
First-Cycle GamesI

Benjamin Aminofa, Sasha Rubinb,∗

aTechnische Universität Wien, Austria
bUniversità degli Studi di Napoli “Federico II”, Italy

Abstract

First-cycle games (FCG) are played on a finite graph by two players who push
a token along the edges until a vertex is repeated, and a simple cycle is formed.
The winner is determined by some fixed property Y of the sequence of labels of
the edges (or nodes) forming this cycle. These games are intimately connected
with classic infinite-duration games such as parity and mean-payoff games. We
initiate the study of FCGs in their own right, as well as formalise and investigate
the connection between FCGs and certain infinite-duration games.

We establish that (for efficiently computable Y) the problem of solving FCGs
is Pspace-complete; we show that the memory required to win FCGs is, in
general, Θ(n)! (where n is the number of nodes in the graph); and we give a
full characterisation of those properties Y for which all FCGs are memoryless
determined.

We formalise the connection between FCGs and certain infinite-duration
games and prove that strategies transfer between them. Using the machinery
of FCGs, we provide a recipe that can be used to very easily deduce that many
infinite-duration games, e.g., mean-payoff, parity, and energy games, are mem-
oryless determined.

Keywords: Graph Games, Cycle Games, Memoryless Determinacy, Parity
Games, Mean-Payoff Games, Energy Games

1. Introduction

Infinite-duration games are studied in computer science in the context of
decidability of logical theories as well as verification and synthesis in formal
methods. In particular, reactive systems, which consist of an ongoing interaction
between a program and its environment, may be formalised as a game played
on a graph, by two players, who push a token along the edges of the graph,

ISome of the results in this paper were reported in the Proceedings of the Second Interna-
tional Workshop on Strategic Reasoning (SR), April 2014.
∗Marie Curie fellow of the Istituto Nazionale di Alta Matematica.
Email addresses: benj@forsyte.at (Benjamin Aminof), sasha.rubin@unina.it (Sasha

Rubin)

Preprint submitted to Elsevier October 31, 2016

resulting in an infinite path, called a play. The winner of the play is determined
by some winning condition. For example, in (one version of) mean-payoff games
each edge in the graph carries a real number, called a weight, and Player 0 wins
the play if and only if the limit-supremum of the running averages of the weights
is positive; and otherwise Player 1 wins. Other types of games from the formal
verification literature are reachability games, Büchi games, parity games, Muller
games, energy games, etc.

Intuitively, certain games on finite graphs can be won using greedy reasoning.
For instance, to win a mean-payoff game, it is sufficient for Player 0 to ensure
that the average weight of each cycle that is formed is positive. This, in turn,
can be ensured by enforcing the average weight of the first cycle formed to
be positive (because Player 0 could then “forget” that the cycle was formed,
and play another cycle with positive average weight, and so on). Thus, in
some cases, one can reduce reasoning about infinite-duration games to first-
cycle games, i.e., games in which the winner is determined by the first cycle on
the play. Such reasoning appears in Ehrenfeucht and Mycielski (1979), where
first-cycle mean-payoff games were defined and used to prove that mean-payoff
games can be won using memoryless strategies (i.e., the next move of a player
does not depend on the full history up till now, but only on the current node
of the play). Memoryless strategies are extremely useful, e.g., they are used
to prove deep results in the theory of automata (e.g., Rabin’s theorem that
automata on infinite trees can be complemented), and to prove upper bounds
on the complexity of solving certain classes of games (e.g., that solving parity
games is in NP ∩ co-NP).

In this paper we study first-cycle games in their own right and formalise the
greedy reasoning above which connects first-cycle games with certain infinite-
duration games. We now discuss our main contributions.

First-cycle games. We define first-cycle games (FCGs). These games are
played on a finite graph (called an arena) by two players who push a token
along the edges of the graph until a cycle is formed. Player 0 wins the play
if the sequence of labels of the edges (or nodes) of the cycle is in some fixed
set Y , and otherwise Player 1 wins. The set Y is called a cycle property, and
we say that a cycle satisfies Y if its sequence of labels is in Y . For example,
if every vertex is labeled by an integer priority, and Y = cyc-Parity comprises
sequences whose largest priority is even, then a cycle satisfies cyc-Parity if the
largest priority occurring on the cycle is even. For a fixed cycle property Y , we
write Fcg(Y) for the family of games over all possible arenas with this winning
condition.

Complexity and Memory Requirements. We give a simple example
showing that first cycle games (FCGs) are not necessarily memoryless deter-
mined. We then show that, for a graph with n nodes, whereas no winning strat-
egy needs more than n! memory (since this is enough to remember the whole
history of the game), some winning strategies require at least (n−1

3)! memory
(Proposition 1, Page 11). We analyse the complexity of solving FCGs and show
that it is Pspace-complete. More specifically, we show that if one can decide in

2

Pspace whether a given cycle satisfies the property Y , then solving the games
in Fcg(Y) is in Pspace; and that there is a trivially computable cycle property
Y for which solving the games in Fcg(Y) is Pspace-hard (Theorem 1, Page 14).

First-Cycle Games and Infinite-Duration Games (Section 5). The
central object that connects cycle games with infinite-duration games is the
cycles-decomposition of a path (used for example by Zwick and Paterson (1996)
to derive the value of a mean-payoff game). Informally, a path is decomposed
by pushing the edges of the path onto a stack and, as soon as a cycle is detected
in the stack, the cycle is output, popped, and the algorithm continues. This
decomposes all but finitely many edges of the path into a sequence of simple
cycles.

In order to connect FCGs with infinite-duration games we define the follow-
ing notion: a winning condition W (such as the parity winning condition) is Y -
greedy on arena A if, in the game on arena A with winning condition W , Player
0 is guaranteed to win by ensuring that every cycle in the cycles-decomposition
of the play satisfies Y , and Player 1 is guaranteed to win by ensuring that every
cycle in the cycles-decomposition does not satisfy Y (Definition 5, Page 23). We
prove a Strategy Transfer Theorem: if W is Y -greedy on A then the winning
regions in the following two games on arena A coincide, and memoryless win-
ning strategies transfer between them: the infinite-duration game with winning
condition W , and the FCG with cycle property Y (Theorem 7, Page 26).

To illustrate the usefulness of being Y -greedy, we instantiate the definition
to well-studied infinite-duration games such as parity, mean-payoff, and energy
games.

Memoryless Determinacy of First-Cycle Games. We next address the
fundamental question: for which cycle properties Y is every game in Fcg(Y)
memoryless determined (i.e., no matter the arena)? We provide sufficient and
necessary conditions for all games in Fcg(Y) to be memoryless determined
(Theorem 6, Page 23). Although applying this characterisation may not be hard,
it involves reasoning about arenas, which is sometimes inconvenient. Therefore,
we also provide the following easy-to-check conditions on Y that ensure memo-
ryless determinacy for all games in Fcg(Y) (Theorem 9, Page 27): Y is closed
under cyclic permutations (i.e., if ab ∈ Y then ba ∈ Y), and both Y and its
complement are closed under concatenation (a set of strings X is closed under
concatenation if a, b ∈ X implies ab ∈ X). We demonstrate the usefulness of
these conditions by observing that natural cycle properties are easily seen to
satisfy them, e.g., cyc-Parity, cyc-MeanPayoffν (which states that the limsup av-
erage of the weights is at most ν), and cyc-Energy (which states that the sum
of the weights is positive).

Easy-to-follow Recipe. We integrate the previous results by providing an
easy-to-follow recipe that allows one to deduce memoryless determinacy of all
classic games that are memoryless determined and many others besides (Sec-
tion 8). The recipe states that, given a winning condition W , first “finitise” W
to get a cycle property Y that is closed under cyclic permutations, then prove
that W is Y -greedy on the arenas of interest (usually all arenas), and finally,

3

either show that both Y and its complement are closed under concatenation,
or show that W is prefix-independent. For example, if W is the parity winning
condition (i.e., the largest priority occurring infinitely often is even), the nat-
ural “finitisation” of W is the cycle property Y = cyc-Parity (i.e., sequences of
priorities whose largest priority is even), and it is almost completely trivial to
apply the recipe in this case.

Related work. The relationship of our work with that in Ehrenfeucht and
Mycielski (1979) is as follows. First, our paper deals with qualitative games (i.e.,
a play is either won or lost) whereas Ehrenfeucht and Mycielski (1979) consider
quantitative (i.e., a play is assigned a real number, which Player 0 wants to
minimize and Player 1 wants to maximize) mean-payoff games. Their main
result states that mean-payoff games are memoryless determined. However,
they simultaneously prove that first-cycle games with Y = cyc-MeanPayoffν are
memoryless determined. We generalise (in the qualitative setting) both of these
facts and their proofs.

Referring to their proofs, (Ehrenfeucht and Mycielski, 1979, Page 111) state:
“Our proofs are roundabout, we use the infinite game F to establish facts about
the finite game G and vice versa. Perhaps more direct proofs would be desir-
able.” In contrast, the proof of the characterisation of memoryless determined
FCGs (Theorems 4, 5 and 6) is direct, and does not go through infinite-duration
games. Nonetheless, we use their idea of inducting on the choice nodes of the
players, and of employing “reset” nodes in the arena.

We briefly discuss other related work. We point out (in Theorem 3, Page 16)
that first-cycle games are not necessarily memoryless determined, even if the
cycle property Y is closed under cyclic permutations contrary to the claim in
Björklund et al. (2004)[Page 370]. Our work thus also supplies a correct proof
Lemma 4 in Chatterjee and Doyen (2012) which relied on this incorrect claim
(see Remark 2, Page 27). Conditions that ensure (or characterise) which win-
ning conditions always admit memoryless strategies appear in Bianco et al.
(2011); Gimbert and Zielonka (2005); Kopczynski (2006). However, none of
these exploit the connection to first-cycle games. For example, Gimbert and
Zielonka (2005) give a full characterization of winning conditions for which all
infinite-duration games are memoryless determined. Unlike our framework, the
main objects of study in their work are winning conditions (i.e., languages of
infinite sequences of labels) and one cannot use their results to reason about
cycles in an arena since every cycle in an arena induces a cycle in the sequences
of labels, but not vice versa. Their characterisation of those winning conditions
which admit memoryless determined games is very “infinite” in nature, as it
involves reasoning about preference relations among infinite words, and their
properties concerning all infinite subsets of words recognizable by nondetermin-
istic automata. On the other hand, their result, that if all solitaire games with
a given winning condition are memoryless determined then so are all the two
player games, provides a much more useful tool.

The present paper differs from the preliminary version of this work (Aminof
and Rubin, 2014) mainly in the following respects: we have re-organised some

4

of the definitions, supplied all proofs, established a full characterisation of those
cycle properties Y such that every FCG over Y and Y -greedy games are mem-
oryless determined, and extended the easy-to-follow recipe to include the case
that the winning condition is prefix-independent.

2. Games

In this paper all games are two-player turn-based games of perfect informa-
tion played on finite graphs. The players are called Player 0 and Player 1.

Arenas. An arena is a labeled directed graph A = (V0, V1, E,U, λ) where

1. V0 and V1 are disjoint sets of vertices (alternatively, nodes) of Player 0
and Player 1, respectively; the set of vertices of the arena is V := V0 ∪V1,
and is assumed to be finite and non-empty.

2. E ⊆ V × V is a set of edges with no dead-ends (i.e., for every v ∈ V there
is some edge (v, w) ∈ E);

3. U is a set of possible labels (typical choices for U are Q and N).

4. λ : E → U is a labeling function (which will be used by the winning
condition).

A sub-arena of A is an arena of the form (V0, V1, E
′,U, λ′) where E′ ⊆ E

and λ′(e) = λ(e) for e ∈ E′, i.e., it may have fewer edges. If V0 = ∅ or V1 = ∅
then A is called a solitaire arena.

Remark 1. Note that all the results in this paper also hold for vertex labeled
arenas, by labeling every edge (v, w) by the label of its source v. In particular,
we use vertex labeling in some of our examples, with this transformation in
mind. Also note that transforming a vertex labeled arena to an edge-labeled
one can be done by inserting an intermediate node in the middle of every edge,
and giving it the edge label. However, since this transformation changes the
structure of the arena, some properties that hold for vertex labeled arenas do
not always transfer to edge-labeled ones.

Sequences. Let N denote the positive integers. The ith element (for i ∈ N)
in a sequence u is denoted ui. The length of u, denoted |u|, is the cardinality
of the sequence u. For 1 ≤ i ≤ j ≤ |u|, write u[i, j] for the sub-sequence
uiui+1 · · ·uj . The empty sequence is denoted ε. By convention, u[i, j] = ε if
j < i. The set of infinite sequences over alphabet X is written Xω, the set of
finite sequences is written X∗. We write concatenation as u · v or simply as uv.

