
DIPLOMARBEIT

Fine Structure and Site Specific Energy
Loss Spectra of NiO

Ausgeführt am Institut für

Festkörperphysik
der Technischen Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dr. Peter Schattschneider

durch

Walid Hetaba
Rechte Bahnzeile 16
3494 Gedersdorf

Wien, Mai 2011

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Gottes ist der Orient!
Gottes ist der Occident!
Nord- und südliches Gelände
Ruht im Frieden seiner Hände.

Er der einzige Gerechte
Will für jedermann das Rechte.
Sey, von seinen hundert Namen,
Dieser hochgelobet! Amen.

Mich verwirren will das Irren;
doch du weißt mich zu entwirren.
Wenn ich handle, wenn ich dichte,
Gieb du meinem Weg die Richte.

Ob ich Ird’sches denk’ und sinne
Das gereicht zu höherem Gewinne.
Mit dem Staube nicht der Geist zerstoben
Dringet, in sich selbst gedrängt, nach oben.

Im Atemholen sind zweyerley Gnaden:
Die Luft einziehn, sich ihrer entladen.
Jenes bedrängt, dieses erfrischt;
So wunderbar ist das Leben gemischt.
Du danke Gott, wenn er dich preßt,
Und dank’ ihm, wenn er dich wieder entläßt.

Johann Wolfgang von Goethe



Zusammenfassung

Mittels des Simulationsprogramms WIEN2k wurden Berechnungen der elektroni-
schen Struktur von NiO durchgeführt. Die mit verschiedenen Austausch-Korrelations-
funktionalen erhaltenen Ergebnisse wurden mit experimentellen Daten verglichen.
Man sieht, dass das modifizierte Becke-Johnson Austauschpotential die beste Wahl
für das Übergangsmetalloxid NiO ist.

Weiters wurde die Wechselwirkung zwischen dem Elektronenstrahl und der Probe
mittels Energieverlust von kanalisierten Elektronen untersucht. Die Berechnungen,
durchgeführt mit einem Simulationsprogramm basierend auf dem Blochwellenfor-
malismus und dem gemischten dynamischen Formfaktor, wurden mit Experimenten
verglichen und zeigen sehr gute Übereinstimmung.

Zusammenfassend kann gesagt werden, dass es die jüngsten Fortschritte bei Simula-
tionsprogrammen erlauben, die mit komplizierten Methoden in einer neuen Generation
von korrigierten Elektronenmikroskopen erhaltenen experimentellen Daten besser zu
erklären.



Abstract

Electronic structure calculations for NiO were performed using the ab-initio simulation
package WIEN2k. The results obtained using different exchange-correlation function-
als were compared to experimental data. It is shown that the modified Becke-Johnson
exchange potential is the best choice for the transition-metal oxide NiO.

Furthermore, the probe–target interaction was investigated by means of energy loss
by channelled electrons. The calculations conducted using a simulation software based
on the Bloch-wave formalism and the mixed dynamic form factor were compared to
experiments. It is shown that the measurements are in very good agreement with the
simulations.

Thus, it is shown that recent advances in simulation software allow for explaining
high precision experimental data obtained by sophisticated techniques in a new
generation of corrected electron microscopes.
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1. Introduction

A new generation of corrected transmission electron microscopes (TEM) allows
experiments with unprecedented high quality and precision. Thus, one cannot get
along without sophisticated simulations to understand experimental data.
In transmission electron microscopy two fields need a detailed description by

simulations. The first one is the calculation of the electronic structure of the sample
material. The second field is the accurate modelling of the probe–target interaction.
The calculation of the electronic structure is usually done by means of ab-initio

simulations. One possibility is to use the density functional theory based program
package WIEN2k [1]. The crucial point of these calculations is to describe the ex-
change-correlation potential as accurately as possible. This is especially important for
the calculation of the electronic structure of 3d transition-metals. Due to the strongly
localized 3d electrons, the common local density approximation fails. In recent years
new ways to describe the exchange correlation potential have come up [2, 3].
When investigating the probe–target interaction, the combination of elastic with

inelastic scattering is of current interest. According to dynamical diffraction of the
probe, the thickness dependence of a measured signal depends in a complicated
way on the scattering geometry. These effects can already be seen as the so-called
“Pendellösung” when using the Bloch-wave formalism [4]. Even in simple TEM
investigations effects can be seen [5]. Particularly for sophisticated methods like
“energy loss by channelled electrons” (ELCE) [6], “atom location by channelling
enhanced microanalysis” (ALCHEMI) [7] or “energy-loss magnetic chiral dichroism”
(EMCD) [8], the detailed description of the probe–target interaction plays an important
role, which often does not get sufficient attention.

As NiO is a 3d transition-metal oxide, it is an ideal example material to demonstrate
the effect of different exchange correlation potentials and compare the results with
experimentally acquired data. Furthermore, due to its easy to understand crystal
structure it is a good system to study the effects of probe–target interaction by means
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1. Introduction 3

of ELCE. Thus, NiO is a versatile sample to analyse the agreement of state-of-the-art
simulation methods with experimental measurements.

The present work is composed of four major parts. After this brief introduction, in
part one a short description of the used sample with respect to magnetic behaviour,
crystallography and conduction properties is given.
The second part deals with the electronic structure calculations. In chapter 3

the theoretical background of the simulation package WIEN2k is summarised. The
performed calculations and the comparison with experimental data are shown in
chapter 4.
Following this, in the third part the theoretical foundations of the investigation

of the probe–target interaction in the ELCE technique are laid out in chapter 5.
In chapter 6 the corresponding simulations are described, while in chapter 7 the
measurements and the comparison with the simulations are shown.
The final part, composed of a summary and short outlook, concludes this thesis.



2. Material

NiO is an antiferromagnetic material with a Néel temperature of TN = 523 K [9].
Above this temperature it is paramagnetic with a cubic crystal structure. Below TN

NiO is in an antiferromagnetic state with a slight rhombohedral distortion which
arises from a contraction of the cubic unit cell along one of the 〈1 1 1〉 axes [10]. As
this distortion is very small, in this work the unit cell of NiO is described as cubic
with space group number 225 (Fm3̄m) and a lattice parameter of a = 0.417 nm. The
Nickel atoms occupy the positions (x = 0, y = 0, z = 0) of the unit cell, while the
Oxygen atoms are found on positions (x = 0.5, y = 0.5, z = 0.5). The crystallographic
data is taken from Pearson’s Handbook of Crystallographic Data [11].

The atomic spins are arranged in ferromagnetic layers parallel to the (1 1 1) plane,
see [10]. The direction of the spins are alternating in adjacent layers. As the net
magnetic moment cancels, no special procedure is necessary for investigating the
NiO sample in the transmission electron microscope, as it would be required for a
ferromagnetic material.
With Nickel as a 3d transition-metal, NiO belongs to the transition-metal oxides

whose electronic structures show insulating behaviour. Two transition-metal electrons
saturate the 2p-shell of Oxygen, thus leading to O2− and Ni2+ ions [12]. But also an
amount of O 2p-Ni 3d hybridization is present [12].
The width of the band gap is determined by interionic excitations between two

Ni2+ ions where a 3d electron is transferred from one transition-metal site to another.
There are two different types of such transitions [12]. For the first one, the Coulomb
correlation energy U is needed to create a 3d hole at one transition-metal ion and
transfer the electron to another one:

3dn + 3dn + U → 3dn−1 + 3dn+1 . (2.1)

This type is called a Mott-Hubbard transition. If the 3d hole is screened by charge

4



2. Material 5

transfer from the Oxygen ligand, the charge transfer energy ∆ is needed and the hole
is finally located at the ligand:

3dnL+ 3dnL+ ∆→ 3dnL−1 + 3dn+1L . (2.2)

A material is called a Mott-Hubbard insulator if U < ∆ and it is called a charge-
transfer insulator if ∆ < U . If U and ∆ are comparable, the material is an insulator
of mixed type. In [13] NiO is described as an insulator of this mixed form.

The NiO sample used for investigations in the electron microscope was prepared in
[1 1 0] zone axis. This was done by subsequent cutting and polishing of the crystal.
Afterwards the sample was ion milled in the GATAN Precision Ion Polishing System
(PIPS). Final thinning was carried out in a Technoorg Linda Gentle Mill.
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3. Theoretical Background

3.1. WIEN2K

In solid state physics one usually has to deal with a number of electrons which is of the
order of 1023, so one ends up with a many-body Schrödinger equation which cannot
be solved analytically. There are different approaches to solve such problems. A
common way is the Hartree-Fock (HF) method where the wave functions of electrons
are written as Slater-determinants and exchange symmetry is accounted for.

Another way is the density functional theory (DFT) which was developed in 1964
and 1965 by P. Hohenberg, W. Kohn and L. J. Sham [14, 15]. This, together with
the full potential linearized augmented plane wave (FP-LAPW) method is used in
the simulation package WIEN2k [1].
Many articles and books were written about DFT and how it is implemented in

WIEN2k (see for example [1, 16, 17]). These works are mainly directed to people
who devote the main part of their scientific work to the development of DFT codes or
the work with WIEN2k. For scientists who just want to use WIEN2k in addition to
their work (e.g. electron microscopists), the simulation package often seems to work
like a black box. The input variables are given and some parameters are adjusted
until the result looks fine. But what is done by the program and in what way the
desired values are calculated is not easy to understand. Therefore, in this chapter a
short introduction to WIEN2k and its theoretical background is given.

7



3. Theoretical Background 8

3.1.1. Density Functional Theory

In a solid with N nuclei one has to deal with N + Z ·N particles. The many-particle
Hamiltonian in real space is then

Ĥ = −~2

2

N∑
i

∇2
Ri

Mi

− ~2

2

N∑
i

∇2
ri

me

− 1

4πε0

N∑
i,j

e2 Zi
|Ri − rj|

+
1

8πε0

N∑
i 6=j

e2

|ri − rj|
+

1

8πε0

N∑
i 6=j

e2 Zi Zj
|Ri −Rj|

. (3.1)

Zi is the atomic number of the atom i, Mi is the mass of the nucleus i at position Ri

while the electrons with mass me are at positions ri. The first two terms describe
the kinetic energies of the nuclei and electrons, the last three terms describe the
electron-nucleus, electron-electron and nucleus-nucleus Coulomb interaction. As the
mass of the nuclei is much bigger than the electron mass the Born-Oppenheimer
approximation can be used.1 Therefore, the kinetic energy of the nuclei and the
Coulomb interaction between the nuclei can be ignored for the description of the
electrons. From now on, one can assume the electrons moving in an external potential
caused by the nuclei of the crystal. The Hamilton operator then can be written as

Ĥ = T̂ + V̂ne + V̂ee , (3.2)

with T̂ the kinetic energy, V̂ne the nucleus-electron and V̂ee the electron-electron
interaction. The total energy is the sum of the eigenvalues E of Ĥ and the nucleon-
nucleon interaction

W = E + Vnn . (3.3)

All terms except the kinetic energy and the electron-electron interaction are summed
up as the external potential Vext. Now the Hamiltonian reads

Ĥ = T̂ + V̂ee + V̂ext . (3.4)

1The Born-Oppenheimer approximation consists of two steps. In the first one it is assumed that
the total wave function can be separated into a product of a wave function of the nuclei and a
wave function of the electrons in which the Ri are only parameters. In the second step the effect
of ∇2

Ri
on the electron wave function is neglected. This is justified by the large mass difference

of electrons and nuclei.
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The electron-electron interaction is further decomposed in the classical Coulomb
energy (Hartree energy V̂H) and the quantum mechanic exchange-correlation energy
V̂xc:

V̂ee = V̂H + V̂xc . (3.5)

Density functional theory is based on the two Hohenberg-Kohn theorems [14, 15].
The first theorem states that the external potential Vext is fully determined by the
ground-state electron density ρ. A given many-body system with a unique external
potential yields (by solving the Schrödinger equation) a unique ground-state wave
function and ground-state energy. Therefore, the total energy is a functional of the
ground-state density

