
Graded Modalities in Strategy LogicI

Benjamin Aminofa, Vadim Malvoneb, Aniello Muranob, Sasha Rubinb

aTechnische Universitat Wien, Austria
bUniversità degli Studi di Napoli Federico II, Italy

Abstract

Strategy Logic (SL) is a logical formalism for strategic reasoning in multi-agent
systems. Its main feature is that it has variables for strategies that are associated
to specific agents using a binding operator. In this paper we introduce Graded
Strategy Logic (GradedSL), an extension of SL by graded quantifiers over
tuples of strategy variables, i.e., “there exist at least g different tuples (x1, ..., xn)
of strategies” where g is a cardinal from the set N∪{ℵ0,ℵ1, 2ℵ0}. We prove that
the model-checking problem of GradedSL is decidable. We then turn to the
complexity of fragments of GradedSL. When the g’s are restricted to finite
cardinals, written GradedNSL, the complexity of model-checking is no harder
than for SL, i.e., it is non-elementary in the quantifier-block rank. We illustrate
our formalism by showing how to count the number of different strategy profiles
that are Nash equilibria (NE). By analysing the structure of the specific formulas
involved, we conclude that the important problem of checking for the existence
of a unique NE can be solved in 2ExpTime, which is not harder than merely
checking for the existence of such an equilibrium.

Keywords: Strategic logics; Graded modalities; Nash equilibria.

1. Introduction

Strategy Logic (SL) is a powerful formalism for reasoning about strategies
in multi-agent systems [3, 4]. Strategies tell an agent what to do — they are
functions that prescribe an action based on the history. The key idea in SL
is to treat strategies as first-order objects. A strategy x can be quantified
existentially 〈〈x〉〉 (read: there exists a strategy x) and universally [[x]] (read: for
all strategies x). Furthermore, strategies are not intrinsically glued to specific
agents: the binding operator (α, x) allows one to bind an agent α to the strategy
x. SL strictly subsumes several other logics for strategic reasoning including the
well known ATL and ATL? [5]. Being a very powerful logic, SL can directly
express many solution concepts [6, 4, 7, 8, 9, 10, 11, 12] among which that a

IThis is an extended version of the works [1, 2].

Preprint submitted to Elsevier September 2, 2017

strategy profile x is a Nash equilibrium, and thus also the existence of a Nash
equilibrium (NE).

The Nash equilibrium is one of the most important concepts in game theory,
forming the basis of much of the recent fundamental work in multi-agent decision
making. A challenging and important aspect is to establish whether a game
admits a unique NE [13, 14, 15]. This problem is relevant to the predictive power
of NE since, in case there are multiple equilibria, the outcome of the game cannot
be uniquely pinned down [16, 17, 18]. Unfortunately, uniqueness has mainly
been established either for special cost functions [13], or for very restrictive
game topologies [19]. Moreover, there is no general theory of when games have
unique equilibria that can be applied to different application areas [13].

In this paper, we address and solve the problem of expressing the uniqueness
of certain solution concepts (and NE in particular) in a principled and elegant
way, by introducing an extension of SL called GradedSL. More specifically,
we extend SL by replacing the quantification 〈〈x〉〉 and [[x]] over strategy vari-

ables with graded quantification over tuples of strategy variables: 〈〈x1, . . . , xn〉〉≥g

(read 〈〈x1, . . . , xn〉〉≥g as “there exist at least g different tuples (x1, . . . , xn) of
strategies”) and its dual [[x1, . . . , xn]]

<g
, where g ∈ N∪ {ℵ0,ℵ1, 2ℵ0}. Here, two

tuples are different if they are different in some component, and two strate-
gies are different if they disagree on some history. The key is being able to
express uniqueness of NE is the combination of quantifying over tuples (instead
of singleton variables), and adding counting (in the form of graded modalities).

As far as the expressive power of GradedSL concerns, we prove that count-
ing strategies in SL is not possible in general (see Theorem 2.1). On the other
hand, every formula of SL has an equivalent formula of GradedSL formed
by replacing every quantifier 〈〈x〉〉 with 〈〈x〉〉≥1. Additionally, the possibility
of quantifying over tuples of strategy variables (rather than single strategies)
makes the logic quite expressive.

We address the model-checking problem for GradedSL and prove that it is
decidable. We also address the complexity of several fragments of GradedSL.
First we consider the case in which the g’s are restricted to finite cardinals,
written GradedNSL. Then we investigate the graded extension of classic frag-
ments of SL, such as Nested-Goal SL and one-goal SL [4], while maintaining the
restriction of grades over finite cardinals. Roughly speaking, the Nested-Goal
restriction encompasses formulas in a special prenex normal form with a par-
ticular nested temporal structure that restricts the application of both strategy
quantifiers and agent bindings; further, the one-goal restriction is obtained by
forbidding any nesting and Boolean operation over bindings (see Section 2.4 for
details).

We show that the complexity of the model-checking problem for GradedNSL
is no harder than for SL, i.e., it is non-elementary in the nesting depth of
quantifiers. In particular, we show that model checking GradedNSL formulas
with a nesting depth k > 0 of blocks of quantifiers (a block of quantifiers is
a maximally-consecutive sequence of quantifiers of the same type, i.e., either
all existential, or all universal) is in (k + 1)ExpTime, and that for the special

2

case where the formula starts with a block of quantifiers, it is in kExpTime.
Since many natural formulas contain a very small number of quantifiers, the
complexity of the model-checking problem is not as bad as it seems. Specifi-
cally, several solution concepts can be expressed as SL formulas with a small
number of quantifiers[6, 4, 7, 8, 9]. Since the existence of a NE, and the fact
that there is at most one NE, can be expressed in GradedNSL using simple
formulas (assuming that the agents’ goals are given as LTL formulas) we are
able to conclude that the problem of checking the uniqueness of a NE can be
solved in 2ExpTime. Previously, it was known that existence of NE can be
checked in 2ExpTime [4, 7]. Thus, GradedSL is the first logic that can solve
the existence and uniqueness of NE (as well as many other solution concepts)
in 2ExpTime.

Concerning the graded Nested-Goal fragment, namely GradedSL[ng], we
show that, in case the g’s are restricted to finite cardinals, it has the same model-
checking complexity as Nested-Goal SL, i.e., non-elementary in the alternation
number of the quantifiers appearing in the formula (the alternation number
is, roughly speaking, the maximum number of existential/universal quantifier
switches [4]). For the one-goal fragment, namely GradedNSL[1g], the model
checking problem is instead 2ExpTime-complete. All model checking com-
plexities reported so far refer to the size of the formula. Instead, with respect
to the size of the model, the model-checking problem is PTime-complete for
all these cases.
Related work. The importance of solution concepts, verifying a unique equi-
librium, and the relationship with logics for strategic reasoning is discussed
above. We now give some highlights from the long and active investigation of
graded modalities in the formal verification community.

Graded modalities were first studied in modal logic [20] and then exported
to the field of knowledge representation to allow quantitative bounds on the
set of individuals satisfying a given property. Specifically, they were consid-
ered as counting quantifiers in first-order logics [21] and number restrictions in
description logics [22]. Graded µ-calculus, in which immediate-successor acces-
sible worlds are counted, was introduced to reason about graded modal logic
with fixed-point operators [23]. Recently, the notion of graded modalities was
extended to count the number of paths in the branching-time temporal logic for-
mulas CTL and CTL? [24, 25]. In the verification of reactive systems, we men-
tion two orthogonal approaches: module checking 1 for graded µ-calculus [28, 29]
and an extension of ATL by graded path modalities [30].

The work closest to ours is [31]: also motivated by counting NE, it introduces
a graded extension of SL, called GSL. In contrast with our work, GSL has a
very intricate way of counting strategies: it gives a semantic definition for when

1Module checking is a decision problem proposed in late 1990s to formalize verification
of open systems, i.e., systems that must adapt their behavior to the input they receive from
the environment [26]. Recently it has been showed that module checking offers a distinctly
different perspective from the problem of model checking [27].

3

two strategies should be considered equal, and counts the number of equivalence
classes. While this approach is justified, it leads to a complicated model-checking
problem. Indeed, only a very weak fragment of GSL has been solved in [31] by
exploiting an ad hoc solution that does not seem to be easily scalable to (all
of) GSL. Precisely, the fragment investigated there is the vanilla restriction
of the graded version of one-goal SL [32]. There is a common belief that the
one-goal fragment is not powerful enough to express the existence of a Nash
Equilibrium in concurrent games. The smallest fragment that is known to be
able to represent this is the so called Boolean-goal Strategy Logic, whose graded
extension (in the GSL sense) has no known solution.2

Outline. The sequel of the paper is structured as follows. In Section 2 we intro-
duce GradedSL and provide some preliminary related concepts. In Section 3
we address the model-checking problem for GradedSL and its fragments. In
Section 4 we illustrate our logic by expressing the uniqueness of various solu-
tion concepts. We conclude with Section 5 in which we have a discussion and
suggestions for future work.

2. Graded Strategy Logic

In this section we introduce Graded Strategy Logic, which we call GradedSL
for short.

In the following we use a finite set of variables Vr, a finite set of agents Ag,
and a finite set of atomic propositions AP. We denote variables by xi, xj , etc.,
agents by αi, αj , etc., and atomic propositions by p, q, etc. The assumption
that these sets are finite is simply a technical convenience: the model-checking
problem (Definition 3.1) takes as input formulas and arenas with any number
of variables, agents, and atoms.

2.1. Syntax

GradedSL extends SL by replacing the singleton strategy quantifiers 〈〈x〉〉
and [[x]] with the graded (tupled) quantifiers 〈〈x1, . . . , xn〉〉≥g and [[x1, . . . , xn]]

<g
,

respectively, where g ∈ N∪{ℵ0,ℵ1, 2ℵ0} is called the grade of the quantifier. In-
tuitively, these are read as “there exist at least g tuples of strategies (x1, . . . , xn)”
and “all but less than g many tuples of strategies”, respectively. The syntax
(α, x) denotes a binding of the agent α to the strategy x.