Paths, Simple Paths, and Node-Paths. For an edge e = (v, w) we call
v the start and w the end of e, and write start(e) := v and end(e) := w; we say
that v and w appear on the edge e. A path π in A is a finite or infinite sequence
of edges π1π2 · · · ∈ E∗ ∪ Eω such that end(πi) = start(πi+1) for 1 ≤ i < |π|.
The set of paths in A is denoted paths(A). We extend start and end to paths
in the natural way: start(π) := start(π1), and if π is of length ` ∈ N then
end(π) := end(π`). We say that vertex v appears on the path π if v appears

5

on some edge πi of π. We extend λ from edges to paths point-wise: λ(π) is
defined to be the string of labels λ(π1)λ(π2) · · · . A path π is called simple if
start(πi) = end(πj) implies i = j + 1.

A sequence of nodes v ∈ V ∗ ∪ V ω is called a node-path if (vi, vi+1) ∈ E
for all i. If π ∈ E∗ ∪ Eω is a path then nodes(π) is a node-path, where
nodes(π) is defined to be the sequence start(π1)start(π2) · · · if π is infinite, and
start(π1) · · · start(π|π|)end(π|π|) if it is finite. Every node-path is either a single-
ton sequence v or of the form nodes(π) for some path π. For a finite non-empty
sequence u of vertices (such as a finite node-path), we overload notation and
write end(u) for the last node in u.

Histories and Strategies. A strategy for a player is a function that
tells the player what node to move to given the history, i.e., the sequence of
nodes visited so far. Define the set Hσ(A) of histories for player σ ∈ {0, 1} by
Hσ(A) := {u ∈ V ∗Vσ : (un, un+1) ∈ E, 1 ≤ n < |u|}. In other words, Hσ(A)
is the set of node-paths ending in Vσ. A strategy for Player σ is a function
S : Hσ(A) → V such that (end(u), S(u)) ∈ E for all u ∈ Hσ(A). A strat-
egy S for Player σ is memoryless if S(u) = S(u′) for all u, u′ ∈ Hσ(A) with
end(u) = end(u′). Hence, we usually consider a memoryless strategy as a func-
tion S : Vσ → V . A node-path u ∈ V ∗ ∪ V ω is consistent with a strategy S for
Player σ if whenever un ∈ Vσ (for n < |u|) then un+1 = S(u[1, n]). A path π is
consistent with a strategy S if nodes(π) is consistent with S.

A strategy S for Player σ is generated by a Mealy machine 〈M,mI , δ, µ〉 if
there exists a finite set M of memory states, an initial state mI ∈M , a memory
update function δ : V ×M → M , and a next-move function µ : Vσ ×M → V ,
such that for a history u = u1u2 · · ·ul ∈ Hσ(A) we have S(u) = µ(ul,ml) where
ml is defined inductively by m1 = mI and mi+1 = δ(ui,mi). A strategy S
is finite-memory if it is generated by some Mealy machine. A strategy S uses
memory at most k if it is generated by some Mealy machine with |M | ≤ k, and
it uses memory at least k if every Mealy machine generating S has |M | ≥ k.

Notational Abuse. We sometimes, for a path π ∈ E∗, write S(π) instead
of S(nodes(π)).

Plays. An infinite path in A is called a play.1 We denote the set of all plays
of A by plays(A). For a node v ∈ V , and strategy S, we write playsA(S, v)
for the set of plays π that start with v and are consistent with S; we write
reachA(S, v) for the set of vertices in V that appear on the plays in playsA(S, v).
We may drop the subscript A when the arena is clear from the context.

Games and Winning. A game is a pair (A, O) consisting of an arena
A = (V0, V1, E,U, λ) and an objective O ⊆ plays(A). Objectives are usually
determined by winning conditions or cycle properties (defined later). A play π
in a game (A, O) is won by Player 0 if π ∈ O, and otherwise it is won by Player

1For ease of presentation, we consider plays of both finite- and infinite-duration games to be
infinite. Obviously, in games finite-duration, games such as FCGs, the winner is determined
by a finite prefix of the play, and the moves after this prefix are immaterial.

6

1. A strategy S for Player σ is winning from a node v ∈ V (in the game (A, O))
if every play in playsA(S, v) is won by Player σ. If Player σ has a winning
strategy from v we say that Player σ wins from v. A game (A, O) is said to be
determined if, for every v ∈ V , one of the players wins from v.

The winning region (resp. memoryless winning region) of Player σ is the set
of vertices v ∈ V such that Player σ has a winning strategy (resp. memoryless
winning strategy) from v. We denote the winning region in the game (A, O) of
Player σ by WRσ(A, O).

Solitaire Games and Memoryless Strategies. If either V0 or V1 is
empty, then the game (A, O) is called a solitaire game.

A simple property of memoryless strategies that is often used is the following.
In a game over an arena A = (V0, V1, E,U, λ), every memoryless strategy S for
Player σ induces a sub-arena A|S = (V0, V1, E

|S ,U, λ|S), obtained by deleting
all edges (v, w) ∈ E where v ∈ Vσ and w 6= S(v). Observe that in A|S all
Player σ nodes have exactly one outgoing edge (namely the edge specified by
S), and thus Player σ has no choices to make in this arena. For this reason,
many times one considers the solitaire arena A||S in which all the nodes are

assigned to Player 1 − σ, i.e., A||S = (V
||S
0 , V

||S
1 , E|S ,U, λ|S), where V

||S
σ = ∅,

and V
||S
1−σ = V . The main connection between A,A|S and A||S is that every

path in A|S (A||S) is a path in A that is also consistent with S, and vice versa.
We can thus reason about paths in A|S (or A||S) instead of paths in A that are
consistent with S.

Memoryless Determinacy. A game is memoryless from v if the player
that wins from v has a memoryless strategy that is winning from v.

A game is point-wise memoryless for Player σ if the memoryless winning
region for Player σ coincides with the winning region for Player σ. A game is
uniform memoryless for Player σ if there is a memoryless strategy for Player σ
that is winning from every vertex in that player’s winning region.

A game is point-wise memoryless determined if it is determined and it is
point-wise memoryless for both players. A game is uniform memoryless deter-
mined if it is determined and uniform memoryless for both players.

Winning Conditions. A winning condition is a set W ⊆ Uω. If W is
a winning condition and A is an arena, the objective OA(W) induced by W
is defined as follows: OA(W) = {π ∈ plays(A) : λ(π) ∈ W}. For ease of
readability we may drop the superscript A and write O(W) instead of OA(W).

Here are some standard winning conditions:

• The parity condition consists of those infinite sequences c1c2 · · · ∈ Nω such
that the largest label occurring infinitely often is even.

• For ν ∈ R, the ν-mean-payoff condition consists of those infinite sequences
c1c2 · · · ∈ R such that lim supk→∞

1
k

∑k
i=1 ci is at most ν.

• The energy condition, for a given initial credit r ∈ N, consists of those
infinite sequences c1c2 · · · ∈ Zω such that r +

∑k
i=1 ci ≥ 0 for all k ≥ 1.

7

• The energy-parity condition (for a given initial credit r) is defined as con-
sisting of (c1, d1)(c2, d2) · · · ∈ N× Z such that c1c2 · · · satisfies the parity
condition and d1d2 · · · satisfies the energy condition with initial credit r.

3. Cycles and Games

In this section we define the cycles-decomposition of a path, as well as the
first-cycle game, and the infinite-duration all-cycles game.

Cycles-decomposition. A cycle in an arena A is a finite path π such that
start(π) = end(π). Note that, like paths, cycles are ordered. Hence, the cycles
(v1, v2)(v2, v1) and (v2, v1)(v1, v2) are not identical.

Algorithm 1 CycDec(s, π)

Require: s is a finite (possibly empty) simple path . initial stack content
Require: π is a finite or infinite path π1π2 · · · . the path to decompose
Require: If s is non-empty then end(s) = start(π) . sπ must form a path
step = 1
while step ≤ |π| do . Start a step

Append πstep to s . Push current edge into stack
Say s = e1e2 · · · em
if ∃i : eiei+1 · · · em is a cycle then . If stack has a cycle

Output eiei+1 · · · em . output the cycle
s := e1 · · · ei−1 . Pop the cycle from the stack

end if
step := step+ 1 . advance to next input edge

end while

The code appearing in Algorithm 1 defines an algorithm CycDec that takes
as input a (usually empty) simple path s, which is treated as the initial contents
of a stack, and a path π (finite or infinite). At step j ≥ 1, the edge πj is pushed
onto the stack and if, for some k, the top k edges on the stack form a cycle, this
cycle is output, then popped, and the procedure continues to step j + 1.

Note that CycDec may take a finite path π and non-empty stack s as input.
Moreover, it halts if and only if π is a finite path.

The sequence of cycles output by this procedure when input the empty stack
s = ε and path π, denoted cycles(π), is called the cycles-decomposition of π.
The first cycle of π, written first(π), is the first cycle in cycles(π). For example,
if

π = (v, w)(w, x)(x,w)(w, v)(v, s)(s, x)[(x, y)(y, z)(z, x)]ω,

then

cycles(π) = (w, x)(x,w), (v, w)(w, v), (x, y)(y, z)(z, x), (x, y)(y, z)(z, x), . . . ,

and the first cycle of π is (w, x)(x,w).

8

It is easy to see that, if the algorithm CycDec is run on a path π in an
arena with n nodes, then at most n− 1 edges of π are pushed but never popped
(like the edges (v, s) and (s, x) in the example above).2 So we have:

Lemma 1. For every path π in arena A with vertex set V , there are at most
|V | − 1 indices i such that πi does not appear in any of the cycles in cycles(π).

Given a play π in A, an initial stack content s, and i ≥ 0, we write
stacki(s, π) for the contents of the stack of algorithm CycDec(s, π) at the
beginning of step i + 1 (i.e., just before the edge πi+1 is pushed). Note that if
stacki(s, π) is not empty then it ends with the vertex start(πi+1), whether or
not a cycle was popped during step i. For i ≥ 1, we define cyclei(s, π) to be
the cycle output by the algorithm CycDec(s, π) during step i, or ε if no cycle
was output at step i. We may drop s when s = ε, and we may drop i when
i = |π|. For instance, stack(π) is the stack content at the end of the algorithm
CycDec(ε, π) for a finite π; and cyclei(π) is the cycle output during step i of
the algorithm CycDec(ε, π).

Given that, for every i ≥ 1, the behaviour of the algorithm CycDec(s, π)
from the end of step i onwards is completely determined by stacki(s, π), and
the suffix πi+1πi+2 . . . of π, the following lemma is immediate:

Lemma 2. Let π be a play in A, let i ≥ 0, let w = stacki(π), and let π′ =
πi+1πi+2 . . . and π′′ = w · π′. Then for every j ≥ 0 we have that

1. stacki+j(π) = stackj(w, π′) = stack|w|+j(π′′), and

2. cyclei+j(π) = cyclej(w, π′) = cycle|w|+j(π′′).

Furthermore, for every 0 ≤ l ≤ |w|, we have that stackl(π′′) = w1 . . .wl, and
cyclel(π′′) = ε.

Cycle properties. For a given U, a cycle property is a set Y ⊆ U∗, used
later on to define winning conditions for games.3 Here are some cycle properties
that we refer to in the rest of the article:

1. Let cyc-EvenLen be those sequences c1c2 · · · ck ∈ U∗ such that k is even.

2. Let cyc-Parity be those sequences c1 · · · ck ∈ N∗ such that max1≤i≤k ci is
even.

3. Let cyc-Energy be those sequences c1 · · · ck ∈ Z∗ such that
∑k
i=1 ci ≥ 0.

4. Let cyc-GoodForEnergy be those sequences (c1, d1) · · · (ck, dk) ∈ (N × Z)∗

such that
∑k
i=1 di > 0, or both

∑k
i=1 di = 0 and c1 · · · ck ∈ cyc-Parity.

5. Let cyc-MeanPayoffν (for ν ∈ R) be those sequences c1 · · · ck ∈ R∗ such

that 1
k

∑k
i=1 ci ≤ ν.

6. Let cyc-MaxFirst be those sequences c1 · · · ck ∈ N∗ such that c1 ≥ ci for all
i with 1 ≤ i ≤ k.

2As we show in Section 8, this allows one to reason, for instance, about the initial credit
problem for energy games.

3When U is clear from the context, we will not mention it.

9

7. Let cyc-EndsZero be those sequences c1 · · · ck ∈ N∗0 such that ck = 0.

If Y ⊆ U∗ is a cycle property, write ¬Y for the cycle property U∗ \ Y . We
will usually use Y to define goals for Player 0 (hence Player 1’s goals would be
naturally associated with ¬Y). It is convenient to define Y 0 = Y , and Y 1 = ¬Y .
This allows us to refer to the goals of Player σ in terms of Y σ.

We isolate two important classes of cycle properties (the first is inspired by
Björklund et al. (2004)):

1. Say that Y is closed under cyclic permutations if ab ∈ Y implies ba ∈ Y ,
for all a ∈ U, b ∈ U∗.

2. Say that Y is closed under concatenation if a ∈ Y and b ∈ Y imply that
ab ∈ Y , for all a, b ∈ U∗.

Note, for example, that the cycle properties 1-5 above are closed under cyclic
permutations and concatenation; and that ¬cyc-EvenLen is closed under cyclic
permutations but not under concatenation.

