
Robust Hard Shadows

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik/Digitale Bildverarbeitung

eingereicht von

Martin Stingl
Matrikelnummer 0226290

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Daniel Scherzer

Wien, 19.09.2011
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Martin Stingl
Neudorf 15, 3335 Weyer

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

The generation of shadows in large virtual environments for real-time rendering applications like
e.g. video games is still a great challenge for computer graphics. In the past few years shadow
mapping and its variants have become widely accepted as appropriate methods for shadow cre-
ation, which resulted in large number of advanced shadow mapping techniques that have been
introduced recently. For this reason, it sometimes can be difficult for developers to choose a
suitable method based on the certain given scenarios.

This thesis focuses on an analysis of some common fully hardware-accelerated shadow map-
ping techniques and their capabilities to combine them with each other. We present an inter-
active framework that allows the user to experiment with the chosen methods and to visualize
almost every interesting aspect of the shadow creation process for arbitrary scenes. It offers the
opportunity to generate the shadows by using multiple shadow maps, sample redistribution or
both and provides most possible flexibility in terms of various adjustable parameters. Further-
more, it includes a feature to analyze the final results from different points of view, which should
help developers to find the best suited algorithm for the given scene.

iii

Kurzfassung

Die Generierung von Schatten in großen virtuellen Umgebungen für Echtzeitrendering Anwen-
dungen wie z.B. Videospielen ist nach wie eine große Herausforderung für die Computergraphik.
In den letzten Jahren haben sich Shadowmapping und verschiedene Varianten davon in großem
Umfang als geeignete Methode zur Schattenerzeugung durchgesetzt, was in letzter Zeit zur Ein-
führung sehr vieler erweiterter Shadowmapping Techniken geführt hat. Aus diesem Grund ist es
manchmal schwierig für Entwickler die passende Methode für bestimmte gegebene Szenarios
auszuwählen.

Diese Diplomarbeit konzentriert sich auf die Analyse von einigen gebräuchlichen komplett
hardware-beschleunigten Shadowmapping Techniken und die Möglichkeit sie zu kombinieren.
Wir präsentieren ein interaktives Framework, dass es dem Anwender erlaubt mit den gewählten
Methoden zu experimentieren und fast alle interessanten Aspekte des Schattenerzeugungspro-
zesses für beliebige Szenen zu visualisieren. Es unterstützt die Möglichkeit der Schattengene-
rierung durch die Verwendung von mehreren Shadowmaps, durch Umverteilung der Samples
oder beides gemeinsam, und bietet größt mögliche Flexibilität durch zahlreiche veränderba-
re Parameter. Außerdem enthält es die Möglichkeit die finalen Resultate aus unterschiedlichen
Blickpunkten zu analysieren, was es Entwicklern ermöglichen sollte für die gegebenen Szene
den am besten geeigneten Algorithmus zu finden.

v

Contents

1 Introduction 1
1.1 Goal of this thesis . 1
1.2 Contributions . 2
1.3 Structure of this thesis . 3

2 Related work 5
2.1 Basic shadow mapping algorithm . 5
2.2 Shadow mapping errors . 6

2.2.1 Self-shadowing artifacts . 6
2.2.2 Projection aliasing . 7
2.2.3 Perspective aliasing . 9

2.3 Error analysis . 10
2.3.1 Simple error analysis . 10
2.3.2 Accurate error analysis . 11
2.3.3 Error analysis for both shadow map directions 13

2.4 Soft Shadows . 14

3 Advanced shadow mapping 17
3.1 Focused shadow mapping . 18

3.1.1 Calculation of convex intersection body 18
3.1.2 Focusing the shadow map . 20
3.1.3 Error analysis . 21

3.2 Warping . 22
3.2.1 Light Space Perspective Shadow Maps 22
3.2.2 Re-parametrized Light Space Perspective Shadow Maps 25
3.2.3 Error analysis . 26

3.3 Z-partitioning . 26
3.3.1 Adjusting the view frustum . 28
3.3.2 Split scheme . 29
3.3.3 Split selection . 31
3.3.4 Error analysis . 32
3.3.5 Storage strategy . 32
3.3.6 Minimizing the number of rendering passes 35

vii

3.4 Combinations . 36
3.4.1 Error analysis . 37

3.5 Reducing shadow flickering . 38
3.6 Filtering . 41

3.6.1 Kernel size . 42
3.7 Summary . 44

4 Optimizations 45
4.1 Projection center for warping . 45
4.2 Pseudo-near plane and pseudo-far plane . 46
4.3 Maximizing the near plane distance . 47

5 Framework 51
5.1 Concepts . 51
5.2 Visualization view . 53
5.3 Intersection body . 54
5.4 Texel borders . 54
5.5 Split selection . 55
5.6 Light views . 57
5.7 Sampling frequency . 58
5.8 Perspective aliasing error . 59

6 Implementation 61
6.1 Implementation overview . 61
6.2 Code structure and reuse . 62

7 Results 65
7.1 Sights of Paris . 65
7.2 Winter scenery . 65
7.3 Benchmarking results . 66
7.4 Comparison of pseudo-near plane and adjusted near plane 68
7.5 Visualizing the warping effect and the shadow map area 69

8 Conclusion 75
8.1 Summary . 75
8.2 Future work . 76

8.2.1 Future work to shadow mapping . 76
8.2.2 Future work to the presented framework 77

A Implementation details 79
A.1 Geometry cloning . 79
A.2 Mip map chain to retrieve minimal depth . 80
A.3 Sampling rate . 81
A.4 Texel borders . 82

viii

B Framework details 85
B.1 Main configuration and scene loading . 85
B.2 Main structure . 86

List of Figures 88

Bibliography 91

ix

CHAPTER 1
Introduction

Shadows represent a great enhancement of the visual perception in virtual environments. They
provide important information about the geometric relations between the objects in the scene
like the position, size or shape of the shadow casters and the shadow receivers. Especially for
real-time applications like for example video games, the generation of highly detailed shadows
in polygon-rich dynamic large-scaled virtual environments at appropriate frame rates is still one
of the most demanding challenges for computer graphics.

In the past few years shadow mapping, introduced by Williams [Wil78], has become the number
one choice of developers to generate shadows in their applications. Moreover, with Segal’s et
al. [SKvW+92] hardware adaptation of shadow mapping and the recent improvements of the
graphics hardware, many enhancements and variants of the basic shadow mapping algorithm
have been introduced in the last few years.

Since different shadow mapping methods are designed for different scenarios, in most cases it is
very difficult for developers to choose an appropriate technique, which is why modern game en-
gines like CryENGINE R©3 (see Figure 1.1) or Frostbite

TM
2 usually offer several different shadow

mapping techniques that are chosen and applied based upon the current used scenario.

In the following sections of this chapter we will declare the goals of this thesis, give a short
overview of our contributions and provide an outline of the structure of the following chapters.

1.1 Goal of this thesis

Since Williams [Wil78] introduced the shadow map algorithm, its use has gone a long way.
Many methods and ways have been introduced to improve its performance and quality, respec-
tively minimize the occurring errors. Because of this large number of methods, as mentioned
before, in most cases it is very difficult to choose the right one, based on the present form of

1

Figure 1.1: High quality real-time shadows generated with CryENGINE R©3. Image courtesy of
Crytek GmbH.

applications and scenarios.

The goal of this thesis is to analyze some commonly used advanced shadow mapping techniques
and compare them with each other considering the performance and quality improvements. Ad-
ditionally we will combine specific methods and determine the enhancement respectively degra-
dation of their characteristics compared to an individual application or to other combinations.
We intend to investigate the results for various configurations and different scenarios, using sev-
eral visualization tools, to offer the opportunity to find an appropriate robust shadow mapping
technique for each possible example scene.

The focus of the chosen techniques, which we plan to analyze and use for our experiments,
lies on fully hardware-accelerated real-time capability, which means an optimized application
should at least generate 60 frames per second.

1.2 Contributions

During the work on this thesis we developed a shadow mapping framework that allows to ex-
periment with the chosen shadow mapping algorithms and apply them to arbitrary scenes. The
major contribution of this framework compared to other existing shadow mapping systems is
given by the provided flexibility of our application and the possibilities to analyze and visualize

2

various aspects of the shadow mapping process.

In addition to the feature to choose between several state of the art shadow mapping techniques,
our framework allows the user to adjust almost any of the important parameters and experiment
with different reasonable combinations of the supported shadow mapping methods. Besides the
changes of the shadow quality itself, the immediate results of these experiments can be examined
interactively at any time and from different points of view through the various offered visualiza-
tion opportunities.

Furthermore, we offer the possibility to compare the final shadow mapping results based on
an analytical evaluation of the occurring errors, which are computed for every frame during the
run-time.

During our experiments and analysis, we found some problems related to some certain tech-
niques that partly involved robustness issues and sometimes caused a degradation of the shadow
quality. In Chapter 4 we describe our found optimizations for the mentioned techniques and
present our solutions to the problems. Furthermore, we experiment with some new approaches
to further improve the shadow quality and robustness of some specific methods.

1.3 Structure of this thesis

This thesis is structured into different chapters as follows:

1. Chapter 2 reviews the basic shadow mapping algorithm, gives an overview of the main
problems of shadow mapping and the existing techniques to resolve them, and discusses
some common methods to analyze the errors.

2. Chapter 3 discusses various well known advanced techniques to improve the shadow qual-
ity and reduce the shadow mapping errors.

3. Chapter 4 introduces some new approaches to improve the quality and robustness of sev-
eral techniques.

4. Chapter 5 explains the features of our implemented framework and discusses the different
implemented visualization possibilities.

5. Chapter 6 deals with some implementation details of our framework and describes the
overall structure of our system.

6. Chapter 7 presents several results of our experiments and shows the application of our
visualization tools.

7. Chapter 8 concludes this thesis and discusses some possible additional and future im-
provements.

3

CHAPTER 2
Related work

In this chapter we will first recall the basics of the shadow map algorithm and give a brief review
on how it is done on today’s hardware. Then we will review the major problems of shadow
mapping and the resulting errors, and give a brief overview of most of the techniques that have
been introduced so far to improve the shadow quality and to reduce the shadow mapping errors.

2.1 Basic shadow mapping algorithm

To generate shadows in virtual environments Williams introduced in [Wil78] shadow mapping.
He was the first who formulated the basic well-known shadow mapping algorithm with the
following two steps:

1. render the scene from the light’s point of view only computing the depth values using a
z-buffer and storing them into a depth map (shadow map),

2. while rendering the scene from the eye’s point of view, perform a linear transformation
that maps each point into the light source space and applies a visibility test against the
stored values in the shadow map (shadow test) to determine shadowed and unshadowed
points.

By using projective texture mapping and three rendering passes Segal et al. [SKvW+92] showed
how the generation of the shadow map and computation of the shadows in the final rendering
can be easily matched to hardware.

On modern programmable GPUs, shadow mapping, using shadow maps up to 8,192 x 8,192
pixels, can be easily performed fully hardware accelerated in two rendering passes by using
William’s original formulation of the algorithm and the projective texture mapping approach
from Segal et al. An example configuration of a shadowed scene with a visualization of the
corresponding shadow map can be seen in Figure 2.1.

5

(a) Depth map from the light’s point of view (b) Shadowed image from the eye’s point of view

Figure 2.1: Example visualization of the light’s view depth map (shadow map) (a). Correspond-
ing shadowed eye view (b).

2.2 Shadow mapping errors

As Scherzer discussed in [Sch05], since shadow mapping is an image space technique using
finite resolution shadow maps, it suffers from three major problems that are caused by sampling
and resampling issues into the z-buffer.

2.2.1 Self-shadowing artifacts

Referring to Section 2.1 we need to transform the regularly spaced pixels from eye-space to
light-space to perform the shadow test. After this transformation, the transformed pixels may
fall between the regular sample values stored in the shadow map. Combined with the finite pre-
cision of the depth values the result of the shadow test for a fully illuminated pixel can be wrong.
These resampling inaccuracies can lead to moiré patterns (see Figure 2.2).

According to Scherzer [Sch05] there are numerous workarounds to minimize the occurrence
of these patterns. A very simple one is to add a small user defined constant bias to the shadow
map’s depth values. Unfortunately this method can lead to incorrect shadows because of their
movement in light-space z-direction. It also leads to problems for polygons with different depth
slopes, because the more the depth slope of the polygons is increasing the more bias is needed.
For this reason, instead of using a constant bias, a slope-scaled bias is a better way to remove the
moiré patterns. Although this slope-scaled biasing method works fine in most configurations to
remove self-shadowing artifacts, there might remain problems with shadow mapping techniques
that involve a non-linear distribution of z-values.

6

Another solution to remove the moiré patterns is to only render the back sides of the scene
geometry into the shadow map, which is actually another form of biasing. Though this method
only works with closed objects, which can be problematic at rendering of foliage, it is more
robust than common biasing methods and removes almost any self-shadowing artifacts.

To summarize, according to the extensive tests of Scherzer [Sch05] the best results to resolve the
problem of the self-shadowing artifacts in most configurations are provided by a combination of
slope-scaled biasing with back-side rendering.

Figure 2.2: Self shadowing artifacts caused by resampling inaccuracies.

2.2.2 Projection aliasing

Due to the limitation of the shadow map resolution for almost every shadow mapping algorithm,
aliasing errors mainly caused by undersampling need to be kept in mind. According to Stam-
minger and Drettakis [SD02] these aliasing artifacts can be divided into projection aliasing and
perspective aliasing. Projection aliasing mainly appears on surfaces that are almost parallel to
the light direction (see Figure 2.3) because such surfaces are hardly visible from the light’s point
of view and therefore very sparsely sampled.

7

Since this error appears locally at certain objects, there is no global solution to this problem
which can be applied to the whole scene. For direct lighting a good workaround is to min-
imize the ambient term since the diffuse term dot(L,N) is already very small and hides the
artifacts. A possible solution are Adaptive Shadow Maps [FFBG01], where an ordinary shadow
map is hierarchically subdivided to provide a better resolution for visually important regions.
Scherzer [Sch05] proposed an approach by blurring the shadow map in eye space and use it
as intensity lookup for the final rendering to hide the projection aliasing artifacts. Both previ-
ously mentioned methods require some additional extensive computations or rendering passes
and lessen the performance regarding the real-time capabilities.

Summarizing, without an expensive detailed analysis of the scene geometry, the problem of
projective aliasing cannot be fully resolved and remains for any real-time shadow mapping ap-
proach.

Figure 2.3: Projection aliasing artifacts caused by very sparsely sampled surfaces.

8

2.2.3 Perspective aliasing

As mentioned in the previous sections, common shadow mapping stores the scene objects with a
fixed resolution in the shadow map using the light-space. Therefore there isn’t any information
about the eye view and its origin included. Because of the perspective eye view, nearby objects
are shown larger than distant objects. So is the stored information in the shadow map after the
projection into the scene. This normally results in a shadow resolution that is too low for nearby
objects (undersampling) and a too high for distant objects (oversampling). This so called per-
spective aliasing gets visible through the typical jagged shadow boundaries nearby the viewing
position (see Figure 2.4).

Figure 2.4: The typical jagged shadow boundaries, including corresponding texel borders,
caused by perspective aliasing through undersampling nearby the camera.

Brabec et al. [BAS02] showed how important it is to focus the shadow map on the only visi-
ble area of the scene respectively the current camera frustum to reduce perspective aliasing and
improve the shadow quality. We will discuss the focusing of the shadow map in detail later in
this thesis.

Further solutions to the problem of perspective aliasing are the so called warping algorithms
like for example Perspective Shadow Maps (PSM) [SD02] or Light Space Perspective Shadow

9

Maps (LiSPSM) [WSP04] which redistribute the shadow map samples.

Another approach to minimize the perspective aliasing error is to split the view frustum into
several partitions and use multiple shadow maps. A common approach, called z-partitioning,
which splits the view frustum along its length, was proposed by Tadamura et al. [TQJN99].
Since Tadamura’s method cannot be applied on current graphics hardware, in 2006 Engel and
Zhang introduced almost simultaneously two fully hardware accelerated solutions of this tech-
nique called Cascaded Shadow Maps (CSM) [Eng06] by Engel and Parallel Split Shadow Maps
(PSSM) [ZSXL06] by Zhang et al.

