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Abstract

The programmer usually initiates a debugging process because of a faitlire
his goal is to find the defect. The defect is always executed beforaitiieef oc-
curs, so it is natural to start at the failure and move backwards in agotgr find
the defect. However this procedure is usually not supported by actbabders.

There are two different methods of implementing a reversible debugges, i.e.,
debugger which can run the program forwards and backwardsfirfhene is the
logging-based approach, which records the state of the prograneadtsrinstruc-
tion and allows inspection after the program has finished running. Tloeadene
is the replay-based approach, where the debugger runs the delintggactively.
For this purpose it makes periodic snapshots. The debugger runshbhggee
backwards by restoring a previous snapshot and then running theaprdorward
until it reaches the desired position.

In this thesis, | show that it is possible to implement a reversible debugger by
continuous snapshotting of the program state. There are indeed solieagbs
with using such a feature. For example, there are non-deterministic instrgictio
which execute differently each instance the interpreter executes thena fugc-
tion, which returns the system time. Another example of this is when instructions
change some external state like a file on the hard drive, which the detdgge
not save when it makes a snapshot. Another problem is that some instsudtion
something different each time the debugger executes them.

Therefore | present some methods of treating these problems. Accomgany
this thesis, | have developed a proof-of-concept implementation of asibie
debugger called epdb for the Python programming language, which sobstf
the problems of reversible debugging.

In order to support reversible debugging of programs which havedeter-
ministic instructions in it, I introduce the new concept of timelines. With timelines,
the user can decide which execution path he wants to take. | also intradtefels
resource management to support the management of the external stsita|olis
the user to investigate the environment corresponding to the actual posgide in
the program, when he executes the program backwards.



Zusammenfassung

Programmierer beginnen mit der Fehlersuche, weil sie ein falschesliéerha
des Programmes feststellen. Das Ziel der Fehlersuche ist festzustellanRvo-
gramm der Defekt ist, also der Teil des Programmes, welcher flr dabéalser-
halten verantwortlich ist. Der Defekt wird jedoch ausgefiihrt bevor alsches
Verhalten sichtbar ist. Daher ware es sinnvoll in einem Debugger dasdpnm
am Ort, wo der Fehler sichtbar ist, zu beginnen und von dort weg dasdPnm
schrittweise rickwarts auszufihren bis man zum Defekt gelangt. Digslesarts
Ausfuhren wird jedoch von vielen gangigen Debuggern nicht untetstiitz

Es gibt zwei grundsatzliche Strategien um einen rickwartsausfigmebd-
bugger zu implementieren, das heil3t einen Debugger der das VorwédtR{ck-
wartsausfihren unterstitzt. Die erste Variante ist die des Log-badér&ebug-
gers. Ein Log-basierender Debugger speichert den Programm Stdtgeaer aus-
gefuhrten Instruktion. Nachdem das Programm fertig ausgefihdemaist kann
der Anwender das Programm anhand des Logdatei erneut abspieleen State
zu jedem beliebigen Zeitpunkt im Programm abspielen. Die zweite Varianteist d
Snapshot & Replay Strategie. Hierbei erlaubt der Debugger inteeaRtauerung
des Programmes. Beim Vorwdrtsausfihren werden hierbei regelméagusi®ts
vom State gemacht. Um das Programm riickwarts auszufihren wird diariger
Snapshot aktiviert und das Programm solange erneut ausgeiibre lyewiinsch-
te Position erreicht ist.

In dieser Diplomarbeit méchte ich zeigen, dass es mdoglich ist einen rlickwarts
ausfuhrenden Debugger zu schreiben, welcher regelméalig Stapsacht und
diese nutzt um Ruckwartsausfiihren zu ermdglichen. Es gibt einigdéeRrelzlie
beim Ruckwartsausfihren auftreten. Zum Beispiel gibt es nichtdetetisatis In-
struktionen, welche der Interpreter jedes Mal anders ausflhrt,iblsisgise eine
Funktion, die die Systemzeit zurlick gibt. Ein weiteres Problem sind Instnektio
mit Seiteneffekten. Diese andern einen Teil States vom Programm, welchér n
mittels Snapshots gespeichert wird, wie zum Beispiel eine Funktion die auf die
Festplatte schreibt.

Daher mochte ich in dieser Arbeit Methoden vorstellen, die mit diesen Pro-
blemen umgehen kdnnen. Aul3erdem habe ich zum Nachweis der Mieibar
einen Rickwartsausfiihrenden Debuggers flr die ProgrammienggPgthon ent-
wickelt, welcher die meisten Probleme der Ruckwartsausfihrung lost.

Um die Rickwartsausfuhrung von Programmen mit nichtdeterministischen In-
struktionen zu ermdéglichen, habe ich das neue Konzept der Zeitlinienfémte
Mit Zeitlinien kann der Benutzer entscheiden, welchen Ausfihrungspfavah-
len moéchte, wenn er auf nichtdeterministische Instruktionen trifft. Aufetukdre
ich das Konzept des zustandsorientierten Ressourcen Managentemt&elh da-
mit der Debugger auch den externen Zustand verwalten kann. Der Belkatm
somit auch die der aktuellen Position entsprechende Umgebung desrimogga
ansehen, wenn er das Programm riickwarts ausfiuhrt.
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CHAPTER

Introduction

Most debuggers out there are traditional debuggers, ebyghers that can only run the
program forward. Reversible debuggers, i.e., debuggetsémarun the program back-
wards too, can make debugging easier. Most users of delsiggee experienced the
situation, where they overshot the position in the prognahere they wanted to exam-
ine the value of some variables. With a traditional debuglgey would have to restart
the program and go through the tedious initialization si&fith a reversible debugger,
they could accomplish this much faster by running the pnogbackwards. Reversible
debuggers have certainly advantages over traditional. ddesever, most debuggers
are traditional ones because reverse execution requires kmd of simulation, be-
cause machine instructions are usually not reversibly gabte. Sometimes reverse
execution is straight forward, but it can be ambiguous, &gen sending a message to
another computer.

So alongside this thesis, | have developed the reversiddegigerepdb for the
Python programming language. | have chosen a dynamic prognag language, be-
cause it is easier to direct[S0s95], i.e., to monitor androbthe execution, than in a
statically typed programming language. Epdb does not olidyvaeverse execution,
but is also able to deal with ambiguous situations by prongdi framework to work in,
while allowing the user to control the forward and reverseceiion in such situations.

1.1 Motivation for Better Debugging Tools

Debugging can cost a lot of time and money. For example Hailpgtes:

“In a typical commercial development organization, the @dgtroviding
this assurance via appropriate debugging, verificationtestthg activities
can easily range from 50% to 75% of the total development'cip$502]
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This includes verification and testing activities, but ibals that debugging is an im-
portant part of the software development process, thas dot of time. Many of the
problems that occur during debugging are because of inatiegiebugging tools. The
National Institute of Standards and Technology[TasO3jresed that based on inter-
views, that software engineers spent 35 percent of thee¢ imdebugging and correct-
ing errors.

The computer science community has largely ignored thegigbg problem and
so debugging is still more an art than a technique. Therdfugethesis proposes a
new debugger called epdb. Epdb extends a traditional debbwgth reverse execution
capabilities. So itis possible to step through or run a @oygnot only forwards but also
backwards. Using this technique | hope to make debuggingreasd more straight
forward. Eisenstadt[Eis97] shows that many bugs are difftoutrap, because of the
cause/effect chasm, i.e., bugs that materialize far avaay fwhere they were spawned.
Debugging such bugs using a reversible debugger is eageaube the programmer
doesn’t have to restart the program every he they skippedtbgalefect.

1.2 Family of Bugs and Related Terms

Book writers and researchers in the area of fault-tolerastesys and dependability
often use the terms error, defect, failure, fault, etc. amd gach of them a distinctive
meaning. However, if you look in different papers you oftee slifferent meaning for
each of these terms. For example, Laprie[Lap92] definesréais "deviation of the
delivered service from compliance with the specificationit, Ghillarege[Chi96] notes
that in the world of software there aren’t well-defined sfieations for most products.

For the area of debugging, a smaller subset of these term8igent. In this paper |
will stick to the terminology given by Zeller[Zel09]. He disguishes between defects,
infections and failures. Alefectis an incorrect piece of code. Anfection is an
incorrect programming state andailure is an observable incorrect program behavior.
He also uses the terffaw to mean defects which cannot be tracked down to a specific
location. Abug can be an incorrect program code, state or program execution

To illustrate the meaning of the terms | will give an examgtea typical error-fixing
scenario a user reports a bug, because of a failure, i.e.senatble incorrect program
behavior. To fix the bug, the programmer tries to locate tHealén the program code
to provide a patch. He may use a debugger to locate the defect,case it is flawed
he may use it to understand what is wrong with the program deroto create a new
architecture for the revised version of the program. Totletae bug, he first tries to find
the state of the program that is infected. The infectionustbafter the execution of the
defect. With a traditional debugger he will start at some-mdacted part of the program
and navigate forward in the program until he reaches antefiecne. When its state
switches from non-infected to infected he has found theadetdowever, an infection
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is usually not easily observable and it is likely that thegseanmer will step too far.
In this case he has to restart the program. With a reverséidegber the programmer
can start at a point where the program shows an observablevia@havior. This state
is obviously infected and the programmer can start fromettherrun backwards until
he finds a non-infected state. If he runs too far he can theoward again. With a
reversible debugger he could use some binary search &gotat quickly track down
the bug. This is especially helpful if there is a big causef#fchasm, i.e., the start of
the infection is far away from the point of failure, in ternfamstructions executed.

1.3 Methods of Debugging

There are quite a few debugging methods programmers usesiifipdest isprint &
perusdEis97]. Using print & peruse, the programmer typicallyens someprint()-
functions. It doesn’t have to be juptint()-functions, but it can also be some more
sophisticated logger. This approach has the advantag# thalmost always available
and can be used, even with no additional software installad is very useful, if your
architecture doesn’t support debugging, for instancembexided systems. It is also
easy to understand and the technique is usable in any othgrapnming environment
or programming language. Therefore, programmers dond teekearn a new tool.

Of course there are some disadvantages to debugging byimgserint() function
calls. For example, the users have to modify the code andthtig they have to undo
the changes. By using a more sophisticated logger, whichwarthe output off, this
avoids the need to undo the changes. However, with a loggedeatielopers have to
maintain the logging statements. Too many lines of debuyggutput would make
perusing the information confusing, while with too few liéhe programmer may miss
some important hint to a bug. Multiple log levels may imprake situation, but may
also raise the maintenance costs. The print or log statenagattightly coupled to
the rest of the program and therefore it is not clean softweaggneering practice. A
bigger problem of print & peruse is, that the programmer baguess where to insert
theprint() functions. If he guesses wrong, he has to restart the wholg@m. This can
be annoying, if the program has to run for quite a long timel itnteaches the defect.
Guessing good locations for tpeint() functions also requires experience, which cannot
be easily taught. For example, someone posted the piecalefstmwn in Listing 1.1
into the comp.lang.python mailing list, because he coulfind the bug. This piece of
program computes the greatest common divisor. After rupitione will see that the
print() functions give exactly the output one would expect. Howevae will also get
a ZeroDivisonError at the end. Thpeint() functions were not much help here, at least
if you arrange them like in the example.

Using atraditional debugger would help in the previous situation. | started pdb,
the Python debugger that comes with most Python distribatamd stepped through the
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Listing 1.1: gcd.py

rint b, " : ", a, "=",n, "\tmis ", m

program. | discovered in the first run, that the body of bostatements were executed
in one iteration, which obviously shouldn’t be. A debuggas lthe advantage here, that
the user doesn’t need to guess the location of the defeatdleéostarts the program, but
he can just start stepping through the program. If he findse#ioing suspicious, he can
set a breakpoint there. In contrastpont() functions, the debugger is independent of
the code, because there is no need to change it. Howevaer $tatill some dependence,
because using a traditional debugger for longer runningraras usually means using
breakpoints, which refer to a line of code. Therefore if tmegoam code changes,
the breakpoints are lost. Depending on your debugger anaydeb configuration, the
breakpoints can be even lost after a restart of the programereTlis another problem
with a traditional debugger. If you have stepped too far amddt to peruse some part
of the program state, you have to restart your applicatiahran forward again. In
larger programs, it is often not appropriate to step thrabghwhole program and so it
is best to use breakpoints. However, here one needs to bagiass where to set one’s
breakpoint. If one guesses wrong, it may be necessary tartésé program again.

A reversible debuggersolves some of the shortcomings of a traditional debugger.
It eliminates the need to restart the program as it is alwagsiple to go backwards.
The users don’t need to guess breakpoint locations, bedassesually obvious where
the program should break: at the position where it gets teeuincaught exception. A
reversible debugger achieves more independence by n@ bisakpoints. Instead the
debugger breaks at an exception, which is runtime infomnathind therefore does not
rely on information of the source code. Therefore using ansfsle debugger can make
things easier.
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Listing 1.2: gcd.py

print ("Name:")
n = input()
print ("Hello", n)

|l

Grint(“Name:") ]
G=input() #Alice ] Gput() #Bob ]
Grint(“Hello",n) #Alica Grint("Hello",n) #Bob]

I I
Figure 1.1: Timeline example

1.4 Epdb

The Extended Python Debugger, epdb for short, is a reversiebugger developed
alongside this thesis. In this section, | want to give a vergfldescription of its fea-
tures. Epdb is based on pdb, but because it is a reversiblegdeh it is considerable
different. Nevertheless, reusing the code of pdb speedsaugddavelopment time of the
new debugger. Like pdb, epdb supports the commaitelg nextandcontinueto nav-
igate through the program and supports breakpoints bytdak command. Because
epdb is a reversible debugger, it also supports the reveosgagm flow commands,
which are calledstep rnextandrcontinue Epdb also allows another kind of naviga-
tion, namely activating a snapshot. It is possible to creasmapshot at an arbitrary
position in the timeline with thenapshotommand and later restore to it by using the
activate_snapshatommand.

The Python debugger suppopsst-mortem debugging, which means the program-
mer can inspect the program state in case the program hasefinieecause of an un-
caught exception. Epdb extends this behavior. It does nigt alow inspection at
program termination, but also allows the programmer to bgkwards and inspect
previous states of the program. This makes post-mortemgadiiog more powerful.

The principal architecture to achieve reversible debuggsrsnapshot & replay,
i.e., the debugger makes continuous snapshots. To nawgakevards, the debugger
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activates a previous snapshot and runs the program forwaid.aro create a snapshot,
epdb uses the system chdtk(), which makes a copy of the current process.

Timelines

Going back and forth in the program can lead to ambiguoustsiios. For example,
Listing 1.2 shows a program that can have a different outygertygime the user executes
it. Assuming the user has executed the program until the eddhas typed the name
‘Alice’ when the program asked him for a name. If the user nmegbackwards to
the position where the program asked him for a name and rum&fd from there, the
debugger has two possibilities to deal with this situatiboould either assume that the
user has entered the name ‘Alice’ and therefore the progmandgreet ‘Alice’ again,
or it could ask the user for a new name and greet the user véthdtv name.

To resolve this ambiguous situations, epdb introduceslime® A timeline is a
possible execution path through the program. By defaultbepould execute then-
put(}function the same way as in the first run, i.e., in the presiexample the program
would greet ‘Alice’ again. However, if the user wants to erdaenew name, he could
create a new timeline and then enter a new name in this timedig. ‘Bob’. In this
case, these two timelines would coexist and the user caclswétween them. Figure
1.1 shows the two timelines for the described scenario.

In order to implement timelines the debugger uses diffeesseicution modes It
needs them to distinguish, whether the program has alreayted the instruction in
the current timeline or not. In case it has executed it, tHrigger would simulate the
previous execution behavior of this instruction. Othenyiscan execute it as usual.

Another point to consider with timelines is that simulatprgvious instruction be-
havior requires the debugger to change the behavior ofuctstns. Therefore, epdb
introducesinstruction patching in order to change the behavior of instructions. The
instruction patching mechanism of epdb is extensible, abgiogrammers can add new
patched instructions. These patched instructions wof&reifitly in each mode and can
therefore simulate the previous execution behavior of atrution.

Resource Management

Epdb usedork() to create snapshots and to save the program state. Hoviex),
does not save the whole state of the program, e.qg., it doesavetfiles on the disk.
Therefore, the debugger needs to manage the state, whiat saved byfork(), in
some other way. Epdb usessource managergo control the external state, i.e., the
state whichfork() does not copy. For epdb there exists a resource managerfatass
files, but it would also be possible to implement resourceaganfor other resources
like databases. It allows the users to extend the debugdienewresource managers
to provide resource management for their own resources.r@dmirce manager work
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File View
rcontinue rnext|rstep step next continue restart
Timelines 1 Resources
\ IAdd| 2 line = input() v stdout
head N— - 0 0d1c5c
i —— ASIQ print("Hallo %s"%line) 1 a7421t
§ [T
e Snapshots
Variables  [oytput |Debug ol g
| Add‘ Al ‘ id ic
« ice
line 'Alice’ G
11

Ic: 1 Mode: normal 4

Figure 1.2: gepdb

in conjunction with instruction patching. When an instraatichanges some external
state, the patched instruction would call the resource gema order to save the state.

