Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://wawv.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Real-time Encrypted Speech
Communication Over Low
Bandwidth Channels

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur/in
im Rahmen des Studiums
Computer and Network Security
eingereicht von

Markus Kammerstetter, Bsc.
Matrikelnummer 0226196

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung
Betreuer/in: Ao. Univ. Prof. Dr. techn. Wolfgang Kastner
Mitwirkung: Dipl. Ing. Mag. rer.soc.oec. Dr. techn. Christian Platzer

Wien, 11.05.2011

(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Hiermit erkldre ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit
— einschlieBlich Tabellen, Karten und Abbildungen —, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 11.05.2011

(Unterschrift Verfasser/in)

ii

Abstract

Today, electronic speech-telephony and -communication is broadly available through a
number of different media and technologies, where the general tendency is still directed
towards digital mobile communication. Depending on the communication requirements, a
user may employ a wired land line, a satellite or cell phone link or even a wireless radio
channel. However, even though billions of users use these systems every day, the technologies
employed may have security vulnerabilities allowing potential attackers to eavesdrop on
the conversation, impersonate users or mount other attacks. Especially the growing amount
of wireless technologies makes access to the communication media easier for adversaries
and less likely to get caught. Hence to protect their users, it is of utter importance that
these communication systems have a robust design involving strong cryptography to ensure
information security properties like confidentiality, integrity or authenticity. In the scope
of this thesis, we show that these security properties do not or only partly hold for the
world’s most widely used communication networks such as the Global System for Mobile
Communications (GSM) or the Universal Mobile Telecommunications System (UMTS).
While the design of GSM strictly follows a questionable security-by-obscurity approach that
offers almost no protection today, even the more openly designed successor UMTS suffers
from security implications. If users need to a have private conversations over those media,
they usually need to use secure phone products that offer end-to-end encryption between the
involved parties. However, as these systems are often based on closed designs, the users have
to trust these products to be secure. We show that there are bogus products on the market
that bring no significant security improvements, resulting in users who merely think that
their conversations are secure, although in reality they are not. Also, commercial systems
often target only a single communication medium (such as GSM) so that for each medium a
user needs to employ a different voice privacy system. To tackle these issues, we developed
a new and versatile stand-alone system that has a number of advantages over existing secure
telephony products. The working prototypes comprise of customly designed embedded hard-
and software that can be connected to a broad range of communication media. One of the
key features is the ultra low bandwidth requirement of 9600 baud and below, enabling its use
over very low bandwidth channels. We based our design entirely on standardized, established
and widely-used cryptographic primitives providing a high amount of security. In fact, our
system does not only allow secure conversations with the information security properties
confidentiality, integrity and authenticity, but it also provides Perfect Forward Secrecy (PFS),
repudiation and a certain degree of plausible deniability.

Kurzfassung

Elektronische Sprach-Telefonie und -Kommunikation sind heute weit verbreitet durch eine
Vielzahl von unterschiedlichen Medien und Technologien, wobei der Trend nach wie vor in
Richtung digitale Mobilkommunikation geht. Je nach Kommunikationsanforderungen kann
ein Nutzer eine drahtgebundene Telefonleitung, eine Satelliten- oder Mobilfunk-Verbindung
oder auch eine drahtlose Funkverbindung verwenden. Obwohl diese Systeme tdglich von
Milliarden von Nutzern genutzt werden, konnen die zugrunde liegenden Technologien
Schwachstellen enthalten, die es potenziellen Angreifern erlauben, Gespriche abzuhoren,
sich als andere Nutzer auszugeben oder andere Angriffe durchzufithren. Besonders die
steigende Zahl von drahtlosen Technologien erlaubt den einfacheren Zugriff auf die Kom-
munikationsmedien durch Angreifer und mindert zugleich auch die Wahrscheinlichkeit
entdeckt zu werden. Um die Nutzer zu schiitzen, ist es besonders wichtig, dass diese Systeme
ein robustes Design mit starker Kryptographie besitzen, sodass Informationssicherheits-
Eigenschaften wie die Vertraulichkeit, Integritit oder Authenzitit sichergestellt werden
konnen. Im Rahmen dieser Arbeit konnten wir zeigen, dass diese Sicherheits-Eigenschaften
fiir einige der weltweit am meisten verbreiteten Kommunikationsnetze wie das Global Sys-
tem for Mobile Communications (GSM) oder das Universal Mobile Telecommunications
System (UMTS) nicht oder nur zum Teil gelten. Wihrend das Design von GSM einem
sehr fragwiirdigen ““security-by-obscurity” Ansatz folgte und heute nahezu keine Sicher-
heit mehr bietet, leidet auch der offenere Nachfolger UMTS unter Sicherheitsméngeln.
Wenn Nutzer iiber diese Medien sichere Gespriche fithren wollen, konnen sie iiblicherweise
auf sichere Telefonieprodukte zuriick greifen, die eine End-zu-End Verschliisselung zwis-
chen den jeweiligen Gesprichspartern ermoglichen. Da diese Produkte jedoch hiufig auf
geschlossenen Designs basieren, muss der Benutzer darauf vertrauen, dass die jeweilige
Implementation auch sicher ist. Tatsdchlich konnten wir zeigen, dass es fragwiirdige Pro-
dukte auf dem Markt gibt, die kaum einen merklichen Sicherheitsgewinn erzielen. Dies
fithrt zu Benutzern die sich in falscher Sicherheit wiegen und zwar glauben sicher zu sein,
dies aber tatsédchlich nicht sind. Desweiteren zielen kommerzielle Systeme oft lediglich auf
ein einziges Kommunikation-Medium (wie etwa GSM) ab, sodass ein Benutzer fiir jedes
einzelne Medium ein anderes Sprachverschliisselungs-System benétigen wiirde. Um dieser
Problematik entgegen zu wirken, entwickelten wir ein vielfiltiges sowie eigenstindiges
System, dass zu einer Vielzahl von Medien verbunden werden kann. Einer der wesentlichen
Vorteile sind die ultra-niedrigen Anforderungen an die Kanalbandbreite von 9600 Baud und
weniger, wodurch auch der Nutzen iiber stark bandbreitenlimitierte Kanile gewihrleistet
werden kann. Unser Design besteht ausschlieflich aus standardisierten, bewéhrten und
weitverbreiteten kryptographischen Prinzipien, womit ein hoher Sicherheitsstandard geboten
wird. Das System ermoglicht sichere Gespriache nicht nur mit den Informationssicherheits-
Eigenschaften Vertraulichkeit, Integritdt oder Authenzitét, sondern bietet ebenso Perfect
Forward Secrecy (PFS), Leugbarkeit und limitierte glaubhafte Abstreitbarkeit.

iii

Contents

Abstract ii
Kurzfassung iii
Contents v
List of Algorithms vii
List of Figures vii
List of Tables viii

1 Introduction 1
1.1 Motivation e e e e e e e e e e 1
1.2 Stateofthe Art e 2
1.3 Methodology e 2
1.4 Outlineof this Thesis 3
1.5 Contribution e e 4

2 Voice communication security on mobile networks 5
2.1 GSM.. . e 5
22 UMTS/3G 18
23 Conclusion e 25
3 Established cryptographic principles and protocols 27
3.1 Cryptographic principles 28
3.2 Key exchange in existing cryptographic protocols 35
33 Conclusion 37
4 Protocol design and security features 39
4.1 Desired properties of the communication system 39
4.2 Adapting the OTR Authenticated Key Exchange for low bandwidth usage . . . 41
4.3 Initial authentication with Short Authentication Strings (SAS) 44
4.4 Authentication with Key Continuity Management (KCM) 47

vi CONTENTS

4.5 Design of the data transfer protocol L. 47
4.6 Conclusion L 49
5 Implementation 51
5.1 Hardware e 51
5.2 Software e e e e e 63
6 Evaluation and results 79
6.1 Durationof thekeyexchange 80
6.2 AMBEspeechcodeclatency 80
6.3 Speech communication latency and required bandwidth 81
7 Related work 87
8 Conclusion and future work 91

Bibliography 95

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9

List of Algorithms

3.1 ECCkey pair generation v
3.2 ECDH shared secret calculation
3.3 ECDSA signature generation v v v vt
3.4 [ECDSA signature verification
4.1 OTR Authenticated Key Exchange (AKE) [1]
4.2 modified elliptic curve OTR Authenticated Key Exchange (AKE)

List of Figures

simplified GSM architecture L Lo
authentication and encryption in the GSM network
COMPI128 architecture
AS5/T algorithm
AS5/2algorithm
simplified UMTS architecture
MILENAGE functions f1..f5 for authentication and key generation
f8encryption function oL
UEAL1 key-stream generator v v v v v v vt e e e e

2.10 f9integrity protection function
2.11 UIA1 CBC-MAC construction v v v v v v i v e i i

4.1

5.1
5.2
53
54

general protocol layout for encrypted communication

Atmel AT91SAM9260 block diagram [2]
Olimex SAM9-1.9260 developmentboard
Olimex SAMO9-1.9260 schematic [3]
TLV320AIC23 testboard

10
11
18
20
21
22
23
24

48

52
54
55
56

vii

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

6.1
6.2
6.3
6.4

2.1

3.1
32

5.1
5.2

6.1
6.2
6.3

WMS8731 testboard 56
TLV320AIC23B test board schematic 58
AMBE-3000F speech compressionDSP 59
AMBE-3000F prototyping board 60
AMBE-3000 prototyping board schematic 61
combined audio codec and speech compressionboard 62
functional encrypted speech communication hardware 62
AT91SAMO9260 memory mapping [2] 64
speech compression I/O plugin concept 69
speech compression I/O plugindesign, 70
AMBE-3000 packet timing 71
thread overview L e e e 72
test setup: two interconnected encrypted speech communication units 79
possible bit rates at 4800 baud with 128 bit HMAC size 83
possible bit rates at 9600 baud with 128 bit HMAC size 83
required baudrate for the lowest vocoder bit rate (2250 bps) and 128 bit HMAC . . 84

List of Tables

authentication and key generation functions 19
equivalent key size comparisoninbits 0oL 29
HMAC opad and ipad padding constants 34
TLV320AIC23B connection to SAM9-L.9260board 57
AMBE-3000 prototyping board connection to SAM9-L9260 board 60
duration of the AKE at different baudrates, 80
different AMBE-3000 speechrates 81
measured baud rates and latency oL oL oo 85

viii

CHAPTER

Introduction

1.1 Motivation

Today, speech-telephony and -communication is possible through a number of different media,
where the general tendency is still directed towards digital mobile communication. Currently,
with more than 2 billion users [4, 5] worldwide, the Global System for Mobile communications
(GSM) currently is the biggest system. Yet, newer network generations such as the Universal
Mobile Telecommunications System (UMTS) have emerged, that will supersede GSM in the near
future. In addition to these widely established networks, numerous other possibilities for speech
communication such as the analog Plain Old Telephone Service (POTS), satellite telephony,
wireless radio channels or Voice-over-IP (VoIP) systems exist.

Unfortunately, most of these systems do not implement trustworthy voice security out of the box.
Either they have no security protections at all (such as POTS) or those in place are inadequate.
One such example is GSM, where voice is encrypted only on the Over-The-Air (OTA) interface
between the Mobile Station (MS) and the Base Transceiver Station (BTS). However, due to many
other inherent flaws [5] the security of GSM can be considered completely broken today. Newer
network generations such as 3G are supposed to fix these security issues, but attacks start to
arise as well. One such example is the class of sandwich attacks on the KASUMI encryption
algorithm recently discovered by Dunkelman at al. [6]. Even if there would be no security flaws
in a system, it would not be trustworthy if there is no end-to-end security in place, as there is
always the possibility of an attacker in the middle. In fact, for widely used telecommunication
networks it is mandated by law (at least in the European Union and the U.S.) that such networks
can be lawfully intercepted for “the protection of national interest” [7].

At the same time this also opens the door for illicit use of lawful interception tools such as in
the Greek telephone tapping case [8]. Therefore, if two individuals (we assume that they are
named Alice and Bob) wish to talk securely over one of these networks, a trustworthy end-to-end
security solution with a given set of information security properties is required. These primary
security properties are Secrecy, Authenticity and Integrity. In addition, a system could also
have the secondary security properties Perfect Forward Secrecy (PFS) and, if possible, plausible

1

2 CHAPTER 1. INTRODUCTION

deniability. For cellular networks, there are commercial secure phone products [9] or smart phone
applications [10] that implement at least some of these properties, while other ones [11] only
provide questionable security protection by strictly following a security-by-obscurity approach.
However, so far there seem to be no readily available systems that implement end-to-end voice
security in a generic enough way, that different underlying communication media can be utilized
with the same equipment. At the moment, a separate and different voice security solution needs
to be used for each network. To fill this gap, in this thesis we developed a generic end-to-end
voice security system that implements all of the above mentioned information security properties
while at the same time not restricting its use to a specific communication medium.

This is achieved in two steps: First, the required minimum bandwidth is constrained to as little
as 4800 baud so that the system can be used even over very low bandwidth channels. This is
possible by utilizing special speech coding algorithms in combination with an optimized protocol
design.

Secondly, the system leverages custom designed embedded hardware that offers different ways to
connect to existing communication devices such as cell phones or digital wireless radios. In order
to gain a trustworthy security solution, we employ only cryptographic principles and protocols
that are proven to be secure, well established and widely used. An additional flexibility gain is
accomplished by running the Linux operating system on the embedded hardware. This allows to
use the functionality of the Linux kernel and the software applications together with the software
of our voice security implementation.

1.2 State of the Art

There are currently a number of commercial secure telephone products and projects. The GSMK
Gesellschaft fiir sichere Mobile Kommunikation mbH [9] sells secure telephony products that
include their own encryption engine implementation [12]. In contrast to other products, the
source code of the encryption engine is available to its users, allowing them to make code reviews
to ensure that the system does not include back doors. In contrast, products like the Secure
Phone Miser [11] are strictly based on proprietary solutions and only very little is known on their
security. Whispersys has developed a software tool named “Redphone” [10] that is available for
the Android Smart Phone platform. The implementation uses the ZRTP protocol [13] developed
by Phil Zimmerman et al. In addition to the ZRTP protocol, Zimmerman et al. also implemented
ZFone [14], a software VoIP application utilizing the ZRTP protocol for secure communication.
In contrast to the mentioned products, our system employs a modified OTR [15] key exchange
and a bandwidth optimized communication protocol. Due to its key exchange it is closely related
to OTR [15]. For a comparison to existing scientific projects, we would like to forward to the
related work section 7.

1.3 Methodology

To be able to design our secure communication system, we evaluated the threats and attacks on
prevalent communication networks like GSM and UMTS. We classified the attacks in active,
semi-active and passive attacks. Based on this information, we examined both commercial as

1.4. OUTLINE OF THIS THESIS 3

well as academic end-to-end speech encryption solutions, that should solve these security issues.
However, to be able to determine whether a system is secure, we had to define a communication
model allowing us to derive a number of required information security properties. The target
system has to meet the minimum set of our information security properties to be considered
secure. After the analysis of the state of the art situation, we set out to evaluate established
cryptographic principles and protocols in order to determine their usability for low bandwidth
application. By using this information as foundation, we were able to design a cryptographic
security system with provable security features. In the following, we estimated the hardware
requirements and started to implement an embedded system having the functionality to capture
and playback audio, to compress and decompress speech down to low bit rates as well as to run the
Linux operating system. Once the hardware implementation was complete, we evaluated which
type of software and programming libraries we could use to implement the security system, that
we designed earlier. As soon as the overall implementation was ready, we created a theoretical
model to evaluate the required bandwidth and latencies of the system. In addition, we carried out
practical measurements which allowed us to verify our theoretic model. Finally, we performed an
analysis regarding related scientific projects, which showed that our system and its properties are
a novelty to the field of low bandwidth speech communication.

1.4 Outline of this Thesis

In Chapter 2, we show what type of security features existing GSM and UMTS networks
have and how they are implemented. Based on this information, we analyze the security of
these systems with regard to the information security properties confidentiality, integrity and
authenticity. After presenting practical attacks in detail, we conclude that the examined networks
do not offer adequate protections for secure conversations. In Chapter 3, we evaluate which
established cryptographic principles and protocols are considered to be secure and how they
can be applied for low bandwidth application. We come to the conclusion, that Elliptic Curve
Cryptography is especially suited for our application, as it allows to significantly reduce the
key sizes without compromising security. In Chapter 4, we define all the security properties
our system should have. Based on the knowledge of the previous chapter, we design a security
system that implements all of the defined security properties. In Chapter 5, we show how to
implement the system in hard- and software. The resulting prototype system comprises of audio
processing and compression hardware as well as a powerful ARM9 controller, capable of running
Linux. On the software side, we make adaptations to low level software (such as boot loaders
and the Linux kernel), but we also implement essential application code necessary for encrypted
speech communication. In Chapter 6, we create a theoretical model, that can be used to calculate
the resulting system latency and the required bandwidth. We evaluate the duration of the key
exchange as well as the latency and bandwidth requirements in comparison to our theoretical
model. In Chapter 7, we finally provide an overview of related work, whereas in Chapter 8, we
present the conclusion and further work.

4 CHAPTER 1. INTRODUCTION

1.5 Contribution

In Chapter 2, we contribute a summary of the current state of the art for mobile network security
with focus on GSM and UMTS. To tackle the security problems of these networks, we designed
a novel embedded system comprising custom hard- and software. In addition, we designed a
system applying security properties to audio streams, that are, to the best of our knowledge, new
to the field of low-bandwidth speech communication. To prove the effectiveness of the system, we
conducted an evaluation with regard to the duration of the key exchange, the required bandwidth
and the resulting latency. Finally, we contribute a novel protocol design, allowing future system
to incorporate the high security of our system.

CHAPTER

Voice communication security on
mobile networks

In this section we provide an overview of the most notable voice security solutions on cellular
networks. For each type of network we take Alice and Bob as an example. They would like to
have a private conversation that is protected in terms of confidentiality, integrity and authenticity.
We define these properties as follows:

o Confidentiality: Alice and Bob want to be sure that no one else can read their messages.

o [ntegrity: Besides Alice and Bob no one should be able to change the content of a message
without notice.

e Authenticity: Alice and Bob need proof that exchanged messages originated from each
other.

Furthermore, we make the assumption that an either passive or active attacker named Eve might
be present who tries to violate these security properties.

2.1 GSM

The Global System for Mobile communications is a fully digital radio network which has been
designed with security in mind. That is, it should be “at least as secure as the wire-line system” [4].
Among the security features are confidentiality and anonymity on the radio path as well as strong
client authentication.

Architecture

Fig. 2.1 shows the simplified GSM architecture. The mobile station (MS) is a commodity item
that has a unique identity in form of the 15-digit hierarchical International Mobile Equipment
Identity (IMEI) number [16, 17, 18].

6 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

VLR HLR AUC

£ 1= 2
% BTS> % \liij
BSC MSC

®

BTS

Figure 2.1: simplified GSM architecture

IMEI=AAAAAAAABBBBBB, C
TAC éﬁk C/S

It is a decimal number made up of a centrally assigned 8-digit Type Approval Code (TAC),
followed by a 6-digit Serial Number (SNR) assigned by the manufacturer and one check or spare
digit (C/S) [18].

In order to connect to a GSM network, each mobile station needs to be personalized with a
removable SIM (subscriber identity module) card. SIM cards can be native smart cards, but today
mostly smart cards running the security certified Javacard [19] operating system are in use. In
contrast to native implementations, this has some benefits like the GSM operators’ ability to
include customized applications or modifications on the card. It also allows the implementation
of the required SIM functionality as hardware independent and interoperable software application.
Among other data, the SIM card contains the subscriber authentication key K, the unique
International Mobile Subscriber Identity (IMSI), the Temporary Mobile Subscriber Identity
(TMS]) and the cryptographic authentication and key generation algorithms A3 and A8 [4, 20].
The subscriber authentication key K; is a 128-bit randomly generated secret key shared with
the network provider. When the network operator issues a new SIM card, K is stored on the
SIM card as well as in the operator’s Home Locator Register (HLR) database. For authentication
purposes, the HLR database contains the IMSI number of the SIM card as well.

IMSI=AAA BB Cccccocccococ
=~
MCC MNC MSIN

The number is at most 15 decimal digits long and, similar to the IMEI number. It follows
a hierarchical numbering concept: The first three digits of the IMSI are the internationally
standardized Mobile Country Code (MCC) followed by a two digit Mobile Network Code
(MNC), which uniquely identifies the mobile network within a country [17]. The remaining 10
digits (or less) denote the the Mobile Subscriber Identification Number (MSIN) applied by the
home network operator to identify the subscriber.

2.1. GSM 7

As soon as the mobile station is turned on, the Personal Identification Number (PIN) needs to
be entered to unlock the SIM card. On success, the card allows access to the IMSI number [4]
and the MS connects to the strongest Base Transceiver Station (BTS). Then both the BTS and
the MS start a continuous measurement process involving measurements of the received signal
level (RXLEV) and the received signal quality (RXQUAL), which is a function of the number of
received bit errors [17]. If the link quality is good enough, the BTS and the MS will lower their
transmission power to a minimum level. This allows not only the power consumption of the MS
to be minimized, but is also thwarts unwanted co-channel interference.

In the next step the MS begins the client authentication process by transmitting its IMSI to the
connected BTS [4]. The message is passed on to the Base Station Controller (BSC) and the
Mobile Services Switching Center (MSC), where the Visitor Location Register (VLR) and the
HLR databases can be queried. Typically, a GSM network only has one central HLR, but multiple
VLRs (one for each MSC) [17]. Each VLR can act as a cache for data stored in the HLR which
reduces load. Besides the VLR assigns the Temporary Mobile Subscriber Identity (TMSI) which
is used instead of the IMSI in subsequent network communications on the radio link. This way
Anonymity on the radio path is achieved.

8 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

Authentication and Encryption

Mobile Station radio link GSM provider
| | I

| RAND
SIM Y ¢
A3 ; | A3
| : : |
S\ s oy K
A8 é SRES compaﬁso/r; é A8
Frh v iKc Kcl ¥ Fn
data AS ;encrypted data AS data

Figure 2.2: authentication and encryption in the GSM network

Fig. 2.2 outlines the authentication and encryption process. As soon as the IMSI was received by
the MSC, the Authentication Center (AUC) looks up the corresponding subscriber authentication
key K; in the HLR. On success, it creates five authentication triples (AUTH), but only the first
triple is used while the latter ones can be applied for re-authentication at a later point in time.
Each triple consists of:

AUTH = RAND, SRES, K,

RAND is a 128-bit random number that is sent from the GSM network to the MS in plaintext [20].
On both sides it is fed into the A3 keyed hashing algorithm together with K; to obtain the
32-bit signed result SRES. The MS sends back the result to the GSM network where it can be
compared with the value calculated at the network provider side. If it matches, authentication was
successful and the encryption key material can be generated. In general, this kind of procedure is
known as challenge-response protocol. On each side key material is derived by hashing SRES
together with K; with the help of the A8 keyed hashing algorithm. The output of this calculation
is the 64-bit encryption key K .. With the calculated key K. and the current 22-bit TDMA (Time
Division Multiple Access) frame number of the received transmission F;,, the A5 encryption
algorithm is initialized and ready to encrypt subsequent messages exchanged between the MS
and the BTS.

The involved cryptographic algorithms work as follows: Both, the A3 authentication algorithm
and the A8 session key generation algorithm, are not standardized which allows GSM operators to
choose their own implementations. Yet a non-public proprietary reference implementation of the
so called COMP128 algorithm was suggested by ETSI (European Telecommunications Standards
Institute) to GSM operators [4, 21]. It combines the functionality of A3 and A8 which is why
it is also known as the “A3/A8” algorithm. By reason of the non-public design, the algorithm

2.1. GSM 9

did not undergo public scrutiny before deployment. But due to a leaked document and reverse
engineering of a handset, the algorithm became public in 1997 [21].

RAND, Ki
Y

‘ x = RAND || K;

| -y

‘ x=x"]| Ki [hashing] J

T

gth
iteration ?

[permutation] M

l yes

output
Figure 2.3: COMP128 architecture

The architecture of COMP128 is depicted in Fig. 2.3. In brief, COMP128 is initialized with the
concatenation of the 128-bit RAND and the 128-bit authentication key K; [22]. The core of
the algorithm consists of a hash function that transforms a 32-byte value x into a 16-byte hash
value 7’ by means of compression and substitution with a set of 5 S-Boxes. The result of the
hashing function z’ is permutated and concatenated with K; to get a 32-bit value x” that is fed
back into the hash function for the next round. In total 9 such rounds (i.e. hashing followed by
permutation) are executed while in the last round no permutation is performed. From the output,
bits 0 to 31 are used as SRES and bits 74 to 127 are applied to generate K. This is surprising,
as K. does not use a full of 64 bits of the hash output, but merely 54 bits. In order to get the
64-bit key K, the latter 10 bits are filled with zeros. This effectively reduces the size of the
session key K. to 54 bits [22]. For encryption there are different variations of the A5 algorithm:
the stronger AS5/1 variant and the weaker A5/2 variant which was designed for export use. For
performance reasons they are not implemented on the SIM card, but reside on the MS instead.
Like COMP128 they were designed in secret and could not undergo public scrutiny, but at some
point they leaked and became public [4, 22]. In fact the non-public nature of the algorithms is a
violation of Kerckhoffs’ principle that the security of a cryptosystem should solely depend on the
key and not on the secrecy of any other part of the system. Therefore, the design can be described
as security-by-obscurity design. Besides A5/1 and A5/2, there is the dummy encryption algorithm
A5/0, which does not encrypt at all, and the recent KASUMI (A5/3) algorithm which is available
on 3G handsets. We will discuss KASUMI in Section 2.2.

10 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

C1
peprpe | b [| [fa] [[[]]]]oq =

C2
ceysream <~ O—pipd [[[[[[J[RJ][]]]]]]o}q =

D
N\

—|22|21|2°||||||||||§|Ilﬂ||||||°|* "3

an v
UV \J

Y
U

Figure 2.4: A5/1 algorithm [23]

Fig. 2.4 shows the stronger A5/1 type of the A5 stream cipher. It is implemented as a set of three
linear feedback shift registers (R1, R2, R3). In each cycle a register Rn is clocked, if its clocking
bit C'n agrees with the majority of the clocking bits (C1, C2, C3), where the majority is defined
as maj(a,b,c) = ab @ ac @ be. Each register has a number of tapped bits that are combined
with the @ operation and fed back into the register as LSB. Similarly, the MSBs of the registers
are combined with the & operation to generate the key-stream. At startup all three registers are
initialized with zero. Then the 64-bit secret session key K. and the 22-bit frame number F,, are
added to the registers through the feedback path. However, in contrast to normal operation, the
registers are clocked regularly during initialization (thus clocking with the majority rule does not
apply here). After 64 + 22 = 86 regular clock cycles the initial state S; is reached. At this point
a warm-up phase is performed in which the generator is irregularly clocked 100 times and the
output is discarded. As GSM transmissions are made up of so called bursts, each one carrying
114 bits of information per direction, the A5/1 algorithm is used to generate exactly 2 « 114 bits
of key-stream. The first 114 bits are applied for uplink traffic encryption while the latter ones are
used for downlink decryption. (For traffic encryption and decryption the & operation is applied
by combining each bit of data with the corresponding bit of the generated key-stream.)

The weaker flavor of A5/1 is called A5/2 and depicted in Fig. 2.5. In comparison to A5/1 (Fig. 2.4)
it stands out that the tapping bits in the feedback path of A5/2 are equivalent to A5/1. However,
the irregular clocking and the key-stream generation is different. Clocking solely depends on the
state of the R4 register [24, 25]. Register R1 is being clocked if C1 agrees with the majority of
the clocking bits C1, C2 and C3. R2 is clocked if and only if C2 agrees with the majority while
R3 is clocked if and only if C3 agrees with the majority, respectively. As soon as this clocking
procedure was performed on the registers R1, R2 and R3, the clocking register R4 is clocked as
well. The majority function plays an important role for key-stream generation too. As shown in
Fig. 2.5, for each register R1, R2 and R3, a triple of three tapping bits is fed into the majority

2.1. GSM 11

%
—eprpe] | s | [[[[[[[[]]]o R1
1
\ P
keystream‘_@<_|21|2§|\|||||||||||||||||||O}—| R2
()
:——“
422p1|zo||||||||||||r|||||||ow -
CHENEN_NN.ANACEE 3 -

J

Figure 2.5: A5/2 algorithm

function m, where one bit of each is negated before entering the function. The key-stream is
obtained by combining the outputs of these functions with the MSBs of the registers R1, R2
and R3 by utilizing the & operation. Initialization is similar to A5/1. First all registers are set
to zero. Then the 64-bit secret session key K and the 22-bit frame number F;, are added to all
registers through the feedback path [25]. At this time the registers are clocked regularly and the
clocking logic does not apply. In the following warm-up phase R4 is clocked 99 times and the
output is discarded. At this time the registers R1, R2 and R3 are clocked irregularly already.
After warm-up the algorithm produces 2 * 114 bits of key-stream, where the first 114 bits are
used for encrypting the uplink and the latter ones are used for decrypting the downlink.

Security

In this section we analyze the security of the GSM network with respect to Alice and Bob who
wish to communicate securely (i.e. the properties confidentiality, integrity and authenticity must
hold). Security issues of the GSM network itself, that do not affect the given set of properties in
the communication between Alice and Bob, are less relevant to us.

As mentioned in Section 2.1, the design goals of GSM were that confidentiality and anonymity
are implemented on the radio path only (i.e. between MS and BTS). In addition the network

12 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

only performs client- authentication by means of the A3/A8 algorithms (see Section 2.1), but no
authentication of the network-side.