A further approach that combines warping and partitioning by splitting the view frustum into
its side faces and using for each face a single shadow map was introduced by Kozlov [Koz04].

Not only are the previous mentioned methods good ways to minimize the perspective aliasing
error, they also can be easily combined with each other for further shadow quality improvements.

In Chapter 3 we will discuss several redistribution- and partitioning techniques and the oppor-
tunities of combining them. We will also visualize the perspective aliasing error and analyze its
behavior for the discussed shadow mapping methods.

2.3 Error analysis

As previously mentioned, since shadow mapping is an image-space technique using shadow
maps with finite resolutions, we have to deal with aliasing errors. Since almost every introduced
shadow mapping technique, trying to reduce aliasing errors, is based on a prior error analysis,
we will give a short overview of the most common formulations of shadow map aliasing in the
following sections.

2.3.1 Simple error analysis

With the introduction of PSM Stamminger and Drettakis [SD02] were the first who formulated
the distribution of the aliasing errors in a scene along the light-space z-axis in a simplified way.
By assuming an overhead directional light source, they describe the aliasing error for a surface
element located somewhere on the z-axis of the view frustum (see Figure 2.5) and decompose
shadow map aliasing into scene-independent perspective aliasing which only depends on the
relative position of the light source to the camera, and projection aliasing which depends on the
orientation of the surfaces in the scene in relation to the light direction.

Based on Stamminger’s and Drettakis’ error analysis Wimmer et al. [WSP04] introduce an-
other simplified formulation of shadow map aliasing. According to Figure 2.5 they assume a
local parameterization of the shadow map from 0 to 1 between the near plane and the far plane
of the view frustum. This means the shadow map is already properly focused to the visible parts
of the scene (see Section 3.1) and allows them to analyze different parameterizations. With the

10

additional assumption that a small edge can be translated along the z-axis of the view frustum
their formulation of shadow map aliasing in light-space z-direction results in

dp

ds
=

1

z

dz

ds

cosα

cosβ
(2.1)

where the term 1
z
dz
ds describes perspective aliasing and cosα

cosβ corresponds to projection aliasing.

Figure 2.5: Illustration of shadow map aliasing for an overhead directional light source. Image
courtesy of Wimmer et al. [WSP04].

2.3.2 Accurate error analysis

Lloyd presents in his thesis [Llo07] respectively in Lloyd et al. [LGQ+08] an accurate analy-
sis of shadow map aliasing. Compared to the previous discussed simplified formulations he no
longer assumes an overhead directional light source and takes the actual location of the investi-
gated surface element into account (see Figure 2.6).

According to Lloyd [Llo07] and Lloyd et al. [LGQ+08] an accurate formulation of the alias-
ing error in light-space z-direction is given by

m =
rj
rt

dG

dt

Wl

We

ne
nl

dl
de

cosφl
cosφe

cosψe
cosψl

. (2.2)

Considering Figure 2.6, in this formulation

• rj , rt are the image height and the shadow map resolution in t-direction

11

• dG
dt is the derivative of the shadow map parameterization (corresponds to dz

ds at the simpli-
fied analysis)

• Wl, We are the widths of the light and image planes

• nl, ne are the near plane distances of the light frustum and the eye frustum

• dl, de are the distances from the light respectively eye to the investigated surface element
(de corresponds to z in the simplified formulation

• φl, φe are the angles between light/eye beam and image/shadow map plane normal

• ψl, ψl are the angles between light/eye beam and the surface normal of the investigated
element (correspond to α and β in the simplified formulation).

Figure 2.6: Generalized illustration of shadow map aliasing for the accurate computation of the
shadow map aliasing error. Image courtesy of Lloyd [Llo07].

For a detailed description of this formulation we refer to Lloyd et al. [LGQ+08].

12

2.3.3 Error analysis for both shadow map directions

According to Lloyd et al. [LTYM06] the aliasing errors change with different parameteriza-
tions in both shadow map directions x and z (see Figure 2.7). To achieve their goal to find the
best possible combination of warping and partitioning regarding perspective aliasing errors and
real-time capabilities they extend Wimmer’s simplified error analysis (Wimmer et al. [WSP04],
Wimmer and Scherzer [WS06]) considering both shadow map dimensions.

Similar to Wimmer et al. they assume an overhead directional light source respectively a point
light with a fairly narrow field of view. Based on this assumption Lloyd et al. [LTYM06] intro-
duce a new error metric for determining the distribution of the perspective aliasing error over
the length of the view frustum along the eye’s view vector for warped and partitioned shadow
algorithms. For an image resolution resx x resy, a shadow map resolution ress x rest and the
warping parameter n′ - controls the warping strength - their formulation of the aliasing errors
mx in x-direction and mz in z-direction results in:

mx(z, n′) =
resix
ress

f

(
(n′ + z − n)

z (n′ + f − n)

)
, (2.3)

mz(z, n
′) =

resiy
rest

(f − n)

2 tan Θ

(
(n′ + z − n)2

zn′ (n′ + f − n)

)
. (2.4)

The above equations describe the perspective aliasing error distribution for a common warped
shadow mapping technique like for example LiSPSM. Θ corresponds to the half the field of view
(FOV), n and f denote the near-plane and far-plane of the eye’s view-frustum and z stands for
the depth of the current point.
By setting n′ = n we get the perspective errors for PSM:

mx(z, n′) =
resix
ress

, (2.5)

mz(z, n
′) =

resiy
rest

(f − n)

2 tan Θ

z

n f
. (2.6)

For n → ∞ and application of l’Hôpital’s rule the error formulation for uniform shadow map-
ping results in

mx(z, n′) =
resix
ress

f

z
, (2.7)

mz(z, n
′) =

resiy
rest

(f − n)

2 tan Θ

1

z
. (2.8)

Figure 2.8 shows two example plots of mx(z, n′) and mz(z, n
′) comparing the error distribu-

tions of uniform shadow maps, LiSPSM and PSM.

Since the error metric discussed in this section can be easily implemented to perform an in-
teractive online analysis, and treats both shadow map dimensions we have decided to use this

13

Figure 2.7: Illustration of error changes in both directions x and z for different parameterizations
(Left: Uniform shadow mapping, Center: LiSPSM, Right: PSM). Top: the compression of the
projected grid in light space to match the view frustum. Bottom: the expansion of the grid to
match the shadow map dimensions. Image courtesy of Lloyd et al. [LTYM06].

metric for our further analysis and visualizations of the perspective aliasing errors in the follow-
ing chapters of this work.

2.4 Soft Shadows

Generating physically correct soft shadows is still one of the most challenging research fields in
real-time rendering. Most soft shadow algorithms or filtering techniques like percentage closer
filtering (PCF) [RSC87] or Variance Shadow Maps (VSM) [DL06] assume a fixed size penum-
bra just to hide the aliasing artifacts caused by undersampling.

Due to the increasing performance capabilities of modern graphics hardware, in the past few
years various approaches for generation of realistic soft shadows with a variable penumbra like
for example Percentage Closer Soft Shadows (PCSS) [Fer05] have been introduced.

Since the focus of this thesis lies on analyzing and minimizing the perspective aliasing error,
we limited the amount of our soft shadow mapping experiments on PCF-based techniques.

14

Figure 2.8: Perspective aliasing error distributions along the length of the view frustum for
uniform shadow mapping (n′ =∞), LiSPSM and PSM (n′ = n) with n = 1, f = 40.

15

CHAPTER 3
Advanced shadow mapping

So far we have discussed the common shadow mapping algorithm and how it can be imple-
mented on today’s graphics hardware. We have seen that due to the limitations of an image
space technique it suffers from several problems like for example perspective aliasing caused by
undersampling nearby the camera and oversampling of the objects distant from the camera.

In Chapter 2 we mentioned various advanced shadow mapping algorithms addressing the prob-
lem of perspective aliasing. In this chapter we will review the most common of these algorithms
in detail and explain how they can be implemented using the capabilities of modern graphics
hardware.

All techniques, which will be discussed in the following sections, are implemented in our in-
troduced shadow mapping framework to be able to experiment with different configurations and
combinations of them.

In Section 3.1 we will discuss the focusing of the shadow map on the visible objects of the
scene and show how tremendous the improvements of the shadow quality and reduction of per-
spective aliasing can turn out. However especially for very large scenes aliasing artifacts still
can be visible for certain camera positions or rotations and the shadow quality can change very
fast within a few frames.

For this reason we will describe in the subsequent sections some advanced techniques that have
been introduced to further reduce the perspective aliasing errors and improve the robustness
and shadow quality of focused shadow mapping. The discussed methods are mainly based on
redistribution of the shadow map samples, on using multiple shadow maps by partitioning the
camera’s view frustum and on combinations of the redistribution and partitioning techniques.

At the end of this chapter we will review the possibility of how perspective aliasing can be

17

hidden by using common filtering techniques and how filtering can be combined with multiple
used shadow maps.

3.1 Focused shadow mapping

Stamminger and Drettakis [SD02] showed a simple way to adjust the light’s frustum to the
current camera frustum. These adjustments allow that the available shadow map resolution and
the depth buffer precision can be used in a nearly optimal way, and shadow map aliasing can
be greatly reduced. The basic idea is to find a convex intersection body containing all shadow
casters visible from the current eye’s point of view and adapt the light source’s view frustum to
it.

3.1.1 Calculation of convex intersection body

Considering the bounding box of all scene objects S, V the current eye viewing frustum and L
the light source viewing frustum. For point lights the light source is at position l and for direc-
tional lights L equalsR3 and l is at infinity for a given light direction. According to Stamminger
and Drettakis [SD02] for point lights we need to compute the convex hull M of V and l so that
M contains all rays from l to points in V . In most cases V is just partly inside of S. So if we
compute M using V we would take unnecessary points outside of S into account which mostly
adds points toM that are actually outside of V (see Figure 3.1). Based on this observation Wim-

(a) (b)

Figure 3.1: Comparison of intersection body (red semi-transparent solid object) computation:
(a) intersection body according to Stamminger’s and Drettakis’ [SD02] method. (b) intersection
body computed with our method proposed by Wimmer and Scherzer [WS06] - note the not
included points lying outside of the view frustum (red wire-frame object). Light direction: black
line.

mer and Scherzer [WS06] suggest to build the convex hull M using H = V ∩S (intersection of

18

the view frustum and the scene’s bounding box) and l. Finally, to get the final convex body B,
we need to remove all points outside the scene’s bounding box S and the light frustum L from
M : B = M ∩ S ∩ L. Since the light position l for directional lights is at infinity, we cannot
compute the convex hull M . In this case we compute M by extruding each point of H along the
light direction until we are outside of the scene’s bounding box. Figure 3.2 shows a schematic
illustration of the computation of B for point lights (Figure 3.2a) respectively directional lights
(Figure 3.2b).

Our experiments have shown that our used method to calculate the convex body in the dis-
cussed way and adapt the light projection to it, as explained in the next section, works very fast
and robust and can be easily applied to many other shadow mapping algorithms. An example
for the final computed convex intersection body is shown in Figure 3.3.

(a) Convex body B is obtained by extending the intersection H of V and S towards the light position l and
intersect the resulting convex hull M with S and L.

(b) Convex body B results from extruding the intersection H of V and S towards the negative light direction ~l
until a boundary surface of S is reached.

Figure 3.2: Computation of convex intersection bodyB for a point light (a), and for a directional
light (b). S denotes the scene bounding box, V the current view frustum, L the light frustum, l
the light position of the point light and ~l the light direction of the directional light.

19

(a) Convex body B for a point light source. (b) Convex body B for a directional light source.

Figure 3.3: Example visualization of the final convex intersection bodyB for a point light source
(a) and a directional light source (b) in 3D. The black line corresponds to the light direction and
the red line to the edges of the view frustum.

3.1.2 Focusing the shadow map

Once we have calculated the convex body B we need to adjust the light projection according
to the points of B. The first step of this adjustment is to find the axis aligned bounding box
of B in the post perspective light-space. Based on the computed bounding box we create an
orthographic projection matrix in the following way: Considering the light-space bounding box
extents min and max the projection matrix can be formulated for a right handed coordinate
system as

Afit =



2
maxx−minx

0 0 −maxx+minx
maxx−minx

0 2
maxy−miny

0 −maxy+miny

maxy−miny

0 0 1
maxz−minz

− minz
maxz−minz

0 0 0 1


. (3.1)

Transformation of the current light projection by this projection causes the final adaptation of
the light frustum onto the region covered by the convex body B.

As mentioned before, additionally to the great improvements of shadow quality for most scenes

20

(see Figure 3.4), focused shadow mapping is as fast as common shadow mapping and it can be

(a) Standard shadow mapping. (n = 1, f = 1500,
Θ = 30◦)

(b) Focused shadow mapping. (n = 1, f = 500, Θ =
30◦)

Figure 3.4: Comparison between standard shadow mapping (a) and focused shadow mapping
(b).

easily combined with other shadow mapping algorithms. However for dynamic scenes and cam-
era movements it can lead to ’flickering’ or ’swimming’ shadow boundaries, which is actually a
problem of almost every advanced shadow mapping method. We will discuss a possible solution
to these swimming artifacts later in this thesis.

In addition to the previous calculations Brabec [BAS02] proposes a way to linearize the depth
values of the z-buffer to increase the depth precision for distant objects from the light’s point of
view. He also introduces a technique to increase the near plane distance of the light frustum of
point lights by excluding objects outside of the viewing frustum and using the clamping function
of the graphics hardware. Considering uniform shadow mapping, these additional methods work
fine, however according to our experiments using them with shadow mapping algorithms where
the samples get redistributed like for example LiSPSM, they can lead to problems.

3.1.3 Error analysis

Compared to standard uniform shadow maps the characteristics of the perspective aliasing error
along the view frustum does not change for focused uniform shadow maps. For an overhead
light the maximum perspective aliasing occurs at the near plane distance and the minimum at
the far plane distance. Figure 3.5 shows a comparison of the perspective error between standard
uniform shadow mapping and focused uniform shadow mapping. It can be seen that the absolute

21

maximum of the errors usually can be reduced by a great amount that depends mainly on the
final extent of the convex intersection body B (see also Equation 2.7 and Equation 2.8).

(a) Standard uniform shadow mapping (b) Focused uniform shadow mapping

Figure 3.5: Comparison of the perspective aliasing error distribution between standard uniform
shadow mapping (a) and focused uniform shadow mapping (b). Note that the overall character-
istic of both curves is still the same but the maximum error values of (b) are almost one third
compared to (a).

3.2 Warping

In this context warping is a commonly used term for shadow mapping algorithms that handle
perspective aliasing by redistribution of the shadow map samples since the light-space is warped
in a certain way. The main idea of almost any of these methods is to use a perspective transform
based on the post perspective eye-space to reconstruct the light-space. This should lead to a
uniform distribution of the shadow map samples in the eye space.

The first completely hardware accelerated algorithm using this approach was PSM [SD02]. Un-
fortunately, according to Wimmer et al. [WSP04], this technique suffers from serious robustness
and quality issues in real world scenarios. Therefore we lay our focus on alternative respectively
improved warping-techniques in the following sections.

3.2.1 Light Space Perspective Shadow Maps

Following the basic idea of PSM to minimize the perspective aliasing error via perspective re-
distribution of shadow map samples, Wimmer et al. introduced in [WSP04] LiSPSM by using

22

the main advantages and avoid the weaknesses of PSM. LiSPSM were motivated by the obser-
vations that, contrary to PSM, the applied perspective transform to warp the shadow map does
not need to be tied to the view frustum, and using a warp that only affects the shadow map plane
and not the axis perpendicular to the shadow map is sufficient.

According to Wimmer et al. [WSP04] LiSPSM is applied generally in four steps. The first
step includes the focusing on the convex body B which encloses all relevant light rays for the
shadow computation. The calculation of B follows exactly the descriptions in Section 3.1.

