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Chapter 1.

Introduction

The process of spontaneous emission in an optical cavity is a fundamental problem in
the field of quantum optics. The interest in this setup was sparked when E. Purcell
first found that the emission rate of an atom in a cavity can be enhanced when its
transition frequency is tuned to a cavity resonance [1].

Spontaneous emission can be explained within quantum electrodynamics (QED).
An emitter couples to the vacuum fluctuations of the electromagnetic field, which
eventually causes any excitations in the emitter to decay to the ground state. If the
emitter is placed in an optical cavity the mode structure of the electromagnetic field
is different from the vacuum, leading to a change in this decay and the corresponding
emission characteristics. The study engaging the interaction of matter with light in
confined cavities is called cavity quantum electrodynamics (CQED) [2, 3]. A popular
model in CQED is the Jaynes-Cummings model (JCM). It treats the behavior of
an emitter, approximated by a two-level system (TLS), coupling to a single mode
of the electromagnetic field (single-mode coupling). Despite being limited to the
interaction with just one mode of the electromagnetic field the JCM can explain
many well known phenomena in quantum optics, like Rabi oscillations, and other
coherent effects [4].

More than 65 years after Purcell’s preceding work the seemingly simple system
of an excited emitter in an optical cavity (see Fig. 1.1) is still the topic of current
research. This is mostly due to a number of recent experimental implementations
of this problem, for example Rydberg atoms coupling with a resonant mode [5, 6],
quantum dots in the solid state [7] and even Qubits in superconducting resonators
[8].

In this thesis we aim to go beyond the simple JCM to describe the coupling of
an emitter to multiple cavity modes. For this purpose we employ a fully quan-
tum approach [9], which was already successfully used to analytically solve suitably
engineered cavities [10]. The local density of states (LDOS) [11] of these cavities
was, however, such that an effective single-mode coupling approximation could be
employed [12–14]. In the present work we go beyond this limitations and study
systems in very different coupling regimes. In particular we are interested in the
question, how an emitter decays when it couples to a large number of cavity modes
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Figure 1.1.: A two-level system (TLS) emits a photon in an optical cavity. The emission

characteristics of the TLS depend on the geometry of the cavity and the

coupling strength of the TLS with the field modes.

which allow an emitted light pulse to return to the emitter after a finite amount of
time.
We investigated one-dimensional systems, for coupling strengths covering 3 orders

of magnitude. The influence of the geometry is taken into account through the cavity
Green’s function. For its calculation we make use of a recent development in laser
theory, the so-called Constant-Flux (CF) states [15]. Such a biorthogonal set of basis
functions proved to be very useful in laser theory to describe the constant photon
flux outside the amplifying part of the laser. As we demonstrate in detail these
boundary conditions also suit the problem of an excited emitter in a cavity. Hence
applying this framework turns out very valuable for the numerical implementation
and interpretation of the calculations performed in this thesis.
Our numerical scheme is completely general and can treat spontaneous decay in

cavities with an arbitrary distribution of the index of refraction. First results are
obtained for two different cavities in the single-mode, few-mode and multi-mode
coupling regime are presented. We investigate a simple dielectric slab with and
without 𝜆/4-layers on both ends. We identify a new and interesting regime where
the decay of the emitter through multiple modes leads to a quasi-classical sequence
of reabsorption events in which the emitter gets re-excited by the return of the
emitted wave packet. This results opens up many interesting, possibilities both for
further theoretical and experimental studies alike.



Chapter 2.

Dynamics of an excited two-level system

In this chapter we derive the basic equations to describe the interaction of an emitter
with its surrounding medium. We use a purely quantum mechanical approach [10]
to the problem. In this method the emitter is represented by a two-level system
(TLS) which is placed in an environment with a complex refractive index with an
arbitrary space and frequency dependence.

2.1. Maxwell Equations

Our starting relations [9] are the classical Maxwell equations

∇ ·B(r, 𝑡) = 0, (2.1)

∇ ·D(r, 𝑡) = 𝜌(r, 𝑡), (2.2)

∇×E(r, 𝑡) +
𝜕

𝜕𝑡
B(r, 𝑡) = 0, (2.3)

∇×H(r, 𝑡) − 𝜕

𝜕𝑡
D(r, 𝑡) = j(r, 𝑡). (2.4)

Without magnetization, we have D(r, 𝑡) = 𝜖0E(r, 𝑡) + P, B(r, 𝑡) = 𝜇0H(r, 𝑡),
j(r, 𝑡) = 𝜎E(r, 𝑡). Applying the rotor on both sides of (2.3) gives

∇×∇×E(r, 𝑡) + 𝜕𝑡 (𝜕𝑡𝜖0E(r, 𝑡) + 𝜕𝑡P(r, 𝑡) + 𝜎E(r, 𝑡)) = 0. (2.5)

Taking the Fourier transform1 of (2.5) we get

∇×∇×E(r, 𝜔) +
𝜔2

𝑐2
E(r, 𝜔) + 𝜇0𝜎𝜔E(r, 𝜔) = −𝜇0𝜔2P(r, 𝜔). (2.6)

1 We use the following convention for the Fourier transform:

𝑋(r, 𝑡) =

∫︁ ∞

−∞
𝑋(r, 𝜔)𝑒−𝑖𝜔𝑡 d𝜔

𝑋(r, 𝜔) =
1

2𝜋

∫︁ ∞

−∞
𝑋(r, 𝑡)𝑒𝑖𝜔𝑡 d𝑡

Functions, Operators etc. and their Fourier transform are distinguished by their respective
dependencies (that is 𝑡 and 𝜔)
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The polarization can be split up into two parts P(r, 𝜔) = P𝐿(r, 𝜔) + P𝑆(r, 𝜔).
P𝑆(r, 𝜔) describes the nonlinear response of the source itself, taking photon emission
and absorption of the source into account. P𝐿(r, 𝜔) describes the linear response of
the medium the source is placed in. This linear response can simply be treated using
the well known relation P(r, 𝜔) = 𝜖0𝜒𝑒(𝜔)E(r, 𝜔) and 𝑛(𝜔)2 = 𝜖(𝜔) = 𝜖0(1+𝜒𝑒(𝜔)).
We also assume to have no free charges (𝜌(r, 𝑡) = 0) therefore∇·E(r, 𝜔) = 0. Setting
also the conductivity 𝜎 = 0, we have(︂

∆ + 𝑛(𝜔)2
𝜔2

𝑐2

)︂
E(r, 𝜔) = − 1

𝜖0

𝜔2

𝑐2
P𝑆(r, 𝜔). (2.7)

This equation can be solved using the Green’s function formalism(︂
∆ + 𝑛(𝜔)2

𝜔2

𝑐2

)︂
G(r, r′, 𝜔) = −𝛿(r− r′), (2.8)

E(r, 𝜔) =
1

𝜖0

𝜔2

𝑐2

∫︁
d3r′G(r, r′, 𝜔) ·P𝑆(r′, 𝜔). (2.9)

Equation (2.9) is a classical description of the electric field. In the next section we
will demonstrate how the quantum nature of the electric field can be taken into
account.

2.2. Introducing Bosonic fields

For this purpose we introduce a continuum set of bosonic fields [10] f̂ † and f̂ , satis-
fying the relations [︁

𝑓𝑖(r, 𝜔), 𝑓 †𝑗 (r′, 𝜔′)
]︁

= 𝛿𝑖𝑗𝛿(r− r′)𝛿(𝜔 − 𝜔′), (2.10)[︁
𝑓𝑖(r, 𝜔), 𝑓𝑗(r

′, 𝜔′)
]︁

=
[︁
𝑓 †𝑖 (r, 𝜔), 𝑓 †𝑗 (r′, 𝜔′)

]︁
= 0. (2.11)

These operators describe the creation and annihilation of a photon of frequency 𝜔
at position r. They can be used to describe the polarization caused by the emitter
quantum mechanically

P̂𝑆(r, 𝜔) = 𝑖

√︂
~𝜖0
𝜋

Im 𝜖(r, 𝜔) f̂(r, 𝜔). (2.12)

Simply plugging this relation into Eq. (2.9) yields an expression for the electric field
operator

Ê(r, 𝜔) = 𝑖

√︂
~
𝜋𝜖0

𝜔2

𝑐2

∫︁
d3r′

√︀
Im 𝜖(r′, 𝜔)G(r, r′, 𝜔) · f̂(r′, 𝜔). (2.13)
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2.3. Hamiltonian

In the case considered here the emitter is an atom placed in a medium. Its Hamil-
tonian can be split into three parts, describing the field, the kinetic energy and the
Coulomb energy.

�̂� = �̂�field + �̂�kin + �̂�Coulomb. (2.14)

The field energy, Eq. (2.15), can be described by the bosonic field operators intro-
duced in the last section

�̂�field =

∫︁
d3r

∫︁ ∞

0
d𝜔 ~𝜔 f̂ †(r, 𝜔) · f̂(r, 𝜔). (2.15)

For the kinetic energy the minimal coupling scheme can be applied

�̂�kin =
∑︁
𝛼

1

2𝑚𝛼

[︁
p̂𝛼 − 𝑞𝛼Â(r̂𝛼)

]︁
·
[︁
p̂𝛼 − 𝑞𝛼Â(r̂𝛼)

]︁
. (2.16)

For the Coulomb energy two terms arise

�̂�Coulomb =
1

2

∫︁
d3r𝜌𝐴(r)𝜑𝐴(r) +

∫︁
d3r𝜌𝐴(r)𝜑(r). (2.17)

The first one describes the energy between the particles and the second one the
energy of the particles in the medium, where

𝜑𝐴(r) =

∫︁
dr′

𝜌𝐴(r′)

4𝜋𝜖0|r− r′| and 𝜌𝐴(r) =
∑︁
𝛼

𝑞𝛼𝛿(r− r̂𝛼). (2.18)

Applying the electric dipole approximation and the rotating wave approximation
yields the following Hamiltonian (for a detailed derivation we refer to [10] and to
appendix A)

�̂� =

∫︁
d3 r

∫︁ ∞

0
d𝜔 ~𝜔 f̂ †(r, 𝜔) · f̂(r, 𝜔)⏟  ⏞  

�̂�field

+
1

2
~𝜔𝐴�̂�𝑧⏟  ⏞  
�̂�Atom

− [�̂�+Ê
(+)(r𝐴) · 𝜇 + H.c.]⏟  ⏞  

�̂�Atom−field

.

(2.19)
Note that we have replaced here the atom by a two-level system (TLS). The TLS
consists only of a ground state and an excited state separated by the excitation en-
ergy ~𝜔𝐴. This Hamiltonian provides the necessary basis to describe the interaction
of the TLS with its surroundings.
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2.4. Dynamics

We are interested in the time-dependence of the upper state occupation probability
|𝐶𝑢|2 of the TLS given here in terms of the time-dependent amplitude 𝐶𝑢(𝑡). For
this purpose we make the following ansatz for the wave-function

|𝜓⟩ = 𝐶𝑢(𝑡)𝑒−𝑖𝜔𝐴𝑡/2|𝑢⟩|0⟩ +

∫︁
d3r

∫︁ ∞

0
d𝜔 𝐶𝑙𝑖(r, 𝜔, 𝑡)𝑒

−𝑖(𝜔−𝜔𝐴/2)𝑡|𝑙⟩|1𝑖(r, 𝜔)⟩,
(2.20)

where |𝑙⟩ and |𝑢⟩ describe the lower state and upper state of the TLS. The states
of the electric field are denoted by |0⟩ for the vacuum state and |1𝑖(r, 𝜔)⟩ for a
single photon with the frequency 𝜔 at the position r. Note that we have neglected
here the vector character of the electric field, of the dipole operator and of the
bosonic fields such that the Green’s function becomes a scalar function instead of a
tensor. In a next step we insert Eq. (2.20) into the Schrödinger equation using the
Hamiltonian Eq. (2.19) and the electric field Eq. (2.13) derived in the last section.
After some additional algebra (presented in detail in appendix B), we arrive at an
integro-differential equation for the complex amplitude 𝐶𝑢(𝑡)

𝐶𝑢(𝑡) =

∫︁ 𝑡

0
d𝑡′𝐾(𝑡− 𝑡′)𝐶𝑢(𝑡′), (2.21)

containing the kernel function,

𝐾(𝑡− 𝑡′) = − 𝜇2

~𝜋𝜖0

∫︁ ∞

0
d𝜔

𝜔2

𝑐2
𝑒−𝑖(𝜔−𝜔𝐴)(𝑡−𝑡′)Im𝐺(r𝐴, r𝐴, 𝜔). (2.22)

The frequency integral in the kernel Eq. (2.22) contains the imaginary part of the
Green’s function evaluated at the position of the emitter r𝐴. The equation for 𝐶𝑢

can be simplified by taking the time integration on both sides of Eq. (2.21). To do
so an initial value for 𝐶𝑢 is necessary at time 𝑡 = 0. Since we are interested in the
decay of the TLS, we choose the system to be in the excited state at the time 𝑡 = 0,
corresponding to 𝐶𝑢(0) = 1. With this we arrive at a Volterra integral equation of
the second kind for the upper state occupation amplitude,

𝐶𝑢(𝑡) =

∫︁ 𝑡

0
d𝑡′𝐾(𝑡− 𝑡′)𝐶𝑢(𝑡′) + 1, (2.23)

and a corresponding kernel function,

𝐾(𝑡− 𝑡′) =
𝜇2

~𝜋𝜖0

∫︁ ∞

0
d𝜔

𝜔2

𝑐2

(︃
𝑒−𝑖(𝜔−𝜔𝐴)(𝑡−𝑡′) − 1

𝑖(𝜔 − 𝜔𝐴)

