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Kurzfassung

Wir betrachten stochastische partielle Differentialgleichungen sowohl
von einer analytischen als auch von einer numerischen Perspektive. Wir
flihren gewichtete Raume von Funktionen auf den Zustandsraumen un-
endlichdimensionaler stochastischer Gleichungen ein. Mittels einer Erwei-
terung der klassischen Feller-Eigenschaft positiver Halbgruppen auf dem
Raum der stetigen Funktionen auf einem lokalkompakten Raum, die im
Unendlichen abklingen, leiten wir hinreichende Bedingungen fiir die star-
ke Stetigkeit der von einem Markovprozess in endlicher oder unendlicher
Dimension induzierten Halbgruppe her. Unter Verwendung der starken Ste-
tigkeit und neuer invarianter Teilraume erhalten wir Taylor-Entwicklungen
der Markov-Halbgruppen der Losungsprozesse von stochastischen partiellen
Differentialgleichungen.

Diese Resultate werden auf die numerische Analysis von Splitting- und
Kubatur-Approximationen von stochastischen partiellen Differentialgleichun-
gen vom Da Prato-Zabczyk-Typ angewendet. Wir erhalten dieselben op-
timalen Konvergenzraten wie im endlichdimensionalen Rahmen. Als nu-
merisches Beispiel simulieren wir die Heath-Jarrow-Morton-Gleichung der
Zinstheorie.

AbschlieRend leiten wir Fehlerabschatzungen fiir die stochastischen Na-
vier-Stokes-Gleichungen auf dem zweidimensionalen Torus her. Die Ab-
schatzungen sind optimal in der Zeit, aber die Konstanten hangen von
der Ordnung einer Ortsdiskretisierung durch eine Spektralmethode ab. Nu-
merische Rechnungen bestdtigen die Anwendbarkeit der vorgeschlagenen
Methoden.






Abstract

We consider stochastic partial differential equations, both from an an-
alytical and a numerical point of view. We introduce weighted spaces
of functions on state spaces of infinite-dimensional stochastic equations.
Through an extension of the classical Feller property of positive semigroups
on the space of functions decaying at infinity on a locally compact space,
we derive sufficient conditions for the strong continuity of the semigroup in-
duced by a Markov process in finite and infinite dimension. Using the strong
continuity and novel invariant subspaces, we obtain Taylor expansions of
Markov semigroups of solution processes of stochastic partial differential
equations.

These results are applied to the numerical analysis of splitting and
cubature approximations for stochastic partial differential equations of Da
Prato-Zabczyk type. We recover the same optimal rates of convergence
as in the finite-dimensional setting. As a numerical example, we simulate
the Heath-Jarrow-Morton equation of interest rate theory.

Finally, we derive error estimates for discretisations of the stochastic
Navier-Stokes equations on the two-dimensional torus. The estimates are
optimal in time, but the constants depend on the order of the spatial
discretisation by a spectral method. Numerical calculations confirm the
applicability of the suggested schemes.
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Introduction

The aim of this PhD thesis is to develop a novel mathematical framework for the
numerical analysis of stochastic partial differential equations and to demonstrate
its applicability. While there are many different ways in which randomness can
enter into a mathematical model given by a partial differential equation, we con-
sider here the case of random forcing. This means that there is a driving process,
typically a finite or infinite dimensional Brownian motion or, more generally, a
Lévy process or even a semimartingale, which puts randomness into a partial
differential equation. As it is our belief that a finite dimensional driving process
captures the most important phenomena, we will restrict ourselves to this case.
This belief is justified by results such as [&7]. There, it is proved that random
input on finitely many, correctly chosen Fourier modes is sufficient to make the
solution process of the Navier-Stokes equations on the two-dimensional torus
ergodic.

In the application of numerical methods to stochastic differential equations,
we distinguish different types of approximations. While pathwise and strong
methods aim to obtain convergence in the original probability space of the prob-
lem, weak methods are built such that expected values of functionals of the
solution are accurately obtained. As this is the approach that is needed in the
numerical evaluation of pricing problems in mathematical finance and also in the
simulation of ergodic processes such as the stochastic Navier-Stokes equations
in the setting of Hairer and Mattingly, see [47], we shall focus on this type of
method. Note that pathwise and strong approximations have been derived also
for stochastic partial differential equations, see, e.g., [65] for an overview of
recent results.

The kind of numerical schemes we shall be working with is the class of
cubature and splitting schemes. Cubature on Wiener space, introduced in [65,
70], is a method of approximating the expected value of a solution of a stochastic
differential equation by the solution of certain deterministic differential equations.
These result from replacing Brownian motion in the original equation by certain
well-chosen paths of bounded variation, making these problems well-defined in
a pathwise manner. Chapter [ contains a summary of these methods. We



Introduction

interpret them from a semigroup perspective, defined on the space BUC(R’V) of
bounded and uniformly continuous functions. This allows us to obtain slightly
sharper error estimates than those given in [[Z0] by the use of spaces of functions
with uniformly continuous derivatives.

Splitting methods rely on the fact that autonomous stochastic differential
equations are Markovian and thus define an operator semigroup on a suitable
space of functions defined on the state space of the stochastic differential equa-
tion with values in R. Using It6’s formula, it is possible to define the generator of
the Markov semigroup and calculate Taylor expansions. Under the assumption
that the generator can be split into several generators of Markov semigroups,
each of which is easier to simulate than the original problem, we can concatenate
the corresponding split Markov semigroups to obtain a simulation method for
the original problem. There is a straightforward way to perform such a splitting
for semigroups induced by stochastic differential equations, and its use in appli-
cations in computational finance was pioneered in [B0]. It has since become an
important tool in the approximation of expected values of functions of stochastic
processes. The reason for this is the simplicity of the approach: by an adequate
splitting, we are able to reduce a complicated stochastic differential problem to
several simple ordinary differential equation problems, one for each split Markov
semigroup. Thus, we can reuse tested solvers for these problems and obtain ef-
ficient numerical codes. The disadvantage of splitting schemes is that they have
an inherent order barrier of 2, see [15], if no assumptions on commutators of the
generators are made. A way around this is provided by extrapolation schemes,
see [82], and also Section E=2 of the present work.

The most fundamental problem of the above approach to this problem is,
however, that the assumptions of the method are far too strict for a practical
application. It is required that both the coefficients of the stochastic differential
equations as well as the payoff are bounded and C®-bounded, an assumption
that is essentially never fulfilled in real-world problems. Steps around this were
taken on the one hand in [B], where the presence of the unbounded operator in a
stochastic partial differential equation was dealt with by strong assumptions on
the vector fields. On the other hand, in [2, T05], the restrictions for stochastic
ordinary differential equations were relaxed, allowing the use of linearly bounded
and Lipschitz continuous coefficients and polynomially growing payoffs.

Let us remark here shortly why the space of bounded and C*-bounded func-
tions is an inadequate choice for the payoffs if the coefficients of the problem
are no longer assumed to be bounded. To derive error estimates, we are forced
to apply, in one way or another, the vector fields defining the problem to the

2
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payoff. Now, even if the payoff might initially have compact support, after
arbitrarily short time, we expect the evolved payoff to be nonvanishing on an
unbounded set unless restrictive assumptions are made on the volatilities such
as in [B]. Thus, applying the vector field to the evolved payoff is expected to
yield an unbounded function, showing that we leave the setting of bounded and
C™-bounded functions, even for stochastic differential equations with smooth
and Lipschitz-continuous coefficients. The situation is clearly even worse for
examples such as the Heston model, where the coefficients are not even smooth
any longer. We are therefore led to consider larger classes of functions for the
payoffs.

Our approach to this problem is, as explained in the beginning, to provide a
new mathematical framework. We take the route of strongly continuous semi-
groups. Strong continuity is in many senses a “via regia” towards approximation
schemes via splitting schemes (e.g., Trotter-type formulae, Chernov's theorem,
etc), and therefore a very desirable feature. Moreover, it allows us to derive es-
timates of the rate of convergence in a rather standard manner by using results
such as [b4, 43, 49, #4].

It is well-known that the world of stochastic Markov processes on general
state spaces is tied to strongly continuous semigroups in two ways: either
through the Feller property, or through invariant measures. In both cases we
can construct an appropriate Banach space, Co(X) and LP(X, u), respectively,
where the Markov semigroups act in a strongly continuous way. However, neither
the existence of invariant measures nor the Feller property are generic properties
of Markov processes — this holds true in particular in infinite dimension.

The situation is even worse for the Feller property, where we have a strong
connection to locally compact state spaces and continuous functions vanishing
at infinity. It therefore seems natural to ask for a framework extending the Feller
property towards unbounded payoffs and non-locally compact spaces. Moreover,
the framework should be as generic as possible to remain applicable to general
stochastic partial differential equations. From the viewpoint of applications, the
new concept is useful if we are able to prove rates of convergence for substantially
larger classes of payoffs and equations with the presented method.

It turns out that the Feller property can be extended to a larger class of
state spaces by replacing the space Co(X) of functions vanishing at infinity by
a space Bw(X) of functions which have their growth controlled by 4, and this
theory is introduced in Chapter B. Instead of the notion of a point at infinity,
we assume that the sets Kg = {x€ X: ¢¥(x) < R} are compact. Such an
assumption is viable in infinite dimension if we endow the dual space of a normed

3
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space with the weak-x topology. In particular, separable Hilbert spaces, usually
used as state space in stochastic partial differential equations, are contained in
this approach. It requires us, however, to work with the weak-* topology. As
continuous dependence on initial data for stochastic partial differential equations
is usually only obtained for the norm topology, we relate usual spaces of strongly
continuous functions to the newly defined spaces.

Chapter B applies the setting of weighted spaces to Markov semigroups.
Sufficient conditions for strong continuity are provided. Furthermore, under the
assumption that the stochastic process is the solution of a stochastic partial
differential equation, Taylor expansions of the Markov semigroup are derived.

Chapters @ and B are devoted to the derivation of rates of convergence for
splitting and cubature approximations to stochastic partial differential equations.
Optimal rates are obtained for sufficiently smooth functions.

Finally, Chapter B deals with the problem that initiated this research, the
numerical approximation of the stochastic Navier-Stokes equations on the two-
dimensional torus. While we are unable to reproduce the results obtained in
Chapters @ and B in this case, we are still able to construct splitting and cubature
approximations and prove their convergence under a restriction on the time step
size by the use of a spectral Galerkin approximation.

The articles [T, B0, 32] have resulted from the research performed for this
thesis.



Chapter 1

Cubature On Wiener Space:
A Semigroup Perspective

Introduced by Kusuoka, Lyons and Victoir [64, [70], the method of cubature on
Wiener space quickly became an important numerical tool for applications and a
topic of major research. Its fundamental idea is to use a combination of stochas-
tic Taylor expansion and an innovative replacement of iterated Stratonovich
integrals to construct weak approximation schemes for stochastic differential
equations, reducing them to ordinary differential equation problems. In partic-
ular, it is in principle possible to find cubature paths of arbitrarily high order,
a consequence of Tchakaloff's theorem (see [5] and [[Z0, Theorem A.1]), even
though this general existence result is nonconstructive and suboptimal in the
number of paths needed to obtain a given order of convergence. Explicit paths
up to order 11 for a single Brownian motion have been constructed, see [45].

In this chapter, we illustrate the fundamentals of the numerical methods that
are at the basis of the approach to stochastic partial differential equations used
in this work. Section I provides a short overview of the basics of the method of
cubature on Wiener space. A convergence analysis from a semigroup perspective
is given. Under the assumption that the coefficients of the stochastic differen-
tial equation are bounded and C*®-bounded, we consider the space BUC(RN) of
bounded and uniformly continuous functions to be the correct setting for cuba-
ture methods. While rates of convergence can be expected only for sufficiently
smooth functions, we prove that strong convergence is retained on the entire
space BUC(RM) (but see [b4, 70, 66] for the use of smoothing effects to obtain
optimal rates of convergence fo nonsmooth functions, and Section B2233 for an
extension of these results to unbounded payoffs).

In Section T2, we focus on splitting methods. A splitting-up approach to
stochastic ordinary and partial differential equations based on the Lie-Trotter
theorem was used by many authors, e.g., [8, 9, B8, @, 00, 9T, 67, 104, b3, 40,

5



Chapter 1. Cubature On Wiener Space: A Semigroup Perspective

47, &1]. This, however, can only yield weak order one methods, making high
accuracy unattainable, see [B7]. In [83, B6], a weak second-order method based
on a splitting of the drift is proposed, but this method requires the explicit use
of derivatives of the volatilities and is thus difficult to implement for general
classes of equations. Ninomiya and Victoir [80] introduced a weak second-order
method, which is a variant of the well-known Strang splitting. Their approach
has immediate advantages in the simplicity of its implementation: we only have
to solve for one single vector field at any given step in the algorithm. Hence,
such a splitting is very attractive for use in the simulation of stochastic differ-
ential equations: well-tested, robust and efficient solvers for the corresponding
deterministic problems can be used.

1.1 Cubature on Wiener space

In the following, we shall use standard notions from stochastic analysis freely.
Please refer to Appendix B for an introduction to the fundamentals, and for
further references.

For m, ne N, let C¥(R™; R") denote the space of functions f: R” — R"
that are bounded, infinitely often differentiable, and have all partial derivatives
bounded. Such functions are also called bounded and C®-bounded, the latter
alone only signifying that all partial derivatives are bounded, but not necessarily
the function itself.

Let (2, F, P, (Ft)t=0) denote a filtered probability space satisfying the usual
conditions, and suppose that (Bft)jzl ,,,,, 4 1s a Brownian motion defined on it. The
method of cubature on Wiener space introduced by Kusuoka, Lyons and Victoir
in [65, I70] is a weak approximation scheme for a (for simplicity autonomous)
stochastic differential equation of the form

d .
(1.1) dx(t,x0) = p(x(t, x0))dt + > 0j(x(t, x0))dB,  x(0,x0) = xo,
j=1
with state space RV, where u, 0; € Cf(RN; RN), or its equivalent Stratonovich
formulation

d
(1.2)  dx(t,x0) = po(x(t, x0))dt + > 0j(x(t,x0)) o dBL,  x(0,x0) = xo,
j=1

where pg 1= p — 2Do; - 0} is the Stratonovich corrected drift. This means
that we define a family (Q(O)t;g of operators such that Qf’t/n) converges, in

6



1.1. Cubature on Wiener space

some sense specified below, to P; for n — co. Here, P:f(xp) := E[f(x(t, x0))]
denotes the Markov transition operator defined by the process (x(t, Xo))¢=0, and
f: RV - R is measurable.

To define spaces of functions where we can expect convergence of discretisa-
tion schemes, let us proceed as follows. C,(RM) denotes the space of bounded,
continuous functions, endowed with the supremum norm,

(1.3) 1f1lc,mny := sup [f(x)].

xeRN
BUC(RN) = C,(RN) is its subspace constisting of bounded and uniformly con-
tinuous functions. When deriving Taylor expansions for Markov semigroups, we
need to use smooth functions. We define

CK(RN) 1= {f e CKRM): o Ch(RY)
for all multiindices (iy, ..., el ..., NY,
(1.4) j=0,..., k},
endowed with the norm
« ol
5 ey =2 L g g lae

J=0 (i, ief1,. ., Ny

The closed subspace BUCK(RM) < CK(RN) is given by

BUCKRN) := {f e CKR"): ————F e BUCR"
UCK®RY) := { e CKRY) T o, | € BUCEY)

for all multiindices (i, ..., ie{l,..., NY,
(1.6) j=0..., k}.

Proposition 1.1. C®(R") is dense in BUC(R").

Proof. For f € BUC(RV), set fz(x) := E[f(x+Be)], where (B¢)¢>0 is a standard
n-dimensional Brownian motion. It is easy to see that f; € Cj’f(RN) foralle > 0,
and by [I08, p. 399, Proposition], we see that

(1.7) Eﬂj&ﬂf — fellc,@ny = 0. [
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The fundamental idea is to introduce a finite set of cubature paths which
replicate the expectation of iterated Stratonovich integrals of Brownian motion.
Using the stochastic Taylor expansion, this lets us replace Brownian motion in
(=m) with the cubature paths to obtain an estimate for the local error. Global
error bounds are then derived from stability estimates of the exact and approxi-
mate solution operators.

1.1.1 The stochastic Taylor expansion

We shall only give a short overview of the stochastic Taylor expansion. More
details can be found in [59, [70].

Let f € CP(RN). We are interested in the behaviour of the stochastic process
(f(x(t,x0)))t=0. By the chain rule of Stratonovich calculus, Proposition B8,
we obtain

t

f(x(t,x0)) — f(x0) = Jo Df(x(s, x0))to(x(s, x0))ds

d t
(1.8) +ZJ Df (x(s, x0))0;(x(s, x0)) o dBY,
j=10

which is the pillar of the stochastic Taylor expansion, similarly as the deterministic
chain rule is the pillar of the deterministic Taylor expansion. As E[(B%)?] = s,
we expect the first term on the right hand side above to behave like t in the
limit t — 0, the second one like t*/2. Thus, if we want to obtain a certain rate
of convergence in t, we should expect that we need an expansion of higher order
in Bs than in s. This leads to the consideration of a weighting of multiindices
done in the following manner: Let o := (j1,..., Jk) be a multiindex. Its degree
deg(a) is defined by

(1.9) deg(a) := k + |{£: j; = 0}],

that is, every component with j, = 0 is counted twice. The empty multiindex is
denoted by ¢ and satisfies deg(f) = 0. We set

(1.10) A 1= {o multiindex}, Ap = {ae A: deg(a) < m},
(1.11) A" :={aeA:a¢{F (0)}}, A =A% Ay

For compactness of notation, we denote B := s, and interpret Vf(x) := Df(x)-
V(x) for a vector field V: RN — RN, Furthermore, weset V; := o), j = 1,.. ., d

8



1.1. Cubature on Wiener space

and \y := wo, and denote the iterated Stratonovich integrals by

(112) 199 (g)(x0) :=f--- f g(x(t1, x0)) 0 dBIL - o dBlk
O<ti<--<ty<t

Fx(Atxo)) —Fx0) = D, Vi.. Vi Flxo) /i
U1, Jk)EAm
(1.13) + Rm(At, xo, F).

The remainder term Ry (At, xo, ) Is given by

(1.14) Rm(At,xo, )= > 189V, F) (),
(U1, Jk)EAm
(oo Jk)EAm

and satisfies for every T > 0 the estimate

sup \/E[Rm(At: x0, F)?]

XoERN

(1.15) < C(An)mMI2 sup IV, - Vi Fllcymm
(Jl ----- JK)EAm+2\Am

with a constant C = C+ > 0 independent of At € [0, T| and f.

Its proof is essentially a straightforward application of the Stratonovich chain
rule, together with an estimate of the Stratonovich integrals by transforming to
Ité form and using the Itd isometry. Note that the condition f € CP(RM) is
clearly too strong. The above error estimate shows that f € C""?(RV) suffices.

1.1.2 Formulation of the method

Cubature on Wiener space replaces the paths B{ of Brownian motion by deter-
ministic paths of bounded variation in such a manner that the expected values
m, deg(j1, - - ., Jk) < m. These values can actually be determined explicitly by
algebraic methods, see [2, Proposition 1.3]. The order m then determines the
rate of convergence the algorithm exhibits for sufficiently smooth functions f.
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Consider functions w{ [0,1] — R of bounded variation with «”(0) = 0 and
weights A\; >0, j=1,..., d ()=t i=1,..., M. We assume that for any
multiindex o = (J1, .. ., Jk) with deg(a) < m,

(1.16) B[/ )] Z Y f f Wh(sy) ... dw(sy).
O<sy <+ <sk<1

Such a collection (wj, Aj)j=1,... m of paths and weights is called a cubature for-
mula of order m. A stra|ghtforward application of the chain ruIe shows that

the transformed paths w(""7(s) 1= VA twl(S), s € [0,At], j = 1,..., d,

w,(At) (s) := s, satisfy

Define the approximation operator Q(At) by
(1.18) Qanf(x0) Zx F(x(t, x0; w™DY),
where x(s, Xo; wfm)) solves the ordinary differential equation
d
(1.19) dx(s, xo; w Z x(s, xo; w( Tt))) (At)(s).

Proposition 1.3. For f e BUC"TL(RN),

(120) Qunfl0)= > Vi VifOQE[L 9] 4+ Ro(At, xo, F).
(j1 ..... _/ k)E.Am

For every T > 0, the residual Rp(At, xo, f) € BUCT+Y(RN) satisfies

~ m+1
(1.21) [Rn(At,x0, )] S C(AD™ sup [V, .V, Fllc,amy
(U1.---Jk)EAM
Uo1s---Jk)EAm

with a constant C = Ct > 0 independent of At € [0, T] and f.

10



1.1. Cubature on Wiener space

Proof. Setting

lgjl ----- Jk)

(@, g)
(122) = f . f g(X(Sl, X0 wl(At)))dwl(Af)J(sl) B _de(At)'j(Sk)
O0<sy<---<sp<t

and (19 (B8 =y Urd) (B8 1) the usual, deterministic Taylor expan-

1
sion yields

f(XO)/SLh ..... J k)(w(At)) i rm,i(t. o, f),

!

w
(1.23) = )

where the residual ry, ; is given explicitly by

(1.24) mmi(txo. f) = Y 1P W vV ) ().
(U1, Jk)EAm
(or---dk)EAm

As f e BUC™(RN), we see that Vj, ...V}, f e BUC(R"). Hence,

(1.25) |Fm,i(£, %0, F)] < CEMED2 0 sup (Vi LV, Fllc, @
(U1re--dk)EAmM
Uour---Jk)EAm

Multiplying with A; and summingupoveri =1, ..., M allows us to conclude.

We now obtain from Proposition 2 and I3 that

[Patf — Qeate)fllc,mm)

m+1
(1.26) <C(At) = sup Vi - - Vi Fllcpmmy-
U1+ dk)EAMm+2\Am

As the coefficients are bounded and C*-bounded, we see that
(1.27) IV - Vi Fllcymmy < IFllcxgemy,
Furthermore, for smooth f,

(128) HPtfHCg(RN) < C”f”Cg(RN) fOI’ t (S [O, T],

]

which altogether proves a global rate of convergence of (m — 1)/2 for smooth

functions f:

11



Chapter 1. Cubature On Wiener Space: A Semigroup Perspective

Proposition 1.4. Given T > 0, there exists a constant C = Cy > 0 such that
for all f e C'"2(RN), t e [0, T] and ne N.

Remark 1.5. Note that the smoothness assumptions on f are slightly worse
than those which are obtained in splitting schemes, compare, e.g., with Propo-
sition I3. This results from the use of Stratonovich integrals in the stochastic
Taylor expansion. An alternative approach to the Taylor expansion for P, per-
formed below by the use of semigroup methods in spaces BUCK(RM), will allow
us to recover the same kind of estimates as those for splitting schemes for odd
m.

1.1.3 A semigroup interpretation

We want to consider stochastic ordinary differential equations on the state space
RN from the perspective of strongly continuous semigroups. This interpretation
makes clear which kinds of function spaces should be considered for estimation
of rates of convergence. Furthermore, it will be at the basis of the analysis of
the method in the more general settings of subsequent chapters.

Let P:f(xo) := E[f(x(t, X0))] denote the Markov semigroup defined by ().
Then, P, € L(BUC(RM)). In fact, (Pt)t=0 even defines a strongly continuous
semigroup of contractions on BUC(RM). See Section BT for an overview of
strongly continuous semigroups.

Proposition 1.6. For every t € [0, ), the operator Pr: BUC(RM) — BUC(RNM)
is well-defined and a contraction, that is, P;f € BUC(R") and [Pefllc,mmy <
I llcymny forall e BUC(RN). Furthermore, lim¢_,o. || Pef — fllc,mmy = 0.

It follows that (P;) =0 Is a strongly continuous semigroup of contractions on
BUC(RNM).

Proof. The proof is done similarly as in [I08, Proposition, p. 399]. Fix f €
BUC(RM).

We first prove that P.f € BUC(RM). Let € > 0 be given. As there exists
§ > 0 such that for every x € RN, we have that |f(y) — f(x)| < & whenever

12



1.1. Cubature on Wiener space

ly — x| <6,

|Pef (x1) — Pef ()| < E[If (x(¢, x1)) — F(x(t, x2))]
= E[[f(x(t, x1)) — F(x(t, x2)) [X[1x(t.x0)=x(t.30) <51 ]
+ E[[f(x(t, x1)) — F(x(t, x2)) [X[Ix(t.x0)=x(t.30) 6] ]
(1.30) < €+ 2[[fllc, @mP([[x(t, x1) = x(t, x2)| > 8]).

Here, xa(x) := 1 if x € A, 0 otherwise, denotes the indicator function of the
set A. By Chebyshev’s inequality,

(1.31) P([|x(t, x1) — x(t, %) > 8]) < 6—2E[\x(t, x1) — x(t, x2)\2].

Due to

t

x(t, x1) — x(t,x) = x1 — X2 + L (1(x(s,x1)) — u(x(s, x2)))ds

d pt
(132) £y fo (0(x(5, x1)) — 03(x(5, %0)))dB,
j=1

we can apply the 1t6 isometry and the Lipschitz continuity of the coefficients to
obtain

B[ || (0xt51x0) = oy x(s1x2)dsf] = || Blleyx(5.30)) = a5 x(5.x2) Pl
(1.33) < Lt CE[|x(s, x1) — x(s, x2)|*]ds,
and similarly, from the Jensen inequality,
E[!f:(u(x(s, 1)) — u(x(s.x2)))ds |
(1.34) < Lt CE[|x(s, x1) — x(s, x2)|?]ds.

Hence, the Gronwall inequality yields
(1.35) E[|x(t, x1) — x(t, Xg)]z] < exp(Ct)|x1 — x|?,
and we deduce

(1.36) P([|x(t, x1) — x(t, x2)| > 6]) < 672C|x1 — xa/°.

13



Chapter 1. Cubature On Wiener Space: A Semigroup Perspective

Plugging this into (I30), we obtain P:f € BUC(R"), and the contraction prop-
erty || Pefllc, vy < [Ifllc, @y is obvious.

We now prove that P.f — f uniformly as t — 0+. Denote the transition
probability of the process (x(t, Xo))=0 by wt(x0, ) := PX(EX0) ie ui(xp, A) 1=
P[x(t, xo) € A] for all Borel sets A = R". Choosing § > 0 as above, it follows
that

Pef(0) = F0)] < | IF(6) = £ (0, 4%)
= j ) ‘<6|f(x) — f(x0)|pt (X0, dx)
s 100 = o), 8x)
[xo—x|>6

(1.37) < e+ 20flleym Lxm e (0, dx).
As
a3 | e00,00) = P([x(t.50) =0l > 0]) < 6™E[(x(¢.50) =)
the result follows from

E[(x(t, x0) = x0)°]

t d ~t N2
(1.39) = E[(L u(x(s, xo))ds +JZJO 0j(x(s, x0))dBY) ]

where we use that

(1.40) E[(Ltu(x(s,xo))ds)z] < Ct?,
(1.41) E[(Lt 0)(x(s.x0))dBL)’ | = IEU: 0j(x(s,20))%ds| < Ct

by the Itd isometry, and

t

(1.42) EUO u(x(s,xo))dsf

0

t .
aj(x(s,xo))dBJS] < Ct3

by the Cauchy-Schwarz inequality. ]

14



1.1. Cubature on Wiener space

A similar argument as in the first part of the above proof shows that Qar) €
L(BUC(RN)). Therefore, the following result on the strong convergence of
QE’t/n) to P; follows from Proposition T4 by a density argument.

Proposition 1.7. For every f e BUC(RN) and t > 0,
(1.43) i [1PeF — Qo ey ey = O.

Another important consequence of the semigroup property of (P:)¢>0 is the
existence of the infinitesimal generator. The following result collects some of its
properties.

Proposition 1.8. Denote the infinitesimal generator of (Pt)t=0 by G withdom G.
The space C‘,;O(]RN) Is a core of G, I.e., for all f e dom@, there exists a sequence
fo € CP(RN) such that

(1.44) Nim ([ = follc, @y + lim [GF = Gfallc, mm) = O.

Furthermore, BUC?(RN) < dom G,

d
(1.45) Gf = pof + ) 0?f, and
Jj=1
(146) ||gf||cb(]RN) < C”fHCi(RN) for f € C%(RN)

Thus, G is a differential operator of second order.

Proof. That C¥(RN) = domG and the representation (IZH) of G on C(RN)
follow from 1t6’s formula. Applying that G is a closed operator and the right
hand side of (IZH) is continuous as operator G: BUC?(RV) — BUC(RM) by
the smoothness and boundedness of the vector fields, this formula extends to
BUC2(RM) in the following way: for f € BUC2(RN), choose a sequence (f,)nen
in C(RN) with limp_e|/f — anCg(RN) = 0 (existence of such a sequence is
proved as in Proposition I0). Then, Gf, converges to Gf in BUC(R"). The
closedness of G yields f € dom G and Gf = Gf, whence the claim.