In a second step B is enclosed with an appropriate perspective frustum P . According to Wim-
mer et al. [WSP04] the parameters for this perspective frustum are found in light-space which
is constructed with respect to the light direction, the camera position and the camera’s view
direction. Contrary to the original LiSPSM paper we construct the light-space in right handed
order based upon the original light viewing transformation in order to save CPU load and since
we need to apply the final LiSPSM projection matrix P independently from the light projection
for a certain partitioning approach which will be discussed later in this thesis. Considering this
circumstance we construct the light-space matrix L in the same way as explained in Wimmer’s
and Scherzer’s revised version of the original LiSPSM paper [WS06] except we do not exchange
y and z. For a schematic illustration of our used light-space coordinate system and the related
perspective frustum see Figure 3.6.

Figure 3.6: Example configuration of the perspective frustum P including the corresponding
light space coordinate system. Image courtesy of Wimmer et al. [WSP04]

23

Before the final rendering step the free parameter n of the perspective frustum P needs to be de-
fined. This parameter represents the distance between the projection center C of P and its near
plane and controls the actual strength of the perspective warp in the shadow map. For smaller n
the warping effect will get stronger until it reaches PSM when n equals the near plane distance
of the view frustum. Increasing n lessens the perspective warp approaching uniform shadow
maps for n =∞.

Based on their analysis of the perspective aliasing error Wimmer et al. [WSP04] found an ana-
lytical optimal solution for the free parameter and call the parameter therefore nopt. Choosing
nopt according to theirs approach, the perspective aliasing error has two identical maxima at the
near plane and the far plane of the (focused) view frustum and a minimum nearby the viewer if
the view direction is perpendicular to the light direction. Both maxima result in a much lower
value than the maximum of uniform shadow maps at the near plane distance. For parallel light
direction and view direction nopt approaches infinity and LiSPSM falls back to uniform shadow
mapping. Wimmer et al. [WSP04] call this special case the duelling frusta problem and show
that for this configuration uniform shadow mapping is the optimal solution.

According to Wimmer et al. [WSP04] their formulation of nopt works fine for directional lights
but not for point lights. Based on this observation Wimmer and Scherzer [WS06] derived a
generalized formula which works for directional and point lights (see Equation 3.2). This new
formulation takes all possible clipping cases - view frustum clipping by the scene bounding box
or a perspective light frustum - into account and considers the change in scale involved with a
perspective light projection:

nopt =
d√

z1/z0 − 1
(3.2)

In this formulation d denotes the extent of the warping frustum P in the light-space z-direction.
The values z0 and z1 represent the extent of the perspective warping frustum and correspond to
the eye-space z-coordinates where the perspective aliasing error reaches its maxima.

Once the light-space matrix L, the free parameter nopt and the extent of the warping frustum
have been computed we need to determine the projection center C. For this purpose Wim-
mer and Scherzer [WS06] propose to use an appropriate point Cstart on the near plane of the
warping frustum and translate the distance nopt back from the near plane to obtain C. For the
definition of Cstart they compute the nearest vertex e to the eye on the intersection body LV S
which denotes the intersection of the light frustum (in case of a point light), the view frustum
and the scene bounding box. This technique works fine in most cases, however their definition
of Cstart results in some minor robustness issues and cannot be applied in combination with
our chosen partitioning approach. While the camera moves or the light position gets changed
this vertex does not change its position continuously according to the continuous movement of
LV S. These small erratic changes do not cause any problems for the actual shadow projection
but it imposes some robustness issues on the illustration of the light view or the texel borders.
The arising problems with this approach to define Cstart in association with the combination of
LiSPSM and partitioning will be discussed later in this thesis.

24

In Chapter 4 we will propose an alternative approach to compute C that solves the robustness
problems and avoids the errors involved with warped partitioning in most cases.

Once C has been computed correctly, the frustum planes of P can be initialized in the same
way as described in [WS06].
The final rendering passes for shadow map generation and shadow projection work analog to
standard shadow mapping except for the perspective frustum P that is applied by the graphics
hardware during both of them. For this reason, there are no additional costs involved compared
to standard shadow mapping.

3.2.2 Re-parametrized Light Space Perspective Shadow Maps

So far Stamminger and Drettakis [SD02] and Wimmer et al. [WSP04] respectively Wimmer
and Scherzer [WS06] mainly focused on perspective error analysis along the z-direction of
light-space (in our case the y-direction). As discussed in Chapter 2.3, Lloyd et al. [LTYM06]
extend their error analysis and consider the perspective error for both directions, x- and z-
direction, parallel to the shadow map plane. In [Llo07] Lloyd shows that the error distribution
of LiSPSM [WS06] increases especially in x-direction for γ < Θ, where γ corresponds to the
angle between light-direction and view-direction and Θ stands for half the field of view (FOV)
of the camera’s view frustum.

Therefore he proposes a new parameterization of the warping parameter by subdividing the
range of γ into four intervals:

η =


−1 γ ≤ γa
−1 + (ηb + 1) γ−γaγb−γa γa < γ ≤ γb
ηb + (ηc − ηb) sin(90◦ γ−γbγc−γb) γb < γ ≤ γc
ηc γc < γ

γa = Θ
3 γb = Θ γc = Θ + 0.3(90◦ −Θ)

ηb = −0.2 ηc = 0

(3.3)

Using this new parameterization via η, the free parameter of the perspective warping frustum,
which we call in this case nrepar, results according to Lloyd [LGQ+08] in:

nrepar(η) = Wlz
α−1

{
1+
√
α−η(α−1)
η+1 η < 0

1+
√
α

η
√
α+1

η ≥ 0

α = fe
ne

(3.4)

where ne and fe represent the eye-space near plane and far plane distances of the view frustum
and can be seen as z0 and z1 in Equation 3.2. We assume a directional light or a point light with
a fairly narrow field of view, so that it can be treated as a directional light source. Under these

25

assumptions according to Lloyd [LGQ+08] Wlz results for an overhead light in

Wlz = W
′
n +W

′
s2 +

{
W
′
s1 0 ≤ γ ≤ Θ

0 Θ < γ ≤ 90◦

W
′
n = Wn cos γ W

′
s1 = Ws(1− cos(Θ− γ) W

′
s2 = Ws sin(Θ + γ)

Wn = We Ws = fe−ne

cos Θ

(3.5)

W
′
n, W

′
s1 and W

′
s2 are the exit faces of the view frustum projected on the shadow map plane

which are computed by using simple geometry (see Figure 3.7).

The focusing step, the definition of the light-space matrix L, the computation of the projec-
tion center C and the final rendering step follow exactly the descriptions of common LiSPSM
with nopt.

For γ > Θ the results of LiSPSM with nrepar are almost the same as the results of LiSPSM
with nopt. According to Lloyd [Llo07], if γ < Θ, approaching the duelling frusta case, LiSPSM
with nrepar keeps the error, especially in x-direction, low compared to nopt LiSPSM. A com-
parison of both LiSPSM techniques at a configuration where γ < Θ is shown in Figure 3.8. It
includes a visualization of the texel borders and the sampling density via color overlay. For a
detailed comparison of both LiSPSM techniques we refer to Lloyd [Llo07].

3.2.3 Error analysis

As discussed in Section 3.2.1 Wimmer et al. [WSP04], [WS06] choose the free parameter nopt of
the perspective warping frustum so that the error distribution in z-direction contains two maxima
at the near plane distance and the far plane distance of the current view frustum. Using Equation
2.3 and Equation 2.4 to evaluate the errors and considering only these two points at the near
plane and the far plane, it can be said that the error is in eye-space uniformly distributed in an
optimal way resulting in a much lower maximum than for uniform shadow mapping. Since the
samples are redistributed in both shadow map dimensions the maximum error in x-direction is
reduced as well. But the redistribution in x-direction is not applied in an optimal way, so that
the overall error distribution in x-direction still contains a maximum at the near plane distance
and a minimum at the far plane distance just like uniform shadow maps (see Figure 3.9).

3.3 Z-partitioning

As mentioned in Chapter 2 the approach of using multiple shadow maps to decrease perspective
aliasing and improve the shadow quality was proposed by Tadamura et al. [TQJN99] in the first
place. Their proposition subdivides the view frustum into several split frusta and uses a dynamic
array of shadow maps with varying resolutions to approximate the continuous resolution changes
along the length of the view frustum. This method of subdividing the view frustum into several
smaller perspective frusta along its length respectively along the eye-space z-axis to use it for

26

Figure 3.7: Parameterizing of the view frustum for a directional light. Left: side views of the
view frustum with projected exit faces onto the shadow map plane at different light directions.
Right: the corresponding light views with the surrounding perspective warping frusta shown in
black. Image courtesy of Lloyd et al. [LGQ+08].

multiple shadow maps is called z-partitioning (see Figure 3.10). Since Tadamura’s approach
requires many complicated and time-consuming computations to find the optimal length of the
split parts and needs support of varying resolutions for the shadow maps it is not applicable
to hardware-accelerated real-time applications. Though this technique works very robustly and
does not involve any special cases like for example the duelling frusta problem for LiSPSM.

Therefore in 2006 with CSM [Eng06] and PSSM [ZSXL06] two similar techniques were in-
troduced that are based upon Tadamura’s [TQJN99] approach and adapted to modern graphics
hardware. PSSM introduced by Zhang et al. uses z-partitioning in combination with an efficient
and robust split scheme based on an analysis of perspective parameterization. Considering the
limitations of current graphics hardware, instead of varying resolution shadow maps, Zhang et
al. apply for each split frustum a fixed resolution shadow map. As an additional improvement
respectively simplification to Tadamura’s approach they propose a faster way of rendering the
shadows by using the capabilities of programmable GPUs.

27

(a) nopt LiSPSM (b) nrepar LiSPSM

Figure 3.8: Error comparison of LiSPSM techniques. (a) shows LiSPSM with nopt introduced
by Wimmer and Scherzer [WS06]. (b) shows re-parametrized LiSPSM using nrepar introduced
by Lloyd et al. [LTYM06]. Note that the re-parametrized method almost correspond to uniform
shadow mapping while the results of nopt LiSPSM are almost worse than uniform shadow maps.
Parameters: Θ = 30◦, γ = 20◦. For the corresponding color mapping see Figure 5.6.

Compared to common uniform or warped shadow mapping the main drawback of z-partitioning
is that for each split frustum a single rendering pass is needed to generate the shadow map.
This usually resulting performance degradation can be easily minimized through the follow-
ing actions. The focusing technique discussed in Section 3.1 can be easily combined with z-
partitioning by using the current split frustum instead of the entire view frustum. By applying
this focusing to each split frustum, only the scene objects are rendered that lie in the current split
part. Further improvements can be achieved by using the multiple render targets-functionality of
current graphics hardware which can render different split parts simultaneously. We will discuss
some additional opportunities to reduce the performance degradation later in this chapter.

Besides the reduction of the perspective error and the improvement of the shadow quality, z-
partitioning can be seamlessly combined with other methods like for example LiSPSM, and in
most applications we can even save texture memory compared to single-map methods.

3.3.1 Adjusting the view frustum

In most real world outdoor scenarios a distant sky box or a sky dome surrounds the actual scene.
Therefore the camera’s far plane has to be chosen sufficiently large to avoid unwanted far plane

28

(a) Focused uniform shadow mapping (b) Light space perspective shadow mapping

Figure 3.9: Comparison of the perspective aliasing error distribution between focused uniform
shadow mapping (a) and light space perspective shadow mapping (b) for an overhead directional
light source. Note the two equal maxima at the near plane and the far plane of the (adjusted)
view frustum. Parameters: Θ = 30◦, γ = 90◦.

clipping of the sky box. To minimize the amount of empty space in the view frustum and opti-
mize the available shadow map resolution Zhang et al. [ZSN07] suggest to adjust the camera’s
near and far planes before we split the view frustum. This guarantees that the view frustum
contains all visible objects, relevant for shadow mapping, as tight as possible.

According to Zhang et al. [ZSN07] recommendations we compute the intersection of view frus-
tum and scene bounding boxH = V ∩S and calculate for each point of the resulting intersection
body the distance to the camera position along the current view vector. The new near and far
planes of the adjusted view frustum are given by the minimum and the maximum of the com-
puted distances. Figure 3.11 shows a comparison between z-partitioning with a not adjusted and
an adjusted view frustum.

3.3.2 Split scheme

Based on Wimmer’s et al. [WSP04] perspective aliasing analysis Zhang et al. [ZSXL06] dis-
cussed different well known split schemes. The simplest approach is to position the split planes
uniformly along the camera’s z-axis. Thus we get according to Zhang et al. [ZSXL06] for the
i-th split position, with partitioning of the view frustum into m parts, with eye-space near plane
distance n and eye-space far plane distance f a uniform split scheme

Cuniformi = n+ (f − n)i/m. (3.6)

29

Figure 3.10: Schematic illustration of z-partitioning with an overhead light. The view frustum
V is split along its length into m split frusta Vi. Image courtesy of Zhang et al. [ZSN07].

Zhang et al. shows that the distribution of the perspective aliasing error results for the uniform
split scheme in the same as for common uniform shadow maps. This means we get undersam-
pling nearby the camera and oversampling further away from the camera (see Figure 3.12(a)).

According to Wimmer et al. [WSP04] the optimal parameterization for an overhead light is
logarithmic. Therefore Lloyd et al. [LTYM06] and Zhang et al. [ZSXL06] experimented with
a logarithmic split scheme which approximates this optimal parameterization to approach the
theoretical ideal even distribution of perspective aliasing errors:

C logi = n(f/n)i/m. (3.7)

Zhang et al. [ZSXL06] showed that this logarithmic split scheme can be hardly applied in prac-
tice, since it results in oversampling near the view point and undersampling at distant points
from the viewer (see Figure 3.12(b)).

Based on the previous observations, Zhang et al. [ZSXL06] proposes a new practical split
scheme which represents a combination of the uniform and logarithmic split scheme:

Ci = (1− λ)

(
n+ (f − n)

i

m

)
+ λ

(
n (f/n)i/m

)
λ ∈ [0, 1] (3.8)

In their original paper Zhang et al. chose λ = 0.5 since it produces appropriate sampling rates
for the entire view frustum in most cases (see Figure 3.12(c)).

30

(a) View frustum splitting without near and far planes
adjusting

(b) View frustum splitting with near and far planes ad-
justing

Figure 3.11: View frustum splitting with and without near and far planes adjusting. (a) the third
(green) and the fourth (not visible) split frustum are completely outside of the relevant scene and
therefore empty. (b) the far plane is adjusted to the visible scene objects so that the amount of
empty space is minimized and the available shadow map resolution is used in an optimized way.

3.3.3 Split selection

On modern programmable GPUs the final rasterization and shadow rendering step can be easily
done in one rendering pass. Thus for every pixel being rasterized we need to select the corre-
sponding shadow map. In the original PSSM paper Zhang et al. [ZSXL06] choose the shadow
map based on the eye-space depth of the current fragment. This is a very simple and robust
solution to this problem. However, if the light direction is almost parallel to the view direction,
the selected shadow map might not be optimal for the current point. A schematic illustration
of such a case is shown in Figure 3.13: The point P is covered by all three shadow maps. The
optimal choice for this point would be the first shadow map (Split 0) since it provides the highest
resolution. However, based on the eye-space depth we would select the third shadow map (Split
2) with the lowest resolution.

To avoid this problem Zhang et al. [ZZB09] proposes a method which always chooses the
shadow map with the best resolution for the current point. Although this method requires a
few more shader instructions, it can lead to much better results especially for light directions
from behind. A comparison of both methods can be seen in Figure 3.14.

31

Figure 3.12: Comparison of split schemes for z-partitioning with two split parts. Image courtesy
of Zhang et al. [ZSXL06]

3.3.4 Error analysis

The error analysis of z-partitioning can be done in the same way as for the single split techniques.
In case of partitioned uniform shadow maps we evaluate the equations 2.7 and 2.8 analog to
single split uniform shadow maps for every sample along the length of the view frustum. Figure
3.15 shows the error distribution of PSSM [ZSXL06] (λ = 0.5) using 2, 4, 8 and 16 split
parts. It can be seen that the overall maximum error still occurs at the near plane distance and
decreases about half the amount when the number of splits gets doubled. We can also see that
the characteristic of each split region corresponds to uniform shadow mapping based on the far
and near plane ratio of the current split frustum.

