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Abstract. Graded path modalities count the number of paths satisfy-
ing a property, and generalize the existential (E) and universal (A) path
modalities of CTL∗. The resulting logic is denoted GCTL∗, and is a
very powerful logic since (as we show) it is equivalent, over trees, to
monadic path logic. We settle the complexity of the satisfiability prob-
lem of GCTL∗, i.e., 2ExpTime-Complete, and the complexity of the
model checking problem of GCTL∗, i.e., PSpace-Complete. The lower
bounds already hold for CTL∗, and so we supply the upper bounds. The
significance of this work is two-fold: GCTL∗ is much more expressive
than CTL∗ as it adds to it a form of quantitative reasoning, and this is
done at no extra cost in computational complexity.

1 Introduction

Quantitative Verification and Graded Modalities. Temporal logics are the
cornerstone of the field of formal verification. In recent years, much attention
has been given to extending these by quantitative measures of function and ro-
bustness, e.g., [18]. Unfortunately, these extensions often require one to reason
about weighted automata for which much is undecidable [1, 2, 10]. One way to
extend classical temporal logics at a lower cost is by counting quantifiers, known
as graded modalities. Graded world modalities were introduced in formal verifi-
cation as a useful extension of the standard existential and universal quantifiers
in branching-time modal logics [7, 16, 19, 23]. These modalities allow one to ex-
press properties such as “there exist at least n successors satisfying a formula”
or “all but n successors satisfy a formula”. A prominent example is the extension
of µ-calculus called Gµ-calculus [7, 19].

Despite its high expressive power, the µ-calculus (which extends modal logic
by least and greatest fixpoint operators) is a low-level logic, making it “un-
friendly” for users, who usually find it very hard to understand, let alone write,
formulas involving even very modest nesting of fixed points. In contrast, CTL
and CTL∗ are much more intuitive and user-friendly. An extension of CTL with
graded path modalities called GCTL was defined in [5, 6]. Although there are
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several positive results about GCTL this logic suffers from similar limitations
as CTL, i.e., it cannot nest successive temporal operators and so cannot express
fairness constraints. This dramatically limits the usefulness of GCTL and so we
turn instead to GCTL∗ in which one can naturally and comprehensibly express
complex properties of systems. Although the syntax and semantics of GCTL∗

were defined and justified in [6], only a rudimentary study of it was made. In
particular, the complexity of the satisfiability and model checking problem for
this logic was never established, and remained open since its introduction in
2009. Instead, research has focused on the much simpler fragment of GCTL.

Our results. We establish the exact complexity of the satisfiability and
model checking problems for GCTL∗ to be 2ExpTime-Complete and PSpace-
Complete, respectively. Thus, in both cases, the problems for GCTL∗ are not
harder than for CTL∗. This is very good news indeed since, as we also show,
GCTL∗ is expressively equivalent, over trees, to monadic path logic, and is thus
a powerful, yet relatively friendly logic. Along the way, we prove that GCTL∗

has the bounded-degree tree-model property, i.e., a satisfiable formula is satisfied
in a tree whose branching degree is at most exponential in the size of the formula.

The importance of our results. We obtain that GCTL∗ has the following
desirable combination of attributes:

a) GCTL∗ can naturally express properties of paths as well as count
them. For example, the formula E≥2G(request → (request U granted)) says:
“there are at least two ways to schedule the computation such that every request
is eventually granted”. This cannot be expressed in CTL∗ nor in GCTL.

The naive semantics for E≥nψ which states that “there are at least n different
paths satisfying ψ” while at first glance may seem natural and desirable, when
examined more carefully turns out to be undesirable, and less informative. For
example, consider a faulty program in which requests are sometimes not granted.
In GCTL∗ (unlike the naive counting) the formula E≥2[F(request∧¬Fgranted)]
requires at least two incomparable sequences of operations, each causing this
faulty behaviour. Hence, it indicates whether the faulty behaviour is the result
of multiple underlying problems, and is not confused by multiple paths that are
extensions of a single faulty prefix. Furthermore, the naive counting very quickly
leads to unnatural interpretations, as convincingly argued in [6].

This ability to easily count paths is a natural fit in various application do-
mains. For example, in databases there is a close relationship between model-
checking CTL* and XML navigation (see [4]). The logic GCTL∗ allows one to
express quantitative requirements such as ”client has at least 5 items in last-
month orders”. More generally, graded operators are common in description
logics, which are prominently used for formal reasoning in AI (e.g., knowledge
querying, planning with redundancies).

b) GCTL∗ is extremely expressive. Not only does GCTL∗ extend CTL∗

(and thus, unlike CTL, it can reason about fairness), we prove that it is expres-
sively equivalent, over trees, to Monadic Path Logic (MPL) which is Monadic
Second-Order Logic (MSOL) interpreted over trees but with set quantification
restricted to branches.



c) GCTL∗ has relatively low complexity of satisfiability. Unfortunately,
the complexity of satisfiability of MPL is non-elementary (this is already true
for FOL). In sharp contrast, we prove that the complexity of satisfiability of
GCTL∗ is 2ExpTime, and thus is no harder than for CTL∗.

Technical Contributions. The upper bounds are obtained by exploiting
an automata-theoretic approach for branching-time logics, combined with game
theoretic reasoning at a crucial point. The automata-theoretic approach is suit-
able because GCTL∗ turns out to have the tree-model property. It is very hard to
see how other techniques for deciding questions in logic (e.g. effective quantifier
elimination, tableaux, composition) can be used to achieve optimal complexity
results for GCTL∗. Our proof is not just an easy adaptation of the classical
decision procedure. We relate GCTL∗ to a new model of automata, i.e., Graded
Hesitant Tree Automata (GHTA). These automata work on finitely-branching
trees (not just k-ary trees) and their transition relations can count up to a given
number (usual alternating automata only count up to 1).