1.5 Gepdb

Epdb is a command line debugger like pdb. However debuggirajten easier in a
graphical user interface. Therefore | developed gepdb.d@épa graphical front end
for epdb. Gepdb has the advantage that it always shows themafion a programmer
usually needs like the source code, the actual variablelsactual timelines.

Figure 1.2 shows a screenshot of the graphical frontenchiodebugger. Gepdb
lists all timelines that the program has in this debuggingses and allows the user
to create new timelines. Each timeline has its own resowndssnapshots which the
screenshot shows at the right side. In the resource windepdlylists each resource
along with its history, i.e., it shows at which instructiaount a change to the state of the
resource occurred. At the bottom right side, the user iaterfists the snapshots of the
current timeline with theird and theirinstruction count At the left side, the user has
the ability to monitor variables, which the user interfacgslates, when the program
state changes, e.g., by stepping forward. At the bottomevinthe debugger shows the
output of the program which typically goes to the consolé, iahas an entry to do user
input, which gets only activated when the program expeatsesoput. The tool bar at
the top allows one to navigate forwards and backwards. Taesa@ode is highlighted
and when the user right clicks right beside the line numb@o@up menu shows up
and allows the user to set a breakpoint. The status bar abttenibshows the current
instruction count and the current mode.
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1.6 Challenges of Reversible Debugging

Reversible debugging has not been widely accepted yet.avedinat reverse debugging
has some intrinsic problems, which were not challenged bstmctual reverse debug-
gers. It is easy to simulate reverse execution for a progvamch actually only does
some computation and some control structures such as @f*\ahile’. However, real-
world programs are usually much more complex than that. Timeyact with the op-
erating system using system calls. Consequently they cauexa a non-predictable
way, i.e., one can’t determine the state of the program ats#ipo by just looking at
the source code, because the whaihgironment, in which the program executes, in-
fluences the program execution. So we can define two différadtof program states.
Theinternal state is the state of the program without looking at the environtee.,
the internal state typically consists of the process memad/registers. Thexternal
stateis the state of the part of the environment, which affectgtiogram execution, at
a given time in the program.

As Python is an interpreted language, the system calls drdimextly visible. In-
stead, a program consists of functions which may be implésdeas a native code
module. If functions are implemented in native code, theyalle to execute system
calls, either directly or by using another library. Howeweith a Python debugger you
can't step into such functions, i.e., they @temic in respect of debugging. In case of
functions which are not atomic, | am referring to these figms ascompositefunc-
tions.

Determinism

If we look at atomic instructions, we have to distinguishvien deterministic and
non-deterministic instructions. In this paper, a functisrsaid to bedeterministic if
the outcome of the function is determined by the internakstaly. So for example,
a function that increments a variable is deterministic aose there is no influence of
the environment. Look for example at an atomic function tieédrns the system time.
The program cannot calculate the system time by runninggorigim. Therefore there
is a system clock built in the computer and the operatingesygirovides some means
to access the clock. The system clock is part of the enviromraed therefore, the
execution of the function is influenced by the external stdtberefore, the function
which returns the system time isnan-deterministic function.

A deterministic atomic function is easy to handle for a reie debugger, because
it just has to keep track of the internal state, but for a netexaninistic function, tracking
the internal state is not sufficient, because the exteratd atso affects the program and
may change when the debugger replays a function executiofact, it is even more
complicated than that. When the user replays a non-detestigifunction, he can have
either of one two reasonable expectations. He could expd@ve the same execution
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as in the first run or he could expect to run with the new envirent. Both views make
sense and an interactive reversible debugger should aorizath of them.

Side effects

While the execution of non-deterministic functions is inflaed by the environment,
functions with side effects change their environment. Acfion which writes some-
thing to the hard-drive is such a function, because it chatfgeinformation on the disk,
which is not part of the internal state, but of the environtmen

If someone debugs a program, and makes heavy usage of therenent, he is
usually not only interested in the internal state, but alsthé environment. Take for ex-
ample an external sorting algorithm. If one wants to find a Imgs not only interested
in the variables during program execution, but also in theesif the file, which contains
the data the program should sort. Therefore a reversiblegigs should provide some
way to manage the external state.

Bookkeeping

A reversible debugger must be able to recover previoussstateerefore it has to save
the execution path historyand thedata change historyCFCO01]. Epdb however does
not save this history directly. It saves the data changetyisty making continuous
snapshots, but it also keeps a history of the execution péailns, epdb needs to calculate
the target position in the program when it replays an exenutor a snapshot & replay
debugger, which uses multiple processes, it has to exchtirgyeecorded information
with the other snapshot processes.

Breakpoints

As a traditional debugger, a reversible debugger shoulg@tipreakpoints and they
should also work when the program runs backwards. The ctg@léere is especially
for a snapshot & replay debugger, because a snapshot & rdplaygger has multiple
processes. When the user makes a breakpoint in one procesisolld see them in
other processes too.

Deterministic and Non-deterministic execution

Since the user can navigate through the program backwadd®eamards, the debugger
can execute instructions for the first time or it can execogtruictions which it has
executed before. If the debugger executes instructionadtdxecuted before, | am
referring to this execution as executionredo mode
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When the debugger is in redo mode, it has two possibilitiesxer@e non-de-
terministic instructions. It could either execute thenelik the first execution, or it
could execute them independently from the first executiarother words, the debug-
ger could choose to use the environment from the first exatutr it could use the
actual environment. | am referring to the execution of igions with an old envi-
ronment asleterministic execution because executing an instruction deterministically
would change the internal state the same way as in a previousin the case of ex-
ecuting instructions with the actual environment, | am méfig this execution ason-
deterministic execution because the internal state, which results from the exacofi
this non-deterministic instruction, is usually not the seas any other previous state.

Non-deterministic and deterministic execution is a chgjkefor reversible debug-
gers because they have to decide which type of executiorcti@myse. Most reversible
debuggers usually support only one mode of execution, wiicisually deterministic
execution. However, epdb supports both types of executarsing timelines.

Extensibility

In a real world program, the program execution can be infleéfxy almost everything
which exists in the real world. For example, if the programteools a device, which
measures the temperature, the actual temperature becarmapatant part of the en-
vironment of the program. There are almost infinitely manggaailities to influence the
program execution, and thus the programmers of a reved@legger can’'timagine ev-
ery case which may become important for the users of a réerdebugger. Therefore
a sophisticated reversible debugger should allow the nsettend the debugger so that
he is able to debug all the devices, which he uses for hisagin.

1.7 Contribution

Although there already exist a few reversible debuggemerd them tackle the prob-
lem that some instructions can execute differently each the debugger executes them
at the same position. Therefore, the program could exenutauitiple different ways.
Another problem is that the program may also change theredtstate, which can be
an important source of information for the user, when he dslbtne program.

The main contributions of this thesis to solve these problane timelines and re-
source management. With timelines users have the choiceptayr code either de-
terministically or non-deterministically. Consequenthgers can decide if they want
to reproduce the state in which they have been before, oeyf tant to execute the

lIn the case an instruction has been executed multiple titnesyld also execute the instruction with
the environment of the second, third, any later execution
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program in a possibly new way. Therefore, users have morgat@ver the program
execution.

With resource management, the debugger provides a new wigatawvith side ef-
fects. A traditional debugger doesn’t need resource managg because the program
will change external resources when the execution proce@deeversible debugger
does not change the external state when it runs backwareésefbine, without resource
management the external state of the program would not bgnin with the internal
state. Epdb allows to manage the different states of eachimes while debugging the
program. For this purpose it uses resource managers. Aroesmanager tracks the
different states of some part of the external state, andable to restore a previous
state of the resource. The debugger interrelates the dtdte mesource with the corre-
sponding instruction count. This system allows to managesitternal state, it is easily
extensible, and it also has good performance, because lbnggker only has to reset the
resources when it actually stops the execution.
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Prerequisites

Writing a debugger is quite different from writing other ajpptions. In this section, |

want to provide some information on how debuggers genevatisgk. Python already

ships with a traditional debugger pdb, which epdb dependsraith makes use of the
infrastructure Python provides to implement tools like utgdpers, profilers, coverage
tools and the like. Therefore | want to explain this infrasture here too.

2.1 Python Versions

At the time of this writing, there are multiple different w#&wns of Python around, which
also work a little differently. For the prototype versiontbé debugger developed along-
side this paper, | had to choose one to work with. First, tlaeedifferent types of
implementation, which target different architectures, elython, IronPython, PyPy or
CPython. Although many of them are in use, the most impor&a@HRython. The other
implementations should work the same as CPython, but maydaekor another fea-
ture. A more important distinction is between Python 2.x Bgthon 3.x. At the time of
this writing, Python 2.x is the most used, while Python 3.thissnewer one. Python 3.x
has some major changes to the syntax, most visible is thegelfamm theprint state-
ment to a function. It is difficult to develop a program whicbnks with both versions,
and therefore | decided to go for Python 3.x only. Dealinghviinctions instead of
statements, has the advantage that they are easier to p&teture which epdb uses to
support reversible debugging.

13
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2.2 Types of Debuggers

There exists a whole bunch of different kinds of debuggershevith their own different
purpose. The kind of problem, programming language, pragreag environment or
system affects the requirements to a debugger. | want tcagiwerview of some types
of debuggers in order to position epdb in the world of debugige

Machine Level Debuggers

Machine or low-level debuggers operate on machine codeplese them for pro-
grams written in assembler, or to debug the code a compitegéaerated, or to reverse
engineer a program where the source is not available.

One of the main properties of a debugger is the ability to tredtprocess. The
debugger does this halting when it reaches a breakpoint.cii@ee halting there are
two principle options for the developers. Either they coetecute it on a virtual ma-
chine which allows directing the program, or they make usiefoperating system or
hardware support. So a machine level debugger uses thenagtiardware or operat-
ing system support. For the x86-architecture[Sei09],ahgisupport for two kinds of
breakpoints —soft breakpoints andhardware breakpoints.

Soft breakpoints are machine code which the debugger sjetct the program code
at run time. For the x86 architecture, this is the machineedodthe interrupt number
3, orINT 3 for short. In fact, the debugger does not inject in the sefiselding new
code, but by changing a byte of the opcode. This works, becdngsopcode ofNT 3
is very short, i.e., only one byte long. When the CPU hitsIME 3 instruction, it stops
the execution and triggers an interrupt, which the debuggadles. Before continuing
the execution, the debugger has to restore the old instrydinat it overwrote before
with theINT 3 opcode.

As you can see, soft breakpoints change the program codehwita program loader
has loaded into the memory. This has some implications wherser tries to use a
debugger to look for malware, because malware often chéek€ RC sum of the code
and will kill itself, if it changes. Consequently, malwarevdopers can hinder the use
of soft breakpoints to debug their malicious code.

Hardware breakpoints solve this problem by offering delagisters. These regis-
ters hold the address where the program should be haltedtidvdly, there are some
flags, which allow creating breakpoints for three condsiobreak when the particular
address is executed, break when the particular addresgtisnybreak when the partic-
ular address is read or written. Before an instruction is etezt; the CPU first checks
if a hardware breakpoint is set. Consequently, it is posshbiebug a native program
without modifying it, but it is difficult to get around the limed number of registers for
general purpose debuggers.
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Source Level Debugger

A source level or symbolic debugger maps the source codetlyite the application’s
machine code. A compiler transforms source code into maatwale that executes on
the hardware platform. The source level debugger’s job lmdap the machine instruc-
tions back to the original source code. This is usually neiat; because the transfor-
mation done by the debugger doesn’t need to be bijectivecting or surjective, and
therefore the reverse transformation may not be unambgyudowever debuggers typ-
ically solve this by compiling some additional informatiabout the mapping into the
compiled version. This is the reason, why users should wsé-¢fi switch for gcc if
they intend to debug their program afterwards.

Usually, the users of a high-level programming languagéepr@ source level de-
bugger, because they usually “think” in their programmigguage instead of thinking
in machine code. However, sometimes the source to code n@gmot available, e.g.,
when the software vendor only ships a binary version, andigndase, the programmer
has to fall back on a machine level debugger.

Interactive vs. Logging Debugger

Program execution is usually much faster than humans caeiperand understand the
changes to the state the program has performed. Therefoebugger should have
some means to make them understandable to the usentéwactive debuggerdoes
this by allowing the user to stop the program and continueettexzution from there
on. Stopping here means, that the debugger shows the userlgnchof prompt or
waits for some other action from the user. It usually suppbreakpoints and typically
the running commandstep nextandcontinue The user can inspect variables or the
stack at any point of the program and they may even modify tbhgram execution by
inserting some instructions or modifying variables.

A logging debuggeron the other hand executes the program without halting.dsdo
however log important information from the execution, here is no user interaction.
After the execution has finished, the user can inspect thdillmg On top of the log
file, the debugger could present a user interface, whichavalldw the user to navigate
through the different states of the program. Thereforepiild almost feel like the
program is running, while it is in fact, only replayed fronetlng. As the debugger has
to do some logging, the program is still somewhat slower tharormal execution.

There are three ways to achieve logging of the programmiaig sthile running.
The program could run on a virtual machine (see 2.2) whichsdbe logging, or it
could have some support from the interpreter of the programgtanguage (see 2.2),
or it could use program instrumentation. With program ustentation the debugger
would actually change the code when the program loads. Rwenaode, the debugger
would have to change the machine code, but for object-ateabde which executes on
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virtual machine like the Java Virtual Machine, the debuggmild overwrite the class
loading mechanism[LB98].

Debugger for Interpreted Languages

Interpreted languages don’t compile to machine code angtfiore a machine level
debugger would only debug the interpreter itself and notgiegram written in the

interpreted language. Most interpreted languages prdwglever some means to im-
plement a debugger. For example, the interpreter couldsocatle debugging routine
before executing some line of code. The developers of a dgiugr an interpreted

language have the advantage, that they only need to use agr@prming language and
don’t need to understand machine code at all.

Virtual Machine Based Debuggers

One problem of using program directing using the mechanigittrin the hardware or

operating system is that they have to change the code. Betteysasually operate in
user mode, they may also have problems to access code, Weigllon't have access
to, for example code, in the kernel of the operating systediNK6].

One way to implement a debugger instead of using soft or henellweakpoints for
directing is to execute the program on a virtual machine. Vittaal machine can emit
events to the debugging process, which gathers the infaymet present it to the user.
One can also implement a virtual machine[DF04] [KTDO05], lsattit stops executing
further instructions on special events. This would repneadreak in a program similar
to a software or hardware breakpoint, but without modifyamg registers or code in the
memory.

Reversible Debugger

Areversible debugger is a debugger that allows the usenigai& through the program
in reverse. There are multiple ways to achieve this. The gigducould be a logging
debugger, which logs the program execution and allows toné@every state of the
program after it ends. Using this way, it is however not gassio inject some piece
of code into the program flow. Another strategy would be tmrdahe changes of
every instruction and when running backwards, undo the gdmising the recorded
information. A further one is to make continuous snapshothé program and when
going backwards the debugger could recover a previous Bobgsd replay the program
from there until it reaches the desired position in the progr

Epdb is an interactive reversible debugger. It actuallcates instructions and halts
the process to give the user live interaction. To simulatense execution it uses the
shapshot & replay mechanism.
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2.3 Python and Debugging

Python comes with a debugger callgdh. Pdb makes use of another module cabdd.
The purpose obdbis to provide a basis for other debuggers. It usesstfsesettrace()
function to intercept the program execution. Although isugficient to have a hook-
ing function likesys.settrace o implement a full featured debugger, lots of organizing
work has to be done, e.g., keeping track of breakpointsitiegehe trace function and
so on.Bdbbuilds some framework aroursys.settracand provides a higher level inter-
face to develop a debugger. Thdbmodule, which usebdbas a basis, adds function-
ality such as a user interface and higher level debuggingres The whole debugger
is written in pure Python, while only thgys.settrace(junction is implemented in C.
It doesn’t seem useful to reimplement all those featuresléieigger already supports.
The prototype accompanying this thesis is based on pdb deddsit with all reversible
debugging capabilities. This is feasible because all tlie ¢® open source.

Python Low-Level Dispatching

The sysmodule, which is part of the Python standard library, presidhe function
sys.settrace() This function takes one argument — the trace function. Wherpto-
gram sets the trace function, the interpreter calls it whienene of the following events
happen:

call The interpreter calls a function.

line The interpreter executes a line of code.

return A function is about to return.

exception A function throws an exception.

c_call Similar to call, but used when a C function is called.
c_return Similar to return except that it works for C function.

c_exception A C function throws an exception.

