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Abstract

Considering information extraction with respect to real data samples, clas-
sical statistical estimation generally suffers from the difference between the
assumptions such methods are based on, and the circumstances observed
in reality. Due to unexpected behaviour and irregularities of the monitored
process itself, or problems during data acquisition, basic prerequisites as e.g.
normality are not likely to be observed in real scenarios. In general, robust
methods address this issue and help to identify and assess such irregulari-
ties, and thus allow proper estimation even on heavily contaminated data.
The downside of robustness is loss of statistical efficiency, which is reduced
by developing adjustable methods, which can be individually tuned. Thus,
depending on the actual occurrence of irregularities a compromise between
robustness and statistical efficiency is achieved.
For the primary assessment of observed data, an estimation of the basic
structure gives a first idea of what information stands behind those numbers.
The robust methods for clustering and dimension reduction discussed and
developed in this thesis provide a flexible and expansive framework for this
purpose. They allow to parameterise the structure of a wide range of possible
data configurations, whereas its robustness properties reduce the influence
of abnormalities.
In particular, a sparse variant of an already existing approach for robust prin-
cipal component analysis is developed, which combines elements of projection-
pursuit and LASSO regression. So far no method is available which com-
bines robustness and sparseness properties for principal component analysis,
thus its publication is expected to be received positively by the statistical
community. Further, a maximum likelihood method for trimmed cluster-
ing is developed, whereas various methodical and algorithmic improvements
of existing solutions are implemented. The resulting method combines the
characteristics of already existing methods and expands these approaches to
one general solution.
The theoretical presentation and development of the methods in this work is
accompanied by a discussion of algorithmic aspects and an implementation
in the programming environment R. The core implementation, however, is
not restricted to R and can be exported to other environments, which makes
the methods easily available for a wide range of users beyond the R commu-
nity.



Kurzfassung

Betrachtet man den Prozess der Informationsextrahierung aus Echtdaten im
Kontext der klassischen Statistik, so stößt man schnell an deren Grenzen,
da die Annahmen klassischer Methoden oft mit den realen Gegebenheiten
im Widerspruch stehen.
Unregelmäßigkeiten innerhalb eines beobachteten Prozesses, sowie Probleme
während der Datenerfassung und deren Weiterverarbeitung, resultieren oft
in unerwarteten Ergebnissen und darin, dass Echtdaten selten einfachen
Voraussetzungen, wie beispielsweise Normalität genügen.
An diesem Punkt setzen robuste Methoden an, die in der Lage sind Verun-
reinigungen der Daten zu erkennen und zu beseitigen, um auch auf Basis
von stark kontaminierter Daten gültige Schätzungen zu liefern. Der Nachteil
dieser angestrebten Robustheit gegenüber Ausreißern ist jedoch die gerin-
gere statistische Effizienz entsprechender Schätzverfahren. Dieser Verlust
wird reduziert, indem Methoden herangezogen werden, deren Robustheit
individuell an die jeweilige Verunreinigung anpassbar ist, womit ein Kom-
promiss zwischen Robustheit und statistischer Effizienz gefunden wird.
Untersucht man einen bestimmten Datensatz, so gibt die Schätzung grundle-
gender mathematischer Strukturen in den Daten einen ersten Eindruck über
die Information die hinter den ermittelten Zahlen steht. Die robusten Meth-
oden der Clusteranalyse und Dimensionsreduzierung, die in dieser Arbeit
entwickelt und diskutiert werden, bilden ein flexibles und weitreichendes
Gerüst für diesen Zweck. Diese Methoden ermöglichen es viele verschiedenar-
tige Strukturen zu verstehen und parametrisch abzubilden, wobei der Ein-
fluss von Ausreißern reduziert wird.
Im Einzelnen wird eine Variante eines bereits existierenden Ansatzes für ro-
buste Hauptkomponentenanalyse entwickelt, die jedoch sogenannte ”sparse”,
also dünn besetzte Ladungsmatrizen liefert. Dieser Ansatz kombiniert Ele-
mente von Projection Pursuit basierten Algorithmen, sowie der LASSO Re-
gression. Die vorgestellte Methode ist die erste, die robuste Eigenschaften
mit dünn besetzten Ladungsmatrizen im Zusammenhang mit Hauptkompo-
nenten kombiniert. Weiters wird eine

”
Maximum-Likelihood” Methode für

getrimmtes Clustering entwickelt, wobei mehrere algorithmische Verbesserun-
gen von existierenden Methoden implementiert werden. Die resultierende
Methode verfügt über Eigenschaften mehrerer existierender Ansätze und er-
weitert diese zu einer einzelnen generellen Lösung.
Die theoretische Diskussion der angesprochenen Methoden in dieser Arbeit
wird von einer Reihe algorithmischer Details und einer Implementierung
für die Programmierumgebung R begleitet. Die Kernimplementierung der
Algorithmen wurde jedoch unabhängig von R gestaltet, und kann deshalb
auch in anderen Umgebungen wie beispielsweise Matlab genutzt werden.
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Chapter 1

Introduction

1.1 General Ideas of Robust Estimation

All statistical methods are based on certain assumptions on the data they
are supposed to be applied on. These assumptions improve the efficiency
of the methods and in many cases lead to nice mathematical properties of
a considered solution. Next to assumptions as normality or independency,
classical methods often assume that all observations belong to the same
distribution. Such classical methods are very elegant from a theoretical
point of view, and can usually be calculated with little computational effort.
Thus they were quite popular when computational power was still dear and
scarce. However, in practical applications such assumptions cannot always
be fulfilled, leading to inappropriate results which do not correctly reflect
the actual information contained in the data.
A class of algorithms which addresses some of the shortcomings of classical
methods in practical applications is formed by robust methods, which do
not assume homogeneously distributed data. Methods of this class show
a certain resistance to irregular or outlying observations, and only refer to
the bulk of the data for any kind of estimation. In practice, many reasons
may cause irregularities in a data set, as for example heterogeneous data
generating processes or errors and problems in the chain where the obtained
data is measured or processed.
The resistance to irregular or outlying observations of a method is quanti-
fied by its breakdown point (see Donoho and Huber, 1983), usually ranging
from 0% (e.g. mean) up to 50% (e.g. median), which means that asymp-
totically half of the data can be contaminated arbitrarily without obtaining
completely arbitrary results. As any estimation in this context is supposed
to refer to the majority of the data, breakdown points beyond 50% are not
considered.
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1.2 General Aspects of Robust Methods

Throughout the last century until now, the theoretical properties of robust
methods have been investigated extensively (see the “Methods”-sections in
the following), but only during the last decades the computational power
has been available for practically applying these methods to a large extent.
However, apart from the obvious advantage of robustness these methods also
yield drawbacks, as in general they are statistically not as efficient as their
classical counterparts. This results from the fact, that many robust meth-
ods implicitly or explicitly downweight the influence of apparently irregular
observations, which results in a loss of information. Thus, when applying
a robust method onto a non-contaminated data set, the result’s variance is
expected to be larger than when applying a corresponding classical method.
For reducing the effect of this clear drawback, many robust methods pro-
vide tuning parameters as e.g. a trimming level, which enables the user to
adjust the method’s breakdown point. Thus, theoretically a solution can
be obtained which also depends on the actual contamination level in the
data. However, in general such methods need some human supervision, as
these tuning parameters have to be found in an interactive process. In some
contexts such parameters may be chosen automatically, but it shows, that
usually human supervision is inevitable (see 5.7) when several closely related
tuning parameters have to be chosen.
A further disadvantage of robust methods is that from a computational
point of view they are significantly more complex than according classical
methods. Many robust methods internally are based on sort algorithms
(e.g. Qn, see Rousseeuw and Croux, 1993), and thus do not scale linearly
anymore.
Further, there are only few robust estimators, which provide an explicit
definition to a solution as e.g. the median. Many robust estimators can only
be computed numerically, that is, by optimizing a certain objective function.
This is still straightforward, if such an objective function is convex (as for e.g.
the L1-median, see Weber, 1909; Weiszfeld, 1937), but gets computationally
more intense, if this cannot be assured anymore (e.g. tclust, see Garćıa-
Escudero et al., 2008). In such a case several randomly initialized runs of
an algorithm are computed, each converging at a local optimum, and the
result yielding the best objective function’s value is chosen in the following,
assuming that the global optimum was found. Anyway, for this class of
robust methods it is impossible to evaluate whether a solution’s quality can
still be increased, other than by trying even more random initializations
of the algorithm. Thus, at some point an approximate result has to be
considered as sufficient, knowing that better solutions to the given problem
likely exist.

2



1.3 Outlier Identification

A basic approach for obtaining a robust estimation without referring to a
particular robust method, is the identification of irregular observations, their
removal and the subsequent application of a classical method to the remain-
ing data set. Thus an instrument for the identification of such irregular
observations will be discussed. Another motivation for the identification of
outliers is to get a better understanding of a particular data set, as e.g. the
reason for irregular observations can be investigated and tracked back to its
origin.
A measurement usually used for quantifying the outlyingness of an observa-
tion x ∈ Rp is the Mahalanobis distance, defined as

MD (x) =

√
(x−m)>C−1 (x−m) (1.3.1)

with C as a covariance estimate, and m a center estimate. The square
of this distance is approximately χ2 distributed, with p degrees of freedom
and thus an observation with Mahalanobis distance larger than a threshold√
χ2
p;1−α, with 1− α the corresponding quantile (e.g. 0.95) is considered as

outlier (compare 3.3).
In the following, robust covariance and location estimates will be considered
in this identification process, as classical covariance and location estimates
are likely to be influenced such that outliers cannot be spotted appropriately
anymore and are thus masked or swamped (Maronna et al., 2006). After dis-
cussing the necessary robust location and covariance estimators an example
on outlier identification is given in Section 1.4.2. Further, an example of
outlier detection in high-dimensional data sets is discussed in Chapter 3.

1.3.1 Types of Outliers

A basic categorization for outliers is given in Figure 1.1 (a), where the dif-
ference between multivariate and univariate outliers is shown by means of
a normally distributed data set containing some contamination. Univariate
outliers (+) are easy to spot, as they can be identified by only considering
one single variable. In this example the outliers point out clearly when con-
sidering the data set projected onto the x-axis, whereas when considering
a projection onto the y-axis these outliers are among the regular observa-
tions (◦) and thus are indistinguishable from them. On the other hand, the
multivariate outliers (×) which obviously do not belong to the regular obser-
vations either cannot be identified that easily by only considering one single
variable. For getting hold of this type of outliers the whole multivariate
structure has to be considered, and thus a robust location and covariance
estimate is needed in advance.
As there are numerous reasons for the existence of outliers, it is not straight-
forward to give a complete categorization here, but another type shall be

3
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Figure 1.1: Some different outlier types: Multivariate outliers (×) and uni-
variate outliers (+) in (a), and bridge points (×) in between two clusters
(◦, •) in (b).

mentioned in this context, which is mainly relevant in robust cluster analysis
(see Chapter 5). In this field of robust statistics, the idea of a homogeneous
data source is dropped completely, and the parameters of several distribu-
tions are estimated by considering the cluster structure which arises due
the present inhomogeneity in the considered data. In this context so called
bridge points (see Garćıa-Escudero et al., 2008) are outlying observations,
which can be located in the center of a data structure, as in Figure 1.1 (b)
between two clusters (◦, •), which makes them difficult to identify. This type
of outliers can influence cluster algorithms such, that two or more clusters
are joined artificially, and thus none of the involved clusters can be identified
appropriately.

1.4 Robust Location and Covariance Estimation

As many methods in robust statistics are based on an initial covariance
estimate, which is processed further (e.g. principal component analysis,
see Jolliffe, 1986), a robust covariance and location estimate is the key for
the robustification of several classical statistical methods. Further, classical
algorithms may be applied onto cleaned data sets, where according to Section
1.3 outlying observations have been identified and removed previously. As
for this purpose a robust covariance matrix and location estimate is needed
in advance, corresponding methods play a key role in robust statistics.
Although a simple approach to robust location estimation would be the
component wise application of the median, the robustification of the classi-

4



cal covariance estimator is not straightforward, as the previously discussed
masked and multivariate outliers are not easy to spot. Thus several ap-
proaches have been developed for this purpose:

1.4.1 Methods

Depending on the relevance in this work, several robust methods are pre-
sented and discussed more extensively throughout this introductory chapter.
A rough overview of related methods, can be found at the end of each“Meth-
ods” section, this however is not intended to be a complete listing of robust
methods.

- L1-median

The L1-median, or spatial median, is an outstanding multivariate robust
estimator of location, as some of its properties have already been investigated
a long time ago (see Weber, 1909; Weiszfeld, 1937). As an alternative to the
component-wise median this location and orthogonally equivariant estimator
yields a 50% breakdown point (see Lopuhaä and Rousseeuw, 1991). The
objective is to find a center which minimizes the sum of Euclidean distances
to all observations. In Chapter 2 the properties of different approaches for
the computation of this location estimator are investigated by comparing
their precision, runtime and behaviour, especially in high-dimensional and
difficult data constellations.

- fast MCD

This algorithm (see Rousseeuw and Van Driessen, 1999) is a computationally
efficient implementation of the Minimum Covariance Determinant (MCD)
method as introduced in Rousseeuw (1984) with attractive robustness prop-
erties.
The idea is to find a subset of h observations of a data set containing n
observations in p dimensions, with [(n + p + 1)/2] ≤ h ≤ n, such that
the corresponding empirical covariance matrix has minimum determinant
compared to all other possible subsets of same size.
The obvious drawback of the method, the large number of subsets which have
to be checked, is addressed in the fast MCD algorithm. For a given partition
of the data set the algorithm applies a so called concentration step (C-step)
which finds a further partition yielding a smaller covariance determinant.
These C-steps are repeated until no better partition can be found and thus
the algorithm has converged in a local optimum. The algorithm is applied
several times with different initial subsets which are chosen randomly, hoping
that one of the found local optima is globally the best possible solution. A
more detailed explanation of very similar algorithms and their relation to
fast MCD is given in Chapters 5 and 6.

5



A restriction of this method is that there is no possibility of applying it to
high-dimensional (p >> n) data sets. This is due to the condition, that at
least [(n+ p+ 1) /2] observations must be considered in each step, which
conflicts with p ≥ n. Moreover, the determinant of the empirical covariance
matrix of any subsample is always zero, making the optimization impossible.

- Further Approaches

The M-estimator (Maronna, 1976; Campbell, 1980) has been one of the first
approaches to robust covariance estimations, which however lacks robust
performance in high dimensional data sets. The Stahel-Donoho method
(Stahel, 1981; Donoho, 1982) examines the outlyingness of each observation
and in the following estimates a weighted covariance matrix. This algo-
rithm’s performance and the application of different weight functions were
investigated in Maronna and Yohai (1995). Further the S-estimator was
proposed in Davies (1987) and Rousseeuw and Leroy (1987), as well as the
minimum volume ellipsoid (MVE) method in Rousseeuw (1984, 1985), as
a predecessor of the MCD estimator. Finally, Maronna and Zamar (2002)
proposed the orthogonalized Gnanadesikan-Kettenring (OGK) method, as
an enhanced version of the pairwise Gnanadesikan-Kettenring covariance
estimator (Gnanadesikan and Kettenring, 1972).

1.4.2 Example

Figure 1.2 compares the application of classical covariance estimation to
the fast MCD estimator on a generated data set drawn from a bivariate
normal distribution with 10% contamination. In panel (a) the deviance
of the estimated covariance structure (solid) from the theoretical covariance
(dashed) is clearly visible, whereas in (b), the estimated covariance structure
appears almost unaffected by the added outliers.
The ellipses in Figures 1.2 (a) and (b) are closely related to the Mahalanobis
distance, as they enclose all points with MD2 < χ2

2;1−α, with α = 0.05.
Under normality a fraction α of data points is expected to be located outside
this boundary, which explains the appearance of few regular observations
outside of the theoretical ellipse.
For identifying the outliers as discussed in Section 1.3, Figure 1.2 (c) shows
the squared Mahalanobis distances calculated with classical covariance and
location estimates. The group of outliers points out, as the corresponding
Mahalanobis distances are apparently larger than those of the regular ob-
servations. However, the squared Mahalanobis distances of about half of
the outliers do not exceed the chosen threshold of χ2

p;0.95 and are thus not
distinguishable from the remaining observations. This is caused by an effect
called masking, as outliers strongly influence classical location and covari-
ance estimates, yielding improper Mahalanobis distances, such that irregular

6
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(a) Classical Estimation
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(b) Robust Estimation (fast MCD)
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(d) Robust Mahalanobis Distances
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Figure 1.2: Comparing classical covariance estimation (a) to the robust fast
MCD algorithm (b). Outliers (×) and regular observations (◦) are displayed
next to the estimated (solid) and theoretical (dashed) covariance structure.
The classical and robust squared Mahalanobis distances are shown in (c)
and (d) respectively, including the χ2

p;0.95 threshold (dashed).

observations appear as if they were regular.
In order to bypass this issue the fast MCD algorithm is applied and hence
robust (squared) Mahalanobis distances are calculated. This is shown in
Figure 1.2 (d), where the outlying observations can be clearly distinguished,
just by considering a threshold of χ2

p;0.95.
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1.5 Robust PCA

Principal component analysis (PCA) is a method for finding a number of
k ≤ p orthogonal directions in a data set, which maxmimize the variance of
the data projected onto them (see Jolliffe, 1986). These directions are called
principal components (PCs), which give an uncorrelated representation of
the original data structure. Thus they can be described by an orthogonal
projection matrix Γ, also called the loadings matrix, containing the direc-
tions and an additional vector λ which is proportional to the squared length
of each component. Each element λj of this vector corresponds to the vari-
ance of the data projected onto the jth principal component. Further a
diagonal matrix Λ is considered, which holds the values of λ in its diagonal.
As usually much less than p components already explain the majority of the
variance in a data set, a number of components k < p already represents an
approximation of the original data set’s structure. Thus PCA can be used
as a dimension reduction technique, which is especially useful when high-
dimensional data sets are analyzed, as an intuitive interpretation for such
data sets is hard to find. Further this method faciliates the interpretation of
a data set, as linear combinations of the most important variables and their
relations to each other are pointed out.
A classical mathematical approach to principal component analysis is quite
straightforward, as a covariance matrix Σ is decomposed such that

Σ = ΓΛΓ>, (1.5.1)

with Γ an orthogonal matrix, and Λ a diagonal matrix as described above.
This decomposition corresponds to an eigenvalue decomposition of Σ, with
matrix Γ holding the eigenvectors in its columns, and Λ holding the corre-
sponding eigenvalues in its diagonal. Further a scores matrix Z is consid-
ered, which represents an original centered data matrix X in the space of
the principal components:

Z = XΓ. (1.5.2)

For centering the data matrix a location estimate is needed, which in the clas-
sical sense would usually be the column-wise mean. However, if robustness
is an issue, the corresponding robust location estimator, the column-wise
median or L1-median (see Chapter 2) can be considered here.

1.5.1 Methods

- Naive approach

Due to the close relation of PCA to covariance estimation, the computation
of robust PCs seems obvious, as using a robust covariance estimate in Equa-
tion 1.5.1 yields robust PCs. However, as explained in the following, there
are more specific approaches for the direct computation of (robust) PCs,
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(a) Classical Projection Silhouette Plot
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(b) Robust Projection Silhouette Plot
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Figure 1.3: Classical (a) and robust (b) projection silhouette plots of a
normally distributed data set featuring a 20% outlier portion. Also the
estimated (solid) and theoretical (dashed) first PCs are included.

which avoid the prior estimation of a (robust) covariance matrix, which
comes in handy when high-dimensional data sets are considered.

- Grid algorithm

This algorithm, as introduced in Croux et al. (2007), is based on projection
pursuit: A direction is searched, which maximizes a variance estimate of
the data projected onto it, resulting in the first PC. Any subsequent PC is
computed by applying the same algorithm onto the data projected into the
orthogonal space of the already found PCs (see 4.3). By simply consider-
ing a robust variance estimator as the squared median absolute deviation
(MAD2) or the squared Qn estimator (see Rousseeuw and Croux, 1993), this
algorithm directly leads to robust PCs.
The issue of the enormous amount of potential candidate directions which
have to be considered in this setting is addressed by reducing the problem
to a series of simple optimizations in the two-dimensional space. There, a
fixed number of candidate directions aligned on a grid can be tested easily,
which finally reduces the search of the optimal direction to a series univariate
problems. The two-dimensional space which is examined within each iter-
ative step is spanned by a linear combination of variables which converges
towards the desired PC, and alternately by the single variables of the data
set. A detailed presentation of this algorithm is given in Chapter 4, where
a more flexible method based on this approach is developed.
Major advantages of this method are, that it is easily applicable to high
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dimensional data sets, and that the computation can be stopped after a
certain number of components has been computed. This plays an important
role when processing high-dimensional data sets, as there it is usual, that
only a small number of PCs already explain a major portion of the total
variance, and thus the computational effort can be reduced considerably.
Figure 1.3 illustrates the algorithm’s concept by means of a classical and a
robust projection silhouette plot of a two-dimensional data set. The used
data set has been drawn from a bivariate normal distribution, whereas a
contamination level of 20% is simulated.
The silhouette (solid) is aligned around a previously estimated center m.
The distance of each point xi on the silhouette to the center m represents
the square root of the variance of the considered data set projected onto the
direction throughm and xi. The Grid algorithm chooses the direction which
yields the largest distance smax of the silhouette to the center. In this two-
dimensional example the chosen direction (solid) is returned as first PC, and
its orthogonal direction as the second component. The dashed circle with
radius smax helps to visualize the maximum extent of the silhouette. Note
that this method works independently from the choice of center m, which
is only needed for the visualization of the silhouette.
In Figure 1.3 (a) the classical variance estimate is used and a strong differ-
ence between the chosen direction (solid) and the theoretical first principal
component of the uncontaminated data set (dashed) can be observed, which
is apparently caused by the outlier group located at the top of the figure.
However, considering the substantial contamination of the data set, the first
component is estimated quite precisely when using the MAD2 as variance
estimate in panel (b).

- Further Approaches

Hubert et al. (2005) propose the ROBPCA method which combines dimen-
sion reduction techniques with some aspects of the MCD estimator for ob-
taining a robust estimation of the PCs. Moreover, this work introduces
exploratory tools as for example particular diagnostic plots, which are used
in Chapter 4.
Croux and Ruiz-Gazen (1996) introduced the fundament of the Grid algo-
rithm, the so called CR-method, which is also a projection pursuit approach.
However, the candidate directions are not aligned on a grid, but directions
through a center and the different observations are considered. In the fol-
lowing the algorithm has been revised in Croux and Ruiz-Gazen (2005)
improving its numerical stability.
As already mentioned, at this point all algorithms for robust covariance
estimation may be used for obtaining a corresponding robust estimation of
the principal components.

10



−0.1 0.0 0.1 0.2

−
0.

1
0.

0
0.

1
0.

2
(a) Biplot − Classical PCs

Comp.1

C
om

p.
2

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−20 −10 0 10 20 30

−
20

−
10

0
10

20
30

X1X2

X3
X4
X5

X6

−0.10 0.00 0.05 0.10 0.15

−
0.

10
0.

00
0.

05
0.

10
0.

15
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Figure 1.4: A classical (a) and a robust (b) Biplot of a simulated data set
featuring a 20% contamination level. Regular observations (◦) and outliers
(×) are represented by different symbols.

1.5.2 Example

The difference of classical and robust PCA shall be illustrated using a gener-
ated six-dimensional normally distributed data set, featuring a 20% outlier
portion. The corresponding Biplots (see Gabriel, 1971; Gower and Hand,
1996) are given in Figure 1.4. The Biplot based on classical components
in panel (a) shows the clear influence of the contamination, as the arrows
which represent the loadings of the variable X1 through X6 onto the first
and second PC point straight to the added outliers. On the other hand, the
robust estimation results in panel (b) computed with the Grid algorithm
using MAD2 as variance estimate do rather refer to the structure of the
uncontaminated data, as no major influence of the outliers can be observed
in this situation.

1.6 Robust Sparse PCA

A quite recent approach for improving the interpretability of PCs is the so
called sparse principal component analysis. Additionally to the maximiza-
tion of the variance projected onto the PCs, another aspect gains impor-
tance: in order to facilitate the interpretation of PCs, the loadings matrix
is supposed to contain a certain amount of zero values.
Thus, in the best case a PC is a linear combination of a number of variables
significantly smaller than p. Especially when exploring high-dimensional
data sets this is advantageous, as additionally to the possible dimension
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reduction the number of values to interpret can be reduced even further.
As two completely contrary objectives – the maximization of the explained
variance in k < p components, and a high number of zeros in the loadings
matrix – are tried to be achieved, a certain trade-off has to be made at this
point. The relative importance of these aims is defined by introducing tuning
parameters to this method, for controlling the result’s level of sparseness.
For choosing such tuning parameters, methods have been developed recently
(Farcomeni, 2009; Leng and Wang, 2009; Guo et al., 2010). A BIC type
criterion for this purpose is discussed in Chapter 4.

1.6.1 Algorithms

- Sparse Grid algorithm

The Sparse Grid algorithm as discussed in Chapter 4 is very closely related
to the standard Grid algorithm and thus does not depend on any prior es-
timation of a loadings matrix. The Grid algorithm maximizes a variance
estimate of a given data set projected onto a single direction, whereas the
objective function of the sparse method additionally considers the sparse-
ness of the examined direction. According to the standard Grid algorithm,
robustness is introduced by considering a robust variance estimate in the
objective function (e.g. MAD2 or Q2

n).

- Further Approaches

Farcomeni (2009) considers sparse PCA as a combinatorial variable selection
problem which is solved by a conventional branch and bound algorithm.
Jolliffe et al. (2003) proposed the SCoTLASS method which reduces PCA
to a linear regression problem and then introduces sparseness by the LASSO
regression method (Tibshirani, 1996), which was originally developed for
variable selection in the context of regression models. Zou et al. (2006)
extend this approach by additionally considering the elastic net regression
method (Zou and Hastie, 2005), a generalization of LASSO. Guo et al. (2010)
propose a method for fused sparse loadings, which is especially capable of
capturing block structures in the loadings matrix.
However, in contrast to the sparse Grid algorithm none of these approaches
has been initially designed as robust method, and all of them depend on a
prior estimation of the (non sparse) principal components.

1.6.2 Example

Biplots of different sparse PCs are given in Figure 1.5. The PCs are com-
puted applying the sparse Grid algorithm using the MAD2 as variance esti-
mate, on the same generated data set as used in Section 1.5.2, consisting of
variables X1 to X6.
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Figure 1.5: Two biplots based on robust sparse PCs of a simulated data set
featuring a 20% contamination level, computed with the spare Grid algo-
rithm. Different choices of the algorithm’s tuning parameters yield a lower
level of sparseness in plot (a) than in plot (b). Regular observations (◦) and
outliers (×) are represented by different symbols.