Related Work. Counting modalities were first introduced by Fine [16] under
the name graded world modalities. A systematic treatment of the complexity of
various graded modal logics followed [9,14,21,23,24]. The extension of µ-calculus
by graded world modalities was investigated in [7, 19]. Although these articles
introduce automata that can count, our GHTA are more complicated since they
have to deal with graded path modalities and not just graded world modalities.
The extension of CTL∗ by the ability to say “there exist at least n successors
satisfying ψ”, called counting-CTL∗, was defined in [22], and its connection with
Monadic Path Logic studied using the composition method. It is unclear if that
method, although elegant, can yield the complexity bounds we achieve (even for
counting-CTL∗). As shown in [6], Gµ-calculus cannot succinctly reason about
paths, or even grandchildren of a given node (the same goes for counting-CTL∗).
The first work to deal with graded path modalities is [5] that introduced GCTL,
the extension of CTL by these modalities. Graded path modalities over CTL
were also studied in [15], using a different semantics than GCTLwhich is tailored
for extending CTL, and it is unclear how one can extend their work to CTL∗.

2 The GCTL∗ temporal logic

Let N denote the positive integers, and [d] = {1, 2, . . . , d} for d ∈ N. An LTS
(Labeled Transition System/Kripke structure) is a tuple S = 〈Σ,S,E, λ〉, where
Σ is a set of labels, S is a countable set of states, E ⊆ S × S is the transition
relation, and λ : S 7→ Σ is the labeling function. Typically, Σ = 2AP where AP
is a finite set of atomic propositions. The degree of a state s is the cardinality
of the set {t ∈ S : (s, t) ∈ E} of its successors. We assume that E is total,
i.e., that every state has a successor. A path in S is a finite or infinite sequence
π0π1 · · · ∈ (S∗)∪(Sω) such that (πi−1, πi) ∈ E for all 1 ≤ i < |π| (|π| is the length
of π). The set of (finite and infinite) paths in S is written pth(S), and the set of
(finite and infinite) paths in S that start in a given state q ∈ S is written pth(S,
q). Let � be the prefix ordering on paths. If π � π′ say that π′ is an extension of



π. For a set of paths X, denote by min(X) the minimal elements of X according
to �. A Σ-labeled tree T is a pair 〈T, V 〉 where T ⊆ N∗ is a ≺-downward closed
set of strings over N, and V : T → Σ is a labeling. We implicitly view a tree
T = 〈T, V 〉 as the LTS 〈Σ,T,E, V 〉 where (t, s) ∈ E iff s is a son of t. If every
node of a tree T has a finite degree then T is finitely branching. If every node has
at most degree k ∈ N, then T is boundedly branching or has branching degree k.

2.1 Syntax and Semantics of GCTL∗

GCTL∗ extends CTL∗ by graded path quantifiers of the form E≥g. We follow
the definition of GCTL∗ from [6], but give a slightly simpler syntax. We assume
that the reader is familiar with the logics CTL∗, LTL, and CTL (see [20,25]).

The semantics of GCTL∗ is defined for an LTS S. The GCTL∗ formula
E≥gψ, for GCTL∗ path formula ψ, can be read as “there exist at least g (min-
imal ψ-conservative) paths”. Minimality was defined above, and so we now say,
informally, what it means for a path to be ψ-conservative. An infinite path of S
is ψ-conservative if it satisfies ψ, and a finite path of S is ψ-conservative if all
its (finite and infinite) extensions in S satisfy ψ. Note that this notion uses a
semantics of GCTL∗ over finite paths, and thus the semantics of GCTL∗ needs
to be defined for finite paths (as well as infinite paths). As in [6], we use the
weak-version of semantics of temporal operators for finite paths (defined in [11]).
Intuitively, temporal operators are interpreted pessimistically (with respect to
possible extensions of the path), e.g., (S, π) |= Xψ iff |π| ≥ 2 and (S, π≥1) |= ψ.

Syntax of GCTL∗. Fix a set of atoms AP. The GCTL∗ state (ϕ) and
path (ψ) formulas are built inductively from AP using the following grammar:
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E≥gψ and ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | ψRψ.

In the first part, p varies over AP and g varies over N (and thus, technically,
there are infinitely many rules in this grammar). As usual, X,U and R are called
temporal operators and E≥g (for g ∈ N) are called path modalities (also called
path quantifiers). We write Fϕ instead of trueUϕ, and Gϕ instead of falseRϕ.
The class of GCTL∗ formulas is the set of state formulas generated by the above
grammar. The simpler class of Graded CTL formulas (GCTL) is obtained by
requiring each temporal operator to be immediately preceded by a path quan-
tifier. The logic LTL is the class of path formulas in which no path quantifier
appears. The degree of the quantifier E≥g is the number g. The degree deg(ϕ),
of a state formula ϕ, is the maximum of the degrees of the quantifiers appearing
in ϕ. The length |ϕ|, of a formula ϕ, is defined inductively on the structure of ϕ
as usual, and using |E≥gψ| equal to g + 1 + |ψ| (i.e., g is coded in unary).

Semantics of GCTL∗. Given an LTS S and a state s ∈ S, the definition
of (S, s) |= ϕ is done inductively on the structure of ϕ, exactly as for CTL∗,
with the only change concerning the new path quantifier E≥g. For ϕ = E≥gψ,
where ψ is a GCTL∗ path formula, let (S, s) |= ϕ iff the cardinality of the set
min(Con(S, s, ψ)) is at least g, where Con(S, s, ψ) := {π ∈ pth(S, s) | ∀π′ ∈
pth(S, s) : π � π′ implies (S, π′) |= ψ}. The paths in Con(S, s, ψ) are called
ψ-conservative (in S starting at s), and paths in min(Con(S, s, ψ)) are called
minimal ψ-conservative. It is not hard to see that, for total LTSs, the classic



logic CTL∗coincides with the fragment of GCTL∗ in which the degree g of all
quantifiers E≥g is 1.

