
Comet.NET, Design and
Implementation of a Bayeux
Server for the .NET platform

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Boris Mesetovic
Matrikelnummer 0225445

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.-Ass. Dipl-Ing Dipl-Ing Johann Oberleitner

Wien, 04.06.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





i

Abstract

Modern Web applications increasingly rely on real-time server-initiated delivery of data
to browsers. It increases the responsiveness of the application, improves the overall user
experience and allows various real-time collaboration scenarios between users. This appli-
cation model, in which the server delivers data to a browser via HTTP without the browser
explicitly requesting it, is called Comet. Protocols and techniques defined by the Comet
application model are essential for Web applications that need to asynchronously deliver
events to clients.

One of the recent developments in the domain of Comet Web applications is an open-
source application protocol called Bayeux. It provides means of two-way and low-latency
communication between the server and the client and is typically used to deliver notifica-
tions directly to Web browsers as soon as they occur.

In this thesis, we present a native .NET implementation of a Bayeux server called
Comet.NET. Comet.NET is a stand-alone, high-performance Bayeux server with support
for both streaming and polling communication techniques. It offers synchronous and asyn-
chronous application programming interfaces, is very scalable and robust and is designed
to be easily embeddable in any .NET application.

Features of Comet.NET are demonstrated by presenting Teletrader HTTP Push Service,
a fully functional enterprise stock market ticker application built on top of it. Furthermore,
the thesis provides a detailed evaluation of the performance and scalability of the presented
solution and discusses how it compares with the reference Bayeux server implementation.

Kurzfassung

Moderne Web Applikationen basieren zunehmend darauf, dass Daten in Echtzeit vom
Server direkt an den Browser ausgeliefert werden. Dieser Ansatz erhöht die Reaktions-
fähigkeit und die allgemeine Usability der Applikation und ermöglicht verschiedene Szenar-
ien für eine Real-Time Kollaboration zwischen Benutzer. Das Applikationsmodell, mit dem
der Server die Daten an Browser über das HTTP Protokoll ausliefert, ohne dass sie ex-
plizit seitens Client angefordert werden, heisst Comet. Die im Comet Applikationsmodell
definierten Technologien und Protokolle sind für die Web Applikationen, die Daten asyn-
chron an Clients ausliefern möchten, von wesentlicher Bedeutung.

Eine der neuen Entwicklungen im Bereich von Comet Web Applikationen ist das Open-
Source Protokoll namens Bayeux. Das Protokoll ermöglicht bidirektionale Kommunikation
zwischen dem Server und dem Client und wird typischerweise dazu verwendet, Benachrich-
tigungen mit geringer Latenz direkt an den Browser auszuliefern.

In der vorliegenden Master-Arbeit präsentieren wir Comet.NET, eine auf .NET basierende
Implementierung von Bayeux-Server. Comet.NET ist ein stand-alone, hoch performanter
Server, der sowohl Streaming als auch Polling unterstütz. Der Server bietet eine synchrone
und eine asynchrone API, ist sehr skalierbar und robust und wurde so designed, damit er
einfach in beliebige .NET Applikation eingebettet werden kann.

Die Eigenschaften von Comet.NET werden anhand von Teletrader HTTP Push Service
demonstriert. Es handelt sich dabei um eine Applikation für die Auslieferung von Mark-
tdaten im Web. Am Schluss werden die Performance und Skalierbarkeit von Comet.NET
evaluiert und mit Performance und Skalierbarkeit der Bayeux Referenz-Implementierung
vergliechen.



ii

Acknowledgments

I would like to thank my parents, friends and family, whose support, encouragement and love
has been a great inspiration in all my academic and professional endeavors.

In addition, special thanks are due to Johann Oberleitner for his support, creative insights and
comments for the whole duration of this project.



Contents

Abstract i

Kurzfassung ii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Contents v

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technologies 7
2.1 Comet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Bayeux protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Comet.NET 19
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 High level overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Static structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Domain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Message flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Transport types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Thread management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Sample applications 41
4.1 Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 TeleTrader HTTP Push Service . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iii



5 Evaluation 59
5.1 Definitions and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Benchmarks and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Benchmark result interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Comparison to Jetty CometD . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Alternative implementations of the Bayeux protocol 77
6.1 Jetty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Grizzly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Related Work 83
7.1 Background on push technology . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Comet application model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3 Comet-based server applications . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Conclusion and Future Work 89
8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 91

List of Figures

2.1 Ajax communication style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Comet communication style: long polling . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Comet communication style: streaming . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 A logical communication schema defined by the Bayeux protocol . . . . . . . . . 12
2.5 The relationship between publishers, subscribers and channels . . . . . . . . . . . 13
2.6 The interaction between the server and the remote client . . . . . . . . . . . . . . 14
2.7 Message exchange between the client and the server . . . . . . . . . . . . . . . . . 15
2.8 Bayeux client state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 View from bird’s perpective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Comet.NET package overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Comet.NET layers overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Dependencies of the BayeuxServer class . . . . . . . . . . . . . . . . . . . . . 25
3.5 Relationship between IHttpListener and IHttpRequestHandler . . . . 26
3.6 Relationships between message-related interfaces and BayeuxServer . . . . . . 27

iv



List of Figures v

3.7 Relationships between transport-related interfaces . . . . . . . . . . . . . . . . . . 28
3.8 Static structure of system parts that deal with message processing . . . . . . . . . . 29
3.9 The handling of a subscription request . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10 Static structure of publish / subscribe classes . . . . . . . . . . . . . . . . . . . . . 31
3.11 A sample message flow in Comet.NET (normal case) . . . . . . . . . . . . . . . . 33
3.12 A sample message flow in Comet.NET (error case) . . . . . . . . . . . . . . . . . 34
3.13 Transport implementations in Comet.NET . . . . . . . . . . . . . . . . . . . . . . 36
3.14 Sample security checks in Comet.NET . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 CometD chat sample application . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Architecture of the chat application . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Chat service data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 General setup of the HTTP Push Service . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 High-level architecture of the HTTP Push Service . . . . . . . . . . . . . . . . . . 49
4.6 Sample event message with symbol quote data . . . . . . . . . . . . . . . . . . . . 51
4.7 HTTP Push Service domain model . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.8 Components involved in data forwarding . . . . . . . . . . . . . . . . . . . . . . . 54
4.9 Interaction between components involved in processing and publishing updates . . 55
4.10 Security model of HTTP Push Service . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Event flow in the Publisher sample application . . . . . . . . . . . . . . . . . . . . 62
5.2 Number of clients and latency during benchmark 1 with streaming . . . . . . . . . 64
5.3 Number of clients and CPU utilization during benchmark 1 with streaming . . . . . 65
5.4 Number of clients and latency during benchmark 1 with polling . . . . . . . . . . 66
5.5 Median latency in relation to number of clients during benchmark 2 with streaming 67
5.6 Number of messages per second in relation to number of clients during benchmark

2 with streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.7 Number of clients and CPU utilization during benchmark 2 . . . . . . . . . . . . . 69
5.8 Number of clients and latency during benchmark 2 with polling . . . . . . . . . . 70
5.9 Median latency and number of messages per second in relation to number of clients

during benchmark 3 with streaming . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.10 Number of clients and CPU utilization during benchmark 3 with streaming . . . . . 72
5.11 Number of clients and latency during benchmark 3 with polling . . . . . . . . . . 73
5.12 Median latency and number of messages per second in relation to number of clients

during benchmark 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.13 Median latency and throughput per second in relation to number of clients during

benchmark 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 The advantages of Jetty Continuations in Web 2.0 scenarios [54] . . . . . . . . . . 78

7.1 Direct push integration as defined in SPIAR . . . . . . . . . . . . . . . . . . . . . 85
7.2 The indirect push integration as defined in SPIAR . . . . . . . . . . . . . . . . . . 86
7.3 The components of the Comet server presented in [33] . . . . . . . . . . . . . . . 88



List of Tables

4.1 Handshake extension fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Subscription extension fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



CHAPTER 1
Introduction

Initially, the Web was an information system consisting mainly of static textual and graphical
content that was virtually connected via hyperlinks. Over the time, the Web slowly evolved
from this rather static global information system into what it is today: a very dynamic global
distributed application platform.

Advantages of Web applications over desktop applications are numerous, for application de-
velopers and application users alike[1, 2, 3]. A Web application can be used anywhere; the only
requirement is that the device has an Internet connection and a Web browser. There is no need to
download and install the application on a computer, which makes the entry barrier for the users
very low. Web applications are located on servers and have typically no client-side parts, so
adding new features and fixing bugs is simplified. From the user’s perspective, software updates
are fully automated and are available next time the user accesses the application. From the devel-
oper’s perspective, maintenance is a lot easier, because only the central server application needs
to be updated. Besides that, all users always use the same application version, so the overhead
for supporting multiple application versions is non-existent. The fact that the application and
data is located on the server makes another important aspect of Web applications possible: they
can be easily built as multiuser applications that allow data sharing and collaboration between
users.

A prime example of a modern Web application is Facebook[4], a social networking service
with more than 600 million users[5]. Facebook is a highly dynamic Web application that allows
users to share personal information, interests, photos, status updates and communicate with
friends in real-time. Other prominent examples of dynamic real-time social networking services
include Twitter [6], FriendFeed[7] and reddit[8].

Web applications such as Youtube[9] and Hulu[10] allow users to stream various types of
multimedia, upload their multimedia content, collaborate with others and participate actively in
the community. Flickr[11] is another example of a social network that allows sharing of photos
and collaboration between users.

Google Docs[12], a Web-based office suite offered by Google, includes a word processor,
a spreadsheet and a presentation application. One of the main features of Google Docs is that

1



2 CHAPTER 1. INTRODUCTION

it allows users to create and edit rich documents directly in a Web browser while collaborating
with other users in real-time.

Another example of highly dynamic Web applications with real-time requirements are finan-
cial services. These applications aim to efficiently distribute market data in the Web in real-time
and offer the same level of service as traditional desktop applications. A prime example of this
type of applications is Thompson Reuters Eikon[13], which brings the financial terminal into
the Web environment and enhances it with social collaboration features.

Even though Web applications have many advantages over desktop applications, the under-
lying technologies and architecture continue to prevent the full exploitation of the possibilities
of the Web. Some of the core protocols and technologies used in the Web were not originally
designed for use cases that are prevalent today. One example for a technology that acts as a
limiting factor in the Web today is the Hyper Text Transfer protocol (HTTP)[48].

HTTP is the communication protocol used in the Web. It is a stateless protocol that imple-
ments a request/response communication paradigm. Data exchange is always initiated by the
client. This poses a significant technological challenge for Web applications that have use cases
where a server should be able to send data to client browsers as reaction to certain events, without
waiting for clients to explicitly request it. Server-initiated delivery of data is an important aspect
of all Web applications mentioned above. It increases the responsiveness of the application, im-
proves the overall user experience and allows various real-time collaboration scenarios between
users. Some applications, such as market data delivery, are only possible with server-side push
of data.

This application model, in which the server delivers data to a browser via HTTP without
the browser explicitly requesting it, is called Comet[40] or Reverse Ajax[41]. Protocols and
techniques defined by the Comet application model are essential for Web applications that need
to asynchronously deliver events to clients. For a detailed description of the application model
and its technological foundations, please refer to Section 2.1.

One of the recent developments in the domain of Comet Web applications is an open-source
application protocol called Bayeux[50]. This is a protocol for transporting asynchronous mes-
sages in the Web with the main goal of overcoming the traditional, client/server nature of HTTP.
It provides means of two-way and low-latency communication between the server and the client
and is typically used to deliver notifications directly to Web browsers as soon as they occur.

Over the past two years, several implementations of the Bayeux protocol have emerged.
Aside from the reference implementation - Jetty CometD[14] - there are several other quite
mature Java-based implementations. IBM has incorporated an implementation of the protocol
into WebSphere as part of Feature Pack for Web 2.0[15]. Oracle WebLogic application server
also supports the Bayeux protocol[16]. The Atmosphere Framework[59], a portable Java Comet
framework, ships with a module that provides support for Bayeux.

While the protocol has a widespread support in the Java world, the support in the .NET world
is rather limited. Oyatel’s CometD .NET[19] is an attempt to port the core of Jetty CometD to
.NET, but the project was started just recently (January 2011) and is not usable. At the time
of writing, the only known implementation of the Bayeux protocol in .NET is WebSync[20],
a closed-source and on-demand solution built on top of Microsoft Internet Information Server
(IIS). As far as we know, there is no publicly available implementation of the Bayeux protocol



1.1. GOALS 3

in .NET that can be used in a stand-alone mode, without relying on Microsoft IIS.

A native .NET implementation of a Bayeux server has several advantages over Java imple-
mentations. The most important one is that the server can leverage the .NET technology stack
which offers some technologies not available in Java. An example is the Windows HTTP Server
API[21]: a high-performance Windows kernel-level library that handles HTTP traffic. Although
it is a low-level library that exposes only a C interface, .NET applications can use its function-
ality directly using wrapper classes that are part of the .NET framework. There is currently no
Java wrapper for the Windows HTTP Server API. A native .NET Bayeux server can easily pro-
vide hooks for Windows Communication Foundation (WCF) too and expose its functionality to
consumers in a very flexible way.

The lack of support for the Bayeux protocol on the .NET platform also poses a significant
technical problem for companies that want to expose their .NET-based backend data stores on
the Web using the protocol. While this technological gap between the platforms could be solved,
for example by implementing proxy/translator services on both sides, it induces a lot of overhead
for implementation, maintanence and system operations. A much better solution is to avoid the
gap altogether and implement a native .NET Bayeux server. The server fits much better into a
.NET-based eco system and makes the integration with other backend services and applications
easier, less error-prone and more natural.

TeleTrader Software AG is a company with a backend system that is primarily based on
the .NET framework. It is a Vienna-based IT service provider specializing in stock market
data. The company has a strong focus on the Web and offers a complete technology stack for
integration of market data into Web applications. An important part of that stack is a framework
for real-time delivery of market data directly to Web browsers. The existing solution is based on
deprecated technologies and shall be replaced by a solution based on the Bayeux implementation
resulting from this master’s thesis. The solution will also be presented in this thesis, as a sample
application that demonstrates features of the Bayeux server.

1.1 Goals

After presenting the problem background and the motivation for the solution, we can formulate
the goals of the master’s thesis.

The main goal of this thesis is: design and implementation of a stand-alone, high-performance
Bayeux server based on Microsoft .NET framework that supports both streaming and polling
communication techniques. The server will be designed as a class library that can be used by
any .NET application that wishes to provide Comet functionality and deliver data in real-time to
Web clients. This library is called Comet.NET.

The second goal of the thesis is: performance evaluation of Comet.NET and comparison to
the Jetty CometD reference implementation. Performance and scalability are considered to be
very important aspects of the presented solution. Once the solution is implemented, its perfor-
mance and scalability will be evaluated in a series of load tests.



4 CHAPTER 1. INTRODUCTION

1.2 Scope

This thesis addresses the problem of server-side push in the Web and provides a .NET-based so-
lution that allows building of efficient and scalable Comet Web applications. The thesis focuses
on the following three topics:

• Functional and non-functional requirements, design and implementation details of Comet.NET.
We do not only provide a description of the architecture and implementation, but also de-
scribe architectural constraints and give insight into reasons and rationals behind architec-
tural and implementational decisions.

• Teletrader HTTP Push Service. The enterprise stock market ticker application is used as
a show case that demonstrates how to build Comet applications based on Comet.NET.

• Performance. For purposes of performance testing, a series of repeatable benchmarks is
defined. We present the general setup for performance testing, benchmark details and their
results.

1.3 Organization

The remainder of this thesis is structured as follows:

• Chapter 2 discusses the core technologies and protocols which form the technical basis of
the solution presented in the thesis. It gives an overview of the Comet application model,
provides an in-depth explanation of the Bayeux protocol and briefly presents the JSON
format.

• Chapter 3 describes the solution presented in the thesis. The chapter starts with the func-
tional and non-functional requirements for Comet.NET. The design and architecture of the
solution are discussed next. The chapter also provides insight into various relevant imple-
mentation details. The goal is to not only describe the requirements and the architecture,
but also to provide reasons and rationals behind particular functional and architectural
decisions.

• Chapter 4 presents two sample applications based on Comet.NET. The first sample ap-
plication is a Chat application that serves as a simple example of a real-time interaction
via Comet.NET. The second sample application is the TeleTrader HTTP Push Service, an
enterprise stock market ticker application built on top of the Comet.NET library.

• Chapter 5 discusses the actual performance and scalability of the solution presented in the
thesis. In addition to that, the chapter provides a performance comparison of the presented
implementation with the reference Bayeux server implementation.

• Chapter 6 presents three existing open-source solutions that are based on the Bayeux pro-
tocol and provides relevant implementational details. The presented solutions are Jetty
and its CometD[14] module, Grizzly[58] and its Comet module and the Atmosphere
Framework[59].



1.3. ORGANIZATION 5

• Chapter 7 presents the related work in the field of push-based systems in general and the
solutions for push-based delivery of data to Web browsers in particular.

• Chapter 8 concludes the thesis with a short summary and plans for improving the solution
and work to be carried out in the future.





CHAPTER 2
Technologies

In this chapter we discuss the core technologies and protocols which form the technical basis
of this thesis. The first section gives an overview of the Comet application model. The second
section provides an in-depth explanation of the Bayeux protocol. The chapter is closed with a
brief presentation of the JSON message format.

2.1 Comet

Comet is a Web application model in which a server delivers data to a browser without the
browser explicitly requesting it. Comet is an umbrella term for various techniques that try to
reduce delays and deliver data asynchronously from a Web server to Web browsers. Unlike
Ajax[37] and traditional Web applications, Comet applications do not pull data from a server
periodically. Instead the server has an open line of communication with which it can push
data to the client. The communication between the server and the client relies only on features
included in browsers by default, most notably on Javascript, rather than on 3rd party plugins.
As such, Comet is essential for real-time event-driven Web 2.0 applications that generate a lot
of server-side events that have to be pushed frequently to clients without the dependency on
technologies such as Java Applets[38] or Adobe Flash[39].

The term was first coined by A. Russel, lead developer at Dojo Foundation, in his article
called “Comet: Low Latency Data for the Browser”[40]. The Dojo Foundation is the co-initiator
of the CometD project which later evolved into the Bayeux protocol specification[50]. Different
solutions to the problem of low-latency delivery of data to Web browsers have existed prior
the definition of the term Comet, but it was hard to communicate about them. There was no
clear name developers and other people involved could associate existing solutions with. Giving
these approaches a digestible, sounding name and a compact description made discussion and
collaboration on topics of real-time data delivery in the Web easier. It also helped overcome the
complete lack of standardization via W3C and start pushing these data delivery approaches into
the mainstream Web development.

7



8 CHAPTER 2. TECHNOLOGIES

It is worth noting that some authors use the term Comet interchangeably with Ajax Push and
Reverse Ajax[41]. All of these terms refer to essentially the same, but are far less common.

Figure 2.1: Ajax communication style

Available research papers mainly focus on comparing existing Comet solutions or imple-
mentation of new ones, but none discusses the actual term, what it accompanies and how it
relates to other existing and future technologies. Russel’s original article delivers a sufficient
description of what Comet is and what its main goals are, but it leaves a lot of room for inter-
pretations. For example, the relationship of Ajax and Comet is not completely clear: is Comet a
subset of Ajax or just a similar architectural style with common technologies, but different ap-
proaches? It is also undefined if Comet should only be based on Web standards like HTTP and
Javascript. There has been some discussion on these topics in the Comet community[42], but
there are still no satisfactory and widely accepted answers. Lack of standardization structures
and an almost non-existent formalization process make the standardization of Comet an almost
impossible task. This technical ambiguity will probably never be completely solved, just like
Ajax still leaves room for different interpretations even though it has reached a point where it
can be considered a state-of-the-art approach in building Web applications.

Sometimes Comet is advocated as real-time Web, regardless of the technique used to achieve
it. The focus is on the objective and on the result visible to the user. What matters is what is
achieved, not how. Applications that update themselves without user interaction when server-
side changes occur are considered Comet applications. The only requirement is that the update
is not triggered by the user and that only modified parts of the page are changed. According to
this definition, Comet equals to any kind of periodic refresh of a Web page.

This thesis uses a more common and more strict definition of Comet as facility for server
side push of data: only Web applications in which a server asynchronously initiates sending of
data to a client, as this becomes available, are actually Comet applications. Simple background
refresh of a Web page is not sufficient: the update needs to be implemented in a certain way
in order to be qualified as Comet application. The focus here is on how event data is delivered
to clients and who initiates the delivery, and not only on what effect is achieved from a user



2.1. COMET 9

perspective.
The two most widely accepted Comet techniques are long polling and streaming. They are

described in the following sections.

2.1.1 Long polling

The long polling Comet communication technique is a mixture of server-side push and client-
side pull approaches.

When using the conventional, periodic polling, a client sends requests in a predefined interval
and receives an immediate response. If there is new data since the last request, it is sent as a part
of the response. If no new data is waiting to be delivered to a client, an empty response is sent.
This communication style is typically used in Ajax applications and is depicted in Figure 2.1.

