
Softw Syst Model
DOI 10.1007/s10270-017-0598-5

SPECIAL SECTION PAPER

Advanced and efficient execution trace management
for executable domain-specific modeling languages

Erwan Bousse1 · Tanja Mayerhofer1 · Benoit Combemale2 · Benoit Baudry3

Received: 24 June 2016 / Revised: 30 December 2016 / Accepted: 18 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract Executable Domain-Specific Modeling Lang-
uages (xDSMLs) enable the application of early dynamic
verification and validation (V&V) techniques for behavioral
models. At the core of such techniques, execution traces are
used to represent the evolution of models during their execu-
tion. In order to construct execution traces for any xDSML,
generic trace metamodels can be used. Yet, regarding trace
manipulations, generic trace metamodels lack efficiency in
time because of their sequential structure, efficiency in mem-
ory because they capture superfluous data, and usability
because of their conceptual gap with the considered xDSML.
Our contribution is a novel generative approach that defines
a multidimensional and domain-specific trace metamodel
enabling the construction and manipulation of execution
traces for models conforming to a given xDSML. Efficiency
in time is improved by providing a variety of navigation paths

Communicated by Prof. Alfonso Pierantonio, Jasmin Blanchette, Fran-
cis Bordeleau, Nikolai Kosmatov, Prof. Gabriele Taentzer, Prof.Manuel
Wimmer.

B Erwan Bousse
bousse@big.tuwien.ac.at
https://big.tuwien.ac.at/people/ebousse/

Tanja Mayerhofer
mayerhofer@big.tuwien.ac.at
https://big.tuwien.ac.at/people/tmayerhofer/

Benoit Combemale
benoit.combemale@irisa.fr
http://people.irisa.fr/Benoit.Combemale/

Benoit Baudry
benoit.baudry@inria.fr
http://people.irisa.fr/Benoit.Baudry/

1 TU Wien, Vienna, Austria

2 IRISA - University of Rennes 1, Rennes, France

3 Inria, Rennes, France

within traces, while usability and memory are improved by
narrowing the scope of trace metamodels to fit the consid-
ered xDSML. We evaluated our approach by generating a
trace metamodel for fUML and using it for semantic differ-
encing, which is an important V&V technique in the realm
of model evolution. Results show a significant performance
improvement and simplification of the semantic differencing
rules as compared to the usage of a generic trace metamodel.

Keywords Model execution · Domain-specific languages ·
Execution trace

1 Introduction

A large amount of domain-specific modeling languages
(DSMLs) has been proposed and used to model the behavior
of systems [6,25,31,52,55]. Early dynamic verification and
validation (V&V) techniques, such as omniscient debugging
[9,16], semantic differencing [43], and runtime verification
[44], are necessary to ensure that such models are correct.
These techniques require models to be executable, which
can be achieved by defining the execution semantics of the
DSMLs used to define them. To that effect, a lot of efforts
have been made to provide facilities to design so-called exe-
cutable DSMLs (xDSMLs) [5,14,22,33,49,63,65].

While an executable model is an intentional represen-
tation1 of some behavior, dynamic V&V techniques need
more extensional representations2 of behavior over time. A
very common representation of a model’s behavior is the
execution trace, which records relevant information about
an execution over time. While a trace can take numerous

1 e.g., {t ∈ N | f (t)}.
2 e.g., { f (1), f (2), f (3)}.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0598-5&domain=pdf
http://orcid.org/0000-0003-0000-9219
http://orcid.org/0000-0001-6205-0992

E. Bousse et al.

forms, we focus in this work on traces containing the execu-
tion states reached by a model during the execution and the
execution steps that were responsible for state changes. All
previously mentioned V&V approaches rely on execution
traces: omniscient debugging relies on an execution trace to
revisit a previous execution state; semantic differencing con-
sists in comparing execution traces of two models in order
to identify the semantic variations between them; runtime
verification consists in checking whether or not an execution
trace satisfies a temporal property.

Consequently, providing execution trace management
facilities is essential to support dynamic V&V for xDSMLs,
which leads to two significant prerequisites: (1) the defini-
tion of an execution trace metamodel to represent traces of
executable models of a particular domain in an accurate and
usable way, and (2) the ability to manipulate large traces
efficiently, i.e., with good scalability in both memory and
manipulation time.

The first prerequisite can be partly fulfilled with an exist-
ing generic trace metamodel, such as the ones defined and
used in [32] and [43]. However, these metamodels cannot
take the domain of an xDSML explicitly into account. This
limits their usability, making the development of domain-
specific analyses of traces more difficult. To cope with this,
a domain-specific trace metamodel can be considered, like
the trace metamodel defined for fUML in [48]. Yet, an exist-
ing domain-specific trace metamodel cannot be used for a
new xDSML since it is bound to a particular domain. Fur-
thermore, designing a new domain-specific trace metamodel
is a time consuming and error-prone task [41]. These lim-
itations lead to the development of generative approaches
[27,51] that produce trace metamodels that are tailored to
given xDSMLs.

However, existing generic and generative approaches for
trace modeling do not fulfill the second prerequisite. In par-
ticular, they only offer to explore a trace by enumerating all
execution states and steps one by one. This can only scale
linearly in manipulation time at best. Moreover, traces gen-
erated with existing approaches have a substantial memory
usage since these approaches rely on producing clones3 of
the complete model to capture execution states. As an exam-
ple, part of the ProMoBox approach by Meyers et al. [51]
consists in automatically generating a domain-specific trace
metamodel for a considered xDSML, but such metamodel
defines a trace as a sequence of clones of the complete exe-
cuted model.

In this paper, we propose a novel generative approach for
defining trace metamodels that are domain-specific and that
enable efficient trace manipulations. This is achieved by the
following contributions:

3 Also known as snapshots or copies.

1. A generic approach to automatically generate a multi-
dimensional and domain-specific trace metamodel for
a given xDSML: The generated metamodel provides a
data structure to capture domain-specific concepts in the
execution traces. The generation process relies on the
analysis of the xDSML’s definitions of execution states
and steps, to incorporate these concepts in the meta-
model. Furthermore, the generated trace metamodel is
multidimensionalmeaning that it provides alternative and
combinable navigation paths to efficiently traverse and
process traces.

2. A generic and generative approach to automatically
derive domain-specific trace constructors: The gener-
ated constructors can be embedded in a model execution
environment for the construction of execution traces con-
forming to the multidimensional and domain-specific
trace metamodel generated for an xDSML.