If A is an arena with labeling λ, and C is a cycle in A, we say that a cycle
C satisfies Y if λ(C) ∈ Y .

First-Cycle Games and All-Cycles Games.
For arena A = (V0, V1, E,U, λ) and cycle property Y ⊆ U∗, we define two

objectives (subsets of plays(A)):

1. π ∈ OAfirst(Y) if first(π) satisfies Y .

2. π ∈ OAall(Y) if every cycle in cycles(π) satisfies Y .

To ease readability, we drop the superscript A when the arena is clear from the
context and write, for example, Oall(Y) instead of OAall(Y).

The game (A, Ofirst(Y)) is called a first-cycle game (over Y), and the fam-
ily of all first-cycle games over Y (i.e., taking all possible arenas) is denoted
Fcg(Y). Similarly, we write Acg(Y) for the family of all-cycles games over Y .
For instance, Fcg(cyc-Parity) consists of those games such that Player 0 wins
iff the largest label occurring on the first cycle is even.

A game (A, O) is finitary if every play is already won after a finite number
of steps, i.e., for every π ∈ plays(A) there exists Kπ ∈ N such that, if Player σ
wins the play π, then Player σ also wins every play of A starting with the prefix
π[1,Kπ]. Clearly FCGs are finitary since the winner is already determined by
the first-cycle of the play (recall that arenas are finite). A basic result states
that finitary games (of perfect information) are determined.4 We recap the proof
because we use it in Theorem 1 to determine the computational complexity of
deciding which player has a winning strategy in a given FCG.

Lemma 3. Every finitary game (A, O) is determined.

4This is usually attributed to Zermelo, but also follows from the fact that open games are
determined, e.g., Gale and Stewart (1953).

10

Proof. Suppose (A, O) is finitary. Fix a starting node v and note that the set of
finite node-paths starting in v form a tree, which we call the game-tree. Plays
in A correspond to (infinite) branches in the game-tree. Prune every branch π
of the game-tree at its Kπth node to get the pruned game-tree T . By Kőnig’s
Tree Lemma, the pruned game-tree T is finite since it is finitely branching and
contains no infinite paths. Turn T into an And-Or tree: label an internal node
ρ by ∨ in case end(ρ) ∈ V0, and by ∧ in case end(ρ) ∈ V1; label a leaf ρ by true if
every play extending ρ is won by Player 0, and by false if every play extending
ρ is won by Player 1. Note that every leaf gets a label. It is easy to see that
Player 0 has a winning strategy from v in the game (A, O) if and only if the
And-Or tree evaluates to true.

4. First-Cycle Games

4.1. Memory Bounds and Complexity

In this section we discuss the amount of memory required to win FCGs and
the computational complexity of deciding which player has a winning strategy.

We begin by showing that while strategies with memory 2O(|V | log |V |) always
suffice, there are FCGs that require 2Ω(|V | log |V |) memory.

Proposition 1. 1. For a FCG on an arena with n vertices, if Player σ wins
from v, then every winning strategy for Player σ starting from v uses
memory at most n!.

2. For every n ∈ N there exists a FCG on an arena with 3n + 1 vertices,
and a vertex v, such that every winning strategy for Player 0 from v uses
memory at least n!.

Proof. For the upper bound, note that it is enough to remember the whole
history of the play until a cycle is formed, i.e., all histories of length at most
n− 1. To store all histories of length k requires

∑
i≤k i! < (k+ 1)! many states.

Thus, n! memory suffices.

s

r1 . . . rn
red nodes
(clique)

g1 . . . gn
green nodes
(ind. set)

b1 . . . bn
blue nodes
(ind. set)

Figure 1: double arrows represent one edge from every node to every node

We now turn to the lower bound.
Sketch. We define a game in which Player 1 can select any possible per-

mutation of {1, . . . , n} and, in order to win, Player 0 must remember this per-
mutation. Consider the arena in Figure 1. Intuitively, the red nodes are used
by Player 1 to select a permutation of {1, . . . , n}, and the green and blue nodes

11

are used by her to query Player 0 as to the relative order of any pair of indices
i, j in this permutation. The outgoing edges from the blue nodes are used by
Player 0 to respond to the query by going back to either ri or rj . Player 0 wins
the game if the cycle contains both ri and rj , hence, he must remember the
order of the pair i, j in the permutation. Since this is true for every such pair of
indices, he must use at least n! memory to store the permutation. The winning
condition captures the above intuition, and also ensures that Player 1 loses if
she deviates from the above protocol.

Details. The arena A = (V0, V1, E,U, λ) has n red nodes r1, . . . , rn, n green
nodes g1, . . . , gn, n blue nodes b1, . . . , bn, and an initial node s. The red nodes
form a clique (i.e., (ri, rj) ∈ E for every 1 ≤ i 6= j ≤ n), the green nodes form
an independent set, and so do the blue nodes (i.e., (gi, gj) 6∈ E and (bi, bj) 6∈ E
for every 1 ≤ i, j ≤ n). In addition, for every 1 ≤ i, j ≤ n we have the edges
(s, rj), (ri, gj), (gi, bj), (bi, rj). Player 0 owns the blue nodes (V0 = {b1, . . . , bn}),
and the rest belong to Player 1. In order to correctly describe the winning
condition, we label the nodes as follows: for every 1 ≤ i ≤ n, the nodes ri, gi, bi
are labeled (Red, i), (Green, i), (Blue, i), respectively; and the node s is labeled
by 0. In other words, U = {0} ∪ ({Red,Green,Blue} × {1, . . . , n}), and the
induced edge labeling is: for every (v, w) ∈ E, we have that λ(v, w) = (Red, i)
if v = ri, λ(v, w) = (Green, i) if v = gi, λ(v, w) = (Blue, i) if v = bi, and
otherwise λ(v, w) = 0.

We now define the winning condition. Player 0 wins a play iff the first cycle
(v1, v2) . . . (vk, vk+1) on the play satisfies one of the following three conditions5:

1. the node just before the end is not blue (i.e., vk 6∈ {b1, . . . , bn}); or

2. it does not have exactly 1 green node and 1 blue node; or

3. exactly 1 green node gj , and 1 blue node bl appear on it, and bl = vk, and

(a) it has red nodes labelled with the same numbers as gj and bl (i.e.,
rj , rl are on the cycle), and

(b) it starts with a red node labelled with a number equal to that of the
green or the blue node (i.e., v1 ∈ {rj , rl}).

Informally, the first two conditions above ensure that Player 0 can win if
Player 1 does not select a permutation followed by a query, whereas the third
condition ensures that if Player 1 does, then Player 0 can win but only if he
remembers the whole permutation.

We first prove that Player 0 has a winning strategy.6 We distinguish between
two types of plays:

(i) Player 1 selects a permutation through the red nodes, and then queries
Player 0 by going to some green node gj , followed by a blue node bl;

5For simplicity, we state the winning condition in terms of the nodes on the cycle and not
in terms of the labels of the edges. However, since we essentially label an edge by the name
of its source node, the latter can be easily done.

6We define the strategy only for histories that are consistent with it. Obviously, it can be
arbitrarily defined on any other history.

12

i.e., u = (s, ri1)(ri1 , ri2) . . . (rin−1 , rin)(rin , gj)(gj , bl) are the first n + 2
edges of the play, and for every 1 ≤ x ≤ n we have that x = ih for
some 1 ≤ h ≤ n. In this case, let 1 ≤ j̃, l̃ ≤ n be such that ij̃ = j
and il̃ = l, and observe that Player 0 can win by taking the edge (bl, rih)

where h = min(j̃, l̃) (i.e., by taking the edge back to the node among ri, rj
that appears sooner on u). Indeed, the first cycle of the play will then be
(rih , rih+1

) . . . (rin−1
, rin)(rin , gj)(gj , bl), and it will satisfy the third option

in the winning condition (in particular, by our choice of h, both ri and rj
are on the cycle, and ih ∈ {j, l}).

(ii) The play never reaches a blue node, or when the play reaches a blue node
for the first time it does not conform to the pattern given in case (i) above.
If the play never reaches a blue node then Player 0 wins since the first
cycle formed satisfies the first option in the winning condition. This is
also true if a cycle was formed before the play reaches a blue node for
the first time. Hence, we are left with the option that the prefix of the
play is of the form u = (s, ri1)(ri1 , ri2) . . . (rit−1

, rit)(rit , gj)(gj , bl), where
t < n, and for x 6= y we have rix 6= riy . In this case, player 0 first takes
the edge (bl, rm), where 1 ≤ m ≤ n is the index of a red node that did
not yet appear on the play (i.e., ix 6= m for all 1 ≤ x ≤ t). Note that
this does not yet form a cycle and the play continues. Now, the game can
proceed in three ways, all losing for Player 1: the first is by keeping the
play forever away from blue nodes, thus closing a cycle satisfying option 1
in the winning condition; the second is by closing the first cycle by going
back to bl, again losing by option 1 (since then vk is green); the third
is by reaching some blue node bh different from bl without yet forming
a cycle. In this last case, Player 0 wins (using the second option in the
winning condition) by taking the edge (bh, rit) and thus forming a cycle
that contains two different blue nodes: bl, bh.

We now show that every strategy for Player 0 that uses less than n! memory
is not winning. Let ξ be a Player 0 strategy that is implemented using a Mealy
machineM with less than n! states. Hence, there are two different permutations
p = i1, . . . in and p′ = i′1, . . . , i

′
n of {1, . . . , n}, such that M is in the same state

m after reading the history s ·ri1 . . . rin , as after reading the history s ·ri′1 . . . ri′n .
Let h be the smallest index such that ih 6= i′h, and let j := ih and l := i′h, and

let 1 ≤ j̃, l̃ ≤ n be such that i′
j̃

= j and il̃ = l. Simply put, j appears in position

h in p and position j̃ in p′, whereas l appears in position h in p′ and position l̃
in p. The minimality of h implies that j̃, l̃ > h, and thus l appears after j in p,
but before j in p′.

Observe that the two histories ρ = s · ri1 . . . rin · gj · bl, and ρ′ = s · ri′1 . . . ri′n ·
gj · bl also putM in the same state and thus, ξ responds to both histories with
the same move, say by taking the edge (bl, rx). Observe that, since p, p′ are
permutations, every red node already appears on ρ, ρ′. Hence, in both cases,
every possible move of Player 0 from bl closes a cycle that has exactly one green
and one blue node, and the blue node appears just before the end. It follows
that, in both cases, in order to win Player 0 must satisfy items 3.a and 3.b of

13

the winning condition. In order to satisfy 3.a he must choose rx = rl or rx = rj .
However, that prevents him from satisfying item 3.b in both cases since rj
appears on ρ before rl, but after it on ρ′. More formally, consider first the option
rx = rl and the history ρ. Recall that il̃ = l, that j = ih, and that l̃ > h. Hence,
the first cycle formed is (ril̃ , ril̃+1

) . . . (rin−1
, rin)(rin , gj)(gj , bl)(bl, ril̃), and it

does not contain the required rj . Similarly, if rx = rj consider the history ρ′, and
note that the first cycle formed is (ri′

j̃
, ri′

j̃+1
) . . . (ri′n−1

, ri′n)(ri′n , gj)(gj , bl)(bl, ri′j̃
),

and it does not contain the required rl. It follows that ξ is not a winning
strategy.

We now address the complexity of solving FCGs with efficiently computable
cycle properties. Given a game, and a starting node v, solving the game is the
problem of deciding whether Player 0 or Player 1 wins from v. We show that
this problem is in general Pspace-complete.

Theorem 1. 1. If Y is a cycle property for which solving membership is in
Pspace then the problem of solving games in Fcg(Y) is in Pspace.

2. There exist a cycle property Y , that is computable in linear-time, such that
the problem of solving games in Fcg(Y) is Pspace-hard.

Proof. Let A be an arena with n nodes. Following the proof of Lemma 3, for
the special case of FCGs, prune a branch of the game-tree once the first cycle is
formed, and label the game-tree to get an And-Or tree. Every node in the And-
Or tree is of depth at most n, and has at most n children. Hence, evaluating
the tree can be done, using a depth-first algorithm, in space polynomial in n
plus the maximal space required to compute the labels of the leaves ρ in the
tree. Note that the label of a leaf ρ is determined by whether λ(c) ∈ Y or not
(where c is the first-cycle on ρ). By our assumption on Y this can be done in
polynomial space, hence the upper bound follows.

