
INSTITUT FÜR
MECHANIK UND

MECHATRONIK
Mechanics & Mechatronics

TECHNISCHE
UNIVERSITÄT
WIEN
Vienna University of Technology



Diplomarbeit

Interpolation of System Dynamics

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs
unter der Leitung von

Univ.Prof. Dr. Stefan Jakubek
Institut für Mechanik und Mechatronik

E325 A5

eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Elvira Thonhofer
Matr.Nr.: 0425278

Untere Donaustraße 9/2/20
1020 Wien

Wien, am 18. Juli Name der Diplomandin

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

Eidesstattliche Erklärung

Ich erkläre eidesstattlich, dass ich die Arbeit selbständig angefertigt, keine anderen als die
angegebenen Hilfsmittel benutzt und alle aus ungedruckten Quellen, gedruckter Literatur
oder aus dem Internet im Wortlaut oder im wesentlichen Inhalt übernommenen
Formulierungen und Konzepte gemäß den Richtlinien wissenschaftlicher Arbeiten zitiert,
durch Fußnoten gekennzeichnet bzw. mit genauer Quellenangabe kenntlich gemacht habe.

Wien, am 18. Juli Name der Diplomandin

ii

Acknowledgements

I would like to thank Univ. Prof. Dr. Stefan Jakubek for providing support and guidance
throughout the entire thesis work. Special thanks to DI Christian Mayr for the countless
hours during which we discussed new ideas and results, for his guidance and advice during
the writing-phase and the fun and friendly atmosphere he and his fellow colleagues created.

I would like to express gratitude to the numerous teachers I had the pleasure or burden to
work with. Above all, my primary school teachers Andrea and Martina deserve gratitude
for making my first encounter with school such a pleasure and providing the best possible
platform from which to start exploring.

I am indebted to my student colleagues for all the fun we had studying. Special thanks to
Farhan, Johannes, Christin, Marie and Martin for making my ten months in Göteborg a
great time both on and off campus.

I would also like to thank my friends, Nancy, Zelle and David for their support during the
thesis work, for asking the right questions at the right time, for fun distraction when needed,
for encouragement and inspiration and for bearing with me, when I just could not stop talk-
ing about my work.

Last but not least I want to thank my entire extended family. My parents, especially my
mom who is always there for me. Together with my sister, my step-father and my aunts
they all provided a great environment for me to grow up. My girlfriend with her view of life
in general and her knowledge of the close relation of courage and chance that, in a not-so-
secrete mixture, lead to what others call luck encouraged me to reach beyond what I thought
possible.

iii

Kurzfassung

Das Problem der System-Matrix Interpolation ergibt sich aus der Schwierigkeit, nichtlineare

Modelle mit Methoden der linearen Regelungstechnik zu behandeln. Es ist deshalb üblich

nichtlineare Systeme in Arbeitspunkten zu linearisieren und anschliessend ein Scheduling-

Problem zu lösen, anstatt die Nichtlinearität direkt zu behandeln. Ein häufig angewandter

Scheduling-Ansatz besteht darin, die systembeschreibenden Matrizen linear, elementweise

zu interpolieren.

Ziel dieser Arbeit war die Entwicklung einer Interpolationsmethode für systembeschreibende

Matrizen. Dabei sollen dynamische und statische Systemcharakteristika linear interpoliert

werden. Systeme, welche nicht als Zustandsraumsystem sondern als Übertragungsfunktion

gegeben sind können ebenso behandelt werden. Übertragungsfunktionen können leicht in

Regelungsnormalform umgeschrieben werden. Die Methode erreicht, dass Systemcharak-

teristika wie Eigenfrequenz und Dämpfung linear interpoliert werden und stellt gleichzeitig

sicher, dass das errechnete System stabil ist, wenn alle ursprünglich gegebenen Systeme sta-

bil sind.

Weil die dynamischen Systemeigenschaften in den Eigenwerten und Eigenvektoren der Sys-

temmatrix definiert sind, basiert die Interpolationsmethode auf einer modalen Zerlegung der

Systemmatrix. Um die Stabilität der gegebenen Systeme im interpolierten System zu erhal-

ten, werden die Eigenwerte linear interpoliert. Die Interpolation der Eigenvektoren teilt sich

in zwei Schritte: Die Interpolation der Länge und die Interpolation der Lage im Raum. Die

Länge der Eigenvektoren wird linear interpoliert. Die Lage der Vekoren im Zustandsraum

wird geometrisch interpretiert. Konjugiert komplexe Eigenvektorpaare spannen Oszillation-

sebenen im Zustandsraum auf, welche über geometrische Algebra (GA) interpoliert werden.

Reelle Eigenvektoren werden so interpoliert, dass ihre relative Lage zur Oszillationsebene

linear interpoliert wird. Eingangsvektoren werden über die Zeilen der Eingangsmatrix in

den Zustandsraum gemappt und ergeben die Anregung des Systems. Die Ausgangsmatrix

mappt den Zustandsvektor auf den Ausgangsvektor. Deshalb werden sowohl Input- als auch

Outputmatrix linear, elementweise interpoliert.

Die entwickelte Interpolationsmethode wird an zwei Beispielen demonstriert. Die Ergebnisse

werden verglichen mit Ergebnissen die sich aus Interpolationsmethode am aktuellen Stand

der Technik, der Matrixinterpolation, ergeben.

iv

Abstract

The problem of system matrix interpolation arises from non-linear plants and the difficulty of

treating non-linearities with methods of linear control. The usual process is to linearize the

plant at operating points and deal with a scheduling problem rather than the non-linearity

itself. A very common approach to scheduling is to interpolate system matrices.

In this work a method for the interpolation of state space systems is introduced, which is

targeted to interpolate the system characteristics linearly. Systems which are denoted as

transfer functions can also be interpolated using the proposed method. Transfer functions

can be easily transformed to state-space notation, e.g. controllability canonical form. On the

one hand the system characteristics, such as damping ratio and eigenfrequency, are linearly

interpolated and on the other hand the stability of the resulting system is ensured if the

original systems are stable.

Since the system characteristics are encoded in the eigenvalues and eigenvectors the intro-

duced method is based on eigenvalue decomposition of the system matrix. To ensure stability

of the resulting system the eigenvalues are linearly interpolated. The interpolation of the

eigenvectors is split into two parts: their length and orientation. The length is interpolated

linearly, the orientation of the eigenvectors is geometrically interpreted. Conjugate complex

pairs define oscillation planes in the state-space which are interpolated using Geometric Al-

gebra (GA). Real valued eigenvectors are interpolated, so that their relative attitude to the

vectors that form the oscillation plane is interpolated linearly. The input vector is mapped

onto the state space via the rows of the input matrix, yielding the excitation of the respec-

tive states. The output matrix maps the state space dimensions onto the output (vector).

Consequently both are linearly interpolated.

The introduced method is tested on demonstrative examples. The results are compared with

results generated by the state-of-the-art matrix coefficient interpolation.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 1

1.2.1 Requirements for System Interpolation 2

1.3 System Architecture . 3

1.4 Introduction to matrix interpolation . 3

1.5 Differential Flatness and Internal Dynamics 5

1.6 State Space Systems and Geometric Algebra 7

2 Geometric Algebra 8

2.1 Basics . 8

2.2 Objects . 9

2.2.1 Scalars, 0-dimensional Objects . 9

2.2.2 Vectors, 1-dimensional Objects . 9

2.2.3 Bivectors, 2-dimensional Objects . 10

2.2.4 Trivectors, 3-dimensional Objects . 13

2.2.5 Multi-dimensional Objects . 15

2.2.6 Dual and Representation of an Object as a Pseudoscalar 15

2.3 Operations . 16

2.3.1 Outer Product . 16

2.3.2 Inner Product . 16

2.3.3 Geometric Product . 17

2.3.4 Invertibility of blades . 18

2.4 Projection and rejection . 18

2.5 Reflection . 20

2.6 Spinors, representation of orientation and rotation 20

2.7 Interpolation of Orientation with Spinors . 22

v

CONTENTS vi

3 Interpolation of State Space Systems 24

3.1 The System Matrix . 24

3.1.1 System Characteristics, Eigenvectors and Eigenvalues 24

3.1.2 Eigenvalue λ is Real Valued with Multiplicity = 1 25

3.1.3 Eigenvalue λ is a Conjugate Complex Pair 25

3.1.4 Eigenvalue λ is Real Valued with Multiplicity = 2 26

3.2 Eigenvalue Constellation Combinations . 30

3.3 Mode Tracking . 33

3.3.1 Mode Tracking by Eigenvalue . 33

3.3.2 Mode Tracking by Pole Path Observation 33

3.4 The Input Matrix . 34

3.5 The Output Matrix . 35

3.6 The Direct Input-Output Matrix . 35

3.7 Stability Considerations . 35

3.8 Interpolation Method . 37

3.8.1 Decomposition of the Original System Matrices 37

3.8.2 Eigenvector Interpolation . 37

3.8.3 Eigenvalue Interpolation . 41

3.8.4 Assembling of the Interpolated System Matrix 41

3.8.5 Interpolation of Input and Output Matrices 42

3.8.6 Tweaking of Input- and Output Matrices 42

4 Results and Validation of Concept 45

4.1 Orthogonal Planes . 45

4.1.1 Influence of Input and Output Matrices 53

4.1.2 Variation: Different Damping Ratios 54

4.1.3 Variation: Different Natural Frequencies 57

4.1.4 Variation: Angular shift of the second oscillation plane 61

4.2 General Example . 65

4.2.1 Influence of Input and Output Matrices 68

5 Summary and Outlook 71

5.1 Accomplishments . 71

5.2 Fields of Further Research . 72

5.2.1 Mode Tracking . 72

5.2.2 Interpolation between a Conjugate Complex Pair and two Real Valued

Poles . 72

5.2.3 Internal Dynamics of non-flat Systems 72

CONTENTS vii

References 73

Curriculum Vitae 74

List of Figures

1.1 Matrix Interpolation yielding unstable Interpolated systems 5

1.2 Output response with zero dynamics . 7

2.1 A bivector spanned by the two vectors u = e1 + e2 and v = e3. 11

2.2 Exemplary Oscillation Plane and its Bivector 13

2.3 Trivector . 15

2.4 Projection v‖ of a vector onto a bivector . 19

2.5 Reflection of a vector on a bivector . 20

2.6 A vector u is rotated by φ along the bivector i [1]. 21

2.7 Orientation Interpolation . 23

3.1 State vector trajectories of a system with varying real valued poles 27

3.2 State vector trajectories of a system with varying damping ratio 28

3.3 State vector trajectories of a system with varying natural frequency 29

3.4 Pole Constellation of pure Interpolation Cases 31

3.5 Pole Constellations for mixed Interpolation cases 32

3.6 Mode Tracking by Path of Poles during Interpolation 34

3.7 Stable pole configuration. 36

3.8 Critically stable pole configuration. 36

3.9 Unstable pole configuration. 37

3.10 Coordinate Triple and spanned Oscillation Plane 39

3.11 Relative position of real valued Eigenvector 40

4.1 Orthogonal Oscillation Planes . 47

4.2 Oscillation Planes and Interpolated Plane 48

4.3 Coordinate Triples . 49

4.4 Trajectories of State Vectors . 50

4.5 Poles of Interpolated Systems . 51

4.6 Step Responses . 51

4.7 Step Responses per state . 52

viii

LIST OF FIGURES ix

4.8 Step Responses per state, enforced B matrix 53

4.9 Trajectories of State Vectors, different damping ratios 55

4.10 Step Responses, different damping ratios . 56

4.11 Step Responses per state, different damping ratios 56

4.12 Trajectories of State Vectors, different natural freq. 59

4.13 Step Responses, different natural freq. 60

4.14 Step Responses per state, different natural freq. 60

4.15 Original general constellation with additional planes 62

4.16 Initial response of original systems . 63

4.17 Initial response of interpolated systems . 64

4.18 The oscillation planes and the interpolated plane. 65

4.19 Trajectories of State Vectors . 67

4.20 Step Responses . 68

4.21 Step Responses, enforced B matrix . 69

4.22 Step Responses, enforced B and CT matrices 70

Chapter 1

Introduction

1.1 Motivation

The interpolation of linear systems is a common task in control engineering. It arises from

non-linear plants and the difficulty of treating non-linearities with methods of linear control.

The usual process is to linearize the plant at operating points and deal with a scheduling

(i.e. interpolation) problem rather than the non-linearity itself. Independent of the system

architectures the interpolation of system characteristics is vital.

The problem has been addressed via gain scheduling [2], [3], for fuzzy systems [4] and local

model networks [5]. A very common approach to scheduling is to linearly interpolate system

matrices or coefficients of transfer functions. Unfortunately this approach may yield unstable

interpolated systems, even if all contributing original systems are stable [6]. Additionally, the

system characteristics are interpolated in an undesirable way. System characteristics such

as natural frequency, oscillation planes, damping ratio and speed of particular modes are

encoded in the eigenvalues and eigenvectors of the system matrix. Interpolating coefficients

of the system matrix linearly implies, that the eigenvalues and eigenvectors of the matrix

shift in an unpredictable way.

An algorithm is required, that interpolates system characteristics linearly and guarantees

stable interpolated systems as long as all contributing original systems are stable.

1.2 Problem Definition

The core task of this work is to develop an interpolation algorithm for dynamic systems. The

non-linear system is represented by a set of linear local models. Among the first non-linear

problems of interest were missile flight controllers with only two controlling variables [7]. A

scheduling law by which the set of linearized models was summarized needed to be found.

1

1.2 Problem Definition 2

The desired specifications of such a scheduling law and the controller based on it were

• a continuous scheduled transfer function in the entire domain

• a controller that stabilizes the plant at every point in the domain

The concept of interpolation has since then been expanded. Due to computational power

more complicated models can be treated. This in turn makes scheduling complicated, since

the method requires a significant amount of intuition when choosing scheduling variables.

Hence, a flexible, automated method for system interpolation is sought. Additionally, the

interpolation should capture the system’s dynamic characteristics as well.