Thetracefunction takes three arguments: The stack frame, eventrgnd be stack
frame is the top stack frame of the code that raises the tnamet.e The arg depends
on the event type. At the ‘return’ event it is the return valaethe ‘exception’ event
it is the tuple éxceptionvalue, tracebach; at the ‘c_call’ event it is the function to be
called. The other events have the &lgne

When the trace function finishes, the interpreter uses therretalue to reset the
trace function. This means that the function should rettggifito keep the trace func-
tion active or otherwise when it returivone the trace function gets deactivated.
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Bdb

The main part of thdodb module is theBdb class. This class provides four func-
tions —user_line() user_call() user_return() anduser_exception() These are tem-
plate methods[GHJV94] which pdb implements. Bdb calls thememthe trace func-
tion trace_dispatch(yeceives an event of the type ’line’, 'call’ or return’. Bdlaks
these methods not directly in theace_dispatch(¥unction. Instead, the trace func-
tion calls one of the methodlispatch_line()dispatch_call() dispatch_return(or dis-
patch_exception(jirst. These methods do some breakpoint checking beforalactu
calling theuser_*()methods. Thérace_dispatch(junction anddispatch_*()take care
of resetting the trace function. Bdb only resets the tracetfan if there is a breakpoint
in the code of the current stack frame or some other reasaoparsside the function.
Using these optimizations Bdb reduces the number of callsatdraice function.

user_line()

If the trace dispatch function is setser_line()gets called every time before the inter-
preter executes a line of code. Bdb usually calls this teraptagthod when there is a
trace-dispatch event of type ‘line’, but does some add#iovork. It checks for break-
points or other stop information and only caliser_line()if a reason to stop exists. So
Bdb doesn’t guarantee to calker_line() but epdb needs to stop at every atomic in-
struction to implement instruction counting. In order thi@ve this, epdb always sets
some stop information to make bdb cadler _line()on every atomic instruction.

user_call()

Every time before the interpreter executes a function gadkends a 'call’-event to the
trace function, if it is set. Bdb does some preprocessingrbdtacalls the template
methoduser_call() It checks if there is some possibility to stop in this funateither
by a breakpoint or another reason, as if the user has usetefhe@mmand. For epdb,
theuser_call()method gets always called for composite functions, beceaask of the
navigation commands work internally like a repeategbcommand to allow instruction
counting. The epdb implementation w$er_call()increments the actual frame count,
as every function call also increases the number of stackesaby one.

user_return()

The methoddispatch_return()calls the template methaaser_return()when there is
either a step over the return of a function or the user usedetnen command. Epdb
doesn’t support theeturncommand yet, but as it simulates every command as repeated
step user_return(Jalways gets called when the function returns. Epdb alscetieents

the actual frame count.
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user_exception()

Similar to the previous methodsser_exception(Qets called if there is the possibility

to break at the exception, either because of a breakpoiréaause of a step command.
However epdb uses repeatetdp and souser_exception(yets called at every thrown

exception in a composite function.

Pdb

The Pdb class inherits from Bdb and Cmd. Bdb provides the basis for dghgghe
program while the Cmd class handles the user interactionskiaving a prompt or
parsing user inpufdbalso overwrites theser_*methods oBdb. Epdb reimplements
these methods. However, pdb implements some other methuidk are important in
conjunction with epdb.

interaction()

The interaction method shows a prompt and shows the uset. iffpis is a method
which epdb calls when it stops the program flow, e.g., by reacbreakpoint.

do_*()

The do_*-methods are part of the command dispatch patteat[8loof the base class
Cmd These methods are called when the user enters some ingutwben the user
entersstep the methoddo_stepgets called. Epdb overwrites some of the commands,
especiallystep nextandcontinue and it also adds some new ones, notahlxt rstep
andrcontinue
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Reverse Execution

Epdb does reverse execution by restoring a previous snbpeldcexecuting as many
instructions as needed to reach the current instructionsrone. If all executed instruc-
tions are deterministic, the process will exactly stop arstruction before the current
instruction. The debugger has then to count the instrustihich it does by using the
trace function, but one has to be careful that pdb has sonmiaption, which turns the

trace function off, if there are no breakpoints. So this optimizathas to be switched
off.

3.1 Execution Modes

Epdb distinguishes three different execution modes. I neemal mode when the pro-
grammer asks to run or step forward over instructions thetiime. To simulate back-

ward running, it activates a previous snapshot and runs ribgrgm in replay mode.

As it is possible to navigate back and forth, it is possibleuo an instruction in the

same environment more than once. To allow implementatiotietérministic execu-

tion behavior, the debugger uses redo mode to execute rienydristic instructions

deterministically. The debugger uses different executrades to allow controlling

instructions differently, depending on its current state.

Normal Mode

Normal execution doesn't differ much from a traditional dgger. One difference is
that epdb needs to count the instructions, which pdb dodsn’Eor non-deterministic
instructions, it also has to record the external state waifdcts the execution behavior.
For instructions with side effects it has to record the exdéstate before the instruction
changes it, in order to restore it when the user runs the anodpackwards, later on.

21
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m replay m redo m

m Snapshot current position max. position

® Instruction

Figure 3.1: Redo and replay modes

Replay Mode

After restoring to an earlier snapshot, the debugger tdesdover a future state from
that point on. It does this recovery in replay mode. In thepdast case, it executes
the statements as in forward execution. This works for datestic statements without
side effects, e.g., the line:

=1 +1

Is such a statement. It neither changes the external statdpes it depend on it. How-
ever, there are statements which are dependent on someast@ate, i.e., they have side
effects. Let’s look at the example of writing something teldiusingwrite(). When the
debugger executes therite() instruction in replay mode, the instruction would write
something to the disk again. This behavior is usually notte@&nTherefore the debug-
ger has to use a patched version of Wrée() instruction, which actually doesn’t write
anything to disk in replay mode.

In the write()-example, there is another problem to consider, becauserritey)
function call returns the number of bytes written. Therefibthas not only side effects,
but it is also non-deterministic. So replaying thate() call should return the number
of bytes written in the original run. So the debugger has tom the return value in
normal mode and reuse it in replay mode.

Redo Mode

Redo mode is similar to replay mode. Like replay mode, epdis usdo mode when
the instruction counter is at a position in the program, Wwhicas already executed
before in the actual timelire Epdb uses replay mode when it simulates backward
running. The part of the code executed in replay mode is awage which the user
would not expect to get executed at all. In redo mode, the gigdruactually executes
code which the user would expect to get executed, but whh lads been executed

LYou may want to read about timelines in section 3.4 beforgicoimg
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before. Replay mode is usually not visible to the user becatnsm the debugger has
finished replaying instructions, it switches into redo ormal mode before it interacts
with the user. So when the user sends the debugger a command tbhe program
backwards, the debugger executes code in replay mode, laut dhsends a command
to run forward, the debugger executes the code in redo oralonode.

Figure 3.1 shows the difference between redo and replay nmotte view of the
actual timeline. Each timeline has a current and maximunnuogson count. Epdb exe-
cutes everything after the maximum instruction count immarmode, but also sets the
new maximum instruction count after executing somethinganmal mode. Everything
after the current instruction count until the maximum instion gets executed in redo
mode. To step some instructions back, the debugger actiggbeevious snapshot and
runs forward until it reaches the desired position. Whilaurtg forward to the desired
position the debugger sets itself to replay mode. Afteraches the target position, it
switches either to redo or normal mode, depending on whétlkeerurrent instruction is
on the maximum position of the timeline or not. Instructiceeution in redo mode and
replay mode is usually very similar and most of the time patcimstructions execute
the same way in redo and replay mode.

Undo Mode

Undo mode was the first model to implement side effect managgrmowever it is now
replaced by the resources concept. | will describe the unoldenmere, because | also
want to document the the reasons for the decisions | madée déveloping epdb for
the sake of completeness. If you want to know how epdb doesedidct management
now, read Section 3.7.

Undo mode was not really a mode, but in the case of runninguictsbns with side
effects backwards, the debugger should undo those sidgseffehe design was that the
debugger keeps a list of all instructions that were execatetwhich have side effects,
together with their instruction count and some addition&drimation for undoing them,
which it gathered in normal mode. When the debugger runs baasyit would look
up the list to find the instructions that it has to undo and rinesn in a special undo
mode.

As it turned out the undo mode approach wasn'’t very pragtesgdecially because
epdb supports timeline switching. With timeline switchirtgvould be very complex to
find which instructions to run in undo mode and after that,oltio run in redo mode. It
would also not be very efficient if the resource would suppestoring previous states
as some databases do.
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3.2 Snapshots

Snapshotting can be a very convenient feature, even witieng able to run a program
backwards. For example, take a program, which has a longlinétion phase, that
requires the user to enter a lot of input from the keyboarthdfdefect in the program is
at the end, every time the user restarts the applicationakéago through the tedious
initialization step. With snapshots, he could have set oapshot after the initialization
and instead of restarting, he could have restored the satibsn.

Snapshotting was the first feature implemented to achievgahl of reversible de-
bugging. The technique | have chosen for implementing sr@psvas using the system
call fork(). Fork() creates a new process by duplicating the calling process.d€hi-
sion to usdork() has some implications. One of the most important is that pegaging
system must support this system call, which is the case fot-like operating systems,
but for example, not for Microsoft Windows. The advantageéhid approach is that it
is simple and independent of the programming language us#d@ the implementa-
tion approach could be easily applied to a debugger for @n@itogramming language
as well. Creating a process witbrk() is very efficient, because it uses copy-on-write.
With copy-on-write the operating system doesn’t copy thenmey of the process, but
instead sets a bit for each memory page that the newly creduaeks with the old
process[Bac86]. If one of the processes writes to a shareel thagoperating system
then copies the page. Therefore, creating a snapshot issk(Qis extremely fast.

There are two different strategies to create snapshotd} thesm local and global
shapshot creatior.ocal means that the current executing process knows only abeut th
inherited snapshots, and therefore cannot activate laggrshots, i.e., snapshots which
are taken at a higher instruction count. Let’s take the exammpFigure 3.2, which
illustrates an example where local snapshots fail. The bfpiagram is an adapted
UML sequence diagram. The adaption concerns especiallynti@eof lifelines, which
in this diagram, is not time measured in seconds, but insteadsured as the number of
instructions executed, i.e., the time in the lifeline is sw@ad in the current instruction
count (ic). Therefore the processes can send messagesdrdskiecause the processes
can have different instruction counts at the same real tifle diagram indicates this
backward sending by giving thectivate()messages an additional upward or downward
direction. It also models the history of a snapshot, whicdultefrom thefork(), by
branching the lifelines. This should mean that the snapkhetcopied the creating
process along with all its variables. In this diagram, a psscmakes two snapshots,
one after the first and another after the second instructdter the third instruction,
it activates the first snapshot. This snapshot wants toaetihe second snapshot, but
this fails because there was never an assignment to théhssiain the diagram. Keep
in mind that the diagram is very much simplified, in order t@fxet neat. In fact, a
shapshot wouldn’t start running, but instead would creat#leer process usingrk(),
which then runs as the new activated snapshot.
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:debuggee

ic=1—§—

heoooSreatel s isnapshotl

. '
e ey

'
'
s1=Snaphot()

T

ic=2 —E—

create()

"""""""""""""""" >< <> isnapshot?

@/5‘2/ '
——— | Thisfails, because
""""""""""""""""""""""""" s2 is not defined

1

:
s2=Snaphot()

!

ic=3 —E—

Figure 3.2: Local snapshot fails activating a snapshot

With the global strategy, this kind of forward snapshot activation would kyde-
cause the debugger would save the state independent of ttined anapshot process.
This behavior seems to be more desired. However, it is mdfieudi to implement,
because there needs to be an independent process, whichisidates the snapshots,
by registering and activating them. As these drawbackstdm®m to be much of a
problem compared to the benefits of global snapshots, | dodseplement the global
shapshot approach.

Making Snapshots

There are two reasons why the debugger makes a snapsheat ththdebugger makes
it to save the internal state after a non-deterministic fion¢ or it makes it to make
replaying instructions faster.

Non-deterministic functions depend on the environmenteréfore, the changes
to the internal state are not predictable for the debuggttowt the knowledge of the
environment at the time of the execution. One way to get atdbrs problem is to
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Listing 3.1: sleep() example.py

import time
time.sleep (3)

print ("Sleeping done")

make a shapshot after the non-deterministic instructionemthe debugger encounters
the instruction again in redo mode, it then can activate #d snapshot, instead of
executing the instruction. As a result of this, the debuggstores the internal state,
not by executing instructions, but by restoring a snapshios makes it easy to handle
non-deterministic instructions correctly, even withonbting the details of how they

work.

If the user debugs a longer running program, the replayirmgdé could take a lot of
time, because the debugger has to recover from a snapsholding ago. The debugger
can reduce the time it needs to replay instructions, by ngakontinuous snapshots
when debugging forward. Then it can use a snapshot in the roemt past and start
replaying from there. Epdb has a timer variable, which theudger increases with the
time it needs to execute each instruction. When this variekéeeds the time of one
second, the debugger makes a snapshot of this position aat$ e timer variable.
Consequently, replaying will always take less than one skcssuming the execution
speed of the program is the same as in the first run. This isisedhe debugger would
never execute the last instruction, because it uses foraandation of snapshots (see
Section 3.4).

In the example in Listing 3.1, théme.sleep(junction waits for 3 seconds. When the
debugger replays this instruction, it would actually wait 8 seconds again. However,
epdb makes a snhapshot after time.sleep(3)because the timer variable would exceed
the one second limit (in fact it would reach a value of sliglabove 3 seconds). There-
fore the debugger wouldn’t replay this instruction, but Vdouse the snapshot after the
time.sleep(Jnstead. When the user however steps in redo mode ovéintleesleep()
the debugger would use forward activation and restore tkesmapshot, which is im-
mediately after théme.sleep() Therefore, in redo mode the simulation of the execution
of thetime.sleep(Junction would be much faster than in normal mode.

Reasons for Using fork()-Snapshots

Using fork() for making snapshots has some drawbacks, most notably #é@tom

system has to manage a lot more processes, which may aftectéhnall performance.
Therefore, one can think of implementing snapshots witlhisutgfork(). The Python
programming language stores all its global variables inldigly accessible dictionary
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calledglobals and the local variables in a publicly accessible dictigraailedlocals.
One might try to make a deep copy of these dictionaries, $ama aind use them to re-
store them later on. However, this doesn’t always work, beegdome information isn’t
easily accessible within the Python interpreter, esplgdiah function is implemented
in C instead of Python, which is quite common. Let’s look & #tandard implemen-
tation for file access. The standard library makes use ofttdrelard C implementation
of file access. This makes the interpreter portable amongjatfiorms that support C.
This implementation allows one to write to a buffer, whiclugially not written imme-
diately, but rather when the program cdllssh() or close()on the file descriptor. The
Python interpreter however, has no access to the bufferterdfore can’t change it,
which is necessary in case of going backwards. Usmmlg() allows the debugger to
create a complete copy of the process, including the busielr®.

Another advantage of usinigrk() in conjunction with files is that the operating
system makes a copy of the file descriptor. Therefore, thelégeriptor in the process
is open regardless if another process closes it later omelfries to implement a process
copy on the user side, he would need to take care of that. Hédvedgp have to take
care of the correct initialization of the registers of the CPU

An additional advantage dbrk() is that the operating system uses copy-on-write,
which makes creating a copy of a process extremely fast asstied in Section 5.2.

3.3 Instruction Counting

In order to step an arbitrary number of instructions backisait is necessary to count
the instructions. In order for the user to step one instomcbiackwards, the debugger
would restore the last snapshot, and then would run the nuoflastructions to its
original location, minus one. Therefore the debugger haotmt the number of exe-
cuted atomic instructions. Epdb doesn’t work on bytecodé ukes the trace function
to implement a debugger, which Python provides. With thgraach, the length of one
instruction is usually one line of code. One exception te #re function calls. In case
of function calls, the debugger also executes the linesaé aaside this function before
finishing the line of code where the function call occurred.

The easiest way to implement instruction counting is to setttace function for
every instruction and then to increment an instruction tiogrvariable every time an
instruction is executed. Compared to a traditional debygges may results in some
performance loss. The reason is that in traditional delmggtlie debugger can set the
trace function only for execution frames that contain asteme breakpoint or in one
of its succeeding frames. This approach allows optimipaiomany cases, because
usually only very few breakpoints are used compared to treecithe code.
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Listing 3.2: rnd.py

import random

random . seed ()
r = random.randint(0,10)

print (r)

3.4 Timelines

If the user runs a program backwards and later decides tagaid again, the debugger
has two reasonable ways to execute the instructions. Rirsbuld execute them as
they are (non-deterministic execution), or it could makemhwork the same way as
they worked in the first run (deterministic execution). Thig#edence of the two ways
emerges when we look at non-deterministic instructionsivimay change the internal
state of the program in a different way each time they getweelc Take for example
a program which generates a true random number as you sestingL8.2. Let’'s say
the user has debugged towards the end of the program and pheatg the number
4. Then the user decides to step backwards tcs#eel()instruction and after that he
goes forward using the step command twice. Now the debugyed either generate a
completely new random number or it could show the old oneclvis 4.

Both ways to go forward again make sense and can be usefulisoesetTake for
a example a program which makes Monte Carlo experiments,arabime reason the
program provides a wrong result. If the programmer wantsxanene the program
in order to understand whats happening, he would most likely the deterministic
version to execute the program. If however he wants to matiéyconfiguration of
some variables and sees if the algorithm still returns a gmr@sult, he would prefer
the non-deterministic version. Thus, a reversible debuglgeuld support deterministic
and non-deterministic running. Note that logging debugdj&e odld only support the
deterministic version. However, simply adding two comnstalstep forward, called
for example dstep (deterministic step) and nstep (nonraéneéstic step), introduces
another problem. If the user debugs in reverse, then steparfd using nstep, and then
debugs in reverse again and then uses dstep, there wouldobeays to go forward
again. Either the program can show the output of the first rwf the second run.