As CP(RN) is dense in BUC(RM) by Proposition I and as it is invariant
with respect to the semigroup (P:)t=o by Proposition BZ21, Proposition B[ vi})
proves that C(RN) is a core of G. O

Proposition I8 allows us to obtain a finer smoothness assumption in the
Taylor expansion than Proposition 2.

15



Chapter 1. Cubature On Wiener Space: A Semigroup Perspective

Corollary 1.9. Assume that f € BUC?(*+1)(RN). Then,

k .
v .
(1.47) Pef = Y =@ f + Ry (t, ),

j=0’'

where the residual Rok,1(t, f) € BUC(RN) satisfies

(1.48) [Rok+1(t, F)llcymmy < Ctk+1||f||ci<k+1>(RN)'

Proof. Induction on Proposition I8 yields that ¢/: BUC (RV) — BUC(R") is
bounded. Hence, we can apply Proposition BH[v] to obtain the claim. ]

Remark 1.10. Corollary I3 is stronger than Proposition 2, as Cik+3(RN) c
BUCz(k+l)(RN).

Corollary 1.11. Assume that m is odd. For T > 0, there exists a constant
C = Ct > 0 such that for t € [0, T], f e BUC™L(RN) and ne N,

(1.49) | Pef — Qgt/n)fHCb(RN) < Cn*(mfl)/2||f||cg+l(RN).
Proof. Let f e C¥(RN). By Proposition [4,
(150) ||'DAtf — Q(At)fHCL”Jrl(RN) < C(At)(m+l)/2||f”cberZ(RN).

Proposition T3 and Corollary T3 show that both Pasf and Q(At)f have Taylor
expansions with residual of order (m + 1)/2 controlled by ||f||cgn+1(RN). Hence,
the error estimate extends to this space, and a telescoping argument proves the
claim. n

1.2 Ninomiya-Victoir splitting

In [80], Ninomiya and Victoir introduced splitting methods and interpreted them
as a variant of cubature on Wiener space. More specifically, they considered the
problem of approximating the Markov semigroup corresponding to the solution
of (IZ2). To this end, they defined auxiliary problems

d o 0 0
(1.51a) It (t,x0) = po(x"(t, x0)), x°(0,x) =x and

1.51b dx/ t,xg) = 0; X/ t, Xo odBj, x! 0,x0)=xg forj=1,..., d.
J t
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1.2. Ninomiya-Victoir splitting

These problems are easy to solve numerically, as they only involve the solu-
tion of an ordinary differential equation each, where we evaluate at the random
time B} for j = 1,..., d. Defining the split Markov semigroups P/f(xp) =
E[f(x/(t,x0))]. they use the discretisation

(1.52) Q:f(x0) = %PL?/Q (PE... P+ P . PP,
The expected values appearing in the definition of the semigroups P{, J =
1,..., d, can be discretised further by Gauss-Hermite quadrature with three
points to preserve the optimal rate of convergence in a fully discrete scheme.

In light of Proposition [CH, we see that not only (P)¢=0, but also (P!)¢o,
J=0,..., d, are strongly continuous semigroups of contractions on the space
BUC(RN). This means that (IZ52) can be seen as an exponential splitting for
(Pt)t=0-

Proposition 3 allows us now to relate the generator G of (Pt)t=0 with the
generators G; of (P!)¢=0, j = 0,..., d, on a space that is a core for all the
generators simultaneously.

Proposition 1.12. We have the equality

d
(1.53) Gf = Y Gif forall feCPRY).
Jj=0

Proposition I8 shows that (I753) extends to the intersection of the domains
ofGand G;, j=0,..., d. The theory of [&9] now applies to yield the following
result.

Proposition 1.13. Let f e BUC(RV) be such that

(1.54) ||legJQQj3Ptf||Cb(RN) <C fortel0,T].
Then,
(1.55) 1(QFr/my = Pr)flic,mmy < Crrn2,

where C¢ 1 > 0 is independent of n e N.
In particular, the Ninomiya-Victoir splitting converges of second order for
f e BUC®(RN). More precisely,

(1.56) 1@/ = Pr)flic,@m < Crn 2l fllcs -
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Chapter 2

Weighted Spaces And A
Generalised Feller Condition

The aim of this chapter is the construction of a novel theoretical framework for
the application of splitting and cubature methods to stochastic partial differential
equations under realistic conditions, improving significantly on the results from
[6]. To this end, we define in Section P—T Banach spaces of real-valued functions
with controlled growth on possibly infinite-dimensional state spaces for which a
Riesz respresentation theorem holds true, i.e., every continuous linear functional
can be represented by an integral with respect to a certain finite measure. Ele-
ments of these spaces are analysed, obtaining similar properties as for the space
Co(X) of functions decaying at infinity for X a locally compact space.

These results allow us to prove in Section P2 that on these spaces, semi-
groups of positive, bounded operators (P:)t=o with limso+ P:f(x) = f(x) are
in fact strongly continuous. This relaxes the assumptions of the classical Feller
condition (see, e.g., [67, p. 315]) in two ways: first, the functions can be un-
bounded, and second, the state space can be infinite-dimensional (not locally
compact).

Subsequently, we consider in Section 23 the case that X is the dual space
of a separable Banach space. The correct topology is in this case the weak-x
topology, and we prove that under certain assumptions on the weight function
typically satisfied in applications, the elements of weighted spaces are sequen-
tially weak-# continuous. We define a corresponding notion of differentiability,
and relate it to the usual setting of strongly differentiable functions by the use
of compact embeddings. As a stepping stone for Taylor expansions of Markov
semigroups induced by stochastic differential equations on these spaces, we anal-
yse directional derivatives along vector fields and prove norm bounds for such
derivations.

During the final stages of this thesis, the author found out about work by
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Chapter 2. Weighted Spaces And A Generalised Feller Condition

M. Roéckner and Z. Sobol [94, 95, 96]. In [95], they introduce spaces C\, cor-
responding exactly to our spaces B¥(X). In particular, in [95, Theorem 5.1],
they prove a Riesz representation theorem for this function space over general
completely regular topological spaces, similarly as our Theorem EZ3. Their focus
is different than ours: they construct solutions of martingale problems in the
sense of Stroock and Varadhan, we perform an analysis of numerical methods.
They do not construct a hierarchy of spaces of differentiable functions in the
setting of weighted spaces, hence our results can be seen as extending [95].
Furthermore, they restrict themselves to additive noise (which can, however, be
infinite-dimensional), whereas we allow nonlinear coefficients.

2.1 Riesz representation for weighted spaces

In this section we show that we can actually obtain a variant of the Riesz repre-
sentation theorem even on spaces that are not locally compact.

Definition 2.1. Let X be a topological space, and ¢: X — (0, ) be bounded
from below by some § > 0. For a Banach space (Y, ||-||y), we set

(2.1) BY(X;Y) := {f: X —=Y: su)rgw(x)*1||f(x)||y < oo},

endowed with the p-norm
(2.2) Ifllg := sup @(x)HIF(x)ly-
xeX

If Y =R, we define BY(X) := B¥(X;R).

It is easy to see that B¥(X;Y) is a Banach space. Furthermore, it is
clear that Cp(X;Y) < B?(X;Y), where Cp(X;Y) denotes the space of con-
tinuous, bounded functions f: X — Y, endowed with the norm [|f|[c,(x.y) =

supyex || f(X)[ly.

Definition 2.2. Consider a completely regular Hausdorff topological space X
(i.e. Tas; see [18, Chapitre IX § 1 Définition 1]). A function ¢¥: X — (0, o)
is called admissible weight function if the sets Kr = {x € X: ¢(x) < R} are
compact for all R > 0. We call the pair (X, ¥) a weighted space.

Such a function ¥ is lower semicontinuous and bounded from below, and any
such space X is o-compact due to |,y Kn = X.
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2.1. Riesz representation for weighted spaces

Definition 2.3. Let 9 be an admissible weight function on the completely regular
Hausdorff space X. We define B¥(X;Y) as the closure of Cp(X;Y) in BY(X;Y).
If Y =R, we set B¥(X) := B¥(X;R).

By definition, the normed space B¥(X;Y) is a Banach space.

Remark 2.4. Suppose X compact. Then the choice ¥(x) := 1 for all x € X is
admissible. On general spaces 9 will necessarily grow due to the compactness
of Kg, which means that f € B¥(X;Y) typically is unbounded, but its growth is
restricted by the growth of 9. Therefore, we call elements of B¥(X;Y) functions
with growth controlled by .

Theorem 2.5 (Riesz representation for B¥(X)). Given a weighted space (X, ),
let £: BY(X) — R be a continuous linear functional, £ € B¥(X)*. There exists
a finite signed Radon measure u on X such that

(2.3) L) = f f(x)u(dx) for all f € B¥(X).
X

Furthermore,

(2.4) | 00l = 18l

where |u| denotes the total variation measure of L.

As every such measure defines a continuous linear functional on B¥(X), this
completely characterises the dual space of BY(X).

Proof. Clearly, £|c,(x) is a continuous linear functional on Cp(X), as

—1
25) 17l < (inf 900)  IFll for £ Colx).

We thus have to ensure condition (M) of [I8, § 5 Proposition 5]. Defining
K= Ks—lHellep(X)*, we see that for g € Cp(X) with |g| <1 and g|x =0,

26) gy = sup B0 9001 < el eye 19l < el ey
€

xeX\

and thus |£(g)| < €. Hence we obtain existence of a finite, uniquely determined
signed Radon measure p with £(f) = {, f(x)u(dx) for all f € Cp(X) (see also
[13, Chapter 2 Theorem 2.2]).
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To determine {, 9(x)|u|(dx), we apply [T8, § 5 Proposition 1b)]: 1 is lower
semicontinuous and every positive g € Cp(X) with g < % satisfies ||g|ly < 1
Therefore,

(2.7) LTIJ(X)I/LI(G'X) = sup_[€(9)] < [l ()

ger(X)
lgl<

The density of Cp(X) in B¥(X) yields

MMWV=stmJWH=SwHN¢U

geCp(X) geCp(X
(2.8) <jwmmwn

X
Hence, § ¥ (x)|ul(dx) = IIZIIBw

For the proof of £(f Sx u(dx) for all f € BY(X), note that f

§x F(x)u(dx) defines a contlnuous Ilnear functlonal on B¥(X) due to the inte-
grab|I|ty of z/) with respect to |u|. As both expressions agree on a dense subset,
we obtain the desired equality. O

Remark 2.6. While the result in [13, Chapter 2 Theorem 2.2] is applicable even
for spaces which are not completely regular, in contrast to [16, § 5 Proposition 5],
we do not see how to prove {, 9(x)|u|(dx) < oo in that situation. However,
this bound is important in our further results, see the proof of Theorem 1.

Corollary 2.7. Let £: B¥(X) — R be a positive linear functional, that is, £(f) >
0 Whenever f(x ) O for all x € X. Then, there exists a (positive) measure [
with £(f) = §, F(x)u(dx) for every f € BY(X).

Proof. We only have to prove that £ is continuous. Assume otherwise. Then,
there exists a sequence (fp)nen, fn € BY(X), such that ||f|ly = 1, but [€(f,)| >
n3. As [6(f)] < £(|f]) for any f € B¥(X), we can assume without loss of
generality that f, = 0 for all n € N. As Y .y n72[|fally < oo, the limit f :=
ey 12 fn € BY(X) is well-defined and f > 0. We obtain a contradiction due
to n < £(n2f,) < £(f). O

The following results emphasise the analogy in structure of Bw(X) and the
space of functions vanishing at infinity on a locally compact space.
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2.1. Riesz representation for weighted spaces

Theorem 2.8. Let f: X — R. Then, f € BY(X) if and only if f|k, € C(KR)
for all R > 0 and

(2.9) lim sup ¥(x) lf(x)| = 0.
R—0 xex\Kg

In particular, f € BY(X) for every f € C(X) satisfying (29).
Proof. Assume that f € BY(X). For g € Cp(X) with ||f — glly < &,

(2.10) Y < 5+ 900 Mgl for xe X,

the last term being bounded by § for x € X\Kg with R := 26*1||g||cb(x). Thus,

(2.11) sup  P(x)THF(x)| <,
XEX\KR
which proves (Z9).
Next, we prove that for any R > 0, f|k, is continuous. With g as above,

(2.12) sup |[f(x) — g(x)| < R sup z,b(x)_1|f(x) —9(x)| € =R,

XEKR XEKR

N ™

which means that f|k, is a uniform limit of continuous functions and hence
continuous.

For the other direction, set f, := min(max(f(-), —n), n) = (f, v n) A n. We
prove first that f, € B¥(X). As flks € C(KR), we see that f,|k, € C(Kr). Kris
compact in a completely regular space. We can embed X into a compact space
Y by [I8, Chapitre IX § 1 Proposition 3, Proposition 4]. Applying the Tietze
extension theorem [I8, Chapitre IX § 4 Théoréme 2] to the set Kg, which is
also compact and therefore closed in Y, we obtain existence of g, g € Cp(X)
with gn r|kr = falke and supyex|gn r(X)| < n for all x € X. (Z) yields

(2.13) o — gnrlly < sup Y(x) fa(x) — gnr(x)| < 2nR1,

XGX\KR

hence f, € BY(X). Next, choose R > 0 such that SUPxeX\Kg Y(x)HF(x)| < €.
With n > sup,ex,|f(x)|, f(x) = fa(x) on Kg. Therefore,

(2.14) If —fally < sup (x)7HF(x) — f(x)] < 2,

xeX KR

which shows that f € BY(X). O
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The next result shows that not only the residual of f outside of K grows
more slowly than 1), but also the supremum of f on the set Kg (which is attained
due to compactness of Kgr and Theorem Z8) grows more slowly than R.

Corollary 2.9. If f € B¥(X), then

(2.15) lim R~! sup |f(x)| = 0.

R— xeKp
Proof. Define the functions F and G by

(2.16) F(R):= Rt sup |f(x)] and G(R):= R™! sup|f(x)|.
P(x)=R xeKR

We claim limg_,o G(R) = 0. We see that

(2.17) sup W(x)THF(x)| = sup F(R)
xeX\Kr R’>0

and it follows by Theorem 8 that limg_, F(R) = 0. Now,

(2.18) G(R) = R™! sup R'F(R").
R'<R

Given € > 0, choose Rq large enough such that F(R) < 5 for all R > Rp. It
follows that
G(R) = max(R™* sup R'F(R)),R™Y sup R'F(R")
R'<Ro Ro<R'<R

(2.19) <R sup RF(R) + <.
R'<Ry 2

23upR/<R,0 R'F(R")

Choosing R > e , we obtain G(R) < €. The proof is thus com-
plete. [
Theorem 2.10. For every f € B¥(X) with supyex f(x) > 0, there exists z € X
such that

(2.20) Y(x) T (x) < PY(2)7H(2) forall xe X.

~—

Proof. Let a := supyex ¥(x)"1f(x) > 0. By Theorem I8, there exists R > 0
such that supyx=g ¥(x) " 'f(x) < §. whence

(2.21) a = sup ¥(x)"H(x).
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Define h := 9~'max(f,0). Then, o = supyek, h(x). Furthermore, 91 is
upper semicontinuous, max(f, 0) is continuous on Kz by Theorem 28 and both
are nonnegative. Thus, h is upper semicontinuous (see [1Z, Chap. IV § 6 Propo-
sition 2]) and by [I7, Chapitre IV § 6 Théoreme 3] attains its maximum at some
point z€ Kg, i.e., a = Y(z)"1f(2) O

2.2 A generalised Feller condition

The generalised Feller property will allow us to speak about strongly continuous
semigroups on spaces of functions with growth controlled by 1. We consider
a weighted supremum norm instead of the supremum norm. Hence, from the
point of view of applications, we will still be able to control the pointwise error
of numerical approximations.

Let (P¢)¢=0 be a family of bounded linear operators P;: BY(X) — B¥(X)
with the following properties:

F1. Py = I, the identity on B¥(X),

F2. Piis = PPs forall t, s >0,

F3. forall f e BY(X) and x € X, lim¢_04 Pef(x) = f(x),

F4. there exist a constant C € R and € > 0 such that for all t € [0, ¢],
1Pell e (xy) < C.

F5. Py is positive for all t > 0, that is, for f € BY(X), f = 0, we have P:f > 0.

Alluding to [57, Chapter 17], such a family of operators will be called a gener-
alised Feller semigroup. Here, for (B, ||-||z) a Banach space, L(B) denotes the
space of bounded linear operators T : B — B with the norm

(2.22) TNy = sup 1||TX||5-

lIxlls<

We shall now prove that semigroups satisfying E1l to E4 are actually strongly
continuous, a direct consequence of Lebesgue's dominated convergence theorem
with respect to measures existing due to Riesz representation.

Theorem 2.11. Let (P)s=o satisfy [EQ to[E4. Then, (Pt)t=o Is strongly contin-
uous on BY¥(X), i.e.,

(2.23) tlir(r)1+||Ptf —flly =0 forall f e BY(X).
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Proof. By Proposition B3, we only have to prove that t — £(P:f) is right
continuous at zero for every f € B¥(X) and every continuous linear functional
£: BY(X) — R. Due to Theorem 5, we know that there exists a signed
measure v on X such that £(g) = §, gdv for every g € BY(X). By E4, we see
that for every t € [0, €],

(2.24) |Pf(x)] < CY(x).

Using (Z4), the dominated convergence theorem yields

(2.25) lim J P:f(x)v(dx) :f f(x)v(dx),

t—0+ X X
and the claim follows. Here, the integrability of 4 with respect to the total
variation measure |v| enters in an essential way. O]

Remark 2.12. As Chris Rogers remarked, state space transformation of the type

X = P(x) = 1XH E transform unbounded state spaces into bounded ones.
+||x

The weight function % is then used to rescale real valued functions f : X - R
via f = f/4 in order to investigate fop=t on ®(X). This function will often
have a continuous extension to the closure of ¢(X), which — in the appropriate
topology — will be often compact. This relates the generalised Feller property to
the classical Feller property. Note that in our situation, however, 1 is typically
not continuous for infinite dimensional X.

We can establish a positive maximum principle in case that the semigroup
P: grows like exp(at) with respect to the operator norm on B¥(X).

Theorem 2.13. Let G be an operator on B¥(X) with domain D, and w e R. G
is closable with its closure G generating a generalised Feller semigroup (Pt)¢=o
with || Pl sv(xy) < exp(wt) for all t = 0 if and only if

(i) D is dense,
(i) G — Xo has dense image for some Ao > w, and

(iii) G satisfies the generalised positive maximum principle, that is, for f € D
with (Y=1f) v 0 < Y(2)~1f(2) for some z € X, Gf(z) < wf(z2).

Here, a v b := max(a, b). Note that (¥ 1f) v O =9y ~}(f v 0)as vy > 0.
Therefore, (Y=1f) v 0 < ¥~1(2)f(z) is equivalent to

(2.26) £ v Olly <Y H2)f(2).
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Proof. We mimic the proof of [54, Theorem 17.11]. Assume first that (Pr)¢=0
is a generalised Feller semigroup satisfying

(2.27) 1Pell L v (xy) < exp(wi),
and G with domain D is its generator. For f € D with ||f v 0|y < ¥ 1(2)f(2),

P:f(z)
(2.28)

Pe(f v 0)(2) < Y(2)[|Pe(f v O)lly < ¥(2) exp(wt)[[f v Olly

<
< exp(wt)f(z),

and due to the continuity of point evaluation, we obtain the inequality Gf(z) <
wf(z) in the limit t — 0+. Thus, G satisfies the generalised positive maximum
principle. The density of D and (G — X\o)D follows from the Lumer-Phillips the-
orem, Proposition B8, as (exp(—wt)P)¢=0 is a strongly continuous semigroup
of contractions.

For the other direction, let f € D be arbitrary, and define g := (sgn f(z))f,
where z is chosen such that ¥(z)~!|f(z)| = ||f||y (this is possible due to The-
orem 10). Clearly, g € D and ¥(x)"tg(x) < ¥(z)1g(z), so the generalised
positive maximum principle yields Gg(z) < wg(z). Thus, for A > 0,

A= (G —w)flly = P(2) " F (Ag(2) — (G —w)9(2)) = B(2) " Ag(2)
(2.29) = || f]ly-

From this, closability of G follows: if (fy)nen in D are given such that both
limp—oo||fally = 0 and lim,—e||Gfr — glly = O, there exist (gm)men in D with
limm_oollgm — glly = 0. Thus, for any A >0 and m, ne N,

(2.30) (A = (G = wW))(gm + Ao)lly = Allgm + Al

Taking the limit n — oo, dividing by A and taking the limit A — oo, we obtain
lgm — glly = ||gmllyp. and the limit m — oo yields g = 0. This proves the
closability of G, and the closure G of G with domain D satisfies

(2.31) X = (G —w))flly = AN|flly forall x>0 and feD.

Thus, G — w is dissipative. The Lumer-Phillips theorem, Proposition &8, yields
that G generates a semigroup with ||P]|, (BY(x)) < exp(wt) for all t > 0.

We now prove positivity of Ry := (A — G)~! for every A > w, which yields
that P; is positive for every t > 0 (by an application of [54, Corollary V.5.5]).
To this end, we show that given g € B¥(X) such that the solution f € D of
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(A —E)f = g is not positive, g cannot be positive, either. By assumption, a :=
infxex W(x)~1f(x) < 0. Given a sequence of functions (f)nen in D converging
to f such that Gf, converges to Gf, we see that we can assume without loss
of generality that for every n € N, o := infeex ¥(x)"1fa(x) < 0, and we
have that lim,_ ., @, = a. Theorem 10 yields the existence of z, € X with
W(zy) "1 fa(zn) = an. By the positive maximum principle, Gfy(z,) = wfi(z,).
Thus,

inf 90~ g(x) = fim_ inf %)\~ G)fy(x)

lim 9(z0) (A = G)fa(zn)

nlilnw w(zn)ilo‘ — w)fa(zn)

(A —w) lim inf ()" f(x)

(2.32) =A—-w) )i(g;‘(w(x)_lf(x) =(A—w)a<0,

NN

that is, g is not positive. O

2.3 Results on dual spaces

In this section we consider a special class of state spaces that will be crucial
for our applications to stochastic partial differential equations: dual spaces of
Banach spaces equipped with the weak-# topology. We remark that the weak
topology on Hilbert spaces and sequential weak continuity was also used by
Maslowski and Seidler [[72] to prove ergodicity of stochastic partial differential
equations.

Assume that (X, ||-||x) is the dual space of some Banach space (W, ||-||w)-
We will use the weak-* topology on X, and denote this space by X,.. Such a
space is clearly endowed with a uniform structure in the sense of [17, Chapitre Il
§ 1 Définition 1], and thus completely regular Hausdorff [T8, Chapitre IX § 1
Théoréme 2]. Consider a lower semicontinuous function ¥: X — (0,0). Due
to the Banach-Alaoglu theorem [99, Theorem 3.15], compactness of Kg follows
from boundedness, which gives us a simple way to prove the admissibility of .

Assume from now on that (X, ¥) is a weighted space. We shall always
understand Kg := {x € X: ¥(x) < R} to be endowed with the weak-x topology.

Afterwards, we shall also consider the issue of differentiability of functions in
BY (Xws). This motivates the next definition.
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Definition 2.14. Let (X, ||-||x) be the dual space of a separable Banach space. A
function 9 is called D-admissible weight function if and only if it is an admissible
weight function and for every x € X, there exists some R > 0 such that B¢(x) <
Kgr for some € > 0, where B.(x) := {y € X: |y — x|[|x < €} is the open e-ball
around x.

It is called C-admissible weight function if and only if ¢ is bounded from be-
low, weak-* lower semicontinuous, and if for every x € X, there exists somee > 0
such that ¢ is bounded on the closed e-ball C¢(x) :={z€ X: ||z — x||x < €}.

Remark 2.15. We do not require C-admissible weight functions to be admissible.
However, ¥ is D-admissible if and only if it is admissible and C-admissible.

Example 2.16. Typical examples for weight functions are of the form (x) =
p(|Ix]|), where p: [0,00) — (0,00) is increasing, left-continuous, and satisfies
limg_o0 p(§) = +00. We will call such weight functions to be of type p. In this
case,

(2.33) Kr = Cr(0) :={xe X: |[x||x <r},

where r := max{p e R: p(p) < R}, and C,(0) is weak-x compact by the Ba-
nach-Alaoglu theorem. Note that p(r) < R by left continuity. Clearly, any
such weight function is D-admissible. Below, we will consider choices such as
o(t) = (1+t2)%/2 s =2, p(t) = cosh(Bt), B > 0, and p(t) = exp(nt?), n > 0.

2.3.1 Approximation by smooth functions

We want to give an approximation result for functions in Bw(XW*) by cylindrical
functions.

Definition 2.17. Let (X, ||-||x) be the dual space of a Banach space (W, ||[lw),
and let (Y, ||-|ly) be a Banach space. For N € N, set

AN Y) = {g(¢owa), - Cow): g € CRRMY)
(2.34) andw,eW, j=1,..., N}.

AX;Y) == Unen An(X;Y) is called the space of bounded smooth cylindrical
functions on X with values in Y. For Y = R, we set Ay(X) := Ay(X;R) and
A(X) 1= A(X; R).

Clearly, A(X;Y) < B¥(Xys,Y).
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Theorem 2.18. /f (X, ||-]|x) is the dual space of a Banach space (W, ||-|lw), the
closure of A(X) in B¥(Xy.) coincides with BY (Xys).

Proof. We prove first by the Stone-Weierstrass theorem [99] that A is dense in
Cp(KRr) for any R > 0. First, it is obvious that A(X) is an algebra, as Ap(X) -
Ap(X) € Anim(X) for all N and M with obvious notation, and An(X) <
Any1(X) for all N e N. Moreover, for any x1 # x2, x1, X2 € Kg, there exists
some w € W with (x3, w) # {(x2, w), which yields that A;(X) separates points.
As the constant functions are in A(X), we obtain density in Cp(KRg).

Let f € Cp(Xwx). Forevery R > 0 and € > 0, there exists some N € N and
fre € An(X) © B¥(X) with

(2.35) sup |f(x) — fre(X)| < €.

XEKR
By definition, fre = go h with h(x) = ((x, wp);_; , for some w; € W,
Jj=1..., N, and § e CP(RN). As Kg is compact, h(Kgr) = R" is compact. By
the Tietze extension theorem [I8, Chapitre IX § 4 Théoréme 2|, we can extend
| n(kg) to a continuous function g on RN with sup,ern|§(¥)| < SUpxek,|fr.e (X)].
Applying [19, Proposition IV.21, Proposition IV.20], we see that convolution
of g with a mollifier yields a function g € CP(RN) with sup,cgn]g(y)] <
SUPxeky|fre(X)| and supyepkp)l9(v) — G(¥)| < €. Assuming without loss of
generality that
(2.36) sup |fre(x)] < 2 sup |f(x)],

XEKR XEKR

we see that fr . := g o h satisfies

(2.37) sup [f(x) — fre(x)] <2 and  sup|fre(x)| < 2sup|f(x)],
xeX xeX

XEKR

independently of R and €. Therefore, as 9 (x) > d for all x € X,

If = frelly < sup Y(x)HF(x) = fre(x)| + sup Y(x)"HF(x) = fre(x)]

xeKR PY(x)>R
(2.38) <671 sup [F(x) — fre(X)| + 3R sup|f(x)|.
xeKR xeX
The result follows. ]

The definition of A(X) is not “optimal” in the sense that it will contain too
many functions. The following result is significantly better in this respect.
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Theorem 2.19. Let (X, ||-||x) be the dual space of the Banach space (W, ||-||w).
Assume that W is separable, and let {w;: j € N} ¢ W be a countable set which
separates the points of X = W*. Define

(2.39) An(X) = {g(¢om), - Cow)) g e CRRM)Y,
and A(X) = Unen An(X) € B¥(Xyu). Then, A(X) is dense in BY (Xy+).

Proof. The proof is done in the same way as for Theorem P13, using that for
any x1, xo € X with x; # xo, there exists some j € N with {x1, wj) # (x0, wj). U

Remark 2.20. A possible choice for {w;: j € N} is given by any countable dense
set in Y. For X a separable Hilbert space, we can use any orthonormal basis
(en)nen. We note that the specific choice of the w; does not make any difference,
which was also observed in [48, Remark 5.9].

2.3.2 Connections with weak-+ continuity

As we define the spaces Bw(XW*) with respect to the weak-x topology, it is not
surprising that there is a characterisation of its functions by weak-x continuity.
The next result makes this precise.

Lemma 2.21. Assume that (X, ||-|x) is the dual space of a separable Banach
space (W, [|-[lw).

