response to an input with an output signal, coupled in a circular way may also
lead to an illegitimate model. However, not every illegitimate coupled DEVS model contains an
algebraic loop. It is even possible for a DEVS model to be illegitimate without having a single
Mealy block in it. For example when an atomic DEVS walks through a series of inner states
(si)i∈N with ta(si) > 0 ∀i ∈ N and

∑
i∈N ta(si) < ∞. Therefore, an illegitimate coupled

DEVS model does not exactly correspond to a DESS model with algebraic loop in it.

2.1.3 Modeling Formalism for hybrid systems

2.1.3.1 Atomic DEV&DESS

When modelling large and complex systems, pure discrete or pure continuous models may not
suffice anymore to map each detail of interest in the real system onto the model. Therefore, a
formalism for hybrid systems is needed. As the name already tells, DEV&DESS formalism is a
composition of DEVS and DESS and therefore capable of describing hybrid systems.

An atomic DEV&DESS can be described by the following 11-tuple:

DEV&DESSatomic =< Xdiscr, Xcont, Y discr, Y cont, S, δext, Cint, δint, λ
discr, f, λcont >
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where

Xdiscr, Y discr . . . set of possible discrete inputs and outputs

Xcont, Y cont . . . set of possible continuous inputs and outputs

S = Sdiscr × Scont . . . set of possible states(=state space)

Q = {(sdiscr, scont, e)|sdiscr ∈ Sdiscr, scont ∈ Scont, e ∈ R+
0 }

δext : Q×Xcont ×Xdiscr → S . . .external state transition function

δint : Q×Xcont → S . . . internal state transition function

λdiscr : Q×Xcont → Y discr . . .discrete output function

λcont : Q×Xcont → Y cont . . .continuous output function

f : Q×Xcont → Scont . . . rate of change function (“right side” of an ODE system)

Cint : Q×Xcont → {true, false} . . . state event condition function

Figure 2.5: Graphical illustration of an atomic DEV&DESS.

The meaning of all sets and functions listed above can be looked up in the corresponding sec-
tion for DEVS (see 2.1.1.1) and in the section for DESS (see 2.1.2.1), with on exception: Cint.
Cint is a function of the actual state q and continuous input value xcont(t) and is responsible for
triggering internal events, which then may cause a discrete output ydiscr = λdiscr(q, xcont) and
definitely results in the execution of δint.

Therefore, internal events in DEV&DESS are not exclusively dependable on time, as it is
the case with DEVS, but may also be triggered because of the system state s reaching a certain
threshold. Events of the latter type are called state events. Since the state transition functions δint
and δext update the whole state, including its continuous part, they may lead to a discontinuous
change in scont. Thus, as scont is the output of an integrator, this integrator needs to be reset,
each time an external or internal event occurs.

The last distinguishing feature of the whole DEV&DESS from its components DEVS and
DESS is the dependency of δint and λdiscr on the actual continuous input value.
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For DEV&DESS to be well defined, we need to fulfil both, the requirements for the DEVS
part, and the requirements for the DESS part. Therefore for each possible input trajectory and
initial state, during a finite interval of time only a finite number of events is allowed to happen.
Furthermore again the function f has to meet the Lipschitz requirements (2.1) and the continuous
input and output signals need to be bounded and piecewise continuous.

2.1.3.2 Coupled DEV&DESS

Since atomic DEVS can be coupled with each other and atomic DESS can be coupled with each
other, also atomic DEV&DESS can be coupled. However there are some restriction concern-
ing the coupling of continuous outputs with discrete inputs. A coupled DEV&DESS can be
described by the following 7-tuple.

N =< Xdiscr ×Xcont, Y discr × Y cont, D, {Md}d∈D, {Id}d∈D∪{N}, {Zd}d∈D∪{N}, Select >

where

Xdiscr, Y discr . . . set of possible discrete inputs and outputs

Xcont, Y cont . . . set of possible continuous inputs and outputs

D . . . set of involved ‘child DEV&DESS’ denominators

Md . . . child DEV&DESS of N for each d ∈ D
Id ⊂ D ∪ {N} . . . influencer set of d, d /∈ Id

Zd . . . interface map for d

Select : 2D∪{N} → D ∪ {N} . . . tie breaking function

The meaning of all the terms listed above are already known either from the coupled DEVS
definition in section 2.1.1.2 or from the coupled DESS defnition from section 2.1.2.2. But there
are some restrictions, concerning the coupling of discrete outputs with continuous inputs and
vice versa.

Therefore, the interface map Zd is divided into two component functions. One for the cal-
culation of the discrete inputs of block d:

Zdiscr
d : ×

i∈Id
Y Xi → XY discr

d

and one for the calculation of the continuous inputs

Zcont
d : ×

i∈Id
Y Xi → XY cont

d

Then, we need to define how to interpret a connection from a discrete output to a continuous
input and the other way round:
Discrete output signals, actually are only existent at the instance of time when they are produced.
The rest of the time, the value of the output signal is the empty set ∅ or non existent. However, to
enable connections between discrete outputs and continuous inputs, we define discrete outputs
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to be piecewise constant. So the value of a discrete output at a time between two output events
is always the value of the last output event. Therefore, it is allowed to connect discrete outputs
arbitrarily to continuous inputs. The other way round is not that easy, and it is necessary to apply
restrictions. Thus, continuous outputs are only allowed to be connected to discrete inputs, if they
are piecewise constant.

One could think of a connection from discrete to continuous being realized by putting an
additional DEV&DESS block in between that receives the discrete output at its discrete input
and forwards it to its continuous output. The other way around works as well.

As DEV&DESS sums up the functionality of both sides, the discrete and the continuous one,
the modeller has to deal with the requirements of each formalism as well. On the one hand the
modeller needs to take care not to produce algebraic loops, and on the other hand he also needs
to think of how to define the tie breaking function select for the model to produce the desired
behaviour.

As Zeigler showed [ZPK00], all three basic formalisms, DEVS, DTSS, and DESS describe
subclasses of the set of DEV&DESS describable systems. Therefore, DEV&DESS is perfectly
suited to formally describing hybrid models of real systems in a simulator independent way.
Nevertheless, when it comes to simulate a DEV&DESS on a digital computer, it is necessary to
discretise the DESS part resulting in a pure DEVS. In which way this discretisation is carried
out already depends on the simulator in use and the possibilities for numerical ODE treatment
it provides . Common ODE solvers are working in a discrete time fashion, meaning that they
compute solution samples of the whole ODE in constant or variable time steps. An alternative
and rather young method is called QSS and will be described in detail in section 2.2. QSS is
actually a more extensive method for numerically solving an ODE than ODE solvers, because
it separately integrates each single dimension of the ODE and therefore applies different step
sizes for each dimension. Furthermore, in higher order QSS methods, there is more effort put
into the description of continuous signals than with ODE solvers. Thereby, continuous signals
are not only described by their actual value but also by their first, second, third,. . . derivative, i.e.
by values describing the short term evolution of the signal. Of course this does not come for
free and the price to pay is a higher memory consumption and the requirement of some kind of
event scheduling support from the simulator. Anyway, as for the simulation of hybrid systems an
event scheduler is indispensable, QSS is perfectly suited for implementing a simulation model
of a DEV&DESS.

2.2 QSS – Quantized State System

QSS stands for Quantized State System and the underlying idea was first proposed by Zeigler as
method to create a DEVS representation of a continuous system. Kofman [KJ01] improved that
method and today there already exists a variety of enhancements [Kof02, Kof06, Kof09, Kof09,
MK09, CKC11, MKC12, MBKC13].

In Zeigler’s definition of DESS(Differential Equation System Specification), a continuous
system needs to be able to cope with bounded piecewise continuous input signals. Zeigler’s
idea was now to discretize a DESS model S simply by adding a Quantizer in succession of
S. This Quantizer just discretises all output signals of S. As mentioned above, a DESS can
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be fed with piecewise constant signals, and therefore, the coupled system of S plus Quantizer
works like a discrete event system (see Figure 2.6). Note that DEVS signals actually only exist
at event times and have the value ∅ all the other time. However, for coupling purposes with
DESS and DTSS (Discrete Time System Specification), they can be interpreted as piecewise
constant(see [ZPK00]). Therefore, every DESS followed by a quantizer represents a DEVS.
The input quantizer in Figure 2.6 actually represents the output quantizer of the discretised
DESS preceding in the coupling scheme or it just quantizes an overall system input signal.

S

QuantizerQuantizer

quantized system

DESS

DEVS

Figure 2.6: Illustration of a quantized System

2.2.1 Quantizers and quantization methods

Quantizers actually origin from the field of electrical engineering and their task is to map ana-
logue signal values within a given range onto a finite set of digital values. Quantizers as Zeigler
describes them are doing quite the same. They convert a continuous input signal into a piecewise
continuous step function where the step height is a value out of a given finite set. Usually the
values of this set are equidistant and the difference between two such neighbouring values is
called Quantum. The step height of a QSS quantized signal at a given point in time corresponds
to the highest possible step height that is smaller than the continuous signal value at that time.
This leads to a maximum absolute error of one quantum.

Actually when quantizing electrical signals, the actual step height is the nearest neighbour of
the current continuous signal value in the set of possible step heights, which leads to a maximum
absolute error of half a Quantum. However, the reason for the rather simple quantization method
used with QSS may be that it makes the expansion to QSS methods of higher order more straight
forward.

Zeigler’s simple quantization method has one drawback: if the continuous signal value is
right at the border to the next step heights, that is, around that value where the output of the
quantizer changes its value, it may happen that the quantizers output value permanently jumps



18 CHAPTER 2. THEORETICAL BASIS

Quantum q

continuous value

quantized value

hysteresis
- width ǫ

q

Figure 2.7: Illustration of the woriking principle of a QSS quantizer.

from the lower to the higher level and back again. To overcome that, Kofman introduced a hys-
teresis at the switching levels (illustrated in Figure 2.7). But this was only the first enhancement.

2.2.1.1 QSS

The abbreviation QSS is used with different meanings. Originally it is the name for a system
discretised in a specific way (a system with quantised state). Then the name is used for the
concrete quantisation method used thereby(see Figure 2.7) but also as general term for the whole
class of quantisation methods consisting of the original one (of first order) and all extensions
of it (of higher order, see section 2.2.1.2). The output of such a quantisation is a quantised
signal which is called QSS signal. Thus, QSS also denotes a method of describing continuous
signals. Since each QSS order produces a different description of a continuous signal, QSS
again denotes also the whole class of continuous signal description methods corresponding to
the class of quantisation methods. However, different quantisation methods may use the same
QSS signal description method. Furthermore, each QSS order comes with a native variable step
size integration method of continuous signals. The method for QSS of first order is called QSS
integration but again also the whole class of integration methods of the different QSS orders.
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2.2.1.2 QSSn – QSS of Order n

The next step from QSS to QSS2 is quite interesting. For this purpose, we regard the QSS
quantized signal not only as piecewise constant approximation of the continuous signal but as
piecewise Taylor approximation of order zero at the particular point in time where the last step
happened. So each time the difference between continuous signal value and step height becomes
equal to the quantum q or −ε, the Taylor expansion point is updated. See Figure 2.8 for an
example.

Quantum q

continuous signal

quantized signal

time t

signal value

taylor expansion point

hysteresis
- width ǫ

Figure 2.8: QSS quantization of a continuous signal.

So the extension to QSS2 is obvious now. Just describe the continuous signal not with
piecewise Taylor approximations of order zero, but of order one. That is, with piecewise linear
segments. And again, whenever the distance from linear approximation to continuous signal
exceeds the quantum q, the Taylor expansion point is updated to the point of the continuous
signal where this exceeding first occurs. See figure 2.9 for an example.

Exactly the same principle works with QSSn, n = 3, 4, . . . , meaning that QSSn signals
consist of piecewise polynomial segments of degree n− 1. Note that QSSn signals are actually
piecewise continuous but not continuous, because there are points of discontinuity whenever
the taylor expansion point is updated. An advantage of QSSn, n ≥ 2 is that there is no need
for a hysteresis any more, since after an update of the taylor expansion point, the difference
of continuous and quantized signal is zero and therefore, small fluctuations of the continuous
signal do not lead to further expansion point updates. A disadvantage of QSSn, n ≥ 2 is that
discretisation of DESS systems does not work that straight forward any more as it was with QSS.
This is because with QSSn, n ≥ 2, the description of signals now consists of a n-tuple instead
of a single value and therefore cannot be fed directly into the inner DESS system S as shown in
Figure 2.6. However, this problem simply can be fixed by sampling the piecewise polynomial
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Quantum q

continuous signal
quantized signal

time t
taylor expansion points

signal value

tn

an

bn

1

tn+1

Figure 2.9: QSS2 quantization of a continuous signal. The linear approximation of the
continuous signal between tn and tn+1 is an + bn · (ttn).

QSSn signal from the output of the left quantizer in Figure 2.6 resulting in a QSS signal that can
be fed into the DESS. Figure 2.10 illustrates that.

S

QuantizerQuantizer

quantized system

DESS

DEVS

QSSn to QSS

S&H

QSSn QSSn

Figure 2.10: Illustration of a way discretise a DESS using QSSn.

That is, if the S&H block (Sample & Hold) in Figure 2.10 for example receives a DEVS
signal (ak, bk) at time tk and another one (ak+1, bk+1) at time tk+1, it produces at the ouput
samples ak + bk · (tj − tk) at times tj with tj ∈ [tk, tk+1) for j ∈ {0, 1, . . . ,m} (m is an
arbitrary non negative integer determining the sample rate).

The advantage of this type of discrete description of continuous signals is that, knowing the
actual QSSn representation of the signal, one does not only know the current value of the signal,
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but also how it will evolve in the near future. This makes it possible to calculate the points in
time when for example a continuous state variable reaches some concrete threshold triggering a
state event instead of iteratively searching for them.

Additionally to the mentioned QSSn quantization methods there also exists a logarithmic
quantization method, where the size of the quantum is not constant but depends on the actual
size of the continuous signal (see [Kof09]). This is interesting, because the principle of QSS1 ac-
tually is the same as fixed point representation of reals in digital computers, whereas logarithmic
quantisation can be compared with floating point representation (see 2.2.3).

2.2.2 Integration of QSS signals

As we learned before, QSS signals are actually piecewise polynomial:

f(t) = ak + bk · (t− tk) + ck · (t− tk)2 . . .

for t ∈ (tk, tk+1] and k ∈ N. The integration of a polynomial of degree m simply results in a
polynomial of degree m+ 1:

w(t) = w(tk) +

∫ t

tk

f(τ)dτ = w(tk) + ak(t− tk) +
bk
2
· (t− tk)2 +

ck
3
· (t− tk)3 . . .

Therefore the numerical solution of IVPs like (1.1) is quite simple. However, for coupling
reasons, one QSS simulation model should use the same order of QSSn everywhere in the model.
Therefore, the output of an integrator block receiving a polynomial of degree m should also
be of degree m, which can be achieved by simply cutting off the output polynomial after the
m-th coefficient. This again introduces a quantization error. To bound that error, we just treat
the correct output polynomial of order m + 1 the same way we treat other continuous signals
entering the QSS: we quantize it.

Figure 2.11: The working principle of a QSS3 integrator.

Figure 2.11 illustrates the working principle of an ordinary QSS3 integrator. Every time the
distance between polynomial w(t) of degree m + 1 and polynomial x(t) of degree m exceeds
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the quantum q, the Taylor expansion point of the output signal x(t) is updated resulting in a new
output polynomial and an incrementation of j. Actually this could be interpreted as state event.
With defining the absolute difference of x(t) from w(t) as inner state e(t) of the integrator, we
end up with a state event each time e(t) reaches the quantum q. Thus, the smallest positive zero
crossing of the so called event function e(t)− q marks the time of the state event. Since x(t) and
w(t) are polynomials we perfectly know, as long as their degree is smaller than 5, the time of
the state events have not to be searched for iteratively using Newton, Regular Falsi or something
similar but simply can be determined by calculating the zeros of the polynomials w(t)−x(t)−q
and w(t)− x(t) + q. Exactly this is one big advantage of QSS regarding state events.

Apart from that straight forward integration with successive quantization explained above,
there also exist methods BQSS,CQSS ( [MKC12]) as well as LIQSS,LIQSS2 ( [MK09]) for stiff
systems. However, those methods actually do not change the way, the input polynomial f(t) is
integrated, but the quantization of the integrated input polynomial w(t) works in a different way
there.

2.2.3 Quantization in Non-QSS Simulators

Due to the fact that for every digital computer, the number of digits it can work with is limited,
actually any numerical software running on a digital computer works with quantized numbers.
Therefore, each implementation of an IVP like (1.1) in a tool like SIMULINK or Dymola, i.e.
the simulation of the model described by the IVP in one of those tools, in fact is based on a kind
of QSS representation of all continuous signals appearing there. There are two basic types of
quantization:

1. fixed point representation:

x = d1d2 . . . dm . dm+1dm+2 . . . dm+n

with a fix quantum size q = 10−n and

2. floating point representation:

x = s1s2 . . . sm × 10e1e2...en

with a variable quantum size q = 10e1e2...en depending on the actual size of x (comparable
with logarithmic quantization [Kof09]).

So QSSn actually can be seen as an enhancement of the quantization methods used in digital
computers, which is aimed at representing not only constant real numbers but also whole real
valued signals, meaning real values and their short term evolution.

2.2.4 Similarities of QSSn and Explicit One-Step ODE Solvers

Now let us take a look at the parallels of ODE solvers and QSS methods. We start with a scalar
IVP like: {

ẋ(t) = f(x, t)

x(t0) = x0
(2.2)
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which we want to solve numerically using QSSn and compare the resulting formulas with those
of explicit one step ODE solvers which are defined as:

xk+1 = xk + Φ(xk, tk, f) · hk k = 0, 1, . . . N (2.3)

where
t0 < t1 · · · < tN , hk = tk+1 − tk

We will start with applying simple QSS onto (2.2). Figure 2.12 illustrates that with a signal flow
graph. Actually with QSS, the values passed on from one block to the next are piecewise constant
and therefore, between to changes of the quantization level, xk and fk,m are independent from
time. However, the graphic is designed to explain QSSn as well and that is why xk and fk,m are
drawn time dependent.

Figure 2.12: Block diagram, illustrating the QSSn integration of an initial value problem.

Initially the integrator outputs the quantized initial value x0. Let assume, that x0 can be
represented exactly with QSS. Then f(x0, t0) is calculated, leading to the quantized value f0,0
that is fed into the integrator. The integration of f0,0 leads to the polynomial of first degree

w(t) = w(t0) + f0,0 · (t− t0)
(w(t0) = x0) that describes a more precise representation of the desired solution x(t) than
the piecewise constant output xk does. This polynomial w(t) is then used to get a local error
estimation

e(t) = |w(t)− x(t)| = |f0,0 · (t− t0)|.
By bounding this error estimation by the quantum q, the time t1 for next integrator output update
or in other words the step size h1 = t1 − t0 can be calculated:

t1 = t0 +
q

|f0,0|
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There are two sources for change of the quantized value of f(x, t): a change of x and change of
time t. That is why quantized f is equipped with two indices in Figure 2.12. The first is incre-
mented each time tk the integrator updates its output value xk. The second one is incremented
each time tk,m, f changes due to the direct time dependency of f and is reset to zero whenever
the integrator updates its output value (which leads to an incrementation of the first index).

So every time the output value of the f block changes, the polynomial w(t) changes, and
therefore, time t1 has to be recalculated. If, for example quantized f changes at t = t0,1 > t0,
then w(t) changes to

w(t) = w(t0,1) + f0,1 · (t− t0,1)
Nevertheless, it can be seen that w(t) is continuous although the integrators output x(t) is not.

Finally, if there is no further change of f until time t1 is reached, the integrator output is
updated with

x1 = w(t1)

and the whole process is repeated until the designated end time is reached.
The calculation of the integrator step size depending on an error estimation strongly reminds

of variable step size ODE solver. Now let us deduce a recursive formula for xk+1.
Let’s assume that the actual output of the integrator is xk, the actual quantized value of f is

fk,m, and the actual value of w is w(t) = w(tm) + fk,m · (t − tm). Further, let’s assume that
the time for the next output update of the integrator is calculated with tk+1 and that there will be
no change of quantized f until tk+1 – in this case we define Mk = m. Then the next integrator
output value can be calculated as:

xk+1 = w(tk+1)

= w(tk,Mk
) + fk,Mk

· (tk+1 − tk,Mk
)

= w(tk,Mk−1) + fk,Mk−1 · (tk,Mk
− tk,Mk−1) + fk,Mk

· (tk+1 − tk,Mk
)

...

= w(tk) + fk,0 · (tk,1 − tk,0) + fk,1 · (tk,2 − tk,1) + · · ·+ fk,Mk
· (tk+1 − tk,Mk

)

= w(tk) +

(
fk,0

tk,1 − tk,0
tk+1 − tk

+ fk,1
tk,2 − tk,1
tk+1 − tk

+ · · ·+ fk,Mk

tk+1 − tk,Mk

tk+1 − tk

)
· (tk+1 − tk)

= x(tk) +

(
fk,0

tk,1 − tk,0
tk+1 − tk

+ fk,1
tk,2 − tk,1
tk+1 − tk

+ · · ·+ fk,Mk

tk+1 − tk,Mk

tk+1 − tk

)
· hk

where fk,m = f(xk, tk,m). Looking at the last line of this formula, one can see that it looks
exactly like the recursion for a one step ODE solver (2.3) with

Φ = fk,0
tk,1 − tk,0
tk+1 − tk

+ fk,1
tk,2 − tk,1
tk+1 − tk

+ · · ·+ fk,Mk

tk+1 − tk,Mk

tk+1 − tk
(2.4)

This means that QSS integration can be seen as one step, variable step ODE solver with the
speciality of changing the calculation method of Φ after each step. More detailed, in each step
xk → xk+1, Φ is a convex combination of a set of samples of f(xk, ·) between tk and tk+1.
Amount Mk and position in time of those samples depend on the rate of change of f(xk, ·) in
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the interval (tk, tk+1). For the special case that f(xk, t) does not change for t ∈ (tk, tk+1), i.e.
Mk = 0, Φ would become:

Φ = fk,0 = f(xk, tk)

and therefore:
xk+1 = xk + f(xk, tk) · hk (2.5)

which actually is nothing else than the recursion of explicit Euler method. Therefore, assuming
f depending only on x(t), we get that QSS integration is exactly the same as variable step ex-
plicit Euler method.

For QSSn integration the signals fk,m(t), w(t), and xk(t) for t ∈ (tk,m, tk,m+1) have the
form

fk,m(t) = fk,m + f ′k,m · (t− tk,m) +
f ′′k,m

2
· (t− tk,m) + · · ·+

f
(n−1)
k,m

(n− 1)!
· (t− tk,m)n−1

w(t) = w(tk,m) + fk,m · (t− tk,m) +
f ′k,m

2
· (t− tk,m)2 + · · ·+

f
(n)
k,m

n!
· (t− tk,m)n and

xk(t) = xk(tk) + fk,0 · (t− tk) + · · ·+
f
(n−1)
k,0

(n− 1)!
· (t− tk)n−1

with f (j)k,m = djf
dtj

(xk(tk,m), tk,m). The final result for the recursion is then

xk+1 = xk +

(
fk,0

tk,1 − tk,0
tk+1 − tk

+ fk,1
tk,2 − tk,1
tk+1 − tk

+ · · ·+ fk,Mk

tk+1 − tk,Mk

tk+1 − tk

)
· hk

+

(
f ′k,0
2

(
tk,1 − tk,0
tk+1 − tk

)2

+
f ′k,1
2

(
tk,2 − tk,1
tk+1 − tk

)2

+ · · ·+
f ′k,Mk

2

(
tk+1 − tk,Mk

tk+1 − tk

)2
)
· h2k

+

(
f ′′k,0
6

(
tk,1 − tk,0
tk+1 − tk

)3

+
f ′′k,1
6

(
tk,2 − tk,1
tk+1 − tk

)3

+ · · ·+
f ′′k,Mk

6

(
tk+1 − tk,Mk

tk+1 − tk

)3
)
· h3k

...

+


 f

(n−1)
k,0

(n− 1)!

(
tk,1 − tk,0
tk+1 − tk

)n−1
+ · · ·+

f
(n−1)
k,Mk

(n− 1)!

(
tk+1 − tk,Mk

tk+1 − tk

)n−1

 · hn−1k

which again can be identified as, let us call it variable structure one step, variable step ODE
solver. Assuming that f(xk, t) is not changing for t ∈ (tk, tk+1) it follows

xk+1 = xk+f(xk, tk)·(tk+1−tk)+
df
dt (xk, tk)

2
·(t−tk)2+· · ·+

dn−1f
dtn−1 (xk, tk)

(n− 1)!
·(t−tk)n−1 (2.6)

which is also known as Taylor method among ODE solvers.
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If the investigation is now extented to d dimensional IVPs, two things can be recognized:
First, QSSn treats each index of the vectorial values xk, f(x, t) separately, resulting in

different step sizes for each single dimension, whereas ODE solvers treat the vectorial ODE as
a whole and therefore choose one step size for all dimensions.

Second, the function blocks fi(x, t) in the QSSn signal flow graph now change their output
value not only due to time changes and changes of xi but also due to changes of all other entries
of the vector x = (x1, x2, . . . , xd). See Figure 2.13.

Figure 2.13: Signal flow graph of QSSn applied to a vectorial initial value problem.

However, the changes of fi due to changes of xj , j 6= i can be seen as changes due to
time changes. Therefore, QSSn applied on vectorial IVPs corresponds to applying a separate
variable-step one-step ODE solver on each dimension.

One last point which should be mentioned in this context is that calculation of arithmetic
expressions consisting of QSSn signals, as for example the function f(x, t) may be, can only
be performed error free if they consist of nothing else but summation and multiplication with
constant values. This is because the set of all polynomials of degree n is a vector space and each
operation on that vector space that would lead out of it, e.g. division or inversion of polynomials,
is accompanied with an error, since the resulting QSSn signal would be only a projection of the
correct result into the vector space of polynomials of degree n. This drawback could be eased
when such calculations would be performed in a vector space of polynomials of higher degree
and then this more precise result would be simply quantized the same way a continuous signal
entering the QSS is quantized. That is, each time t the distance of the higher degree polynomial
to the n-degree polynomial reaches the quantum, the n-degree polynomial is replaced by the
n-degree Taylor approximation of the higher degree polynomial with expansion point t.



CHAPTER 3
PowerDEVS

PowerDEVS1 [BK11] is an open source software tool for the simulation of dynamical sys-
tems. Models can be entered as block diagrams as known from other simulators simulators like
SIMULINK, XCOS or Dymola. However, in PowerDEVS the behaviour of each single block
strictly follows a corresponding DEVS or a corresponding coupled DEVS and the coupling of
blocks follows the rules of coupled DEVS. Although, as long as the modeller only uses pre-
defined library blocks to build up a model by establishing the desired input-output couplings,
there is no need to know anything about DEVS at all. Not until the library blocks do not suffice
anymore to model the desired behaviour, knowledge about DEVS is necessary. In this case a
new block has to be created, which in in PowerDEVS can be done by defining the block’s func-
tionality as DEVS. The DEVS of the new block then can be implemented straight forward as
C++ code using the atomic editor which will be introduced in one of the next sections.

Since in background PowerDEVS works with a pure DEVS model, the kind of systems that
can be simulated are discrete event systems. As discussed in chapter 2 this also includes all
discrete time systems, like e.g. digital circuits and continuous systems described as differential
equations and solved using ODE solver algorithm. However, PowerDEVS supports a different
method to discretise continuous systems: QSS. QSS transforms the continuous system not into a
discrete time system but directly into a discrete event system. Thus, all the blocks for continuous
systems simulation that come with the PowerDEVS library use QSS. The first time the modeller
is confronted with that fact is when he uses an integrator-block in his model. The integrator
block provides a parameter for setting the concrete QSS-method to be used.

PowerDEVS consists of four independent parts:

� model editor

� atomic editor

� structure generator
1http://sourceforge.net/projects/powerdevs/
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� preprocessor

Further, PowerDEVS closely cooperates with the open source numerical computations software
Scilab2. Scilab is very similar to Octave3 or MATLAB4 and its user interface consists of a
console where variables of all kinds can be defined and are stored in the Scilab workspace.

A simulation model created in PowerDEVS is able to connect to a running Scilab session
via TCP5 and thus, it can access the Scilab workspace and make use of the Scilab command
interpreter. To give an example, the simulation model can read simulation and model parameters
from Scilab workspace at the beginning of the simulation and write simulation results back to
workspace when it is finished. Furthermore, all numerical methods Scilab offers can be used
in PowerDEVS. This is utilised particularly for the interpretation of inputs entered as parameter
values for PowerDEVS blocks. Most of the predefined library blocks let their parameter values
be interpreted by Scilab and use the Scilab return value for the actual parameter value. If the
entered parameter value is a number, Scilab just returns that number. However, if the entered
value for example is something like A*sin(x), tan(1/2) or exp(-5*y) with A,x and
y being Scilab workspace variables, Scilab interprets this expression and returns a numerical
value.

Scilab also offers the possibility to write scripts. In combination with the fact that Pow-
erDEVS simulation models can be executed from Scilab console, this could be used to write a
Scilab script that executes a sequence of simulations with varying simulation and model param-
eters and subsequently does the postprocessing of the simulation results.

3.1 Model Editor

The PowerDEVS model editor is the user interface for the modeller to graphically create simu-
lation models. Figure 3.1 shows the model interface with an implemented bouncing ball model.
All blocks in the model are predefined library blocks. From the simulation engine’s point of
view, the whole model is one coupled DEVS.

The block ‘reset v(t) on bounce’ in Figure 3.1 is also a coupled DEVS. Its internal structure
is depicted in Figure 3.2. In Figure 3.2 the library ‘Basic Elements’ is open. This library consists
of four blocks. The ‘Atomic’ block represents an atomic DEVS template, i.e. an atomic DEVS
whose functionality still needs to be programmed in C++ programming language. It can be used
to create a custom block. The other three blocks, ‘Coupled’, ‘Inport’, and ‘Outport’ are needed
for coupled DEVS. To create a coupled DEVS, a ‘Coupled’ block has to be dragged and dropped
into the model. With a right click on the ‘Coupled’ block and selecting ‘Open coupled’, the cou-
pled model can be opened, which results in an empty model worksheet. Then arbitrary library
blocks can be dragged and dropped into the empty worksheet and coupled with each other. For

2http://www.scilab.org/
3http://www.gnu.org/software/octave/
4http://www.mathworks.com/products/matlab
5 TCP . . . Transmission Control Protocol; “TCP provides reliable, ordered, and error-checked delivery of a

stream of octets between applications running on hosts communicating over an IP network. TCP is the protocol
that major Internet applications such as the World Wide Web, email, remote administration and file transfer rely
on.”(en.wikipedia.org, 2015)

http://www.scilab.org/
http://www.gnu.org/software/octave/
http://www.mathworks.com/products/matlab
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Figure 3.1: The PowerDEVS model editor with a bouncing ball model. The block ‘reset v(t)
on bounce’ represents a coupled model, comparable to a SIMULINK subsystem. On the left
the different libraries can be seen. Currently the library for continuous systems is open.

each ‘Inport’ and ‘Outport’ block inserted into the coupled model, one hierarchical level above
the ‘Coupled’ block is equipped with an additional input port and output port respectively. In
this way arbitrary hierarchical DEVS models can be created.

Figure 3.3 shows the dialogue, opened when double clicking on an integrator block in a
PowerDEVS model. Here model parameter values can be entered. As mentioned above, most
parameters allow any expression interpretable by Scilab to be entered. When creating a custom
block, the amount, names, and types of parameters shown in this dialogue can be defined.

Figure 3.4 shows the simulation dialogue window. It is opened, when clicking onto the blue
play symbol in the model editors tool bar. When clicking on that button, the structure generator
and the preprocessor create the simulation model from the C++ source code describing the single
blocks and from the coupling information given with the drawn connections.

From the simulation dialogue window a simulation run can be started using start time t=0
and the value entered in the ‘Final Time’ input field as simulation end time. Additionally, the
number of successive simulation runs can be defined as well as the maximum of concurrent
events that are allowed to happen. That is, if there are more than the given maximum number
of events triggered at the same time, the model is considered illegitimate and therefore, the
simulation is aborted. Further, there is the possibility to stop the simulation after a given amount
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Figure 3.2: The coupled model ‘reset v(t) on bounce’ from the bouncing ball model depicted
in Figure 3.1.

of events was triggered (‘Perform’ text field). This can be achieved by clicking onto the ‘Step(s)’
button instead of onto ‘Run Simulation’. With each further click on that button the simulation is
continued until again the number of entered events were triggered.

PowerDEVS is especially designed to support real time simulation as well. This is what the
button ‘Run Timed’ is for. It can be used to run the simulation in real time. That is, one second
in simulation time corresponds to one second in real time. Of course, a more or less correct
correspondence between simulation time and real time can only be assumed when working on a
real time operating system.

In the bouncing ball example in Figure 3.1, there are two ‘From Workspace’ blocks and
one ‘To Workspace’ block. They are used to read the initial values for ball height y0 and ball
velocity v0 from Scilab workspace and to write the simulation result, ball height y(t), back
into the Scilab workspace.

For the parameter value of the block ‘constant -d’ in Figure 3.2 the letter d is entered. This
also causes PowerDEVS to search in Scilab workspace for a variable with the name d (d is the
damping factor the bouncing ball velocity is multiplied with on each bounce). Figure 3.5 shows
the graphical user interface of Scilab, how the initial values and parameters used in the bouncing
ball example are entered and a Scilab plot of the simulation results that were written back into
Scilab workspace.
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Figure 3.3: The dialogue that is opened when double clicking on a PowerDEVS non-coupled
block, in this case an integrator block. Here block parameter values can be entered.

The select function for coupled models is realized as priority list in PowerDEVS. Figure 3.6
shows the bouncing ball model with its priority list. Every time two blocks in a coupled model
experience an internal event at the same time, the execution of the internal events is conducted
in the order according to the priority list. Since execution of an internal event may result in an
output message of the corresponding block and thus result in an input message at another block,
a change in the priority list definitely is capable of changing the models behaviour.

For example, if the two concurrent blocks supply the same receiver block with input mes-
sages x1 and x2, then the internal state of the receiving block may depend on the order in
which x1 and x2 arrive. In case of x1 arriving before x2, the internal state s of the receiv-
ing block will be calculated as s = δext(δext(s, x1), x2), whereas it will be calculated as
s = δext(δext(s, x2), x1) if x2 arrives before x1. Therefore, the definition of the priority list
is a very important part of the modelling process of a coupled DEVS model. Maybe this is even
the most difficult part of it, because it can become quite extensive to consider all possible com-
binations of concurrent signals in the model and how they should be resolved. This is exactly
one point which will be dealt with in section 4.1.

The library opened in Figure 3.6 is named ‘Vector’ library and provides blocks working
with vectorial signals, i.e. the coupling lines between blocks from that library transport vectorial
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Figure 3.4: The dialogue that is opened when starting the simulation via clicking onto the
blue play symbol in the model editors tool bar. Here simulation parameters can be entered
and the simulation can be started.

values. However, in the concrete implementation again only scalar messages are sent on those
lines, but each equipped with an attribute called index that defines the index of the vectorial
value this scalar value belongs to.

When speaking about scalar values in combination with continuous signals in PowerDEVS,
actually n-tuples are meant, with n corresponding to the order of QSS method in use (QSSn).
That is, if there is a message sent at time t consisting of a n-tuple and an index value of i, this
means that the Taylor polynomial of degree n − 1, with expansion point t of the i-th index of
the vectorial signal on that line, has the coefficients given with the n-tuple.

Thus, single indices of vectorial signals can change independently and at different instances
of time and therefore, each change of an index produces an external event at the receiving block.
So vectorial signals in PowerDEVS are perfectly suited for producing concurrent input events,
e.g. when several or all indices of a vectorial signal change at the same time. However, those
concurrent input events have to lead to the same final state of the receiving block, no matter
in which order they are processed, which makes the creation of consistently working, custom
atomic blocks quite hard.
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Figure 3.5: The Scilab user interface with the Console in the middle an the currently de-
fined workspace variables in the Variable Browser top right. The first four commands in the
Console define initial time t0, initial height y0, initial velocity v0 and the damping constant
of the bouncing ball model depicted in Figure 3.1. The bouncing ball model writes its sim-
ulation results, consisting of ball heights y at specific time instances t back to the Scilab
workspace. Bottom right, the result of the Scilab plot command can be seen.
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Figure 3.6: The PowerDEVS model editor with the priority list and the ‘Vectors’ library
opened.
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3.2 Atomic Editor

As well as all other mentioned modules of PowerDEVS (model editor, structure generator and
preprocessor), the atomic editor is a stand-alone program. However, it can be started from
the model editor by right clicking onto a model block and selecting ‘Edit Code’. Though this
works only as long as the chosen block already has an assigned source code file pair consisting
of a .h and a .cpp file. Otherwise, when creating a completely new block starting with the
‘Atomic’ block from the ‘Basic Elements’ library, new source files need to be created. Therefor
the atomic editor has to be used. This can be done from the model editor by right clicking onto
the block, selecting ‘Edit...’, then switching to the ‘Code’ tab and clicking onto the button ‘new
file’, which opens the atomic editor with blank tabs as depicted in Figures 3.7 and 3.8. The
block edit dialogue is depicted in Figure 3.9. After saving the newly created code files, they still
need to be linked to the atomic block in the model editor it was started with. This again can be
achieved in the ‘Code’ tab of the block edit dialogue. There the source code, which describes
the functionality of the block, needs to be selected (see Figure 3.9c).

The block edit dialogue also provides the means to set the desired number of block input
ports and output ports, to enter a block description, and to select a block icon (see Figure 3.9a)
as well as to define the block parameters (see Figure 3.9b). As block icons, .svg files can be

Figure 3.7: PowerDEVS atomic editor. It is used to define new model blocks by formulating
their DEVS in C++. The C++ code describing τ , δint, δext and λ as well as an init and an
exit routine is entered in the appropriate tab of the atomic editor.
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(a) atomic editor - time advance (ta) tab (b) atomic editor - external transition (δext) tab

(c) atomic editor - Output (λ) tab (d) atomic editor - exit tab

Figure 3.8: The picture shows four of the six tabs of the atomic editor which need to be filled
out by the modeller. The missing ones are the init tab and the one for defining the internal
transition. The init tab is shown in Figure 3.7. The internal transition tab is initially completely
blank and therefore not depicted.

(a) (b) (c)

Figure 3.9: The ‘Edit’ dialogue of a model block in the model editor. (a) shows the properties
tab, (b) the parameters tab and (c) the code tab.

used, which for example can be created using the open source tool LaTeXDraw6.
Figure 3.7 shows the atomic editor with completely new source code files opened. As already

mentioned, the atomic editor is designed to directly enter a DEVS using C++ language. There
are seven input areas:

6http://latexdraw.sourceforge.net/

http://latexdraw.sourceforge.net/
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� State variables and parameters

� Init

� Time advance (ta)

� Internal transition (δint)

� External transition (δext)

� Ouput (λ)

� Exit

The simulation engine of PowerDEVS strictly sticks to the proposal in [ZPK00]. Therefore,
for each atomic block in PowerDEVS, which corresponds to an atomic DEVS, there is a new
C++ class defined, which is derived from the class Simulator. This Simulator base class
dictates each derived class to overload the functions: init, ta, dint, dext, lambda, and
exit, each of which corresponding to one of the tabs in the atomic editor.