Definition 2.1. GradedSL formulas are built inductively by means of the fol-

lowing grammar, where p ∈ AP, α ∈ Ag, x, x1, . . . , xn ∈ Vr such that xi 6= xj

for i 6= j and n ∈ N, and g ∈ N ∪ {ℵ0,ℵ1, 2ℵ0}:

2In [33] it has been shown that, in the restricted case of turn-based structures it is possible
to express the existence of Nash equilibria in m−ATL? [34], a memory-full variant of ATL?

(hence included in one-goal SL), but exponentially more succinct — and thus with a much
more expensive model-checking algorithm. As also the authors in [33] state, it is not clear
how to extend this result to the concurrent setting, even in the two player case.

4

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | 〈〈x1, . . . , xn〉〉≥gϕ | (α, x)ϕ.

Note that GradedSL formulas are defined w.r.t. fixed finite sets of atomic
propositions AP, agents Ag, and variables Vr.

Notation. Whenever we write 〈〈x1, . . . , xn〉〉≥g we mean that xi 6= xj for
i 6= j, i.e., the variables in a tuple are distinct (note that this does not mean
that the strategies the variables represent are distinct).

Shorthands are derived as usual. Specifically, true , p ∨ ¬p, false , ¬true,
Fϕ , trueUϕ, and Gϕ , ¬F¬ϕ. Also, we have that [[x1, . . . , xn]]

<g
ϕ ,

¬〈〈x1, . . . , xn〉〉≥g¬ϕ. The operators 〈〈x1, . . . , xn〉〉≥g (resp. [[x1, . . . , xn]]
<g

) are
called existential (resp. universal) strategy quantifiers.

In order to define the semantics, we first define the concept of free placehold-
ers in a formula, which refer to agents and variables. Intuitively, an agent or
variable is free in ϕ if it does not have a strategy associated with it (either by
quantification or binding) but one is required in order to ascertain if ϕ is true
or not. The definition mimics that for SL [4]. It is important for defining the
model-checking procedure, in particular for the encoding of strategies as trees
(Definition 3.3).

Definition 2.2. The set of free agents and free variables free(ϕ) ∈ 2Ag∪Vr of

a GradedSL formula ϕ is inductively defined as follows:

• free(p) , ∅, where p ∈ AP;

• free(¬ϕ) , free(ϕ);

• free(ϕ1 ∨ ϕ2) , free(ϕ1) ∪ free(ϕ2);

• free(Xϕ) , Ag ∪ free(ϕ);

• free(ϕ1 Uϕ2) , Ag ∪ free(ϕ1) ∪ free(ϕ2);

• free(〈〈x1, . . . , xn〉〉≥gϕ) , free(ϕ) \ {x1, . . . , xn};

• free((α, x)ϕ) ,

free(ϕ), if α 6∈ free(ϕ);

(free(ϕ) \ {α}) ∪ {x}, otherwise.

A formula ϕ without free agents (resp., variables), i.e., with free(ϕ) ∩ Ag = ∅

(resp., free(ϕ) ∩ Vr = ∅), is called agent-closed (resp., variable-closed). If ϕ is

both agent- and variable-closed, it is called a sentence.

5

Roughly, the quantifier rank of ϕ is the maximum, over all paths in the
parse-tree of ϕ, of the number of strategy quantifiers that appear on the path,
e.g., 〈〈x1, . . . , xn〉〉≥g(α1, x) . . . (αn, xn)

∧n
i=1(〈〈y〉〉(αi, y)ψi)→ ψi has quantifier

rank 2 if each ψi is quantifier free.

Definition 2.3. The quantifier rank qr(ϕ) ∈ N of a GradedSL formula ϕ is

inductively defined as follows:

• qr(p) , 0, where p ∈ AP;

• qr(OPϕ) , qr(ϕ), where OP ∈ {¬,X, [};

• qr(ϕ1OPϕ2) , max(qr(ϕ1), qr(ϕ2)) where OP ∈ {∨,U};

• qr(〈〈x1, . . . , xn〉〉≥gϕ) , qr(ϕ) + 1.

Roughly, a quantifier-block of ϕ is a maximally-consecutive sequence of quan-
tifiers in ϕ of the same type (i.e., either all existential, or all universal). The
quantifier-block rank of a formula is like the quantifier rank except that a quan-
tifier block of j quantifiers contributes 1 instead of j to the count. The formal
definition follows:

Definition 2.4. The quantifier-block rank qbr(ϕ) ∈ N of a GradedSL for-

mula ϕ that uses the shorthand for universal strategy quantifiers is inductively

defined as follows:

• qbr(p) , 0, where p ∈ AP;

• qbr(OPϕ) , qbr(ϕ), where OP ∈ {¬,X, [};

• qbr(ϕ1OPϕ2) , max(qbr(ϕ1), qbr(ϕ2)) where OP ∈ {∨,U};

• qbr(〈〈x1, . . . , xn〉〉≥gϕ) , qbr(ϕ) if ϕ begins with an existential strategy

quantifier, and qbr(ϕ) + 1 otherwise.

• qbr([[x1, . . . , xn]]
<g
ϕ) , qbr(ϕ) if ϕ begins with a universal strategy quan-

tifier, and qbr(ϕ) + 1 otherwise.

Note that we treat ¬〈〈x1, . . . , xn〉〉≥g¬ϕ differently to [[x1, . . . , xn]]
<g
ϕ. Thus,

one should choose the existential and universal quantifiers judiciously in order
to obtain a low quantifier-block rank.

6

2.2. Models

Sentences of GradedSL are interpreted over arenas 3, just as for ATL and
SL [5, 4].

Definition 2.5. An arena over fixed sets of atomic proposition AP and agents

Ag is a tuple A , 〈Ac,St, sI , ap, tr〉, where:

• Ac is a finite set of actions;

• St is a finite set of states;

• sI ∈ St is the initial state;

• ap : St → 2AP is the labeling function mapping each state to the set of

atomic propositions true in that state;

• Let Dc , Ag→ Ac be the set of decisions, i.e., functions describing the

choice of an action by every agent. Then, tr : Dc→ (St→St) is a transi-

tion function mapping every decision δ∈Dc to a function tr(δ) : St→ St.

We will usually take the set Ag of agents to be {α1, . . . , αn}. A path (from
s) is a finite or infinite non-empty sequence of states s1s2 . . . such that s = s1
and for every i there exists a decision δ with tr(δ)(si) = si+1. Given a path
π = s1s2 . . . , with λ(π) we denote the label of π as a sequence of sets of atomic
propositions π1, π2, . . . where ap(s1) = π1, ap(s2) = π2, and so on. The set of
paths starting with s is denoted Pth(s). The set of finite paths from s, called
the histories (from s), is denoted Hst(s). A strategy (from s) is a function
σ∈Str(s),Hst(s)→Ac that prescribes which action has to be performed given
a history. We write Pth,Hst,Str for the set of all paths, histories, and strategies
(no matter where they start). We use the standard notion of equality between
strategies [35], i.e., σ1 = σ2 iff for all ρ ∈ Hst, σ1(ρ) = σ2(ρ). This extends to
equality between two n-tuples of strategies in the natural way, i.e., coordinate-
wise. There is a subtlety in this definition, i.e., two strategies are different if
they differ on some history ρ, even if that history is not reachable using either
of the strategies.

2.3. Semantics

As for SL, the interpretation of a GradedSL formula requires a valuation
of its free placeholders.

3This is sometimes called a Concurrent Game Structure.

7

Definition 2.6. An assignment (from s) is a function χ∈ Asg(s),(Vr∪Ag)→

Str(s) mapping variables and agents to strategies.

We denote by χ[e 7→ σ], with e ∈ Vr ∪ Ag and σ ∈ Str(s), the assignment that
differs from χ only in the fact that e maps to σ. Extend this definition to tuples:
for e = (e1, . . . , en) with ei 6= ej for i 6= j, define χ[e 7→ σ] to be the assignment
that differs from χ only in the fact that ei maps to σi (for each i).

Since an assignment ensures that all free variables are associated with strate-
gies, it induces a play.

Definition 2.7. Let χ ∈ Asg(s) be an assignment. By (χ, s)-play we denote

the path π ∈ Pth(s) such that, for all i ∈ N, it holds that πi+1 = tr(dc)(πi),

where dc(α) , χ(α)(π≤i), for α ∈ Ag. The function play : Asg × St → Pth,

with dom(play) , {(χ, s) : χ ∈ Asg(s)}, maps (χ, s) to the (χ, s)-play play(χ, s)

∈ Pth(s).

The notation π≤i (resp. π<i) denotes the prefix of the sequence π of length
i (resp. i − 1). Similarly, the notation πi denotes the ith symbol of π. Thus,
play(χ, s)i is the ith state on the play determined by χ from s.

The following definition of χi says how to interpret an assignment χ starting
from a point i along the play, i.e., for each placeholder e, take the action the
strategy χ(e) would do if it were given the prefix of the play up to i followed by
the current history.

Definition 2.8. For χ ∈ Asg(s) and i ∈ N, writing ρ , play(χ, s)≤i (the prefix

of the play up to i) and t , play(χ, s)i (the last state of ρ) define χi ∈ Asg(t)

to be the assignment from t that maps e ∈ Vr ∪ Ag to the strategy that maps

h ∈ Hst(t) to the action χ(e)(ρ<i · h).

The semantics of GradedSL mimics the one for SL as given in [4]. Given
an arena A, for all states s ∈ St and assignments χ ∈ Asg(s), we now define the
relation A, χ, s |= ϕ, read ϕ holds at s in A under χ.

