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Abstract

Inverse dynamics problems arise in several mechanical systems. The aim is to calculate
the inputs of a system in order that the outputs are identical to predefined or measured
target signals. The motivation for inverse methods is related to practical applications in
robotics, cranes or test rigs in the automotive and agricultural industry. A multibody
system is called underactuated if the number of control inputs is less than the number
of degrees of freedom. The control of underactuated systems is much more challenging
compared to fully actuated systems.
The thesis considers four mathematical methods regarding to inverse problems in under-
actuated multibody systems. The method of virtual iteration is based on a linearization
of the nonlinear system and an inverse computation of the excitations in the frequency
domain. The algorithm is suitable for large multibody systems and finite element models,
which are nearly linear.
The second method formulates the equations of motion as differential-algebraic equations
and introduces so called control or servo constraints. This results in a system of high
index, which can be solved by appropriate numerical algorithms.
The inverse problem can also be formulated as an optimal control problem. The basis
is a cost functional, which includes the system outputs and the targets. The goal is to
minimize this performance measure. Here it is distinguished between indirect and direct
methods. In indirect optimal control the necessary optimality conditions are derived and
the resulting boundary value problem has to be solved. Direct methods discretize the
system and reformulate the optimal control problem to static optimization problems.
The fourth method under consideration is a flatness-based trajectory tracking control. In
specific systems the state and input variables can be parameterized by the outputs and
their time derivatives up to a certain order. Such systems are called differentially flat and
the outputs are known as flat outputs.
The considered methods are applied to academic and industrial examples. A nonlinear
oscillator, an underactuated planar crane and an underactuated rotary crane are stud-
ied. Finite element models and hybrid multibody systems of a steel converter, a trailed
cultivator and a plough are representative examples of industrial problems regarding to
inverse dynamics. The different methods are compared with respect to their applicability
and efficiency.

Keywords: underactuated multibody system, inverse dynamics, virtual iteration, op-
timal control, control constraints, differentially flat system
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Kurzfassung

Inverse dynamische Probleme treten in zahlreichen mechanischen Systemen auf. Das Ziel
ist die Berechnung von Eingangsvariablen des Systems, sodass die Ausgänge identisch zu
vordefinierten oder gemessenen Targetsignalen sind. Die Motivation zu inversen Metho-
den stammt aus praktischen Anwendungen in der Robotik, bei Kränen oder Prüfständen
im Automobilbereich und der Landmaschinenindustrie. Ein Mehrkörpersystem wird als
unteraktuiert bezeichnet, wenn die Anzahl der Steuereingänge geringer ist als die Anzahl
an Freiheitsgraden. Die Regelung von unteraktuierten Systemen ist um Größenordnungen
schwieriger als von voll aktuierten Systemen.
Diese Dissertation untersucht vier mathematische Methoden im Bezug auf inverse Prob-
leme bei unteraktuierten Mehrkörpersystemen. Die Methode der virtuellen Iteration
basiert auf einer Linearisierung des nichtlinearen Systems und einer inversen Berechnung
der Anregungen im Frequenzbereich. Der Algorithmus ist für große Mehrkörpersysteme
und Finite Elemente Modelle, welche beinahe linear sind, geeignet.
Die zweite Methode formuliert die Bewegungsgleichungen als differential-algebraische Gle-
ichungen und führt sogenannte Steuerungszwangsbedingungen ein. Dies führt zu einem
System von hohem Index, welches durch geeignete numerische Algorithmen gelöst wird.
Das inverse Problem kann auch als Optimalsteuerungsproblem formuliert werden. Die
Basis ist ein Kostenfunktional, welches Systemausgänge und Targets inkludiert. Das Ziel
liegt in der Minimierung dieses Funktionals. Hierbei wird zwischen indirekten und direk-
ten Methoden unterschieden. In einer indirekten Optimalsteuerung werden die notwendi-
gen Optimalitätsbedingungen hergeleitet und das daraus resultierende Randwertproblem
gelöst. Direkte Methoden diskretisieren das System und formen das Optimalsteuerungs-
problem in statische Optimierungsprobleme um.
Die vierte untersuchte Methode ist eine flachheitsbasierte Trajektorienfolgeregelung. In
bestimmten Systemen können die Zustands- und Eingangsvariablen durch die Ausgänge
und ihre zeitlichen Ableitungen bis zu einem bestimmten Grad parametriert werden. Diese
Systeme werden als differentiell flach und die Ausgänge als flache Ausgänge bezeichnet.
Die jeweiligen Methoden werden auf akademische und industrielle Problemstellungen ange-
wandt. Ein nichtlinearer Massenschwinger, ein unteraktuierter ebener Kran und ein
rotierender Kran werden untersucht. Finite Elemente Modelle sowie hybride Mehrkörper-
systeme eines Stahlkonverters, eines Grubbers und eines Pfluges stellen repräsentative
Beispiele von industriellen Problemen im Bezug auf inverse Dynamik dar. Die verschiede-
nen Methoden werden hinsichtlich Anwendbarkeit und Effizienz verglichen.

Schlagwörter: unteraktuiertes Mehrkörpersystem, inverse Dynamik, virtuelle Iteration,
optimale Steuerung, Steuerungszwangsbedingung, differenziell flaches System
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[...] I think, myself, it’s very helpful, too
that one can take back home, and use,
what someone’s penned in black and white.

Johann Wolfgang von Goethe, Faust Part I

Chapter 1

Introduction

Multibody systems (MBS) are an essential part in the discipline of technical and com-
putational mechanics. Simulation of technical systems and processes is getting more and
more important due to decreasing development times and simultaneously increasing qual-
ity standards [157]. Models of mechanical or mechatronical systems become more accurate
in order to reproduce the real physical behavior. At the same time, efficiency and com-
putational effort play an important role [140]. Nowadays a MBS software has to fulfill
two major tasks. The first challenge is the appropriate modeling of the real system and
the derivation of a mechanical or mathematical model by a systematic formulation of the
equations of motion. The second purpose is the solution of these differential equations
[134]. Due to the high complexity of the systems and the resulting equations, numerical
methods are applied. Analytical solutions can just be found in special cases.
Historically, MBS were used in order to simulate rigid bodies, which are connected by dif-
ferent joints and massless springs and dampers. The method was developed for relatively
large translational and rotational displacements [157]. Deformable structures were treated
within the finite element method (FEM) . Nowadays rigid bodies as well as flexible bodies
can be integrated in a system. Applications of multibody simulation can be found in the
automotive- and railroad industry, in the aeronautics and space technology, in robotics,
biomechanics and general mechanical or mechatronical mechanisms.

1.1 Overview

The typical task in a multibody simulation is a forward dynamics problem, where the
equations of motion have to be integrated numerically. Specific output variables y(t) ∈ Rk

and states x(t) ∈ R2n are calculated based on given input variables u(t) ∈ Rmc (e.g.: forces,
motions, ...) and initial conditions x(0) ∈ R2n.
The focus of this dissertation is in the field of inverse dynamics. The output variables
y(t) (e.g.: positional coordinates, accelerations, strains, spring deflections, ...) are either
analytically defined or given by measurements and the unknown inducing inputs variables
u(t) have to be computed.
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1.1. OVERVIEW

1.1.1 Multibody Systems

In the literature a range of definitions for the expression ’multibody system’ can be found.
Selected textbooks that deal with multibody systems and corresponding numerical meth-
ods are [9, 50, 114, 132, 133, 139, 157, 163], without claim of completeness. Textbooks
that are focused on numerical methods for MBS, specially on methods for solving ordinary
differential equations (ODEs) and differential-algebraic equations (DAEs) are for example
[4, 35, 50, 78, 79, 92].
In [70] the most important definitions are summarized from several authors.
Generally, in the literature it is distinguished between continuous systems, finite element
systems, multibody systems and hybrid multibody systems. In this dissertation multibody
systems are considered in chapter 7, a finite element system is considered in chapter 8.1
and hybrid multibody systems are considered in chapters 8.2 and 8.3. Therefore the dif-
ference of these mechanical models and their specific definitions are worked out in the
following paragraph:

Continuous systems: ”[...] consist of elastic bodies, for which mass and elasticity
are continuously distributed throughout the body. The action of forces is also continuous
along the body’s volume resp. surface.” [157] The equations of motion can only be for-
mulated for infinitesimal small volumetric elements and are partial differential equations,
which depend on the spacial location and the time [133].

Finite element systems: ”[...] bodies are assumed to have nonzero mass and to be
elastic with forces and moments acting at discrete points.” [157] The basic idea is to con-
sider inertia forces, elasticity and forces in a discrete element of simple geometry. Based
on local equations of motion, which are formulated for a single finite element, the global
equations are assembled [133]. Detailed descriptions can be found for instance in [6].

Multibody systems: ”[...] bodies are assumed to have nonzero mass and to be rigid with
forces and moments acting at discrete points.” [157] Springs, dampers and servo-motors
are assumed to be massless. Bodies are interconnected by rigid bearings or supports.
Friction and contact forces can also be included in the model [133].

Hybrid multibody systems: ”[...] both elastic and rigid bodies are used to model
a mechanical system.” [157] Applications of hybrid multibody systems originated from
vehicle-, robot- and satellite-dynamics [133].

Nowadays hybrid multibody systems are state-of-the-art and several methods are known
in order to implement elastic and even plastic structures in a rigid multibody system.

1.1.2 Brief Historical Review

The historical overview of analytical mechanics, which has been essential for the field of
MBS, is summarized from [3] and [133]. The equations of motion of unconstrained me-
chanical systems were already known from the beginning of mechanics. Sir Isaac Newton
(1643-1727) published 1687 his famous three universal laws in his Philosophiae Naturalis
Principia Mathematica: (1) the law of inertia (”lex prima”), (2) the law of motion or the
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1.1. OVERVIEW

law of linear momentum (”lex secunda”) and (3) the action-reaction law (”lex tertia”).
The law of motion is mathematically described by differential equations, which were also
introduced by Newton. The law of linear momentum provides the equations of motion for
a point mass. The equations of motion for a rigid body, i.e. the laws of linear and angu-
lar momentum were presented by Leonhard Euler (1707-1783) in his Mechanica corporum
solidorum in the year 1776. To set up the Newton-Euler equations of motion a free body
diagram has to be prepared first. Constraint forces like joint forces are also considered,
although they are often not of interest.
Jean le Rond D’Alembert (1717-1783) published a seminal theorem for the dynamic behav-
ior of interacting bodies in his Traitè de dynamique in 1743. In his work he distinguished
between applied and reaction forces. In 1788 this principle was reformulated by Joseph
Louis Lagrange (1736-1813) in his Mècanique analytique. This version is the one which we
call ”D’Alembert’s principle, the principle of virtual work” today. Furthermore, Lagrange
made important findings in the field of the calculus of variations. This lead to Lagrange’s
equations of the first kind, which represents a set of DAEs. Later Lagrange introduced
generalized coordinates, which underlay his equations of motion of second kind, published
1811. This formulation resulted in a minimal set of ODEs. During this period the theory
of small-amplitude oscillations and the theory of linear systems of differential equations
were developed. Furthermore, fundamental terms in linear algebra were introduced (e.g.:
eigenvalues and eigenvectors in an n-dimensional case).
Generalizations of the principle of D’Alembert were published by Johann Carl Friedrich
Gauß (1777-1855) in 1829 and by Philip Edward Bertrand Jourdain (1879-1919) in 1908.
Their principles are known as Jourdain’s principle (the principle of virtual power) and
Gauß’ principle of least constraint. Laplace, Lagrange and Gauß made also important
contributions in perturbation theory.
Lagrange’s equations of second kind were extended to nonholonomic systems from Josiah
Willard Gibbs (1839-1903) in 1879 and from Paul Émile Appell (1855-1930) in 1900.
Besides the state of the art, at that time, differential-principles a new integral-principle,
the principle of least action, was introduced by Sir William Rowan Hamilton (1805-1865)
in 1834.
The theory of stability of motion started with classical works from Aleksandr Mikhailovich
Lyapunov (1857-1918). Russian mathematicians had a huge amount in further develop-
ments, e.g.: Lev Semenovich Pontryagin (1908-1988) in structural stability.
The beginning of computer simulation in multibody dynamics started after 1965. The
simulation of satellites was of great importance for space flight. From that point on com-
puterized formalisms have been developed [133]. 1977 multibody dynamics was set up as
new branch at a IUTAM symposium held in Munich and chaired by Kurt Magnus [134].
Since the 1980’s MBS-software has been available for modeling, simulation and animation
[70]. 1990 computational aspects of multibody dynamics were highlighted at the second
world congress on computational mechanics in Stuttgart, chaired by John H. Argyris [134].

1.1.3 State of the Art

Research:
Due to increasing challenges in simulation and the the merging fields of dynamics, contin-
uum mechanics, control engineering, optimization, etc. MBS is a current field of research
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[134]. State-of-the-art topics that are discussed in MBS-conferences are listed below:

• Theoretical and computational methods

• Flexible multibody systems

• Contact and impact problems

• Control and mechatronics

• Multidisciplinary approaches

• Coupled multi-physics problems

• Algorithms, integration codes and software

• Efficient methods and real-time simulations

• Virtual reality

• Experiments and numerical verifications

• Optimization and sensitivity analysis

• Dynamics of machines and rotating structures

• Dynamics of vehicles (aerospace, automotive, railway engineering) and tire dynamics

• Robotic systems

• Biomechanics

• Nano technology in MBS

• Education in multibody dynamics

Due to the increasing complexity, which can be handled in a multibody simulation, several
topics can be combined.

Conferences:
Specific international conferences are organized which are focuses on actual
developments in multibody dynamics. The well-known conferences in Europe, America
and Asia are representatively listed:

Europe:

• ECCOMAS (European Community on Computational Methods in Applied Sciences)
Thematic Conference on Multibody Dynamics

• Joint International Conference on Multibody System Dynamics (IMSD)

America:

• International Conference on Multibody Systems, Nonlinear Dynamics, and Control
(MSNDC), ASME (American Society of Mechanical Engineers)
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Asia:

• ACMD (Asian Conference on Multibody Dynamics)

Other conferences which are strongly related to technical mechanics are listed in alpha-
betical order:

• Annual Meeting of the International Association of Applied Mathematics and Me-
chanics (GAMM)

• CISM-IFToMM Symposium on Robot Design, Dynamics, and Control

• EUROMECH Colloquium Advanced Applications and Perspectives of Multibody
System Dynamics

• European Conference on Computational Mechanics Solids, Structures and Coupled
Problems in Engineering

• European Conference on Mechanism Science (EUCOMES)

• European Congress on Computational Methods in Applied Sciences and Engineering

• IFToMM Asian Conference on Mechanism and Machine Science

• International Conference on Rotor Dynamics

• International Symposium on Mechanism and Machine Science (ISMMS)

• International Workshop on Underactuated Grasping

• IUTAM - Symposium on Multiscale Problems in Multibody System Contacts

• IUTAM Symposium on Computational Methods in Contact Mechanics

• World Congress in Mechanism and Machine Science (CFP)

• World Congress on Computational Mechanics (WCCM)

Journals:
Since 1997 the Journal ”Multibody System Dynamics” has been published as a journal,
which is fully devoted to multibody dynamics. Of course, many contributions in the field
of MBS are also published in other journals due to the wide scope. The following
alphabetical list shows selected journals that are related to mechanical research.

• Acta Mechanica

• Computational Methods in Applied Sciences

• Computer methods in applied mechanics and engineering

• Computers and Structures

• International Journal for Numerical Methods in Engineering
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• International Journal of Non-Linear Mechanics

• International Journal of Solids and Structures

• Journal of Computational and Nonlinear Dynamics

• Journal of Mechanical Science and Technology

• Journal of Sound and Vibration

• Journal of Theoretical and Applied Mechanics

• Meccanica

• Nonlinear Dynamics

• Structural and Multidisciplinary Optimization

Optimization is as an additional field, which is also relevant in this dissertation. Hence,
two journals, which are related to optimization theory, are listed here as well:

• Optimal Control Applications and Methods

• Journal of Optimization Theory and Applications

Software:
Nowadays specific software is developed for special applications. However, individual
commercial MBS software tools have been establishing during the last few years. At the
present stage the market leaders are:

• AdamsTM (www.mscsoftware.com)

• SimpackTM (www.simpack.com)

• RecurDynTM (http://functionbay.de)

Historically, Adams (Automated Dynamic Analysis of Mechanical Systems) was developed
especially for vehicle dynamics simulation [27]. The roots of Simpack are located in rail-
road applications. RecurDyn (Recursive Dynamics) was developed later in the 90’s of the
previous century and was strongly focused on integrated FEM capabilities.

Other MBS software packages are (list in alphabetical order, no claim to completeness):

• Altair Motion SolveTM (www.altairhyperworks.de/Product,18,MotionView.aspx)

• Ansys Rigid DynamicsTM (http://www.ansys.com/products/rigid-dynamics.asp)

• CarSimTM , TruckSimTM , BikeSimTM (www.carsim.com)

• CASCaDE

• cosin/mbs (www.cosin.eu)
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• Dymola/ModelicaTM (www.3ds.com/products/catia/portfolio/dymola)

• FEDEMTM (www.fedem.com)

• Hotint (http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html)

• LMS Virtual.Lab MotionTM (previously DADSTM )
(http://www.lmsintl.com/simulation/virtuallab/motion)

• madymoTM (www.advancedsimtech.com/software/madymo)

• MBSim (http://mbsim.berlios.de)

• Mesa Verde (Mechanism, Satellite, Vehicle, Robot Dynamics Equations)

• Neweul (Neweul-M2) (www.itm.uni-stuttgart.de/research/neweul)

• Robotran (www.robotran.be)

• SamcefTM (www.samtech.com)

• veDynaTM (http://dynaware.tesis.de)

Each software is different regarding to the formalisms for generating and solving the equa-
tions of motion. While Adams uses absolute coordinates, Simpack uses relative coordinates
[132]. In Adams or LMS Virtual.Lab Motion the equations of motion are always formu-
lated with redundant coordinates, which results in a set of DAEs [106]. In Simpack ODEs
are obtained for chain and tree topologies due to a minimal coordinates formulation and
DAEs are obtained for closed-loop systems [132]. RecurDyn makes use of recursive for-
malisms, as its name already implies.
Differences also occur in the mechanical principle, which is used to formulated the equa-
tions of motion. Lagrange’s equations of the first kind are used in Adams and d’Alembert’s
principle is implemented in Simpack [157].
Generally, most MBS packages use pure numerical methods for the generation of the equa-
tions. Exceptions are, for example, Neweul, Robotran or Mesa Verde, which compute the
equations of motion symbolically. Simpack use a mixture of symbolic and numerical for-
malisms for the generation of the equations of motion [70, 157].
In addition, FEM codes are necessary for the implementation of flexible bodies. If a finite
element solver is not directly integrated in the MBS software, an external program has
to be used to compute e.g. the eigenvectors for a modal implementation. Abaqus, Ansys
or Nastran can be used as finite element solvers in connection with I-Deas, Hypermesh,
Ansa, Patran etc. as preprocessors, just to mention a few packages.

1.1.4 Types of Problems

The types of problems in the field of multibody dynamics can roughly be classified into
three categories: kinematic problems, dynamics problems and optimization problems. In
kinematic problems the motion of a MBS is studied without involving the forces that
act on the system. These are purely geometric problems and will not be discussed here.
Details can be found in [157].
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Dynamic Problems:

In dynamic problems the relation between forces and motion of the system is studied.
Actuating forces are considered, as well as inertia forces. The following problems are the
main tasks in a dynamic computation of a MBS:

Forward Dynamics: Forces and torques, which are applied to the MBS, are known.
The motion of the system should be simulated for given initial states. As a consequence,
an initial value problem (IVP) has to be solved. Furthermore, velocities, accelerations
and reaction forces (-torques) are of interest. To solve this problem, typically a nonlinear
system of differential equations (equations of motion) has to be solved. Reaction forces
and -torques are calculated afterwards. Traditionally, the forward dynamics problem has
been the heart of a dynamic simulation [157].

Inverse Dynamics: The goal in an inverse dynamics problem is to compute the forces
that are necessary to produce a specific motion. In typical technical systems it can occur
that the motion is (partly) known from physical measurements or it is specified in order
that the mechanical systems fulfills a specific task as e.g. in cranes or industrial robots. If
the motion should be specified, the trajectories of discrete points have to be described by
spatial coordinates. If the motion of the real system can be measured, typically specific
variables like positions, velocities or accelerations are known at certain measuring points.
The input variables have to be determined in a way that the outputs of the model coin-
cide with the specified motion or the measurement data, respectively. Actuating forces
or torques in a servomotor can be used as input variables as well as dynamic positions of
hydraulic or pneumatic cylinders.
The inverse dynamics problem is easier to solve than the forward dynamics problem, if
the equation of motion are known in a symbolic form and if the system is fully actuated.
A system is called fully actuated, if the number of inputs u(t) is identical to the number
of degrees of freedom (DOFs) . In such a case only an algebraic problem has to be solved.
The inverse dynamics problem becomes much more complicated, if the MBS is underactu-
ated. In an underactuated system the number of inputs variables is less than the number
of DOFs [21]. Another challenging task for an inverse dynamics problem appears, if the
equations of motion are not given in a symbolic form. This problem typically arises in
commercial MBS software, where complex systems with flexible bodies are modeled. Such
problems cannot be solved with standard techniques and are therefore considered in this
dissertation.

Static equilibrium: For this type of problem the task is to find the position of the
MBS where all forces are balanced. In many applications a static equilibrium analysis is
carried out to initialize a dynamic analysis [157].

Modal dynamics (linearized dynamics problem): The model is linearized at a sta-
tionary point (e.g.: static equilibrium). Eigenfrequencies, eigenvectors and state space
matrices are computed. As a result the linearized model can be exported to an external
software to design for example a controller.
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Optimization Problems:

During the construction phase of a mechatronical system an engineer is interested in pa-
rameters that influence the system behavior or in the determination of input variables so
that the system achieves a predefined task. Several mathematical methods exist for these
static or dynamic optimization problems, which are classified in [157]:

Parameter identification: Unknown system parameters have to be found so that the
model behaves as close as possible to specific observations (measurements).

Parameter optimization: The model behavior can be optimized by tuning a set of
parameters. The goal is to adjust parameters in a way that some objectives are fulfilled.
This problem is also called ”optimal design”.

Optimal control: The aim of an optimal control problem is to find a control law such
that a specific optimality criterion is fulfilled. This method can be applied for completely
designed and optimized systems that come into operation. Optimality criteria might be
minimum time or minimum energy consumption of a system, which is moved from one
point to another. These problems are hard to solve and address the ultimate goal in the
product development procedure.

1.2 Aim of the Study

The aim of the study is to compute outer excitations (i.e. input variables) of underactuated
multibody systems based on measured or predefined target signals (output variables). The
considered multibody system can either be given in a form where the equations of motion
can be derived analytically or it can be modeled in commercial software where the equations
are not available. Different mathematical methods are considered and new approaches are
developed. The specific methods are classified by their applicability to the different types of
model.

The motivation for this kind of problem results from industrial applications. In sev-
eral technical systems output variables can be measured with standardized measurement
techniques. In contrast, measurements of input variables are either technically not pos-
sible or financially not affordable. Such problems typically occur in the automotive and
especially in the agricultural industry. Output variables like accelerations or strains can
be measured at different points on a vehicle. By comparison, input variables like wheel
forces can only be measured with high technical effort. In the automotive industry mea-
suring wheels exist, which can measure the forces and torques at the wheel hub, where the
load is introduced into the structure. However, the costs for such measuring wheels can
reach a hundred thousand Euro and more, depending on the type of the wheel. For trucks
and heavy machinery such measuring equipment is very limited and in the agricultural
industry it does not exist up to now.
For simulations of complete vehicles and for durability tests it is necessary to find system-
invariant excitations. These dynamic loads can be generated on a test rig in order to
reproduce a test drive on a real track. Load data are called invariant if they are inde-

9



1.2. AIM OF THE STUDY

pendent of the system under consideration [39]. Invariant variables of a test drive are the
road profiles, if it is assumed that the track is a solid terrain. Digital road profiles are
available for standard maneuvers in the automotive industry, but unfortunately such data
are very limited in the agricultural industry up to now.
Due to these difficulties it is of great interest to compute the wheel forces or generally the
outer excitations without such measuring wheels.
Another application which is investigated in this thesis is an AOD steel converter . Here
the task is to compute the inducing excitation forces and torques which cause unwanted
vibrations.
Similar problems also occur in the control tasks of cranes where a load should be moved
along a specific trajectory.
In all these applications a similar problem appears in the computation of input variables.
Therefore, different methods for the solution of the inverse problems, which are based on
physical measurements of specific target signals, have to be found.

Requirements for virtual product development

Virtual product development consists of a range of individual simulation steps. The gen-
eral procedure is shown in Fig. 1.1 which should be called ”building of virtual product
development (VPD)”. In Fig. 1.1 it can be seen that the knowledge of the outer exci-
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Figure 1.1: Building of virtual product development

tations are the basis of the VPD-building. If the outer excitations of a MBS are known,
component forces can be computed in a multibody simulation. Based on component forces
of individual parts stresses, strains, etc. can be computed in a finite element analysis. In
a subsequent simulation the fatigue lifetime can be predicted. These data can be used
to optimize the shape and the materials of specific parts. Additional information about
jointing technology and materials is necessary to optimize the design of the construction.
All these steps are important requirements for lightweight construction.
Fig. 1.1 should illustrate that all computations are based on the outer excitations. If the
inputs contain errors, all further steps are not correct anymore. Hence, the focus of this
dissertation is put exactly in the first step, i.e. the computation of the outer excitations.

10



1.2. AIM OF THE STUDY

Mathematical description of the problem

The mathematical problem can be illustrated by the block diagram in Fig. 1.2. The

( ) ( )

( ) ( , , ) ( )

( )

T

t t

t

q v 0

M q v f q v G q λ 0

g q 0

u(t) y(t)

x(t)

MBS

Figure 1.2: Block diagram with input, output and state variables of a MBS

mathematical model of a given multibody system can either be formulated by ODEs
or DAEs, depending on the formulation with generalized or redundant coordinates, cf.
chapter 2. The equations of motion can be formulated with state variables, i.e. positional
coordinates and the corresponding velocities x(t) = [q, q̇]T ∈ R2n. The aim is to compute
the input variables u(t) ∈ Rmc in a way that the output variables y(t) ∈ Rk are identical to
predefined target signals ỹ(t) ∈ Rk. Furthermore, underactuated systems are considered.
Underactuated systems are characterized by less control inputs u than degrees of freedom,
i.e. mc < n, if n denotes the number of generalized coordinates. This type of problem is
classified as a generally nonlinear inverse problem of an underactuated multibody system.

Representative problems in industrial applications

The problem, which is stated in Fig. 1.2, typically occurs in automotive or agricultural
test rigs. In such a test rig the goal is to find the input signals of servo-hydraulic cylinders
in order that the system is excited in the same way as during a test drive. Such a full-
vehicle test rig and a suspension test rig are shown in Fig. 1.3. Nowadays full-vehicle test
rigs as shown in Fig. 1.3(a) and suspension test rigs as shown in Fig. 1.3(b) are designed
to excite each wheel with up to all six DOFs.
In Fig. 1.4 two typical test rigs for agricultural machines are shown. The entire service
life of trailed machines like a silage trailer in Fig. 1.4(a) is tested on a 4-poster with up
to four vertical excitations. Mounted machines like a plough are tested on a multi-axis
shaker table (MAST) , which simulates all six DOFs at the mounting point.
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(a) Full vehicle test rig, Opel Insignia
(Source: http://www.insignia-blog.de/wp-
content/uploads/2008/07/vlcsnap-421481.jpg)

(b) Suspension test rig, allowing six-DOF
testing (simulation of Fx, Fy, Fz and Mx,
My, Mz) [47]

Figure 1.3: Test rigs in the automotive industry

(a) 4-poster (b) multi-axis shaker table (MAST)

Figure 1.4: Test rigs in the agricultural industry (Source: Pöttinger)
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1.3 Outline of the Present Work

The following paragraph presents a short overview of each chapter and the main issues
that are addressed.

Chapter 2: The basis for all further computations are the equations of motion from
the considered multibody system. In this chapter the equations of motion of constrained
mechanical systems are presented. Different formalisms are compared and their specific
advantages and disadvantages are highlighted. An overview of numerical procedures for
the solution of DAEs is given. Some basic concepts for the implementation of flexible
bodies are discussed.

Chapter 3: The first considered method regarding to inverse problems is the method
of virtual iteration. This method is based on a linearization of the model and the inverse
computation in the frequency domain. The equations of motion do not have to be available
in a symbolic form. This method is best suited for detailed multibody systems including
flexible bodies, but only with moderate nonlinearities.

Chapter 4: The second method is an extension of the DAEs by so called servo or con-
trol constraints. This formalism results in high index DAEs which are more complicated
to solve. A well suited index reduction procedure and an appropriate implicit solver are
derived for this kind of systems. The procedure is an excellent method for systems where
the equations of motion are given in a symbolic form.

Chapter 5: In this chapter optimal control methods are discussed. Optimization pro-
cedures for unconstrained and constrained static problems are stated. Formalisms of
dynamic optimization problems are presented. Optimal control theory is discussed which
leads to Pontryagin’s maximum principle. For the numerical solution of optimal control
problems an overview of direct and indirect methods is given. The indirect methods are
based on the solution of the optimality conditions that results in a boundary value prob-
lem (BVP) that is challenging to solve. Other approaches are presented based on a direct
optimization method. One method is qualified for MBS where the equations of motion
are not given in a symbolic form. The system is treated as a black box. In the second
approach state and costate equations are formulated and a gradient method is used to
minimize an appropriate cost functional.

Chapter 6: The fourth method is a feed forward control design, known from automation
and control engineering. The formalism for differentially flat systems is presented. This
method results in an analytical control law, which is a big advantage. However, the desired
trajectories must be sufficiently smooth, i.e. continuously differentiable up to a certain
order.

Chapter 7: The approaches under consideration are applied to three academic examples.
The first example is a nonlinear oscillator consisting of two masses that are connected
by spring and damper elements. The example represents a fully actuated system, i.e.
the number of inputs is equal to the number of degrees of freedom. The second exam-
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ple is a planar overhead crane. The problem can either be formulated with independent
or dependent coordinates. Here the differences in the resulting equations of motion can
be seen clearly. The example represents an underactuated system and is therefore more
complicated to solve. The goal is to compute the inputs (force at the trolley and torque
at the winch) that a mass follows a trajectory, which is given by a polynomial. The third
example illustrates a three-dimensional rotary crane. In this larger multibody system big
differences can be seen regarding to the formulation of the equations of motion. Again, the
control inputs of this underactuated system are computed in a way that the load follows
a desired trajectory.
Based on these academic examples the considered approaches are compared. Specific ad-
vantages and disadvantages of each method are discussed.

Chapter 8: The method of virtual iteration is applied to three examples from indus-
trial applications. The first problem is an AOD-converter, which is modeled in the finite
element software Abaqus. The vibrations of this converter are physically measured by ac-
celeration sensors and strain gauges. The goal of this problem is to compute the actuating
forces and torques in the vessel. The model is a completely linear model and therefore the
inverse calculation can be done in one single step.
The second and the third industrial examples represent agricultural machines. The first
machine is a trailed cultivator, called Synkro 6003T. The second machine is a plough,
called Servo 6.50. Both machines are modeled in the MBS-software Adams. During a test
drive on a real track accelerations and strains are measured. Afterwards the measured
accelerations and strains should be reproduced on a test rig. This is firstly done on a real
test rig in the laboratory and secondly on a virtual test rig on the computer. For both
machines the excitation signals in servo-hydraulic cylinders are computed in a way that
the resulting outputs coincide with the measured target signals.

Chapter 9: The results of the previous chapters are concluded in this chapter. A short
summary of the different approaches with their specific advantages and disadvantages is
given. Some considered methods have potential for further investigations that are out
of the scope of this dissertation. Possible methods for future work are listed and briefly
discussed.

Appendix A: Some elementary calculations, which are required for the optimal control
methods in chapter 5 are performed. The gradient of a cost functional is derived.

1.4 Scope of the Present Work

The specific methods, which are presented in chapters 3 - 6, strongly depend on the type
of problem. If the model is only moderately nonlinear, the method of virtual iteration
is the most qualified method for large systems. It can be used for very detailed models
and the equations of motion do not have to be known in a symbolic form. Furthermore,
the procedure is not limited to special multibody simulation software or finite element
software. The inverse computation is done in Matlab or can also be used as stand-alone
software.
If the model includes remarkable nonlinearities, a linearization at a specific operation
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point does not represent the global behavior. In such a case the methods with control
constraints, the optimal control approach and the feed-forward control design are better
suited. All these methods are implemented in Matlab. In chapter 7 the methods are
successfully applied to academic examples. However, the integration of these methods
is another challenging task. The optimal control approach would be best suited for the
implementation in a commercial MBS-software package. Unfortunately such tools do not
offer an open interface for an implementation in their solver routines. The problem is
that the output variables as well as all the state variables have to be saved. Based on
these data the optimization procedure can calculate the input variables. A possibility
would be a co-simulation between MBS-software and Matlab. However, a co-simulation
is quite inefficient, because two different solvers work independently. Another problem is
that currently the interface between Adams and Matlab does not have the capability to
exchange all the state variables. In contrast, input and output variables can be defined
and the interface for such variables works adequate.
Another opportunity would be to save all the state variables in an external ASCII-file.
Basically this method is possible, but it is also quite inefficient.
Hence, the implementation of the optimal control approach into a commercial MBS-
software is out of the scope of this dissertation. If in the future the interfaces between
commercial MBS-software and numerical software like Matlab will be improved, it would
be possible to implement an efficient algorithm.
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Making the simple complicated is
commonplace; making the complicated
simple, awesomely simple, that’s creativity.

Charles Mingus

Chapter 2

Dynamics of Multibody Systems

In this chapter the most important parts of kinematics of rigid bodies are discussed in
order to formulate the dynamics of multibody systems. Furthermore, the principles of
mechanics are summarized. The equations of motion for constrained MBS are derived
from variational principles. An overview regarding the numerical solution of DAEs is given.
Finally, the implementation of flexible bodies is briefly discussed. Most parts regarding to
computational dynamics, which include kinematics, variational principles and Lagrangian
dynamics as well as constrained dynamics, are taken from [140, 142]. Parts of flexible
multibody systems are an excerpt from [139].

2.1 Kinematics of Rigid Bodies

Motions of rigid bodies are described with respect to a coordinate system, which is fixed
to the body. Material points of rigid bodies remain constant, if their coordinates are for-
mulated in this fixed-body coordinate system. An unconstrained body has six DOFs in
space. These DOFs consist of three positional coordinates, i.e. the spatial coordinates of
the fixed-body coordinate system and three rotational coordinates, where the orientation
of the fixed-body coordinate system is related to an inertial frame. If absolute coordi-
nates are used, all positional and rotational variables are expressed with respect to an
inertial frame. This formulation is used for example in the MBS-software Adams [27]. If
relative coordinates are used, positional and rotational coordinates of a specific body are
formulated with respect to another body, i.e. a tree topology is used. Such a formulation
is used e.g. in the MBS-tool Simpack. Relative coordinates are especially advantageous
in simulations of chain drives, where the coordinates of a chain link are related to the
previous and the next one, respectively.
The position of a material point of a single rigid body is expressed by

r = u + AR (2.1)

which is also shown in Fig. 2.1. The blue coordinate system (x y z) in Fig. 2.1 is an inertial
frame and the red coordinate system (X Y Z) represents the body-fixed coordinate system.
The absolute position of the point P expressed with respect to the inertial frame is given
by r = [x, y, z]T . The material point P expressed with respect to the fixed-body coordinate
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system is given by R = [X,Y, Z]T . The position of the fixed-body coordinate system is
given by the vector u and the orientation regarding to the inertial frame is given by the
orthogonal rotation matrix A. In the majority of cases it is advantageous, if the fixed-body
reference frame is located in the center of mass of the rigid body.

u

r

x
y

z
X

P

Y

Z

AR

Figure 2.1: Position of a material point with respect to a fixed-body coordinate system

2.1.1 Parametrization of the Rotation Matrix

The 3×3 rotation matrix A in the three-dimensional Euclidean space can be parameterized
in different ways. The most important property of all rotation matrices in R3 is the
orthogonality with a determinant of det(A) = +1 , considering Cartesian coordinates and
a right hand coordinate system [74, 139]. Therefore, rotation matrices are a member of a
Lie-group and they are called SO(3), which stands for special orthogonal group of order 3.
The elements of the 3 × 3 rotation matrix are not linearly independent. Rather the
orientation can be described by three linearly independent variables. These variables
are e.g. rotational angles of elementary rotations. In such a case the rotational axes
are coincident with the coordinate axes. Confirming to the three basis vectors, three
elementary rotation matrices are known [133].
In the following section the general terms cosϕ and sinϕ are abbreviated by cosϕ → cϕ
and sinϕ → sϕ, respectively. If ϕ denotes a rotation about x-, y- or z-axis according to
the right hand rule, following rotation matrices can be found:

Ax(ϕ) =

 1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 , Ay(ϕ) =

 cϕ 0 sϕ
0 1 0
−sϕ 0 cϕ

 , Az(ϕ) =

 cϕ −sϕ 0
sϕ cϕ 0
0 0 1


(2.2)

In the following section the main parts concerning to the rotation matrix A are taken
from [133, 139].

Euler angles φ, ψ, θ (rotation about the axes z0 − x1 − z2)

The rotation matrix A is formulated by a rotation about the z0-axis followed by the
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resulting x1-axis and the new z2-axis. The corresponding Euler angles are called φ, ψ, θ
and the rotations are expressed by the matrix product

A = Az(φ)Ax(ψ)Az(θ) (2.3)

However, it should be mentioned that Euler angles are not unique and sometimes other
conventions are used [139]. If the elementary rotation matrices (2.2) are inserted into
(2.3), the rotation matrix A results in

A =

 cθcφ− cψsθsφ −cφsθ − cθcψsφ sφsψ
cφcψsθ + cθsφ cθcφcψ − sθsφ −cφsψ

sθsψ cθsψ cψ

 (2.4)

The Euler angles can also be found from the rotation matrix (2.4). Therefore it is conve-
nient to use the sparse coordinates.

ψ = arccos(A33), φ = arcsin
(
A13

sinψ

)
, θ = arccos

(
A32

sinψ

)
(2.5)

Euler angles are used to describe the orientation of a rigid body in Adams [27].

Tait-Bryan angles (Cardan angles, Nautical angles, yaw-pitch-roll) α, β, γ (ro-
tation about the axes x0 − y1 − z2)

Especially in aeronautics Tait-Bryan angles are used in connection with the maneuvers
yaw, pitch and roll. Rotations are performed via x0, y1 and z2.

A = Ax(α)Ay(β)Az(γ) (2.6)

If the elementary rotations (2.2) are inserted in (2.6), the rotation matrix A yields

A =

 cβcγ −cβsγ sβ
cαsγ + sαsβcγ cαcγ − sαsβsγ −sαcβ
sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ

 (2.7)

The Tait-Bryan angles can be calculated from the rotation matrix (2.7) as well.

β = arcsin(A13), α = arccos
(
A33

cosβ

)
, γ = arccos

(
A11

cosβ

)
(2.8)

Parametrization via a rotation vector

The rotation matrix A can also be interpreted as a linear mapping from an initial vector
r0 to a final vector r1 = Ar0. Then the rotation matrix A can be expressed by

A = I33 + sin θã + (1− cos θ) ã2 (2.9)
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Eq. (2.9) is known as Rodriguez formula. The term I33 denotes a 3 × 3 identity matrix.
The rotation angle θ is defined as a rotation of the initial vector r0 about a rotation axis
defined by the unit vector a. ã is formed by the skew-symmetric matrix

ã =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.10)

Details and the derivation of the Rodriguez formula (2.9) can be found in [139].

Euler parameters e0, e1, e2, e3

The parameters e0, e1, e2 and e3 are called Euler parameters and can be derived from
the Rodriguez formula (2.9) [139]:

e0 = cos
θ

2
, e1 = ax sin

θ

2
, e2 = ay sin

θ

2
, e3 = az sin

θ

2
(2.11)

The four Euler parameters (also called quaternions) express the rotation θ and the orien-
tation of the rotation vector. However, the Euler parameters (2.11) are not independent
of each other and therefore the constraint equation

e2
0 + e2

1 + e2
2 + e2

3 = 1 (2.12)

must be fulfilled. As a consequence, the rotation matrix is again specified by three inde-
pendent parameters.

A =

 e2
0 + e2

1 − e2
2 − e2

3 2e1e2 − 2e0e3 2e1e3 + 2e0e2

2e1e2 + 2e0e3 e2
0 + e2

2 − e2
3 − e2

1 2e2e3 − 2e0e1

2e1e3 − 2e0e2 2e2e3 + 2e0e1 e2
0 + e2

3 − e2
1 − e2

2

 (2.13)

Rodriguez parameters γ1, γ2, γ3

Rodgriguez parameters can be derived by normalization of the Euler parameters (2.11).

γ1 =
e1

e0
, γ2 =

e2

e0
, γ3 =

e3

e0
(2.14)

By using definitions (2.14), the rotation matrix (2.13) can be transformed to

A =
1

1 + γ2
1 + γ2

2 + γ2
3

 1 + γ2
1 − γ2

2 − γ2
3 2γ1γ2 − 2γ3 2γ1γ3 + 2γ2

2γ1γ2 + 2γ3 1 + γ2
2 − γ2

3 − γ2
1 2γ2γ3 − 2γ1

2γ1γ3 − 2γ2 2γ2γ3 + 2γ1 1 + γ2
3 − γ2

1 − γ2
2

 (2.15)

Comparison of the different parameterizations

It can be shown that the rotation matrices A, which are formulated by Euler angles
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(2.4), Tait-Bryan angles (2.7) or by a rotation vector (2.9), can run into singularities. As
a consequence the relation between rotation angles and rotation matrix is not bijective.
In the case of Euler angles the critical values of the second angle ψ = 0 or ψ = π must be
avoided. In Eq. (2.5) it can be seen that the denominator is then equal to zero (sinψ = 0)
and the angles φ and θ are singular. In this case the z-axes have the same or the opposite
direction. If the z-axis and the Z-axis coincide, φ and θ can be added and the individual
values are not unique any more. In the configuration φ+ θ = 0 the rotation matrix yields
the identity matrix A = I33.
In the case of Tait-Bryan angles the value β = π/2 is not allowed for a unique definition.
In Eq. (2.8) it can be seen that denominator would be equal to zero (cosβ = 0) and the
angles α and γ would be singular.
If the rotation angle θ is equal to zero, the rotation matrix (2.9) is equal to the identity
matrix A = I33 and furthermore the rotation vector a is not uniquely defined.
Euler parameters (2.11) have the benefit that no singularities can occur. This effect results
due to the implementation of four parameters instead of three parameters, which are used
in the previous methods. As a consequence the constraint equation (2.12) must hold at
any time of the simulation.
Rodriguez parameters (2.14) can be handled without a constraint equation. However,
singularities occur if the angle θ = π. By considering the definitions (2.14) and (2.11) it
can be seen that γx,y,z = ax,y,z · tan θ

2 , which violates the domain of the tangent function
Dtan = R\

{
±π

2 ,±
3π
2 ,±

5π
2 , · · ·

}
.

Generally, it can be shown that all parameterizations that use three parameters can have
singular problems. However, a compensation with complementary angles is possible in
principle [133]. Because of all these reasons Euler parameters are mostly used in compu-
tational multibody dynamics.

2.1.2 Velocity of a Rigid Body

The velocity of a material point can be calculated by the total derivative of Eq. (2.1).

ṙ = v = u̇ + ȦR (2.16)

The vector R is constant in the case of a rigid body and therefore the derivative Ṙ vanishes.
It can be shown that the derivative of the rotation matrix Ȧ is equal to [139]

Ȧ = AΩ̃ (2.17)

where the skew symmetric matrix Ω̃ = AT Ȧ defines the angular velocity vector Ω in the
body-fixed coordinate system.

Ω̃ =

 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 , Ω =

 Ωx

Ωy

Ωz

 (2.18)

If Eq. (2.17) and (2.18) are inserted into (2.16), the velocity v can be expressed as

v = u̇ + AΩ̃R = u̇ + A (Ω×R) (2.19)

which is a combination of translational and rotational velocity.
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2.1.3 Formulation of the Angular Velocity

The skew symmetric matrix Ω̃ is formed by Ω̃ = AT Ȧ [139]. If the total derivative of Ȧ
is calculated, the equation extends to

Ω̃ = AT Ȧ =
nr∑
i=1

AT ∂A
∂qri

q̇ri (2.20)

All terms where the rotation matrix and its derivative appear are summarized in a skew-
symmetric matrix H̃i.