(i) f e BY(Xws) if and only if f satisfies (29) and f |k, is sequentially weak-x
continuous for any R > 0.

(ii) Assume that for every r > 0, there exists some R > 0 with C,(0) c Kg.
Then, every f € BY(Xw+) is sequentially weak-+ continuous. In particular,
in this case, B¥(Xy«) © C(X).

Here, C(X) denotes the set of functions f: X — R continuous in the norm
topology.

Proof. By Theorem -8, we only have to equate sequential weak-* and weak-
« continuity of f|k, for any R > 0. By compactness, Kr is bounded by the
Banach-Steinhaus theorem [T9, Théoréme Il.1], as for any y € Y,

(2.40) sup [{x, y)| < o0.

XGKR
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Thus, [T9, Théoréme I11.25] shows that the topology of K is metrisable, which
means that weak-* continuity and sequential weak-* continuity coincide. There-
fore, any function f is sequentially weak-% continuous if and only if it is weak-x
continuous on Kr, and the first claim follows.

For the second claim, note that any weak-# converging sequence (X,)nen iS
bounded by the Banach-Steinhaus theorem. Thus, by assumption, (x,)nen Stays
in Kg for some R > 0, and the weak-x continuity of f|k, yields the result.
Finally, every such f is continuous with respect to the norm topology, as every
norm convergent sequence converges weak-#, as well. O

Remark 2.22. Unfortunately, the condition in the second part of the above
Lemma is stronger than D-admissibility. This is shown by the example of X a
separable Hilbert space, and

(2.41) P(x) =1+ x| + D] mxm, (%).
neN

Here,

(2.42) My = {xe X: [{c,en — x)| <27"?}

and ¢ = Y .27 e, with (en)nen an orthonormal basis of X. As the M, are
pairwise disjoint, at most one term in the sum is nonzero in the definition of 1.
Therefore, 9 is locally finite, whence D-admissible. However, we see that the
supremum of 9 on C1(0) is infinite. Even worse: consider a function f: R —» R
such that f(x) = 0 for x < 0, and |, Is continuous with f(27") = 1 and
f|[s.2-n-23.0-n-1] = 0 for n € N. Then, for g(x) := f({¢, X)), g € BY(Xys), as
it can be approximated in the 9-norm by gn = gX{xex: |(c,x)|>3-2-11}-

But g is not weakly continuous at zero (g(e,) = 1 for n€ N, but g(0) = 0).
Thus, not every space B’/’(XW*) with D-admissible 4 allows a characterisation
by sequential weak-% continuity.

2.3.3 Differentiable functions and BY spaces

To consider differentiable functions with controlled growth, we need to refine
our definitions from before.

Definition 2.23. Let (X, |-[x), (Y. [|l-|ly) be Banach spaces. L;(X;Y’) denotes
the linear space of bounded, j-linear maps a: X/ — Y, which is a Banach space
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with respect to the norm

(2.43) lall vy = sup  la(hy, ... h)lly-
lhillx<1l,i=1,...j

For (X, |llx). (Y. |l-|ly) Banach spaces, CX(X:Y) denotes the space of k
times continuously Fréchet differentiable functions f: X — Y.

Definition 2.24. Let (X, ||-]|x) be the dual space of a separable Banach space,
k =20, and ¢ = (¢j)j=0,..k @j: X = (0,00) bounded from below by some
0>0,,=0,..., k, and (Y, ||-|]ly) a Banach space. We set

BY(X;Y) = {f e C(X;Y): su)pz(pj(x)_lHfo(x)||Lj(X;y) <
X€E
(2.44) forj=0,..., k}.

Bf(X; Y) is called the enveloping space and is endowed with the norm

k
(2.45) 1Fllo.k = IFllgo + D1l i
j=1
where the seminorms ||y, ; are given by
(2.46) Flgy. := sup 9, ()P F ) 00w,
Xe

If Y = R, we define Bf (X) := BY(X;R).

Theorem 2.25. Let k € N, and assume that ¢ = (¢;)j=0,.. k Is a vector of
C-admissible weight functions. Then, B‘,f(XW*; Y') is a Banach space.

Proof. Let (f,)nen be a Cauchy sequence in this space. It is clear that f, admits
a pointwise limit f. Moreover, it follows that for every x € X, there exists
€ > 0 such that (fp|c,(x))nen is @ Cauchy sequence in CK(Ce(x);Y). Here,
Ce(x) :={z€e X: ||z— x||x < €} denotes the closed e-ball around x. But this
entails that flc,(x) € CK(Ce(x);Y). As differentiability is a local property, we see
that f € CK(X;Y). The necessary estimates for f and its derivatives are now
easy to see. ]

Remark 2.26. Note that not every admissible weight function is D-admissible, as
already the counterexample X = R, ¥(x) := 1+X2+X*1x(0'oo) with xa(x) =1
for x € Aand O for x ¢ A the indicator of A shows. However, such an assumption
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is necessary to be able to transfer differentiability properties to limits when using
weighted supremum norms.

Let us consider a concrete example. Choose the admissible weight function
PY(x) =1+ x>+ x?X(0.m) 0N X =R. Let f, € CP(R), neN, be such that

(2.47) fo(x) := {O' ii

and monotone on (0, n™1) such that 0 < f,(x) < 1 for all x € R. This can be
done in such a way that |f!(x)| < Cn on (0, n™!) for some C > 0 independent
of n € N, for example by choosing f; as required and setting f,(x) := fi(nx).
Then, for ne N and m > n,

(2.48) |fo — fmlly <2 sup 1,0()()*1 =2(1+ nz)*1 and
xe(0,n~1)
(2.49) [faly1 <2 sup P(x)*Cn=2Cn(1+ n?) 1,
xe(0,n~1)
from which
n m
2. f, — f, <2 }

It follows that (f,)nen is @ Cauchy sequence in B?f(R). As evaluation functionals
are continuous, we see that the only candidate for the limit is f = X(g,,0). This
function, however, is not in B}b(R), and is not even continuous.

Note that this is not a contradiction to the characterisation of B¥(R) by
continuity, as no set Kg 1= {x € R: 9¢(x) < R} contains a neighbourhood of
x = 0.

The aim is now to consider differentiability in the setting of B¥-spaces in
such a way that we can analyse vector fields and determine their effects on
differentiability.

Definition 2.27. Let (X, ||-||x) be the dual space of a separable Banach space
and (Y, ||-|ly) be a Banach space. Let 9 = (¥;)j=0.. k with ¢; D-admissible
weight functions for j =0, ..., k, k € N. The space B}("(XW*; Y) is the closure
of A(X;Y) in BY(X;Y). For Y =R, we set BY (Xx) := BY (Xys R).
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BZ’(XW*) is a Banach space by Theorem ZZ25. This definition coincides with
the earlier one given for completely regular spaces X by Theorem P13.

If X is a Hilbert space and 9 is a function of the norm, the approximating
functions can be chosen in a simple manner.

Theorem 2.28. Let (X, ||-||x) be a separable Hilbert space and v = (Y¥;)j—o... .k,
P of type p, j = 0,..., k (see Example ZI8). Then, for every € > 0 and
fe Bf(XW; Y), there exists an orthogonal projection w: X — X of finite rank

such that ||[f — fom|lyx <E€.

Proof. Given € and f as in the statement of the theorem, we know that there
exists f; € A(X;Y') such that || f —f¢ ||y« < €/2. This implies existence of N € N,
gee CP(RN;Yyand g e X, j=1,..., N with fo(x) = ge({x, e1), . .., (x, en)).
With 7 the orthogonal projection onto span{e;j: j =1,..., N}, x|l x < |Ix|lx
for x € X yields

(251)  Ife = fomly, < supy () | Dfe(mx) — D F(m0)ll vy < /2.
X€E

whence the triangle inequality yields the claim. L]

Theorem 2.29. Assume that (X, ||-||x) Is the dual space of the separable Banach
space (W, ||-[lw). Let (Wp)nen in W be such that span {w;: j € N} is dense in WV
Then, for any Banach space (Y, ||-|ly), vector 9 = (¥;)j=0,... .k of D-admissible
weight functions, and k > 0, the space A(X;Y) := Unen An(X:Y) is dense in
BZ’(X;Y), where

(2.52) AnX:Y) = {g(CGowad, .o o) ge CRRN Y)Y

Proof. We only need to show that for every f € An(X;Y') and every € > O there
exists N e Nand f; € ANS(X; Y) with [|[f — f¢]|y.k < €. Similarly as in the proof
of Theorem I8, we can restrict ourselves to Kr for some appropriate R > 0,
as the error on X\ KR is less than € for R large enough. As K is bounded, there
exists r > 0 with ||x||x < r for all x € Kg.

Let f = goh, where g € CP(RM;Y) and h: X — RN is given by h(x) =
«x, wj>)J.N:1 for some wje W, j=1,..., N. The smoothness of g yields exis-
tence of C > 0 such that
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By assumption, we can find Ng € N and A = () € RN*Ne such that for every

(2.54) g RV S Y x - ge(x) = g(Ax).

(2.55) <C nlwaxN|<x, Wy — Zévil ajpwp| < €.
r=

This proves the claim. ]

We provide a particularly interesting class of functions that is dense in
B}(I’(XW*). Recall that a Banach space (Z, ||-||z) has the approximation property
if and only if for every K ¢ X compact and € > 0 there exists an operator T
of finite rank such that ||[Tx — x||z < € for all x € K, see [68, Definition 1.e.1].
Note that every separable Hilbert space has the approximation property as it has
a Schauder basis, see the discussion after [68, Definition 1.e.1].

Definition 2.30. Let (Z, ||-||2), (Y, ]-]ly) be Banach spaces. We define
(2.56) Ch(Z:Y) = {f e CZY): Flles 2y < oo} ,

equipped with the norm

k

(2.57) Ifllckzyy = DD Flleyzii,z:v)-
j=o

Here, we have set ||f|lc,w.v) ‘= supueullf(u)llv for two normed linear spaces
(U [[-llu) and (V. [I-{lv)-

Theorem 2.31. Let (X, ||-||x) be a separable, reflexive Banach space, endowed
with a vector 9 = (Y})j—o.... k of D-admissible weight functions, k > 0. Assume
that X is compactly embedded into another Banach space (Z, ||-||z) with the
approximation property.

Then, for every Banach space (Y, ||-|ly), we have that

(2.58) CH(Z:Y) € BY (Xw:Y).
Furthermore, CK(Z:Y) is dense in BY (Xy:Y).
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Proof. Note first that due to the reflexivity of X, we have that X, = Xy «.
Denote the compact embedding of X into Z by ¢: X — Z. [68, Theo-
rem 1.e.4] proves that there exists a sequence (t,)nen Of finite rank operators,
tp: X — Z, such that for all r > 0, lim,_,c sup|x||,<rlltnx — tx||z = 0.
Let f € C{(Z;Y) be given. Define f, := f o, we need to prove that
limp—oolfn — flly.x = 0. Given € > 0, choose R := 5*1||f||ctk)(z;y) such that

Zf:o SUPxex\Kr w(x)*1||DJ'f||LJ(X;y) < €. As Kgr is bounded, it follows that
L(Kgr) is compact in the norm topology of Z. Hence, for every € > 0 there
exists some & > 0 such that if x € Kg and z € Z with ||ux — z||z < 8, then
1D/ F(Lx) =D/ F(2)||yzvy < €forj=0,..., k. Choose now ng € N large enough
such that |ltx — tpx||z < 0 for all x e Kg and n = ng. Hence, ||f, — fllyx <€,
which proves f € BY(X,;Y).

To prove the density, we apply Theorem Z29. As t: X — Z is injective
and X is reflexive, we see that t*: Z* — X* = W has dense range. Hence,
we can choose a sequence ((,)nen in Z* such that span {w;: j € N} is dense in
W, where w; = 1*(; e W, j € N. Defining /I(X;Y) with this sequence, we see
that every f = g({-, wy), ..., (-, wn)) € An(X;Y) can be extended to a function
f: Z > Y with f(x) = f(x) for x € X by virtue of

(2.59) fo=g(¢ ) )
Clearly, f € C’g(Z; Y'). The proof is thus complete. L]

For f € A(X;Y), D/f(x) is not a general multilinear form for x € X and
Jj=0,..., k. Itis actually completely continuous. Let us recall first the definition
of this property.

Definition 2.32. For Banach spaces (X, ||-[[x), (Y. |-]ly). we define V;(X;Y) <
L;(X;Y) to be the linear space of completely continuous multilinear forms, i.e.,
a € Vi(X;Y) if and only if for all sequences x; , converging weakly to x;, i =
1,..., Joalxin, .., Xjn) converges strongly to a(xy, ..., Xj).

Proposition 2.33. Let (X, [|-||x), (Y, |||ly) be Banach spaces. Vj(X;Y) is closed
in L;(X;Y).

In particular, (V;(X:Y), [IllL;cx;vy) is @ Banach space.
Proof. A more general result (showing that the completely continuous multilin-

ear maps even form an ideal) can be found in [98, Theorem 2.3]. We reproduce
the easy proof of the statement given above.
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Let a € L;(X;Y) be in the closure of V;(X;Y). Then, given € > 0, there
exists &' € Vi(X;Y) with [la — @[l ,(x;y) < € If xin converges weakly to

xj, I =1,..., J, there exists ny € N such that for n > no, ||a'(x1, ..., Xj) —
alxn, ..., Xin)|ly < € As we can assume without loss of generality that
IXinl <1lfori=1,..., Jand neN,
lla(xi, ..., xj)—alxin, ..., xin)lly < lla(xa, ..., xj)—a(xi, ..., xi)ly

+lld () = a (X v

+ ||aI(X1,n vvvv Xj,ﬂ) - a(Xl,n """ XJ,H)HY
(2.60) < 3,
and the result follows. [

Corollary 2.34. Let (X, ||-|lx) be the dual space of a separable Banach space en-
dowed with a vector ¢ of D-admissible weight functions, and (Y, ||-|ly) a Banach
space. If f € BY (Xw«:Y), then DIf € BY (X, Vi(X;Y)) forj=10,... k.

Proof. For f € A(X;Y), f = gom with m: X — RN bounded and linear and
ge CP(RN;Y), whence

(2.61) DIF(x)(x1, ..., x) = DV g(mx)(mx, ..., TX;),

and as 7 is a compact operator, we obtain D'f(x) € V;(X;Y). Furthermore, we
see clearly that DY f is again bounded and cylindrical. Hence, this result extends
to BZ’(XW*; Y') by a density argument due to Proposition ZZ33. O

If X is a Hilbert space, we have the following converse of Corollary 2234,
This generalises the result of Lemma =21 to the current setting.

Theorem 2.35. Let (X, ||-||x) be a separable Hilbert space and v = (V;);—o... k.
P of typep, j=0,..., k (see Example Z18), and (Y, ||-|ly) a Banach space.
f e BY (Xw:Y) if and only if

(i) feBY(X;Y),

(i) D'f: X — Vj(X;Y) is sequentially completely continuous for j =0, ..., k
in the sense that if (x,)neny converges weakly to x, then

(2.62) nlimoo||Djf(x) - Djf(xn)HLJ(X;y) =0, and
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(iii) 1iMR 00 SUPy, (x)=r Wi (X) I D/ F () (x:vy = 0 forj =0, k.

Proof. Corollary B34, together with a similar argument as in Theorem 23 and
Lemma 211, proves the first part of the equivalence.

For the converse, let f € B}f(X;Y) be given with D/f € BY(X,; Vi(X;Y))
forj=0,..., k. Given € > 0, there exists by assumption r > 0 such that

(263)  Yi(x) HIDF(X)lly vy <€ forj=0,... kand |x|x >r.

For every j = 0,..., k, the mapping g;(x, x1, ..., X)) 1= DIF(x)(x, ..., Xj) is
continuous C,(0) x C1(0) — Y, where C,(0) and C1(0) denote the closed balls
of radius r and 1 in X, respectively, and are endowed with the weak topol-
ogy. Indeed: under the given assumptions, C,(0) x C1(0) is metrisable by
(9, Théoreme [11.25], hence we only have to prove sequential continuity. If
(x9, xt, ..., xh) converges weakly to (x% x1,..., x/) in C,(0) x C1(0Y, then
iMoo || D F(x%) = D/ F (X)), x;vy = 0. As D/F(x) € Vi(X;Y) forall x € X, we
can choose np € N such that ||[D/f(x°)(x!, ..., X)) = DIF(xXO)(xE ..., Dy <€
and [|D/f(x®) = D/F ()|l x;vy < € for n= ng. Hence,

1D FO) (Xt ) = DI () (g By
< ||Djf(x0)(><1 ..... XJ) - Djf(xo)(x,} ..... X£)||y
(2.64) +|DF(XO)(xE, Xy = DIF(X0)(x}, ..., A |ly < 2,

n

whence the stated continuity of g;. As the set C,(0) x C1(0) is weakly compact,
g;j is uniformly continuous, i.e., there exists a weak neighbourhood U of 0 in X
such that for all j =0, ..., K,

1g;(0)(x1, - - %) = gi(Yo) .- i)y < €
(2.65)  for (x)_g, (viY'_g € Cr(0) x C1(0) with x; —y;€ U, i =0,...,j.

By definition of the weak topology, there exist & € X with [|§]lx = 1, £ =
..., M, and § > 0 such that x e U if [{x,&px| <6, £=1,..., M. Let w
denote the orthogonal projection onto span{&,: £=1, ..., M}. Then, x —mx €
U for all x € X. It follows that

19 (x0)(x1. ... %)) = gj(mx0) (X1, ..., Tx))[ly <&
(2.66) for (x;)io...j € Cr(0) x Cy1(0Y.
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Defining f := f o, it is easy to see that
(2.67) DIf(x0)(x1, ..., x;) = D/f(mxo)(mxa, . . ., TX;).

As f is only defined on a finite-dimensional space, we can cut it off and smoothen
it in a straightforward manner, see also the proof of Theorem I3, ensuring
uniform convergence on the image of C,(0) x C;(0) under . Hence, we can
construct f € A(X;Y) arbitrarily close to f in the norm of B}f(X;Y), and it

follows that f € BY (Xw;Y). O

2.3.4 BY multipliers

Let (X, ||-|lx) be the dual space of a separable Banach space and (Y||-]ly) be a
Banach space. Consider the space B;f(XW*; Y'). Assume that for some other
Banach spaces (Z, ||:||z) and (W, ||-]lw), there exists a bilinear mapping M: Y x
Z — W. We want to consider an operator mapping functions f € BZ’(XW*; Y)
to functions x — M(f(x), g(x)), where g: X — Z. This raises the question
what assumptions we have to take on g such that this mapping is bounded
into another BY space. First, we settle the boundedness issue in the enveloping
space.

Theorem 2.36. Let (X, ||-][x) be the dual space of a separable Banach space
and (Y, I'lly), (Z,|I:llz) and (W, ||-llw) be Banach spaces. Given a bounded
bilinear mapping MY x Z —- W, i.e., for some constant M > 0,

(2.68) My, 2)lw < Mllyllyllzllz forallyeY andze Z.

For some k > 0, let (1) = ((pj(-l))j:o K 9@ = (p (2))

,,,,, x be vectors of
C-admissible weight functions. Set

_j B
(2.69) @ = (¥j)j=0,... k. where p;(x 2 () (1) 0| )/(X) =0 . K

=0

Then, @ is a vector of C-admissible weight functions on X, and the mapping

(2.70a) M: B (X:Y) x BT (X: Z) - BE(X: W),
(2.70b) M(f, 9)(x) := M(f(x),9(x)) forall xeX,
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is well-defined, bilinear, and satisfies
(2.71) M, 9 lg ke < MIIFllykllglle,x

If oY) consists of D-admissible weight functions, @ consists of D-admissible
weight functions, as well.

Proof. It is clear that ¢ consists of C-admissible weight functions. To see that
¢ consists of D-admissible weight functions if o) does, we proceed as follows.

Set Kﬁg = {xe X: (pj(-l)(x) < R} and Kjr 1= {xe X: pj(x) < R}. First of
all, note that

(2.72) KJ"R C K(l) ,

where § 1= inf,ex tpg )( x). Thus, K r is precompact. As the sum and product
of lower semicontinuous functions is also lower semicontinuous, it is also closed,
thus compact. It follows that ¢; is admissible, whence D-admissible.
Forj=1,..., k and x € X, the operator D’X defines a symmetric, bounded
j-linear map on B¢ (X;Y) and on B (X; Y). Hence, the Leibniz rule yields

(2.73) x > M(D'F(x) (.- .- ho,), D'~ g(x) (hoy s - - ho,)).

It follows that

J

10/ M (6), 900 | ey < 2() D062, () Fllpn 19l

=0
(2.74) = M) llpw jlI9llpe )
which shows the claimed norm estimate for M(f, g). O

Definition 2.37. Let (X, ||||x) be the dual space of a separable Banach space
and (Z,||:|lz) be a Banach space. Let ¢ be a vector of C-admissible weight
functions. We say that g € Cf(Xy«; Z) if and only if

(i) geBE(X: 2),
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(i) forxe Xandj =0,..., k, the mapping (hy, ..., hj) DVg(x)(hy, ..., h;)
is continuous from the weak-x topology on C1(0) to the weak topology
on Z, and

(iii) forj =0,..., k, x +— DVg(x)(hy, ..., h;) is continuous from the weak-s
topology on C,(0) to the weak topology on Z uniformly in hy, ..., hj €
C1(0) forall r > 0, i.e., given r > 0, x € C,(0) and a weak neighbourhood
V of 0 in Z, there exists a weak-* neighbourhood U of 0 in X such that
forall hje C1(0),i=1,..., J,and y € C,(0) with x —y e U,

(2.75) DVg(x)(hy, ..., h) —D/g(y)(hy, ... h)) e V.

Recall that C,(0) := {x € X: ||x||x < r} is the closed ball of radius r in X.

It is easy to see that A(X;Z) < Cf(Xw«; Z). However, the closure of
A(X; Z) in BY(X; Z) does not even contain all bounded linear operators. As
the weak-* topology is metrisable on bounded sets by [T9, Théoréme I11.25], we
see that the continuity requirements in (k) and (id) can also be formulated using
sequences as follows:

(i) forxe X, j=0,..., k and sequences (h},)nen converging weak-x to A,
i=1,..., J, DPg(x)(ht, ..., h},) converges weakly to D/g(x)(ht, ..., W),
and

(iii") for every x € X, sequence (Xp)neny converging weak-x to x € X and weak
neighbourhood V of 0 in Z, there exists ng € N such that for all n > ng
and h; € X with Hh,”x <1,

(2.76) D g(x)(hy, ..., h) — D/ g(xn)(hy, ..., hy) e V.

Similarly as Theorem P11, the following result yields that classically differen-
tiable functions on a larger space are included in Cf(Xy; Z).

Theorem 2.38. Let (X, ||-||x) be a separable Hilbert space endowed with a vector
@ = (pj)j—o...k of C-admissible weight functions, k > 0, (Z,||-||z) a reflexive
Banach space. Assume that there exist Banach spaces (X, -1l %), (Z, [l ) such
that X is compactly embedded in X, and Z continuously embedded in Z.

Suppose g: X — Z satisfies g € CK(X; Z), g(X) € Z and g € BY(X; Z2).
Then g € Cf(Xw; Z).
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Proof. Both X and Z are reflexive. Hence, the respective weak and weak-*
topologies coincide.

We first prove [ii") above Let, therefore, (h{,)neN be sequences converg-
ing Weakly tohin X, i=1,..., J,J=0,..., k, and fix x € X. It follows
that (h!)nen converges strongly to hin X. As g € C"(X Z) we see that
Dig(x)(ht, ..., h,) converges strongly to Dig(x)(h?, . . ., Wyinz.

On the other hand, g € BY(X;Z) vields that (D/g(x)(h}, ..., hh))nen is
a bounded sequence in Z. Thus, by [T9, Théoreme I11.27], every subsequence
admits a subsequence converging weakly in Z, and by the continuous embeddlng
Z — Z, it follows that all these limits have to agree with DJg( )(ht, .o, W).
We obtain weak convergence of (D/g(x)(h}, ..., M) nen to DV g(x)(hY, ..., W),
proving [ii").

The proof of is similar. Given a sequence (x,)nen converging weakly to
x in X, (Xn)nen converges strongly in X. Hence, for all ¢ € Z* and € > 0, we can
choose ny € N such that for all n = ng and h; € X with || h; le <1,i=1,..., J,

(2.77) C(DIg(x) (... Iy) = Dig(xa)(hm, ... )| <.

As the injection ¢: Z — 7 is injective and continuous, Z* is dense in Z*, and
(—22) extends to ¢ € Z* and h; € X with ||hj|lx <1, i=1,..., J, by pOSSIb|y
adjusting ng to account for the operator norm of ¢. This proves [iii). As
g € BY(X; Z) by assumption, we obtain that g € C(Xy; Z), as claimed. O

Theorem 2.39. Given a separable Hilbert space (X, ||-||x) endowed with D-
admissible weight functions v = (¥;)j=o0,.. x and C-admissible weight func-
tions ¢ = (¢j)j=o, ..k, k = 0, and Banach spaces (Y, |lly), (Z, |lz) and
(W, |-llw). Assume that the bounded bilinear mapping M:Y x Z — W satis-
fies limp—ool|M(y, z — zp)|lw = 0 for each y € Y and every sequence (zn)pen
converging weakly to z € Z. Define i) := (1/)1) x according to (ZB9), i.e.,

i
(2.78) Z() X)pj_i(x) forj=0,..., k and x € X,

and suppose that W, is of type p, j = O,..., k (see Example IdA). Then,
M(f,g) e B}f’(XW; W) for all f € B}(”(XW; Y) and g € Cf (Xw; 2).

If Yi(x) = p}/’(||x||X) and ¢;(x) = p?(lIx[x). then 1, also has the required
representation. The assumption on M is satisfied if, e.g., M(y, z) = Mo(y, kz)
with Mg a bounded bilinear form and Kk a compact operator, or if Y = Z* and
M is the dual pairing of Z with its dual space.
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Proof. By Theorem P38, we have to satisfy the conditions of Theorem Z31.
Due to (Z73), it is sufficient to show that g;;: X — Vi(X;Y) is sequentially
weakly continuous and limp_,« SUPJ,J.(X)>RTPJ(X)_I||9i,j(X)HLJ(X;y) = 0, where

(2.79) g,-,j(x)(hl ..... hj) = M(f;(X)(hl ..... h,‘),Qj_,‘(X)(h,‘+l ..... hj)) with
(2.80)  fi(x)(h1, ..., h) = D'f(x)(hy, ..., h;)) and

From the assumptions, it follows similarly as in the proof of Theorem P38
that g;;(x) € L;j(X;Y). To see that g;;(x) € Vj(X;Y), assume that (h1) nen
converges weakly to h?, p=1, ..., J. Then, as D'f(x) € Vi(X;Y),

(2.82) n@oonD’f(x)(hl ,,,,, h'y = D'f(x)(h}, ..., Ay =

Furthermore, as g € Cf(Xw: Z), D/~'g(x)(hi L, ..., h) converges weakly to

DI=Tg(x)(h'*L, ..., H). Hence, by the boundedness of M,

lgij ()t W) —=gij()(hs. - M) llw
(283) < MIGE(NL ... 0 = OOE, Bl llg—i (R W)z
MG (B B, g (O (L 1))
= MO, ), g () (B ) w
By the assumptions on g and M, we see that the above expression converges
to 0, and it follows that g; j(x) is completely continuous.
Next, we prove that x — g;;(x) is sequentially continuous from the weak

topology on X to the norm topology on L;(X;W). If (x5)nen converges weakly
toxe X and h,e C1(0), p=1,..., J is fixed,

191 (x)(ha, ..., hj) = 9ij(xn)(hy, ... hi)llw
(2.84) < M|fi(x)(h, ..., hi) — fi(xa)(h1, ..., hillvllgj—i(hiz1, ..., hj)llz
+ [M(fi() (h, hi), gj—i(x)(his1, ... hy))
— M(fi(x)(h, ..., hi), gj—i(xa)(his1, - - .. hi)llw.
Again, the assumptions on g and M vyield that the above expression converges

to 0, and sequential weak continuity follows.
Finally, we have to ensure that

(2.85) Jim - sup () 191, (9, xv) = 0.
PP (x)>R
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But

D () =i O L xov) 19y
Pi(x) M) Lo 1951l

TINJJ(X)_I||9/,1(X)||Lj(x;vv) <M
(2.86) <M

Corollary 234 implies f; € B¥(X,; Vi(X;Y)), and the result follows. [

Remark 2.40. Given the setup of Theorem P39, assume that g € Bf(X; Z)
is such that the conclusion holds true. Choose Y = Z* and M(y,z) =
{y,z)z% 7, the dual pairing of Z* and Z. We set f = y € Z%; clearly,
f e A(X; Z*). Hence, Theorem P33 implies that X — Vj(X;R), x — gj(x), is
sequentially completely continuous, where

(2.87) gj(x)(hl ..... hj) = <y, ng(X)(hl ..... hj)>Z*,Z-

It follows that (hq,. .., h)) = Dg(x)(h, ..., h;) is continuous from the weak-x
topology on C1(0) to the weak topology of Z. Fix e > 0, r > 0 and x € C,(0).
Equating again sequential weak continuity and weak continuity on C.(0), we
obtain existence of a weak neighbourhood U of 0 in X such that for y € C,(0)
with x —y e U,

(2.88) 19;(x) = gl xry <€
This implies that for all hje C1(0), i=1,..., 7

(2.89) Ky, D'g(x)(hy, ... b)) = DYg(y)(hy, ... hj)yzx 2| < e.