To solve these issues, epdb introduces timelines. A tireadira deterministic way
through the program, which can also go only through a parhefprogram. For this
purpose, each timeline has a current and a maximum ingirucbunt. Thecurrent
instruction count is the position inside the timeline where the next instiuttiwhich
the debugger should execute, is located. fif@imum instruction count is the latest

1see Section 7.1



3.4. TIMELINES 29

current ic max. ic
[ m 1 E : ES m : m 5 ]
+ new timeline
[ E 1 E : ﬁ?]
current and
max. ic

Figure 3.3: New timeline

position inside the timeline the user has already executed.

Everystegnextcontinuecommand in redo mode runs the program deterministically
like dstep. For non-deterministic execution, epdb canteraanew timeline by copy-
ing the current timeline up to the current execution point. the new timeline, the
programmer is in normal mode and therefore the debuggeuts®every instruction
non-deterministically from there on. By creating a new timel the user can debug
every instruction non-deterministically, because whexating a new timeline, the de-
bugger sets the maximum instruction count to the currentuoson count. therefore
the debugger is in normal mode, which always executes ntrdmistically. Figure
3.3 shows the operation of creating a new timeline. The newlihe is a copy of the
old timeline up to the current execution point. Epdb avoiolsying snapshots later than
the current execution point and sets the maximum instrm@ount of the new timeline
to the current instruction count. Consequently the exenutiode is normal.

Every timeline in epdb has a name and it is possible to swigttvéen them. This
allows the user to make different runs of the program and tepaoe those two, without
needing to restart the whole program. Inside a timelineryghimg is in redo mode and
therefore deterministic, but if the user wants non-detmnistic execution he could create
a new timeline, which switches to normal mode and executesieterministically from
there on until the user gives a command to run the programizads.

Reference Counting

A timeline consists of a number snapshots and each snapahdietiong to multiple
timelines. A snapshot can have two different uses. Eithisrptart of the timeline and
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therefore epdb uses it for snapshot & replay, or the user santuo set the program
to an earlier state by manually restoring a previous snapst@ving many snapshots
may have an impact on the performance, because each snajashité own process.
Therefore, the debugger wants to keep the number of snapthat minimum, but
some snapshots are needed because they are part of thadinMéking a timeline with
few or even no snapshots may also have an impact on the paricenbecause every
reverse navigation command would need to reset a very ofushiodor even restart the
program. However, it would be advantageous to delete uratkesaapshots. A timeline
does not need a snapshot, if the snapshot is not part of teditie. However, it does
need it, if it is part of the timeline. Epdb uses referencentimg on snapshots. For each
shapshot, there is a count to how many timelines it belongs.uBers can only remove
shapshots, which don’t belong to any timeline. If they wantdmove a snapshot that
still belongs to a timeline, they have to delete the timditiee snapshot belongs to
first. Every time epdb creates a new timeline, it incremdmggéference count on every
snhapshot that belongs to the new timeline by one, and evegydpdb deletes a timeline,
the reference count on every snapshot of this timeline gatsethented. Epdb doesn’t
support removing snapshots from timelines (except by elgtbecause snapshots can
be used to replay non-deterministic behavior.

Forward Activation

Let’'s consider an example in redo mode where the actualipogg one instruction
before a snapshot and the user steps forward. The debuggédwbavays to react.
Either it can activate the new snapshot or it can executedkeimstruction. Both ways
should usually result in the same internal state in case atarwchinistic instruction,
and because of the resource management, external resach@asg be in the same
desired state in both cases. Consequently the debuggedgprovide some means to
simulate deterministic execution for non-determinististiuctions. One way to achieve
a correct replay of a non-deterministic function is to malsaapshot immediately after
the instruction. Then, when the debugger runs the prograwafals in redo mode, it
activates the new snapshot instead of executing the ingtrucl call this activation
of snapshots, while running forwarthrward activation. The advantage of forward
activation is that it makes it easier to patch non-deterstiminstructions. The patched
instruction can request the debugger to make a snapshoitafexecution in normal
mode. When the debugger executes the instruction later dogign’t execute it, but
instead recovers the snapshot and thus recovers the covtexctal state. Therefore,
the only code a patched version of a hon-deterministic fanawithout contains is an
additional request in normal mode for the debugger to makapshot.

Forward activation also has the advantage that it restbeesdrrect internal state,
even if an earlier patched instruction was defective andddgtle wrong program state.
Another advantage is that the deterministic execution eaa kot faster, because the
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debugger doesn’'t need to execute every instruction, bigadsactivates a later snapshot
and runs the program just from there. Epdb therefore alwags torward activation
and guarantees this to the user, so that he can rely on thienqyato write his own
patched versions for his instructions. There is, however,dmall disadvantage that
there is no guarantee to the user that all instructions wtlegecuted in redo mode when
the user runs the program forward, which can make a differevteen the user wants
to do something special in the patched instruction, suchoasgydsome visualization.
However, | think this shouldn’t be much of a problem most of thme, because the
state of the program is usually more important than the ei@twof instructions, and
epdb emphasizes the importance of the program state evenanantroducing stateful
resource management

3.5 Dealing with Non-Determinism

As stated in Section 3.4, there are two ways to execute a atarsdinistic instruction.
Executing an instruction non-deterministically is usyalimple, because the debugger
just has to execute it without further directing. However, deterministic execution
though, it has to do additional work. It has to use the infdramwhich it recorded
from the previous run to simulate the running behavior ofghevious run. As epdb
does non-deterministic execution with the use of timelifesant to concentrate on
deterministic execution here.

To execute instructions deterministically, epdb has tothegeffects of atomic non-
deterministic instructions. Epdb considers all functiofithe standard library as atomic
functions. If one treats the effects of all atomic non-dwierstic functions correctly,
one implicitly treats all composite hon-deterministic €tions, because the non-deter-
minism always results from some external state, which cdy lom accessed by func-
tions that escape the interpreter in some way. These furschave to be atomic for
a source level debugger. Composite functions may have ni@nradi@istic behavior
because they depend on some non-deterministic functidimsrealirectly or indirectly
(i.e., by calling other functions in between), but there aceother sources of non-
determinism. So if one fixes all atomic non-deterministindions by simulating a
deterministic behavior, all composite non-determinigirections will be simulated cor-
rectly too.

To simulate deterministic behavior, the debugger theesfigeds to record the non-
deterministic behavior when the function is executed inftret debugging run, i.e.,
when it executes in normal mode. There are two different @gagves for recording
non-deterministic behavior. The debugger could make astrfter the instruction
in normal mode and then rely on the forward activation prtypas described in Section
3.4. The other approach is to save the data from the envirohwigich changes the

1see Section 3.7
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internal state. When the function is replayed in replay oonmeabde, it is not executed,
but the recorded behavior is looked up and simulated. Tigica non-deterministic
function manifests by having a non-deterministic returdn@aln this case, the debugger
would store the return value with the corresponding instonaccount where the function
was called. Epdb stores this key/value pair in a sharedodiaty callednde (non-
deterministic effects). When the debugger replays the foncit would look up the
behavior and simulate it.

| want to illustrate this with an example. Assuming the dejmrgexecutes the func-
tion time(), which returns the actual time. Then the patched functionl&vsave the
actual time in thendedictionary at the current instruction count, before it rets The
debugger later executes it in redo mode, e.g., because ¢hestepped back and then
stepped forth. Then the the patched function would retuewétue of the dictionargde
at the position of the current instruction count. Since tigruction count is the same
as it was when the debugger has executed the instructionrmatonode, it would
therefore return the same value as in the first run.

There is a caveat with multiple processes and their synctaton. The process
which runs the function first is different one than the onecliveplays it, and thiork()
of the processes is done before they are executed. Theth®record of the behavior
should be done in some data structure, which is independethiegorocess, e.g., a
shared memory as described in Section 4.3.

3.6 Dealing with Side Effects

Atomic functions with side effects may change the extertetbsof the program. When
redoing or replaying some piece of code, the debugger shiestdre the external state
of the program. A function which has side effects can be eile¢erministic or non-
deterministic. A deterministic function with side effeckses change the external state,
but the internal state is not affected from the environme&herefore the debugger can
ignore the effects of the environment to the execution is tdase. If the function is
however non-deterministic, the debugger can use the sapreagh as mentioned in
Section 3.5.

Side effects don't affect the internal state, and if the pgogmer is only interested
in the internal state, the debugger can even ignore them.ekiwignoring them may
completely mess up the environment, so that when the debwygtehes to normal
mode, either by creating a new timeline or by running overrttaximum instruction
count of the timeline, the state of the environment may benststent. Therefore, it
makes sense that the debugger also manages the extemalstat should log changes
to the environment and restore the state when it executgsidtions in replay or redo
mode, or switches to another timeline. The debugger, hawesa reduce the amount
of external state recoveries by using the fact that side&sffdon’t change the internal
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Figure 3.4: A process and its resources

state. Since the user only examines the state when the pndgeaks, i.e., the debugger
shows the user a command prompt, the debugger doesn’t heesttoe the state when
it is replaying multiple instructions, but only before itémacts with the user, or when
it switches from replay or redo to normal mode. The debuggessdnly one restore
of the external state after the user sends it one navigatomwand. This is fortunate,
because restoring the external state could take quite & iohe. However, as it has to
do the restoring only once, the user may not even notice e tfhe recovery needs if
it takes less than about 100ms, which is about the time aneg@srio blink.

The debugger has to manage the external state. The extateaissonly the subset
of the program that affects the program execution or is sdtedy it. However not
every instruction changes the whole external state, bberainly parts of it, e.g., an
instruction that writes something to disk only changes tiatesof the file, but does
not change the text on the terminal. Consequently, it makeses® further divide the
external state intwesources For example, a file which the program uses is such a
resource.

3.7 Resources

Epdb allows controlling external resources like databafsles or other processes. A
resource is some part of the external state. Figure 3.4rdlies a debugger with four
different resources. When using epdb, the debugger doesametits own process but
is part of the program which the debugger executdhe memory, which the process
and the debugger use, represent the internal state whidhsgwes when it makes a
snapshot. The state of the database, the mail server, stiaodiput and config file
represent the external state of the program, and each @& tdoesponents is a separate
resource.

In debuggers which would work on native code, the debuggeildvypically have its own process
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Some operations on resources do not allow reversible delyggor example, one
usually can’t undo the deletion of a file. However, if the dgdper saves the content of a
file before it deletes it, the debugger can undo the delefiomestore the content, epdb
doesn’t try to undo the deletion, but instead it saves thee sththe file before it gets
deleted. Then, when running to the instruction count betfoedile deletion, it restores
the file.

Epdb supports an abstraction to implement such additicstadres like saving and
restoring state of resources to make operations reversibleevery kind of resource the
program uses, epdb needsesource manager There exists, for example, a resource
manager to deal with files and another for databases. Eveoyree has a state, which
the resource manager labels with an identifier. The idensi®uld be unique and
therefore a UUID[LMSO05] offers some reasonable implemigmta When an instruc-
tion changes a resource, the patched version of this ingtrucalls thesave()method
of the corresponding resource manager after it has chahga@gsource. The resource
manager then returns the identifier of its state, which epabages. The resource man-
ager also has eestore()method, which epdb uses to restore to some previously saved
state of the resource. As the resource managers shouldtpaxsiching snapshots and
therefore switching processes, it is hecessary to make th&tnibuted, and therefore
pickleable[Bea09], in order to serialize the object. A raseumanager should also im-
plement the magic_reduce__ (Jnethod. Listing 3.3 shows the skeleton of a resource
manager.

This design of resources isn't arbitrary, but inspired bylsome modern databases
deal with their data. For example, the Oracle database sispadechnology called
flashback[MAA 10]. With flashback, the user is able to restore the dataloceaytpre-
vious state. Every state of the database gets an ID, whichgbecan use to identify
a state. Some NoSQL databases provide similar versionaaftdata. For exam-
ple, CouchDB[ALS10] keeps the history of each piece of datapogides a unique
identifier for each version. Making a resource manager feahsa database should
be straightforward. For files, it should be possible to impdat a file system which
allows restoring old versions of the files by never deletimgn. Using such a file sys-
tem would allow the debugger to transparently implemengngble debuggable files.
NILFS[Lay09], for example, has many such properties regliior a file system for
reversible debugging.

Managing Resources

The resource managers offer a simple interface to save atateethe external state.
However, they just assign the different states some iden@iind thus there is no re-
lation between the identifier for the state and the instamctiount to which the state
belongs. This relation is necessary for the debugger, Isecilnas to restore the ex-
ternal state for a given instruction count. For exampleh# tlebugger stops in redo
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Listing 3.3: Skeleton Manager

class SkeletonManager:
def __init__(self):
"Initialize the manager"

def save(self):
"Save the actual resource and return an ID"
return id

def restore(self, id):
"Restore the state from an ID"

def _ _reduce__ (self):
"Make the manager serializable"
return (SkeletonManager, ())

mode at instruction count 10 after an instruction, which pasted something to the

screen, then it has to restore the state of the screen foudtisin count 10. However,

the resource manager doesn’t know anything about instructbunts. Therefore, the
debugger has to manage the identifiers it receives from gaesources. Epdb estab-
lishes the relation between state identifiers and instvactounts by using a distributed
dictionaries for each resource the program uses. Thid&ty has at each instruction
count, where the resource changes, the correspondingdsatédier. The debugger up-
dates this dictionary when the resource manager savesatieeo$tits resource. Then, it
uses the current instruction count as key for the new entitydrdictionary and the state
identifier, which the resource manager returns, as value.nviliee debugger needs to
restore a resource, it can look up state identifier for théédsginstruction count in the

dictionary, which is lower then the current instruction.ig ktate identifier it can then

send to the resource manager to restore the desired staie refsource.

Each timeline may have different external states at the sastiction count num-
ber. Therefore, each timeline needs to keep its own diatiesior the resources. When
the user creates a new timeline, the debugger has to copgdsbarce dictionaries, so
each timeline has its own. If the current position in the timeis not at the end of
the timeline, the debugger generates only reduced copidiseodlictionaries. These
reduced copies only contain instruction numbers up to thieentiinstruction count.
Newly created timelines only describe the execution upéactirrent instruction count,
and therefore, its resources only need the state for irtgirucounts up to the timelines
maximum instruction count, which is equal to the currentringion count.

The resource dictionaries have to be distributed betweecegses. Each timeline
can consist of multiple snapshots. The debugger may aetasay of these snapshots
and in this case, the process associated with the activatgzslsot needs access to the
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resource dictionaries.

3.8 Instruction Patching

Epdb has three modes of execution: normal, replay and redale\dplay and redo
almost always work the same, there is very often a differdreteeen normal and re-
play/redo mode. Take for example thwite() function, which writes some bytes to
disk. In normal mode, it should actually write something iskdbut in replay mode,
it wouldn’t be advisable, because the bytes would alreagg baen written to disk by
the first execution in normal mode, and writing to disk agaouild change the file to
some wrong state. In replay and redo mode, the file shouldrchlanged at all, because
managing the state of the file is the job of the resource managtact, write() should
do nothing, except returning the number of bytes writterhaftrst run.

The debugger knows how many bytes were written in the firsbyuasing a mod-
ified version ofwrite(), which actually stores the number of bytes written in some de
bugger internal variable. Epdb supports the shared d&tjomde which thewrite()-
function of a patch module can use to store information thetion needs to implement
deterministic execution behavior.

As we see, a reversible debugger requires a different imgaation of a function
in replay/redo than in normal mode. Consequently, it needaytw patch the func-
tion, but this patching shouldn’t change the execution atiie program runs without a
debugger. The patching has to be done at runtime or when tigegmn loads. For dy-
namic languages, patching the function at runtime seemsttodocleaner way. Patching
a function at runtime is often calladonkey patchingZia08]. Monkey patching is of-
ten used in conjunction with software testing. There, itdedito inject a fake or mock
object into the the runtime environment, instead of the ahjself. It may also be used
to fix a bug in a running server, which shouldn’t reboot to fi thug. As | believe that
patching of instructions has nothing to do with primatesahtto use the more generic
terminstruction patching in this paper. It is more generic, because it does not nec-
essarily mean that the patching is done at runtime. It mayladsdone using program
instrumentation at class loading for a statically typedjlaage like Java. If | empha-
size that the patching takes place at runtime, | will use éng tlynamic instruction
patching. The name instruction patching also has the advantaget #najphasizes that
the debugger replaces atomic instructions which also hawve sime context.

With dynamic instruction patching, the function or objestsimply replaced at
runtime with another one. As functions, objects, and cksse first-class objects in
Python, the patching can be done using simple assignmersigg hstruction patch-
ing, the debugger can use a different version of a functidn¢hvdistinguishes between
normal, redo and replay mode.

Epdb uses instruction patching to implement patched vessod functions and ob-
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jects, but it is still unclear when the patching takes plau# lzow the code is organized

to provide patched versions. Epdb distinguishes betweehuittins module and nor-
mal modules. Théuiltins module is loaded even without amport statement, so the
debugger patchdsuiltins at the start of the program. For the rest of the modules epdb
overwrites the import mechanism, to patch them at imporetifython allows this by
overwriting the__import__ ()function.

The code for the patched versions of the functions is locetedeir own module
which has the same name as the original module, but has twtcsdd underscores
at the beginning. To patch theandom py module, the programmer would write a
__random py module with the patched code. When the program imports a reodul
under debugger control, epdb merges the module with thd pacclule. It looks for a
symbol in the original module and if it finds it, it looks in tip@atch module to find it
there and in that case overwrites the original one. In thse che module provides the
original symbol with prefix__orig__, in order to allow the patched implementation to
access the original implementation. If the patched moda&sd't provide the symbol
of the original one, the original implementation is useda lbatch module provides a
symbol, which does not exist in the original module, it willignored and not accessible
by the program. Such symbols can be used by the patch moduketpatch module
locale variables, which are not accessible from the progrseif.