3.3.5 Storage strategy

In the original PSSM [ZSXL06] respectively CSM [Eng06] implementation, there are no re-
strictions regarding the storage strategy of the split shadow maps. There exist basically three
possibilities. The simplest approach is to store the shadow maps separately [ZSXL06] [Eng06].
According to Zhang et al. [ZZB09] this method is not very suitable to the implementation of fil-
tering techniques and can also cause problems in applications that use a large number of textures
simultaneously.

On modern GPUs the usage of hardware supported texture arrays and cube maps has become
more and more common practice to store the split shadow maps [ZSN07]. Similar to separately
stored shadow maps one great benefit of these methods is that the size of each shadow map is
only limited by the maximum supported texture size of the graphics hardware. Though hardware

32

Figure 3.13: Split selection: point P is covered by all shadow maps. Instead of selecting split 2
based on the eye-space depth, the best choice is split 0, since its shadow map provides the best
resolution.

(a) Split selection based on eye-space depth (b) Split selection based on the best resolution

Figure 3.14: Illustration of split selection based on the eye-space depth (a) and split selection
based on the shadow map with the best resolution (b). Red shaded: first split. Yellow shaded:
second split.

provided sampling and percentage closer filtering is only supported by Direct3D 10.1 or above.
Furthermore to avoid any waste of texture memory the usage of cube maps only makes sense
for a number of six splits and requires some additional shader instructions for the texture look up.

The third technique of storing the shadow maps was proposed by Lloyd et al. [LTYM06] and
uses a large texture atlas, where all shadow maps are packed into. The only drawback of this

33

(a) Error distribution for PSSM(2) (b) Error distribution for PSSM(4)

(c) Error distribution for PSSM(8) (d) Error distribution for PSSM(16)

Figure 3.15: Comparison of perspective aliasing error distribution for PSSM [ZSXL06] with an
overhead light source using various numbers of splits. Parameters: Θ = 30◦.

technique is the imposed restriction of the single shadow map size based upon the chosen atlas
partitioning scheme and the maximum allowed texture size of the graphics hardware. Though,
according to Zhang et al. [ZZB09] this method comes with some practical advantages which
have increased its amount of usage in modern games recently. Dependent on the chosen parti-
tioning scheme for the texture atlas and actual number of splits, the video memory can be used
very efficiently. In this context a very common variant is to use 4 splits that are arranged at the
4 corners of a quad (see Figure 3.16a). Especially for very complex shading systems which are

34

(a) Configuration of the texture at-
las where the optimal video mem-
ory consumption occurs at the max-
imum of 4 splits.

(b) Configuration of the texture at-
las where the optimal video mem-
ory consumption occurs at the max-
imum of 9 splits.

(c) Configuration of the texture at-
las where the optimal video mem-
ory consumption occurs at the max-
imum of 16 splits.

Figure 3.16: Illustration of our 3 implemented atlas strategies including the actual split orders
and the corresponding texture coordinates. We limited the maximum split shadow map size to
2048 x 2048, so that maximum texture size allowed by the graphics hardware cannot be exceeded
by using 16 splits.

using many texture samplers for other purposes, it can be quite useful that for a texture atlas only
one single two-dimensional texture sampler is required. Another great advantage of this tech-
nique comes with the fact that it works almost equally on any common graphics hardware and
similar for different graphics APIs, which helps developers, in these times of various available
GPUs supporting different versions of OpenGL or DirectX, to support as many graphic cards
as possible. Since the usage of soft shadow algorithms have become more and more popular, a
further advantage of the texture atlas strategy comes with the opportunity that almost any filter-
ing technique can be applied in one rendering pass though some additional shader instructions
might be required for special treatments at the split boundaries.

For our framework we have decided to go with the atlas strategy and pack all splits into a single
large texture atlas. To offer the user the most possible flexibility without wasting too much video
memory and to limit the degradation of usability, we implemented three different partitioning
schemes for an actual maximum of 4, 9 or 16 splits and restricted the shadow map resolution for
a single split to a maximum of 2048 x 2048 pixels (see Figure 3.16).

3.3.6 Minimizing the number of rendering passes

As mentioned before, one of the main disadvantages of PSSM [ZSXL06] or CSM [Eng06] com-
pared to single split warping algorithms is the requirement of the additional 3D rendering passes
to generate the shadow map for each split frustum. DirectX 9 respectively OpenGL 2 GPUs
at least feature the opportunity to generate the final shadowed image in one pass, so that for
z-partitioning with n splits we need n+1 3D rendering passes - n passes to generate the shadow

35

maps and 1 pass to project the shadows into the scene. By disabling any kind of shading oper-
ations and using hardware depth maps, which were especially introduced for shadow mapping
purposes, the performance loss could be minimized. But a certain lack of rendering speed com-
pared to single split warped shadow mapping methods was still present.

After the introduction of DirectX 10 respectively OpenGL 3 graphics hardware Zhang et al.
[ZSN07] presented a method called geometry cloning to generate the shadow maps for all split
frusta in one rendering pass by using the new geometry shader stage. Their basic idea is to
generate all split frusta and the split-specific focusing matrices as usual and send the complete
scene geometry in one rendering pass to the graphics hardware to render all split shadow maps
simultaneously into multiple render targets.

When all scene objects have to be rendered in one pass, it is no longer possible to perform
common frustum culling between the single splits. Therefore, to minimize the amount of geom-
etry computations on the GPU, Zhang et al. [ZSN07] performs before the actual shadow map
rendering pass an additional pass on the CPU that determines the object respectively shadow
caster to split relation based on the bounding boxes of the scene objects. This ensures that ob-
jects are only processed for splits where they are lying in or are at least partly visible from the
light’s point of view.

During the first stage of the actual rendering pass the vertex shader applies the common (not
split-specific focused) light’s view-projection matrix to the vertices. In the next step the geom-
etry shader generates from the incoming triangles for each split the corresponding triangles by
application of the split-specific transformations and setting the correct render target index. The
computations in the final pixel shader stage remain the same as for standard z-partitioning meth-
ods. In Listing A.1 we show a sample geometry shader program for geometry cloning.

According to Zhang et al. [ZSN07] the great advantage of geometry cloning is that, since each
scene object respectively shadow caster is sent only once to the graphics card it comes with
a large amount of API overhead (e.g. extra draw calls) reduction. Though for scenes with a
large geometry amount they recommend the usage of their introduced method with instanced
drawing [ZSN07] since processing large amounts of data with the geometry shader can be very
expensive which we also noticed in our experiments.

3.4 Combinations

We have mentioned before that most of our used shadow mapping algorithms can be easily com-
bined with each other. According to Lloyd et al. [LTYM06] the combination of warping with
z-partitioning works fine and usually leads to great improvements of the shadow quality. How-
ever there are some aspects that need to be considered when different algorithms are applied
simultaneously.

The calculation of the intersection bodies B for each split works pretty straight forward ana-

36

log to focusing of a single split configuration. To cover only the visible parts of the scene, first
of all the near and far plane of the entire view frustum need to be adjusted to the scene as ex-
plained in Section 3.3.1. After the following computation of the split distances according to the
current split scheme we construct the split frustum for the current split. NowB can be calculated
in the same way as discussed in Section 3.1.1 while using the current split frustum instead of the
entire view frustum.

In the next step we compute the perspective warping frustum P for the current split based upon
the previously calculated intersection body. As mentioned in Section 3.2.1, we cannot compute
the projection center in the same way as discussed in this section. Though this method works
for the first split, in most cases it produces bad results for the subsequent splits. Usually the
required nearest vertex to the eye e on the intersection body LV S is given by one of the corner
points on the near plane of the current split frustum. Since the near plane distances of the distant
split frusta are normally very high, the distances of the corner points from the center of the near
plane are very high as well. Therefore, computation of Cstart and the projection center C in
the way discussed in Section 3.2.1, usually leads to an asymmetric warping frustum, even for
directional overhead light source. For this reason we propose an alternative way to compute the
projection center in Chapter 4 which solves this problem in most cases and guarantees a sym-
metric warping frustum for a common overhead light source. The basic operations to compute
P work analog to the steps explained in Section 3.2 whether we are using common LiSPSM or
re-parametrized LiSPSM. If we are using arbitrary warping which was added for experimental
purposes it is possible to adjust the warping strength for each split independently or based upon
the variable first split according to the currently used split scheme.

Once we have applied the LiSP projection matrix for the current split we adjust the resulting
light projection to the intersection body B as explained in Section 3.1.2.

A sample configuration of LiSPSM using nopt combined with z-partitioning using the split
scheme of PSSM [ZSXL06] is shown in Figure 3.17.

3.4.1 Error analysis

By the combination of warping and z-partitioning and using the equations 2.3 and 2.4 to evaluate
the errors, we can see that the overall perspective aliasing error can be further reduced and we
are able to minimize the influence of the drawbacks of each technique without any additional
costs. This means warping avoids the high error at the near plane distance and z-partitioning
minimizes the error maximum at the duelling frusta problem.

For a common split scheme that consists of a uniform and a logarithmic term like for exam-
ple PSSM (λ = 0.5) (see also Section 3.3.2) we have noticed a high perspective error at the near
plane in case of z-partitioning with uniform shadow mapping. This high error mainly results
from the large near plane to far plane ratio of the first split and usually leads to a very strong
warped first split and a relatively large discontinuity at the split border between the first and the
second split (see Figure 3.18a). Our experiments have shown that the minimal perspective error

37

Figure 3.17: Visualization of warping combined with z-partitioning. The warping algorithm
corresponds to LiSPSM with nopt and the used split scheme for z-partitioning corresponds to
PSSM (λ = 0.5).

occurs at warped z-partitioning using the logarithmic split scheme (see Equation 3.7). Figure
3.18b shows the resulting perspective error distribution at this configuration using 4 split frusta.

Lloyd [LTYM06] also discusses various combinations of shadow mapping techniques includ-
ing face partitioning [Koz04] which is not considered in this thesis. He defines a so called
storage factor S̄ as a useful aggregate measure of the errors in x- and z-direction independent of
the shadow map and image resolution and analyzes the discussed shadow mapping techniques
regarding S̄. According to his results this total error S̄ results in a minimum for the combined
application of warping and z-partitioning (see Figure 3.19) considering an overhead light source.
For further results of his error analysis we refer to [LTYM06].

3.5 Reducing shadow flickering

As mentioned in Section 3.1 every shadow mapping algorithm that uses a focused shadow map
or somehow changes the orientation of the light-space according to the eye-space (e.g. LiSPSM)

38

(a) PSSM(4) + warping (b) Log. z-partitioning + warping

Figure 3.18: Error comparison of different combinations of z-partitioning and warping for an
overhead light source. (a) LiSPSM combined with PSSM(4): Notice the unwanted relatively
large discontinuity in the distribution of z-direction at the split border between the first and the
second split. (b) LiSPSM combined with log. z-partitioning: Especially the error in z-direction
is almost uniform distributed along the view frustum. Parameters: Θ = 30◦, γ = 90◦.

imposes flickering or swimming shadow boundaries. This problem is caused by different rasteri-
zations of the shadow map for consecutive frames, when the camera is moving (see Figure 3.20).
Since we recompute the shadow map every frame and use an orthographic projection matrix to
translate and scale the light projection according to the intersection body, the flickering problem
can be mathematically disassembled according to Zhang et al. [ZZB09] into an offset problem
and a scale problem. The offset problem results from different quantization of specific fragment
positions across consecutive frames. The scale problem is caused by the changes of the texel
size. Considering these observations it is obvious that we need to stabilize the quantization of
the positions and the texel size relative to the intersection body respectively the view frustum.

A simple and effective approach to avoid the flickering problem is to apply filtering methods
like for example PCF [RSC87]. Though filtering does not actually resolve the problem but hides
it, in many cases it is sufficient and produces good results.

Zhang et al. [ZZB09] describes two actual solutions to this problem. The so called exact solu-
tion focuses the shadow map on the view frustum’s respectively split frustum’s bounding sphere
rather than the intersection body’s bounding box. Because of the symmetric characteristic of
the sphere, this method stabilizes the world-space size of the shadow map and completely re-
moves the scale problem. The offset problem is resolved by adjusting the light’s position in
world-space according to the sphere’s center. Since at this solution the world-space diameter of

39

Figure 3.19: The storage factor of different combinations of warping (W), z-partitioning (ZP)
and face partitioning (FP) for varying number of shadow maps. Parameters: far plane to near
plane ratio f/n = 1000, Θ = 30◦. Image courtesy of Lloyd [LTYM06].

the bounding sphere needs to remain constant, it is obvious that this technique is only applica-
ble in combination with uniform z-partitioning without any intersection body focusing and view
frustum adjustments. Considering these observations in addition to the fact that a sphere is not
the best approximation of a split frustum, it can be seen that the big disadvantage of this exact
solution is that a large amount of shadow map resolution is wasted.

The second solution to the flickering issue, proposed by Zhang et al. [ZZB09], is the so called
approximated solution. Its basic idea is to discretize the scaling of the focusing step into a pre-
defined range of discrete levels under the assumption that the scale value varies smoothly across
consecutive frames. According to Zhang et al. [ZZB09] we use their empirically found number
of 64 levels. The offset problem can be solved similar to the exact solution by adjusting the
light’s position in world space so that the center of the shadow map contains the center of the
intersection body’s bounding box.

The approximated solution works much better than the exact solution since it does not waste as
much shadow map resolution and it is still possible to combine it with focused uniform shadow
mapping as well as with focused uniform z-partitioning, that uses an adjusted view frustum. A
small drawback is that some minor swimming can still occur.

Both of the above discussed techniques cannot be used with any warping algorithm because
of the non-uniform texel distribution. A possible solution to elimination of flickering for warp-
ing algorithms by using temporal coherence across several consecutive frames was introduced

40

Figure 3.20: Illustration of the flickering problem. The red lines in the right image denote the
shadow boundaries of the previous frame, shown on the left side.

by Scherzer et al. [SJW07].

3.6 Filtering

Soft shadows in games have become more and more popular recently. In the past few years vari-
ous new soft shadow algorithms (e.g. PCSS [Fer05]) and filtering techniques (e.g. VSM [DL06])
have been introduced. Since the focus of this thesis lies on improving the shadow quality of hard
shadow maps and reducing the perspective aliasing, the implementation of soft shadows played
a minor role at our work. Though filtering still can be used to hide the jagged shadow boundaries
respectively the typical staircase artifacts caused by undersampling nearby the camera, which is
why we experimented with a PCF [RSC87] based approach to improve our results.

Modern graphics hardware already provides 2x2 bilinear PCF sampling for common depth maps
which however is in most cases not sufficient to hide undersampling artifacts efficiently. Yet, it
can be easily used to implement extended PCF based filtering techniques.

According to Fernando’s PCSS [Fer05] we implemented an extended PCF based method that
uses hardware PCF samples which are distributed on a Poisson-disk (see Figure 3.21). For fur-
ther details on Poisson-disks and their generation we refer to Dunbar and Humphreys [DH06].
Since PCF sampling is only required in shadowed areas, Fernando [Fer05] proposed a technique
to reduce the amount PCF samples in areas where no shadows have to be cast. Before the actual
filtering process he applies a so called blocker search to find all shadow casters in the area of
the current. This blocker search works similar to the actual filtering method, except it can be
performed using less samples and instead of computing an average shadow value it sums up all
shadow casters which are found during the sampling process. If the blocker search results in no

41

(a) Unfiltered shadows suffering from the typical stair-
case artifacts.

(b) PCF filtered shadows showing hardly any staircase
artifacts.

Figure 3.21: Comparison of unfiltered shadows (a) and PCF filtered shadows using 64 Pois-
son distributed hardware PCF samples (b). Notice that the staircase artifacts have been almost
completely disappeared in the right image.

found shadow casters, the filtering is skipped. Dependent on the occurring shadows in the cur-
rent image to be rendered, the application of the blocker search increased the frame rate during
our experiments up to 15 percent compared to PCF filtering without the prior blocker search.
In addition to the computation of the number of blockers, Fernando [Fer05] computes during the
blocker search the average depth value of all found shadow casters for the further calculations
of the variable penumbra size of PCSS.