Unfortunately, for Alice and Bob this means that they can not use the GSM network to have a
secure conversation with each other. They can not be sure that their call is confidential as per
design [4, 20] there is no end-to-end encryption between their mobile stations (MS). Likewise,
there is no integrity protection that would alert them if someone tries to alter the content of their
conversation. In fact they can not even be sure that they are really talking to each other since
their handsets do not perform mutual authentication. Instead they only authenticate to the GSM
operator (i.e. to the operator’s HLR).

If an attacker plans to intercept their phone call, there are different ways to do so depending on
how much access she has to the GSM network. For example, a powerful adversary might be
an inside attacker working at the GSM operator with direct access to the GSM network (like
a technician). Due to the CALEA (Communications Assistance for Law Enforcement Act)
wiretapping law in the United States and a comparable law in the European Union [7], at least
in these countries telecommunication operators are mandated by law to allow “access to the
entire telecommunications” [7] to Law Enforcement Agencies (LEAs) over standardized “lawful”
interception (LI) handover interfaces. Unfortunately, these interception interfaces may also be
subject to illicit use (such as in the Greek wiretapping scandal [4, 8, 26] in 2004).

In the above mentioned cases the security of the call between Alice and Bob can be breached
without the need to overcome the GSM encryption or authentication barriers. Yet in practice it is
more likely that an attacker targets the wireless communication interfaces as they are easier to
access and the chances of being caught are low.

Before discussing the security of the wireless connection between the mobile station and the BTS,
it is noteworthy to mention that “in most countries the communication between the base stations
and the VLR pass unencrypted microwave links* [4]. If a GSM operator decides to extend the
network coverage by installing new base stations, he is often challenged with the fact that there is
no (cost-effective) way to connect the BTS to the underlying GSM network infrastructure (which
is especially the case in rural areas). This is the reason why in such cases network operators
tend to use directional microwave links to hook up their BTS to the rest of the network. Often
this equipment can encrypt traffic, but “the average phone company has no incentive to switch
the cryptography on” [4] which is why most GSM traffic passes in clear over the microwave
links [27, 28]. In fact these links are a viable mean for intelligence agencies to “get warrant-less
access to traffic” [4]. Equally, these links might be intercepted by other attackers, too.

The wireless connection between a mobile station and a BTS is authenticated and encrypted
as described in Section 2.1. In the past intercepting this connection was considered to be very
cost-intensive as specialized communication- and signal processing equipment was required [29].
An example of such devices are the so called “IMSI-catchers” that can not only receive GSM
traffic, but they can also transmit (a more detailed description is available below). In addition to
having a price tag of 200.000 Euro or more [29, 30], such units are exclusively sold to government
institutions [4, 30]. Today, IMSI-catchers allow to listen in on GSM conversations, but early
variants could merely obtain the IMSI number of nearby handsets (hence the name IMSI catcher).
They allow police forces to obtain IMSI numbers which can be used to get a warrant for tapping

2.1. GSM 13

phones (e.g. by using lawful interception) [4, 31], even if suspects use anonymous SIM cards.
However, as handsets merely use the pseudonymous TMSI number in wireless transmissions, the
IMSI catcher needs to rely on a trick. As soon as a MS connects to the IMSI catcher, it will first
do this with the TMSI number. But the IMSI-catcher claims to not understand the TMSI and the
handset kindly sends the cleartext IMSI [4]. In fact this is not a bug, but a feature that is needed
for roaming and failure recovery purposes [4].

However, with today’s technological advances it is feasible to implement low-cost (< 2000 Euro)
GSM monitoring systems or even an IMSI-catcher (examples are given in [30] and [31]) by
leveraging the numerous potentials of software defined radio (SDR) systems [31, 30] like the
Universal Software Radio Peripheral (USRP) [32]. In contrast to traditional radio systems, these
systems are low complexity general purpose transceivers that move most of the signal processing
away from hardware towards a software implementation. Hence, all (de-)modulation and signal
processing tasks are done in software which makes these systems extremely powerful. For
example, if the SDR covers the according frequency range and bandwidth, the same device can
act as broadcast radio receiver at one time and as IMSI catcher or garage door opener at another
time without having to change the hardware. The only difference is the software (-configuration).
In the context of GSM security it is an ideal tool for an attacker allowing her to send and receive
GSM signals. In addition to the GNU Radio software toolkit [33] (which implements basic SDR
signal processing), there are readily available SDR tools like AirProbe [34] or OpenBTS [35]
that have been specifically designed to work with GSM.

In the following we show some practical attacks breaking the confidentiality of the conversation
between Alice and Bob that can be conducted with the above mentioned low-cost tools. We
differentiate between passive and active attacks. In a passive attack the adversary merely monitors
the traffic between one of the conversational partners (i.e. Alice or Bob) and the BTS. In an active
attack the adversary actively transmits and thus interferes with normal network operation (e.g. by
setting up a fake base station).

If the AS5/2 algorithm (Fig. 2.5) is used for encryption, the internal state and the session key K,
can be recovered in real-time. Barkan, Biham and Keller have shown that a passive attacker
merely needs to capture eight frames (“a few dozen milliseconds”) [25] of encrypted data to
mount a ciphertext-only attack that can recover the key in “less than a second on a personal
computer” [25]. The general idea of this algebraic attack is to describe every bit of the key-stream
output as a set of equations relating to the initial state of the registers R1, R2 and R3 and then
guessing the initial state (out of 2'¢ possible states) of the R4 clocking register. As GSM applies
error correction codes before encryption, the structure of the plaintext is highly redundant (for
example on the GSM Slow Associated Control Channel (SACCH) each message has a fixed
size of 184 bits prior to applying the error-correction code while it has a size of 456 highly
structured bits afterwards). In their paper Barkan et al. show that this property can be applied
to the ciphertext and in a wider sense also to the key-stream [25]. By combining the knowledge
regarding the structure of the key-stream with the equations relating to the initial state of the
registers, it is possible to construct a new system of equations that can be solved with Gaussian
elimination [25, 24]. This procedure is repeated for every guess of R4 until the overall initial
state for a given ciphertext is found. Likewise, from the initial state the session key K. can be
obtained by reverse-clocking the A5/2 algorithm. Barkan et al. optimized their attack with a

14 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

time-memory tradeoff by pre-computing a set of matrices (having a size of 500MB) which took
them roughly 5 hours [25]. As a result for a given set of eight SACCH ciphertext frames the key
K. can be recovered in less than a second.

A similar approach is taken by Bogdanov, Eisenbarth and Rupp [24]. In contrast to Barkan et
al. they directly attack the GSM speech channel which requires 16 ciphertext frames and allows
them to start eavesdropping even during a call. Furthermore, they built special-purpose hardware
that can recover the key in about 1 second without precomputation. Due to the severe attacks on
AS5/2, the algorithm was phased out by the GSM security working group in 2006 [25]. As a result
newer GSM equipment should no longer support A5/2.

A passive attack on A5/1 (Fig. 2.4) is significantly harder. During the last decade A5/1
has been extensively analyzed, but most proposed attacks lacked practicability due to “strong
preconditions, high computational demands and/or huge storage requirements* [36]. In 2008
Gendrullis, Novotny and Rupp implemented a practical attack on A5/1 on a special purpose FPGA
(Field Programmable Gate Array) hardware device, called COPACOBANA (Cost-Optimized
Parallel Code Breaker) [36]. The basic idea of their attack is to guess the complete content of
registers R1 and R2 and then determine a large part of R3 from the known key-stream while
the rest of the bits in R3 need to be guessed as well. To optimize their attack, they discard
wrong possible choices for R3 by recognizing early contradictions in the algorithm’s clocking
behavior. The attack presumes 64 bits of known key-stream and can reveal the internal state of the
cipher with a time complexity of 7 hours on average and 14 hours in the worst case. Known key-
stream bits can be gathered easily by applying the & operation on captured ciphertext and known
plaintext in the GSM protocol. An example of known plaintext is the Cipher Mode Complete
message, which is the first encrypted message after the A5/1 encryption has been enabled. It
usually consists of empty padding bytes [37]. For an adversary the attack by Gendrullis et al. is
effectively usable by first capturing an encrypted communication with the victim and then, at a
later point in time, decrypting it within the mentioned processing time.

Yet recently it has been shown by Nohl et al. [37] that a time-memory trade-off (TMTO) attack
yields to a practical real-time key recovery. The central idea of this attack is that in theory a
code book could be created that maps every secret internal state of the cipher (i.e. the state of
the registers R1, R2 and R3) to a key-stream output. Hence by obtaining several bytes of known
key-stream (as described above), only a single code book lookup would be required to obtain
the secret internal state of the cipher and consequently also the session key K. by means of
reverse-clocking. At a first glance for a 64-bit cipher such a code book would require roughly
128 Petabytes of space and it would take more than 100.000 years of computation time on a
single-core CPU [37]. However, there are several key factors that allow a practical implementation
of this attack:

e A5/1 can be efficiently implemented to run on graphic cards. Consequently it would be
possible to create the complete code book within 3 months on 80 state of the art graphic
cards [37].

o Instead of storing the complete code book on disk, only a small part of state mappings can
be stored in an optimized rainbow table [38]. This results in an arbitrary time-memory

2.1. GSM 15

trade-off: The smaller the rainbow table, the longer is the computation time necessary for
the table lookup.

o As several states collide by repeatedly clocking the cipher, the warm-up phase of the cipher
(see Section 2.1) effectively reduces the key space from 64 bit to merely 61 bit [37].

e The A5/1 rainbow table can be compressed efficiently.

As a result, a set of rainbow tables has been calculated which requires a total of 2TB storage
space. With the rainbow table set and two captured encrypted known plaintext messages, the
secret key can be recovered with 90% probability [37, 39]. If the attack is carried out on a PC
with fast disk access and two state of the art graphic cards, the session key K. can be obtained
within 5 seconds [37]. Today both, the rainbow tables and the associated open source cracking
software Kraken, are public and can be downloaded from the Internet [39].

A very practical active attack exploits the fact that the BTS does not need to authenticate to the
MS (see Section 2.1). It allows an adversary to set up his own fake BTS in the vicinity of the target
which impersonates the target’s genuine network by adopting the network parameters (i.e. mobile
country code (MCC), mobile network code (MNC) and the provider’s short name) [4, 30, 31, 37].
These parameters can be obtained easily over the air from any of the provider’s BTSs. Once the
fake BTS is set up, an attacker may send arbitrary messages to connected mobile stations leading
to a broad range of possible attack scenarios. For example, a specially crafted GSM message
could exploit a software vulnerability in the mobile station’s baseband firmware, potentially
resulting in arbitrary code execution. However, in the following we assume that the attack is
carried out to eavesdrop on the call between Alice and Bob. In this scenario the adversary also
needs to set up a (fake) MS. To the target the fake BTS will pose as genuine BTS whereas the
attacker’s (fake) MS is used to connect to the GSM operator’s network. With this setup the
adversary can perform a Man-in-the-Middle (MitM) attack on the authentication and encryption
setup (Section 2.1) process. The attack can be divided into two different phases: connection
establishment and the actual Man-in-the-Middle attack.

In the first phase the adversary needs to make sure that the target’s MS connects to the fake BTS.
Depending on the current state of the MS, different actions are required. In the simplest case the
target’s MS was switched off and is being turned on while the fake BTS is in operation. If the
fake BTS is close to the target, the handset’s measured signal quality (see Section 2.1) of the fake
BTS will be higher than the signal quality of a genuine base station and the handset will readily
connect to it [30].

Slightly more effort is required if the target’s MS is already connected to a BTS, but there is
currently no call in progress. Whenever a MS connects to a genuine BTS, it also receives a list of
channel numbers for all neighboring base stations. Each channel number, the Absolute Radio
Frequency Channel Number (ARFCN), specifies the exact uplink and download frequency of the
corresponding BTS. Once the MS has received the list, it will only connect to these base stations
(and not to the fake base station). To circumvent the problem, an attacker can either jam the BTS
channel that is currently in use by the target’s MS or he can overpower the weakest neighboring
BTS with his fake base station [30]. When jamming, the MS looses the connection to the BTS

16 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

and it will switch to the initial frequency scanning mode. Similar to the first case, where the
handset was previously turned off, it will connect to the fake BTS as soon as jamming is disabled.
On the other hand overpowering the BTS with the lowest signal quality can be accomplished if
the fake BTS starts to send on the same ARFCN. This way at the MS the weakest BTS in the
neighbor list suddenly becomes the strongest one. As a result the MS will disconnect from its
current BTS and connect to the fake BTS [30].

Similarly, jamming or overpowering a BTS can be done if the MS is active in a call, but the effect
will be that the call is either dropped or not interceptable with a MitM attack on the authentication
and encryption setup. If the attacker jams the BTS channel in use by the target’s MS, the active
call will be dropped. While this is a nuisance for the target, he will most possibly call again
(or receive a call from the other party). In the meantime the attacker can apply the techniques
described above to get the target’s MS to connect to his fake BTS. If the attacker overpowers
a neighboring BTS instead, the MS will connect to the fake BTS, but in a different way than
in the previous case where no call is in progress. During a call, the MS does not change the
BTS on its own, but it needs to be commanded to do so with a handover message sent by the
BTS [16, 30]. The decision whether a handover should be performed has to be made by the
GSM network. Whenever the MS is in a call, it continuously measures the signal strength of all
neighboring BTSs. The results are transmitted to the network. In the event that the received signal
of a neighboring BTS is stronger than for the current BTS, the network initiates the handover
to the stronger BTS (i.e. the attacker’s fake BTS). But since there is still a call in progress,
the adversary would need to forward all communication between the genuine (weak) BTS that
she is overpowering and the target’s MS. Also she has no way to mount a MitM attack on the
ongoing encrypted communication, as the encrypted session (and the session key K,) is already
established. With that in mind we believe that the benefit of message forwarding is limited and
disrupting the active call is the easier and more effective attack method.

Once the target’s MS is connected to the fake BTS, the BTS can force the MS to re-
authenticate [25]. At that time the attacker can also retrieve required information such as
the IMSI number from the target’s MS. In the following we focus on the Man-in-the-Middle
attack on the authentication and encryption setup.

Essentially, the adversary starts this attack by using his fake MS to connect to a genuine BTS.
In the location update message she has to provide the so called class mark information which
includes sensitive information such as the encryption capabilities that the MS supports [25, 31].
It gives the attacker the ability to choose either no encryption algorithm (A5/0) or only a weak
one like A5/2. In the literature this attack is known as class mark attack [25].

Following the authentication process outlined in Section 2.1, the network will retrieve the secret
key K; from the HLR and generate the RAND token. To complete authentication, the adversary
forwards the RAND token to the target’s MS and the SRES response to the genuine BTS. If the
attacker chose to disable encryption by only allowing the A5/0 dummy encryption algorithm in the
class mark information, she can easily intercept any further communication between the genuine
BTS and the target’s MS. Otherwise the network will start encryption with the start ciphering
message and the attacker has the problem that she does not know the session key K.. However,
as the weak AS5/2 ciphering algorithm was chosen by the attacker, she can easily reconstruct K,
in less than a second. In fact the GSM standard specifies that the network should wait up to

2.1. GSM 17

12 seconds [25, 31] for a response. Considering that the previously described passive attack on
A5/1 by Nohl at al. [37] takes roughly 5 seconds to complete, it seems perfectly reasonable that
today also A5/1 can be used to recover K. (This could be especially relevant if the network only
supports stronger ciphers like A5/1 and A5/3 (see Section 2.2)). As soon as the attacker has the
session key K, she can decrypt any further communication easily. In addition we would like to
stress that with the key K. and the fake BTS, the attacker can also cut off the victim’s MS, hijack
the call and then impersonate the victim [25].

Finally, we would like to outline a semi-active attack that can be used if stronger ciphers like
A5/3 are in use. The attack exploits the fact that there is no key separation when using different
ciphers [4, 25]. The generated session key K. for a weak cipher like A5/2 is the same as the one
for a strong cipher like A5/3. To mount the attack, the adversary passively records the network
authentication (i.e. the RAND token) and the encrypted communication between the target’s
MS and the BTS. Then, at a later point in time, he sets up a fake base station in the vicinity of
the target. The target’s MS will connect to the fake BTS and the attacker sends the previously
captured RAND to the MS. However, in contrast to a genuine BTS, he specifies that the MS may
only use a weak cipher like A5/2. Once the encrypted communication with the weak cipher is
set up, the attacker can easily recover the session key K. But as the same key was used in the
previously recorded conversion, the attacker can now decrypt all previously captured messages as
well.

18 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

2.2 UMTS/3G

Today the belief that the Universal Mobile Telecommunications System (UMTS) and 3G are
the same seems to widely prevalent [4]. However, 3G actually refers to a set of third generation
mobile network standards released by the 3rd Generation Partnership Project (3gpp) and the 3rd
Generation Partnership Project 2 (3GPP2). As a result UMTS is only one of the specified third
generation systems and in countries such as the United States or South Korea different 3G system
like CDMA2000 are more widespread [40].

In contrast to the circuit switched GSM system, UMTS comprises a packet switched architecture
with high speed packet access and improved security. GSM security features that have proven to
work reliably, were adopted while the shortcomings of GSM security were addressed with new
security features. Among these are mutual authentication (i.e. the network also authenticates to
the user now), encryption and integrity protection with publicly peer reviewed algorithms and the
use of 128-bit keys.

Architecture

I I
r
= | \
| (@) I
| \ e
I I =
[| =
!) — | | §)
FRiE- B - N
0 |—NOP| | I |
: 29 Ele fao
|
| USIM ME : RNC : MSC VLR HLR AUC
777777 UE | |
| ® |
| |
| |
| |
| |
| |
'NodeB _ _ _ _ __
UTRAN

Figure 2.6: simplified UMTS architecture

Fig. 2.6 shows the simplified UMTS architecture which mostly resembles the architecture of
GSM. The Universal Subscriber Identity Module (USIM) holds vital information such as the
shared 128-bit subscriber authentication key K, the cryptographic algorithms necessary for
authentication and key generation as well as the IMSI and the TMSI number [40, 41]. The
USIM is a software application running on a standardized and tamper resistant smart card, the
Universal Integrated Circuit Card (UICC) [41, 42]. Today, these cards are extremely powerful.
For example, in addition to the USIM application they allow to run numerous (possibly value
added) applications in parallel, they may have high speed interfaces such as USB 2.0 and they
may even provide remote management services by running a Smart Card Web Server with IP
connectivity [42]. In UMTS terminology the terminal device (e.g. a 3G cellphone) is called
Mobile Equipment (ME), but as soon as it is combined with the USIM card, it is more generally

2.2. UMTS/3G 19

known as User Equipment (UE) [28, 40]. On the network side there are the radio base stations
(Node B) which are controlled by Radio Network Controllers (RNCs). Base stations together
with a RNC form the so called Universal Terrestrial Radio Access Network (UTRAN) [28, 40].
UTRANSs are connected to the UMTS Core Network (CN) comprising components that we
already know from the GSM architecture (Fig. 2.1). Other components that are mainly required
to provide access to both circuit- and packet-switched networks have been left out from this
description.

Authentication and Encryption

The Authentication Center (AUC) and the USIM share the secret 128-bit subscriber authentication
key K and a set of authentication and key generation functions. In total, there are five one-way
functions denoted f1.. f5 which are in principle operator-specific, but to achieve interoperability
of different USIM implementations, the 3GPP provided a set of example algorithms commonly
knows as MILENAGE [41, 43]. The role of these functions is specified in [43] and can be seen
in Tab. 2.1.

name | role
f1 | network authentication function
f2 | user authentication function
f3 | cipher key derivation function
f4 | integrity key derivation function
f5 | anonymity key derivation function

Table 2.1: authentication and key generation functions

Furthermore, to thwart replay attacks, the USIM card and the HLR keep track of two sequence
number counters SQNMS and SQNHE. SQNMS denotes the highest sequence number (SEQ) the
USIM has accepted while SQNHE is an individual counter for each user [44]. The MILENAGE
algorithm itself is specified in [45]. The basic idea of the algorithm is to use an existing 128-bit
kernel block cipher in different ways to compute the 128-bit output value of f1..f5. A simplified
functional model given by Nyberg [41] is visible in Eq. 2.1, where = denotes the input value,
E'x is the kernel encryption function with key K, ¢ denotes the number of distinct output blocks
and the values a1, ag, .., a; are fixed constants. For a more detailed description, see the ETSI
MILENAGE specification [45].

zi = Fx(Ex(z) ® a;),wherei = 1,2,...t 2.1

The specification suggests to use the well known AES-128 (Rijndael) algorithm as kernel block
cipher, but also mentions that other block ciphers or keyed cryptographic functions can be used
as long as they have 128-bit input, key and output values. In addition is must be computationally
infeasible to determine the key from chosen input or output values and it must be infeasible to
determine the output without the knowledge of the key [45].

20 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

] R
2=(a] (2] (=] (=] [=]

v v v v v

MAC RES CK IK AK
Figure 2.7: MILENAGE functions f1..f5 for authentication and key generation

RAND,K

Fig. 2.7 shows how the functions f1..f5 are applied to derive authentication and key material [43,
46]. This material is required to run the UMTS mutual Authentication and Key Generation (AKA)
algorithm which we will describe in the following.

Similar to GSM, whenever UMTS User Equipment (UE) is turned on, it starts the authentication
process by sending the cleartext IMSI number (see Section 2.1) to the network. If the network
knows the received IMSI number, the Authentication Center (AUC) generates a 128-bit random
number RAND. Together with the corresponding shared secret key K the output of functions
f1..f5 can be computed.

The function f1 requires the additional parameters SQN and AM F', where SQN is a fresh
sequence number (with respect to the above mentioned SQNHE counter) and AM F is the
Authentication Management Field used “to fine tune the performance or bring a new authentication
key stored in the USIM into use.* [44]. The result of f1 is the message authentication code
(MAC) for these fields.

The function f2 generates the user authentication output RF.S which is applied at a later point in
time for comparison in the challenge-response protocol. In principle this is the same procedure
that is used for GSM user authentication.

The functions f3..f5 generate the cipher key (C K), the integrity protection key (C K') and the
(optional) anonymity protection key (AK), respectively. As soon as the output of all functions is
available, the AUC forms the authentication vector AUT H and the quintet () visible in Eq. 2.2,
where || denotes concatenation. If anonymization is enabled, the & operation is used to conceal
the sequence number SQN in the authentication vector with the anonymity protection key AK.

AUTH = SQN @ [AK]||AMF||MAC

2.2
Q = (RAND,RES,CK,IK, AUTH) @2)

From the AUC the quintet () is forwarded to the VLR and finally to the RNC which will send
RAND and the authentication vector AUT H to the UE [27, 46]. On receipt, the USIM first
retrieves the unconcealed SQN [46]. If anonymization is enabled, the USIM can unconceal
SQN by first deriving AK with the f5(RAN D, K) function and then computing SQN @ AK.
In the next step the MAC for the SQ N and the AM F field is calculated with f1 and verified.

2.2. UMTS/3G 21

If the calculated MAC matches the received MAC, the USIM can assume that these fields were
indeed sent by the network. (The reason for this is that in addition to the USIM, only the AUC
knows the shared secret key K that is required to calculate the correct MAC.) Furthermore, the
SQN is checked against the SQNMS counter and the counter is updated to thwart replay attacks.
This way if a message with the same sequence number arrives again, the USIM will not allow it
anymore and discard it. In case all verification procedures were successful, the UE calculates the
user authentication token RE.S and the keys C K, I K with the functions f2, .., f4 respectively.
Finally RES is sent back to the network. If the received RES matches with the calculated one
from the quintet @, the Authentication and Key Generation (AKA) process is considered to have
completed successfully.

| COUNT-C DIRECTION | | COUNT-C DIRECTION

| BEARER | LENGTH | | BEARER | LENGTH |
A A
|CK—> f8] | | CK—>{ f8] |
| ikeystream | | lkeystream |

| pIaintext—»@—»ciphertext |

ciphertext —> —> plaintext |
|

sender receiver

Figure 2.8: f8 encryption function

With the necessary keys C'K and I K, the user and the network can start to secure their com-
munication. User packets and signaling messages are encrypted between the UE and the RNC
with the encryption function f8 visible in Fig. 2.8 [46, 47]. The function acts as a stream cipher
and produces a key-stream applied to either encrypt or decrypt a block of data by applying the
@ operation. While the main input parameters of f8 are the Cipher Key (C'K) and the length
(LENGTH) of the key-stream that should be generated, there are three additional parameters
denoted COUNT-C, BEARER and DIRECTION [47]. These parameters are required to ensure
that each frame is encrypted with a different key-stream [44]. COUNT-C is a time-dependent
input (COUNT-C), BEARER is the radio bearer identity and the 1-bit DIRECTION input speci-
fies the direction of the transmission (i.e. uplink or downlink) [40, 47]. However, the original
f8 function has been extended to the more generic KGCORE function which requires the two
additional parameters CA and CE. While CA specifies the mode of encryption, the CE field
is currently reserved for future use. This implementational generalization allows to extend the
security of the UMTS ciphers to older network generations such as GSM, EDGE (Enhanced Data
rates for GSM Evolution) or GPRS (General packet radio service) with the only difference being
the initialization parameter CA of the KGCORE function [44, 41]. As a result most of todays
mobile phones can use the GSM network with the more secure GSM A5/3 cipher as alternative to
the less secure older class of A5 algorithms.

Similar to the MILENAGE authentication functions, f8/KGCORE makes use of a cryptographic
kernel algorithm. At the moment ETSI has specified the UEA1 (UMTS encryption algorithm 1)

22 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

based on the KASUMI block cipher and the UEA2 based on the SNOW 3G stream cipher [47].
For performance reasons all kernel algorithms (i.e. UEA1 and UEA?2) are implemented on the
UE. In addition there is the dummy algorithm UEAO which denotes “no encryption”.

The KASUMI block-cipher was designed by the ETSI Security Algorithms Group of Experts
(SAGE). It has a Feistel-Network structure and is based on the MISTY 1 algorithm that had already
undergone public scrutiny at that time. In comparison to MISTY 1, KASUMI has undergone
various enhancements for easier hardware implementation and higher security in order to meet
mobile communication requirements [41]. The close resemblance to MISTY1 is reflected in the
name of the KASUMI algorithm, as kasumi is Japanese for “mist”. For a detailed description of
the KASUMI algorithm we would like to forward to the official 3GPP specification [48].

IV=CA || BEARER || COUNT-C || DIRECTION || CE

CKP KM —| KASUMI

!

[r ~ -7 - 1

BLKCNT=0 — @ BLKCNT=1 — & BLKCNT=BLOCKS-1 — &
| |

‘ ¥ ¥

CK— |[KASUMI | | ck— KASUMI | cK— | KASUMI

KS[0]...KS[63] KS[64]...KS[127] KS[n-63]...KS[n]

Figure 2.9: UEA1 key-stream generator

To implement the UEA1, it is necessary to transform the KASUMI block cipher into a key-stream
generating stream cipher. UEA1 uses a non-standard way to do this which employs pre-whitening
as well as the cipher block counter (CNT) and output feedback (OFB) chaining modes. As
depicted in Fig. 2.9, the KASUMI cipher is initialized with an initialization vector (IV) consisting
of the concatenated parameters CA, BEARER, COUNT-C, DIRECTION and CE. Then the ¢
operation used to combine the Cipher Key (CK) with a constant Key Modifier (KM) and the
KASUMI algorithm is executed to compute the value A. This process is known as pre-whitening.
In the next stage the value A is combined with the increasing publicly known block counter value
(BLKCNT) and KASUMI encryption is performed. The technique of encrypting a counter value
with a secret key to generate a key-stream is known as counter mode (CNT). The last step involves
feeding back the output of one round as the input of the next round (which is known as output
feedback mode (OFB). The final result is the key-stream KS available in chunks of 64-bit each.

In contrast to UEA1, UEA2 utilizes a stream cipher known as SNOW 3G. It consists of a Linear
Feedback Shift Register (LFSR) combined with a Finite State Machine (FSM) [49]. The FSM
consists of three registers and two substitution boxes (S-BOXes). Unlike A5/2, UEA?2 is not an

2.2. UMTS/3G 23

intentionally weakened ciphering algorithm for export use. Instead it was specified by ETSI as
backup algorithm that can be used in case UEAL1 is broken [49]. An overview of the algorithm
is given by Debraize and Corbella [49] while the full specification of UEA2 and SNOW 3G is
available through the GSM Association (GSMA) [50].

COUNT-C DIRECTION
i MESSAGEi FRESH

Y Y

K — f9 |

l

MAC
Figure 2.10: f9 integrity protection function

Besides encryption, UMTS messages are also integrity protected with the integrity protection key
I K and the function f9 visible in Fig. 2.10. To compute the Message Authentication Code MAC
for a message, the function f9 requires the mentioned COUNT-C and DIRECTION parameters
for initialization. Furthermore, it requires the key I K, the message (MESSAGE) itself and
a fresh random value FRESH, which is generated by the network. As only the UE and the
genuine network know the secret key I K, the function can be used on both sides to prove that
a received message is authentic. Like the UMTS Encryption Algorithms (UEA), the UMTS
Integrity Algorithm (UIA) utilizes a kernel algorithm: UIA1 uses the KASUMI kernel algorithm
in CBC-MAC (Cipher Block Chaining MAC) mode while UIA2 uses SNOW 3G.

The UIA1 CBC-MAC construction is visible in Fig. 2.11. To compute the UIA1 Message
Authentication Code MAC, the f9 input fields COUNT-C, FRESH, DIRECTION and the message
itself (MESSAGE) are concatenated and divided into the 64-bit blocks PS|y . procks—1- If
the concatenated fields are not divisible into 64-bit blocks an according number of padding bits
is added. Each Block is encrypted with the KASUMI algorithm and the secret key /K. The
encrypted result of each block is then combined with the input of the next block by means of
the @ operation. Finally, the output of all KASUMI encryptions is combined and encrypted
once again with the key /K & KM, where KM is a constant key modifier. A more detailed
description of the UIA algorithms can be found in [41], [46] and in the corresponding standard
documents [48, 50].