Definition 2.9. Fix an arena A. For all states s ∈ St and assignments χ ∈

Asg(s), the relation A, χ, s |= ϕ is defined inductively on the structure of ϕ:

• A, χ, s |= p iff p ∈ ap(s);

• A, χ, s |= ¬ϕ iff A, χ, s 6|= ϕ;

• A, χ, s |= ϕ1 ∨ ϕ2 iff A, χ, s |= ϕ1 or A, χ, s |= ϕ2;

8

• A, χ, s |= Xϕ iff A, χ1, play(χ, s)1 |= ϕ;

• A, χ, s |= ϕ1 Uϕ2 iff there is i ∈ N such that A, χi, play(χ, s)i |= ϕ2 and,

for all j ∈ N with j < i, it holds that A, χj , play(χ, s)j |= ϕ1;

• A, χ, s |= (α, x)ϕ iff A, χ[α 7→ χ(x)], s |= ϕ;

• A, χ, s |= 〈〈x1, . . . , xn〉〉≥gϕ iff there exist g many n-tuples of strategies σi

(0 ≤ i < g) such that:

– σi 6= σj for i 6= j;

– A, χ[x 7→ σi], s |= ϕ for 0 ≤ i < g and x = (x1, . . . , xn).

Intuitively, 〈〈x1, . . . , xn〉〉≥gϕ expresses that the number of distinct tuples of
strategies that satisfy ϕ is at least g.

As usual, if χ and χ′ agree on free(ϕ), then A, χ, s |= ϕ if and only if
A, χ′, s |= ϕ, i.e., the truth of ϕ does not depend on the values the assignment
takes on placeholders that are not free. Thus, for a sentence ϕ, we write A |= ϕ
to mean that A, χ, sI |= ϕ for some (equivalently, for all) assignments χ, and
where sI is the initial state of A.

2.4. Fragments of GradedSL

In this section we introduce various syntactic fragments of GradedSL.
Obviously SL can be considered a fragment of GradedSL: note that the
GradedSL quantifier 〈〈x1, . . . , xn〉〉≥g in case g = 1 and n = 1 has the same
semantics as the SL quantifier 〈〈x1〉〉. The next result shows that GradedSL
is strictly more expressive than SL, i.e., there is a GradedSL sentence whose
models are not the set of models of any SL sentence.

Theorem 2.1. GradedSL is strictly more expressive than SL.

Proof. Fix Ag = {α}, AP = {p}, St = {s}, sI = s, ap(s) = {p}. Define
A = 〈AcA,St, sI , ap, trA〉, where AcA = {0}, and trA(δ)(s) = s for every decision
δ; and B = 〈AcB ,St, sI , ap, trB〉, where AcB = {0, 1}, and trB(δ)(s) = s for
every decision δ. Thus, each arena consists of a single state with self-loops, the
difference being that in B there are two actions while in A there is only a single
action.

Consider the GradedSL formula ¬〈〈x〉〉≥2true. Note that A |= ¬〈〈x〉〉≥2true
(since there is only a single strategy in A), while B 6|= ¬〈〈x〉〉≥2true (since there
are at least two, and in fact 2ℵ0 many, strategies in B).

Let χA be the unique assignment in A, i.e., that maps α and every variable
in Vr to the strategy σ defined by σ(h) = 0 for all histories h. We claim that,
for every SL formula ϕ, if A, χA, s |= ϕ then, for all assignments χ we have that

9

B, χ, s |= ϕ. Thus, in particular, no SL sentence can distinguish between A and
B, and the theorem follows.

One can easily prove the claim by induction on the structure of an SL
formula. Alternatively, one may note that A and B are locally-isomorphic, and
thus agree on all SL formulas (see [36, Section 3] for the definition and properties
of “local-isomorphism”).4 2

Recall that SL has a few natural syntactic fragments, the most powerful of
which is SL[ng] (here “NG” stands for Nested-Goal). Recall that in SL[ng],
we require that bindings and quantifications appear in exhaustive blocks. I.e.,
whenever there is a quantification over a variable in a formula ψ it is part of
a consecutive sequence of quantifiers that covers all of the free variables that
appear in ψ, and whenever an agent is bound to a strategy then it is part of
a consecutive sequence of bindings of all agents to strategies. Also, formulas
with free agents are not allowed. We define GradedSL[ng] in a similar way, as
follows.

A quantification prefix over a set V⊆Vr of variables is a sequence ℘ from
the set

{〈〈x1, . . . , xn〉〉≥g, [[x1, . . . , xn]]
<g

: n ∈ N, x1, . . . , xn∈V ∧ g∈N ∪ {ℵ0,ℵ1, 2ℵ0}}∗

such that each x∈V occurs exactly once in ℘. A binding prefix is a sequence
[∈{(α, x) : α∈Ag∧x∈Vr}∗ such that each α∈Ag occurs exactly once in [. We
denote the set of binding prefixes by Bn, and the set of quantification prefixes
over V by Qn(V).

Definition 2.10. GradedSL[ng] formulas are built inductively using the fol-

lowing grammar, with p ∈ AP, ℘ ∈ Qn(V) (V ⊆ Vr), and [∈ Bn:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ℘ϕ | [ϕ,

where in the rule ℘ϕ we require that ϕ is agent-closed and ℘ ∈ Qn(free(ϕ)). In

this case we call ℘ϕ a principal formula.

Formulas of GradedSL[ng] can be classified according to their alternation
number, i.e., the maximum number of quantifier switches in a quantification
prefix. 5 Formally:

Definition 2.11. The alternation number alt(ϕ) of a GradedSL[ng] formula

ϕ is defined as follows:

4We thank an anonymous reviewer for pointing this out.
5In [4] the alternation number is described for all formulas of SL, but only used for the

Nested-Goal fragment. Thus, here, we only define it for GradedSL[ng].

10

• alt(p) , 0, where p ∈ AP;

• alt(OPϕ) , alt(ϕ), where OP ∈ {¬,X, [};

• alt(ϕ1OPϕ2) , max(alt(ϕ1), alt(ϕ2)) where OP ∈ {∨,U};

• alt(℘ϕ) , max(alt(ϕ), alt(℘)) where ℘ = ℘1 . . . ℘|℘|−1 is a quantification

prefix and alt(℘) ,
∑|℘|−1
i=1 switch(℘i, ℘i+1), where switch(Q,Q′) = 0 if

Q and Q′ are either both universal or both existential quantifiers, and 1

otherwise 6.

Another important fragment of SL is SL[1g] (here “1G” stands for One-
Goal). Intuitively, SL[1g] is the fragment of GradedSL[ng] in which quantifi-
cation is immediately followed by binding. The importance of this fragment
stems from the fact that it strictly includes ATL? while maintaining the same
complexity for both the model checking and the satisfiability problems, i.e.
2ExpTime-complete [32, 4]. However, it is commonly believed that Nash
Equilibrium cannot be expressed in this fragment. Similarly, we give the follow-
ing definition of GradedSL[1g]:

Definition 2.12. GradedSL[1g] formulas are built inductively using the fol-

lowing grammar, with p ∈ AP, ℘ ∈ Qn(V) (V ⊆ Vr), and [∈ Bn:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ℘[ϕ,

where ℘ is a quantification prefix over free([ϕ).

Finally, an important fragment (in which one can express uniqueness of
strategy profiles) is when all grades are in N.

Definition 2.13. With GradedNSL, GradedNSL[ng] and GradedNSL[1g]

we refer for the fragments in which all grades are from the set N.

3. Model-checking GradedSL

In this section we study the model-checking problem for GradedSL and
show that it is decidable with a time-complexity that is non-elementary (i.e.,
not bounded by any fixed tower of exponentials). However, it is elementary if
the number of blocks of quantifiers is fixed.

6Observe that formulas of the form ℘ϕ have no free variables and thus one cannot form

formulas of the form ℘′℘ϕ.

11

Definition 3.1. The model-checking problem for GradedSL (respectively,

GradedSL[ng]) is the following decision problem: given a formula ϕ from

GradedSL (respectively, GradedSL[ng]) over some finite sets of atoms AP,

agents Ag, and variables Vr, and given an arena A over the sets AP and Ag,

decide whether A|= ϕ.

When measuring computational complexity, the grades in formulas are written
in unary.

For the algorithmic procedures, we follow an automata-theoretic approach [37],
reducing the decision problem for the logic to the emptiness problem of an au-
tomaton. The procedure we propose here extends that used for SL in [4]. The
only case that is different is the new graded quantifier over tuples of strategies,
i.e., we show how to convert a GradedSL formula ϕ into an automaton that
accepts exactly the (tree encodings) of the assignments that satisfy ϕ.

Tree Automata. A Σ-labeled Υ-tree T is a pair 〈T, V 〉 where T ⊆ Υ+ is
prefix-closed (i.e., if t ∈ T and s ∈ Υ+ is a prefix of t then also s ∈ T), and
V : T → Σ is a labeling function. Note that every word w ∈ Υ+ ∪ Υω with
the property that every prefix of w is in T , can be thought of as a path in
T. Infinite paths are called branches. Nondeterministic tree automata (Nta)
are a generalization to infinite trees of the classical automata on words [38].
Alternating tree automata (Ata) are a further generalization of nondeterministic
tree automata [39]. Intuitively, on visiting a node of the input tree, while an
Nta sends exactly one copy of itself to each of the successors of the node, an
Ata can send several copies to the same successor. We use the parity acceptance
condition [37].

For a set X, let B+(X) be the set of positive Boolean formulas over X,
including the constants true and false. A set Y ⊆ X satisfies a formula θ ∈
B+(X), written Y |= θ, if assigning true to elements in Y and false to elements
in X \ Y makes θ true.

Definition 3.2. An Alternating Parity Tree-Automaton (Apt) is a tupleM ,

〈Σ,∆,Q, δ, q,F〉, where

• Σ is the input alphabet,

• ∆ is a set of directions,

• Q is a finite set of states,

• q ∈ Q is an initial state,

• δ : Q× Σ→ B+(∆×Q) is an alternating transition function, and

12

• F, an acceptance condition, is of the form (F1, . . . ,Fk) ∈ (2Q)+ where

F1 ⊆ F2 . . . ⊆ Fk = Q.

