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Abstract

Modern wireless communication systems have evolved to provide high data-rates to an
increasing number of customers. As a part of this evolution, highly spectrally efficient
modulation schemes are employed to achieve the desired capacity within the limited ra-
dio frequency (RF) resource. Unfortunately, these modulation schemes are sensitive to
nonlinear distortions introduced by the transmitter. Digital pre-distortion (DPD) is one
of the most cost effective solutions to compensate the system’s nonlinear and dispersive
behavior. Moreover, operating costs, transceiver portability, and environmental issues
apparently impose a need for employing highly efficient power amplifier (PA) designs.
The envelope tracking power amplifier (ETPA) is one promising efficiency enhancement
technique. Its basic idea is to adapt the PA supply voltage according to the input signal
envelope, thus allowing continuous optimal efficiency operation at the expense of lin-
earity. In other words, due to the dynamic supply voltage changes the ETPA exhibits
a rather different nonlinear behavior compared to stand-alone PAs. Therefore, conven-
tional DPD techniques have troubles dealing with the nonlinear distortions introduced
by the ETPA.

In this thesis, two in literature proposed DPD methods to mitigate the detrimental
effects of the ETPA are discussed and compared: The decomposed piecewise Volterra
model and the vector-switched model. Both models are based on several polynomial
sub-models. The DPD algorithm based on the two proposed models is implemented in
Matlab for an 47W 2.14GHz ETPA system. Both algorithms have shown to successfully
linearize the ETPA for a Wideband Code Division Multiple Access (WCDMA) signal
with 10MHz bandwidth and 7.5dB peak-to-average power ratio (PAPR). Experimental
results show that the nonlinear behavior and memory effects are effectively compensated
and both DPD methods outperform classical models in terms of accuracy.
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Kurzfassung

Um den immer weiter steigenden Ansprüchen von Telekommunikationssystemen gerecht
zu werden, sind spektral höchst effiziente Modulationsverfahren unerlässlich. Diese Mo-
dulationsverfahren sind jedoch sehr anfällig auf nichtlineare Verzerrungen, welche ver-
mehrt durch den Leistungsverstärker verursacht werden. Mittels digitaler Vorverzer-
rung kann dieses nichtlineare und dispersive Verhalten des Leistungsverstärkers kom-
pensiert werden. Da außerdem die Wirtschaftlichkeit und der ökologische Betrieb von
Basisstationen und die Akkulaufzeit portabler Geräte eine übergeordnete Rolle spielen,
sind Methoden zur Effizienzsteigerung des Leistungsverstärkers unabdingbar. Mit Hilfe
des Envelope Tracking Leistungsverstärkers wird eine merkliche Effizienzsteigerung er-
zielt. Hierbei wird die Versorgungsspannung des Leistungsverstärkers an die Einhüllende
des Sendesignals angepasst, sodass der Leistungsverstärker permanent mit hohem Wir-
kungsgrad betrieben werden kann. Diese Effizienzsteigung geht jedoch auf Kosten der
Linearität. Im Vergleich zu Leistungsverstärkern mit konstanter Versorgungsspannung,
zeigt der Envelope Tracking Leistungsverstärker ein stark abweichendes Verhalten, so-
dass konventionelle Vorverzerrungsalgorithmen schwer im Stande sind dieses nichtlineare
Verhalten ausreichend zu kompensieren.

In dieser Arbeit werden zwei aktuelle Methoden aus der Literatur zur Vorverzer-
rung von Envelope Tracking Leistungsverstärkern erörtert und verglichen. Das decom-
posed piecewise Volterra Modell und das vector-switched Modell. Beide Modelle verwen-
den mehrere Sub-Modelle die Polynome zur Beschreibung des Verhaltens verwenden.
Der Vorverzerr Algorithmus ist implementiert in Matlab und ausgelegt für einen 47W
2.14GHz Envelope Tracking Leistungsverstärker. Beide Algorithmen linearisierten erfolg-
reich das Verhalten des Envelope Tracking Leistungsverstärkers, für ein Wideband Code
Division Multiple Access (WCDMA) Eingangssignal mit 10MHz Bandbreite und 7.5dB
Peak-to-Average Power Ratio (PAPR). Weiters zeigten die Messergebnisse, dass bei-
de Algorithmen konventionellen Vorverzerr Methoden bezüglich Genauigkeit überlegen
sind.
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2 1. Introduction

1.1 Motivation

The demand for broadband wireless access has been booming for the last years [1]. To
satisfy the market, modern wireless communication systems have been steadily melio-
rating in order to provide higher data-rates to an ever-growing number of customers.
Obviously, high-speed data communication requires a broad modulation bandwidth,
which is restricted by the limited and crowded radio frequency (RF) resource. There-
fore, modern wireless systems have to allocate the valuable and sparse RF spectrum
resource-efficient while offering reliable transmission. Hence, spectrally efficient mod-
ulation techniques, such as Wideband Code Division Multiple Access (WCDMA) or
orthogonal frequency-division multiple access (OFDMA), e.g., in 3rd Generation (3G)
mobile telecommunication networks and Long Term Evolution (LTE), respectively, have
been employed to attain the desired system capacity and robustness. In general, these
modulation schemes make use of non-constant envelope modulation techniques that usu-
ally exhibit signals having large envelope variations, resulting in a high peak-to-average
power ratio (PAPR)1.

Concerning signal integrity preservation and the spreading of the signal bandwidth
due to intermodulation distortions, i.e., spectral re-growth, linear amplification for non-
constant envelope modulation signals is a necessity because these techniques are very
susceptible to nonlinear distortions. Specifically, nonlinear amplification causes out-
of-band as well as in-band distortions. While in-band distortions can be treated by
utilizing forward error correction (FEC) codes, out-of-band emissions for example in
present 3G mobile telecommunication networks are handled by introducing so-called
guard bands [2]. However, modern wireless broadband systems will impose tougher
spectral efficiency requirements, so these guard bands will be shrinking [3], which in
turn will restrict the spectral re-growth margin. One possibility to mitigate nonlinear
distortions is to ensure quasi distortion-free amplification, i.e., linear amplification, by,
e.g., backing-off the output power level in order not to excite the power amplifier (PA)
nonlinearities. Yet, this degrades the power efficiency, since a PA is most efficient at high
output power levels. Simply speaking, conventional PA designs are either very linear or
very efficient, both cannot be reached at once. They show a trade-off between efficiency
and linearity inherent to the PA design. In other words, efficiency enhancements are
attained at the expense of linearity and vice versa [4].

Most energy of a base transceiver station (BTS) is consumed at the PA stage (cf.
Figure 1.1). Therefore, the energy efficiency of a BTS can be considerably improved by
using more efficient PA designs. Moreover, all the energy consumers listed in Figure 1.1
are coupled by temperature; using more efficient PAs and power supplies, less energy is
dissipated as heat, which in turn reduces the energy-hungry cooling efforts. Therefore,
the PA is the most critical part of the transmitter’s final stage and in general optimized

1PAPR of a time-continuous signal x(t) with length T

PAPR , 10 log10

(
max

0≤t≤T
{|s(t)|2}

1
T

∫ T

0
|s(t)|2dt

)
in dB
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for efficiency [5]. One promising technique for high efficiency operation for non-constant
envelope signals is the envelope tracking power amplifier (ETPA), where the supply
voltage of the PA is varied according to the transmit signal envelope. It allows to operate
the PA continually in the compression regime [6]. To preserve the regained efficiency
and to compensate for added detrimental intrinsic nonlinear effects, it is necessary to
employ supplemental linearization techniques, e.g., digital pre-distortion (DPD). Where
a pre-distorter is concatenated prior to the PA in order to compensate the nonlinear
distortions and memory effects and thus, spectral re-growth [7].

air conditioning
10-25%

PA,
incl. feeder

50-80%

power supply
5-10%

signal processing
(analog+digital)

5-15%

17.5%

65.0%

7.5%

10.0%

Figure 1.1.: Power consumption partitioning of a BTS [8].

1.2 Power Amplifier Linearity

For constant envelope modulation schemes like Global System for Mobile Communica-
tions (GSM), where Gaussian Minimum Shift Keying (GMSK) is utilized, linear ampli-
fication is not a crucial concernment. Since the RF signal amplitude conveys no infor-
mation, amplitude distortions do not affect data transmission. In contrast, non-constant
envelope modulation schemes require linear amplification, because the RF signal ampli-
tude bears a part of the data to be transmitted.

Linear amplification implies that the output signal is a scalar multiple of the input
signal, i.e.,

xin(t) = G0xout(t), (1.1)
where xin(t) and xout(t) denote the input and output baseband signals, respectively, and
G0 is the signal gain (hereinafter denoted as gain) of the PA. Accordingly, no distortions
are introduced, since the waveform of xout(t) is proportional to that of xin(t). In other
words, the output is a scaled replica of the input [9].



4 1. Introduction

Pursuant to the law of conservation of energy that states that the total amount of
energy remains constant entirely, the sum of powers delivered to the PA must equal the
sum of emergent powers. As a matter of fact, the input signal is amplified with gain G0,
and analogously the input power with power gain GP, i.e.,

GP ,
Pout
Pin

= 1 + PDC − Pdiss
Pin

, (1.2)

where Pout and Pin denote the RF output and input powers, respectively, Pdiss the
dissipated power and PDC the supply power. Since PDC is limited and Pdiss cannot
get negative, GP cannot remain constant for any increasing input power. Thus, the PA
shows gain compression above some input power level and the gain depends on xin(t) [5],
i.e.,

xout(t) = G(xin(t))xin(t), (1.3)
where G(·) is a complex-valued nonlinear function. In fact, the PA can be characterized
by the so-called amplitude modulation/amplitude modulation (AM/AM) and amplitude
modulation/phase modulation (AM/PM) conversions. Where the AM/AM and AM/PM
conversions are nonlinear functions mapping from |xin(t)| to |xout(t)| and from |xin(t)|
to the phase difference arg{xout(t)} − arg{xin(t)}, respectively. Typical AM/AM and
AM/PM conversions are depicted in Figure 1.2 [6]. Accordingly, for small input power
levels the PA habitually operates rather linear, while for increasing input power levels
the AM/AM conversion starts to show nonlinear behavior because of gain compression
as described before. However, if the PA behaves linear, the AM/AM conversion is linear
with a positive slope given by |G0| (cf. dashed line in Figure 1.2a), while the AM/PM
conversion is a constant arg{G0} (cf. dashed line in Figure 1.2b).
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(b) AM/PM conversion.

Figure 1.2.: A typical PA characteristic. The dashed line represents a perfect linear PA.
The dash-dotted line indicates the normalized gain.

Heretofore, only static nonlinearities were present, i.e., the PA instantaneous complex-
valued gainG(·) was a function of the actual input solely. However, PAs in general exhibit
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memory effects, also known as dynamic distortions where the PA characteristics deviate
from its static behavior. In other words, G(·) is as of now a function of the instanta-
neous input signal as well as its preceding history. Hence, the AM/AM and AM/PM
conversions are no longer one-to-one functions, since the same input signal value possi-
bly results in different output signal values depending on the history of the input signal.
Among others, the three main causes for present memory effects are unintentional mod-
ulation on supply rails, dynamic thermal effects, and semiconductor trapping effects [6].
Thus, memory effects can be either thermal or electric. Thermal effects arise due to
fluctuations of the dissipated energy caused by varying signal levels, therefore evoking
volatile temperature changes that alter the electrical characteristics of the PA stage.
Whereas these fluctuations are very slow and of lowpass type and its effects are present
at bandwidths up to 1MHz, electric memory effects even more affect wide-band systems
with bandwidths over 5MHz, because of the frequency dependent impedance of the bias-
and matching-networks and trapping effects of the semiconductor. However, wide-band
systems also include low frequency components that are affected by thermal memory
effects [10]. On the whole, the nonlinear and non-static behavior of the PA is influenced
by the transmit signal statistics (e.g., represented by the PAPR or the complementary
cumulative distribution function (CCDF)) and the signal bandwidth.

Beside AM/AM and AM/PM conversions, other figures of merit exist that describe
the linearity of PAs, e.g., adjacent channel power ratio (ACPR) (cf. Section 2.5.2) or
the third order intercept point (IP3). They yield a fixed distortion quantity that eases
analog front-ends comparability [9].

1.3 Power Amplifier Efficiency

The efficiency of PAs in wireless communication systems is very important. Not only in
BTSs, where the PA is the major energy consumer (cf. Figure 1.1), also in mobile devices
where battery life-time is crucial to customers. Therefore, designers tend to optimize
the analog front-end for efficiency and accept the loss of linearity [5].

There are two widely used metrics for PA efficiency, the drain efficiency and the power
added efficiency (PAE). The drain efficiency is defined as

ηD ,
Pout
PDC

, (1.4)

and can be interpreted as the capability of converting the supply power PDC in RF
output power Pout. However, the PAE is a richer indicator because it takes the input
power Pin into account, i.e.,

PAE , Pout − Pin
PDC

= ηD

(
1− 1

Gp

)
. (1.5)

Figure 1.3 delineates a typical PAE characteristic of a conventional solid state Class-A
PA [6]. In general, the efficiency increases with increasing output power and reaches its



6 1. Introduction

maximum at the saturation regime of the PA, before it starts to decline. Accordingly,
for constant-envelope modulation schemes the PA is designed to operate consistently at
maximum efficiency for the constant envelope level. Whereas for non-constant envelope
modulation schemes, having high dynamic output power level ranges, i.e., high PAPR,
the PA is incapable of permanent operation at its maximum efficiency. Figure 1.3 also
depicts the envelope probability density function (PDF) of an LTE modulated signal
with 20MHz bandwidth and 8.5dB PAPR [11]. Accordingly, lower output power levels
are more likely and therefore, the PA operates in average at low efficiency. In other
words, the probability that the PA operates far off to the saturation point, and thus,
less efficient, is much higher than highly efficient amplification. Consequently, to improve
the average efficiency for non-constant envelope modulation schemes, efficiency not only
needs to be improved close to saturation but also for lower output power levels.
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Figure 1.3.: PAE of a typical Class-A PA (solid line), versus the envelope PDF (dashed
line) of an LTE modulated signal with 20MHz bandwidth and 8.5dB PAPR [11].

1.4 Efficiency Enhancement by Envelope Tracking

In average, conventional PAs with fixed supply voltage show low efficiency when ampli-
fying signals with high PAPR. One way to improve the average efficiency is the envelope
tracking power amplifier (ETPA) as depicted in Figure 1.4.

In the ETPA arrangement, the supply voltage of the PA is dynamically adapted by
the envelope amplifier. In order to do so, the envelope signal is first either detected
from the RF input signal, or immediately calculated in the baseband. Accordingly, the
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envelope
detector

up-
converter

delay
alignment PA

VDC

VDD

envelope
amplifier

Figure 1.4.: Block diagram of an ETPA system.

envelope amplifier provides the PA with a dynamic supply voltage such that efficiency is
kept near its maximum. In other words, the ETPA continuously operates close or near
to saturation for all envelope levels due to the full rail-to-rail voltage swing as illustrated
in Figure 1.5b. Moreover, Figure 1.5 provides a deeper insight in the operating principle
of the ETPA compared to a conventional PA [6]. Again, while the supply voltage VDD of
a conventional PA remains constant throughout operation (cf. Figure 1.5a), the supply
voltage of an ETPA is varied among the minimum and maximum supply voltage, VDD,min
and VDD,max, respectively, according to the instantaneous envelope of the RF signal (cf.
Figure 1.5b). Hence, the ETPA continuously operates highly efficient, since less energy
is dissipated as heat.

−VDD

VDD

(a) Time behavior of a conventional PA.

−VDD,max

−VDD,min

VDD,min

VDD,max

(b) Time behavior of an ETPA.

Figure 1.5.: Operating principle of an ETPA compared to that of a conventional PA.
The dash-dotted line represents the envelope of the signal to be transmitted. The solid
line depicts the supply voltage. The gray area corresponds to the energy loss.

Whereas in general conventional linear amplifiers (e.g., Class-A, Class-AB or Class-
B [6]) are utilized as PAs, the envelope amplifier is optimized for efficiency (e.g., Class-D,
Class-E or Class-F [6]), since its only application is to provide the PA with sufficient
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supply voltage for highly efficient amplification. Figure 1.6 illustrates the PAE for the
same PA as in Figure 1.3, however, utilized in an envelope tracking system. Obvi-
ously, the efficiency is conspicuously improved for lower output power levels, which in
turn exceedingly improves the average efficiency for the depicted LTE modulated signal
with 20MHz bandwidth and 8.5dB PAPR [11]. Clearly, the ETPA operates at almost
maximum efficiency, regardless of the input power level.
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Figure 1.6.: A possible PAE trajectory of an ETPA (solid line), where the supply
voltage is varied between VDD,min and VDD,max, leading to PAE curves that vary between
PAEVDD,min and PAEVDD,max , respectively (cf. Figure 1.3 and Figure 1.5) [12], versus the
envelope PDF (dashed line) of an LTE modulated signal with 20MHz bandwidth and
8.5dB PAPR [11].

Beside efficiency, linearity is an intrinsic design goal [5]. The nonlinear behavior of an
ETPA is rather different to that of a conventional PA with fixed supply voltage, due to
its dynamically changing supply voltage and the limited envelope tracking bandwidth.
Moreover envelope tracking can be thought of as a nonlinear mixing between the supply
voltage and the RF signal. In other words, the ETPA shows different detrimental behav-
iors at distinct output power levels. Additionally, whenever the input power approaches
zero, nonlinearities are excited, because the supply voltage level is only varied down to a
certain minimum supply voltage level VDD,min, in order to avoid supply voltage dropping
to zero. Moreover, vast memory effects and nonlinearities arise because of a possible
misalignment between the envelope tracked supply voltage and the RF signal. Even
though both, the envelope tracking stage and the delay line are linear systems, they
constitute a source of nonlinear distortion [13, 14]. Therefore, the use of linearizers, e.g.,
DPD, becomes an essential solution to mitigate nonlinear distortions arising from the
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use of more efficient but highly nonlinear PAs.