3.6.1 Kernel size

To offer the opportunity to experiment with the softness of the PCF filtered shadows we added
a variable parameter rl that can be modified during the run-time. It controls the basic kernel
size of our filtering method which can also be referred to as the diameter of a fictional area light
source. Note that the resulting soft shadows of PCF filtered shadow maps are not physically
correct.

As discussed previously in this chapter almost any of our implemented shadow mapping al-
gorithms uses focusing on an intersection body. Normally, this involves a scaling of the world-
space kernel size of the filter according to the current scale operation of the focusing matrix.
For common single split uniform shadow mapping usually this is not a big problem, though it
imposes view-dependent changing of the shadow softness. However in case of z-partitioning
and warping methods this issue can cause ugly artifacts. Since the single splits of z-partitioned
shadow mapping methods are usually differently scaled, the world-space filter kernel size is
scaled in the same way which leads to abrupt changes of the shadow softness at the split borders

42

(see Figure 3.22a). A very simple solution to eliminate the view-dependence of the kernel size
for common single split uniform shadow mapping is to scale the kernel size according to the
focusing scale transformation. Since our shadow maps are organized in a large texture atlas for
z-partitioned shadow mapping we need to apply an additional factor lsc to each split which is
based on the currently used atlas partitioning scheme (see Equation 3.9).

si = rl lsc


2

maxx−minx

2
maxy−miny


lsc =


1/2 1 < m ≤ 4

1/3 4 < m ≤ 9

1/4 9 < m ≤ 16

(3.9)

The values min and max correspond to the boundaries of the intersection body bounding box
found during the focusing step for the current split i (compare to Equation 3.1) and m stands for
the currently used number of splits.

(a) PCF filtered shadows without any split-specific
adaptation of the kernel size.

(b) PCF filtered shadows with the proposed adjust-
ments of the kernel size for each split.

Figure 3.22: Comparison of PCF filtered shadows with (b) and without (a) split-specific adjust-
ments of the filter kernel size. Note the constant shadow softness in (b) over all split areas.

The previous discussed methods are hardly applicable to warped shadow mapping techniques
because of the non-uniform distributed samples in the shadow map. Especially for very strong
warped shadow maps a small kernel size nearby the observer can lead to a very large kernel
size distant from the camera. A good workaround to reduce this problem is to minimize the

43

warping effect to a reasonable level or combine it with z-partitioning and treat it like uniform
z-partitioning.

3.7 Summary

In this chapter we have reviewed and analyzed several advanced shadow mapping techniques
to produce hard shadows in large scaled virtual environments. We focused on fully hardware-
accelerated techniques that deal with minimizing the perspective aliasing error.

Considering different approaches of improving the shadow quality we laid the focus of our
analysis on three basis techniques:

• Fitting the shadow map on the scene objects that are relevant for shadow mapping based
on the current view frustum configuration.

• LiSPSM which applies a perspective warping frustum to redistribute the shadow map
samples according to the current view frustum configuration.

• Z-partitioning which splits the current view frustum along its length into several split
frusta and applies for each split part a single shadow map.

Afterwards we discussed the opportunities of combining the different techniques for further
shadow quality improvements and avoiding some of the drawbacks of each single method.

Then we dealt with some methods to reduce the imposed flickering artifacts of the used fo-
cused shadow mapping techniques to improve the robustness of the final shadows.

At the end of the chapter we briefly discussed PCF as technique for hiding the aliasing arti-
facts by filtering of the projected shadows.

44

CHAPTER 4
Optimizations

As mentioned before some steps of the previous discussed shadow mapping algorithms can cause
minor problems, if we combine them with other approaches or visualize the interesting aspects
of the shadow map creation process. In this chapter we will introduce some optimizations for
the discussed shadow mapping techniques, which solve these problems and improve the shadow
quality respectively enhance the quality of our applied visualizations.

Additionally, we will discuss an approach to adjust the view-frustum near plane, using the capa-
bilities of the graphics hardware, to further reduce perspective aliasing.

4.1 Projection center for warping

We have explained in the previous chapter, that Wimmer and Scherzer’s [WS06] approach to
define the projection center C of the perspective warping frustum for LiSPSM involves some
robustness issues and usually leads to asymmetric warping frustums for the second and the sub-
sequent splits in case of warped z-partitioning.

Our basic idea to avoid the erratic changes of C caused by the discontinuous changes of Cstart
respectively e is to define Cstart by using a point that lies on the view vector of the eye. As
mentioned in Section 3.2, e corresponds to the nearest vertex to the eye on the body LV S,
which denotes the intersection of light frustum (in case of a point light), view-frustum and scene
bounding box. Considering the given vertex e, we assume that a point s, lying on the view vec-
tor, has the same distance as e to the camera along the current view vector and still lies on LV S.
Based on this assumption we define Cstart as (slsx , slsy , Bznear)T . Since s always lies on the
camera’s view vector, its position changes continuously according to the camera movements as
well as the position of Cstart. After the computation of Cstart we obtain the projection center C
as explained before by translating the distance of the free parameter back from the near plane.
The new way to define Cstart also causes the projection center to lie in the center of the cur-

45

rent split frustum near plane in most cases. Figure 4.1 illustrates the definition of the projection
center.

Figure 4.1: Construction of Cstart and C in light-space from the points e and s on the plane
nearest to the camera.

4.2 Pseudo-near plane and pseudo-far plane

One perception in common virtual environments is that the area nearby the viewer is empty in
most cases. We have seen that perspective aliasing has a maximum in this region, mainly caused
by the far plane distance to near plane distance ratio. Considering this circumstance, the best
thing to do would be to increase the near plane distance. This normally comes with a great re-
duction of the perspective aliasing error. However, increasing the near plane distance too much
can lead to near plane clipping of geometry against the view frustum. Thus, in common appli-
cations the near plane distance is set to a conservatively low value to avoid near plane clipping,
while accepting the higher error.

Lloyd [Llo07] proposes an alternative approach to the previously discussed z-partitioning scheme
as well as an alternative warping algorithm. By using a pseudo-near plane, this new approach
allows the user to reduce perspective aliasing and still keep the near plane distance conserva-
tively low. According to Lloyd [Llo07] the only price to be paid is the possible risk of a high
error between the actual near plane distance ne and the pseudo-near plane distance np.

46

In addition to Lloyd’s considerations, we experimented with the new approach of using a pseudo-
far plane, which is applied additionally to the pseudo-near plane to further reduce perspective
aliasing. It can be used in an analog way as the pseudo-near plane and involves the similar
possible risk of a high error between the pseudo-far plane distance fp and the actual far plane
distance fe.

For z-partitioning, combination of the pseudo-near plane with the approach of the pseudo-far
plane leads to a new split scheme shown in Equation 4.1.

Ci = (1− λ)

(
np + (fp − np)

i

m

)
+ λ

(
np (fp/np)

i/m
)

λ ∈ [0, 1]. (4.1)

While Lloyd’s [Llo07] formulation is based on a logarithmic split scheme, we compute the new
split distances by replacing the actual near plane and far plane in Zhang’s et al. [ZSXL06] prac-
tical split scheme through the values of the pseudo-near and pseudo-far plane.

To define a pseudo-near warping algorithm Lloyd [Llo07] uses the same way as Wimmer et
al. [WSP04] for LiSPSM by solving for a free parameter n for the perspective warping frus-
tum where the error at np is equal to the error at f . By adding our experimental approach of
the pseudo-far plane and conversion of Wimmer and Scherzer’s [WS06] revised formulation of
LiSPSM we get the new formulation of nopt:

nopt = d
z0

z1 − z0
+
√

(z0 + np (z1 − z0)) (z1 − fp (z1 − z0)) np, fp ∈ [0, 1]. (4.2)

Our experiments have shown that this technique works fine for all possible values of np and fp,
and there is no need to distinguish between the two cases np < 2/3 and np ≥ 2/3 as proposed
by Lloyd [Llo07].

Note that for the calculation of the intersection body B, we are still using the actual near plane
distance ne and far plane distance fe which means the entire view frustum respectively all vis-
ible objects are covered by the shadow map. In case of LiSPSM combined with z-partitioning,
np is only considered for the calculation of the warping frustum of the first split and fp is only
used for warping of the last split. In Figure 4.2 we show a comparison of nopt LiSPSM with and
without a pseudo-near and pseudo-far plane.

4.3 Maximizing the near plane distance

In Section 4.2 we have mentioned Lloyd’s [Llo07] approach to reduce perspective aliasing by
introducing a pseudo near plane, since increasing the camera’s view frustum near plane distance
usually comes with a large decrease of the perspective aliasing error.

In this section we will discuss the possibilities of increasing the near plane distance itself, since
the perception of an empty area nearby the viewer is valid in most applications.

47

(a) Common nopt LiSPSM (b) nopt LiSPSM with pseudo-near plane and pseudo-
far plane

Figure 4.2: Comparison of common nopt LiSPSM with (b) and without (a) the application of a
pseudo-near plane and a pseudo-far plane. Both figures include a visualization of the sampling
rate via color overlay. Parameters: γ = 90◦, ne ≈ 1, fe ≈ 300, np ≈ 30 (in eye-space),
fp ≈ 30 (in eye-space). For the corresponding color mapping of the sampling rate visualization
see Figure 5.6.

Obviously the simplest way is to adjust the near plane manually during the runtime. Thus we
realized this opportunity in our framework by a slider element which is scaled in a way that the
near plane can be varied between a minimum and the current to the scene bounding box adjusted
far plane (while focusing is activated). If the camera is located inside the scene bounding box the
minimum is set to a fixed conservatively low chosen value, otherwise it results from the adjusted
near plane distance computed during the calculation of the convex intersection body. Since we
usually do not have any information about the actual location of the scene objects in relation
to the camera, which imposes possible near plane clipping for high near plane distances, this
method makes only sense for experimental purposes.

Stamminger and Drettakis [SD02] mentioned a new method to adjust the near plane by read-
ing back the depth buffer after each frame. Following this approach, we introduce a method to
automatically adjust the near plane distance according to the actual relation between the camera
and the nearby scene objects. Similar to Stamminger and Drettakis [SD02], we perform an addi-
tional rendering pass to determine all depth values for the current camera position and store them
into a linear depth map, before the calculation of the convex intersection body. Afterwards we
use the obtained depth map as input for a manually created mip map chain. During the computa-

48

tion of this mip map chain, from the largest to the smallest image, we evaluate for each group of
four adjacent fragments the minimal depth (see Listing A.2 for a sample fragment shader source
code). Finally we can read back the minimal depth value of the current frame from the smallest
tile. This obtained minimal depth can be directly used as new maximal near plane distance for
computation of the intersection body to minimize perspective aliasing without any risk of near
plane clipping occurrence.

Our experiments have shown that this technique to determine the minimal depth of the current
location can result especially for PSM in great improvements of the shadow quality and large
reductions of perspective aliasing. Figure 4.3 shows a comparison of PSM with and without the
automatic adaptation of the near plane distance including a visualization of the sampling rate
and the texel borders.

(a) PSM with conservatively low chosen near plane
distance zn = 1

(b) PSM with automatic established near plane dis-
tance zn ≈ 6

Figure 4.3: Comparison of PSM with conservatively low chosen near plane distance (a) and
automatic adjusted near plane distance based upon the current camera to scene location (b)
including a visualization of the texel borders and the sampling rate. For the corresponding color
mapping see Figure 5.6.

Since this technique requires several additional rendering passes it involves a certain amount
of performance loss regarding the real-time capabilities. During our experiments we have seen
that the highest costs are involved with the read back of the smallest image of the mip map chain
from the graphics hardware to the CPU, which is actually a well known fact in graphics devel-
opment. The 3D rendering pass to obtain the depth map and the computation of the mip map
chain do not involve extensive additional performance degradation. Our analysis of the frame

49

rate for this technique combined with common PSSM(4) resulted in a minimum of 30 frames
per second for each of our test scenes.

50

CHAPTER 5
Framework

In order to compare and analyze the previous discussed shadow mapping algorithms, we devel-
oped a framework within the work on this thesis. This framework features all of the techniques,
discussed in the chapters 3 and 4, except for the blocker search of PCF, which we explained in
Section 3.6. It the allows us to apply the different algorithms on various scenes and compare
the results with respect to performance, robustness and other quality properties. It also provides
many opportunities to visualize different aspects of the shadow map creation process. In the
following sections we establish the purpose of our framework, give an overview of the concepts,
describe the various available features and visualizations, and show some examples.

5.1 Concepts

Most existing shadow mapping systems only feature a few methods to visualize and analyze
the different aspects of the shadow mapping process. Moreover, they are often focused on only
one specific shadow mapping technique. Because of the large number of different algorithms
addressing the same problem like for example perspective aliasing, in most cases it is hard to
find the best suitable method based on the used scenario. Even if a system supports several
techniques, there is still a need to compare the final results of the different methods in one way
or another. Additionally to the rendering of the ordinary projected shadows, useful visualizations
are

• for focused shadow mapping the visualization of the convex intersection body from a
different point of view to compare the world-space shadow map area at different light
directions,

• for warping the visualization of the texel borders or the light view to investigate the warp-
ing strength of the shadow map,

• for z-partitioning the visualization of the split areas to find the best split scheme respec-
tively an appropriate split selection strategy,

51

• for each technique the visualization of the aliasing errors in one way or another to be able
to compare the applied algorithms in an analytical way.

Considering the issues above, we focused our implemented framework on providing the most
possible flexibility, versatility and the capability to compare and visualize the results from dif-
ferent points of view and in various ways. In the following list we briefly describe the different
features and opportunities of our framework:

• Flexibility: to find the best solution for a specific configuration we allow the user to adjust
almost any of the interesting parameters and apply several techniques simultaneously in a
reasonable way via an intuitive usable graphical user interface.

• Third person view: in addition to the common first person view, we added the oppor-
tunity to interactively investigate the current configuration from a different point of view
at any time. The available features in this view and how we implemented them will be
explained in detail in Section 5.2.

• Intersection body: for investigation of the effects on the used shadow map area while
changing the light direction or the light projection, the framework offers the opportunity
to visualize the used intersection body. For further details see Section 5.3.

• Texel borders: this implemented visualization helps to understand the redistribution of
the shadow map samples while experimenting with the application of the various available
warping techniques. We explain the benefits of this feature in Section 5.4.

• Splits: to find a suitable split scheme for z-partitioning and experiment with different split
selection strategies it is possible to visualize the used split areas. See Section 5.5.

• Light views: for investigation of the light orientation, the focusing of the light-space, the
warping strength we provide an opportunity to visualize the light view respectively all
light views in case of z-partitioning. A detailed description of this feature can be found in
Section 5.6.

• Sampling frequency: for an analysis of the errors in the current configuration over the
entire frame, it is possible to visualize the sampling rate. For further details on this visu-
alization see Section 5.7.

• Perspective aliasing error: to analyze the actual perspective aliasing error and observe
its characteristics for different angles between view vector and light direction, we added a
feature to plot its behavior. A full explanation of this feature is given in Section 5.8.

Since we decided to choose a freely available model format (see Chapter 6), our framework
can be used for investigation of arbitrary scenes. As mentioned above we will explain our
implemented features and visualizations in the following sections in detail.

52

5.2 Visualization view

Some interesting aspects of the presented shadow mapping algorithms cannot be visualized in
a reasonable way from the eye’s point of view. A very common practice of shadow mapping
frameworks is to offer the user the opportunity to show the light’s view depth map as illustrated
in Figure 2.1a.

Although this kind of illustration often helps a lot to understand the current configuration of the
shadow mapping application, because of the missing shading information and the sometimes
confusing orientations of the light source, it cannot be used to visualize all interesting aspects.
For this reason we added an additional third person view that allows the user to investigate the
current shadow mapping configuration at any time from a completely independent point of view.
We call this third person view visualization view and the standard eye view common view in the
following sections.