H̃i = AT ∂A
∂qri

(2.21)

Only the elements Hi =
[
H̃ i

32, H̃
i
13, H̃

i
21

]T
have to be considered due to the fact that Ω̃

is a skew symmetric matrix. Eq. (2.20) can now be written as matrix-vector product.

Ω = Hq̇r (2.22)

The matrix H depends on qr and maps the derivatives of the rotational DOFs q̇r to the
angular velocity vector Ω.
Now the goal is to find the matrices H for the specific parameterizations of the rotation
matrix. Therefore, the multiplication of the rotation matrix and its partial derivatives by
Eq. (2.21) is applied to the rotation matrices for Euler angles (2.4), Tait-Bryan angles
(2.7), Euler parameters (2.13) and Rodriguez parameters (2.15).

Euler angles

H =

 sθsψ cθ 0
cθsψ −sθ 0
cψ 0 1

 (2.23)

Tait-Bryan angles

H =

 cβcγ sγ 0
−cβsγ cγ 0
sβ 0 1

 (2.24)

Euler parameters

H = 2

 −e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 e0

 (2.25)

Eq. (2.25) can be written in the compact form

H = 2 [−e,−ẽ + e0I33] (2.26)
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where the vector e and the skew symmetric matrix ẽ are given by

e =

 e1

e2

e3

 , ẽ =

 0 −e3 e2

e3 0 −e1

−e2 e1 0

 (2.27)

Rodriguez parameters

H =
2

1 + γ2
1 + γ2

2 + γ2
3

 1 γ3 −γ2

−γ3 1 γ1

γ2 −γ1 1

 (2.28)

These basics of kinematics are used to formulate the kinetic equations of motion for rigid
multibody systems. The extension to flexible MBS will be given in section 2.9.

2.2 Newton-Euler equations

Newton’s second law (lex secunda) is the fundamental law of mechanics. Newton’s equa-
tions in combination with Euler’s equations form the laws for linear and angular momen-
tum. For a MBS with p rigid bodies the Newton-Euler equations reads [133]:

mi ai(t) = fi(t),

Ii Ω̇i(t) + Ω̃i(t) Ii Ωi(t) = Mi(t), i = 1 . . . p

(2.29a)

(2.29b)

To establish Eq. (2.29) a free body diagram has to be created. Thereby, forces and torques
that act on each body can either be classified into outer and inner forces and torques or
into applied and reaction forces and torques.

fi = foi + f ii = fai + f ri

Mi = Mo
i + Mi

i = Ma
i + Mr

i

It is important to note that Newton’s equations (2.29a) have to be formulated with respect
to the inertial frame. The variable mi denotes the mass of body i, ai(t) the translational
acceleration (ai = q̈t) and fi summarizes all forces that act at body i. The small letters
indicate that forces and accelerations are related to the inertial frame.
Euler’s equations (2.29b) can either be formulated with respect to a fixed-body reference
frame or the inertial frame. Typically, they are expressed in a fixed body reference frame,
which is in contrast to Newton’s equations. The advantage of that coordinate system is
that the tensor of inertia Ii is constant at any time. The capital letters of the angular
velocity vector Ωi(t), the skew-symmetric matrix Ω̃i(t) and the torques Mi illustrate the
formulation regarding to the fixed body reference frame.

Newton-Euler equations are used e.g. in the MBS-codes Neweul or LMS Virtual.Lab
Motion to formulate the equations of motion [157].
The big disadvantage of Eq. (2.29) is that six equations are required for each body. As
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a consequence lots of unknowns are introduced in the system of equations. Eventually,
all the forces are not of interest. In order to describe the motion of a MBS, reaction
forces are not needed. Hence, variational principles based on d’Alemberts principle are
of great interest. In these formulations the reaction forces are a priori eliminated. The
resulting system of equations consists of as many equations as generalized coordinates are
introduced.

2.3 Types of Constraints

Typically the dynamics of MBS are not formulated with generalized (minimal, indepen-
dent) coordinates but rather with redundant (dependent) coordinates. This means that
the number of coordinates exceeds the number of DOFs in the system. Redundant coor-
dinates are more convenient with regard to an automatic procedure for the formalism of
the equations of motion [157]. As a consequence algebraic constraint equations have to be
introduced to fulfill the kinematic boundary conditions. Further on, constraint equations
are needed, if a closed loop appears in the topology of the MBS. The constraints can be
classified into following groups:
Holonomic Constraints:
The constraints only depend on the positions q of the MBS. Holonomic constraints are
always independent of the velocities v = dq/dt.
If the time t does not appear in the constraint equations, then they are called scleronomous
holonomic constraints:

g(q) = 0, g : Rn → Rnλ (2.30)

This type of constraints is most commonly used in MBS. If the constraints also depend
explicitly on the time t, they are called rheonomous holonomic constraints:

g(q, t) = 0, g : Rn+1 → Rnλ (2.31)

Nonholonomic Constraints:
Nonholonomic constraints additionally depend explicitly on the velocities v of the MBS.
They cannot be transformed into holonomic constraints by integration. This means that
there are more DOFs in the positions than in the velocities [157]. The following form
illustrates nonholonomic constraints, which include both, the scleronomous as well as the
rheonomous type:

g(q, q̇, t) = 0, g : R2n+1 → Rnλ (2.32)

2.4 Variational Principles

In this section variational principles starting with d’Alembert’s principle of virtual work,
Jourdain’s principle of virtual power, Gauß’ principle of least constraint and Hamilton’s
principle are discussed. Further on, Lagrange’s equations of first and second kind are
derived from Hamilton’s principle.

2.4.1 Principles of d’Alembert, Jourdain and Gauß

Firstly, the variational principles of d’Alembert, Jourdain and Gauß are given for point
systems, which are furthermore extended for multibody systems.
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The positional coordinates for a specific point or particle are given by the vector r, which
is a geometrical function of n generalized coordinates q1, . . . , qn. If a dynamical system is
considered, it also depends explicitly on the time t.

r = r(q1, . . . , qn, t) (2.33)

At a fixed time t the virtual variations δq1, . . . , δqn can be considered. The variations
are called virtual variations, because the changes do not have to coincide with the real
dynamics of the system. However, the variations have to be geometrically possible, i.e. no
constraints are violated. Furthermore, only small variations are considered. The positional
variation of a point is then given by:

δr =
n∑
j=1

∂r
∂qj

δqj (2.34)

Principle of d’Alembert:
The principle of d’Alembert is based on virtual works, which result from the forces acting
on a particle times the virtual displacements. The variations of the positional coordinates
are performed at a fixed time t while variations of velocities and accelerations are equal
to zero.

δr 6= 0, δv = 0, δa = 0, δt = 0 (2.35)

Hence, the principle of d’Alembert in the Lagrangian version [133] reads as:

δW =
p∑
i=1

(miai − fai ) · δri = 0 (2.36)

The sum of all virtual works for p points resulting from inertia forces miai and applied
forces fai (impressed forces) is equal to zero. The virtual works of the reaction forces f ri
(constraint forces) is zero. Therefore, constraint forces are a priori not considered.
The principle of d’Alembert is only suitable for all holonomic systems. It can be shown
[133] that Lagrange’s equations of the second kind can be derived from Eq. (2.36). The
general equation of d’Alembert principle (2.36) is called principle of virtual work, if static
systems are considered. In such a case the inertia forces miai vanish. d’Alembert’s princi-
ple is used to formulate the equations of motion in the commercial software Simpack [157].

Principle of Jourdain:
Jourdain’s principle is based on virtual power, which is calculated by forces times virtual
velocities. At a fixed time t the velocities are variated, while the variations of positional
coordinates and accelerations are kept identical to zero. The variations of the velocities
does not have to be small but they must be compatible with the system.

δr = 0, δv 6= 0, δa = 0, δt = 0 (2.37)

Jourdain’s principle can be defined as:

δP =
p∑
i=1

(miai − fai ) · δvi = 0 (2.38)
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The virtual power of the constraint forces disappear in Jourdain’s principle, i.e. constraint
forces are not taken into account. Jourdain’s principle is suitable for nonholonomic sys-
tems and is implemented in the MBS-code Mesa Verde [157]. Jourdain’s principle leads
to Kane’s equations of motion [130].

Principle of Gauß:
In the principle of Gauß, a variation of the accelerations is performed. Positions and
velocities are not varied as well as the time.

δr = 0, δv = 0, δa 6= 0, δt = 0 (2.39)

Thus, the Principle of Gauß reads as follows:

δC =
p∑
i=1

(miai − fai ) · δai = 0 (2.40)

Gauß’ principle can be interpreted as principle that minimizes the constraint due to the
averaged acceleration divergence. Hence, it is also called principle of least constraint.
Nonholonomic systems can be considered as well. However, Gauß’ principle has not been
reached greater technical relevance till now [133].

D’Alembert’s principle for rigid MBS:
The mechanical principles above can all be extended from point systems to multibody
systems. For illustrative purposes, it is only shown for d’Alembert’s principle. Based on
Newton-Euler’s equations (2.29) d’Alembert’s principle for MBS reads as follows:

δW =
p∑
i=1

[
(miai − fai ) · δri +

(
Ii · Ω̇i + Ω̃i · Ii ·Ωi −Ma

i

)
· δϕi

]
= 0 (2.41)

Beside the virtual displacements δr also virtual rotations δϕ have to be considered. Ap-
plied forces fa are regarded as well as applied torques Ma in Eq. (2.41).

2.4.2 Hamilton’s Principle

Hamilton’s principle of stationary action reads as follows:
Amongst all possible motions, which can be performed by a conservative system from a
given initial position within a given time into a given end position, the one is going to
occur in the nature for which the action integral

S =

t2∫
t1

(L+Wnc)dt (2.42)

results in a stationary value (extremum).
A derivation of Hamilton’s principle can be found in [133, 157]. The Lagrangian L for
constrained mechanical systems is defined as:

L(q, q̇,λ) = T (q, q̇)− V (q)− g(q)Tλ (2.43)
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Here, the functional T = T (q, q̇), T : R2n → R denotes the kinetic energy and the
functional V = V (q), V : Rn → R the potential energy. Each of the nλ constraints (2.30)
is associated to a corresponding Lagrange multiplier λi. Furthermore, Wnc denotes the
work done by non-conservative forces Q.
In order that the action integral (2.42) vanishes, the variation δS also has to be zero. As
a consequence a variation with respect to each coordinate is carried out:

δS =
t2∫
t1

(δL+ δWnc)dt

=

t2∫
t1

[
∂T

∂q̇
δq̇ +

∂T

∂q
δq− ∂V

∂q
δq−

(
∂g
∂q

)T
· λδq− gT δλ+ δWnc

]
dt = 0

(2.44)

Eq. (2.44) is also known as constrained Lagrange-d’Alembert principle [84, 96, 104]. By
using the calculus of variations, the equations of motion can be derived from the above
principle (2.44). For constrained mechanical systems this results in Lagrange’s equations
of the first kind, for unconstrained systems, in Lagrange’s equations of the second kind.

2.5 Lagrange’s Equations of the First Kind, Descriptor Form

In this section constrained multibody systems are considered. Lagrange’s equations are
derived from Hamilton’s principle.
A partial integration of the first term in Eq. (2.44) is performed [148]:

t2∫
t1

∂T

∂q̇
δq̇ dt =

(
∂T

∂q̇
δq
)∣∣∣∣t2

t1

−
t2∫
t1

d

dt

(
∂T

∂q̇

)
δq dt (2.45)

The first term of the right side in Eq. (2.45) can be canceled due to the fact that the
variation at the boarders vanishes: δq(t0) = δq(t1) = 0. This intermediate result is
inserted in Eq. (2.44). Furthermore the Lagrangian L(q, q̇) = T (q, q̇)− V (q) is recalled.

t2∫
t1

[
− d

dt

(
∂L

∂q̇

)
+
∂L

∂q
−
(
∂g
∂q

)T
· λ

]
δq dt−

t2∫
t1

gT δλ dt+

t2∫
t1

δWnc dt
!= 0 (2.46)

Regarding to the fundamental lemma of variational calculus, the expression inside the
brackets in Eq. (2.46) must be zero for all times t [148]. This leads to Lagrange’s equations
of the first kind, also known as Euler-Lagrange equations.

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+
(
∂g(q)
∂q

)T
· λ = Q (q, q̇, t)

g(q) = 0

(2.47a)

(2.47b)

In Eq. (2.47a) the product
(
∂g(q)
∂q

)T
· λ denotes the constraint forces, which ensure that

the constraints are fulfilled. Q (q, q̇, t) is the vector of non-conservative forces that results
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from Wnc. The constraint equations g(q) = 0 have to be fulfilled at all times, which can
cause numerical difficulties, cf. section 2.8.
For scleronomous systems the kinetic energy can be written in the quadratic form:

T (q, q̇) =
1
2
q̇TM(q)q̇ (2.48)

In Eq. (2.48) M(q) denotes the symmetric positive definite mass matrix, where mass and
inertia terms are included. The derivatives of the Lagrangian in Eq. (2.47) can be written
as:

d

dt

(
∂L (q, q̇)

∂q̇

)
=

d

dt

(
∂T (q, q̇)

∂q̇

)
=
∂2T (q, q̇)

∂q̇2
q̈ +

∂2T (q, q̇)
∂q∂q̇

q̇

∂L (q, q̇)
∂q

=
∂T (q, q̇)

∂q
− ∂V (q)

∂q

and the specific components can further be defined as follows:

∂2T (q, q̇)
∂q̇2

= M(q)

∂2T (q, q̇)
∂q∂q̇

=
∂M (q) q̇

∂q
=

d

dt
M (q) = Ṁ (q, q̇)

∂T (q, q̇)
∂q

=
1
2
q̇TṀ (q, q̇)

Hence, the vector of generalized forces f(q, q̇, t) can be defined. It includes applied exter-
nal forces, non-conservative forces, generalized Coriolis- and centrifugal forces as well as
conservative (potential) forces.

f(q, q̇, t) := Q(q, q̇, t)− Ṁ (q, q̇) q̇ +
1
2

(
q̇TṀ (q, q̇)

)T
−
(
∂V (q)
∂q

)T
(2.49)

By summing up all these terms and the constraint forces GTλ the equations of motion for
constrained MBS can be formulated. GT denotes the constraint Jacobian and is calculated
by the partial derivatives

G(q)T = D (g(q))T =
(
∂g(q)
∂q

)T
(2.50)

M(q)q̈− f(q, q̇, t) + G(q)Tλ = 0

g(q) = 0

(2.51a)
(2.51b)

Eq. (2.51a) consist of n differential equations for for the coordinates q1 . . . qn and (2.51b)
of m algebraic equations for the Lagrange multipliers λ1 . . . λm. Hence, the system (2.51)
is a set of differential-algebraic equations (DAEs). The form (2.51) of the equation of
motion is called descriptor form. The descriptor form can also be found by applying other
principles of mechanics. Lagrange’s equations of the first kind are used to formulate the
equations of motion in Adams [157]. Mathematical properties and numerical solutions of
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DAEs are discussed in chapter 2.8.
The principles of d’Alembert and Jourdain can also be formulated for constrained MBS.
If the general form

f̄ =
p∑
i=1

[
miai − fai

IiΩ̇i + Ω̃iIiΩi −Ma
i

]
is introduced and the variations δr and δϕ are summarized in δqT = [δr, δϕ]T , Eq. (2.41)
read as [157]:

d′Alembert : δW = δqT f̄ = 0, δqTGTλ = 0

Jourdain : δP = δvT f̄ = 0, δvTGTλ = 0

(2.52a)

(2.52b)

2.6 Lagrange’s Equations of the second kind

For MBS, where minimal coordinates are used, Eq. (2.44) simplifies to:

δS =
t2∫
t1

(δL+ δWnc)dt

=
t2∫
t1

(
∂T

∂q̇
δq̇ +

∂T

∂q
δq− ∂V

∂q
δq + δWnc

)
dt = 0

(2.53)

Furthermore, Eq. (2.46) simplifies to:

t2∫
t1

[
− d

dt

(
∂L

∂q̇

)
+
∂L

∂q

]
δq dt+

t2∫
t1

δWnc dt
!= 0 (2.54)

As a consequence, Lagrange’s equation of the second kind read as:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q (q, q̇, t) (2.55)

By using the definition of the Lagrangian for unconstrained systems L = T−V , Eq. (2.55)
can be written as:

d

dt

(
∂T (q, q̇)

∂q̇

)
− ∂T (q, q̇)

∂q
+
∂V (q)
∂q

= Q (q, q̇, t) (2.56)

If the definitions for the mass matrix, its derivative and the definition for the generalized
forces are used from section 2.5, Eq. (2.55), (2.56) can be written as:

M(q)q̈− f(q, q̇, t) = 0 (2.57)

Eq. (2.57) can be seen as generalization of Newton’s second law. It should be recalled
that in Eq. (2.51) the vector q denotes dependent (redundant) coordinates, while in Eq.
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(2.57) it denotes independent (minimal, generalized) coordinates.

In commercial MBS software packages different mechanical principles are applied to de-
rive the equations of motion. Newton-Euler equations are used in Neweul or in LMS Vir-
tual.Lab Motion (DADS). Jourdain’s principle is used e.g. in Mesa Verde and d’Alembert’s
principle in Simpack. Adams makes use of Lagrange’s equations of the first kind [157].

2.7 Kinetic and Potential Energy of Rigid Bodies

In order to formulate Lagrange’s equations of the first kind (2.47) or second kind (2.55),
it is necessary to find the kinetic energy T (q, q̇) as well as the potential energy V (q) of
the rigid bodies.
The kinetic energy of a rigid body is given by

T =
1
2

∫
m

vTv dm (2.58)

where the velocity vector v is defined in Eq. (2.19). Eq. (2.58) can be split into

T = T t + T r =
1
2
mv2

M +
1
2
ΩIMΩ (2.59)

where vM denotes the velocity of the center of mass and IM denotes the tensor of inertia.
The first term T t denotes the translational part and the second term T r the rotational
term of the kinetic energy. It should be noted that the translational part is formulated
with respect to the inertial frame and the rotational part with respect to the fixed body
reference frame.

IM =
∫
m

R̃T R̃dm =

∫
m

 Y 2 + Z2 −XY −ZX
−XY Z2 +X2 −Y Z
−ZX −Y Z X2 + Y 2

dm (2.60)

The skew symmetric matrix R̃ is defined in the same way as Eq. (2.18) or (2.27). If Eq.
(2.22), i.e. Ω = Hq̇r is inserted into Eq. (2.59), it results in

T =
1
2
m
(
q̇t
)T q̇t + (q̇r)T HT IMHq̇r (2.61)

As a consequence, the symmetric positive definite regular mass matrix M can be written
in the form [139]

M =
[
mI 0
0 HT IMH

]
(2.62)

if the generalized coordinates are arranged in the order q =
[
qt, qr

]
.

The potential energy can be calculated by

V =
∫
m

[0, 0, g] r dm = [0, 0, g] um (2.63)
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if the gravity field is in the negative ez-direction. The vector r is a material point expressed
in the coordinates of an inertial frame and the vector u is the position of the body-fixed
reference frame, which is located in the center of mass of the rigid body, cf. Fig. 2.1.
Furthermore, the potential energy can also be expressed for any (nonlinear) spring with
the spring force fc(s).

Vc =

s∫
s0

fc (ξ) dξ (2.64)

In the case of a linear spring with a spring force of fc = cs Eq. (2.64) results in

Vc =
1
2
c (s− s0)2 (2.65)

2.8 Numerical Solution of DAEs

The dynamics of constrained MBS is usually described by a set of DAEs (2.51), known
as descriptor system. These equations result from an augmented formulation where re-
dundant coordinates are used. The challenge is to solve the differential equations (2.51a)
while the constraint equations (2.51b) have to be fulfilled at all times. In the following
sections different numerical approaches are discussed to solve the set of DAEs.

2.8.1 Index of the Descriptor Form

The index of a DAE can be seen as a measure as how different the DAE is from an ODE
[157]. In the literature several definitions exist about the index. Unfortunately, they are
not equivalent for all classes of DAEs. In this section DAEs for MBS are considered, i.e.
the descriptor form of the type (2.51). Index definitions and numerical solution techniques
are taken from [157].
The implicit differential system

F(x, ẋ,u, t) = 0 (2.66)

is a generalization of the descriptor system (2.51). The Jacobian matrix ∂F/∂ẋ may be
singular. Generally, a semi-explicit system of DAEs or an ODE with constraints can also
be written in the following form [4, 92]:

ẋ = f (x,u, t)
0 = g (x,u, t)

(2.67a)
(2.67b)

The state of the system is represented by a vector x(t) ∈ R2n (differential variables).
u(t) ∈ Rm denotes the vector of control-inputs of the system (algebraic variables). If u is
unknown, this equation is underdetermined [39]. The index of a DAE is defined as follows:
[157]
Eq. (2.66) has differential index i = k if k is the minimum number of analytical differen-
tiations

F(x, ẋ,u, t) = 0,
Ḟ(x, ẋ,u, t) = 0,

· · · ,
F(k)(x, ẋ,u, t) = 0

(2.68)
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such that Eq. (2.68) can be transformed by algebraic manipulations into an explicit ODE
ẋ = F(x) (which is called the underlying ODE). Such a definition is very useful in under-
standing the mathematical structure of the DAE and hence in selecting an appropriate
numerical method [4].

2.8.2 Index Reduction

The descriptor system (2.51) can be transformed into a system that includes only sec-
ond order differential equations. Therefore, the constraint equations (2.51b) have to be
differentiated with respect to time. The first and the second derivative are given by:

Gq̇ = 0

Gq̈ + Ġq̇ = 0

(2.69a)

(2.69b)

Eq. (2.69a) summarizes the constraints at velocity level and Eq. (2.69b) are the constraints
at acceleration level [140].
The index 2 system can now be written in the form:

Mq̈− f + GTλ = 0

Gq̇ = 0

(2.70a)
(2.70b)

Furthermore, Eq. (2.69b) can be written in the form:

Gq̈ = γ(q, q̇)⇒ γ(q, q̇) := −Ġq̇ (2.71)

The constraint Jacobian G(q) and the constraints at acceleration level (2.71) can be
described analytically for every type of joint. Now the constraints at positional level
(2.51b) can be replaced by the constraints at acceleration level (2.71) due to the fact that
both equations are mathematically equivalent. As a consequence, the descriptor system
(2.51) is transformed to the index 1 system:

Mq̈− f + GTλ = 0

Gq̈ = γ

(2.72a)
(2.72b)

The index 1 system (2.72) can also be written in matrix form:

[
M GT

G 0

] [
q̈
λ

]
=
[

f
γ

]
(2.73)

The system (2.73) is called index 1 equation, because it is fully determined by a set of first
order differential equations. The original descriptor system (2.51) is an index 3 system. It
can be seen that the index 1 system results from two differentiations of the index 3 system.
The matrix on the left side of (2.73) can be summarized:

A(q) :=
[

M(q) G(q)T

G(q) 0

]
(2.74)
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It is assumed that the constraint matrix G(q) has full rank and that the mass matrix
M(q) is positive definite in the null space ker(G) of G(q), i.e.

yTM(q)y > 0 ∀ y ∈ ker(G)

Then the system matrix A(q) in (2.73) is non-singular [157]. If A(q) is non-singular,
(2.73) can be solved for q̈ and λ:[

q̈
λ

]
= A−1(q) ·

[
f (q, q̇, t)
γ (q, q̇)

]
(2.75)

The second order differential equation for q̈ can be solved by transforming the system
into a system of first order differential equations. With v = q̇ the state vector results in
x = [q, v]T . The initial states x(t0) = [q0, v0]T must satisfy the constraint equations for
positions g(q0) = 0 and velocities G(q0) ·v0 = 0. The initial value problem (IVP) for the
state vector x(t) can be solved by standard methods.
Based on the solution of x(t) the vector of Lagrange multipliers λ(t) can be calculated by
the second equation in (2.75).

Several numerical methods for the solution of IVPs are known. However, the best suited
method always depends on the type of the problem. A general algorithm for all types
of problems cannot be selected. Single-step methods are e.g. the explicit and implicit
Euler method or different Runge-Kutta methods. Extrapolation methods are also single-
step methods that can be explicit or implicit and are also available for stiff systems.
ADAMS-methods are multi-step methods, which are based on predictor-corrector itera-
tions. ADAMS-methods are not suited for stiff systems. Backward-differentiation formula
(BDF)-methods are implicit multistep-methods that are well suited for stiff systems [17].
A comparison of different numerical algorithms is given in Table 2.1.

2.8.3 Drift Problem of the Index 1 System

Although the system of index 1 (2.73) is mathematically equivalent to the original descrip-
tor system of index 3 (2.51), numerical problems can occur. With standard integration
methods only the constraints at acceleration level Gq̈ = γ can be observed. The dis-
cretized system can drift off from the original system and lower-order constraint equations
(positional and velocity constraints) are violated due to accumulation of integration trun-
cation errors [20]. The errors usually tend to increase in time and as a consequence the
simulation results are not reliable any more. The drift effect is graphically illustrated in
Fig. 2.2. To avoid this drift, either a stabilization method can be applied or a projection
method can be used.

2.8.4 Stabilization Methods

Gear-Gupta-Leimkuhler (GGL) stabilization:
The index 2 system (2.70) is stabilized by using an additional term at velocity level. A
new Lagrange multiplier ν, which vanishes in the exact solution, is introduced and hence
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advantages disadvantages
Runge-Kutta • robust • high effort
methods • small overhead • many function evaluations

• well suited for small accuracies • fixed order
Extrapolation • variable order and step size • large overhead
methods • highly accurate • too expensive for

small accuracies
• sparsely robust (problems
with unsteady systems)

ADAMS • less effort (2-3 function • high overhead
methods evaluations per step) (step size control)

• variable order and step size
• well suited for complex functions

BDF • variable order and step size • relatively high effort due to
methods • stable (also for stiff systems) implicit character

(step size control,
solution of implicit equations)
• high overhead

Table 2.1: Comparison of different numerical methods for the solution of IVPs [17]

q

q
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numerical velocity

constraint consistent 

velocity
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consistent 

position

Figure 2.2: Constraint violation by the numerical solutions q̃(t) and ṽ(t) [20]

the stabilized index 2 formulation [35, 50, 78, 92] yields

q̇− v + GTν = 0

Mv̇ − f + GTλ = 0

g = 0

Gv = 0

(2.76a)

(2.76b)
(2.76c)
(2.76d)

The original constraint equation g = 0 is added to the system as well. As a consequence
the number of equations is increased, i.e. an overdetermined system of DAEs occurs.
However, the advantage of this method is that position-level constraints and velocity-level
constraints are automatically enforced. Hence, the drift problem is eliminated for these
constraints [35]. The solver DASSL or the revised version DDASKR provide implicit
multi-step methods for the solution of such DAEs. The original DASSL-code is based on
a backward differentiation formula (BDF) and is designed to solve index 1 systems [35].
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A modified DASSL-integrator is e.g. used in Simpack [130]. Furthermore, commercial
MBS-solvers as implemented e.g. in Adams have the possibility to solve either the index
3 equations or the stabilized index 2 equations (e.g.: GSTIFF I3/SI2 ).

Baumgarte stabilization:
In this formulation the constraint equations of different index-levels are combined with
weighting factors α > 0 and β > 0 [140].

g̈ + αġ + βg = 0 (2.77)

The first and second time derivative of the holonomic constraints g(q) are known from
Eqs. (2.69)

ġ = Gq̇ = 0

g̈ = Gq̈− γ = 0

(2.78a)
(2.78b)

Theoretically, the weighting factors can optimally be adapted to a certain step size by
α = 1/h and β = 1/h2 [130]. Eq. (2.77) can be compared with a one-mass-oscillator.

g̈ + 2ζω0ġ + ω2
0g = 0 (2.79)

The dynamics of a one-mass oscillator is characterized by the undamped eigenfrequency
ω0 and the viscous damping ζ. Hence, the weighting factors can be chosen to α = 2ζω0

and β = ω2
0. By combining Eqs. (2.78) and (2.79), the system (2.73) results in[

M GT

G 0

] [
q̈
λ

]
=
[

f
γ − 2ζω0Gq̇− ω2

0g

]
(2.80)

A disadvantage of Baumgarte’s stabilization method is that artificial stiffness is introduced
into the system if the parameters are not chosen properly [157].

Projection method:
In a projection method the state vector x(t) has to be projected back onto the constraint
manifold from time to time. The goal is that the necessary update for q and v is minimal.
If qmod denotes the updated vector of coordinates, then ∆q = qmod−q is the change of q.
The projection algorithm should furthermore be designed in order that the norm ||∆q|| is
a minimum.
This yields an optimization problem with a constraint condition (nonlinear constrained
least squares problem) [157].

g(q + ∆q) = 0

||∆q||A =
1
2

∆qTA∆q→ min

(2.81a)

(2.81b)

G · (v + ∆v) = 0

||∆v||A =
1
2

∆vTA∆v→ min

(2.82a)

(2.82b)
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The velocity update algorithm is executed after the the position update algorithm. The
projected values fulfill both, position and velocity constraints. Then these values are used
to advance the numerical solution. Details about projection methods can be found e.g. in
[4, 50, 157].

2.8.5 Index 3 Solver

By using single-step methods of small order, the nonlinear constraint equations (2.51b)
can also be solved within an integration step [50, 130]. If an Euler-step with the step size
h is applied to the equations of motion (2.51a), it yields:

vt+h = vt + h ·M−1
(
f −GTλ

)
(2.83)

The new velocity state vt+h depends on the constraint forces GTλ, which are initially
unknown. Applied and gyroscopic forces f can be calculated based on the actual positional
coordinates qt and the actual velocities vt. Another Euler-step applied to the kinematic
equations q̇ = v results in:

qt+h = qt + h · vt+h = qt + h ·
(
vt + h ·M−1

(
f −GTλ

))
(2.84)

In Eq. (2.84) the new velocity state vt+h is an implicit part for the calculation of the new
positional coordinates qt+h. Certainly, the new state qt+h = qt+h(λ) has to fulfill the
constraint equations:

g (qt+h(λ)) = g (λ) = 0 (2.85)

The constraint equations (2.85) are typically nonlinear. Therefore, they can only be
resolved iteratively with regard to λ. If an approximated value λi is known from the
previous integration step, the improved value λi+1 can be calculated by Newton’s method
[130].

λi+1 = λi − g(λi) ·
(
∂g(λi)
∂λi

)−1

(2.86)

The partial derivative ∂g
∂λ is calculated by:

∂g
∂λ

=
∂g
∂q
· ∂q
∂λ

(2.87)

and from Eq. (2.84) and the definition of the constraint Jacobian G = ∂g
∂q it follows:

∂g
∂λ

= −h2 G M−1 GT (2.88)

Therefore, the derivative ∂g
∂λ can be calculated with variables that are already known.

Consequently, the algorithm consists of three main parts. Firstly, the Lagrange multipliers
λi+1 have to be computed by using Eq. (2.86). Secondly, the velocities vt+h can be
calculated based on these Lagrange multipliers and the variables from the previous step
with Eq. (2.83). Thirdly, the positional coordinates qt+h are computed based on the
velocities vt+h and the position from the previous step qt by (2.84).
It should be noted that the Euler-method is a method of first order O(h), i.e. it only
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provides accuracies in the dimension of the step size h. As a consequence, this method
should only be used for simulations with small accuracy demands [130].
Commercial MBS software tools use e.g. the Hilber-Hughes-Taylor (HHT ) method or the
implicit Newmark formula to integrate the index 3 system [130]. The implicit Runge-Kutta
code RADAU5 is designed to integrate DAEs of index 1, 2 or 3 [78]. These methods are
basically similar to the method above, but a higher accuracy of order O(h)2 is used to
solve the index 3 DAEs [157].

2.9 Flexible Multibody Systems

In the industrial examples in chapters 8.2 and 8.3 flexible bodies are included in the MBS
as well. This yields a hybrid multibody system. Therefore, the implementation of flexible
bodies should be briefly discussed in this section.

2.9.1 Overview

Deformations can either be elastic or inelastic. Several inelastic material models like elasto-
plastic, viscous or combined material behavior exist [6]. For this reason flexible MBS are
considered, which is more general than elastic MBS. From the field of finite elements the
distinction between (a) small deformations, (b) large deformations with small strains and
(c) large deformations with large strains is well known.
For the implementation of flexible bodies in MBS several formulations are used, e.g.:

• floating frame of reference formulation

• incremental formulation

• large rotation vector formulation

• absolute nodal coordinate formulation

For the implementation of plastic material behavior especially the absolute nodal coordi-
nate formulation has inspired researchers for the last years. Details about the formulation
can be found in several publications [70, 139], just to mention some key works.
However, in the industrial application in chapters 8.1, 8.2 and 8.3 only small deforma-
tions are considered due to the type of problem. Hence, the focus in this section is in
the implementation of linear elastic models and therefore in the formulation of a floating
reference frame. This reference frame moves along with the body and if the body is rigid,
it coincides with the fixed body frame. The position of the reference frame is described
by the rigid body coordinates qt (translational part) and qr (rotational part). The elastic
coordinates qf describe the deformation with respect to the floating reference frame. The
disadvantage of the formulation with a floating reference frame is that the mass matrix is
much more complicated and not constant.
In a numerical analysis the continuum problem has to be discretized in space. From the
finite element theory the well known Ritz-Ansatz is used to find spatial shape functions
[139].

w(x, y, z, t) ≈

 a1(t)Φ1(x, y, z) + · · ·+ ak(t)Φk(x, y, z)
b1(t)Ψ1(x, y, z) + · · ·+ bl(t)Ψl(x, y, z)
c1(t)Θ1(x, y, z) + · · ·+ cm(t)Θm(x, y, z)

 (2.89)
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In Eq. (2.89) w(x, y, z, t) denotes the displacement field of a deformable body. The
displacement field is defined by pre-defined shape functions Φ1(x, y, z), · · · ,Φk(x, y, z),
Ψ1(x, y, z), · · · ,Ψl(x, y, z) and Θ1(x, y, z), · · · ,Θm(x, y, z) and is furthermore scaled by
coefficients a1(t), · · · , ak(t), b1(t), · · · , bl(t) and c1(t), · · · , cm(t). The vector

qf (t) :=
[
a1(t) . . . ak(t), b1(t) . . . bl(t), c1(t) . . . cm(t)

]T (2.90)

forms the vector of degrees of freedom (DOFs) of the flexible body.
The floating reference frame should be defined in a way that the displacements of the
material points can be assumed to be small with regard to this frame. The vector R =
[X,Y, Z]T denotes the position of a material point with respect to the floating frame in
a predefined reference configuration. Furthermore, W(x, y, z, t) denotes the displacement
field of the flexible body. Now Eq. 2.89 can be split into a matrix of shape functions
N(X,Y, Z) and the vector of elastic DOFs qf (t).

W(X,Y, Z, t) = N(X,Y, Z) · qf (t) (2.91)

The position of a material point with respect to an inertial frame is then given by:

r = u + A (R + W) (2.92)

The term u + AR describes a rigid body motion while the term AW expresses the defor-
mation of the body. Fig. 2.3 illustrates the description of a flexible body with respect to

u

R W

r

x y

z

X

Y

Z
reference 

configuration

deformed state

Figure 2.3: Floating reference frame

a floating reference frame. The blue coordinate systems symbolizes an inertial frame and
the red coordinate system the floating reference frame of the body. The position of the
floating reference frame is described by the vector u. The position in the deformed state
is described by the vector r, which is formulated by Eq. (2.92).
The kinetics of a single flexible body can be described e.g. by Jourdain’s principle [133]
(principle of virtual power):

δP =
∫
V

δv · a dm+
∫
V

δε · σ dm−
∫
V

δv · k dm−
∫
V

δv · p dm−
∫
V

δvk · fk + δvk ·mk dm

(2.93)
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The first integral in Eq. (2.93) denotes inertia forces and the second integral inner forces.
The third, fourth and fifth integral express volumetric forces, surface forces and single
forces and torques, respectively.
In the calculation of the kinetic energy, which is necessary for the equations of motion, care
must be taken. The kinetic energy is generally calculated by T = 1

2

∫
m

vTv dm, Eq. (2.58).

However, the velocity vector v cannot be calculated by Eq. (2.19) any more, because of
the flexibility in the body. Rather, the expression for the velocity has to be extended.

v = u̇ + Ȧ (R + W) + AẆ

= A
[
AT u̇ + Ω× (R + W) + Ẇ

]
= A

[
AT u̇−

(
R̃ + W̃

)
Ω + Ẇ

] (2.94)

Now the Eq. (2.22) and the Ritz-Ansatz (2.91), i.e.

u̇ = q̇t, Ω = Hq̇r, W = N(X,Y, Z)qf

can be inserted into Eq. (2.94). This results in

v = A
[
AT q̇t −

(
R̃ + W̃

)
Hq̇r + Nq̇f

]
(2.95)

By inserting the velocity (2.95) into the kinetic energy, the mass matrix can be calculated.
If the coordinates are arranged in q =

[
qt, qr, qf

]T , the mass matrix is formed by:

M =

 Mtt Mtr Mtf

Mrr Mrf

symm. Mff

 (2.96)

The specific terms in Eq. (2.96) can be found in [139]. In (2.96) only the submatrices Mtt

and Mff are constant. All other submatrices depend on the rotational DOFs qr or the
elastic DOFs qf [139].

2.9.2 Determination of Shape Functions

Different methods can be used to describe the shape functions N(X,Y, Z) for the Ritz-
Ansatz (2.91). A short overview should be given in the following list.

• Eigenfunctions and static functions of continuum models like beams or plates

• Finite element discretization

• Eigenfunctions and static functions of finite element discretizations

• Spline functions, assumed modes, frequency response modes

The direct implementation of a finite element model is not discussed here. Methods that
keep the number of DOFs small are of interest. Hence, a mapping to a lower dimensional
space of the elastic coordinates qf is of interest. In the following section the static re-
duction, the modal reduction and the Craig-Bampton reduction are discussed, which are
needed for the component mode synthesis (CMS) .
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2.9.3 Guyan Reduction (Static Reduction)

The deformation of a flexible body can be described in many cases, if the displacements
of just a few points are known. In the Guyan reduction specific master nodes and slave
nodes are defined. Furthermore, the slave-DOFs are expressed by the master-DOFs. The
displacements of the slave nodes are calculated from the static deformation, which results
from the displacements of the master nodes, even in the dynamic case. The nodal DOFs
are split into master and slave components u = [uM , uS ]T , Fig. 2.4. The goal is to

FMBS
T

slave nodes
(interior nodes)uM TMBS

master nodes
(interface nodes)

(interior nodes)

u = uS

( )

Figure 2.4: Master nodes and slave nodes in a FEM of a beam

calculate uS , if uM is known. Therefore the static FEM-problem Ku = f is split into:[
KMM KMS

KSM KSS

]
·
[

uM
uS

]
=
[

fM
fS

]
=
[

fM
0

]
(2.97)

The term fS in Eq. (2.97) is set to zero fS = 0, because the slave nodes should only follow
the motion of the master nodes, i.e. no external forces act on the slave nodes. The forces
fM have to be applied in order to deflect the master nodes. The motion of the slave nodes
can be calculated from Eq. (2.97):

uS = −K−1
SSKSMuM (2.98)

The vector of all nodal DOFs is given by:

u =
[

uM
uS

]
=
[

IMM

−K−1
SSKSM

]
uM (2.99)

In Eq. (2.99) IMM denotes the (nM × nM ) identity matrix. Furthermore, (2.99) is given
in the form

u = Φqf (2.100)

where the matrix Φ and the vector qf are formulated by:

Φ =
[

IMM

−K−1
SSKSM

]
, qf = uM (2.101)

To attain the kth column of Φ, the kth component of uM has to be set to one and all other
components to zero. If a static FEM-analysis is performed, the resulting displacements
are used to fill the column.
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2.9.4 Modal Reduction

It is assumed that the flexible body is modeled with finite elements. For small displace-
ments the equations of motion are given by the linear differential equation

Mü + Cu̇ + Ku = f (2.102)

The vector of nodal DOFs is given by u ∈ Rn, the mass matrix by M ∈ Rn×n, the
damping matrix by C ∈ Rn×n and the stiffness matrix by K ∈ Rn×n. The force vector
f ∈ Rn contains externally applied forces and reaction forces due to its connection to
adjacent components at boundary DOFs. The basis of a modal reduction is an undamped
autonomous system

Mü + Ku = 0 (2.103)

The harmonic approach u = φ cos(ωt) or u = φ sin(ωt) leads to the eigenvalue problem
[140]: (

K− ω2M
)
φ = 0 (2.104)

It is well known that a nontrivial solution φ 6= 0 only exists if the condition det
(
K− ω2M

)
=

0 is fulfilled. This characteristic equation results in n independent undamped eigenfrequen-
cies ω = ±ωk, k = 1, ..., n (ω2 are the eigenvalues).
If K and M are positive definite, all eigenfrequencies are greater than zero ωk > 0, k =
1, ..., n and if they are positive semidefinite, they are greater or equal to zero ωk ≥ 0, k =
1, ..., n. The number of zero eigenfrequencies is equal to the number of rigid body modes
in the system [6].
Each eigenvalue ω2

k is associated to an eigenvector φk, k = 1, ..., n and the eigenvectors
are linearly independent. Due to the fact that the number of eigenvectors is equal to the
number of nodal DOFs, the vector u(t) can be written as:

u(t) =
n∑
k=1

φkqk(t) (2.105)

Eq. (2.105) is called modal transformation and can be applied to linear or linearized
systems. It is well known that the eigenvectors, which correspond to the lowest eigenfre-
quencies ωk, have the highest influence in the dynamical movement of the system. Higher
eigenfrequencies affect the system much less and therefore they can be neglected [53].
However, the cut-off frequency strongly depends on the system and the excitation. If the
eigenfrequencies are sorted according to their magnitudes 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωn, the
sum in (2.105) can be cut at the specific cut-off frequency:

u(t) ≈
p∑

k=1

φkqk(t) (2.106)

Note, that p << n, i.e. the number of DOFs can be decreased dramatically. Eq. (2.106)
can also be written in matrix form:

u = Φqf (2.107)

The matrix Φ contains the eigenvectors φk as column vectors and the vector qf the modal
DOFs qk(t).

Φ = [φ1, . . . ,φp] , qf = [q1, . . . , qp]
T (2.108)
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2.9.5 Craig-Bampton Reduction

The Craig-Bampton reduction is a combination of static and modal reduction [43]. The
idea of the Craig-Bampton reduction is that the internal dynamics of the slave nodes is
described by eigenvectors for fixed master nodes. First of all, it is distinguished between
normal modes ΦN and constraint modes ΦM [42].

Normal modes, dynamic modes ΦN :

S M M N N= +u Φ u Φ q

solution of eigenvalue-problem

( )2 ˆ ˆ
Nλ + =M K Φ 0

g p
(all master DOFs are locked)

S M M N N= +u Φ u Φ q 1

,12

22
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1

1,22
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1
0
0

M

M

M

xx xx xx
xx xx xx

⎜ ⎟ ⎜ ⎟⋅
⎜ ⎟ ⎜ ⎟Φ
⎜ ⎟ ⎜ ⎟⎜ ⎟Φ ⎝ ⎠⎝ ⎠ 1

Figure 2.5: Normal modes, sketched for a Hermite beam element

The matrix ΦN is formed by the first nN eigenvectors, if all master DOFs are locked.
These eigenvectors are called normal modes, which define the modal expansion of the
interior DOFs.