3. An annotation mechanism for the customization of trace
metamodels and trace constructors for particular appli-
cation contexts of xDSMLs: Tracing annotations allow
to restrict the level of granularity and the level of detail of
execution traces to those execution states and steps that
are required for a given trace analysis task. Such cus-
tomized trace metamodels provide better usability and
execution traces with smaller memory usage.

We evaluate our approach by generating a complete and
a customized multidimensional and domain-specific trace
metamodel for the real world xDSML Foundational UML
(fUML) [55]. We compare the generated trace metamod-
els with a generic trace metamodel that relies on model
cloning. We measure both their usability and scalability
for performing semantic model differencing [43]. We also
measure the runtime overhead induced by the construction
of execution traces, and the memory consumption of these
traces. Our results show that the proposed trace structure
leads to a simplification of the semantic differencing rules,
and to an improved performance of the semantic differencing
rules. In addition, our approach induce a very small overhead
when constructing traces during the execution ofmodels, and
reduce significantly the memory consumption of traces as
compared to generic clone-based traces.

This paper is a significant extension of our previous
work [10]. The extensions comprise (i) the inclusion of exe-
cution steps into domain-specific trace metamodels, (ii) the
generation of trace constructors, (iii) the use of tracing anno-
tations to customize trace metamodels, (iv) the evaluation of
the runtime overhead caused by the construction of traces,
(v) the evaluation of the memory consumption of traces, and
(vi) a more thorough review of related work. Some of these
ideas were already coarsely described or mentioned in our
previous work on omniscient debugging [9].

123

Advanced and efficient execution trace management for executable domain-specific modeling…

The remainder of the paper is organized as follows:

– Section 2 presents background information on executable
domain-specific modeling languages.

– Section 3motivates the problem domain by looking at the
state of the art and explaining our ideas for overcoming
existing limitations.

– Section 4 gives an overview of our approach.
– Section 5 presents our approach for generating multidi-
mensional and domain-specific trace metamodels.

– Section 6 explains the generation of trace constructors to
make use of generated trace metamodels.

– Section 7 presents our customization mechanism for tai-
loring trace metamodels to the application context of an
xDSML.

– Section 8 presents the implementation of our approach
within the language and modeling workbench GEMOC
Studio.

– Section 9 discusses the evaluation of our approach in the
domain of semantic model differencing.

– Section 10 discusses related work.
– Section 11 summarizes the contributions of this paper.
– Section 12 provides an outlook on future work.

2 Background

In this section, we first present what constitutes an xDSML,
then give an example of an xDSML, and finally provide our
definition of what constitutes an execution trace.

2.1 Domain-specific modeling languages

A very common way to define the abstract syntax of a do-
main-specific modeling language (DSML) is by defining a
metamodel. While there are many definitions of this term
in the literature, we consider a metamodel to be an object-
oriented model. Therefore, a metamodel is composed of me-
taclasses, each being composed of properties. A property
is either an attribute (typed by a datatype, e.g., integer) or
a reference to another metaclass. In addition, a metamodel
possesses static semantics, which are additional structural
constraints thatmust be satisfied by conformingmodels (e.g.,
multiplicities, containment references, and invariants on the
structure of models).

Since a metamodel is a set of metaclasses, we consider
a model as a set of objects that are instances of these meta-
classes, and that satisfy the static semantics of themetamodel.
This is commonly referred to as the conformity relationship
between a model and its metamodel.

2.2 Executable domain-specific modeling languages

To execute a behavioral model and henceforth be able to
use dynamic V&V techniques, the execution semantics of

the considered DSML must be defined. We call executable
domain-specific modeling language (xDSML) a DSML that
aims at supporting the execution of models, and we call exe-
cutable model a model that conforms to an xDSML.

There are two general approaches to define execution
semantics, namely translational and operational semantics.
Translational semantics consist in an exogenousmodel trans-
formation that translates a model m into a model m′ that
conforms to a different executable language, in order to
rely on the execution semantics of the latter. Operational
semantics consist in an endogenous model transformation
that changes the execution state of a model m. In this paper,
we only deal with operational semantics, although our work
can be directly adopted to translational semantics as long as
a mechanism is provided to translate back the results of the
execution (e.g., the execution states) into the source domain
[12].

To define the execution state of a model, we consider
that the abstract syntax metamodel of an xDSML can be
extended into an execution metamodel with new properties
and metaclasses. To this end, a mechanism equivalent to the
well-known packagemerge operation of UML andMOF [53,
56] can be used. Note that in practice, existing tools and
approaches use different but similar extensionmechanisms—
e.g., Kermeta [40] uses aspect weaving, xMOF [49] uses
generalization, Hegedüs et al. [35] use separate metaclasses.

Next, we call execution transformation the model trans-
formation that changes the execution state of a model. We
consider this transformation to be endogenous (i.e., both
input and output models conform to the execution meta-
model) and to be composed of a set of transformation rules,
each defining a subset of the changes performed on the execu-
tion state. Depending on the model transformation language
paradigm, rules can take different forms: In a declarative
language, such as VIATRA [18] and ATL [39], they are
composed of a source pattern and a target pattern and are
executed using pattern matching; in imperative languages,
such as Kermeta [40] and xMOF [49], they are operations
that can call one another, one being the entry point start-
ing the transformation. To avoid having to duplicate most of
the model for the execution, we consider this transformation
to be in-place (i.e., the executed model is directly modified).
This hypothesis takes into account that observing the in-place
modifications made to a single model is a common pattern
when defining tools for xDSMLs (e.g., graphical animation).

Because one of the purpose of xDSMLs is to analyze the
behaviors of models, an important concern is to be able to
observe the evolution of the execution state during the appli-
cation of the execution transformation. In that respect, at least
two problems must be taken into account:

– Conformity: By definition, it is only guaranteed that the
executed model conforms to the execution metamodel

123

E. Bousse et al.

before and after the application of the complete model
transformation responsible for the execution. Yet, the
goal is to observe the model during the transformation,
during which conformity is not guaranteed.

– Atomicity: The semantics of a language may specify
what are the atomic4 changes that can be made to the
execution state, i.e., changes during which the execution
state is not consistent and should not be observed. A first
example is a Java program, which reaches a new consis-
tent state only after the execution of a complete statement,
while the intermediate changes in the stack of the virtual
machine are not observable. A second example is a Petri
net, where an atomic change is the firing of a transition
(i.e., remove tokens from input places and add tokens to
output places), while the intermediate removals or addi-
tions of tokens are not observable.