The lower bound follows immediately by reducing the Pspace-hard problem
QBF to solving Fcg(Y), where Y is the set of all sequences whose last two
elements are identical. The proof uses the same arena (which is vertex-labeled –
see Remark 1) as in the reduction of QBF to Generalised Geography (e.g., Sipser
(1997)[Theorem 8.11]). To quickly recap, the basic idea there is to view QBF as
a game in which Player 0 (resp. Player 1) assigns the values of an existentially
(resp. universally) quantified variable xi by picking a node labelled by the literal
xi or the literal ¬xi; after all variables are thus assigned, Player 1 picks a clause
(challenging Player 0 to show that it is true), and finally Player 0 responds by
picking a literal of this clause (that he claims is true). The structure of the arena
is such that the only outgoing edge from the node picked by Player 0 in this
last step is the node labeled by the same literal that was available during the
value-assigning phase. Thus, if indeed that literal was picked in the assignment
phase, then the next move closes a cycle that satisfies Y and otherwise, taking
this edge does not close a cycle, forcing Player 0 to close a losing cycle in the
next step. Overall, the QBF formula is true iff Player 0 wins this FCG.

14

4.2. The relation between point-wise and uniform memoryless determinacy

In this section we consider the difference between point-wise memoryless
determinacy and uniform memoryless determinacy in FCGs. We begin by con-
sidering the simple case of solitaire games.

Theorem 2. All solitaire FCGs are point-wise memoryless determined. How-
ever, some solitaire FCG’s are not uniform memoryless determined.

Proof. The fact that a solitaire FCG is point-wise memoryless determined is
simply because once a node repeats the game is effectively over, and thus the
player makes at most one meaningful move from any node. In other words,
Player σ can win from a node v iff there is a play π starting in v such that
the first cycle πi . . . πj on π satisfies Y σ. Traversing the prefix π1 . . . πj requires
no memory since each vertex on it is the source of exactly one edge. For the
second item, consider the arena in Figure 2. Observe that, for the cycle property
Y = cyc-EndsZero, no memoryless strategy is winning from both v1 and v2.

We now consider two-player games. In contrast with solitaire games, some
two-player FCGs are not point-wise memoryless determined. Indeed, any soli-
taire game (in which all nodes belong to Player 0) that is not uniform memoryless
determined, can be turned into a two player game in which Player 0 wins from
some node w, but requires memory to do so: simply add a single Player 1 node
w that has outgoing edges to all nodes in the original game.

As we later show (Corollary 1, Page 18), if a cycle property Y is closed under
cyclic permutations then all solitaire games in Fcg(Y) are uniform memoryless
determined. Unfortunately, for two player games, this is not enough even for
point-wise memoryless determinacy. Indeed, Theorem 3 shows that closure of
Y under cyclic permutations is a necessary condition for having all games in
Fcg(Y) be point-wise memoryless determined, but it is not a sufficient one.7

We also show that, for cycle properties Y that are closed under cyclic per-
mutations, if a game in Fcg(Y) is point-wise memoryless for a player then it is
also uniform memoryless for this player (Theorem 3 Item 3). The proof of this
fact uses the following Lemma.

Lemma 4. Suppose Y is closed under cyclic permutations, and let S be a
strategy for Player σ in arena A. If S is winning from v, then S is winning
from every node w ∈ reachA(S, v).

Proof. We begin with the intuition.
Sketch. If c is the first cycle of some play π ∈ plays(S,w), then we can

construct a path π′ starting in v and consistent with S whose first cycle is some
cyclic permutation c′ of c, as follows: we proceed along some simple path from v
to w until we hit a node on π; if this node is not on c, we continue along π until
we reach a node on c; and finally, we cycle along the nodes of c until we return

7This result corrects a mistake in Björklund et al. (2004) that claims that this is a sufficient
condition (note that they do not address the question of whether it is necessary).

15

v1 v0 v2

1

0 1

0

Figure 2: Sample arena A

v1 v0 v2

v3

b

a b

a

a a

Figure 3: Sample arena B

v1

v3v4

v2

Figure 4: Sample arena C

Three sample arenas: Player 1 nodes are square, solid lines are edges, dashed lines represent
(sequences of edges that are) simple paths.

to where we started, forming a cycle c′. Note that c′ is not necessarily identical
to c since in the first stage we may have hit π somewhere in the middle of c.
Since c′ = first(π′) ∈ Y σ, and Y σ is closed under cyclic permutations (note
that Y is closed under cyclic permutations if and only if ¬Y is closed under
cyclic permutations), we get that π is won by Player σ.

Details. It is enough to show that in the arena A|S , for every play π starting
in w, there is a path π′ starting in v, such that the first cycle of π′ is a cyclic
permutation of the first cycle πm . . . πn of π. We construct π′ as follows. Let ρ be
a path in A|S from v to w (such a path exists since w ∈ reach(S, v)). Let ` be the
smallest index such that ρ` intersects π[1, n], i.e., such that end(ρ`) = start(πj)
for some j ≤ n. Note that ` is well defined since end(ρ) = w = start(π1). We
consider two cases (depending on whether or not ρ first intersects π before π
starts traversing first(π)).

Case j ≤ m. Let π′ = ρ1 . . . ρ`πj . . . πn, and note that first(π′) = first(π).
Case m < j ≤ n. Let π′ = ρ1 . . . ρ`πj . . . πnπm . . . πj−1, and note that

first(π′) = πj . . . πnπm . . . πj−1 which is a cyclic permutation of first(π).

Theorem 3. 1. If Y is not closed under cyclic permutations then there is a
game in Fcg(Y) that is not point-wise memoryless determined.

2. There exists a cycle property Y , closed under cyclic permutations, and a
game in Fcg(Y) that is not point-wise memoryless determined.

3. If a cycle property Y is closed under cyclic permutations, then every game
in Fcg(Y) that is point-wise memoryless for Player σ is also uniform
memoryless for Player σ.

Proof. For the first item, assume that Y is not closed under cyclic permutations,

16

and let a, b ∈ U∗ be such that ab ∈ Y but ba 6∈ Y . Consider the arena in Figure 3.
Observe that Player 0 wins from v3, but in order to do so he needs to remember
if the play arrived to v0 from v1 or from v2.

For the second item, consider the arena in Figure 4, and the cycle property
Y = cyc-EvenLen. Obviously, Y is closed under cyclic permutations. However,
starting at v1, Player 0 has a winning strategy, but no memoryless winning
strategy – when choosing the outgoing edge from v2 the player needs to remem-
ber if the previous node was v1 (in which case he should return to v1), or v3 (in
which case he should go to v4).

For the third item, write Wσ := WRσ(A, O), and assume that the game is
point-wise memoryless for Player σ, and for every v ∈Wσ let Sv be a memoryless
winning strategy for Player σ from v.

Sketch. The idea is to define a memoryless strategy S for Player σ that
is winning from every node v ∈ Wσ by considering the nodes of Wσ (in some
arbitrary order), and if v is the next node in Wσ for which S(v) is not yet
defined, then define S(w) := Sv(w) for all w ∈ Reach(Sv, v) that have not yet
been defined. Thus, S is memoryless by construction. The main work is to show
that it is winning (this is where Lemma 4 is used).

Details. Fix some arbitrary linear ordering v1 ≺ v2 ≺ · · · ≺ vn of the
nodes in Wσ. We iteratively build a memoryless strategy S for Player σ that
is winning from every node v ∈ Wσ. At each round j ≥ 0 of this construction,
we write V j ⊆ V for the set of nodes considered by the end of that round, and
have that S is defined for every node in V j ∩ Vσ. At round 0, we begin with
V 0 = ∅, and with S(v) undefined for all v ∈ Vσ. At round j > 0, if V j−1 = V
then we are done, and otherwise we proceed as follows:

(1) If Wσ 6⊆ V j−1, let v be the smallest vertex (by the ordering ≺) such
that v ∈ Wσ \ V j−1. Set V j := V j−1 ∪ reach(Sv, v), and for every w ∈
(Vσ ∩ reach(Sv, v)) \ V j−1 define S(w) := Sv(w).

(2) If Wσ ⊆ V j−1, then set V j = V , and for every node v ∈ Vσ \ V j−1 define
S(v) arbitrarily. Intuitively, moves from these nodes are unimportant since
they are not reachable from any node in Wσ on any play consistent with
S.

It is easy to see that S is well defined and memoryless.
It remains to show that S is winning from every w ∈ Wσ. The proof is

by induction on the round number j. The induction hypothesis is that (i) if
w ∈ V j then reach(S,w) ⊆ V j and; (ii) if Wσ 6⊆ V j−1 then S is winning from
every w ∈ V j .

Observe that, by taking the maximal j for which Wσ 6⊆ V j−1, item (ii) in
the induction hypothesis implies that S is winning from every w ∈Wσ.

For j = 0, the hypothesis is trivially true. Assume that the hypothesis holds
for all 0 ≤ l < j, and consider round j. If Wσ ⊆ V j−1, then (i) is true since
the construction uses case (2) and sets V j = V , and (ii) is trivially true. If,
on the other hand, Wσ 6⊆ V j−1 (i.e., the construction uses cases (1)), then let
w ∈ reach(Sv, v) be some node added at round j. Note that to prove that
(i) holds, it is enough to show that every node w′, that is reachable in A|S

17

from w, was added before or at round j. In other words, we have to show that
reach(S,w) ⊆ (V j−1 ∪ reach(Sv, v)). This can be easily done by inducting on
the length of the node-path ρ = v1 . . . vk ∈ V ∗ from w to w′ in A|S . For k = 0
this is trivially true. Assume it is true for ρ of length k, and consider ρ of length
k + 1. Now, if ρk was added at a previous round, then so did ρk+1 by (i) in
the induction hypothesis applied to ρk. Otherwise, ρk was added at this round
(and thus ρk ∈ reach(Sv, v)), in which case if ρk belongs to the opponent (i.e.,
ρk ∈ V1−σ) then all its successors, and in particular ρk+1, are in reach(Sv, v);
and if ρk ∈ Vσ then ρk+1 = S(ρk) = Sv(ρk) ∈ reach(Sv, v). To complete the
proof, we have to show that (ii) holds, i.e., that S is winning from w.

To see that S is winning from w, take any play π ∈ plays(S,w), and let
πm . . . πn be the first cycle of π. There are two options: either the prefix π1 . . . πn
is consistent with Sv, or it isn’t. If it is, since Sv is winning for Player σ from
every node in reach(Sv, v) (Lemma 4), and thus in particular from w, we have
that π is won by Player σ. Assume then that π1 . . . πn is not consistent with Sv.
Note that by our choice of π it is consistent with S and thus, for some 1 ≤ h < n,
we have that Sv(start(πh)) 6= end(πh) = S(start(πh)). Let k ≤ n be the smallest
index such that start(πk) ∈ V j−1. Such a k exists by the above inequality
and the fact that (by construction) S agrees with Sv on all nodes added at
round j. Observe that if k > m then all the nodes appearing on πm . . . πn are in
reach(S, πk), simply by following the cycle πk . . . πnπm . . . πk−1. Hence, since by
item (i) in the induction hypothesis reach(S, start(πk)) ⊆ V j−1, the minimality
of k implies that k ≤ m. We conclude that the suffix π′ = πkπk+1 . . . of
π, which is a play consistent with S starting from start(πk) ∈ V j−1, satisfies
first(π′) = first(π). By item (ii) in the induction hypothesis, π′ is won by
Player σ, hence so is π, which completes the proof.

Theorems 2 and 3 give us the following corollary:

Corollary 1. If a cycle property Y is closed under cyclic permutations, then
every solitaire game in Fcg(Y) is uniform memoryless determined.

5. Memoryless Determinacy of First-Cycle Games

In this section we give a necessary and sufficient condition for a FCG to be
memoryless determined. In Section 7 we give an easy-to check condition that is
sufficient, but not necessary.

5.1. A full characterisation of memoryless determinacy of all games in Fcg(Y)

We begin by introducing some useful shorthand notation. Given an arena
A = (V0, V1, E,U, λ), and a node z ∈ V , for a path π ∈ E∗ ∪ Eω, define
Nz(π) ∈ N ∪ {∞} to be the index of the first edge that starts with z, if one
exists. Formally, Nz(π) :=∞ if z does not occur on π, and otherwise Nz(π) :=
min{j : start(πj) = z}. Also, define headz(π) := π[1, Nz(π)− 1] to be the prefix
of π before Nz(π), and tailz(π) := π[Nz(π), |π|] to be the suffix of π starting at
Nz(π). By convention, if Nz(π) =∞ then headz(π) = π and tailz(π) = ε.

18

We now define a game, that is very similar to the first-cycle game, except
that one of the nodes of the arena is designated as a “reset” node:

Definition 1. Fix an arena A, a vertex z ∈ V , and a cycle property Y . Define
the objective OAz-first(Y) ⊆ plays(A) to consist of all plays π satisfying the follow-
ing property: if headz(π) is not a simple path then first(π) ∈ Y , and otherwise
first(tailz(π)) ∈ Y .