Constraint modes, static modes ΦM :

S M M N N= +u Φ u Φ q

solution of eigenvalue-problem

( )2 ˆ ˆ
Nλ + =M K Φ 0

g p
(all master DOFs are locked)

S M M N N= +u Φ u Φ q 1

,12

22

0
1

M

M

xx xx xx
xx xx xx

Φ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Φ⎜ ⎟ ⎜ ⎟
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,42

1
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⎜ ⎟ ⎜ ⎟⋅
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⎜ ⎟ ⎜ ⎟⎜ ⎟Φ ⎝ ⎠⎝ ⎠ 1

Figure 2.6: Constraint modes, sketched for a Hermite beam element

The matrix ΦM = −K−1
SSKSM from Eq. (2.99) maps the motion of the master-DOFs to

the slave-DOFs. The columns of the matrix ΦM are the constraint modes. These modes
are static shapes obtained by giving each master DOF a unit displacement while holding
all other master DOFs fixed. The basis of constraint modes completely spans all possible
motions of the master DOFs [109].
The displacements of the slave-DOFs are then described by the displacements of the
master-DOFs uM and the modal coordinates qN of the normal modes:
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uS = ΦMuM + ΦNqN (2.109)

Now the motion of master and slave nodes can be written as follows:

u =
[

uM
uS

]
=
[

IMM 0
ΦM ΦN

]
·
[

uM
qN

]
(2.110)

It can be seen that the Craig-Bampton reduction (2.110) is given in the form

u = Φqf (2.111)

where the matrix Φ and the vector qf are formulated by:

Φ =
[

IMM 0
ΦM ΦN

]
, qf =

[
uM
qN

]
(2.112)

Eq. (2.110) is a relation between physical DOFs and Craig-Bampton modes with their
modal coordinates [109]. The generalized stiffness and mass-matrices corresponding to the
Craig-Bampton modal basis are given by following modal transformation:

K̄ = ΦTKΦ =
[

IMM 0
ΦM ΦN

]T [ KMM KMN

KNM KNN

] [
IMM 0
ΦM ΦN

]

=
[

K̄MM 0
0 K̄NN

] (2.113)

M̄ = ΦTMΦ =
[

IMM 0
ΦM ΦN

]T [ MMM MMN

MNM MNN

] [
IMM 0
ΦM ΦN

]

=
[

M̄MM M̄MN

M̄NM M̄NN

] (2.114)

Eq. (2.113) and (2.114) have some noteworthy properties [109].

• M̄NN and K̄NN are diagonal matrices because they are associated with eigenvectors.

• K̄ is block diagonal, i.e. there is no stiffness coupling between constraint modes and
normal modes.

• M̄ is not block diagonal, i.e. there is inertia coupling between constraint modes and
normal modes.

The Craig-Bampton method has become one of the most popular methods for the imple-
mentation of flexible bodies into MBS as long as small deformations are existent.
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2.9.6 Component Mode Synthesis (CMS)

The disadvantage of the Craig-Bampton method is that it is usually applied in a slightly
different form in order to describe the problem of a floating reference frame. The compo-
nent mode synthesis is used in many MBS-tools for the implementation of flexible bodies
and can be divided in four steps [43].

1. Generation of a finite element model
The flexible body has to be modeled as a finite element model. An appropriate
mesh is created as well as mass- and stiffness properties. In this step no boundary
conditions are introduced.

2. Definition of interface nodes
The interface nodes are the nodes where the flexible body interacts with other rigid
or flexible bodies in the MBS. Forces and/or torques can be introduced directly or
via joints at the interface nodes. Hence, these nodes determine the master DOFs for
the Craig-Bampton method. Accordingly, no loads can be applied to interior DOFs
[71]. The number of master DOFs (interface DOFs) influence the number of DOFs
in the MBS.

3. Craig Bampton reduction
In a finite element solver (e.g.: Nastran, Abaqus, ...) the constraint modes and
the normal modes are calculated. For the constraint modes (static modes) a unit
displacement is applied for one master-DOF while all other master-DOFs are locked.
As a consequence at least six master DOFs are needed in order that the system is
not statically underdetermined. For the computation of the normal modes all master
DOFs are set to zero. Then the eigenfrequencies and eigenvectors can be calculated.
It is the decision of the user how many eigenfrequencies are taken into consideration.
Therefore, the frequency range of the excitation of the MBS has to be known.

4. Mode shape orthonormalization
Due to the fact that no boundary conditions are introduced till now, the system is
statically underdetermined. It contains six rigid body modes. As a consequence, the
system is not decoupled as in a classic modal analysis. The mode shape orthonor-
malization is used to remove the rigid body DOFs [138].

For the mode shape orthonormalization one more transformation to the Craig-Bampton
vector qf = [uM , qN ]T is applied. The six rigid body modes of the reduced model
correspond to zero eigenfrequencies. By carrying out a modal transformation of the re-
duced system, the rigid body modes can be eliminated. Hence, the undamped autonomous
system

M̄q̈f + K̄qf = 0 (2.115)

with the reduced mass-matrix M̄ = ΦTMΦ and the reduced stiffness-matrix K̄ = ΦTKΦ.
The new eigenvalue-problem reads as(

K̄− ω2M̄
)
φ̄ = 0 (2.116)
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The nf eigenvectors φ̄1, . . . , φ̄nf can be used as base vectors to represent qf by new
coordinates q̄fi .

qf =
nf∑
i=1

φ̄iq̄
f
i · (2.117)

Eq. (2.117) is not a further dimension reduction, but rather a projection of qf onto a
new basis. If φ̄1, . . . , φ̄6 are the six zero eigenvectors, the rigid body modes can then be
removed by:

qf =
nf∑
i=7

φ̄iq̄
f
i · (2.118)

Eq. (2.118) can be written in matrix form:

qf = Φ̄q̄f (2.119)

with the matrix Φ̄ and the vector q̄f :

Φ̄ =
[
φ̄7, . . . , φ̄nf

]
, q̄f =

[
q̄7, . . . , q̄nf

]T (2.120)

The new coordinates q̄f have only an abstract meaning. They can easily be transformed
back to qf by Eq. (2.119) and to the nodal displacements u by Eq. (2.110).
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Pick battles big enough to matter, small
enough to win.

Jonathan Kozol

Chapter 3

Virtual Iteration

This section is focused on the method of virtual iteration, also called iterative learning
control (ILC) [39, 40]. This method is already state-of-the-art in the industry. Applications
of real test rigs and partially also of virtual test rigs are published in [18, 19, 45, 47, 62,
63, 80, 97, 107, 113, 116, 117, 123, 124, 125, 128, 153, 158, 161, 162, 164]. Its roots can
be found especially in test rigs in the automotive industry, Fig. 1.3, 1.4.
Firstly, the method was developed for real servo-hydraulic test rigs. Nowadays it is also
used in a virtual environment, where the real physical test object is replaced by a multibody
system. The method is based on a linearization either of the real system or the virtual
model and an inverse computation in the frequency domain. Hence, the first part of
the method of virtual iteration is the system identification, i.e. the computation of the
transfer matrix G(iω). The second part is called target simulation. During this phase
the drive signals u(t) are computed in an inverse way based on the transfer matrix and
specific measured target signals y(t). This procedure is an iterative algorithm due to
nonlinearities in the considered system. The two parts (i) system identification and (ii)
target simulation are explicitly described in the following chapters.

3.1 System Identification

The aim of system identification is to find individual transfer functions between specific
inputs and outputs. Transfer functions are calculated in the frequency domain. This fact
implies that the system is linear. If the system is nonlinear, it has to be linearized at a
specific operating point.
Input signals on a real test rig (cf. Fig. 1.3 or 1.4) are typically strokes of the servo-
hydraulic cylinders. They are realized by a subsidiary control, because the direct interac-
tion between control and test rig is realized by the oil pressure and hence the forces of the
cylinders. In a virtual test rig these control inputs are realized by a motion in a joint or
a single marker.
Output signals are typically accelerations, strains or spring deflections, both for the real
system and also for the virtual model.
Transfer functions between specific inputs and outputs can be computed with different
methods, which are described in the following sections.
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3.1.1 System Identification via Noise Excitations

Non-parametric system identification methods which have been developed for a real test
rig are based on an excitation by a white/pink noise signal u(t). The responses y(t) of
the noise excitations are measured at suitable measuring points. Both input and output
signals are transformed into the frequency domain U(iω), Y(iω) via a Fourier trans-
form or a fast Fourier transform (FFT) . With these signals in the frequency domain it is
possible to calculate the individual transfer functions and hence the transfer matrix G(iω).

The noise signals are typically generated in the frequency domain. The amplitudes can
be defined with specific shape functions while the phase data are uniformly distributed
random sequences over the relevant frequency band. For the generation of a noise signal
it is important that the excitation level is as close as possible to the operational excitation
level [47]. In a virtual environment the noise signal can have a constant amplitude over
the whole frequency range, i.e. a white noise signal can be used. However, on a real test
rig the amplitudes at higher frequencies must decrease because of physical restrictions, i.e.
the available energy in the hydraulic cylinders. Therefore, the test rig is protected from
load levels that are too high. Typically, a pink noise signal with a low-pass characteris-
tic is used. Such signal is characterized by a constant amplitude up to a specific cut-off
frequency. At higher frequencies the amplitude is decreased indirect proportional to the
frequency A ∝ 1/f . This means that the noise power is divided by two, if the frequency
is doubled. In other words the power density is decreased by 3dB/octave [44].

The noise signal is applied either to the real system or the multibody system in the
time domain and the responses are measured. Then the input and output signals have
to be transformed from the time domain into the frequency domain. Therefore, a Fourier
transform is used [36].

F (iω) = F {f(t)} =

∞∫
−∞

f(t)e−iωt dt (3.1)

Nowadays a FFT-algorithm [53] is implemented in typical numerical software. Hence, a
FFT procedure is used in order to reduce the computational time. Later in the virtual
iteration algorithm the inverse Fourier transform is also needed which transforms the data
from the frequency domain back into the time domain.

f(t) = F−1 {F (iω)} =
1

2π

+∞∫
−∞

F (iω)eiωt dω (3.2)

Nowadays the inverse fast Fourier transform (IFFT) is used in typical numerical software.
Based on the input and output data in the frequency domain U(iω), Y (iω), the auto
spectral density (ASD) or power spectral density (PSD) can be computed:

Sxx(ω) = lim
T→∞

1
2T
|F {x(t)}|2 = lim

T→∞

1
2T
{X∗(iω)X(iω)} (3.3)

The power spectral density is greater or equal to zero Sxx(ω) ≥ 0 and is always a real
function, i.e. phase information is not included [105]. The related time signal cannot be
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reproduced from the PSD. The power spectral density is the Fourier transform of the auto
correlation function

Rxx(τ) = lim
T→∞

1
2T

T∫
−T

x(t)x(t+τ) dτ (3.4)

which converges towards zero for a noise signal, if τ →∞.
Furthermore, the cross spectral density (CSD) can be defined for two signals x(t) and y(t).

Sxy(iω) = lim
T→∞

1
2T
|F∗ {x(t)}F {y(t)}|2 = lim

T→∞

1
2T
{X∗(iω)Y (iω)} (3.5)

The CSD is a complex function that includes phase information between x(t) and y(t).
Another characteristic is that Sxy(iω) = S∗yx(iω). The cross spectral density is the Fourier
transform of the cross correlation function

Rxy(τ) = lim
T→∞

1
2T

T∫
−T

x(t) y(t+τ) dτ (3.6)

which is a measure of the statistical relation between x(t) and y(t).
By using the power spectral density and the cross spectral density, a coherence function
can be calculated.

γ2
xy(ω) =

S∗xy(iω)Sxy(iω)
Sxx(ω)Syy(ω)

(3.7)

The coherence function γ2 is used to estimate the quality of measured transfer functions.
It is defined between 0 and 1. If both signals x(t) and y(t) are statistically independent,
the coherence function is equal to zero and if they are linearly dependent, it is equal to
one.
In a real measurement the condition T → ∞ cannot be fulfilled and hence a specific
measurement time Tmea is used. Furthermore, the integral is replaced by a finite sum.
Therefore the PSD Sxx(ω) has to be replaced by the approximation Ŝxx(ω) and the CSD
Sxy(iω) by Ŝxy(iω) [53].

By using the definitions of the PSD (3.3) and the CSD (3.5), the transfer function between
input u(t), U(iω) and output y(t), Y (iω) can be computed by [53, 105]

Ĝ(iω) =
Ŝyu(iω)
Ŝuu(ω)

(3.8)

Ŝyu(iω) denotes the estimated input-output cross spectral density and Ŝuu(iω) the esti-
mated input power spectral density at frequency ω.
In MIMO-systems a transfer matrix can be computed as well [53, 105]. Therefore, all input
channels u(t) ∈ Rmc have to be simultaneously excited by uncorrelated noise signals. This
means that the motion of one actuator is fully independent from the motion of another
actuator. The responses of the noise excitations are measured in specific output channels
y(t) ∈ Rk.

Ĝyu(iω) = Ŝyu(iω) · Ŝuu(ω)−1 (3.9)
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In Eq. (3.9) the matrix Ŝyu(iω) ∈ Ck×mc denotes the matrix of estimated input-output
cross spectrum densities and Ŝuu(ω) ∈ Rmc×mc denotes the matrix of estimated input
power spectral densities.
Eqs. (3.8) and (3.9) are estimators for transfer functions that minimize output distur-
bances in an optimal way [72]. The transfer matrix Ĝ(iω) is also called frequency response
function (FRF) and the estimator (3.8) is known as H1-technique [47].
In addition to the transfer matrix multiple coherence functions (3.7) are calculated. They
indicate which energy amount of the input channels results in which energy amount in a
specific output channel. The coherence functions of the outputs are measurements of the
quality of the transfer matrix. Low values of the coherence functions can be caused from
nonlinearities in the system or from uncorrelated external noise. Higher values indicate
that the amplitudes in the input channels are high enough to obtain a good signal to noise
ratio while too high excitations, which result in nonlinear behavior, are avoided [47].

In order to obtain accurate noiseless transfer functions the noise excitation has to be
sufficiently long enough. As a consequence it can be guaranteed that all frequencies in the
frequency range of interest are excited. Therefore, the noise excitation, which can only
be done in the time domain, is very time consuming. This drawback appears in the real
test rig as well as in the virtual test rig. Fig. 3.1 shows an illustrative magnitude plot,
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Figure 3.1: Generic magnitude plot, computed by noise excitation

which is computed by noise excitation. It is taken from the industrial example of a trailed
cultivator, cf. section 8.2. It can be seen that the direct computation of the transfer
matrix results in functions with noise. These functions have to be filtered before they can
be used in the virtual iteration algorithm. In Fig. 3.1 the unfiltered signal is shown as
well as the filtered signal, where a Savitzky-Golay filter is used. After signal filtering, the
transfer functions can be compared with the functions that were generated by the state
matrices of the system, cf. section 3.1.3. These transfer functions are shown in Fig. 8.32.
It can be seen that the magnitude plot |G38| of Fig. 3.1 is identical to that in Fig. 8.32.

On a real test rig the noise excitation in the time domain is the only possible method
for the system identification, because the frequency domain is only a mathematical con-
struct. However, more advantageous methods are possible in a virtual test rig, where the
model’s equations of motion are known. Additionally, the noise excitation is not very ben-
eficial for a numerical solver. Because of the random numbers in the noise signal, a very
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short step size is needed. For these reasons more advantageous mathematical methods for
the system identification are discussed in the following sections.

3.1.2 Linearization of the Nonlinear Equations of Motion

The nonlinear model (2.51) can be linearized, only if small displacements and rotations
occur from an equilibrium point or a stationary operating point. Therefore, the first re-
quired step is the computation of the equilibrium point.

Calculation of an equilibrium point
The equations of motion of the multibody system can be written in the general form

ẋ = f(x,u) (3.10)

with the state vector x = [q, q̇]T , x ∈ R2n and the control inputs u ∈ Rmc . The vector
xs ∈ R2n is called equilibrium point, if the condition

f(xs,us) = 0 (3.11)

is fulfilled. To compute the equilibrium point (3.11), the inputs are kept constant u = us.
The pair (us,xs) is called operating point of the nonlinear system (3.10).
Nowadays the computation of an equilibrium point or operating point is implemented in
each commercial MBS-software. An arbitrary operating point can be computed either
by an initial-conditions analysis or a static or dynamic analysis. These methods typically
allow the treatment of systems with flexible bodies, friction, control elements (user-defined
differential equations), non-holonomic constraints etc. [111].

Linearization at an equilibrium point
If an equilibrium point or an arbitrary operating point is calculated, the nonlinear system
can be linearized at this point [60]. The basis are the equations of motion (2.57), which
can be written in the general form of a time-invariant, nonlinear system

ẋ = f(x,u)
y = h(x,u)

(3.12a)
(3.12b)

In (3.12) x ∈ R2n denotes the vector of state variables, which are displacements and
velocities of mass-bearing elements like parts, point masses or flexible bodies [110]. The
vector u ∈ Rmc includes the input variables and the vector y ∈ Rk the output variables
of the system under consideration. If the system (3.12) is time-invariant and no inputs u
appear, it is called autonomous.
The equilibrium point or the operating point fulfills the equations

f(xs,us) = 0, h(xs,us) = ys (3.13)
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If the displacements and rotations from the equilibrium point are sufficiently small, the
variables x, u and y can be written as

x(t) = xs + ∆x(t)
u(t) = us + ∆u(t)
y(t) = ys + ∆y(t)

(3.14a)
(3.14b)
(3.14c)

Now the equations (3.14) can be inserted into system (3.12).

ẋs + ∆ẋ = f(xs + ∆x,us + ∆u), x(t0) = xs + ∆x(t0)
ys + ∆y = h(xs + ∆x,us + ∆u)

(3.15a)
(3.15b)

Furthermore, ẋs = 0 due to the stationary equilibrium point. The system (3.15) can be
developed in a Taylor series of second order, where the remainder O2(x,u) is neglected
[103].

∆ẋ = f(xs,us)︸ ︷︷ ︸
0

+
∂

∂x
f(xs,us)︸ ︷︷ ︸

A

∆x +
∂

∂u
f(xs,us)︸ ︷︷ ︸

B

∆u

ys + ∆y = h(xs,us)︸ ︷︷ ︸
ys

+
∂

∂x
h(xs,us)︸ ︷︷ ︸

C

∆x +
∂

∂u
h(xs,us)︸ ︷︷ ︸

D

∆u

(3.16a)

(3.16b)

By using the definitions from Eqs. (3.16)

A =
∂

∂x
f(xs,us), B =

∂

∂u
f(xs,us)

C =
∂

∂x
h(xs,us), D =

∂

∂u
h(xs,us)

(3.17)

the state matrices A ∈ R2n×2n, B ∈ R2n×mc , C ∈ Rk×2n and D ∈ Rk×mc are defined. The
matrix A is called system matrix, B input matrix, C output matrix and D pass-through
matrix [103]. Hence, the linearized system reads as

∆ẋ = A∆x + B∆u, ∆x(t0) = ∆x0 = x0 − xs
∆y = C∆x + D∆u

(3.18a)
(3.18b)

The system (3.18) is called state-space-form. If only one input variable mc = 1 and
one outputs variable k = 1 appear, the system is called SISO-system (single input single
output) . Otherwise, it is called MIMO-system (multiple input multiple output) .
If the system is linearized at an equilibrium point or an operating point, it results in a
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LTI-system (linear time-invariant system) . If it is linearized about a trajectory (x̃, ũ), it
results in a linear time-variant system [103]

∆ẋ = A(t)∆x + B(t)∆u, ∆x(t0) = ∆x0 = x0 − x̃0

∆y = C(t)∆x + D(t)∆u

(3.19a)
(3.19b)

Specific commercial MBS-software tools provide an automatic linearization process, which
enables the linearization of the index 3 DAEs (2.51). The resulting state-space formulation
(3.18) with a minimal set of states provides the state matrices A, B, C and D as ASCII-
files, which can be further processed in numerical software like Matlab. The algorithm
that is implemented in Adams/Linear inflates the governing equations and computes a set
of sensitivities which provide the linearization of interest [111, 141].

If the system is given as linear time invariant system, the characteristics of an equilib-
rium point can be validated. The different possibilities for the equilibrium point are
summarized in Table 3.1.

rank(A) = rank([A,Bus]), det(A) 6= 0 xs = −A−1Bus is a single equilibrium point

rank(A) = rank([A,Bus]), det(A) = 0 infinite equilibrium points exist

rank(A) 6= rank([A,Bus]) no equilibrium point exists

Table 3.1: Different cases for an equilibrium point [60]

3.1.3 Calculation of the Transfer Matrix

Transfer matrix of a linear multibody system
The linear (or linearized) time invariant system can mathematically either be described
by the state space formulation (3.18) in the time domain or by transfer functions between
inputs and outputs in the frequency domain. Transfer functions or the transfer matrix
directly describe the behavior from the inputs ui, i = 1, · · · ,mc to the outputs yj , j =
1, · · · , k. The individual inputs and outputs are summarized in the vectors u ∈ Rmc and
y ∈ Rk. If the transfer functions or the transfer matrix are known, the outputs can be
calculated depending on the inputs, without knowing the specific state variables.
The linear equations (3.18) can be transformed from the time domain into the frequency
domain by using the Laplace transform. The Laplace transform is defined as [36]

f̂(s) = L{f(t)} =

∞∫
0

f(t)e−st dt (3.20)
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The variable s = α + iω, i =
√
−1 denotes the Laplace variable. Details of the Laplace

transform can be found e.g. in [103].
For the sake of completeness the inverse Laplace transform should also be mentioned [36].

f(t) = L−1
{
f̂(s)

}
=

1
2πi

α+i∞∫
α−i∞

f̂(s)est ds, t ≥ 0 (3.21)

At a point of discontinuity of f(t) the inverse Laplace transform provides the average value
of left- and right sided boundary value, i.e. f(t) = 1/2(f(+t) + f(−t)).
If the Laplace transform is applied to the LTI-system (3.18), it results in

s∆x̂(s)−∆x0 = A∆x̂(s) + B∆û(s)
∆ŷ(s) = C∆x̂(s) + D∆û(s)

(3.22a)
(3.22b)

The vector ∆x̂ can be calculated from (3.22a)

∆x̂(s) = (sI−A)−1B∆û(s) + (sI−A)−1∆x0 (3.23)

The matrix I denotes the (2n × 2n) identity matrix. Then the term (3.23) is inserted in
(3.22b).

∆ŷ(s) =
[
C(sI−A)−1B + D

]
∆û(s) + C(sI−A)−1∆x0 (3.24)

The second term vanishes due to ∆x0 = 0 and hence the (k ×mc) transfer matrix G(s)
with the individual transfer functions Gij(s) = ∆ŷi(s)

∆ûj(s)
, i = 1, . . . , k, j = 1, . . . ,mc can be

calculated by [103]

G(s) = C(sI−A)−1B + D (3.25)

It can be shown that the condition ∆x0 = 0 is not a loss of generality. If it is not fulfilled,
a state transformation can be found in order that the new states fulfill this condition [91].
The computation of the dynamic behavior by using a transfer matrix G(s) in the fre-
quency domain implies a dramatic reduction of the size of a MBS. The multibody systems
in chapter 8, which include flexible bodies, have hundreds of state variables. By using
sufficiently enough inputs and outputs for the inverse simulation task, the dimension of
the transfer matrix is approximately (10 × 3), i.e. the size of the model is substantially
reduced.
It should be mentioned that the direct computation of the transfer matrix by (3.25) can
even be accelerated. By using the eigenvectors of the model, the system (3.22) can be trans-
formed into the modal space. This procedure is implemented for example in Adams/Vi-
bration [110].

∆x̂(s) = Φq̂(s) (3.26)

The matrix Φ includes all the eigenvectors as column vectors, cp. (2.108). The vector
q̂(s) denotes the Laplace transform of the modal coordinates q(t). Hence, the transfer
matrix for the model in modal space reads as

G(s) = Cm(sI−Am)−1Bm + D (3.27)
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where the matrices Am, Bm and Cm are defined as

Am = Φ−1AΦ, Bm = Φ−1B, Cm = CΦ (3.28)

The computation of the transfer matrix in the modal space (3.28) is much faster than the
direct solution (3.25).

Transfer matrix of a linear finite element model
The method of virtual iteration is not limited to commercial MBS-software as Adams,
Simpack, RecurDyn etc. In section 8.1 the algorithm is also applied to a finite element
model. From the knowledge of the author it is the first time that the virtual iteration
approach is applied to a FEM. Therefore, the transfer matrix of the FEM has to be com-
puted. Typically, linearized finite element models are not represented in the state-space
form (3.18). Rather a linear (linearized) FEM is given in the form

Mq̈ + Cq̇ + Kq = f (3.29)

with the mass matrix M, the damping matrix C, the stiffness matrix K and the applied
forces f , cf. Eq. (2.102). If periodic excitations are applied to the model, they can be
developed in a Fourier series of the form [48]

f(t) =
∞∑

k=−∞
f̂keiωkt (3.30)

The vector f̂k denotes the vector of complex harmonic functions of kth order.

f̂k =

 fk1
...
fkn

 =

 |fk1| eiψk1
...

|fkn| eiψkn

 (3.31)

The periodic excitation with the fundamental circle frequency ω1 causes a phase-shifted
periodic oscillation with the same circle frequency ω1 in a linear system. Therefore, the
vector of nodal coordinates reads as

q(t) =
∞∑

k=−∞
q̂keiωkt (3.32)

By inserting Eqs. (3.30) and (3.32) in the differential equation (3.29) and equating the
coefficients, following equation is achieved:(

−ω2
kM + iωkC + K

)
q̂k = f̂k (3.33)

Hence, the (n× n) transfer matrix G(iω) can be computed by [48]

G(iωk) =
(
−ω2

kM + iωkC + K
)−1

, −∞ ≤ k ≤ ∞ (3.34)
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The rows and columns, which represent the behavior between specific inputs and outputs,
can be extracted from (3.34).
The virtual iteration procedure is applied to multibody systems which are modeled in
Adams, cf. section 8.2 and 8.3. The state matrices A, B, C and D are computed in
Adams/Linear. The transfer matrix G(s) is externally computed in Matlab by using Eq.
(3.25). The module Adams/Vibration [110] computes the individual transfer functions
Gij(s), i = 1, . . . , k, j = 1, . . . ,mc by (3.27), which can be exported as ASCII-files. How-
ever, the method with the state matrices has been shown as beneficial regarding to the
models in section 8.2 and 8.3.
Furthermore, the virtual iteration algorithm is applied to a finite element model which
is modeled in Abaqus. A so-called steady-state-dynamics step [46] is used to compute the
individual transfer functions. These transfer functions are exported as ASCII-files and
externally assembled to the transfer matrix G(s) in Matlab.

3.2 Target Simulation

The basic inverse computation in the virtual iteration is done in the frequency domain.
Therefore, the transfer matrix of the real system or of the virtual model has to be computed
by using one of the previously described methods, cf. section 3.1. Furthermore, the
measured targets ỹ(t) ∈ Rk have to be transformed into the frequency domain Ỹ(iω) via
a FFT.
The transfer matrix G(iω) of a MIMO-system describes the transmission behavior between
inputs U(iω) ∈ Cmc and outputs Y(iω) ∈ Ck in the forward direction

Y(iω) = G(iω) U(iω) (3.35)

This simple vector-matrix equation can be inverted at each frequency ω, if the transfer
matrix is quadratic and non-singular. For that reason it is assumed that the system is
fully determined, i.e. the number of inputs mc is equal to the number of outputs k. In the
sense of the virtual iteration algorithm the calculation of the so-called first drives U0(iω)
can be written as

U0(iω) = G−1(iω) Ỹ(iω) (3.36)

The vector Ỹ(iω) includes the Fourier transforms of the targets. If the system is completely
linear, Eq. (3.36) already results in the final solution of the drives in the frequency domain.
However, in the general case nonlinear systems are considered. Hence, Eq. (3.36) of the
linearized system can only give a first guess of the inputs.
Therefore, an iterative procedure is required in order to find the final solution for the
drives. The first drives U0(iω) are transformed into the time domain via an IFFT. These
drives or input signals u0(t) are used as excitations in a forward computation in the time
domain. This means that the MBS is numerically integrated in a ”standard” dynamic
simulation.
The forward simulation results in outputs y(t) that can be compared with the measured
targets ỹ(t). Due to the nonlinearities in the model, an error between simulation outputs
and targets will occur. This error can either be calculated in the time domain e(t) =
ỹ(t) − y(t) or in the frequency domain E(iω) = Ỹ(iω) − Y(iω). The goal of virtual
iteration is to reduce this error as much as possible. Therefore, the error is used to
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improve the guess of the first drives [62]. As a consequence following iterative procedure
is obtained:

Un+1(iω) = Un(iω) + αn+1G−1(iω)
[
Ỹ(iω)−Yn(iω)

]
(3.37)

Eq. (3.37) describes the central point of the virtual iteration procedure. The superscript
n denotes the iteration counter. The scalar factor 0 ≤ αn+1 ≤ 1 can be used to improve
the convergence behavior. Especially on a real test rig it is used because of safety reasons.
With a low value of αn+1 the amplitudes of the drive signals can be reduced.
The iteration (3.37) is repeated until the error between targets and simulation outputs
is sufficiently small. Hence, a quantifiable factor has to be calculated from the time-
dependent error e(t). Typically, the root mean square (RMS) error is computed for each
output i = 1, ..., k.

enRMS,i =
1
T

T∫
0

(ỹi(t)− yni (t)) dt, i = 1, ..., k (3.38)

Due to the numerical discretization of the outputs the integral in Eq. (3.38) is replaced
by a finite sum

ênRMS,i =
1
N

N∑
j=1

(ỹi(j)− yni (j)), i = 1, ..., k (3.39)

where N denotes the length of the outputs yi(t) and the targets ỹi(t), respectively. In ad-
dition to the RMS-error, the maximum deviation between targets and simulation outputs
can be calculated.

enMAX,i = max |ỹi(t)− yni (t)| (3.40)

Then, the two error indicators (3.39) and (3.40) can be combined with scalar weighting
factors α and β. Furthermore, the error indicator is related to its corresponding target
signal in order to obtain a relative value which can be expressed in percent.

eni = α
ênRMS,i

ỹRMS,i
+ β

enMAX,i

ỹMAX,i
(3.41)

This percentage value can be calculated for each individual output channel in every itera-
tion. The virtual iteration (3.37) is repeated until the error indicators are below a specific
error tolerance eni < ε.

3.2.1 Virtual Iteration Algorithm

The main steps of the virtual iteration algorithm are summarized in the following list:

1. Computation of the transfer matrix G(iω)

2. FFT of the target signals ỹ(t)

3. Calculation of the inverse of the transfer matrix G−1(iω)
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4. Calculation of the first drives by Eq. (3.36)

5. IFFT of the first drives

6. Forward simulation in MBS/FEM-software by numerical time integration

7. Calculation of the error indicator

8. Iteration (3.37) until eni < ε

This procedure is also illustrated in Fig. 3.2. The green box symbolizes the MBS- or FEM-
software with the virtual model. The transfer matrix G(s) can be computed in different
ways, cf. section 3.1.3. The blue box illustrates the inverse computation in the frequency
domain, which is done in the numerical software Matlab. The blue arrows symbolize the
forward computation and the red arrows the inverse computation.

u(t) y(t)

A B

C D

G(s)U(s) Y(s). =

G-1(s)U(s) Y(s).=

FFTIFFT FFTIFFT

MATLAB

Forward computation

Inverse computation

MBS FEM

Figure 3.2: Flow chart of the virtual iteration

The individual steps in the virtual iteration algorithm are illustrated in the flow chart
3.3 in more detail. The boxes ”signal filtering” and ”filtering of transfer matrix” are
important for specific measurements of the target signals. The targets are measured with
a specific sampling frequency. Furthermore, the length of the measured targets can vary
from measurement to measurement. As a consequence, the Fourier transform of the
targets covers a specific frequency range. However, the computed transfer matrix is
independent of the measurements. Hence, the transfer matrix has to be adapted
regarding to the frequency range of the targets. The frequency resolution as well as the
lower and upper border of the frequency band must match between transfer matrix and
measurements. The box ”filtering of transfer matrix” treats the cut-off frequencies of the
transfer matrix. The box ”resampling of the inverse transfer matrix” adapts the transfer
functions in order that the frequency resolution matches with the measurements.
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Computation of
transfer matrix

Import of target 
signals

FFT  of targets

Signal filtering

Filtering of 
transfer matrix

Inverse of transfer 
matrix

Resampling of the 
inverse transfer matrix

Inverse computation
=> input signals

IFFT of the 
input signals

Forward computation
(MBS, FEA) 

=> output signals

FTT of outputs, 
error computation,

ITERATION

…

…

Figure 3.3: Algorithm of the virtual iteration

3.2.2 The Inverse of the Transfer Matrix

An important point is the computation of the inverse of the transfer matrix G−1(iω) (3rd

point in the procedure in section 3.2.1, box ”inverse of transfer matrix” in Fig. 3.3).
Until now it was assumed that the system is fully determined, i.e. k = mc. In this
case the transfer matrix is quadratic. If it is regular at each frequency ω, it can be
inverted. However, the case of an under-determined or an over-determined system can
occur, depending on the number of input and output channels.
Before the three possible cases are considered in more detail, some general definitions of
a linear inverse problem should be given [61]. The continuous linear operator G : U → Y
is considered with a set of data Y ∈ Y. The Hilbert spaces U and Y are called solution
space and data space, respectively. The task is to find U ∈ U so that

Y = GU (3.42)

The problem (3.42) is called well-posed in the sense of Hadamard if (i) the solution U is
unique in U , (ii) the solution U ∈ U exists for any Y ∈ Y and (iii) the inverse mapping
Y → U is continuous.
The three cases of a fully-determined, an under-determined and an over-determined system
are considered in the list below [61].
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• case 1: k = mc (fully-determined system)
In this case the transfer matrix G(iω) is quadratic and its rank is rank(G) = mc = k.
If the transfer matrix is regular at each frequency, it can be inverted and a unique
solution exits for the drives U(iω).

U = G−1Y (3.43)

• case 2: k < mc (under-determined system)
In this case the number of output channels is less than the number of input channels.
The transfer matrix does not have full rank, i.e. rank(G) = k and as a consequence
it cannot be inverted. The solution of this under-determined system is not unique,
but exists because Y belongs to range R(G) = {Y ∈ Y | Y = GU, U ∈ U}. In this
case a minimum norm solution can be computed where the norm of the drives is
minimized ‖U‖ →MIN .

U = G+Y = GH
(
GGH

)−1
Y (3.44)

• case 3: k > mc (over-determined system)
In the case of an over-determined system the number of output channels exceeds
the number of input channels. The rank of the transfer matrix is rank(G) = mc.
A solution of (3.42) does not exist. However, a least square solution or a pseudo-
solution can be found, which minimizes the norm ‖Y −GU‖ → MIN as well as
the norm ‖U‖ →MIN .

U = G+Y =
(
GHG

)−1
GHY (3.45)

The matrix G+ is called Moore-Penrose pseudoinverse, named after Eliakim Hastings
Moore and Roger Penrose [50, 53]. The matrix GH is the adjoint matrix of G, i.e.
the transpose of the conjugate complex of G: GH = (G∗)T [36]. The Moore-Penrose
pseudoinverse fulfills all four Penrose axioms [92]:

1. GG+G = G

2. G+GG+ = G+

3.
(
GG+

)H = GG+

4. (G+G)H = G+G

Typically, the 2nd case of an under-determined system does not occur and hence it should
not be discussed further here. In typical industrial applications the 3rd case appears, i.e.
an over-determined system. The number of input channels depends on the type of the test
rig. On a 4-poster the number of inputs is equal to four and on a MAST it is equal to
six, cf. Fig. 1.4. Typically a higher number of output channels is used, depending on the
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3.2. TARGET SIMULATION

investigated system. Nowadays the measuring equipment is designed for a simultaneous
recording of several channels.

Because of these reasons the Moore-Penrose pseudoinverse is implemented in the vir-
tual iteration algorithm in Matlab. Therefore, the inverse G−1(iω) is replaced by G+(iω)
in Eq. (3.37) and the 3rd point in the algorithm described in section 3.2.1. In Matlab
the Moore-Penrose pseudoinverse is implemented in the command pinv. An efficient com-
putation of the Moore-Penrose pseudoinverse is based on a singular value decomposition
(SVD) [36].
The singular value decomposition is applied to the transfer matrix G(iω) ∈ Ck×mc and
reads as

G = ΓΣΠH (3.46)

The matrices Γ ∈ Ck×k and ΠH ∈ Cmc×mc are unitary matrices. The matrix Σ ∈ Rk×k

is assembled by

Σ =
[

S 0
0 0

]
where the diagonal matrix S = diag(σ1, ..., σmc) contains the singular values σ1 ≥ · · · ≥
σmc > 0, which are the square roots of the eigenvalues of GHG. The number of non
disappearing singular values is equal to the rank mc of the transfer matrix G.
By rearranging Eq. (3.46) the Moore-Penrose pseudoinverse can be computed by

G+ = ΠΣ+ΓH (3.47)

with

Σ+ =


1
σ1

. . .
1

σmc

0

0 0


The computation of G+ from Eq. (3.47) is more efficient than the definition in (3.45) and
hence it is implemented to compute the Moore-Penrose pseudoinverse.

The method of virtual iteration works well for small as well as large multibody systems
that are nearly linear, cf. the examples in chapter 8. Due to the linearization and the
computation in the frequency domain sharp peaks are eventually undetected. But such
sharp edges in the drive signals are important in a fatigue analysis and hence errors can be
introduced [143]. Furthermore, important mathematical statements as accuracy, stability
and convergence behavior cannot be given in general [40].
The following methods, namely (i) DAE approach with control constraints, (ii) optimal
control and (iii) flatness-based trajectory tracking, are designed for nonlinear models,
which are treated directly in the time domain.
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Nothing is more practical than a good theory.

Kurt Lewin / Gustav Robert Kirchhoff /
Todor Karman / Ludwig Boltzmann

Chapter 4

DAE Approach with Control
Constraints

This section focuses on controlled multibody systems, where the number of inputs is equal
to the number of outputs. Furthermore, underactuated systems are considered, i.e. the
number of control inputs mc is less than the number of mechanical DOFs n.
It is shown that the index 3 DAEs (2.51) can be extended by so-called control or servo
constraints, which partially describe the motion of the multibody system. The imple-
mentation of control constraints in systems with independent coordinates has previously
been published by [13, 21, 22, 23, 24]. Extended versions with a redundant coordinates
formulation can be found, for example, in [12, 25, 26, 29, 119, 122, 149, 150, 151].
In the following considerations the DAEs (2.51) are written in the form

q̇− v = 0

Mv̇ − f + GTλ = 0

g(q) = 0

(4.1a)

(4.1b)
(4.1c)

where v ∈ Rn denotes the vector of velocities, i.e. the derivations of the generalized
or redundant coordinates q with respect to time. Furthermore, it is assumed that the
geometric constraints are restricted to scleronomic holonomic constraints g(q) ∈ Rm. The
general incorporation of nonholonomic constraints g(q, q̇) can be found for example in
[11, 151].

4.1 Formulation of the DAEs

In a straightforward way the DAEs (4.1) can be extended by additional constraints. As a
consequence, the DAEs with control constraints are given by the system

q̇− v = 0

Mv̇ − f + GTλ+ BTu = 0

c(q, t) = 0

g(q) = 0

(4.2a)

(4.2b)
(4.2c)
(4.2d)
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4.1. FORMULATION OF THE DAES

The algebraic rheonomic control (servo) constraints are formulated by c(q, t) ∈ Rmc (4.2c)
and read as

c(q, t) = Φ(q)− γ(t) (4.3)

The vector Φ(q) ∈ Rmc summarizes the outputs of the multibody system and the vector
γ(t) ∈ Rmc includes the requested target signals. In section 4.3 it is shown that the target
signals have to be continuously differentiable up to a certain order. This effect states that
the solvability of underactuated multibody systems is strongly related to differential flat-
ness and feedback linearizability [12, 21], cf. chapter 6. Therefore, polynomial functions
can be used to formulate the desired trajectory. Arbitrary targets e.g. from measurements
have to be filtered in order to generate differentiable functions.
The outputs Φ(q) are typically given in a linear form, if dependent coordinates are used
[25]. Eq. (4.3) formulate the condition that targets and system outputs must be identical.
This is the ultimate aim of the trajectory tracking problem. In section 5.4.1 it is shown
that in an optimal control problem this condition is formulated in a different way (5.39).

In (4.2b) a new Lagrange multiplier u ∈ Rmc is introduced. This Lagrange multiplier
is related to the generalized actuator forces fu = −BTu. This formulation can be com-
pared with the geometric constraint reaction forces fg = −GTλ from Eq. (2.51).
The matrix B ∈ Rmc×n is called input-transformation matrix. It can be derived directly
from the equations of motion, either if dependent or independent coordinates are used.
Generally, B is formulated independently from the control constraints. Typically, the en-
tries in the input transformation matrix are constant.
If the multibody system is fully actuated, i.e. mc = n, the input-transformation matrix
is quadratic. Hence, it can be inverted, if it is non-singular and therefore the classical
inverse dynamics methods can be used. In fully actuated systems the motion is entirely
specified and index 3 integrators can be applied [150].
In contrast to that underactuated systems are more challenging to solve, because B is not
quadratic as in the case of fully actuated systems. The motion is only partly specified and
the constraint Jacobian does not span the space of control variables [13].

From the geometrical point of view, the control constraint realization can be classified
into an ”orthogonal realization”, a ”mixed orthogonal-tangent realization” and a ”tangent
realization” [21]. Geometric constraints and control constraints are realized by constraint
forces fg and control forces fu, respectively. Reaction forces of ideal passive (geometric)
constraints are orthogonal to the respective constraint manifold. Control constraints are
typically characterized by a non-orthogonal realization, which becomes tangent in the
worst case [21]. This is illustrated in Fig. 4.1.
As a consequence, the DAEs of underactuated systems have an index that is higher than
3. Typically, index 5 problems (4.2) are obtained, if redundant coordinates are used to
formulate the dynamic equations of motion [22]. However, DAEs with a high index pro-
duce nuisances in their numerical treatment [25] and furthermore most commercial solvers
are designed for index 1 DAEs, cf. the DASSL-solver from section 2.8.4. Hence, such sys-
tems should not be solved directly. An appropriate projection method (section 4.3) can
be applied to reduce the systems index. The resulting system can stably be integrated.
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4.2. DEPENDENT VERSUS INDEPENDENT COORDINATES

constraint 

manifold

orthogonal
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fg
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manifold

orthogonal
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(a) Reaction force of passive constraints
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manifold

orthogonal

tangent

fg

constraint 

manifold

orthogonal

tangent

fu

(b) Actuator force

Figure 4.1: Reactions of passive geometric and control constraints [22]

4.2 Dependent versus Independent Coordinates

Control constraints can also be implemented in systems, which are formulated by inde-
pendent (generalized, minimal) coordinates. As a consequence, the equations of motion,
which are originally ODEs, become index 3 DAEs.

q̇− v = 0

Mv̇ − f + BTu = 0

c(q, t) = 0

(4.4a)

(4.4b)
(4.4c)

One might guess that this system is easier to solve compared to the index 5 system
(4.2). However, it can be shown that the formulation with redundant coordinates is quite
beneficial regarding to the inverse problem [25].
The most important advantages of redundant coordinates are shown in the following list:

• Dynamic equations of motion are considerably simpler
(constant (often diagonal) mass matrix M)

• Straightforward formulation of servo-constraints
(servo-constraint matrix C = DΦ(q) is a simple sparse matrix (Boolean))

• Governing DAEs of the inverse simulation problem are less complex

• Constraint forces (e.g.: the cable tension force in crane examples) can be monitored
by λ during the integration (more physical insight)

4.3 Index Reduction Procedure

A suitable projection method that reduces the index of the DAE-system can either be
applied to systems with independent coordinates [13, 21, 22] or dependent coordinates
[13, 26]. By using appropriate projection matrices C and D, the index 5 system (4.2) can
be projected to a constrained subspace C and an unconstrained subspace D relative to the
manifold of servo constraints [26]. As a consequence, the index 5 problem is reduced to an
index 3 problem and therefore the projection method can be seen as an index reduction
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4.3. INDEX REDUCTION PROCEDURE

procedure.
The control constraints (4.2c) are differentiated with respect to time.

d

dt
c(q, t) = Cv − γ̇ = 0, C = DΦ(q) (4.5)

Eq. (4.5) denotes the control constraints at velocity level. The matrix C ∈ Rmc×n includes
the partial derivations from Φ(q) with respect to the redundant coordinates q. Later,
the matrix C will be used to project the differential equation (4.2b) to the constrained
subspace C. A further differentiation with respect to time affords the control constraints
at acceleration level.

d2

dt2
c(q, t) = Cv̇ + ξ = 0, ξ = Ċv − γ̈ (4.6)

The control constraints at acceleration level can now be written as

Cv̇ = −ξ (4.7)

The projection to a mc-dimensional constrained (orthogonal) subspace C and a (n−mc)-
dimensional unconstrained (tangent) subspace D has to fulfill the conditions C ∪ D = N ,
where N denotes the original configuration manifold and C ∩ D = ∅, i.e. the empty set.
As a consequence, the projection matrix D ∈ Rn×(n−mc) has to be formed in a way that
the complementarity condition reads as [12, 22]

range(D) = ker(C)⇔ CD = 0 (4.8)

The orthogonal complement matrix D can sometimes be guessed or calculated by a coor-
dinate partitioning method as indicated in [22, 25]. Subsequently, the projection matrices
C and D can be used to split the system (4.2b) to (n−mc) differential equations and mc

algebraic equations. For that reason Eq. (4.2b) is multiplied from the left side by DT and
CM−1, respectively. By considering also (4.7), the projection method results in[

DT

CM−1

]{
Mv̇ − f + GTλ+ BTu

}
=

{
DTMv̇ + DT

{
−f + GTλ+ BTu

}
CM−1

{
−f + GTλ+ BTu

}
− ξ

} (4.9)

The system (4.9)1 are the differential equations that are projected to the unconstrained
subspace D and (4.9)2 are the algebraic equations on the constrained subspace C. Accord-
ingly, the DAEs with a reduced index of 3 read as

q̇− v = 0

DTMv̇ + DT
{
−f + GTλ +BTu

}
= 0

CM−1
{
−f + GTλ +BTu

}
− ξ = 0

c(q, t) = 0

g(q) = 0

(4.10a)

(4.10b)

(4.10c)
(4.10d)
(4.10e)
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4.3. INDEX REDUCTION PROCEDURE

This new set of DAEs, which consists of the differential equations (4.10a) and (4.10b) and
the algebraic equations (4.10c)-(4.10e), is then directly discretized. Hence, the discrete
system is suitable for a numerical treatment.