1.5 Thesis Outline

This Thesis is organized as follows

Chapter 1 - Introduction, delineates the need of highly linear PAs for non-constant
envelope modulation schemes. Moreover, it describes the principle of the ETPA
as one way to enhance the power efficiency. Finally, the average efficiency of the
ETPA is compared to conventional stand-alone PAs when amplifying signals with
high PAPR.

Chapter 2 - Behavioral Modeling of Power Amplifiers, formulates the theory of the
passband baseband transformation and ways to transform passband PA models
to equivalent baseband models. The presented PA models include both, memory-
less and models with memory. The classical Volterra series are introduced as the
most common means for describing PAs. Moreover, ways to prune the Volterra
series are discussed. Additionally, more sophisticated models like the decomposed
piecewise Volterra model and the vector-switched models are described. Finally,
figures of merit that evaluate the accuracy of the presented models are introduced.

Chapter 3 - Model Parameter Estimation, derives the least squares (LS) estimator for
Volterra series based PA models. Moreover, the LS estimator is adapted to the de-
composed piecewise Volterra model and the vector-switched model. An excursion
to adaptive estimation algorithms concludes the chapter.

Chapter 4 - Linearization by Digital Pre-Distortion, introduces the concept of DPD as
an efficient linearization technique. In order to linearize the PA, the direct-learning
and the indirect-learning architectures are presented as methods for the identifica-
tion of the inverse system. Finally, signal bandwidth considerations and means to
choose the overall system gain are discussed.

Chapter 5 - Measurement Results, evaluates the performance of the discussed DPD
models based on measurements of an prototype envelope tracking system operating
at 2.14GHz with an average output power of 47W. The ETPA was driven with a
10MHz WCDMA signal with 7.5dB PAPR.
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2.1 Introduction and Outline

In the light of calculations and simulations, physical models are used to model the char-
acteristics of telecommunication systems at circuit-level or transistor-level of description.
However, sophisticated radio frequency (RF) and wireless communication systems are
far too complex for complete real-time circuit simulations and theoretical calculations.
Therefore, behavioral models (also referred to as black-box models) are used to model
the system properties, in order to allow accurate simulations at a relatively high level of
abstraction [15, 16]. The main advantage of modeling at high level of abstraction is that
no specific and deep knowledge about the functionality and physics of the RF circuit is
presupposed. Furthermore, the identification of the model parameters is based on output
observations when to RF circuit is driven with a certain input signal. In other words,
behavioral modeling simplifies the modeling to a mathematical input-output relation of
favored complexity. Its performance is principally influenced by the model formulation
and the accuracy of the behavioral observations [17]. Specifically, model formulation
corresponds to the choice of an applicable mathematical representation that comprises
all relevant input-output interactions of the RF circuit. Whereas model observation
corresponds to accurate measurements of the RF circuit input and output signals. Ad-
ditionally, the behavior of interest has to be properly excited in order to extract the
behavioral model parameters. Accordingly, the behavioral model accuracy is highly af-
fected by the model structure and the parameter extraction procedure. Although the
behavioral model likely represents the RF circuit characteristics for the set of applied
training signals, it is not guaranteed that the same behavioral model performs properly
for a different set of signals. Obviously, different model formulations and distinct train-
ing signal sets will lead to diverse simulation results. Therefore, in contrast to physical
models, the generalization of results obtained by simulations with behavioral models
should always be viewed with circumspection [18].

This Chapter is organized as follows

Section 2.2 - Baseband Representation of Passband Signals, shows that real-valued
passband signals can be equivalently represented as complex-valued baseband sig-
nals. Moreover, the transformation to pass back and forth between the passband
and baseband domains is derived.

Section 2.3 - Memoryless Power Amplifier Models, gives insights into memoryless be-
havioral models. In fact, the memoryless baseband polynomial behavioral model
is derived.

Section 2.4 - Power Amplifier Models with Memory, presents the Volterra series as
one of the most important and general power amplifier (PA) model that incorpo-
rates memory effects. Moreover, baseband equivalent representations are derived
and properties of the Volterra series are discussed. Furthermore, ways to prune
the Volterra series, i.e., the memory polynomials, the Hammerstein model, and the
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dynamic deviation reduction-based Volterra series, are introduced. Finally, more
sophisticated models that make use of the afore derived pruned Volterra series are
discussed.

Section 2.5 - Figures of Merit to Evaluate the Model Performance, derives and lists
in-band performance measures, i.e., the normalized mean square error (NMSE),
and out-of-band measures such as the adjacent channel power ratio (ACPR) and
the adjacent channel error power ratio (ACEPR).

2.2 Baseband Representation of Passband Signals

PAs are passband devices [6]. In fact, behavioral simulations in the passband require high
computational costs and are hardly feasible. Therefore, the most convenient workaround
of representing passband systems is to work with equivalent baseband quantities [19].
Nevertheless, equivalent baseband behavioral models allow only simulations for the
complex-valued envelope baseband signal, any arising effects from the carrier frequency
must be individually incorporated [18].

In the passband, the transmit signal is a real-valued bandpass signal spectrally cen-
tered around the carrier frequency fc with transmission bandwidth B << fc and can be
described by the polar representation

x̃(t) , x̂(t) cos(2πfct+ ϕx̃(t)) = Re
{
x̂(t)e (2πfct+ϕx̃(t))

}
, (2.1)

where x̂(t) ≥ 0 and ϕx̃(t) denote the time-dependent instantaneous envelope and instan-
taneous phase of the passband signal x̃(t), respectively. Moreover, the Fourier trans-
form1 X̃(f) shows a symmetry around zero frequency and occupies the frequency band[
fc − B

2 , fc + B
2

]
and the symmetric frequency band

[
−fc − B

2 ,−fc + B
2

]
at negative fre-

quencies (cf. Figure 2.1a). Since x̃(t) is real-valued, without loss of generality, it can be
uniquely reconstructed using only the positive frequency spectrum, which is the cisoidal
(or analytic) signal [19]

x̃A(t) , A{x̃(t)} = x̃(t) + H{x̃(t)}, (2.2)

where H{·} denotes the Hilbert transform2 that is a linear time-invariant (LTI) sys-
tem with transfer function H(f) = − sgn(f). Therefore, the Fourier transform of the
analytic signal can be written as

X̃A(f) = X(f) + H(f)X(f) = (1 + sgn(f))X(f) = 2 u(f)X(f), (2.3)
1Fourier transform X(f) of a signal x(t)

X(f) , F {x(t)} =
∞∫
−∞

x(t)e−2πftdt
2Hilbert transform of a signal x(t)

H{x(t)} , 1
π

∞∫
−∞

x(ξ)
t−ξ dξ
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where u(·) denotes the unit step function. Thus, the transfer function of the overall sys-
tem A is A(f) = 2 u(f) and the cisoidal signal x̃A(t) is a complex-valued bandpass signal
that includes the positive frequency band

[
fc − B

2 , fc + B
2

]
solely (cf. Figure 2.1b) [19].

In order to perform the entire passband baseband transformation (cf. Figure 2.1c), the
carrier is suppressed and the equivalent complex-valued signal is

x(t) , 1√
2
x̃A(t)e−2πfct, (2.4)

where the factor 1√
2 is included for energy preservation considerations. The entire pass-

band baseband transformation in the frequency domain, i.e.,

X(f) = 1√
2
X̃A(f + fc) =

√
2 u(f + fc)X̃(f + fc), (2.5)

is summarized and illustrated in Figure 2.1.

−fc − B
2
−fc −fc + B

2 fc − B
2

fc fc + B
2

f

|X̃(f)|

(a) Spectrum of the passband signal x̃(t).

fc − B
2

fc fc + B
2

f

|X̃A(f)|

(b) Spectrum of the analytical signal x̃A(t).

−B
2

B
2

f

|X(f)|

(c) Spectrum of the equivalent baseband signal x(t).

Figure 2.1.: Obtaining the complex-valued baseband spectrum that is equivalent to
the real-valued passband spectrum.

Conversely, the passband signal x̃(t) can be recovered by simply taking the real part



2.3. Memoryless Power Amplifier Models 15

of the frequency-shifted equivalent baseband signal x(t) [20], i.e.,

x̃(t) ,
√

2 Re
{
x(t)e 2πfct

}
= 1√

2

(
x(t)e 2πfct + x∗(t)e−2πfct

)
, (2.6)

again with coefficient
√

2 in order to force the energies of x̃(t) and x(t) to be equal. This
baseband passband transformation can be easily verified [20], since

√
2 Re

{
x(t)e 2πfct

}
=
√

2 Re
{ 1√

2
x̃A(t)

}
= Re {x̃(t) + H{x̃(t)}} = x̃(t). (2.7)

Moreover, the passband signal can be written as

x̃(t) =
√

2xI(t) cos(2πfct)−
√

2xQ(t) sin(2πfct), (2.8)

where
xI(t) , Re {x(t)} , (2.9)

and
xQ(t) , Im {x(t)} . (2.10)

This expresses the passband signal x̃(t) with regard to the inphase and quadrature com-
ponents, xI(t) and xQ(t), respectively [19]. Compared with the polar representation
(2.1), the inphase and quadratur components can also be described as

xQ(t) = 1√
2
x̂(t) cos (ϕx̃(t)) , xI(t) = 1√

2
x̂(t) sin (ϕx̃(t)) , (2.11)

and conversely,

x̂(t) =
√

2
(
x2

Q(t) + x2
I (t)

)
, ϕx̃(t) = tan−1

(
xI(t)
xQ(t)

)
. (2.12)

2.3 Memoryless Power Amplifier Models

In the passband, a memoryless (or static) PA can be described as a nonlinear function
that maps the real-valued input to a real-valued output [18]. In fact, the most intuitive
way to describe this nonlinear mapping is to use a polynomial representation, i.e.,

x̃out(t) ,
P∑
p=0

ãpx̃
p
in(t), (2.13)

where x̃in(t) and x̃out(t) denote the passband input and output signals of the PA, respec-
tively, and ãp are the real-valued distortion coefficients. According to (2.6), the passband
input signal x̃in(t) can be written in the form

x̃in(t) =
√

2 Re
{
xin(t)e 2πfct

}
= 1√

2

(
xin(t)e 2πfct + x∗in(t)e−2πfct

)
, (2.14)
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as illustrated in Figure 2.2a. Thus, by using the Binomial identity1, the passband output
signal is

x̃out(t) =
P∑
p=0

ãp√
2p
(
xin(t)e 2πfct + x∗in(t)e−2πfct

)p
=

P∑
p=0

p∑
k=0

ãp√
2p

(
p

k

)
(xin(t))p−k (x∗in(t))k e 2π(p−2k)fct.

(2.15)

Therefore, x̃out(t) contains further frequency components that are located in the sur-
roundings of fc and are not present in x̃in(t). Moreover, x̃out(t) consists of spectral com-
ponents around the harmonics of the carrier frequency fc, i.e., 0,±fc,±2fc, . . . ,±Pfc,
each of which with bandwidth larger than B due to the introduced intermodulation
distortions.

−fc fc

B

f

|X̃in(f)|

(a) Spectrum of the passband input signal x̃in(t) [21].

−3fc −2fc −fc fc 2fc 3fc

Bg |G(f)|

f

|X̃out(f)|

(b) Spectrum of the intermediate passband output signal x̃out(t) before filtered by the
zonal filter g(t), in order to ensure bandpass signals [21].

f

|Xout(f)|

(c) Spectrum of the distorted baseband output signal xout(t).

Figure 2.2.: An example of the frequency response of a memoryless PA and its equiv-
alent baseband characterization [21].

As you can see in Figure 2.2b, x̃out(t) is no longer a bandpass signal. However, by
1Binomial identity

(x+ y)n ,
n∑
k=0

(
n
k

)
xn−kyk =

n∑
k=0

(
n
k

)
xkyn−k
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filtering with a so-called zonal filter g(t) all the frequency components other than those
centered at ±fc are suppressed, which again leads to a bandpass signal. In other words,
the zonal filter can be thought of as an ideal bandpass filter with bandwidthBg and center
frequency fc after the polynomial model that removes all of its out-of-band frequency
components. Precisely, Bg is as large as necessary to comprise the spectral broadening
due to the nonlinear amplification, i.e., Bg =

(
2dP2 e − 1

)
B << fc. To demonstrate,

let us focus on two frequency components in x̃in(t), i.e., e 2πf1t and e 2πf2t, which are
distorted with p-th nonlinearity [22], i.e.,(

e 2πf1t + e 2πf2t
)p

=
p∑

k=0

(
p

k

)(
e 2πf1t

)k (
e 2πf2t

)p−k
=

p∑
k=0

(
p

k

)
e 2π(kf1+(p−k)f2)t.

(2.16)

In fact, not all resulting frequency components e 2π(kf1+(p−k)f2)t fall in the neighborhood
of fc and are thus, removed by the zonal filter g(t). However, there are four cases to be
considered [22, 21].

• f1, f2 ∈
[
−fc − B

2 ;−fc + B
2

]
.

It follows that p
(
−fc − B

2

)
≤ kf1 + (p− k) f2 ≤ p

(
−fc + B

2

)
is a frequency band

in the neighborhood of −pfc and is therefore suppressed by the zonal filter for
p ≥ 2.

• f1, f2 ∈
[
fc − B

2 ; fc + B
2

]
.

Similar to the first case, the resulting frequencies surround pfc and are thus, sup-
pressed by the zonal filter for p ≥ 2.

• f1 ∈
[
−fc − B

2 ;−fc + B
2

]
∧ f2 ∈

[
fc − B

2 ; fc + B
2

]
.

Here, it follows that (p− 2k) fc − pB2 ≤ kf1 + (p− k) f2 ≤ (p− 2k) fc + pB2 . Since
kf1 +(p− k) f2 falls in the neighborhood of (p− 2k) fc, for p even, p−2k 6= 1, thus
kf1 + (p− k) f2 is out of band Bg for all even p. However, for p odd, it is entirely
possible that p − 2k = 1 and the resulting frequencies can be in the passband of
the zonal filter.

• f1 ∈
[
fc − B

2 ; fc + B
2

]
∧ f2 ∈

[
−fc − B

2 ;−fc + B
2

]
.

Similar to the third case, only for p odd the resulting frequencies kf1 + (p− k) f2
may fall into the passband of the zonal filter.

In general, for all frequency components in x̃in(t), and assuming that the frequency
shifted components of x̃out(t) at the harmonics e 2π(p−2k)fct do not overlap, i.e., fc >

pB
2

(cf. Figure 2.2b) [21], only terms with p − 2k = 1 contribute to the system output.
Accordingly, the output of the zonal filter can only become nonzero when p is odd [20].
When p− 2k = 1, we have k = p−1

2 and p− k = p−1
2 + 1, thus

(xin(t))p−k (x∗in(t))k = xin(t)|xin(t)|p−1, (2.17)
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and the baseband memoryless polynomial model (cf. Figure 2.2c) is

xout(t) ,
P+1

2∑
p=1

apxin(t)|xin(t)|2(p−1), (2.18)

with the corresponding baseband distortion coefficients

ap ,
1

√
2p−1

(
p
p−1

2

)
ãp, (2.19)

which are real-valued, since ãp are real valued too. Figure 2.2 illustrates and summarizes
the derivation of the baseband memoryless behavioral model.

2.4 Power Amplifier Models with Memory

Conventional memoryless behavioral models are frequency independent and yield accept-
able performance for narrow-band systems. However, as the signal bandwidth increases,
memory effects become more apparent (cf. Section 1.2). In other words, the PA shows a
frequency-dependency [18]. These arising memory effect have to be incorporated in the
behavioral models in order to model the PA for wide-band systems accurately.

2.4.1 The Truncated Volterra Series

In 1887, the Italian mathematician Vito Volterra was the first who introduced the repre-
sentation of what now is commonly known as the Volterra series [18]. However, Norbert
Wiener was the first who used the Volterra series in order to describe nonlinear sys-
tems [23, 24]. The Volterra series is a multivariate polynomial series that includes the
actual and preceding signal values, i.e.,

x̃out(t) , h̃0 +
∞∑
p=1

∫∫
· · ·
∫
h̃p(t, τ1, τ2, . . . , τp)

p∏
i=1

x̃in(τi)dτ1dτ2 · · · dτp, (2.20)

where x̃in(t) and x̃out(t) denote the real-valued passband input and output signals, re-
spectively, h̃p(t, t1, t2, . . . , tp) for p ≥ 1 are the so-called p-th order Volterra kernels,
and h̃0 is a constant, i.e., the zero order Volterra kernel. However, in this thesis, the
truncated and time-invariant Volterra series

x̃out(t) ,
P∑
p=1

∫∫
· · ·
∫
h̃p(τ1, τ2, . . . , τp)

p∏
i=1

x̃in(t− τi)dτ1dτ2 · · · dτp, (2.21)

are used for PA modeling, where the kernels h̃p(t1, t2, . . . , tp) are assumed to be time-
independent, and the nonlinearity order is truncated to a determined amount P , i.e.,
h̃p(t1, t2, . . . , tp) = 0 for p > P , and h̃0 is assumed to be zero.
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2.4.2 Properties of the Volterra Series

Kernel Linearity

Any LTI system with memory can be described by the linear convolution [19]

xout,1(t) =
∞∫
−∞

h1(τ)xin(t− τ)dτ, (2.22)

where xout,1(t) and xin(t) are the output and input, respectively, and h1(t) denotes the
one-dimensional impulse response of the LTI system. Obviously, this representation
corresponds to the first order Volterra functional.