In panel (a) a rather low level of sparseness has been chosen, resulting in 8
nonzero loadings in the first two PCs, whereas the plot in panel (b) refers to
very sparse PCs yielding only 3 nonzero loadings in the first two PCs. The
first component in panel (a) is apparently influenced by variables X1 and
X2, and also contains a small loading of variable X5, whereas in panel (b)
the first PC solely contains variables X1 and X2. The second PC in panel
(a) contains loadings of all variables but X4, but in the more sparse example
in panel (b) the second PC is equal to variable X6.
The costs for improving the principal components’ interpretability by de-
creasing the number of non-zero loadings is the loss of explained variance.
Thus the first two non-sparse PCs explain 70% of the total variance, the
explained variance of the PCs in panel (a) drops to 60%, and to 57% when
considering the even more sparse PCs in panel (b). However, if sparseness
and thus interpretability of the components have priority, the decrease of
13% of explained variance compared to the decrease of the number of non-
zero loadings from 12 to 3 is surely acceptable.

1.7 Robust Cluster Analysis

Cluster analysis is a set of statistical methods which detect similarities
among observations, and group them together to a limited number of homo-
geneous clusters with a possibly large extent of heterogeneity among them.
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Thus, these methods are not based on the assumption that the majority of
the observations is identically distributed. This is contrary to the methods
discussed so far, as they share the assumption, that a given data set con-
sists of one main structure followed by more than half of the observations,
whereas the influence of possible outliers which are differently distributed is
down-weighted.
Clustering methods are divided into two main categories:

� Partitional clustering methods divide a set of observations into a
fixed number of disjoint subsets (clusters). Usually assumptions on
the geometric extension of the clusters are made (i.e. assumptions on
the distributions and/or their parameters, see 5.3).

� Hierarchical clustering methods (Ward, 1963) do not make clear
assignments of observations to clusters, but represent the relations
between the observations in a tree structure. Only the subsequent
interpretation of this hierarchic structure yields a clear cluster assign-
ment. The found clusters however do not necessarily underlie any
distribution assumptions.

Throughout this work the family of partitional clustering methods is con-
sidered. In this context robustness is usually introduced by identifying and
trimming the most outlying observations (see e.g. Cuesta-Albertos et al.,
1997).
The parameters of such a robust clustering approach, the trimming level α
and the number of groups k are usually chosen in advance. Approaches for
selecting them exist and are based on multiply applying the algorithm with
different values for α and k, comparing the results and then choosing the
solution which fits best. For comparing different results obtained by varying
these parameters either some criterion may be computed (see Neykov et al.,
2007), or exploratory methods may be applied (see 5.7).
Methods for choosing the number of clusters do still require human super-
vision, as they sometimes deliver unintended results (see 5.6). Approaches
for automatically selecting the number of clusters and the trimming level
simultaneously do not exist yet, as for a given problem there might exist
more than one plausible answer to the question of the number of clusters
and the trimming level. For example, the question whether some outliers
are irregular observations or are already forming their own cluster is subject
to the user’s interpretation and view of the problem (see 5.7).

1.7.1 Methods

- tk-means

Cuesta-Albertos et al. (1997) proposed tk-means as a robust extension of
the simpler k-means approach (see MacQueen, 1967). The idea is to split n
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observations into k + 1 disjoint partitions (clusters) R0, . . . , Rk, solving the
minimization

argmin
R0,...,Rk

k∑
j=1

∑
xi∈Rj

‖xi −mj‖ , (1.7.1)

with mj being the component-wise mean of all observations belonging to
Rj , and ‖·‖ the L2 norm. Note, that observations in partition R0 are not
considered in this optimization and are thus trimmed, which yields a certain
robustness of the method. The number of observations in R0 is defined as
#R0 = dαne, with α, the chosen trimming level. Apparently, when mini-
mizing (1.7.1) the most outlying observations end up in R0, as they yield the
largest distance to all cluster centersmj . The original k-means approach did
not consider an additional group R0 for the dαne most distant observations,
and thus does not have any robustness properties. As the objective function
in Equation (1.7.1) considers the Euclidean distance of each observation to
its group’s center the method assumes spherically structured clusters. Fur-
ther the cluster sizes are not considered in the objective function, thus all
clusters are given the same weight, implicitly assuming that the cluster sizes
are equal.
An algorithm for this method can be formulated, as after randomly choosing
k cluster centers mj a so called E-step is applied: For each observations xi
a value dj is computed, which represents the pertinence of an observation
xi to its closest cluster

di = max
j=1,...,k

1

‖xi −mj‖
. (1.7.2)

The observations yielding the smallest dαne values of vector d are then as-
signed toR0, whereas each remaining observation xi is assigned to the cluster
which yields the lowest Euclidean Distance ‖xi −mj‖ for j = 1, . . . , k.
In a second M -step the cluster centers mj are re-estimated

mj =
1

n

∑
xi∈Rj

xi

for j = 1, . . . , k. E- and M -steps are applied alternately until a specified
number of iterations is reached, or the algorithm converges. Convergence is
determined by comparing the change of the cluster centers mj between two
iterations. Due to the non-convex objective function the algorithm converges
at a local optimum and thus has to be started several times with different
initial centers for obtaining a reasonable solution.

- tclust

The tclust method (see Garćıa-Escudero et al., 2008) can be seen as an
extension of tk-means, as some properties of the fast MCD algorithm are
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added to this approach. This results in an EM-method with trimming based
on the objective function

argmax
R0,...,Rk

k∑
j=1

∑
xi∈Rj

log (pjφ (xi;mj ,Sj)) ,

with pj = #Rj/ (n−#R0) as the cluster weights, φ the p-dimensional nor-
mal distribiution’s density function and Sj , the cluster scatter matrices.
This type of objective function eliminates the discussed disadvantages of tk-
means, but unfortunately yields a new problem, as it is unbounded (Maronna
and Jacovkis, 1974). A single cluster scatter matrix with rank lower than
p would yield an infinite objective function’s value. Thus so called spurious
clusters (see Gallegos and Ritter, 2005; Garćıa-Escudero et al., 2008), clus-
ters lying on a hyperplane of dimension lower than p, would be preferred
by such a method, which is usually not desired. This problem is resolved
by constraining the cluster scatter matrices, such that they always have full
rank, which is done by restricting the relative range of their eigenvalues or
determinants. This goes back to Hathaway (1985), who used related con-
straints in the context of mixture fitting methods. Appropriate constraints
for obtaining a bounded objective function, and an algorithm for imposing
them are discussed in Chapters 5 and 6, as well as an implementation of the
complete tclust method.
Defining an algorithm for the tclust method is quite straightforward, as its
basic structure is very similar to the mentioned tk-means algorithm, yielding
the following differences:
In the M -step the cluster scatter matrices S̃j are computed additionally

S̃j =
1

nj

∑
i∈Rj

(xi −mi) (xi −mi)
> ,

with nj = #Rj , the number of observations assigned to cluster j. Subse-
quently the estimated cluster scatter matrices are constrained by a given
restriction for avoiding spurious clusters (see Garćıa-Escudero et al., 2008,
and Chapters 5 and 6).
Further the vector d is computed differently (compare Equation 1.7.2), as
here each cluster’s constrained scatter matrix Sj is taken into account when
quantifying the pertinence of an observation xi to a cluster j

di = max
j=1,...,k

(pjφ (xi;mj ,Sj)) . (1.7.3)

Corresponding to the tk-means method, the E- and M -steps are executed
until convergence. Several runs of the algorithm, each one randomly initial-
ized, are necessary for obtaining a proper solution, as each run converges in
a local optimum.
The selection of the parameters α and k is suggested to be done by ex-
ploratory tools as discussed in Chapter 5 and Garćıa-Escudero et al. (2011).
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- tle

Neykov et al. (2007) describe a classification algorithm which is closely re-
lated to tclust, with the difference that singular cluster scatter matrices are
avoided by restricting the number of observations in each cluster, rather
than by imposing any constraints on the cluster scatter matrices. In con-
trast to tclust this restriction is defined strictly and cannot be controlled by
the user. Apart from this difference these methods optimize the same objec-
tive function, although tle allows for different distribution families, whereas
tclust focuses on normally distributed clusters. Further, tle robustly solves
regression problems of mixed components, which is not considered in tclust.
For selecting the number of clusters k, Neykov et al. (2007) discuss a BIC
type criterion.

- mclust

The mclust approach by Banfield and Raftery (1993) and Fraley and Raftery
(1998) performs similarly as tlcust and tle, but is not a trimming method
in the classical sense, as background noise is tried to be explained by a
uniformly distributed component, which yields problems especially when
outliers follow a specific pattern (see 5.6).
In combination with the tclust method also a BIC type criterion is used for
choosing the number of clusters, however this approach is misleading if e.g.
the data set features structured noise.

- Further Approaches

Gallegos (2002) introduces a clustering method similar to tclust which re-
stricts all cluster scatter matrices’ determinants to be equal. Also Gallegos
and Ritter (2005) present a closely related approach which restricts the clus-
ter scatter matrices by averaging them, which is the robustified version of a
method by Friedman and Rubin (1967). The completely different EMMIX
method (McLachlan and Peel, 2000) is an approach for finding multivariate
t-distributed clusters.

1.7.2 Example

Figure 1.6 shows the clustering results for the tk-means and tclust algorithms
applied to a data set of observations drawn from two different, slightly over-
lapping normal distributions forming a “T”-shape, including a 10% outlier
portion. The two drawn groups contain 100 observations each, yielding a
number of 22 simulated outliers. Both algorithms were advised to search for
k = 2 clusters and to consider a contamination level of 10%. The solution
in panel (a) is calculated using tk-means and shows clearly how this method
assumes spherical clusters. The resulting covariance ellipsoids (solid) reduce
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(b) Clustering Solution − tclust
k = 2, α = 0.1
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Figure 1.6: Classification result for tk-means (a) and tclust (b) computed
on a data set drawn from two different normal distributions forming a “T”-
shape, containing a 10% outlier portion, including the estimated covariance
ellipsoids (solid) and the theoretical structure (dashed). The identified out-
liers (◦) and the cluster assignment of each observation (4,+) are illustrated
by means of different symbols.

to circles, which apparently differ from the theoretical covariance structure
(dashed), which strongly influences the cluster assignment. Referring to
the upper cluster as to the horizontal bar and to the lower cluster as to
the vertical bar of the mentioned “T”-shape, the upper cluster’s structure is
not found correctly, as some observations to its left and right are trimmed
wrongly. Moreover some observations originally belonging to the lower clus-
ter are incorrectly assigned to the upper cluster, which again is caused by
assuming spherical cluster structures. The tclust algorithm however is more
flexible and allows almost arbitrary covariance structures. In Figure 1.6 (b)
it captures the “T”-structure quite well, as the theoretical and estimated
covariance ellipsoids of both clusters are almost identical. Slight differences
can be explained by the sampling error, and the fact that some of the out-
liers in the original data set overlap with the clusters. These observations
are thus assigned to one of the clusters, whereas some regular observations
in the outer regions of the clusters are incorrectly classified as outliers. This
can be resolved by adjusting the trimming level appropriately.
However, as already mentioned, the question of the real contamination level
or number of clusters cannot be answered clearly without having more in-
formation on the theoretical structure of the data set. Considering single
observations in the outer regions of the clusters as outliers or as regular
observations is both valid, as well as the introduction of a third big cluster,
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holding all outliers, yielding the parameter constellation k = 3, α = 0.

1.8 Outline of the Thesis

In this work the properties of existing multivariate robust methods are in-
vestigated in terms of efficiency, precision or runtime. New robust methods
are developed and compared to existing approaches with similar properties.
This first, introductory chapter presents the most important methods in the
context of this work and gives an overview on related publications in the lit-
erature. The second chapter focuses on the investigation of the properties of
various L1-median algorithms, followed by a chapter on robust PCA in the
context of high-dimensional data. The fourth chapter introduces the first
robust and sparse approach to PCA in literature. A theoretical approach to
robust trimmed clustering accompanied by the presentation of an according
implementation is given in the fifth chapter, followed by a chapter discussing
some algorithmic details of the same clustering approach. The last chapter
gives an insight in the implementational structure of the related software
packages.
All developed methods are implemented in R (Development Core Team,
2010), whereas the runtime-critical elements have been exported to C++,
combining the flexibility and speed of both programming environments.

Chapter 2 investigates the properties of various algorithms for the com-
putation of the L1-median. Four general purpose optimizers (Nelder and
Mead, 1965; Nocedal and Wright, 2006; Fletcher and Reeves, 1964; Dennis
and Schnabel, 1983) are compared to two more specific algorithms, particu-
larly developed for this purpose (Vardi and Zhang, 2000; Hössjer and Croux,
1995). Next to the numerical stability and the convergence behaviour, sev-
eral simulation examples compare the speed of the algorithms, as well as
their performance on degenerated and high-dimensional data sets.

Fritz H, Filzmoser P, Croux C (2011). A comparison of algorithms for
the multivariate L1-median. Computational Statistics, pp. 1–18.

Chapter 3 examines the possibility of outlier detection in high-dimensional
data sets by means of robust PCA, using the projection pursuit based Grid
algorithm (Croux et al., 2007). Diagnostic plots based on distance-distance
plots (Hubert et al., 2005) are developed, which are used for examining a
high-dimensional real data set.

Filzmoser P, Fritz H (2007). Exploring high-dimensional data with
robust principal components. In S Aivazian, P Filzmoser, Y Kharin (eds.),
Proceedings of the Eighth International Conference on Computer Data Anal-
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ysis and Modeling, volume 1, pp. 43–50. Belarusian State University, Minsk.

Chapter 4 develops a PCA approach, which combines both robustness and
sparseness properties in one single method, being the first of its kind. The
algorithm is an extension of the well established Grid algorithm (Croux
et al., 2007) and gains its additional properties only by modifications of the
objective function. Simulation studies on generated and real data sets, in-
cluding high-dimensional data are computed and discussed for investigating
the algorithm’s performance.

Croux C, Filzmoser P, Fritz H (2011). Robust Sparse Principal Com-
ponent Analysis. Submitted to Technometrics.

Chapter 5 discusses the tclust method introduced in Garćıa-Escudero et al.
(2008) and presents the first working implementation of the method. Apart
from that several exploratory tools are presented for validating the algo-
rithm’s output and for choosing the according tuning parameters, like the
number of clusters and the trimming level. Several examples considering
generated and real data sets are presented for discussing the algorithm’s
performance.

Fritz H, Garćıa-Escudero L, Mayo-Iscar A (2011). tclust: An R
Package for a Trimming Approach to Cluster Analysis. Submitted to Jour-
nal of Statistical Software.

Chapter 6 is a theoretical consideration of the tclust algorithm, discussing
a fast algorithm for imposing the necessary constraints on the cluster scatter
matrices. An approximate solution to this problem which has been firstly
given in Garćıa-Escudero et al. (2008) is revised, resulting in an exact and
computationally easy feasible algorithm. A simulation study based on gener-
ated data sets investigates the algorithm’s characteristics, such as precision
and convergence behaviour.

Fritz H, Garćıa-Escudero L, Mayo-Iscar A (2011). A fast algorithm
for robust constrained clustering. Submitted to Metrika.

Chapter 7 concludes with insights in the structure of the software released
in the context of this work. The programs are available in R, but the core
algorithms are implemented independently in C++, such that an applica-
tion in other environments as e.g. MATLAB (2010) or as a stand-alone
implementation is feasible easily. Only two slim interface layers have to be
implemented for embedding the algorithm in the corresponding environment.

Unpublished manuscript.
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Chapter 2

A comparison of algorithms
for the multivariate
L1-median

Summary: The L1-median is a robust estimator of multivariate location
with good statistical properties. Several algorithms for computing the L1-
median are available. Problem specific algorithms can be used, but also
general optimization routines. The aim is to compare different algorithms
with respect to their precision and runtime. This is possible because all
considered algorithms have been implemented in a standardized manner in
the open source environment R. In most situations, the algorithm based
on the optimization routine NLM (non-linear minimization) clearly outper-
forms other approaches. Its low computation time makes applications for
large and high-dimensional data feasible.
Keywords: Algorithm Multivariate median Optimization Robustness

Co-authors: Peter Filzmoser, Christophe Croux

2.1 Introduction

A prominent generalization of the univariate median to higher dimensions is
the geometric median, also called L1-median or spatial median. For a data
set X = {x1, . . . ,xn} with each xi ∈ IRp, the L1-median µ̂ is defined as

µ̂(X) = argmin
µ

n∑
i=1

‖xi − µ‖ (2.1.1)

where ‖ · ‖ denotes the Euclidean norm. In words, the L1-median is the
point for which the sum of the Euclidean distances to n given data points is
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minimal. This problem is formulated in an even more general form by Weber
(1909) (Fermat-Weber problem), as he refers to location issues in industrial
contexts. If the data points are not collinear, the solution to problem (2.1.1)
is unique (Weiszfeld, 1937). The L1-median has several further attractive
statistical properties, like:

(a) Its breakdown point is 0.5 (Lopuhaä and Rousseeuw, 1991), i.e., only
if more than 50% of the data points are contaminated, the L1-median
can take values beyond all bounds.

(b) It is location and orthogonally equivariant, that is for any b ∈ IRp and
orthogonal p× p matrix L,

µ̂(LX + b) = Lµ̂(X) + b,

with LX + b = {Lx1 + b, . . . ,Lxn + b}.

Property (a) makes this estimator very attractive from a robustness point
of view. According to property (b), the L1-median is orthogonal equivari-
ant, but not affine equivariant. Orthogonal equivariance is already sufficient
for many situations, like for principal component analysis (PCA). There-
fore several authors consider the L1-median in the context of robust PCA
(e.g., Croux and Ruiz-Gazen, 2005; Croux et al., 2007). Note that the L1-
median can be extended beyond the multivariate setting to functional spaces
(Gervini, 2008) and Hilbert spaces (e.g. Chaudhuri, 1996; Debruyne et al.,
2010).
An iterative algorithm for finding the numerical solution of the L1-median
has been proposed by Weiszfeld (1937). Several other algorithms will be
outlined in Section 2. The goal of this paper is to compare the algorithms
with respect to their precision and runtime (Section 3). For such a compar-
ison, a unified implementation of the algorithms has been made using C++
code embedded in the R-library pcaPP (Development Core Team, 2010), see
Section 2.3. The final Section 4 concludes.

2.2 Algorithms for computing the L1-median

For the computation of the estimate µ̂ we have to minimize the convex
function

S(µ) =

n∑
i=1

‖xi − µ‖. (2.2.1)

The algorithms tested and examined here can generally be divided into two
categories:
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2.2.1 General optimization procedures

The minimization of (2.2.1) can be done by numerical algorithms, developed
for general, non-linear optimization purposes. One can either evaluate the
target function S(µ) on several points, or additionally use the first derivative
of S(µ),

∂S(µ)

∂µ
= −

n∑
i=1

xi − µ
‖xi − µ‖

, (2.2.2)

or the Hessian matrix

∂2S(µ)

∂µ ∂µt
=

n∑
i=1

(
1

‖xi − µ‖
Ip −

(xi − µ)(xi − µ)t

‖xi − µ‖3

)
, (2.2.3)

where Ip is the p× p identity matrix. Since all algorithms are implemented
in the software environment R (Development Core Team, 2010), we con-
sidered general unconstrained non-linear optimization algorithms which are
accessible in this environment for our purpose:

� NM: Nelder and Mead (1965) proposed a simplex method for minimizing
functions of p variables, also known as downhill simplex method. Values
of the target function are compared at p+1 points, whereas the point with
highest target value is replaced in each iteration. Rather many iterations
are needed till convergence, but as this is one of the most common simplex
algorithms, it is included in this comparison.

� BFGS: Broyden, Fletcher, Goldfarb and Shanno proposed a quasi-Newton
algorithm searching for a stationary point of a function by local quadratic
approximation (see, e.g., Nocedal and Wright, 2006). In contrast to real
Newton methods, this algorithm does not require an analytical compu-
tation of the exact Hessian matrix, as this is approximated internally by
the algorithm. Since in high-dimensional situations the computation of
the exact Hessian matrix can be quite time consuming, algorithms that
approximate the Hessian matrix internally are to be preferred in this con-
text.

� CG: Conjugate gradient algorithms are iterative methods, known for their
low memory requirements. Quasi-Newton methods usually converge after
fewer iterations, but a single iteration of a conjugate gradient method is
computationally less intensive. In the subsequent simulations, the version
of Fletcher and Reeves (1964) is applied. The gradient information in
equation (2.2.2) is used by this method.

� NLM: Non-linear minimization can be carried out by a Newton-type al-
gorithm (Dennis and Schnabel, 1983), using the gradient information from
equation (2.2.2). It provides two options regarding the Hessian matrix:
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an analytical representation can be provided, or the Hessian matrix is
again approximated internally by secant methods. Approximating the
Hessian matrix turned out to be the faster approach, particularly when
high-dimensional data sets are processed. Hence in subsequent simulations
the Hessian matrix is always approximated rather than analytically calcu-
lated. From the three available optimization types introduced in Dennis
and Schnabel (1983), Line Search, Double Dogleg, and More-Hebdon, the
first method is applied here, as in this context its convergence character-
istics turned out to be most reliable among these three.

2.2.2 Problem specific algorithms

For the specific problem of computing the L1-median, several algorithms
have been proposed in the literature. Here we mention the algorithm of
Weiszfeld (1937), which is the basis for an improved version by Vardi and
Zhang (2000). Another algorithm, based on the steepest descent, has been
introduced by Hössjer and Croux (1995), and will also be examined here.

� Weiszfeld (1937) formulated an iterative approach for solving the Fermat-
Weber problem for data points x1, . . . ,xn and n non-negative weights.
In this paper all weights are equal. A current (or initial) solution µ̂l is
improved by calculating a scaled sum of all observations:

T0(µ) =

n∑
i=1

xi
‖xi−µ‖

n∑
i=1

1
‖xi−µ‖

(2.2.4)

µ̂l+1 =

{
T0(µ̂l) if µ̂l /∈ {x1, . . . ,xn}
µ̂l if µ̂l ∈ {x1, . . . ,xn}

(2.2.5)

This algorithm converges given that µ̂l /∈ {x1, . . . ,xn} for every iteration
step l ∈ IN .

� VaZh: Vardi and Zhang (2000) improved the behavior of Weiszfeld’s
algorithm in case that µ̂l ∈ {x1, . . . ,xn} appears in any iteration. The
resulting algorithm is, apart from the treatment of this particular issue,
quite similar, and for this reason no comparison is made with Weiszfeld’s
original algorithm later on in the simulation study. The proposal of Vardi
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and Zhang (2000) is as follows:

T1(µ) =

∑
xi 6=µ

xi
‖xi−µ‖∑

xi 6=µ

1
‖xi−µ‖

(2.2.6)

η(µ) =

{
1 if µ = xi, i = 1, . . . , n
0 else

(2.2.7)

R(µ) =
∑
xi 6=µ

xi − µ
‖xi − µ‖

(2.2.8)

γ(µ) = min

(
1,

η(µ)

‖R(µ)‖

)
(2.2.9)

µ̂l+1 = (1− γ(µ̂l))T1(µ̂l) + γ(µ̂l)µ̂l. (2.2.10)

The case µ̂l /∈ {x1, . . . ,xn} implies γ(µ̂l) = 0, and the algorithm behaves
exactly as in (2.2.4). Otherwise, if µ̂l ∈ {x1, . . . ,xn}, the sum in (2.2.6)
is calculated as in (2.2.4), but only over the xi 6= µ̂l, whereas observation
xi = µ̂l is added afterwards in (2.2.10), applying weight γ(µ̂l).

� HoCr: Hössjer and Croux (1995) proposed an approach which combines
a steepest descent algorithm with step halving. The current solution is
improved by stepping into the direction with steepest descent of the target
function. If the target function increases after this step, the step size is
being halved until the target function decreases. If the step size shrinks
to zero without finding a better solution, the algorithm has converged. A
detailed description of the algorithm including pseudocode is given by the
authors. Their algorithm can also be used for the rank based extension
of the L1-median they propose.

For reasons of completeness, let us mention two other algorithms proposed
in the literature for computing the L1-median. Gower (1974) proposed a
steepest descent algorithm combined with a bisection algorithm. It is some-
how similar to the HoCr algorithm, but the use of the bisection method
instead of step-halving considerably increases the computation time. Bedall
and Zimmermann (1979) proposed to use the Newton-Raphson procedure
with the exact expression (2.2.3) for the Hessian matrix, and is similar to
the NLM method with analytical second derivative. It turned out to be
much slower than the NLM procedure. The algorithms of Gower (1974) and
Bedall and Zimmermann (1979) are included in the R-package depth. Due
to their similarity with algorithms already included in the simulation study,
and since they are not competitive in terms of computation speed, we do
not report their performance in this paper.
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2.2.3 Implementation

Due to efficiency issues (runtime and memory), all methods are implemented
in C++ and are embedded in the R-library pcaPP (version 1.8-1). The algo-
rithms based on general optimization methods are simply wrapping the avail-
able routines in R, see Table 2.1. The routine for non-linear minimization

Algorithm R - Optimizer pcaPP - Rou-
tine

Nelder and Mead (NM) nmmin l1median_NM

Broyden, Fletcher, Goldfarb and
Shanno (BFGS)

vmmin l1median_BFGS

Conjugate gradient (CG) cgmin l1median_CG

Non-linear minimization (NLM) optif9 l1median_NLM

Vardi and Zhang (VaZh) l1median_VaZh

Hössjer and Croux (HoCr) l1median_HoCr

Table 2.1: Implementation of the optimization methods as wrapper func-
tions.

(optif9) originates from the UNCMIN-Fortran package by R.B. Schnabel
which implements Newton and quasi-Newton algorithms for unconstrained
minimization, see Dennis and Schnabel (1983), Schnabel et al. (1985). All
other mentioned routines are C-implementations which come along with R.
By default the component-wise median is used as starting value for all men-
tioned algorithms.
The more specific L1-median routines (Vardi and Zhang, 2000; Hössjer and
Croux, 1995) are transcripts of the routines published in the R-library ro-

bustX, whereas the original implementation of the algorithm by Hössjer and
Croux (1995) was made available by the authors. The implementation of
the algorithm of Vardi and Zhang (2000) is changed slightly, as the original
algorithm crashes if µ = xi for more than one i ∈ {1, . . . , n}, see equation
(2.2.7). Although this might be a rare situation, equation (2.2.7) needs to
be changed to

η(µ) =
∑
xi=µ

1 (2.2.11)

in order to stabilize the algorithm in such degenerated cases.