If ψ is an LTL formula, we may write π |= ψ instead of (S, π) |= ψ. This is
justifiable since the truth of ψ depends only on the path π independently of the
rest of S. Two state formulas φ, φ′ are equivalent if for all S and s ∈ S, we have
(S, s) |= φ iff (S, s) |= φ′. Two path formulas ψ,ψ′ are equivalent if for all S and
π ∈ pth(S), we have that (S, π) |= ψ if and only if (S, π) |= ψ′. An LTS S with
a designated state q ∈ S is a model of a GCTL∗ formula ϕ, sometimes denoted
S |= ϕ, if (S, q) |= ϕ. For a labeled tree T, the designated node is by default the
root, and thus, T |= ϕ means that (T, ε) |= ϕ (recall that ε designates the root
of T). A GCTL∗ formula ϕ is satisfiable iff it has a model.

Example 1. We unpack the meaning of the GCTL∗ formula from the introduc-
tion E≥2[F(request ∧ ¬Fgranted)]. Let ψ denote the path formula F(request ∧
¬Fgranted). First, a finite or infinite path π satisfies ψ if at some point t the
atom request holds, and at no later point on π does the atom granted hold. A
finite π is ψ-conservative if and only if it satisfies ψ and the atom granted does
not hold in any node of the subtree rooted at the end of π; and an infinite path
is ψ-conservative if and only if it satisfies ψ. Thus, E≥2ψ holds if and only if
there exist two possibly finite paths, say π1 and π2, neither one a prefix of the
other, both satisfying ψ (i.e., πi has a request that is never granted on πi), and
such that if πi is finite then that path has a request that is not granted in any
possible extension of πi.

2.2 Important Properties of GCTL∗

Like CTL∗ (see [20]), one can think of a GCTL∗ path formula ψ over atoms AP
as an LTL formula Ψ over atoms which themselves are GCTL∗ state formulas,
as follows. A formula ϕ is a state sub-formula of ψ if i) ϕ is a state formula, and ii)
ϕ is a sub-formula of ψ. A formula ϕ is a maximal state sub-formula of ψ if ϕ is a
state sub-formula of ψ, and ϕ is not a proper sub-formula of any other state sub-
formula of ψ. Let max(ψ) = {ϕ | ϕ is a maximal state sub-formula of ψ}, and
let max(ψ) =

⋃
ϕ∈max(ψ){ϕ,¬ϕ} be the set of all maximal state sub-formulas

of ψ and their negations. Every GCTL∗ path formula ψ can be viewed as
the formula Ψ whose atoms are elements of max(ψ). Note that Ψ is an LTL
formula. For example, for ψ = ((Xp) U (E≥2Xq)) ∨ p, the state sub-formulas
are {p, q,E≥2Xq}, and max(ψ) = {p,E≥2Xq}, and thus Ψ is the LTL formula
(Xp U E≥2Xq) ∨ p over the atoms {p,E≥2Xq} (here we underline sub-formulas

that are treated as atoms). Given an LTS S =
〈
2AP, S, E, λ

〉
and a GCTL∗ path

formula ψ, we define the relabeling of the LTS S by the values of the formulas in
max(ψ) as Sψ = 〈max(ψ), S, E, L〉 where L(s) is the union of λ(s) and the set
of ϕ ∈ max(ψ) such that (S, s) |= ϕ.

Lemma 1. For every GCTL∗ path formula ψ over AP there is an LTL formula
Ψ over max(ψ) such that for all S and all paths π in S: (S, π) |= ψ iff (Sψ, π) |= Ψ .



It is not hard to see that GCTL∗ is not invariant under bisimulation (cf. [6]),
and that it is invariant under unwinding (cf. [6]). The next theorem shows that
GCTL∗ is a powerful logic. Indeed, it is equivalent, over trees, to Monadic Path
Logic (MPL) which is MSO with quantification restricted to branches. Note
that MPL is only defined over trees, while GCTL∗ (like CTL∗) is defined over
arbitrary LTS. This is the reason we compare their expressiveness over trees.

Theorem 1. GCTL∗ is equivalent, over trees, to Monadic Path Logic.

3 Graded Hesitant Tree Automata

In this section we define a new kind of automaton called Graded Hesitant
Tree Automata. We also make use of the classical non-deterministic finite word
automata (NFW) and non-deterministic Büchi word automata (NBW) (see
[25]), alternating parity tree automata (APTA) (see [12]), and alternating hesi-
tant tree automata (AHTA) (see [20]). We write 〈Σ,Q, q0, δ, G〉 for NBWs and
〈Σ,Q, q0, δ, F 〉 for NFWs where Σ is the input alphabet, Q is the set of states,
q0 is the initial state, δ ⊆ Q×Σ×Q is the transition relation, G ⊆ Q is the set of
accepting states and F ⊆ Q the set of final states. For a set X, let B+(X) be the
set of positive Boolean formulas over X, including the constants true and false.
A set Y ⊆ X satisfies a formula θ ∈ B+(X), written Y |= θ, if assigning true to
elements in Y and false to elements in X \Y makes θ true. Graded hesitant tree
automata (GHTA) generalise AHTA3: a) they can work on finitely-branching
trees (not just k-ary branching trees), and b) their transition relation allows the
automaton to send multiple copies into the successors of the current node in a
much more flexible way. Below we formally define AHTA and GHTA.

Definition of AHTA An Alternating Hesitant Tree Automaton (AHTA) is a
tuple A = 〈Σ,D,Q, q0, δ, 〈G,B〉, 〈part, type,�〉〉 where Σ is a non-empty finite
set of input letters; D ⊂ N is a finite non-empty set of directions, Q is the non-
empty finite set of states, q0 ∈ Q is the initial state; the pair 〈G,B〉 ∈ 2Q × 2Q

is the acceptance condition4 (we sometimes call the states in G good states and
the states in B bad states); δ : Q×Σ → B+(D×Q) is the alternating transition
function; part ⊂ 2Q is a partition of Q, type : part → {trans, exist, univ} is a
function assigning the label transient, existential or universal to each element

3 Strictly speaking, GHTA generalise the symmetric variant of AHTA. That is, for
every language accepted by an AHTA and that is closed under the operation of
permuting siblings, there is a GHTA that accepts the same language.