The set ∆ × Q is called the set of moves. An Nta is an Ata in which each
conjunction in the transition function δ has exactly one move (d, q) associated
with each direction d.

An input tree for an Apt is a Σ-labeled ∆-tree T = 〈T, v〉. A run of an
Apt on an input tree T = 〈T, v〉 is a (∆ × Q)-tree R such that, for all nodes
x ∈ R, where x = (d, q) . . . (dn, qn) (for some n ∈ N), it holds that (i) y ,
(d, . . . , dn) ∈ T and (ii) there is a set of moves S ⊆ ∆×Q with S |= δ(qn, v(y))
such that x · (d, q) ∈ R for all (d, q) ∈ S.

The acceptance condition allows us to say when a run is successful. Let R
be a run of an AptM on an input tree T and u ∈ (∆×Q)ω one of its branches.
Let inf(u) ⊆ Q denote the set of states that occur in infinitely many moves of u.
Say that u satisfies the parity acceptance condition F=(F1, . . . ,Fk) if the least
index i ∈ [1, k] for which inf(u) ∩ Fi 6= ∅ is even. A run is successful if all its
branches satisfy the parity acceptance condition F. An Apt accepts an input
tree T iff there exists a successful run R of M on T.

The language L(M) of the Apt M is the set of trees T accepted by M.
Two automata are equivalent if they have the same language. The emptiness
problem for alternating parity tree-automata is to decide, given M, whether
L(M) = ∅. The universality problem is to decide whether M accepts all trees.

3.1. From Logic to Automata

We reduce the model-checking problem of GradedSL to the emptiness prob-
lem for alternating parity tree automata [4]. The main step is to translate every
GradedSL formula ϕ (i.e., ϕ may have free placeholders), arena A, and state
s, into an Apt that accepts a tree if and only if the tree encodes an assignment
χ such that A, χ, s |= ϕ.

We first describe the encoding, following [4]. Informally, the arena A is
encoded by its “tree-unwinding starting from s” whose nodes represent histories,
i.e., the St-labeled St-tree T , 〈Hst(s), u〉 such that u(h) is the last symbol of
h. Then, every strategy χ(e) with e ∈ free(ϕ) is encoded as an Ac-labelled tree
over the unwinding. The unwinding and these strategies χ(e) are viewed as a
single (Val× St)-labeled tree where Val , free(ϕ)→ Ac.

Definition 3.3. The encoding of χ (w.r.t. ϕ,A, s) is the (Val × St)-labeled

St-tree T , 〈T, u〉 such that T is the set of histories h of A starting with s and

u(h) , (f, q) where q is the last symbol in h and f : free(ϕ) → Ac is defined by

f(e) , χ(e)(h) for all e ∈ free(ϕ).7

7In case free(ϕ) = ∅, then f is the (unique) empty function. In this case, the encoding of

every χ may be viewed as the tree-unwinding from s.

13

We now state and prove a lemma that says one can translate every formula
in GradedSL into an APT. It is proved by induction on the structure of the
formula ϕ, as in [4]. The idea for handling the new case, i.e., the graded quan-

tifier 〈〈x1, . . . , xn〉〉≥gψ, is to build an APT that is a projection of an APT that
itself checks that each of the g tuples of strategies satisfies ψ and that each pair
of g tuples is distinct. The case that g ∈ N directly builds the required automa-
ton (as is done for SL [4]), while the case that g ∈ {ℵ0,ℵ1, 2ℵ0} goes through
logic. Write MSOL for monadic second-order logic in the signature of trees. We
use the following two results that show how to express counting quantifiers in
MSOL. The first is due to Rabin 2.9 and is nicely exposed in [38].

Theorem 3.1 (MSOL and Automata). For every MSOL formula α(Y) there

exists an Apt accepting the set of trees Y such that α(Y) holds. Conversely,

for every Apt there is an MSOL formula α(Y) that holds on those Y that are

accepted by the Apt.

The second is due to [40] and is proved using the composition technique.

Theorem 3.2. For every MSOL formula α(X,Y) and κ ∈ {ℵ0,ℵ1, 2ℵ0} there

exists an MSOL formula β(X) equivalent to “there exist κ many trees Y such

that α(X,Y)”.

Lemma 3.1. For every GradedSL formula ϕ, arena A, and state s ∈ St,

there exists an Apt M such that for all assignments χ, if T is the encoding of

χ (w.r.t. ϕ,A, s), then A, χ, s |= ϕ iff T ∈ L(M).

Proof. As in [4] we induct on the structure of the formula ϕ to construct
the corresponding automatonM. The Boolean operations are easily dealt with
using the fact that disjunction corresponds to non-determinism, and negation
corresponds to dualising the automaton. The temporal operators are dealt
with by following the unique play (determined by the given assignment) and
verifying the required subformulas, e.g., for Xψ the automaton, after taking
one step along the play, launches a copy of the automaton for ψ. All of these
operations incur a linear blowup in the size of the automaton. The only case
that differs from SL is the quantification, i.e., we need to handle the case that
ϕ = 〈〈x1, . . . , xn〉〉≥gψ. Recall that G, χ, s |= 〈〈x1, . . . , xn〉〉≥gψ iff there exists g
many tuples σi of strategies such that: σa 6= σb for a 6= b, and G, χ[x 7→ σi], s |=
ψ for 0 ≤ i < g.

There are two cases.
Case g ∈ {ℵ0,ℵ1, 2ℵ0}. Consider 〈〈x1, . . . , xn〉〉≥gψ. By induction, there is

an Apt D for ψ. Apply Theorem 3.1 to translate D into an MSOL formula α,
then apply Theorem 3.2 to get an MSOL formula β that holds iff “there exist

14

g many tuples of trees such that α” (recall that a tuple of trees is coded as a
single tree). Finally, apply Theorem 3.1 to convert β into the required Apt.

Note that the blowup in the translations (MSOL to Apt, and closure under
“there exists κ many trees”) is non-elementary.

Case g ∈ N. Let M be the Apt for ψ, given by induction. We show how
to build an Npt for ϕ that mimics the definition of ϕ: it will be a projection
of an Apt, which itself is the intersection of two automata, one checking that
each of the g tuples of strategies satisfies ψ, and the other checking that each
pair of the g tuples of strategies is distinct.

In more detail, introduce a set of fresh variables X , {xji : i ≤ n, j ≤ g},
and consider the formulas ψj (for j ≤ g) formed from ψ by renaming xi (for
i ≤ n) to xji . Define ψ′ , ∧j≤gψj . Note that, by induction, each ψj has a
corresponding Apt and thus, there is an Apt BM,X for ψ′ (conjunction can
be dealt using universal-choice). Note that the input alphabet for BM,X is
(free(ψ′)→ Ac)× St and that X ⊆ free(ψ′).

On the other hand, let CX be an Apt with input alphabet (free(ψ′) →
Ac)× St that accepts a tree T = 〈T, v〉 if and only if for every a 6= b ≤ g there
exists i ≤ n and h ∈ T such that v(h) = (f, q) (where q is the last symbol of h)

and f(xai) 6= f(xbi). To build CX simply form the conjunction of automata Ca,bX
(for a 6= b ≤ g), each of which is the disjunction of automata Ca,b,iX (for i ≤ n)
that checks (by nondeterministically guessing a path) that there exists a history
h starting in s such that f(xai) 6= f(xbi) (where the first co-ordinate of v(h) is
f).

Form the Apt DM,X for the intersection of BM,X and CX (formed using
universal-choice).

Now, using the classic transformation [41], we remove alternation from the
Apt DM,X to get an equivalent Npt N (note that this step costs an expo-
nential). Finally, use the fact that Npts are closed under projection (with no
blowup) to get an Npt for the language projX(L(N)) of trees that encode
assignments χ satisfying ϕ.

For completeness we recall this last step. If L is a language of Σ-labeled
trees with Σ , A → B, and X ⊂ A, then the X-projection of L, written
projX(L), is the language of Σ′-labeled trees with Σ′ , A \ X → B such that
T , 〈T, v〉 ∈ projX(L) if and only if there exists an X-labeled tree 〈T,w〉 such
that the language L contains the tree 〈T, u〉 where u : T → (A → B) maps
t ∈ T to v(t) ∪ w(t). Now, if N is an Npt with input alphabet Σ , A → B,
and if X ⊂ A, then there is an Npt with input alphabet Σ′ , A \ X→ B with
language projX(L(N)).

The proof that the construction is correct is immediate. 2

We now analyse the number of states of the constructed Apt. All the cases
in the induction incur at most a linear blowup except for the quantification
case. For the quantification case, in case g ∈ {ℵ0,ℵ1, 2ℵ0} the blowup is non-
elementary.

In case g ∈ N then the translation incurs an exponential blowup. Indeed,

15

the number of states of the Apt BM,X is g×n times the number of states of the
Apt for ψ, and since CX consists of the conjunction of g(g − 1) automata (one
for each pair of tuples), and each such automaton has O(n) many states, the
number of states of CX is O(ng2). Thus, the number of states of the Apt DM,X

is polynomial in the number of states of the Apt for ψ. Finally, the translation
from an Apt to an Npt results in an exponentially larger automaton [37].