2.2.4 Convergence

When comparing different ways of solving a problem, one major issue is
to create equal and thus fair conditions for each approach which is to be
examined. Here each algorithm can be tested providing exactly the same
input, whereas the output quality can be compared likewise by checking the
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value of the target function S (µ̂) of (2.2.1). However, it is not as easy to
control the precision of the results of each particular algorithm. Each of
the mentioned algorithms provides an input control parameter τ , which is a
tolerance level influencing the convergence behavior, and is mainly used to
specify the desired precision. Unfortunately this tolerance level is interpreted
differently, as shown in Table 2.2.

Algorithm Convergence criterion Based on

NM
BFGS S

(
µ̂l−1

)
− S (µ̂l) ≤ τ (S (µ̂l) + τ) Relative change of S (µ̂)

CG

NLM
5 :=

∣∣∣∣∣ ∂S(µ̂l)

∂µ̂l

∣∣∣∣∣max{‖µ̂l‖,1}
max{|S(µ̂l)|,1} Maximum scaled gradient

maxi5i ≤ τ with 5 = (51, . . . ,5p)
t

VaZh ‖µ̂l−1 − µ̂l‖1 ≤ τ‖µ̂l‖1 Relative change of µ̂ (L1-norm)

HoCr ‖µ̂l−1 − µ̂l‖2 ≤ τ Change of µ̂ (L2-norm)

Table 2.2: Convergence criteria for different optimization routines.

In order to still get comparable results, we have to choose τ appropriately.
This is done by examining first, which tolerance level τ leads to comparable
precision in a particular situation, and then these tolerance levels are ap-
plied in all subsequent simulation settings. Details are provided in the next
section.

2.3 Comparison of the algorithms

In order to test the performance of the algorithms, several types of artificial
and real data samples are chosen. On a particular data set, the L1-median
is computed with each algorithm discussed above and the resulting estima-
tions are compared by considering the values of the target function (2.2.1).
The smallest resulting target value is used as reference, whereas deviations
from this reference value indicate worse approximations of the L1-median.
Throughout this paper, we use this deviation as a measure of precision of
an algorithm. The best algorithm(s) always yield a deviation of exactly
zero. In the following simulated scenarios, each simulation is performed 100
times with data sets sampled from the same distribution. As measure for
overall precision the 95% quantile of the resulting deviations is considered,
referred to as the 95% deviation quantile. The motivation for this measure
is that it reflects the precision of the vast majority of runs, but does not
account for single runs where the convergence behavior was different just by
chance. Additionally, the (median) runtime in seconds is reported for each
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algorithm. All simulations are computed on an AMD Athlon 64 X2 4200+
Processor at 2.2 GHz.
In order to stop non converging algorithms from freezing the process, the
maximum number of iterations is set to 500 for each algorithm. If not stated
differently, the simulated data sets consist of n = 1000 observations and p =
100 variables. The covariance matrix C of the distribution used to generate
the data is diagonal with diagonal elements p+1−i, for i = 1, . . . , p. Outliers
are generated by randomly selecting observations from the simulated data
matrix, multiplying them with a value of 10, and shifting them in each
coordinate by the value 10.

2.3.1 Adjusting tolerance levels for convergence

Before comparing any results of the different algorithms, their convergence
criteria shall be examined and their tolerance levels need to be adjusted,
such that they deliver equal precision for a particular simulation setting. For
that purpose a simple simulation is performed with several tolerance levels
τ , monitoring the resulting precisions. This allows to obtain a tolerance
level for each algorithm leading to “optimal” precisions. In the subsequent
simulations, these tolerance levels are used and so the resulting figures are
directly comparable. The algorithms are applied to 100 different p-variate
normally distributed data sets (we used n = 1000 and p = 100 in the follow-
ing) with center 0, covariance matrix C (see above) and without outliers.
The tolerance level is altered between 1e-1 and 1e-20. Figure 2.1 shows the
95% deviation quantiles of each algorithm computed over different tolerance
levels. Note that a 95% deviation quantile of exactly 0 has been truncated
to 1e-15 for being able to use logarithmic scales. A value of 1e-15 (or below)
is reached at a tolerance level of 1e-5 for HoCr, at 1e-6 for VaZh, at 1e-9
for CG, and at 1e-11 for NLM. This high precision cannot be reached for
the algorithms BFGS and NM within the considered range of the tolerance
levels; NM seems to be totally unaffected by the choice of the tolerance level.
Also changing the different tuning parameters of the algorithm NM does not
lead to better results in a simulation as presented here.
Considering the computation time of the algorithms with respect to the used
tolerance level τ (Figure 2.2), we note that the runtime of the algorithm
NLM seems to be rather unaffected by the specified value of τ . On the
other hand, CG shows a large increase in runtime when τ is raised from 1e-
11 to 1e-13. On the whole, the relative ranking of the different algorithms
remains about the same for different levels of τ . Hence, the faster algorithms
when requiring a high tolerance level will also be the faster ones when only
a rude approximation is needed. In particular this implies that it will not
be advantageous to use the output of one algorithm as starting value for
another algorithm. For this reason, we stick to the coordinatewise median
as a starting value for all the algorithms we consider.
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Figure 2.1: The 95% deviation quantiles of the L1-median target values as
a function of the tolerance level τ .

Table 2.3 shows the chosen tolerance levels for subsequent simulations. The
largest level of τ at which each algorithm reaches its best performance (zero
deviation) is chosen and then scaled down by a factor 1e3, compensating for
different simulation scenarios, as the data structure might slightly influence
the convergence behavior. With respect to the high increase of the runtime
of the algorithm CG when τ excesses 1e-11, this algorithm’s tolerance level
is set to 1e-10. As method NM does not seem to be affected by the tolerance
level, the choice of τ = 1e-10 is admittedly arbitrary.

NM BFGS CG NLM VaZh HoCr

1e-10 1e-17 1e-10 1e-14 1e-9 1e-8

Table 2.3: Tolerance levels τ as used for each particular algorithm.
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Figure 2.2: Median runtimes [seconds] of the L1-median computation as a
function of the tolerance level τ .

By selecting the tolerance level τ as outlined above, we aim at optimizing the
precision of the algorithm, as measured by the 95% quantile of the deviation.
This is not implying that all considered algorithms end up with the same
precision, but it does turn out that the best performing algorithms have
precisions very close to each other. We then discriminate between these
best performing algorithms by comparing their run times. An alternative
strategy might have been to control the running times, and then compare
the attained precision. We did not pursue this alternative strategy since,
besides several other implementation issues, a tolerance level τ still needs to
be specified, and it is not so clear how to do this.

2.3.2 Uncorrelated data

The observations are drawn randomly from p-variate normal (Np) and log-
normal (LNp) distributions, respectively, with center 0 and covariance ma-
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trix C. Simulations on multivariate t-distributed data have been computed
too, but as the algorithms perform quite similar as on normally distributed
data, these results are omitted here. In order to get an impression on how the
algorithms are relatively affected by outliers, the percentage of outliers, pout,
varies between 0% and 40% . Table 2.3.2 shows the 95% deviation quantiles
of each algorithm, for the given distributions and different percentages of
outliers. For pout = 0 (and normally distributed data) this is the same simu-
lation setting as before when the tolerance levels have been chosen, and it is
not surprising that apart from BFGS and NM all algorithms return the same
precision, yielding a 95% deviation quantile of 0. As the concept of the L1-
median may downweight but never completely trims any observation, added
outliers always slightly influence the estimation. However, increasing pout
does not influence the algorithms’ relative performance, as none of the meth-
ods can be identified as particularly sensitive to a different outlier proportion
among the tested candidates. The runtime behavior in this simulation set-

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 115 1.46e-11 0 0 0 0
10 % 118 2.91e-11 0 0 0 0
20 % 133 1.46e-12 0 0 0 0
30 % 147 0 0 0 0 0
40 % 146 5.82e-11 0 0 0 0

LNp (0,C) 0 % 1.66 1.19e-13 0 0 0 0
10 % 3.51 4.77e-13 0 0 0 0
20 % 5.98 9.09e-13 0 0 0 0
30 % 9.60 9.09e-13 0 0 0 0
40 % 16.20 1.82e-12 0 0 0 0

Table 2.4: 95% deviation quantiles of L1-median algorithms applied to un-
correlated data.

ting is shown in Table 2.3.2. It is not possible to point out one algorithm
which is always the fastest while delivering the best approximation quality.
On normally distributed data, BFGS is the fastest algorithm, but as seen
before it is not as accurate as other methods. The runtimes of the algo-
rithms seem to be quite independent from the added amount of outliers,
and they are all in about the same range (apart from NM being always the
slowest choice which obviously is caused by convergence issues). Applying
the algorithms on log-normally distributed data, however, yields the best
results for the NLM algorithm. In terms of computation time, NLM is the
only algorithm which is not heavily influenced by the distribution type, nor
by the amount of outliers added. For the algorithms VaZh, HoCr and CG,
the data configuration has a notable effect since their runtimes increase up
to a factor of 6 (CG) when highly contaminated data are processed. The
algorithm of Nelder and Mead (NM) never converges within the 500 allowed
iterations, which explains its high deviation values and longer runtimes.
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Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 0.265 0.032 0.047 0.063 0.062 0.094
10 % 0.266 0.046 0.125 0.063 0.062 0.078
20 % 0.265 0.032 0.047 0.063 0.062 0.078
30 % 0.265 0.031 0.046 0.063 0.062 0.078
40 % 0.265 0.031 0.047 0.063 0.062 0.078

LNp (0,C) 0 % 0.266 0.172 0.047 0.063 0.062 0.078
10 % 0.266 0.172 0.281 0.063 0.062 0.078
20 % 0.265 0.187 0.109 0.078 0.078 0.109
30 % 0.265 0.141 0.211 0.078 0.110 0.141
40 % 0.265 0.109 0.297 0.078 0.218 0.250

Table 2.5: Median runtimes [seconds] of the L1-median algorithms applied
to uncorrelated data.

Finally, to check the robustness of our findings with respect to the chosen
performance measures, we show in Table 2.3.2 the average of the deviations
over the simulated samples, as an alternative to the 95% quantile deviation
we used before. In line with the findings from Table 2.3.2, we see that the
NM algorithm is not competitive, and also BFGS does worse than the other
considered algorithms. For the other algorithms, the average deviations are
very small, and there is hardly any difference between them, confirming the
conclusions made from the corresponding table containing the 95% quantile
deviations. Furthermore, Table 2.3.2 presents the mean, instead of the me-
dian, runtime. Comparing Tables 2.3.2 and 2.3.2 shows that the mean and
median runtime remain very close to each other. In the remainder of this
paper, we only report the 95% quantile deviations and median runtimes.

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 91.1 3.2e-12 1.46e-13 1.46e-13 0 1.46e-13
10 % 93.1 1.75e-12 0 0 2.91e-13 0
20 % 114 1.46e-12 0 0 5.82e-13 0
30 % 122 2.33e-12 5.82e-13 5.82e-13 0 5.82e-13
40 % 116 6.98e-12 0 0 0 0

LNp (0,C) 0 % 1.42 5e-14 2.27e-15 2.27e-15 0 2.27e-15
10 % 3.05 2.36e-13 9.09e-15 9.09e-15 1.82e-14 9.09e-15
20 % 5.51 3.73e-13 9.09e-15 9.09e-15 3.64e-14 9.09e-15
30 % 9.09 4.73e-13 1.82e-14 1.82e-14 9.09e-15 1.82e-14
40 % 15.4 4.18e-13 3.64e-14 3.64e-14 0 3.64e-14

Table 2.6: Average deviation of the L1-median target value applied to un-
correlated data.
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Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 0.262 0.039 0.062 0.064 0.062 0.094
10 % 0.262 0.039 0.146 0.064 0.061 0.086
20 % 0.260 0.039 0.090 0.065 0.062 0.083
30 % 0.262 0.036 0.100 0.064 0.062 0.076
40 % 0.261 0.031 0.105 0.065 0.061 0.074

LNp (0,C) 0 % 0.262 0.177 0.049 0.068 0.062 0.076
10 % 0.262 0.177 0.245 0.070 0.062 0.086
20 % 0.261 0.185 0.172 0.072 0.079 0.106
30 % 0.262 0.143 0.318 0.072 0.114 0.142
40 % 0.262 0.102 0.544 0.074 0.212 0.252

Table 2.7: Average runtimes [seconds] of the L1-median algorithms applied
to uncorrelated data.

2.3.3 Correlated data

In this section we investigate the effect of a correlation structure within the
simulated data on the performance of the algorithms. Therefore, we use a
covariance matrix C′ for data generation, with elements 1 in the diagonal,
and numbers c as off-diagonal elements. The values of c are set to 0.5, 0.9,
and 0.99 among the different simulation scenarios. In addition, the effect
of the data distribution and the influence of outliers is observed. Table
2.3.3 shows the precision of the algorithms. Their performance does not
seem to be really influenced by the correlation level c, the only difference
is observed for the algorithm HoCr which performs slightly worse for log-
normally distributed highly correlated data.
According to Table 2.3.3, the only algorithms unaffected by the correlation
level are NM and NLM. NM again did not converge which explains the
constant runtime of 265 milliseconds. NLM however converges almost within
the same time as when applied on uncorrelated data, which is outstanding
among all tested methods. The algorithms CG, HoCr and VaZh require
more computation time for highly correlated data.

2.3.4 High-dimensional data with low sample size (p� n)

Here we generate data according to Np(0, Ip) and LNp(0, Ip), respectively,
for n = 10 and p = 100. As previously, contamination is added and its
percentage is varied. Since the rank of the generated p-dimensional data
is n, it is possible to reduce the dimensionality to n without any loss of
information. This is done by singular value decomposition (SVD) as follows
(compare Serneels et al., 2005). Let X be the simulated data matrix, then
Xt = V SU t is the SVD of Xt, with U an n × n orthogonal matrix, S a
diagonal matrix including the n singular values in its diagonal, and V a p×n
orthogonal matrix. The matrix X̃ = US has only size n×n, but it contains
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Distribution pout r NM BFGS CG NLM VaZh HoCr

Np (0,C
′) 0 % 0.5 19.2 1.82e-12 0 0 0 0

0.9 23.3 1.82e-12 0 0 0 0
0.99 31.0 1.82e-12 0 0 0 0

30 % 0.5 33.2 7.28e-12 0 0 0 0
0.9 22.1 7.28e-12 0 0 0 0

0.99 57.8 7.28e-12 0 0 0 0

LNp (0,C
′) 0 % 0.5 3.09 1.14e-13 0 0 0 0

0.9 2.83 1.14e-13 0 0 0 1.14e-13
0.99 4.34 1.14e-13 0 0 0 2.27e-13

30 % 0.5 3.62 9.09e-13 0 0 0 0
0.9 3.13 9.09e-13 0 0 0 0

0.99 3.42 9.09e-13 0 0 0 9.09e-13

Table 2.8: 95% deviation quantiles of L1-median algorithms applied to cor-
related data.

Distribution pout c NM BFGS CG NLM VaZh HoCr

Np (0,C
′) 0 % 0.5 0.265 0.078 0.110 0.063 0.156 0.219

0.9 0.265 0.094 0.296 0.078 0.281 0.422
0.99 0.265 0.125 0.344 0.078 0.468 0.688

30 % 0.5 0.265 0.063 0.297 0.078 0.156 0.188
0.9 0.265 0.078 0.593 0.078 0.250 0.328

0.99 0.265 0.110 0.718 0.078 0.422 0.547

LNp (0,C
′) 0 % 0.5 0.266 0.157 0.141 0.078 0.156 0.203

0.9 0.265 0.156 0.211 0.078 0.282 0.359
0.99 0.266 0.140 0.375 0.078 0.453 0.570

30 % 0.5 0.265 0.094 0.539 0.078 0.172 0.203
0.9 0.265 0.156 0.609 0.078 0.265 0.313

0.99 0.266 0.141 1.258 0.078 0.406 0.500

Table 2.9: Median runtimes [seconds] of the L1-median algorithms applied
to correlated data.

the same information as X. Using this dimension reduction, we can apply
the L1-median algorithms to both X and X̃, and compare the resulting
estimates µ̂ and ˆ̃µ, respectively. This can be done by back-transforming the
column vector ˆ̃µ to the original space with V ˆ̃µ, and comparing the results
with the Euclidean distance

δ = ‖µ̂− V ˆ̃µ‖. (2.3.1)

This difference between estimations in transformed and original space is com-
puted 100 times for each simulation setting, and the 95% distance quantile is
reported in Table 2.3.4. As the algorithm NLM provided the best results in
previous simulations, it is rather expected that it also performs well in here.
Indeed, this is confirmed, as NLM gives the smallest distances between the
estimations computed in the original and in the transformed space. The only
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algorithm which sticks out again due to its instability and inaccuracy is NM,
which has to be stopped after 500 iterations without reaching convergence.

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0, Ip) 0 % 3.98 2.71e-07 2.93e-07 7.31e-12 8.49e-10 9.41e-08
10 % 3.81 2.37e-07 2.81e-07 7.41e-12 8.27e-10 1.13e-07
20 % 4.42 2.32e-07 3.21e-07 1.14e-11 1.04e-09 1.21e-07
30 % 4.92 3.54e-07 3.57e-07 1.53e-11 1.06e-09 1.66e-07
40 % 5.71 4.6e-07 4.1e-07 1.77e-11 1.51e-09 2.07e-07

LNp (0, Ip) 0 % 0.0401 2.46e-09 2.57e-09 6.44e-15 8.41e-12 3.74e-10
10 % 0.0376 2.27e-09 2.58e-09 8.19e-15 8.07e-12 1.22e-09
20 % 0.0424 3.29e-09 2.88e-09 1.47e-14 1.17e-11 1.99e-09
30 % 0.0464 5.24e-09 3.69e-09 2.78e-14 1.79e-11 3.56e-09
40 % 0.0591 6.06e-09 6.08e-09 4.97e-14 1.41e-10 7.46e-09

Table 2.10: 95% distance quantiles of L1-median algorithms applied to the
original and the transformed data sets.

2.3.5 Degenerated situations

In this subsection we study the behavior of the algorithms at two particu-
lar data structures. First we consider the case of collinear data, secondly
the case where more than half of the data points are coinciding. In these
settings the exact value of the minimum of the objective function (2.2.1) is
known. The deviation of an algorithm is now computed relative to the exact
optimum.

� If n is even, and all observations are collinear, the L1-median is not
uniquely defined, as any point between the 2 innermost observations
is a proper solution (this is in analogy to the univariate median). As
such a data structure has rank one, the application of the classical
median is possible yielding the same result as the L1-median. There-
fore the data matrix has to be projected onto the line given by two
arbitrary (different) observations, which in this case coincides with
the first principal component. The median is computed in this one-
dimensional subspace, whereas the result is transformed back into the
original space afterwards.

Simulations on data sets generated with a covariance matrix with arbi-
trary values (finite and positive) for the variances, and off-diagonal el-
ements cij =

√
(ciicjj) ∀i 6= j (perfect collinearity of all variables) and

arbitrary (finite) mean vectors result in Table 2.3.5. Apart from two
occurrences where VaZh gives slightly better results, the algorithms
CG, NLM, VaZh and HoCr show equal performance and return an
exact solution. BFGS still returns good results but seems to have nu-
merical problems due to its slight imprecision. NM seems to deliver
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arbitrary results, which are caused by convergence problems. The run-
time comparison in Table 2.3.5 shows that BFGS is always the fastest
algorithm, followed by NLM which is as fast as in the first simulation
setting. The runtimes of CG, VaZh and HoCr increased by a factor
2-4 compared to Table 2.3.2.

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C)) 0 % 6.42e+03 9.09e-13 0 0 0 0
10 % 6.01e+03 3.64e-12 0 0 0 0
20 % 5.66e+03 1.82e-13 0 0 0 0
30 % 5.36e+03 7.28e-12 0 0 0 0
40 % 5.27e+03 7.28e-12 7.28e-12 7.28e-12 0 7.28e-12

LNp (0,C) 0 % 1.08e+04 1.82e-12 9.09e-14 9.09e-14 0 1.82e-12
10 % 1.08e+04 3.82e-12 0 0 0 0
20 % 1.12e+04 7.28e-12 0 0 0 0
30 % 1.23e+04 1.46e-11 0 0 0 0
40 % 1.40e+04 0 0 0 0 0

Table 2.11: 95% error quantiles of L1-median estimations applied to collinear
data.

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 0.266 0.047 0.094 0.078 0.258 0.446
10 % 0.266 0.047 0.125 0.078 0.250 0.422
20 % 0.266 0.047 0.195 0.078 0.250 0.406
30 % 0.265 0.047 0.172 0.078 0.250 0.391
40 % 0.266 0.047 0.125 0.078 0.282 0.422

LNp (0,C) 0 % 0.266 0.047 0.109 0.093 0.235 0.422
10 % 0.266 0.054 0.148 0.093 0.266 0.453
20 % 0.266 0.047 0.133 0.093 0.250 0.382
30 % 0.266 0.047 0.125 0.079 0.328 0.469
40 % 0.265 0.039 0.125 0.094 0.406 0.578

Table 2.12: Median runtimes [seconds] of the L1-median algorithms applied
to collinear data.

� If more than n/2 observations are concentrated in one point, say y, the
solution of the L1-median is µ̂ = y. A simulation setting as in Section
2.3.2 but with n/2 + 1 observations set to y = 1 (vector of ones)
has been carried out, expecting the resulting L1-median estimation to
be µ̂ = 1. All algorithms are able to find the known center exactly,
thus a table showing deviation quantiles can be omitted. However, the
computation times differ for some algorithms (Table 2.3.5). Although
NM converges to the exact solution in this setting, it converges slowly,
resulting in a considerably higher value for the runtime. Also NLM
is unable to detect this degenerated situation immediately. All other
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algorithms stop after a single iteration and thus converge so quickly,
that the used method for measuring time is not able to record such
short periods.

The algorithms HoCr and VaZh have to be pointed out here, as they
can handle such occurrences separately: both algorithms are based
on the distances of each observation to the current L1-median estima-
tion, which is calculated during each iteration. By simply checking
how many observations have zero distance to the current L1-median
estimation, the method can detect such cases and stop the iteration.
A different return code is provided in order to inform the user about
such rare occurrences.

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 0.265 0.000 0.000 0.047 0.000 0.000
10 % 0.266 0.000 0.000 0.047 0.000 0.000
20 % 0.266 0.000 0.000 0.047 0.000 0.000
30 % 0.266 0.000 0.000 0.047 0.000 0.000
40 % 0.266 0.000 0.000 0.047 0.000 0.000

LNp (0,C) 0 % 0.266 0.000 0.000 0.047 0.008 0.000
10 % 0.265 0.000 0.000 0.047 0.000 0.000
20 % 0.265 0.000 0.000 0.047 0.000 0.000
30 % 0.266 0.000 0.000 0.047 0.000 0.000
40 % 0.266 0.000 0.000 0.047 0.000 0.000

Table 2.13: Median runtimes [seconds] of the L1-median algorithms applied
to the degenerated data structure.

Although the situations examined here would rarely occur, it is important
to keep in mind that there might be further data configurations which are
not so easy to handle.

2.3.6 Real data examples

For testing the L1-median algorithms on real data, the data sets bhorizon,
chorizon, humus, moss, bssbot and bsstop, from the R-library mvout-

lier are used. These data contain the concentration of chemical elements
in the soil of certain regions of Europe. Depending on the considered data
set, 600 to 800 observations are available for 30-110 variables. Overall, the
data are usually right-skewed, and therefore the algorithms were addition-
ally run on the log-transformed data. Moreover, there are many equal values
(especially for bsstop) which are caused by detection limit problems (see
Reimann et al., 2008). Table 2.3.6 gives the deviations as returned by the
different algorithms. Since the tolerance levels have been adjusted before,
all methods perform similar, again with the exception NM. A comparison
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of runtimes in Table 2.3.6 shows that NLM is constantly the fastest ap-
proach, outperforming all other algorithms in terms of computation time,
while maintaining the highest accuracy.

Data set log NM BFGS CG NLM VaZh HoCr

bhorizon no 1.46e+03 0 0 0 0 0
yes 1.73 0 0 0 0 0

chorizon no 4.99e+04 0 0 0 0 0
yes 95.3 0 0 0 0 0

humus no 501 0 0 0 2.33e-10 0
yes 1 4.55e-13 0 0 0 0

moss no 317 0 0 0 0 0
yes 0.225 2.27e-13 0 0 0 0

bssbot no 80.5 0 0 0 0 0
yes 32.1 4.55e-13 0 0 0 0

bsstop no 71.5 0 0 0 0 0
yes 35.5 0 0 0 0 0

Table 2.14: Deviations of L1-median algorithms applied to real data sets.

Data set log NM BFGS CG NLM VaZh HoCr

bhorizon no 0.047 0.000 0.062 0.016 0.063 0.046
yes 0.047 0.031 0.125 0.016 0.016 0.016

chorizon no 0.172 0.062 0.219 0.047 0.094 0.156
yes 0.156 0.078 0.063 0.031 0.063 0.078

humus no 0.031 0.016 0.016 0.000 0.047 0.046
yes 0.046 0.016 0.094 0.016 0.031 0.016

moss no 0.031 0.000 0.016 0.000 0.031 0.031
yes 0.031 0.015 0.016 0.000 0.032 0.031

bssbot no 0.109 0.016 0.047 0.016 0.078 0.094
yes 0.109 0.031 0.031 0.016 0.031 0.047

bsstop no 0.094 0.015 0.047 0.016 0.063 0.047
yes 0.094 0.062 0.328 0.015 0.047 0.032

Table 2.15: Runtimes [seconds] of the L1-median algorithms applied to real
data sets.

2.3.7 Runtime as a function of the sample size

In this subsection we report median runtimes as a function of the sample size
n. Since the ranking of the different algorithms with respect to their runtime
does not depend much on the actual data configuration, we report results
for the uncorrelated data case, as in subsection 2.3.2. We generate from a
multivariate normal distribution, with p = 100, and where log10(n) varies
from 2 to 5. Table 2.3.7 reports the median runtimes over 100 simulated
samples. We see that the NLM algorithm is the fastest for all considered
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sample sizes. The runtimes suggest that the computational complexity of
the different algorithms is O(n log n).

n NM BFGS CG NLM VaZh HoCr

100 0.017 0.012 0.005 0.006 0.012 0.009
1000 0.239 0.117 0.064 0.071 0.122 0.147

10000 2.335 1.739 10.204 0.694 1.336 2.577
1e+05 23.096 15.179 141.382 7.121 13.361 30.646

Table 2.16: Median runtimes [seconds] of the L1-median algorithms applied
to uncorrelated data with varying sample size n and fixed number of vari-
ables p = 100.