Listing 3.4: ex.py Listing 3.5: __ex.py Listing 3.6: view

def foo (): def foo (): def __orig__foo ():
return 1 return 2 return 1
def bar(): def baz (): def foo ():
return return return 2
def bar ():
return

Listing 3.4, 3.5 and 3.6 show an example of merging two maulége module in
Listing 3.5 overwrites the functiofoo(), but keeps a copy orig__foo() which works
the same as in figure 3.4. Since theex. py doesn’t overwrite the functiobar(), it
looks the same after merging asar. py. Thebaz()function has no corresponding
function in Listing 3.4, and therefore it is only local to theex. py module.

3.9 Atomicity

How far can a programmer step into an instruction? The answ#is question very
much depends on the programming language and the debugtfesn®s an interpreted
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language and it doesn’t seem to make sense to debug theetegrpself using a Python
debugger. The CPython interpreter isn’t even written in Bythself, but in C. If a
user wants to debug the interpreter, he better chooses gglmbior C code such as
gdb. Even if we ignore the interpreter itself, we may stilteanter C code, because
a module for Python can be written in C. The Python debuggerstabs here and
ignores stepping into functions in modules written in C, hesveit allows stepping into
modules of the standard library. This is helpful for peopleovdevelop the standard
library, but is usually annoying for programmers who donNlany of the standard
library modules do some wrapping, before actually calliogne module written in C.
Therefore, most of the time a user doesn’t get a lot of ingjgsit by stepping into a
standard library module. If they jump into such a module bgident, they often try
to come out as fast as possible. If the debugger allows stgppio a standard library
function, jumping into the standard library code is somesmnavoidable by the person
doing the debugging. For example, if a function call, whibk tiser is interested to
debug, is on the same line as a call to a standard library itmcbut the debugger
would execute the standard library function first, then @ stiethis line would access
the standard library function before the user defined foncti

Epdb avoids stepping into standard library functions. Qeeeson is that it is of-
ten more annoying than useful. Another is that it makes iteeds count instructions
correctly, because the library function might have noredatnistic parts in it. If epdb
would step into the standard library function, the impleteenf reverse debugging ca-
pabilities would need to make those function calls insidedtandard library work in
reverse. Those are often very poorly documented, if somardentation even exists.
The standard library itself however has very good docuntiemaand therefore it is
usually easier to implement reverse debugging for a starddaary call.

One could argue that implementing reversible debuggingffionitive functions is
preferable to implementing reversible debugging for mammglex ones, because the
complex ones consist of primitive functions, and programsweould only have to im-
plement a few primitive ones. However, it is often not polkesib implement reverse de-
bugging for primitive operations, while it is possible todanmore complex ones. Let’s
take for example a program which sends a message to anoto&sgrwhich shows the
message on the screen. A primitive operation would be, sidhase, the sending of the
message. There is no way a program can undo that. When thegaéssant, it gets on
the wire, the other process receives it, and does its aciotishen the debugger has no
information what the other process has done. However, ifogk &t the more complex
function “send a message to the other process to write samgetim the screen”, the
debugger has suddenly much more knowledge of what is hapgpefior example, to
undo this action, it could send a message “undo the effectiseofast message | sent
you” and the other process could restore the previous siteourse, designers of such
a system need to pay close attention to such requirements.
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Epdb Internals

Up to now, | have presented the overall architecture for amsllle debugger. Epdb is
a fully working prototype and therefore | had to do many mqyecsfic decisions and
detailed design. | want to present them in this section.

4.1 Snapshot Processes

Epdb has three kinds of snapshot processes. There isammller process, onée-
buggeeprocess, but multiplenapshotprocesses, i.e., as many as there are snapshots.

Epdb uses the controller process to manage the commumdagtwveen the snap-
shots. If there wouldn’t be a controller process, every essavould need to know about
every other process, because every process may activatettaarysnapshot and this
shapshot may activate any other snapshot again. The deeisiold be between a full
mesh or a star topology, but a full mesh topology would regjailot of work to keep the
connections alive and a lot of connections between the psesei.e.n(n—1)/2, where
nis the number of snapshots. A star topology requires nmgnnections. However, it
requires one additional process, the controller procgsdblHses a star topology like in
Figure 4.1. This communication topology always routes mgss between a snapshot
and the debuggee process through the controller process.

Beside the snapshot and the controller process, there ishestebuggee process.
The debuggee process is the one that does the debuggingnabthent, by interacting
with the user. Itis the process which actually does work|ehie others are just waiting
most of the time. There is only one debuggee process, becdiuseavise the two or
more processes would confuse each other. When the debugdiyatesca snapshot, this
snapshot initiates a new debuggee and the previous debpggmess terminates, so that
there is only one debuggee at any time.

39
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Debuggee

Figure 4.1: Star topology

Epdb implements each snapshot as a process. When the delagesea snapshot,
it calls the system catbrk(), which creates an exact copy of the process, except for some
details like the process id. The newly created snapshotepeocegisters itself with
the controller and then waits until it gets thetivation message from the controller.
When it gets an activation message, it spawns a new procesgfoi() again, because
otherwise the snapshot would get lost, if it would start ingrwithout making a copy
of itself. The newly created process then becomes the deleugtheend message is
another message the controller sends to the snapshot pescdshis message instructs
the processes to terminate. The controller uses this messalglete a snapshot, either
when the user requests to delete it, or when the debugger evety snapshot process
gets an end message in order to make them terminate. Thekentioes this form of
closing in order to be able to use the system walit() on them, to prevent them from
becoming zombie processes.

The debuggee uses the controller to activate snapshoteedt b by sending the
controller anactivation message. In this message, it also sendsdlod the snapshot
to activate. The controller then looks tiek up and sends an activation message to
the addressed snapshot, which spawns a new debuggee. Tadweather types of
messages the debuggee may send to the controller. One listtibeessage, which
makes the controller process list all snapshots, and thex aththequit message. This
message makes the controller send the end message to expsjet) waiting for their
termination, and then terminating itself.

Snapshot Communication

As there are multiple processes which depend on each dbleee, inust be some sort of
communication between them. Python supports some of therafdhe box, namely
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signals, queue, shared memory and sockets. There are iatsparty modules for inter-
process communication, for example, POSIX or System V qaielibe requirements
for the communication system don’t seem very high. Therenateso many messages
going around, but it is necessary that two process, whichharén a parent/child re-
lationship, can easily establish a connection. | triedegaifew forms of interprocess
communication solutions, before | decided to go for sockets

Signals

Signals are a very simple form of communication. The Pythandard library has sup-
port for them. Useful for implementing them is thiginal.pause(junction. This makes
the process stop until it receives a signal. Signals seene nbadequate solution, if
you have only local snapshots. For global snapshots, tsereich more communica-
tion between the processes and signals, so there don’t sdegratsufficient solution to
it. Signals also suffer from portability issues.

Queue/Pipes

Python comes with enultiprocessingnodule. This module contains the clas§ageue
andPipe Although they are used differently, they share almost #raesadvantages
and disadvantages. One big advantage is that they are nobontlled with Python,
but also implemented portably and work on almost every ptatf However, they have
a problem: it is not easy to create a Pipe or Queue betweenrveegs, which do not
know about each other (i.e. for example in a parent-childti@hship). This makes it
very difficult to establish communication, especially féolgal snapshots.

Shared Memory

There is support for shared memory in Python. Python supmokManagerobject.
This object is a separate subprocess. Using shared menisrwaly wouldn’'t save
any processes. It would be possible to save the data relawthpshots in the shared
objects. Consequently, every process would have accedssttpkhot data, but shared
memory doesn’t solve the synchronization problems. Thes#ddbe resolved using
locks, but this would be more complicated than necessary.

POSIX/System V Queues/Pipes

As the Python Queue/Pipes had some shortcomings with repestablishing com-

munication, | looked at POSIX and System V queues and pipbesd are not part of
the standard Python distribution, but there are third perdgules supporting them. As
it turned out, the problem of establishing a connection kbetwtwo foreign processes
isn’t well supported.
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Sockets

Python supports programming using sockets, so one camstarthem without prepa-
ration. They also solve the problem of establishing a cotoedetween two foreign
processes since there is the functimnd(), which gave the socket a name. As sockets
are usually used for network programming, there are of @sosne security concerns,
such as ensuring, that no one on the Internet is able to d@rtadther user’s machine.
Luckily, there are Unix Domain Sockets, which do not workioVE€P or UDP, but over
alocalfile. There are still portability problems here, hesathey are not well supported
under Microsoft Windows, but as | broke compatibility befpthis shouldn’t matter.

Snapshot Activation Modes

The snapshot implementation of epdb supports three differ®des of snapshot acti-
vation. The type of snapshot activation is transparenteasers, i.e., they will not see
which activation mode the debugger uses. The reason fareliff activation modes is
that the debugger usually doesn’t stop after it activatesapshot, but goes some steps
ahead. The most often used snapshot activation mad®iisting activation, but epdb
usesframe count activation andcontinue activationin some special cases.

Counting Activation

With counting activation, the debugger activates the dmatpand instructs it to run
forward until it reaches a given instruction count. Then dtebugger interrupts the
execution and calls thiateraction()method. Epdb uses counting activation, if it knows
in advance at which instruction count it has to break. Thawsays the case witfstep
rnext rcontinueandstepand often, but not always withextandcontinue

Frame Count Activation

Epdb uses frame count activation in a special case, whengtioguactivation doesn’t
work, due to the fact that the debugger doesn’t know at whislriiction count to stop
when it activates the snapshot.

In Figure 4.2, the program is inside the functimo() and calls the functiotar().
The user also has executed tier() function partially in normal mode and after that,
has run the program backwards up to the invocation of thetimmbar(). The current
instruction count of the timeline is at the position immeelg before the invocation
of bar(), and the maximum instruction count is inside the functio@am(). Inside the
functionbar(), the debugger has also made a snapshot, either becausedhgdriable
exceeded its limit, or a patched function requested to malapshot for determinis-
tic execution. When the user initiategxt the debugger has no information at which
instruction count it should stop, because the target lonait the position wherbar()
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Figure 4.2: Frame count activation example

returns was never executed before, and therefore the debhggn’t saved any execu-
tion path information at that location yet.

The debugger also can not raextas in normal mode, because there is a snapshot
which it has to activate to guarantee the forward activapimperty. In this case, epdb
uses frame count activation. Before it calls the functiorsaies the number of stack
frames it actually has. Then it activates the latest snapsside the function and passes
it its actual frame count. Then the activated snapshot tbagtogram until it reaches
this frame count or less. Consequently, the debugger pheaB®ps at the position at
which the function returns. The “or less” condition is nesgey to support exceptions
which may leave the function at a lower frame count.

Continue Activation

Continue activation is similar to frame count activationt bsed in conjunction with
the continuecommand. Consider an example where no future breakpointmmede
exists, but the debugger has made a snapshot, which it slhctilcite. Figure 4.3
illustrates this. In this case, the debugger has to actihatéatest snapshot and execute
it over the maximum instruction count of the timeline. Atdlpoint, it has to switch
to normal mode and run it until it finds a breakpoint in normalde. As the debugger
has no information at which instruction count the breakfsootcut, it has to switch

breakpoints reside on lines in source code, not instructinmts
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Figure 4.3: Continue activation example

in order to run the program until it reaches a breakpoint.h&tsnapshot activation, it
has to instruct the new process to run until it reaches a neakpoint. | call this type

of snapshot activation —eontinue activation, because it makes the new process run in
continue mode after it gets activated.

4.2 Bookkeeping in Epdb

Epdb records the data change history with the use of snagpshudtit also has to record
the execution path history. It does this by counting ingtons. This works for thestep
command, becaugsteponly requires to activate a previous snapshot and then to run
from there until it reaches the number of instructions mions. However, fornext
andrcontinue this isn’t sufficient. With just the instruction count, tiees no way to
predict at which instruction number a breakpoint residewloere the debugger called
the corresponding function. In order to makextandrcontinuework, the debugger
has to track additional information.

First, the debugger needs to stop at a breakpoint when thénitses a reverse ex-
ecution command. The user is able to set a breakpoint attesiexecuted all the code
and then can run the program backwards to this breakpoineretdre, the debugger
can’'t simply save the instruction counts with the break{goimhen it encounters one,
while running the program forward, because the breakponaig not exist yet. Conse-
quently, the debugger has to save the instruction counevimy line of code, which it
executes. Epdb does this in a dictionary, toatinue_dict It uses a tuple containing
the filename and the line number as key. This informationifipeexactly one line
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of code. As a value it uses a list of instruction counts, wlsioh executed on this line
of code. Using this dictionary, it is possible to calculdte position of the breakpoint
when running multiple instructions backwards or when ragrforwards in redo mode.

For rnext to work, the information saved in theontinue_dictis not enough, be-
cause the debugger needs to know on which instruction cdl@t&inctions have re-
turned. It keeps another dictionary, tmext_dict. Every time the debugger encounters
auser_return() it adds an entry to the dictionary with the current insticicount as
the key and the instruction count of the correspondiser_return()as the value. Con-
sequently, it is possible to calculate the position in thegpam where anext should
stop the program execution.

There is another situation where the debugger needs adllitrdformation and that
is in case of anextcommand, when the debugger is in redo mode. There are maybe
shapshots inside the function and therefore epdb must#etiie latest snapshot inside
the function, because of the forward activation properpdlitkeeps another dictionary,
the next_dict, which is the reverse form of theext_dict i.e., it has the instruction
count from the correspondingser_call()as the key and the instruction count at the
user_return(Jas the value. Using this dictionary, the debugger can catiethe nearest
shapshot to the target position and therefore is able tcagtee forward activation.

With next_dictandcontinue_dictthere is the problem that the information the de-
bugger saves may be used by a snapshot made earlier. Astires s@apshot hasn’t
recorded the information afiext_dictand continue_dictfor later instruction counts,
it wouldn’t have this information. Therefore epdb must usshared dictionary for
next_dictandcontinue_dicto make this information available to all snapshot procgsse
This shared dictionary should belong to a timeline, i.echetameline should have its
own version ofcontinue_diceandnext_dict

With rnext_dict the situation is a little different. It is only needed fofarmation
in the past. Therefore, the debugger doesn't need to shardittionary with other
processes, because each process can track the inforntatesds.

4.3 Shared Memory

As described in 3.5, the debugger has to record the behavimmedeterministic func-
tions and exchange the recorded data with other processagiors 3.7 showed that
epdb makes use of resource managers, which must be syrzdutcanong all pro-
cesses. Section 4.4 shows that breakpoints need to bédistti Epdb also has to keep
track of the execution path history which should be avaddblall snapshots, and last,
but not least, it has to keep information of timelines syodired over all processes.
To synchronize all the data, epdb uses its own server proaéssh it starts at its
own startup. Most of the data can be handled in a shared dastypbut the breakpoint
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implementatioh makes some usage of lists. Therefore, the implementatioumdisup-
port lists as well. Epdb does not need synchronization, loeking before accessing
data, which most shared data implementations provide,usecanly one process is
active at the same time.

In order to implement a shared dictionary, | needed some aamuation technol-
ogy. | first considered using thmultiprocessingnodule. There exists Blanageror
alternativelyBaseManageclasses, which would allow implementing a shared dictio-
nary easily. As it turned out, the module wasn’t well des@jf@ using it withfork(),
but instead, with &rocessdata structure which doesn’t guarantee the usto().
Using fork() in conjunction with theManager | ran into some nasty race conditions
which | wasn't able to fix due to the complex implementatioatttioes much more than
| actually needed.

Therefore, | decided to implement a simple shared dictypoarmy own. This isn’t
very complex, as Python provides the well implemerpexkle module, which allows
serialization of objects. For inter-process communicatiaecided to go for Unix do-
main sockets for the reasons discussed in Section 4.1. Adgtdre of the debugger,
epdb launches a process which manages the dictionary dedslifr incoming con-
nections. All other processes connect to the managing psamietheir start. To access
the dictionary, the client sends a tuple of three elementsatming the method name,
the positional arguments and the named arguments. Ther saweutes the method
with the arguments and returns a tuple of two elements. Teedlement indicates
whether the method was successfully executed or if an excepas thrown. The sec-
ond contains the return value or the exception. | also addeaxy[GHJIV94] at the
client side for more transparent usage of the dictionarys irhplementation also has
the advantage that it works with complex objects like reseunanagers, as long as they
are pickleable. However, this can be easily achieved byemphting the reduce
method of the class.

This implementation works well for what it is intended fouttalso has some limi-
tations. For example, it is not possible to receive an iterat the dictionary, because
iterators are not pickleable. However these limitatioresray problem in the described
case.