Every coupled system in a PowerDEVS model is represented by an instance of the class
Coupling that also is derived from Simulator. Thus, from outside, a Coupling in-
stance looks like an atomic and therefore again can be part of another Coupling instance. On
top of this hierarchical structure comes the class RootCoupling, derived from Coupling,
and finally there is the class RootSimulator (see Figure 3.10). For further details it is re-
ferred to the source code itself which, as PowerDEVS is open source, is freely available on
sourceforge.net.

Figure 3.10: Illustration of the hierarchical structure of a PowerDEVS model and the
corresponding class structure of the simulation model. ‘coordinator’ corresponds to the
class Coupling. ’root–coordinator’ corresponds to the classes RootCoupling and
RootSimulator. (picture taken from [BK11])

Next, it will be explained shortly, how to use the single tabs depicted in Figure 3.7 and in
Figure 3.8.

sourceforge.net
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State variables and parameters. The C++ code written in this part of the atomic editor
comes, as it is, into the section of the C++ class definition where member variables are de-
fined. Thus, parameter variables, system state variables, and all kind of variables that need to be
accessible from the other tabs (=member functions) have to be defined here.

Init. The C++ code inserted into the ‘Init’ tab is executed right before the simulation is started.
Usually it is used to read and process parameter values, entered in the block edit dialogue (see
3.9b) and to store those values in variables defined in the ‘State variables and parameters’ sec-
tion. Figure 3.7 shows the initial content of the ‘Init’ tab. The two lines of code there read the
parameter values from the input mask and store them into the variable parameters. The other
lines are comments which explain how to fetch a parameter value out of parameters. When
retrieving the single parameter values form parameters, they are delivered in the order they
appear in the block edit dialogue. For example, if the block has defined three parameters a, b,
and c, then the first execution of %Name% = va_arg(parameters,%Type%) returns a,
the second returns b, and the third returns c. To give an example, if the corresponding block has
two parameters. The first one of type ’Value’ and the second one of type ’String’. Then their
values can be retrieved by typing:

a = (double)va_arg(parameters,double);
b = (char*)va_arg(parameters,char*);

where the variables a and b need to be defined either in ‘State variable and parameters’ or in
‘Init’ before those two lines.

Time advance. The C++ code inserted here is used to calculate the live time of the current
state. Thus, the last line in this tab should be

return(sigma);

with sigma being a non-negative double value and giving the time to the next internal event
provided that no external event is triggered for that time.

Internal transition. Here the behaviour of the block in case of an internal event has to be
programmed. That is, the new internal state needs to be calculated depending on the old state.

External transition. Here the behaviour of the block in case of an external event has to be
programmed. That is, the new internal state needs to be calculated depending on the old state
and the currently received input message. This input message is stored in the variable x which
is an instance of the C++ class Event. This class has an integer member variable port and a
member variable value of type void*. Thus, x.port stores the input port where the message
arrived. x.value points to the message itself which can be of arbitrary type. However, this
presumes that the receiver always knows the exact type the messages it receives.
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Output. Here the functionality of the output function λ has to be implemented. Thus, an object
of type Event needs to be created and returned. The class Event has a constructor expecting
any kind of pointer as first argument and an integer defining the output port as second argument.
The pointer is exactly the void pointer which will be received in ‘External transition’ of the
receiving block.

Exit. This is the place to deposit code that should be executed when the simulation is finished.
For example, if there was memory allocated in this block during simulation or in ‘Init’, this is
the right place to free it.

3.3 Structure Generator and Preprocessor

The graphical model created with the model editor is stored in a .pdm file. It stores block
names, block positions in the model, the routing between the blocks, and already the hierarchical
structure. Further, the parameter types and values as well as the assigned code file paths for each
block are stored. The Structure Generator then reduces this .pdm file to a .pds file that only stores
hierarchical model structure as well as for each block its source file path and the parameter list
Parameters and the necessary coupling information. Listing 3.1 shows the .pds file for the
bouncing ball example depicted in Figure 3.1.

After the Structure Generator has created the .pds file, the Preprocessor uses that informa-
tion to create a file named ‘model.h’ and a makefile named ‘Makefile.include’, both located in
the folder ‘powerdevs/build/’. In ‘model.h’ a class named Model is defined that is derived form
RootSimulator and that represents the whole model. The makefile is used to create a stand
alone executable by linking the object files (stored in ‘powerdevs/build/objs/’) that were com-
piled from source files needed in the model. The executable is named ‘model’ and is located
in ‘powerdevs/output/’. Also located in the folder ‘powerdevs/output/’ are two log files named
‘compiled.log’ and ‘pdevs.log’. As the name suggests, the first one stores the compiler feedback
from creating the object files and the executable and the second one stores log entries that were
written during simulation using the command printLog(C-String, ...). printLog
has exactly the same interface as the well known standard C library command printf with the
exception that the first argument (file pointer) is not needed.

The executable ‘model’ can then be executed completely independent from PowerDEVS.
However, if somewhere in the model, a block makes use of Scilab, a running Scilab session is
needed and as already mentioned before, most library blocks make use of Scilab. Anyway, as
long as there is no communication with Scilab taking place during the simulation, the executable
can be run as stand alone program.

Root−C o o r d i n a t o r
{

S i m u l a t o r
{

Pa th = s o u r c e s \ c o n s t a n t _ s c i . h
P a r a m e t e r s = " −9.81 "

}
S i m u l a t o r

{
Pa th = p r e y s e r l i b / f romworkspace . h
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P a r a m e t e r s = " t 0 " , " v0 " , "QSS"
}

S i m u l a t o r
{

Pa th = q s s / r e s _ q s s _ i n t e g r a t o r . h
P a r a m e t e r s = "QSS3" , " 1e−6" , " 1e−3" , " 0 "

}
S i m u l a t o r

{
Pa th = p r e y s e r l i b / f romworkspace . h
P a r a m e t e r s = " t 0 " , " y0 " , "QSS"

}
S i m u l a t o r

{
Pa th = q s s / r e s _ q s s _ i n t e g r a t o r . h
P a r a m e t e r s = "QSS3" , " 1e−6" , " 1e−3" , " 0 "

}
S i m u l a t o r

{
Pa th = s i n k s / t o s c i l a b _ o f f l i n e . h
P a r a m e t e r s = " t " , " y "

}
S i m u l a t o r

{
Pa th = s i n k s / g n u p l o t . h
P a r a m e t e r s = 1 .000000 e +00 , " s e t x r an ge [0:% t f ] @ s e t g r i d @ s e t t i t l e ’ bounc ing b a l l ’ " , " w i th

l i n e s t i t l e ’ b a l l h e i g h t y ( t ) ’ " , " " , " " , " " , " "
}

C o o r d i n a t o r
{

S i m u l a t o r
{

Pa th = s o u r c e s \ c o n s t a n t _ s c i . h
P a r a m e t e r s = "−d "

}
S i m u l a t o r

{
Pa th = q s s / q s s _ m u l t i p l i e r . h
P a r a m e t e r s = " P u r e l y s t a t i c " , " 1e−6" , " 1e−3"

}
S i m u l a t o r

{
Pa th = p r e y s e r l i b / d i r e c t i o n a l c r o s s d e t e c t . h
P a r a m e t e r s = " 0 " , " 1 " , "−1"

}
S i m u l a t o r

{
Pa th = q s s / command_sampler . h
P a r a m e t e r s =

}
S i m u l a t o r

{
Pa th = q s s / command_sampler . h
P a r a m e t e r s =

}
S i m u l a t o r

{
Pa th = s o u r c e s \ c o n s t a n t _ s c i . h
P a r a m e t e r s = " 0 "

}
EIC

{
( 0 , 0 ) ; ( 1 , 0 )
( 0 , 1 ) ; ( 2 , 0 )

}
EOC

{
( 3 , 0 ) ; ( 0 , 0 )

}
IC

{
( 1 , 0 ) ; ( 3 , 0 )
( 0 , 0 ) ; ( 1 , 1 )
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( 5 , 0 ) ; ( 4 , 0 )
( 2 , 0 ) ; ( 4 , 1 )
( 2 , 0 ) ; ( 3 , 1 )

}
}

S i m u l a t o r
{

Pa th = q s s / s a m p l e h o l d . h
P a r a m e t e r s = " 0 .001 " , " 0 "

}
EIC

{
}

EOC
{
}

IC
{

( 0 , 0 ) ; ( 2 , 0 )
( 3 , 0 ) ; ( 4 , 1 )
( 8 , 0 ) ; ( 6 , 0 )
( 2 , 0 ) ; ( 7 , 0 )
( 2 , 0 ) ; ( 4 , 0 )
( 1 , 0 ) ; ( 2 , 1 )
( 7 , 0 ) ; ( 2 , 1 )
( 4 , 0 ) ; ( 7 , 1 )
( 4 , 0 ) ; ( 8 , 0 )
( 4 , 0 ) ; ( 5 , 0 )

}
}

Listing 3.1: The .pds file of the bouncing ball model depicted in Figure 3.1.

3.4 Simulation Process

As already mentioned in section 3.2, the atomic editor creates a C++ class from the code entered
into the tabs, which is derived from the predefined class Simulator. This class Simulator
has, among others, the member variables t, tn, tl, and e. Thus, those member variables are
accessible in each member function of the derived class and therefore in each of the tabs ‘Init’,
‘Time advance’, ‘Internal transition’, ‘External transition’, ‘Output’, and ‘Exit’. In the following
instead of ‘Time advance’, ‘Internal transition’, ‘External transition’, and ‘Output’ also the terms
ta, δint, δext, and λ, denominating their DEVS meanings will be used.
t, tn, tl, and e have the following functions:

t always gives the actual simulation time.

e stores the time since the last time δint or δext has been called. Attention, the value for e is
not updated until right before the next call of one of those two functions.

tl gives the time of the last execution of δint or δext and is updated right after each call of
δint or δext.

tn gives the time when the next internal transition will be called. Right after the execution of
δint or δext, ta is called and after that call, tn is updated.

So the execution order in case of an internal event is as follows
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1. call of λ

2. recalculation of e

3. call of δint

4. tl := t

5. call of ta

6. tn := t + ta(.)

and in case of an external event it is as follows

1. recalculation of e

2. call of δext

3. tl := t

4. call of ta

5. tn := t + ta(.)

Finally some concrete cases of coupled systems simulation will be worked through to demon-
strate the execution order of δint, δext, and λ of the involved blocks. Thus, we first introduce the
terms mealy type and moore type in connection with DEVS.

Definition 3.4.1. Mealy Type DEVS
A DEVS is called Mealy Type DEVS or of Type Mealy, if there exists an internal state s and
an external input x in such a way that ta(δext(s, x)) = 0. Thus, a model described by a
mealy type DEVS may produce an output as immediate response to an input.

Definition 3.4.2. Moore Type DEVS
A DEVS is called Moore Type DEVS or of Type Moore, if it is not of type mealy.

Since a DEVS is either moore type or mealy type and DEVS is closed under coupling, from
the perspective of a PowerDEVS block, the rest of the model surrounding it is again a DEVS of
type moore or of type mealy. Thus, there are actually only four possible cases. Either the block
itself is moore and the surrounding system is also moore, or the surrounding system is mealy,
or the block is mealy and the surrounding system is moore, or block and surounding system are
mealy. The latter case results in an algebraic loop and therefore potentially in an illegitimate
model and therefore is not investigated further.

If only all possible coupling combinations are of interest, the second and third cases are the
same. Thus, in the following the first and the second case will be investigated (see Figures 3.11
and 3.12).
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3.4.1 Moore - Moore Example

First a moore - moore coupling like depicted in Figure 3.11 will be examined. The states of the
left system are denoted with s1k and the states of the right system are denoted with s2k. Further,
xk are the input messages of the left system and yk are the input messages of the right system
(k ∈ N). It is started with initial states s10 and s20.

Figure 3.11: PowerDEVS simulation example: a moore block coupled with a moore type
surrounding system.

In Table 3.1 the sequence of different function calls is listed, assuming a simulation run
where moore1 has internal events at t = 1 and t = 2 and moore2 has an internal event at t = 2.
Thus, both moore blocks have internal events at t = 2. It can be seen that already in this simple
example the final states of both systems depends on the priority order. Even more, it depends on
the priority order if δint at t = 2 is executed at all.
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t moore1, moore2 moore2, moore1

0 init1() init2()

init2() init1()

ta1(s10) ta2(s20)

ta2(s20) ta1(s10)

1 y1 := λ1(s10) y1 := λ1(s10)

s21 := δ2ext(s
2
0, y1) s21 := δ2ext(s

2
0, y1)

ta2(s21) ta2(s21)

s11 := δ1int(s
1
0) s11 := δ1int(s

1
0)

ta1(s11) ta1(s11)

final states s11 = δ1int(s
1
0) s11 = δ1int(s

1
0)

s21 = δ2ext(s
2
0, λ

1(s10)) s21 = δ2ext(s
2
0, λ

1(s10))

2 y2 := λ1(s11) x1 := λ2(s21)

s22 := δ2ext(s
2
1, y2) s12 := δ1ext(s

1
1, x1)

ta2(s22) ta1(s12)

s12 := δ1int(s
1
1) s22 := δ2int(s

2
1)

ta1(s12) ta2(s22)

final states s12 = δ1int(s
1
1) s12 = δ1ext(s

1
1, λ

2(s21))

s22 = δ2ext(s
2
1, λ

1(s11)) s22 = δ2int(s
2
1)

3 exit1() exit2()

exit2() exit1()

Table 3.1: The behaviour of a moore - moore coupling with internal events of moore1 at
t = 1 and t = 2 and an internal event of moore2 at t = 2. Simulation end time is 3. In
the left column moore1 has a higher priority than moore2. In the right column the priority of
moore2 is higher.
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3.4.2 Moore - Mealy Example

Now a moore - mealy coupling like depicted in Figure 3.12 will be examined. The states of the
left system are denoted with s1k and the states of the right system are denoted with s2k. Further,
xk are the input messages of the left system and yk are the input messages of the right system
(k ∈ N). It is started with initial states s10 and s20.

Figure 3.12: PowerDEVS simulation example: a moore block coupled with a mealy type
surrounding system (or the other way round).

In Table 3.2 the sequence of different function calls is listed, assuming a simulation run
where moore1 has internal events at t = 1 and t = 2 and mealy1 has an internal event at t = 2.
Thus, both blocks have internal events at t = 2. Again, it can be seen that the final states of both
systems depend on the priority order.

It turns out to be quite difficult to program a library block, i.e. a block that behaves always
in the same way, no matter how the surrounding system looks like, and independently from its
place in the priority list.
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t moore1, mealy1 mealy1, moore1

0 init1() init2()

init2() init1()

ta1(s10) ta2(s20)

ta2(s20) ta1(s10)

1 y1 := λ1(s10) y1 := λ1(s10)

s21 := δ2ext(s
2
0, y1) s21 := δ2ext(s

2
0, y1)

ta2(s21) (= 0) ta2(s21) (= 0)

s11 := δ1int(s
1
0) s11 := δ1int(s

1
0)

ta1(s11) (> 0) ta1(s11) (> 0)

x1 := λ2(s21) x1 := λ2(s21)

s12 := δ1ext(s
1
1, x1) s12 := δ1ext(s

1
1, x1)

ta1(s12) (> 0) ta1(s12) (> 0)

s22 := δ2int(s
2
1) s22 := δ2int(s

2
1)

ta2(s22) (> 0) ta2(s22) (> 0)

final states s12 = δ1ext(δ
1
int(s

1
0), λ

2(δ2ext(s
2
0, λ

1(s10)))) s12 = δ1ext(δ
1
int(s

1
0), λ

2(δ2ext(s
2
0, λ

1(s10))))

s22 = δ2int(δ
2
ext(s

2
0, λ

1(s10))) s22 = δ2int(δ
2
ext(s

2
0, λ

1(s10)))

2 y2 := λ1(s12) x2 := λ2(s22)

s23 := δ2ext(s
2
2, y2) s13 := δ1ext(s

1
2, x2)

ta2(s23) (= 0) ta1(s13) (> 0)

s13 := δ1int(s
1
2) s23 := δ2int(s

2
2)

ta1(s13) (> 0) ta2(s23) (> 0)

x2 := λ2(s23)

s14 := δ1ext(s
1
3, x2)

ta1(s14) (> 0)

s24 := δ2int(s
2
3)

ta2(s24) (> 0)

final states s14 = δ1ext(δ
1
int(s

1
2), λ

2(δ2ext(s
2
2, λ

1(s12)))) s13 = δ1ext(s
1
2, λ

2(s22))

s24 = δ2int(δ
2
ext(s

2
2, λ

1(s12))) s23 = δ2int(s
2
2)

3 exit1() exit2()

exit2() exit1()

Table 3.2: The behaviour of a moore - mealy coupling with internal events of moore1 at t = 1
and t = 2 and an internal event of mealy1 at t = 2. Simulation end time is 3. In the left
column moore1 has a higher priority than mealy1. In the right column the priority of mealy1
is higher.



CHAPTER 4
Problems, Shortcomings and

Solution Approaches

As already mentioned in chapter 3, in PowerDEVS it can become quite unhandy to build a
coupled model with exactly the intended behaviour. Concurrent events and zero time feedbacks
are introducing difficulties, especially when trying to design a universally applicable library
block, i.e. a block whose surrounding system and position in the priority list is not known in
advance.

The solution approach of Parallel DEVS (P-DEVS) is to locate the concurrency resolution
not at the global level but locally at each single block. The approach presented in this section
will make use of that idea. For simulation of P-DEVS though, a specific P-DEVS simulation
engine is necessary, but PowerDEVS works with a DEVS simulation engine. Therefore, P-
DEVS cannot be implemented in PowerDEVS directly.

Another point is the way PowerDEVS passes on messages between blocks. Although it is
the most flexible way one can think of, it is also some kind of uncomfortable when reusabil-
ity of programmed blocks is intended. Since the type of messages passed on is completely
arbitrary, interconnection between blocks from different libraries or between blocks that were
programmed by different developers is quite error-prone.

Although PowerDEVS is particularly designed for simulating hybrid models, there exists
no atomic DEV&DESS block in the PowerDEVS library. Therefore, when having a formal
DEV&DESS of a model, so far there is no way to directly implement it in PowerDEVS.

In the following sections a general concept is developed of how to tackle the problems con-
nected with programming an ‘Atomic’ DEVS in PowerDEVS and thereby handling concurrent
input signals. Furthermore, a more specialized but also more secure and more comfortable (con-
cerning reusability) way to exchange messages between PowerDEVS blocks is searched for.
The development of this general concept happens stepwise and finally results in an extended
PowerDEVS atomic DEVS block (named Atomic PDEVS) that should relieve the modeller of
concerns about concurrency handling. That is, this Atomic PDEVS block can be used as a start-
ing point for programming custom PowerDEVS blocks with the advantage that the modeller

47



48 CHAPTER 4. PROBLEMS, SHORTCOMINGS AND SOLUTION APPROACHES

does not have to think about all the possible orders in which concurrent input messages may be
processed.

The Atomic PDEVS block is introduced in three steps. In each step a concrete problem is
identified followed by a solution approach which is finally incorporated into the Atomic PDEVS
block. For better understanding all three steps will be accompanied with a practical example
that displays all the problems that are intended to be solved.

Of course, a formal proof of the correctness of the Atomic PDEVS block would be needed.
However, this is work that still needs to be done.

After the development of the Atomic PDEVS block, the problem of the message formats in
PowerDEVS is tackled in section 4.2.

Finally, in section 5 a way to implement a DEV&DESS directly in PowerDEVS is presented.
For this purpose an Atomic DEV&DESS PowerDEVS block is developed which is based on the
Atomic PDEVS block.

4.1 Concurrent Input Signals and Consistency Problems

From the point of view of a PowerDEVS block, there are two possible sources for input signals
that can be distinguished. The first is an internal transition of another block. The second is a
zero time feedback of one of the output ports of the block itself. I.e. one of the output ports of
the block is coupled to a DEVS (atomic or coupled) of type mealy, which again has an output
port that is coupled back to an input port of the first block. If at the same simulation time arrive
more than one input messages at a DEVS block, despite their concurrency, there exists a defined
order in which those messages are processed. This order is dictated by the Select function or
by the priority list in PowerDEVS.

As already indicated in section 3.1, when designing a DEVS, an unconsidered processing
order of concurrent input messages can lead to an unintended evolution of the state of the system.
But not only the internal state of a PowerDEVS block can easily evolve in an unintended way
due to concurrent input messages but also its output messages. An example is given by a mealy
type block with initial inner state s0 and two concurrent input messages x1 and x2. First, it is
assumed that the blocks producing x1 and x2 have higher priority than the mealy block, leading
to an evolution of the inner state as follows:

s1 = δext(s0, x1) with ta(s1) = 0

s2 = δext(s1, x2) with ta(s2) > 0

Thus, the mealy block does not produce any output message at all. Now it is assumed that
the mealy block has a higher priority than the block producing x2, resulting in the following
sequence of transitions:

s1 = δext(s0, x1) with ta(s1) = 0

λ(s1)

s2 = δint(s1) with ta(s2) > 0

s3 = δext(s2, x2) with ta(s3) > 0
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Thus, whether a mealy block produces output messages or not also may depend on the priority
list.

So, it turns out to be a quite challenging task to design a coupled DEVS model that shows the
intended behaviour in every possible situation. In the following, systematically, concrete sources
of the difficulties that appear are identified and mechanisms to counter them are developed. For
a better understanding, in parallel a concrete example will accompany the process. Stepwise a
more and more ‘concurrency stable’ DEVS for the concrete example is formulated which finally
serves as template for defining arbitrary ‘concurrency stable’ DEVS.

4.1.1 Concurrent Input Signals

4.1.1.1 Problem Identification

When designing a new atomic PowerDEVS block with more than one input port or with a vec-
torial input port, it can become quite difficult to do this in a way that results in the intended
block behaviour for all possible combinations of concurrent input messages. This is due to the
fact, that δext modifies the internal state on each reception of an input message and these modi-
fications need not to be commutative. That is, δext(δext(s, x1), x2) does not need to be equal to
δext(δext(s, x2), x1).

To concretise the problem the specific example depicted in Figure 4.1 will be investigated.
The intended behaviour of the example is described in the caption of the figure. The block in

r

r

s

m

s

Figure 4.1: Illustration of an atomic DEVS example that accumulates positive and negative
inputs in its inner state s and outputs the value of s every second. Whenever s becomes
bigger than a given upper bound m, s is output at the reset output port and afterwards it is
reset to zero.

the example will be referred to as summation block. In a first approach its formulation as DEVS
looks like the following:

S =
{

(r, s, σ) | r, s ∈ R, σ ∈ R+
0

}

X =
{

(x, p) | x ∈ R+
0 , p ∈ {0, 1}

}
, Y = {(y, p) | y ∈ R, p ∈ {0, 1}}
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(r, s, σ) = δext(r, s,x, e) =





(0, s+ x, σ − e) if x = (x, 0) ∧ s+ x < m

(s+ x, 0, 0) if x = (x, 0) ∧ s+ x ≥ m
(0, s− x, σ − e) if x = (x, 1)

λ(r, s) =

{
(s, 1) if r = 0

(r, 0) if r 6= 0

(r, s, σ) = δint(r, s) =

{
(0, s, 1) if r = 0

(0, 0, σ) if r 6= 0

ta(r, s, σ) = σ

At first glance, the definition looks quite promising, however, there is a special case in which
the model may not behave as intended. As long as there is only one input message at a time,
everything is fine but as soon as there arrive input messages both at input port 0 and at input port
1, troubles may arise.

To give an example, it is assumed that the initial state s is a little bit smaller than the upper
boundm when there arrives an input value x0 at input port 0 with s+x0 ≥ m. At the same time
there also arrives an input value x1 > x0 at input port 1. Now, what the block is ought to do is
to add x0 − x1 < 0 to the current state value s. If the block producing x1 has higher priority
than the block producing x0 the DEVS works as intended. However, if the block producing x0
has higher priority, x0 is processed first, leading to a growth of s above the upper bound m and
thus to a reset of the inner state. So, assuming that s + x0 − x1 < m, the two possible values
for s after that instant of time are: s + x0 − x1 and −x1. Further, in the second case an output
at the reset port is produced that is not produced in the first case.

Moreover, there is another shortcoming in the DEVS stated above. The model actually is of
type moore when only looking at output port 1, however, it is of type mealy when also looking
at output port 0. Therefore, when there is an internal event (output of s at output port 1) at the
same time as there is an external event that causes a reset (output of s at output port 0), it again
depends on the priority list, whether there is an output only at port 0 or at both, port 0 and port
1. Actually the concrete behaviour in such a case is not defined at all in the caption of Figure
4.1. The possibilities are either to

� first output s at output port 1 and then s+ x0 at output port 0, before s is reset to zero, or

� to output s + x0 at output port 0, then to reset s to zero and then to output zero at output
port 1, or

� or to output s+ x0 at both output ports before s is reset to zero.

It can be seen that it is quite easy to formulate a complete DEVS for a system, since with the
definition of δext, λ, δint and ta for the described model the behaviour in every situation imag-
inable is determined. However, this does not mean that this behaviour is the one the modeller
intended. Actually, exactly because the modeller does not have to define the behaviour for all
the special situations explicitly, it is very likely to overlook one and therefore to produce a faulty
DEVS.



4.1. CONCURRENT INPUT SIGNALS AND CONSISTENCY PROBLEMS 51

4.1.1.2 Solution Approach.

The source of the problem pointed out above is the fact that concurrent input messages are not
treated concurrently but sequentially. The concrete order of treatment depends on the Select
function or on the priority list in case of PowerDEVS. However, the priority list is a property of
the whole coupled model and therefore it is difficult to take it into account when designing an
atomic block.

So the solution is to somehow buffer concurrent input messages, comparable to bags in P-
DEVS, and treat them all at once. The idea followed here is to create an input buffer for each
input port and for each index of vectorial input ports and to use δext only for storing the received
input message in the corresponding buffer. The state modifications are shifted into the internal
transition. Thus after each external transition the DEVS switches to a transitory state (a state s
with ta(s) = 0) resulting in an execution of δint in which the state changes related to the external
event are accomplished. For this purpose some kind of flag f is needed to indicate whether the
call of δint is due to an external event or due to an internal event or due to both. The latter case
also exists in P-DEVS and is called confluent transition δconf . So in the first solution approach
presented in the following, in δext only input messages are buffered and in δint the actual jobs
of δext, δint and δconf are implemented.

Now, with the modifications described above and given that all DEVS that supply other
blocks with input messages have lower priority than the blocks they supply, every block re-
ceiving messages will buffer all them before it executes its internal transition. In the internal
transition then, all received messages are treated at once and therefore, there is no processing
order of concurrent messages to be considered by the modeller. Furthermore, the distinction be-
tween internal, external and confluent transition forces the modeller to think about the behaviour
of the DEVS in case of a simultaneous occurrence of an internal and an external event. There-
fore, the suggested modification solves the problem of concurrent input messages in a coupled
model, as long as there are no feedbacks in it. This is because no feedbacks imply linear signal
flow and therefore, all blocks can be arranged in the priority list according to that linear signal
flow path. This again results in a coupled model, in which all blocks supplying other blocks with
input messages have lower priority than the blocks they supply.

The modifications applied to the summation block example are leading to the following
modified DEVS:

S = {(r, s, x0, t0, x1, t1, f, σ, σn) | r, s ∈ R, x0, x1 ∈ R+
0 , f ∈ {INT,EXT,CONF},

t0, t1, σ, σn ∈ R+
0 }

X =
{

(x, p) | x ∈ R+
0 , p ∈ {0, 1}

}
, Y = {(y, p) | y ∈ R, p ∈ {0, 1}}

q = (q̃, e) = (r, s, x0, t0, x1, t1, f, σ, σn, e)
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δext(q,x) =





(r, s, x, t, x1, t1, CONF, 0, σ − e) if x = (x, 0) ∧ f = INT ∧ σ = e

(r, s, x, t, x1, t1, EXT, 0, σ − e) if x = (x, 0) ∧ f = INT ∧ σ > e

(r, s, x0, t0, x, t, CONF, 0, σ − e) if x = (x, 1) ∧ f = INT ∧ σ = e

(r, s, x0, t0, x, t, EXT, 0, σ − e) if x = (x, 1) ∧ f = INT ∧ σ > e

(r, s, x, t, x1, t1, f, 0, σn) if x = (x, 0) ∧ f 6= INT

(r, s, x0, t0, x, t, f, 0, σn) if x = (x, 1) ∧ f 6= INT

λ(q̃) =





(s, 1) if (f = CONF ∨ f = INT ) ∧ r = 0

(r, 0) if r 6= 0

∅ else

δint(q̃) =





(0, s, x0, t0, x1, t1, INT, 1, 1) if f = INT

(0, sn, x0, t0, x1, t1, INT, σn, σn) if f = EXT ∧ sn < m

(sn, 0, x0, t0, x1, t1, INT, 0, σn) if f = EXT ∧ sn ≥ m
(0, sn, x0, t0, x1, t1, INT, 1, 1) if f = CONF ∧ sn < m

(sn, 0, x0, t0, x1, t1, INT, 0, 1) if f = CONF ∧ sn ≥ m
(0, s, x0, t0, x1, t1, f, σn, σn) if r 6= 0

with sn = s+ 1{0}(t− t0) · x0 − 1{0}(t− t1) · x1

ta(q̃) = σ

where the pair (xi, ti) stores the input at input port i that was received at time ti. 1{0}(z) denotes
the indicator function being one for z = 0 and zero otherwise. sn denotes the new value of s
after adding and subtracting newly received inputs. σn stores the calculated duration until the
next internal event is triggered. This duration cannot always be assigned to σ immediately since
there may be the need for an additional call of λ or of the internal transition function before
time is allowed to advance. This occurs for example after an external transition that leads to a
transitional state, as it is the case when the summation block is reset.

The modified DEVS looks quite complicated at first glance. However, the modeller only
has to define δint, whereas δext is the same for every model and can easily be extended to more
inputs than two. When looking at δint, the three cases internal, external and confluent transition
can be seen.

Since all inputs are treated at once, the modeller is forced to think about how the model
shall behave when several concurrent input messages arrive. Moreover, the order of arrival of
concurrent input messages is not important anymore as long as they arrive before the internal
transition is executed. The more input ports (and indices of vectorial input ports) there are, the
higher is the number of possible arrival orders which do not have to be considered anymore.
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One important difference to P-DEVS is that for each input port and index only the last
arriving message of all is stored in the input buffer, whereas with P-DEVS all arriving messages
are stored in bag. So here ‘newer’ messages override ‘older’ ones, whereas in P-DEVS they are
added into the bag as additional input messages.

A DEVS of a block becomes quite extensive when adding more and more features. This is
due to the fact that even when only one entry of the vectorial inner state needs to be changed
in δext or in δint the whole new state must be written. Additionally, distinction of cases is also
more space expensive than with programming languages, for in programming languages nested
case distinctions are possible. For this reason, from now on the DEVS of the summation block
example and of its extensions will be stated in C++ programming language in the way it would
be entered into PowerDEVS atomic editor.

4.1.1.3 PowerDEVS Implementation.

As explained in section 3.2 there are 6 areas in the atomic editor which need to be filled with C++
source Code. The ’State variables and parameters’ area is used for variable definitions. It will
be referred to as definitions area. The ‘Init’ tab serves for variable initialisation and for fetching
block parameter values that have been entered using the block parameters dialogue in the model
editor. It will be referred to as init function. The ‘Time advance’ tab represents ta(s) and will
be referred to as time advance function. The ‘Internal transition’ tab, representing δint, will be
referred to as internal transition function. Note that in the following it will be distinguished
between δint and the internal transition function. Since the actual, state modifying functionality
of δext, δint, and δconf is located in the internal transition function, with δext, δint, and δconf
it will be referred to the section of code in the internal transition function that implements the
corresponding δ-function. These sections of code can be identified by an enclosing if condition
of the form if(flag==’e’), if(flag==’i’) and if(flag==’c’) respectively. The
‘External transition’ tab originally represents δext but is only used for buffering input messages
in the solution approach developed here. It will be referred to as external transition function,
not to be confused with δext which describes the corresponding code section in the internal
transition function. The ‘Output’ tab represents λ, however, in the course of the next sections
its functionality will be extended a little bit. Thus, the actual duty of λ, the calculation of the
output messages, will correspond to only a section of code in the ‘Output’ tab. The ‘Output’ tab
will be referred to as output function. The last tab is the ‘Exit’ tab which will be referred to as
exit function.

1 do ub l e i n _ a r r a y [ 2 ] ; / / i n p u t messages
2 do ub l e t _ i n _ a r r a y [ 2 ] ; / / a r r i v a l t i m e s o f i n p u t messages
3 do ub l e sigma , s igma_n ;
4 do ub l e m, r , s ;
5 c h a r f l a g ; / / p o s s i b l e v a l u e s : ’ i ’ , ’ e ’ , ’ c ’

Listing 4.1: The PowerDEVS definitions area for the summation block example.

Listings 4.1–4.6 show the C++ code for each of the 6 tabs, describing the modified DEVS of
the summation block example. At first, all necessary state variables, parameter variables, and
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auxiliary variables have to be defined in the definitions area of the atomic editor (see Listing
4.1).

Further, some variables need to be initialized (Listing 4.2). t is the current simulation time
that is available in every tab of the atomic editor. The arrival times of the messages in the input
buffer are initialized with t-1 because initially there is no valid entry in the input buffer and if
the arrival time of an input is set to a value that is lower than t then the input is considered old
and is not used.

The upper bound m is defined as PowerDEVS block parameter and thus read from the
parameters-list (line 5) that is handed on to the init function as function argument. sigma
is initialised with 1 and thus at simulation time t=1 the sum s is output for the first time. The
value of flag is initialised with ’i’. This is because when an internal event occurs, first the
output function is executed which does not change flag, and then the internal transition func-
tion is executed where flag needs to have value ’i’. On the other hand, when an external
event occurs first, then in the external transition function flag will be set to ’e’ or ’c’ and
afterwards again the output function followed by the internal transition function is executed.

1 t _ i n _ a r r a y [ 0 ] = t −1;
2 t _ i n _ a r r a y [ 1 ] = t −1;
3 s igma = 1 ;
4 s igma_n = 1
5 m = ( d ou b l e ) va _a rg ( p a r a m e t e r s , dou b l e ) ; / / a model / b l o c k p a r a m e t e r
6 r = 0 ;
7 s = 0 ;
8 f l a g = ’ i ’

Listing 4.2: The PowerDEVS init function for the summation block example.

The actual calculation of the time advance function ta(s) is done in the internal and external
transition functions and its result is stored in the state variables sigma and sigma_n respec-
tively. Thus, the only code in the time advance function is a return statement with sigma as
argument (see Listing 4.3).

1 r e t u r n ( s igma ) ;

Listing 4.3: The PowerDEVS time advance function for the summation block example.

The calculation of the next state value in case of any event is done in the internal transition
function depicted in Listing 4.4. There are four major cases to be distinguished in this concrete
example. First there are the three cases in which the internal transition function is executed
immediately after an internal or after an external event. In these three cases r is equal to zero
and flag has one of the values ’i’, ’e’ or ’c’. Depending on the value of flag the next
state value is computed by δint, by δext or by δconf . If thereby a reset is carried out, sigma
stays zero and r is set to s. As consequence, the output function is executed once more to
output r at the reset output port and then also the internal transition function is executed again.
However, this time r is not equal to zero and therefore, the if condition in line 1 is fulfilled,
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which represents the fourth case. In the fourth case r is set back to zero and sigma is set to
value sigma_n that has been calculated formerly.

1 i f ( r ! = 0 ) {
2 r = 0 ;
3 s igma = sigma_n ;
4 } e l s e i f ( f l a g == ’ i ’ ) {
5 s igma = 1 ;
6 } e l s e i f ( f l a g == ’ e ’ | | f l a g == ’ c ’ ) {
7 i f ( f l a g == ’ c ’ ) {
8 s igma_n = 1 ;
9 }

10 i f ( t _ i n _ a r r a y [0 ]== t ) {
11 s = s + i n _ a r r a y [ 0 ] ;
12 }
13 i f ( t _ i n _ a r r a y [1 ]== t ) {
14 s = s − i n _ a r r a y [ 0 ] ;
15 }
16 i f ( s >=m) {
17 r = s ;
18 s = 0 ;
19 } e l s e {
20 s igma = sigma_n ;
21 }
22 f l a g = ’ i ’ ;
23 }

Listing 4.4: The PowerDEVS internal transition function for the summation block example.

1 i n _ a r r a y [ x . p o r t ] = ∗ ( d oub l e ∗ ) x . v a l u e ;
2 t _ i n _ a r r a y [ x . p o r t ] = t ;
3 i f ( t l < t ) {
4 s igma_n = sigma − e ;
5 i f ( t +sigma_n == t ) {
6 f l a g = ’ c ’ ;
7 } e l s e {
8 f l a g = ’ e ’ ;
9 }

10 }
11 s igma = 0 ;

Listing 4.5: The PowerDEVS external transition function for the summation block example.

Listing 4.5 shows the external transition function. In the first two lines the received input mes-
sage and the current time are stored in the input buffers. tl gives the time at which the previous
event happened and is provided by PowerDEVS. If this is the first time the external transi-
tion function is executed at current simulation time, tl is lower than t and therefore, e is not
zero. Thus, the time to the next internal event is the old duration sigma reduced by e, i.e.
sigma_n = sigma-e. However, if t+sigma_n numerically cannot be distinguished from



56 CHAPTER 4. PROBLEMS, SHORTCOMINGS AND SOLUTION APPROACHES

the actual simulation time t (i.e. sigma_n is smaller than the current quantum of the floating
point quantisation), the system is concurrently experiencing an internal event, hence, a confluent
event and therefore flag is set to ’c’. Otherwise it is a pure external event. At the end of
the external transition, sigma is set to zero since each external transition leads to a transitional
state, as explained in section 4.1.1.3.

Listing 4.6 shows the output function. In case of flag==’e’ the output function does not
do anything. This is because first δext has to be calculated in the internal transition function
before a possible mealy output is produced.

1 i f ( f l a g == ’ c ’ | | f l a g == ’ i ’ ) {
2 i f ( r ==0) {
3 r e t u r n Event (&s , 1 ) ;
4 } e l s e {
5 r e t u r n Event (&r , 0 ) ;
6 }
7 }
8 r e t u r n Event ( ) ;

Listing 4.6: The PowerDEVS output function for the summation block example.

4.1.2 Feedback, Zero Time Feedback

4.1.2.1 Problem Identification

As feedback we denote a coupling from a block back to another block that is located ‘upstream’
the signal flow compared to the first block. If the coupled DEVS, consisting of all blocks located
between output and input of the block that receives feedback, is of type mealy, it is spoken of
zero time feedback. The special thing about a zero time feedback is that the block that receives
the feedback needs to execute λ and therefore also δint before it receives the input message
resulting from the feedback. Therefore, it is not possible to gather all input messages before
treating them all at once in the internal transition function because the execution of the same is
required in the first place to produce some of the input messages.