2.4 Conclusions

For computing the L1-median, several specific algorithms can be found in
the literature. In addition, the solution can also be found by general opti-
mization routines, which are widely available in modern software packages.
A fair comparison of these approaches is only possible by a unified software
implementation. This has been done in the R-library pcaPP (version 1.8-1),
using C++ code for the implementation. The implemented algorithms have
been tested for various data configurations. Optimization based on NLM
leads to the smallest value of the target function in all considered settings,
which makes it the first choice as an appropriate algorithm for computing
the L1-median. Moreover, the computation time of this approach turned
out to be to a large extent unaffected by the used distribution family, the
outlier proportion added, the convergence criterion, and even by high cor-
relation values, whereas other algorithms tend to have convergence issues in
some simulation settings. In the tested situations NLM never showed any
problems with convergence, and hence it provides a stable, fast and reli-
able approach, returning results with the highest precision among the tested
algorithms.
Considering the tested data sets and their dimensions, it might be surprising
that the absolute runtime of the algorithms is very low. Thus, whenever a
robust data center needs to be computed, the L1-median is an attractive
estimator as long as affine equivariance is not required. It is definitely more
attractive than the component-wise median, which has the same breakdown
point, but which is not orthogonal equivariant.
Concluding, we recommend the algorithm NLM, implemented as l1median_NLM
in the R-library pcaPP (version 1.8-1), as this particular approach turned
out to deliver results of highest precision in combination with very low com-
putation time, widely unaffected by the underlying data structure.
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Chapter 3

Exploring High-dimensional
Data With Robust Principal
Components

Summary: For high-dimensional data of low sample size it is difficult to
compute principal components in a robust way. We mention an algorithm
which is highly precise and fast to compute. The robust principal compo-
nents are used to compute distances of the observations in the (sub-)space of
the principal components and distances to this (sub-)space. Both distance
measures retain valuable information about the multivariate data structure.
Plotting the magnitudes of the distance measures helps to reveal important
multivariate data information.

Co-authors: Peter Filzmoser

3.1 Introduction

Principal component analysis (PCA) is frequently used in an exploratory
context to gain first insight into multivariate data. The method is fast to
compute, and also the geometric concept of PCA is easy to understand.
Moreover, for the purpose of graphically inspecting the multivariate data
the data requirements (distributional assumptions, etc.) are very low. These
features make PCA attractive for researchers and practitioners working in
various fields. Pairwise plots of the first few principal components (PCs)
often allow to reveal the multivariate data structure in a way that rela-
tions among the observations as well as data groups and structures can be
discovered.
PCA is also often used to identify data outliers. Surprisingly, in many appli-
cations this even works, although it is well known that the directions of the
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PCs are determined by the eigenvectors of the covariance matrix of the data.
Using the empirical covariance matrix as an estimator of the covariance re-
sults in an unbounded influence function of the eigenvalues and eigenvectors
(Croux and Haesbroeck, 2000) which means that the eigendecomposition can
be completely misled even in case of very small amount of contamination.
On the other hand, huge outliers can attract a PC, and the analyst will be
able to discover such outliers by inspecting the corresponding component.
In that way, PCA does not focus on revealing the main variability of the
underlying data structure, but it still is able to find interesting phenomena
in the data. The analyst would then usually remove this outlier and proceed
with a new PCA on the reduced data to finally reveal the multivariate data
structure.
Less extreme outliers or multivariate outliers are not necessarily visible as
isolated points at the projections on the PCs. Even worse, they are able to
spoil the PC directions, and the goal of exploring the relevant data structure
by the first few PCs may completely fail (Croux and Ruiz-Gazen, 2005). This
can be avoided if PCA is robustified. The easiest possibility is to estimate
the covariance matrix in a robust way, using well known estimators like
the MCD (Rousseeuw and Van Driessen, 1999). The eigenvectors of this
robust covariance matrix will be resistant to outliers in the data and point
in directions of high variability of the main data cloud.
Exploring data by PCA and robustifying PCA as mentioned above is pos-
sible for “tall” data where n, the number of observations, is (much) larger
than p, the number of variables. However, there are many applications in
chemometrics, marketing, biostatistics, etc. where p is much larger than n.
Robust covariance estimation e.g. using the MCD does no longer work in
this case and one needs to consider other alternatives. Moreover, projecting
the data on the first two PCs is often still very uninformative because of the
high dimensionality of the data.
In this paper we will briefly describe methods and algorithms for robust
PCA in the case p >> n (Section 2). At the basis of a diagnostics plot for
PCA (Hubert et al., 2005) we construct a plot in Section 3 that allows to
reveal multivariate data structure. As a motivating example we use a data
set of 21 NIR spectra in 268 dimensions (Swierenga et al., 1999).

3.2 PCA for high-dimensional data

A very appealing approach for robust PCA in high dimensions is based on
the projection-pursuit (PP) principle (Li and Chen, 1985). This approach
uses the initial definition of PCA of finding a direction where the projected
data points have maximal variance. Subsequent directions have the same
goal of maximizing the variance of the projected data, but they are supposed
to be orthogonal to previously found directions. Robustifying this approach
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is in fact very easy, because the measure of variance simply needs to be
robust. The MAD or the Qn estimators have been suggested for this purpose
(Croux and Ruiz-Gazen, 2005). The difficult task, however, is to develop an
algorithm for solving the maximization problem.
In the case p >> n the computational complexity can be reduced consid-
erably by first performing a singular value decomposition which allows a
reduction of the dimensionality from p to only n dimensions without any
loss of information (see e.g. Stanimirova et al., 2004).
The algorithm of Croux and Ruiz-Gazen (2005) uses candidate directions
for finding the first PC that consist of directions from the center of the data
cloud to each single data point. The resulting n directions are then evaluated
by computing the (robust) variance of the projected data points, and the
direction corresponding to the maximum of the variance is an approximation
of the direction of the first PC. The search is then continued analogously
in the subspace orthogonal to the found direction. The identified directions
are approximations of the eigenvectors of a covariance-based approach, and
the corresponding maximal variances are approximations of the eigenvalues.
Recently it was pointed out (Croux et al., 2007) that the algorithm of Croux
and Ruiz-Gazen (2005) has serious drawbacks:

(a) The estimated eigenvalues corresponding to the k-th PC with k > n/2
are exactly zero if the MAD, the Qn, or any other highly robust scale
measure is used. This artefact is also called implosion of the scale
measure. Usually, this drawback has no real consequences because
one is mainly interested in the first few PCs. However, if a robust
covariance matrix should be estimated with the robust PCs, the result
could be seriously biased.

(b) Especially for p >> n the algorithm is not very precise. This can be
verified by comparing the theoretical maximum which are the eigen-
values of the eigendecomposition of the sample covariance matrix with
the resulting estimated eigenvalues of this algorithm using the classical
variance measure.

Both disadvantages are solved by the so-called GRID algorithm (Croux et
al., 2007). The idea is to search for the optimal direction only in a plane
on a regular grid. The plane is first spanned by two variables, but later on
also information of the other variables is used by taking linear combinations
with the remaining variables. The resulting directions are highly precise:
the estimated eigenvalues are in general considerably higher than for the
algorithm of Croux and Ruiz-Gazen (2005), and they come very close to the
true maximum. The GRID algorithm has been implemented in the library
pcaPP of the statistical software R.
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Figure 3.1: NIR spectra of PET yarns; the highlighted (black) spectra have
deviating structure for small wavelengths.

3.2.1 Example

We apply robust PCA on a data set described in Swierenga et al. (1999) of
21 NIR spectra of PET yarns, measured at 268 wavelengths. The data set is
available in R in the package pls as data set NIR. Swierenga et al. (1999) used
these data together with 28 corresponding densities to construct a robust
multivariate calibration model. Here we will only consider the NIR data,
and our goal is to gain insight into their multivariate data structure using
robust PCA. Figure 3.1 shows the 28 spectra. We highlighted some spectra
with somewhat abnormal behavior at small wavelengths.
Robust PCA using the GRID algorithm was applied to the NIR data set.
To obtain robust components the MAD (medIan absolute deviation) was
used as scale measure. Figure 3.2 shows the plot of first versus second PC
(left) and first versus third PC (right). The highlighted spectra from Figure
3.1 are visualized as dark points. The first 3 PCs include 98.8% of the total
variability. However, it is not obvious from these plots that the highlighted
spectra are somehow different. It is possible that this difference is expressed
in the remaining 25 PCs which, on the other hand, only contain a bit more
than 1% of the total variability.

3.3 Orthogonal distance and score distance

Hubert et al. (2005) used the orthogonal distance (OD) and the score dis-
tance (SD) as diagnostic tools in the context of PCA. For a sample x1, . . . ,xn
in Rp the OD is defined as

OD
(k)
i = ‖xi − µ̂− P (k)t

(k)
i ‖ (3.3.1)
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Figure 3.2: Robust PCA for the NIR data using the GRID algorithm with
the MAD as scale measure.

and the SD as

SD
(k)
i =

 k∑
j=1

‖t(k)
i ‖2

lj

1/2

(3.3.2)

for i = 1, . . . , n. Here, µ̂ is the estimated center of the data, the matrix
P (k) contains the first k estimated eigenvectors in its columns, lj are the

estimated eigenvalues, and t
(k)
i is the ith score vector in the space of the

first k principal components (1 ≤ k ≤ r) with r being the rank of the data.
Both the OD and the SD depend on the number of PCs considered. The OD
describes the orthogonal distance of an observation to the space spanned by
the first k PCs, whereas the SD is a Mahalanobis-like measure of distance
of an observation within the PC space. Samples with large OD and SD can
have severe leverage to a classical PCA.
Hubert et al. (2005) introduced a diagnostic plot for PCA by plotting SD
versus OD. Critical thresholds for SD and OD allow to identify outlying
observations. Figure 3.3 shows this diagnostic plot for the NIR data when
k = 2 PCs (left) and k = 3 PCs are used to compute the distances. Again,
the black points refer to the spectra with unusual behavior. We used similar
critical values as in Hubert et al. (2005): for the SD a quantile of the chi-

squared distribution with k degrees of freedom (we used
√
χ2
k;0.975), and

for OD we also took the Wilson-Hilferty approximation for the scaled chi-
squared distribution which assumes that the ODs to the power of 2/3 are
approximately normally distributed. The parameters µ and σ of the normal
distribution can be estimated by the median and MAD of the values OD2/3,
and the critical value can be taken as (µ̂+ σ̂z0.975)3/2, with z0.975 being the
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Figure 3.3: Diagnostic plots to the PCA from Figure 3.2 for 2 (left) and 3
(right) components.

97.5% quantile of the standard normal distribution. The critical values in
Figure 3.3 for k = 3 allow to identify two observations as “outliers” because
their OD is larger than the critical value. Note that our goal is not necessarily
outlier detection using the PCs but rather to learn about the multivariate
data structure. These plots, however, do not reveal any special phenomenon
like groups of deviating data points.
It is possible, that such a diagnostic plot would reveal deviating data points
in a better way if more PCs were used for computing the OD and SD. Hubert
et al. (2005) suggested to take as many PCs such that about 90% of the
total variability are explained. This would correspond to the right plot in
Figure 3.3.

3.4 Exploring the multivariate data structure

It is easy to show that

SD
(k)
i ≤ SD

(k+1)
i and OD

(k)
i ≥ OD

(k+1)
i

for 1 ≤ k < r. These properties can also be observed in Figure 3.3. In
fact, the SD is just the projection of the Mahalanobis distance on the space
spanned by the first k PCs, see Equation (3.3.1). Using all PCs for comput-
ing the SD is exactly the Mahalanobis distance. Naturally, the distances in
a higher dimensional space are increasing. Also for OD the above property
is obvious because for increasing dimension of the PC space the orthogonal
distances to the data space have to decrease, see Equation (3.3.2). On the
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Figure 3.4: Standardized OD (left) and SD (right) for each observation using
k = 1, . . . , 28 PCs. The dashed lines indicate the 97.5% critical values.

other hand, also the critical values for OD and SD change for an increasing
number k of PCs. Moreover, it is possible that an observation has large OD
and small SD for k PCs, but small OD and large SD for k + 1 PCs. This
can be the case if the observation is far away from the space spanned by k
PCs but very close to PC number k + 1.
Thus, studying the OD and SD for various values of k might provide more
insight into the multivariate data structure. Since it will be rather difficult
to use a diagnostic plot like in Figure 3.3 for several or all values of k we
prefer to present two separate plots for the OD and for the SD. Follow-
ing the suggestions of Maronna and Zamar (2002), we multiply the SD with

the scaling factor
√
χ2
k;0.5/median(SD

(k)
i ) which improves the chi-square ap-

proximation significantly. Afterwards, we divide the OD and the scaled SD
by their critical values corresponding to the 97.5% quantiles or the respec-
tive distribution. OD and SD are thus standardized, and a comparison with
the critical threshold 1 can be easily done. Figure 3.4 shows the resulting
plots for the number of PCs ranging from 1 to 28. Each line in the plot
corresponds to the standardized OD (left) or SD (right) of an observation.
The black lines are the atypical observations from Figure 3.1. The dashed
lines refer to the critical threshold 1. Most of the atypical observations are
only exceeding the threshold if more than 3 PCs are taken.
The visualization of Figure 3.4 can be improved by observing if an obser-
vation exceeds the critical value at a given number of PCs or not. This
information is shown in Figure 3.5 for the OD (left) and for the SD (right).
A white square indicates that the observation did not exceed the critical
value for given k. Light gray, dark gray and black boxes are plotted if the
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Figure 3.5: OD (left) and SD (right) for each observation using k = 1, . . . , 28
PCs. The different gray levels indicate that the 97.5% (light gray), 99%
(dark gray), or 99.9% (black) critical value was exceeded.

observations exceed the corresponding 97.5%, 99%, or 99.9% critical val-
ues, respectively. The atypical observations visible in Figure 3.1 refer to the
indices 1, 3, 6, 10, 15, and 21, which are also atypical in the plot of the
OD and/or SD in Figure 3.5. There are additional outstanding observations
which refer to further deviating structure in some of the NIR spectra. Thus,
the plot provides an impression about the multivariate data structure.

3.5 Summary

For high-dimensional data it is not trivial how to compute robust princi-
pal components. We propose to use the GRID algorithm (Croux et al.,
2007) which is very precise and results in highly robust PCs. The estimated
eigenvectors and eigenvalues from this approach can be used to compute
orthogonal and score distances which are indications of outlyingness of the
observations. We introduced a new plot of these distance measures com-
puted for various numbers of principal components. Deviations of observa-
tions from the main data structure in a certain sub-space spanned by k PCs
are indicated in the plot. Since the dimension of the sub-space changes with
the number of PCs, the plot helps to reveal the multivariate data structure.
In the presentation we will also give other real data examples where this
plot gives insight into the data structure. Moreover, we will demonstrate
that not only the robustness of PCA is important for an informative plot,
but also the precision of the PCA algorithm.
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Chapter 4

Robust Sparse Principal
Component Analysis

Summary: A method for principal component analysis is proposed that
is sparse and robust at the same time. The sparsity delivers principal com-
ponents that have loadings on a small number of variables, making them
easier to interpret. The robustness makes the analysis resistant to outly-
ing observations. The principal components correspond to directions that
maximize a robust measure of the variance, with an additional penalty term
to take sparseness into account. We propose an algorithm to compute the
sparse and robust principal components. The method is applied on sev-
eral real data examples, and diagnostic plots for detecting outliers and for
selecting the degree of sparsity are provided. A simulation experiment stud-
ies the loss in statistical efficiency by requiring both robustness and sparsity.

Keywords: dispersion measure, projection-pursuit, outliers, variable se-
lection

Co-authors: Christophe Croux, Peter Filzmoser

4.1 Introduction

Principal component analysis (PCA) is a standard tool for dimension re-
duction of multivariate data. PCA searches for linear combinations of the
variables, called principal components (PC), that summarize well the data.
The PCs correspond to directions maximizing the variance of the data pro-
jected on them (see, e.g. Jolliffe, 2002). The transformation matrix defining
the principal components is called the loadings matrix, and it may be used
to interpret the PCs. In general, PCA does not deliver well interpretable
components. Good interpretability of PCs is related to rather large or small

49



(absolute) values in the loadings matrix yielding either quite strong or quite
weak contributions of the variables to the PC. Loadings matrices with many
values exactly equal to zero, which we call sparse loadings matrices, are
preferred, since the interpretation of a particular principal component does
not require to consider all variables, but only a small subset. This yields a
sparse PCA, which is especially helpful for analyzing high dimensional data
sets. In this paper we introduce a method for PCA that yields both sparse
and robust results. Outliers frequently occur in multivariate data sets, and
any multivariate procedure should take the possible presence of outliers into
account.
Different approaches for computing sparse loadings matrices have been pro-
posed in the literature. Vines (2000) and Anaya-Izquierdo et al. (2011) use
a restriction on the loadings to integers. Jolliffe et al. (2003) introduced
the SCoTLASS, related to the Lasso estimator (Tibshirani, 1996). Here
the principal components maximize the variance but under an upper bound
on the sum of the absolute values of the loadings. It is shown that such
an approach yields better results than a two-step procedure, where after a
standard PCA rotation techniques are performed (Jolliffe, 1995). Zou et al.
(2006) use the elastic net to obtain a version of sparse PCA. Modifications
and improvements of this method are made in Leng and Wang (2009). Fi-
nally, Guo et al. (2010) introduce a fusion penalty to capture block structures
within the variables. All these methods, however, are not robust to outliers.
This paper proposes a PCA method that is robust and sparse at the same
time. Several robust, but non sparse, PCA methods have been introduced
in the literature (see, e.g., Filzmoser, 1999; Hubert et al., 2005; Maronna,
2005), and robustness properties were investigated (Croux and Haesbroeck,
2000). Here we focus on the projection-pursuit approach to PCA, where the
PCs are extracted from the data by searching for directions that maximize
a robust measure of variance of the data projected on it (Li and Chen, 1985;
Croux and Ruiz-Gazen, 2005). Using a robust measure of variance avoids
that the PCs are attracted by the outliers, since outliers inflate the standard
non-robust variance. An efficient algorithm for computing the projection-
pursuit based PCs is the Grid algorithm, introduced in Croux et al. (2007).
The Grid algorithm is very precise, and an implementation is available in the
R package pcaPP (Filzmoser et al., 2010). Up to the best of our knowledge,
the PCA method we propose is the first one combining the properties of
robustness and sparsity.
The paper is organized as follows: Section 2 defines the robust sparse prin-
cipal components as the solution of a non convex optimization problem.
Section 3 shows how the Grid algorithm can be extended to find an ap-
proximate solution of this problem. The selection of tuning parameters is
discussed in Section 4. Simulation results are presented in Section 5, and
real data examples are shown in Section 6. The final Section 7 concludes.
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4.2 Method

Given n multivariate observations x1, . . . ,xn ∈ IRp, collected in the rows of
the data matrix X. The first PCA direction is given by

a1 = argmax
‖a‖=1

V (atx1, . . . ,a
txn), (4.2.1)

where V is a variance measure. In the standard non-robust case, V is the
empirical variance (Var), and the resulting optimal direction a1 corresponds
to the first eigenvector of the sample covariance matrix. Equation (4.2.1) is
the projection-pursuit formulation for finding the first PC, with V being the
projection-pursuit index. Robust PCA directions can easily be obtained by
taking a robust variance measure for V , like the squared Median Absolute
Deviation (MAD) or the squared Qn estimator. The Qn estimator was
proposed in Rousseeuw and Croux (1993) and is, for a univariate data set
y1, . . . , yn, defined as the first quartile of all pairwise distances |yi − yj |, for
1 ≤ i < j ≤ n. Croux and Ruiz-Gazen (2005) showed that using the Q2

n

estimator as projection index yields robust and efficient estimates for the
principal components. In the remainder of this paper, we use the Q2

n as
robust variance estimator.
Suppose the first j − 1 PCA directions have already been found (j > 1),
then the jth direction (j ≤ p) is defined as

aj = argmax
‖a‖=1,a⊥a1,...,a⊥aj−1

V (atx1, . . . ,a
txn), (4.2.2)

imposing an orthogonality constraint to all previously found directions. The
jth principal component is then the vector containing the PCA scores

zij = atjxi for i = 1, . . . , n. (4.2.3)

The loadings matrix for the first k PCs is denoted by Ak, and contains in
its columns the optimal directions or loadings vectors aj , for 1 ≤ j ≤ k.
The loadings determine the contribution of each variable to the principal
components. The matrix containing the principal component scores is then

Zk = XAk. (4.2.4)

Sparsity can be imposed on the PCA directions by adding an L1 penalty
in the objective function. As such, Jolliffe et al. (2003) introduced the
SCoTLASS criterion,

max
‖a‖=1,a⊥a1,...,a⊥aj−1

atΣ̂a, subject to ‖a‖1 ≤ t, (4.2.5)

for obtaining the jth PCA direction, with 1 ≤ j ≤ p. Here, Σ̂ is the empirical
covariance matrix, and the L1 norm ‖a‖1 =

∑p
j=1 |aj | takes the sum of the
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absolute values of the components of the vector a. It is more convenient to
work with the dual formulation of the above problem, given by

max
‖a‖=1,a⊥a1,...,a⊥aj−1

atΣ̂a− λ1‖a‖1, (4.2.6)

where λ1 is a tuning parameter. The larger λ1, the more the components of
a are shrunken towards zero. Due to the use of the L1 penalty, some of the
loadings will even become exactly zero, similar as for the Lasso estimator
in regression. The approach of Jolliffe et al. (2003) requires an estimated
covariance matrix Σ̂ as input of the maximization problem (4.2.5), which
can be solved using the algorithm detailed in Trendafilov and Jolliffe (2006)
or in Journée et al. (2010).
An obvious way to sparse robust PCA would be to replace the empirical
covariance matrix by a robust covariance estimator, as is often done in ro-
bust multivariate data analysis (Hubert et al., 2008). However, computing
robust covariance matrices in high dimensions, and particularly if p > n, is
cumbersome –the estimator may even not exist– and time consuming. We
therefore propose to stick to the projection-pursuit approach, where the PCs
are directly obtained without using a prior covariance estimation. Adding
the L1 constraint in definition (4.2.1) for finding the first PCA direction
yields

ã1 = argmax
‖a‖=1

V (atx1, . . . ,a
txn)− λ1‖a‖1. (4.2.7)

The vector ã1 is the first sparse PCA direction, and its sparsity is controlled
by the tuning parameter λ1. Setting λ1 = 0 results in the unconstrained first
PCA direction a1, but for increasing values of λ1, sparsity gains importance
compared to robust variance maximization. Similarly, the jth sparse PCA
direction (1 < j ≤ p) is defined by

ãj = argmax
‖a‖=1,a⊥ã1,...,a⊥ãj−1

V (atx1, . . . ,a
txn)− λj‖a‖1, (4.2.8)

with λj a tuning parameter, possibly different from λ1. Definition (4.2.7)
and (4.2.8) are very elegant and simple, and maintain the basic interpreta-
tion of the principal components: we look for directions maximizing a robust
variance, under the constraint the loadings should not become too large. If
V = Var, then definitions (4.2.6) and (4.2.7) are the same. Note that most
often one does not need all possible PCs, but only the first few. An advan-
tage of the projection-pursuit approach is that the estimators are computed
sequentially, reducing the computation time for small values of k.

4.3 Algorithm

Computing the projection-pursuit based PCs requires to find the optimal
directions in (4.2.1) and (4.2.2) over a p-dimensional space. For general pro-
jection indices V it is not possible to find analytical solutions for the optimal
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directions. Moreover, since V may be not differentiable in its arguments,
using gradient based methods is not always possible. Several proposals to
find good approximations of the projection-pursuit based PCs, applicable
for any choice of the projection index V , have been made (Hubert et al.,
2002; Croux and Ruiz-Gazen, 2005; Croux et al., 2007). In this paper we
extend the Grid algorithm of Croux et al. (2007) for obtaining sparse solu-
tions, i.e. to solve (4.2.7) and (4.2.8). The algorithm is fast to compute and
accurate even for larger dimension. It is available in the R package pcaPP
(Filzmoser et al., 2010). Below we give an outline of the algorithm.
Let k be the number of sparse PCs that need to be computed. Assume
that the first j − 1 sparse PCA directions ãj−1 are already obtained and
are collected in the first j − 1 columns of the loadings matrix Ãj−1, with
1 ≤ j ≤ k − 1. Now we want to compute ãj . For notational consistency,

set Ã
⊥
0 equal to the identity matrix. For j > 1, let Ã

⊥
j−1 be a matrix

containing in its columns an orthonormal basis for the subspace orthogonal
to the space spanned by the first j − 1 sparse PCA directions. Denote

x
(j−1)
i = (Ã

⊥
j−1)txi, for i = 1, . . . , n, belonging to the lower-dimensional

space IRp−j+1. Solving the maximization problem (4.2.8) is then equivalent
to maximizing the objective function

f (a) = V (atx
(j−1)
1 , . . . ,atx(j−1)

n )− λj‖Ã
⊥
j−1a‖1, (4.3.1)

under the restriction that ‖a‖ = 1. As sparseness relates to the components
of a direction in the space of the original variables, and not to the lower
dimensional space a belongs to, we need to back-transform the vector a to
the original space before taking the L1 norm.
For optimizing (4.3.1) the Grid algorithm is used. The basic idea of this
algorithm is to reduce the problem to a sequence of optimizations in a two-
dimensional plane under a unit norm constraint. This boils down to a se-
quence of maximizations of a function over the unit circle, which is simply
a univariate maximization problem that can be solved by means of a grid
search over [−π, π]. Consider the optimization of (4.3.1) for a given value
of 1 ≤ j ≤ k. We take the following steps:

1. Sort the columns of X(j), where the rows of X(j) contain the vectors

x
(j−1)
i , in descending order of their projection index V . Then the first

variable has the largest value for V and its corresponding loadings
vector a = (1, 0, . . . , 0) serves as a first approximation of the solution.
The vector a has p− j + 1 components.

2. For l = 1, . . . ,maxiter, perform an iteration step in which all compo-
nents of the vector a are updated

� For 1 ≤ i ≤ p−j+1, update the ith component, ai, of the current
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best approximation a by finding the angle γ∗ maximizing

f
(
a1b(γ), . . . , ai−1b(γ), cos γ, ai+1b(γ), . . . , ap−j+1b(γ)

)
,

where γ ranges in the interval [arccos(ai)−π/(2l−1), arccos(ai) +
π/(2l−1)], and where b(γ) = sin(γ)/

√
1− (ai)2 is such that the

unit norm condition holds. This function is maximized by a grid
search using Ngrid evaluation points. The updated value of ai is
then simply cos γ∗.

Note that if the iteration step l increases, we perform a more restricted
search in the plane, since we assume that we are already close enough
to the solution. Since Ngrid remains constant, we are increasing the
precision in every iteration step.