Figure 5.1: Example configuration of the visualization view. It displays the light direction (black
line), the eye’s point view frustum (red semi-transparent body) and its current view (minimap on
the lower left).

53

For an easy observation of the adjustable light source movements, the current light direction
will be visualized in this view. We also added the feature to switch the camera controls in the
visualization view. This provides the opportunity to observe the variations of the shadows and
other interesting objects from an outside view while moving the eye point. Especially for this
scenario, it is also possible to display in the visualization view the current common view, to
simplify the navigation in this state. Other objects which can be illustrated in the visualization
view are the current eye’s point view frustum, the convex intersection body and its world-space
axis aligned bounding box. The visualization of the view frustum already represents for fo-
cused shadow mapping the view frustum, adjusted to the scene bounding box. In Figure 5.1 we
present an example for a common configuration of the visualization view including the current
view frustum and the visualization of the common view. Further visualization features of this
view will be explained in the following sections.

5.3 Intersection body

Except for standard uniform shadow mapping we need to calculate for each of the presented
algorithms a convex intersection body that contains all light rays for the current eye’s point of
view respectively in case of z-partitioning for the current split part of the view frustum. As
discussed in the previous chapters this intersection body represents the essential basis for the
focusing step and in case of warping the extension of the perspective warping frustum is based
on it. Furthermore, as mentioned in Section 5.1, the intersection body basis almost conforms to
the world-space shadow map area in most cases and can be easily used to show the differences
between a point light source and a directional light source.

For all these reasons, we added the opportunity to visualize the intersection body respectively
in case of z-partitioning all intersection bodies in the visualization view. It allows a simple in-
tuitive analysis of the changing of the shadow map area and in case of z-partitioning it helps to
compare the relations between the different world-space shadow map areas of the splits. An ex-
ample configuration showing the visualization of the intersection body can be seen in Figure 5.2.

Notice that for the computation of the final focusing matrix, only the point cloud of the in-
tersection body is required. For better illustration purposes we used a freely available library
implementation [The11] of Barber’s et al. [BDH96] Quickhull algorithm that computes a De-
launay triangulation of the intersection body’s point cloud.

5.4 Texel borders

Especially for warping techniques the visualization of the texel borders is a simple way to show
the redistribution of the shadow map samples compared to uniform shadow mapping. Moreover,
if this visualization is applied in the visualization view, the external borders represent a good
illustration of the basis of the perspective warping frustum.

But also for z-partitioning this visualization can be useful for investigation of the changing of

54

(a) Intersection body for common focused shadow map-
ping

(b) Intersection bodies for z-partitioning with 3 splits

Figure 5.2: Visualization of the intersection bodies. (a) intersection body for common focused
shadow mapping respectively warped shadow mapping. (b) intersection bodies for z-partitioning
with 3 split frusta. The corresponding view frustum respectively split frusta are shown as wire-
frame objects in each figure.

the texel size at the transitions from one split part to another.

Since the external borders of this visualization actually correspond to the world-space shadow
map area, it gives a good impression of the wasted shadow map area if it is viewed from the
third person view simultaneously with the visualization of the intersection body. Additionally,
this visualization can be used to show the unwanted shear effects for light directions that are
almost parallel to the view direction.

The fragment shader source code for computation of the grid was introduced by Lloyd [Llo07]
and can be seen in Listing A.4. An example of this visualization is shown in Figure 5.3.

5.5 Split selection

Normally it is very difficult to recognize the transitions between the single splits if the shadows
are generated using z-partitioning. Though the visualization of the texel borders can be used for
this purpose, we additionally implemented a simple method which colorizes the scene according
to the current used split selection strategy. The overlaid colors for the single split areas are
chosen in the following manner:

55

(a) (b)

Figure 5.3: Visualization of texel borders for light-space aligned uniform shadow mapping with
3 split frusta. (a) first person view. (b) third person view.

color(i) =


red i mod 4 = 0

yellow i mod 4 = 1

green i mod 4 = 2

blue i mod 4 = 3

(5.1)

i ∈ [0,MAX_SPLITS− 1]

This visualization provides an easy possibility to experiment with different numbers of splits and
different split schemes, respectively split selection techniques and offers a simple way to find
an appropriate partitioning configuration according to the current scenario. Figure 5.4 shows an
example configuration using this visualization to examine the current split scheme.

Similar to the visualization of the texel borders this illustration can be used in the visualiza-
tion view to show the world-space shadow map area for each split and investigate the wasted
shadow map space. Since the split parts usually overlap partially, the colorized areas do not
always correspond to the exact world-space area of the shadow map, but they still represent a
good indicator for it.

56

(a) (b)

Figure 5.4: Visualization of used split parts via color overlay. (a) first person view. (b) third
person view.

5.6 Light views

We mentioned in Section 5.2 that most shadow mapping frameworks provide a feature to vi-
sualize the light’s view depth map. Although their significance can be problematic, a shaded
visualization of the light view without any illustration of the depth information, used in combi-
nation with our other implemented visualization tools, still offers a lot of interesting information.
Especially for focused shadow mapping, warping methods or z-partitioning, a visualization of
the light view helps to better understand the applied methods. It can be used to examine the
current light source orientation, to investigate the focusing amount, to experiment with differ-
ent warping strategies or warping strengths and to find an appropriate partitioning configuration.

Therefore, instead of visualizing the common depth map, we included a feature to visualize
a shaded version of the light view which can be activated at any time. To improve the orientation
within the light views and for a better illustration of the warping effect of our used warping tech-
niques, we added to each light view a wire-frame rendering of the current eye view frustum. For
single split configurations, we render the current eye view vector in the visualization of the light
view and in case of z-partitioning the rendering of the view vector is included into the light view
visualization of the first split. In Figure 5.5 we show examples for the light view of LiSPSM and
z-partitioning.

57

(a) Light view of LiSPSM. (b) Light view of z-partitioning with 4 split frusta.

Figure 5.5: Visualization of light views including a wire-frame object of the current view frustum
respectively split frustum (black lines) with the corresponding eye view vector (blue line).

5.7 Sampling frequency

The sampling frequency of the shadow map denotes the sampling rate with respect to the screen
space and represents a good approximation of the shadow mapping errors over the entire frame.
Thus, we added the opportunity to visualize the sampling frequency in the common view via an
overlaid color. This visualization allows comparing the amount of perspective aliasing and even
projective aliasing for different shadow mapping techniques and different parameter configura-
tions. Figure 5.6 shows the used color mapping.

Figure 5.6: Color mapping for the visualization of the sampling frequency. The values represent
an approximation of the screen pixel to shadow map texel ratio.

For an independent analysis of both shadow map directions, we added the feature to visual-
ize the sampling frequency in x-direction of the shadow map and in y-direction. For an overall
result we use the determinant of x- and y-direction. As mentioned above this kind of visualiza-
tion approximates the errors for every visible point in the scene. Compared to most other tools

58

for error analysis, this is actually a great advantage, since most common error metrics focus only
on perspective aliasing along the view vector respectively at the center of the screen and cannot
be used to analyze the current scenario itself. The major drawback of this method is given by the
fact that it can be only used for comparison purposes and is not suitable for an analytical error
analysis.

Figure 5.7: Visualization of the sampling frequency. We have undersampling (red shaded)
nearby the viewer and oversampling (blue shaded) at the distant regions. Optimal sampling
rates are given at the green shaded areas.

A sample fragment shader source code to visualize the sampling frequency can be seen in List-
ing A.3. An example illustration of the sampling frequency visualization is shown in Figure
5.7.

5.8 Perspective aliasing error

In addition to the visualization of the sampling frequency, which only represents an approxi-
mation of the shadow mapping errors, we implemented a feature that allows us to interactively
analyze the actual perspective aliasing error along the current view vector over the entire length
of the view frustum. Considering only an overhead directional light source or a point light with
a fairly narrow field of view, this feature calculates the error values for light-space aligned uni-
form shadow mapping and any kind of perspective warped shadow mapping whether they are
applied in a single split configuration or combined with z-partitioning. The values are computed

59

by using the error metric discussed in Section 2.3.3, which means the errors for uniform shadow
mapping methods are computed by the equations 2.7 and 2.8, for LiSPSM by the equations 2.3
and 2.4 and for PSM by the equations 2.5 and 2.6. Based on the obtained error characteristics,
this visualization enables the user to find the best analytical solution for the current view frustum
configuration.

Figure 5.8: Example for visualization of perspective aliasing error. The shown graph corre-
sponds to the error in x- (orange) and z-direction (blue) of LiSPSM for an overhead directional
light with γ ≈ 90◦.

Figure 5.8 shows an example of this visualization. The x-axis in the shown two-dimensional
diagram denotes the eye view depth range currently used for shadow mapping. In case of fo-
cused shadow mapping, the plotted values correspond to the near and far plane distances of the
adjusted view frustum. If the view frustum has been partitioned using z-partitioning, the values
on the x-axis represent the computed split distances and the near and far plane distances. We
also added a visualization of the pseudo-near or pseudo-far plane. But they are only displayed if
their values are greater than zero. Beneath the shown depth values on the x-axis we additionally
display the corresponding perspective error values and in case of z-partitioning the plotted error
values include the errors right after the split borders.

The values on the y-axis correspond to the error in light-space x- and z-direction calculated
according to the used error metric. The displayed values represent the minima and maxima
of the corresponding curve and are used to compute the scaling along the y-axis to achieve an
optimal representation of the graphs within the available area.

60

CHAPTER 6
Implementation

6.1 Implementation overview

Our introduced framework was implemented as a Multi-threaded dynamic linked C++ applica-
tion. Using dynamic linking gave us the opportunity to implement several parts of the application
independently from the other parts. This means switching to another rendering API or another
model format can be relatively simply realized by implementing the corresponding library using
our provided interfaces. We will give a brief overview over the code structure in the next section.

In our introduced framework we used for rendering native DirectX 10, shipped with the Di-
rectX SDK [Mic11]. The window and input handling is done by a combination of the common
Win32 API and the DirectX Utility Library (DXUT) which also comes with the DirectX SDK.
Using DXUT gave us the great advantage of a freely available Graphical User Interface (GUI)
library which provides handling- and rendering-interfaces to various common GUI-elements like
buttons, checkboxes, drop-down menus and much more.

As model format for our test scenes we decided to use Collada [Khr11] in the version 1.4.1.
Compared to other common model formats like for example 3ds or FBX, Collada provides the
following advantages:

• the API specification is completely freely available and its usage is completely free of
charge,

• besides the whole scene geometry and all texture information it is able store shaders and
effects, physics and animations,

• its memory requirement is quite low, since only actually used features are stored in the
files,

• it defines an XML-based schema for easy transportation of 3D assets between different
applications,

61

• the files are human-readable

6.2 Code structure and reuse

As mentioned in Section 6.1 we tried to offer certain flexibility for possible further develop-
ments by using dynamic linked libraries which are called by the actual main application dur-
ing the runtime. This allowed us to decouple specific parts of the framework like for example
model-loading, scenegraph-traversal or rendering from the main program. We were also able
to implement some of the algorithms presented in this thesis independently from any rendering
framework.

Considering the current development status, our framework is structured in the following way:

• Common: this library provides some basic functionalities and utilities like file in- and
output, 3D vector calculations and error- and event-logging.

• SceneGraph: the SceneGraph library maps our internal scene structure and provides the
abstract interfaces for model-loading, view frustum culling and rendering. It also im-
plements most of the computations for the different warping algorithms and offers basic
functionalities to compute the convex intersection body used for focusing the shadow map
respectively finding the perspective warping frustum.

• PluginCollada: is an implementation of the abstract model-loading interface from the
SceneGraph-library. Its only purpose is to open a given Collada file and load the necessary
data according to the internal scene structure.

• D3dRenderSystem: this library implements the abstract rendering interface from the Scene-
Graph library. It offers most of the DirectX-specific functionalities and utilities like for
example shader-loading, vertex buffer object creation and rendering by using the core
functions of the DirectX SDK. Some of the presented algorithms like for example z-
partitioning and focusing the shadow map, and the calculation of the perspective shadow
mapping error values are also implemented in this library.

• GraphicsEngine: the GraphicsEngine library corresponds to the main interface for the
application to access custom functionalities of the rendering framework or choose between
the different loaded scenes.

• Viewer: is the main application and triggers the window creation, the scene loading and
the rendering process by calling the previous described libraries. Additionally it is respon-
sible for every window- and user input event handling by using the core functionalities of
DXUT.

The implementation of the main application Viewer focuses on visualizing and experimenting
with the algorithms presented in this thesis. Thus, optimizing the code of the rendering loop
in the Viewer to get the best performance sometimes played a minor part. By using the im-
plemented interfaces of the previous introduced libraries, the Viewer can be easily replaced by

62

any other DirectX 10 application without the requirement of recompiling the libraries where the
main parts of the algorithms are implemented.

63

CHAPTER 7
Results

In this chapter we present some results of our experiments by comparing the discussed shadow
mapping techniques using two game-like example scenes. We also present performance mea-
surements based on a rendering viewport the size of 1024 x 768 and a 1024 x 1024 shadow
map. The used light source corresponds to an overhead directional light. Our benchmarking
system consisted of an Intel R©Core

TM
i7 920 and an Nvidia R©GeForce R©GTS 250 with 512MB

video memory.

7.1 Sights of Paris

The first scene consists of some famous sights of Paris in France arranged on an almost entirely
flat terrain (see Figure 7.1). The scene bounding box measures approximately 850 x 800 x 330
meters (w x l x h). The total triangle amount of this scene corresponds to almost 255K triangles.

The greatest challenge of this scene regarding shadow mapping is represented by the, com-
pared to the other scene objects, very high and complex model of the Eiffel Tower.

Detailed views of the shadow quality achieved with our framework are shown in Figures 7.2-7.3.
The size of the shadow map in these screen shots was set to 512 x 512 for each split.

7.2 Winter scenery

The second scene represents a winter scenery consisting of some trees and cabins arranged on
a hilly terrain (see Figure 7.4). The bounding box of this scene measures approximately 500 x
500 x 100 meters (w x l x h). The total triangle amount of this scene corresponds to almost 380K
triangles.

The most challenging parts of this scene are the very detailed tree models and the relatively

65

Figure 7.1: Screen shot of the test scene ’Sights of Paris’.

hilly terrain denoting the major shadow receiver.

Detailed views of the shadow quality achieved with our framework are shown in Figures 7.5-7.6.
The size of the shadow map in these screen shots was set to 512 x 512 for each split.

7.3 Benchmarking results

The tables 7.1 and 7.2 show the benchmark results taken in the previously discussed example
scenes. Since the performance of LiSPSM is as good as the performance of uniform shadow
mapping, we limited our tests to LiSPSM and its combination with an automatic adjusted near
plane (see Section 4.3), with PSSM (see Section 3.3) and with geometry cloning (see Section
3.3.6).

It can be seen that the additional pre-rendering pass to obtain the minimal depth before the
shadow map creation pass and the final rendering pass at ’Automatic Adjusted zNear + LiSPSM’
causes the frame rate to decrease by almost the half of the value without an automatic ad-
justed near plane (see ’LiSPSM’). This drawback results from the expensive read back of the

66

BENCHMARKING RESULTS
Applied techniques Number of 3D passes Framerate

LiSPSM 1 + 1 143 fps
Automatic adjusted zNear + LiSPSM 1 + 1 + 1 80 fps
PSSM(4) + LiSPSM 4 + 1 90 fps
PSSM(8) + LiSPSM 8 + 1 60 fps
PSSM(16) + LiSPSM 16 + 1 36 fps
Automatic adjusted zNear + PSSM(4) + LiSPSM 1 + 4 + 1 52 fps
Automatic adjusted zNear + PSSM(8) + LiSPSM 1 + 8 + 1 37 fps
Automatic adjusted zNear + PSSM(16) + LiSPSM 1 + 16 + 1 23 fps
Geometry Cloning PSSM(4) + LiSPSM 1 + 1 76 fps
Geometry Cloning PSSM(8) + LiSPSM 1 + 1 31 fps
Geometry Cloning PSSM(16) + LiSPSM 1 + 1 13 fps

Table 7.1: Benchmarking results for scene ’Sights of Paris’.