Altogether, we see that g € C/(Xy; Z). Hence, g € Cf(Xw; Z) is necessary and
sufficient for g to be a general multiplier in B¥ spaces.

2.3.5 Vector fields and BY spaces

We want to construct a Lie derivative in the BY setting, i.e., a directional
derivative Ly f of a function f: X — Y along a vector field V: X — X. As we
also need to consider vector fields that are only defined on proper subspaces of
the given space, e.g., the derivative along an unbounded operator, we shall state
our results for this more general setting.

The following result is clear from our definitions.
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Theorem 2.41. Let (X, ||-||x) be the dual space of a separable Banach space,
and (Y, ||-|ly) a Banach space. Furthermore, let 1 = (Y;);j=0... .k be a vector of
D-admissible weight functions, and set 3 := (Y¥;+1)j—0....k—1. Then, the linear

mapping

(2.90) D: BY (Xus:Y) = BY [(Xua: LX;Y)),  f > DF,
is a bounded operator.

Corollary 2.42. Suppose (X, ||||x). (Z,|I-llz) are separable Hilbert spaces with
Z < X continuously embedded. Let = (¥;)j—o... k be a vector of D-admissible

weight functions on X, 9 = (1/31)]:0 k—1 a vector of D-admissible weight

functions on Z with ;. 1(x) < ¥;(x) fOI’_] =0,..., k=1, and ¢ = (¢))j=0, k-1
a vector of C-admissible weight functions on Z. Define 1 := (})j=o.....k by

and assume J)J- isoftypep, j=0,..., k (see Example 18).
Then, the mapping

(2.92) L1 BY(Xuw) % C8_1(Zun: X) = BY_(Zuw),  (F.V) > Lyf,
given by

(2.93) Lyf(x) = Df(x)V(x),

is bounded and bilinear.

Proof. Theorem 241 together with the assumed relation between ¢ and 1 prove
that the mapping D: Bf(XW*) — B}f’_l(ZW*; L(X;R)) is continuous. Consider
M:L(X;R) x X = R, given by M(x*, x) = (x* x)[(x:r),x, the dual pairing.
It follows that

(2.94) Lyf = M(Df, V),

and Theorem proves the claim. L]

Let us consider two special cases.
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Corollary 2.43. Let (H,|-||4) be a separable Hilbert space, (Z,||-||z) a con-
tinuously embedded Hilbert space. Define the D-admissible weight functions
V;(x) := cosh(||x||) on H and ;(x) := cosh(||x||z) on Z and the C-admissible
weight functions @;(x) :=1on Z, j > 0. Then, for every k = 0, the mapping

(2.95) L:BY(Xys) x CO_1(Zwsi: X) = BY_[(Zws),  (£.V) > Lyf,
given by Ly f(x) := Df(x)V(x), is bounded and bilinear.

Remark 2.44. If Z = H, this has the simple interpretation that bounded vector
fields map cosh-weighted spaces into themselves.

Proof. This is straightforward from Corollary 242, as the 1/71- defined there is
only a multiple of 7, in this case. [

The following special case is very useful in the analysis of stochastic partial
differential equations of Da Prato-Zabczyk type.

Corollary 2.45. Let (H,|-||y) be a separable Hilbert space, (Z,||-||z) a con-
tinuously embedded Hilbert space. Fix n € N. Define the D-admissible weight
functions ;(x) 1= (1+ ||x|12,)("=/2 on H and ;(x) := (1+]x]|2)(")/2 on Z,
Jj=0,..., n—1, and the C-admissible weight functions @o(x) := (1 + ||x||%)*/?
and pj(x) :==1on Z, jeN. Then, for k < n—1, the mapping

(2.96) L:BY (Xus) x CO_1(Zws: X) = BY_[(Zws),  (£,V) > Lyf,

given by Ly f(x) := Df(x)V(x), is bounded and bilinear.

Remark 2.46. This has the interpretation that linearly bounded vector fields Z —
X with bounded derivatives (hence also Lipschitz continuous) map polynomially
bounded functions to polynomially bounded functions, with the same weights.

Proof. Calculating
Ty
~ . g o
Bi(x) = (1L+ X320+ x3)72 + Y (,-)<1 £ X2y =12
i=0
(297) < Cyy(x),
the claim again follows from an application of Corollary ZZZ2. O

Let us consider some concrete examples.
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Example 2.47. Let (X, ||-||#). (Y. ||-]|z) be separable Hilbert spaces, and A: X —
Y a continuous linear operator. It is easy to see that V4 € Ck“’(XW;Y), where
Va(x) := Ax and ¢ is chosen as in Corollary 5. We check the definition:
Va € BY(X:Y) is obvious, as DVa(x)(h) = Ah and D/V4 = 0 for j > 2.
Furthermore, if (hy)nen converges weakly to h € X, then Ah, converges weakly
to Ah e Y. Finally, DVa(x) is independent of x € X, and the claim follows.
Note that the assumptions are satisfied for densely defined and closed oper-
ators A: dom A c H — H on separable Hilbert spaces, in particular for infinites-
imal generators of strongly continuous semigroups (see Proposition B5[1)).

Example 2.48. Given a separable Hilbert space (H, ||-||) of functions defined on
a bounded set D « RY with smooth boundary. Let G: H — H be a Nemytskii
or superposition operator, i.e., with some g: R — R,

(2.98) d(f)(x) = (f(x)) forxe D and f e H.

For an analysis of the mapping properties of such operators on diverse state
spaces, see [3, I00].

Assume that H = H*(D), the usual Sobolev space of s times weakly differ-
entiable functions on D with weak derivatives in L2(D), where s > d/2. Then,
[T00, p. 381, Theorem 2], together with the Sobolev embedding theorem (e.g.,
[T00, p. 32, Theorem 1]), proves that G: H*(D) — H*(D) is infinitely often
Fréchet differentiable if g’ € C*(R) and g(0) = 0. Similarly, [74, Lemma 1.3.3]
proves that G: H3(D) — H3(D) is C* if s > d/2 and g € C*(R), where H3(D)
denotes the subspace of H*(D) consisting of functions vanishing on 0D together
with all derivatives up to order s — 1.

Let us consider the case H = H*(D) with s — 1 > d/2, and ¢’ € CP’(R)
with g(0) = 0. We want to prove that G € CZ(H,; H), where ¢ is chosen as in
Corollary ZZ3. First, [I00, p. 381, Theorem 2] cited above yields G € B (H; H),
as we have the exact representation

(2.99)  D'G(u)(hy, ..., h) =gV u)hy---h; foru, hy, ..., h; € HX(D).

Furthermore, G: H"1(D) — H*~Y(D) is infinitely often differentiable. The
Rellich-Kondrachev theorem [I00, p. 82, Theorems 1, 2] proves that the inclu-
sion HS(D) — H*~1(D) is compact. Hence, Theorem yields the claim.

Such operators are of interest in the context of analysis and numerics for
stochastic partial differential equations, consider, e.g., [107, 62]. Note that G
will be neither weakly continuous nor Fréchet differentiable if H = L?(D) unless
it is affine; see [B, Section 3.6] and [44, Section 1.3].
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Chapter 3

Stochastic Processes And
Weighted Spaces

In this chapter, we consider semigroups induced by Markov processes, in partic-
ular those solving stochastic partial differential equations, on weighted spaces.
Section B establishes sufficient conditions such that the semigroup generated
by a Markov process is strongly continuous on an appropriate weighted space.
In Section B2, we analyse these conditions for solutions of stochastic partial
differential equations. Moreover, we provide Taylor expansions of the Markov
semigroup through an explicit representation of its infinitesimal generator using
vector fields on Bd’(XW*). Finally, Section B33 presents results on the smoothing
effects of stochastic partial differential equations with sectorial generator, i.e.,
analytic semigroup.

Note that for simplicity and ease of representation, we restrict ourselves to
equations driven by Brownian motions. It is possible to deal with more general
Lévy driving processes in a similar manner, see [I05] in this regard.

3.1 Strong continuity and Markov semigroups

Assume that (X, ||-||x) is the dual space of a separable Banach space (W,
Again, we write X, for X endowed with the weak-* topology.

[+llw)-

Assumption 3.1. (x(t, Xo))t=0 is a time homogeneous Markov process with val-
ues in X on some stochastic basis (2, F, P, (Ft)t=0) satisfying the usual condi-
tions, started at xg € X. It has right continuous trajectories with respect to the
weak-* topology on X.

We want to derive conditions on (x(t, xo))¢=0 such that the Markov semi-
group (Pr)t=o0 of (x(t,x0))t=0, given by Pif(xo) := E[f(x(t, Xxp))]. is strongly
continuous on the space BY(X,.) for an adequate weight function 1.
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Assumption 3.2. 1 is an admissible weight function on X. There exist constants
C >0 and € > 0 with

(3.1) E[¥(x(t, x0))] < C¥(xo) forall xpe X and t € [0, €].

Inequality (BD) is related to boundedness of the transition operator on
BY(Xw+), and to some supermartingale property. This is formulated in the
following lemma.

Lemma 3.3. Suppose Assumptions B0 and32. Then [E[f(x(t, x0))]| < C¥(x0)
for all f € BY(Xw+), Xo € X and t e [0, €].
Furthermore, the condition

(3.2) E[¢(x(t, x0))] < exp(wt)y(xo) forall xoe X and t € [0, €].

is equivalent to the process exp(—wt)Y(x(t, xo0)) being a supermartingale in its
own filtration. This implies

(3.3) |E[f(x(t, x0))]| < exp(wt)P(xo) forxge X andt =0

for all f € BY(Xwx).

Proof. This is clear from the definitions. OJ
Lemma 3.4. Suppose Assumptions B and B32. Then

(3.4) Jim E[f(x(t.x0))] = f(x0) forall fe BY (Xws) and xo € X.

Proof. Denoting by x4 the indicator function of the set A, we choose R > 1(xp)
and consider

[E[f(x(t,%0))] = f(x0)| <E[If(x(t,%0)) = f(x0) [ X[w(x(t.x0))<R]]
+ E [[F(x(t, X)Xy (x(tx0))> R]]
(3.5) + F(x0)P [¥(x(t. x0)) > R].

By the Markov inequality,
(3.6)  P[(x(t.x0)) > Rl < R E[$(x(t, %0))] < CR (o).

Given € > 0, Theorem X8 shows that for some R > 0, |f(x)| < ey(x) if
P(x) > R. Therefore,

(3.7) E [ (x(t, x0)) IX[w(x(t.x0))>R] ] < CeW(x0).
Finally, given R > 0, supw(X)<R|f(x)| < o0 by weak continuity. By dominated
convergence, lim;_o4 E [|F(x(t,x0)) — (x0) IX[w(x(t.x0))<R]] = O- O
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Theorem 3.5. Suppose Assumptions B and B2. Let {w;: je N} < W be a
countable set which separates the points of X. Assume that foranyt > 0, j € N
and sequence (Xp)neN Converging weak-+ to some xp € X,

(3.8) lim {x(t, xn), wj) = (xX(t, x0), wj) almost surely.
n—aoo

Then, Pif(xo) := E[f(x(t, x0))] satisfies the generalised Feller property and is
therefore a strongly continuous semigroup on Bw(X wi)-

The condition given here is weaker than assuming that the map xg — x(t, xp)
is almost surely weak-# continuous, as the nullset can depend on t, xg, the
sequence (X,)nen, and j € N (even though the dependence on j can be removed,
as a countable union of nullsets is again a nullset). If X is a separable Hilbert
space, {w;: j € N} can be chosen to be an orthonormal basis.

Proof. Let f = go h with g € CP(R") and h(x) = ({x,¥);_y , Such
functions are dense in Bw(XW*) by Theorem EZZ19. By Lemma =21, we only have
to prove sequential weak-# continuity of P:f for f € B“/’(XW*). By assumption,
for any weak-# converging sequence (Xp)nen With limit xo , limp_q h(Xx(t, Xp)) =
h(x(t, x0)) almost surely. The dominated convergence theorem yields Pif €
BV’(XW*). The result now follows from Lemma B4 and Theorem P_L1. OJ

Example 3.6. Suppose x(t,xp) = Xo + L¢, where L is a cadlag Lévy process
with jumps bounded by some constant ¢ > 0 in X. Then, by Fernique's theorem
[B5, Theorem 4.4], it follows that E[exp(B||L¢||)] < oo for all B > 0. Choosing
P(x) = cosh(B]|x]|), we see that Y(x + y) < 2¢(x)¥(y). Hence,

(3.9) E[¥(x(t, x0))] < 2E[%(L¢)]¥(x0).

We obtain from Theorem BH that every cadlag Lévy process on a Hilbert space
with bounded jumps induces a strongly continuous semigroup on a cosh-weighted
space BY(Xyx).

The continuity assumptions of Theorem B3 are typically not easy to verify
directly in the weak-x topology. The following theorem yields a simpler approach
by using a compact embedding in a reflexive setting.

Theorem 3.7. Suppose Assumptions B and B2, and that X is reflexive. Let
(Z,|Illz) be another Banach space such that X is compactly embedded in Z.
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Furthermore, suppose that the Markov process (x(t,xp))t=0 on X can be ex-
tended to Z, and that for any f € Cp(Z), the mapping zy — E[f(x(t, z0))] is
continuous with respect to the norm topology of Z.

Then, P:f(xo) := E[f(x(t, x0))] satisfies the generalised Feller property and
is therefore a strongly continuous semigroup on BY (Xwx)-

Remark 3.8. Note that for concrete examples, we often work the other way
round: first, we prove existence of the process on Z, then we prove the invariance
and continuity properties for x(t, xp) on X and Z. It is actually a result on
preservation of regularity, when showing that x(t, xo) € X almost surely if xp € X.

Proof. We only need to prove that there exists a dense subset of BY(Xy.)
that is mapped into Bd’(XW*). But Theorem P31 and the assumptions of
the theorem show that this is satisfied for C,(Z), as sup,cz|E[f(x(t, 20))]| <

SUpez|f(20)l. O

Example 3.9. Continuity in norm topologies, as required in Theorem B, is
often satisfied in applications for stochastic partial differential equations, see
Proposition BEZ20. The classical Rellich-Kondrachov type embedding theorems,
see [19, Théoreme 1X.16], yield compact embeddings for problems on bounded
domains.

Theorem 3.10. Suppose Assumptions B and B2, and that X is a separable
Hilbert space with scalar product (-, -) and countable orthonormal basis (¢&;)jen.
Denoting by my, the orthogonal projection onto the span of the first M basis
vectors, assume that for j € N,

(3.10) lim sup ¥(x0) E[[{x(t, x0), &) — {x(t, Tmx0), €)|] = 0.
M—wo x0€X

Then, the semigroup (P:)t=o defined by P:f(xo) := E[f(x(t, x0))] satisfies the
generalised Feller property and is therefore strongly continuous on BY (Xwx)-

Proof. For f a bounded and smooth cylinder function with f = f oy, consider
gm = P(f ompy) o mp. We prove that gy converges to Pi(f o my). For any
Xg € X, the smoothness of f yields

|Pe(f o) (x0) — gm(xo)| < E[If (mnx(t, x0)) — F(mnx(t, mamxo))l]
< GrE |l (x(t, x0) — x(t, mpxo)) II]
N

(3.11) < Cr ) E[[{x(t.x0), &) — X(t, Tvx0). €]
j=1
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whence PBY(Xy«) © B¥(Xys), see Remark Z20. By Lemma B3, P; €
L(BY(Xw+)). Again, the result follows from Lemma B2 and Theorem 0.  []

Example 3.11. The assumptions of Theorem B are satisfied for the stochas-
tic Navier-Stokes equation on the two-dimensional torus with additive noise (a
similar result is found in [48, Theorem 5.10]). The first estimate in [48, The-
orem A.3] proves the condition of Theorem BTI0, where the weight function is
P(x) = exp(n||x||?) with n > 0 chosen in such a way that E[v(x(t, x0))] <
K (xo) for small t.

3.2 Application to stochastic partial differential
equations

In finite dimensions, the stochastic Taylor expansion (see [59, Chapter 5]) is an
important tool in the derivation of both strong and weak approximation schemes
for stochastic differential equations. In infinite dimensions, the situation is more
complicated. A fundamental issue is that if (x(t))¢=0 is the solution of a stochas-
tic partial differential equation on the Hilbert space H with unbounded infinites-
imal generator A, then Ax(t) is not well-defined in general. This can be dealt
with by considering initial conditions that lie in the domain of a power of A, and
requiring that the vector fields leave these domains of powers of A invariant, see
[B].

We suggest an alternative approach, making use of the infinitesimal generator
of the strongly continuous Markov semigroup.

Assumption 3.12. Let (H,|-||n) be a Hilbert space and (A, dom A) the in-
finitesimal generator of a strongly continuous semigroup (S¢)s=o of pseudo-

contractions on H. Fix §g € N. For £ = 0, ..., lo, let H; be subspaces of
H endowed with Hilbert norms ||-|[4,. Assume that Ho = H, and that for
£ =0,..., lo — 1, Hpyy1 © Hp with continuous and dense embedding, and

A: Hy1 — Hy is a bounded linear operator. Furthermore, assume that for
£=0,..., £y, St(Hg) < Hg for t = 0, and that (St)t=0 is strongly continuous

On H,, we define D-admissible weight functions

(312) ¥ = (1+IxI3,)77, s=1, £=0,... .6, ¥ =

and the C-admissible weight functions
1/2 .
(3.13) 0ro(x) == (14 [IxII3,) 2, pj(x) =1, j=1
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Define the vectors of weight functions wén) = (z,/zgfj) —0...k» k<n,and gy :
(¢e)j=0,...k-
Assumption 3.13. For some ke Nand£=0,..., Lo,

(3.14) Vo € C2((He)w. (He)w) and
(3.15) Vi € C2((He)w, (Ho)w) forj=1,....d.

Remark 3.14. In the following results, the sharp smoothness requirements on
the vector fields vary. The ones given above are sufficient everywhere, and are
the most general ones under which a result as in Lemma E—I1 can be expected.

For x € Hy, £ = 0,..., £y, we can then consider the Da Prato-Zabczyk
equation

d
(3.16)  dx(t,x0) = Ax(t, xo)dt + Z x(t,x0)) o dBL,  x(t,x0) = X0,

on Hp, where B? =t and (BJ) ,,,,, 4 1s a d-dimensional Brownian motion.
As the assumptions on the vector flelds V; essentially mean that they are Lip-
schitz continuous with bounded derivatives, whence linearly bounded, all these
equations have unique solutions in H, if x € Hy, agreeing with each other for
sufficiently smooth initial conditions if we vary £.

Assumption 3.15. The Markov semigroup (P)¢=0, P:f(X0) := E[f(x(t, X0))], IS
strongly continuous on B¥ ((Hg)w«) for all ne Nand £=0, ..., 4.

Recall that Section Bl collects several conditions ensuring Assumption BTH.
An interesting fact is that we can prove pseudocontractivity of (P:)=o under
the assumption of pseudocontractivity of the semigroup generated by A.

Theorem 3.16. Consider a solution of (BZIH), where A generates a pseudo-
contractive semigroup and the vector fields V; are Lipschitz continuous. Then,

(3.17) || Pl < exp(wt) for some w > 0.

L(BY (Hpw)) >
Remark 3.17. The proof is somehow twisted in infinite dimension and does not
follow the usual finite dimensional lines of proving that the local martingale part
of 7 (x(t, x0)) is in fact a martingale, and therefore Ito’s formula yields the
result: we use the Székefalvi-Nagy theorem [93, p. 452, Théoréme V] to move
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3.2. Application to stochastic partial differential equations

to a larger Hilbert space H, D H, containing H, as a closed subspace and
where we can write the solution process x(t, xg) = mlU;Y (t, Xg) as orthogonal
projection.

Proof. We proceed similarly as in [T0O6]. Take £ = 0 without any restriction and
set 1 = 9. Additionally we assume that A generates a contractive semigroup
on H by adding the growth to V5. [93, p. 452, Théoreme IV] yields existence
of a larger Hilbert space H D H, where the semigroup generated by A lifts to a
unitary group U with generator A. The projection onto H is denoted by . We
consider the stochastic partial differential equation prolonged to H,

d
(3.18) dX(t, x0) = AX(t, xo)dt + Z X(t,x0))) o dB.

Rewriting the above equation using Itd integrals and switching to a “coordi-
nate system” which moves with velocity x — Ax, we obtain a new stochastic
differential equation

d
(3.19) Y (t, xo) Z (t.Y(t, x0))dB.

with Lipschitz continuous vector fields

(3.20) Vo(t,y) = U_Vo(nlhy) and

(3.21) Vi(t,y) =U +Vj(tUry) fort>=0,yeHand,j=0,..., d,
where Vh(x) 1= Vo(x) — 337, DVj(x)Vj(x) is the Itd drift. It follows that
x(t, x0) = TUY (t,xp) for t > 0 and xp € H.

Proposition yields supefo.e] E[IIY'(t, x0)[|P] < oo for p > 2. Ito’s for-
mula applied to

2

(322) Yu(Y (t.x0)) = L+ IV (£ )l

together with linear growth and Gronwall’s inequality then yields the result; more
precisely, defining

d
(3.23) L:f(x) = Df(x) - Vo(t, x) %2 i(t, x), Vi(t, x)),
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we see that
E[n (Y (t, x0))] =¥ (x0) +JO E[L:(¥n)(Y (s, x0)]ds
(3.24) <vlo0) + o [ BBy (5201

where the constant w depends on the Lipschitz bounds of the vector fields V/,
Jj=0 ..., d. Noting that ¥(x0) = ¥ (x0), we consider x(t, xo) = TUY (t, Xo)
and realise that, due to ||[TUry||y < ||yl for y € H,

(3.25) E[w(x(t,x0)] < E[P (Y (t. x0))]] < exp(wt)Pu(x0) = exp(wt)P(xo),

which is the desired result. ]

3.2.1 Weak continuity

One approach to satisfy Assumption B3 is the following.

Assumption 3.18. Given Assumption B2, we suppose the existence of a Hilbert
space H_;1 such that H, is compactly and densely embedded in H,_; for £ =
o,..., o, and that Vj: Hy — Hy is Lipschitz continuous for j = O, ..., d and
L=-1,..., L.

Vj: Hy — Hy is Lipschitz continuous for j =0, ..., d. Then, Assumption 313 is
satisfied.

Proof. We apply Proposition to prove that for all £ = —1, ..., lo, n =2
and T > 0, there exists some constant K+ > 0 such that E[9;(x(t, x0))] <
KTy (x0) for all xo € Hp and t € [0, T]. Thus, the result follows from Theo-
rem 2. O

We now give some examples such that Assumption BI3 is satisfied.

Lemma 3.20. Let (/:/,N||-||,q)~be a separable Hilbert space. Assume that the
operator A: domA c H — H generates a strongly continuous semigroup and
admits a compact resolvent. Then, dom At*1 is compactly embedded in dom A¥,
2> 0. Hence, the choice Hy := dom Attt ¢ = —1, ..., Lo, and H .= Hg satisfies
Assumption BI8.

Here, dom A¢ s endowed with the norm ||x||4om at := (Zf:OHA/ZH/%) 12
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Proof. As A has a compact resolvent and generates a strongly continuous semi-
group, there exists some X\g € R such that A\g — A is continuously invertible and
(Ao—A)~': H - His compact. Clearly, (A\o—A)¢: dom A® - H is continuously
invertible.

If a sequence (x,)nen converges weakly in dom A1 o some x € dom A1,
then (Ao — A)**1x, converges weakly to (Ao — A)**1x. It follows by the com-
pactness of (Ao — A) ! that (Ao — A)¢x, converges strongly to (Ao — A)¢x. This
proves that dom A¢t1 is compactly embedded in dom A¥. ]

Remark 3.21. Under the assumption that the semigroup generated by A con-
sists of compact operators, a condition that is stronger than the existence of a
compact resolvent of A (see [84, Theorem 2.3.3]), an argument as in [72, The-
orem 2.2] shows directly that (P)¢o is strongly continuous on B¥S(H,), n = 2.
The unboundedness of A still requires us to consider directional derivatives along
A only on subspaces of H.

In many situations, in particular for stochastic partial differential equations
on unbounded sets, the generator A does not admit a compact resolvent. We
give an exemplary construction of Hilbert spaces H, of functions (0, ©0) — R,
compactly embedded in each other, such that the differential operator % sat-
isfies %H{ c Hp1,£=0,..., £o. These spaces can be used to embed the
Heath-Jarrow-Morton equation of interest rate theory into our setting. This will
be performed in Section E3.

With a € R and wy(x) := exp(ax), x e Ry, we set L2(R,) := L?(R,, wy)
and HX (R, ) := HX(R,, wy,). Here and in the following, R, := (0, o), and for
D = RV, the weighted Lebesqgue and Sobolev spaces are

(3.26) L2(D, w) := {f: D —R: [fll2ipw) < oo} and
(3.27) HY(D, w) := {f: D = R [|flly(p) < oo}
with norms
1/2
(3.28) 171l 2Dy = (f F()2w(x)dx) " and
D
koo 1/2
(329)  Iflom = (DI op)
=0
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Proposition 3.22. For every a > 0, the space HY(R,) n L2(R,) with norm

1/2
(3.30) 1= (11, + 17122 e, )
is compactly embedded in L>(R).

Note that the proof shows that an analogous result holds true for any weight
function w with limy_, 4o w(x) = +00.

Proof. We apply [T9, Théoréme IV.26]. For any 7 > 0,

.
J |f(x+7')—f(x)|2dxsj J|f'(x—|—s)|2dsdx
Ry Ry Jo

.
= f J |f'(x + s)|°dxds
0 Jr,

(3.31) < Tl ey ).

and for any R > 0,

f00| f(x)|?dx < exp(—aR) Joo|f(x)|2 exp(ax)dx
R

R
(3.32) < exp(—aR)[Ifllzr,)-

These estimates prove the claim. ]

Corollary 3.23. For any o, B € R with B8 > a and integer k > 0, Hg*l(RJr) is
compactly embedded in HX (R..).

Proof. Assume first k = 0. Then, Proposition B22 shows that H} (R, ) is
compactly embedded in L2(R.).

The mapping T : L2(]R+) — LZ(Ry), f — exp(—%x)f, is an isometric iso-
morphism, and T( _oRy)) = Hl(R+) where the norms ||T~ f||H1 LR

and ||f\|H1 ) are equwalent It follows that HB(]RJF) is compactly embedded in
L2 (R,). The full result follows by induction. O

Given a strictly increasing sequence o = a1 < g < -+ < g, < o0 of real
numbers, we define the spaces

(3.33) Hp:={heLip(Ry): M e HEN R}, £=-1,... .4,
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endowed with the norm

1/2
(3.34) [l = (|h< P+ 1Ry +)) |
Clearly, the spaces H, are Hilbert spaces for £ = —1,..., £o. Furthermore,
Hy, € Hy_1 and A = %: Hy; — Hy_1 is continuous for £ = 0,...,4y, and
H_1 = H,.

Theorem 3.24. H, is compactly embedded in Hy_1 for£ =10, ..., L.

Proof. We have to prove that if a sequence (h,)nen in Hg converges weakly to
some h € H,, it converges strongly in Hy_1. As evaluation functionals are con-
tinuous on Hy, we see that lim,_, h,(0) = h(0) follows from weak convergence
in Hg. By Corollary B3, we see that h/, converges strongly to h’ in ngil(RJr).
This proves the result. O

This means that we have constructed spaces Hy, £ = —1, ..., 4o, such that
the Heath-Jarrow-Morton equation of interest rate theory satisfies Assump-
tion EI8. Note that requiring Assumption B3 is actually not untypical in
this context and is even weaker than [37, (Al), p. 135]. Thus, all results on
covergence of numerical approximations for stochastic partial differential equa-
tions we will derive below can be applied to the Heath-Jarrow-Morton equation,
and this will be described in detail in Section 3.

3.2.2 Taylor expansions

We are now in the situation to derive Taylor expansions for Markov semigroups
of stochastic partial differential equations.