Security

In this section we analyze the security of the UMTS/3G network with respect to Alice and Bob
who wish to communicate securely (i.e. the properties confidentiality, integrity and authenticity
should hold). Security issues of the UMTS/3G network itself, that do not affect the given set of
properties in the communication between Alice and Bob, are not relevant to us.

In comparison to GSM, UMTS has undergone a significant security improvement. In addition

24 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

\ COUNT-C || FRESH || MESSAGE || DIRECTION || 1]| 0 ... 0 \

PSo + PS; + PSgLocks-1
{ {

K=~ KASUMI | | IK—=>|KASUMI i IK—>| KASUMI

; ¢

> e —®

v

IK& KM —>| KASUMI|

MAC
Figure 2.11: UIA1 CBC-MAC construction

to the GSM security features that have turned out to work well, mutual-authentication, integrity
protection and encryption with publicly scrutinized algorithms were introduced. Nevertheless,
with regard to the security properties that Alice and Bob would like to have in their call, it is still
not possible for them to have a secure conversation. The reason for this is that most of the UMTS
security features hold for the network, but not for the communicating parties.

Confidentiality between Alice and Bob can not be achieved, as the encryption is not end-to-
end. Instead, speech and signaling data is only encrypted on the Over-The-Air (OTA) interface
between the User Equipment (UE) and the Radio Network Controller (RNC). Everywhere else
in the network the content of their conversation passes in clear. Likewise, neither integrity nor
authenticity can be guaranteed between Alice and Bob as these properties also only hold for the
network, but not for the conversational partners. In fact the integrity protection between the UE
and the RNC only applies to signaling-, but not to user-data [51].

Consequently an inside attacker (like a technician) can violate the confidentiality, the integrity
and the authenticity of calls between Alice and Bob without notice [28]. Moreover, the stipu-
lated lawful interception (LI) capabilities of the network are specifically tailored to break the
confidentiality of targeted phone calls [28], regardless whether used lawfully or not.

However, similar to the section on GSM security (2.1), we argue that mainly due to the easier
access methods, the attack potential on wireless network components is broader than it is for
internal components. At a first glance successful attacks on the wireless part of the network seem
to be unlikely as this is where most of the described security improvements took place. A closer
look reveals that there are at least some security implications.

In a recent publication by Dunkelman et al. [6] the class of the so called sandwich attacks
on the KASUMI cipher was introduced. It discredits 3GPP’s assurances that the changes they
made to MISTY in order to get the “optimized” KASUMI cipher do not have any implications
on the cryptographic security. Basically in the design process the ETSI Security Algorithms
Group of Experts (SAGE) simplified the key schedule and some components of MISTY to make
it faster and more hardware-friendly. They called this new variant KASUMI and stated that

2.3. CONCLUSION 25

“removing all the FI functions in the key scheduling part makes the hardware smaller and/or
reduces the key set-up time. We expect that related key attacks do not work for this structure” [6].
In contrast the new attack technique developed by Dunkelman et al. [6, 52] clearly proves that
related key attacks are not only possible, but also practically feasible. Their attack requires 4
related keys, 23 bytes of memory while the data complexity is 226, and the time complexity
is equivalent to 232 KASUMI encryptions. Due to the low complexities they could verify their
results experimentally. Using an unoptimized KASUMI implementation on a modest PC they
were able to recover “96 key bits in a few minutes, and the complete 128 bit key in less than
two hours.” [6]. In comparison careful analysis indicates that the original MISTY algorithm is
not prone to the attack. To the best of our knowledge the best known attack on MISTY still has
an impractically high time complexity of 2!23 [52]. While this shows that the changes made by
3GPP resulted in a much weaker cryptosystem, it has currently no implications on the practical
security of A5/3 or UMTS/3G as KASUMI is used in a very specific way there [6, 52].

With the ongoing transition from GSM to 3G/UMTS networks, today’s 3G communication
equipment mostly supports both systems. In areas with no UMTS coverage, it is possible to
automatically fall back on GSM. Seamless switching between UMTS and GSM networks is
even practicable during a call in so called intersystem UMTS(3G)/GSM(2G) handovers. Meyer
and Wetzel [53, 54] have shown that there are security weaknesses in the interface of these two
technologies. While the older GSM System is prone to malicious attacks and only supports
subscriber authentication, the newer UMTS system provides mutual authentication and integrity
protection. The applied UMTS authentication and key agreement (AKA) protocol has been
specifically designed to be secure again man-in-the-middle attacks [53, 54]. But if UMTS
equipment connects to a GSM-only base station (BSS) there is no support for UMTS security
features like integrity protection which allows an attacker to impersonate a GSM BSS to an UMTS
subscriber [53, 54, 55]. As a result a man-in-the-middle attack is feasible and the victim’s MS/UE
can be fooled into using either no encryption or a weak encryption algorithm [53, 54, 28, 55].
Eventually this will allow an attacker to eavesdrop on the communication. Besides passive
attacks are feasible in certain GSM/UMTS handover scenarios that may compromise crucial key
material [54]. We would like to stress that as long as hybrid GSM/UMTS equipment is in use, an
attacker may always exploit the weakest links in the (GSM) security chain with the results having
severe consequences on communication confidentiality and integrity. For example, it would be
relatively straight forward to jam UMTS coverage in the vicinity of the victim and then present
and impersonated GSM BSS as a fallback to the subscriber to mount subsequent attacks.

2.3 Conclusion

We showed that the security of GSM can be considered broken today. The wireless connection
is only encrypted between the handset and the base station tower (BTS), allowing resourceful
or inside attackers to eavesdrop on conversations (e.g. by intercepting directional microwave
links or by leveraging the lawful interception capabilities). However, much more severe are the
weak encryption algorithms on the wireless channel and the unilateral authentication scheme.
We presented the class of passive attacks and the more powerful active attacks. While the

26 CHAPTER 2. VOICE COMMUNICATION SECURITY ON MOBILE NETWORKS

intentionally weak A5/2 encryption should be phased out by now, A5/1 is still being used on
GSM handsets, allowing adversaries to mount passive attacks and break the encryption within
seconds. In contrast, A5/3 is more secure and, to the best of our knowledge, has not been
practically broken so far. Nevertheless, active attacks usually exploit the unilateral authentication
scheme by setting up a fake base station. This way encryption can be completely avoided,
enabling eavesdropping attacks even if stronger algorithms like A5/3 are employed on the
GSM network. UMTS addressed the shortcomings of GSM which led to a more secure system.
However, to permit the seamless transition from GSM to UMTS, UMTS includes GSM/UMTS
handovers and todays handsets usually support both systems. As a result, UMTS suffers from
GSM legacies and adversaries can still mount active attacks to eavesdrop on conversations. Like
GSM, UMTS offers no protection against eavesdropping by inside attackers or by use of the
lawful interception capabilities.

Persons, who wish to have a secure conversation, can not rely on those networks. They need
strong end-to-end encryption that sets up a secure channel over insecure networks like GSM or
UMTS. They should be able to put trust into the security of the system, which is only possible
by specifying the inherent information security properties and relying solely on established
cryptographic primitives, that are practically proven, widely-used and known to be secure. After
all, GSM and UMTS are still marketed to be secure and there are dubious “secure phone” products
like the Secure Phone Miser[11], that do not offer trustworthy security. It needs to be feasible
to make a clear distinction between solutions that offer real security and those that are merely
marketed as being secure. Ultimately, real security is only possible with a completely open
design.

CHAPTER

Established cryptographic principles
and protocols

Whenever information such as the content of a conversation or a letter has to be kept secure,
usually a set of certain information security objectives applies. In the previous Chapter 2 we made
the assumption that a communication between has to meet the following information security
properties:

o Confidentiality
o Integrity

o Authenticity (of entities and messages)

Essentially, these three properties form the core principles of information security and are
also known as the “CIA triad”. To build a robust communication system that fully meets the
requirements of Alice and Bob, a number of additional security objectives and key concepts are
relevant [56]:

Availability
Whenever Alice and Bob wish to use the communication system, it should be available for
use and working correctly.

Non-repudiation
It should not be possible to deny any previous communication acts. In fact both Alice
and Bob should be able to prove to a third party that the information came from a specific
entity.

Signature
It should be possible to bind information to an entity (e.g. to Alice or Bob).

27

28 CHAPTER 3. ESTABLISHED CRYPTOGRAPHIC PRINCIPLES AND PROTOCOLS

Receipt
It should be possible to acknowledge that information has been received.

For now we postpone the decision of which of these security objectives might be desirable for
a secure real-time speech communication system to a later chapter. Instead we would like to
outline that only a certain degree of digital information security can be achieved by technical
means provided through cryptography [56]. At the same time, cryptography is not the ultimate
solution to information security. There are information security properties (like availability) that
can not be achieved through cryptographic techniques (alone) and other security measures such
as physical security or security policies might be required. Instead, the fundamental goal of
cryptography is to adequately address the following four areas both in theory and in practice [56]:

1. Confidentiality
2. Data integrity
3. Authenticity (of entities and messages)

4. Non-repudiation

To some degree it is feasible to derive other information security objectives (such as having
a signature) from these cryptographic areas. The basic cryptographic tools to achieve these
information security goals are the cryprographic primitives [56]. They can be divided into
unkeyed primitives such as arbitrary length hash functions, symmetric key primitives such as
symmetric key ciphers or keyed hash functions and public key primitives like public key ciphers
or signatures. In the next sections, we will deal with cryptographic primitives, principles and
protocols that are relevant when designing a system for real-time encrypted speech communication
over low bandwidth channels.

3.1 Cryptographic principles

In this section, we will exemplify standardized, well respected and widely used cryptographic
principles that seem especially adequate for the application in a low-bandwidth (< 9600 baud)
real-time speech communication environment. In addition to being standardized, well respected
and widely used, the principles also need to work well and efficiently on embedded hardware and
they need to produce a minimum amount of overhead data.

In digital speech communication, speech is typically sampled, compressed and transmitted in
packets over a communication medium. At the receiver the speech frames in the packets are
decompressed and played back. When doing so, there is a tradeoff between the number of packets
that need to be sent in a given period of time (e.g. 1 second) and the latency. The smaller the
number of packets, the bigger the packet payload needs to be. But this comes at the price that
it also takes more time until enough speech samples are available to fill up the packet. At the
receiver this “waiting time” will be noticeable in the form of additional communication system
latency. On the other side each packet needs to contain additional data like a packet header
which usually requires more space than a bunch of speech samples. Hence in the extreme case,

3.1. CRYPTOGRAPHIC PRINCIPLES 29

minimizing communication latency by only sending a single speech sample per packet would
dramatically increase the required communication channel bandwidth.

When designing a secure communication system, usage of cryptographic primitives will coer-
cively introduce additional overhead data and consequently additional latency. Likewise, the low
bandwidth of the system will render traditional cryptographic principles like the Diffie-Hellman-
Merkle (DH) key exchange, the Digital Signature Algorithm (DSA) or RSA practically unusable.
To give an example, the ECRYPT II Yearly Report on Algorithms and Key Lengths [57] recom-
mends the use of 256-bit symmetric keys to offer sufficient protection for the “foreseeable future”
and against quantum computers. But if we plan to use traditional asymmetric cryptographic
principles like DH or RSA to achieve 256-bit security, the asymmetric keys would need to have
a size of at least 15424 bits [57] (= 1928 bytes). Assuming that the highest possible speed of
our communication channel is limited to 9600 baud, merely transferring a single key would take
more than 2 seconds. By taking into account that during encryption setup usually a number of
keys need to be exchanged, the required amount of time would rise even more and the system
would quickly become practically unusable.

Elliptic Curve Cryptography (ECC)

By using Elliptic Curve Cryptography (ECC) the key sizes can be significantly reduced without
reducing security [57]. Therefore, especially in a low bandwidth environment the use of Elliptic
Curve Diffie-Hellman (ECDH) key agreement and Elliptic Curve Digital Signature Algorithm
(ECDSA) is favorable over traditional DH and DSA.

Table 3.1 gives an overview on equivalent symmetric, asymmetric and ECC key lengths in
accordance with ECRYPT II (2010) [57].

’ symmetric ‘ asymmetric ‘ ECC ‘

80 1248 160
96 1776 192
112 2432 224
128 3248 256
256 15424 512

Table 3.1: equivalent key size comparison in bits

To leverage elliptic curve cryptography, initially Alice and Bob need to agree upon the elliptic
curve domain parameters which are the parameters that define the elliptic curve. Generally, an
elliptic curve can be defined through a Weierstrass equation [58]

v =23 +az+b

whereas the coefficients a and b are real numbers that need to fulfill the constraint

4a3 4+ 276 # 0

30 CHAPTER 3. ESTABLISHED CRYPTOGRAPHIC PRINCIPLES AND PROTOCOLS

to avoid singularities (i.e. the curve has no self-intersections, isolated or angular points).

By choosing a and b accordingly, an arbitrary number of different elliptic curves can be de-
fined. To be able to use elliptic curves for cryptography, the elliptic curve and its mathematical
operations (such as point addition or multiplication) need to be defined in finite Galois Fields
(GF). For Elliptic Curve Cryptography (ECC) either prime G F}, or binary GF3" fields can be
used [58, 59] as long as the fields are chosen with a finitely large enough number of points for
cryptographic operation. As elliptic curve point multiplication dominates execution time [60],
the overall performance depends on what type of curve is used. Generally speaking elliptic curve
multiplication in binary G F3" fields is better suited for hardware implementation whereas for
prime G F), fields a software implementation might be more appropriate [59].

Elliptic curves on G'F), are defined as

y? mod p = 2 + ax + bmod p

where

4a3 + 27b* mod p # 0

As a result all curve elements in GF), are integers in the range [0;p — 1]. In contrast, elliptic
curves on GF3" are defined as

V+oy=a>+azx®+0b

where

b0

which results in all curve elements in GF3" being integers with a length of at most m bits.

In addition to the curve parameters that we already defined, for ECC a generator point (x¢, ya),
the order of the curve n and the cofactor h are required as well. The generator point (z¢, y) is a
specific chosen point on the elliptic curve that will be used for cryptographic operations. The
order n of the curve is required for point multiplication, as the scalar is chosen to be in the range
[0;n —1].

In summary, this leads to the following domain parameters for ECC in G'F),:

(p,a, b, G, n, h).

Instead of the prime number p, in GF3" the parameters m and f(z), an irreducible polynomial
of degree m, are necessary. Therefore, the ECC domain parameters in GF3" are:

(m’ f(X), a’ b’ G’ n’ h)

Domain parameters are usually not generated by the users themselves as the process involves
counting the number of points on each curve which is time-consuming [61, 60, 62]. Instead a
number of curves was defined by standardization organizations such as NIST [63] or Certicom’s
Standards for Efficient Cryptography Group (SEGC) [62]. The advantage of these curves is that

3.1. CRYPTOGRAPHIC PRINCIPLES 31

they are publicly scrutinized and special care has been taken to avoid weak classes of curves that
are vulnerable to a number of attacks [56].

The security of Elliptic Curve Cryptography (ECC) mainly depends on the Elliptic Curve Discrete
Logarithm Problem (ECDLP) [61, 58].

Assume that P and () are two points on an elliptic curve defined in a finite Galois field GF of
large order n, such that

dG = Q

where d is a sufficiently large scalar value. Then it is easy to compute () out of d and G, but
it is computationally infeasible to determine d if only G and @) are given [61, 58]. This is also
the reason why during cryptographic ECC operations mainly elliptic curve point multiplication
is used. By directly applying the Elliptic Curve Discrete Logarithm Problem (ECDLP), an
asymmetric key pair can be obtained (see Section 3.1).

In general Elliptic Curve Cryptography (ECC) as well as the cryptographic protocols ECDH and
ECDSA are standardized by well respected institutions such as NIST (FIPS 186-2), ANSI (ANSI
X9.62, ANSI X9.63), ISO/IEC (15946) and IEEE (IEEE P1363) [61, 59]. In addition they are
also included in NSA’s Suite B Cryptography [64] for the protection of classified information up
to the highest security clearance level fop secret.

Elliptic Curve Diffie-Hellman (ECDH)

In contrast to the traditional DH exchange, ECDH may be implemented using two different
primitives [57]. The elliptic curve Diffie-Hellman primitive is comparable to the traditional DH
exchange, whereas the elliptic curve cofactor DH primitive provides additional resistance to
attacks like small subgroup attacks by including the cofactor into the shared secret calculation [57].
The basic idea of both primitives is the same: Two parties U and V' can compute a shared secret
value. That is U supplies her secretly kept private key and Vs public key as input to the primitive
in order to compute the shared secret. Vice versa, V' executes the primitive with her private key
and U’s public key to compute the same shared secret.

To obtain a key pair (i.e. a private and a public key), U and V first need to agree on a common
set of domain parameters. When doing so, both parties need to verify that these parameters are in
fact valid by using a set of validation procedures [60]. Once validated, a key pair can be generated
in the following way:

Algorithm 3.1 ECC key pair generation

1: select a random integer d in the interval [1;n — 1], where n is the order of the curve
2: calculate () = dG, where G is the generator point
3: Output (d, Q)

The outcome is a key pair (d, Q) with d being the private and () being the public key. Assuming
that U and V' have a common set of domain parameters, (d,,, Q.,) is the key pair of U and (d,,, Q)
is the key pair of V, U and V can utilize the ECDH primitive [60, 58]:

32 CHAPTER 3. ESTABLISHED CRYPTOGRAPHIC PRINCIPLES AND PROTOCOLS

Algorithm 3.2 ECDH shared secret calculation
1: U and V exchange their public keys (Q,, and), respectively)
U calculates an elliptic curve point P = (zp,yp) = d,Q»
if P = 0 output “invalid” and stop
V calculates an elliptic curve point R = (zg,yr) = dyQu
if R = 0 output “invalid” and stop
since d,), = d,Q,G = d,Q,G, also P = R (i.e. xtp = zr and yp = yRr)
U and V have a shared secret tp = xg

A A S ol

Note that if instead of regular ECDH, the elliptic curve cofactor DH primitive is used, in step
2 and 4 the cofactor h has to be included in the point calculation (i.e. U would compute

P = (UCP,Z/P) = hd,Qy).

Elliptic Curve Digital Signature Algorithm (ECDSA)

Similar to DSA, the Elliptic Curve Digital Signature Algorithm (ECDSA) is a digital signature
scheme that offers a sign and verify operation usable to provide the information security objectives
data and entity authentication, integrity protection and non-repudiation. We can divide ECDSA
into a signature generation and a signature verification algorithm.

Like in the previous section, we assume that there is an individual U already having a valid ECC
key pair (dy, Qu). To sign a message m with ECDSA, U can use her private key dyy [61, 58]:

Algorithm 3.3 ECDSA signature generation

1: select a random integer k in the interval [1;n — 1], where n is the order of the curve
compute kG (x1,y1), where G is the generator point

compute r = 1 mod n

if r = 0 goto step 1

compute e = H (m), where H is a cryptographic hash function (e.g. SHA-1)
compute s = k(e + dyr) mod n, if s = 0 goto step 1

Output signature (7, s)

A A

A potential receiver V' of message m can verify U’s signature (r, s) if she knows U’s ECC
domain parameters and the public key Qy:

3.1. CRYPTOGRAPHIC PRINCIPLES 33

Algorithm 3.4 ECDSA signature verification
1: for the signature (r, s), verify that r and s are in the interval [1;n — 1]
compute e = H (m), where H is a cryptographic hash function (e.g. SHA-1)
compute w = s~ mod n
compute u; = ew mod n
compute us = rw mod n
compute X = u1G + u2Q), where G is the generator point
if X = oo, output “invalid” and stop
compute v = x1 mod n
if v = r, the signature is correct, otherwise output “invalid” and stop

D e A A

After successful verification, V' knows that the message m really came from U (entity authentica-
tion) as only U knows the secret key d,, that is required to compute the signature (r, s). Moreover,
V' knows that the message itself is authentic and it has not been tampered with (message authenti-
cation and integrity protection) as the signature was calculated over the cryptographic hash value
e of the message m. (We assume at this point that the cryptographic hash function H is secure.)
Finally, V' can use the signature to prove to a third party, that the message was indeed sent by U
and the message content has not been tampered with (non-repudiation) which also means that U
can not disclaim to have sent the message with the given content.

Hash-based Message Authentication Code (HMAC)

In general, cryptographic hash functions can be distinguished into unkeyed and keyed hash
functions [56]. Unkeyed hash functions are mainly used for modification detection. For instance,
a sender could send a file to a receiver and attach the calculated hash value to it. The receiver
calculates the hash value as well and compares it with the received one. If they match, the file
was correctly received, otherwise the file was modified during transmission.

Likewise, unkeyed cryptographic hash functions are essential for digital signatures. In ECDSA
for example, an unkeyed cryptographic hash value is computed over a message m which is then
signed with the private key. This way a digital signature can be applied to the actual content of
the message. The signature provides data and entity authentication as well as integrity protection
and non-repudiation.

With keyed hash functions such as the Hash-based Message Authentication Code (HMAC) a
very similar set of information security objectives can be achieved. As a secret key is required
to compute the hash value of a message, only entities that have the correct key can compute
the correct hash value. Suppose that a group of individuals have securely exchanged a Message
Authentication (MAC) key. Then, for any message they exchange, they can compute the keyed
hash value and, as a result, verify that the message was sent by an authentic member of the group,
as only someone in the group is in possession of the shared secret key. This way data and entity
authentication and integrity protection can be provided, but no non-repudiation as anyone in the
group could have generated the correct hash value. This, and the fact that Message Authentication
Codes (MACs) can be used with a single key by a group of individuals, is the big difference in
comparison to public key digital signature schemes like ECDSA.

34 CHAPTER 3. ESTABLISHED CRYPTOGRAPHIC PRINCIPLES AND PROTOCOLS

The Hash-based Message Authentication Code (HMAC) is standardized by NIST in FIPS 198 [65],
ISO/IEC (ISO/IEC 9797-2) [57] and by the IETF in RFC 2104 [66]. It is also widely used in
protocols such as SSL, TLS or IPsec [57].

The HM AC(k, m) with key k and message m can be computed by utilizing a core cryptographic
hash function H (such as SHA-1 or SHA-256) with

HMAC(K,m) = H((Ko @ opad) || H(Ko @ ipad) || m))
where || denotes concatenation. As the size of K needs to equal to the block length B of the
core hash function H, K can be obtained either by truncating K (if the length of K > B) or by
appending zero bytes (if the length of K < B) [65, 66].
The values opad and ipad are constants with length B [66]:

ipad | the byte 0x36 repeated B times
opad | the byte 0x5C repeated B times

Table 3.2: HMAC opad and ¢pad padding constants

If L is the length of core hash function H’s output, the size of the key K “shall be equal to or
greater than 57 [65]. Contrary to that suggestion, RFC 2104 recommends, that the size of the
key K should be at least L [66]. Keys having a greater length do not significantly increase the
security [65]. Due to the construction of the HMAC, the security mainly depends on the size of
the secret key and the security of the core hash function H [66].

Besides, the FIPS 198 standard [65] defines HMAC truncation, which is a well known practice
that can be applied whenever there are size or speed constraints. For example, on a low bandwidth
channel, it might not be feasible to append the full 32 bytes long HMAC-SHA256 tag to each
message. Instead, with truncation, only the ¢ leftmost bytes of the HMAC output are used for each
message. As this also reduces the security of the HMAC, the FIPS 198 standard recommends
that “¢ shall be at least % bytes [...] unless an application or protocol makes numerous trials
impractical” [65]. Thus the minimum length of ¢ is closely related to the application: While for
a low bandwidth channel precluding too many trials a 32 bit HMAC tag can be sufficient [65],
other applications might require longer HMAC tags.

Advanced Encryption Standard (AES) in Counter Mode (CTR)

The established Advanced Encryption Standard (AES) is a very widespread and well known
publicly scrutinized block cipher standardized in NIST FIPS PUB 197 [67], in ISO/IEC 18033-
3 and it is also part of NSA’s Suite B Cryptography [57, 64] approved for the protection of
information up to the highest fop secret security level. Instead of going too much into the details
about how AES works (interested readers are referred to the Federal Information Processing
Standards Publication 197 [67]), we would like to deal with the challenges of using AES in a
low bandwidth constrained communication environment.

As any block cipher, AES only allows to encrypt and decrypt blocks of data with a predefined
length. Regardless of the key size (i.e. 128, 192 or 256 bits), AES always operates on blocks

3.2. KEY EXCHANGE IN EXISTING CRYPTOGRAPHIC PROTOCOLS 35

of 128 bit (16 byte) length. For that matter if Alice plans to send a secret 1 byte long message
to Bob, she would have to add 15 padding bytes to the message before being able to encrypted
it with AES. This may not be an issue for applications with large amounts of data (e.g. disk
encryption), but it basically renders AES (or any other block cipher) unusable for low bandwidth
speech communication systems that usually only send small chunks of data. In that case much of
the existing bandwidth would be consumed by those padding bytes.

Instead, for this application, the use of a stream cipher seems to be more adequate as the length
of data does not increase through encryption. A stream cipher basically generates a continuous
key stream that is used to encrypt plaintext bytes by applying the & operation. Unfortunately,
some of the most widely used stream ciphers (such as A5 or RC4 in the case of WEP) turned out
to be insecure.

An elegant way to leverage the benefits of a stream cipher together with the security and robustness
of a well established block cipher like AES is the use of Counter Mode (CTR). Counter Mode
(CTR) effectively transforms any block cipher into a stream cipher by encrypting a steadily
increasing counter value instead of the plaintext data itself [57, 68, 69]. The output of the block
cipher is used as a key-stream, whereas the & operation is applied to produce the ciphertext from
the plaintext. In the case of AES, the counter usually has at least the size of the cipher’s block
size (i.e. 128 bit) [69] which guarantees that it won’t repeat for a long enough time. In addition to
the key, also an Initialization Vector (IV) is mandatory [57, 68, 69] that needs to be unpredictable
for the attacker [57]. It is of highest importance to eschew key-stream reuse by not using the
same combination of IV and key more than once [57, 68].

Today, Counter Mode (CTR) is a NIST (SP-800-38A) and ISO/IEC (10116:2006) standardized
operation mode [57], that is widely used in protocols such as Secure Shell (SSH) [69] or
IPSec [68]. It can be proven that if the underlying block cipher is secure, also CTR mode
is secure [57]. This way using the Advanced Encryption Standard (AES) in Counter Mode (CTR)
allows us to rely exclusively on well-established, standardized and secure encryption techniques
in the field of low-bandwidth encrypted speech communication.

3.2 Key exchange in existing cryptographic protocols

If two individuals (Alice and Bob), not having shared any key material, wish to establish a
secure communication with each other, they need to exchange keys at some point. While existing
key exchange mechanisms like Diffie-Hellman (DH) are readily available, they can often be
compromised by an active attacker. In case of Diffie-Hellman (DH), the key agreement scheme
suffers from a well known Man in the Middle (MitM) attack in which Alice and Bob believe that
they establish a key with each other, but in reality they establish (differing) keys with a third party
(the attacker Eve) in the middle. For that reason, it does not suffice to do a simple key exchange,
but Alice and Bob also need to be sure that the key exchange is authentic.

Under the assumption that Alice and Bob have no key material from each other and they do not
trust anyone else (like a trusted third party), in the following part we will have a look at how
existing protocols tackle the key exchange authentication problem.

36 CHAPTER 3. ESTABLISHED CRYPTOGRAPHIC PRINCIPLES AND PROTOCOLS

Secure Shell (SSH)

The Secure Shell (SSH) protocol is one of the prevailing protocols for remote login on UNIX
machines. If a key exchange is executed in the SSH protocol, it is digitally signed with the private
host key of the server to provide authentication [70]. Hence the client needs the server’s public
host key to verify that it is really talking to the correct server. Yet if the client does not already
possess the public key and no trusted certification authority (CA) is available, it is suggested that
out-of-band key verification is used instead [71].

In SSH this is usually done by calculating a hexadecimal fingerprint derived from the SHA-1
hash of the host’s public key. Thereupon these fingerprints can be verified “by using telephone
or other external communication channels” [71]. If the fingerprint is not verified or the external
communication channel is under control of an attacker, the initial key exchange might be sus-
ceptible to a Man in the middle (MitM) attack. Once the client knows the server’s public key,
it is used to verify the authenticity in subsequent connects [71], a concept also known as key
continuity management [72]. As a result, in case of a successful MitM attack on the initial key
exchange, the adversary would have to mount the attack on each successive key exchange as well,
to avoid being detected.

ZRTP

ZRTP is a protocol originally developed by Phil Zimmerman that can be used to negotiate
keys between two parties in a Voice over Internet Protocol (VoIP) setup based on the Real-time
Transport Protocol (RTP) [13], whereas the key exchange is based on Diffie-Hellman (DH).
The ZRTP protocol introduces a “Short Authentication String (SAS)” [13] to authenticate the
Diffie-Hellman key exchange. Essentially, the SAS is a truncated keyed cryptographic hash value
(HMAC) of the exchanged Diffie-Hellman parameters [13, 73]. During the first step towards key
material negotiation, a hash commitment value is sent that obliges the initiator not to change
his Diffie-Hellman key pair [73]. That is “the responder chooses his keys before knowing the
initiator keys and the initiator chooses his key before sending the hash commitment, that binds
him to that choice” [73]. Accordingly the agents can not deterministically influence the SAS [73]
and the attacker has only one guess to generate the correct SAS value [13]. It is argued that for
this reason, despite the SAS value being rather short (e.g. 16-bit), the probability for the attacker
not being detected is very low (i.e. one out of 65536 for a 16-bit SAS value) [13].

Under the assumption that the communicating parties can distinguish voices, the SAS can
be verbally compared by two users by “using their human voices, human ears, and human
judgement” [13]. If the SAS does not match, it indicates the presence of a MitM attack. Similar
to SSH, after the initial key exchange, a key continuity scheme is applied and SAS authentication
is no longer needed. Although the security of the ZRTP protocol has been formally proven
(with the assumption that SAS is secure) [73], theoretical attacks on the SAS authentication
exist mainly if the attacker has voice impersonation capabilities, Alice and Bob do not know the
voice of each other or they have problems recognizing the voices (e.g. due to background noise
or bad audio quality on the medium) [74, 75]. Yet in practice the authentication mechanism is
considered secure [76] and actively used in a number of both open-source and commercial secure
phones [13, 76, 12].