1.2.1 Requirements for System Interpolation

The interpolation process should ideally (linearly) interpolate all of the following character-

istics simultaneously:

• Natural Frequency

• Damping Ratio

• Attitude of the oscillation planes in the state space

• Orientation of the oscillation planes in the state space

• Internal dynamics of non-flat systems

• Steady State Values of the state vector

and retain stability of the interpolated system if the adjoining systems are stable, too. The

introduced method meets all the above requirements, albeit linearity of interpolation of all

factors simultaneously is generally not given. Also, since only differentially flat systems

are investigated the requirement of correctly interpolating internal dynamics is not tested.

Differential flatness is introduced in section 1.5. For SISO Systems all requirements are met

simultaneously.

MISO Systems cause problems. A trade-off between dynamic and static (the steady state

values) requirements exists. In section 3.8 the nature of this trade-off is explained.

However, it remains to be clarified whether linear interpolation is justified from a practical

(or physical) point of view.

1.3 System Architecture 3

1.3 System Architecture

The system architecture defined here represents a general structure that does not limit the

method’s range of application. Transfer functions can be transformed to state space notation,

more precisely, they can be transformed to controllability canonical form [8]. In analogy with

[9] an ordered set for the indices of the local models is defined:

I = (i ∈ N|1 ≤ i ≤ I) (1.1)

where I denotes the number of local linear models. The state space notation of local model

networks investigated here is defined as a weighted sum of linear, time-invartiant, local

system descriptions defined by

dx(t) = Aintx(t) +Bintu(t)

y(t) = Cintx(t),
(1.2)

where

dx(t) =







ẋ(t), for continuous time systems

x(t + 1), for discrete time systems

The interpolation can be generally defined as function f of the local matrices Ai, Bi, Ci

and the corresponding local weight Φi:

Aint = f (AI ,ΦI), Aint ∈ R
n×n

Bint = f(BI ,ΦI), Bint ∈ R
n×q (1.3)

Cint = f(CI ,ΦI), Cint ∈ R
m×n

where n denotes the system dimension, q denotes the number of inputs and m denotes the

number of outputs.

The local weights are constrained:

∑

I

Φi = 1 (1.4)

0 ≤ Φi ≤ 1, ∀i ∈ I (1.5)

1.4 Introduction to matrix interpolation

Matrix interpolation [10] is widely used and serves as the benchmark method in this work.

It is defined by

1.4 Introduction to matrix interpolation 4

Aint =
∑

I

ΦiAi, Bint =
∑

I

ΦiBi, and C int =
∑

I

ΦiCi

so that

dx(t) =
∑

I

Φi(Aix(t) +Biu(t))

y(t) =
∑

I

ΦiCix(t),
(1.6)

where Φi are the interpolation weights.

The immediate advantage of matrix interpolation is a computationally cheap method. How-

ever, the main drawback of this ad hoc solution is, that for systems of order n ≥ 3 the

resulting system may become unstable, even if all original systems are stable. According to

the Schur-Cohn-Jury criteria the stability regions are not convex for third and higher order

systems [6]. This means that linear interpolation of matrix coefficients shifts the eigenvalues

of the matrices in a non-linear way. This can cause intermediate pole configurations to be

unstable, while the original pole configurations are stable.

Example 1.1: Unstable Intermediate Pole Configuration

Two systems of dimension n = 6 are defined by their transfer functions

Go,1 =
1

s6 − 1.1s5 − 0.8s4 + 0.89s3 + 0.6609s2 − 0.4752s − 0.1135
(1.7)

and

Go,2 =
1

s6 + 0.2s5 + 0.95s4 + 0.22s3 + 0.3679s2 + 0.1066s − 0.07994
(1.8)

The poles of the two systems are located at

P 1 =














0.9

0.9 + 0.4i

0.9− 0.4i

−0.2

−0.7 + 0.4i

−0.7 − 0.4i














, P 2 =














0.3

0.3 + 0.8i

0.3− 0.8i

−0.5

−0.3 + 0.8i

−0.3− 0.8i














Matrix interpolation yields intermediate interpolated systems. Fig. 1.1 shows the pole configu-

ration of the two stable systems, with interpolated systems being unstable. Note, that despite

the interpolation step = 0.1 the poles are unequally spaced throughout the interpolation range

of Φ1 ∈ [0, 0.1, . . . , 1] (and accordingly Φ2 ∈ [1, 0.9, . . . , 0]).

1.5 Differential Flatness and Internal Dynamics 5

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

π/T

0.9π/T

0.8π/T

0.7π/T
0.6π/T0.5π/T0.4π/T

0.3π/T

0.2π/T

0.1π/T

π/T

0.9π/T

0.8π/T

0.7π/T
0.6π/T0.5π/T0.4π/T

0.3π/T

0.2π/T

0.1π/T

x1

x2

Figure 1.1: Matrix Interpolation applied to two stable discrete-time systems of dimension
n = 6. Interpolated systems become unstable, poles (blue crosses) are located outside the
unit circle.

This risk is minimized by only interpolating relatively “close” system matrices. That means,

that the operating points by which the sets of matrices are defined must be fairly close so

as to ensure that the coefficients of the matrices differ only a little. Hence, the eigenvalues

of the system matrices at different operating points are close and the non-linear shift is

somewhat under control, since the possible interval of travel is small.

Matrix interpolation is applied when eigenvalues of the original matrices do not differ much.

If this pre-condition is satisfied matrix interpolation delivers plausible results at very low

computational cost.

1.5 Differential Flatness and Internal Dynamics

A system is differentially flat if a set of outputs (equal in number to the number of inputs)

can be found, such that all states and inputs can be determined from these outputs without

integration. Precisely, a system with the states x ∈ Rn and inputs u ∈ Rm is flat if a set of

outputs y ∈ Rm of the form

y = y(x,u, u̇, . . . ,u(p)) (1.9)

1.5 Differential Flatness and Internal Dynamics 6

can be found, such that

x = x(y, ẏ, . . . ,y(p)) (1.10)

and

u = u(y, ẏ, . . . ,y(p)) (1.11)

are fulfilled [11]. The integer p ∈ N+ indicates a finite number of derivatives with respect to

time. Hence, it is possible to plan trajectories of plants such as unmanned vehicles [12] and

helicopters [13].

Systems with internal dynamics are non-flat. A system that exhibits zero-dynamics, which

is a special case of the more general formulation of internal dynamics, shows a zero-output in

the open loop despite being excited by a non-zero input signal. Such a system is described in

example 1.2. This is due to cancellation of one or more input terms with terms of the transfer

function of the plant. Since internal dynamics are not observable it is vital to determine

whether a system can exhibit internal dynamics at all. If this is the case, the system is

non-flat.

In this work only flat systems are treated. However, the introduced interpolation scheme is

applicable to general systems. Knowing the potential internal dynamics of a system enables

the application of the interpolation method to this part of the system dynamics as well.

Example 1.2: Zero Dynamics

A plant with a continuous-time transfer function G(s) = s2+1
(s+1)(s+2)(s+5) is excited by a sine wave

U(s) = 1
s2+1 . Then the output Y (s) = 1

(s+1)(s+2)(s+5) and the steady state output is zero. Fig.

1.2 shows the output (blue) and the input (red) of the excited system.

1.6 State Space Systems and Geometric Algebra 7

0 1 2 3 4 5 6 7 8 9 10
0

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

O
ut

pu
t S

ig
na

l

Simulation Time

Zero Dynamics

0 1 2 3 4 5 6 7 8 9 10
−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1

In
pu

t S
ig

na
l

Figure 1.2: The output of a continuously excited system that exhibits zero-dynamics.

1.6 State Space Systems and Geometric Algebra

The state space representation of systems is a compact description that is based on coefficient

matrices. One major advantage is that the extraction of eigenvectors and eigenvalues of the

system matrix is easily accomplished and allows a straight forward geometrical interpretation

of the system characteristics. Complex eigenvectors represent the system’s oscillation planes,

eigenvalues hint on how ”fast” the system reacts to and excitation in the direction of the

corresponding eigenvector.

To capture every element of a system response to an arbitrary signal the entire set of de-

scribing matrices must be considered. The approach presented here focuses on the geometric

interpretation of system characteristics and the concluding ”geometric” interpolation of the

system matrix.

Geometric algebra [1], [14] provides an alternative to conventional 3-dimensional vector al-

gebra and generally, to vector calculus. GA is a coordinate independent geometry based on

Clifford Algebra [15]. In contrast to vector calculus it is based on subspaces. A subspace

contains more information than just the object dimension by which it is spanned. Further

computation with that subspace automatically considers relative orientation for example.

Geometric Algebra is successfully applied in mathematical physics [16], computer graphics

[17] and engineering problems, as e.g. with neural networks [5].

Chapter 2

Geometric Algebra

2.1 Basics

Geometric Algebra (GA) is defined in spaces Rn, with n ∈ N+. The space Rn contains all

objects of dimension m ≤ n, each representing a subspace of dimension m. Hence, in a

3-dimensional space R3 the maximum dimension of a subspace is 3.

Each space is fully defined by a set of unit elements. The attribute unit defines that the

objects magnitude is = 1. These standard elements are of dimension ≤ n.

For general spaces Rn with a basis of unit vectors [e1, e2, . . . , en] the basic elements are

[1
︸︷︷︸

0-blade

, e1, e2, . . . en,
︸ ︷︷ ︸

1-blades

e1 ∧ e2, e2 ∧ e3, e3 ∧ e1,
︸ ︷︷ ︸

2-blades

e1 ∧ e2 ∧ e3, e2 ∧ e3 ∧ e4, . . . , en−1 ∧ en ∧ e1,
︸ ︷︷ ︸

3-blades

...

. . . , e1 ∧ e2 ∧ . . . ∧ en
︸ ︷︷ ︸

n-blade or pseudoscalar

]

In R3 these elements are reduced to

[1
︸︷︷︸

scalar

, e1, e2, e3,
︸ ︷︷ ︸

1-blades or vectors

e1 ∧ e2, e2 ∧ e3, e3 ∧ e1,
︸ ︷︷ ︸

2-blades or bivectors

e1 ∧ e2 ∧ e3
︸ ︷︷ ︸

3-blade or trivector

] (2.1)

where the ∧ operator denotes the outer product, see section 2.3.1. The trivector in R3

represents the basic, oriented volume element, also denoted by I3.

Arbitrary objects in Rn can be represented as a linear combination of scalar-weighted stan-

dard elements. Note that an object may consist of elements of various dimensions. Every

object of a single (pure) dimension can be represented with conventional coordinates and

8

2.2 Objects 9

vice versa. This is of great use wherever part of the computation is based on vector calculus

or in case the result of a geometric algebra computation is required for further processing

in conventional vector calculus. In the following, objects of pure dimension will be called

blades. An object of dimension n is an n-blade.

For illustration all figures presented in this chapter are generated with GABLE - a Geometric

Algebra toolbox for MATLAB R©[1]. The entire chapter on Geometric Algebra is based on the

GABLE Toolbox tutorial [1] and on [14]. Both cover basic and more advanced mathematical

aspects. While the GABLE tutorial focusses, naturally, on GABLE application, [14] presents

a more general approach and provides application examples and ideas in the field of computer

graphics.

The GABLE toolbox is developed for R3, a 3-dimensional euclidian space. It uses an or-

thogonal basis [e1, e2, e3] similar to a conventional coordinate system with 3 orthogonal

axes. The immediate advantage of a 3D space is that all objects can easily be displayed and

operation results can be verified. The entire set of unit elements that GABLE is based on

is introduced in section 2.2.

In this section the following notation will be used: Scalars will be assigned lower case greek

letters (α, β, . . .), 1-blades will be assigned bold lower case roman letters (u, v, . . .) and

objects of higher grade will be assigned bold, capital roman letters (A, B, . . .). The lower

case i denotes a unit bivector. The upper case I3 denotes a unit trivector.

2.2 Objects

2.2.1 Scalars, 0-dimensional Objects

A scalar is a 0-dimensional blade. It is best understood as a weighted point in the origin.

Its attribute is

• magnitude: such as the mass of a point-mass

2.2.2 Vectors, 1-dimensional Objects

A vector is a 1-dimensional direction element, a 1-blade. Its attributes are

• magnitude mµ: a measure of length, similar to a vector’s 2-norm

• attitude aµ: equivalent to a vector definition, the sum of scalar weighted standard

elements

2.2 Objects 10

A vector in common geometry is mathematically equivalent to a 1-blade in GA. Arbitrary

1-blades in Rn can be considered a sum of scalar-weighted standard 1-blades

u =
∑

n

αiei (2.2)

where n denotes the dimension of the space.

In R3 the general sum is reduced to a maximum of three elements

u = α1e1 + α2e2 + α3e3

The relation between a vectors magnitude and attitude in space is defined by

mµ =
√

α2
1 + α2

2 + α2
3 and

aµ =
α1

mµ
e1 +

α2

mµ
e2 +

α3

mµ
e3

so that

u = mµ · aµ (2.3)

To normalize an element’s magnitude to 1 it is devided by its norm, similar to a vector being

normalized to unit length by dividing it by its norm.

Fig. 2.1 depicts the two vectors u = e1 + e2 and v = e3 (blue) as well as the standard

1-blades e1, e2 and e3 (black).

2.2.3 Bivectors, 2-dimensional Objects

A bivector is a directed area element, a 2-blade. It evolves from the outer product denoted

by the ∧ operator, which is defined in section 2.3.1, performed on two 1-blades. Its attributes

are

• magnitude mν: scalar value of its area, as if spanned by two conventional vectors

• attitude aν: equivalent to a plane definition (for example by a parameter equation

requiring a fixed point and two vectors starting at that point)

• orientation oν: sense of rotation from first defining 1-blade to the second

The definition of a bivector’s magnitude it related to the cross-product in R3. The cross (or

vector)-product of a and b represents a vector perpendicular to a and b with magnitude

equal to the area of the parallelogram spanned by these two vectors. The magnitude of a

bivecor is just the scalar value of its virtual spanned area. The shape of the area-element

2.2 Objects 11

-0.5

0

0.5

1 -0.5

0

0.5

1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

e1

e2

e3

e1
e2

e
3

Figure 2.1: A bivector spanned by the two vectors u = e1 + e2 and v = e3.

is not defined and irrelevant. In this work bivectors are displayed as colored circles. To

underline that two 1-blades define the bivector a parallelogram can be used, as in Fig.2.7.