Theorem 3.25. Given Assumptions 312, B13 and B13. Consider the strongly
continuous semigroup (P¢)¢=o on the space BY: ((Hg)w) with n > 4. Denote its

generator by (G, domG).
(m
Then, B;pz‘l((He,l)W) c domg, and

d
(3.35) Gf(x) = DF(x)(AX) + Ly, f( % Z Ly f(x

e
for f € B "((He—1)w) and x € Hy.

Here, the Lie derivative L is defined as in Corollary Z°Z3.
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Proof. By the It6 formula given in Proposition BI9, it follows that for f €

A(Hg—1), we have f € dom G, and (B=33) is satisfied.
o
We extend this representation as follows. Given f € B, e "((Hg=1)w), choose

a sequence (fp)pen in A(Hg—1) such that limp_ | f — f Hwéf)lQ = 0. Corol-
lary 723 shows that the right hand side of (B=3H) defines a continuous linear
operator G: B ‘gn)l((He Dw) = BY ((Hg)w). Hence, lim,_»||GF =G "o = 0.
The closedness of G (see Proposition BH[1)) thus yields that f € domg and
Gf = Gf. The claim follows. L]

The next result follows directly from Corollary ZZ13 and the explicit repre-
sentation in (B=39).

Corollary 3.26. Let 0 < k < kg — 1. Given Assumptions 312, B13 and B3,
the infinitesimal generator G satisfies the mapping property

(n) (n)
(3.36) G: By (Hi1)w) = B (H)w), £=1,... 4.

Induction now yields:

Corollary 3.27. Letj <4 <{gand0 < k < kg—2j+1. Given Assumptions 312,
B13 and B13, the powers of the infinitesimal generator G satisfy

3.37 G B (How) — B (H
(3.37) : k+2_](( Z—J)W) k (He)w)-

They are given explicitly by taking the powers of (B31).
Proposition BH[v] yields a Taylor expansion of Pf for smooth f.

0
Corollary 3.28. Let f e 82(Zk$l+)l)((He (k+1))w), kK+1<L< Lo, and 2(k+1) <

ko — 1. Given Assumptions B12, 313 and B3,

k .
t .
(3.38) Pef = Y =G f + "Ry i,
j=07’
(n)

where the linear operator Ry : B;l’(ea%l) ((He—(k+1))w) — BYE((Hg)w) satisfies

(3.39) [Rekfllyy < CrlIf]l o

1y 200D fort e [0, T]

for a constant C+ > 0 independent of f.
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3.3 Smoothing effects with analytic semigroups

Suppose that Assumptions B-T2, B13 and B-IH are satisfied, where H, = dom A,
£ =0,..., £o, and that dom A is compactly embedded in H. Furthermore,
suppose that the operator A generates an analytic semigroup, and, without loss
of generality, that 0 is in the resolvent set of A. Consult Section B2 for a
short overview of analytic semigroups and fractional powers of operators. By
Proposition B8[iv}), there exists § > 0 such that for all v > 0, we can find some
M,y > 0 with

[(=A)YSexll < Myt exp(=6t) I x|I1
(3.40) forall xe Hand t > 0,

where (—A)? denotes the <y fractional power of —A and S := exp(tA) denotes
the semigroup generated by A. We want to use this property to derive smooth-
ing effects of the mapping xo — x(t,xo). More precisely, under appropriate
assumptions on the coefficients V;, we want to prove that x(t, xp) € dom Ak for
Xp € X.

To prove a regularising effect, let us consider the mild formulation of the
stochastic partial differential equation. We have that

t
x(t,X0) = Stxo + J St—sVo(x(s, xp))ds
0

d ~t
(3.41) + ZJ Se—sVj(x(s., x0))dBL,
j=10

Vo(x) = Vo(x) + 3 200, DVj(x)V(x) being the Ito drift.

As stated above, Sixp € domA, and for every v > 0, ||A"Sixolly <
Myt 7||xgl| for t € [0, T]. To estimate the other terms, we use the follow-
ing auxiliary results. Denote by LP([0, T]; H) the space of measurable functions
f:[0,T] —» H with SOT||f(s)||’,Z,ds < o0, endowed with the norm

T 1/p
(3.42) IFleqorynn = (| 17(5)150s) "

Proposition 3.29. Suppose that V: H — H is Lipschitz continuous. Let f €
LP([0, T]; H) with p > 5/4, and set F(t) := Sé St—sV(f(s))ds, t e [0, T]. Then,
there exists C > 0 such that

(3.43) sup [[(=AYY2F ()l < CL+ I FllLeo.mp:m))-
te[0,T]
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Proof. We calculate

(3.44) I(—ASE()]l < C j 5)~YS|V(F(s)) ds.

Linear boundedness of V and the Holder inequality yield the claim. ]

Proposition 3.30. Suppose V: H — H is Lipschitz continuous. Given a one-

dimensional Brownian motion (Bt)t=o on (2, F,P, (Ft)t=0). Letf: Qx[0,T] —

H be progressively measurable with SgE[Hf(S) l]ds < oo, p > 4, and set
t) := {5 St sV(f(s))dBs, t € [0, T]. Then, there exists C > 0 such that

(3.45) E [ sup ||(_A)1/5F(t)||f,] <C (1 + LtE[Hf(s)HZ]ds) .

te[0.T]

Proof. By the Burkholder-Davis-Gundy inequality [28, Theorem 5.2.4],

E [ sup ||<—A>1/5F<s>||';] < CE [( i =BV (r(s)Ids)” ]

se[0,t]
t 5 5 p/2
(3.46) <cs ([ -9 Fwireies)”|
0
The Cauchy-Schwarz inequality yields
‘ 2/5 4, \?
Gan [ -9 v iRes <o [Ivirepitas)
Linear boundedness of V and the Jensen inequality prove the claim. ]

Remark 3.31. The restriction to p > 4 is arbitary. Instead, every p > 2 is
possible. Note, however, that the case p = 2 is not admissible.

Corollary 3.32. Suppose the assumptions made at the beginning of this section.
Then, for every p = 4, there exists C > 0 such that for xo € H and t € (0, T],

(3.48) E[[I(=A)5x(t, x0)lI] < CET2(1 + ||x0lI7,).

In particular, E[] 5(x(t, x0))] < Ct~ 5498(x0) forn =4, te (0, T] and xo € H.
Here, we have set 1/)1/5( )= (1+ ||x||dom( A)l/s) s/2 for x e dom(—A)Y/>, where
XM dom(—ayvs = (X117 + [(=A)Yox[|2) 2.
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Proof. By the above results, we see that
t
(349)  E[lI(-A)°x(t,x0)lI7] < Cr Yo%} + CL E[llx(s, xo) | y1ds.

As E[|[x(s, x0)[I5,] < C(1 + ||x0ll}}) by Proposition BZ20, the result follows. [

Theorem 3.33. The operator P;: Bwf/S((dom(—A)1/5)W) — B¥(H,,) is well-
defined for n > 4 and t € (0, T|], and satisfies

(3.50) IP:f | , SCEVNF

B (H ((dom(—A)/5),)

for f € B”’fxs((dom(—A)%)W) and te (0, T].

Proof. The norm bound follows immediately from Corollary B32. To see that P
satisfies the given mapping property, note that P; leaves BwS(HW) invariant. [

The following result shows that we are actually in the same situation on
dom(—A)1/> as we were on H.

Lemma 3.34. Under the assumptions given at the beginning of this section,
Vo, Vj: dom(—A)Y - dom(-A)", j=1,..., d, v € (0,1), are well-defined and
Lipschitz continuous mappings.

Proof. By [12, p. 170, Theorem 6.1], the domain of the fractional power (—A)%
agrees with a certain interpolation space,

(3.51) dom(—A)Y = (H,domA)y>, 7€ (0,1).
Hence, Assumption B13 together with [T, Proposition 3] yields the claim. [

Corollary 3.35. The operator P;: BY:((dom A%),,) — BY¥(H,,) is well-defined
forn>4 and t € (0, T], and satisfies

(3.52) || Pf| ce 7|

B (Hu, ) B2 ((dom A%),,)
for f € BY((dom A%),,) and t € (0, T].

Proof. Lemma shows that we can consider the equation (BZ) also on
the space dom(—A)'/®, and that we are in the setting of Theorem BE33. An
induction yields the claim. ]
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Chapter 3. Stochastic Processes And Weighted Spaces

Note that we can actually prove a similar result for spaces of differentiable
functions due to Theorem =31, as well. Hence, we can obtain optimal conver-
gence estimates for functions defined on dom A¢ and initial values in dom A¢ by
the use of graded time steps, see, e.g., [39, 001, T07].

Remark 3.36. Assuming that the vector fields V4, Vi,j=1,...,d, themselves
have a smoothing effect, such a result can be obtained in a less technical manner.
To be precise, suppose that Vg, V;: H — dom Ak i=1,..., d, with

d

(353) 100 lgom ax + DIV lldom e < C (L4 [Ixl)  for all x € H.
j=1

That is, we only require linear growth of the mappings H — dom AX, but not Lip-
schitz continuity. Such an assumption is often satisfied in applications in math-
ematical finance, see [35]. Then, we easily see that P;: B¥+k((dom ALTK),,) —
BY((dom A%),,) is well-defined and the bound

—k
(3.54) 1Pl g < Ct

Vik ((dom AL+K),,) BY (dom A)))

holds true, without having to resort to interpolation theory.
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Chapter 4

Splitting Schemes For
Stochastic (Partial) Differential
Equations

The aim of this chapter is to show how splitting methods can be applied to
stochastic partial differential equations under realistic conditions, improving sig-
nificantly on the results from [6]. The results of Chapter B allow us to use the
theory of exponential splittings to prove optimal rates of convergence of split-
ting schemes for stochastic (partial) differential equations with linearly growing
characteristics and for sets of functions with controlled growth.

In Section B, we apply the results of Chapter B to the derivation of esti-
mates of the rate of convergence of splitting schemes. Under the assumptions
made in Section B2, we obtain optimal estimates for sufficiently smooth func-
tions. Section EZ2 contains an analysis of extrapolation schemes based on the
symmetrically weighted sequential splitting. For smooth functions, an asymp-
totic expansion in n~—2 is obtained, allowing fast error reduction in this case.
Section B3 is concerned with an application of the theory to the Heath-Jarrow-
Morton equation of interest rate theory. We are able to calibrate the model to
given data, and price a swaption using the calibrated model.

4.1 Error estimates

Assume the setting of Section B2, i.e., we suppose that Assumptions B3,
B3 and B3 are satisfied. We consider two splitting schemes for (BI8), the
Lie-Trotter scheme (i.e., the Euler scheme in a geometric integrator version),
and the Ninomiya-Victoir scheme. We derive convergence estimates for both
splittings.
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Chapter 4. Splitting Schemes For Stochastic (Partial) Differential Equations

We define 20(t, x), Z(t,x), j=1,..., d as the solutions of

(4.1) —7%(t, x0) = AZO(t, x0) + Vo (2°(t, %0)).

dt
(4.2) dZ/(t, x0) = Vi(Z(t. x0)) 0 dB), j=1,..., d.

This exact manner of splitting up the stochastic partial differential equation
is not mandatory in our setting as it is in approaches guided by Lyons-Victoir
cubature [70, 80, 6], but it is very helpful — for j = 1,..., d, the processes
Z/(t, x) are given through evaluation of the flow of the vector field V; at random

times given by WJ Z(t,x) = FlIz Y ( ), where Flg J denotes the flow defined by

V. Note that only the equation for z (t, Xo) contains the unbounded operator
A, but that this equation is a deterministic evolution equation on H.

By Theorem B4, ||PJ|| (Y (Ha)) < exp(wjt) with some constants w; € R,

Remark 4.1. For the split semigroups, we can also prove pseudocontractivity
directly without invoking the Székefalvi-Nagy theorem. Indeed, for P/, j =
1,..., d, we can apply 1t6’s formula. For Pto, we use the mild formulation

t

(4.3) Z0(t, x0) = exp(tA)xo + L exp((t — 5)A)Vo(2%(s, x0))ds,

where exp(tA) denotes the semigroup generated by A at time t. As A is pseu-
docontractive, we can assume without loss of generality that A is contractive by
adding the growth to \j3. Denoting the linear growth bound of V4 in Hy by L,
IVo()llks, < L(L+ [x]l14,), this vields

t
12°(t, x0) I, < lIxollrs, + L IVo(2°(s. x0)) I+, ds

t

(4.4) < Dol + [ L1+ 12%(5.50) )
0

From the Gronwall inequality,

(4.5) 12°(t, o) 11, < (Ix0llm, + Lt) exp(Lt).

Thus,

+ (IIxllH, + Lt)* exp(2Lt)
(14 |[x0ll1,)? (1 + L2t%) exp(2Lt),

1+ [12°(t. x0) 17, <
<

(4.6)

66



4.1. Error estimates

which proves the bound

(4.7) ¥y (2°(t, x0)) < exp(wt) ] (xo0)

for t = 0 with w = 4Ln.
This, together with the fact that the split semigroups approximate P; strongly
on B¥((Hg)w) (see Corollary EE13), yields an alternative proof of Theorem BI8.

We now define two well-known splitting schemes and prove optimal rates of
convergence on spaces of sufficiently smooth functions in our general setting.

Definition 4.2 (Lie-Trotter splitting). One step of the Lie-Trotter splitting reads

LT . 0 pl d
(4.8) Q(At) i= PaePar- - Par
which is a geometric integrator version of the well-known Euler scheme.

Definition 4.3 (Ninomiya-Victoir splitting). One step of the Ninomiya-Victoir
splitting reads

1
(4.9) Q(NAVt) = E'Dgt/z (PAlt"'Pgt + Pgt T P&t) Pgt/z

which should in theory improve the weak rate of convergence of the Lie-Trotter
scheme by one order.

The Ninomiya-Victoir splitting can be seen as a variant of the classical Strang
splitting, generalised to a sum of more than 2 generators. _
Let G; with domain dom G; be the infinitesimal generator of (P/)¢=0, where

(P))¢=0 is considered on B¥¢((Hy)w) with some fixed 0 < £ < £y. The function
spaces defined below will be fundamental for proving convergence estimates.

Definition 4.4. Let p > 1 be given. We say that f € M? if and only if

.....

(4.10) Cr = sup ||QJ‘1 . "gijtwag <o and
te[0,T] 0
jl ----- J p:O ..... d

d i
(4.11) G'Pef = (2 gj> Pef, i=1,....p.
=0
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Chapter 4. Splitting Schemes For Stochastic (Partial) Differential Equations

Proposition 4.5. Let Qa: be a splitting for Pay of classical order p. For f €
M?H, the splitting converges of optimal order, that is, with a constant Cr
independent of ne N and At > 0, we have that for nAt < T,

(4.12) ||PnAtf - QgAt)lellgo < Cf(At)p'

Proof. Set g := Pf € domG n ﬂjjzo G;. The results in [49, Proof of Theo-
rem 3.4, Section 4.1, Section 4.4] prove existence of a family of linear operators

Tian: BWO((HZO)W) — BWO((HgO)W) that are uniformly bounded, i.e.,

4.13 sup || T, n < Ce <o forsomee >0,
(*13) a7 @olly 4y 1, < €

such that the difference of the Taylor expansions of Parg and Qa9 of order p
is given by

(4.14) Patd — Quand = (AP TanEpiag,
where &1 is a linear combination of the operators G, -+ Gj .., j1, ..., Jp+1 =
0,..., d. Here, we apply that by assumption, GP*1 is itself a linear combination

of these operators when applied to g. Thus,

(4.15) [1Parg — Quan9llyy < Cr(At)PTH | Tiapl v < Cr(At)PH

L(B 0 ((Heg)w))

It follows that

Popcf — QM Fllyr < Cr(ADPHE S |Q g
| Poat (At) Hweo r(At) ;H (At)HL(BwZD((HgO)W))

(4.16) < Cr(At)P,
which proves the result. ]

For the Lie-Trotter scheme, we set M%T = MQT and for the Ninomiya-
Victoir scheme, M¥V = M3T The following results are now an easy conse-
quence of Proposition E3.

Corollary 4.6. For f € MY there exists a constant C¢ > 0 such that for all
te |0, T] and meN,

(4.17) 1PeF = (Qeymy) "Fllyy, < Cem ™
Hence, for f € M%T, the Euler splitting scheme converges of optimal order.
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Corollary 4.7. For f € MYV there exists a constant Cs > 0 such that for all
te[0,T] and meN,

(4.18) |Pef — (Q?‘t\/’m))mfu% < Crm™2,

Hence, for f € M7N-V, the Ninomiya-Victoir splitting scheme converges of optimal
order.

Remark 4.8. It is possible to consider other splittings than the Lie-Trotter or
the Ninomiya-Victoir schemes. It is, however, not possible to obtain higher
rates of convergence due to inherent limits of generic splitting schemes with
positive coefficients (see [5]), and positivity of coefficients is mandatory in the
probabilistic setting under concern. To obtain higher order methods, we can
either resort to extrapolation, see Section B, or to cubature methods, see
Chapter B.

We derive easy conditions guaranteeing f € M#V.

Lemma 4.9. [et0< k< ko—1and 1 <2< 4y Then,

d
(4.19) N Gif =Gf forall f e Byt ,((He)w).
j=0
Proof. This follows directly from Corollary B28 applied to G; and G. O

Next, we prove that P; leaves smooth functions invariant.

(n)
Lemma 4.10. Let 1<£<4y, n>2and0< k < ko. Then, PBY* ((Hp)w) <

w(”)
Bt ((He)w), and supepo 1l Pefl < Krllf|l
independent of f.

with some constant Kt

B k B k

Proof. Proposition B2 yields: for all T > 0 and p € [1,0), there exists
Cp,7 > 0 such that

E[| D4, x(£,30) I ] < C7

(4.20) forall xe Hy, £=0,..., £o,j=1,--- kand te [0, T].

Moreover, the mappings xg — Dﬁ;ox(t,xo) are almost surely norm continuous.
It follows that Pr(CK(H,)) < CK(H,) forall t € [0,T] and £ =0,..., £o (note
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Chapter 4. Splitting Schemes For Stochastic (Partial) Differential Equations

that we can apply [I09, Proposition 4.8c)] instead of [24, Proposition 7.4.1] to
obtain this sharper result). Furthermore, for f € C’,;(Hg), the Cauchy-Schwarz
inequality yields that for xp, x; € Hg such that ||xi[[4, < 1,

|DPef (x0) (1)l < E[IDX(t, x0) 1 (hgiti I DF (x(t x0)) (b1
< Flyp-r L ELIDX(E 0 i s ¥~ (x(E30))]
< Flyp-2 s BIDX(E 50)F (1) 2B LW (x(t %0))°]2
(4.21) < Crlflypmt ¥ (%),

where we apply that 9} (x)? = 97"(x) and that by Assumption BI5,

(4.22) B[, (x(t, x0))] < Cr; " (x0).-
Thus,
(4.23) | P:f || < CrlIf|l for all f e Ch(Hg_1).

P 1 Y"1

A similar argument applies for higher derivatives. Theorem =X now shows
(m (m
P(BY ((Hy)w)) = BY* ((Hy)w). This proves the claim. 0

Theorem 4.11. Suppose £y > 4 and kg = 6. Choose 1 < £ < £y — 4. Then,
(m)
Bg}e ((He)w) € MYV In particular, C§(H) = MYV,

Proof. By Lemma E10, ||Ptf||w(n) 6 S KT||f||¢(n) ¢ <ooforall te0,T]. The
{ L

first claim follows by Corollary B2 together with iterating Lemma Z4.
The second claim follows from Theorem X1 O

The following theorem follows analogously.

Theorem 4.12. Suppose £y > 3 and kg = 4. Choose 1 < £ < 4y — 3. Then,
(m
BZJZ ((He)w) € M5 In particular, C}(H) = MY

Corollary 4.13. Let f € BWO((HZO)W). Then, for any t > 0,
(424)  lim [[Pef — (QKl) Fllgp = lim [IPeF = (QNY)"Fllyg =0,

that is, t/le Lie-Trotter and Ninomiya-Victoir splittings converge strongly on the
space BY% ((Heg)w)-
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4.2. Extrapolation

Prooé This follows from the density of bounded, smooth, cylindrical functions
in B% ((Hg,)w), see Theorem D°TA. O

Example 4.14. Assume that Vo = 0 and that the V; are constant, j =1,...,d.
This includes, in particular, stochastic heat and wave equations on bounded
domains with additive noise. It is easy to see that if A: domA — X admits a
compact resolvent, we are in the situation described above, and the Ninomiya-
Victoir splitting converges of optimal order.

Example 4.15. Finite-dimensional problems with Lipschitz-continuous coeffi-
cients are also included in this setting. Here, A can be chosen to be zero,
and the embedding is trivially compact due to the local compactness of finite-
dimensional spaces.

4.2 Extrapolation

As noted above, the order that can be attained by splitting schemes is limited
to two in our setting. Therefore, it is interesting to ask whether there is an
alternative approach to constructing methods of higher order. While using ex-
trapolation is well known, Gyongy and Krylov provide in [43, 4] an approach to
this problem which is well adapted to our setting. We shall consider their ap-
proach from the perspective of strongly continuous semigroups and obtain error
estimates for the extrapolated symmetrically weighted sequential splitting.
To this end, we shall use the following setup.

Assumption 4.16. (V,||-|ly) is a separable Banach space. For j = 0,...,d,
G;j: domG; c V — V are infinitesimal generators of strongly continuous semi-
groups of pseudocontractions P{ := exp(tG,). There exists a sequence of Ba-
nach spaces (V. ||-||v,) with the following properties:

(i) Vo =V with coinciding norms.

(ii) Vst is a dense subset of Vy, £ = 0.

(i) V1 cdomg;, j=0,..., d,and Gi(Vegr1) <V, £20,,=0,..., d.

(iv) P/(Vg) € Vy and PJ: Vy — Vy is continuous, £ >0, t>0,,=0,..., d.

Finally, the operator G := Zj‘-jzo Gj, defined on V1, is closable, and its closure

generates a strongly continuous semigroup (P:)t=o of pseudocontractions.
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Assumption BET8 implies that V, is a core of G;, £ > 0, j =0, ..., d (see
Proposition BH[vi)), and V1 is a core for G by assumption. Setting

(4.25) 6(At) = PAOt"'PAdt and (@(At) = Pgt"'PAOtv
the Chernoff product formula [34, Theorem 111.5.2] shows that

(4.26) lim ||Pef — @y flly =0 forall feV,
00 (t/n)

the limit being uniform for t € [0, T], T > 0 arbitrary, and similarly for 5(&)-
Assume finally that G(Vy11) € By, Pe(Ve) € Vg and Pr: Vy — V), is continuous,
£>0,t>=0.

Proposition 4.17. Given Assumption 14, there exist elements ?k, ?k e Vo,

k=1,...,m, such that for every f € Vz(m+1),
n m
(4.27) 6(T/")f —Prf= Z ”_k?k +n~ P, and
k=1
<«<n m —
(4-28) Q(T/n)f — PTf = 2 n*k f K+ nimil(?m,n,

>
Il

1

where (T m.n)neN, (T m.n)nen are families of elements of V such that |7 m.nllv,
|7 m.nlly < Cm with some constant Cp, = 0 independent of n.

Proof. This follows in a straightforward manner from the results in [44, Sec-
tion 5], as the assumptions there are clearly satisfied for generators of strongly
continuous semigroups if the spaces V, are invariant with respect to these semi-
groups. ]

In [B2], it is used that so-called Fujiwara splittings have the advantage that
we not only obtain an asymptotic expansion in n—1, but actually in n=2. This
means that we gain two orders of convergence per extrapolation step, not only
one. We now prove that this holds true for the symmetrically weighted sequential
splitting, as well.

Theorem 4.18. Given Assumption B 14, we have that

1
(4.29) Fows1+ Foxs1 =0 fork=0,.. ., [mQJ
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4.2. Extrapolation

Thus, setting g, 1= %(?gn + (72,{), k € N, we obtain

|72
(4.30) (Qlrmf + Qlrmf) = Prf= 3 12 getn ™ L,
k=1

1
2

where rm p = %(?m,n + ‘Tm,n), and is thus bounded in the norm of V indepen-

dently of ne€ N.

Proof. Consider the exact representation of ?k and ?k resulting from [44,
Theorem 22], that is,

(4.31) ?k = Z ?k(O', ’Y)SUUfy.

(o,7)EA(2k)

Here, for a sequence o = (B, . . ., B;) € Z of multinumbers, Bie M, i=1,..., 7
Se =RLp, -+ RLp,, where

(4.32) M={ay...0j: ;€ {0, ..., d}, je N}
is the set of multinumbers and

(4.33) T={(Br....0):Bie M jeN}.

For g e Wp := {f:[0,T] = Vo: f is weakly right continuous}, we denote the
solution operator of the integral equation

t t
(4.34) u(t) = J Gu(s)ds +J g(s)ds for te [0, T]

0 0
by R: Wo — Wo, Rg := u. Gg is defined recursively by Gor = —GaGr, vy = Gyu
with u(t) = P:f, and

(4.35) Al ={(oc.7):0ceL yeM, |o|+ |y < i},

and similarly for F . Note that the coefficients Tx(0,7), Tk(o,v) are indepen-
dent of G,. We see that if we can prove in an algebraic manner that the above
claim holds true, then we obtain it for arbitrary strongly continuous semigroups.

Assume therefore that V is finite-dimensional. Then, P/ is invertible for all
t > 0 and (P!)ter is a strongly continuous group if we set P/, := (P/)~! for
t > 0. Setting

(436) E(n) = (6?7—/”)7( + (5277—/”),:) — IDT,
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we see E(—n) = E(n) for all n e N by noting that

(4.37) (6(4)) T 5@),

whence n — E(n) is an even function. This entails that all odd terms in the
asymptotic expansion of E(n) have to vanish. Thus, the claim holds true if we
choose the G; to be arbitrary matrices in a finite-dimensional setting, showing
that the coefficients T (o, ) and T (o, ) have to be such that

~1
(4.38) Fows1+ Foxsr1 =0 forw=1,..., [m2J

The result follows. OJ

Remark 4.19. The above result is closely connected to the theory of geometric
integrators: in that nomenclature, (E=312) states that Q(¢) and 6@ are adjoint
to each other, see [48, p. 42]. In this setting, it is well-known that combining a
method with its adjoint increases the order of convergence.

The above results are clearly applicable to the setting of Section E-1. Con-
sider the approximation

1

(4.39) P~ Qunim 5 ((Pf/n P (P Pto/n)”) _

We obtain the following result.

Theorem 4.20. Let (9;)j=1...m, 0; € N, be pairwise distinct and let (8;)j=1,...m
be such that 3" 1 6; =1 and Y71 6,672 =0, k =1,.. ., m. Assume further-

(m
more that £ € BY. ((Hy)w) with 0 < £ < €y —4m — 1. Then,

m
(4.40) IPrf =" 6;Q7 s, ] < Cen 2™,

~ B (i)

where C¢ depends on the choice of the points (3;)j-1
n.

m and on f, but not on

Remark 4.21. For the case m = 1, this result is worse than Theorem BT, as
we have to assume more smoothness of f. Its importance is however, of course,
its applicability to obtain methods of even higher order through extrapolation.
Nevertheless, we want to remark that the degree of smoothness required in
Proposition 214 appears to be suboptimal, and we expect that the conclusion of

(m
Theorem EZ20 holds true for f € B;p(l2m+1)((/'/g)w) with0 < £ < p—2(2m+1)-1.
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4.3 Numerical example: the HJM equation of interest
rate theory

We consider the approximation of the Heath-Jarrow-Morton equation of interest
rate theory. For a background on interest rate modelling, see [20, 78, U5, 36].
The state space consists of forward yield curves r: [0,0) — R, the parameter
being time to maturity. In its more natural 1td formulation, the equation reads

d
(4.41)  dr(t,r0) = (Ar(t, ro) + arum(r(t, ro)))dt + > o(r(t, r0))dBY,
j=1
r(0, ro) = no.

Here, A = %. Hence, this problem can be interpreted as a stochastically per-
turbed transport equation.

If we want to price financial derivatives by taking expectations, it is nec-
essary to use the risk-neutral measure as underlying probability measure. Un-
der this measure, loosely speaking, traded financial derivatives become (local)
martingales, see [36, Section 4.3]. For our purposes, this means that oy
and o} are coupled by the Heath-Jarrow-Morton drift condition, see, e.g., [35,
Lemma 4.3.3], [25, p. 61], [36, Theorem 6.1]. Thus,

d X
(4.42) arm(r)(x) =), Uj(f)(X)f 0j(r)(§)dg.
j=1

0
Recall from Section B2 the choice of spaces
(4.43) Hp:={he L (Ry): W e HET (R},

endowed with the norm

1/2
(4.44) 1Al = ( 1A(0)? + 1A 110 :
Hae (R+)

We remarked there that A(Hy) < Hy—1,£=0, ..., £y. On every Hy, the infinites-
imal generator of the shift semigroup (St)t=0, Stf(x) = f(t + x), equals A on
the dense set of infinitely often differentiable functions with compact support.
As we want to apply a second order splitting, we fix €5 = 6; for the first order
splitting, the choice £y = 4 is adequate. Defining %; and ¢, ; according to (B12)
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and (BI13), we see that we need to satisfy Assumptions B 12, B 13 and BIH.
Assumption B2 is clear by definition. Theorem proves Assumption B13,
hence Theorem B19 yields Assumption B13.