3.3. CONCLUSION 37

Off The Record (OTR) protocol

The Off The Record (OTR) protocol is a protocol that allows instant messaging users to have
private conversations with each other. It is supported either natively or through plugins by widely
used instant messaging application such as Adium, Miranda IM, Pidgin, Trillian and others.

In the first version of the OTR protocol [77] during the initial Diffie-Hellman key exchange a
fingerprint of the other party’s public key is displayed. Similar to SSH, the user is supposed to
verify the fingerprint out-of-band so that a successful MitM attack can be prevented. The protocol
also involves a key continuity scheme to allow authentication of subsequent connections with the
help of the verified public keys.

It has to be noted that OTR only uses signatures to authenticate the shared Diffie-Hellman
secret while subsequent encrypted content is authenticated using Message Authentication Codes
(MAC:s). In the second version of the protocol [1, 15], the initial Diffie-Hellman key exchange
was dropped in favor of a modified SIGMA [78] variant, which resolves a previously discovered
identity mis-binding attack on the initial DH key exchange and hides the public keys of the
participants from passive adversaries. Furthermore, the authentication procedure was extended
with an adapted version of the Socialist Millionaire’s Protocol (SMP) that allows two parties to
verify that they both know a preshared secret without actually revealing the secret [1]. The SMP
protocol leverages a number of zero-knowledge proofs to demonstrate the correctness of values
that are exchanged throughout the protocol. It is assumed that most parties already share some
kind of secret information that is not available to an attacker (e.g. the answer to the question
“Where did we first meet ?”).

Together with the fingerprint of the exchanged public key this pre-shared secret information can
be used with SMP to verify the authenticity of the fingerprint and of each other.

3.3 Conclusion

We showed that there are established cryptographic principles and protocols that are standardized,
widely used and practically proven to be secure. Algorithms based on Elliptic Curve Cryptography
(ECC) are especially suitable for low-bandwidth application, as the required key sizes are
significantly shorter than for their asymmetric counterparts. They reduce the amount of data that
needs to be transferred over low-bandwidth channels and consequently, the duration of those
data transfers can be minimized. For integrity protection and data encryption we described the
HMAC function and AES in Counter Mode. With the help of HMAC, message authentication
codes are created, whereas through standardized truncation procedures we can choose the length
of the hash in accordance with our system and security requirements. The standardized Counter
Mode effectively transforms AES into a stream cipher, which is optimal for encrypted speech
communication, as arbitrary length blocks can be encrypted without the need of padding bytes.
However, designing a secure cryptographic protocol is not a straight forward task, even if only
secure principles are used throughout the protocol. It usually involves numerous reviews and
improvements by the cryptographic community until a cryptographic protocol is secure. Therefore
we looked at the key exchange of publicly scrutinized cryptographic protocols to form the basis
for our own key exchange, protocol design and security features.

CHAPTER

Protocol design and security features

4.1 Desired properties of the communication system

So far we discussed which information security objectives can be achieved through cryptographic
techniques and protocols (see Chapter 3). Yet we did not decide upon which objectives our
encrypted speech communication system must fulfill. Objectives like availability might be
essential as well, but as they can not be achieved through cryptography or communication
protocols, it is out of the scope of this thesis.

To make the decisions, we first need a conversational model. Imagine that Alice and Bob know
each other and they want to have a private talk. To do so, they might meet in a public park and
talk to each other face to face. If no one is listening nearby (which they would possibly see) and
neither Alice nor Bob reveal the content of the private talk to anyone else, Alice and Bob can
make a few assumptions.

They can assume that

1. they are who they pretend to be (i.e. they recognize each other through their face and voice)
2. no one else can hear what they are talking
3. no one else knows what they talked about

4. no one can make any proofs on what was said to anyone

When designing a secure digital communication system, the scenario is a lot different of course.
Instead of meeting personally, Alice and Bob have a phone conversation. In this case the above
assumptions must be weakened or even discarded. While Alice might recognize the voice of Bob,
she could still be fooled by someone else pretending to be Bob. Neither Alice nor Bob really
know whether someone tapped the phone line and is listening to their conversation. Consequently,
they can not be sure that they are the only persons who know what was talked about. Furthermore,

39

40 CHAPTER 4. PROTOCOL DESIGN AND SECURITY FEATURES

they don’t know if a recording of the tapped phone line exists, that could prove to others what
they talked about.

Hence Alice and Bob would like to have a secure communication system that allows them to
safely make the same assumptions they made for the private conversation in the park, while the
system utilizes an insecure medium like the telephone line or a cellphone connection.
Obviously, such a system needs to provide confidentiality through encryption, integrity protection
and authenticity of data and entities. This way Alice and Bob know that no one listening on the
phone line can hear what they are talking about (as the conversation is encrypted) and for the
same reason they can assume that no one else knows what they talked about. Likewise, through
entity and data authentication they know that they are really talking to each other and due to
the integrity protection they can also be sure that the conversation has not been tampered with.
However, there still needs to be a way to make it impossible for anyone to make any proofs on
the conversation. This leads us to a few more information security requirements that the resulting
system must meet:

Repudiation
Alice and Bob do not want that anyone (including themselves) can make any proofs on the
conversation to anyone else. This is contrary to what traditional digital signature schemes
like DSA provide, as the verification of a signature always allows to prove to anyone in
possession of the public key, that the message came indeed from the signer (who is the sole
owner of the corresponding private key) [77, 1].

By purposely granting repudiation, also a certain degree of plausible deniability is achieved
as, just like for a conversation in the park, Alice and Bob can deny what they have said to
each other (for example in case it would put pressure on them).

Perfect Forward Secrecy (PFS)
By utilizing message encryption, confidentiality between Alice and Bob is ensured, so that
they are the only persons who can read the messages from each other. Yet at a later point in
time it might be possible that secret key material is leaked if for example one of the secure
communication devices is stolen. In that case it should still be impossible that an attacker
can decrypt past messages.

If Perfect Forward Secrecy (PFS) is implemented properly by using short term encryption
keys that are discarded after use, not even Alice and Bob can decrypt messages from past
conversations [56]. This way they can plausibly deny knowledge of the decryption keys
and past conversations are secure even if Alice and Bob are forced to reveal all of their
secret key material.

While existing protocols such as ZRTP [13] implement at least some of these properties, to the
best of our knowledge none of them are suited to be used over channels with very low bandwidth
(i.e. 9600 baud and below). For instance, ZRTP is heavily tied to RTP (Real-time Transport
Protocol) [13], which would introduce additional data overhead to our communication system. It
merely implements the key agreement protocol and the use of SRTP (Secure Real-time Transport
Protocol) [79] is mandatory for encryption. Even if SRTP seems to be suited “especially for

4.2. ADAPTING THE OTR AUTHENTICATED KEY EXCHANGE FOR LOW
BANDWIDTH USAGE 41

voice traffic using low bit rate voice codecs” [80] and “it can be used in conjunction with header
compression” [80], large header fields and unnecessary complexity render it unusable for our
application.

For this reason, it is indispensable that we design a protocol, that meets the above mentioned
properties and still works over low bandwidth channels. Leveraging only the practically proven
cryptographic principles and protocols we discussed earlier (see Chapter 3), we could easily
start off with designing our own cryptographic protocol. However, as we have seen in existing
protocols (e.g. OTR [1, 81, 82]) or in Chapter 2, designing a secure cryptographic protocol is not
a straight forward task. Even the most subtle faults in the design can lead to devastating effects
on the overall security of the system.

Instead, for a cryptographic system to become secure, usually a (potentially long) process of
public scrutiny and improvements by the cryptographic community is necessary. To design a
solid and secure communication system, we need to eschew new designs that have not undergone
public scrutiny and we need to stay away from developing tailored cryptographic protocols
(whereat with “cryptographic protocol” we mean the formal cryptographic protocol specification
and not the network protocol carrying the cryptographic messages). Luckily, as we will see in
subsequent sections, it is possible to design a system with the properties defined above by solely
building upon secure and established protocols.

4.2 Adapting the OTR Authenticated Key Exchange for low
bandwidth usage

The authenticated key exchange (AKE) in the Off The Record (OTR) [1, 15] messaging protocol
provides some of the necessary information security properties that we defined in Section 4.1.
The basic idea of the OTR key exchange is to first perform an unauthenticated DH key exchange
to set up an encrypted channel and then do mutual authentication inside that channel [15].

To perform this task, the OTR AKE makes use of the SIGMA signature-based authenticated
DH exchange [78, 1, 82] that was “adopted as the main key-exchange protocol in IKE” [82],
the Internet Key Exchange version 1 and 2 [83, 84] that is widely used in IPSec. Also, the
protocol has been formally analyzed and proven to be secure by R. Canetti et al. [85]. However,
neither the OTR protocol nor its Authenticated Key Exchange (AKE) are directly suitable for
application in a low bandwidth environment. The main reason for this is that with respect to
the slow communication channel between Alice and Bob, the amount of data required to be
transferred during the key exchange is too high. Hence the key exchange and ultimately the call
setup of the communication system would take too long to be practicable. In order to use the
key exchange in our low bandwidth environment, we need to make technical adaptations. When
doing so, extreme care needs to be taken that the formal cryptographic key exchange protocol
and its cryptographic properties thereof remain unchanged. That is, under no circumstances our
technical adaptations should have any implications on the security of the key exchange.

42 CHAPTER 4. PROTOCOL DESIGN AND SECURITY FEATURES

Detailed description of the key exchange

In the following we will first have a detailed look at the key exchange and then discuss which and
how various information security properties are achieved.

Protocol 4.1 OTR Authenticated Key Exchange (AKE) [1]
1: Alice randomly selects a 128 bit value r, where 7 is the key for the hash commitment
Alice randomly selects a 320 bit value x, where x is Alice’s secret DH key
Alice sends AES,.(¢*), SHA256(g") to Bob
Bob randomly selects a 320 bit value y, where y is Bob’s secret DH key
Bob sends g¥ to Alice
Alice computes s = (g*)Y, where s is the shared DH secret
Alice sends r to Bob, so that Bob can open the hash commitment
Bob decrypts ¢g* using r
Bob calculates SHA256(¢”) and verifies that it agrees with SHA256(¢”) received in step 3
Bob computes s = (g*)Y, where s is the shared DH secret
: Alice derives MAC keys a1, as, b1, by and AES keys ag, bs from s
: Alice selects a serial number keyid 4 associated with g*
: Alice computes My = M AC,1(g%, g¥,va4, keyida), va being Alice’s public verify key
. Alice computes X 4 = v,, keyida, signa(M4), where sign 4 is Alice’s digital signature
: Alice sends AES,, (X,), M AC,,(AES,,(X,)) to Bob
: Bob derives MAC keys a1, as, b1, b2 and AES keys as, b3 from s
: Bob uses ag to verify M AC,,(AESq,(Xa))
: Bob uses a3 to decrypt AES,, (X,) and obtains X4 = va, keyida, signa(My)
: Bob computes M4 = M ACqu1(9%, g¥,va, keyid)
: Bob uses v4 to verify sign4(M4)
: Bob selects a serial number keyidp associated with g¥
: Bob computes Mp = M ACY, (¢¥, g%, vB, keyidp), v being Bob’s public verify key
: Bob computes X5 = vp, keyidp, signp(Mp), where signp is Bob’s digital signature
: Bob sends AES;, (Xp), M ACh, (AE Sy, (XR)) to Alice
: Alice uses by to verify M ACy, (AE Sy, (X))
: Alice uses b3 to decrypt AES,, (X) and obtains vp, keyidg, signp(Mp)
: Alice computes Mp = M ACy,(¢Y, ", vB, keyidp
: Alice uses vp to verify signg(Mp)

R A A

[NS 2NN NS RN S I SR S I ST S R S R S o e e e e e e e

In step 1 of the protocol, Alice chooses an AES encryption key so that she can encrypt her DH
public key ¢g”. This is, however, an “engineering requirement” that was necessary in the OTR
protocol as “many IM protocols enforce a maximum size on messages” [1].

In steps 2 to 10 Alice and Bob perform a regular (unauthenticated) Diffie Hellman key exchange
with the only difference being the hash commitment that ensures that neither party can base their
choice of g¥ on the other party’s chosen g* value [1]. This allows the OTR secure session ID
(i.e. the fingerprint) to be short, while it still makes a successful Man in the Middle (MitM)
infeasible [15]. Once step 10 is completed, Alice and Bob have agreed on a shared secret s.

In step 11 Alice derives all required MAC and encryption keys from the shared secret key s, for

4.2. ADAPTING THE OTR AUTHENTICATED KEY EXCHANGE FOR LOW
BANDWIDTH USAGE 43

instance by hashing s in various ways. Since all key material is derived from s, we refer to that
key as master secret key.

In the next step 12 Alice selects a serial number keyid 4 associated with the current choice of g*.
OTR requires these keyid’s for re-keying in the protocol.

Step 13 denotes the main part of the SIGMA [78, 82] protocol by calculating the MAC M 4 over
the DH public keys g%, g¥ as well as over Alice’s current key-id keyid 4 and her long-term public
key v 4 that can be used to verify her digital signature. At this point we can see that the MAC key
aj is only used once to compute M 4, whereas as is generally used to authenticate transmitted
messages in later steps of the cryptographic protocol. When generating the digital signature
sign(My4) in step 14, the use of the MAC key a; to compute M4 actually proves to Bob that
Alice was indeed able to calculate the shared secret s = (¢*)Y. According to Raimondo et al. this
“prevents the identity mis-binding attack and, at the same time, it provides a deniable exchange by
avoiding signing the peer’s identity” [82].

In step 14 Alice creates the message X 4 comprising her long-term public key v 4, her current
key-id keyid 4 and the digital signature sign 4(M4) of the previously calculated MAC M 4.
Finally, in step 15, she encrypts and sends the message AES,, (X,) together with the correspond-
ing authentication tag M AC,, (AES,,(X,)) to Bob.

Similar to Alice, in step 16 Bob derives the required key material from the master secret key s.
In step 17 he verifies that the message from Alice is authentic by checking the authentication
tag and, if it was, Bob decrypts it in step 18. This way he obtains Alice’s key-id keyid 4, her
long-term public key v 4 as well as the DH public keys, that have been used to compute the shared
master secret key s.

In steps 19 and 20 Bob uses the information to compute the MAC M 4 and verifies its digital
signature by means of Alice’s long-term public key v 4. If everything was correct, in the remaining
steps 21 to 28 Bob preforms the SIGMA procedure with Alice.

Properties of the key exchange

At the end of the protocol, Alice and Bob have a shared secret key s, as well as derived key
material for message authentication or encryption. “Alice [...] knows Bob’s public key vp , and
is convinced that Bob knows the corresponding private key sign . Bob has a similar assurance
about Alice” [1]. In addition, as the transfer of all messages (except for the initial DH key
exchange) was encrypted, information such as the long-term public keys or key-IDs is concealed
from passive adversaries [1].

With regard to the desired information security properties that we defined in Section 4.1, the
OTR Authenticated Key Exchange (AKE) provides key material for encryption (as, b3), for entity
authentication (v4, vp) and for message authentication(ag, b2). While it forms the basis for the
information security properties confidentiality and (message) authenticity, it already implements
entity authenticity as both entities sign the key exchange with their private long-term keys [1, 82].
All key material is derived from the short-term master secret s. If an encrypted session is over,
the keys are discarded. However, as previous encrypted sessions used short-term key material
that is now irrevocably discarded, it is no longer possible to decrypt these sessions even if an
attacker gets hold of the encryption devices and the long-term private keys. This gives the key
exchange the information security property of Perfect Forward Secrecy (PFS) [1, 82].

44 CHAPTER 4. PROTOCOL DESIGN AND SECURITY FEATURES

Apart from that, not even Bob or Alice could decrypt previous communications as they no longer
possess the randomly chosen Diffie-Hellman secret keys for past conversations. This grants them
a certain degree of plausible deniability (i.e. they can plausibly deny to have the ability to decrypt
their own past conversations).

Another important property of the key exchange is that is allows repudiation. As subsequent
messages are authenticated by Message Authentication Codes (MACs), anyone knowing the
correct MAC keys (i.e. Alice and Bob) could have created a valid message. Since only the key
exchange, but not the subsequent messages are digitally signed [1, 82], neither Alice nor Bob
can make any proofs that a message came from a specific party. Once an encrypted conversation
session is over, Alice and Bob discard their key material. As this includes the MAC keys that
were used to authenticate the messages, Alice and Bob can not even prove that a message came
indeed from them.

Modifications for low bandwidth application

To adapt the key exchange to our needs without causing implications on the security, we applied
two methods.

First, we removed all engineering requirements from the protocol as they do not affect the security
or the cryptographic properties of the key exchange. One such engineering requirement is the
encryption of the DH public key in steps 1, 3 and 8 (see Protocol 4.1). According to Alexander
and Goldberg, the original designers of the OTR protocol, this requirement was necessary due to
message size limits in many instant messaging (IM) protocols [1]. Similarly, we can remove the
keyid and keyidp serial numbers that are necessary for re-keying in the OTR protocol [15].
Second, and most importantly, we exchanged the traditional Diffie-Hellman key exchange, the
long-term key material and the signature algorithm with elliptic curve variants (see Chapter 3 for
reference). This allowed us to significantly reduce the amount of data needed to be transferred
during the key exchange. Besides, we also improved the security of the DH keys by following the
ECRYPT [57] and NIST [63] key size recommendations.

If Alice and Bob know which type of curve and domain parameters are used for the ECDH key
exchange, the modified key exchange comprises the steps shown in Protocol 4.2.

4.3 Initial authentication with Short Authentication Strings (SAS)

If Alice and Bob connect the very first time and the modified authenticated key exchange (AKE)
visible in Protocol 4.2 is applied, they usually do not possess the long-term public keys of each
other. As soon as the AKE successfully completes, they both end up with a shared secret and
the (alleged) long-term public key of the communication partner, but they do not know for sure
whether this information is authentic and no MitM attack has taken place. A look at the AKE
reveals that in general the security of the key exchange relies on two types of keys:

The first key type is the ephemeral shared secret key that is established between Alice and Bob
by utilizing the Diffie-Hellman key agreement scheme, whereat this type of key agreement only
works between two parties [86]. As a result, in case of a MitM attack, Alice would agree on
a shared secret key with Eve, the attacker in the middle, and Eve would in turn agree on a

4.3. INITIAL AUTHENTICATION WITH SHORT AUTHENTICATION STRINGS (SAS)45

Protocol 4.2 modified elliptic curve OTR Authenticated Key Exchange (AKE)
1: Alice randomly selects a 512 bit value di;, where dy; is Alice’s ECC DH secret key
2: Alice sends SHA256(Qy = dy * G) to Bob, where G is the generator point and Qs is
Alice’s ECC DH public key
3: Bob randomly selects a 512 bit value dy,, where dy is Bob’s ECC DH secret key
4: Bob sends (Qy = dy * G) to Bob, where)y is Bob’s ECC DH public key
5: Alice computes the shared secret s = dy * Qv
6: Alice sends (Qu = dy * G) to Bob, so that Bob can open the hash commitment
7
8
9

: Bob calculates SHA256(Qr;) and verifies that it agrees with the value received in step 2
: Bob computes the shared secret s = dy * Qpu
: Alice derives MAC keys a1, ag, b1, by and AES keys as, bs from s
10: Alice computes M4 = M AC,1(Qu, Qv,va,), va being Alice’s ECC public verify key
11: Alice computes X 4 = vg, signa(M4), where sign 4 is Alice’s ECC digital signature
12: Alice sends AES,, (X,), M AC,,(AES,,(X,)) to Bob
13: Bob derives MAC keys a1, ag, b1, bs and AES keys as, bs from s
14: Bob uses ag to verify M AC,,(AESq.,(Xa))
15: Bob uses a3 to decrypt AES,, (X,) and obtains X 4 = vy, signa(Ma)
16: Bob computes My = M AC,1(Qu, Qv,va,)
17: Bob uses v 4 to verify sign(M4)
18: Bob computes Mp = M ACh, (Qv,Qu,vB,), vp being Bob’s ECC public verify key
19: Bob computes Xp = vp, signp(Mp), where signp is Bob’s ECC digital signature
20: Bob sends AES,,, (Xp), M ACy,(AESy,(Xp)) to Alice
21: Alice uses by to verify M ACy, (AE Sy, (XB))
22: Alice uses bs to decrypt AES;, (X) and obtains vg, signp(Mp)
23: Alice computes Mp = M ACy, (Qv,Qu,vB)
24: Alice uses vp to verify signg(Mp)

different shared secret with Bob. However, if Alice and Bob can compare the shared secret (or the
ephemeral public keys that are used to calculate the shared secret) with each other over a secure
channel (i.e. out-of-band), they can easily detect whether a MitM attack has taken place.

The second type of key is each party’s long-term key pair used for signing and signature verifi-
cation. If a block of data is signed it usually involves the use of a cryptographic hash function.
Once the hash value is computed, it is signed by “encrypting” it with a signature algorithm and
the private (and thus secret) key of the signer. In case the verifier knows the signer’s public key,
she can decrypt the hash value and compare it with the one she calculated over the signed data
block. If the calculated hash value matches the decrypted received hash value, the received block
of data is authentic and the signature is valid. As the signer is the only individual who knows the
private key, it is practically infeasible for an attacker to forge a signature (under the assumption
that the applied cryptographic primitives are secure and the key lengths are long enough).
Unfortunately, during the initial AKE, Alice and Bob do not possess the long-term public keys of
each other and hence they can not verify the authenticity of the key exchange with their digital
signatures. As we mentioned, during the Authenticated Key Exchange (AKE) both parties agree

46 CHAPTER 4. PROTOCOL DESIGN AND SECURITY FEATURES

on a shared secret by means of the Diffie Hellman (DH) key exchange. They use this secret to
derive a number of keys including a set of MAC keys. In following steps a MAC is calculated
over the ephemeral DH public keys (Qy, @Qv) and the long-term public key of the sending party.
This MAC proves to the receiving party that the sender was able to calculate the shared secret. By
signing the MAC, the receiving party also knows that the sender is in possession of the private
long-term key. Hence, to mount a successful MitM attack on the very first AKE, the attacker is
forced to use his own long-term signature keys, since otherwise he would not be able to create
valid signatures within the AKE protocol. This means however, that the MitM attacker needs to
mount a successful attack on all subsequent key exchanges as well since otherwise Alice and Bob
would detect the attack.

Therefore, similar to other protocols like SSH [71] (also see Chapter 3), it is of utter importance
that the initial key exchange is secure. Once Alice and Bob have securely exchanged their
long-term public keys, they can simply compare the other party’s public key that is received
during the AKE with the stored public key and even more importantly they can check the digital
signatures applied in the key exchange. If the keys and the signature match, the key exchange
was authentic and no MitM attack has taken place because otherwise, at least the signature of the
signed ephemeral DH public keys would not have been valid.

Consequently, Alice and Bob only have two choices to verify the authenticity of the initial
AKE: They can either securely exchange their long-term public keys or they can compare their
ephemeral shared secret key whereas both needs to be done out-of-band.

As the first choice lacks practicability, we focus on the comparison of the ephemeral shared secret
key. A practical way to do this is calculate a cryptographic hash value on the key material (i.e. a
fingerprint) and then compare it out-of-band. As AKE uses a hash commitment in its initial DH
exchange, it is in fact not even necessary to compare the whole hash value, but only a fraction
of it (i.e. a truncated hash value). To make it easier to compare the truncated hash value, it is
possible to use a word list that comprises a special set of words that are clearly distinguishable
and understandable over a voice channel. That is instead of directly comparing each byte of the
value, each bytes is transformed into a unique word of the word list. Thus for example instead
of comparing the fingerprint bytes “0x0b, Oxad, ...”, Alice could simply use the words “alone
perceptive” whereat the word “alone” represents the byte “0Ox0b” and “perceptive” represents the
byte “Oxad”. We will have a closer look at this in Chapter 5.

This form of “short authentication” is called Short Authentication String (SAS) [13], proven to
be secure [73, 74, 75, 76] and actively used in established protocols like ZRTP [13] as well as
in a number of both open-source and commercial secure phones [13, 12, 76, 10]. Due to the
hash commitment neither party can influence deterministically the calculated shared secret or
the SAS [73]. Also the attacker has only one guess to generate the correct SAS value [13]. If no
other way exists to compare the SAS out-of-band, then the same method can be used as in the
ZRTP protocol. That is the SAS can be verbally compared by two users by “using their human
voices, human ears, and human judgement” [13].

4.4. AUTHENTICATION WITH KEY CONTINUITY MANAGEMENT (KCM) 47

4.4 Authentication with Key Continuity Management (KCM)

As we mentioned in the last Section (4.3), Alice and Bob can securely verify each others
identities as soon as they have the long-term public keys of each other. After the very first initial
Authenticated Key Exchange (AKE), in any subsequent AKE execution, they exchange their
long-term public keys as well. However, as they already possess each others long-term public
keys from the very first key exchange, they can do two things:

e They can verify that the received long-term public key matches the stored one.

e They can verify the digital signature in the key exchange with the stored public key.

Similar to SSH [71], we decided to not only store the long-term public keys from previous
communications, but we also decided to bind this information to the unique address of each
communication partner (i.e. a phone number or a unique network address). This verification can
happen completely automatically without any user interaction. In general this procedure is known
as Key Continuity Management (KCM) [87]. By applying KCM, Alice and Bob have continuity
in the way that they know for sure that the person they were previously communicating with is
the same person they are communicating with now. This concept has been formalized in what is
known as the duckling security model [72, 87].

We would like to point out that the use of a Public Key Infrastructure (PKI) would have a similar
effect as the AKE combined with KCM, but we intentionally decided to not rely on a PKI for the
following two reasons:

First, to use the full potential of a PKI, it is usually required to have online access to the
infrastructure (e.g. to retrieve certificates over a Directory Service or to check against the
Certificate Revocation List (CRL)). While this might not be a serious problem for devices that
are usually online (e.g. a 3G/UMTS phone), it certainly is if communication technologies are
used that do not allow online access (e.g. a satellite or radio connection). Yet, the second and
main reason is that when utilizing a PKI, one usually has to trust at least one third party, the CA
(Certificate Authority), or even a whole bunch of other parties (web of trust). However, with
respect to our communication model (Section 4.1), we do not want to trust anyone except for the
parties we want to communicate with. That is if Alice calls Bob, she trusts the digital signature
of Bob whereas, if Bob is called, he trusts the digital signature of Alice.

4.5 Design of the data transfer protocol

Once the Authenticated Key Exchange (AKE) has completed, when transferring encrypted speech
or control packets between two parties, we need to maintain the information security properties
defined in Section 4.1. At the same time we need to take care of additional requirements such as
replay attack protection or synchronization.

In general, speech and control packets have different demands. While speech packets need to
arrive on time (i.e. in real time), some amount of packet loss is acceptable as it merely degrades
subjective speech quality. In fact cell phone users with bad reception frequently experience
the effect of packet loss in their conversations which often manifests as humming or buzzing

48 CHAPTER 4. PROTOCOL DESIGN AND SECURITY FEATURES

noise (depending on the speech compression technology). On the other side there is no strict
time constraint for control packets (i.e. signaling), but we need to ensure that they are correctly
delivered eventually.

I additional header material sequence number (SEQ) encrypted payload message authentication tag (MAC)

MAC authenticated

Figure 4.1: general protocol layout for encrypted communication

Figure 4.1 shows the general protocol layout for encrypted communication. The additional
header material is required to send the protocol over a network connection. It usually includes
fields such as the total length of the packet or the packet type. In terms of cryptographic security
of the protocol, it only plays a minor role. The main part of the protocol comprises a sequence
number (SEQ), the actual encrypted payload and the message authentication tag (MAC). As can
be seen the MAC is computed over all fields of the message, whereat besides message authenticity,
it provides message integrity protection as well. The sequence number (SEQ) in combination
with the MAC has two important functions.

The first one is to allow detection of packet loss and synchronization between sender and receiver.
The receiving side has a local counter that holds the sequence number of the last correctly received
and MAC authenticated packet (or 0 at the beginning). A new packet will be only received if it is
authentic and the SEQ number of the packet is either equal or greater than the expected sequence
number. Thus in case of packet loss, the receiver can easily determine how many packets have
been lost as soon as a new authentic packet arrives and re-synchronization with the sender is
possible.

The second function is replay attack protection and data freshness. If there would be no sequence
number (SEQ) in the packet, an attacker could capture a packet and arbitrarily re-inject (i.e.
replay) it at a later point in time. As the MAC field for such a message is authentic, we would
accept old packets (i.e. the data would not be fresh) and we would have no way to avoid these
attacks. However, with an advancing sequence number (SEQ), each authenticated packet is
accepted only once as long as the counter does not overflow. To ensure that this can not happen,
at least two solutions exist. One is to make the sequence number (SEQ) field large enough so that
for practical application an overflow of the counter will not occur. For instance, if the sequence
number field would be 32-bits wide and Alice would send an encrypted speech packet to Bob
each 20ms (which for this application is an unrealistically short time period), she could send 232
packets before the SEQ number overflows and the communication is prone to a replay attack. Yet
this would imply an uninterrupted speech communication duration of 232 x 20ms which is equal
to 23861 hours or 2.72 years. As it is practically extremely unlikely that Alice and Bob will have
an uninterrupted conversation taking as long as 2.72 years, even under the worst case assumption
that a packet is sent each 20ms, the system would be practically secure.

The other solution to prevent replay attacks in case of a SEQ number overflow is to implement

4.6. CONCLUSION 49

re-keying. That is, at least whenever the SEQ number gets too high, Alice and Bob will generate
new key material so that for message authentication (MAC) a new key will be used. This can
either be done by deriving a new key from an existing key or by re-running the Authenticated
Key Exchange (AKE) procedure.