4 The combination of a Büchi and a co-Büchi condition that hesitant automata use can
be thought of as a special case of the parity condition with 3 colors. Thus, we could
have defined Graded Parity Tree Automata instead (using the parity condition, our
automata strictly generalise the ones in [5, 19]) However, we do not need the full
power of the parity condition, and in order to achieve optimal complexity for model
checking of GCTL∗ we need to be able to decide membership of our automata in a
space efficient way, which cannot be done with the parity acceptance condition.



of the partition, and �⊂ 2Q × 2Q is a partial order on part. Moreover, the
transition function δ is required to satisfy the following hesitancy condition: for
every Q ∈ part, every q ∈ Q, and every σ ∈ Σ: (i) for every Q′ ∈ part and q′ ∈ Q′,
if q′ occurs in δ(q, σ) then Q′ � Q; (ii) if type(Q) ∈ trans then no state of Q
occurs in the formula δ(q, σ); (iii) if type(Q) ∈ exist (resp., type(Q) ∈ univ) then
there is at most one element of Q in each disjunct of the DNF (resp., conjunct
of CNF) of δ(q, σ).

An input tree (for AHTA) is a Σ-labeled tree T = 〈T, V 〉 with T ⊆ D∗. Since
D is finite, such trees have fixed finite branching degree. A run (or run tree) of
an alternating tree automaton A on input tree T = 〈T, V 〉 is a (T ×Q)-labeled
tree 〈Tr, r〉, such that (a) r(ε) = (ε, q0) and (b) for all y ∈ Tr, with r(y) = (x, q),
there exists a minimal set S ⊆ D × Q, such that S |= δ(q, V (x)), and for every
(d, q′) ∈ S, it is the case that x · d is a son of x, and there exists a son y′ of y,
such that r(y′) = (x · d, q′).

Note that if δ(q, V (x)) = true then S = ∅ and the node y has no children;
and if there is no S as required (for example if x does not have the required
sons) then there is no run-tree with r(y) = (x, q). Observe that disjunctions in
the transition relation are resolved into different run trees, while conjunctions
give rise to different sons of a node in a run tree. If v is a node of the run tree,
and r(v) = (u, q), call u the location associated with v, denoted loc(v), and call
q the state associated with v, denoted state(v).

We now discuss the acceptance condition. Fix a run tree 〈Tr, r〉 and an infi-
nite path π in it. Say that the path visits a state q at time i if state(πi) = q. The
hesitancy restriction (i) guarantees that the path π eventually gets trapped and
visits only states in some element of the partition, i.e., there exists Q ∈ part such
that from a certain time i on, state(πj) ∈ Q for all j ≥ i. The condition (ii) en-
sures that this set is either existential or universal, i.e., type(Q) ∈ {exist, univ}.
Thus, we say that the path π gets trapped in an existential set if type(Q) = exist,
and otherwise we say that it gets trapped in a universal set. We can now define
what it means for a path in a run tree to be accepting. A path that gets trapped
in an existential set is accepting iff it visits some state of G infinitely often, and a
path that gets trapped in a universal set is accepting iff it visits every state of B
finitely often. A run 〈Tr, r〉 of an AHTA is accepting iff all its infinite paths are
accepting. An automaton A accepts an input tree 〈T, V 〉 iff there is an accepting
run of A on 〈T, V 〉. The language of A, denoted L(A), is the set of Σ-labeled
D-trees accepted by A. We say that A is nonempty iff L(A) 6= ∅.

The membership problem of AHTA is the following decision problem: given
an AHTA A with direction set D, and a finite LTS S in which the degree of each
node is at most |D|, decide whether or not A accepts S. The depth of the AHTA
is the size of the longest chain in ≺. The size ||δ|| of the transition function is
the sum of the lengths of the formulas it contains. The size ||A|| of the AHTA is
|D|+ |Q|+ ||δ||. The partition, partial order and type function are not counted
in the size of the automaton. The following is implicit in [20]:

Theorem 2. The membership problem for AHTA can be solved in O(∂ log2(|S| ·
||A||)) space where ∂ is the depth of A and S is the state set of S.



Definition of GHTA We now introduce Graded Hesitant Tree Automata
(GHTA). These can run on finitely-branching trees (not just trees of a fixed
finite degree), and the transition function is graded, i.e., instead of a Boolean
combination of direction-state pairs, it specifies a Boolean combination of dis-
tribution operations. There are two distribution operations: 3(q1,..., qk) and its
dual 2(q1,..., qk). Intuitively, 3(q1,..., qk) specifies that the automaton picks k
different sons s1,..., sk of the current node and, for each i ≤ k, sends a copy in
state qi to son si. Note that the states q1,..., qk are not necessarily all different.

A GHTA A is a tuple 〈Σ,Q, q0, δ, 〈G,B〉, 〈part, type,�〉〉 where all elements
but δ are defined as for AHTA, and δ : Q × Σ → B+(3Q ∪ 2Q) is a tran-
sition function that maps a state and an input letter to a positive Boolean
combination of elements in 3Q = {3(q1,..., qk) | (q1,..., qk) ∈ Qk, k ∈ N} and
2Q = {2(q1,..., qk) |(q1,..., qk) ∈ Qk, k ∈ N}.