It remains to choose vector fields o;, j = 0,..., d, in such a way that
Assumption B3 is fulfilled. We do this in the following way: forj =1, ..., d, let
o;j(r) = gj(r)\j, where \; € Hy, satisfies limy_,o AJ(Z)(X) =0forl=0,..., £,
and g € A(H-1). As 0; € A(H_1;Hy,), we see that o; € Cf(Hy He), £ =
0,..., b, j=1,..., d. This choice is inspired by the results from [37].

Finally, consider the Stratonovich drift Vo(r) = otim(r)—3 ij:l Doj(r)oj(r).
As argued above, the It6 drift has to have the form

d X
(4.45)  apm(r)(x) = 2 f oj(r)(§)d¢ forxeRy and re H 1.

In our case, this expression simplifies to

d X
(4.46) () (x) = 2 f M(E)dE,

0

and we see that oy € A(H_1; Hg,): we have that

d* x x & ()1
o) g (w00 [ r96) =000 [ s+ DA 00

The Lizo (R4) norm of the first term is bounded due to [35, equation (5.3)].
Estimating the norms of the terms in the sum similarly as on [35, p. 79] using
[35, equations (5.7), (5.8)], it follows that apm takes its values in Hy,. Thus,
asgie A(H-1).j=1,..., d, the claim follows.

There is one final term in V4, the Stratonovich correction. It equals

1¢ 1Y
(4.48) . Z 3. Z r)Dg;(r)(A)A;.

This is again in A(H_1; Hg,). Hence, we obtain that Vg € A(H_1; Hy,), and
Assumption B13 is satisfied.

As a concrete choice, let us assume that for j = 1,..., d and some mesh
(ti)i=1,...m of time points,
(4.49) gi(r) = v(r(ta), ..., r(tm)),
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4.3. Numerical example: the HJM equation of interest rate theory

where «; € CP(RM). Such a choice is admissible as point evaluations define
continuous linear functionals on H_7, and has the economic interpretation of
using benchmark forward rates to drive the process [B4, p. 135]. Furthermore,
for some N e N,

N
(4.50) Aj(x) = Z ajix' exp(—Bix),
i=0

where the §; € (0, 0) are chosen in such a way that A\; € Hy,, and aj; € R.

To determine the parameters of our model, we calibrate to the caplet prices
given in [B0, Section 2.6]. Caplets are financial derivatives on rates, paying off
a certain amount if the rate is larger than a fixed strike, providing insurance
against rising rates. More precisely, with the price of a zero coupon bond at
time t with maturity 7 given by

-
(4.51) P(t, T):=exp (—f r(t)(T)dT) :
t
we define the LIBOR rate with maturity T for § > 0 by
1 P(t,T)
(4.52) L(t,T) =+ (P(thﬂs) - 1>

and the payoff of the caplet on the LIBOR at T, which is settled at T + 9, with
strike K by

(4.53) Crys(T.K) == (L(T.T) = K), .
Here, x; := max(x, 0) denotes the positive part of x € R. Note that while the
value of C145(T, K) is determined at time T, the cash flow happens only at
T + 6. The LIBOR rate is defined in such a way that

P(t,T)

(4.54) 1+OL(ET) = B gy

l.e., discrete time interest over the time interval [T, T + §] with rate L(t,T)
corresponds to the bond structure. By standard no arbitrage arguments, we
obtain that the fair value of the caplet at time t < T is given by

(4.55) Ce(T, K) = E[B7LsCrs(T. K],

7



Chapter 4. Splitting Schemes For Stochastic (Partial) Differential Equations

where B: = exp (Sé r(s)(O)ds) denotes the money market account, where

money is continuously compounded by the short rate r(t)(0)

To fully discretise the stochastic partial differential equation, we approximate
r by a piecewise affine and continuous function. Choosing Ax = At, we see that
%r(t, ) = d%r(t, ro) is solved exactly by the shift, whence we do not incur
any additional error from the space discretisation. We apply the symmetrically
weighted sequential splitting analysed in Section E2. In order to solve the re-
maining deterministic problem, %r(t, ro) = Ar(t,ro) + W(r(t, ro)), we again
perform a splitting into the equations

(4.56) %r(t, r) = %r(t, r),
(4.57) %r(t, ) = g;(r(t, r0))?\ L Aj(£)dg,
(4.58) & H(t.r0) = ~3,(r(t, 1)) Dgy (£, ) ).

Embedding this in the symmetrically weighted sequential splitting, we see that
we preserve the rate of convergence of 2 also for this scheme.

In the calibration, we set d = 3, i.e., we use a three factor model. The
functions «y; are of the form

(X air(t) (1 + 337 bi(ri)
1 +Z7;1 C,‘I’(i',')2 '

with the parameters a;, b;, ¢; and t;. We assume that y; = 72, with m = 2, and
v3 with m = 1. The A; are all chosen independently, with N = 3 each. Hence,
in total, we have 24 parameters. The final error obtained in the calibration after
500 Levenberg-Marquardt steps using the code by Lourakis [6Y9] was 292 basis
points, where the error is measured in the fit to the implied volatility surface
given in [B0, Section 2.6]. The fit is shown in Figure E3. The calibration time
was 7.5 minutes, in which 1557 evaluations of the entire implied volatility surface
were performed, using 2048 quasi-Monte Carlo paths each.

As an application, we price an at the money payer swaption. A payer swaption
is the right, but not the obligation, to enter a payer swap at a certain future
date T with a certain, a priori determined fixed rate K. A payer swap in turn is
an exchange of a fixed rate versus a floating rate, i.e., at certain pre-determined
points in time, the owner of the payer swap receives the floating rate, and pays
the fixed rate. Hence, a payer swap protects against changing rates. The price

(4.59) v(r) =
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ttm: 2, L=0.048991 ttm: 3, L=0.051456 ttm: 4, L=0.053408
3
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Figure 4.1: Fit of caplet volatilites

Circles correspond to market prices, crosses to the prices given by the model.
ttm denotes the time to maturity of the time slice, L the current LIBOR rate
for the corresponding period.

of a payer swap with fixed rate K at time 0 is given by

N
(4.60) PSo:=1—P(0, Ty) — Y 6KP(0,T)),
=1

by a no arbitrage argument, where T; = id, i.e., we assume equidistant payment
dates. The at the money price of a payer swap is the amount for K such that
PSo = 0. A no arbitrage argument shows that the time O price of a payer
swaption is given by

N
(4.61) E[Br(1— P(T. Ty) = D 6KP(T. )41,
i=1

where now T; = T + /6§, and x5 := max(x, 0) again denotes the positive part.
In our numerical example, we let § = .25 and N = 12. At time 0O, the at

the money value of the swap is Katm = 0.0442608. Using this as strike in the

swaption, we obtain the reference value 0.01192380 by solving the problem with
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0.1 E|

0.01 [ 4

relative error

0.001 E|

0.0001

| |
10 100
time steps

Figure 4.2: Error, swaption prices

220 quasi-Monte Carlo paths and 120 time steps. The numbers in Figure B2
were obtained using 216 quasi-Monte Carlo paths. The rate of convergence is
approximately 1.7. We note that with 12 time steps, we obtain a relative error
of less than le — 3, proving the viability of the new method.
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Chapter 5

Cubature Schemes For
Stochastic (Partial) Differential
Equations

In Chapter 8, we saw a way of extending Ninomiya-Victoir-type splitting schemes
to stochastic partial differential equations. However, as noted there, it is not
possible to obtain splitting schemes of orders higher than 2 for generic equations.
On the other hand, cubature formulas are available of high degree, see [45] for
paths resulting in rates of convergence up to 5 for single factor problems. This
means that a proof of rates of convergence for cubature methods would allow us
to obtain high order methods for the numerical simulation of stochastic partial
differential equations without having to resort to extrapolation.
Similarly as for splitting methods, we need to obtain results ensuring that

(i) the approximation operators (Q(t))t>o defined by the cubature method are
power bounded in an appropriate weighted 4-norm, and that

(ii) a local error estimate of the correct order holds true.

Together, this will yield convergence of high order for sufficiently smooth func-
tions, similarly as in Theorem E_TTl.

In this chapter, we will mainly focus on the proof of stability of cubature
schemes with respect to weighted norms. In Section B, we show that cubature
is always stable in finite dimensions. In infinite dimensions, we first consider
stochastic ordinary differential equations where the vector fields have a nons-
mooth time dependence. Afterwards, the method of the moving frame vyields
stability for cubature approximations of Da Prato-Zabczyk equations where the
generator is pseudo-contractive. In every case, convergence is easily obtained
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by an application of the local expansions obtained in Section B2, and in Sec-
tion B2, we formulate corresponding results. Finally, in Section B=23, we show
that in finite dimensions, we have smoothing effects in BY spaces under the UFG
condition, allowing us to obtain optimal estimates of the rate of convergence
for nonsmooth payoffs.

5.1 Stability of cubature schemes

We prove stability of cubature on Wiener space in the setting of weighted spaces.
See Section T2 for the definition of cubature paths.

5.1.1 Finite dimensional state space

Given a Stratonovich SDE on RV,

(5.1) x(t. x0) =Z x(t.%0)) 0 4B}, x(0.x0) = xo.

with vector fields V;: RV — RN, the cubature discretisation of the Markov
semigroup P:f(xp) := E[f(x(t, x0))] reads

N
(5.2) Qanf (x0) Z x(Bt, x0;w"™)),

where x(s, xp; w,(m)) is the solution of the problem

d .
(5.3a) dx(s, xo; w Z X(s, x0; W, At)))dw,(M)'J(s),
Jj=0
(5.3b) x(0, xo; w,(m)) = Xp.

Theorem 5.1. Let the cubature formula (wl(At),A,-),-"il be of order m > 1.
Suppose that : RN — R is an admissible weight function, and assume that

(5.4)  VViY(x)| + Vig(x)| < Cop(x) fori=0,---,dandj=1,--d,

where we require that all the necessary derivatives are well-defined.
Then, there exists a constant C > 0 independent of At > 0 such that

(5.5) Quany¥(x0) < exp(CAt)Y(x0) forall xo € RN
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Proof. We define the intermediate operator

N
(5.6) Qat,s)f( Z x(s, xo; W At))) for s € [0, t]
and note that Q(ar) = Qat.ar)- We see that

(At)

d s
v,b(x(s,xo;w,(m))) = Y(x0) + ZJO Vi (x(r, Xo;w,(At)))dw/ 2(r)
j=0

S d -
= vlo) + fo Vo (x(r, 301w ))dr 4 3 Vit (o), " ()

=1
& o A Ab) .k At) )
(5.7) #2000 [ [ wwic(a i ®))au O @l (1)
=1 k=0
Note that
° A ° A
(5.8) J Vo (x(r, xo;w,( t)))drs CJ w(x(r,xo;w,( t)))dr.
0 0

Furthermore, as |w,(m)’j(5)| < C(At)Y? and |a%w,(m)‘j(s)| < C(At)~Y/2, Fubini's
theorem yields

S r .
| | vvwixta oo au @du> ()
0 JoO

“LIUJE“J( w9 (@) (x(q, 301w >0)) | 2

At)j
a*qw,( )J(Cl)‘dq

(5.9) < CLS’l/)(X(C],XO;wI(At)))dq.

Thus, we see that
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Defining aats(x) 1= 27:1 Vi(x) Z,’\lzl A,w,(m)'j(s), Gronwall's inequality yields
that

Qats)¥(x0) < P(x0) + aars(x0)

(5.11) + Ls (Y(x0) + aat.r(x0)) Cexp(C(s —r))dr.

Note that aat ar(x) = 0 by the equality Z,N:l A,-wat)'j(At) = 0. Furthermore,
C C
(512)  aaes(x) < CVAtY(x) < S(1+ADY(x) < 5 exp(AD)P(x).
This proves
C
Quan¥(x0) = Quatan¥(x0) < ¥(x0) <1 + o exp(At)(exp(CAL) — 1))
(5.13) < exp(CAt)Y(x0),

where C = max(C?/2, C 4 1), that is, the required estimate. l

5.1.2 Time-dependent stochastic ordinary differential equations
on Hilbert space

Let H be a Hilbert space, and consider the nonautonomous stochastic ordinary
differential equation

d
(5.14) x(t, x0) = Z (t.x(t,x0)) 0dB,  x(0,%) = x,

on H. The cubature approximations of (E-14) read

d

(5.15a) dx(s, xo; t, w 2 (t+s,x(s, xo; t, w(At)))d (Af)J( s),
Jj=0
(5.150)  x(0.x0:t, W) =,

The approximation operator is given by

(5.16) Qfpnf( 2 A F(x(At, xo; t, WD),

84



5.1. Stability of cubature schemes

Definition 5.2. A cubature formula (oJI(At), Ni)iz1....,
every ie{l,..., N3}, there exists some i’ € {1, ..., N} such that \; = Xy and

(517)  w®(s) = —w(*D(s) forall se[0,At]and j=1,....d.

It is called weakly symmetric if for j=1,..., d,
(5.18) Z AW, At)J =0 forse]0, At].

Remark 5.3. Clearly, all symmetric cubature formulas are also weakly symmetric.
Note that many known cubature formulas are actually symmetric. Moreover, a
non-symmetric cubature formula can be made symmetric by adding the negatives
of the paths with the same weights to it and finally halving all the weights. This
will at most double the number of paths. Thus, if we use a cubature formula
with a small number of paths in high dimensions, we can also find a symmetric
cubature formula with this property.

Theorem 5.4. Suppose that the cubature formula used in the definition of Q(tA B
is weakly symmetric. Let 4 be an admissible weight function on H and suppose

(5.19) 1D%(x)
(5.20) 1D (x)

C(L+ IxIP)~*%(x)  and
C(1+[IxI1*) " (x)

with some constant C > 0, Furthermore, assume that for some constant C > 0
independent of t,

(5.21) |Vi(t,x)|| < C(1 + Ix|>)Y? forj=0,..., d, xeXandtel0,T],

and that x — V;(At, x) is continuously differentiable with derivative bounded
uniformly in t € [0, T] forj =1, ..., d.

Then, there exists a constant C > 0 such that for all t € [0, T| and At €
[0, T —t],
(5.22) Qian¥(x0) < exp(Ct)p(xo) forall xo € H.

Proof. Define the intermediate approximation for s € [0, At] by
N
(5.23) Qfptof( Z X(s, x0; t, w™Y)).
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As above, we note that Q (Atar) = Qfm)- For 0 < s < At,
Y(x(s, xo; t, w(A ))) P (xo0)+

(5.24) ZJO Dy(x(r, xo; t,w,(At)))\/J(t +r,x(r, xo; t, w(At)))d (At)J( r).
Consider gj(r, x) := Dy(x)V;(t + r, x). Then,

r
gi(p. x(r x0; £, ")) =gj(p. x0) + Y L Dyg; (0. x(q, %0 t, D)) x

(5.25) x Vi(t + q,x(q, xo; t, wl(m)))dw,(m)'k(q).
From (B0), (6220) and (B=Z1), we obtain that for 0 < s <At < T

[90(r. X)[ = [DY()Vo(t + r.x)| < CIDY )| - [Vo(t + r. x)|
(5.26) < CY(x).

We argue in a similar manner for D,g;(r,x)Vi(t + ¢.x), j = 1,..., d, k =
0,..., d, to obtain that for 0 < g < r < At,

|Dxegi(r, x)Vie(t + g, )| = [D2(x) (Vj(t + r, x), Vie(t + ¢, %))
+ DY (x)DxVi(t + r, x)Vi(t + g, x)|
(5.27) < CY(x).

By an application of Fubini's theorem, similarly as in the proof of Theorem B,

PY(x(s, xo; t, w( Tt))) PY(x0) + fsgo(r,x(r,xo;t,w,(At)))dr
0

[ 920

d

2

d d s pr

Z ZJ J Dxgj(r. x(q, xo; t, w(At)))x
Vi(t +

Y (%0

x(q, xo; t, w(At) dw(At)k dw(At)’j r
]

J PY(x(r, xo; t, w(At)))

d s

(5.28) + Z J gj(l’, XO)de(At)'j(r)'

j=1"0
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where we apply that At < 7. As from the weak symmetry of the cubature
paths,

ZNI i f (r.x)dw () = il L g x)d@Nl A,-wfm'f(r))
(5.29) o = Jo_ :
we obtain
(5.30) Qoesyp0) < () + C [ Quacsybloadr

An application of Gronwall's lemma yields Q(At)d/(xo) < exp(CAt)Y(x0), which
proves the result. O

Remark 5.5. It is clear that the given assumptions on the vector fields and the
weight function are not the only ones possible. Instead, we could also require
the vector fields to be bounded uniformly in t € [0, T], and allow the weight
function to satisfy ||[Dy(x)| + [ID?¥(x)|| < Cw(x). While the situation of
Theorem B4 corresponds to polynomially growing weight functions and linearly
bounded vector fields, this variant corresponds to exponentially growing weight
functions and bounded vector fields, cf. Corollaries 245 and ZZ43.

Such an approach might be more appropriate when dealing with exponentials
of stochastic processes such as Lévy processes. These are ubiquitous in applica-
tions in mathematical finance as they ensure nonnegativity of the price process
in a simple manner.

5.1.3 Da Prato-Zabczyk equations

Suppose now that
d .
(5.31) dx(t, xp) = Ax(t, xp)dt + Z x(t, xp)) odB},  x(0,x0) = xo,

is a stochastic partial differential equation of Da Prato-Zabczyk type on some
Hilbert space H. Refer to Section BZ3 for an overview of the theory of such
equations. Here, solutions are understood in the mild sense,

d pt
(5.32) x(t, x0) = exp(tA)x + 2 J exp((t — s)A)Vi(x(t, x0)) o dBL,
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and we also define the cubature discretisations in the mild sense,

x(t,xo)(w,(m)) = exp(tA)x
d t .
(533) 35 [ et = AV ) @) ().
=00

Again, the approximation of the Markov semigroup P:f(xo) := E[f(x(t, x0))] is
given by

(5.34) Qanf (x0) Zkf t, Xo; w(At)))

Theorem 5.6. Suppose that A is the generator of a group Sy = exp(tA), t e R,
and that the cubature formula used in the definition of Q a¢) is weakly symmetric.
Let ¢ be an admissible weight function on H. With some constant C > 0, let
PY(Sex) < exp(Ct)y(x) forall xe H and t > 0, and

(5.35a) DY) < C(1+ |Ix])2(x)  and

(5.35b) ID*%()Il < C(1+ Ix]1?) 9(x),

Furthermore, assume that

(5.36) Vo)l < C(L+ IxIP)Y? forj=0,..., d,

and thatV; is continuously differentiable with bounded derivative forj =1, .. ., d.
Then, for any T > 0, there exists a constant C > 0 such that for every
Ate0,T],

(5.37) Quan¥(x) < exp(CA)Y(x) for all xo € H.

Proof. We apply the method of the moving frame from [I06]. This yields that
x(t, x0) = Sty(t, x0), where (y(t,y0))t=0 satisfies the Hilbert space ordinary
stochastic differential equation

(5.38) y(t. y0) Z Vi(t,y(t,y0)) 0 dBL  y(0,%0) = yo.
Jj=0
with Vi(t,y) = S_;Vi(Sty). Thus, rewriting the cubature discretisations of
(x(t, X0))e=0 using (y(t, Xo))e=0,
d
(5.39) dy(s, xo; w Z\N/J (s, y(s, xo; w( Tt)))d (At)J( s),
Jj=0
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we see that, if we define

(5.40) Quanf (%) (Bt yo;w®?))

”'MZ

for f: H — R, then Qanh(xo) = C:)(At)g(xo), where g(y) = h(Saty). In
particular,

(5.41) Quan¥(x0) = Qan (¥ 0 Sar)(x0) < exp(CAQ(an (o),

where we apply the assumptions on 1 and the positivity of Q(At).
Hence, we are in the situation of Theorem B the estimates for 1 are clear
by assumption, and for Vj(s, y), we note that, as s € [0, T],

(542) V(s VIl = IS-sY(Ssy)ll < C(1 + [Ix|?)? forj=0,....d
and
(5.43) 1Dy Vi(s, )|l = IS-sDyVj(Ssy)Ssl < € forj=1,...,d.

An appeal to Theorem B4 yields

(5.44) QanP(x0) < exp(CAL)Y(x0),
and the result follows. OJ

The Székefalvi-Nagy theorem allows us to obtain a corresponding result for
pseudocontractive semigroups.

Corollary 5.7. Suppose that A is the generator of a semigroup of pseudocon-
tractions Sy = exp(tA), t = 0. Let ¥(x) = p(||x||?) with some increasing and
left continuous function p: [0, 0) — (0, 00) with lim¢_q p(§) = 400 (see also
Example TI8) that satisfies p(Cu) < Cp(u) for all u > 0 and C > 0, is twice
differentiable and satisfies

(5.45) () <CA+u)p(u) and p'(u) < C(L+u)2p(u).

Furthermore, assume that |Vi(x)|| < C(1 + ||x||?)¥? forj =0, ..., d, and that
V; is continuously differentiable with bounded derivative for j =1, ..., d.

Then, for any T > 0, there exists a constant C > 0 such that for every
At e [0, T], the operator Qar) satisfies

(5.46) Quan¥(x0) < exp(CAt)Y(x0) forall xg € H.
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Proof. Assume without loss of generality that (S¢)¢>0 is a semigroup of con-
tractions (otherwise, add any growth of (S¢)¢=0 to V). By the Szkefalvi-Nagy
theorem [93, p. 452, Théoreme IV], we see that we can find a Hilbert space
(H.,||-]l3) containing H as a closed subspace and a strongly continuous group
(St)ter Of unitary mappings such that Sy = 7S8:, where m: H — H is the
orthogonal projection.

Defining ¢x(y) = p(||y||§{) and \/JH(y) = Vj(my), it is easy to see that
the assumptions of Theorem B8 are satisfied. The results of [T06] prove that
x(t, x0) = mx7(t, xp), where

(5.47) xM(t,x0) = Sexo + 2 J Si_sVH(xM(t, x0)) o dB{_;,
and similarly for the cubature approximations. Setting
(5.48) Qlhnf(x0) Z MO (B, x0; ™D,

Theorem B yields that Q(At Yy (y) < exp(CAL)Yx(y), and from Py (x) =
1(x) for x € H we obtain that for x € H,

Quany¥(x0) 2 nip([lmx™ (At x0;w ) 1?) 2 Nip(Ix*(At, x0: D)3,
=1 =1

(5.49) = Qlan¥r(x0) < exp(CAL) Y (x0) = exp(CADY(xo),

The result is thus proved. ]

5.2 Convergence estimates of cubature schemes

We are now ready to prove rates of convergence for cubature on Wiener space
on weighted spaces. We shall only prove these results in the infinite-dimensional
setting; corresponding results in finite dimensions are obtained in a similar man-
ner. Consider therefore the setting of Section B, i.e., let Assumptions B3,
B3 and B3 be satisfied.

5.2.1 Taylor expansion of cubature approximations

We prove a local expansion of cubature approximations in weighted spaces. For
the definition of the terms used, see also Sections 11 and I 2. This can
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be seen as generalising related results in [B, proof of Theorem 4.4] to weighted
spaces.

Theorem 5.8. Assume that the cubature formula (w,(At), Ai)iz

pim

order m = 2k+1. Forf € Bz(ekfrkl) (He—(ks1))w), k+1 <L <ALy, s> 2(k+2),

k
(5.50) Z

N Is of odd

YGIr 1 () Racsf,

where the linear operator R k- Bw(‘kflsl) ((He—(k+1))w) — BYE((Hg)w) satisfies

(5.51) IRatkfllyy < CrlIf| for At € [0, T]

W ey 2k +1)
for a constant C+ > 0 independent of f.

Proof. Under the assumptions on the vector fields, we have for every f €
A(Hg—(k+1)) the Taylor expansion

(5.52)  F(x(At, x0:(w?))
= D Vi Ve FOo) P @) + Ry f (o),

where we define the iterated integrals by
Lo A
(5.53) /gi 'k)(wf 2 g)
= J g(x(tr, x0; w ™)) dw D (11) . dw D (),
O<ti<-<ty<At

L 'k)( (At)) = /(A'i """ ik)(w(At), 1), the remainder term ;@gt,kf satisfies

At I
A 0, j A
(5.54) Raenf ()= S0 18w ),
(/1 ..... ik)EAm
(/o,il ..... ik)¢Am

and we set Bo(x) := Ax + W(x), Bi(x) :=Vi(x), j =1,..., d, and f, iy =
Bi, - --Bi.f. (o, ..., ik) € {0, ..., d}k+1. Summing up, the scaling of the cu-
bature paths proves that the remainder term is as claimed. To see that the
initial terms have the given form, we use the order 2k + 1 of the cubature and
the explicit formula of G from Theorem BE2H. A density argument proves the
result. O
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5.2.2 The rate of convergence

(n)
Corollary 5.9. For f € B;p(e;ﬁf)”((He,(kH))W), k+1<4£<4y, n>2k+1),
2(k+1) < ko,

5 Kk
(5.55) 1Prf = Qlrymfllvg < Cro“Iflye s

with a constant C+ independent of f.

Proof. The local estimate follows from a combination of Corollary and
Theorem B8. The stability of Qr/,y from Corollary B2 and Lemma BEZTO prove
the claim. O

5.2.3 Smoothing effects under the UFG condition

Under the UFG condition, it is proved in [65, [Z00] that even for nonsmooth payoffs
f, we can obtain the optimal rate of convergence by using non-equidistant grids
due to the smoothing effects of P f in the direction of the vector fields V. The
aim of this section is to show how a corresponding result can also be obtained
even for growing payoffs. In particular, we will focus on exponentially growing
payoffs through the choice of the weight function cosh(a|x|). This has important
applications in mathematical finance, where one frequently models the log price
as the solution of a stochastic differential equation, and thus, all payoffs will be
a function of the exponential of the stochastic process. Other weight functions
are equally possible.

Consider the finite dimensional situation, H = RN for some N € N, and
A = 0. Suppose that all vector fields V;: RN — RN are bounded and C®-
bounded. We choose the D-admissible weight function ¥(x) := cosh(a|x|) for
some a > 0. Here, || denotes the Euclidean norm on RV.

Proposition 5.10. For any o > 0, there exists C > 0 such that
(5.56) E[cosh(a|x(t, x0)|)] < exp(Ct) cosh(a|x]).

Proof. For any k € N,

k
(5.57) D* cosh(al|x|)(h1, . . ., hi) < Cr cosh(alx|) [ IAl-
j=1
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With G the generator of P, we thus obtain from the boundedness of the vector
fields that G cosh(a|x|) < C cosh(alx]). It follows that

E[cosh(a|x(t, x0)|)] = cosh(a|xo]) + LtE[g cosh(a|x(s, xo|)]ds
(5.58) < cosh(alxol) + Jt CE[cosh(a|x(s, x0)|)]ds.
0

The Gronwall inequality proves the claim. ]

Corollary 5.11. For any pe [1,00) and T > O, there exists Ct > 0 such that
(5.59) E[cosh(c|x(t, x0)|)P]*P < Cr cosh(alxo|) for all t € [0, T].

Proof. We only need to note that for any p € [1, ), there exists some constant
C > 0 with C~* cosh(pu) < cosh(u)P < C cosh(pu) for all u e [0, ), and apply
Proposition BIT. ]

We formulate now the ellipticity assumptions that are necessary to obtain
smoothing effects. We follow [26].

The UFG condition. There exists £ € N such that for every o € A*, there exist
Yap € CPRY), B e A}, such that

(5.60) e = 2, ®asVo):
Be A

The VO condition. For some pg € C¥(RV), B € A3,

(5.61) V=3 osV.

Theorem 5.12. Assume that the UFG and VO conditions are satisfied. Then,
for any f € C‘])O(RN), any k,.m>=0 and any iy, ..., kam=0,1,..., d,

(5.62) Vi Vi PV oo Vi Fllg < CE 90000edeem)/2) £,

k+1
Proof. We apply [63, Corollary 2.17] to obtain that for each xp € RV, there

. . o . . . .
exists a real-valued random variable 73", depending on k and i1, . . ., Ik+m, With

(5.63) V, .. VPV, . ...V

k1 Ik4m

f(x0) = E[f(x(t, x0))™°].
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Furthermore, for each p € [1, o), there exists a constant C > 0 independent of
t with

(564) sup E[|7’(’ lp] < Ct—deg( ..... ik+m)/2.