Further, this problem can not only occur with zero time feedbacks but also with ordinary
feedbacks. If incidentally at the same time at which other external events happen, there occurs an
internal transition in a block where a feedback input signal originates, exactly the same problem
occurs. This problem cannot be resolved by modifying the priority list. Figure 4.2 shows the
example from the preceding subsection extended in way that introduces the mentioned feedback
problems. The simple multiplier block that is added is of type mealy and therefore causes a zero
time feedback.

4.1.2.2 Solution Approach

The solution approach is not to let state changes become effective until all messages in the whole
model and at current simulation time are produced, i.e. not until time actually advances. For this
purpose, the whole internal state is backed up before the internal transition is allowed to change
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Figure 4.2: The example depicted in Figure 4.1 extended by a multiplier block that feeds
back its output to the summation block, resulting in a zero time feedback.

it. The new state and the outputs are then always calculated on basis of the backup state. That
is, when the state is denoted s and the backup is denoted sold, the internal transition and λ look
like the following:

s = δint(sold,x)

y = λ(sold,x)

Here, both δint and λ depend not only on the internal state s, but also on the current input x.
This is because it is continued with the solution approach of the preceding section where the
external transition function stores every input in the input buffer which, in turn, is part of the
internal state. Therefore, the definition of δint and λ as input dependant is not contradictory to
the definition of DEVS.

Anyway, if the set of current input messages x now changes due to a feedback after the inter-
nal state s has already been calculated, s simply is discarded and recalculated. The recalculation
again uses sold, which did not change, and x which is extended by the input message produced
by the feedback.

So, in the approach described above, if an input messages arrives after the internal transition
has already been executed, simply the whole internal transition is executed again. This leads to
an iterative process, that is repeated as long as there arrive new messages at the input:

1. execution of the external transition function and storage of received inputs as long as
blocks with higher priority (upstream the signal flow) produce input messages.

2. execution of the output function, on basis of the old state sold and of the inputs received
so far and stored in x .

3. execution of the internal transition function, where δint, δext or δconf calculates the new
state.

4. if, due to produced outputs and zero time feedbacks or due to ordinary feedbacks, new
input messages arrive, go back to 1.
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Now the question arises, when to back up the system’s state. The answer is, it is backed up
before the internal state is modified for the first time at the current instant of time. The only
place where the actual internal state (not counting input buffer or the like) is modified is the
internal transition. Thus, the state must be backed up before the internal transition is executed
for the first time (at current simulation time). To recognize whether it is the first time, the
variable tl, provided by the PowerDEVS simulation engine, can be used. tl stores the time
when the last event of the corresponding block happened and is updated right after each external
and internal transition.

Since in the solution approach developed so far each external transition immediately leads
to the execution of the internal transition, the old state has to be backed up either in the external
transition or at the beginning of the internal transition, depending on what is executed first. The
condition for being the first event at a time t is tl<t.

As the output function is called right before each internal transition, the state backup can be
located there as well instead of in the internal transition. Actually this is even the better choice
because in λ, which is part of the output function, already the state backup sold is needed. Of
course, this is not conform with the DEVS formalism since in DEVS there is no mechanism for
λ to change the state, which sold is part of. Anyway, although very laboriously, it also would be
possible to implement a distinction of cases in λ, to use s in case of tl<t and to use sold in case
of tl=t. Thus, the backup of the old state could be shifted into the internal transition function
as well. However, this actually shows that there is no conflict between doing the state backup in
the output function and staying DEVS conform.

Another issue that must be discussed appears when more than one output message at differ-
ent output ports or at the same output port, but with different indices, is to be produced. As in
PowerDEVS the output of a message is accomplished by a return statement there can only be
output one message per call of the output function which, in turn, is always followed by a call of
the internal transition function. However, each sending of an output message, due to a zero time
feedback, may immediately result in a new input message and therefore, in a recalculation of the
inner state. Thus, unnecessary state calculation may be saved, when first outputting all produced
messages, before any state changes are accomplished in the internal transition function.

So, the idea is to buffer all output messages in the same way, input messages are buffered, and
then to repeat the loop ‘output function – internal transition function’(in the following referred
to as output loop) as long as there are pending outputs. Pending outputs are outputs that were
produced and buffered at current simulation time, but not sent so far. During this loop, in the
internal transition function simply nothing is done and in each call of the output function one
pending output message is sent. If there arrive new input messages during the execution of the
output loop, they are served immediately by an execution of the output function, however they
do not disturb the execution of the output loop. If, during the output loop, the set of current input
messages x has been altered though, λ(s,x) is calculated again and the output loop is restarted.
This process is repeated until the set of input messages x does not change anymore. Only then,
the new state s is calculated in the internal transition function by applying δint, δext or δconf onto
sold and the set of input messages x. However, even if a new state has already been calculated,
it still is possible that the set of current input messages changes due to an input coming from a
block with lower priority. Anyway, in response simply λ(s,x) is calculated again followed by a
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repetition of the output loop and a recalculation of s.
Therefore, the iterative process running in each atomic block, each time an event occurs, can

be described more detailed as follows:

1. external transition function: (skipped on pure internal events) If the received message
differs from the last reception with same arrival time at the same port and index, add it to
x and set σ to zero.

2. time advance function: If there is a new input message, go back to 1. Otherwise, if
σ = 0, go to 3. Otherwise: finished.

3. output function: If there is no pending output message and x changed, calculate output
messages on basis of the old state sold and the current inputs x: y = λ(sold,x).

4. output function: If there is a pending output message, output one of them.

5. internal transition function: If there are no pending output messages and no newly re-
ceived input messages, calculate new state s and new value for σ by computing δint(sold),
δext(sold,x) or δconf (sold,x). Otherwise, do nothing.

6. internal transition function: Go back to 2.

4.1.2.3 PowerDEVS Implementation

Listings 4.9–4.13 show the DEVS for the summation block, based on the sources in section
4.1.1.3 and extended according to the solution approach for feedback signals suggested in sec-
tion 4.1.2.2. In this solution approach each output port needs a kind of flag describing the current
output status to be able to determine, after the calculation of λ, whether there is an pending mes-
sage at that port or not. Additionally, there has to be a mechanism to find out whether there is
any pending message at any output port. Also it is necessary for each input port to store the
time of the last change of the input messages, buffered at that port. As it will emerge in section
4.1.3.3, it also will become necessary to store the time of last change for each output port as
well.

Thus, to simplify the handling of inputs and outputs, the C++ classes InOutput and
InOutputVector are introduced in Listings 4.7 and 4.8.

1 c l a s s I n O u t p u t {
2 p u b l i c :
3 do ub l e v a l u e ;
4 do ub l e l a s t _ c h a n g e _ t i m e ;
5 boo l a l r e a d y _ t r e a t e d ;
6

7 I n O u t p u t ( ) {
8 l a s t _ c h a n g e _ t i m e = −1;
9 a l r e a d y _ t r e a t e d = f a l s e ;

10 }
11 vo id s e t ( do ub l e va l , d oub l e t ) {
12 v a l u e = v a l ;
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13 l a s t _ c h a n g e _ t i m e = t ;
14 a l r e a d y _ t r e a t e d = f a l s e ;
15 }
16 do ub l e ∗ t r e a t ( ) {
17 a l r e a d y _ t r e a t e d = t r u e ;
18 r e t u r n (& v a l u e ) ;
19 }
20 boo l i s E q u a l T o ( d oub l e va l , d oub l e t ) {
21 i f ( l a s t _ c h a n g e _ t i m e != t ) r e t u r n ( f a l s e ) ;
22 r e t u r n ( v a l u e == v a l ) ;
23 }
24 } ;

Listing 4.7: Defnition of the class InOutput which is used to handle inputs and outputs,
their last change time and, in case of outputs, their sent status.

The class InOutput represents one input port or one output port. Each port has a last received
value, a time of last change last_change_time and a flag that indicates whether the last
value change has been already treated. Since in PowerDEVS the simulation start time is always
zero, last_change_time is initialized with -1. This prevents the corresponding input /
output port to be wrongly regarded as having received a message at t=0, in case of an event at
the very beginning of the simulation. already_treated is initialized with false to also
prevent the corresponding input / output port to be initially wrongly regarded as having stored
an untreated message. When using the methods set and get to modify the value attribute,
last_change_time and already_treated are modified automatically accordingly.

Due to repetitions of the output loop of some blocks, at other blocks the same input messages
may arrive several times. This would lead to unnecessary additional external events at those
blocks which, in turn, would unnecessarily restart the output loop there. To prevent such an
behaviour, each arriving input message that has already been received at the same simulation
time is ignored. To check whether an input message is equal to the message that is stored in the
input buffer, the member function isEqualTo is used.

1 c l a s s I n O u t p u t V e c t o r : p u b l i c s t d : : v e c t o r < InOutpu t > {
2 p u b l i c :
3 i n t u n t r e a t e d _ e n t r y _ c h a n g e s ;
4

5 I n O u t p u t V e c t o r ( ) {
6 u n t r e a t e d _ e n t r y _ c h a n g e s = 0 ;
7 }
8 vo id s e t A t ( i n t c , d oub l e va l , d oub l e t ) {
9 i f ( t r u e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {

10 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
11 }
12 (∗ t h i s ) [ c ] . s e t ( va l , t ) ;
13 }
14 do ub l e ∗ t r e a t A t ( i n t c , do ub l e v a l ) {
15 i f ( f a l s e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
16 u n t r e a t e d _ e n t r y _ c h a n g e s −−;
17 }
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18 r e t u r n ( ( ∗ t h i s ) [ c ] . t r e a t ( ) ) ;
19 }
20 vo id t r e a t A l l ( ) {
21 f o r ( i n t i =0 ; i < t h i s −> s i z e ( ) ; i ++) {
22 (∗ t h i s ) [ i ] . a l r e a d y _ t r e a t e d = t r u e ;
23 }
24 u n t r e a t e d _ e n t r y _ c h a n g e s =0;
25 }
26 } ;

Listing 4.8: Defnition of the class InOutputVector which is used to handle a whole vector
of inputs and outputs, their last change time and, in case of outputs, their sent status.

The class InOutputVector describes the whole input / output interface of a block, as for
a better understanding at the moment it is assumed that there are only scalar input and output
ports. In the final version though, presented in section 4.3, the input and output ports will be
considered to be vectorial and therefore, InOutputVectorwill represent only one single port
there. For the whole interface a class named InOutputArray will be introduced then.

InOutputVector is derived from the class vector of the standard C++ library. This
generic class can be used to implement arrays of arbitrary type with dynamic size. Thus, a
variable of type vector or of an derived type provides the [.] operator to access the en-
tries of the underlying array, exactly like with ordinary arrays. Further, InOutputVector
provides the methods setAt and treatAt to modify its entries. These methods simply call
the set or treat method of the corresponding array entry and thereby, automatically update
the attributes last_change_time and already_treated of that entry. Additionally,
InOutputVector has the attribute untreated_entry_changes that indicates whether
there is an entry in the array with attribute value already_treated=false.
untreated_entry_changes is also updated automatically when using the methods setAt
and treatAt.

1 I n O u t p u t V e c t o r i n _ a r r a y ; / / i n p u t message b u f f e r
2 I n O u t p u t V e c t o r o u t _ a r r a y ; / / o u t p u t message b u f f e r
3 do ub l e sigma , s igma_n ;
4 do ub l e m, r , s ;
5 do ub l e r _ o l d , s _ o l d ;
6 c h a r f l a g ; / / p o s s i b l e v a l u e s : ’ i ’ , ’ e ’ , ’ c ’
7 i n t o u t p o r t ;

Listing 4.9: The PowerDEVS definitions area for the summation block example with feedback
handling.

Listing 4.9 shows the definitions area. Compared to Listing 4.1 it can be seen that the input
buffer in_array is now an instance of the class InOutputVector and therefore, no addi-
tional array t_in_array for the arrival times is needed anymore. Further, also for the output
ports a buffer out_array is defined now. Moreover, there are backup variables s_old and
r_old for s and r.
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1 i n _ a r r a y . r e s i z e ( 2 ) ;
2 o u t _ a r r a y . r e s i z e ( 2 ) ;
3 s igma = 1 ;
4 s igma_n = 1
5 m=( d ou b l e ) va _a rg ( p a r a m e t e r s , dou b l e ) ; / / a model / b l o c k p a r a m e t e r
6 r = 0 ;
7 s = 0 ;
8 o u t p o r t = −1;

Listing 4.10: The PowerDEVS init function for the summation block example with feedback
handling.

Listing 4.10 shows the init function. In lines 1 and 2 the size of the input and of the output
interface is defined, i.e. the size of the input and of the output array. The initialisation of the
arrival times of the input ports is done in the constructor of the class InOutput as for each
entry of the input array the constructor is called either by the resize command or already at
the definition of in_array by the constructor of the class vector. Since the code in the time
advance function is exactly the same as in Listing 4.3, it is not depicted here again.

1 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s ==0 && i n _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s
==0) {

2 i f ( f l a g == ’ i ’ ) {
3 s igma_n = 1 ;
4 } e l s e i f ( f l a g == ’ e ’ | | f l a g == ’ c ’ ) {
5 i f ( f l a g == ’ c ’ ) {
6 s igma_n = 1 ;
7 }
8 i f ( i n _ a r r a y [ 0 ] . l a s t _ c h a n g e _ t i m e == t ) {
9 s = s _ o l d + i n _ a r r a y [ 0 ] . v a l u e ;

10 }
11 i f ( i n _ a r r a y [ 1 ] . l a s t _ c h a n g e _ t i m e == t ) {
12 s = s _ o l d − i n _ a r r a y [ 0 ] . v a l u e ;
13 }
14 i f ( s >=m) {
15 s = 0 ;
16 }
17 }
18 s igma = sigma_n ;
19 }

Listing 4.11: The PowerDEVS internal transition function for the summation block example
with feedback handling.

Listing 4.11 shows the internal transition function. If there is anything done at all during exe-
cution of the internal transition function depends on whether there are pending outputs or newly
received inputs or not (see line 1). That is, the external transition function only calculates a new
state value if the output loop has been completed without receiving new input messages in the
meanwhile. The source code responsible for calculating a new state value does not differ much
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from that in Listing 4.4. However, the calculation of the reset output is shifted into the output
function here.

1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 r _ o l d = r ;
3 s _ o l d = s ;
4 f l a g = ’ e ’ ;
5 s igma_n = sigma − e ;
6 i f ( s igma_n ==0) {
7 f l a g = ’ c ’ ;
8 }
9 }

10 i f ( f a l s e == i n _ a r r a y [ x . p o r t ] . i s E q u a l T o ( ∗ ( d ou b l e ∗ ) x . va lue , t ) ) {
11 i n _ a r r a y . s e t A t ( x . p o r t , ∗ ( d oub l e ∗ ) x . va lue , t ) ;
12 i f ( f l a g == ’ i ’ ) {
13 f l a g = ’ c ’ ;
14 }
15 s igma = 0 ;
16 }

Listing 4.12: The PowerDEVS external transition function for the summation block example
with feedback handling.

Listing 4.12 shows the external transition function. The first block of code, enclosed by the if
statement if(tl<t), is only executed when the first event at a concrete simulation time is an
external one. In this case the backup of s and r is carried out and it is checked whether an
internal event will be triggered too at the same time. If this is the case, flag is set to ’c’,
otherwise it is set to ’e’.

The second block of code treats the arrived input message but only if it was not already
received before. That is, if a message with equal value was already received at the same simu-
lation time and at the same port, the newer equal one is discarded. If the first event at current
simulation time has been an internal one, flag has the value ’i’ when the external transition
function is entered for the first time. Therefore, it has to be altered to c. Further, sigma has to
be set to zero when a new input message arrives, as the actual treatment of external events, i.e.
the calculation of δext is accomplished in the internal transition function.

1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 r _ o l d = r ;
3 s _ o l d = s ;
4 f l a g = ’ i ’ ;
5 s igma = 0 ;
6 }
7 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s ==0) {
8 i f ( f l a g == ’ i ’ ) { / / c r e a t e o u t p u t s i f pu re i n t e r n a l e v e n t
9 o u t _ a r r a y . s e t A t ( 1 , s_o ld , t ) ; / / o u t p u t s

10 } e l s e i f ( f l a g == ’ e ’ | | f l a g == ’ c ’ ) { / / c r e a t e o u t p u t s i f pu re e x t . e v e n t
11 do ub l e s_ = s _ o l d ;
12 i f ( f l a g == ’ c ’ ) {
13 o u t _ a r r a y . s e t A t ( 1 , s_o ld , t ) ; / / o u t p u t s
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14 }
15 i f ( t _ i n _ a r r a y [0 ]== t ) {
16 s_ = s_ + i n _ a r r a y [ 0 ] . v a l u e ;
17 }
18 i f ( t _ i n _ a r r a y [1 ]== t ) {
19 s_ = s_ − i n _ a r r a y [ 0 ] . v a l u e ;
20 }
21 i f ( s_ > m) {
22 o u t _ a r r a y . s e t A t ( 0 , s_ , t ) ; / / o u t p u t r e s e t
23 }
24 }
25 i n _ a r r a y . t r e a t A l l ( ) ;
26 o u t p o r t = −1;
27 }
28 w h i l e ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s >0) { / / o u t p u t n e x t new e n t r y
29 o u t p o r t ++;
30 i f ( f a l s e == o u t _ a r r a y [ o u t p o r t ] . a l r e a d y _ t r e a t e d ) {
31 r e t u r n Event ( o u t _ a r r a y . t r e a t A t ( o u t p o r t ) , o u t p o r t ) ;
32 }
33 }
34 r e t u r n Event ( ) ;

Listing 4.13: The PowerDEVS output function for the summation block example with
feedback handling.

Listing 4.13 shows the output function. The first block of code (lines 1 to 6) is only executed
when the first event at a concrete simulation time is an internal one. In this case the backup of s
and r is carried out, flag is set to ’i’ and sigma is set to zero.

The second block of code (lines 7 to 27) calculates λ but only if there are not any pend-
ing outputs. As it can be seen, there are the three cases flag==’e’, flag==’i’, and
flag==’c’ that are distinguished. Therefore, it is possible to define λ for each of this cases
separately. Thus, λ is also kind of separated into λext, λint and λconf . λint is supposed to de-
pend only on the old state sold and not on the values in the input buffer. If λext or λconf uses
values of the input buffer for the calculation of the output messages, the resulting system is of
type mealy. Otherwise it is of type moore.

To be able to monitor whether new input messages have arrived during the execution of
the output loop, in_array.untreated_entry_changes is set to zero immediately after
the calculation of λ. This is accomplished by executing in_array.treatAll() in line 25
which additionally sets the attribute already_treated to true for each entry of in_array.
Thus, since in_array.untreated_entry_changes is incremented at each arrival of a
new input message that changes already_treated of the corresponding input port to true,
if in_array.untreated_entry_changes is still zero after the output loop is finished,
it is known that there has not arrived any new input message in the meanwhile.

Since the execution of the second block of code starts the output loop, at its end outport
is set to minus one.

The third block of code (lines 28 to 33), the while loop, carries out the outputting of the
output messages that were calculated before in the second block of code. Since outport
has been initialised with minus one and the incrementation of outport is conducted right at
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the beginning of each while loop iteration, it is started at output port zero. The condition for the
while loop to be entered is that there are still pending outputs left. An output is pending, if its flag
already_treated has the value false. When using the method setAt, as done in lines 13
and 22, this flag is automatically set to false as well as the number of pending outputs, stored
in out_array.untreated_entry_changes, is increased automatically then. In the
same way, already_treated is set to true and out_array.untreated_entry_changes
is decremented automatically when calling the method treatAt, as done in line 31.

Finally, when the last pending output message is sent, in the succeeding execution of the
internal transition function, the new internal state value is calculated in one of the δ-functions
and sigma is set to a positive value again. If afterwards there is no external transition arriving
anymore at current simulation time, time will be advanced.

4.1.3 Message Retrieving

4.1.3.1 Problem Identification

Although the solution approach of section 4.1.2 already looks quite promising, there is still
one problem concerning mealy type blocks. Considering a scenario in which a block of type
mealy receives a new input message, after it has already executed its output loop and thereby
has produced a set of output messages y0, it may occur that in the recalculation of the output
loop a different set of output messages y1 is calculated. This is no problem as long as the set
of output ports used in y0 is a subset of the set of output ports used in y1. However, if in the
first output loop, a message has been sent on an output port on which no message is sent in the
second output loop, then this message is not valid anymore and therefore has to be retrieved.

An example is given with the coupled system depicted in Figure 4.2:
When the summation block receives an input message x0 at input port 0 at the same time an
internal event is triggered, the old state sold is output at output port 1. In the special case, when
sold+x0 exceeds the upper boundm, a reset is carried out as well and thus, sold+x0 is output on
output port 0. However, since output port 1 is the source of a zero time feedback, as consequence
of the output at that port a new input x1 will arrive at input port 1 (minus - input port). Now, if
sold+x0−x1 is smaller than the upper boundm, a reset will not take place anymore. Therefore,
the former output on output port 0 was wrong and needs to be retrieved.

4.1.3.2 Solution Approach

The idea for countering this last problem is the following: the same way, the internal state of
each block is backed up at the very first event of each instant of time, also the input buffer is
backed up. However, the backup is only necessary when an old input value is to be overwritten
for the first time at current simulation time. Additionally, all output messages are equipped
with a retrieve-flag that can be set to true or false. Thus, the arrival of an input message with
a retrieve-flag that is true leads to the restoring of the backup for the according input port and
index and of the time of last change at that port. So, in the following re-execution of the output
loop, it is as if this retrieved message has never been received.



66 CHAPTER 4. PROBLEMS, SHORTCOMINGS AND SOLUTION APPROACHES

To learn which output messages need to be retrieved, for each output port it is stored at
which time a message was sent there the last time. After each recalculation of λ, it is checked
if there has been calculated a new output message for each output port at which a message was
sent during the former output loop. If there is a port for which no new output message has been
calculated, the former sent message needs to be retrieved. Thus its retrieve-flag is set to true and
it is added to the pending outputs.

Summing up, the working principle of an atomic block in case of an event can roughly be
described by the following:

1. external transition function: (skipped on pure internal events) If the received message
differs from the last reception with same arrival time at the same port and index, add it to
x and set σ to zero.

2. time advance function: If there is a new input message, go back to 1. Otherwise, if
σ = 0, go to 3. Otherwise: finished.

3. output function: If there is no pending output message and x changed, calculate output
messages on basis of the old state sold and the current inputs x: y = λ(sold,x). If there
are output ports where, at current simulation time, a message has been sent from, but for
which there is no message included in y, set the retrieve flag of the old messages at those
ports to true and add them to y.

4. output function: If there is a pending output message, output one of them.

5. internal transition function: If there are no pending output messages, calculate new state
s and new value for σ by computing δint(sold), δext(sold,x) or δconf (sold,x). Otherwise,
do nothing.

6. internal transition function: Go back to 2.

There remains one special case to be considered regarding message retrieving. If there have
been no other input messages than the one that is retrieved, it may occur that the whole external
event which may have caused output messages and state changes already, needs to be withdrawn.
When taking a closer look at that problem, there are two cases to be distinguished. In the first
case also an internal event is triggered at the same time. This case is the less complicated one.
The event simply has to be altered from a confluent to a pure internal one (by changing the value
of the event type indicating flag from ′c′ to ′i′). Afterwards the output loop has to be repeated.

In the second case there has been a pure external event which either has already been treated
completely or the output loop is currently executed when the retrieve message arrives. Now, the
whole external event with all its consequences has to be withdrawn. In the following this event
will be referred to as withdraw event.

4.1.3.3 PowerDEVS Implementation

Listings 4.16–4.19 show the DEVS for the summation block, based on the sources in section
4.1.2.3 and extended according to the solution approach for retrieving messages suggested in
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section 4.1.3.2. The code for the time advance function is omitted as it has not changed since
section 4.1.1.3.

1 s t r u c t DEVSMessage {
2 do ub l e v a l u e ;
3 boo l r e t r i e v e ;
4 } ;
5

6 c l a s s I n O u t p u t {
7 p u b l i c :
8 do ub l e v a l u e ;
9 do ub l e v a l u e _ b k ;

10 do ub l e l a s t _ c h a n g e _ t i m e ;
11 do ub l e l a s t _ c h a n g e _ t i m e _ b k ;
12 boo l a l r e a d y _ t r e a t e d ;
13

14 I n O u t p u t ( ) {
15 l a s t _ c h a n g e _ t i m e = −1;
16 do ub l e l a s t _ c h a n g e _ t i m e _ b k =−1;
17 a l r e a d y _ t r e a t e d = f a l s e ;
18 }
19 vo id s e t ( do ub l e va l , d oub l e t ) {
20 v a l u e = v a l ;
21 l a s t _ c h a n g e _ t i m e = t ;
22 a l r e a d y _ t r e a t e d = f a l s e ;
23 }
24 vo id s e t b k ( do ub l e va l , d oub l e t ) {
25 i f ( l a s t _ c h a n g e _ t i m e < t ) {
26 v a l u e _ b k = v a l u e ;
27 l a s t _ c h a n g e _ t i m e _ b k = l a s t _ c h a n g e _ t i m e ;
28 }
29 v a l u e = v a l ;
30 l a s t _ c h a n g e _ t i m e = t ;
31 a l r e a d y _ t r e a t e d = f a l s e ;
32 }
33 vo id r e s t o r e B a c k u p ( ) {
34 v a l u e = v a l u e _ b k ;
35 l a s t _ c h a n g e _ t i m e = l a s t _ c h a n g e _ t i m e _ b k ;
36 a l r e a d y _ t r e a t e d = t r u e ;
37 }
38 do ub l e ∗ t r e a t ( ) {
39 a l r e a d y _ t r e a t e d = t r u e ;
40 r e t u r n (& v a l u e ) ;
41 }
42 boo l i s E q u a l T o ( d oub l e va l , d oub l e t ) {
43 i f ( l a s t _ c h a n g e _ t i m e != t ) r e t u r n ( f a l s e ) ;
44 r e t u r n ( v a l u e == v a l ) ;
45 }
46 } ;

Listing 4.14: Definition of the struct DEVSMessage describing input and ouput messages
and redefintion of the class InOutput(formerly defined in Listing 4.7).
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Listings 4.14 and 4.15 show the definition of the structure DEVSMessage and of the classes
InOutput and InOutputVector which were already introduced in section 4.1.2.3. How-
ever, InOutput and InOutputVector have been extended a bit.

The structure DEVSMessage is used for all input and output messages. Its attribute retrieve
indicates whether the message is a valid one or just serves to retrieve a formerly sent message.

The extensions in class InOutput regard the ability to keep a backup of value and of
last_change_time and to make that backup automatically when value is overwritten for
the first time at current simulation time. For this purpose the function setbk is implemented.
For restoring the backup the function restoreBackup can be used.

1 c l a s s I n O u t p u t V e c t o r : p u b l i c s t d : : v e c t o r < InOutpu t > {
2 p u b l i c :
3 i n t u n t r e a t e d _ e n t r y _ c h a n g e s ;
4 i n t c u r r e n t _ v a l u e s ;
5

6 I n O u t p u t V e c t o r ( ) {
7 u n t r e a t e d _ e n t r y _ c h a n g e s = 0 ;
8 }
9 vo id s e t A t ( i n t c , d oub l e va l , d oub l e t ) {

10 i f ( t r u e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
11 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
12 }
13 i f ( ( ∗ t h i s ) [ c ] . l a s t _ c h a n g e _ t i m e < t ) {
14 c u r r e n t _ v a l u e s ++;
15 }
16 (∗ t h i s ) [ c ] . s e t ( va l , t ) ;
17 }
18 vo id s e t A t b k ( i n t c , d oub l e va l , d oub l e t ) {
19 i f ( t r u e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
20 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
21 }
22 i f ( ( ∗ t h i s ) [ c ] . l a s t _ c h a n g e _ t i m e < t ) {
23 c u r r e n t _ v a l u e s ++;
24 }
25 (∗ t h i s ) [ c ] . s e t b k ( va l , t ) ;
26 }
27 vo id r e s t o r e B a c k u p A t ( i n t c ) {
28 i f ( f a l s e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
29 u n t r e a t e d _ e n t r y _ c h a n g e s −−;
30 }
31 i f ( ( ∗ t h i s ) [ c ] . l a s t _ c h a n g e _ t i m e _ b k < (∗ t h i s ) [ c ] . l a s t _ c h a n g e _ t i m e ) {
32 c u r r e n t _ v a l u e s −−;
33 }
34 (∗ t h i s ) [ c ] . r e s t o r e B a c k u p ( ) ;
35 }
36 do ub l e ∗ t r e a t A t ( i n t c ) {
37 i f ( f a l s e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
38 u n t r e a t e d _ e n t r y _ c h a n g e s −−;
39 }
40 r e t u r n ( ( ∗ t h i s ) [ c ] . t r e a t ( ) ) ;
41 }
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42 vo id t r e a t A l l ( ) {
43 f o r ( i n t i =0 ; i < t h i s −> s i z e ( ) ; i ++) {
44 (∗ t h i s ) [ i ] . a l r e a d y _ t r e a t e d = t r u e ;
45 }
46 u n t r e a t e d _ e n t r y _ c h a n g e s =0;
47 }
48 vo id s e t U n t r e a t e d A t ( i n t c ) {
49 i f ( f a l s e != (∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
50 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
51 (∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d = f a l s e ;
52 }
53 }
54 } ;

Listing 4.15: The class InOutputVector which has also be extended compared to Listing
4.8

The extensions in class InOutputVector concern again the making and restoring of backups
but they also introduce the variable current_values. current_values is intended to
store the number of input ports which have received new values at current simulation time. This
number is needed when an input message is retrieved to see whether there have been received
other input messages at current simulation time than the one that is retrieved. If there has not
been received any others, either flag has to be set from ’c’ to ’i’ and the output loop has to
be restarted, or, if flag=’e’, the whole external event has to be withdrawn.

Therefore, current_values is incremented each time an entry of the InOutput ar-
ray is changed for the first time at current simulation time and it is decremented at each backup
restoration that decreases the attribute last_change_time. Furthermore, current_values
is reset to zero at the very first event, internal or external, at a concrete simulation time.

1 DEVSMessage ou tpu t_msg ;
2 do ub l e sigma_n_bk ;

Listing 4.16: Defnition of a variable which is used for sending output messages of type
DEVSMessage and of a backup variable for sigma_n which is needed when due to a
message retrieval a former external event becomes a withdraw event.

The two variable declarations in Listing 4.16 are needed additionally to the declarations made in
Listing 4.9. The object output_msg is used for each output message that is sent. sigma_n_bk
is needed as backup for sigma_n in case of a withdraw event.

1 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s ==0 && i n _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s
==0) {

2 i f ( f l a g == ’ i ’ ) {
3 s igma_n = 1 ;
4 } e l s e i f ( f l a g == ’ e ’ | | f l a g == ’ c ’ ) {
5 i f ( f l a g == ’ c ’ ) {
6 s igma_n = 1 ;
7 }
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8 i f ( i n _ a r r a y [ 0 ] . l a s t _ c h a n g e _ t i m e == t ) {
9 s = s _ o l d + i n _ a r r a y [ 0 ] . v a l u e ;

10 }
11 i f ( i n _ a r r a y [ 1 ] . l a s t _ c h a n g e _ t i m e == t ) {
12 s = s _ o l d − i n _ a r r a y [ 0 ] . v a l u e ;
13 }
14 i f ( s >=m) {
15 s = 0 ;
16 }
17 } e l s e i f ( f l a g == ’ n ’ ) {
18 s = s _ o l d ;
19 r = r _ o l d ;
20 s igma_n = sigma_n_bk ;
21 }
22 s igma = sigma_n ;
23 }

Listing 4.17: The PowerDEVS internal transition function for the summation block example
with message retrieve mechanism.

Listing 4.17 shows the internal transition function. The only difference to Listing 4.11 consists of
the additional case flag==’n’ in line 17. ’n’ stands for ‘no event’, i.e. due to input messages
that have been retrieved, formerly an event has been triggered which needs to be withdrawn now.
Thus, the tasks to be done in this case are to restore the old state.

Listing 4.18 shows the external transition function. The things that are new in the first block
of code (lines 1 to 11) are the backup of sigma_n and the reset of x.array.current_values
to zero. The other new part in it, compared to Listing 4.12, is the block of code from line 12
to line 23. In line 12 simply an object of type DEVSMessage is created to store the received
input message that needs to be of type DEVSMessage as well. Afterwards, it is checked if the
received message is a retrieve message.

If this is not the case, everything works like in section 4.1.2.3, apart from the fact that in
line 25 setAtbk is called instead of setAt. The difference is that setAtbk automatically
creates a backup of the old input value at the corresponding input port before overwriting it, but
only if the new message is the first to arrive at that input port at current simulation time. setAt
does not make any backups.

However, if the received message is a retrieve message, the last backup for the corresponding
input port has to be restored and it has to be checked whether any other input messages that
arrived at current simulation time are left. This is accomplished by simply checking the value of
in_array.current_values. If this value is greater than zero, then the only thing to do is
setting sigma to zero. This is to make sure that the output function is executed once more and
the output loop is repeated.

1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 r _ o l d = r ;
3 s _ o l d = s ;
4 f l a g = ’ e ’ ;
5 s igma_n = sigma − e ;
6 s igma_n_bk = sigma_n ;
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7 i f ( s igma_n ==0) {
8 f l a g = ’ c ’ ;
9 }

10 i n _ a r r a y . c u r r e n t _ v a l u e s = 0 ;
11 }
12 DEVSMessage inpu t_msg = ∗ ( DEVSMessage ∗ ) x . v a l u e ;
13 i f ( inpu t_msg . r e t r i e v e == t r u e ) {
14 i n _ a r r a y . r e s t o r e B a c k u p A t ( x . p o r t ) ;
15 i f ( i n _ a r r a y . c u r r e n t _ v a l u e s ==0) {
16 i f ( f l a g == ’ c ’ ) {
17 f l a g = ’ i ’ ;
18 } e l s e i f ( f l a g == ’ e ’ ) {
19 f l a g = ’w’ ;
20 }
21 s igma =0;
22 }
23 } e l s e {
24 i f ( f a l s e == i n _ a r r a y [ x . p o r t ] . i s E q u a l T o ( inpu t_msg . va lue , t ) ) {
25 i n _ a r r a y . s e t A t b k ( x . p o r t , inpu t_msg . va lue , t ) ;
26 i f ( f l a g == ’ i ’ ) {
27 f l a g = ’ c ’ ;
28 }
29 s igma = 0 ;
30 }
31 }

Listing 4.18: The PowerDEVS external transition function for the summation block example
with message retrieve mechanism.

If in_array.current_values is zero, there are two cases to be distinguished. In the first
case also an internal transition is triggered at current simulation time. Therefore, flag needs
to be changed from ’c’ to ’i’ and the output function has to be executed once more to start a
pure internal event. In the second case it has been a pure external event until the event causing
message was retrieved and therefore, the event type changes to withdraw event. So, the initial
state consisting of s_old, r_old, and sigma_n_bk has to be restored. Moreover, output
messages that may have already been sent in reaction to the input message need to be retrieved.
Therefore, flag is set to ’w’ which causes λ to do nothing but to change flag to ’n’ at
its next execution. As sigma is zero, the output function is called once more and therefore,
the outputs that need to be retrieved are identified and the output loop is started. As flag was
set to ’n’ (meaning no event) by λ, in following calls of the output function in the context of
the output loop, λ will not be executed anymore. When all outputs are retrieved, in the internal
transition function, the old system’s state is restored and sigma is set to sigma_n_bk and
thus, the whole external event has been withdrawn successfully.

1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 r _ o l d = r ;
3 s _ o l d = s ;
4 f l a g = ’ i ’ ;
5 s igma = 0 ;
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6 i n _ a r r a y . c u r r e n t _ v a l u e s = 0 ;
7 }
8 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s == 0 | | f l a g == ’w’ ) {
9 i f ( f l a g == ’ i ’ ) { / / c r e a t e o u t p u t s i f pu re i n t e r n a l e v e n t

10 o u t _ a r r a y . s e t A t ( 1 , s_o ld , t ) ; / / o u t p u t s
11 } e l s e i f ( f l a g == ’ e ’ | | f l a g == ’ c ’ ) {
12 do ub l e s_ = s _ o l d ;
13 i f ( f l a g == ’ c ’ ) {
14 o u t _ a r r a y . s e t A t ( 1 , s_o ld , t ) ; / / o u t p u t s
15 }
16 i f ( t _ i n _ a r r a y [0 ]== t ) {
17 s_ = s_ + i n _ a r r a y [ 0 ] . v a l u e ;
18 }
19 i f ( t _ i n _ a r r a y [1 ]== t ) {
20 s_ = s_ − i n _ a r r a y [ 0 ] . v a l u e ;
21 }
22 i f ( s_ > m) {
23 o u t _ a r r a y . s e t A t ( 0 , s_ , t ) ; / / o u t p u t r e s e t
24 }
25 }
26 i f ( f l a g == ’w’ ) {
27 f l a g = ’ n ’ ;
28 }
29 f o r ( o u t p o r t =0 ; o u t p o r t < o u t _ a r r a y . s i z e ( ) ; o u t p o r t ++) {
30 i f ( o u t _ a r r a y [ o u t p o r t ] . a l r e a d y _ t r e a t e d == t r u e ) {
31 i f ( o u t _ a r r a y [ o u t p o r t ] . l a s t _ c h a n g e _ t i m e == t ) {
32 o u t _ a r r a y [ o u t p o r t ] . l a s t _ c h a n g e _ t i m e = t − 1 ;
33 o u t _ a r r a y . s e t U n t r e a t e d A t ( o u t p o r t ) ;
34 }
35 }
36 }
37 i n _ a r r a y . t r e a t A l l ( ) ;
38 o u t p o r t = −1;
39 }
40 w h i l e ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s >0) {
41 o u t p o r t ++;
42 i f ( f a l s e == o u t _ a r r a y [ o u t p o r t ] . a l r e a d y _ t r e a t e d ) {
43 outpu t_msg . v a l u e = ∗ ( o u t _ a r r a y . t r e a t A t ( o u t p o r t ) ) ;
44 i f ( o u t _ a r r a y [ o u t p o r t ] . l a s t _ c h a n g e _ t i m e < t ) {
45 outpu t_msg . r e t r i e v e = t r u e ;
46 }
47 r e t u r n Event (& output_msg , o u t p o r t ) ;
48 }
49 }
50 r e t u r n Event ( ) ;

Listing 4.19: The PowerDEVS output function for the summation block example with
message retrieve mechanism.

Listing 4.19 shows the output function. The differences to Listing 4.13 consist basically of
the mechanism for identifying output messages that need to be retrieved (lines 29 to 36), of
case flag==’w’ (line 26), and of the slightly different output while loop (lines 40 to 49).
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The meaning of flag==’w’ has already been described above. The mechanism for identify-
ing retrieve output messages is implemented by a for loop. In this for loop simply all output
ports are parsed and it is checked whether the ports’ attribute last_change_time is equal
to the current simulation time t although there was no new value computed for that port during
the preceding calculation of λ, i.e. already_treated==true. In this case, at the corre-
sponding output port a retrieve-message needs to be sent which is marked by setting the ports’
last_change_time to t-1. Thus, the retrieve ports can be identified later in the output
while loop.