Similarly, a two-dimensional LTI system can be described as

xout,2(t1, t2) =
∞∫
−∞

∞∫
−∞

h2(τ1, τ2)xin(t1 − τ1, t2 − τ2)dτ1dτ2, (2.23)

again with input and output, xin(t1, t2) and xout,2(t1, t2), respectively, and second order
system impulse response h2(t1, t2). Moreover, assuming that xin(t1, t2) can be factorized,
i.e., xin(t1, t2) = xin(t1)xin(t2) and t = t1 = t2, the output of the two-dimensional LTI
system reads

xout,2(t) =
∞∫
−∞

∞∫
−∞

h2(τ1, τ2)xin(t− τ1)xin(t− τ2)dτ1dτ2. (2.24)

Again, this representation corresponds to the second order Volterra functional [21].
In a similar manner, the p-th order impulse response of an LTI system can described

in the form

xout,p(t) =
∫∫
· · ·
∫

Rp
hp(τ1, τ2, . . . , τp)

p∏
i=1

xin(t− τi)dτ1dτ2 · · · dτp. (2.25)

In fact, combining all Volterra functional as

xout(t) =
P∑
p=1

xout,p(t), (2.26)

the truncated Volterra series representation (2.21) is obtained. Obviously, the output of
the nonlinear Volterra system xout(t) is constructed by linear operations (summations
and integrations) on the products xin(t1)xin(t2) · · ·xin(tp). Although xout,p(t) for p > 1
is nonlinear with respect to xin(t), the output xout,p(t) is linear in relation to the Volterra
kernel hp(τ1, τ2, . . . , τp) [21, 24].
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Kernel Symmetry

It can be shown in [24] that the Volterra kernels can be assumed to be symmetric, e.g.,
h2(t1, t2) = h2(t2, t1). For an asymmetric Volterra kernel, in general p! different Volterra
kernel permutations are possible. Therefore, any asymmetric Volterra kernel can be
symmetrized by

hp,sym(t1, t2, . . . , tp) = 1
p!

p!∑
i=0

hp,asymm(tι(1)i , tι(2)i , . . . , tι(p)i), (2.27)

where ι(k)i denotes the k-th element in the i-th permutation of the set {1, 2, . . . , p}. So
there is no loss of generality suffered by considering the Volterra kernel to be symmetric.

Stability

A system is called bounded-input bounded-output (BIBO) stable if every system output
is bounded for every bounded input. Thus, for a bounded input signal, i.e., |xin(t)| < C,
the output of the p-th order Volterra functional is bounded as

|xout,p(t)| =

∣∣∣∣∣∣
∫∫
· · ·
∫

Rp
hp(τ1, τ2, . . . , τp)

p∏
i=1

xin(t− τi)dτ1dτ2 · · · dτp

∣∣∣∣∣∣
≤
∫∫
· · ·
∫

Rp
|hp(τ1, τ2, . . . , τp)|

p∏
i=1
|xin(t− τi)|dτ1dτ2 · · · dτp

< Cp
∫∫
· · ·
∫

Rp
|hp(τ1, τ2, . . . , τp)|dτ1dτ2 · · · dτp <∞.

(2.28)

Therefore, a Volterra system is said to be BIBO stable if for every Volterra kernel
hp(τ1, τ2, · · · , τp) the condition∫∫

· · ·
∫

Rp
|hp(τ1, τ2, . . . , τp)|dτ1dτ2 · · · dτp <∞ p = 1, . . . , P, (2.29)

is fulfilled. This is a sufficient but not necessary condition for BIBO stability [24].

Fourier Transform

It can be shown that the multivariate Fourier transform of the p-th Volterra func-
tional xout,p(t) is [24]

Xout,p(f1, f2, . . . , fp) , Hp(f1, f2, . . . , fp)
p∏
i=1

Xin(fi), (2.30)

where Xin(f) is the Fourier transform of the input signal xin(t), and Hp(f1, f2, . . . , fp)
is the multivariate Fourier transform Volterra kernel, i.e.,

Hp(f1, f2, . . . , fp) ,
∫∫
· · ·
∫

Rp
hp(τ1, τ2, . . . , τp)e

−2π
p∑
i=1

fiτi
dτ1dτ2 · · · dτp. (2.31)
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Note that since the Volterra kernel hp(t1, t2, . . . , tp) is symmetric, the corresponding
Fourier transform Hp(f1, f2, . . . , fp) is a symmetric function of its arguments.

The inverse Fourier transform can be described as

xout,p(t) ,
1

(2π)p
∫∫
· · ·
∫

Rp
Xout,p(f1, f2, . . . , fp)e

2π
p∑
i=1

fit

df1df2 · · · dfp. (2.32)

2.4.3 Baseband Representation of a Volterra System

For passband signals, the general theory of Volterra series can be transformed to the
baseband in exact the same manner as for the memoryless case described in Section 2.3.
For a real-valued bandpass signal with bandwidth B that is spectrally centered around
the carrier frequency fc >> B, i.e.,

x̃out(t) =
√

2 Re
{
xout(t)e 2πfc

}
, (2.33)

it can be shown that the equivalent baseband Volterra series correspond to [21, 23]

xout(t) ,
P+1

2∑
p=1

∫∫
· · ·
∫

Rp
h2p−1(τ1, τ2, . . . , τp)

p∏
i=1

xin(t− τi)
2p−1∏
i=p+1

x∗in(t− τi)dτ1dτ2 · · · dτp,

(2.34)
where xout(t) and xin(t) denote the equivalent baseband output and input signals, re-
spectively, P is the necessarily odd nonlinear order (cf. Section 2.3), and

hp(t1, t2, . . . , tp) ,
1

√
2p−1

(
p
p−1

2

)
h̃p(t1, t2, . . . , tp)e

2π

 p+1
2∑

i1=1
ti1−

p∑
i2= p+1

2 +1

ti2


, (2.35)

are the equivalent baseband Volterra kernels that are in general complex-valued although
the passband Volterra kernels are real-valued. Obviously, in (2.34) only odd order powers
remain, since even order distortion products are suppressed by the zonal filter g(t) (cf.
Figure 2.2b) [18].

2.4.4 The Baseband Discrete-Time Volterra Model

In order to model nonlinear systems, discrete-time representations of the Volterra series
are indispensable for signal processing. Therefore, the baseband Volterra model (2.34)
has to be transformed to the discrete-time domain. Specifically, xout(t) has to be sam-
pled. The following derivations are based on Dallinger’s and Aschbacher’s theses, [21]
and [23], respectively.

According to Nyquist’s sampling theorem for equidistant sampling, a time-continuous
function x(t) can be uniquely represented without loss of information by its sampling



22 2. Behavioral Modeling of Power Amplifiers

values x(nTs) if it is band-limited with B < 1
2Ts

and sampling rate Ts. In other words,
the corresponding discrete-time signal is

x[n] , x(nTs) n ∈ Z, (2.36)

with the corresponding discrete Fourier transform (DFT)1

X[θ] , 1
Ts

∞∑
−∞

X

(
θ + 2πn
Ts

)
. (2.37)

The inverse relation reads

X(f) ,
{
TsX[fTs], − 1

2Ts
≤ f < 1

2Ts

0, otherwise
(2.38)

With (2.30), the Fourier transform of the p-th baseband Volterra functional can be
described as

Xout,p(f) = Hp(f1, f2, . . . , fp)
p+1

2∏
i=1

Xin(fi)
p∏

i= p+1
2 +1

X∗in(−fi). (2.39)

Note, since the baseband Volterra series representation (2.34) contains conjugate com-
plex versions of the input signal, i.e., x∗in(t), the corresponding Fourier transform is
X∗in(−f). Additionally, the p-th order Volterra kernel hp(t1, t2, . . . , tp) can also be as-
sumed to be band-limited with the spectrum of the p-dimensional hypercube

Cp = [B;B)× [B;B)× · · · × [B;B)︸ ︷︷ ︸
p-times

=
[
− 1

2Ts
; 1
2Ts

)p
, (2.40)

since the input signal xin(t) is assumed to be band-limited with bandwidth B, the
Volterra kernel is only excited within Cp, eventhough it might be non-zero outside of Cp.
Therefore, the Fourier transform of the p-th baseband Volterra functional can be written
as

xout,p(t) = 1
(2π)p

∫∫
· · ·
∫

Cp

Hp(f1, f2, . . . , fp)e
2π

p∑
i=1

fit

p+1
2∏
i=1

Xin(fi)
p∏

i= p+1
2 +1

X∗in(−fi)df1df2 · · · dfp.

(2.41)

1DFT X[θ] of a discrete-time signal x[n]

X[θ] , FD {x[n]} =
∞∑

n=−∞
x[n]e−θn



2.4. Power Amplifier Models with Memory 23

Moreover, hp(t1, t2, . . . , tp) can be sampled with a regular lattice of dimension p and
grid-spacing Ts. The corresponding discrete-time Volterra kernel reads

hp[n1, n2, . . . , np] = hp(n1Ts, n2Ts, . . . , npTs), (2.42)
and its multivariate DFT is

Hp[θ1, θ2, . . . , θp] = FD {hp[n1, n2, . . . , np]}

=
∞∑

n1=−∞

∞∑
n2=−∞

· · ·
∞∑

np=−∞
hp[n1, n2, . . . , np]e

−2π
p∑
i=1

θini
,

(2.43)

and corresponds to the time-continuous Volterra kernel as

Hp(f1, f2, . . . , fp) ,
{
T ps Hp[f1Ts, f2Ts, . . . , fpTs], {f1, f2, . . . , fp} ∈ Cp
0, {f1, f2, . . . , fp} /∈ Cp

. (2.44)

Therefore, the p-th time-continuous baseband Volterra functional reads

xout,p(t) = T ps
(2π)p

∞∑
m1=−∞

∞∑
m2=−∞

· · ·
∞∑

mp=−∞
hp[m1,m2, . . . ,mp]

p+1
2∏
i=1

xin[n−mi]
p∏

i= p+1
2 +1

x∗in[n−mi]
∫∫
· · ·
∫

Cp

e
2π

p∑
i=1

fit(mi+ni)Ts
df1df2 · · · dfp,

(2.45)
as a function of the sampled input signal xin[n] and the p-th sampled Volterra kernel
hp[n1, n2, . . . , np]. The integral in (2.45) can be solved as follows

∫∫
· · ·
∫

Cp

e
2π

p∑
i=1

fit(mi+ni)Ts
df1df2 · · · dfp =

(2π
Ts

)p p∏
i=1

sinc
(
π

(
t

Ts
−mi − ni

))
.

(2.46)
Finally, (2.45) can be described as

xout(t) =
P+1

2∑
p=1

∞∑
m1=−∞

∞∑
m2=−∞

· · ·
∞∑

mp=−∞
h2p−1[m1,m2, . . . ,mp]

p∏
i=1

xin[n−mi]
2p−1∏
i=p+1

x∗in[n−mi]
p∏
i=1

sinc
(
π

(
t

Ts
−m2i−1 − n

))
.

(2.47)

Since xout(t) is sampled with sampling rate Ts, and sinc(πk) for k ∈ Z is a Nyquist pulse,
the finally obtained baseband discrete time Volterra model reads

xout[n] , V {xin[n]} =
P+1

2∑
p=1

M∑
m1=0

M∑
m2=0

· · ·
M∑

mp=0

M∑
mp+1=0

M∑
mp+2=0

· · ·
M∑

m2p−1=0

h2p−1[m1,m2, . . . ,m2p−1]
p∏
i=1

xin[n−mi]
2p−1∏
i=p+1

x∗in[n−mi],

(2.48)
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where M denotes the memory length, and P is the odd nonlinearity order. However,
considering Volterra kernel symmetry, (2.48) simplifies to

xout[n] =
P+1

2∑
p=1

M∑
m1=0

M∑
m2=m1

· · ·
M∑

mp=mp−1

M∑
mp+1=0

M∑
mp+2=mp+1

· · ·
M∑

m2p−1=m2p−2

h2p−1[m1,m2, . . . ,m2p−1]
p∏
i=1

xin[n−mi]
2p−1∏
i=p+1

x∗in[n−mi].

(2.49)

2.4.5 Reduced Baseband Volterra Models

The number of Volterra kernel coefficients increases exponentially as the nonlinearity
order P and the memory length M increase. Obviously, implementing the Volterra
series in real-time applications can be expected to be unreasonable. Therefore, reducing
the complexity of the Volterra series by simply considering its important terms solely
reduces computational costs. Moreover, not all Volterra kernel coefficients have the
same effect on the output of the model; some of them have less impact since they might
be very small. Therefore, it is reasonable to set them to zero during Volterra kernel
extraction (cf. Section 3.3). This complexity reduction is often named as reduced or
pruned Volterra series modeling [25].

Memory Polynomials

Probably the simplest way to prune the Volterra series is to keep the diagonal terms of
the Volterra kernels and set the off-diagonal coefficients to zero. This model is named
memory polynomials [26], i.e.,

xout[n] , VMP {xin[n]} =
P+1

2∑
p=1

M∑
m=0

h2p−1[m, . . . ,m]xin[n−m]|xin[n−m]|2(p−1), (2.50)

where VMP {·} denotes the memory polynomial operator, hp[n, . . . , n] are the coefficients
of the memory polynomial, M is the memory length, and P denotes the nonlinearity
order.

The Hammerstein Model

The Hammerstein model is a two-box-model [17], i.e., a static nonlinear function prior to
a dynamic linear filter, as depicted in Figure 2.3. In other words, the nonlinear behavior
and memory effects of the PA are modeled separately and its output is given by

xout[n] ,
M∑
m=0

h[m] G(xin[n−m]), (2.51)

where G(·) denotes the memoryless nonlinear function and h[n] is the impulse response
of the linear finite impulse response (FIR) filter of length M .
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G(·) h[n]

static
nonlinearity FIR filter

xin[n] xout[n]

Figure 2.3.: Block-diagram of the Hammerstein model.

If the static nonlinearity is represented by a power series [27], the Hammerstein model
reads

xout[n] , VHS {xin[n]} =
M∑
m=0

h[m]
P+1

2∑
p=1

a2p−1|xin[n−m]|2(p−1)xin[n−m], (2.52)

where VHS {·} denotes the Hammerstein model operator. Compared to the discrete-time
Volterra series (2.48), in the Hammerstein model, the p-th order Volterra kernel can be
written as

hp[n1, n2, . . . , np] =
{
aph[n1], n1 = n2 = · · · = np

0, otherwise
. (2.53)

Thus, the off-diagonal coefficients of the Volterra kernels are set to zero and the diagonals
of each kernel correspond to the impulse response of the FIR filter, weighted by the
coefficients ap. However, the FIR filter coefficients h[n] and the polynomial coefficients
ap are modeled separately and can be, therefore separately extracted (cf. Section 3.4).

Dynamic Deviation Reduction-Based Volterra Series

The dynamic deviation reduction-based Volterra series proposed by Zhu et. al in [28], is
based on the fact that the discrete-time passband Volterra model

x̃out[n] ,
P∑
p=1

M∑
m1=0

M∑
m2=0

· · ·
M∑

mp=0
h̃p[m1,m2, . . . ,mp]

p∏
i=1

x̃in[n−mi] (2.54)

can be written as
x̃out[n] , x̃s[n] + x̃d[n], (2.55)

where x̃s[n] represents the static characteristics of the system, i.e.,

x̃s[n] ,
P∑
p=1

h̃p[0, . . . , 0︸ ︷︷ ︸
p

]x̃pin[n], (2.56)

while

x̃d[n] ,
P∑
p=1

p∑
r=1

x̃p−rin [n]
M∑

m1=1

M∑
m2=m1

· · ·
M∑

mr=mr−1
h̃p[0, . . . , 0︸ ︷︷ ︸

p−r

,m1,m2, . . . ,mr︸ ︷︷ ︸
r

]
r∏
j=1

x̃in[n−mj ],

(2.57)
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is the purely dynamic part. In (2.57), h̃p[0, . . . , 0, n1, . . . , nr] denotes the p-th order
Volterra kernel where the first p − r indices are zero, and r is the so-called dynamic
deviation reduction order that represents the possible number of terms in the products
of the delayed input samples xin[n−m1]xin[n−m2] · . . . ·xin[n−mj ]. This product terms
can be pruned to order R ≤ P .

However, the dynamic deviation reduction-based Volterra model (2.55) is a passband
representation. Therefore, in order to model PAs it has to be transformed to the base-
band by assuming that x̃out(t) is a bandpass signal with carrier frequency fc and band-
width B << fc. The baseband deviation reduction-based Volterra model can be derived
as follows.

For R = 0, all delayed input terms are pruned and the equivalent baseband model is

xout[n] , VDDR,0 {xin[n]} =
P+1

2∑
p=1

h2p−1[0 . . . , 0]xin[n]|xin[n]|2(p−1), (2.58)

where VDDR,0 {·} denotes the zero order deviation reduction-based Volterra model. Ob-
viously, it coincides with the memory polynomials for M = 0 and the memoryless poly-
nomial model (2.18), however, sampled.