Figure 4.4 shows how the shared objects are arranged. thegg, exists a timelines
object, which is a dictionary that holds all timelines. A &hme is a more complex
object, which consists of dictionaries for non-determntinisffects, resources, managers
and, the execution path history information stored in tloi@inariesnext_dictandcon-
tinue_dict Epdb stores the information of breakpoints independdriiy the timeline.

the breakpoint implementation is almost copied from pdizepk that epdb stores breakpoint data
on the distributing server
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Figure 4.4: Organization of shared data

4.4 Breakpoints

There are different processes communicating with the u3érerefore breakpoints
should appear to the user in the same way regardless whickge@s currently the de-
buggee. Without changing the bdb implementation, everggss would handle break-
points separately. This means that after restoring a sogpsie user would probably
see fewer or different breakpoints. Therefore, | decidedrplement a distributed
version using the shared memory approach. As it turned aduld reuse the imple-
mentation of breakpoints from bdb and pdb, but | had to repthe data structures,
which store the breakpoint information, with shared datacstres, i.e., remote prox-
ies, which forward the function calls to the shared memoryese For the breakpoint
implementation, | needed a shared dictionary and a shagddécause bdb uses those
data structures to index the breakpoints in different ways.

For the implementation of shared breakpoints, there areressonable ways to
implement them. They could either belong to a timeline, eytbould be global. If they
belong to a timeline, the users would see different breakpdor each timeline. In the
global approach, the users would see the same breakpoietstivdy switch to another
timeline. | decided to go for the global approach, becausakpoints belong to some
line in the source code. As the source code doesn’t change thiedimeline changes,
this seemed more reasonable to me. However, the timelineagp has advantages
too. For example, the user may want to search for a differagtib two different
timelines and therefore would need different breakpomtsach timeline. Therefore, a
full-featured implementation of a reversible debuggerhigiplement both.
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4.5 Implementation of Debugging Commands

Although pdb provides an implementation for the standatiidging commandstep
nextandcontinue their implementation doesn’t combine well with instracticounting.
The reason is that pdb doesn’t call a trace function on evestyuction executed, but
only on those, which are located in frames, that have a bogakm it. This optimiza-
tion makes debugging faster, but doesn’t allow applyingrutdion counting. Therefore,
it is necessary to rewrite those functions.

Step

The stepcommand in epdb works similarly to the one in pdb, as it onpstone in-
struction forward. Therefore, it doesn'’t interfere witrsiruction counting, because
instruction counting requires the debugger to stop afteh @tomic instruction. Step
goes exactly one atomic instruction ahead, and stops gxaledre the instruction count
mechanism increments its instruction count. Thereforestbp mechanism is the same
as in pdb in normal mode, but epdb also supports the redo nindedo mode, epdb
first checks if there is a snapshot at the next instructionfercurrent timeline. If it is
the case, it activates the snapshot instead of steppingstregtion forward, to guar-
antee the forward activation property of the debugger. rAdtsuccessful step in redo
mode, epdb has to restore all resources to their state factial instruction count.

Next

Nextworks similar tostep except when the current line contains at least one function
call. Then theuser_call()method is called beforaser_line() In the pdb implemen-
tation, the_stop_framas set to the current frame. This means that the debugger only
stops when it returns from the function call to the curreanfe. It also means that the
instruction count would only be increased by one, becawstdee function would only
be called once. This is undesirable because epdb would s®tifie instruction counts
in replay mode, because there, it would step into the functio

To fix this issue, epdb implememextsimilar tostepin that it calls the trace func-
tion on every call, but doesn't always calls théeraction()method. If the debugger runs
over a function call, it calls theser_call()method beforehand and thuser_return()
method afterwards. Before callimgextthe debugger stores the number of stack frames
which the debuggee currently has. When it steps into the ifamadhe function call sets
up a new stack frame and increases the number of frames. Wleaweéts the function,
it deletes a stack frame and decrements the number of frarhesdebuggee may create
additional frames by calling other functions, but when iaig the number of frames it
stored previously, it has returned from the function. Isiless than this number, then
it has left the function via an exception, and therefore leashed the position where
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the next command should present the user a command promgheFuore, the next
command should also consider breakpoints. A breakpointkchreuser_line()solves
this.

Like step nexthas to treat normal and redo modes differently. In redo mepdb
tries to find an appropriate snapshot, and then activatemicontrast tostep next
requires two different activation modes. First, a snapsiobivation, combined with
going a number of steps forward (see counting activationeicti8n 4.1), and second,

a snapshot activation until the stack depth reaches a giverber (see frame count
activation in Section 4.1). Astep nexthas to restore the resources before the debugger
shows the command prompt.

Continue

Continuesuffers from the same problem asxt in conjunction with instruction count-
ing. The epdb version afontinuecalls the trace function on every line of code. In the
user_line()method, it checks if the actual line is a breakpoint, and im¢hse, provides
a command prompt. In redo modegntinuecalculates the halting position using the
continue_dictand tries to find the best positioned snapshot to reach it.adewyif the
next breakpoint is after the maximum instruction count & timeline or doesn't ex-
ist (in this case it is the end of the program), epdb uses thpstrot with the highest
instruction count from the timeline and activates it uritfinds a breakpoint, or the pro-
gram ends. This type of activation is called continue atitveas described in Section
4.1

Rstep

There is is no implementation for all the reverse debuggomroands in pdb. There-
fore, I had to implement them in epdb from scratch. For revesecution, epdb ignores
the external state at first and does replaying by activatipgegious snapshot. Then,
it does counting activation until it reaches the currentrirtion count minus one. It
replays some instructions in replay mode, and before it shin@ command prompt
to signal that reverse stepping has finished, it switcheedo mode, and thus sets the
resources to their state at this instruction count in thead¢imeline. Consequently, the
debugger doesn’t need to reset the state after every repiageguction, but only once
per initiated user command.

Rnext

A rnext means to avoid stepping into a function that returned to ttea position in
the program. In epdbnextdoes the opposite of a precedingxt If the user has sent
anext and afterwards anextcommand, then he is at the same position in the source
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code as before. The only thing that may change is the modgifitee debugger was
previously in normal mode, it is afterraextalways in redo mode.

However, without additional tracked information, the dgger doesn’t know which
function to step in and which to skip while it is replaying. rAext can mean to step
only one instruction backwards, or it can mean to step maltipstructions backwards
depending on if the last instruction was a function call ot. i solve this problem,
| decided to track every instruction count at a function @ath the correspondent in-
struction count at the return of the function. Epdb storesittiormation in a dictionary
rnext_dict!, with the return instruction count as the key. Then, the dgbu can look
up the corresponding call instruction count. If it does nastk it can simply step one
step backwards. If it exists, it can step back until it reactme call instruction count.
Both of these types of stepping backwards only require cogractivation.

Like rstep rnextsets the resources to their appropriate state only befsreows a
command promptRstepalways ends in redo mode.

Rcontinue

Similar tornext for rcontinueto work, the debugger has to track additional information.
Without this information, the debugger wouldn’t know at winibreakpoint to stop. It
could be that it has to stop at the first line with a breakpdimnicounters, or at the
second or any following.

Epdb keeps a dictionamgontinue_dictwith a tuple, that contains the filename and
line number as the key, and a list of instruction counts avaéhge. If the programmer
navigates backwards, epdb can iterate through every boegkand check if there is an
instruction count in the dictionary. Then, it takes the leghinstruction count and uses
it to calculate the steps to run forward. When it reaches i&, giosets the resources and
then switches to redo mode asextandrstepalways do.

In principle, it is possible to implement this dictionarycllly for each process,
because the program can reproduce it while running forwaddtas usually not used
to jump forward. However, since epdb allows timeline swiitgh) the corresponding
continue dictionary is not available if the user is in a difiet timeline, and therefore
can’'t switch to another timeline. Thus | made t@ntinue_dicshared, because | feel it
IS the cleanest solution.

4.6 Example Patch Modules

I implemented a simple patch module set, which illustratesarinciple of dealing with
non-determinism and side effects. For non-determinisrhpke theime()-function of

1see Section 4.2
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the time module. For functions which also have side effects, | chbsebuilt-in file
editing functionsopen() read(), write(), close()

Time

Thetime.time()function is a typical example of a non-deterministic fuonti It returns
the actual time as a floating point number. This number remtssthe numbers of
seconds passed since January 1st 1970, at 0:0Ctrmbgime()function does not have
side effects, because it doesn't actively change the time.

There are two ways to implemetime.time() The patched function could either
store the return value in a stored dictionary or it couldrunstthe debugger to make a
shapshot after the instruction.

Implementation with a Shared Dictionary

In order to create an patched version of timee module, the debugger needs aime
module. If this module exists, the debugger then mergegtiesmodules. Listing 4.1
shows an implementation for the timemodule.

One tricky aspect in the implementation of tiree module is that the module name
is the same as the function name. Since the function needséssthe original module,
it needs to import the origindimemodule. However, this module has the same name as
the function and therefore every referencéitee would reference the function instead
of the module. Thus, the module should import tinee module as a different name. In
the example, thememodule is imported asmemod

The implementation of themefunction distinguishes between normal and redo/re-
play mode. In normal mode it first uses the original impleragah to get the system
time. It then saves the time in the shared dictionary at theaamstruction count and
after that it returns the time value. In redo and replay motteoks up the value in the
dictionary and returns it. By this means the function alwafams the same time value
in redo mode as it returned it in normal mode, when the debugxgcuted it the first
time.

Implementation with Snapshots

The alternative implementation of timeinstructs the debugger to make a snapshot
after the instruction. Listing 4.2 shows an implementatdime using the snapshot
approach. The dbg module provides the obmuapshottingcontrolvith a method,
which allows to do exactly this. In normal mode, the impletaéion calls this method
and then returns the system time using the original funcfitrere is no implementation
for redo or replay mode, because the debugger never exdabetésnction in redo or
replay mode, but instead activates the snapshot after shreiation.
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Listing 4.1: __time.py

import time as timemod

import dbg
def time ():
if dbg.mode == 'normal’:
value = timemod._ _orig__time ()

dbg.nde[dbg.ic] = value
return value

elif dbg.mode == ’'redo’or dbg.mode == 'replay’:
return dbg.nde[dbg.ic]

Listing 4.2: Alternative implementation of __time.py

import time as timemod
import dbg
def time ():
if dbg.mode == ’'normal’:
dbg.snapshottingcontrol.set_make_snapshot ()
return timemod.__orig__time(a)

The advantage of this approach is, that it is very straigiwdod. For every non-
deterministic function without side-effects, the implertegion with snapshots looks
almost the same, even for more complicated situations, a&fgnction which changes
a referenced object. It also seems feasible to automatertioegs of patching such
instructions. However, this approach also has a disadgantaecause the debugger
always makes a snapshot, when it reaches such an instruetioch could reduce the
system performance.

File Handling

Implementing reversible debuggable file handling is muchawwomplex than é&me()
function. First, the file handling functions are not only raeterministic, but also have
side effects. Moreover, they interact with each other, sy tannot be considered inde-
pendently. To simplify the matter, | only considered theeclumctions of file handling
which areopen() read(), write() andclose() and ignored others likeeek(Jor trunk().

It is important to note, that simulating file access very mdepends on the file
and therefore it is clearly impossible to give one "best soitit For instance, the file
could be a special file likédev/ nul | or/ dev/ random which works completely
different than a regular file. Therefore, a simulation fazessing & dev/ r andomfile
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Listing 4.3: __ builtins.py: open
def open(file , mode="r", buffering=1, encoding=None,
errors=None, newline=None, closefd=True):
if dbg.is_dbg_callee ():
return builtins.__orig__open(file , mode,
buffering , encoding, errors, newline, closefd)

fd = builtins.__orig__open(file , mode, buffering,
encoding, errors, newline, closefd)

args = (file, mode, buffering, encoding,
errors , newline, closefd)

fp = FileProxy(fd, args)

return fp

would be different than one for a regular file. The file can de@ccessed by another
process and therefore it may be necessary to take this inbuat

One can use the code of the example with epdb to explore theatyffushing be-
havior of the function calls (i.e., the buffer is only writtéo disk onclose()or flush()
calls). To make the implementation quite simple, but nénedeiss of practical value, |
made the following assumptions to how the file is accessed:

* Only regular files are considered

It is assumed that no other process deletes the file

The type of the file object returned by open isn’t used

The implementation of the file does not expose it’s buffer

The implementation of the file only flushes in case @itigah()or close()call

Open

Theopen()function is a factory function which returns a file object oh®e type. The
type depends on the mode in which the file is opened. For iostancan beBuffere-
dRandonor TextiOWrappedepending on the opening mode. In the simulating exam-
ple, the patched open call returng-izeProxy object. This object supports thiead(),
write() andclose()method. The proxy passes the calls tolbétins file object.

| used a proxy in this example, because it is not easily ptesgilaccess the buffer of
the file object. This means that it is not possible to changébtiifer of the file, which
is written when the process ends, for example: the progranste@s over avrite()
call and then decides to step back. This means that the debuggfores a previous
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Listing 4.4: __ builtins.py: FileProxy

class FileProxy:
def __init__(self, file, args):

self._ _file__ = file

self._args = args

self.fn = fn = args|[0]

resource = dbg.current_timeline .\
new_resource ('file’', fn)

rm = resources. FileResourceManager(self.fn)

self. fileresourcemanager = dbg.current_timeline .\
create_manager (('file’,fn),rm)

id = self. _fileresourcemanager.save ()

if not dbg.ic in resource:
resource[dbg.ic] = id

def write(self, b): "...
def read(self, n=1): "..."
def close(self): "..."

shapshot and terminates the previous debuggee. This meanalit changes to the
buffer are flushed out, which should be considered by thgatetil process.

Another problem with open file descriptors is their behaworconjunction with
fork(). Let's consider a program which opens a file and writes to fterXhat, it forks
another process and then both processes close the file. dhid actually mean that
the stream would be written twice, which is probably not mted. Epdb solves this
problem by using resources, which have a state. If the dedyuggses a process, e.g.,
because the user deletes a snapshot, it can recover theatst@ate by resetting the file
resource to its actual state.

The implementation of thepen()function can be seen in Listing 4.3. The first thing
this implementation checks is if the callee is some debuggated module, because
the debugger usespen()as well. In this case, the debugger does not use the patched
version ofopen() but the original one. The implementationafen()works the same
in redo, replay or normal mode, becausgen()is a deterministit function with side
effects. Instead of returningFle object, the patched version open()returns a proxy
to it, i.e., theFileProxy. This proxy provides its own implementation refad(), write()
andclose()methods.
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Listing 4.5: __ builtins.py: read()

def read(self, n=1):

if dbg.mode == ’'normal’:
dbg.snapshottingcontrol.set_make_snapshot ()
value = self.__file__ .read(n)

return value

FileProxy

As shown in Listing 4.4, th&ileProxydoes not only provide patched versionsedd(),
write() and close() but also manages the file resource manager. It generates a ne
resource and a resource manager. Then it saves the acteadstestores thel in the
shared resources dictionary. Keep in mind, that the cutiretine can change between
the FileProxy initialization and its method calls (e.g., by creating a rieneline) and
therefore, the resource dictionary should not be storedasmaber variable for using it

in other method calls.

Read

The read() method is a non-deterministic function without side effectit is non-
deterministic, because the debugger doesn’t know what #taod is going to return.
Theread(rmethod relies on an external state, the file. However, isdbe&hange the
external state and so it has no side effects. These consarerallow one to implement
theread() method using snapshots. The implementation shown in Igigtib achieves
this by calling theset_make_snapshottlethod of thesnapshotcontrah normal mode.
There is no implementation a€ad() in replay or redo mode. This is because epdb
would never callread() in replay or redo mode, but would instead activate the next
snapshot, because of forward activation. This snapshotheasorrect internal state
after theread() call in normal mode.

Write

Thewrite() method is a non-deterministic function with side effectse Bide effects are
obvious, because it changes an external state, the filealsasnon-deterministic, be-
cause thevrite() method also returns the number of bytes written and this rumbes
not have to be the same as the number of characters in the emgjud possible im-
plementation ofvrite() may look similar to Listing 4.6. Asvrite() is non-deterministic,
it is easiest to just let the debugger do all the work and tloetelt it to make a new

Lat least if we consider the internalsagen()such as the integer descriptor, as being of no particular
interest
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Listing 4.6: __builtins.py: write()

def write (self, b):
value = self.__file__ .write(b)
id = self._fileresourcemanager.save ()
dbg.current_timeline .\
get_resource('file’, self.fn)[dbg.ic+1] = id
dbg.snapshottingcontrol.set_make_snapshot ()
return value

shapshot after the write call, as was done inrthad() example. Howevenyrite() also
changes the external state and therefore it should alsthéstesource manager to save
the state and to put the state identifier into the resourdedary, so that the debugger
can restore the state of the file later on. Similargad() the implementation odvrite()
doesn’t need an implementation for replay or redo mode [secapdb uses forward
activation.