There are numerous problems with this approach, but the two major are: high average la-
tency and high server load. Long polling introduces a very important optimization: no response
is returned to the client until data is available or a timeout occurs. As soon as a response is
received by the client, either due to the fact that events have occurred or a request timed out,
the client sends a new request. The result is a significant reduction in latency because the server
usually has a request pending when it is ready to return information to the client. A graphical
representation of the long polling interaction between a client and a Comet server is shown in
Figure 2.2.

Figure 2.2: Comet communication style: long polling

One of the main characteristics of long polling is that a full HTTP request/response cycle
is always executed, regardless of whether data was available or a timeout occurred. However,
this does not necessarily mean that the underlying TCP/IP connection needs to be terminated as



10 CHAPTER 2. TECHNOLOGIES

well. Most modern implementations of long polling reduce costs of TCP/IP setup and teardown
to a minimum by reusing the same connection for multiple request/response cycles. Without the
overhead for setup and teardown of a connection, which is the primary cause of delays, clients
are able to eliminate latency almost completely. The concept of persistent connections is defined
in HTTP/1.1 and is supported by all major browsers and Web servers.

The only actual latency issue with long polling is related to the round trip time between
browser and server. Because of the nature of HTTP, a full request/response cycle is needed for
any kind of data exchange, so each event sent using long polling has roughly double latency
compared to streaming (described in Section 2.1.2). Even though it induces some additional
overhead compared to pure streaming, it has two important benefits: standard compliance and
network resilience to a certain level.

Since long polling uses a request/response pair for each exchange of data, it is fully com-
pliant to the HTTP communication model. And because it works both in keep-alive and older
HTTP/1.0 interaction scenarios, it is resilient to occasional interruptions in TCP/IP connections.
Applications based on Comet implementations that work with long polling do not need to know
if the TCP/IP connection is interrupted, as long as requests come in - possibly from a re-opened
connection.

A typical use case for long polling is Web chat[43][44]. Users that are viewing the same
Website at the same time can exchange messages just by typing them into a field directly in
the browser. Messages are then delivered to other users via a Comet server. This scenario is
often seen on social networking sites or sites that offer live technical support. Even if group chat
is enabled, the number of users and messages that they send to each other is usually not very
high. The frequency of the messages is usually quite low and does not exceed several messages
per second. In most cases, messages do not contain critical data and latency induced by the
request/response cycle of long polling is permissible.

2.1.2 Streaming

Streaming via HTTP is an old technique first introduced in 1992 by Netscape under the name
"dynamic document" [45]. Their flagship product and most popular browser at the time, Naviga-
tor 1.1, introduced the ability to perform a server push via an HTTP content type of multipart/x-
mixed-replace[46]. A long running process, usually a CGI process, would maintain an open
TCP connection to the browser and send content at arbitrary intervals, without client requests.
The technique was ahead of its time and was rarely used. Support for this content type was
never added to Internet Explorer, so when Netscape lost the browser war, HTTP streaming with
multipart/x-mixed-replace was mostly abandoned. This old idea was revived in Comet applica-
tions, but its implementation differs slightly.

The basic form of HTTP streaming is forever-response. It is a simple and straightforward
streaming via HTTP by keeping the response open indefinitely and sending data as soon as it is
available. The client sends a request, to which the server sends an immediate response which
is never terminated. The server uses chunked transfer encoding and persistent connections to
deliver events to the client as they occur. Chunked transfer encoding is a data transfer mechanism
in HTTP/1.1 that allows data to be reliably delivered between a server and a client without



2.1. COMET 11

Figure 2.3: Comet communication style: streaming

knowing the size of the entire response body in advance of the transmission. The client is
notified upon receiving of each chunk of data and is able to process it.

Because of numerous security policies such as the same origin policy [47] and limited con-
tent types allowed by browsers, the pure forever-response streaming cannot be used in Comet
Web applications which are per definition based on Javascript. It has to be augmented with
mechanisms for circumventing browser security mechanisms and tunneling of data chunks to
the Javascript client.

Streaming via a hidden iframe is the most common streaming technique used in Comet
applications. The technique is based on a hidden iframe and a never-ending HTTP response.
The client opens a hidden iframe and issues a request to the Comet server. The server sends data
in chunks and encloses each chunk in a HTML script tag with a Javascript callback function.
The browser renders script elements as they are received and invokes the callback with data
chunk as parameter. The incremental execution of script elements received in the iframe creates
the effect of streaming: the callback function is provided with data as soon as it is received and
can react on it, i.e. by updating GUI elements. If properly configured, the technique works in all
browsers, which is the main reason it is the most commonly used streaming technique.

Another popular streaming technique is interactive XHr streaming. Streaming via interac-
tive XmlHttpRequest is very similar to the streaming vie a hidden iframe, but is based on the
XmlHttpRequest Javascript object instead of the iframe. XmlHttpRequest is an object that exists
in all browsers and allows background execution of HTTP requests. Some browsers allow access
to the content of the response being received via XmlHttpRequest before the server terminates
the response. This can be used to achieve streaming to Web browser: the client reads response
chunks as they come in and provides them to a dedicated callback function. If application-level



12 CHAPTER 2. TECHNOLOGIES

messages in the response are properly delimited they can be easily extracted from received data
chunks and used in Comet applications.

The described streaming techniques all have the same pattern of interaction between a client
and a server, which is depicted in Figure 2.3. They cause virtually no latency because a single
TCP/IP connection and a single request/response cycle is used. The server always has a pending
request and an open connection, so it can immediately send data as it gets available. However,
the streaming techniques do not fully comply to the HTTP standard[48]. A strict interpretation
of HTTP leaves no room for streaming. While the HTTP streaming works in most browsers
without problems, it does not always work with proxies and firewalls.

For example, some firewalls are configured to allow only certain protocols on certain ports
and actively inspect communication taking place on those ports. If the interaction between server
and client does not seem to be HTTP conform, it is usually blocked. Another problem most
streaming implementations are facing are intermediary proxies that cache data, which breaks
the streaming.

A typical use case for streaming is market data distribution in the finance sector. Stock ex-
changes produce a very high volume of real-time data that characterizes the state of a financial
security (or instrument). This state is represented by a number of fields with values. Some of
these fields change only rarely, but some of them are updated at a very high pace, even several
hundred times per second. In addition to high frequency updates there is also the requirement
that clients need to receive updates virtually immediately after they occur. So, Comet applica-
tions that distribute financial data to clients have to push a large amount of data with very low
latency. Streaming is the only technique that offers acceptable latencies and also scales well in
such a scenario.

2.2 Bayeux protocol

Figure 2.4: A logical communication schema defined by the Bayeux protocol

As a response to the lack of standardization for Comet applications, the Dojo Foundation
released a protocol draft called “Bayeux”[50]. Bayeux can be defined as a protocol for trans-
porting asynchronous messages in the Web. It is a JSON-based protocol designed to overcome



2.2. BAYEUX PROTOCOL 13

the traditional client/server nature of the Internet in general and HTTP in particular. The protocol
provides means of two-way, low-latency communication between all participants by defining an
additional communication abstraction on top of the transport protocol.

Unlike other Comet approaches, the Bayeux protocol is based on a publish/subscribe model
[51, 52]. It essentially defines semantics for multi-point messaging over a point-to-point trans-
port. While the publish/subscribe approach is rarely used in traditional Web applications, it
offers a vastly better abstraction for Ajax applications with regards to flexibility, scalability and
resource sharing. The model used in Bayeux, shown in Figure 2.4, is very simple and natural:
clients act as subscribers, publishers or both, and the server acts as message bus and is respon-
sible for routing messages between them. By subscribing to a channel, a client expresses its
interest in a topic represented by the channel. Whenever a message is published to the channel,
either by a remote or local server-side client, it is delivered by the server to all clients subscribed
to that channel. The relationship between channels, subscribers and publishers is shown in Fig-
ure 2.5. This model achieves very high degree of logical decoupling of clients, which in turn
allows for greater scalability and more dynamic and flexible network topology.

Figure 2.5: The relationship between publishers, subscribers and channels

Even though the publish/subscribe approach has its advantages, it is not suited for all ap-
plications. Some applications require simple request/response communication between client
and server. For use cases where public broadcasting of messages is not an option, the Bayeux
protocol defines special channels for private, point-to-point communication. These channels can
be used to simulate request/response behavior without any additional costs.

Messaging semantics defined by Bayeux is independent of the underlying transport proto-
col, although the only transport protocol actually used throughout the specification is HTTP.
This certainly makes Bayeux not as flexible as it could be, at least in its current version, but
in scenarios where it is primarily used - Comet Web applications - this does not make much
difference. Bayeux was designed for the Web, so it makes sense to focus it on the standard
communication protocol used in the Web. But regardless of its focus on HTTP, Bayeux can be
used on top of any protocol that supports the request/response paradigm.

In order to achieve bi-directional communication, the Bayeux protocol defines that clients
should use two connections to the server. This way, messaging in both ways (server to client



14 CHAPTER 2. TECHNOLOGIES

and client to server) can occur simultaneously. However, regardless of the transport type used,
at most one connection can be long-lived and in idle state, waiting for events to occur. The other
connection is used to send requests to which the server immediately replies and is terminated
immediately. This is important because of the two connections per host limitation posed by the
HTTP protocol: the section 8.1.4 of the HTTP protocol specification[48] states that “a single-
user client should not maintain more than 2 connections with any server or proxy” and most
browsers adhere to this limitation.

2.2.1 A sample client/server interaction

Before further technical details of the protocol are discussed in the following sections, this sec-
tion gives an overview of the protocol by presenting a sample interaction between a client and
a server. For demonstration purposes, we shall describe a scenario with one remote client that
acts as a subscriber and one local, server-side client that acts as a publisher. The remote client
runs in a browser and the local client is an event source located on the server.

Figure 2.6: The interaction between the server and the remote client

A typical interaction between a client and a server consists of several process blocks shown
in Figure 2.6. The client initiates communication by contacting the server and starting the hand-
shake procedure. After communication details have been negotiated during the handshake, the
client establishes a logical connection with the server by sending a connect request. Once the
connection is confirmed by the server, the client will typically subscribe a set of channels it is
interested in.

As with connect, subscription requests have to be confirmed by the server. Once confirmed,
the client is subscribed and will receive messages published to these channels. Every time an
event is published to a channel that the remote client subscribed to, the server will route the
event message to the remote client. In this sample scenario, events are published by the server-
side event source. The client receives messages published to subscribed channels and processes
them as long as it is connected to the server. When it no longer wants to receive messages from
a channel, the client unsubscribes by sending an unsubscription request. The same effect is
achieved if the client disconnects from the server.

Figure 2.7 shows message exchange between a client and a server during a session presented
in this section.

2.2.2 Transport types

As already stated, the Bayeux protocol separates the messaging semantics from the communi-
cation details. These details are encapsulated within transport types.

Transport types define the sequence and content of connections initiated by clients and how
messages are wrapped up for delivery over the transport protocol. These may seem like im-



2.2. BAYEUX PROTOCOL 15

Figure 2.7: Message exchange between the client and the server

plementation concerns that should not be covered in a protocol specification, but it would be
impossible to create interoperable Bayeux server and client implementations without fully spec-
ifying transport details. Which transport type is used is negotiated between server and client in
the handshake phase, on connection initialization.

Bayeux transport types can be seen as more detailed and concrete specifications of the afore-
mentioned communication styles long polling (Section 2.1.1) and streaming (Section 2.1.2) and
their variations.

The protocol defines two transport types based on long polling communication style: one in-
tended for same-domain and another for cross-domain data transfer. In order to be fully Bayeux
compatible, server and client implementations have to support at least these two transport types,
but are free to implement additional types.

Defining required transport types helps establish interoperability between different server
and client implementations. Allowing additional, custom transport types greatly improves flexi-
bility.



16 CHAPTER 2. TECHNOLOGIES

2.2.3 Channels

Like all publish/subscribe protocols, Bayeux uses channels as addressing mechanism. Channels
represent topics or classes of interest, to which messages are published. They are identified by
an absolute URI without parameters (i.e. “/chat/programming/” or “/stocks/GOOG/”) and can
be hierarchical.

For situations where clients want to subscribe to multiple channels that have the same parent
segment, the Bayeux protocol defines channel globbing. Instead of sending one subscription
request for each channel, clients can send only one request and use trailing wildcards in the
channel name to specify that they wish to subscribe to all child channels. A single wildcard
(“*”) matches single segment while a double wildcard (“**”) matches multiple segments. By
using channel globbing, a client’s bandwidth is preserved, but far more important is the reduction
of overhead for subscriptions induced on the server.

The protocol defines two special cases of channels: meta and service channels. Meta chan-
nels begin with “/meta/” and are reserved for use by the Bayeux protocol itself. Service channels
are located under “/service/” and are designed to assist request/response communication. Clients
are not allowed to subscribe any of these channels.

2.2.4 Messages

Bayeux messages are JSON[53] encoded objects that contain an unordered sequence of name/-
value pairs representing fields and their values. The protocol defines a list of valid fields with
their value types and messages where they can be used. The field set is fixed, but there is a
special field called “ext” that serves as extension point and can be used to transfer any kind of
data.

The protocol defines only seven types of messages. There are six meta message types used
for communication between a server and a client, and there is one separate message type used to
deliver event data to clients. All message types are briefly described in this section.

Handshake These messages are used for negotiation of connection details. The client
initiates connection negotiation by sending a handshake request to the /meta/handshake channel.
The request message tells the server what connection parameters the client supports (i.e. protocol
version and a list of supported transport types). On successful handshake, a handshake response
is sent back to the client with a unique client id, the used connection type and a flag stating
that the handshake was successful. If the parameters in the handshake request cannot be met by
the server, it sends an unsuccessful handshake response back to the client. Complex connection
negotiations may require multiple handshake request/response pairs to be exchanged until the
server and the client agree on all communication parameters.

Connect After successful handshake exchange between client and server, the client can
establish a connection to the server by sending a Connect request to the /meta/connect channel.
Depending on the transport type used, the server can respond immediately or wait until there is
data to be delivered to the client.



2.2. BAYEUX PROTOCOL 17

Disconnect When a connected client wishes to disconnect from a server, it sends a discon-
nect request message to /meta/disconnect. Usually, no additional data is contained in this request
and the server responds with an empty disconnect response. This message type is used to signal
graceful termination of the client and initiate cleaning of resources allocated on the server for
the client.

Subscribe Clients express interest in topics by subscribing to appropriate channels. In
order to subscribe to a channel, a connected client needs to send a subscribe request containing
names of channels it wants to subscribe to /meta/subscribe channel. The server responds with
a subscribe response which always contains all channel names specified by the client, a flag
stating if the subscription was successful or not. There is also a range of optional fields such as
“timestamp” or “ext”.

Unsubscribe Connected clients can cancel their interest in topics by unsubscribing from
channels. Unsubscribe response and request messages follow the same logic and contain the
same dataset as subscribe messages, except that they are sent to /meta/unsubscribe channel.

Publish Clients can publish messages by sending a publish request to the server. The
request has to include the channel name to which the client wishes to publish and the data it
wishes to publish. The client does not need to be connected, although the server may decide to
reject publish requests from unconnected clients. In any case, the server responds with a publish
response, which contains a flag stating if the publish operation was successful or not.

2.2.5 Client state handling

Bayeux clients are always in one of three states defined by the protocol: disconnected, connect-
ing and connected.

Figure 2.8: Bayeux client state transitions

The client is in disconnected state prior to the handshake or after it has sent a disconnect
request. Generally, disconnected clients cannot communicate with the server, but there is one
exception: they can send publish messages. A server can, but does not have to accept publish
messages from disconnected clients. Publish messages from remote disconnected clients will be
usually ignored, but local clients will be usually permitted to publish messages without a need
to connect.

Connecting is an intermediary state that client has only during the handshake phase. After
successful handshake and after it receives a connect response with a “successful” flag, a client



18 CHAPTER 2. TECHNOLOGIES

is considered connected. This does not necessarily mean that there is a permanent transport
protocol connection to the server. Even if the underlying connection is broken for a short period
of time, a client remains in the connected state. It changes to Disconnected state only if a timeout
occurs or the client explicitly requests to be disconnected by sending an disconnect request.
In the Connected state, clients can subscribe to channels, unsubscribe from them, receive and
publish messages.

2.2.6 Security

The protocol does not provide any details on authentication or authorization. It only vaguely
covers two ways to achieve authentication: container supplied authentication and Bayeux ex-
tension authentication. Container supplied authentication means that the application relies on
authentication services provided by the hosting container (i.e. servlet container). One popu-
lar mechanism is session-based authentication with cookies. Bayeux extension authentication
is defined as authentication mechanism that exchanges credentials and tokens within Bayeux
messages ext fields. However, the protocol only states that the ext field may be used to ex-
change authentication challenges, credentials and tokens, without specifying details such as data
structures or algorithms for generating or validating security credentials.

2.3 JSON

The Bayeux protocol uses JSON (Java Script Object Notation)[53] as message exchange format.
JSON is a lightweight data-interchange format based on a subset of the Javascript Programming
Language. It is completely language independent but uses conventions that are familiar to pro-
grammers of the C-family of languages (such as C++, Java, C#, Javascript, Perl, etc.). JSON
is mainly used in Javascript applications, but it can be used to represent data structures from
virtually any programming language. The notation uses only two constructs to represent data:

• A collection of name/value pairs. This represents an object, record, struct or a dictionary.

• An ordered list of values. This represents an array or a sequence.

JSON is easy to parse, quite simple and at the same time quite versatile. These properties and
the availability of libraries for a number of programming languages make JSON an ideal data-
interchange language.

Compared to XML, it offers several advantages for Ajax and Comet applications. It has
much simpler syntax than XML and much smaller data encapsulation overhead. This in turn
significantly reduces the amount of data being transfered between server and client. Addition-
ally, JSON objects are syntactically legal Javascript objects and can be directly interpreted in
Javascript.



CHAPTER 3
Comet.NET

This chapter briefly presents functional and non-functional requirements for Comet.NET, dis-
cusses the architecture of the system and provides insight into various implementation details.
The goal was to not only describe the requirements and the architecture, but also to provide
reasons and rationals behind particular functional and architectural decisions.

3.1 Requirements

This section presents functional and non-functional requirements posed on Comet.NET. The
process of designing the architecture of the system was guided by the goals and principles de-
scribed in this section.

3.1.1 Functional requirements

Full Bayeux protocol compliance The main functional requirement is the unconditional com-
pliance to the Bayeux protocol. An implementation is considered unconditionally compliant if it
satisfies all the must or required level and all the should level requirements of the protocol[50].
The unconditional compliance will ensure interoperability of Comet.NET with other Bayeux-
compliant client-side applications. Besides that, it will allow functional and performance com-
parisons between Comet.NET and other Bayeux-compliant server implementations.

Streaming communication The Bayeux protocol requires implementations to support the
long polling communication style, but does not pose any requirements regarding streaming.
However, we consider streaming an equally important Comet communication style and define
that Comet.NET has to support both long polling and streaming. Furthermore, we pose a require-
ment that Comet.NET must support the three streaming techniques: forever-response streaming,
streaming via hidden iframe and interactive xHr streaming. These streaming techniques are
described in Section 2.1.2.

19



20 CHAPTER 3. COMET.NET

Synchronous and asynchronous programming model The application-level API exposed
by Comet.NET has to allow client applications to invoke I/O-bound operations both in the syn-
chronous and the asynchronous manner. The synchronous programming model is appropriate if
the application wants to block while waiting for the I/O-bound operation to complete. If however
the application wants I/O-bound operations to be executed in a separate thread, the asynchronous
model has to be used. Comet.NET shall use the Event-based Asynchronous Pattern [70] to pro-
vide asynchronous API methods.

Efficient handling of HTTP connections Comet applications have a radically different traffic
profile than traditional Web applications. A request in a standard Web application means that
the server has to perform a task and return the results as soon as the task is finished. Traditional
Web servers are optimized for this kind of short-lived requests that are always associated with
task execution. However, in a Comet application, a request does not cause the server to execute
a task. Instead, it is parked on the server most of the time and used to deliver event data as soon
as the event occurs. An efficient implementation of this key aspect of a Comet server - handling
of long-lived HTTP connections - is a very important functional requirement of Comet.NET.

Configurability Comet.NET has to offer a wide range of configurable properties so that its
behavior can be easily adjusted at runtime. The configuration has to be implemented by stan-
dard means of the underlying framework. This makes it easy for applications to use standard
application configuration files for persisting Bayeux configuration settings. The configurability
is only required prior instantiation of the server. Changing of configuration settings on-the-fly,
after the server has been started, is not required.

3.1.2 Non-functional requirements

Extensibility The system must offer a high level of extensibility. It must be possible to add
new capabilities or change the behavior of existing components without significant changes to
the underlying architecture. This can be achieved by using well-defined interfaces for commu-
nication between components in the system and defining various observation and interception
points. These points can be used to dynamically attach custom features or override the default
behavior. However, the extensibility of the system must not significantly reduce its usability.
Drawing a line between extensibility and usability is not an easy task, because these two fea-
tures contradict each other. A certain trade-off between simplicity of the Comet.NET public
API and increased extensibility is expected, but it must not lead to a cumbersome and obtrusive
system.

Embeddability In addition to the stand-alone mode, the server has to be easily embeddable
into arbitrary .NET applications. For example, it must be possible to plug Comet.NET into
an enterprise application and make data from the application’s backend store pushable. Also,
libraries that wish to integrate Comet functionality should be able to easily base relevant parts
on Comet.NET. In order to achieve this goal, the server will be developed as a library and can as
such be referenced in any application based on the .NET framework. One of the key aspects here



3.2. HIGH LEVEL OVERVIEW 21

is the public API of the library, that is, interfaces and classes that will be used by applications to
interact with Comet.NET.