For R = 1, only one delay of the input terms can deviate from zero. Therefore, the
equivalent baseband model can be written as

xout[n] , VDDR,1 {xin[n]}

=
P+1

2∑
p=1

M∑
m1=0

g2p−1,1[m1]|xin[n]|2(p−1)xin[n−m1]

+
P+1

2∑
p=2

M∑
m1=1

g2p−1,2[m1]x2
in[n]|xin[n]|2(p−2)x∗in[n−m1],

(2.59)

where VDDR,1 {·} denotes the first order deviation reduction-based Volterra model with
appropriate kernel coefficients g2p−1,i[·]. Whereas the first summation considers that the
instantaneous input signal xin[n] is conjugated, i.e., x∗in[n], the last summation considers
that the delayed input signal xin[n−m1] is conjugated, i.e., x∗in[n−m1]. Since the second
summation includes one conjugated product item, it occurs for nonlinearity orders P ≥ 3.

For R = 2, the delay of two input terms can deviate from zero. Therefore, the
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equivalent baseband model reads

xout[n] , VDDR,2 {xin[n]} =
P+1

2∑
p=1

M∑
m1=0

g2p−1,1[m1]|xin[n]|2(p−1)xin[n−m1]

+
P+1

2∑
p=2

M∑
m1=1

M∑
m2=m1

g2p−1,3[m1,m2]x∗in[n]|xin[n]|2(p−2)

xin[n−m1]xin[n−m2]

+
P+1

2∑
p=2

M∑
m1=0

M∑
m2=1

g2p−1,4[m1,m2]xin[n]|xin[n]|2(p−2)

xin[n−m1]x∗in[n−m2]

+
P+1

2∑
p=3

M∑
m1=1

M∑
m2=m1

g2p−1,5[m1,m2]x3
in[n]|xin[n]|2(p−3)

x∗in[n−m1]x∗in[n−m2]

(2.60)

where VDDR,2 {·} denotes the second order deviation reduction-based Volterra model with
appropriate kernel coefficients g2p−1,i[·]. In fact, the first summation considers first order
deviation, the second summation considers that the instantaneous input signal xin[n] is
conjugated, i.e., x∗in[n], the third summation considers that either one of the two delayed
input terms is conjugated, i.e., xin[n−m1]x∗in[n−m2], and finally the last summation
considers that both delayed input terms are conjugated, i.e., x∗in[n−m1]x∗in[n−m2].
Since the last summation includes two conjugated product terms, it occurs for nonlin-
earity orders P ≥ 5.

More detailed derivations are present in Appendix A. Higher order models VDDR,R {·}
for R > 2 can be derived in the same manner. However, for real-time applications R
should be limited to a small value, e.g., R ≤ 2, in order to reduce model complexity and
computational costs.

2.4.6 Decomposed Piecewise Volterra Model

To cope with the rather distinct nonlinear behavior of an envelope tracking power ampli-
fier (ETPA) at different input power regions, Zhu et. al proposed in [29] a new approach
for signal decomposition, named vector threshold decomposition, which is an extension
from real-valued signal decomposition to complex-valued signals. In [29], a set of de-
composition thresholds

Λ , {λ1, λ2, . . . , λS} , (2.61)

is defined such that the decomposition thresholds are real-valued and strictly monoton-
ically increasing, i.e., λ1 < λ2 < · · · < λS , and S is the total number of thresholds.
The complex-valued signal x[n] is decomposed with respect to its magnitude. Therefore,
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each threshold λs represents the radius of the corresponding s-th threshold circle in the
I/Q-plane, as depicted in Figure 2.4.

λ1 λ2

x[1]

x[2]

Ω1

Ω2

Ω3

Re {x[n]}

Im {x[n]}

Figure 2.4.: The signal values x[1] and x[2] are decomposed in three sub-signals that
correspond to the decomposition zones Ω1, Ω2, and Ω3.

This allows to decompose the complex-valued signal x[n] into S+ 1 sub-signals, which
end up in the corresponding sub-signal region indicated by Ωs in Figure 2.4. Specifically,
the s-th sub-signal of x[n] is

xs[n] ,


0, |x[n]| ≤ λs−1

(|x[n]| − λs−1) e  arg{x[n]}, λs−1 < |x[n]| ≤ λs
(λs − λs−1) e  arg{x[n]}, |x[n]| > λs

(2.62)

where λ0 = 0 and 1 ≤ s ≤ S + 1 is assumed. To illustrate this decomposition in
more detail, consider the following examples. Let Λ = {0.2, 0.6} be the set of two
thresholds, i.e., λ1 = 0.2 and λ2 = 0.6. By this, the input space C is divided into
three sub-spaces, namely Ω1 = {x[n] : |x[n]| ≤ 0.2}, Ω2 = {x[n] : 0.2 < |x[n]| ≤ 0.6},
Ω3 = {x[n] : 0.6 < |x[n]| <∞}, and Ω1 ∪Ω2 ∪Ω3 = C. A particular signal value such as
x[1] = 0.8e 

2π
3 , as depicted in Figure 2.4, can be decomposed into the three sub-signals

x1[1] = 0.2e 
2π
3 , x2[1] = 0.4e 

2π
3 , and x3[1] = 0.2e 

2π
3 . Accordingly, the magnitude of

the first sub-signal x1[1] is equal to λ1, the magnitude of the second sub-signal x2[1] is
equal to λ2 − λ1, and finally, the magnitude of x3[1] is equal to |x[n]| − λ2. Since the
complex-valued signal x[n] is decomposed with respect to its magnitude, all phases of
the sub-signals are identical to the phase of original signal. Moreover, if a signal value
does not reach the next higher sub-spaces, the sub-signals corresponding to those zones
are set to zero. For instance, x[2] = 0.5e−

2π
3 , as depicted in Figure 2.4, is decomposed

into x1[2] = 0.2e−
2π
3 , x2[2] = 0.3e−

2π
3 , and since x[2] does not reach Ω3, x3[2] = 0.
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Figure 2.5 provides a deeper insight into the vector threshold decomposition; the
original signal x[n] is decomposed into three sub-signals, i.e., x1[n], x2[n], and x3[n],
corresponding to the respective input power level. Moreover, the sum of all sub-signals
equals the original signal, i.e.,

x[n] =
S+1∑
s=1

xs[n]. (2.63)

Obviously, the original signal can be easily recombined.

λ1

λ2

n

|x[n]| 0 n

|x3[n]|

0

λ2 − λ1

n

|x2[n]|

0
λ1

n

|x1[n]|

Figure 2.5.: Signal decomposition into three sub-signals, x1[n], x2[n], and x3[n].

As mentioned in Section 1.4, the output characteristics of an ETPA strongly depend
on the input power level. Therefore, the threshold levels and sub-models of each re-
gion can be flexibly tailored to the ETPA characteristics. In other words, after the
input signal xin[n] is decomposed, each sub-signal xs;in[n] is individually processed by
the corresponding sub-model Gs(·). If Volterra series are employed as sub-models, i.e.,
Gs(·) = Vs {·}, the model output xout[n] is still linear with respect to its Volterra kernel
coefficients, although xin[n] is decomposed, i.e.,

xout[n] =
S+1∑
s=1

Gs (xs;in[n]) , (2.64)

where the sub-model Gs(·) is either the full blown Volterra model V {·}, the memory
polynomial model VMP {·}, the Hammerstein model VHS {·}, or the dynamic deviation
reduction-based Volterra model VDDR,R {·}, as depicted in Figure 2.6.

For instance, if memory polynomial sub-models are employed solely, the s-th sub-
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model reads

xs;out[n] = Vs;MP {xs;in[n]}

=
Ps+1

2∑
p=1

Ms∑
m=0

hs;2p−1[m. . . ,m]xs;in[n−m]|xs;in[n−m]|2(p−1),
(2.65)

where xs;out[n] and xs;in[n] are the output and input of the s-th sub-model Vs;MP{·},
respectively, and hs;p[n, . . . , n], Ps, and Ms are the memory polynomial coefficients,
the odd nonlinearity order, and the memory length of the s-th sub-memory polynomial
model Vs;MP{·}, respectively. The decomposition permits to choose Ps and Ms according
to the ETPA characteristics in the respective input power region. Therefore, the rather
distinct behavior of the ETPA in the different zones can be accurately characterized.
Finally, the output of the overall model reads

xout[n] =
S+1∑
s=1

xs;out[n] =
S+1∑
s=1
Vs;MP {xs;in[n]}

=
S+1∑
s=1

Ps+1
2∑

p=1

Ms∑
m=0

hs;2p−1[m,m, . . . ,m]xs;in[n−m]|xs;in[n−m]|2(p−1),

(2.66)

which is denoted as the decomposed piecewise memory polynomials.
However, employing the dynamic deviation reduction-based Volterra series with, e.g.,

R = 1, instead of the memory polynomials, the output of the overall model reads

xout[n] =
S+1∑
s=1
Vs;DDR,1 {xs;in[n]}

=
S+1∑
s=1

P+1
2∑

p=1

M∑
m1=0

gs;2p−1,1[m1]|xs;in[n]|2(p−1)xs;in[n−m1]

+
S+1∑
s=1

P+1
2∑

p=2

M∑
m1=1

gs;2p−1,2[m1]x2
s;in[n]|xs;in[n]|2(p−2)x∗s;in[n−m1],

(2.67)

which is denoted as the decomposed piecewise deviation reduction-based Volterra series
with deviation reduction R = 1.

Nevertheless, the overall model is not restricted in the use of the same model class for
all sub-models. If it better fits the PA characteristics, one can use distinct model classes
for the different sub-models. For instance, the first S1 sub-models could be memory
polynomials, i.e., Vs;MP {·}, for 1 ≤ s ≤ S1, while the remaining S2 = S − S1 + 1 sub-
models could be Volterra series, i.e, Vs {·}, for S1 < s ≤ S + 1. In fact, to obtain an
overall model that is linear with respect to its coefficients, the sub-models have to be
linear with respect to its coefficients as well. This is because the overall model output
xout[n] is composed of the sum of the S + 1 sub-models outputs xs;out[n] = Gs(xs;in[n]).
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Figure 2.6 provides an overview of the signal processing and recombination process.
Each of the decomposed input signals xs;in[n] is individually treated by the sub-model
Gs(·), and all outputs xs;out[n] of the sub-models are recombined in order to produce the
final model output xout[n]. Since multiple models are involved for a single output signal
value, the number of coefficients of each sub-model should be kept reasonably small, e.g.,
the nonlinearity order Ps in each sub-model can be limited to fifth order to reduce the
overall complexity.

de
co

m
po

sit
io

n

G1(·)

G2(·)

...

GS+1(·)

xin[n] xout[n]

x1;in[n]

x2;in[n]

xS+1;in[n]

x1;out[n]

x2;out[n]

xS+1;out[n]

Figure 2.6.: Signal processing line of the decomposed piecewise Volterra model. The
decomposed input signals xs;in[n] are processed by the individual sub-models Gs(·) and
added up, in order to recombine to the overall output signal xout[n].

2.4.7 Vector-Switched Model

Another solution to model the distinct behavior of the ETPA is to employ piecewise curve
fitting models, where the nonlinear curve is divided into several segments, and then fit
each segment separately by using different models. In fact, Afsardoost et. al proposed
in [30] a novel switched behavioral model that can be thought of as a generalization of
curve fitting models. Here, the switching space is divided into K regions. Specifically,
the regions Ωk, k = 1, . . . ,K, are partitions of the J-dimensional space CJ , such that

K⋃
k=1

Ωk = CJ , (2.68)

where the different spaces are disjoint, i.e., Ωk ∩ Ωl = �0 for k 6= l. The output of the
overall model is calculated by the respective regional model, i.e.,

xout[n] = Gk(xin[n]), (2.69)

where k ∈ {1, . . . ,K} is determined by the switching function, and Gk(·) is the associated
regional model as shown in Figure 2.7.
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switching
function

Gk(·)
xin[n] xout[n]

k[n]

Figure 2.7.: Vector-switched behavioral model. The switching functions determines
the sub-model.

Afsardoost et. al suggest to perform the vector switching over the amplitude space
and to ignore the phases of the input signal samples. Thus, the switching space becomes
RJ . The design of the switching regions Ωk is based on the instantaneous and its J − 1
preceding samples of the training set, such that reasonable boundaries between the
regions are determined. One way to achieve this, is the so-called Voronoi or nearest
neighbor partitioning [31], where each region Ωk contains all samples that are closest (in
terms of the Euclidean distance) to the respective mean (or centroid) ωk ∈ RJ of Ωk,
i.e.,

Ωk =
{
rn,J : ‖rn,J − ωk‖2 < ‖rn,J − ωl‖2, l = 1, . . . , k − 1, k + 1, . . . ,K

}
, (2.70)

where rn,J =
[
|xin[n]| |xin[n− 1]| · · · |xin[n− J + 1]|

]T
contains the magnitudes of

the instantaneous and its J − 1 preceding input samples of the training set of length
N >> J .

The design of the switching regions is now limited to find the appropriate set of cen-
troids ωk ∈ RJ . There are numerous different algorithms; a summary can be found
in [32]. A broadly used algorithm is the K-means algorithm [33]. Figure 2.8 depicts a
two-dimensional (J = 2) Voronoi partitioning of a Long Term Evolution (LTE) mod-
ulated signal with 20MHz bandwidth and 8.5dB peak-to-average power ratio (PAPR),
where the switching space R2 is divided into eight (K = 8) regions. However, this vector-
switching is not limited by using the input samples solely; other PA characteristics, e.g.,
the envelope tracked supply voltage or the PA temperature, can be used in order to
select an adequate switching function.

As mentioned before, the vector-switched model is a generalization of curve fitting
models. In fact, it describes a wide range of models too. For instance, if the number of
regions is set to K = 1, it represents classical (non-switched) models. However, if J = 1
and K is chosen arbitrarily large, but the simplest possible regional model is employed,
i.e., only a constant value in each region, the vector-switched model also represents
look-up table (LUT) models. Obviously, each sub-model belonging to a certain sub-
region Ωk can be tailored to the ETPA characteristics in that region. Whereas one
signal sample is processed by all S+ 1 sub-models in the decomposed piecewise Volterra
model (cf. Section 2.4.6), only one of the K sub-model is needed in the vector-switched
model (cf. Figure 2.7). Therefore, compared to classical (non-switched) models, for the
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Figure 2.8.: Two-dimensional Voronoi partitioning of a LTE modulated signal with
20MHz bandwidth and 8.5dB PAPR. The switching space R2 is partitioned into eight
regions. The centroids are marked via ⊗, and the corresponding samples with different
grayscales.

vector-switched model, the only computational complexity is added by the switching
function, since the partitioning into the regions Ωk can be done offline1. On the other
hand, since the nonlinear behavior is partitioned, the complexity of the sub-models can
be kept reasonably small.

Beside complexity efforts, the performance of the vector-switched model is limited due
to the so-called discontinuities distortion that occurs when different models are used for
consecutive signal samples. The output signal may contain discontinuities because of
possibly unsteady transition between the utilized models, thus evoking undesired high-
frequency components in the output signal. Afsardoost et. al state in [30] that in most
applications the added switching-noise is neglectable, because it is below the model
error. However, there are cases for which the switching distortion can be suspected to
be considerably larger than the modeling error. Specifically, when the training set is
too small, some sub-models may get poorly excited since there are not enough signal
values in those sub-model regions. The fact that the model performance suffers from a

1Note that if the statistical properties of the input signal change, the regions ωk must be retrained.
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too small training set will be discussed in Section 3.6.

2.5 Figures of Merit to Evaluate the Model Performance

Suitable figures and characterizations of merit allow to compare the performance of
different PA models and digital pre-distortion (DPD) algorithms, in order to favor one
model over another. The most important evaluation criterion for PA behavioral models
is accuracy. Qualitatively, modeling accuracy describes the ability to predict the output
of the modeled PA, given a specific input and its operating conditions [18]. In literature,
many figures of merit exist, a summary and comparison can be found in [18, 34].

In this thesis, the normalized mean square error (NMSE), the adjacent channel power
ratio (ACPR), and the adjacent channel error power ratio (ACEPR) are used as a metric
in order to evaluate the quality of the model and the DPD performance.

2.5.1 Normalized Mean Square Error (NMSE)

The NMSE is commonly described as

NMSE , 10 log10


∑
n
|xPA[n]− xmodel[n]|2∑

n
|xPA[n]|2

 in dB, (2.71)

where xPA[n] and xmodel[n] are the baseband output signals of the PA and the model,
respectively. Accordingly, it yields the (normalized) total error of the model and is in
general dominated by in-band errors [34].

2.5.2 Adjacent Channel Power Ratio (ACPR)

Since in real-life applications out-of-band errors, i.e., the adverse emission into other
communication channels, is of more interest [34], the ACPR is used to describe the level
of spectral re-growth, and is defined as the ratio between in-band and out-of-band signal
powers. Assuming that all channels have the same bandwidth B and are spaced by
∆f ≥ B, the i-th adjacent channel occupies the frequency range

Badj,i ,
{
f : fc + i∆f − B

2 ≤ f ≤ fc + i∆f + B

2

}
. (2.72)

Therefore, the total adjacent frequency band can be described as

Badj ,
Nhi⋃

i=−Nlow

Badj,i, (2.73)
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where Nlow and Nhi are the number of adjacent channels to the left, respectively to the
right of the transmission channel. Accordingly, the ACPR is calculated by

ACPR , 10 log10



∫
Badj

|Sx(f)|2 df

∫
Bch

|Sx(f)|2 df

 in dB, (2.74)

where Sx(f) denotes the power spectral density (PSD)1 of the analysed random sig-
nal x(t) and

Bch =
{
f : fc −

B

2 ≤ f ≤ fc + B

2

}
, (2.75)

is the RF transmission band. Figure 2.9 visualizes the definition of the ACPR, which
can be thought of as the quotient of the light and the dark gray areas.