Therefore, to be observable, an execution transforma-
tion must: (1) be explicitly partitioned into distinct atomic
changes and (2) ensure conformity of the model to the exe-
cution metamodel right before and after each atomic change.
In this work, we consider that this is accomplished through
step rules, which are designated rules of the model trans-
formation that represent relevant changes in the model from
the domain point of view. More precisely, considering the
execution as a sequence of events beginStepRule (when the
execution of a step rule starts) and endStepRule (when the
execution of a step rule ends): Conformity must be guaran-
teed when such events occur, and there is one atomic change
between each pair of successive events (e.g., inside a cou-
ple 〈beginStepRule, endStepRule〉 if a step rule does not call
another step rule, or inside 〈beginStepRule, beginStepRule〉
if a step rule calls another step rule).

For example, a step rule may specify the complete execu-
tion of a Petri net, or the firing of a Petri net transition. As
a comparison, a non-step rule may add tokens to the output
places of a transition without removing tokens from the input
places: It is an intermediate change that leads to a Petri net
that indeed conforms to the execution metamodel, but whose
marking should not be observed.5

Lastly, we consider one additional element of operational
semantics: In order to execute a model originally expressed
with the abstract syntax metamodel, the initialization func-
tion translates such a model into a model conforming to the
execution metamodel.

4 This term comes from the field of database systems where it
refers to transactions comprising actions that are all executed indi-
visibly to ensure that the transaction preserves the consistency of the
database [29].
5 While this example shows that (conformity � atomicity), note that
an intermediate change may also break conformity, as is the case in
many model transformations.

Definition 1 An xDSML is defined by:

– An abstract syntax, that is a metamodel.
– Operational semantics, composed of:

– An execution metamodel, that defines the execution
state of executed models by extending the abstract
syntax with new properties and metaclasses using
package merge, or any similar mechanism.

– An initialization transformation, that is an exoge-
nous model transformation that transforms a model
conforming to the abstract syntax into a model con-
forming to the execution metamodel, while at least
preserving the content of the input model.6

– An execution transformation, that is an in-place
model transformation that modifies a model con-
forming to the execution metamodel by changing
values of dynamic fields and by creating/destroying
instances of metaclasses introduced in the execution
metamodel. The subset of transformation rules that
are considered observable are called step rules.

For more precision, we call static a metaclass defined in
the abstract syntax that is not extended by the execution
metamodel with new properties. Likewise, we call static a
property defined in the abstract syntax. At the model level,
we also call static an object instance of a static metaclass,
and an object’s field that defines the object’s value(s) for a
static property. During the execution of the model, a static
field cannot change, and a metaclass defined in the abstract
syntax cannot be instantiated (e.g., it is not possible to add
new transitions to a running Petri net).

In a similar fashion, we call dynamic a metaclass or a
property introduced in the execution metamodel. A dynamic
metaclass can either be an extension of a class of the abstract
syntax, or a new metaclass only composed of dynamic prop-
erties. At the model level, we also call dynamic an instance
of a dynamic metaclass, and an object’s field that defines the
object’s value(s) for an dynamic property. During the exe-
cution of the model, a dynamic field can change, and a new
dynamic metaclass (i.e., only defined in the execution meta-
model) can be instantiated.

Figure 1 shows an example of a simple Petri net xDSML.
On the top left corner, its abstract syntax is depictedwith three
metaclasses Net, Place and Transition. Next to the abstract
syntax, the execution metamodel is shown. It extends the
metaclass Place using package merge with a new dynamic

6 For each object o of the input model conforming to a metaclass c, an
instance oexe of the corresponding execution metaclass cexe is created
and filled with the same values. This constraint implies that this trans-
formation is not an arbitrary translation to a completely different target
language—i.e., we are not in the case of translational semantics—but
in the preparation of an execution state for an upcoming execution.

123

Advanced and efficient execution trace management for executable domain-specific modeling…

Abstract Syntax

 input
1..*
 output
1..*

Net

Place
 name: string
 initialTokens: int

Transition
 name: string

 transitions
*

 places
*

imports

merges

Execution Metamodel

Place
 tokens: int

: while there is an enabled transition, fires it.
 : returns true if tokens > 0 for each input Place, false otherwise.
 : removes a token from each input Place and adds one to each output Place.

 : adds a token to a Place
 : removes a token from a Place

run(Net)
isEnabled(Transition)
fire(Transition)
addToken(Place)
removeToken(Place)

@Step

@Step

Fig. 1 Petri net xDSML

property tokens. The initialization function (not shown)
transforms each original object (i.e., a Place object with-
out a tokens field) into an executable object (i.e., a Place
objectwith a tokensfield) as defined in the executionmeta-
model. It also initializes each tokens field with the value
of initialTokens. At the bottom, the descriptions of
the rules defined in the operational semantics are depicted.
When called, these rules may change the tokens fields of
the different Place objects, with run being the entry point of
the transformation. The label @Step is used to show which
transformation rules are step rules. By labeling both run and
firewith@Step, we specify that themodel is observable only
before and after the application of these rules, i.e., before and
after the execution (since run is the entry point) and before
and after firing transitions. The reason for this choice is that,
according to Petri nets semantics, the firing of a transition
is an atomic change. Hence, we should not observe a state
after having only removed tokens from input places without
adding tokens to output places, but only after the complete
firing of a transition.

Algorithm 1: run
Input:
n : the Net object to run

1 begin
2 tenabled :∈ {t ∈ n.transitions | isEnabled(t)}
3 while tenabled �= null do
4 fire(tenabled)
5 tenabled :∈ {t ∈ n.transitions | isEnabled(t)}

Algorithm 1 shows the definition of the run transforma-
tion rule. First it finds an initially enabled transition using the
isEnabled rule (line 2). Then it continuously fires enabled

Algorithm 2: fire
Input:
t : the Transition object to fire

1 begin
2 foreach p ∈ t.input do
3 removeToken(p)

4 foreach p ∈ t.output do
5 addToken(p)

transitions using the fire rule, until no more transition is
enabled (lines 3–5). Algorithm 2 shows the definition of the
fire transformation rule. It first iterates over the input Place
objects to remove one token from each input place of the tran-
sition using the removeToken rule (lines 2–3). Then it iterates
over the output places to add one token to each output place
using the rule addToken (lines 4–5).