)︃
Im𝐺(rA, rA, 𝜔). (2.24)

The above two Eqs. (2.23) and (2.24) will be the basis for our investigations through-
out this thesis. Solving these equations is, however, non-trivial and requires numer-
ical techniques that we will present below. Analytical solutions can be found only
in exceptional cases, as when the so-called Markov-approximation is applied.
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2.5. The Markov Approximation

In the Markov approximation it is assumed that the surroundings of the emitter
are not influenced by it, such that all memory effects of the system are disregarded.
Obviously this is a very good approximation for big cavities, small refractive index
variations and, most of all, for the vacuum. We start from Eq. (2.21) where the
kernel is only different from zero within the correlation time 𝜏𝑐 [9]. In the Markov
approximation 𝜏𝑐 is assumed to be very small compared to the time scale of any
changes in the system. Hence 𝐶𝑢(𝑡′) can be replaced by 𝐶𝑢(𝑡) and the upper inte-
gration limit 𝑡 can be extended to infinity (as long as 𝑡 > 𝜏𝑐) with very little error.
We obtain a differential equation for 𝐶𝑢

�̇�𝑢(𝑡) = 𝐶𝑢(𝑡)

∫︁ ∞

0
𝐾(𝑡− 𝑡′) d𝑡′⏟  ⏞  

=𝐾𝑀 (𝑡−𝑡′)

. (2.25)

In this way we impose that the value of 𝐶𝑢 at time 𝑡 does not depend on earlier
times 𝑡′ < 𝑡. We then have [10]

𝐾𝑀 (𝑡− 𝑡′) = − 𝜇2

~𝜋𝜖0

∫︁ ∞

0
d𝜔

𝜔2

𝑐2
Im𝐺(r𝐴, r𝐴, 𝜔)

∫︁ ∞

0
d𝑡′ 𝑒−𝑖(𝜔−𝜔𝐴)(𝑡−𝑡′). (2.26)

The time-integral can be solved using the distribution∫︁ ∞

0
d𝜏𝑒−𝑖𝜔𝜏 = 𝜋𝛿(𝜔) − 𝒫

(︂
1

𝜔

)︂
. (2.27)

The left over frequency integral is time independent, so the kernel becomes a con-
stant with respect to time in the Markov approximation

𝐾𝑀 (𝑡− 𝑡′) = −1

2
Γ + 𝑖𝛿𝜔, (2.28)

where we used the definitions for the line shift,

𝛿𝜔 =
𝑘2𝐴𝜇

2

𝜋~𝜖0
𝒫
∫︁ ∞

0
d𝜔

Im𝐺(r𝐴, r𝐴, 𝜔)

(𝜔 − 𝜔𝐴)
, (2.29)

and the (Markov) decay rate,

Γ =
2𝑘2𝐴𝜇

2

~𝜖0
Im𝐺(r𝐴, r𝐴, 𝜔𝐴). (2.30)

With these approximations it becomes very easy to solve the differential equation
for 𝐶𝑢. The upper state occupation amplitude is then described simply by an
exponential decay

𝐶𝑢(𝑡) = exp(−1

2
Γ + 𝑖𝛿𝜔). (2.31)
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In the Markov approximation it is easy to see that the line shift does not contribute
to the occupation probability |𝐶𝑢(𝑡)|2. In a slightly different approach [9] the line
shift, Eq. (2.29), is included in the TLS transition frequency �̃�𝐴 = 𝜔𝐴 + 𝛿𝜔 and a
shifted upper state amplitude 𝐶𝑢(𝑡) = 𝐶𝑢(𝑡)𝑒𝑖𝛿𝜔𝑡 is calculated. Hence the line shift
is nothing but a frequency shift of the upper state amplitude. In many cases the
line shift does not converge. This is a well known problem in the field of QED and
referred to as Lamb shift. We will further discuss the problem of diverging solutions
in section 3.2.
As mentioned already the Markov approximation works primely in free space. It

also works very well in cavities during times smaller than the return time. The
return time is given as 𝑡𝑟 = 2𝑛 𝑐 𝑑, where 𝑑 is the distance from the emitter to the
closest variation in the refractive index. It is the earliest time at which the TLS
receives information about the dimensions of the cavity. We will further discuss its
importance in section 3.2.1 and chapter 4.
These considerations already demonstrate the limited applicability of analytical

techniques for general problems. In fact, for most real-world scenarios neither the
Markov approximation, nor other approximations allowing for analytical solution,
are applicable. Even in the most simple case of a dielectric slab (section 4.1) a
complex interaction of the emitter with the electromagnetic field is observed. This
can be described by the numerical techniques to be introduced below.



Chapter 3.

Numerical Solution Strategies

In the last chapter we derived Eqs. (2.23) and (2.24) to describe the dynamics of
a two-level system (TLS). Our goal is to implement a numerical framework capa-
ble of calculating the emission characteristics of a TLS in one-dimensional cavities.
We limit our approach to one dimension, not only due to the computational effort
required in two- and three-dimensional systems. Our interest is in observing the
emission characteristics of a TLS depending on the coupling with the field. This
dependence can already be studied satisfactorily using one-dimensional cavities.
Furthermore there are also experimental realizations of this problem [8]. In this
chapter we discuss the boundary conditions used to calculate the Green’s function
and the adaptations of the kernel integral Eq. (2.24) to facilitate a numerical solu-
tion. In the last section of this chapter we present the numerical techniques used to
obtain the results discussed in the next chapter.

3.1. Constant-Flux States

One of the most important ingredients to investigate the behavior of an emitter in
an optical cavity is the Green’s function, as it contains all the information about the
electromagnetic field modes that enter into the calculation. Numerically the best
way to calculate it, is to solve to Helmholtz-equation (2.8) directly. This brings up
the question regarding the proper boundary conditions. As mentioned already we
are interested in a general numerical solution for arbitrary one-dimensional cavities.
Independent of their individual design, they all have in common that they are of
finite size. Outside of the cavity the refractive index remains constant and therefore
there will be no reflection into the cavity from outside. Also we constrain the
refractive index outside of the cavity to real values (no absorption and no gain).

To treat environments of this kind we use the so-called Constant-Flux (CF) states.
They form a complete, biorthogonal basis and allow for a spectral representation of
the Green’s function. They were originally designed to describe open laser systems,
but also prove useful for the systems studied here. We give a brief introduction to
CF states, since they are not only very useful numerical tools, but they also play



Chapter 3. Numerical Solution Strategies 13

an important role in determining how well bound certain modes in a cavity are (see
[15, 16] for a comprehensive review).
As their name already suggests CF states conserve the photon flux outside of

the cavity. Inside the cavity they have complex eigenvalues, which are functions of
the wavenumber 𝑘, i.e. the wavenumber of the electromagnetic field outside of the
cavity. Their defining equations are(︀

∆ + 𝑛2(𝑥, 𝑘)𝑘2𝑚(𝑘)
)︀
𝜙𝑚(𝑥, 𝑘) = 0 for ∀𝑥 ∈ 𝒞, (3.1)(︀

∆ + 𝑛2(𝑥, 𝑘)𝑘2
)︀
𝜙𝑚(𝑥, 𝑘) = 0 for ∀𝑥 /∈ 𝒞, (3.2)

where 𝒞 denotes the cavity. The media we are considering never have gain or
loss, hence the refractive index 𝑛(𝑥, 𝑘) is real and the imaginary part of the 𝑘𝑚 is
always negative [17]. The main motivation for us to calculate the CF states was
to observe the imaginary part of the CF eigenvalues, which measures how well the
corresponding state is bound in the cavity. The smaller the absolute value of the
imaginary part of 𝑘𝑚 is, the longer the photon will stay in the cavity. In the limit
of a closed system the eigenvalues are real and there is no loss. For the numerical
treatment of higher dimensional systems it is important to apply the boundary
conditions in such a way, thatso there is no backscattering into the cavity 𝒞 (this
is not an issue in one dimension). Therefore the general CF boundary conditions
[15, 16] simplify in one dimensional systems to

𝜕

𝜕𝑥
𝜙𝑚(𝑥, 𝑘) = 𝑖𝑘𝜙𝑚(𝑥, 𝑘) for ∀𝑥 /∈ 𝒞. (3.3)

Due to the imaginary unit in Eq. (3.3) the CF boundary conditions are in general
not Hermitian. As a consequence, the CF states 𝜙𝑚 are not orthogonal to each
other, but there exists a bi-orthogonal set 𝜙𝑚 that is defined by(︁

∆ + 𝑛2(𝑥, 𝑘)𝑘
2
𝑚(𝑘)

)︁
𝜙𝑚(𝑥, 𝑘) = 0 for ∀𝑥 ∈ 𝒞, (3.4)(︀

∆ + 𝑛2(𝑥, 𝑘)𝑘2
)︀
𝜙𝑚(𝑥, 𝑘) = 0 for ∀𝑥 /∈ 𝒞, (3.5)

which fulfills a bi-orthogonality relation with the set 𝜙𝑚

⟨𝜙𝑚|𝜙𝑛⟩ =

∫︁
𝒞
𝑛2(𝑥, 𝑘)𝜙*

𝑚(𝑥, 𝑘)𝜙𝑛(𝑥, 𝑘) d𝑥 = 𝜂𝑛𝛿𝑛𝑚, (3.6)

where 𝜂𝑛 is a normalization constant. Using the relations above and Eq. (2.8) the
Green’s function can be expressed through a spectral expansion of the CF states

𝐺(𝑥, 𝑥′, 𝑘) =
∑︁
𝑚

𝜙*
𝑚(𝑥′, 𝑘)𝜙(𝑥, 𝑘)

(𝑘2 − 𝑘2𝑚)
for ∀ 𝑥, 𝑥′ ∈ 𝒞. (3.7)
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3.2. Dealing with divergent solutions

One encounters a major obstacle when trying to calculate 𝐶𝑢(𝑡) following the kernel
integral Eq. (2.24), as the integral does not converge. In this chapter we will discuss
the necessary steps to get a meaningful numerical solution of the kernel integral.

3.2.1. Separating the Green’s function

As the upper limit of the integration in Eq. (2.24) is not finite, it turns out to
be difficult to solve the integral numerically. Cutting off the integration limit is
thus required. The integral is performed over the Green’s function and a weighting
factor of the following form (we will only look at the real part, for reasons which
will become clear later)

sin ((𝜔 − 𝜔𝐴)𝜏)

𝜔 − 𝜔𝐴
. (3.8)

As shown in Fig. 3.1 the first and most dominant peak of this function becomes wider
for smaller times 𝜏 . The smaller 𝜏 is the more frequencies are thus contributing,
which makes it harder to get a numerically stable value for 𝐾(𝜏). For infinitely
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Figure 3.1.: The weighting function Eq. (3.8) as a function of the wavenumber 𝑘 for

different times 𝑡. Blue: 𝑡 = 1.0, red: 𝑡 = 0.3, green: 𝑡 = 0.1. Its

first and most dominant peak becomes wider for smaller times 𝑡. This

enters the following calculations through the kernel integral, Eq. (2.24), as
the weighting function determines the contributing k-range of the Green’s

function.
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small 𝜏 all frequencies contribute equally. The regime of small times 𝜏 is also the
most important one to solve Eq. (2.23) since all later times will depend on it.
To describe this start-time limit appropriately, we use the Markov approximation.

To do so it is necessary to split up the Green’s function in a term describing the
propagation in the medium and a term describing reflections, which form whenever
the propagating electric field encounters a variation in the refractive index

G(r𝐴, r𝐴, 𝜔) = G𝑀 (r𝐴, r𝐴, 𝜔) + G𝑅(r𝐴, r𝐴, 𝜔). (3.9)

The term featuring 𝐺𝑀 is the solution of the Helmholtz equation with the (real)
refractive index 𝑛(𝑥𝐴) of the medium the emitter is placed in, extended to infinity(︂

∆ + 𝑛(𝑥𝐴)2
𝜔2

𝑐2

)︂
𝐺𝑀 (𝑥, 𝑥′, 𝜔) = 𝛿(𝑥− 𝑥′). (3.10)

The solution to this equation can be found analytically as follows

𝐺𝑀 (𝑥, 𝑥, 𝜔) =
𝑖𝑐

2𝜔𝑛(𝑥𝐴)
. (3.11)

For the solution of 𝐺𝑀 the refractive index was always evaluated at the same posi-
tion 𝑥𝐴, accordingly the only difference between Eq. (3.11) and the vacuum Green’s
is the constant factor 1/𝑛(𝑥𝐴). Thus 𝐺𝑀 can be treated very well in the Markov
approximation. For the corresponding decay rate, Eq. (2.30), we get

Γ0 =
2𝑘2𝐴𝜇

2

~𝜖0
1

2𝑘𝐴𝑛(𝑥𝐴)
=

𝑘𝐴𝜇
2

~𝜖0𝑛(𝑥𝐴)
. (3.12)

Following [9, 10] and our discussion in section 2.5 we omit the line shift 𝛿𝜔, Eq. (2.29),
as it describes a divergent contribution to the Lamb shift and can be thought of as
being included in the transition frequency 𝜔𝐴. The kernel, Eq. (2.24), then becomes

𝐾(𝑡− 𝑡′) = −Γ0

2
+

𝜇2

~𝜋𝜖0

∫︁ ∞

0
d𝜔

𝜔2

𝑐2

(︃
𝑒−𝑖(𝜔−𝜔𝐴)(𝑡−𝑡′) − 1

𝑖(𝜔 − 𝜔𝐴)

)︃
Im𝐺𝑅(rA, rA, 𝜔).