The procedure is said to converge when the absolute change of the optimal
direction a between two iterations drops below a prespecified tolerance level.
The procedure always stops if the maximum number of iterations (maxiter)
is reached. In our implementation, we take Ngrid = 25 and maxiter = 10
by default. Finally, the optimal sparse direction a found for the jth PC
by the grid algorithm has to be back-transformed into the original space,

yielding ãj = Ã
⊥
j−1a.

4.4 Selection of λ

The tuning parameter λj regulates the degree of sparseness. The larger λj ,
the less weight is given to the robust variance measure V in the objective
function (4.2.8), for j = 1, . . . , k. To make the relative importance of the
penalty term in (4.2.8) comparable across the different PCs, i.e. to have a
similar degree of sparsity over the different principal components, we take

λj := λV(X(j)), (4.4.1)

where the matrix X(j) is defined in the previous section, and contains the
data vectors projected on the orthogonal complement of the space spanned
by the first j−1 optimal directions. Furthermore, V denotes the total robust
variance of a data matrix, and is for any n by p matrix Y defined as

V(Y ) =

p∑
i=1

V (yi), (4.4.2)

where yi stands for the ith column of Y and V is the robust variance measure
used as projection index. Using (4.4.1), there is only one tuning parameter
λ to be selected. The penalty term λj decreases with increasing j, along
with the value of the projection index V for the jth principal component.

54



We propose to select the λ to minimize a BIC type criterion (see also Guo
et al., 2010; Leng and Wang, 2009)

BIC(λ) =
R̃V

RV
+ df(λ)

log(n)

n
, (4.4.3)

where R̃V and RV refer to the total robust variance of the residuals matrix
obtained from a sparse PCA and an unconstrained PCA. The first term in
the BIC is a measure for the quality of the fit, while the second term penalizes
for model complexity. Here, df(λ) is the number of non-zero loadings when
using λ as the penalty parameter, as in Guo et al. (2010). The calculation

of R̃V and RV is immediate, since they are given by

R̃V = V(X −XÃkÃ
t
k) and RV = V(X −XAkA

t
k),

where X stands for the data matrix, and Ak and Ãk denote the loadings
matrices containing the first k PC directions (in the columns) for uncon-
strained and constrained PCA, respectively. Note that, for V = Var, the
BIC criterion in (4.4.3) equals the one in Guo et al. (2010). In practice, the
selection of λ is carried out by minimizing the BIC(λ) over a grid [0, λmax],
where λmax results in full sparseness of the sparse PCA solution with k
components (i.e. every loadings vector contains only one non-zero element).

Besides λ, one also needs to choose the number of components k. Appro-
priate selection of k is an old and common problem in principal compo-
nents analysis, and many proposals have been made for it. In this paper
we select the number k from the scree-plot of an unconstrained PCA (see
Cattell, 1966). Such a scree-plot represents the percentage of explained (ro-
bust) variance (EV) by the PCs versus the number of principal components.
Mathematically, the explained (robust) variance is given by

EVk =
V(Zk)

V(X)
, (4.4.4)

with Zk the matrix containing the principal component scores, see (4.2.4).
For V = Var, EVk equals the ratio of the sum of the k largest eigenvalues
to the sum of all eigenvalues of the sample covariance matrix. Since we
are concerned about ease of interpretation and sparsity we do not want
to select a higher number of components when running the Sparse PCA,
and maintain the same number of PCs. For this value of k, a selected λ
should result in a sparser loadings matrix, at the price of limited reduction
in explained (robust) variance. In Section 6 we present the so-called tradeoff
curve, where the percentage of explained variance of the k sparse PCs is
plotted as a function of λ. This tradeoff curve is a graphical tool, in addition
to the BIC, for selecting an appropriate value of λ.
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4.5 Simulation experiments

In this section we present two simulation experiments. The sparse method
should (i) result in increased estimation precision when the true loadings
matrix is sparse, and (ii) succeed in detecting those variables that do not
contribute to the principal components, i.e. true zero loadings are exactly
estimated as zero. We contrast the standard approach, with V = Var, with
the robust approach, with V = Q2

n. If no outliers are present, then the two
properties above hold for both approaches. But it will be shown that, in
presence of outliers, the standard sparse method does not meet its objectives
anymore.

Experiment 1

We generate data sets of n = 50 observations in p = 10 dimensions. The
true loadings matrix is

A =



√
0.5 0

√
0.5 0 0 · · · 0√

0.5 0 −
√

0.5 0 0 · · · 0

0
√

0.5 0
√

0.5 0 · · · 0

0
√

0.5 0 −
√

0.5 0 · · · 0
0 0 0 0 1 0
...

...
...

...
. . .

0 0 0 0 0 1


and the eigenvalues are l = (1, 0.5, 0.1, . . . , 0.1) . The observations are gener-
ated from a multivariate normal distributionN10

(
0,ALAt

)
, with a diagonal

matrix L holding the values of l in its diagonal. Contamination is added by
replacing a portion of pout observations by outliers, generated from the dis-
tribution N10 (µout, I10) with µout = (2, 4, 2, 4, 0,−1, 1, 0, 1,−1)t . Note that
the outliers are not very far from the center of the model distribution. From
the generated data set the loadings matrix is estimated, with k = 2. The
resulting Â2 is compared to the true A2, containing the first two columns
of A, by computing the angle ϕ between the subspaces spanned by columns
of the matrices.
Both the standard and the robust sparse PCA procedure are applied to
m = 100 simulated data sets. Figure 4.1 pictures the average value of ϕ
over the m simulations, as a function of the tuning parameter λ. Different
outlier proportions, ranging from no contamination to 40% of outliers are
considered.
If no outliers are present (pout = 0, solid line), we get the expected pattern.
Starting with λ = 0 (i.e. non sparse PCA) the estimation error decreases
until a minimum is reached at about λ = 1.2. Penalizing the loadings further
yields again an increasing estimation error. If the true model is sparse (here
about 80% of the true loadings are zero) sparse estimation methods indeed
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Figure 4.1: Average deviation between estimated and true loadings for (a)
the standard and (b) robust sparse PCA methods for different levels of
contamination pout and different values of λ.

may improve the precision of the maximum likelihood method. For the
robust sparse method a similar pattern is observed. Note that there is a
slight loss in precision using the robust instead of the standard method.
However, the robust method remains fairly accurate under contamination,
as can be seen from the other curves in Figure 4.1 (b). This is in contrast
with the standard method, where the estimation error increases substantially
and supersedes those of the robust counterpart by a large amount. Finally,
note that in presence of outliers the advantage of penalizing disappears for
the standard method, since λ = 0 yields the smallest average deviation ϕ.
This does not happen for robust sparse PCA.

Experiment 2

We consider the same design as introduced by Zou et al. (2006), and subse-
quently used by Farcomeni (2009) and Guo et al. (2010) in the same context
of sparse PCA. We have n = 20 observations and p = 10 variables driven by
two latent variables

U1 ∼ N(0, 290), U2 ∼ N(0, 300),

where ε ∼ N(0, 1), and U1, U2 and ε are independent. The observed vari-
ables are constructed as

Xj =


U1 + εj , if 1 ≤ j ≤ 4
U2 + εj , if 5 ≤ j ≤ 8
−0.3U1 + 0.925U2 + ε+ εj , if j = 9, 10.
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The error terms ε and εj , for 1 ≤ j ≤ 10, are i.i.d. N(0, 1). The first
two principal components correspond to U2 and U1, respectively, and in
this order. The first block of variables, X1 to X4 is expected to have a
high loading on the second PC, but zero loadings on the first one. The
second block, X5 to X8, should have important loadings on the first PC,
but a zero loading on the second one. The remaining variables X9 and
X10 have a more important loading on the first PC than on the second
one, and a sparse PCA could shrink this second loading to zero. We will
add outliers generated from the distribution N(µout, σ

2
outI10), with µout =

(0,−100, 100, 50, 0, 100,−100, 50, 75,−75)t, and σ2
out = 20. These added

data are not univariate outliers, and hence are not detectable by making
boxplots of the individual variables, but they do not follow the factor struc-
ture described above.
We generate m = 100 samples according to the simulation design, using
outlier portions 0%, 10%, and 20%, and apply the standard and the robust
version of the sparse PCA algorithm. For every sample, an optimal value
of the tuning parameter was selected according to the BIC criterion. Then
loadings of each of the 10 variables on the first two PCs are computed, as well
as the percentage of explained (robust) variance EV. The reported values
correspond to the median and median absolute deviation (MAD, between
parenthesis) over the 100 replications, and are presented in Table 4.1, in a
similar way as in (Guo et al., 2010, Table 1).
Without contamination (0 %), the results are according to the expectations,
and very much comparable to those of Guo et al. (2010). For both the
standard and the robust sparse method, we get that variables X5 through
X10 are solely represented in the first PC, variables X1 to X4 in the second
PC , and the loadings of the last two variables for the second PC are also
shrunken to zero. When adding contamination it is seen from Table 4.1
that the standard PCA gets distorted, and does not succeed in retrieving
the sparsity in the data generating process. The robust method, however,
still delivers sparse solutions. The price the robust method pays for the
resistance with respect to outliers is an increased variability, as measured by
the MAD values.
The standard sparse PC directions are attracted by the outliers and do
no longer explain the actual structure of the majority of observations. As
we can see from the last row of Table 4.1, the explained variance by the
first principal component increases substantially with an increasing level of
contamination. This is a misleading outcome, since it is only caused by the
use of the sample variance estimator, which gets inflated due to the outliers.
It is not meaning that the PCs are more representative for the bulk of
the data. When using robust sparse PCA, we see that the percentage of
explained variance remains about the same when the outliers are added.
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(a) Standard Scree−plot

PC

E
xp

la
in

ed
 V

ar
ia

nc
e 

%

10
20

30
40

(b) Robust Scree−plot

PC
E

xp
la

in
ed

 V
ar

ia
nc

e 
%

10
20

30
40

Figure 4.2: Scree-plots for a (a) standard and (b) robust PCA (λ = 0) for
the car data set.

4.6 Real data examples

The method is used for two differently structured data sets. The first ex-
ample has n > p and shows how the robust method is capable of spotting
groups of outliers. The second example points out the method’s applicability
on high-dimensional data sets, where p > n.

Example 1

The car data set (Kibler et al., 1989) consists of 26 variables containing
technical and insurance-related data for 205 different car models. Only con-
tinuous variables, and observations without missing values are considered
here, resulting in a data set of size 195× 14. To make the scale of the vari-
ables comparable, we divide each column of the data matrix by its standard
deviation (if V = Var) or by a robust scale measure (if V = Qn). Figure 4.2
gives a scree-plot for non-sparse standard and robust PCA, which plots the
explained variance, as defined in (4.4.4), versus the number of components.
Based on this scree-plot we decide to retain the first four PCs, explaining
about 80% of the total (robust) variance, for both approaches.
Figure 4.3 shows the tradeoff curve, discussed in Section 4, plotting the
percentage of explained variance as a function of λ. The explained variances
are computed over a grid of 100 different values of the tuning parameter
λ, ranging from λ = 0 (no sparseness) up to full sparseness (exactly one
non-zero loading per PC). This plot illustrates how an increase in sparseness
affects, and in general will lower, the explained variance. The idea is that the
selected λ should be such that the sharpest decline of tradeoff curve occurs
afterwards. The selected λ should be close to the end of the first, relatively
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flat, part of the tradeoff curve. Using the BIC criterion from equation (4.4.3),
minimized over the same grid of 100 values, we get λ = 2.36, corresponding
to the vertical dashed line in the plot. From the tradeoff curve we conclude
that this is an acceptable value. The sharper decline of the tradeoff curve
occurs for a tuning parameter larger than 3.
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Figure 4.3: Tradeoff curve for robust sparse PCA computed on the car data
set. The dashed line represents the λ selected by the BIC criterion.

Table 4.2 shows the resulting loadings for robust non-sparse PCA and ro-
bust sparse PCA, derived with λ = 2.36. By adding the penalty term in
the objective function, the number of non-zero loadings is reduced from 56
to 16, whereas the total amount of explained variance in the first four PCs
drops from 81% to 64%. We do find this decrease in explained variance
acceptable, given the gained sparsity in the loadings matrix. This could
facilitate interpretation, in particular for the higher order principal compo-
nents. For instance, the fourth principal component is uniquely determined
by peak-rpm.
Further exploratory data analysis can be done by making distance-distance
plots (see Hubert et al., 2002). Such a plot presents two different distance
measures: the score distance of each observation in the space of the first k
PCs, and the orthogonal distance of each observation to this space. Using
cut-off values for both types of distances, outliers can be identified that do
not follow the pattern the majority of the data follows. For details on the
construction of these plots, we refer to Hubert et al. (2002). Figure 4.4 shows
distance-distance plots for the car data, using standard and robust PCA, and
their sparse versions, resulting in four different plots. As before, the first
k = 4 PCs are retained, and λ is selected according to the BIC. The robust
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Table 4.2: Loadings of the variables on the first four robust non-sparse
(λ = 0) and robust sparse (λ = 2.36) PCs of the car data set.

Robust PCA Robust sparse PCA
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

symboling -0.03 -0.04 0.03 -0.17 0 0 0 0
wheel-base 0.24 0.25 0.08 0.16 0 0.50 0 0

length 0.29 0.18 -0.05 0.04 0.24 0 0.85 0
width 0.26 0.16 0.14 0.03 0.21 0 0 0
height 0.08 0.39 -0.26 0.32 0 0.87 0 0

curb-weight 0.24 0.13 0.12 0.00 0.32 0 0 0
bore 0.24 0.16 -0.25 0.04 0.21 0 0.03 0

stroke 0.00 -0.24 0.29 -0.58 0 0 0 0
compression-ratio -0.47 0.61 0.49 -0.11 -0.45 0 0.53 0

horsepower 0.36 -0.01 0.16 -0.20 0.43 0 0 0
peak-rpm 0.08 -0.38 0.60 0.64 0 0 0 1.00
city-mpg -0.31 0.04 -0.02 0.14 -0.30 0 0 0

highway-mpg -0.33 0.07 -0.04 0.14 -0.35 0 0 0
price 0.33 0.31 0.34 -0.12 0.40 0 0.06 0

EV % 49.20 15.54 10.12 5.97 45.73 8.32 6.03 4.16
Cumulative EV % 49.20 64.74 74.85 80.82 45.73 54.05 60.08 64.24

distance-distance plot (Figure 4.4 b) points out a very distinct outlier group
(denoted by symbols ×) which in fact represents all car-models running on
diesel. The robust sparse model (Figure 4.4 d) is also able to clearly identify
this particular group of outliers. In contrast, when considering the standard
non-sparse (Figure 4.4 a) and sparse (Figure 4.4 c) distance-distance plots,
these outliers cannot be identified, since their presence is masked by the use
of a non-robust diagnostic measure. We conclude that in this example only
the robust procedure allows to detect the group of outliers, and that adding
the sparsity condition did not affected the diagnostic power of the robust
distance-distance plot.

Example 2

The yarn data set (see Swierenga et al., 1999) contains near-infrared (NIR)
spectra of 21 PET yarns of different density. 268 different wavelengths were
measured, yielding a data set of size 21 × 268. As the algorithm discussed
in Section 3 computes one (sparse) PC at a time and may stop after com-
puting the kth component, it is especially useful in high-dimensional ap-
plications, where the actual information is restricted to a comparatively
low-dimensional subspace. Due to this characteristic, computation time can
be reduced tremendously, as in such settings usually only a few PCs are
important. In the data set k = 2 PCs already explain more than 85% of the
total (robust) variance, thus the iteration can be stopped after obtaining the
first two principal components, rather than computing all min(n, p) loadings
vectors. In this particular example this reduces computation time by 90%
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(b) Robust PCA
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(c) Standard sparse PCA
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(d) Robust sparse PCA
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Figure 4.4: Distance-distance plots for standard and robust PCA and their
sparse versions. In the robust plots vehicles running on diesel (×) are clearly
distinguishable from vehicles using gasoline (©).

(from 41 to 4 seconds for standard and from 135 to 13 seconds for robust
PCA on an AMD Athlon x64 X2 4200+ running at 2.2GHz).
Figure 4.5 shows the spectral lines of the 21 observations (black). Three
spectral intervals A, B and C are pointed out, as the variables in these areas
show a higher variance than in other regions. In interval B the single yarns
are grouped together to 5 “clusters”, whereas in region A and C this pattern
cannot be observed and the yarns are more homogeneously structured. We
add three outlying spectra (see Figure 4.5, in grey) in order to test the
algorithm’s robustness properties in high-dimensional scenarios.
We start by selecting an appropriate value for the number k of PCs to
retain. The screeplot in Figure 4.6 conforms that k = 2 is a good choice,
explaining most of the (robust) variance. Note that the large value for EV1

for the standard method is mainly due to the fact that the sample variance
is inflated by the outliers. The screeplot for standard PCA on the data set
without the outlying spectra does resemble Figure 4.6 (b). Then, we use the
tradeoff curve in Figure 4.7 for selecting a value of λ keeping a sufficiently
large percentage of explained variance. For robust PCA we take λ = 16.02,
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Figure 4.5: The yarn data set. The NIR spectrum of 21 different PET yarns
(black), with intensity measured at 268 wavelengths. Outliers (in grey) were
added for challenging the robust sparse PCA estimator.

a value at the end of the flat part of the curve and well before the sharp
decrease in the tradeoff curve. For that value of λ we explain still 85% of
the robust variance. The BIC criterion gives us a value of 19.55, which is
not that different, but leads to a too large loss of explained robust variance.
For standard PCA we take λ = 12.77 explaining 75% the total variance.
Figure 4.8 shows the loadings of the 268 variables, labeled with wavenum-
bers one to 268 for standard and robust PCA, and their sparse version.
For standard PCA, the loadings in general do not seem to contain any in-
terpretable structure and are heavily influenced by the outliers. The first
standard sparse PC (panel b, dashed line), does hardly contain any zeros,
whereas the second (panel d, dashed line) does only contain 11 non-zero
loadings. However, this second sparse standard PC does not point out spe-
cific spectral ranges, but is mainly made up of single spikes, describing the
outlier’s random pattern. In contrast to this, robust PCA shows distinct
features in all four plots. The first non-sparse robust PC (panel a, solid
line) points out a peak at the spectrum’s lower end. This peak is even much
more clearly detected by the robust sparse model (panel b, solid line) and
corresponds to the spectral range B in which the yarns reveal a rather “clus-
tered” structure. Most of the loadings outside of the interval B are reduced
to zero, illustrating that a sparse approach make interpretation easier. The
second robust PC (panel c, solid line) is mainly made up of the wavelengths
in spectral ranges A and C, corresponding to the wavelengths with high
variability but without “cluster structure” among the yarns. Wavelengths
outside of these intervals A and C contribute less to the second PC, as their
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Figure 4.6: Scree-plots for a (a) standard and (b) robust PCA (λ = 0) for
the yarn data set.
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Figure 4.7: Tradeoff curves for standard and robust sparse PCA computed
on the yarn data set. The dashed lines represent the selected value of the
tuning parameter λ.

(absolute) loadings are quite low. The loadings of the second sparse robust
PC (panel d, solid line) do even much better in separating the wavelengths
in intervals A or C from the others; almost all loadings outside of these
ranges are exactly equal to zero. As we can see from the tradeoff curve in
Figure 4.7 (b), the sparse robust solution only explains 1% less variance than
the non-sparse (λ = 0), whereas the number of non-zero loadings decreases
from 2 × 268 = 536 to 159. Despite the noise added by the three outlying
spectra, the robust sparse method is capable of finding distinct structures
in the data.
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Figure 4.8: Loadings of the 268 variables on the first two principal compo-
nents using standard (grey) and robust (black) PCA. Results are given for
both sparse (right) and non-sparse (left) PCA for the yarn data set.

4.7 Concluding remarks

Sparse PCA delivers components that can be considered as a compromise be-
tween maximizing the variance and simplifying the interpretability. Robust
sparse PCA also has the goal of simple interpretability, but the determina-
tion of the PCA directions is not affected by outlying observations. The
proposed approach is based on the idea of projection-pursuit, maximizing
a robust variance for finding the directions. Projection-pursuit based PCA
has the further advantage that the components are extracted sequentially,
which allows to stop the algorithm after a desired number of components.
This is especially attractive for the analysis of data in high dimensions, with
possibly fewer observations than variables.
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The optimal level of the tuning parameter λ, optimal in terms of both in-
terpretability and explained variance, can be determined by an information
criterion like the BIC criterion introduced in equation (4.4.3). This criterion
can be used for determining the sparsity parameter jointly for all extracted
PCs. The simulations and the data examples have demonstrated that the
robust sparse PCs can be accurately estimated with the Grid algorithm, that
the results are resistant with respect to data outliers, and that the resulting
sparsity patterns are useful. The tradeoff curve, visualizing the tradeoff be-
tween explained variance and sparsity, can be used as an exploratory tool for
obtaining more guidance on an optimal sparsity level. An implementation of
the algorithm is available in the R package pcaPP (Filzmoser et al., 2010).
There are several questions we did not address and which are left for future
research. For instance, one could think of a joint selection criterion for the
number of principal components and the tuning parameter λ, as opposed to
the two-step approach followed in this paper. Another limitation of the pa-
per is that we only considered the L1 norm in the constraint on the loadings.
In regression analysis one frequently uses the L2 norm, e.g. Maronna (2011)
for regularized robust regression, but this will not lead to sparse solutions.
Using the L0 norm, though, does yield sparsity (see Farcomeni, 2009). Fi-
nally, one could consider to add a supplementary penalty on the norm of the
score vectors, given in (4.2.3), to get both sparse loadings coefficients and
score vectors, as in Witten et al. (2009). This would yield a sparse variant of
robust low-rank approximations of a data matrix, as in Maronna and Yohai
(2008).
A naive approach to robust sparse PCA would be to estimate a sparse ro-
bust covariance matrix, and then compute the eigenvectors of it. While
sparse robust covariance matrices have recently been proposed (Croux et al.,
2010), this is not a useful approach since the eigenvectors will not inherit
the sparsity of the matrix. A projection-pursuit approach, as undertaken in
this paper, avoids this pitfall. Projection-pursuit approaches to sparse dis-
criminant analysis and sparse canonical correlation analysis were recently
proposed (see Witten and Tibshirani, 2011; Lykou and Whittaker, 2010),
and robust version of these methods can be obtained along similar lines as
in this paper.
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Chapter 5

tclust: An R Package for a
Trimming Approach to
Cluster Analysis

Summary: Outlying data can heavily influence standard clustering meth-
ods. At the same time, clustering principles can be useful when robustifying
statistical procedures. These two reasons motivate the interest in developing
feasible robust model-based clustering approaches. With this in mind, an
R package for performing non-hierarchical robust clustering, called tclust
is presented here. Instead of trying to “fit” noisy data, a proportion α of
the most outlying observations is trimmed. The tclust package efficiently
handles different cluster scatter constraints. Graphical exploratory tools are
also implemented to help the user make sensible choices for the trimming
proportion as well as the number of clusters to search for.

Keywords: Model-based clustering, trimming, heterogeneous clusters
Co-authors: Luis A. Garćıa-Escudero, Agust́ın Mayo-Iscar

5.1 Introduction to robust clustering and tclust

Methods for cluster analysis are basically aimed at detecting homogeneous
clusters with large heterogeneity among them. As happens with other (non-
robust) statistical procedures, clustering methods may be heavily influenced
by even a small fraction of outlying data. For instance, due to outlying
observations, two or more clusters might artificially be joined or “spurious”
non-informative clusters may be made up by only a few outlying observa-
tions (see, e.g. Garćıa-Escudero and Gordaliza, 1999; Garćıa-Escudero et al.,
2010). Therefore, the application of robust methods in this context is very
advisable, especially in fully automatic clustering (unsupervised learning)
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problems. Certain relations between cluster analysis and robust methods
(Rocke and Woodruff, 2002; Hardin and Rocke, 2004; Garćıa-Escudero et al.,
2003; Woodruff and Reiners, 2004) are also a motivation for the interest of
robust clustering techniques. For instance, robust clustering techniques can
be used to handle “clusters” of highly concentrated outliers which are espe-
cially dangerous in (non-robust) estimation. Garćıa-Escudero et al. (2010)
provides a recent survey of robust clustering methods.
The tclust package for the R environment for statistical computing (R De-
velopment Core Team, 2010a) implements different robust non-hierarchical
clustering algorithms where trimming plays a key role. This package is
available at http://CRAN.R-project.org/package=tclust. As trimming
allows to remove a fraction α of the “most outlying” data, the strong in-
fluence of outlying observations can be avoided and robustness naturally
arises. This trimming approach to clustering has been introduced in Cuesta-
Albertos et al. (1997), Gallegos (2002), Gallegos and Ritter (2005) and
Garćıa-Escudero et al. (2008). Trimming also serves to highlight interesting
anomalous observations.
Trimming is not a new concept in statistics. For instance, the widely used
trimmed mean for one-dimensional data removes a proportion α/2 of the
largest, and a proportion α/2 of the smallest observations before computing
the mean. However, it is not straightforward to extend this philosophy to
cluster analysis, because most of these problems are of multivariate nature.
Moreover, it is often the case that “bridge points” lying between clusters
ought to be trimmed. Instead of forcing the statistician to define the regions
to be trimmed in advance, the procedures implemented in tclust take the
whole data structure into account in order to decide which parts of the
sample should be discarded. By considering this type of trimming, these
procedures are even able to trim outlying bridge points. The “self-trimming”
philosophy behind these procedures is exactly the same as adopted by some
well-known high breakdown-point methods (see, e.g., Rousseeuw and Leroy,
1987).
As a first example of this trimming approach, let us consider the trimmed
k-means method introduced in Cuesta-Albertos et al. (1997). The function
tkmeans from the tclust package implements this method. In the following
example, this function is applied to a bivariate data set based on the Old
Faithful geyser called geyser2 that accompanies the tclust package. The
code given below creates Figure 5.1.

R > library ("tclust")

R > data ("geyser2")

R > clus <- tkmeans (geyser2, k = 3, alpha = 0.03)

R > plot (clus)

In the data set geyser2, we are searching for k = 3 clusters and a proportion
α = 0.03 of the data is trimmed. The clustering results are shown in Figure
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Figure 5.1: Trimmed k-means results with k = 3 and α = 0.03 for the bi-
variate Old Faithful Geyser data. Trimmed observations are always denoted
by the symbol “◦” (in all the figures in this work).