Robustness and fault-tolerance Great care needs to be taken to make the server resilient to
invalid or unexpected client behavior as well as to suboptimal conditions in the runtime en-
vironment. The server should handle communication with clients according to the robustness
principle for Internet protocols, also known as Postel’s Law: be conservative in what you send,
liberal in what you accept[60]. In case of component failures or resource shortages (i.e. high
memory or CPU consumption), the service efficiency and speed can gradually be decreased, but
the server has to continue to operate and serve clients. This property is also known as graceful
degradation.

Scalability This is one of the top requirements and at the same time one of the top challenges.
The server has to be able to handle a growing number of concurrent users and messages in a
graceful manner. Since Comet.NET is a stateful server and needs to keep session state data for
each connected user, this is not a trivial issue. Another important aspect is that the scalability of
the system does not only depend on Comet.NET, but rather on application and services on top of
it. The key goal here is to design Comet.NET in a way that it allows load balancing of multiple
instances of applications based on it with minimal architectural constraints. It should even be
possible to employ Comet.NET in a “shared nothing” distributed system[61] if the application
layer supports it.

3.2 High level overview

Figure 3.1: View from bird’s perpective

Comet.NET is best described as a bus for routing events between remote clients using the
publish/subscribe communication paradigm. It resembles a typical messaging middleware, with
the main difference that it is focused on the Web. The high-level components of a system based
on Comet.NET are shown in Figure 3.1.



22 CHAPTER 3. COMET.NET

The main part of the system is the Bayeux engine, which sits between the HTTP handling
module in the bottom and data providers and security managers on the top, and handles the
routing of messages between clients via named channels.

When viewing the system from a bird’s perspective, it can be divided into three distinctive
parts:

• HTTP: the transport of messages.

• Bayeux engine: responsible for handling of Bayeux specific details such as messaging,
JSON marshalling, subscriptions and event delivery.

• Data providers and security managers: application-level components that provide services
on top of the Bayeux engine.

The actual handling of HTTP traffic is not part of Comet.NET. The bottom layer is quite thin and
serves only as wrapper for an actual HTTP handling library. The gray part, the Bayeux engine,
is the server core, where most of the code and logic resides. The topmost layer is supplied by
the application that provides services based on Comet.NET.

3.3 Static structure

After the high level overview of the system presented in the previous section, we continue with
the decomposition of the architecture in a top-down manner. Section 3.3.1 presents the overall
system packages and Section 3.3.2 discusses the system layers.

3.3.1 Packages

On a very abstract level, the architecture of Comet.NET consists of the six packages shown in
Figure 3.2. These packages represent a compile-time logical architecture of the system. Each of
them consists of a number of related classes that implement one or more related features.

The package Transport and communication contains classes that implement mech-
anisms for the communication with the outer world. Typical responsibilities of classes from this
package consist of dealing with HTTP request and responses, handling the incoming and outgo-
ing data chunks and performing their basic sanitation.

The Messaging and marshalling package consists of classes that represent messag-
ing constructs defined in the Bayeux protocol and offer marshalling and unmarshalling services
and hooks.

Security-related classes are contained in the package Security. Since the Bayeux protocol
does not define explicit security mechanisms, this package consists mainly of interfaces and
hooks intended for injection of custom security mechanisms provided by applications based on
Comet.NET.

The Collections package contains various collections that are custom-tailored to fulfill
requirements posed by other parts of the system.

The package Bayeux handlers groups together classes and interfaces that implement
the business logic defined in the protocol.



3.3. STATIC STRUCTURE 23

The package Bayeux domain offers an object-oriented abstraction of the constructs de-
fined by the Bayeux protocol.

Figure 3.2: Comet.NET package overview

3.3.2 Layers

Comet.NET has a layered architecture[62] and constitutes of four layers. Each layer has well-
defined roles and responsibilities. Layers are as self-contained as possible and communicate with
each other only via interfaces, which makes them agnostic of consumers. The communication
is one-way, top-down and each layer uses only functions from the layer directly beneath it.
Coupling between them is kept low, while at the same time cohesion within each layer is high.
Ultimately, the goal was to make layers replaceable without too much effort.

The Figure 3.3 shows the decomposition of the system into layers. The rest of this section
contains brief descriptions of each layer, along with their responsibilities.

The physical layer at the bottom of the system is responsible for communication with re-
mote clients. It receives and sends data by using a transport protocol with support for the re-
quest/response paradigm. The specification of the Bayeux protocol is heavily based on HTTP as
transport protocol and although it states that any request/response based protocol can be used as
transport, there are currently no other protocols actually used. Bayeux is intended for use on the
Web and HTTP is the standard communication protocol in this environment, so it can be argued
that the decision to tightly couple Bayeux and HTTP is a reasonable one. Following this reason-
ing, the physical layer in Comet.NET was designed to work with HTTP and provides methods
for accepting HTTP requests and sending HTTP responses. Tight coupling of the physical layer
to HTTP removes the need for an additional abstraction of the communication protocol and
makes the implementation of the layer as well as its interface to the adjacent layer much simpler.
However, in spite of tight coupling to HTTP, introduction of another request-based communica-
tion protocol would require only local changes. Since layers are allowed to communicate only
with adjacent layers, addition of another transport mechanism would only require changes to



24 CHAPTER 3. COMET.NET

several parts of the second layer (message marshalling). Layers above the message marshalling
layer would not be affected.

The next layer is the message marshalling layer. It is responsible for converting raw input
data received from the physical layer into Bayeux messages and vice versa. Data is transported in
form of JSON objects, so this layer serializes and deserializes higher level objects that represent
messages to and from JSON strings. All layers above operate only on high level representations
of Bayeux messages (IMessage objects) and have no contact with JSON. The Bayeux protocol
defines several combinations of Web methods (GET, POST) and encodings that can be used for
communication between client and server. This layer encapsulates logic for proper handling of
various input/output combinations and shields upper layers from dealing with these details.

Figure 3.3: Comet.NET layers overview

The business logic is located in the message processing layer. Components of this layer give
meaning to messages and process their content. Messages are validated and processed by one
of several message handlers. Each message handler encapsulates logic for processing one type
of Bayeux requests (details are discussed in Section 3.4.5). This allows clean enforcement of
separation of concerns in the layer. Another responsibility of this layer is creation and removal of
high level business objects that represent a large part of the public API of Comet.NET: channels,
clients and subscriptions.

The top layer is the representation of the publish/subscribe paradigm of the Bayeux protocol.
This is the interface that applications based on Comet.NET use to interact with remote clients.
The layer contains business level objects already mentioned in the previous paragraph: channels,
clients and subscriptions. Channels represent Bayeux topics, clients represent connected remote
clients and subscriptions are expression of interest of a client for a channel. The central point
of the server, the class BayeuxServer, is also part of the layer. In addition to providing
means of interaction with clients, this layer is also responsible for various notifications towards
the client application. An example notification would be a creation of a new channel or a new
subscription. These notifications can be used by applications based on Comet.NET to trigger
appropriate actions when certain events occur.



3.4. DOMAIN MODEL 25

Figure 3.4: Dependencies of the BayeuxServer class

3.4 Domain model

This section represents a more detailed overview of Comet.NET’s architecture. It presents im-
portant classes from the domain model and shows their static relationships in form of UML
diagrams[63]. The section also provides insight into some relevant implementation details.

The domain model is divided into coherent logical parts - subdomains or modules - that
contain tightly coupled classes with similar responsibilities. Each section describes one of the
parts. Section 3.4.1 describes the coordination within Comet.NET. Section 3.4.2 explains how
HTTP requests are handled. Section 3.4.3 explains how messages and related facilities are mod-
elled. The design of the transport concept is presented in Section 3.4.4. Classes involved in
processing Bayeux requests are presented in Section 3.4.5. Section 3.4.6 describes the classes
that implement the publish/subscribe model in Comet.NET.

3.4.1 Coordination

BayeuxServer is the main class in the package. It acts as mediator and orchestrates other
parts of the library such as HttpListener, message handlers, clients or channels. The rela-
tionship between BayeuxServer and other classes in the system is shown in Figure 3.4.



26 CHAPTER 3. COMET.NET

Figure 3.5: Relationship between IHttpListener and IHttpRequestHandler

An instance of this class represents a fully functional Bayeux end point. Although the class
holds a lot of references to other classes and seemingly has several responsibilities, it is not a
God class[64]. It is quite coherent and has only one true responsibility: coordinate the pro-
cessing of incoming requests by delegating work to appropriate objects. Client applications use
BayeuxServer as the entry point for interaction with Comet.NET. It must be noted how-
ever that it is not the sole interface between the client applications and the library. For the
actual interaction with remote clients, the classes BayeuxClient, BayeuxChannel and
BayeuxSubscription have to be used. The main reason for not having a facade[67] is that
the number of public classes is reasonably small and their relationships are very clear.

3.4.2 Request handling

The relationship between interfaces presented in this section is shown in Figure 3.5.
HTTP requests are provided by an implementation of the IHttpListener interface. The

listener is responsible for accepting incoming HTTP requests and handling them over to a regis-
tered IHttpRequestHandler. The only available IHttpRequestHandler implemen-
tation is BayeuxServer, but using interfaces for interaction between these two parts greatly
reduces coupling. IJsonMarshaller is responsible for deserialization of the content of
HTTP requests. It creates one or more high-level representations of Bayeux requests in form of
IMessage objects.

3.4.3 Messaging

IMessage objects are common entity objects that contain only data and methods for data
validation. They are the only objects allowed to traverse layer boundaries and can even be used
by applications on top of Comet.NET.

They are created with factories that implement the IMessageFactory interface[67].
By providing custom implementations of IMessageFactory and IMessage, client appli-



3.4. DOMAIN MODEL 27

cations can easily supply their own message classes that will be used in Comet.NET. Addi-
tionally, serialization and deserialization of messages can be customized by providing another
implementation of IJsonMarshaller. The triple IMessage, IMessageFactory and
IJsonMarshaller offers a great degree of flexibility, while keeping the interface clean and
simple.

The relationship between the interfaces presented in this section are shown in Figure 3.6.

Figure 3.6: Relationships between message-related interfaces and BayeuxServer

As defined in the protocol, messages are maps of key-value pairs. Each message type has
a set of required and optional fields. A simple approach would be to define message as a key-
value store similar to associative hash tables and several convenience methods for accessing
common fields such as channelId or clientId. Although very flexible and easily extensible, this
approach has several downsides. The main problem is the weakly typed nature of message
objects: the client is responsible for using proper field names, as defined in the protocol, and
providing their values as objects of appropriate types. For example, the field “success” can only
have type boolean, but the field “supportedConnectionTypes” is an array of strings. This cannot
be checked at compile time with messages as loosely typed maps of keys and values. Another
downside of this approach is that messages are not self-documenting and developers that write
applications based on Comet.NET would need to consult the documentation more often.

The opposite, strongly typed approach would be to create a class hierarchy with a subtype
for each message type defined in the protocol. Each subclass would have only properties defined
in the protocol and it would not even be possible to create invalid messages (other than leaving
required fields empty on purpose). However, such a hierarchy introduces overhead in both design
and implementation, which is not justified by the gains from it. The main problem is determining
the concrete type of the message after it has been received and unmarshalled. The best approach



28 CHAPTER 3. COMET.NET

Figure 3.7: Relationships between transport-related interfaces

would be to write methods for handling each message type and let the runtime determine the
dynamic type of the message and invoke the appropriate method. However, the .NET Runtime
4.0[65] does not support multiple dispatching[66], so we cannot use this approach. Switch
statements would be required to determine the type of the message, which must then be casted
to its most specific type and processed accordingly. A better solution for the problem is provided
by the visitor pattern[67], but the visitor pattern has it own set of limitations: it reduces the ability
to introduce new subclasses and hence reduces the extensibility.

After carefully reviewing possibilities, a hybrid approach was chosen. There is one interface
- IMessage - that exposes all message fields defined by the protocol as properties. The name of
the property represents the name of the field in the Bayeux message and the type of the property
defines the field type. This allows compile-time type safety of messages. However, since there
is only one interface for all types of Bayeux messages, clients still have to take care which
properties have to be set for a particular message type. A set of validators provides run-time
message validation and helper methods allow clients to easily construct valid messages.

3.4.4 Transport

Relationships between classes and interfaces described in this section are shown in Figure 3.7.
ITransport encapsulates a HTTP response and specific details such as encoding and be-

havior (for example, streaming vs. polling). The interface hides low-level communication and
serialization details and offers methods for enqueuing and flushing (sending) of IMessages
to remote clients. Just like messages, instances of transport classes are created with factory
classes that implement the ITransportFactory interface. However, unlike messages, the
creation of transport objects is dependent on the HTTP request. The factory creates an appro-
priate transport instance based on the content of the HTTP request. This is needed because the



3.4. DOMAIN MODEL 29

Figure 3.8: Static structure of system parts that deal with message processing

Bayeux protocol defines several possible combinations for communication between client and
server and properties of the response depend on properties of request.

The transport can be seen as a sink where various parts of the system can enqueue messages,
without knowing when or how they will be actually transported to the remote client.

3.4.5 Processing

The actual processing of requests is the responsibility of implementations of the IMessageHandler
interface. There is a message handler for every type of Bayeux message. The decision which
handler will process which message is made by BayeuxServer. Handlers differ greatly in
complexity and dependencies on other classes, but all of them have very narrow and well-defined
responsibilities. The relationship between interfaces and classes described in this section are
shown in Figure 3.8. and concrete implementations of depicted interfaces are described in the
following paragraphs.

HandshakeHandler is responsible for processing of handshake request messages and
serves as entry point for the authentication process. It uses the associated implementation of
IBayeuxSecurityManager to determine if the client is allowed to connect to the server



30 CHAPTER 3. COMET.NET

Figure 3.9: The handling of a subscription request

and if so, proceeds to select compatible connection types depending on client properties such
as user agent (browser), create a client representation on the server in form of an instance of
the BayeuxClient class and send the appropriate response message via the associated imple-
mentation of ITransport.

ConnectHandler handles connect request messages. These messages are mainly used
to indicate a long-lived request that should be used for event delivery, so there is not much
logic involved in their processing. The handler sets the implementation of ITransport into
the state in which it can be used for asynchronous sending of events and creates a connect
response message. ConnectHandler’s counterpart - DisconnectHandler - is responsible for
processing of disconnect request messages. It removes the client state and frees used resources
such as event queues.

SubscribeHandler and UnsubscribeHandler are responsible for handling of sub-
scribe and unsubscribe request messages, respectively. The sequence diagram in Figure 3.9
shows the collaboration between components during the processing of a subscription request.
For each channel contained in the subscribe request, the handler uses IBayeuxSecurityManager
to check if the client is authorized to subscribe to the channel. For subscriptions that are allowed,
the handler establishes a connection between the BayeuxChannel and BayeuxClient by
creating a BayeuxSubscription object and creates the response message with the “suc-
cessful” flag. For disallowed subscriptions, the response with “successful” flag set to false and
appropriate error message is sent. Handling of unsubscribe requests is considerably simpler:
apart from consistency checks, the handler only has to remove the logical connection between
channel and client and send an appropriate response.

PublishHandler processes publish messages. The publishing of messages is plugged
into the security process the same way handshake and subscription are: IBayeuxSecurity-
Manager is used to determine if a client can publish the provided message to the specified
channel. If allowed, the handler has to schedule the distribution of the message to all clients



3.4. DOMAIN MODEL 31

subscribed to the channel and also send a confirmation message to the publishing client. In case
the publishing was not allowed, an error message can, but does not have to be sent to the client.
The decision if an error message should be sent to the client is made in the implementation of
the security manager.

ILocalService is a special case of a message handler. Client applications can attach
custom implementations of this interface to BayeuxServer and subscribe to one or more
channels. Every time a message is received on one or more specified channels, it is forwarded
to ILocalService with context objects such as BayeuxClient and BayeuxChannel.
The service can then react on a message according to its content as well as internal logic of the
service. This interface is best suited for request/response types of services, where a remote client
communicates only with the server and consumes a service. Clock synchronization and check-
ing of e-mail inbox are typical use cases that rely on such communication style. The Bayeux
protocol defines special channels for this kind of communication, so called service channels
(/service/). Local services are not limited to request/response communication only: they can
listen on multiple channels and also publish on multiple channels. For example, a simple chat
service can be implemented on top of Comet.NET by implementing ILocalService. This
is demonstrated in section 4.1.

3.4.6 Publish / Subscribe

Figure 3.10: Static structure of publish / subscribe classes

The publish/subscribe paradigm of the Bayeux protocol is represented by the classes Bayeux-
Channel, BayeuxClient and BayeuxSubscription. The classes are presented in Fig-
ure 3.10.

Channels are the addressing mechanism of Comet.NET. They have unique names, can be hi-
erarchically structured and represent topics or classes of interest. The class BayeuxClient is
the server-side representation of a remote client. It holds session data such as a list of subscribed
channels and a queue of messages that are waiting to be pushed to the client. This class also has
an optional reference to an implementation of IDataFilter that is used for filtering outgoing
messages on each push operation. BayeuxSubscription is an association class, a logical
link between a client and a channel that expresses that a client wants to receive messages pub-



32 CHAPTER 3. COMET.NET

lished on a particular channel. Unlike client and channel, it is very simple and contains almost
no logic.

Instances of these three classes are used by applications on top of Comet.NET for interaction
with the library and indirectly with remote clients. Applications can publish messages to a
channel, which in turn sends provided messages to all clients subscribed to that channel, or
they can send messages directly to clients. They can use events raised by BayeuxClient and
BayeuxChannel to react on situations such as subscription of a new channel or removal of a
client. And finally, they can use various properties of these two classes to inspect their state (i.e.
last activity, connection type, id, etc).

3.5 Message flow

The previous section gave an overview of the important server components, including their
static structure and some implementation details. This section presents a message flow through
Comet.NET and describes how these components interact with each other. The sequence di-
agram in Figure 3.11 shows a sample message flow in case where incoming requests are suc-
cessfully processed by an IMessageHandler. The sequence diagram in Figure 3.12 shows a
sample message flow in case that incoming requests cannot be unmarshalled.

Incoming HTTP requests are received by an implementation of IHttpListener. On
each request, an instance of HttpContext is created with request data and an response ob-
ject that can be used to send response to the client. This context object, containing all relevant
data of the request/response pair, is then passed to BayeuxServer for actual processing. It
is worth mentioning here that IHttpListener and BayeuxServer are not tightly cou-
pled: IHttpListener knows statically only IHttpRequestHandler, which defines a
single method for processing HTTP requests. Implementations of IHttpListener have one
or more registered implementations of IHttpRequestHandler, to which they forward in-
coming requests. BayeuxServer implements the interface IHttpRequestHandler and
registers itself as the request handler on initialization.

The main responsibility of the BayeuxServer is to coordinate the handling of incoming
HTTP requests. First, it uses an implementation of IRequestReader to read the request and
get its content in string form. As specified by the protocol, the content of the request is one or
more Bayeux messages, so the second step is unmarshalling messages from the request content.
An implementation of IJsonMarshaller is used for this purpose: it is provided with a string
representation of the request content and returns one or more IMessage objects. All classes in-
volved in processing of messages write their output, if there is any, to ITransport. The server
instructs ITransportFactory to create an appropriate instance of ITransport using the
request and response objects, as well as messages deserialized by IJsonMarshaller in the
previous step. After this step is finished, BayeuxServer is ready to start the actual inspection
and processing of each IMessage from the request.

Only basic rules for message validity, such as that every message must have a channel, are
enforced in the BayeuxServer itself. If a message fails to meet these basic validity rules,
a generic error message is sent and the ITransport object associated with the request is closed.
Otherwise, messages are forwarded to appropriate implementations of IMessageHandler



3.5. MESSAGE FLOW 33

Figure 3.11: A sample message flow in Comet.NET (normal case)

for actual processing. BayeuxServer uses the channel name to determine the type of the
message, which in turn determines which handler has to be used for its processing.

Since IMessageHandler expects not only IMessage and ITransport objects, but
also an instance of BayeuxClient, BayeuxServer has to do one more lookup before messages
can be forwarded to actual processing. It uses ClientStore to get the client associated to the
client ID contained in the message (omitted in Figure 3.11). Handshake messages are handled
differently, because they are sent by an unconnected client and therefore do not have a client ID.
If the server encounters a handshake message, a new instance of BayeuxClient is created
and added to the store.

After instances of IMessage, ITransport and BayeuxClient are available, Bayeux-
Server can invoke appropriate implementations of IMessageHandler or ILocalService.
The decision for the invocation can be described as follows:

1. If a message is sent to a meta channel, find the implementation of IMessageHandler
responsible for this meta channel and invoke its Handle method



34 CHAPTER 3. COMET.NET

2. If a message is sent to a channel that was registered by an implementation of ILocal-
Service instead of IMessageHandler, invoke its Handle method

3. Otherwise, invoke the special handler for publishing of the message (PublishHandler)

The instance that handles an incoming message can enqueue one or more response messages to
ITransport that was provided as parameter of the invocation. Per convention, classes that
process messages do not flush or close the transport. This is important, because there is a one-to-
many relationship between incoming messages and transport: there can be many messages that
were received in the same HTTP request and therefore share one transport. It is the responsibility
of BayeuxServer to decide if and when a transport should be flushed.