We show how to define the run of a GHTA A on aΣ-labeled finitely-branching
tree T = 〈T, V 〉 by (locally) unfolding every 3Q and 2Q in δ(q, V (t)) into a
formula in B+([d]×Q) where d is the branching-degree of node t. For k, d ∈ N, let
S(k, d) be the set of all ordered different k elements in [d], i.e., (s1,..., sk) ∈ S(k, d)
iff for every i ∈ [k] we have that si ∈ [d], and that if i 6= j then si 6= sj . Observe
that if k > d then S(k, d) = ∅. For every d ∈ N, define the function expandd :
B+(3Q ∪ 2Q)→ B+([d]×Q) that maps formula φ to the formula formed from
φ by replacing every occurrence of a sub-formula of the form 3(q1,..., qk) by
the formula

∨
(s1,...,sk)∈S(k,d)(

∧
(si, qi)), and every occurrence of a sub-formula

of the form 2(q1,..., qk) by the formula
∧

(s1,...,sk)∈S(k,d)(
∨

(si, qi)). Observe that

if k > d then 3(q1,..., qk) becomes the constant formula false, and 2(q1,..., qk)
becomes the constant formula true. The run of a GHTA A is defined as for an
alternating tree automaton, except that one uses expandn(δ(q, V (x))) instead of
δ(q, V (x)) for nodes x of T of degree n. Finally, the hesitancy condition defined
above for AHTA is required to apply to the expanded transition function, i.e.,
insert the phrase “every n ∈ N,” before the phrase “and every σ ∈ Σ”, and in
items (i)-(iii) replace δ(q, σ) by expandn(δ(q, σ)). Acceptance is as for AHTA.

Lemma 2. The emptiness problem for GHTA A over trees of branching degree
at most d is decidable in time 2O(d·|Q|3), where Q is the state set of A.

Proof. Given a GHTA A with state set Q, convert it into an AHTA A′ with the
same state space by using the function expandd defined above to transform its
transition relation into a non-graded one. This is possible since we assumed a
bound d on the branching degree of the input trees, and thus the transformation
expandd can be used in advance. This construction takes time that is 2O(|Q| log d).
Recall that AHTA are a special case of alternating parity tree automata (APTA)
with 3 priorities. Now apply the fact that the emptiness problem for APTA with
p priorities over d-ary trees can be solved in time 2O(d·|Q|p) [12].

4 From GCTL∗ to Graded Hesitant Automata

Elegant and optimal algorithms for solving the satisfiability and model-checking
problems of CTL∗ were given using the automata-theoretic approach for branching-



time temporal logics [20]. Using this approach, one reduces satisfiability to the
non-emptiness problem of a suitable tree automaton accepting all tree-models of
a given temporal logic formula. We follow the same approach here, by reducing
the satisfiability problem of GCTL∗ to the non-emptiness problem of GHTA. By
Theorem 1, a GCTL∗ formula is satisfiable (in some, possibly infinite, labeled
transition system) iff it has a finitely branching (though possibly unboundedly
branching) tree model, which exactly falls within the abilities of GHTA. Our
main technical result states that every GCTL∗ formula can be compiled into an
exponentially larger GHTA (the rest of this section provides the proof):

Theorem 3. Given a GCTL∗ formula ϑ, one can build a GHTA Aϑ that ac-
cepts all the finitely-branching tree-models of ϑ. Moreover, Aϑ has 2O(|ϑ|·deg(ϑ))

states, depth O(|ϑ|), and transition function of size 2O(|ϑ|·deg(ϑ)).

An important observation that allows us to achieve an optimal construc-
tion is the following. Suppose that the formula E≥gψ holds at some node w
of a tree. Then, by definition, there are at least g different paths ρ′1,..., ρ′g ∈
min(Con(S, w, ψ)). Look at any g infinite extensions ρ1,..., ρg of these paths in
the tree, and note that by the definition of ψ-conservativeness all these exten-
sions must satisfy ψ. Also observe that for every i 6= j, the fact that ρ′i, ρ′j are
different and minimal implies that the longest common prefix ρ′ij of ρi and ρj is
not ψ-conservative. As it turns out, the other direction is also true, i.e., if there
are g infinite paths ρ1,..., ρg satisfying ψ, such that for every i 6= j the common
prefix ρ′ij is not ψ-conservative, then there are g prefixes ρ′1,..., ρ′g of ρ1,..., ρg

respectively, such that ρ′1,..., ρ′g ∈ min(Con(S, w, ψ)). Note that this allows us
to reason about the cardinality of the set min(Con(S, w, ψ)), by considering only
the infinite paths ρ1,..., ρg and their common prefixes, without actually looking
at the minimal ψ-conservative paths ρ′1,..., ρ′g. In reality, we do not even have to
directly consider the common prefixes ρ′ij . Indeed, since the property of being
ψ-conservative is upward closed (with respect to the prefix ordering � of paths),
showing that ρ′ij is not ψ-conservative can be done by finding any extension of
ρ′ij that is not ψ-conservative. The following proposition formally captures this.

Proposition 1 Given a GCTL∗ path formula ψ and a 2AP-labeled tree T =
(T, V ), then T |= E≥gψ iff there are g distinct nodes y1,..., yg ∈ T (called break-
points) such that for every 1 ≤ i, j ≤ g we have: (i) if i 6= j then yi is not
a descendant of yj; (ii) the path from the root to the father xi of yi is not ψ-
conservative; (iii) there is an infinite path ρi in T, starting at the root and going
through yi, such that ρi |= ψ.

We are in a position to describe our construction of a GHTA accepting all
finitely-branching tree-models of a given GCTL∗ formula. Naturally, the main
difficulty lies in handling the graded modalities. The basic intuition behind the
way our construction handles formulas of the form ϕ = E≥gψ is the following.
Given an input tree, the automaton Aϕ for this formula has to find at least g
minimal ψ-conservative paths. At its core, Aϕ runs g pairs of copies of itself in
parallel. The reason these copies are not run independently is to ensure that



the two members of each pair are kept coordinated, and that different pairs
do not end up making the same guesses (and thus overcounting the number of
minimal ψ-conservative paths). The task of each of the g pairs is to detect some
minimal ψ-conservative path that contributes 1 to the count towards g. This is
done indirectly by using the characterization given by Proposition 1. Since this
proposition requires checking if certain paths satisfy ψ, the automaton Aϕ will
access certain classic NBWs. We begin by establishing the existence of these:

Theorem 4. Given an LTL formula ζ, there is an NBW Aζ (resp. NFW Bζ),
both of size 2O(ζ), accepting exactly all infinite (resp. finite) words that satisfy ζ.