Playing the game with objective Oz-first(Y) is like playing the first-cycle game
over Y , however, if no cycle is formed before reaching z for the first time, the
prefix of the play up to that point is ignored. Thus, in a sense, the game is
reset. Also note that if play starts from z, then the game reduces to a first-cycle
game. It turns out that we may assume that a strategy of (A, Oz-first(Y)) makes
the same move every time it reaches z:

Definition 2 (Forgetful at z from v). For an arena A, a vertex v ∈ V , a Player
σ ∈ {0, 1}, and a vertex z ∈ Vσ belonging to Player σ, we call a strategy T for
Player σ forgetful at z from v if there exists z′ ∈ V such that (z, z′) ∈ E and
for all π ∈ plays(T, v), and all n ∈ N, if start(πn) = z then end(πn) = z′.

Lemma 5 (Forgetful at z from v). Fix an arena A, a vertex v ∈ V , a Player σ ∈
{0, 1}, and a vertex z ∈ Vσ belonging to Player σ. In the game (A, Oz-first(Y)),
if Player σ has a strategy S that is winning from v, then Player σ has a strategy
T that is winning from v and that is forgetful at z from v.

Proof. We begin with the intuition.
Sketch. The second time z appears on a play, the winner is already deter-

mined, and so the strategy is free to repeat the first move it made at z. On
the other hand, when a play visits z the first time, the strategy can make the
same move regardless of the history of the play before z, because the winning
condition ignores this prefix.

Details. We may suppose that z appears on some play of plays(S, v), other-
wise we can take T to be S. Let ρ be a simple path from v to z that is consistent
with S. Let z′ := S(ρ). Define the strategy T as follows:

T (u) :=

S(u) if z does not appear on u,

z′ if end(u) = z,

S(ρ · tailz(u)) otherwise.

By definition, T is forgetful at z from v. It remains to show that every
π ∈ plays(T, v) is won by Player σ.

First consider the case that headz(π) is not a simple path. By definition, S
and T agree on headz(π), and since S is winning, the first cycle on headz(π)
(and thus also on π) satisfies Y σ, and π is won by Player σ.

Now consider the case that headz(π) is a simple path. We need to show
that first(tailz(π)) is in Y σ. Define π′ := ρ · tailz(π). It is easy to see that
π′ is consistent with T . We claim that π′ ∈ plays(S, v). Indeed, the prefix
ρ · (z, z′) is consistent with S; and for every j ≥ |ρ| + 1, such that end(π′j) ∈

19

Vσ, we have, by the third case in the definition of T , that T (π′[1, j]) = S(ρ ·
tailz(π

′[1, j])) = S(π′[1, j]) (the second equality holds since, by the definition of
tailz, ρ · tailz(π′[1, j]) = π′[1, j]). Now, since π′ is consistent with T , we have
that T (π′[1, j]) = end(π′j+1), and thus S(π′[1, j]) = end(π′j+1). This completes
the proof of the claim.

To finish the proof, note that headz(π
′) is a simple path (it is ρ), and that

tailz(π
′) = tailz(π). Hence, since headz(π

′) is a simple path, and S is winning
from v, we know that first(tailz(π

′)) satisfies Y σ. Thus, since headz(π) is a
simple path and first(tailz(π)) satisfies Y σ, we can conclude that π is won by
Player σ.

We now define the basic notion behind our necessary and sufficient condition
for games in Fcg(Y) to be memoryless determined.

Definition 3. For an arena A, and a node v in A, say that A is Y -resettable
from v if for every node z, the same player wins from v in both (A, Ofirst(Y))
and (A, Oz-first(Y)).

First, we show that Y -resettability is a sufficient condition for having mem-
oryless strategies.

Theorem 4. Given an arena A, if a node v is such that every sub-arena of A
is Y -resettable from v, then the game (A′, Ofirst(Y)) is memoryless from v for
every sub-arena A′ of A.

Proof. A node z ∈ V is a choice node of an arena B = (V0, V1, E
B,U, λ), if

there are at least two distinct vertices v′, v′′ ∈ V such that (z, v′) ∈ EB and
(z, v′′) ∈ EB.

Sketch. Fix a sub-arena A′ of A. Suppose Player σ has a winning strategy
from v in A′. We induct on the number of choice nodes of Player σ. Let z be a
choice node for Player σ (if there are none, the result is immediate). Since A′ is
Y -resettable from v, Player σ also wins the game with objective Oz-first(Y) from
v. By Lemma 5, Player σ has a strategy S that is winning from v and that is
also forgetful at z from v. Thus we may form a sub-arena B of A′ (and hence
of A) by removing all edges from z that are not taken by S. Observe that S is
winning from v in (B, Oz-first(Y)). Since the sub-arena B is Y -resettable from v,
Player σ also wins (B, Ofirst(Y)) from v. But B has less choice nodes for Player
σ, and thus, by induction, Player σ has a memoryless winning strategy from v
in (B, Ofirst(Y)). This memoryless strategy is also winning from v in A′.

Details. Fix a sub-arena A′ of A, and let σ ∈ {0, 1} be such that v ∈
WRσ(A′, Ofirst(Y)). The nth inductive hypothesis states: for every sub-arena B
(of A′), in which Player σ has exactly n choice nodes, if Player σ has a win-
ning strategy from v in (B, Ofirst(Y)), then Player σ has a memoryless winning
strategy from v in (B, Ofirst(Y)).

The base case is when n = 0, i.e, Player σ has no choice nodes in B. In this
case, Player σ has a single strategy: given a history u ∈ Hσ(B) with end(u) = w,
then take the unique edge (w,w′) ∈ EB. Note that this strategy is memoryless.

20

Let n > 0, and suppose the inductive hypothesis holds for n − 1. We will
prove it holds for n. To this end, let B = (V0, V1, E

B,U, λ) be a sub-arena (of
A′) with n choice nodes for Player σ. Fix one such choice node, and call it z.
Suppose Player σ has a winning strategy (not necessarily memoryless) from v
in (B, Ofirst(Y)). Since, by assumption, B is Y -resettable from v, there is also
a winning strategy S for Player σ from v in (B, Oz-first(Y)). We will use S to
prove Player σ has a memoryless winning strategy from v in (B, Ofirst(Y)). By
Lemma 5, we may assume that S is forgetful at z from v, i.e., there exists z′ ∈ V
such that (z, z′) ∈ EB and for all π ∈ playsB(S, v), and all i ∈ N, if start(πi) = z
then end(πi) = z′.

Define the sub-arena Bz to be the same as B but with all edges out of
z removed except for (z, z′). That is, Bz := (V0, V1, Ez,U, λ′) where Ez :=
EB \ {(z, x) : x 6= z′} and λ′ is λ restricted to Ez. Then S is well-defined
on Bz (i.e., by our assumption it never says to move from z to a node other
than z′). Since S is winning for Player σ from v in the game (B, Oz-first(Y))
and node z belongs to player σ, conclude that S is winning for Player σ from
v in (Bz, Oz-first(Y)). Being a sub-arena of A, by assumption, the arena Bz is
Y -resettable from v. Hence, Player σ wins from v in (Bz, Ofirst(Y)). Since Bz
is a sub-arena of A′ and has n− 1 choice nodes for Player σ, we can apply the
induction hypothesis to Bz and obtain that Player σ has a memoryless strategy
Smem winning from v in (Bz, Ofirst(Y)). Recall that Bz was obtained from B
by removing outgoing edges from z ∈ Vσ (i.e., by providing Player σ with less
freedom of movement), and conclude that Smem must be winning for Player σ
from v in the game (B, Ofirst(Y)). This completes the inductive step.

It is worth noting that the assumption in Theorem 4, that every sub-arena
of A is Y -resettable from v, cannot be replaced by the weaker requirement that
only A is Y -resettable from v. Consider for example the arena A in Figure 3
(page 16), and a cycle property Y ⊆ U∗, such that ab ∈ Y but ba 6∈ Y , for some
a, b ∈ U∗. As argued in Theorem 3, the game (A, Ofirst(Y)) is not memoryless
starting at v3. While the sub-arena A′, obtained by dropping the edge (v0, v1),
is not Y -resettable from v3 (since for z = v0 Player 0 wins (A′, Oz-first(Y)) but
(A′, Ofirst(Y)) is won by Player 1) the arena A is Y -resettable from v3.8

Before we provide a converse for Theorem 4, we show that an additional
assumption, namely that Y is closed under cyclic permutations, is needed:

Lemma 6. If Y is not closed under cyclic permutations then there is an arena
A, and a node v, for which the game (A′, Ofirst(Y)) is memoryless from v for
every sub-arena A′ of A, but A is not Y -resettable from v.

Proof. Assume that Y is not closed under cyclic permutations, and let a, b ∈ U∗
be such that ab ∈ Y but ba 6∈ Y . Consider the arena in Figure 5, containing
only Player 0 nodes, where the path from v0 to v1 is labeled by a, and the

8One can also come up with such an example (albeit a more complicated one) for Y =
cyc-EvenLen which is closed under cyclic permutations.

21

path from v1 to v0 is labeled by b. Observe that A has only one sub-arena
(itself), and there is a single strategy possible in the game (A, Ofirst(Y)), and
it is memoryless. However, A is not Y -resettable from v0 since, starting at
v0, Player 0 wins the game (A, Ofirst(Y)) but not the game (A, Oz-first(Y)) for
z = v1.

v0 v1

a

b

Figure 5: The dashed lines represent simple paths.

We now prove that if Y is closed under cyclic permutations then the converse
of Theorem 4 is also true.

Theorem 5. Let Y be closed under cyclic permutations, let A be an arena, and
let v be a node such that the game (B, Ofirst(Y)) is memoryless from v for every
sub-arena B of A. Then every sub-arena B of A is Y -resettable from v.

Proof. We prove that, for every arena B and a node v in it, if (B, Ofirst(Y))
is memoryless from v then B is Y -resettable from v. The theorem follows by
taking B to be any sub-arena of A.

Let z be a node in B. Lemma 3 (Page 10) implies that FCGs are determined.
Thus, it is enough to show that if Player σ wins from v in the game (B, Ofirst(Y)),
then he wins from v in the game (B, Oz-first(Y)). So, fix a player σ ∈ {0, 1} and
assume that Player σ wins from v in (B, Ofirst(Y)). Since by our assumption this
game is memoryless determined, there is a memoryless strategy S for Player σ
winning from v in (B, Ofirst(Y)). Consider the sub-arena B||S induced by S, and
recall that every path in B||S is consistent with S. We claim that every simple
cycle π = π1 . . . πk (of some length k) in B||S , that is reachable from v, satisfies
Y σ. Let ρ be a path in B||S of minimal length that starts in v and ends in
start(πi) for some 1 ≤ i ≤ k. Consider the path π′ = ρπi . . . πkπ1 . . . πi−1. Since
π′ ∈ playsB(S, v), and S is winning from v, we have that the first cycle c on
π′ satisfies Y σ. Observe that (by our choice of ρ) c = πi . . . πkπ1 . . . πi−1, and
is thus a cyclic permutation of π. Since Y σ is closed under cyclic permutations
(recall that if Y is closed under cyclic permutations then so is ¬Y) then π satis-
fies Y σ, and the claim is true. In other words, for every play ρ′ ∈ playsB(S, v),
and every simple cycle c′ = ρ′i . . . ρ

′
j (for some i, j ∈ N) on ρ′, we have that c′

satisfies Y σ. Hence, S is also winning from v in the game (B, Oz-first(Y)).

If an arena A is Y -resettable from v, for every node v, then we simply say
that it is Y -resettable. In other words:

Definition 4. An arena A is Y -resettable if for every σ ∈ {0, 1}, and every
node z, we have that WRσ(A, Oz-first(Y)) = WRσ(A, Ofirst(Y)).

We conclude with this full characterisation:

22

Theorem 6 (Memoryless Determinacy Characterisation of FCGs). The follow-
ing are equivalent for every cycle property Y :

1. Y is closed under cyclic permutations, and every arena A is Y -resettable.

2. Every game in Fcg(Y) is uniform memoryless determined.

Proof. Suppose Y is closed under cyclic permutations. Theorem 3 (part 3)
says that every game in Fcg(Y) that is point-wise memoryless determined is
uniform memoryless determined. But since every arena is assumed Y -resettable
from every v, Theorem 4 implies that every game in Fcg(Y) is point-wise
memoryless determined.

Conversely, suppose every game in Fcg(Y) is uniform memoryless deter-
mined. By Theorem 3 (part 1), Y must be closed under cyclic permutations.
This also means we can apply Theorem 5, and conclude that every arena is
Y -resettable.

6. Strategy Transfer Theorem: Infinite-Duration Cycle Games and
First-Cycle Games

In this section we define the connection between first-cycle games and games
of infinite duration (such as parity games, etc.), namely the concept of Y -greedy
games. We then prove the Strategy Transfer Theorem, which says, roughly, that
for every arena, the winning regions of the First-Cycle Game over Y and a Y -
greedy game coincide, and that memoryless winning strategies transfer between
these two games.

Definition 5 (Greedy). Say that a game (A, O) is Y -greedy if

OAall(Y) ⊆ O and OAall(¬Y) ⊆ Eω \O.