Figure 3.12: A sample message flow in Comet.NET (error case)

3.6 Transport types

The following two sections discuss transport types supported by Comet.NET and present various
details on their implementation.



3.6. TRANSPORT TYPES 35

3.6.1 Supported transport types

Comet.NET supports the two widely accepted Comet communication styles: long polling and
streaming. These styles define communication details such as sequence of connections and the
content that is transported over them, but leave a lot of implementation-level details open. For
example, long polling defines that the server should attempt to keep each request open until
events arrive or, otherwise, a timeout occurs, but does not specify details on the format of the
request and response. Similarly, streaming defines that the response should be kept open and
used for delivering of events as they occur, but leaves even more implementation details open
than long polling.

As defined in the Bayeux protocol, there are two transport types for long polling: one for
communication in the same domain and one for communication between different domains
(cross-domain). Same-domain long polling is called “long-polling” in the protocol specifica-
tion, whereas cross-domain long polling is called “callback-polling”. The semantics of these
two transport types is essentially the same, but they differ in the HTTP method (POST vs. GET),
encoding of messages and the way a client handles responses. Comet.NET supports both regular
and cross-domain long polling transport types.

A streaming transport type was part of early versions of the Bayeux protocol, but was later
removed and is not contained in the final version of the specification. However, the protocol
allows server and client implementations to define custom transport types. Comet.NET uses
this possibility and defines three streaming transport types: “hidden-iframe”, “xhr-streaming”
and “forever-response”. These transport types represent the streaming techniques presented in
Section 2.1.2.

3.6.2 Implementation details

The concept of transport was introduced and briefly described in 3.4.4. This section gives more
insight into implementation details of transport-related interfaces and classes.

The interface ITransport defines the contract for enqueuing and flushing of IMessage
objects and represents the main point of interaction with the underlying communication protocol
(in the current version only HTTP). ITransport is an abstraction that other parts of the system
can use to send messages without dealing with low-level communication details. The interface
is designed to support both the polling and the streaming communication type. It also supports
both synchronous and asynchronous flushing of data to remote clients.

A careful analysis of transport types Comet.NET should support was done prior to and dur-
ing the early stages of development. The analysis included not only properties of transport types
but also typical interaction scenarios between other parts of the library and transports. It turned
out that there are only two differences between transports: the initialization and the way data is
encapsulated into the underlying response. This led to the class hierarchy presented in Figure
3.13.

There is an abstract base class BaseTransport that contains most of the logic needed
by all supported transport types. The class implements all methods and properties defined by
ITransport and has only one abstract method: GetResponseBytes. The method accepts
a list of IMessage objects and returns a byte array that can be written directly to the underlying



36 CHAPTER 3. COMET.NET

Figure 3.13: Transport implementations in Comet.NET

response. By leaving the implementation of the method open we allow subclasses to hook
themselves easily into the process of serialization and sending of messages, while still keeping
the logic encapsulated in one place and enforcing the single responsibility principle[68].

DefaultTransport has no initialization other than standard initialization sequence pro-
vided by BaseTransport and encodes messages with UTF-8[69]. This implementation
is used for “long-polling” and “forever-response” transport types. JsonpTransport also
does not have any additional initialization and encodes messages with UTF-8. But unlike
DefaultTransport, it encapsulates serialized data into a Javascript callback code, as re-
quired by “callback-polling” transport type. FrameTransport is the implementation used
for “hidden-iframe” transport type. It has a rather complex initialization, because it has to pre-
pare the iframe opening HTML content and send it along with the first message. As with other
transport implementations, messages are encoded as UTF-8, but in this case they have to be
embedded in script tags with appropriate Javascript callback. XHRTransport is very similar
to FrameTransport, but instead of wrapping messages into script tags, it injects a delimiter
between them so that the client can identify them during parsing. Messages are encoded with
UTF-8 encoding.

As specified in the requirement in Section 3.1.1, transport implementations in Comet.NET
offer both models, the synchronous and the asynchronous model, for sending data to remote
clients. The synchronous model is appropriate if the application should block while waiting for
data to be serialized and sent. This is usually not the case in high-performance applications. In
the more complex asynchronous model, the serialization and sending of the data is executed in a
separate thread and the application does not block. This model is intended for high-performance



3.7. THREAD MANAGEMENT 37

scenarios.
BaseTransport uses the Event-based Asynchronous Pattern[70] to provide asynchronous ver-

sions of methods for flushing (FlushAsync) and flushing and closing (FlushAndClose-
Async). The underlying HTTP library, Windows HTTP.SYS, uses a highly optimized mecha-
nism for asynchronous I/O operations called Windows I/O completion ports[71, 72].

3.7 Thread management

The Section 3.7.1 discusses the traffic profile of Comet applications and how it affects the thread
management in a Comet server. The Section 3.7.2 presents how Comet.NET deals with the
thread management requirements posed by the Comet application model and provides insight
into implementation details.

3.7.1 Comet application model

As noted in Section 3.1.1, one of the key aspects of a scalable Comet infrastructure is the efficient
handling of HTTP connections.

The most commonly used request processing model in traditional multi-threaded Web servers
is the thread-per-request model[73, 74]. There are numerous variations, but the concept is the
same: each incoming request is associated with a thread. This thread is used to perform all the
necessary work to service the request and send the response back to the client. After the thread
is done serving the request, it is assigned to another incoming request or returned to the thread
pool if there are no pending requests. By using multiple threads, each bound to one request,
the server can process many concurrent requests simultaneously, resulting in high throughput
and minimizing the number of requests pending at any given time. This approach works great
for serving a large number of rather short-lived requests - rendering dynamic Web pages, for
instance - and is commonly used with Web application frameworks such as ASP.NET, PHP and
Ruby on Rails.

Comet applications have a radically different traffic profile than traditional Web applications.
In a standard Web application, a request means that a client wishes to retrieve a resource or
invoke a service that will perform some task. The server performs work, processes the request
and sends back the response as quickly as possible. However, a long polling or a streaming
request from a Comet client does not cause the server to perform work. It spends most of its
life-cycle in an idle state, waiting for an event to occur.

The Comet application model is based on creating and maintaining long-lived HTTP con-
nections with outstanding requests. These requests are used by the server to send events to the
client as they occur. Typically, each connected client will have an outstanding request most of
the time, so a Comet server needs to deal with as many concurrent requests as it has clients. The
traditional thread-per-request model degrades to a thread-per-client model, which does not per-
form well with an increasing number of concurrent clients. Since threads consume considerable
amount of resources, the thread-per-request model is generally unable to scale to a large number
of Comet clients.



38 CHAPTER 3. COMET.NET

In order to efficiently implement the key aspect of a Comet server - handling of long-living
HTTP connections - a non-standard, asynchronous and non-blocking approach for processing
of HTTP traffic is needed [75]. The basic premise of this approach is the separation between
threads and requests. In this model, a thread is not bound to a single request during the whole
life-cycle of the request, but can be assigned to another request if the one that is being processed
enters the “waiting” state. Requests in the waiting state are the ones that are “parked” on the
server and used for sending events back to the client. Once a request enters the waiting state, the
thread that was bound to it is released and waiting is done completely asynchronously, without
any resources being held. When an event occurs that should be sent using the request, it can be
done from any available thread.

3.7.2 Implementation details

Unlike Java servlet containers, Comet.NET does not have the burden of the Java servlet model,
which has an inherent thread-per-request design[55]. The underlying HTTP engine, Windows
HTTP.SYS, does not implicitly bind threads to requests, so there were no architectural limi-
tations when implementing the asynchronous and non-blocking processing of HTTP traffic in
Comet.NET.

Incoming requests are received by an implementation of IHttpListener and are dele-
gated to BayeuxServer. At this point, each request is associated with a thread. The server co-
ordinates creation of appropriate ITransport, deserialization and inspection of IMessages
as well as their delegation to appropriate instances of IMessageHandler or ILocalService.
This work is done by the thread associated with the request. After the processing of the request
is completed, the server needs to decide if it should send the response immediately or if the
request should be parked and used for sending events to a client at some later point in time.
This is done by inspecting the transport associated to the request: if it contains useful response
data, the response is sent to the client and the request-response cycle is terminated; otherwise
the transport is kept open and attached to BayeuxClient so that it can be used for dispatch-
ing events. In either case, the thread is freed after this last step and can be used for processing
another incoming request.

Typically, requests that contain only connect Bayeux messages are kept open and are used
for asynchronous sending of events to the client. Other meta messages defined in the protocol
are used to control the state of the client on the server and require that the response is sent im-
mediately. Control messages include subscribe, unsubscribe, disconnect and publish messages.
If a request contains one of the control messages, it can not be used for asynchronously sending
events.

Once the waiting request, encapsulated by an instance of ITransport, is attached to
BayeuxClient, it is the responsibility of the application on top of Comet.NET to enqueue
and flush events. How and when events are dispatched to remote clients depends largely on the
type of application and its event source(s). The library hides low-level details such as ITransport
and offers a rich public API for sending events to remote clients, but leaves the actual logic to
be implemented in the application layer.



3.8. SECURITY 39

3.8 Security

Figure 3.14: Sample security checks in Comet.NET

Since the Bayeux protocol does not define mechanisms for authentication or authoriza-
tion, it was not possible to provide an interoperable implementation of these security aspects in
Comet.NET. Instead, the library defines three interception points that can be used by application-
level security managers to implement custom authentication and authorization on top of the
Bayeux protocol. These are the available interception points:

• OnHandshake: executed when a handshake message is received from a remote client

• OnSubscribe: executed when a subscribe message is received from a remote client

• OnPublish: executed when a publish message is received from a remote client

Interception points are represented as methods in an interface, IBayeuxSecurityManager,
whose implementation can be injected into BayeuxServer upon creation. A sample interac-
tion between the involved components is shown in Figure 3.14.



40 CHAPTER 3. COMET.NET

Handshake When a client issues a handshake request, the security manager is provided with
the Bayeux message as it was received from the client. At this point, there is no client state at
the server, so an instance of BayeuxClient cannot be provided. The security manager can
inspect the message and decide if the client should be allowed to establish a connection with the
server. If the connection is rejected, the security manager can provide an error code and human
readable error description, which are sent in the “error” field of the response message.

Subscription On each subscription request from a client, the security manager is provided
with the server-side representation of the client - an instance of the BayeuxClient class - and
the Bayeux message as it was received from the client. The message contains the name of the
channel the client wants to subscribe and may also contain extended data in the “ext” field. With
provided data, the security manager can execute a custom authorization check and decide if the
client should be allowed to subscribe to the channel. Like with handshake, in case of rejection,
an error code and description can be returned.

Publish Usually, the application wants to restrict publishing of events from remote clients in
some way. This interception point is executed every time a publish request is received from a
client and enables the security manager to control who can publish to channels and what can be
published. The security manager is provided with the BayeuxClient and IMessage as it
was received from the client and can use this data to decide if the message should be published.
It can even change the message, for example remove unauthorized parts from the “data” field. In
case publishing was disallowed, an error code and description can be returned and will be sent
to a remote client.



CHAPTER 4
Sample applications

This chapter presents two sample applications based on Comet.NET. The first section presents a
chat application. The second section provides a detailed overview of the TeleTrader HTTP Push
Service, an enterprise stock market ticker application built on top of the Comet.NET library.

4.1 Chat

We present a simple chat application as a “Hello world” example of a real-time interaction via a
Comet server. A typical Web-based chat application[43][44] features many users that commu-
nicate with each other by exchanging messages in chat rooms. Users publish messages to chat
rooms and receive messages from other members of those chat rooms. Private communication
between two users is also a standard feature of such chat applications. In this case, messages are
only exchanged between the two users involved in private conversation.

Figure 4.1: CometD chat sample application

A simple messaging application will be used to demonstrate the capabilities of Comet.NET.
We will use the existing chat application delivered as a sample with CometD Jetty as basis and
adapt it to work with Comet.NET. Since the library is fully Bayeux-compliant, there is no need

41



42 CHAPTER 4. SAMPLE APPLICATIONS

for changes in the client part of the application. The sample chat website, including client-side
logic contained in the supporting Javascript code, will be reused “as is”. The server part will be
completely rewritten, but will retain the same input/output behavior.

The following sections contain a list of requirements posed on the application, a short
overview of implementation specifics and a subsequent comparison of the implementation to
the reference implementation included with Jetty.

4.1.1 Requirements

The chat application presented in this chapter is a simple “Hello world” example and as such has
only basic requirements. The purpose of this example is to demonstrate how two-way commu-
nication between remote clients in a typical Comet scenario can be achieved with Comet.NET.

The sample application fulfills the following requirements:

• Single chat room

There is only one public chat room and every connected user automatically joins the room.

• Public conversation

Every connected user can publish messages to the public chat room. There is no autho-
rization. Also, every connected user receives every message that is published in the public
chat room.

• Private conversation

Two users can engage in a private conversation, in which case messages are routed only
between them.

• No authentication

Everyone can use the chat application. No credentials are required.

4.1.2 Design

The sample chat application is modelled as a client/server, event-based application that produces
events and reacts on them. The general architecture of the application is shown on Figure 4.2.
The client-side part of the application is a mixture of static HTML, images and style sheets
and a dynamic Javascript code that encapsulates the logic. The static content is served by a
Web server using the standard HTTP requests. The dynamic part is built on top of the CometD
Javascript client and communicates with the Comet server using the Bayeux protocol. The
Comet server essentially consists of Comet.NET and the server-side application implementation
that is encapsulated in the ChatService class.

All events in the system are produced by users (client-side). There are no server-side gen-
erated events. Events originating from clients are sent to the server where they are processed
and forwarded to other users. The events are: a user joining or leaving the chat, sending of a
message to the public chat and sending of a private message to another user.



4.1. CHAT 43

Figure 4.2: Architecture of the chat application

When a user joins or leaves the chat, his client publishes a message on /chat/demo with
the user name and a flag stating if he joins or leaves. This is a broadcast message that needs
to be routed to all active clients and is used to display appropriate messages on the screen. In
addition to that, the client expects the full list of names of active users every time somebody
joins or leaves and uses the list to refresh the GUI. This implies that the server side of the
application needs to keep the list of active users and their properties. Instead of sending the
full list of user names on each change, an incremental approach would be more efficient, but
it would also make both client and server implementations more complicated. Since we aim
for full compatibility with the existing client implementation and for the sake of simplicity, no
optimizations are introduced.

When a user writes something into the public chat room, his client publishes a message on
/chat/demo with the text that was entered by the user. Again, this is a broadcast message that
needs to be routed to all active clients. For private messaging, the channel /service/privatechat
is used. When a user sends a private message to another user, the client publishes a message on
/service/privatechat with the following data: name of the sender, name of the receiver and the
text entered by the sender. This message must not be broadcasted to all clients. It is only sent to
the client that was addressed as receiver in the message.

4.1.3 Implementation

Local service In order to implement the server-side part of the chat application, we need to
write an implementation of ILocalService that contains the logic for coordination and no-
tification of chat clients. The implementation resides in the class named ChatService. The
application uses two channels - /chat/demo for public and /service/privatechat for private com-
munication - so the service will have to receive and publish messages on these two channels.
This is easily achieved in Comet.NET by registering the service with BayeuxServer for the
two channels. This instructs the BayeuxServer to forward all messages received on specified
channels to the provided local service. And since relevant context objects are provided with each



44 CHAPTER 4. SAMPLE APPLICATIONS

forwarded message, the service can easily send messages to remote clients. The following code
snippet demonstrates how to initialize the server-side part of the application:

BayeuxServer bayeuxServer = new BayeuxServer(settings, httpListener,
jsonMarshaller);

ChatService chatService = new ChatService(bayeuxServer);
bayeuxServer.RegisterLocalService("/chat/demo", chatService);
bayeuxServer.RegisterLocalService("/service/privatechat", chatService);
bayeuxServer.Start();

Event types and deserialization For transporting event data, the Bayeux protocol provides
the “data” field within a message[50]. The chat application uses a range of simple JSON objects
to represent different events and their data. For example, the event of a new user joining the chat
is represented by a JSON object with the field “chat”, which contains a simple message to be
displayed on the screen, and the flag “join” set to true. A user leaving the chat is represented by
a similar message that has the same field “chat” and a flag “leave” set to true. There are four
distinct event types and therefore four JSON objects that represent them. However, on the server
side, we define only one entity class named Data that defines all possible fields and is used as
representation of all events. The main reason for this design decision is the simplicity of the
implementation.

The application needs to provide an implementation of IDataDeserializer that can
create an object from JSON content in the “data” field. The actual deserialization is delegated to
the JSON.NET library[76], so the data deserialization logic for the chat application consists of
two lines of code that invoke appropriate JSON.NET functions:

public class DataSerializer : IDataDeserializer
{
private Newtonsoft.Json.JsonSerializer serializer =

new Newtonsoft.Json.JsonSerializer();

public object Deserialize(string json)
{

StringReader stringReader = new StringReader(json);
return serializer.Deserialize(stringReader, typeof (Data));

}
}

Event processing Routing of broadcast messages published by chat clients is done by the
Comet.NET engine itself, so the ChatService has only two responsibilities: delivering a user list
on each change (join and leave) and handling of private communication.

In order to be able to deliver the user list to clients, the ChatService has to keep a local list
of active users. It reacts on each message received on the channel beginning with “/chat/” and
adds or removes the user if the message contains the flag “join” or “leave”, respectively. Even
though the application currently supports only one chat room, the client and its event data are
designed to support multiple chat rooms in the future, so on the server side, we opted for a data



4.1. CHAT 45

structure that takes multiple chat rooms into account. The data structure is a nested dictionary
that maintains key-value pairs and allows keeping the list of mappings between client ID and
user name for every room (Figure 4.3). When a user joins a room (currently only “demo” chat
room is supported), its client ID and user name are added as a key-value pair into the dictionary
for that room. When a user leaves the room, it is removed from the dictionary for that room. On
each of these two events, the service delivers the full list of user names as an array of strings to
all active clients.

Figure 4.3: Chat service data structure

Handling of private communication requires the ChatService to keep a list of all clients along
with their user names. When a user sends a private message to another user, the service needs to
find the appropriate instance of BayeuxClient and deliver the message. For this purpose, a
mapping between user names as keys and BayeuxClient instances as values is sufficient. The
mapping is updated every time a new client is connected or an existing client is disconnected.
This is done by handling ClientAdded and ClientRemoved events of BayeuxServer.
The following code snipet shows how private messages are sent:

// Data data = received from the sending client
// BayeuxClient receiver = the receiving client
// BayeuxClient source = the sending client

Data chatMsgData = new Data();
chatMsgData.Chat = data.Chat;
chatMsgData.User = data.User;
chatMsgData.Scope = "private";
receiver.Deliver(channel.ChannelId, chatMsgData);
receiver.Flush();

if (receiver != source)
{

source.Deliver(channel.ChannelId, chatMsgData);
source.Flush();

}



46 CHAPTER 4. SAMPLE APPLICATIONS

4.1.4 Discussion

By re-implementing the server-side of the CometD sample chat application with Comet.NET,
we demonstrated the basic capabilities of the library and showed how Bayeux services can be
built on top of it. While this application is too simple to be used as basis for functional compar-
ison between Comet.NET and the Jetty CometD reference implementation, it does show some
commonalities and differences between the two.

The main difference is the way services are defined and attached to the Bayeux server. With
Jetty, Bayeux services are essentially servlets that are instantiated and initialized by the con-
tainer. They are self-contained and have little knowledge of the outside world. Most of the
instantiation and configuration work is handled by the container. On initialization, Bayeux ser-
vices are injected with an instance of Bayeux - the representation of the Bayeux engine in Jetty -
and can use it to register themselves for channels, query clients, channels and subscriptions and
interact with the outer world.

On the other hand, Comet.NET is designed as a hosted Comet engine that has to be instan-
tiated and configured by the host application. This poses a certain overhead when compared to
Jetty, but also offers more flexibility. Once the engine is configured and started, it can be used
by the application in two ways: either by registering local services that are bound to one or more
channels or by handling events raised by BayeuxServer and interacting with clients, channels
and subscriptions.

We can conclude that Comet.NET poses more configuration overhead and requires more
boilerplate code than Jetty. In case of simple services like the one presented in this chapter,
this is very noticeable and doubles the amount of code needed for Comet.NET. However, if we
compare the services themselves, we notice that there is little difference. Both services follow
the same logical layout and are implemented in a very similar way. There is no substantial
difference even in terms of lines of code: Jetty service has 90 lines of code 1 and Comet.NET
service has 115 lines of code.

4.2 TeleTrader HTTP Push Service

To illustrate features of Comet.NET, we present the TeleTrader HTTP Push Service, an enter-
prise stock market ticker application built on top of the Comet.NET library. Teletrader HTTP
Push Service[77][78] is a streaming engine designed for real-time data delivery over HTTP con-
nections. It targets primarily Web clients and is optimized for streaming market data directly to
Web browsers, but can be used to push data to virtually any client that supports HTTP.

The service is a sophisticated router between TeleTrader Market Data Server (MDS)[79] that
acts as data source and remote clients that have the role of data consumers. It is a data-centric,
asymmetric Comet application with one server-side component responsible for generation of
events and many remote clients that do not generate events themselves, but only consume them.