(3.13)

Using this kernel equation increases the accuracy for small times. This separation
naturally works best in the vacuum or cavities with only very slight variations in
the refractive index.
We demonstrate this for a dielectric slab such as in Fig. 4.1 with a refractive index

𝑛𝐻 = 1.01 only slightly larger than the refractive index 𝑛𝐿 = 1.0 of its surrounding
medium2. The results for such a slab are shown in Fig. 3.1(a). In this case the

2 All the geometries presented in this thesis are made up of two different refractive indices, a
larger one, 𝑛𝐻(𝑖𝑔ℎ) , and a smaller one, 𝑛𝐿(𝑜𝑤).
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Figure 3.2.: |𝐶𝑢|2 for a dielectric slab with refractive index 𝑛𝐻 = 1.01 in (a) and 𝑛𝐻 =
4.0 in (b) and length 𝑙 = 1.0 placed in a medium with 𝑛𝐿 = 1.0. Red: The
Markov approximation was used for the 𝐺𝑀 term and the kernel integral

was solved for 𝐺𝑅. Blue: the kernel integral was solved for the total Green’s

function𝐺. For small times a separate treatment of𝐺𝑀 and𝐺𝑅 is necessary

to obtain the correct exponential decay.

total Green’s function is almost identical to 𝐺𝑀 , and thus 𝐺𝑅 is negligible. The
blue curves shows the result if 𝐺 is not split up. The red curve illustrates the
result when splitting up 𝐺, which is almost identical to the vacuum decay. It is well
known that the spontaneous decay in the vacuum is described by an exponential
decay. Obviously not splitting up 𝐺 does not give the correct result for small times,
but returns to the correct results for later times. This occurs because for 𝑡 = 0
the kernel in Eq. (2.24) becomes zero, therefore the gradient of 𝐶𝑢 is always zero
at 𝑡 = 0. Using Eq. (3.13) on the other hand yields 𝐾(0) = −Γ0/2 and produces
the correct exponential decay. This error, when 𝐺 is not split up, also occurs for
larger refractive index variations, but is less prominent there (compare Fig. 3.1(a)
with Fig. 3.1(b)).

3.2.2. Kernel

Before applying the separation of the Green’s function from above, let us go back
to the kernel integral derived in chapter 2.4,

𝐾(𝜏) =
𝜇2

~𝜋𝜖0

∫︁ ∞

0
d𝜔 Im𝐺(r𝐴, r𝐴, 𝜔)

(︃
𝑒−𝑖(𝜔−𝜔𝐴)𝜏 − 1

𝑖(𝜔 − 𝜔𝐴)

)︃
𝜔2

𝑐2
. (3.14)
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The real and imaginary part of this expression read

Re𝐾(𝜏) =
𝜇2

~𝜋𝜖0

∫︁ ∞

0
d𝜔 Im𝐺(r𝐴, r𝐴, 𝜔)

(︂− sin (𝜔 − 𝜔𝐴)𝜏

𝜔 − 𝜔𝐴

)︂
𝜔2

𝑐2
, (3.15)

Im𝐾(𝜏) =
𝜇2

~𝜋𝜖0

∫︁ ∞

0
d𝜔 Im𝐺(r𝐴, r𝐴, 𝜔)

(︂− cos (𝜔 − 𝜔𝐴)𝜏 + 1

𝜔 − 𝜔𝐴

)︂
𝜔2

𝑐2
. (3.16)

In the one-dimensional systems we are considering, the Green’s-function has a 𝜔−1

behavior for high frequencies. Inserting for example the vacuum value Im𝐺(r𝐴, r𝐴, 𝜔)
= 𝑐

2𝜔 yields for the real and imaginary part of the kernel:

Re𝐾(𝜏) = − 𝜇2

2~𝜋𝜖0𝑐

∫︁ ∞

0
d𝜔

(︂
𝜔

𝜔 − 𝜔𝐴

)︂
sin ((𝜔 − 𝜔𝐴)𝜏), (3.17)

Im𝐾(𝜏) =
𝜇2

2~𝜋𝜖0𝑐

[︂∫︁ ∞

0
d𝜔

(︂
𝜔

𝜔 − 𝜔𝐴

)︂
−
∫︁ ∞

0
d𝜔

(︂
𝜔

𝜔 − 𝜔𝐴

)︂
cos ((𝜔 − 𝜔𝐴)𝜏)

]︂
.

(3.18)

The real part contains an unspecified integral over a sine function. The imaginary
part also contains an unspecified integral as well as a diverging term.
Splitting up the Green’s function as discussed in section 3.2.1 does not avoid

these problems. Although 𝐺𝑀 , Eq. (3.11), is always positive and 𝐺𝑅 therefore
smaller than 𝐺, it does not decay stronger than 1/𝜔 for 𝜔 → ∞. The rest of this
section is devoted to a correct treatment of the unspecified and diverging integrals
in Eqs. (3.17) and (3.18).

Single Mode Approximation

In the single mode regime the emitter couples to only one mode of the cavity. The
frequency of this cavity mode has to be very close to the transition frequency of the
emitter. Hence the term 𝜔2/𝑐2 in Eq. (3.14) can be replaced, in good approximation,
by 𝑘2𝐴, see [10]. Doing so takes care of the problems induced by the undefined and
diverging integrals in Eqs. (3.17) and (3.18).
As we are especially interested in the multi-mode coupling regime we, however

do not make use of this approximation even for calculations where effectively a
single-mode coupling is realized. In Fig. 3.2(a) and (c) we display the results in this
multi-mode coupling regime using the single-mode approximation. The oscillations
observed in |𝐶𝑢|2 start earlier than the return-time of the emitted photon and are
therefore not physical. As a comparison we also show results of a correct treatment
of the undefined integrals displayed in Fig. 3.2(b) and (d), which were obtained
considering the Lamb shift and the finite volume of the emitter.
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Figure 3.3.: Decay probability |𝐶𝑢|2 for a dielectric slab with refractive index 𝑛𝐻 = 1.01
in (a), (b) and 𝑛𝐻 = 4.0 in (c), (d) and length 𝑙 = 0.25 placed in a

medium with 𝑛𝐿 = 1.0. The emitter with a dipole moment 𝜇 = 1 is

placed at 𝑥𝐴 = 0.125 and has a transition frequency 𝑘𝐴 = 5𝜋. Figs. (a)

and (c) are calculated using the single-mode approximation. The observed

oscillations can not be correct, as they start earlier than the photon return

time. Figs. (b) and (d) display the correct physical behavior without single-

mode approximation. The first revival in (d) emerges at the photon return

time. To obtain these results the contribution to the Lamb shift needs to

be discarded and the finite size of the emitter has to be taken into account.
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Lamb shift

When we applied the Markov approximation to the medium Green’s function 𝐺𝑀 ,
Eq. (3.11), we discarded the divergent line shift 𝛿𝜔, Eq. (2.29), arguing it is part of
the Lamb shift and already included in the transition frequency 𝜔𝐴. We encounter
a similar problem for the imaginary part of the kernel integral, Eq. (3.18), including
the reflection Green’s function 𝐺𝑅.
In the following paragraph we introduce the regularization of the Green’s function,

which takes care of the undefined real part of the kernel integral, Eq. (3.17). How-
ever, applying this method to the imaginary part of the kernel integral, Eq. (3.18),
does not lead to meaningful results. The procedure we used for 𝐺𝑀 , suggests to
neglect the diverging Eq. (3.18) altogether. Our numerical calculations, presented
in chapter 4, back up this procedure, as the obtained results can be explained very
well with clear physical arguments.

Regularization of the Green’s function

For the derivation of the central Eqs. (2.8), (2.23) and (2.24) the TLS was assumed to
be point-like. This assumption is not justified in reality. The information about the
size and position of the TLS does only implicitly enter the kernel integral, Eq. (2.24),
via the Green’s function. The Green’s function 𝐺(𝑥1, 𝑥2, 𝑘) is a propagator of the
electric field with the wavenumber 𝑘 from position 𝑥1 to 𝑥2. In order to take
the finite volume of the emitter into account, we use an average of the Green’s
function over both spatial dependencies instead of evaluating it only at the position
𝑥𝐴. After performing this averaging procedure an additional frequency dependent
function 𝑓(𝜔) appears

Re𝐾(𝜏) =
𝜇2

~𝜋𝜖0

∫︁ ∞

0
d𝜔 Im𝐺(r𝐴, r𝐴, 𝜔)

(︂− sin (𝜔 − 𝜔𝐴)𝜏

𝑖(𝜔 − 𝜔𝐴)

)︂
𝜔2

𝑐2
𝑓(𝜔). (3.19)

In appendix C this function is calculated for the simplest case, i.e., in the vacuum
with a Heaviside function to describe the volume of the emitter. For this simple
case this function is

𝑓(𝜔) =
sin2

(︀
𝜔
2 (𝑏− 𝑎)

)︀(︀
𝜔
2 (𝑏− 𝑎)

)︀2 . (3.20)

Not only does this term take into account account the immediate vicinity of the TLS
but it also removes the problem of the unspecified integral discussed in Eqs. (3.17).
This term is of course in general only valid for the special case of the vacuum Green’s
function, but we observed that for all the systems we considered in this thesis,
the envelope of the Green’s function is 1/2𝑘. Hence we assumed that the general
behavior of 𝑓(𝜔) also stays the same. The procedure to cut-off high frequency
components in this way is known as "regularization" in the literature [18]. Different
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ways exist to perform such a regularization [18, 19]. We choose for 𝑓(𝜔) a Gaussian
function,

𝑓(𝜔) =
𝑒−(𝜔−𝜔𝐴)2

2𝜎2
, (3.21)

with a sufficiently large width 𝜎 which has the advantage of a sufficiently fast decay
for high frequencies 𝜔 → ∞.

Summary of Kernel adaptations

In this chapter we discussed the necessary adaptations in Eq. (2.24) to solve Eq. (2.23)
numerically. We have to split up the Green’s function in a term 𝐺𝑀 describing the
propagation in the medium and a term 𝐺𝑅 describing reflections. The propagation
in the medium can be taken care off by applying the Markov approximation. For
the reflection term further steps are necessary. The imaginary part of the weighting
function has to be neglected and we added a Gaussian function to take care of the
unspecified integral. The final equation for the kernel is

𝐾(𝜏) = − 𝑘𝐴𝜇
2

2~𝜖0𝑛(𝑥𝐴)
+

+
𝜇2

~𝜋𝜖0

∫︁ ∞

0
d𝜔 Im𝐺(r𝐴, r𝐴, 𝜔)

(︂− sin (𝜔 − 𝜔𝐴)𝜏

𝜔 − 𝜔𝐴

)︂
𝜔2

𝑐2
𝑒(𝜔−𝜔𝐴)2

2𝜎2
. (3.22)

3.3. Numerical Methods

After the adaptations in the previous sections, the final Eqs. (2.8), (2.23) and (3.22)
are obtained. In this chapter we will briefly discuss the numerical methods used to
solve them.

3.3.1. Green’s function

To calculate the Green’s function we solve the Helmholtz Equation,(︂
∆ + 𝑛(𝑥, 𝜔)2

𝜔2

𝑐2

)︂
𝐺(𝑥, 𝑥′, 𝜔) = −𝛿(𝑥− 𝑥′), (3.23)

by employing an equally spaced grid to discretize the geometry [20]. Discretization
of the Laplacian gives

𝜕2

𝜕𝑥2
𝑓(𝑥)

⃒⃒⃒⃒
𝑥=𝑥𝑛

≈
𝑓𝑛+1−𝑓𝑛

Δ𝑥 − 𝑓𝑛−𝑓𝑛−1

Δ𝑥

∆𝑥
=
𝑓𝑛+1 − 2𝑓𝑛 + 𝑓𝑛−1

(∆𝑥)2
. (3.24)

The value of every grid point 𝑓𝑛 depends on its neighboring grid points 𝑓𝑛−1 and
𝑓𝑛+1. To employ Eq. (3.24) on the boundaries of the grid, we make use of the
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Figure 3.4.: An equally spaced grid is employed on the cavity and the finite difference

method (FDM) is used. On the left and right side CF-boundary conditions

are implemented to fix the flux out of the cavity

CF boundary condition shown in section 3.1, Eq. (3.3). It is important to choose
the sign, such that the derivative, and therefore the flux, points out of the cavity,
compare with Fig. 3.4. For the left end of the medium we get

− 𝜕𝑥𝑓(𝑥)|
𝑥=

𝑥1+𝑥0
2

=
𝑓0 − 𝑓1

∆𝑥
= 𝑖𝑘

𝑓0 + 𝑓1
2

→ 𝑓0 =
2 + 𝑖𝑘∆𝑥

2 − 𝑖𝑘∆𝑥⏟  ⏞  
=𝛽(𝑘)

𝑓1, (3.25)

where we selected to not fix the value of the derivation at one grid point, but rather
take the mean value of the last grid point inside the medium and the first adjacent
grid point outside. Inserting this into the Laplacian yields

𝑓2 − 2𝑓1 + 𝑓0
(∆𝑥)2

=
1

(∆𝑥)2
(𝑓2 + (−2 + 𝛽(𝑘)) 𝑓1) . (3.26)

The Laplacian matrix with CF-boundary conditions then looks as follows

1

(∆𝑥)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 + 𝛽(𝑘) 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

1 −2 + 𝛽(𝑘)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.27)

Applying this method to the Helmholtz Eq. (3.23) provides a linear algebraic system
of equations that can be solved with algorithms for tridiagonal matrices. For the
grid size we always selected a uniform spacing ∆𝑥 which was adapted for every
wavelength 𝜆, such that the relation ∆𝑥 < 30𝜆 was always satisfied, for which good
convergence can be expected.
This finite difference method can also applied for two- or three-dimensional sys-

tems. We mentioned in the beginning of this chapter, that, amongst other reasons,
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we constrained our calculations to one-dimension because the numerical effort for
higher dimensional systems increases strongly, as we need to obtain the Green’s
functions 𝐺 and 𝐺𝑅, for a large range of wavenumbers 𝑘.