E = E[ρ] = T [ρ] + Vext[ρ] + Vee[ρ]

=

∫
ρ(r)Vext(r) dr + FHK [ρ] . (3.6)

The Hohenberg-Kohn density functional FHK [ρ] := T [ρ] + Vee[ρ] is a universal func-
tional for any many-body system because it is not dependent on the external potential
Vext.
The second Hohenberg-Kohn theorem states that the energy is minimized as a

functional of the electronic density. For any trial density ρ(r) ≥ 0 and
∫
ρ(r)dr = N ,

with N the total number of electrons, the relation E0 ≤ E[ρ] is fulfilled. This makes
it possible to use the Rayleigh-Ritz variational principle to find the ground-state
density. Of all possible densities the one which minimizes E[ρ] is the corresponding
ground-state electron density with respect to the external potential Vext.
The corresponding Hamiltonian, called the Kohn-Sham Hamilton operator, is

written as

ĤKS = T̂ + V̂H + V̂xc + V̂ext

= − ~2

2me

∑
i

∇2
i +

e2

4πε0

∫
ρ(r′)

|r − r′|
dr′ + V̂xc + V̂ext . (3.7)
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Like V̂H , the exchange-correlation operator V̂xc depends on the electronic density ρ,
see [16]. It is given by the functional derivative

V̂xc =
δVxc[ρ]

δρ
, (3.8)

where Vxc denotes the exchange-correlation energy. The corresponding total energy
can then be written as

E[ρ] = T [ρ] + VH [ρ] + Vxc[ρ] + Vext[ρ] , (3.9)

with the Hartree energy as

VH [ρ] =
e2

8πε0

∫
ρ(r)ρ(r′)

|r − r′|
drdr′ . (3.10)

The exchange-correlation energy is not known, but in a common approximation, the
local density approximation (LDA), it can be written as

Vxc[ρ] =

∫
ρ(r)εxc(ρ(r))dr , (3.11)

where εxc(ρ(r)) is approximated by a local function of the electron density. In this
approximation εxc is no longer a functional, but a function of the electron density.
The electron density is given by a sum over all occupied orbitals

ρ(r) =
N∑
i=1

φ∗i (r)φi(r) . (3.12)

The highest occupied orbital is determied by the electron count. The single-particle
wave functions φi(r) are the solutions of the Kohn-Sham equation

ĤKSφi(r) = εiφ(r) , (3.13)

with εi the corresponding Kohn-Sham eigenvalues. One has to be aware that the total
Energy E[ρ] evaluated for the ground-state electronic density gives the corresponding
ground-state energy. One has to keep in mind that this is a ground state algorithm
which is only valid for energies close to the ground state energy. Also the φi(r) are
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not real electron wave functions and εi are not single-electron energies. Only the
electronic density, evaluated using these functions, is the electronic density of the
system.

For a spin-polarized system the charge density consists of a spin-up and a spin-down
density

ρ(r) = ρ↑(r) + ρ↓(r) (3.14)

and the magnetization density reads

m(r) = ρ↑(r)− ρ↓(r) . (3.15)

The ground-state energy is then a functional of both spin directions

E = E[ρ↑, ρ↓] . (3.16)

The Kohn-Sham equation becomes now spin-polarized

(T̂ (r) + V̂H(r) + V̂xc,σ(r) + V̂ext(r))φi,σ(r) = εi,σφi,σ(r) , (3.17)

with σ the spin index. The spin density reads

ρσ(r) =
Nσ∑
i=1

φ∗iσ(r)φiσ(r) , (3.18)

with the highest occupied orbital defined by the electron count again. The exchange-
correlation potential becomes

V̂xc,σ(r) =
δVxc[ρ↑, ρ↓]

δρσ(r)
. (3.19)

Now there are two sets of equations to be solved, one for each spin-direction, and the
exchange-correlation potential is the only spin-dependent operator in the Kohn-Sham
equation. For WIEN2k calculations the terms “spin-up” and “spin-down” are just
arbitrary labels with no additional conditions.

As the ground-state electronic density has the periodicity of the crystal-lattice, so
does the Kohn-Sham Hamiltonian. Therefore, one can make use of Bloch’s theorem
(see also section 5.2). It states that the wave function of an electron in a periodic
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potential has the same periodicity and it can be written as the product of a plane
wave and a periodic function

ψk+G(r) = ψk(r) = eikruk(r) . (3.20)

The Kohn-Sham eigenvalue problem has to be solved only at each k-point on a
k-grid in the irreducible wedge of the Brillouin zone. As the Hartree operator V̂H
and the exchange-correlation operator V̂xc depend on the electron density ρ(r) which
itself again depends on the single-particle wave functions, this is a self-consistency
problem. It is solved iteratively by guessing a starting density ρ0. The V̂H and
V̂xc are determined and ĤKS is constructed. The eigenvalue problem is solved, the
resulting wave functions φi are used to calculate the density ρout. In order to stabilize
calculations this density is mixed with the input density to find a new input density
ρin. This procedure is repeated until convergence is reached. In the simulation
package WIEN2k this is called self-consistent field (SCF) cycle.

3.1.2. Linearized Augmented Plane Waves

To solve the Kohn-Sham equations the linearized augmented plane wave (LAPW)
method is used. This is an enhancement of the original augmented plane wave (APW)
method. For a short overview of the different methods see [17]. The Kohn-Sham wave
functions are expanded in the basis set of these LAPW’s

φk =
∑
n

cnφkn , (3.21)

with
kn = k + Kn . (3.22)

To maintain consistency with literature, a transition of the φi in equation (3.13) to
φk in equation (3.21) is done. The Kn are reciprocal lattice vectors, with n the band
index as according to Bloch’s theorem, different Brillouin zones represent different
bands. The k are vectors inside the Brillouin zone. The unit cell is divided into muffin-
tin spheres Sα and the interstitial region I. The muffin-tin spheres with the radius
Rα
MT are centred around the atoms α. The Rα

MT are defined during the initialization
process of WIEN2k. They have to be chosen such that all the core states are confined
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within the spheres. Care has to be taken though that the spheres of different atoms
do not overlap, which is checked by the program nn during initialization. The wave
functions φk are expanded into plane waves in the interstitial region. In the muffin-tin
spheres the φk are expanded to a basis consisting of radial solutions of the atomic
Schrödinger equation and their energy derivatives:

φk
K(r) =

 1
V
ei(k+K)r r ∈ I∑
`,m

(
Ak+K
`m u`(r, E1,`) +Bk+K

`m u̇`(r, E1,`)
)
Y `
m(r̂) r ∈ Sα

(3.23)

with the u` defined by[
− d2

dr2
+
`(`+ 1)

r2
+ V (r)− 2me

~2
E1,`

]
ru`(r) = 0 (3.24)

and
u̇`(r, E) =

∂u`(r, E)

∂E

∣∣∣∣
E=E1,`

(3.25)

and V in the plane wave expansion is the volume of the unit cell. The index 1 of E1,`

will become clear, when local orbitals are explained later on. Equations (3.24) and
(3.25) are calculated numerically on a radial mesh inside the muffin-tin spheres. This
mesh is determined during the initialization process.

In principal the sum in equation (3.21) is infinite. In the calculations it is limited by
a value Kmax with Kn ≤ Kmax. The value is given during the initialization by defining
the product RMT ·Kmax, which is usually between 6.0 and 10.0. Thus, the size of the
basis set of the expansion is limited. Also the value of ` in the expansion inside the
muffin-tin sphere is limited by `max. For a given Kmax it has to be chosen such that the
truncation of the two functions in (3.23) match at the sphere boundary. The spherical
harmonics have at most 2`max nodes on a great circle. The plane waves have Kmax/π

nodes per unit length. Therefore, a reasonable criterion is RMT ·Kmax = `max. The
coefficients Ak+K

`m and Bk+K
`m are determined by the condition that the function inside

the muffin-tin sphere has to match the plane waves in value and slope at the sphere
boundary. They can be found by expanding the plane waves into spherical harmonics,
see [16]. The parameter E1,` should be chosen in the centre of the corresponding
valence band (e.g. s-states correspond to ` = 0, p-states to ` = 1, etc.). Reasonable
values are usually calculated by lstart during the initialization. Valence states are
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separated from core states by the cutoff-energy which can be chosen during the
initialization of the calculation. The standard value is −6.0Ry which means that all
states below this value (counted from the Fermi energy) are treated as core-state.
Calculations for the core-states can be done as if they were states of free atoms in a
potential caused by the valence electrons. These calculations are done during the SCF
cycle in the program lcore. All states with energies higher than the cutoff-energy are
treated as valence states. Core-states should be completely confined in the muffin-tin
sphere. It can happen that core states with an energy below the cutoff-energy reach
out of the sphere. These states, called semi-core states, can then be treated as local
orbitals (LO). The local orbitals are defined as:

φ`mLO(r) =

0 r /∈ Sα(
ALO`mu`(r, E1,`) +BLO

`m u̇`(r, E1,`) + CLO
`m u`(r, E2,`)

)
Y `
m(r̂) r ∈ Sα .

(3.26)
These functions are defined for fixed ` and m and show no k or K dependence. The
parameter E2,` is chosen to be in the centre of the band with the same ` and the next
lower value of the quantum number n.
All the described parameters and values are given in the file case.in1 as the

calculations of the eigenvalues and eigenvectors of the valence states are calculated by
the program lapw1 during the SCF cycle. Choosing these values carefully is crucial
to get a well converged calculation with physically meaningful results.
In WIEN2k it is possible to make use of another method for the expansion of

the wave functions. This method is called augmented plane waves + local orbitals
(APW+lo). It is again an enhancement of the LAPW method and similar to the
original APW method. The APW+lo basis set consists of two types of functions.
The first are APW’s at a fixed energy E1,`:

φk
K(r) =

 1
V
ei(k+K)r r ∈ I∑
`,mA

k+K
`m u`(r, E1,`)Y

`
m(r̂) r ∈ Sα .

(3.27)

To improve the expansion a second type of functions is used. These functions are
called local orbitals but they are not the same local orbitals (LOs) as mentioned
above. Therefore they are referred to as los. The local orbitals (los) have the same
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energy parameter E1,` as the corresponding APW’s:

φ`mlo (r) =

0 r /∈ Sα(
Alo`mu`(r, E1,`) +Blo

`mu̇`(r, E1,`)
)
Y `
m(r̂) r ∈ Sα .

(3.28)

The coefficients Alo`m and Blo
`m are determined by normalization of the functions and

the condition that they have zero value at the sphere boundary. Considering these
limitations the APW+lo functions are continuous at the sphere boundaries but they
have kinks (i.e. the first derivatives are discontinuous). The LAPW functions, on
the contrary, are continuous and smooth at the boundaries. The improvement of the
APW+lo in contrast to the LAPW functions is that a lower value of RMT ·Kmax is
sufficient for convergence. As with LAPW semi-core states can once again be treated
by local orbitals (LOs) as mentioned above. They are defined by

φ`mLO(r) =

0 r /∈ Sα(
ALO`mu`(r, E1,`) + CLO

`m u`(r, E2,`)
)
Y `
m(r̂) r ∈ Sα .

(3.29)

APW+lo should be used for states that are difficult to converge, while LAPW
should be used for all other states. For more details on the different methods see [16]
and [17].

Not only the wave functions are expanded to a new basis, also the density and the
potentials are expanded. In order to improve calculations all these expansions are
further expanded to make use of the crystal symmetry. Therefore, inside the spheres
point group symmetry is used and in the interstitial region the space group symmetry
is used. Plane waves are expanded to symmetrized plane waves, called stars. This
expansion is limited by a maximal reciprocal lattice vector Gmax, which is chosen
during the initialization process. In the spheres an expansion to lattice harmonics,
which are symmetrized spherical harmonics, is used.