In case all grades are from N and the formulas are written using the universal-
strategy quantifier shorthand, we can easily modify the construction to handle
quantifier-blocks in one shot as if they were a single quantifier, i.e., with a single
exponential blowup. For instance, suppose φ = 〈〈y1, . . . , ym〉〉≥h〈〈x1, . . . , xn〉〉≥gψ
(additional quantifiers are treated similarly). As in the proof, letM be the Apt
for ψ and take DM,X . Now, instead of immediately removing alternation and

projecting, build DM′,Y where M′ is DM,X and Y , {yji : i ≤ m, j ≤ h}.
Finally, remove alternation from DM′,Y to get an Npt N ′, and then apply the
(X∪Y)-projection to the language of N ′ to get the desired Apt for φ. Note that
the size of DM′,Y is exponential in the number of states of M since the costly
step of removing alternation is performed only once. Similarly, to deal with a
block of universal strategy quantifiers simply use dualisation. For instance, to
deal with φ = [[y1, . . . , ym]]

<h
[[x1, . . . , xn]]

<g
ψ apply the previous procedure to

the equivalent formula ¬〈〈y1, . . . , ym〉〉≥h〈〈x1, . . . , xn〉〉≥g¬ψ (recall that negating
an Apt is done by dualisation, which incurs no blowup).

Theorem 3.3. The model-checking problem for GradedSL ϕ is decidable.

Precisely, we have:

1. The complexity is not bounded by any fixed tower of exponentials.

2. The complexity is PTime-complete w.r.t. the size of the model.

3. If all grades in ϕ are restricted to be in N, then:

(a) the model-checking problem is in (k + 1)ExpTime if k ≥ 1 is the

quantifier-block rank of ϕ.

(b) if ϕ is the form ℘ψ, where ℘ is a quantifier-block, and ψ is of

quantifier-block rank k − 1, then the model-checking problem is in

kExpTime.

(c) if ϕ is of the form 〈〈x1, . . . , xn〉〉≥gψ or [[x1, . . . , xn]]
<g
ψ then the

model-checking problem is in ExpTime w.r.t. the parameter g (writ-

ten in unary).

Proof. The lower bounds already hold for SL [4]. For decidability, use
Lemma 3.1 to transform the arena and ϕ into an Apt and test its emptiness.
For the upper bound in item 2, use the fact that the membership problem for

16

Apt is in PTime in the number of states. For item 3(a), proceed as follows. The
complexity of checking emptiness (resp. universality) of an Apt is in ExpTime
in the number of states [37]. As discussed after Lemma 3.1, for the case that
all grades are in N, the number of states of the Apt is a tower of exponentials
whose height is the quantifier-block rank of ϕ. This gives the (k + 1)ExpTime
bound. Finally, suppose that ϕ = ℘ψ where ℘ consists of, say, n existential
quantifiers (resp. universal quantifiers). The quantifier-block rank of ψ is k− 1.
Moreover, the Apt Dψ, whose number of states is non-elementary in k − 1,
has the property that it is non-empty (resp. universal) if and only if the arena
satisfies ℘ψ. Conclude that model checking ℘ψ can be solved in kExpTime.
For item 3(c), first observe that the size of the Apt constructed in Lemma 3.1
grows quadratically in g. The statement follows by recalling that the complexity
of model-checking formulas of this form is exponential in the number of states
of the Apt. 2

Theorem 3.4. The model-checking problem for GradedSL[ng] when it is re-

stricted to formulas of maximum alternation number k and grades in N, is

(k + 1)ExpTime.

Proof. The lower bound already holds for SL[ng] [4]. For the upper bound,
as for SL[ng], note that principal formulas are “state formulas”, i.e., their truth
value only depends on the state in which they are interpreted (this is because
they have no free placeholders). Thus, one can replace the general algorithm
in Lemma 3.1 with the following marking algorithm. Bottom up, for every
principal subformula ϕ = ℘ψ and state s of A, mark s by the truth value of
A, χ, s |= ϕ (for some, equivalently all, assignments χ). Consider these markings
as new atomic propositions. Observe that the complexity of marking a state is
at most (k + 1)ExpTime (by repeatedly applying Theorem 3.3 part 3.). Also,
the cost of the whole marking algorithm is the sum of the costs of all the marking
rounds, and the number of rounds is at most the size of the formula. Thus the
total time is at most (k + 1)ExpTime. 2

We conclude this section with the complexity of the model checking problem
for GradedNSL[1g]. In this case one can derive the lower bound from the
one holding for the corresponding sub-logic in SL (i.e., SL[1g]) and the upper
bound by using the same algorithm for SL[1g] but using the (no more complex)

construction for the strategic quantifier 〈〈x1, . . . , xn〉〉≥g instead of 〈〈x〉〉. Indeed
the model checking problem for GradedNSL[1g]is 2ExpTime-complete. It is
worth recalling that SL[1g] strictly subsumes ATL? [4]. It is quite immediate
to see that this also holds in the graded setting (note that ATL? already allows
quantifying over tuples of agents’ (bound) strategies). As the model checking for
ATL? is already 2ExpTime-hard, we get that also for the graded extension for
this logic, which we name GATL?, the model checking problem is 2ExpTime-
complete. The model checking results for both GATL? and GradedSL[1g]

17

are reported in the following theorem.

Theorem 3.5. The model-checking problem for GATL? and GradedNSL[1g]

is PTime-complete w.r.t. the size of the model and 2ExpTime-complete

w.r.t. the size of the formula.

4. Analysing Games using GradedSL

In this section we describe how to use the models and formulas of GradedSL
to reason about solution concepts from game theory. In particular, we show how
to use arenas to model games of finite or infinite duration, and GradedSL to
express the uniqueness of winning strategies, Nash equilibria, subgame-perfect
equilibria, and Pareto-efficient profiles. In all cases this is not more expensive
than merely deciding the existence of winning strategies with LTL-goals, i.e.,
2ExpTime.

4.1. Strategic Form and Infinitely Repeated Games

The Strategic Form is the most familiar representation of strategic interac-
tions in Game Theory. A game written in this way amounts to a representation
of every player’s preference for every state of the world, in the special case where
states of the world depend only on the players’ combined actions.

Definition 4.1. A strategic form game is a tuple (N,A, (�i)i∈N), where:

• N is a finite set of n players, indexed by i;

• A = A1 × . . .× An, where Ai is a finite set of actions available to player

i. Each vector a = (a1, . . . , an) ∈ A is called an action profile;

• each �i is a total pre-order (i.e., reflexive and transitive) on A.

Note that a common way to give the preference relation is by using a payoff
function pay : A→ R, which assigns a real number to every element in A. In this
case, the preference relation �i is defined by having a �i a′ iff pay(a) ≤ pay(a′).

A classic way to model players that repeatedly interact with each other in
a game (N,A, (�i)i∈N) is by infinitely repeated games, see e.g., [42]. We will
illustrate by formalising an iterated prisoner’s dilemma (Section 4.3).

18

Figure 1: Prisoner’s Dilemma in Strategic Form. Each row corresponds to a possible action for
player 1, each column corresponds to a possible action for player 2, and each cell corresponds
to one possible outcome. Payoffs of the players for an outcome are written in the corresponding
cell, with the payoff of player 1 listed first.

∅

T1S2 P1P2S1T2R1R2

CC CD DC DD

∗∗ ∗∗ ∗∗ ∗∗

Figure 2: Arena of the Prisoner’s dilemma.

4.2. Quasi-Quantitative Games and Objective-LTL Games

As expected, we can also specify games by arenas and a payoff function on
plays. In this section we define quasi-quantitative games, a generalisation of
objective-LTL games [8].

Let A be an arena with n agents. Let m ∈ N, for each agent αi ∈ Ag, a quasi-
quantitative objective is a tuple Si , 〈fi, L1

i , . . . , L
m
i 〉, where fi : {0, 1}m → Z,

and each Lji is a set of sequences of sets of atomic propositions. If π is an infinite
path, then agent αi receives payoff fi(b

π
i) ∈ N where the j’th bit of bπi is 1 if

and only if ap(π) ∈ Lji . We assume agents are trying to maximise their payoffs.
The tuple G = 〈A, S1, . . . , Sn〉 is called a quasi-quantitative game. In case each
fi : {0, 1}m → {−1, 1} we say that the game is win/lose. If

∑
1≤i≤n fi(b

π
i) = 0

for all π, then G is zero-sum, otherwise it is a non zero-sum.
In case each Lji is the set of models of an LTL formula ϕji over AP, we

call G an objective-LTL game. We introduce the following useful shorthand.
For αi ∈ Ag and a ∈ {0, 1}m, define ηai for the LTL formula

∧
j≤m ψa,j where

ψa,j = ϕji if aj = 1 and ψa,j = ¬ϕji if aj = 0.

4.3. Example: The Prisoner’s Dilemma (PD)

A natural way to draw strategic form games is via an n-dimensional matrix.
Figure 1 contains the matrix of the classic Prisoner’s Dilemma.

The two actions are C (co-operate) and D (defect). The payoffs are the
prison sentences (in years) that the prisoners get for each pair of actions that

19

they choose.8

The deal is that if both confess then they each get a reduced sentence. If
both is offered the choice to confess or remain silent. captured thieves are
suspected of Observe that the actual numbers are not important, and that the
important thing is the induced preference relation Ti > Ri > Pi > Si, where Ri

represents the reward that αi receives if both cooperate; Pi is the punishment
that αi receives if both defect; Ti is the temptation that αi receives as a sole
defector, and Si is the sucker payoff that αi receives as a sole cooperator.

We can describe the Prisoner’s Dilemma with the arena in Figure 2 and,
for agent αi, the objective Si , 〈fi, ϕ1

i , ϕ
2
i , ϕ

3
i , ϕ

4
i 〉 where ϕ1

i , XSi, ϕ
2
i , XPi,

ϕ3
i , XRi, and ϕ4

i , XTi and fi returns the value of its input vector interpreted
as a binary number, e.g., fi(0100) = 4 that represents the payoff in which ϕ3

i is
true. In words, we have two agents α1 and α2. Each agent has two actions, C
and D. For each possible pair of moves, the game goes in a state whose atomic
propositions represent the preferences.

