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Kurzfassung

Wir betrachten stochastische partielle Differentialgleichungen sowohl
von einer analytischen als auch von einer numerischen Perspektive. Wir
führen gewichtete Räume von Funktionen auf den Zustandsräumen un-
endlichdimensionaler stochastischer Gleichungen ein. Mittels einer Erwei-
terung der klassischen Feller-Eigenschaft positiver Halbgruppen auf dem
Raum der stetigen Funktionen auf einem lokalkompakten Raum, die im
Unendlichen abklingen, leiten wir hinreichende Bedingungen für die star-
ke Stetigkeit der von einem Markovprozess in endlicher oder unendlicher
Dimension induzierten Halbgruppe her. Unter Verwendung der starken Ste-
tigkeit und neuer invarianter Teilräume erhalten wir Taylor-Entwicklungen
der Markov-Halbgruppen der Lösungsprozesse von stochastischen partiellen
Differentialgleichungen.

Diese Resultate werden auf die numerische Analysis von Splitting- und
Kubatur-Approximationen von stochastischen partiellen Differentialgleichun-
gen vom Da Prato-Zabczyk-Typ angewendet. Wir erhalten dieselben op-
timalen Konvergenzraten wie im endlichdimensionalen Rahmen. Als nu-
merisches Beispiel simulieren wir die Heath-Jarrow-Morton-Gleichung der
Zinstheorie.

Abschließend leiten wir Fehlerabschätzungen für die stochastischen Na-
vier-Stokes-Gleichungen auf dem zweidimensionalen Torus her. Die Ab-
schätzungen sind optimal in der Zeit, aber die Konstanten hängen von
der Ordnung einer Ortsdiskretisierung durch eine Spektralmethode ab. Nu-
merische Rechnungen bestätigen die Anwendbarkeit der vorgeschlagenen
Methoden.
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Abstract

We consider stochastic partial differential equations, both from an an-
alytical and a numerical point of view. We introduce weighted spaces
of functions on state spaces of infinite-dimensional stochastic equations.
Through an extension of the classical Feller property of positive semigroups
on the space of functions decaying at infinity on a locally compact space,
we derive sufficient conditions for the strong continuity of the semigroup in-
duced by a Markov process in finite and infinite dimension. Using the strong
continuity and novel invariant subspaces, we obtain Taylor expansions of
Markov semigroups of solution processes of stochastic partial differential
equations.

These results are applied to the numerical analysis of splitting and
cubature approximations for stochastic partial differential equations of Da
Prato-Zabczyk type. We recover the same optimal rates of convergence
as in the finite-dimensional setting. As a numerical example, we simulate
the Heath-Jarrow-Morton equation of interest rate theory.

Finally, we derive error estimates for discretisations of the stochastic
Navier-Stokes equations on the two-dimensional torus. The estimates are
optimal in time, but the constants depend on the order of the spatial
discretisation by a spectral method. Numerical calculations confirm the
applicability of the suggested schemes.
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Introduction

The aim of this PhD thesis is to develop a novel mathematical framework for the
numerical analysis of stochastic partial differential equations and to demonstrate
its applicability. While there are many different ways in which randomness can
enter into a mathematical model given by a partial differential equation, we con-
sider here the case of random forcing. This means that there is a driving process,
typically a finite or infinite dimensional Brownian motion or, more generally, a
Lévy process or even a semimartingale, which puts randomness into a partial
differential equation. As it is our belief that a finite dimensional driving process
captures the most important phenomena, we will restrict ourselves to this case.
This belief is justified by results such as [47]. There, it is proved that random
input on finitely many, correctly chosen Fourier modes is sufficient to make the
solution process of the Navier-Stokes equations on the two-dimensional torus
ergodic.

In the application of numerical methods to stochastic differential equations,
we distinguish different types of approximations. While pathwise and strong
methods aim to obtain convergence in the original probability space of the prob-
lem, weak methods are built such that expected values of functionals of the
solution are accurately obtained. As this is the approach that is needed in the
numerical evaluation of pricing problems in mathematical finance and also in the
simulation of ergodic processes such as the stochastic Navier-Stokes equations
in the setting of Hairer and Mattingly, see [47], we shall focus on this type of
method. Note that pathwise and strong approximations have been derived also
for stochastic partial differential equations, see, e.g., [55] for an overview of
recent results.

The kind of numerical schemes we shall be working with is the class of
cubature and splitting schemes. Cubature on Wiener space, introduced in [65,
70], is a method of approximating the expected value of a solution of a stochastic
differential equation by the solution of certain deterministic differential equations.
These result from replacing Brownian motion in the original equation by certain
well-chosen paths of bounded variation, making these problems well-defined in
a pathwise manner. Chapter 1 contains a summary of these methods. We
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Introduction

interpret them from a semigroup perspective, defined on the space BUCpRNq of
bounded and uniformly continuous functions. This allows us to obtain slightly
sharper error estimates than those given in [70] by the use of spaces of functions
with uniformly continuous derivatives.

Splitting methods rely on the fact that autonomous stochastic differential
equations are Markovian and thus define an operator semigroup on a suitable
space of functions defined on the state space of the stochastic differential equa-
tion with values in R. Using Itô’s formula, it is possible to define the generator of
the Markov semigroup and calculate Taylor expansions. Under the assumption
that the generator can be split into several generators of Markov semigroups,
each of which is easier to simulate than the original problem, we can concatenate
the corresponding split Markov semigroups to obtain a simulation method for
the original problem. There is a straightforward way to perform such a splitting
for semigroups induced by stochastic differential equations, and its use in appli-
cations in computational finance was pioneered in [80]. It has since become an
important tool in the approximation of expected values of functions of stochastic
processes. The reason for this is the simplicity of the approach: by an adequate
splitting, we are able to reduce a complicated stochastic differential problem to
several simple ordinary differential equation problems, one for each split Markov
semigroup. Thus, we can reuse tested solvers for these problems and obtain ef-
ficient numerical codes. The disadvantage of splitting schemes is that they have
an inherent order barrier of 2, see [15], if no assumptions on commutators of the
generators are made. A way around this is provided by extrapolation schemes,
see [82], and also Section 4.2 of the present work.

The most fundamental problem of the above approach to this problem is,
however, that the assumptions of the method are far too strict for a practical
application. It is required that both the coefficients of the stochastic differential
equations as well as the payoff are bounded and C8-bounded, an assumption
that is essentially never fulfilled in real-world problems. Steps around this were
taken on the one hand in [6], where the presence of the unbounded operator in a
stochastic partial differential equation was dealt with by strong assumptions on
the vector fields. On the other hand, in [2, 105], the restrictions for stochastic
ordinary differential equations were relaxed, allowing the use of linearly bounded
and Lipschitz continuous coefficients and polynomially growing payoffs.

Let us remark here shortly why the space of bounded and C8-bounded func-
tions is an inadequate choice for the payoffs if the coefficients of the problem
are no longer assumed to be bounded. To derive error estimates, we are forced
to apply, in one way or another, the vector fields defining the problem to the
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payoff. Now, even if the payoff might initially have compact support, after
arbitrarily short time, we expect the evolved payoff to be nonvanishing on an
unbounded set unless restrictive assumptions are made on the volatilities such
as in [6]. Thus, applying the vector field to the evolved payoff is expected to
yield an unbounded function, showing that we leave the setting of bounded and
C8-bounded functions, even for stochastic differential equations with smooth
and Lipschitz-continuous coefficients. The situation is clearly even worse for
examples such as the Heston model, where the coefficients are not even smooth
any longer. We are therefore led to consider larger classes of functions for the
payoffs.

Our approach to this problem is, as explained in the beginning, to provide a
new mathematical framework. We take the route of strongly continuous semi-
groups. Strong continuity is in many senses a “via regia” towards approximation
schemes via splitting schemes (e.g., Trotter-type formulae, Chernov’s theorem,
etc), and therefore a very desirable feature. Moreover, it allows us to derive es-
timates of the rate of convergence in a rather standard manner by using results
such as [54, 43, 49, 44].

It is well-known that the world of stochastic Markov processes on general
state spaces is tied to strongly continuous semigroups in two ways: either
through the Feller property, or through invariant measures. In both cases we
can construct an appropriate Banach space, C0pXq and LppX,µq, respectively,
where the Markov semigroups act in a strongly continuous way. However, neither
the existence of invariant measures nor the Feller property are generic properties
of Markov processes – this holds true in particular in infinite dimension.

The situation is even worse for the Feller property, where we have a strong
connection to locally compact state spaces and continuous functions vanishing
at infinity. It therefore seems natural to ask for a framework extending the Feller
property towards unbounded payoffs and non-locally compact spaces. Moreover,
the framework should be as generic as possible to remain applicable to general
stochastic partial differential equations. From the viewpoint of applications, the
new concept is useful if we are able to prove rates of convergence for substantially
larger classes of payoffs and equations with the presented method.

It turns out that the Feller property can be extended to a larger class of
state spaces by replacing the space C0pXq of functions vanishing at infinity by
a space BψpXq of functions which have their growth controlled by ψ, and this
theory is introduced in Chapter 2. Instead of the notion of a point at infinity,
we assume that the sets KR :� tx P X : ψpxq ¤ Ru are compact. Such an
assumption is viable in infinite dimension if we endow the dual space of a normed
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space with the weak-� topology. In particular, separable Hilbert spaces, usually
used as state space in stochastic partial differential equations, are contained in
this approach. It requires us, however, to work with the weak-� topology. As
continuous dependence on initial data for stochastic partial differential equations
is usually only obtained for the norm topology, we relate usual spaces of strongly
continuous functions to the newly defined spaces.

Chapter 3 applies the setting of weighted spaces to Markov semigroups.
Sufficient conditions for strong continuity are provided. Furthermore, under the
assumption that the stochastic process is the solution of a stochastic partial
differential equation, Taylor expansions of the Markov semigroup are derived.

Chapters 4 and 5 are devoted to the derivation of rates of convergence for
splitting and cubature approximations to stochastic partial differential equations.
Optimal rates are obtained for sufficiently smooth functions.

Finally, Chapter 6 deals with the problem that initiated this research, the
numerical approximation of the stochastic Navier-Stokes equations on the two-
dimensional torus. While we are unable to reproduce the results obtained in
Chapters 4 and 5 in this case, we are still able to construct splitting and cubature
approximations and prove their convergence under a restriction on the time step
size by the use of a spectral Galerkin approximation.

The articles [31, 30, 32] have resulted from the research performed for this
thesis.
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Chapter 1

Cubature On Wiener Space:
A Semigroup Perspective

Introduced by Kusuoka, Lyons and Victoir [64, 70], the method of cubature on
Wiener space quickly became an important numerical tool for applications and a
topic of major research. Its fundamental idea is to use a combination of stochas-
tic Taylor expansion and an innovative replacement of iterated Stratonovich
integrals to construct weak approximation schemes for stochastic differential
equations, reducing them to ordinary differential equation problems. In partic-
ular, it is in principle possible to find cubature paths of arbitrarily high order,
a consequence of Tchakaloff’s theorem (see [5] and [70, Theorem A.1]), even
though this general existence result is nonconstructive and suboptimal in the
number of paths needed to obtain a given order of convergence. Explicit paths
up to order 11 for a single Brownian motion have been constructed, see [45].

In this chapter, we illustrate the fundamentals of the numerical methods that
are at the basis of the approach to stochastic partial differential equations used
in this work. Section 1.1 provides a short overview of the basics of the method of
cubature on Wiener space. A convergence analysis from a semigroup perspective
is given. Under the assumption that the coefficients of the stochastic differen-
tial equation are bounded and C8-bounded, we consider the space BUCpRNq of
bounded and uniformly continuous functions to be the correct setting for cuba-
ture methods. While rates of convergence can be expected only for sufficiently
smooth functions, we prove that strong convergence is retained on the entire
space BUCpRNq (but see [64, 70, 66] for the use of smoothing effects to obtain
optimal rates of convergence fo nonsmooth functions, and Section 5.2.3 for an
extension of these results to unbounded payoffs).

In Section 1.2, we focus on splitting methods. A splitting-up approach to
stochastic ordinary and partial differential equations based on the Lie-Trotter
theorem was used by many authors, e.g., [8, 9, 38, 7, 10, 91, 67, 104, 53, 40,
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Chapter 1. Cubature On Wiener Space: A Semigroup Perspective

42, 41]. This, however, can only yield weak order one methods, making high
accuracy unattainable, see [87]. In [83, 86], a weak second-order method based
on a splitting of the drift is proposed, but this method requires the explicit use
of derivatives of the volatilities and is thus difficult to implement for general
classes of equations. Ninomiya and Victoir [80] introduced a weak second-order
method, which is a variant of the well-known Strang splitting. Their approach
has immediate advantages in the simplicity of its implementation: we only have
to solve for one single vector field at any given step in the algorithm. Hence,
such a splitting is very attractive for use in the simulation of stochastic differ-
ential equations: well-tested, robust and efficient solvers for the corresponding
deterministic problems can be used.

1.1 Cubature on Wiener space

In the following, we shall use standard notions from stochastic analysis freely.
Please refer to Appendix B for an introduction to the fundamentals, and for
further references.

For m, n P N, let C8b pRm;Rnq denote the space of functions f : Rm Ñ Rn
that are bounded, infinitely often differentiable, and have all partial derivatives
bounded. Such functions are also called bounded and C8-bounded, the latter
alone only signifying that all partial derivatives are bounded, but not necessarily
the function itself.

Let pΩ,F ,P, pFtqt¥0q denote a filtered probability space satisfying the usual
conditions, and suppose that pBjtqj�1,...,d is a Brownian motion defined on it. The
method of cubature on Wiener space introduced by Kusuoka, Lyons and Victoir
in [65, 70] is a weak approximation scheme for a (for simplicity autonomous)
stochastic differential equation of the form

(1.1) dxpt, x0q � µpxpt, x0qqdt �
ḑ

j�1

σjpxpt, x0qqdBjt , xp0, x0q � x0,

with state space RN , where µ, σj P C8b pRN ;RNq, or its equivalent Stratonovich
formulation

(1.2) dxpt, x0q � µ0pxpt, x0qqdt �
ḑ

j�1

σjpxpt, x0qq � dBjt , xp0, x0q � x0,

where µ0 :� µ � 1
2Dσj � σj is the Stratonovich corrected drift. This means

that we define a family pQptqqt¥0 of operators such that Qnpt{nq converges, in
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1.1. Cubature on Wiener space

some sense specified below, to Pt for n Ñ 8. Here, Pt f px0q :� Erf pxpt, x0qqs
denotes the Markov transition operator defined by the process pxpt, x0qqt¥0, and
f : RN Ñ R is measurable.

To define spaces of functions where we can expect convergence of discretisa-
tion schemes, let us proceed as follows. CbpRNq denotes the space of bounded,
continuous functions, endowed with the supremum norm,

(1.3) ∥f ∥CbpRNq :� sup
xPRN
|f pxq|.

BUCpRNq � CbpRNq is its subspace constisting of bounded and uniformly con-
tinuous functions. When deriving Taylor expansions for Markov semigroups, we
need to use smooth functions. We define

CkbpRNq :�
!
f P CkpRNq : Bj

Bxi1 . . . Bxij
f P CbpRNq

for all multiindices pi1, . . . , ijq P t1, . . . , Nuj ,
j � 0, . . . , k

)
,(1.4)

endowed with the norm

(1.5) ∥f ∥CkbpRNq :�
ķ

j�0

¸
pi1,...,ij qPt1,...,Nu

j

∥∥ Bj
Bxi1 . . . Bxij

f
∥∥
CbpRNq

.

The closed subspace BUCkpRNq � CkbpRNq is given by

BUCkpRNq :�
!
f P CkpRNq : Bj

Bxi1 . . . Bxij
f P BUCpRNq

for all multiindices pi1, . . . , ijq P t1, . . . , Nuj ,
j � 0, . . . , k

)
.(1.6)

Proposition 1.1. C8b pRNq is dense in BUCpRNq.
Proof. For f P BUCpRNq, set fεpxq :� Erf px�Bεqs, where pBtqt¥0 is a standard
n-dimensional Brownian motion. It is easy to see that fε P C8b pRNq for all ε ¡ 0,
and by [108, p. 399, Proposition], we see that

(1.7) lim
εÑ0�

∥f � fε∥CbpRNq � 0.

7



Chapter 1. Cubature On Wiener Space: A Semigroup Perspective

The fundamental idea is to introduce a finite set of cubature paths which
replicate the expectation of iterated Stratonovich integrals of Brownian motion.
Using the stochastic Taylor expansion, this lets us replace Brownian motion in
(1.1) with the cubature paths to obtain an estimate for the local error. Global
error bounds are then derived from stability estimates of the exact and approxi-
mate solution operators.

1.1.1 The stochastic Taylor expansion

We shall only give a short overview of the stochastic Taylor expansion. More
details can be found in [59, 70].

Let f P C8b pRNq. We are interested in the behaviour of the stochastic process
pf pxpt, x0qqqt¥0. By the chain rule of Stratonovich calculus, Proposition B.16,
we obtain

f pxpt, x0qq � f px0q �
» t
0

Df pxps, x0qqµ0pxps, x0qqds

�
ḑ

j�1

» t
0

Df pxps, x0qqσjpxps, x0qq � dBjs ,(1.8)

which is the pillar of the stochastic Taylor expansion, similarly as the deterministic
chain rule is the pillar of the deterministic Taylor expansion. As ErpBjsq2s � s,
we expect the first term on the right hand side above to behave like t in the
limit t Ñ 0, the second one like t1{2. Thus, if we want to obtain a certain rate
of convergence in t, we should expect that we need an expansion of higher order
in Bs than in s. This leads to the consideration of a weighting of multiindices
done in the following manner: Let α :� pj1, . . . , jkq be a multiindex. Its degree
degpαq is defined by

(1.9) degpαq :� k � |tℓ : jℓ � 0u|,

that is, every component with jℓ � 0 is counted twice. The empty multiindex is
denoted by H and satisfies degpHq � 0. We set

A :� tα multiindexu , Am :� tα P A : degpαq ¤ mu ,(1.10)

A� :� tα P A : α R tH, p0quu , A�m :� A� XAm.(1.11)

For compactness of notation, we denote B0s :� s, and interpret V f pxq :� Df pxq�
V pxq for a vector field V : RN Ñ RN . Furthermore, we set Vj :� σj , j � 1, . . . , d

8



1.1. Cubature on Wiener space

and V0 :� µ0, and denote the iterated Stratonovich integrals by

(1.12) I
pj1,...,jk q
t pgqpx0q :�

»
� � �

»
0 t1 ��� tk t

gpxpt1, x0qq � dBj1t1 � � � � dBjktk

and Ipj1,...,jk qt :� I
pj1,...,jk q
t p1q.

Proposition 1.2. For every m ¥ 0, we have the stochastic Taylor expansion

f pxp∆t, x0qq � f px0q �
¸

pj1,...,jk qPAm

Vj1 . . . Vjk f px0qIpj1,...,jk q∆t

� Rmp∆t, x0, f q.(1.13)

The remainder term Rmp∆t, x0, f q is given by

(1.14) Rmp∆t, x0, f q �
¸

pj1,...,jk qPAm
pj0,...,jk qRAm

I
pj0,...,jk q
∆t pVj0 . . . Vjk f qpx0q,

and satisfies for every T ¡ 0 the estimate

sup
x0PRN

b
ErRmp∆t, x0, f q2s

¤ Cp∆tqpm�1q{2 sup
pj1,...,jk qPAm�2zAm

∥Vj1 . . . Vjk f ∥CbpRNq(1.15)

with a constant C � CT ¡ 0 independent of ∆t P r0, T s and f .

Its proof is essentially a straightforward application of the Stratonovich chain
rule, together with an estimate of the Stratonovich integrals by transforming to
Itô form and using the Itô isometry. Note that the condition f P C8b pRNq is
clearly too strong. The above error estimate shows that f P Cm�2b pRNq suffices.

1.1.2 Formulation of the method

Cubature on Wiener space replaces the paths Bjt of Brownian motion by deter-
ministic paths of bounded variation in such a manner that the expected values
ErIpj1,...,jk qs of iterated Stratonovich integrals remain unchanged up to degree
m, degpj1, . . . , jkq ¤ m. These values can actually be determined explicitly by
algebraic methods, see [4, Proposition 1.3]. The order m then determines the
rate of convergence the algorithm exhibits for sufficiently smooth functions f .
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Chapter 1. Cubature On Wiener Space: A Semigroup Perspective

Consider functions ωji : r0, 1s Ñ R of bounded variation with ωji p0q � 0 and
weights λi ¥ 0, j � 1, . . . , d , ω0i ptq � t, i � 1, . . . ,M. We assume that for any
multiindex α � pj1, . . . , jkq with degpαq ¤ m,

(1.16) ErIpj1,...,jk q1 s �
M̧

i�1

λi

»
� � �

»
0 s1 ��� sk 1

dωj1i ps1q . . . dωjki pskq.

Such a collection pωi , λiqi�1,...,M of paths and weights is called a cubature for-
mula of order m. A straightforward application of the chain rule shows that
the transformed paths ωp∆tq,ji psq :� ?

∆tωji p s∆t q, s P r0,∆ts, j � 1, . . . , d ,

ω
p∆tq,0
i psq :� s, satisfy

(1.17) ErIpj1,...,jk q∆t s �
M̧

i�1

λi

»
� � �

»
0 s1 ��� sk ∆t

dω
p∆tq,j1
i ps1q . . . dωp∆tq,jki pskq.

Define the approximation operator Qp∆tq by

(1.18) Qp∆tqf px0q :�
M̧

i�1

λi f pxpt, x0;ωp∆tqi qq,

where xps, x0;ωp∆tqi q solves the ordinary differential equation

dxps, x0;ωp∆tqi q �
ḑ

j�0

Vjpxps, x0;ωp∆tqi qqdωp∆tqi psq.(1.19)

Proposition 1.3. For f P BUCm�1pRNq,

(1.20) Qp∆tqf px0q �
¸

pj1,...,jk qPAm

Vj1 . . . Vjk f px0qErIpj1,...,jk q∆t s � R̃mp∆t, x0, f q.

For every T ¡ 0, the residual R̃mp∆t, x0, f q P BUCm�1pRNq satisfies

(1.21) |R̃mp∆t, x0, f q| ¤ Cp∆tqm�12 sup
pj1,...,jk qPAm
pj0,j1,...,jk qRAm

∥Vj1 . . . Vjk f ∥CbpRNq

with a constant C � CT ¡ 0 independent of ∆t P r0, T s and f .

10
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Proof. Setting

I
pj1,...,jk q
t pωp∆tqi , gq

:�
»
� � �

»
0 s1 ��� sk t

gpxps1, x0;ωp∆tqi qqdωp∆tq,ji ps1q . . . dωp∆tq,ji pskq(1.22)

and Ipj1,...,jk qt pωp∆tqi q :� I
pj1,...,jk q
t pωp∆tqi , 1q, the usual, deterministic Taylor expan-

sion yields

f pxpt, x0;ωp∆tqi qq � f px0q
�

¸
pj1,...,jk qPAm

Vj1 . . . Vjk f px0qIpj1,...,jk qt pωp∆tqi q � rm,ipt, x0, f q,(1.23)

where the residual rm,i is given explicitly by

(1.24) rm,ipt, x0, f q �
¸

pj1,...,jk qPAm
pj0,...,jk qRAm

I
pj0,...,jk q
t pωp∆tqi , Vj0 . . . Vjk f qpx0q.

As f P BUCm�1pRNq, we see that Vj0 . . . Vjk f P BUCpRNq. Hence,

(1.25) |rm,ipt, x0, f q| ¤ Ctpm�1q{2 sup
pj1,...,jk qPAm
pj0,j1...,jk qRAm

∥Vj0 . . . Vjk f ∥CbpRNq.

Multiplying with λi and summing up over i � 1, . . . ,M allows us to conclude.

We now obtain from Proposition 1.2 and 1.3 that

∥P∆t f �Qp∆ttqf ∥CbpRNq
¤ Cp∆tqm�12 sup

pj1,...,jk qPAm�2zAm
∥Vj1 . . . Vjk f ∥CbpRNq.(1.26)

As the coefficients are bounded and C8-bounded, we see that

(1.27) ∥Vj1 . . . Vjk f ∥CbpRNq ¤ ∥f ∥CkbpRNq.
Furthermore, for smooth f ,

(1.28) ∥Pt f ∥CkbpRNq ¤ C∥f ∥CkbpRNq for t P r0, T s,

which altogether proves a global rate of convergence of pm � 1q{2 for smooth
functions f :

11
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Proposition 1.4. Given T ¡ 0, there exists a constant C � CT ¡ 0 such that
for all f P Cm�2b pRNq, t P r0, T s and n P N.

(1.29) ∥Pt f �Qnpt{nqf ∥CbpRNq ¤ Cn�pm�1q{2∥f ∥Cm�2b pRNq.

Remark 1.5. Note that the smoothness assumptions on f are slightly worse
than those which are obtained in splitting schemes, compare, e.g., with Propo-
sition 1.13. This results from the use of Stratonovich integrals in the stochastic
Taylor expansion. An alternative approach to the Taylor expansion for Pt , per-
formed below by the use of semigroup methods in spaces BUCkpRNq, will allow
us to recover the same kind of estimates as those for splitting schemes for odd
m.

1.1.3 A semigroup interpretation

We want to consider stochastic ordinary differential equations on the state space
RN from the perspective of strongly continuous semigroups. This interpretation
makes clear which kinds of function spaces should be considered for estimation
of rates of convergence. Furthermore, it will be at the basis of the analysis of
the method in the more general settings of subsequent chapters.

Let Pt f px0q :� Erf pxpt, x0qqs denote the Markov semigroup defined by (1.1).
Then, Pt P LpBUCpRNqq. In fact, pPtqt¥0 even defines a strongly continuous
semigroup of contractions on BUCpRNq. See Section A.1 for an overview of
strongly continuous semigroups.

Proposition 1.6. For every t P r0,8q, the operator Pt : BUCpRNq Ñ BUCpRNq
is well-defined and a contraction, that is, Pt f P BUCpRNq and ∥Pt f ∥CbpRNq ¤
∥f ∥CbpRNq for all f P BUCpRNq. Furthermore, limtÑ0�∥Pt f � f ∥CbpRNq � 0.

It follows that pPtqt¥0 is a strongly continuous semigroup of contractions on
BUCpRNq.

Proof. The proof is done similarly as in [108, Proposition, p. 399]. Fix f P
BUCpRNq.

We first prove that Pt f P BUCpRNq. Let ε ¡ 0 be given. As there exists
δ ¡ 0 such that for every x P RN , we have that |f pyq � f pxq| ¤ ε whenever

12
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|y � x | ¤ δ,

|Pt f px1q � Pt f px2q| ¤ Er|f pxpt, x1qq � f pxpt, x2qq|s
� Er|f pxpt, x1qq � f pxpt, x2qq|χr|xpt,x1q�xpt,x2q|¤δss
� Er|f pxpt, x1qq � f pxpt, x2qq|χr|xpt,x1q�xpt,x2q|¡δss

¤ ε� 2∥f ∥CbpRNqPpr|xpt, x1q � xpt, x2q| ¡ δsq.(1.30)

Here, χApxq :� 1 if x P A, 0 otherwise, denotes the indicator function of the
set A. By Chebyshev’s inequality,

(1.31) Ppr|xpt, x1q � xpt, x2q| ¡ δsq ¤ δ�2E
�∣∣xpt, x1q � xpt, x2q∣∣2�.

Due to

xpt, x1q � xpt, x2q � x1 � x2 �
» t
0

pµpxps, x1qq � µpxps, x2qqqds

�
ḑ

j�1

» t
0

pσjpxps, x1qq � σjpxps, x2qqqdBjs ,(1.32)

we can apply the Itô isometry and the Lipschitz continuity of the coefficients to
obtain

E
�∣∣» t
0

pσjpxps, x1qq � σjpxps, x2qqqds
∣∣2� � » t

0

Er|σjpxps, x1qq � σjpxps, x2qq|2sds

¤
» t
0

CEr|xps, x1q � xps, x2q|2sds,(1.33)

and similarly, from the Jensen inequality,

E
�∣∣» t
0

pµpxps, x1qq � µpxps, x2qqqds
∣∣2�

¤
» t
0

CEr|xps, x1q � xps, x2q|2sds.(1.34)

Hence, the Gronwall inequality yields

(1.35) Er|xpt, x1q � xpt, x2q|2s ¤ exppCtq|x1 � x2|2,
and we deduce

Ppr|xpt, x1q � xpt, x2q| ¡ δsq ¤ δ�2C|x1 � x2|2.(1.36)

13



Chapter 1. Cubature On Wiener Space: A Semigroup Perspective

Plugging this into (1.30), we obtain Pt f P BUCpRNq, and the contraction prop-
erty ∥Pt f ∥CbpRNq ¤ ∥f ∥CbpRNq is obvious.

We now prove that Pt f Ñ f uniformly as t Ñ 0�. Denote the transition
probability of the process pxpt, x0qqt¥0 by µtpx0, �q :� Pxpt,x0q, i.e., µtpx0, Aq :�
Prxpt, x0q P As for all Borel sets A � RN . Choosing δ ¡ 0 as above, it follows
that

|Pt f px0q � f px0q| ¤
»
RN
|f pxq � f px0q|µtpx0, dxq

�
»
|x0�x |¤δ

|f pxq � f px0q|µtpx0, dxq

�
»
|x0�x |¡δ

|f pxq � f px0q|µtpx0, dxq

¤ ε� 2∥f ∥CbpRNq
»
|x�x0|¡δ

µtpx0, dxq.(1.37)

As

(1.38)
»
|x�x0|¡δ

µtpx0, dxq � Ppr|xpt, x0q� x0| ¡ δsq ¤ δ�2Erpxpt, x0q� x0q2s,

the result follows from

Erpxpt, x0q � x0q2s

� E
��» t
0

µpxps, x0qqds �
ḑ

j�1

» t
0

σjpxps, x0qqdBjs
�2�
,(1.39)

where we use that

E
��» t
0

µpxps, x0qqds
�2� ¤ Ct2,(1.40)

E
��» t
0

σjpxps, x0qqdBjs
�2� � E�» t

0

σjpxps, x0qq2ds
�
¤ Ct(1.41)

by the Itô isometry, and

E
�» t
0

µpxps, x0qqds
» t
0

σjpxps, x0qqdBjs
�
¤ Ct3{2(1.42)

by the Cauchy-Schwarz inequality.
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A similar argument as in the first part of the above proof shows that Qp∆tq P
LpBUCpRNqq. Therefore, the following result on the strong convergence of
Qnpt{nq to Pt follows from Proposition 1.4 by a density argument.

Proposition 1.7. For every f P BUCpRNq and t ¥ 0,
(1.43) lim

nÑ8
∥Pt f �Qnpt{nqf ∥CbpRNq � 0.

Another important consequence of the semigroup property of pPtqt¥0 is the
existence of the infinitesimal generator. The following result collects some of its
properties.

Proposition 1.8. Denote the infinitesimal generator of pPtqt¥0 by G with domG.
The space C8b pRNq is a core of G, i.e., for all f P domG, there exists a sequence
fn P C8b pRNq such that

(1.44) lim
nÑ8
∥f � fn∥CbpRNq � limnÑ8

∥Gf � Gfn∥CbpRNq � 0.

Furthermore, BUC2pRNq � domG,

Gf � µ0f �
ḑ

j�1

σ2j f , and(1.45)

∥Gf ∥CbpRNq ¤ C∥f ∥C2bpRNq for f P C2bpRNq.(1.46)

Thus, G is a differential operator of second order.

Proof. That C8b pRNq � domG and the representation (1.45) of G on C8b pRNq
follow from Itô’s formula. Applying that G is a closed operator and the right
hand side of (1.45) is continuous as operator G̃ : BUC2pRNq Ñ BUCpRNq by
the smoothness and boundedness of the vector fields, this formula extends to
BUC2pRNq in the following way: for f P BUC2pRNq, choose a sequence pfnqnPN
in C8b pRNq with limnÑ8∥f � fn∥C2b pRNq � 0 (existence of such a sequence is

proved as in Proposition 1.1). Then, G̃fn converges to G̃f in BUCpRNq. The
closedness of G yields f P domG and Gf � G̃f , whence the claim.

As C8b pRNq is dense in BUCpRNq by Proposition 1.1 and as it is invariant
with respect to the semigroup pPtqt¥0 by Proposition B.21, Proposition A.5(vi)
proves that C8b pRNq is a core of G.

Proposition 1.8 allows us to obtain a finer smoothness assumption in the
Taylor expansion than Proposition 1.2.

15
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Corollary 1.9. Assume that f P BUC2pk�1qpRNq. Then,

(1.47) Pt f �
ķ

j�0

t j

j!
G j f � R2k�1pt, f q,

where the residual R2k�1pt, f q P BUCpRNq satisfies

(1.48) ∥R2k�1pt, f q∥CbpRNq ¤ Ctk�1∥f ∥
C
2pk�1q
b pRNq.

Proof. Induction on Proposition 1.8 yields that G j : BUC2jpRNq Ñ BUCpRNq is
bounded. Hence, we can apply Proposition A.5(v) to obtain the claim.