5.1. Among this 3% of trimmed data, we can see 6 anomalous“short followed
by short”eruptions lengths. Notice that an observation situated between the
clusters is also trimmed.
The package presented here adopts a “crisp” clustering approach, meaning
that each observation is either trimmed or fully assigned to a cluster. In
comparison, mixture approaches estimate a cluster pertinence probability
for each observation. Robust mixture alternatives have also been proposed
where noisy data is tried to be fitted through additional mixture compo-
nents. For instance, package mclust (Banfield and Raftery, 1993; Fraley
and Raftery, 1998) and the Fortran program emmix (McLachlan and Peel,
2000) implement such robust mixture fitting approaches. Mixture fitting
results can be easily converted into a “crisp” clustering result by convert-
ing the cluster pertinence probabilities into 0-1 probabilities. Contrary to
these mixture fitting approaches, the procedures implemented in the tclust
package simply remove outlying observations and do not intend to fit them
at all. Package tlemix (see Neykov et al., 2007) also implements a closely
related trimming approach. As described in Section 5.3, the tclust package
focuses on offering adequate cluster scatter matrix constraints leading to a
wide range of clustering procedures, depending on the chosen constraint,
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and avoiding the occurrence of spurious non-interesting clusters.
The outline of the paper is as follows: In Section 5.2 we briefly review the
so-called“spurious outliers”model and show how to derive two different clus-
tering criteria from it. Different constraints on the cluster scatter matrices
and their implementation in the tclust package are commented in Section
5.3. Section 5.4 presents the numerical output returned by this package.
Some brief comments concerning the implemented algorithms are given in
Section 5.5. Some comments about how tclust performs compared to other
robust clustering approaches are given in Section 5.6. Section 5.7 shows
some graphical outputs that help us make sensible choices for the number of
clusters and trimming proportion. Other useful plots summarizing the ro-
bust clustering results are shown in Section 5.8. Finally, Section 5.9 applies
the tclust package to a well-know real data set.

5.2 Trimming and the spurious outliers model

Gallegos (2002) and Gallegos and Ritter (2005) propose the “spurious out-
liers model” as a probabilistic framework for robust crisp clustering. Let
f(·;µ,Σ) denote the probability density function of the p-variate normal
distribution with mean µ and covariance matrix Σ. The “spurious-outlier
model” is defined through “likelihoods” like[ k∏

j=1

∏
i∈Rj

f(xi;µj ,Σj)

][ ∏
i∈R0

gi(xi)

]
(5.2.1)

with {R0, ..., Rk} being a partition of the set of indices {1, 2, ..., n} such that
#R0 = dnαe. R0 are the indices of the “non-regular” observations generated
by other (not necessarily normal) probability density functions gi. “Non-
regular” observations can be clearly considered as “outliers” if we assume
certain sensible assumptions for the gi (see details in Gallegos, 2002; Galle-
gos and Ritter, 2005). Under these assumptions, the search of a partition
{R0, ..., Rk} with #R0 = dnαe, vectors µj and positive definite matrices
Σj maximizing (5.2.1) can be simplified to the same search (of a partition,
vectors and positive definite matrices) by just maximizing

k∑
j=1

∑
i∈Rj

log f(xi;µj ,Σj). (5.2.2)

Notice that observations xi with i ∈ R0 are not taken into account in (5.2.2).
Maximizing (5.2.2) with k = 1 yields the Minimum Covariance Determinant
(MCD) estimator (Rousseeuw, 1985).
Unfortunately, the direct maximization of (5.2.2) is not a well-defined prob-
lem when k > 1. It is easy to see that (5.2.2) is unbounded without any
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restr equal.weights = TRUE equal.weights = FALSE

"eigen"
k-means
Cuesta-Albertos et al. (1997)

Garćıa-Escudero et al. (2008)

"deter" Gallegos (2002) This work

"sigma"
Friedman and Rubin (1967)
Gallegos and Ritter (2005)

This work

Table 5.1: Clustering methods handled by tclust. Names in cursive letters
are untrimmed (α = 0) methods.

constraint on the cluster scatter matrices Σj . The tclust function from
the tclust package approximately maximizes (5.2.2) under different cluster
scatter matrix constraints which will be shown in Section 5.3.
The maximization of (5.2.2) implicitly assumes equal cluster weights. In
other words, we are ideally searching for clusters with equal sizes. The func-
tion tclust provides this option by setting the argument equal.weights =

TRUE. The use of this option does not guarantee that all resulting clusters
exactly contain the same number of observations, but the method hence
prefers this type of solutions.
Alternatively, different cluster sizes or cluster weights can be considered
by searching for a partition {R0, ..., Rk} (with #R0 = dnαe), vectors µj ,
positive definite matrices Σj and weights πj ∈ [0, 1] maximizing

k∑
j=1

∑
i∈Rj

(log πj + log f(xi;µj ,Σj)). (5.2.3)

The (default) option equal.weights = FALSE is used in this case. Again,
the scatter matrices also have to be constrained such that the maximization
of (5.2.3) becomes a well-defined problem. Note that equation (5.2.3) sim-
plifies to (5.2.2) when assuming equal.weights = TRUE and all weights are
equally set to πj = 1/k.

5.3 Constraints on the cluster scatter matrices

As already mentioned, the function tclust implements different algorithms
aimed at approximately maximizing (5.2.2) and (5.2.3) under different types
of constraints which can be applied on the scatter matrices Σj . The type of
constraint is specified by the argument restr of the tclust function. Table
5.1 gives an overview of the different clustering approaches implemented by
the tclust function depending on the chosen type of constraint.
Imposing constraints is compulsory because maximizing (5.2.2) or (5.2.3)
without any restriction is not a well-defined problem. Notice that an al-
most degenerated scatter matrix Σj would cause trimmed log-likelihoods
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(5.2.2) and (5.2.3) to tend to infinity. This issue can cause a (robust) clus-
tering algorithm of this type to end up finding “spurious” clusters almost
lying in lower-dimensional subspaces. Moreover, the resulting clustering so-
lutions might heavily depend on the chosen constraint. The strength of the
constraint is controlled by the argument restr.fact ≥ 1 in the tclust

function. The larger restr.fact is chosen, the looser is the restriction on
the scatter matrices, allowing for more heterogeneity among the clusters.
On the contrary, small values of restr.fact close to 1 imply very “equally
scattered” clusters. This idea of constraining cluster scatters to avoid spu-
rious solutions goes back to Hathaway (1985), who proposed it in mixture
fitting problems.
Also arising from the spurious outlier model, other types of constraints have
recently been introduced by Gallegos and Ritter (2009, 2010). These (closely
related) constraints also serve to avoid degeneracy of trimmed likelihoods but
they are not implemented in the current version of the tclust package.

5.3.1 Constraints on the eigenvalues

Based on the eigenvalues of the cluster scatter matrices, a scatter similarity
constraint may be defined. With λl(Σj) as the eigenvalues of the cluster
scatter matrices Σj and

Mn = max
j=1,...,k

max
l=1,...,p

λl(Σj) and mn = min
j=1,...,k

min
l=1,...,p

λl(Σj) (5.3.1)

as the maximum and minimum eigenvalues, the restriction restr = "eigen"

constrains the ratio Mn/mn to be smaller or equal than a fixed value re-

str.fact ≥ 1. A theoretical study of the properties of this approach with
equal.weights = FALSE can be found in Garćıa-Escudero et al. (2008).
This type of constraint limits the relative size of the axes of the equidensity
ellipsoids defined through the obtained Σj when assuming normality. This
way we are simultaneously controlling the relative group sizes and also the
deviation from sphericity in each cluster.
Setting equal.weights = TRUE, restr = "eigen" and restr.fact = 1 im-
plies the most constrained case. In this case, the tclust function tries to
solve the trimmed k-means problem as introduced by Cuesta-Albertos et al.
(1997). This problem simplifies to the well-known k-means clustering cri-
terion when no trimming is done (i.e. alpha = 0). The tkmeans function
directly implements this most constrained application of the tclust func-
tion.
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5.3.2 Constraints on the determinants

Another way of restricting cluster scatter matrices is constraining their de-
terminants. Thus, if

Mn = max
j=1,...,k

|Σj | and mn = min
j=1,...,k

|Σj |

are the maximum and minimum determinants, we attempt to maximize
(5.2.2) or (5.2.3) by constraining the ratio Mn/mn to be smaller or equal
than a fixed value restr.fact. This is done in the function tclust by using
the option restr = "deter".
Now, this type of constraint limits the relative volumes of the mentioned
equidensity ellipsoids, but not the cluster shapes. The use of this type
of constraint is particularly advisable when affine equivariance is required
because this property is satisfied when restr = "deter".
The untrimmed case alpha = 0, restr = "deter" and restr.fact = 1

was already outlined in Maronna and Jacovkis (1974), as the only sensible
way to avoid (Mahalanobis distance modified) k-means type algorithms to
return clusters of a few almost collinear observations. The possibility of
trimming data was also considered in Gallegos (2002) who implicitly as-
sumed |Σ1| = ... = |Σk| (and so restr.fact = 1). The package presented
here extends her approach to more general cases (restr.fact > 1).

5.3.3 Equal scatter matrices

Among the methods considered, tclust also implements a stronger type of
constraint by setting restr = "sigma" which forces all cluster scatter ma-
trices to be the same: Σ1 = ... = Σk. This is known as the “determinantal”
criterion and it goes back to Friedman and Rubin (1967). The trimmed
version of this approach was introduced by Gallegos and Ritter (2005). The
argument restr.fact is ignored when applying this type of constraint.

5.3.4 Example

In this example, we examine the influence of different constraints by applying
the function tclust to the so-called M5data data set. This data set, which
accompanies the tclust package, has been generated following the simulation
scheme M5 introduced in Garćıa-Escudero et al. (2008). Thus it is a bivariate
mixture of three simulated gaussian components with very different scatters
and a clear overlap between two of these components. A 10% proportion of
outliers is also added in the outer region of the bounding rectangle enclosing
the three gaussian components. See Figure 5.2 for a graphical representation
and Garćıa-Escudero et al. (2008) for more details on the structure of this
M5data data set. Executing the following code yields Figure 5.3.
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Figure 5.2: A scatter plot of the M5data data set. Different symbols are
used for the data points generated by each of the three bivariate normal
components and “◦” for the added outliers.

R > data ("M5data")

R > x <- M5data[, 1:2]

R > res.a <- tclust (x, k = 3, alpha = 0.1, restr.fact = 1,

+ restr = "eigen", equal.weights = TRUE)

R > res.b <- tclust (x, k = 3, alpha = 0.1, restr.fact = 1,

+ restr = "sigma", equal.weights = TRUE)

R > res.c <- tclust (x, k = 3, alpha = 0.1, restr.fact = 1,

+ restr = "deter", equal.weights = TRUE)

R > res.d <- tclust (x, k = 3, alpha = 0.1, restr.fact = 50,

+ restr = "eigen", equal.weights = FALSE)

R > plot (res.a, main = "/r")

R > plot (res.b, main = "/r")

R > plot (res.c, main = "/r")

R > plot (res.d, main = "/r")

Although different constraints are imposed, we are searching for k = 3 clus-
ters and the trimming proportion is set to α = 0.1 in all the cases. Note that
only the clustering procedure introduced in Garćıa-Escudero et al. (2008),
shown in Figure 5.3,(d), with a sufficiently large value of restr.fact ap-
proximately returns the three original clusters in spite of the very different
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(a) restr = "eigen", restr.fact = 1
k = 3, α = 0.1
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(b) restr = "sigma"
k = 3, α = 0.1
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(c) restr = "deter", restr.fact = 1
k = 3, α = 0.1
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(d) restr = "eigen", restr.fact = 50
k = 3, α = 0.1
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Figure 5.3: Results of the clustering processes for the M5data data set for
different constraints on the cluster scatter matrices and the parameters α =
0.1 and k = 3. Different colors and symbols represent each observation’s
individual cluster assignment.

cluster scatters and different cluster sizes. Moreover, this clustering pro-
cedure adequately handles the severe overlap of two clusters. The value
restr.fact = 50 has been chosen in this case because the eigenvectors of
the covariance matrices of the three gaussian components satisfy restriction
(5.3.1) for this value. Due to their underlying assumptions, the other three
clustering methods (trimmed k-means in Figure 5.3,(a), Gallegos and Rit-
ter (2005) in (b), Gallegos (2002) in (c)) return rather similarly structured
clusters. In fact, we found spherical clusters in (a), clusters with the same
scatter matrix in (b) and clusters with the same cluster scatter matrix de-
terminant in (c). The M5data is perhaps a very “extreme” situation and
restriction settings in (a), (b) and (c) can be useful (and easier to be inter-
preted) with not so extreme data sets and where the assumptions implied
by these restriction settings hold.
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Figure 5.4: Applying tclust with k = 3 and α = 0 on a simulated data set
which originally consists of 2 clusters when equal.weights = FALSE.

5.4 Numerical output

The function tclust returns an S3 object containing the cluster centers µj
by columns ($centers), scatter matrices Σj as an array ($cov), the weights
($weights), the number of observations in each group ($size) and the maxi-
mum value found for the trimmed log-likelihood objective function (5.2.2) or
(5.2.3) ($obj). The vector $cluster provides the cluster assignment of each
observation, whereas an artificial cluster “0” (without location and scatter
information) is introduced which holds all trimmed data points.
Sometimes equations (5.2.2) and (5.2.3) maximize with some clusters re-
maining empty (see Figure 5.4). In this case, only information on the non-
empty groups is returned. Notice that, if we are searching for k clusters,
empty clusters can be found when a clustering solution for a number of clus-
ters strictly smaller than k attains a higher value for (5.2.2) or (5.2.3) than
the best solution found with k clusters. In this case, artificial empty clusters
may be defined by considering sufficiently remote centers µj and scatter ma-
trices Σj satisfying the specific constraints that are assigned to these empty
clusters. They are chosen such that f(·;µj ,Σj) gives almost null density
to all the observations in the sample. These artificially added centers and
scatter matrices are not returned as output by the tclust function and a
warning is issued. For instance, let us consider the following code
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R > set.seed (10)

R > x <- rbind (rmvnorm (200, c (0, 0), diag (2)),

+ rmvnorm (200, c (5, 0), diag (2)))

R > clus <- tclust (x, k = 3, alpha = 0, restr.fact = 1)

Warning messages:

1: In .tclust.warn(warnings, ret) :

1 empty cluster has been detected - try reducing k.

...

R > plot (clus)

Although we are searching for k = 3 clusters, Figure 5.4 and the issued
warning show that only 2 clusters are found. Notice that k = 2 is surely a
more sensible choice for the number of clusters than k = 3 for this generated
data set. Therefore, the detection of empty clusters, or clusters with few data
points, can be helpful, providing valuable tools for making sensible choices
for k as we will see in Section 5.7. On the other hand, the detection of empty
clusters is very unlikely to happen when the argument equal.weights =

TRUE is provided in the call to tclust.

5.5 Algorithms

The maximization of (5.2.2) or (5.2.3) considering different cluster scatter
matrix constraints is not straightforward because of the combinatorial nature
of the associated maximization problems.
The algorithm presented in Garćıa-Escudero et al. (2008) can be adapted to
approximately solve all these problems. The methods implemented in tclust
could be seen as Classification EM algorithms (Schroeder, 1976; Celeux and
Govaert, 1992), whereas a certain type of “concentration” steps (see the fast-
MCD algorithm in Rousseeuw and Van Driessen, 1999) is also applied. In
fact, the concentration steps applied by the package tclust can be consid-
ered as an extension of those applied by the batch-mode k-means algorithm
(Steinhaus, 1956; Forgy, 1965). It can be seen that the target function always
increases throughout the application of concentration steps, whereas several
random start configurations are needed in order to avoid ending trapped
in local maxima. Therefore, nstart random initializations and iter.max

concentration steps are considered. The probability that the algorithm con-
verges close to the global optimum maximizing (5.2.2) or (5.2.3) increases
with larger values of nstart and iter.max. The drawback of high values of
nstart and iter.max obviously is the increasing computational effort.
In the concentration step, the centers and scatter matrices are updated by
considering the cluster sample means and cluster sample covariance matrices.
New cluster assignments are obtained by gathering the“closest”observations
to the new centers. Mahalanobis distances, based on the computed cluster
sample covariance matrices, are used in order to decide which are the closest
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observations to each center. If needed, in the updating step, the cluster
sample covariance matrices are modified as little as possible but in such a
way that they satisfy the desired constraints (Garćıa-Escudero et al., 2008).
The main idea behind these “constrained” concentration steps is to replace
the eigenvalues of the sample covariance matrices by optimally truncated
eigenvalues, which satisfy the desired constraint. A more detailed description
of the algorithm applied by tclust and the way the restrictions are forced
onto the cluster scatter matrices can be found in Fritz et al. (2011).

5.6 Comparison with other robust clustering pro-
posals

In this section, we briefly compare the performance of the clustering pro-
cedures implemented in the tclust package with respect to other robust
clustering proposals in the literature.
The Partitioning Around Medoids (PAM) clustering method (Kaufman and
Rousseeuw, 1990) has been proposed as a robust alternative to k-means
clustering. It can be seen that the effect of the 6 anomalous “short followed
by short” eruptions lengths in the lower left corner of Figure 5.1 do not affect
the position of the k-medoid centers (see Figure 5.5,(a)) too much, nor the
resulting clusters. However, in Figure 5.5,(b), we see that the clustering
results with k = 3 are strongly affected when moving these 6 anomalous
points toward a more distant position. On the other hand, in Figure 5.5,(c),
we can see that these outlying data points do not affect the trimmed k-means
based clustering at all once that they are trimmed.
In fact, only one single outlier placed in a very remote position is able to
completely break down the PAM method (Garćıa-Escudero and Gordaliza,
1999). This also happens when applying emmix, which has a breakdown
point of zero (Hennig, 2004). The emmix approach is able to obtain appro-
priate clustering results for the two data sets made of mixtures of symmetric
and asymmetric t components as those shown in Figure 5.6. These two data
sets contain three main clusters with some distant observations in the heavy
tails of these t components, which would be considered as outliers when as-
suming normality. When applying the classification EM algorithm without
trimming to these data sets, we are not able to find the three cluster struc-
tures and two main clusters are artificially joined together. However, when
considering α = 0.05, tclust perfectly avoids the harmful effect of the obser-
vations in the tails and still discovers the three clusters. In fact, almost all
non-trimmed observations are correctly clustered in both, symmetric and
asymmetric, cases. Any α > 0 discarding the most outlying observations
would give similar results. Moreover, it may be seen that the shape of the
elliptical clusters are essentially discovered in the case of the symmetric-
elliptical t components. In this example, we see that applying tclust to
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Figure 5.5: PAM’s clustering results for the geyser2 data with 3-medoids
denoted by the symbol “×” in (a). PAM’s clustering results for a modified
geyser2 data set in (b) and when applying tkmeans with k = 3 and α = 0.03
in (c).

data sets including non-normally distributed components as those in Figure
5.6 may result in proper clustering solutions, this however cannot be guar-
anteed if the underlying distributions differ too much from normality. The
closely related tlemix package allows to consider other non-normal mod-
els by taking advantage of the flexibility provided by the FlexMix package
(Leisch, 2004). On the other hand, tclust focuses on normally distributed
components and on the implementation of appropriate cluster scatter ma-
trix constraints while tlemix does not. The tlemix mainly controls the
minimum number of observations in a cluster.
The widely used mclust package considers a uniformly distributed com-
ponent for explaining outlying data points. As we can see, this uniform
component successfully accommodates the 10% “background noise” as seen
in Figure 5.7,(a). However, it is not able to cope with a more structured
noise pattern like the “helix” in Figure 5.7,(c) which also accounts for 10% of
the data, although the information of a 10% contamination level was passed
to mclust. Alternatively, the tclust package with k = 2 and α = 0.1
properly discovers the outlying data points without trying to fit them.
Since groups of outliers may be considered as further clusters, it could be
argued that robust clustering problems can always be solved by increasing
the number of groups we are searching for. However, as explained in Garćıa-
Escudero et al. (2010), this is not necessarily the best strategy. Firstly,
sometimes the researcher fixes the number of clusters in advance, not being
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(d) Non−elliptical t components (e) Classification
k = 3, α = 0
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Figure 5.6: A data set made up of three elliptical t components is shown in
(a) and three asymmetrical t components in (d). The associated clustering
results when applying the tclust function with k = 3 and α = 0 are shown
in (b) and (e) and with k = 3 and α = 0.05 in (c) and (f).

aware of the presence of a small amount of outlying observations. Secondly,
it could lead to a quite large number of clusters when very scattered outliers
are present in the data set.
A clear limitation of tclust is that it is not applicable on high-dimensional
data sets, as the method in its current definition definitely needs a data set
containing more observations than dimensions.

5.7 Selecting the number of groups and the trim-
ming size

Perhaps one of the most complex problems when applying cluster analysis is
the choice of the number of clusters, k. In some cases one might have an idea
of the number of clusters in advance, but usually k is completely unknown.
Moreover, in the approach proposed here, the trimming proportion α has
also to be chosen without knowing the true contamination level.
As we will see through the following example, the choices for k and α are
related problems that should be addressed simultaneously. It is important
to see that a particular trimming level implies a specific number of clusters
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Figure 5.7: Clustering results for two simulated data sets when applying
mclust with k = 2 in (a) and (c) and tclust with k = 2 and α = 0.1 in (b)
and (d).

and vice versa. This dependency can be explained as entire clusters tend
to be trimmed completely when increasing α. On the other hand, when
choosing α too low, groups of outliers might form new spurious clusters
and thus it appears that the number of clusters found in the data set is
higher. Moreover, the simultaneous choice of k and α depends on the type
of clusters we are searching for and on the allowed differences between cluster
sizes. These two aspects can be controlled by the choice of arguments restr
and restr.fact.
To demonstrate the relation between α, k and restr.fact, let us consider
restr = "eigen" and the data set in Figure 5.8 which could either be inter-
preted as a mixture of three components (a) or a mixture of two components
(b) with a 10% outlier proportion. Both clustering solutions shown in Figure
5.8 are perfectly sensible and the final choice of α and k only depends on
the value given to restr.fact. The code used to obtain Figure 5.8 is the
following:

R > sigma1 <- diag (2) ## EigenValues: 1, 1

R > sigma2 <- diag (2) * 8 - 2 ## EigenValues: 8, 4

R > sigma3 <- diag (2) * 50 ## EigenValues: 50, 50
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k = 2, α = 0.05
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Figure 5.8: Clustering results for the simulated data set mixt with k = 3,
α = 0 and restr.fact = 50 (a) and k = 2, α = 0.1 and restr.fact = 8
(b).

R > mixt <- rbind (

+ rmvnorm (360, mean = c (0.0, 0), sigma = sigma1),

+ rmvnorm (540, mean = c (5.0, 10), sigma = sigma2),

+ rmvnorm (100, mean = c (2.5, 5), sigma = sigma3))

R > plot (tclust (mixt, k = 3, alpha = 0.00, restr.fact = 50))

R > plot (tclust (mixt, k = 2, alpha = 0.05, restr.fact = 12))

Considering sigma1 and sigma2, the quotient of the largest and smallest
eigenvalue is 8, whereas the maximal quotient is 50 if we consider sigma1,
sigma2 and sigma3. Thus restr.fact = 8 would allow to consider two
clusters while restr.fact = 50 would also allow to assume three groups
there. Although the proportion of “contaminated” data is equal to 10%, the
trimming level must be reduced to 5%, when considering k = 2, because the
third (more scattered) gaussian component partially overlaps with the other
two components.
Let us assume first that restr and restr.fact have been fixed in advance
by the researcher who applies the robust clustering method. Even with
this information and assuming α = 0, choosing the appropriate number of
clusters is not an easy task. The careful monitoring of the maximum value
attained by log-likelihoods like those in (5.2.2) and (5.2.3) while changing k
has traditionally been applied as a method for choosing the number of clus-
ters when α = 0. Moreover Bryant (1991) stated that the use of “weighted”
log-likelihoods (5.2.3) is preferred to the use of log-likelihoods assuming equal
weights (5.2.2). Notice that increasing k always causes the maximized log-
likelihood (5.2.2) to increase too, and this could lead to “overestimate” the
appropriate number of clusters (see Garćıa-Escudero et al., 2011).
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In this trimming framework, let us consider LΠ
restr.fact(α, k) as the maxi-

mum value reached by (5.2.3) for each combination of a given set of values for
k and α. Garćıa-Escudero et al. (2011) propose to monitor the“classification
trimmed likelihoods” functionals

(α, k) 7→ LΠ
restr.fact(α, k)

while altering α and k, which yields an exploratory graphical tool for making
sensible choices for parameters α and k. In fact, it is proposed to choose the
number of clusters as the smallest value of k such that

LΠ
restr.fact(α, k + 1)− LΠ

restr.fact(α, k) (5.7.1)

is (close to) 0 except for small values of α. Once the number of clusters is
fixed, a good choice for the trimming level is the first α0 such that (5.7.1)
is (close to) 0 for every α ≥ α0. Although we are convinced that moni-
toring the classification trimmed likelihoods functionals is very informative,
no theoretical statistical procedures are available yet for determining when
(5.7.1) can be formally considered as “close to 0”.
The function ctlcurves in package tclust approximates the classification
trimmed likelihoods by successively applying the tclust function for a se-
quence of values of k and α. A default value restr.fact = 50 is considered
but, if desired, other values of restr.fact can be passed to tclust via ctl-

curves too.
For instance, the following code applied to the previously simulated mixt

data set

R > plot (ctlcurves (mixt, k = 1:4, alpha =

+ seq (0, 0.2, by = 0.05)))

results in Figure 5.9. This figure shows that increasing k from 2 to 3 is needed
when α = 0, as the objective functions value differs noticeably between
k = 2 and k = 3. On the other hand, increasing k from 2 to 3 is not needed
anymore as the third (more scattered) “cluster” vanishes when trimming 5%
of the most outlying observations. Thus, there is no discernable difference
of the objective functions value with α ≥ α0 = 0.05 and k ≥ 2. Increasing k
from 3 to 4 is not needed in any case.
The previously described procedure for making sensible choices for param-
eters k and α requires an active role from the researcher. The type of
restriction and the allowed restriction factor, which do not necessarily de-
pend on the given data set, must be specified in advance. For instance, some
specific clustering applications like “location-facilities” problems require al-
most spherical clusters that can be obtained by setting restr = "eigen"

and a restr.fact close to 1. The researcher’s decision on the restriction
consequently modifies the proper determination of parameters k and α.
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Figure 5.9: Classification trimmed likelihoods with k = 1, ..., 4, α = 0, 0.05,
..., 0.2 and restr.fact = 50 for the mixt data set in Figure 5.8.