It is well known that in the Prisoner’s Dilemma the only Nash equilibrium is
for both players to defect. The reason is that each prisoner must hedge against
the possibility of the other one defecting. However, it is clear that if they would
have both cooperated, they would be better off. If there was a way for one
prisoner to later punish a defection of the other prisoner, it may not have to
hedge, and would be able to cooperate instead. Such behaviours emerge as a ra-
tional choice, for example, when one considers the infinitely repeated prisoner’s
dilemma, in which the prisoners repeat the basic strategic form game infinitely
often.9 Indeed, it is well known that for this iterated game (for example, with a
payoff that is the mean-payoff of the prison sentences [43]), a new Nash equilib-
rium emerges, in which both players use the so called Grim strategy, in which
a prisoner cooperates as long as the other prisoner cooperates, but switches to
always defect the first time the other prisoner defects. Observe that the result-
ing infinite play of this Nash equilibrium has both players cooperating all the
time. The core reason that the pair of grim strategies is a Nash equilibrium for
the mean-payoff version of the iterated prisoner’s dilemma is that this payoff
ignores the price of being a ‘sucker’ on any finite prefix of the play, i.e., that the
mean-payoff of a play is independent of any finite prefix of that play — other
properties of the mean are not needed, and constitute unimportant noise. In-

8The story behind the dilemma is this: Two people have been arrested for robbing a bank
and placed in separate isolation cells. Each has two possible choices, remaining silent (action
C) or confessing (action D). If a robber confesses and the other remains silent, the former is
released and the latter stays in prison for a long time. If both confess they are both convicted,
but will get early parole. If both remain silent, they get a lighter sentence (e.g., on firearms
possession charges). The dilemma faced by the prisoners is that, whatever the choice of the
other prisoner, each is better off confessing than remaining silent. But the result obtained
when both confess is worse than if they both remain silent.

9Alternatively, one can introduce the threat of a punishment for defecting by considering
a probabilistic version in which it is unclear to the prisoners how many repetitions will be
used. Note, however, that a fixed number of repetitions turns out to be essentially the same
as playing only once [43].

20

∅

T1S2 P1P2S1T2R1R2

CC

CD DC

DD

∗∗
∗∗ ∗∗

∗∗

Figure 3: Arena of the Iterated Prisoner’s dilemma.

deed, the same Nash equilibria would emerge if, for example, one takes instead
of the mean-payoff the maximal payoff that repeats infinitely often.

More generally, given a game in strategic form, and a preference relation �i
over its set of possible outcomes A, one can define a new preference relation �∞i
over Aω by assigning a payoff to every subset of A and assigning to each play
the set inf(π) ⊆ A of outcomes in A that appear infinitely often in π. Formally,
let Fi : 2A → Z be a function mapping subsets of A to integers, and define
π �∞i π′ iff Fi(inf(π)) ≤ Fi(inf(π′)).10 For example, for the iterated prisoners’
dilemma, setting Fi(X) to be the number of elements y in A such that y ≺i x
where x is a �i-maximal element of X, results in a game with the same set of
Nash equilibria as in the mean payoff version.

We formalise the infinitely repeated prisoner’s dilemma as an objective-LTL
game. The arena is in Figure 3. The preferences, for agent αi, are defined by the
objective Si , 〈fi, ϕ1

i , ϕ
2
i , ϕ

3
i , ϕ

4
i 〉 where ϕ1

i , GFSi, ϕ
2
i , GFPi, ϕ

3
i , GFRi,

and ϕ4
i , GFTi, and fi as before.

4.4. Illustrating GradedSL: uniqueness of solutions

We illustrate how to express with GradedSL some important solution con-
cepts in Game Theory. We start with the concept of winning strategy that is
useful in zero-sum games, and then we analyse the well known solution concepts,
such as Nash and subgame-perfect equilibria, that are used in non zero-sum
games. We use ordinary SL quantifiers (i.e., 〈〈x〉〉, [[x]]) since, as observed in
Section 2, these are expressible in GradedSL.

4.4.1. Winning strategies

In two-player win-lose zero-sum games the main solution concept is the win-
ning strategy. That is, if G is such an objective-LTL game, then a strategy for
agent α1 is winning if and only if for all strategies of agent α2, the resulting
induced play has payoff 1 for agent i. This can be expressed in SL as follows:

φWS(x) , [[y]](α1, x)(α2, y)
∨

f1(a)=1

ηa1

where ηa1 is the LTL formula defined in Section 4.2. Thus, the following formula
expresses that there is a unique winning strategy for player 1:

〈〈x〉〉≥1φWS(x) ∧ ¬〈〈x〉〉≥2φWS(x) (1)

10This is reminiscent of the Muller acceptance condition in automata theory.

21

Observe that this is a formula of GradedNSL[ng] of alternation number 1.
Thus, by Theorem 3.3 we get:

Theorem 4.1. Deciding if a given player in a two-player zero-sum objective-

LTL game has a unique winning strategy can be solved in 2ExpTime.

We illustrate with an example. In [44] the authors describe a two-player
game named “Cop and the Robber”, played in a maze, in which the objective
of the Robber is to reach an exit (and thus the objective of the Cop is to
ensure the Robber never reaches the exit). The authors describe two closely
related mazes in which the Robber has, respectively, exactly one and exactly
two winning strategies. Both these properties can be easily expressed by GSL.
For instance, the Robber has a single LTL objective F exit, and the following
formula of GradedNSL expresses that the Robber has exactly one winning
strategy:

〈〈x〉〉≥1[[y]](Robber, x)(Cop, y)F exit ∧ ¬〈〈x〉〉≥2[[y]](Robber, x)(Cop, y)F exit.

4.4.2. Nash Equilibria

The central solution concept in non zero-sum games is the Nash Equilib-
rium. A tuple of strategies, one for each player, is called a strategy profile. A
strategy profile is a Nash equilibrium (NE) if no agent can increase his payoff
by unilaterally choosing a different strategy. A game may have zero, one, or
many NE.

Consider the case that each agent αi has a general objective tuple Si ,
〈fi, ϕ1

i , . . . , ϕ
m
i 〉. Recall the definition of the LTL formulas ηai from Section 4.2.

For x , (x . . . xn) and y , (y1 . . . yn), the following formula says that if all
agents follow x, then no agent i gets a better payoff by deviating and following
yi:

φDEV (x, y) ,
n∧
i=1

∧
a∈{0,1}m

([(x/yi)η
a
i)→

∨
fi(a′)≥fi(a)

[(x)ηa
′

i

where [(x) = (α1, x) . . . (αn, xn), and

[(x/yi) = (α1, x) . . . (αi−1, xi−)(αi, yi)(αi+1, xi+) . . . (αn, xn).

Then, the following SL formula says that x is a NE

φNE(x) , [[y1]] . . . [[yn]]φDEV (x, y),

and the following GradedNSL[ng] formula expresses that there is a unique
NE:

〈〈x, . . . , xn〉〉≥1[[y1]]. . .[[yn]]φDEV (x, y)∧¬〈〈x, . . . , xn〉〉≥2[[y1]] . . . [[yn]]φDEV (x, y)

Thus, by Theorem 3.3 we get:

22

Theorem 4.2. Deciding if an objective-LTL game has a unique NE can be

solved in 2ExpTime.

Rational synthesis can be formalised as the problem of deciding if a given
game has a NE such that the resulting play satisfies a given LTL formula Ψ. In
our setting, we get the following result by replacing φDEV by Ψ ∧ φDEV in the
previous formula:

Theorem 4.3. Deciding if an objective-LTL game has a unique NE satisfying

an LTL formula Ψ can be solved in 2ExpTime.

4.4.3. Pareto efficiency

A strategy profile is said to be Pareto efficient (PE) if there is no other
strategy profile that makes some agent better off without making another agent
worse off. The formula φPE(x) , [[x′1]] . . . [[x′n]]ψ(x, x′) expresses that x is PE
where ψ(x, x′) is∧

i≤n

∧
(a,a′)∈Xi

(
([(x)ηai ∧ [(x′)ηa

′

i)→
∨
j 6=i

∨
(c,c′)∈Yi

([(x)ηcj ∧ [(x′)ηc
′

j)

)
,

where (a, a′) ∈ Xi iff fi(a
′) > fi(a), where (c, c′) ∈ Yi iff fj(c

′) < fj(c), [(x) ,
(α1, x1) . . . (αn, xn), and [(x′) , (α1, x

′
1) . . . (αn, x

′
n). Using graded modalities,

we can thus express that there is a unique PE using the following GradedNSL[ng]
formula of alternation number 1:

〈〈x, . . . , xn〉〉≥1φPE(x) ∧ ¬〈〈x, . . . , xn〉〉≥2φPE(x).

Thus, by using Theorem 3.3 we get:

Theorem 4.4. Deciding if an objective-LTL game has a unique Pareto efficient

profile can be solved in 2ExpTime.

4.4.4. Subgame-perfect equilibria

Finally, we end with a discussion of the problem of deciding if a game has
a unique subgame-perfect equilibrium, and give an upper bound. It has been
argued (in [45, 8]) that NE may be implausible when used for sequential games
(of which infinitely repeating games are central examples), and that a more
robust notion is subgame-perfect equilibrium [46].

Informally, a strategy profile is a subgame-perfect equilibrium if it is a NE
in every reachable subgame. Here is the mathematical definition instantiated
for quasi-quantitative games (following the definition in [42] for extensive-form
games). Given a history h ∈ Hst(sI) ending in state s, say h = us, and a
strategy σ ∈ Str(sI), the h-translation of σ is the strategy σ|h ∈ Str(s) that maps
h′ ∈ Hst(s) to σ(u · h′). Given a quasi-quantitative game G = 〈A, S1, . . . , Sn〉,

23

the profile σ1, . . . , σn is a subgame-perfect equilibrium (SPE) iff for all histories
h ∈ Hst(sI), the profile σ1|h, . . . , σn|h is a NE in G = 〈A|h, S1|h, . . . , Sn|h〉
where A|h is the same arena as A but with s as the initial state, and if S =

〈fi, L1
i , . . . , L

m
i 〉 then S|h = 〈fi, H1

i , . . . ,H
m
i 〉 where π ∈ Hj

i iff u · π ∈ Lji . The
point is that the payoff in G|h applies to the whole path (i.e., starting from sI),
even though the strategies only apply after h.