By considering the term CM−1BT in Eq. (4.10c), the control constraint realization can
be investigated in more detail.

− ξ −CM−1f + CM−1GTλ+ CM−1BTu = 0 (4.11)

From the geometrical point of view, the control constraint realization can be quantified
as mutual dot product of the spanning vectors of the subspaces C and B [21]. The row
vectors of C span the mc-dimensional constrained subspace C and the column vectors of
BT span the mc-dimensional controlled subspace B, if the matrices C and B have full
rank mc. The realization of control constraints can be considered as the inner product of
the two subspaces P = C ∩B. In differential geometry this inner product yields the matrix
P = CM−1BT [21]. If C and B have full rank, the matrix P is quadratic (mc×mc). The
mass matrix is assumed to be regular and hence P is regular as well. As a consequence,
P can be inverted and therefore the controls u can directly be computed from (4.11).
However, the matrices C and B do not always have full rank in general. The value

p = rank(CM−1BT ) (4.12)

is a measure of the representation of control reactions in the constrained directions [21]. It
shows how many constraint conditions can directly be actuated by the control inputs u. If
p = mc, the control constraints are orthogonal to the constraint manifold. This situation
is illustrated in Fig. 4.1(a) for passive constraints. The controls (actuator forces) can
directly actuate all constraint conditions.
In a mixed orthogonal-tangent realization the control reactions are projected in the con-
strained directions as well as in the unconstrained directions. In this case the actuator
forces u can only control p control constraints. The remaining (mc − p) directions in the
constrained subspace C are not affected by u.
The worst case is a pure tangent realization p = 0, where the control reactions are not
projected into C. In this case all constraint conditions must be realized by tangent control
reactions. Examples for the different control constraint realizations can be found in [21].

p = mc orthogonal realization
0 < p < mc mixed orthogonal-tangent realization

p = 0 tangent realization

Table 4.1: Possible control constraint realizations [21]
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(c) Tangent realization

Figure 4.2: Subspaces of control constraint realizations [21]

4.4 Numerical Solution

The projected index 3 DAEs (4.10) are discretized and solved by an implicit Euler algo-
rithm [12, 26, 151].

qn+1 − qn −
∆t
2

[vn + vn+1] = 0

DTM (vn+1 − vn) + DT
{
−f̄ + ḠT λ̄+ BT ū

}
∆t = 0

CM−1
{
−f̄ + ḠT λ̄+ BT ū

}
− ξ̄ = 0

c(qn+1, tn+1) = 0

g(qn+1) = 0

(4.13a)

(4.13b)

(4.13c)
(4.13d)
(4.13e)

The abbreviations of the discrete vector of applied and gyroscopic forces f̄ = f(qn,qn+1),
the discrete constraint Jacobian ḠT = GT (qn,qn+1), the Lagrange multiplier λ̄, the
targets at acceleration level ξ̄ and the inputs ū denote an evaluation in the midpoint
configuration qn+ 1

2
= (qn + qn+1)/2 [150, 152]. In [29, 148] proofs of conservation of

energy and angular momentum during numerical integration are presented for the for-
mulation (4.13). In a conservative system all external forces can be derived from a po-
tential, i.e. f̄ = Q̄ − ∇̄V, Q̄ = 0. If this is the case, the total energy is constant
E(q,v) = T + V = const., i.e. E(qn+1,vn+1) = E(qn,vn).
Energy and momentum conserving algorithms as well as stability of symplectic integrators
can be found in [73, 75, 76, 85].
However, satisfying results are also achieved with an evaluation at step n+1, i.e. f(qn+1),
G(qn+1), λn+1, ξn+1, un+1. This backward Euler scheme is presented e.g. in [13, 21,
22, 119]. The one-step algorithm is denoted as ”C-BEM-scheme (control basic energy-
momentum scheme)” in [148]. The implicit algorithm provides the vectors qn+1, vn+1, λn+1

and the control inputs un+1. The main steps of the implementation without control con-
straints are presented in [10, 11]. In this thesis the algorithm is extended for a system
with control constraints (4.13).

The following implicit procedure is shown for the kth iteration. It is repeated until con-
vergence

∥∥R(k)
∥∥ < ε is reached (R denotes a residual vector).

The velocities at step n+ 1 results directly from (4.13a):

v(k)
n+1 =

2
∆t

(q(k)
n+1 − q(k)

n )− v(k)
n (4.14)
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4.4. NUMERICAL SOLUTION

Then the residual vectors Rq, Rv,Rλ,Ru have to be calculated for the Newton-iteration,
which is required in the implicit one-step algorithm.

R(k)
q1 = DTM

(
2

∆t
(q(k)
n+1 − q(k)

n )− 2v(k)
n

)
−∆tDT f (k)︸ ︷︷ ︸

H(qn+1)(k)

+ · · ·

+∆tDTGT (k)
λ

(k)
n+1 + ∆tDTBTu(k)

n+1

R(k)
q2 = CM−1

{
−f (k) + GT (k)

λ
(k)
n+1 + BTu(k)

n+1

}
− ξn+1

R(k)
v =

q(k)
n+1 − q(k)

n

∆t
−

v(k)
n + v(k)

n+1

2
R(k)

λ = g(qn+1)(k)

R(k)
u = c(qn+1, tn+1)(k)

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.15e)

The residual vector Rq is split into Rq1 and Rq2 regarding to Eqs. (4.13b) and (4.13c).
In Rq1 the result from (4.14) is inserted for vn+1.
The residuum Rv is derived from (4.13a) and the residuals Rλ and Ru from (4.13e) and
(4.13d), respectively. Furthermore, the Jacobian J(k) has to be calculated. Then, the
Newton-iteration can be formulated as

∂Rq

∂qn+1

∂Rq

∂vn+1

∂Rq

∂λn+1

∂Rq

∂un+1

∂Rv

∂qn+1

∂Rv

∂vn+1

∂Rv

∂λn+1

∂Rv

∂un+1

∂Rλ

∂qn+1

∂Rλ

∂vn+1

∂Rλ

∂λn+1

∂Rλ

∂un+1

∂Ru

∂qn+1

∂Ru

∂vn+1

∂Ru

∂λn+1

∂Ru

∂un+1



(k)

·



∆qn+1

∆vn+1

∆λn+1

∆un+1


= −



Rq

Rv

Rλ

Ru



(k)

(4.16)

The Jacobian J(k) should be investigated more in detail.

J(k) =



N[(n−mc)×n]

V[mc×n]

X[(n−mc)×n]

0[mc×n]

∆tDTGT
[(n−mc)×m]

CM−1GT
[mc×m)]

∆tDTBT
[(n−mc)×mc]

CM−1GT
[mc×mc)]


diag

(
1

∆t

)
[n×n]

diag
(
−1

2

)
[n×n]

0[n×m] 0[n×mc]

G[m×n] 0[m×n] 0[m×m] 0[m×mc]

Θ[mc×n] 0[mc×n] 0[mc×m] 0[mc×mc]



(k)

(4.17)

The sub-matrix N ∈ R(n−mc)×n includes the partial derivatives of Rq1 with respect to q.
It can be computed by

N =
∂Rq1

∂qn+1
= DH(qn+1) + ∆tDTλn+1

∂GT

∂qn+1
+ ∆tDTun+1

∂BT

∂qn+1︸ ︷︷ ︸
=0

(4.18)
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4.4. NUMERICAL SOLUTION

The abbreviation H(qn+1) is given in (4.15a). The sub-matrix V ∈ Rmc×n is formed by
the partial derivatives of Rq2 with respect to q.

V =
∂Rq2

∂qn+1
= CM−1λn+1

∂GT

∂qn+1
(4.19)

The sub-matrix X ∈ R(n−mc)×n is formed by the partial derivatives of Rq1 with respect
to v and Θ by the derivatives of Ru with respect to q.

X =
∂Rq1

∂vn+1
= 0, Θ =

∂Ru

∂qn+1
(4.20)

By inverting the Jacobian J(k), the updates ∆qn+1, ∆vn+1, ∆λn+1,∆un+1 can be calcu-
lated from (4.16). Finally, the variables q, v, λ, u can be updated for iteration (k + 1).

q(k+1)
n+1 = q(k)

n+1 + ∆qn+1

v(k+1)
n+1 = v(k)

n+1 + ∆vn+1

λ
(k+1)
n+1 = λ

(k)
n+1 + ∆λn+1

u(k+1)
n+1 = u(k)

n+1 + ∆un+1

(4.21a)

(4.21b)

(4.21c)

(4.21d)

Then the iterative procedure starts again at Eq. (4.15) until convergence is reached.

67



The Fundamental Variational Principle
Namely, because the shape of the whole
universe is the most perfect and, in fact,
designed by the wisest creator, nothing in all
the world will occur in which no maximum or
minimum rule is somehow shining forth...

Leonhard Euler

Chapter 5

Optimization and Optimal Control

The field of optimization occupies itself with finding an optimal solution of a given prob-
lem. Optimization is used in a range of industrial and economical applications. The
mathematical description of an optimization problem (OP) yields control strategies such
that a certain optimality criterion is achieved [115]. As a consequence, the problem is for-
mulated in a way that specific variables occur, whose values can be changed from outside.
Such variables are called control variables. Additionally, state variables exist that describe
the system’s behavior at time t. Generally, it must be distinguished between static and
dynamic optimization problems.
Applications of optimization problems, which are listed below, are taken from [115].

Applications in mechanical engineering:
In mechanical engineering one requires the motion of a mechanical system to be controlled
from an initial state to a final state. The goal is e.g. that the control effort or the maneu-
ver time is minimized. Vehicle dynamics is a broad field of application. An example of an
optimal control is the minimization of the time that is needed in order to drive through
a given path. In space missions the challenge is to minimize the energy of a satellite or a
spacecraft that is needed in order to follow a trajectory. In robotics the motion of a robot
and its tool has to be steered in a way that specific requirements are fulfilled. Biological
processes can be studied with optimal control. Another field of application is biomechanics.
Prostheses and implants for the human body can be improved by considering biomechani-
cal models. The movements in sports can also be investigated with optimal control theory.

Applications in economics:
In economics optimization is used to optimize a certain portfolio or the development of a
company. Optimal financing or optimal investment strategies can be studied with opti-
mization techniques.
In this thesis several methods of static optimization problems and the optimal control
theory are used. Applied methods are restricted to unconstrained problems. Therefore,
these methods are discussed more in detail while methods for constrained problems are
just briefly described.
The main parts that are discussed in the following sections are taken from [14, 15, 37, 41,
77, 87].
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5.1. STATIC OPTIMIZATION PROBLEMS

5.1 Static Optimization Problems

In a static optimization problem the aim is to minimize a function f(x) while considering
specific constraints. The optimization variables x are elements of the Euclidean space Rn.
Static optimization is also called mathematical programming or finite-dimensional opti-
mization [14].

5.1.1 Formulation of the Problem

Static optimization problems are typically formulated by the system (5.1), [15].

min
x∈Rn

f(x)

s.t. : gi(x) = 0, i = 1, . . . , p

hi(x) ≤ 0, i = 1, . . . , q

(5.1a)

(5.1b)

(5.1c)

The general formulation of the system (5.1) consists of the cost function (5.1a), the
equality-constraints (5.1b) and the inequality-constraints (5.1c). If the optimization prob-
lem (5.1) is given without equality constraints (5.1b) and inequality constraints (5.1c), it
is called unconstrained optimization problem. Otherwise, the full system (5.1) is called
constrained optimization problem.
If cost function and constraints are linear, the OP is called linear programming. In
quadratic programming the cost function is quadratic while the constraints are linear. If
the cost function or at least one constraint is nonlinear, the OP is in the class of nonlinear
programming.

5.1.2 Optimality Conditions of Unconstrained Optimization Problems

It is supposed that f : Rn → R is twice continuously differentiable. If f(x∗) fulfills the
condition

∇f(x∗) = 0

∇2f(x∗) ≥ 0 (positive semi− definite)

(5.2a)

(5.2b)

then x∗ is a local minimum of f . If (5.2b) is positive definite ∇2f(x∗) > 0 , then x∗ is
a strict local minimum. These conditions result from a Taylor series expansion and are
shown in [15]. In (5.2a) ∇f(x) denotes the gradient of the function f(x)

∇f(x) =
∂f

∂x
=


∂f
∂x1
...
∂f
∂xn

 (5.3)

and ∇2f(x) in (5.2b) denotes the symmetric Hessian matrix

∇2f(x) =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2
n

 (5.4)
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5.2. NUMERICAL METHODS FOR UNCONSTRAINED STATIC PROBLEMS

5.2 Numerical Methods for Unconstrained Static Problems

In many cases the analytical solution of the stationarity condition ∇f(x∗) = 0 cannot
be derived. As a consequence, numerical methods are used that start from a sub-optimal
initial solution x0 and converge iteratively to a minimum point x∗. In every iteration the
solution is improved compared to the previous step.

f(xk+1) < f(xk), k = 0, 1, 2, . . . (5.5)

This results in a solution that converges to a minimum, if k →∞:

lim
k→∞

xk = x∗ (5.6)

Line search algorithms are based on finding a direction dk in which Eq. (5.5) is fulfilled.
Then an optimal step size αk has to be calculated to define the optimal distance along the
direction dk [15].

xk+1 = xk + αkdk (5.7)

The optimal step size αk results from a second OP:

min
αk>0

φ(αk), φ(αk) = f(xk + αkdk) (5.8)

This results in a maximum descent along the search direction dk. For the numerical
computation of the optimal step size αk different methods like the ”equal interval search”,
the ”section search”, the ”golden section search”, a ”quadratic interpolation method” or an
approximate line search based on ”Armijo’s rule” are used. These methods are described
in detail in [15] and should not be further discussed here.
For the computation of the search direction dk different methods are known as well. They
differ in accuracy, convergence speed and computational effort and should be described in
the following sections.
Fig. 5.1 illustrates the idea of a line search algorithm for a quadratic function f(x) with
x ∈ R2. The black dotted line shows the search direction dk for a given initial value x0.

5.2.1 Steepest Descent Method

The simplest way to define a search direction dk is to evaluate the negative gradient at
the point xk.

dk = −∇f(xk) (5.9)

The gradient is orthogonal to the contour line f(xk) = const. and defines the direction
of the steepest descent. If a problem is well conditioned, the gradient points into the
direction of x∗ and the steepest descent method converges rapidly. Otherwise, if the
problem is badly conditioned, the negative gradient does not directly point to x∗ and the
method converges very slowly. It also depends on the chosen step size and on how close
xk is to x∗. There are many schemes with adaptive step sizes α [15].
Advantages and disadvantages of the steepest descent method are summarized below [77]:
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Figure 5.1: Line search algorithm for a quadratic function

+ global convergence for convex problems
+ simple method
- slow convergence if the problem is badly conditioned
- limited accuracy

5.2.2 Conjugate Gradient Method

The conjugate gradient method also uses information from the previous step in order to
define the search direction dk. The computational effort is not much higher compared to
the steepest descent method while the convergence behavior is much better.

d0 = −∇f(x0)

dk = −∇f(xk) + βkdk−1

(5.10a)

(5.10b)

For initialization in the first step the negative gradient is used as it is done in the steepest
descent method, Eq. (5.10a). In the following steps a correction term is added which
depends on the previous step, Eq. (5.10b). The scalar factor βk can be calculated by
using the Fletcher-Reeves formula [15]:

βk =

[
∇f(xk)

]T ∇f(xk)

[∇f(xk−1)]T ∇f(xk−1)
(5.11)

or by using the Polak-Ribiere formula [15]:

βk =

[
∇f(xk−1)−∇f(xk)

]T ∇f(xk)

[∇f(xk−1)]T ∇f(xk−1)
(5.12)
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5.2.3 Newton’s Method

The basic idea behind Newton’s method is to approximate the function f(xk+1) by a
quadratic function, i.e. to develop a Taylor series that is terminated after the quadratic
terms [15].

f(xk+1) ≈ f(xk) +∇f(xk)Tdk +
1
2

(dk)T∇2f(xk)dk (5.13)

Then, Eq. (5.13) has to be differentiated with respect to dk and the resulting equation
has to be set to zero in order to find the minimum of dk.

∇f(xk) +∇2f(xk)dk = 0 (5.14)

Assuming that ∇2f(xk) is positive definite, the Newton-direction dk can be calculated as
follows:

dk = −
[
∇2f(xk)

]−1
∇f(xk) (5.15)

Advantages and disadvantages of the Newton-method are summarized below [77]:

+ quadratic convergence
+ high accuracy
- local convergence
- time-consuming calculation of the Hessian matrix ∇2f(xk)

5.2.4 Quasi-Newton Methods

Quasi-Newton methods avoid the disadvantage of the expensive calculation and inversion
of the Hessian matrix ∇2f in each iteration. The inverse Hessian matrix is approximated
by a matrix Qk ≈ (∇2f(xk))−1. Therefore, the direction of all Quasi-Newton methods is
calculated as follows:

dk = −Qk∇f(xk) (5.16)

The Quasi-Newton methods differ in the way in which the matrix Q is updated. Two of
them should be pointed out.

DFP (Davidon, Fletcher, Powell) Update [15]

Qk+1 = Qk +
sk(sk)T

(qk)T sk
− (Qkqk)(Qkqk)T

(qk)TQkqk
(5.17)

with the abbreviations
qk = ∇f(xk+1)−∇f(xk)

sk = xk+1 − xk = αkdk
(5.18)

The DFP formula is initialized with an identity matrix. It can be shown that Qk is posi-
tive definite as long as (qk)T sk > 0 [15].
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BFGS (Broyden, Fletcher, Goldfarb, Shanon) Update [15]

Qk+1 = Qk +
(

1 +
(qk)TQkqk

(qk)T sk

)
sk(sk)T

(qk)T sk
− 1

(qk)T sk

((
sk(qk)TQk

)T
+ sk(qk)TQk

)
(5.19)

Numerical observations for updating Q are equal to the DFP-formula. However, the
BFGS-update is numerically better qualified than the DFP-update [15].
Quasi-Newton methods show a fast convergence behavior, but do not reach the speed
of pure Newton methods. However, the vector-matrix manipulations to compute Qk are
much faster compared to the computation of the Hessian ∇2f and its Inverse. Another
advantage is that singularities cannot occur.
Other numerical methods for unconstrained OPs are e.g.: the trust region method or the
Simplex-algorithm. These methods are described in detail in [8, 15] and will not be further
discussed here.
It should be mentioned that in the Matlab Optimization Toolbox the function fminunc
can be used as gradient method, Newton- and Quasi-Newton-method and the function
fminsearch can be used as Simplex-method.

5.2.5 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is a standard procedure in nonlinear optimization.
It can be classified as pseudo-second order method, i.e. only function and gradient eval-
uations are required. The Hessian matrix is computed by products of the gradients.
Typically, this method converges faster than first order methods [108].
The method is based on a linearization and a quadratic approximation of the function
f(x) near the minimum. If an adequate approximation is used, the convergence speed is
faster compared to steepest descent methods. Kenneth Levenberg suggested a modified
Hessian matrix H + λI for the optimization purpose [94]. By using this modified Hessian,
the update can be varied between the steepest descent direction (5.9)

xk+1 = xk − αkdk (5.20)

and the quadratic rule (5.15)

xk+1 = xk −
(
Hk
)−1

dk (5.21)

This yields

xk+1 = xk −
[
Hk + λkI

]−1
dk (5.22)

If the blending factor λk is small (λk → 0), Eq. (5.22) results in the quadratic approxi-
mation (5.21) and if λk is large, it results in the steepest descent method

xk+1 = xk − 1
λk

dk (5.23)

Donald Marquardt improved the algorithm by using the diagonal of the Hessian matrix
instead of the identity matrix in Eq. (5.22).

xk+1 = xk −
[
Hk + λkdiag(Hk)

]−1
dk (5.24)
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Eq. (5.24) is known as Levenberg-Marquardt method. If the minimizing function increases
during the optimization, the value λk is increased. Hence, the procedure shows a similar
behavior as the steepest descent method. If the function is decreased, λk is decreased
and the quadratic approximation is used. As a result the convergence behavior of the
algorithm is improved. Details can be found e.g. in [14, 94, 108].

5.3 Numerical Methods for Constrained Static Problems

In this section constrained problems as given in Eqs. (5.1) are briefly discussed.

5.3.1 Stationarity Condition for a Single Equality Constraint

If one equality constraint g(x) = 0 (5.1b) is used in the problem, the Lagrangian can be
formulated as

L(x, λ) = f(x) + λg(x) (5.25)

The Lagrange multiplier λ is used to add the equality constraint to the cost function
f(x). At the optimal point x∗ the gradient-vectors ∇f(x∗) and ∇g(x∗) are co-linear, i.e.
∇f(x∗)||∇g(x∗). As a consequence, the stationarity condition can be formulated as [15]

∇xL(x∗, λ∗) = ∇f(x∗) + λ∗∇g(x∗) = 0 (5.26)

By considering Eq. (5.26) and the equality constraint equation g(x∗) = 0 (5.1b) a system
of equations of the order (n+ 1) can be formulated for the (n+ 1) unknowns x∗ ∈ Rn and
λ∗ ∈ R.

5.3.2 Stationarity Condition for a Single Inequality Constraint

If a single inequality constraint h(x) ≤ 0 (5.1c) is used in the problem, the Lagrangian
can be formulated in the same way than in Eq. (5.25).

L(x, µ) = f(x) + µh(x) (5.27)

In such a case it has to be distinguished whether or not the inequality constraint h(x) ≤ 0
is active in the optimal point x∗. If it is not active (h(x∗) < 0), the stationarity condition
is identical to the unconstrained case:

∇Lx(x, µ∗) = ∇f(x∗) = 0 with µ∗ = 0 (5.28)

If the inequality constraint is active (h(x) = 0), then the gradients ∇f and ∇h have to be
co-linear in the optimal point x∗ [37]. As a result, the stationarity condition is formulated
as

∇Lx(x∗, µ∗) = ∇f(x∗) + µ∗∇h(x∗) = 0 (5.29)

In this case the sign of the Lagrange multiplier µ∗ plays an important part. By developing
the cost function f(x∗) and the inequality constraint function h(x) in a Taylor series it
can be shown that the condition for a minimum point at x∗ reads as [15]

∃µ∗ ≥ 0 : ∇Lx(x∗, µ∗) = 0, µ∗h(x∗) = 0 (5.30)

The equation µ∗h(x∗) = 0 is called complementarity condition [77].
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5.3.3 Karush-Kuhn-Tucker Conditions

The general case (5.1) with p equality-constraints and q inequality constraints is consid-
ered. The Lagrangian function can now be written as

L(x,λ,µ) = f(x) +
p∑
i=1

λigi(x)+
p∑
i=1

µihi(x) (5.31)

with the Lagrange multipliers λ = [λ1, . . . , λp]
T and µ = [µ1, . . . , µq]

T . The necessary
optimality conditions in this general case are called KKT conditions (Karush-Kuhn-Tucker
conditions) [14, 15, 115] and are formulated in Eqs. (5.32).

∇xL(x∗,λ∗,µ∗) = 0
gi(x∗) = 0, i = 1, . . . , p
hi(x∗) ≤ 0, i = 1, . . . , q

µ∗i ≥ 0, i = 1, . . . , q
µ∗ihi(x

∗) = 0, i = 1, . . . , q

(5.32a)
(5.32b)
(5.32c)
(5.32d)
(5.32e)

The complementarity condition µ∗ihi(x
∗) = 0 describes, if the ith inequality constraint is

either active hi(x∗) = 0 or inactive µ∗i = 0.

5.3.4 Sequential Quadratic Programming

Sequential quadratic programming (SQP) is the most widely used algorithm in the field of
nonlinear optimization [14]. The algorithm solves a sequence of quadratic approximations
of (5.1). The basic approach introduces a quadratic approximation to the cost function
(Lagrangian) and a linear approximation to the constraints. The quadratic approximation
of f(x) yields

f(x) ≈ f(xk) +∇f(xk)Td +
1
2
dTHkd (5.33)

If an initial value xk is given, the update can be calculated as follows:

xk+1 = xk + αkdk (5.34)

The vector dk is the solution of a quadratic sub-problem:

min
d∈Rn

1
2
dTHkd +∇f(xk)Td

s.t. : gi(xk) +∇gi(xk)Td = 0, i = 1, . . . , p

hi(xk) +∇hi(xk)Td ≤ 0, i = 1, . . . , q

(5.35a)

(5.35b)

(5.35c)

The term f(xk) in Eq. (5.33) does not depend on d and hence it can be neglected in
(5.35a). Hk is an approximation of the Hessian matrix at xk. As a consequence, the
system 5.35 is a quadratic problem with the solution dk. For details it is referred to
[14, 15].
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5.4 Dynamic Optimization Problems

The aim of dynamic optimization is to find a function of an independent variable (e.g. the
time t) that minimizes a cost functional. In this context the most important application
of a dynamical system is to find an optimal input trajectory u∗(t). This type of problem
is also called optimal control problem (OCP).

5.4.1 Formulation of the Optimal Control Problem

The general formulation of an OCP is given as [14, 37, 38, 59, 64, 87, 115]

min
u(·)

J (u) = Φ (x(tf ), tf ) +

tf∫
t0

L (x(t),u(t), t) dt

s.t. : ẋ = f (x,u, t) , x(t0) = x0

g (x(tf ), tf ) = 0

h (x(t),u(t), t) ≤ 0 ∀t ∈ [t0, tf ]

(5.36a)

(5.36b)

(5.36c)

(5.36d)

The OCP is characterized by the formulation of the cost functional or performance mea-
sure (5.36a), the terminal constraints (5.36c), the inequality constraints (5.36d) as well as
the terminal time tf . The dynamical system (5.36b) acts also as constraint with respect
to the OCP.
In the following sections the different terms of the system (5.36) are described and classi-
fied.

Cost functional, performance measure (5.36a)
For the dynamical system (5.36b) infinite control functions u(t) exist that drive it from
the given initial conditions x(t0) = x0 to the terminal constraints (5.36c). The aim is to
find an optimal control u∗(t) that minimizes the cost functional (5.36a) [87]. The general
form of (5.36a) can be subdivided into the integral part L(x(t),u(t), t) and the Mayer-term
Φ(x(tf ), tf ), which classifies the terminal constraints as a scrap function. Generally, the
cost functional can be formulated in the following ways [14, 38]:

J(u) =



Φ(x(tf ), tf ) +

tf∫
t0

L(x(t),u(t), t) dt . . . Bolza− form

tf∫
t0

L(x(t),u(t), t) dt . . . Lagrange− form

Φ(x(tf ), tf ) . . . Mayer− form

(5.37)

Bolza-form and Lagrange-form can always be converted into the Mayer-form by using the
integral part as new state

ẋn+1 = L(x,u, t), xn+1(t0) = 0 (5.38)

76



5.4. DYNAMIC OPTIMIZATION PROBLEMS

and add xn+1(tf ) to Φ(x(tf ), tf ) [14].
In the special case of trajectory tracking problems, which are the focus of this thesis, the
cost functional is formulated as (5.39b).

ẋ = f(x,u, t)

J(u) =

tf∫
t0

‖y(x, t)− ỹ(t)‖2 dt→ min

(5.39a)

(5.39b)

where y(x,u, t) denote the outputs of the multibody system and ỹ(t) are the target signals.
Therefore, the goal is to minimize the error between the system outputs and the targets.
In comparison to that the DAE-approach (4.2) from chapter 4 should be repeated:

ẋ = f(x,u, t)
0 = Φ(q)− γ(t)

(5.40a)
(5.40b)

The formulation of the trajectory tracking problem by the optimal control approach (5.39)
instead of the DAE-approach (5.40) has two advantages [144]:

1. The system (5.39) can be solved, even if the MBS is over- or under-determined.

2. The system (5.39) can also be solved, if the initial conditions x(t0) = x0 violate the
constraint y(x, t0) = ỹ(t0).

Terminal Constraints (5.36c)
The Eqs. (5.36b) and (5.36c) by themselves describe a control problem [77, 87]. The
goal is to drive the nonlinear system with the states x ∈ Rn and the inputs u ∈ Rm

with a control trajectory u(t), t ∈ [t0, tf ] from the initial state x(t0) = x0 to the terminal
constraint (5.36c). Mostly, the terminal constraints are given in a partial form

xi(tf ) = xf,i, i ∈ If (5.41)

where the set If contains the indexes of the fixes states xi at tf . If the case If = {}
occurs, it is called a system with an open terminal state [87].

Inequality Constraints (5.36d)
The general form of the inequality constraints (5.36d) can be reduced to constraints of the
inputs u

u(t) ∈ U ⊆ Rmc ∀t ∈ [t0, tf ] (5.42)

and/or the states x
x(t) ∈ X ⊆ R2n ∀t ∈ [t0, tf ] (5.43)

In most applications constraints of inputs are more relevant because of physical constraints
like maximum forces or maximum voltages.

Terminal Time tf
The terminal time tf can either be given or it can be open. If it is open, then tf has be
to be calculated as part of (5.36).
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5.4.2 Unconstrained Problems

In this section unconstrained problems (5.44) are considered.

min
u(·)

J (u) = Φ (x(tf ), tf ) +

tf∫
t0

L (x(t),u(t), t) dt

s.t. : ẋ = f (x,u, t) , x(t0) = x0

xi(tf ) = xf,i, i ∈ If

(5.44a)

(5.44b)

(5.44c)

To derive the optimality conditions the system equations (5.44b) are considered as (dy-
namical) equality constraints and are added to the cost functional by using Lagrange-
multipliers.

5.4.3 Optimality Conditions

Derivation from the Calculus of Variations

The derivation of the necessary optimality conditions can either be done for a fixed or for
a free terminal time tf using the calculus of variations. In this thesis the focus is put on
problems with a fixed terminal time tf and therefore the optimality conditions are only
deduced for this case. General formulations for a free final time can be found in [87].
By introducing the Lagrange multiplier p and adding the constraints (5.44b) the aug-
mented functional

Ja = Φ(x(tf ), tf ) +

tf∫
t0

{
L(x,u, t) + pT [f(x,u, t)− ẋ]

}
dt (5.45)

is considered. Variations of the states x(t) = x∗(t) + ε δx(t), the multipliers p(t) =
p∗(t) + ε δp(t) and the inputs u(t) = u∗(t) + ε δu∗(t) are performed about a optimal
trajectory x∗(t), p∗(t), u∗(t), t ∈ [t0, tf ] [87].

Ja = Φ (x∗(tf ) + εδx(tf )) + · · ·

+

tf∫
t0

{L (x∗ + εδx,u∗ + εδu, t) + · · ·

+ (p∗ + εδp)T [f (x∗ + εδx,u∗ + εδu, t)− (ẋ∗ + εδẋ)]
}
dt

(5.46)
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Now the variation δJa =
dJa
dε

∣∣∣∣
ε=0

is performed:

δJa =
(
∂Φ
∂x

)T ∣∣∣∣∣
tf

δx(tf ) + · · ·

+

tf∫
t0


(
∂L
∂x

+
(
∂f
∂x

)T
p∗
)T

δx +

(
∂L
∂u

+
(
∂f
∂u

)T
p∗
)T

δu− p∗T δẋ

 dt+ · · ·

+

tf∫
t0

{(f(x∗,u∗, t)− ẋ∗) δp} dt

(5.47)
Partial integration of the term p∗T δẋ results in

δJa =
(
∂Φ
∂x

)T ∣∣∣∣∣
tf

δx(tf )−
(
p∗T δx

)∣∣tf
t0

+ · · ·

+

tf∫
t0


(
∂L
∂x

+
(
∂f
∂x

)T
p∗ + ṗ∗

)T
δx +

(
∂L
∂u

+
(
∂f
∂u

)T
p∗
)T

δu

 dt+ · · ·

+

tf∫
t0

{(f(x∗,u∗, t)− ẋ∗) δp} dt

(5.48)
The second term can further be simplified to(

p∗T δx
)∣∣∣tf
t0

= p∗(tf )T δx(tf )− p∗(t0)T δx(t0) = p∗(tf )T δx(tf )

because of the variation δx(t0) = 0 in order that the initial conditions x(t0) = x0 are
fulfilled. The variation δJa = 0 must hold for all admissible variations δx(t), δp(t) and
δu(t) to guarantee that x∗(t), p∗(t), u∗(t) are indeed an optimal solution of the OCP
(5.44). As a consequence the following necessary optimality conditions can be derived
[37, 77, 87]:

0 = ẋ∗ − f(x∗,u∗, t)

ṗ∗ = −∂L
∂x

(x∗,u∗, t)−
(
∂f
∂x

)T
(x∗,u∗, t) p∗

0 =
∂L
∂u

(x∗,u∗, t) +
(
∂f
∂u

)T
(x∗,u∗, t) p∗

(5.49a)

(5.49b)

(5.49c)

Furthermore the following terminal conditions can be derived from (5.48):

0 =
(
∂Φ
∂x
− p∗

)T ∣∣∣∣∣
tf

δx(tf ) =
n∑
i=1

(
∂Φ
∂xi
− p∗i

)∣∣∣∣∣
tf

δxi(tf ) (5.50)
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This means that a Lagrange multiplier p∗(t) must exist for x∗(t),u∗(t), such that the
differential equations (5.49b), the algebraic constraint equations (5.49c) and the terminal
conditions (5.50) hold for all admissible variations δx(tf ).
Due to the partial terminal conditions (5.44) it is meaningful to formulate the transver-
sality condition (5.50) also as partial condition. The variations δxi(tf ) = 0 must hold for
the fixed states xi(tf ), i ∈ If at the terminal time tf . The variations of the free states
xi(tf ), i /∈ If are arbitrary. As a consequence, the equation

p∗i (tf ) =
∂Φ
∂xi

∣∣∣∣
tf

, i /∈ If (5.51)

has to be fulfilled for the free states in order that the transversality condition (5.50) is
fulfilled for all admissible variations.

Derivation from the Hamiltonian

By using a scalar function H (the Hamiltonian), the optimality conditions to derive the
optimal solution x∗(t), u∗(t) can be written in a compact form. The Hamiltonian is
defined as

H(x,u,p, t) = L(x,u, t) + pT f(x,u, t) (5.52)

Pontryagin’s maximum principle implies that an optimal control must minimize the Hamil-
tonian [14, 37, 87]. As a consequence, the necessary optimality conditions of 1st order for
the OCP (5.44) read as [37, 87]

ẋ∗ =
∂H

∂p
(x∗,u∗,p∗, t) = f(x∗,u∗, t)

ṗ∗ = −∂H
∂x

(x∗,u∗,p∗, t) = −∂L
∂x
−
(
∂f
∂x

)T
p∗

0 =
∂H

∂u
(x∗,u∗,p∗, t) =

∂L
∂u

+
(
∂f
∂u

)T
p∗

(5.53a)

(5.53b)

(5.53c)

with t ∈ [t0, tf ]. Eqs. (5.53b) are called adjoint equations or co-state equations and (5.53c)
are called control equations. The differential equations (5.53a) and (5.53b) together are
called canonical equations or Hamilton-equations. Eqs. (5.53c) are a simplified statement
of Pontryagin’s maximum principle [37].
Additionally to (5.53), the boundary conditions have to be defined.

x∗(t0) = x∗0
x∗i (tf ) = x∗f,i, i ∈ If

(5.54a)
(5.54b)
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In (5.54b) partial terminal conditions are used, i.e. not all terms of x(tf ) have to be
specified. Furthermore, transversality conditions are formulated

p∗i (tf ) =
∂Φ
∂xi

∣∣∣∣
t=tf

for i /∈ If

H(x∗,u∗,p∗, t)|t=tf = − ∂Φ
∂t

∣∣∣∣
t=tf

if tf is free

(5.55a)

(5.55b)

The set of necessary conditions (5.53) consists of a DAE system with boundary conditions
(5.54) and (5.55). This is referred to as a two-point boundary value problem (BVP) for
the optimal states x∗(t), p∗(t) and the optimal control u∗(t) [87]. If tf is fixed, then the
BVP (5.53)-(5.55a) includes 2n equations with 2n boundary conditions. If tf is free, the
transversality condition (5.55b) must also be considered to determine the optimal terminal
time t∗f .
With the final conditions (5.54b) and (5.55a) following cases can occur [77, 87]:

• Fixed final states x(tf ) = xf , i.e. If = {1, . . . , n}:
All states x are fixed at the beginning and at the end of the interval [t0, tf ] while
the adjoint final states p(tf ) are free.

• Free final states x(tf ), i.e. If = {}:
The complete adjoint final states are fixed p(tf ) = ∂Φ

∂x

∣∣
tf

. The boundary conditions
are separated in initial conditions x(t0) and final conditions p(tf ).

• Free terminal time tf with Mayer-term Φ = 0 or Φ = Φ(x(tf )):
In this case the transversality condition (5.55b) is homogeneous, i.e. H|t=tf = 0.

In addition to the necessary optimality conditions (5.53) a Legendre-condition can be
formulated [87].

∂2H

∂u2
≥ 0 (positive semi− definite) ∀t ∈ [t0, tf ] (5.56)

This is a necessary optimality condition of 2nd order for an optimal solution x∗(t), u∗(t).
It guarantees that u∗(t) causes H to be a local minimum. The Hamiltonian (5.52) shows
a specific behavior along an optimal solution:

d

dt
H =

∂H

∂t
+
(
∂H

∂x

)T
ẋ︸ ︷︷ ︸

=( ∂H∂x )T f

+
(
∂H

∂u

)T
u̇︸ ︷︷ ︸

=0

+
(
∂H

∂p

)T
ṗ︸ ︷︷ ︸

=−fT ∂H
∂x

=
∂H

∂t
(5.57)

For time-invariant problems (5.44) where neither the cost functional L nor the system
equations f explicitly depend on the time t, the Hamiltonian H is constant along an op-
timal trajectory [77, 87].

Fig. 5.2 illustrates how the calculus of variations can be used in mechanical systems
to derive the Euler-Lagrange equations (2.47) from Hamilton’s principle and in optimal
control theory to derive the necessary optimality conditions (5.53)-(5.55) from Pontrya-
gin’s maximum principle.
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Figure 5.2: Calculus of variations in mechanics and optimal control theory [115]

5.4.4 Solution Strategies

A general solution strategy for the OCP (5.44) with the optimality conditions (5.53)-(5.55)
can be subdivided into the following steps [77, 87]:

1. Calculation of the Hamiltonian H(x,u,p, t) = L(x,u, t) + pT f(x,u, t)

2. Calculation of u from (5.53c) ∂H
∂u = 0 in order that u can be expressed as a function

of x, p, t:
u = ψ(x,p, t) (5.58)

3. Insertion of (5.58) into the canonical equations (5.53a) and (5.53b). This results in
the BVP

ẋ = f(x,ψ(x,p, t), t)
ṗ = −Hx(x,ψ(x,p, t), t)

(5.59a)
(5.59b)

with the boundary conditions (5.54)-(5.55). This resulting BVP is independent of
the control u. If the final time tf is free, the final condition (5.55b) has to be included
as well.

4. The solution of the BVP are the states x∗(t), p∗(t), t ∈ [t0, tf ]. Now u∗(t) can be
calculated from (5.58).

In most applications the BVP has to be solved numerically. Therefore, standard routines
like the bvp4c-solver in Matlab can be used.

5.4.5 Singular Case

A problem occurs, if one or more elements ui from u cannot be calculated from the
stationarity condition (5.53c). If the integral part L of the cost functional (5.44a) is
independent from u and f(x,u) is linear with respect to u, the Hamiltonian and its first
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derivate with respect to u reads as

H(x, u,p, t) = L(x, t) + pT [f0(x) + f1(x)u]

Hu(x,p) = pT f1(x) = 0

(5.60a)

(5.60b)

In this case a singular problem occurs, because ui cannot be calculated from ∂H
∂u = 0.

However, the stationarity condition Hu(x∗(t),p∗(t)) = 0 has to be fulfilled, even if it does
not provide any information about the optimal control. The order of singularity r can be
determined with the minimum number of derivatives with respect to time such that the
input u explicitly occurs.

dr

dtr
Hu(x∗(t),p∗(t)) = 0 with

∂

∂u

(
dr

dtr
Hu(·)

)
6= 0 (5.61)

The equation dr

dtrHu(·) can now be used to calculate u∗(t).

In practical applications a regularization term
m∑
i=1

riu
2
i can be used to avoid this singularity

[77]. This term with a small weighting factor ri > 0 can be added to the cost functional.
As a consequence ui does not vanish in the stationarity conditions ∂H

∂ui
= 0.

5.4.6 Constrained Problems

In the previous considerations it was assumed that the OCP is an unconstrained problem
(5.44). This section focuses on constraints in the control variables.

u(t) ∈ U ⊆ Rmc ∀t ∈ [t0, tf ] (5.62)

U is a subset of Rmc . The constraint has to be fulfilled at any time. In most practical
purposes constraints in the control variables occur. Such constraints can be considered
with Pontryagin’s maximum principle. Constraints in the state variables are much more
complicated. However, they are not as relevant as constraints in the control variables and
should not be discussed further.

5.4.7 Pontryagin’s Maximum Principle

Pontryagin’s maximum principle is based on the Hamiltonian and the canonical equations
(5.53a) and (5.53b). However, the necessary optimality condition ∂H

∂u = 0 is not valid any
more. This is illustrated in Fig. 5.3, where the Hamiltonian H(x∗, u,p∗, t) is plotted over
a scalar input variable u at a fixed time t. Following cases are distinguished:

a) Unconstrained case:
The necessary conditions (5.53c) and (5.56) guarantee the minimum of the Hamil-
tonian, i.e. ∂H

∂u = 0 and ∂2H
∂u2 ≥ 0 (positive semi-definite).

b) Minimum at u−:
The control variable u is constrained in the interval U = [u−, u+] and the minimum
is located at u−, where ∂H

∂u = 0 is not fulfilled.
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Figure 5.3: Boundary minima in a constrained case u ∈ U = [u−, u+] [77]

c) Minimum at u+:
The control variable u is constrained in the interval U = [u−, u+] and the minimum
is located at u+, where ∂H

∂u = 0 is not fulfilled.

As a consequence, the condition (5.53c) ∂H
∂u = 0 is replaced by

H(x∗,u∗,p∗, t) = min
u∈U

H(x∗,u,p∗, t) (5.63)

This condition is the basis of Pontryagin’s maximum principle. To solve such a constrained
OCP, the second task in the solution strategy 5.4.4 has to be replaced by:

u∗ = arg min
u∈U

H(x,u,p, t) (5.64)

The minimization task (5.64) has to be performed for each possible combination of (x, p).

5.5 Numerical Methods for Dynamic Optimization Prob-
lems

In nearly all applications an OCP cannot be solved fully analytically. Rather numerical
methods are used. Basically, two different classes are defined [14, 32, 33]:

• Indirect Methods:
Indirect methods are based on the optimality conditions (5.53) - (5.55). The resulting
two-point-BVP can be solved by collocation methods, shooting methods or by a
gradient method [14, 115].