Lemma 3. Given an LTL formula ζ, there is an NBW Aζ (of size 2O(ψ)) such
that Aζ accepts a word w iff w |= ζ, or u |= ζ for a prefix u of w. Moreover,
Aζ has an accepting sink >, such that if r0, r1,... is an accepting run of Aζ on
w, and i ≥ 0 satisfies ri 6= >, then a (finite or infinite) prefix u of w, of length
|u| > i, satisfies ζ, and vice-versa (i.e., if a prefix u of w satisfies ζ, then there
is an accepting run on w with ri 6= > for all i < |u|).

We can now finish the intuitive description of the construction of the automa-
ton Aϕ associated with a formula ϕ = E≥gψ. Let Ψ be the LTL formula resulting
from applying Lemma 1 to ψ. In essence, Aϕ guesses the g descendants y1, . . . , yg
of the root of the input tree as given in Proposition 1. For every 1 ≤ i ≤ g, the
automaton uses one copy of A¬Ψ to verify that the path π, from the root to the
father of yi, is not ψ-conservative (by guessing some finite or infinite extension
π 4 π′ of it such that π′ |= ¬Ψ), and one copy of AΨ to guess an infinite path
π′′ from the root through yi such that π′′ |= Ψ (and is thus ψ-conservative).

4.1 The construction of GHTA Aϑ for a GCTL∗ formula ϑ.

We induct on the structure of ϑ. Given a state sub-formula φ of ϑ (possibly
including ϑ), for every formula θ ∈ max(φ), let Aθ = 〈Σ,Qθ, qθ0 , δθ, 〈Gθ, Bθ〉,
〈partθ, typeθ,�θ〉〉 be a GHTA accepting the finitely-branching tree-models of θ.
The proof of correctness plus the definition of the hesitancy structure, i.e., of
〈partθ, typeθ,�θ〉, is in the full version (recall that the hesitancy structure is only
used to decide in a space-efficient way membership, which is needed for our result
that model-checking of GCTL∗ is in PSpace). We build the GHTA Aφ accepting
all finitely-branching tree-models of φ by suitably composing the automata of
its maximal sub-formulas and their negations. Note that when composing these
automata, we assume w.l.o.g. that the states of any occurrence of a constituent
automaton of a sub-formula are disjoint from the states of any other occurrence
of a constituent automaton (of the same or of a different sub-formula), as well
as from any newly introduced states.5 Formally:

5 For example, when building an automaton for φ = ϕ0 ∨ ϕ1, in the degenerate case
that ϕ0 = ϕ1 then Aϕ1 is taken to be a copy of Aϕ0 with its states renamed to
be disjoint from those of Aϕ0 . Also, the new state q0 may be renamed to avoid a
collision with any of the other states.



1. If φ = p ∈ AP , then Aφ = 〈Σ, {q}, q, δ, 〈∅, ∅〉, 〈part, type,�〉〉 where δ(q, σ) =
true if p ∈ σ and false otherwise.

2. If φ = ϕ0∨ϕ1 then Aφ is obtained by nondeterministically invoking either Aϕ0

or Aϕ1
. Thus, Aφ = 〈Σ,

⋃
i=0,1Q

ϕi ∪ {q0}, q0, δ, 〈
⋃
i=0,1G

ϕi ,
⋃
i=0,1B

ϕi〉, β〉,
where β = 〈part, type,�〉, and for every i ∈ {0, 1}, every σ ∈ Σ, and every q ∈
Qϕi we have that: δ(q, σ) = δϕi(q, σ), and δ(q0, σ) = δϕ0(qϕ0

0 , σ)∨δϕ1(qϕ1

0 , σ).
3. If φ = ¬ϕ, then Aφ is obtained by dualizing the automaton Aϕ. Formally,

the dual of a GHTA A is the GHTA obtained by dualizing the transition
function of A (i.e., switch ∨ and ∧, switch > and ⊥, and switch 2 and 3),
replacing the acceptance condition 〈G,B〉 with 〈B,G〉 (and toggling types).

Finally we deal with the case that φ = E≥gψ. Observe that ψ is a path for-
mula and, by Lemma 1, reasoning about ψ can be reduced to reasoning about the
LTL formula Ψ whose atoms are elements of max(ψ). Let Σ′ = 2max(ψ). By The-
orem 4, there is an NBW AΨ = 〈Σ′, Q+, q+0 , δ

+, G+〉 accepting all infinite words
in Σ′ω satisfying Ψ . By Lemma 3, there is an NBW A¬Ψ = 〈Σ′, Q¬, q¬0 , δ¬, G¬〉
accepting all infinite words in Σ′ω that either satisfy ¬Ψ or have a prefix that
does. Note that the states of these automata are denoted Q+ and Q¬. We let
Aφ be 〈Σ,Q, q0, δ, 〈G,B〉, 〈part, type,�〉〉, whose structure we now define.
The set of states. Q = Q1∪Q2, where Q1 = (Q+∪{⊥})g×(Q¬∪{⊥})g\{⊥}2g,
and Q2 =