Remark 1.10. Corollary 1.9 is stronger than Proposition 1.2, as C2k�3b pRNq �
BUC2pk�1qpRNq.
Corollary 1.11. Assume that m is odd. For T ¡ 0, there exists a constant
C � CT ¡ 0 such that for t P r0, T s, f P BUCm�1pRNq and n P N,

(1.49) ∥Pt f �Qnpt{nqf ∥CbpRNq ¤ Cn�pm�1q{2∥f ∥Cm�1b pRNq.

Proof. Let f P C8b pRNq. By Proposition 1.4,

(1.50) ∥P∆t f �Qp∆tqf ∥Cm�1b pRNq ¤ Cp∆tqpm�1q{2∥f ∥Cm�2b pRNq.

Proposition 1.3 and Corollary 1.9 show that both P∆t f and Qp∆tqf have Taylor
expansions with residual of order pm � 1q{2 controlled by ∥f ∥Cm�1b pRNq. Hence,
the error estimate extends to this space, and a telescoping argument proves the
claim.

1.2 Ninomiya-Victoir splitting

In [80], Ninomiya and Victoir introduced splitting methods and interpreted them
as a variant of cubature on Wiener space. More specifically, they considered the
problem of approximating the Markov semigroup corresponding to the solution
of (1.2). To this end, they defined auxiliary problems

d

dt
x0pt, x0q � µ0px0pt, x0qq, x0p0, x0q � x0 and(1.51a)

dx jpt, x0q � σjpx jpt, x0qq � dBjt , x jp0, x0q � x0 for j � 1, . . . , d .(1.51b)
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These problems are easy to solve numerically, as they only involve the solu-
tion of an ordinary differential equation each, where we evaluate at the random
time Bjt for j � 1, . . . , d . Defining the split Markov semigroups P jt f px0q :�
Erf px jpt, x0qqs, they use the discretisation

(1.52) Qt f px0q :� 1
2
P 0t{2

�
P 1t . . . P

d
t � P dt . . . P 1t

�
P 0t{2.

The expected values appearing in the definition of the semigroups P jt , j �
1, . . . , d , can be discretised further by Gauss-Hermite quadrature with three
points to preserve the optimal rate of convergence in a fully discrete scheme.

In light of Proposition 1.6, we see that not only pPtqt¥0, but also pP jt qt¥0,
j � 0, . . . , d , are strongly continuous semigroups of contractions on the space
BUCpRNq. This means that (1.52) can be seen as an exponential splitting for
pPtqt¥0.

Proposition 1.8 allows us now to relate the generator G of pPtqt¥0 with the
generators Gj of pP jt qt¥0, j � 0, . . . , d , on a space that is a core for all the
generators simultaneously.

Proposition 1.12. We have the equality

(1.53) Gf �
ḑ

j�0

Gj f for all f P C8b pRNq.

Proposition 1.8 shows that (1.53) extends to the intersection of the domains
of G and Gj , j � 0, . . . , d . The theory of [49] now applies to yield the following
result.

Proposition 1.13. Let f P BUCpRNq be such that

(1.54) ∥Gj1Gj2Gj3Pt f ∥CbpRNq ¤ C for t P r0, T s.
Then,

(1.55) ∥pQnpT {nq � PT qf ∥CbpRNq ¤ Cf ,T n
�2,

where Cf ,T ¡ 0 is independent of n P N.
In particular, the Ninomiya-Victoir splitting converges of second order for

f P BUC6pRNq. More precisely,

(1.56) ∥pQnpT {nq � PT qf ∥CbpRNq ¤ CT n
�2∥f ∥C6bpRNq.
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Chapter 2

Weighted Spaces And A
Generalised Feller Condition

The aim of this chapter is the construction of a novel theoretical framework for
the application of splitting and cubature methods to stochastic partial differential
equations under realistic conditions, improving significantly on the results from
[6]. To this end, we define in Section 2.1 Banach spaces of real-valued functions
with controlled growth on possibly infinite-dimensional state spaces for which a
Riesz respresentation theorem holds true, i.e., every continuous linear functional
can be represented by an integral with respect to a certain finite measure. Ele-
ments of these spaces are analysed, obtaining similar properties as for the space
C0pXq of functions decaying at infinity for X a locally compact space.

These results allow us to prove in Section 2.2 that on these spaces, semi-
groups of positive, bounded operators pPtqt¥0 with limtÑ0� Pt f pxq � f pxq are
in fact strongly continuous. This relaxes the assumptions of the classical Feller
condition (see, e.g., [57, p. 315]) in two ways: first, the functions can be un-
bounded, and second, the state space can be infinite-dimensional (not locally
compact).

Subsequently, we consider in Section 2.3 the case that X is the dual space
of a separable Banach space. The correct topology is in this case the weak-�
topology, and we prove that under certain assumptions on the weight function
typically satisfied in applications, the elements of weighted spaces are sequen-
tially weak-� continuous. We define a corresponding notion of differentiability,
and relate it to the usual setting of strongly differentiable functions by the use
of compact embeddings. As a stepping stone for Taylor expansions of Markov
semigroups induced by stochastic differential equations on these spaces, we anal-
yse directional derivatives along vector fields and prove norm bounds for such
derivations.

During the final stages of this thesis, the author found out about work by
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M. Röckner and Z. Sobol [94, 95, 96]. In [95], they introduce spaces CV cor-
responding exactly to our spaces BψpXq. In particular, in [95, Theorem 5.1],
they prove a Riesz representation theorem for this function space over general
completely regular topological spaces, similarly as our Theorem 2.5. Their focus
is different than ours: they construct solutions of martingale problems in the
sense of Stroock and Varadhan, we perform an analysis of numerical methods.
They do not construct a hierarchy of spaces of differentiable functions in the
setting of weighted spaces, hence our results can be seen as extending [95].
Furthermore, they restrict themselves to additive noise (which can, however, be
infinite-dimensional), whereas we allow nonlinear coefficients.

2.1 Riesz representation for weighted spaces

In this section we show that we can actually obtain a variant of the Riesz repre-
sentation theorem even on spaces that are not locally compact.

Definition 2.1. Let X be a topological space, and φ : X Ñ p0,8q be bounded
from below by some δ ¡ 0. For a Banach space pY, ∥�∥Y q, we set

(2.1) BφpX; Y q :�
"
f : X Ñ Y : sup

xPX
φpxq�1∥f pxq∥Y   8

*
,

endowed with the φ-norm

(2.2) ∥f ∥φ :� sup
xPX

φpxq�1∥f pxq∥Y .

If Y � R, we define BφpXq :� BφpX;Rq.
It is easy to see that BφpX; Y q is a Banach space. Furthermore, it is

clear that CbpX; Y q � BφpX; Y q, where CbpX; Y q denotes the space of con-
tinuous, bounded functions f : X Ñ Y , endowed with the norm ∥f ∥CbpX;Y q :�
supxPX∥f pxq∥Y .

Definition 2.2. Consider a completely regular Hausdorff topological space X
(i.e. T3.5; see [18, Chapitre IX § 1 Définition 1]). A function ψ : X Ñ p0,8q
is called admissible weight function if the sets KR :� tx P X : ψpxq ¤ Ru are
compact for all R ¡ 0. We call the pair pX,ψq a weighted space.

Such a function ψ is lower semicontinuous and bounded from below, and any
such space X is σ-compact due to

�
nPNKn � X.
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Definition 2.3. Let ψ be an admissible weight function on the completely regular
Hausdorff space X. We define BψpX; Y q as the closure of CbpX; Y q in BψpX; Y q.
If Y � R, we set BψpXq :� BψpX;Rq.

By definition, the normed space BψpX; Y q is a Banach space.

Remark 2.4. Suppose X compact. Then the choice ψpxq :� 1 for all x P X is
admissible. On general spaces ψ will necessarily grow due to the compactness
of KR, which means that f P BψpX; Y q typically is unbounded, but its growth is
restricted by the growth of ψ. Therefore, we call elements of BψpX; Y q functions
with growth controlled by ψ.

Theorem 2.5 (Riesz representation for BψpXq). Given a weighted space pX,ψq,
let ℓ : BψpXq Ñ R be a continuous linear functional, ℓ P BψpXq�. There exists
a finite signed Radon measure µ on X such that

(2.3) ℓpf q �
»
X

f pxqµpdxq for all f P BψpXq.

Furthermore,

(2.4)
»
X

ψpxq|µ|pdxq � ∥ℓ∥BψpXq� ,

where |µ| denotes the total variation measure of µ.

As every such measure defines a continuous linear functional on BψpXq, this
completely characterises the dual space of BψpXq.
Proof. Clearly, ℓ|CbpXq is a continuous linear functional on CbpXq, as

(2.5) ∥f ∥ψ ¤
�
inf
xPX

ψpxq

�1

∥f ∥CbpXq for f P CbpXq.

We thus have to ensure condition (M) of [16, § 5 Proposition 5]. Defining
K :� Kε�1∥ℓ∥BψpXq�

, we see that for g P CbpXq with |g| ¤ 1 and g|K � 0,

(2.6) ∥g∥ψ � sup
xPXzK

ψpxq�1|gpxq| ¤ ε∥ℓ∥�1BψpXq�∥g∥CbpXq ¤ ε∥ℓ∥�1BψpXq� ,

and thus |ℓpgq| ¤ ε. Hence we obtain existence of a finite, uniquely determined
signed Radon measure µ with ℓpf q � ³

X f pxqµpdxq for all f P CbpXq (see also
[13, Chapter 2 Theorem 2.2]).
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To determine
³
X ψpxq|µ|pdxq, we apply [16, § 5 Proposition 1b)]: ψ is lower

semicontinuous and every positive g P CbpXq with g ¤ ψ satisfies ∥g∥ψ ¤ 1.
Therefore,

(2.7)
»
X

ψpxq|µ|pdxq � sup
gPCbpXq
|g|¤ψ

|ℓpgq| ¤ ∥ℓ∥BψpXq� .

The density of CbpXq in BψpXq yields

∥ℓ∥BψpXq� � sup
gPCbpXq

∥g∥�1ψ |ℓpgq| � sup
gPCbpXq

∥g∥�1ψ
∣∣∣»
X

gpxqµpdxq
∣∣∣

¤
»
X

ψpxq|µ|pdxq.(2.8)

Hence,
³
X ψpxq|µ|pdxq � ∥ℓ∥BψpXq� .

For the proof of ℓpf q � ³
X f pxqµpdxq for all f P BψpXq, note that f ÞÑ³

X f pxqµpdxq defines a continuous linear functional on BψpXq due to the inte-
grability of ψ with respect to |µ|. As both expressions agree on a dense subset,
we obtain the desired equality.

Remark 2.6. While the result in [13, Chapter 2 Theorem 2.2] is applicable even
for spaces which are not completely regular, in contrast to [16, § 5 Proposition 5],
we do not see how to prove

³
X ψpxq|µ|pdxq   8 in that situation. However,

this bound is important in our further results, see the proof of Theorem 2.11.

Corollary 2.7. Let ℓ : BψpXq Ñ R be a positive linear functional, that is, ℓpf q ¥
0 whenever f pxq ¥ 0 for all x P X. Then, there exists a (positive) measure µ
with ℓpf q � ³

X f pxqµpdxq for every f P BψpXq.

Proof. We only have to prove that ℓ is continuous. Assume otherwise. Then,
there exists a sequence pfnqnPN, fn P BψpXq, such that ∥fn∥ψ � 1, but |ℓpfnq| ¥
n3. As |ℓpf q| ¤ ℓp|f |q for any f P BψpXq, we can assume without loss of
generality that fn ¥ 0 for all n P N. As

°
nPN n

�2∥fn∥ψ   8, the limit f :�°
nPN n

�2fn P BψpXq is well-defined and f ¥ 0. We obtain a contradiction due
to n ¤ ℓpn�2fnq ¤ ℓpf q.

The following results emphasise the analogy in structure of BψpXq and the
space of functions vanishing at infinity on a locally compact space.
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2.1. Riesz representation for weighted spaces

Theorem 2.8. Let f : X Ñ R. Then, f P BψpXq if and only if f |KR P CpKRq
for all R ¡ 0 and

(2.9) lim
RÑ8

sup
xPXzKR

ψpxq�1|f pxq| � 0.

In particular, f P BψpXq for every f P CpXq satisfying (2.9).

Proof. Assume that f P BψpXq. For g P CbpXq with ∥f � g∥ψ   ε
2 ,

ψpxq�1|f pxq| ¤ ε

2
� ψpxq�1|gpxq| for x P X,(2.10)

the last term being bounded by ε
2 for x P XzKR with R :� 2ε�1∥g∥CbpXq. Thus,

(2.11) sup
xPXzKR

ψpxq�1|f pxq| ¤ ε,

which proves (2.9).
Next, we prove that for any R ¡ 0, f |KR is continuous. With g as above,

(2.12) sup
xPKR

|f pxq � gpxq| ¤ R sup
xPKR

ψpxq�1|f pxq � gpxq| ¤ ε

2
R,

which means that f |KR is a uniform limit of continuous functions and hence
continuous.

For the other direction, set fn :� minpmaxpf p�q,�nq, nq � pfn _ nq ^ n. We
prove first that fn P BψpXq. As f |KR P CpKRq, we see that fn|KR P CpKRq. KR is
compact in a completely regular space. We can embed X into a compact space
Y by [18, Chapitre IX § 1 Proposition 3, Proposition 4]. Applying the Tietze
extension theorem [18, Chapitre IX § 4 Théorème 2] to the set KR, which is
also compact and therefore closed in Y , we obtain existence of gn,R P CbpXq
with gn,R|KR � fn|KR and supxPX |gn,Rpxq| ¤ n for all x P X. (2.9) yields

(2.13) ∥fn � gn,R∥ψ ¤ sup
xPXzKR

ψpxq�1|fnpxq � gn,Rpxq| ¤ 2nR�1,

hence fn P BψpXq. Next, choose R ¡ 0 such that supxPXzKR ψpxq�1|f pxq|   ε.
With n ¡ supxPKR |f pxq|, f pxq � fnpxq on KR. Therefore,

(2.14) ∥f � fn∥ψ ¤ sup
xPXzKR

ψpxq�1|f pxq � fnpxq| ¤ 2ε,

which shows that f P BψpXq.
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Chapter 2. Weighted Spaces And A Generalised Feller Condition

The next result shows that not only the residual of f outside of KR grows
more slowly than ψ, but also the supremum of f on the set KR (which is attained
due to compactness of KR and Theorem 2.8) grows more slowly than R.

Corollary 2.9. If f P BψpXq, then

(2.15) lim
RÑ8

R�1 sup
xPKR

|f pxq| � 0.

Proof. Define the functions F and G by

(2.16) F pRq :� R�1 sup
ψpxq�R

|f pxq| and GpRq :� R�1 sup
xPKR

|f pxq|.

We claim limRÑ8 GpRq � 0. We see that

(2.17) sup
xPXzKR

ψpxq�1|f pxq| � sup
R1¡0

F pR1q

and it follows by Theorem 2.8 that limRÑ8 F pRq � 0. Now,

(2.18) GpRq � R�1 sup
R1¤R

R1F pR1q.

Given ε ¡ 0, choose R0 large enough such that F pRq   ε
2 for all R ¡ R0. It

follows that

GpRq � maxpR�1 sup
R1¤R0

R1F pR1q, R�1 sup
R0 R1¤R

R1F pR1qq

¤ R�1 sup
R1¤R0

R1F pR1q � ε

2
.(2.19)

Choosing R ¡ 2 supR1¤R0
R1F pR1q

ε , we obtain GpRq   ε. The proof is thus com-
plete.

Theorem 2.10. For every f P BψpXq with supxPX f pxq ¡ 0, there exists z P X
such that

(2.20) ψpxq�1f pxq ¤ ψpzq�1f pzq for all x P X.
Proof. Let α :� supxPX ψpxq�1f pxq ¡ 0. By Theorem 2.8, there exists R ¡ 0
such that supψpxq¡R ψpxq�1f pxq ¤ α

2 , whence

(2.21) α � sup
xPKR

ψpxq�1f pxq.
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2.2. A generalised Feller condition

Define h :� ψ�1maxpf , 0q. Then, α � supxPKR hpxq. Furthermore, ψ�1 is
upper semicontinuous, maxpf , 0q is continuous on KR by Theorem 2.8 and both
are nonnegative. Thus, h is upper semicontinuous (see [17, Chap. IV § 6 Propo-
sition 2]) and by [17, Chapitre IV § 6 Théorème 3] attains its maximum at some
point z P KR, i.e., α � ψpzq�1f pzq

2.2 A generalised Feller condition

The generalised Feller property will allow us to speak about strongly continuous
semigroups on spaces of functions with growth controlled by ψ. We consider
a weighted supremum norm instead of the supremum norm. Hence, from the
point of view of applications, we will still be able to control the pointwise error
of numerical approximations.

Let pPtqt¥0 be a family of bounded linear operators Pt : BψpXq Ñ BψpXq
with the following properties:

F1. P0 � I, the identity on BψpXq,
F2. Pt�s � PtPs for all t, s ¥ 0,
F3. for all f P BψpXq and x P X, limtÑ0� Pt f pxq � f pxq,
F4. there exist a constant C P R and ε ¡ 0 such that for all t P r0, εs,
∥Pt∥LpBψpXqq ¤ C,

F5. Pt is positive for all t ¥ 0, that is, for f P BψpXq, f ¥ 0, we have Pt f ¥ 0.
Alluding to [57, Chapter 17], such a family of operators will be called a gener-
alised Feller semigroup. Here, for pB, ∥�∥Bq a Banach space, LpBq denotes the
space of bounded linear operators T : B Ñ B with the norm

(2.22) ∥T∥LpBq � sup
∥x∥B¤1

∥Tx∥B.

We shall now prove that semigroups satisfying F1 to F4 are actually strongly
continuous, a direct consequence of Lebesgue’s dominated convergence theorem
with respect to measures existing due to Riesz representation.

Theorem 2.11. Let pPtqt¥0 satisfy F1 to F4. Then, pPtqt¥0 is strongly contin-
uous on BψpXq, i.e.,

(2.23) lim
tÑ0�

∥Pt f � f ∥ψ � 0 for all f P BψpXq.
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Chapter 2. Weighted Spaces And A Generalised Feller Condition

Proof. By Proposition A.3, we only have to prove that t ÞÑ ℓpPt f q is right
continuous at zero for every f P BψpXq and every continuous linear functional
ℓ : BψpXq Ñ R. Due to Theorem 2.5, we know that there exists a signed
measure ν on X such that ℓpgq � ³

X gdν for every g P BψpXq. By F4, we see
that for every t P r0, εs,
(2.24) |Pt f pxq| ¤ Cψpxq.
Using (2.4), the dominated convergence theorem yields

lim
tÑ0�

»
X

Pt f pxqνpdxq �
»
X

f pxqνpdxq,(2.25)

and the claim follows. Here, the integrability of ψ with respect to the total
variation measure |ν| enters in an essential way.

Remark 2.12. As Chris Rogers remarked, state space transformation of the type
x ÞÑ ϕpxq :� x?

1�}x}2
transform unbounded state spaces into bounded ones.

The weight function ψ is then used to rescale real valued functions f : X Ñ R
via f̃ :� f {ψ in order to investigate f̃ � ϕ�1 on ϕpXq. This function will often
have a continuous extension to the closure of ϕpXq, which – in the appropriate
topology – will be often compact. This relates the generalised Feller property to
the classical Feller property. Note that in our situation, however, ψ is typically
not continuous for infinite dimensional X.

We can establish a positive maximum principle in case that the semigroup
Pt grows like exppαtq with respect to the operator norm on BψpXq.
Theorem 2.13. Let G be an operator on BψpXq with domain D, and ω P R. G
is closable with its closure G generating a generalised Feller semigroup pPtqt¥0
with ∥Pt∥LpBψpXqq ¤ exppωtq for all t ¥ 0 if and only if

(i) D is dense,

(ii) G � λ0 has dense image for some λ0 ¡ ω, and

(iii) G satisfies the generalised positive maximum principle, that is, for f P D
with pψ�1f q _ 0 ¤ ψpzq�1f pzq for some z P X, Gf pzq ¤ ωf pzq.

Here, a _ b :� maxpa, bq. Note that pψ�1f q _ 0 � ψ�1pf _ 0q as ψ ¡ 0.
Therefore, pψ�1f q _ 0 ¤ ψ�1pzqf pzq is equivalent to

(2.26) ∥f _ 0∥ψ ¤ ψ�1pzqf pzq.
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2.2. A generalised Feller condition

Proof. We mimic the proof of [57, Theorem 17.11]. Assume first that pPtqt¥0
is a generalised Feller semigroup satisfying

(2.27) ∥Pt∥LpBψpXqq ¤ exppωtq,

and G with domain D is its generator. For f P D with ∥f _ 0∥ψ ¤ ψ�1pzqf pzq,

Pt f pzq ¤ Ptpf _ 0qpzq ¤ ψpzq∥Ptpf _ 0q∥ψ ¤ ψpzq exppωtq∥f _ 0∥ψ
¤ exppωtqf pzq,(2.28)

and due to the continuity of point evaluation, we obtain the inequality Gf pzq ¤
ωf pzq in the limit t Ñ 0�. Thus, G satisfies the generalised positive maximum
principle. The density of D and pG � λ0qD follows from the Lumer-Phillips the-
orem, Proposition A.6, as pexpp�ωtqPtqt¥0 is a strongly continuous semigroup
of contractions.

For the other direction, let f P D be arbitrary, and define g :� psgn f pzqqf ,
where z is chosen such that ψpzq�1|f pzq| � ∥f ∥ψ (this is possible due to The-
orem 2.10). Clearly, g P D and ψpxq�1gpxq ¤ ψpzq�1gpzq, so the generalised
positive maximum principle yields Ggpzq ¤ ωgpzq. Thus, for λ ¡ 0,

∥pλ� pG � ωqqf ∥ψ ¥ ψpzq�1 pλgpzq � pG � ωqgpzqq ¥ ψpzq�1λgpzq
� λ∥f ∥ψ.(2.29)

From this, closability of G follows: if pfnqnPN in D are given such that both
limnÑ8∥fn∥ψ � 0 and limnÑ8∥Gfn � g∥ψ � 0, there exist pgmqmPN in D with
limmÑ8∥gm � g∥ψ � 0. Thus, for any λ ¡ 0 and m, n P N,

(2.30) ∥pλ� pG � ωqqpgm � λfnq∥ψ ¥ λ∥gm � λfn∥.

Taking the limit n Ñ 8, dividing by λ and taking the limit λ Ñ 8, we obtain
∥gm � g∥ψ ¥ ∥gm∥ψ, and the limit m Ñ 8 yields g � 0. This proves the
closability of G, and the closure G of G with domain D satisfies

(2.31) ∥pλ� pG � ωqqf ∥ψ ¥ λ∥f ∥ψ for all λ ¡ 0 and f P D.

Thus, G � ω is dissipative. The Lumer-Phillips theorem, Proposition A.6, yields
that G generates a semigroup with ∥Pt∥LpBψpXqq ¤ exppωtq for all t ¥ 0.

We now prove positivity of Rλ :� pλ � Gq�1 for every λ ¡ ω, which yields
that Pt is positive for every t ¥ 0 (by an application of [57, Corollary V.5.5]).
To this end, we show that given g P BψpXq such that the solution f P D of
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Chapter 2. Weighted Spaces And A Generalised Feller Condition

pλ� Gqf � g is not positive, g cannot be positive, either. By assumption, α :�
infxPX ψpxq�1f pxq   0. Given a sequence of functions pfnqnPN in D converging
to f such that Gfn converges to Gf , we see that we can assume without loss
of generality that for every n P N, αn :� infxPX ψpxq�1fnpxq   0, and we
have that limnÑ8 αn � α. Theorem 2.10 yields the existence of zn P X with
ψpznq�1fnpznq � αn. By the positive maximum principle, Gfnpznq ¥ ωfnpznq.
Thus,

inf
xPX

ψpxq�1gpxq � lim
nÑ8

inf
xPX

ψpxq�1pλ� Gqfnpxq
¤ lim
nÑ8

ψpznq�1pλ� Gqfnpznq
¤ lim
nÑ8

ψpznq�1pλ� ωqfnpznq
� pλ� ωq lim

nÑ8
inf
xPX

ψpxq�1fnpxq
� pλ� ωq inf

xPX
ψpxq�1f pxq � pλ� ωqα   0,(2.32)

that is, g is not positive.

2.3 Results on dual spaces

In this section we consider a special class of state spaces that will be crucial
for our applications to stochastic partial differential equations: dual spaces of
Banach spaces equipped with the weak-� topology. We remark that the weak
topology on Hilbert spaces and sequential weak continuity was also used by
Maslowski and Seidler [72] to prove ergodicity of stochastic partial differential
equations.

Assume that pX, ∥�∥Xq is the dual space of some Banach space pW, ∥�∥W q.
We will use the weak-� topology on X, and denote this space by Xw�. Such a
space is clearly endowed with a uniform structure in the sense of [17, Chapitre II
§ 1 Définition 1], and thus completely regular Hausdorff [18, Chapitre IX § 1
Théorème 2]. Consider a lower semicontinuous function ψ : X Ñ p0,8q. Due
to the Banach-Alaoglu theorem [99, Theorem 3.15], compactness of KR follows
from boundedness, which gives us a simple way to prove the admissibility of ψ.

Assume from now on that pXw�, ψq is a weighted space. We shall always
understand KR :� tx P X : ψpxq ¤ Ru to be endowed with the weak-� topology.

Afterwards, we shall also consider the issue of differentiability of functions in
Bψk pXw�q. This motivates the next definition.
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2.3. Results on dual spaces

Definition 2.14. Let pX, ∥�∥Xq be the dual space of a separable Banach space. A
function ψ is called D-admissible weight function if and only if it is an admissible
weight function and for every x P X, there exists some R ¡ 0 such that Bεpxq �
KR for some ε ¡ 0, where Bεpxq :� ty P X : ∥y � x∥X   εu is the open ε-ball
around x .

It is called C-admissible weight function if and only if φ is bounded from be-
low, weak-� lower semicontinuous, and if for every x P X, there exists some ε ¡ 0
such that φ is bounded on the closed ε-ball Cεpxq :� tz P X : ∥z � x∥X ¤ εu.

Remark 2.15. We do not require C-admissible weight functions to be admissible.
However, ψ is D-admissible if and only if it is admissible and C-admissible.

Example 2.16. Typical examples for weight functions are of the form ψpxq �
ρp∥x∥q, where ρ : r0,8q Ñ p0,8q is increasing, left-continuous, and satisfies
limξÑ8 ρpξq � �8. We will call such weight functions to be of type ρ. In this
case,

(2.33) KR � Cr p0q :� tx P X : ∥x∥X ¤ ru ,

where r :� max tp P R : ρppq ¤ Ru, and Cr p0q is weak-� compact by the Ba-
nach-Alaoglu theorem. Note that ρprq ¤ R by left continuity. Clearly, any
such weight function is D-admissible. Below, we will consider choices such as
ρptq � p1� t2qs{2, s ¥ 2, ρptq � coshpβtq, β ¡ 0, and ρptq � exppηt2q, η ¡ 0.

2.3.1 Approximation by smooth functions

We want to give an approximation result for functions in BψpXw�q by cylindrical
functions.

Definition 2.17. Let pX, ∥�∥Xq be the dual space of a Banach space pW, ∥�∥W q,
and let pY, ∥�∥Y q be a Banach space. For N P N, set

ANpX; Y q :�
 
gpx�, w1y, . . . , x�, wNyq : g P C8b pRN ; Y q

and wj P W , j � 1, . . . , N(.(2.34)

ApX; Y q :� �
NPNANpX; Y q is called the space of bounded smooth cylindrical

functions on X with values in Y . For Y � R, we set ANpXq :� ANpX;Rq and
ApXq :� ApX;Rq.

Clearly, ApX; Y q � BψpXw�; Y q.
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Chapter 2. Weighted Spaces And A Generalised Feller Condition

Theorem 2.18. If pX, ∥�∥Xq is the dual space of a Banach space pW, ∥�∥W q, the
closure of ApXq in BψpXw�q coincides with BψpXw�q.
Proof. We prove first by the Stone-Weierstrass theorem [99] that A is dense in
CbpKRq for any R ¡ 0. First, it is obvious that ApXq is an algebra, as ANpXq �
AMpXq � AN�MpXq for all N and M with obvious notation, and ANpXq �
AN�1pXq for all N P N. Moreover, for any x1 � x2, x1, x2 P KR, there exists
some w P W with xx1, wy � xx2, wy, which yields that A1pXq separates points.
As the constant functions are in ApXq, we obtain density in CbpKRq.

Let f P CbpXw�q. For every R ¡ 0 and ε ¡ 0, there exists some N P N and
f̃R,ε P ANpXq � BψpXq with

(2.35) sup
xPKR

|f pxq � f̃R,εpxq|   ε.

By definition, f̃R,ε � g̃ � h with hpxq � pxx, wjyqj�1,...,N for some wj P W ,
j � 1, . . . , N, and g̃ P C8b pRNq. As KR is compact, hpKRq � RN is compact. By
the Tietze extension theorem [18, Chapitre IX § 4 Théorème 2], we can extend
g̃|hpKRq to a continuous function ĝ on RN with supyPRN |ĝpyq| ¤ supxPKR |f̃R,εpxq|.
Applying [19, Proposition IV.21, Proposition IV.20], we see that convolution
of ĝ with a mollifier yields a function g P C8b pRNq with supyPRN |gpyq| ¤
supxPKR |f̃R,εpxq| and supyPhpKRq|gpyq � g̃pyq|   ε. Assuming without loss of
generality that

(2.36) sup
xPKR

|f̃R,εpxq| ¤ 2 sup
xPKR

|f pxq|,

we see that fR,ε :� g � h satisfies

(2.37) sup
xPKR

|f pxq � fR,εpxq|   2ε and sup
xPX
|fR,εpxq| ¤ 2 sup

xPX
|f pxq|,

independently of R and ε. Therefore, as ψpxq ¥ δ for all x P X,

∥f � fR,ε∥ψ ¤ sup
xPKR

ψpxq�1|f pxq � fR,εpxq|� sup
ψpxq¡R

ψpxq�1|f pxq � fR,εpxq|

¤ δ�1 sup
xPKR

|f pxq � fR,εpxq|� 3R�1 sup
xPX
|f pxq|.(2.38)

The result follows.

The definition of ApXq is not “optimal” in the sense that it will contain too
many functions. The following result is significantly better in this respect.
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Theorem 2.19. Let pX, ∥�∥Xq be the dual space of the Banach space pW, ∥�∥W q.
Assume that W is separable, and let twj : j P Nu � W be a countable set which
separates the points of X � W �. Define

(2.39) rANpXq :�  
gpx�, w1y, . . . , x�, wNyq : g P C8b pRNq

(
,

and rApXq :� �
NPN

rANpXq � BψpXw�q. Then, rApXq is dense in BψpXw�q.

Proof. The proof is done in the same way as for Theorem 2.18, using that for
any x1, x2 P X with x1 � x2, there exists some j P N with xx1, wjy � xx2, wjy.

Remark 2.20. A possible choice for twj : j P Nu is given by any countable dense
set in Y . For X a separable Hilbert space, we can use any orthonormal basis
penqnPN. We note that the specific choice of the wj does not make any difference,
which was also observed in [48, Remark 5.9].

2.3.2 Connections with weak-� continuity

As we define the spaces BψpXw�q with respect to the weak-� topology, it is not
surprising that there is a characterisation of its functions by weak-� continuity.
The next result makes this precise.

Lemma 2.21. Assume that pX, ∥�∥Xq is the dual space of a separable Banach
space pW, ∥�∥W q.

(i) f P BψpXw�q if and only if f satisfies (2.9) and f |KR is sequentially weak-�
continuous for any R ¡ 0.

(ii) Assume that for every r ¡ 0, there exists some R ¡ 0 with Cr p0q � KR.
Then, every f P BψpXw�q is sequentially weak-� continuous. In particular,
in this case, BψpXw�q � CpXq.

Here, CpXq denotes the set of functions f : X Ñ R continuous in the norm
topology.

Proof. By Theorem 2.8, we only have to equate sequential weak-� and weak-
� continuity of f |KR for any R ¡ 0. By compactness, KR is bounded by the
Banach-Steinhaus theorem [19, Théorème II.1], as for any y P Y ,

(2.40) sup
xPKR

|xx, yy|   8.
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Thus, [19, Théorème III.25] shows that the topology of KR is metrisable, which
means that weak-� continuity and sequential weak-� continuity coincide. There-
fore, any function f is sequentially weak-� continuous if and only if it is weak-�
continuous on KR, and the first claim follows.

For the second claim, note that any weak-� converging sequence pxnqnPN is
bounded by the Banach-Steinhaus theorem. Thus, by assumption, pxnqnPN stays
in KR for some R ¡ 0, and the weak-� continuity of f |KR yields the result.
Finally, every such f is continuous with respect to the norm topology, as every
norm convergent sequence converges weak-�, as well.

Remark 2.22. Unfortunately, the condition in the second part of the above
Lemma is stronger than D-admissibility. This is shown by the example of X a
separable Hilbert space, and

(2.41) ψpxq :� 1� ∥x∥�
¸
nPN

nχMnpxq.