1CometD Java samples: ChatService. http://svn.cometd.com/trunk/cometd-java/
cometd-java-examples/src/main/java/org/cometd/examples/ChatService.java,
02.01.11

http://svn.cometd.com/trunk/cometd-java/cometd-java-examples/src/main/java/org/cometd/examples/ChatService.java
http://svn.cometd.com/trunk/cometd-java/cometd-java-examples/src/main/java/org/cometd/examples/ChatService.java


4.2. TELETRADER HTTP PUSH SERVICE 47

This setup is standard in financial industry where the most widely adopted application of Comet
is distribution of market data via the Web.

Figure 4.4: General setup of the HTTP Push Service

4.2.1 TeleTrader Market Data Server

TeleTrader Software AG is both a data re-vendor and an IT service provider specializing in stock
market data. In order to be able to deliver financial data to different customers, ranging from
private investors using desktop trading terminals to banks and other financial institutions that use
TeleTrader solutions for both their Web presence as well as their back office needs, the company
has developed a complex IT infrastructure that is able to process and offer millions of trades and
quotes (‘tick data’) from a vast universe of market data to its customers, along with master data
about the securities (investment instruments such as stocks, bonds, futures, etc.).

The Market Data Server (MDS)[79] makes up the core of the entire TeleTrader service in-
frastructure. It is a proprietary system developed by TeleTrader for the specific purpose of stor-
ing and serving millions of ‘ticks’ (intraday and interday quote data) for millions of securities
while being fast, reliable, and scalable. The system is centered around the notion of a symbol,
which represents one security. Symbols have two different kinds of data: master and quote data.



48 CHAPTER 4. SAMPLE APPLICATIONS

Master data is kept in a relational database whereas quote data is kept in several proprietary file
structures optimized for this purpose. From the client perspective, both master and quote data
for a symbol are represented by a range of strongly-typed fields with values.

In addition to market data, MDS stores and serves financial news articles published by a
variety of news feeds. As with symbols, news data is represented as a range of strongly-typed
fields with their respective values.

Almost all quote data served via any of TeleTrader’s products or interfaces originates from
MDS. There are client APIs for several platforms, most notably C++ and .NET/C#, that can be
used for retrieval of static and dynamic data. Both the pull and the push paradigms are supported.
Dynamic data, such as symbol quote data or news articles, can be retrieved in pull and push
manner. Static data, such as master data of a symbol, can be retrieved only by requesting it
(pulling).

4.2.2 General setup

The HTTP Push Service can be described as a sophisticated router between MDS that acts as
data source and remote clients that have the role of data consumers. In essence, it forwards
updates from MDS to remote clients in real-time. The relationship between the HTTP Push
Service, MDS and clients is depicted on Figure 4.4.

The Bayeux protocol is used as transport mechanism, on top of which a simple application
level protocol is defined. This protocol specifies how clients can issue requests to the server and
the format of messages exchanged by the server and the client. The application level protocol
used by the HTTP Push Service is described in section 4.2.4.

The service supports delivery of two distinct types of data: symbol quote data and news
articles. In both cases, clients need to express their interest in a resource (symbol or news
source) by subscribing it. With each subscription, a list of fields can be supplied. This allows
very fine-grained filtering of data that is delivered to the client. After successful subscription,
the client is notified every time a change of one or more fields of the subscribed resource occurs.
Every subscription can be deactivated, which causes the server to stop sending updates of the
resource to the client.

In order to be able to distribute changes in the state of a resource, the service itself needs to
be notified about these changes by MDS. The service uses a subscription-based streaming API
to communicate with MDS and receive updates for resources of interest in real-time. Resources
are subscribed on-demand, so only data from resources that were actually requested by clients
is received and processed. When a client subscribes a resource that is currently not subscribed
by any other client, the service activates the same subscription on MDS and starts receiving
updates for the resource. Subsequent subscriptions for the same resource by other clients cause
no action towards MDS, because everything is already in place. When the last client cancels the
subscription for a resource, the subscription for the resource on MDS is deactivated and changes
are no longer received. This on-demand approach is applied not only to resources, but also to
their fields. The service always subscribes the superset of fields needed by clients interested
in a specific resource. When a client subscribes or unsubscribes, the set of required fields is
re-evaluated and the MDS subscription is updated accordingly. This approach makes sure that
no unnecessary data is ever received from MDS, thus conserving bandwidth and CPU usage.



4.2. TELETRADER HTTP PUSH SERVICE 49

The described data flow from MDS through the HTTP Push Service to remote clients is
shown on Figure 4.5. The figure also gives a high-level overview of the system architecture.

Figure 4.5: High-level architecture of the HTTP Push Service

With exception of control requests such as subscribe and unsubscribe requests, the commu-
nication between the server and the clients is one-way only: from server to the clients. Clients
are passive consumers that do not publish events themselves, but only consume event messages
received from the server. This is a typical example of an asymmetrical publish/subscribe archi-
tecture, where a very small number of publishers (in this case, there is only one) produce events
that are dispatched to a rather large number of subscribers.

Since the HTTP Push Service is a commercial product and the business model behind it is
based on selling market data in different qualities, one important requirement was to ensure that
only authenticated clients are able to connect to the server and receive only market data they
are authorized for. Bayeux is a plain-text protocol and it does not specify any security mech-
anisms, so the protocol alone cannot be used to enforce security policies needed by the HTTP
Push Service. Instead, the concept of security provider was introduced. The security provider
is essentially a separate component that allows remote clients to authenticate. It also communi-
cates with the HTTP Push Service behind the scenes, offering authentication and authorization
services. The security concept of the HTTP Push Service is described in more detail in section
4.2.6.

4.2.3 Channels

Since the Bayeux protocol uses channels as addressing mechanism, all resources have to be
mapped to channels. Both resource types, symbols and news sources, have a unique numerical
identification, so their mapping to channels was a trivial task. Symbol ID (tts-id) is used for
identification of symbols and News Source ID is used for identification of news sources. This
leads to the following format of the channels:

• Symbol channels: /teletrader/symbols/<tts-id>

• News channels: /teletrader/news/<source-id>



50 CHAPTER 4. SAMPLE APPLICATIONS

In addition to resource channels, the HTTP Push Service defines several service channels. Ser-
vice channels allow direct, point-to-point communication between the server and the client and
are used for delivery of application-level notifications. Market data is never delivered via these
channels.

One example of service channel is the disconnect channel (/service/disconnect). The “dis-
connect” channel is used for sending a notification prior to server-initiated disconnect of a client.
Clients can use messages delivered on this channel to react on pending disconnect and start
cleanup procedures or display an appropriate message to end-users.

4.2.4 Message format

The Bayeux protocol defines the “ext” field that can be used for application-specific extensions
of the protocol. This field is used by HTTP Push Service for transporting additional data on
handshake and subscription requests. This section describes the format of extension fields for
these two operations and the format of event messages sent by the service.

Handshake During the handshake, a client needs to provide a valid authentication token,
otherwise the connection is refused by the server. The client can also provide a list of default
symbol and news fields that should be used for subscriptions when no fields are explicitly set.
This is a convenient way to define the default field sets for the lifetime of a client. The following
table contains the defined fields along with short description for each of them.

Field Required Description
AuthToken Yes The authentication token provided by the security provider

(TTWS)
SymbolFIDs No A comma-separated list of field IDs that will be used for

subscriptions of symbols if no fields are supplied.
NewsFIDs No A comma-separated list of field IDs that will be used for

subscription of news if no fields are supplied.

Table 4.1: Handshake extension fields

Field Required Description
FIDs No A comma-separated list of field IDs. Only updates to these

fields will be sent to client.
PushType No Indicates how updates will be transmitted to the client.

Valid values: [Snapshot | Everything]

Table 4.2: Subscription extension fields

Subscription When subscribing to a channel, clients can specify what data they wish to re-
ceive by providing filters for the subscription. For both symbol and news subscriptions, a



4.2. TELETRADER HTTP PUSH SERVICE 51

comma-separated list of valid fields can be sent with the request, restricting the subscription
to only specified fields and causing the server to send update notifications only when one of
these fields changes. Clients also have the possibility to specify how they would like to receive
updates from the server: only the latest change per field or all changes. This feature is called
PushType and is further described in section 4.2.5.

Event notification As defined by the protocol, event messages have a “data” field that contains
the payload - the event data. In case of the HTTP Push Service, this field is a collection of key-
value pairs, where each key-value pair represents field name and its value. The value can be
simple or complex, depending on the field. The format of “data” field is generally the same for
both symbol and news. The only difference is in fields that can be contained in messages.

Each symbol update message contains a special “symbolId” key with Teletrader Symbol ID
(tts-id) of the symbol as value. This field can be used to correlate messages with symbols on
the client. All other fields are optional and depend on subscription filters, customer-specific
permissions and data available in MDS.

Each news update message contains data for one article. Unlike symbol updates, this type of
message does not have any special fields: its content is determined only by the field list provided
on subscription and client’s permissions. It is however recommended to subscribe “sourceId”
and “articleId” fields which can be used for client-side correlation.

Figure 4.6 shows a sample event message with symbol quote data in JSON notation.

{
"channel" : "teletrader/symbols/12345678",
"id" : 55,
"data" : {

"symbolId" : "12345678",
"last" : 14.45,
"dateTime" : "12.01.2010 11:18:33",
"volume" : 4450,
"turnoverValue" : 653703,
"change" : 0.32,
"numberTrades" : 69

}
}

Figure 4.6: Sample event message with symbol quote data

4.2.5 Design and implementation

There are two primary goals of the HTTP Push Service: managing remote Bayeux clients and
their subscriptions and broadcasting data received from MDS according to those subscriptions.

Domain model As previously stated, the HTTP Push Service defines an application-level pro-
tocol on top of Bayeux that allows clients to provide additional information such as authentica-
tion tokens or subscription filters. Besides these protocol extensions, there is state information



52 CHAPTER 4. SAMPLE APPLICATIONS

Figure 4.7: HTTP Push Service domain model

beyond the default Bayeux state that needs to be kept during the lifetime of a client. This is a
typical problem that all but the most basic applications based on Comet.NET have: how to store
and handle application-specific state data. The solution we opted for in HTTP Push Service
was to create new classes that represent the domain model of the application. The model itself
is very similar to the one found in Comet.NET and consists of classes representing clients and
subscriptions, but adds application-specific properties to them.

Remote clients are represented by instances of the class Client. Each client has a reference
to a corresponding instance of BayeuxClient, configuration and security-related data such as
the customer the client belongs to, as well as the list of active subscriptions. Clients are created
each time BayeuxServer notifies the application about a newly connected client and are then
added to the local client list. Similarly, when the server fires an event stating that a client was
disconnected, the corresponding Client instance is removed from the local list.

Subscriptions are represented by instances of classes SymbolSubscription and News-
Subscription. Because quote and news data is offered in different data qualities, a subscrip-
tion is not a simple mapping to a resource (represented by a channel) but rather a combination
of resource and data quality. This combination is represented by SubscriptionKey and its
concrete subclasses - SymbolSubscriptionKey and NewsSubscriptionKey. All sub-



4.2. TELETRADER HTTP PUSH SERVICE 53

scriptions to the same resource in the same data quality have the same key. A subscription is
uniquely identified by its key and by the client it belongs to.

Another important property of subscription is the list of fields that specify what kind of
data clients wish to receive. The field list is the basis for fine-grained filtering of data prior to
delivering it to the client. It is used to reduce full update messages received from the backend to
only those parts that were requested by the client.

Fine-grained filtering is one of the main reasons for introduction of subscription keys as
means of partial subscription identification. When an update is received from MDS, the appli-
cation has to find all subscriptions for the updated resource in the quality in which the data was
received from MDS. Found subscriptions are then used to filter the received message so that only
relevant parts are published to clients. This lookup is executed each time an update is received
from the backend, so high performance is the primary requirement.

Such high-performance access is provided by SubscriptionStore, a custom data struc-
ture designed for managing subscription objects during their lifetime. The data structure pro-
vides operations for retrieval of both single subscription objects and lists of related subscriptions
(subscriptions with the same key), as well as standard add and remove operations. The focus
when designing and implementing SubscriptionStore was on fast lookup operations by subscrip-
tion keys, because they are expected to be executed far more often then add and remove oper-
ations. This was achieved by using a custom concurrent dictionary with SubscriptionKey
objects as keys and custom concurrent lists of Subscription objects as values.

As with clients, subscriptions are created when BayeuxServer notifies the application
about a new subscription and are then added to SubscriptionStore. When the application
is notified about unsubscription, the corresponding Subscription object is removed from the
store. “Dangling” subscriptions are removed in case a client disconnects without unsubscribing,
which guarantees that the SubscriptionStore is always in a consistent state.

Data processing and forwarding The core functionality of the HTTP Push Service can sim-
ply be described as forwarding updates from MDS to remote Bayeux clients. The process con-
sists of receiving messages from MDS, extracting data from them, converting it into the format
expected by remote clients and finally publishing event messages to clients according to parame-
ters specified in their subscriptions. There are three components involved in the process, defined
by the following interfaces: IDataReceiver, IDataExtractor and IDataPusher.
Subscription objects are used for final data filtering and the actual delivery to remote clients
is delegated to Comet.NET through instances of BayeuxClient. Figure 4.8 shows the rela-
tionships between involved components.

DataReceiver is responsible for communication with MDS. It activates, updates and
deactivates subscriptions towards MDS as needed by the application and receives messages with
updates. The receiver is associated with exactly one connection to MDS and receives data in
one quality. Multiple data quality levels are achieved by having multiple instances of this class.
In the current setup there are only two data quality levels, but this approach allows adding new
levels with no architectural changes.

The MDS API provides a client interface, represented by IMdsAsyncClient in Fig-
ure 4.8, that allows applications to asynchronously exchange messages with MDS. Most low-



54 CHAPTER 4. SAMPLE APPLICATIONS

Figure 4.8: Components involved in data forwarding

level communication details are hidden inside the API implementation, so DataReceiver
only needs to issue proper subscription and unsubscription requests and react on new messages.
Messages received from MDS are represented by instances of the class MdsMessage, whose
structure is of little relevance in this context. On each new message, the data receiver does some
internal processing after which the message is submitted to DataPusher, along with the data
quality associated with the receiver.

DataPusher is the component responsible for processing of MdsMessages and publish-
ing update events to remote clients. This is an active object that has one or more dedicated
worker threads for the actual processing and delivery of data. This way, the input and output,
represented by data receiver and data pusher respectively, are not only decoupled in terms of
interfaces but also in terms of execution. The receiving of updates from MDS and their process-
ing and publishing to remote clients executes independently and in parallel, if supported by the
underlying physical machine (if multiple logical processors are available). After experiment-
ing with several different setups, we have come to the conclusion that the best performance is
achieved if data pusher has one worker thread per logical processor.

The first step in processing of incoming messages is their conversion from the format pro-
vided by the MDS API into the format expected by remote clients. The application-level pro-
tocol of the HTTP Push Service defines event data as a JSON map of key-value pairs. This
correlates naturally to the .NET dictionary data structure, so the easiest way to provide remote
clients with data in the expected format is to convert MdsMessage objects into dictionaries and



4.2. TELETRADER HTTP PUSH SERVICE 55

Figure 4.9: Interaction between components involved in processing and publishing updates

let Comet.NET serialize them automatically into JSON key-value maps. The task of converting
MDS messages into dictionaries is delegated to IDataExtractor.

Once data is available as a collection of key-value pairs, data pusher proceeds to retrieve
subscriptions and publish the data to clients associated with them. Every subscription knows
what fields were requested by the client and can extract only those fields from the dictionary that
was created from MdsMessage, so the final step is to iterate over subscriptions, apply the filter
for each of them and enqueue the resulting dictionary into BayeuxClient referenced by the
subscription. This ensures that every client gets a customized event message, as specified upon
subscription.

The fine-grained filtering of event data poses certain architectural constraints that result in
performance overhead. DataPusher cannot work directly with clients and channels, but has
to operate on subscriptions instead. It has to retrieve a list of subscriptions and apply filtering for
each of them on every incoming MDS message. It also has to publish a separate event message
for every client. Since event messages are customized, there is no single message that can be
broadcasted on the channel. This means that Comet.NET has to serialize and send multiple
messages for each update message received from MDS. With exception of serializing event
messages with overlapping content, which can be optimized to a certain extent, all mentioned
aspects are “by design” and cannot be optimized.



56 CHAPTER 4. SAMPLE APPLICATIONS

Message aggregation The state of a symbol can change at a very rapid pace, with up to sev-
eral hundreds of changes per second. The subscription-based, streaming MDS API was designed
primarily for applications that need to receive all changes (such as backend services and desktop
charting applications), so the aggregation features are almost nonexistent. MDS simply propa-
gates all changes in symbol state to subscribed clients, in as many messages as needed.

The HTTP Push Service targets mainly Web clients that typically update Web pages with
changes as they occur and rarely need to further process the data. Since only the latest value of a
field is displayed and the human eye can perceive only a limited number of updates per second,
it is safe to say that most Web clients do not need to receive all changes. For most of them, it
is acceptable to receive only the latest values of fields that have changed during a predefined
time interval. We call this time interval “aggregation interval” and define it as the amount of
time between two deliveries of data to remote client. The aggregation interval depends on the
transport type and on the server-side customer configuration and its range is typically between
0.25 and few seconds.

Even though most clients do not require all changes to be delivered to them, there is a small
subset that poses this requirement. For example, Web applications that draw realtime charts or
calculate financial indicators based on intraday quote data require every change in symbol state.
Naturally, this type of clients induces more overhead on the server, because more messages have
to be serialized and delivered. For a field that has 10 updates during the aggregation interval of
1 second, this type of client induces 10 times more overhead than the one that requires only the
latest field values.

In order to support both target groups efficiently, the HTTP Push Service introduces a sub-
scription parameter named PushType. For each subscription, a client can specify if it is interested
in all updates (Everything) or only in the most recent changes that occurred during the aggrega-
tion period (Snapshot). In case of snapshot delivery, event data is filtered before each delivery
so that it includes only the latest value of each field found in the data set. In case the delivery of
all changes was requested, no filtering takes place.

Comet.NET offers a callback interface IDataFilter that can be used for this kind of
filtering. An implementation of this interface can be attached to BayeuxClient and is then
invoked every time messages are flushed to the underlying transport. This allows applications
built on top of the library to implement any kind of message inspection and filtering prior to
output: they can change existing messages by adding or removing fields, delete messages or
even insert new ones.

In the HTTP Push Service, every client has its own data filter. It is a stateful filter that keeps
track of client subscriptions and shapes the outgoing messages according to their parameters,
with the goal to reduce the number of outgoing messages to a minimum. In the best case,
when a client wants to receive only the latest snapshot for all subscriptions, the output is always
one message per channel. In the worst case, when a client wants to receive all updates for all
subscriptions, no reduction is possible and the filter returns the same message set.

Important prerequisite for message aggregation and filtering in the HTTP Push Service is
that messages are not immediately sent to clients, but are rather buffered and sent in batches
in a predefined interval. As briefly described in section 3.7.2, Comet.NET separates operations
for enqueuing and flushing of messages, allowing applications to decide when data should be



4.2. TELETRADER HTTP PUSH SERVICE 57

flushed to the client. The actual flushing is executed in DataPusher, from one of its worker
threads, and depends on global and customer-specific aggregation settings.

4.2.6 Security

Since Bayeux is a plain-text protocol, no credentials are exchanged using the protocol itself.
The HTTP Push Service relies on a security provider for authentication and authorization of
clients. The security provider is essentially a component that allows remote clients to authen-
ticate and also communicates with the HTTP Push Service behind the scenes, offering authen-
tication and authorization services. In a standard TeleTrader in-house setup, TeleTrader Web
Service (TTWS) acts as the security provider.

Authentication is based on session tokens. Clients need to contact the security provider
and get a session token, which needs to be supplied during the handshake with the HTTP Push
Service. If the token is valid, the connection is established and the client can subscribe and
receive data. If the token expired or is invalid, an appropriate error message is sent to the client
and the connection is closed.

Figure 4.10: Security model of HTTP Push Service

The server provides a fine-granular authorization system that works on two levels: resources
and fields. In order to be able to subscribe for a symbol or a news source, the client needs to
have permission to access the resource. Additionally, each client can have access to all fields of



58 CHAPTER 4. SAMPLE APPLICATIONS

a resource or only to a specific set of fields, depending on its status in the system. Clients do not
need to take care of permissions. This is handled by the server in combination with the security
provider behind the scenes.



CHAPTER 5
Evaluation

The main goal of this chapter is the exploration of the actual performance and scalability of the
presented solution. In addition to that, the chapter provides a performance comparison of the
presented implementation with the before mentioned reference Bayeux server implementation -
Jetty CometD.

For performance and scalability measurements, a series of repeatable benchmarks was de-
fined along with relevant input and output variables and measurement methods. These bench-
marks were then executed with predefined input variables such as the transport technique (polling
vs. streaming) and the number of published messages per second. For each benchmark, relevant
data was collected and analyzed afterwards.

General definition of benchmarks and their input and output parameters can be found in
Section 5.1.1. The benchmarks and their results are presented and discussed in the Section 5.2.
A comparison with the reference implementation can be found in Section 5.4.