Intuitively, a game (A, O) is Y -greedy means that Player 0 can win the
game (A, O) if he ensures that every cycle in the cycles-decomposition of the
play is in Y , and Player 1 can win if she ensures that every cycle in the cycles-
decomposition of the play is not in Y .

An equivalent formulation is that (A, O) is Y -greedy if

OAall(Y) ⊆ O ⊆ OAexist(Y),

where OAexist(Y) consists of all plays π such that some cycle in cycles(π) satisfies
Y .

Here are some examples.

1. Every all-cycles game (A, Oall(Y)) is Y -greedy.

2. Every parity game is cyc-Parity-greedy.

3. Every game with ν-mean-payoff winning condition is cyc-MeanPayoffν-
greedy.

23

Before proving the Strategy Transfer Theorem we need a lemma that states
that one can pump a strategy S that is winning for the first-cycle game to get a
strategy S	 that is winning for the all-cycles game by following S until a cycle
is formed, removing that cycle from the history, and continuing. The fact that
every winning strategy in the first-cycle game of Y can be pumped to obtain a
winning strategy in a Y -greedy game, is why we call such games “greedy”.

Recall from the Definitions that for a finite path π ∈ E∗, the stack content
at the end of CycDec(ε, π) (Algorithm 1) is denoted stack(π). Recall our
notational abuse (Page 6) that for a finite path ρ, we may write S(ρ) instead of
S(nodes(ρ)).

Definition 6 (Pumping Strategy). Fix an arena A, a Player σ ∈ {0, 1}, and a
strategy S for Player σ. Let the pumping strategy of S be the strategy S	 for
Player σ, defined, on any input u = v1 . . . vk ∈ Hσ(A), as follows:

a. S	(u) := S(vk) if k = 1 or stack(π) = ε, and otherwise

b. S	(u) = S(stack(π)),

where π ∈ E∗ is the path corresponding to u, i.e., nodes(π) = u.

Note that S	 is well-defined since if stack(π) 6= ε then stack(π) ends with
vk ∈ Vσ and so stack(π) is in the domain of S. Also note that if S is memoryless
then the pumping strategy S	 = S.

Lemma 7. Let A, σ, S and S	 be as in Definition 6, and let v ∈ V . If π ∈
plays(S	, v) then for every cycle C in cycles(π) there exists a finite path ρ
consistent with S and starting with v such that:

• The first cycle on ρ is C (thus, in particular, if S is winning from v in
the game (A, Ofirst(Y)) then C satisfies Y σ);

• ρ only contains edges from π.

Proof. Sketch. The strategy S	 says to follow S, and when a cycle is popped
by CycDec, remove that cycle from the history and continue. Thus, for every
cycle C that is popped, let l be the time at which the first edge of C is being
pushed, and note that the stack up to time l followed by C is a path consistent
with S whose first cycle is C.

Details. Fix π ∈ plays(S	, v). Every cycle C ∈ cycles(π) was output by the
run of CycDec(ε, π) at some time j ∈ N, and is thus of the form C = cyclej(π).
Let ρ := stackj−1(π) · πj , and observe that C is the first cycle on ρ, and the
second item in the statement of the lemma is true.

For the first item, it is sufficient to prove, for all k ∈ N, that stackk−1(π) ·πk
is consistent with S and starts with v. We remind the reader that, by definition,
ρ is consistent with S iff:

1. S(start(ρ1)) = end(ρ1) if start(ρ1) ∈ Vσ, and

2. S(ρ[1, n]) = end(ρn+1) for 1 ≤ n < |ρ| with end(ρ[1, n]) ∈ Vσ.

24

We prove that stackk−1(π) · πk is consistent with S and starts with v, by
induction on k ∈ N.

The base is when k = 1. Since stack0(π) = ε, we show that the path
consisting of the single edge π1, which starts with v by definition, is consistent
with S. Note that we are in item 1. of the consistency condition with ρ = π1.
So suppose start(π1) ∈ Vσ. Then:

end(π1) = S	(start(π1)) since π is consistent with S	,

= S(start(π1)) by definition of S	, part a).

For the inductive step, let k > 1 and suppose the inductive hypothesis holds
for k − 1. We prove it holds for k. There are two cases.

i) Suppose stackk−1(π) = ε. To show πk is consistent with S, note that we
are again in item 1. of the consistency condition, but this time with ρ = πk.
Repeat the argument in the base case with πk replacing π1. To show that πk
starts with v argue as follows. The fact that stackk−1(π) = ε means that after
pushing πk−1 onto the stack during step k−1 of the algorithm CycDec(ε, π), the
resulting stack forms a cycle. In other words, end(πk−1) = start(stackk−2(π) ·
πk−1). But start(πk) = end(πk−1) since π is a path, and start(stackk−2(π) ·
πk−1) = v by the induction hypothesis. Thus start(πk) = v.

ii) Suppose stackk−1(π) 6= ε. The induction hypothesis states that the
path stackk−2(π) · πk−1 is consistent with S and starts with v. Observe that
stackk−1(π) is a (non-empty) prefix of stackk−2(π)·πk−1. So, stackk−1(π) starts
with v, and, being a prefix of a path consistent with S, is consistent with S.
Thus we only need to consider πk. That is, we are in item 2. of the consistency
condition, with ρ = stackk−1(π) · πk and n = |stackk−1(π)|. If end(ρ[1, n]) ∈ Vσ
then

end(ρn+1) = end(πk) since ρn+1 = πk,

= S	(π[1, k − 1]) since π is consistent with S	,

= S(stackk−1(π)) by definition of S	, part b),

= S(ρ[1, n]) since ρ[1, n] = stackk−1(π).

This completes the inductive step and the proof.

Corollary 2. Fix Player σ ∈ {0, 1} and let (A, O) be a Y -greedy game. If S
is a strategy for Player σ that is winning from v in (A, Ofirst(Y)) then S	 is
winning from v in (A, O).

Proof. Suppose S is winning from v in the game (A, Ofirst(Y)). Then, by
Lemma 7, for every play π ∈ plays(S	, v), every cycle in cycles(π) satisfies
Y σ, i.e., π ∈ OAall(Y

σ). By definition of Y -greedy, this means that S	 is winning
from v in the game (A, O).

We now have the ingredients for the proof of the Strategy Transfer Theorem:

25

Theorem 7 (Strategy Transfer). Let (A, O) be a Y -greedy game, and let σ ∈
{0, 1}.

1. The winning regions for Player σ in the games (A, O) and (A, Ofirst(Y))
coincide.

2. For every memoryless strategy S for Player σ, and vertex v ∈ V in arena
A: S is winning from v in the game (A, O) if and only if S is winning
from v in the game (A, Ofirst(Y)).

Proof. Let Y ⊆ U∗ be a cycle property and A an arena. Suppose that (A, O) is
Y -greedy. We begin by proving the first item. Use Corollary 2 to get that for
σ ∈ {0, 1},

WRσ(A, Ofirst(Y)) ⊆WRσ(A, O).

Since first-cycle games are determined (Lemma 3), the winning regions
WR0(A, Ofirst(Y)) and WR1(A, Ofirst(Y)) partition V . Thus, since WR0(A, O)
and WR1(A, O) are disjoint, the containments above are equalities, as required
for item 1.

We prove the second item. Since S = S	 if S is memoryless, conclude by
Corollary 2: if S is winning from v in the game (A, Ofirst(Y)) then it is winning
from v in the game (A, O). For the other direction, assume by contraposition
that S is not winning from v in the game (A, Ofirst(Y)). Since S is memoryless,
plays of A consistent with S are exactly infinite paths in the induced sub-
arena A||S . Hence, there is a path π in the induced solitaire arena A||S for
which the first cycle, say π[i, j], satisfies Y 1−σ. Define the infinite path π′ :=
π[1, i − 1] · (π[i, j])ω and note that, being a path in A||S , it is a play of A
consistent with S. Moreover, π′ has the property that every cycle in its cycles-
decomposition (i.e., π[i, j]) satisfies Y 1−σ. Since (A, O) is Y -greedy, S is not
winning from v in the game (A, O).

Since FCGs are determined (Lemma 3, Page 10) use Theorem 7 to get:

Corollary 3. Every Y -greedy game (A, O) is determined, has the same winning
regions as (A, Ofirst(Y)), and is point-wise (uniform) memoryless determined if
and only if the game (A, Ofirst(Y)) is point-wise (uniform) memoryless deter-
mined.

We now state our main result concerning Y -greedy games.

Theorem 8 (Memoryless Determinacy Characterisation of Greedy Games).
For every cycle property Y , the following are equivalent:

1. Y is closed under cyclic permutations, and every arena is Y -resettable.

2. Every Y -greedy game is uniform memoryless determined.

Proof. This follows from Corollary 3, Theorem 6, and the fact that for ev-
ery arena A there is a Y -greedy game with arena A, for example, the game
(A, Oall(Y)).

26

7. An easy to check sufficient condition on Y ensuring memoryless
determinacy of FCGs

As we have seen Y -resettability together with closure under cyclic permuta-
tions provides a full characterization of those cycle properties Y for which the
games in Fcg(Y), as well as any Y -greedy games, are memoryless determined.
Even though, in many cases, checking whether Y is such that every arena A (or
just the arena(s) of interest) is Y -resettable is not too difficult, we believe that
in practice it is much easier to use the following condition on Y which avoids
reasoning about arenas altogether. The condition we suggest is the following:

Y and ¬Y are closed under concatenation.

As we later show, this condition (together with closure under cyclic permu-
tations) ensures that every arena A is Y -resettable, and thus by Theorem 6,
that all games in Fcg(Y) are memoryless determined. On the other hand, as
we discuss in Section 8, there is a cycle property Y which is closed under cyclic
permutations and for which every arena A is Y -resettable, even though Y does
not satisfy the condition. Thus, this condition cannot replace Y -resettability
as a necessary condition for memoryless determinacy of all games in Fcg(Y).
However, it is applicable in a wide variety of cases, and is usually very easy to
check. Consider for example the cycle properties given in Section 2. For each
of these properties Y , while proving that every arena is Y -resettable may not
be hard, checking whether Y satisfies the condition above is almost completely
trivial. Note that cyc-EvenLen, which is the only property among these which is
closed under cyclic permutations but fails to satisfy this condition, would also
fail to satisfy any other condition that guarantees memoryless determinacy since
it actually admits FCGs that are not memoryless determined (cf. Theorem 3,
Page 16).

Our goal in the rest of this section is to prove the following theorem:

Theorem 9 (Easy to check). Let Y ⊆ U∗ be a cycle property. If Y is closed
under cyclic permutations, and both Y and ¬Y are closed under concatenation,
then every arena A is Y -resettable.

By Theorem 6 we get:

Corollary 4. Let Y ⊆ U∗ be a cycle property. If Y is closed under cyclic
permutations, and both Y and ¬Y are closed under concatenation, then every
game in Fcg(Y) is uniform memoryless determined.

Remark 2. Consider the cycle property Y = cyc-GoodForEnergy (recall from
the definitions this means that either the energy level is positive, or it is zero
and the largest priority occurring is even). Note that Y is closed under cyclic
permutations, and both Y and ¬Y are closed under concatenation. Conclude
that every game in Fcg(Y) is pointwise-memoryless determined. This fact
allows one to obtain a proof of Lemma 4 in Chatterjee and Doyen (2012) that
no longer relies on the incorrect result from Björklund et al. (2004).

27

We begin by introducing a new kind of objective OAtail(Y):

Definition 7. For an arena A and cycle property Y , define the objective OAtail(Y)
to consist of all plays π such that there is a suffix π′ of π with the property that
every cycle in cycles(π′) satisfies Y .

Note that this is not the same as saying that λ(C) ∈ Y for all but finitely
many cycles C in cycles(π).9

Definition 8. An arena A is Y -unambiguous if OAtail(Y) ∩OAtail(¬Y) = ∅.

In other words, A is Y -unambiguous if no play in A has two suffixes, π, π′

such that every cycle in the cyclic decomposition of π is in Y , and every cycle
in the cyclic decomposition of π′ is not in Y .

In order to prove Theorem 9 we have to show that, for Y satisfying the
assumptions of the theorem, for every arena A, every Player σ ∈ {0, 1}, and
every node z in A, we have that WRσ(A, Ofirst(Y)) = WRσ(A, Oz-first(Y)). The
proof is in three parts:

Part 1. If Y is closed under cyclic permutations, and both Y and ¬Y are closed
under concatenation, then every arena A is Y -unambiguous.

Part 2. If A is Y -unambiguous then WRσ(A, Ofirst(Y)) = WRσ(A, Otail(Y)).

Part 3. If A is Y -unambiguous then WRσ(A, Oz-first(Y)) = WRσ(A, Otail(Y)).

Observe that parts 2 and 3 imply that if an arena A is Y -unambiguous then
it is Y -resettable.