The attitude in space is similar to the information of plane definition in linear algebra. The

important characteristic is its orientation - the 2-blade contains this information. Operations

on bivectors automatically capture the entire set of attributes. This is especially beneficial

in high dimension, where vector calculus becomes complicated, if all attributes need to be

captured.

Any 2-blade can be expressed as a linear combination of scalar-weighted standard bivectors.

A standard bivector is a bivector generated from 2 vectors of the (orthogonal) basis of Rn:

ei ∧ ej with i, j ∈ [1, . . . n] and i '= j

2.2 Objects 12

These bivectors form the (orthogonal) bivector basis given in (2.1).

An arbitrary bivector is defined as

u ∧ v = |u||v| sin (θ)
︸ ︷︷ ︸

(oν)mν

i (2.4)

with

i =
∑

n

αi

mνi
(ei ∧ ej) and i '= j (2.5)

being the unit element of the plane spanned by u and v. θ is the angle between the two

1-blades. Hence, each bivector can be rewritten as the sum of scalar weighted basic bivectors

given in (2.1).

A short example will clarify (2.4).

Example 2.1: Characteristics of a Bivector

Consider two 1-blades u = e1 + e2 and v = e3 as depicted in Fig. 2.1. Then |u| =
√
2 and

|v| = 1. The angle between the two 1-blades θ = π/2. Hence, (2.4) reads

u ∧ v = +
√
2 · 1 · 1 · (

1√
2
e1 ∧ e3 +

1√
2
e2 ∧ e3) (2.6)

u ∧ v = 1 · e1 ∧ e3 + 1 · e2 ∧ e3 (2.7)

u ∧ v :=













oν = +

mν =
√
2

aν = e1e3 + e2e3

(2.8)

The magnitude can not be read directly from (2.7) but must be computed with (2.4). The

orientation and attitude in space can be read from the terms and their respective signs in (2.7).

The orientation oν and the attitude aν of a bivector are coupled. The bivector e1 ∧ e3 is

oriented from e1 to e3 and is identical to the bivector −e3 ∧ e1, which is oriented against

the direction from e3 to e1.

e1 ∧ e3 = −e3 ∧ e1 (2.9)

The bivector’s characteristics call for the application of GA, when oriented plane elements

need to be interpolated. Oscillation planes are an example of oriented plane elements. The

oscillation plane is completely described by the bivector, see Fig. 2.1, as the bivector contains

both magnitude and attitude and additionally the orientation. Hence, the interpolation

specification stated in section 1.2.1 concerning the oscillation plane can be met. The physical

meaning of the oscillation plane’s attributes can be explained as follows: The state vector’s

2.2 Objects 13

trajectory spirals in the oscillation plane as indicated by the orientation of the bivector.

Hence it is vital to correctly interpolate this particular characteristic of the oscillation plane.

Fig. 2.2 shows the exemplary trajectory of a state vector and the corresponding oscillation

plane.

−0.6−0.4−0.200.20.40.60.8

−0.4

−0.2

0

0.2

0

0.2

0.4

0.6

0.8

1

e2

e1

e3

Figure 2.2: A state vector’s trajectory, the eigenvector-triple, and the oscillation plane,
spanned by the conjugate complex pair of eigenvectors.

2.2.4 Trivectors, 3-dimensional Objects

A trivector is a directed volume element, or 3-blade. It evolves from the outer product

performed on three 1-blades. A trivectors characteristics are

• magnitude: absolute (scalar) value of its volume

• attitude of the volume element in space, defined by the three 1-blades

• orientation: righthanded or lefthanded, defined by the first, second and third defining

1-blade

2.2 Objects 14

A 3-dimensional (sub)space R3 is fully represented by the unit-trivector

I3 ≡ e1 ∧ e2 ∧ e3 (2.10)

Note that e3 ∧ e2 ∧ e1 = −I3, it is oriented lefthanded.

The definition of the orientation involves three basis elements as opposed to the bivector,

the orientation of which comprises only two basic elements. Arbitrary trivectors in Rn are

defined as

A =
∑

n

αi(ei ∧ ej ∧ ek) with i, j, k ∈ [1, . . . n] and i '= j '= k

Any trivector in R3 can be represented as a scalar multiple of the unit trivector I3. There is

only one unit trivector in a 3-dimensional space since permutations only affect its sign. Hence

a scalar value, be it positive or negaitve in sign, fully defines the trivector. Consequently, a

trivector is also called pseudoscalar in R3. Note that this relation only holds for (sub)spaces

of R3 but is handy when applicable.

Note, again, that the shape of the volume element is not defined and irrelevant. GABLE

provides two different display options. The intuitive option is to represent trivectors as the

spade spanned by the three defining 1-blades, indication first, second and third to capture ori-

entation. The general option prints a sphere (rendered as line elements) with the orientation

captured as surface-orthogonal lines pointing inwards or outwards. The volume represents

the trivector’s magnitude. One may use any shape that captures all three attributes. Fig.

2.3 depicts a trivector as the spade spanned by three 1-blades.

2.2 Objects 15

0
0.5

1
1.5

2

−1
−0.5

0
0.5

1
1.5

0
0.2
0.4

e1
e2

e
3

Figure 2.3: The trivector (2e1−e2)∧1e2∧0.5(e2+e3) oriented righthanded, from the blue,
to the green, to the magenta 1-blade, or, from its first, to its second to its third component.

2.2.5 Multi-dimensional Objects

Objects of mixed dimension evolve from operations performed on blades of different grade. A

mixed-grade-blade can contain elements of every possible subspace-dimension. Each object

may contain the full number of scalar weighted standard elements. Hence, computations with

multidimensional objects can become complicated and computationally expensive. Multidi-

mensional objects can not easily be displayed, nor can such objects be physically interpreted.

The application of the introduced interpolation method does not generate such objects under

correct use.

2.2.6 Dual and Representation of an Object as a Pseudoscalar

The dual of an object A in Rn is defined to be

dualA ≡ A/I3 = −AI3, (2.11)

it is the orthogonal complement of A. In R3 the cross-product of two vectors returns their

orthogonal complement with a magnitude of the scalar value of the parallelogram spanned

by the two vectors.

dual(u ∧ v) = u× v in R
3 (2.12)

2.3 Operations 16

The dual of a plane in R3 is its surface normal. Hence, this plane is fully characterized with

knowing its normal vector (its dual). Note that the dual of a plane in R4 is a plane, too.

Knowing a two-dimensional plane’s dual does not explicitly define the plane in R4.

2.3 Operations

The three basic operations in geometric algebra closely relate to the outer and inner product

known in vector calculus. The major difference in GA is, that its operations are not limited

to pure blades but can be applied to any object defined in the space considered. Knowing

this, the result of these operations is not necessarily pure-dimensioned. Thus, results may

not always be easily visualized.

2.3.1 Outer Product

The outer product in geometric algebra has the properties of anti-symmetry, linearity and

associativity. Its assigned operator is the wedge ∧. For arbitrary 1-blades (vectors) u, v and

w the definition reads

anti-symmetry v ∧w =−w ∧ v

linearity u ∧ (v +w) =u ∧ v + u ∧w

associativity u ∧ (v ∧w) =(u ∧ v) ∧ v

With v ∧ v = 0 the outer product of parallel (here identical) objects is defined. The outer

product of a vector v and a scalar α, or of two scalars α and β are

α ∧ v = αv

α ∧ β = αβ

The outer product of two 1-blades results in a 2-blade, a bivector. The outer product of two

1-blades in 3-dimensional geometric algebra relates to the cross product of two vectors in

conventional vector calculus via the dual, see section 2.2.6.

2.3.2 Inner Product

The inner product can be applied to elements of any grade. It is neither associative nor

symmetric but it is linear. For blades of different grade with r being the first argument’s

grade and s being the second argument’s grade:

2.3 Operations 17

• if r < s, their inner product is of grade (s − r), lies in the subspace of the second

argument and is perpendicular to the first argument

• if r = s, their inner product is of grade (s− r) = 0, a scalar.

• if r > s, their inner product = 0.

It is a contraction because its arguments grades are reduced. Hence, if the first arguments

grade is larger than the second arguments grade the inner product is zero.

In the special case of a 3-dimensional GA the inner product is exactly the inner (or dot)

product known in conventional vector calculus. In R3, when performed on two 1-blades it is

symmetric and linear. It is then defined

u · v = v · u

(αu+ βv) ·w = α(u ·w) + β(v ·w)

α · u = αu but u · α = 0

The inner product of 1-blades is a scalar and a measure for perpendicularity. The inner

product of two unit vectors u and v returns the projected length of u onto the axis of v.

u · v = |u||v| cos θ (2.14)

2.3.3 Geometric Product

The geometric product is a combination of outer and inner product. It is defined to be

linear and associative in its arguments and distributive. The exact definition for arbitrary

multi-grade objects can be found in [1, section 2.5]. It is the only operation that captures

all geometric relations between its arguments, not only those, that can be depicted easily.

When performed on two blades of grade r and s its result is a multi-blade containing objects

of grade [|r − s|, |r − s|+ 2, . . . r + s− 2, r + s].

For 1-blades it is defined as

uv = u ∧ v + u · v

vu = v ∧ u+ u · v = −u ∧ v + u · v

Note here, that the geometric product is neither fully symmetric nor fully antisymmetric.

The inner and outer product can now be defined as its symmetric respectively antisymmetric

part.

u · v = 1
2(uv + vu) (2.15)

2.4 Projection and rejection 18

u ∧ v = 1
2(uv − vu) (2.16)

With equations (2.4) and (2.14) the geometric product can be rewritten as

uv = u ∧ v + u · v

= |u||v|(sin θi + cos θ)

= |u||v| exp iθ

(2.17)

2.3.4 Invertibility of blades

In geometric algebra of Euclidian space, subspaces (blades of pure grade) have an inverse.

In a general space not all blades have an inverse. The inverse of an arbitrary pure blade

A '= 0 is defined

AA−1 = 1

The inverse of 1-blades and 2-blades are defined to be

u−1 =
u

u · u
and A−1 =

A

A ·A

Scalar multiples of blades are treated as in general calculus.

(αI3)
−1 = α−1 I3

I3 · I3
= α−1 I3

−1
= −I3/α

2.4 Projection and rejection

The projection of an object u onto another object v results in the part of u that is parallel

to v and lies within the subspace v. However, u is usually not within the subspace of v.

The grades of the two arguments may differ, but the grade of the first argument must be

lower than or equal to the grade of the second argument upon which it is projected.

The rejection of an object u and another object v results in the part of u that is perpendicular

to v and therefore not within the subspace of v. Again, the rejection will usually not be

within the subspace u.

Both properties describe geometric relations between blades (or subspaces) and both can be

computed with geometric algebra. Given an arbitrary 1-blade v and an arbitrary 2-blade

M (a vector and a plane, for easy display) one can derive: The vector can be rewritten as

v = v⊥ + v‖, a component v⊥ that is perpendicular to the subspace M and a component

v‖ that is parallel to M . With the inner and outer product v⊥ ·M = 0 and v‖ ∧M = 0

2.4 Projection and rejection 19

−0.5

0

0.5

1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

0

0.2

0.4

e1
e2

e
3

Figure 2.4: A vector u = 1e1−1e2+0.5e3 (black) is projected onto the bivector e1∧(e1+e2)
(green). The Rejection v⊥ of the vector (red) with respect to the bivector is its component
orthogonal to the bivector. The projection of the vector (blue) lies within the subspace of
the bivector.

follows. Thus

v⊥M = v⊥ ·M + v⊥ ∧M

= v⊥ ∧M

= v⊥ ∧M + v‖ ∧M

= v ∧M

(2.18)

Deviding (2.18) by M from the right hand side yields

v⊥ = (v ∧M)/M (2.19)

In a similar fashion one derives

v‖ = (v ·M)/M (2.20)

From the above derivation another important statement is gathered: Dividing a space B by

a subspace A yields the orthogonal complement to A in B.

2.5 Reflection 20

2.5 Reflection

An arbitrary blade v = v‖ + v⊥ is reflected on a subspace M and yields

&v = v‖ − v⊥

The component parallel to M remains unchanged while the component orthogonal to M is

reflected relative to M .

Generally an object’s reflection on a blade is defined as

&v = (−1)s+1MvM−1 (2.21)

where s denotes the grade of M .

−0.5

0

0.5

1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
−0.5

0

0.5

x1x2

x3

Figure 2.5: A vector u = 1e1 − 1e2 + 0.5e3 is reflected on the bivector e1 ∧ e2. [1]

2.6 Spinors, representation of orientation and rotation

The rotation of an object u can be interpreted as two reflections performed in a row.

2.6 Spinors, representation of orientation and rotation 21

&&u = !u = b(au−1)b−1

u

φ
2

a

b

&u = aua−1

i = ê

n

Figure 2.6: A vector u is rotated by φ along the bivector i [1].

First, the object u is reflected in a 1-blade a yielding &u = aua−1. In a second step the

new vector &u is reflected in b yielding &&u = b(&u)b
−1. The pre-subscript + indicates

that the vector is being reflected. Consequently the pre-subscript ++ indicates that the

vector is being reflected twice. Since reflecting a vector twice is equivalent to rotating it, the

pre-subscript ! is equivalent to ++. Both a and b are chosen to be unit vectors. This and

equation (2.17) lead to the following

&&u = !u = b(aua−1)b−1 = (ba)u(ba)−1 = e−iφ/2ueiφ/2

where i denotes a unit element of the plane that is spanned by a and b and φ
2 is the angle

between a and b. The bivector i represents the unit-rotation-plane spanned by the two unit

vectors a and b. Note that the object u is rotated by the angle φ measured in i. The

rotation is hence characterized by left- and right-multiplication with R = e−iφ/2, the spinor

or rotor. For arbitrary blades the rotation with spinors is defined

!X = RXR−1 (2.22)

2.7 Interpolation of Orientation with Spinors 22

A spinor characterizes a rotation in Rn. Consecutive rotations are easily computed

R2(R1XR−1
1)R−1

2 = (R2R1)X(R2R1)
−1

Where R1 and R2 are two spinors applied one after the other. Note here, that the operation

defined by spinors is not commutative:

e−i2φ2/2e−i1φ1/2 '= e−(i2φ2/2+i1φ1/2)

The exponent of the spinor contains the rotation information - the bivector i that defines

the rotation plane and the angle of rotation φ with respect to that plane. To move back and

forth between the spinor and its exponent the inverse of the exponential - the logarithm - is

defined as well. Because

R = e(−iφ/2) = e(−iφ/2+2πi)

the logarithm is not unique. It is convenient to chose the value of the logarithm from the

interval [−πi, πi].