3.3.2. Kernel Integral

The integral to calculate 𝐾(𝜏), Eq. (3.22), was solved using the trapezoidal rule.
Delicate questions in this context are the proper spacing of the wavenumber 𝑘
and where to cut off the integral. There are two factors influencing the 𝑘-spacing.
On the one hand it needs to resolve all the peaks in the Green’s function, on the
other hand it also needs to resolve the oscillations of the weighting function3 which
especially becomes a problem for long times. In certain cases these two requirements
demanded numerically challenging configurations, such as a small step-width and
a large range of integration. The results presented in this thesis can be obtained
for a justifiable computational effort, while fulfilling these requirements. For more
demanding configurations a separated calculation of the Green’s function and the
weighting function might be useful.
To calculate 𝐶𝑢(𝑡) we used an algorithm with adaptive step width, which re-

quires that the integrand in the Volterra equation (2.23) can be evaluated for any
time 𝑡′ ∈ [0, 𝑡]. We made this possible by using a Matlab routine to generate a
cubic spline of the kernel function. 𝐾(𝜏) is essentially the Fourier transform of the
Green’s function, hence 2𝜋/𝑘max would be an obvious choice for the step-width d𝜏 .
This value turned out to be too coarse to get stable results, which were eventually
obtained by refining the step-width by two orders of magnitude.

3.3.3. Volterra Integral Equation

As mentioned before we used the trapezoidal rule [21] with variable step width to
solve the Volterra integral equation [22]. The advantage of this method is that it
allows us to specify a limit for the relative error and the minimum step width. The
steps will be chosen as large as possible with the relative error staying below the
specified limit. In case that the desired limit for the relative error can not be reached
the minimum step width is used. For more details we refer to appendix D.

3 This is the function multiplied with the Green’s function in Eq. (2.24). Its importance is
discussed in chapter 4.



Chapter 4.

Results

4.1. Dielectric Slab

The first system we consider is that of a slab with length 𝑙 and a constant refractive
index 𝑛𝐻 surrounded by a medium with a lower refractive index 𝑛𝐿, see Fig. 4.1. We
placed the TLS in the center of the slab and thus need to calculate Im𝐺(𝑙/2, 𝑙/2, 𝑘).
When the imaginary part of 𝐺 is plotted as a function of the wavenumber 𝑘, there
are peaks visible representing the resonances of the cavity. The position of these
peaks can be calculated by simply adding up the different possible paths in the slab.
All the possible paths starting from the position of the TLS and propagating back
to the starting position are

𝑡 = 𝑒𝑖𝑛𝑘𝐿/2 𝑟 𝑒𝑖𝑛𝑘𝐿/2 +
(︁
𝑒𝑖𝑛𝑘𝐿/2 𝑟 𝑒𝑖𝑛𝑘𝐿/2

)︁2
+ . . .

=
∞∑︁
𝑛=1

𝑟 𝑒𝑖𝑛𝑘𝐿 =
𝑟 𝑒𝑖𝑛𝑘𝐿

1 − 𝑟 𝑒𝑖𝑛𝑘𝐿
. (4.1)

Paths to the left and right actually have to be treated separately in general, but
here we assumed that emission to the left and right is equally probable. Thus each
term has an additional factor 1/2, but as each path has an identical mirror-image
this factor cancels out again. The reflection coefficient 𝑟 = (𝑛𝐻 − 𝑛𝐿)/(𝑛𝐻 + 𝑛𝐿)
is greater zero. Therefore the transmission has maxima for 𝑛𝑘𝑚𝐿 = 2𝜋𝑚. These

n

x

l

nL

nH

Figure 4.1.: A dielectric slab (red) with refractive index 𝑛𝐻 placed in a medium with

refractive index 𝑛𝐿. This system with an emitter placed in the center of the

slab is discussed in section 4.1
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Figure 4.2.: The Green’s function of a dielectric slab (Fig. 4.1) with 𝑛𝐻 = 4.0, 𝑛𝐿 = 1.0
and 𝑙 = 0.25. (a): The total Green’s function 𝐺 (blue) and the medium

Green’s function 𝐺𝑀 = 1/(2𝑘𝐴𝑛𝐻) (red). (b): Reflection Green’s function

𝐺𝑅 = 𝐺 − 𝐺𝑀 . The peaks of 𝐺 in (a) and 𝐺𝑅 in (b) indicate the cavity

resonances, they occur for 𝑘𝑚 = 2𝜋𝑚/(𝑛𝐻 𝑙) = 2𝜋𝑚.

maxima can be identified in the total Green’s function 𝐺, shown in Fig. 4.1(a), as
well as in the reflection Green’s function 𝐺𝑅, shown in Fig. 4.1(a).

As mentioned in chapter 3.1, another way to determine the resonance frequencies
of a cavity is to look at the CF eigenvalues. In Fig. 4.3 the CF eigenvalues for a
certain range of k-vectors is displayed. The real part of the eigenvalues is relatively
stable. Especially in the chosen k-range, the 𝑘𝑚(𝑘) are almost vertical straight
lines. The spacing of the Re 𝑘𝑚(𝑘) is 𝑚𝜋/𝐿, the same as in a potential well. In
the Green’s function, however, only peaks for odd 𝑚 are found. This is because the
TLS was placed in the center of the cavity. The CF states with even 𝑚 are zero at
𝑥 = 𝑙/2, therefore these resonances do not appear in the Green’s function. The CF
eigenvalues do not only contain information about the frequency of the cavity modes,
also their imaginary part is a measure of how well they are trapped in the cavity.
The red dots in Fig. 4.3 mark the CF eigenvalues 𝑘1(𝑘) closest to the wavenumber 𝑘
they were calculated for (we indicate this by using the index 1 for these eigenvalues).
This was done for 7 different resonance frequencies of the slab. For increasing 𝑘 the
absolute value of the imaginary part of the 𝑘1(𝑘) increases slightly. The bigger 𝑘
gets, the weaker the CF states are bound, although the differences are very small
on an absolute scale.

So far we know the modes of the cavity and have a measure of how well they are
bound. The next question is to which of these modes the TLS couples. Comparing
the reflection Green’s function 𝐺𝑅 with the weighting function Eq. (3.8) which is
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Figure 4.3.: CF eigenvalues of a dielectric slab (Fig. 4.1) with 𝑛𝐻 = 4.0, 𝑛𝐿 = 1.0 and

𝑙 = 0.25. Each blue line indicates a CF eigenvalue 𝑘𝑚(𝑘) in the wavenumber

interval 𝑘 ∈ [3𝜋, 6𝜋]. The eigenvalues calculated for 𝑘 = 3𝜋, 3.5𝜋, 4𝜋 . . . 6𝜋
(indicated by the blue dots). The red dots display the CF eigenvalue 𝑘1(𝑘)
closest to the respective 𝑘, calculated for 𝑘 = 𝜋, 2𝜋 . . . 7𝜋.

multiplied with 𝐺 in Eq. (3.22) gives an estimate of how many modes need to be
taken into account. Consider as an example Fig. 4.3(a) where the main peak of
the weighting function spans over 2 modes. To evaluate the weighting function it is
necessary to insert a value for the time 𝜏 . In all the results presented in this thesis
we chose the value 𝜏 = 1/(3Γ0). The factor 1/3 is arbitrary, but it is practical to
make 𝜏 a multiple of 1/Γ0 because it is a measure for the time scale of the system
specific dynamics. This way it can be used to compare the coupling characteristics of
different systems. Note that the weighting function is also scaled by a global factor
in most figures to facilitate a comparison with 𝐺. As mentioned earlier the width of
the weighting function depends on the time 𝑡. The time scale of the decay, in turn,
depends strongly on the kernel. As is easy to understand in the vacuum, the bigger
|Γ0| gets, the faster 𝐶𝑢 decays. The absolute size of the kernel depends mostly on
the prefactor 𝑘2𝐴𝜇

2/(~𝜋𝜖0) in Eq. (3.22). Besides the constants and the transition
frequency 𝑘𝐴 (which for our purposes always stays in the same order of magnitude)
there is only one parameter that is variable, which is the dipole moment 𝜇. Hence
the dipole moment 𝜇 can be seen as a coupling constant, describing how strong the
emitter couples to the cavity modes. The bigger 𝜇 gets, the bigger becomes the
kernel and the smaller the time scale of the dynamics in 𝐶𝑢. Also for small times 𝑡
there are more frequencies of 𝐺 (respectively 𝐺𝑅) contributing to the kernel because
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the weighting function Eq. (3.8) gets wider. In a nutshell this tells us that for a
small enough coupling constant 𝜇 the TLS couples to only one mode, and for big
enough 𝜇 the system is in the multi-mode coupling regime.

The next step is the calculation of the kernel, Eq. (3.13). For a TLS placed in
the center of the cavity, the return-time, that is the minimal time for the emitted
photon to return to the TLS, is 𝑐 2 𝑙/2 = 1 (in the geometry chosen here). The
steps in the kernel (Fig. 4.3(b)) occur around integer multiples of the return-time.
In between these steps the kernel is more or less constant. The characteristics of
the kernel translate into the occupation probability of the upper state |𝐶𝑢|2. In
the time intervals in which the kernel is approximately constant and smaller than
zero an exponential decay can be observed in |𝐶𝑢|2 (Fig. 4.3(c)). The steps in the
kernel produce revivals in |𝐶𝑢|2, such that the photon is reabsorbed by the emitter.
Looking at the results for 𝐺, 𝐾 and |𝐶𝑢|2 for the example in Fig. 4.4 it is easy to
see that the weighting function Eq. (3.8) spans over a large frequency range and
therefore the emitter couples to many modes.

In the remainder of this section we will present the results of a slab with 𝑛𝐻 = 4.0,
𝑛𝐿 = 1.0 and length 𝑙 = 1.0. We show the influence of the dipole moment 𝜇 on
the basis of this geometry. Again the TLS is placed in the center 𝑥𝐴 = 0.5 and
the emitter frequency is 𝑘𝐴 = 5𝜋, which corresponds to the 10th resonance of the
slab (2𝜋𝑚/(𝑛𝐿) = 𝜋𝑚/2 = 5𝜋 for 𝑚 = 10). In Figs. 4.5, 4.6 and 4.7 the reflection
Green’s function 𝐺𝑅 and 𝐶𝑢 is displayed. The Green’s function, compared with the
weighting factor Eq. (3.8) gives a picture of how many modes the emitter couples
to.

First we discuss a small enough value for 𝜇 to couple to only one resonance of the
Green’s function. The single coupling behavior is easy to see in Fig. 4.4(a). The
weighting function is only significant within the one peak of 𝐺𝑅 around 𝑘𝐴. In the
geometry we are using here, all the modes are bound equally well. For the used
values 𝑛𝐻 and 𝑛𝐿 the classical reflection at the cavity boundaries is rather small

𝑅 =

⃒⃒⃒⃒
𝑛𝐻 − 𝑛𝐿
𝑛𝐻 + 𝑛𝐿

⃒⃒⃒⃒2
=

⃒⃒⃒⃒
3

5

⃒⃒⃒⃒2
=

9

25
= 0.36 , (4.2)

making it is very unlikely for the emitted photon to stay in the slab for more than a
few round-trips (e.g. 𝑅3 = 4.7%). Also due to the small dipole moment the Markov
decay Γ0 is very low. With the dwell time of the photon so low compared to the time
scale of the Markov decay, the chance of reabsorption is negligible. Figure 4.4(b)
confirms this as 𝐶𝑢 is simply described by an exponential decay, slightly stronger
than the Markov decay.

In Fig. 4.6 the dipole moment 𝜇 is increased by one order of magnitude. There
are two interesting phenomena to observe in this case. For one it is clearly visible
that up to the return time 𝑡𝑟 = 𝑐 𝑙/2𝑛 2 = 4 the decay is exactly the Markov decay.
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Figure 4.4.: Results for for a dielectric slab: 𝑛𝐻 = 4.0, 𝑛𝐿 = 1.0, 𝑙 = 0.25, 𝑘𝐴 = 5𝜋,
𝑥𝐴 = 0.125, 𝜇 = 0.5. (a): The Reflection Green’s function 𝐺𝑅 (blue)

compared with the weighting function | sin((𝑘−𝑘𝐴)/(3Γ0))
𝑘−𝑘𝐴

|*0.3 (red) indicates

that the system is in the multi-mode coupling regime. (b): The kernel

function 𝐾(𝑡), Eq. (3.22), with steps occurring at integer multiples of the

photon return time 𝑡𝑟 = 𝑐 𝑛𝐻 𝑙 = 1. (c): The upper state occupation

probability |𝐶𝑢(𝑡)|2, Eq. (2.23), with revivals caused by the steps in the

kernel.
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Figure 4.5.: Results for a dielectric slab: 𝜇 = 0.012, 𝑛𝐻 = 4.0, 𝑛𝐿 = 1.0, 𝑙 = 1.0,
𝑥𝐴 = 𝑙/2, 𝑘𝐴 = 5𝜋. (a): The reflection Green’s function 𝐺𝑅 (blue) and

the weighting function | sin((𝑘−𝑘𝐴)/(3Γ0))
𝑘−𝑘𝐴

| * 3 * 10−5 (red). The TLS couples

to only one mode. (b): |𝐶𝑢(𝑡)|2 describes an exponential decay, that is

enhanced compared to the Markov decay exp(−Γ0𝑡) (red). This represents

weak coupling within the single-mode coupling regime.