Here,

(2.42) Mn :�
 
x P X : |xc, en � xy|   2�n�2

(
and c � °

nPN 2
�nen with penqnPN an orthonormal basis of X. As the Mn are

pairwise disjoint, at most one term in the sum is nonzero in the definition of ψ.
Therefore, ψ is locally finite, whence D-admissible. However, we see that the
supremum of ψ on C1p0q is infinite. Even worse: consider a function f : RÑ R
such that f pxq � 0 for x ¤ 0, and f |p0,8q is continuous with f p2�nq � 1 and
f |r5�2�n�2,3�2�n�1s � 0 for n P N. Then, for gpxq :� f pxc, xyq, g P BψpXw�q, as
it can be approximated in the ψ-norm by gn :� gχtxPX : |xc,xy|¡3�2�n�1u.

But g is not weakly continuous at zero (gpenq � 1 for n P N, but gp0q � 0).
Thus, not every space BψpXw�q with D-admissible ψ allows a characterisation
by sequential weak-� continuity.

2.3.3 Differentiable functions and Bψ spaces

To consider differentiable functions with controlled growth, we need to refine
our definitions from before.

Definition 2.23. Let pX, ∥�∥Xq, pY, ∥�∥Y q be Banach spaces. LjpX; Y q denotes
the linear space of bounded, j-linear maps a : X j Ñ Y , which is a Banach space
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with respect to the norm

(2.43) ∥a∥Lj pX;Y q :� sup
∥hi∥X¤1,i�1,...,j

∥aph1, . . . , hjq∥Y .

For pX, ∥�∥Xq, pY, ∥�∥Y q Banach spaces, CkpX; Y q denotes the space of k
times continuously Fréchet differentiable functions f : X Ñ Y .

Definition 2.24. Let pX, ∥�∥Xq be the dual space of a separable Banach space,
k ¥ 0, and φ � pφjqj�0,...,k , φj : X Ñ p0,8q bounded from below by some
δ ¡ 0, j � 0, . . . , k, and pY, ∥�∥Y q a Banach space. We set

Bφk pX; Y q :�
 
f P CkpX; Y q : sup

xPX
φjpxq�1∥Dj f pxq∥Lj pX;Y q   8

for j � 0, . . . , k(.(2.44)

Bφk pX; Y q is called the enveloping space and is endowed with the norm

(2.45) ∥f ∥φ,k :� ∥f ∥φ0 �
ķ

j�1

|f |φj ,j ,

where the seminorms |�|φj ,j are given by

(2.46) |f |φj ,j :� sup
xPX

φjpxq�1∥Dj f pxq∥Lj pX;Y q.

If Y � R, we define Bφk pXq :� Bφk pX;Rq.
Theorem 2.25. Let k P N, and assume that φ � pφjqj�0,...,k is a vector of
C-admissible weight functions. Then, Bφk pXw�; Y q is a Banach space.

Proof. Let pfnqnPN be a Cauchy sequence in this space. It is clear that fn admits
a pointwise limit f . Moreover, it follows that for every x P X, there exists
ε ¡ 0 such that pfn|CεpxqqnPN is a Cauchy sequence in CkpCεpxq; Y q. Here,
Cεpxq :� tz P X : ∥z � x∥X ¤ εu denotes the closed ε-ball around x . But this
entails that f |Cεpxq P CkpCεpxq; Y q. As differentiability is a local property, we see
that f P CkpX; Y q. The necessary estimates for f and its derivatives are now
easy to see.

Remark 2.26. Note that not every admissible weight function is D-admissible, as
already the counterexample X � R, ψpxq :� 1�x2�x�1χp0,8q with χApxq :� 1
for x P A and 0 for x R A the indicator of A shows. However, such an assumption
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is necessary to be able to transfer differentiability properties to limits when using
weighted supremum norms.

Let us consider a concrete example. Choose the admissible weight function
ψpxq :� 1� x2 � x�2χp0,8q on X � R. Let fn P C8b pRq, n P N, be such that

(2.47) fnpxq :�
#
0, x ¤ 0,
1, x ¥ n�1,

and monotone on p0, n�1q such that 0 ¤ fnpxq ¤ 1 for all x P R. This can be
done in such a way that |f 1npxq| ¤ Cn on p0, n�1q for some C ¡ 0 independent
of n P N, for example by choosing f1 as required and setting fnpxq :� f1pnxq.
Then, for n P N and m ¥ n,

∥fn � fm∥ψ ¤ 2 sup
xPp0,n�1q

ψpxq�1 � 2p1� n2q�1 and(2.48)

|fn|ψ,1 ¤ 2 sup
xPp0,n�1q

ψpxq�1Cn � 2Cnp1� n2q�1,(2.49)

from which

|fn � fm|ψ,1 ¤ 2C
�

n

p1� nq2 �
m

p1�mq2


.(2.50)

It follows that pfnqnPN is a Cauchy sequence in Bψ1 pRq. As evaluation functionals
are continuous, we see that the only candidate for the limit is f � χp0,8q. This
function, however, is not in Bψ1 pRq, and is not even continuous.

Note that this is not a contradiction to the characterisation of BψpRq by
continuity, as no set KR :� tx P R : ψpxq ¤ Ru contains a neighbourhood of
x � 0.

The aim is now to consider differentiability in the setting of Bψ-spaces in
such a way that we can analyse vector fields and determine their effects on
differentiability.

Definition 2.27. Let pX, ∥�∥Xq be the dual space of a separable Banach space
and pY, ∥�∥Y q be a Banach space. Let ψ � pψjqj�0,...,k with ψj D-admissible
weight functions for j � 0, . . . , k, k P N. The space Bψk pXw�; Y q is the closure
of ApX; Y q in Bψk pX; Y q. For Y � R, we set Bψk pXw�q :� Bψk pXw�;Rq.
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Bψk pXw�q is a Banach space by Theorem 2.25. This definition coincides with
the earlier one given for completely regular spaces X by Theorem 2.18.

If X is a Hilbert space and ψ is a function of the norm, the approximating
functions can be chosen in a simple manner.

Theorem 2.28. Let pX, ∥�∥Xq be a separable Hilbert space and ψ � pψjqj�0,...,k ,
ψj of type ρ, j � 0, . . . , k (see Example 2.16). Then, for every ε ¡ 0 and
f P Bψk pXw ; Y q, there exists an orthogonal projection π : X Ñ X of finite rank
such that ∥f � f � π∥ψ,k   ε.

Proof. Given ε and f as in the statement of the theorem, we know that there
exists fε P ApX; Y q such that ∥f �fε∥ψ,k   ε{2. This implies existence of N P N,
gε P C8b pRN ; Y q and ej P X, j � 1, . . . , N with fεpxq � gεpxx, e1y, . . . , xx, eNyq.
With π the orthogonal projection onto spantej : j � 1, . . . , Nu, ∥πx∥X ¤ ∥x∥X
for x P X yields

(2.51) |fε � f � π|ψj ,j ¤ sup
xPX

ψjpxq�1∥Dj fεpπxq �Dj f pπxq∥Lj pX;Y q   ε{2,

whence the triangle inequality yields the claim.

Theorem 2.29. Assume that pX, ∥�∥Xq is the dual space of the separable Banach
space pW, ∥�∥W q. Let pwnqnPN in W be such that span twj : j P Nu is dense in W .
Then, for any Banach space pY, ∥�∥Y q, vector ψ � pψjqj�0,...,k of D-admissible
weight functions, and k ¥ 0, the space ÃpX; Y q :� �

NPN ÃNpX; Y q is dense in
Bψk pX; Y q, where

(2.52) ÃNpX; Y q :�
 
gpx�, w1y, . . . , x�, wNyq : g P C8b pRN ; Y q

(
.

Proof. We only need to show that for every f P ANpX; Y q and every ε ¡ 0 there
exists Nε P N and fε P ÃNεpX; Y q with ∥f � fε∥ψ,k   ε. Similarly as in the proof
of Theorem 2.18, we can restrict ourselves to KR for some appropriate R ¡ 0,
as the error on XzKR is less than ε for R large enough. As KR is bounded, there
exists r ¡ 0 with ∥x∥X ¤ r for all x P KR.

Let f � g � h, where g P C8b pRN ; Y q and h : X Ñ RN is given by hpxq �
pxx, ωjyqNj�1 for some ωj P W , j � 1, . . . , N. The smoothness of g yields exis-
tence of C ¡ 0 such that

∥Djgpξq �Djgpηq∥Lj pRN ;Y q   C max
r�1,...,N

|ξr � ηr |
for all ξ � pξr qr�1,...,N , η � pηr qr�1,...,N P RN and j � 0, . . . , k.(2.53)
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By assumption, we can find Nε P N and A � pαjℓq P RN�Nε such that for every
j � 1, . . . , N, ∥ωj �

°Nε
ℓ�1 αjℓwℓ∥W   r�1C�1ε. Define now

(2.54) gε : RNε Ñ Y, x ÞÑ gεpxq :� gpAxq.
It follows that for fε :� gεpx�, w1y, . . . , x�, wNεyq and x P KR,

|Dj f pxq �Dj fεpxq| �
∣∣∣Djgphpxqq �Djg�p°Nε

ℓ�1 αjℓxx, wℓyqNj�1
	∣∣∣

¤ C max
r�1,...,N

|xx, ωr �
°Nε
ℓ�1 αjℓwℓy| ¤ ε.(2.55)

This proves the claim.

We provide a particularly interesting class of functions that is dense in
Bψk pXw�q. Recall that a Banach space pZ, ∥�∥Zq has the approximation property
if and only if for every K � X compact and ε ¡ 0 there exists an operator T
of finite rank such that ∥Tx � x∥Z   ε for all x P K, see [68, Definition 1.e.1].
Note that every separable Hilbert space has the approximation property as it has
a Schauder basis, see the discussion after [68, Definition 1.e.1].

Definition 2.30. Let pZ, ∥�∥Zq, pY, ∥�∥Y q be Banach spaces. We define

(2.56) CkbpZ; Y q :�
!
f P CkpZ; Y q : ∥f ∥CkbpZ;Y q   8

)
,

equipped with the norm

(2.57) ∥f ∥CkbpZ;Y q :�
ķ

j�0

∥Dj f ∥CbpZ;Lj pZ;Y qq.

Here, we have set ∥f ∥CbpU;V q :� supuPU∥f puq∥V for two normed linear spaces
pU, ∥�∥Uq and pV, ∥�∥V q.
Theorem 2.31. Let pX, ∥�∥Xq be a separable, reflexive Banach space, endowed
with a vector ψ � pψjqj�0,...,k of D-admissible weight functions, k ¥ 0. Assume
that X is compactly embedded into another Banach space pZ, ∥�∥Zq with the
approximation property.

Then, for every Banach space pY, ∥�∥Y q, we have that

(2.58) CkbpZ; Y q � Bψk pXw ; Y q.

Furthermore, CkbpZ; Y q is dense in Bψk pXw ; Y q.
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Proof. Note first that due to the reflexivity of X, we have that Xw � Xw�.
Denote the compact embedding of X into Z by ι : X Ñ Z. [68, Theo-

rem 1.e.4] proves that there exists a sequence pιnqnPN of finite rank operators,
ιn : X Ñ Z, such that for all r ¡ 0, limnÑ8 sup∥x∥X¤r∥ιnx � ιx∥Z � 0.

Let f P CkbpZ; Y q be given. Define fn :� f � ιn; we need to prove that
limnÑ8∥fn � f ∥ψ,k � 0. Given ε ¡ 0, choose R :� ε�1∥f ∥CkbpZ;Y q such that°k
j�0 supxPXzKR ψpxq�1∥Dj f ∥Lj pX;Y q ¤ ε. As KR is bounded, it follows that

ιpKRq is compact in the norm topology of Z. Hence, for every ε ¡ 0 there
exists some δ ¡ 0 such that if x P KR and z P Z with ∥ιx � z∥Z   δ, then
∥Dj f pιxq�Dj f pzq∥Lj pZ;Y q   ε for j � 0, . . . , k . Choose now n0 P N large enough
such that ∥ιx � ιnx∥Z   δ for all x P KR and n ¥ n0. Hence, ∥fn � f ∥ψ,k   ε,
which proves f P Bψk pXw ; Y q.

To prove the density, we apply Theorem 2.29. As ι : X Ñ Z is injective
and X is reflexive, we see that ι� : Z� Ñ X� � W has dense range. Hence,
we can choose a sequence pζnqnPN in Z� such that span twj : j P Nu is dense in
W , where wj � ι�ζj P W , j P N. Defining ÃpX; Y q with this sequence, we see
that every f � gpx�, w1y, . . . , x�, wNyq P ÃNpX; Y q can be extended to a function
f̃ : Z Ñ Y with f̃ pxq � f pxq for x P X by virtue of

(2.59) f̃ :� gpx�, ζ1y, . . . , x�, ζnyq.

Clearly, f̃ P CkbpZ; Y q. The proof is thus complete.

For f P ApX; Y q, Dj f pxq is not a general multilinear form for x P X and
j � 0, . . . , k . It is actually completely continuous. Let us recall first the definition
of this property.

Definition 2.32. For Banach spaces pX, ∥�∥Xq, pY, ∥�∥Y q, we define VjpX; Y q �
LjpX; Y q to be the linear space of completely continuous multilinear forms, i.e.,
a P VjpX; Y q if and only if for all sequences xi ,n converging weakly to xi , i �
1, . . . , j , apx1,n, . . . , xj,nq converges strongly to apx1, . . . , xjq.

Proposition 2.33. Let pX, ∥�∥Xq, pY, ∥�∥Y q be Banach spaces. VjpX; Y q is closed
in LjpX; Y q.

In particular, pVjpX; Y q, ∥�∥Lj pX;Y qq is a Banach space.

Proof. A more general result (showing that the completely continuous multilin-
ear maps even form an ideal) can be found in [98, Theorem 2.3]. We reproduce
the easy proof of the statement given above.
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Let a P LjpX; Y q be in the closure of VjpX; Y q. Then, given ε ¡ 0, there
exists a1 P VjpX; Y q with ∥a � a1∥Lj pX;Y q   ε. If xi ,n converges weakly to
xi , i � 1, . . . , j , there exists n0 P N such that for n ¥ n0, ∥a1px1, . . . , xjq �
a1px1,n, . . . , xj,nq∥Y   ε. As we can assume without loss of generality that
∥xi ,n∥ ¤ 1 for i � 1, . . . , j and n P N,

∥apx1, . . . , xjq � apx1,n, . . . , xj,nq∥Y ¤ ∥apx1, . . . , xjq � a1px1, . . . , xjq∥Y
� ∥a1px1, . . . , xjq � a1px1,n, . . . , xj,nq∥Y
� ∥a1px1,n, . . . , xj,nq � apx1,n, . . . , xj,nq∥Y
  3ε,(2.60)

and the result follows.

Corollary 2.34. Let pX, ∥�∥Xq be the dual space of a separable Banach space en-
dowed with a vector ψ of D-admissible weight functions, and pY, ∥�∥Y q a Banach
space. If f P Bψk pXw�; Y q, then Dj f P Bψj pXw ; VjpX; Y qq for j � 0, . . . , k .

Proof. For f P ApX; Y q, f � g � π with π : X Ñ RN bounded and linear and
g P C8b pRN ; Y q, whence

(2.61) Dj f pxqpx1, . . . , xjq � Djgpπxqpπx1, . . . , πxjq,

and as π is a compact operator, we obtain Di f pxq P VjpX; Y q. Furthermore, we
see clearly that Dj f is again bounded and cylindrical. Hence, this result extends
to Bψk pXw�; Y q by a density argument due to Proposition 2.33.

If X is a Hilbert space, we have the following converse of Corollary 2.34.
This generalises the result of Lemma 2.21 to the current setting.

Theorem 2.35. Let pX, ∥�∥Xq be a separable Hilbert space and ψ � pψjqj�0,...,k ,
ψj of type ρ, j � 0, . . . , k (see Example 2.16), and pY, ∥�∥Y q a Banach space.

f P Bψk pXw ; Y q if and only if

(i) f P Bψk pX; Y q,

(ii) Dj f : X Ñ VjpX; Y q is sequentially completely continuous for j � 0, . . . , k
in the sense that if pxnqnPN converges weakly to x , then

(2.62) lim
nÑ8
∥Dj f pxq �Dj f pxnq∥Lj pX;Y q � 0, and
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(iii) limRÑ8 supψj pxq¡R ψjpxq�1∥Dj f pxq∥Lj pX;Y q � 0 for j � 0, . . . , k .

Proof. Corollary 2.34, together with a similar argument as in Theorem 2.8 and
Lemma 2.21, proves the first part of the equivalence.

For the converse, let f P Bψk pX; Y q be given with Dj f P BψpXw ; VjpX; Y qq
for j � 0, . . . , k . Given ε ¡ 0, there exists by assumption r ¡ 0 such that

(2.63) ψjpxq�1∥Dj f pxq∥Lj pX;Y q   ε for j � 0, . . . , k and ∥x∥X ¡ r .

For every j � 0, . . . , k , the mapping gjpx, x1, . . . , xjq :� Dj f pxqpx1, . . . , xjq is
continuous Cr p0q �C1p0qj Ñ Y , where Cr p0q and C1p0q denote the closed balls
of radius r and 1 in X, respectively, and are endowed with the weak topol-
ogy. Indeed: under the given assumptions, Cr p0q � C1p0qj is metrisable by
[19, Théorème III.25], hence we only have to prove sequential continuity. If
px0n , x1n , . . . , x jnq converges weakly to px0, x1, . . . , x jq in Cr p0q � C1p0qj , then
limnÑ8∥Dj f px0q�Dj f px0n q∥Lj pX;Y q � 0. As Dj f pxq P VjpX; Y q for all x P X, we

can choose n0 P N such that ∥Dj f px0qpx1, . . . , x jq�Dj f px0qpx1n , . . . , x jnq∥Y   ε

and ∥Dj f px0q �Dj f px0n q∥Lj pX;Y q   ε for n ¥ n0. Hence,

∥Dj f px0qpx1, . . . , x jq �Dj f px0n qpx1n , . . . , x jnq∥Y
¤ ∥Dj f px0qpx1, . . . , x jq �Dj f px0qpx1n , . . . , x jnq∥Y
� ∥Dj f px0qpx1n , . . . , x jnq �Dj f px0n qpx1n , . . . , x jnq∥Y ¤ 2ε,(2.64)

whence the stated continuity of gj . As the set Cr p0q�C1p0qj is weakly compact,
gj is uniformly continuous, i.e., there exists a weak neighbourhood U of 0 in X
such that for all j � 0, . . . , k ,

∥gjpx0qpx1, . . . , xjq � gjpy0qpy1, . . . , yjq∥Y   ε

for pxiqji�0, pyiqji�0 P Cr p0q � C1p0qj with xi � yi P U, i � 0, . . . , j .(2.65)

By definition of the weak topology, there exist ξℓ P X with ∥ξℓ∥X � 1, ℓ �
1, . . . ,M, and δ ¡ 0 such that x P U if |xx, ξℓyX |   δ, ℓ � 1, . . . ,M. Let π
denote the orthogonal projection onto span tξℓ : ℓ � 1, . . . ,Mu. Then, x �πx P
U for all x P X. It follows that

∥gjpx0qpx1, . . . , xjq � gjpπx0qpπx1, . . . , πxjq∥Y   ε

for pxiqi�0,...,j P Cr p0q � C1p0qj .(2.66)
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Defining f̃ :� f � π, it is easy to see that

(2.67) Dj f̃ px0qpx1, . . . , xjq � Dj f pπx0qpπx1, . . . , πxjq.

As f̃ is only defined on a finite-dimensional space, we can cut it off and smoothen
it in a straightforward manner, see also the proof of Theorem 2.18, ensuring
uniform convergence on the image of Cr p0q � C1p0qj under π. Hence, we can
construct f̂ P ApX; Y q arbitrarily close to f in the norm of Bψk pX; Y q, and it
follows that f P Bψk pXw ; Y q.

2.3.4 Bψ multipliers

Let pX, ∥�∥Xq be the dual space of a separable Banach space and pY ∥�∥Y q be a
Banach space. Consider the space Bψk pXw�; Y q. Assume that for some other
Banach spaces pZ, ∥�∥Zq and pW, ∥�∥W q, there exists a bilinear mappingM : Y �
Z Ñ W . We want to consider an operator mapping functions f P Bψk pXw�; Y q
to functions x ÞÑ Mpf pxq, gpxqq, where g : X Ñ Z. This raises the question
what assumptions we have to take on g such that this mapping is bounded
into another Bψ space. First, we settle the boundedness issue in the enveloping
space.

Theorem 2.36. Let pX, ∥�∥Xq be the dual space of a separable Banach space
and pY, ∥�∥Y q, pZ, ∥�∥Zq and pW, ∥�∥W q be Banach spaces. Given a bounded
bilinear mappingM : Y � Z Ñ W , i.e., for some constant M ¡ 0,

(2.68) ∥Mpy , zq∥W ¤ M∥y∥Y ∥z∥Z for all y P Y and z P Z.

For some k ¥ 0, let φp1q :� pφp1qj qj�0,...,k , φp2q :� pφp2qj qj�0,...,k be vectors of
C-admissible weight functions. Set

φ :� pφjqj�0,...,k , where φjpxq :�
j̧

i�0

�
j

i



φ
p1q
i pxqφp2qj�ipxq, j � 0, . . . , k.(2.69)

Then, φ is a vector of C-admissible weight functions on X, and the mapping

M : Bφ
p1q

k pX; Y q � Bφp2qk pX;Zq Ñ Bφk pX;W q,(2.70a)

Mpf , gqpxq :�Mpf pxq, gpxqq for all x P X,(2.70b)
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is well-defined, bilinear, and satisfies

(2.71) ∥Mpf , gq∥ψ̃,k ¤ M∥f ∥ψ,k∥g∥φ,k

If φp1q consists of D-admissible weight functions, φ consists of D-admissible
weight functions, as well.

Proof. It is clear that φ consists of C-admissible weight functions. To see that
φ consists of D-admissible weight functions if φp1q does, we proceed as follows.
Set Kp1q

j,R :�
!
x P X : φp1qj pxq ¤ R

)
and Kj,R :� tx P X : φjpxq ¤ Ru. First of

all, note that

(2.72) Kj,R � K
p1q
j,R{δ,

where δ :� infxPX φp2q0 pxq. Thus, Kj,R is precompact. As the sum and product
of lower semicontinuous functions is also lower semicontinuous, it is also closed,
thus compact. It follows that φj is admissible, whence D-admissible.

For j � 1, . . . , k and x P X, the operator Djx defines a symmetric, bounded
j-linear map on Bφ

p1q

k pX; Y q and on Bφ
p2q

k pX; Y q. Hence, the Leibniz rule yields

DjMpf pxq, gpxqqph1, . . . , hjq �
j̧

i�0

1

i !pj � iq!�

�
¸
σPSj

MpDi f pxqphσ1 , . . . , hσi q, Dj�igpxqphσi�1 , . . . , hσj qq.(2.73)

It follows that

∥DjMpf pxq, gpxqq∥Lj pX;W q ¤ M

j̧

i�0

�
j

i



φ
p1q
i pxqφp2qj�ipxq∥f ∥φp1q,j∥g∥φp2q,j

� Mφjpxq∥f ∥φp1q,j∥g∥φp2q,j ,(2.74)

which shows the claimed norm estimate forMpf , gq.
Definition 2.37. Let pX, ∥�∥Xq be the dual space of a separable Banach space
and pZ, ∥�∥Zq be a Banach space. Let φ be a vector of C-admissible weight
functions. We say that g P Cφk pXw�;Zq if and only if

(i) g P Bφk pX;Zq,
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(ii) for x P X and j � 0, . . . , k , the mapping ph1, . . . , hjq ÞÑ Djgpxqph1, . . . , hjq
is continuous from the weak-� topology on C1p0qj to the weak topology
on Z, and

(iii) for j � 0, . . . , k , x ÞÑ Djgpxqph1, . . . , hjq is continuous from the weak-�
topology on Cr p0q to the weak topology on Z uniformly in h1, . . . , hj P
C1p0q for all r ¡ 0, i.e., given r ¡ 0, x P Cr p0q and a weak neighbourhood
V of 0 in Z, there exists a weak-� neighbourhood U of 0 in X such that
for all hi P C1p0q, i � 1, . . . , j , and y P Cr p0q with x � y P U,

(2.75) Djgpxqph1, . . . , hjq �Djgpyqph1, . . . , hjq P V.

Recall that Cr p0q :� tx P X : ∥x∥X ¤ ru is the closed ball of radius r in X.
It is easy to see that ApX;Zq � Cφk pXw�;Zq. However, the closure of

ApX;Zq in Bφk pX;Zq does not even contain all bounded linear operators. As
the weak-� topology is metrisable on bounded sets by [19, Théorème III.25], we
see that the continuity requirements in (ii) and (iii) can also be formulated using
sequences as follows:

(ii’) for x P X, j � 0, . . . , k and sequences phinqnPN converging weak-� to hi ,
i � 1, . . . , j , Djgpxqph1n, . . . , hjnq converges weakly to Djgpxqph1, . . . , hjq,
and

(iii’) for every x P X, sequence pxnqnPN converging weak-� to x P X and weak
neighbourhood V of 0 in Z, there exists n0 P N such that for all n ¥ n0
and hi P X with ∥hi∥X ¤ 1,

(2.76) Djgpxqph1, . . . , hjq �Djgpxnqph1, . . . , hjq P V.

Similarly as Theorem 2.31, the following result yields that classically differen-
tiable functions on a larger space are included in Cφk pXw ;Zq.

Theorem 2.38. Let pX, ∥�∥Xq be a separable Hilbert space endowed with a vector
φ � pφjqj�0,...,k of C-admissible weight functions, k ¥ 0, pZ, ∥�∥Zq a reflexive
Banach space. Assume that there exist Banach spaces pX̃, ∥�∥X̃q, pZ̃, ∥�∥Z̃q such
that X is compactly embedded in X̃, and Z continuously embedded in Z̃.

Suppose g : X̃ Ñ Z̃ satisfies g P CkpX̃; Z̃q, gpXq � Z and g P Bφk pX;Zq.
Then g P Cφk pXw ;Zq.
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Proof. Both X and Z are reflexive. Hence, the respective weak and weak-�
topologies coincide.

We first prove (ii’) above. Let, therefore, phinqnPN be sequences converg-
ing weakly to hi in X, i � 1, . . . , j , j � 0, . . . , k, and fix x P X. It follows
that phinqnPN converges strongly to hi in X̃. As g P CkpX̃; Z̃q, we see that
Djgpxqph1n, . . . , hjnq converges strongly to Djgpxqph1, . . . , hjq in Z̃.

On the other hand, g P Bφk pX;Zq yields that pDjgpxqph1n, . . . , hjnqqnPN is
a bounded sequence in Z. Thus, by [19, Théorème III.27], every subsequence
admits a subsequence converging weakly in Z, and by the continuous embedding
Z Ñ Z̃, it follows that all these limits have to agree with Djgpxqph1, . . . , hjq.
We obtain weak convergence of pDjgpxqph1n, . . . , hjnqnPN to Djgpxqph1, . . . , hjq,
proving (ii’).

The proof of (iii’) is similar. Given a sequence pxnqnPN converging weakly to
x in X, pxnqnPN converges strongly in X̃. Hence, for all ζ P Z̃� and ε ¡ 0, we can
choose n0 P N such that for all n ¥ n0 and hi P X̃ with ∥hi∥X̃ ¤ 1, i � 1, . . . , j ,
(2.77) |ζ

�
Djgpxqph1, . . . , hjq �Djgpxnqph1, . . . , hjq

�
|   ε.

As the injection ι : Z Ñ Z̃ is injective and continuous, Z̃� is dense in Z�, and
(2.77) extends to ζ P Z� and hi P X with ∥hi∥X ¤ 1, i � 1, . . . , j , by possibly
adjusting n0 to account for the operator norm of ι. This proves (iii’). As
g P Bφk pX;Zq by assumption, we obtain that g P Cφk pXw ;Zq, as claimed.

Theorem 2.39. Given a separable Hilbert space pX, ∥�∥Xq endowed with D-
admissible weight functions ψ � pψjqj�0,...,k and C-admissible weight func-
tions φ � pφjqj�0,...,k , k ¥ 0, and Banach spaces pY, ∥�∥Y q, pZ, ∥�∥Zq and
pW, ∥�∥W q. Assume that the bounded bilinear mapping M : Y � Z Ñ W satis-
fies limnÑ8∥Mpy , z � znq∥W � 0 for each y P Y and every sequence pznqnPN
converging weakly to z P Z. Define ψ̃ :� pψ̃jqj�0,...,k according to (2.69), i.e.,

(2.78) ψ̃jpxq :�
j̧

i�0

�
j

i



ψipxqφj�ipxq for j � 0, . . . , k and x P X,

and suppose that ψ̃j is of type ρ, j � 0, . . . , k (see Example 2.16). Then,

Mpf , gq P Bψ̃k pXw ;W q for all f P Bψk pXw ; Y q and g P Cφk pXw ;Zq.
If ψipxq � ρψi p∥x∥Xq and φipxq � ρφi p∥x∥Xq, then ψ̃i also has the required

representation. The assumption onM is satisfied if, e.g.,Mpy , zq �M0py , κzq
with M0 a bounded bilinear form and κ a compact operator, or if Y � Z� and
M is the dual pairing of Z with its dual space.
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Proof. By Theorem 2.36, we have to satisfy the conditions of Theorem 2.35.
Due to (2.73), it is sufficient to show that gi ,j : X Ñ VjpX; Y q is sequentially
weakly continuous and limRÑ8 supψ̃j pxq¡R ψ̃jpxq�1∥gi ,jpxq∥Lj pX;Y q � 0, where

gi ,jpxqph1, . . . , hjq :�Mpfipxqph1, . . . , hiq, gj�ipxqphi�1, . . . , hjqq with(2.79)

fipxqph1, . . . , hiq :� Di f pxqph1, . . . , hiq and(2.80)

gipxqph1, . . . , hiq :� Digpxqph1, . . . , hiq.(2.81)

From the assumptions, it follows similarly as in the proof of Theorem 2.36
that gi ,jpxq P LjpX; Y q. To see that gi ,jpxq P VjpX; Y q, assume that phpnqnPN
converges weakly to hp, p � 1, . . . , j . Then, as Di f pxq P VipX; Y q,
(2.82) lim

nÑ8
∥Di f pxqph1, . . . , hiq �Di f pxqph1n, . . . , hinq∥Y � 0.

Furthermore, as g P Cφk pXw ;Zq, Dj�igpxqphi�1n , . . . , hjnq converges weakly to
Dj�igpxqphi�1, . . . , hjq. Hence, by the boundedness ofM,

∥gi ,jpxqph1, . . . , hjq � gi ,jpxqph1n, . . . , hjnq∥W
¤ M∥fipxqph1, . . . , hiq � fipxqph1n, . . . , hinq∥Y ∥gj�ipxqphi�1n , . . . , hjnq∥Z(2.83)

� ∥Mpfipxqph1, . . . , hiq, gj�ipxqphi�1, . . . , hjqq
�Mpfipxqph1, . . . , hiq, gj�ipxqphi�1n , . . . , hjnqq∥W .

By the assumptions on g and M, we see that the above expression converges
to 0, and it follows that gi ,jpxq is completely continuous.

Next, we prove that x ÞÑ gi ,jpxq is sequentially continuous from the weak
topology on X to the norm topology on LjpX;W q. If pxnqnPN converges weakly
to x P X and hp P C1p0q, p � 1, . . . , j is fixed,

∥gi ,jpxqph1, . . . , hjq � gi ,jpxnqph1, . . . , hjq∥W
¤ M∥fipxqph1, . . . , hiq � fipxnqph1, . . . , hiq∥Y ∥gj�iphi�1, . . . , hjq∥Z(2.84)

� ∥Mpfipxqph1, . . . , hiq, gj�ipxqphi�1, . . . , hjqq
�Mpfipxqph1, . . . , hiq, gj�ipxnqphi�1, . . . , hjqq∥W .

Again, the assumptions on g and M yield that the above expression converges
to 0, and sequential weak continuity follows.

Finally, we have to ensure that

(2.85) lim
RÑ8

sup
ψ̃j pxq¡R

ψ̃jpxq�1∥gi ,jpxq∥Lj pX;Y q � 0.
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But

ψ̃jpxq�1∥gi ,jpxq∥Lj pX;W q ¤ Mψ̃jpxq�1φj�ipxq∥fipxq∥Li pX;Y q∥gj∥φj�i
¤ Mψipxq�1∥fipxq∥Li pX;Y q∥gj∥φj�i .(2.86)

Corollary 2.34 implies fi P Bψi pXw ; VipX; Y qq, and the result follows.

Remark 2.40. Given the setup of Theorem 2.39, assume that g P Bφk pX;Zq
is such that the conclusion holds true. Choose Y :� Z� and Mpy , zq :�
xy , zyZ�,Z , the dual pairing of Z� and Z. We set f � y P Z�; clearly,
f P ApX;Z�q. Hence, Theorem 2.35 implies that X Ñ VjpX;Rq, x ÞÑ gjpxq, is
sequentially completely continuous, where

(2.87) gjpxqph1, . . . , hjq :� xy ,Djgpxqph1, . . . , hjqyZ�,Z .

It follows that ph1, . . . , hjq ÞÑ Djgpxqph1, . . . , hjq is continuous from the weak-�
topology on C1p0qj to the weak topology of Z. Fix ε ¡ 0, r ¡ 0 and x P Cr p0q.
Equating again sequential weak continuity and weak continuity on Cr p0q, we
obtain existence of a weak neighbourhood U of 0 in X such that for y P Cr p0q
with x � y P U,

(2.88) ∥gjpxq � gjpyq∥Lj pX;Rq   ε.