Close

The close() method is an example of a deterministic function with sidea$. An
implementation may look similar to the code in Listing 4.7s iAis deterministic, it is
not necessary to make a snapshot after this function callveMer, it is necessary to
save the state of the file resource aftbyse() becauselose()flushes the buffer. As
the patchedlose()method does not instruct the debugger to make a snapshottafte
return, it is possible that the debugger calls¢hese()function in redo or replay mode.
The implementation also proxies thse()method in these modes as opposed to the
non-deterministicead() andwrite() methods.

| do not consider this implementation of file handling a prethe, but more of a
hack. However, | think this example shows the power of theméwaork, that it can be
used to simulate even such complex operations like file h@ndjuite easily. A better
solution to this problem, in my opinion, would be to use a sgdite system for the files
the application uses. This file system should not delete angé files, but instead save
a new version of the old file and it should allow the restoratwd old versions of the
files. This is similar to the way some databases with Multsu@n Concurrency Control
(MVCC) save their data. The file system in user space (FUSEht#aby allows to
implement such a file system entirely in user space. Usingaiaifile system would
also allow a way to deal with some special files likeev/ r andom The file system
could store old versions of the number generator. Howeugslementing such a file
system is out of the scope of this thesis.
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Listing 4.7: __ builtins.py: close()

def close(self):

if dbg.mode == ’'normal’:
self._ _file__ .close()
id = self._fileresourcemanager.save ()
self. _resource[dbg.ic+1] = id

elif dbg.mode == ’'replay’or dbg.mode == 'redo’:
self._ _file__ .close()
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4.7 Modules of the Standard Python Library

In this section, | want to give an idea, how much work it wouddtb enable reversible
debugging for a program. The amount of implementation meslal program needs,
very much depend on the program. If it is a program, which aldgs some calcula-
tions, the program may not need any implementation moduled.aHowever, for a
program, which makes heavy usage of multiple resources ystdm calls, it can be-
come a very complex task. Some modules don’t need any pagteh@l. For example,
the modulemathhas 35 functions, which are all deterministic and withodesffects.
The modulerandomhas only 2 non-deterministic functions and non with sidecs.
On the other hand, most of the functions of tsmodule are non-detrministic or have
side effects. Figure 4.5-4.7 show the number of different&iof functions for three
modules.
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Performance

Lienhard[LGNO8] notes that the snapshot & replay approastow, because the debug-
ger has to re-execute the program partly. | don’t agree,useceeplaying can be even
faster than in logging-based debuggers, e.g., when thenss®s to recover a position
where the debugger has made a snapshot. In this case, it tlasedts actual process
and create a new process from the snapshot, which becomdslibggee. Creating a
new processes with copy-on-write is so fast, that it takesilisless than 1ms. On the
other hand, the seek time of a hard drive takes typically amféiseconds for spinning
hard drives or about 0.1ms for SSDs. The replaying time irb#st case is much lower
than most users are able to perceive, which is about 100-200m

In the worst case, the performance of an execution commaoudldlend after a
certain amount of time and therefore, the debugger shouwsdsgime upper bound on the
execution time of the command. If this time is less than the issable to perceive, then
there is at least no performance reason to avoid using asibleedebugger. The purpose
of this section is to show that it is in principle possible thive this performance goal.
However, | don’t want to give benchmarks on epdb, becausedhieexecution time
depends so much on the hardware and epdb isn’t performaticeizgd yet.

Epdb distinguishes two modes, which are visible to the ubernormal and the
redo mode. So we have to look at the performance of the debuggach mode. In
normal mode, the debugger has a lot of overhead. Most impagtighe additional work
it needs to count the number of instructions, since epdbamphts this in pure Python.
This slows down the execution. Then, there is some overleesavie non-deterministic
effects and to make snapshots and to track the executionhpsttiry. A reversible
debugger is slower in this respect. However, the executiasiawed down by some
constant extra time per instruction.

I haven't added the time for the resource management hecaube this time is very application
dependent
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In the situation in redo mode, assuming the timeline has lexecuted until the
program has finished and every instruction is executed io neolde, the debugger only
has to restore a snapshot and run some instructions forwéwerefore, the activation
time of the new process takes some constant amount of tirhejitming forward an ar-
bitrary number of instructions in redo mode takes constarg too! This is because the
debugger makes a snapshot every time the execution time¢ecquasses one second.
The debugger never executes the last instruction whicheelscéhe one second limit in
redo mode, but instead activates the next snapshot. Thetexetime in redo mode
is always below one second plus the time needed to activatertapshot. Of course
there is some additional overhead to recover the exterata,siut in the special case of
a program, which doesn’t make use of external resourcegxbeution time of every
navigation command in redo mode is constant or in other w@(@3. The execution
time of a program in redo mode can be even faster than thegrogrecution of a pro-
gram without a debugger. The constant execution time in nedde assumes however,
that there is no overhead by having multiple snapshots,wisicinfortunately not the
case. However, it is in principle possible to limit the numbkprocesses by saving the
shapshots to disk and restoring them from there, but epdbrimteémplement snapshots
like that.

5.1 Instruction Counting

Python does not count the instructions by default. To dq thimplemented instruc-
tion counting using the trace function. Every time an instian is executed, the trace
function is called, which increments the instruction caurlty one. Consequently, it
is possible to add instruction counting without changing $burce code of the Python
interpreter. However, it has significant influence on thecaken time. To estimate
the performance impact of instruction counting, | impleteeha program that does
nothing else than executing a Python script with instructounting with the above
described approach. Then, | ran the microbenchmark progndmench that comes
with the Python interpreter, with and without instructiosuating. The tests were run
on a AMD Athlon(tm) 7550 Dual-Core 64bit - Processor with 2.BZ5 The Python
interpreter used was 3.1.1+ on an Ubuntu Karmic Koala.

The tests inpybenchwere repeated multiple times. Figure 5.1 shows the relation
between the average execution time with instruction cognéind without instruction
counting. As you can see from the diagram, with instructionnting the tests run most
of the time about 15 times slower. For one extreme examplens even 110 times
slower.
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Figure 5.1: Average time used relation between with andawuitimstruction counting

5.2 Snapshot Performance

Unix and similar systems use a method calbegy-on-write[Bac86] for process cre-
ation, which reduces the memory the newly created process Mgherfork() creates a
new process using copy-on-write, the new process uses iihe seemory. This works
because the memory of the parent and the child processialinthe same. However,
if one of those processes writes to a memory page, this mepawg is then different
for the child and parent process. Therefore, the operagstes copies this page to
another place, so that each process has now its own memagy pag

Smith and Maquire[SJ88] did some experiments on how mucloeegs changes
during its whole lifetime and came to the conclusion thatdta® percent of the pages
kept the same. As most snapshots in epdb don’t span acrosstie lifetime of the
process, | expect that snapshots in epdb do a little bitbette



62 CHAPTER 5. PERFORMANCE

Copy-on-write process creation is really fast and typicédliges less than 1 ms.
Waiting for a process to finish takes a bit longer, but is Ugwne in less than 10 ms.

More interesting than the speed of the executiofod{() is the amount of processes
the system can handle simultaneously. It is well-known#fatrk bomb, like in Listing
5.1, will make a system completely unresponsive. | triecstovgate how many simulta-
neously processes the operating system could handle \eitrégram shown in Listing
5.2. This program measures how much time per created pradakss if the program
creates a bunch of processes. Figure 5.2 shows the reshissheéasurement. As one
can see, the number of processes the program creates hiéedtg the process creation
time of a process, at least at these numbers of simultaneeated child processes.

The program also measures how much extra time it takes tontptoeate the pro-
cesses, but also to wait for them afterwards. In order to doeach process keeps itself
long enough alive so that the parent process has time tcecaélgirocesses, before the
subprocesses finish. The child processes accomplish titisgvay usingtime.sleep(5)
to stop the process for 5 seconds. After the parent processrhated all child pro-
cesses, it then waits for all of them to finish and measureithe @ip to this point. As
each process waits 5 seconds, it therefore subtracts tloararof time to get the ad-
ditional time the process needs to create all processeamalt for their termination.
Figure 5.3 visualizes the result of this measurement. Tpem@xent was executed on
an AMD Athlon(tm) 7550 Dual-Core Processor with 2.5 GHz andBildRAM and an
Ubuntu Lucid Lynx Linux Distribution. As one can see from tiagram, the overhead
explodes at some number of processes. This is where the meaigtpically becomes
completely unresponsive and the only way to recover it, relbmot the computer. From
the diagram we, can extract an estimate of how many snapgtetiebugger can han-
dle. | tried to debug a program with epdb which made about Xpshots and was
still able to work and debug reasonably well on my computes.tife program makes
about one snapshot per sechnitlis possible to debug programs which require about
16 minutes of execution time. This is enough for many appboa, e.g., a program
which handles a page request of a web server should typicefyond in a second or
even less. However some longer running programs such s ggograms, may need a
much longer execution time. There is still some work reqlitcehandle bigger numbers
of snapshots. One approach would be to swap the processsk tamtl then afterwards
to terminate them, and then only reactivate the process wiyets activated. The op-
erating system does swapping, but it doesn’t kill the precesich means that it has to
continuously swap in and swap out, and this takes a lot of.time

lthis is at least the case if the debugger does not make srtagehwndle non-determinism
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Listing 5.1: forkbomb.py

import os

while True:
os.fork ()

Listing 5.2: maxfork.py

for maxnoprocin range(100,1000,100):
starttime = time.time ()

for i in range (maxnoproc):
id = os.fork()
if id == 0:
time.sleep (5)
break
else:

finishtime = time.time ()
createtime = (finishtime-starttime )/ maxnoproc)
for i in range(maxnoproc):
0s . wait ()
waitfinishtime = time.time ()
overhead = (waitfinishtimestarttime—-5)/maxnoproc

print ("Create time:", createtime)
print ("Overhead:", overhead)
continue

break

5.3 Epdb Performance

The performance of epdb is dependant on many factors. | cadgxecution time and
memory usage, when the program is run inside the debuggewhed it is executed
without the debugger. | chose two benchmarksrkuch.pyandnbody.py- from the
computer language benchmark game[CLB11]. The benchmedkpycalculates the
greatest common divisor for two very large integers usingliaan algorithm. These
three tests should measure typical programs.

The benchmarkall_snap.pyllustrates the case, when a program repeatedly calls a
non-deterministic function. The program calls a patchextfion in a for-loop for 500
times, which instructs the debugger to make a snapshotefidrer running the program
without a debugger has not much overhead. However, whennwiirwith epdb, the
debugger has to make a snapshot every time it encountengritigoi call.

The prograncreate_array.pycreates a very large list of integers. It is an example
where debugger execution almost performs as well as nate@iéon. To show, that it
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also performs well with snapshots, the program also makesjgstiot before and after
the creation of the list.

For all programs | measured execution time and memory usadj¢he number of
shapshots made when run under the debugger. For measueaogtiex time, | used
the time command to run the programs and took the real execution firhe.reason |
chose real time over user time is that it is better companalttethe measurement when
the debugger runs the program. Timae command doesn’t work in conjunction with
epdb, because epdb doesn’t terminate after it has execwdeginstruction. Therefore,

I implemented time measuring for epdb. In normal mode, epdiays measures the
time it needs to rumstep nextor continuecommands. Thus, | started the program with
epdb, issued theontinuecommand and then took the time epdb put out.

To measure the memory usage | uée# command, which shows the actual mem-
ory usage of the whole system. | measured the memory usageecbettarted the
program and before it ends and took the difference. To aehm@®asuring the memory
usage before the end of the program, | injected an additiopait() command which
halts the program until the user presses the return key.maikes it possible to measure
the memory usage again and then subtract the initial mensageufrom it to receive
the memory usage of the program. Measuring the memory ustigel@ugger works
similarly, although | didn’t need to inject anput() statement, because the debugger
doesn’t terminate the program when it finishes. Althoughgisee measures the mem-
ory used by the whole system, it allows to factor in that epsissumnultiple processes,
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Figure 5.3: fork() overhead

which share memory pages. The problem that the measuresnaugceptible by other
processes can be reduced by executing the tests multipgs.tim

Table 5.1 shows the averaged results of the measuremergse Whxecuted each
benchamrk five times. In the casefahkuch.pynbody.pygcd.pythe execution time us-
ing epdb is higher — approximately 1000 times. The additior@mory these programs
need is about 10-20 times higher. The progreatl_snap.pydoesn’t take particularly
long to execute, i.e., it is about 300 times slower, whiclows tompared to the other
measurements. However, the debugger makes a snapshotyritevation of the loop.
Therefore, epdb has to make a snapshot in every iteratiahthars it needs lots of
additional memory, i.e., it is about 300 times higher. Ondb®er hand, the program
create_array.pydoesn’t have a lot of overhead at all, when running under #img-
ger. Itis only 1.05 times slower and needs 1.02 times more angnThe reason for
the good results for execution time is, that there are only f@v atomic instructions
for the debugger, which cause overhead. These instrudtiaves long execution time,
which increases the execution time for the execution witleodebugger as well. The
memory usage of the program is very high even without usingtaigger and thus the
memory usage of the debugger itself doesn’'t contribute niadhe overall memory
usage compared to the memory usage without a debugger. eelist doesn’'t need
more memory when running under epdb, because epdb make&thgecopy-on-write
mechanism ofork(). Therefore, it doesn’t need extra memory to save the arrayin
other snapshot.
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Table 5.1: Benchmarks for epdb

benchmark|| parameter| execution execution number of | memory| memory

time (s) time with snapshots | usage | usage with
debugger (s) made debugger

fankuch.py 6 0.034 37.7 13 3MB 44MB
nbody.py 500 0.051 3664 65 3MB 106MB
gcd.py - 0.115 495 10 3MB 37MB
call_snap.py - 0.029 8.6 501 3MB 1010MB
create_array.py - 0.93 0.98 3 | 766MB 785MB

Although epdb is considerable slower than running withoatedugger, there is
quite a lot of room for improvement. Especially rewritingetdebugger in C should
make it much faster, because there would be no more additRython instructions
every time the debugger encounters an atomic instructigpeé&ally instructions like
incrementing the instruction counter are very slow in Pgthoecause Python uses its
own implementation for integers, which allows integers &b grbitrarily large. How-
ever, this reduces the execution time for integer operatibhink the memory usage
of epdb is reasonable. Most of the overhead comes from thiéadd processes epdb
uses, which doesn’t increase much, when the program rugeton
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People, who have developed reversible debuggers have amaglthat nobody uses
their decent debugging tools, e.g., Lewis writes on the hpage [Lew07] of odb:

The ODB is as close to a silver bullet as you can get. Why domwpfeeuse
it?

| don't getit. :-(

Lieberman, a developer of ZStep, has written some text[lJia@®out people not using
good debugging tools.

| don’t want to join their complaints. Instead, | want to geeamples of how a user
might want to use epdb. In this section, | want to risk lookimthe future, which means
that | will write about features and additional tools whiak aot available yet.

6.1 Web Applications

Web application development is an important branch of smféwengineering. There
are many tools and frameworks available for Python to easel¢évelopment of web
applications, e.g., Django, Pylons, Turbogears. Typic#iiese web frameworks pro-
vide their own debugging mode, where they show some debgggformation when
the program fails, but usually don't allow to control the gram execution.

| think using epdb to debug web applications can work very.\wgeb applications
have usually a short running time, because the user expegebgage to load fast.
Therefore the limited amount of snapshots of epdb doesait albig role. They also
use a limited amount of resources; often a database andri@eélseaonly resources they
use. Some databases like Oracle or CouchDB already suppatsacg old versions
of the data records. If the database doesn't allow this, haybe possible to write
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an object relational mapper which accomplishes this. Qbjgational mappers are
very common in web applications too. File access could bdemented by using a
special file system, or the framework could add some impléatiem for file access to
accomplish reversible debuggable file access. Running tgggm with its resources in
epdb should work without any bigger problems. What remaiftgsléhe interaction with
the user, preferably with a graphical user interface. Heeeftamework could present
the user the interface via the browser and the use of AJAX. VWWhemser requests a
page, the web server would start the Python program undeigdétg control. If it runs
successfully, the web server sends the webpage to the bromwsmder it. Otherwise, it
sends a webpage to the browser, which contains a graphieainisrface to debug the
program. This user interface would of course also allow g&r to debug the program
in reverse and it would be possible to run the program eitké&rchinistically or non-
deterministically by making use of timelines. Of coursehulgging a web application
using this approach should only be enabled in debug mode.

Another problem which debuggers of web applications fatkeasweb applications
typically use some sort of template language. Often theaebisg in a template instead
of the code itself. Theender()method of the template typically raises an exception, but
this doesn’t give the programmer much insight into what werdng in the program.
Thus it should be possible to inject a debugger inside thagigdr, which works for the
template language. Using the patching mechanism of eptbshiould be possible to
implement.

6.2 Smart Phone Development

There are lots of small applications, which are often cadlegls, for smart phones. Most
of these apps are written higher level programming framkwbevelopers usually test
their software on a virtual machine, before deploying itte phone. The host machine
is usually much more powerful in terms of disk space, main orgrand CPU speed.
Therefore, it is reasonably to use a virtual machine, whimbsdsome additional work
and allows reversible debugging of applications.

The developer of most apps usually use a higher programmamgefvork, which
also allows a limited amount of API calls to access resourcégrefore it seems fea-
sible to develop reversible debuggable versions of thelée foa the execution on the
virtual machine. On the virtual machine are already onlyusated devices, and this
makes developing reversible debuggable resources evir. gdaving a good debug-
ging framework for smart phone development may attract nuieawelopers, which de-
velop lots of applications. A smart phone operating systeath lots of application is
more likely to be a business success.
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6.3 Visualization of Algorithms

| believe using a debugger is a great way to get a better utaghelisg of how a pro-
gram works and a reversible debugger makes this processmwenenjoyable. Often
speakers want to present some algorithm and illustrate hasrks. It would be nice
to visualize the data as the user steps through the progr&tegZocuses on visual-
ization, but epdb can visualize data too. Using its mecimamispatch instructions, it is
possible to visualize an algorithm without changing itsesod

6.4 Design and Architecture

In my opinion a well-designed program is one which is easy$b &nd easy to debug.
Even if one doesn’t want to use a debugger, e.g., becauserefeegto use test driven
development, the basic understanding of the debuggingtectire of epdb helps the
programmer to design better programs. This is because eppbasizes the reproduc-
tion of certain states. This is important in design becaubagg which is not repro-

ducible, is very difficult to fix. Therefore, the first step inifig a bug is to reproduce
it. The remaining part is straight forward at least for anexignced programmer who
knows the code.