Due to the important role of the statement of restr and restr.fact, some
general guideline for fixing them will be given here. For instance, as already
commented, fixing restr = "deter" is recommended when only the rela-
tive cluster sizes shall be constrained, or when affine equivariance is clearly
needed. On the other hand, using restr = "eigen" is advised when we
want to simultaneously constrain relative cluster sizes and shapes.
With respect to the choice of restr.fact, we recommend to initially use
large values when applying ctlcurves, thus, providing high flexibility to
the clustering method. The default value restr.fact = 50 is suggested for
ctlcurves, as it worked well with a lot of data sets (especially if the variables
have been properly standardized through the scale argument in the tclust
function). The so obtained “sensible” values for k and α and their associ-
ated clustering solutions must be explored carefully. For instance, tclust
issues a warning when the returned clustering solution has been “artificially
restricted” by the algorithm, as shown in Section 5.9. This means, that the
values Mn and mn (see Sections 5.3.1 and 5.3.2) derived from the returned
scatter matrices satisfy Mn/mn = restr.fact, because the algorithm has
forced the chosen constraint, since the (unconstrained) group sample covari-
ance matrices do not satisfy Mn/mn ≤ restr.fact. In this situation, if
no specific constraints are required, restr.fact may be increased stepwise
until this warning disappears. Moreover, printing the object returned by the
ctlcurves function points out all “artificially restricted” solutions for each
computed combination of parameters k and α. In this way, if desired, we
can easily search for clustering solutions which are not artificially restricted
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and do not contain spurious clusters. Finally, the exploratory tools in Sec-
tion 5.8 also help to evaluate whether all these parameters are reasonably
chosen.
Note that arguments nstart and iter.max may be provided in the call to
ctlcurves and they are internally passed to function tclust.
The curves presented in Garćıa-Escudero et al. (2003) can be considered as
precedents of those we obtain by using the ctlcurves function. Trimmed
likelihoods have also been taken into account in Neykov et al. (2007) for
choosing k and α by using a BIC criterion.

5.8 Graphical displays

As seen in previous examples, the package tclust provides functions for visu-
alizing the computed cluster assignments. One-dimensional, two-dimensional
and higher-dimensional cases are visualized differently:

p = 1: The one-dimensional data set with the corresponding cluster assign-
ments is displayed along the x-axis. Setting the argument jitter =

TRUE jitters the data along the y-axis in order to increase the visi-
bility of the actual data structure. Additionally, a (robust) scatter
estimation of each cluster is also displayed.

p = 2: Tolerance ellipsoids are plotted additionally in order to visualize the
estimated cluster scatter matrices.

p > 2: The first two Fisher’s canonical coordinates are displayed in this
case, which are computed based on the estimated cluster scatter ma-
trices. Notice that trimmed observations are not taken into account
when computing these coordinates, since they have been completely
discarded. The implementation of these canonical coordinates is de-
rived from the function discrcoord as implemented in the package
fpc (Hennig, 2010).

A simple example demonstrates how the plot function works in different
dimensions. The code:

R > geyser1 <- geyser2[, 1, drop = FALSE]

R > geyser3 <- cbind (geyser2, rnorm (nrow (geyser2)))

R > plot (tkmeans (geyser1, k = 2, alpha = 0.03), jitter = TRUE)

R > plot (tkmeans (geyser3, k = 3, alpha = 0.03))

yields Figure 5.10. For demonstrating the different plotting modes, we have
selected one single variable from geyser2 to obtain a one-dimensional data
set (geyser1), and, added an additional normally distributed variable to
geyser2, yielding a three-dimensional data set (geyser3). Figure 5.10 plots
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Figure 5.10: Trimmed k-means clustering results for geyser1 (one-
dimensional) in (a) and for geyser3 (three-dimensional) in (b). These two
data sets are based on geyser2. k = 2 is fixed in (a) and k = 3 in (b) while
α = 0.03 is fixed in both cases.

the results of the trimmed k-means robust clustering method for these two
generated data sets.
Given a tclust object, some additional exploratory graphical tools can be
applied in order to evaluate the quality of the cluster assignments and the
trimming decisions. This is done by applying the function DiscrFact.
Let R̂ = {R̂0, R̂1, ..., R̂k}, θ̂ = (θ̂1, ..., θ̂k) and π̂ = (π̂1, ..., π̂k) be the values
obtained by maximizing (5.2.2) or (5.2.3) (we set π̂j = 1/k when maximizing

(5.2.2)). Dj(xi; θ̂, π̂) = π̂jφ(xi, θ̂j) is a measure of the degree of affiliation of

observation xi with cluster j. These values can be ordered as D(1)(xi; θ̂, π̂) ≤
... ≤ D(k)(xi; θ̂, π̂). Thus the quality of the assignment decision of a non

trimmed observation xi to the cluster j with D(k)(xi; θ̂, π̂) = Dj(xi; θ̂, π̂)
can be evaluated by comparing its degree of affiliation with cluster j to the
best second possible assignment. That is

DF(i) = log
(
D(k−1)(xi; θ̂, π̂)/D(k)(xi; θ̂, π̂)

)
for xi not trimmed.

Let x(1), ..., x(n) be the observations in the sample after being sorted accord-

ing to their D(k)(·; θ̂, π̂) values, i.e., D(k)(x(1); θ̂, π̂) ≤ ... ≤ D(k)(x(n); θ̂, π̂).
It is not difficult to see that x(1), ..., x(dnαe) are the trimmed observations
which are not assigned to any cluster. Nevertheless, it is possible to com-
pute the degree of affiliation D(k)(xi; θ̂, π̂) of a trimmed observation xi to its
nearest cluster. Thus, the quality of the trimming decision on this obser-
vation can be evaluated by comparing D(k)(xi; θ̂, π̂) to D(k)(x(dnαe+1); θ̂, π̂),
with x(dnαe+1) being the non-trimmed observation with smallest value of
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Figure 5.11: Graphical displays based on the DF(i) values for a tclust

cluster solution obtained with k = 3, α = 0.1, restr.fact = 1 and
equal.weights = TRUE for the mixt data set.

D(k)(·; θ̂, π̂). That is

DF(i) = log
(
D(k)(xi; θ̂, π̂)/D(k)(x(dnαe+1); θ̂, π̂)

)
for xi trimmed.

Hence, discriminant factors DF(i) ≤ 0 are obtained for every observation in
the data set, whether trimmed or not.
Observations with large DF(i) values (i.e. values close to zero) indicate
doubtful assignments or trimming decisions. The use of this type of discrim-
inant factors was already suggested in Van Aelst et al. (2006) in a clustering
problem without trimming. “Silhouette” plots (Rousseeuw, 1987) can be
used for summarizing the obtained ordered discriminant factors. Clusters in
the silhouette plot with many large DF(i) values indicate the existence of
not very “well-determined” clusters. The most “doubtful” assignments with
DF(i) larger than a log(threshold) value are highlighted by the function
DiscrFact.
Figure 5.11 shows the result of applying the DiscrFact function to a clus-
tering solution found for the mixt data set appearing in Figure 5.8. The
following code is used to obtain this figure:

R > clus.w <- tclust (mixt, k = 3, alpha = 0.1, restr.fact = 1,

+ equal.weights = TRUE)

R > discr.clus.w <- DiscrFact (clus.w, threshold = 0.1)

R > plot (discr.clus.w)
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Figure 5.12: Classification trimmed likelihoods for k = 1, ..., 4 and α = 0,
.025, ..., .3 when restr.fact = 50 for the “Swiss Bank notes” data set.

The choice threshold = 0.1 means that a decision on a particular obser-
vation xi is considered as doubtful, if the quality of the second best pos-
sible decision (D(k−1)(xi; θ̂, π̂) or D(k)(x(dnαe+1); θ̂, π̂) for trimmed observa-
tions) is larger than one tenth of the quality of the actually made decision
(D(k)(xi; θ̂, π̂)).
Although Figure 5.9 suggests to choose k = 2, k has been increased to 3
in order to show how such a change leads to doubtful cluster assignment
decisions which can be visualized by DiscrFact. Figure 5.11,(a) simply
illustrates the cluster assignments and trimming decisions. The mentioned
silhouette plot is presented in (b), whereas the doubtful decisions are marked
in (c). All observations with DF(i) ≥ log(0.1) are highlighted as they are
plotted darker/in color. Most of the doubtful decisions are located in the
overlapping area of the two artificially found clusters (highlighted symbols
“×” and “+”). Some doubtfully trimmed observations (highlighted symbol
“◦”) are located in the boundaries of these two clusters.

5.9 Swiss Bank notes data

The well-known “Swiss Bank notes” data set includes 6 numerical measure-
ments (six-dimensional data set) made on 100 genuine and 100 counterfeit
old Swiss 1000-franc bank notes (Flury and Riedwyl, 1988). The following
code can be used to obtain the classification trimmed likelihoods shown in
Figure 5.12.

89



●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

(a) Classification
k = 2, α = 0.1

First discriminant coord.

S
ec

on
d 

di
sc

rim
in

an
t c

oo
rd

.

(b) Silhouette Plot

Discriminant Factor

C
lu

st
er

s

−100 −80 −60 −40 −20 0

O
1

2

Mean Discriminant Factors

−37.26
−41.66
−21.94

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

(c) Doubtful Assignments

First discriminant coord.

S
ec

on
d 

di
sc

rim
in

an
t c

oo
rd

.

Figure 5.13: Clustering results with k = 2, α = 0.1 and restr.fact = 50
summarized by the use of DiscrFact function for the “Swiss Bank notes”
data set. The threshold value is chosen in order to highlight the 7 most
doubtful cluster assignments.

R > data ("swissbank")

R > plot (ctlcurves (swissbank, k = 1:4, alpha = seq (0, 0.3,

+ by = 0.025)))

This figure indicates the clear existence of k = 2 main clusters (“genuine”and
“forged” bills). Moreover, considering the clear difference between LΠ

50(0, 3)
and LΠ

50(0, 2), we can see that a further cluster, i.e. k = 3, is needed when no
trimming is allowed. This extra cluster can be justified by the heterogeneity
of the group of forgeries (perhaps due to the presence of different sources of
forged bills).
Considering Figure 5.12, the choice k = 2 and a value of α close to 0.1
also seem sensible. Notice that LΠ

50(α, 3) is clearly larger than LΠ
50(α, 2) for

α < 0.1 while these differences are not so big when α ≥ 0.1. We can even
see smaller differences in the classification trimmed likelihood curves when
increasing k from 3 to 4. However, these differences are less significant than
those previously commented. More spurious clusters can be surely found
but they have less entity and importance.
Figure 5.13 shows the clustering results with k = 2, α = 0.1 and restr.fact

= 50 obtained by executing the code:
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R > clus <- tclust (swissbank, k = 2, alpha = 0.1,

+ restr.fact = 50)

R > plot (DiscrFact (clus, threshold = 0.0001))

Notice that, in this example, we did not want to impose a specific constraint
on the solution. Thus, the default parameter restr.fact = 50 has initially
been used in ctlcurves. After choosing the combination α = 0.10 and
k = 2, we could try to reduce the restriction factor which resulted in a
warning:

R > tclust (swissbank, k = 2, alpha = 0.1, restr.fact = 40)

In .tclust.warn(warnings, ret):

The result is artificially constrained due to restr.fact = 40.

Thus the choice restr.fact = 50 seems appropriate as it does not arti-
ficially restrict the result, whereas a slightly smaller restriction factor (40)
does. By examining the sizes of the obtained groups, we see that no spurious
groups are found with restr.fact = 50:

R > clus$size

[1] 95 85

We have used restr = "eigen" in this example, but restr = "deter" can
be also successfully applied with smaller values of restr.fact.
We also use the function DiscrFact to summarize the obtained clustering
results. The two first Fisher’s canonical coordinates derived from the final
cluster assignments are plotted. The threshold value 0.0001 is chosen in
order to highlight the 7 most doubtful decisions.
Finally, Figure 5.14 shows a scatterplot of the fourth (“Distance of the inner
frame to lower border”) against the sixth variable (“Length of the diagonal”)
with the corresponding cluster assignments. We use the symbols “G” for the
genuine bills and “F” for the forged ones. The 7 most doubtful decisions (i.e.,
the observations with largest DF(i) values that were highlighted in Figure
5.13,(c)) are surrounded by circles in this figure. We can see that “Cluster
1” essentially includes most of the “forged” bills while “Cluster 2” includes
most of the “genuine” ones. Among the trimmed observations, we can find a
subset of 15 forged bills following a clearly different forgery pattern that has
been previously commented by other authors (see, e.g. Flury and Riedwyl,
1988; Cook, 1999). These most doubtful assignments include 5 “genuine”
bills that have perhaps been wrongly trimmed.

5.10 Conclusion

We have presented a package called tclust for robust (non-hierarchical)
clustering. As the package is implemented in a flexible manner, only the
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Figure 5.14: Clustering results with k = 2, α = .1 and restr.fact = 50
for the “Swiss Bank notes” data set. Only the fourth and sixth variables are
plotted. The 7 most doubtful decisions are rounded by a circle symbol.

restrictions on the cluster scatters have to be changed in order to carry out
different robust clustering algorithms. Robustness is achieved by trimming
a specific amount of observations which are identified as the “most outlying”
ones.
This R-package implements robust clustering approaches which have already
been described in the literature, whereas some of these approaches are ex-
tended to gain flexibility. The package also provides some graphical tools
which on the one hand help to chose appropriate parameters (ctlcurves)
and on the other hand help to estimate the adequacy of a particular clus-
tering solution (DiscrFact).
The future work on this package focuses on implementing further types of
scatter restrictions, making the algorithm even more flexible and on provid-
ing more numerical tools for automatically choosing the number of clusters
and the trimming proportion.
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Chapter 6

A fast algorithm for robust
constrained clustering

Summary: The application of “concentration” steps is the main princi-
ple behind Forgy’s k-means algorithm and Rousseeuw and van Driessen’s
fast-MCD algorithm. Although they share this principle, it is not com-
pletely straightforward to combine both algorithms for developing a clus-
tering method which is not affected by a certain proportion of outlying
observations and that is able to cope with non spherical groups or with
groups with different weights. However, these approaches can be success-
fully combined by additionally controlling the relative cluster scatters in the
concentration steps. In this way, the appearance of uninteresting spurious
clusters is avoided. An algorithm which implements such “constrained con-
centration” steps in a computationally efficient way will be presented in this
work.

Keywords: Cluster Analysis, Robustness, Trimming, k-means, MCD,
Trimmed k-means

Co-authors: Luis A. Garćıa-Escudero, Agust́ın Mayo-Iscar
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6.1 Introduction

It is easy to see certain relations between Forgy’s k-means algorithm (Forgy,
1965) and the fast-MCD algorithm (Rousseeuw and Van Driessen, 1999).
These two widely applied algorithms play a very important role in Cluster
Analysis and in Robust Statistics, respectively. The connection between
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Trimmed k-means Fast-MCD

· · · · · ·
− Randomly draw k centers. − Randomly draw a center and a

scatter matrix.
· · · · · ·

− Trim a proportion α of the
most remote observations to these
k centers, considering Euclidean
distances.

− Trim a proportion α of the most
remote observations to the cen-
ter, considering Mahalanobis dis-
tances.

− Compute k new centers using
the non-trimmed observations.

− Compute a new center and scat-
ter matrix using the non-trimmed
observations.

· · · · · ·
− Return the k centers leading to
the “best” value of the target func-
tion.

− Return the center and scatter
matrix leading to the “best” value
of the target function.

Table 6.1: Schematic description of the differences between the trimmed
k-means and fast-MCD algorithms.

these methods mainly refers to the application of so called“concentration”
steps which will be explained later in Section 6.3.
This relation gets clearer when comparing the fast-MCD algorithm to the
trimmed k-means algorithm (Garćıa-Escudero et al., 2003), since trimming
(outlying) data is an important characteristic of both methods. Notice,
that the trimmed k-means algorithm simplifies to Forgy’s k-means algo-
rithm when the trimming level α is set to 0. More information on the
trimmed k-means procedure can be found in Cuesta-Albertos et al. (1997)
and Garćıa-Escudero and Gordaliza (1999). A very simplified comparison
of the concentration steps for trimmed k-means and fast-MCD is given in
Table 6.1.
The main drawback of using k-means and trimmed k-means is that they
ideally search for spherically scattered groups and for clusters with equal size,
whereas in many clustering problems the clusters we are looking for do not
necessarily follow these assumptions. Thus, in this work, we focus on general
“heterogeneous”clustering problems where elliptically contoured clusters can
also be expected. Further we expect the data to contain a certain fraction
α of outlying observations which would negatively affect classical clustering
procedures (see Garćıa-Escudero et al., 2010). In this setup, it seems logical
to combine the clustering capabilities of k-means with the ability to robustly
estimate covariance structures provided by the fast-MCD algorithm. Thus,
we can think of applying the trimmed k-means algorithm, but considering
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Mahalanobis distances when identifying the closest cluster center to each
observation. The centers and scatter matrices are updated by computing the
sample means and sample covariance matrices of the observations assigned
to each cluster. Unfortunately, this “naive” combination of both algorithms
does not provide sensible clustering results, since large groups sometimes
tend to“eat”smaller ones, and the algorithm ends up finding spurious groups
with few, almost collinear observations. This problem has already been
described in Maronna and Jacovkis (1974).
A sensible way to address this issue is to impose constraints which control
the relative difference among cluster scatters. In fact, many well-know clus-
tering methods implement (implicitly and explicitly) such constraints on the
relative cluster sizes, as for example the k-means method assumes spherical
clusters with similar scatter. With this idea in mind, Garćıa-Escudero et al.
(2008) introduced the TCLUST method, which is based on a relative size
constraint on the eigenvalues of the scatter matrices defining the shape of
the elliptically contoured groups. The idea of using restrictions of this type
goes back to Hathaway (1985) where related constraints were proposed in a
mixture fitting framework.
From a computational point of view, solving the TCLUST problem is not an
easy task. One of the most critical issues in this algorithm is how to enforce
the relative size constraints. Unfortunately, this is the computational bottle-
neck of the algorithm, because a complex optimization problem must be
solved in each concentration step. In this work, we present a computational
efficient algorithm for such “constrained concentration” steps, which clearly
speeds up the TCLUST algorithm and makes it computationally feasible for
practical applications.
It is also important to note that the idea of such constrained concentration
steps can be easily extended to other constrained clustering methods like
Gallegos (2002) and Gallegos and Ritter (2005).
The methodology of the discussed approach is explained in Section 6.2,
whereas in Section 6.3 the corresponding algorithm is presented. Section
6.4 contains a simulation study, investigating the performance of the algo-
rithm and Section 6.5 concludes.

6.2 Constrained robust clustering and TCLUST

Given a sample of observations {x1, ...,xn} in Rp and φ(·;µ,Σ) the proba-
bility density function of a p-variate normal distribution with mean µ and
covariance matrix Σ, we consider the following general robust clustering
problem:

Search for a partition R0, R1, ..., Rk of the indices {1, ..., n} with
#R0 = dnαe, centers m1, ...,mk, symmetric positive semidefi-
nite scatter matrices S1, ...,Sk and weights p1, ..., pk with pj ∈
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[0, 1] and
∑k

j=1 pj = 1, which maximizes

k∑
j=1

∑
i∈Rj

log
(
pjφ(xi;mj ,Sj)

)
. (6.2.1)

Depending on the constraints imposed on the weights pj and scatter ma-
trices Sj , the maximization of (6.2.1) for α = 0 leads to well established
clustering procedures. For instance, a very constrained setup, assuming
equal weights p1 = ... = pk and scatter matrices S1 = ... = Sk = σ2I
with I being the identity matrix and σ > 0, yields the k-means method.
The determinantal criterion introduced by Friedman and Rubin (1967) is
obtained when assuming p1 = ... = pk and S1 = ... = Sk = S with S being
a positive definite matrix. In general, the “log-likelihood” in (6.2.1) when
α = 0 and p1 = ... = pk corresponds to the Classification-Likelihood (see
e.g. Scott and Symons, 1971). The use of (6.2.1) assuming different weights
pj goes back to Symons (1981) and Bryant (1991) and is also known as the
Complete-Data-Likelihood approach to Cluster Analysis.
Trimmed alternatives to the previously commented approaches can be con-
structed by introducing a trimming level α > 0 to (6.2.1), which yields
“trimmed log-likelihoods”. This way, the trimmed k-means method in Cuesta-
Albertos et al. (1997) extends k-means and the trimmed determinantal cri-
terion in Gallegos and Ritter (2005) extends the determinantal criterion.
Notice that dnαe observations (R0) are not taken into account when com-
puting (6.2.1), and thus the harmful effect of outlying observations, up to
a contamination α, can be avoided. Gallegos and Ritter (2005) introduce
the so-called “spurious outlier model” that theoretically justifies the use of
trimmed log-likelihoods like in (6.2.1).
It is also important to note that the robust clustering problem reduces to
the fast-MCD method when assuming k = 1 (i.e. only partitioning the data
into dnαe outliers and bn (1− α)c regular observations). The fact that the
same target function defines both problems emphasizes the relation between
robust clustering methods and the MCD estimator.
It is straightforward to see, that the direct maximization of (6.2.1) without
any constraint on the scatter matrices is not a well defined problem, since
a single cluster scatter matrix Sj with det(Sj) → 0 causes (6.2.1) to tend
to infinity. Thus partitions containing spurious clusters are quite likely and
preferred to more sensible solutions. This explains why the previously de-
scribed “naive” algorithm (combining the two algorithms from Table 6.1)
does not work appropriately.
In order to make the maximization of (6.2.1) a well defined problem, Garćıa-
Escudero et al. (2008) propose to additionally consider the following eigenvalue-
ratio constraint on the scatter matrices S1, ...,Sk:

maxj,l λj,l
minj,l λjl

≤ c, (6.2.2)
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with λj,l as the eigenvalues of the corresponding scatter matrices Sj (for
j = 1, ..., k and l = 1, ..., p) and c ≥ 1 as a constant which controls the
strength of the constraint (6.2.2). The maximization of (6.2.1) under the
eigenvalue-ratio constraint (6.2.2) leads to the TCLUST problem introduced
by Garćıa-Escudero et al. (2008). The smaller the value of c, the stronger
is the restriction imposed on the solution, yielding the strongest constraint
c = 1, which corresponds to the k-means procedure with different cluster
weights.
The TCLUST method has good theoretical and robustness properties but
no practically applicable algorithm is available yet when k · p is moderately
large. With this in mind, a feasible algorithm for efficiently implementing
this method will be described in the following section.

6.3 Algorithm

An algorithm for approximately maximizing (6.2.1) under the constraint
(6.2.2) has been presented in Garćıa-Escudero et al. (2008), whereas a sig-
nificantly faster approach will be presented here. Further, an inaccuracy in
the presentation of the algorithm in Garćıa-Escudero et al. (2008) will be
corrected here.
Both algorithms can be seen as a trimmed version of the Classification
Expectation-Maximization (EM) algorithms proposed in Schroeder (1976)
and Celeux and Govaert (1992).
In the E-step, at a given iteration, each observation xi is assigned to the
cluster with closest center. Since we are considering different weights and
scatter matrices, the distance of an observation xi to the center of cluster j
is proposed to be quantified by a so-called “discriminant function”:

Dj(xi; θ) = pjφ(xi;mj ,Sj).

with θ = (p1, ..., pk,m1, ...,mk,S1, ...,Sk) as the set of cluster parameters
in the current iteration of the algorithm. The smaller Dj(xi; θ), the larger
is the distance of observation xi to a center mj . Further,

D(xi; θ) = max{D1(xi; θ), ..., Dk(xi; θ)} (6.3.1)

defines an overall measure for outlyingness.
Notice that if k = 1, observations with largest (6.3.1) are those with smallest
Mahalanobis distances

(xi −m1)′S−1
1 (xi −mj). (6.3.2)

These observations are taken into account in the concentration steps of the
fast-MCD algorithm.
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Further, when assuming p1 = ... = pk and S1 = ... = Sk = σ2I, observations
with largest (6.3.1) are those with smallest values of

min
j=1,...,k

‖xi −mj‖2,

as considered in the concentration steps of the (trimmed) k-means algorithm.
With this notation, the dnαe observations xi with smallest values of D(xi; θ)
can be discarded as possible outliers (trimmed), whereas Dj(xi; θ) is used
to assign the remaining observations to one of the j groups. Notice, that
in contrast to mixture clustering approaches, this approach fully assigns
each (non-trimmed) observation to a cluster and thus is a “crisp” clustering
method.
In a second step, the M-step, the cluster parameters are updated, based on
the non-trimmed observations and the corresponding cluster assignments.
At this point it is crucial to constrain the cluster scatter matrices for avoiding
spurious clusters.

A more detailed presentation of the proposed algorithm is given as follows:

1. Initialization: The procedure is initialized nstart times by selecting
different θ0 = (p0

1, ..., p
0
k,m

0
1, ...,m

0
k,S

0
1, ...,S

0
k). For this purpose we

propose to randomly select k(p + 1) observations and to accordingly
compute k cluster centers m0

j and scatter matrices S0
j from the chosen

data points. Afterwards the cluster scatter matrix constraints are
applied to these S0

j , as described in Step 2.2. Weights p0
1, ..., p

0
k in

the interval (0, 1) and summing up to 1 are also randomly chosen.

2. Concentration step: The following steps are executed until conver-
gence (i.e. θl = θl−1) or a maximum number of iterations iter.max is
reached.

2.1. Trimming and cluster assignment (E-step): Based on the current
parameter set θl = (pl1, ..., p

l
k,m

l
1, ...,m

l
k,S

l
1, ...,S

l
k) the dnαe ob-

servations with smallest values of Dj(xi, θ
l) are trimmed. Each

remaining observation xi is then assigned to a cluster j, such
that Dj(xi, θ

l) = D(xi, θ
l). This yields a partition R0, R1, ..., Rk

of the indices {1, ..., n} holding the trimmed observations in R0

and all observations belonging to cluster j in Rj for j = 1, ..., k.

2.2. Update parameters (M-step): Given nj = #Rj , the weights are
updated by

pl+1
j = nj/[n(1− α)]

and the centers by the sample means

ml+1
j =

1

nj

∑
i∈Rj

xi.
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Updating the scatter estimates is more difficult, as the sample
covariance matrices

T j =
1

nj

∑
i∈Rj

(xi −ml+1
j )(xi −ml+1

j )′,

may not satisfy the specified eigenvalue-ratio constraint. In this
case, the singular-value decomposition of T j = U ′jDjU j is con-
sidered, with U j being an orthogonal matrix and Dj = diag(dj1,
dj2, ..., djp) a diagonal matrix. Let us define the truncated eigen-
values as

dmjl =


djl if djl ∈ [m, cm]
m if djl < m
cm if djl > cm

(6.3.3)

withm as some threshold value. The scatter matrices are updated
as

Sl+1
j = U ′jD

∗
jU j ,

with D∗j = diag
(
d
mopt

j1 , d
mopt

j2 , ..., d
mopt

jp

)
and mopt minimizing

m 7→
k∑
j=1

nj

p∑
l=1

(
log (djl) +

dmij
dij

)
. (6.3.4)

As shown in Remark 3, this expression has to be evaluated only
2kp+ 1 times for exactly finding this minimum.