⋃
θ∈max(ψ)Q

θ. The Q1 states are used to run g copies of A¬Ψ and

g copies of AΨ in parallel. Every state in Q1 is a vector of 2g coordinates
where coordinates 1,..., g (called Ψ coordinates) contain states of AΨ , and co-
ordinates g+ 1,..., 2g (called ¬Ψ coordinates) contain states of A¬Ψ . In addition,
each coordinate may contain the special symbol ⊥ indicating that it is dis-
abled, as opposed to active. We disallow the vector {⊥}2g with all coordinates
disabled. States in Q2 are all those from the automata Aθ for every maximal
state subformula of ψ, or its negation. These are used to run Aθ whenever
Aφ guesses that θ holds at a node. Also, for every 1 ≤ i ≤ g, we denote by
Qisingle = {(q1,..., q2g) ∈ Q1 | qi 6= ⊥, and for all j ≤ g, if j 6= i then qj = ⊥}
the set of all states in Q1 in which the only active Ψ coordinate is i.
The initial state. q0 = (q1,..., q2g) where for every 1 ≤ i ≤ g we have that
qi = q+0 and for every g + 1 ≤ i ≤ 2g we have that qi = q¬0 .
The acceptance condition.B = ∪

θ∈max(ψ)B
θ andG = G′∪G′′∪(∪

θ∈max(ψ)G
θ),

where G′ = {(q1,..., q2g) ∈ Qisingle | qi ∈ G+} is the set of all states in Q1 in which
the only active Ψ coordinate contains a good state, and G′′ = {(q1, . . . , q2g) ∈
Q1 | ∀i.1 ≤ i ≤ g → qi = ⊥, and ∃j.g + 1 ≤ j ≤ 2g ∧ qj ∈ G¬} is the set of all
states in Q1 in which all the Ψ coordinates are inactive, and some ¬Ψ coordinate
contains a good state.
The transition function. δ is defined, for every σ ∈ Σ, as follows:

– For every q ∈ Q2, let θ ∈ max(ψ) be such that q ∈ Qθ, and define δ(q, σ) =
δθ(q, σ). I.e., for states in Q2, follow the rules of their respective automata.

– For every q ∈ Q1, we define δ(q, σ) :=
∨
σ′∈Σ′(J ∧ K ∧ L) where J =∨

X∈Legal(q,σ′) 3(X), K =
∧
θ∈σ′ δθ(qθ0 , σ), L =

∧
θ 6∈σ′ δ¬θ(q¬θ0 , σ), where

Legal(q, σ′) is the set of all legal distributions of (q, σ′), and is defined later.



Informally, the disjunction
∨
σ′∈Σ′ corresponds to all possible guesses of the

set of maximal subformulas of ψ that currently hold. Once a guess σ′ is made,
the copies of A¬Ψ and AΨ simulated by the states appearing in Legal(q, σ′)
proceed as if the input node was labeled by the letter σ′. The conjunction
(∧θ∈σ′δθ(qθ0 , σ))∧(∧θ 6∈σ′δ¬θ(q¬θ0 , σ)) ensures that a guess is correct by launching
a copy of Aθ for every subformula θ ∈ σ′ that was guessed to hold, and a copy
of A¬θ for every subformula θ guessed not to hold.

We define legal distribution. Intuitively, a legal distribution of (q, σ′) is a
sequence q1,..., qm of different states from Q1 that “distribute” among them,
without duplication, the coordinates active in q, while making sure that for every
1 ≤ i ≤ g coordinate i (which simulates a copy of AΨ ) does not get separated
from the coordinate i+ g (which simulates its partner copy of A¬Ψ ) for as long
as i is not the only active Ψ coordinate. As expected, every active coordinate j,
in any of the states q1,..., qm, follows from qj by using the transitions available
in the automaton it simulates: AΨ if j ≤ g, or A¬Ψ if j > g.

More formally, given a letter σ′ ∈ Σ′, and a state q = (q1,...q2g) ∈ Q1 in
which the active coordinates are {i1,..., ik}, we say that a sequence X = q1,..., qm

(for some m ≥ 1) of distinct states in Q1 is a legal distribution of (q, σ′) if the
following conditions hold: (i) the coordinates active in the states q1,..., qm are
exactly i1,..., ik, i.e., {i1,..., ik} = ∪{i ∈ {1,..., 2g} | ∃1 ≤ l ≤ m s.t. qli 6= ⊥}.
(ii) if a coordinate ij is active in some q′ ∈ X then it is not active in any other
q′′ ∈ X; (iii) if 1 ≤ ij < il ≤ g are two active Ψ coordinates in some q′ ∈ X,
then q′ij+g, q

′
il+g

∈ Q¬ \ {>}, i.e., the coordinates ij + g, il + g are also active

in q′ and do not contain the accepting sink of A¬Ψ ; (iv) if ij is active in some
q′ ∈ X then (qij , σ

′, q′ij ) ∈ δ+ if ij ≤ g, and (qij , σ
′, q′ij ) ∈ δ¬ if ij > g. I.e.,

active Ψ coordinates evolve according to the transitions of AΨ , and active ¬Ψ
coordinates according to the those of A¬Ψ .

Remark 1. We make two observations. First, the 2g copies of A¬Ψ and AΨ can
not simply be launched from the root of the tree using a conjunction in the tran-
sition relation. The reason is that if this is done then there is no way to enforce
property (i) of Proposition 1. Second, a cursory look may suggest that different
copies of A¬Ψ and AΨ that are active in the current vector may be merged. Unfor-
tunately, this cannot be done since A¬Ψ and AΨ are nondeterministic, and thus,
different copies of these automata must be able to make independent guesses in
the present in order to accept different paths in the future.

Proposition 2 The automaton Aϑ is a GHTA with depth O(|ϑ|) and 2O(|ϑ|·deg(ϑ))

many states, and the size of its transition function is 2O(|ϑ|·deg(ϑ)).

5 Complexity of Satisfiability and MC of GCTL∗

Theorem 5. A satisfiable GCTL∗ formula ϑ has a tree model of branching
degree at most 2O(|ϑ|·deg(ϑ)).



Proof. Suppose ϑ is satisfiable. By Theorem 1, ϑ has a finitely-branching tree
model. Observe, by Theorem 3, that |Q| = 2O(|ϑ|·deg(ϑ)), where Q is the state
set of the automaton Aϑ defined in that proof. Hence, it is enough to prove that
every tree model of ϑ has a subtree of branching degree |Q|2 that also models ϑ.