This implies that for all hi P C1p0q, i � 1, . . . , j ,

(2.89) |xy ,Djgpxqph1, . . . , hjq �Djgpyqph1, . . . , hjqyZ�,Z |   ε.

Altogether, we see that g P Cφk pXw ;Zq. Hence, g P Cφk pXw ;Zq is necessary and
sufficient for g to be a general multiplier in Bψ spaces.

2.3.5 Vector fields and Bψ spaces

We want to construct a Lie derivative in the Bψ setting, i.e., a directional
derivative LV f of a function f : X Ñ Y along a vector field V : X Ñ X. As we
also need to consider vector fields that are only defined on proper subspaces of
the given space, e.g., the derivative along an unbounded operator, we shall state
our results for this more general setting.

The following result is clear from our definitions.
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Theorem 2.41. Let pX, ∥�∥Xq be the dual space of a separable Banach space,
and pY, ∥�∥Y q a Banach space. Furthermore, let ψ � pψjqj�0,...,k be a vector of
D-admissible weight functions, and set ψ̂ :� pψj�1qj�0,...,k�1. Then, the linear
mapping

D : Bψk pXw�; Y q Ñ Bψ̂k�1pXw�;LpX; Y qq, f ÞÑ Df ,(2.90)

is a bounded operator.

Corollary 2.42. Suppose pX, ∥�∥Xq, pZ, ∥�∥Zq are separable Hilbert spaces with
Z � X continuously embedded. Let ψ � pψjqj�0,...,k be a vector of D-admissible
weight functions on X, ψ̂ � pψ̂jqj�0,...,k�1 a vector of D-admissible weight
functions on Z with ψj�1pxq ¤ ψ̂jpxq for j � 0, . . . , k�1, and φ � pφjqj�0,...,k�1
a vector of C-admissible weight functions on Z. Define ψ̃ :� pψ̃jqj�0,...,k by

(2.91) ψ̃jpxq :�
j̧

i�0

�
j

i



ψ̂ipxqφj�ipxq for j � 0, . . . , k � 1 and z P Z,

and assume ψ̃j is of type ρ, j � 0, . . . , k (see Example 2.16).
Then, the mapping

L : Bψk pXw�q � Cφk�1pZw�;Xq Ñ Bψ̃k�1pZw�q, pf , V q ÞÑ LV f ,(2.92)

given by

(2.93) LV f pxq :� Df pxqV pxq,

is bounded and bilinear.

Proof. Theorem 2.41 together with the assumed relation between ψ and ψ̂ prove
that the mapping D : Bψk pXw�q Ñ Bψ̂k�1pZw�;LpX;Rqq is continuous. Consider
M : LpX;Rq � X Ñ R, given by Mpx�, xq � xx�, xyLpX;Rq,X , the dual pairing.
It follows that

(2.94) LV f �MpDf , V q,

and Theorem 2.39 proves the claim.

Let us consider two special cases.
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Corollary 2.43. Let pH, ∥�∥Hq be a separable Hilbert space, pZ, ∥�∥Zq a con-
tinuously embedded Hilbert space. Define the D-admissible weight functions
ψjpxq :� coshp∥x∥Hq on H and ψ̂jpxq :� coshp∥x∥Zq on Z and the C-admissible
weight functions φjpxq :� 1 on Z, j ¥ 0. Then, for every k ¥ 0, the mapping

L : Bψk pXw�q � Cφk�1pZw�;Xq Ñ Bψ̂k�1pZw�q, pf , V q ÞÑ LV f ,(2.95)

given by LV f pxq :� Df pxqV pxq, is bounded and bilinear.

Remark 2.44. If Z � H, this has the simple interpretation that bounded vector
fields map cosh-weighted spaces into themselves.

Proof. This is straightforward from Corollary 2.42, as the ψ̃j defined there is
only a multiple of ψ̂j in this case.

The following special case is very useful in the analysis of stochastic partial
differential equations of Da Prato-Zabczyk type.

Corollary 2.45. Let pH, ∥�∥Hq be a separable Hilbert space, pZ, ∥�∥Zq a con-
tinuously embedded Hilbert space. Fix n P N. Define the D-admissible weight
functions ψjpxq :� p1�∥x∥2Hqpn�jq{2 on H and ψ̂jpxq :� p1�∥x∥2Zqpn�jq{2 on Z,
j � 0, . . . , n� 1, and the C-admissible weight functions φ0pxq :� p1� ∥x∥2Zq1{2
and φjpxq :� 1 on Z, j P N. Then, for k ¤ n � 1, the mapping

L : Bψk pXw�q � Cφk�1pZw�;Xq Ñ Bψ̂k�1pZw�q, pf , V q ÞÑ LV f ,(2.96)

given by LV f pxq :� Df pxqV pxq, is bounded and bilinear.

Remark 2.46. This has the interpretation that linearly bounded vector fields Z Ñ
X with bounded derivatives (hence also Lipschitz continuous) map polynomially
bounded functions to polynomially bounded functions, with the same weights.

Proof. Calculating

ψ̃jpxq :� p1� ∥x∥2Zqpn�1q{2p1� ∥x∥2Zq1{2 �
j̧

i�0

�
j

i



p1� ∥x∥2Zqpn�i�1q{2

¤ Cψ̂jpxq,(2.97)

the claim again follows from an application of Corollary 2.42.

Let us consider some concrete examples.
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Example 2.47. Let pX, ∥�∥Hq, pY, ∥�∥Zq be separable Hilbert spaces, and A : X Ñ
Y a continuous linear operator. It is easy to see that VA P Cφk pXw ; Y q, where
VApxq :� Ax and φ is chosen as in Corollary 2.45. We check the definition:
VA P Bφk pX; Y q is obvious, as DVApxqphq � Ah and DjVA � 0 for j ¥ 2.
Furthermore, if phnqnPN converges weakly to h P X, then Ahn converges weakly
to Ah P Y . Finally, DVApxq is independent of x P X, and the claim follows.

Note that the assumptions are satisfied for densely defined and closed oper-
ators A : domA � H Ñ H on separable Hilbert spaces, in particular for infinites-
imal generators of strongly continuous semigroups (see Proposition A.5(i)).

Example 2.48. Given a separable Hilbert space pH, ∥�∥Hq of functions defined on
a bounded set D � Rd with smooth boundary. Let G : H Ñ H be a Nemytskii
or superposition operator, i.e., with some g : RÑ R,

(2.98) Φpf qpxq � φpf pxqq for x P D and f P H.
For an analysis of the mapping properties of such operators on diverse state
spaces, see [3, 100].

Assume that H � HspDq, the usual Sobolev space of s times weakly differ-
entiable functions on D with weak derivatives in L2pDq, where s ¡ d{2. Then,
[100, p. 381, Theorem 2], together with the Sobolev embedding theorem (e.g.,
[100, p. 32, Theorem 1]), proves that G : HspDq Ñ HspDq is infinitely often
Fréchet differentiable if g1 P C8pRq and gp0q � 0. Similarly, [77, Lemma 1.3.3]
proves that G : Hs0pDq Ñ Hs0pDq is C8 if s ¡ d{2 and g P C8pRq, where Hs0pDq
denotes the subspace of HspDq consisting of functions vanishing on BD together
with all derivatives up to order s � 1.

Let us consider the case H � HspDq with s � 1 ¡ d{2, and g1 P C8b pRq
with gp0q � 0. We want to prove that G P Cφs pHw ;Hq, where φ is chosen as in
Corollary 2.45. First, [100, p. 381, Theorem 2] cited above yields G P Bφs pH;Hq,
as we have the exact representation

(2.99) DjGpuqph1, . . . , hjq � gpjqpuqh1 � � � hj for u, h1, . . . , hj P HkpDq.
Furthermore, G : Hs�1pDq Ñ Hs�1pDq is infinitely often differentiable. The
Rellich-Kondrachev theorem [100, p. 82, Theorems 1, 2] proves that the inclu-
sion HspDq Ñ Hs�1pDq is compact. Hence, Theorem 2.38 yields the claim.

Such operators are of interest in the context of analysis and numerics for
stochastic partial differential equations, consider, e.g., [107, 62]. Note that G
will be neither weakly continuous nor Fréchet differentiable if H � L2pDq unless
it is affine; see [3, Section 3.6] and [97, Section 1.3].
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Chapter 3

Stochastic Processes And
Weighted Spaces

In this chapter, we consider semigroups induced by Markov processes, in partic-
ular those solving stochastic partial differential equations, on weighted spaces.
Section 3.1 establishes sufficient conditions such that the semigroup generated
by a Markov process is strongly continuous on an appropriate weighted space.
In Section 3.2, we analyse these conditions for solutions of stochastic partial
differential equations. Moreover, we provide Taylor expansions of the Markov
semigroup through an explicit representation of its infinitesimal generator using
vector fields on BψpXw�q. Finally, Section 3.3 presents results on the smoothing
effects of stochastic partial differential equations with sectorial generator, i.e.,
analytic semigroup.

Note that for simplicity and ease of representation, we restrict ourselves to
equations driven by Brownian motions. It is possible to deal with more general
Lévy driving processes in a similar manner, see [105] in this regard.

3.1 Strong continuity and Markov semigroups

Assume that pX, ∥�∥Xq is the dual space of a separable Banach space pW, ∥�∥W q.
Again, we write Xw� for X endowed with the weak-� topology.

Assumption 3.1. pxpt, x0qqt¥0 is a time homogeneous Markov process with val-
ues in X on some stochastic basis pΩ,F ,P, pFtqt¥0q satisfying the usual condi-
tions, started at x0 P X. It has right continuous trajectories with respect to the
weak-� topology on X.

We want to derive conditions on pxpt, x0qqt¥0 such that the Markov semi-
group pPtqt¥0 of pxpt, x0qqt¥0, given by Pt f px0q :� E rf pxpt, x0qqs, is strongly
continuous on the space BψpXw�q for an adequate weight function ψ.
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Assumption 3.2. ψ is an admissible weight function on X. There exist constants
C ¡ 0 and ε ¡ 0 with

(3.1) Erψpxpt, x0qqs ¤ Cψpx0q for all x0 P X and t P r0, εs.
Inequality (3.1) is related to boundedness of the transition operator on

BψpXw�q, and to some supermartingale property. This is formulated in the
following lemma.

Lemma 3.3. Suppose Assumptions 3.1 and 3.2. Then |Erf pxpt, x0qqs| ¤ Cψpx0q
for all f P BψpXw�q, x0 P X and t P r0, εs.

Furthermore, the condition

(3.2) Erψpxpt, x0qqs ¤ exppωtqψpx0q for all x0 P X and t P r0, εs.
is equivalent to the process expp�ωtqψpxpt, x0qq being a supermartingale in its
own filtration. This implies

(3.3) |Erf pxpt, x0qqs| ¤ exppωtqψpx0q for x0 P X and t ¥ 0
for all f P BψpXw�q.
Proof. This is clear from the definitions.

Lemma 3.4. Suppose Assumptions 3.1 and 3.2. Then

(3.4) lim
tÑ0�

Erf pxpt, x0qqs � f px0q for all f P BψpXw�q and x0 P X.

Proof. Denoting by χA the indicator function of the set A, we choose R ¡ ψpx0q
and consider

|E rf pxpt, x0qqs � f px0q| ¤E
�
|f pxpt, x0qq � f px0q|χrψpxpt,x0qq¤Rs

�
� E �|f pxpt, x0qq|χrψpxpt,x0qq¡Rs�
� f px0qP rψpxpt, x0qq ¡ Rs .(3.5)

By the Markov inequality,

(3.6) P rψpxpt, x0qq ¡ Rs ¤ R�1E rψpxpt, x0qqs ¤ CR�1ψpx0q.
Given ε ¡ 0, Theorem 2.8 shows that for some R ¡ 0, |f pxq| ¤ εψpxq if
ψpxq ¡ R. Therefore,

(3.7) E
�
|f pxpt, x0qq|χrψpxpt,x0qq¡Rs

� ¤ Cεψpx0q.
Finally, given R ¡ 0, supψpxq¤R|f pxq|   8 by weak continuity. By dominated
convergence, limtÑ0� E

�
|f pxpt, x0qq � f px0q|χrψpxpt,x0qq¤Rs

� � 0.
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Theorem 3.5. Suppose Assumptions 3.1 and 3.2. Let twj : j P Nu � W be a
countable set which separates the points of X. Assume that for any t ¡ 0, j P N
and sequence pxnqnPN converging weak-� to some x0 P X,

(3.8) lim
nÑ8

xxpt, xnq, wjy � xxpt, x0q, wjy almost surely.

Then, Pt f px0q :� Erf pxpt, x0qqs satisfies the generalised Feller property and is
therefore a strongly continuous semigroup on BψpXw�q.

The condition given here is weaker than assuming that the map x0 ÞÑ xpt, x0q
is almost surely weak-� continuous, as the nullset can depend on t, x0, the
sequence pxnqnPN, and j P N (even though the dependence on j can be removed,
as a countable union of nullsets is again a nullset). If X is a separable Hilbert
space, twj : j P Nu can be chosen to be an orthonormal basis.

Proof. Let f � g � h with g P C8b pRnq and hpxq � pxx, yjyqj�1,...,n. Such
functions are dense in BψpXw�q by Theorem 2.19. By Lemma 2.21, we only have
to prove sequential weak-� continuity of Pt f for f P BψpXw�q. By assumption,
for any weak-� converging sequence pxnqnPN with limit x0 , limnÑ8 hpxpt, xnqq �
hpxpt, x0qq almost surely. The dominated convergence theorem yields Pt f P
BψpXw�q. The result now follows from Lemma 3.4 and Theorem 2.11.

Example 3.6. Suppose xpt, x0q � x0 � Lt , where Lt is a càdlàg Lévy process
with jumps bounded by some constant c ¡ 0 in X. Then, by Fernique’s theorem
[85, Theorem 4.4], it follows that Erexppβ∥Lt∥qs   8 for all β ¡ 0. Choosing
ψpxq :� coshpβ∥x∥q, we see that ψpx � yq ¤ 2ψpxqψpyq. Hence,

(3.9) Erψpxpt, x0qqs ¤ 2ErψpLtqsψpx0q.

We obtain from Theorem 3.5 that every càdlàg Lévy process on a Hilbert space
with bounded jumps induces a strongly continuous semigroup on a cosh-weighted
space BψpXw�q.

The continuity assumptions of Theorem 3.5 are typically not easy to verify
directly in the weak-� topology. The following theorem yields a simpler approach
by using a compact embedding in a reflexive setting.

Theorem 3.7. Suppose Assumptions 3.1 and 3.2, and that X is reflexive. Let
pZ, ∥�∥Zq be another Banach space such that X is compactly embedded in Z.
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Furthermore, suppose that the Markov process pxpt, x0qqt¥0 on X can be ex-
tended to Z, and that for any f P CbpZq, the mapping z0 ÞÑ Erf pxpt, z0qqs is
continuous with respect to the norm topology of Z.

Then, Pt f px0q :� Erf pxpt, x0qqs satisfies the generalised Feller property and
is therefore a strongly continuous semigroup on BψpXw�q.
Remark 3.8. Note that for concrete examples, we often work the other way
round: first, we prove existence of the process on Z, then we prove the invariance
and continuity properties for xpt, x0q on X and Z. It is actually a result on
preservation of regularity, when showing that xpt, x0q P X almost surely if x0 P X.

Proof. We only need to prove that there exists a dense subset of BψpXw�q
that is mapped into BψpXw�q. But Theorem 2.31 and the assumptions of
the theorem show that this is satisfied for CbpZq, as supz0PZ |Erf pxpt, z0qqs| ¤
supz0PZ |f pz0q|.
Example 3.9. Continuity in norm topologies, as required in Theorem 3.7, is
often satisfied in applications for stochastic partial differential equations, see
Proposition B.20. The classical Rellich-Kondrachov type embedding theorems,
see [19, Théorème IX.16], yield compact embeddings for problems on bounded
domains.

Theorem 3.10. Suppose Assumptions 3.1 and 3.2, and that X is a separable
Hilbert space with scalar product x�, �y and countable orthonormal basis pejqjPN.
Denoting by πM the orthogonal projection onto the span of the first M basis
vectors, assume that for j P N,

(3.10) lim
MÑ8

sup
x0PX

ψpx0q�1E r|xxpt, x0q, ejy � xxpt, πMx0q, ejy|s � 0.

Then, the semigroup pPtqt¥0 defined by Pt f px0q :� Erf pxpt, x0qqs satisfies the
generalised Feller property and is therefore strongly continuous on BψpXw�q.
Proof. For f a bounded and smooth cylinder function with f � f �πN , consider
gM :� Ptpf � πNq � πM . We prove that gM converges to Ptpf � πNq. For any
x0 P X, the smoothness of f yields

|Ptpf � πNqpx0q � gMpx0q| ¤ E r|f pπNxpt, x0qq � f pπNxpt, πMx0qq|s
¤ Cf E r∥πNpxpt, x0q � xpt, πMx0qq∥s

¤ Cf

Ņ

j�1

E r|xxpt, x0q, ejy � xxpt, πMx0q, ejy|s ,(3.11)
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whence PtBψpXw�q � BψpXw�q, see Remark 2.20. By Lemma 3.3, Pt P
LpBψpXw�qq. Again, the result follows from Lemma 3.4 and Theorem 2.11.

Example 3.11. The assumptions of Theorem 3.10 are satisfied for the stochas-
tic Navier-Stokes equation on the two-dimensional torus with additive noise (a
similar result is found in [48, Theorem 5.10]). The first estimate in [48, The-
orem A.3] proves the condition of Theorem 3.10, where the weight function is
ψpxq � exppη∥x∥2q with η ¡ 0 chosen in such a way that Erψpxpt, x0qqs ¤
Kψpx0q for small t.

3.2 Application to stochastic partial differential
equations

In finite dimensions, the stochastic Taylor expansion (see [59, Chapter 5]) is an
important tool in the derivation of both strong and weak approximation schemes
for stochastic differential equations. In infinite dimensions, the situation is more
complicated. A fundamental issue is that if pxptqqt¥0 is the solution of a stochas-
tic partial differential equation on the Hilbert space H with unbounded infinites-
imal generator A, then Axptq is not well-defined in general. This can be dealt
with by considering initial conditions that lie in the domain of a power of A, and
requiring that the vector fields leave these domains of powers of A invariant, see
[6].

We suggest an alternative approach, making use of the infinitesimal generator
of the strongly continuous Markov semigroup.

Assumption 3.12. Let pH, ∥�∥Hq be a Hilbert space and pA, domAq the in-
finitesimal generator of a strongly continuous semigroup pStqt¥0 of pseudo-
contractions on H. Fix ℓ0 P N. For ℓ � 0, . . . , ℓ0, let Hℓ be subspaces of
H endowed with Hilbert norms ∥�∥Hℓ . Assume that H0 � H, and that for
ℓ � 0, . . . , ℓ0 � 1, Hℓ�1 � Hℓ with continuous and dense embedding, and
A : Hℓ�1 Ñ Hℓ is a bounded linear operator. Furthermore, assume that for
ℓ � 0, . . . , ℓ0, StpHℓq � Hℓ for t ¥ 0, and that pStqt¥0 is strongly continuous
on Hℓ.

On Hℓ, we define D-admissible weight functions

(3.12) ψsℓ pxq :�
�
1� ∥x∥2Hℓ

�s{2
, s ¥ 1, ℓ � 0, . . . , ℓ0, ψs :� ψs0,

and the C-admissible weight functions

(3.13) φℓ,0pxq :�
�
1� ∥x∥2Hℓ

�1{2
, φℓ,jpxq :� 1, j ¥ 1.
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Define the vectors of weight functions ψpnq
ℓ :� pψn�jℓ qj�0,...,k , k   n, and φℓ :�

pφℓ,jqj�0,...,k .
Assumption 3.13. For some k0 P N and ℓ � 0, . . . , ℓ0,

V0 P Cφℓk0 ppHℓqw , pHℓqw q and(3.14)

Vj P Cφℓk0 ppHℓqw , pHℓqw q for j � 1, . . . , d.(3.15)

Remark 3.14. In the following results, the sharp smoothness requirements on
the vector fields vary. The ones given above are sufficient everywhere, and are
the most general ones under which a result as in Lemma 4.10 can be expected.

For x P Hℓ, ℓ � 0, . . . , ℓ0, we can then consider the Da Prato-Zabczyk
equation

(3.16) dxpt, x0q � Axpt, x0qdt �
ḑ

j�0

Vjpxpt, x0qq � dBjt , xpt, x0q � x0,

on Hℓ, where B0t � t and pBjtqj�1,...,d is a d-dimensional Brownian motion.
As the assumptions on the vector fields Vj essentially mean that they are Lip-
schitz continuous with bounded derivatives, whence linearly bounded, all these
equations have unique solutions in Hℓ if x P Hℓ, agreeing with each other for
sufficiently smooth initial conditions if we vary ℓ.

Assumption 3.15. The Markov semigroup pPtqt¥0, Pt f px0q :� Erf pxpt, x0qqs, is
strongly continuous on Bψnℓ ppHℓqw�q for all n P N and ℓ � 0, . . . , ℓ0.

Recall that Section 3.1 collects several conditions ensuring Assumption 3.15.
An interesting fact is that we can prove pseudocontractivity of pPtqt¥0 under

the assumption of pseudocontractivity of the semigroup generated by A.

Theorem 3.16. Consider a solution of (3.16), where A generates a pseudo-
contractive semigroup and the vector fields Vj are Lipschitz continuous. Then,

(3.17) ∥Pt∥LpBψnℓ ppHℓqw qq ¤ exppωtq for some ω ¡ 0.

Remark 3.17. The proof is somehow twisted in infinite dimension and does not
follow the usual finite dimensional lines of proving that the local martingale part
of ψnℓ pxpt, x0qq is in fact a martingale, and therefore Ito’s formula yields the
result: we use the Szőkefalvi-Nagy theorem [93, p. 452, Théorème IV] to move
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to a larger Hilbert space Hℓ � Hℓ containing Hℓ as a closed subspace and
where we can write the solution process xpt, x0q � πUtY pt, x0q as orthogonal
projection.

Proof. We proceed similarly as in [106]. Take ℓ � 0 without any restriction and
set ψ � ψn0 . Additionally we assume that A generates a contractive semigroup
on H by adding the growth to V0. [93, p. 452, Théorème IV] yields existence
of a larger Hilbert space H � H, where the semigroup generated by A lifts to a
unitary group U with generator A. The projection onto H is denoted by π. We
consider the stochastic partial differential equation prolonged to H,

(3.18) dXpt, x0q � AXpt, x0qdt �
ḑ

j�0

VjpπpXpt, x0qqq � dBjt .

Rewriting the above equation using Itô integrals and switching to a “coordi-
nate system” which moves with velocity x ÞÑ Ax , we obtain a new stochastic
differential equation

(3.19) dY pt, x0q �
ḑ

j�0

Vjpt, Y pt, x0qqdBjt

with Lipschitz continuous vector fields

V0pt, yq � U�t Ṽ0pπUtyq and(3.20)

Vjpt, yq � U�tVjpπUtyq for t ¥ 0, y P H and j � 0, . . . , d,(3.21)

where Ṽ0pxq :� V0pxq � 1
2

°d
j�1DVjpxqVjpxq is the Itô drift. It follows that

xpt, x0q � πUtY pt, x0q for t ¥ 0 and x0 P H.
Proposition B.20 yields suptPr0,εs Er∥Y pt, x0q∥ps   8 for p ¥ 2. Ito’s for-

mula applied to

(3.22) ψHpY pt, x0qq :� p1� ∥Y pt, x0q∥2qn{2

together with linear growth and Gronwall’s inequality then yields the result; more
precisely, defining

(3.23) Lt f pxq :� Df pxq � V0pt, xq � 1
2

ḑ

j�1

D2f pxqpVjpt, xq,Vjpt, xqq,
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we see that

ErψHpY pt, x0qqs �ψHpx0q �
» t
0

ErLtpψHqpY ps, x0qsds

¤ψpx0q � ω
» t
0

ErψHpY ps, x0qqsds,(3.24)

where the constant ω depends on the Lipschitz bounds of the vector fields Vj ,
j � 0, . . . , d . Noting that ψpx0q � ψHpx0q, we consider xpt, x0q � πUtY pt, x0q
and realise that, due to ∥πUty∥H ¤ ∥y∥H for y P H,

(3.25) Erψpxpt, x0qs ¤ ErψHpY pt, x0qqss ¤ exppωtqψHpx0q � exppωtqψpx0q,

which is the desired result.

3.2.1 Weak continuity

One approach to satisfy Assumption 3.15 is the following.

Assumption 3.18. Given Assumption 3.12, we suppose the existence of a Hilbert
space H�1 such that Hℓ is compactly and densely embedded in Hℓ�1 for ℓ �
0, . . . , ℓ0, and that Vj : Hℓ Ñ Hℓ is Lipschitz continuous for j � 0, . . . , d and
ℓ � �1, . . . , ℓ0.
Theorem 3.19. Suppose Assumption 3.18, and that for all ℓ � �1, . . . , ℓ0,
Vj : Hℓ Ñ Hℓ is Lipschitz continuous for j � 0, . . . , d . Then, Assumption 3.15 is
satisfied.

Proof. We apply Proposition B.20 to prove that for all ℓ � �1, . . . , ℓ0, n ¥ 2
and T ¡ 0, there exists some constant KT ¡ 0 such that Erψnℓ pxpt, x0qqs ¤
KTψ

n
ℓ px0q for all x0 P Hℓ and t P r0, T s. Thus, the result follows from Theo-

rem 3.7.

We now give some examples such that Assumption 3.18 is satisfied.

Lemma 3.20. Let pH̃, ∥�∥H̃q be a separable Hilbert space. Assume that the
operator A : domA � H̃ Ñ H̃ generates a strongly continuous semigroup and
admits a compact resolvent. Then, domAℓ�1 is compactly embedded in domAℓ,
ℓ ¥ 0. Hence, the choice Hℓ :� domAℓ�1, ℓ � �1, . . . , ℓ0, and H :� H0 satisfies
Assumption 3.18.

Here, domAℓ is endowed with the norm ∥x∥domAℓ :�
�°ℓ

j�0∥Ajℓ∥2H̃
�1{2.
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Proof. As A has a compact resolvent and generates a strongly continuous semi-
group, there exists some λ0 P R such that λ0 � A is continuously invertible and
pλ0�Aq�1 : H̃ Ñ H̃ is compact. Clearly, pλ0�Aqℓ : domAℓ Ñ H̃ is continuously
invertible.

If a sequence pxnqnPN converges weakly in domAℓ�1 to some x P domAℓ�1,
then pλ0 � Aqℓ�1xn converges weakly to pλ0 � Aqℓ�1x . It follows by the com-
pactness of pλ0�Aq�1 that pλ0�Aqℓxn converges strongly to pλ0�Aqℓx . This
proves that domAℓ�1 is compactly embedded in domAℓ.

Remark 3.21. Under the assumption that the semigroup generated by A con-
sists of compact operators, a condition that is stronger than the existence of a
compact resolvent of A (see [84, Theorem 2.3.3]), an argument as in [72, The-
orem 2.2] shows directly that pPtqt¥0 is strongly continuous on Bψn0 pHw q, n ¥ 2.
The unboundedness of A still requires us to consider directional derivatives along
A only on subspaces of H.

In many situations, in particular for stochastic partial differential equations
on unbounded sets, the generator A does not admit a compact resolvent. We
give an exemplary construction of Hilbert spaces Hℓ of functions p0,8q Ñ R,
compactly embedded in each other, such that the differential operator d

dx sat-
isfies d

dxHℓ � Hℓ�1, ℓ � 0, . . . , ℓ0. These spaces can be used to embed the
Heath-Jarrow-Morton equation of interest rate theory into our setting. This will
be performed in Section 4.3.

With α P R and wαpxq :� exppαxq, x P R�, we set L2αpR�q :� L2pR�, wαq
and HkαpR�q :� HkpR�, wαq. Here and in the following, R� :� p0,8q, and for
D � RN , the weighted Lebesgue and Sobolev spaces are

L2pD,wq :�
!
f : D Ñ R : ∥f ∥L2pD,wq   8

)
and(3.26)

HkpD,wq :�
!
f : D Ñ R : ∥f ∥Hk pD,wq   8

)
(3.27)

with norms

∥f ∥L2pD,wq :�
�»

D

f pxq2wpxqdx
	1{2

and(3.28)

∥f ∥Hk pD,wq :�
� ķ

j�0

∥f pjq∥2L2pD,wq
	1{2

.(3.29)
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Proposition 3.22. For every α ¡ 0, the space H1pR�q X L2αpR�q with norm

(3.30) ∥f ∥ :�
�
∥f ∥2H1pR�q � ∥f ∥2L2αpR�q

	1{2
is compactly embedded in L2pR�q.

Note that the proof shows that an analogous result holds true for any weight
function w with limxÑ�8 wpxq � �8.

Proof. We apply [19, Théorème IV.26]. For any τ ¡ 0,»
R�
|f px � τq � f pxq|2dx ¤

»
R�

» τ
0

|f 1px � sq|2dsdx

�
» τ
0

»
R�
|f 1px � sq|2dxds

¤ τ∥f ∥H1pR�q,(3.31)

and for any R ¡ 0,» 8

R

|f pxq|2dx ¤ expp�αRq
» 8

R

|f pxq|2 exppαxqdx
¤ expp�αRq∥f ∥L2αpR�q.(3.32)

These estimates prove the claim.

Corollary 3.23. For any α, β P R with β ¡ α and integer k ¥ 0, Hk�1β pR�q is
compactly embedded in HkαpR�q.
Proof. Assume first k � 0. Then, Proposition 3.22 shows that H1β�αpR�q is
compactly embedded in L2pR�q.

The mapping T : L2pR�q Ñ L2αpR�q, f ÞÑ expp�α
2 xqf , is an isometric iso-

morphism, and T pH1β�αpR�qq � H1βpR�q, where the norms ∥T�1f ∥H1β�αpR�q
and ∥f ∥H1βpR�q are equivalent. It follows that H1βpR�q is compactly embedded in

L2αpR�q. The full result follows by induction.

Given a strictly increasing sequence α � α�1   α0   � � �   αℓ0   8 of real
numbers, we define the spaces

(3.33) Hℓ :�
 
h P L1locpR�q : h1 P Hℓ�1αℓ

pR�q
(
, ℓ � �1, . . . , ℓ0,
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endowed with the norm

(3.34) ∥h∥Hℓ :�
�
|hp0q|2 � ∥h1∥2

Hℓ�1αℓ
pR�q


1{2
.

Clearly, the spaces Hℓ are Hilbert spaces for ℓ � �1, . . . , ℓ0. Furthermore,
Hℓ � Hℓ�1 and A :� d

dx : Hℓ Ñ Hℓ�1 is continuous for ℓ � 0, . . . , ℓ0, and
H�1 � Hα.

Theorem 3.24. Hℓ is compactly embedded in Hℓ�1 for ℓ � 0, . . . , ℓ0.
Proof. We have to prove that if a sequence phnqnPN in Hℓ converges weakly to
some h P Hℓ, it converges strongly in Hℓ�1. As evaluation functionals are con-
tinuous on Hℓ, we see that limnÑ8 hnp0q � hp0q follows from weak convergence
in Hℓ. By Corollary 3.23, we see that h1n converges strongly to h1 in Hℓαℓ�1pR�q.
This proves the result.

This means that we have constructed spaces Hℓ, ℓ � �1, . . . , ℓ0, such that
the Heath-Jarrow-Morton equation of interest rate theory satisfies Assump-
tion 3.18. Note that requiring Assumption 3.13 is actually not untypical in
this context and is even weaker than [37, (A1), p. 135]. Thus, all results on
covergence of numerical approximations for stochastic partial differential equa-
tions we will derive below can be applied to the Heath-Jarrow-Morton equation,
and this will be described in detail in Section 4.3.

3.2.2 Taylor expansions

We are now in the situation to derive Taylor expansions for Markov semigroups
of stochastic partial differential equations.

Theorem 3.25. Given Assumptions 3.12, 3.13 and 3.15. Consider the strongly
continuous semigroup pPtqt¥0 on the space Bψnℓ ppHℓqw q with n ¥ 4. Denote its
generator by pG, domGq.

Then, Bψ
pnq
ℓ�1

2 ppHℓ�1qw q � domG, and

Gf pxq � Df pxqpAxq � LV0f pxq �
1

2

ḑ

j�1

L2Vj f pxq(3.35)

for f P Bψ
pnq
ℓ�1

2 ppHℓ�1qw q and x P Hℓ.
Here, the Lie derivative L is defined as in Corollary 2.45.
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Proof. By the Itô formula given in Proposition B.19, it follows that for f P
ApHℓ�1q, we have f P domG, and (3.35) is satisfied.

We extend this representation as follows. Given f P Bψ
pnq
ℓ�1

2 ppHℓ�1qw q, choose
a sequence pfnqnPN in ApHℓ�1q such that limnÑ8∥f � fn∥ψpnqℓ�1,2

� 0. Corol-

lary 2.45 shows that the right hand side of (3.35) defines a continuous linear

operator G̃ : Bψ
pnq
ℓ�1

2 ppHℓ�1qw q Ñ Bψnℓ ppHℓqw q. Hence, limnÑ8∥G̃f �Gfn∥ψpnqℓ � 0.
The closedness of G (see Proposition A.5(i)) thus yields that f P domG and
Gf � G̃f . The claim follows.