3. Evaluate target function: After the concentration steps the value of
the target function (6.2.1) is computed. The set of parameters yielding
the highest value of this target function is returned as the algorithm’s
output.

The proposed algorithm can be used to solve the maximization of (6.2.1)
when assuming equal weights p1 = ... = pk, by simply setting all weights
constantly to plj = 1/k within each iteration.

Remark 1 The number of random starts nstart and the maximum number
of constrained-concentration steps iter.max depends on the complexity of
the processed data set. Experience shows that not excessively large values of
nstart and iter.max are needed to obtain a proper solution if, apart from
outliers, the cluster structure is easy to be discovered (see also Section 6.4).
Garćıa-Escudero et al. (2011) provides some graphical tools which help to
make appropriate choices for the number of groups k and the trimming level
α.
If the constraints on the eigenvalues are not considered, the algorithm es-
sentially coincides with the method proposed in Neykov et al. (2007), which
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is also based on trimmed likelihoods. However, as already mentioned, explic-
itly stating relative cluster scatter constraints and providing a computational
procedure for solving them is very important in this approach to robust clus-
tering.

Remark 2 The main novelty of this algorithm compared to Garćıa-Escudero
et al. (2008) is how the constraint on the eigenvalue ratio is imposed. Equa-
tion (3.4) in Garćıa-Escudero et al. (2008) constrains eigenvalues by solving
the minimization problem

(d∗11, d
∗
12, ..., d

∗
jl, ..., d

∗
kp) 7→

k∑
j=1

nj

p∑
l=1

(
log (djl) +

d∗ij
dij

)
, (6.3.5)

under the restriction

(d∗11, d
∗
12, ..., d

∗
jl, ..., d

∗
kp) ∈ Λ, (6.3.6)

with Λ as the cone

Λ =
{
d∗jl : d∗jl ≤ c · d∗rs for every j, r ∈ {1, ..., k} and l, s ∈ {1, ..., p}

}
.

(6.3.7)
This is clearly a more complex problem than minimizing (6.3.4) because
its complexity tremendously increases with the number of groups k and the
dimension p. In Garćıa-Escudero et al. (2008), the problem of minimizing
(6.3.5) in Λ was translated into a quadratic programming problem which can
be approximately solved by recursive projections onto cones (Dykstra, 1983).
However, as this computationally intensive problem must be solved in each
concentration step, the algorithm becomes extremely slow and even unfeasible
for high values of k · p. Moreover, there was a mistake in Garćıa-Escudero
et al. (2008), as the term nj in (6.3.5) was omitted, and thus the algorithm
proposed there can only be applied onto similarly sized clusters.

Remark 3 There is a closed form for obtaining mopt (and thus, the con-
strained eigenvalues) just by evaluating function (6.3.4) 2pk + 1 times. Let
us consider e1 ≤ e2 ≤ ... ≤ e2kp obtained by ordering the following 2pk
values:

d11, d12, ..., djl, ..., dkp, d11/c, d12/c, ..., djl/c, ..., dkp/c.

After that, let us consider any 2pk + 1 values f1, ..., f2kp+1 satisfying:

f1 < e1 ≤ f2 ≤ e2 ≤ ... ≤ f2kp ≤ e2kp < f2kp+1,

and, compute

mi =

∑k
j=1 nj

(∑p
l=1 djl(djl < fi) + 1

c

∑p
l=1 djl(djl > cfi)

)∑k
j=1 nj

(∑p
l=1((djl < fi) + (djl > cfi))

) ,

for i = 1, ..., 2kp + 1. Finally, choose mopt as the value of mi which yields
the minimum value of (6.3.4).
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Remark 4 An implementation of the algorithm described in this work has
been made available through the R package tclust at http://CRAN.R-

project.org/package=tclust. Further, little changes to this algorithm
yield a generalized version of a robust clustering method introduced by Gal-
legos (2002), who constrains the scatter matrices’ determinants instead of
their eigenvalues.

6.4 Simulation Study

As the discussed algorithm has already been compared to other robust clus-
tering approaches on simulated and real data sets (see Fritz et al., 2011),
this work concludes with a simulation study investigating the effect of the
choice of parameters iter.max (number of concentration steps) and nstart

(number of random initializations) on the performance of the algorithm.
In this simulation study, a so-called M5 type data set is considered, which
is based on the “M5 scheme” as introduced in Garćıa-Escudero et al. (2008).
These simulated p ≥ 2 dimensional data sets consist of three partly over-
lapping clusters generated from three p-variate normal distributions with
means

µ1 = (0, β, 0, . . . , 0) ,µ2 = (β, 0, . . . , 0) and µ3 = (−β,−β, 0, . . . , 0) ,

with β ∈ R+ and covariance matrices

Σ1 = diag (1, . . . , 1) ,Σ2 = diag (45, 30, 1, . . . , 1) and

Σ3 =


15 −10 0 . . . 0
−10 15 0 . . . 0

0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 0 1

 .

The parameter β specifies how strong the clusters overlap, i.e. smaller values
(e.g. 6) yield heavily overlapping clusters, whereas larger values (e.g. 10)
yield a better separation of the clusters and thus a problem which is easier
to solve. Theoretical cluster weights are fixed as (0.2, 0.4, 0.4), implying that
the first cluster size is half of the size of clusters two and three. Further two
different types of outliers are considered which are added to the data:

� Type 1: Uniformly distributed outliers in the bounding box of the
data.

� Type 2: Uniformly distributed outliers restricted to a random hyper-
plane of dimension p− 1.
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(a) M5Data
Outlier type: 1 (uniformly distributed)
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(b) M5Data
Outlier type: 2 (linear)
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(c) Classification
k = 3, α = 0.1
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(d) Classification
k = 3, α = 0.1
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Figure 6.1: An M5 type data set in two dimensions with uniformly dis-
tributed outliers (a) and outliers restricted to a line (b). Plots (c) and (d)
show the corresponding clustering results obtained by tclust.

All outliers are drawn under the restriction that the squared Mahalanobis
distance (see Equation 6.3.2) of each outlier with respect to all three clusters
must be larger than the 0.975 quantile of the chi-squared distribution with
p degrees of freedom.
Choosing a number of observations n = 2000, parameters p = 2 and β = 8
and a 10% outlier portion results in data sets as shown in Figure 6.1 (a)
and (b) with outlier types 1 and 2 respectively. Considering outlier type
2 in a two dimensional data set reduces the space of the outliers to a line
as seen in the mentioned figure. Panels (c) and (d) in the same figure
show the corresponding cluster results computed with an R implementation
of the described algorithm from package tclust. Apparently the cluster
structure is captured nicely by the algorithm, only at the boundaries and
overlapping regions of the clusters some differences between the theoretical
and the computed cluster assignment can be noticed.
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Figure 6.2: Classification errors and runtimes of the tclust algorithm ap-
plied to simulated M5 type data sets for different values of iter.max and
nstart = 32 when p = 10 and β = 6 are fixed.

For the simulation study the algorithm has been applied on data sets of
dimension p = (2, 6, 10), with separation of the cluster determined by β =
(6, 8, 10) and the two described outlier types on a data set with n = 2000,
split into three clusters of sizes 360, 720 and 720 and a 10% outlier portion
yielding 200 contaminated observations. For each possible combination of
these parameters 100 samples have been drawn. Further the tclust algo-
rithm has been applied on each of these samples with values (2, 4, 6, 8, 12, 16,
24, 32, 64) for parameters iter.max and nstart. Moreover, for each of these
settings, a very precise “reference result” has been computed with parame-
ters iter.max = 10000 and nstart = 200. All simulations were run on an
AMD Phenom II X6 1055T at 2.8GHz.
Figure 6.2 shows the box plots of the classification errors in percent and
runtimes for different values of iter.max and the two outlier types, using
nstart = 32, p = 10 and µ = 6. The label “X” at the very right of each plot
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Figure 6.3: Classification errors and runtimes of the tclust algorithm ap-
plied to simulated M5 type data sets for different values of nstart and
iter.max = 24 when p = 10 and β = 6 are fixed.

represents the “reference result”, which is assumed as to be very close to the
theoretically optimal solution. Differences between the outlier types can be
seen, as in panel (a) a value of iter.max = 24 already gives a result very
similar to the reference. On the other hand in panel (b), with the outliers
restricted to a hyperplane of dimension p − 1, even a value iter.max = 64
yields three out of 100 solutions, which apparently differ from the results in
the reference solution “X”.
When considering the runtimes in panels (c) and (d) a general pattern can
be observed, as at a certain point the runtimes do not increase linearly
with the parameter iter.max anymore. This is apparently caused by the
convergence criterion in Step 2 of the algorithm, which stops the iterations
earlier than specified by the chosen value of iter.max as soon as the same
parameters are obtained within two consecutive concentration steps. The
runtimes are quite similar for the different outlier types, however for values
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iter.max larger than 16 the algorithm applied to data contaminated by the
second outlier type seems to converge slightly faster. This can be explained,
as for the majority of the samples, the second outlier type is easier to grasp.
As soon as the cluster structure has been found approximately, the outliers
can be identified easily, as most of them do not overlap with the actual
clusters. This is not the case with the first outlier scheme. Although the
cluster structure can be found quickly, and most of the observations are
assigned correctly, the outliers located in the outer regions of the clusters
make it more difficult for the algorithm to converge.
Figure 6.3 shows a similar scenario, but here the parameter nstart is varied
and the parameters iter.max = 24, p = 10 and µ = 6 are fixed. When
applying the algorithm on data contaminated with the first outlier type,
results computed with nstart = 24 are almost equal to the reference solu-
tion “X” as shown in panel (a). However, when the second outlier type is
considered, even nstart = 64 is not sufficient for obtaining a completely
converged solution. The corresponding runtimes as shown in Figure 6.3 (c)
and (d) depend linearly on the parameter nstart, as expected. Due to the
earlier convergence of the algorithm, when contamination of the second type
is present (as commented before), runtimes in panel (d) are slightly lower
than in panel (a).
Figure 6.4 gives classification errors (a) and runtimes (b) for different values
of β and p, the first outlier type and values iter.max = 64 and nstart = 64
fixed. As with increasing β the clusters are better separable, a larger value
of β yields smaller classification errors. Due to the better separation of the
clusters the algorithm converges faster when β is large, resulting in lower
runtimes.
Also larger values of p decrease the classification error, as in higher dimen-
sional space the clusters are separated more clearly. Further an increase of
the number of dimensions clearly increases the runtimes, which is expected
due to the algorithms’s structure.

6.5 Conclusions

A feasible algorithm for robust heterogeneous clustering has been presented.
The keystone of the algorithm are the constrained concentration steps which
successfully combine the concentration steps of the fast-MCD algorithm
with Forgy’s k-means algorithm. The discussed algorithm computes these
constrained concentration steps, only by additionally evaluating an explicit
function at 2kp+1 values within each iteration. A complete implementation
is available in the R package tclust which is available through the CRAN

repository.
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Figure 6.4: Classification errors and runtimes of the tclust algorithm ap-
plied to simulated M5 type data sets for different values of p and β and when
values nstart = 64 and iter.max = 64 are fixed.

Appendix: Justification of the algorithm

E-step: Assuming the optimal set of parameters θ to be known, Equa-
tion (6.2.1) implies that the optimal cluster assignments of observations
{x1, ...,xn} can be obtained by using the discriminant functions Dj(xi, θ)
as described in Step 2.1 of the algorithm.

M-step: Further, it is clear that depending on the cluster assignments (i.e.
given R0, R1, ..., Rk), the values of pj and mj maximizing (6.2.1) are given
by

pj = nj/bn(1− α)c with nj = #Rj (6.5.1)

and
mj =

∑
i∈Rj

xi/nj . (6.5.2)

Let us consider the singular-value decomposition of the sample covariance
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matrices of observations xi in group j, given by

U ′jDjU j =
1

nj

∑
i∈Rj

(xi −mj)(xi −mj)
′, (6.5.3)

where U j are orthogonal matrices and Dj = diag(dj1, dj2, ..., djp) are diag-
onal matrices.
Let Sj be the optimally constrained scatter matrices maximizing (2.1) un-
der restriction (6.2.2) when R0, R1, ..., Rk are known and parameters mj

and pj are given by (6.5.1) and (6.5.2). Analogously to the previous decom-
position of the sample covariance matrices, matrices Sj can be split up into
Sj = V ′jD

∗
jV j , with V j orthogonal matrices andD∗j = diag(d∗j1, d

∗
j2, ..., d

∗
jp)

diagonal matrices. It can be shown (see Garćıa-Escudero et al., 2008) that
the eigenvectors of the optimal constrained matrices Sj must be exactly the
same as the eigenvectors of the unrestricted sample covariance matrices in
(6.5.3) (i.e., we can set U j = V j). Thus, we just need to search for the op-
timal eigenvalues {d∗j,l} to obtain the optimal constrained scatter matrices

Sj = U ′jD
∗
jU j .

Given the eigenvalues {dj,l} of the sample covariance matrices in (6.5.3), the
optimal {d∗j,l} are obtained by minimizing expression (6.3.5) when {d∗j,l} ∈ Λ
with Λ as defined in (6.3.7). The proof of this claim is almost identical to
the proof of Proposition 4 in Garćıa-Escudero et al. (2008), with the only
difference that expression (6.3.5) in the present work contains the cluster
sizes nj , whereas Equation (3.4) in the mentioned article wrongly did not.
Moreover, notice that Λ can be written as

Λ =
⋃
m≥0

Λm with Λm =
⋃
m≥0

{
d∗jl : m ≤ d∗jl ≤ cm

}
.

Thus, for globally minimizing expression (6.3.5) in Λ, we need to be able to
minimize (6.3.5) when {d∗j,l} ∈ Λm for every possible value m > 0. However,
the minimization (for a fixed value of m) can be simplified significantly by
considering truncated eigenvalues d∗jl = dmjl like those in (6.3.3) which leads
us to the minimization of the following target function:

f : m 7→
k∑
j=1

nj

[ p∑
l=1

(log(m) + djl/m)(djl < m) (6.5.4)

+

p∑
l=1

(log(djl) + 1)(m ≤ djl < cm)

+

p∑
l=1

(log(cm) + djl/cm)(djl > cm)

]
,

which coincides with the target function in (6.3.4).
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Further, f is a continuous differentiable function minimizing in one of its
critical values, which satisfy the following fixed point equation:

m∗ =

∑k
j=1(sj(m

∗) + tj(m
∗)/c)∑k

j=1 njrj(m
∗)

with

rj(m) =

p∑
l=1

((djl < m) + (djl > cm)),

sj(m) =

p∑
l=1

djl(djl < m) and tj(m) =

p∑
l=1

djl(djl > cm).

Functions rj ,sj and tj take constant values in the intervals (−∞, e1], (e1, e2],
..., (e2k,∞). Therefore, we only need to evaluate (6.5.4) at the 2kp+1 values
m1, ...,m2kp+1 given in Remark 3.
If mopt is the value of m minimizing function f , we finally set the opti-
mal eigenvalues as d∗jl = d

mopt

jl to obtain the optimally constrained scatter
matrices Sj .
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Chapter 7

Implementational Details

7.1 Introduction

This chapter discusses an architecture for implementing mathematical mod-
ules for environment applications as R (R Development Core Team, 2010a)
or Matlab (MATLAB, 2010) in C++. This concept is still under devel-
opment, and originates from the implementation of the R packages tclust
and pcaPP, which are the first modules implemented based on this archi-
tecture. The main objective is to provide a framework for implementing
external modules, for mathematical purposes, which are on the one hand
platform-independent, as any R package for instance, and moreover envi-
ronment independent. This means, that such a module shall work together
with any environment application as R, Matlab, or even user built stand-
alone applications, only by modifying some interface layers of the module,
but without changing a single line of code in its core implementation.
The motivation for environment independence is to make mathematical
methods as available as possible, beyond the scope of a particular environ-
ment application and its developer community. This should help to avoid
redundant and separate implementations of algorithms for different envi-
ronments by different developers. Thus this concept enables developers to
work together, which until now were implementing modules for their specific
environment separately from each other. The reason for not simply using a
numerical library as GSL (Galassi et al., 2010) or Boost (Siek et al., 2001) is,
that the architecture shall provide a meta interface to any of these libraries,
and thus a decision for using a specific library becomes totally independent
from the module’s core implementation, and can be revised and changed
at any time. Thus when compiling a module for R, the built-in numerical
routines of the environment are used by default, but it is also possible to
link to other routines, as highly tuned implementations of BLAS (National
Science Foundation and Department of Energy, 2010) or LAPACK (Ander-
son et al., 1999), as available for various CPU types, but also for GPUs
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Environment Application

R, Matlab, Stand−alone, ...

BLAS
LAPACK
Random Number Generator
Sort Routines
...

Module Interface

Module Core

pcaPP, tclust, ...

MEAL

Figure 7.1: Schematic illustration of the connection between an environment
application and an external module. The application calls routines in the
module, which again refer to functions in the environment application itself.

and APUs, which use the power of modern computers more efficiently than
conventional implementations do.
Environment independence is achieved by implementing the core function-
ality of a module in C++, and functions written in environment specific
code (e.g. R-code) only form wrappers to the core functions.
As shown in Figure 7.1, the module core is implemented without directly
calling routines in the environment application, as e.g. to R’s built-in ran-
dom number generator. Such calls are made to an interface layer called
MEAL (Mathematical Environment Abstraction Layer) and are then auto-
matically routed to the corresponding routine in the used environment. This
interface layer is implemented once for each considered type of environment
application and can then be used for any module which is based on this ar-
chitecture. A second interface layer, the Module Interface is an abstraction
layer for calls from the environment application to the module itself, which
for instance is responsible for data conversion. When compiling a module
for different types of environment applications, only these interface layers
have to be exchanged, without touching the implementation of the module’s
core functions.
Note, that only parts of the packages which implement the central algo-
rithms can be provided in an environment-independent manner. Specialized
methods as e.g. plotting functions have to be adapted and re-implemented
completely for each considered environment, as for this purpose there is no
independent standard availble yet.
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7.2 Architecture

A complete overview of all layers of this architecture is given in Figure 7.2.
The illustration refers to some possible environment applications as R, Mat-
lab and user-built stand-alone applications in general. The model consists
of 7 layers, whereas Layer 1 represents the calling environment application,
and Layers 2-7 the actual module.
Layers 2 and 3 define an interface for calls from the environment to the
module, whereas the MEAL interface (Layer 7) routes calls from the module
back to different components in the calling environment (e.g. the BLAS or
LAPACK routines which come along with R or Matlab).
Thus, when the module shall be compiled for a new environment, only the
definition of these two interfaces (Layers 2, 3 and 7) has to be updated, but
no changes to the code of the module core have to be considered.
Note, that each layer is only aware of the existence of the next lower layer,
and thus does only call functions of its direct successor. The only exception
is the bottom Layer 7, which does not have a direct successor, and only calls
functions of the environment application, the uppermost Layer 1. Moreover,
when compiling a module for a stand-alone application, not all layers may
be implemented, as e.g. layers for data conversions may not be needed in
such a setting.

7.2.1 Application Layer

The application layer represents any program which intends to use modules
based on this architecture, as pcaPP or tclust. This could either be R, Mat-
lab, any other statistics program and also a user-build application serving
any purpose. The only requirement to the application is, that it is able to
call functions in an external module (e.g. a dll in Windows).
Considering R as environment application, it is important to keep in mind,
that this application provides some numerical routines as BLAS, LAPACK,
some sort routines and random number generators, which might be of in-
terest in a module. Thus this architecture provides a unified interface for
accessing these routines (see Section 7.2.6).
Matlab only provides an interface to BLAS and LAPACK, but external
modules are not able to call the internal sort routines or the random number
generator.
Any other application environment may optionally specify any of these rou-
tines. However, if they are not provided in the application Layer 1, the
bottom layer must either implement them or provide access to an appropri-
ate library (see Section 7.2.7).
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Matlab Function Wrapper
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R Interface
(package.cpp)

Matlab Interface
(mexFunction.cpp)

... Interface
(*.cpp)

Module Implementation

SMat − Simple Matrix Classes

MEAL – Mathematical Environment Abstraction Layer
Declaring Interfaces for Mathematical/Standard Routines (meal.h)
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dgeev, dgemm, dgesv, ...
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e.g. GSL

*.meal.cpp

e.g. GSL
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Figure 7.2: The seven layers, the packages tclust and pcaPP consist of.
Layer 1 represents the environment application, Layers 2-7 an external mod-
ule. The interfaces to the module are implemented by Layers 2, 3 and 7.
Each layer exclusively accesses functions in its direct successor, whereas the
bottom Layer 7 is the only layer which is able to directly call routines in
Layer 1.

7.2.2 Module Interface (Environment)

Environments like R or Matlab, usually provide their particular scripting
language, which is used for writing local functions, but also for accessing ex-
ternal modules. For accessing such modules, which are usually written in a
different programming language (as C, C++ or Fortran) a wrapping func-
tion must be implemented, which checks the user input for consistency (this
might be easier in the environment’s language), converts the data structures
from the environment’s representation to the representation needed in the
external module, and then actually calls the modules functions.
R provides several functions for calling routines in external modules. How-
ever, in the context of the considered platform- and environment-independent
architecture, the proper choice is the function .C (see R Development Core
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Team, 2010b).
For accessing external modules from Matlab, only a simple .m file (also
called mex - file) has to be specified, which points to the external module.
When considering a stand-alone application, this layer may serve for data
conversion and would be implemented in the same programming language
as the application itself. However, if no data conversion is necessary, this
layer may be obsolete, and the routines in Layer 3 can be called directly.

7.2.3 Module Interface (C++)

This layer defines the entry points to the module’s C++ functions which are
called from the environment. In combination with the R-function .C, this
might be any exported function with return type void taking pointers to
int, double or char as arguments (see R Development Core Team, 2010b).
Matlab uses a so called mexFunction as the only entry-point to external
modules. This gateway function calls the corresponding functions in the
module’s implementation (Layer 4) and also passes along the provided ar-
guments.
Depending on the design of the code of a stand-alone application, this layer
might not be necessary either, as the module’s functions in Layer 4 can be
called directly. However, for any sort of necessary argument conversions the
possibility of implementing this layer still exists.

7.2.4 Module Implementation

This layer defines and implements the module’s actual core functionality. As
the preceding layers are already designed according to the used environment,
the module’s functionality itself is implemented completely independently,
without considering the particular application environment. Further, as each
layer is only aware of its direct successor, the functions in this layer cannot
directly refer to routines which are provided by a particular environment,
but must refer to the subsequent layer (e.g. for calling LAPACK, BLAS,
...).
In the following Layer 7 takes care of routing the corresponding calls to the
according routine in the environment layer.

7.2.5 SMat - Simple Matrix Classes

This level represents a set of proprietary matrix classes, which were imple-
mented in the context of the tclust package, and then also introduced to the
pcaPP package, resulting in an identical architecture of both packages.
In comparison to fully-grown matrix classes as the Blitz++ library (Veld-
huizen, 1998), uBLAS as a part of the Boost library (Siek et al., 2001) or the
MTL library (Siek and Lumsdaine, 1999), which additionally offer numerical
routines, the SMat classes reduce to the following functionality:
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� Memory management for n-dimensional vectors (matrix representation
is reduced to dense matrices in column major at this time).

� The implementation of a thin interface layer which provides access
to other libraries as BLAS/LAPACK implementations, sort routines,
random number generators, etc., either as part of an environment ap-
plication as R, Matlab, etc., or as stand alone libraries (see 7.2.7).
Thus, these classes are not intended to implement any numerical rou-
tines, by themselves, but provide a uniform interface to a broad variety
of highly efficient numerical libraries.

� Iterator functions, which combine vectors, matrices and tensors by
element-wise applying arbitrary user-defined functions, which cannot
be easily represented by BLAS/LAPACK.

These functions are designed as a link to future technologies as C++
AMP (see Sutter, 2011), which is intended to become a cross-platform
C++ language extension for multithreaded heterogeneous computing
at any level of complexity, beyond the functionality offered by BLAS
and LAPACK routines.

Thus programmers with average skills will also be able to execute any
matrix or vector operation simultaneously on different types of process-
ing units, as CPUs, GPUs and APUs, using the resources of modern
computers more efficiently, which until now has been considered as a
task of gurus - very few, highly specialized programmers which were
able to utilize a computer’s resources to its full extent.

Note, that the performance of the current setting, which is based on the
proprietary SMat classes is still being evaluated. In the future this layer
may be implemented differently, depending on how other promising matrix
libraries as Blitz++, uBLAS or MTL perform in the context of concepts as
C++ AMP.

7.2.6 MEAL - Declaration

This layer consists of a set of definitions, specifying an interface for enabling
the preceding layer to access various routines in the environment application.
Currently the most important BLAS and LAPACK routines, sort routines
and random number generators are accessible via this interface. Note, that
the functionality of this layer has not been defined completely yet, and thus
it is still expanding. This, for instance, refers to the support of the full BLAS
and LAPACK functionality, which is being implemented at the moment.
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7.2.7 MEAL - Implementation

Here the previously declared functions are implemented. Thus, a call to
e.g. a BLAS routine has to be routed to the corresponding function in the
environment application.
If the environment application does not provide the full functionality as
required in Layer 6, this layer has to take care of implementing the corre-
sponding functions.
This is the case with Matlab, as in contrast to R, neither its random
number generator, nor its internal sort routines are accessible from external
modules. Thus, an implementation of random number generators and sort
routines can be taken from the Gnu Scientific Library (Galassi et al., 2010)
or the Boost library (Siek et al., 2001).
Further, a stand-alone environment application may not contain any of the
mentioned routines at all, and thus this layer is responsible for including
and linking an according BLAS and LAPACK library.

7.3 Conclusions

An overview of an architecture for mathematical modules has been given,
which has been developed jointly with the R packages tclust and pcaPP. Ad-
mittedly, this concept was developed in the scope of these packages, and thus
it is not implemented to its complete extent yet. However the R-package
pcaPP (available on CRAN, http://CRAN.R-project.org/package=pcaPP)
proves this architecture’s functionality, as the included vignette ”Compiling
pcaPP for Matlab” explains how to compile, and shows how to use the pack-
age in Matlab (version ≥ 2010a).
A complete MEAL implementation for R is currently being developed,
and also a full implementation for Matlab will be available shortly. Fur-
ther, an implementation for stand-alone applications based on GSL or the
Boost library is planned and will be published on CRAN (http://cran.r-
project.org/) via the packages tclust and pcaPP. Thus, the application
of these modules will not be restricted to a single environment, but will
be available to a wide range of users and developers, which hopefully also
consider to implement future software projects in environment-independent
manner.
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Garćıa-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2008). “A Gen-
eral Trimming Approach to Robust Cluster Analysis.” Annals of Statistics,
36(3), 1324–1345.
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