This is also the case in Fig. 4.4(b) but due to the larger time scale not visible in the
according plot. Furthermore |𝐶𝑢|2 is not monotonically decreasing anymore. After
an initial exponential decay, there appears a small revival in |𝐶𝑢|2. The plot of 𝐺𝑅

still shows that the cavity mode closest to 𝑘𝐴 has the biggest influence, but the
contribution of the adjacent modes is not negligible anymore. This also explains
why |𝐶𝑢|2 is not a simple exponential decay any longer. The dipole moment is larger
and therefore couples more strongly to the cavity resonances, which manifests in a
faster decay of the TLS. So while the decay is enhanced due to the increased dipole
moment, the dwell time of the photon in the cavity stays the same, which means
that the chance for the photon to stay in the cavity for the duration of the decay is
much larger than compared to the earlier example. Hence there is a higher chance
of reabsorption.

Finally we increase the dipole moment once again by a factor 10. Now the system
is clearly in the multi-mode coupling regime as the weighting function in Fig. 4.6(a)
now spans over a large frequency range. The high dipole moment causes the TLS to
couple very strongly to the cavity modes, so the probability of spontaneous emission
earlier than the return time is almost one. Now the effect we already observed for a
dipole moment one order of magnitude smaller is even more prominent. The decay
is very fast, so there is interaction between the TLS and many cavity resonances.
The characteristics of 𝐶𝑢 (Fig. 4.6(b)) can be explained in a quasi-classical picture.
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Figure 4.6.: Results for a dielectric slab: 𝜇 = 0.12, 𝑛𝐻 = 4.0, 𝑛𝐿 = 1.0, 𝑙 = 1.0,
𝑥𝐴 = 𝑙/2, 𝑘𝐴 = 5𝜋. (a): The reflection Green’s function 𝐺𝑅 (blue)

and the weighting function | sin((𝑘−𝑘𝐴)/(3Γ0))
𝑘−𝑘𝐴

| * 5 * 10−3 (red). The TLS

mainly couples to the closest resonance, but also starts coupling to other

modes. (b): |𝐶𝑢(𝑡)|2 (blue) corresponds to the Markov decay 𝑒−Γ0𝑡 (red)

up to the cavity return time 𝑡𝑟 = 1. For larger times an enhanced decay

is observed, with one very small oscillation visible. The system is in the

few-mode coupling regime.
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Figure 4.7.: Results for a dielectric slab: 𝜇 = 1.2, 𝑛𝐻 = 4.0, 𝑛𝐿 = 1.0, 𝑙 = 1.0,
𝑥𝐴 = 𝑙/2, 𝑘𝐴 = 5𝜋. (a): The weighting function | sin((𝑘−𝑘𝐴)/(3Γ0))

𝑘−𝑘𝐴
| (red)

spans over many modes of 𝐺𝑅 (blue). (b): |𝐶𝑢(𝑡)|2 (blue) follows the

Markov decay 𝑒−Γ0𝑡 (red) up to the cavity return time 𝑡𝑟 = 1 and then

shows a quasi-classical behavior. The system is in the many-mode coupling

regime.

The photon is emitted almost instantly and bounces back and forth between the
walls of the slab a few times and every time it passes the emitter there is a chance
to get reabsorbed, an effect which manifests itself in the peaks of 𝐶𝑢. Of course
these peaks decrease in size quite fast, because the reflection is not very high in the
dielectric slab (𝑅 = 36% for 𝑛𝐻 = 4 and 𝑛𝐿 = 1).
In this section we have discussed the characteristic of Eqs. (3.13) and (2.23)

on the basis of a simple geometry, i.e. a dielectric slab with constant refractive
index 𝑛𝐻 (Fig. 4.1). A crucial parameter in the system is the dipole moment
𝜇 which determines the time scale of the dynamics of the system and hence the
characteristics of 𝐶𝑢. We see however, that as we scan the dipole moment from
weak to strong coupling Rabi oscillations only occur with very low amplitude and
for well-defined parameter values. To observe Rabi oscillations in a more pronounced
way, we consider a cavity with a 𝜆/4-layer at its boundaries.

4.2. 𝜆/4 Layer

One way to increase the dwell time of a selected mode in the cavity is to add so-
called 𝜆/4 layers on each side, see Fig. 4.7(b). To achieve the desired effect, the
first refractive index transition has to be from a lower to a higher value. That is
why the central slab is a medium with 𝑛𝐿 now. Connected to it are thin layers with
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Figure 4.8.: (a): A slab with a low refractive index 𝑛𝐿 and a high refractive index 𝑛𝐻 to

its left and right. (b): The reflection of a specified wavelength is increased

by adding 𝜆/4-layers on both sides. Choosing 𝑛𝐻 𝑙𝐻 and 𝑛𝐿𝑙𝐿 accordingly,

allows for constructive interference of the reflected beams.

alternating high, 𝑛𝐻 , and low, 𝑛𝐿, refractive indices. Each one of these thin layers
is called a 𝜆/4 layer. We used three 𝜆/4 layers (two with high and one with low
refractive index), which provided a high enough reflection for our purposes.
The functionality of 𝜆/4 layers is quite easy to explain. The thickness of the

𝑛𝐻 and 𝑛𝐿 layers have to be chosen correctly, so the two reflected beams interfere
constructively for a specified wavelength. The first beam, reflected on the 𝑛𝐻 -layer
acquires a phase-shift of 𝜋 (because we always chose 𝑛𝐻 > 𝑛𝐿). The second beam
is shifted by 𝑘𝐿 in respect to the first beam (it does not accumulate a shift during
the reflection, since 𝑛𝐿 < 𝑛𝐻). Hence the condition for maximal reflection is

1) 𝑒𝑖𝜋

2) 𝑒𝑖𝑘𝐿 = 𝑒𝑖
2𝜋
𝜆
2𝑛𝑑

}︃
4𝜋

𝜆
𝑛𝑑⏟ ⏞ 
=𝜆

4

= 𝜋. (4.3)

Obviously this condition can only be fulfilled for one wavelength at a time (and
integer multiples of it). To demonstrate the effect of these 𝜆/4 layers we look at
the Green’s function of a slab with length 𝑙 and refractive index 𝑛𝐿. To its left
and right is a medium with refractive index 𝑛𝐻 (see Fig. 4.7(a)). We compare this
system to a system with the same length 𝑙 and two 𝜆/4-layers on each side like in
Fig. 4.7(b). We compared the Green’s function of these two systems as a function
of the wavenumber 𝑘. Again the emitter is placed in the center 𝑥𝐴 = 𝑙/2.
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In Fig. 4.8(a) the Green’s function of the system without 𝜆/4-layers is shown.
The position of the peaks is explained the same way as in section 4.1 using path
summation Eq. (4.1), except this time 𝑟 = (𝑛𝐿−𝑛𝐻)/(𝑛𝐿 +𝑛𝐻) is negative and the
condition for maximal transmission becomes 𝑛𝑘𝑚𝑙 = 2𝜋(𝑚 + 1). Accordingly, the
peak spacing is still 2𝜋 (for 𝑛𝐿 = 1 and 𝑙 = 1) but the peaks are now located at odd
multiples of 𝜋. In Fig. 4.8(c) the Green’s function of the system with 𝜆/4-layers is
displayed. The thickness of the layers was chosen such that

𝑛𝑑 =
𝜆𝐴
4

for 𝑘𝐴 =
2𝜋

𝜆𝐴
= 5𝜋 (4.4)

was fulfilled. We picked the value 5𝜋 for 𝑘𝐴 so it coincides with a peak of the Green’s
function. Therefore the eigenvalue 𝑘𝑚 = 𝑘𝐴 and whole-number multiples of 𝑘𝐴 are
amplified, as well as the adjacent peaks.
The plots of the Green’s function of the system with and without 𝜆/4-layers

already show the effect of the enhanced reflection. However, we also look at the
CF eigenvalues of these two systems (Fig. 4.10). The CF eigenvalues of the slab
without 𝜆/4-layers show similar characteristics as compared to what we have seen
already in section 4.1. Again the functions 𝑘𝑚(𝑘) are almost vertical straight lines.
The red dots indicate the CF eigenvalue closest to the wavenumber 𝑘 for which they
were calculated. The imaginary parts of these eigenvalues increase very slightly with
increasing 𝑘. Yet the CF eigenvalues are strongly modified when the 𝜆/4-layers are
added. The geometry was designed to trap the transition frequency of the TLS for a
long time in the cavity. The corresponding eigenvalue is very close to the real axis,
as well as the adjacent eigenvalues. The other eigenvalues are also distorted quite
strongly, but this effect does not have a strong influence on the Green’s function.
After comparing these two systems we want to focus in the following only on the

system with the 𝜆/4-layers. Using its reflection Green’s function (Fig. 4.8(c)) we
solve Eqs. (2.23) and (3.22) to calculate the occupation probability of the upper state
|𝐶𝑢(𝑡)|2. Again the dipole moment 𝜇 is a crucial parameter in these calculations,
as it is a coupling constant of the TLS to the electric field. The following sections
show results for the 𝜆/4 geometry in different coupling regimes.

4.2.1. Single-mode coupling

Like for the simple slab, the system is in the single coupling regime for small dipole
moments. Figure 4.10(a) shows the same characteristics as we have already seen
for systems without enhanced reflection. The TLS decays faster than the Markov
decay, but still on a time scale much bigger than the return time of the photon.
The impact of the 𝜆/4-layers becomes first visible for Fig. 4.10(b). Instead of an

exponential decay we observe damped oscillations. This is because the 𝜆/4-layers
were designed to enhance the reflection of the resonance mode which is in tune with
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Figure 4.9.: Comparison of the Green’s function two systems. In (a) and (b) a dielectric

slab (𝑙 = 1.0, 𝑛𝐿 = 1.0, 𝑛𝐻 = 4.0) like in Fig. 4.7(a) was considered,

whereas in (c) and (d) 𝜆/4-layers (𝑙𝐻 = 0.025, 𝑙𝐿 = 0.1) were added, see

Fig. 4.7(b). In (a) and (c) the total Green’s function 𝐺 (blue) and the

medium Green’s function 𝐺𝑀 (red) is plotted for the respective systems.

Figs. (b) and (d) show the reflection Green’s function 𝐺𝑀 = 𝐺−𝐺𝑅. The

frequencies for which the 𝜆/4-layers were designed are strongly amplified.

Notice the different length scales of the y-axis.
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Figure 4.10.: CF eigenvalues for two different geometries: (a) is the same system as in

Figs. 4.8(a), 4.8(b) and (b) is the same system as in Figs. 4.8(c), 4.8(d).

Each blue line indicates a CF eigenvalue 𝑘𝑚(𝑘) in the wavenumber interval

𝑘 ∈ [3𝜋, 6𝜋]. The eigenvalues were calculated for 𝑘 = 3𝜋, 3.5𝜋, 4𝜋 . . . 6𝜋
(indicated by the blue dots). The red dots display the CF eigenvalue

𝑘1(𝑘) closest to the respective 𝑘, calculated for 𝑘 = 𝜋, 2𝜋 . . . 7𝜋. The CF

eigenvalues of the system with the 𝜆/4-layers are much closer to the real

axis and, thus, have a longer dwell time in the cavity.
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Figure 4.11.: |𝐶𝑢(𝑡)|2 for a geometry like in Fig. 4.7(b) with 𝑙 = 1.0, 𝑛𝐻 = 4.0, 𝑙𝐻 =
0.025, 𝑛𝐿 = 1.0 and 𝑙𝐿 = 0.1. The emitter is placed in the center of the

slab 𝑥𝐴 = 0.5 and has a transition frequency 𝑘𝐴 = 5𝜋. Two different

dipole moments, 𝜇0.0012 in (a) and 𝜇 = 0.0038 in (b), are taken into

account. For the larger value of 𝜇 weak Rabi oscillations are visible.

the TLS transition frequency. Compared to the single-mode coupling of the regular
slab, the system still couples with only one mode, but the dwell time of this mode
is strongly increased. This induces a longer time of interaction between the emitter
and the respective cavity resonance. The emitter does not simply decay, but there is
also a chance of reabsorption of the photon, which causes the mentioned oscillations.
This phenomenon is called Rabi oscillations and is a well known effect in the strong
coupling regime of single mode cavities [9].

In the next example we included the plot of the Green’s function compared with
the corresponding kernel weighting function (Fig. 4.11(c)) in the same fashion as in
the last section. This illustrates that the system is still clearly in the single-mode
coupling regime for the according dipole moment 𝜇 and, thus, also for the systems
shown Figs. 4.10(a) and 4.10(b), as they have an even smaller dipole moment. The
larger dipole moment in Fig. 4.11(b) compared to Fig. 4.10(b) causes a stronger
coupling of the TLS to the cavity mode and therefore a faster decay is observed.
The oscillations take place on a smaller time scale and, as the dwell time of the
resonance is the same, they do not decay as fast compared to the respective Markov
decay. This is why Fig. 4.11(b) displays such distinct Rabi oscillations.