4.2 Message Transmission and Reusability of Library Blocks

As already mentioned earlier, an output message of a PowerDEVS block essentially consists of a
pointer of type void and of an integer determining the output port. Those two values are stored
in form of an instance of the class Event. Thus, in the output function, with the line

return Event(&value, port);

a new instance of Event is created and handed on to an instance of the class Coupling. The
class Coupling represents a coupled model and therefore, it is responsible for delivering out-
put messages to corresponding recipients. A recipient either can be an input port of a block that
is also located inside the coupled model or it can be an instance of Coupling that represents
a coupled model one hierarchical level above. port determines the output port, at which the
message is to be sent. &value denotes the address of the variable value that is assigned to
the void pointer.

From output port and coupling the receiving blocks and their corresponding input ports are
determined. For each receiving block and input port, the sent instance of Event is copied (flat
copy) and its integer value is set to the input port where it arrives. This instance is available then,
as variable x in the external transition function of the receiving block.

When handing over the address of a variable to the Event constructor in the return state-
ment of the output function, it is important that this variable is not defined locally in the output
function. This is because otherwise the memory allocated for this variable is freed after the
execution of the return statement and thus, a pointer arrives at the receiving external transition
function which points to a location in memory that is not allocated anymore or maybe already
allocated for something else.

1 c l a s s Event
2 {
3 /∗ ! T e l l s which s y n c h r o n i z a t i o n s h o u l d be used f o r t h i s e v e n t ∗ /
4 RealTimeMode mode ;
5 p u b l i c :
6 /∗ ! The v a l u e c a r r i e d by an e v e n t i s d e f i n e d t o be a vo id p o i n t e r f o r

f l e x i b i l i t y .
7 ∗ Most o f t h e b l o c k s i n t h e l i b r a r y ( by c o n v e n t i o n ) use t h i s v a l u e

p o i n t i n g t o a do ub l e a r r a y .
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8 ∗ T h e r e f o r e an i n p u t v a l u e can be r e t r i e v e d wi th :
9 ∗ do ub l e ∗v = ( d ou b l e ∗ ) e v e n t . v a l u e ;

10 ∗
11 ∗ v [ 0 ] i s t h e v a l u e
12 ∗ v [ 1 ] i s t h e f i r s t d e r i v a t e
13 ∗ /
14 vo id ∗ v a l u e ;
15 /∗ ! The p o r t v a l u e i s used t o know from which p o r t t h e e v e n t came from ∗ /
16 P o r t p o r t ;
17 /∗ ! Th i s boo l v a l u e i s used i n t h e RTAI d i s t r i b u t i o n . When s e t , i n d i c a t e s

t h a t an e x t e r n a l i n p u t e v e n t
18 ∗ o c u r r e d w h i l e s y n c h r o n z i n g t h i s even t , then , i t s h o u l d n o t be

p r o p a g a t e d . ∗ /
19 boo l i n t e r r u p t e d ;
20 Event ( ) ;
21 Event ( vo id ∗ , P o r t ) ;
22 v i r t u a l ~ Event ( ) ;
23

24 /∗ ! A n u l l e v e n t i s d e f i n e d as one wi th v a l u e =NULL. ∗ /
25 vo id s e t N u l l E v e n t ( ) ;
26 boo l i s N o t N u l l ( ) ;
27

28 vo id setRealTimeMode ( RealTimeMode m) { mode=m; } ;
29 RealTimeMode getRealTimeMode ( ) { r e t u r n mode ; } ;
30 /∗ ! R e t r i e v e s t h e i ’ t h d oub l e v a l u e o f t h i s e v e n t ∗ /
31 do ub l e ge tDoub le ( i n t i ) { r e t u r n ( ( d ou b l e ∗ ) v a l u e ) [ i ] ; } ;
32 /∗ ! R e t r i e v e s t h e f i r s t d oub l e v a l u e o f t h i s e v e n t ∗ /
33 do ub l e ge tDoub le ( ) { r e t u r n ge tDoub le ( 0 ) ; } ;
34 /∗ ! R e t r i e v e s t h e f i r s t i n t v a l u e o f t h i s e v e n t ∗ /
35 do ub l e g e t I n t ( ) { r e t u r n ( ( i n t ∗ ) v a l u e ) [ 0 ] ; } ;
36 vo id s e t D o u b l e ( d oub l e &v ) { v a l u e=&v ; } ;
37 vo id s e t I n t ( i n t &v ) { v a l u e=&v ; } ;
38 /∗ ! Th i s i s used i n t e r n a l l y by t h e s i m u l a t i o n e n g i n e t o n o t i f y an e x t e r n a l

i n p u t e v e n t ∗ /
39 vo id s e t I n t e r r u p t e d ( ) { i n t e r r u p t e d = t r u e ; }
40 boo l i s I n t e r r u p t e d ( ) { r e t u r n i n t e r r u p t e d ; }
41 } ;

Listing 4.20: The C++ class Event as it is defined in th file ‘event.h’ located in the
subdirectory ‘engine’ of the folder ‘powerdevs’.

Listing 4.20 shows the C++ definition of the class Event. It can be seen that there are the
member variables void *value in line 14 and Port port in line 16. Port is defined in
‘types.h’ and is nothing else but integer.

As PowerDEVS is especially designed for simulating hybrid systems using QSS, usually
the member variable value points to a double array (usually of size 10). The entries of such
a double array are then representing the coefficients of the Taylor polynomial that describes the
QSS signal. When vectorial signals are used, value points to an instance of the class vector,
depicted in Listing 4.21.
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1 c l a s s v e c t o r
2 {
3 p u b l i c :
4 do ub l e v a l u e [ 1 0 ] ;
5 i n t i n d e x ;
6 } ;

Listing 4.21: The C++ class Event.

4.2.1 Creating Deep Copies of Input Messages of Unknown Type

4.2.1.1 Problem Identification

When receiving an input message x, there are two possible ways to treat it in the external tran-
sition function: either a deep copy is made, or it is continued to use the memory pointed to by
x.value. While the first method is quite straight forward, the second method comes with some
issues that need to be considered.

The first issue is that the block that allocated the memory needs to take care of not freeing it
as long as it is in use in some other block.

The second issue is that the memory may be edited at different blocks in a coupled model
and possibly at the same simulation time. Therefore the consistency of the memory’s content
needs to be taken care of. Thus, the safe and easy way is to make a deep copy of an input
message at each receiving block which then can be altered by each block arbitrarily. However,
to be able to make a copy the concrete type of the input message needs to be known. As the
received value is only a pointer of type void*, the concrete type of an input message cannot be
learned from the input message itself, but needs to be known in advance when programming the
regarded PowerDEVS block.

Furthermore, sometimes it is needed that a block modifies some attributes of a received
input message and then outputs again the modified message. Examples with such behaviour
often occur when simulating production processes. Thereby, often workpieces are simulated
that wander from one workstation to the next. When a workpiece arrives at a workstation it gets
modified and then is handed on to the next workstation or it is merged with other workpieces
or divided into smaller workpieces and the results are handed on. Anyway, the most logical
method to represent such workpieces (also called entities) in PowerDEVS would be as instances
of a particularly designed C++ class describing a workpiece and its attributes. Thus, instances
of this class, representing concrete workpieces with concrete attribute values, could be handed
on from block to block via their addresses in memory. Each block makes a deep copy of every
instance it receives, modifies it, and hands on the address in memory of the modified instance.

Now, in one production process, there may appear a variety of different workpieces with
different attributes. Therefore it seems to be reasonable to create a class Entity which serves
as base class to derive different workpiece classes from. However, those different types of work-
pieces may walk through the same workstations, or at least through workstations with the same
or very similar tasks. So, for reusability reasons, it would be wise to program those workstations
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in a way they can handle a whole class of different workpieces, e.g. all workpieces whose C++
classes are derived from a concrete base class.

With the goal to program a generic workstation that can handle all workpieces whose repre-
senting C++ class is derived from a certain base class, the creation of a deep copy of a received
workpiece instance becomes a problem. As the workstation may need to pass on an instance
that is of the same class of which the arrived message has been, this concrete class has to be
known when making the deep copy. The generic workstation though, only knows that the class
of the received workpiece is derived from a certain base class but it does not know its concrete
type. So programming a generic workstation seems to be in conflict with making deep copies.
Fortunately C++ supports polymorphism which can be utilized to overcome that problem.

4.2.1.2 Solution Approach

As mentioned above, for the solution approach polymorphism is used which can be explained
roughly as follows. In C++ it is possible to let a pointer of a base class type point to an instance
of a derived class. Further, if in the base class there is a method marked as virtual, its
functionality has to be redefined in each derived class. Now, if there is a pointer ptr of base
class type, pointing to an instance of a derived class and a method meth()marked as virtual
is called: ptr->meth(), then the defintition of meth() in the derived class is used.

This concept can be utilized for the problem of making deep copies of arriving messages
without knowing their exact type. At first a class DEVSMessage (as depicted in Listing 4.22)
is defined and it is demanded that every message between two PowerDEVS blocks has to be an
instance of DEVSMessage or of a derived class. More exactly, every message is a pointer of
type DEVSMessage* to such an object. As DEVSMessage has a virtual method named
getCopy(), every derived class has to define that method too. The task of getCopy() is
to create a deep copy of its calling instance and to return a pointer of type DEVSMessage*
pointing to it. Therefore, when there arrives an input message in form of a memory address
of an instance of an arbitrary, DEVSMessage derived class, this address can be stored in a
DEVSMessage* pointer. Afterwards a deep copy of the corresponding instance can be created
by calling getCopy() and the position in memory of that copy, again, can be stored in a
DEVSMessage* pointer. So, a deep copy of an input message can be made, without knowing
its exact type.

4.2.1.3 PowerDEVS Implementation

For a better understanding, a concrete example will be elaborated in the following. First the
base class DEVSMessage is defined in Listing 4.22. This base class has only one attribute:
retrieve. This is because with the approach to simplify the formulation of a correct DEVS
model that was worked out in section 4.1, there has to be a mechanism for retrieving already
sent messages. Therefore, if retrieve is true, the only effect of the message is to reverse
the sending of a former message, by restoring the backup that has been made.

The member functions of DEVSMessage consist of an empty constructor and of a copy
constructor as well as of the mentioned getCopy() method. getCopy() returns a pointer of
type DEVSMessage* pointing to a copy of the instance from which getCopy() was called
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from. The keyword virtual forces derived classes to also define a getCopy() method with
exactly the same signature.

1 c l a s s DEVSMessage {
2 p u b l i c :
3 boo l r e t r i e v e ;
4

5 DEVSMessage ( ) { r e t r i e v e = f a l s e ; }
6 DEVSMessage ( c o n s t DEVSMessage &msg ) { r e t r i e v e = f a l s e ; }
7 v i r t u a l boo l o p e r a t o r ==(DEVSMessage& msg ) = 0 ;
8 v i r t u a l boo l o p e r a t o r ! = ( DEVSMessage &msg ) { r e t u r n ( ! ( ( ∗ t h i s ) ==msg ) ) ; }
9 v i r t u a l DEVSMessage∗ getCopy ( ) { r e t u r n ( new DEVSMessage (∗ t h i s ) ) ; }

10 v i r t u a l ~DEVSMessage ( ) {}
11 } ;

Listing 4.22: The C++ base class DEVSMessage.

Next, in Listing 4.23 a class Entity is derived form DEVSMessage.

1 c l a s s E n t i t y : p u b l i c DEVSMessage {
2 p u b l i c :
3 do ub l e c o s t s ;
4 do ub l e CO2 ;
5

6 E n t i t y ( ) : DEVSMessage ( ) {
7 c o s t s = 0 ;
8 CO2 = 0 ;
9 }

10 E n t i t y ( c o n s t E n t i t y &msg ) : DEVSMessage ( ( DEVSMessage&)msg ) {
11 c o s t s = msg . c o s t s ;
12 CO2 = msg . CO2 ;
13 }
14 boo l o p e r a t o r ==( E n t i t y& e ) {
15 i f ( c o s t s != e . c o s t s ) r e t u r n f a l s e ;
16 i f ( c o s t s != e . CO2) r e t u r n f a l s e ;
17 }
18 v i r t u a l boo l o p e r a t o r ==(DEVSMessage &msg ) {
19 i f ( t y p e i d ( msg ) != t y p e i d (∗ t h i s ) ) r e t u r n f a l s e ;
20 r e t u r n ( (∗ t h i s ) ==( ( E n t i t y &)msg ) ) ;
21 }
22 boo l o p e r a t o r ! = ( E n t i t y &e ) {
23 r e t u r n ( ! ( ( ∗ t h i s ) ==e ) ) ;
24 }
25 v i r t u a l DEVSMessage∗ getCopy ( ) { r e t u r n ( new E n t i t y (∗ t h i s ) ) ; }
26 v i r t u a l ~ E n t i t y ( ) {}
27 } ;

Listing 4.23: The C++ base class Entity.

With the BaMa project in mind, each entity has the attributes costs and CO2 which store an
accumulated value for the costs and for the CO2 emissions that were caused by that entity so far
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during the production process. The member functions of the class Entity are again an empty
constructor, a copy constructor and the method getCopy(). As it can be seen, the definition
of a copy constructor is everything that is needed to define the getCopy() method.

To also have a more concrete entity, the class Bread is defined (see Listing 4.24).

1 c l a s s Bread : p u b l i c E n t i t y {
2 p u b l i c :
3 do ub l e we ig h t ;
4 do ub l e T ;
5

6 Bread ( ) : E n t i t y ( ) {
7 we ig h t = 0 ;
8 }
9 Bread ( c o n s t Bread &msg ) : E n t i t y ( ( E n t i t y &)msg ) {

10 we ig h t = msg . we ig h t ;
11 }
12 boo l o p e r a t o r ==( Bread& b ) {
13 i f ( w e ig h t != b . w e ig h t ) r e t u r n f a l s e ;
14 r e t u r n ( ( E n t i t y ) (∗ t h i s ) ==( E n t i t y &)b ) ;
15 }
16 v i r t u a l boo l o p e r a t o r ==(DEVSMessage &msg ) {
17 i f ( t y p e i d ( msg ) != t y p e i d (∗ t h i s ) ) r e t u r n f a l s e ;
18 r e t u r n ( (∗ t h i s ) ==( ( Bread &)msg ) ) ;
19 }
20 boo l o p e r a t o r ! = ( Bread &b ) {
21 r e t u r n ( ! ( ( ∗ t h i s ) ==b ) ) ;
22 }
23 v i r t u a l DEVSMessage∗ getCopy ( ) { r e t u r n ( new Bread (∗ t h i s ) ) ; }
24 v i r t u a l ~ Bread ( ) {}
25 } ;

Listing 4.24: The C++ base class Bread.

Bread was chosen, because as example a simple model of a baking oven will be presented later.
So, the attributes of the class Bread are the weight and the Temperature T of the bread and
additionally the attributes costs and CO2 that are inherited from Entity. The temperature
of the bread will later be used for restricting the baking time of a loaf of bread by the reaching
of a certain temperature. This will be modeled as state event in the hybrid model of the baking
oven in section 5.

The example that will be looked at consists of a baking oven that expects entities of type
bread and of a preceding queue that stores arriving bread while the oven is baking (see Figure
4.3). Since the queue shall be implemented as generic as possible, it should be able to handle all
kinds of entities that are derived from the class Entity.

As, from now on, it is demanded that each input and output message is of type DEVSMessage
or of a derived type, the classes InOutput and InOuputVector have to be adapted as well
(see Listings 4.25 and 4.26).
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Figure 4.3: An Illustration of the queue - baking oven example. The queue works according
the first in - first out (FIFO) principle. The baking oven requests new entities of bread by
sending a message to the request-input port of the queue.

1 c l a s s I n O u t p u t {
2 p u b l i c :
3 DEVSMessage ∗msgPtr ;
4 DEVSMessage ∗ b a c k u p P t r ;
5 do ub l e l a s t _ c h a n g e _ t i m e ;
6 do ub l e l a s t _ c h a n g e _ t i m e _ b k ;
7 boo l a l r e a d y _ t r e a t e d ;
8 boo l l i n k ;
9

10 I n O u t p u t ( ) {
11 msgPtr =NULL;
12 b a c k u p P t r =NULL;
13 l a s t _ c h a n g e _ t i m e = −1;
14 l a s t _ c h a n g e _ t i m e _ b k = −1;
15 a l r e a d y _ t r e a t e d = t r u e ;
16 l i n k = t r u e ;
17 }
18 vo id s e t ( DEVSMessage ∗msg , do ub l e t ) {
19 i f ( ! l i n k ) d e l e t e msgPtr ;
20 msgPtr = msg−>getCopy ( ) ;
21 l i n k = f a l s e ;
22 t h i s −>l a s t _ c h a n g e _ t i m e = t ;
23 t h i s −> a l r e a d y _ t r e a t e d = f a l s e ;
24 msgPtr−> r e t r i e v e = f a l s e ;
25 }
26 vo id l i n k T o ( DEVSMessage ∗msg , do ub l e t ) {
27 i f ( ! l i n k ) d e l e t e msgPtr ;
28 msgPtr = msg ;
29 l i n k = t r u e ;
30 t h i s −>l a s t _ c h a n g e _ t i m e = t ;
31 t h i s −> a l r e a d y _ t r e a t e d = F a l s e ;
32 msgPtr−> r e t r i e v e = f a l s e ;
33 }
34 vo id backup ( ) {
35 i f (NULL!= b a c k u p P t r ) { d e l e t e b a c k u p P t r ; b a c k u p P t r =NULL; }
36 i f (NULL!= msgPtr ) b a c k u p P t r = msgPtr−>getCopy ( ) ;
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37 l a s t _ c h a n g e _ t i m e _ b k = l a s t _ c h a n g e _ t i m e ;
38 }
39 vo id r e s t o r e B a c k u p ( ) {
40 i f (NULL!= b a c k u p P t r ) {
41 i f ( f a l s e == l i n k ) {
42 d e l e t e msgPtr ;
43 }
44 msgPtr = b a c k u p P t r ;
45 l i n k = f a l s e ;
46 l a s t _ c h a n g e _ t i m e = l a s t _ c h a n g e _ t i m e _ b k ;
47 b a c k u p P t r =msgPtr−>getCopy ( ) ;
48 }
49 }
50 vo id s e t b k ( DEVSMessage ∗msg , do ub l e t ) {
51 i f ( l a s t _ c h a n g e _ t i m e < t ) {
52 backup ( ) ;
53 }
54 s e t ( msg , t ) ;
55 }
56 DEVSMessage∗ t r e a t ( ) {
57 t h i s −> a l r e a d y _ t r e a t e d = t r u e ;
58 r e t u r n ( msgPtr ) ;
59 }
60 boo l i s E q u a l T o ( DEVSMessage ∗msg , do ub l e t ) {
61 i f (NULL == msgPtr ) r e t u r n ( f a l s e ) ;
62 i f ( l a s t _ c h a n g e _ t i m e != t ) r e t u r n ( f a l s e ) ;
63 r e t u r n ( msgPtr−>o p e r a t o r ==(∗msg ) ) ;
64 }
65 ~ I n O u t p u t ( ) {
66 i f ( ! l i n k ) d e l e t e msgPtr ;
67 i f (NULL != b a c k u p P t r ) d e l e t e b a c k u p P t r ;
68 }
69 } ;

Listing 4.25: Extension of class InOutput, compared to Listing 4.14, to be able to store
general input messages of type DEVSMessag or derived.

Instead of a value of type double, InOutput stores a pointer msgPtr of type DEVSMessage*
and also the backup variable backupPtr is of type DEVSMessage* now. As described
above, when for example an input message arrives a deep copy is created, using the method
getCopy(), and msgPtr will be pointing to it. Therefore, when the next input message ar-
rives, the memory that was allocated in the former call of getCopy() has to be freed again
before letting msgPtr point to another location in memory. However, to obtain the possibility
to hand on only pointers instead of making deep copies, the member variable link is intro-
duced. If link is true, it is known, that msgPtr is only linked to an area in memory that
has been allocated somewhere else and therefore is not allowed to be freed. This is also what
the new member function linkTo is for. It has to be used instead of the function set when no
deep copy is to be made.

Also the creation and restoration of backups is different now, as again the method getCopy()
has to be used, however, the working principle stays the same.
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1 c l a s s I n O u t p u t V e c t o r : p u b l i c s t d : : v e c t o r < InOutpu t > {
2 p u b l i c :
3 i n t u n t r e a t e d _ e n t r y _ c h a n g e s ;
4 i n t c u r r e n t _ v a l u e s ;
5

6 I n O u t p u t V e c t o r ( ) {
7 u n t r e a t e d _ e n t r y _ c h a n g e s = 0 ;
8 }
9 vo id s e t A t ( i n t c , DEVSMessage ∗msg , do ub l e t ) {

10 i f ( t r u e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
11 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
12 }
13 i f ( ( ∗ t h i s ) [ c ] . l a s t _ c h a n g e _ t i m e < t ) {
14 c u r r e n t _ v a l u e s ++;
15 }
16 (∗ t h i s ) [ c ] . s e t ( msg , t ) ;
17 }
18 vo id l i n k T o A t ( u i n t j , DEVSMessage ∗msg , do ub l e t ) {
19 i f ( F a l s e != (∗ t h i s ) [ j ] . a l r e a d y _ t r e a t e d ) {
20 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
21 }
22 (∗ t h i s ) [ j ] . l i n k T o ( msg , t ) ;
23 }
24 vo id s e t A t b k ( i n t c , DEVSMessage ∗msg , do ub l e t ) {
25 i f ( t r u e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
26 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
27 }
28 i f ( ( ∗ t h i s ) [ c ] . l a s t _ c h a n g e _ t i m e < t ) {
29 c u r r e n t _ v a l u e s ++;
30 }
31 (∗ t h i s ) [ c ] . s e t b k ( msg , t ) ;
32 }
33 vo id r e s t o r e B a c k u p A t ( i n t c ) {
34 i f ( f a l s e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
35 u n t r e a t e d _ e n t r y _ c h a n g e s −−;
36 }
37 i f ( ( ∗ t h i s ) [ c ] . l a s t _ c h a n g e _ t i m e _ b k < (∗ t h i s ) [ c ] . l a s t _ c h a n g e _ t i m e ) {
38 c u r r e n t _ v a l u e s −−;
39 }
40 (∗ t h i s ) [ c ] . r e s t o r e B a c k u p ( ) ;
41 }
42 DEVSMessage∗ t r e a t A t ( i n t c ) {
43 i f ( f a l s e ==(∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
44 u n t r e a t e d _ e n t r y _ c h a n g e s −−;
45 }
46 r e t u r n ( ( ∗ t h i s ) [ c ] . t r e a t ( ) ) ;
47 }
48 vo id t r e a t A l l ( ) {
49 f o r ( i n t i =0 ; i < t h i s −> s i z e ( ) ; i ++) {
50 (∗ t h i s ) [ i ] . a l r e a d y _ t r e a t e d = t r u e ;
51 }
52 u n t r e a t e d _ e n t r y _ c h a n g e s =0;
53 }
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54 vo id s e t U n t r e a t e d A t ( i n t c ) {
55 i f ( f a l s e != (∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d ) {
56 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
57 (∗ t h i s ) [ c ] . a l r e a d y _ t r e a t e d = f a l s e ;
58 }
59 }
60 } ;

Listing 4.26: Extension of class InOutputVector, compared to Listing 4.15, to be able to
store general input messages of type DEVSMessage or derived.

The class InOutputVector has not change that much either. Only the type of some function
arguments and return values have changed from double to DEVSMessage*.

Listings 4.27–4.32 show the source code for the PowerDEVS model of the queue depicted
in Figure 4.3.

1 I n O u t p u t V e c t o r i n _ a r r a y ; / / i n p u t messages
2 I n O u t p u t V e c t o r o u t _ a r r a y ;
3 do ub l e sigma , sigma_n , s igma_n_bk ;
4 do ub l e l a s t _ e v e n t _ t i m e ;
5 c h a r f l a g ; / / p o s s i b l e v a l u e s : ’ i ’ , ’ e ’ , ’ c ’ , ’ n ’
6 i n t o u t p o r t ;
7 # d e f i n e INF 1 e20
8 boo l req , r e q _ o l d ;
9 s t d : : deque < E n t i t y ∗> q ;

10 boo l pushed ;
11 boo l popped ;

Listing 4.27: The PowerDEVS definitions area for the queue block example.

New compared to the definitions area of the summation block example is the variable
last_event_time. So far the backup of the old state of the system needed to be programmed
twice, once in the external transition function and once in the output function. Where the old
state really was backed up, depended on whether the first event at a concrete simulation time
was an external one or an internal one. As each external event always also leads to the execution
of the output function, it suffices if the backing up of the state of the system is only done in the
output function. However, the condition tl<t does not work anymore then. This is because
in the case of the first event at time t being an external one, in the output function tl already
will be equal to t and thus no state backup would be accomplished. To solve that problem
last_event_time is used. It stores the time of the last execution of the output function and
therefore is smaller than t every time, the output function is called for the first time at simulation
time t (see Listing 4.31).

As the queue is a completely passive system that only reacts to stimuli at its inputs, there are
no internal events. Thus, sigma, the time to the next internal event, has to be infinity. This is
what the definition of INF is for. As infinity lies out of the range of double variables, a very
huge value (1e20) is used instead.

To store the queue of waiting entities the standard C++ library class deque (double ended
queue) is used. Arriving input entities will be pushed into queue and requested output entities
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will be popped from the queue according to the first in - first out (FIFO) principle. Since the
queue example will work according to the principles worked out in section 4.1, the whole sys-
tem’s state has to be doubled. However, as it would take a lot of effort to double the whole
queue, the changes that are applied onto the queue are done in such a way that they can be with-
drawn if a repetition of the output loop and thus a recalculation of the queue’s new state becomes
necessary. This is what the booleans pushed and popped are used for.

When an entity request arrives at input port 0 that can not be responded to because the queue
q is empty, the pending request will be remembered by setting req to true. Thus, when later
there arrives an entity, it immediately will be output to satisfy the formerly unacknowledged
request.

1 i n _ a r r a y . r e s i z e ( 2 ) ;
2 o u t _ a r r a y . r e s i z e ( 1 ) ;
3 s igma = INF ;
4 s igma_n = INF ;
5 l a s t _ e v e n t _ t i m e = −1;
6 f l a g = ’ n ’ ;
7 o u t p o r t = −1;
8 r e q = f a l s e ;
9 r e q _ o l d = f a l s e ;

10 pushed = f a l s e ;
11 popped = f a l s e ;

Listing 4.28: The PowerDEVS init function for the queue block example.

Listing 4.28 shows the init function of the queue model. The queue block has two input ports
and one output port. Therefore, the input and the output buffer are sized accordingly in lines 1
and 2. As the queue shall be able to store objects of type Entity and of types derived from
Entity, it is defined as container for pointers of type Entity*.

1 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s ==0 && i n _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s
==0) {

2 i f ( f l a g == ’ i ’ ) {
3 s igma_n = INF ;
4 } e l s e i f ( f l a g == ’ e ’ ) {
5 i f ( i n _ a r r a y [ 0 ] . l a s t _ c h a n g e _ t i m e == t && i n _ a r r a y [ 1 ] . l a s t _ c h a n g e _ t i m e == t ) {
6 i f ( q . s i z e ( ) >0) {
7 popped= t r u e ;
8 pushed = t r u e ;
9 r e q = f a l s e ;

10 }
11 } e l s e i f ( i n _ a r r a y [ 0 ] . l a s t _ c h a n g e _ t i m e == t ) {
12 i f ( q . s i z e ( ) >0) {
13 r e q = f a l s e ;
14 popped= t r u e ;
15 pushed = f a l s e ;
16 } e l s e {
17 popped= f a l s e ;
18 pushed = f a l s e ;
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19 r e q = t r u e ;
20 }
21 } e l s e i f ( i n _ a r r a y [ 1 ] . l a s t _ c h a n g e _ t i m e == t ) {
22 i f ( q . s i z e ( ) ==0 && r e q _ o l d == t r u e ) {
23 popped= f a l s e ;
24 pushed = f a l s e ;
25 r e q = f a l s e ;
26 } e l s e i f ( r e q _ o l d == t r u e ) {
27 popped= t r u e ;
28 pushed = t r u e ;
29 r e q = f a l s e ;
30 } e l s e {
31 popped= f a l s e ;
32 pushed = t r u e ;
33 r e q = f a l s e ;
34 }
35 }
36 s igma_n = INF ;
37 } e l s e i f ( f l a g == ’ c ’ ) {
38 s igma_n = INF ;
39 } e l s e i f ( f l a g == ’ n ’ ) {
40 r e q = r e q _ o l d ;
41 pushed = f a l s e ;
42 popped = f a l s e ;
43 s igma_n = INF ;
44 }
45 s igma = sigma_n ;
46 }

Listing 4.29: The PowerDEVS internal transition function for the queue block example.

Listing 4.29 shows the internal transition function of the queue model. It has the same structure
as the internal transition function of the summation block (Listing 4.11). So the interesting
parts are the sections of code describing the behaviours of the δ functions. Since the queue is
completely passive, the only type of transition that occurs is a pure external one. Therefore, in
the cases flag==’i’ and flag==’c’, the only thing to be done is to set the time until the
next internal event to infinity. The only time, the internal transition is entered with flag being
’n’ is when an event is withdrawn completely, i.e. all the input messages that caused the event
have been retrieved. Therefore, in this case there are no changes to be conducted to the queue.

Solely by looking at which input messages arrived currently and at the value of req_old,
it can be determined which outputs have been produced and whether a new entity has been
pushed into the queue. These actions are stored coded into the variables pushed and popped.
Therefore, and due to the fact that a possible output entity has not been popped from the queue
but only read, it later will be possible to withdraw those actions if necessary. How this works, is
depicted in Listing 4.31.
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1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 f l a g = ’ e ’ ;
3 s igma_n = INF ;
4 i f ( s igma != INF ) {
5 s igma_n = sigma−e ;
6 }
7 s igma_n_bk = sigma_n ;
8 i f ( s igma_n == 0) {
9 f l a g = ’ c ’ ;

10 }
11 i n _ a r r a y . c u r r e n t _ v a l u e s = 0 ;
12 }
13 DEVSMessage ∗ i npu t_msg = ( DEVSMessage ∗ ) x . v a l u e ;
14 i f ( input_msg−> r e t r i e v e == t r u e ) {
15 i n _ a r r a y . r e s t o r e B a c k u p A t ( x . p o r t ) ;
16 i f ( i n _ a r r a y . c u r r e n t _ v a l u e s == 0) {
17 i f ( f l a g == ’ c ’ ) {
18 f l a g = ’ i ’ ;
19 } e l s e i f ( f l a g == ’ e ’ ) {
20 f l a g = ’w’ ;
21 s igma_n = sigma_n_bk ;
22 }
23 s igma =0;
24 }
25 } e l s e {
26 i f ( f a l s e == i n _ a r r a y [ x . p o r t ] . i s E q u a l T o ( input_msg , t ) ) {
27 i n _ a r r a y . s e t A t b k ( x . p o r t , input_msg , t ) ;
28 i f ( f l a g == ’ i ’ ) {
29 f l a g = ’ c ’ ;
30 }
31 s igma = 0 ;
32 }
33 }

Listing 4.30: The PowerDEVS external transition function for the queue block example.

Listing 4.30 shows the external transition function of the queue model. Usually, when there is
an external event which does not alter the time to the next internal event or which is retrieved
again, the time sigma to the next internal event can be calculated as sigma - e. However,
if the time to the next internal event is infinity (INF = 1e20), then sigma stays infinity no
matter how big e is. Therefore, in such a case, the new value sigma_n for sigma cannot be
calculated by sigma-e, but needs to set to INF again (see line 3).

Further, compared to the external transition function in section 4.1.3.3 (Listing 4.18), there
is no backup of the old state in the external transition function anymore. As mentioned above,
this is now accomplished solely in the output function with the help of last_event_time.
The last difference to Listing 4.18 is the type of input_msg, which is now DEVSMessage*
instead of DEVSMessage.
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1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 f l a g = ’ i ’ ;
3 s igma = 0 ;
4 i n _ a r r a y . c u r r e n t _ v a l u e s = 0 ;
5 }
6 i f ( l a s t _ e v e n t _ t i m e < t ) { / / backup o l d s t a t e , a p p l y s t a t e changes
7 l a s t _ e v e n t _ t i m e = t ;
8 i f ( pushed == t r u e ) {
9 q . push_back ( ( E n t i t y ∗ ) ( i n _ a r r a y . t r e a t A t ( 1 )−>getCopy ( ) ) ) ;

10 }
11 i f ( popped == t r u e ) {
12 d e l e t e ( E n t i t y ∗ ) q . f r o n t ( ) ;
13 q . e r a s e ( q . b e g i n ( ) ) ;
14 }
15 r e q _ o l d = r e q ;
16 }
17 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s == 0 | | f l a g == ’w’ ) {
18 i f ( f l a g == ’ i ’ ) { / / c r e a t e o u t p u t s i f pu re i n t e r n a l e v e n t
19 / / t h i s c a s e s h o u l d n e v e r o c c u r
20 } e l s e i f ( f l a g == ’ e ’ | | f l a g == ’ c ’ ) {
21 i f ( i n _ a r r a y [ 0 ] . l a s t _ c h a n g e _ t i m e == t && i n _ a r r a y [ 1 ] . l a s t _ c h a n g e _ t i m e == t ) {
22 i f ( q . s i z e ( ) >0) {
23 o u t _ a r r a y . s e t A t ( 0 , ( DEVSMessage ∗ ) q . f r o n t ( ) , t ) ;
24 } e l s e {
25 o u t _ a r r a y . s e t A t ( 0 , i n _ a r r a y . t r e a t A t ( 1 ) , t ) ;
26 }
27 } e l s e i f ( i n _ a r r a y [ 0 ] . l a s t _ c h a n g e _ t i m e == t ) {
28 i f ( q . s i z e ( ) >0) {
29 o u t _ a r r a y . s e t A t ( 0 , ( DEVSMessage ∗ ) q . f r o n t ( ) , t ) ;
30 }
31 } e l s e i f ( i n _ a r r a y [ 1 ] . l a s t _ c h a n g e _ t i m e == t ) {
32 i f ( q . s i z e ( ) ==0 && r e q _ o l d == t r u e ) {
33 o u t _ a r r a y . s e t A t ( 0 , i n _ a r r a y . t r e a t A t ( 1 ) , t ) ;
34 } e l s e i f ( r e q _ o l d == t r u e ) {
35 o u t _ a r r a y . s e t A t ( 0 , ( DEVSMessage ∗ ) q . f r o n t ( ) , t ) ;
36 }
37 }
38 }
39 i f ( f l a g == ’w’ ) {
40 f l a g = ’ n ’ ;
41 }
42 f o r ( o u t p o r t =0 ; o u t p o r t < o u t _ a r r a y . s i z e ( ) ; o u t p o r t ++) {
43 i f ( o u t _ a r r a y [ o u t p o r t ] . a l r e a d y _ t r e a t e d == t r u e ) {
44 i f ( o u t _ a r r a y [ o u t p o r t ] . l a s t _ c h a n g e _ t i m e == t ) {
45 o u t _ a r r a y [ o u t p o r t ] . l a s t _ c h a n g e _ t i m e = t − 1 ;
46 o u t _ a r r a y [ o u t p o r t ] . msgPtr−> r e t r i e v e = t r u e ;
47 o u t _ a r r a y . s e t U n t r e a t e d A t ( o u t p o r t ) ;
48 } e l s e {
49 o u t _ a r r a y [ o u t p o r t ] . msgPtr−> r e t r i e v e = f a l s e ;
50 }
51 }
52 }
53 i n _ a r r a y . t r e a t A l l ( ) ;
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54 o u t p o r t = −1;
55 }
56 w h i l e ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s >0) {
57 o u t p o r t ++;
58 i f ( f a l s e == o u t _ a r r a y [ o u t p o r t ] . a l r e a d y _ t r e a t e d ) {
59 r e t u r n Event ( o u t _ a r r a y . t r e a t A t ( o u t p o r t ) , o u t p o r t ) ;
60 }
61 }
62 r e t u r n Event ( ) ;

Listing 4.31: The PowerDEVS output function for the queue block example.

Listing 4.31 shows the output function of the queue. In line 6 it is checked, whether this is the
first execution of the output function at the current instant of time. If it is, the old system state
is backed up and, in this case, the changes to the queue caused by the last event are conducted.
This is done here, because time already advanced since the last event and therefore the changes
cannot be withdrawn anymore.

The most interesting part ranges from line 17 to 38, representing λ. Here, depending on the
current input messages, an entity from the queue or directly from the input is output.

In the for loop starting in line 42 the output buffer is searched through for outputs that need
to be retrieved.

The while loop at the end of the code again carries out the outputting of created output
messages.

1 f o r ( i n t i =0 ; i <q . s i z e ( ) ; i ++) {
2 d e l e t e ( E n t i t y ∗ ) q . f r o n t ( ) ;
3 }

Listing 4.32: The PowerDEVS exit function for the queue block example.

Listing 4.32 shows the exit function of the queue model, which is used for the first time here.
It is needed, because the queue stores pointers to instances that were created using the method
getCopy() which allocates new memory to store those instances. This memory needs to be
freed again somewhere. This is done either after an entity has been popped from the queue, in
the output function (line 12), or it is done in the exit function for the entities that are left in the
queue at the end of the simulation.

4.2.2 Downwards Compatibility

Using the member variable void* value of the class Event (Listing 4.20) any imaginable
object can be transmitted from one PowerDEVS block to another. However, in section 4.2.1
it is demanded that every message is an instance of the class DEVSMessage or of a derived
class. All the already existing PowerDEVS library blocks though, of course do not use the class
DEVSMessage as it did not exist when they were programmed. Now the question arises, if it
is possible to reprogram the class Event in a way that every message is an object of a class
derived from DEVSMessage and still, all the existing library blocks continue to work.
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4.2.2.1 Problem Identification

As already mentioned in the introduction of section 4.2, most of the library blocks use double
arrays of size ten to communicate. This is because most of the signals are QSS signals and the
entries of the arrays represent the coefficients of the Taylor polynomials. Further, in the library
for vectorial signals, instances of the class vector (see Listing 4.21) are used. They simply
again consist of a double array of size ten and additionally of an integer giving the index of
the vectorial signal the instance of vector is representing.

So in diverse library blocks the following lines of code can be found in the external transition
function and in the output function:

1 do ub l e y [ 1 0 ] ;
2 v e c t o r v ;
3 / / i n t h e o u t p u t f u n c t i o n :
4 r e t u r n Event ( y , p o r t ) ;
5 / / o r
6 r e t u r n Event (&y , p o r t ) ;
7 / / o r
8 r e t u r n Event (&v , p o r t ) ;
9

10 / / and i n t h e e x t e r n t r a n s i t i o n f u n c t i o n :
11 do ub l e ∗xy = ( do ub l e ∗ ) x . v a l u e ;
12 v e c t o r vec = ∗ ( v e c t o r ∗ ) x . v a l u e ;

Listing 4.33: Usage of the void pointer of the class Event in diverse PowerDEVS library
blocks.