0 fc − 2∆f fc −∆f fc fc + ∆f fc + 2∆f

Badj,−2 Badj,−1 Bch Badj,1 Badj,2

f

Sx(f)

Figure 2.9.: Power emission in adjacent communication channels Badj,i due to nonlinear
distortions.

The ACPR cannot be used to evaluate the accuracy of a PA model, since the latter
is not included. However, the ACPR ratio of the model and the PA can be used as a
comparative measure, i.e.,

∆ACPR , ACPRPA −ACPRmodel in dB, (2.76)

where ACPRPA and ACPRmodel are the ACPRs of the PA and the model, respectively.
The disadvantage of this representation is that only magnitude distortions are considered,
i.e., the nonlinearities in the amplitude modulation/amplitude modulation (AM/AM)
conversion (cf. Section 1.2). In contrast, the ACEPR also considers phase distortions

1The power spectral density (PSD) of a complex-valued stationary random signal x(t) with autocorre-
lation rxx(t) is defined as

Sx(f) ,
∞∫
−∞

rxx(τ)e 2πfτdτ .
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and is defined as

ACEPR , 10 log10



∫
Badj

|SxPA(f)− Sxmodel(f)|2 df

∫
Bch

|SxPA(f)|2df

 in dB, (2.77)

where SxPA(f) and Sxmodel(f) are the PSDs of the PA output and the model output,
respectively [18].
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3.1 Introduction and Outline

In this Chapter, parameter identification methods for the behavioral models presented
in Chapter 2 are developed. The model G(·) that is aimed to estimate the discrete-time
equivalent baseband representation of the power amplifier (PA) can be extracted by the
configuration shown in Figure 3.1. Accordingly, both, the PA and the model are driven
by the same baseband input signal xin[n]. By an adaptive scheme, the model is trained
with the goal to converge towards the “best” representation of the PA, in terms of a
defined performance measure.

PA

G(·)

xin[n] xPA[n]

xout[n] −

e[n]

Figure 3.1.: PA identification; the PA and the model are discrete-time equivalent base-
band representations.

Since the model parameters depend on the applied set of training signals [18], it is
advantageous to apply the same kind of signal sets for the identification as used in
the communication system, e.g., if the PA is designed for Long Term Evolution (LTE)
signals, signals having LTE-like statistical properties should be used during parameter
estimation. By this, it is guaranteed that the PA is excited with the pertinent frequency
and amplitude range [17].

This Chapter is organized as follows

Section 3.2 - Parameter Estimation for the Volterra Series, derives the least squares
(LS) estimator for the truncated Volterra series proposed in Section 2.4.4.

Section 3.3 - Parameter Estimation for Reduced Volterra Series, presents the imple-
mentation of the afore derived LS estimator for the pruned Volterra models pro-
posed in Section 2.4.5.

Section 3.4 - Parameter Estimation for the Hammerstein Model, derives the LS es-
timator for the Hammerstein model proposed in Section 2.4.5

Section 3.5 - Parameter Estimation for the Decomposed Volterra Series, shows the
adaption of the LS estimator to the decomposed piecewise Volterra series proposed
in Section 2.4.6

Section 3.6 - Parameter Estimation for the Vector-Switched Model, presents the LS
estimator for the vector-switched model proposed in Section 2.4.7
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Section 3.7 - Adaptive Model Parameter Estimation, introduces two parameter esti-
mation methods that are capable of estimating the model characteristics adap-
tively, namely the least mean squares (LMS) algorithm and the ε-normalized least
mean squares (ε-NLMS) algorithm.

3.2 Parameter Estimation for the Volterra Series

As discussed in Section 2.4.2, the output of the Volterra model is linear with respect
to its coefficients. Therefore, the discrete-time truncated Volterra model (2.48) can be
described by the linear vector notation

xout[n] , hTV x̌in,n, (3.1)

where hV contains all stacked Volterra kernel vectors hp of odd order p ≤ P , i.e.,

hV ,
[
hT1 hT3 hT5 · · · hTP

]T
. (3.2)

Each Volterra kernel vector hp contains the coefficients of the p-th order Volterra kernel

arranged in a vector, i.e., hp =
[
hp[0, . . . , 0] · · · hp[M, . . . ,M ]

]T
. Likewise, x̌in,n con-

tains the product terms of the delayed inputs in (2.48) and is constructed as follows [35].
Consider the Kronecker product1,

x̌p,in,n , xin,n,M ⊗ xin,n,M ⊗ · · · ⊗ xin,n,M︸ ︷︷ ︸
p−times

, (3.3)

p-times applied to the input vector xin,n,M ∈ CM+1 that contains the instantaneous and

its M preceding samples, i.e., xin,n,M =
[
xin[n] xin[n− 1] · · · xin[n−M ]

]T
. Accord-

ingly, x̌p,in,n contains the p-th order product terms of the delayed inputs and x̌in,n can
be written as

x̌in,n ,
[
x̌T1,in,n x̌T3,in,n x̌T5,in,n · · · x̌TP,in,n

]T
. (3.4)

From the point-of-view of system identification, the parameter extraction procedure
tries to estimate the model parameters based on N input and output samples of the PA,
which is referred to as the training signal set, xin,n and xPA,n, respectively. The model
that tries to represent the PA can be written in vector form over a block of N samples
as

xout,n = X̌in,nhV , (3.5)
1The Kronecker product of an n × p matrix A and an m × q matrix B is defined as the mn × pq

matrix [36]

A⊗B ,


a11B a12B · · · a1pB
a21B a22B · · · a2pB

...
...

. . .
...

an1B an2B · · · anpB

, where A =


a11 a12 · · · a1p
a21 a22 · · · a2p
...

...
. . .

...
an1 an2 · · · anp

.
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with the matrix
X̌in,n =

[
x̌in,n x̌in,n−1 · · · x̌in,n−N+1

]T
. (3.6)

As in Figure 3.1, the unmodeled error in vector form over a block of N samples can be
written as

en = xPA,n − xout,n. (3.7)

The blockwise LS estimator that finds the global minimum of the cost function

ε2(hV) , eHn en = ‖xPA,n − hVX̌in,n‖22, (3.8)

states that such an estimate can be given by [36]

ĥV , arg min
hV

{
ε2(hV)

}
=
(
X̌H

in,nX̌in,n
)−1

X̌H
in,n xPA,n. (3.9)

Moreover, the number of training signal samples N should be reasonable large, in order
to ensure that all nonlinearities of the PA are excited.

Note that Volterra kernel symmetry is not considered here; an extension including
Volterra kernel symmetry can be found in [21].

3.3 Parameter Estimation for Reduced Volterra Series

The LS estimator (3.9) for the pruned Volterra models discussed in Section 2.4.5 can
be easily determined by simply neglecting the appropriate Volterra kernel coefficients,
i.e., setting them to zero. For example, the p-th order Volterra kernel vector hp for the
memory polynomial model VMP {·} can be written as

hp =
[
hp[0, . . . , 0] hp[1, . . . , 1] · · · hp[M, . . . ,M ]

]T
, (3.10)

which contains only the diagonal terms of the p-th order Volterra kernel hp[n1, n2, . . . , np],
whereas the off-diagonal terms are set to zero and are therefore ignored. The correspond-
ing input vector to (3.4) reads

x̌p,in,n =


|xin[n]|p−1xin[n]

|xin[n− 1]|p−1xin[n− 1]
...

|xin[n−M ]|p−1xin[n−M ]

 , (3.11)

where the appropriate product terms are likewise neglected.
Similarily, hp and x̌p,in,n, for the dynamic deviation reduction-based Volterra series
VDDR,R {·} can be determined by simply pruning the number of Volterra kernel coeffi-
cients and product terms as discussed in Section 2.4.5. For instance, hp and x̌p,in,n for
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the first order deviation reduction-based Volterra series with nonlinearity order p ≥ 3,
can be written as

hp =



gp,1[0]
gp,2[1]

...
gp,1[M ]
gp,2[1]
gp,2[2]

...
gp,2[M ]


x̌p,in,n =



|xin[n]|p−1xin[n]
|xin[n− 1]|p−1xin[n− 1]

...
|xin[n−M ]|p−1xin[n−M ]

x2
in[n− 1]|xin[n− 1]|p−3x∗in[n− 1]
x2

in[n− 2]|xin[n− 2]|p−3x∗in[n− 2]
...

x2
in[n−M ]|xin[n−M ]|p−3x∗in[n−M ]


. (3.12)

Accordingly, as R increases, not only the vector size increases, but also vector construc-
tion effort and thus computational complexity. Therefore, in real-life applications R
should be limited to a small value, e.g., R ≤ 2, in order keep the complexity low.

3.4 Parameter Estimation for the Hammerstein Model

Since the Hammerstein model can be thought of as a pruned Volterra model, the pa-
rameters can be estimated by neglecting the appropriate Volterra kernel coefficients and
input product terms. However, the polynomial and linear time-invariant (LTI) filter
coefficients, ap and h[n] in (2.52), respectively, are modeled separately. Thus, they can
be estimated separately in a two-step estimation procedure [23].

First, the vector a =
[
a1 a3 · · · aP

]T
that contains all distortion coefficients ap

for p ≤ P and characterizes the static nonlinearity of the PA, is estimated using the LS
estimator (3.9) such that

â =
(
X̌H

in,nX̌in,n
)−1

X̌H
in xPA,n, (3.13)

with input matrix

X̌in,n =


xin[n] |xin[n]|2xin[n] · · · |xin[n]|P−1xin[n]

xin[n− 1] |xin[n− 1]|2xin[n− 1] · · · |xin[n− 1]|P−1xin[n− 1]
...

...
...

xin[n−N + 1] |xin[n−N + 1]|2xin[n−N + 1] · · · |xin[n−N + 1]|P−1xin[n−N + 1]

 .
(3.14)

Afterwards, the input signal xin[n] is passed through the estimated nonlinearity, pro-
ducing the intermediate signal

x̂int[n] =
P+1

2∑
p=1

â2p−1|xin[n]|2(p−1)xin[n]. (3.15)
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This intermediate signal x̂int[n] is then used as the input of the LTI filter, and the
output of the model reads

xout[n] =
M∑
m=0

h[m]x̂int[n−m]. (3.16)

Therefore, the LS estimator (3.9) can be utilized to identify the LTI filter coefficients
h[n], i.e.,

ĥ =
(
XH

int,nXint,n
)−1

XH
int,nxPA,n, (3.17)

with input matrix

Xint,n =


x̂int[n] x̂int[n− 1] · · · x̂int[n−M ]

x̂int[n− 1] x̂int[n− 2] · · · x̂int[n−M − 1]
...

...
...

x̂int[n−N + 1] x̂int[n−N ] · · · x̂int[n−N −M + 1]

 , (3.18)

and ĥ =
[
ĥ[0] ĥ[1] · · · ĥ[M ]

]T
that contains the estimated LTI filter coefficients.

The handicap of this two-step estimation procedure is that the estimation of the
static nonlinearity is not accurate due to the present memory effects in the measured
PA output signal. In other words, the memory effects can be seen as a disturbance for
the estimation of the nonlinearity. If the memory effects are not too strong, which is the
case for narrow-band systems (cf. Section 1.2), the estimation of the nonlinearity is not
exceedingly disturbed [23]. However, this systematic error can be avoided when treating
the Hammerstein model as reduced Volterra series and estimate the nonlinearity and
the LTI filter coefficients at one go (cf. Section 3.3).

3.5 Parameter Estimation for the Decomposed Volterra Series

Although multiple sub-models are involved to produce one single output signal value, as
proposed by Zhu et. al in [29] and discussed in Section 2.4.6, the overall system can be
estimated by using only one LS estimator. The vector

hV =
[
hT1;V hT2;V · · · hTS+1;V

]T
, (3.19)

containing all Volterra kernel coefficients of the S + 1 sub-models can be estimated as

ĥV =
(
X̌H

in,nX̌in,n
)−1

X̌H
in,n xPA,n, (3.20)

with the input matrix X̌in,n that contains the product terms of the S + 1 decomposed
input signals of the training set, i.e.,

X̌in,n =
[
X̌1;in,n X̌2;in,n · · · X̌S+1;in,n

]
. (3.21)
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If, however, the sub-models are based on pruned Volterra series, as it is the case for,
e.g., the decomposed piecewise memory polynomials (2.66), or the decomposed piecewise
reduction-based Volterra series (2.67), the overall model is estimated in the same manner,
but neglecting the appropriate Volterra kernel coefficients for each sub-model. In other
words, each hs;V and X̌s;in,n for s = 1, . . . , S + 1 in (3.19) and (3.21), respectively, are
pruned as discussed in Section 3.3.

3.6 Parameter Estimation for the Vector-Switched Model

The vector-switched model, proposed by Afsardoost et. al in [30] and discussed in Sec-
tion 2.4.7, is highly flexible in terms of the number of switching regions K and the
respective regional models Gk(·). In fact, once the switching regions are determined, the
regional models Gk(·) can be separately estimated by partitioning the training signal set
into the regions according to the switching function. Precisely, the set that contains the
time indices addressing the training signal samples, i.e., I = {n, n− 1, . . . , n−N + 1},
is firstly split such that

I =
K⋃
k=1

Ik, (3.22)

where Ik denotes the sub set containing the time indices that correspond to the k-th
region according to the switching function, i.e.,

Ik = {nk,1, nk,2, . . . , nk,Nk} . (3.23)

The Ik are disjoint, i.e., Ik ∩ Il = �0 for k 6= l. For instance, consider that the switching
is based on the magnitude of the current and its J − 1 previous samples of the training
set, then the k-th sub set for a given set of training signals at time instant n can be
written as

Ik =
{
l : rn−l,J ∈ Ωk, l = J, . . . , N + 1

}
, (3.24)

where rm,J =
[
|xin[m]| |xin[m− 1]| · · · |xin[m− J + 1]|

]T
contains the magnitudes of

the m-th and its J−1 preceding samples of the training set. Accordingly, the cardinalities
|Ik| = Nk of the K sub sets are probably dissimilar and N =

(∑K
k=1Nk

)
+ J .

Since every model utilized in this thesis can be described by the Volterra series (cf.
Section 2.4.5), it is reasonable to assume that Volterra series are employed for the k-th
sub-model, i.e., Gk(·) = Vk{·}. Moreover, the sub-models are estimated by performing
K separate LS model estimations. For instance, the k-th sub-model is estimated by
collecting all Nk vectors xin,m,Mk

∈ CMk for m ∈ Ik, i.e.,

xin,nk,i,Mk
=
[
xin[nk,i] xin[nk,i − 1] · · · xin[nk,i −Mk]

]T
, i = 1, . . . , Nk, (3.25)

where Mk denotes the memory length of the k-th sub-model. Clearly, because of Mk,
these vectors contain signal samples xin[nk,i− l] for 0 < l ≤Mk that possibly correspond
to other sub sets. In other words, if models with memory are employed, every signal
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sample is not only used to estimate the corresponding sub-model, but multiple sub-
models. The LS estimator (3.9) for the Volterra kernel vector hk;V of Vk{·}, can be
written as

ĥk;V =
(
X̌H
k;in,nX̌k;in,n

)−1
X̌H
k;in,n xk;PA,n, (3.26)

with input matrix

X̌k;in,n =
[
x̌k;in,nk,1 x̌k;in,nk,2 · · · x̌k;in,nk,Nk

]T
, (3.27)

and
xk;PA,n =

[
xPA[nk,1] xPA[nk,2] · · · xPA[nk,Nk ]

]T
. (3.28)

Since the length of the training set N is limited, the number of sub-models K and the
respective model parameters should be chosen such that enough data for each sub-model
is available for accurate LS estimation.

3.7 Adaptive Model Parameter Estimation

Up to now, the PA characteristics were assumed to remain constant throughout oper-
ation. Whereas extrinsic and intrinsic influences, e.g., self-heating effects, could alter
the behavior of the PA over time [6], the PA characteristics can be assumed to be time-
varying and the model has to be estimated adaptively. Consequently, as from now the
Volterra kernel vector of the model hV is time-dependent, i.e., hV [n].

Stochastic-gradient algorithms are widely used for adaptive system identification, since
they are computationally efficient, simple, and show good performance under varying
estimation parameters [37]. In fact, stochastic-gradient algorithms employ the method
of steepest descent optimization, which localizes the minimum of a multivariate quadratic
cost function ε2(hV). The steepest descent direction at any point of ε2(hV) gives the best
direction to move in order to find a point with lower cost. If this such steps are performed
repeatedly, the minimum of ε2(hV) is reached. In other words, the cost is narrowed down
by moving in the direction of the steepest descent, i.e., the negative gradient of the cost
function, with adequate step-size. The principle of stochastic-gradient algorithms is to
start with an initial guess for the estimation parameters ĥV [−1], and then improve the
estimate in an iterative manner in the form of [38]

{new guess} = {old guess}+ {correction term} ,

specifically,
ĥV [n] , ĥV [n− 1]− µ∇ε2(ĥV [n− 1]), (3.29)

where µ > 0 is the so-called step-size, since it affects the impact of the correction term
on the “new guess”.