The next result follows directly from Corollary 2.45 and the explicit repre-
sentation in (3.35).

Corollary 3.26. Let 0 ¤ k ¤ k0 � 1. Given Assumptions 3.12, 3.13 and 3.15,
the infinitesimal generator G satisfies the mapping property

(3.36) G : Bψ
pnq
ℓ�1

k�2 ppHℓ�1qw q Ñ B
ψ
pnq
ℓ

k ppHℓqw q, ℓ � 1, . . . , ℓ0.
Induction now yields:

Corollary 3.27. Let j ¤ ℓ ¤ ℓ0 and 0 ¤ k ¤ k0�2j�1. Given Assumptions 3.12,
3.13 and 3.15, the powers of the infinitesimal generator G satisfy

(3.37) G j : B
ψ
pnq
ℓ�j

k�2jppHℓ�jqw q Ñ B
ψ
pnq
ℓ

k ppHℓqw q.
They are given explicitly by taking the powers of (3.35).

Proposition A.5(v) yields a Taylor expansion of Pt f for smooth f .

Corollary 3.28. Let f P Bψ
pnq
ℓ�pk�1q

2pk�1q ppHℓ�pk�1qqw q, k�1 ¤ ℓ ¤ ℓ0, and 2pk�1q ¤
k0 � 1. Given Assumptions 3.12, 3.13 and 3.15,

(3.38) Pt f �
ķ

j�0

t j

j!
G j f � tk�1Rt,k f ,

where the linear operator Rt,k : B
ψ
pnq
ℓ�pk�1q

2pk�1q ppHℓ�pk�1qqw q Ñ Bψnℓ ppHℓqw q satisfies

(3.39) ∥Rt,k f ∥ψnℓ ¤ CT ∥f ∥ψpnq
ℓ�pk�1q

,2pk�1q
for t P r0, T s

for a constant CT ¡ 0 independent of f .
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3.3 Smoothing effects with analytic semigroups

Suppose that Assumptions 3.12, 3.13 and 3.15 are satisfied, where Hℓ � domAℓ,
ℓ � 0, . . . , ℓ0, and that domA is compactly embedded in H. Furthermore,
suppose that the operator A generates an analytic semigroup, and, without loss
of generality, that 0 is in the resolvent set of A. Consult Section A.2 for a
short overview of analytic semigroups and fractional powers of operators. By
Proposition A.8(iv), there exists δ ¡ 0 such that for all γ ¡ 0, we can find some
Mγ ¡ 0 with

∥p�AqγStx∥H ¤ Mγt
�γ expp�δtq∥x∥H

for all x P H and t ¡ 0,(3.40)

where p�Aqγ denotes the γ fractional power of �A and St :� expptAq denotes
the semigroup generated by A. We want to use this property to derive smooth-
ing effects of the mapping x0 ÞÑ xpt, x0q. More precisely, under appropriate
assumptions on the coefficients Vj , we want to prove that xpt, x0q P domAk for
x0 P X.

To prove a regularising effect, let us consider the mild formulation of the
stochastic partial differential equation. We have that

xpt, x0q � Stx0 �
» t
0

St�s Ṽ0pxps, x0qqds

�
ḑ

j�1

» t
0

St�sVjpxps, x0qqdBjs ,(3.41)

Ṽ0pxq � V0pxq � 1
2

°d
j�1DVjpxqVjpxq being the Itô drift.

As stated above, Stx0 P domA, and for every γ ¡ 0, ∥AγStx0∥H ¤
Mγt

�γ∥x0∥H for t P r0, T s. To estimate the other terms, we use the follow-
ing auxiliary results. Denote by Lppr0, T s;Hq the space of measurable functions
f : r0, T s Ñ H with

³T
0 ∥f psq∥pHds   8, endowed with the norm

(3.42) ∥f ∥Lppr0,T s;Hq :�
�» T
0

∥f psq∥pHds
	1{p

.

Proposition 3.29. Suppose that V : H Ñ H is Lipschitz continuous. Let f P
Lppr0, T s;Hq with p ¡ 5{4, and set F ptq :� ³t

0 St�sV pf psqqds, t P r0, T s. Then,
there exists C ¡ 0 such that

(3.43) sup
tPr0,T s

∥p�Aq1{5F ptq∥H ¤ Cp1� ∥f ∥Lppr0,T s;Hqq.
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Proof. We calculate

(3.44) ∥p�Aq1{5F ptq∥H ¤ C

» t
0

pt � sq�1{5∥V pf psqq∥Hds.

Linear boundedness of V and the Hölder inequality yield the claim.

Proposition 3.30. Suppose V : H Ñ H is Lipschitz continuous. Given a one-
dimensional Brownian motion pBtqt¥0 on pΩ,F ,P, pFtqt¥0q. Let f : Ω�r0, T s Ñ
H be progressively measurable with

³T
0 Er∥f psq∥pHsds   8, p ¥ 4, and set

F ptq :� ³t
0 St�sV pf psqqdBs , t P r0, T s. Then, there exists C ¡ 0 such that

(3.45) E

�
sup
tPr0,T s

∥p�Aq1{5F ptq∥pH
�
¤ C

�
1�

» t
0

Er∥f psq∥pHsds


.

Proof. By the Burkholder-Davis-Gundy inequality [28, Theorem 5.2.4],

E

�
sup
sPr0,ts

∥p�Aq1{5F psq∥pH
�
¤ CE

��» t
0

∥p�Aq1{5St�sV pf psqq∥2Hds
	p{2�

¤ CE
��» t

0

pt � sq�2{5∥V pf psqq∥2Hds
	p{2�

.(3.46)

The Cauchy-Schwarz inequality yields

(3.47)
» t
0

pt � sq�2{5∥V pf psqq∥2Hds ¤ C
�» t
0

∥V pf psqq∥4ds
	1{2

.

Linear boundedness of V and the Jensen inequality prove the claim.

Remark 3.31. The restriction to p ¥ 4 is arbitary. Instead, every p ¡ 2 is
possible. Note, however, that the case p � 2 is not admissible.

Corollary 3.32. Suppose the assumptions made at the beginning of this section.
Then, for every p ¥ 4, there exists C ¡ 0 such that for x0 P H and t P p0, T s,

(3.48) Er∥p�Aq1{5xpt, x0q∥pHs ¤ Ct�1{5p1� ∥x0∥pHq.

In particular, Erψn1{5pxpt, x0qqs ¤ Ct�1{5ψn0px0q for n ¥ 4, t P p0, T s and x0 P H.

Here, we have set ψs1{5pxq :� p1� ∥x∥2
domp�Aq1{5

qs{2 for x P domp�Aq1{5, where

∥x∥domp�Aq1{5 :� p∥x∥2H � ∥p�Aq1{5x∥2Hq1{2.
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Proof. By the above results, we see that

(3.49) Er∥p�Aq1{5xpt, x0q∥pHs ¤ Ct�1{5∥x0∥pH � C
» t
0

Er∥xps, x0q∥pHsds.

As Er∥xps, x0q∥pHs ¤ Cp1� ∥x0∥pHq by Proposition B.20, the result follows.

Theorem 3.33. The operator Pt : Bψ
n
1{5ppdomp�Aq1{5qw q Ñ Bψn0 pHw q is well-

defined for n ¥ 4 and t P p0, T s, and satisfies

(3.50) ∥Pt f ∥Bψn0 pHw q ¤ Ct�1{5∥f ∥
B
ψn
1{5 ppdomp�Aq1{5qw q

for f P Bψn1{5ppdomp�Aq1{5qw q and t P p0, T s.
Proof. The norm bound follows immediately from Corollary 3.32. To see that Pt
satisfies the given mapping property, note that Pt leaves Bψn0 pHw q invariant.

The following result shows that we are actually in the same situation on
domp�Aq1{5 as we were on H.

Lemma 3.34. Under the assumptions given at the beginning of this section,
Ṽ0, Vj : domp�Aqγ Ñ domp�Aqγ , j � 1, . . . , d , γ P p0, 1q, are well-defined and
Lipschitz continuous mappings.

Proof. By [12, p. 170, Theorem 6.1], the domain of the fractional power p�Aqα
agrees with a certain interpolation space,

(3.51) domp�Aqγ � pH, domAqγ,2, γ P p0, 1q.

Hence, Assumption 3.13 together with [21, Proposition 3] yields the claim.

Corollary 3.35. The operator Pt : Bψ
n
ℓ ppdomAℓqw q Ñ Bψn0 pHw q is well-defined

for n ¥ 4 and t P p0, T s, and satisfies

(3.52) ∥Pt f ∥Bψn0 pHw q ¤ Ct�ℓ∥f ∥Bψnℓ ppdomAℓqw q

for f P Bψnℓ ppdomAℓqw q and t P p0, T s.
Proof. Lemma 3.34 shows that we can consider the equation (3.41) also on
the space domp�Aq1{5, and that we are in the setting of Theorem 3.33. An
induction yields the claim.
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Note that we can actually prove a similar result for spaces of differentiable
functions due to Theorem 2.31, as well. Hence, we can obtain optimal conver-
gence estimates for functions defined on domAℓ and initial values in domAℓ by
the use of graded time steps, see, e.g., [39, 101, 102].

Remark 3.36. Assuming that the vector fields Ṽ0, Vj , j � 1, . . . , d , themselves
have a smoothing effect, such a result can be obtained in a less technical manner.
To be precise, suppose that Ṽ0, Vj : H Ñ domAk , j � 1, . . . , d , with

(3.53) ∥Ṽ0pxq∥domAk �
ḑ

j�1

∥Vjpxq∥domAk ¤ C p1� ∥x∥Hq for all x P H.

That is, we only require linear growth of the mappings H Ñ domAk , but not Lip-
schitz continuity. Such an assumption is often satisfied in applications in math-
ematical finance, see [35]. Then, we easily see that Pt : Bψ

n
ℓ�k ppdomAℓ�kqw q Ñ

Bψnℓ ppdomAℓqw q is well-defined and the bound

(3.54) ∥Pt∥
LpBψ

n
ℓ�k ppdomAℓ�k qw q,Bψ

n
ℓ ppdomAℓqw qq

¤ Ct�k

holds true, without having to resort to interpolation theory.
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Chapter 4

Splitting Schemes For
Stochastic (Partial) Differential
Equations

The aim of this chapter is to show how splitting methods can be applied to
stochastic partial differential equations under realistic conditions, improving sig-
nificantly on the results from [6]. The results of Chapter 3 allow us to use the
theory of exponential splittings to prove optimal rates of convergence of split-
ting schemes for stochastic (partial) differential equations with linearly growing
characteristics and for sets of functions with controlled growth.

In Section 4.1, we apply the results of Chapter 3 to the derivation of esti-
mates of the rate of convergence of splitting schemes. Under the assumptions
made in Section 3.2, we obtain optimal estimates for sufficiently smooth func-
tions. Section 4.2 contains an analysis of extrapolation schemes based on the
symmetrically weighted sequential splitting. For smooth functions, an asymp-
totic expansion in n�2 is obtained, allowing fast error reduction in this case.
Section 4.3 is concerned with an application of the theory to the Heath-Jarrow-
Morton equation of interest rate theory. We are able to calibrate the model to
given data, and price a swaption using the calibrated model.

4.1 Error estimates

Assume the setting of Section 3.2, i.e., we suppose that Assumptions 3.12,
3.13 and 3.15 are satisfied. We consider two splitting schemes for (3.16), the
Lie-Trotter scheme (i.e., the Euler scheme in a geometric integrator version),
and the Ninomiya-Victoir scheme. We derive convergence estimates for both
splittings.
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We define z0pt, xq, z jpt, xq, j � 1, . . . , d as the solutions of

d

dt
z0pt, x0q � Az0pt, x0q � V0pz0pt, x0qq,(4.1)

dz jpt, x0q � Vjpz jpt, x0qq � dBjt , j � 1, . . . , d.(4.2)

This exact manner of splitting up the stochastic partial differential equation
is not mandatory in our setting as it is in approaches guided by Lyons-Victoir
cubature [70, 80, 6], but it is very helpful – for j � 1, . . . , d , the processes
z jpt, xq are given through evaluation of the flow of the vector field Vj at random
times given by W j

t : z
jpt, xq � FlVj

Bjt
pxq, where FlVjs denotes the flow defined by

Vj . Note that only the equation for z0pt, x0q contains the unbounded operator
A, but that this equation is a deterministic evolution equation on H.

By Theorem 3.16, ∥P jt ∥LpBψnℓ ppHℓqw qq ¤ exppωj tq with some constants ωj P R,
j � 0, . . . , d .

Remark 4.1. For the split semigroups, we can also prove pseudocontractivity
directly without invoking the Szőkefalvi-Nagy theorem. Indeed, for P jt , j �
1, . . . , d , we can apply Itô’s formula. For P 0t , we use the mild formulation

(4.3) z0pt, x0q � expptAqx0 �
» t
0

expppt � sqAqV0pz0ps, x0qqds,

where expptAq denotes the semigroup generated by A at time t. As A is pseu-
docontractive, we can assume without loss of generality that A is contractive by
adding the growth to V0. Denoting the linear growth bound of V0 in Hℓ by L,
∥V0pxq∥Hℓ ¤ Lp1� ∥x∥Hℓq, this yields

∥z0pt, x0q∥Hℓ ¤ ∥x0∥Hℓ �
» t
0

∥V0pz0ps, x0qq∥Hℓds

¤ ∥x0∥Hℓ �
» t
0

Lp1� ∥z0ps, x0q∥Hℓqds.(4.4)

From the Gronwall inequality,

(4.5) ∥z0pt, x0q∥Hℓ ¤ p∥x0∥Hℓ � Ltq exppLtq.
Thus,

1� ∥z0pt, x0q∥2Hℓ ¤ 1� p∥x0∥Hℓ � Ltq2 expp2Ltq
¤ p1� ∥x0∥Hℓq2p1� L2t2q expp2Ltq,(4.6)

66



4.1. Error estimates

which proves the bound

(4.7) ψnℓ pz0pt, x0qq ¤ exppωtqψnℓ px0q

for t ¥ 0 with ω � 4Ln.
This, together with the fact that the split semigroups approximate Pt strongly

on BψppHℓqw q (see Corollary 4.13), yields an alternative proof of Theorem 3.16.

We now define two well-known splitting schemes and prove optimal rates of
convergence on spaces of sufficiently smooth functions in our general setting.

Definition 4.2 (Lie-Trotter splitting). One step of the Lie-Trotter splitting reads

(4.8) QLTp∆tq :� P 0∆tP
1
∆t � � �P d∆t ,

which is a geometric integrator version of the well-known Euler scheme.

Definition 4.3 (Ninomiya-Victoir splitting). One step of the Ninomiya-Victoir
splitting reads

(4.9) QNVp∆tq :�
1

2
P 0∆t{2

�
P 1∆t � � �P d∆t � P d∆t � � �P 1∆t

�
P 0∆t{2,

which should in theory improve the weak rate of convergence of the Lie-Trotter
scheme by one order.

The Ninomiya-Victoir splitting can be seen as a variant of the classical Strang
splitting, generalised to a sum of more than 2 generators.

Let Gj with domain domGj be the infinitesimal generator of pP jt qt¥0, where
pP jt qt¥0 is considered on Bψnℓ ppHℓqw q with some fixed 0 ¤ ℓ ¤ ℓ0. The function
spaces defined below will be fundamental for proving convergence estimates.

Definition 4.4. Let p ¥ 1 be given. We say that f P Mp
T if and only if

f P Bψnℓ0 ppHℓ0qw q, Pt f P domGp X
�d
j1,...,jp�0

domGj1 . . .Gjp for t P r0, T s,

Cf :� sup
tPr0,T s

j1,...,jp�0,...,d

∥Gj1 � � �GjpPt f ∥ψnℓ0   8 and(4.10)

G iPt f �
�

ḑ

j�0

Gj

�i
Pt f , i � 1, . . . , p.(4.11)
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Proposition 4.5. Let Q∆t be a splitting for P∆t of classical order p. For f P
Mp�1

T , the splitting converges of optimal order, that is, with a constant Cf
independent of n P N and ∆t ¡ 0, we have that for n∆t ¤ T ,

(4.12) ∥Pn∆t f �Qnp∆tqf ∥ψnℓ0 ¤ Cf p∆tqp.

Proof. Set g :� Pt f P domG X
�d
j�0 Gj . The results in [49, Proof of Theo-

rem 3.4, Section 4.1, Section 4.4] prove existence of a family of linear operators
Tp∆tq : B

ψnℓ0 ppHℓ0qw q Ñ Bψ
n
ℓ0 ppHℓ0qw q that are uniformly bounded, i.e.,

(4.13) sup
∆tPr0,εs

∥Tp∆tq∥
LpB

ψn
ℓ0 ppHℓ0 qw qq

¤ Cε   8 for some ε ¡ 0,

such that the difference of the Taylor expansions of P∆tg and Qp∆tqg of order p
is given by

(4.14) P∆tg �Qp∆tqg � p∆tqp�1Tp∆tqEp�1g,
where Ep�1 is a linear combination of the operators Gj1 � � �Gjp�1 , j1, . . . , jp�1 �
0, . . . , d . Here, we apply that by assumption, Gp�1 is itself a linear combination
of these operators when applied to g. Thus,

(4.15) ∥P∆tg �Qp∆tqg∥ψnℓ0 ¤ Cf p∆tqp�1∥Tp∆tq∥
LpB

ψn
ℓ0 ppHℓ0 qw qq

¤ Cf p∆tqp�1.

It follows that

∥Pn∆t f �Qnp∆tqf ∥ψnℓ0 ¤ Cf p∆tqp�1
ņ

i�1

∥Qjp∆tq∥LpBψ
n
ℓ0 ppHℓ0 qw qq

¤ Cf p∆tqp,(4.16)

which proves the result.

For the Lie-Trotter scheme, we set MLT
T :� M2

T , and for the Ninomiya-
Victoir scheme, MNV

T :� M3
T . The following results are now an easy conse-

quence of Proposition 4.5.

Corollary 4.6. For f P MLT
T there exists a constant Cf ¡ 0 such that for all

t P r0, T s and m P N,

(4.17) ∥Pt f � pQLTpt{mqqmf ∥ψnℓ0 ¤ Cfm
�1.

Hence, for f PMLT
T , the Euler splitting scheme converges of optimal order.
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4.1. Error estimates

Corollary 4.7. For f P MNV
T there exists a constant Cf ¡ 0 such that for all

t P r0, T s and m P N,

(4.18) ∥Pt f � pQNVpt{mqqmf ∥ψnℓ0 ¤ Cfm
�2.

Hence, for f PMNV
T , the Ninomiya-Victoir splitting scheme converges of optimal

order.

Remark 4.8. It is possible to consider other splittings than the Lie-Trotter or
the Ninomiya-Victoir schemes. It is, however, not possible to obtain higher
rates of convergence due to inherent limits of generic splitting schemes with
positive coefficients (see [15]), and positivity of coefficients is mandatory in the
probabilistic setting under concern. To obtain higher order methods, we can
either resort to extrapolation, see Section 4.2, or to cubature methods, see
Chapter 5.

We derive easy conditions guaranteeing f PMNV
T .

Lemma 4.9. Let 0 ¤ k ¤ k0 � 1 and 1 ¤ ℓ ¤ ℓ0. Then,

(4.19)
ḑ

j�0

Gj f � Gf for all f P Bψnℓk�2ppHℓqw q.

Proof. This follows directly from Corollary 3.26 applied to Gj and G.

Next, we prove that Pt leaves smooth functions invariant.

Lemma 4.10. Let 1 ¤ ℓ ¤ ℓ0, n ¥ 2 and 0 ¤ k ¤ k0. Then, PtB
ψ
pnq
ℓ

k ppHℓqw q �
Bψ

pnq
ℓ

k ppHℓqw q, and suptPr0,T s∥Pt f ∥ψpnqℓ ,k
¤ KT ∥f ∥ψpnqℓ ,k

with some constant KT
independent of f .

Proof. Proposition B.21 yields: for all T ¡ 0 and p P r1,8q, there exists
Cp,T ¡ 0 such that

Er∥Djx0xpt, x0q∥pLj pHℓ;Hℓqs ¤ CT

for all x P Hℓ, ℓ � 0, . . . , ℓ0, j � 1, � � � , k and t P r0, T s.(4.20)

Moreover, the mappings x0 ÞÑ Djx0xpt, x0q are almost surely norm continuous.
It follows that PtpCkbpHℓqq � CkbpHℓq for all t P r0, T s and ℓ � 0, . . . , ℓ0 (note
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Chapter 4. Splitting Schemes For Stochastic (Partial) Differential Equations

that we can apply [109, Proposition 4.8c)] instead of [29, Proposition 7.4.1] to
obtain this sharper result). Furthermore, for f P CkbpHℓq, the Cauchy-Schwarz
inequality yields that for x0, x1 P Hℓ such that ∥x1∥Hℓ ¤ 1,

|DPt f px0qpx1q| ¤ Er∥Dxpt, x0q∥LpHℓ;Hℓq∥Df pxpt, x0qq∥LpHℓ;Rqs
¤ |f |ψn�1ℓ ,1Er∥Dxpt, x0q∥LpHℓ;Hℓqψn�1ℓ pxpt, x0qqs
¤ |f |ψn�1ℓ ,1Er∥Dxpt, x0q∥2LpHℓ;Hℓqs1{2Erψn�1ℓ pxpt, x0qq2s1{2

¤ CT |f |ψn�1ℓ ,1ψ
n�1
ℓ pxq,(4.21)

where we apply that ψnℓ pxq2 � ψ2nℓ pxq and that by Assumption 3.15,

(4.22) Erψ2pn�1qℓ pxpt, x0qqs ¤ CTψ
2pn�1q
ℓ px0q.

Thus,

(4.23) ∥Pt f ∥ψpnqℓ ,1
¤ CT ∥f ∥ψpnqℓ ,1

for all f P C1bpHℓ�1q.

A similar argument applies for higher derivatives. Theorem 2.31 now shows

PtpBψ
pnq
ℓ

k ppHℓqw qq � Bψ
pnq
ℓ

k ppHℓqw q. This proves the claim.

Theorem 4.11. Suppose ℓ0 ¥ 4 and k0 ¥ 6. Choose 1 ¤ ℓ ¤ ℓ0 � 4. Then,

Bψ
pnq
ℓ
6 ppHℓqw q �MNV

T . In particular, C6bpHq �MNV
T .

Proof. By Lemma 4.10, ∥Pt f ∥ψpnqℓ ,6
¤ KT ∥f ∥ψpnqℓ ,6

  8 for all t P r0, T s. The

first claim follows by Corollary 3.27 together with iterating Lemma 4.9.
The second claim follows from Theorem 2.31.

The following theorem follows analogously.

Theorem 4.12. Suppose ℓ0 ¥ 3 and k0 ¥ 4. Choose 1 ¤ ℓ ¤ ℓ0 � 3. Then,

Bψ
pnq
ℓ
4 ppHℓqw q �MLT

T . In particular, C4bpHq �MLT
T .

Corollary 4.13. Let f P Bψnℓ0 ppHℓ0qw q. Then, for any t ¡ 0,

(4.24) lim
nÑ8
∥Pt f � pQLTpt{nqqnf ∥ψnℓ0 � limnÑ8

∥Pt f � pQNVpt{nqqnf ∥ψnℓ0 � 0,

that is, the Lie-Trotter and Ninomiya-Victoir splittings converge strongly on the
space Bψ

n
ℓ0 ppHℓ0qw q.
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Proof. This follows from the density of bounded, smooth, cylindrical functions
in Bψ

n
ℓ0 ppHℓ0qw q, see Theorem 2.18.

Example 4.14. Assume that V0 � 0 and that the Vj are constant, j � 1, . . . , d .
This includes, in particular, stochastic heat and wave equations on bounded
domains with additive noise. It is easy to see that if A : domA Ñ X admits a
compact resolvent, we are in the situation described above, and the Ninomiya-
Victoir splitting converges of optimal order.

Example 4.15. Finite-dimensional problems with Lipschitz-continuous coeffi-
cients are also included in this setting. Here, A can be chosen to be zero,
and the embedding is trivially compact due to the local compactness of finite-
dimensional spaces.

4.2 Extrapolation

As noted above, the order that can be attained by splitting schemes is limited
to two in our setting. Therefore, it is interesting to ask whether there is an
alternative approach to constructing methods of higher order. While using ex-
trapolation is well known, Gyöngy and Krylov provide in [43, 44] an approach to
this problem which is well adapted to our setting. We shall consider their ap-
proach from the perspective of strongly continuous semigroups and obtain error
estimates for the extrapolated symmetrically weighted sequential splitting.

To this end, we shall use the following setup.

Assumption 4.16. pV, ∥�∥Vq is a separable Banach space. For j � 0, . . . , d ,
Gj : domGj � V Ñ V are infinitesimal generators of strongly continuous semi-
groups of pseudocontractions P jt :� expptGjq. There exists a sequence of Ba-
nach spaces pVℓ, ∥�∥Vℓq with the following properties:

(i) V0 � V with coinciding norms.

(ii) Vℓ�1 is a dense subset of Vℓ, ℓ ¥ 0.

(iii) V1 � domGj , j � 0, . . . , d , and GjpVℓ�1q � Vℓ, ℓ ¥ 0, j � 0, . . . , d .

(iv) P jt pVℓq � Vℓ and P jt : Vℓ Ñ Vℓ is continuous, ℓ ¥ 0, t ¥ 0, j � 0, . . . , d .

Finally, the operator G̃ :� °d
j�0 Gj , defined on V1, is closable, and its closure

generates a strongly continuous semigroup pPtqt¥0 of pseudocontractions.
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Assumption 4.16 implies that Vℓ is a core of Gj , ℓ ¥ 0, j � 0, . . . , d (see
Proposition A.5(vi)), and V1 is a core for G by assumption. Setting

(4.25)
ÝÑ
Q p∆tq :� P 0∆t � � �P d∆t and

ÐÝ
Q p∆tq :� P d∆t � � �P 0∆t ,

the Chernoff product formula [34, Theorem III.5.2] shows that

(4.26) lim
nÑ8
∥Pt f �ÝÑ

Q
n

pt{nqf ∥V � 0 for all f P V,

the limit being uniform for t P r0, T s, T ¡ 0 arbitrary, and similarly for
ÐÝ
Q p∆tq.

Assume finally that GpVℓ�1q � Bℓ, PtpVℓq � Vℓ and Pt : Vℓ Ñ Vℓ is continuous,
ℓ ¥ 0, t ¥ 0.

Proposition 4.17. Given Assumption 4.16, there exist elements
ÝÑ
f k ,

ÐÝ
f k P V0,

k � 1, . . . , m, such that for every f P V2pm�1q,

ÝÑ
Q
n

pT {nqf � PT f �
m̧

k�1

n�k
ÝÑ
f k � n�m�1ÝÑr m,n, and(4.27)

ÐÝ
Q
n

pT {nqf � PT f �
m̧

k�1

n�k
ÐÝ
f k � n�m�1ÐÝr m,n,(4.28)

where pÝÑr m,nqnPN, pÐÝr m,nqnPN are families of elements of V such that ∥ÝÑr m,n∥V ,
∥ÐÝr m,n∥V ¤ Cm with some constant Cm ¥ 0 independent of n.

Proof. This follows in a straightforward manner from the results in [44, Sec-
tion 5], as the assumptions there are clearly satisfied for generators of strongly
continuous semigroups if the spaces Vℓ are invariant with respect to these semi-
groups.

In [82], it is used that so-called Fujiwara splittings have the advantage that
we not only obtain an asymptotic expansion in n�1, but actually in n�2. This
means that we gain two orders of convergence per extrapolation step, not only
one. We now prove that this holds true for the symmetrically weighted sequential
splitting, as well.

Theorem 4.18. Given Assumption 4.16, we have that

(4.29)
ÝÑ
f 2κ�1 �ÐÝ

f 2κ�1 � 0 for κ � 0, . . . ,
Z
m � 1
2

^
.

72



4.2. Extrapolation

Thus, setting gκ :� 1
2p
ÝÑ
f 2κ �ÐÝ

f 2κq, κ P N, we obtain

(4.30)
1

2

�ÝÑ
Q
n

pT {nqf �ÐÝ
Q
n

pT {nqf
	
� PT f �

tm�1
2

u¸
κ�1

n�2κgκ � n�m�1rm,n,

where rm,n � 1
2pÝÑr m,n �ÐÝr m,nq, and is thus bounded in the norm of V indepen-

dently of n P N.

Proof. Consider the exact representation of
ÝÑ
f k and

ÐÝ
f k resulting from [44,

Theorem 22], that is,

(4.31)
ÝÑ
f k �

¸
pσ,γqPAp2kq

ÝÑc kpσ, γqSσuγ .

Here, for a sequence σ � pβ1, . . . , βjq P I of multinumbers, βi PM, i � 1, . . . , j ,
Sσ � RLβ1 � � �RLβj , where

(4.32) M � tα1 . . . αj : αi P t0, . . . , du, j P Nu
is the set of multinumbers and

(4.33) I � tpβ1, . . . , βjq : βi PM, j P Nu .
For g P W0 :� tf : r0, T s Ñ V0 : f is weakly right continuousu, we denote the
solution operator of the integral equation

(4.34) uptq �
» t
0

Gupsqds �
» t
0

gpsqds for t P r0, T s

by R : W0 Ñ W0, Rg :� u. Gβ is defined recursively by Gαr � �GαGr , vγ � Gγu
with uptq � Pt f , and

(4.35) Apiq � tpσ, γq : σ P I, γ PM, |σ|� |γ| ¤ iu ,
and similarly for

ÐÝ
f k . Note that the coefficients ÝÑc kpσ, γq, ÐÝc kpσ, γq are indepen-

dent of Gr . We see that if we can prove in an algebraic manner that the above
claim holds true, then we obtain it for arbitrary strongly continuous semigroups.

Assume therefore that V is finite-dimensional. Then, P jt is invertible for all
t ¥ 0 and pP jt qtPR is a strongly continuous group if we set P j�t :� pP jt q�1 for
t ¡ 0. Setting

(4.36) Epnq :� 1
2

�ÝÑ
Q
n

pT {nqf �ÐÝ
Q
n

pT {nqf
	
� PT ,
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we see Ep�nq � Epnq for all n P N by noting that

(4.37)
�ÝÑ
Q p�tq

	�1
� ÐÝ
Q ptq,

whence n ÞÑ Epnq is an even function. This entails that all odd terms in the
asymptotic expansion of Epnq have to vanish. Thus, the claim holds true if we
choose the Gj to be arbitrary matrices in a finite-dimensional setting, showing
that the coefficients ÝÑc kpσ, γq and ÐÝc kpσ, γq have to be such that

(4.38)
ÝÑ
f 2κ�1 �ÐÝ

f 2κ�1 � 0 for κ � 1, . . . ,
Z
m � 1
2

^
.

The result follows.

Remark 4.19. The above result is closely connected to the theory of geometric
integrators: in that nomenclature, (4.37) states that

ÐÝ
Q ptq and

ÝÑ
Q ptq are adjoint

to each other, see [46, p. 42]. In this setting, it is well-known that combining a
method with its adjoint increases the order of convergence.

The above results are clearly applicable to the setting of Section 4.1. Con-
sider the approximation

(4.39) Pt � Qt,n :� 1
2

�
pP 0t{n . . . P dt{nqn � pP dt{n . . . P 0t{nqn

	
.

We obtain the following result.

Theorem 4.20. Let pδjqj�1,...,m, δj P N, be pairwise distinct and let pθjqj�1,...,m
be such that

°m
j�1 θj � 1 and

°m
j�1 θjδ

�2κ � 0, κ � 1, . . . , m. Assume further-

more that f P Bψ
pnq
ℓ
8m ppHℓqw q with 0 ¤ ℓ ¤ ℓ0 � 4m � 1. Then,

(4.40) ∥PT f �
m̧

j�1

θjQT,nδj f ∥Bψ
n
ℓ0 ppHℓ0 qw q

¤ Cf n
�2m,

where Cf depends on the choice of the points pδjqj�1,...,m and on f , but not on
n.

Remark 4.21. For the case m � 1, this result is worse than Theorem 4.11, as
we have to assume more smoothness of f . Its importance is however, of course,
its applicability to obtain methods of even higher order through extrapolation.
Nevertheless, we want to remark that the degree of smoothness required in
Proposition 4.17 appears to be suboptimal, and we expect that the conclusion of

Theorem 4.20 holds true for f P Bψ
pnq
ℓ

2p2m�1qppHℓqw q with 0 ¤ ℓ ¤ ℓ0�2p2m�1q�1.
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4.3 Numerical example: the HJM equation of interest
rate theory

We consider the approximation of the Heath-Jarrow-Morton equation of interest
rate theory. For a background on interest rate modelling, see [20, 78, 25, 36].
The state space consists of forward yield curves r : r0,8q Ñ R, the parameter
being time to maturity. In its more natural Itô formulation, the equation reads

drpt, r0q � pArpt, r0q � αHJMprpt, r0qqqdt �
ḑ

j�1

σjprpt, r0qqdBjt ,(4.41)

rp0, r0q � r0.