2.3 Execution trace

As we have seen in Sect. 2.2, the operational semantics of an
xDSML are based on a model transformation composed of
transformation rules. More precisely, a subset of these rules
are called step rules and produce consistent and observable
changes of the execution state of a model.

We call execution step the application of a step rule.
More precisely, we draw a distinction between a small step7

and a big step,8 the latter being composed of multiple exe-
cution steps. Big steps imply that the considered model
transformation language gives the possibility to call or use

7 Sometimes called micro-step [16,34].
8 Sometimes calledmacro-step [16,34], combo step [24], or compound
step [34].

123

E. Bousse et al.

Fig. 2 Example of Petri net execution trace represented using concrete syntax

a transformation rule within another transformation rule. If
a step rule calls another step rule, then the execution of the
former constitutes a big step. This call can be indirect, e.g.,
within the call of a non-step rule during the big step. Lastly,
if a step rule never calls another step rule, then the execution
of the former constitutes a small step.

Definition 2 An execution step is the application of a step
rule. An execution step that is not composed of other steps
is called a small step, while an execution step composed of
multiple steps is called a big step.

As an example, the Petri net xDSMLdepicted in Fig. 1 has
two step rules: run and fire. The definition of fire inAlgorithm
2 shows that it never relies on another step rule. Therefore,
the application of fire results in a small step. However, the
definition of run in Algorithm 1 shows that it relies on the
step rule fire. Hence, the application of run results in a big
step, composed of a number of fire small steps.

We call execution state the set of all values of all dynamic
fields of an executed model, i.e., the values of the fields
defined by properties introduced in the executionmetamodel,
at a certain point in time of the execution. The execution state
of amodel changes each time a rule of the execution transfor-
mation modifies the value of some dynamic field, or creates
a new dynamic object. Note that, at a given point in time,
an object that was previously created during the execution is
indirectly part of the execution state, since its fields are all
dynamic.

Definition 3 An execution state is the set of the values of all
dynamic fields of a model at a certain point in time of the
execution. The execution state of a model is changed by the
application of rules of the execution transformation.

To define the concept of execution trace, we leverage on
existing trace theory from multiple domains, such as model
checking [4], runtime verification [44], or more generally
temporal logics [58], although we focus in this work on the
finite and non-exhaustive exploration of a system’s behavior.
While in practice execution traces can take various forms
(e.g., list of events, tree of method calls, list of memory
dumps), we consider in this work that an execution trace
is a sequence of execution states and execution steps. More

precisely, we consider that an execution trace records all exe-
cution states of amodel, aswell as the execution steps causing
changes on the model’s execution state.

Definition 4 An execution trace is a sequence of execution
states and execution steps (both small steps and big steps)
responsible for the state changes.

Figure 2 shows an example of an execution trace obtained
by executing a Petri net model using the operational seman-
tics of the xDSML shown in Fig. 1. At the bottom, three
execution states are depicted using the concrete syntax rep-
resentation of the xDSML. At the top, two small steps are
recorded: first the application of fire on the transition t1, then
on t2. Both are part of the big step that is the application of
run. This execution trace gives us all the required informa-
tion to understand and analyze this execution: We know how
the marking of the Petri net evolved, and we know which
transitions were fired and in which order.

3 Motivation

In this section, we first introduce three requirements we iden-
tified for trace metamodels, then we present the limitations
of existing solutions, and finally we present our ideas for
complying with these requirements.

3.1 Requirements for an execution trace metamodel

In our previous work [8], we highlighted a number of issues
that must be considered when constructing and manipulating
execution traces. In particular, the potentially large size of a
trace compromises the capacity to query it in a reasonable
time. For instance, if some element of an executable model
only changed at the end of an execution, we might still have
to iterate through all states stored in the corresponding trace
before noticing that change, whichmight be an issue for large
execution traces. Moreover, loading a large trace in memory
can be a hindrance when resources are limited.

Another issue is to manage the manipulation complex-
ity of trace models. Trace analyses can either be generic
(e.g., computing the number of different execution states or

123

Advanced and efficient execution trace management for executable domain-specific modeling…

the amount of performed execution steps), or be domain-
specific (e.g., determining howmany tokens traversed a Petri
net place). In the former case, manipulations are simple and
the structure or content of the trace has little influence on
the complexity of the analysis task. However, in the latter
case, manipulations handle domain-specific data that can be
arbitrarily complex depending on the considered xDSML.
Hence, in such cases, defining the right analysis can be error-
prone and difficult.

A good illustration of these issues is semantic differenc-
ing [43]. First, it is a hard problem because traces tend
to be large and therefore expensive to process. But more
importantly, semantic differencing consists in performing
domain-specific analyses of traces, since they are written in
accordancewith the semantics of a specific xDSML, andmay
therefore rely on complex domain-specific data and proper-
ties.

To sum up, we consider the following requirements on a
good trace metamodel:

Scalability inmanipulation time. It should provide good scal-
ability in manipulation time when manipulating large
traces, i.e., traces with many state changes.

Scalability inmemory. Likewise, it should provide good scal-
ability in memory when loading large traces.

Usability. It should provide good usability for domain-
specific analyses, e.g., by facilitating the manipulation
of traces containing complex domain-specific data.

Trace construction overhead. Using such a trace metamodel
to construct an execution trace during the execution of a
model should induce an acceptable overhead.

3.2 Limitations of existing trace formats and approaches

For a long time, considerable effort has been made to define
both a variety of trace formats and approaches to define new
trace formats.We call trace format a data structure describing
the content of execution traces. With this term, we include
metamodels (as defined in Sect. 2.1), but alsoASCII or binary
formats, which can all be used in practice for trace construc-
tion, persistence (i.e., serialization into files or storage into a
database system) or analysis.9 In the following paragraphs,
we highlight the limitations of different categories of formats
and we present crosscutting problems they all share.

Existing generic trace formats. Few approaches [7,21,32,
43,63] allow the capture and the manipulation of generic

9 However, note that we do not include purely theoretical definitions,
such as the notion of execution trace from the realm of model check-
ing [4], which is only used for laying formal foundations, while model
checkers concretely rely on data structures of a different nature, such
as binary decision diagrams (BDDs).

traces for any kind of execution from any kind of xDSML.
However, usability is hindered regarding domain-specific
trace manipulations, since relevant concepts related to the
execution (i.e., concepts defined in the executionmetamodel)
are not directly accessible. For instance, the concept of a Petri
net token would not be present in a generic trace format.