Obviously, different choices for the cost function generally lead to diverse estimation
results, each of which leading to a different sense of optimum. One such cost function is
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the mean square error (MSE)

ε2(ĥV [n]) , E {e∗[n]e[n]} = E
{∣∣∣xPA[n]− ĥTV [n]x̌in,n

∣∣∣2} . (3.30)

In order to approximate the in general unknown expectation in (3.30), it can be sim-
ply replaced by the instantaneous value of its argument. This leads to the so-called
LMS recursion, also sometimes referred to as the Widrow-Hoff algorithm in honor of its
originators [38, 39]

ĥV [n] , ĥV [n− 1] + µx̌∗in,ne[n] n > 0. (3.31)

Accordingly, the choice of the step-size µ is critical for achieving a good performance.
A too small step-size requires an excessive number of iterations in order to minimize
the MSE. Additionally, the LMS possibly can hardly track PA behavior for the time
varying ĥV [n] due to the small step-size. However, a too large step-size might slow
down convergence, and a far too large µ even causes the algorithm to diverge, where the
subsequent cost is greater than the actual one, i.e., ε2(hV [n]) > ε2(hV [n−1]). Therefore,
a proper choice of the step-size is indispensable for the correct functionality of the LMS
and guidelines for selecting a proper step-size exist [40]. A necessary condition to ensure
the LMS algorithm to converge in the mean-square sense is [38]

0 < µ <
2

λmax
, (3.32)

and the fastest convergence is achieved with the choice

0 < µ <
2

λmax + λmin
, (3.33)

where λmin and λmax denote the minimum and maximum eigenvalue of the autocorre-
lation matrix Rx̌in,n,x̌in,n

, respectively. However, in most cases the statistics, especially
the higher moments of x̌in,n are unknown, e.g., for the memory polynomial model (2.50)
with P = 5 and M = 0, the autocorrelation matrix Rx̌in,n,x̌in,n

reads

Rx̌in,n,x̌in,n
= E

{
x̌in,nx̌Hin,n

}
=

E
{
|xin[n]|2

}
E
{
|xin[n]|4

}
E
{
|xin[n]|6

}
E
{
|xin[n]|4

}
E
{
|xin[n]|6

}
E
{
|xin[n]|8

}
E
{
|xin[n]|6

}
E
{
|xin[n]|8

}
E
{
|xin[n]|10}

 . (3.34)

Accordingly, for nonlinearity order P , moments up to order 2P are required to determine
the eigenvalues and thus the convergence bound (3.32) [23]. For this reason, a more
practical bound is [38]

0 < µ <
2

tr
{
Rx̌in,n,x̌in,n

} , (3.35)
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where tr{·} denotes the trace operator1 that can be approximated

tr
{
Rx̌in,n,x̌in,n

}
= E

{
‖x̌in,n‖22

}
≈ x̌Hin,nx̌in,n. (3.36)

Inserting this approximation in the LMS recursion (3.31), leads to the ε-NLMS recur-
sion [38]

ĥV [n] , ĥV [n− 1] + µ̄

ε+ ‖x̌in,n‖22
x̌∗in,ne[n] n > 0, (3.37)

where µ̄ is the step-size and ε is an arbitrarily small constant, included in order to avoid
division by zero when x̌in,n is zero or close to the zero vector. The convergence bound
for the ε-NLMS is found to be

0 < µ̄ < 2. (3.38)

1The trace of an m×m square matrix A is

tr {A} , a11 + a22 + · · ·+ amm =
m∑
i=1

aii, where A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
am1 am2 · · · amm

.
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4.1 Introduction and Outline

As discussed in Chapter 1, in order to meet the spectral requirements under the con-
straint of high power efficiency, highly linear and highly efficient power amplification is
required. To mitigate the discrepancy between linearity and power efficiency, lineariza-
tion techniques are indispensable. Out of these digital pre-distortion (DPD) is one of
the most preferable choices, since it is highly flexible, features excellent linearization ca-
pability, and keeps the computational costs moderate [6]. As illustrated in Figure 4.1a,
the basic idea of DPD is to distort the baseband representation of the desired transmit
signal xin[n] prior to the up-converter, in order to mitigate nonlinear distortions aris-
ing from the use of highly nonlinear but more efficient power amplifiers (PAs). The
pre-distorter is characterized by the scaled complementary inverse of the PA output
characteristics (cf. Figure 4.1b) and aims to compensate the detrimental effects of the
transmitter and its spectral re-growth. As Figure 4.1 shows, together with the pre-
distorter, the total DPD-PA catenation is intended to behave approximately as a linear
system, concealing the nonlinear behavior of the PA itself. Figure 4.1b illustrates am-
plitude modulation/amplitude modulation (AM/AM) (cf. Section 1.2) correction done
by the pre-distorter solely. However, in general, the PA amplitude modulation/phase
modulation (AM/PM) conversion needs to be compensated too. Moreover, for broad-
band systems, e.g., Long Term Evolution (LTE), dynamic distortions of the PA come
into effect (cf. Section 1.2). Therefore, the pre-distorter should also be capable of elim-
inating the dispersive behavior of the PA, such that the total response of the DPD-PA
catenation is not only linear, but also memoryless.

xin[n]
DPD DAC

up-
converter PA

z[n] z(t) z̃(t) x̃PA(t)

(a) Schematic of the DPD-PA catenation.

|xin[n]|

|z[n]|
pre-distorter

|z(t)|

|xPA(t)|
PA

|xin[n]|

|xPA[n]|
total

(b) Typical AM/AM correction done by the pre-distorter [18].

Figure 4.1.: Principle of DPD. The pre-distorter is characterized by the scaled comple-
mentary inverse of the PA characteristics in order to mitigate the introduced distortions.

The pre-distorter can be implemented at different transmitter stages, e.g., radio fre-
quency (RF)-stage, intermediate frequency (IF)-stage, or at the baseband [18]. How-
ever, as the name implies, DPD is performed in the digital baseband. As illustrated in
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Figure 4.2, the equivalent baseband PA characteristics are estimated by means of the
baseband observations of z[n] and xPA[n]. Likewise, the pre-distorter is characterized by
the inverse of the estimated equivalent baseband PA model. Obviously, the DPD struc-
ture, depicted in Figure 4.2, uses an open loop estimation, since the DPD function itself
does not affect the estimation, i.e., the pre-distorter is outside of the estimation loop [6].
After modeling the PA by employing one of the models proposed in Chapter 2, and
estimating the model parameters by means of the methods proposed in Chapter 3, the
subsequent task is to identify the inverse of the PA characteristics, i.e., the pre-distorter.

xin[n]
DPD DAC

up-
converter PA

model
estimation ADC down-

converter

z[n] z(t) z̃(t) x̃PA(t)

xPA[n]

xPA(t)

digital baseband

Figure 4.2.: Pre-distorter estimation approach at the digital baseband.

This Chapter is organized as follows

Section 4.2 - Inverse System Identification, gives insights into the inverse modeling
of the PA characteristics in order to perform DPD. It introduces two strategies,
namely the direct-learning architecture and the indirect-learning architecture.

Section 4.3 - Gain Selection, shows the influence of the desired overall gain.

Section 4.4 - Feedback Bandwidth Requirements, explains the motivation for the re-
quirements of the DPD bandwidth.

4.2 Inverse System Identification

In the context of pre-distortion, inverse system identification is the estimation of the PA
inverse characteristics. There are two learning strategies: direct-learning and indirect-
learning, which are special techniques of inverse control theory [41].

4.2.1 Direct-Learning Architecture

For the direct-learning architecture, the transfer function of the PA GPA(·) itself is first
identified, and then, the DPD function is obtained by directly inverting the estimated
PA function, as depicted in Figure 4.3. This strategy is commonly used for memoryless
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DPD, e.g., look-up table (LUT)-DPD, since the AM/AM and AM/PM conversions are
one-to-one mappings, where the inverse can be easily identified, e.g., inverse coordinate
mapping [42]. However, for systems where memory effects are not neglectable in order
to achieve adequate linearization results, complicated procedures in general are involved
to invert the PA model [9].

xin[n]
G−1

PA(·) PA

1
G0

GPA(·)

model
inverse

z[n] xPA[n]

x̂PA[n] −

e[n]

Figure 4.3.: Schematic of the direct-learning architecture [41].

4.2.2 Indirect-Learning Architecture

In the indirect-learning architecture, a post-distorter G−1
post(·), i.e., a nonlinear system

following the PA in order to linearize the transmitter, first estimates the post-inverse of
the PA characteristics, and then G−1

post(·) is used as a pre-distorter, i.e., G−1
pre(·) [41], as

shown in Figure 4.4. This strategy is based on the assumption that G−1
post(·) and G−1

pre(·)
are identical, which has been proven by Schetzen in [24].

The post-inverse G−1
post(·) can be estimated by employing one of the estimation methods

proposed in Chapter 3, where the input and output signals of the estimation method
are represented by the PA output and input, xPA[n] and xin[n], respectively; the input
and output signals of the PA can be thought of being swapped. Assuming that G−1

post(·)
is modeled using Volterra series, i.e., G−1

post(·) = V {·}, the least squares (LS) estimator
for the Volterra kernel vector hV,post reads

ĥV,post =
(
X̌H

PA,nX̌PA,n
)−1

X̌H
PA,nzn. (4.1)

Afterwards, G−1
pre(·) is directly cloned from G−1

post(·), i.e., ĥV,pre = ĥV,post. Clearly, when
employing the blockwise LS estimator, G−1

pre(·) initially represents a simple linear ampli-
fication, i.e., G−1

pre(·) = 1, while gathering N pairs of samples of z[n] and xPA[n], in order
to estimate G−1

post(·). For subsequent blocks, the previous estimate of G−1
post is then used
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xin[n]
G−1

pre(·) PA

G−1
post(·)

1
G0

z[n]

ẑ[n]−

xPA[n]

e[n]

Figure 4.4.: Schematic of the indirect-learning architecture [43].

to generate z[n]. However, adaptive estimation methods, as discussed in Section 3.7, are
capable of online estimation, e.g., the ε-normalized least mean squares (ε-NLMS) reads

ĥV,post[n] = ĥV,post[n− 1] + µ̄

ε+ ‖x̌PA,n‖22
x̌∗PA,n

(
z[n]− ĥTV,post[n− 1]x̌PA,n

)
. (4.2)

Note that not all nonlinear systems possess an exact inverse, specially when the
AM/AM and AM/PM conversions are no one-to-one mappings [36], as it is the case
for PAs with strong memory effects (cf. Section 1.2). In other words, the inversion of a
nonlinear system my not be possible and the inverse modeling may diverge [9].

4.3 Gain Selection

If the PA characteristics are invertible, the composition of the exact inverse and the
original function would completely compensate each other [36], i.e., G

(
G−1 (xin[n])

)
=

xin[n]. Accordingly, the output of the composition equals the input, and the overall gain
would be exactly G = 1. Therefore, as shown in Figure 4.3 and 4.4, the feedback path has
to be attenuated by the desired overall gain G0, in order to normalize the output power
level to the same power level as the original input signal. Due to this normalization, the
extracted parameters can be directly used in the DPD. Otherwise the parameters, i.e.,
the Volterra kernel, must be nonlinear scaled after model extraction [44].

There are numerous options for choosing the desired gain G0. Figure 4.5 shows three
arbitrary choices, which are G1, G2, and G3. Moreover, Figure 4.5 shows that the pre-
distorter can successfully correct the distortions only up to the full saturation level of
the PA [44]. Additionally, for high input power levels, the required pre-distorter gain
must skyrocket, in order to compensate the strong signal compression (cf. Figure 4.1b).
On the other hand, the output power level of the pre-distorter cannot follow this shoot
up in order not to overdrive the PA input. One way to choose G0 is, in such way that
the magnitude of the input signal spans the maximum linearizable magnitude range [44],
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i.e.,

G0 =
max

0≤n<N
{|xPA[n]|}

max
0≤n<N

{|xin[n]|} , (4.3)

where the AM/AM conversion is assumed as a strictly monotonically increasing mapping
in order to ensure that the output power peak level occurs at the maximum input power
level. This choice for G0 represents G3 in Figure 4.5. Accordingly, all input and output
signals can be normalized to unity. Additionally, normalizing at the peak eases system
implementation, since all signals can be normalized by the same scaling factor that
facilitates power control [44].
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Figure 4.5.: Desired gain selection [44]. G1 and G2 represent arbitrary choice for the
desired gain, and G3 respresents the saturation gain.

4.4 Feedback Bandwidth Requirements

In order to compensate the adverse out-of-band spectral emissions due to nonlinear
amplification, the bandwidth of the feedback path in the learning architectures (cf.
Section 4.2), has to be sufficiently wide. As discussed in Section 2.3, the feedback
bandwidth must be P -times the transmission bandwidth B, where P denotes the highest
order of significant nonlinearity of the PA to be linearized. For instance, if the feedback
bandwidth is 5B, the pre-distorter can only compensate first, third, and fifth order
distortions.



5
Chapter 5

Measurement Results

Contents
5.1. Introduction and Outline . . . . . . . . . . . . . . . . . . . . . . 54
5.2. Measuring Configuration . . . . . . . . . . . . . . . . . . . . . . 54
5.3. Reduced Volterra Models Experimental Results . . . . . . . . 58
5.4. Decomposed Piecewise Volterra Model Experimental Results 61
5.5. Vector-Switched Model Experimental Results . . . . . . . . . 63
5.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

53



54 5. Measurement Results

5.1 Introduction and Outline

This Chapter investigates the performance of linearizing an envelope tracking power am-
plifier (ETPA), employing the indirect-learning architecture discussed in Section 4.2.2
with various digital pre-distortion (DPD) models. Namely, pruned Volterra series dis-
cussed in Section 2.4.5, the decomposed piecewise Volterra model proposed in Sec-
tion 2.4.6, and the vector-switched model proposed in Section 2.4.7. The performance
is evaluated based on measurements of a prototype envelope tracking system.

This Chapter is organized as follows

Section 5.2 - Measuring Configuration, shows the measurement setup for the proto-
type envelope tracking system and the utilized instruments. Moreover, it lists the
input signal characteristics and the transmission parameters. Finally, the evalua-
tion criteria are illustrated.

Section 5.3 - Reduced Volterra Models Experimental Results, analyses the lineariza-
tion performance of the reduced Volterra models discussed in Section 2.4.5, based
on measurements.

Section 5.4 - Decomposed Piecewise Volterra Model Experimental Results, reveals
the DPD performance of the decomposed piecewise Volterra model discussed in
Section 2.4.6, based on measurements.

Section 5.5 - Vector-Switched Model Experimental Results, evaluates the DPD per-
formance of the vector-switched model discussed in Section 2.4.7, based on mea-
surements

Section 5.6 - Discussion, compares the performance of the three afore evaluated models
and give thoughts about model complexity.

5.2 Measuring Configuration

The prototype envelope tracking system and the measurement setup was provided by
Artesyn Austria GmbH & CoKG. The schematic of the provided test-bench is depicted
in Figure 5.2 and the employed instruments are listed in Table 5.1. It was designed to be
fully controlled by Matlab. All digital signal processing that was not required for real-
time operation was implemented in Matlab. These were, e.g., test signal generation,
parameter estimation for the employed pre-distorter, envelope calculation, parameter
evaluation, and some auxiliary functions, like signal synchronization and phase align-
ment. The generated baseband test-signal was a Wideband Code Division Multiple
Access (WCDMA)-like signal comprised of two channels side-by-side and 7.5dB peak-to-
average power ratio (PAPR). Figure 5.1 shows the power spectral density (PSD). The
transmit signal was sent via Ethernet to the vector signal generator (VSG), which di-
rectly up-converted it to the radio frequency (RF) with carrier-frequency fc = 2.14GHz



5.2. Measuring Configuration 55

and sampling frequency fs = 125MHz. The envelope pattern was directly calculated in
Matlab based on the baseband transmit signal xin[n] and sent to the envelope tracking
unit. The VSG periodically outputted the passband transmit signal in order to avoid a
variation of the power amplifier (PA) characteristics due to power level fluctuations (cf.
Section 1.2). Moreover the VSG triggered the envelope tracking unit. Since there was
a signal propagation delay between the VSG and the ETPA, Matlab allows to adjust
the trigger delay of the envelope tracking unit in order to ensure the alignment of the
transmit signal and the envelope signal. Moreover, the envelope signal was monitored by
the oscilloscope in order to screen the delay alignment with the transmit signal. The pre-
amplifier was a highly linear broadband amplifier with 45dB gain and protected against
misuse by the isolator. The PA was operated at 2.14GHz with an average output power
level of 47W. The attenuated output signal of the ETPA was converted down to digital
baseband by the vector signal analyser (VSA) with 100MHz signal analysis bandwidth
and read back by Matlab via Ethernet. Additionally, the RF output power level was
monitored. All instruments were synchronized via the 10MHz reference clock, generated
by the VSG. The instruments after the ETPA (attenuator, directional coupler) had an
overall insertion loss of 51.6dB.
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Figure 5.1.: PSD of the transmit signal xin[n] without any DPD.

As mentioned before, the Matlab script allowed to select different DPD algorithms
and to freely chose the appropriate model parameters. Since the test-bench was no
real-time system, the measurements were performed in burst mode. In other words,
each measurement required two steps. First, the envelope tracking system amplified the
desired transmit signal xin[n] without any DPD, and the attenuated ETPA output was
read back. The transmit signal had a block length of 217 I/Q samples. The gathered
input and output samples were normalized to the acquired RF output power level in order
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to adjust the PA gain (cf. section 4.3). 20 000 of these 217 I/Q input and output samples
were used to estimate the parameters for the selected DPD algorithm (cf. Chapter 3).
The remaining samples were used to evaluate the performance. Afterwards, the desired
input signal is pre-distorted and transmitted. These measurements were repeated five
times.