Here, A � d
dx . Hence, this problem can be interpreted as a stochastically per-

turbed transport equation.
If we want to price financial derivatives by taking expectations, it is nec-

essary to use the risk-neutral measure as underlying probability measure. Un-
der this measure, loosely speaking, traded financial derivatives become (local)
martingales, see [36, Section 4.3]. For our purposes, this means that αHJM
and σj are coupled by the Heath-Jarrow-Morton drift condition, see, e.g., [35,
Lemma 4.3.3], [25, p. 61], [36, Theorem 6.1]. Thus,

(4.42) αHJMprqpxq �
ḑ

j�1

σjprqpxq
» x
0

σjprqpξqdξ.

Recall from Section 3.2.1 the choice of spaces

(4.43) Hℓ :�
 
h P L1locpR�q : h1 P Hℓ�1αℓ

pR�q
(
,

endowed with the norm

(4.44) ∥h∥Hℓ :�
�
|hp0q|2 � ∥h1∥2

Hℓ�1αℓ
pR�q


1{2
.

We remarked there that ApHℓq � Hℓ�1, ℓ � 0, . . . , ℓ0. On every Hℓ, the infinites-
imal generator of the shift semigroup pStqt¥0, St f pxq � f pt � xq, equals A on
the dense set of infinitely often differentiable functions with compact support.

As we want to apply a second order splitting, we fix ℓ0 � 6; for the first order
splitting, the choice ℓ0 � 4 is adequate. Defining ψsℓ and φℓ,j according to (3.12)
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and (3.13), we see that we need to satisfy Assumptions 3.12, 3.13 and 3.15.
Assumption 3.12 is clear by definition. Theorem 3.24 proves Assumption 3.18,
hence Theorem 3.19 yields Assumption 3.15.

It remains to choose vector fields σj , j � 0, . . . , d , in such a way that
Assumption 3.13 is fulfilled. We do this in the following way: for j � 1, . . . , d , let
σjprq � gjprqλj , where λj P Hℓ0 satisfies limxÑ8 λ

pℓq
j pxq � 0 for ℓ � 0, . . . , ℓ0,

and g P ApH�1q. As σj P ApH�1;Hℓ0q, we see that σj P Cφk pHℓ;Hℓq, ℓ �
0, . . . , ℓ0, j � 1, . . . , d . This choice is inspired by the results from [37].

Finally, consider the Stratonovich drift V0prq � αHJMprq�12
°d
j�1Dσjprqσjprq.

As argued above, the Itô drift has to have the form

(4.45) αHJMprqpxq �
ḑ

j�1

σjprqpxq
» x
0

σjprqpξqdξ for x P R� and r P H�1.

In our case, this expression simplifies to

(4.46) αHJMprqpxq �
ḑ

j�1

gjprq2λjpxq
» x
0

λjpξqdξ,

and we see that αHJM P ApH�1;Hℓ0q: we have that

(4.47)
dℓ

dx ℓ

�
λjpxq

» x
0

λjpξqdξ


� λ

pℓq
j pxq

» x
0

λjpξqdξ �
ℓ�1̧

i�0

λ
piq
j λ

pℓ�1�iq
j pxq.

The L2αℓ0 pR�q norm of the first term is bounded due to [35, equation (5.3)].
Estimating the norms of the terms in the sum similarly as on [35, p. 79] using
[35, equations (5.7), (5.8)], it follows that αHJM takes its values in Hℓ0 . Thus,
as gj P ApH�1q, j � 1, . . . , d , the claim follows.

There is one final term in V0, the Stratonovich correction. It equals

(4.48) �1
2

ḑ

j�1

Dσjprqσjprq � �1
2

ḑ

j�1

gjprqDgjprqpλjqλj .

This is again in ApH�1;Hℓ0q. Hence, we obtain that V0 P ApH�1;Hℓ0q, and
Assumption 3.13 is satisfied.

As a concrete choice, let us assume that for j � 1, . . . , d and some mesh
ptiqi�1,...,M of time points,

(4.49) gjprq � γjprpt1q, . . . , rptMqq,
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where γj P C8b pRMq. Such a choice is admissible as point evaluations define
continuous linear functionals on H�1, and has the economic interpretation of
using benchmark forward rates to drive the process [37, p. 135]. Furthermore,
for some N P N,

(4.50) λjpxq :�
Ņ

i�0

αj ix
i expp�βjxq,

where the βj P p0,8q are chosen in such a way that λj P Hℓ0 , and αj i P R.
To determine the parameters of our model, we calibrate to the caplet prices

given in [60, Section 2.6]. Caplets are financial derivatives on rates, paying off
a certain amount if the rate is larger than a fixed strike, providing insurance
against rising rates. More precisely, with the price of a zero coupon bond at
time t with maturity T given by

(4.51) P pt, T q :� exp
�
�
» T
t

rptqpτqdτ


,

we define the LIBOR rate with maturity T for δ ¡ 0 by

(4.52) Lpt, T q :� 1
δ

�
P pt, T q

P pt, T � δq � 1



and the payoff of the caplet on the LIBOR at T , which is settled at T � δ, with
strike K by

(4.53) CT�δpT,Kq :� pLpT, T q �Kq� .

Here, x� :� maxpx, 0q denotes the positive part of x P R. Note that while the
value of CT�δpT,Kq is determined at time T , the cash flow happens only at
T � δ. The LIBOR rate is defined in such a way that

(4.54) 1� δLpt, T q � P pt, T q
P pt, T � δq ,

i.e., discrete time interest over the time interval rT, T � δs with rate Lpt, T q
corresponds to the bond structure. By standard no arbitrage arguments, we
obtain that the fair value of the caplet at time t   T is given by

(4.55) CtpT,Kq � ErB�1
T�δCT�δpT,Kqs,
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where Bt :� exp
�³t
0 rpsqp0qds

	
denotes the money market account, where

money is continuously compounded by the short rate rptqp0q
To fully discretise the stochastic partial differential equation, we approximate

r by a piecewise affine and continuous function. Choosing ∆x � ∆t, we see that
d
dt rpt, r0q � d

dx rpt, r0q is solved exactly by the shift, whence we do not incur
any additional error from the space discretisation. We apply the symmetrically
weighted sequential splitting analysed in Section 4.2. In order to solve the re-
maining deterministic problem, d

dt rpt, r0q � Arpt, r0q � V0prpt, r0qq, we again
perform a splitting into the equations

d

dt
rpt, r0q � d

dx
rpt, r0q,(4.56)

d

dt
rpt, r0q � gjprpt, r0qq2λj

» �

0

λjpξqdξ,(4.57)

d

dt
rpt, r0q � �1

2
gjprpt, r0qqDgjprpt, r0qqpλjqλj .(4.58)

Embedding this in the symmetrically weighted sequential splitting, we see that
we preserve the rate of convergence of 2 also for this scheme.

In the calibration, we set d � 3, i.e., we use a three factor model. The
functions γj are of the form

(4.59) γprq � p°m
i�1 ai rptiqqp1�

°m
i�1 bipriq

1�°m
i�1 ci rptiq2

,

with the parameters ai , bi , ci and ti . We assume that γ1 � γ2, with m � 2, and
γ3 with m � 1. The λj are all chosen independently, with N � 3 each. Hence,
in total, we have 24 parameters. The final error obtained in the calibration after
500 Levenberg-Marquardt steps using the code by Lourakis [69] was 292 basis
points, where the error is measured in the fit to the implied volatility surface
given in [60, Section 2.6]. The fit is shown in Figure 4.3. The calibration time
was 7.5 minutes, in which 1557 evaluations of the entire implied volatility surface
were performed, using 2048 quasi-Monte Carlo paths each.

As an application, we price an at the money payer swaption. A payer swaption
is the right, but not the obligation, to enter a payer swap at a certain future
date T with a certain, a priori determined fixed rate K. A payer swap in turn is
an exchange of a fixed rate versus a floating rate, i.e., at certain pre-determined
points in time, the owner of the payer swap receives the floating rate, and pays
the fixed rate. Hence, a payer swap protects against changing rates. The price
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Figure 4.1: Fit of caplet volatilites

Circles correspond to market prices, crosses to the prices given by the model.
ttm denotes the time to maturity of the time slice, L the current LIBOR rate
for the corresponding period.

of a payer swap with fixed rate K at time 0 is given by

(4.60) PS0 :� 1� P p0, TNq �
Ņ

i�1

δKP p0, Tiq,

by a no arbitrage argument, where Ti � iδ, i.e., we assume equidistant payment
dates. The at the money price of a payer swap is the amount for K such that
PS0 � 0. A no arbitrage argument shows that the time 0 price of a payer
swaption is given by

(4.61) ErB�1
T p1� P pT, TNq �

Ņ

i�1

δKP pT, Tiqq�s,

where now Ti � T � iδ, and x� :� maxpx, 0q again denotes the positive part.
In our numerical example, we let δ � .25 and N � 12. At time 0, the at

the money value of the swap is KATM � 0.0442608. Using this as strike in the
swaption, we obtain the reference value 0.01192380 by solving the problem with
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Figure 4.2: Error, swaption prices

220 quasi-Monte Carlo paths and 120 time steps. The numbers in Figure 4.2
were obtained using 216 quasi-Monte Carlo paths. The rate of convergence is
approximately 1.7. We note that with 12 time steps, we obtain a relative error
of less than 1e � 3, proving the viability of the new method.
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Chapter 5

Cubature Schemes For
Stochastic (Partial) Differential
Equations

In Chapter 4, we saw a way of extending Ninomiya-Victoir-type splitting schemes
to stochastic partial differential equations. However, as noted there, it is not
possible to obtain splitting schemes of orders higher than 2 for generic equations.
On the other hand, cubature formulas are available of high degree, see [45] for
paths resulting in rates of convergence up to 5 for single factor problems. This
means that a proof of rates of convergence for cubature methods would allow us
to obtain high order methods for the numerical simulation of stochastic partial
differential equations without having to resort to extrapolation.

Similarly as for splitting methods, we need to obtain results ensuring that

(i) the approximation operators pQptqqt¥0 defined by the cubature method are
power bounded in an appropriate weighted ψ-norm, and that

(ii) a local error estimate of the correct order holds true.

Together, this will yield convergence of high order for sufficiently smooth func-
tions, similarly as in Theorem 4.11.

In this chapter, we will mainly focus on the proof of stability of cubature
schemes with respect to weighted norms. In Section 5.1, we show that cubature
is always stable in finite dimensions. In infinite dimensions, we first consider
stochastic ordinary differential equations where the vector fields have a nons-
mooth time dependence. Afterwards, the method of the moving frame yields
stability for cubature approximations of Da Prato-Zabczyk equations where the
generator is pseudo-contractive. In every case, convergence is easily obtained
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by an application of the local expansions obtained in Section 3.2.2, and in Sec-
tion 5.2, we formulate corresponding results. Finally, in Section 5.2.3, we show
that in finite dimensions, we have smoothing effects in Bψ spaces under the UFG
condition, allowing us to obtain optimal estimates of the rate of convergence
for nonsmooth payoffs.

5.1 Stability of cubature schemes

We prove stability of cubature on Wiener space in the setting of weighted spaces.
See Section 1.1.2 for the definition of cubature paths.

5.1.1 Finite dimensional state space

Given a Stratonovich SDE on RN ,

(5.1) dxpt, x0q �
ḑ

j�0

Vjpxpt, x0qq � dBjt , xp0, x0q � x0,

with vector fields Vj : RN Ñ RN , the cubature discretisation of the Markov
semigroup Pt f px0q :� Erf pxpt, x0qqs reads

(5.2) Qp∆tqf px0q :�
Ņ

i�1

λi f pxp∆t, x0;ωp∆tqi qq,

where xps, x0;ωp∆tqi q is the solution of the problem

dxps, x0;ωp∆tqi q �
ḑ

j�0

Vjpxps, x0;ωp∆tqi qqdωp∆tq,ji psq,(5.3a)

xp0, x0;ωp∆tqi q � x0.(5.3b)

Theorem 5.1. Let the cubature formula pωp∆tqi , λiqMi�1 be of order m ¥ 1.
Suppose that ψ : RN Ñ R is an admissible weight function, and assume that

(5.4) |ViVjψpxq|� |Viψpxq| ¤ Cψpxq for i � 0, � � � , d and j � 1, � � � , d,
where we require that all the necessary derivatives are well-defined.

Then, there exists a constant C ¡ 0 independent of ∆t ¡ 0 such that

(5.5) Qp∆tqψpx0q ¤ exppC∆tqψpx0q for all x0 P RN .
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Proof. We define the intermediate operator

(5.6) Qp∆t,sqf px0q :�
Ņ

i�1

λi f pxps, x0;ωp∆tqi qq for s P r0, ts

and note that Qp∆tq � Qp∆t,∆tq. We see that

ψpxps, x0;ωp∆tqi qq � ψpx0q �
ḑ

j�0

» s
0

Vjψpxpr, x0;ωp∆tqi qqdωp∆tq,ji prq

� ψpx0q �
» s
0

V0ψpxpr, x0;ωp∆tqi qqdr �
ḑ

j�1

Vjψpx0qωp∆tq,ji psq

�
ḑ

j�1

ḑ

k�0

» s
0

» r
0

VkVjψpxpq, x0;ωp∆tqi qqdωp∆tq,ki pqqdωp∆tq,ji prq.(5.7)

Note that » s
0

V0ψpxpr, x0;ωp∆tqi qqdr ¤ C

» s
0

ψpxpr, x0;ωp∆tqi qqdr.(5.8)

Furthermore, as |ωp∆tq,ji psq| ¤ Cp∆tq1{2 and | BBsω
p∆tq,j
i psq| ¤ Cp∆tq�1{2, Fubini’s

theorem yields» s
0

» r
0

VkVjψpxpq, x0;ωp∆tqi qqdωp∆tq,ki pqqdωp∆tq,ji prq

¤ C

» s
0

|ωp∆tq,ji psq � ωp∆tq,ji pqq|ψpxpq, x0;ωp∆tqi qq
∣∣∣∣ BBqωp∆tq,ji pqq

∣∣∣∣ dq
¤ C

» s
0

ψpxpq, x0;ωp∆tqi qqdq.(5.9)

Thus, we see that

Qp∆t,sqψpx0q �
Ņ

i�1

λiψpxps, x0;ωp∆tqi qq

¤ ψpx0q �
ḑ

j�1

Vjψpx0q
Ņ

i�1

λiω
p∆tq,j
i psq � C

» s
0

Qp∆t,rqψpx0qdr.(5.10)
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Defining α∆t,spxq :�
°d
j�1 Vjψpxq

°N
i�1 λiω

p∆tq,j
i psq, Gronwall’s inequality yields

that

Qp∆t,sqψpx0q ¤ ψpx0q � α∆t,spx0q

�
» s
0

pψpx0q � α∆t,r px0qqC exppCps � rqqdr.(5.11)

Note that α∆t,∆tpxq � 0 by the equality
°N
i�1 λiω

p∆tq,j
i p∆tq � 0. Furthermore,

(5.12) α∆t,spxq ¤ C
?
∆tψpxq ¤ C

2
p1� ∆tqψpxq ¤ C

2
expp∆tqψpxq.

This proves

Qp∆tqψpx0q � Qp∆t,∆tqψpx0q ¤ ψpx0q
�
1� C

2
expp∆tqpexppC∆tq � 1q



¤ exppC̃∆tqψpx0q,(5.13)

where C̃ � maxpC2{2, C � 1q, that is, the required estimate.

5.1.2 Time-dependent stochastic ordinary differential equations
on Hilbert space

Let H be a Hilbert space, and consider the nonautonomous stochastic ordinary
differential equation

(5.14) dxpt, x0q �
ḑ

j�0

Vjpt, xpt, x0qq � dBjt , xp0, x0q � x,

on H. The cubature approximations of (5.14) read

dxps, x0; t, ωp∆tqi q �
ḑ

j�0

Vjpt � s, xps, x0; t, ωp∆tqi qqdωp∆tq,ji psq,(5.15a)

xp0, x0; t, ωp∆tqi q � x0,(5.15b)

The approximation operator is given by

(5.16) Qtp∆tqf px0q :�
Ņ

i�1

λi f pxp∆t, x0; t, ωp∆tqi qq.
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Definition 5.2. A cubature formula pωp∆tqi , λiqi�1,...,N is called symmetric if for
every i P t1, . . . , Nu, there exists some i 1 P t1, . . . , Nu such that λi � λi 1 and

ω
p∆tq,j
i psq � �ωp∆tq,ji 1 psq for all s P r0,∆ts and j � 1, . . . , d.(5.17)

It is called weakly symmetric if for j � 1, . . . , d ,

(5.18)
Ņ

i�1

λiω
p∆tq,j
i psq � 0 for s P r0,∆ts.

Remark 5.3. Clearly, all symmetric cubature formulas are also weakly symmetric.
Note that many known cubature formulas are actually symmetric. Moreover, a
non-symmetric cubature formula can be made symmetric by adding the negatives
of the paths with the same weights to it and finally halving all the weights. This
will at most double the number of paths. Thus, if we use a cubature formula
with a small number of paths in high dimensions, we can also find a symmetric
cubature formula with this property.

Theorem 5.4. Suppose that the cubature formula used in the definition of Qtp∆tq
is weakly symmetric. Let ψ be an admissible weight function on H and suppose

∥Dψpxq∥ ¤ Cp1� ∥x∥2q�1{2ψpxq and(5.19)

∥D2ψpxq∥ ¤ Cp1� ∥x∥2q�1ψpxq(5.20)

with some constant C ¡ 0, Furthermore, assume that for some constant C ¡ 0
independent of t,

(5.21) ∥Vjpt, xq∥ ¤ Cp1� ∥x∥2q1{2 for j � 0, . . . , d , x P X and t P r0, T s,

and that x ÞÑ Vjp∆t, xq is continuously differentiable with derivative bounded
uniformly in t P r0, T s for j � 1, . . . , d .

Then, there exists a constant C ¡ 0 such that for all t P r0, T s and ∆t P
r0, T � ts,

(5.22) Qtp∆tqψpx0q ¤ exppCtqψpx0q for all x0 P H.

Proof. Define the intermediate approximation for s P r0,∆ts by

(5.23) Qtp∆t,sqf px0q :�
Ņ

i�1

λi f pxps, x0; t, ωp∆tqi qq.
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As above, we note that Qtp∆t,∆tq � Qtp∆tq. For 0 ¤ s ¤ ∆t,

ψpxps, x0; t, ωp∆tqi qq � ψpx0q�
ḑ

j�0

» s
0

Dψpxpr, x0; t, ωp∆tqi qqVjpt � r, xpr, x0; t, ωp∆tqi qqdωp∆tq,ji prq.(5.24)

Consider gjpr, xq :� DψpxqVjpt � r, xq. Then,

gjpρ, xpr, x0; t, ωp∆tqi qq �gjpρ, x0q �
ḑ

k�0

» r
0

Dxgjpρ, xpq, x0; t, ωp∆tqi qq�

� Vkpt � q, xpq, x0; t, ωp∆tqi qqdωp∆tq,ki pqq.(5.25)

From (5.19), (5.20) and (5.21), we obtain that for 0 ¤ s ¤ ∆t ¤ T ,

|g0pr, xq| � |DψpxqV0pt � r, xq| ¤ C∥Dψpxq∥ � ∥V0pt � r, xq∥
¤ Cψpxq.(5.26)

We argue in a similar manner for Dxgjpr, xqVkpt � q, xq, j � 1, . . . , d , k �
0, . . . , d , to obtain that for 0 ¤ q ¤ r ¤ ∆t,

|Dxgjpr, xqVkpt � q, xq| � |D2ψpxqpVjpt � r, xq, Vkpt � q, xqq
�DψpxqDxVjpt � r, xqVkpt � q, xq|

¤ Cψpxq.(5.27)

By an application of Fubini’s theorem, similarly as in the proof of Theorem 5.1,

ψpxps, x0; t, ωp∆tqi qq � ψpx0q �
» s
0

g0pr, xpr, x0; t, ωp∆tqi qqdr

�
ḑ

j�1

» s
0

gjpr, x0qdωp∆tq,ji prq

�
ḑ

j�1

ḑ

k�0

» s
0

» r
0

Dxgjpr, xpq, x0; t, ωp∆tqi qq�

� Vkpt � q, xpq, x0; t, ωp∆tqi qqdωp∆tq,ki pqqdωp∆tq,ji prq

¤ ψpx0q � C
» s
0

ψpxpr, x0; t, ωp∆tqi qqdr

�
ḑ

j�1

» s
0

gjpr, x0qdωp∆tq,ji prq,(5.28)
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where we apply that ∆t ¤ T . As from the weak symmetry of the cubature
paths,

Ņ

i�1

λi

ḑ

j�1

» s
0

gjpr, xqdωp∆tq,ji prq �
ḑ

j�1

» s
0

gjpr, xqd
� Ņ

i�1

λiω
p∆tq,j
i prq



� 0,(5.29)

we obtain

(5.30) Qp∆t,sqψpx0q ¤ ψpx0q � C
» s
0

Qp∆t,rqψpx0qdr.

An application of Gronwall’s lemma yields Qp∆tqψpx0q ¤ exppC∆tqψpx0q, which
proves the result.

Remark 5.5. It is clear that the given assumptions on the vector fields and the
weight function are not the only ones possible. Instead, we could also require
the vector fields to be bounded uniformly in t P r0, T s, and allow the weight
function to satisfy ∥Dψpxq∥ � ∥D2ψpxq∥ ¤ Cψpxq. While the situation of
Theorem 5.4 corresponds to polynomially growing weight functions and linearly
bounded vector fields, this variant corresponds to exponentially growing weight
functions and bounded vector fields, cf. Corollaries 2.45 and 2.43.

Such an approach might be more appropriate when dealing with exponentials
of stochastic processes such as Lévy processes. These are ubiquitous in applica-
tions in mathematical finance as they ensure nonnegativity of the price process
in a simple manner.

5.1.3 Da Prato-Zabczyk equations

Suppose now that

(5.31) dxpt, x0q � Axpt, x0qdt �
ḑ

j�0

Vjpxpt, x0qq � dBjt , xp0, x0q � x0,

is a stochastic partial differential equation of Da Prato-Zabczyk type on some
Hilbert space H. Refer to Section B.3 for an overview of the theory of such
equations. Here, solutions are understood in the mild sense,

(5.32) xpt, x0q � expptAqx �
ḑ

j�0

» t
0

expppt � sqAqVjpxpt, x0qq � dBjs ,
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and we also define the cubature discretisations in the mild sense,

xpt, x0qpωp∆tqi q � expptAqx

�
ḑ

j�0

» t
0

expppt � sqAqVjpxpt, x0qpωp∆tqi qqdωp∆tq,ji psq.(5.33)

Again, the approximation of the Markov semigroup Pt f px0q :� Erf pxpt, x0qqs is
given by

(5.34) Qp∆tqf px0q :�
Ņ

i�1

λi f pxpt, x0;ωp∆tqi qq.

Theorem 5.6. Suppose that A is the generator of a group St � expptAq, t P R,
and that the cubature formula used in the definition ofQp∆tq is weakly symmetric.
Let ψ be an admissible weight function on H. With some constant C ¡ 0, let
ψpStxq ¤ exppCtqψpxq for all x P H and t ¡ 0, and

∥Dψpxq∥ ¤ Cp1� ∥x∥2q�1{2ψpxq and(5.35a)

∥D2ψpxq∥ ¤ Cp1� ∥x∥2q�1ψpxq.(5.35b)

Furthermore, assume that

(5.36) ∥Vjpxq∥ ¤ Cp1� ∥x∥2q1{2 for j � 0, . . . , d,
and that Vj is continuously differentiable with bounded derivative for j � 1, . . . , d .

Then, for any T ¡ 0, there exists a constant C ¡ 0 such that for every
∆t P r0, T s,
(5.37) Qp∆tqψpx0q ¤ exppC∆tqψpx0q for all x0 P H.
Proof. We apply the method of the moving frame from [106]. This yields that
xpt, x0q � Stypt, x0q, where pypt, y0qqt¥0 satisfies the Hilbert space ordinary
stochastic differential equation

(5.38) dypt, y0q �
ḑ

j�0

Ṽjpt, ypt, y0qq � dBjt , yp0, y0q � y0,

with Ṽjpt, yq � S�tVjpStyq. Thus, rewriting the cubature discretisations of
pxpt, x0qqt¥0 using pypt, x0qqt¥0,

(5.39) dyps, x0;ωp∆tqi q �
ḑ

j�0

Ṽjps, yps, x0;ωp∆tqi qqdωp∆tq,ji psq,

88



5.1. Stability of cubature schemes

we see that, if we define

(5.40) Q̃p∆tqf py0q :�
Ņ

i�1

λi f pyp∆t, y0;ωp∆tqi qq

for f : H Ñ R, then Qp∆tqhpx0q � Q̃p∆tqgpx0q, where gpyq :� hpS∆tyq. In
particular,

(5.41) Qp∆tqψpx0q � Q̃p∆tqpψ � S∆tqpx0q ¤ exppC∆tqQ̃p∆tqψpx0q,

where we apply the assumptions on ψ and the positivity of Q̃p∆tq.
Hence, we are in the situation of Theorem 5.4: the estimates for ψ are clear

by assumption, and for Ṽjps, yq, we note that, as s P r0, T s,
(5.42) ∥Ṽjps, yq∥ � ∥S�sVjpSsyq∥ ¤ Cp1� ∥x∥2q1{2 for j � 0, . . . , d
and

(5.43) ∥Dy Ṽjps, yq∥ � ∥S�sDyVjpSsyqSs∥ ¤ C for j � 1, . . . , d.
An appeal to Theorem 5.4 yields

(5.44) Q̃p∆tqψpx0q ¤ exppC∆tqψpx0q,
and the result follows.

The Szőkefalvi-Nagy theorem allows us to obtain a corresponding result for
pseudocontractive semigroups.

Corollary 5.7. Suppose that A is the generator of a semigroup of pseudocon-
tractions St � expptAq, t ¥ 0. Let ψpxq � ρp∥x∥2q with some increasing and
left continuous function ρ : r0,8q Ñ p0,8q with limξÑ8 ρpξq � �8 (see also
Example 2.16) that satisfies ρpCuq ¤ Cρpuq for all u ¥ 0 and C ¡ 0, is twice
differentiable and satisfies

(5.45) ρ1puq ¤ Cp1� uq�1ρpuq and ρ2puq ¤ Cp1� uq�2ρpuq.
Furthermore, assume that ∥Vjpxq∥ ¤ Cp1� ∥x∥2q1{2 for j � 0, . . . , d , and that
Vj is continuously differentiable with bounded derivative for j � 1, . . . , d .

Then, for any T ¡ 0, there exists a constant C ¡ 0 such that for every
∆t P r0, T s, the operator Qp∆tq satisfies

(5.46) Qp∆tqψpx0q ¤ exppC∆tqψpx0q for all x0 P H.
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Proof. Assume without loss of generality that pStqt¥0 is a semigroup of con-
tractions (otherwise, add any growth of pStqt¥0 to V0). By the Szőkefalvi-Nagy
theorem [93, p. 452, Théorème IV], we see that we can find a Hilbert space
pH, ∥�∥Hq containing H as a closed subspace and a strongly continuous group
pStqtPR of unitary mappings such that St � πSt , where π : H Ñ H is the
orthogonal projection.

Defining ψHpyq :� ρp∥y∥2Hq and V Hj pyq :� Vjpπyq, it is easy to see that
the assumptions of Theorem 5.6 are satisfied. The results of [106] prove that
xpt, x0q � πxHpt, x0q, where

(5.47) xHpt, x0q � Stx0 �
ḑ

j�0

» t
0

St�sV Hj pxHpt, x0qq � dBjt ,

and similarly for the cubature approximations. Setting

(5.48) QHp∆tqf px0q :�
Ņ

i�1

λi f pxHp∆t, x0;ωp∆tqi qq,

Theorem 5.6 yields that QHp∆tqψHpyq ¤ exppC∆tqψHpyq, and from ψHpxq �
ψpxq for x P H we obtain that for x P H,

Qp∆tqψpx0q �
Ņ

i�1

λiρp∥πxHp∆t, x0;ωp∆tqi q∥2q ¤
Ņ

i�1

λiρp∥xHp∆t, x0;ωp∆tqi q∥2Hq

� QHp∆tqψHpx0q ¤ exppC∆tqψHpx0q � exppC∆tqψpx0q.(5.49)

The result is thus proved.

5.2 Convergence estimates of cubature schemes

We are now ready to prove rates of convergence for cubature on Wiener space
on weighted spaces. We shall only prove these results in the infinite-dimensional
setting; corresponding results in finite dimensions are obtained in a similar man-
ner. Consider therefore the setting of Section 3.2, i.e., let Assumptions 3.12,
3.13 and 3.15 be satisfied.

5.2.1 Taylor expansion of cubature approximations

We prove a local expansion of cubature approximations in weighted spaces. For
the definition of the terms used, see also Sections 1.1.1 and 1.1.2. This can

90



5.2. Convergence estimates of cubature schemes

be seen as generalising related results in [6, proof of Theorem 4.4] to weighted
spaces.

Theorem 5.8. Assume that the cubature formula pωp∆tqi , λiqi�1,...,N is of odd

order m � 2k�1. For f P Bψ
pnq
ℓ�pk�1q

2pk�1q ppHℓ�pk�1qqw q, k�1 ¤ ℓ ¤ ℓ0, s ¥ 2pk�2q,

(5.50) Qp∆tqf �
ķ

j�0

p∆tqj
j!
G j f � p∆tqk�1R̂∆t,k f ,

where the linear operator R̂∆t,k : B
ψ
pnq
ℓ�pk�1q

2pk�1q ppHℓ�pk�1qqw q Ñ Bψnℓ ppHℓqw q satisfies

(5.51) ∥R̂∆t,k f ∥ψnℓ ¤ CT ∥f ∥ψpnq
ℓ�pk�1q

,2pk�1q
for ∆t P r0, T s

for a constant CT ¡ 0 independent of f .

Proof. Under the assumptions on the vector fields, we have for every f P
ApHℓ�pk�1qq the Taylor expansion

f pxp∆t, x0;pωp∆tqi qq(5.52)

�
¸

pi1,...,ik qPAm

Vi1 . . . Vik f px0qIpi1,...,ik q∆t pωp∆tqi q � R̂i∆t,k f px0q,

where we define the iterated integrals by

I
pi1,...,ik q
∆t pωp∆tqi , gq(5.53)

:�
»
0 t1 ��� tk ∆t

gpxpt1, x0;ωp∆tqi qqdωptq,i1i pt1q . . . dωptq,iki ptkq,

I
pi1,...,ik q
∆t pωp∆tqi q :� I

pi1,...,ik q
∆t pωp∆tqi , 1q, the remainder term R̂i∆t,k f satisfies

(5.54) R̂i∆t,k f pxq �
¸

pi1,...,ik qPAm
pi0,i1,...,ik qRAm

I
pi0,...,ik q
∆t pωp∆tqi , fpi0,...,ik qq,

and we set β0pxq :� Ax � V0pxq, βjpxq :� Vjpxq, j � 1, . . . , d , and fpi0,...,ik q :�
βi0 . . . βik f , pi0, . . . , ikq P t0, . . . , duk�1. Summing up, the scaling of the cu-
bature paths proves that the remainder term is as claimed. To see that the
initial terms have the given form, we use the order 2k � 1 of the cubature and
the explicit formula of G from Theorem 3.25. A density argument proves the
result.
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5.2.2 The rate of convergence

Corollary 5.9. For f P Bψ
pnq
ℓ�pk�1q

2pk�1q ppHℓ�pk�1qqw q, k � 1 ¤ ℓ ¤ ℓ0, n ¡ 2pk � 1q,
2pk � 1q ¤ k0,

(5.55) ∥PT f �QnpT {nqf ∥ψnℓ ¤ CT n
�k∥f ∥

ψ
pnq
ℓ�pk�1q

,2pk�1q

with a constant CT independent of f .

Proof. The local estimate follows from a combination of Corollary 3.28 and
Theorem 5.8. The stability of QpT {nq from Corollary 5.7 and Lemma 4.10 prove
the claim.

5.2.3 Smoothing effects under the UFG condition

Under the UFG condition, it is proved in [65, 70] that even for nonsmooth payoffs
f , we can obtain the optimal rate of convergence by using non-equidistant grids
due to the smoothing effects of Pt f in the direction of the vector fields Vj . The
aim of this section is to show how a corresponding result can also be obtained
even for growing payoffs. In particular, we will focus on exponentially growing
payoffs through the choice of the weight function coshpα|x |q. This has important
applications in mathematical finance, where one frequently models the log price
as the solution of a stochastic differential equation, and thus, all payoffs will be
a function of the exponential of the stochastic process. Other weight functions
are equally possible.

Consider the finite dimensional situation, H � RN for some N P N, and
A � 0. Suppose that all vector fields Vj : RN Ñ RN are bounded and C8-
bounded. We choose the D-admissible weight function ψpxq :� coshpα|x |q for
some α ¡ 0. Here, |�| denotes the Euclidean norm on RN .

Proposition 5.10. For any α ¡ 0, there exists C ¡ 0 such that

(5.56) Ercoshpα|xpt, x0q|qs ¤ exppCtq coshpα|x |q.