• Direct Methods:
Direct methods discretize the input trajectory u(t) and transcribe the OCP to finite
dimensional static optimization problems. This procedure is known as direct tran-
scription method [14, 28, 29]. These resulting problems can be solved with methods
described in section 5.1.
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5.5.1 Indirect Methods: Solving the Optimality Conditions

Collocation Method:
The basis for this method is the two-point BVP, which results from the optimality condi-
tions (5.53) - (5.55). Problems with a fixed terminal time tf are considered. As already
stated in section 5.4.4, the canonical equations can be expressed independently from u
(5.59). Both equations can be summarized by defining a new state vector x̄ = [x,p]T [77]:

ẋ = f(x,ψ(x,p), t)
ṗ = −Hx(x,ψ(x,p),p, t)

}
˙̄x = F(x̄, t) (5.65)

Initial conditions and partial terminal conditions are summarized as well:

x(t0) = x0, G(x(tf )) =

 (xi(tf )− xf,i) ∀i ∈ If(
pi(tf )− ∂Φ

∂xi

∣∣∣
tf

)
∀i /∈ If

 = 0 (5.66)

The resulting system consists of 2n boundary conditions for the 2n differential equations.
Now the two-point BVP is discretized in the time interval [t0, tf ]

t0 = t0 < t1 < · · · < tN = tf

and the solution is approximated at the sampling points

x̄k ≈ x̄(tk), k = 0, 1, . . . , N (5.67)

For discretization e.g. a trapezoidal rule can be used:

x̄k+1 − x̄k

tk+1 − tk
=

1
2

[
F(x̄k, tk) + F(x̄k+1, tk+1)

]
, i = 0, 1, . . . , N − 1 (5.68)

Additionally, the 2n boundary conditions must be fulfilled.

x0 = x0, G(x̄N ) = 0 (5.69)

Eqs. (5.68) and (5.69) describe a system of 2n(N+1) nonlinear equations for the 2n(N+1)
unknown variables. Instead of the trapezoidal rule other basis functions like polynomials
can be used.
Certain characteristics of collocation methods are listed below [14, 77]:

• Collocation methods are more robust than shooting methods

• The initial guess of the adjoint variables p(t) is of great importance and influences the
convergence speed dramatically (cf. examples in sections 7.1, 7.2 with the Matlab-
solver bvp4c)

• The implementation effort is relatively high

• The number of discretization points influence the accuracy of the solution as well as
the convergence speed
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• The exactness of the solution depends on the method of discretization. If e.g. a
trapezoidal rule of 2nd order is used, the solution coincides with a Taylor series till
the quadratic terms

Shooting Methods:
Instead of using a large system of equations like in the collocation method, shooting
methods solve an IVP with unknown initial values for the adjoint variables p0.

˙̄x = F(x̄, t), x̄(t0) =
[

x0

p0

]
(5.70)

Therefore, the solution which depends on p0 can be formulated as [14, 77]

x̄(t,p0) =
[

x0

p0

]
+

tf∫
t0

F(x̄(τ,p0), τ) dτ (5.71)

Normally the solution of the IVP with the initial guess for p0 does not fulfill the boundary
condition

G(x̄(tf ,p0)) = 0 (5.72)

However, the deviation from G(x̄(tf ,p0)) to 0 can be used to improve the guess for the
adjoint variables p0. As a consequence, Eq. 5.72 formulates the equations to find the roots
for the initial values p0. This has to be done numerically, e.g. by using Newton’s method.
The subordinated IVP (5.70) has to be integrated in every Newton-step to determine the
trajectory (5.71). Fig. 5.4 illustrates the shooting method for a scalar function x̄(t, p0).

t0 tf t

0( ( , ), )F x t p t

p0

1

2

3

4

Figure 5.4: Shooting method [14]

Certain characteristics of shooting methods are listed below [14, 77]:

• The implementation effort is not as high as for collocation methods

• The initial values of the adjoint variables p0 are very important. Shooting methods
are generally very sensitive with respect to initial guesses

• The integration of the IVP can be numerically critical

• Multiple shooting methods are better suited than single shooting methods [32]
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Gradient Method, Kelley-Bryson-Method [143]:
The main application of the gradient method are OCPs with a fixed terminal time and a
free final state. For this special case the optimality conditions (5.53) are formulated as

ẋ = Hp(x,u,p, t) = f(x,u, t), x(t0) = x0

ṗ = −Hx(x,u,p, t), p(tf ) = Φx(x(tf ))
0 = Hu(x,u,p, t)

(5.73a)
(5.73b)
(5.73c)

The gradient method takes advantage of the decoupling of the boundary conditions. The
canonical equations (5.73a) and (5.73b) can be integrated as a function of u sequentially
forward and backward in time. In this way the trajectories for the states xj(t) and costates
pj(t) are calculated. Generally the stationarity condition (5.73c) is not fulfilled and hence
a residual gradient exists.

gj(t) = Hu(xj(t),uj(t),pj(t), t), t ∈ [t0, tf ] (5.74)

The negative gradient can now be used to minimize the cost functional [87].

In this thesis an algorithm is used which follows an idea of Henry J. Kelly [86] and
Arthur E. Bryson, Jr. [37]. The basis of this method is the calculation of the gradient of
the cost functional, i.e. the variation of the control variable u(t) that causes a maximum
increase or decrease in J . For a given control u(t) the cost functional

J = Φ(xf , tf ) +

tf∫
t0

L(x,u, t) dt (5.75)

can be calculated straight forward. The state equations (5.73a) have to be integrated and
the results have to be inserted into (5.75).
In trajectory tracking problems the general formulation (5.75) is specified to (5.39b).

J =

tf∫
t0

‖y(x, t)− ỹ(t)‖2 dt→ min (5.76)

where the scrap function Φ(xf , tf ) is neglected.
Now the linear change of J has to be calculated, if u(t) is slightly modified by the variation
δu(t). It is evident that a small variation of the control u(t) causes a small variation of
the states x(t). Therefore, the linear change of the performance measure is calculated by

δJ = ΦT
xf
δxf +

tf∫
t0

LTxδx dt (5.77)

Lx and Φxf denote the partial derivatives of L and Φ with respect to x and xf . Now
it must be determined how δx is related to δu. For small variations the state equations
(5.73a) can be linearized around a nominal trajectory x(t), if the control u(t) is given.

δẋ = fx(x(t),u(t), t)δx + fu(x(t),u(t), t)δu
= A(t)δx + B(t)δu

(5.78)
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A linearization around a trajectory results in time-variant matrices A(t) and B(t).

A(t) = fx(x(t),u(t), t), B(t) = fu(x(t),u(t), t) (5.79)

Instead of solving (5.78) for δx(t), a costate equation is defined:

ṗ = −ATp− Lx (5.80)

This costate equation is used in the following auxiliary calculation:

d

dt

(
pT δx

)
= ṗT δx + pT δẋ

= (−ATp− Lx)T δx + pT (Aδx + Bδu)
= −LTxδx + pTBδu

or
LTxδx = pTBδu− d

dt

(
pT δx

)
(5.81)

As a consequence, the integral term in (5.77) results in

tf∫
t0

LTxδx dt =

tf∫
t0

pTBδu dt+ p(t0)T δx(t0)− p(tf )T δx(tf ) (5.82)

The states at t0 are given by the initial conditions x(t0) = x0 and therefore the variation
δx(t0) vanishes. Now Eq. (5.82) is inserted into (5.77) which results in

δJ =

tf∫
t0

pTBδu dt+
[
Φxf − p(tf )

]T
δxf (5.83)

If the boundary condition (5.73b) p(tf ) = Φxf is used, the second term vanishes and
δxf has not to be calculated to determine δJ . As a consequence, the cost functional is
simplified to

δJ =

tf∫
t0

pTBδu dt (5.84)

The costate equations (5.80) have to be solved backwards in time, beginning from the
initial conditions p(tf ) = Φxf . By using the Hamiltonian (5.52), the variation (5.84) can
also be written as

δJ =

tf∫
t0

HT
u δu dt (5.85)

For the gradient method the largest variation δJ , which can be obtained by all admissible
control variations δu, is of interest. This results in the variation

δu = −κHu = −κBTp (5.86)

88



5.5. NUMERICAL METHODS FOR DYNAMIC OPTIMIZATION PROBLEMS

that results from the calculus of variations (see Appendix A).
If (5.86) is inserted into (5.85), the variation of the cost functional is always negative,
assuming that κ > 0.

δJ = −κ

tf∫
t0

HT
uHu dt (5.87)

Hence, the variation of the control variable δu (5.86) causes a decrease in the cost func-
tional J . However, it should be mentioned that δJ is only the linear part of the cost
functional J and therefore κ must be sufficiently small. On the other side, the step length
κ should be as large as possible in order to increase the convergence speed of the algorithm.
Therefore, a line search algorithm is used.
The main steps of the gradient method are summarized in Table 5.1, [87, 144]. The al-

1. Initialization:
• Set iteration counter to zero j = 0
• Define a termination criterion ε
• Choose an initial guess for the trajectory of the control variables u(t)
• Define initial values for the states x0

2. Integrate the state equations (5.73a) with respect to x(t)
3. Compute the time-variant matrices A(t) and B(t) (5.79) and the vectors Lx,Φxf

4. Integrate the costate equations (5.80) with respect to p(t) backwards in time,
starting from tf

5. Determine the step length κ and compute the variation of the controls δu by (5.86)
6. Compute the new control trajectory uj+1(t) = uj(t) + δu(t)
7. Solve the state equations again and compute the cost functional
8. Repeat from step 5 to find the optimal step length κ which causes the

maximum decrease of J
9. j = j + 1

10. Repeat from step 2 until ‖Hu‖ =
∥∥BTp

∥∥ ≤ ε,
Table 5.1: Algorithm of the gradient method

gorithm (5.1) is implemented in Matlab and is applied to specific academic examples, cf.
chapter 7.
It should be mentioned that if no scrap function Φ(xf , tf ) would be defined as in (5.75),
i.e. the formulation (5.76) is used, it would always result in p(tf ) = 0 and furthermore
δu(tf ) = 0, i.e. the control at the end point would never be updated in (5.86). This
problem can be avoided by adding a weighted end point error to (5.76).

Φ(xf , tf ) =
1
2
α ‖y(xf , tf )− ỹ(tf )‖2 (5.88)
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The scalar weighting factor α can be chosen in a way that Φ(xf , tf ) and the integral (5.76)
divided by tf − t0 are in the same range. The resulting cost functional reads as

J =
1
2
α ‖y(xf , tf )− ỹ(tf )‖2 +

tf∫
t0

1
2
‖y(x, t)− ỹ(t)‖2 dt (5.89)

Certain characteristics of the gradient method are listed below [14, 77]:

• A big advantage of the gradient method is that u has not explicitly to be calculated
from Hu = 0 or min

u∈U
H, respectively. Especially for nonlinear problems this benefit

is of great importance.

• Constraints in the control variables u ∈ U can be considered by a projection at an
admissible set U

• The gradient method is numerically more robust than shooting methods, because
the adjoint system has not to be integrated in the unstable forward direction

• An initial guess of the adjoint variables is not needed

• The convergence speed is slow near the optimal solution

• Partial boundary conditions and a free terminal time diminish robustness and con-
vergence behavior

• Conjugate gradient methods can be used to improve the convergence

Gradient Method for Constrained MBS [143]:
The basis are the DAEs (2.51) from chapter 2.5. In a general form they can be formulated
as

ẋ = f(x,u,λ, t)
0 = g(x)

(5.90a)
(5.90b)

where g(x) are the holonomic algebraic constraints and λ denotes the vector of Lagrange
multipliers. As in the previous section the variation δJ is calculated by a linearization of
the equations of motion (5.90) about a nominal trajectory.

δẋ = fxδx + fuδu + fλδλ

0 = gxδx

(5.91a)
(5.91b)

If the time-variant matrices A(t), B(t), C(t) and D(t) are introduced,

A(t) = fx, B(t) = fu, C(t) = fλ, D(t) = gx (5.92)

the linearized differential-algebraic equations (5.91) read as

δẋ = A(t)δx + B(t)δu + C(t)δλ
0 = D(t)δx

(5.93a)
(5.93b)
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The costate equations (5.80) for an ODE system are extended to

ṗ = −ATp−DTµ− Lx

0 = CTp

(5.94a)

(5.94b)

for a DAE system. The vector µ(t) includes algebraic variables. Again, an auxiliary
calculation is done:

d

dt

(
pT δx

)
= ṗT δx + pT δẋ

=
(
−ATp−DTµ− Lx

)T
δx + pT (Aδx + Bδu + Cδλ)

= −LTxδx + pTBδu− µTDδx + (CTp)T δλ

The last two terms vanish as a result of (5.91b) and (5.94b). As a consequence, the same
result as in (5.81) is achieved. Hence, the variation of the cost functional is also identical
to (5.83).
It can be claimed that p(tf ) = Φxf in order that the integrated term in (5.83) is identical
to zero. However, if Φ 6= 0, the costate variables will probably not fulfill the constraint
CT
f pf .

To find compatible boundary conditions for the costate variables, the fact can be used
that δxf is not completely independent but rather subject to the constraint D(tf )δxf = 0.
Then a new Lagrange multiplier ξ can be introduced and the term ξTD(tf )δxf = 0 can
be added to (5.83):

δJ =
tf∫
t0

pTBδu dt+ (Φxf − p(tf ))T δxf + ξTD(tf )δxf

=
tf∫
t0

pTBδu dt+ (Φxf − pf + DT
f ξ)T δxf

(5.95)

Now it can be claimed that
Φxf − pf + DT

f ξ = 0 (5.96)

The Lagrange multiplier ξ must be chosen in a way that

CT
f pf = 0 (5.97)

Then the variation of the cost functional is identical to (5.84) and pf fulfills the constraint
equation. The system (5.96) and (5.97) can be solved for pf and ξ. Inserting pf from
(5.96) into (5.97) results in

CT
f (Φxf + DT

f ξ) = 0 (5.98)

Hence,
ξ = −(CT

f DT
f )−1CT

f Φxf

Now the costate variables can be calculated from (5.96)

pf = Φxf −DT
f (CT

f DT
f )−1CT

f Φxf (5.99)
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This equation can only be calculated if the quadratic matrix CT
f DT

f is nonsingular. Oth-
erwise, the boundary term cannot be removed from δJ except for the case Φxf = 0, i.e.
pf = 0.
Finally, the costate equations (5.94) can be integrated backwards in time, using the initial
conditions (5.99).
The variation of the control trajectory can be computed in the same way as for ODE-
systems (5.86) by

δu = −κBTp (5.100)

In the case of constrained MBS a Hamiltonian can be defined as well:

H(x,p,u,λ,µ, t) = L(x,u, t) + pT f(x,u,λ, t) + µTg(x) (5.101)

As a consequence, the state equations (5.90) can be formulated as

ẋ = Hp

0 = Hµ

(5.102a)
(5.102b)

Furthermore, the costate equations (5.94) read as

ṗ = −Hx

0 = Hλ

(5.103a)
(5.103b)

The update of the control variables can also be calculated as for the unconstrained case
(5.86).

δu = −κHu (5.104)

Application to Multibody Systems [143]:
If the equations of motions are formulated by the index 3 DAE system (2.51), (5.90)
a problem occurs in the boundary condition of the adjoint equations (5.99). The term
(CT

f DT
f ) is always singular due to zero-entries that result from the partial derivatives with

respect to the states x, i.e. with respect to q and v, Eq. (5.92). As a consequence, this
matrix cannot be inverted and the initial conditions cannot be formulated for the adjoint
variables pf , which have to be integrated backwards in time.
However, it can be shown that the index 2 Gear-Gupta-Leimkuhler (GGL) formulation,
cf. Eq. (2.76) in section 2.8.4, yields a regular matrix regarding to the boundary condition
(5.99). The second advantage of the GGL-formulation is that the adjoint equations are
also index 2 equations, which is beneficial for the numerical integration.
The GGL-formulation should be repeated and reads as

M(q)q̇ = M(q)v −GT (q)ν

M(q)v̇ = f(q,v,u)−GT (q)λ
g(q) = 0

G(q)v = 0

(5.105a)

(5.105b)
(5.105c)
(5.105d)
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The gradient method requires the time-variant matrices A, B, C and D, Eq. (5.93) that
result from a forward solution of the original DAEs. Hence, the GGL-formulation (5.105)
must be rewritten in the general state-space form (5.90). Therefore, the mass matrix has
to be inverted and the right hand side of the equations must be differentiated with respect
to q and v. However, these computations can be avoided.
If the differential equation

M(x)ẋ = f(x) (5.106)

is differentiated with respect to xi, it results in

∂M
∂xi

ẋ + M
∂ẋ
∂xi

=
∂f
∂xi

or
∂ẋ
∂xi

= M−1

(
∂f
∂xi
− ∂M
∂xi

ẋ
)

Now a new function can be introduced:

F(x, ẋ) = f(x)−M(x)ẋ (5.107)

As a result the Jacobian matrix of ẋ(x) is given by

A =
∂ẋ
∂x

= M−1 ∂F
∂x

∣∣∣∣
ẋ=M−1f

(5.108)

The Jacobian A can be derived from the Jacobian of F with respect to x where ẋ is kept
constant and inserted from the forward simulation of Eq. (5.106). If this procedure is
applied to the GGL-DAEs (5.105), it results in

A =
[

M−1Qq M−1Qv

M−1Vq M−1Vv

]
(5.109)

The abbreviations Q and V read as

Q(q,v, q̇) = M(q)v −GT (q)ν −M(q)q̇

V(q,v, v̇) = f(q,v,u)−GT (q)λ−M(q)v̇

(5.110a)

(5.110b)

The Lagrange multiplier ν will be zero and therefore it is not necessary to compute the
second term in (5.110a). Furthermore, the term M−1Qv is the identity matrix I(n×n) and
M−1Qq = 0 due to q̇ = v. As a consequence, the Jacobian (5.109) simplifies to

A =
[

0 I
M−1Vq M−1Vv

]
(5.111)

The remaining matrices B(t), C(t) and D(t) read as follows

B =
[

0
fu

]
(5.112)
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C =
[

0 −M−1GT

−M−1GT 0

]
(5.113)

D =
[

G 0
R G

]
, R = Dq (G(q)v) (5.114)

The costate variables p(t) and w(t), which are associated to q(t) and v(t), are introduced
for the adjoint equations (5.94). Furthermore, the Lagrange multipliers λ and ν in (5.105)
correspond to the adjoint multipliers µ and ξ.
As a result the adjoint equations (5.94) are formulated by

ṗ = −VT
qM−1w −GTµ−RT ξ − Lq

ẇ = −p− VT
vM−1w −GT ξ − Lv

0 = GM−1w

0 = GM−1p

(5.115a)

(5.115b)

(5.115c)

(5.115d)

With the matrix B from Eq. (5.112), the variation of the control u (5.100) reads as

δu = −κfTu w (5.116)

Finally, the boundary condition (5.99) is derived for the adjoint system (5.115). The
matrix CTDT reads as

CTDT =
[

0 −GM−1

−GM−1 0

] [
GT RT

0 GT

]
= −

[
0 GM−1GT

GM−1GT GM−1RT

]
(5.117)

This matrix is non-singular for the GGL-formulation (5.105), while it is always singular
for the original index 3 formulation ((5.90)). In the GGL-system the boundary condition
(5.99) of the adjoint system is given by[

p(tf )
w(tf )

]
= Pf

[
Φq(tf )
Φv(tf )

]
(5.118)

where the abbreviation Pf denotes the matrix

Pf =
[

I 0
0 I

]
−
[

GT RT

0 GT

]
︸ ︷︷ ︸

DT

[
0 GM−1GT

GM−1GT GM−1RT

]−1

︸ ︷︷ ︸
−(CTDT )−1

[
0 GM−1

GM−1 0

]
︸ ︷︷ ︸

−CT

∣∣∣∣∣∣∣∣∣∣
t=tf

(5.119)
The index 2 adjoint equations (5.115) are integrated backwards in time, starting from
(5.118). The update of the control δu is computed by Eq. (5.116).

5.5.2 Direct Methods: Reduction to Static Optimization Problems

The idea of direct methods is to transcribe the infinite dimensional OCP (5.36) to a finite
dimensional optimization problem, specifically a nonlinear programming (NLP) problem
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[14, 115]. In this context the procedure is called direct transcription method. Applications
are published e.g. in [28, 29, 30, 31, 32, 33, 34, 115].
Generally, it must be distinguished between a partly discretization, where the control
trajectory is discretized over the time interval and a full discretization, where control tra-
jectory and differential equations are discretized.
In the partly discretized procedure simulation and optimization are executed sequentially.
The model equations are solved numerically for the current guess of control parameters.
The control trajectory fulfills the differential equations in each iteration.
In the fully discretized method simulation and optimization are performed simultaneously.
The discretized differential equations enter as nonlinear constraints into the transcribed
optimization. During the iterations the constraints can be violated, but in the final solu-
tion they have to be fulfilled [115].

Partly discretization:
Generally, direct methods first subdivide the time interval [t0, tf ] into a certain number of
sub-intervals [t0, t1] , [t1, t2] , [t2, t3] etc. Then the control variables u(t) are defined at each
sub-interval [ti, ti+1]. The simplest way would be to define constant controls during one
interval. An improvement can be achieved with piecewise linear functions, as illustrated
in Fig. 5.5. Therefore, the control variables can be formulated as

ti+1 t

u(t)

ti

u(ti)

u(ti+1)

ti+1 t

u(t)

ti

u(ti)

u(ti+1)

u(τ)

τ

Δt

Figure 5.5: Piecewise linear control functions

u(τ) = ui + viτ, vi =
ui+1 − ui
ti+1 − ti

, τ ∈ [ti, ti+1] (5.120)

within one sufficiently small time interval. The term vi describes the slope of the linear
function. The controls at the end of an interval are calculated by

ui+1 = ui + vi(ti+1 − ti) (5.121)

Certainly, also polynomials of second order can be formulated.

u(τ) = a + bτ + cτ2

u̇(τ) = b + 2cτ

(5.122a)
(5.122b)
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The vectors a, b and c include unknown constants. These constants can be calculated by
inserting the boundary conditions

u(0) = ui = a

u̇(0) = vi = b

ui+1 = a + b∆t+ c∆t2

(5.123a)
(5.123b)

(5.123c)

Eqs. (5.123a) and (5.123b) formulate the initial values for a single time interval [ti, ti+1]
and (5.123c) describes the final value at ti+1. From (5.123c) the constant c can be calcu-
lated and furthermore the polynomial of second order (5.122a) can be specified as

u(τ) = ui + viτ +
ui+1 − ui − vi∆t

∆t2
τ2 (5.124)

The derivative of the control variable at the end time of an interval vi+1 can be calculated
from (5.122b) and results in

vi+1 = b + 2c∆t =
2ui+1 − 2ui − vi∆t

∆t
(5.125)

If N denotes the number of discretized time points for each control variable u(t) ∈ Rmc ,
an optimization problem with (N×mc) dimensions is achieved. In a general form, a partly
discretized OCP can be formulated by the system (5.126) [14, 77].

min
u

J(u) = Φ(x(tf )) +
N−1∑
i=0

ti+1∫
ti

L(x(t),u(t), t) dt

s.t. : ẋ = f(x,u, t), t ∈ [ti, ti+1] , i = 0, . . . , N − 1

x(t0) = x0, x(ti) = x(ti−), i = 0, . . . , N − 1

g(x(tN )) = 0

h(x,u, t) ≤ 0 ∀t ∈ [ti, ti+1] , i = 0, . . . , N − 1

(5.126a)

(5.126b)

(5.126c)

(5.126d)

(5.126e)

For the inverse problem the system (5.126) can be treated as black box [28], cf. Fig 5.6,
which is excited by the control variables u(t). By measuring the system outputs y(t) and
comparing them with the target signals ỹ(t), the cost functional (5.126a) can be evaluated
in each time interval [ti, ti+1]. Therefore, the form (5.39b) is used:

J(u) =

ti+1∫
ti

‖y(t)− ỹ(t)‖2 dt (5.127)

The idea of our approach is to discretize u(t), perform a numerical integration of the system
(5.126b) (e.g.: Matlab-solver ode45, ode15s, ode23s, ...) and compute the cost functional
(5.127). The numerical integration can be done without going into the structure of the
equations (5.126b).
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Figure 5.6: Optimal control approach which treats the MBS as black box

If the time intervals are chosen be be sufficiently small, the cost functional can be written
in the form

Ji(vi) ≈
1
2

[
‖y(ti)− ỹ(ti)‖2 + ‖y(ti+1)− ỹ(ti+1)‖2

]
(ti+1 − ti) (5.128)

Eq. (5.128) approximates the integral (5.127) by using the trapezoidal rule. Furthermore,
the slope vi of the linear function u(τ) does not affect the states x(ti) and hence only the
second part of (5.128) has to be minimized.

Ĵ(vi) =
1
2
‖y(ti+1)− ỹ(ti+1)‖2 +

ε

2
‖u(ti+1)‖2 → min (5.129)

This means that the cost functional has to be calculated at the end of each interval. Due
to the quadratic form of (5.129), the functional has an elliptical stationary point. This
fact is a big advantage for the minimization purpose, because local minima and the global
minimum coincide. However, this is only valid if the time interval is sufficiently small.
This effect is illustrated in Fig. 5.7, which shows the performance measure for different
step sizes. The performance measure of Fig. 5.7 are taken from the example of a nonlin-
ear oscillator, cf. section 7.1. In Fig. 5.7a and 5.7c a nominal step length of ∆t = 0.01s
was chosen to be sufficiently small. It can be seen that the performance measure has
a parabolic form and the minimum point has an elliptical structure. If the step size in
increased to ∆t = 0.05s (see Fig. 5.7b and 5.7d), the elliptical minimum point is not
distinctive and thus it can be problematic for the minimization task.
The term ε

2 ‖u(ti+1)‖2 in (5.129)is a so-called Tikhonov regularization term [7, 102]. This
regularization term causes the minimization of the variations of the control u. Hence,
the zigzagging trend of the input variables can be minimized depending on the scalar
weighting factor ε. However, ε should not be chosen too large, because then the opti-
mization problem would diverge from the inverse dynamics problem. The influence of the
Tikhonov-regularization is illustrated in Fig. 5.8 where the optimal control algorithm is
applied to the nonlinear oscillator from section 7.1. In this numerical example a step size
of ∆t = 0.005 s and a weighting factor of ε = 10−4 are used. In [40] weighting factors in
the range of ε = 10−4 · · · 10−8 are suggested. For the minimization of the cost functional
J(u) a steepest descent method (cf. section 5.2.1) can be used:

uk+1
i+1 = uki+1 + αkdki+1 (5.130)
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Figure 5.7: Performance measure with contour plot and gradient field for different step
sizes
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Figure 5.8: Influence of the Tikhonov regularization in the computed control variables

The descent direction in the steepest descent method is the negative gradient of the cost
functional dki+1 = −∇Ĵki . The step length αk is computed by a line search algorithm. Due
to the fact that only input and output variables are known in this black-box approach,
the gradient has to be calculated numerically. Therefore, the forward difference quotient
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is used.
∂Ĵki
∂uki,j

=
Ĵki (ukj + εkj , ti+1)− Ĵki (ukj , ti+1)

εkj
, j = 1, . . . ,mc (5.131)

The gradient is assembled from the individual changes of the performance measures:

∇Ĵki =

[
∂Ĵki
∂uki,1

,
∂Ĵki
∂uki,2

, · · · , ∂Ĵki
∂uki,mc

]T
(5.132)

To improve the convergence speed, a conjugate gradient method (see section 5.2.2) is
implemented instead of the steepest descent method. Hence, the descent direction is
calculated as

dki+1 = −∇Ĵki + βkdk−1
i+1 (5.133)

The minimization by the conjugate gradient method and the line search algorithm are
basically illustrated in Fig. 5.9. The algorithm is implemented in Matlab and applied
to specific academic examples, cf. chapter 7. The main steps of the algorithm, which is

α1

J(u)

α2

α3

Figure 5.9: Conjugate gradient method with a line search algorithm

implemented in Matlab, can be seen in the Nassi-Shneiderman diagram 5.10.

Full discretization:
In a full discretized version of the OCP the control trajectories and the differential equa-
tions (5.126b) are discretized as well. The discretization of the differential equations can
be done e.g. by a trapezoidal rule:

xi+1 − xi
ti+1 − ti

=
1
2

[f(xi,ui, ti) + f(xi+1,ui+1, ti+1)] , i = 0, 1, . . . , N − 1 (5.134)

As a consequence, the OCP can be formulated as [14, 77]

min
u

J(x,u) = Φ(xN ) +
N−1∑
i=0

ti+1 − ti
2

[L(xi,ui, ti) + L(xi+1,ui+1, ti+1)]

s.t. :
xi+1 − xi
ti+1 − ti

=
1
2

[f(xi,ui, ti) + f(xi+1,ui+1, ti+1)] , i = 0, . . . , N − 1

xi=0 = x0

g(xN ) = 0

h(xi,ui, ti) ≤ 0, i = 0, . . . , N

(5.135a)

(5.135b)

(5.135c)
(5.135d)
(5.135e)
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Figure 5.10: Nassi-Shneiderman diagram of the optimal control approach with a partly
discretization
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In contrast to a partially discretized scheme the number of optimization variables is dras-
tically higher (m+n)(N +1), but the differential equations (5.126) are already discretized
and hence they do not have to be integrated.

A piecewise discretization of inputs and the DAEs of a multibody system is presented
in [54, 65, 66, 67, 68, 69]. An application of the direct transcription method to flexible
MBS can be found in [5]. Direct optimal control algorithms which are applied to MBS in
Adams are published in [28].

5.5.3 Comparison of Direct and Indirect Methods

Indirect methods allow more insight into the structure of the optimal control problem.
Solutions are accurate and the adjoint variables can be used for sensitivity analysis and
controller design [77]. In direct methods the canonical equations do not have to be derived.
Constraints in the state variables can be treated easier and sometimes the convergence
area is larger compared to indirect methods. Another advantage is that initial guesses
for the costates are not required. Direct methods are most commonly used in practical
applications because of their applicability and robustness [14]. A classification of solution
strategies for OCPs is given in Fig. 5.11.
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Figure 5.11: Classification of solution strategies for optimal control problems [115]
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5.5.4 Software

The following list presents either free or commercially available direct optimal control
software that are based on partly or fully discretization [77, 115]:

• HQP (huge quadratic programming, direct multiple shooting)
http://hqp.sourceforge.net

• MUSCOD II (multiple shooting code for optimization)
http://www.iwr.uni-heidelberg.de/˜agbock/RESEARCH/muscod.php

• NTG (nonlinear trajectory generation, direct collocation)
http://www.cds.caltech.edu/˜murray/software/2002a ntg.html

• TOMLAB/PROPT (direct collocation)
http://tomdyn.com

• gOPT (direct single shooting)
http://www.psenterprise.com/gproms/index.html

• DYNOPT (direct collocation)
http://www.kirp.chtf.stuba.sk/moodle/course/view.php?id=187

• SOCS (sparse optimal control software, direct collocation) [14]
http://www.boeing.com/phantom/socs/

• OCPRSQP (direct collocation)

• DIRCOL (direct collocation)
http://www.sim.tu-darmstadt.de/sw/dircol.html

• IPOPT (interior point optimizer, direct collocation)
https://projects.coin-or.org/Ipopt
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A theory is something nobody believes, except
the person who made it. An experiment is
something everybody believes, except the
person who made it.

Albert Einstein

Chapter 6

Flatness-Based Trajectory
Tracking

In this section explicit control laws are derived for the control inputs u(t) ∈ Rmc in order
that the system outputs y(t) ∈ Rk follow a predefined desired trajectory yd(t) ∈ Rk. As a
basis, the nonlinear equations of motion are written in the state space form of the following
type [83]:

ẋ = f(x) +
mc∑
j=1

gj(x)uj

yi = hi(x) i = 1, ..., k

(6.1a)

(6.1b)

The state vector consists of the generalized coordinates and velocities x = [q, q̇]T ∈ R2n.
The following considerations are restricted to fully determined systems where the number
of inputs is identical to the number of outputs mc. The theory of exact linearization is
taken from [83, 91, 112, 135, 136, 137, 146, 165].
The considered examples in chapter 7 are all MIMO-systems. However, for reasons of
clarity the basic theory of exact linearization is firstly illustrated for SISO-systems.

6.1 Nonlinear Feedback for SISO-systems

The basic idea is to calculate the derivatives of the output y ∈ R up to a certain order
until the input u ∈ R explicitly appears.

6.1.1 Exact Input-Output Linearization

The subsequent methods are based on nonlinear systems that are given as affine input
systems (AI systems) of the form

ẋ = f(x) + g(x)u
y = h(x)

(6.2a)
(6.2b)
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The state vector is denoted as x ∈ R2n, the input as u ∈ R and the output as y ∈ R.
Furthermore, it is assumed that the vector fields f(x) and g(x) and the function h(x) are
sufficiently smooth, i.e. continuously differentiable.
The derivatives of y with respect to time are calculated from Eq. (6.2b) and the derivation
ẋ is inserted from (6.2a). This procedure is repeated until the input u appears in the rth

derivative of the output y.

y = h(x)
ẏ = Lfh(x) + Lgh(x)︸ ︷︷ ︸

=0

u

ÿ = L2
fh(x) + LgLfh(x)︸ ︷︷ ︸

=0

u

...
...

...
y(r−1) = Lr−1

f h(x) + LgL
r−2
f h(x)︸ ︷︷ ︸
=0

u

y(r) = Lrfh(x) + LgL
r−1
f h(x)︸ ︷︷ ︸
6=0

u

(6.3)

The terms Lfh(x) and Lgh(x) in Eq. (6.3) are called Lie-derivatives of the scalar function
h(x) along the vector fields f(x) and g(x). They are calculated by

Lfh(x) =
∂h

∂x
f(x), Lgh(x) =

∂h

∂x
g(x) (6.4)

Based on these derivatives, the relative degree r of the SISO-system can be defined:
The system (6.2) has the relative degree r at the point x◦, if the conditions

LgL
k
f h(x) = 0, k = 0, ..., (r − 2) ∀ x in the neighborhood of x◦

LgL
r−1
f h(x◦) 6= 0

(6.5a)

(6.5b)

are fulfilled [83, 165]. This means that the relative degree r is equal to the number of time
derivatives that have to be calculated from the output y until the input u explicitly arises.
From Eq. (6.3) the state control law can be formulated for the input u.

u =
1

LgL
r−1
f h(x)

(−Lrfh(x) + v) (6.6)

The control law (6.6) results in a linear input-output behavior in the form of an integrator
chain

y(r) = v (6.7)

6.1.2 Transformation to the Byrnes-Isidori Normal Form

The system (6.2) can be transformed to the so-called Byrnes-Isidori normal form by using
a local invertible diffeomorphism z = Φ(x). The nonlinear state-space transformation can
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be written in the form [83]

z = Φ(x) =

 z1
...
z2n

 =



h(x)
Lfh(x)

...
Lr−1

f h(x)
φr+1(x)

...
φ2n(x)


(6.8)

If r is strictly less than 2n, it is always possible to find (2n−r) functions φr+1(x), . . . , φ2n(x)
such that a local diffeomorphism is given in the neighborhood of x◦. The functions
φr+1(x), . . . , φ2n(x) can be chosen in order that Lgφk(x) = 0, k = (r + 1), ..., 2n for
all x in the neighborhood of x◦.
If the nonlinear state-space transformation is applied to the system (6.2), the transformed
system in Byrnes-Isidori normal form reads as [83, 91, 146, 165]

ż1 = z2

ż2 = z3
...

żr = Lrfh(Φ−1(z)) + LgL
r−1
f h(Φ−1(z))u = b(z) + a(z)u

żr+1 = Lfφr+1(Φ−1(z)) = qr+1(z)
...

ż2n = Lfφ2n(Φ−1(z)) = q2n(z)

y = z1

(6.9)

Fig. 6.1 illustrates the equations of the Byrnes-Isidori normal form. The input u can be

( ) ( )b a u+z z ∫rz rz
∫

1z y=u

…

2z
…

( )
1 2

i iz q z
r i n
=
+ ≤ ≤

1rz + nz

Figure 6.1: Block diagram of the Byrnes-Isidori normal form [83]

calculated from Eq. (6.9) in the same way as from Eq. (6.3), which is not given in the
new coordinates.

u =
1

a(z)
(−b(z) + v) =

1
LgL

r−1
f h(Φ−1(z))

(−Lrfh(Φ−1(z)) + v) (6.10)

The control law (6.10) transforms the system (6.2) or (6.9) into a system with an exact
linear input-output behavior from the new input v to the output y. Hence, the transfer
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matrix can be written as

G(s) =
Ŷ

V̂
=

1
sr

(6.11)

The resulting Byrnes-Isidori normal form splits the transformed system in a reachable and
observable system with the states ξ, dim(ξ) = r and a system with the states η, dim(η) =
(2n− r), which is not observable. The observable system consists of a chain of integrators
and presents an exact input-output-linearization. The non-observable system is called
internal dynamics of the system [135].

6.1.3 Zero Dynamics

The output-zeroing problem discusses how the initial states x0 and the control inputs u(t)
can be calculated in order that the output y(t) is equal to zero at any time [146]. This
problem can be solved by considering the Byrnes-Isidori normal form (6.9). The states of
the observable system are denoted by ξ = [z1, ..., zr]

T and the states of the non-observable
system by η = [zr+1, ..., z2n]T .

ż1 = z2

ż2 = z3
...

żr = b(ξ,η) + a(ξ,η)u

η̇ = q(ξ,η)

y = z1

(6.12)

From the condition y(t) = z1 = 0 it follows that all states of the observable system are
equal to zero z2 = z3 = · · · = zr = 0. Hence, the input u(t) can be calculated for the
output-zeroing problem [83, 112].

b(0,η) + a(0,η)u = 0⇒ u(t) = − b(0,η(t))
a(0,η(t))

(6.13)

The states η(t) of the non-observable system are a solution of the differential equation

η̇ = q(0,η) (6.14)

with the initial conditions ξ(0) = 0 and an arbitrary η(0) = η0. The differential equation
(6.14) describes the so-called internal dynamics of the system. If the outputs of the
internal dynamics are restricted to be zero, it is called zero-dynamics. The zero dynamics
and hence the dynamics of the non-observable system is generally nonlinear. The zero
dynamics is crucial regarding to the stability of the closed-loop system. The closed-circle-
system can only be stabilized with a stable zero dynamics, i.e. the system is a minimum
phase system [137]. A nonlinear minimum phase system is characterized by a locally
asymptotically stable equilibrium point ηs of the zero dynamics (6.14).
If the new input v is chosen as [91, 112]

v = −
r∑
j=1

aj−1ξj =−
r∑
j=1

aj−1L
j−1
f h(x) (6.15)
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and inserted in the control law (6.10)

u =
1

a(ξ,η)

−b(ξ,η)−
r∑
j=1

aj−1ξj

 =
1

LgL
r−1
f h(x)

−Lrfh(x)−
r∑
j=1

aj−1L
j−1
f h(x)



(6.16)

the closed loop reads as

ξ̇ = Arξ

η̇ = q(ξ,η)
y = ξ1

(6.17a)
(6.17b)
(6.17c)

with the dynamic matrix

Ar =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−a0 −a1 · · · −ar−1

 (6.18)

The coefficients aj , j = 0, ..., (r−1) can be chosen in a way that the matrix Ar is a Hurwitz
matrix. If (6.18) is a Hurwitz matrix and if the system (6.2) is locally exponentially
minimum phase at xs = 0 (i.e. ξs = 0, ηs = 0), the dynamic matrix of the linearized
closed circle (6.17) is also a Hurwitz matrix. The system is locally exponentially minimum
phase, if all eigenvalues of ∂q(0,ηs)/∂η have a negative real part [91, 137]. The dynamic
matrix of the linearized closed loop reads as

d

dt

[
∆ξ
∆η

]
=

[
Ar 0

∂q(0,ηs)
∂ξ

∂q(0,ηs)
∂η

] [
∆ξ
∆η

]
(6.19)

If the dynamic matrix (6.19) is a Hurwitz matrix, the equilibrium point xs = 0 (i.e.
ξs = 0, ηs = 0) of the closed circle is locally asymptotically stable.
This means that the exact input-output linearization results in a stable closed circle, if
the system is asymptotically minimum phase.

6.1.4 Exact Input-State Linearization

The zero dynamics vanishes, if the relative degree is equal to the number of states r = 2n.
Then the control law (6.10) reads as

u =
1

a(z)
(−b(z) + v) =

1
LgL

n−1
f h(Φ−1(z))

(−Lnf h(Φ−1(z)) + v) (6.20)
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If this control law is inserted in the Byrnes-Isidori normal form (6.9 ), it simplifies to

ż1 = z2

ż2 = z3
...

ż2n = v

(6.21)

This system can also be written in the form

ż =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 0 0

 z +


0
0
0
1

 v (6.22)

The system (6.22) is known as Brunovsky canonical form [83]. It can be compared with
the normal form of a linear system. The equations of the closed loop system (6.22) describe
a system that is linear and controllable. Hence, it can be concluded that any nonlinear
system with a relative degree r = 2n can be transformed into a linear and controllable
system. Fig. 6.2 illustrates the Brunovsky canonical form. A parameterization of a

∫
2nv z= 2nz

∫
1z y=2z

… ∫
3z

Figure 6.2: Block diagram of the Brunovsky canonical form [83]

fictitious output y = λ(x) with a relative degree r = 2n can always be found, if the
conditions

Lgλ(x) = LgLfλ(x) = · · · = LgL
2n−2
f λ(x) = 0 ∀ x

LgL
2n−1
f λ(x◦) 6= 0

(6.23a)

(6.23b)

are fulfilled [83]. The function λ(x) is involved in a system of partial differential equations
(PDEs) (6.23a). However, this system of higher order is equivalent to a system of first
order partial differential equations of the co-called Frobenius-type.

Lgλ(x) = Ladfg(x)λ(x) = · · · = Lad2n−2
f g(x)λ(x) = 0

Lad2n−1
f g(x)λ(x◦) 6= 0

(6.24a)

(6.24b)

For the computations in Eq. (6.24) the definitions of a Lie-bracket should be mentioned.
The Lie-bracket [f ,g](x) is defined as [91, 95]

[f ,g] (x) =
∂g
∂x

f(x)− ∂f
∂x

g(x) (6.25)

The kth Lie bracket can be calculated recursively by

adkf g(x) =
[
f , adk−1

f g
]

(x), ad0
f g(x) = g(x) (6.26)
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The existence of a solution λ(x) of the system of partial differential equations of first order
(6.24a) is strongly related to the conditions [83]

the matrix
[
g, adfg, . . . , ad2n−1

f g
]

(x◦) has rank 2n

the distribution D = span
{
g, adfg, . . . , ad2n−2

f g
}

is involutive in a neighborhood of x◦

(6.27a)

(6.27b)

If the conditions (6.27) are fulfilled, the system is exactly input-state linearizable in a
neighborhood of x◦. It is assumed that the output y = h(x) has a relative degree r = 2n.
Then the derivatives (6.3) can be written in the form

y = h(x)
ẏ = Lfh(x)
ÿ = L2

fh(x)
...

...
...

y(2n−1) = L2n−1
f h(x)

y(2n) = L2n
f h(x) + LgL

2n−1
f h(x)u

(6.28)

Due to the regular transformation (6.8) in the case r = 2n, all states x can be parameter-
ized by the output y and its time derivatives up to order 2n− 1.

x = ψ1

(
y, ẏ, ..., y(2n−1)

)
= Φ−1(z) (6.29)

The states z are formed by the outputs and its time derivatives z =
[
y, ẏ, ..., y(2n−1)

]T
.

Furthermore, the input u can be parameterized by the output y and its time derivatives
up to order 2n, cf. the last equation in (6.28).

u = ψ2

(
y, ẏ, ..., y(2n)

)
=
y(2n) − L2n

f h(Φ−1(z))
LgL

2n−1
f h(Φ−1(z))

(6.30)

By using the parameterizations (6.29) and (6.30) the term differential flatness can be
explained. A dynamical system of the form (6.2) is called differentially flat, if all state
variables and input variables can be expressed by the output y and its derivatives with
respect to time up to a certain order. The output of such a system is called flat output.
In a SISO-system the characteristics of differential flatness and exact input-state lineariza-
tion are coherent. A system that is input-state linearizable, is differentially flat and each
output with a relative degree of r = 2n is a flat output.

6.1.5 Trajectory Tracking Control

The goal of the trajectory tracking control is to design a controller in order that the out-
put y(t) follows a predefined sufficiently often differentiable desired trajectory yd(t). The
parameterization (6.30) of the input u results in a feedforward control that does not take
the error between y(t) and yd(t) into account.
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In the following considerations it is assumed that all state variables x can physically be
measured. If this is not the case, the control law has to be extended by an observer
which estimates the non-measurable states x̂. Furthermore, the trajectory tracking con-
trol can be applied to an output which is not differentially flat. In such a case another
parametrization of the non-flat output can be found. The implementation of an observer
and a treatment of non-flat outputs are not considered here but can be found e.g. in [91].