Thereby, all combinations of lines with return in it with lines with x.value in it occur. That
is, on the one hande double[] and double* are type cast to vector* and the result is
even dereferenced, and on the other hand vector* is type cast to double*. The reason for
this working at all is the simple structure of the class vector and, of course, the fact that its
first member variable is also a double array of size ten. However, as soon as there are some
member functions added to class vector the casts do not work anymore.

Moreover, the class Event possesses the member functions depicted in Listing 4.34.

1 Event ( ) {
2 v a l u e = 0 ;
3 mode = NOREALTIME;
4 i n t e r r u p t e d = 0 ;
5 p o r t = 0 ;
6 }
7 Event ( vo id ∗ va l , P o r t p ) {
8 v a l u e = v a l ;
9 mode = NOREALTIME;

10 i n t e r r u p t e d = 0 ;
11 p o r t =p ;
12 }
13 vo id s e t N u l l E v e n t ( ) { v a l u e =0; p o r t =0 ; }
14 boo l i s N o t N u l l ( ) {
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15 boo l s t a t e ;
16 i f ( v a l u e ==0) { s t a t e = f a l s e ; } e l s e { s t a t e = t r u e ; } ;
17 r e t u r n s t a t e ;
18 }
19 do ub l e ge tDoub le ( i n t i ) { r e t u r n ( ( d ou b l e ∗ ) v a l u e ) [ i ] ; }
20 do ub l e ge tDoub le ( ) { r e t u r n ge tDoub le ( 0 ) ; }
21 do ub l e g e t I n t ( ) { r e t u r n ( ( i n t ∗ ) v a l u e ) [ 0 ] ; }
22 vo id s e t D o u b l e ( d oub l e &v ) { v a l u e=&v ; }
23 vo id s e t I n t ( i n t &v ) { v a l u e=&v ; }

Listing 4.34: Member functions of the class Event that access its member variable void

*value.

As it can be seen, the class Event offers methods to set value to a pointer of type void*,
int*, and double* as well as the method setNullEvent(), where value is set to zero
(type int). Further, there are the methods getDouble(int i) and getInt() which type
cast value to double* and int* respectively. Finally, value is compared to zero in line
16.

So if the attribute void* value of Event was replaced by DEVSMessage* value,
to ensure compatibility, it would have to be taken care of all these accesses to value still to
be working. The problem is that it is not possible to control the behaviour of a pointer variable
when it is type casted. However, it is possible for instances of a class.

4.2.2.2 Solution Approach

The Class ValuePointer. The idea is now to exchange the the member variable
void *value of Entity for a non-pointer variable ValuePointer value of a cus-
tom type ValuePointer which is specially designed for making Event and all the Pow-
erDEVS library blocks believe that value is still of type void*. The definition of the class
ValuePointer is depicted in Listing A.2 which is, due its length, located in the appendix
along with some other classes that will be explained in this section.

The class ValuePointer possesses a member variable DEVSMessage *msgPtrwhich
is used for storing the actual message. Further, the type cast operators (void*),(int*), and
(double*) are overloaded for ValuePointer objects as well as the comparison operator
== for comparisons with int. The latter one actually is only defined for comparisons with
zero. Finally also the assignment operator = is overloaded for assignments with void*, int*,
double*, and int variables and, of course, for assignments with ValuePointer objects,
as instances of Event are copied during the process of handing on messages from one block to
another.

Furthermore, also the casts of ValuePointer objects to objects of type DEVSMessage*
are generically overloaded to return the according type cast applied onto the member variable
msgPtr instead. Due to this, in the external transition function x.value still can be treated
as it were of type DEVSMessage*.

However, there is one type cast that needs to be handled separately, the cast to vector*
when ValuePointer value formerly was assigned with a double array. In such a case,
the solution is to create a new instance of vector, assign its double array with the array that
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was formerly assigned to ValuePointer value and return the address to this newly created
instance of vector. For this purpose, the class ValuePointer needs a second member
variable to store that instance of type vector which is created inside the type cast overload
member function.

Additionally there is one special case to be considered concerning the assignment opera-
tors. The assignment of double* variables has been mentioned already, but there are also
the assignments of the form shown in line 6 in Listing 4.33, where the address &y of an array
double y[10] is assigned to ValuePointer value. In this case, the type of &y is not
double* but even depends on the size of the array. The concrete handling of this case can be
seen in the source code (Listing A.2), although it is kind of not elegant. With the use of the C++
library type_traits a more elegant solution would be possible, however, this requires the
compiler flag -c++ to be set, which is not done in the make-file PowerDEVS uses.

The Class DEVSMessage. In the preceding paragraph it is mentioned that a set of type
cast and assignment operators for objects of type ValuePointer need to be overloaded, but
it is not mentioned how to overload them. The idea concerning this matter is to let the class
DEVSMessage and its derived classes define how to handle the type casts and the assign-
ments. Therefore, the interface of the class DEVSMessage, consisting of methods defined as
virtual is extended to the set of methods depicted in Listing 4.35.

1 / / used f o r t h e type−c a s t s
2 v i r t u a l vo id ∗ g e t V o i d P t r ( ) { r e t u r n v a l u e ; }
3 v i r t u a l do ub l e ∗ g e t D o u b l e P t r ( ) { r e t u r n ( ( do ub l e ∗ ) v a l u e ) ; }
4 v i r t u a l i n t ∗ g e t I n t P t r ( ) { r e t u r n ( ( i n t ∗ ) v a l u e ) ; }
5

6 / / used f o r t h e a s s i g n m e n t o p e r a t o r s
7 v i r t u a l vo id s e t ( vo id ∗ p t r ) { v a l u e = p t r ; }
8 v i r t u a l vo id s e t ( do ub l e ∗ p t r ) { v a l u e =( d ou b l e ∗ ) p t r ; }
9 v i r t u a l vo id s e t ( i n t ∗ p t r ) { v a l u e =( i n t ∗ ) p t r ; }

10

11 / / n e c e s s a r y f o r t h e method ’ i s E q u a l T o ’ o f t h e c l a s s ’ I n O u t p u t ’
12 v i r t u a l boo l o p e r a t o r ==(DEVSMessage& msg ) {
13 i f ( t h i s −>i n d e x != msg . i n d e x ) r e t u r n ( f a l s e ) ;
14 r e t u r n ( t h i s −>v a l u e ==msg . v a l u e ) ;
15 }
16 v i r t u a l boo l o p e r a t o r ! = ( DEVSMessage &msg ) {
17 r e t u r n ( ! ( ( ∗ t h i s ) ==msg ) ) ;
18 }

Listing 4.35: As virtual marked interface of the class DEVSMessage.

The whole definition of the class DEVSMessage can be seen in Listing A.3 in the appendix.
The get...-methods are called by ValuePointer in the corresponding type-cast overloads.
The set...-methods are called by ValuePointer in the corresponding assignment over-
loads. These methods access the member variable value of DEVSMessage that has not been
defined so far. However, in Listing A.3 it is defined and its purpose is exactly to predefine
the behaviour of the type cast and assignment operators. Further, DEVSMessage now still
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can be used to transmit addresses of arbitrary objects by using its member variable value of
type void*. The third attribute that DEVSMessage is equipped with now, is int index.
index simply is used for giving the index when the regarded DEVSMessage instance is part
of a vectorial signal, the same way it has been done in the class vector so far.

The Class QSSDoubleArray. As most of the PowerDEVS library blocks work with double
arrays, a class derived from DEVSMessage is needed to store and manage those double
arrays. For this purpose the class QSSDoubleArray is defined (see Listing A.4). It uses the
void* pointer value of its base class to store a double array whose size may differ from ten
and therefore is stored in the member variable uint size. As the memory to store the array is
allocated dynamically, the member variable bool allocated_memory is needed to know
whether there is memory to be freed before the array is reassigned and in the destructor of the
class.

Moreover, QSSDoubleArray implements a bunch of methods that are intended to facili-
tate the handling of the double array, particularly in the case when it describes a QSS signal.
Among those methods are an overload of the [.]-operator to be able to access the array entries
directly as well as overloads for the operators +, -, *, /. Thereby, these operations are conducted
as operations on polynomials with the array entries representing the coefficients of polynomi-
als. Furthermore, a member function called advance_time is implemented. As explained in
section 2.2, QSS signals in form of polynomials are Taylor polynomials of the described signal
with a concrete expansion point in time. In PowerDEVS, when such a polynomial is received,
it is always assumed that the expansion point is the time of reception. Therefore, from time to
time in PowerDEVS it is necessary to shift the expansion point of a polynomial from a former
point in time to the current one. This is, what advance_time can be used for. As argument it
expects the distance in time from the old expansion point of the polynomial currently stored in
the instance of QSSDoubleArray to the new expansion point (mostly the current time). For
more details, it is referred to the source code (Listing A.4).

The Class vector. As the original class vector (see Listing 4.21) is not derived from
DEVSMessage it has to be redefined as well (see Listing A.5). Since vector is supposed to
store only two variables, a double array double value[10] and an integer int index
for the index of the vector entry that is represented, actually the class QSSDoubleArray al-
ready fulfils everything demanded. However, in PowerDEVS library blocks entries of the double
array are accessed in the way it is depicted in Listing 4.36.

1 v e c t o r v= ∗ ( v e c t o r ∗ ) x . v a l u e ;
2 v . v a l u e [ 0 ] = 0 ;

Listing 4.36: The way entries of the double array of instances of the class vector are
accessed.

However, the member variable value of vector(inherited from DEVSMessage) is of type
void* and therefore the [.]-operator would not return the right thing when applied to value
without casting it to double before.
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That is why the member variable value is redefined in the class vector. If it simply
would be redefined as double* pointer all the methods of the base class QSSDoubleArray
would become worthless for vector as they would alter the attribute value of the base class
DEVSMessage. To solve that problem, the same principle is applied that was used to make
the class Event believe that its member variable value still is of type void*. A mem-
ber variable named value of type ValueDuplicate is defined. ValueDuplicate sim-
ply stores a pointer to an instance of QSSDoubleArray and overloads the cast operations
(void*), (int*), and (double*) as well as the operator [.]. As the class vector is
derived from the class QSSDoubleArray, an instance of vector also represents an instance
of QSSDoubleArray. Thus, for each instance of type vector the QSSDoubleArray*
pointer of its attribute value points to the QSSDoubleArray instance of the vector in-
stance itself. For more details it is referred to the source code (Listing A.5) again.

4.3 Atomic PDEVS Block

In this section a source code template, named Atomic PDEVS, for programming an atomic Pow-
erDEVS block with the features developed in in the sections 4.1 and 4.2 will be presented. So
far, all given examples worked with scalar input and output ports. In general though also vec-
torial ports should be allowed. To achieve that, the class InOutputVector that was used to
describe the whole input and output interface of a block is now used to describe only a single
port. For the description of a whole interface a new class InOutputArray is introduced (List-
ing 4.37) which is derived from std:vector<InOutputVector>. That is, the same way
an instance of InOutputVector is an array of instances of InOutput, InOutputArray
is an array of instances of InOutputVector.

1 c l a s s I n O u t p u t A r r a y : p u b l i c s t d : : v e c t o r < I n O u t p u t V e c t o r > {
2 p u b l i c :
3 u i n t u n t r e a t e d _ e n t r y _ c h a n g e s ;
4 i n t c u r r e n t _ v a l u e s ;
5

6 p u b l i c :
7 I n O u t p u t A r r a y ( ) { u n t r e a t e d _ e n t r y _ c h a n g e s =0;}
8

9 vo id s e t A t ( i n t r , i n t c , DEVSMessage ∗msg , do ub l e t ) {
10 i f ( t r u e ==(∗ t h i s ) [ r ] [ c ] . a l r e a d y _ t r e a t e d ) {
11 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
12 }
13 i f ( ( ∗ t h i s ) [ r ] [ c ] . l a s t _ c h a n g e _ t i m e < t ) {
14 c u r r e n t _ v a l u e s ++;
15 }
16 (∗ t h i s ) [ r ] . s e t A t ( c , msg , t ) ;
17 (∗ t h i s ) [ r ] [ c ] . i n d e x = c ;
18 }
19 vo id l i n k T o A t ( u i n t r , u i n t c , DEVSMessage ∗msg , do ub l e t ) {
20 i f ( f a l s e != (∗ t h i s ) [ r ] [ c ] . a l r e a d y _ t r e a t e d ) {
21 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
22 }
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23 (∗ t h i s ) [ r ] . l i n k To A t ( c , msg , t ) ;
24 (∗ t h i s ) [ r ] [ c ] . i n d e x = c ;
25 }
26 vo id s e t A t b k ( i n t r , i n t c , DEVSMessage ∗msg , do ub l e t ) {
27 i f ( t r u e ==(∗ t h i s ) [ r ] [ c ] . a l r e a d y _ t r e a t e d ) {
28 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
29 }
30 i f ( ( ∗ t h i s ) [ r ] [ c ] . l a s t _ c h a n g e _ t i m e < t ) {
31 c u r r e n t _ v a l u e s ++;
32 }
33 (∗ t h i s ) [ r ] . s e t A t b k ( c , msg , t ) ;
34 (∗ t h i s ) [ r ] [ c ] . i n d e x = c ;
35 }
36 vo id r e s t o r e B a c k u p A t ( i n t r , i n t c ) {
37 i f ( f a l s e ==(∗ t h i s ) [ r ] [ c ] . a l r e a d y _ t r e a t e d ) {
38 u n t r e a t e d _ e n t r y _ c h a n g e s −−;
39 }
40 i f ( ( ∗ t h i s ) [ r ] [ c ] . l a s t _ c h a n g e _ t i m e _ b k < (∗ t h i s ) [ r ] [ c ] . l a s t _ c h a n g e _ t i m e )

{
41 c u r r e n t _ v a l u e s −−;
42 }
43 (∗ t h i s ) [ r ] . r e s t o r e B a c k u p A t ( c ) ;
44 }
45 DEVSMessage∗ t r e a t A t ( i n t r , i n t c ) {
46 i f ( f a l s e ==(∗ t h i s ) [ r ] [ c ] . a l r e a d y _ t r e a t e d ) {
47 u n t r e a t e d _ e n t r y _ c h a n g e s −−;
48 }
49 r e t u r n ( ( ∗ t h i s ) [ r ] . t r e a t A t ( c ) ) ;
50 }
51 vo id t r e a t A l l ( ) {
52 f o r ( i n t i =0 ; i < t h i s −> s i z e ( ) ; i ++) {
53 (∗ t h i s ) [ i ] . t r e a t A l l ( ) ;
54 }
55 u n t r e a t e d _ e n t r y _ c h a n g e s =0;
56 }
57 vo id s e t U n t r e a t e d A t ( i n t r , i n t c ) {
58 i f ( f a l s e != (∗ t h i s ) [ r ] [ c ] . a l r e a d y _ t r e a t e d ) {
59 u n t r e a t e d _ e n t r y _ c h a n g e s ++;
60 }
61 (∗ t h i s ) [ r ] . s e t U n t r e a t e d A t ( c ) ;
62 }
63 } ;

Listing 4.37: The Defintion of the class InOutputArray which is used to represent the
input and output interface of a block with vectorial input and output ports.

The working principle of InOutputArray is exactly the same as the one of InOutputVector
(see Listing 4.26). Therefore, all member variables and member functions are already known
and will not be explained here again.

Figure 4.4 shows the Atomic PDEVS block in the PowerDEVS model editor with its Param-
eters dialogue opened. The parameters to be entered are the number of input and output ports as
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well as their dimensions and three example parameters demonstrating the user how to read their
values in the init function.

1 I n O u t p u t A r r a y i n _ a r r a y ; / / i n p u t messages
2 I n O u t p u t A r r a y o u t _ a r r a y ;
3 do ub l e sigma , sigma_n , s igma_n_bk ;
4 do ub l e l a s t _ e v e n t _ t i m e ;
5 c h a r f l a g ; / / p o s s i b l e v a l u e s : ’ i ’ , ’ e ’ , ’ c ’ , ’ n ’ , ’w’
6 i n t o u t p o r t , o u t i n d e x ;
7 # d e f i n e INF 1 e20
8 / / m o d e l l e r ’ s i n p u t a r e a :
9 / / d e f i n e i n t e r n a l s t a t e s o f t h e DEVS

10 / / d e f i n e backup s _ o l d f o r t h e i n t e r n a l s t a t e s
11 / / d e f i n e model p a r a m e t e r s and a u x i l i a r y v a r i a b l e s , e . g . :
12 do ub l e Par1 ;
13 i n t Par2 ;
14 s t d : : s t r i n g Aux1 ;

Listing 4.38: The PowerDEVS definitions area for the generic Atomic PDEVS block.

Figure 4.4: The Parameters dialogue of the Atomic PDEVS PowerDEVS block.
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Listing 4.38 shows the defintions area of the Atomic PDEVS block. As it can be seen, input
and output buffer are now variables of type InOutputArray instead of InOutputVector.
Further, there is the variable int outindex which is also new compared to definitions area
of the queue example in section 4.2.1 (Listing 4.27). Since the output ports are vectorial, in the
while loop at the end of the output function (Listing 4.42) not only a port counter outport,
but also an index counter outindex is needed.

The last three variables Par1, Par2, and Aux1 are used to store the values of example
block parameter ‘Parameter1’, ‘Parameter2’, and ‘Parameter3’ that can be seen in Figure 4.4. In
their place the definition of model specific state variables, of model parameters, and of auxiliary
variables should be entered by the modeller who uses this template to design a custom Pow-
erDEVS block.

1 i n t n _ i n p o r t s = ( i n t ) va _a r g ( p a r a m e t e r s , do ub l e ) ;
2 i n t n _ o u t p o r t s = ( i n t ) va _a r g ( p a r a m e t e r s , do ub l e ) ;
3 i n _ a r r a y . r e s i z e ( n _ i n p o r t s ) ;
4 o u t _ a r r a y . r e s i z e ( n _ o u t p o r t s ) ;
5 s t d : : s t r i n g p a r _ v a r = s t d : : s t r i n g ( ( c h a r ∗ ) v a_ a rg ( p a r a m e t e r s , c h a r ∗ ) ) ;
6 s t d : : s t r i n g l e n g t h _ s t r ( " l e n g t h ( " + p a r _ v a r + " ) " ) ;
7 i n t l e n g t h = ( i n t ) g e t S c i l a b V a r (& l e n g t h _ s t r [ 0 ] ) ;
8 do ub l e ∗ v e c _ s i z e _ d = ( do ub l e ∗ ) m a l l oc ( l e n g t h ∗ s i z e o f ( d ou b l e ) ) ;
9 g e t S c i l a b V e c t o r (& p a r _ v a r [ 0 ] , &l e n g t h , v e c _ s i z e _ d ) ;

10 i n t k =0;
11 f o r ( i n t i =0 ; i < n _ i n p o r t s ; i ++) {
12 i f ( k== l e n g t h ) k =0;
13 i n _ a r r a y [ i ] . r e s i z e ( ( i n t ) v e c _ s i z e _ d [ k ] ) ;
14 k ++;
15 }
16 f r e e ( v e c _ s i z e _ d ) ;
17 p a r _ v a r = s t d : : s t r i n g ( ( c h a r ∗ ) v a_ a rg ( p a r a m e t e r s , c h a r ∗ ) ) ;
18 l e n g t h _ s t r = s t d : : s t r i n g ( " l e n g t h ( " + p a r _ v a r + " ) " ) ;
19 l e n g t h = ( i n t ) g e t S c i l a b V a r (& l e n g t h _ s t r [ 0 ] ) ;
20 v e c _ s i z e _ d = ( do ub l e ∗ ) m a l l oc ( l e n g t h ∗ s i z e o f ( d ou b l e ) ) ;
21 g e t S c i l a b V e c t o r (& p a r _ v a r [ 0 ] , &l e n g t h , v e c _ s i z e _ d ) ;
22 k =0;
23 f o r ( i n t i =0 ; i < n _ o u t p o r t s ; i ++) {
24 i f ( k== l e n g t h ) k =0;
25 o u t _ a r r a y [ i ] . r e s i z e ( ( i n t ) v e c _ s i z e _ d [ k ] ) ;
26 k ++;
27 }
28 f r e e ( v e c _ s i z e _ d ) ;
29 s igma = INF ;
30 s igma_n = INF ;
31 l a s t _ e v e n t _ t i m e = −1;
32 f l a g = ’ n ’ ;
33 o u t p o r t = −1;
34 o u t i n d e x = 0 ;
35 / / m o d e l l e r ’ s i n p u t a r e a
36 / / i n i t i a l i z e s t a t e s
37 / / r e a d custom p a r a m e t e r s , f o r example :
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38 c h a r ∗ f v a r = va _a rg ( p a r a m e t e r s , c h a r ∗ ) ;
39 Par1 = ( d oub l e ) g e t S c i l a b V a r ( f v a r ) ;
40 f v a r = va _a r g ( p a r a m e t e r s , c h a r ∗ ) ;
41 Par2 = ( i n t ) g e t S c i l a b V a r ( f v a r ) ;
42 Aux1 = s t d : : s t r i n g ( v a_ a r g ( p a r a m e t e r s , c h a r ∗ ) ) ;

Listing 4.39: The PowerDEVS init function for the generic Atomic PDEVS block.

Listing 4.39 shows the init function of the Atomic PDEVS block. In the first two lines the num-
ber of input and output ports are read from the list parameters which contains all the param-
eter values that have been entered in the Parameters dialogue. Then the input and output buffers
are resized accordingly. The next parameter to be read from parameters is a vector of the
form [d1, d2, . . . , dn] stored as c-string, where n denotes the number of input ports and di denotes
the dimension of the i-th input port. To transform this c-string into a double array, it is sent
to Scilab in order to be interpreted there. For this purpose the function getScilabVector in
line 9 is called. However, this function needs to know the dimension of the vector in advance.
Therefore, in line 6 a string of the form length([d1, d2, . . . , dn]) is created which is then also
interpreted by Scilab using the command getScilabVar which returns the dimension n of
the vector. Having the vector’s dimension, it can be transformed into a double array and stored
in vec_size_d. Notice that Scilab does not only transform the vector from its c-string form
into a double array but also interprets any arithmetic expressions that appear in the c-string
vector.

After reading the dimensions of input ports from the parameters list, the corresponding
entries of in_array, which are instances of InOutputVector, are resized accordingly. If
the size of the vector entered as parameter is smaller than the number of input ports, the vector
simply is repeated periodically until all input port dimensions are configured. Thus, when all
input ports have the same dimension d, it suffices to enter [d] in the Parameters dialogue.

After the sizes of the input ports are read and assigned, exactly the same is done for the
output ports in the lines 17 to 28.

The last thing that is new compared to former presented init functions are the last five lines of
code. They simply perform the reading of the example parameter values out of parameters,
interpret them in Scilab and store the results in the corresponding variables. This again is the
place, where the modeller using the Atomic PDEVS template is supposed to enter state and
parameter initialisations.

1 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s ==0 && i n _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s
==0) {

2 i f ( f l a g == ’ i ’ ) {
3 / / m o d e l l e r ’ s i n p u t a r e a :
4 / / s = d e l t a _ i n t ( s _ o l d )
5 / / s igma_n = . . . ;
6 } e l s e i f ( f l a g == ’ e ’ ) {
7 / / m o d e l l e r ’ s i n p u t a r e a :
8 / / s = d e l t a _ e x t ( s_o ld , i n _ a r r a y )
9 / / s igma_n = . . . ;

10 } e l s e i f ( f l a g == ’ c ’ ) {
11 / / m o d e l l e r ’ s i n p u t a r e a :
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12 / / s = d e l t a _ c o n f ( s_o ld , i n _ a r r a y )
13 / / s igma_n = . . . ;
14 } i f ( f l a g == ’ n ’ ) {
15 / / m o d e l l e r ’ s i n p u t a r e a :
16 / / r e s t o r e o l d s t a t e : s = s _ o l d ;
17 s igma_n = sigma_n_bk ;
18 }
19 s igma = sigma_n ;
20 }

Listing 4.40: The PowerDEVS internal transition function for the generic Atomic PDEVS
block.

Listing 4.40 shows the internal transition function. The working principle is exactly the same as
it was in the queue example in section 4.2.1. For each case flag==i, flag==e and flag==c
the modeller has to fill in the source code describing the corresponding δ function and the state
changes it calculates. To check whether has been received at a specific input port port with a
specific index index the statement
if(in_array[port][index].last_change_time==t) can be used. To access the
received message which for example is of type QSSDoubleArray a statement of the form
QSSDoubleArray da=(QSSDoubleArray*)in_array.treatAt(port,index);
can be used. da then stores the arrived double array whose i-th entry can simply be accessed
by da[i].

In any case, somewhere in each δ function also the time to the next internal transition has to
be calculated and stored in simga_n. In case of δext though, if simga_n is not assigned with
any new value, the time of the next internal event will simply stay the same that it was before
the external transition occurred.

1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 f l a g = ’ e ’ ;
3 s igma_n = INF ;
4 i f ( s igma != INF ) {
5 s igma_n = sigma−e ;
6 }
7 s igma_n_bk = sigma_n ;
8 i f ( s igma_n == 0) {
9 f l a g = ’ c ’ ;

10 }
11 i n _ a r r a y . c u r r e n t _ v a l u e s = 0 ;
12 }
13 DEVSMessage ∗ i npu t_msg = ( DEVSMessage ∗ ) x . v a l u e ;
14 i f ( input_msg−> r e t r i e v e == t r u e ) {
15 i n _ a r r a y . r e s t o r e B a c k u p A t ( x . p o r t , input_msg−>i n d e x ) ;
16 i f ( i n _ a r r a y . c u r r e n t _ v a l u e s == 0) {
17 i f ( f l a g == ’ c ’ ) {
18 f l a g = ’ i ’ ;
19 } e l s e i f ( f l a g == ’ e ’ ) {
20 f l a g = ’w’ ;
21 }
22 s igma =0;
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23 }
24 } e l s e {
25 i f ( f a l s e == i n _ a r r a y [ x . p o r t ] [ input_msg−>i n d e x ] . i s E q u a l T o ( input_msg , t ) ) {
26 i n _ a r r a y . s e t A t b k ( x . p o r t , input_msg−>index , input_msg , t ) ;
27 i f ( f l a g == ’ i ’ ) {
28 f l a g = ’ c ’ ;
29 }
30 s igma = 0 ;
31 }
32 }

Listing 4.41: The PowerDEVS external transition function for the generic Atomic PDEVS
block.

Listing 4.41 shows the external transition function of the Atomic PDEVS block. Apart from the
fact that beside the input port, now also the index at which an input message arrived has to be
considered, there is nothing new here.

For the modeller using the Atomic PDEVS block as template, there is also nothing to be
changed in the external transition function.

1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 f l a g = ’ i ’ ;
3 s igma = 0 ;
4 i n _ a r r a y . c u r r e n t _ v a l u e s = 0 ;
5 }
6 i f ( l a s t _ e v e n t _ t i m e < t ) { / / backup o l d s t a t e , a p p l y s t a t e changes
7 l a s t _ e v e n t _ t i m e = t ;
8 / / m o d e l l e r ’ s i n p u t a r e a
9 / / backup s t a t e h e r e : s _ o l d = s ;

10 }
11 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s == 0 | | f l a g == ’w’ ) {
12 i f ( f l a g == ’ i ’ ) {
13 / / m o d e l l e r ’ s i n p u t a r e a :
14 / / c r e a t e o u t p u t s i n c a s e o f a pu re i n t e r n a l e v e n t
15 / / o u t _ a r r a y = l a m b d a _ i n t ( s _ o l d )
16 / / u se method o u t _ a r r a y . s e t A t ( i n t p o r t , i n t index , DEVSMessage ∗ va lue ,

do ub l e t ime ) ;
17 } e l s e i f ( f l a g == ’ e ’ ) {
18 / / m o d e l l e r ’ s i n p u t a r e a :
19 / / c r e a t e o u t p u t s i n c a s e o f a pu re e x t e r n a l e v e n t
20 / / o u t _ a r r a y = lambda_ex t ( s_o ld , i n _ a r r a y )
21 / / u se method o u t _ a r r a y . s e t A t ( i n t p o r t , i n t index , DEVSMessage ∗ va lue ,

do ub l e t ime ) ;
22 } e l s e i f ( f l a g == ’ c ’ ) {
23 / / m o d e l l e r ’ s i n p u t a r e a :
24 / / c r e a t e o u t p u t s i n c a s e o f a c o n f l u e n t e v e n t
25 / / o u t _ a r r a y = lambda_conf ( s_o ld , i n _ a r r a y )
26 / / u se method o u t _ a r r a y . s e t A t ( i n t p o r t , i n t index , DEVSMessage ∗ va lue ,

do ub l e t ime ) ;
27 }
28 i f ( f l a g == ’w’ ) {



4.3. ATOMIC PDEVS BLOCK 99

29 f l a g = ’ n ’ ;
30 }
31 f o r ( o u t p o r t =0 ; o u t p o r t < o u t _ a r r a y . s i z e ( ) ; o u t p o r t ++) {
32 f o r ( o u t i n d e x =0; o u t i n d e x < o u t _ a r r a y [ o u t p o r t ] . s i z e ( ) ; o u t i n d e x ++) {
33 i f ( o u t _ a r r a y [ o u t p o r t ] [ o u t i n d e x ] . a l r e a d y _ t r e a t e d == t r u e ) {
34 i f ( o u t _ a r r a y [ o u t p o r t ] [ o u t i n d e x ] . l a s t _ c h a n g e _ t i m e == t ) {
35 o u t _ a r r a y [ o u t p o r t ] [ o u t i n d e x ] . l a s t _ c h a n g e _ t i m e = t − 1 ;
36 o u t _ a r r a y [ o u t p o r t ] [ o u t i n d e x ] . msgPtr−> r e t r i e v e = t r u e ;
37 o u t _ a r r a y . s e t U n t r e a t e d A t ( o u t p o r t , o u t i n d e x ) ;
38 } e l s e {
39 o u t _ a r r a y [ o u t p o r t ] [ o u t i n d e x ] . msgPtr−> r e t r i e v e = f a l s e ;
40 }
41 }
42 }
43 }
44 i n _ a r r a y . t r e a t A l l ( ) ;
45 o u t p o r t = −1;
46 o u t i n d e x = −1;
47 }
48 w h i l e ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s >0) {
49 o u t p o r t ++;
50 w h i l e ( o u t _ a r r a y [ o u t p o r t ] . u n t r e a t e d _ e n t r y _ c h a n g e s >0) {
51 o u t i n d e x ++;
52 i f ( f a l s e == o u t _ a r r a y [ o u t p o r t ] [ o u t i n d e x ] . a l r e a d y _ t r e a t e d ) {
53 r e t u r n Event ( o u t _ a r r a y . t r e a t A t ( o u t p o r t , o u t i n d e x ) , o u t p o r t ) ;
54 }
55 }
56 o u t i n d e x =−1;
57 }
58 r e t u r n Event ( ) ;

Listing 4.42: The PowerDEVS output function for the generic Atomic PDEVS block.

Listing 4.42 shows the output function of the Atomic PDEVS block. Its structure is again the
same as it has already been in the queue example in section 4.2.1. The only difference is that the
for loop (line 31) being responsible for marking retrieve outputs, as well as the while loop (line
48) being responsible for outputting of pending output messages, are each realised as double
loops. This is because now not only the output ports have to be iterated but also their indices.

There are two areas where the modeller has to insert code. The first is the place where all
defined state variables have to be backed up at the very beginning of every event treatment in
line 9. The second area consists of three subareas for the three cases flag==’i’ (pure internal
event), flag==’e’ (pure external event), and flag==’c’ (confluent event) for which λ has
to be calculated (see lines 12 to 27).

It is very important to use the backup values of the state, made in line 9, for the calculation
of the output messages and also for the calculation of the new state in the internal transition
function. Otherwise, if due to feedback a recalculation becomes necessary, a state inconsistency
would be the consequence. To give an example, Listing 4.43 shows how to cause an output of
the double value 3.1415 with index 3 at output port 1.
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1 QSSDoubleArray da ( 3 . 1 4 1 5 ) ;
2 o u t _ a r r a y . s e t A t (1 ,3 ,& da , t ) ;

Listing 4.43: An example of how to create an output message with index 3 at output port 1
of the Atomic PDEVS block.



CHAPTER 5
Implementation of DEV&DESS

Models

5.1 Motivation

In the BaMa project a formalism is needed to describe hybrid system models simulator indepen-
dently. For this purpose DEV&DESS is perfectly suited. For a better understanding a particular
example of a baking oven depicted in Figure 5.1 is given. The goal is to model the following

Figure 5.1: Illustration of the hybrid baking oven example. Pastes enter the oven, start a
sequence of processes in it, and finally leave the oven as bread.

behaviour of the oven:

101
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p=0: When there is currently no paste in the oven, the process phase p is zero.

p=1: As soon as a paste entity arrives at the first input port, the oven switches into phase p =
1, where it remains for the time τ1. Each arriving paste posseses, among others, the
attribute temperature Tx. While the baking oven resides in phase one, there is a heat
exchange taking place between the paste with initial temperature Tx and the environment
with temperature Te.

p=2: After the period τ1 has elapsed, the baking phase p = 2 is started. During the baking phase
a constant amount of power P to heat the oven is consumed. This power is afflicted with a
certain amount of CO2 per Watt and second ρCO2 (CO2 density) which has been released
into the atmosphere while generating it. Similarly, the power consumption also produces
costs C per Watt and second ρC . During the baking phase, the amount of produced CO2

and costs C is calculated by integrating the two terms ρCO2 · P and ρC · P over time.
Further, it is assumed that all the power being consumed directly flows into the heating
of the paste and thus leads to a rise of the paste’s temperature T . The baking phase is
finished as soon as the temperature T reaches a certain threshold Tb.

p=3: After the baking phase is over, the phase p = 3 is entered and kept for the duration τ3.
During that phase the bread exchanges heat with the environment again.

p=4: After τ3 the bread entity with increased values of CO2 and costs C ,and with a changed
value of its temperature T is output and the oven switches back into phase zero.

The heat exchange between the paste/bread and the environment in process phases one and three
is described by the following differential equation:

Ṫ (t) =
d

dt
T (t) =

U · (T (t)− Te)
m · cp

(5.1)

where U (thermal transmittance) and cp (heat capacity) denote thermal parameters.
As in the BaMa project the energy consumption of a whole factory is of interest, it is impor-

tant to take the heat loss of an oven to its environment, which is possibly air-conditioned, into
account. This is what the output Plh is for. Further, the CO2 density of the delivered energy
may depend on the overall energy consumption of the factory, for example if a part of it can
be covered by a photovoltaic facility. Therefore, each power consuming device has to report
its current power demands. For this purpose the output Pd of the baking oven is used. When
everything works fine, the power P delivered should be equal to the power Pd demanded.

A DEV&DESS formulation of the baking oven model looks like the following:

Xdiscr = Y discr = R+
0 × R× R+

0 × R+
0

Xcont = R+
0 × R+

0 × R+
0 × R

Y cont = R+
0 × R+

0 × R+
0 × R

Sdiscr = {0, 1, 2, 3} × R+
0

Scont = R+
0 × R+

0 × R
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In the following, arriving entities [mx, Tx, CO2x, Cx] will be referred to as xd and leaving en-
tities [my, Ty, CO2y, Cy] will be referred to as yd. The continuous input signals ρCO2 , ρC , P ,
and Te will be combined to xc and the continuous output signals Pd and Plh will be combined to
yc. Further, the discrete state variables p and m will be combined to sd as well as the continuous
state variables CO2, C, and T will be combined to sc.

[sd, sc] = δext(s
d, sc, e, xc, xd) =

{
[1,mx, CO2x, Cx, Tx] if p = 0

[sd, sc] if p 6= 0

Cint(s
d, sc, e, xc) =





e > τ1 if p = 1

T ≥ Tb if p = 2

e > τ3 if p = 3

false else

[yd] = λdiscr(sd, sc, xc) =

{
[m,CO2, C, T ] if p = 3

∅ else

[sd, sc] = δint(s
d, sc, xc) =





[2,m,CO2, C, T ] if p = 1

[3,m,CO2, C, T ] if p = 2

[0, 0, 0, 0, 0] if p = 3

[sd, sc] else

[yc] = λcont(sd, sc, e, xc) =





[0, U · (T − Te)] if p = 1 ∨ p = 3

[Pb, 0] if p = 2

[0, 0] else

[ĊO2, Ċ, Ṫ ] = f(sd, sc, e, xc) =





[0, 0, 0] if p = 0

[ρCO2 · P, ρC · P, U ·(Te−T )
m·cp ] if p = 1 ∨ p = 3

[ρCO2 · P, ρC · P, P
m·cp ] if p = 2

In the BaMa project one of the first major goals is to define a method for formally describing
hybrid systems in production processes. Although it is not asked for explicitly, investigation
about the implementability and simulatability of models described with that method are neces-
sary.

Models formulated with DEV&DESS consist of a DEVS and DESS part. As PowerDEVS
naturally can simulate DEVS models and additionally is specialised to also simulate continuous
models more or less accurately approximated by their quantised versions, it seems to be suitable
for implementing combinations of DEVS and DESS models. However, so far there is nothing
like an atomic DEV&DESS library block in PowerDEVS to directly implement a model formu-
lated as DEV&DESS. As PowerDEVS actually can only simulate pure DEVS, a general method
is needed to embed the DEV&DESS into DEVS. Zeigler proposed such a method in [Zei] which
serves as basis for the embedding of DEV&DESS in PowerDEVS presented in the following.
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5.2 Concept

PowerDEVS library already provides basic hybrid blocks such as switches and zero-crossing-
detection blocks. The first can be used to implement case distinctions as they appear in the
definition of f and λcont in a block diagram. The latter ones produce an output whenever the
input signal crosses a specified value and thus can be used to implement state event localisation.

So the idea is to divide a DEV&DESS into a continuous (DESS) part that can be imple-
mented graphically as block diagram and into a discrete part that can be implemented as atomic
DEVS block. For this purpose the function Cint is also divided into two parts: one for detecting
state events and one for scheduling time events. The first one is a component of the continuous
part and the second one is included in the atomic DEVS definition. Figure 5.2 shows a graphical
illustration of this separation. The continuous part consists of λcont, f , an integrator, and of the

f(sc, sd, e, xc)

Cse
int(s

c, sd, e, xc)

b

b

b
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Figure 5.2: The concept of how to embed DEV&DESS in DEVS.

state event part Cse
int of Cint. The discrete part, responsible for the implementation of δext, δint,

λdiscr, and the time event part Cte
int of Cint is realized as one single DEVS, in the following

referred to as main block. As it calculates δext and δint it has to administer the entire state of the
system consisting of sd and sc.

For the calculation of δext, the discrete input xd is needed, and thus, it is connected to the
first input port of the main block. Further, both δext and δint as well as λdiscr depend on the
current value of the continuous input xc, hence, it is coupled to the second input of the main
block. Although sc is calculated by the main block in each call of one of the δ functions, due to
its continuous nature, its value may also change between two such calls, where it is calculated
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by the integrator block. Thus, the output of the integrator is coupled to the third input port sc of
the main block. The reason why this input port has exactly the same name as the discrete state
itself is that its input buffer is used for storing the input messages and for storing the continuous
state at the same time as they always have the same value anyway. The fourth input port of the
main block is coupled to the output of the Cse

int block. Therefore, state events in the original
DEV&DESS become external events at the fourth input port of the main block.