Proof. For any k P N,

(5.57) Dk coshpα|x |qph1, . . . , hkq ¤ Ck coshpα|x |q
k¹
j�1

|hj |.
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With G the generator of Pt , we thus obtain from the boundedness of the vector
fields that G coshpα|x |q ¤ C coshpα|x |q. It follows that

Ercoshpα|xpt, x0q|qs � coshpα|x0|q �
» t
0

ErG coshpα|xps, x0|qsds

¤ coshpα|x0|q �
» t
0

CErcoshpα|xps, x0q|qsds.(5.58)

The Gronwall inequality proves the claim.

Corollary 5.11. For any p P r1,8q and T ¡ 0, there exists CT ¡ 0 such that

(5.59) Ercoshpα|xpt, x0q|qps1{p ¤ CT coshpα|x0|q for all t P r0, T s.

Proof. We only need to note that for any p P r1,8q, there exists some constant
C ¡ 0 with C�1 coshppuq ¤ coshpuqp ¤ C coshppuq for all u P r0,8q, and apply
Proposition 5.10.

We formulate now the ellipticity assumptions that are necessary to obtain
smoothing effects. We follow [26].

The UFG condition. There exists ℓ P N such that for every α P A�, there exist
φα,β P C8b pRNq, β P A�ℓ , such that

(5.60) Vrαs �
¸
βPA�ℓ

φα,βVrβs.

The V0 condition. For some φβ P C8b pRNq, β P A�2,

(5.61) V0 �
¸
βPA�2

φβVrβs.

Theorem 5.12. Assume that the UFG and V0 conditions are satisfied. Then,
for any f P C8b pRNq, any k,m ¥ 0 and any i1, . . . , ik�m � 0, 1, . . . , d ,

(5.62) ∥Vi1 . . . VikPtVik�1 . . . Vik�m f ∥ψ ¤ Ct� degpi1,...,ik�mq{2∥f ∥ψ.

Proof. We apply [63, Corollary 2.17] to obtain that for each x0 P RN , there
exists a real-valued random variable πx0t , depending on k and i1, . . . , ik�m, with

(5.63) Vi1 . . . VikPtVik�1 . . . Vik�m f px0q � Erf pxpt, x0qqπx0t s.
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Furthermore, for each p P r1,8q, there exists a constant C ¡ 0 independent of
t with

(5.64) sup
x0PRN

Er|πx0t |ps ¤ Ct� degpi1,...,ik�mq{2.

It follows that for p, q P p1,8q with 1p � 1
q � 1,

∥Vi1 . . . VikPtVik�1 . . . Vik�m f ∥ψ ¤ sup
x0PRN

ψpx0q�1Er|f pxpt, x0qq| � |πx0t |s

¤ ∥f ∥ψ sup
x0PRN

ψpx0q�1�

� Erψpxpt, x0qqps1{p � Er|πx0t |qs1{q
¤ Ct� degpi1,...,ik�mq{2∥f ∥ψ,(5.65)

where we apply Corollary 5.11.

Corollary 5.13. Assume that the UFG and V0 conditions are satisfied. Then,
for any mesh 0 � t0   � � �   tn � T and f P C8b pRNq,

∥PT f�Qt1�t0 . . . Qtn�tn�1f ∥ψ(5.66)

¤ C|f |ψ,1
�
ptn � tn�1q1{2 �

n�1̧

i�1

pti � ti�1qpm�1q{2
pT � tiqm{2

	
.

Here, we use the vector of weight functions pψ,ψq.

Proof. We proceed as in the proofs of [70, Proposition 3.6], [26, Lemma 3.5].
First, note that

∥P∆t f � f ∥ψ ¤ sup
x0PRN

ψpx0q�1Er|f pxp∆t, x0qq � f px0q|s

¤ sup
x0PRN

ψpx0q�1�

Er sup
sPr0,1s

|∇f psxp∆t, x0q � p1� sqx0q| � |xp∆t, x0q � x0|s

¤ |f |ψ,1 sup
x0PRN

ψpx0q�1Er sup
sPr0,1s

ψpsxp∆t, x0q � p1� sqx0q2s1{2�

� Er|xp∆t, x0q � x0|2s1{2.(5.67)
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As |sxp∆t, x0q � p1� sqx0| ¤ maxp|xp∆t, x0q|, |x0|q for all s P r0, 1s and cosh is
monotonic on r0,8q, we see that Corollary 5.11 yields

(5.68) |P∆t f � f |ψ ¤ Cp∆tq1{2|f |ψ,1.

By Theorem 5.12, we obtain

∥pP∆t �Q∆tqPT�t f ∥ψ ¤ p∆tqpm�1q{2
¸

pi1,...,ik qPAm
pi0,i1,...,ik qRAm

∥Vi0Vi1 . . . VikPT�t f ∥ψ

¤ Cp∆tqpm�1q{2pT � tq�m{2|f |ψ,1.(5.69)

Summing up in the usual manner, the claim follows.

Corollary 5.14. Under the UFG and V0 assumptions, the cubature method
converges of optimal order for f P Bψ1 pRNq on graded meshes such as the ones
suggested in [70, Example 3.7].

Proof. This follows directly from Corollary 5.13 together with the density of
C8b pRNq in BψpRNq.
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Chapter 6

Splitting And Cubature For The
Stochastic Navier-Stokes
Equations

The issue of turbulence in fluid flows is an essentially unsolved problem. From
the perspective of numerical analysis, its main difficulty is that a direct numerical
simulation (DNS), resolving all relevant temporal and spatial scales, is unavailable
for many practically relevant geometries. Hence, we can only use results from
underresolved simulations, which are often useless due to their severely reduced
accuracy.

This has led to models dealing with the closure problem, see, e.g., [88, 14].
These models deal with underresolution by introducing an approximation of the
effects taking place on scales smaller than those that are resolved.

We are concerned with a different approach to turbulence modelling. In
the last years, the introduction of noise into the equations of fluid dynamics has
become the focus of research (see, e.g., [11, 61, 28, 76, 1]). In particular, Hairer
and Mattingly proved in [47, 48] that the stochastic Navier-Stokes equations on
the two-dimensional torus with finite-dimensional, additive noise have ergodic
dynamics, and estimated the rate of convergence to the invariant measure.

We consider the problem of weak approximation of the solution of the
stochastic Navier-Stokes equations. In contrast to [51], we propose a simulation
scheme, based either on splitting or cubature approximations. The advantage
of such an approach is that it is trivial to parallelise, as every path can be simu-
lated independently. In the case of splitting schemes, we can furthermore reuse
well-tested, robust and fast solvers for the deterministic Navier-Stokes or Eu-
ler equations to obtain solvers for the stochastic Navier-Stokes equations with
minimal effort.

To derive rates of convergence, we employ the theory of Chapters 2 and
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3. While we are unable to prove rates of convergence on the continuous level,
a discretisation by a spectral Galerkin scheme allows us to obtain an optimal
convergence estimate in time.

This chapter is organised as follows. In Section 6.1, we recall the definition
of the stochastic Navier-Stokes equations in the setting of Hairer and Mattingly
and consider them from the perspective of the results of Chapter 2. Our analysis
profits greatly from the fundamental results shown by Hairer and Mattingly in
[73, 47, 48]. Section 6.2 is devoted to the derivation of estimates for the error
done by a spectral Galerkin approximation. Section 6.3 presents the main results
of this paper, estimates for full discretisations of the stochastic Navier-Stokes
equations by splitting and cubature schemes. In Section 6.4, we present the
results of numerical calculations for a model problem with ergodic dynamics,
and in Section 6.5, we sum up our results.

6.1 The stochastic Navier-Stokes equations and
weighted spaces

Consider, as in [47, 48], the vorticity formulation of the stochastic Navier-Stokes
equations on the two-dimensional torus T2,

dwpt, w0q � ν∆wpt, w0qdt � BpKwpt, w0q, wpt, w0qqdt �
ḑ

j�1

qj fkjdW
j
t ,(6.1)

wp0, w0q � w0.

The state space is L2, the space of mean zero square integrable functions,
with norm ∥�∥ and scalar product x�, �y. Furthermore, ∆ is the Laplacian, K
the inverse of the rotation ∇ ^ u � B2u1 � B1u2 in the space of divergence
free vector fields, ∇ ^ pKwq � w and ∇ � Kw � 0, Bpu, wq � �pu �∇qw the
Navier-Stokes nonlinearity, and pW j

t qj�1,��� ,d a d-dimensional Brownian motion.
The qj are nonvanishing real numbers, qj P Rz t0u, and fk are the orthonormal
eigenfunctions of ∆ on T2,

(6.2) fkpxq �
#
p2π2q�1{2 sinpk � xq, k P Z2�,
p2π2q�1{2 cospk � xq, else,

where

(6.3) Z2� :�
 
k � pk1, k2q P Z2 : either k2 ¡ 0, or k2 � 0 and k1 ¡ 0

(
.
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Solvability of this equation is settled in [73].
We also define the Sobolev spaces of divergence-free, mean zero functions

Hs , s P R, with norm ∥
°
kPZ2 wk fk∥s :�

b°
kPZ2pk21 � k22 qs |wk |2, which is non-

degenerate due to the mean zero condition (the term for k � p0, 0q vanishes).
We note, in particular, that

(6.4) �x∆w,wy � ∥w∥21.

Similarly as in [48, Section 5.3], we introduce the weight function ψηpwq :�
exppη∥w∥2q with some η ¡ 0 and consider the weighted space BψηpL2w q.

Proposition 6.1. The Markov semigroup pPtqt¥0 defined through Pt f pw0q :�
Erf pwpt, w0qqs is strongly continuous on BψηpL2w q for η ¡ 0 small enough.

Proof. This follows from Theorem 3.10 and [48, Theorem A.3]. A very similar
result is proved in [48, Theorem 5.10].

Contrary to the approach used in [80, 105], we are not able to split this
problem into a part corresponding fully to the drift and another for the diffusion:
the process ypt, w0qt :� w0 �

°d
j�1 qjW

j
t fkj corresponding to the diffusion does

not satisfy Erψηpypt, w0qqs ¤ Kψηpw0q with K ¡ 0 constant for t small enough,
which means that we cannot use standard Ninomiya-Victoir splittings.

Thus, we split up the equation differently. For a given ε P p0, 1q, we introduce
the deterministic vorticity equation,

d

dt
w1pt, w0q � p1� εqν∆w1pt, w0q � BpKw1pt, w0q, w1pt, w0qq,(6.5)

w1p0, w0q � w0,

and a stochastic heat equation defining an Ornstein-Uhlenbeck process on L2,

(6.6) dw2pt, w0q � εν∆w2pt, w0qdt �
ḑ

j�1

qj fkjdW
j
t , w2p0, w0q � w0.

Define by P 1t f pw0q :� Erf pw1pt, w0qqs and P 2t f pw0q :� Erf pw2pt, w0qqs the
Markov semigroups corresponding to w1 and w2.

Lemma 6.2. For η ¡ 0, pP 1t qt¥0 defines a strongly continuous semigroup on
BψηpL2w q with ∥P 1t ∥LpBψη pL2w qq ¤ 1.
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Proof. The strong continuity is obtained using Theorem 3.10. The necessary
bounds are proved by applying [48, Theorem A.3]; see also [48, Theorem 5.10].

The deterministic vorticity equations have L2-contractive dynamics, as

∥w1pt, w0q∥2 � ∥w0∥2

�
» t
0

xεν∆w1ps, w0q � BpKw1ps, w0q, w1ps, w0qq, w1ps, w0qyds

¤ ∥w0∥2,(6.7)

which yields the norm bound. The proof is thus complete.

The cumbersome proof of the following proposition is postponed to Sec-
tion 6.6.

Proposition 6.3. If η ¡ 0 is small enough, there exists ω ¡ 0 such that the
process t ÞÑ expp�ωtqψηpw2pt, w0qq is a positive supermartingale, i.e.

(6.8) Erψηpw2pt, w0qs ¤ exppωtqψηpw2pt, w0qq.

Lemma 6.4. For η ¡ 0 small enough, pP 2t qt¥0 is strongly continuous on BψηpL2w q
with bound ∥P 2t ∥LpBψη pL2w qq ¤ exppωtq.

Proof. Clear from Proposition 6.3 (see also Example 3.6).

6.2 Spectral Galerkin approximations

For the stochastic Navier-Stokes equations, we cannot argue directly as in Chap-
ters 4 or 5: there do not appear to be useful weight functions on spaces of more
regular functions (such spaces are nevertheless invariant with respect to the dy-
namics of (6.1); see [73, Section 3.4] in this regard). We will therefore settle
with a weaker result: we shall prove that spectral Galerkin approximations us-
ing Fourier modes up to degree N yield a convergent scheme, which can then
be approximated by a splitting or a cubature scheme with N-dependent error
bound. As the N-dependence of the estimate is given explicitly, we can derive
convergent schemes by choosing the time step size small enough in relation to
N.
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Consider therefore the spectral Galerkin approximation of (6.1),

dwNpt, w0q � ν∆wNpt, w0qdt(6.9a)

� πNBpKwNpt, w0q, wNpt, w0qqdt �
ḑ

j�1

qj fkjdW
j
t ,

wNp0, w0q � πNw0,(6.9b)

see also [33], where πN : L2 Ñ L2 is the projection onto the space HN of tensor
products of trigonometric polynomials of degree N,

(6.10) HN :� span
"
fk : max

i�1,2
|ki | ¤ N

*
,

and N is assumed to be large enough so that fkj P HN for j � 1, . . . , d . Its split
semigroups are given by

d

dt
w1Npt, w0q � πNBpKw1Npt, w0q, w1Npt, w0qq,(6.11)

w1Np0, w0q � w0, and

dw2Npt, w0q � ν∆w2Npt, w0qdt �
ḑ

j�1

qj fkjdW
j
t ,(6.12)

w2Np0, w0q � w0.

The choice ε � 1 made here is not admissible above: in the space continu-
ous setting, the results from [48] do not allow us to apply Theorem 3.10 to
conclude that P 1t is strongly continuous for this choice. (Note, however, that
Theorem 2.31 might be applicable, as the velocity formulation admits solutions
in L2, which, by [48, equation (38)], implies solvability for the initial vorticity
in H�1). As HN is finite-dimensional, however, we do not have to distinguish
between different topologies, and it follows that the Markov semigroups PNt ,
PN,1t and PN,2t of wN , w1N and w2N are strongly continuous on BψηpHNq if η ¡ 0
is small enough. In case that a solver for deterministic Navier-Stokes equations
is available, it is also possible to use ε   1 here (the case ε � 1 corresponds to
splitting up into a deterministic Euler equation).

We now estimate the error of the spectral Galerkin approximation.
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Proposition 6.5. For any α ¡ 0, w0 P L2 and t ¡ 0,
∥wpt, w0q � wNpt, w0q∥2 ¤ CN�1∥wpt, w0q∥21
� CαN�1 exp

�
Cαt � α

2

» t
0

∥wpσ,w0q∥21dσ

» t
0

∥wps, w0q∥41ds.(6.13)

Proof. Let eNptq :� πNwpt, w0q � wNpt, w0q P HN and ηNptq :� wpt, w0q �
πNwpt, w0q. Then,

deNptq � ν∆eNptq
� πN pBpKwNpt, w0q, eNptqq � BpKeNptq, πNwpt, w0qqq dt
� πN pBpKπNwpt, w0q, ηNptqq � BpKηNptq, wpt, w0qqq dt.(6.14)

It results that
1

2

d

dt
∥eNptq∥2 � �ν∥eNptq∥21dt � xBpKeNptq, πNwpt, w0qq, eNptqy

� xBpKπNwpt, w0q, ηNptqq � BpKηNptq, wpt, w0qq, eNptqy.(6.15)

We now proceed similarly as in [47, Proof of Lemma 4.10, point 3]. For any
δ ¡ 0, we estimate

(6.16) |xBpKh, wq, ζy| ¤ δ∥ζ∥21 �
C

4α2δ
∥ζ∥2 � α

4
∥w∥21∥h∥2.

This yields

|xBpKeNptq, πNwpt, w0qq, eNptqy| ¤ δ∥eNptq∥21 �
C

4α2δ
∥eNptq∥2

� α

4
∥πNwpt, w0q∥21∥eNptq∥2 and(6.17)

|xBpKηNptq, wpt, w0qq, eNptqy| ¤ δ∥eNptq∥21 �
C

4α2δ
∥eNptq∥2

� α

4
∥wpt, w0q∥21∥ηNptq∥2.(6.18)

For the final term, we apply

(6.19) |xBpKh, wq, ζy| ¤ δ∥ζ∥21 �
C

4δ
∥h∥21∥w∥2,

which shows

|xBpKπNwpt, w0q, ηNptqq, eNptqy| ¤ δ∥eNptq∥21
� C

4δ
∥πNwpt, w0q∥21∥ηNptq∥2.(6.20)
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Choosing δ � ν
6 and combining the above estimates yields

1

2

d

dt
∥eNptq∥2 ¤ �ν

2
∥eNptq∥21 �

3C

α2ν
∥eNptq∥2 � α

4
∥πNwpt, w0q∥21∥eNptq∥2

�
�
α

4
∥wpt, w0q∥21 �

3C

ν
∥πNwpt, w0q∥21



∥ηNptq∥2.(6.21)

Using ∥πNw∥1 ¤ ∥w∥1, we obtain

1

2

d

dt
∥eNptq∥2 ¤

�
Cα � α

2
∥wpt, w0q∥21

	 1
2
∥eN∥2

� Cα∥wpt, w0q∥21∥ηNptq∥2.(6.22)

An application of Gronwall’s inequality yields, as eNp0q � 0,

1

2
∥eNptq∥2 ¤

» t
0

Cα∥wps, w0q∥21∥ηNpsq∥2�

� exp
�
Cαpt � sq � α

2

» t
s

∥wpσ,w0q∥21dσ


ds.(6.23)

As ∥w�πNw∥ ¤ CN�1∥w∥1, we see that ∥ηNptq∥ ¤ CN�1∥wpt, w0q∥1, whence

1

2
∥eNptq∥2 ¤ CαN

�1

» t
0

∥wps, w0q∥41�

� exp
�
Cαpt � sq � α

2

» t
s

∥wpσ,w0q∥21dσ


ds

¤ CαN
�1 exp

�
Cαt � α

2

» t
0

∥wpσ,w0q∥21dσ

» t
0

∥wps, w0q∥41ds.(6.24)

The result follows due to

(6.25) ∥wpt, w0q � wNpt, w0q∥ ¤ ∥eNptq∥� CN�1∥wpt, w0q∥1.

Corollary 6.6. For any w0 P H1 and T ¥ 0, there exists a constant C � Cw0,T ¡
0 such that for any t P r0, T s,

(6.26) E
�
∥wpt, w0q � wNpt, w0q∥2

� ¤ CN�1.
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Proof. From Proposition 6.5 and an application of the Cauchy-Schwarz inequal-
ity, we see that we need to prove

Er∥wpt, w0q∥21s � E
�
exp

�
α

» t
0

∥wpσ,w0q∥21dσ

�

� E
��» t

0

∥wps, w0q∥41ds

2�

¤ K(6.27)

for all t P r0, T s with some K � Kt,w0 ¡ 0. For the first and third term, this
follows from [73, Theorem 3.7], and for the second, from [47, Lemma 4.10].

Remark 6.7. Actually, it seems quite plausible here that the assumption w0 P H1
is too strong. Indeed, the results in [74] show that if w0 P L2, then wpt, w0q P Hs
for all s ¡ 0 for subsequent times, and [75, Lemma A.3] gives some quantitative
estimates. It remains unclear to us however how this can be used to prove an

estimate for E
��³t

0∥wps, w0q∥41ds
	2�

.

The estimate from Corollary 6.6 allows us to estimate the pointwise approxi-
mation error of the weak approximation of the stochastic Navier-Stokes equation
by the spectral Galerkin scheme.

Theorem 6.8. Assume φ P BψηpL2w q X C1pL2q with

(6.28) Cφ :� sup
wPL2

ψη̃pwq�1∥Dφpwq∥   8

for some η̃ P r0, η{2s. Then, for w P H1 and T ¥ 0, there exists a constant
C � Cw,T,φ such that for all t P r0, T s,
(6.29) |Ptφpwq � PNt pφ|HN qpwq| ¤ CN�1.

Proof. By the fundamental theorem of calculus,

|φpwpt, w0qq � φpwNpt, w0qq|

¤
» 1
0

∥Dφpθwpt, w0q � p1� θqwNpt, w0qq∥�
� ∥wpt, w0q � wNpt, w0qq∥dθ.(6.30)

The assumption on φ together with the convexity of w ÞÑ exppη̃∥w∥2q yields

∥Dφpθwpt, w0q � p1� θqwNpt, w0qq∥
¤ Cφ

�
exppη̃∥wpt, w0q∥2q � exppη̃∥wNpt, w0q∥2q

�
.(6.31)
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6.2. Spectral Galerkin approximations

Therefore, the Cauchy-Schwarz inequality implies

|Ptφpwq � PNt pφ|HN pwq| ¤ CφE
�
∥wpt, w0q � wNpt, w0q∥2

�1{2�
�
�
Erexpp2η̃∥wpt, w0q∥2qs1{2 � Erexpp2η̃∥wNpt, w0q∥2qs1{2

	
.(6.32)

Note that the estimate in [47, Lemma 4.10, 1.] also holds true for wNpt, w0q
instead of wpt, w0q. Therefore, Corollary 6.6 proves the claimed estimate.

In the discrete setting, it is easy to analyse the differential operators corre-
sponding to the split semigroups. For k ¥ 0, we consider the vector of weight
functions pψηqj�0,...,k , which we shall also denote by ψη. We denote by GNj with

domain domGNj the infinitesimal generator of pPN,jt qt¥0, j � 1, 2, and by GN

with domain domGN the infinitesimal generator of pPNt qt¥0.
Lemma 6.9. For any ε ¡ 0,
(6.33) Bψη̃2 pHNq � domGN X domGN1 X domGN2 .
For k ¥ 0, GN , GNj : B

ψη̃
k�2pHNq Ñ B

ψη̃�ε
k pHNq, j � 1, 2, are continuous opera-

tors, and

∥GN∥
LpB

ψη̃
k�2pHNq;B

ψη̃�ε
k pHNqq

� ∥GNj ∥LpBψη̃k�2pHNq;Bψη̃�εk pHNqq

¤ CN2, j � 1, 2.(6.34)

Furthermore,

(6.35) GNφ � GN1 φ� GN2 φ for all φ P Bψη̃2 pHNq.
Proof. For φ P Bψη̃k�2pHNq, we see by the fundamental theorem of calculus and
the estimates in [48, Appendix] that with α ¡ 0,

|GN1 φpwq| � |Dφpwq pπNBpKw,wqq| ¤ ∥Dφpwq∥ �
�
N1�α∥w∥2

�
¤ CN2 exppε∥w∥2q∥Dφpwq∥,(6.36)

and similarly, by Itô’s formula,

|GN2 φpwq| � |Dφpwqν∆w � 1
2

ḑ

j�1

D2φpwqpqj fkj , qj fkj q|

¤ ∥Dφpwq∥ � νN2∥w∥� C∥D2φpwq∥
¤ CN2 exppε∥w∥2q �∥Dφpwq∥� ∥D2φpwq∥� .(6.37)
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The result for GN is proved in a similar manner. The equality (6.35) is a con-
sequence of Itô’s formula if φ P C8b pHNq, and a density argument proves it for
the general case.

6.3 Rates of convergence

We are now in the situation to prove estimates for the convergence of both
splitting schemes and cubature methods.

6.3.1 Splitting methods

Lemma 6.10. For all k ¥ 0, PNt Bψη̃k pHNq � Bψη̃k pHNq, and we have the estimate
suptPr0,T s∥PNt φ∥ψη̃,k ¤ KT ∥φ∥ψη̃,k with some constant KT independent of φ.

Proof. This is proved using similar estimates as those given in [47, Lemma 4.10,
1. and 3.].

Using Lemma 6.9, the method of [49] yields the following convergence esti-
mate.

Theorem 6.11. Let QNp∆tq :� PN,1
∆t{2P

N,2
∆t P

N,1
∆t{2 denote the Strang splitting ap-

proximation of PN∆t using PN,1∆t and PN,2∆t . For any η̃   η{2, there exists C �
CT,η̃ ¡ 0 such that for all φ P Bψη̃6 pHNq and n P N,

(6.38) ∥PNT φ� pQNpT {nqqnφ∥ψη ¤ CTN
6n�2∥φ∥ψη̃,6.

Note that if φ P C6pL2q is such that for some η̃   η,

(6.39) sup
wPL2

ψη̃pwq�1∥Djφpwq∥Lj pL2;Rq   8 for j � 0, . . . , 6,

then φ|HN P Bψη6 pHNq for all N P N with uniformly bounded norms. Furthermore,
(6.39) with η̃   η{2 implies (6.28). Thus, we obtain the following result.

Corollary 6.12. Assume that φ satisfies (6.39) with η̃   η{2. For any T ¡ 0
and w0 P H1, there exists C � Cw0,T,φ ¡ 0 such that for all n P N
(6.40) |PTφpw0q � pQNpT {nqqnφ|HN pw0q| ¤ C

�
N�1 � N6n�2� .

Proof. The combination of Theorem 6.8 and Theorem 6.11 allows us to con-
clude the desired estimate.
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Remark 6.13. We see here an important advantage of the second order splitting
in comparison to a possible first order splitting. There, in the second term,
the instability would be of the order N4, but the convergence would only be of
first order, n�1. Therefore, we can choose n significantly smaller here while still
obtaining a stable method. Nevertheless, we have to stress that the given error
estimate is far from what we would expect to obtain, see also the numerical
results in Section 6.4.

6.3.2 Cubature methods

We define cubature approximations for the spectral Galerkin discretisation of
the stochastic Navier-Stokes equations. See Section 1.1.2 for the definition of
cubature paths. The approximations are given by

dwNps, w0;ωp∆tqi q �
�
ν∆wNps, w0;ωp∆tqi q � πNBpKwNps, w0;ωp∆tqi qq

	
ds

�
ḑ

j�1

qj fkjdω
p∆tq,j
i psq.(6.41)

Here, we apply that the noise is purely additive, entailing that the Itô and
Stratonovich integrals of the noise terms coincide. The cubature approxima-
tion of the Markov semigroup PN∆t reads

(6.42) QNp∆tqf pw0q :�
M̧

i�1

λi f pwNp∆t, w0;ωp∆tqi qq.

To prove stability of the cubature approximation, we require that the quadra-
ture formula induced by the cubature scheme is symmetric, i.e., for all i �
1, . . . ,M, there exists a unique i 1 P t1, . . . ,Mu such that λi � λi 1 and ωji p∆tq �
�ωji 1p∆tq for j � 1, . . . , d . This induces a corresponding symmetry for ωp∆tq.
Many known cubature formulas satisfy such a property, consider, e.g., the paths
given in [70]. Moreover, given an arbitrary cubature formula, it is easy to con-
struct a symmetric one from it by adding the reflected paths.

Our use of this assumption is to prove an estimate for the moment generating
function of the cubature paths at ∆t.
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Lemma 6.14. Assume that the quadrature formula induced by the cubature
scheme is symmetric. Then, for all continuous f : Rd Ñ R,

M̧

i�1

λi f pωp∆tq,1i p∆tq, . . ., ωp∆tq,di p∆tqq

� 1
2

M̧

i�1

λi

�
f pωp∆tq,1i p∆tq, . . . , ωp∆tq,di p∆tqq

� f p�ωp∆tq,1i p∆tq, . . . ,�ωp∆tq,di p∆tqq
	
.(6.43)

In particular,
°M
i�1 λi f pωp∆tq,1i p∆tq, . . . , ωp∆tq,di p∆tqq � 0 if f is odd.

This implies

(6.44)
M̧

i�1

λi exp

�
ḑ

j�1

ujω
p∆tq,j
i p∆tq

�
¤ exp

�
C

2
∆t

ḑ

j�1

u2j

�
.

Proof. The first two claims are clear. For the estimate of the moment generating
function, note that, as |ωp∆tq,ji p∆tq| ¤ C

?
∆t and p2ℓq! ¤ 2ℓℓ!,

M̧

i�1

λi exp
� ḑ

j�1

ujω
p∆tq,j
i p∆tq

	
�

8̧

k�0

1

k!

M̧

i�1

λi

� ḑ

j�1

ujω
p∆tq,j
i p∆tq

	k
(6.45)

�
8̧

ℓ�0

1

p2ℓq!
M̧

i�1

λi

� ḑ

j�1

ujω
p∆tq,j
i p∆tq

	2ℓ
¤ exp

�C
2
∆t

ḑ

j�1

u2j

	
,

which proves the given estimate.

Theorem 6.15. Assume that the quadrature formula induced by the cubature
scheme is symmetric. Then, there exist η0 ¡ 0 and ε ¡ 0, depending only on
the given problem data, but not on the discretisation parameter N, such that
with a constant C ¡ 0 independent of ∆t and N,

∥QNp∆tqf ∥ψη ¤ exppC∆tq∥f ∥ψη(6.46)

for ∆t P p0, εs, η P p0, η0s, and f P BψηpHNq.
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Proof. Set wNpsq :� wNps, w0;ωp∆tqi q and V NpwNq :� ν∆wN�πNBpKwN , wNq.
For every α ¥ 0,

exppαsq∥wNpsq∥2 � ∥wNp0q∥2

�
» s
0

exppαrqpα∥wNprq∥2 � 2xV NpwNprqq, wNprqyqdr

� 2
ḑ

j�1

» s
0

exppαrqxqj fkj , wNprqydωp∆tq,ji prq.(6.47)

Applying Fubini’s theorem and integration by parts to

» τ
σ

exppαrqdωp∆tq,ji prq � exppατqωp∆tq,ji pτq � exppασqωp∆tq,ji pσq

� α
» τ
σ

ω
p∆tq,j
i prq exppαrqdr,(6.48)

we obtain that

» s
0

exppαrqxqj fkj , wNprqydωp∆tq,ji prq � xqj fkj , wNp0qy
» s
0

exppαrqdωp∆tq,ji prq

�
» s
0

exppαrq
» r
0

xqj fkj , V NpwNpqqqydqdωp∆tq,ji prq

�
ḑ

i�1

» s
0

exppαrq
» r
0

xqj fkj , qi fki ydωp∆tq,ii pqqdωp∆tq,jqi prq.(6.49)

An application of Young’s inequality yields

» s
0

exppαrqxqj fkj , wNprqydωp∆tq,ji prq ¤ xqj fkj , wNp0qy exppαsqωp∆tq,ji psq

� C exppαsq∥wNp0q∥2∆t � C exppαsqs2

� C
?
∆t

» s
0

exppαqq∥V NpwNpqqq∥�3dq � C exppαsqs.(6.50)
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Hence, as xwN , V NpwNqy � �ν∥wN∥21 and ∥V NpwNq∥�3 ¤ ∥wN∥� C∥wN∥2,
∥wNp∆tq∥2 ¤

�
expp�α∆tq � C∆t�∥wNp0q∥2(6.51)

� 2
ḑ

j�1

xqj fkj , wNp0qyωp∆tq,ji p∆tq � C∆t � Cp∆tq2

�
» ∆t
0

exppαpq � ∆tqq
�
pα� C

?
∆tq∥wNpqq∥2

� C
?
∆t∥wNpqq∥� 2ν∥wNpqq∥21

	
dq.

Fix α � ν. As ∥wN∥1 ¥ ∥wN∥, we can choose ε ¡ 0 such that for ∆t P p0, εs,
(6.52) ν∥wN∥2 � C

?
∆tp∥wN∥� ∥wN∥2q � 2ν∥wN∥21 ¤ C∆t.

By Lemma 6.14,

M̧

i�1

λi exp
�
2η

ḑ

j�1

xqj fkj , wNp0qyωp∆tq,ji p∆tq
	

¤ exp
�
η2C∆t

ḑ

j�1

xqj fkj , wNp0qy2
	

¤ exppη2C∆t∥wNp0q∥2q.(6.53)

Hence, for ∆t P p0, εs,
M̧

i�1

λi exppη∥wNp∆t, w0;ωp∆tq,ji q∥2q(6.54)

¤ exp
�
C∆t � η∥wNp0q∥2

�
expp�ν∆tq � ηC∆t�	.

Choosing η0 ¡ 0 small enough, we see that

(6.55) expp�ν∆tq � ηC∆t ¤ 1 for ∆t P p0, εs and η P p0, η0s.
The claim is thus proved.

Remark 6.16. It is clear from the proof that a corresponding result can also be
shown in the space continuous case. As remarked before in the context of the
splitting scheme, however, we are not able to derive rates of convergence in this
setting, which is why we focus on the space discrete case.
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As it is straightforward to obtain a Taylor expansion of QNp∆tq by the funda-
mental theorem of calculus (see [70, 26, 6] and Proposition 1.3), we have the
following result.

Theorem 6.17. Fix η ¡ 0 small enough. Given T ¡ 0 and η̃   η{2 and
assuming that m is odd, there exist constants ε ¡ 0 and C � CT,η̃ ¡ 0 such
that for all φ P Bψη̃6 pHNq and n P N with T {n   ε,

(6.56) ∥PTφ� pQNpT {nqqnφ∥ψη ¤ CNm�1n�
m�1
2 ∥φ∥ψη̃,6.

The following result is a version of Corollary 6.12 for cubature approxima-
tions.