The basis of the trajectory tracking control is the system given in Brunovsky canoni-
cal form (6.22). If the error e1 = z1 − yd = y − yd is introduced, the derivatives of the
error with respect to time e2 = ė1, e3 = ė2 read as

ė1 = ż1 − ẏd = ẏ − ẏd
ė2 = ż2 − ÿd = ÿ − ÿd

...
ė2n = ż2n − y(2n)

d = v − y(2n)
d = y(2n) − y(2n)

d

(6.31)

This results in a control law with parameters aj , j = 0, ..., (2n − 1) that can be chosen
arbitrarily. If the parameters are chosen properly (pole setting), an asymptotically stable
error dynamic is obtained [135].


ė1

ė2
...
ė2n

 =


0 1 0 0 0
0 0 1 0 0
...

... · · · . . .
...

0 0 · · · 0 1
−a0 −a1 · · · −a2n−2 −a2n−1


︸ ︷︷ ︸

Ae


e1

e2
...
e2n

 (6.32)

The matrix Ae in (6.32) is called error dynamic matrix, whose eigenvalues can be influ-
enced by the parameters aj . As a consequence, the control law (6.30) for the input u is
extended by the trajectory error e1 = y− yd and its time derivatives up to order (2n− 1).

u =
1

LgL
2n−1
f h(x)

y(2n)
d (t)− L2n

f h(x)−
2n∑
j=1

aj−1

(
y(j−1) − y(j−1)

d (t)
) (6.33)

The (j − 1)th derivative of the output y is equal to the Lie-derivative y(j−1) = Lj−1
f h(x).

Again, it should be mentioned that the control law (6.33) for the trajectory tracking prob-
lem can only be used, if all states x can be measured.

Exact Feedforward Linearization with Output Stabilization:
In the case where no measurements of the outputs exist, the flatness-based control can be
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designed by the parameterizations (6.29) and (6.30).

xd = ψ1

(
yd, ẏd, ..., y

(2n−1)
d

)
= Φ−1(zd)

ud = ψ2

(
yd, ẏd, ..., y

(2n)
d

)
=
y

(2n)
d (t)− L2n

f h(xd)
LgL

2n−1
f h(xd)

(6.34a)

(6.34b)

The states zd in the new coordinates include the desired outputs and its time derivatives

zd =
[
yd, ẏd, ..., y

(2n−1)
d

]T
. The flatness-based control ud(t) (6.34b) is also known as exact

feedforward linearization [136].
If the desired outputs yd(t) are consistent with the initial conditions x0 of the system
(6.2), the mathematical model is exact and no parameter variations and disturbances
occur, the flatness-based control ud(t) applied to the system (6.2) results exactly in the
desired outputs yd(t) [83].
However, if the initial conditions are not consistent or parameters variations occur, the
solution will drift apart from the desired solution. For sufficiently small disturbances a
linear controller can be used to counterbalance the disturbances (feedback control, cf. Fig.
6.3). Hence, the flatness-based control is extended by a control law uc. If a proportional-
integral controller (PI controller) is used, the control algorithm reads as

uc = kpwc +

t∫
0

wc dt, wc = w − wd (6.35)

The term w = l(x) denotes the measurable variables. The control law of the PI-controller
(6.35) is added to the flatness-based control ud.

u = ud + uc (6.36)

The procedure (6.36) is called two-degree-of-freedom design and is illustrated in Fig. 6.3.
The linear PI-controller can be justified by the fact that the flatness-based control ud(t)
still results in system trajectories x(t) that are sufficiently near the desired trajectories
xd(t).

6.2 Nonlinear Feedback for MIMO-systems

6.2.1 Exact Input-Output Linearization

In this section the equations of motion of a multibody system with multiple inputs and
multiple outputs (MIMO) are given as system with affine inputs. The state vector x ∈ R2n

is summarized by x = [q,v]T , the inputs by u = [u1, . . . umc ]
T ∈ Rmc and the outputs by

y = [y1, . . . ymc ]
T ∈ Rmc , i.e. the number of inputs is identical to the number of outputs.
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t
ud u

y
flatness-based 

controltrajectory yd, …, yd
(n)

systemd

uc

w
control
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parameter

d
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Figure 6.3: Two-degree-of-freedom design of a trajectory tracking control [91, 112]

This yields a system of the form [83]:

ẋ = f(x) +
mc∑
j=1

gj(x)uj

y1 = h1(x)
...

ymc = hmc(x)

(6.37)

Furthermore, it is assumed that the vector fields f(x) and gj(x) as well as the functions
hj(x) are sufficiently smooth, i.e. continuously differentiable.
The (vector) relative degree {r1, . . . rmc} , r =

∑m
j=1 rj ≤ 2n can be defined at the point

x◦, if the following conditions are fulfilled [83]:

LgjL
k
f hi(x) = 0, j = 1, ...,mc, i = 1, ...,mc, k = 0, ..., (ri − 2)

∀ x in the neighborhood of x◦

Furthermore, the (mc ×mc) decoupling matrix

A(x) =


Lg1L

r1−1
f h1(x) · · · LgmcL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmcL

r2−1
f h2(x)

...
. . .

...
Lg1L

rmc−1
f hmc(x) · · · LgmcL

rmc−1
f hmc(x)


must be regular.

(6.38a)

(6.38b)
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If the system (6.37) has the (vector) relative degree {r1, . . . rmc}, the derivatives of the
output yj = hj(x) in the neighborhood x◦ read as

yj = hj(x)
ẏj = Lfhj(x) + Lg1hj(x)︸ ︷︷ ︸

=0

u1 + · · ·+ Lgmchj(x)︸ ︷︷ ︸
=0

umc

ÿj = L2
fhj(x) + Lg1Lfhj(x)︸ ︷︷ ︸

=0

u1 + · · ·+ LgmcLfhj(x)︸ ︷︷ ︸
=0

umc

...
...

...
y

(rj−1)
j = L

rj−1
f hj(x) + Lg1L

rj−2
f hj(x)︸ ︷︷ ︸

=0

u1 + · · ·+ LgmcL
rj−2
f hj(x)︸ ︷︷ ︸
=0

umc

y
(rj)
j = L

rj
f hj(x) + Lg1L

rj−1
f hj(x)u1 + · · ·+ LgmcL

rj−1
f hj(x)umc

(6.39)

If these derivatives are applied to all outputs yj = hj(x), j = 1, ...,mc, the last equation
in (6.39) is extended to

y
(r1)
1
...

y
(rmc−1)
mc−1

y
(rmc )
mc


︸ ︷︷ ︸

v

=


Lr1f h1(x)

...
L
rmc−1
f hmc−1(x)
L
rmc
f hmc(x)


︸ ︷︷ ︸

b(x)

+A(x)


u1
...

umc−1

umc


︸ ︷︷ ︸

u

(6.40)

This equation can be rearranged to find a state-space control law for the inputs u in a
neighborhood of x◦ [83, 91]:

u = A−1(x) (v − b(x)) (6.41)

It can be seen that the control law (6.41) for MIMO-systems is of the same type as the
control law for SISO-systems (6.10). Eq. (6.41) results in an exact linear input-output
behavior from the new inputs v = [v1, ..., vmc ]T to the outputs y = [y1, ..., ymc ]T in the
form of mc integrator chains, which read as

y1
...

y
(rmc−1)
mc−1

y
(rmc )
mc

 =


v1
...

vmc−1

vmc

 (6.42)
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6.2.2 Transformation to the Byrnes-Isidori Normal Form

The nonlinear state-space transformation, which transforms the system (6.37) to the
Byrnes-Isidori normal form, can also be applied to MIMO-systems [83].

z = Φ(x) =

 z1
...
z2n

 =
[
ξ
η

]
=



h1(x)
...

Lr1−1
f h1(x)

...
hmc(x)

...
L
rmc−1
f hmc(x)
φr+1(x)

...
φ2n(x)



(6.43)

In contrast to SISO-systems, the functions Φr+1(x), ...,Φ2n(x) cannot be chosen such
that Lgjφk(x) = 0, j = 1, ...,mc, k = (r + 1), ..., 2n is fulfilled, except the distribution
G0 = span {g1, ...,gmc} is involutive in a neighborhood of x◦ [83].
If the state-space transformation (6.43) is applied to the MIMO-system (6.37), the result-
ing Byrnes-Isidori normal form reads as [83, 91]

ξ̇1,1 = ξ1,2

ξ̇1,2 = ξ1,3
...

ξ̇1,r1 = b̃1(ξ,η) +
mc∑
j=1

Ã1,j(ξ,η)uj

...
...
...

ξ̇mc,1 = ξmc,2
ξ̇mc,2 = ξmc,3

...

ξ̇mc,rmc = b̃mc(ξ,η) +
mc∑
j=1

Ãmc,j(ξ,η)uj

η̇1 = q1(ξ,η) +
mc∑
j=1

P1,j(ξ,η)uj

...
...
...

η̇2n−r = q2n−r(ξ,η) +
mc∑
j=1

P2n−r,j(ξ, η)uj

y = [ξ1,1, ξ2,1, ..., ξmc,1]T

(6.44)
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The abbreviations b̃j(ξ,η), Ãl,j(ξ,η), qi(ξ,η) and Pi,i(ξ,η) stand for

b̃j(ξ,η) = bj(Φ−1(ξ,η)) = L
rj
f hj(Φ

−1(ξ,η)), j = 1, ...,mc

Ãl,j(ξ,η) = Al,j(Φ−1(ξ,η)) = LgjL
rl−1
f hl(Φ−1(ξ,η)) j, l = 1, ...,mc

qi(ξ,η) = Lfφr+i(Φ−1(ξ,η)), i = 1, ..., (2n− r)
Pi,i(ξ,η) = Lgjφr+i(Φ

−1(ξ,η)), i = 1, ..., (2n− r), l = 1, ...,mc

(6.45a)

(6.45b)

(6.45c)

(6.45d)

Hence, the control law (6.41) in the new coordinates reads as

u = Ã−1(ξ,η) (v − b(ξ,η)) (6.46)

6.2.3 Zero Dynamics

The stability of a closed MIMO-system is analogous to that of SISO-systems. The method
of exact input-output linearization yields only in a stable closed circuit, if the zero dy-
namics is asymptotically stable and hence that the system is minimum phase. The zero
dynamics of a MIMO-system reads as

η̇ = q(0,η) + P(0,η)Ã−1(0,η)
(
−b̃(0,η)

)
(6.47)

6.2.4 Exact Input-State Linearization

If the (vector) relative degree {r1, r2, ..., rmc} is equal to the number of states
r =

∑mc
j=1 rj = 2n, the zero dynamics vanishes. Fictitious output variables λ1(x), ..., λmc(x)

with the (vector) relative degree r =
∑mc

j=1 rj = 2n can be found as a solution of the PDEs
[83]

LgjL
k
f λi(x) = 0, j = 1, ...,mc, i = 1, ...,mc, k = 0, ..., (ri − 2) (6.48)

Furthermore, the decoupling matrix A(x) must be regular as in the case of the input-
output linearization. The PDEs (6.48) can also be written as PDEs of first order in the
Frobenius-form [91].

Ladkf gj(x)λi(x) = 0, j = 1, ...,mc, i = 1, ...,mc, k = 0, ..., (ri − 2) (6.49)

The existence of solutions λ1(x), ..., λmc(x) is strongly related to the fact that the system
of PDEs (6.49) fulfills following conditions: (i) the decoupling matrix A(x) is regular and
(ii) the distribution

Gi(x) = span
{
adkf gj(x) : 0 ≤ k ≤ i, 1 ≤ j ≤ mc

}
(6.50)

fulfills the conditions

G0(x◦) has rank mc

Gi(x) has constant rank in the neighborhood x◦ ∀ i = 1, ..., (2n− 1)
G2n−1(x◦) has rank 2n
Gi(x) is involutive in the neighborhood of x◦ ∀ i = 0, ..., (2n− 2)

(6.51a)
(6.51b)
(6.51c)
(6.51d)
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6.3. FLATNESS BASED TRAJECTORY TRACKING

for the (vector) relative degree {r1, r2, ..., rmc}, r =
∑mc

j=1 rj = 2n. If these conditions are
fulfilled, the system (6.37) is exactly input-state linearizable in the neighborhood of x◦

[83].
The (vector) relative degree {r1, r2, ..., rmc} can be calculated by the auxiliary variables

δi = rank (Gi(x◦))− rank (Gi−1(x◦)) , i = 1, ..., (2n− 1) (6.52)

The component rj , j = 1, ...,mc of the (vector) relative degree is always by one greater
than the number of δi’s, i = 1, ..., (2n− 1), which are greater or equal to j [91].
By using the state-space transformation (6.43) and the control law (6.46) the system (6.37)
is transformed in an exact linear system with the new states z and the new inputs v. The
linear system consists of mc integrator chains of the length {r1, ..., rmc}. This form is also
known as Brunovsky canonical form, Eq. (6.22).

An important difference between the linearization of SISO-systems and MIMO-systems
is the connection between differential flatness and input-state linearization. In SISO-
systems these two characteristics are strongly related. A differentially flat SISO-system is
input-state linearizable and vice versa. In a MIMO-system a flatness based parametriza-
tion of state- and input variables can be found, even if the system is not input-state-
linearizable. On the other hand, an input-state linearizable system is always differentially
flat [91, 95, 112].

6.2.5 Trajectory Tracking Control

The control laws (6.41) or (6.46) can furthermore be extended by a stabilization term as
it was performed for SISO-systems, Eq. (6.33).

u = A−1(x)

v − b(x)−


r1∑
j=1

a1,j−1

(
Lj−1

f h1(x)− y(j−1)
1,d (t)

)
...

rmc∑
j=1

amc,j−1

(
Lj−1

f hmc(x)− y(j−1)
mc,d

(t)
)


 (6.53)

6.3 Flatness Based Trajectory Tracking

As already mentioned, a flatness-based parameterization of all input- and state variables
can be found for a MIMO-system, even if the conditions (6.38) and (6.51) are not fulfilled
[131]. As a consequence, the large symbolic computations for the nonlinear coordinate
transformation (6.8), (6.43) do not have to be performed.
Differential flatness was introduced by [57, 58]. The following section gives a definition of
differential flatness as it can also be found e.g. in [82, 95, 131].
A general nonlinear MIMO-system with the states x ∈ R2n and the inputs u ∈ Rmc of the
form

ẋ = f(x,u), x(0) = x0 (6.54)

is considered. The nonlinear system (6.54) is called differentially flat, if a fictitious output
y = [y1, ..., ymc ]T with mc = dim(u) exists, that fulfills the following conditions:
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6.3. FLATNESS BASED TRAJECTORY TRACKING

(i) The variables yi, i = 1, ...,mc can be parameterized by the system variables xj ,
j = 1, ..., 2n and ui, i = 1, ...,mc and a finite number of derivatives with respect
to time u(k)

i , k = 1, ..., αi. This means that the fictitious output of the nonlinear
system (6.54) can be parameterized by

y = φ
(
x, u1, . . . , u

(α1)
1 , . . . , umc , . . . , u

(αmc )
mc

)
= φ

(
x,u, u̇, . . . ,u(α)

) (6.55)

(ii) The system variables xi, i = 1, ..., 2n and ui, i = 1, ...,mc can be parameterized by
functions of yi, i = 1, ...,mc and a finite number of derivatives with respect to time
y

(k)
i , k = 1, ..., βi, i.e.

x = ψ1

(
y1, . . . , y

(β1−1)
1 , . . . , ymc , . . . , y

(βmc−1)
mc

)
= ψ1

(
y, ẏ, . . . ,y(β−1)

)
u = ψ2

(
y1, . . . , y

(β1)
1 , . . . , ymc , . . . , y

(βmc )
mc

)
= ψ2

(
y, ẏ, . . . ,y(β)

)
(6.56a)

(6.56b)

(iii) The components of y are differentially independent, i.e. they do not fulfill differential
equations of the form

φ
(
y, ẏ, . . . ,y(γ)

)
= 0 (6.57)

If these conditions are fulfilled at least locally, the fictitious output (6.55) is called flat
output and the system (6.54) is called flat [131].
A flatness-based parametrization can be performed directly based on the equations of
motion. The state-space representation (ODEs of first order) is not required. As a conse-
quence, the nonlinear control law is drastically simplified.

In [21] it is shown that the number of necessary time derivatives β of the output (6.56) is
related to the index i of the DAEs with control constraints. The value of β is smaller by
one than the index i of the DAEs (4.2).

β = i− 1 (6.58)

If the flatness-based trajectory tracking is compared to the DAE-approach with control
constraints (cf. section 4), it can be stated that the DAE-approach can be applied easier to
arbitrary outputs and it requires less pre-computations [137]. However, the DAE-approach
is numerically less efficient. On the other side it should be mentioned that an analytical
solution based on the flatness-based control can only be found for small multibody systems.
It can be very complicated and even impossible to find an analytical solution for larger
multibody systems [21, 136].
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Make things as simple as possible, but not
simpler.

Albert Einstein

Chapter 7

Academic Examples

Three academic examples are considered in this section. The first example represents
a nonlinear oscillator which is fully actuated. The second example is an underactuated
planar overhead crane and the third example an underactuated 3D-rotary crane. All
these examples illustrate an inverse problem where a mass (or two masses) should follow
a pre-defined sufficiently smooth trajectory. The control inputs are computed by using
the different methods described in the previous sections, namely the DAE-approach with
control constraints, the optimal control and the flatness-based trajectory tracking control.
The basis of all these nonlinear models are the equations of motion, which can be derived
in a symbolic form, either as ODEs with minimal coordinates or as DAEs with redundant
coordinates.
It should be mentioned that such problems are typical examples in nonlinear control and
hence similar models can be found e.g. in [12, 13, 21, 25, 26, 52]. A flatness-based
parameterization and a solution of the DAE-approach of a planar overhead crane are
given in [12, 13]. The DAE-approach applied to an independent coordinates formulation
is presented in [21]. In [25] a slightly different DAE-method is shown for the planar crane
with redundant coordinates. In [26] the equations of motion, which are based on redundant
coordinates, are derived for the 3D rotary crane. A flatness-based parameterization, which
is based on independent coordinates of a similar rotating tower crane, can be found in [52].
In contrast to these references, the flatness-based parameterization and the DAE-approach
of the examples in section 7.1, 7.2 and 7.3 are related to redundant coordinates. From the
knowledge of the author it is the first time that the Kelley-Bryson method is applied to
such examples. Especially the implementation for redundant coordinates can be seen as
scientific novelty.

7.1 Nonlinear Oscillator

7.1.1 Problem Description

A typical example of a fully actuated system in the form of a nonlinear two-mass-oscillator
should be considered, Fig. 7.1. The generalized coordinates q = [y1, y2]T represent the
positions of the two masses as well as the outputs y of the system. The inputs u = [u1, u2]T

are displacements, which should be determined in a way that y is identical to a predefined
desired motion yd. Hence, it can be seen that the number of DOFs is identical to the
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7.1. NONLINEAR OSCILLATOR

number of inputs and that the system is fully actuated.
The springs c1 and c3, as well as the damper k, are linear elements. The spring c2 is
modeled as nonlinear spring with the force Fc2 = α(y2 − y1)3.
The target signals are defined as harmonic sinusoidal curves (7.1), Fig. 7.2.

y2y1u1 u2

m1 m2

c1 c2 c3

k

Figure 7.1: Nonlinear Oscillator

y1,d(t) = Ŷ1 sin(2πf1t), Ŷ1 = 2mm, f1 = 1Hz

y2,d(t) = Ŷ2 sin(2πf2t) +
Ŷ2

3
sin(3 · 2πf2t), Ŷ2 = 5mm, f1 = 1.5Hz

(7.1)

For numerical computations the following parameters are used:

m1 = m2 = 0.5 kg, c1 = c3 = 150N/m, k = 1.5Ns/m, α = 2 · 106N/m3

7.1.2 Equations of Motion

The equations of motion can be derived by applying Newton’s second law. Due to the
formulation with generalized coordinates, the system is given in the form (4.4b). Geometric
constraints are not required and hence the equations of motion are given by the ODEs[

m1 0
0 m2

]
·

[
ÿ1

ÿ2

]
=

[
−c1y1 + α(y2 − y1)3 + k(ẏ2 − ẏ1)
−c3y2 − α(y2 − y1)3 − k(ẏ2 − ẏ1)

]
−

[
−c1 0

0 −c3

]
·

[
u1

u2

]
(7.2)

⇔Mv̇ = f −BTu

7.1.3 DAE Approach with Control Constraints

The control constraints (4.4c) are formulated by

c(q, t) = Φ(q)− γ(t) =
[
y1

y2

]
−
[
y1,d

y2,d

]
=
[

0
0

]
(7.3)

The equations of motion (7.2) in combination with the control constraints (7.3) yield an
index 3 DAE. Two differentiations with respect to time yield the control constraints at
acceleration level (4.7):

Cv̇ + ξ = Cv̇ + Ċv︸︷︷︸
=0

−γ̈ =
[

1 0
0 1

]
·
[
ÿ1

ÿ2

]
−
[
ÿ1,d

ÿ2,d

]
=
[

0
0

]
(7.4)

Hence, the projection matrix C is simply the (2×2) identity matrix C = eye(2). By using
the notations of [21], it can be shown that the control constraints (7.2) of the system (7.3)
are characterized by an orthogonal realization. Eq. (4.12) yields

p = rank(CM−1BT ) = 2 = mc (7.5)
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Figure 7.2: Target signals y1,d(t), y2,d(t)

and hence the first row in Table 4.1 is fulfilled.
The projection method (4.10) and the numerical discretization by the implicit Euler
method (4.13) are applied to the system (7.2), (7.3). A step size of ∆t = 0.01 s is used for
time discretization. The results are shown in Fig. 7.4.

7.1.4 Flatness-Based Trajectory Tracking

The analytical solution for the control inputs u1(t) and u2(t) can directly be derived from
the equations of motion (7.2).

u1 =
m1

c1
ÿ1,d + y1,d −

α

c1
(y2,d − y1,d)3 − k

c1
(ẏ2,d − ẏ1,d)

u2 =
m2

c3
ÿ2,d + y2,d +

α

c3
(y2,d − y1,d)3 +

k

c3
(ẏ2,d − ẏ1,d)

(7.6a)

(7.6b)

Due to the possible parameterizations of the inputs u1 and u2 it can be stated that the
system is differentially flat and the outputs y1 and y2 are flat outputs. In the parame-
terizations (7.6) it can be seen that the derivatives of the outputs up to second order are
required.

u1 = u1 (y1,d, ẏ1,d, ÿ1,d, y2,d, ẏ2,d)
u2 = u2 (y1,d, ẏ1,d, y2,d, ẏ2,d, ÿ2,d)

(7.7a)
(7.7b)

By using the definition (6.58), it can be verified that the equations of motion are of index
3.

i = β + 1 = 3 (7.8)

The highest number of derivation applied to the output y is denoted as β the index of the
governing DAEs is denoted as i.
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7.1. NONLINEAR OSCILLATOR

If the equations of motion (7.2) are written in the form of an affine input system (6.37),
it results in


ẋ1

ẋ2

ẋ3

ẋ4

 =


x3

x4

− c1
m1
x1 + α

m1
(x2 − x1)3 + k

m1
(x4 − x3)

− c3
m2
x2 − α

m2
(x2 − x1)3 − k

m2
(x4 − x3)


︸ ︷︷ ︸

f(x)

+


0
0
c1
m1

0


︸ ︷︷ ︸
g1(x)

u1 +


0
0
0
c3
m2


︸ ︷︷ ︸
g2(x)

u2

y1 = x1

y2 = x2

(7.9a)

(7.9b)
(7.9c)

If the necessary Lie-derivatives are computed, the definitions (6.38) and (6.51) can be
verified. The (vector) relative degree results in

{r1, r2} = {2, 2} , r = r1 + r2 = 4 = 2n (7.10)

The decoupling matrix (6.38b) results in the regular matrix

A(x) =
[ c1

m1
0

0 c3
m2

]
(7.11)

Furthermore, all conditions (6.51) are fulfilled and hence it can be stated that the system
is exactly input-state linearizable.

7.1.5 Optimal Control

The direct optimal control algorithm from section 5.5.2 is applied to the system (7.2). A
step size of ∆t = 0.005 s is used for time discretization. To reduce the zig-zagging effect, a
Tikhonov-regularization term was introduced with a weighting factor ε = 10−4. Fig. 7.3
illustrates the convergence behavior within one time interval. Contour plot and gradient
field from the performance measure Ĵ(vi) are shown. It can be seen that the initial point
at the beginning of the time interval and the global minimum are close together. This
results from the short step size ∆t.

Furthermore, the indirect optimal control from section 5.5.1 is applied to the system
(7.2). The optimality conditions (5.53) are formulated in combination with the boundary
conditions (5.54) and the transversality conditions (5.55). Then the solution strategy from
section 5.4.4 is applied to the resulting system of equations.
For that reason the equations of motion (7.2) are formulated in state-space form. The
state variables x1 = y1, x2 = y2, x3 = ẏ1, x4 = ẏ2 are introduced and the equations of
motion result in

1 0 0 0
0 1 0 0
0 0 m1 0
0 0 0 m2

 ·

ẋ1

ẋ2

ẋ3

ẋ4

 =


x3

x4

−c1x1 + α(x2 − x1)3 + k(x4 − x3) + c1u1

−c3x2 − α(x2 − x1)3 − k(x4 − x3) + c3u2

 (7.12)
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Figure 7.3: Contour plot and gradient field within one time interval

The cost functional for the inverse problem is formulated by

J(u) =

tf∫
t0

{
1
2

(
x1 − Ŷ1 sin(2πf1t)

)2
+

1
2

(
x2 − (Ŷ2 sin(2πf2t) + Ŷ2

3 sin(3 · 2πf2t))
)2

+

+
ε1

2
u2

1 +
ε2

2
u2

2

}
dt

(7.13)
Cost functional (7.13) and equations of motion in state-space form (7.12) are used to

calculate the Hamiltonian (5.52). The Hamiltonian is used to formulate the the state- and
costate equations (5.53). By using the optimality condition Hu = 0 (5.53c), the inputs
u1 and u2 are calculated. These variables can be formulated as function of the states x
and the costates p. The resulting control input is inserted in the conditions (5.53a) and
(5.53b) which yields a two-point BVP. The following boundary conditions are used:

x(t0) =


0m
0m

0.0126m/s
0.0942m/s

 , x(tf ) =


0m
0m

0.0126m/s
−0.0942m/s

 (7.14)

The symbolic computations are performed in the software Mathematica. They are not
explicitly presented because of the lengthly expressions. The BVP is numerically solved
by using the Matlab-solver bvp4c.
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7.1.6 Results
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Figure 7.4: Inputs of the nonlinear oscillator
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Figure 7.5: Outputs of the nonlinear oscillator

Fig. 7.4 shows the computed inputs of the nonlinear oscillator. The black curves present
the flatness-based solution (7.6), which is taken as reference. The blue dotdashed lines
show the solution from the DAE approach with control constraints. The red dashed
curves present the solution from the direct optimal control algorithm. The solution of
the optimal control is smoothed due to the Tikhonov regularization term. Without this
regularization the solution would tend to be unsteady, as it was already presented in Fig.
5.8.
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Figure 7.6: State variables of the nonlinear oscillator
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Figure 7.7: Costate variables of the nonlinear oscillator
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The solutions of the different approaches are taken as inputs in a forward simulation. The
resulting outputs are shown in Fig. 7.5. It can be seen that all inputs yield the same
outputs which are congruent with the predefined target signals. In Fig. 7.6 and 7.7 the
results of the indirect optimal control approach are presented. Fig. 7.6 shows the state
variables x(t), i.e. the positions and velocities of the two masses. In Fig. 7.7 the costate
variables p(t) are presented. The indirect optimal control approach results in the same
inputs as the other methods. These results are already illustrated in Fig. 7.4 and therefore
they are not presented again. Parts of the solutions are also published in [122, 124, 125].

7.1.7 Discussion

The different methods of (i) DAE approach with control constraints, (ii) flatness-based
trajectory control, (iii) direct optimal control and (iv) indirect optimal control result in the
same control inputs u(t), Fig. 7.4. The flatness-based trajectory control can be derived
easily from the equations of motion. This results in an analytical solution, which does not
require much computational effort. The DAE approach with control constraints can also
be applied in a straightforward way. Due to the formulation with generalized coordinates
y1 and y2, the governing DAEs are of index 3. As a consequence no projection method,
i.e. index reduction procedure is required. The solution is numerically efficient and a
relatively large step size of ∆t = 0.01s can be used. The direct optimal control approach
requires much more computational effort. A shorter step size of ∆t = 0.005s is needed
due to the optimization task in each subinterval. It was shown that a regularization
could smooth the noisy control inputs drastically. However, the weighting factor ε must
be chosen carefully. The indirect optimal control approach requires much more symbolic
computations to formulate the necessary optimality conditions (5.53)-(5.55). The resulting
two-point-BVP can only be solved numerically. The solver bvp4c is very sensitive regarding
to the initial guesses of the adjoint variables. The initial guesses have a great influence on
the convergence speed. All considered methods result in the same control inputs, except
of small numerical differences.
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7.2 Planar Overhead Crane

7.2.1 Problem Description

F
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Figure 7.8: Planar overhead crane

Fig. 7.8 shows a planar overhead crane. The trolley with its mass mt can move along the
x-axis. Its absolute position is described by the coordinate s(t). A winch with a moment
of inertia J and a radius r is connected to the trolley via a revolute joint at the trolley’s
center of mass. It is assumed that J and r are constant and do not change due to the
spooling of the rope. Furthermore it is assumed that the rope with its length l(t) is
massless and longitudinally stiff, i.e. the connection between winch and load is always a
straight line. The load m is assumed to be a point mass. The multibody system is
excited by two inputs u = [F (t),M(t)]T .
The goal of the trajectory tracking problem is to calculate the input variables in order
that the load follows a trajectory given by the Cartesian coordinates xd(t) and zd(t).
The equations of motion can either be formulated by using three independent
coordinates q = [s, l, ϕ]T or by four dependent coordinates q = [s, β, x, z]T . Both
formulations result in an underactuated system (mc < n).
This inverse dynamics problem is published e.g. in [21] for minimal coordinates and in
[13] for redundant coordinates. In [25] it is shown that an augmented formulation with
dependent variables is advantageous for the inverse dynamics problem. A flatness-based
control approach of such a planar crane can be found in [95].
For numerical computations the parameters
mt = 10 kg, m = 100 kg, J = 0.1 kgm2, r = 0.1m, g = 9.81m/s2 are used.

7.2.2 Equations of Motion

Formulation with generalized (independent) coordinates:
The equations of motion with the minimal coordinates q = [s, l, ϕ]T are derived from
Lagrange’s equations of the second kind (2.55).
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The first step is the calculation of the position and the velocity of the mass m.

rm =
[
s+ l sinϕ
l cosϕ

]
, vm =

[
ṡ+ l̇ sinϕ+ lϕ̇ cosϕ
l̇ cosϕ− lϕ̇ sinϕ

]
(7.15)

v2
m = ṡ2 + ṡl̇ sinϕ+ ṡlϕ̇ cosϕ+ ṡl̇ sinϕ+ l̇2 sin2 ϕ+ ll̇ϕ̇ sinϕ cosϕ+

ṡlϕ̇ cosϕ+ ll̇ϕ̇ sinϕ cosϕ+ l2ϕ̇2 cos2 ϕ+ l̇2 cos2 ϕ− 2ll̇ϕ̇ sinϕ cosϕ+ l2ϕ̇2 sin2 ϕ

v2
m = ṡ2 + l2ϕ̇2 + l̇2 + 2ṡl̇ sinϕ+ 2ṡlϕ̇ cosϕ (7.16)

Thus, kinetic and potential energy can be calculated. Therefore, the rotation angle of the
winch β has to be expressed by the cable length l and the winch radius r.

T =
1
2
mtṡ

2 +
1
2
m
(
ṡ2 + l2ϕ̇2 + l̇2 + 2ṡl̇ sinϕ+ 2ṡlϕ̇ cosϕ

)
+

1
2
J

r2
l̇2 (7.17)

V = −mglcosϕ (7.18)

In the next step the partial derivatives with respect to the generalized coordinates s, l, ϕ
have to be calculated.

∂T

∂ṡ
= mtṡ+mṡ+ml̇ sinϕ+mϕ̇l cosϕ

∂T

∂s
= 0

d

dt

(
∂T

∂ṡ

)
= mts̈+ms̈+ml̈ sinϕ+ml̇ϕ̇ cosϕ+mϕ̈l cosϕ+mϕ̇l̇ cosϕ−mϕ̇2l sinϕ

∂V

∂s
= 0

∂T

∂l̇
=
J

r2
l̇ +ml̇ +mṡ sinϕ

∂T

∂l
= mlϕ̇2 +mṡϕ̇ cosϕ

d

dt

(
∂T

∂l̇

)
=
J

r2
l̈ +ml̈ +ms̈ sinϕ+mṡϕ̇ cosϕ

∂V

∂l
= −mg cosϕ

∂T

∂ϕ̇
= ml2ϕ̇+mṡl cosϕ

∂T

∂ϕ
= mṡl̇ cosϕ−mṡϕ̇l sinϕ

d

dt

(
∂T

∂ϕ̇

)
= 2mll̇ϕ̇+ml2ϕ̈+ms̈l cosϕ+mṡl̇ cosϕ−mṡlϕ̇ sinϕ

∂V

∂ϕ
= mgl sinϕ

Consequently, Lagrange’s equations of the second kind (2.56) can be formulated.

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
= Qi
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 mt +m m sinϕ ml cosϕ
m sinϕ J

r2
+m 0

ml cosϕ 0 ml2

 ·
 s̈

l̈
ϕ̈

+

 2ml̇ϕ̇ cosϕ−mlϕ̇2 sinϕ
−mlϕ̇2

2mll̇ϕ̇

−
 0

mg cosϕ
−mgl sinϕ

−
 1 0

0 1
r

0 0

 · [ F
M

]
=

 0
0
0


⇔Mv̇ − f + BTu = 0

(7.19)

In Eq. (7.19) the vector f(q, q̇, t) is split into a vector, which includes Coriolis and cen-
trifugal forces and a vector, which includes conservative forces that can be derived from
the potential energy.

Formulation with redundant (dependent) coordinates:
The equations of motion for a redundant coordinates formulation with q = [s, β, x, z]T

results in the form (4.2b)
mt 0 0 0
0 J 0 0
0 0 m 0
0 0 0 m

 ·

s̈

β̈
ẍ
z̈

−


0
0
0
mg

+ 2λ


s− x
−r2β
x− s
z

+


−1 0
0 −1
0 0
0 0

 · [ F
M

]
=


0
0
0
0


⇔Mv̇ − f + GTλ+ BTu = 0

(7.20)

The redundancy of the coordinates requires the formulation of geometric (holonomic)
constraints (4.2d) to link the position of the mass and the rotation of the winch.

g(q) = (x− s)2 + z2 − r2β2 = 0 (7.21)

By using (7.21), the constraint Jacobian G = Dg(q) can be calculated.

G =
[
∂g(q)
∂s

,
∂g(q)
∂β

,
∂g(q)
∂x

,
∂g(q)
∂z

]
= 2

[
s− x,−r2β, x− s, z

]
(7.22)

The constraint Jacobian G (7.22) with its corresponding Lagrange multiplier λ (m = 1)
is introduced in (7.20). The geometric constraints can also be formulated by g(q) =√

(x− s)2 + z2− rβ = 0. However, the constraint Jacobian G = Dg(q) and therefore the
whole algorithm (4.10) would be more complex [25].
The input transformation matrix B is directly derived from the equations of motion (7.20).

B =
[
−1 0 0 0
0 −1 0 0

]
(7.23)
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Comparison of the Different Formulations:
If the equations of motion for the independent and the dependent variable formulation
are compared, some remarkable differences can be seen. The mass matrix in Eq. (7.19)
is nearly fully occupied and not constant. However, it is symmetric and positive defi-
nite. The mass matrix in the formulation with redundant coordinates (7.20) is a constant
diagonal matrix. This is very advantageous for the numerical treatment. Furthermore,
the inconvenient Coriolis and centrifugal terms that appear in (7.19) do not exist in (7.20).

The DAE approach with control constraints and the flatness-based trajectory tracking are
applied to the formulation with redundant coordinates. This results from the advantages
that are described in section 4.2. However, the DAE approach with control constraints
can also be applied to the system that is formulated by independent coordinates and can
be found e.g. in [21].

7.2.3 DAE Approach with Control Constraints

Control constraints are formulated in the form (4.2c). The aim of the planar overhead
crane is that the load follows a predefined trajectory. Therefore, the positional coordinates
of the load [x, z]T must be identical to desired coordinates [xd, zd]T . With τ = t/(tf − t0)
the control constraints read as

c(q, t) = Φ(q)− γ(t) = 0 :

=
[
xd
zd

]
−
{[

0
4

]
+
[

5
−3

]
·
(
70τ9 − 315τ8 + 540τ7 − 420τ6 + 126τ5

)} (7.24)

Eq. (7.24) describes a trajectory of the mass, which is a straight line from the initial
coordinates [xd, zd] = [0, 4] at time t0 = 0s to the final coordinates [xd, zd] = [5, 1] at time
tf = 3s. The polynomial in (7.24) is sufficiently smooth so that it can be continuously
differentiated up to 4th order. In the DAE approach with control constraints the targets
have to be differentiated only twice, Eq. (4.6). However, the inverse computation is
compared with the flatness-based trajectory tracking control which needs a sufficiently
smooth trajectory. The desired outputs γ(t) are taken from [13, 21]. In the next section
7.2.4 the derivation of this trajectory will be explained.
For the index reduction procedure the projection matrices C and D have to be determined.
The matrix C is defined in (4.5) and results in

C = DΦ(q) =
[

0 0 1 0
0 0 0 1

]
(7.25)

The projection matrix D has to be determined in a way that the complementarity condition
(4.8) CD = 0 is fulfilled. Hence, it results in

D =


1 0
0 1
0 0
0 0

 (7.26)
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It can be seen that the projection matrices (7.25) and (7.26) are simple sparse matrices of
Boolean type, which is beneficial for the numerical computation.
The control constraint realization in this example is tangent which can be shown by

p = rank(CM−1BT ) = 0 (7.27)

Hence, the third row in Table 4.1 is fulfilled.
By using C and D the projection method (4.10) can be applied to the system. The implicit
Euler algorithm with a step size of ∆t = 0.1 s is used to solve the resulting equations.

7.2.4 Flatness-Based Trajectory Tracking

For a flatness-based parametrization of the state variables and the control inputs the
differentially flat outputs of the system have to be identified. In [25, 26] it is shown that the
load coordinates r = [xd,yd, zd]

T of a crane represent flat outputs. This statement holds
for planar as well as for different three-dimensional cranes [1, 22, 23, 26, 57, 58, 82, 90, 95].
By considering the system (4.10), all relevant variables can be parameterized by the flat
outputs. Such a parametrization can be found e.g. in [13]. Eq. (4.10c) results in

2(xd − s)λ+mẍd = 0
2zdλ+m(z̈d − g) = 0

(7.28)

From these equations the variables λ(t) and s(t) can be calculated.

λ =
m

2zd
(g − z̈d)

s = xd +
zdẍd
g − z̈d

(7.29)

In (7.29) it can be seen that derivatives of the flat outputs up to second order are needed to
parameterize λ(t) and s(t). The state variable β(t) can be calculated from the geometric
constraints (4.10e), (7.21).

β = ± zd
r(g − z̈d)

√
ẍ2
d + (g − z̈d)2 (7.30)

Finally, the control inputs u(t) can be derived from (4.10b). By considering that DTBT =
−I2×2 (the negative (2× 2) identity matrix), u can be calculated by

u = DT
{
Mv̇ − f + GTλ

}
(7.31)

F = mts̈+ 2(s− xd)λ
M = Jβ̈ − 2r2βλ

(7.32a)

(7.32b)

This feedforward control law can furthermore be extended by a linear feedback control in
order to compensate disturbances. In the flatness-based control (7.32) it can be seen that
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derivatives of the flat outputs xd(t), zd(t) up to fourth order are needed to parameterize
the control inputs F (t), M(t).

F = F (xd, ẋd, . . . , x
(4)
d , zd, żd, . . . , z

(4)
d )

M = M(xd, ẋd, . . . , x
(4)
d , zd, żd, . . . , z

(4)
d )

(7.33a)

(7.33b)

Consequently, the index of the DAEs can be verified by using the definition (6.58).

i = β + 1 = 5 (7.34)

In this way it can be shown that the DAEs with control constraints (7.20), (7.21) , (7.24)
are of index 5.
Due to (7.33), trajectories have to be defined for the load coordinates, which are con-
tinuously differentiable up to fourth order. Hence, five initial conditions and five final
conditions have to be fulfilled. This results in a polynomial function of 9th order for the
flat outputs xd(t) and zd(t). Therefore, the general polynomial function

s(t) = s0 + (sf − s0)
2β+1∑
i=β+1

aiτ
i, τ =

t

tf − t0
, t ∈ [t0, tf ] (7.35)

can be used, where β denotes the highest number of time derivative. The following bound-
ary conditions have to be fulfilled:

s(t0) = s0 s(tf ) = sf
ṡ(t0) = 0 ṡ(tf ) = 0
s̈(t0) = 0 s̈(tf ) = 0

s(3)(t0) = 0 s(3)(tf ) = 0
s(4)(t0) = 0 s(4)(tf ) = 0

(7.36)

The coefficients ai of the function (7.35) can be calculated by considering the boundary
condition (7.36).

a5 = 126, a6 = −420, a7 = 540, a8 = −315, a9 = 70 (7.37)

Hence, the polynomial function (7.35) results in the previously presented trajectory (7.24).

The equations of motion (7.19) or (7.20) can also be written in the form of an affine
input system (6.37). The resulting system is not explicitly written down here because of
the lengthly expressions. If the Lie-derivatives are computed, the definitions (6.38) and
(6.51) can be verified. The (vector) relative degree results in

{r1, r2} = {4, 2} , r = r1 + r2 = 6 = 2n (7.38)

if 2n denotes the number of state variables corresponding to minimal coordinates. In
the formulation with independent coordinates the conditions (6.51) are fulfilled as long as
ϕ 6= 90◦. The decoupling matrix (6.38b) yields

A(x) =

[
1 sin(ϕ)

r

0 cos(ϕ)
r

]
(7.39)
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Figure 7.9: Desired trajectory with time derivatives

Hence, the system is exactly input-state linearizable. However, the redundant coordinates
formulation results in a singular decoupling matrix and therefore the system is not input-
state linearizable. As already stated in section 6.2, a flatness-based parameterization can
even be found if the MIMO-system is not input-state linearizable. This is shown in the
parameterization (7.32), which is based on a redundant coordinates formulation.

7.2.5 Optimal Control

The direct optimal control algorithm from section 5.5.2 is applied to the planar overhead
crane. To simplify the numerical integration in Matlab the formulation with independent
coordinates (7.19) is used. As a consequence, the standard solver ode45 can be applied.
Numerical integration is required in each iteration, i.e. several times in each time interval.
A step size of ∆t = 0.005 s is used. The Tikhonov regularization term is weighted with a
factor of ε = 5 · 10−5. Contour plot and gradient field within one time interval are shown
in Fig. 7.10.
Additionally, the indirect optimal control algorithm from section 5.4.4 is applied to the
system, which is formulated with independent coordinates (7.19). The equations of motion
are rewritten in state-space form, where the states x1 = s, x2 = l, x3 = ϕ, x4 = ṡ, x5 =
l̇, x6 = ϕ̇ are introduced.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 mt +m m sinx3 mx2 cosx3

0 0 0 m sinx3
J
r2

+m 0
0 0 0 mx2 cosx3 0 mx2

2





ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

+



0
0
0

2mx5x6 cosx3 −mx2
6x2 sinx3

−mx2x
2
6

2mx2x5x6

 =



x4

x5

x6

F (t)
M(t)
r +mg cosx3

−mgx2 sinx3



(7.40)
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The cost functional is given by

J(u) =

tf∫
t0

{
1
2

(s+ l sinϕ− xd)2 +
1
2

(l cosϕ− zd)2 +
ε1

2
F 2 +

ε2

2
M2

}
dt

=

tf∫
t0

{
1
2

(x1 + x2 sinx3 − xd)2 +
1
2

(x2 cosx3 − zd)2 +
ε1

2
F 2 +

ε2

2
M2

}
dt

(7.41)

By using (7.40) and (7.41) the Hamiltonian is derived and the necessary optimality con-

contour plot, gradient field

F (N)

M
 (

N
m

)
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−96

−95

global minimum

initial point

Figure 7.10: Contour plot and gradient field within one time interval

ditions (5.53), (5.54), (5.55) are formulated. Furthermore, the two-point BVP is derived
in Mathematica.