Three assessment were considered, namely, the normalized mean square error (NMSE),
the adjacent channel power ratio (ACPR), and the adjacent channel error power ratio
(ACEPR) (cf. Section 2.5). The ACPR was calculated for three higher and lower
adjacent channels, respectively. Precisely, the transmission band was set to

Bch = {f : fc −B ≤ f ≤ fc +B} , (5.1)

with channel bandwidth B = 5MHz. The i-th higher adjacent channel was set to

Badj,hi,i = {f : fc + iB ≤ f ≤ fc + (i+ 1)B} , (5.2)

and analogously the i-th lower adjacent channel occupied the frequency band

Badj,lo,i = {f : fc − (i+ 1)B ≤ f ≤ fc − iB} . (5.3)

However, to evaluate the ACEPR all six adjacent channels were united, i.e.,

Badj =
3⋃
i=1

(Badj,lo,i ∪Badj,hi,i) . (5.4)

As mentioned before, since the DPD feedback bandwidth was 100MHz, the pre-
distorter was only capable of countering ninth order nonlinear distortions for the em-
ployed input signal with 10MHz bandwidth (cf. Section 4.4).

instrument type

vector signal generator (VSG) Agilent N5182A, Option 654
vector signal analyser (VSA) Rohde & Schwarz FSQ26
power meter Rohde & Schwarz NRP-Z11
oscilloscope Lecroy 454
pre-amplifier AR 30S1G4
PA Freescale AFT21S232S
isolator Pasternack PE8300
directional coupler Pasternack PE2209-20
attenuator 30dB, 80W

Table 5.1.: List of the employed instruments in the measurement setup illustrated in
Figure 5.2.
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Figure 5.2.: Outline of the measurement setup. The corresponding instruments are listed in Table 5.1.
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5.3 Reduced Volterra Models Experimental Results

In order to evaluate the performance of the reduced Volterra models discussed in Sec-
tion 2.4.5, the memory polynomials and the dynamic deviation reduction-based Volterra
series were considered. Table 5.2 lists the NMSE, ACPR, and ACEPR of the first model,
Table 5.3 of the latter one. The nonlinearity order P was varied from third up to ninth
order with either M = 0, i.e., the static case1, or with two memory taps, i.e., M = 2.

order NMSE ACPR ACEPR

P M low,3 low,2 low,1 hi,1 hi,2 hi,3

w/o DPD -21.1 -39.5 -34.1 -28.8 -29.4 -33.0 -37.8 -21.8
3 0 -23.1 -39.4 -35.2 -32.5 -30.5 -33.2 -37.7 -23.9
3 2 -23.7 -39.1 -34.9 -32.6 -31.2 -33.6 -37.7 -24.2
5 0 -24.4 -39.4 -35.5 -33.3 -32.7 -34.8 -38.1 -25.5
5 2 -25.4 -39.1 -35.7 -34.1 -33.7 -35.3 -38.4 -26.1
7 0 -26.7 -41.6 -39.0 -36.0 -35.7 -37.9 -40.3 -28.7
7 2 -28.7 -41.5 -39.6 -37.9 -37.8 -39.6 -41.1 -30.3
9 0 -27.7 -43.6 -40.3 -37.1 -36.9 -39.6 -42.1 -30.0
9 2 -30.4 -43.8 -42.2 -40.1 -39.8 -41.4 -42.9 -32.4

Table 5.2.: NMSE, ACPR, and ACEPR in dB of the memory polynomials as
DPD model.

order NMSE ACPR ACEPR

P M R low,3 low,2 low,1 hi,1 hi,2 hi,3

w/o DPD -21.1 -39.5 -34.1 -28.8 -29.4 -33.0 -37.8 -21.8
3 2 1 -23.8 -38.9 -34.8 -32.6 -31.4 -33.8 -37.9 -24.3
5 2 1 -25.6 -38.9 -35.5 -34.1 -34.0 -35.5 -38.5 -26.2
7 2 1 -29.1 -41.1 -39.5 -38.3 -38.2 -39.5 -40.9 -30.6
9 2 1 -31.3 -43.7 -42.1 -40.5 -40.5 -41.6 -43.1 -33.2
3 2 2 -23.8 -38.7 -34.7 -32.5 -31.5 -33.9 -37.7 -24.3
5 2 2 -25.6 -38.8 -35.5 -34.0 -34.0 -35.5 -38.3 -26.2
7 2 2 -29.3 -41.5 -39.6 -37.9 -38.5 -39.8 -41.2 -30.7
9 2 2 -31.3 -43.6 -42.2 -40.6 -40.9 -41.9 -43.1 -33.3

Table 5.3.: NMSE, ACPR, and ACEPR in dB of the dynamic deviation reduction-based
Volterra series as DPD model.

Figure 5.3 compares the performance of the memory polynomials with M = 0, M = 2,
1Note that the static case for the memory polynomials coincide with that of the dynamic deviation

reduction-based Volterra series.
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and the second order deviation reduction-based Volterra series with M = 2, with respect
to the varying nonlinearity order P of the pre-distorter. Figure 5.3a shows the NMSE
and Figure 5.3b the ACEPR. Accordingly, for increasing P the performance of the
pre-distorter increased. Beside nonlinear distortions, the ETPA exhibited a dispersive
behavior (cf. Section 1.2). Compared to the static case, the pre-distorter that incor-
porated memory effects, improved the NMSE and ACEPR by about 3dB for P = 9.
Nevertheless, the first order deviation-reduction based Volterra series showed a slightly
better performance than the memory polynomials. Moreover, the second order dynamic
deviation reduction-based Volterra series even more improved the performance, espe-
cially in the second and third adjacent channel.
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3 5 7 9
−35

−30

−25

−20

nonlinearity order P

N
M

SE
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(b) ACEPR comparison.

Figure 5.3.: Comparison of the NMSE and the ACEPR of the pre-distorter that employs
either the static polynomials, the memory polynomials, or the second order deviation
reduction-based Volterra series, both of the latter with M = 2.

Figure 5.4 shows the nonlinear behavior of the ETPA compared to the specific DPD
configuration that showed the best NMSE performance, namely the second order de-
viation reduction-based Volterra series with P = 9 and M = 2. Additionally, the
nonlinear behavior when employing static polynomials as DPD model is illustrated in
order to demonstrate the achievable performance gain due to the elimination of memory
effects. Figure 5.4a and Figure 5.4b show the amplitude modulation/amplitude modu-
lation (AM/AM) and amplitude modulation/phase modulation (AM/PM) conversions,
respectively. Although most memory effects were effectively eliminated after DPD, the
linearization performance was rather limited, especially in the AM/PM conversion.
Figure 5.5 shows the PSDs of the PA output signal xPA[n] for three different DPD
models with P = 9, namely the static polynomials, the memory polynomials, and the
second order deviation reduction-based Volterra series, both of the latter with M = 2.
Accordingly, the ACPR suffered from not considering memory effects, especially for the
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(b) AM/PM conversion.

Figure 5.4.: Measured AM/AM and AM/PM characteristics when employing either
second order deviation reduction-based Volterra series with P = 9 and M = 2 or static
polynomials with P = 9.
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Figure 5.5.: Measured PSDs of xPA[n] for either employing static polynomials, memory
polynomials with M = 2, or the second order deviation reduction-based Volterra series
with M = 2, as DPD models all with P = 9.
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first and second adjacent channels. Moreover, one can see a slight performance improve-
ment of the second order deviation reduction-based Volterra series compared to memory
polynomials.

5.4 Decomposed Piecewise Volterra Model Experimental Results

The performance of the decomposed piecewise Volterra model discussed in Section 2.4.6
was evaluated for a particular set of thresholds Λ = {0.2, 0.4, 0.6, 0.8}1. Accordingly,
five models, i.e., S + 1 = 5, were included in order to pre-distort the input signal.
Table 5.4 and Table 5.5 list the NMSE, ACPR, and ACEPR of the decomposed piece-
wise memory polynomials and the decomposed piecewise dynamic deviation reduction-
based Volterra series, respectively. All regional models had the same configuration, i.e.,
Ps = P1 = P2 = · · · = P5 and Ms = M1 = M2 = · · · = M5; the nonlinearity order Ps was
varied from third up to seventh order with either Ms = 0, Ms = 1, or Ms = 2.

order NMSE ACPR ACEPR

Ps Ms low,3 low,2 low,1 hi,1 hi,2 hi,3

w/o DPD -21.1 -39.5 -34.1 -28.8 -29.4 -33.0 -37.8 -21.8
5 0 -28.7 -46.9 -42.1 -37.9 -37.8 -41.4 -45.2 -31.5
3 2 -32.2 -48.2 -45.9 -42.1 -41.8 -44.7 -46.8 -35.3
5 2 -32.2 -48.3 -45.9 -42.0 -41.8 -44.6 -46.6 -35.2
7 2 -32.2 -48.3 -45.7 -42.0 -41.5 -44.3 -46.7 -35.1

Table 5.4.: NMSE, ACPR, and ACEPR in dB of the decomposed piecewise memory
polynomials as DPD model.

order NMSE ACPR ACEPR

Ps Ms Rs low,3 low,2 low,1 hi,1 hi,2 hi,3

w/o DPD -21.1 -39.5 -34.1 -28.8 -29.4 -33.0 -37.8 -21.8
3 1 1 -33.7 -47.6 -45.1 -42.7 -42.4 -44.2 -46.5 -36.6
5 1 1 -33.8 -48.0 -45.5 -42.8 -42.7 -44.5 -46.7 -36.9
7 1 1 -34.1 -48.1 -45.6 -42.9 -43.0 -44.6 -46.7 -37.1
3 2 2 -33.9 -48.1 -46.1 -43.4 -42.9 -45.1 -47.0 -37.3
5 2 2 -34.3 -48.4 -46.7 -43.6 -43.6 -45.9 -47.2 -37.9

Table 5.5.: NMSE, ACPR, and ACEPR in dB of the decomposed piecewise dynamic
deviation reduction-based Volterra series as DPD model.

Accordingly, the performance gain of increasing the nonlinearity order Ps was rather
1Note that the thresholds are normalized.
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limited. This was because the five sub-models have already well adapted to the ETPA
inverse characteristics even for Ps = 3. However, comparing the decomposed piecewise
memory polynomials to the decomposed piecewise dynamic deviation reduction-based
Volterra series, one can observe that the latter model showed a slightly better perfor-
mance. For instance, the ACEPR improved by around 2dB for deviation order Rs = 1,
and by roughly 2.5dB for Rs = 2, while the ACPR improved by almost 1dB and roughly
1.5dB for Rs = 1 and Rs = 2, respectively for the first and second adjacent channel.

Figure 5.6 shows the nonlinear characteristics of the ETPA when the decomposed
piecewise dynamic deviation reduction based Volterra series with Ps = 5 and Ms = 2
were employed. Figure 5.6a and Figure 5.6b show the AM/AM and AM/PM conversions,
respectively. From these two Figures, it can be seen that the decomposed piecewise
Volterra model featured an excellent linearization capability. The memory effects were
significantly compensated after DPD. Additionally, without DPD, AM/PM distortions
spread over a range of 30 ◦, while introducing DPD reduced this spread to a range of 5 ◦.
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(b) AM/PM conversion.

Figure 5.6.: Measured AM/AM and AM/PM characteristics when employing decom-
posed piecewise dynamic deviation reduction-based Volterra series with Rs = 2, Ps = 5,
and Ms = 2 as DPD model.

Figure 5.7 compares the PSD of the ETPA output signal xPA[n] when the decom-
posed piecewise static polynomials, the decomposed piecewise memory polynomials with
Ms = 2, the decomposed piecewise dynamic deviation reduction-based Volterra series
with Rs = 2 and Ms = 2, as DPD models all with Ps = 5 were employed. Additionally,
it shows the PSD of xPA[n] when the input signal was not decomposed and the second
order deviation reduction-based Volterra series with P = 5 and M = 2 were employed
as pre-distorter, as it is the case in Section 5.3. Since five sub-models were employed,
it is not fair to compare the performance of the sub-model to the overall model. Nev-
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ertheless, it is depicted in order to illustrate the ACPR gain when employing the signal
decomposition. Moreover, one can see that the decomposed piecewise dynamic deviation
reduction-based Volterra series performed slightly better than the decomposed piecewise
memory polynomials, especially for the first and second adjacent channel.
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Figure 5.7.: Measured PSDs of xPA[n] of the second order dynamic deviation reduction-
based Volterra series with P = 5 and M = 2, the decomposed piecewise static polyno-
mials, the decomposed piecewise memory polynomials, and the decomposed piecewise
dynamic deviation reduction-based Volterra series with Rs = 2, as DPD models all with
Ps = 5 and Ms = 2.

5.5 Vector-Switched Model Experimental Results

The performance of the vector-switched model, discussed in Section 2.4.7 was evaluated
for J = 1. This means that the switching space had dimension R and the magnitude of
the instantaneous input signal |xin[n]| selected the sub-model to be employed. Moreover,
experiments have shown that no performance gain was noticeable when employing more
than 30 sub-models (K > 30). Thus, the number of sub-models was set to K = 30. Since
in total 20 000 samples were used for parameter estimation (cf. Section 5.2), each region
had roughly 670 samples in order to estimate the sub-model. Table 5.6 and Table 5.7
list the NMSE, ACPR, and ACEPR of the vector-switched memory polynomials and
the vector-switched dynamic deviation reduction-based Volterra series, respectively. All
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of the 30 sub-models had the same configuration, i.e., Pk = P1 = P2 = · · · = P30 and
Mk = P1 = M2 = · · · = M30. The sub-model nonlinearity order Pk was either Pk = 3 or
Pk = 5, all other sub-model parameters were chosen like for the decomposed piecewise
Volterra series (cf. Section 5.4).

order NMSE ACPR ACEPR

Pk Mk low,3 low,2 low,1 hi,1 hi,2 hi,3

w/o DPD -21.1 -39.5 -34.1 -28.8 -29.4 -33.0 -37.8 -21.8
3 2 -34.3 -48.2 -45.9 -42.9 -43.0 -45.1 -47.2 -37.2
5 0 -28.7 -46.7 -42.0 -38.1 -37.5 -41.2 -45.1 -31.3
5 2 -34.5 -48.5 -46.3 -43.5 -43.5 -45.7 -47.6 -37.8

Table 5.6.: NMSE, ACPR, and ACEPR in dB of the vector-switched memory polyno-
mials as DPD model.

order NMSE ACPR ACEPR

Pk Mk Rk low,3 low,2 low,1 hi,1 hi,2 hi,3

w/o DPD -21.1 -39.5 -34.1 -28.8 -29.4 -33.0 -37.8 -21.8
3 1 1 -34.1 -47.7 -45.3 -42.8 -42.7 -44.4 -46.5 -36.8
5 1 1 -34.1 -47.7 -45.3 -42.8 -42.7 -44.4 -46.5 -36.8
3 2 2 -34.5 -48.5 -46.3 -43.4 -43.4 -45.5 -47.2 -37.6
5 2 2 -34.6 -48.6 -46.5 -43.5 -43.6 -45.8 -47.5 -38.0

Table 5.7.: NMSE, ACPR, and ACEPR in dB of the vector-switched dynamic deviation
reduction-based Volterra series as DPD model.

Figure 5.8 illustrates the nonlinear characteristics of the ETPA for the vector-switched
dynamic deviation reduction-based Volterra series with Rk = 2, Pk = 5, and Mk = 2
as DPD model. Figure 5.8a shows the AM/AM conversion, Figure 5.8b the AM/PM
conversion. As one can see, the distortions in both, the phase and the amplitude were
considerably reduced. Whereas without DPD, the phase distortions spread over a range
of 30 ◦, after introducing DPD only phase distortions up to 5 ◦ were noticeable. Moreover,
memory effects were significantly reduced.

Figure 5.9 shows the PSD of xPA[n] for a pre-distorter using the vector-switched static
polynomials, the vector-switched memory polynomials with Mk = 2, the vector-switched
dynamic deviation reduction-based Volterra series with Rk = 2 and Mk = 2, all with
Pk = 5. Additionally, it shows the PSD of xPA[n] for the second order dynamic deviation
reduction-based Volterra series with P = 5 and M = 2 as DPD model, as it is the case
in Section 5.3. It is illustrated in order to demonstrate the performance gain when 30
sub-models with the same configuration were employed.
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Figure 5.8.: Measured AM/AM and AM/PM characteristics of the vector-switched
dynamic deviation reduction-based Volterra series with Rk = 2, Pk = 5, and Mk = 2 as
DPD model.

5.6 Discussion

Comparing the three analyzed models, it can observed that classical models (non-
switched, non-decomposed) are impractical for the distinct behavior of the ETPA, es-
pecially they had troubles dealing with phase distortions (cf. Figure 5.4b), resulting
in a poor ACEPR performance. Moreover, it is revealed that the dynamic deviation
reduction based Volterra series are more suitable than the memory polynomials in all
aspects. Generally speaking, the decomposed piecewise Volterra series and the vector-
switched model showed comparable performance; they improved the ACEPR in average
by about 10dB, compared to classical models with the same configuration as the sub-
models. Moreover, comparing the best results of the reduced Volterra series, the decom-
posed piecewise Volterra series, and the vector-switched model, the latter two models
improved the ACEPR by about 5dB and the NMSE by roughly 3dB.

Computational complexity is not considered in this thesis. The decomposed piecewise
Volterra series and the vector-switched model in general feature a higher complexity.
Whereas the complexity of the vector switched model is only increased by the switching
function, the complexity of the decomposed piecewise Volterra series is S + 1 times the
complexity of the sub-model; not mentioning the decomposition and recombination. On
the other hand, the vector-switched model requires a lot more training samples in order
to accurately estimate all sub-models.
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DPD models.