The Coulomb potential VC (consisting of the Hartree potential VH and the nuclear
potential) is determined using the Poisson equation. In WIEN2k it is solved in
reciprocal space by the program lapw0. In order to do so, the density is further
expanded into multipoles qlm.
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3.2. Exchange-Correlation Functionals

In order to get a well converged calculation with reasonable results, using a good
approximation for Vxc is crucial. There are many different methods how to calculate
the exchange-correlation energy. To choose which one of them is the right one depends
strongly on the system that is calculated. Usually the standard LDA approximation
or the generalized gradient approximation (GGA) are good choices. But for strongly
correlated electron systems or transition metals these approximations give wrong
results. When investigating such materials more sophisticated methods have to be
used, which increases the calculation time. In WIEN2k this can be done using on
site LDA+U calculations, which includes Hubbard interaction, or by means of hybrid
functionals. Recently, a modified Becke-Johnson potential was developed [3], which
further improves results, especially of band gap calculations.

For the sake of consistency with literature, the electronic density is denoted as n in
sections 3.2.1 and 3.2.2, while ρ is used in sections 3.2.3 and 3.2.4.

3.2.1. Generalized Gradient Approximation

There are different types of the generalized gradient approximation. The differences
lie in the determination of certain parameters used in the approximation. Either they
are determined semi-empirically such that certain experimental values are met, or
they are determined by using mathematical conditions which are met by the exact
functional. In the GGA reported by Perdew, Burke and Ernzerhof (PBE), see [18],
the exchange-correlation functional is approximated as

EGGA
xc [n↑, n↓] =

∫
d3rnεunifx (n)Fxc(rs, ζ, s) . (3.30)

Here, n is the electron density, n↑ and n↓ are the corresponding spin-densities. The
exchange energy per particle of the uniform electron gas is εunifx = −3e2kF/4π. rs is
the local Seitz radius for which n = 3/4πr3

s = k3
f/3π

2 holds. ζ = (n↑ − n↓)/n is the
relative spin polarization. Finally, s = |∇n|/2kFn is a dimensionless density gradient.
All the parameters in the PBE-GGA are fundamental constants and chosen to obey
certain conditions mentioned in [18]. This method is the recommended one for using
the generalized gradient approximation in WIEN2k.
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3.2.2. LDA+U

For systems with highly correlated electrons, for example the 3d electrons in Ni,
LDA and GGA give wrong results. Therefore, electron-electron interaction has to be
treated in a different way. One possibility is to use the Hubbard model. It combines
electron hopping between nearest neighbour lattice sites and Coulomb repulsion of
electrons at the same site

H =
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ . (3.31)

The first sum is over nearest neighbours i and j, the parameter tij describes the
electron hopping between two lattice sites. The c†iσ and ciσ are the creation and
annihilation operators for an electron at site i with spin σ, respectively. U (also called
Hubbard-U) describes the Coulomb interaction of two electrons with different spins
at the same lattice site and niσ = c†iσciσ is the occupation number operator. Because
of the Hubbard-U this correction to LDA is called LDA+U.

In density functional theory the Hubbard model is used for correction of the LDA
energy functional. This is usually done only for the orbital(s) containing the correlated
electrons. Thus, the method is also called orbital potential method. In WIEN2k three
different methods for LDA+U are implemented. The recommended one is described
in detail in [19]. It is called LDA+U(SIC) because a self interaction correction (SIC)
is included. The exchange correlation energy is modified such that in addition to the
LDA energy an electron-electron interaction term according to the Hubbard model is
added. Furthermore, as exchange is partially taken into account in LDA, a correction
for double-counting is applied:

ELDA+U = ELDA + EHub − Edc . (3.32)

The total energy functional is derived in [19] and can be written as

E = ELDA − [UN(N − 1)/2− JN(N − 2)/4]

+
1

2

∑
m,m′,σ

Umm′nmσnm′−σ +
1

2

∑
m,m′ 6=m,σ

(Umm′ − Jmm′)nmσnm′σ . (3.33)

The index m is defined by m = −`, . . . , `. The matrices Umm′ and Jmm′ are defined
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as follows:

Umm′ =
∑
k

akF
k, (3.34)

Jmm′ =
∑
k

bkF
k, (3.35)

ak =
4π

2k + 1

k∑
q=−k

〈lm |Ykq | lm〉
〈
lm′
∣∣Y ∗kq ∣∣ lm′〉 , (3.36)

bk =
4π

2k + 1

k∑
q=−k

| 〈lm |Ykq | lm′〉 |2 . (3.37)

The F k are Slater integrals, see (3.43). For the calculation of d electrons only F 0,
F 2 and F 4 are needed, see [19]. For LDA+U they are expressed in terms of the
parameter U . This expression and how they are related to each other is described
in [19]. One also has to keep in mind that for different materials the value of U is
also different. The nmσnm′−σ are also denoted as nσ,−σm,m′ and are the density matrices.
To perform this orbital calculation in WIEN2k the density matrices are needed.

Therefore, two additional steps in the SCF cycle are included. One for doing the
orbital calculation and one for calculating the density matrix. For more details on
how these calculations using the density matrix are done see [20].
For computational reasons in WIEN2k it is recommended to use an effective

parameter Ueff = U − J and set the parameter J = 0, see [1].2

3.2.3. Hybrid functionals

In recent years the approximation of the exchange-correlation functional was further
improved. A short overview of different hybrid functionals and the comparison of
calculation results for several materials is given in [2]. In this work two different
hybrid functionals, called PBE0 and B3PW91, were used.
The first one, PBE0, is described in [22, 23]. There, also a short overview of the

shortcomings of the standard PBE-GGA functional is given. The PBE0 exchange-

2Note that, due to implementation details, one does not use U − J/2 as would be suggested by
equation (3.33), see [21].



3. Theoretical Background 19

correlation functional is

EPBE0
xc [ρ] = EPBE

xc [ρ] +
1

4

(
EHF
x [ψsel]− EPBE

x [ρsel]
)
. (3.38)

ψsel and ρsel are the wave function and electron density of the selected electrons, in this
work the Ni 3d electrons. The PBE0 functional consists of the PBE-GGA exchange-
correlation functional (3.30) for the total density and for the selected electrons a
Hartree-Fock exchange functional replaces the PBE-GGA exchange functional. The
factor 1

4
can be determined from fourth order perturbation theory, see [2] and references

therein. In LDA+U the correction for double-counting was only approximate, as
occupation numbers for atomic like orbitals are used. When using hybrid functionals
the correction for double-counting is exact as the correction is only done for the
electron density of the selected electrons.
The second hybrid functional used in this work is the B3PW91-functional:

EB3PW91
xc [ρ] = ELDA

xc [ρ] + 0.2
(
EHF
x [ψsel]− ELDA

x [ρsel]
)

+0.72
(
EB88
x [ρ]− ELDA

x [ρ]
)

+0.81
(
EPW91
c [ρ]− ELDA

c [ρ]
)
. (3.39)

The functional is described in detail in [24]. ELDA
x is the exchange part, while ELDA

c

is the correlation part of the LDA energy functional (3.11). EB88
x is a GGA exchange

energy functional proposed by Becke, see [25]. EPW91
c is the correlation part of the

GGA functional proposed by Perdew and co-workers, see [26, 27]. The second term of
the B3PW91 hybrid functional is again a replacement by a Hartree-Fock exchange for
the selected electrons. The third term is a gradient correction to LDA for exchange
and the fourth term is a gradient correction for correlations. The three factors (0.2,
0.72 and 0.81) are chosen to match experimental thermochemical data, see [2].
The Hartree-Fock energy EHF

x is calculated as

EHF
x [ψsel] = −1

2

∑
σ

∑
m1,m2,m3,m4

nσm1,m2
nσm3,m4

〈m1m3 |Vee |m4m2〉 (3.40)

with nσmi,mj the density matrix, mi = −`, . . . , ` and σ the spin index. This calculation
is done only for the selected electrons with the angular momentum `. Vee = 1/|r1−r2|
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is the unscreened Coulomb potential. The integrals are calculated in WIEN2k as

〈m1m3 |Vee |m4m2〉 =
2∑̀
k=0

ak(m1,m2,m3,m4)F k , (3.41)

with

ak(m1,m2,m3,m4) =
4π

2k + 1

k∑
q=−k

〈Ylm1 |Yqk |Ylm4〉

×
〈
Ylm3

∣∣Y ∗qk ∣∣Ylm2

〉
(3.42)

and F k the Slater integrals

F k =

∫ RMT

0

∫ RMT

0

χ2
`(r1)χ2

`(r2)
rk<
rk>
r2

1r
2
2dr1dr2 . (3.43)

In equation (3.43) the r< = min(r1, r2), r> = max(r1, r2) and the χ`(r) are radial
functions whose calculation is illustrated in [16, 28]. In contrast to LDA+U the Slater
integrals are calculated explicitly and are not adjustable parameters. Furthermore,
when using hybrid functionals, the double count correction is done in an exact way.
Thus, calculation results are improved for many materials compared to LDA+U, but
at the cost of calculation time.

3.2.4. Modified Becke-Johnson Potential

In 2009 a modified Becke-Johnson (mBJ) exchange potential, based on an exchange
potential described in [29], was developed by Tran and co-workers [3]. This potential
is used together with the LDA correlation functional (mBJLDA). The potential is
defined as:

V MBJ
x,σ (r) = cV BR

x,σ (r) + (3c− 2)
1

π

√
5

12

√
tσ(r)

ρσ(r)
, (3.44)

where ρσ(r) is the electron spin density and

tσ(r) =
1

2

Nσ∑
i=1

∇ψ∗i,σ(r) · ∇ψi,σ(r) (3.45)
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is the kinetic energy density. V BR
x,σ (r) is a potential proposed by Becke and Roussel,

for the definition see [3, 30]. It depends on a nonlinear equation involving ρσ, ∇ρσ,
∇2ρσ and tσ. The factor c depends on the square root of |∇ρ|/ρ:

c = α + β

(
1

V

∫
|∇ρ(r′)|
ρ(r′)

d3r′
)1/2

, (3.46)

where V again is the volume of the unit cell and the integration is carried out over
this volume. In the SCF cycle of WIEN2k the program lapw0 is executed a second
time to do this integration. The parameters α and β are chosen such that the band
gap of different solids is resembled in the best way, i.e. the mean absolute relative
error is minimized [3].

In contrast to LDA+U and hybrid functionals, the modified Becke-Johnson potential
is used for all electrons of the system. The potential V MBJ

x,σ is included in the exchange-
correlation part of the Kohn-Sham Hamiltonian ĤKS = T̂ + V̂H + V̂xc + V̂ext (usually
in LDA, see (3.11)). According to [31], in WIEN2k the kinetic energy density is
calculated as

tσ(r) =
Nσ∑
i=1

εi,σ|ψi,σ(r)|2 − V KS
eff,σ(r)ρσ(r) +

1

4
∇2ρσ(r) (3.47)

where V KS
eff,σ(r) = VH+Vxc+Vext is the effective potential of the Kohn-Sham equations.

This expression of tσ(r) is equivalent to equation (3.45) [31]. To evaluate (3.47)
V KS
eff,σ(r) of the previous iteration of the SCF cycle is used. To generate a starting

value for V KS
eff,σ(r) a single SCF iteration has to be carried out before starting of a full

SCF cycle using the mBJLDA. Because of this mutual dependence of V KS
eff,σ(r) and

tσ(r), calculations using the modified Becke-Johnson potential are more difficult to
converge than GGA calculations. Therefore, in some cases a different mixing scheme
has to be used to mix ρin and ρout.

The definition in (3.44) is just a potential and there is no exchange functional Ex[ρ]

for that V MBJ
x,σ = δEx[ρ]/δρσ holds. Thus, to calculate structural properties a full

SCF cycle using a GGA functional should be carried out before the mBJLDA is used
in another SCF cycle for band structure calculations.
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Calculations using the mBJLDA are much more time-consuming than standard
GGA calculations because the SCF cycle has to be carried out twice. But the resulting
density of states shows a much better agreement with experiments.