2.7 Interpolation of Orientation with Spinors

In GA an object has a certain orientation with respect to the basic elements that are defined

in the space considered. The orientation information is inherent to the object. Every object

can be interpreted as a standard object of the same dimension rotated by a certain angle

with respect to a certain object (a plane, in many cases). With the logarithm the argument

of an objects exponential description, see (2.17), can be extracted. It contains the plane

and angle of rotation that transforms a basic element of given dimension onto the object

of interest. It follows that every object can be described by its spinor, or in other words,

by its orientation. Knowing that a spinor encodes orientation, the orientation itself can be

interpolated elegantly.

Two objects A and B are characterized by their orientations RA and RB with respect to the

basis elements. A smooth transition from orientation RA to RB is achieved by n identical

rotation operators R applied to RA so as to finally reach RB. The subsequent rotations are

R0 = RA; Ri+1 = RRi; Rn = RB

The total rotation from RA to RB is RBR
−1
A . Since the entire rotation is covered in n steps

one defines

RBR
−1
A = Rn = e−I3aφ/2

2.7 Interpolation of Orientation with Spinors 23

R = (e−I3aφ/2)(1/n) = e−I3aφ/(2n)

The object a denotes the rotation axis, the dual of the rotation plane i. It is defined by

a ≡ dual(i)

Hence, with the definition of the dual given by equation 2.11: iφ2 ↔ I3a
φ
2 in R3 because a

unique dual of the plane i exists.

The angle φ denotes the rotation angle. Note that the unique representation with duals is

only possible in R3. In Rn a rotation planes dual is of dimension (n− 2).

−0.500.511.52

−1

0

1

−2

−1.5

−1

−0.5

0

0.5

1

x1x2

x3

Figure 2.7: The interpolation of bivectors (blue and green planes) and intermediate steps
(yellow planes). The red vector indicates the effective axis of “rotation” in the interpolation
procedure.

Chapter 3

Interpolation of State Space Systems

The interpolation method can be applied to both discrete-time and continuous-time systems.

Explanations in the following chapters will point out the differences between discrete- and

continuous-time systems.

The physical interpretation of state space matrices helps to determine the quality of the

interpolation. Of the desired interpolation characteristics stated in section 1.2.1 all except

the last are related to the system matrix A.

3.1 The System Matrix

The system matrix A is of dimension [n× n]. It encodes the dynamic characteristics of the

system: natural frequency, damping ratio and the general “speed” of the system. Also, the

attitude of the oscillation plane in the state space as well as its orientation are encoded in

the system matrix.

All of the above values are encoded in the eigenvalues and eigenvectors of the system matrix.

Eigenvectors and eigenvalues are computed as the solutions of the eigenvalue problem given

by (3.1). As explained in section 3.1.1 the solutions are classified by the eigenvalues and

form three groups.

3.1.1 System Characteristics, Eigenvectors and Eigenvalues

The eigenvectors and eigenvalues of the system matrix A characterize the system dynamics

and are computed as a solution of the eigenvalue problem

(A− λnI)un = 0 A ∈ R
n×n (3.1)

24

3.1 The System Matrix 25

where λn denotes the eigenvalues and un denotes the corresponding eigenvectors. The solu-

tions can be classified by three general cases:

λ is real valued, multiplicity = 1: Its corresponding eigenvector is also real valued. If

the state vector x aligns with the eigenvector its trajectory will keep that direction.

Depending on the eigenvalue the trajectory will proceed towards the origin or away

from it, making this particular mode either stable or unstable. For continuous-time

systems negative eigenvalues correspond to a stable mode, while positive eigenvalues

correspond to an unstable mode. Large negative values make a mode “fast” while low

negative values (closer to the origin) make a mode “slow”. For discrete-time systems

eigenvalues inside the unit circle correspond to stable modes, eigenvalues outside the

unit circle correspond to unstable modes.

λ is a conjugate complex pair: Its corresponding eigenvectors are also a conjugate com-

plex pair, spanning a plane in the state space. This plane is this particular mode’s

oscillation plane. If the initial state x(t0) (or x(k = 0)) lies on that plane, the state

vector’s trajectory will remain on that plane and the system will oscillate.

λ is real valued, multiplicity > 1: This case represents aperiodic oscillation. A pole with

multiplicity = 2 marks a separation point in the root locus of the system.

3.1.2 Eigenvalue λ is Real Valued with Multiplicity = 1

Eq. (3.1) is rewritten

Aun = λnun (3.2)

Depending on λ a particular mode is either stable, critically stable or unstable and at the

same time fast or slow relative to other modes of the system. The “speed” of a mode deter-

mines, whether the state vector that aligns with the eigenvecor at some point travels towards

the origin (equilibrium point) on a rather short path or a longer path. For discrete-time sys-

tems eigenvalues inside the unit circle correspond to stable modes, eigenvalues outside the

unit circle correspond to unstable modes.

3.1.3 Eigenvalue λ is a Conjugate Complex Pair

Conjugate complex pairs denote oscillatory modes. Eq. (3.1) is rewritten

A(u± iv)n = (µ± iν)n(u± iv)n (3.3)

where (u + iv)n is the conjugate complex eigenvector that corresponds to the conjugate

complex eigenvalue (µ + iν)n and (u− iv)n is the conjugate complex eigenvector that cor-

3.1 The System Matrix 26

responds to the conjugate complex eigenvalue (µ − iν)n. While µ indicates the “speed” of

the mode, the complex component ν indicates the oscillation frequency of the mode.

Splitting (3.3) into a real valued part and a complex valued part results in

Au = µu− νv =
[

µ −ν
]
[

u

v

]

(3.4)

Av = µv + νu =
[

ν µ
]
[

u

v

]

(3.5)

The oscillation plane is spanned by the components of the eigenvector w =

[

u

v

]

. The

trajectory of a stable oscillating system travels towards the oscillation plane and, once on

the oscillation plane, spirals into the equilibrium point. The spiralling direction is encoded

in w: from the first component u to the second component v.

It is important to note that w is defined by (3.3). Both the sign and the order of the

components are explicitly defined. There is no need to manually pick the eigenvectors that

define the oscillation plane.

3.1.4 Eigenvalue λ is Real Valued with Multiplicity = 2

This case denotes the aperiodic oscillation. If the system matrix can be transformed to

diagonal form (3.2) yields two linear-independent eigenvectors. Otherwise, if it can be trans-

formed to Jordan canonical form, only one linear independent eigenvector exists. However, a

generalized eigenvector can be constructed. If the system matrix is of general form and can

not be transformed into any of the above stated standard forms only one linear independent

eigenvector exists. Hence, the dimension n of the space spanned by the eigenvectors is ≤ 2.

In control engineering the eigenvalue constellation of a system matrix indicates qualitative

system behavior. Looking at a root locus plot, this case represents a separation point of the

branches of the root locus of a system.

Example 3.1: The system matrix defines dynamic characteristics

This example serves to underline the practical relevance of the characteristics encoded by the

system matrix A. A simple system with one real valued eigenvalue and a conjugate complex

pair of eigenvalues is sufficient.

A1 =






0 1 0

−b1 −a1 0

0 0 −c1




 , A2 =






0 1 0

−b2 −a2 0

0 0 −c2






3.1 The System Matrix 27

The system matrix is of a special structure, so that the natural frequency, damping ratio and

speed of the system are encoded by the values a, b and c.

To emphasize the influence of the real valued eigenvalue the following explicit numbers are

chosen: a1 = a2 = 0.1, b1 = b2 = 0.2, c1 = −1, c2 = −5.

The corresponding transfer functions compute to

Go,1 =
1s2 + 0.9s − 0.1

s3 + 1.1s2 + 0.3s + 0.2
(3.6)

and

Go,2 =
1s2 + 4.9s − 0.5

s3 + 5.1s2 + 0.7s + 1
(3.7)

Fig. 3.1 depicts trajectories of state vectors of the two systems with different real valued eigen-

values but otherwise identical eigenvalues. The oscillation plane is depicted as a yellow circle, the

arrow elements along the circumfence denote the orientation and indicate the spiralling direction

of the trajectory. The vector triple consists of the eigenvectors of the first system.

−0.6−0.4−0.200.20.40.60.8

−0.4

−0.2

0

0.2

0

0.2

0.4

0.6

0.8

1

e2

e1

e3

Figure 3.1: State vector trajectories of a system with varying real valued poles. The faster
system (red, solid) reaches the oscillation plane well before the slower system (blue, solid).

Example 3.2: The system matrix defines dynamic characteristics - cont’d

3.1 The System Matrix 28

To emphasize the influence of the damping ratio the following explicit numbers are chosen:

a1 = 0.1, a2 = 0.3, b1 = b2 = 0.2, c1 = c2 = -1.

The corresponding transfer functions compute to

Go,1 =
1s2 + 0.9s − 0.1

s3 + 1.1s2 + 0.3s + 0.2
(3.8)

and

Go,2 =
1s2 + 1.1s + 1

s3 + 1.3s2 + 0.5s + 0.2
(3.9)

Fig. 3.2 depicts trajectories of state vectors of the two systems with different damping ratios

but otherwise identical characteristics. The system A1 with less damping (blue, solid) oscillates

longer until it eventually reaches the equilibrium point, while the system A2 with larger damping

(red, solid) reaches the equilibrium point within the simulation time.

−0.6−0.4−0.200.20.40.60.8

−0.4

−0.2

0

0.2

0

0.2

0.4

0.6

0.8

1

e2

e1

e3

Figure 3.2: State vector trajectories of a system with varying damping ratio. The system
with larger damping (red) reaches the equilibrium point within the simulation time, while
the system with less damping (blue, solid) still oscillates until it eventually reaches the origin.

Example 3.3: The system matrix defines dynamic characteristics - cont’d

3.1 The System Matrix 29

To emphasize the influence of the natural frequency the following explicit numbers are chosen:

a1 = 0.1, a2 = a1
√

b2/b1, b1 = 0.2, b2 = 0.4 c1 = c2 = -1.

The corresponding transfer functions compute to

Go,1 =
1s2 + 0.9s − 0.1

s3 + 1.1s2 + 0.3s + 0.2
(3.10)

and

Go,2 =
1s2 + 0.5732s − 0.4268

s3 + 1.1732s2 + 0.7732s + 0.6
(3.11)

Fig. 3.3 depicts trajectories of state vectors of the two systems with different natural frequencies

but otherwise identical characteristics. The system A1 with the lower natural frequency (blue,

solid) oscillates fewer times within the simulation time, while the system A2 with higher natural

frequency (red, solid) oscillates more often within the simulation time.

−0.6−0.4−0.200.20.40.60.8

−0.6

−0.4

−0.2

0

0.2

0.4

0

0.2

0.4

0.6

0.8

1

e2

e1

e3

Figure 3.3: State vector trajectories of a system with varying natural frequency. The system
with higher natural frequency (red) oscillates more often, compared to the system with lower
natural frequency (blue).

3.2 Eigenvalue Constellation Combinations 30

3.2 Eigenvalue Constellation Combinations

Independent of the system dimension the introduced interpolation method can be applied

by breaking down the problem to eigenvalue-eigenvector combinations with a maximum

order of two. Every possible combination of the above introduced general cases is discussed

here. For demonstration n = 2 is sufficient and only two systems are considered. The first

index i denotes the system, and the second index denotes the eigenvalue. The distinguished

combinations are

• λi,1 and λi,2 are real valued, multiplicity = 1: The eigenvalue determines,

whether a particular mode is slow or fast. Thus, a linear interpolation of eigenvalues

results in linear interpolation of the speed of a system’s mode.

• λi,1 and λi,2 form a complex conjugate pair: This case represents the most

challenging constellation and is covered in detail in this work. Conjugate complex pairs

of eigenvalues contain the damping ratio and natural frequency of the particular mode.

The eigenvalues are interpolated linearly. Thereby damping ratio and natural frequency

are interpolated in a physically reasonable way. The corresponding conjugate complex

pair of eigenvectors spans the oscillation plane of the mode. The oscillation planes, as

part of characteristics of the system, must be interpolated as well. The attitude and

orientation of the oscillation planes is interpolated using geometric algebra and, more

specifically, the bivector introduced in section 2.2.3.

• λi,1 and λi,2 are identical, with a multiplicity of two: Considering a root

locus, this case means, that two uncanceled poles of a system coincide and mark the

separation point. Interpolating eigenvectors physically means that the new system’s

separation point is between the two given points. The speed of the new system is

interpolated, while the (aperiodic) oscillation characteristics are retained.

• mixed cases: The introduced method can be applied to mixed cases with limitations.

– The interpolation between two different real valued eigenvalues and a real eigen-

value with multiplicity = 2 is possible.

– The interpolation between a conjugate complex pair and a real eigenvalue with

multiplicity = 2 is possible.

– The interpolation between a conjugate complex pair and two different real valued

eigenvalues is not yet possible. The fact that the transition from eigenvalues in the

complex plane to eigenvalues on the real axis is not defined causes problems when

computing the corresponding eigenvectors. This is the only case to which the

introduced method can not be reliably applied yet and requires further research.

3.2 Eigenvalue Constellation Combinations 31

The three pure interpolation cases (the first three in the above list, in contrast to the mixed

cases) are depicted in Fig. 3.4. Two exemplary eigenvalue constellations (crosses and plus

signs) of systems of dimension n = 5 are interpolated. Corresponding eigenvalues are interpo-

lated linearly and yield the eigenvalues (triangles) at the interpolation weight Φ1 = Φ2 = 0.5.

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−1.5

−1

−0.5

0

0.5

1

1.5

10 8 6 4 2

0.999

0.994

0.986 0.968 0.94 0.88 0.76 0.5

0.999

0.994

0.986 0.968 0.94 0.88 0.76 0.5

x1

x2

Figure 3.4: The interpolation of eigenvalues in pure cases. Eigenvalues with multiplicity
= 2 are marked with two symbols. The eigenvalues of the first system (crosses) and of the
second system (plus signs) yield the eigenvalues of the interpolated system (triangles) at
Φ1 = Φ2 = 0.5.