Existing domain-specific trace formats. Most existing trace
formats are domain-specific [2,19,23,26,30,48,54,64,64],
hence specific to a selection of concerns, such as parallel
software [23], operating systems [64], or to a specific xDSML
[48]. Hence, while a domain-specific trace format may be
relevant for specific xDSMLs, it is unlikely to be convenient
to define the execution traces of a given arbitrary xDSML.For
instance, a “system call” (from [64]) or an “fUML activity
execution” (from [48]) are concepts that are not relevantwhen
constructing an execution trace for a Petri net model. This
semantic gap between the concepts defined in an existing
domain-specific trace format and the domain concepts of a
particular xDSMLmakes it impossible to reuse such formats
for a given arbitrary xDSML.

Definition of new domain-specific trace formats. In order
to take into account any possible xDSML while improving
usability for domain-specific trace manipulations, a possi-
ble solution is the manual definition of an ad hoc execution
trace format that is appropriate for the considered xDSML.
A way to achieve this is to rely on self-defined trace formats
[3,20,57,60] which aremeta-formats allowing the definition
of both the possible content of a trace and the trace itself in the
same model. Another possibility is to consider approaches
that provide a base trace metamodel along with some guide-
lines to define the complete domain-specific tracemetamodel
of an xDSML [13,34]. Yet, there are twomain problemswith
these ideas. First, dedicated trace management tools must be
manually developed along a trace format, which is expensive.
Second, even with appropriate meta-formats or approaches,
manually defining a trace format is likely to be a difficult task
[41].

A last but interesting possibility relies on the auto-
matic generation of a domain-specific trace metamodel.
Such generative solutions [27,51] give the possibility to also
automatically generate associated trace management tools.
Defining such generation procedure is not trivial, since the
possible contents of execution traces of any xDSMLs have to
be captured precisely.Yet it avoids having to define a domain-
specific trace metamodel by hand. Our contribution in this
paper belongs to this latter category while overcoming the
limitations discussed below of existing approaches.

Besides the issues specific to the different categories of
existing tracing approaches mentioned above, the following
limitations can be observed:

123

E. Bousse et al.

Linear structure. A limitation of almost all execution trace
formats lies in the linear structure they propose for repre-
senting traces. In other words, the only way to navigate in
a trace is by enumerating each captured execution state or
execution step one by one. Few exceptions, such as [23] or
[32], propose to browse an execution trace by focusing on
the captured values of specific model elements. This appears
as an interesting way to improve scalability in time.

Lack of a representation of execution states. The majority
of trace management approaches [2,19,20,30,47,48,54,57]
only capture events that occurred during an execution, such
as execution steps, and lack a representation of the execution
state, such as the values of the variables of a program. This is
partly due to the large size of traces, which leads to the neces-
sity of limiting the amount of information stored in them.
Yet, traces containing only steps must be replayed in order to
reconstruct the states, whereas traces containing states allow
direct analyses. Therefore, representing execution states is
important regarding the usability of a trace metamodel.

Use of model clones in generative solutions. Existing gen-
erative solutions to define domain-specific trace metamodels
[27,51] define an execution state as a clone of the executed
model. Hence, while this guarantees the capture of all the
execution data, static parts of the model are copied despite
the fact that they cannot change. This yields poor scalability
in memory, and also poor usability due to the excess of data
available in a trace. In addition, cloning amodel is very costly,
which means that it has a negative impact on the overhead
caused by the construction of a trace during the execution of
a model.

4 Approach overview

In this section, we first give intuitions and explain our rea-
soning to overcome the limitations of existing solutions, then
we give a complete overview of our approach.

4.1 Proposal and research questions

To overcome the limitations observed in existing trace
formats and approaches, and to better comply with the
considered requirements, the underlying intuitions of the
approach we propose are the following.

First, because generic trace formats provide little usabil-
ity for the definition of domain-specific trace manipulations,
the use of a domain-specific trace metamodel appears as a
natural solution. This intuition is empirically supported by
the very high number of domain-specific trace metamodels
used nowadays, aswe previously presented. Furthermore, the
benefits of narrowing the scope of a language to a domain are

well known [36,66], which means that defining a trace meta-
model specific to a language can bring similar advantages.
In particular, providing concepts of the xDSML directly in
the trace metamodel can provide good usability for defin-
ing domain-specific manipulations. In [48], we followed this
idea by defining manually a complete trace metamodel for
fUML, which showed many benefits for analyzing execu-
tions of fUML models. Consequently, to improve usability,
our first resolution is to rely on domain-specific trace meta-
models for capturing traces of xDSMLs.

Second, manually defining a domain-specific trace meta-
model for each xDSML has several disadvantages. In addi-
tion to being a tedious and error-prone task, it is necessarily
followed by the task of defining domain-specific trace analy-
sis and visualization tools. In contrast, generic trace formats
can easily benefit from tools defined once for every possi-
ble xDSML, but they do not meet our usability requirement.
Therefore, similarly to [27,51], our second resolution is to
go from generic trace metamodels to a generic generative
meta-approach to define domain-specific trace metamodels.
More precisely, we propose to automatically derive a com-
plete domain-specific trace metamodel using the definitions
of execution state and steps of an xDSML. This avoids the
difficulty of defining domain-specific tracemetamodelsman-
ually, and makes it possible to automatically provide suitable
tools for manipulating domain-specific traces.

Third, as we already mentioned, most existing trace for-
mats only provide support to browse an execution trace in a
linear way, i.e., by enumerating each captured execution state
or execution step.Yet, there are in factmany imaginableways
to browse an execution trace. Having more navigation paths
at disposal can enable amore efficient browsing of traces, and
hence provide improved scalability in manipulation time. An
example is finding the next value change of a given model
element regardless of any other changes in the model. Such
a query can be done easily by traversing the complete trace,
yet reifing it as a navigation path dedicated to the investi-
gated model element can avoid browsing the whole trace.
Consequently, to improve scalability in time, we propose to
create multidimensional trace metamodels similarly to [23]
or [32], i.e.,metamodels that provide many navigation paths
to explore a trace.

Fourth, since capturing the executions states reached by a
model avoids having to replay an execution trace in order to
analyze it, we propose to capture the execution states reached
by a model in addition to the execution steps that led to them,
thereby improving usability of our approach.