4.6 Conclusion

We created a security model defining which information security properties our system should
provide. As designing a new cryptographic protocol involves a long process of scrutiny and
continuous improvement by the cryptographic community, we took the established OTR key
exchange as a basis for or own work. OTR is especially suited for our speech communication
system, as it provides the basis for all information security properties we defined in our model.
We adapted the key exchange by removing engineering requirements and utilizing Elliptic Curve
Cryptography instead of traditional asymmetric schemes. This way we were able to minimize
the bandwidth requirements for the protocol, so that it can be used over low-bandwidth channels.
Throughout our adaptation, we took extreme care that the formally proven properties of the
original OTR key exchange are not violated. Besides the key exchange, we introduced Short
Authentication Strings for initial authentication as well as Key Continuity Management for
subsequent authentication purposes. In addition we designed a general data transfer protocol
layout that withstands common attacks (e.g. replay attacks) and offers protection for any messages
exchanged between Alice and Bob. Now that the theoretical foundation for a secure low-
bandwidth communication system is laid, we describe how such an approach can be implemented.

CHAPTER

Implementation

In this section we describe how we implemented a low-bandwidth, portable and secure embedded
communication system that relies on the established cryptographic principles and protocols
described in Chapter 3 as well as the cryptographic protocol design and security features
presented in Chapter 4. Besides its high security, the aim of the implementation was to build
a generic end-to-end voice security system that can be used by a broad range of underlying
communication media including the ones described in Chapter 2. In general, the system consists
of embedded hard- and software, whereas the software can be divided into kernel- and user-land-
code.

5.1 Hardware

The hardware of the secure communication system comprises Atmel’s ARM9 based controller
chip AT91SAM9260, an audio codec that functions as a “sound card” and a specialized DSP
(Digital Signal Processor) allowing speech compression down to ultra-low bit rates.

AT91SAM9260 controller and the Olimex SAM9-1.9260 board

The AT91SAM9260 is an ARM9 based controller incorporating the ARM926EJ processor that
can perform up to 200 MIPS at 180 MHz [2]. Besides the processor, the chip has a high number
of useful peripheral features that made it ideally suited for the design of our communication
system. A block diagram of the AT91SAM9260 controller chip is depicted in Figure 5.1.

51

S A
(X2
R0 Q
MASTER =3 S| AVE & g?‘gf,‘é;og%“/qi\'/\-\- € 8 &
& 0ok F o SEELIT 0 P EPEE £F A
SOOIEE™ & SEOEEEINE 979079’ 5 50 3 z
TST—>! System JTAG Selection and Boundary Scan) !
Controller * * * * + T ¢T¢¢¢TT¢ T i i i l Transc. | Transc.
FlQ (—)N » AIC In-Circuit Emulator
IRQO-IRQ2 <€ > 10/100 Ethernet Image
ARM926EJ-S Processor MAC Sensor uss
pRxD <>| [—>| bBGU Interface oHcl
DTXD €«>»| [€
PCKO-PCK1 €| |« = BI?(TJ;rt]ees MMU | eD ES;ZZ
I~
PMC Bus Interface DMA DMA DMA
PLLRCA —>»[PLLA] D
2lPLLB Y Y
XOUT <—] 0S¢
6-layer Matrix
] «
OSCSEL —>» >3 * T
XIN32 =31 osc || RTT
XOUT32 <€— 4 < » D0-D15
PIOA [[«
SHDN €— Fast SRAM | | Fast SRAM > AUNBSO
SHDWC) EBI >» A1/NBS2/NWR2
WKUP — PIOB | 4 Kbytes 4 Kbytes Peripheral 22-channel » A2-A15, A18-A20
VDDBU POR Bridge Peripheral CompactFlash » A16/BAO
DMA NAND Flash » A17/BA1
PIOC | > NCS0
VDDCORE ——|~ poR | RSTC E mgg;éi%%s
NRST < > > NWRO/NWE/CFWE
APB > NWR1/NBS1/CFIOR
>» NWR3/NBS3/CFIOW
’ ; + ‘ ’ ‘ ’ ; SDRAM > SDCK, SDCKE
Controller E RAS, CAS
PDC PDC PDC PDC PDC DPRAM > ﬁgwgb?m?\mw]z
USARTO Static > A21/NANDALE
MmcCl Wi USART1 SPI0 %? %i SsC 14(501?'?2%% USB Memory > é?%{“S’QTDCLE
USART2 SPH 1co || Tce -bi Device Controller <> NWAIT
USART3 l€>» A23-A24
USART4 ECC l€>» NCS4/CFCS0
l€>» NCS5/CFCS1
USART5 Controller AS5/CFRNW
l€>» CFCE1-CFCE2
Transceiver € NCS2, NCS6, NCS7
2 [€>»> NCS3/NANDCS
i ¢¢¢ ¢ ¢¢¢¢¢¢¢¢¢ iiiiiii ¢¢¢ ¢¢¢ ¢¢¢¢¢¢ i & & & ¢¢
5 QO OX Nt Qf PP OLORLLL DARNDEDND (U o (2506 QO o o8 o@g@ 0
T TS QP LRIIBREELE GREERAF G Figy THeeee 089 & 6 O
CE LY W LLLEETETS GLLEETY Q0SS 5
S BB SO S F S §
@OQ‘b X XN SPIO_, SPI1_ /\C}ﬁ,:\o‘:\o&@t\ogo

Figure 5.1: Atmel AT91SAM9260 block diagram [2]

(4

NOILLVINANWAITINI S d4LdVHO

5.1. HARDWARE 53

The features include:

e a PQFP (plastic quad flat pack) 208 package
e a Power Management Controller (PMC) for low power operation

e support for embedded memories (SDRAM and NAND in particular) through the External
Bus Interface (EBI)

o USB 2.0 Full Speed controller allowing host and device ports
e an embedded Ethernet MAC with support for 10/100 Base T
e a programmable oscillators using PLLs (phase locked loops)
e a Synchronous Serial Controller (SSC) with I2S support

e support for DMA transfers

e support for UARTSs, SPI, 12C

e debugging and programming functionality through JTAG and Atmel’s SAM-BA (SAM
Boot Assistant) ROM bootloader

Usually, large controllers like the AT91SAM9260 come in BGA (Ball Grid Array) packages that
are not only hard to solder by hand, but they often require the use of PCBs (printed circuit boards)
with more than two layers (which can be costly). As one of our initial design goals was a low-cost
system than can be rebuilt without the use of expensive tools, we decided that a PQFP package
would be a better choice as it can be soldered by hand and PCBs with no more than two layers
should suffice. When building portable systems, low-power operation and power management is
an important criterion which is supported by the chip’s Power Management Controller (PMC). In
addition, the chip supports the use of widely used inexpensive memory types such as SDRAM
and Flash, which allows us to run a full-blown Linux distribution on the resulting system at low
costs.

USB 2.0 offers the possibility to connect plug-and-play devices such as cell phones. However, for
development purposes Ethernet connectivity is very handy as it enables us to mount a (Linux-)
software image residing on an NFS server or to connect to the Internet. The programmable
oscillators are required in case the audio codec (see Section 5.1) needs to be supplied with a
custom clock signal that can be disabled in low-power mode. As the audio codec has to exchange
digital audio frames at high speed with the controller chip, the Synchronous Serial Controller
(SSC) can be utilized in 12S mode. The AT91SAM9260 supports DMA transfers which means
that these SSC transfers can be done without too much CPU interaction. Other interfaces like
UART, SPI (serial peripheral interface) or I2C are important as well as they are required to control
the audio codec or exchange data with the speech codec.

For programming and debugging the chip allows JTAG connections. However, as JTAG is usually
pretty slow, the proprietary SAM-BA ROM bootloader can be used for programming. If the

54 CHAPTER 5. IMPLEMENTATION

chip is powered up with no bootable code in external memories, it automatically launches the
SAM-BA bootloader that can be accessed over UART ports or even over USB.

To develop a working communication system prototype (or actually two of them since having
only one encrypted speech communication system is rather pointless), we decided to use readily

available AT91SAMO9260 based evaluation boards. One of these boards (the Olimex SAM9-1.9260
development board) is shown in Figure 5.2.

os &

(9.

>
ikl
-]
s
!
R-1
e
‘_"K
I
=
=
3
Q
=
=
2

Figure 5.2: Olimex SAM9-L.9260 development board

The big advantage of these boards is that they are available at relatively low cost (about 220 EUR
per piece) while including most components required to utilize AT91SAM9260’s potentials like
USB, Ethernet or serial (UART) connectivity. Besides, the board has 64MB DRAM, 512MB

NAND Flash and various extension ports required to access SSC, I2C or the UART pins [3]. The
full schematic of the board can be seen in Figure 5.3.

SU-TAKTEXAE

2300 ALV
terd | :‘a' 45U 180
WF76. Py UR2(L8U>
| S 39 e LT
uF78: PEED t o
) e won 33 " 4
R 4: cs4] c1e1
s PR_SY, csg 5
[L960E 20 iPoios et 2 @
& vootrz 100 3 Toenraor
H reini N
SAM9-L9260 i o B s
resne nes H
X oo imem
sy COPYRIGHTC® 2087, OLINEX LTD H | e sde i
uEXT o = v
HTTPY//LULOLINEX.CON/DEY 2| Vorpes
e uoooe PUR_IACK o2 L, y
P | — ey
PA! D [12onF PRI FB1206 oL K
T — ot BATSAC
uoocores enocoges +5U0C_only =T T
uooCoRE2 aacore2 5
URsCLEWY BAT/EXT umcoREs GADCORES tus <
nep170aT-1B62E/B ey UDOEORES aNocoRes &, HEA. 3
1K A resiny Gocones K Sese Jo
— UDosU 6NDBU co7 & =
resee o 15 Tour /163] dur
v, i 1000F /6:3/1ant :
UDOPLLBADDOSCY ADUREFP ——
by 3
xour oo N
GNoPLLBGENOSE oo
3au,
oA
ez o
x0Tz KDoA, HoriA 000 pon
(OSCSEL. SDALE Sl r————
v te
e
<Dt
s S0E
s ik
NADIE
st Ao
T s
oy NIRBNS/CTION
T Nk h5a,cr D voe
s NiRO/NE/CFHE (22, Vo
JTABSEL Nesi/spcs (L83 SOCS. S\ 3 we 102
X ncse [E2 OE 103
NE o
NesT f22/nenncLe |23022 NANDCLE /) 3.0 BRE 105
ST n2t/nanpaLe [oi—B2L NANDALE /] 7| 106
TD1,THS, TCK,RTCK, TDO, JTABSEL, NTRST,NRST L) f20 470K| vecL 17027 %
o his I :
33K | 33K 7o O 3.3u g H u o u o -
i Go . AR mr o c1gl cag g ;i L
pvd o — 3 3
S PRI I m g— L L | ¢ T BLE
] . e — 1 £ EEEE
gaun - a/spia s e o — 1 7 P S IR
co/mATa/CS —1 #d /5PIG_HOSI/NCCOS oz [& E} e e E
e 2uit R] e WD g |
= TR N oty A s 1
0o SOE R e s ey :
axste PABHCCK gARE NPRETHOORT e | PORTEAE . p22 NoNDGLE] o
3 pg— 25y R i Py i i s
oo - onrerns B R e m—— A 4
: 5 e ai e B 3 o ¢
o EE R FECRY N — e :
ooE S 221 Prdasmcoeae: a
g 13 W pCg gExL 182
£ ~—crs Erety N cmm Bt 2
= cro B Aeks] Pa/ene nazGES
R3 RL2 P o | B 228K q¥=s 2] praeras anesa
et 4 | T ey ghgh Rpaeema i puveve
508 Rprretrer |
- - Bl i et At o1
N N o o
S — 8525 REMEERE 2] oo o1
= 38 pho_HCDBD 1858 Rprgmerne e Prasven oz
BUT) Jess ReTl fese 23u oot INFEE—2a] peae/ermc 011
s S0z Y R pazrrrer—e| Prev/en bte
Shige A23/ADTRB/ETXER]
NA Su-TAKTExaa] |NA 8 oo "7 o || Pas rccos S8 e) H
Y e el ;
2] @0 sck (2 PAZSPCK 58T NP tea—2 pres/cika/erc 6
asr 278 R s Mesmmerm]
we mesers - 18 b e 3
R33_470K 35 W pReer—2 prea/mionz/eces 3
Lqpz =] g § \PAmE e DRI 3
B o= wot eR gy & 1 s
ey | HRITE PRUTECTED NoRnALLY OPERG & gl e o
y £ ‘:H B0/SPIL_NISO/ TIOR3 ? BASN T8 pag uooat
i s N e
£ R reeiitacrion o= gy g s s | oy s
g9 R revseiwecsormons G — SOCKERSZ | &z vssz
< N —— e . E— =
71 R N 1 [— . e
18UF/63USR) oo 1T 2 RN—Ee B resmaoia ozs (A2 —L26] vssaz
Loonr i R [—r: — o
5 e ——e 7 e it PR ior] 17k tede L
agd 2snzzrteiks |38 D22 /) R2_ K4S561632C-TC/L78 K4S8€1632C-TC/L78
B AT - — o
I g3 oy ko werm— . — socs
| — | el e et m—
= +s% el g e B si0:20)
g4 salA]
i it [—
) reancszmocs inez 55 7 T D613 BDYESY b PC0.21 POL4 14,9013, ROVESY,PC14_NAKDCS, PC15
i rario_wpcs: |22 =1
& PCa0/r2/CrRN/CTSS (28
S8 PCa/NCsE/CrCS1/Tiose |68
gE B8 NCo4/CrCsa/RTes |6
& R/
e Tioez/crces |62
7o PCo/h24/GPIL PGSt x
M- ey A R —
LEDZ/DUPLEX _ RXOU/CRSD/PGS_LPBK Piasmoi/ces L BLL r w
s POk oK FEB/moe/eKa 2 =
LEDa/TEST /150 b1 -
INT/PHYAOS &y @0z 3v 5 v TXDL/DTXD
[= i
e oos x| 1] 5]
7 3 %
— T Taour

PAL6_ETXZ,PALL_ETX3,PAL2_ETXD,PA13_E TXL,PA16_ETXEN,PALS_ETXCK,PA22_ETXER,PAZS_ECRS,PA28_ECOL.

PA24 THEK =3
o) =
cés, cet PAZ3_THD o 3| 231
. 2l B2
< r [BE
BRY.PDE/PHY_POCTRL 10ur/630] | 108nF S o HeE]
o
¢ ALC256

PBLR..147,PBL14.317

olololololololelolololotol

elelsleleb bl

EXT

PBID. 111 PBL14.34]

Figure 5.3: Olimex SAM9-L9260 schematic [3]

e o
S mn

HIVMUIVH IS

gs

56 CHAPTER 5. IMPLEMENTATION

Audio Codec

The audio codec is an essential part of our communication system. Comprising a sigma-delta
modulation ADC (analog to digital converter) and a DAC (digital to analog converter), it converts
analog speech signals coming from the microphone to digital data. Likewise, digital data going
into the audio codec is converted back into audible sounds that can be played back on speakers or
head phones. The main difference between audio codecs is the ADC/DAC sampling rate used
to capture and play back audio as well as the sampling resolution. Essentially, the higher the
sampling rate and resolution, the “better” the sound quality will be at the price of a higher amount
of data that needs to be processed. The minimum required sampling frequency f, for a given
signal bandwidth B is given by the Nyquist-Shannon theorem visible in Eq. 5.1.

fs > 2B (5.1)

According to Rodman, the practical upper frequency limit of standardized digital telephone
systems (e.g. G.711) is commonly accepted to be about 3.3 kHz at best [88], whereas in G.711,
at a sampling frequency of 8 kHz, the theoretic limit would be 4 kHz. Although the telephone
system works well enough for everyday communication, higher sampling rates would improve
overall speech quality and intelligibility as “critical elements of speech, the consonants, lie above”
that limit [88]. For example, the “high-frequency sound that distinguishes the ’s’ in ’sailing’ from
the ’f” in ’failing’ occurs between 4 kHz and 14 kHz” [88].

As we have a very tight bandwidth constraint we can not directly transfer the digital audio signal
over the communication channel. Even at a sampling frequency of 8 kHz and a relatively low
sampling resolution of 8 bits, the resulting bit rate would be as high as 8 x 8 = 64 kbit/s which is
way beyond the maximum capacity of our channel. As we require efficient speech compression
in addition to the audio codec, for optimal audio quality, we decided to evaluate two different
audio codecs that natively support the audio format (16 bit linear with a sampling rate of 8 KHz)
required for the speech compression DSP (see Section 5.1) without the necessity to do format or
sampling rate conversions in software.

Figure 5.4: TLV320AIC23 test board Figure 5.5: WM8731 test board

5.1. HARDWARE 57

connector AT91SAMO9260 pin | TLV320AIC23B pin
UEXT connector PA23 (TWD) codec SDIN

UEXT connector PA24 (TWCK) codec SCLK

EXT connector PB16 (TKO) codec BCLK

EXT connector PB17 (TFO) codec LRCIN

EXT connector PB18 (TDO) codec DIN

EXT connector PB19 (RDO) codec DOUT

EXT connector PB21 (RFO0) codec LRCOUT

EXT connector PB30 (PCKO) codec MCLK (optional)

Table 5.1: TLV320AIC23B connection to SAM9-1.9260 board

The first audio codec we evaluated is the Texas Instruments TLV320AIC23B [89] whereas the
second one is the Wolfson Microelectronics WM8731 [90]. For each of these codec chips we
constructed test boards visible in Fig. 5.4 and 5.5, respectively.

Essentially, both codecs have the same functionality. They support the 16 bit linear format
at 8 kHz, the I2S frame format compatible with AT91SAM9260’s SSC and they have built-
in amplifiers for the microphone and headphones. Codec control is possible over SPI (Serial
Peripheral Interface) as well as over I2C (two-wire interface). However, as SPI requires one
additional signal line on the PCB (chip select) and seems to be less common with regard to Linux
audio drivers, we decided to use I2C. In our test setup, at least from our subjective point of view,
the speech quality of the WM8731 seemed to be a bit better than for the TLV320AIC23B codec.
However, as the I?C interface did not work reliably with the WM8731, we decided to use the
TLV320AIC23B for the rest of the project.

The schematic for the TLV320AIC23B test board can be seen in Fig. 5.6. We included a jumper
(EXT_CLK) to either use the on board 12 MHz crystal or an external clock signal coming from
one of the AT91SAM9260’s programmable oscillators. The advantage of not using the crystal
oscillator is current consumption. If the codec is used for recording and playback, it uses at most
26 mA of current [89]. If the codec is disabled and outputs have been turned off, the typical
current consumption is 1.5 mA [89]. However, if the clock signal is completely turned off (e.g.
by means of the programmable oscillator), the current consumption would be as low as 0.01
mA [89].

During evaluation it turned out that with the 12 MHz crystal, standard sampling rates like 8
kHz or 44.1 kHz are not possible. Instead, due to the crystal frequency, the nearest possible
sampling rates are 8.021 kHz and 44.117 kHz, respectively [89]. However, if at one system
sound is captured at a nominal sampling frequency of 8 kHz (which is in fact 8.021 kHz) and
the sound is played back at another system with an exact sampling frequency of 8 kHz, it causes
an unwanted pitch of the sound. To avoid the issue, in the board visible in Fig. 5.4 we had to
exchange the crystal with a 12.288 MHz one.

To use the TLV320AIC23B test board with the Olimex SAM9-1.9260 evaluation board, we
connected the boards as illustrated in Table 5.1.

P2
2
EXT_GLK

T

I
Iro
r
r
o

GND

MGLK
I] Qi
12M
C13 C‘M

LOUT
ROUT

LHPOUT
RHPOUT

LLINEIN
RLINEIN

MICIN
MICEIAS

YMID

HFYDD
AYDD

HPGMD
AGND

GND Uit
T e [oo
% SDIN
2 soux
S —
GND
= o
—— LR
— oout
- LRcouT
- eowk
25
KTUMCLK
L o
-2 cLkouT
m m
3 =
?/P 7 1
BYDD
22 ovoo
28
co c10 o
== GND TL¥3204I023BFW
100n | 100n
GND GND

= Sﬂlg HEADPHONES
— L —F
0w o 4
e 4
10 +[Il ?
1503_00
| =0 o
IEER G2 =] <]
[AAAAAAAAAAAAAAAI gHo pUC
= — = L
17 _z ey J_Gﬁ 2 {4 ol
T 47 g
10y Lo c L
16 CEI-_l_l 100n g
(]
=z
g [0}
14 <
G7
:; 1._100r| C‘\? =
oL
gL
0
<<
El
IJ-‘I 100n
[a]
=z
[0
=
GND
{c) Markus Kammerstetter, 2008
TITLE: audic_board
Document Number: REU:
0.1
Date: 5/19/89 5:38 PN ‘Sheeu 1/1

Figure 5.6: TLV320AIC23B test board schematic

8¢

NOILLVINANWAITINI S d4LdVHO

5.1. HARDWARE 59

Speech Compression DSP

Besides the cryptographic implementation, the speech compression codec is one of the most
critical parts in our communication system. Without a proper codec ultra low bandwidth com-
munication would not be possible at all. Finding a speech compression codec that works well
in an ultra low bandwidth environment (9.6 kbaud/s and below), is however not a trivial task.
Assuming that for serial communication the 8N1 data format is used, for each byte of payload
one additional start- and stop-bit needs to be transferred. Thus, at 9.6 kbaud/s the maximum
possible speech bit rate would be 9'168‘ 8 — 7.68 kbit/s. But as additional header material such as
Message Authentication Codes (MACs) needs to be transported as well, the bandwidth that can
be used for speech is significantly below 9.6 kbit/s and more likely to be in the 2 — 4 kbit/s range.
(We will discuss this in more detail in Section 5.2 and Chapter 6). Due to the strict bandwidth
limits common low bandwidth speech codecs like GSM or iLBC (Internet Low Bit Rate Codec)
can not be used and specialized speech codecs like CELP (Code-excited linear prediction) [91],
LPC-10 (Linear predictive coding) [91], MELP (Mixed Excitation Linear Prediction) [91] or
AMBE (Advanced Multi-Band Excitation) [92, 91] need to be considered.

We compared codec speech samples at bit rates up to 4.8 kbit/s with the result that the AMBE
(Advanced Multi-Band Excitation) codec outperforms the mentioned codecs in terms of speech
quality and corresponding bandwidth requirements. Similar results have been found in evaluations
conducted by Neto et al. [93] and other sources as well [91, 94, 95, 96, 97]. As, when we started
to implement the system, no suitable royalty free codecs like Codec2 [98] existed and AMBE was
available in a ready to use DSP with additional useful features like echo cancellation or comfort
noise generation, we chose to utilize Digital Voice System’s AMBE-3000 chip [92].

Figure 5.7: AMBE-3000F speech compression DSP

The DVSinc. AMBE-3000F speech compression DSP depicted in Fig. 5.7 uses the Texas
Instruments TMS320F2811 DSP core to implement the Advanced Multi-Band Excitation (AMBE)
proprietary speech coding algorithm [92]. Is supports variable data rates ranging from 2.3 to 9.6
kbits/s, whereat a variable amount of FEC (Forward Error Correction) can be selected. The chip
can operate in two different modes. In codec mode two different physical interfaces are used at
the same time. On one interface (either SPI or McBSP) the audio codec is directly connected
to the chip, whereas on the other interface (e.g. UART or parallel), the compressed speech data
goes in and out. While this mode allows a less complex hardware implementation it has the
drawback that the audio codec can not be used independently by the AT91SAM9260 controller.

60 CHAPTER 5. IMPLEMENTATION

This is why we chose to use packet mode. In packet mode only one physical interface (UART,
MCcBSP or parallel) is used and uncompressed voice as well as compressed data is transferred
in the form of data packets. To achieve the maximum voice quality it is recommended that a
16-bit linear audio codec is used with the AMBE-3000 DSP while the sampling rate needs to
be 8 kHz [92]. During full-duplex operation, the DSP operates on 160 4 4 codec samples at a
time. At a sampling frequency of 8 kHz, one period is % = 125us, hence a speech packet
comprising 160 samples needs to be transferred between the AT91SAM9260 controller and the
DSP each 160 * 125us = 20ms. Likewise, compressed speech packets need to be transferred
each 20ms as well. To evaluate which interfaces and data transfer modes work best for our

communication system, we implemented a prototyping board visible in Fig. 5.8.

Figure 5.8: AMBE-3000F prototyping board

The prototype showed that using the DSP’s UART at 460 kbaud/s in packet mode with hardware
(RTS/CTS) flow control works well in conjunction with UARTO of the AT91SAM9260 controller.
However, in order to use AMBE-3000’s RTS and TX_RQST pins, an additional inverter (visible in
the upper left corner) for the TX_RQST signal was necessary. To use the AMBE-3000 prototyping
board with the Olimex SAM9-1.9260 evaluation board, we connected the boards as illustrated in
Table 5.2. The schematic of the board is visible in Fig. 5.9.

SAM9-19260 connector | AT91SAMO9260 pin | AMBE-3000 pin
EXT connector PB4 (TXDO) UART_RX

EXT connector PB5 (RXDO0) UART_TX

EXT connector PB27 (CTSO0) RTS

EXT connector PB26 (RTS0) inverted TX_RQST

Table 5.2: AMBE-3000 prototyping board connection to SAM9-1.9260 board

1 2 3 4 5 6 7 8 9 10 11
Iw ESR: 0.5-1.0
ao
I' . ESR:0.51.0
TPS767D318 GND O pead
9 U
2
uss 2
i
Vi n]
. _OATA
1 mm N EEr AMBE-3000 2C2CLK
s Bl uARTTX
I3 ool o a——
- STDBY_ENABLE
- _AX_WAKE
STANGEY
oL
-
T5%_Fov H
ADCRESEXT ’
DATA: RESETN ks y
/‘m‘ LIBE BESET (RERET
a
&2 Ryt £
& = = ghoart
- SR CLK N Pioe s aND
g SPIWAKE i
o 8
Eam 3 EnABLE
JP [Pizo— ECENABLE
PARITY_ENABLE [-EZ2— PARITY_ENABLE
— veee v B0
iz R S — T 1
n
&
UART_RK &
UARTZTX a
G
Sl Frrcware 1 i
o *10P 10k
SPI_WAKE a S
SPIZGLILIN S RESETN I
7S Eam
_GENST J =
o 2

ciglcizteis o teiton]cie
1000] 100n] 1000 100n] 1000] 100n] 100a] 1000

oo FLASHPWR

+ava

‘TH00n] 1000 100n] 1000 100n] 1000 00n] 1000 S00n] 1000] H00n

NC_PIN

aND

ND

AMBE-308@ prototype
<(c) 20@3, Markus Kammerstetter

TITLE: ambe3@0@_adapter_board_rev@d.2

Document Number:

REV:
a.2

Date: 11/3/09 11:41 AM

[sheet: 1/1

Figure 5.9: AMBE-3000 prototyping board schematic

62 CHAPTER 5. IMPLEMENTATION

Combined audio codec and speech compression board

After evaluating the audio codec and the speech compression test boards, we created a combined
board that can be easily connected to the Olimex SAM9-1L.9260 board. In contrast to the test
boards, the changes that turned out to be necessary during evaluation are already included and
breakout connections that are not required for operation were removed. Besides, the amount of
required space was significantly reduced. The PCB was professionally produced in a board house
and soldered in a reflow oven. The finished board can be seen in Fig. 5.10 while the completed
encrypted speech communication hardware is depicted in Fig. 5.11

speech coupression and audio frontend
el

i
(<) 2018, Narkus Kammerstetier,

Figure 5.10: combined audio codec and speech compression board

Figure 5.11: functional encrypted speech communication hardware

5.2. SOFTWARE 63

5.2 Software

We decided to use the Linux operating system as the software basis for our secure communication
system as it brings a number of key advantages. The Linux kernel supports the AT91 architecture
and the AT91SAM9260 controller with most of its embedded peripherals such as the SSC
(Synchronous Serial Controller), UART, USB or the embedded Ethernet MAC. In addition, it
includes the ALSA (Advanced Linux Sound Architecture) infrastructure together with the ALSA
System on a Chip (ASoC) subsystem, a framework for embedded audio with support for the
TLV320AIC23 audio codec, making it a good choice for our application. Besides the Linux
kernel, the Linux (GNU) user-land allows us to leverage a vast amount of practically proven
and tested software such as development tools, (e.g. cryptographic) libraries or other useful
applications. This way we can not only avoid re-inventing existing solutions, but the resulting
system will also become feature rich and powerful in terms of applicability. Rather than building
a highly specialized system that can only be applied for encrypted speech communication over a
small number of communication media and devices, the implementation can be combined with
existing software to cover a broad range of different media and devices. The resulting system
is so versatile, that encrypted speech communication is merely one application among others.
For instance, by leveraging existing Linux applications, our system can be easily used as digital
speech recorder, MP3 player, Internet radio or real-time speech compression device. Reaching
this high amount of versatility was possible by implementing our system in a generic enough way,
so that it can be integrated with existing Linux kernel- and user-space applications. However,
before we could start to use the full potential of Linux, we needed to port the Linux kernel and
various bootloader stages and to our hardware platform (see 5.1).

Bootloader stages

Fig. 5.12 shows the memory mapping of the AT91SAM9260 controller. As soon as the controller
is powered up, it will start to execute code from the boot memory at 0x00000000. However,
the 64 KByte boot memory region at 0x00000000 - 0x00010000 is no physical memory, but
depending on the configuration (BMS and REMAP [2]) different types of memory (and thus
also different memory regions) can be mapped to that address. Essentially, we can either map
the internal SAM-BA (SAM Boot Assistant) ROM bootloader to that region or we can use an
external memory that is connected to the EBI (External Bus Interface) and selectable with NCSO.
On the SAM9-1.9260 board we have two types of memory that we can use for booting. The first
type is a 2 MByte serial DataFlash memory (Atmel AT45DB161D 16 MBit) while the other type
is a 512 MByte NAND flash memory (Samsung K9F4GO8UOM 512 M x 8 bits). However, as
both memories are not connected to NCS0 and they lack a parallel memory interface that could
be directly accessed over the EBI, on our hardware platform we always need to boot into the
SAM-BA ROM bootloader.