Conclusions and Outlook

This thesis considered digital pre-distortion (DPD) algorithms to linearize envelope
tracking power amplifiers (ETPAs). In this regard, two in literature proposed highly
developed DPD algorithms that are capable of handling the distinct behavior of the
ETPA were discussed and compared by measurements.

The decomposed piecewise Volterra model decomposes the input signal into several
sub-signals, each of which separately processed by a sub-model, and finally recom-
bined in order to produce the pre-distorted signal.

The vector-switched model allocates each input signal sample to an appropriate sub-
model that computes the pre-distorted signal.

As sub-models either memory polynomials, first or, second order deviation reduction-
based Volterra series, respectively were utilized. To evaluate the performance, both
models were implemented in Matlab and tested for a Wideband Code Division Multiple
Access (WCDMA)-like signal with 10MHz bandwidth and 7.5dB peak-to-average power
ratio (PAPR). Compared to traditional models, experimental results show that both
models outperformed classical polynomial models, even when using a small number of
parameters. However, both models showed comparable performance when using the
same sub-model. Moreover, the dynamic deviation reduction-based Volterra series were
more accurate than the memory polynomials in every aspect.

Open questions for future research:

• Measurements with Long Term Evolution (LTE) signals that have higher band-
width.

• Finding the optimum parameters for the decomposed piecewise Volterra series and
the vector switched model.

• Comparing the computational complexity and investigate the feasibility of imple-
mentation in real-time systems.
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70 A. Baseband Dynamic Deviation Reduced-Based Volterra Series Derivations

A.1 Introduction

In this Chapter, the passband representation for the dynamic deviation reduction-based
Volterra series proposed by Zhu et. al in [28], i.e.,

x̃out[n] ,
P∑
p=1

h̃p[0, . . . , 0]x̃pin[n]

+
P∑
p=1

min{p,R}∑
r=1

x̃p−rin [n]
M∑

m1=1
· · ·

M∑
mr=mr−1

h̃p[0, . . . , 0,m1, . . . ,mr]
r∏
j=1

x̃in[n−mj ],

(A.1)

is transformed to the equivalent baseband representation. The first p− r, r = 1, . . . , R
indices of the Volterra kernel h̃p[n1, . . . , np] are set to zero and the dynamic deviation
reduction order R indicates the highest possible number of product terms of the delayed
inputs.

A.2 Zero Order Derivations

Setting R = 0, means that the dynamic part, i.e., the second summation in (A.1)
vanishes. Thus, the passband model reads

x̃out[n] =
P∑
p=1

hp[0, . . . , 0]x̃pin[n], (A.2)

which can be easily transformed to the baseband (cf. Section 2.3) and the baseband zero
order deviation reduction-based Volterra series reads

xout[n] =
P+1

2∑
p=1

hp[0, . . . , 0]xin[n]|xin[n]|2(p−1). (A.3)

A.3 First Order Derivations

Starting with (A.1) for R = 1, the model output is

x̃out[n] =
P∑
p=1

h̃p[0, . . . , 0]x̃pin[n] +
P∑
p=1

M∑
m1=1

h̃p[0, . . . , 0,m1]x̃p−1
in [n]x̃in[n−m1]

=
P∑
p=1

M∑
m1=0

h̃p[0, . . . , 0,m1]x̃p−1
in [n]x̃in[n−m1],

(A.4)
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where x̃in[n] and x̃in[n − m1] can be expressed using their corresponding equivalent
baseband representation (cf. Section 2.2), which leads to

x̃out[n] =
P∑
p=1

M∑
m1=0

1√
2p
h̃p[0, . . . , 0,m1]

(
xin[n]e 2πfcnTs + x∗in[n]e−2πfcnTs

)p−1

×
(
xin[n−m1]e 2πfc(n−m1)Ts + x∗in[n−m1]e−2πfc(n−m1)Ts

)
.

(A.5)

Using the binomial identity, the model output can be written as

x̃out[n] =
P∑
p=1

M∑
m1=0

1√
2p
h̃p[0, . . . , 0,m1]

×

 p−1∑
k1=0

(
p− 1
k1

)
xp−1−k1

in [n] (x∗in[n])k1 xin[n−m1]e 2πfcnTs(p−2k1)e−2πfcm1Ts

+
p−1∑
k2=0

(
p− 1
k2

)
xp−1−k2

in [n] (x∗in[n])k2 x∗in[n−m1]e 2πfcnTs(p−2−2k2)e 2πfcm1Ts

 .
(A.6)

Obviously, components of the model output fall in the surroundings of fc for odd p,
p − 2k1 = 1, and p − 2 − 2k2 = 1 for the first and second summation, respectively.
All other harmonic components are suppressed by the zonal filter (cf. Section 2.3).
Therefore, we have k1 = p−1

2 > 0, k2 = p−3
2 > 0, and the model output reads

x̃out[n] =
P∑
p=1

M∑
m1=0

1√
2p
h̃p[0, . . . , 0,m1]

×

 p−1∑
k1=0

(
p− 1
k1

)
x
p−1

2
in [n] (x∗in[n])

p−1
2 xin[n−m1]e 2πfc(n−m1)Ts

+
p−1∑
k2=0

(
p− 1
k2

)
x
p+1

2
in [n] (x∗in[n])

p−3
2 x∗in[n−m1]e 2πfc(n+m1)Ts

 .
(A.7)

Which can be simplified and the model output of the baseband first order deviation
reduced-based Volterra series can be written as

xout[n] =
P+1

2∑
p=1

M∑
m1=0

g2p−1,1[m1]|xin[n]|2(p−1)xin[n−m1]

+
P+1

2∑
p=2

M∑
m1=1

g2p−1,2[m1]x2
in[n]|xin[n]|2(p−2)x∗in[n−m1],

(A.8)

where gp,i[·] denotes the transformed complex-valued Volterra kernel of the system.
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A.4 Second Order Derivations

Starting with (A.1) for R = 2, the model output is

x̃out[n] =
P∑
p=1

h̃p[0, . . . , 0]x̃pin[n] +
P∑
p=1

x̃p−1
in [n]

M∑
m1=1

h̃p[0, . . . , 0,m1]x̃in[n−m1]

+
P∑
p=2

x̃p−2
in [n]

M∑
m1=1

M∑
m2=m1

h̃p[0, . . . , 0,m1,m2]x̃in[n−m1]x̃in[n−m2],
(A.9)

where x̃in[n], x̃in[n−m1], and x̃in[n−m2] can be represented by the respective equivalent
baseband signal (cf. Section 2.2). Therefore, the model output reads

x̃out[n] =
P∑
p=1

1√
2p
h̃p[0, . . . , 0]

(
xin[n]e 2πfcnTs + x∗in[n]e−2πfcnTs

)

+
P∑
p=1

(
xin[n]e 2πfcnTs + x∗in[n]e−2πfcnTs

)p−1

×
M∑

m1=1
h̃p[0, . . . , 0,m1]

(
xin[n−m1]e 2πfc(n−m1)Ts + x∗in[n−m1]e−2πfc(n−m1)Ts

)

+
P∑
p=2

(
xin[n]e 2πfcnTs + x∗in[n]e−2πfcnTs

)p−2 M∑
m1=1

M∑
m2=m1

1√
2p
h̃p[0, . . . , 0,m1,m2]

×
(
xin[n−m1]e 2πfc(n−m1)Ts + x∗in[n−m1]e−2πfc(n−m1)Ts

)
×
(
xin[n−m2]e 2πfc(n−m2)Ts + x∗in[n−m2]e−2πfc(n−m2)Ts

)
.

(A.10)



A.4. Second Order Derivations 73

Using the binomial identity, the model output can be written as

x̃out[n] =
P∑
p=1

p∑
k1=0

(
p

k1

)
1√
2p
h̃p[0, . . . , 0]xp−k1

in [n] (x∗in[n])k1 e 2πfcnTs(p−2k1)

+
P∑
p=1

p−1∑
k2=0

M∑
m1=1

(
p− 1
k2

)
1√
2p
h̃p[0, . . . , 0,m1]xp−1−k2

in [n] (x∗in[n])k2

× xin[n−m1]e 2πfcnTs(p−2k2)e−2πfcm1Ts

+
P∑
p=1

p−1∑
k3=0

M∑
m1=1

(
p− 1
k3

)
1√
2p
h̃p[0, . . . , 0,m1]xp−1−k3

in [n] (x∗in[n])k3

× x∗in[n−m1]e 2πfcnTs(p−2−2k3)e 2πfcm1Ts

+
P∑
p=2

p−2∑
k4=0

M∑
m1=1

M∑
m2=m1

(
p− 2
k4

)
1√
2p
h̃p[0, . . . , 0,m1,m2]xp−2−k4

in [n] (x∗in[n])k4

× xin[n−m1]xin[n−m2]e 2πfcnTs(p−2k4)e 2πfc(−m1−m2)Ts

+
P∑
p=2

p−2∑
k5=0

M∑
m1=1

M∑
m2=m1

(
p− 2
k5

)
1√
2p
h̃p[0, . . . , 0,m1,m2]xp−2−k5

in [n] (x∗in[n])k5

× xin[n−m1]x∗in[n−m2]e 2πfcnTs(p−2−k5)e 2πfc(−m1+m2)

+
P∑
p=2

p−2∑
k6=0

M∑
m1=1

M∑
m2=m1

(
p− 2
k6

)
1√
2p
h̃p[0, . . . , 0,m1,m2]xp−2−k6

in [n] (x∗in[n])k6

× x∗in[n−m1]xin[n−m2]e 2πfcnTs(p−2−k6)e 2πfc(m1−m2)

+
P∑
p=2

p−2∑
k7=0

M∑
m1=1

M∑
m2=m1

(
p− 2
k7

)
1√
2p
h̃p[0, . . . , 0,m1,m2]xp−2−k7

in [n] (x∗in[n])k7

× x∗in[n−m1]x∗in[n−m2]e 2πfcnTs(p−4−2k7)e 2πfc(m1+m2)Ts .

(A.11)

Obviously, components of the model output fall in the surroundings of fc when odd p,
p− 2k1 = 1, p− 2k2 = 1, p− 2− 2k3 = 1, p− 2k4 = 1, p− 2− 2k5 = 1, p− 2− 2k6 = 1,
and p− 4− 2k6 = 1. All other harmonic components are suppressed by the zonal filter
(cf. Section 2.3). Therefore, we have k1 = p−1

2 > 0, k2 = p−1
2 > 0, k3 = p−3

2 > 0,
k4 = p−1

2 > 0, k5 = p−3
2 > 0, k6 = p−3

2 > 0, and k7 = p−5
2 > 0 for the respective
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summation and the model output reads

x̃out[n] =
P∑
p=1

p∑
k1=0

(
p

k1

)
1√
2p
h̃p[0, . . . , 0]xin[n]

p+1
2 (x∗in[n])

p−1
2 e 2πfcnTs

+
P∑
p=1

p−1∑
k2=0

M∑
m1=1

(
p− 1
k2

)
1√
2p
h̃p[0, . . . , 0,m1]x

p−1
2

in [n] (x∗in[n])
p−1

2

× xin[n−m1]e 2πfc(n−m1)Ts

+
P∑
p=1

p−1∑
k3=0

M∑
m1=1

(
p− 1
k3

)
1√
2p
h̃p[0, . . . , 0,m1]x

p+1
2

in [n] (x∗in[n])
p−3

2

× x∗in[n−m1]e 2πfc(n+m1)Ts

+
P∑
p=2

p−2∑
k4=0

M∑
m1=1

M∑
m2=m1

(
p− 2
k4

)
1√
2p
h̃p[0, . . . , 0,m1,m2]x

p−3
2

in [n] (x∗in[n])
p−1

2

× xin[n−m1]xin[n−m2]e 2πfc(n−m1−m2)Ts

+
P∑
p=2

p−2∑
k5=0

M∑
m1=1

M∑
m2=m1

(
p− 2
k5

)
1√
2p
h̃p[0, . . . , 0,m1,m2]x

p−1
2

in [n] (x∗in[n])
p−3

2

× xin[n−m1]x∗in[n−m2]e 2πfc(n−m1+m2)Ts

+
P∑
p=2

p−2∑
k6=0

M∑
m1=1

M∑
m2=m1

(
p− 2
k6

)
1√
2p
h̃p[0, . . . , 0,m1,m2]x

p−1
2

in [n] (x∗in[n])
p−3

2

× x∗in[n−m1]xin[n−m2]e 2πfc(n+m1−m2)Ts

+
P∑
p=2

p−2∑
k6=0

M∑
m1=1

M∑
m2=m1

(
p− 2
k6

)
1√
2p
h̃p[0, . . . , 0,m1,m2]x

p+1
2

in [n] (x∗in[n])
p−5

2

× x∗in[n−m1]x∗in[n−m2]e 2πfc(n+m1+m2)Ts ,

(A.12)

which can be simplified and symmetric terms, i.e., cases when xin[n − m1]x∗in[n − m2]
equals x∗in[n−m1]xin[n−m2] can be considered. Therefore, the baseband representation
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of (A.12) can be written as

xout[n] =
P+1

2∑
p=1

g2p−1,0xin[n]|xin[n]|2(p−1)

+
P+1

2∑
p=1

M∑
m1=1

g2p−1,1[m1]|xin[n]|2(p−1)xin[n−m1]

+
P+1

2∑
p=2

M∑
m1=1

g2p−1,2[m1]x2
in[n]|xin[n]|2(p−2)x∗in[n−m1]

+
P+1

2∑
p=2

M∑
m1=1

M∑
m2=m1

g2p−1,3[m1,m2]x∗in[n]|xin[n]|2(p−2)xin[n−m1]xin[n−m2]

+
P+1

2∑
p=2

M∑
m1=1

M∑
m2=m1

g2p−1,4[m1,m2]xin[n]|xin[n]|2(p−2)xin[n−m1]x∗in[n−m2]

+
P+1

2∑
p=3

M∑
m1=1

M∑
m2=m1

g2p−1,5[m1,m2]x3
in[n]|xin[n]|2(p−3)x∗in[n−m1]x∗in[n−m2],

(A.13)

where gp,i[·] denotes the transformed complex-valued Volterra kernel of the system.
Moreover, the first and second, and the third and fifth summation can be merged such
that the model output of the baseband second order deviation reduced-based Volterra
series can be written as

xout[n] =
P+1

2∑
p=1

M∑
m1=0

g2p−1,1[m1]|xin[n]|2(p−1)xin[n−m1]

+
P+1

2∑
p=2

M∑
m1=1

M∑
m2=m1

g2p−1,3[m1,m2]x∗in[n]|xin[n]|2(p−2)xin[n−m1]xin[n−m2]

+
P+1

2∑
p=2

M∑
m1=0

M∑
m2=1

g2p−1,4[m1,m2]xin[n]|xin[n]|2(p−2)xin[n−m1]x∗in[n−m2]

+
P+1

2∑
p=3

M∑
m1=1

M∑
m2=m1

g2p−1,5[m1,m2]x3
in[n]|xin[n]|2(p−3)x∗in[n−m1]x∗in[n−m2]

(A.14)





Nomenclature

The following notation is used throughout the thesis whenever possible. If not, it is
explicitly stated.

a scalar constant
a random variable with PDF fa(a), mean µa, variance σ2

a, and auto-
correlation function raa(τ)

a(t) function with independent variable t
a[n] sequence with independent variable n
A(f) Fourier transform of a(t), i.e., A(f) = F {a(t)}
A[θ] discrete Fourier transform (DFT) of a[n], i.e., A[θ] = FD {a[n]}
a (column) vector
a (column) random vector with joint-PDF fa(a), mean µa, variance σ2

a,

and auto-correlation matrix Raa = E
{
aaH

}
ã(t) passband representation of a(t)
â estimate of a
A constant matrix of defined dimension
A random matrix of defined dimension
∗ complex conjugate
T transpose of a vector or matrix
H Hermitian (complex conjugate transpose) of a vector or matrix
E{·} expectation operator
Re{·} real part
Im{·} imaginary part
arg{·} angle of a complex-valued entity
F {·} Fourier transform
FD {·} discrete Fourier transform (DFT)
H{·} Hilbert transform
tr{·} trace of a square matrix
V {·} Volterra operator
VMP {·} memory polynomials operator
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VHS {·} Hammerstein model operator
VDDR,R {·} dynamic deviation reduction-based Volterra series operator, with de-

viation reduction order R
| · | absolute value
‖ · ‖p `p-vector norm
d·e ceiling function
∇ gradient



List of Abbreviations

3G 3rd Generation

ACEPR adjacent channel error power ratio

ACPR adjacent channel power ratio

ADC analog to digital converter

AM/AM amplitude modulation/amplitude modulation

AM/PM amplitude modulation/phase modulation

BIBO bounded-input bounded-output

BTS base transceiver station

CCDF complementary cumulative distribution function

DAC digital to analog converter

DFT discrete Fourier transform

DPD digital pre-distortion

ETPA envelope tracking power amplifier

FEC forward error correction

FIR finite impulse response

GMSK Gaussian Minimum Shift Keying

GSM Global System for Mobile Communications

IF intermediate frequency

IP3 third order intercept point
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80 List of Abbreviations

LMS least mean squares

LTE Long Term Evolution

LTI linear time-invariant

LS least squares

LUT look-up table

MSE mean square error

ε-NLMS ε-normalized least mean squares

NMSE normalized mean square error

OFDMA orthogonal frequency-division multiple access

PA power amplifier

PAE power added efficiency

PDF probability density function

PSD power spectral density

PAPR peak-to-average power ratio

RF radio frequency

VSA vector signal analyser

VSG vector signal generator

WCDMA Wideband Code Division Multiple Access
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