X0 ER

It follows that for p, g € (1, o0) with % + % =1,

Vi Vi PV - Vi flly < sup 9(x0) T E[If (x(£, x0))| - |m°]]

XoeRN
< |Iflly sup ¥(x0) ™" x
Xp€RN
x E[(x(t, x0))P]/P - EB[|m|9] 4
(5.65) < Ct—deg(i..., ik+m)/2||f||lll'
where we apply Corollary BI. 0

Corollary 5.13. Assume that the UFG and VO conditions are satisfied. Then,
for any mesh 0 = tg < -+ < t, =T and f € C2(RV),

(566) ||PTf_Qt1—to s Qtn_tn 1f||¢

t 1 m+1)/2
<C|f|w,1<( —th1 1/2+2 I_t m2 )

Here, we use the vector of weight functions (¢, ¥).

Proof. We proceed as in the proofs of [70, Proposition 3.6], [26, Lemma 3.5].
First, note that

|Pacf — flly < sup zlj(xo)_lIEHf(x(At,xo)) — f(x0)l]

X()ERN
< sup Y(x0) '
XOERN
E[ sup |[Vf(sx(At, x0) + (1 — s)x0)| - [x(At, x0) — Xol]
se[0,1]
< |fly1 sup w(xo)*lJE[ sup Y(sx(At, xo) + (1 — s)xo)z]l/zx
Xg€RN se[0,1]
(5.67) x E[|x(At, x0) — xo/?]M2.
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As |sx(At, xp) + (1 — s)xo| < max(|x(At, xo0)|, |x0]) for all s € [0, 1] and cosh is
monotonic on [0, o), we see that Corollary BT yields

(5.68) |Patf — Fly < C(AE)Y?|Fly1.
By Theorem BZI2, we obtain

I(Par = Qae)Pr—ef lly < (BO)U™HI2 X ViV .. Vi Pr i fly

(/1 ..... fk)EAm
(iovi1 .. ik )¢ Am
(5.69) < C(A)MHV2(T — £)=m/2|f ), 1.
Summing up in the usual manner, the claim follows. O

Corollary 5.14. Under the UFG and VO assumptions, the cubature method
converges of optimal order for f € B}l’(R’V ) on graded meshes such as the ones
suggested in [70, Example 3.7].

Proof. This follows directly from Corollary BEI3 together with the density of
C?(RN) in BY(RN). O
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Chapter 6

Splitting And Cubature For The
Stochastic Navier-Stokes
Equations

The issue of turbulence in fluid flows is an essentially unsolved problem. From
the perspective of numerical analysis, its main difficulty is that a direct numerical
simulation (DNS), resolving all relevant temporal and spatial scales, is unavailable
for many practically relevant geometries. Hence, we can only use results from
underresolved simulations, which are often useless due to their severely reduced
accuracy.

This has led to models dealing with the closure problem, see, e.g., [88, [14].
These models deal with underresolution by introducing an approximation of the
effects taking place on scales smaller than those that are resolved.

We are concerned with a different approach to turbulence modelling. In
the last years, the introduction of noise into the equations of fluid dynamics has
become the focus of research (see, e.g., [0, 6T, P8, 76, 0]). In particular, Hairer
and Mattingly proved in [&7, 48] that the stochastic Navier-Stokes equations on
the two-dimensional torus with finite-dimensional, additive noise have ergodic
dynamics, and estimated the rate of convergence to the invariant measure.

We consider the problem of weak approximation of the solution of the
stochastic Navier-Stokes equations. In contrast to [51]], we propose a simulation
scheme, based either on splitting or cubature approximations. The advantage
of such an approach is that it is trivial to parallelise, as every path can be simu-
lated independently. In the case of splitting schemes, we can furthermore reuse
well-tested, robust and fast solvers for the deterministic Navier-Stokes or Eu-
ler equations to obtain solvers for the stochastic Navier-Stokes equations with
minimal effort.

To derive rates of convergence, we employ the theory of Chapters B and
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B. While we are unable to prove rates of convergence on the continuous level,
a discretisation by a spectral Galerkin scheme allows us to obtain an optimal
convergence estimate in time.

This chapter is organised as follows. In Section B, we recall the definition
of the stochastic Navier-Stokes equations in the setting of Hairer and Mattingly
and consider them from the perspective of the results of Chapter B. Our analysis
profits greatly from the fundamental results shown by Hairer and Mattingly in
[73, &7, &8]. Section B2 is devoted to the derivation of estimates for the error
done by a spectral Galerkin approximation. Section B3 presents the main results
of this paper, estimates for full discretisations of the stochastic Navier-Stokes
equations by splitting and cubature schemes. In Section B4, we present the
results of numerical calculations for a model problem with ergodic dynamics,
and in Section BEEH, we sum up our results.

6.1 The stochastic Navier-Stokes equations and
weighted spaces

Consider, as in [47, #8], the vorticity formulation of the stochastic Navier-Stokes
equations on the two-dimensional torus T2,

d
(6.1) dw(t, wo) = vAw(t, wo)dt + B(Kw(t, wo), w(t, wo))dt + Y q;ficdW/,
j=1
w(0, wp) = wp.

The state space is L, the space of mean zero square integrable functions,
with norm ||| and scalar product {-,-). Furthermore, A is the Laplacian, K
the inverse of the rotation V A u = d>u1 — 01u» in the space of divergence
free vector fields, V A (Kw) = w and V- Kw = 0, B(u,w) = —(u - V)w the
Navier-Stokes nonlinearity, and (W{);_1... 4 a d-dimensional Brownian motion.
The g; are nonvanishing real numbers, g; € R\ {0}, and f are the orthonormal
eigenfunctions of A on T2,

_f@r®) sin(k-x), keZa,
(6.2) fk(x) = {(2,”2)—1/2 cos(k - x), else,

where

(6.3)  Z% :={k = (ki ko) € Z°: either k» > 0, or ko = 0 and k; > 0}.

98
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Solvability of this equation is settled in [Z3].

We also define the Sobolev spaces of divergence-free, mean zero functions
H®, s € R, with norm ||,z wifk|ls == \/ZkeZ2(k12 + k3)|w |2, which is non-
degenerate due to the mean zero condition (the term for k = (0, 0) vanishes).
We note, in particular, that

(6.4) —(Bw, w) = [[wliz.

Similarly as in [48, Section 5.3], we introduce the weight function ¥, (w) :=
exp(n||w]|?) with some 1 > 0 and consider the weighted space BY7(IL2)).

Proposition 6.1. The Markov semigroup (P:)t=o defined through P:f (wp) :=
E[f(w(t, wo))] is strongly continuous on B¥7(1.2)) for n > 0 small enough.

Proof. This follows from Theorem B0 and [48, Theorem A.3]. A very similar
result is proved in [&8, Theorem 5.10]. O

Contrary to the approach used in [B0, I0U5], we are not able to split this
problem into a part corresponding fully to the drift and another for the diffusion:
the process y(t, wp)t := wo + Zj—jzl qjWi f; corresponding to the diffusion does
not satisfy E[¢y,(y(t, wo))] < Kyn(wo) with K > 0 constant for t small enough,
which means that we cannot use standard Ninomiya-Victoir splittings.

Thus, we split up the equation differently. For a given € € (0, 1), we introduce
the deterministic vorticity equation,

(6.5) %Wl(t, wo) = (1 —e)vAw?(t, wo) + B(Kwl(t, wo), wh(t, wp)),
wl (0, wo) = wo,
and a stochastic heat equation defining an Ornstein-Uhlenbeck process on L2,
d
(6.6) dw?(t, wo) = evAw?(t, wo)dt + Z qukde{, w?(0, wo) = wo.

j=1

Define by PLf(wo) := E[f(wl(t, wo))] and P?f(wo) := E[f(w?(t, wo))] the
Markov semigroups corresponding to w! and w?.

Lemma 6.2. Forn > 0, (P})=0 defines a strongly continuous semigroup on
BY(Lg,) with | P gen(Lzy) < 1.
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Proof. The strong continuity is obtained using Theorem BI0. The necessary
bounds are proved by applying [28, Theorem A.3]; see also [48, Theorem 5.10].
The deterministic vorticity equations have L2-contractive dynamics, as

lw (¢, wo)I? = [lwoll?

+ Jt@uAWl(s, wo) + B(Kwl(s, wo), w(s, wo)), wl(s, wo))ds
0

(6.7) < [lwol,

which yields the norm bound. The proof is thus complete. O

The cumbersome proof of the following proposition is postponed to Sec-
tion B4.

Proposition 6.3. /f n > 0 is small enough, there exists w > 0 such that the
process t — exp(—wt)yYn(W?(t, wo)) is a positive supermartingale, i.e.

(6.8) Efyn(w?(t, wo)] < exp(wt) P (w?(t, wp)).

Lemma 6.4. Forn > 0 small enough, (P?)¢=o Is strongly continuous on B¥7(IL2,)
with bound ||PZ || (gun(r2)) < exp(wt).

Proof. Clear from Proposition B33 (see also Example BE8). OJ

6.2 Spectral Galerkin approximations

For the stochastic Navier-Stokes equations, we cannot argue directly as in Chap-
ters @ or B: there do not appear to be useful weight functions on spaces of more
regular functions (such spaces are nevertheless invariant with respect to the dy-
namics of (B0); see [73, Section 3.4] in this regard). We will therefore settle
with a weaker result: we shall prove that spectral Galerkin approximations us-
ing Fourier modes up to degree N yield a convergent scheme, which can then
be approximated by a splitting or a cubature scheme with N-dependent error
bound. As the N-dependence of the estimate is given explicitly, we can derive
convergent schemes by choosing the time step size small enough in relation to
N.
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6.2. Spectral Galerkin approximations

Consider therefore the spectral Galerkin approximation of (1),

(6.9a) dwp(t, wo) = vAwp(t, wp)dt
d
+ TN B(Kwa(t, wo), w(t, wo))dt + > qifi dWA,
j=1
(6.9b) wn (0, wo) = TN Wo,

see also [33], where 7y : L2 — L2 is the projection onto the space Hy of tensor
products of trigonometric polynomials of degree N,

(6.10) Hy ZZSPan{fk3 max|ki| < N},
=1,

and N is assumed to be large enough so that f;, € Hy for j=1,...,d. Its split
semigroups are given by

d
(6.11) aw,:{,(t, wo) = Ty B(Kwy(t, wo), wiy(t, wo)),
wiy(0, wo) = wo, and
d
(6.12) dwi(t, wo) = VAWZ(t, wo)dt + . qjfi dW,
j=1

wiy (0, wo) = wo.

The choice € = 1 made here is not admissible above: in the space continu-
ous setting, the results from [&8] do not allow us to apply Theorem B0 to
conclude that P} is strongly continuous for this choice. (Note, however, that
Theorem 2231 might be applicable, as the velocity formulation admits solutions
in L2, which, by [48, equation (38)], implies solvability for the initial vorticity
in H™1). As Hy is finite-dimensional, however, we do not have to distinguish
between different topologies, and it follows that the Markov semigroups P,
PN and P2 of wy, wj, and w}, are strongly continuous on BY1(Hy) if n > 0
is small enough. In case that a solver for deterministic Navier-Stokes equations
is available, it is also possible to use € < 1 here (the case € = 1 corresponds to
splitting up into a deterministic Euler equation).
We now estimate the error of the spectral Galerkin approximation.
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Proposition 6.5. Foranya >0, wpe L? and t > 0,

Iw(t, wo) — wn(t, wo)||* < CN~H|w(t, wo)ll3
t t
(6.13) + CoN~exp (Cat + Z‘f |w(o, WO)||§da) J lw(s, wo)]|Tds.
0 0

Proof. Let en(t) := myw(t, wo) — wn(t, wo) € Hy and nu(t) = w(t, wo) —
myw(t, wo). Then,
den(t) = vAepn(t)
+ mn (B(Kwn(t, wo), en(t)) + B(Ken(t), myw(t, wp))) dt
(6.14) + 7 (B(KTyw(t, wo), nn(t)) + B(Knn(t), w(t, wp))) dt.
It results that
2 S llen(®)IP = ~vllen(t) Bt + (BUCen(t), Tw(t. wo)). en(t))
(6.15) + (B(Kmyw(t, wo), nn(t)) + B(Knn(t), w(t, wo)), en(t)).
We now proceed similarly as in [24, Proof of Lemma 4.10, point 3]|. For any
0 > 0, we estimate

C
4028

(6.16) KB(Kh, w), O < 8IICIE +
This yields

(03
1K1+ Z wlIZlAl1.

[(B(Ken(t), muw(t, wo)). en(t))] < dllen(B) + 755 llen(D)II”

[0
(6.17) + Zimww(t, wo) Bl en(t)]> and

KBUCnN (), w(t, wo)). en(t))] < bllen(t)| + 75=llen()
(6.18) + Sllw(t, wo)lFInn(2) |2
For the final term, we apply
(6.19) KBUCh, w), )1 < BICIE + = lAllwl
which shows

KBUKTnw(t, wo), mu(t)). en(t))] < Sllen(t)I3

C
(6.20) + g llmuw(t, wo) I3[l (1)1,
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Choosing 6 = ¢ and combining the above estimates yields

1d 5 v > 3C 5 5 5
il < __ it d
- L en(®)1 < ~Zllen (DI + o= llen(t)I + S muw(t, wo)lHlen(t)|
a 3C
(621) (e wo)  + 5 (e, wo) ) a0

Using ||[mywll1 < ||w|1, we obtain

1d 5 a o\ 1 5
= < - =
Sazlen(®1? < (Ca+ St wo)lF) Sllenl

(6.22) + Collw(t, wo) I3 mn (1)1

An application of Gronwall’s inequality yields, as ey(0) = 0,
1 2 ! 2 2
Sllen(®II7 < L Callw(s, wo)llzlInn(s)II* %

(6.23) X exp (Ca(t —5)+ % JtHW(O', W0)||§da> ds.

As |lw—mywl| < CN7Y|w||1, we see that [[nn(t)|| < CN7L||w(t, wo)||1, whence

1 B t
Slen i) < Cali™ | (s, wo)lfx
a t
X exp <Ca(t —S)+ 2J lw(o, W0)||%da) ds
a t ° t
(6.24) < CoN-Lexp <Cat + zf Iw(o, W0)||§da) J (s, wo) | *ds.
0 0
The result follows due to
(6.25) Iw(t, wo) — wi(t, wo)l| < llen(t)l| + CNHw(t, wo)lls. O

Corollary 6.6. For any wo € H' and T > 0, there exists a constant C = CwoT >
0 such that for any t € [0, T,

(6.26) E[[lw(t, wo) — wa(t, wo) ] < CN™.
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Proof. From Proposition BE3 and an application of the Cauchy-Schwarz inequal-
ity, we see that we need to prove

Ellw(e. wo) 3]+ 8 e (a j (o, we) 360 )|
( jo e wO>||‘1‘ds)

for all t € [0, T] with some K = K¢, > 0. For the first and third term, this
follows from [73, Theorem 3.7], and for the second, from [&4, Lemma 4.10]. [

(6.27) <K

Remark 6.7. Actually, it seems quite plausible here that the assumption wy € H?!
is too strong. Indeed, the results in [74] show that if wy € IL?, then w(t, wp) € H®
for all s > 0 for subsequent times, and [75, Lemma A.3] gives some quantitative
estimates. It remains unclear to us however how this can be used to prove an

. t 2
estimate for [(SOHW(S, W0)||‘1‘ds) ]

The estimate from Corollary B8 allows us to estimate the pointwise approxi-
mation error of the weak approximation of the stochastic Navier-Stokes equation
by the spectral Galerkin scheme.

Theorem 6.8. Assume ¢ € B¥7(IL2) n CH(IL?) with
(6.28) Cyp = sup W5(w)~ [ Dp(w)|| < o0

wel2

for some 7 € [0,m/2]. Then, for w € H! and T > 0, there exists a constant
C = Cy,T.p such that for all t € [0, T],

(6.29) |Pep(w) — P (@la,) (W) < CNT

Proof. By the fundamental theorem of calculus,
[p(w(t, wo)) — @(wn(t, wo))|
< [C1Doow(e. wo) + (1~ pwate, wo))
(6.30) x [[w(t, wo) — wp(t, wp))||db.
The assumption on ¢ together with the convexity of w — exp(i||w||?) yields

|IDp(Bw(t, wp) + (1 — O)wn(t, wp))l|
(6.31) < Cyp (exp(7llw(t, wo) 1) + exp(7illwi(t, wo)l?)) -
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Therefore, the Cauchy-Schwarz inequality implies
1/2
IPeo(w) — P (lauy ()| < CoE [[Iw(t, wo) — wi(t, wo)|2] %
(632)  x (Elexp(27llw(t, wo)[[2)]/2 + Elexp(27llwi(t, wo)|[*)]72) .

Note that the estimate in [47, Lemma 4.10, 1.] also holds true for wy(t, wp)
instead of w(t, wp). Therefore, Corollary B8 proves the claimed estimate. [

In the discrete setting, it is easy to analyse the differential operators corre-
sponding to the split semigroups. For k > 0, we consider the vector of weight
functions (v¥n),—o,....k, which we shall also denote by 1,. We denote by QJN with

domain dom QJN the infinitesimal generator of (P*/)t=0, j = 1,2, and by GV
with domain dom G/ the infinitesimal generator of (P}¥):=o.

Lemma 6.9. For any € > 0,
(6.33) BY"(Hy) < domG"N A dom G A dom GY.

Fork >0, 6", gV": Bﬁz(?{,\/) — BY"™ (M), j = 1,2, are continuous opera-
tors, and

N N N ~

I HL(BZfQ(HN);Bfﬁ“(HN)) g HL(BZPL(HN):BZ"”(HN))
(6.34) <CN?, j=1,2
Furthermore,
(6.35) GNo =GNo+ Gl forallpe BY(HV).

Proof. For @ € Bﬁz(?{/\/), we see by the fundamental theorem of calculus and
the estimates in [48, Appendix] that with o > 0,

G e(w)| = [Dp(w) (tyB(Kw, w))| < [|Do(w)|| - (N**<[|w]|?)
(6.36) < CNZexp(el|wl?) [ De(w)]),

and similarly, by 1t6’s formula,

d
1
Gy p(w)| = |Dp(w)viw + 5 >, D*o(w)(gsfi;, gjfi;)|
j=1

IDe(w)| - vNZ[lwl| + Cl Do (w)]|

<
< CNZ exp(ellw?) (I1De(w)]l + ID*p(w)ll) -

(6.37)
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The result for G is proved in a similar manner. The equality (B39) is a con-
sequence of 1t6's formula if ¢ € CP(Hy), and a density argument proves it for
the general case. O

6.3 Rates of convergence

We are now in the situation to prove estimates for the convergence of both
splitting schemes and cubature methods.
6.3.1 Splitting methods

Lemma 6.10. Forallk > 0, PtNBZ]ﬁ (Hy) < BZ’ﬁ (Hn), and we have the estimate
supte[o,T]||PtN<p||¢ﬁ,k < K7 ll@lly;  with some constant Kt independent of ¢.

Proof. This is proved using similar estimates as those given in [&7, Lemma 4.10,
1. and 3.]. [

Using Lemma B3, the method of [49] yields the following convergence esti-
mate.

Theorem 6.11. Let Q?’At) = PA\’t'/lzPANt'QPA’\’t'/l2 denote the Strang splitting ap-

proximation of PAVt using PAVt’l and PAVf. For any ) < n/2, there exists C =
Cr.5 > 0 such that for all ¢ € Bg}ﬁ (Hn) and ne N,

(6.38) 1PF o — QU7 /) @l < CTNN?||0lly, 6.
Note that if ¢ € C®(IL?) is such that for some 7 < n,

(6.39) sup 1/1;,(W)‘1||Dj<p(w)||Lj(Lz;R) <o forj=0,..., 6,

welL?2

then |y, € Bg’" (Hp) for all N e N with uniformly bounded norms. Furthermore,
(B=39) with f) < m/2 implies (B228). Thus, we obtain the following result.

Corollary 6.12. Assume that ¢ satisfies (BE239) with fj < n/2. For any T > 0
and wo € H*, there exists C = Cwo.T.o > 0 such that for all ne N

(6.40) |Pro(wo) — (QéVT/,,))”w|HN(Wo)| <C(Nt+Non72).

Proof. The combination of Theorem B8 and Theorem B allows us to con-
clude the desired estimate. OJ
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Remark 6.13. We see here an important advantage of the second order splitting
in comparison to a possible first order splitting. There, in the second term,
the instability would be of the order N4, but the convergence would only be of
first order, n—1. Therefore, we can choose n significantly smaller here while still
obtaining a stable method. Nevertheless, we have to stress that the given error
estimate is far from what we would expect to obtain, see also the numerical
results in Section b4,

6.3.2 Cubature methods

We define cubature approximations for the spectral Galerkin discretisation of
the stochastic Navier-Stokes equations. See Section T2 for the definition of
cubature paths. The approximations are given by

dwp (s, wo; w,(At)) = (UAW/\/(S, Wo; w,(At)) + Ty B(Kwy (s, wo; wl(At)))) ds
d .
(6.41) + 3 gifigdw P (s).
j=1

Here, we apply that the noise is purely additive, entailing that the It6 and
Stratonovich integrals of the noise terms coincide. The cubature approxima-
tion of the Markov semigroup PAVt reads

M
(6.42) Qe F(wo) := D Aif (wiy(At, wo; w™?)).
i=1

To prove stability of the cubature approximation, we require that the quadra-
ture formula induced by the cubature scheme is symmetric, i.e., for all / =
1,..., M, there exists a unique /" € {1, ..., M} such that A; = A and w!(At) =
—w{,(At) for j = 1,...,d. This induces a corresponding symmetry for w(2t).
Many known cubature formulas satisfy such a property, consider, e.g., the paths
given in [Z0]. Moreover, given an arbitrary cubature formula, it is easy to con-
struct a symmetric one from it by adding the reflected paths.

Our use of this assumption is to prove an estimate for the moment generating

function of the cubature paths at At.
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Lemma 6.14. Assume that the quadrature formula induced by the cubature
scheme is symmetric. Then, for all continuous f: RY — R,

AFPDh A, WD (Ar))

i

s

Il
—

M
_ %Z M (0 @), w0 ar)

Il
-

(6.43) +F(—w® A, . _wfmd(m))).

In particular, Z,Ail A/f(w,(At)'l(At)
This implies

M d d
' C
(6.44) Z i exp Z ujw,(At)'J(At)> < exp <2At2 uf) :
=1 =1 j=1

Proof. The first two claims are clear. For the estimate of the moment generating
function, note that, as |w,(At)’J(At)| < CvV/At and (2¢)! < 241,

M d d
(6.45) Z A exp(z ujw,(At)’j(At)) = i il Z A,-(Z ujw,(At)'j(At))k
i=1 j=1 o ka j=1
| (At)j 2t C 5
5 S (S wtri0)” <oo(GarS )
{=0 i=1 Jj=1 j=1
which proves the given estimate. O]

Theorem 6.15. Assume that the quadrature formula induced by the cubature
scheme is symmetric. Then, there exist ng > 0 and € > 0, depending only on
the given problem data, but not on the discretisation parameter N, such that
with a constant C > 0 independent of At and N,

(6.46) Qe lly, <exp(CAD)Flly,
for At € (0, €], n € (0,m0], and f € B¥"(Hp).
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6.3. Rates of convergence

Proof. Set wy(s) := wp(s, Wo;wl(At)) and VN(wy) := vAwy + 7y B(Kwy, wy).
For every a > 0,
exp(as) [[w(s)[|* — lwn (0)|>

- f: exp(ar) (edllwi (r)|1? + 20V (wi(r)), wiv(r)))dr

d s .
(6.47) +2 Z J exp(ar){q;fy;, WN(r)>dw§At)'J(r).
j=170
Applying Fubini's theorem and integration by parts to

T ) _ .
|| exv(anca®2() = exp(ar)n®(r) - explaouf (o)

i
o

(6.48) — af w(At)'j(r) exp(ar)dr,

]

we obtain that

r exp(aur) (g iy, wn (1)), (1) = (g, win(0)) r exp(ar)dw“9 (r)
0 0

+ f exp(ar) f iy, VN ((0)) A0 (1)
0 0

d s r ) .
(6.49) + 2 fo exp(ar) L (qjfx;, qifki>dw,(At)"(q)dw,(At)'J)(r).
i=1
An application of Young's inequality yields

f exp(ar)(asfig, wi(r))dw D (r) < (asfig, w(0)) exp(ars)w ™ (s)
0
+ Cexp(as) || wn(0)[?At + Cexp(as)s?

(6.50) + C\/ELS exp(aq) ||V (wn(q))||—3dg + C exp(as)s.
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Hence, as (wy, VN (wn)) = —vllwnlF and [V (wy)ll -3 < [lwwll + Cllwwll?,

(6.51) [wn(AD)[]? < (exp(—alt) + CAt)|wy(0)]?
d
+2 3 qfig, wn(0))w P (AL) + CAt + C(At)>
j=1

At
+ | evlata - 80) (@ + CVBD wn(a)?

0
+ CVAE|wu (@) - 2vllwn(9)I13) da.

Fix o = v. As ||wynl]1 = ||wn]|, we can choose € > 0 such that for At € (0, €],
(6.52) vilwnl? + CVBE(lwwll + wall?) = 2v]lwalf < CAL.

By Lemma b4,

M d .
Z X exp (27] 2<qukj, WN(0)>W,(At)’J(At))
i=1 Jj=1

d

< exp (nZCAt Z<QJ i WN(0)>2>
j=1
(6.53) < exp(n>CAt|wy(0)[).
Hence, for At € (0, €],
M .
(654) Y exp(nllwn(At, woiwP))

i=1
< exp(CAt + nllwi(0)]? (exp(~vAt) +nCA) ).
Choosing mg > 0 small enough, we see that
(6.55) exp(—vAt) + nCAt <1 for At e (0,€] and n e (0, mo].
The claim is thus proved. L]

Remark 6.16. It is clear from the proof that a corresponding result can also be
shown in the space continuous case. As remarked before in the context of the
splitting scheme, however, we are not able to derive rates of convergence in this
setting, which is why we focus on the space discrete case.
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6.4. Numerical examples

As it is straightforward to obtain a Taylor expansion of Q?’At) by the funda-
mental theorem of calculus (see [70, 26, B] and Proposition IT3), we have the
following result.

Theorem 6.17. Fix n > 0 small enough. Given T > 0 and ) < m/2 and
assuming that m is odd, there exist constants € > 0 and C = Ct 5 > 0 such

that for all p € Bg}ﬁ (Hy) and ne N with T/n < g,

m

;1
(6.56) 1Pre — (@) @l < CN™ 10" 0]l 6.

The following result is a version of Corollary BZI2 for cubature approxima-
tions.

Corollary 6.18. Suppose m odd, and fix n > 0 small enough. Assume that @
satisfies (B34) with fj < /2. For any T > 0 and wy € H!, there exists € > 0
and C = Cy, 1. > 0 such that for allne N with T /n <€,

-1

(6.57)  |Pro(wo) = (Qffn) " eluy (o)l < € (N1 4+ N™ 1075 ).

6.4 Numerical examples

We consider the problem of approximating (B0l) with v = 1072, wp =0, d = 4,
a = 1,_/ =1,..., 4, and kl = (1,0), k2 = (—1,0), k3 = (1,1) and k4 =
(—1,—1). [#2, Example 2.5] shows that the dynamics generated by this process
are ergodic. We aim to find estimates for E[||w(1,0)||], E[|lw(1,0)|_-1] and
E[lw(1,0)|+1]. We remark that the first and second values are related to the
mean enstrophy and energy, respectively. Furthermore, control of the H! norm of
w(1, 0) means control of the H? norm of w(1, 0), which in turn implies that we
can take point evaluations of Kw(1, 0) due to the Sobolev embedding theorems
in two dimensions. This is important in the evaluation of cross correlations.
Our numerical simulations are performed using a splitting scheme, the sym-
metrically weighted sequential splitting
(6.58) QY= % ((Pﬁ’/';Pﬁ’/',f)” + (P;V/ﬁp}v/r,ﬁ)”) :
going back at least to [I03, equation (25)] and being of second order for prob-
lems that are smooth enough.
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We apply a Monte Carlo method. For a single realisation, we have to solve,
alternatingly, a time-dependent Euler equation and an Ornstein-Uhlenbeck equa-
tion. Note that the solution of the Ornstein-Uhlenbeck equation follows a Gaus-
sian process, and its distribution is therefore explicitly known. To discretise the
Euler equation, we apply the standard RK4 scheme. While the Heun method,
i.e., an RK2 scheme, provides the correct order such that the entire approxima-
tion is of second order, see [7Y], it has suboptimal stability properties, leading
to strong step size restrictions, see [?3, Section D.2.5]. In this regard, see also
[52] for issues of stability of the Euler-Maruyama scheme for equations with
non-globally Lipschitz coefficients. As we apply the FFT to determine the value
of (Kwy - V)wy efficiently, we observe aliasing effects, which are reduced by the
use of the 2/3 dealiasing, see [?4, Section 3.3.2].