The gradient method (Kelley-Bryson-method) from Table 5.1 from section 5.5.1 is also
applied to the planar overhead crane. If the ODE-system (7.19) is used in the procedure,
the integral part of the cost functional reads as

L(x, t) =
1
2

(s+ l sinϕ− xd)2 +
1
2

(l cosϕ− zd)2+

+
χ

2
(ṡ+ l̇ sinϕ+ lϕ̇ cosϕ− ẋd)2 +

χ

2
(l̇ cosϕ− lϕ̇ sinϕ− żd)2

(7.42)

Furthermore, the Mayer-term at the final time tf is considered.

Φ(xf , tf ) = α L(x, t)|t=tf (7.43)

As a consequence, the cost functional can be written in the form of Eq. (5.36a). Hence,
the velocity deviations from the targets are considered as well. If the states x1 = s, x2 =
l, x3 = ϕ, x4 = ṡ, x5 = l̇, x6 = ϕ̇ and the inputs u1 = F, u2 = M/r are introduced, the
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Hamiltonian (5.52) can be formulated by

H =
1
2
[
(x1 + x2 sinx3 − xd)2 + (x2 cosx3 − zd)2

]
+
χ

2
[
(x4 + x5 sinx3 + x2x6 cosx3 − ẋd)2 + (x5 cosx3 − x2x6 sinx3 − żd)2

]
+p1x4 + p2x5 + p3x6 + p4

(
u1 + u2 sinx3

mt

)
+p5

(
x2x

2
6 + g cosx3 +

mu2 cos2 x3 − (mt +m)u2 −mu1 sinx3

mtm

)
−p6

(
mt(2x5x6 + g sinx3) + (u1 + u2 sinx3) cosx3

mtx2

)
(7.44)

It should be mentioned, that the moment of inertia J is neglected in this formulation. As
initial guess for the inputs the static solution s = 0, l = l0, ϕ = 0

u1(t) = F (t) = 0, u2(t) =
M(t)
r

= mg

is chosen [143]. This assumption is far away from the real drive signals. The weighting
factors α = 0.1, χ = 5 and χ = 0 are used in the cost functional.

The gradient method can also be applied to the DAE system (7.20). Therefore, the index
2 Gear-Gupta-Leimkuhler (5.105) DAEs have to be computed. By using the notations
q1 = s, q2 = β, q3 = x, q4 = z for the degrees of freedom, the GGL-system reads as

mtq̇1 = mtv1 − 2ν(q1 − q3)

Jq̇2 = Jv2 + 2νr2q2

mq̇3 = mv3 − 2ν(q3 − q1)
mq̇4 = mv4 − 2νq4

mtv̇1 = F − 2λ(q1 − q3)

Jv̇2 = M + 2λr2q2

mv̇3 = −2λ(q3 − q1)
mv̇4 = mg − 2λq4

0 = (q3 − q1)2 − r2q2
2 + q2

4

0 = 2(q3 − q1)(v3 − v1)− 2r2q2v2 + 2q4v4

(7.45a)

(7.45b)
(7.45c)
(7.45d)
(7.45e)

(7.45f)
(7.45g)
(7.45h)

(7.45i)

(7.45j)

This DAE-system can be integrated forwards in time by using an appropriate index 2 -
solver. As a result q(t), v(t), λ(t) and ν(t) are obtained.
The goal of the inverse problem is that the mass m follows the desired trajectory (7.24).
For that reason the integral part of the cost functional (5.75) is formulated as

L(x, t) =
1
2

(q3 − xd)2 +
1
2

(q4 − zd)2 +
χ

2
(v3 − ẋd)2 +

χ

2
(v4 − żd)2 (7.46)
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This results in the gradients of L

Lq =


0
0

q3 − xd
q4 − zd

 , Lv =


0
0

χ(v3 − ẋd)
χ(v4 − żd)

 (7.47)

To derive the adjoint equations (5.115), the matrices R = Dq(G(q)v) and V(q,v, v̇) =
f −GTλ−Mv̇ are needed.

R = 2
[
v1 − v3, −r2v2, v3 − v1, v4

]
(7.48)

V =


F − 2λ(q1 − q3)−mtv̇1

M + 2λr2q2 − Jv̇2

−2λ(q3 − q1)−mv̇3

mg − 2λq4 −mv̇4

 (7.49)

The Jacobian matrices of V yield

Vq = −2λ


1 0 −1 0
0 −1 0 0
−1 0 1 0
0 0 0 1

 , Vv = 0 (7.50)

Hence, the adjoint equations (5.115) can be formulated.

ṗ1 =
2λ
mt

w1 −
2λ
m
w3 − 2µ(q1 − q3)− 2ξ(v1 − v3)

ṗ2 = −2λ
J
w2 + 2µq2 + 2ξv2

ṗ3 =
2λ
m
w3 −

2λ
mt

w1 − 2µ(q3 − q1)− 2ξ(v3 − v1)− (q3 − xd)

ṗ4 =
2λ
m
w4 − 2µq4 − 2ξv4 − (q4 − zd)

ẇ1 = −p1 − 2ξ(q1 − q3)
ẇ2 = −p2 + 2ξq2

ẇ3 = −p3 − 2ξ(q3 − q1)− χ(v3 − ẋd)
ẇ4 = −p4 − 2ξq4 − χ(v4 − żd)

0 = 2
q1 − q3

mt
w1 − 2

q2

J
w2 + 2

q3 − q1

m
w3 + 2

q4

m
w4

0 = 2
q1 − q3

mt
p1 − 2

q2

J
p2 + 2

q3 − q1

m
p3 + 2

q4

m
p4

(7.51a)

(7.51b)

(7.51c)

(7.51d)

(7.51e)
(7.51f)
(7.51g)
(7.51h)

(7.51i)

(7.51j)

This is also an index 2 DAE-system which can be solved for p(t), w(t), µ(t) and ξ(t),
once q(t), v(t), λ(t) and ν(t) has been computed from a forward simulation of the system
(7.45). The boundary conditions (5.118) for the adjoint equations are not written down
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here in detail because of the lengthly expressions. However, it should be remarked that
the (1× 1) matrix

GM−1GT = 4
(q1 − q3)2

mt
+ 4

q2
2

J
+ 4

(q1 − q3)2

m
+ 4

q2
4

m

is non-singular unless l = 0 and can therefore be inverted. The control update (5.116)
follows from the solution of the adjoint equations (7.51) δu = −κfTu w. Since

fTu =
[

1 0 0 0
0 1 0 0

]
the update reads as

δu1 = δF = −κw1

δu2 = δM = −κw2

(7.52a)
(7.52b)

7.2.6 Results

In Fig. 7.11 the inversely calculated inputs are presented. The analytical solution of the
flatness-based trajectory tracking is presented by the black curves and serves as reference.
The dot-dashed blue lines are the solutions of the DAE approach with control constraints.
The red curves illustrate the smoothed solution of the optimal control algorithm. As al-
ready mentioned, the optimal control procedure is applied to the system with independent
coordinates and hence the Lagrange multiplier does not exit in this computation.
In the curve of the winch torque M it can be seen that it starts and ends at −98.1Nm,
which is the required static torque Ms = −mgr to hold the load. The initial and final
trolley force F is equal to zero due to the desired trajectory where initial and final velocity
as well as acceleration are equal to zero, Fig. 7.9(b). The Lagrange multiplier λ(t) is
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Figure 7.11: Inputs of the planar overhead crane
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Figure 7.12: Lagrange multiplier and cable tension force of the planar overhead crane
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Figure 7.13: Outputs, redundant coordinates of the planar overhead crane
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presented in Fig. 7.12. It should be mentioned that λ(t) has the physical unit N/m due to
the formulation of the geometric constraints (7.21). If the constraints would be formulated
as g(q) =

√
(x− s)2 + z2 − rβ = 0, the Lagrange multiplier λ(t) would be the constraint

force in the rope. However, the constraint Jacobian and therefore the whole algorithm
(4.10) would be more complex [25].
Nevertheless, the cable tension force can be computed from the Lagrange multiplier by
Fcable = 2lλ = 2rβλ. This force is plotted in Fig. 7.12. It can be seen that the cable
tension force is equal to Fcable,s = mg = 981N at the initial time and the final time.
If the differently computed inputs from Fig. 7.11 are used in a forward dynamics sim-
ulation, the independent and furthermore the redundant coordinates in Fig. 7.13 are
obtained. It can be seen that all input variables yield exactly in the desired targets xd
and zd.
The results of the gradient method (Kelley-Bryson-method) from Table 5.1 are shown in
Fig. 7.14. The formulation (7.45) - (7.51) is not used because of the numerical integration
of the index 2 system. Rather the formulation based on the ODEs (7.19) is used in combi-
nation with the cost functional (7.42)-(7.43). In addition, the state and costate equations
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Figure 7.14: Inputs of the planar overhead crane computed by the Kelley-Bryson method

(7.45) and (7.51) are formulated as index 1 equations. The resulting system is solved by
the DAE solver ode15s, which is able to integrate index 1 systems. ODE-formulation and
DAE-formulation in conjunction with the Kelley-Bryson method yield exactly the same
results.
Fig. 7.14 shows the calculated inputs from the Kelley-Bryson-method after 200 iterations.
The weighting factors α = 0.1 and χ = 5 are used in the cost functional. Slight differences
between Fig. 7.11 and Fig. 7.14 can be seen. This results from the fact that the moment
of inertia J is neglected in the Kelley-Bryson-method.
Fig. 7.15 presents the convergence characteristics of the Kelley-Bryson-method for the
planar overhead crane. The motion of the planar overhead crane, which results from the
computed inputs, is captured by the snapshots presented in Fig. 7.16. The animation is
performed in Adams.
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Figure 7.15: Convergence of the performance measure for χ = 5 and χ = 0
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Figure 7.16: Snapshots of the motion of the planar overhead crane
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7.2.7 Discussion

The formulation of the equations of motion is done for independent coordinates (7.19) as
well as for dependent coordinates (7.20). The formulation with dependent coordinates,
which results in an index 5 DAE-system, is shown as beneficial regarding to the inverse
dynamics problem. The projection matrices, which reduce the DAE-system to an index 3
system, can be found in a straightforward way. The projected DAEs are also the basis for
the flatness-based trajectory control. Hence, an analytical solution can be found for the
inputs F (t) and M(t), which are used as reference for the other numerical methods. The
DAE approach with control constraints is quite efficient in this example. A large step size
of ∆t = 0.1s could be used. The direct optimal control procedure requires a much shorter
step size of ∆t = 0.005s. The Tikhonov regularization term could smooth the inversely
calculated inputs. However, this approach is seen as numerically inefficient. In contrast to
that, the gradient method (Kelley-Bryson-method) is shown as the appropriate method
for this specific inverse problem. After 200 iterations the outputs, which result from a
subsequent forward simulation, are in a very good agreement with the desired targets. The
weighting factor χ has a great influence in the computed control inputs. This weighting
factor considers the velocity error. If χ = 0, only the positional error is included in the cost
functional, cf. Eq. (7.42). But due to the inertia of the multibody system, the position
error may already be very small, even if the control inputs differ from the analytical
solution [143]. Furthermore, the convergence speed can be improved by including the
velocity error, Fig. 7.15. For χ = 5 the drive signals coincide with the solution from the
flatness-based parameterization. Details are also published in [122, 121, 143] as well as in
previous work from other authors [13, 21].
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7.3 3D Rotary Crane

7.3.1 Problem Description

s

z0 , z1

x0

φ1

l

φ2
φ3

xd
yd
zd

γ(t)

Mb

F

Mw

x1

y1
y0

Figure 7.17: Rotary crane

In this section a three-dimensional rotary crane is considered, Fig. 7.17. The tower with
its cantilever bridge can be rotated along the z0-axis of the inertial frame. This rotation
is described by the angle ϕ1. The moment of inertia Jb is given in the rotation axis. The
trolley with its mass mt can be moved along the bridge and its position is given by s.
The trolley carries a winch with a radius rw and a moment of inertia Jw. The winch is
connected to the load via a massless, longitudinally stiff cable with the length l. It is
assumed that the radius rw is negligible to the length l. The load is modeled as mass
point with its mass m. Cable and mass can rotate free in space, which can be described
e.g. by the rotation angles ϕ2 and ϕ3 or the Cartesian coordinates x, y, z. Similar
examples of such a crane can also be found e.g. in [13, 26, 52]. A DAE-approach, which
is based on a rotationless formulation, is presented in [13]. The equations of motion,
which are related to redundant coordinates, are presented in [26]. Furthermore, a slightly
different DAE-approach is presented in this work. A flatness-based control of a similar
rotating tower crane is presented in [52]. However, independent coordinates are used,
which leads to a more complicated derivation of the control law than that which is
presented in section 7.3.4.

The goal of this example is to move the load along a trajectory in order to avoid an
obstacle as illustrated in Fig. 7.18. The system can either be modeled by five independent
coordinates q = [ϕ1, s, l, ϕ2, ϕ3]T or by six dependent coordinates q = [ϕ1, s, l, x, y, z]

T .
The three input variables are the torque acting at the tower, the force acting at the
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Figure 7.18: Desired trajectory of the load of the 3D rotary crane

trolley and the torque acting at the winch u = [Mb, F,Mw]T . Hence, the rotary crane
is an underactuated multibody system. The following numerical values are used: Jb =
30000kgm2, mt = 50kg, m = 500kg, Jw = 0.1kgm2, rw = 0.1m.

7.3.2 Equations of Motion

Formulation with generalized (independent) coordinates:

The equations of motion with the generalized coordinates q = [ϕ1, s, l, ϕ2, ϕ3]T are derived
from Lagrange’s equations of the second kind (2.55). Therefore, the coordinate systems
as depicted in Fig. 7.19 are introduced. Then the rotation matrices are derived.

A10 =

 cosϕ1 − sinϕ1 0
sinϕ1 cosϕ1 0

0 0 1

 (7.53)

A21 =

 cosϕ2 0 − sinϕ2

0 1 0
sinϕ2 0 cosϕ2

 (7.54)

A32 =

 1 0 0
0 cosϕ3 − sinϕ3

0 sinϕ3 cosϕ3

 (7.55)
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Figure 7.19: Coordinate systems of the rotary crane

Hence, the positions of the trolley rt,0 and the load rl,0 with respect to the inertial frame
can be calculated.

rt,0 = A10rt,1 =

 s cosϕ1

s sinϕ1

0

 (7.56)

rl,0 = A10rt,1 + A10A21A32rl,3 =

 s cosϕ1 − l (sinϕ1 sinϕ3 − cosϕ1 sinϕ2 cosϕ3)
s sinϕ1 − l (− cosϕ1 sinϕ3 − sinϕ1 sinϕ2 cosϕ3)

−l cosϕ2 cosϕ3


(7.57)

Hence, the cable length with respect to the inertial frame can be calculated as difference
between trolley and load position.

rdiff,0 = rt,0 − rl,0 =

 l (sinϕ1 sinϕ3 − cosϕ1 sinϕ2 cosϕ3)
l (− cosϕ1 sinϕ3 − sinϕ1 sinϕ2 cosϕ3)

l cosϕ2 cosϕ3

 (7.58)

Consequently, the translational velocities can be calculated. The skew-symmetric matrices
of the rotational velocities can be calculated by Ω̃ = AT Ȧ, Eq. (2.20). As a result the
velocity vectors read as

ω10 =

 0
0
ϕ̇1

 (7.59)

ω20 = ω10 + A10Ω21 =

 ϕ̇2 sinϕ1

−ϕ̇2 cosϕ1

ϕ̇1

 (7.60)

ω30 = ω10 + A10Ω31 =

 ϕ̇3 cosϕ1 cosϕ2 + ϕ̇2 sinϕ1

ϕ̇3 sinϕ1 cosϕ2 − ϕ̇2 cosϕ1

ϕ̇1 + ϕ̇3 sinϕ2

 (7.61)

Consequently, kinetic and potential energy can be calculated. The kinetic energy has to
be formulated for four parts with mass: (1) tower and bridge, (2) trolley, (3) winch and (4)
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load. Due to the coordinate systems in Fig. 7.19, the potential energy has to be calculated
only for the load.
All the symbolic computations regarding to kinematics and the derivation of the equa-
tions of motion are done in Maple. They are not presented here because of the lengthly
expressions. Some important intermediate results should be depicted here. The kinetic
energy yields

T = Tb,rot + Tt,trans + Tw,rot + Tl,trans =
1
2 ϕ̇1Jb + 1

2mt(ṡ+ ϕ̇2
1s

2)− 1
2m(−2s cosϕ2 cosϕ3lϕ̇2 + 2ṡlϕ̇3 sinϕ2 sinϕ3−

2ϕ̇2
1sl sinϕ2 cosϕ3 − ϕ̇2

1s
2 − ṡ2 − cos2 ϕ3l

2ϕ̇2
2 + ϕ̇2

1l
2 cos2 ϕ3 cos2 ϕ2 − l̇2−

2ṡl̇ sinϕ2 cosϕ3 + 2ṡϕ̇1l sinϕ3 − 2l̇ sinϕ3ϕ̇1s− ϕ̇2
1l

2 − l2ϕ̇2
3−

2ϕ̇1slϕ̇3 cosϕ3 − 2ϕ̇1l
2ϕ̇3 sinϕ2 + 2ϕ̇1l

2 sinϕ3 cosϕ2 cosϕ3ϕ̇2)+
1

2r2w
(Jw(cos2 ϕ3l

2ϕ̇2
2 − ϕ̇2

1l
2 cos2 ϕ3 cos2 ϕ2 + l̇2 + ϕ̇2

1l
2 + l2ϕ̇2

3+

2ϕ̇1l
2ϕ̇3 sinϕ2 − 2ϕ̇1l

2 sinϕ3 cosϕ2 cosϕ3ϕ̇2))

(7.62)

The potential energy simply reads as

V = −mgl cosϕ2 cosϕ3 (7.63)

The necessary partial derivatives for Lagrange’s equations are computed in Maple. The
resulting ODEs are formulated in the form

M(q)q̈ + Φ(q, q̇)q̇ + b(q) = Q (7.64)

where the matrix Φ(q, q̇) denotes the gyroscopic matrix, the vector b(q) the conservative
forces, which result from a potential and the vector Q denotes the generalized applied
forces. The mass matrix M(q) and the gyroscopic matrix Φ(q, q̇) are not detailed here
because they consist of lengthly expressions. The vector of conservative forces yields

b(q) = [0, −mg cosϕ2 cosϕ3, 0, mgl sinϕ2 cosϕ3, mgl cosϕ2 sinϕ3]T (7.65)

The vector of generalized applied forces reads as

Q =
[
F,

Mw

rw
, Mb, 0, 0

]T
(7.66)

It can be seen that the derivation of the equations of motion with a generalized coordinates
formulation is quite laborious.
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Formulation with redundant (dependent) coordinates:

The equations of motion expressed in dependent coordinates q = [ϕ1, s, l, x, y, z]
T are

formulated in the form (4.2b) and read as:

Jb +mts
2 0 0 0 0 0

0 mt 0 0 0 0

0 0
Jw
r2
w

0 0 0

0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m


·



ϕ̈1

s̈

l̈

ẍ

ÿ

z̈


−



−2mtsṡϕ̇1

0
0
0
0
−mg


+

+
λ

L



(x sinϕ1 − y cosϕ1)s
s− x cosϕ1 − y sinϕ1

−L
x− s cosϕ1

y − s sinϕ1

z


+



−1 0 0
0 −1 0

0 0 − 1
rw

0 0 0
0 0 0
0 0 0


·

 Mb

F

Mw

 =



0
0
0
0
0
0


⇔Mv̇ − f + GTλ+ BTu = 0

(7.67)

The corresponding geometric constraint (4.2d) reads as

g(q) = L− l =
√

(x− s cosϕ1)2 + (y − s sinϕ1)2 + z2 − l = 0 (7.68)

The constraint Jacobian is calculated by G = Dg(q) and yields

G =
[
s(x sinϕ1 − y cosϕ1)

L
,
s− x cosϕ1 − y sinϕ1

L
,−1,

x− s cosϕ1

L
,
y − s sinϕ1

L
,
z

L

]
(7.69)

The constraint matrix is introduced in combination with the Lagrange multiplier λ in
Eq. (7.67). The Lagrange multiplier corresponds to the cable tension force. The input
transformation matrix is directly obtained from (7.67).

B =

 −1 0 0 0 0 0
0 −1 0 0 0 0

0 0 − 1
rw

0 0 0

 (7.70)

Comparison of the Different Formulations:
It can be seen that the formulation with generalized coordinates has a much more complex
form. Especially the mass matrix and the gyroscopic matrix are fully occupied and highly
nonlinear. The formulation with dependent coordinates is much easier. The mass matrix is
positive definite and diagonal, but not constant due to the variable s. The only drawback
of this formulation is the computation of the geometric constraint (7.68) at velocity and
acceleration level.
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7.3.3 DAE Approach with Control Constraints

The control constraints are formulated in order that the load moves from the initial position
[14, 0,−15]T m along a specific trajectory to the final position [0,−5,−3]T m to avoid an
obstacle as illustrated in Fig. 7.18. The desired trajectory is taken from [26]. The control
constraints (4.10d) read as

c(q, t) = Φ(q)− γ(t) =

 xd
yd
zd

− {γ0 + (γf − γ0)s(t)} = 0 (7.71)

The trajectory γ(t) is modeled in cylindrical coordinates γc = [r, ϕ, z]T and defined as
γ(t) = γ0 + (γf − γ0)s(t), where s(t) is a specific polynomial function. This function
and the desired outputs have to be continuously differentiable, if they are used for a
flatness-based parameterization. The initial position is given by

γc,0 = [r0, ϕ0, z0]T = [14m, 0◦, −15m]T

and the final position by

γc,f = [rf , ϕf , zf ]T = [5m, 270◦, −3m]T

The desired outputs in cylindrical coordinates read as

rd = r0 + (rf − r0)s(t), ϕd = ϕ0 + (ϕf − ϕ0)s(t), zd = z0 + (zf − z0)s(t)

These variables can be differentiated with respect to time, depending on the polynomial
function s(t). However, the position of the load should be formulated in Cartesian coordi-
nates xd(t), yd(t) and zd(t). These variables and their derivatives can simply be calculated
from the cylindrical coordinates.

xd(t) = rd cosϕd, yd(t) = rd sinϕd, zd(t) = zd (7.72)

The derivatives of these functions are not explicitly pointed out here. The polynomial
function s(t) is split into an acceleration phase s1(t), a phase of constant velocity s2(t)
and a deceleration phase s3(t).

s1(t) =
1

τ − τ0

(
− 5t8

2τ7
0

+
10t7

τ6
0

− 14t6

τ5
0

+
7t5

τ4
0

)
s2(t) =

1
τ − τ0

(
t− τ0

2

)
s3(t) = 1 +

1
τ − τ0

(
5(τ − t)8

2τ7
0

− 10(τ − t)7

τ6
0

+
14(τ − t)6

τ5
0

− 7(τ − t)5

τ4
0

)
(7.73a)

(7.73b)

(7.73c)

The whole maneuver should be completed within τ = 40s and the acceleration and decel-
eration times are set to τ0 = 10s. Details of the DAE-approach with control constraints
regarding to this specific rotary crane with the desired trajectory (7.71), (7.73) can be
found in [26].
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In the next step the projection matrices C and D for the index reduction procedure have
to be found.

C = DΦ(q) =

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (7.74)

The matrix D which fulfills the complementarity condition (4.8) can be formulated by

D =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 (7.75)

The projection matrices (7.74) and (7.75) are simple sparse matrices as in the previous ex-
ample of the planar overhead crane. Furthermore, a tangent control constraint realization
occurs.

p = rank(CM−1BT ) = 0 (7.76)

Hence, the third row in Table 4.1 is fulfilled.
The index reduction procedure (4.10) is applied to the system by using the projection
matrices C and D. The resulting system is numerically integrated by the implicit Euler
method, where a step size of ∆t = 0.1 s is used.

7.3.4 Flatness-Based Trajectory Tracking

A flatness-based control design with a similar crane, which is formulated with independent
coordinates, is derived in [52]. However, the DAE-formulation (7.67), (7.68), (7.71) is
better suited regarding the inverse dynamics problem. A well suited parameterization is
published e.g. in [26]. The algebraic system (4.10c) results in

ẍd +
λ

L

xd − s cosϕ1

m
= 0

ÿd +
λ

L

yd − s sinϕ1

m
= 0

z̈d + g +
λ

L

zd
m

= 0

(7.77a)

(7.77b)

(7.77c)
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It should be recalled that L =
√

(xd − s cosϕ1)2 + (yd − s sinϕ1)2 + z2
d. The system (7.77)

can be solved for λd(t), sd(t) and ϕ1,d(t).

λd = m
√
ẍ2
d + ÿ2

d + (z̈d + g)2

ϕ1,d = arctan


yd − zdÿd
z̈d + g

xd − zdẍd
z̈d + g


sd =

√(
xd − zdẍd
z̈d + g

)2

+
(
yd − zdÿd
z̈d + g

)2

(7.78a)

(7.78b)

(7.78c)

Subsequently, the cable length ld(t) can be be calculated from the geometric constraint
(4.10e), i.e. from Eq. (7.68).

ld = zd

√
ẍ2
d + ÿ2

d + (z̈d + g)2

z̈d + g
(7.79)

Finally, the control inputs can be calculated from the differential equations (4.10b).

Mb,d = (Jb +mts
2
d)ϕ̈1,d + 2mtsdṡdϕ̇1,d + λd

sd
ld

(xd sinϕ1,d − yd cosϕ1,d)

Fd = mts̈d +
λd
ld

(sd − xd cosϕ1,d − yd sinϕ1,d)

Mw,d = rw

(
Jw l̈d
r2
w

− λd

)
(7.80a)

(7.80b)

(7.80c)

This feedforward control can be extended by a feedback controller, e.g. a linear PI-
controller. As a result disturbances are compensated. In the parameterizations of the
control inputs (7.80) it can be seen that the desired outputs must be differentiated with
respect to time up to fourth order.

Mb,d = Mb,d(xd, ẋd, . . . , x
(4)
d , yd, ẏd, . . . , y

(4)
d , zd, żd, . . . , z

(4)
d )

Fd = Fd(xd, ẋd, . . . , x
(4)
d , yd, ẏd, . . . , y

(4)
d , zd, żd, . . . , z

(4)
d )

Mw,d = Mw,d(xd, ẋd, . . . , x
(4)
d , yd, ẏd, . . . , y

(4)
d , zd, żd, . . . , z

(4)
d )

(7.81a)

(7.81b)

(7.81c)

Hence, all state variables and input variables can be parameterized by the flat outputs
xd, yd and zd and their time derivatives up to a certain order. As a consequence, it can
be stated that the system is differentially flat. By using definition (6.58) it can be shown
that the DAEs with control constraints (7.67), (7.68), (7.71) are index 5 DAEs.

i = β + 1 = 5 (7.82)

The polynomial function s(t) and its derivatives up to fourth order are shown in Fig. 7.20.
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Figure 7.20: Polynomial for the desired trajectory with its time derivatives

7.3.5 Optimal Control

The Kelley-Bryson method for constrained systems is applied to the equations of motion
(7.67). The state variables q1 = ϕ1, q2 = s, q3 = l, q4 = x, q5 = y, q6 = z, q7 = ϕ̇1,
q8 = ṡ, q9 = l̇, q10 = ẋ, q11 = ẏ, q12 = ż are introduced. The constraint equation (7.68) is
reformulated by

g(q) =
1
2
[
(q4 − q2 cos q1)2 + (q5 − q2 sin q1)2 + q2

6 − q2
3

]
= 0 (7.83)

In the following section the terms sin q1 and cos q1 are abbreviated by sq1 and cq1, respec-
tively. Symbolic computations are performed with Mathematica.
The constraint Jacobian reads as

GT =



q2(q4sq1 − q5cq1)
q2 − q4cq1 − q5sq1

−q3

q4 − q2cq1

q5 − q2sq1

q6

 (7.84)

149



7.3. 3D ROTARY CRANE

As a consequence, the GGL-formulation (5.105) yield

(Jb +mtq
2
2)q̇1 = (Jb +mtq

2
2)v1 − [q2(q4sq1 − q5cq1)] ν

mtq̇2 = mtv2 − [q2 − q4cq1 − q5sq1] ν
Jw
r2
w

q̇3 =
Jw
r2
w

v3 + q3ν

mq̇4 = mv4 − (q4 − q2cq1)ν
mq̇5 = mv5 − (q5 − q2cq1)ν
mq̇6 = mv6 − q6ν

(Jb +mtq
2
2)v̇1 = Mb − 2mtq2v2v1 − [q2(q4sq1 − q5cq1)]λ
mtv̇2 = F − [q2 − q4cq1 − q5sq1]λ
Jw
r2
w

v̇3 =
Mw

rw
+ q3λ

mv̇4 = −(q4 − q2cq1)λ
mv̇5 = −(q5 − q2sq1)λ
mv̇6 = −mg − q6λ

0 =
1
2
[
(q4 − q2cq1)2 + (q5 − q2sq1)2 + q2

6 − q2
3

]
0 = [q2(q4sq1 − q5cq1)] v1 + [q2 − q4cq1 − q5sq1] v2 − · · ·

q3v3 + (q4 − q2cq1)v4 + (q5 − q2sq1)v5 + q6v6

(7.85a)
(7.85b)

(7.85c)

(7.85d)
(7.85e)
(7.85f)

(7.85g)
(7.85h)

(7.85i)

(7.85j)
(7.85k)
(7.85l)

(7.85m)

(7.85n)

The DAE-system of index 2 (7.85) can be integrated forwards in time. This results in the
coordinates q(t), the velocities v(t) and the Lagrange multipliers λ(t) and ν(t).

The integral part of the cost functional (5.75) is formulated by

L(x, t) =
1
2

(q4 − xd)2 +
1
2

(q5 − yd)2 +
1
2

(q6 − zd)2 + · · ·
χ

2
(v4 − ẋd)2 +

χ

2
(v5 − ẏd)2 +

χ

2
(v6 − żd)2

(7.86)

The gradients of L simply read as

Lq =



0
0
0

q4 − xd
q5 − yd
q6 − zd

 , Lv =



0
0
0

χ(v4 − ẋd)
χ(v5 − ẏd)
χ(v6 − żd)

 (7.87)

150



7.3. 3D ROTARY CRANE

Furthermore, the matrices R = Dq(G(q)v) and V(q,v, v̇) = f −GTλ−Mv̇ are needed
to derive the adjoint equations (5.115).

RT =



(q2q4v1 − q5v2 − q2v5)cq1 + (q4v2 + q2(q5v1 + v4))sq1

v2 − (q5v1 + v4)cq1 + (q4v1 − v5)sq1

−v3

v4 − v2cq1 + q2v1sq1

v5 − q2v1cq1 − v2sq1

v6

 (7.88)

V =



Mb − 2mtq2v2v1 − [q2(q4sq1 − q5cq1)]λ− (Jb +mtq
2
2)v̇1

F − [q2 − q4cq1 − q5sq1]λ−mtv̇2
Mw

rw
+ q3λ−

Jw
r2
w

v̇3

−(q4 − q2cq1)λ−mv̇4

−(q5 − q2sq1)λ−mv̇5

−mg − q6λ−mv̇6


(7.89)

The Jacobian matrices of V read as

Vq =


−q2λ(q4cq1 + q5sq1) −2mt(q2v̇1 + v1v2) + q5λcq1 − q4λsq1 0 −q2λsq1 q2λcq1 0
λ(q5cq1 − q4sq1) −λ 0 λcq1 λsq1 0

0 0 λ 0 0 0
−q2λsq1 λcq1 0 −λ 0 0
q2λcq1 λsq1 0 0 −λ 0

0 0 0 0 0 −λ


(7.90)

Vv =



−2mtq2v2 −2mtq2v1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (7.91)
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Now the costate equations (5.115) can be formulated.

ṗ1 =
1

mmt(Jb +mtq2
2)
[
(−mtq2(Jb +mtq

2
2)w5λ+ · · ·

m
(
mtq2q4w1λ− Jbq5w2λ−mtq

2
2q5w2λ+ Jbmtq2q5µ+ · · ·

m2
t q

3
2q5µ−mt(Jb +mtq

2
2)(q2q4v1 − q5v2 − q2v5)ξ

)
cos(q1)− · · ·(

−mtq2(Jb +mtq
2
2)w4λ+m (−mtq2q5w1λ− Jbq4w2λ− · · ·

mtq
2
2q4w2λ+ Jbmtq2q4µ+m2

t q
3
2q4µ+ · · ·

mt(Jb +mtq
2
2)(q4v2 + q2(q5v1 + v4))ξ

))
sin(q1)

]
ṗ2 =

1
mmt(Jb +mtq2

2)
[
−m

(
−Jbw2λ+mt

(
−q2

2w2λ+ Jbq2µ+ · · ·

Jbv2ξ +mt(−2q2v̇1w1 − 2v1v2w1 + q3
2µ+ q2

2v2ξ)
))

+ · · ·
mt

(
−(Jb +mtq

2
2)w4λ+m

(
−q5w1λ+ (Jb +mtq

2
2)q4µ+ · · ·

(Jb +mtq
2
2)(q5v1 + v4)ξ

))
cos(q1) + · · ·

mt

(
−(Jb +mtq

2
2)w5λ+m

(
q4w1λ− (Jb +mtq

2
2)q4v1ξ+ · · ·

(Jb +mtq
2
2)(q5µ+ v5ξ)

))
sin(q1)

]
ṗ3 = −r

2
ww3λ

Jw
+ q3µ+ v3ξ

ṗ4 = xd + w4λ
m − q4(1 + µ)− v4ξ +

(
−w2λ

mt
+ q2µ+ v2ξ

)
cos(q1)− · · ·

q2(−w1λ+ (Jb +mtq
2
2)v1ξ) sin(q1)

Jb +mtq2
2

ṗ5 = yd + w5λ
m − q5(1 + µ)− v5ξ +

(
−w2λ

mt
+ q2µ+ v2ξ

)
sin(q1) + · · ·

q2(−w1λ+ (Jb +mtq
2
2)v1ξ) cos(q1)

Jb +mtq2
2

ṗ6 = zd +
w6λ

m
− q6(1 + µ)− v6ξ

ẇ1 = −p1 +
2mtq2v2w1

Jb +mtq2
2

+ q2q5ξ cos(q1)− q2q4ξ sin(q1)

ẇ2 = −p2 +
2mtq2v1w1

Jb +mtq2
2

− q2ξ + q4ξ cos(q1) + q5ξ sin(q1)

ẇ3 = −p3 + q3ξ

ẇ4 = −p4 − q4ξ − v4χ+ ẋdχ+ q2ξ cos(q1)
ẇ5 = −p5 − q5ξ − v5χ+ ẏdχ+ q2ξ sin(q1)
ẇ6 = −p6 − q6ξ − v6χ+ żdχ

0 =
1

Jwmmt(Jb +mtq2
2)
[
(Jb +mtq

2
2)(−mmtq3r

2
ww3+ Jw(mq2w2 + · · ·

mtq4w4 +mtq5w5 +mtq6w6))− Jw (mmtq2q5w1+ m(Jb +mtq
2
2) · · ·

q4w2 +mtq2(Jb +mtq
2
2)w4

)
cos(q1)− Jw(−mmtq2q4w1 + · · ·

m(Jb +mtq
2
2)q5w2 + mtq2(Jb +mtq

2
2)w5

)
sin(q1)

]
0 =

1
Jwmmt(Jb +mtq2

2)
[
(Jb +mtq

2
2)(−mmtq3r

2
wp3+ Jw(mq2p2 + · · ·

mtq4p4 +mtq5p5 +mtq6p6))− Jw (mmtq2q5p1+ m(Jb +mtq
2
2) · · ·

q4p2 +mtq2(Jb +mtq
2
2)p4

)
cos(q1)− Jw(−mmtq2q4p1 + · · ·

m(Jb +mtq
2
2)q5p2 + mtq2(Jb +mtq

2
2)p5

)
sin(q1)

]

(7.92a)

(7.92b)

(7.92c)

(7.92d)

(7.92e)

(7.92f)

(7.92g)

(7.92h)

(7.92i)
(7.92j)
(7.92k)
(7.92l)

(7.92m)

(7.92n)
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This adjoint system of index 2 (7.92) is solved backwards in time and results in the costates
p(t) and w(t) as well as in the adjoint Lagrange multipliers µ(t) and ξ(t).
Due to

fTu =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1

rw
0 0 0


the control update (5.116) results in

δMb = −κw1

δF = −κw2

δMw = −κw3

rw

(7.93a)
(7.93b)

(7.93c)

7.3.6 Results

Fig. 7.21(a) presents the inversely computed control inputs Mb, F and Mw. The inputs
are calculated by the DAE approach with control constraints and the flatness based pa-
rameterization (7.80), respectively. It can be seen that the bridge torque Mb and the
trolley force F start and end at zero. This results due to the desired trajectory, where
initial and final velocity, acceleration and higher derivatives are equal to zero, Fig. 7.20(b).
Initial and final winch torques are equal to Mw = −490.5Nm. This is the static torque
Mw,s = −mgrw which is required to hold the load. Fig. 7.21(b) shows the computed
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Figure 7.21: Inputs and Lagrange multiplier of the rotary crane

Lagrange multiplier λ. Due to the formulation of the geometric constraints (7.68), it is
identical to the cable tension force. It can be seen that the initial and final values of λ are
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identical to the static force, which results from the load λs = mg = 4905N . Again, the
computed inputs are used in a forward dynamics simulation. However, the formulation
with independent coordinates is used in order that an ODE-solver can be used in Matlab.
In Fig. 7.22(a) the redundant coordinates ϕ1, s and l are shown. Fig. 7.22(b) illustrates
the redundant coordinates x, y and z, which are the outputs of the multibody system. The
outputs are identical to the desired trajectories. The results, which are obtained from the
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(a) Redundant coordinates ϕ1, s, l
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(b) Redundant coordinates x, y, z

Figure 7.22: Redundant coordinates and outputs of the rotary crane

forward numerical integration, are animated in Matlab/Simulink. Fig. 7.23 shows three
snapshots of the motion of the 3D rotary crane. It can be seen that the load is moved
exactly along the desired trajectory from Fig. 7.18.

Figure 7.23: Snapshots of the motion of the rotary crane
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7.3.7 Discussion

In this example, of a three-dimensional multibody system, big differences occur in the
formulation of the equations of motion. The formulation with independent coordinates
is time-consuming and requires many symbolic computations. These computations are
done in Maple. On the other side, the formulation with dependent coordinates can be
done rather in a straightforward way. The only disadvantage is the formulation of the
geometric constraint (7.68) which results in more complex derivatives at velocity and
acceleration level. However, the DAE approach with control constraints can be applied
straightforward. The flatness-based parameterization (7.80) with redundant coordinates is
much easier than with generalized coordinates, cf. [52]. In addition, the resulting control
laws are less complex and hence numerically more efficient. The equations of the Kelley-
Bryson method are also much easier, if redundant coordinates are used. However, the
DAEs of index 2 have to be integrated. By applying a further index reduction, the system
can be transfered to an index 1 system, which ca be integrated by the solver ode15s.
On the other side, the forward dynamics simulation is easier with the generalized coor-
dinates formulation. The standard ODE-solver ode45 is used to integrate the equations
of motion ( 7.64). Merely, larger matrices, which are fully occupied and not constant
have to be handled. The animation of the rotary crane in Matlab/Simulink is seen as big
advantage in order to illustrate the motion and to have a better insight in the multibody
system.
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Virtual prototypes are a way of thinking out
loud. You want the right people to think out
loud with you!

Paul MacCready, inventor of the first
practical flying machine powered by a human

being

Chapter 8

Examples from Industrial
Applications

This section is focused on three industrial examples regarding to nonlinear inverse prob-
lems. In the first example the vibrations of a steel converter are considered and the
excitation forces are computed in an inverse calculation by using the method of virtual
iteration. The second and third example illustrate a virtual test rig where agricultural
machines are considered. The drive signals of the test rig are computed by the virtual iter-
ation method. The steel converter is modeled as finite element model with the commercial
software Abaqus. The agricultural machines are modeled as flexible multibody systems in
the software Adams. All systems have in common that the equations of motion are not
given in a symbolic form. Hence, the DAE-approach with control constraints, the optimal
control algorithm and the flatness-based trajectory tracking control cannot be applied.
Furthermore, the measured target signals present a stochastic behavior and they are not
sufficiently smooth functions that are continuously differentiable. However, the method of
virtual iteration is shown as excellent method to compute the inputs of these large hybrid
multibody systems.

8.1 AOD Converter

The vibrations of an AOD (argon oxygen decarburization) converter are considered. Con-
siderable oscillations are observed during the blowing process. This causes wear in the
tilting drive and furthermore vibrations are introduced in the foundation and the sur-
rounding infrastructure like offices or control rooms. The aim of the present study is to
compute the forces that cause the converter to vibrate, i.e. the excitation forces caused
by the AOD process. The AOD converter under consideration is shown in Fig. 8.1. The
core components are the converter vessel and the blowing lance. The vessel is linked to
the trunnion ring, which is supported by two ball bearing joints. The tilting drive allows
to tilt and empty the vessel. Two tension rods and a torsion bar link the tilting drive and
the foundation. Consequently, rotations of the drive are disabled. However, translations
due to weight or temperature loads are allowed.
The converter is equipped with accelerometers and strain gauges to measure the vibra-
tions during the AOD process. This allows the study of the influence of process and heat
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8.1. AOD CONVERTER

Figure 8.1: AOD converter (Source: Siemens VAI)

parameters on one hand and to verify and calibrate the numerical model on the other
hand.

8.1.1 Model Description

A finite element model of the AOD converter is created in the software Abaqus. The main
parts of the model are shown in Fig. 8.2. Vessel, lining and liquid content are modeled
as mass point with appropriate mass and inertia properties. The vessel is linked to the
trunnion ring via MPC (multi physics constraints) beams, illustrated by the dashed blue
lines. For modeling the trunnion ring (green), Timoshenko beam elements are used. Brick
elements are used for the main bearings (yellow) and tetrahedral elements for the consoles
of the bearings (blue). Gear wheels and gear box are mass points with a so-called display
body (gray). The display body does not have physical properties but is is rather used to
illustrate the motion. The tension rods are truss elements (white) and the torsion bar is
a Timoshenko beam element (red). Bearings and consoles of the torsion bar are modeled
with tetrahedral elements (orange, dark red). The gear box is connected to the tension rods
via MPC connector elements. The gear wheel and the shaft are connected via kinematic
couplings. Gear wheel and gear box are coupled via torsional springs. The values for
masses, torsional spring stiffness, etc. are identified in [145]. The main components are
coupled to the foundation, as shown in Fig. 8.3. The foundation is modeled with brick
elements, where a coarser mesh is used. The foundation consists of a reinforced concrete,
which is not modeled in detail. Rather an average value for the Young’s modulus is used
to restrain the complexity of the model. A tie contact is used to connect all the different
parts. Linear material models are applied to the different parts and hence the whole model
is a linear finite element model. The basis of the model has been previously developed at
Siemens VAI metals technologies GmbH and in the work of [145]. The final model consists
of approximately 280000 DOFs.
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Figure 8.2: Main parts of AOD converter
3D

z

x

y

Figure 8.3: Finite element model of the AOD converter

8.1.2 Measuring Setup

The sensors are placed in such a way that the mode shapes and the motions of the converter
can be observed. Two strains eFr, eFl and seven accelerations ayL, axL, azF l, aaxF l, azFr,
axFr, ayFm are considered. The subscripts x, y, z denote the direction according to the
coordinate system shown in Fig. 8.3 and Fig. 8.4. The two strain gauges are mounted at
the tension rods. Five accelerometers are mounted at the gear box and two accelerometers
are placed at the outer ball bearing to measure longitudinal and transversal oscillations.
The measured frequency range is 0 ... 12.5 Hz, which is the band of major interest. In the
numerical model the ”virtual sensors” are placed exactly in the same way. The positions
can be seen in Fig. 8.4.