The output ports of the main block have the following tasks:
The first output port is directly coupled to the discrete output yd of the whole DEV&DESS.
Therefore, the results of the calculation of λdiscr are output there. The second output port sd

transmits the discrete state of the system to the continuous output function block as λc depends
on it. The reason why it is named exactly like the discrete state itself is the same why the fourth
input port is named sc. The third output port ysc supplies λc with the continuous part of the
state. The fourth output port yxc actually represents a more or less direct feed through of the
input xc. However, if xc has changed several times before the main block calculates λ, only its
last value is output avoiding unnecessary input events at the λc block. The last output port yr is
used to reset the integrator. This is done every time a new state has been calculated by one of
the δ functions as well as every time when those state changes need to be withdrawn due to a
repetition of the output loop. Fortunately in the PowerDEVS library there already exists such an
integrator block with a reset input port.

The main block is designed on basis of the Atomic PDEVS block and thus first gathers all
input messages originating at blocks with higher priority and then treats them all at once in one
call of the appropriate δ function after all output messages have been calculated by λ and output.
Thus, it is important that the blocks for the calculation of f and for the calculation of Cint as
well as the integrator block have higher priority than the main block. Otherwise the main block
would already calculate its new state and produce output messages before it has received current
inputs from the continuous part and thus would have to repeat the calculations unnecessarily.
The block responsible for calculating λcont though, should have lower priority than the main
block because thus, it will also have received all current inputs before it calculates its output
messages.

5.3 Problem Identification and Solution Approaches

5.3.1 Non - PDEVS Blocks Used in the Continuous Part

The DESS part is quantised, i.e. all continuous signals are QSS signals. Therefore, from outside,
the coupled system depicted in Figure 5.2 again behaves like an atomic DEVS. As elaborated
in the preceding sections, there occur some problems when creating coupled DEVS models. To
counter these problems the Atomic PDEVS block has been developed in section 4.1. Thus, it
is intended to design the embedded DEV&DESS block in way that, from outside, it looks like
an Atomic PDEVS block. This goal can only be achieved if all blocks used in the continuous
part are based on the Atomic PDEVS block as they need to be able to handle retrieve messages
and to recalculate their inner state in a consistent way after messages originating from feedbacks
have arrived. However, the existing PowerDEVS library does not support message retrieving
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and consistent state recalculation and that is why none of the continuous blocks in Figure 5.2
is directly connected to the DEV&DESS input xc. They all obtain the continuous input signal
from the output port yxc of the main block. The main block does not send any retrieve messages
at other output ports than the first one. Nevertheless, it is necessary to treat output messages that
have been sent at one of the other output ports in a former repetition of the output loop but they
are not scheduled to be resent. The solution is to resend the corresponding backup that has been
made for the according output port instead of a retrieve message. In the case of yxc, a backup at
the output port itself is made when it is changed for the first time at the current simulation time.
In the case of the state output ports sd and ysc the backup states sdold and scold can be used. At
the reset output port yr also sc is sent thus the backup scold can be used there as well.

As ysx and ysc are QSS signals though, it may be necessary to advance the expansion point
of the corresponding Taylor polynomial to the current point in time before sending the backup
value. This is because a QSS signal of order higher than one corresponds to a Taylor polynomial
with a particular expansion point in time. Thus, when the same QSS signal is resent later in
time, it is not valid anymore.

The method of resending updated signals instead of retrieve messages though only works
with continuous signals as they exist in any point in time anyway. With discrete signals, i.e.
with messages, it is not the same to resend an old message instead of sending no message at
all. As long as the continues systems that are fed are pure functional blocks, i.e. mealy type
blocks with no internal state, everything works fine, but as soon as they have internal states
inconsistencies may be created.

One block of the continuous part of DEV&DESS that has an internal state is the integrator.
However, as it is reset by the main block, each time sc changes discontinuously, it does not cause
any troubles. The block for calculating f and λc can be generally described as functional block
with case distinction. If the case distinction is programmed in a way that all output signals are
resent every time the state has been changed, there should not be a problem with f and λc either.

The block Cse
int though may cause problems as it may have an internal state. The sending

of messages that would need to be retrieved by Cse
int does not make much troubles as the only

receiver is the main block that can be programmed to be able to deal with that. However, Cse
int

should be able to recalculate its output in a consistent way, i.e. on basis of its initial inner state
of the current simulation time and not on basis of a state value that has already been calculated
at current simulation time. This is because whenever a repetition of the output loop of the main
block is necessary also a recalculation of Cse

int needs to be done. So the simple solution would
be to construct Cse

int using only pure functional blocks and blocks that are based on the Atomic
PDEVS block.

5.3.2 State Events

At a particular instant of time, during the calculation of the new state, not only the state con-
sisting of sd and sc may change several times but also the value of the continuous input signal
xc. Thus, also the output of the Cse

int block may change several times. So the question arises, at
which time the value Cse

int is valid and able to trigger an internal event.
One cause for temporal inconsistencies are vectorial signals which all signals in Figure 5.2

are supposed to be. The reason for this is that if several indices need to be changed, they are
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changed one after the other. So from the point in time after the first new index value has been
sent to the point in time before the last new index value is sent, the current vectorial signal on the
coupling line is wrong. Moreover, due to the fact that the continuous blocks left from the main
block have higher priority than the main block, each single index change of a vectorial signal
conducted by the main block is immediately interpreted by them.

The way to handle this problem is to give the block Cse
int the lowest priority among the

continuous blocks on the left of the main block and to discard every input at the state event input
port xse as soon as there arrives a new input message at xc or at sc and each time before an output
is sent at sd. Due to the low priority of Cse

int, if the internal event still needs to be triggered with
the new value of xc, sc, and sd, also a new value at xse will arrive after the arrival of xc and sc

and after the output at output port sd.

The second cause for temporal inconsistencies of course is a repetition of output loop in the
main block and the recalculation of its output connected to it.

Therefore, every time a new repetition of the output loop is started, before the new output
and state is calculated the state values that are delivered to the continuous blocks at the output
ports sd and yr need to be reset to the initial state of the current simulation time backed up in
sdold and scold. Additionally, the output yxc has to be updated to the current value of xc. This
assures that the value of Cse

int is calculated from sdold, scold, and from the current value of xc and
not from a temporal invalid state and input value.

As value for the backup scold of sc, of course, the value at the input port sc is used that has
been stored there, when the first external transition is triggered in the main block. However,
when considering the situation at which the integrator produces an output because the difference
between the current value of its internal polynomial and the current value of its output reaches
the quantum, the question arises whether this output should be used as scold, or the former value.

To decide that, a special situation is looked at. It is assumed that at a particular instant of
time there is no other input message at the input ports xd and xc but a change of the integrator’s
output. Further, it is assumed that Cse

int triggers a state event caused by the change in the output
value of the integrator and thus in sc. As consequence δint(sdold, s

c
old, x

c) is calculated. If for
scold, the value of sc before the output change of the integrator is used, δint is calculated using
a value scold with which actually no state event should have been triggered at all. Thus, if there
arrives an input at the continuous state input port sc of the main block before the main block
has produced any output messages at the current instant of time, this input changes scold. Since
the integrator has higher priority than the main block, a change in the integrator’s output due to
an internal event in the integrator block is always produced before the main block is allowed to
execute its output function for the first time.

Another special situation that needs to be considered concerning state events occurs when
after an execution of one of the δ functions the new state value immediately triggers a state event.
This state event would be discarded, as it has not been calculated using the old state values sdold
and scold. Therefore, it is prohibited for the δ functions to return a state that immediately leads to
a state event. As a δ function has been called anyway, during this call the state event that would
be caused could have been treated there as well and thus, it could lead to the state that would be
the result of an additional internal transition due to the state event right away.
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5.3.3 Execution Order in the Main Block

The usual execution order in a DEVS or in a P-DEVS in case of an internal or of a confluent
event is to first call λ and then call δint or δconf . The task of λ is to calculate and output all
output messages that are to be produced due to the current event. The task of the δ function is
to calculate the new inner state. With DEV&DESS though, the new state is already needed to
calculate the output signals, as it is part of the output. Therefore, in the main block the order of
execution of λ and δ needs to be reversed.

To achieve such a behaviour with a formally correct DEVS, it has to fulfil the following:
Each non-transitional state of the DEVS as well as each state resulting from an external transition
produces no output. Therefore at each event in the first call of λ no output is produced. After-
wards a transitional state is calculated by the corresponding δ function for which λ produces the
desired output. Finally the δ function calculates a new non-transitional state.

However, when programming this behaviour in PowerDEVS, the calculation of the δ func-
tion is simply shifted into the output function.

5.4 Implementation

5.4.1 Continuous Part

Concerning the implementation of the DEV&DESS in PowerDEVS, Figure 5.2 together with
section 5.3.1 tells already everything that is needed for a modeller to construct the continuous
part. The specific internal structure of the blocks for f , Cse

int and λc is fully depending on the
particular model that is to be implemented. An example is presented in section 5.6.

However, there is very useful mechanism in PowerDEVS to hand on block parameters of a
coupled block to its child blocks. When defining custom block parameters in the block’s ‘Edit’
dialogue, each parameter has to be assigned a name. This name in combination with a preceding
‘%’ can then be entered into a parameter value field of any child block.

A DEV&DESS as depicted in Figure 5.2 corresponds to a coupled model in PowerDEVS
which, one hierarchical level above, is represented by a single coupled block with two input and
two output ports. Therefore, block parameters can be defined for this coupled block that then
are accessible in every sub block, i.e. in the main block and in the diverse continuous blocks.
In Figure 5.5 it is depicted how the parameter ‘in_vec_sizes’ of the coupled block is entered as
‘%in_vec_sizes’ in the Parameters dialogue of the block ‘calc sizes and store in Workspace’.

5.4.2 The Main Block

The working principle of the main block is based on the Atomic PDEVS block (see section 4.3).
However, only the first input port and the first output port show the behaviour of an Atomic
PDEVS block. All other ports need special treatment.

In an Atomic PDEVS block, every new input message leads to an execution of one of
the δ functions and thus to a calculation of a new state of the block. In the main block of a
DEV&DESS though, only the discrete input port xd and, as explained in section 5.3.2 in some
cases also the state event input port xse are capable of that. The input ports xc and sc describe
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continuous signals that, theoretically, may change all the time. However, as they are quantised,
they only change when their polynomial description deviates more than the quantum from the
real value or from a more exact approximation of their real value. Although such signal update
changes do not cause a state recalculation in the main block, they have to call the output func-
tion, as their changes need to be forwarded to the continuous output function λc and thus to the
outputs ysc and yxc. In the following, an event in the main block which causes an execution of
λ and of one of the δ functions will be referred to as discrete event, whereas an event due to
changes in one of the two continuous inputs xc and sc will be referred to as continuous event. Of
course, it is also possible that there occur changes in the continuous inputs simultaneously with
a discrete event. The three sources for a discrete event are an input at the discrete input port, an
input at the state event input port (a state event) and a time event. The sources for a continuous
event are changes at the input ports xc and sc.

Further there is a third kind of event that occurs, when either a discrete or a continuous event
has been triggered by an input message which afterwards is retrieved again. In such a case, the
changes that have been applied to the output and to the state need to be withdrawn. This kind of
event will be referred to as withdraw event.

Another difference of the main block to the Atomic PDEVS block is that there is no retrieve
message treatment necessary at the third and fourth input ports. Whereas at the output ports two
to five a special retrieve message treatment has to be implemented, as described in section 5.3.1.

The internal state of the main block consists of the discrete part sd and of the continuous
part sc. Since, between two discrete events, the continuous state is calculated outside the main
block and therefore, has to be fed back at an input port, the corresponding input port buffer can
be used to store the inputs and at the same time serves as storage for the continuous state itself.
The discrete part of the state is needed as output signal, as all the continuous function blocks
depend on it. Thus the output buffer for the output port sd is also used both for storing output
messages and for storing the discrete state itself. The backups of sd and sc though, have to be
stored separately.

The processes in the main block that are carried out in case of an event can be described by
six phases: gathering ’g’, checking ’c’, resetting ’r’, calculation of Cse

int ’C’, calculation
of λ and δ ’l’, and outputting ’o’.

’g’|’c’: a) external transition function:
If this is the first event at that time, set phase=’g’ and backup state.
Gather input messages produced by blocks with higher priority.
Determine the value for flag (’i’, ’e’ or ’c’).

b) output function:
If this is the first event at that time, set flag=’i’, σ = 0 and backup state.
If phase=’g’ change it to ’C’.
Set all entries of input port sc to be treated.
If the state s is not equal to sold, mark necessary reset output messages at output
ports sd and yr and go to phase ’r’.
If there are new input messages at xc, update output port yxc and go to phase ’r’.
Otherwise go to phase ’C’ .
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’r’: output function:
If there are untreated outputs left, xse to be treated and output the next pending output.
Otherwise go to phase ’C’.

’C’: output function:
If there is an untreated change at input port xse recalculate flag as follows:
’n’7→’I’ and ’e’7→’C’
In any case go to phase ’l’.

’l’: output function:
Calculate δ and λ according the value of flag and thereby calculate the new state sd, sc

and the the outputs at xd.
Change flag as follows: ’I’7→’n’ and ’C’7→’e’.
Mark retrieve messages at output port xd.
Mark state changes to be output at sd and at yr.
Set all input messages at xd and at xc to be treated.
Go to phase ’o’.

’o’: a) output function:
As long as there are pending outputs, send the next pending output message.
After all messages at output port yr have been sent, mark all untreated entries of sc

to be sent at ysc.

b) internal transition function:
If all outputs are sent and there are no untreated input messages at input ports xd and
xc, set the new non-zero value for σ and phase to ’c’.

New concerning the range of values of flag are the two cases flag=‘I’ and flag=‘C’.
They also indicate an internal and an confluent transition, respectively but in their case, the
cause for the corresponding event is not a time event, but a state event. State events have to be
marked separately, as a change in the continuous input xc may withdraw a state event which is
not possible with time events. Although this description is already quite detailed, there are even
some more details to be considered. However, for a complete description it is referred to the
source code in section 5.5.

5.5 Atomic DEV&DESS Block

The Atomic DEV&DESS block is supposed to be a template for implementing arbitrary DEV&DESS
in PowerDEVS. The modeller intended to use the block has to accomplish three tasks, the defini-
tion of the continuous part, the definition of the discrete part and the definition of the dimensions
of the state space and of the vectorial input and output ports.

The third part is accomplished by entering the corresponding values into the Parameters
dialogue of the coupled DEV&DESS block. Figure 5.3 shows this dialogue. The first four
text fields serve for the input of the initial discrete state sd, the initial continuous state sc, the
dimensions of the discrete and the continuous input port xd and xc and of the dimensions of
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the discrete and continuous output ports yd and yc. The other text fields are examples of model
specific parameters that can be added by the modeller on demand. Figure 5.4 shows the interior

Figure 5.3: The Parameters dialogue of the Atomic DEV&DESS block

of the coupled DEV&DESS block, as well as the priority list bottom right. The only difference
to the schematic in Figure 5.2 is the block named ‘calc sizes and store in Workspace’ top left.
This block simply is used to extract the single values for state dimensions and input output
signal dimensions out of the vectorial values that have been entered as parameter values of the
Atomic DEV&DESS block. Figure 5.5 shows the Parameters dialogue of that block and how
a parameter of the Atomic DEV&DESS block can be handed on to it. The block stores the
single dimension values as variables in the Scilab workspace. This variables, in turn, can be
used in all other blocks as inputs for their block parameters. Therefore, the dimension of all
the coupling lines is configured automatically using the inputs in the Parameters dialogue of the
Atomic DEV&DESS block.

The second task for the modeller, the creation of the continuous part, is accomplished by
graphically building the interior of the coupled sub blocks for f , Cse

int, and λc with the help of
the PowerDEVS library. Figure 5.6 shows the interior of the block ‘f(q,x_cont)’, representing the
right hand side of the ODE that describes the dynamics of the continuous part. As it can be seen,
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Figure 5.4: The coupled PowerDEVS model representing an Atomic DEV&DESS.

Figure 5.5: The Paramters dialogue of a sub block of the Atomic DEV&DESS PowerDEVS
block.

there are three cases in the model, ‘f0’, ‘f1’ and ‘f2’ which again are coupled models. Since the
model in the figure belongs to the DEV&DESS of the baking oven introduced at the beginning



5.5. ATOMIC DEV&DESS BLOCK 113

Figure 5.6: The coupled model representing the left side of the Differential equation
f(sd, sc, xc).

of this chapter, the three cases correspond to the three cases in the definition of f there. Figure
5.7 shows the implementation of ‘f2’. The ‘Switch’ and the ‘check boolean expression’ block
around the ‘Inverse’ block make sure that the output of the inverse block is not forwarded if its
input is zero. Figure 5.8 shows the interior of the block implementing Cse

int, again for the baking
oven example. In this example, whether a state event is possible or not depends on the value
of p which is part of the discrete state sd. The discrete state enters the coupled model at input
port 0. As it is vectorial, the specific index at which p is transported is selected in the first block
after the input port. Then a select signal is created of it which controls which other input of the
‘Select Input’ block is forwarded to its single output port. If the select signal is zero, a constant
zero signal is forwarded. If the select signal is one, the output of the ‘Cross detect’ block is
forwarded. As the ‘Select Input’ block always immediately outputs the value it received last at
the selected port whenever the selected input port changes, it is necessary to immediately set the
input signal at the second input port back to zero after a state event has been reported. Otherwise
the state event wrongly would be reported again after the third input port of the ‘Select Input’
block is reselected. This is what the block ‘output on trigger’ is for.

After the continuous part has been built, the last task is to fill out the modeller’s input areas
in the source code of the main block. Due to the fact that the calculation of λ and of δ need to
be done simultaneously for the main block (see section 5.3.3), there are only two places in the
whole source code to be filled out by the modeller. The first is the part for reading custom block
parameter values which is located in the init function and the second part is the definition of λ
and of δ located in the output function. Nevertheless, to complete the picture, the entire source
code is presented.
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Figure 5.7: The coupled model representing the interior of the block ‘f2’ of the model de-
picted in Figure 5.6.

Figure 5.8: The coupled model representing the state event function Cse
int(s

d, sc, xc).
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1 I n O u t p u t A r r a y i n _ a r r a y ; / / i n p u t messages
2 I n O u t p u t A r r a y o u t _ a r r a y ;
3 I n O u t p u t V e c t o r ∗ s _ d i s c r ;
4 I n O u t p u t V e c t o r ∗ s _ c o n t ;
5 I n O u t p u t V e c t o r s _ d i s c r _ o l d ;
6 I n O u t p u t V e c t o r s _ c o n t _ o l d ;
7 do ub l e sigma , sigma_n , s igma_n_bk ;
8 do ub l e e _ o l d ;
9 do ub l e l a s t _ e v e n t _ t i m e ;

10 c h a r f l a g ; / / p o s s i b l e v a l u e s : ’ i ’ , ’ e ’ , ’ c ’ , ’ n ’
11 c h a r phase ; / / p o s s i b l e v a l u e s : ’ g ’ , ’C ’ , ’ c ’ , ’ l ’ , ’ o ’
12 i n t o u t p o r t , o u t i n d e x ;
13 # i f n d e f INF
14 # d e f i n e INF 1 e20
15 # e n d i f
16 # i f n d e f DEVDESS_DISCR_INPORT
17 # d e f i n e DEVDESS_DISCR_INPORT 0
18 # d e f i n e DEVDESS_CONT_INPORT 1
19 # d e f i n e DEVDESS_SC_INPORT 2
20 # d e f i n e DEVDESS_SE_INPORT 3
21 # d e f i n e DEVDESS_DISCR_OUTPORT 0
22 # d e f i n e DEVDESS_SD_OUTPORT 1
23 # d e f i n e DEVDESS_SC_OUTPORT 2
24 # d e f i n e DEVDESS_XC_OUTPORT 3
25 # d e f i n e DEVDESS_RESET_OUTPORT 4
26 # e n d i f
27 / / m o d e l l e r ’ s i n p u t a r e a :
28 / / d e f i n e model p a r a m e t e r s and a u x i l i a r y v a r i a b l e s , e . g . :
29 do ub l e Par1 ;
30 i n t Par2 ;
31 s t d : : s t r i n g Aux1 ;

Listing 5.1: The PowerDEVS definitions area for the main block of the generic Atomic
DEV&DESS block.

Listing 5.1 shows the definitions area for the main block. The only difference to the defini-
tions area of the Atomic DEVS block are the variables s_discr, s_cont, s_discr_old,
and s_cont_old. As the name suggests they store the state and its backup. s_discr and
s_cont are pointers of type InOutputVector and point to their corresponding output and
input port, respectively. The backups in contrast are full instances of InOutputVector as
they need to store a deep copy of the state.

1 s t d : : s t r i n g p a r _ v a r ( ( c h a r ∗ ) v a_ a rg ( p a r a m e t e r s , c h a r ∗ ) ) ;
2 s t d : : s t r i n g l e n g t h _ s t r = ( " l e n g t h ( " + p a r _ v a r + " ) " ) ;
3 i n t s _ d i s c r _ s i z e = ( i n t ) g e t S c i l a b V a r (& l e n g t h _ s t r [ 0 ] ) ;
4 s _ d i s c r _ o l d . r e s i z e ( s _ d i s c r _ s i z e ) ;
5 do ub l e ∗ s _ d i s c r _ i n i t = ( do ub l e ∗ ) m a l l oc ( s _ d i s c r _ s i z e ∗ s i z e o f ( d ou b l e ) ) ;
6 g e t S c i l a b V e c t o r (& p a r _ v a r [ 0 ] , &s _ d i s c r _ s i z e , s _ d i s c r _ i n i t ) ;
7 / / r e a d s i z e o f c o n t i n u o u s s t a t e :
8 p a r _ v a r = s t d : : s t r i n g ( " _ s _ c o n t _ s i z e " ) ;
9 i n t s _ c o n t _ s i z e = ( i n t ) g e t S c i l a b V a r (& p a r _ v a r [ 0 ] ) ;
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10 s _ c o n t _ o l d . r e s i z e ( s _ c o n t _ s i z e ) ;
11 / / r e a d v e c t o r−d i m e n s i o n s o f i n p u t s ( x _ d i s c r , x_cont , x_se , s _ c o n t )
12 p a r _ v a r = s t d : : s t r i n g ( ( c h a r ∗ ) v a_ a rg ( p a r a m e t e r s , c h a r ∗ ) ) ;
13 i n t l e n g t h = 2 ;
14 do ub l e i n p u t _ s i z e s [ 2 ] ;
15 g e t S c i l a b V e c t o r (& p a r _ v a r [ 0 ] , &l e n g t h , i n p u t _ s i z e s ) ;
16 i n _ a r r a y . r e s i z e ( 4 ) ;
17 i n _ a r r a y [ DEVDESS_DISCR_INPORT ] . r e s i z e ( ( i n t ) i n p u t _ s i z e s [ 0 ] ) ;
18 i n _ a r r a y [DEVDESS_CONT_INPORT ] . r e s i z e ( ( i n t ) i n p u t _ s i z e s [ 1 ] ) ;
19 i n _ a r r a y [ DEVDESS_SC_INPORT ] . r e s i z e ( s _ c o n t _ s i z e ) ;
20 i n _ a r r a y [ DEVDESS_SE_INPORT ] . r e s i z e ( 1 ) ;
21 / / i n i t i a l i z e o u t p u t−a r r a y
22 p a r _ v a r = s t d : : s t r i n g ( " _ y _ d i s c r _ s i z e " ) ;
23 i n t y _ d i s c r _ s i z e = ( i n t ) g e t S c i l a b V a r (& p a r _ v a r [ 0 ] ) ;
24 o u t _ a r r a y . r e s i z e ( 5 ) ;
25 o u t _ a r r a y [DEVDESS_DISCR_OUTPORT ] . r e s i z e ( y _ d i s c r _ s i z e ) ;
26 o u t _ a r r a y [DEVDESS_XC_OUTPORT ] . r e s i z e ( ( i n t ) i n p u t _ s i z e s [ 1 ] ) ;
27 o u t _ a r r a y [DEVDESS_SD_OUTPORT ] . r e s i z e ( s _ d i s c r _ s i z e ) ;
28 o u t _ a r r a y [DEVDESS_SC_OUTPORT ] . r e s i z e ( s _ c o n t _ s i z e ) ;
29 o u t _ a r r a y [DEVDESS_RESET_OUTPORT ] . r e s i z e ( s _ c o n t _ s i z e ) ; / / i n t e g r a t o r −r e s e t −

o u t p u t
30 f o r ( i n t i =0 ; i < s _ d i s c r _ s i z e ; i ++) { / / s e t i n i t i a l v a l u e f o r s_d
31 QSSDoubleArray qda ( s _ d i s c r _ i n i t [ i ] ) ;
32 qda . i n d e x = i ;
33 o u t _ a r r a y . s e t A t (DEVDESS_SD_OUTPORT, i ,& qda , t ) ;
34 s _ d i s c r _ o l d . s e t A t ( i ,& qda , t ) ;
35 }
36 f r e e ( s _ d i s c r _ i n i t ) ;
37 s _ c o n t = &i n _ a r r a y [ DEVDESS_SC_INPORT ] ;
38 s _ d i s c r = &o u t _ a r r a y [DEVDESS_SD_OUTPORT ] ;
39 s igma = INF ;
40 s igma_n = INF ;
41 l a s t _ e v e n t _ t i m e = −1;
42 f l a g = ’ n ’ ;
43 phase = ’ g ’ ;
44 o u t p o r t = −1;
45 o u t i n d e x = 0 ;
46 / / m o d e l l e r ’ s i n p u t a r e a
47 / / r e a d custom p a r a m e t e r s , f o r example :
48 c h a r ∗ f v a r = va _a rg ( p a r a m e t e r s , c h a r ∗ ) ;
49 Par1 = ( d oub l e ) g e t S c i l a b V a r ( f v a r ) ;
50 f v a r = va _a r g ( p a r a m e t e r s , c h a r ∗ ) ;
51 Par2 = ( i n t ) g e t S c i l a b V a r ( f v a r ) ;
52 Aux1 = s t d : : s t r i n g ( v a_ a r g ( p a r a m e t e r s , c h a r ∗ ) ) ;

Listing 5.2: The PowerDEVS init function for the main block of the generic Atomic
DEV&DESS block.

Listing 5.2 shows the init function of the main block. In the upper part, the block’s parameter
values are read and interpreted in Scilab using the same methods as explained at the Atomic
PDEVS block in section 4.3. From the parameter values then the sizes of the input and output
buffers are determined. Further, the discrete state is initialised. At the end of the init function
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the modeller can read custom block parameters and store them in parameter variables defined
earlier in the definitions area.

1 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s ==0) {
2 i f ( phase == ’ o ’ ) {
3 i f ( i n _ a r r a y [ DEVDESS_DISCR_INPORT ] . u n t r e a t e d _ e n t r y _ c h a n g e s ==0 && i n _ a r r a y

[DEVDESS_CONT_INPORT ] . u n t r e a t e d _ e n t r y _ c h a n g e s ==0) {
4 s igma = sigma_n ;
5 }
6 phase = ’ c ’ ;
7 }
8 }

Listing 5.3: The PowerDEVS internal transition function for the main block of the generic
Atomic DEV&DESS block.

Listing 5.3 shows the internal transition function of the main block. As it can be seen, the only
task of it is to resume to a non transitional state by setting sigma to the new value sigma_n
which needs to be calculated by the modeller in the output function. It only resumes though, if
all outputs have been produced and in the meanwhile no new input message has arrived. The
phase phase is set back to ’c’.

1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 e _ o l d = e ;
3 f l a g = ’ n ’ ;
4 s igma_n = INF ;
5 i f ( s igma != INF ) {
6 s igma_n = sigma−e ;
7 }
8 s igma_n_bk = sigma_n ;
9 phase = ’ g ’ ;

10 i f ( t +sigma_n == t ) {
11 f l a g = ’ i ’ ;
12 s igma = 0 ;
13 }
14 f o r ( i n t i =0 ; i < s _ c o n t _ o l d . s i z e ( ) ; i ++) {
15 s _ c o n t _ o l d . s e t A t ( i , ( ∗ s _ c o n t ) [ i ] . msgPtr , ( ∗ s _ c o n t ) [ i ] . l a s t _ c h a n g e _ t i m e ) ;
16 }
17 i n _ a r r a y . t r e a t A t ( DEVDESS_SE_INPORT , 0 ) ;
18 i n _ a r r a y [ DEVDESS_DISCR_INPORT ] . c u r r e n t _ v a l u e s = 0 ;
19 i n _ a r r a y [DEVDESS_CONT_INPORT ] . c u r r e n t _ v a l u e s = 0 ;
20 }
21 DEVSMessage ∗ in_msg = ( DEVSMessage ∗ ) x . v a l u e ;
22 i n t i n d e x = in_msg−>i n d e x ;
23 i f ( x . p o r t == DEVDESS_DISCR_INPORT ) {
24 i f ( in_msg−> r e t r i e v e == t r u e ) {
25 i n _ a r r a y . r e s t o r e B a c k u p A t ( x . p o r t , i n d e x ) ;
26 i f ( i n _ a r r a y [ DEVDESS_DISCR_INPORT ] . c u r r e n t _ v a l u e s == 0) {
27 i f ( f l a g == ’ c ’ ) {
28 f l a g = ’ i ’ ;
29 } e l s e i f ( f l a g == ’ e ’ ) {
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30 s igma_n = sigma_n_bk ;
31 f l a g = ’ n ’ ;
32 }
33 s igma =0;
34 }
35 } e l s e {
36 i f ( f a l s e == i n _ a r r a y [ x . p o r t ] [ i n d e x ] . i s E q u a l T o ( in_msg , t ) ) {
37 i n _ a r r a y . s e t A t b k ( x . p o r t , index , in_msg , t ) ;
38 i f ( f l a g == ’ i ’ ) {
39 f l a g = ’ c ’ ;
40 } e l s e i f ( f l a g != ’ c ’ ) {
41 f l a g = ’ e ’ ;
42 }
43 s igma = 0 ;
44 }
45 }
46 } e l s e i f ( x . p o r t == DEVDESS_CONT_INPORT) {
47 i f ( in_msg−> r e t r i e v e == t r u e ) {
48 i n _ a r r a y . t r e a t A t ( DEVDESS_SE_INPORT , 0 ) ;
49 i n _ a r r a y . r e s t o r e B a c k u p A t ( x . p o r t , i n d e x ) ;
50 i f ( t r u e == o u t _ a r r a y [DEVDESS_XC_OUTPORT ] [ i n d e x ] . a l r e a d y _ t r e a t e d ) {
51 o u t _ a r r a y . r e s t o r e B a c k u p A t (DEVDESS_XC_OUTPORT, i n d e x ) ;
52 QSSDoubleArray ∗da = ( QSSDoubleArray ∗ ) o u t _ a r r a y [DEVDESS_XC_OUTPORT ] [

i n d e x ] . msgPtr ;
53 da−>a d v a n c e _ t i m e ( t−o u t _ a r r a y [DEVDESS_XC_OUTPORT ] [ i n d e x ] .

l a s t _ c h a n g e _ t i m e ) ;
54 o u t _ a r r a y [DEVDESS_XC_OUTPORT ] [ i n d e x ] . l a s t _ c h a n g e _ t i m e = t ;
55 o u t _ a r r a y . s e t U n t r e a t e d A t (DEVDESS_XC_OUTPORT, i n d e x ) ;
56 } e l s e {
57 o u t _ a r r a y . r e s t o r e B a c k u p A t (DEVDESS_XC_OUTPORT, i n d e x ) ;
58 }
59 s igma =0;
60 } e l s e {
61 i f ( f a l s e == i n _ a r r a y [ x . p o r t ] [ i n d e x ] . i s E q u a l T o ( in_msg , t ) ) {
62 i n _ a r r a y . t r e a t A t ( DEVDESS_SE_INPORT , 0 ) ;
63 i n _ a r r a y . s e t A t b k ( x . p o r t , index , in_msg , t ) ;
64 o u t _ a r r a y . s e t A t b k (DEVDESS_XC_OUTPORT, index , in_msg , t ) ;
65 s igma = 0 ;
66 }
67 }
68 } e l s e i f ( x . p o r t == DEVDESS_SE_INPORT ) {
69 i n _ a r r a y . s e t A t ( x . p o r t , index , in_msg , t ) ;
70 i f ( phase == ’ g ’ ) {
71 s igma =0;
72 }
73 } i f ( x . p o r t == DEVDESS_SC_INPORT ) {
74 i f ( f a l s e == i n _ a r r a y [ x . p o r t ] [ i n d e x ] . i s E q u a l T o ( in_msg , t ) ) {
75 i n _ a r r a y . t r e a t A t ( DEVDESS_SE_INPORT , 0 ) ;
76 i f ( phase == ’ g ’ ) {
77 s _ c o n t _ o l d . s e t A t ( index , in_msg , t ) ;
78 o u t _ a r r a y . s e t A t (DEVDESS_SC_OUTPORT, index , in_msg , t ) ;
79 } e l s e i f ( phase == ’ r ’ ) {
80 s _ c o n t _ o l d . s e t A t ( index , in_msg , t ) ;
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81 }
82 i n _ a r r a y . s e t A t ( x . p o r t , index , in_msg , t ) ;
83 s igma =0;
84 }
85 }

Listing 5.4: The PowerDEVS external transition function for the main block of the generic
Atomic DEV&DESS block.

Listing 5.4 shows the external transition function of the main block. The code from line 1 to
line 20 is only executed if the call of the external transition function is the first event at the
current simulation time. There flag and phase as well as sigma_n are initialised. Further,
the continuous state is backed up and xse is set treated to not wrongly trigger a state event due
to an input at xse that has been produced after the calculation of λ and δ at the previous event.
Finally, the number of current input values is initialised with zero.

The following if-else construct beginning in line 23 is responsible for treating each input
message according to the input port of its arrival. In the first block starting with line 23 discrete
input messages are treated. In the second block starting with line 46 continuous input messages
are treated. The special thing about that is the retrieve section. It can be seen, that retrieve
messages not only are replaced by their backup, but the backup is advanced in time as it is a
QSS signal, and afterwards it is marked for being output at yxc output port.

The third block starting with line 68 treats input messages that origin at the block Cse
int and

thus signal state events. However, such input messages can only lead directly to an internal event,
if they arrive before the state has been altered by δ for the first time at the current simulation time.
In all other cases the value of xse is checked after every reset phase and if there has been an input
after the reset, flag is altered accordingly. This is because right after a reset the continuous
blocks have just received the backup state sdold and scold and the current input xc and thus, the
value at the input port xse is equal to Cse

int(s
d, sc, xc).

The last block starting with line 73 treats changes at the output of the integrator. If such
changes appear before the output function has been executed for the first time (phase=’g’)
or during the reset phase, the backup scold of sc is updated as well. The update during the reset
phase is conducted because when resetting a PowerDEVS QSS integrator block which works
with QSS of higher order than one, the integrator block does not output exactly the reset value
but the reset value and possibly already values for its derivatives. Thus, although reset with scold,
the value of sc immediately after the reset may not to agree completely with scold. Moreover,
changes in phase=’g’ are directly forwarded to the output port ysc.