To observe Rabi Oscillations in the model we use, the dipole moment can not get
too large, otherwise the emitter will couple to more than one mode. On the other
hand the coupling needs to be relatively strong while staying in the single coupling
regime. This lower limit for the dipole moment is necessary, so the emission of
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Figure 4.12.: The same system as in Fig. 4.11 is considered with a different dipole

moment 𝜇 = 0.012 and the transition frequency is tuned off resonance in

(c) and (d) 𝑘𝐴 = 4𝜋. In (a) and (c) 𝐺𝑅 (blue) and the weighting function

| sin((𝑘−𝑘𝐴)/(3Γ0))
𝑘−𝑘𝐴

|*0.03 (red) are displayed. The TLS couples to one cavity

mode in (a) and does not couple to any cavity modes in (c). Thus, for

|𝐶𝑢|2 we observe Rabi oscillations in one case (b) and no interaction at all

in the other (d).
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the photon happens considerably fast compared to the dwell time of the resonance.
That is why we needed to increase the dwell time of the resonance the TLS couples
with. We want to discuss the impact of the 𝜆/4-layers on the basis of the results for
the system with 𝜇 = 0.012 in Fig. 4.11(b). The reflection probability for a transition
from a refractive index 𝑛𝐿 = 1.0 to 𝑛𝐻 = 4.0 is

𝑅 =

(︂
𝑛𝐿 − 𝑛𝐻
𝑛𝐿 + 𝑛𝐻

)︂2

= 36%. (4.5)

To calculate the reflection probability at 𝜆/4-layers multiple reflections need to be
considered. A correct derivation [23] yields for a wavenumber 𝑘𝐴 the reflection

𝑅(𝜆𝐴) =
𝑛4𝐻 − 𝑛4𝐿
𝑛4𝐻 + 𝑛4𝐿

= 99.22%. (4.6)

It takes the photon the time 𝑡 = 𝑐 𝑙 = 1 to travel once through the cavity. The first
maximum of the Rabi oscillations occurs in Fig. 4.11(b) approximately at 𝑡 = 68
and the second one at 𝑡 = 137. So at the time of the first maximum the photon
traveled 68 times back and forth in the cavity (respectively 137 times at the second
maximum). The chance for the photon to remain that long in the dielectric slab is
with

𝑅68 = 0.3668 = 6.7 * 10−29%, 𝑅137 = 0.36137 = 1.6 * 10−59% (4.7)

only negligible small. This is why there were no Rabi oscillations visible in Fig. 4.4(b).
It is not possible to fulfill both requirements, that is being in the single mode cou-
pling regime while coupling strong enough to that one mode, at the same time4.
With the 𝜆/4-layers on the other hand the reflection is

𝑅68 = 0.992268 = 58.71%, 𝑅137 = 0.9922137 = 34.21%, (4.8)

which fits very well with the height of the maxima in Fig. 4.11(b).
All the results so far, were engineered such that the transition frequency coincides

very well with a cavity mode. We have not discussed the detuning ∆ at all, i.e.,
the difference between the transition frequency 𝜔𝐴 and the closest resonance 𝜔𝑚.
An example with maximal detuning is illustrated in Fig. 4.11(c), (d), which is the
same system as in Fig. 4.11(a), (b), except for the transition frequency of the TLS,
which is placed right in the middle between two resonances. For the given dipole
moment, the coupling is not strong enough to allow an interaction even with the
closest field mode, causing the emitter to remain in the exited state, Fig. 4.11(d).
This can also be understood analytically. There is no significant overlap between
the Green’s function 𝐺 and the weighting function in Fig. 4.11(c), thus the kernel
is zero for all times and 𝐶𝑢 retains its initial value.

4 Unless for unrealistic high differences between the refractive indices 𝑛𝐻 and 𝑛𝐿.
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Figure 4.13.: The same system as in Fig. 4.11 is considered with a different dipole

moment 𝜇 = 0.038. In (a) 𝐺𝑅 (blue) and the weighting function

| sin((𝑘−𝑘𝐴)/(3Γ0))
𝑘−𝑘𝐴

|*0.3 (red) are displayed. This system is still attributed to

the single-mode coupling regime. In (b) the Markov decay (red) suggests

for certain time ranges a lower occupation probability than the true value

for |𝐶𝑢|2 (blue).

Further increasing the dipole moment leads us to the last example we want to
present in the single mode coupling regime (Fig. 4.13). In this example Rabi oscil-
lations are still visible, but now for the first time the decay is not enhanced for all
times 𝑡. This scenario occurs because, as discussed earlier, the Markov decay rate
increases for increasing dipole moments. In this example the reflection probability,
calculated in Eq. (4.8) for two chosen times, exceeds the Markov decay (Red curve
in Fig. 4.12(b)). This is why there are ranges of 𝑡 where the occupation probability
of the upper state is higher than the Markov decay suggests.

This setup represents the limit of the single coupling regime. Of course the dipole
moment selected in Fig. 4.13 is not the absolute highest value with whom single
mode coupling can still be achieved, especially as this limit is a matter of definition.
But the qualitative characteristics do not change anymore until the next regime
is reached. That is the few-mode coupling regime, which we will discuss in the
following section.

4.2.2. Few-mode coupling

In this section we are going to present the few-mode coupling regime. As it is not
possible to define clearly when the emitter couples to only one or more modes we will
discuss the crossover cases between the obvious single-mode and the obvious multi-
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Figure 4.14.: The same system as in Fig. 4.11 is considered with a different dipole

moment 𝜇 = 0.12. In (a) 𝐺𝑅 (blue) and the weighting function

| sin((𝑘−𝑘𝐴)/(3Γ0))
𝑘−𝑘𝐴

| *3 (red) are displayed. In the few-mode coupling regime

the resonance at 𝑘𝐴 = 5𝜋 is still the main contributor but the adjacent

modes can not be neglected anymore. In (b) |𝐶𝑢|2 (blue) equates the

Markov decay (red) up to the return time 𝑡𝑟 = 1. For larger times damped

oscillations appear.

mode coupling here. The comparison of the weighting function with the Green’s
function in the two examples presented in this section are shown in Figs. 4.13(a) and
4.14(a). We see that the main contribution still comes from the resonance coinciding
with the transition frequency. But the adjacent modes are definitely not negligible
anymore.

In these systems the return time 𝑡𝑟 plays an important role as well. Like in the
single-mode coupling systems (section 4.2.1) the return time is always 𝑡𝑟 = 𝑐 𝑛 𝑙 =
1.0, in the geometry chosen here. Up to that time the TLS has no information
about the size of the cavity. That is why 𝐶𝑢 shows exactly the Markov decay up
to the return time 𝑡𝑟 (Figs. 4.13(b) and 4.14(b)). In this time range the decay
looks exactly the same as in the vacuum, i.e., in an infinitely big slab with constant
refractive index 𝑛𝐿 = 1.0. Only as soon as the TLS has information about the
cavity dimensions |𝐶𝑢|2 deviates from the exponential Markov decay. The upper
state occupation probability starts to oscillate at 𝑡 = 𝑡𝑟. However, in this regime the
oscillations are distorted, which occurs due to the additional resonances the TLS
couples with. The distortion of the oscillations gets gradually stronger for larger
dipole moments, which can be observed when comparing the upper state occupation
probability in Fig. 4.13(b) with Fig. 4.14(b).

We have already seen on the basis of the examples featuring the dielectric slab
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Figure 4.15.: The plots shown here, illustrate the same as in Fig. 4.14, but with a dipole

moment 𝜇 = 0.38 and a scaling factor of 30 in the weighting function

(red curve in (a)). The larger dipole moment causes a stronger interaction

with the modes in the vicinity of 𝑘𝐴 in (a) and a smaller time scale of the

dynamics in (b).

with and without 𝜆/4-layers, that the time scale of the dynamics decreases for
increasing dipole moment. Not surprisingly this trend continues in the few-mode
coupling regime. The examples in Figs. 4.14 and 4.15 point out the importance of
the return time 𝑡𝑟. Further increasing the dipole moment will eventually cause the
initial Markov decay to take place on a time scale smaller than 𝑡𝑟. This limit will
be the topic of the next section.

Before we consider the multi-mode coupling regime we show the characteristics
of |𝐶𝑢|2 in case the emitter is not in tune with a cavity resonance. Similar to
the examples in the single-mode coupling (section 4.2.1) the transition frequency
is now with 𝑘𝐴 = 4𝜋 chosen right between the resonances 3𝜋 and 5𝜋. Other than
in the regime of single-mode coupling the upper state occupation probability does
not stay at |𝐶𝑢|2 = 1. Because the weighting function is now wide enough to
span over the adjacent modes, the emitter always couples at least weakly to the
closest resonances, even for the maximal detuning displayed in Fig. 4.16. Instead
we observe for the probability |𝐶𝑢|2 oscillations with an offset (Figs. 4.15(a) and
(b)). The offset occurs, because due to the weakened coupling, the emission rate is
smaller compared to Figs. 4.13(b) and 4.14(b).
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Figure 4.16.: Behavior of |𝐶𝑢|2 when 𝑘𝐴 is not in tune with a resonance. Except for the

transition frequency 𝑘𝐴 = 4𝜋 (a) was calculated using the same system as

in Fig. 4.14 (𝜇 = 0.12) and (b) was calculated using the same system as

in Fig. 4.15 (𝜇 = 0.38). As the interaction with the resonance at 𝑘 = 5𝜋
is weakened, the amplitude of the oscillations is smaller.

4.2.3. Multi-mode coupling

Finally we are going to discuss the multi-mode coupling regime. The dipole mo-
ment is considerably large now, causing the weighting function to span over many
resonances (Fig. 4.16(a)). Due to the wide peak of the weighting function there is
hardly a difference between the contribution of the central mode and the adjacent
mode. Furthermore the coupling between the TLS and the cavity resonances is
very strong now, so the photon is emitted very fast. Compared to the return time
𝑡𝑟 = 1.0, the emitter decays almost instantly. The characteristics of the upper state
probability (Fig. 4.16(b)) can be explained in a quasi-classical picture: The light
pulse is emitted from the TLS at 𝑡 = 0, after which the TLS is in the ground state
until the reflected pulse comes back and is reabsorbed at 𝑡 = 𝑡𝑟 = 1.0. This pro-
cedure repeats itself, with decaying reabsorption probability due to the loss during
the reflection. The second pulse is also visible in Fig. 4.16(b). Note that the peaks
of the pulses do not exactly occur at integer multiples of the return time. This is
because the 𝜆/4-layers have a finite size and the peak of the light pulse is therefore
not reflected right at the first refractive index transition. Instead the peaks have
two local maxima which correspond to the refractive index transition of the 𝜆/4
layers.

The size of the peaks in |𝐶𝑢|2 is also not as easy to calculate, as in the single-
mode coupling regime because the reflection depends on the wavelength 𝜆. There
are many modes contributing so one would have to take the average reflection in the
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Figure 4.17.: The same system as in Fig. 4.11 is considered with a different dipole

moment 𝜇 = 1.2. In (a) 𝐺𝑅 (blue) and the weighting function

| sin((𝑘−𝑘𝐴)/(3Γ0))
𝑘−𝑘𝐴

| * 300 (red) are displayed. The weighting function spans

over many cavity modes. In the multi-mode coupling regime, the behavior

of |𝐶𝑢|2 (blue curve in (b)) can be explained quasi-classically: the photon

bounces back and forth in the cavity and can be reabsorbed every time it

passes the emitter.

considered wavelength range to get the correct peak height. But when comparing
Fig. 4.16(b) with the multi-mode result for the dielectric slab Fig. 4.6(b) one notices
that the peak height is roughly the same. The peak shapes differ because of the
additional refractive index transitions after the initial scattering in the case of the
𝜆/4-layers. This demonstrates that the 𝜆/4-layers do not significantly change the
reflection probability for frequencies other than the one they are tuned to. With
this example we conclude the presentation of our results.



Chapter 5.

Summary and Outlook

In this thesis we investigated the emission characteristics of an excited two-level
system (TLS) placed in a one-dimensional cavity. We used a fully quantum approach
[10] to derive the basic equations, which were later solved numerically.

We presented results for a TLS placed in a dielectric slab with and without 𝜆/4-
layers to its left and right. The behavior of the TLS depends heavily on how strong
it couples with the cavity modes. This coupling strength is mostly controlled by the
coupling constant, i.e., the dipole moment 𝜇. Depending on the order of magnitude
of the dipole moment, we classified three different regimes: single-mode, few-mode
and multi-mode coupling. As the different names suggest, the TLS interacts in these
three different regimes with either one, several or many modes of the cavity. For an
increasing amount of modes coupling to the TLS the time scale of the decay to the
ground state does not only get smaller, but its qualitative behavior changes as well.

In the single-mode coupling regime we observed well known phenomena such as
the Markov decay, enhanced Markov decay due to the Purcell effect, and Rabi
oscillations. While the Markov decay is easy to observe in any cavity, certain re-
quirements must be met by the dipole moment and the cavity in order to observe
Rabi oscillations. The coupling must have a considerable strength while staying
in the single mode coupling regime. Furthermore the mode with which the TLS
couples, needs to have a long dwell time in the cavity, which was achieved using
𝜆/4-layers. In case the TLS is not tuned close enough to a cavity resonance, it will
stay in the excited state and not emit the photon, as there are no available modes.

The few-mode coupling regime provides a very interesting insight into the tran-
sition from single-mode to multi-mode coupling. In these systems the central mode
remains the major contributor, but the adjacent modes are no longer negligible.
This can be shown by detuning the TLS transition right between two resonances,
as the TLS will not stay in the excited state anymore, because it weakly couples to
the modes in the proximity. For few-mode coupling the return time becomes impor-
tant. This time measures how long takes for the photon to travel from the TLS to
the closest possible point of scattering and back to the TLS. At this time scale the
emitter receives information about the dimension of the cavity and deviates from
the Markov decay.