8.1.3 Modal Analysis

The first numerical computation is a modal analysis to compare the measured and sim-
ulated eigenfrequencies and mode shapes. Undamped and damped eigenfrequencies are
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axL, ayL

eFl, eFr

axFl, azFl

axFr, azFr

ayFm

Figure 8.4: Positions of accelerometers and strain gauges

calculated. Rayleigh damping is used for the complex eigenvalue analysis. Fig. 8.5 shows
the pole zero map for the first 20 eigenvalues. The highest plotted eigenvalue corresponds
to a frequency of 60 Hz (the imaginary axis illustrates the circular frequency in 1/s). It
can be seen that all real parts are negative and hence the equilibrium point is asymptoti-
cally stable. The first 10 undamped eigenfrequencies and mode shapes can be seen in Fig.
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Figure 8.5: Pole zero map of the AOD converter

8.6. The first mode at 2 Hz is a critical torsional mode because it is a rotation around the
tilting axis. The second mode at 3.9 Hz is a bending mode in the longitudinal direction
and the third mode at 7.5 Hz is a bending mode in the transversal direction. The fourth
mode at 8.8 Hz is a bending mode in the vertical direction. Fifth and sixth mode are
higher order transversal bending modes. The other modes are out of the frequency range
of interest.
The first two eigenfrequencies correspond with measured peaks in the frequency spectra
from different process steps. Higher eigenfrequencies could not be found in the measured
spectra. Reasons can be found in damping properties or in the characteristics of the foun-
dation. As already mentioned the reinforced concrete in the foundation is not modeled in
detail.
In [145] two simplified analytical rigid body models are derived. The first model consists
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of three DOFs and the second model of 21 DOFs. The eigenfrequencies of these analytical
models correspond well with the measured and predicted eigenfrequencies.

(a) Mode 1: 2.01 Hz (b) Mode 2: 3.91 Hz (c) Mode 3: 7.46 Hz

(d) Mode 4: 8.80 Hz (e) Mode 5: 9.64 Hz (f) Mode 6: 12.93 Hz

(g) Mode 7: 13.01 Hz (h) Mode 8: 14.52 Hz (i) Mode 9: 16.05 Hz

(j) Mode 10: 22.21 Hz

Figure 8.6: Eigenfrequencies and mode shapes of the AOD converter

8.1.4 Transfer Functions

The transfer functions of the linear FEM are calculated in an Abaqus ”steady-state dynam-
ics” step. Inputs are the forces and torques in each direction Fx, Fy, Fz, Mx, My, Mz in
the vessel’s center of mass. The outputs are identical to the measured signals. This results
in a (6× 9) transfer matrix G(iω). The frequency range 0 ... 12.5 Hz is sampled with 1000
discretization points. In the steady-state dynamics step a modal damping of 1% is used.
Fig. 8.7 shows the magnitude plots and Fig. 8.8 the phase plots of the transfer matrix.
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Figure 8.7: Magnitude plots of the transfer matrix, AOD converter
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Figure 8.8: Phase plots of the transfer matrix, AOD converter
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8.1. AOD CONVERTER

8.1.5 Inverse Computation of the Excitations
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Figure 8.9: Magnitude plots of the pseudoinverse of the transfer matrix, AOD converter
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Figure 8.10: Phase plots of the pseudoinverse of the transfer matrix, AOD converter
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8.1. AOD CONVERTER

The Moore-Penrose pseudoinverse of the transfer matrix is shown in Fig. 8.9 and 8.10,
respectively.
Target signals are measured during different process steps. An illustrative segment is
shown in Fig. 8.11. All measured signals are presented as relative values which are
related to the individual maxima.
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Figure 8.11: Measured target signals of the AOD converter

The measured targets from Fig. 8.11 are transformed into the frequency range via a FFT.
The corresponding frequency spectra can be seen in Fig. 8.12. In a detailed consideration
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Figure 8.12: Frequency spectra of target signals, AOD converter

of the targets a drift phenomenon can be seen in the strain signals. In the frequency
spectra this effect can be seen in the low-frequency range, Fig. 8.13. However, these static
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8.1. AOD CONVERTER

effects introduce an error in the inverse computation. Hence, the signals are filtered and
the spectra below a cut-off frequency of 0.4 Hz are deleted. The excitations are computed
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(a) Drift in the time domain
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(b) Drift in the frequency domain

Figure 8.13: Measured unfiltered strains with drift effect

by using the filtered targets and the pseudoinverse of the transfer matrix. The first drives
are already the final solution due to the linearity of the model. Subsequent iterations are
not required in this example. The computed excitation forces and torques are shown in
Fig. 8.14. Again, the values are normalized with respect to their maximum forces and
torques, respectively. The frequency spectra of the excitations are of more interest, Fig.
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(a) Excitation forces
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(b) Excitation torques

Figure 8.14: Computed excitations in the AOD converter

8.15. The inverse computation is performed for different AOD process steps and hence it
can be seen which frequencies are excited in the specific steps. The results of the different
steps show a specific trend, which can also be seen in Fig. 8.15. In the frequency spectra
of the transversal force Fy an increase between 1.0 ... 1.8 Hz and especially at 2 Hz can be
seen. Similar effects occur in the torques Mx and Mz. This indicates a pendular movement
of the vessel. However, the excited frequency is critical because the first eigenfrequency is
also 2 Hz.
Without signal filtering of the strain signals the computed excitations would be superim-
posed to a low-frequency oscillation.
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(a) Frequency spectra of excitation forces
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(b) Frequency spectra of excitation torques

Figure 8.15: Frequency spectra of the excitations in the AOD converter

8.1.6 Verification

In order to verify the computed excitations a forward dynamics analysis is performed. A
”Modal Dynamics step” can be used in Abaqus because the model is fully linear. If the
model would be nonlinear, an implicit time integration could be used. However, this would
require much more computational effort.
The outputs of the forward dynamics simulation are compared with the measured targets.
The results are shown in Fig. 8.16 and 8.17, respectively. It can be seen that simulation
outputs and targets coincide. Small deviations can be seen in the spectra of the accel-
eration |ayLrel|. However, the absolute values of this output channel are very low and
hence it can be stated that these deviations are negligible numerical effects. Therefore,
the results of the inverse computation are verified.
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Figure 8.16: Comparison between measured targets and simulation outputs, AOD con-
verter
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Figure 8.17: Comparison of frequency spectra between measured targets and simulation
outputs, AOD converter

8.1.7 Sensitivity Analysis

Modal damping is a simplification of the real physical behavior and therefore a sensitivity
analysis regarding to the modal damping parameter is performed. The focus is put on
the first eigenfrequency, which is critical regarding the computed excitations, Fig. 8.15(a),
8.15(b). The damping parameter is varied between ξ = 0.5% and ξ = 10% and the RMS-
error between system outputs and targets is evaluated. The transfer function G11(iω) is
examplarily shown in Fig. 8.18 for the different damping factors. An ideal value of ξ = 5%
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Figure 8.18: Sensitivity of modal damping

is found. In addition an analytical estimation of the modal damping is carried out for the
first eigenfrequency, Fig. 8.19. This estimation consideres the width of the amplitde, Eq.
(8.1) and results in an ideal value of ξ = 4%.

ξi =
νi2 − νi1
νi2 + νi1

(8.1)
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Figure 8.19: Estimation of modal damping for 1st Eigenfrequency

8.1.8 Calculation of Foundation Forces

The calculated excitations are the basis for further computations. In a forward dynamics
analysis (Modal dynamics) the foundation forces are calculated at specific points. Forces
and torques are evaluated at the left and right bearing of the trunnion ring. Furthermore,
forces and torques at the bearings of the torsion bar are considered. The results are shown
in Fig. 8.20, 8.21, 8.22 and 8.23. It can be seen that the forces that are introduced in
the foundation are a superposition of static forces due to the mass of the vessel with the
liquid steel bath and the dynamic forces due to the AOD process.
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Figure 8.20: Forces and torques at the trunnion ring

8.1.9 Movement of the Converter

On the basis of the computed excitations, the converter movements are considered. Es-
pecially the movement of the vessel is of great interest, Fig. 8.24. The peak at 2 Hz can
be seen clearly in the transversal motion |vrel|, Fig. 8.24(c) and the rotation around the
tilting axis |Φrel|, Fig. 8.24(d).
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Figure 8.21: Forces and torques at the torsion bar
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Figure 8.22: Frequency spectra of forces and torques at the trunnion ring
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Figure 8.23: Frequency spectra of forces and torques at the torsion bar
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(b) Rotational movements of the vessel

0 2 4 6 8 10 12
0

0.1

0.2

frequency (Hz)

|u
re

l| (
 )

0 2 4 6 8 10 12
0

0.5

1

frequency (Hz)

|v
re

l| (
 )

0 2 4 6 8 10 12
0

0.1

0.2

frequency (Hz)

|w
re

l| (
 )
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of the vessel
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Figure 8.24: Movement of the vessel
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8.1.10 Discussion

The method of virtual iteration is shown as suitable method to inversely compute the
excitations of a large finite element model. Due to the linearity of the FEM the inverse
computation can be done in one step without subsequent iterations. It is shown that the
converter movement can be captured with nine measuring points. The over-determined
system can be inverted by using the Moore-Penrose pseudoinverse. The inverse calculation
is carried out for different process steps and the results are statistically analyzed. However,
this is out of the scope of this dissertation and therefore these results are not shown here.
It is shown that a critical frequency of 2 Hz is excited, which is identical to the first
eigenfrequency of the mechanical system. As a consequence, a pendular movement of the
converter is excited around its tilting axis. In specific measurements a beat can be found
which results from the eigenfrequency at 2Hz and an excitation in the area of 2 Hz.

It should be mentioned that the model of the vessel, which is a simple mass point, is
a rough simplification. In further investigations the motion of the liquid steel bath should
be included in the computation as well. For that reason the liquid steel is studied with
CFD (computational fluid dynamics) methods at the institute of fluid mechanics and heat
transfer at the Johannes Kepler university. The first studies consider a rotating tank with
identical physical properties than the vessel with liquid steel. It is shown that the first
eigenfrequency is 2 Hz, which correlates with the results of the computed excitations, Fig.
8.15. If the eigenfrequency of the steel bath and the mechanical system are close together,
it results in a beat. Hence, the characteristics of the measured target signals can be phys-
ically interpreted. Parts of the results are published in [127].
In future work the FEM and the CFD-models will be coupled and the resulting system
will be considered.
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8.2 Trailed Cultivator: Synkro 6003T

The considered system is a trailed cultivator, named ”Synkro 6003T” of the company
Alois Pöttinger Maschinenfabrik GmbH, Fig. 8.25. A test drive on a representative test
track is performed with the real physical machine and specific target signals are measured.
Subsequently, the cultivator is put on a 3-poster test rig in the laboratory. The servo-
hydraulic cylinders excite the system at the tractor linkage drawbar and the two wheels in
the vertical direction. The goal is to compute the drive signals in order to reproduce the
measured targets. It should be mentioned that the pack ring roller and the front wheels,
which can be seen in Fig. 8.25, are not mounted on the considered machine.

Figure 8.25: Trailed cultivator: Synkro 6003T (Source: Pöttinger)

8.2.1 Model Description

The whole system is modeled as a MBS in the software Adams, Fig. 8.26. The main
components are included as flexible bodies due to their bending and torsional stiffness
which result from the frame construction of such agricultural machines. In a comparative
study it is shown that a rigid body model does not provide satisfying results [124]. Hence,
finite element models of the the main parts (i) drawbar, (ii) central framework, (iii) left
and right folding parts, (iv) connection beam and (v) rear axle are created. All parts are
made of steel, which is modeled as linear elastic material. Mesh and boundary conditions
are prepared in Ansys and I-Deas and the modal reduction is performed in Nastran. The
whole FEM consists of approximately 550000 nodes, 270000 tetrahedral elements and
therefore 1.65 million DOFs. By using a Craig-Bampton reduction and a CMS, cf. section
2.9.5, the number of DOFs in the resulting MBS can be reduced to 213. Interface nodes for
the MBS are created at each joint and the constraint modes corresponding to the DOFs
of the joint are calculated. 10 fixed-boundary normal modes are chosen to be sufficient
for each individual part. In a sensitivity analysis of several dynamic simulations an ideal
value of 0.5% is found for modal damping of the first 10 modes.
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The headland position, where the folding parts are fully lowered, is considered at the
3D

x

z

y

Figure 8.26: MBS model of the virtual test rig with the trailed cultivator Synkro 6003T

test rig. In the MBS hydraulic cylinders and flexible parts are connected with revolute
joints. Cylinder and piston rod of the hydraulic cylinders are also connected by revolute
joints. As a consequence, the relative rotation is possible but the translational movement
is locked. This is modeled because all hydraulic cylinders in the real machine are locked by
multi-port-valves during operation. Furthermore, it is assumed that the oil is absolutely
incompressible.
A very important modeling detail is the front linkage that connects the test rig with the
machine, Fig. 8.26 (gray and yellow). This connection is used in the real test rig and
hence it has to be included in the model as well. The parts are rigid bodies and identical
joints as in the real test rig are used.
The tires are modeled by bushing elements (in Adams called VFORCE) with (non)linear
spring and damper characteristics in all three Cartesian coordinates.

8.2.2 Tire Modeling

A tire test rig, which is developed by Pöttinger, is used to determine the tire characteristics,
Fig. 8.27. The most important characteristics regarding to the test rig are (nonlinear)
radial stiffness and damping. The stiffness is measured by a defined force which results in
a deflection of the tire. Typically, a progressive spring characteristics occurs. The linear
damping factor is determined in a vibration test. In a first step a linearized stiffness of
cz = 550N/mm and a damping factor of kz = 5Ns/mm are used in the vertical direction.
A sensitivity analysis in dynamic simulations results in a linear stiffness of cy = 275N/mm
and a damping coefficient of ky = 2.5Ns/mm in the transversal direction.
Furthermore, the stiffness in longitudinal direction is important in the virtual test rig with
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the trailed cultivator. In the real test rig the machine is not braked but wheel chocks are
used, which makes the system more complicated. This is modeled by a nonlinear spring
characteristic. It allows the machine to move almost freely in the longitudinal direction
until the tires roll up onto the chock. If this case occurs, the stiffness is increased in a
suitable way. The approximation of the tires by using bushing elements is chosen to be

(a) Tire test rig at laboratory (b) MBS model of tire test rig

Figure 8.27: Tire test rig (Source: Pöttinger)

sufficiently accurate for the simulation of the virtual test rig. However, in a full-system
simulation, where the agricultural machine is driven over a cart track, more sophisticated
tire models are required. A so-called ”adaptive footprint” model is developed as user-
written subroutine [126]. However, the details of tire modeling are not in the scope of this
dissertation and therefore they are not be described here in detail.
Nevertheless, some important references are given. Modeling details of agricultural tires
can be found e.g. in [2, 16, 55, 56, 88, 89, 98, 99, 100, 147, 155, 156]. A detailed review of
tire models in the automotive industry is given in [118].
It should be briefly mentioned that a driver model is also needed in such a full-system
simulation. Full system simulations in the automotive industry are published e.g. in
[81, 97, 101, 120, 129], suitable approaches for driver models in [49, 51, 154, 159, 160].

8.2.3 Measuring Setup

The positions of the used sensors can be seen in Fig. 8.28. Ten accelerometers are used to
capture the target signals during the test drive (a1x, a2z, a3z, a4x, a5z, a6Ry, a7Rz, a8Az,
a9Iz, a10z). The subscripts x, y, z denote the orientation in the Cartesian coordinate system
in Fig. 8.28. Measurement points are at the drawbar, the central framework, the folding
parts and at the rear axle. The most important sensors measure the acceleration in the
vertical direction. The vertical direction is specifically excited by three servo-hydraulic
cylinders. The measuring points in the model are identical to the real system. In the
measured targets the relevant frequency range is between 0.9 ... 4.9 Hz.
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Figure 8.28: Sensor positions of the Synkro 6003T

8.2.4 Modal Analysis, Verification

A numerical modal analysis is carried out for validation purposes of the virtual test rig.
The static equilibrium of the virtual test rig is computed and the model is linearized at
this point. Fig. 8.29 shows the pole zero map of all 213 calculated eigenvalues. The
highest plotted eigenvalue corresponds to an eigenfrequency of 167 Hz. It can be seen that
all real parts of the eigenvalues are in the negative half plane and hence the equilibrium
point is asymptotically stable.
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Figure 8.29: Pole zero map of the Synkro 6003T

The eigenfrequencies from the real system are also determined by a modal analysis from
a stroke of a hammer. 90 individual frequency spectra are considered and the resulting
boxplots are shown in Fig. 8.30. Furthermore, the measured and calculated
eigenfrequencies are compared in Fig. 8.30. Simulated eigenfrequencies are presented by
the green dots. The frequency range till 25 Hz is evaluated. It can be seen that the
measured and simulated eigenfrequencies correspond well. Therefore, it can be stated
that the linearized model of the virtual test rig is verified.
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Figure 8.30: Measured and simulated Eigenfrequencies of Synkro 6003T

The mode shapes which correspond to the eigenvalues are shown in Fig. 8.31. The first
mode at 0.79 Hz shows a movement in the longitudinal direction. Its eigenfrequency is
mainly influenced by the longitudinal stiffness of the tires. The second mode at 1.59
Hz illustrates a pendular movement around the longitudinal axis and is specified by the
vertical (radial) stiffness of the tires. A transversal motion occurs in the third mode at
3.05 Hz. This results from the transversal stiffness in the tires. In the fourth mode at
4.07 Hz bending of the drawbar, the connection beam and the rear axle can be seen. The
higher modes are already out of the relevant frequency range. Generally a significant
movement of the front linkage is observed in all modes. It is important to note that the
lower eigenfrequencies within the range of the excitations are mainly determined by the
stiffness values of the tires.

8.2.5 Transfer Functions

In the iteration process the two targets which measure the acceleration in x-direction a1x,
a4x are not considered. The resulting outputs are y1 = a2z, y2 = a3z, y3 = a5Lz, y4 = a6Ry,
y5 = a7Rz, y6 = a8Az, y7 = a9Iz, y8 = a10z. This results from very low amplitudes in the
vibrations, which can be explained by the vertical excitation of the system. The three
drive signals are the cylinder displacements at the front u1 and the excitations at the left
wheel u2 and the right wheel u3, respectively. As a consequence, a (3× 8) transfer matrix
is obtained. The state matrices A, B, C and D are calculated in Adams and the transfer
matrix is assembled in Matlab. The individual transfer functions are sampled with 500
points in the frequency range between 0.5 ... 10 Hz.
The magnitude plots of the transfer matrix can be seen in Fig. 8.32 and the phase plots
in Fig. 8.33. The Moore-Penrose pseudoinverse of the transfer matrix is illustrated in
Fig. 8.34 and 8.35.
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(a) Mode 1: 0.79 Hz (b) Mode 2: 1.59 Hz (c) Mode 3: 3.05 Hz

(d) Mode 4: 4.07 Hz (e) Mode 5: 6.42 Hz (f) Mode 6: 9.34 Hz

(g) Mode 7: 11.42 Hz (h) Mode 8: 13.1 Hz (i) Mode 9: 13.8 Hz

(j) Mode 10: 16.3 Hz (k) Mode 11: 18.1 Hz (l) Mode 12: 19.9 Hz

(m) Mode 13: 25.1 Hz

Figure 8.31: Eigenfrequencies and mode shapes of the Synkro6003T
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Figure 8.32: Magnitude plots of the transfer matrix, Synkro 6003T
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Figure 8.33: Phase plots of the transfer matrix, Synkro 6003T
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Figure 8.34: Magnitude plots of the pseudoinverse transfer matrix, Synkro 6003T

10
0

0

0.2

0.4

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G11+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G12+

10
0

170

175

180

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G13+

10
0

−2

0

2

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G21+

10
0

0

100

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G22+

10
0

0

100

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G23+

10
0

−180

−179.9

−179.8

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G31+

10
0

−10

0

10

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G32+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G33+

10
0

0

100

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G41+

10
0

−200

−100

0

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G42+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G43+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G51+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G52+

10
0

−5

0

5

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G53+

10
0

0

1

2

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G61+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G62+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G63+

10
0

0

0.5

1

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G71+

10
0

0

100

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G72+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G73+

10
0

0

1

2

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G81+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G82+

10
0

−200

0

200

frequency (Hz)

ar
g 

(G
+
) 

(°
)

G83+

Figure 8.35: Phase plots of the pseudoinverse transfer matrix, Synkro 6003T
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8.2.6 Virtual Iteration

Target signals are captured in a sequence of 60s, as shown in Fig. 8.36. The frequency
spectra are calculated via a FFT and presented in Fig. 8.37. It can be seen that the
excitation from the test track is a stochastic signal. Peaks can be seen in the area of 3 Hz
and 4 Hz which correspond to the third and fourth eigenfrequency. The excited frequency
range is between 0.9 ... 4.9 Hz. Hence, the transfer matrix is re-sampled.
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Figure 8.36: Measured targets of the Synkro 6003T
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Figure 8.37: Frequency spectra of the target signals of the Synkro 6003T
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The virtual iteration algorithm is applied to the system. Due to nonlinearities in the tires
and the front linkage several iterations are required. The forward dynamics simulation is
performed with the Adams-solver GSTIFF I3. The scalar factor αn+1 in Eq. (3.37) is
chosen to be equal to one. Fig. 8.38 shows the outputs of the simulation (blue), the
targets (black) and the error (red) in the first iteration. An illustrative segment between
20s and 25s is plotted in order to zoom into the results. Fig. 8.39 shows the frequency
spectra in the first iteration. It can be seen that the error due to the linearization of the
nonlinear model is significant. As a consequence, subsequent iterations are carried out.
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Figure 8.38: Targets, simulation results and error in the 1st iteration, Synkro 6003T

The error in the fifth iteration is presented in Fig. 8.40 and the corresponding frequency
spectra in Fig. 8.41. It can be seen that the error is reduced compared to the first iteration,
Fig. 8.38. However, the first two outputs y1 = a2z and y2 = a3z do not convergence as
fast as the other outputs. The iterative procedure is stopped after the fifth iteration. A
segment of the final drive signals is shown in Fig. 8.42. The iteration is also performed
on the real test rig. Therefore, the drives from the virtual test rig and the real test rig
can be compared. It can be seen that they correlate well. The frequency spectra of the
virtually computed drives are presented in Fig. 8.43. The error between targets and
system outputs is measured in each iteration. The RMS-error and the error of maximum
deviation are summarized to an illustrative error indicator, which is calculated by Eq.
(3.41). The RMS-error, the MAX-error and the resulting error indicator are presented for
each output channel in every iteration, Fig. 8.44.

8.2.7 Discussion

It is shown that the implementation of flexible bodies is crucial for modeling an agricultural
machine as the trailed cultivator Synkro 6003T. The Craig-Bampton method is suitable
for the implementation. It is also shown that the number of DOFs can be reduced from
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Figure 8.39: Frequency spectra of targets and system outputs in the 1st iteration, Synkro
6003T
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Figure 8.40: Targets, simulation results and error in the 5th iteration, Synkro 6003T

1.65 million in the original FEM to 213 in the resulting MBS. Nonlinearities as the spring
characteristics in the tires can be included in the MBS. The approximation of bushing
elements to describe the tire behavior is sufficiently accurate for a virtual test rig as in
Fig. 8.26 but not detailed enough for a full system simulation on a test track.
It is shown that the virtual iteration procedure converges and that the error between
targets and system outputs is decreased in each iteration. 8 of 10 output channels are
included in the iteration. However, the two channels that are not considered, converge as
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Figure 8.41: Frequency spectra of targets and system outputs in the 5th iteration, Synkro
6003T
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Figure 8.42: Computed drives signals and drives from the physical test rig, Synkro 6003T

well. This is not explicitly shown here. The error indicator is between 22% and 58% in
the first iteration. In the fifth iteration the error is reduced to values between 4% and
15%. The convergence behavior could not be improved by including the output channels
a1x and a4x in the iteration. The error could further be reduced by additional iterations.
However, the convergence speed decreases with each iteration, as it can be seen in Fig.
8.44.
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Figure 8.43: Frequency spectra of the drive signals, Synkro 6003T
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Figure 8.44: Convergence curves of the Synkro 6003T
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8.3 Plough: Servo 6.50

In this section a large plough with eight shares, named ”Servo 6.50” is the object under
consideration. This agricultural machine is developed and produced by the company Alois
Pöttinger Maschinenfabrik Gmbh, Fig. 8.45. The objective in this example is similar to
the previous example of the Synkro 6003T, chapter 8.2. A test drive on a specific track
should be reproduced on a real physical test rig as well as on a virtual test rig.

Figure 8.45: Plough: Servo 6.50 (Source: Pöttinger)

8.3.1 Model Description

The virtual test rig is modeled equivalent to the real physical 2-poster test rig. The MBS
is modeled in Adams and the FEM is created in Ansys and I-Deas, Fig. 8.46. Due to the
length and the heavy shares of the machine it is important to include flexible bodies. The
main components are split into four flexible sub-models, (i) the headstock to the lower link
of the tractor, (ii) the headstock with the revolute joint, (iii) the main body including all
beams and shares and (iv) the wheel carrier. The transport position as shown in Fig. 8.45
and 8.46 is considered on the test rig. The hydraulic cylinders in the front, which turn the
plough, are locked. The rear cylinders that adjust the width are locked as well. This is
modeled directly in the FEM by using beam elements with appropriate stiffness properties.
The whole FEM consists of 1.36 million nodes and over 700000 tetrahedral elements. This
results in more than 4 million DOFs. Again, the flexible bodies are implemented via a
Craig-Bampton reduction. The final MBS consists of 90 DOFs. Due to the large finite
element models, the number of interface nodes is reduced compared to the model of the
Synkro 6003T. For each FEM 10 fixed-boundary normal modes are computed. Modal
damping is set to 0.5%.
The leverage in the front of the test rig is modeled by rigid parts. The excitation in the
front u1 is modeled by a point motion and the rear cylinder u2 is modeled as motion in a
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z

x

y

Figure 8.46: MBS model of the virtual test rig with the plough Servo 6.50

translational joint.
The tires are modeled by using bushing elements with cz = 525N/mm, kz = 5Ns/mm in
the vertical direction and cx = 80N/mm, kx = 2.5Ns/mm in the transversal direction.
Stiffness and damping in the longitudinal direction are set to zero because the plough is
not braked at the test rig and no wheel chocks are used.
The hydraulic cylinder that connects the headstock with its revolute joint to the main part
is not locked. Hence, a nonlinear force element is included [16]. In a first step a linearized
value of 23.5 kN is used. Furthermore, a contact problem arises between main part and
wheel carrier. On the real test rig it is observed that the contact opens at high peaks in
the excitations. However, a full contact model is not included in the MBS. Rather a stiff
spring with c = 106N/mm is included between the two bodies.

8.3.2 Measuring Setup

The plough is equipped with five accelerometers a1x, a2z, a3z, a4z, a5z and three strain
gauges εb6, εb7, εt8. The subscripts x, y, z denote the orientation in the Cartesian coordinates
as shown in Fig. 8.47. The superscripts b and t denote bending and torsional strains. It
can be seen that most sensors measure the vibration in the vertical direction, which results
from the excitations in z-direction. The relevant frequency band of the targets is in the
range of 0.7 ... 3.0 Hz.

8.3.3 Modal Analysis, Verification

The multibody system is linearized at its equilibrium point and a modal analysis is carried
out. The pole zero map of all 90 eigenvalues is presented in Fig. 8.48. The highest eigen-
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Figure 8.47: Sensor positions of Servo 6.50

value corresponds to an eigenfrequency of 8.35 kHz. All real parts of the eigenvalues are
negative and therefore the equilibrium point is asymptotically stable. The simulated eigen-
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Figure 8.48: Pole zero map of Servo 6.50

frequencies are compared with the measured eigenfrequencies, which are determined from
16 independent measurements. The resulting boxplots and the simulated eigenfrequencies
are presented in Fig. 8.49, where the simulation results are shown as green dots. A fre-
quency range from 0 to 25 Hz is evaluated. It can be seen that calculated and measured
results of the first two eigenfrequencies are identical. The third computed eigenfrequency
is slightly higher than the measured value. This effect tends to increase till 14 Hz. How-
ever, these frequencies are out of the range regarding to the spectra of the excitations. The
reason for the higher computed eigenvalues can be seen in the mass distribution. Several
small attachment parts like screws, bolts, bubble storages or hydraulic components of the
real machine, Fig. 8.45 are not considered in the model. As a consequence the mass of the
model is to low at specific points, which results in higher eigenfrequencies. Despite these
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small deviations it can be stated that the model is verified. The first mode at 0.96 Hz
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Figure 8.49: Measured and simulated Eigenfrequencies of Servo 6.50

shows a transversal movement which is influenced by the transversal stiffness of the tire.
A vertical motion combined with bending of the lower rectangular shaped tube occurs in
the second mode at 2.15 Hz. The third mode at 3.70 Hz is a bending mode about the
vertical axis and the fourth mode at 4.73 Hz is a torsional mode around the longitudinal
axis. In the higher modes movements of the wheel carrier, the main shaped tube and the
shares can be seen. It is worth mentioning that the lower eigenfrequencies, which are in
the range of the excitations, are mainly influenced by the tire characteristics.
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(a) Mode 1: 0.96 Hz (b) Mode 2: 2.15 Hz (c) Mode 3: 3.70 Hz

(d) Mode 4: 4.73 Hz (e) Mode 5: 4.96 Hz (f) Mode 6: 5.07 Hz

(g) Mode 7: 7.87 Hz (h) Mode 8: 10.33 Hz (i) Mode 9: 10.77 Hz

(j) Mode 10: 12.32 Hz (k) Mode 11: 13.52 Hz (l) Mode 12: 13.85 Hz

(m) Mode 13: 14.98 Hz (n) Mode 14: 15.69 Hz (o) Mode 15: 16.22 Hz

(p) Mode 16: 19 Hz (q) Mode 17: 22.13 Hz

Figure 8.50: Eigenfrequencies and mode shapes of Servo 6.50
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8.3.4 Transfer Functions

Seven outputs signals, which are y1 = a2z, y2 = a1x, y3 = a3z, y4 = a5z, y5 = a4z, y6 = εt8
and y7 = εb6, i.e. five accelerations and two strains are considered in the virtual iteration.
The output channel εb7 is not considered due to errors in the measurements. This results
in a (2 × 7) transfer matrix, which is computed on the basis of the linearized model and
the state matrices A, B, C and D. The transfer functions are sampled with 500 points in
the frequency band between 0.5 and 10 Hz. The magnitude plots are shown in Fig. 8.51
and the phase plots in Fig. 8.52. The Moore-Penrose pseudoinverse is presented in Fig.
8.53 and 8.54, respectively.
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Figure 8.51: Magnitude plots of the transfer matrix, Servo 6.50
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Figure 8.52: Phase plots of the transfer matrix, Servo 6.50

8.3.5 Virtual Iteration

The measured target signals are shown in Fig. 8.55 and the corresponding frequency spec-
tra in Fig. 8.56. The excited frequencies are in the band 0.7 ... 3.0 Hz. The linearized
model does not coincide with the nonlinear model due to nonlinearities in the front hy-
draulic cylinder. As a consequence, iterative loops are required to reduce the error between
targets and system outputs and to find the final solution of the drive signals. The forward
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Figure 8.53: Magnitude plots of pseudoinverse transfer matrix, Servo 6.50
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Figure 8.54: Phase plots of pseudoinverse transfer matrix, Servo 6.50

dynamics simulation is performed with the HHT-solver in Adams. The scalar weighting
factor αn+1 in the iterative algorithm is chosen to one in each iteration.
The outputs, the targets and the error in the first iteration are shown in Fig. 8.57. An
illustrative segment between 20s and 25s is chosen in order to zoom into the curves. The
corresponding frequency spectra can be seen in Fig. 8.58. The results after three iterations
are shown in Fig. 8.59 and 8.60, respectively.
It can be seen that the error is nearly zero and hence the algorithm is stopped after the
third iteration.
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Figure 8.55: Measured target signals of Servo 6.50
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Figure 8.56: Frequency spectra of the measured target signals, Servo 6.50
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Figure 8.57: Targets, simulation results and error in the 1st iteration, Servo 6.50
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Figure 8.58: Frequency spectra of targets and system outputs in the 1st iteration, Servo
6.50
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Figure 8.59: Targets, simulation results and error in the 3rd iteration, Servo 6.50
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Figure 8.60: Frequency spectra of targets and system outputs in the 3rd iteration, Servo
6.50
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Figure 8.61: Computed drives signals and drives from the physical test rig, Servo 6.50

The resulting drive signals are presented in Fig. 8.62. The computed results are
compared with the solution from the physical test rig. It can be seen that they are
congruent. The frequency spectra of the drives are shown in Fig. 8.63.
Fig. 8.63 illustrates the convergence behavior of the virtual iteration of the Servo 6.50.
It can be seen that an error of 7% occurs in the first iteration. In the third iteration the
error indicator is reduced to values between 1% and 1.5%.
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Figure 8.62: Frequency spectra of the drive signals, Servo 6.50

8.3.6 Discussion

The modeling techniques of the Servo 6.50 are very similar to that of the Synkro 6003T.
An essential part are the flexible bodies in order to describe the bending and torsional
stiffness of the machine. By using the Craig-Bampton reduction with a CMS the number
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Figure 8.63: Convergence curves of the Servo 6.50

of DOFs is dramatically reduced from 4 million to 90. Nonlinear characteristics of the
front hydraulic cylinder are included in the multibody system. The rest of the model is
fully linear. As a consequence, the virtual iteration converges rapidly. The relative error
between targets and system outputs is reduced to less than 1.5% after three iterations. It
should be mentioned that the contact problem between main part and wheel carrier is not
fully modeled. A linear stiff spring element is used instead of a nonlinear contact element.
The contact opens itself, if high peaks occur in the excitation. These peak loads affect the
targets and can be seen at 18s and 28s, Fig. 8.55. Such effects cannot be reproduced by
the linear spring. Furthermore, it should be mentioned that such peaks are smoothed in
the FFT and as a result they do not appear so distinctivly in the drives. This effect can
possibly introduce an error in a subsequent fatigue computation.
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All intelligent thoughts have already been
thought; what is necessary is only to try to
think them again.

Johann Wolfgang von Goethe

Chapter 9

Conclusion

The content of this dissertation is a contribution to inverse problems of underactuated
multibody systems. It was shown that the control of underactuated systems is much more
challenging than that of fully actuated systems. It has to be distinguished between MBS
where the equations of motion are given in a symbolic form and MBS that are modeled
in commercial software.
If the equations of motion are available, the mathematical methods related to the inverse
problem can go into the details of these equations. Specific mathematical methods take
advantage of the particular formulation of the differential equations, cf. chapters 4, 5 and
6. It was shown that the formulation with redundant coordinates is beneficial with respect
to the trajectory tracking problem. This was already stated for the DAE approach with
control constraints by [25].
The methods considered in this thesis are not restricted to MBS where the equations of
motion are symbolically obtainable. The method of virtual iteration was applied to large
multibody systems including flexible bodies and a large finite element model. Such sys-
tems from industrial applications are modeled in commercial MBS- or FEM-software. As a
consequence, the model is very detailed and the physical behavior, with its nonlinearities,
can be considered in an appropriate way. However, the user of such a tool usually does
not have access to the dynamic equations. As a consequence the system has to be treated
as black box with respect to the inverse problem.

Four different approaches were studied, namely (i) the virtual iteration, (ii) the DAE ap-
proach with control constraints, (iii) the optimal control approaches and (iv) the flatness-
based trajectory tracking. It was shown that all methods are suitable for a specific class of
the problem. The methods under consideration are compared in the following paragraph.

Virtual iteration, chapter 3:
The method of virtual iteration is based on a linearization of the nonlinear system at an
equilibrium point. The transfer matrix between inputs and outputs is computed from the
linearized system. The inverse or the pseudoinverse of the transfer matrix is computed
and the computation of the inputs is performed in the frequency domain. It was shown
that the Moore-Penrose pseudoinverse is suitable to handle overdetermined systems. The
results are used in a forward simulation in the time domain and the error between targets
and system outputs is calculated. An iterative loop is carried out until the error is reduced
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to a minimum tolerance value.
The method was applied to large flexible multibody systems and a finite element model
with hundred thousands to millions of degrees of freedom. It was shown that the method
of virtual iteration can handle such large systems. However, the nonlinear characteristics
of the systems should not be too distinctive in order that the algorithm converges.
Virtual iteration is characterized by an inverse computation in the frequency domain and
a forward computation in the time domain. Due to the linearization and the Fourier
transform it can occur that some single peaks are undetected. However, such sharp peaks
in the excitations can be crucial in a fatigue calculation. Hence, the root mean square
error has to be evaluated as well as the maximum deviations.

DAE approach with control constraints, chapter 4:
The equations of motion can either be formulated by independent (generalized) or by de-
pendent (redundant) coordinates. The formulation with independent coordinates results
in ODEs and the formulation with dependent coordinates in DAEs. Both types of dy-
namic equations can be extended by so called control or servo constraints. This results
in DAEs with an index, which is generally higher than three. The redundant coordinates
formulation with control constraints yields index 5 problems. Such systems are beneficial
regarding the inverse problem, even if they cannot be solved directly. A suitable index
reduction procedure was applied to the system and the resulting index 3 problem was
solved numerically. For that reason an implicit Euler algorithm was implemented.
The DAE approach with control constraints is an excellent method for inverse problems,
if the equations of motion are given in a symbolic form. Arbitrary signals can be used as
desired targets. In contrast to the flatness-based trajectory tracking, the targets must be
differentiated only twice in the index reduction procedure. In the flatness-based approach
the flat outputs have to be identified and these outputs must be continuously differen-
tiable up to a higher order. Furthermore, the number of inputs must be identical to the
number of outputs. Overdetermined systems cannot be treated as in the virtual iteration
algorithm.

Optimal control, chapter 5:
It was shown how to formulate the inverse dynamics problem as an optimal control prob-
lem. A cost functional, which includes the error between targets and system outputs, has
to be minimized. The resulting system can be solved in different ways.
Indirect methods formulate the necessary optimality conditions. This can be done effi-
ciently by introducing a Hamiltonian based on state and costate variables. In addition,
boundary and transversality conditions must be fulfilled. This results in a two-point
boundary value problem that can be challenging to solve. Collocation methods or (mul-
tiple) shooting methods are possible solution strategies. Another method is the gradient
method, called Kelley-Bryson method. The variation of the control variable was derived
in order to minimize the cost functional. The method is characterized by an integration
of the states forwards in time and an integration of the costates backwards in time. It was
shown that the method can be applied to ODE-systems as well as to DAE-systems. For
DAE-systems the index 2 Gear-Gupta-Leimkuhler formulation is preferred.
Direct methods discretize the system and reformulate the optimal control problem to a
finite dimensional static optimization problem (NLP problem). In a partly discretization
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the control variable is split into many sub-intervals in time. In a full discretization the
differential equations are discretized as well. The considered approach treats the MBS as
black box where inputs, outputs and state variables can be exchanged via an interface.
The optimization algorithm runs externally. The idea behind that method was to apply
it to MBS that are modeled in commercial software. Unfortunately, the interface of such
commercial tools is very limited and as a consequence the algorithm is very inefficient.
However, the method was applied to systems that are modeled in Matlab/Simulink. It was
shown that a Tikhonov regularization term in the cost functional can improve the solution
of the control inputs.
In contrast to the DAE-approach with control constraints a very short step size was re-
quired in order to minimize the iteration in each sub-interval. It was shown that the
DAE approach with control constraints is numerically more efficient. The Kelley-Bryson
method is also seen as more advantageous compared to the considered direct optimal
control algorithm. In contrast to the DAE approach with control constraints and the
flatness-based trajectory tracking, the optimal control formulation is not limited to fully
determined systems where the number of inputs is identical to the number of outputs.

Exact linearization and flatness-based trajectory tracking, chapter 6:
Exact linearization was applied to affine input systems. Derivatives of the system outputs
with respect to time are calculated until the inputs explicitly appears. For that reason
symbolic computations of the Lie-derivatives are required. By using a local diffeomor-
phism the system can be transfered to the so-called Byrnes-Isidori normal form. This
formulation splits the system in a controllable, observable system and a non-observable
system. It was shown that the closed-loop circuit can only be stabilized with a stable zero
dynamics, i.e. the system is a minimum phase system.
The high effort in the symbolic computations of the Lie-derivatives are avoided in a
flatness-based parameterization. It was shown that the state variables and the input
variables can be parameterized by the outputs and their time derivatives up to a certain
order. Such systems are called differentially flat and the outputs are known as flat out-
puts. The challenge is to identify such flat outputs. In the considered examples of a planar
overhead crane and a 3D rotary crane it was shown that the position of the load is always
a flat output.
The big advantage of the flatness-based parameterization is that an analytical (nonlin-
ear) control law is derived for the inputs. The DAE approach with control constraints
and the optimal control approach yield a pure numerical solution of the input variables.
The desired outputs in a flatness-based trajectory control must be sufficiently smooth, i.e.
continuously differentiable. Arbitrary trajectories or measured signals have to be filtered
in order to obtain sufficiently smooth functions. As a consequence, this method cannot
be applied to all classes of inverse problems. The flatness-based approach is also limited
to systems where the number of inputs is identical to the number of outputs.

The methods of the DAE approach with control constraints, the optimal control ap-
proaches and the flatness-based trajectory tracking were applied to three academic ex-
amples. The first example considered a nonlinear oscillator, which represented a fully
actuated system. In the second example an underactuated planar overhead crane was the
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object under consideration. This example showed the advantages of a redundant coordi-
nates formulation and illustrated the characteristics of the applied methods. The third
example was a more complicated multibody system of a 3D rotary crane.
The method of virtual iteration was successfully applied to a finite element model of an
AOD-steel converter and multibody systems of a trailed cultivator and a plough.

In summary it can be stated that the dissertation includes inverse methods that are suit-
able for academic examples where the equations of motion can be symbolically derived as
well as methods that can be applied to large systems in industrial applications.

Future Perspectives:
The optimal control approaches show perspectives for further developments. It was shown
that the gradient method can be applied to multibody systems that are formulated with
redundant coordinates. The resulting state and costate equations are formed by index
2 DAEs, which have to be integrated numerically. Hence, it is of great interest to find
appropriate solvers that can handle these index 2 systems.

The considered direct optimal control approach, which treats the MBS as black box,
was applied to systems that are modeled in Matlab/Simulink. The goal is to apply the
algorithm to systems that are modeled in commercial MBS or FEM tools. Up to now
this has been limited by the interface of such software. The co-simulation between Matlab
and Adams is seen as inefficient by now. If the interface will be more open in future, it
would be useful to couple the optimal control algorithm with a MBS-software. This would
allow the user to handle more complicated systems with nonlinearities, flexible bodies and
all possible modeling techniques. It would also be interesting to compare the presented
optimal control algorithms with the software presented in section 5.5.4.

The DAE approach with control constraints, the indirect optimal control and the flatness-
based trajectory tracking are based on a symbolic form of the equations of motion. A
couple of multibody codes, which formulate the equations of motion not pure numerically
but rather symbolically, are available in the academic community. It would be of great
interest to evaluate such code regarding larger multibody systems. As a consequence, the
equations of motion are symbolically derived in an automatic algorithm, which is a big
advantage. It would be desirable if these symbolic equations of motion can be used in
several numerical software for further computations.
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Appendix A

The Gradient of a Functional

A given linear functional (or a linearized nonlinear functional) F (u) has to be minimized
by a function u(t).

F (u) =

b∫
a

f(t)u(t) dt (A.1)

It is assumed that the function f(t) is given. The function u(t) is constrained by a norm

‖u‖2 =

b∫
a

u2(t) dt = c (A.2)

The function u(t) can be calculated by applying the calculus of variations. It states that
the variation of the modified functional

F̂ =

b∫
a

f(t)u(t) dt+ λ

 b∫
a

u2(t) dt− c

 (A.3)

becomes stationary [93]:

δF̂ =

b∫
a

f(t)δu dt+ λ

b∫
a

2uδu dt+ δλ

 b∫
a

u2(t) dt− c

 = 0 (A.4)

Hence,

δF̂ =

b∫
a

(f(t) + 2λu(t)) δu dt+ δλ

 b∫
a

u2(t) dt− c

 = 0 (A.5)

As a consequence, the conditions for stationarity are:

f(t) + 2λu(t) = 0
b∫
a

u2(t) dt− c = 0

(A.6a)

(A.6b)
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Now the function u(t) can be calculated from the stationarity condition (A.6a)

u(t) = − 1
2λ
f(t) = −κf(t) (A.7)

This shows that u(t) is just a scaling of the function f(t).
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tion von Prüfsystemen. In 34. Tagung des DVM-Arbeitskreises Betriebsfestigkeit.
Lastannahmen und Betriebsfestigkeit, 10./11. Oktober2007, Wolfsburg (2007).
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