5.1 Definitions and tools

This section describes the basic benchmark setup, testing environment and tools used for mea-
surements of performance and scalability of Comet.NET.

5.1.1 Goal and general setup

The goal of benchmarks presented in this chapter consists of measuring the overall performance
of Comet.NET in conditions that mimic a heavy-load real-life usage scenario. In every scenario,
there is one server instance that runs on a dedicated server machine and many clients that are
simulated by a client simulator application running on one or more machines. Every benchmark
execution is started with a small predefined number of clients. The number of clients is pro-
gressively increased in batches until one of the two abort conditions has been reached: either
the median message latency exceeds 1 second or more than 20.000 clients have connected to the
server. All benchmarks are conceptually similar and have the same basic setup:

59



60 CHAPTER 5. EVALUATION

• There are 50 channels.

• Every client subscribes a predefined number of random channels.

• All published messages have the same size.

• The Publisher publishes messages to a subset of channels every second. How many mes-
sages are published per second is defined in the benchmark configuration.

• Clients are added in batches with a pause between each batch. The size of the client batch
and the pause between the batches is defined in the configuration.

• The benchmark is stopped once the median message delay exceeds 1 second.

• The median message delay is the median delay of all messages received by a client during
the 30 seconds.

The message delay is defined as the difference between the time the message was created by the
Publisher application and the time it was received by the client. Every time a message is created
by the Publisher, a timestamp is attached to it. The client takes a timestamp when the message is
received and calculates the delta to the message timestamp. This value shows how long it takes
for a published message to reach the client. The message delay can be used to measure how fast
a client gets notified with the latest events.

While all benchmarks have the same basic setup, they differ in three aspects that are repre-
sented by the following input variables:

• Number of messages per second (1, 5, 20)

• The payload of published messages (150, 500 bytes)

• Transport type used for communication between the server and the client (polling, stream-
ing)

These variables are used to simulate different situations and evaluate how Comet.NET per-
forms in each of them.

UTF-8 is used for encoding of messages, so a payload of 150 bytes represents at least 37 and
at most 150 characters. The same payload equals to a JSON map with 7 key-value pairs where
keys consist of 10 characters from the ASCII set in average and values are containing floating
point values with 4 decimals. A message payload of 500 bytes represents at least 125 and at
most 500 characters or a JSON map with 24 key-value pairs with the structure described above.

All benchmarks focus primarily on streaming, because of the advantages this communication
paradigm has in comparison to polling (discussed in section 2.1.2). Every benchmark is also
executed with clients using only polling transport type. Both results are presented and discussed,
if not explicitly stated otherwise.

All components involved in the execution of benchmarks were configured to produce and/or
collect data during the execution that is relevant for the analysis of Comet.NET’s overall perfor-
mance. In particular, the following output variables are used in the analysis:



5.1. DEFINITIONS AND TOOLS 61

• The CPU usage of the server application (and therefore, of Comet.NET)

• The number of concurrent clients connected to the server

• The number of messages sent out by the server every second

• The amount of data in bytes sent out by the server every second

• The mean time it takes for a client to receive a published message

5.1.2 Tools

Most of the tools used in the benchmarks are custom tools developed for this purpose. This
section briefly describes both custom-made and already existing tools that were used for bench-
marking.

Client simulator The Client Simulator is a very flexible .NET console application that can
simulate any number of Bayeux clients. It uses a full-featured Bayeux API for .NET, which was
also developed specifically for purposes of load and functional testing of Comet.NET. The client
simulator can be configured to use polling, streaming or both, it can increase the number of
clients gradually and can be instructed to subscribe every new client to all or a predefined subset
of available channels. Most of the actions available in the Client Simulator involve a certain
amount of randomness, which helps simulate real-life usage scenarios. The Client Simulator
records the latency of each received message. Collected latencies are aggregated on-the-fly into
bars with minimum, average, median and maximum values and subsequently written to a log
file. The aggregation interval is configurable and is usually one minute or less. The log file
is in a comma-separated format so it can be processed with Excel or some other spreadsheet
processing application. The Client Simulator can be instructed to end the simulation after a
predefined amount of time or as soon as the average delay reaches a certain point.

Server monitor For monitoring of basic server parameters such as number of concurrent
clients, number of active channels and subscriptions to them, a special monitoring interface
is used. This is a subset of monitoring capabilities incorporated into the TeleTrader HTTP Push
Service (Section 4.2). The Publisher also writes aggregated statistics on number of concurrent
clients, total number of subscriptions, number of messages and bytes sent out by the server into
a special log file every minute.

Windows Performance Monitor The Windows Performance Monitor[80] is a very versatile
tool for monitoring of computer performance by using data from various sources (performance
counters and event trace data). It can be instructed to write all collected data into a log file in
variety of formats. Logs can be used later to replay the behavior of recorded counters or to
analyse their data with a tool such as Excel or some other spreadsheet processing application.
The Performance Monitor was used to collect data on CPU utilization and network usage of the
server application.



62 CHAPTER 5. EVALUATION

Figure 5.1: Event flow in the Publisher sample application

5.1.3 Sample Comet application

The server-side application used for performance evaluation of Comet.NET has basically two
tasks: generation of synthetic events and orchestration of their routing and delivery to remote
clients. The Publisher, as the sample server-side application is called, follows the same basic
design found in the TeleTrader HTTP Push Service and consists of three main components:
EventGenerator, EventPusher and EventSerializer.

EventGenerator is a component that generates synthetic events based on a range of
configurable properties. Triggering of events is achieved with a simple timer with a config-
urable interval. The timer interval is set on instantiation and remains constant during the ap-
plication execution. On each timer tick, the generator takes a certain number of channels from
the list of active channels it maintains, generates events for them and forwards these events to
EventPusher. The generator can be configured to generate events for all channels on each
tick or just for a subset of them. In the latter case, channels are chosen randomly on each tick.

Event data is represented as a set of key-value pairs. Since the size of event data is fixed
and the actual content of keys and values is not used on the client, event data does not have
to be randomly generated on each tick. A much better solution in terms of performance is to
pre-generate the event data on instantiation and reuse it every time the timer tick occurs. This
strategy keeps the CPU usage for data generation as low as possible and leaves more resources
for the tasks that we actually want to measure.

Tasks of EventPusher consist of accepting events from EventGenerator, enqueuing
messages for delivery to clients and triggering the flushing of data to remote clients periodically.
Since events are published per channel and do not contain any client-specific data, each event is
serialized only once. This means that the overhead for event serialization is the same regardless
of the number of clients it is being delivered to. The frequency of flush operations is configurable
and is set to 100ms if nothing else is specified in test case definition. This means that the data is
sent out to remote clients at most every 100ms.

EventSerializer is used for the serialization of event data into appropriate JSON



5.1. DEFINITIONS AND TOOLS 63

strings. The actual serialization is delegated to JSON.NET library[76], making EventSerializer
a thin wrapper around this library.

5.1.4 Testing environment

Amazon’s Elastic Compute Cloud (EC2)[81] was used for execution of all benchmarks. The
server application was running on an Extra Large instance with 8 EC2 Compute Units and 15 GB
RAM. The Compute Units were split among 4 virtual cores, with every core having 2 Compute
Units. The client simulator was running on 4 identical Large instances with 4 EC2 Compute
Units and 7,5 GB RAM. All instances were running 64-bit Windows Server 2008 and .NET
Framework 4.0.

The machines were used with the standard configuration. Other than installing the latest
version of .NET framework, no changes were done.



64 CHAPTER 5. EVALUATION

5.2 Benchmarks and results

This section presents the benchmarks, their specific setups and describes briefly the real-life
scenarios they represent. Results of each benchmark are also presented and discussed.

5.2.1 Benchmark 1

Setup The first benchmark was designed to measure the performance of Comet.NET in com-
bination with lightweight clients and a data source that has a constant and rather slow frequency
of updates. A Web page with a tick chart for a single quote that is updated in real time is one
example of such a scenario. Another example is a “details” page in a Web-based monitoring
cockpit of a service that publishes health and status data periodically.

The goal of the test was to show that Comet.NET can support a very large number of clients
interested in a very small number of resources that have low update frequency. The specific
setup of the test was as follows:

• Every client subscribed 5 random channels (out of 50 channels).

• The Publisher published 1 message per second on 10 randomly selected channels. This
means that there was approximately 1 message per second per client.

• The payload of each message was 150 bytes.

0

50

100

150

200

250

300

350

400

0 5000 10000 15000 20000

M
ed

ia
n

la
te

nc
y

in
m

ill
is

ec
on

ds

Number of clients

Figure 5.2: Number of clients and latency during benchmark 1 with streaming



5.2. BENCHMARKS AND RESULTS 65

0

5000

10000

15000

20000

25000

0

10

20

30

40

50
N

um
be

ro
fc

lie
nt

s

C
PU

co
ns

um
pt

io
n

(%
)

Number of clients
CPU consumption

Figure 5.3: Number of clients and CPU utilization during benchmark 1 with streaming

Streaming Comet.NET was able to support over 20,000 concurrent streaming clients with
an average message latency of less than 200ms. Note that this number does not include the
network-induced latency, but only latency caused by the engine itself. Reaching this number of
concurrent clients is one of the two abort conditions defined in Section 5.1.1, so the benchmark
was terminated shortly after. Each client received approximately one message per second, this
means that the library is capable of sending 20,000 messages with a payload of 150 bytes to dif-
ferent clients while keeping the average latency under 200ms. The relation between the median
message latency and the number of clients is presented in Figure 5.2.

As shown in Figure 5.3, the CPU utilization and number of concurrent clients show a very
strong linear correlation. With 5,000 concurrent clients, the CPU utilization was at 11%. Sup-
porting 10,000 concurrent clients required 21% CPU. With 20,000 concurrent clients the test
application was utilizing 45% CPU.

Polling When the client simulator was instructed to use only long polling transports, Comet.NET
was able to support 9,000 concurrent clients. The reconnect interval, as defined by the Bayeux
protocol, was set to one second. This means that every client waited one second between the
termination of the HTTP response and the issuing of a new HTTP request, which in turn means
that the expected average message latency was 500ms. The actual mean message latency was
fairly constant around 500ms until 6,000 concurrent clients were connected and than began to



66 CHAPTER 5. EVALUATION

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
ed

ia
n

la
te

nc
y

in
m

ill
is

ec
on

ds

Number of clients

Figure 5.4: Number of clients and latency during benchmark 1 with polling

rise steadily. At 9,000 concurrent clients, the mean message latency reached the maximal al-
lowed value of 1 second. The relation between the median message latency and the number of
clients is presented in Figure 5.4.

The CPU usage had a very similar pattern to the one shown in Figure 5.3, so it is not depicted
separately. At 9,000 concurrent clients and at the saturation point, Comet.NET was consuming
approximately 75% of CPU.

In addition to this benchmark, a slightly modified version was also executed in an attempt
to reach 20,000 concurrent clients with long polling. The only difference is that the requirement
that the maximal allowed median message latency is one second was dropped. The reconnect
interval was set to 5 seconds, so every client received a bulk of updates approximately every 5
seconds. Comet.NET was able to support maximal 16,200 concurrent long polling clients with
the maximal CPU utilization of 78% and quite high median message latency of approximately 3
seconds.

5.2.2 Benchmark 2

Setup This benchmark was designed to put more pressure on the Comet engine per channel
when compared to the benchmark 1. Each client was interested in the same number of resources,
but each resource had more frequent updates, which resulted in more messages being published
per second. A typical real-life example is a Web-based monitoring console of a software system



5.2. BENCHMARKS AND RESULTS 67

that displays status data for each component. There are few components, but each of them
updates its status very frequently.

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
ed

ia
n

la
te

nc
y

in
m

ill
is

ec
on

ds

Number of clients

Figure 5.5: Median latency in relation to number of clients during benchmark 2 with streaming

The specific setup of the test was as follows:

• Every client subscribed 5 random channels (out of 50 channels).

• The Publisher published 1 message per second on every channel. This means that there
were approximately 5 messages per second per client.

• The payload of each message was 150 bytes.

Streaming The engine was able to support 8,700 concurrent streaming clients before the max-
imal acceptable median latency of 1 second was reached. At that point almost 40,000 messages
per second were sent out to clients via 50 channels. After that, the latency began to increase and
the number of messages per second began decreasing. This can be interpreted as the saturation
point for Comet.NET in this particular scenario. We can conclude that Comet.NET is able to
distribute 40,000 messages per second with a payload of 150 bytes to 8,700 clients with latency
under 1 second.

Figure 5.5 shows the relation between median message latency and the number of clients.
It is important to note that Comet.NET maintained the median latency below 500ms until the
number of clients approximated 8,000.



68 CHAPTER 5. EVALUATION

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
ro

fm
es

sa
ge

s
pe

rs
ec

on
d

Number of clients

Figure 5.6: Number of messages per second in relation to number of clients during benchmark
2 with streaming

Figure 5.6 shows the relation between the number of clients and number of messages per
second. The number of messages per second published by the test application and delivered by
Comet.NET increased steadily as the number of clients rises. When the maximal acceptable me-
dian message latency was reached, at 8,700 clients, the number of messages per second reached
the maximum and started decreasing. This is due to the fact that Comet.NET cannot deliver all
messages generated by the test application in a timely fashion. This causes internal data struc-
tures to start filling up and the coordination overhead increases, which results in fewer messages
being delivered.

The CPU utilization shows a very similar pattern to the one from benchmark 1: there is a
strong correlation between the number of clients and the CPU usage. When serving 6,000 clients
the CPU usage was approximately 50% and with 9,000 clients the CPU utilization reached 78%.

Polling As expected, when long polling is used as transport mechanism, the library was able
to support less concurrent clients. The saturation point for this benchmark was reached with
4.300 concurrent long polling clients. Since the Bayeux reconnect advice interval was one sec-
ond, the expected average message latency was 500ms. The actual mean message latency was
kept around 500ms until 2,000 clients were connected, after which it began to rise steadily and
reached the maximal acceptable value of one second at 4,300 concurrent clients.



5.2. BENCHMARKS AND RESULTS 69

0

2000

4000

6000

8000

10000

0

20

40

60

80

100
N

um
be

ro
fc

lie
nt

s

C
PU

co
ns

um
pt

io
n

(%
)

Number of clients
CPU consumption

Figure 5.7: Number of clients and CPU utilization during benchmark 2

5.2.3 Benchmark 3

Setup This benchmark was designed to simulate a typical scenario for delivery of quote up-
dates for a list of stocks to Web clients. The basic assumption was that every client had a
medium-sized list of stocks with 20 items and wished to receive real-time updates for them.
Stocks in the list were highly traded and had one or more updates per second. Clients wanted
to receive one message per stock per second with the latest values of all changes fields. This
resulted typically in 150 bytes of data per outgoing message.

The data source for this benchmark had the same set of resources and generated the same
number of updates per second as the data source in the previous benchmark, but clients sub-
scribed significantly more channels (20 vs. 5). This resulted in a significantly larger number of
published messages.

The specific setup of the benchmark is as follows:

• Every client subscribed 20 random channels (out of 50 channels).

• The Publisher published 1 message per second on every channel. This means that there
were approximately 20 messages per second per client.

• The payload of each message was 150 bytes.



70 CHAPTER 5. EVALUATION

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
ed

ia
n

la
te

nc
y

in
m

ill
is

ec
on

ds

Number of clients

Figure 5.8: Number of clients and latency during benchmark 2 with polling

Streaming The engine was able to support 3,000 concurrent clients before the maximal ac-
ceptable median latency of 1 second was reached. At that point approximately 57,000 messages
per second were sent out to clients via 50 channels. Although the median latency has reached 1
second and continued to rise after that point, there was no decrease in the number of published
messages like in benchmark 2. The Comet engine managed to deliver all published messages to
clients even though it was near the saturation point.

Figure 5.9 shows the relation between the number of clients, the number of messages per
second and the median message latency. The increase in the CPU usage as the number of clients
and the number of delivered messages increased can be seen in Figure 5.10.

Polling Comet.NET was able to support almost the same number of concurrent clients with
long polling transport. The saturation point for this benchmark and polling transport was reached
with 2,900 clients.

Due to the nature of long polling transport and its reconnect mechanism, the median message
latency was always higher than the median message latency achieved with streaming. While the
latency with streaming was under 250ms until 1,900 clients were connected, the latency with
polling was never under 400ms. In fact, it reached 600ms with 1,200 concurrent clients and kept
rising until the saturation point was reached.



5.2. BENCHMARKS AND RESULTS 71

0

10000

20000

30000

40000

50000

60000

70000

0

500

1000

1500

2000

2500
N

um
be

ro
fm

es
sa

ge
s

pe
rs

ec
on

d

M
ed

ia
n

la
te

nc
y

in
m

ill
is

ec
on

ds

Messages per second
Latency (ms)

Figure 5.9: Median latency and number of messages per second in relation to number of clients
during benchmark 3 with streaming

5.2.4 Benchmark 4

Setup The primary objective of this benchmark was to test the performance of Comet.NET in
situations where very large amounts of data need to be delivered to clients. The payload size in
this benchmark was more than three times the size of payloads in previous benchmarks: each
message carried 500 bytes of data. This amounts to 25 key-value pairs with keys 10 charac-
ters long in average and values containing floating point values with 4 decimals. The update
frequency was the same as in benchmark 2 and 3, as was the number of subscriptions per client.

In essence, this test scenario measured how well Comet.NET can handle the transmission of
large amounts of data to each client. The specific setup of the benchmark was as follows:

• Streaming connection type is used by all clients

• Every client subscribed 5 random channels (out of 50 channels).

• The Publisher published 1 message per second on every channel. This means that there
were approximately 5 messages per second per client.

• The payload of each message was 500 bytes.



72 CHAPTER 5. EVALUATION

0

500

1000

1500

2000

2500

3000

3500

0

10

20

30

40

50

60

70

80

90

N
um

be
ro

fc
lie

nt
s

C
PU

co
ns

um
pt

io
n

(%
)

Number of clients
CPU consumption

Figure 5.10: Number of clients and CPU utilization during benchmark 3 with streaming

Streaming The maximal number of concurrent clients that could be supported with median
message latency under 1 second was 6,000. At the point where the latency reached this limit,
approximately 30,000 messages were delivered per second via 50 channels.

In previous benchmarks, the latency started to rise continuously once the saturation point
was reached. In this benchmark, the latency remained fairly constant and moved between 1.2
and 1.5 seconds as the number of clients rose to 7,000. It is also worth noting that the number
of messages did not start to drop, as in previous benchmarks. While this does not influence the
maximal number of concurrent users that can be supported in this test scenario, it does mean
that Comet.NET is more stable in situations in which the amount of outgoing data is extremely
high and still rising, but the amount of clients and their subscriptions is comparatively low.

Figure 5.12 shows how many messages are distributed per second to how many clients and
what is the median message latency during the message delivery. This is a standard diagram that
was also used to display the relation between these three variables in previous benchmarks.

The diagram in Figure 5.13 focuses on the amount of data distributed by Comet.NET per
second (throughput) and shows the relation between the number of clients, median message
latency and throughput. The size of the bubbles in the diagram represents the throughput. Num-
bers in the last three bubbles represent the amount of data in megabytes that is sent to clients
every second.



5.3. BENCHMARK RESULT INTERPRETATION 73

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000

M
ed

ia
n

la
te

nc
y

in
m

ill
is

ec
on

ds

Number of clients

Figure 5.11: Number of clients and latency during benchmark 3 with polling

5.3 Benchmark result interpretation

This section summarizes the benchmark results presented in sections 5.2.1 through 5.2.4 and
emphasizes important findings.

In benchmark one (Section 5.2.1) we showed that Comet.NET can support 20,000 clients
that receive approximately one message per second. The median message latency was 250ms
and the CPU utilization was at 45%. Furthermore, we showed that a median message latency
of 100ms could be achieved for 7,000 concurrent clients and CPU utilization of only 17% . It
should be noted that the Comet engine was configured to flush messages to clients every 100ms.

If the number of messages per second per client is increased to 5, Comet.NET is able to
support 8,700 clients with the median message latency under 1 second (as shown in benchmark
two, Section 5.2.2). The benchmark three, presented in Section 5.2.3, showed that even if the
rate of outgoing messages is increased to 20 per second per client, Comet.NET is able to support
3,000 clients with the median message latency under 1 second. It should be furthermore noted
that the median message latency was maintained under 250ms with almost 2,000 clients. At this
point, there were approximately 40,000 outgoing messages per second. The maximal allowed
latency was reached with approximately 60,000 outgoing messages per second.

In the first three benchmarks, the size of the message payload was 150 bytes. Benchmark
four, presented in Section 5.2.4, showed the performance of Comet.NET when large amounts
of data need to be pushed to clients (payload size of 500 bytes). The Comet engine was able to



74 CHAPTER 5. EVALUATION

0

5000

10000

15000

20000

25000

30000

0

200

400

600

800

1000

1200

1400
N

um
be

ro
fm

es
sa

ge
s

pe
rs

ec
on

d

M
ed

ia
n

la
te

nc
y

in
m

ill
is

ec
on

ds

Messages per second
Latency (ms)

Figure 5.12: Median latency and number of messages per second in relation to number of clients
during benchmark 4

support 5,900 clients with the median message latency under 1 second. At this point, there were
approximately 29,000 outgoing messages per second. This amounts to 15 MB per second.