44

With the numerical tools developed in this thesis we are also capable of performing
calculations in the multi-mode coupling regime where conventional approaches tend
to fail. In this regime we obtain results for the upper state occupation probability
of the TLS which can be understood in a quasi-classical picture. The photon is
emitted almost instantly and bounces back and forth in the cavity. Each time the
photon passes the TLS, a raised reabsorption probability is observed.
The obvious next step in our calculations would be to extend them to two- or even

three-dimensional systems. The greatest challenge in doing so is the numerically
very demanding calculation of the reflection Green’s function 𝐺𝑅 for a large range of
k-vectors. Once this is achieved, the only other equation modified by the additional
dimension(s) is the Green’s function describing the propagation in the medium 𝐺𝑀 .
All the following equations remain unmodified. The characteristics of 𝐺𝑀 , or 𝐺
in general, might also require a different treatment of the diverging integral in the
kernel integral Eq. (3.22), as the Green’s functions no longer decreases for increasing
frequencies.
In this thesis we achieved multi-mode coupling by increasing the dipole moment to

an according value. In the real world we suspect the easier way would be to increase
the local density of states (LDOS). There are already experimental realizations to
measure strong coupling phenomena in the single-mode coupling regime, such as
Rabi oscillations. If the LDOS is increased in such a system, for example by a
larger cavity or using two- or three-dimensional systems, the limit of multi-mode
coupling is reachable. As our numerical tools are applicable for arbitrary cavities,
they could provide a powerful basis to simulate almost any experimental setup.
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Appendix A.

Hamiltonian in Dipole and

Rotating-Wave Approximation

We start with the Hamiltonian, Eq. (2.14), describing an atom in the electric field.
The atom is approximated by a two-level system (TLS) and the dipole approxima-
tion (DA) and the rotating-wave approximation (RWA) are applied to obtain the
Hamiltonian, Eq. (2.19), used to describe the behavior of an emitter in an optical
cavity. Multiplying out Eq. (2.16) and neglecting the small Â2 term we can split
up the kinetic energy, Eq. (2.16), and the Coulomb energy, Eq. (2.17), in two parts
describing the energy of the atom and the atom-field interaction

�̂�Atom =
∑︁
𝛼

p̂2
𝛼

2𝑚𝛼
+

1

2

∫︁
d3r𝜌𝐴(r)𝜑𝐴(r), (A.1)

�̂�Atom−field =
∑︁
𝛼

𝑞𝛼
2𝑚𝛼

{︁
p̂𝛼, Â𝛼(r̂𝛼)

}︁
+

∫︁
d3r𝜌𝐴(r)𝜑(r). (A.2)

First we restrict the atom to a simple two-level system. Hence Eq. (A.1) becomes

�̂�Atom = ~𝜔𝑢|𝑢⟩⟨𝑢| + ~𝜔𝑙|𝑙⟩⟨𝑙|. (A.3)

Putting zero energy centered between the upper excited and the lower ground state,
so that 𝜔𝑢 = −𝜔𝑙 = 𝜔𝐴/2 and using vector notation for the upper state |𝑢⟩ and the
lower state |𝑙⟩ we get(︂

1
0

)︂
*
(︀
1 0

)︀
−
(︂

0
1

)︂
*
(︀
0 1

)︀
=

(︂
1 0
0 −1

)︂
= �̂�𝑧. (A.4)

So for the atom energy we get the well known Hamiltonian

�̂�Atom =
1

2
~𝜔𝐴�̂�𝑧. (A.5)

In the next step we look at the Coulomb term of Eq. (A.2). For the charge density
we insert an electric dipole,

𝜌𝐴(r) = 𝑞 𝛿

(︃
r− r̂𝐴 +

d̂

2

)︃
− 𝑞 𝛿

(︃
r− r̂𝐴 +

d̂

2

)︃
, (A.6)
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and make the dipole approximation∫︁
d3r𝜌𝐴(r)𝜑(r) = 𝑞

[︃
𝜑

(︃
r̂𝐴 +

d̂

2

)︃
− 𝜑

(︃
r̂𝐴 − d̂

2

)︃]︃
DA≈ 𝑞

[︃
𝜑 (r𝐴) +

d̂

2
· ∇𝜑(r𝐴)−

−𝜑 (r𝐴) +
d̂

2
· ∇𝜑(r0)

]︃
= 𝑞d̂ · ∇𝜑(r𝐴) = −�̂� · ∇𝜑(r𝐴). (A.7)

Now we rewrite the dipole operator

�̂� = 𝑞 d̂ = 𝑞 (|𝑢⟩⟨𝑢| + |𝑙⟩⟨𝑙|) d̂ (|𝑢⟩⟨𝑢| + |𝑙⟩⟨𝑙|) = 𝑞
(︁
|𝑢⟩⟨𝑢|d̂|𝑢⟩⟨𝑢|+

+ |𝑙⟩⟨𝑙|d̂|𝑙⟩⟨𝑙| + |𝑢⟩⟨𝑢|d̂|𝑙⟩⟨𝑙| + |𝑙⟩⟨𝑙|d̂|𝑢⟩⟨𝑢|
)︁

=

= 𝑞⟨𝑢|d̂|𝑙⟩⏟  ⏞  
𝜇

|𝑢⟩⟨𝑙|⏟  ⏞  
�̂�+

+ 𝑞⟨𝑙|d̂|𝑢⟩⏟  ⏞  
𝜇

|𝑙⟩⟨𝑢|⏟  ⏞  
�̂�−

, (A.8)

where we made use of the fact that d̂ has negative parity and therefore ⟨𝑢|d̂|𝑢⟩ =
⟨𝑙|d̂|𝑙⟩ = 0. Splitting up the potential in its positive and negative frequency com-
ponents yields∫︁

d3r𝜌𝐴(r)𝜑(r) = 𝜇 (�̂�+ + �̂�−)

(︂∫︁ 0

−∞
d𝜔∇𝜑(r𝐴, 𝜔) + H.c.

)︂
=

RWA≈ 𝜇�̂�+

∫︁ 0

−∞
d𝜔∇𝜑(r𝐴, 𝜔) + H.c. (A.9)

We still have to take care of the first term in (A.2). In the Heisenberg-picture the
time evolution of an operator can be calculated using

𝑑

𝑑𝑡
𝐴𝐻(𝑡) =

𝜕

𝜕𝑡
𝐴𝐻(𝑡) +

1

𝑖~

[︁
𝐴𝐻(𝑡), �̂�𝐻(𝑡)

]︁
. (A.10)

Applying this relation on the (Schrödinger-)space and momentum operators yields

p̂𝛼 ≈ 𝑚𝛼

𝑖~

[︁
r̂𝛼, �̂�Atom

]︁
. (A.11)

Now we can use this relation∑︁
𝛼

𝑞𝛼
2𝑚𝛼

{︁
p̂𝛼, Â(r̂𝛼)

}︁
=
∑︁
𝛼

𝑞𝛼
2𝑚𝛼

{︁𝑚𝛼𝜔𝐴

2𝑖
[r̂𝛼, �̂�𝑧] , Â(r̂𝛼)

}︁
=

=
∑︁
𝛼

𝑞𝛼𝜔𝐴

4𝑖

{︁
[r̂𝛼, �̂�𝑧] , Â(r̂𝛼)

}︁
DA≈ 𝑞𝜔𝐴

4𝑖

{︁[︁
d̂, �̂�𝑧

]︁
, Â(r𝐴)

}︁
, (A.12)
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where

𝑞
[︁
d̂, �̂�𝑧

]︁
= 𝜇 [�̂�+, �̂�𝑧] + 𝜇 [�̂�−, �̂�𝑧] = −2𝜇�̂�− + 2𝜇�̂�+. (A.13)

We also rewrite the vector potential as

𝜔𝐴Â(r𝐴)
RWA≈

∫︁ ∞

−∞
d𝜔 𝜔Â(r, 𝜔) = −𝑖

∫︁ ∞

−∞
d𝜔 𝑖𝜔Â(r, 𝜔) =

= −𝑖
(︂∫︁ 0

−∞
d𝜔 𝑖𝜔Â(r, 𝜔) − H.c.

)︂
. (A.14)

So the first term in (A.2) becomes

−𝜇 (�̂�+ − �̂�−)

(︂∫︁ 0

−∞
d𝜔 𝑖𝜔Â(r, 𝜔) − H.c.

)︂
RWA≈ −𝜇�̂�+

∫︁ 0

−∞
d𝜔 𝑖𝜔Â(r, 𝜔) − H.c.

(A.15)

In classical electrodynamics the electric field can be written in terms of potentials

E(r, 𝑡) = −∇𝜙(r, 𝑡) − 𝜕

𝜕𝑡
A(r, 𝑡), (A.16)

which becomes in frequency domain

E(r, 𝜔) = −∇𝜙(r, 𝜔) + 𝑖𝜔A(r, 𝜔). (A.17)

We adopt this results for the time-independent Schrödinger operators. Hence the
final result for the Atom-field Hamiltonian, Eq. (A.2), is

�̂�Atom−field = −𝜇�̂�+

∫︁ 0

−∞
d𝜔E(r𝐴, 𝜔) − H.c. = −�̂�+E(+)(r𝐴) · 𝜇− H.c., (A.18)

which leads to the final result Eq. (2.19).



Appendix B.

Calculating 𝐶𝑢 and 𝐶𝑙𝑖

Starting with the Hamiltonian, Eq. (2.19), the electric field operator, Eq. (2.13), and
the ansatz for the wave function 𝜓, Eq. (2.20), we show a more detailed calculation
of the basic Eqs. (2.21) and (2.22), describing the upper state amplitude of the TLS.
We start by applying each term of the Hamiltonian on the wave function. We get a
term for the field Hamiltonian

�̂�field|𝜓(𝑡)⟩ =

∫︁
d3r

∫︁ ∞

0
d𝜔 𝐶𝑙𝑖(r, 𝜔, 𝑡)𝑒

−𝑖(𝜔−𝜔𝐴
2

) ~𝜔 |𝑙⟩|1𝑖(r, 𝜔)⟩, (B.1)

as well as for the atom Hamiltonian

�̂�Atom|𝜓(𝑡)⟩ =
1

2
~𝜔𝐴𝐶𝑢(𝑡)𝑒−

𝜔𝐴
2

𝑡|𝑢⟩|0⟩−

−1

2
~𝜔𝐴

∫︁
d3r

∫︁ ∞

0
d𝜔 𝐶𝑙𝑖(r, 𝜔, 𝑡)𝑒

−𝑖(𝜔−𝜔𝐴
2

)𝑡|𝑙⟩|1𝑖(r, 𝜔)⟩, (B.2)

and for the atom-field interaction Hamiltonian

�̂�Atom−field|𝜓(𝑡)⟩ =

−
∫︁

d3r

∫︁ ∞

0
d𝜔 𝑖

𝜔2

𝑐2

√︂
~
𝜋𝜖0

√︀
Im 𝜖(r, 𝜔)𝐺(rA, r, 𝜔)𝜇𝐶𝑙𝑖(r, 𝜔, 𝑡)𝑒

−𝑖(𝜔−𝜔𝐴
2

)𝑡|𝑢⟩|0⟩+

+

∫︁
d3r

∫︁ ∞

0
d𝜔 𝑖

𝜔2

𝑐2

√︂
~
𝜋𝜖0

√︀
Im 𝜖(r, 𝜔)𝐺*(rA, r, 𝜔)𝜇𝐶𝑢(𝑡)𝑒−𝑖

𝜔𝐴
2

𝑡|𝑙⟩|1𝑖(r, 𝜔)⟩.
(B.3)

To employ the Schrödinger equation, we also need to calculate the time-derivative
of the wave function |𝜓⟩

𝑖~
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ =

1

2
~𝜔𝐴𝐶𝑢(𝑡)𝑒−

𝜔𝐴
2

𝑡|𝑢⟩|0⟩+

+

∫︁
d3r

∫︁ ∞

0
d𝜔

(︂
~𝜔 − 1

2
~𝜔𝐴

)︂
𝐶𝑙𝑖(r, 𝜔, 𝑡)𝑒

−𝑖(𝜔−𝜔𝐴
2

)𝑡|𝑙⟩|1𝑖(r, 𝜔)⟩−

�̇�𝑢(𝑡)𝑒−𝑖𝜔𝐴𝑡/2|𝑢⟩|0⟩ +

∫︁
d3r

∫︁ ∞

0
d𝜔 �̇�𝑙𝑖(r, 𝜔, 𝑡)𝑒

−𝑖(𝜔−𝜔𝐴/2)𝑡|𝑙⟩|{1𝑖(r, 𝜔)}⟩.
(B.4)
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Equations (B.1), (B.2), (B.3) and (B.4) are plugged into the Schrödinger equation.
Terms that cancel each other are indicated by the respective color. Since |𝑢⟩|0⟩ and
|𝑙⟩|1𝑖(r, 𝜔)⟩ are orthogonal to each other we can compare their coefficients. For the
upper state amplitude we get

�̇�𝑢(𝑡) = − 𝜇√
𝜋𝜖0~

∫︁ ∞

0
d𝜔

𝜔2

𝑐2

∫︁
d3r

[︁√︀
𝜖𝐼(r, 𝜔)𝐺(r𝐴, r, 𝜔)𝐶𝑙𝑖(r, 𝜔, 𝑡)𝑒

−𝑖(𝜔−𝜔𝐴)𝑡
]︁
,

(B.5)
and the lower state amplitude is

�̇�𝑙𝑖(r, 𝜔, 𝑡) = − 𝜇√
𝜋𝜖0~

𝜔2

𝑐2

√︀
𝜖𝐼(r, 𝜔)𝐺*(r𝐴, r, 𝜔)𝐶𝑙𝑖(r, 𝜔, 𝑡)𝑒

𝑖(𝜔−𝜔𝐴)𝑡. (B.6)

Now we integrate Eq. (B.6) (with the initial condition 𝐶𝑙𝑖(r, 𝜔, 0) = 0) over time

𝐶𝑙𝑖(r, 𝜔, 𝑡) = − 𝜇√
𝜋𝜖0~

𝜔2

𝑐2

√︀
𝜖𝐼(r, 𝜔)𝐺*(r𝐴, r, 𝜔)