Fig. 3.5 depicts an exemplary eigenvalue constellation of three systems of dimension n = 2.

1. System A1: A system with two different, real valued eigenvalues which are marked by

crosses. The corresponding interpolation weight is Φ1.

2. System A2: A system with a conjugate complex couple of eigenvalues, marked by plus

signs. The corresponding interpolation weight is Φ2.

3. System A3: A system with one real valued pole with multiplicity = 2, marked by

triangles. The corresponding interpolation weight is Φ3.

Interpolation between the first system A1 (crosses) with two different real valued eigenvalues

and the third system A3 (triangles) with one real valued eigenvalue with multiplicity = 2

3.2 Eigenvalue Constellation Combinations 32

(separation point) yields a constellation with two real valued eigenvalues located between

the original eigenvalues, on either side of the separation point somewhere along the red line,

depending on the interpolation weights Φ1 and Φ3.

Interpolation between the second system A2 (plus signs) with a conjugate complex pair of

eigenvalues and the third system A3 yields a conjugate complex pair of eigenvalues along

the red line, depending on the interpolation weights Φ2 and Φ3.

The third mixed case is represented by the interpolation between system one (crosses) and

three (plus signs). This particular case demands attention insofar as at some point the

interpolated eigenvalues coincide with the separation point. Since it is not clear at which

interpolation weight combination the interpolated eigenvalues coincide and additionally, the

corresponding eigenvectors are not known it is not possible to interpolate across this tran-

sition point. This interpolation case is not part of this study and requires further research.

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

4 3.5 3 2.5 2 1.5 1

0.997

0.99

0.974 0.954 0.925 0.89 0.84 0.78

0.997

0.99

0.974 0.954 0.925 0.89 0.84 0.78

x1

x2

Figure 3.5: The interpolation of eigenvalues for mixed cases. Eigenvalues with multiplicity
are marked with two symbols. The eigenvalues of the first system (crosses), eigenvalues of
the second system (plus signs) and the eigenvalues of the third system (triangles) contain
all three possible mixed cases.

Every system matrix interpolation can be broken down into interpolating the set of modes of

the system matrix A. This process is based on eigenvalue decomposition [18] of the system

3.3 Mode Tracking 33

matrix.

Thereby the problem is reduced to the six constellation combinations introduced above.

Except oscillation planes, which are spanned by complex conjugate pairs of eigenvectors,

the interpolation can be accomplished by common vector algebra. For the interpolation

of oscillation planes Geometric Algebra is best suited. Geometric Algebra provides an ob-

ject, the bivector, see section 2.2.3, that naturally incorporates the rotational direction that

characterizes an oscillation plane.

3.3 Mode Tracking

Breaking the entire system matrix A down to a number of modes, namely oscillating modes

of dimension n = 2 and non-oscillating modes of dimension n = 1 can be seen as a prepa-

ration step. The process of interpolating modes demands that only corresponding modes

are interpolated. Otherwise, the results will not reflect the actual system behavior in the

interpolated operating point. The problem of mode tracking has not been addressed in this

work. A solution is not yet readily available and is subject to further research. However,

ad-hoc methods may be applicable, see section 3.3.1 and 3.3.2.

3.3.1 Mode Tracking by Eigenvalue

In case the number and nature of modes of the system matrices to be interpolated is identical

it may be suitable to sort modes by the value of the corresponding eigenvalue. This approach

can not be used if one or more modes appear only in one of the system matrices to be

interpolated. This is the case, when the number of real modes and oscillatory modes is not

identical in all systems to be interpolated Also, it will not be reliable if eigenvalues differ

significantly throughout the system matrices. In general, this primitive approach to mode

tracking may only be applied to system matrices of small dimension.

3.3.2 Mode Tracking by Pole Path Observation

A more reasonable approach is to observe which poles of one system (or operating point)

travel towards which poles in the next system (or operating point) if the interpolation weight

for one system is gradually increased and consequently the interpolation weight of the other

system is decreased. Note, that the actual path of the poles is irrelevant, only the corre-

spondence is of interest. Hence, matrix interpolation, see section 1.4, is a well suited method

due to its low computational cost. Plotting the path of the poles while varying interpola-

tion weights enables the user to assign respective correspondence and thereby prepares the

system matrices for the introduced interpolation method, see section 3.8.

3.4 The Input Matrix 34

This approach to mode tracking employes conventional matrix interpolation. However, only

the correspondence-information is sought. The application of conventional matrix interpo-

lation is not a prerequisite to the introduced GA interpolation method, instead, it can be

used optionally to find correspondence of modes.

Fig. 3.6 shows such a plot of the path of poles. The blue crosses show the poles of the

interpolated system computed with matrix interpolation. Despite intermediate systems being

unstable, the correspondence between the poles of the original systems (black crosses and

plus-signs) is correct. The poles computed with the method introduced in this work are

depicted as red crosses. It is obvious that all intermediate systems are stable.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

π/T

0.9π/T

0.8π/T

0.7π/T
0.6π/T0.5π/T0.4π/T

0.3π/T

0.2π/T

0.1π/T

π/T

0.9π/T

0.8π/T

0.7π/T
0.6π/T0.5π/T0.4π/T

0.3π/T

0.2π/T

0.1π/T

x1

x2

Figure 3.6: Poles of the original systems (black crosses and plus signs), the GA interpolated
system (red crosses) and the poles of the systems computed via matrix interpolation (blue
crosses) are depicted. The interpolation weight is defined as Φ1 ∈ [1, 0]. Based on such a
plot mode tracking can be carried out.

3.4 The Input Matrix

The input matrix B is of dimension [n × r] where r is the number of inputs. It defines the

excitation of the states. The input vector is mapped onto the state space via the rows of the

3.5 The Output Matrix 35

input matrix, yielding the contribution of the input to the change of the state vector ẋ (or

x(k + 1) for discrete time systems).

3.5 The Output Matrix

The output matrix C is of dimension [m×n] where m is the number of outputs. The output

matrix C can be interpreted as row vectors upon which the state vector is projected, yielding

the output values y.

3.6 The Direct Input-Output Matrix

Since the direct input-output matrix passes signals to the output directly, it by-passes the

system. Hence, a linear interpolation of state space systems with non-zero direct input-

output matrices suggests that the direct input-output matrices are interpolated linearly.

3.7 Stability Considerations

Stability of a linear, time-invariant state space (LTI) system is a property encoded in the

eigenvalues, i.e. the poles, of the system matrix A. A continuous-time system is

stable if all eigenvalues of A are located in the left half-plane, see Fig. 3.7a

critically (or marginally) stable if all eigenvalues ofA are located in the left half-plane,

except one real valued eigenvalue at the origin or a conjugate complex pair on the

imaginary axis, see Fig. 3.8a

unstable if one or more eigenvalues of A are located in the right half-plane or eigenvalues

with multiplicity > 2 are located on the imaginary axis, see Fig. 3.9a

A discrete-time system is

stable if all eigenvalues of A are located inside the unit circle, see Fig. 3.7b

critically stable if one or more eigenvalues of A are located on the unit circle (circum-

fence), but no multiple pole. (A pole at distance = 1 from the origin.) No pole is

located outside the unit circle. See Fig. 3.8b

unstable if one or more eigenvalues of A are located outside the unit circle or poles with

multiplicity > 2 are located on the unit circle, see Fig. 3.9b

3.7 Stability Considerations 36

−5 −4 −3 −2 −1 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) continuous-time
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

(b) discrete-time

Figure 3.7: Stable pole configuration.

−5 −4 −3 −2 −1 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) continuous-time
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

(b) discrete-time

Figure 3.8: Critically stable pole configuration.

The figures 3.7, 3.8 and 3.9 show exemplary stable, critically stable and unstable pole con-

figurations respectively.

The presented interpolation method linearly interpolates eigenvalues and thereby retains

(critical) stability, if all original systems are (critically) stable, in contrast to commonly used

matrix coefficient interpolation, where stability of the resulting system is not guaranteed,

even if all contributing systems are stable. This is due to the non-linear relation between

the matrix coefficients and the eigenvalues of the matrix. Linear interpolation of matrix

coefficients shifts eigenvalues in a non-linear and unobserved way, thereby making it possible,

that eigenvalues “slip” out of the stable region (left half plane for continuous-time systems,

unit circle for discrete-time systems).

3.8 Interpolation Method 37

−5 −4 −3 −2 −1 0 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) continuous-time
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

(b) discrete-time

Figure 3.9: Unstable pole configuration.

3.8 Interpolation Method

3.8.1 Decomposition of the Original System Matrices

The first step of the interpolation method is to compute eigenvalues and eigenvectors of

A matrices with (3.1). Second, the corresponding modes need to be assigned via mode

tracking, see section 3.3. These two steps prepare the model for the interpolation process.

Setting correct relations between the modes is vital for the result. If this step is omitted

or carelessly performed, results will not reflect the true system behavior in the intended

operating point. Once the modes are correctly related and the matrices are accordingly

rearranged the interpolation process can be initiated.

Conjugate complex pairs and real valued eigenvalues and eigenvectors form two groups and

are treated differently. The notation below assumes a system of dimension n = 3 so as to

avoid crowding the equations with indices. However, the method is not restricted to three

dimensions. Irrespective of the system dimension, all conjugate complex pairs are treated

as denoted in section 3.8.2 and all real valued eigenvectors and eigenvalues are treated as

denoted in section 3.8.2.

3.8.2 Eigenvector Interpolation

As described in section 3.2 three pure and three mixed eigenvalue constellation combinations

are distinguished. Since eigenvectors and eigenvalues are strongly connected, the introduced

cases must be distinguished here as well.

The three pure cases and the first two mixed cases are treated as described below. The third

mixed case, where the separation point (or aperiodic oscillation point) must be “passed”

3.8 Interpolation Method 38

during the interpolation, can not yet be treated.

Interpolation of conjugate complex pairs

The conjugate complex pairs of eigenvectors span oscillation planes in the state space, where

ξ = Re (u1) and ζ = Im (u1) (3.12)

represent the first and the second defining 1-blade, respectively. Multiplying the two 1-blades

as defined in (2.4) yields a 2-blade - the bivector defining the oscillation plane

ξ ∧ ζ = oνi ·mνi · aνi = Πi, ∀i ∈ I (3.13)

where Πi represents the oscillation plane of a local model as a bivector. The next step is to

normalize all planes, that means, each plane’s magnitude mνi = 1.

Πi → mΠi = 1 (3.14)

If this step is omitted, mν represents an additional ”interpolation weight” and thereby in-

terferes with the intended interpolation weights Φi.

The interpolation itself is defined by the following equation:

Πint = (oν · 1 · aν) =
∑

I

ΦiΠi (3.15)

where the index int denotes the interpolated system. This seemingly simple equation not only

correctly interpolates the respective attitudes in space but also takes each planes orientation

into account.

Now that the interpolated oscillation plane is known a set of new eigenvectors must be

extracted, that define exactly this bivector with oνint and aνint. Note here, that two arbitrary

vectors in that plane that yield a bivector of magnitude one may define the interpolated plane

as a bivector completely. A particular set of two bivectors must be extracted from an infinite

set of possible combinations of vectors.

Interpolation of Relative Attitude

From a modeling point of view the relative position of eigenvectors that form a plane affects

the resulting system behavior. Or, putting it the other way round, the system behavior

defines the relative position of eigenvectors. It is hence important to extract eigenvectors that

fulfill the condition of interpolating the relative position (attitude). The set of eigenvectors

3.8 Interpolation Method 39

of each local model is gathered to define a coordinate-triple.

-0.200.20.40.60.81

0

0.5

1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

e1
e2

e
3

e1

e2

e3

ξ1

ζ1

ρ1

Figure 3.10: A local triple of eigenvectors and the oscillation plane spanned by the conjugate
complex pair.

Fig. 3.10 shows the local triple of eigenvectors in the general orthogonal coordinate system

e1, e2, e3.

Consequently, the idea is to rotate each of the contributing systems’ eigenvector-triple into

the interpolated plane, so that the two conjugate complex eigenvectors lie in the interpolated

plane. Their relative attitudes can now be interpolated, knowing that the resulting vector

will be in the interpolated plane, too.

In analogy to (3.14) the vectors magnitude is set to 1 per definition, so as not to interfere

with the intended interpolation weights.

{ξi, ζi,ρi} → {mξi = 1, mζi = 1, mρi = 1} (3.16)

The real valued eigenvector is denoted by ρ = u3. The directions of the eigenvectors are

3.8 Interpolation Method 40

geometrically interpolated as defined by

{ξint, ζint} = (+1 · aµ) =
∑

I

Φi{ξi, ζi} (3.17)

Note here, that only the directions of the eigenvectors are interpolated.

ξi

ζi ρi

βi

βρ,i

αi

Πi

Figure 3.11: The relative position of the real valued eigenvector with respect to its conjugate
complex pair

The real valued eigenvector ρ is treated separately. To correctly interpolate the system

dynamics it is vital to interpolate its relative position to ξ and ζ. In Fig. 3.11 a general

configuration is depicted. The angle βi denotes the angle between ξi and ζi. The angle βρ,i

denotes the angle between ξi and the projection of ρi onto Πi. The angle αi denotes the

angle of ρi above the plane Πi. All three angles are interpolated as defined by

βint =
∑

I

Φi βi (3.18)

αint =
∑

I

Φi αi (3.19)

βint

βρ,int
=

∑

I

Φi
βi

βρ,i
(3.20)

Then ρ is a unit-vector for which β = βint, α = αint and βρ = βρ,int with respect to ξint and

ζint.

Since all vectors are interpolated as unit elements with mµ = 1 the resulting vector is also

of magnitude 1. The final magnitude is interpolated in a second step, using the original

magnitudes of all eigenvectors:

mµn,int =
∑

I

Φi mµi,n (3.21)

3.8 Interpolation Method 41

The n = 3 resulting new vectors are assembled as defined by

{ξint, ζint,ρint} = {mµn,int · aµn,int} (3.22)

using the results of (3.17) and (3.21). The eigenvectors are reassembled using (3.12)

u1,int = ξint − ζinti (3.23)

u2,int = ξint + ζinti (3.24)

u3,int = ρint (3.25)

3.8.3 Eigenvalue Interpolation

As described in section 3.2 three pure and three mixed eigenvalue constellation combinations

are distinguished. For the three pure cases the eigenvalues λn are linearly interpolated.