64 CHAPTER 5. IMPLEMENTATION

Address Memory Space Internal Memory Mapping Notes :
0x0000 0000 (1) Can be ROM, EBI_NCS0 or SRAM
0x0000 0000 oo o depending on BMS and REMAP
oot Memory
Internal Memories | 256M Bytes 0x10 0000
ROM
OXOFFF FFFF 32K Bytes
0x1000 0000 0x10 8000
Reserved
_EBI 256M Bytes 0x20 0000
Chip Select 0 Y SRAMO 4K Bytes
Ox1FFF FFFF 0x20 1000
0x2000 0000 EEmemed)
EBI 0x30 0000
Chip Select 1/ | 256M Bytes SRAM1 4K Bytes
SDRAMC 0x30 1000
Ox2FFF FFFF
0x3000 0000 Reserved
0x50 0000
EBI
UHP 16K Bytes
Chip Select 2 256M Bytes 0x50 4000 Y
OX3FFF FFFF
0x4000 0000 EEmemes]
EBI
Chip Select 3/ | 256M Bytes OXOFFF FFFF
NANDFlash
Ox4FFF FFFF
0x5000 0000 EBI
Chip Select 4/
Compact Flash 256M Bytes
OXSFFF FFFF Slot 0
0x6000 0000 EBI Peripheral Mapping
Chip Select 5/ 256M Bytes
OX6FFF FFFF Comg?tftt 1FIaSh oroonono Reserved System Controller Mapping
X
0x7000 0000 OxFFFA 0000
EBI TCO,TC1,TC2 | 16K Bytes OXFFFF G000
Chip Select 6 256M Bytes OxFFFA 4000 Reserved
OX7FFF FFFF UDP 16K Bytes OxFFFF E800
0x8000 0000 OxFFFA 8000 ECC 512 Bytes
_EBl 256M Bytes v 16K Bytes OXFFFF EAOD
Chip Select? OxFFFA C000 SDRAMC 512 Byt
o QBFEE FEEF ™wi 16K Bytes vies
X!
OxFFFB 0000 OXFFFF EC00
USARTO 16K Bytes SMC 512 Bytes
OxFFFB 4000 OxFFFF EE00
MATRIX
USARTT 16K Bytes OXFFFF EF10 512 Bytes
OxFFFB 8000 CCFG
USART2 16K Byt OXFFFF F000
ytes
OxFFFB C000 AlC 512 Bytes
§sC 16K Bytes OXFFFF F200
0xFFFC 0000
DBGU 512 Byt
ISl 16K Bytes vies
OxFFFC 4000 OXFFFF F400
EMAC 16K Bytes PIOA 512 Bytes
OxFFFC 8000 OXFFFF F600
i 1,518M Bytes
U(n:g(f)lg;ed vt SPIO 16K Bytes PIOB 512 bytes
OxFFFC G000 OXFFFF F800
SPI1 16K Bytes
PIOC 512 bytes
OxFFFD 0000
OXFFFF FAQO
USART3 16K Bytes N
0XFFFD 4000 [FEEEE
16K Bytes OXFFFF FCOO
USART4
OXFFFD 8000 16K Bytes PMC 256 Bytes
OxFFFF FDOO
USART5
RSTC 16 Bytes
OxFFFD C000 OXFFFF FD10 16 Bytes
TC3,TC4,TC5 16K Bytes OXFFFF FD20 SHDWC
OxFFFE 0000 OXFFFF FD30 RTTC 16 Bytes
ADC 16K Bytes
OXEFFF FFFF Y OXFFFF FD40 piTe 16 Bytes
0xF000 0000 OxFFFE 4000 WDTC 16 Bytes
, Reserved OXFFFF FD50 P 16 Bytes
Internal Peripherals | 256M Bytes O0xFFFF C000 OxFFFF FD60
16K B
OXFFFF FFFF sysc ytes Reserved
OXFFFF FFFF — OXFFFFFFFF

Figure 5.12: AT91SAM9260 memory mapping [2]

5.2. SOFTWARE 65

When powering up the AT91SAM9260, the CPU runs at reduced clock speed (32.768 kHz) and
the ROM bootloader tries to determine whether a valid boot program is in the serial DataFlash
or NAND flash memory by checking whether a sequence of eight valid ARM exception vectors
can be found [2]. If no valid boot program is found, the internal SAM-BA boot program takes
control, which allows to access and program the device over USB (for example by utilizing the
SAM Boot Assistant Linux port software tool [99]). Otherwise the content (up to 4 KBytes) is
copied to the internal SRAM (SRAMO), the SRAM is remapped to the boot memory region and
the copied boot program is executed. Therefore, the SAM-BA ROM bootloader denotes the first
bootloader stage.

When executing the code in the SRAM, the controller still runs at the slow clock and the maximum
size of the code being executed is limited to the 4 KBytes of the SRAM. Thus, before being able
to run our main application (i.e. the Linux kernel), a number of low-level hardware initializations
need to be done. This is the task of the AT91Bootstrap bootloader [100, 101], the second
bootloader stage. Among the most basic things it sets up is the SD-RAM controller and the
system master clock. Since we opted for the large NAND flash memory (in relation to the smaller
DataFlash memory) and the NAND flash memory chip (i.e. the Samsung K9F4GO8UOM) was not
supported by the AT91Bootstrap bootloader, we were required to make some changes in the code.
Throughout the project we used a Buildroot [102] generated cross-compilation environment to
build uClibe [103] based EABI (embedded-application binary interface) binaries compatible with
the ARMO architecture of the AT91SAM9260.

While AT91Bootstrap would allow us to boot into a Linux kernel, it has the drawback that
valuable features such as flash memory programming or network booting are not available. As
these features are essential during application development, we decided to use the U-Boot [104]
bootloader, the third bootloader stage. According to Yaghmour et al. it is “arguably the richest,
most flexible, and most actively developed open source embedded bootloader available [...]
capable of booting a kernel through TFTP over a network connection, [...] from USB, and from a
wide variety of flash devices” [105]. To make it work with our hardware platform, we had to port
the U-Boot bootloader.

After setting up dhcpd, tftpd and NF'S servers on a development machine, we were finally able to
run the Linux kernel and boot into a NFS-mounted file system. We used the u-boot script shown
in Listing 5.1 to boot the system.

setenv ethaddr 00:de:ad:be:ef:00

setenv loadaddr 0x21500000

setenv autoload no

setenv bootcmd ’'dhcp; tftp; bootm 0x21500000’

setenv bootargs mem=64M console=ttyS0,115200, noinitrd root=/dev/nfs rw
nfsroot=192.168.1.105:/export/buildroot ip=dhcp

saveenv

dhcp

tftp

bootm 0x21500000

66 CHAPTER 5. IMPLEMENTATION

Porting the Linux kernel

In order to run the Linux kernel on our target system we needed to port the kernel. As a starting
point we used kernel 2.6.28 and patched it with the AT91 maintainer patch set [106]. To get the
latest fixes we also forward ported the Linux4SAM experimental patch set for kernel 2.6.27 [107]
to kernel 2.6.28. One of the key improvements of this patch set was related to the Ethernet MACB
driver. In the errata section of the AT91SAM9260 controller it is mentioned that the Ethernet
MACB FIFO arbitration may lead to TX underruns [2], potentially resulting in slow Ethernet data
transfers. In our initial test setup this led to the Ethernet transfers being so slow, that mounting the
root file-system over NFS was infeasible. However, as the controller’s internal 4 KByte SRAM
is no longer used as soon as the system has initialized the SD-RAM, we were able to fix the
underrun problem with the forward ported experimental patch set by utilizing the internal SRAM
as MACB TX buffer.

We achieved the actual port of the Linux kernel to our hardware setup by implementing a so-
called “board”-file in arch/arm/mach-at91. Essentially, this file defines a new machine where
the Linux kernel should run on. Once the machine has a registered machine type number in
include/asm-arm/mach-types.h, the MACHINE_START preprocessor macro shown in Listing 5.2
can be defined. Among other fields, struct machine_desc contains the function callback pointers
*map_io () and *init_machine ().

The *map_io () callback is called indirectly at the very beginning of C kernel code execution
by start_kernel () ininit/main.c. It is responsible for initializing the CPU, mapping the I/O
address space as well as registering and initializing various clocks like the system clock or clocks
required for peripherals.

The *init_machine () callback is called at the end of kernel initialization. It is responsible
for registering all platform devices and it also calls the initialization code for the peripherals that
we intend to use. That is, for example we call

at91_add_device_ssc (AT91SAM9260_ID_SSC, ATMEL_SSC_TX | ATMEL_SSC_RX)

to initialize the SSC (Synchronous Serial Controller) whereat with

ATMEL_SSC_TX | ATMEL_SSC_RX

we specify that all SSC pins required for 12S (7K, TE, TD, RK, RF, RD) should be used. In a
similar way we initialized other peripherals on the board like the Ethernet MAC, SPI, I12C, UART
or the NAND flash controller.

Once the peripheral devices are registered and initialized, the corresponding device drivers can
be loaded to utilize the devices. Accessing the devices is possible through the memory mapped
architecture (see 5.12) of the AT91SAM9260 controller [2]. For example, if the SSC needs to be
accessed by the driver (drivers/misc/atmel-ssc.c), it can do so by addressing the necessary SSC
configuration registers using the physical memory region at Oxfffbc000 [2].

5.2. SOFTWARE 67

Listing 5.2: MACHINE_START macro defined in arch/arm/include/asm/mach/arch.h

struct machine_desc {
/%
* Note! The first four elements are used
* by assembler code in head.S, head-common.S

*/
unsigned int nr; /* architecture number +/
unsigned int phys_io; /+ start of physical io */
unsigned int io_pg_offst; /* byte offset for io
* page tabe entry */
const char *name; /* architecture name */
unsigned long boot_params; /+* tagged list */
unsigned int video_start; /% start of video RAM */
unsigned int video_end; /* end of video RAM */
unsigned int reserve_lp0 :1; /+ never has 1p0 */
unsigned int reserve_lpl :1; /+ never has Ipl */
unsigned int reserve_lp2 :1; /+ never has 1lp2 */
unsigned int soft_reboot :1; /* soft reboot */
void (xfixup) (struct machine_desc x,
struct tag %, char xx,
struct meminfo =*);
void (*map_1io0) (void); /+ IO mapping function =/
void (¥init_irq) (void);
struct sys_timer *timer; /* system tick timer */
void (xinit_machine) (void) ;
bi
J *

* Set of macros to define architecture features. This is built into

* a table by the linker.

*/

#define MACHINE_START (_type,_name) \

static const struct machine_desc __mach_desc_##_type \

___used \

__attribute_ ((__section__ (y)) = { \
.nr = MACH_TYPE_##_type, \
.name = _name,

#define MACHINE_END \
bi

68 CHAPTER 5. IMPLEMENTATION

ASoC audio driver implementation

Although the ASoC (ALSA System on Chip) subsystem in the patched kernel 2.6.28 already
supported the TLV30AIC23B codec, there was no sound driver for our hardware and we were
required to write a new one. Usually, in regular ALSA sound card drivers the driver code always
includes all code necessary to communicate with the sound card hardware. In case there are
multiple sound cards from different manufacturers that all use the same audio codec, the driver
code responsible for the audio codec would usually be re-implemented in each driver resulting in
unwanted code duplication. On embedded systems the situation is even worse, as a full driver
implementation would be required for each machine (i.e. board) and each platform leading to
a plethora of different independent drivers that actually have a very similar functionality. The
ASoC subsystem is designed to address these issues by splitting up embedded audio systems into
three components [108]:

1. codec driver
2. platform driver
3. machine driver

The codec driver is a platform-independent driver providing audio capture and playback func-
tionality. Comprising audio controls and interface capabilities, it includes a number of codec 1/O
functions and DAPM (Dynamic Audio Power Management) capabilities. In our case there is a
ready-to-use driver for the TLV320AIC23B audio codec in sound/soc/codecs/tlv320aic23.c. The
codec DAI (Digital Audio Interface) describes the type and configuration of the physical digital
audio interface whereas the PCM configuration defines which audio capabilities the codec has
(e.g. sampling rates and formats). To make the codec work in our environment, we need to use
the SSC in I2S mode as DAI whereas for codec 1/O control we use the I12C bus.

The platform driver contains the audio DMA engine and DAI drivers (e.g. for I12S) for each
SoC CPU. To use I2S with the Atmel SSC, we utilized the “ALSA SoC ATMEL SSC Audio
Layer Platform driver” available in sound/soc/atmel/atmel_ssc_dai.c.

The machine driver handles machine- (i.e. board-) specific controls and audio events. It can
be seen as the glue sticking together the platform and the codec driver. As no previous drivers
existed for our encrypted speech communication hardware, we implemented a new machine
driver allowing us to use the custom TLV320AIC23B based sound card design (see Section 5.1).
Our machine driver sets up the SSC in I2S slave mode. The codec is responsible to generate the
required BCLK clock and the LRCIN/LRCOUT frame synchronization signals.

Since our driver implementation acts as a regular ALSA sound card, we can use arbitrary Linux
sound applications with our hardware setup. For testing purposes we were able to playback MP3
files and listen to Internet radio in decent quality. Also audio recording and full duplex operation
(i.e. audio capture and playback at the same time) worked well.

AMBE speech compression I/0 plugin

As described in Section 5.1, the AMBE-3000 speech compression DSP is connected to UARTO
of the AT91SAM9260 controller which allows us to take advantage of hardware flow control

5.2. SOFTWARE 69

capabilities. In this setup the chip can be used in full duplex packet mode to compress and
decompress speech at the same time. To achieve the best possible amount of speech quality, the
uncompressed speech samples supplied to the DSP need to have a sampling rate of 8 kHz while
the audio format is 16-bit signed little endian.

For speech compression, uncompressed speech packets consisting of 160 speech samples are
sent to the DSP each 20ms. However, as we need to wait until 20ms of audio was captured from
the microphone, this will also introduce additional latency. The AMBE compression algorithm
is executed on the DSP and after the processing delay, the chip returns a compressed channel
packet. Likewise, for speech decompression, a channel packet is sent to the DSP each 20ms, the
AMBE decompression algorithm is executed and an uncompressed speech packet is returned
after the processing delay.

playback
(frames to compress)

> . UART
1/0 plugin <>
m (
capture

(frames for playback)

sound- local UNIX socket
application (compressed speech 1/0)

channel interface

Figure 5.13: speech compression I/O plugin concept

To transparently support AMBE speech compression and decompression for ALSA applications,
we decided to implement an ALSA I/O plugin. The plugin acts in a similar way as a sound
card. It can be opened for audio capture and playback, whereat both is possible at the same time
to support full-duplex operation. The concept is depicted in Fig. 5.13. In playback mode the
sound application sends audio samples to the plugin, but rather than “playing them back” (e.g.
through a pair of speakers), all samples are sent to the DSP. Similarly, in capture mode, the sound
application receives audio samples from the plugin, which in turn receives those samples from
the DSP.

Besides, the plugin allows to access compressed speech packets over a local UNIX socket.
All channel packets sent to the socket are passed on to the DSP and, vice versa, all channel
packets from the DSP can be read through the socket. During operation, speech being played
back through the plugin is made available in compressed form on the UNIX socket, whereas
compressed channel packets sent to the socket is made available in decompressed form on the
audio capture interface.

70 CHAPTER 5. IMPLEMENTATION

Implementing the I/O plugin was one of the most challenging tasks throughout the project. One
of the major issues we had to tackle was to optimize the plugin communication design so that
a continuous real-time audio stream could be guaranteed. This led to a multi-threaded plugin
design with signaling pipes for inter-thread flow control (see Fig. 5.14).

audio playback audio capture

playback MQ capture MQ
(frames for playback) (frames for playback)

A S 7 4

UNIX socket UART
1/0 1/0 (DSP)

Figure 5.14: speech compression I/O plugin design

ALSA plugins are implemented as shared libraries. If a sound application opens the plugin
in playback mode, the plugin shared object will be loaded into the process space of the sound
application and relevant functions within the plugin are called. In this case, the playback plugin
code spawns the communication thread. Otherwise, if the application opens the plugin in
capture mode first, the capture plugin code has to spawn the shared communication thread. For
obvious reasons, synchronization between the capture and the playback code is necessary to avoid
spawning the shared communication thread multiple times.

Once the communication thread is running, it will initialize the AMBE3000 DSP over the UART
connection and packet processing can start. The DSP has internal FIFOs “large enough to
accommodate up to two speech packets and two channel packets” [92] at the same time. In the
optimal case, while the DSP processes one packet, it already receives the next packet so that no
additional delays result from the UART packet transfers. Essentially, the goal is to always keep
the internal FIFOs filled.

5.2. SOFTWARE 71

The AMBE-3000 chip uses hardware flow control to signal whether new data is available for
reading or new data can be sent for processing. To achieve a design enabling real-time communi-
cation, we forward this information through the signaling pipes up to the ALSA application itself
(Fig. 5.14). If the DSP is ready to accept a new chunk of 160 speech samples, it will be signaled
to the ALSA application that it can can immediately transfer the speech chunk from its internal
buffer to the DSP. Likewise, whenever the DSP has decompressed a channel packet, the ALSA
application will be notified that a new speech chunk is ready to be moved to the internal capture
buffer. The actual data transfers between the communication thread and the playback/capture
code utilize IPC message queues.

input channel packet

encoder
processing
delay

. -
input speech packet '

B —— . UART input
decoder '
1 processing

. delay
! ————

output speech packet

UART output

output channel packet

Figure 5.15: AMBE-3000 packet timing

In addition to flow control, combining channel and speech packets in UART transfers is essential
as depicted in Fig. 5.15. Unfortunately, speech and channel packets may not necessarily
arrive at the communication thread at the same time. If both, playback and capture, are active,
at one time, the communication thread may receive a chunk from the playback plugin code
while it may receive a compressed speech packet on the UNIX socket at another time. A naive
implementation would be to just send speech and channel packets to the chip as soon as they
arrive at the communication thread. This could, however, lead to the case that transfer delays
will effectively double. For example, if a speech packet arrives and a channel packets is received
shortly after that, there would be two separate (slow) data transfers for each of those packets.
We mitigated this problem by implementing a packet scheduler that basically initiates a data
transfer whenever a new speech packet is available from the ALSA application. If, at that time,
also a channel packet is in the queue, it will be added to the packet that is transferred to the
DSP. This way each data transfer contains the maximum amount of data available and transfer
delays are minimized. Besides sending packets, a decision has to be made when response packets
should be received from the UART. While the underlying hardware may receive packets at any
time, the communication thread needs to know whether a packet can be read from the kernel
buffer. Reading while no data is in the receive buffer would cause unnecessary or even critical
additional delays. Our packet scheduler tackles the problem by utilizing the poll(2) system call.
Due to the high amount of complexity involved with the design of the plugin, the overall plugin
implementation together with the AMBE-3000 driver code resulted in the plugin being one of the
largest implementation parts with over 7000 lines of C source code.

72 CHAPTER 5. IMPLEMENTATION

Encrypted speech communication application

The encrypted speech communication application is a multi threaded application to place and
receive secure calls. It comprises a number of threads responsible for different tasks:

e sound processing thread

e speech plugin accept thread

e secure transmission thread

e secure reception (main program)

sound card

-

main program

plugin
3. return compressed accept thread
speech socket

2. spawn sound thread |) /
> sound processing

(secure reception) 5. compressed speech inptg thread \
4. compressed .
speech output 1/0 plugin

secure
transmission thread

1. spawn accept thread (

speech
de/-compressio

Figure 5.16: thread overview

The sound processing thread opens both a sound device (i.e. the TLV320AIC23B sound card)
and the speech compression I/O plugin for capture and playback at the same time (i.e. in full-
duplex mode). Using an event triggered architecture based on poll(2), it continuously transfers
audio frames between the sound card and the plugin. Speech from the microphone is sent to the
AMBE speech compression plugin while received decompressed speech is played back (e.g. on
headphones). Due to the transparent design of the speech compression plugin, arbitrary sound
devices could be used. Instead of utilizing the TLV320AIC23B sound card, one could also
use a Bluetooth headset or the handsfree set of a car. The only prerequisite for this is that the
corresponding hardware is supported by ALSA and the Linux kernel. Also wireless technologies
like Bluetooth bring their own security implications, thus in the end it is the user who can choose
the tradeoff between security and usability.

5.2. SOFTWARE 73

The speech plugin accept thread is an engineering requirement. As soon as the sound processing
thread is started, the AMBE speech compression plugin will try to connect to a listening UNIX
socket for compressed speech I/O communication. However, from the perspective of a single
threaded process, spawning the sound processing thread and accepting the incoming socket
connection has to happen concurrently. If in the code of the process one would first call accept(2)
and then spawn the thread, the process would wait forever in the accept(2) call as there would
be no incoming connection since the sound thread does not exist yet. Otherwise first creating
the sound thread and then calling accept(2) would not work either, as in this case, at the time
when the sound thread starts, no listening socket might exist yet. While we could cope with this
situation by applying IPC synchronization mechanisms, we decided that using a separate thread
to accept the connection “in the background” requires less effort. During experimental evaluation
it turned out that the approach works well.

Sending and receiving encrypted speech frames happens asynchronously and independently
from each other. This allowed us to create an event triggered architecture and a less complex
implementation. Whenever speech from the microphone is compressed by the plugin, it is
immediately queued, combined with previous packets and sent over the encrypted channel as
soon as the amount of combined packet reaches a preset threshold. All these operations are
handled by the secure transmission thread.

On the other side the tasks necessary for secure reception are implemented in the main program
itself. Whenever packets are received over the secure channel, the packets are decompressed and
buffered until they are finally played back. The overall thread concept is visible in Fig. 5.16.

However, before compressed speech frames can be exchanged between Alice and Bob, a secure
channel needs to be set up in the way we described in Chapters 3 and 4. Essentially, to do so,
we implemented the following:

AKE
Utilizing the established and well tested libtomcrypt [109] library, we implemented the
Authenticated Key Exchange as described in Section 4.2.

SAS
We implemented Short Authentication Strings as described in Section 4.3 by utilizing the
PGP biometric word list [110]. It comprises a specialized list of words “for conveying
data bytes in a clear unambiguous way via a voice channel”. These words were “carefully
chosen for their phonetic distinctiveness, using genetic algorithms to select lists of words
that had optimum separations in phoneme space” [110].

KCM
We implemented Key Continuity Management as described in Section 4.4 by storing the
other parties address (e.g. a unique network address) together with the corresponding

long-term ECDSA public key in a “known parties” file. Essentially, this is very similar to
SSH’s known_hosts [71] file.

transport protocol
The transport protocol closely resembles the structure defined in Section 4.5, whereat

74 CHAPTER 5. IMPLEMENTATION

two different transport mechanisms are supported. On one hand we support TLV
(Type,Length,Value) triplets to exchange call management information with the commu-
nicating partner. However, the TLV structure can not be used for speech packet transfers
over low bandwidth channels, as the additional header material would consume too much
bandwidth for proper operation. For this reason, on the other hand, we designed a second
transport mechanism with minimized header material specifically for speech data transfer.

encryption and message authentication
We implemented encryption and message authentication with the help of the libtom-
crypt [109] library. For encryption we use AES-256 in Counter (CTR) mode as described
in Section 3.1, whereas the IV (initialization Vector) is derived from the shared master
secret during AKE. For message authentication we use HMAC-SHA256 with truncation to
no more than % = 128 bit as described in Section 3.1.

Initially, if Alice and Bob wish to set up a secure call, our encrypted speech communication
application always runs the AKE with SAS- or KCM-based authentication to ensure that there
was no MitM attack and the other party really is who she claims to be. There are three cases we
deal with:

1. If two parties run AKE for the first time, a SAS is created which is compared out of band.
If the comparison was successful, a new entry is made in the “known parties” file so that
KCM can be used for future authentications (see Section 4.4 and KCM above).

2. Otherwise, due to KCM, both parties already know the long term public keys of each other
which the application uses to verify their identities (see Section 4.4 and KCM above).

3. A special case occurs if only one party knows the long term public key of the other party.
In this case we use SAS for authentication, but in addition the party already having the
public key in the “known parties” file verifies that the received public key really matches
the stored key.

Once the AKE has completed, both parties have exchanged their long-term public keys and they
share vital key material such as the shared master secret and MAC keys. In case two parties
connect to each other over a network, chances are high that they already know their own address
and the address of the remote party. Yet, there are scenarios where this is not the case which
would render KCM authentication impossible. Essentially, there are two possibilities:

1. The caller knows her own address and the address (i.e. the phone number) of the other
party (i.e. the callee). As the caller already has all required information, additional steps
are not necessary.

2. The callee knows her own address, but she does not know the address of the caller.
Therefore, it is required that someone (i.e. the caller or the network stack underneath) tells
her who is calling.

5.2. SOFTWARE 75

For this reason, after performing the AKE, our application exchanges the addresses of the
communicating partners over the secure channel:

1. If Alice and Bob connect to each other the first time, we first perform AKE. Once AKE
has completed successfully, we exchange the encrypted and MAC authenticated addresses
of both parties. After that, the SAS is created and compared out of band. In case SAS
based authentication was successful, the received address together with the corresponding
long-term public key of the other party is stored in the key continuity database. This way
also the exchanged addresses are authenticated through SAS.

2. If Alice and Bob already performed AKE earlier, there is an entry with the addresses and
the long-term public keys of each other in their KCM files. In this case, just like for case (1)
above, we first perform AKE and then securely exchange the addresses of each other. As
they both already have an entry for each other in their KCM file, we can now compare the
received information (i.e. the remote address and the long-term public key) with the stored
information. If it matches, authentication was successful. Otherwise chances are high that
there was an attack, a warning message is displayed and the connection is terminated.

3. If only either Alice or Bob have an entry for the remote party in their KCM file, we
first perform AKE and then securely exchange their addresses. Yet, on the side of the
party not having an entry in the KCM, we send a request that SAS authentication should
be used instead of KCM. Therefore, if for instance Alice already knows Bob, but not
vice-versa, Bob would request SAS authentication from Alice. Alice will in turn perform
SAS authentication with Bob, but in addition she will also check that the information
received from Bob matches the entry in the KCM file. This avoids a potential vulnerability
in which an attacker could use a fall back to SAS based authentication to mount a potential
impersonation attack. (Ultimately he would still have to pass SAS based authentication, but
KCM based authentication is stronger in comparison to SAS based authentication if SAS
based authentication is not done out-of-band but over the encrypted speech link instead.)

76 CHAPTER 5. IMPLEMENTATION

To give an example for SAS based authentication, the caller (e.g. Alice) could see a dialog similar
to this one:
————————————————— SAS authentication (caller) —-——————-————————-

Please read these words to your communication partner:
preshrunk hurricane village maverick

Check that the reponse from the other party matches the following words:
talon tambourine snapline Cherokee

The callee (e.g. Bob) would now hear the words from Alice and respond in case the words
matched:
————————————————— SAS authentication (callee) —-————————————————

You should now hear the following words from your communication partner:
preshrunk hurricane village maverick

If these words match, please respond with:
talon tambourine snapline Cherokee

We would like to mention that, although adequate, in-band SAS based authentication is the
weakest form of authentication that we support. If the SAS is compared out-of-band (e.g. the
persons meet and visually compare it), the mechanism is more secure. However, once initial SAS
based authentication was successfully performed, the stronger KCM variant is used per default.
The overall application design including the cryptographic implementation has roughly 7400
lines of C source code. The synopsis of the application can be seen in Listing 5.3:

Listing 5.3: Synopsis of the encrypted speech communication application

Usage: ./phone

(-i|-—-identity) identity of this program (i.e. our telephone number)
(-d|——device) serial port device to use
[-a]—-—address] address of the party we would like to call
(i.e. the phone number of the callee)
[-s|—-—speed] serial port baudrate to use (default: 9600)

[-k|-—keyprefix] prefix for our ECDSA keypair
(i.e. PREFIX.pub, PREFIX.priv), default: "key"

[-t]-—authfile] file used to store authentication information, relative
to keypath
[-pl——keypath] path where the long term ECDSA keys are stored

(local directory is the default)
[-w|-—-password] password for our private key
[-r|-—responder] act as responder
[-e|——echo] instead of real communication, echo back speech packets
[-h|--help] print this help

5.2. SOFTWARE 77

The standard packet header to transport encrypted messages is visible in Listing 5.4.

Listing 5.4: Standard packet header

typedef struct {

uint8_t packet_type;

uintl6_t payload_length;

uint32_t sequence_number;

uint8_t header_crc;

} __attribute_ ((__packed__)) packet_header_t;

The packet_type specifies whether the packet is either a speech packet or it contains TLV (Type,
Length, Value) information. In case of speech packets the header in Listing 5.5 is used.

Listing 5.5: Header for speech packets

typedef struct {
uint8_t bitlen;
} __attribute__ ((__packed__)) speech_header_t;

TLV packets use the header visible in Listing 5.6.

Listing 5.6: Header for TLV packets

typedef struct {

uint8_t field_type;

uint8_t field_len;

} __attribute__ ((__packed_))field_header_t;

CHAPTER

Evaluation and results

In our test setup, we connected two encrypted speech communication units over a null-modem
serial cable (Fig. 6.1). By changing the speed of the serial port on both devices we were able to
conduct measurements and functionality tests with different bandwidth constraints.