To find the expected values in the definition of P%V/i we use quasi-Monte
Carlo integration, applying the Sobol” sequences of Joe and Kuo [56]. Also,
instead of simulating both terms in the definition of Q#n, we use a Bernoulli
random variable to generate either of them, retaining the order of the approxi-
mation.

0.1
H? norm ——
L2 norm —-x-—-
HY norm -
0.01 | E
0.001 £\ E

relative error

0.0001

le-05 L
1 10 100
timesteps

Figure 6.1: Error plot, increasing number of timesteps
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6.4. Numerical examples

Figures b4, B4 and b4 present the results of numerical calculations with
increasing number of timesteps, Fourier modes, and quasi-Monte Carlo paths.
All errors are relative, and were calculated through comparison with a reference

0.01 T

. H? norm ——
L2 norm —--x-—-
HY norm -
0.001 |- .
8 X,
o
[
=2
IS .
°
0.0001 | ~e RV .o o 4
le-05 L
1 10 100

N

Figure 6.2: Error plot, increasing number of Fourier modes

solution found using K = 229 quasi-Monte Carlo paths, N = 32 and n = 128
timesteps. There, we obtained the approximate values

(6.59) E[[lw(1,0)||_1] ~ 1.138449630686444,
(6.60) E[[lw(1,0)|]] ~ 1.319968848291092,  and
(6.61) E[[lw(1,0)|/4+1] ~ 1.620419847035606.

In Figure B4, we chose the other parameters to be K = 26 and N = 32; in
Figure B4, K = 216 and n = 128; and in Figure B4, N = 32 and n = 64.

We clearly see that mainly the number of quasi-Monte Carlo paths limits the
attainable accuracy. Nevertheless, with 212 = 4096 paths, we obtain a relative
error of less than 1073, and that calculation took approximately 60 seconds
running on 16 cores of a Primergy RX200 S6 spotting 4 Intel Xeon CPU X5650
processor, each of which provides 6 cores. In Figure B4, we observe that we
obtain a rate of convergence of about 2.5 for the H! norm with respect to the
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0.1
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Figure 6.3: Error plot, increasing number of quasi-Monte Carlo paths

number of time steps, which is even more than the theoretically predicted rate of
2 and seems to result from the fact that we compare with numerical estimates
instead of the exact value. The solution of the model problem is smooth (see
also [I74] in this regard), and indeed, Figure B4 exhibits spectral convergence in
the number of Fourier modes.

6.5 Conclusion

We have introduced and analysed novel high order approximation schemes for
the stochastic Navier-Stokes equations on the 2D torus. We prove high order
accuracy in time and give precise estimates for the dependence on the order
of the spectral Galerkin discretisation. Using high order cubature paths, it is
possible to attain convergence of arbitrary order in time.

From a practical point of view, the splitting schemes presented in this work
have the important advantage that well-tested and robust solvers for the de-
terministic Navier-Stokes and Euler equations can be reused. Furthermore, the
algorithm makes increasing the dimension of the driving Brownian motion easy.

114



6.6. Proof of Proposition B3

Numerical examples establish the applicability of the method to some simple,
but relevant functionals.

6.6 Proof of Proposition

Lemma 6.19. For N ~ N(0,1), j =1,..., d, and S, A, Be R withC e R
small enough,

E[exp(C(S?+2SABN + (BN)?))]

1 2CA%B?2 5
(6.62) - oz (1 Toacm) )

Proof. A direct calculation yields

E[exp(C(S? + 2SABN + (BN)?))]

= JR exp(C(S% + 2SABy + (By)2))(27rl)1/2 exp (_;yz) dy

1 1 ) 2CSAB \?
= Gy |, o (‘z“‘QCB ) (y‘1_2c52> )dyx
2CA%B?2 5
X€Xp<<1+]w> CS)

1 2CA%B? 5
~ (1-2cB2)2 P ((1 Tz 2C82) ¢S > :

which proves the result. O

Corollary 6.20. For independent N; ~ N'(0,1), j=1,..., d,and S, Aj, BjeR
with C € R small enough,

d d
E[exp(C(S%+ Y. 2SA;B;N; + Y (B;N;)?))]
j=1 j=1

d 22
1 2CA?B:

(6.63) = exp ((1 + 112> C52> :
[T, (1—2CB?)/2 121 1-2CE;

j=1

Proof of Proposition B=3. Note that

t d _
exp((t — s)evA) Z qjfr,dWi.

(6.64) w?(t, wp) = exp(tevA)wo + J
j=1

0
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Denoting by A; the eigenvalue of fi, with respect to the operator evA, evAfy, =
Ajf;, we see that

t d ot _
(6.65) L exp((t — s)evA)QdW;s = Zlfo exp((t — s)X) q;fi, dWL.

The coefficient ZJ := Sé exp((t — s)ikj)dwg is normally distributed, more pre-

- 1—exp(2tX
cisely, Z4 ~ N (O, Ireety)

= ) In particular, with S(t) := exp(tevh),

(6.66) PEv(w) = B[ exp (I S(e)w + S aziflB) |

j=1

Note

1S(t)w + Z 4 Z4fi|I” = IS (t)wlP?

j=1
(667 + 22 ST ISl a2 + i (10, 122)°
and apply Corollary B2Z0 with C =7, S = ||S(t)w||, Aj = % and
5 = il (220) " s 2 <1 am
(6.68) 1-2CB =1- 2n||qukj||21_e_x‘2);2:xkf) > exp(2wt)
G
for0>w > >\k and 0 < < ”q f Tah,I? and, similarly,
(6.69) 1+ i 12?2?22 < exp(2at)
fora>0andn<minj—; 4 (d—1)2\+ﬁkjll2' we obtain
(6.70) P2y (w) < exp(—dtw) exp(nl|w][2) = exp(—dtw)dn(w),
the required result. ]
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Appendix A

Strongly Continuous Semigroups

We give a short overview on the theory of strongly continuous semigroups on
Banach spaces. Some standard references are [50, 02, B4, B4|.
A.1 Basic definitions and results

Definition A.1. Let (B, ||-||g) be a Banach space. A family (St)¢=0 of bounded
linear operators on B is called a semigroup of operators if and only if

(i) So =/, the identity operator on B, and
(i) Stys = StSs forall t, s > 0.
It is called strongly continuous if, moreover,
(iii) for all x € B, lims_0.||Sex — x|/ = O.
We collect several important properties of semigroups.

Proposition A.2. For every strongly continuous semigroup (St)e=0 on (B, ||-|8),
there exist constants M > 1, w € R such that

(A.1) |Sex|le < Mexp(tw)|x||g  forallt >0 and x € B.
The following result is well-known and given in [34, Theorem 1.5.8].

Proposition A.3. A semigroup (St)t=0 on (B, ||-||g) is strongly continuous if
and only if it is weakly continuous, i.e., for all p € B* and x € B,

(A.2) JNim @(Sex) = o(x).
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Chapter A. Strongly Continuous Semigroups

Definition A.4. Given a strongly continuous semigroup (S¢)¢=0 on (B, ]-l5),
we define its infinitesimal generator by

(A.3) A: domAc B— B, Ax:= tlirg t1(Sex — x).
-0+
Its domain is
(A.4) dom A := {x € B: the limit _fim t71(Stx — x) exists in B} .
-0+

If A'is the infinitesimal generator of (S¢)¢=>0, we also write exp(tA) := S;.

Recall that a linear operator A: domA < B — B on (B, ||-||g) is called
closed if and only if for all sequences (xp)pen in B with x, — x and Ax, — y
in the norm topology of B, we have that x € dom A and Ax = y. It is called
densely defined if and only if dom A is dense in B.

Proposition A.5. Let (S¢)=0 be a strongly continuous semigroup on (B, ||| )
with infinitesimal generator A: domA c B — B.

(i) Ais a closed and densely defined operator.
(ii) Forall t =0, St(dom A) € dom A, and AStx = S¢Ax for all x € dom A.

(iif) For x € dom A, the mapping t — S¢x is continuously differentiable, and
d _
dtStX = AStX.

(iv) There exists w € R such that A\ — A is invertible for \ > w, and the inverse
Is given by the integral
0
(A.5) A= A)"Ix = J exp(—As)Ssxds.
0

The integral is an improper Riemann integral in the norm topology of B.

(v) Let k e N. If x e dom AK*1, then S;x € dom A*+L forall t > 0, t — Six
Is k + 1 times continuously differentiable, and

k .
t .
(A6) StX = Z FAJX + tk+ll’th
j=07’

where the remainder is explicitly given by

E(r_ o)k
(A7) Fox = t—(k—s-l)f ( k|5) S AR Lyds
O .

and satisfies ||r:x||g < C||A*1x||5.
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A.2. Analytic semigroups and fractional powers

(vi) Let D ¢ dom A be dense in B. Assume furthermore that S¢(D) < D for
all t > 0. Then, for every x € dom A, there exists a sequence (Xp)nen N
D such that lim,—x(||Xn — X|l5 + ||Axn — Ax||g) = 0. In this case, we say
that D is a core for A.

The last point is given in [34, Proposition I1.1.7].

The Hille-Yosida theorem gives necessary and sufficient conditions for an
unbounded operator on a Banach space to be the infinitesimal generator of a
strongly continuous semigroup. In this work, we only need the following result,
which is stated, e.g., in [34, Theorem 11.3.15].

Proposition A.6 (Lumer-Phillips). A densely defined operator A: domA c B —
B on (B, ||-||g) is the infinitesimal generator of a strongly continuous semigroup
of contractions (i.e., ||Stx|lg < ||x||g for all t = 0 and x € X) if and only if

(i) A is dissipative, i.e., ||(A — A)x|lg = \||x|/g, and
(if) (A — A)B is dense in B for some X\ > 0.

In this case, (A — A)B is dense in B for all A > 0.

A.2 Analytic semigroups and fractional powers

We shall need fractional powers of the infinitesimal generator of a semigroup. We
only consider these for (S¢)=0 analytic. Here, a strongly continuous semigroup
(St)t=0 is called analytic if and only if S¢(B) < dom A for all t > 0, and there
exists C > 0 such that ||AS;x|lg < Ct~}||x||g for t > 0 and x € B. See [84,
pp. 60] for equivalent definitions and more background.

Definition A.7. Let o € (0, 1), and assume that A: dom A < B — B is bound-
edly invertible and generates an analytic semigroup on (B, ||-||g). The fractional
power (—A)% is the inverse of the bounded operator (—A)~% given by

_o _ Sin(ma) [ _, -1
(A.8) (—A) = Lt (t — A~ dt,

the integral being taken in the uniform operator topology. lts domain is given
by dom(—A)* := (-A)~*(B). Fora = n+s, ne N, s e (0,1), we set
(—A)* := (—A)"(—A)*, with domain dom(—A)* := (—A)~*(dom(—A)").
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Chapter A. Strongly Continuous Semigroups

Proposition A.8. Let A: dom A c B — B be boundedly invertible and generate
an analytic semigroup (St)t=0 on (B, ||-|ls).

(i) dom(—A)P < dom(—A)* for0 < a < 3.

(i) Fora >0, (—A)*: dom(—A)* ¢ B — B is a densely defined and closed
operator.

(iii) Fora, B > 0, (—A)**P = (—=A)*(=A)P on dom(—A)**P. In particular,
integer powers agree with their usual definitions.

(iv) There exists § > 0 such that for a > 0, S¢(B) < dom(—A)* and
I(—A)*Six||g < Mot *exp(—0dt) for all t = 0 with some constant M,
independent of t and x.

(v) Forx e dom(—A)%, (—A)*Stx = S¢(—A)*x. In particular, (St) =0 defines
an analytic semigroup on (dom(—A)%, || |gom(—ay), where ||x||gom(—a)= :=
Ix]|g + [|(=A)*x|| g Is the graph norm.
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Appendix B

Stochastic Ordinary And Partial
Differential Equations

We give a short overview of the tools of stochastic analysis used regularly in this
thesis. Standard textbooks are [58, BY, b7, U2, 81, G0, [71]. Books on stochastic
partial differential equations are [28, Y, 7, BY, B5, B2].

B.1 The It6 integral

Let (2, F, P, (Ft)t=0) be a filtered, complete probability space satisfying the
usual conditions, i.e.,

(i) Fo contains all P-nullsets, and
(i) the filtration (F¢)¢=o is right continuous, i.e., Fs = (),oo Ft for s > 0.

Here, a filtration is an increasing family of o-fields on €2, all contained in F. We
denote the expected value with respect to P by E, i.e., for a random variable
X:Q — R, we set E[X] := {5 X(w)P(dw). For X a real-valued, integrable
random variable, conditional expectation with respect to a o-field F is denoted
by E[X|F]. See [67, Chapter 5] for background on conditional expectations.

Definition B.1 (Stochastic process; adaptedness). Let (M, G) be a measurable
space. A stochastic process is a family (Xt)¢e; of random variables on € with
values in (M, G), indexed by some set /, in our case usually [0, o) or [0, T] for
some T > 0. A stochastic process (Xt)¢=o is called adapted if and only if X; is
Fe-measurable for all £ = 0.

Definition B.2 (Brownian motion). A d-dimensional Brownian motion relative
to the filtration (F¢)t=o is an adapted process (B¢)¢=o of R%valued random
variables such that
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(i) Bo = 0 almost surely,
(ii) Btynh — By is independent of F; for t > 0 and h > 0,

(iii) (Bt)t=0 has almost surely continuous paths, i.e., the mapping t — By is
almost surely continuous,

(iv) B¢yp — By is distributed according to a d-dimensional normal distribution
with mean 0 and covariance matrix hly, where /4 is the d-dimensional
identity matrix.

We shall always assume that Brownian motions are given relative to the
filtration used in the definition of the underlying filtered probability space.

To construct the Itd integral, one typically proceeds as follows: First, the
definition is given for certain simple integrands where the approach is natural.
Then, one proves the It6 isometry. Finally, by determining the closure of the
space of simple integrands, a density argument yields the [t6 integral on its
natural domain of definition.

Definition B.3. A real-valued stochastic process (X¢)¢=o is called elementary
if and only if there exist real numbers ()2, with 0 = to < t1 < ... and
F-measurable random variables &; such that

0
(B.1) Xe = Z ij[tj,th)(t)-
j=0

Definition B.4 (It6 integral, simple integrands). For an elementary stochastic

process X¢ = 3,70 &X[t,.¢,,,)(t), we define the Ito integral with respect to a

one-dimensional Brownian motion (B¢)t>o0 by

t 0
(8-2) J XsdBs 1= Z fj(BthAt - Btj/\t)-

Clearly, the It6 integral is a linear operator.

Proposition B.5 (It isometry). For elementary integrands (Xt)t=o,
t ) t

(B.3) E[(f X.dB) ] :f E[X2]ds.
0 0
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B.1. The It integral

The space of adapted processes is too large to be able to define the It6
integral. The correct space of integrands is defined as follows.

Definition B.6. Let (M, G) be a measurable space. A stochastic process (X¢) =0
is called progressively measurable if and only if the mapping [0, T] x Q — M,
(t,w) = Xe(w), is By, 1)@ Fr-G-measurable for all T > 0, where Bjg 77 denotes
the Borel sets in [0, T].

Note that progressively measurable processes are always adapted. Con-
versely, for every adapted process ()?t)t>0: there exists a progressively mea-
surable process (Xt)t=0 such that P[.X; = )~<t] = 1forall t > 0, i.e., there exists
a progressively measurable modification.

Proposition B.7 (It6 integral, progressively measurable integrands). The closure
of the space of elementary integrands with respect to the topology induced by

1/2
the norm [X]t = (SOT E[Xf]dt) equals the space of real-valued progressively
measurable processes. In particular, for all such processes, the It6 integral is well-
defined and satisfies the [t6 isometry, which now reads

(B.4) }E[(Lthst)z] —[X]? forte[0.T].

While Proposition BZ4 allows us to define the Itd integral Y; = Sé XsdBs
for a progressively measurable processes, it does not allow us to speak about
path properties of the process (Y;)+=o0, the reason being that this integral is only
defined up to modification. This leads to the following approach.

Proposition B.8. Let (M;)t=0 be a martingale, i.e., (Mt)t=o is a real-valued,
adapted stochastic process consisting of integrable random variables with

(B.5) E[M¢|Fs] = Ms  forall0 < s < t.

Then, (M¢)t=o has a modification that is almost surely cadlag, i.e., for almost
all w e Q2, the mapping t — M¢(w) is right continuous and has left limits.

This result also holds true if (M;)o is a supermartingale, i.e., a real-valued
adapted stochastic process of integrable random variables with

(B.6) E[M¢|Fs] < Ms forall 0 <s <t

or a submartingale, i.e., (—My¢)t=0 is a supermartingale.
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Proposition B.9. Let (X{)t>0 be a progressively measurable process satisfying
[X]r < . Then, the Ité integral (Yi)tso, Ye = §qXsdBs for t > 0, is a
martingale.

Hence, there exists a modification of (Y¢)e=o0 that is cadlag. In the future,
we shall always choose this modification.

Choosing X; = 1 for all t > 0, we see that this contains the martingale
property of Brownian motion itself. We collect some features of the It6 integral.

Proposition B.10. Let (X¢)t=0, (X})t=0, (X?)t=0 be progressively measurable
with [X]7, [XY]7, [X?]T < 0.

(i) §o XsdBs = 0.
(i) The mapping t — Sé XsdBs is almost surely continuous.

(iii) For ai, oz € R,
t t t
(B.7) f (1 X? + asX2)dBs = alf X1dBs +a2J X2dBs,
0 0 0

I.e., the It6 integral is a linear operator.

Remark B.11. By a localisation argument, it is possible to extend the It6 integral
to all progressively measurable processes (Xt)t=o that only satisfy the property

.
(B.8) IP’UO X2dt < oo] —1 forall T3>0

In this case, the stochastic integral still defines a linear operator and Sé XsdBs
still has almost surely continuous paths, but we no longer obtain martingales,
but only local martingales, i.e., processes that become martingales when stopped
at appropriate stopping times.

Proposition B.12 (It6 formula). Let f: [0,0) x R — R, (t,x) — f(t, x),
be a function once differentiable with respect to t and twice with respect to
X. Assume that (Xt)t=o Is an It process, i.e., can be written in the form
Xt = Xo + Sé wsds + Sé 0sdBs, where Xq Is a constant, (ut)¢=o is adapted with

124



B.1. The It integral

almost every path Lebesgue integrable on [0, T], and (0¢)t=0 IS progressively
measurable and satisfies (BX8). Then,

t t

fe(s, Xs)ds + f fx(s, Xs)(sds + 0sdBs)

f(t, X¢) = (0, Xo) +f
0

0

1 t
(B.9) + zf frx(s, Xs)o2ds.
0

This is also written in the form
1
(B].O) df(t, Xt) = ft(t, Xt)dt+ f,X(t, Xt)(/-‘('tdt +0'tdBt) + Ef,xx(t, Xt)O'%dt

The last term in the above expressions shows the deviation of this chain rule
for the 1t6 calculus from the usual rules of deterministic calculus. The differential
notation given in (BZIO) cannot be directly defined, as Brownian motion is almost
surely nowhere differentiable. It is only to be seen as shorthand notation for the
corresponding integral expression.

Remark B.13. If (X¢)t=0 is RN-valued such that every component is an Ito
process with respect to a d-dimensional Brownian motion (B¢)¢>o,

(B.11) XK= X¢§ +J pids + > okJdB], k=1,..., N,
0 B
J=1

a corresponding formula holds true; see, e.g., [68, Theorem 3.3.6]. (BZID) is
customarily written as

d
(B.12) dXf = pfdt+ ) of/dBl, k=1,...,N.
j=1

Definition B.14. Let (X;);=0 be an Itd process with values in RV satisfy-
ing (BI), and let (Y;)r=0 be a progressively measurable process such that
(YXuf)e=0 has almost surely Lebesgue integrable paths for k = 1, ..., N and
(Yko:!) =0 satisfies (BR) for all k =1,..., Nandj=1,..., d. Then, the Ito
integral {; YsdXs is defined by

t N t N d t ' _
(B.13) J YedXs = ) J YEukds + ' ZJ YXokidBL.
0 =1 J0 0

k=1j=1
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While the It6 integral does not reproduce the chain rule from deterministic
calculus, there is another stochastic integral that does.

Definition B.15 (Stratonovich integral). Let (X})t=0, (X?)¢=0 be real-valued
Ité diffusions,

d
(B.14) dXf = pkdt + > ofdBl, k=12
j=1

Then, the Stratonovich integral §; X! o dX2 is defined by
t t d 1 ¢t . .
©15) | xiodxti— | xiaxt+ )| oliaties
j=1

Proposition B.16. Let (Xt)t=o be an Itd process with values in RN, and assume
that f: RN — R is three times continuously differentiable. Then,

Nt
(B.16) X0 = FX0) + Y | Fr(Xe) o dXE
k=10

B.2 Stochastic ordinary differential equations

In this thesis, we analyse numerical methods for stochastic differential equations
of the form

d
(B.17) dx(t, x0) = a(x(t, x0))dt + Z o(x(t, x0))dB.,  x(0,x0) = X0
j=1

on RN, Here, (Bt)t=0 is a d-dimensional Brownian motion, o, o;: RN — RN
are vector fields, and (x(t, xp))¢=0 IS a stochastic process with values in RV
satisfying the equations above, i.e., as we again need to interpret the differentials
as integrals,

t

(B.18) x(t, xo) :XO+J

d ~t
, a(x(s, xp))ds +J§fo o (x(s, x0))dBL.

For us, xp will typically be a constant, but in general, it can be any Fo-measurable
random variable. If the vector fields are regular enough, any It6 equation can be

126



B.2. Stochastic ordinary differential equations

rewritten into an equivalent Stratonovich form,

d
(B.19)  dx(t,x0) = ao(x(t, x0))dt + Y 0j(x(t, x0)) o dBL,  x(0,%0) = X,
j=1

where a(x) 1= a(x) — %27:1 Doj(x)oj(x) denotes the Stratonovich corrected
drift. When dealing with Stratonovich equations, we also write

d
(B.20) dx(t, x0) = > Vi(x(t, x0)) 0 dBL,  x(0,%0) = X0,
j=0

with vector fields V;: RV — RN, where we set BY = t to shorten the notation.

The fundamental result on solvability of such equations is the following,
which is essentially a copy of the corresponding theorem for ordinary differential
equations.

Proposition B.17. Assume that a, o; are Lipschitz continuous vector fields.
Then, there exists a unique solution (x(t,Xo))t=0 of (BIA) with almost surely
continuous paths that is adapted to the filtration generated by (B¢)t=o, I.€.,
the smallest filtration making (Bt)t=0 adapted (and, hence, also to (Ft)t=0).
In particular, all integrals appearing in (BZI4) are well-defined. Furthermore,
SUPte[0,7] E[|x(t, x0)|?] < oo for T = 0, the mapping xop — x(t, xp) is almost
surely Lipschitz continuous, and E[|x(t, x1) — x(t, x2)|?] < C|x1 — xo|? for all xq,
X2 € RN.

Here, |-| denotes the Euclidean norm in RN. The proof of the theorem is
done by Picard iterations.

We remark that extensions are possible in many directions, in particular, o
can be allowed to only satisfy a one-sided Lipschitz condition, see [1]. Solu-
tions as obtained in Proposition B4 are also called strong solutions. If the
coefficients are less regular, it can still be possible to solve (BI4) on a larger
probability space (weak solutions). As we shall not need this more general no-
tion in this work, we refer the reader to [68, 8] for more details on existence
and properties of weak solutions.

One of the properties of solutions of stochastic differential equations exten-
sively used in this work is the Markov property.
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Proposition B.18. Assume that the vector fields o, o;, j = 1, ..., d are Lip-
schitz continuous. Then, the solution (x(t, xo))t=0 of (BZIA) satisfies

(B.21) E[f(x(t + h, x0))|F¢] = E[f (x(h, O)]le=x(t.x0).

where f: RN — R is a bounded and measurable function. Here, (F¥) denotes
the filtration generated by (x(t, x0))t=0-

Define the Markov semigroup (Pr)¢=0 of x(t, x0) by P:f(x0) := E[f(t, x0)].
Proposition BZI4 shows that P;f is bounded and continuous if f is. Further-
more, (P:)t=o actually is a semigroup on the bounded and continuous functions,
endowed with the supremum norm |[|f|| := sup,epn|f(X)|, as boundedness of
P:, t = 0, follows from the monotony of the integral, Py = I is obvious, and
Propostion BETI3 yields Prys = P:Ps for t, s > 0.

B.3 Stochastic partial differential equations

Let (H,||-||#) be a separable Hilbert space. For vector fields o, 0;: H — H,
and A: domA < H — H the infinitesimal generator of a strongly continuous
semigroup on H, see Appendix B, we want to consider the equation

d
(B.22) dx(t, x0) = (AX(t, x0) + a(x(t, x0)))dt + > 0j(x(t, x0))dBL,
j=1

where (Bt)t=o is a d-dimensional Brownian motion. Here, we need to take
stochastic integrals with values in H. As we restrict ourselves to finite-dimensio-
nal driving noise, these can be constructed as in Section BT, as the 1t6 isometry
holds true for Hilbert space-valued elementary integrands; it reads

t _ t
(B.23) B[l | X:dBLIE1 = | BlIX:lE)ds forj=1....d

We shall only state the following generalisation of Proposition B2, which can
be found in [?Y9, Theorem 7.2.1].

Proposition B.19. Assume that (Xt)t=0 Is an Ité process with values in H driven
by a d-dimensional Brownian motion, i.e.,

d
(B.24) dX; = pedt + ) ohd By
j=1
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Then, for every f: [0,0) x H — R, (t,x) — f(t, x), once differentiable with
respect to t and twice with respect to x, uniformly continuous on bounded
subsets of [0, ) x H together with its derivatives,

df (t, X¢) = Def (t, Xe)dt + Dyf(t, X¢)dXe

1 d S
(B.25) + 2; D2f(t, X¢) (o), ol)dt.

For the general case of infinite-dimensional driving noise, see, e.g., [?7], or
any other book on stochastic partial differential equations cited at the beginning
of this chapter.

As in the finite-dimensional case, assuming that o; is Fréchet differentiable,
it is possible to transform to Stratonovich form, the Stratonovich corrected drift
being

(B.26) ag(x) = a(x) —

N -

d
2, Doj(x)a;(x).
j=1

Moreover, the finite-dimensional case is contained in the infinite-dimensional
case by setting H = RN and A= 0.

Similarly to deterministic partial differential equations, it is usually not pos-
sible to solve (BZ22) in the strong sense, i.e., taking classical derivatives (the
differentiability requirements correspond to x(t, xg) € dom A). Instead, using
the semigroup St := exp(tA) generated by A, we consider the mild formulation

t d ,t .
(B.27) x(t, x0) = Stxo—l—f St_sa(x(s,xo))d5+ZJ Se_s0j(x(s, x0))dBL.
0 =1 Jo

Again, we shall restrict ourselves to deterministic initial conditions, but remark
that an extension to Fp-measurable random variables is possible.

Proposition B.20. Assume that o, oj, j = 1,...,d, are Lipschitz continuous.
Then, there exists a unique solution (x(t,Xo))t=0 of (BZZ4) with almost surely
continuous paths, and the mapping xo — x(t,Xo) Is almost surely Lipschitz
continuous. Furthermore, supepo 11 E[|X(t, x0)[I5] < Cr (1 + [Ixollf,) with some

Cr>0forall T >0.

Define P:f(x0) := E[f(x(t, x0))]. As in the finite-dimensional case, (P)s=0
defines a semigroup (the proof of Proposition BZI8 given in [81, p. 115] clearly
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generalises, being applicable to all cases where strong solutions exist for arbitrary
square integrable initial values; see also [92, p.371]). The next result proves
differentiability with respect to the initial value.

Proposition B.21. Assume that o, 0, j = 1,...,d are k times continuously
Fréchet differentiable with bounded derivatives (o« and o}, j = 1,...,d, do not
have to be bounded themselves). Then, xo — x(t, Xo) is almost surely k times
continuously Fréchet differentiable, and the derivatives are given by taking formal
derivatives in (BZZd). Furthermore, for all T > 0 there exists some constant
Ct > 0 independent of xo with supte[o,7] E[||D{<Ox(t,xo)||’2j(,_,;,_,)] < Cr.

Here, L;(H; H) denotes the Banach space of bounded j-linear maps H — H,
endowed with the norm

(B.28) lallL,H;Hy == sup [la(he, ..., hi)ll
Inji<y
=

see also Definition Z223. Hence, P; preserves differentiability if the coefficients
are smooth enough.
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