∫︁ 𝑡

0
𝐶𝑙𝑖(r, 𝜔, 𝑡

′)𝑒𝑖(𝜔−𝜔𝐴)𝑡′ d𝑡′, (B.7)

and insert it into Eq. (B.5)

�̇�𝑢(𝑡) = − 𝜇2

𝜋𝜖0~

[︃∫︁ ∞

0
d𝜔

𝜔2

𝑐2
𝑒−𝑖(𝜔−𝜔𝐴)𝑡

(︂∫︁ 𝑡

0
𝐶𝑢(𝑡′)𝑒𝑖(𝜔−𝜔𝐴)𝑡′ d𝑡′

)︂
(︂∫︁

d3r
𝜔2

𝑐2
[Im 𝜖(r, 𝜔)]𝐺(r𝐴, r, 𝜔)𝐺*(r𝐴, r, 𝜔)

)︂]︃
. (B.8)

Equation (B.8) can be simplified using the relation [10]

Im𝐺(r, r′, 𝜔) =

∫︁
d3s

𝜔2

𝑐2
[Im 𝜖(s, 𝜔)]𝐺(r, s, 𝑤)𝐺*(r′, s, 𝑤), (B.9)

yielding the final result

�̇�𝑢(𝑡) = − 𝜇2

𝜋𝜖0~

∫︁ ∞

0
d𝜔

𝜔2

𝑐2

(︂∫︁ 𝑡

0
𝐶𝑢(𝑡′)𝑒𝑖(𝜔−𝜔𝐴)(𝑡−𝑡′) d𝑡′

)︂
Im𝐺(r𝐴, r𝐴, 𝜔), (B.10)

which can easily be rewritten as Eqs. (2.21) and (2.22).
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Regularization of the 1D Gauss function

As discussed earlier the emitter is no a perfect point like source, therefore we replace
the Green’s function by its average over a small area. We use the vacuum Green’s
function 𝐺(𝑥1, 𝑥2, 𝑘) and calculate the average for both spatial dependencies in the
interval [𝑎, 𝑏],

𝐺reg(𝑥𝐴, 𝑥𝐴, 𝑘) =
1

(𝑎− 𝑏)2

∫︁ 𝑏

𝑎

∫︁ 𝑏

𝑎

𝑖

2𝑘
𝑒𝑖𝑘|𝑥1−𝑥2| d𝑥1 d𝑥2, (C.1)

which can be solved analytically. The first integral gives∫︁ 𝑏

𝑎
𝑒𝑖𝑘|𝑥1−𝑥2| d𝑥1 =

∫︁ 𝑥2

𝑎
𝑒𝑖𝑘(𝑥2−𝑥1) d𝑥1 +

∫︁ 𝑏

𝑥2

𝑒𝑖𝑘(𝑥1−𝑥2) d𝑥1 =

=
−1

𝑖𝑘

(︁
1 − 𝑒𝑖𝑘(𝑥2−𝑎)

)︁
+

1

𝑖𝑘

(︁
𝑒𝑖𝑘(𝑏−𝑥2)−1

)︁
=

1

𝑖𝑘

(︁
𝑒𝑖𝑘(𝑥2−𝑎) + 𝑒𝑖𝑘(𝑏−𝑥2) + 2

)︁
. (C.2)

For the second integral we have∫︁ 𝑏

𝑎

1

𝑖𝑘

(︁
𝑒𝑖𝑘(𝑥2−𝑎) + 𝑒𝑖𝑘(𝑏−𝑥2) + 2

)︁
d𝑥2 =

1

𝑖𝑘

[︁ 1

𝑖𝑘

(︁
𝑒𝑖𝑘(𝑏−𝑎) − 1

)︁
−1

𝑖𝑘

(︁
1 − 𝑒𝑖𝑘(𝑏−𝑎)

)︁
− 2(𝑏− 𝑎)

]︁
=

2

𝑘2

[︁
1 − 𝑒𝑖𝑘(𝑏−𝑎) + 𝑖𝑘(𝑏− 𝑎)

]︁
. (C.3)

Rewriting this we recognize the vacuum Green’s function evaluated at 𝑥1 = 𝑥2

𝐺reg(𝑥𝐴, 𝑥𝐴, 𝑘) =
𝑖

2𝑘
* 2

𝑘2(𝑏− 𝑎)2

[︁
1 − 𝑒𝑖𝑘(𝑏−𝑎) + 𝑖𝑘(𝑏− 𝑎)

]︁
= 𝐺(𝑥𝐴, 𝑥𝐴, 𝑘) * 2

𝑘2(𝑏− 𝑎)2

[︁
1 − 𝑒𝑖𝑘(𝑏−𝑎) + 𝑖𝑘(𝑏− 𝑎)

]︁
. (C.4)

To calculate the kernel integral, Eq. (2.24), we need the imaginary part of the
Green’s function

Im𝐺reg(𝑥𝐴, 𝑥𝐴, 𝑘) = Im𝐺(𝑥𝐴, 𝑥𝐴, 𝑘)
2

𝑘2(𝑏− 𝑎)2
[1 − cos (𝑘(𝑏− 𝑎))] , (C.5)
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which yields the regularized Green’s function

Im𝐺reg(𝑥𝐴, 𝑥𝐴, 𝑘) = Im𝐺(𝑥𝐴, 𝑥𝐴, 𝑘)
sin2

(︀
𝑘
2 (𝑏− 𝑎)

)︀(︀
𝑘
2 (𝑏− 𝑎)

)︀2 . (C.6)

The regularized Green’s function 𝐺reg contains an additional factor Eq. (3.20), com-
pared to the Green’s function 𝐺 evaluated at the position of the emitter 𝑥𝐴.



Appendix D.

Adaptive Solution of the Volterra

Integral Equation

We present here the principles of the algorithm used to numerically solve the Volterra
Integral equation (2.23) [22]

𝑓(𝑡) =

∫︁ 𝑡

0
𝑘(𝑡− 𝜏)𝑓(𝜏) d𝜏 + 1. (D.1)

An adaptive step-width is used for the time 𝑡, which is chosen based on the user-
specified error tolerance. We discretize the variable 𝑡 according to figure D.1, using
the following nomenclature:

𝑡𝑛 =
𝑛∑︁

𝑚=0

ℎ𝑚 , 𝑘(𝑡𝑛 − 𝑡𝑚) = 𝑘𝑛,𝑚 , 𝑓(𝑡𝑛) = 𝑓𝑛. (D.2)

Splitting up every step in a separate integral yields

𝑓𝑛 =
𝑛−1∑︁
𝑚=0

∫︁ 𝑡𝑚+1

𝑡𝑚

𝑘(𝑡𝑛 − 𝜏)𝑓(𝜏) d𝜏 + 1. (D.3)

h1

coarse-grained solution
fine-grained solution

1
2hn

1
2hn

h0 = 0
f0 = 1 fn−1 fn− 1

2
fn

Figure D.1.: For the numerical solution of the Volterra integral an algorithm with adap-

tive step-width was implemented. The step-width was chosen by calculating

the relative error between the coarse-grained solution and the fine-grained

solution
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Applying the trapezoidal rule (and ℎ0 = 0) we get

𝑓𝑛 =
𝑛−1∑︁
𝑚=0

1

2
ℎ𝑚+1 (𝑘𝑛,𝑚𝑓𝑚 + 𝑘𝑛,𝑚+1𝑓𝑚+1) + 1

=
𝑛−1∑︁
𝑚=0

1

2
ℎ𝑚+1𝑘𝑛,𝑚𝑓𝑚 +

𝑛∑︁
𝑚=1

1

2
ℎ𝑚𝑘𝑛,𝑚𝑓𝑚 + 1

=
𝑛−1∑︁
𝑚0

1

2
(ℎ𝑚 + ℎ𝑚+1) 𝑘𝑛,𝑚𝑓𝑚 +

1

2
ℎ𝑛𝑘𝑛,𝑛𝑓𝑛 + 1. (D.4)

Hence 𝑓𝑛 can, in general, be calculated using

𝑓 coarse𝑛 =

(︃
𝑛−1∑︁
𝑚=0

1

2
(ℎ𝑚 + ℎ𝑚+1) 𝑘𝑛,𝑚𝑓𝑚 + 1

)︃(︂
1 − 1

2
ℎ𝑛𝑘𝑛,𝑛

)︂−1

. (D.5)

Equation (D.5) is the coarse-grained solution. Next we calculate 𝑓𝑛 for a smaller
step-width. To obtain the fine-grained solution, the last interval is split into half

𝑓fine𝑛 =
𝑛−2∑︁
𝑚=0

∫︁ 𝑡𝑚+1

𝑡𝑚

𝑘(𝑡𝑛 − 𝜏)𝑓(𝜏) d𝜏+

+

∫︁ 𝑡
𝑛− 1

2

𝑡𝑛−1

𝑘(𝑡𝑛 − 𝜏)𝑓(𝜏) d𝜏 +

∫︁ 𝑡𝑛

𝑡
𝑛− 1

2

𝑘(𝑡𝑛 − 𝜏)𝑓(𝜏) d𝜏 + 1. (D.6)

Using the trapezoidal rule in the same fashion as before

𝑓fine𝑛 =
𝑛−2∑︁
𝑚=0

1

2
ℎ𝑚+1 (𝑘𝑛,𝑚𝑓𝑚 + 𝑘𝑛,𝑚+1𝑓𝑚+1) +

1

4
ℎ𝑛

(︁
𝑘𝑛,𝑛−1𝑓𝑛−1+

+ 𝑘𝑛,𝑛− 1
2
𝑓𝑛− 1

2

)︁
+

1

4
ℎ𝑛

(︁
𝑘𝑛,𝑛− 1

2
𝑓𝑛− 1

2
+ 𝑘𝑛,𝑛𝑓𝑛

)︁
+ 1

=

𝑛−2∑︁
𝑚=0

1

2
ℎ𝑚+1𝑘𝑛,𝑚𝑓𝑚 +

𝑛−1∑︁
𝑚=1

1

2
ℎ𝑚𝑘𝑛,𝑚𝑓𝑚 +

1

4
ℎ𝑛𝑘𝑛,𝑛−1𝑓𝑛−1+

+
1

2
ℎ𝑛𝑘𝑛,𝑛− 1

2
𝑓𝑛− 1

2
+

1

4
ℎ𝑛𝑘𝑛,𝑛𝑓𝑛 + 1

=
𝑛−2∑︁
𝑚=0

1

2
(ℎ𝑚+1 + ℎ𝑚) 𝑘𝑛,𝑚𝑓𝑚 +

1

4
(ℎ𝑛 + 2ℎ𝑛,𝑛−1) 𝑘𝑛,𝑛−1𝑓𝑛−1+

+
1

2
ℎ𝑛𝑘𝑛,𝑛− 1

2
𝑓𝑛− 1

2
+

1

4
ℎ𝑛𝑘𝑛,𝑛𝑓𝑛 + 1, (D.7)
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yields for the fine-grained solution

𝑓fine𝑛 =

(︃
𝑛−2∑︁
𝑚=0

1

2
(ℎ𝑚+1 + ℎ𝑚) 𝑘𝑛,𝑚𝑓𝑚 +

1

4
(ℎ𝑛 + 2ℎ𝑛,𝑛−1) 𝑘𝑛,𝑛−1𝑓𝑛−1+

+
1

2
ℎ𝑛𝑘𝑛,𝑛− 1

2
𝑓𝑛− 1

2
+ 1

)︃(︂
1 − 1

4
ℎ𝑛𝑘𝑛,𝑛

)︂−1

. (D.8)

To evaluate the fine-grained solution 𝑓fine𝑛 we also need to find an expression for
𝑓𝑛,𝑛− 1

2

𝑓𝑛− 1
2

=
𝑛−2∑︁
𝑚=0

1

2
ℎ𝑚+1

(︁
𝑘𝑛− 1

2
,𝑚𝑓𝑚 + 𝑘𝑛− 1

2
,𝑚+1𝑓𝑚+1

)︁
+

+
1

4
ℎ𝑛

(︁
𝑘𝑛− 1

2
,𝑛−1𝑓𝑛−1 + 𝑘𝑛− 1

2
,𝑛− 1

2
𝑓𝑛− 1

2

)︁
+ 1

=
𝑛−2∑︁
𝑚=0

1

2
(ℎ𝑚 + ℎ𝑚+1) 𝑘𝑛− 1

2
,𝑚𝑓𝑚 +

1

4
(2ℎ𝑛−1 + ℎ𝑛) 𝑘𝑛− 1

2
,𝑛−1𝑓𝑛−1+

+
1

4
ℎ𝑛𝑘𝑛− 1

2
,𝑛− 1

2
𝑓𝑛− 1

2
+ 1

⇒ 𝑓𝑛− 1
2

=

(︃
𝑛−2∑︁
𝑚=0

1

2
(ℎ𝑚 + ℎ𝑚+1) 𝑘𝑛− 1

2
,𝑚𝑓𝑚 +

1

4
(2ℎ𝑛−1+

+ ℎ𝑛) 𝑘𝑛− 1
2
,𝑛−1𝑓𝑛−1 + 1

)︃(︂
1 − 1

4
ℎ𝑛𝑘𝑛− 1

2
,𝑛− 1

2

)︂−1

. (D.9)

The algorithm works as follows:

∙ Choose an initial step width, an error tolerance and a minimum step width.

∙ Compute 𝑓fine𝑛 , Eqs. (D.8) and (D.9), and 𝑓 coarse𝑛 , Eq. (D.5), and calculate
the relative of those two solutions.

∙ As long as the error is larger than the specified tolerance and the step width
larger than the minimum step width, reduce the step width and repeat the
calculation.

∙ Save the results and repeat until desired maximum time 𝑡 is reached.
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