Lastly, due to the drawbacks of model cloning for captur-
ing an execution trace, we propose to carefully and precisely
capture in a trace metamodel only the concepts effectively
required in a trace. By doing so, an execution state would
only contain the data necessary for performing trace analyses,

123

Advanced and efficient execution trace management for executable domain-specific modeling…

which suggests better scalability in memory, better usability,
and a smaller trace construction overhead.

In a nutshell, our proposal is an approach to automati-
cally generate a multidimensional and domain-specific trace
metamodel specific to an existing xDSML, and possibly also
specific to a set of trace analyses.

To evaluate our approach, we consider a comparison to
a linear generic trace metamodel that relies on the cloning
of the complete executed model after each execution step,
and that does not provide advanced navigation facilities. We
evaluate the relevance of our contributions with respect to
the following research questions:

RQ1 Can a multidimensional domain-specific trace meta-
model provide a smaller trace manipulation time
compared to a linear generic trace metamodel?

RQ2 Can a multidimensional domain-specific trace meta-
model provide smaller memory consumption com-
pared to a linear generic trace metamodel?

RQ3 Can a multidimensional domain-specific trace meta-
model simplify the definition of domain-specific trace
manipulations compared to a linear generic trace
metamodel?

RQ4 Can a multidimensional domain-specific trace meta-
model provide a smaller trace construction overhead
compared to a linear generic trace metamodel?

4.2 Considered process

In the following, we present a complete overview of our
approach, which is shown in Fig. 3. Elements in gray are
part of our approach or are generated by our approach.

Definition and tooling of an xDSML. As we explained in
Sect. 2.2, the first step toward the execution of models is the
definition of an xDSML a . To simplify Fig. 3, only the
abstract syntax, execution metamodel, and execution trans-
formation are depicted.

Next, the main part of our approach consists of a pair
of generators b that take as input the definition of the
xDSML. Two components are generated: a multidimen-
sional domain-specific execution trace metamodel c , and

a domain-specific trace constructor d , whose genera-
tion procedures are presented in Sects. 5 and 6, respec-
tively.

To customize the trace metamodel for a given set of trace
analyses (subsequently called application context), a set of
tracing annotations e can be used to parametrize the pair
of generators. These annotations point to elements of the
execution metamodel (e.g., a subset of the dynamic fields)
and elements of the execution transformation (i.e., a subset of
step rules) that must be traced, while the remaining elements
can be ignored. The use of these annotations results in the

production of a customized trace metamodel along with a
corresponding trace constructor. This part of our approach is
presented in Sect. 7.

Now that a domain-specific trace metamodel precisely
scopes what are the possible execution traces of the con-
sidered xDSML, a domain-specific trace analysis f can be
defined by using the concepts of this metamodel. Given such
trace analysis, a complementary step of our approach is the
use of a static footprint extractor g to compute the static

metamodel footprint h of the considered trace analysis

f , i.e., the elements of the trace metamodel that are stat-
ically referenced by the analysis program or model. Then,
a tracing annotations generator i analyzes this footprint
in order to annotate the set of elements of the execution
metamodel that has to be traced for the analysis to work
properly. This set of annotations is used to generate a new
trace metamodel that can be seen as a refinement of the for-
mer one, since elements are only removed and not added.
Note that this regeneration can be done as many times
are required, especially if iterations are being made on the
trace analysis. This part of our approach is presented in
Sect. 7.5.

Execution of a model. After having defined an xDSML a ,

an executable model j conforming to the execution meta-
model can be executed. As explained in Sect. 2.2, such
execution consists in applying the execution transformation
to modify the execution state of the model.

From there, using the domain-specific trace constructor
c generated by our approach, an execution trace k

conforming to the generated trace metamodel d can be
produced. More precisely, the trace constructor must be noti-
fied by the execution transformation of the execution steps
that occur, so that the executable model can be observed at
relevant instants to construct the trace.

Finally, once an execution trace is available, a domain-
specific trace analysis f can be used to analyze the trace
for dynamic V&V purposes.

5 Generation of multidimensional domain-specific
trace metamodels

We propose a generative approach to define multidimen-
sional and domain-specific trace metamodels that are appro-
priate for efficiently constructing and processing traces. In
this section, we present this approach first by presenting the
technical challenges we had to overcome, second by explain-
ing our generation procedure based on the introduced Petri
net xDSML, and third by discussing the resulting benefits of
the approach.

123

E. Bousse et al.

Tracing
annotations

Execution
metamodel

Executable
model Execution trace

Multidimensional
domain-specific
trace metamodel

xDSML

Model

Element
that can be
generated

Depends on /
Uses
Conforms to

Produces

Modifies

Domain-specific
trace constructor

Execution
transformation

Model transformation
and/or analysis

Domain-specific
trace constructor

generator

A domain-specific
trace analysis

Static footprint
extractor

fc

d

e

a

gAnnotations
generator

Static metamodel
footprint

h

j

Abstract
syntax

i

k

Domain-specific
trace metamodel

generatorb

Fig. 3 Approach overview, with our contributions highlighted in gray

5.1 Observations and technical challenges

There are many possible ways to generate a domain-specific
trace metamodel for an xDSML. Regarding the execution
states, a simple yet working idea is to reuse the complete
execution metamodel of the xDSML in the trace metamodel.
As the executed model conforms to the execution meta-
model, we can clone it at each execution step and store it
as a state in the trace. While we presented such approaches
in Sect. 3.2, we present below their limitations in more
detail.

First, by cloning the whole model to store each execution
state, redundancies appear between the states regarding all
static fields (as they never change) and certain dynamic fields
(as they may not change in each step). This impacts both
usability (RQ3) and memory consumption (RQ2), although
the scalable model cloning approach that we presented in [7]
would mitigate this issue by sharing static data among clones
at runtime.

Second, the dynamic fields we are interested in are scat-
tered among the static fields, which may require complex
queries to access them within a state. This issue compromise
usability regarding the definition of domain-specific trace
manipulation (RQ3).

Lastly, such a trace metamodel does not provide any effi-
cient way to browse a trace, since the only possibility is
to enumerate each state one by one. Thus it would be, for
instance, tedious and inefficient to look for the next value of
a given dynamic field, compromising both scalability in time
(RQ1) and usability (RQ3).

From these observations, we identified three technical
challenges (TC):

(TC1) Narrowing the concepts introduced in a trace meta-
model, e.g., by focusing on the dynamic properties
of the execution metamodel.

(TC2) Avoiding redundancy in traces, e.g., by not storing
the same value twice consecutively for a dynamic
field.