BENCHMARKING RESULTS
Applied techniques Number of 3D passes Framerate

LiSPSM 1 + 1 191 fps
Automatic adjusted zNear + LiSPSM 1 + 1 + 1 78 fps
PSSM(4) + LiSPSM 4 + 1 140 fps
PSSM(8) + LiSPSM 8 + 1 94 fps
PSSM(16) + LiSPSM 16 + 1 56 fps
Automatic adjusted zNear + PSSM(4) + LiSPSM 1 + 4 + 1 55 fps
Automatic adjusted zNear + PSSM(8) + LiSPSM 1 + 8 + 1 40 fps
Automatic adjusted zNear + PSSM(16) + LiSPSM 1 + 16 + 1 28 fps
Geometry Cloning PSSM(4) + LiSPSM 1 + 1 55 fps
Geometry Cloning PSSM(8) + LiSPSM 1 + 1 22 fps
Geometry Cloning PSSM(16) + LiSPSM 1 + 1 8 fps

Table 7.2: Benchmarking results for scene ’Winter scenery’.

67

Figure 7.2: Results from the scene ’Sights of Paris’. LiSPSM with nrepar and 1 split. (Left)
common shadow rendering. (Right) visualization of sampling rate and scaled texel grid.

depth buffer. An analog behavior can be observed for ’Automatic Adjusted zNear + PSSM(x) +
LiSPSM’ compared to ’PSSM(x) + LiSPSM’.

Furthermore, we can see that the advantage of geometry cloning by sending the geometry only
once to the graphics card does not take effect, since the overall amount of geometry, processed
through the geometry shader, might be too high (see for example ’Geometry Cloning PSSM(4)
+ LiSPSM’ compared to ’PSSM(4) + LiSPSM’). As mentioned in Section 3.3.6, Zhang’s et
al. [ZSN07] approach that uses instanced drawing could solve this problem.

7.4 Comparison of pseudo-near plane and adjusted near plane

In Chapter 4 we presented two methods to reduce perspective aliasing via an increase of the
near plane distance. The first approach takes advantage of the empty region nearby the camera
and uses a pseudo-near plane to compute the warping parameter of nopt LiSPSM. The second
approach computes the minimal depth of the current configuration and adjusts the near plane
distance before the computation of the convex intersection body.

In this section we will compare those techniques by using our visualization tools and briefly
discuss the obtained results. Figure 7.7 shows a common configuration of nopt LiSPSM visual-
izing the sampling rate and shows the perspective error graph.

In the Figures 7.8 and 7.9 we present the results of nopt LiSPSM using a pseudo-near plane
respectively an adjusted near plane distance at the same scene configuration as in Figure 7.7.

68

Figure 7.3: Results from the scene ’Sights of Paris’. PSSM(4) combined with PSM with auto-
matic adjusted near plane distance. (Left) common shadow rendering. (Right) visualization of
sampling rate and scaled texel grid.

It can be seen, that the error values at the pseudo-near plane distance (PN in Figure 7.8b) is a
little bit higher compared to the error values at the automatic adjusted near plane distance, but
on the other hand the frame rate is almost as high as for common LiSPSM contrary to the other
technique. The high error values in Figure 7.8b between the near plane distance and PN need
not be considered in this case, since according to Figure 7.9b this region is empty.

Summarizing, it can be said that for this certain scene configuration both techniques improve
the quality of common LiSPSM, as represented by the applied visualizations, whereas each
technique has its benefits and drawbacks.

7.5 Visualizing the warping effect and the shadow map area

Figure 7.10 shows a sample configuration of focused uniform shadow mapping. On the right
side we visualize the world-space shadow map area and can see that almost half of the shadow
map resolution is wasted since a large part of the shadow map only covers objects that are lying
outside of the intersection body (shown as red semitransparent body).

In Figure 7.11 we present an example for the possible tremendous quality improvements of
PSM in combination with an adjusted near plane and demonstrate the warping of the shadow
map area on the right side in this figure. It can be seen that there is hardly any area of the
shadow map wasted.

69

Figure 7.4: Screen shot of the test scene ’Winter scenery’.

Figure 7.5: Results from the scene ’Winter scenery’. LiSPSM with nrepar and 1 split. (Left)
common shadow rendering. (Right) visualization of sampling rate and scaled texel grid.

70

Figure 7.6: Results from the scene ’Winter scenery’. PSSM(4) combined with PSM with auto-
matic adjusted near plane distance. (Left) common shadow rendering. (Right) visualization of
sampling rate and scaled texel grid.

(a) Sampling frequency of nopt LiSPSM (b) Error graph of nopt LiSPSM

Figure 7.7: Results for common nopt LiSPSM. (a) includes the visualization of the sampling
rate. (b) shows the error graph for the current configuration.

71

(a) Sampling frequency of nopt LiSPSM using a
pseudo-near plane

(b) Error graph of nopt LiSPSM using a pseudo-near
plane

Figure 7.8: Results for nopt LiSPSM using a pseudo-near plane. (a) includes the visualization
of the sampling rate. (b) shows the error graph for the current configuration.

(a) Sampling frequency of nopt LiSPSM using an ad-
justed near plane

(b) Error graph of nopt LiSPSM using an adjusted near
plane

Figure 7.9: Results for nopt LiSPSM using an adjusted near plane. (a) includes the visualization
of the sampling rate. (b) shows the error graph for the current configuration.

72

(a) Uniform shadow mapping using an adjusted near
plane

(b) Third person view of uniform shadow map using
an adjusted near plane

Figure 7.10: Results for uniform shadow mapping using an adjusted near plane. (a) shows the
common view including shadow rendering. (b) shows the third person view visualizing the
world-space shadow map area.

(a) PSM using an adjusted near plane (b) Third person view of PSM using an adjusted near
plane

Figure 7.11: Results for PSM using an adjusted near plane. (a) shows the common view includ-
ing shadow rendering. (b) shows the third person view visualizing the world-space shadow map
area and demonstrating the warping effect.

73

CHAPTER 8
Conclusion

8.1 Summary

In this thesis we reviewed various shadow mapping techniques starting with Williams’ [Wil78]
basic shadow mapping algorithm and proceeding with several advanced real-time shadow map-
ping methods like focusing, warping and z-partitioning.

We implemented a framework that allows the application of each technique itself or reasonable
combinations of different techniques and focuses on large virtual game-like outdoor scenarios.
Moreover, it offers many opportunities to visualize different steps of the shadow creation pro-
cess and helps to compare and analyze the shadow quality and the remaining aliasing errors from
different points of view.

In the following we will summarize the main improvements of our framework compared to
existing shadow mapping systems:

Flexibility Most of the existing systems do not offer many possibilities to experiment with
different scenes and adjust various parameters. In fact, many systems are optimized on exactly
one scenario using fixed settings.
We tried to design our framework in a way that offers the user the most possible flexibility. First
of all we added a simple solution to load different arbitrary scenes simultaneously and offer
the opportunity to switch between them during the application runtime. In the same way, we
included the feature to change the window- and basic view frustum initialization parameters just
by editing the corresponding initialization-file.
During the runtime, almost all parameters and configurations can be adjusted between sense
making limits.

Visualizations A major contribution of our framework is represented by the ability that almost
any interesting aspect of the currently applied shadow mapping techniques can be visualized in

75

one way or another. As mentioned before, it is not always easy to understand the occurring
errors or problems, which is why our implemented visualization features can help figuring out
the current issue and provide the possibility to analyze it in different ways.
Especially the so called ’Visualization view’, which offers the opportunity to investigate the
current configuration from a third person view at any time, provides many ways to find the best
shadow mapping method for the current chosen scene.

Error analysis Since the visual impression of the projected shadows sometimes can be mis-
leading, the two implemented methods two analyze the aliasing errors of the current configura-
tion can be very useful to perform a comparison or an analytical analysis of the used shadow
mapping techniques:

• Though the first method, the visualization of the sampling rate, does not represent an
exact error value, it provides a good way to compare different shadow mapping techniques
and illustrates the perspective errors and even the projective errors over the entire image.

• The second method, which is based on Lloyd’s [LTYM06] error metric and shows the
actual perspective aliasing error along the view vector, is one of the major improvements
of our framework compared to other shadow mapping systems.

Summarizing, the discussed methods in this thesis provide a useful overview over appropriate
shadow mapping techniques for large virtual outdoor environments. The presented framework
enables game developers to experiment with different approaches of shadow mapping and find
the best solution regarding the real-time capabilities, the shadow robustness and the shadow
quality.

8.2 Future work

Since shadow mapping is still a hot research topic and this thesis does not cover all techniques
introduced so far, there are many possibilities for improvement and future work to shadow map-
ping in general and to our framework as well. In the following sections we will list some possible
enhancements, which we considered during the work on this thesis:

8.2.1 Future work to shadow mapping

Complete elimination of shadow map aliasing Most of the techniques used in this thesis
focus on minimizing the perspective aliasing error. However, our experiments have shown that
even by the combination of the most appropriate solutions, shadow map aliasing cannot be
completely eliminated, leading to unwanted aliasing artifacts like for example jagged shadow
boundaries. While these remaining artifacts can be hidden by the application of filtering like
for example PCF, it would be beneficial to introduce a method that eliminates all shadow map
aliasing for all light directions over the entire view frustum. An alternative partitioning approach
or a different rasterization of the final image could be used to achieve this goal.

76

Complete elimination of shadow flickering In Section 3.5 we dealt with the reduction of
the flickering shadow boundaries imposed by the different rasterizations of the focused shadow
map. We have seen that the flickering cannot be completely removed without wasting too much
shadow map resolution. An approach that uses the temporal coherence of consecutive frames
could solve this problem.

Realistic soft shadows As the title of this thesis already says, it focuses on rendering of hard
shadows which can only be generated by an ideal point respectively directional light source.
However, in reality every light source is represented by a body with definite extents and some-
how can be seen as an area light source which leads to soft shadows with a variable penumbra
that changes based on the light source - shadow caster - shadow receiver distances. In the past
few years there have been several approaches introduced, which try to generate physically cor-
rect soft shadows by considering an appropriate sampled area light source to create the penum-
bra. However, this is still one of the most challenging research areas of shadow creation in
virtual environments.

8.2.2 Future work to the presented framework

Third person visualization of the sampling frequency As discussed in Chapter 5 we in-
cluded a feature to our framework, that visualizes the sampling frequency of the shadow map in
the common first person view and therefore provides the opportunity to compare the occurring
aliasing errors for several configurations. Unfortunately, we did not find a way to apply this
visualization in the third person ’Visualization view’, since its implementation depends on the
current screen-space in the actual development state. A possible solution to this problem might
be to compute the sampling rate independent of the current screen-space.

Other advanced shadow mapping techniques The presented shadow mapping framework
can be relatively easy extended with other advanced hard shadow mapping approaches like for
example face-partitioning [Koz04] and Alias-Free Shadow Maps [AL04], or advanced filtering
techniques like for example Variance Shadow Maps [DL06] and Exponential Shadow Maps
[AMS+08].

77

APPENDIX A
Implementation details

A.1 Geometry cloning

In Chapter 3 we discussed the possibilities to minimize the amount of rendering passes for z-
partitioning. According to Zhang et al. [ZSN07] we implemented a variant of geometry cloning
for our experiments. In Listing A.1 we present our geometry shader program, written in Mi-
crosoft’s shading language HLSL.

The outer for-loop runs through all splits which cover the current scene object and sets the
viewport index corresponding to the current used texture atlas region. The inner for-loop trans-
forms the vertices of the current triangle according to the current split.

1 struct GSDepthMapOut
2 {
3 float4 pos : SV_POSITION; // position
4 float2 tex : TEXCOORD0; // texture coordinate
5 float depth : Depth;
6 uint vpIndex : SV_ViewportArrayIndex; // viewport index
7 };
8

9 [maxvertexcount(NUMSPLITS * 3)]
10 void GSSMmain(triangle VSDepthMapOut input[3], inout

TriangleStream<GSDepthMapOut> stream)
11 {
12 // for all splits which contain the current object
13 for (int split = g_firstSplit; split <= g_lastSplit; split++)
14 {
15 GSDepthMapOut output = (GSDepthMapOut)0;
16

17 // set the viewport index corresponding to the correct area in

79

18 // the texture atlas according to the current split
19 output.vpIndex = split;
20

21 [unroll] for (int vertex = 0; vertex < 3; vertex++)
22 {
23 output.pos = mul(input[vertex].pos, g_mLiSP[split]);
24 output.pos = mul(output.pos, g_mCrop[split]);
25 output.tex = input[vertex].tex;
26 stream.Append(output);
27 }
28 stream.RestartStrip();
29 }
30 }

Listing A.1: Geometry shader source code for z-partitioning with 1 + 1 rendering passes
using geometry cloning.

A.2 Mip map chain to retrieve minimal depth

As discussed in Chapter 4, we need to manually generate a mip map chain for obtaining the min-
imal depth of the current configuration to adjust the near plane distance according to this depth
value. The fragment shader program shown in Listing A.2 corresponds to the 2D rendering pass,
which we implemented to generate this mip map chain.

This program simply samples four adjacent texels in the given depth map and returns the mini-
mal value.

1 float2 MinMipMap_PS(PostProcess_PSIn input) : SV_Target
2 {
3 float2 offset = 1.0f / g_mapSize;
4

5 float depth = depthMap.Sample(SampPointWrap, input.tex).r,
depth1;

6

7 depth1 = depthMap.Sample(SampPointWrap, input.tex + float2(.0f,
offset.y)).r;

8 depth = min(depth, depth1);
9

10 depth1 = depthMap.Sample(SampPointWrap, input.tex + float2(
offset.x, .0f)).r;

11 depth = min(depth, depth1);
12

13 depth1 = depthMap.Sample(SampPointWrap, input.tex + float2(
offset.x, offset.y)).r;

14 depth = min(depth, depth1);

80

15

16 return (float2)depth;
17 }

Listing A.2: Fragment shader source code for the generation of the mip map chain to
compute the minimal depth of the current frame.

A.3 Sampling rate

The sample fragment shader source code, shown in Listing A.3, presents a way how the sam-
pling frequency of the shadow map can be visualized as discussed in Chapter 5. The approach
to compute the determinant of both shadow map directions for an overall result of x- and y-
direction was proposed by Lloyd [Llo07].

The two operations at the beginning compute the partial derivative of the given texture coor-
dinates with respect to the screen-space x- and y-coordinate. Then we calculate dependent from
the current chosen error-selection the determinant or the length of the computed vectors. Fi-
nally, we look for the corresponding interval in iv, perform a linear interpolation of the assigned
colors in clr and return the final RGB-value.

1 cbuffer cbConstant {
2 const float3 iv[] = {
3 float3(.0, 1/7.75, 1/7.75),
4 float3(1/7.75, 1/3.25, 1/3.25-1/7.75),
5 float3(1/3.25, 1, 1-1/3.25),
6 float3(1, 3.25, 3.25-1),
7 float3(3.25, 7.75, 7.75-3.25),
8 float3(7.75, 10, 10-7.75)
9 };
10 const float3 clr[] = {
11 float3(0.2, 0, 0),
12 float3(1, 0.2, 0),
13 float3(1, 1, 0),
14 float3(0, 1, 0),
15 float3(0.3, 0.8, 1),
16 float3(0, 0, 1),
17 float3(0, 0, 0.4)
18 };
19 };
20 float4 VisualizeSampling(float2 uv, float texMapSize, float

splitFactor, int error) {
21 float2 dSdX = 1.0f / splitFactor * texMapSize * ddx(uv);
22 float2 dSdY = 1.0f / splitFactor * texMapSize * ddy(uv);
23 float area = .0f;
24

81

25 if (error == 0) // determinant of x- and y-direction
26 area = abs(dSdX.x * dSdY.y - dSdY.x * dSdX.y);
27 else if (error == 1) // sampling rate for x-direction
28 area = length(float2(dSdX.x, dSdY.x));
29 else // sampling rate for y-direction
30 area = length(float2(dSdX.y, dSdY.y));
31

32 float3 result = (float3)1.0f;
33 [unroll] for (int i = 0; i < 6; ++i) {
34 if (area >= iv[i].x && area < iv[i].y) {
35 result = lerp(clr[i], clr[i+1], (area-iv[i].x) / iv[i].z);
36 break;
37 }
38 else
39 result = clr[6];
40 }
41 return float4(result, 1.0);
42 }

Listing A.3: Fragment shader source code to visualize the sampling frequency in the shadow
map for the current fragment.