Figure 6.1: test setup: two interconnected encrypted speech communication units

79

80 CHAPTER 6. EVALUATION AND RESULTS

6.1 Duration of the key exchange

Our Authenticated Key Exchange (AKE) implementation (see Sections 4.2 and 5.2) is di-
mensioned for 256-bit cryptographic system security. Hence, message fields that need to be
exchanged (such as the EC-DH and EC-DSA public keys, HMACs or signatures) all have a
length corresponding to 256-bit system security (in accordance with the requirements issued by
standardization bodies such as NIST). Considering the low bandwidth of the system, transferring
these fields takes a significant amount of time. In addition, also the amount of heavy cryptographic
computations involved with the key exchange are relevant.

During the AKE, in our implementation the call initiator needs to send 376 bytes to the responder,
whereas the responder needs to send 345 bytes to the initiator. That is, throughout the key
exchange, a total of 721 bytes need to be exchanged. We measured the duration of the key
exchange at different baud rates. The results can be seen in Table 6.1. Note that these results
also include the constant cryptographic computation delays.

baud rate | avg. duration at initiator [ms] | avg. duration at responder [ms]
4800 | 3855 2625
9600 | 3090 2160
19200 | 2715 1930

Table 6.1: duration of the AKE at different baud rates

6.2 AMBE speech codec latency

In our application the AMBE-3000 [92] codec DSP is connected over a UART interface running
at a baudrate of 460.800 kbaud. To compress a speech packet, the packet needs to be transferred
to the DSP. As soon as the DSP is ready, the compressed packet is transferred back to the host.
However, since we use a pipelined approach to exchange packets with the DSP (see 5.2 for
details), the data transfers are done concurrently to the compression and decompression operations.
As a result, the data transfers do not have any influence on the total codec delay.

To experimentally measure the codec delay (and thus the additional amount of latency it causes
to the system), we modified our implementation to create time stamp logs. Each time we sent
an uncompressed speech packet to the DSP, we created a time stamp right before the call to the
write() system call. Similarly, we created a time stamp right after the read() system call. At that
point, we had to ensure that the response really is a corresponding, compressed speech packet. By
subtracting these time stamps we were able to measure delays. Additional delays (e.g. between
the call to write() and the physical UART send operation) can be neglected due to the pipelined
approach we mentioned above. In contrast to the AMBE-3000 manual [92], which states that
the total algorithmic delay (i.e. the total delay due to the compression and decompression) is 62
ms, our measurements showed that compression and decompression each take 10 ms on average.
Hence, according to our measurements, the total algorithmic delay was 20 ms. Our tests also
showed that the measured algorithmic delay does not depend on the configured AMBE speech

6.3. SPEECH COMMUNICATION LATENCY AND REQUIRED BANDWIDTH 81

rate. Thus, for instance, the measurement results for lower (e.g. 2400 baud) and higher (e.g. 9600
baud) speech rates were equal.

6.3 Speech communication latency and required bandwidth

In our implementation the speech communication latency and required bandwidth are closely tied
to each other. The reason for this is that in addition to the speech frames, each encrypted speech
packet also includes:

e a “standard” header with 8 bytes (see Listing 5.4)
e a speech header with 1 byte (see Listing 5.5)

e the HMAC for message authentication with at least 16 bytes [65, 111].

Hence, if a speech packet is transferred, it always includes at least 8 + 1 + 16 = 25 bytes of
required header material. The size of a compressed speech frame (i.e. a channel packet) is
visible in Table 6.2. It depends on the configured AMBE-3000 [92] speech rate, where the
vocoder_rate_index specifies a set of predefined speech rates [92]. Exactly one compressed
speech frame is created each 20 ms.

vocoder_rate_index | speech_rate | bits_per_channel_packet | channel_bytes_per_packet
(=speech_rate/50) (=((bits—1)/8)+1)

36 2250 45 7
37 2400 48 7
38 3000 60 9
39 3600 72 10
40 4000 80 11
41 4400 88 12
42 4800 96 13
43 6400 128 17
44 7200 144 19
45 8000 160 21
46 9600 192 25

Table 6.2: different AMBE-3000 speech rates

Since the size of the required header material is usually larger than the size of a compressed
speech frame (with the exception of the 9600 bps bit rate), sending only a single speech frame in
each packet would tremendously increase the required bandwidth. Therefore, it is much more
bandwidth efficient to include a number (SPEECH_FRAMES_IN_CRYPTO_PACKET) of speech
frames in each packet. But as each speech frame represents 20 ms of speech, this also increases
the latency by (SPEECH_FRAMES_IN_CRYPTO_PACKET*20 ms).

82 CHAPTER 6. EVALUATION AND RESULTS

We created a model to evaluate the required bandwidth and the resulting latency. In the following,
we also verified the model with actual measurement results. If we assume that

S packet size,

i SPEECH_FRAMES_IN_CRYPTO_PACKET,
r--- vocoder bit rate,

L --- HMAC size,

b ... required baud rate,

the size of one packet is:

r

3:8+1+i(%8)+ L
T 1

=L4i(— —=)+9

s —1—2(400 8)—|—

The speech codec creates one compressed speech frame each 20ms, thus in one second it is
required to send % packets. If we assume that the 8N1 format is used for serial communication,
the required baud rate is:

- 500(i(455 — 3) + L+ 9)
i

Therefore, for a given setup (maximum baud rate, bit rate, HMAC size) the minimum number of
required speech frames per packet ¢ is:

. 40(b — 90)
"~ 7 —50(400L + 1)

The maximum possible bit rate r for a given system (maximum baud rate, speech frames per
packet, HMAC size) is:

~2(2bi +125(7 — 8(L +9)))

" i
Finally, the maximum possible HMAC size L for a given setup (maximum baud rate, speech
frames per packet, bit rate) is:

—(Bir — 2(2bi + 125(i — 72)))

2000
Assuming that a 128 bit HMAC (L = 16) is used, we determined the possible AMBE bit rate and
additional latency tradeoff for 4800 and 9600 baud channels. The results are shown in Fig. 6.2
and Fig. 6.3 respectively. As can be seen, the latency is reducible by choosing a lower vocoder
bit rate which allows us to include fewer compressed speech frames in each encrypted packet.
However, at the same time this also reduces the speech quality of the system.

L=

6.3. SPEECH COMMUNICATION LATENCY AND REQUIRED BANDWIDTH

maximum vocoder bitrate [bps]

maximum vocoder bitrate

10000

9000

8000

7000

6000

5000

4000

3000

2000

Figure 6.2: possible bit rates at 4800 baud with 128 bit HMAC size

10000

9000

8000

7000

6000

5000

4000

3000

2000

bitrate
latenc

10

15

compressed frames per packet

20

bitrate

latency - - - -

L L

I

10
compressed frames per packet

Figure 6.3: possible bit rates at 9600 baud with 128 bit HMAC size

15

20

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

additional latency [ms]

additional latency [ms]

83

84 CHAPTER 6. EVALUATION AND RESULTS

On a 4800 baud channel, by choosing the minimum vocoder bit rate of 2250 bps and a 128 bit
HMAC field, we would need to include at least 6 compressed speech frames in each encrypted
packet which would result in 120 ms of additional latency. In comparison, on a 9600 baud
channel, the same configuration would only require 2 frames per packet and thus result in an
additional latency of merely 40 ms. The relation between latency, the number of speech frames
per packet and the required baudrate is depicted in Fig. 6.4.

16000 - 600
baudrate X
measured baudrate + ; X
14000 additional latency [ms] - BN S 2 500
measured total latency [ms] X % X X

12000]

400
10000
300
8000

required baudrate

200
6000]

additional latency [ms]

4000 1 100

2000 '”‘\ I I I I I I I I 0
2 4 6 8 10 12 14 16 18 20

compressed frames per packet

Figure 6.4: required baudrate for the lowest vocoder bit rate (2250 bps) and 128 bit HMAC

Using timestamps as described in Section 6.2, we also measured the required baudrate and the
total system latency. The measurement results are depicted in Table 6.3. We incorporated them
into Fig. 6.4 as well. While the measured baudrate closely matches the calculated required
baudrate, the discrepancy between the calculated additional latency and the measured fotal
latency comes from the fact, that constant latencies (e.g. due to buffering) are not included in
the calculated additional latency. In our test setup we used a playback buffer with 5 frames
introducing an additional latency of 5 * 20 = 100 ms. Thus, the total system latency could be
further decreased at the cost of smaller buffers and thus less resistance to jitter.

6.3. SPEECH COMMUNICATION LATENCY AND REQUIRED BANDWIDTH

frames per packet

measured baud rate

measured latency

0 ~J O U i W N =~

—_ =
_ o ©

12
13
14
15
16
17
18
19
20

15655
9235
7310
6125
5500
5185
4913
4623
4476
4250
4044
3980
3832
3815
3810
3815
3810
3800
3770
3725

166
183
208
215
221
238
265
282
308
330
368
388
418
448
468
488
508
539
568
578

Table 6.3: measured baud rates and latency

85

CHAPTER

Related work

While encrypted speech communication is not new, we think that the security features and in-
formation security properties we applied to audio streams are novel, especially in conjunction
with low-bandwidth communication. Toorani and Beheshti Shirazi [5], for instance, suggested
different solutions to the GSM security weaknesses including replacements for insecure ciphering
algorithms in mobile networks and end-to-end security solutions. They regarded end-to-end secu-
rity to be the “easiest, and most profitable solution” [5] and considered different implementations
targeting mobile phone hardware or portable PCs.

As we outlined in Chapter 8, GSM has a 9600 kbit/s data channel (CSD - Circuit Switched Data)
that can be used in transparent (i.e. without error correction) or in non-transparent mode (i.e. with
ARQ and FEC error correction) [112]. The drawback of CSD is that the data channel has less
bandwidth and does not have the hard real-time properties of the GSM speech channel resulting
in higher delays. On the other hand, data access to the raw GSM speech channel is usually not
possible for mobile phone users. Instead, only speech can traverse the established channel, which
is always processed by the GSM speech codec. This led to a number of end-to-end security
solutions, modulating encrypted data streams in the form of a speech-like waveforms that can
pass GSM compression without loosing too much information.

In their paper “Real-time End-to-end Secure Voice Communications Over GSM Voice Channel”
Katugampala et al. [113] mentioned these drawbacks and designed a modem for low bit rate
speech channels. They implemented a prototype on Personal Computers (PCs) and interfaced it
to GSM handsets by connecting the PC’s sound cards to hands-free cables. Their modem channel
achieved a throughput of 3 kbps over which they were able to transfer encrypted speech that
was compressed through a LPC based speech codec. As their main contribution was the design
of the modem, they provided no information regarding the security features, encryption or key
exchange.

In the paper “Secure Mobile Communication Using Low Bit-rate Coding Method” Wastif et
al. [114] applied the ITU-T G.723.1 speech coder to compress speech. They encrypted it and

87

88 CHAPTER 7. RELATED WORK

created a speech-like waveform by using a speech production model based on LPC to be able
to send the data over the GSM speech channel. Similar to Katugampala et al., they provide no
information regarding encryption, key-exchange or security features. Their main contribution is a
MATLAB simulation, demonstrating that secure mobile communication over the GSM speech
channel is feasible by using speech-like waveforms.

Likewise, Yang et al. [115] and Islam et al. [116] focused on speech-like waveform modem
implementations in simulation environments such as MATLAB, without going into details
regarding the security properties of their systems.

In the paper “Developing and Implementing Encryption Algorithm for Addressing GSM Security
Issues”, Islam and Ajmal [117] took a different approach. They implemented a speech encryption
system on DSP Starter Kits that uses their own customly developed “embedded encryption
algorithm”. Besides not being scrutinized by the cryptographic community, the algorithm merely
shifts the quantized speech signal from the microphone in a way similar to the antique Caesar
cipher. For simplicity, they only considered 16 quantization levels and argued that their encryption
algorithm allows “speedy processing and lesser latency”. However, their implementation also
supports “commonly used encryption algorithms”. Apart from their “embedded encryption
algorithm”, they make no claims regarding the key-exchange or the security properties.

In contrast to the above mentioned implementations, our system neither focuses on speech-
like waveforms nor on GSM alone. Instead, it requires a low-bandwidth data communication
channel with at least 4800 baud. We believe our system is superior to those mentioned, as
it fully implements authenticated key exchange, key continuity management and encryption
relying solely on established cryptographic primitives that are widely-used and scrutinized by
the cryptographic community. Moreover, our implementation is a working embedded prototype
rather than a simulation (like some of the above mentioned projects).

Lei, Zhao, Dai and Wang [118] proposed a secure voice communication systems based on the
TMS320VC5410 DSP, whereas their system also includes a PCM codec and a LCD based user
interface. They use uncompressed speech at a sampling rate of 8 kHz and 8 bit resolution, which
results in a minimum bandwidth requirement of 64 kbit/s. To encrypt speech data, they designed
a “chaotic audio encryption scheme” comprising cat map based diffusion and logistic map based
permutation. Their customly designed encryption scheme has not undergone the scrutiny of the
cryptographic community and they make no claims regarding its security. Similar to our approach,
they tested their solution over a serial E/A-232 connection. Anas et al. [119] implemented a DSP
based secure speech communication system utilizing DES for encryption and ICELP for speech
compression. Their system uses a modem connection over PSTN and is capable of full-duplex
communication starting at 9600 bps channel bandwidth. In both publications, the authors did not
cover the security features or the key exchange of their respective systems.

In [120], Wong and Ching propose a design of a narrowband radio channel speech encryption
system. The authors discuss different modulation schemes and speech coding algorithms like
CELP, concluding that CELP based vocoders show “considerable promise for good quality coding

&9

of speech at low bit rates” [120]. Likewise, in “Interoperable secure voice communications in
tactical systems” Collura and Rahikka from the National Security Agency covered different
speech coding techniques, usable for secure voice communication over low-bandwidth channels.
In contrast to Wong and Ching, they included Forward Error Correction (FEC) codes in their test
setup. Due to the main focus being on speech compression, the authors of both papers did not
cover security features or cryptographic properties.

To the best of our knowledge, Hua et al. [121] are the only authors who adopted Advanced Multi-
band Excitation (AMBE) for speech coding. They implemented a secure speech communication
system that communicates over low-bandwidth IEEE 802.15.4 Wireless Personal Area Networks
(WPANS5s). Their system is based on IEEE 802.15.4 evaluation and AMBE VC-55 vocoder boards.
However, rather than implementing encryption on their own, they utilize the security suite in
IEEE 802.15.4 that offers AES-128 encryption and integrity protection. They mention that IEEE
802.15.4 has no key management and generation algorithms, but they do not tackle the problem
in their implementation.

At the Universita degli Studi di Salerno, there is a research project entitled “SPEECH: Secure
Personal End-to-End Communication with Handhelds” [122, 123]. According to the publication
by A. Castiglione et al. [123], they implemented a SPEECH software application usable to make
secure calls on Windows Mobile handheld devices. It uses a 9600 bps communication channel and
focuses on the information security properties confidentiality, authentication and non-repudiation.
The authors claim, that especially non-repudiation for encrypted speech communication is “abso-
lutely novel” [122] in the scientific community. Their system uses Speex for voice compression
and AES-256 in OFB mode for encryption. It allows the use of “SSL/TLS, Passphrase or Diffie-
Hellman, for session key agreement and parties authentication” [122]. However, according to
[123], these information security properties are not always achieved, as they depend on the type of
key-exchange. If merely the unauthenticated Diffie-Hellman key-exchange is used, their system
neither provides authentication nor non-repudiation. If their passphrase based key agreement
scheme is applied, their system provides only weak authentication, as in practical applications
the security of an underlying passphrase is usually not as strong as generated key material with
state of the art length. If a user chooses a bad passphrase, this key agreement scheme may lead
to a complete compromise of confidentiality and authenticity. The only key agreement scheme,
that provides all three security properties at the same time, is the certificate based scheme. The
drawback of this approach is that all devices need to have the root CA certificate and thus, trust
is extended not only to the communicating parties, but to all parties having a valid certificate
signed by the CA. Due to the lack of online access to a PKI, important security features such as
access to CRLs (Certificate Revocation Lists) are not possible. If a SPEECH device is stolen, it
still contains valid certificates signed by the CA, but due to the lack of CRLs, there is no way
to revoke the trust from these stolen certificates. Besides, SPEECH implemented a key escrow
scheme allowing third parties (e.g. law enforcement) to intercept encrypted conversations without
notice. In comparison, our implementation provides a higher degree of security. In addition to
the security properties confidentiality and authenticity, it provides integrity protection, perfect
forward secrecy and repudiation, whereas, unlike SPEECH, our system always grants these
properties. We did not implement key escrow schemes as we strongly believe that they are a threat

90 CHAPTER 7. RELATED WORK

to communication security. Moreover, the SPEECH key exchange can take up to 12 seconds on
a 9600 bps channel, whereas our key exchange takes roughly 3 seconds on average, even on a
channel with as little as 4800 baud.

Finally, the work of Goldberg et al. on OTR [77, 1, 81, 82], which forms the basis of our own
key exchange, is noteworthy. Interested readers are forwarded to Chapter 4 for more details on
the protocol.

In contrast to the above implementations, our system does not only provide confidentiality,
integrity and authenticity (of data and entities) with well-established and standardized algo-
rithms, but also provides non-repudiation, perfect forward secrecy and a degree of plausible
deniability at the same time. We believe that these information security features have never been
applied to audio streams before and thus are a novel contribution to the field. Our system is a fully
working embedded prototype implementation rather than a simulation or an application that only
works on specific devices (like Windows Mobile handheld devices). Unlike mentioned projects,
our solution is extremely versatile through the use of Linux and general purpose ports such as
USB. It does not restrict its use to specific media like GSM, but similar to SPEECH, it has a
generic design that allows its use over a number of varying media. Finally, our system also works
over channels with bandwidth capacities below 9600 baud. Our tests showed, that the expected
lower bound of 4800 baud still provides enough bandwidth for the system to remain operational.

CHAPTER

Conclusion and future work

Throughout a time of roughly 2 years, we developed a working prototype of a versatile encrypted
speech communication system. Due to the numerous configuration parameters the system can
be easily adapted to work over a broad range of varying communication media. Among these
parameters are:

e variable buffer sizes
e variable speech encoding bit rate

e variable tradeoff between latency and required bandwidth

By adapting the buffer sizes, the system can be made more resilient to jitter at the cost of additional
latency. The speech encoding bit rate allows to increase the audio quality at the cost of increased
bandwidth requirements. Our system allows to choose the tradeoff between latency and required
bandwidth by specifying how many speech frames should be included in each encrypted packet.
The more frames are included, the lower the required bandwidth at the cost of additional latency
(see Chapter 6 for details).

By utilizing the diversity of the Linux operating system, our system enables usage of plug and play
devices such as USB headsets or even Bluetooth devices. Our software implementation comprises
more than 16.000 lines of C source code specifically designed in a generic and Linux-compatible
way, so that the components of our system can be applied by other applications as well. For
instance, our sound hardware can be used by arbitrary sound applications, allowing applications
like MP3 playback, arbitrary sound recording and many more. Therefore, the speech compression
plugin is usable by arbitrary sound applications. For example, it could be used to record voice
and play it back at a later point in time. Likewise, it could be used as AMBE de-/compression
device in conjunction with other systems that use the AMBE speech codec (such as the D-STAR
amateur radio digital voice communications network [124] or the APCO Project 25 trunked radio
system [125]).

91

92 CHAPTER 8. CONCLUSION AND FUTURE WORK

However, our current implementation also has limitations. In the measurements we performed
with our specific setup, the overall communication latency was in the 200 ms range which is
more than the 150 ms limit suggested by the G.114 ITU recommendation [126]. While practical
experimentation has shown that the latency is acceptable, very low bandwidth constraints further
increase the system latency. For instance, on a 4800 baud channel, our measurements (see Table
6.3) have shown that even at the lowest bit rate the latency reaches the 300 ms limit.

Also, in contrast to the serial cable connection in our test setup, a real world communication
medium like GSM or a digital radio would introduce jitter and bit error effects we did not test.
One way to tackle jitter issues is to increase the buffer sizes which will however increase the
communication latency. It is up to future work to perform according tests by introducing various
amounts of jitter.

On the serial cable connection the Bit Error Rate (BER) is practically 0%. Nevertheless, on a
real word channel the BER is ordinarily higher. To deal with bit errors a number of error-control
mechanisms can be used. For instance, a noisy communication channel with a given number
of bit errors could implement an Automatic Repeat reQuest (ARQ) scheme, so that each time a
faulty frame is received, the receiver automatically requests the frame to be re-sent. Obviously
such a scheme would need an error detection mechanism like Cyclic Redundancy Check (CRC)
codes as well, so that the system can detect whether a received frame contains bit errors. Since
the frame requesting the sender to re-send the last frame, or the re-sent frame itself, could contain
bit errors as well, depending on the BER, it might be relevant to add error-correction mechanisms
like Forward Error Correction (FEC) to the system. That is, a certain percentage of the channel
bandwidth dependent on the expected BER would be used for redundant error correction codes.
In combination with an ARQ scheme, errors could be corrected as long as the number of bit
errors is below the threshold, the error correcting code can handle. If the number of errors is
too high, the frame can be re-requested with the ARQ scheme. The combination of an ARQ
scheme with FEC codes is commonly known as Hybrid Automatic Repeat Request (HARQ)
which is part of our future work. Obviously both mechanisms would have an impact on our
speech communication system. Re-requesting a frame would introduce additional delays that
might break the real-time property of the system. Hence it could occur that due to ARQ speech
frames arriving so late, they would be no longer relevant. Instead of correctly receiving those
frames, it would we preferable to drop them in favor of keeping the real-time property of the
speech data stream. On the other side, control frames (e.g. for call setup and teardown) need to
correctly arrive eventually. Ultimately, this leads to different requirements for speech and control
packets. Speech frames need to arrive on time and dropping erroneous frames is acceptable. On
the other hand control frames are not time critical, but they need to arrive correctly eventually.
GSM, for instance, allows to transfer data over the Circuit Switched Data (CSD) channel either
in transparent or non-transparent mode [112]. In transparent mode, the raw frames from the Over
The Air (OTA) interface are directly passed to the CSD channel. Thus, these frames also contain
transmission errors that need to be corrected and, in our current implementation, these errors
would cause our system to discard the packets and fail. On the other hand, in non-transparent
mode, there are no transmission errors as GSM corrects them by means of retransmission and
error correction codes. In this case our system would work over the channel, but due to the
re-transmission delays our implementation would drop speech packets as they do no longer arrive

93

on time and fail as well. Ultimately, to tackle the problem, we would need to implement Hybrid
Automatic Repeat Request (HARQ) and communicate over the raw transparent channel. This
way we can limit re-transmissions to control packets to guarantee that they will arrive eventually,
while we can drop speech packets that can not be corrected through Forward Error Correction
(FEC) alone.

Finally, we would like to point out, that our implementation is a prototype. Hence the size of the
hardware implementation is still too big to be easily portable, there is no user interface and in
the current state the system is not battery powered and thus incapable for mobile use. As more
powerful ARM controllers are readily available today (such as the ones being heavily used in
smart phones), it would be possible to implement a much smaller and more powerful system.
Also recent advances in speech codec development (like the open source Codec2 [98]) would
allow us to perform the speech compression in software and omit the requirement for an external
DSP. For these reasons, we think that the system could be miniaturized to the size of a match box.
Likewise, if existing communication devices (such as smart phones) already have a powerful
enough CPU as well as audio capture and playback capabilities, the system could be implemented
on the communication device itself making additional hardware obsolete.

(3]

[10]

Bibliography

Chris Alexander and Ian Goldberg, “Improved user authentication in off-the-record
messaging”, in Proceedings of the 2007 ACM workshop on Privacy in electronic society,
New York, NY, USA, 2007, WPES °07, pp. 41-47, ACM.

Atmel Corporation, “AT91 ARM Thumb Microcontrollers, AT91SAM9260”, http://
www.atmel.com/dyn/resources/prod_documents/doc6221.pdf, [On-
line; retrieved 2011-05-05].

OLIMEX Ltd., “SAM9-1.9260 DEVELOPMENT BOARD FOR AT91SAM9260 MICRO-
CONTROLLER”, http://www.olimex.com/dev/sam9-L9260.html, [On-
line; retrieved 2011-05-05].

Ross J. Anderson, Security engineering - a guide to building dependable distributed
systems (2. ed.), Wiley, 2008.

Mohsen Toorani and Ali Asghar Beheshti Shirazi, “Solutions to the GSM Security
Weaknesses”, CoRR, vol. abs/1002.3175, 2010.

Orr Dunkelman, Nathan Keller, and Adi Shamir, “A Practical-Time Attack on the A5/3
Cryptosystem Used in Third Generation GSM Telephony”, http://eprint.iacr.
org/, 2010, [Online; retrieved 2011-05-05].

Official Journal C 329, “European Council Resolution of 17 January 1995 on the
Lawful Interception of Telecommunications”, http://eur—-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CELEX:31996G1104:EN:HTML, Novem-
ber 1996, [Online; retrieved 2011-05-05].

Wikipedia, “Greek telephone tapping case 2004-2005”, http://en.wikipedia.
org/wiki/Greek_telephone_tapping_case_2004-2005, 2010, [Online;
retrieved 2011-05-05].

“GSMK Gesellschaft fiir sichere Mobile Kommunikation mbH”, http://www.
cryptophone. de, [Online; retrieved 2011-05-05].

“Redphone 0.1”, http://whispersys.com, [Online; retrieved 2011-05-05].

95

http://www.atmel.com/dyn/resources/prod_documents/doc6221.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc6221.pdf
http://www.olimex.com/dev/sam9-L9260.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996G1104:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996G1104:EN:HTML
http://en.wikipedia.org/wiki/Greek_telephone_tapping_case_2004-2005
http://en.wikipedia.org/wiki/Greek_telephone_tapping_case_2004-2005
http://www.cryptophone.de
http://www.cryptophone.de
http://whispersys.com

96

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

BIBLIOGRAPHY

“Secure Phone Miser”, http://www.spygadgets.com/secure-phone, [On-
line; retrieved 2011-05-05].

Gesellschaft fiir sichere Mobile Kommunikation mbH, “Cryptophone Technol-
ogy - Encryption Engine”, http://www.cryptophone.de/en/background/
cryptophone-technology/encryption—engine, [Online; retrieved 2011-05-
05].

J. Callas P. Zimmermann, A. Johnston, “ZRTP: Media Path Key Agreement
for Unicast Secure RTP; Internet-Draft”, http://tools.ietf.org/html/
draft-zimmermann-avt—-zrtp-22, [Online; retrieved 2011-05-05].

“The ZFone Project”, http://zfoneproject.com, [Online; retrieved 2011-05-05].

“Off-the-Record Messaging Protocol version 2, http://www.cypherpunks.ca/
otr/Protocol-v2-3.1.0.html, [Online; retrieved 2011-05-05].

Dirk Pesch, “Lecture Notes on Telecommunications”, http://www.aws.cit.ie/
personnel/dpesch/MScSW_Telecomms.html, [Online; retrieved 2011-05-05].

Jorg Eberspécher, Hans-Jorg Vogel, Christian Bettstetter, and Christian Hartmann, GSM -
Architecture, Protocols and Services, Wiley, 3rd edition edition, December 2008.

ETSI, “ETSI TS 123 003 V9.3.0 (2010-06) Technical Specification; Digital cellular
telecommunications system (Phase 2+); Universal Mobile Telecommunications System
(UMTS); Numbering, addressing and identification; (3GPP TS 23.003 version 9.3.0
Release 9), 3GPP TS 23.003”, Nov. 2005.

Oracle Corporation, “Java Card Technology Overview”, http://Jjava.sun.com/
javacard/overview. jsp, [Online; retrieved 2011-05-05].

Suraj Srinivas, “The GSM Standard (An overview of its security)”,
http://www.sans.org/reading_room/whitepapers/telephone/
gsm-standard-an-overview—-security_317, [Online; retrieved 2011-05-05].

Billy Brumley, “A3/A8 & COMP128, T-79.514 Special Course on Cryp-
tology”, http://www.tcs.hut.fi/Studies/T-79.514/slides/S5.
Brumley—-compl28.pdf, [Online; retrieved 2011-05-05].

Eric Zenner, “Kryptographische Protokolle im GSM Standard: Beschreibung und Krypt-
analyse”, Master’s thesis, Universitdt Mannheim, 1999.

Wikipedia, “AS5/1”, https://secure.wikimedia.org/wikipedia/en/
wiki/A5/1, 2010, [Online; retrieved 2011-05-05].

Andrey Bogdanov, Thomas Eisenbarth, and Andy Rupp, “A Hardware-Assisted Realtime
Attack on A5/2 Without Precomputations”, in Proceedings of the 9th international
workshop on Cryptographic Hardware and Embedded Systems, Berlin, Heidelberg, 2007,
CHES °07, pp. 394-412, Springer-Verlag.

http://www.spygadgets.com/secure-phone
http://www.cryptophone.de/en/background/cryptophone-technology/encryption-engine
http://www.cryptophone.de/en/background/cryptophone-technology/encryption-engine
http://tools.ietf.org/html/draft-zimmermann-avt-zrtp-22
http://tools.ietf.org/html/draft-zimmermann-avt-zrtp-22
http://zfoneproject.com
http://www.cypherpunks.ca/otr/Protocol-v2-3.1.0.html
http://www.cypherpunks.ca/otr/Protocol-v2-3.1.0.html
http://www.aws.cit.ie/personnel/dpesch/MScSW_Telecomms.html
http://www.aws.cit.ie/personnel/dpesch/MScSW_Telecomms.html
http://java.sun.com/javacard/overview.jsp
http://java.sun.com/javacard/overview.jsp
http://www.sans.org/reading_room/whitepapers/telephone/gsm-standard-an-overview-security_317
http://www.sans.org/reading_room/whitepapers/telephone/gsm-standard-an-overview-security_317
http://www.tcs.hut.fi/Studies/T-79.514/slides/S5.Brumley-comp128.pdf
http://www.tcs.hut.fi/Studies/T-79.514/slides/S5.Brumley-comp128.pdf
https://secure.wikimedia.org/wikipedia/en/wiki/A5/1
https://secure.wikimedia.org/wikipedia/en/wiki/A5/1

BIBLIOGRAPHY 97

[25]

[26]

[27]

(28]

Elad Barkan, Eli Biham, and Nathan Keller, “Instant Ciphertext-Only Cryptanalysis of
GSM Encrypted Communication”, J. Cryptol., vol. 21, pp. 392-429, March 2008.