3.3. Program Flow

3.3.1. Initialization process

To start a calculation using WIEN2k a case.struct–file has to be created. In this file
the crystal properties, like structure type, lattice constants, atomic positions and the
radii of the muffin-tin spheres RMT are given.
The program nn calculates distances to neighbouring atoms and checks for over-

lapping atomic spheres. It also verifies that equivalent atom positions are entered
correctly in the case.struct–file.

The spacegroup of the structure and the pointgroup of the non-equivalent sites are
calculated by sgroup.
symmetry generates all symmetry operations for the given structure. It also

determines the pointgroup of each atomic site and generates the respective symmetry
operations. Furthermore, the expansion for the lattice harmonics is calculated.
The program lstart generates free atomic densities and potentials. It prints out a

warning if density of the core states leaks out of the muffin-tin spheres. Also, whether
different orbitals are treated as core-, semi-core-, or valence-states is determined. The
program asks which method should be used for calculation of the exchange-correlation
potential and at which energy core-states are separated from valence-states. In the
input file case.inst the electron configuration of each atom, as well as the information
which electrons should be treated as spin-up or spin-down electrons, is given.
kgen generates a k-mesh in the irreducible wedge of the Brillouin zone, which is

used in a modified tetrahedron scheme for further calculations, see [32]. It takes the
number of k-points as input parameter.
dstart generates the crystalline starting density for the SCF cycle by superposition

of the atomic densities calculated in lstart.
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3.3.2. Self Consistent Field Cycle

Each SCF iteration is started with lapw0 which uses an input density ρ (either from
dstart or from the output of a previous iteration) to create the total potential Vtot
as a sum of the Coulomb potential VC and the exchange-correlation potential Vxc.
The program also calculates the expansion of the Coulomb potential into multipole
moments, while the exchange-correlation potential is calculated numerically using
lattice harmonics inside the muffin-tin spheres and using a fast Fourier transformation
outside.

The eigenvectors and eigenvalues of the valence bands are calculated by lapw1 by
means of diagonalisation. Different calculation schemes are implemented. In this
program the LAPW or APW+lo expansion is performed.

The program lapw2 calculates the Fermi energy and generates the expansion of the
valence densities with respect to the crystal symmetry. The charges or partial charges
(decomposed with respect to quantum number `) inside the muffin-tin spheres are
calculated by integration over the Brillouin zone.
lcore computes the eigenvalues for core states and the corresponding densities.
The program mixer calculates the overall density by summing up the core-, semi-

core- and valence densities. It then mixes this total density with the input density
to generate a new output density. This is done in order to stabilize the SCF cycle.
Several mixing schemes are implemented. The simplest one is a straight mixing
according to ρnew = (1 − Q)ρold + Qρtotal, with Q as a mixing factor. Also several
multi-secant mixing schemes are implemented. For details see [1] and references
therein.
All the calculations of the SCF iteration are repeated until chosen convergence

criteria, like convergence of the total energy or charge convergence, are met. When
performing spin-polarized calculations dstart, lapw1, lapw2 and lcore are called
separately for each spin direction.
For calculations using orbital potentials like LDA+U or when hybrid functionals

are used, two other programs are invoked during each SCF iteration. The program
orb calculates the orbital potential, which is non-zero inside the muffin-tin spheres
only and depends on the quantum numbers ` and m. lapwdm computes the density
matrices, which are needed for this type of calculations.
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3.4. Calculating Crystal-properties

After finishing the SCF cycle, different crystal properties can be calculated. In this
work calculations of the density of states (DOS) and electron energy loss spectra were
performed.

3.4.1. Density of States

The density of states D(E) gives the number of electronic states per unit energy
range. As an example the DOS of a free three-dimensional electron gas is calculated,
following the derivation in [33]. The Schrödinger equation of a free particle is

− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψk(r) = εkψk(r) , (3.48)

whose solution are the wave functions

ψk(r) =
1√
V
eikr . (3.49)

Assuming periodic boundary conditions

ψk(x+ L, y, z) = ψk(x, y, z) (3.50)

and similar for the other two dimensions, the components of the wavevector k satisfy

ki =
2nπ

L
(3.51)

with n as any integer. The energy is then:

εk =
~2k2

2me

=
~2

2me

(k2
x + k2

y + k2
z) . (3.52)

In the ground-state of a N -particle free electron system the occupied states represent
a sphere in k-space. The vector kF corresponds to the highest occupied states with
the energy

εF =
~2

2me

k2
F (3.53)
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and points to the surface of the sphere. Only one wavevector k is allowed in the
volume element (2π/L)3 in the k-space. Therefore, in the sphere S with volume
4πk3/3 the number of allowed states is

NS = 2 · 4πk3/3

(2π/L)3
=

VS
3π2

k3 , (3.54)

where the factor 2 arises from the two possible spin directions. With this

k = (3π2NS/VS)1/3 (3.55)

and
εk =

~2

2me

(3π2NS/VS)2/3 (3.56)

hold. Now equation (3.56) is used to calculate the DOS:

D(εk) =
dNS

dεk
=

VS
2π2
·
(

2me

~2

)3/2

· ε1/2k . (3.57)

In the simulation package WIEN2k the DOS is determined by counting the electrons.
This is done by integrating the charge density over the Brillouin zone using the program
tetra. The integration is performed using the modified tetrahedron method described
in [32]. Not only the total DOS is calculated but also the partial DOS, which is the
atomic DOS for every atom in the unit cell. This atomic DOS is further decomposed
with respect to the quantum numbers ` and m. In order to do so, the charge density
has to be decomposed in the same way. This is done by the program lapw2 when
invoked using the switch -qtl. The density

qtot = qi +
∑
t

∑
`

qt` , (3.58)

where qi is the interstitial charge density and the first sum covers all atoms t in the
unit cell. Depending on certain parameters, defined during compilation of WIEN2k,
the qtl are further expanded with respect to the quantum number m.
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3.4.2. Energy Loss Near Edge Structure

Calculation of the energy loss near edge structure (ELNES) is done by the program
TELNES.2 which is described in [34]. The probability of a beam electron to be
scattered into a direction described by a solid angle Ω, transferring the energy E
and momentum q, is called double differential scattering cross-section (DDSC). Using
Fermi’s golden rule and the assumption that the interaction of the beam electrons
with the nuclei does not contribute to the inelastic scattering, it can be written as
[34]

∂2σ

∂E∂Ω
(E, q) =

4γ2

a2
0

kF
kI

1

q4

∑
I,F

∣∣∣∣∣
〈
I

∣∣∣∣∣
N∑
j=1

eiq(r−rj)

∣∣∣∣∣F
〉∣∣∣∣∣

2

δ(EI − EF − E) . (3.59)

I denotes initial states and F denotes final states. The N sample electrons occupy
the positions rj while the beam electrons are described by r. It is noted that in
this formula q describes the momentum transfer and must not be confused with
the densities in equation (3.58). For more details see section 5.3 and [34, 35]. This
formula can be further simplified such that it depends on the unoccupied density of
states χlF (E) and a matrix element MlF (q, E)

∂2σ

∂E∂Ω
(E, q) =

∑
lF

|MlF (q, E)|2 χlF (E) , (3.60)

where the sum is over all final states with orbital quantum number lF . This is
described in [34].

Some further approximations are made in order to simplify calculations: as initial
states are strongly localized, the description of the final states is only needed inside
the muffin-tin spheres. The incoming electron wave is assumed to be a plane wave.
And finally, diffraction effects and channelling conditions are also not taken into
account.
As input parameters of the program TELNES.2 one has to specify the atom, as

well as n and l values of the initial state of the edge for which the spectrum should
be calculated. Furthermore, the energy of the edge, the incident beam energy, an
energy window in which the spectrum is calculated, the energy step size and the
spectrometer broadening have to be specified. Also, the convergence and collection
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semi-angles need to be provided as input parameters.
After calculating the energy loss spectra they have to be broadened using the

program broadening. It convolves the calculated spectrum with a broadening function.
This function is a Lorentzian for broadening due to the finite lifetimes of initial and
final states. Its width for initial states is taken from atomic data tables [36]. The
width for the final states is energy dependent and can be calculated in four different
ways. They can be assumed to have constant width, to depend linearly with the
energy above the edge threshold, to show a quadratic energy dependence, or to show
a sophisticated behaviour described in [37]. In addition, spectrometer broadening is
taken into account by convolution with a Gaussian function. All these models are
described in [34, 37–39].



4. Simulations and Interpretation

The simulations were performed using the full potential augmented plane wave code
WIEN2k in its version 10.1 [1]. The simulation package was implemented on a PC
equipped with an AMD Athlon 64 3200+ with 2 GHz and 2 GB RAM.

The input for structure type, lattice parameters and atomic positions to calculate
NiO is shown in Table 4.1. For details on the program flow of the simulations see
section 3.3 and [1, 16], as well as references therein.

According to [39], simulations should be started using a small number of k-Points
This number should then be increased until no further changes in the ELNES-spectra
were observed. In this work simulations were started using 100 k-points. This number
was increased until 2000 k-points were reached. All further calculations were then
performed using 2000 k-points and a plane wave cut-off-parameter RKMAX of 7. The
atomic sphere radii of both Ni-atoms were 2.09 a.u. and 1.85 a.u. for the O-atom which
corresponds to 0.11 nm and 0.10 nm, respectively. All calculations were performed
using spin polarization. Simulations were done systematically with standard GGA,
LDA+U, two different hybrid potential methods (PBE0 and B3PW91) and a modified
Becke-Johnson potential. Each method is described in detail in chapter 3.2. After
convergence of the SCF cycle the DOS and ELNES-spectra were calculated in order
to compare them with experimental values.

Lattice type Lattice parameters Atom positions

R a = b = 2.966163 Å Ni1: x = 0, y = 0, z = 0
c = 14.531171 Å Ni2: x = 0.5, y = 0.5, z = 0.5
α = β = γ = 90◦ O: x = ±0.25, y = ±0.25, z = ±0.25

Table 4.1.: Input data for calculation of NiO using WIEN2k. Atom positions are
given in local coordinates of the unit cell.

28
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Figure 4.1.: Total DOS calculated using the GGA method. The energy is plotted
with respect to the Fermi energy EF . The total atomic-DOS are marked
in different colours. The interstitial DOS is marked as white area. The
different partial DOS are plotted cumulative, therefore they correspond
to the area plotted in the respective colour. This plotting scheme is used
in all the following DOS-plots.

4.1. Density of States

After the SCF cycle finished, using the convergence criterion that the total energy
does not change more than 0.0001 Ry, the DOS was calculated using the program
tetra. The calculated total DOS was then plotted and the total atomic-DOS inside the
muffin-tin spheres were marked using different colours. The interstitial DOS outside
the muffin-tin spheres was marked as the white area beneath the graph. The plots
of the DOS can be used to read out the fundamental band gap and compare it to
experimental values.
The total DOS calculated using the standard GGA method is shown in figure

4.1. It can be seen that the GGA method gives a bandgap of about 1 eV. Thus,
it severely underestimates the experimental bandgap of 4.0− 4.3 eV (see [2] and
references therein, as well as [40]).
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Figure 4.2.: Total DOS calculated using the LDA+U method.

In figure 4.2 the total DOS calculated using the LDA+U method is shown. Like
in [2] the value for Ueff was 7.05 eV = 0.52 Ry. With a calculated band gap width
of 3.2 eV significant improvement is evident. Also the general shape of the valence
band states is different to the GGA-calculation.
The total DOS calculated with two different hybrid potential methods, namely

B3PW91 and PBE0 functionals is shown in figures 4.3 and 4.4. It can be seen that
in both cases the band gap width of 2.8 eV still underestimates the experimental
values of 4.0 eV to 4.3 eV. Both plots are very similar with only slight differences in
the valence band and the unoccupied Ni 3d states between Fermi level an EF + 5 eV.
Figure 4.5 shows the calculated total DOS using the modified Becke-Johnson

potential. It can be seen that this simulation method results in a band gap of 4.16 eV.
Thus, from all the potentials applied in this work, the modified Becke-Johnson

potential is the only one which gives a band gap width similar to the experimentally
acquired one. The DOS of the valence band is very similar to the LDA calculation and
also similar to the hybrid potential simulations, but with the mBJLDA calculation
the unoccupied Ni 3d states are shifted to higher energies. Compared to the LDA+U
simulation the structure of the valence band is clearly different which is mainly due
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Figure 4.3.: Total DOS calculated using the hybrid potential B3PW91.
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Figure 4.4.: Total DOS calculated using the hybrid potential PBE0.