1 i f ( t l < t ) { / / i f f i r s t e v e n t a t c u r r e n t t ime
2 f l a g = ’ i ’ ;
3 e _ o l d = e ;
4 s igma = 0 ;
5 i n _ a r r a y [ DEVDESS_DISCR_INPORT ] . c u r r e n t _ v a l u e s = 0 ;
6 i n _ a r r a y [DEVDESS_CONT_INPORT ] . c u r r e n t _ v a l u e s = 0 ;
7 f o r ( i n t i =0 ; i < s _ c o n t _ o l d . s i z e ( ) ; i ++) {
8 s _ c o n t _ o l d . s e t A t ( i , ( ∗ s _ c o n t ) [ i ] . msgPtr , ( ∗ s _ c o n t ) [ i ] . l a s t _ c h a n g e _ t i m e ) ;
9 }
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10 }
11 i f ( l a s t _ e v e n t _ t i m e < t ) { / / backup o l d s t a t e
12 l a s t _ e v e n t _ t i m e = t ;
13 f o r ( i n t i =0 ; i < s _ d i s c r _ o l d . s i z e ( ) ; i ++) {
14 s _ d i s c r _ o l d . s e t A t ( i , ( ∗ s _ d i s c r ) [ i ] . msgPtr , ( ∗ s _ d i s c r ) [ i ] . l a s t _ c h a n g e _ t i m e )

;
15 }
16 }
17 i f ( phase == ’ g ’ ) {
18 phase = ’ c ’ ;
19 }
20 i f ( phase == ’ c ’ ) {
21 s_con t −> t r e a t A l l ( ) ;
22 boo l s t a t e _ c h a n g e d = f a l s e ;
23 f o r ( i n t i =0 ; i < s _ d i s c r _ o l d . s i z e ( ) ; i ++) {
24 i f ( ( ∗ s _ d i s c r ) [ i ] . msgPtr−>o p e r a t o r ! = (∗ s _ d i s c r _ o l d [ i ] . msgPtr ) ) {
25 s t a t e _ c h a n g e d = t r u e ;
26 o u t _ a r r a y . s e t A t (DEVDESS_SD_OUTPORT, i , s _ d i s c r _ o l d [ i ] . msgPtr , s _ c o n t _ o l d [

i ] . l a s t _ c h a n g e _ t i m e ) ;
27 }
28 }
29 f o r ( i n t i =0 ; i < s _ c o n t _ o l d . s i z e ( ) ; i ++) {
30 i f ( ( ( ∗ s _ c o n t ) [ i ] . msgPtr−>g e t D o u b l e P t r ( ) ) [ 0 ] ! = ( s _ c o n t _ o l d [ i ] . msgPtr−>

g e t D o u b l e P t r ( ) ) [ 0 ] | | s _ c o n t _ o l d [ i ] . l a s t _ c h a n g e _ t i m e ! = (∗ s _ c o n t ) [ i ] .
l a s t _ c h a n g e _ t i m e ) {

31 s t a t e _ c h a n g e d = t r u e ;
32 i f ( s _ c o n t _ o l d [ i ] . l a s t _ c h a n g e _ t i m e < t ) {
33 ( ( QSSDoubleArray ∗ ) s _ c o n t _ o l d [ i ] . msgPtr )−>a d v a n c e _ t i m e ( t−s _ c o n t _ o l d [ i

] . l a s t _ c h a n g e _ t i m e ) ;
34 s _ c o n t _ o l d [ i ] . l a s t _ c h a n g e _ t i m e = t ;
35 }
36 o u t _ a r r a y . s e t A t (DEVDESS_RESET_OUTPORT, i , s _ c o n t _ o l d . t r e a t A t ( i ) , t ) ;
37 }
38 }
39 i f ( o u t _ a r r a y [DEVDESS_XC_OUTPORT ] . u n t r e a t e d _ e n t r y _ c h a n g e s >0) {
40 s t a t e _ c h a n g e d = t r u e ;
41 }
42 i f ( s t a t e _ c h a n g e d == f a l s e ) {
43 phase = ’C ’ ;
44 } e l s e {
45 i n _ a r r a y . t r e a t A t ( DEVDESS_SE_INPORT , 0 ) ;
46 phase = ’ r ’ ;
47 o u t p o r t = DEVDESS_RESET_OUTPORT ;
48 o u t i n d e x = −1;
49 }
50 }
51 i f ( phase == ’ r ’ ) {
52 i f ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s >0) {
53 i n _ a r r a y . t r e a t A t ( DEVDESS_SE_INPORT , 0 ) ;
54 } e l s e {
55 phase = ’C ’ ;
56 }
57 }
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58 i f ( phase == ’C ’ ) {
59 i f ( f a l s e == i n _ a r r a y [ DEVDESS_SE_INPORT ] [ 0 ] . a l r e a d y _ t r e a t e d ) {
60 i f ( f l a g == ’ n ’ ) f l a g = ’ I ’ ;
61 e l s e i f ( f l a g == ’ e ’ ) f l a g = ’C ’ ;
62 }
63 phase = ’ l ’ ;
64 }
65 i f ( phase == ’ l ’ ) {
66 i f ( f l a g == ’ i ’ | | f l a g == ’ I ’ ) {
67 / / m o d e l l e r ’ s i n p u t a r e a :
68 / / c r e a t e o u t p u t s i n c a s e o f a pu re i n t e r n a l e v e n t
69 / / [∗ s _ d i s c r ,∗ s _ c o n t ] = d e l t a _ i n t ( s _ d i s c r _ o l d , s _ c o n t _ o l d , , i n _ a r r a y [

DEVDESS_CONT_INPORT ] )
70 / / o u t _ a r r a y = l a m b d a _ i n t ( s _ d i s c r _ o l d , s _ c o n t _ o l d , i n _ a r r a y [

DEVDESS_CONT_INPORT ] )
71 / / u se method o u t _ a r r a y . s e t A t ( i n t p o r t , i n t index , DEVSMessage ∗ va lue ,

do ub l e t ime ) ;
72 i f ( f l a g == ’ I ’ ) f l a g = ’ i ’ ;
73 } e l s e i f ( f l a g == ’ e ’ ) {
74 / / m o d e l l e r ’ s i n p u t a r e a :
75 / / c r e a t e o u t p u t s i n c a s e o f a pu re e x t e r n a l e v e n t
76 / / [∗ s _ d i s c r ,∗ s _ c o n t ] = d e l t a _ e x t ( s _ d i s c r _ o l d , s _ c o n t _ o l d , e_old ,

i n _ a r r a y [DEVDESS_CONT_INPORT ] , i n _ a r r a y [ DEVDESS_DISCR_INPORT ] )
77 / / o u t _ a r r a y = l a m b d a _ i n t ( s _ d i s c r _ o l d , s _ c o n t _ o l d , i n _ a r r a y [

DEVDESS_CONT_INPORT ] , i n _ a r r a y [ DEVDESS_DISCR_INPORT ] )
78 / / u se method o u t _ a r r a y . s e t A t ( i n t p o r t , i n t index , DEVSMessage ∗ va lue ,

do ub l e t ime ) ;
79 } e l s e i f ( f l a g == ’ c ’ | | f l a g == ’C ’ ) {
80 / / m o d e l l e r ’ s i n p u t a r e a :
81 / / c r e a t e o u t p u t s i n c a s e o f a c o n f l u e n t e v e n t
82 / / [∗ s _ d i s c r ,∗ s _ c o n t ] = d e l t a _ e x t ( s _ d i s c r _ o l d , s _ c o n t _ o l d , i n _ a r r a y [

DEVDESS_CONT_INPORT ] , i n _ a r r a y [ DEVDESS_DISCR_INPORT ] )
83 / / o u t _ a r r a y = l a m b d a _ i n t ( s _ d i s c r _ o l d , s _ c o n t _ o l d , i n _ a r r a y [

DEVDESS_CONT_INPORT ] , i n _ a r r a y [ DEVDESS_DISCR_INPORT ] )
84 / / u se method o u t _ a r r a y . s e t A t ( i n t p o r t , i n t index , DEVSMessage ∗ va lue ,

do ub l e t ime ) ;
85 i f ( f l a g == ’C ’ ) f l a g = ’ c ’ ;
86 }
87 f o r ( i n t i =0 ; i < o u t _ a r r a y [DEVDESS_DISCR_OUTPORT ] . s i z e ( ) ; i ++) {
88 i f ( o u t _ a r r a y [DEVDESS_DISCR_OUTPORT ] [ i ] . a l r e a d y _ t r e a t e d == t r u e ) {
89 i f ( o u t _ a r r a y [DEVDESS_DISCR_OUTPORT ] [ i ] . l a s t _ c h a n g e _ t i m e == t ) {
90 o u t _ a r r a y [DEVDESS_DISCR_OUTPORT ] [ i ] . l a s t _ c h a n g e _ t i m e = t − 1 ;
91 o u t _ a r r a y [DEVDESS_DISCR_OUTPORT ] [ i ] . msgPtr−> r e t r i e v e = t r u e ;
92 o u t _ a r r a y . s e t U n t r e a t e d A t (DEVDESS_DISCR_OUTPORT , i ) ;
93 }
94 }
95 }
96 f o r ( i n t i =0 ; i < s _ d i s c r _ o l d . s i z e ( ) ; i ++) {
97 i f ( f a l s e ==(∗ s _ d i s c r ) [ i ] . a l r e a d y _ t r e a t e d ) {
98 o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s ++;
99 }

100 }
101 f o r ( i n t i =0 ; i < s _ c o n t _ o l d . s i z e ( ) ; i ++) {
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102 i f ( f a l s e == (∗ s _ c o n t ) [ i ] . a l r e a d y _ t r e a t e d ) {
103 o u t _ a r r a y . s e t A t (DEVDESS_RESET_OUTPORT, i , ( ∗ s _ c o n t ) [ i ] . msgPtr , t ) ;
104 }
105 }
106 i n _ a r r a y [ DEVDESS_DISCR_INPORT ] . t r e a t A l l ( ) ;
107 i n _ a r r a y [DEVDESS_CONT_INPORT ] . t r e a t A l l ( ) ;
108 o u t p o r t = DEVDESS_RESET_OUTPORT ;
109 o u t i n d e x = −1;
110 phase = ’ o ’ ;
111 }
112 i f ( phase == ’ o ’ | | phase == ’ r ’ ) {
113 w h i l e ( o u t _ a r r a y . u n t r e a t e d _ e n t r y _ c h a n g e s >0) {
114 w h i l e ( o u t _ a r r a y [ o u t p o r t ] . u n t r e a t e d _ e n t r y _ c h a n g e s >0) {
115 o u t i n d e x ++;
116 i f ( f a l s e == o u t _ a r r a y [ o u t p o r t ] [ o u t i n d e x ] . a l r e a d y _ t r e a t e d ) {
117 r e t u r n Event ( o u t _ a r r a y . t r e a t A t ( o u t p o r t , o u t i n d e x ) , o u t p o r t ) ;
118 }
119 }
120 o u t p o r t ++;
121 o u t i n d e x =−1;
122 i f ( o u t p o r t > DEVDESS_RESET_OUTPORT) {
123 o u t p o r t = 0 ;
124 f o r ( i n t i =0 ; i < s _ c o n t _ o l d . s i z e ( ) ; i ++) {
125 i f ( f a l s e == (∗ s _ c o n t ) [ i ] . a l r e a d y _ t r e a t e d ) {
126 o u t _ a r r a y . s e t A t (DEVDESS_SC_OUTPORT, i , s_con t −> t r e a t A t ( i ) , t ) ;
127 }
128 }
129 }
130 }
131 }
132 r e t u r n Event ( ) ;

Listing 5.5: The PowerDEVS output function for the main block of the generic Atomic
DEV&DESS block.

Listing 5.5 shows the core part, the output function of the main block. In lines 1 to 16, again
the initialisations that need to be done including the state backup are accomplished. Then there
follows a row of if blocks, each corresponding to a particular phase. The first is the gathering
phase ’g’. Its tasks are accomplished in the external transition function and thus, here there
is nothing to do but to change phase to ’c’. The checking phase starting in line 20 checks
whether the current state in the continuous blocks still is unchanged and whether the actual value
of the continuous input is delivered to them. If any of those two points is not satisfied, a reset is
conducted and thus the phase is changed to ’r’. If no reset needs to be conducted it directly
can be continued with the calculation of Cse

int, i.e. with the checking of the state event input. For
this purpose, phase is changed to ’C’ (line 58). There, the value of flag is updated if a state
event occurred and afterwards it is proceeded with the execution of phase ’l’ in line 65. In
phase ’l’ first of all λ and the corresponding δ function is calculated. This is the place where
the modeller needs to insert the model specific code. After the calculation of λ and δ, in the
for loop it is checked whether there are retrieve messages to be sent at the discrete output port
yd. Then, the state values are scanned for changes applied by the formerly executed δ function.
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Theses changes are then marked to be output at the reset output yr and at the corresponding
outputs sd and ysc. Finally all changes at the input ports xd and xc are marked to be fully treated
before it is changed to the output phase (line 112).

The code for the output phase is used for the reset phase as well, as in both phases the
marked output messages need to be generated. The only difference lies in the execution of the
internal transition function. In the internal transition function sigma can be changed only if
phase=’o’. In the for loop at the end of the code of the output phase, the changes applied to
sc are also applied to ysc. This is done here because it has to be waited until all output messages
at the reset port yr are output before sc is forwarded to ysc as otherwise the reset outputs are
changing sc again.

5.6 Implementation Example: Baking Oven

In this section, it is demonstrated how to implement the baking oven DEV&DESS presented
at the beginning of this chapter. Since the baking oven model alone does not generate any
simulations results, it has to be fed with some input signals. In Figure 5.9 the DEV&DESS
baking oven block is depicted, coupled to other blocks that generate the desired input signals.
On the left in the figure, the Parameters dialogue of the block ‘Baking Oven’ is shown. It can
be seen, that the custom example parameters of the Atomic DEV&DESS template block have
been replaced by the parameters defined in the DEV&DESS of the oven. The specific parameter
values are chosen to get state trajectories of the single state variables which are approximately
in the same range and thus can be plotted in one diagram. They do not have any practical
relevance. The first input port of the block ‘Baking Oven’ is its discrete input port. There the
entities of paste are delivered. Two special blocks, ‘Entity Source’ and ‘Entity Sink’ have been
programmed to create and destroy entities which are instances of the class Entity (see Listing
A.6 in the appendix). The vectorial continuous input consists of the components ρCO2 , ρC , P
and Te. As it can be seen, ρCO2 and ρC are generated by use of PowerDEVS library blocks
that produce periodic and constant signals. As power supply P simply the power demand Pd

output by the oven is used. Thus, the demanded power is always equal to the delivered Power.
However, this coupling causes a zero time feedback. The environmental temperature Te simply
is assumed to be constant.

Figure 5.10 shows the interior of the DEV&DESS block ‘Baking Oven’. As it can be seen in
comparison to Figure 5.4, it cannot be distinguished from the interior of the Atomic DEV&DESS
indicating that this structure stays the same for different DEV&DESS models. The two addi-
tional blocks right bottom are used to plot the state trajectory during simulation. The Parameters
dialogue on the left belongs to the main block. There, the values for the parameters τ1 and τ3
are entered as %tau1 and %tau3, since tau1 and tau3 are parameters of the coupled block
‘Baking Oven’.

5.6.1 Continuous Part

The continuous part of the DEV&DESS consists of f , Cse
int and λcont. f is implemented as

coupled block ’f(q,x_cont)’. Its interior is depicted in Figure 5.6 in section 5.5. As there are
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Figure 5.9: The PowerDEVS block for the DEV&DESS baking oven with the blocks generat-
ing test input signals.

three cases in which f is calculated differently, in the graphical model three corresponding sub
blocks ‘f0’,‘f1’, and ‘f2’ exist. They again are coupled models. The interior of block ‘f0’ is
depicted in Figure 5.11. It simply produces a signal which is constantly zero. The interior of
block ‘f1’ is depicted in Figure 5.12. There, only the derivatives of CO2 and C are zero. The
derivative of the temperature T is calculated according the formula Ṫ = U ·(Te−T )

m·cp . However, to
avoid division by zero, the block ’Inverse’ is deactivated if its input signal representing m · cp
is zero. The interior of ’f2’ is depicted in Figure 5.7 in section 5.5. The content of the coupled
block ’C_INT(q,x_cont)’ representingCse

int is depicted in Figure 5.7 in section 5.5. Finally, there
is the block ’lambda_cont’ corresponding to the function λcont in the DEV&DESS. Its internal
structure is completely analogue to the structure of the block ‘f(q,x_cont)’ (see Figure 5.13).
Again, there are three sub blocks that correspond to the three cases in the definition of λcont.
Their interior is depicted in the Figures 5.14 – 5.16.
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Figure 5.10: The interior of the PowerDEVS block for the DEV&DESS baking oven with the
Parameters dialogue of the main block opened.

Figure 5.11: The interior of the coupled block ’f0’ of the baking oven example.



126 CHAPTER 5. IMPLEMENTATION OF DEV&DESS MODELS

Figure 5.12: The interior of the coupled block ’f1’of the baking oven example.

Figure 5.13: The interior of the coupled block ’lambda_cont’ of the baking oven example.
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Figure 5.14: The interior of the coupled block ’lambda_cont0’ of the baking oven example.

Figure 5.15: The interior of the coupled block ’lambda_cont1’ of the baking oven example.
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Figure 5.16: The interior of the coupled block ’lambda_cont2’ of the baking oven example.

5.6.2 Discrete Part

The discrete part of the DEV&DESS model of the baking oven needs to be programmed in the
source code of the main block. At first variables for the parameters τ1 and τ2 have to be defined.
The right place for this is the definitions area after the comment \\ modeller’s input area
(see Listings 5.6 and 5.1). Further an instance of the class Entity is defined which is used later
to store and modify received entities and entities to be sent.

1 / / m o d e l l e r ’ s i n p u t a r e a :
2 do ub l e t a u 1 ;
3 do ub l e t a u 2 ;
4 E n t i t y e n t i t y ;

Listing 5.6: Code snippet of the PowerDEVS definitions area for the main block of the
DEV&DESS baking oven.

Next, the parameter values have to be read from the block’s Parameters dialogue and stored in
tau1 and tau2 as showed in Listing 5.7. Again, the designated place for this is marked by the
comment // modeller’s input area in the init function of the main block (see Listing
5.2).

The last and most interesting modeller’s input area is the one in the output function of
the main block. There, the functionality of λ and δ depending on the value of flag has to
be programmed. There are the three cases, internal transiton flag=’i’, external transition
flag=’e’, and confluent transition flag=’c’ to be distinguished. Listing 5.8 shows the
implementation for the case flag=’i’.
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1 / / m o d e l l e r ’ s i n p u t a r e a
2 / / r e a d custom p a r a m e t e r s , f o r example :
3 c h a r ∗ f v a r = va _a rg ( p a r a m e t e r s , c h a r ∗ ) ;
4 t a u 1 = ( do ub l e ) g e t S c i l a b V a r ( f v a r ) ;
5 t a u 3 = ( do ub l e ) g e t S c i l a b V a r ( f v a r ) ;

Listing 5.7: Code snippet of the PowerDEVS init function for the main block of the
DEV&DESS baking oven.

1 i f ( f l a g == ’ i ’ | | f l a g == ’ I ’ ) {
2 / / m o d e l l e r ’ s i n p u t a r e a :
3 QSSDoubleArray qda = ∗ ( QSSDoubleArray ∗ ) s _ d i s c r _ o l d . t r e a t A t ( 1 ) ;
4 s w i t c h ( ( i n t ) qda [ 0 ] ) {
5 c a s e 1 : qda = 2 . 0 ;
6 s _ d i s c r −>s e t A t (1 ,& qda , t ) ;
7 s igma_n = INF ;
8 b r e a k ;
9 c a s e 2 : qda = 3 . 0 ;

10 s _ d i s c r −>s e t A t (1 ,& qda , t ) ;
11 s igma_n = t a u 3 ;
12 b r e a k ;
13 c a s e 3 : qda = ∗ ( QSSDoubleArray ∗ ) s _ d i s c r _ o l d . t r e a t A t ( 0 ) ;
14 e n t i t y . s e t _ a t t r i b u t e ( "m" , qda [ 0 ] ) ;
15 qda = ∗ ( QSSDoubleArray ∗ ) s _ c o n t _ o l d . t r e a t A t ( 0 ) ;
16 e n t i t y . s e t _ a t t r i b u t e ( "CO2" , qda [ 0 ] ) ;
17 qda = ∗ ( QSSDoubleArray ∗ ) s _ c o n t _ o l d . t r e a t A t ( 1 ) ;
18 e n t i t y . s e t _ a t t r i b u t e ( "C" , qda [ 0 ] ) ;
19 qda = ∗ ( QSSDoubleArray ∗ ) s _ c o n t _ o l d . t r e a t A t ( 2 ) ;
20 e n t i t y . s e t _ a t t r i b u t e ( "T" , qda [ 0 ] ) ;
21 o u t _ a r r a y . s e t A t (DEVDESS_DISCR_OUTPORT,0 ,& e n t i t y , t ) ;
22 qda = 0 . 0 ;
23 f o r ( i n t j =0 ; j < s _ d i s c r −> s i z e ( ) ; j ++) {
24 s _ d i s c r −>s e t A t ( j ,& qda , t ) ;
25 }
26 f o r ( i n t j =0 ; j < s_con t −> s i z e ( ) ; j ++) {
27 s_con t −>s e t A t ( j ,& qda , t ) ;
28 }
29 s igma_n = INF ;
30 b r e a k ;
31 d e f a u l t :
32 p r i n t L o g ( " t=%G, %s : i l l e g a l s t a t e −e v e n t \ n " , t , name ) ;
33 b r e a k ;
34 }
35 i f ( f l a g == ’ I ’ ) f l a g = ’ i ’ ;

Listing 5.8: The source code responsible for treating pure internal events in the main block
of the DEV&DESS baking oven model.

A pure internal transition is only allowed to occur when the oven is one of the process phases p ∈
{1, 2, 3}. Process phase p = 0 means the oven waits for the next entity to arrive and therefore,
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it is inactive. The process phase p is part of the discrete state of the system. To be exact, it is
the second entry (index 1) of s_discr_old and s_discr respectively. Since both of them
are of type InOutputVector, which is not quite handy to write and read double values from,
first of all, in line 3 an instance qda of QSSDoubleArray is created and the process phase
p is extracted out of s_discr_old and stored in qda. Then, a switch - case construct
is used to treat the different situations in which the internal event has to be handled differently.
The individual treatments depend solely on the process phase p stored in qda.

If the oven is in process phase one when an internal event occurs, the time τ1 has elapsed
since the last paste arrived and thus, the phase is increased to two and the time to the next
time event is set to infinity (actually it is set (1e20, see section 4.2.1.3 for an explanation ).
This is because the next internal event has to be a state event, triggered by the external block
‘C_INT(q,x_cont)’.

If the oven is in process phase two when an internal event occurs, it means that the baking
phase is over and the paste has reached the desired temperature. According to the DEV&DESS
model, the next step is keep the bread in the oven for the duration τ3 and to output it afterwards.
Thus, the process phase is increased to three and sigma_n is set to τ3.

Finally, if the oven is in process phase three when an event occurs, the bread has to be output.
For this purpose, the attributes of the bread need to be read out of the systems state, stored in
an instance of Entity and output at the discrete output port (line 21). Afterwards the process
phase as well as all other state entries are set to zero (for loops starting at line 23) and the time
to the next event sigma_n is set to infinity (1e20 actually). The oven will become active again
when the next paste arrives at its discrete input port.

36 e l s e i f ( f l a g == ’ e ’ ) {
37 / / m o d e l l e r ’ s i n p u t a r e a :
38 QSSDoubleArray qda = ∗ ( QSSDoubleArray ∗ ) s _ d i s c r _ o l d . t r e a t A t ( 1 ) ;
39 i f ( 0 == qda [ 0 ] ) {
40 e n t i t y = ∗ ( E n t i t y ∗ ) i n _ a r r a y . t r e a t A t ( DEVDESS_DISCR_INPORT , 0 ) ;
41 boo l found ;
42 qda = e n t i t y . g e t _ a t t r i b u t e ( "m" ,& found ) ;
43 s _ d i s c r −>s e t A t (0 ,& qda , t ) ;
44 / / o u t p u t new s _ c o n t
45 qda = e n t i t y . g e t _ a t t r i b u t e ( "CO2" ,& found ) ;
46 s_con t −>s e t A t (0 ,& qda , t ) ;
47 qda = e n t i t y . g e t _ a t t r i b u t e ( "C" ,& found ) ;
48 s_con t −>s e t A t (1 ,& qda , t ) ;
49 qda = e n t i t y . g e t _ a t t r i b u t e ( "T" ,& found ) ;
50 s_con t −>s e t A t (2 ,& qda , t ) ;
51 qda = 1 ;
52 s _ d i s c r −>s e t A t (1 ,& qda , t ) ;
53 s igma_n = t a u 1 ;
54 }
55 }

Listing 5.9: The source code responsible for treating pure external events in the main block
of the DEV&DESS baking oven model.
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Listing 5.9 shows the treatment of a pure external event. Again, at first the process phase is
read out of the vectorial discrete state and stored in the QSSDoubleArray variable qda. An
external event means a new entity arrived at the discrete input port. The oven though, is only
capably of baking one paste at a time. Therefore pastes arriving when the oven is not in process
phase zero are simply discarded. That means, the oven possesses no input queue. However, if
the oven is in process phase zero, the entity is read out of the output buffer (line 40) and its
attributes are stored in the system’s state. The member method get_attribute of the class
Entity reports with its second argument, whether an attribute with the name given in its first
attribute exists or not. Thus, for example if the value of the boolean found is false after
a call of get_attribute("CO2",&found), it is known that the entity does not have any
attribute named ‘CO2’. Anyway, this report mechanism is not used here as it is known that all
attributes that are asked for exist. Finally the process phase is set to one and the duration to the
next internal event is set to τ1.

56 e l s e i f ( f l a g == ’ c ’ | | f l a g == ’C ’ ) {
57 / / m o d e l l e r ’ s i n p u t a r e a :
58 QSSDoubleArray qda = ∗ ( QSSDoubleArray ∗ ) s _ d i s c r _ o l d . t r e a t A t ( 1 ) ;
59 s w i t c h ( ( i n t ) qda [ 0 ] ) {
60 c a s e 1 : qda = 2 . 0 ;
61 s _ d i s c r −>s e t A t (1 ,& qda , t ) ;
62 s igma_n = INF ;
63 b r e a k ;
64 c a s e 2 : qda = 3 . 0 ;
65 s _ d i s c r −>s e t A t (1 ,& qda , t ) ;
66 s igma_n = t a u 3 ;
67 b r e a k ;
68 c a s e 3 : qda = ∗ ( QSSDoubleArray ∗ ) s _ d i s c r _ o l d . t r e a t A t ( 0 ) ;
69 e n t i t y . s e t _ a t t r i b u t e ( "m" , qda [ 0 ] ) ;
70 qda = ∗ ( QSSDoubleArray ∗ ) s _ c o n t _ o l d . t r e a t A t ( 0 ) ;
71 e n t i t y . s e t _ a t t r i b u t e ( "CO2" , qda [ 0 ] ) ;
72 qda = ∗ ( QSSDoubleArray ∗ ) s _ c o n t _ o l d . t r e a t A t ( 1 ) ;
73 e n t i t y . s e t _ a t t r i b u t e ( "C" , qda [ 0 ] ) ;
74 qda = ∗ ( QSSDoubleArray ∗ ) s _ c o n t _ o l d . t r e a t A t ( 2 ) ;
75 e n t i t y . s e t _ a t t r i b u t e ( "T" , qda [ 0 ] ) ;
76 o u t _ a r r a y . s e t A t (DEVDESS_DISCR_OUTPORT,0 ,& e n t i t y , t ) ;
77 e n t i t y = ∗ ( E n t i t y ∗ ) i n _ a r r a y . t r e a t A t ( DEVDESS_DISCR_INPORT , 0 ) ;
78 boo l found ;
79 qda = e n t i t y . g e t _ a t t r i b u t e ( "m" ,& found ) ;
80 s _ d i s c r −>s e t A t (0 ,& qda , t ) ;
81 / / o u t p u t new s _ c o n t
82 qda = e n t i t y . g e t _ a t t r i b u t e ( "CO2" ,& found ) ;
83 s_con t −>s e t A t (0 ,& qda , t ) ;
84 qda = e n t i t y . g e t _ a t t r i b u t e ( "K" ,& found ) ;
85 s_con t −>s e t A t (1 ,& qda , t ) ;
86 qda = e n t i t y . g e t _ a t t r i b u t e ( "T" ,& found ) ;
87 s_con t −>s e t A t (2 ,& qda , t ) ;
88 qda = 1 ;
89 s _ d i s c r −>s e t A t (1 ,& qda , t ) ;
90 s igma_n = t a u 1 ;
91 b r e a k ;
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92 d e f a u l t :
93 p r i n t L o g ( " t=%G, %s : i l l e g a l s t a t e −e v e n t \ n " , t , name ) ;
94 b r e a k ;
95 }
96 i f ( f l a g == ’C ’ ) f l a g = ’ c ’ ;
97 }

Listing 5.10: The source code responsible for treating confluent events in the main block of
the DEV&DESS baking oven model.

The treatment of a confluent transition is nothing else but a combination of the treatments of
an internal and an external event. Since the only case, when an external event can modify the
systems state is when it is in process phase zero, a concurrent internal event is only influenced
when its result phase is zero. For the oven this means, if there arrives a new paste at the same
time a bread is output, the paste will be accepted and not discarded.

Looking at the source code in Listing 5.10, it can be recognized that there is exactly the
same switch - case construct as in Listing 5.8 with the only differences in the case in
which process phase equals three (line 68). There, until line 76, where the bread entity is ouput,
the behaviour is the same as in the case of a pure internal event. However, then instead of
resetting the systems state the currently arrived paste entity is read in line 77 and its attribute
values are stored in the system’s state. Therefore, the behaviour from line 77 on is exactly the
same as in case of a pure external event (see Listing 5.9).

5.6.3 Simulation Result

Figure 5.17 shows simulations results. The diagram was generated by the ‘GnuPlot’ Pow-
erDEVS library block. It shows the state trajectory of the baking oven during a simulation
run of 30 seconds. There are two paste entities processed during these 30 seconds. The small,
green trajectory with the shape of stairs corresponds to the current process phase of the oven.
The straight line that ends in a sharp point belongs to the temperature T . The value of the sum-
mit is exactly 40 ◦C as this is point where the state event defined as T > 40 ◦C is triggered.
Since all signals are actually discrete event signals, i.e. they only exist at specific points in time,
they have to be interpolated between those points. For this purpose the library block ‘Sample
and Hold’ has been used.
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Figure 5.17: Simulation results of the baking oven example. Depicted are the state trajecto-
ries.





CHAPTER 6
Conclusion and Outlook

With the ever growing computational power of modern computers also the possibilities to sim-
ulate more and more extensive and complex models increase. However, when including more
and more details into a model, very soon a point is reached where pure discrete or pure con-
tinuous models do not suffice anymore or they become unnecessarily expensive in terms of
computational power. Production processes are providing a good example for this trend, as it is
demanded to extend the formerly pure discrete models by the additional detail energy consump-
tion which leads directly to hybrid models.

As lined out, most established simulators are specified either in the discrete or in the contin-
uous domain and thus lack real effectiveness when hybrid models are simulated, if they support
the implementation of hybrid models at all. Crucial issues are state event location and the reso-
lution of concurrent events.

The approach to come from the continuous side and to somehow insert discontinuities ap-
pears to be quite ineffective, whereas with QSS and its variations a quite promising approach
seems to be found. The most important strength of QSS in this context is that discontinuities
are part of the method and not something unwanted. Further, due to the discrete event nature of
QSS, every state event actually is transformed to into a time event as its point in time is calcu-
lated in advance. So QSS shows a way how to discretise continuous systems in a very controlled
manner.

Nevertheless complex discrete event models are not easy to handle either. Thus, a well
reasoned formalism is needed which on the one hand does not impose too much restrictions on
the class of describable systems and on the other hand does not lead to models whose exact
behaviour cannot be forecast anymore.

The DEVS formalism is a quite powerful one as the range of system behaviour that can be
described by it is very wide. However, as it has been pointed out in chapter 4, it is very hard to
define a DEVS that really behaves as intended in every possible situation, particularly if DEVS
are coupled. The reason for that can be found on the one hand in the complexity of concurrency
resolution itself and on the other hand in the property of a DEVS to exactly define its behaviour
in situations with concurrent events without forcing the modeller to explicitly formulate this
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behaviour. Parallel DEVS (P-DEVS) is the name of a DEVS extension that exactly addresses
this problem.

For the BaMa project a simulator was searched for that is capable of reasonably simulating
hybrid models. Among the variety of DEVS simulators that can be found throughout the internet,
PowerDEVS is one of the open source products that seems to be quite promising for this task as
it combines the DEVS formalism with QSS. A drawback though is that it works with ordinary
DEVS and not with P-DEVS.

To counter that problem, the generic Atomic PDEVS block has been developed and pre-
sented in section 4.3. This block is intended to facilitate the definition of an atomic DEVS
model that behaves as intended also when coupled with other blocks.

Additionally to the pure DEVS formalism there also exists its modification DEV&DESS
which is particularly designed for describing hybrid models. Although in PowerDEVS hybrid
system models can easily be implemented so far there is no possibility to directly implement
a DEV&DESS model. Thus, also a generic Atomic DEV&DESS block based on the Atomic
PDEVS block has been developed and presented in chapter 5. This block is intended to serve as
template for implementing arbitrary DEV&DESS in PowerDEVS.

However, profound theoretical investigations on this topic are desirable. In particularly a
formal proof of the developed template blocks behaving as promised is work that still needs to
be done.
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Appendix

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2∗∗
3∗∗ C o p y r i g h t (C) 2009 F a c u l t a d de C i e n c i a E x a c t a s I n g e n i e r a y Agr imensura
4∗∗ U n i v e r s i d a d N a c i o n a l de R o s a r i o − A r g e n t i n a .
5∗∗ C o n t a c t : PowerDEVS I n f o r m a t i o n ( kofman@fceia . unr . edu . ar , f b e r g e r o @ f c e i a .

unr . edu . a r )
6∗∗
7∗∗ Thi s f i l e i s p a r t o f PowerDEVS .
8∗∗
9∗∗ PowerDEVS i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r modify

10∗∗ i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
11∗∗ t h e F ree S o f t w a r e Founda t ion , e i t h e r v e r s i o n 3 of t h e L icense , o r
12∗∗ ( a t your o p t i o n ) any l a t e r v e r s i o n .
13∗∗
14∗∗ PowerDEVS i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
15∗∗ b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
16∗∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
17∗∗ GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
18∗∗
19∗∗ You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
20∗∗ a l o n g wi th PowerDEVS . I f not , s e e < h t t p : / / www. gnu . o rg / l i c e n s e s / > .
21∗∗
22∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
23

24# i f n d e f EVENT_H
25# d e f i n e EVENT_H
26

27# i n c l u d e < t y p e i n f o > / / o p e r a t o r t y p e i d
28# i n c l u d e < i o s t r e a m >
29# i n c l u d e " V a l u e P o i n t e r . h "
30

31 /∗ ! En enumera td t y p e t e l l i n g what k ind of s y n c h r o n i z a t i o n must be used f o r
an e v e n t ∗ /
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32 t y p e d e f enum { NOREALTIME, REALTIME, PRECISEREALTIME } RealTimeMode ;
33

34 /∗ ! \ b r i e f Th i s c l a s s r e p r e s e n t s an o u t p u t even t , r e s u l t o f e v a l u a t i n g t h e
lambda f u n c t i o n o f a DEVS model ∗ /

35 c l a s s Event
36{
37 /∗ ! T e l l s which s y n c h r o n i z a t i o n s h o u l d be used f o r t h i s e v e n t ∗ /
38 RealTimeMode mode ;
39 p u b l i c :
40 /∗ ! The v a l u e c a r r i e d by an e v e n t i s d e f i n e d t o be a vo id p o i n t e r f o r

f l e x i b i l i t y .
41 ∗ Most o f t h e b l o c k s i n t h e l i b r a r y ( by c o n v e n t i o n ) use t h i s v a l u e

p o i n t i n g t o a do ub l e a r r a y .
42 ∗ T h e r e f o r e an i n p u t v a l u e can be r e t r i e v e d wi th :
43 ∗ do ub l e ∗v = ( d ou b l e ∗ ) e v e n t . v a l u e ;
44 ∗
45 ∗ v [ 0 ] i s t h e v a l u e
46 ∗ v [ 1 ] i s t h e f i r s t d e r i v a t e
47 ∗ /
48 V a l u e P o i n t e r v a l u e ;
49 / / vo id ∗ v a l u e ;
50 /∗ ! The p o r t v a l u e i s used t o know from which p o r t t h e e v e n t came from ∗ /
51 P o r t p o r t ;
52 /∗ ! Th i s boo l v a l u e i s used i n t h e RTAI d i s t r i b u t i o n . When s e t , i n d i c a t e s

t h a t an e x t e r n a l i n p u t e v e n t
53 ∗ o c u r r e d w h i l e s y n c h r o n z i n g t h i s even t , then , i t s h o u l d n o t be

p r o p a g a t e d . ∗ /
54 boo l i n t e r r u p t e d ;
55 Event ( ) ;
56 t e m p l a t e < c l a s s T>
57 Event ( T∗ va l , P o r t p ) {
58 v a l u e = v a l ;
59 mode = NOREALTIME;
60 i n t e r r u p t e d = 0 ;
61 p o r t =p ;
62 }
63 v i r t u a l ~ Event ( ) ;
64

65 /∗ ! A n u l l e v e n t i s d e f i n e d as one wi th v a l u e =NULL. ∗ /
66 vo id s e t N u l l E v e n t ( ) ;
67 boo l i s N o t N u l l ( ) ;
68

69 vo id setRealTimeMode ( RealTimeMode m) { mode=m; } ;
70 RealTimeMode getRealTimeMode ( ) { r e t u r n mode ; } ;
71 /∗ ! R e t r i e v e s t h e i ’ t h d oub l e v a l u e o f t h i s e v e n t ∗ /
72 do ub l e ge tDoub le ( i n t i ) { r e t u r n ( ( d ou b l e ∗ ) v a l u e ) [ i ] ; } ;
73 /∗ ! R e t r i e v e s t h e f i r s t d oub l e v a l u e o f t h i s e v e n t ∗ /
74 do ub l e ge tDoub le ( ) { r e t u r n ge tDoub le ( 0 ) ; } ;
75 /∗ ! R e t r i e v e s t h e f i r s t i n t v a l u e o f t h i s e v e n t ∗ /
76 do ub l e g e t I n t ( ) { r e t u r n ( ( i n t ∗ ) v a l u e ) [ 0 ] ; } ;
77 vo id s e t D o u b l e ( d oub l e &v ) { v a l u e=&v ; } ;
78 vo id s e t I n t ( i n t &v ) { v a l u e=&v ; } ;
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79 /∗ ! Th i s i s used i n t e r n a l l y by t h e s i m u l a t i o n e n g i n e t o n o t i f y an e x t e r n a l
i n p u t e v e n t ∗ /

80 vo id s e t I n t e r r u p t e d ( ) { i n t e r r u p t e d = t r u e ; }
81 boo l i s I n t e r r u p t e d ( ) { r e t u r n i n t e r r u p t e d ; }
82 } ;
83

84# e n d i f

Listing A.1: The class Event.