λn,int =
∑

I

Φiλi,n (3.26)

Fig. 3.4 illustrates the equation. The first mixed case, interpolation between two different

real valued eigenvalues and one real valued eigenvalue with multiplicity = 2, and second

mixed case, interpolation between a conjugate complex pair and one real valued eigenvalue

with multiplicity = 2 are treated identical to the pure cases. In these two cases the eigen-

values are interpolated with (3.26).

Interpolation of the third mixed case is not part of this work.

The matrix of eigenvectors Un,int and the eigenvalue matrix Un,int are set up.

U int =
[

u1,int u2,int u3,int

]

, U int ∈ R
3×3 (3.27)

Λint =






λ1,int 0 0

0 λ2,int 0

0 0 λ3,int




 , Λint ∈ R

3×3 (3.28)

3.8.4 Assembling of the Interpolated System Matrix

The interpolated A matrix is reassembled using the eigendecomposition [18].

Aint = U intΛintU
−1
int , Aint ∈ R

3×3 (3.29)

When reassembling the new system matrix it is vital to sort the eigenvector-eigenvalue-sets

of Ai so that the corresponding real valued entities are in line and the conjugate complex

pairs are in line. In this work, the proposed (but arbitrary) manner of sorting is: [complex,

3.8 Interpolation Method 42

complex, real]. This helps to avoid confusion and makes it impossible to accidentally relate

a real valued eigenvalue to a conjugate complex coupled eigenvector and vice versa.

3.8.5 Interpolation of Input and Output Matrices

The interpolation of input and output matrices is not a core task of this work. A number of

new approaches have been investigated, but none has delivered entirely convincing results.

In addition all investigated problems in this work are flat systems, which can be seen as

a restriction for the applicability of the method. Since flatness depends on the input and

output matrices of a system as well as the system matrix itself the interpolation of all three

matrices is critical. It remains to be clarified how a correct interpolation should be defined.

Further research is required on this part.

An interpolation approach that allows for the application of defined conditions concerning the

state vector and the output signal is applied here. The Bi and Ci matrices are interpolated

linearly

Bint =
∑

I

ΦiBi (3.30)

Cint =
∑

I

ΦiCi (3.31)

thereby retaining the general structure of the matrices in case a special structure was given

in the first place. The interpolated system is defined by the matrices Aint, Bint and C int.

Note that it is possible to generate a Bint (or a Cint) matrix such that the stationary value of

xi is linearly interpolated. Unfortunately, when altering those matrices, the system dynamics

are altered or the output is scaled differently and thereby step response-plots are skewed.

3.8.6 Tweaking of Input- and Output Matrices

Computation of input- and output matrices other than stated in section 3.8.5 is not imple-

mented in the method due to the disadvantages introduced there. However, a number of

approaches have been investigated and may be of interest for special applications.

Requirements on B for linear interpolation of steady state value

To interpolate the steady state value of the state vector linearly, a condition for the input

matrix B can be derived:

0 = ẋ = Ax+Bu

xi,∞ = −A−1
i Biu

3.8 Interpolation Method 43

and

xint = −A−1
intBintu =

∑

I

Φi[−A−1
i Biu] (3.32)

With (3.32) a condition for Bint follows

Bint = Aint

[

∑

I

ΦiA
−1
i Bi

]

(3.33)

Analogous for discrete-time systems

Bint = (I −Aint)

[

∑

I

Φi(I −Ai)
−1Bi

]

(3.34)

where I is the identity matrix. The interpolated system matrix Aint is computed by the

method introduced above in section 3.8. The only unknown Bint is fully defined by (3.33)

and (3.34) respectively.

Judging output signals is hard insofar as the output matrix C greatly affects the result.

Requirements on C for linear interpolation of the output vector y

It is possible to generate an output matrix C such that the output vectors are interpolated

linearly, irrespective of the interpolation method applied on the system matrix A and input

matrix B. The condition demands the matrix dimensions to fit the resulting equation,

hence, it is limited to square input matrices of dimension n× n. Also, numerical difficulties

may arise with matrix inversion and the conditioning (or even singularity) of the respective

inverse. The defining equation, assuming that x is a steady state value, is derived:

yi = CT
i xi = CT

i (−A−1
i Biu) (3.35)

and with (3.32)

yint = CT
intxint = −CT

intA
−1
intBintu (3.36)

By requiring that

yint = CT
intxint =

∑

I

Φi[−CT
i A

−1
i Biu] (3.37)

holds, C int is found as

CT
int =

[

∑

I

Φi[−CT
i A

−1
i Biu]

]

(

−AintB
−1
int

)

(3.38)

3.8 Interpolation Method 44

Analogous for discrete-time systems

CT
int =

[

∑

I

Φi[−CT
i (I −Ai)

−1Biu]

]

(

(I −Aint)
−1Bint

)−1
(3.39)

For SISO Systems equations (3.38) and (3.39) can be simplified and solved. The idea is to

define an arbitrary input signal, u = 1 for example, and compute Bint so that the above

conditions defined by (3.33) and (3.34) respectively, are met. Thereby the excitation of the

states by the input signal is linearly interpolated.

The output signals for each original system must be computed with (3.35) and interpolated.

yint =
∑

I

Φiyi (3.40)

Then, the preliminary interpolated output signal is computed with a preliminary output

matrix CT
prel as defined by (3.31).

yprel =
∑

I

Φi[−CT
prelA

−1
i Biu] (3.41)

For SISO systems (3.40) and (3.41) yield scalar values. Then the following relation holds,

yint = αcorryprel (3.42)

where αcorr is a scalar factor. With (3.40) and (3.41) equation (3.42) can be evaluated and

yields αcorr.

Consequently, the correct CT
int is defined by

CT
int = αcorrC

T
prel (3.43)

This implies, that in order to meet the output value condition defined by equation (3.37),

the steady state value condition defined by equation (3.32) on the input matrix must be

fulfilled too. Note that the simplification can only be applied to SISO systems.

Chapter 4

Results and Validation of Concept

The GA (Geometric Algebra) interpolation method is applied to two examples so as to

underline its advantages and to illustrate the procedure. Conventional matrix interpolation,

see section 1.4 serves to compare and judge the results.

4.1 Orthogonal Planes

The first demonstrative example is an interpolation of two continuous-time systems with

orthogonal oscillation planes defined by (1.2) and

A1 =






0 1 0

−b1 −a1 0

0 0 −3




 , A2 =






−3 0 0

0 0 1

0 −b2 −a2




 ,

B1 = B2 =






1

1

1




 , cT1 = cT2 =

[

1 1 1
]

Φ1 = Φ2 = 0.5, a1 = a2 = 0.1, b1 = b2 = 2

The advantage of using this particular structure is, that damping ratio and oscillation fre-

quency are directly set by the factors a1, a2 and b1, b2 respectively. The influence of these

numbers on the system behavior is outlined in example 3.1. Furthermore, interpolating or-

thogonal planes at Φ1 = Φ2 = 0.5 results in a large angular difference between the given and

the computed oscillation planes. The input and output matrices are identical so that their

influence on the result is as small as possible. Thereby, the introduced interpolation method

for the system matrix is accentuated. The example serves to show that the proposed GA

interpolation method performs well on problems, where the common matrix interpolation

performs poorly.

45

4.1 Orthogonal Planes 46

Table 4.1: The bivector specifications of oscillation planes

Π1 Π2 Πint

oν - - -

mν 0.4711 0.4711 1

aν e1 ∧ e2 e2 ∧ e3 e1 ∧ e2 + e2 ∧ e3

The eigenvectors and eigenvalues of both systems are

U 1 =






−0.0204− 0.5770i −0.0204 + 0.5770i 0

0.8165 0.8165 0

0 0 1




 ,

U 2 =






0 0 1

−0.0204− 0.5770i −0.0204 + 0.5770i 0

−0.8165 −0.8165 0




 ,

Λ1 = Λ2 =






−0.05 + 1.4133i 0 0

0 −0.05− 1.4133i 0

0 0 −3.0






The coordinate triples ξ, ζ and ρ defined by their respective eigenvectors are

ξ1 =






−0.0204

0.8165

0




 , ζ1 =






0.5770

0

0




 , ρ1 =






0

0

1




 .

and

ξ2 =






0

−0.0204

−0.8660




 , ζ2 =






0

0.5770

0




 , ρ2 =






1

0

0




 .

where ρ denotes the eigenvector associated to the real eigenvalue.

Fig. 4.1 shows both oscillation planes and the real valued eigenvectors of both systems. Tab.

4.1 summarizes the systems 2-blades data. Note that, because the magnitudes of ξi < 1 and

the magnitudes of ζi < 1 the magnitudes mΠi < 1, too. Before interpolating the bivectors,

their magnitude is set to 1, as in (3.14). Hence, mΠint = 1.

In Fig. 4.2 both oscillation planes with their original magnitude and the interpolated plane

are depicted. Note here, that the attitude of the interpolated plane is defined because the

4.1 Orthogonal Planes 47

Figure 4.1: The oscillation planes and the real valued eigenvector of system one (blue) and
system two (red).

orientation information is taken into account when using GA. Otherwise there would have

been two possible solutions, each tilted by 45◦ between the two given planes.

Fig. 4.3 shows the interpolated plane and the two coordinate triples as well as the inter-

polated triple as a result of the method described in 3.8.2. The interpolated triple is an

orthogonal triple because both given triples were orthogonal.

Hence, the interpolated coordinate triple is

ξint =






−0.4185

0.5629

0.4185




 , ζint =






0.2885

0.4080

−0.2885




 , ρint =






0.7071

0

0.7071




 .

4.1 Orthogonal Planes 48

Figure 4.2: The oscillation planes and the interpolated plane.

The eigenvectors are assembled with (3.12) and Λ1 = Λ2 = Λint so that

U int =






0.4185− 0.2885i 0.4185 + 0.2885i 0.7071

0.5629− 0.4080i 0.5629 + 0.4080i 0

0.4185 + 0.2885i 0.4185− 0.2885i 0.7071




 ,

Λint =






−0.05 + 1.4133i 0 0

0 −0.05− 1.4133i 0

0 0 −3.0






Finally, the A matrix is assembled according to (3.29)

Aint =






−1.2750 1.0960 −1.7250

−1.0253 −0.5500 1.0253

−1.7250 −1.0960 −1.2750




 (4.1)

4.1 Orthogonal Planes 49

Figure 4.3: The rotated coordinate triples of both systems in the interpolated plane and the
interpolated coordinate triple (black).

For comparison, the A matrix computed by matrix interpolation is found as

Aint, matrix =






−1.5000 0.5000 0

−1.0000 −0.0500 0.5000

0 −1.0000 −1.5500




 (4.2)

Fig. 4.4 depicts the state vectors trajectories starting at the initial condition x0 = [1, 1, 1].

The oscillation planes correspond to the bivector representation in Fig. 4.2. Note that both

the orientation and the damping behavior are correctly interpolated with the GA interpola-

tion method. In contrast, the matrix interpolation results in a non-oscillating system whose

trajectory reaches the origin almost directly.

Fig. 4.5 depicts the location of the poles in the s-plane (the eigenvalues of the system

matrices). Since the eigenvalues of both original systems are identical (black, large cross),

the introduced GA interpolation leaves them unchanged. Thereby the system dynamics are

interpolated correctly. In contrast, the matrix interpolation alters, depending on Φi, the

location of the interpolated system’s poles (blue and red, smaller cross). In this particular

case, the real valued pole (blue crosses) travels towards the origin, making the system slower

4.1 Orthogonal Planes 50

−1 −0.5 0 0.5 1
−1

0

1

−1.5

−1

−0.5

0

0.5

1

x2

x1

x3

Figure 4.4: The trajectories of the state vectors of Systems 1 and 2 (solid, black), the GA
interpolated system (solid, red, tilted) and the reference system interpolated by conventional
matrix interpolation (solid, green) with common initial conditions x0 = [1, 1, 1].

and the conjugate complex pair travels from the original low damping ratio of ζ ≈ 0.05 at

Φ1 = 1 to a maximum of ζ ≈ 0.76 at Φ1,2 = 0.5.

Fig. 4.6 shows the step responses of the two given systems and the interpolated systems as

well as step response of system computed with common matrix interpolation.

Fig. 4.7 shows the step responses of each state separately. Note here, only the second

state oscillates in both given systems. The GA interpolation provides an accurate interpo-

lation, where both the frequency and damping ratio are reasonable. Even the states where

one system oscillates while the other system does not are intuitively correctly interpolated.

Standard matrix interpolation results in a non-oscillating system.

4.1 Orthogonal Planes 51

−3 −2.5 −2 −1.5 −1 −0.5 0

−1.5

−1

−0.5

0

0.5

1

1.5

3 2.5 2 1.5 1 0.5

0.985

0.94

0.86 0.76 0.64 0.5 0.34 0.16

0.985

0.94

0.86 0.76 0.64 0.5 0.34 0.16

x1

x2

Figure 4.5: Poles of the original systems and the GA interpolated system (black, large cross,
identical). The poles of the systems computed via matrix interpolation (blue and red, smaller
cross) at varying interpolation weights Φ1 ∈ [1, 0.5] change position in the s-plane.

0 1 2 3 4 5 6 7 8 9 10
x 104

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x2

Figure 4.6: The step responses of Systems 1 and 2 (solid, black, identical), the GA inter-
polated system (solid, red) and the reference system interpolated by matrix interpolation
(dashed, red).

4.1 Orthogonal Planes 52

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

Figure 4.7: The step responses of Systems 1 and 2 (solid, black), the GA interpolated system
(dashed, red) and the reference system interpolated matrix interpolation (dash-dotted, green)
for each state.

4.1 Orthogonal Planes 53

4.1.1 Influence of Input and Output Matrices

Active steady state value condition

The application of the derived conditions for input and output matrices in section 3.8.5 is

connected to the trade-off between the interpolation of static and dynamic characteristics.

Fig. 4.8 depicts the step response for each state of a system with active steady state value

condition. That means, the Input matrix is computed as defined by (3.33). The output

matrix is linearly interpolated.