Vassilis Prevelakis and Diomidis Spinellis, “The Athens affair”, IEEE Spectrum, vol. 44,
no. 7, pp. 26-33, July 2007.

Michael Walker, “On the Security of 3GPP Networks”, in EUROCRYPT, 2000, pp.
102-103.

Bundesamt fiir Sicherheit in der Informationstechnik, “Offentliche Mobil-
funknetze und ihre Sicherheitsaspekte”, https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/
OeffentlMobilfunk/ocefmobil_pdf.pdf?__blob=publicationFile,
[Online; retrieved 2011-05-05].

Holger Bertsch, “Open Source GSM BTS Setup und Analyse fiir Demo-Zwecke”, Master’s
thesis, Albert-Ludwigs-Universitit Freiburg, 2009.

Dennis Wehrle, “Open Source IMSI-Catcher”, Master’s thesis, Albert-Ludwigs-Universitit
Freiburg, 2009.

Fabian van den Broek, “Catching and Understanding GSM-Signals”, Master’s thesis,
Radboud University Nijmegen, 2010.

Ettus Research LLC, “Universal Software Radio Peripheral”, http://www.ettus.
com/products, [Online; retrieved 2011-05-05].

“GNU Radio Project”, http://gnuradio.org, [Online; retrieved 2011-05-05].

“AirProbe project”, https://svn.berlin.ccc.de/projects/airprobe/
wiki, [Online; retrieved 2011-05-05].

“OpenBTS project”, http://openbts.sourceforge.net, [Online; retrieved
2011-05-05].

Timo Gendrullis, Martin Novotny, and Andy Rupp, “A Real-World Attack Breaking
A5/1 within Hours”, in Proceeding sof the 10th international workshop on Cryptographic
Hardware and Embedded Systems, Berlin, Heidelberg, 2008, CHES °08, pp. 266282,
Springer- Verlag.

Karsten Nohl, “Attacking phone privacy, BlackHat 2010 Lecture Notes”,
http://media.blackhat.com/bh-us-10/whitepapers/Nohl/
BlackHat-USA-2010-Nohl-Attacking.Phone.Privacy-wp.pdf, [On-
line; retrieved 2011-05-05].

Dan Boneh, Ed., Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings,
vol. 2729 of Lecture Notes in Computer Science. Springer, 2003.

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/OeffentlMobilfunk/oefmobil_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/OeffentlMobilfunk/oefmobil_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/OeffentlMobilfunk/oefmobil_pdf.pdf?__blob=publicationFile
http://www.ettus.com/products
http://www.ettus.com/products
http://gnuradio.org
https://svn.berlin.ccc.de/projects/airprobe/wiki
https://svn.berlin.ccc.de/projects/airprobe/wiki
http://openbts.sourceforge.net
http://media.blackhat.com/bh-us-10/whitepapers/Nohl/BlackHat-USA-2010-Nohl-Attacking.Phone.Privacy-wp.pdf
http://media.blackhat.com/bh-us-10/whitepapers/Nohl/BlackHat-USA-2010-Nohl-Attacking.Phone.Privacy-wp.pdf

98

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

BIBLIOGRAPHY

Security Research Labs, “Decrypting GSM phone calls”, http://srlabs.de/
research/decrypting_gsm, [Online; retrieved 2011-05-05].

Man Young Rhee, Mobile Communication Systems and Security, Wiley Publishing, 2009.

P. Neittaanmiki, T. Rossi, S. Korotov, E. Oiiate, J. Périaux, D. Knorzer (eds, Kaisa Nyberg,
and Kaisa Nyberg, “Cryptographic Algorithms for UMTS”, http://www.tcs.hut.
fi/Publications/knyberg/eccomas.pdf, 2004, [Online; retrieved 2011-05-
05].

Klaus Vedder, “The UICC - The Security Platform for Value Added Services”, http:
//docbox.etsi.org/Workshop/2009/200901_SECURITYWORKSHOP /
G&D_Vedder_UICC_SecurityPlatformforValueAddedServices.pdf,
January 2009, [Online; retrieved 2011-05-05].

ETSI, “ETSI TS 135 205 V9.0.0 (2010-02) Technical Specification; Universal Mobile
Telecommunications System (UMTS); Specification of the MILENAGE algorithm set:
An example algorithm set for the 3GPP authentication and key generation functions f1,
f1*, £2, 3, f4, f5 and f5*; Document 1: General; (3GPP TS 35.205 version 9.0.0 Release
9)”, Feb. 2010.

Noureddine Boudriga, Security of Mobile Communications, Auerbach Publications,
Boston, MA, USA, 2009.

“ETSITS 135 206 V9.0.0 (2010-02) Technical Specification; Universal Mobile Telecom-
munications System (UMTS); Specification of the MILENAGE algorithm set: An example
algorithm set for the 3GPP authentication and key generation functions f1, f1*, f2, {3, f4,
5 and £5*; Document 2: Algorithm specification; (3GPP TS 35.206 version 9.0.0 Release
9), author = ETSI, organization = European Telecommunications Standards Institute”, Feb.
2010.

Valtteri Niemi and Kaisa Nyberg, UMTS security, Wiley, 2003.

ETSI, “ETSI TS 133 102 V9.3.0 (2010-10) Technical Specification; Universal Mobile
Telecommunications System (UMTS); 3G security; Security architecture; (3GPP TS
33.102 version 9.3.0 Release 9)”, Oct. 2010.

ETSI, “ETSI TS 135 202 V9.0.0 (2010-02) Technical Specification; Universal Mobile
Telecommunications System (UMTS); Specification of the 3GPP confidentiality and
integrity algorithms; Document 2: Kasumi specification; (3GPP TS 35.202 version 9.0.0
Release 9)”, Feb. 2010.

Blandine Debraize and Irene Marquez Corbella, “Fault Analysis of the Stream Cipher
Snow 3G”, in Proceedings of the 2009 Workshop on Fault Diagnosis and Tolerance in
Cryptography, Washington, DC, USA, 2009, FDTC °09, pp. 103—110, IEEE Computer
Society.

http://srlabs.de/research/decrypting_gsm
http://srlabs.de/research/decrypting_gsm
http://www.tcs.hut.fi/Publications/knyberg/eccomas.pdf
http://www.tcs.hut.fi/Publications/knyberg/eccomas.pdf
http://docbox.etsi.org/Workshop/2009/200901_SECURITYWORKSHOP/G&D_Vedder_UICC_SecurityPlatformforValueAddedServices.pdf
http://docbox.etsi.org/Workshop/2009/200901_SECURITYWORKSHOP/G&D_Vedder_UICC_SecurityPlatformforValueAddedServices.pdf
http://docbox.etsi.org/Workshop/2009/200901_SECURITYWORKSHOP/G&D_Vedder_UICC_SecurityPlatformforValueAddedServices.pdf

BIBLIOGRAPHY 99

[50]

[61]

GSM Association, “GSM Security Algorithms”, http://gsmworld.com/
our-work/programmes—-and-initiatives/fraud-and-security/
gsm_security_algorithms.htm, [Online; retrieved 2011-05-05].

Muzammil Khan, Attiq Ahmed, and Ahmad Raza Cheema, “Vulnerabilities of UMTS Ac-
cess Domain Security Architecture”, in Proceedings of the 2008 Ninth ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Dis-
tributed Computing, Washington, DC, USA, 2008, pp. 350-355, IEEE Computer Society.

Orr Dunkelman, Nathan Keller, and Adi Shamir, “A practical-time related-key attack on
the KASUMI cryptosystem used in GSM and 3G telephony”, in Proceedings of the 30th
annual conference on Advances in cryptology, Berlin, Heidelberg, 2010, CRYPTO’ 10, pp.
393-410, Springer-Verlag.

Ulrike Meyer and Susanne Wetzel, “A man-in-the-middle attack on UMTS”, in Proceed-
ings of the 3rd ACM workshop on Wireless security, New York, NY, USA, 2004, WiSe 04,
pp- 90-97, ACM.

Ulrike Meyer and Susanne Wetzel, “On the impact of GSM encryption and man-in-the-
middle attacks on the security of interoperating GSM/UMTS networks”, in PIMRC. 2004,
pp- 2876-2883, IEEE.

Zahra Ahmadian, Somayeh Salimi, and Ahmad Salahi, “New attacks on UMTS net-
work access”, in Proceedings of the 2009 conference on Wireless Telecommunications
Symposium, Piscataway, NJ, USA, 2009, WTS’09, pp. 291-296, IEEE Press.

Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot, Handbook of Applied
Cryptography, CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

European Network of Excellence in Cryptology II, “ECRYPT II Yearly Report on Al-
gorithms and Key Lengths (2010); Revision 1.0”, http://www.ecrypt.eu.org/
documents/D.SPA.13.pdf, March 2010, [Online; retrieved 2011-05-05].

Tata Elxsi Limited, “Elliptic Curve Cryptography - An Implementation Guide”,
http://www.tataelxsi.com/whitepapers/ECC_Tut_vl1_0.pdf?pdf_
id=public_key_TEL.pdf, [Online; retrieved 2011-05-05].

Tom St Denis Dana Neustadter, “Elliptic Curves over Prime and Binary in
Cryptography”, http://www.ellipticsemi.com/pdf/presentations/
EC_overGF_in_cryptography.pdf, [Online; retrieved 2011-05-05].

Certicom Research, “STANDARDS FOR EFFICIENT CRYPTOGRAPHY, SEC 1: Elliptic
Curve Cryptography; Standards for Efficient Cryptography Group (SECG)”, http:
//www.secg.org/download/aid-385/secl_final.pdf, [Online; retrieved
2011-05-05].

Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone, Guide to Elliptic Curve
Cryptography, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

http://gsmworld.com/our-work/programmes-and-initiatives/fraud-and-security/gsm_security_algorithms.htm
http://gsmworld.com/our-work/programmes-and-initiatives/fraud-and-security/gsm_security_algorithms.htm
http://gsmworld.com/our-work/programmes-and-initiatives/fraud-and-security/gsm_security_algorithms.htm
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://www.tataelxsi.com/whitepapers/ECC_Tut_v1_0.pdf?pdf_id=public_key_TEL.pdf
http://www.tataelxsi.com/whitepapers/ECC_Tut_v1_0.pdf?pdf_id=public_key_TEL.pdf
http://www.ellipticsemi.com/pdf/presentations/EC_overGF_in_cryptography.pdf
http://www.ellipticsemi.com/pdf/presentations/EC_overGF_in_cryptography.pdf
http://www.secg.org/download/aid-385/sec1_final.pdf
http://www.secg.org/download/aid-385/sec1_final.pdf

100

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

BIBLIOGRAPHY

Certicom Research, “STANDARDS FOR EFFICIENT CRYPTOGRAPHY, SEC 2: Rec-
ommended Elliptic Curve Domain Parameters; Standards for Efficient Cryptography
Group (SECQG)”, http://www.secg.org/download/aid-386/sec2_final.
pdf, [Online; retrieved 2011-05-05].

NIST, “RECOMMENDED ELLIPTIC CURVES FOR FEDERAL GOVERNMENT
USE”, http://csrc.nist.gov/groups/ST/toolkit/documents/dss/
NISTReCur.pdf, July 1999, [Online; retrieved 2011-05-05].

National Security Agency, “NSA Suite B Cryptography”, http://www.nsa.gov/
ia/programs/suiteb_cryptography/index.shtml, [Online; retrieved 2011-
05-05].

NIST, “Federal Information Processing Standards Publication 198; The Keyed-Hash Mes-
sage Authentication Code (HMAC)”, http://csrc.nist.gov/publications/
fips/fipsl98/fips—-198a.pdf, Mar. 2002, [Online; retrieved 2011-05-05].

R. Canetti H. Krawczyk, M. Bellare, “HMAC: Keyed-Hashing for Message Authentica-
tion; Request for Comments: 2104”, http://www.ietf.org/rfc/rfc2104.txt,
[Online; retrieved 2011-05-05].

NIST, “Federal Information Processing Standards Publication 197; Announcing the
ADVANCED ENCRYPTION STANDARD (AES)”, http://csrc.nist.gov/
publications/fips/fipsl197/fips—-197.pdf, Nov. 2001, [Online; retrieved
2011-05-05].

R. Housley, “Using Advanced Encryption Standard (AES) Counter Mode; With IPsec
Encapsulating Security Payload (ESP); Request for Comments: 3686, http://www.
ietf.org/rfc/rfc3686.txt, [Online; retrieved 2011-05-05].

T. Kohno M. Bellare, “The Secure Shell (SSH) Transport Layer Encryption Modes; Re-
quest for Comments: 4344, http://www.ietf.org/rfc/rfc4344.txt, [On-
line; retrieved 2011-05-05].

C. Lonvick T. Ylonen, “The Secure Shell (SSH) Transport Layer Protocol; Request
for Comments: 42537, http://www.ietf.org/rfc/rfc4253.txt, [Online;
retrieved 2011-05-05].

C. Lonvick T. Ylonen, “The Secure Shell (SSH) Protocol Architecture; Request for Com-
ments: 42517, http://www.ietf.org/rfc/rfcd4251.txt, [Online; retrieved
2011-05-05].

Peter Gutmann, “Underappreciated Security Mechanisms”, http://www.cs.
auckland.ac.nz/~pgut001/pubs/underappreciated.pdf, [Online; re-
trieved 2011-05-05].

http://www.secg.org/download/aid-386/sec2_final.pdf
http://www.secg.org/download/aid-386/sec2_final.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://www.ietf.org/rfc/rfc2104.txt
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.ietf.org/rfc/rfc3686.txt
http://www.ietf.org/rfc/rfc3686.txt
http://www.ietf.org/rfc/rfc4344.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.cs.auckland.ac.nz/~pgut001/pubs/underappreciated.pdf
http://www.cs.auckland.ac.nz/~pgut001/pubs/underappreciated.pdf

BIBLIOGRAPHY 101

[73]

R. Bresciani and A. Butterfield, “A formal security proof for the ZRTP Protocol”, in Inter-
net Technology and Secured Transactions, 2009. ICITST 2009. International Conference
for, nov. 2009, pp. 1 -6.

Jeremy Robin and Andrew Schwartz, “Analysis of ZRTP”, http://www.stanford.
edu/class/cs259/WWW06/projects/project05/05-Writeup.pdf, [On-
line; retrieved 2011-05-05].

“On the Security of Short Authentication Strings; post to ietf-rtpsec mailing list,
Sat, 17 Mar 2007”, http://www.imc.org/ietf-rtpsec/mail-archive/
msg00608.html, [Online; retrieved 2011-05-05].

Helmut Hlavacs, Wilfried Gansterer, M. Petraschek, Thomas Hoher, and O. Jung, “Security
and Usability Aspects of Man-in-the-Middle Attacks on ZRTP”, J. Univers. Comput. Sci.,
vol. 14, no. 5, pp. 673-692, 2008.

Nikita Borisov, Ian Goldberg, and Eric Brewer, “Off-the-record communication, or, why
not to use PGP”, in Proceedings of the 2004 ACM workshop on Privacy in the electronic
society, New York, NY, USA, 2004, WPES ’04, pp. 77-84, ACM.

Hugo Krawczyk, “SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols”, in CRYPTO, 2003, pp. 400-425.

“The Secure Real-time Transport Protocol (SRTP); Request for Comments: 37117, http:
//www.ietf.org/rfc/rfc3711.txt, [Online; retrieved 2011-05-05].

“libsrtp: a library for secure SRTP; About Secure RTP”, http://srtp.
sourceforge.net/spec.html, [Online; retrieved 2011-05-05].

Joseph Bonneau and Andrew Morrison, “Finite-State Security Analysis of OTR Version
2”, http://www. jbonneau.com/OTR_analysis.pdf, [Online; retrieved 2011-
05-05].

Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk, “Secure off-the-record
messaging”, in Proceedings of the 2005 ACM workshop on Privacy in the electronic
society, New York, NY, USA, 2005, WPES ’05, pp. 81-89, ACM.

D. Harkins and ed. D. Carrel, “The Internet Key Exchange (IKE); Request for Comments:
2409”, http://www.ietf.org/rfc/rfc2409.txt, [Online; retrieved 2011-05-
05].

C. Kaufman, “Internet Key Exchange (IKEv2) Protocol; Request for Comments: 43097,
http://www.ietf.org/rfc/rfc4309.txt, [Online; retrieved 2011-05-05].

Ran Canetti and Hugo Krawczyk, “Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels”, in Proceedings of the International Conference on the
Theory and Application of Cryptographic Techniques: Advances in Cryptology, London,
UK, 2001, EUROCRYPT ’01, pp. 453-474, Springer-Verlag.

http://www.stanford.edu/class/cs259/WWW06/projects/project05/05-Writeup.pdf
http://www.stanford.edu/class/cs259/WWW06/projects/project05/05-Writeup.pdf
http://www.imc.org/ietf-rtpsec/mail-archive/msg00608.html
http://www.imc.org/ietf-rtpsec/mail-archive/msg00608.html
http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt
http://srtp.sourceforge.net/spec.html
http://srtp.sourceforge.net/spec.html
http://www.jbonneau.com/OTR_analysis.pdf
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc4309.txt

102

[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]
[97]

BIBLIOGRAPHY

E. Rescorla, “Diffie-Hellman Key Agreement Method; Request for Comments: 26317,
http://www.ietf.org/rfc/rfc2631.txt, [Online; retrieved 2011-05-05].

P. Gutmann, “Key Management through Key Continuity (KCM); Internet-Draft”, http:
//tools.ietf.org/id/draft—-gutmann-keycont-01.txt, [Online; re-
trieved 2011-05-05].

Jeff Rodman, “THE EFFECT OF BANDWIDTH ON SPEECH INTELLIGI-
BILITY”, http://www.polycom.com/global/documents/whitepapers/
effect_of_bandwidth_on_speech_intelligibility_1.pdf, [Online; re-
trieved 2011-05-05].

Texas Instruments, “TLV320AIC23B, Stereo Audio CODEC; 8- to 96-kHz, With
Integrated Headphone Amplifier”, http://focus.ti.com/1it/ds/symlink/
tlv320aic23b.pdf, [Online; retrieved 2011-05-05].

Wolfson microelectronics, “WM8731 / WM8731L; Portable Internet Audio CODEC with
Headphone Driver and Programmable Sample Rates”, http://www.wolfsonmicro.
com/documents/uploads/data_sheets/en/WM8731.pdf, [Online; re-
trieved 2011-05-05].

Jacob Benesty, M. Mohan Sondhi, and Yiteng (Arden) Huang, Springer Handbook of
Speech Processing, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

Inc. Digital Voice Systems, “AMBE-3000 Vocoder Chip; Users Manual, Version
1.117, http://www.dvsinc.com/manuals/AMBE-3000_manual.pdf, Nov.
2009, [Online; retrieved 2011-05-05].

S. E. Campos Neto, F. L. Corcoran, J. Phipps, and S. Dimolitsas, ‘“Performance assessment
of 4.8 kbit/s AMBE coding under aeronautical environmental conditions”, in Proceedings
of the Acoustics, Speech, and Signal Processing, 1996. on Conference Proceedings., 1996
IEEFE International Conference - Volume 01, Washington, DC, USA, 1996, ICASSP ’96,
pp- 499-502, IEEE Computer Society.

S.-W. Wong, “An evaluation of 6.4 kbit/s speech codecs for Inmarsat-M system”, in
Proceedings of the Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991
International Conference, Washington, DC, USA, 1991, ICASSP °91, pp. 629-632, IEEE
Computer Society.

S. Dimolitsas et.al., “Evaluation of Voice Codec Performance for the Inmarsat Mini-M
System”, 1995.

“Mobile Services in Australia”, IEEE Communications Magazine, Nov. 1991.

Inc. Digital Voice Systems, “DVSI Vocoder Independent Evaluation Results”, http:
//www.dvsinc.com/papers/eval_results.htm, [Online; retrieved 2011-05-
05].

http://www.ietf.org/rfc/rfc2631.txt
http://tools.ietf.org/id/draft-gutmann-keycont-01.txt
http://tools.ietf.org/id/draft-gutmann-keycont-01.txt
http://www.polycom.com/global/documents/whitepapers/effect_of_bandwidth_on_speech_intelligibility_1.pdf
http://www.polycom.com/global/documents/whitepapers/effect_of_bandwidth_on_speech_intelligibility_1.pdf
http://focus.ti.com/lit/ds/symlink/tlv320aic23b.pdf
http://focus.ti.com/lit/ds/symlink/tlv320aic23b.pdf
http://www.wolfsonmicro.com/documents/uploads/data_sheets/en/WM8731.pdf
http://www.wolfsonmicro.com/documents/uploads/data_sheets/en/WM8731.pdf
http://www.dvsinc.com/manuals/AMBE-3000_manual.pdf
http://www.dvsinc.com/papers/eval_results.htm
http://www.dvsinc.com/papers/eval_results.htm

BIBLIOGRAPHY 103

[98]
[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

“Codec 2 project”, http://codec2.org, [Online; retrieved 2011-05-05].

“SoftwareTools - Linux4SAM”, http://www.at9l.com/linux4sam/bin/
view/Linux4SAM/SoftwareTools, [Online; retrieved 2011-05-05].

“AT91Bootstrap - Linux4dSAM”, http://www.at91l.com/linux4sam/bin/
view/Linux4SAM/AT91Bootstrap, [Online; retrieved 2011-05-05].

Atmel Corporation, “AT91Bootstrap framework; Version: V1.0, Release Date: 09-Oct-
20067, http://www.atmel.com/dyn/products/tools_card.asp?tool_
1d=4093, [Online; retrieved 2011-05-05].

“Buildroot: making Embedded Linux easy”, http://buildroot.uclibc.org,
[Online; retrieved 2011-05-05].

“uClibe - A C library for embedded Linux”, http://www.uclibc.org, [Online;
retrieved 2011-05-05].

“Das U-Boot — the Universal Boot Loader”, http://www.denx.de/wiki/U-Boot,
[Online; retrieved 2011-05-05].

Karim Yaghmour, Jonathan Masters, and Gilad Ben, Building embedded linux systems,
2nd edition, O’Reilly & Associates, Inc., Sebastopol, CA, USA, second edition, 2008.

“AT91 Linux 2.6 Patches”, http://maxim.org.za/at91_26.html, [Online;
retrieved 2011-05-05].

“Linux4SAM Experimental Patches”, http://www.at91.com/linux4sam/bin/
view/Linux4SAM/LinuxKernel#Linux4SAM_ Experimental_Patches,
[Online; retrieved 2011-05-05].

“ALSA SoC Layer kernel documentation; linux-2.6.28/Documentation/sound/alsa/soc”,
http://www.kernel.org/pub/linux/kernel/v2.6/1inux-2.6.28.
tar.bz2, [Online; retrieved 2011-05-05].

“LibTom Projects - LibTomCrypt”, http://libtom.org/?page=
features&whatfile=crypt, [Online; retrieved 2011-05-05].

“PGP word list’, http://philzimmermann.com/docs/PGP_word_list.
pdf, [Online; retrieved 2011-05-05].

NIST, “NIST Special Publication 800-107; Recommendation for Applications Us-
ing Approved Hash Algorithms”, http://csrc.nist.gov/publications/
nistpubs/800-107/NIST-SP-800-107.pdf, [Online; retrieved 2011-05-05].

Agilent Technologies, “GSM Circuit Switched Data (CSD)”, http://wireless.
agilent.com/rfcomms/refdocs/gsm/gprsla_gen_bse_gsm_csd.html,
[Online; retrieved 2011-05-05].

http://codec2.org
http://www.at91.com/linux4sam/bin/view/Linux4SAM/SoftwareTools
http://www.at91.com/linux4sam/bin/view/Linux4SAM/SoftwareTools
http://www.at91.com/linux4sam/bin/view/Linux4SAM/AT91Bootstrap
http://www.at91.com/linux4sam/bin/view/Linux4SAM/AT91Bootstrap
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4093
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4093
http://buildroot.uclibc.org
http://www.uclibc.org
http://www.denx.de/wiki/U-Boot
http://maxim.org.za/at91_26.html
http://www.at91.com/linux4sam/bin/view/Linux4SAM/LinuxKernel#Linux4SAM_Experimental_Patches
http://www.at91.com/linux4sam/bin/view/Linux4SAM/LinuxKernel#Linux4SAM_Experimental_Patches
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.28.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.28.tar.bz2
http://libtom.org/?page=features&whatfile=crypt
http://libtom.org/?page=features&whatfile=crypt
http://philzimmermann.com/docs/PGP_word_list.pdf
http://philzimmermann.com/docs/PGP_word_list.pdf
http://csrc.nist.gov/publications/nistpubs/800-107/NIST-SP-800-107.pdf
http://csrc.nist.gov/publications/nistpubs/800-107/NIST-SP-800-107.pdf
http://wireless.agilent.com/rfcomms/refdocs/gsm/gprsla_gen_bse_gsm_csd.html
http://wireless.agilent.com/rfcomms/refdocs/gsm/gprsla_gen_bse_gsm_csd.html

104 BIBLIOGRAPHY

[113] N.N. Katugampala, K.T. Al-Naimi, S. Villette, and A.M. Kondoz, “Real-time End-to-
end Secure Voice Communications Over GSM Voice Channel”, 13th European Signal
Processing Conference (EUSIPCO’05), Turkey, Sept. 2005.

[114] M. Wasif, C.R. Sanghavi, and M. Elahi, “Secure Mobile Communication Using Low Bit-
Rate Coding Method”, in Wireless Communications, Networking and Mobile Computing,
2007. WiCom 2007. International Conference on, sept. 2007, pp. 1410 —1413.

[115] Yucun Yang, Suili Feng, Wu Ye, and Xinsheng Ji, “A Transmission Scheme for Encrypted
Speech over GSM Network™, in Proceedings of the 2008 International Symposium on
Computer Science and Computational Technology - Volume 02, Washington, DC, USA,
2008, pp. 805-808, IEEE Computer Society.

[116] S.Islam, F. Ajmal, S. Ali, J. Zahid, and A. Rashdi, “Secure end-to-end communication
over GSM and PSTN networks”, in Electro/Information Technology, 2009. eit *09. IEEE
International Conference on, june 2009, pp. 323 —326.

[117] S.Islam and F. Ajmal, “Developing and implementing encryption algorithm for address-
ing GSM security issues”, in Emerging Technologies, 2009. ICET 2009. International
Conference on, oct. 2009, pp. 358 —361.

[118] Hongyu Lei, Yu Zhao, Yuewei Dai, and Zhiquan Wang, “A secure voice communication
system based on DSP”, in Control, Automation, Robotics and Vision Conference, 2004.
ICARCYV 2004 8th, dec. 2004, vol. 1, pp. 132 — 137 Vol. 1.

[119] N.M. Anas, Z. Rahman, A. Shafii, M.N.A. Rahman, and Z.A.M. Amin, “Secure speech
communication over public switched telephone network™, in Applied Electromagnetics,
2005. APACE 2005. Asia-Pacific Conference on, dec. 2005, p. 4 pp.

[120] C.K. Wong and P.C. Ching, “Digital speech transmission for highly encrypted and
paramilitary operated land mobile radio communications over a narrowband UHF channel”,
in Telecommunications, 1991. Third IEE Conference on, mar 1991, pp. 47 -52.

[121] Lee Yong Hua and Fam Fook Teng, “Delivering high quality, secure speech communication
through low data rate 802.15.4 WPAN”, in Telecommunications and Malaysia International
Conference on Communications, 2007. ICT-MICC 2007. IEEE International Conference
on, may 2007, pp. 758 —763.

[122] “Secure Personal End-to-End Communication with Handheld”, http://www. speech.
dia.unisa.it/en/index.htm, [Online; retrieved 2011-05-05].

[123] Aniello Castiglione, Giuseppe Cattaneo, Alfredo De Santis, Fabio Petagna, and Um-
berto Ferraro Petrillo, “SPEECH: Secure Personal End-to-End Communication with
Handheld”, in ISSE, Sachar Paulus, Norbert Pohlmann, and Helmut Reimer, Eds. 2006,
pp- 287-297, Vieweg.

[124] “D-Star Info”, http://www.dstarinfo.com, [Online; retrieved 2011-05-05].

http://www.speech.dia.unisa.it/en/index.htm
http://www.speech.dia.unisa.it/en/index.htm
http://www.dstarinfo.com

BIBLIOGRAPHY 105

[125] “Project 25 Technology Interest Group”, http://www.project25.org, [Online;
retrieved 2011-05-05].

[126] “ITU-T G.114”, http://eu.sabotage.org/www/ITU/G/G0114e.pdf, [On-
line; retrieved 2011-05-05].

http://www.project25.org
http://eu.sabotage.org/www/ITU/G/G0114e.pdf

	Abstract
	Kurzfassung
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Motivation
	State of the Art
	Methodology
	Outline of this Thesis
	Contribution

	Voice communication security on mobile networks
	GSM
	UMTS/3G
	Conclusion

	Established cryptographic principles and protocols
	Cryptographic principles
	Key exchange in existing cryptographic protocols
	Conclusion

	Protocol design and security features
	Desired properties of the communication system
	Adapting the OTR Authenticated Key Exchange for low bandwidth usage
	Initial authentication with Short Authentication Strings (SAS)
	Authentication with Key Continuity Management (KCM)
	Design of the data transfer protocol
	Conclusion

	Implementation
	Hardware
	Software

	Evaluation and results
	Duration of the key exchange
	AMBE speech codec latency
	Speech communication latency and required bandwidth

	Related work
	Conclusion and future work
	Bibliography