(TC3) Providing alternative navigation paths, e.g., among
the sequence of values of a specific dynamic field.

5.2 Execution trace metamodel generation

Algorithm 3: Trace metamodel generation
Input:

mmas : the abstract syntax
mmexe : the execution metamodel

exeTransf : the execution transformation
Result:
mmtrace : the trace metamodel

1 begin
2 ctrace, cexeState, cstep, csmallStep, cbigStep ←

createBaseGenericClasses()
3 mmtrace ← {ctrace, cexeState, cstep, csmallStep, cbigStep}
4 foreach cexe ∈ {c ∈ mmexe | containsDynamicProperties(c)}

do
5 ctraced ← createClass()
6 mmtrace ← mmtrace ∪ {ctraced}
7 ctrace.createReferenceTo(ctraced, [0..∗], unordered)
8 if containsStaticProperties(cexe) then
9 corig ← getClassFromAbstractSyntax(cexe)

10 ctraced.createReferenceTo(corig, [1..1])

11 foreach p ∈ getDynamicPropertiesOf(cexe) do
12 cvalue ← createClass()
13 mmtrace ← mmtrace ∪ {cvalue}
14 cvalue.properties ← { copyProperty(p) }
15 ctraced.createReferenceTo(cvalue, [0..∗], ordered)
16 cvalue.createReferenceTo(ctraced, [1..1])
17 cexeState.createReferenceTo(cvalue, [0..∗], unordered)
18 cvalue.createReferenceTo(cexeState, [1..1])
19 foreach r ∈ exeTransf do
20 mapsteps ← createMap()
21 createStepClass(r,mapsteps,mmtrace, csmallStep, cbigStep)

22 replaceReferencesToExecutionMM(mmtrace,mmas,mmexe)

123

Advanced and efficient execution trace management for executable domain-specific modeling…

Fig. 4 Execution trace metamodel generated for the Petri net xDSML. Metaclasses in dark gray are always generated

Algorithm 3 shows our trace metamodel generation pro-
cedure. It relies on a recursive procedure createStepClass
(called in line 21 of Algorithm 3), that is defined in Algo-
rithm 4. Note that the algorithm is simplified for illustration
purposes, meaning that some parts are reduced to functions,
and that special cases, such as abstract metaclasses, are not
considered. The inputs of the procedure are the abstract
syntax (mmas), the execution metamodel (mmexe) and the
execution transformation (exeTransf) of an xDSML. The
procedure is independent from executable models, since the
obtained metamodel is valid for any execution trace of any
model of the considered xDSML. In the following para-
graphs, we explain the generation procedure based on the
Petri net xDSML, starting with trace concepts for captur-
ing the smallest unit of an execution state, i.e., an object’s
field values, up to the concepts for capturing the complete
execution state of a model. The trace metamodel generated
for the Petri net xDSML is shown in Fig. 4. Note that the
metaclasses Trace, ExecutionState, Step, SmallStep and
BigStep (shown in dark gray) are always created (lines 2–3
of Algorithm 3).

Capturing the values of fields (lines 11–14 of Algorithm 3).
At any given point in time, all dynamic fields of an object of
the executed model have a value. To represent such a value in
a trace, we create one metaclass per dynamic property of the

execution metamodel, and we copy this dynamic property
into this new metaclass (lines 12–14). This enables us to
capture each value of a dynamic field as an instance of this
generated metaclass. For Petri nets this means creating one
metaclass called TokensValue for the property tokens.
Thereby, we precisely narrow the trace metamodel to the
dynamic part of the execution metamodel (TC1).

Capturing the states of objects (lines 4–10, 15–16 of Algo-
rithm 3). The state of an object of the executed model at any
point in time is defined by the values of all its dynamic fields.
To represent all states reached by an object, we create one
class for eachmetaclass of the executionmetamodel contain-
ing at least one dynamic property (lines 4–6). In addition, we
make all instances of these generated metaclasses accessible
through a single instance of the metaclass Trace (line 7). For
Petri nets this means creating a metaclass TracedPlace for
the metaclassPlace, and a reference tracedPlaces from
the metaclass Trace.

An instance of such a generated metaclass shall contain
all values reached by all dynamic fields of an object of
the considered type in chronological order. This is achieved
by creating an ordered unbounded reference to each cor-
responding generated value metaclass discussed previously
(line 15). For Petri nets this means generating a reference
tokensSequence for the metaclass TracedPlace to the

123

E. Bousse et al.

metaclass TokensValue. When creating an execution trace,
one TracedPlace object will be created per Place object,
each storing a sequencetokensSequenceof all the values
reached by the tokens field of the respective Place object.
A first benefit of this structure is that we avoid redundancy
by creating a single object per value change of a dynamic
field (TC2). A second benefit is that such sequences provide
additional navigation paths in the trace, making it possible
to directly access all changes of one specific dynamic field
(TC3).

The last concern for capturing the state of an object is
that the object may also contain static fields, which remain
an important piece of information. Since the corresponding
static properties are all defined in a metaclass introduced in
the abstract syntax, our solution is to create a reference to
this metaclass (lines 8–10). For Petri nets this means adding
a reference originalObject for the traced metaclass
TracedPlace to the metaclass Place of the abstract syn-
tax. A TracedPlace object is thus linked to the Place object
whose states it captures.

Capturing the state of themodel (lines 17–18 of Algorithm3).
An execution state can be seen as the n-tuple of the values of
all dynamic fields in an executed model at a given point in
time. However, n is not xDSML-specific, butmodel-specific,
as the number of dynamic fields depends on the number of
objects in the executed model. For instance, in our Petri net
xDSML, n equals the number of tokens fields of one given
model, i.e., the number of Place objects.

In addition, n can change during the execution, as new
objects can be created for metaclasses introduced in the exe-
cution metamodel. To represent this n-tuple, we create a
bidirectional reference between each generated value meta-
class and the metaclass ExecutionState, which represents
one execution state of a model. By that means, an execu-
tion state references an unbounded set of values of dynamic
fields. For Petri nets this means introducing the references
tokensValues and states between the metaclasses
ExecutionState and TokensValue.