4. Simulations and Interpretation 32

D
O

S
 [

st
a
te

s/
e
V

]

Energy [eV]

O
Ni2
Ni1

total

0

1

2

3

4

5

6

7

8

9

10

-10 -5  0  5  10  15

Figure 4.5.: Total DOS calculated using the modified Becke-Johnson potential.

to differences in the Ni 3d DOS. Figures 4.6 and 4.7 show the O and Ni atomic-DOS
calculated using the modified Becke-Johnson potential. The l-projected DOS (s, p, d)
is marked in different colours. When calculating the total atomic-DOS using tetra the
multiplicity of the atoms in the unit cell is considered. For the l-projected DOS it is
not, however. Therefore, the total DOS resembles the sum over the total atomic-DOS
of each atom and the interstitial DOS. On the other hand, the total atomic-DOS is
the sum of the l-projected DOS times the multiplicity. From figures 4.6 and 4.7, where
the Oxygen 2p and the Nickel 3d states occupy the same energies, a p-d hybridization
of the valence band, mainly of O 2p and majority spin Ni 3d, is evident. These are
the states between EF − 6.0 eV and the Fermi level. The conduction band, which is
the energy region between 4 and 15 eV above Fermi level, also shows a small amount
of p-d hybridization. Furthermore, the split of the minority spin Ni 3d states into
two Hubbard-subbands at and above Fermi level is shown in figure 4.7. Thus, the
mBJLDA-calculation is in agreement with [13] where NiO is described as a insulator
with mixed Mott-Hubbard and charge-transfer characteristics.

As the main focus of this Thesis lies on electron energy loss spectroscopy, attention
has to be directed to the structures above Fermi-level. In all calculation methods the
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Figure 4.6.: Oxygen atomic-DOS calculated using the modified Becke-Johnson poten-
tial. The `-projected DOS is plotted cumulative.
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Figure 4.7.: Nickel atomic-DOS (`-projected) calculated using the mBJLDA. Majority
spins are plotted on positive ordinate, minority spins on negative ordinate.
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shape of these structures are similar but peak positions and relative intensities are
different. This gives rise to different near edge structures in the energy loss spectra,
which will be discussed in section (ELNES).

4.2. Energy Loss Near Edge Structure

ELNES spectra were calculated using the program TELNES.2. All the following
calculations were done using 200 keV beam energy, a collection semi-angle of 10.0 mrad

and a convergence semi-angle of 0.01 mrad. A value of 1.4 eV was taken for the
spectrometer broadening according to the full width at half maximum (FWHM) of
the experimentally measured zero loss peak (ZLP). An energy window of 50 eV and
a stepsize of 0.05 eV was used.
After calculating the spectra the program broadening is invoked. It applies a

Lorentzian broadening for core and valence life times, as well as a Gaussian broadening
for spectrometer broadening. The input file is generated automatically by TELNES.2
and can be modified if needed.

In figure 4.8 a comparison of the Oxygen K-edge ELNES calculated with different
exchange-correlation functionals is shown. As the Oxygen K-edge electron energy loss
spectrometry (EELS) probes the excitation of 1s electrons, dipole allowed transitions
are those into p-states. Therefore the shape of the ELNES should be similar to
the p-projected DOS above the Fermi-level, except for effects like broadening (see
below).1 Furthermore, an experimentally acquired spectrum is plotted. It was
acquired using a FEI TECNAI G2 20 microscope with a LaB6 cathode (referred to
as G20), operated at 200 kV and equipped with a GATAN GIF 2001 energy filter.
All the spectra are aligned at the first peak. It is evident that by using different
functionals a change in peak positions and relative intensities can be seen. This results
from differences in the Oxygen p-DOS above the Fermi energy which are shown in
figure 4.9. It is also clear from figure 4.8 that though the shape of the spectra is
reproduced well, the peak positions are not resembled very well. Furthermore, using
LDA+U and hybrid exchange-correlation functionals the relative intensity of the first

1The hole left by the excited core electron can change the electronic structure of the crystal. Usually
a core-hole calculation with supercells has to be performed to take these changes into account.
According to [41] the effect of the core-hole is not always visible. In [42] it is reported that
considering the core-hole does not change the resulting spectra. Therefore, due to the high
computational costs in the following no core-hole calculations are conducted.
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Figure 4.8.: Oxygen K-edge ELNES calculated using different exchange-correlation
functionals compared to experimental spectrum. The spectra were shifted
vertically for better visibility.
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Figure 4.9.: Comparison of the O p-projected DOS above Fermi level calculated
using different exchange-correlation functionals. The spectra were shifted
vertically for better visibility.
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Figure 4.10.: Oxygen K-edge ELNES calculated using the LDA+U functional and
different values of Ueff , ranging from 0.25 Ry to 0.55 Ry compared to
experimental spectrum. The spectra were shifted vertically for better
visibility.

peak is underestimated, whereas using the GGA functional the peak intensity is far
overestimated.
In [43] different values of Ueff are listed, so in figure 4.10 Oxygen K-ELNES

calculations for different values of Ueff , ranging from 0.25 eV to 0.55 eV, are compared.
With increasing Ueff the relative intensity of the first peak as well as the distance to
the main peak decreases. However, using different values of Ueff does not improve
the agreement between calculated and experimental spectrum. In [42] the peak
positions for a specific value of Ueff is changed by modifying the magnetic moments
of the Nickel atoms in the calculation. This is done by changing a “temperaturelike”
parameter of the SCF cycle. However, this is not a physically correct procedure
because these changes correspond to a heating of the crystal to 15000 K.

Figure 4.11 shows a comparison of the experimentally measured Oxygen K-ELNES
and the simulation calculated using the mBJ potential. It can be seen that the peak
positions and the relative intensities are resembled very well. Altogether both spectra
show a very good agreement. The differences can be attributed to shortcomings in the
calculation of the broadening of the spectra, see for example [37, 38]. A comparison
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Figure 4.11.: Oxygen K-edge ELNES calculated using the modified Becke-Johnson
potential compared to experimental spectrum. The spectra were shifted
vertically for better visibility.
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Figure 4.12.: Broadened and unbroadened O K-edge ELNES compared to O p-
projected DOS. For the ELNES the energy beyond edge onset is plotted,
while for the DOS it is the energy above Fermi-level.
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Figure 4.13.: Nickel L2,3-edge ELNES calculated with different exchange-correlation
functionals compared to an experimental spectrum.

of the Oxygen p-DOS calculated using the modified Becke-Johnson potential, the
broadened and the unbroadened spectrum is shown in figure 4.12. This graph shows
that the differences to the experimental spectrum at the peaks at 534 eV and 543 eV

are due to the broadening program and the methods used therein.
A comparison of Ni L2,3-ELNES calculated using different functionals and the

experimental spectrum is shown in figure 4.13. As in the unit cell used for the
WIEN2k simulation there are two different Nickel atoms, one spin-up and one spin-
down, the ELNES for both atoms has to be calculated and summed up. There are
only minor differences in the spectra calculated with different exchange-correlation
functionals compared to the changes of the Oxygen K-ELNES. Only the position of
the small second peak changes with different exchange-correlation functionals. Also
the structure on the back of the L3-peak, at about 850 eV, is changed by the usage
of different functionals. In the experimental spectrum the second peak at 859 eV

is not present. Also the background of the L2-edge (above 870 eV) is much higher
than in the numerical predictions. This leads to the suggestion that the Ni-DOS
calculated using WIEN2k is not correct in every detail. This can be seen for example
from figure 4.14, where the calculated L3-edge and the corresponding partial DOS
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Figure 4.14.: Calculated Ni L3-edge. The corresponding unoccupied partial DOS are
superimposed.

are shown. It is clear that the structures of the unoccupied partial DOS at about
10 eV above Fermi-level give rise to the peak which is not present in the experimental
spectrum. It is also evident from figure 4.13 that the calculated L2-edge is broadened
too much. This brings us back to the discussion, that the method used for calculating
the broadening is not ideal and further investigations and improvements are necessary
to describe the experimental data in every detail.

Summing up the results of the simulations, the choice of an appropriate exchange-
correlation functional is crucial for the total DOS and the band gap, as well as the
Oxygen K-ELNES. But choosing a different functional has almost no effect on the Ni
L2,3-ELNES.

4.3. Valence Electron Energy Loss Spectrometry

In [2] the optical band gap of NiO was calculated using different exchange-correlation
functionals in WIEN2k and the Bethe-Salpeter equation. The calculated values
were then compared to experimental values obtained by means of optical reflectivity
measurements reported in [44]. The hybrid functionals reproduce the optical band
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Figure 4.15.: Low voltage low loss EELS acquired at 40 kV. The deconvoluted spec-
trum is superimposed.

gap well, whereas the LDA+U funtional does not.
As outlined in [45] one can also determine the optical band gap as well as optical

properties using valence electron energy loss spectrometry (VEELS). In order to
avoid relativistic losses like Čerenkov losses, light guide modes and surface losses the
VEELS measurements were performed using low voltage TEM, see [45–47] for details.
The refractive index of NiO was reported in [44] to be 2.33. Therefore, according
to [45] a high tension of 40 kV is sufficient to avoid relativistic losses. The low voltage
VEELS measurements were perforem on a FEI TECNAI G2 20 transmission electron
microscope equipped with a LaB6 cathode and a GATAN GIF 2001 energy filter. The
spectra were recorded using a collection semi-angle of 2.8 mrad. The recorded low loss
spectrum was deconvoluted using a separately recorded zero loss peak. In figure 4.15
the recorded spectrum as well as the deconvoluted one are shown. According to the
low voltage VEELS a value of 3.0 eV for the optical band gap was determined, which
can also be seen in this figure. This is in good agreement with the calculations in [2]
as well as the optical reflectivity measurements in [44].
Furthermore, Kramers-Kronig analysis as described in [45] was performed to

calculate optical properties of NiO. In figure 4.16 the resulting real and imaginary
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Figure 4.16.: Real and imaginary part of the complex dielectric function obtained by
means of Kramers-Kronig analysis.
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Figure 4.17.: Real and imaginary parts of the complex refractive index calculated
using Kramers-Kronig analysis.
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part of the complex dielectric function is shown. The calculated real and imaginary
parts of the complex refractive index are shown in figure 4.17. The obtained functions
are in good agreement with those determined in [44].



Part III.

Energy Loss by Channelled
Electrons
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5. Theoretical Background

5.1. Energy Loss by Channelled Electrons

In 1982 Taftø and Spence first used electron channelling in analytical TEM [7].
They called the technique Atom Location by Channelling Enhanced Microanalysis
(ALCHEMI) [48] and used it to identify crystallographic sites and to analyse impurities.
This is done by using the dependence of the characteristic X-ray emission on the
orientation of the incident electron beam when doing energy dispersive X-Ray (EDX)
analysis. Since these first experiments, ALCHEMI is commonly used in analytical
microscopy. Soon after, electron channelling was also used in connection with EELS [6].
This technique is called Energy Loss by Channelled Electrons (ELCE) [49].

The principle of these techniques is simple. The electrons in the crystal can be
described as Bloch-waves. Depending on the excitation error — and therefore on the
orientation of the crystal with respect to the electron beam — these Bloch-waves have
different weights. The Bloch-waves differ in the location of their intensity-maxima. If
an atom coincides with these intensity maxima the energy-loss signal or X-ray signal
originating from this site will be enhanced. In a simple picture, channelling conditions
for the electron beam select site-specific chemical signals. The initial enthusiasm with
ELCE faded away rapidly when it was realised that the situation is not that simple.
ALCHEMI is performed and interpreted easier than ELCE. This is because in

ALCHEMI only the incoming electron wave has to be considered. For ELCE not
only the incoming wave but also the outgoing electron wave as well as inelastic and
elastic scattering processes have to be considered. As the spectrometer is usually
placed off axis in ELCE-experiments, long acquisition-times are necessary and spectra
often show a bad signal-to-noise ratio. Due to these theoretical and instrumental
shortcomings, ELCE was not widely used until recent years [50].