Using the notation in the previous paragraph, suppose each Lji is prefix-

independent, i.e., π ∈ Lji iff π≥n ∈ Lji for all n ≥ 1 (here π≥n is the suffix of π

starting at position n). In this case, Hj
i = Lji . Observe that the assumption that

the objectives are prefix-independent is not too restrictive. Indeed, as discussed
in Section 2.9, in many infinitely repeated games the outcome ignores all finite
prefixes of the play.

Thus, suppose G is an objective-LTL game in which the set of models of
each ϕji is prefix-independent. The following formula of SL expresses that x is
an SPE:11

φS(x) , [[z]] . . . [[zn]][[y]] . . . [[yn]](α1, z) . . . (αn, zn)GφDEV (x, y).

Indeed, since [[·]] commutes with G, the formula φS(x) is equivalent to

[[z]] . . . [[zn]](α1, z) . . . (αn, zn)GφNE(x),

which is true in A, χ, sI iff for all histories h starting in sI and ending, say, in
state s, we have thatA, χ′, s |= φNE where the strategy χ′(x) is the h-translation
of the strategy χ(x), i.e., the profile χ′(x1), . . . , χ′(xn) is a NE in G|h.

Using graded modalities, we can thus express there is a unique SPE (assum-
ing each ϕji is prefix-independent) as the following GradedNSL[ng] formula of
alternation number 1:

〈〈x, . . . , xn〉〉≥1φS(x) ∧ ¬〈〈x, . . . , xn〉〉≥2φS(x).

Thus, by using Theorem 3.3 we get:

Theorem 4.5. Deciding if an objective-LTL game with prefix-independent ob-

jectives ϕji has a unique SPE can be solved in 2ExpTime.

5. Conclusion

The Nash equilibrium is the foundational solution concept in game theory.
The last twenty years have witnessed the introduction of many logical formalisms
for modeling and reasoning about solution concepts, and NE in particular [3, 4,
6, 47, 48, 9, 7]. These formalisms are useful for addressing qualitative questions

11Previous formalisations of SPE overlook the need for a condition like prefix-
independence [45, 4, 8].

24

such as “does the game admit a Nash equilibrium?”. Among others, Strategy
Logic (SL) has come to the fore as a general formalism that can express and
solve this question, for LTL objectives, in 2ExpTime. Contrast this with the
fact that this question is 2ExpTime-complete even for two player zero-sum LTL
games [49].

One of the most important questions about NE in computational game
theory is “does the game admit more than one NE?” [14, 15] This issue has
been deeply investigated in game theory and is shown to be very challeng-
ing [16, 17, 18, 13, 19, 50, 51, 52]. Prior to this work, no logic-based technique,
as far as we know, solved the corresponding decision problem, i.e., whether or
not a given game has a unique NE.12 In this paper we introduced GradedSL
to address and solve the unique NE problem. We have demonstrated that
GradedSL is elegant, simple, and very powerful, and can solve the unique NE
problem for LTL objectives in 2ExpTime, and thus at the same complexity
that is required to merely decide if a NE exists. We also illustrated that one
can express the uniqueness of other solution concepts, including winning strate-
gies, subgame-perfect equilibria, and Pareto-efficient profiles, all in 2ExpTime.
We remark that the exact complexity of the existence of a unique NE, and
of counting the number of NE, has been studied for other representations of
games, notably games in strategic form with rational co-efficients and consid-
ering mixed strategies [54, 55]. The exact complexity of the existence of NE in
our representation is currently unknown. Finally, our work gives the first algo-
rithmic solution to the model-checking problem of a graded variant of ATL?,
and proves it to be 2ExpTime-complete.

In the multi-agent setting, reasoning about epistemic alternatives plays a
key role. Thus, an important extension would be to combine the knowledge
operators in SLK [56] with the graded quantifiers we introduced for GradedSL.
Since strategic reasoning under imperfect information has an undecidable model-
checking problem [57], one may restrict to memoryless strategies as was done
for SLK. More involved, would be to add grades to the knowledge operators,
thus being able to express “there exists at least g equivalent worlds” [58].

Finally, another direction is to implement GradedSL and its model-checking
procedure in a formal verification tool. A reasonable approach would be, for
example, to extend the tool SLK-MCMAS [56, 59].

Acknowledgments

We thank Michael Wooldridge for pointing out the importance of unique-
ness of Nash Equilibria in game theory. Benjamin Aminof is supported by the
Austrian National Research Network S11403-N23 (RiSE) of the Austrian Sci-
ence Fund (FWF) and by the Vienna Science and Technology Fund (WWTF)

12In the related work section we discussed the logic GSL [31, 53] that, although motivated
by the need to address the unique NE problem, only supplies a model-checking algorithm for
a very small fragment of GSL that, cannot express LTL goals, it is assumed, is not able to
express the existence of NE.

25

through grant ICT12-059. Sasha Rubin is supported by a Marie Curie fellow-
ship of the Istituto Nazionale di Alta Matematica. Aniello Murano is partially
supported by the GNCS 2016 project: Logica, Automi e Giochi per Sistemi
Auto-adattivi.

References

[1] B. Aminof, V. Malvone, A. Murano, S. Rubin, Graded strategy logic: Rea-
soning about uniqueness of nash equilibria, in: AAMAS 2016, IFAAMAS,
2016, pp. 698–706.

[2] B. Aminof, V. Malvone, A. Murano, S. Rubin, Extended graded modalities
in strategy logic, in: Proceedings of the 4th International Workshop on
Strategic Reasoning, SR 2016, New York City, USA, 10th July 2016., 2016,
pp. 1–14. doi:10.4204/EPTCS.218.1.

[3] F. Mogavero, A. Murano, M. Vardi, Reasoning About Strategies., in:
FSTTCS’10, LIPIcs 8, Leibniz-Zentrum fuer Informatik, 2010, pp. 133–
144. doi:10.4230/LIPIcs.FSTTCS.2010.133.

[4] F. Mogavero, A. Murano, G. Perelli, M. Vardi, Reasoning About Strategies:
On the Model-Checking Problem., TOCL 15 (4) (2014) 34:1–42. doi:

10.1145/2631917.

[5] R. Alur, T. Henzinger, O. Kupferman, Alternating-Time Temporal Logic.,
JACM 49 (5) (2002) 672–713. doi:10.1145/585265.585270.

[6] K. Chatterjee, T. Henzinger, N. Piterman, Strategy Logic., IC 208 (6)
(2010) 677–693. doi:10.1016/j.ic.2009.07.004.

[7] J. Gutierrez, P. Harrenstein, M. Wooldridge, Reasoning about equilibria in
game-like concurrent systems, in: KR 2014, AAAI, 2014.

[8] O. Kupferman, G. Perelli, M. Y. Vardi, Synthesis with rational en-
vironments, in: EUMAS 2014, 2014, pp. 219–235. doi:10.1007/

978-3-319-17130-2_15.

[9] F. Belardinelli, A logic of knowledge and strategies with imperfect infor-
mation, in: LAMAS 15, 2015.

[10] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, Verification of broad-
casting multi-agent systems against an epistemic strategy logic, in: Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, 2017,
pp. 91–97. doi:10.24963/ijcai.2017/14.

[11] J. Gutierrez, A. Murano, G. Perelli, S. Rubin, M. Wooldridge, Nash equi-
libria in concurrent games with lexicographic preferences, in: Proceedings

26

http://dx.doi.org/10.4204/EPTCS.218.1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133
http://dx.doi.org/10.1145/2631917
http://dx.doi.org/10.1145/2631917
http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1016/j.ic.2009.07.004
http://dx.doi.org/10.1007/978-3-319-17130-2_15
http://dx.doi.org/10.1007/978-3-319-17130-2_15
http://dx.doi.org/10.24963/ijcai.2017/14

of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, 2017, pp.
1067–1073. doi:10.24963/ijcai.2017/148.

[12] R. Berthon, B. Maubert, A. Murano, S. Rubin, M. Y. Vardi, Strategy logic
with imperfect information, in: 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,
2017, 2017, pp. 1–12. doi:10.1109/LICS.2017.8005136.

[13] E. Altman, H. Kameda, Y. Hosokawa, Nash equilibria in load balancing in
distributed computer systems, IGTR 4 (2) (2002) 91–100. doi:10.1142/

S0219198902000574.

[14] G. Papavassilopoulos, J. B. Cruz, On the uniqueness of nash strategies for
a class of analytic differential games, Journal of Optimization Theory and
Applications 27 (2) (1979) 309–314. doi:10.1007/BF00933234.

[15] R. Cornes, R. Hartley, T. Sandler, An elementary proof via contraction,
Journal of Public Economic Theory 1 (4) (1999) 499–509. doi:10.1111/

1097-3923.00023.

[16] J. B. D. Simchi-Levi, X. Chen, The Logic of Logistics: Theory, Algorithms,
and Applications for Logistics Management, Science and Business Media,
Springer, 2013.

[17] Y. Zhang, M. Guizani, Game Theory for Wireless Communications and
Networking, CRC Press, 2011.

[18] L. Pavel, Game Theory for Control of Optical Networks, Science and Busi-
ness Media, Springer, 2012. doi:10.1007/978-0-8176-8322-1.

[19] A. Orda, R. Rom, N. Shimkin, Competitive routing in multiuser com-
munication networks, IEEE/ACM Trans. Netw. 1 (5) (1993) 510–521.
doi:10.1109/90.251910.

[20] K. Fine, In So Many Possible Worlds., NDJFL 13 (1972) 516–520.