We first need a couple of definitions and a few easy lemmas. Say that Y
is closed under insertions if it is closed under concatenation and: ac ∈ Y and
b ∈ Y imply that abc ∈ Y , for all a, b, c ∈ U∗. The closure of Y under insertions,
is defined to be the smallest subset of U∗ (with respect to set containment) that
contains Y and is closed under insertions.

Lemma 8. If Y is closed under cyclic permutations and under concatenation
then Y is closed under insertions.

Proof. Assume that ac, b ∈ Y . We have that ac ∈ Y =⇒ ca ∈ Y =⇒
cab ∈ Y =⇒ abc ∈ Y . The middle implication is since Y is closed under
concatenation, and the other two implications are since Y is closed under cyclic
permutations.

Fix an arena A = (V0, V1, E,U, λ). Given a simple path s ∈ E∗, and a
path u ∈ E∗ such that end(s) = start(u), write labels(s, u) = {λ(C) | C ∈
cycles(s, u)} for the set of the labels of the cycles output by CycDec(s, u).

9For instance, consider the arena in Figure 4, take Y to be cyc-EvenLen, and let π :=
[(v1, v2)(v2, v1)(v1, v3)(v3, v2)(v2, v4)(v4, v1)]ω . Note that i) decomposing the suffix π′ start-
ing with the second edge results in all cycles having odd length, and ii) it is not the case that
almost all cycles in the cycles-decomposition of π (i.e., starting with the first edge) have odd
length – in fact, they all have even length.

28

Lemma 9. Given an arena A = (V0, V1, E,U, λ), let s, u be paths in A such
that u is a cycle and end(s) = start(u) = v. We have that:

1. if stack(s, u) = s then the insertion closure of labels(s, u) contains λ(u);

2. if v is the only node that appears on both s and u then stack(s, u) = s.

Proof. Sketch. For the first item, note that the assumption stack(s, u) = s
implies that the cycles in cycles(s, u) contain exactly the edges of u. Hence, it
is not hard to see that λ(u) is in the insertion closure of labels(s, u). Intuitively,
the algorithm output the cycles in cycles(s, u) by “popping them out” of u.
Thus, we can reverse this process and reconstruct u using insertion operations
on the elements of cycles(s, u).

Details. More formally, let C1, . . . Cm be the elements of cycles(s, u) in the
order they were output. We iteratively construct a string w ∈ E∗ until we get
w = u. We start with w being the empty string, and count down from m to
1. At step i in the count, we insert the cycle Ci into the correct position in
w, as follows: let j be such that uj = Ci0 (i.e., the first edge of Ci), and set
w := w1 . . .wh · Ci · wh+1 . . .w|w|, where h is the maximal index such that all
the edges w1, . . . ,wh are in {u1, . . . , uj−1}.

It is easy to see that when the construction ends w contains exactly the edges
appearing in C1, . . . Cm and thus, as noted before, exactly the edges of u. We
claim that the edges are also ordered correctly (i.e., if a < b then wa appears in
u before wb) and thus, w = u as required. Assume by way of contradiction that
the correct ordering in w was violated for the first time when Ci was inserted.
Let uj be the first edge of Ci and h be the position where Ci was inserted into
w, as defined before. Recall that after the insertion the constructed string is
w1 . . .wh · Ci · wh+1 . . .w|w|. Observe that since all edges of Ci are internally
ordered correctly, and all of them correctly appear (by our choice of h) after
w1 . . .wh, the only possible violation is that some edge ut in Ci incorrectly
appears before the edge wh+1 = ur, i.e., that j < r < t. Also note that at
the step where Ci was output, all edges above uj that were on the stack were
popped, and all edges up to ut were already processed. Hence, it can not be
that the edge ur was output by the algorithm after Ci, which is a contradiction
to the fact that ur is already in w before the insertion of Ci. This completes
the proof of the claim.

For the second item, observe that the assumption made there implies that,
while processing u, the algorithm CycDec(s, u) cannot pop any edge in s.
Hence, stack(s, u) = s does not hold only if there exists j such that the edge
uj = (v, v′) is pushed on top of s but never popped. Observe that v′ 6= v =
src(u) = trg(u) (the first inequality is since a self-loop is always popped, the
rest by our assumption that u is a cycle that starts in v), and thus uj is not
the last edge of u. But this is a contradiction since the (non-empty) suffix
uj+1 . . . u|u| of u contains at least one edge e′ with end(e′) = v (namely u|u|),
and the algorithm would have popped the edge uj when it encountered the first
edge that ends in v.

We are now ready to show part 1 in the proof of Theorem 9.

29

Proposition 2. Let Y ⊆ U∗ be a cycle property. If Y is closed under cyclic
permutations, and both Y and ¬Y are closed under concatenation, then every
arena A is Y -unambiguous.

Proof. First, note that since Y is closed under cyclic permutations then so is
¬Y . By Lemma 8, we have that Y , as well as ¬Y , are closed under insertions.

Assume by way of contradiction that there is an arena A = (V0, V1, E,U, λ)
which is not Y -unambiguous, and take a play α in the intersection of OAtail(Y)
and OAtail(¬Y). Let a, b ∈ N be such that every cycle in cycles(α[a,∞]) satisfies
Y , and every cycle in cycles(α[b,∞]) satisfies ¬Y .

For i, j such that a ≤ i < j, write Out(i, j) = {cyclel(α[a,∞]) | i ≤ l ≤
j} \ {ε} to be the set of cycles output by CycDec(ε, α[a,∞]) while processing
the edges αi . . . αj , and note that for every C ∈ Out(i, j) we have that λ(C) ∈ Y .
Similarly, for i, j such that b ≤ i < j, write Out¬(i, j) = {cyclel(α[b,∞]) |
i ≤ l ≤ j} \ {ε} to be the set of cycles output by CycDec(ε, α[b,∞]) while
processing the edges αi . . . αj , and note that for every C ∈ Out¬(i, j) we have
that λ(C) ∈ ¬Y

Since, for every i ≥ 1, the stack content stacki(α[a,∞]) is of length at most
|V | − 1, there is at least one stack content that appears infinitely often. Thus,
let ua ∈ E∗ be a path of minimal length such that the set A = {i ∈ N | ua =
stacki(α[a,∞])} is infinite. Similarly, let ub ∈ E∗ be a path of minimal length
such that B = {i ∈ N | ub = stacki(α[b,∞])} is infinite.

We assume w.l.o.g. (otherwise we simply replace A and B by appropriate
infinite subsets of themselves until each of the following conditions is satisfied)
that †:

(i) ua = stacki(α[a,∞]) for every i ∈ A, and ub = stacki(α[b,∞]) for every
i ∈ B;

(ii) end(αi) = end(αj) for all i, j ∈ A and end(αi) = end(αj) for all i, j ∈ B
(recall that the nodes on α come from the finite set V);

(iii) there exists sa ∈ E∗ such that sa = stacki(α[a,∞]) for all i ∈ B;

α
w v v w

b1 a2 a3 b2

stacki(α[a,∞]) sa ua ua sa

stacki(α[b,∞]) ub ub

Figure 6: Visualisation of the processing of the play α.

Pick indices b1, b2 ∈ B and a2, a3 ∈ A in such a way that b1 < a2 < a3 < b2.
Figure 6 may aid in visualising the current state of affairs. In this figure, w :=
end(αb1) = end(ub) = end(αb2) and v := end(αa2) = end(ua) = end(αa3).

30

Our aim now is to show that the above state of affairs leads to a contra-
diction, and thus deduce that it can not be that α ∈ OAtail(Y) ∩ OAtail(¬Y). The
contradiction we will show is that λ(α[b1 + 1, b2]) is both in Y and in its com-
plement ¬Y , which is impossible. We will do that by showing how to build
λ(α[b1 + 1, b2]) in two different ways: the first by using cyclic permutations and
concatenations of strings that are the labels of cycles that satisfy Y , and the
second by doing the same but with cycles that satisfy ¬Y . Since by the assump-
tion of the proposition Y and ¬Y are closed under these string operations, the
contradiction is reached.

We first show that α[b1 + 1, b2] (which by †(ii) is a cycle) satisfies ¬Y .
Intuitively (refer to Figure 6), this follows from the fact that all cycles output
by the algorithm CycDec(ε, α[b,∞])) while processing α[b1 + 1, b2] satisfy ¬Y ,
and the fact that before and after processing α[b1 + 1, b2] the stack of this
algorithm is ub, and thus by Lemma 9 we have that λ(α[b1 + 1, b2]) is in the
insertion closure of the labels of these cycles, and thus also in ¬Y (recall that
¬Y is closed under insertions).

We next show that λ(α[b1 + 1, b2]) ∈ Y . Observe (refer to Figure 6) that
α[b1 + 1, b2] = α[b1 + 1, a2]α[a2 + 1, a3])α[a3 + 1, b2]. Since Y is closed under
concatenation and cyclic permutations, to show that λ(α[b1 + 1, b2]) ∈ Y it is
enough to show that λ(α[a2 + 1, a3]) ∈ Y and λ(x) ∈ Y , where x := α[a3 +
1, b2]α[b1 + 1, a2]. The fact that λ(α[a2 + 1, a3]) ∈ Y follows from a symmetric
argument that mimics the one used above to prove that α[b1 + 1, b2] satisfies
¬Y . It remains to show that λ(x) ∈ Y .

To see that λ(x) ∈ Y , note that when the algorithm CycDec(ε, α[a,∞]))
finishes processing α[a3 + 1, b2] it has the same stack content (namely sa) that
it had when it previously started processing α[b1 + 1, a2]. Thus, if we imagine
that after processing α[a3 + 1, b2], instead of continuing to process α[b2 + 1,∞],
we feed the algorithm again with α[b1 + 1, a2] (i.e., we let it process the second
part of x), we will get (by Lemma 2) that it will behave exactly the same as
when it first processed α[b1 +1, a2] as part of the prefix α[a, a2]. We thus obtain
that while processing x this way starting with stack ua, the algorithm ends with
stack ua and outputs only cycles that satisfy Y (recall that all cycles output
by CycDec(ε, α[a,∞]) do). Thus, by Lemma 9, we have that λ(x) is in the
insertion closure of the labels of cycles that satisfy Y , and thus also in Y (recall
that Y is closed under insertions).

The following Proposition deals with Part 2 in the proof of Theorem 9.

Proposition 3. Fix a Y -unambiguous arena A. Then for σ ∈ {0, 1},

WRσ(A, Ofirst(Y)) = WRσ(A, Otail(Y)).

Proof. By Theorem 7 (item 1) it is sufficient to show that if A is Y -unambiguous
then the game (A, Otail(Y)) is Y -greedy. So, fix a play π in A. If every cycle
in the cycles-decomposition of π satisfies Y then certainly π ∈ Otail(Y) (just
take π itself as the required suffix). On the other hand, if every cycle in the
cycles-decomposition of π satisfies ¬Y then for the same reason π ∈ Otail(¬Y).
However, since A is Y -unambiguous, π 6∈ Otail(Y), as required.

31

The following Proposition deals with Part 3.

Proposition 4. Fix a Y -unambiguous arena A and vertex z ∈ V . Then for
σ ∈ {0, 1},

WRσ(A, Oz-first(Y)) = WRσ(A, Otail(Y)).

Proof. Let A = (V0, V1, E,U, λ). We first claim that for every σ ∈ {0, 1}, we
have that WRσ(A, Oz-first(Y)) ⊆WRσ(A, Otail(Y)). To see that the Proposition
follows from this claim note that WR0(A, Oz-first(Y)) and WR1(A, Oz-first(Y))
partition V since the game (A, Oz-first(Y)), being finitary, is determined (by
Lemma 3). Since WR0(A, Otail(Y)) and WR1(A, Otail(Y)) are disjoint, the con-
tainments above must be equalities.

To prove the claim, recall that since A is Y -unambiguous then OAtail(Y) ∩
OAtail(¬Y) = ∅. Hence, a play π in the game (A, Otail(Y)) is won by Player 0
(resp. Player 1) if π has a suffix π′ for which every cycle in cycles(π′) is in
Y (resp. ¬Y). It is thus enough to show that: (†) for every σ ∈ {0, 1}, and
every node v in A, given a strategy S that is winning from v for Player σ in the
game (A, Oz-first(Y)), we can construct a strategy T for Player σ in the game
(A, Otail(Y)), such that every play π ∈ plays(T, v) has a suffix π′ for which every
cycle in cycles(π′) satisfies Y σ.

Consider first the case where z 6∈ reach(S, v), or that z ∈ reach(S, v) but
that every path in plays(S, v) that visits z contains a cycle before the first
occurrence of z on the path. Observe that this implies that S is winning from
v in the game (A, Ofirst(Y)). In this case we let T = S	, where S	 is the
pumping strategy of S (Definition 6). By Lemma 7 we have that, for every
π ∈ plays(T, v), all the cycles in cycles(π) satisfy Y σ, and thus (†) holds with
π′ = π.