Usually, measurements are performed under systematic-row conditions and not in

44
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an ideal two-beam case. Therefore, predicting channelling behaviour is not straightfor-
ward any more and other effects, like interferometric EELS and sample thickness, have
to be considered, see [51]. Thus, simulations have to be performed to find suitable
detector positions that yield reasonable differences in EELS signal intensities.
In order to get an understanding of ELCE, in the next section a short overview

of the important concepts of Bloch-waves and channelling is given. Afterwards,
expressions of the DDSC, the dynamic form factor (DFF) and the mixed dynamic
form factor (MDFF) are discussed.

5.2. Bloch-Waves and Channelling

For this short overview the derivations in [4] and [52] are followed. The Schrödinger
equation for the crystal reads[

− ~2

2me

∇2 + V (r)

]
Ψ(r) = EΨ(r) . (5.1)

The potential inside a crystal is periodic:

V (r) = V (r + R) , (5.2)

with R any lattice vector and r any vector in real space. Furthermore, the case of
a centrosymmetric crystal is assumed, which gives, together with the fact that the
potential must be real, the following condition:

V (r) = V (−r) = V ∗(r) . (5.3)

Now, the potential is written as a Fourier series

V (r) =
∑
g

Vge
ig · r =

~2

2me

∑
g

Uge
ig · r , (5.4)

with Vg = ~2/(2me) ·Ug and the conditions (5.3) on V (r) also hold for Ug:

Ug = U−g = U∗g . (5.5)
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The wave function Ψ(r) is expanded into Bloch-waves ψj(r) whose Bloch-functions
µj(r) are again expanded into Fourier series:

Ψ(r) =
n∑
j=1

εj ·ψj(r) (5.6)

ψj(r) = µj(r) · eikj · r (5.7)

µj(r) =
∑
g

Cj
g · eig · r . (5.8)

The g are vectors in the reciprocal space and usually in TEM they are the diffraction
vectors for the corresponding beams G. The Bloch-waves can then be written as

ψj(r) =
∑
g

Cj
g · ei(k

j+g) · r . (5.9)

The superscript j denotes the dependence on a single value kj . Thus, each Bloch-wave
ψj(r) is a superposition of plane waves and the wave function Ψ(r) is described in
turn as a superposition of several Bloch-waves. εj is the excitation amplitude of the
Bloch-wave j and is determined by the boundary conditions. In the work described in
the following chapters, these boundary conditions demand that the incoming electron
wave is a plane wave in the entrance plane of the crystal, while the outgoing wave
is a plane wave in the exit plane of the crystal. The Cj

g are called the plane wave
amplitudes.
Inserting the Fourier expansion of the potential (5.4) into the Schrödinger equa-

tion (5.1) yields a system of equations (∀j)

∇2ψj(r) +

(
2me

~2
·E +

∑
g

Ug · eig · r
)
ψj(r) = 0 . (5.10)

The wave vector inside the crystal is defined as:

K2 =
2meE

~2
+ U0 = k2

0 + U0 . (5.11)
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Inserting the Bloch-waves in the Schrödinger equation, together with the above
definition, gives

0 = −
∑
g

Cj
g ·
(
kj + g

)2 · ei(kj+g) · r

+K2
∑
g

Cj
g · ei(k

j+g) · r +
∑
h6=0

Uh · eih · r ·
∑
g

Cj
g · ei(k

j+g) · r . (5.12)

Replacing g with g − h in the last term of equation (5.12) yields

∑
g

([
−
(
kj + g

)2
+K2

]
·Cj

g +
∑
h6=0

UhC
j
g−h

)
· ei(k

j+g) · r = 0 . (5.13)

As every coefficient of this equation must be zero separately one gets a series of
equations (with again renaming h as g − h):[

K2 −
(
kj + g

)2
]
·Cj

g +
∑
h6=g

Ug−hC
j
h = 0 . (5.14)

This set of equations can be written as a matrix equation

A ·C = 0 , (5.15)

with the vector

C =


Cj

0

Cj
g1

Cj
g2...

 . (5.16)

The matrix A is defined by its diagonal elements

agg = K2 −
(
kj + g

)2 (5.17)

and off-diagonal elements
agh = Ug−h . (5.18)
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According to [52] it is assumed that kj differs from K in z-direction by a small
amount γj such, that

kj = kjxex + kjyey + kjzez = Kj
xex +Kj

yey +
(
Kj
z + γj

)
ez . (5.19)

Furthermore, if the electron beam is tilted with respect to the crystal, kx depends on
the tilt angle θ and excitation error sg by

θ = kx/K = sg/g . (5.20)

By inserting this into equation (5.14) one gets the matrix equation

A ·C = γjC , (5.21)

which is an eigenvalue problem with the eigenvalues γj and corresponding eigenvectors
Cj

g. The matrix elements are now

A11 = 0, Agg = sg, Agh = Ug−h/(2K) . (5.22)

For more details on the Bloch-wave formalism see [4, 51, 52].

5.3. Inelastic Scattering

According to Fermi’s golden rule, the transition rate from an initial state |Ψi〉 to a
final state |Ψf〉 reads

Wi→f =
2π

~

∣∣∣〈Ψf

∣∣∣ V̂ ∣∣∣Ψi

〉∣∣∣2 kfme

~2
dEdΩ · δ

(
E|Ψf 〉 − E|Ψi〉

)
, (5.23)

where kf m~2dEdΩ represents a phase space element around |Ψf〉. The total system is
initially in the state

|Ψi〉 = |ψi〉 ⊗ |i〉 (5.24)

and the final state is
|Ψf〉 = |ψf〉 ⊗ |f〉 , (5.25)
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with |ψi,f〉 the state of the probe electron and |i〉,|f〉 the states of the target system.
The energy loss E of the probe is then given by E = E|f〉 −E|i〉. Thus, the transition
rate is

Wi→f =
2π

~
∑
i

pi
∑
f

∣∣∣〈ψf ∣∣∣ 〈f ∣∣∣ V̂ ∣∣∣ i〉 ∣∣∣ψi〉∣∣∣2 kfme

~2
dEdΩ · δ

(
E|f〉 − E|i〉 − E

)
,

(5.26)
with pi the occupation probability of the target’s initial states.

For discussion of the DDSC the probe states are described as plane waves1:

|ψ〉 = |k〉 =
1

(2π)3/2
eik · r . (5.27)

Considering the Born-Oppenheimer approximation and the one-electron approxima-
tion (see [51]), only the Coulomb interaction of the probe electron at r and the target
electron at R has to be taken into account:

V (r −R) =
e2

4πε0
· 1

|r −R|
. (5.28)

When making use of the shift theorem for Fourier transformations [53], the integral
〈kf |V (r −R) | ki〉 yields

〈kf |V (r −R) | ki〉 =
e2

4πε0
· 1

(2π)3
·
∫
d3re−ikf · r 1

|r −R|
eiki · r

=
e2

4πε0
· 1

(2π)3
·
∫
d3reiQ · r 1

|r −R|

=
e2

4πε0
· 1

(2π)3
· 4π
Q2
eiQ ·R

=
e2

(2π)3ε0
· 1

Q2
· eiQ ·R , (5.29)

with the scattering vector
Q = ki − kf . (5.30)

The scattering vector consists of the lateral momentum transfer q = (qx, qy) and the

1Note that every arbitrary wave-form can be expanded into a set of plane waves.
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characteristic momentum transfer for inelastic scattering qE:

Q =

 qx

qy

qE

 . (5.31)

The characteristic momentum transfer is defined as [54]

qE = k0
E

E0

(
E0 +mec

2

E0 + 2mec2

)
, (5.32)

with the wave vector of the incoming electron beam k0, depending on the definition
of a reciprocal vector, either k0 = (2π)/λ or k0 = 1/λ. In order to be able to compare
qE with the acquired diffraction patterns shown in section 7.1, the definition k0 = 1/λ

is used. As all the measurements and simulations are done with an electron beam
voltage of 200 kV, the corresponding value of k0 is k0 = 399 nm−1. The characteristic
momentum transfer for the O K-edge at 530 eV is then qE = 0.61 nm−1, while for the
Ni L2,3-edge at 855 eV it is qE = 0.99 nm−1.
Similar to the derivations in [51], the initial probe state for interferometric EELS

is taken as a superposition of two plane waves

|ki〉 = a1 |k1〉+ a2 |k2〉 , |a1|2 + |a2|2 = 1 , (5.33)

while the final probe state is still a single plane wave |kf〉.
Inserting equations (5.28), (5.29) and (5.33) into equation (5.26) yields:

Wi→f =
2π

~
kf
mE

~2
dEdΩ

(
e2

(2π)3ε0

)2

×

[
|a1|2

1

Q4

∑
i

pi
∑
f

∣∣〈f |eiQ ·R|i〉∣∣2
+|a2|2

1

Q′4

∑
i

pi
∑
f

∣∣∣〈f |eiQ′ ·R|i〉
∣∣∣2

+2<

[
a1a

∗
2

1

Q2Q′2

∑
i

pi
∑
f

〈f |eiQ ·R|i〉 〈i|e−iQ′ ·R|f〉

]]
×δ (Ef − Ei − E) , (5.34)
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with the momentum transfers

Q = k1 − kf (5.35)

Q′ = k2 − kf . (5.36)

Now one can introduce the dynamic form factor (DFF) and the mixed dynamic form
factor (MDFF). The DFF reads

S(Q, E) =
∑
i

pi
∑
f

∣∣〈f ∣∣ eiQ ·R ∣∣ i〉∣∣2 · δ(Ef − Ei − E) , (5.37)

while the MDFF reads

S(Q,Q′, E) =
∑
i

pi
∑
f

〈f |eiQ ·R|i〉 〈i|eiQ′ ·R|f〉 · δ(Ef − Ei − E) . (5.38)

One can also get the DFF out of the MDFF by setting Q = Q′, thus S(Q, E) =

S(Q,Q, E). By inserting these definitions in equation (5.34) and using the relation

dσ(Ω, E) = Wi→f (2π)3me

~ki
, (5.39)

the double differential scattering cross section is found to be

∂σ
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=
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~
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∗
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]]
. (5.40)

Using the definition of the Bohr radius a0 = (4πε0~2)/(mee
2) and considering rela-

tivistic corrections by me → γme, this simplifies to

∂σ

∂E∂Ω
=

4γ2

a2
0

· kf
ki

[
|a1|2

1

Q4
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1
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S(Q′, E)

+2<
[
a1a

∗
2

1

Q2Q′2
S(Q,Q′, E)

]]
. (5.41)
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The calculation of S(Q,Q′, E) for crystalline environments is done in [51] where
different expressions for the MDFF are derived. In chapter 3 of [51] a general expression
as well as an expression involving the unoccupied partial DOS is given, which is used
in the program TELNES.2 of the WIEN2k simulation package (see section 3.4.2).
In chapter 4 of [51] the MDFF is calculated for a Bloch-wave representation of the
incoming and outgoing electron waves. The DDSC reads then

∂σ

∂E∂Ω
=

4γ2

a2
0

kf
ki

∑
j,j′,l,l′

g,g′,h,h′

εjC
j
g(ε̃lC̃

l
h)∗(εj′C

j′

g′)
∗ε̃l′C̃

l′

h′ · e2π(Q−Q′) ·X · e2πid(γ̃l′−γ̃l)

×S(Q,Q′, E)

Q2Q′2
, (5.42)

where all the variables with a tilde describe the outgoing electron wave, while all the
variables without tilde describe the incoming wave. Equation (5.42) is a generalisation
of equation (5.41) and it is the basis equation for the simulation program with which
the calculations in this part of the work were performed. This program is described
in [55], where also more details on equation (5.42) and its implementation in the
software package are given.
In equation (5.42) the dipole approximation of the MDFF is used, which yields

< [S(Q,Q′, E)] ∝ (Q ·Q′) (5.43)

= [S(Q,Q′, E)] ∝ (Q×Q′) ·M
M

, (5.44)

with M the net magnetic moment of the scattering atom (see [56]).2 With this the
MDFF reads:

S(Q,Q′, E) = f(E) · (Q ·Q′) + i · g(E) · (Q×Q′) · eB , (5.45)

with f(E) and g(E) as functions of the energy loss only.3

In the experiments reported in section 7.1 NiO is investigated in [1 1 0] zone-axis
with systematic-row condition including the (1 1 1) reflex. In this configuration, each

2Usually the magnetic moment is forced to be parallel to the optical axis of the TEM by the
magnetic field (≈ 2 T) of the objective lenses. Thus, M/M = eB.