A.4 Texel borders

In Chapter 5 we discussed the advantages of visualizing the texel borders. Lloyd [Llo07] in-
troduced a simple way to compute and draw a scalable grid that corresponds to the texels. In
Listing A.4 we show a sample fragment shader source code for this visualization.

At first we calculate the scaled texel size and the scaled texture coordinates inside the shadow
map. Then we compute the scaled texture coordinates with respect to the screen-space, using
the partial derivatives. Finally, to avoid unwanted stretching and compressing, we scale the grid
line width by the length of screen-space texture coordinates and retrieve if the scaled texture
coordinates lie on a line or not.

1 float4 VisualizeTexels(float2 uv, float texMapSize, int size,
float splitFactor)

2 {
3 float4 color = (float4)1.0f;
4

5 float texelSize = size * splitFactor / texMapSize;
6 float lineWidth = 1.0f;
7

8 // compute grid using the scaled texelsize
9 // from "Logarithmic Perspective Shadow Maps" [Llo07]
10 float2 scaledTC = uv / texelSize;

82

11

12 float2 dS = float2(ddx(scaledTC.x), ddy(scaledTC.x));
13 float2 dT = float2(ddx(scaledTC.y), ddy(scaledTC.y));
14 float2 m = frac(scaledTC);
15

16 if(m.x < lineWidth * length(dS) || m.y < lineWidth * length(dT)
)

17 color = float4(.0f, .0f, .0f, 1.0f);
18

19 return color;
20 }

Listing A.4: Fragment shader source code for computation of the scaled grid to visualize
the texel borders.

83

APPENDIX B
Framework details

B.1 Main configuration and scene loading

The initialization file to change the main configuration of the application - config.ini - lies
in the same directory as the execution binaries. It provides the opportunity to configure the
configuration baseline of the window resolution, the screen mode (windowed or fullscreen) and
to set the parameters for the perspective camera view frustum. The possible settings are shown
in Table B.1. Also in the same directory as the execution binaries lies the initialization file

Window settings
Setting Enclosing tags Type
Window width < width > < /width > integer > 0
Window height < height > < /height > integer > 0
Screen mode < fullscreen > < /fullscreen > 0: windowed 1: fullscreen

Camera view frustum
Setting Enclosing tags Type
Field of view < fov > < /fov > integer > 0
Near plane distance < zNear > < /zNear > integer > 0
Far plane distance < zFar > < /zFar > integer > near plane distance

Table B.1: Overview of possible configuration settings of our framework.

that specifies the scenes to be loaded at the program start - scenes.ini. It contains some
additional commented out details of the compatible model format and the list of filenames of the
various scenes to be loaded.

85

B.2 Main structure

There are actually 5 main areas on the screen where the user is provided with information about
the current state of the application or can change its variables. An illustration of the interest-
ing regions highlighted with different colors can be found in Figure B.1. The red highlighted

Figure B.1: Illustration of the interesting information- and controlling areas in our framework.

area contains all relevant statistics and informations like for example frame rate, used graphics
hardware and current active shadow mapping algorithms. The blue highlighted graphical user
interface (GUI) offers the opportunity to

• switch the current rendered scene

• show an overlay with additional helping informations on available keyboard and mouse
inputs (black highlighted)

• change the device settings

• blend in an extended GUI to change the specific parameters of the current used shadow
mapping techniques (green highlighted).

86

The yellow highlighted GUI is only visible during the third person view which will be described
in Section 5.2.

87

List of Figures

1.1 Shadows generated with CryENGINE . 2

2.1 Example visualization of the light’s view depth map 6
2.2 Self shadowing artifacts caused by resampling inaccuracies 7
2.3 Projection aliasing artifacts caused by very sparsely sampled surfaces 8
2.4 Jagged shadow boundaries caused by perspective aliasing 9
2.5 Illustration of shadow map aliasing . 11
2.6 Generalized illustration of shadow map aliasing 12
2.7 Illustration of error changes in both directions . 14
2.8 Perspective aliasing error distributions along the length of the view frustum 15

3.1 Comparison of intersection body computation . 18
3.2 Computation of convex intersection body . 19
3.3 Example visualization of the convex body . 20
3.4 Comparison between standard shadow mapping and focused shadow mapping . . . 21
3.5 Comparison of the perspective error between standard shadow mapping and focused

shadow mapping . 22
3.6 Example configuration of the perspective warping frustum 23
3.7 Parameterizing of the view frustum for a directional light 27
3.8 Error comparison of LiSPSM techniques . 28
3.9 Comparison of the perspective aliasing error distribution between focused uniform

shadow mapping and light space perspective shadow mapping 29
3.10 Schematic illustration of z-partitioning with an overhead light 30
3.11 View frustum splitting with and without near and far planes adjusting 31
3.12 Comparison of split schemes for z-partitioning with two split parts 32
3.13 Split selection . 33
3.14 Illustration visualization of split selection based on the eye-space depth and split

selection based on the shadow map with the best resolution 33
3.15 Comparison of perspective aliasing error distribution for PSSM 34
3.16 Illustration of our 3 implemented atlas strategies 35
3.17 Visualization of warping combined with z-partitioning 38
3.18 Error comparison of different combinations of z-partitioning and warping 39

88

3.19 The storage factor of different combinations of warping, z-partitioning and face par-
titioning . 40

3.20 Illustration of the flickering problem . 41
3.21 Comparison of unfiltered shadows and PCF filtered shadows 42
3.22 Comparison of PCF filtered shadows with and without split-specific adjustments of

the filter kernel size . 43

4.1 Construction of Cstart and C in light-space . 46
4.2 Comparison of common nopt LiSPSM with and without the application of a pseudo-

near plane and a pseudo-far plane . 48
4.3 Comparison of PSM with conservatively low chosen near plane distance and auto-

matic adjusted near plane distance . 49

5.1 Example configuration of the visualization view 53
5.2 Visualization of the intersection bodies . 55
5.3 Visualization of texel borders . 56
5.4 Visualization of used split parts via color overlay 57
5.5 Visualization of light views . 58
5.6 Color mapping for the visualization of the sampling frequency 58
5.7 Visualization of the sampling frequency . 59
5.8 Example for visualization of perspective aliasing error 60

7.1 Screen shot of the test scene ’Sights of Paris’ . 66
7.2 Results from the scene ’Sights of Paris’. LiSPSM with nrepar and 1 split 68
7.3 Results from the scene ’Sights of Paris’. PSSM(4) combined with PSM with auto-

matic adjusted near plane distance . 69
7.4 Screen shot of the test scene ’Winter scenery’ . 70
7.5 Results from the scene ’Winter scenery’. LiSPSM with nrepar and 1 split 70
7.6 Results from the scene ’Winter scenery’. PSSM(4) combined with PSM with auto-

matic adjusted near plane distance . 71
7.7 Results for common nopt LiSPSM . 71
7.8 Results for nopt LiSPSM using a pseudo-near plane 72
7.9 Results for nopt LiSPSM using an adjusted near plane 72
7.10 Results for uniform shadow mapping using an adjusted near plane 73
7.11 Results for PSM using an adjusted near plane . 73

B.1 Illustration of the interesting information- and controlling areas in our framework. . 86

89

Bibliography

[AL04] Timo Aila and Samuli Laine. Alias-free shadow maps. In Proc. Eurographics
Symposium on Rendering 2004, pages 161–166. Eurographics Association, 2004.

[AMS+08] Thomas Annen, Tom Mertens, Hans-Peter Seidel, Eddy Flerackers, and Jan Kautz.
Exponential shadow maps. In Proceedings of graphics interface 2008, GI ’08,
pages 155–161, Toronto, Ont., Canada, Canada, 2008. Canadian Information Pro-
cessing Society.

[BAS02] Stefan Brabec, Thomas Annen, and Hans-Peter Seidel. Practical shadow mapping.
Journal of Graphics Tools, 7(4):9–18, December 2002.

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull al-
gorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS),
22(4):469–483, December 1996.

[DH06] Daniel Dunbar and Greg Humphreys. A spatial data structure for fast poisson-disk
sample generation. ACM Transactions on Graphics (TOG), 25(3):503–508, July
2006.

[DL06] William Donnelly and Andrew Lauritzen. Variance shadow maps. In Proceed-
ings of the 2006 Symposium On Interactive 3D Graphics and Games, I3D ’06,
pages 161–165, New York, NY, USA, 2006. Association for Computing Machin-
ery (ACM).

[Eng06] Wolfgang Engel. Cascaded shadow maps. In Wolfgang Engel, editor, ShaderX 5
– Advanced Rendering Techniques, volume 5 of ShaderX, pages 197–206. Charles
River Media, December 2006.

[Fer05] Randima Fernando. Percentage-closer soft shadows. In ACM SIGGRAPH 2005
Sketches, number 35 in SIGGRAPH ’05, New York, NY, USA, 2005. Association
for Computing Machinery (ACM).

[FFBG01] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P. Greenberg.
Adaptive shadow maps. In Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH ’01, pages 387–390, New
York, NY, USA, 2001. ACM.

91

[Khr11] Khronos Group. COLLADA - Digital Asset Exchange Schema for Interactive 3D.
http://www.khronos.org/collada/, 2011.

[Koz04] Simon Kozlov. Perspective shadow maps: Care and feeding. In Randima Fer-
nando, editor, GPU Gems – Programming Techniques, Tips and Tricks for Real-
Time Graphics, GPU Gems, pages 214–244. Addison-Wesley Longman, 2004.

[LGQ+08] Brandon Lloyd, Naga K. Govindaraju, Cory Quammen, Steven E. Molnar, and
Dinesh Manocha. Logarithmic perspective shadow maps. ACM Transactions on
Graphics (TOG), 27(4), October 2008.

[Llo07] Brandon Lloyd. Logarithmic Perspective Shadow Maps. PhD thesis, University
of North Carolina at Chapel Hill, August 2007.

[LTYM06] Brandon Lloyd, David Tuft, Sung-Eui Yoon, and Dinesh Manocha. Warping and
partitioning for low error shadow maps. In Tomas Akenine-Möller and Wolfgang
Heidrich, editors, Proceedings of the Eurographics Workshop/Symposium on Ren-
dering, EGSR, pages 215–226, Aire-la-Ville, Switzerland, June 2006. Eurograph-
ics Association.

[Mic11] Microsoft Corporation. DirectX Developer Center. http://msdn.
microsoft.com/en-us/directx/, 2011.

[RSC87] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased
shadows with depth maps. ACM SIGGRAPH Computer Graphics, 21(4):283–291,
July 1987.

[Sch05] Daniel Scherzer. Robust shadow maps for large environments. In Proceedings of
the Central European Seminar on Computer Graphics 2005. Eigenverlag, 2005.

[SD02] Marc Stamminger and George Drettakis. Perspective shadow maps. ACM Trans-
actions on Graphics (TOG) (Proceedings of ACM SIGGRAPH 2002), 21(3):557–
562, July 2002.

[SJW07] Daniel Scherzer, Stefan Jeschke, and Michael Wimmer. Pixel-correct shadow
maps with temporal reprojection and shadow test confidence. In Jan Kautz and
Sumanta Pattanaik, editors, Rendering Techniques 2007 (Proceedings Eurograph-
ics Symposium on Rendering), pages 45–50. Eurographics Association, June 2007.

[SKvW+92] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli.
Fast shadows and lighting effects using texture mapping. SIGGRAPH ’92 Pro-
ceedings of the 19th annual conference on Computer graphics and interactive
techniques, 26(2):249–252, July 1992.

[The11] The Geometry Center Home Page. Qhull code for Convex Hull, Delaunay Tri-
angulation, Voronoi Diagram, and Halfspace Intersection about a Point. http:
//www.qhull.org, 2011.

92

http://www.khronos.org/collada/
http://msdn.microsoft.com/en-us/directx/
http://msdn.microsoft.com/en-us/directx/
http://www.qhull.org
http://www.qhull.org

[TQJN99] Katsumi Tadamura, Xueying Qin, Guofang Jiao, and Eihachiro Nakamae. Render-
ing optimal solar shadows using plural sunlight depth buffers. In Proceedings of
the International Conference on Computer Graphics, page 166. IEEE Computer
Society, 1999.

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. SIGGRAPH ’78
Proceedings of the 5th annual conference on Computer graphics and interactive
techniques, 12(3):270–274, August 1978.

[WS06] Michael Wimmer and Daniel Scherzer. Robust shadow mapping with light space
perspective shadow maps. In Wolfgang Engel, editor, ShaderX 4 – Advanced Ren-
dering Techniques, volume 4 of ShaderX, pages 313–330. Charles River Media,
March 2006.

[WSP04] Micheal Wimmer, Daniel Scherzer, and Werner Purgathofer. Light space per-
spective shadow maps. In Alexander Keller and Henrik W. Jensen, editors, Ren-
dering Techniques 2004 (Proceedings Eurographics Symposium on Rendering),
pages 143–151. Eurographics Association, June 2004.

[ZSN07] Fan Zhang, Hanqiu Sun, and Oskari Nyman. Parallel-split shadow maps on pro-
grammable GPUs. In Hubert Nguyen, editor, GPU Gems 3 – Programming Tech-
niques for High-Performance Graphics and General-Purpose Computation, vol-
ume 3 of GPU Gems, pages 203–235. Addison-Wesley Professional, August 2007.

[ZSXL06] Fan Zhang, Hanqiu Sun, Leilei Xu, and Lee Kit Lun. Parallel-split shadow maps
for large-scale virtual environments. In Proceedings of the 2006 ACM interna-
tional conference on Virtual reality continuum and its applications, VRCIA ’06,
pages 311–318, New York, NY, USA, 2006. Association for Computing Machin-
ery (ACM).

[ZZB09] Fan Zhang, Alexander Zaprjagaev, and Allan Bentham. Practical cascaded shadow
maps. In Wolfgang Engel, editor, ShaderX 7 – Advanced Rendering Techniques,
volume 7 of ShaderX, pages 305–329. Charles River Media, March 2009.

93

	Introduction
	Goal of this thesis
	Contributions
	Structure of this thesis

	Related work
	Basic shadow mapping algorithm
	Shadow mapping errors
	Self-shadowing artifacts
	Projection aliasing
	Perspective aliasing

	Error analysis
	Simple error analysis
	Accurate error analysis
	Error analysis for both shadow map directions

	Soft Shadows

	Advanced shadow mapping
	Focused shadow mapping
	Calculation of convex intersection body
	Focusing the shadow map
	Error analysis

	Warping
	Light Space Perspective Shadow Maps
	Re-parametrized Light Space Perspective Shadow Maps
	Error analysis

	Z-partitioning
	Adjusting the view frustum
	Split scheme
	Split selection
	Error analysis
	Storage strategy
	Minimizing the number of rendering passes

	Combinations
	Error analysis

	Reducing shadow flickering
	Filtering
	Kernel size

	Summary

	Optimizations
	Projection center for warping
	Pseudo-near plane and pseudo-far plane
	Maximizing the near plane distance

	Framework
	Concepts
	Visualization view
	Intersection body
	Texel borders
	Split selection
	Light views
	Sampling frequency
	Perspective aliasing error

	Implementation
	Implementation overview
	Code structure and reuse

	Results
	Sights of Paris
	Winter scenery
	Benchmarking results
	Comparison of pseudo-near plane and adjusted near plane
	Visualizing the warping effect and the shadow map area

	Conclusion
	Summary
	Future work
	Future work to shadow mapping
	Future work to the presented framework

	Implementation details
	Geometry cloning
	Mip map chain to retrieve minimal depth
	Sampling rate
	Texel borders

	Framework details
	Main configuration and scene loading
	Main structure

	List of Figures
	Bibliography