Consider now the remaining case that z ∈ reach(S, v) and that there is
a simple path ρ from v to z which is consistent with S. Define a strategy
Sz for Player σ in the game (A, Ofirst(Y)) as follows: for every u ∈ V ∗Vσ,
let Sz(u) := S(ρu) if u starts in z, and otherwise define it arbitrarily (i.e.,
Sz(u) = w, where w is some node with (end(u), w) ∈ E). Observe that, for
every π ∈ plays(Sz, z), the play ρπ is in plays(S, v), and since ρ is a simple
path that ends in z, Player σ wins the play ρπ in the game (A, Oz-first(Y)) iff
the first cycle on π satisfies Y σ. Thus, since S is winning from v, we have that
Sz is winning from z in the game (A, Ofirst(Y)).

We can now construct the desired strategy T for Player σ in the game
(A, Otail(Y)). The strategy T works as follows: as long as a play does not
touch the node z the strategy T behaves like the pumping strategy S	 of S;
however, once (and if) z is reached, T erases its memory and switches to behave
like the pumping strategy (Sz)

	 of Sz (starting from z). Recall that we have
to show that every play π ∈ plays(T, v) has a suffix π′ for which every cycle in
cycles(π′) satisfies Y σ. Informally, if z does not appear on π then π is consistent
with S	, and by Lemma 7 every cycle in cycles(π) satisfies Y σ, and we can take
π′ = π. On the other hand, if z appears on π then tailz(π) is consistent with
(Sz)

	, and thus by Lemma 7 every cycle in cycles(tailz(π)) satisfies Y σ, and
we can take π′ = tailz(π).

32

Formally, define the strategy T as follows: for every u ∈ V ∗Vσ,

T (u) :=

{
S	(u) if z does not appear on u,

(Sz)
	(tailz(u)) otherwise.

Given π ∈ plays(T, v), either z appears on π or not. If it does not, then
π ∈ plays(S	, v), and by Lemma 7 every cycle C in cycles(π) is the first cycle
of some path ρ consistent with S and starting with v, that only uses edges from
π. Thus, z does not appear on ρ, and since S is winning from v in the game
(A, Oz-first(Y)), we have that C satisfies Y σ. If z does appear on π, we argue that
tailz(π) ∈ plays((Sz)	, z), i.e., that tailz(π) is consistent with (Sz)

	. Indeed,
if m = |head(π)|, then for every j ≥ 1 for which start(tailz(π)j) ∈ Vσ we have:

end(tailz(π)j) = T (π[1,m+ j])

= (Sz)
	(tailz(π[1,m+ j]))

= (Sz)
	(π[m+ 1,m+ j])

= (Sz)
	((tailz(π))[1, j]).

By Lemma 7, since tailz(π) ∈ plays((Sz)	, z), every cycle in cycles(tailz(π))
satisfies Y σ. Overall, in the first case (†) holds with π′ = π, and in the second
with π′ = tailz(π), which completes the proof of the claim.

This concludes the proof of Theorem 9.

8. A recipe for proving that a game is memoryless determined

We synthesise the results of the previous section and provide a practical way
of deducing uniform memoryless determinacy of many infinite-duration games.

First, we get the following sufficient condition for memoryless determinacy
from Theorems 8 and 9.

Theorem 10. Let Y be a cycle property that is closed under cyclic permuta-
tions, and such that both Y and ¬Y are closed under concatenation. Let W be
a winning condition. Every Y -greedy game (A, O(W)) is uniform memoryless
determined.

Second, many winning conditions for infinite-duration games (for example
parity and mean-payoff) are such that the outcome of a play does not depend
on any finite prefix of the play, but only on some “infinite” property of the play.
Such winning conditions are usually called prefix-independent. Formally:

Definition 9. Say that a winning condition W ⊆ Uω is prefix-independent if
c1c2 · · · ∈W implies that the suffix cici+1 · · · ∈W for every i ∈ N.

In practice, showing whether or not a given W is prefix-independent is usu-
ally very easy. The relevance of prefix-independence to our work is captured by
the following theorem.

33

Theorem 11. Let W be a prefix-independent winning condition, and let Y be
a cycle-property that is closed under cyclic permutations. For every arena A, if
the game (A, O(W)) is Y -greedy then it is uniform memoryless determined.

Proof. By Theorem 8 it is sufficient to prove that every arena A is Y -resettable.
By Propositions 3 and 4 it is thus sufficient to prove that A is Y -unambiguous.
So, assume by way of contradiction there is a play π and indices a, b ∈ N be such
that every cycle in cycles(π[a,∞]) satisfies Y , and every cycle in cycles(π[b,∞])
satisfies ¬Y . Since (A, O(W)) is Y -greedy on A we get that, in the game
(A, O(W)), Player 0 wins π[a,∞], and Player 1 wins π[b,∞]. But this is a
contradiction to the assumption that W is prefix-independent.

Given a winning condition W and a set of arenas of interest C (in many cases
C is taken to be all arenas), Theorems 10 and 11 suggest the following recipe for
proving that the game (A, O(W)) is uniform memoryless determined for every
A ∈ C.

Step 1. Finitise the winning condition W ⊆ Uω to get a cycle property
Y ⊆ U∗ that is closed under cyclic permutations.

Step 2. Show that the game (A, O(W)) is Y -greedy for every A ∈ C.
Step 3. Show that either:

(a) Both Y and ¬Y are closed under concatenation; or that:
(b) W is prefix independent.

We illustrate the use of the recipe with some examples.

Example 1. We will use the recipe to prove that every parity game is mem-
oryless determined. For Step 1, a natural finitisation of the parity condition
W ⊂ Zω — which says that the largest priority occurring infinitely often is even
— is the cycle property cyc-Parity ⊂ Z∗ which says that the largest priority oc-
curring is even. This property is clearly closed under cyclic permutations. For
Step 2, it is easy to verify that every parity game is cyc-Parity-greedy, and for
Step 3, it is immediate that both cyc-Parity and ¬cyc-Parity are closed under con-
catenation (as it happens, it is also easy to check that W is prefix-independent).

Example 2. We now consider a slightly more subtle application of the recipe.
Consider the following game,10 played on an arenaA whose vertices are labeled11

using the alphabet U = {a, b}. The winning condition W ⊂ Uω consists of those
infinite sequences that contain infinitely many a’s and infinitely many b’s. The

10This example was kindly brought to our attention by Erich Grädel, and it prompted us
to enhance the recipe that was published in the preliminary work (Aminof and Rubin, 2014)
to include Step 3(b).

11Recall Remark 1 that states that all the results in this paper also apply to vertex labeling.

34

natural finite version of W is the cycle property Y ⊂ U∗ consisting of strings
which contain at least one a and at least one b, and it is clearly closed under
cyclic permutations. To see that W is Y -greedy on A, observe that if all cycles
in cycles(π) satisfy Y then certainly π ∈ W . On the other hand, if all cycles
in cycles(π) satisfy ¬Y then no edge that appears on such a cycle goes from
a node labeled a to a node labeled b. Thus by Lemma 1 (Page 9) π does not
satisfy W .

Unfortunately, ¬Y is not closed under concatenation, which prevents us
from applying Step 3(a). However, since W is clearly prefix-independent, we
can apply Step 3(b) and conclude that (A, O(W)) is memoryless determined.

Example 3. We conclude with a more sophisticated use of the recipe, applied
to the initial credit problem of energy games. We show that either there is an
initial credit with which Player 0 (the “energy” player) wins, or that for every
initial credit Player 1 wins. In both cases, we show that the winner can use a
memoryless strategy. A natural finitisation of the energy condition Wr ⊂ Zω
— which says that at every point along a play, the sum of the initial credit
r and the labels of the edges already traversed is not negative — is the cycle
property cyc-Energy ⊂ Z∗ which says that the sum of the numbers is non-
negative. This property is clearly closed under cyclic permutations. Given an
arena A, consider the game (A, Oall(cyc-Energy)). We first claim that if the
initial credit is at least r = −t(|V | − 1), where t is the minimum amongst
the negative weights of the arena, the winning regions of the energy game and
the game (A, Oall(cyc-Energy)) coincide and winning strategies transfer from
the latter to the former. To see that, observe that a play won by Player 1 in
(A, Oall(cyc-Energy)) is also won by her in the energy game since the energy along
the play tends to −∞. On the other hand, let π be a play won by Player 0 in
(A, Oall(cyc-Energy)), and consider some prefix π′ of it. Recall that, by Lemma 1,
at most |V | − 1 edges are not on cycles(π′), and thus the energy level at the
end of π′ is at least the initial credit plus t(|V |−1). Hence, an initial credit of r
suffices for π to be winning for Player 0 also in the energy game. It remains to
show, using the recipe, that (A, Oall(cyc-Energy)) is memoryless determined. As
noted before (see Example 1 after Definition 5) every (A, Oall(Y)) is Y -greedy,
which completes Step 2. Since step 3a is immediate for cyc-Energy we are done.

9. Discussion and Future Work

The central algorithmic problem for a class of determined graph games is to
decide, given an arena and a starting vertex, which of the players has a winning
strategy. We have seen a Pspace upper bound on the complexity of solving
games in Fcg(Y) (assuming Y is computable in Pspace), and that there are
very simple cycle properties Y for which the complexity is Pspace-complete.
What about other Y s such as cyc-Parity and cyc-MeanPayoffν? Our Strategy
Transfer result (Theorem 7) implies that the complexity of solving Fcg(Y) is
the same as that of solving Y -greedy games. For instance, since parity games
are cyc-Parity-greedy, and the complexity of solving them is not known to be

35

in Ptime — except on restricted classes of arenas, e.g., bounded DAG-width
(Berwanger et al. (2006)) and bounded trap-depth (Grinshpun et al. (2014)) —
the same is true of the complexity of solving games from Fcg(cyc-Parity).

On the other hand, since there are cycle properties Y such that some games
in Fcg(Y) are memoryless determined and some are not (for instance, take
Y = cyc-EvenLen), the following algorithmic problem naturally presents itself:
what is the complexity of deciding, given (a finite description of) Y and an
arena A, whether or not the game (A, Ofirst(Y)) is memoryless determined? We
believe that this problem can be addressed using techniques developed in this
paper.

Finally, this paper has dealt with qualitative games (i.e., a player either
wins or loses). The exact nature of the theory of quantitative first-cycle games
over general cycle properties Y is still to be explored. To what extent do our
techniques generalise to quantitative games? or to stochastic ones?

Acknowledgments. We thank Erich Grädel for stimulating feedback which
led to an improvement of the recipe in Section 8. We thank the referees for their
useful suggestions and careful reading. This work was supported by the Vienna
Science and Technology Fund (WWTF) through grant ICT12-059.

References

Aminof, B., Rubin, S., 2014. First cycle games. In: Proceedings 2nd Interna-
tional Workshop on Strategic Reasoning (SR 2014). Vol. 146 of EPTCS. pp.
83–90.

Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., 2006. Dag-width and par-
ity games. In: Durand, B., Thomas, W. (Eds.), Symposium on Theoretical
Aspects of Computer Science (STACS 2006). Vol. 3884 of Lecture Notes in
Computer Science. Springer, pp. 524–536.

Bianco, A., Faella, M., Mogavero, F., Murano, A., 2011. Exploring the boundary
of half-positionality. Annals of Mathematics and Artificial Intelligence 62 (1-
2), 55–77.

Björklund, H., Sandberg, S., Vorobyov, S. G., 2004. Memoryless determinacy of
parity and mean payoff games: a simple proof. Theoretical Computer Science
310 (1-3), 365–378.

Chatterjee, K., Doyen, L., 2012. Energy parity games. Theoretical Computer
Science 458, 49–60.

Ehrenfeucht, A., Mycielski, J., 1979. Positional strategies for mean payoff games.
International Journal of Game Theory 8 (2), 109–113.

Gale, D., Stewart, F. M., 1953. Infinite Games with Perfect Information. In:
Kuhn, H., Tucker, A. (Eds.), Contributions to the Theory of Games, Volume
II. Annals of Mathematics Studies (AM-28). Princeton University Press, pp.
245–266.

36

Gimbert, H., Zielonka, W., 2005. Games where you can play optimally without
any memory. In: Abadi, M., de Alfaro, L. (Eds.), International Conference on
Concurrency Theory (CONCUR 2005). Lecture Notes in Computer Science
3653. pp. 428–442.

Grinshpun, A., Phalitnonkiat, P., Rubin, S., Tarfulea, A., 2014. Alternating
traps in muller and parity games. Theoretical Computer Science 521, 73–91.

Kopczynski, E., 2006. Half-positional determinacy of infinite games. In: In-
ternational Colloquium on Automata, Languages and Programming (ICALP
2006). pp. 336–347.

Sipser, M., 1997. Introduction to the theory of computation. PWS Publishing
Company.

Zwick, U., Paterson, M., 1996. The complexity of mean payoff games on graphs.
Theoretical Computer Science 158 (1&2), 343–359.

37