The new B matrix computes to

Bint, enforced =






0.2347

0.6709

0.0903




 (4.3)

It is obvious that the steady state values for each state are interpolated linearly. At the

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

Figure 4.8: The step responses of Systems 1 and 2 (solid, black), the GA interpolated system
(dashed, red) and the reference system interpolated by matrix interpolation (dash-dotted,
green) for each state. Active steady state value condition.

same time the dynamic characteristics of the step response have changed dramatically. The

oscillation frequency seems to have increased.

4.1 Orthogonal Planes 54

Influence of the output matrix

Due to the fact that these systems are not SISO systems the condition derived for the output

matrix can not be applied. The equations can not be solved.

4.1.2 Variation: Different Damping Ratios

The system matrices are of the same structure as above. The damping ratio of system two

is increased as given by the coefficients: a1 = 0.1, a2 = 0.4 and b1 = b2 = 2. Hence, the

defining matrices are

A1, damping =






0 1 0

−2 −0.1 0

0 0 −3




 , A2, damping =






−3 0 0

0 0 1

0 −2 −0.4




 ,

B1, damping = B2, damping =






1

1

1




 ,

cT1, damping = cT2, damping =
[

1 1 1
]

Φ1 = Φ2 = 0.5,

The interpolation algorithm is run with the altered matrices and yields the following results.

The new A matrix is assembled according to (3.29)

Aint, damping =






−1.3113 1.1482 −1.6887

−0.9716 −0.6275 0.9716

−1.6887 −1.1482 −1.3113




 (4.4)

Note the differences compared to the A matrix given by (4.1).

For comparison, the A matrix computed by conventional matrix interpolation is found as

Aint, matrix =






−1.5000 0.5000 0

−1.0000 −0.0500 0.5000

0 −1.0000 −1.7000




 (4.5)

Fig. 4.9 depicts the state vectors trajectories starting at the initial condition x0 = [1, 1, 1] as

in the above example. Again, both the orientation and the damping behavior are correctly

interpolated with the GA interpolation method. In contrast, the matrix interpolation results

in a non-oscillating system whose trajectory reaches the origin almost directly.

Fig. 4.10 shows the step responses of the two given systems and the interpolated systems as

4.1 Orthogonal Planes 55

−1 −0.5 0 0.5 1 −1.5
−1

−0.5
0

0.5
1−1

−0.5

0

0.5

1

x2

x1

x3

Figure 4.9: The trajectories of the state vectors of Systems 1 (solid, black) and 2 (solid,
blue) with different damping ratios, the GA interpolated system (solid, red, tilted) and
the reference system interpolated by conventional matrix interpolation (solid, green) with
common initial conditions x0 = [1, 1, 1].

well as the step response of the system computed with common matrix interpolation. Note

that the damping behavior is correctly interpolated. At the same time the natural frequency

is correctly interpolated as well: since the natural frequency of the two original systems is

identical, the natural frequency of the interpolated system is identical to the original natural

frequency, too.

Fig. 4.11 shows the step responses of each state separately. Note here, only the second state

oscillates in both given systems. The GA interpolation provides an accurate interpolation,

where both the frequency and damping ratio are reasonable. Even the states where one

system oscillates while the other system does not are intuitively correctly interpolated.

4.1 Orthogonal Planes 56

0 1 2 3 4 5 6 7 8 9 10
x 104

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x2

Figure 4.10: The step responses of Systems 1 (solid, black) and 2 (solid, blue) with dif-
ferent damping ratios, the GA interpolated system (solid, red) and the reference system
interpolated by matrix interpolation (dashed, red).

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

Figure 4.11: The step responses of Systems 1 (solid, black) and 2 (solid, blue) with dif-
ferent damping ratios, the GA interpolated system (dashed, red) and the reference system
interpolated matrix interpolation (dash-dotted, green) for each state.

4.1 Orthogonal Planes 57

4.1.3 Variation: Different Natural Frequencies

The system matrices are of the same structure as above. The natural frequency of system

two is increased as given by the coefficients: a1 = 0.1, a2 = a1 ∗
√

b2
b1 and b1 = 2, b2 = 4.

The damping ratio is kept constant via the choice of the coefficient a2. Hence, the defining

matrices are

A1, natfreq =






0 1 0

−2 −0.1 0

0 0 −3




 , A2, natfreq =






−3 0 0

0 0 1

0 −4 −0.1414




 ,

B1, natfreq = B2, natfreq =






1

1

1




 ,

cT1, natfreq = cT2, natfreq =
[

1 1 1
]

Φ1 = Φ2 = 0.5,

The interpolation algorithm is run with the altered matrices and yields the following results.

The new A matrix is assembled according to (3.29)

Aint, natfreq =






−1.0731 1.4123 −1.9269

−1.3263 −0.9746 1.3263

−1.9269 −1.4123 −1.0731




 (4.6)

Note the differences compared to the A matrix given by (4.1) and (4.6).

For comparison, the A matrix computed by conventional matrix interpolation is found as

Aint, matrix =






−1.5000 0.5000 0

−1.0000 −0.0500 0.5000

0 −1.0000 −1.7000




 (4.7)

Fig. 4.12 depicts the state vectors trajectories starting at the initial condition x0 = [1, 1, 1]

as in the above example. Again, the orientation, the damping behavior and the natural

frequencies are correctly interpolated with the GA interpolation method. In contrast, the

matrix interpolation results in a non-oscillating system whose trajectory reaches the origin

almost directly.

Fig. 4.13 shows the step responses of the two given systems and the interpolated systems as

well as the step response of the system computed with common matrix interpolation. Note

that the natural frequency is correctly interpolated. At the same time the damping behavior

4.1 Orthogonal Planes 58

is correctly interpolated as well: since the damping ratios of the two original systems is

identical, the damping ratio of the interpolated system is identical to the original damping

ratio, too.

Fig. 4.14 shows the step responses of each state separately. Note here, only the second state

oscillates in both given systems. The GA interpolation provides an accurate interpolation,

where both the frequency and damping ratio are reasonable. Even the states where one

system oscillates while the other system does not are intuitively correctly interpolated.

4.1 Orthogonal Planes 59

−1 −0.5 0 0.5 1
−1

0
1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x2

x1

x3

Figure 4.12: The trajectories of the state vectors of Systems 1 (solid, black) and 2 (solid,
blue) with different natural frequencies, the GA interpolated system (solid, red, tilted) and
the reference system interpolated by conventional matrix interpolation (solid, green) with
common initial conditions x0 = [1, 1, 1].

4.1 Orthogonal Planes 60

0 1 2 3 4 5 6 7 8 9 10
x 104

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x2

Figure 4.13: The step responses of Systems 1 (solid, black) and 2 (solid, blue) with differ-
ent natural frequencies, the GA interpolated system (solid, red) and the reference system
interpolated by matrix interpolation (dashed, red).

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

Figure 4.14: The step responses of Systems 1 (solid, black) and 2 (solid, blue) with different
natural frequencies, the GA interpolated system (dashed, red) and the reference system
interpolated matrix interpolation (dash-dotted, green) for each state.

4.1 Orthogonal Planes 61

4.1.4 Variation: Angular shift of the second oscillation plane

This variation of the above example serves to show that the GA interpolation method delivers

reasonable results for increasing angular difference between the interpolated oscillation plane.

At the same time the quality of the result of conventional matrix interpolation declines

rapidly.

The above defined oscillation plane of system one is the basis for this extension. The alterna-

tive intermediate planes are generated by multiplication of the original bivector representing

the first oscillation plane with a spinor. The axis of rotation and the angular “steps” need

to be specified and, together, define the spinor. Here, the second oscillation plane will be

rotated over a range of Ψ = 2π
3 rad = 120◦ in n = 6 steps of Ψstep = π

9 rad = 20◦ so that it

will step-by-step fill the gap between the first original and second original oscillation plane.

Note here, that the axis of rotation is chosen to be

urotation = e1 + e2 + e3 (4.8)

hence, the first plane including its defining eigenvectors is rotated onto the second plane

to match it exactly in the sixth rotation step. The interpolated oscillation planes angular

shift will range from 45 when interpolating the two original oscillation planes to ≈ 8◦ when

interpolating the first original oscillation plane with the first alternative oscillation plane.

Figure 4.15 shows the original constellation and the additional oscillation planes (yellow).

From these rotated alternative oscillation planes the “corresponding” system matrices are

computed (in order to perform conventional matrix interpolation for comparison of results

only) with the original eigenvalues and equation (3.29).

Finally, the GA interpolation process is run with every one of these alternative second planes

separately, yielding six alternative interpolated systems.

For evaluation the initial responses of the computed systems is chosen. Initial responses

take only the system matrix A and the output matrix C of a system into account. When

computing initial responses with identical initial conditions for all systems results become

readily comparable.

Since the system characteristics of system one and system two are identical all alternative sec-

ond systems exhibit identical system dynamics, too. Figure 4.16 shows the initial responses

of the original systems one and the identical alternative system one and the initial response

GA interpolated system as well as the conventional matrix interpolated system. Since the

systems that are being interpolated are identical, all interpolated systems are identical to

the original systems, too. Consequently, the initial response of all systems is identical and

only one plotted line is visible.

Figure 4.17 shows the initial responses of the original systems and the alternative systems

4.1 Orthogonal Planes 62

Figure 4.15: The original oscillation planes of system one (blue), system two (red), and the
additional six rotated versions of the second oscillation plane (green). The magenta vector
represents the axis of rotation.

with tilted oscillation planes but otherwise identical system characteristics (identical, solid,

black). The initial response of the systems computed with GA interpolation are shown in

colors (solid) and the initial response of the systems computed with matrix interpolation are

shown in matching colors (dashed).

The slight difference in the GA interpolated results is due to numerical inaccuracies. The

ideal solution would be identical to the original system response. That means, the ideal

initial response plot would show only one solid line representing all original and GA inter-

polated systems. Note how conventional matrix interpolation fails to interpolate the system

characteristics of any tested set of systems (with different oscillation planes).

4.1 Orthogonal Planes 63

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3

4

simulation time

ou
tp

ut

Initial System Responses of Original Systems

G1
G2
G0 matrix interpolated
G GA interpolated

Figure 4.16: The initial responses of system one (blue), identical system two (green) and the
initial responses of the systems interpolated by GA interpolation (magenta) and conventional
matrix interpolation (cyan).

4.1 Orthogonal Planes 64

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3

4

simulation time

ou
tp

ut

Initial System Response, GA Interpolated and Matrix Interpolated

Sys 1 = Sys 2
GA 20
GA 40
GA 60
GA 80
GA 100
GA 120
Matrix 20
Matrix 40
Matrix 60
Matrix 80
Matrix 100
Matrix 120

Figure 4.17: The initial responses of the original and tilted systems (identical, black), the
initial responses of the systems interpolated by GA interpolation (colors, solid) and conven-
tional matrix interpolation (matching colors, dashed).

4.2 General Example 65

4.2 General Example

The second demonstrative example is an interpolation of two arbitrary, discrete-time systems,

defined by (1.2) and

A1 =






0 1 0

0 0 1

0.4618 −1.7535 2.2682




 ,A2 =






0 1 0

0 0 1

0.6137 −1.9999 2.3474




 ,

B1 =






0

0

1




 , B2 =






0

0

1




 ,

cT1 =
[

0 0 0.0660
]

, cT2 =
[

0 0 0.0634
]

Φ1 = Φ2 = 0.5, T s = 0.01

These systems are fairly similar, the angular difference between the oscillation planes is small

compared to the previous example. The example serves to show that the introduced GA

interpolation performs well on problems, where matrix interpolation is commonly applied

and performs well, too.

Figure 4.18: The oscillation planes and the interpolated plane.

4.2 General Example 66

Fig. 4.18 shows the both given oscillation planes as well as the interpolated plane.

The interpolated eigenvalues and the matrix of eigenvectors compute to

Λint =






0.7561 + 0.3010i 0 0

0 0.7561− 0.3010i 0

0 0 0.7956




 ,

U int =






0.6878 0.6878 −0.6135

0.5193 + 0.2042i 0.5193− 0.2042i 0.2018

0.3229 + 0.3087i 0.3229− 0.3087i 0.7635






Thus, the Aint matrix reassembled to

Aint =






−10.2146 23.9737 −15.1845

−8.7891 19.7941 −12.0846

−5.8898 12.6114 −7.2717






Note here, that the matrix is generally a non-sparse matrix. Since both given A matrices

are of controllability canonical form a transformation step is performed:

Aint, trans = TAintT
−1 (4.9)

where T is a suitable transformation matrix. The general structure of the A matrix is

thereby retained and computes to

Aint, trans =






0 1 0

0 0 1

0.5269 −1.8654 2.3078






In this particular example, where the oscillation planes and eigenvalues of the system matrices

are almost identical the conventional matrix interpolation method performs well too. The

interpolated system matrix via matrix interpolation computes to

Aint, MatrixInt =






0 1 0

0 0 1

0.5377 −1.8767 2.3078






The resulting system matrices Aint, trans and Aint, MatixInt are almost identical.

Note that both B and C matrices are interpolated linearly as defined by (3.30) and (3.31).

Fig. 4.19 depicts the state vectors trajectories starting at the initial conditions x0 = [1, 1, 0].

4.2 General Example 67

−4 −3 −2 −1 0 1 −4

−2

0

2

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

x2

x1

x3

Figure 4.19: The trajectories of the state vectors of System 1 and 2 (solid, black), the GA
interpolated system (solid, red) and the reference system interpolated by matrix interpolation
(dashed, red) with common initial conditions x0 = [1, 1, 0].

It can easily be verified that the result is plausible, the interpolation generates a system with

adequately interpolated dynamics.

Fig. 4.20 shows step responses of both given systems and the interpolated system as well

as the step responses of the matrix interpolation method for comparison. In this case the

matrix interpolation works well, too.

4.2 General Example 68

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Figure 4.20: The step responses of Systems 1 and 2 (solid, black), the GA interpolated
system (solid, red) and the reference system interpolated by matrix interpolation (dashed,
red).

4.2.1 Influence of Input and Output Matrices

Active steady state value condition

Fig. 4.21 depicts the step response of a system with active steady state value condition. That

means, the Input matrix is computed as defined by (3.33). The output matrix is linearly

interpolated.