1# i f n d e f VALUEPOINTER_H
2# d e f i n e VALUEPOINTER_H
3

4# i n c l u d e < t y p e i n f o > / / o p e r a t o r t y p e i d
5# i n c l u d e " t y p e s . h "
6# i n c l u d e " . . / a t o m i c s / v e c t o r / v e c t o r . h "
7

8 c l a s s V a l u e P o i n t e r {
9 p r i v a t e :

10 DEVSMessage ∗msgPtr ;
11 v e c t o r ∗ v e c P t r ;
12 p u b l i c :
13 boo l a l l o c a t e d _ m e m o r y ;
14

15 p u b l i c :
16 / / c o n t s t r u c t o r s :
17 V a l u e P o i n t e r ( ) {
18 msgPtr = NULL;
19 v e c P t r = NULL;
20 a l l o c a t e d _ m e m o r y = f a l s e ;
21 }
22 V a l u e P o i n t e r ( c o n s t V a l u e P o i n t e r &vp ) {
23 a l l o c a t e d _ m e m o r y = f a l s e ;
24 i f ( vp . a l l o c a t e d _ m e m o r y ) {
25 msgPtr = vp . msgPtr−>getCopy ( ) ;
26 a l l o c a t e d _ m e m o r y = t r u e ;
27 } e l s e
28 msgPtr = vp . msgPtr ;
29 v e c P t r = NULL;
30 }
31

32 / / c a s t s :
33 t e m p l a t e < c l a s s T>
34 i n l i n e o p e r a t o r T∗ ( ) {
35 i f ( t y p e i d ( T ) == t y p e i d ( vo id ) ) {
36 r e t u r n ( ( T∗ ) ( msgPtr−>g e t V o i d P t r ( ) ) ) ;
37 } e l s e i f ( t y p e i d ( T ) == t y p e i d ( i n t ) ) {
38 r e t u r n ( ( T∗ ) msgPtr−> g e t I n t P t r ( ) ) ;
39 } e l s e i f ( t y p e i d ( T ) == t y p e i d ( dou b l e ) ) {
40 r e t u r n ( ( T∗ ) msgPtr−>g e t D o u b l e P t r ( ) ) ;
41 } e l s e i f ( t y p e i d ( T ) == t y p e i d ( DEVSMessage ) ) {
42 r e t u r n ( ( T∗ ) msgPtr ) ;



140 APPENDIX A. APPENDIX

43 } e l s e i f ( ( t y p e i d ( T ) == t y p e i d (∗ msgPtr ) ) | | t y p e i d ( T ) . b e f o r e ( t y p e i d (∗
msgPtr ) ) ) {

44 r e t u r n ( ( T∗ ) msgPtr ) ;
45 } e l s e i f ( t y p e i d ( T ) == t y p e i d ( v e c t o r ) ) {
46 / / i f a do ub l e a r r a y i s c a s t e d i n t o a v e c t o r i n s t a n c e ( which
47 / / happens i n some of t h e PowerDEVS l i b r a r y b l o c k s )
48 i f (NULL != v e c P t r ) d e l e t e v e c P t r ;
49 v e c P t r = new v e c t o r ( msgPtr ) ;
50 r e t u r n ( ( T∗ ) v e c P t r ) ;
51 }
52 r e t u r n (NULL) ;
53 }
54

55 / / a s s i gnmen t−o p e r a t o r s :
56 V a l u e P o i n t e r& o p e r a t o r = ( i n t n ) {
57 i f (0== n ) {
58 i f ( a l l o c a t e d _ m e m o r y ) d e l e t e msgPtr ;
59 a l l o c a t e d _ m e m o r y = f a l s e ;
60 msgPtr = NULL;
61 }
62 r e t u r n (∗ t h i s ) ;
63 }
64 V a l u e P o i n t e r& o p e r a t o r = ( c o n s t V a l u e P o i n t e r &p t r ) {
65 i f ( a l l o c a t e d _ m e m o r y ) d e l e t e msgPtr ;
66 a l l o c a t e d _ m e m o r y = f a l s e ;
67 i f ( p t r . a l l o c a t e d _ m e m o r y ) {
68 msgPtr = ( ( V a l u e P o i n t e r &) p t r ) . getCopy ( ) ;
69 a l l o c a t e d _ m e m o r y = t r u e ;
70 } e l s e
71 msgPtr = p t r . msgPtr ;
72

73 r e t u r n (∗ t h i s ) ;
74 }
75 V a l u e P o i n t e r& o p e r a t o r = ( vo id ∗ p t r ) {
76 i f (NULL == msgPtr ) {
77 msgPtr = new DEVSMessage ;
78 a l l o c a t e d _ m e m o r y = t r u e ;
79 }
80 msgPtr−> s e t ( p t r ) ;
81 r e t u r n (∗ t h i s ) ;
82 }
83 V a l u e P o i n t e r& o p e r a t o r = ( do ub l e ∗ p t r ) {
84 i f (NULL == msgPtr ) {
85 msgPtr = new QSSDoubleArray ( 0 . 0 , ( u i n t ) 0 ) ;
86 a l l o c a t e d _ m e m o r y = t r u e ;
87 }
88 msgPtr−> s e t ( p t r ) ;
89 r e t u r n (∗ t h i s ) ;
90 }
91 V a l u e P o i n t e r& o p e r a t o r = ( i n t ∗ p t r ) {
92 i f (NULL == msgPtr ) {
93 msgPtr = new DEVSMessage ( ) ;
94 a l l o c a t e d _ m e m o r y = t r u e ;
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95 }
96 msgPtr−> s e t ( p t r ) ;
97 r e t u r n (∗ t h i s ) ;
98 }
99 V a l u e P o i n t e r& o p e r a t o r = ( DEVSMessage ∗msg ) {

100 i f ( a l l o c a t e d _ m e m o r y ) d e l e t e msgPtr ;
101 a l l o c a t e d _ m e m o r y = f a l s e ;
102 msgPtr = msg ;
103 r e t u r n (∗ t h i s ) ;
104 }
105 t e m p l a t e < c l a s s T>
106 V a l u e P o i n t e r& o p e r a t o r = ( T ∗ p t r ) {
107 / / Problem : t h e qss−s o l v e r s r e t u r n &y ( where y : do ub l e y [ 1 0 ] ) and
108 / / t h e t y p e i d o f any c l a s s i s b e f o r e t h e t y p e i d o f e v e r y b a s i c t y p e ( a s &

y ) ,
109 / / b u t b i g a r r a y& i s b e f o r e e v e r y a r r a y o f b a s i c−t y p e wi th l e s s t h a n
110 / / 10000 e l e m e n t s
111 / / b e t t e r would be t h e use o f i n c l u d e : < t y p e _ t r a i t s > − b u t t h a t would
112 / / need t h e c o m p i l e r f l a g −c ++11
113 t y p e d e f c h a r b i g a r r a y [ 1 0 0 0 0 ] ;
114 i f ( ( ! t y p e i d ( b i g a r r a y &) . b e f o r e ( t y p e i d ( T ) ) ) && t y p e i d ( DEVSMessage ) . b e f o r e (

t y p e i d ( T ) ) ) {
115 i f ( a l l o c a t e d _ m e m o r y ) d e l e t e msgPtr ;
116 a l l o c a t e d _ m e m o r y = f a l s e ;
117 msgPtr = ( DEVSMessage ∗ ) p t r ;
118 } e l s e {
119 (∗ t h i s ) =( vo id ∗ ) p t r ;
120 }
121 r e t u r n (∗ t h i s ) ;
122 }
123

124 / / compar i son−o p e r a t o r s :
125 t e m p l a t e < c l a s s T>
126 boo l o p e r a t o r == ( T ∗ p t r ) {
127 r e t u r n ( ( ( T∗ ) msgPtr ) == p t r ) ;
128 }
129 boo l o p e r a t o r == ( DEVSMessage ∗ p t r ) {
130 r e t u r n ( msgPtr−>o p e r a t o r ==(∗ p t r ) ) ;
131 }
132 t e m p l a t e < c l a s s T>
133 boo l o p e r a t o r != ( T ∗ p t r ) {
134 r e t u r n ( ! ( ( ( ∗ t h i s ) ) == p t r ) ) ;
135 }
136 boo l o p e r a t o r == ( i n t n ) {
137 i f (0== n )
138 r e t u r n ( ( ( vo id ∗ ) msgPtr ) ==NULL) ;
139 r e t u r n ( f a l s e ) ;
140 }
141 boo l o p e r a t o r != ( i n t n ) {
142 r e t u r n ( ! ( ( ∗ t h i s ) ==n ) ) ;
143 }
144

145 / / getCopy
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146 DEVSMessage∗ getCopy ( ) {
147 r e t u r n ( msgPtr−>getCopy ( ) ) ;
148 }
149 ~ V a l u e P o i n t e r ( ) {
150 i f ( a l l o c a t e d _ m e m o r y ) d e l e t e msgPtr ;
151 i f (NULL != v e c P t r ) d e l e t e v e c P t r ;
152 }
153 } ;
154

155# e n d i f

Listing A.2: The class ValuePointer.

1# i f n d e f DEVSMESSAGE_H
2# d e f i n e DEVSMESSAGE_H
3

4 c l a s s DEVSMessage {
5 p u b l i c :
6 vo id ∗ v a l u e ;
7 i n t i n d e x ;
8 boo l r e t r i e v e ;
9

10 / / c o n s t r u c t o r s :
11 DEVSMessage ( ) { v a l u e =NULL; i n d e x =0; r e t r i e v e = f a l s e ; }
12 DEVSMessage ( vo id ∗ p t r ) { v a l u e = p t r ; i n d e x =0; r e t r i e v e = f a l s e ; }
13 DEVSMessage ( c o n s t DEVSMessage &msg ) { t h i s −>v a l u e = msg . v a l u e ; t h i s −>i n d e x

= msg . i n d e x ; r e t r i e v e = f a l s e ; }
14

15 v i r t u a l vo id ∗ g e t V o i d P t r ( ) { r e t u r n v a l u e ; }
16 v i r t u a l do ub l e ∗ g e t D o u b l e P t r ( ) { r e t u r n ( ( do ub l e ∗ ) v a l u e ) ; }
17 v i r t u a l i n t ∗ g e t I n t P t r ( ) { r e t u r n ( ( i n t ∗ ) v a l u e ) ; }
18

19 v i r t u a l vo id s e t ( vo id ∗ p t r ) { v a l u e = p t r ; }
20 v i r t u a l vo id s e t ( do ub l e ∗ p t r ) { v a l u e =( d ou b l e ∗ ) p t r ; }
21 v i r t u a l vo id s e t ( i n t ∗ p t r ) { v a l u e =( i n t ∗ ) p t r ; }
22

23 v i r t u a l boo l o p e r a t o r ==(DEVSMessage& msg ) {
24 i f ( t h i s −>i n d e x != msg . i n d e x ) r e t u r n ( f a l s e ) ;
25 r e t u r n ( t h i s −>v a l u e ==msg . v a l u e ) ;
26 }
27 v i r t u a l boo l o p e r a t o r ! = ( DEVSMessage &msg ) {
28 r e t u r n ( ! ( ( ∗ t h i s ) ==msg ) ) ;
29 }
30 v i r t u a l DEVSMessage∗ getCopy ( ) { r e t u r n ( new DEVSMessage (∗ t h i s ) ) ; }
31 v i r t u a l ~DEVSMessage ( ) {}
32 } ;
33

34# e n d i f

Listing A.3: The class DEVSMessage.
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1# i f n d e f QSS_SIGNAL_H
2# d e f i n e QSS_SIGNAL_H
3

4# i n c l u d e < s t r i n g . h>
5# i n c l u d e < s t d l i b . h>
6# i n c l u d e <math . h>
7# i n c l u d e < t y p e i n f o >
8# i n c l u d e < s t d e x c e p t >
9# i n c l u d e " DEVSMessage . h "

10

11# i f n d e f QSS_DOUBLEARRAY_SIZE
12 # d e f i n e QSS_DOUBLEARRAY_SIZE 10
13# e n d i f
14

15# i f n d e f INF
16 # d e f i n e INF 1 e20
17# e n d i f
18

19 c l a s s QSSDoubleArray : p u b l i c DEVSMessage {
20

21 p u b l i c :
22 u i n t s i z e ;
23 boo l a l l o c a t e d _ m e m o r y ;
24

25 / / C o n s t r u c t o r s :
26 QSSDoubleArray ( ) {
27 t h i s −> s i z e = ( u i n t )QSS_DOUBLEARRAY_SIZE ;
28 v a l u e = ( vo id ∗ ) c a l l o c (QSS_DOUBLEARRAY_SIZE , s i z e o f ( d ou b l e ) ) ;
29 a l l o c a t e d _ m e m o r y = t r u e ;
30 t h i s −>i n d e x =0;
31 }
32 QSSDoubleArray ( DEVSMessage ∗ p t r ) {
33 t h i s −> s i z e = ( u i n t )QSS_DOUBLEARRAY_SIZE ;
34 v a l u e = ( vo id ∗ ) c a l l o c (QSS_DOUBLEARRAY_SIZE , s i z e o f ( d ou b l e ) ) ;
35 a l l o c a t e d _ m e m o r y = t r u e ;
36 t h i s −>i n d e x =0;
37 f o r ( u i n t i =0 ; i <QSS_DOUBLEARRAY_SIZE ; i ++)
38 ( ( d ou b l e ∗ ) v a l u e ) [ i ] = ( p t r −>g e t D o u b l e P t r ( ) ) [ i ] ;
39 }
40 QSSDoubleArray ( c o n s t QSSDoubleArray &i n s t a n c e ) {
41 t h i s −> s i z e = i n s t a n c e . s i z e ;
42 t h i s −>v a l u e = ( vo id ∗ ) m a l l oc ( s i z e ∗ s i z e o f ( d ou b l e ) ) ;
43 a l l o c a t e d _ m e m o r y = t r u e ;
44 memcpy ( t h i s −>va lue , i n s t a n c e . va lue , i n s t a n c e . s i z e ∗ s i z e o f ( d ou b l e ) ) ;
45 t h i s −>i n d e x = i n s t a n c e . i n d e x ;
46 }
47 QSSDoubleArray ( c o n s t dou b l e v a l u e [ ] ) {
48 t h i s −> s i z e = QSS_DOUBLEARRAY_SIZE ;
49 t h i s −>v a l u e = ( vo id ∗ ) m a l l oc (QSS_DOUBLEARRAY_SIZE∗ s i z e o f ( d ou b l e ) ) ;
50 a l l o c a t e d _ m e m o r y = t r u e ;
51 memcpy ( t h i s −>va lue , va lue , QSS_DOUBLEARRAY_SIZE∗ s i z e o f ( d ou b l e ) ) ;
52 t h i s −>i n d e x =0;
53 }
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54 QSSDoubleArray ( c o n s t dou b l e v a l u e [ ] , c o n s t u i n t s i z e ) {
55 t h i s −> s i z e = s i z e ;
56 t h i s −>v a l u e = ( vo id ∗ ) m a l l oc ( s i z e ∗ s i z e o f ( d ou b l e ) ) ;
57 a l l o c a t e d _ m e m o r y = t r u e ;
58 memcpy ( t h i s −>va lue , va lue , s i z e ∗ s i z e o f ( d ou b l e ) ) ;
59 t h i s −>i n d e x =0;
60 }
61 QSSDoubleArray ( c o n s t dou b l e v a l ) {
62 t h i s −> s i z e = QSS_DOUBLEARRAY_SIZE ;
63 t h i s −>v a l u e = ( vo id ∗ ) c a l l o c ( s i z e , s i z e o f ( d ou b l e ) ) ;
64 a l l o c a t e d _ m e m o r y = t r u e ;
65 ( ( d ou b l e ∗ ) v a l u e ) [ 0 ] = v a l ;
66 t h i s −>i n d e x =0;
67 }
68 QSSDoubleArray ( c o n s t dou b l e va l , u i n t s i z e ) {
69 t h i s −> s i z e = s i z e ;
70 t h i s −>i n d e x =0;
71 i f ( s i z e >0) {
72 t h i s −>v a l u e = ( vo id ∗ ) c a l l o c ( s i z e , s i z e o f ( d ou b l e ) ) ;
73 a l l o c a t e d _ m e m o r y = t r u e ;
74 ( ( d ou b l e ∗ ) v a l u e ) [ 0 ] = v a l ;
75 } e l s e {
76 t h i s −>v a l u e = NULL;
77 a l l o c a t e d _ m e m o r y = f a l s e ;
78 }
79 }
80

81 / / o p e r a t o r s :
82 i n l i n e dou b l e& o p e r a t o r [ ] ( u i n t n ) {
83 i f ( n< s i z e )
84 r e t u r n ( ( ( d ou b l e ∗ ) v a l u e ) [ n ] ) ;
85 th row s t d : : o u t _ o f _ r a n g e ( " i n d e x i n QSSDoubleArray []− O p e r a t o r i s o u t o f

r a n g e ! " ) ;
86 r e t u r n ( ( ( d ou b l e ∗ ) v a l u e ) [ s i z e −1]) ;
87 }
88

89 i n l i n e o p e r a t o r do ub l e ( ) {
90 i f (NULL != v a l u e ) r e t u r n ( ( ( d ou b l e ∗ ) v a l u e ) [ 0 ] ) ;
91 e l s e r e t u r n ( 0 ) ;
92 }
93

94 QSSDoubleArray& o p e r a t o r = ( c o n s t QSSDoubleArray &a ) {
95 i f ( s i z e < a . s i z e ) {
96 i f ( (NULL != t h i s −>v a l u e ) && a l l o c a t e d _ m e m o r y ) f r e e ( t h i s −>v a l u e ) ;
97 t h i s −>v a l u e = ( vo id ∗ ) m a l l oc ( a . s i z e ∗ s i z e o f ( d ou b l e ) ) ;
98 a l l o c a t e d _ m e m o r y = t r u e ;
99 }

100 t h i s −> s i z e = a . s i z e ;
101 memcpy ( t h i s −>va lue , a . va lue , s i z e ∗ s i z e o f ( d ou b l e ) ) ;
102 t h i s −>i n d e x =a . i n d e x ;
103 r e t u r n (∗ t h i s ) ;
104 }
105 QSSDoubleArray& o p e r a t o r = ( c o n s t do ub l e v a l [ ] ) {
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106 i f ( s i z e < QSS_DOUBLEARRAY_SIZE) {
107 i f ( (NULL != t h i s −>v a l u e ) && a l l o c a t e d _ m e m o r y ) f r e e ( t h i s −>v a l u e ) ;
108 t h i s −>v a l u e = ( vo id ∗ ) m a l l oc (QSS_DOUBLEARRAY_SIZE∗ s i z e o f ( d ou b l e ) ) ;
109 a l l o c a t e d _ m e m o r y = t r u e ;
110 }
111 t h i s −> s i z e = QSS_DOUBLEARRAY_SIZE ;
112 memcpy ( t h i s −>va lue , va l , s i z e ∗ s i z e o f ( d ou b l e ) ) ;
113 r e t u r n (∗ t h i s ) ;
114 }
115 QSSDoubleArray& o p e r a t o r = ( c o n s t do ub l e v a l ) {
116 ( ( d ou b l e ∗ ) v a l u e ) [ 0 ] = v a l ;
117 f o r ( u i n t i =1 ; i < s i z e ; i ++)
118 ( ( d ou b l e ∗ ) v a l u e ) [ i ] = 0 ;
119 r e t u r n (∗ t h i s ) ;
120 }
121

122 QSSDoubleArray i n v e r t ( ) {
123 QSSDoubleArray r e s u l t ( 1 . 0 , s i z e ) ;
124 i f ( (∗ t h i s ) [ 0 ] = = 0 ) {
125 r e s u l t = INF ;
126 r e t u r n ( INF ) ;
127 }
128 f o r ( u i n t i =0 ; i < s i z e ; i ++) {
129 f o r ( u i n t j =1 ; j <= i ; j ++) {
130 r e s u l t [ i ] −= r e s u l t [ i−j ]∗ (∗ t h i s ) [ j ] ;
131 }
132 r e s u l t [ i ] = r e s u l t [ i ] / ( ∗ t h i s ) [ 0 ] ;
133 }
134 r e t u r n ( r e s u l t ) ;
135 }
136 QSSDoubleArray o p e r a t o r +( c o n s t QSSDoubleArray &da ) {
137 u i n t b i g g e s t _ s i z e = t h i s −> s i z e ;
138 i f ( da . s i z e > b i g g e s t _ s i z e ) b i g g e s t _ s i z e = da . s i z e ;
139 QSSDoubleArray r e s u l t ( 0 . 0 , b i g g e s t _ s i z e ) ;
140 f o r ( u i n t i =0 ; i < b i g g e s t _ s i z e ; i ++) {
141 i f ( i >= t h i s −> s i z e )
142 r e s u l t [ i ] = ( ( QSSDoubleArray ) da ) [ i ] ;
143 e l s e i f ( i >=da . s i z e )
144 r e s u l t [ i ] = (∗ t h i s ) [ i ] ;
145 e l s e
146 r e s u l t [ i ] = (∗ t h i s ) [ i ] + ( ( QSSDoubleArray ) da ) [ i ] ;
147 }
148 r e t u r n ( r e s u l t ) ;
149 }
150 QSSDoubleArray o p e r a t o r ∗ ( c o n s t QSSDoubleArray &da ) {
151 u i n t b i g g e s t _ s i z e = t h i s −> s i z e ;
152 i f ( da . s i z e > b i g g e s t _ s i z e ) b i g g e s t _ s i z e = da . s i z e ;
153 QSSDoubleArray r e s u l t ( 0 . 0 , b i g g e s t _ s i z e ) ;
154 f o r ( u i n t i =0 ; i < b i g g e s t _ s i z e ; i ++) {
155 f o r ( u i n t j =0 ; j <= i ; j ++) {
156 i f ( ( j < t h i s −> s i z e ) &&(( i−j ) <da . s i z e ) )
157 r e s u l t [ i ] += (∗ t h i s ) [ j ] ∗ ( ( QSSDoubleArray ) da ) [ i−j ] ;
158 e l s e
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159 r e s u l t [ i ] += 0 ;
160 }
161 }
162 r e t u r n ( r e s u l t ) ;
163 }
164 QSSDoubleArray o p e r a t o r / ( c o n s t QSSDoubleArray &da ) {
165 r e t u r n ( ( ∗ t h i s ) ∗ ( ( QSSDoubleArray ) da ) . i n v e r t ( ) ) ;
166 }
167

168 boo l o p e r a t o r ==( QSSDoubleArray &a ) {
169 i f ( t h i s −> s i z e != a . s i z e ) r e t u r n ( f a l s e ) ;
170 f o r ( u i n t i =0 ; i < s i z e ; i ++) {
171 i f ( (∗ t h i s ) [ i ] ! = a [ i ] )
172 r e t u r n f a l s e ;
173 }
174 r e t u r n t r u e ;
175 }
176 v i r t u a l boo l o p e r a t o r ==(DEVSMessage &msg ) {
177 i f ( t y p e i d ( msg ) != t y p e i d (∗ t h i s ) ) r e t u r n f a l s e ;
178 r e t u r n ( (∗ t h i s ) ==( ( QSSDoubleArray&)msg ) ) ;
179 }
180 boo l o p e r a t o r ! = ( QSSDoubleArray &a ) {
181 r e t u r n ( ! ( ( ∗ t h i s ) ==a ) ) ;
182 }
183

184 do ub l e a d v a n c e _ t i m e ( d oub l e d e l t a _ t ) {
185 QSSDoubleArray d e r i v a t i v e s (∗ t h i s ) ;
186 (∗ t h i s ) = 0 . 0 ;
187 f o r ( u i n t i =0 ; i < s i z e ; i ++) {
188 / / e v a l u a t e d e r i v a t i v e s a t t = t _ l a s t _ c h a n g e + d e l t a _ t
189 f o r ( u i n t j = i ; j < s i z e ; j ++)
190 (∗ t h i s ) [ i ] += d e r i v a t i v e s [ j ]∗pow ( d e l t a _ t , ( do ub l e ) j−i ) ;
191 / / d e r i v e ’ d e r i v a t i v e s ’
192 f o r ( u i n t j = i ; j < s i z e ; j ++)
193 d e r i v a t i v e s [ j ] = ( ( d ou b l e ) ( j−i ) ) ∗ d e r i v a t i v e s [ j ] ;
194 }
195 r e t u r n ( ( ∗ t h i s ) [ 0 ] ) ;
196 }
197

198 / / DEVSMessage − I n t e r f a c e :
199 v i r t u a l vo id s e t ( vo id ∗ p t r ) {
200 i f ( (NULL!= v a l u e ) && a l l o c a t e d _ m e m o r y ) f r e e ( v a l u e ) ;
201 a l l o c a t e d _ m e m o r y = f a l s e ;
202 v a l u e = p t r ;
203 s i z e = QSS_DOUBLEARRAY_SIZE ;
204 }
205 v i r t u a l vo id s e t ( do ub l e ∗ p t r ) {
206 i f ( (NULL!= v a l u e ) && a l l o c a t e d _ m e m o r y ) f r e e ( v a l u e ) ;
207 a l l o c a t e d _ m e m o r y = f a l s e ;
208 v a l u e = ( vo id ∗ ) p t r ;
209 s i z e = QSS_DOUBLEARRAY_SIZE ;
210 }
211 v i r t u a l vo id s e t ( i n t ∗ p t r ) {
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212 i f ( (NULL!= v a l u e ) && a l l o c a t e d _ m e m o r y ) f r e e ( v a l u e ) ;
213 a l l o c a t e d _ m e m o r y = f a l s e ;
214 v a l u e = ( vo id ∗ ) p t r ;
215 s i z e = 1 ;
216 }
217

218 v i r t u a l DEVSMessage∗ getCopy ( ) {
219 r e t u r n ( ( DEVSMessage ∗ ) ( new QSSDoubleArray ( ( ∗ t h i s ) ) ) ) ;
220 }
221

222 v i r t u a l ~QSSDoubleArray ( ) {
223 i f ( (NULL!= v a l u e ) && a l l o c a t e d _ m e m o r y ) f r e e ( v a l u e ) ;
224 }
225 } ;
226

227# e n d i f

Listing A.4: The class QSSDoubleArray.

1# i f n d e f VECTOR_H
2# d e f i n e VECTOR_H
3

4# i n c l u d e " s t r i n g . h "
5# i n c l u d e " . . / p r e y s e r l i b / QSSDoubleArray . h "
6

7 /∗ t h i s c l a s s i s needed , b e c a u s e l i b r a r y b l o c k s use t h e f o l l o w i n g code :
8 ∗ v e c t o r v ; v . v a l u e [ i ] ; however , v a l u e i s an a t t r i b u t e o f t h e base c l a s s
9 ∗ DEVSMessage and does n o t have an o p e r a t o r [ ] d e f i n e d on i t .

10 ∗ T h e r e f o r e , v e c t o r g e t s a new a t t r i b u t e v a l u e t h a t c o v e r s t h e v a l u e
a t t r i b u t e

11 ∗ of DEVSMessage . T h e r e f o r e v . v a l u e [ i ] w i l l a l s o work .
12 ∗ /
13 c l a s s V a l u e D u p l i c a t e {
14 p r i v a t e :
15 / / vo id ∗∗ p t r ;
16 QSSDoubleArray ∗ p t r ;
17

18 p u b l i c :
19

20 V a l u e D u p l i c a t e ( ) { p t r =NULL; }
21 V a l u e D u p l i c a t e ( QSSDoubleArray ∗ p t r ) { t h i s −> p t r = p t r ; }
22

23 vo id s e t ( QSSDoubleArray∗ p t r ) { t h i s −> p t r = p t r ; }
24

25 o p e r a t o r vo id ∗ ( ) {
26 r e t u r n ( p t r −>g e t V o i d P t r ( ) ) ;
27 }
28 o p e r a t o r d ou b l e ∗ ( ) {
29 r e t u r n ( p t r −>g e t D o u b l e P t r ( ) ) ;
30 }
31 o p e r a t o r i n t ∗ ( ) {
32 r e t u r n ( p t r −> g e t I n t P t r ( ) ) ;
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33 }
34

35 i n l i n e dou b l e& o p e r a t o r [ ] ( u i n t n ) { r e t u r n ( (∗ p t r ) [ n ] ) ; }
36

37 } ;
38

39 c l a s s v e c t o r : p u b l i c QSSDoubleArray
40{
41 p u b l i c :
42 V a l u e D u p l i c a t e v a l u e ;
43

44 / / c o n s t r u c t o r s :
45 v e c t o r ( ) : QSSDoubleArray ( ) {
46 t h i s −>i n d e x =0;
47 v a l u e . s e t ( t h i s ) ;
48 }
49 v e c t o r ( c o n s t v e c t o r &v ) : QSSDoubleArray ( ( QSSDoubleArray&)v ) {
50 t h i s −>v a l u e . s e t ( t h i s ) ;
51 t h i s −>i n d e x = v . i n d e x ;
52 }
53 v e c t o r ( c o n s t d ou b l e v a l u e [ ] , c o n s t s i z e _ t s i z e ) : QSSDoubleArray ( va lue , s i z e )

{
54 t h i s −>v a l u e . s e t ( t h i s ) ;
55 t h i s −>i n d e x = 0 ;
56 }
57 v e c t o r ( c o n s t QSSDoubleArray v a l u e ) : QSSDoubleArray ( v a l u e ) {
58 t h i s −>v a l u e . s e t ( t h i s ) ;
59 t h i s −>i n d e x = 0 ;
60 }
61 v e c t o r ( c o n s t d ou b l e v a l u e [ ] , c o n s t i n t i n d e x ) : QSSDoubleArray ( v a l u e ) {
62 t h i s −>v a l u e . s e t ( t h i s ) ;
63 t h i s −>i n d e x = i n d e x ;
64 }
65 v e c t o r ( c o n s t QSSDoubleArray va lue , c o n s t i n t i n d e x ) : QSSDoubleArray ( v a l u e ) {
66 t h i s −>v a l u e . s e t ( t h i s ) ;
67 t h i s −>i n d e x = i n d e x ;
68 }
69 v e c t o r ( c o n s t d ou b l e v a l ) : QSSDoubleArray ( v a l ) {
70 t h i s −>i n d e x = 0 ;
71 t h i s −>v a l u e . s e t ( t h i s ) ;
72 }
73 v e c t o r ( c o n s t d ou b l e va l , i n t i n d e x ) : QSSDoubleArray ( v a l ) {
74 t h i s −>i n d e x = i n d e x ;
75 t h i s −>v a l u e . s e t ( t h i s ) ;
76 }
77 v e c t o r ( c o n s t d ou b l e va l , u i n t s i z e , i n t i n d e x ) : QSSDoubleArray ( va l , s i z e ) {
78 t h i s −>i n d e x = i n d e x ;
79 t h i s −>v a l u e . s e t ( t h i s ) ;
80 }
81 v e c t o r ( DEVSMessage ∗msg ) : QSSDoubleArray ( 0 . 0 , ( u i n t ) 0 ) {
82 t h i s −> s e t ( msg−>g e t V o i d P t r ( ) ) ;
83

84 i f ( t y p e i d ( QSSDoubleArray ) == t y p e i d (∗msg ) )
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85 t h i s −> s i z e = ( ( QSSDoubleArray ∗ ) msg )−> s i z e ;
86 e l s e t h i s −> s i z e =QSS_DOUBLEARRAY_SIZE ;
87

88 t h i s −>i n d e x = msg−>i n d e x ;
89 t h i s −>v a l u e . s e t ( t h i s ) ;
90 }
91

92 / / o p e r a t o r s :
93 v e c t o r& o p e r a t o r =( c o n s t v e c t o r &v ) {
94 t h i s −>i n d e x = v . i n d e x ;
95 ( QSSDoubleArray&) (∗ t h i s ) = ( QSSDoubleArray&)v ;
96 r e t u r n (∗ t h i s ) ;
97 }
98 v e c t o r& o p e r a t o r =( c o n s t d ou b l e v a l u e [ ] ) {
99 t h i s −>i n d e x = 0 ;

100 ( QSSDoubleArray&) (∗ t h i s ) = v a l u e ;
101 r e t u r n (∗ t h i s ) ;
102 }
103 v e c t o r& o p e r a t o r =( c o n s t d ou b l e v a l ) {
104 ( ( QSSDoubleArray ∗ ) t h i s )−> o p e r a t o r =( v a l ) ;
105 r e t u r n (∗ t h i s ) ;
106 }
107

108 boo l o p e r a t o r ==( v e c t o r &v ) {
109 i f ( i n d e x != v . i n d e x ) r e t u r n ( f a l s e ) ;
110 r e t u r n ( ( ( QSSDoubleArray&) (∗ t h i s ) ) ==( ( QSSDoubleArray&)v ) ) ;
111 }
112 v i r t u a l boo l o p e r a t o r ==(DEVSMessage &msg ) {
113 i f ( t y p e i d ( msg ) != t y p e i d (∗ t h i s ) ) r e t u r n f a l s e ;
114 r e t u r n ( (∗ t h i s ) ==( ( v e c t o r &)msg ) ) ;
115 }
116 boo l o p e r a t o r ! = ( v e c t o r &v ) {
117 r e t u r n ( ! ( ( ∗ t h i s ) ==v ) ) ;
118 }
119

120 v i r t u a l DEVSMessage∗ getCopy ( ) {
121 r e t u r n ( ( DEVSMessage ∗ ) ( new v e c t o r (∗ t h i s ) ) ) ;
122 }
123 v i r t u a l ~ v e c t o r ( ) {}
124 } ;
125

126# e n d i f

Listing A.5: The class vector.

1# i f n d e f ENTITY_H
2# d e f i n e ENTITY_H
3

4# i n c l u d e < s t r i n g >
5# i n c l u d e <map>
6# i n c l u d e < s t d i o . h>
7# i n c l u d e < s s t r e a m >
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8# i n c l u d e " DEVSMessage . h "
9

10 c l a s s E n t i t y : p u b l i c DEVSMessage
11{
12 p u b l i c :
13 s t d : : s t r i n g l o g ;
14 s t d : : s t r i n g l o g _ f i l e _ p a t h ;
15 s t d : : map< s t d : : s t r i n g , double > a t t r i b u t e _ m a p ;
16

17 E n t i t y ( ) : DEVSMessage ( ) {}
18 E n t i t y ( c o n s t E n t i t y &e ) : DEVSMessage ( ( DEVSMessage&)e ) {
19 t h i s −>l o g = e . l o g ;
20 t h i s −> l o g _ f i l e _ p a t h = e . l o g _ f i l e _ p a t h ;
21 t h i s −>a t t r i b u t e _ m a p = e . a t t r i b u t e _ m a p ;
22 }
23 E n t i t y ( s t d : : s t r i n g &l o g _ f i l e _ p a t h , s t d : : s t r i n g &log , s t d : : map< s t d : : s t r i n g ,

double > &a t t r i b u t e _ m a p ) : DEVSMessage ( ) {
24 t h i s −>l o g = l o g ;
25 t h i s −> l o g _ f i l e _ p a t h = l o g _ f i l e _ p a t h ;
26 t h i s −>a t t r i b u t e _ m a p = a t t r i b u t e _ m a p ;
27 }
28 E n t i t y ( c o n s t c h a r l o g _ f i l e _ p a t h [ ] , c o n s t c h a r l o g [ ] , s t d : : map< s t d : : s t r i n g ,

double > &a t t r i b u t e _ m a p ) : DEVSMessage ( ) {
29 t h i s −>l o g = s t d : : s t r i n g ( l o g ) ;
30 t h i s −> l o g _ f i l e _ p a t h = s t d : : s t r i n g ( l o g _ f i l e _ p a t h ) ;
31 t h i s −>a t t r i b u t e _ m a p = a t t r i b u t e _ m a p ;
32 }
33 E n t i t y ( s t d : : s t r i n g &l o g _ f i l e _ p a t h , s t d : : s t r i n g &log , s t d : : map< s t d : : s t r i n g ,

double > &a t t r i b u t e _ m a p , vo id ∗ v a l ) : DEVSMessage ( v a l ) {
34 t h i s −>l o g = l o g ;
35 t h i s −> l o g _ f i l e _ p a t h = l o g _ f i l e _ p a t h ;
36 t h i s −>a t t r i b u t e _ m a p = a t t r i b u t e _ m a p ;
37 }
38 E n t i t y ( c o n s t c h a r l o g _ f i l e _ p a t h [ ] , c o n s t c h a r l o g [ ] , s t d : : map< s t d : : s t r i n g ,

double > &a t t r i b u t e _ m a p , vo id ∗ v a l ) : DEVSMessage ( v a l ) {
39 t h i s −>l o g = s t d : : s t r i n g ( l o g ) ;
40 t h i s −> l o g _ f i l e _ p a t h = s t d : : s t r i n g ( l o g _ f i l e _ p a t h ) ;
41 t h i s −>a t t r i b u t e _ m a p = a t t r i b u t e _ m a p ;
42 }
43

44 E n t i t y& o p e r a t o r =( c o n s t E n t i t y &e ) {
45 ( ( DEVSMessage&)∗ t h i s ) = ( DEVSMessage&)e ;
46 t h i s −>l o g = e . l o g ;
47 t h i s −> l o g _ f i l e _ p a t h = e . l o g _ f i l e _ p a t h ;
48 a t t r i b u t e _ m a p = e . a t t r i b u t e _ m a p ;
49 t h i s −>i n d e x =e . i n d e x ;
50

51 r e t u r n (∗ t h i s ) ;
52 }
53

54 boo l o p e r a t o r ==( E n t i t y& e ) {
55 i f ( t h i s −>l o g . compare ( e . l o g ) ) r e t u r n f a l s e ;
56 i f ( t h i s −> l o g _ f i l e _ p a t h . compare ( e . l o g _ f i l e _ p a t h ) ) r e t u r n f a l s e ;
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57 f o r ( s t d : : map< s t d : : s t r i n g , double > : : i t e r a t o r i t = a t t r i b u t e _ m a p . b e g i n ( ) ; i t !=
a t t r i b u t e _ m a p . end ( ) ; ++ i t ) {

58 i f ( e . a t t r i b u t e _ m a p [ i t −> f i r s t ] ! = i t −>second )
59 r e t u r n f a l s e ;
60 }
61 i f ( t h i s −>i n d e x != e . i n d e x ) r e t u r n ( f a l s e ) ;
62 r e t u r n ( ( DEVSMessage ) (∗ t h i s ) ==( DEVSMessage&)e ) ;
63 }
64 v i r t u a l boo l o p e r a t o r ==(DEVSMessage &msg ) {
65 i f ( t y p e i d ( msg ) != t y p e i d (∗ t h i s ) ) r e t u r n f a l s e ;
66 r e t u r n ( (∗ t h i s ) ==( ( E n t i t y &)msg ) ) ;
67 }
68 boo l o p e r a t o r ! = ( E n t i t y &e ) {
69 r e t u r n ( ! ( ( ∗ t h i s ) ==e ) ) ;
70 }
71

72 vo id s e t _ l o g _ f i l e _ p a t h ( s t d : : s t r i n g pa th , boo l r e s e t ) {
73 l o g _ f i l e _ p a t h = p a t h ;
74 i f ( r e s e t ) {
75 FILE ∗ fp = fopen (& p a t h [ 0 ] , "w" ) ;
76 f c l o s e ( fp ) ;
77 }
78 }
79

80 vo id a d d _ l o g _ e n t r y ( c o n s t c h a r l o g _ e n t r y [ ] , d ou b l e t ) {
81 s t d : : s t r i n g l o g _ e ( l o g _ e n t r y ) ;
82 t h i s −>a d d _ l o g _ e n t r y ( log_e , t ) ;
83 }
84 vo id a d d _ l o g _ e n t r y ( s t d : : s t r i n g &l o g _ e n t r y , d ou b l e t ) {
85 s t d : : s t r i n g s t r e a m s s t r ;
86 s s t r <<" l o g e n t r y a t t ="<< t << " : "<< l o g _ e n t r y << " \ n " ;
87 s s t r . f l u s h ( ) ;
88 t h i s −>l o g += s s t r . s t r ( ) ;
89 }
90 vo id w r i t e _ l o g _ t o _ f i l e ( ) {
91 FILE ∗ fp = fopen (& l o g _ f i l e _ p a t h [ 0 ] , " a " ) ;
92 f p r i n t f ( fp , "%s " ,& l o g [ 0 ] ) ;
93 f c l o s e ( fp ) ;
94 }
95

96 vo id s e t _ a t t r i b u t e ( s t d : : s t r i n g &at t_name , d ou b l e v a l ) {
97 a t t r i b u t e _ m a p [ a t t _ n a m e ] = v a l ;
98 }
99 vo id s e t _ a t t r i b u t e ( c o n s t c h a r a t t _ n a m e [ ] , d ou b l e v a l ) {

100 s t d : : s t r i n g n a m e _ s t r ( a t t _ n a m e ) ;
101 s e t _ a t t r i b u t e ( name_s t r , v a l ) ;
102 }
103

104 do ub l e g e t _ a t t r i b u t e ( s t d : : s t r i n g name , boo l ∗ p t r ) {
105 s t d : : map< s t d : : s t r i n g , double > : : i t e r a t o r i t = a t t r i b u t e _ m a p . f i n d ( name ) ;
106 i f ( i t == a t t r i b u t e _ m a p . end ( ) ) {
107 (∗ p t r ) = f a l s e ;
108 r e t u r n ( 0 ) ;



152 APPENDIX A. APPENDIX

109 }
110 (∗ p t r ) = t r u e ;
111 r e t u r n ( i t −>second ) ;
112 }
113 do ub l e g e t _ a t t r i b u t e ( s t d : : s t r i n g name ) {
114 s t d : : map< s t d : : s t r i n g , double > : : i t e r a t o r i t = a t t r i b u t e _ m a p . f i n d ( name ) ;
115 i f ( i t == a t t r i b u t e _ m a p . end ( ) ) {
116 r e t u r n ( 0 ) ;
117 }
118 r e t u r n ( i t −>second ) ;
119 }
120 boo l d e l e t e _ a t t r i b u t e ( s t d : : s t r i n g name ) {
121 r e t u r n ( ( boo l ) a t t r i b u t e _ m a p . e r a s e ( name ) ) ;
122 }
123

124 DEVSMessage∗ getCopy ( ) {
125 r e t u r n ( ( DEVSMessage ∗ ) ( new E n t i t y (∗ t h i s ) ) ) ;
126 }
127 v i r t u a l ~ E n t i t y ( ) {}
128 } ;
129

130# e n d i f

Listing A.6: The class Entity.
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