3The exact form of f(E) and g(E) depend on |i〉 and |f〉 of the scattering centre, of course. Thus,
they are different for different atomic species and also for K-, L2-, L3-, . . . edges. In the used
approximation and for one atom–edge combination they are only a function of E, however.
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atomic column contains Ni atoms with alternating spins. Thus, the average magnetic
contribution can be neglected. Therefore, in the following, only the real part of the
dipole approximation is considered. The MDFF then reads

S(Q,Q′, E) = f(E) · (Q ·Q′) . (5.46)

As mentioned above, when doing ELCE experiments, not only channelling conditions
have to be observed. Due to the placement of the EELS detector off the diffraction
spots, also the behaviour of the MDFF cannot be neglected. The effects of channelling
and antichannelling conditions can be reversed, depending on the position of the
EELS detector. This is described shortly in [51]. Moreover, due to the Lorentzian
shape of the DDSC, the intensity decreases very fast as the detector is moved further
away from the diffraction spots. For the sake of sample stability and to decrease
acquisition times, the detector should therefore not be placed too far away from
the diffraction spots. Considering all these effects, simulations of the experimental
configuration are necessary, which are described in the next chapter.



6. Simulations

The simulation program used in this work is described in [55]. The program is written
in object-oriented C++ code and takes its input parameters from an extensible
markup language (XML) configuration file. The output is plain-text based.
The configuration file is divided into different sections. First the output files are

specified and the crystal parameters as well as the atom positions are defined. The
crystallographic data given in table 6.1 was used for the conducted calculations. As
microscope specific parameters the acceleration voltage and the limiting aperture
in the diffraction plane enter. Then the experimental setup is described. This is
done by specifying the zone axis, the surface normal, the position of the Laue circle
centre and the position of the detectors relative to the transmitted unscattered beam.
Furthermore, the model for the calculation of the MDFF has to be given. For the
performed simulations the simple dipole model from equation (5.46) was used.

Finally required data for the specific calculation has to be defined. There are three
possible calculation modes implemented in the program: bloch-wave maps, xz-maps
and thickness maps. The different modes as well as the corresponding calculation
results are reported in the following sections.

6.1. Bloch-Wave Maps

As input data for calculating Bloch-wave maps the x and z ranges has to be given. In
this calculation mode the program computes the Bloch-waves inside the crystal. Using
the input data the excitation of the different diffraction spots is determined. With
this, the possible Bloch-waves and their excitations are calculated. In the output file
the Bloch-wave intensities with respect to the coordinates inside the given crystal are
written. Usually a xz-coordinate system is used to plot the intensities. The program
assumes that the intensity is 1 at every point of the entrance plane. Then it calculates
how this intensity changes inside the crystal. In figure 6.1 a sketch of the incident

54
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Lattice parameters Atom Atom positions

a = b = c = 0.417 nm Ni x = 0, y = 0, z = 0
α = β = γ = 90◦ x = 0.5, y = 0.5, z = 0

x = 0.5, y = 0, z = 0.5
x = 0, y = 0.5, z = 0.5

O x = 0.5, y = 0.5, z = 0.5
x = 0.5, y = 0, z = 0
x = 0, y = 0.5, z = 0
x = 0, y = 0, z = 0.5

Table 6.1.: Input data for calculation of NiO. Atom positions are given in local
coordinates of the unit cell.

beam geometry is shown and the intensities for exact channelling conditions inside
the NiO crystal are plotted. For this calculation a value of (6 6 12) for the position
of the Laue circle centre and [1 1 0] for the zone axis were used. This calculation
resembles a possible incoming electron wave when doing ELCE-experiments. It can be
seen that the intensity maxima lie in the rows of Ni atoms. Furthermore, oscillations
of the intensity in the z-coordinate can be seen. This is related to the so-called
“Pendellösung” (see [4, 52]).

In figure 6.2 a sketch of the incident beam geometry is shown and the Bloch-wave
intensities are plotted when using (5.9 5.9 12.7) as position of the Laue circle centre.
Due to the reciprocity theorem [57] this resembles a possible outgoing electron wave
in an ELCE-experiment. It is evident from this figure that the intensity maxima of
the outgoing Bloch-waves are not parallel to the atomic columns any more. Instead
they point towards the position of the detector.

6.2. XZ Maps

For this type of calculations again the x and z ranges have to be given. Additionally
the sort of atoms and the corresponding energy loss for the calculation of the inelastic
scattering process are taken as input data. In the xz-map calculation mode the program
determines the incoming and outgoing Bloch-waves as described in section 6.1. With
this, the DDSC is calculated according to equation (5.42). The result is a kind of
hypothetical “Intensity map” which shows how much a specific position inside the
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Figure 6.1.: Sketch of the incident beam geometry and plot of the calculated intensities
of Bloch-waves resembling an incoming electron wave inside the crystal.
Intensities are printed from low (black) to high (yellow).
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Figure 6.2.: Sketch of the incident beam geometry and plot of the calculated intensities
of Bloch-waves resembling an outgoing electron wave inside the crystal.
Intensities are printed from low (black) to high (yellow).
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Figure 6.3.: Calculated intensities of inelastic scattering plotted for three different
sample thicknesses. Intensities are printed from low (black) to high
(yellow).

crystal contributes to the inelastic scattering signal assuming a proper scattering
centre is placed there. As the Bloch-waves depend on the crystal thickness, the
resulting xz-maps show strong differences for different sample thicknesses. As an
example the xz-maps for inelastic scattering at the O K-edge at 530 eV for different
crystal thicknesses are shown in figure 6.3.

6.3. Thickness Maps

For generating thickness-maps one can think of the simulation program performing
several steps. First, the contributions to the DDSC for a specific scattering process
with corresponding energy loss are calculated as mentioned is section 6.2. The
contributions at the positions of the specified sort of atoms are then summed up.
This is done for each thickness in the interval specified in the input file. The results
are then written into an output file such that the resulting signal intensity for this
specific scattering process can be plotted with respect to the sample thickness. As
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Figure 6.4.: Calculated signal intensities for the O K-edge and the Ni L2,3-edge with
respect to the sample thickness t.

an example the resulting signal intensity for the O K-edge at 530 eV as well as the
intensity for the Ni L2,3-edge at 855 eV are shown in figure 6.4. The detector position
was set to (1.12 1.12 1.97). In the original ELCE-experiments reported by Taftø and
Krivanek [6], the differences in the relative signal intensities at different channelling
conditions are of interest. The different channelling conditions were established by
tilting the sample. According to the reciprocity theorem [58], one can also shift the
EELS detector in the diffraction pattern which is equivalent to tilting the outgoing
beam. This also changes the channelling conditions inside the crystal. Thus, in
figure 6.5 the ratios of the O K-edge and Ni L2,3-edge signal intensities are plotted
for different detector positions. For convenience a coordinate system for placing
the EELS detector was defined such that one axis (referred to as η) is parallel to
the systematic row, while the second axis (referred to as κ) is perpendicular to it.
The unit length is defined as the distance between the 0 and G-beams which is
the closest allowed reciprocal lattice vector. In this coordinate system the detector
positions were taken to be (η, κ) = (0.4, 0.4), (0.6, 0.4), (1.4, 0.4) and (1.6, 0.4). It is
evident that the differences in relative signal intensities strongly depend on sample
thickness. Also different detector positions have a great influence on the relative
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Figure 6.5.: Ratio of the Ni L2,3-edge and the O K-edge plotted for the detector
positions (η, κ) = (0.4, 0.4), (0.6, 0.4), (1.4, 0.4) and (1.6, 0.4) with respect
to the sample thickness t.
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Figure 6.6.: Ratio of the Ni L2,3-edge and the O K-edge plotted for the detector
positions (η, κ) = (0.1, 0.1), (0.9, 0.1), (1.1, 0.1) and (1.9, 0.1) with respect
to the sample thickness t.
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signal intensities. As a comparison, in figure 6.6 the same diagram is shown for the
different detector positions (η, κ) = (0.1, 0.1), (0.9, 0.1), (1.1, 0.1) and (1.9, 0.1). From
these two figures it is clear that performing ELCE-experiments is not straightforward
and that supporting simulations are essential for interpreting the results.



7. Experiments and Interpretation

7.1. Measurements

The following experiments were performed using a FEI TECNAI G2 F20 (from now
on referred to as F20) with a field emission gun (FEG) and equipped with a GATAN
GIF Tridiem energy filter and on a FEI TECNAI G2 20 (from now on referred to
as G20) with a LaB6 cathode and equipped with a GATAN GIF 2001 energy filter.
Both instruments were operated at 200 kV acceleration voltage.

As mentioned in the previous section, in the original ELCE-experiments [6] different
channelling conditions were established by tilting the sample. As tilting cannot be
performed with high precision easily in the used instruments, shifting of the EELS
detector could be used instead. As the post-column energy filter is fixed, this is
performed by shifting the diffraction pattern. This is done with high precision using a
Digital Micrograph script. For this purpose a coordinate system (η, κ) with one axis
parallel to the systematic row and one perpendicular to it was defined as described
in section (6.3). In the script the unit length is defined as the distance between the
0 beam and the G beam. This is calibrated by aligning the corresponding diffraction
spots with the spectrometer entrance aperture (SEA). This alignment is shown in
figure 7.1. The script is able to shift the diffraction pattern with high precision
into any position given in the new coordinate system. From now on, when writing
about placing the EELS detector somewhere in the diffraction pattern, a shift of the
diffraction pattern with respect to the SEA is meant.
As the EELS measurements are performed off axis (a certain distance away from

the diffraction spots), intensity decreases very fast when placing the detector further
away from the spots due to the Lorentzian behaviour of the DFF. In order to increase
intensity, the diffraction spots are spread such that the spot corresponding to the
0 beam fills out the SEA which is equivalent to choosing the convergence semi-angle

61
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Figure 7.1.: Image of the 0 beam (left) and the G beam (right). The SEA is visible as
circular aperture limiting momentum transfers to |q| ≤ 0.35 nm−1. This
corresponds to a collection semi-angle β = 0.9 mrad.

similar to the collection semi-angle α ≈ β. This can be seen from figure 7.1.
The following measurements were conducted on the G20. A bright field (BF) image

of the investigated area of the specimen is shown in figure 7.2. The specimen was
tilted out of the [1 1 0] zone axis to obtain a systematic row condition including the
(1 1 1) diffraction spot. The corresponding diffraction pattern is shown in figure 7.3.