The results presented so far were achieved with streaming. When the polling communication
technique is used, the performance is significantly degraded in all test cases. Due to the nature
of long polling and its reconnect mechanism, the median message latency is always consider-
ably higher than the median message latency achieved with streaming. In all benchmarks, the
reconnect interval was set to 1 second, which means that the expected median message latency
was 500ms. Another important aspect of long polling is that a new HTTP request/response cycle
is required after each flush to a client (that is, after a bulk of updates was delivered to a client).
This puts considerably more pressure on the Comet engine.

Benchmark one showed that Comet.NET can support up to 9,000 clients that use long polling
transport while maintaining the median message latency below 1 second. The frequency of
outgoing messages was one per second per client, which means that there were approximately
9,000 outgoing messages per second. This is 45% of the throughput that was achieved in the
same benchmark with streaming. Even after the reconnect interval was increased to 5 seconds,
the Comet engine was not able to support 20,000 clients with one outgoing message per client
per second. The saturation point in this scenario was reached with 16,200 clients.

If the number of outgoing messages is increased to 5 per second per client, the saturation
point is reached with 4,300 clients. With 20 messages per second per client, Comet.NET was



5.4. COMPARISON TO JETTY COMETD 75

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000

M
ed

ia
n

la
te

nc
y

in
m

ill
is

ec
on

ds

Number of clients

Throughput in megabytes

15.42

14.47

Figure 5.13: Median latency and throughput per second in relation to number of clients during
benchmark 4

able to support 2,900 clients. These findings are shown in benchmarks two and three.

5.4 Comparison to Jetty CometD

One of the goals of the Comet.NET evaluation is to see how it compares to Jetty CometD -
the reference Bayeux implementation - in terms of performance. The performance tests of
Comet.NET and Jetty CometD were conducted on different hardware and have slightly dif-
ferent setups, so a direct comparison between the two solutions on the basis of these tests is not
possible. We present performance findings for both solutions in this section without comparing
them.

Bozdag et al [31] have done performance testing of Jetty 7 as part of their studies that com-
pare push and pull approaches in modern Ajax-based Web applications. According to their
findings, CometD is able to support at least 10,000 concurrent clients when one message was
published to each client every second. The CPU utilization was slightly below 50%. The publish
triptime, which is defined as the difference between the data creation time and data receipt time,
was in average at 1 second.

G. Wilkins, the lead developer of Jetty and the CometD project, argues in [82] that Jetty
6 is able to support 20,000 concurrent clients with a subsecond latency. However, this result
was achieved with a very low message frequency: a total of 3,800 messages were delivered



76 CHAPTER 5. EVALUATION

per second. This accounts for approximately 0.19 messages per second per client. The current
version of CometD, delivered as part of Jetty 7, was tested in [83]. This paper shows that
CometD is able to support 20,000 concurrent clients with a throughput of 10,000 messages per
second with a latency under 500ms. This accounts for approximately 0.5 messages per second
per client.

It is important to note that all presented performance tests were conducted with long polling
as communication mechanism. Jetty CometD does not support streaming transports.

Comet.NET was not able to support 20,000 concurrent clients that use long polling, even
with 5 second reconnect interval. It was however able to achieve a throughput of 9,000 messages
per second, which is only slightly below the throughput achieved by CometD.

We showed that 20,000 concurrent clients can be supported with one message per second
while maintaining median message latency below 250ms. A total of 20,000 messages per second
were delivered in this benchmark. The maximum throughput achieved with Comet.NET was
60,000 messages per second, which was achieved with 3,000 concurrent clients. During this
benchmark, every client received 20 messages per second.



CHAPTER 6
Alternative implementations of the

Bayeux protocol

In this chapter we present three existing open-source Comet solutions that are based on the
Bayeux protocol.

6.1 Jetty

Jetty is an open-source Web server component and servlet container written entirely in Java. It
can be used as a stand-alone traditional Web server for serving static and dynamic content, as
a dynamic content server behind a dedicated HTTP server such as Apache, or as an embedded
component within a Java application. Its flexible component based architecture and small mem-
ory footprint allow it to be deployed and used in a variety of different scenarios, from embedded
systems to clustered enterprise applications. Jetty is used by several other popular projects in-
cluding JBoss and Apache Geronimo application servers.

The first server implementation of the Bayeux protocol was introduced with Jetty version 6.
As of version 7, which is the current version at the time of writing, the Bayeux server implemen-
tation is extracted into a separate project called CometD, but still delivered as an integral part of
the Jetty release.

CometD is a servlet implementation of the Bayeux protocol and provides mechanisms that
allow Web applications to easily utilize Comet concepts by using familiar servlet interfaces. The
CometdServlet and accompanying classes from the CometD module handle all protocol-specific
tasks, making the addition of Comet functionality to Web applications fairly easy. The following
are the three main components responsible for handling Bayeux requests:

• CometdServlet: the servlet that processes the incoming request and delegates work to
other objects

• Handlers: each Bayeux request type is handled by a different handler

77



78 CHAPTER 6. ALTERNATIVE IMPLEMENTATIONS OF THE BAYEUX PROTOCOL

• Transport: this object takes care of sending the actual response to the client, formatting it
depending on client’s connection type

The included Cometd module is the reference server implementation of the Bayeux protocol in
Java. The Jetty project also includes a reference client implementation of the Bayeux protocol
in Java, based on the Jetty HTTP client.

6.1.1 Continuations

As described in section 2.1, Comet applications have very different traffic profiles compared to
traditional Web applications. The classical one-thread-per-request model leads to one-thread-
per-user in scenarios typical for Comet applications, and that does not scale well with an in-
creasing number of concurrent users. Jetty uses a concept called Continuations[54] to solve this
problem and achieve scalability with Comet applications. This section describes the concept and
its implementation in Jetty.

Figure 6.1: The advantages of Jetty Continuations in Web 2.0 scenarios [54]



6.2. GRIZZLY 79

Java does not provide a mechanism to suspend a thread and then resume it later, so Comet
servers are left with two options: block the thread handling the request until there is data to
be pushed as part of the response or find a workaround for this limitation. The Java Servlet
API 3.0[56] introduces support for asynchronous request processing, but the final version was
released recently in early 2011 and there is still no wide support for it.

Jetty has a non-traditional approach in solving the issue with synchronous servlets. It intro-
duces a “Continuation object” which allows the processing thread to pause the current request
if there is no data to be sent to a client and make itself available for processing of another in-
coming request. The suspended request is resumed after a timeout or if the resume method of
the Continuation object is called. This is typically done from another thread, when new data is
available to be sent to the client. Behind the scenes, Jetty signalized that the request should be
suspended and the processing thread returned to the thread pool. Continuations in Jetty 6 use
an exception to signalize that a request should be suspended. While exceptions allow the thread
to legally exit the handling method and effectively put the request on pause, it is rather unusual
to use exceptions as control flow mechanism. As of Jetty 7, the Continuation mechanism has a
clean API and implementation and is compatible with the Java Servlet API 3.0.

The Continuation mechanism is also fully compatible with the Java Servlet API 2.5[55].
Applications that use Continuations and are executed on a server that does not support them,
will still work without any modifications. However, when the suspend method is executed, the
thread will block and will not be returned to the thread pool.

Figure 6.1 shows the usage of server resources for classic 1.0 and Comet-based, 2.0 Web
applications. The first column shows data for a classic Web application running on Jetty server.
The second column shows data for a Comet application running on Jetty without Continuations
(traditional one-thread-per-request approach) and the third column shows data for the same ap-
plication with support of Continuations.

The number of concurrent requests is an estimate for 10,000 concurrent users of Web ap-
plications with regards to average behavior of Web 1.0 and Web 2.0 applications. Based on the
number of concurrent requests, a minimal number of threads and needed stack memory is cal-
culated. The figure shows clearly what benefits Continuations provide for Comet applications in
terms of server resource usage and scalability.

6.2 Grizzly

Grizzly is an HTTP Connector based on Java NIO[57]. Originally developed as a part of the
application server Glassfish, it is now available as a separate framework and can be easily em-
bedded into any Java application. One of the primary goals of Grizzly is to help developers build
scalable and robust servers by utilizing the power of Java asynchronous I/O operations. It offers
a natural and very extensible abstraction on top of the low-level and inherently complex Java
NIO API.

There are two different implementations of Comet in Grizzly[58]. There is Grizzly Comet,
a server-side push solution specific to Sun Glassfish Enterprise Server and on top of it, a full
featured implementation of the Bayeux protocol. The Comet implementation in Grizzly is posi-
tioned considerably lower in the stack than it is the case with Jetty (the main reason here is the



80 CHAPTER 6. ALTERNATIVE IMPLEMENTATIONS OF THE BAYEUX PROTOCOL

fact that Grizzly does not implement the Servlet API), but the implementations are quite similar.
This section focuses on the Bayeux server part of the Grizzly framework.

The main parts of the Bayeux Grizzly implementation are:

• CometEngine: The entry point to any component using Comet. Components can be
servlets, JSP, JSF or plain Java classes

• CometContext: a shareable comet data store belonging to one application. This is used as
a central place for publishing events

• CometEvent: an object containing the data about an event relevant for the CometContext

• CometHandler: the interface defining ways of communicating with CometContext

6.2.1 Asynchronous Request Processing (ARP)

Grizzly uses the technique called asynchronous request processing (ARP) to avoid the classical
one-thread-per-request model and its limitations. Instead of running a thread for each open
connection, Grizzly’s ARP mechanism efficiently uses the thread pool system and also keeps
the state of requests so that it can keep requests alive without holding a single thread for each of
them. In other words, the ARP allows “parking” of a request on the server without blocking the
thread that was initially assigned to the request. Requests that are put on hold can be resumed
at a later time and are then processed by an arbitrary thread from a thread pool. The ARP is an
extension of the Grizzly Framework and sits directly on top of it.

The Comet module can make use of the ARP’s ability to suspend and resume requests to
efficiently implement the typical use case where a long-polling request is kept on the server
until data is available. Of course, the same technique can be used for streaming scenarios, where
responses are kept open for a long time with only occasional connection recycling. An expiration
mechanism for suspended requests is also easily implemented.

The ARP achieves the same goal as Continuations in Jetty. However, it is a much cleaner
approach because it uses Java NIO that natively supports separation of threads and connections
and requests. There is no need to use exceptions as a workaround for suspending a working
thread. This is also due to the fact that ARP, unlike Jetty Continuations, does not have the
inherent limitation of the Java Servlet API. The obvious downside of this is that Web applications
cannot integrate Comet functionality directly (i.e. as a Servlet). Grizzly’s Comet server needs
to run in a separate process and listen on a dedicated port. It can be used by any client (same
domain or cross-domain), provided the firewall is configured to allow traffic on the used port,
but there is one non-trivial challenge: sharing data between the Web application and Comet
server. Since they run in separate processes, some type of common shared medium is needed for
communication. This makes adding new Comet features to Web applications more complicated
by several orders of magnitude.



6.3. ATMOSPHERE 81

6.3 Atmosphere

Atmosphere[59] is a POJO (Plain Old Java Object) portable Comet framework designed to make
it easier to write and deploy Web applications that include a mix of typical RESTful and Comet
behavior. It is essentially an abstraction layer that introduces a common API for asynchronous
operations and hides differences and incompatibilities between various native asynchronous
APIs introduced in Java application servers. One of the protocols that can be used for com-
munication with remote clients is the Bayeux protocol.

There are three main operations that Atmosphere supports. The first one is the ability to
suspend the execution of a request/response cycle until an asynchronous event occurs. Once
the event occurs, the application may want to resume the normal request/response processing,
depending on the technique the application supports (polling or streaming). The third operation
consists of being able to broadcast or actively push asynchronous events and deliver them to
suspended responses.

Atmosphere consists of several modules, most of them optional. For Comet scenarios, the
following modules are relevant:

• Atmosphere Runtime

This is the main module that represents the portable Comet runtime. It can be used with
POJOs written in Java, JRuby or Groovy. The main component of this module is an At-
mosphereHandler. An AtmosphereHandler can be used to suspend, resume and broadcast
and allows the use of the usual HttpServletRequest and HttpServletResponse APIs

• Atmosphere Bayeux

This module includes the implementation of the Bayeux protocol.

The framework supports all major application servers and their asynchronous HTTP processing
APIs, as well as the standard Java Servlet API 3.0. It dynamically inspects the environment
in which it runs and tries to use native asynchronous API available in that environment. If it
fails, it falls back to its own mechanism that simulates asynchronous behavior by blocking the
thread involved in processing of the request. This is the same behavior exhibiting by Comet
applications written for Jetty CometD when they are deployed on a server that has no support
for Continuations or Java Servlet API 3.0.





CHAPTER 7
Related Work

In this chapter we discuss the related work in the field of push-based systems in general (Section
7.1), the Comet application model and push-based delivery of data to Web browsers (Section
7.2) and concrete Comet implementations (Section 7.3).

7.1 Background on push technology

The push-based communication style has been researched very extensively in the distributed
systems research community. However, most of the work is focused on systems that do not
operate in Web environments.

In [22], S. Archarya et al present a push-based system for broadcast delivery of volatile and
time-sensitive data to a very large number of clients. The Broadcast Disk paradigm, presented
in the paper, provides improved performance, scalability and availability of the networked appli-
cations based on asymmetric communication capabilities. They further improved the proposed
solution in [23] by augmenting the push-only model with the possibility of explicit pull oper-
ations. According to the findings presented in the paper, the enhanced model, based on push
communication extended with a pull mechanism, performs better and is more flexible than the
original one.

K. Juvva and R. Rajkumar propose a middleware layer called Real-Time Push-Pull Commu-
nications Service [24] and present the design, implementation and evaluation of the middleware.
The main goal of the middleware is to enable quick data dissemination across heterogeneous
nodes with flexible communication patterns. This is achieved by supporting both push and pull
model, providing several levels of data delivery frequency (various levels of acceptable delays)
and two common communication styles: synchronous and asynchronous communication. The
middleware is targeted at real-time and multimedia systems.

M. Hauswirth and M. Jazayeri [25] define the architecture, the communication model and
the component model for scalable push systems. The model is based on a publish/subscribe
paradigm and multicast delivery of data. It is accompanied by an open protocol suite for the

83



84 CHAPTER 7. RELATED WORK

content distribution and a reference implementation called Minstrel. However, the presented
protocol is not designed to work over HTTP, does not take into account browser-specific limita-
tions and is as such not suitable for the Web.

M. Ammar et al [26] define a set of protocols and a Web server architecture for scalable
multicast delivery of Web pages. The authors present a model in which a Web server delivers
pages with one of the three delivery options: cyclic multicast, reliable multicast and reliable
unicast. The performance analysis presented in the paper shows that incorporating all three de-
livery options in Web servers offers better performance and flexibility. The authors state that the
solution was not deployed and tested over the public Internet, because one of the requirements -
reliable multicast protocol - is not met in the target environment.

R. Khare and R. Taylor [27] propose several extensions of the World Wide Web’s REpresen-
tational State Transfer (REST[28]) architectural style that support distributed and decentralized
systems. They define extensions for asynchronous broadcasting, message routing, transactional
processing of updates and explicit formulation of data delivery estimations. These extensions
form the basis of four new architectural styles derived from REST: ARREST for centralized,
ARREST+D for distributed, ARREST+E for estimated and ARRESTED for decentralized re-
sources. The presented architectural styles are based on asynchronous events, a feature that
poses “a significant implementation challenge across the public Internet”.

A combined push-pull solution for dissemination of dynamic data in the Web is presented
by P. Deolasee et al [29]. The paper presents two dynamic adaptive algorithms for data delivery:
Push and Pull (PaP) and Push or Pull (PoP). The algorithms essentially use a range of static
and dynamic parameters to calculate the optimal data delivery technique for a given scenario.
Although the reference implementation presented in the paper is based on the HTTP protocol,
it relies on custom proxies and is therefore not deployable to the public Internet. However,
the results of the extensive performance analysis suggest that their adaptive data dissemination
model is superior to both pull-only and push-only in terms of temporal coherency, resilience to
failures and efficiency and scalability.

7.2 Comet application model

Rich Web applications with real-time asynchronous updates based on server-side push have
received a lot of attention in the Web development community recently. However, only a few
scientific papers have been published on the topic so far.

Mesbah and van Deursen [30] present a new architectural style for Ajax and Comet Web
applications called SPIAR (Single Page Internet Application aRchitectural style). The style
emphasizes user interface components, intermediary delta-communication between client and
server components, as well as push-based event notification of state changes. The authors argue
that Web applications built with SPIAR have improved user interactivity, user-perceived latency,
data coherence and the ease of development.

The presented architectural style results from a study of several popular Ajax frameworks.
The only analyzed framework that supports the Comet communication paradigm is Dojo CometD
on the client accompanied by Jetty CometD on the server. The framework is based on the Bayeux
protocol.



7.2. COMET APPLICATION MODEL 85

Figure 7.1: Direct push integration as defined in SPIAR

The paper presents two possible ways to integrate Comet into Web applications. Both ap-
proaches involve the two main processing elements: push server and push client. The push
server resides as a separate module of the server application and has the ability to keep an HTTP
connection open and push data to the client. The push client resides within the Web client. It can
be a separate module or a part of the Ajax engine. The push client is responsible for receiving
notifications from the server and providing it to the upper layers of the Web application.

The first approach for integration of Comet in Web applications is presented in Figure 7.1.
The approach is very simple: data is pushed directly from the server to the client, bypassing
any server-side representation of the client UI, delta-decoders and other components defined in
SPIAR. Authors state that this approach has one flaw: it leaves server-side applications out of
sync with the client-side UI. However, this is only the case for applications with an explicit
requirement that the client-side UI and server-side application always remain in sync. Though,
the authors do not present scenarios where such requirements exist.

The solution presented in this thesis is designed to be integrated into Web applications in a
way that is very similar to this approach. The Comet server is a separate logical unit that resides
on the server and communicates directly with the push client. The data flow between the server
and the client is independent of other server-side application parts.

The second approach for Comet integration, presented in Figure 7.2, is significantly more
complicated: it requires the push server to be an integral part of the server application and pass all
events through several components of the application before they are sent to the client. Although
it is more complicated, this approach has the advantage of keeping all involved components in
sync and requires the client to use only one logical communication point towards the server
instead of two.

Bozdag et al [31] conducted an empirical study comparing push- and pull-based delivery
of data to Web applications with the goal to determine the performance trade offs between the
two approaches. The study focuses on data coherence, scalability, network performance and



86 CHAPTER 7. RELATED WORK

Figure 7.2: The indirect push integration as defined in SPIAR

reliability of push and pull communication style.
Tests involved two Web applications with push functionality, one using the CometD frame-

work and the other using DWR (Direct Web Remoting), and one application based on the simple
pull approach. All applications simulated the same scenario: market data distribution in form
of a stock ticker. During the test, applications were supplied with a variable number of data
items produced by a dedicated service provider server-side application. A variable number of
concurrent users was simulated by a distributed user simulator.

The authors conclude that the push-based data delivery is superior to pull-based in terms
of data coherence and network performance. Push-based delivery has significantly better mean
trip-time, defined as the average time between the creation of a data item and its delivery to
the client. According to the results of the study, CometD has a mean trip-time of 1,200 ms for
10,000 concurrent clients and one message per second. DRW has mean trip-time of 3,500 ms
for the same number of clients and messages. Mean trip-time in pull-based application depends
highly on the refresh interval, but is never lower than the trip-time of the CometD application.
Data coherence, defined as the ratio between number of messages published and the number of
messages received by the application, is also vastly better with the push approach.

Another important finding is that the CPU utilization on the server is always lower with pull
approach than with push. At 10,000 concurrent clients, CPU usage reached 45% with CometD,
55% with DRW and was always below 18% for pull.

Since the solution presented in this thesis supports both the pull-based and the push-based
delivery of data, it can be set up to use the push-based delivery as the superior one in all situations
where it is technically possible.

Based on the work of Deolasee et al [29], Bozdag et. al present an adaptive algorithm that
combines push and pull delivery of data for Ajax and Comet Web applications[32]. The main
goal of this combined approach is to increase scalability and network performance while at the
same time reducing user-perceived latency.



7.3. COMET-BASED SERVER APPLICATIONS 87

The authors argue that because push and pull communication paradigms have their own set
of performance trade-offs and environmental factors such as data coherence requirements of
users, data publish intervals or computational overhead tend to change over time, the hybrid
approach to data delivery should be a better solution. The solution they propose is a modified
and extended version of the Push or Pull (PoP) algorithm presented in [29].

Their dynamic adaptive solution is based on three algorithms. The register algorithm is used
when a new user registers for a real time delivery of data. The remaining two algorithms are
monitoring algorithms that keep track of the server and channel performance and adjust push
and/or pull settings if necessary.

The work is theoretical, but the assumptions about push systems in the Web are heavily based
on CometD and its features. While the underlying Bayeux protocol allows pure streaming to be
implemented, CometD only supports long polling. This communication technique is inferior to
streaming, as discussed in 2.1 and it can be argued that this has a severe impact on the presented
algorithms and their performance.

7.3 Comet-based server applications

While there are several commercial and open-source Comet servers available on the market
today, there are very few research papers that discuss the architecture and implementation of
such a server.

Actually, the only published work on the topic is by Pohja [33]. The paper evaluates how
an instant messaging protocol, namely XMPP[34], can complement HTTP-based Web applica-
tions and presents an implementation of a push server based on that protocol. The goal of the
research is to define an additional protocol to support server-side push and to provide a reference
implementation.