To prove this claim, we use the membership game GT,Aϑ
of the input tree T

and the automaton Aϑ. There are two players, automaton and pathfinder. Player
automaton moves by resolving disjunctions in the transition relation of Aϑ, and
is trying to show that T is accepted by Aϑ. Player pathfinder moves by resolving
conjunctions, and is trying to show that T is not accepted by Aϑ. The game uses
auxiliary tree structured arenas to resolve each transition of the automaton. This
is a simple case of a hierarchical parity game [3]. As usual, player automaton has
a winning strategy if and only if T |= Aϑ. By memoryless determinacy of parity
games on infinite arenas, player automaton has a winning strategy if and only if
he has a memoryless winning strategy. For a fixed memoryless strategy str, one
can prove, by looking at the transition function of Aϑ, that every play consistent
with str, and every node t of the input tree T, only visits at most |Q|2 sons of t,
thus inducing a subtree which is the required boundedly-branching tree model.

Theorem 6. The satisfiability problem for GCTL∗ over LTSs is 2ExpTime-
Complete, and model checking GCTL∗ for finite LTSs is PSpace-Complete.

Proof. The lower-bounds already hold for CTL∗. Theorems 3, 5 and Lemma 2
give the upper-bound for satisfiability. For the upper-bound for model check-
ing, given an LTS S (with largest degree d), and a GCTL∗ formula ϑ, using
Theorem 3 construct the GHTA A¬ϑ, which has 2O(|ϑ|·deg(ϑ)) states, transition
function of size 2O(|ϑ|·deg(ϑ)), and depth O(|ϑ|). As in the proof of Lemma 2,
build an equivalent AHTA A′ of size d + (2O(|ϑ|·deg(ϑ)) · |Q|d) + 2O(|ϑ|·deg(ϑ)) =
2O(|ϑ|·deg(ϑ)+d·|ϑ|·deg(ϑ)), and of depth ∂ = O(|ϑ|). By Theorem 2, the member-
ship problem of the AHTA A′ on S can be solved in space O(∂ log2(|S| · ||A′||))
which is polynomial in |ϑ| and |S| (using deg(ϑ) ≤ |ϑ| and d ≤ |S|).

6 Discussion

This work shows that GCTL∗ is an expressive logic (it is equivalent, over trees,
to MPL and can express fairness and counting over paths) whose satisfiability
and model-checking problems have the same complexity as that of CTL∗.

GCTL∗ was defined in [5]. However, only the fragment GCTL was studied.
As the authors note in the conference version of that paper, their techniques,
that worked for GCTL, do not work for GCTL∗. Moreover, they also suggested
a line of attack that does not seem to work; indeed, it was left out of the journal
version of their paper [6]. Instead, our method is a careful combination of the
automata-theoretic approach to branching-time logics [20], a characterization of
the graded path modality (Proposition 1), and a boundedly-branching tree model
property whose proof uses game-theoretic arguments (Theorem 5). Moreover,
our technique immediately recovers the main results about GCTL from [5],
i.e., satisfiability for GCTL is ExpTime-Complete and the model checking



problem for GCTL is in PTime (Indeed, consider the construction in Theorem 3
of Aϑ when ϑ it taken from the fragment GCTL of GCTL∗, and in particular
where it comes to a subformula φ of the form φ = E≥gψ. Since ψ is either of
the form pUq or Xp, the number of new states added at this stage is a constant.
Thus, the number of states of Aϑ is linear in the size of ϑ). In other words, our
technique suggests a powerful new way to deal with graded path modalities.

When investigating the complexity of a logic with a form of counting quan-
tifiers, one must decide how the numbers in these quantifiers contribute to the
length of a formula, i.e., to the input of a decision procedure. In this paper we
assume that these numbers are coded in unary, rather than binary. There are a
few reasons for this. First, the unary coding naturally appears in description and
predicate logics [8]. As pointed out in [19], this reflects the way in which many
decision procedures for these logics work: they explicitly generate n individuals
for ∃≥n. Second, although the complexity of the binary case is sometimes the
same as that of the unary case, the constructions are significantly more compli-
cated, and are thus much harder to implement [6, 7]. At any rate, as the binary
case is useful in some circumstances we plan to investigate this in the future.

Comparison with (some) other approaches. Although showing that
satisfiability of GCTL∗ is decidable is not hard (for example, by reducing
to MSOL), identifying the exact complexity is much harder. Indeed, there is
no known satisfiability-preserving translation of GCTL∗ to another logic that
would yield the optimal 2ExpTime upper bound. We discuss two such candi-
date translations. First, in this article we show a translation from GCTL∗ to
MPL. Unfortunately, the complexity of satisfiability of MPL is non-elementary.
Second, there is no reason to be optimistic that a translation from GCTL∗ to
Gµ-calculus (whose satisfiability is ExpTime-Complete) would yield the opti-
mal complexity since a) already the usual translation from CTL∗ to µ-calculus
does not yield optimal complexity [13], and b) the translation given in [6] from
GCTL to Gµ-calculus does not yield optimal complexity. Moreover, the usual
translation from CTL∗ to µ-calculus uses automata, and thus automata for
GCTL∗ (from which we get our results directly) have to be developed anyway.

Future work. Recall that the graded µ-calculus was used to solve questions
(such as satisfiability) for the description logic µALCQ [7]. Similarly, our tech-
niques for GCTL∗ might be useful for solving questions in ALCQ combined with
temporal logic, such as for the graded extension of CTL∗ALC [17]. Second, the
GCTL model checking algorithm from [6] has been implemented in the NuSMV
model-checker to provide more than one counter-example when a GCTL for-
mula is not satisfied. We are thus optimistic that existing CTL∗ model-checkers
can be fruitfully extended to handle GCTL∗.
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