The thickness was measured using the Log-ratio method [54]. In order to do
so, a low loss spectrum was acquired which is shown in figure 7.4. The obtained
thickness was 12 nm. As a rule of thumb, the real thickness is estimated to be in an
interval of ±2 nm of the calculated value. From the FWHM of the zero loss peak the
experimental broadening was determined to be 1.5 eV.
EELS measurements were performed at the detector positions (η, κ) = (0.3, 0.3),

(0.7, 0.3) and (1.3, 0.3). A sketch of the experimental setup is shown in figure 7.5.
As described in section 6 the specimen thickness is crucial for ELCE-experiments.
Due to the specimen preparation the thickness changes rapidly when moving away
from the hole in the specimen centre. Therefore, a selected area aperture (SAA)
was used in order to restrict thickness changes of the investigated specimen area.
The effective size of the SAA back-projected to the objective plane is 200 nm. A
SEA of 2 mm diameter corresponding to a collection semi-angle β = 0.9 mrad and a
disperson of 0.5 eV per pixel were chosen such that the O K-edge and the Ni L2,3-edge
could be acquired simultaneously in the same spectrum. The acquisition time was
240 s for each measurement. A background subtraction using a power-law fit [54] was
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Figure 7.2.: Bright field image of the investigated sample area.
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(220)
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(002)

(002)
(111)

Figure 7.3.: Diffraction pattern of NiO in systematic row condition including the
(1 1 1) diffraction spot. Due to the close proximity to the systematic row,
adjacent diffraction spots show up as well.
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Figure 7.4.: Low loss spectrum of NiO acquired on the G20 at a typical measurement
position. Note that the plasmon around 22 eV is barely visible indicating
a very thin specimen. The Log-ratio method yields a thickness of 12 nm.

η

κ

1
2

3
4

Figure 7.5.: Sketch of the experimental setup. The different detector positions are
labelled with 1 to 4. Furthermore, the axes of the used coordinate system
are shown.
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Figure 7.6.: Acquired energy loss spectra of the O K-edge (left) and Ni L2,3-edge
(right). The intensities were normalised at the maximal intensity of the
O K-edge. Additionally the spectra were aligned at the O K-edge.

performed. The different spectra were aligned at the maximum of the O K-edge in
order to correct for small drifts in the high voltage system and the energy filter. In
addition the intensities were normalised at the maximal intensity of the O K-edge.
The spectra are shown in figure 7.6. It is evident that the relative intensities of the
two edges are different for each of the chosen detector positions.
As these measurements at the G20 with a LaB6 cathode were successful, further

measurements were performed at the F20 with a FEG to get more intensity and a
better signal-to-noise ratio (SNR). These measurements are described in the following.
Again a bright field image of the investigated area of the specimen is shown in

figure 7.7. A similar experimental setup as for the measurements described above
was used. As before, the specimen was tilted out of the [1 1 0] zone axis to obtain a
systematic row condition including the (1 1 1) diffraction spot. The corresponding
diffraction pattern is shown in figure 7.8.
The thickness was measured according to the Log-ratio method using a low loss

spectrum which is shown in figure 7.9. The obtained thickness was 30 nm and is
estimated to lie in an interval of 2 nm around the calculated nominal value. From
the FWHM of the zero loss peak the experimental broadening was determined to be
1.5 eV.

The EELS measurements were performed at the detector positions (η, κ) = (0.2, 0.3),
(0.8, 0.3), (1.2, 0.3) and (1.8, 0.3). The SAA, whose effective size back-projected on
the objective plane was 200 nm, was used so that the thickness of the investigated
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Figure 7.7.: Bright field image of the investigated sample area.
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Figure 7.8.: Diffraction pattern of NiO in systematic row condition including the
(1 1 1) diffraction spot. Due to the close proximity to the systematic row,
adjacent diffraction spots show up as well.
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Figure 7.9.: Low loss spectrum of NiO acquired on the F20 at a typical measurement
position. Note that the plasmon around 22 eV is barely visible indicating
a thin specimen. The Log-ratio method yields a thickness of 30 nm.
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Figure 7.10.: Acquired energy loss spectra of the O K-edge (left) and Ni L2,3-edge
(right). The intensities were normalised at the maximal intensity of the
O K-edge. Additionally the spectra were aligned at the O K-edge.
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area did not change too much. A SEA of 3 mm diameter corresponding to a collection
semi-angle β = 1.2 mrad and a dispersion of 0.5 eV per pixel were chosen. The
acquisition time was 180 s for each measurement. A background subtraction using
a power-law fit [54] was performed. The different spectra were again aligned at the
maximum of the O K-edge in order to correct for small drifts in the high voltage
system and the energy filter. The intensities were normalised at the maximal intensity
of the O K-edge. Additionally the spectra were aligned at the O K-edge. The spectra
are shown in figure 7.10. Unfortunately the specimen drifted away after measuring at
the detector positions (η, κ) = (1.2, 0.3) and (1.8, 0.3), labelled as positions 3 and 4.
Therefore, the measurements at positions 1 and 2 are unusable for comparison as the
specimen thickness for this measurements is not known.

7.2. Results

The results of the measurements conducted at the G20 are shown in figures 7.6 and
7.11. The statistical errors were determined by calculating the standard deviations
of each measurement in a pre-edge background region using the program Digital
Micrograph. Subsequent calculation of the propagation of error yields standard
deviations σ of the order of 5%. In addition, systematic errors occur due to the fact
that the EELS detector is not point-like but the acquired signal is integrated over the
SEA. To estimate the orders of magnitude of these systematic errors when measuring
the signal intensities at different detector positions, the behaviour of the DDSC was
investigated. This was done by numerically integrating the DFF and the MDFF
over the SEA. The result was then compared to the value at the nominal position of
the EELS detector. The systematic errors were determined to be very small (of the
order of 0.1%) compared to the statistical errors and are therefore neglected in the
following. For drawing the error bars ±2σ was used in order to obtain a confidence
interval of 95.4%.
When comparing the experimental values with the simulations, the intensities of

the Ni L2,3-edge are normalised with respect to the intensity at position 1. The
obtained values are marked with the corresponding error bars in figure 7.11. It can
be seen that the experiment shows very good agreement with the simulations.
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Figure 7.11.: Comparison of the measured relative intensities at different detector
positions with simulations. The measured values of the normalised Ni
L2,3-edge intensities are marked with error bars.
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Figure 7.12.: Comparison of the measured relative intensities at different detector
positions with simulations. The measured values of the normalised Ni
L2,3-edge intensities are marked with error bars.
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The measured intensity can be described approximately as follows:

I(η, κ, E, atom, α) = pmic · f(E, atom) · g(η, κ, E, α) , (7.1)

where pmic are microscopic parameters, f(E, atom) are the factors f(E) of equation
(5.46) and g(η, κ, E, α) incorporates all the Bloch-wave related factors and the factor
(Q ·Q′)/(Q2Q′2) of equation (5.42). E is the energy loss of the corresponding inelastic
scattering process, α depends on sample thickness, orientation and other parameters
while η, κ define the detector position. When calculating the ratio of the Ni signal
and the O signal, the microscopic parameters cancel:

I(η, κ, ENi, Ni, αNi)

I(η, κ, EO, O, αO)
=
f(ENi, Ni)

f(EO, O)
· g(η, κ, ENi, αNi)

g(η, κ, EO, αO)
. (7.2)

Furthermore, when normalising the spectra acquired at different positions with the
intensities of one specific position of the EELS detector, all the factors f(E, atom)

cancel. (
I(η1, κ1, ENi, Ni, αNi)

I(η1, κ1, EO, O, αO)

)/(
I(η2, κ2, ENi, Ni, αNi)

I(η2, κ2, EO, O, αO)

)
=

=
g(η1, κ1, ENi, αNi)

g(η1, κ1, EO, αO)

/
g(η2, κ2, ENi, αNi)

g(η2, κ2, EO, αO)
. (7.3)

The results of the measurements performed at the F20 are shown in figures 7.10 and
7.12. The measured intensities are normalised with respect to the intensity at detector
position 4. The results with corresponding error bars for the measured intensities and
specimen thickness are shown in figure 7.12. As mentioned above, the sample drifted
away after measuring at positions 3 and 4. Thus, the specimen thickness for these
measurements are not known. Therefore no error bar for the specimen thickness is
drawn for the measurements at detector positions 1 and 2. As the results at these two
positions are very similar only one of these two measurements is drawn in figure 7.12.

Despite this, the good agreement of experimentally acquired relative signal intensi-
ties and the corresponding simulations is evident.

It is notable that, despite the measurements at positions that yield low intensities,
no further treatment of the acquired spectra (except background subtraction) was
necessary. Especially, no post-processing to obtain spectra out of measured data
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using some sort of deconvolution algorithm was used (as it was necessary in [50]).
Some approximations are made in the simulations. For instance the electron waves

are supposed to be plane waves but in the TEM the electron beam is slightly converged
due to intensity reasons. Further the dipole approximation for the DFF and MDFF
is used, see [59]. But despite all this, the experimentally acquired spectra are in very
good agreement with the calculations.



Part IV.

Conclusion
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8. Summary and Outlook

Two fields in transmission electron microscopy need a detailed description by simula-
tions. These are the calculation of the electronic structure of the sample material
and the accurate modelling of the probe–target interaction. Both fields were treated
thoroughly in this thesis.
The electronic structure of NiO was calculated using the DFT based simulation

package WIEN2k. As NiO is a transition-metal oxide, the description of the exchange-
correlation potential is crucial. Therefore, different methods to calculate the exchange-
correlation energy were used to calculate the DOS and ELNES spectra of NiO.
The results obtained using GGA, LDA+U, two different hybrid functionals (PBE0,
B3PW91) and the modified Becke-Johnson potential were compared.
It was shown that in the GGA calculation the fundamental band gap is severely

underestimated. Using the LDA+U method gives major improvements compared to
GGA but the gap width is still underestimated. Also when the hybrid functionals
were used the fundamental band gap was too small. Only when utilizing the modified
Becke-Johnson potential the calculated fundamental band gap width is in good
agreement with both literature and experiments.

Concerning ELNES, the GGA and LDA+U calculations revealed some differences
to the experimentally acquired O K-edge spectra. Using hybrid exchange-correlation
functionals improved the calculated spectra only slightly. However, when the modified
Becke-Johnson potential was used, the calculated spectrum fit the experimental data
very well. Different methods to calculate the exchange-correlation energy revealed
only minor differences in the Ni L2,3-edge. This suggests that the Ni-DOS calculated
with WIEN2k is not entirely correct.

Additionally, low voltage VEELS was performed to obtain optical properties of
NiO by means of Kramers-Kronig analysis. Furthermore, the value of the optical
band gap was determined from the low voltage spectrum. The results show very good
agreement with the calculated optical band gap using hybrid functionals and the
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modified Becke-Johnson potential, as well as measurements, both reported previously
in literature.
To sum it up, choosing an appropriate calculation method for the exchange-

correlation energy is crucial for the results of the calculation. The modified Becke-
Johnson potential turned out to be the best choice for the transition-metal oxide
NiO.
To investigate the effects of probe–target interaction a simulation program based

on a combination of the Bloch-wave formalism for elastic scattering and the mixed
dynamic form factor for inealstic scattering was applied. The relative signal intensities
of the Oxygen and Nickel signal for different positions of the EELS detector were
calculated. The results were compared to site selective energy loss data obtained by
means of ELCE-experiments.

The measurement positions a certain distance away from the diffraction spots yield
spectra with low intensity. But despite this fact no further treatment of the spectra
except background subtraction was necessary. Furthermore, some approximations
were made when performing the calculations. Keeping this in mind, the acquired
spectra show a very good agreement to the simulations.
All in all, owing to powerful simulation software, sophisticated techniques like

ELCE are transforming from rather exotic applications to promising methods for
analytical transmission electron microscopy.
In this thesis it was shown that new simulation methods can help to explain

experimental data which is acquired with unprecedented quality and precision due to
a new generation of corrected microscopes. The ab-initio simulation software WIEN2k
is capable of calculating the electronic structure but does not take into account elastic
scattering of the electron beam in the crystal. In a wide variety of modern analytical
techniques elastic scattering is of high importance, however. When investigating the
effects of probe–target interaction, the combination of elastic with inelastic scattering
is of interest. The program used for this part of the thesis simulates elastic scattering
but has only rudimentary support for inelastic scattering. Thus, the aim of future
work should be the implementation of an accurate description of inelastic scattering
based on WIEN2k data in the utilized simulation software.
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