The design of the system is presented in Figure 7.3. For serving of content in the classical
pull manner, a standard Web server is employed. A separate XMPP server is responsible for the
delivery of dynamic content by using server-side push. On the client side, the data delivered this
way is received by a XMPP client running in a browser.

The system is based on the publish/subscribe messaging paradigm. Clients subscribe to
topics or channels, which are expressed by URIs. There is a one-to-one match between URIs on
the Web server and topics on the push server.

Components responsible for providing event notifications that are delivered to clients are
called event sources. They are activated by the Web application running on the Web server,
usually when a client issues a subscription for a certain topic. Each event source holds the
information what data is relevant for a certain subscription and publishes an event every time the
data changes. In the implementation presented in the paper, event sources are able to track only
database changes, but could be implemented to track any kind of data store. After an event has
been published by an event source, the XMPP server delivers it to all interested clients.

The author states only that “the performance of the push server is similar to Comet that has
been shown to outperform legacy HTTP polling applications clearly”. However, no details on
the conducted performance evaluation of the server are provided in the paper.



88 CHAPTER 7. RELATED WORK

Figure 7.3: The components of the Comet server presented in [33]

The part of the system that is responsible for pushing event data to Web clients is designed
very similarly to the Comet server presented in this thesis. Both servers are based on publish/-
subscribe protocols, run separately from the Web server, have one or more sources of data and
deliver event notifications asynchronously to clients running in Web browsers.

There is however one crucial difference: XMPP supports only long polling and has no exten-
sions for streaming, whereas Bayeux allows streaming transports to be used if both server and
client support them. The Comet server presented in this thesis uses the extension possibilities
of the Bayeux protocol and implements several streaming techniques in addition to long polling
technique.

Another Comet server with a similar architecture is Lightstreamer[35]. It is a commercial
server that is based on a proprietary publish/subscribe protocol, delivers data asynchronously to
clients running in Web browsers, supports both long polling and streaming and pushes events
published by one or more sources called data adapters.



CHAPTER 8
Conclusion and Future Work

Inspite of the lack of standardization through the W3C, the real-time push-based delivery of
data to Web applications has been gaining a lot of attention in the Web development community.
The Web application model, in which a server delivers data to a browser without the browser
explicitly requesting it, is called Comet. It is an umbrella term for various techniques that try to
reduce delays and deliver data asynchronously from a Web server to Web browsers.

One of the recent developments in this domain is the application protocol called Bayeux. The
Bayeux protocol is a JSON-based protocol designed to overcome the traditional, client/server
nature of HTTP. It is based on the publish/subscribe paradigm and provides means of two-way,
low-latency communication between a server and a browser. Initially developed for the Jetty
CometD project, it is now an open-source protocol with implementations in several languages
and platforms.

This thesis presented Comet.NET, a stand-alone implementation of the Bayeux protocol
based on Microsoft’s .NET Framework. Comet.NET is a fully Bayeux-compliant class library
that can be used by any .NET application that wishes to provide Comet functionality and deliver
data in real-time to Web clients. The presented solution fully leverages the .NET technology
stack and uses some of technologies not available in Java and other platforms. Most important
examples are the Windows HTTP Server API (HTTP.SYS) and the Windows Communication
Foundation (WCF). It supports the two common Comet communication styles - long polling
and streaming - and works with all modern browsers as well as with fat HTTP clients. Since
Comet.NET is intended for integration into other applications, it is quite extensible and has a
wide range of configuration possibilities.

The functionality of the presented solution was demonstrated by the two sample applica-
tions: a Web chat and an stock market ticker. The chat sample demonstrated the basic features
of Comet.NET and its compatibility with the existing Bayeux client-side applications. The stock
market ticker provided an in-depth demonstratation how an enterprise-level application can be
built on top of Comet.NET.

The performance and scalability of the presented solution was evaluated with a series of
repeatable benchmarks. It became apparent that Comet.NET satisfied the high-performance

89



90 CHAPTER 8. CONCLUSION AND FUTURE WORK

requirement defined in the goal of the thesis and can deliver a very large number of messages
per second to a very large number of concurrent users.

8.1 Future work

Even though the presented server-side implementation of the Bayeux protocol is fully functional
and is used as a foundation of an enterprise-level application in a production environment (Tele-
trader HTTP Push Service, Section 4.2), the development is not considered finished. There are
several segments of the solution that can be improved in terms of functionality and performance.
New features are under consideration.

The following improvements and optimizations are planned:

• WebSocket support

The version 2 of CometD server and Javascript client introduced support for the Web-
Socket protocol [84]. Even though the protocol specification is still in an early draft stage
and is expected to change, it has been gaining support in all major browsers in the last sev-
eral months. WebSocket represents a large advance, especially for real-time, event-driven
Web applications [85] and will without doubt play a significant role in the future of Web.
Comet.NET does not currently support WebSocket. The support for this protocol will be
introduced in the next version of the library. Due to layered design and strict separation of
concerns, the introduction of WebSocket will have no systematic impact and can be done
without much effort.

• Improve long polling performance

Even though streaming is a superior communication technique, long polling is an accept-
able fallback transport for scenarios where streaming does not work or the frequency of
events is low. Performance evaluation of Comet.NET, presented in Section 5, showed that
there is room for performance optimization in this segment. Further testing and profiling
is needed to determine bottlenecks, which will then be improved.

• Reduce overhead for instantiation and configuration

As briefly discussed in Section 4.1.4, the initialization and instantiation of a Bayeux end-
point with Comet.NET poses a certain overhead in terms of lines of code. The class
BayeuxServer, which is the entry point of the library, has several dependencies and
also requires a reference to a fully-initialized configuration object. Some dependencies
in turn have their own configuration properties. While this approach offers great flexibil-
ity and is justified for complex applications, it also introduces unnecessary overhead for
simple applications and services.

This problem will be solved by introducing a factory for BayeuxServer and possibly
other classes on which it depends. A set of configuration objects with meaningful defaults
for most typical use cases will also be created.



Bibliography

[1] M. Jazayeri: Some Trends in Web Application Development. Future of Software Engineer-
ing, 2007.

[2] F. Garzotto: Ubiquitous Web Applications. Advances in Databases and Information Sys-
tems, 2001

[3] A. Ginige and S. Murugesan: Web Engineering: An Introduction. Multimedia, IEEE 8,
2001

[4] Facebook, http://www.facebook.com, visited 28.04.2011

[5] Business Insider: Startup 2011 Tickets Facebook Has More Than 600 Mil-
lion Users, Goldman Tells Clients. http://www.businessinsider.com/
facebook-has-more-than-600-million-users-goldman-tells-clients-2011-1,
visited 28.04.2011

[6] Twitter, http://twitter.com/, visited 28.04.2011

[7] FriendFeed, http://friendfeed.com/, visited 28.04.2011

[8] reddit, http://www.reddit.com, visited 28.04.2011

[9] Youtube, http://www.youtube.com, visited 28.04.2011

[10] Hulu, http://www.hulu.com, visited 28.04.2011

[11] Flickr, http://www.flickr.com, visited 28.04.2011

[12] Google Docs, http://docs.google.com, visited 28.04.2011

[13] Thompson Reuters Eikon, http://thomsonreuters.com/products_
services/financial/eikon/, visited 28.04.2011

[14] CometD project. http://cometd.org/ visited 21.02.2011

[15] IBM: WebSphere Feature Pack for Web 2.0. http://www-01.ibm.com/
software/webservers/appserv/was/featurepacks/web20/, visited
20.01.2011

91

http://www.facebook.com
http://www.businessinsider.com/facebook-has-more-than-600-million-users-goldman-tells-clients-2011-1
http://www.businessinsider.com/facebook-has-more-than-600-million-users-goldman-tells-clients-2011-1
http://twitter.com/
http://friendfeed.com/
http://www.reddit.com
http://www.youtube.com
http://www.hulu.com
http://www.flickr.com
http://docs.google.com
http://thomsonreuters.com/products_services/financial/eikon/
http://thomsonreuters.com/products_services/financial/eikon/
http://cometd.org/
http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/web20/
http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/web20/


92 BIBLIOGRAPHY

[16] Oracle: WebLogic HTTP Publish-Subscribe Server. http://download.oracle.
com/docs/cd/E12840_01/wls/docs103/webapp/pubsub.html, visited
20.01.2011

[17] E. Kuehn, J. Riemer, R. Mordinyi and L. Lechner: Integration of XVSM Spaces with the
Web to Meet the Challenging Interaction Demands in Pervasive Scenarios. 16th IEEE In-
ternational Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, June 2007

[18] E. Boznag: Integration of HTTP Push with a JSF AJAX framework. Master’s thesis, De-
cember 2007

[19] Oyatel’s CometD .NET, https://github.com/Oyatel/CometD.NET, visited
20.01.2011

[20] WebSync, http://www.frozenmountain.com/websync/, visited 28.04.2011

[21] Microsoft Windows HTTP Server API, http://msdn.microsoft.com/en-us/
library/aa364510%28v=VS.85%29.aspx, visited 11.05.2011

[22] S. Acharya, M. Franklin and S. Zdonik: Dissemination-based data delivery using broad-
cast disks. IEEE Personal Communications Journal, 1995

[23] S. Acharya, M. Franklin and S. Zdonik: Balancing push and pull for data broadcast.
In SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD international conference on
Management of data, 1997

[24] K. Juvva and R. Rajkumar: A real-time push-pull communications model for distributed
realtime and multimedia systems. Technical Report CMU-CS-99-107, School of Computer
Science, Carnegie Mellon University, 1999

[25] M. Hauswirth and M. Jazayeri: A component and communication model for push systems.
ESEC/FSE ’99, Springer-Verlag, 1999

[26] M. Ammar, K. Almeroth, R. Clark, and Z. Fei: Multicast delivery of web pages or how to
make web servers pushy. Workshop on Internet Server Performance, 1998

[27] R. Khare and R. Taylor: Extending the representational state transfer (REST) architec-
tural style for decentralized systems. Proceedings of the 26th International Conference on
Software Engineering, IEEE Computer Society, 2004

[28] R. Fielding and R. Taylor: Principled Design of the Modern Web Architecture. ACM Trans-
actions on Internet Technology (TOIT), 2002

[29] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy: Adaptive push-
pull: Disseminating dynamic web data. IEEE Transactions on computing, 2002

[30] A. Mesbah and A. van Deursen: A component- and push-based architectural style for ajax
applications. Journal of Systems and Software, 2008

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webapp/pubsub.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webapp/pubsub.html
https://github.com/Oyatel/CometD.NET
http://www.frozenmountain.com/websync/
http://msdn.microsoft.com/en-us/library/aa364510%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa364510%28v=VS.85%29.aspx


BIBLIOGRAPHY 93

[31] E. Bozdag, A. Mesbah and A. van Deursen: Performance testing of data delivery tech-
niques for AJAX applications. Journal of Web Engineering, 2009

[32] E. Bozdag and A van Deursen: An Adaptive Push/Pull Algorithm for AJAX Applications.
Third International Workshop on Adaptation and Evolution in Web Systems Engineering
(AEWSE’08), 2008

[33] M. Pohja: Server Push with Instant Messaging. Proceedings of the 2009 ACM symposium
on Applied Computing, 2009

[34] P. Saint-Andre: Extensible Messaging and Presence Protocol (XMPP): Core. Proposed
standard, IETF, October 2004.

[35] Weswit Srl: Lightstreamer whitepaper. http://www.lightstreamer.com/
Lightstreamer_WhitePaper.pdf, visited 02.02.2011

[36] Caplin Liberator. http://www.freeliberator.com, visited 21.02.2011

[37] J. Garrett: Ajax: A New Approach to Web Applications. http://www.
adaptivepath.com/ideas/essays/archives/000385.php, visited
20.01.2011

[38] Sun Microsystems: Java Applets. http://java.sun.com/applets/

[39] Adobe Systems Inc: Flash. http://www.adobe.com/products/flash/

[40] A. Russel: Comet: Low Latency Data for the Browser. http://alex.dojotoolkit.
org/2006/03/comet-low-latency-data-for-the-browser/, visited
17.02.2010

[41] D. Crane, P. McCarthy: Comet and Reverse Ajax: The Next-Generation Ajax 2.0. Apress,
2008

[42] Colliding Comets: Battle of the Bayeux. http://cometdaily.com/2008/02/07/
colliding-comets-battle-of-the-bayeux-part-1/

[43] Eugene Letuchy: Facebook Chat. http://www.facebook.com/note.php?
note_id=14218138919&id=9445547199, visited 15.03.2011

[44] Meebo Chat. http://www.meebo.com/, visited 15.03.2011

[45] Netscape: An Exploration of Dynamic Documents, 1996

[46] S. Gundavaram: CGI Programming on the World Wide Web. O’Reilly, March 1996

[47] World Wide Web Consortium (W3C): W3C Working Draft 19. http://www.w3.org/
TR/2009/WD-XMLHttpRequest-20091119/, visited 2.09.2010

[48] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee.:
Hypertext Transfer Protocol – HTTP/1.1, RFC2616, June 1999

http://www.lightstreamer.com/Lightstreamer_WhitePaper.pdf
http://www.lightstreamer.com/Lightstreamer_WhitePaper.pdf
http://www.freeliberator.com
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://java.sun.com/applets/
http://www.adobe.com/products/flash/
http://alex.dojotoolkit.org/2006/03/comet-low-latency-data-for-the-browser/
http://alex.dojotoolkit.org/2006/03/comet-low-latency-data-for-the-browser/
http://cometdaily.com/2008/02/07/colliding-comets-battle-of-the-bayeux-part-1/
http://cometdaily.com/2008/02/07/colliding-comets-battle-of-the-bayeux-part-1/
http://www.facebook.com/note.php?note_id=14218138919&id=9445547199
http://www.facebook.com/note.php?note_id=14218138919&id=9445547199
http://www.meebo.com/
http://www.w3.org/TR/2009/WD-XMLHttpRequest-20091119/
http://www.w3.org/TR/2009/WD-XMLHttpRequest-20091119/


94 BIBLIOGRAPHY

[49] T. Berners-Lee, R. Fielding and L. Masinter. Uniform Resource Identifier (URI): Generic
Syntax, RFC3986, January 2005

[50] A. Russell, G. Wilkins, D. Davis and M. Nesbitt: Bayeux Protocol - Bayeux 1.0.0, The
Dojo Foundation, 2007

[51] K. Birman and T. Joseph: Exploiting virtual synchrony in distributed systems. Proceedings
of the eleventh ACM Symposium on Operating systems principles, 1987

[52] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec: The Many Faces of Publish/-
Subscribe. ACM Computing Surveys, June 2003

[53] D. Crockford: The application/json Media Type for JavaScript Object Notation (JSON),
RFC4627, July 2006

[54] G. Wilkins: Jetty Continuations, http://docs.codehaus.org/display/
JETTY/Continuations, visited 20.01.2011

[55] Sun Microsystems: Java Servlet 2.5 Specification MR2, July 2007

[56] Sun Microsystems: Java Servlet 3.0 Specification, January 2011

[57] Sun Microsystems: JSR 51: New I/O APIs for the Java Platform, May 2002

[58] Sun Microsystems: Sun GlassFish Enterprise Server v3 Prelude Developer’s Guide, 2008

[59] J. Arcand: Atmosphere Framework White Paper, Version 0.6

[60] J. Postel: Transmission control protocol (TCP/IP), RFC761, September 1981

[61] M. Stonebraker: The Case for Shared Nothing. Database Engineering, Volume 9, Number
1, 1985.

[62] F. Buschmann, R. Meunier, H. Rohnert and P. Sommerlad: A System of Patterns: Pattern-
Oriented Software Architecture., Wiley, 1996

[63] Object Management Group. Unified Modeling Language (UML). http://www.uml.
org/, visited 24.01.2011

[64] W.J. Brown, R.C. Malveau, H.W. McCormick and T.J. Mowbray: Anti Patterns: Refactor-
ing Software, Architectures, and Projects in Crisis. Wiley, 1998

[65] Microsoft .NET Framework 4.0. http://www.microsoft.com/net/, visited
15.03.2011

[66] P. Pirkelbauer, Y. Solodkyy, B. Stroustrup: Report on language support for Multi-Methods
and Open-Methods for C++, 2007

[67] E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995

http://docs.codehaus.org/display/JETTY/Continuations
http://docs.codehaus.org/display/JETTY/Continuations
http://www.uml.org/
http://www.uml.org/
http://www.microsoft.com/net/


BIBLIOGRAPHY 95

[68] R. C. Martin: Agile Software Development, Principles, Patterns, and Practices. Prentice
Hall, 20002

[69] Unicode, Inc: The Unicode Standard (6.0 edition), http://www.unicode.org/
versions/Unicode6.0.0/, visited 20.01.2011

[70] Microsoft: Event-based Asynchronous Pattern. http://msdn.microsoft.com/
en-us/library/wewwczdw.aspx, visited 11.12.2010

[71] Microsoft: I/O Completion Ports. http://msdn.microsoft.com/en-us/
library/aa365198(VS.85).aspx, visited 11.12.2010

[72] A. Jones, J. Ohlund: Network Programming for Microsoft Windows, Second Edition. Mi-
crosoft Press, 2002

[73] N. Kew: The Apache Modules Book: Application Development with Apache. Prentice Hall
PTR, 2007

[74] K. Schaefer, J. Cochran, S. Forsyth, R. Baugh, M. Everest and D. Glendenning: Profes-
sional IIS 7. Wrox, 2008

[75] M. Welsh, D. Culler and E. Brewer: SEDA: An Architecture for Well-Conditioned, Scalable
Internet Services, Eighteeth Symposium on Operating Systems Principles, 2001

[76] JSON.NET, http://json.codeplex.com/. Visited 19.09.2010

[77] Teletrader Software AG. http://www.teletrader.com. Visited 19.09.2010

[78] TeleTrader HTTP Push Service 1.0 - Internal Technical Specification.

[79] TeleTrader Market Data Server 4.3- Internal Technical Specification.

[80] Microsoft Technet: Windows Performance Monitor. http://technet.microsoft.
com/en-us/library/cc749249.aspx, visited 10.08.2010

[81] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2. Visited
10.08.2010

[82] G. Wilkins: 20,000 Reasons Why Comet Scales. http://cometdaily.com/2008/
01/07/20000-reasons-that-comet-scales/, visited 20.01.2011

[83] G. Wilkins: CometD 2 Throughput vs. Latency. http://blogs.webtide.com/
gregw/entry/cometd_2_throughput_vs_latency, visited 20.01.2011

[84] World Wide Web Consortium (W3C): The Web Sockets API Working Draft 22. http:
//www.w3.org/TR/2009/WD-websockets-20091222/, visited 26.01.2011

[85] P. Lubbers, B. Albers and F. Salim: Pro HTML5 Programming: Powerful APIs for Richer
Internet Application Development, Apress, 2010

http://www.unicode.org/versions/Unicode6.0.0/
http://www.unicode.org/versions/Unicode6.0.0/
http://msdn.microsoft.com/en-us/library/wewwczdw.aspx
http://msdn.microsoft.com/en-us/library/wewwczdw.aspx
http://msdn.microsoft.com/en-us/library/aa365198(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa365198(VS.85).aspx
http://json.codeplex.com/
http://www.teletrader.com
http://technet.microsoft.com/en-us/library/cc749249.aspx
http://technet.microsoft.com/en-us/library/cc749249.aspx
http://cometdaily.com/2008/01/07/20000-reasons-that-comet-scales/
http://cometdaily.com/2008/01/07/20000-reasons-that-comet-scales/
http://blogs.webtide.com/gregw/entry/cometd_2_throughput_vs_latency
http://blogs.webtide.com/gregw/entry/cometd_2_throughput_vs_latency
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://www.w3.org/TR/2009/WD-websockets-20091222/

	Abstract
	Kurzfassung
	Acknowledgments

	Contents
	List of Figures
	List of Tables
	Introduction
	Goals
	Scope
	Organization

	Technologies 
	Comet
	Long polling
	Streaming

	Bayeux protocol
	A sample client/server interaction
	Transport types
	Channels
	Messages
	Client state handling
	Security

	JSON

	Comet.NET 
	Requirements
	Functional requirements
	Non-functional requirements

	High level overview
	Static structure
	Packages
	Layers

	Domain model
	Coordination
	Request handling
	Messaging
	Transport
	Processing
	Publish / Subscribe

	Message flow
	Transport types
	Supported transport types
	Implementation details

	Thread management
	Comet application model
	Implementation details

	Security

	Sample applications 
	Chat
	Requirements
	Design
	Implementation
	Discussion

	TeleTrader HTTP Push Service
	TeleTrader Market Data Server
	General setup
	Channels
	Message format
	Design and implementation
	Security


	Evaluation
	Definitions and tools
	Goal and general setup
	Tools
	Sample Comet application
	Testing environment

	Benchmarks and results
	Benchmark 1
	Benchmark 2
	Benchmark 3
	Benchmark 4

	Benchmark result interpretation
	Comparison to Jetty CometD

	Alternative implementations of the Bayeux protocol
	Jetty
	Continuations

	Grizzly
	Asynchronous Request Processing (ARP)

	Atmosphere

	Related Work 
	Background on push technology 
	Comet application model 
	Comet-based server applications 

	Conclusion and Future Work 
	Future work

	Bibliography