Corollary 6.18. Suppose m odd, and fix η ¡ 0 small enough. Assume that φ
satisfies (6.39) with η̃   η{2. For any T ¡ 0 and w0 P H1, there exists ε ¡ 0
and C � Cw0,T,φ ¡ 0 such that for all n P N with T {n   ε,

(6.57) |PTφpw0q � pQNpT {nqqnφ|HN pw0q| ¤ C
�
N�1 � Nm�1n�m�1

2

	
.

6.4 Numerical examples

We consider the problem of approximating (6.1) with ν � 10�2, w0 � 0, d � 4,
qj � 1, j � 1, . . . , 4, and k1 � p1, 0q, k2 � p�1, 0q, k3 � p1, 1q and k4 �
p�1,�1q. [47, Example 2.5] shows that the dynamics generated by this process
are ergodic. We aim to find estimates for Er∥wp1, 0q∥s, Er∥wp1, 0q∥�1s and
Er∥wp1, 0q∥�1s. We remark that the first and second values are related to the
mean enstrophy and energy, respectively. Furthermore, control of theH1 norm of
wp1, 0q means control of the H2 norm of Kwp1, 0q, which in turn implies that we
can take point evaluations of Kwp1, 0q due to the Sobolev embedding theorems
in two dimensions. This is important in the evaluation of cross correlations.

Our numerical simulations are performed using a splitting scheme, the sym-
metrically weighted sequential splitting

(6.58) QNT,n :�
1

2

�
pPN,1
T {nP

N,2
T {nqn � pPN,2

T {nP
N,1
T {nqn

	
,

going back at least to [103, equation (25)] and being of second order for prob-
lems that are smooth enough.
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We apply a Monte Carlo method. For a single realisation, we have to solve,
alternatingly, a time-dependent Euler equation and an Ornstein-Uhlenbeck equa-
tion. Note that the solution of the Ornstein-Uhlenbeck equation follows a Gaus-
sian process, and its distribution is therefore explicitly known. To discretise the
Euler equation, we apply the standard RK4 scheme. While the Heun method,
i.e., an RK2 scheme, provides the correct order such that the entire approxima-
tion is of second order, see [79], it has suboptimal stability properties, leading
to strong step size restrictions, see [23, Section D.2.5]. In this regard, see also
[52] for issues of stability of the Euler-Maruyama scheme for equations with
non-globally Lipschitz coefficients. As we apply the FFT to determine the value
of pKwN �∇qwN efficiently, we observe aliasing effects, which are reduced by the
use of the 2/3 dealiasing, see [24, Section 3.3.2].

To find the expected values in the definition of PN,2
T {n, we use quasi-Monte

Carlo integration, applying the Sobol1 sequences of Joe and Kuo [56]. Also,
instead of simulating both terms in the definition of QNT,n, we use a Bernoulli
random variable to generate either of them, retaining the order of the approxi-
mation.
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Figure 6.1: Error plot, increasing number of timesteps
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6.4. Numerical examples

Figures 6.4, 6.4 and 6.4 present the results of numerical calculations with
increasing number of timesteps, Fourier modes, and quasi-Monte Carlo paths.
All errors are relative, and were calculated through comparison with a reference
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Figure 6.2: Error plot, increasing number of Fourier modes

solution found using K � 220 quasi-Monte Carlo paths, N � 32 and n � 128
timesteps. There, we obtained the approximate values

Er∥wp1, 0q∥�1s � 1.138449630686444,(6.59)

Er∥wp1, 0q∥s � 1.319968848291092, and(6.60)

Er∥wp1, 0q∥�1s � 1.620419847035606.(6.61)

In Figure 6.4, we chose the other parameters to be K � 216 and N � 32; in
Figure 6.4, K � 216 and n � 128; and in Figure 6.4, N � 32 and n � 64.

We clearly see that mainly the number of quasi-Monte Carlo paths limits the
attainable accuracy. Nevertheless, with 212 � 4096 paths, we obtain a relative
error of less than 10�3, and that calculation took approximately 60 seconds
running on 16 cores of a Primergy RX200 S6 spotting 4 Intel Xeon CPU X5650
processor, each of which provides 6 cores. In Figure 6.4, we observe that we
obtain a rate of convergence of about 2.5 for the H1 norm with respect to the
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Figure 6.3: Error plot, increasing number of quasi-Monte Carlo paths

number of time steps, which is even more than the theoretically predicted rate of
2 and seems to result from the fact that we compare with numerical estimates
instead of the exact value. The solution of the model problem is smooth (see
also [74] in this regard), and indeed, Figure 6.4 exhibits spectral convergence in
the number of Fourier modes.

6.5 Conclusion

We have introduced and analysed novel high order approximation schemes for
the stochastic Navier-Stokes equations on the 2D torus. We prove high order
accuracy in time and give precise estimates for the dependence on the order
of the spectral Galerkin discretisation. Using high order cubature paths, it is
possible to attain convergence of arbitrary order in time.

From a practical point of view, the splitting schemes presented in this work
have the important advantage that well-tested and robust solvers for the de-
terministic Navier-Stokes and Euler equations can be reused. Furthermore, the
algorithm makes increasing the dimension of the driving Brownian motion easy.
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6.6. Proof of Proposition 6.3

Numerical examples establish the applicability of the method to some simple,
but relevant functionals.

6.6 Proof of Proposition 6.3

Lemma 6.19. For N � N p0, 1q, j � 1, . . . , d , and S, A, B P R with C P R
small enough,

ErexppCpS2�2SABN � pBNq2qqs

� 1

p1� 2CB2q1{2 exp
��
1� 2CA2B2

1� 2CB2


CS2



.(6.62)

Proof. A direct calculation yields

ErexppCpS2 � 2SABN � pBNq2qqs

�
»
R
exppCpS2 � 2SABy � pBy q2qq 1

p2πq1{2 exp
�
�1
2
y2


dy

� 1

p2πq1{2
»
R
exp

�
�1
2
p1� 2CB2q

�
y � 2CSAB

1� 2CB2

2�

dy�

� exp
��
1� 2CA2B2

1� 2CB2


CS2



� 1

p1� 2CB2q1{2 exp
��
1� 2CA2B2

1� 2CB2


CS2



,

which proves the result.

Corollary 6.20. For independent Nj � N p0, 1q, j � 1, . . . , d , and S, Aj , Bj P R
with C P R small enough,

ErexppCpS2�
ḑ

j�1

2SAjBjNj �
ḑ

j�1

pBjNjq2qqs

� 1±d
j�1p1� 2CB2j q1{2

exp

��
1�

ḑ

j�1

2CA2j B
2
j

1� 2CB2j

�
CS2

�
.(6.63)

Proof of Proposition 6.3. Note that

(6.64) w2pt, w0q � expptεν∆qw0 �
» t
0

expppt � sqεν∆q
ḑ

j�1

qj fkjdW
j
s .
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Denoting by λj the eigenvalue of fkj with respect to the operator εν∆, εν∆fkj �
λj fkj , we see that

(6.65)
» t
0

expppt � sqεν∆qQdWs �
ḑ

j�1

» t
0

expppt � sqλjqqj fkjdW j
s .

The coefficient Zjt :�
³t
0 expppt � sqλ̃kj qdW j

s is normally distributed, more pre-

cisely, Zjt � N
�
0,
1�expp2tλ̃kj q

�2λ̃kj



. In particular, with Sptq :� expptεν∆q,

(6.66) P 2t ψpwq � E
�
exp

�
η∥Sptqw �

ḑ

j�1

qjZ
j
t fkj∥

2
0

	�
.

Note

∥Sptqw �
ḑ

j�1

qjZ
j
t fkj∥

2 � ∥Sptqw∥2

� 2
ḑ

j�1

xSptqw, qj fkj y
∥Sptqw∥ � ∥qj fkj∥

∥Sptqw∥ � p∥qj fkj∥Zjtq �
ḑ

j�1

p∥qj fkj∥Zjtq2,(6.67)

and apply Corollary 6.20 with C � η, S � ∥Sptqw∥, Aj �
xSptqw,qj fkj y

∥Sptqw∥0�∥qj fkj ∥0
and

Bj � ∥qj fkr ∥
�
1�expp2tλ̃kj q

�2λ̃kj


1{2
. As A2j ¤ 1 and

(6.68) 1� 2CB2j � 1� 2η∥qj fkj∥2
1� expp2tλ̃kj q

�2λ̃kj
¥ expp2ωtq

for 0 ¡ ω ¥ λ̃kj and 0   η ¤ �ω
∥qj fkj ∥

2 and, similarly,

(6.69) 1�
ḑ

j�1

2CA2j B
2
j

1� 2CB2j
¤ expp2αtq

for α ¡ 0 and η ¤ minj�1,...,d 2α
pd�1q∥qj fkj ∥

2 , we obtain

(6.70) P 2t ψηpwq ¤ expp�dtωq exppη∥w∥2q � expp�dtωqψηpwq,
the required result.
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Appendix A

Strongly Continuous Semigroups

We give a short overview on the theory of strongly continuous semigroups on
Banach spaces. Some standard references are [50, 22, 84, 34].

A.1 Basic definitions and results

Definition A.1. Let pB, ∥�∥Bq be a Banach space. A family pStqt¥0 of bounded
linear operators on B is called a semigroup of operators if and only if

(i) S0 � I, the identity operator on B, and

(ii) St�s � StSs for all t, s ¥ 0.

It is called strongly continuous if, moreover,

(iii) for all x P B, limtÑ0�∥Stx � x∥B � 0.

We collect several important properties of semigroups.

Proposition A.2. For every strongly continuous semigroup pStqt¥0 on pB, ∥�∥Bq,
there exist constants M ¥ 1, ω P R such that

(A.1) ∥Stx∥B ¤ M expptωq∥x∥B for all t ¥ 0 and x P B.

The following result is well-known and given in [34, Theorem I.5.8].

Proposition A.3. A semigroup pStqt¥0 on pB, ∥�∥Bq is strongly continuous if
and only if it is weakly continuous, i.e., for all φ P B� and x P B,

(A.2) lim
tÑ0�

φpStxq � φpxq.

117
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Definition A.4. Given a strongly continuous semigroup pStqt¥0 on pB, ∥�∥Bq,
we define its infinitesimal generator by

(A.3) A : domA � B Ñ B, Ax :� lim
tÑ0�

t�1pStx � xq.

Its domain is

(A.4) domA :�
"
x P B : the limit lim

tÑ0�
t�1pStx � xq exists in B

*
.

If A is the infinitesimal generator of pStqt¥0, we also write expptAq :� St .

Recall that a linear operator A : domA � B Ñ B on pB, ∥�∥Bq is called
closed if and only if for all sequences pxnqnPN in B with xn Ñ x and Axn Ñ y

in the norm topology of B, we have that x P domA and Ax � y . It is called
densely defined if and only if domA is dense in B.

Proposition A.5. Let pStqt¥0 be a strongly continuous semigroup on pB, ∥�∥Bq
with infinitesimal generator A : domA � B Ñ B.

(i) A is a closed and densely defined operator.

(ii) For all t ¥ 0, StpdomAq � domA, and AStx � StAx for all x P domA.

(iii) For x P domA, the mapping t ÞÑ Stx is continuously differentiable, and
d
dtStx � AStx .

(iv) There exists ω P R such that λ�A is invertible for λ ¡ ω, and the inverse
is given by the integral

(A.5) pλ� Aq�1x �
» 8

0

expp�λsqSsxds.

The integral is an improper Riemann integral in the norm topology of B.

(v) Let k P N. If x P domAk�1, then Stx P domAk�1 for all t ¥ 0, t ÞÑ Stx

is k � 1 times continuously differentiable, and

(A.6) Stx �
ķ

j�0

t j

j!
Ajx � tk�1rtx,

where the remainder is explicitly given by

(A.7) rtx � t�pk�1q
» t
0

pt � sqk
k!

SsA
k�1xds

and satisfies ∥rtx∥B ¤ C∥Ak�1x∥B.
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A.2. Analytic semigroups and fractional powers

(vi) Let D � domA be dense in B. Assume furthermore that StpDq � D for
all t ¡ 0. Then, for every x P domA, there exists a sequence pxnqnPN in
D such that limnÑ8p∥xn � x∥B � ∥Axn �Ax∥Bq � 0. In this case, we say
that D is a core for A.

The last point is given in [34, Proposition II.1.7].
The Hille-Yosida theorem gives necessary and sufficient conditions for an

unbounded operator on a Banach space to be the infinitesimal generator of a
strongly continuous semigroup. In this work, we only need the following result,
which is stated, e.g., in [34, Theorem II.3.15].

Proposition A.6 (Lumer-Phillips). A densely defined operator A : domA � B Ñ
B on pB, ∥�∥Bq is the infinitesimal generator of a strongly continuous semigroup
of contractions (i.e., ∥Stx∥B ¤ ∥x∥B for all t ¥ 0 and x P X) if and only if

(i) A is dissipative, i.e., ∥pλ� Aqx∥B ¥ λ∥x∥B, and

(ii) pλ� AqB is dense in B for some λ ¡ 0.

In this case, pλ� AqB is dense in B for all λ ¡ 0.

A.2 Analytic semigroups and fractional powers

We shall need fractional powers of the infinitesimal generator of a semigroup. We
only consider these for pStqt¥0 analytic. Here, a strongly continuous semigroup
pStqt¥0 is called analytic if and only if StpBq � domA for all t ¡ 0, and there
exists C ¡ 0 such that ∥AStx∥B ¤ Ct�1∥x∥B for t ¡ 0 and x P B. See [84,
pp. 60] for equivalent definitions and more background.

Definition A.7. Let α P p0, 1q, and assume that A : domA � B Ñ B is bound-
edly invertible and generates an analytic semigroup on pB, ∥�∥Bq. The fractional
power p�Aqα is the inverse of the bounded operator p�Aq�α given by

(A.8) p�Aq�α � sinpπαq
π

» 8

0

t�αpt � Aq�1dt,

the integral being taken in the uniform operator topology. Its domain is given
by domp�Aqα :� p�Aq�αpBq. For α � n � s, n P N, s P p0, 1q, we set
p�Aqα :� p�Aqnp�Aqs , with domain domp�Aqα :� p�Aq�spdomp�Aqnq.
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Chapter A. Strongly Continuous Semigroups

Proposition A.8. Let A : domA � B Ñ B be boundedly invertible and generate
an analytic semigroup pStqt¥0 on pB, ∥�∥Bq.

(i) domp�Aqβ � domp�Aqα for 0   α   β.

(ii) For α ¡ 0, p�Aqα : domp�Aqα � B Ñ B is a densely defined and closed
operator.

(iii) For α, β ¡ 0, p�Aqα�β � p�Aqαp�Aqβ on domp�Aqα�β. In particular,
integer powers agree with their usual definitions.

(iv) There exists δ ¡ 0 such that for α ¡ 0, StpBq � domp�Aqα and
∥p�AqαStx∥B ¤ Mαt

�α expp�δtq for all t ¥ 0 with some constant Mα

independent of t and x .

(v) For x P domp�Aqα, p�AqαStx � Stp�Aqαx . In particular, pStqt¥0 defines
an analytic semigroup on pdomp�Aqα, ∥�∥domp�Aqαq, where ∥x∥domp�Aqα :�
∥x∥B � ∥p�Aqαx∥B is the graph norm.
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Appendix B

Stochastic Ordinary And Partial
Differential Equations

We give a short overview of the tools of stochastic analysis used regularly in this
thesis. Standard textbooks are [58, 59, 57, 92, 81, 90, 71]. Books on stochastic
partial differential equations are [28, 29, 27, 89, 85, 62].

B.1 The Itô integral

Let pΩ,F ,P, pFtqt¥0q be a filtered, complete probability space satisfying the
usual conditions, i.e.,

(i) F0 contains all P-nullsets, and

(ii) the filtration pFtqt¥0 is right continuous, i.e., Fs �
�
t¡s Ft for s ¥ 0.

Here, a filtration is an increasing family of σ-fields on Ω, all contained in F . We
denote the expected value with respect to P by E, i.e., for a random variable
X : Ω Ñ R, we set ErXs :� ³

ΩXpωqPpdωq. For X a real-valued, integrable
random variable, conditional expectation with respect to a σ-field F̃ is denoted
by ErX|F̃s. See [57, Chapter 5] for background on conditional expectations.

Definition B.1 (Stochastic process; adaptedness). Let pM,Gq be a measurable
space. A stochastic process is a family pXtqtPI of random variables on Ω with
values in pM,Gq, indexed by some set I, in our case usually r0,8q or r0, T s for
some T ¡ 0. A stochastic process pXtqt¥0 is called adapted if and only if Xt is
Ft-measurable for all t ¥ 0.
Definition B.2 (Brownian motion). A d-dimensional Brownian motion relative
to the filtration pFtqt¥0 is an adapted process pBtqt¥0 of Rd -valued random
variables such that
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Chapter B. Stochastic Ordinary And Partial Differential Equations

(i) B0 � 0 almost surely,

(ii) Bt�h � Bt is independent of Ft for t ¥ 0 and h ¥ 0,

(iii) pBtqt¥0 has almost surely continuous paths, i.e., the mapping t ÞÑ Bt is
almost surely continuous,

(iv) Bt�h �Bt is distributed according to a d-dimensional normal distribution
with mean 0 and covariance matrix hId , where Id is the d-dimensional
identity matrix.

We shall always assume that Brownian motions are given relative to the
filtration used in the definition of the underlying filtered probability space.

To construct the Itô integral, one typically proceeds as follows: First, the
definition is given for certain simple integrands where the approach is natural.
Then, one proves the Itô isometry. Finally, by determining the closure of the
space of simple integrands, a density argument yields the Itô integral on its
natural domain of definition.

Definition B.3. A real-valued stochastic process pXtqt¥0 is called elementary
if and only if there exist real numbers ptjq8j�0 with 0 � t0   t1   . . . and
Ftj -measurable random variables ξj such that

(B.1) Xt �
8̧

j�0

ξjχrtj ,tj�1qptq.

Definition B.4 (Itô integral, simple integrands). For an elementary stochastic
process Xt �

°8
j�0 ξjχrtj ,tj�1qptq, we define the Itô integral with respect to a

one-dimensional Brownian motion pBtqt¥0 by

(B.2)
» t
0

XsdBs :�
8̧

j�0

ξjpBtj�1^t � Btj^tq.

Clearly, the Itô integral is a linear operator.

Proposition B.5 (Itô isometry). For elementary integrands pXtqt¥0,

(B.3) E
��» t
0

XsdBs
�2� � » t

0

ErX2s sds.
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B.1. The Itô integral

The space of adapted processes is too large to be able to define the Itô
integral. The correct space of integrands is defined as follows.

Definition B.6. Let pM,Gq be a measurable space. A stochastic process pXtqt¥0
is called progressively measurable if and only if the mapping r0, T s � Ω Ñ M,
pt, ωq ÞÑ Xtpωq, is Br0,T sbFT -G-measurable for all T ¡ 0, where Br0,T s denotes
the Borel sets in r0, T s.

Note that progressively measurable processes are always adapted. Con-
versely, for every adapted process pX̃tqt¥0, there exists a progressively mea-
surable process pXtqt¥0 such that PrXt � X̃ts � 1 for all t ¥ 0, i.e., there exists
a progressively measurable modification.

Proposition B.7 (Itô integral, progressively measurable integrands). The closure
of the space of elementary integrands with respect to the topology induced by

the norm rXsT :�
�³T
0 ErX2t sdt

	1{2
equals the space of real-valued progressively

measurable processes. In particular, for all such processes, the Itô integral is well-
defined and satisfies the Itô isometry, which now reads

(B.4) E
��» t
0

XsdBs
�2� � rXs2t for t P r0, T s.

While Proposition B.7 allows us to define the Itô integral Yt :�
³t
0XsdBs

for a progressively measurable processes, it does not allow us to speak about
path properties of the process pYtqt¥0, the reason being that this integral is only
defined up to modification. This leads to the following approach.

Proposition B.8. Let pMtqt¥0 be a martingale, i.e., pMtqt¥0 is a real-valued,
adapted stochastic process consisting of integrable random variables with

(B.5) ErMt |Fs s � Ms for all 0 ¤ s ¤ t.

Then, pMtqt¥0 has a modification that is almost surely càdlàg, i.e., for almost
all ω P Ω, the mapping t ÞÑ Mtpωq is right continuous and has left limits.

This result also holds true if pMtqt¥0 is a supermartingale, i.e., a real-valued
adapted stochastic process of integrable random variables with

(B.6) ErMt |Fs s ¤ Ms for all 0 ¤ s ¤ t,

or a submartingale, i.e., p�Mtqt¥0 is a supermartingale.
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Proposition B.9. Let pXtqt¥0 be a progressively measurable process satisfying
rXsT   8. Then, the Itô integral pYtqt¥0, Yt �

³t
0XsdBs for t ¥ 0, is a

martingale.
Hence, there exists a modification of pYtqt¥0 that is càdlàg. In the future,

we shall always choose this modification.

Choosing Xt � 1 for all t ¥ 0, we see that this contains the martingale
property of Brownian motion itself. We collect some features of the Itô integral.

Proposition B.10. Let pXtqt¥0, pX1t qt¥0, pX2t qt¥0 be progressively measurable
with rXsT , rX1sT , rX2sT   8.

(i)
³0
0 XsdBs � 0.

(ii) The mapping t ÞÑ ³t
0XsdBs is almost surely continuous.

(iii) For α1, α2 P R,

(B.7)
» t
0

pα1X1s � α2X2s qdBs � α1

» t
0

X1s dBs � α2
» t
0

X2s dBs ,

i.e., the Itô integral is a linear operator.

Remark B.11. By a localisation argument, it is possible to extend the Itô integral
to all progressively measurable processes pXtqt¥0 that only satisfy the property

(B.8) P
�» T
0

X2t dt   8
�
� 1 for all T ¥ 0.

In this case, the stochastic integral still defines a linear operator and
³t
0XsdBs

still has almost surely continuous paths, but we no longer obtain martingales,
but only local martingales, i.e., processes that become martingales when stopped
at appropriate stopping times.

Proposition B.12 (Itô formula). Let f : r0,8q � R Ñ R, pt, xq ÞÑ f pt, xq,
be a function once differentiable with respect to t and twice with respect to
x . Assume that pXtqt¥0 is an Itô process, i.e., can be written in the form
Xt � X0 �

³t
0 µsds �

³t
0 σsdBs , where X0 is a constant, pµtqt¥0 is adapted with
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B.1. The Itô integral

almost every path Lebesgue integrable on r0, T s, and pσtqt¥0 is progressively
measurable and satisfies (B.8). Then,

f pt, Xtq � f p0, X0q �
» t
0

f,tps, Xsqds �
» t
0

f,x ps, Xsqpµsds � σsdBsq

� 1
2

» t
0

f,xx ps, Xsqσ2s ds.(B.9)

This is also written in the form

(B.10) df pt, Xtq � f,tpt, Xtqdt � f,xpt, Xtqpµtdt �σtdBtq� 1
2
f,xx pt, Xtqσ2t dt.

The last term in the above expressions shows the deviation of this chain rule
for the Itô calculus from the usual rules of deterministic calculus. The differential
notation given in (B.10) cannot be directly defined, as Brownian motion is almost
surely nowhere differentiable. It is only to be seen as shorthand notation for the
corresponding integral expression.

Remark B.13. If pXtqt¥0 is RN-valued such that every component is an Itô
process with respect to a d-dimensional Brownian motion pBtqt¥0,

(B.11) Xkt � Xk0 �
» t
0

µks ds �
ḑ

j�1

σk,js dB
j
s , k � 1, . . . , N,

a corresponding formula holds true; see, e.g., [58, Theorem 3.3.6]. (B.11) is
customarily written as

(B.12) dXkt � µkt dt �
ḑ

j�1

σk,jt dB
j
t , k � 1, . . . , N.

Definition B.14. Let pXtqt¥0 be an Itô process with values in RN satisfy-
ing (B.11), and let pYtqt¥0 be a progressively measurable process such that
pY kt µkt qt¥0 has almost surely Lebesgue integrable paths for k � 1, . . . , N and
pY kt σk,jt qt¥0 satisfies (B.8) for all k � 1, . . . , N and j � 1, . . . , d . Then, the Itô
integral

³t
0 YsdXs is defined by

(B.13)
» t
0

YsdXs :�
Ņ

k�1

» t
0

Y ks µ
k
s ds �

Ņ

k�1

ḑ

j�1

» t
0

Y ks σ
k,j
s dB

j
s .
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While the Itô integral does not reproduce the chain rule from deterministic
calculus, there is another stochastic integral that does.

Definition B.15 (Stratonovich integral). Let pX1t qt¥0, pX2t qt¥0 be real-valued
Itô diffusions,

(B.14) dXkt � µkt dt �
ḑ

j�1

σk,jt dB
j
t , k � 1, 2.

Then, the Stratonovich integral
³t
0X
1
s � dX2s is defined by

(B.15)
» t
0

X1s � dX2s :�
» t
0

X1s dX
2
s �

ḑ

j�1

1

2

» t
0

σ1,js σ
2,j
s ds.

Proposition B.16. Let pXtqt¥0 be an Itô process with values in RN , and assume
that f : RN Ñ R is three times continuously differentiable. Then,

(B.16) f pXtq � f pX0q �
Ņ

k�1

» t
0

f,xk pXsq � dXks .

B.2 Stochastic ordinary differential equations

In this thesis, we analyse numerical methods for stochastic differential equations
of the form

(B.17) dxpt, x0q � αpxpt, x0qqdt �
ḑ

j�1

σjpxpt, x0qqdBjt , xp0, x0q � x0

on RN . Here, pBtqt¥0 is a d-dimensional Brownian motion, α, σj : RN Ñ RN
are vector fields, and pxpt, x0qqt¥0 is a stochastic process with values in RN
satisfying the equations above, i.e., as we again need to interpret the differentials
as integrals,

(B.18) xpt, x0q � x0 �
» t
0

αpxps, x0qqds �
ḑ

j�1

» t
0

σjpxps, x0qqdBjs .

For us, x0 will typically be a constant, but in general, it can be any F0-measurable
random variable. If the vector fields are regular enough, any Itô equation can be
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rewritten into an equivalent Stratonovich form,

(B.19) dxpt, x0q � α0pxpt, x0qqdt �
ḑ

j�1

σjpxpt, x0qq � dBjt , xp0, x0q � x0,

where α0pxq :� αpxq� 12
°d
j�1Dσjpxqσjpxq denotes the Stratonovich corrected

drift. When dealing with Stratonovich equations, we also write

(B.20) dxpt, x0q �
ḑ

j�0

Vjpxpt, x0qq � dBjt , xp0, x0q � x0,

with vector fields Vj : RN Ñ RN , where we set B0t � t to shorten the notation.
The fundamental result on solvability of such equations is the following,

which is essentially a copy of the corresponding theorem for ordinary differential
equations.

Proposition B.17. Assume that α, σj are Lipschitz continuous vector fields.
Then, there exists a unique solution pxpt, x0qqt¥0 of (B.17) with almost surely
continuous paths that is adapted to the filtration generated by pBtqt¥0, i.e.,
the smallest filtration making pBtqt¥0 adapted (and, hence, also to pFtqt¥0).
In particular, all integrals appearing in (B.17) are well-defined. Furthermore,
suptPr0,T s Er|xpt, x0q|2s   8 for T ¥ 0, the mapping x0 ÞÑ xpt, x0q is almost
surely Lipschitz continuous, and Er|xpt, x1q� xpt, x2q|2s ¤ C|x1� x2|2 for all x1,
x2 P RN .

Here, |�| denotes the Euclidean norm in RN . The proof of the theorem is
done by Picard iterations.

We remark that extensions are possible in many directions, in particular, α
can be allowed to only satisfy a one-sided Lipschitz condition, see [71]. Solu-
tions as obtained in Proposition B.17 are also called strong solutions. If the
coefficients are less regular, it can still be possible to solve (B.17) on a larger
probability space (weak solutions). As we shall not need this more general no-
tion in this work, we refer the reader to [58, 81] for more details on existence
and properties of weak solutions.

One of the properties of solutions of stochastic differential equations exten-
sively used in this work is the Markov property.
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Proposition B.18. Assume that the vector fields α, σj , j � 1, . . . , d are Lip-
schitz continuous. Then, the solution pxpt, x0qqt¥0 of (B.17) satisfies

(B.21) Erf pxpt � h, x0qq|Fxt s � Erf pxph, ξqqs|ξ�xpt,x0q,

where f : RN Ñ R is a bounded and measurable function. Here, pFxt q denotes
the filtration generated by pxpt, x0qqt¥0.

Define the Markov semigroup pPtqt¥0 of xpt, x0q by Pt f px0q :� Erf pt, x0qs.
Proposition B.17 shows that Pt f is bounded and continuous if f is. Further-
more, pPtqt¥0 actually is a semigroup on the bounded and continuous functions,
endowed with the supremum norm ∥f ∥ :� supxPRN |f pxq|, as boundedness of
Pt , t ¥ 0, follows from the monotony of the integral, P0 � I is obvious, and
Propostion B.18 yields Pt�s � PtPs for t, s ¥ 0.

B.3 Stochastic partial differential equations

Let pH, ∥�∥Hq be a separable Hilbert space. For vector fields α, σj : H Ñ H,
and A : domA � H Ñ H the infinitesimal generator of a strongly continuous
semigroup on H, see Appendix A, we want to consider the equation

(B.22) dxpt, x0q � pAxpt, x0q � αpxpt, x0qqqdt �
ḑ

j�1

σjpxpt, x0qqdBjt ,

where pBtqt¥0 is a d-dimensional Brownian motion. Here, we need to take
stochastic integrals with values in H. As we restrict ourselves to finite-dimensio-
nal driving noise, these can be constructed as in Section B.1, as the Itô isometry
holds true for Hilbert space-valued elementary integrands; it reads

(B.23) Er∥
» t
0

XsdB
j
s∥2Hs �

» t
0

Er∥Xs∥2Hsds for j � 1, . . . , d.

We shall only state the following generalisation of Proposition B.12, which can
be found in [29, Theorem 7.2.1].

Proposition B.19. Assume that pXtqt¥0 is an Itô process with values in H driven
by a d-dimensional Brownian motion, i.e.,

(B.24) dXt � µtdt �
ḑ

j�1

σjtdB
j
t .

128



B.3. Stochastic partial differential equations

Then, for every f : r0,8q � H Ñ R, pt, xq ÞÑ f pt, xq, once differentiable with
respect to t and twice with respect to x , uniformly continuous on bounded
subsets of r0,8q �H together with its derivatives,

df pt, Xtq � Dt f pt, Xtqdt �Dx f pt, XtqdXt

� 1
2

ḑ

j�1

D2x f pt, Xtqpσjt , σjtqdt.(B.25)

For the general case of infinite-dimensional driving noise, see, e.g., [27], or
any other book on stochastic partial differential equations cited at the beginning
of this chapter.

As in the finite-dimensional case, assuming that σj is Fréchet differentiable,
it is possible to transform to Stratonovich form, the Stratonovich corrected drift
being

(B.26) α0pxq :� αpxq � 1
2

ḑ

j�1

Dσjpxqσjpxq.

Moreover, the finite-dimensional case is contained in the infinite-dimensional
case by setting H � RN and A � 0.

Similarly to deterministic partial differential equations, it is usually not pos-
sible to solve (B.22) in the strong sense, i.e., taking classical derivatives (the
differentiability requirements correspond to xpt, x0q P domA). Instead, using
the semigroup St :� expptAq generated by A, we consider the mild formulation

(B.27) xpt, x0q � Stx0 �
» t
0

St�sαpxps, x0qqds �
ḑ

j�1

» t
0

St�sσjpxps, x0qqdBjs .

Again, we shall restrict ourselves to deterministic initial conditions, but remark
that an extension to F0-measurable random variables is possible.

Proposition B.20. Assume that α, σj , j � 1, . . . , d , are Lipschitz continuous.
Then, there exists a unique solution pxpt, x0qqt¥0 of (B.27) with almost surely
continuous paths, and the mapping x0 ÞÑ xpt, x0q is almost surely Lipschitz
continuous. Furthermore, suptPr0,T s Er∥xpt, x0q∥pHs ¤ CT p1� ∥x0∥pHq with some
CT ¡ 0 for all T ¡ 0.

Define Pt f px0q :� Erf pxpt, x0qqs. As in the finite-dimensional case, pPtqt¥0
defines a semigroup (the proof of Proposition B.18 given in [81, p. 115] clearly
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generalises, being applicable to all cases where strong solutions exist for arbitrary
square integrable initial values; see also [92, p.371]). The next result proves
differentiability with respect to the initial value.

Proposition B.21. Assume that α, σj , j � 1, . . . , d are k times continuously
Fréchet differentiable with bounded derivatives (α and σj , j � 1, . . . , d , do not
have to be bounded themselves). Then, x0 ÞÑ xpt, x0q is almost surely k times
continuously Fréchet differentiable, and the derivatives are given by taking formal
derivatives in (B.27). Furthermore, for all T ¥ 0 there exists some constant
CT ¡ 0 independent of x0 with suptPr0,T s Er∥Djx0xpt, x0q∥pLj pH;Hqs ¤ CT .

Here, LjpH;Hq denotes the Banach space of bounded j-linear maps Hj Ñ H,
endowed with the norm

(B.28) ∥a∥Lj pH;Hq :� sup
∥hi∥¤1
i�1,...,j

∥aph1, . . . , hjq∥H;

see also Definition 2.23. Hence, Pt preserves differentiability if the coefficients
are smooth enough.
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