[21] E. Grädel, M. Otto, E. Rosen, Two-Variable Logic with Counting is Decid-
able., in: LICS’97, IEEE Computer Society, 1997, pp. 306–317.

[22] B. Hollunder, F. Baader, Qualifying Number Restrictions in Concept Lan-
guages., in: KR’91, Kaufmann, 1991, pp. 335–346.

[23] O. Kupferman, U. Sattler, M. Vardi, The Complexity of the Graded
muCalculus., in: CADE’02, LNCS 2392, Springer, 2002, pp. 423–437.
doi:10.1007/3-540-45620-1_34.

[24] A. Bianco, F. Mogavero, A. Murano, Graded Computation Tree Logic.,
TOCL 13 (3) (2012) 25:1–53. doi:10.1145/2287718.2287725.

27

http://dx.doi.org/10.24963/ijcai.2017/148
http://dx.doi.org/10.1109/LICS.2017.8005136
http://dx.doi.org/10.1142/S0219198902000574
http://dx.doi.org/10.1142/S0219198902000574
http://dx.doi.org/10.1007/BF00933234
http://dx.doi.org/10.1111/1097-3923.00023
http://dx.doi.org/10.1111/1097-3923.00023
http://dx.doi.org/10.1007/978-0-8176-8322-1
http://dx.doi.org/10.1109/90.251910
http://dx.doi.org/10.1007/3-540-45620-1_34
http://dx.doi.org/10.1145/2287718.2287725

[25] S. Rubin, B. Aminof, A. Murano, On CTL∗ with graded path modalities,
in: LPAR 20, 2015.

[26] O. Kupferman, M. Vardi, P. Wolper, Module Checking., IC 164 (2) (2001)
322–344.

[27] W. Jamroga, A. Murano, On Module Checking and Strategies., in: AA-
MAS’14, IFAAMAS, 2014, pp. 701–708.

[28] B. Aminof, A. Legay, A. Murano, O. Serre, µ-calculus pushdown module
checking with imperfect state information, in: IFIP-TCS’08, Vol. 273 of
IFIP, Springer, 2008, pp. 333–348.

[29] A. Ferrante, A. Murano, M. Parente, Enriched Mu-Calculi Module Check-
ing., LMCS 4 (3) (2008) 1–21. doi:10.2168/LMCS-4(3:1)2008.

[30] M. Faella, M. Napoli, M. Parente, Graded Alternating-Time Temporal
Logic., FI 105 (1-2) (2010) 189–210.

[31] V. Malvone, F. Mogavero, A. Murano, L. Sorrentino, On the counting of
strategies, in: TIME 2015, 2015, pp. 170–179. doi:10.1109/TIME.2015.

19.

[32] F. Mogavero, A. Murano, G. Perelli, M. Vardi, What Makes ATL? Decid-
able? A Decidable Fragment of Strategy Logic., in: CONCUR’12, LNCS
7454, Springer, 2012, pp. 193–208. doi:10.1007/978-3-642-32940-1\

_15.

[33] J. Gutierrez, P. Harrenstein, M. Wooldridge, Expresiveness and complexity
results for strategic reasoning, in: LIPIcs, Vol. 42, 2015.

[34] F. Mogavero, A. Murano, M. Vardi, Relentful Strategic Reasoning in
Alternating-Time Temporal Logic., in: LPAR’10, LNAI 6355, Springer,
2010, pp. 371–387.

[35] K. Leyton-Brown, Y. Shoham, Essentials of Game Theory: A Con-
cise, Multidisciplinary Introduction (Synthesis Lectures on Artificial
Intelligence and Machine Learning), M&C, 2008. doi:10.2200/

S00108ED1V01Y200802AIM003.

[36] F. Mogavero, Logics in Computer Science., Ph.D. thesis, Universitá degli
Studi di Napoli Federico II, Napoli, Italy (January 2011).

[37] O. Kupferman, M. Vardi, P. Wolper, An Automata Theoretic Approach
to Branching-Time Model Checking., JACM 47 (2) (2000) 312–360. doi:

10.1145/333979.333987.

[38] W. Thomas, Automata on infinite objects, Handbook of theoretical com-
puter science, Volume B (1990) 133–191.

28

http://dx.doi.org/10.2168/LMCS-4(3:1)2008
http://dx.doi.org/10.1109/TIME.2015.19
http://dx.doi.org/10.1109/TIME.2015.19
http://dx.doi.org/10.1007/978-3-642-32940-1_15
http://dx.doi.org/10.1007/978-3-642-32940-1_15
http://dx.doi.org/10.2200/S00108ED1V01Y200802AIM003
http://dx.doi.org/10.2200/S00108ED1V01Y200802AIM003
http://dx.doi.org/10.1145/333979.333987
http://dx.doi.org/10.1145/333979.333987

[39] E. A. Emerson, C. S. Jutla, Tree automata, mu-calculus and determinacy
(extended abstract), in: ASFCS 1991, 1991, pp. 368–377. doi:10.1109/

SFCS.1991.185392.

[40] V. Bárány, L. Kaiser, A. M. Rabinovich, Expressing cardinality quantifiers
in monadic second-order logic over trees, Fundam. Inform. 100 (1-4) (2010)
1–17. doi:10.3233/FI-2010-260.

[41] D. E. Muller, P. E. Schupp, Simulating alternating tree automata by non-
deterministic automata: New results and new proofs of the theorems of
rabin, mcnaughton and safra, Theor. Comput. Sci. 141 (1&2) (1995) 69–
107. doi:10.1016/0304-3975(94)00214-4.

[42] M. Osborne, A. Rubinstein, A course in game theory, MIT press, 1994.

[43] K. G. Binmore, Fun and Games: A Text on Game Theory, D.C. Heath,
1992.

[44] V. Malvone, A. Murano, L. Sorrentino, Games with additional winning
strategies, in: CILC, 2015, CEUR, 2015, pp. 175–180.

[45] M. Ummels, Rational behaviour and strategy construction in infinite mul-
tiplayer games, in: FSTTCS, 2006, pp. 212–223. doi:10.1007/11944836\
_21.

[46] R. Selten, Spieltheoretische behandlung eines oligopolmodells mit nach-
fragetragheit., Zeitschrift fur die gesamte Staatswissenschaft 121 (1965)
301–324.

[47] T. Brihaye, A. D. C. Lopes, F. Laroussinie, N. Markey, ATL with strategy
contexts and bounded memory, in: LFCS 2009, 2009, pp. 92–106. doi:

10.1007/978-3-540-92687-0_7.

[48] A. D. C. Lopes, F. Laroussinie, N. Markey, ATL with strategy contexts:
Expressiveness and model checking, in: FSTTCS 2010, 2010, pp. 120–132.
doi:10.4230/LIPIcs.FSTTCS.2010.120.

[49] A. Pnueli, R. Rosner, On the Synthesis of a Reactive Module., in: POPL’89,
Association for Computing Machinery, 1989, pp. 179–190.

[50] H. R. V. T. C. Bergstrom, L. E. Blume, On the private provision of public
goods, Journal of Public Economics 29 (1) (1986) 25–49.

[51] C. D. Fraser, The uniqueness of nash equilibrium in the private provision
of public goods: an alternative proof., Journal of Public Economics 49 (3)
(1992) 389–390.

[52] A. Glazer, K. A. Konrad, Private provision of public goods, limited tax
deducibility, and crowding out, FinanzArchiv / Public Finance Analysis
50 (2) (1993) 203–216.

29

http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.3233/FI-2010-260
http://dx.doi.org/10.1016/0304-3975(94)00214-4
http://dx.doi.org/10.1007/11944836_21
http://dx.doi.org/10.1007/11944836_21
http://dx.doi.org/10.1007/978-3-540-92687-0_7
http://dx.doi.org/10.1007/978-3-540-92687-0_7
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.120

[53] V. Malvone, F. Mogavero, A. Murano, L. Sorrentino, Reasoning about
graded strategy quantifiers, Inf. Comput. (to appear).

[54] I. Gilboa, E. Zemel, Nash and correlated equilibria: Some complexity con-
siderations, Games and Economic Behavior 1 (1) (1989) 80–93.

[55] V. Conitzer, T. Sandholm, New complexity results about nash equilibria,
Games and Economic Behavior 63 (2) (2008) 621–641. doi:10.1016/j.

geb.2008.02.015.

[56] P. Čermák, A. Lomuscio, F. Mogavero, A. Murano, MCMAS-SLK: A
Model Checker for the Verification of Strategy Logic Specifications.,
in: CAV’14, LNCS 8559, Springer, 2014, pp. 524–531. doi:10.1007/

978-3-319-08867-9_34.

[57] C. Dima, F. Tiplea, Model-checking ATL under Imperfect Information and
Perfect Recall Semantics is Undecidable., Tech. rep., arXiv (2011).

[58] W. van der Hoek, J. Meyer, Graded modalities in epistemic logic, in:
LFCS’92, Vol. 620, Springer, 1992, pp. 503–514.

[59] P. Cermák, A. Lomuscio, A. Murano, Verifying and synthesising multi-
agent systems against one-goal strategy logic specifications, in: AAAI 2015,
2015, pp. 2038–2044.

30

http://dx.doi.org/10.1016/j.geb.2008.02.015
http://dx.doi.org/10.1016/j.geb.2008.02.015
http://dx.doi.org/10.1007/978-3-319-08867-9_34
http://dx.doi.org/10.1007/978-3-319-08867-9_34

	Introduction
	Graded Strategy Logic
	Syntax
	Models
	Semantics
	Fragments of Graded

	Model-checking Graded
	From Logic to Automata

	Analysing Games using Graded
	Strategic Form and Infinitely Repeated Games
	Quasi-Quantitative Games and Objective-Games
	Example: The Prisoner's Dilemma (PD)
	Illustrating Graded: uniqueness of solutions
	Winning strategies
	Nash Equilibria
	Pareto efficiency
	Subgame-perfect equilibria

	Conclusion