1see Section 7.1
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Related Work

Although reversible debugging has certainly various bé&sefome authors have argued
against it. For example, Rosenberg [Ros96] argued againstsible debugging by
calling reverse execution a much-requested but dubiousrieaHe also believes that
this feature is so much work and still fraught with so mucloethat it is not worth
the engineering investment. He also gives some basic #igoto implement reverse
execution. However, he does not mention copy-on-writenogttions

There is still a controversy between logging-based delnsggyed replay-based de-
buggers. Lienhard[LGNO8] argues that the disadvantagepfy-based debuggers is
that moving backwards in time can be very slow. However, lt@nfirm this, because
by using continuous snapshotting every second, the debeggebound the amount of
time it needs to run backwards.

Feldman and Brown[FB88] give an alternative implementatibrefbcient snap-
shots without usindork(). Mellor-Crummey and LeBlanc[MCL89] discuss a software
instruction counter, which usually does not have more tlt# dverhead.

Pan and Linton[PL88] describe how to ukek() to create new checkpoints (i.e.
shapshots). They also describe the use of an event log, wiedatebugger uses during
replay when accessing the shared memory or when it replaysmycalls.

Kessler[Kes90] gives an approach to implement fast braakpasing self-modi-
fying code. Netzer and Weaver[NW94] show an efficient adeptiacing strategy for
logging-based debuggers. Demetrescu and Finocchi[DFéRYribe the Leonardo vir-
tual machine which allows directing and checkpointing, athis useful for reversible
debugging. Nitin[KNMO06] shows how the virtual machine Xesutd be used to imple-
ment kernel debugging.
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Figure 7.1: Omniscient Debugger (odb)

7.1 Other Reversible Debuggers

Others already have developed reversible debuggers. Howtey work differently
than epdb and target different programming languages.

Odb

The Omniscient Debugger[Lew03] [LDO03] is a logging-debegtpr Java, which uses
byte-code instrumentation of the classes when they aretbatb debug a program in
odb one should first execute the program under the debugguigpement until it ends
or crashes. During execution, odb creates a log file of elrytthat happens in the
program. Everything here refers to time stamps, local s the state of all objects,
and the tty output for every thread at any position in the paog After the program
ends, the debuggers graphical user interface shows up (geeF.1). It allows the
programmer to examine the state of the program at any positithe program at any
time, and it also allows one to query program states. Thesudar't have to examine
the log files after they have executed them, as they can alsdisam and examine them
later, or send them to the programmers to help them fix therebddoug.

Odb is different from epdb, in that it is a logging debuggerith/¢pdb, you don't
have to execute the program until it ends. Epdb allows thgraramer to run the
program up to any point, then to go some steps back and theo somge steps for-
ward again, either in deterministic or non-determiniséistfion. Epdb also introduces
resource management, which odb lacks.
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Gdb

Gdb uses a technique to implement reversible debuggingzhwits developer name
process record & replay. As gdb is a native debugger, it has a parent process, the
debugger, and a child process which executes the prograngeisddirected by the
parent process. With process record & replay, the paremegmlogs the execution of
each machine instruction in the child process, togethdr @ach change in memory and
registers. With this execution log, the debugger can exetti# program in reverse by
successively undoing each change of each logged instnuctio go forward again, it
also uses the execution log to replay the state and so it thesideterministic forward
execution.

As odb, gdb has no resource management yet. However, it is similar to epdb,
in that it is an interactive debugger. A problem with gdb’pegach is that running
backwards a huge amount of instructions takes a very long, timcause each machine
instruction has to be undone. With epdb’s, approach thegtgnactivates a snapshot
which is near to the target location in the program and steois there, which can save
replaying time. In gdb, there is also no concept which digtishes between determin-
istic and non-deterministic instruction execution.

ZStep

ZStep is an interactive reversible debugger visualizatoawi for Lisp, which allows
reverse execution of code. In contrast to epdb, ZStep ddesark on source line level,
but on expression level, which allows the user to step ovaitlenpieces of code. ZStep
is also a visualization tool, which allows graphical rer@ation of the data structures
or program execution, while the user steps through the progHowever, ZStep has
no concept of non-deterministic functions and does not laavanswer to side effects.
The visualization of code is something epdb supports incipla too by allowing the
user to patch instructions.

EXDAMS

The oldest reversible debugger | know of is the EXtendableugging and Monitoring
System, or EXDAMS[Bal69] for short. It was a debugger for tineiant Multics op-
erating system. In fact, the authors didn’t call it a revaesidebugger, but debug-time
history playback. EXDAMS is a logging debugger. The debnggystem augmented
the source code with additional logging statements anevaticone to view the state of
the program at any position in the program.
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IGOR

Igor [FB88] is a prototype reversible debugger for the DUNE&itbuted operating. It
uses a snapshot & replay approach. The authors refer to #psisots as checkpoints.
To implement checkpoints they make a special systenpegiémodwhich returns the
pages that where written since the last call. With this systell the debugger can save
only those pages, which have changed since the last chetkjpgor also has same very
basic form of resource management, i.e., it hgsestartroutine which the debugger
before executing of the program. This routine sets the sfaieer supplied files before
executing the program. Although there are similaritiehwepdb resource management,
IGOR does not track the different states of the files whilecakag. It also does not
support timelines or a similar concept.

Bdb

Bdb [Boo00] is a prototype reversible debugger for C/C++ runmindpigital/Compaq
Alpha based Unix workstations. Bdb uses a snapshot & replasoaph similar to epdb.
Like epdb, it uses the system cadlk() to create snasphots. Bdb uses a technique called
exponential checkpoint thinning to reduce the number otkpeints. With this tech-
nique the debugger only keeps snapshots at exponentialaideand thus the number

of snapshots grows only logarithmically. While the progrataation progresses, the
debugger thins out the number of snapshots. Although itaeslthe number of snap-
shots, it has the disadvantage that re-execution takesidogcode at the beginning of
the program. In contrast to epdb, Bdb does not allow multipkelines and it does not
manage the external state.
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Further Work

In this section, | want to present interesting work which nadgo be useful for a re-
versible debugger like epdb. | also want to give a short surprofiother reversible
debuggers and their differences to epdb, as well as to ginee sdeas for additional
research which would help reversible debugging.

8.1 Smart Snapshot Making

Usually the user is only interested in a small part of the paogand therefore some
shapshots are never activated. Such snapshots would bé&uhasithey consume sys-
tem resources without any need. Therefore a smart debuggéd use a strategy to
avoid making such snapshots in advance, but rather only wieenser initiates a re-
verse execution command. In this case, the debugger coutd manapshot of the
process and insert it into the timeline. When the user doesaase execution com-
mand again, the reverse execution would be much faster se¢ha debugger could
use a more recent snapshot. A sophisticated strategy to smalshots would rely on
information about how users use a reversible debugger. efdrer, one could log the
behavior of the users when they debug a program and then fimajpsisot making strat-
egy which would reduce the average time the user would neea@ito This approach
would be even more powerful if it is combined with persistemapshots, i.e., snapshots
which store the memory to disk. Therefore these snapshofs e a process which
reduces the system performance, but on the other hand thggketwould need more
time to create and to activate them than it needs to creatacivate snapshots, which
were created by usingrk().
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8.2 Reversible Debuggable Libraries and Other Tools

The resource management approach of epdb works well if &3y & save and restore
the current state of the resource. Some databases alréaaytlak, but other resources
such as files, network communication libraries, and graphiols usually don’t support

state saving. Therefore, it would be interesting if it isghi@al to implement this state

saving feature into these tools and libraries. As most caerptiioday usually have huge
amounts of free disk space, it seems that marking data agedetestead of actually

deleting the data shouldn’'t decrease the overall perfoce@aoo much. | guess the
performance should be at least good enough for the debugumaig.

8.3 Native Instruction Counting and Bookkeeping

Epdb uses the trace function to implement instruction dagrdnd to do some book-
keeping. This has the advantage that the whole debuggeiitterwin Python, but on
the other hand, it has less performance as a result. Thic#@ube the interpreter calls
a Python function for each line of code. Pdb can use a lot ahopations, because
it doesn’t rely on instruction counting. Therefore pdb catydrace functions, which
have a breakpoint in their code. However it should be posgsiblput the instruction
counting and bookkeeping code into the interpreter it€atinsequently, this part of the
code would have to be written in C. Using this optimization,duld expect that epdb
would be much faster in its execution, especially in normatm
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Conclusion

In this thesis, | have shown that it is possible to developrderactive reversible de-
bugger using the snapshot & replay approach with reasopailermance. | have also
shown that it is possible to get around the problems of ndargenistic instructions
and instructions with side effects, by using instructiotchang, timelines and resource
management. During this thesis, | have not only developeéd dput also documented
the design for a sophisticated reversible interactive sinaip& replay debugger, which
others may use to implement reversible debuggers for thearite programming lan-
guage.

Reversible debugging, although a very old idea, is not vedelyiused yet. Never-
theless, | hope that | have made reversible debugging éasiederstand with the con-
cepts | have developed in this thesis, i.e., that a functéomatfect the program environ-
ment, or the execution of a function can be affected by the@mment, as well. There-
fore, any programming instruction can have side effectsaarle non-deterministic. A
function with side-effects changes the environment of ttogam, while the execution
of a non-deterministic function depends on it. When the usgays a non-deterministic
function, he can have either one of two different expectatidie could expect to have
the same result of the execution as in the first run (detestigrexecution), or he could
expect to run the function with the new environment (noredeatnistic execution).

The implementation of epdb shows that this view of reveesitdbugging is actually
useful. Epdb introduces timelines and therefore allowsnlynigous reversible debug-
ging, because it is now up to the user to decide which typeedf@ion, deterministic or
non-deterministic, he wants to use. Epdb also introduce=nastateful resource man-
agement concept. With resource management, the user gaatiriee environment of
the program which, because of resource management, alwagsponds to the actual
position inside the program. The implementation of two uese managers for epdb,
one forstdoutand one for file access, shows that the resource managemesgpto
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is actually applicable for complex resources and it is gigsiseful for many other
resources as well.



[ALS10]

[Bac86]

[Bal69]

[Beal9]

[Boo00]

[Boo03]

[CFCO1]

[Chi96]

[CJO3]

[CLB11]

Bibliography

J. Chris Anderson, Jan Lehnardt, and Noah Sl&teuchDB: The Definitive
Guide: Time to Relax (Animal Guidep’Reilly Media, 1 edition, 1 2010.

Maurice J. Bachl'he Design of the UNIX Operating Systdpnentice-Hall,
1986.

R. M. Balzer. Exdams: extendable debugging and mdngaystem. In
AFIPS '69 (Spring): Proceedings of the May 14-16, 1969, rgpijoint
computer conferengpages 567-580, New York, NY, USA, 1969. ACM.

David M. Beazley.Python Essential Referenc&ddison-Wesley, fourth
edition, 2009.

Bob Boothe. Efficient algorithms for bidirectional dejging. InPLDI,
pages 299-310, 2000.

Duncan Booth. Patterns in Python.
http://ww. suttoncourtenay. org. uk/ duncan/ accu/
pyt honpat t er ns. ht m , March 2003.

Shyh-Kwei Chen, W. Kent Fuchs, and Jen-Yao Chung. Rélerde-
bugging using program instrumentationlEEE Trans. Software Eng.
27(8):715-727, 2001.

Ram Chillarege. What is software failul&EE Trans. Reliability45:354—
355, Sep 1996.

Ron Crocker and Guy L. Steele Jr., edito@ompanion of the 18th An-
nual ACM SIGPLAN Conference on Object-Oriented Programm8yg-
tems, Languages, and Applications, OOPSLA 2003, Octob&028003,
Anaheim, CA, USAACM, 2003.

The Computer Language Benchmark Game.
http://shoot out. al i ot h. debi an. or g/, January 2011.

79



80

[DFO4]

[Eis97]

[FBSS]

[GHIV94]

[HS02]

[Kes90]

[KNMO6]

[KTDO5]

[Lap92]

[Lay09]

[LBOS]

[LDO3]

[LewO03]

BIBLIOGRAPHY

Camil Demetrescu and Irene Finocchi. A portable artmachine for
program debugging and directing. In Hisham Haddad, Andreac(i,
Roger L. Wainwright, and Lorie M. Liebrock, editorSAC pages 1524—
1530. ACM, 2004.

Marc Eisenstadt. My hairiest bug war stori€@mmun. ACV40(4):30-37,
1997.

Stuart I. Feldman and Channing B. Brown. Igor: A systenpfagram de-
bugging via reversible execution. Workshop on Parallel and Distributed
Debugging pages 112-123, 1988.

Erich Gamma, Richard Helm, Ralph Johnson, and Johxligsides. De-
sign Patterns: Elements of Reusable Object-Oriented Sodtwaddison-
Wesley Professional, 1 edition, 1994.

Brent Hailpern and Padmanabhan Santhanam. Softwateding, testing,
and verification.IBM Systems Journa#t1(1):4-12, 2002.

Peter B. Kessler. Fast breakpoints: Design and im@ieation. InPLDI,
pages 78-84, 1990.

Nitin A. Kamble, Jun Nakajima, and Asit K. Mallick. #lution in kernel
debugging using hardware virtualization with X@906 Linux Symposium,
Volume Twp2006.

Toshihiko Koju, Shingo Takada, and Norihisa Doi. Afficient and generic
reversible debugger using the virtual machine based apprda Michael
Hind and Jan Vitek, editor§/EE, pages 79-88. ACM, 2005.

J. C. Laprie.Dependability : basic concepts and terminology in English,
French, German, Italian and Japanesepringer, 1992.

Jeffrey B. Layton. NILFS: A file system to make SSDsesun. Linux
Magazing 6 2009.

Sheng Liang and Gilad Bracha. Dynamic class loadindghenava Virtual
Machine. INOOPSLA pages 36—44, 1998.

Bil Lewis and Mireille Ducassé. Using events to debwyal programs
backwards in time. In Crocker and Jr. [CJ03], pages 96-97.

Bil Lewis. Debugging backwards in time. In Michiel Rese and Koen De
Bosschere, editor&d/ADEBUG 2003.



BIBLIOGRAPHY 81

[Lew07]

[LGNOS]

[Lie97]

[LMS05]

[MAA *10]

[MCL89]

[NWO4]

[PL88]

[Ros96]

[Sei0g]

[SJ88]

[Sos95]

[Tas03]

Bil Lewis. Omniscient debugging.ht t p: / / ww. | anbdacs. com
debugger/, Feb 2007.

Adrian Lienhard, Tudor Girba, and Oscar NierstrasRractical object-
oriented back-in-time debugging. In Jan Vitek, editeCOOR volume
5142 of Lecture Notes in Computer Sciengeages 592-615. Springer,
2008.

Henry Lieberman. The debugging scandal and whattalabut it (intro-
duction to the special sectionf,ommun. ACM40(4):26-29, 1997.

P. Leach, M. Mealling, and R. Salz. A Universally Uaog IDentifier
(UUID) URN Namespace. RFC 4122 (Proposed Standard), July.2005

Sheila Moore, D. Adams, L. Ashdown, M. Cowan, J. MelnickMRiran,
E. Paapanen, J. Russell, R. Strohm, and R. Ward. Oracle ® datatas
vanced application developer’s guide 11g release 2 (1202)).

John M. Mellor-Crummey and Thomas J. LeBlanc. A softevarstruction
counter. INASPLOSpages 78-86, 1989.

Robert H. B. Netzer and Mark H. Weaver. Optimal tracing arcremental
reexecution for debugging long-running programs.PLDI, pages 313—
325, 1994.

Douglas Z. Pan and Mark A. Linton. Supporting reveggecution of par-
allel programs. InWorkshop on Parallel and Distributed Debuggjmages
124-129, 1988.

Jonathan B. Rosenberglow Debuggers Work: Algorithms, Data Struc-
tures, and ArchitectureWiley, 1 edition, 9 1996.

Justin SeitzGray Hat Python: Python Programming for Hackers and Re-
verse EngineersNo Starch Press, San Francisco, CA, USA, 2009.

Jonathan M. Smith and Gerald Q. Maguire Jr. Effectsogly-on-write
memory management on the response time of UNIX fork operstdom-
puting Systemd (3):255-278, 1988.

Rok Sosic. The Dynascope directing server: Designraplementation.
Computing System8(2):107-134, 1995.

Gregory Tassey, editdrhe Economic Impacts of Inadequate Infrastructure
for Software Testing: Final ReporDiane Pub Co, 9 2003.



82 BIBLIOGRAPHY

[Zel09] Andreas ZellenWWhy Programs Fail, Second Edition: A Guide to Systematic
Debugging Morgan Kaufmann, second edition, 6 2009.

[Zia08] Tarek Ziade Expert Python Programmind?ackt Publishing, 2008.