The new B matrix computes to

Bint, enforced =






0

0

1.0478




 (4.10)

It is almost identical to the input matrix computed with linear interpolation, hence the

difference of the step response is small and can hardly be identified on the plot. No significant

difference between the system generated by the developed algorithm and the system with

the extra condition on the steady-state values is noticeable. This is due to the similarity of

the interpolated systems.

4.2 General Example 69

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Figure 4.21: The step responses of Systems 1 and 2 (solid, black), the GA interpolated
system (solid, red) and the reference system interpolated by matrix interpolation (dashed,
red). Active steady state value condition.

Active steady state value and output condition

Fig. 4.22 depicts the step response of the system with active steady state value condition

and active output condition. That means, the Input matrix is computed as defined by (3.33)

and the output matrix is computed as defined by (3.43) The new C matrix computes to

CT
int, enforced =

[

0 0 0.0650
]

Note that the original output matrices are

cT1 =
[

0 0 0.0660
]

, cT2 =
[

0 0 0.0634
]

The step response is generated with Bint, enforced and C int, enforced.

4.2 General Example 70

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Figure 4.22: The step responses of Systems 1 and 2 (solid, black), the GA interpolated
system (solid, red) and the reference system interpolated by matrix interpolation (dashed,
red). Active steady state value condition and active output condition.

Chapter 5

Summary and Outlook

5.1 Accomplishments

An interpolation algorithm for system dynamics has been developed. The algorithm is

based on the state space representation of local model systems. There is no dimension limit

imposed. The method interpolates dynamic system characteristics simultaneously:

• Natural Frequency

• Damping Ratio

• Attitude of the oscillation planes in the state space

• Orientation of the oscillation planes in the state space

• Steady State Values of the state vector of SISO systems

The steady state value of the state vector is generally not linearly interpolated simultane-

ously. For arbitrary systems its simultaneous linear interpolation can be enforced with an

additional condition on the input matrix. Additionally the output matrix must be adjusted,

to finally make the correctly interpolated steady state value visible in the output. A condi-

tion for the output matrix can be derived but poses numerical difficulties. For SISO systems

the condition can be significantly simplified and solved. Other systems generally can not

satisfy the condition. In some cases working with numerical tricks can circumnavigate the

matrix-inversion problem.

71

5.2 Fields of Further Research 72

5.2 Fields of Further Research

5.2.1 Mode Tracking

In order to apply the interpolation algorithm a correlation between the modes of the original

systems need to be established. This task is addressed by mode tracking. Mode tracking is

not part of this work, hence only an ad hoc approach is presented. This approach demands

that a user manually establishes the correct correlation between modes. Due to its simplicity

it might as well be implemented into a software routine. Nevertheless, further research is

required on mode tracking and the physical interpretation of mode correlation.

5.2.2 Interpolation between a Conjugate Complex Pair and two

Real Valued Poles

In section 3.2 the six possible interpolation cases that appear during the interpolation process

are introduced. All except the last case can be handled by the interpolation algorithm. The

last case, where a conjugate complex couple of eigenvalues is interpolated with two different

real valued poles is difficult. The fact that the transition from eigenvalues in the complex

plane to eigenvalues on the real axis is not defined causes problems when computing the cor-

responding eigenvectors. At one point the poles must coincide and form a single real valued

pole with multiplicity = 2. At that point neither the value of the pole nor the eigenvectors

corresponding to that double pole are defined. Hence, this case is excluded in the algorithm.

Further research is required on this special interpolation case.

5.2.3 Internal Dynamics of non-flat Systems

In this work only differentially flat systems have been investigated. These systems do not

exhibit internal dynamics. Non-flat systems may exhibit internal dynamics as part of their

system dynamics. It might be worth considering the idea of treating the internal dynamics

analog to the system dynamics of flat systems. The idea seems plausible, since internal

dynamics are a part of the system’s dynamics and the interpolation process ideally captures

the entire system dynamics.

Since flatness depends on both the input and output matrix of a system as well as the system

matrix itself an interpolation scheme for the input and output matrices of non-flat systems

must be developed, too.

Bibliography

[1] Leo Dorst, Stephen Mann, and Tim Bouma. GABLE: A Matlab Tutorial for Geometric
Algebra, 1.3 edition, December 2002.

[2] Wilson J. Rugh and Jeff S. Shamma. Research on gain scheduling. Automatica, 2000.

[3] Wilson J. Rugh. Analytical Framework for Gain Scheduling. IEEE Control Systems,
Jan 1991.

[4] T. Takagi and M. Sugeno. Fuzzy Identification of Systems and its Applications to
Modeling and Control. IEEE transactions on systems, 1985.

[5] Eduardo Bayro-Corrochano, Sven Buchholz, and Gerald Sommer. A new self-organizing
neural network using geometric algebra. IEEE Proceedings of ICPR, 1996.

[6] Oliver Nelles. Nonlinear System Identification: From Classical Approaches to Neural
Networks and Fuzzy Models. Springer Verlag GmBH, 2001.

[7] Robert A. Nichols, Robert T. Reichert, and Wilson J. Rugh. Gain Scheduling for
H∞ Controllers: A Flight Control Example. IEEE Transactions on Control Systems
Technology, 1, no. 2 edition, June 1993.

[8] Gene F. Franklin, J David Powell, and Michael L. Workman. Digital control of dynamic
systems. page 760, Jan 2002.

[9] Christian H. Mayr, Christoph Hametner, Martin Kozek, and Stefan Jakubek. Relaxed
Fuzzy Lyapunov Approach for Dynamic Local Model Networks. Proceedings of the IEEE
International Conference on Fuzzy Systems 2011, 2011.

[10] Gilles Ferreres. Computation of a Flexible Aircraft LPV/LFT Model Using Interpo-
lation. IEEE Transactions on Control Systems Technology, 19(1):132 – 140, January
2011.

[11] Richard M. Murray, Muruhan Rathinam, and Willem Sluis. Differential flatness of
mechanical control systems: A catalog of prototype systems. ASME International Mech.
Eng. Congress and Expo, November 1995.

[12] Robert Murphey, Sunil K. Agrawal, Stephen T. Pledgie, Yongxing Hao, and Ar-
mando M. Ferreira. Groups of unmanned vehicles: Differential flatness, trajectory
planning, and control. IEEE Proceedings of the International Conference of Robotics &
Control, May 2002.

73

BIBLIOGRAPHY 74

[13] T. John Koo and Shankar Sastry. Differential flatness based full authority helicopter
control design. Proceedings of 38th Conference on Decision and Control, December
1999.

[14] Leo Dorst and Stephen Mann. Geometric Algebra: A Computational Framework for
Geometrical Applications: Part 1 and 2. IEEE Computer Graphics and Applications,
May/June 2002.

[15] D. Hestenes and G. Sobezyk. Clifford algebra to geometric calculus: a unified language
for mathematics and physics. Kluwer Academic, 1986.

[16] M. Castilla, J.C. Bravo, M. Ordonez, J.C. Montano, A. Lopez, D. Borras, and J. Gutier-
rez. The geometric algebra as a power theory analysis tool. International School on
Nonsinusoidal Currents and Compensation, 2008.

[17] Jorge Rivera-Rovelo and Eduardo Bayro-Corrochano. Medical image segmentation using
a self-organizing neural network and clifford geometric algebra. 2006 International Joint
Conference on Neural Networks, July 2006.

[18] G. H. Golub and C. F. VanLoan. Matrix Computations. Johns Hopkins University
Press, Baltimore, 3 edition, 1996.

Elvira Thonhofer
Curriculum Vitae

T +43 699 125 78 766

B e0425278@student.tuwien.ac.at

Personal Information
Date of Birth October 14, 1984

Place of Birth Vienna, Austria

Nationality Austrian

TU Wien Univ.
ID

e0425278

Education
2004 – now M.Sc. in Mechanical Engineering., Inst. for Mechanics and Mechatronics, Division of

Control and Process Automation, Technical University Vienna, Austria.
Expected in Spring 2011

– Master Thesis

title Interpolation of System Dynamics

supervisors Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Jakubek, Projektass. Dipl.-Ing. Christian Mayr

description Algorithms for solving 3-dimensional system interpolation. A matlab toolbox is developed for com-
putation and visualisation of results. Matlab code based GABLE, a matlab toolbox for Geometric
Algebra.

2008 – 2009 CHALMERS TU via ERASMUS, M.Sc. Program in Naval Architecture, CHALMERS
TU, Göteborg, Sweden.
Academic exchange year

Aug 2007 Summer School at TU Uppsala, Sweden, Aerospace Engineering, TU Uppsala, Sweden.
Scientific satellite design, orbit calculation, relevant control systems.

1999 – 2004 Secondary College for Industrial Chemistriy , Department of Biochemistriy and Gene
Technology, Vienna, Austria.
- Graduated with distinction
- authored a scientific thesis on a subject related to the Department as part of graduation

Academic Backgrouond
Control

Engineering
Digital control, MIMO Systems, Adaptive and Predictive Control, Neural Networks, System
Identificaion, . . .

Mathematics Calculus, Linear Algebra, Geometric Algebra, ODE, PDE, Analysis, FEM, . . .

Naval Design,
Mechanical
Engineering

Ship Structures, Class Rules, Composite Materials and Lightweight Design, Buckling Anal-
ysis, Strength and Stiffness Requirements, Hydrostatics and -dynamics, simulation, . . .

Experience
Working

Sept 2009 – now Pleasure Yacht and Boat Design Projects, Acico Yachts resp. Naval Design by Christian
Bolinger and Bootsbaumeisterin, Enkhuizen, Netherlands and Vienna, Austria.
- Structural Design for a pleasure Yacht, solar catamaran with ocean classification
- Design of a Venetian Gondola, supervising the production process

mailto:e0425278@student.tuwien.ac.at

July – Sept 2009 Junior Designer for Ship Structure, Naval Design by Christian Bolinger, Udligenswil,
Lucerne, Switzerland.
- Structural Design for pleasure Yachts up to 20m
- Communication with Class Rule Societies, Deck-plan Layout, Stability Calculations and Super-
vision of manufacturing process

2007 – Jan 2009 Junior Structural Designer for Transmission Towers, Ziviltechnikerbüro Schelmberger,
Vienna, Austria.
- Full time during summers, part time during semester schedule
- Structural Design for transmission towers and aerial masts
- Structural refitting for hosting more/different antennas
- Re-computation of old existing power-line structures with up-to-date methods

Research
2003 – 2004 Graduation Project, University of Vienna, Max F. Perutz Laboratories, Vienna, Austria.

- During school schedule, replacing part of regular Laboratory Classes and extending to extracur-
ricular research.
- Independent scientific research, completed with a Graduation Thesis

– Graduation Thesis

title Studies on Development and Characterisation of metal nano-cluster biochips based on
anomalous absorption as a new assaying principle

supervisor Univ.Prof. Dr.techn. Fritz Pittner, Mag. Peter Altrichter, Jakob Haglmüller

description Student teams of 2 perform in an individual scientific research project. As part of the graduation
exam the project is presented, followed by an oral exam similar to academic graduation processes.

Teaching
Jan – Feb 2007 Tutor, Department of computer-aided Engineering and Design, TU Vienna, Austria.

- Supervising students during their engineering project, designing combustion engines and gear
boxes

Languages
German Native

English Fluent Level C2 - C1

Swedish Basic Classes taken during ERASMUS exchange

Computer skills
OS Windows, Mac OSX, Ubuntu typography, office LATEX, MS Office, OpenOffice

scientific Matlab, FLUENT, ShipFlow Design Rhino3D, VRay, ProE, MaxSurf, Auto-
Ship

Updated
July 15, 2011

	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.2.1 Requirements for System Interpolation

	1.3 System Architecture
	1.4 Introduction to matrix interpolation
	1.5 Differential Flatness and Internal Dynamics
	1.6 State Space Systems and Geometric Algebra

	2 Geometric Algebra
	2.1 Basics
	2.2 Objects
	2.2.1 Scalars, 0-dimensional Objects
	2.2.2 Vectors, 1-dimensional Objects
	2.2.3 Bivectors, 2-dimensional Objects
	2.2.4 Trivectors, 3-dimensional Objects
	2.2.5 Multi-dimensional Objects
	2.2.6 Dual and Representation of an Object as a Pseudoscalar

	2.3 Operations
	2.3.1 Outer Product
	2.3.2 Inner Product
	2.3.3 Geometric Product
	2.3.4 Invertibility of blades

	2.4 Projection and rejection
	2.5 Reflection
	2.6 Spinors, representation of orientation and rotation
	2.7 Interpolation of Orientation with Spinors

	3 Interpolation of State Space Systems
	3.1 The System Matrix
	3.1.1 System Characteristics, Eigenvectors and Eigenvalues
	3.1.2 Eigenvalue is Real Valued with Multiplicity =1
	3.1.3 Eigenvalue is a Conjugate Complex Pair
	3.1.4 Eigenvalue is Real Valued with Multiplicity = 2

	3.2 Eigenvalue Constellation Combinations
	3.3 Mode Tracking
	3.3.1 Mode Tracking by Eigenvalue
	3.3.2 Mode Tracking by Pole Path Observation

	3.4 The Input Matrix
	3.5 The Output Matrix
	3.6 The Direct Input-Output Matrix
	3.7 Stability Considerations
	3.8 Interpolation Method
	3.8.1 Decomposition of the Original System Matrices
	3.8.2 Eigenvector Interpolation
	3.8.3 Eigenvalue Interpolation
	3.8.4 Assembling of the Interpolated System Matrix
	3.8.5 Interpolation of Input and Output Matrices
	3.8.6 Tweaking of Input- and Output Matrices

	4 Results and Validation of Concept
	4.1 Orthogonal Planes
	4.1.1 Influence of Input and Output Matrices
	4.1.2 Variation: Different Damping Ratios
	4.1.3 Variation: Different Natural Frequencies
	4.1.4 Variation: Angular shift of the second oscillation plane

	4.2 General Example
	4.2.1 Influence of Input and Output Matrices

	5 Summary and Outlook
	5.1 Accomplishments
	5.2 Fields of Further Research
	5.2.1 Mode Tracking
	5.2.2 Interpolation between a Conjugate Complex Pair and two Real Valued Poles
	5.2.3 Internal Dynamics of non-flat Systems

	References
	Curriculum Vitae