Capturing steps (lines 19–21 of Algorithm 3, and whole
Algorithm 4). An execution step occurs when a step rule of
the operational semantics is called. It has a starting state,
which is the execution state of the model at the instant of
the call, and an ending state, which is the execution state at
the instant the rule has finished. This is represented by the
referencesstartingState andendingStatebetween
the metaclassesExecutionState and Step. In addition, each
step transformation of the operational semantics is reified
into a metaclass of the same name (lines 3–5 of Algorithm
4), in which all parameters of the rule are copied (lines 6–7 of
Algorithm 4). The resulting metaclass inherits either Small-
Step if the rule does not call another step rule (lines 8–9 of

Algorithm 4: createStepClass
Input:

r : the step rule to transform into a step metaclass
mapsteps : a map with the step metaclass of each step rule
mmtrace : the trace metamodel in construction

ctrace : the trace root metaclass
csmallStep : the small step abstract metaclass
cbigStep : the big step abstract metaclass

1 begin
2 if r /∈ mapsteps.keys then
3 cstep ← createClass()
4 mmtrace ← mmtrace ∪ cstep
5 mapsteps ← mapsteps ∪ (r
→ cstep)
6 foreach p ∈ r.parameters do
7 cstep.properties ← paramToProperty(p)

8 if getStepRulesCalledBy(r) = ∅ then
9 cstep.superTypes ← csmallStep

10 else
11 cstep.superTypes ← cbigStep
12 csub ← createClass()
13 mmtrace ← mmtrace ∪ csub
14 cstep.createReferenceTo(csub, [0..∗], ordered)
15 csub.createReferenceTo(cstep, [1..1])
16 foreach rcalled ∈ getStepRulesCalledBy(r) do

17
createStepClass (rcalled,mapsteps,mmtrace,

ctrace, csmallStep, cbigStep)
18 ccalled ← mapsteps(rcalled)
19 ccalled.superTypes ← ccalled.superTypes ∪ csub

20 if containsImplicitSteps(r) then
21 cfill ← createClass()
22 mmtrace ← mmtrace ∪ cfill
23 cfill.superTypes ← {csmallStep, csub}
24 ctrace.createReferenceTo(cstep, [0..∗], ordered)

Algorithm 4), or BigStep otherwise (10–11 of Algorithm 4).
For Petri nets, this means creating the metaclasses FireStep
inheriting from SmallStep, and RunStep inheriting from
BigStep. By copying the parameters of the rules, each of
these two metaclasses is given a reference caller, to be
able to point to the Net or Transition object concerned by
the rule.

A step can be part of a big step, which is represented
by the derived references parentStep and subSteps.
This means that multiple steps may start (e.g., a big step and
the first small step it contains) or end (e.g., a big step and
the last small step is contains) in the same execution state.
For instance, in the simple Petri net trace shown in Fig. 2,
fire is called after run while the model is still in the ini-
tial state, and later both run and fire end in the final state.
This is represented by the references startedSteps and
endedSteps between the metaclasses ExecutionState
and Step.

More precisely, a big step is the root of a tree whose
internal nodes are big steps and whose leaves are small
steps. To match the operational semantics as precisely as

123

Advanced and efficient execution trace management for executable domain-specific modeling…

Fig. 5 Illustration of possible implicit steps within the run step rule

possible (TC1), we restrict the steps contained by a big
step to the ones that may occur within its corresponding
model transformation rule through the creation of a dedi-
cated abstract metaclass (lines 12–13 of Algorithm 4). In
addition, we rely on containment references to enforce the
tree structure that is induced by big steps (lines 14–15 of
Algorithm 4). For Petri nets, this means creating a metaclass
RunSubStep representing all sorts of steps that may occur
during a RunStep step, and two references subSteps and
runParentStep.

Then, step metaclasses of all called step rules are created
through a recursive call of the step metaclass creation pro-
cedure (Algorithm 4), and through the use of a map that
associates each rule to its step metaclass (lines 16–19 of
Algorithm 4). The first line of the algorithm is the stop-
ping criterion to handle the recursion: We only create once
the metaclass corresponding to a rule. For Petri nets, this
means that the metaclass FireStep is defined as a subclass
of RunSubStep, since this is the only operation called by
run.

Whilemost changesmade during a big step aremade by its
substeps, some intermediate changes can bemade directly by
the big step itself, i.e., outside of the substeps. For instance,
a big step rule may start by making a change to the execution
state before calling a first small step rule. Even though such
change is not explicitly isolated within a dedicated transfor-
mation rule, it is nonetheless technically a small execution
step. We call such anonymous small step an implicit step.
These steps are taken into account by creating one dedicated
metaclass per big step rule (lines 20–23 of Algorithm 4).

In the case of Petri nets, it is possible for the run opera-
tion to be responsible for other model changes in between
the calls to fire. Figure 5 depicts such situation: Before
and after calling fire, the code of run might be respon-
sible for model changes, annotated (1) and (2). In the
generated tracemetamodel, they are represented by themeta-
class RunImplicitStep inheriting both from SmallStep and
RunSubStep. Note that such generation could be avoided
provided an analysis of the run operation that would verify
that no changes are made to the model apart from the calls to
fire.We represent this analysis by a procedure called contain-
sImplicitSteps (line 20 of Algorithm 4). Yet, for illustration
purposes, we consider that we do not have such an analysis
for Petri nets, and thus that this procedure returns true.

Finally, in the same manner as for values, all steps are
stored chronologically within the unique Trace object (line

24 of Algorithm 4). For Petri nets this means having an
ordered reference fireSequence in the Trace metaclass
to the metaclass FireStep, and a similar reference run-
Sequence to the metaclass Run. This gives direct access
to all steps of a specific transformation rule in chronological
order, which is an interesting additional navigation path for
a trace (TC3).

Replacing references to the execution metamodel (line 22
of Algorithm 3). When dynamic properties and step meta-
classes were copied in the trace metamodel, this included
copying references to metaclasses of the execution meta-
model. Yet, such metaclasses may contain dynamic proper-
ties thatwere already copied in the tracemetamodel. To avoid
having twice the same concept in the trace metamodel (TC1)
or twice the same value stored in a trace (TC2), our solu-
tion is to replace all references to the execution metamodel
by references either to the abstract syntax or to metaclasses
representing the states of objects (e.g., TracedPlace). This
is done by the function replaceReferencesToExecutionMM
(line 22).

Example trace. Figure 6 shows a multidimensional domain-
specific trace of a Petri net model. In the upper part, we use
the concrete syntax of Petri nets to show the execution. In
the lower part, we use an object diagram to show the content
of the executed model and of the trace at the end of the exe-
cution. In the shown execution, the transitions t1 and t2 are
fired, leading to a trace with three states and two small steps
contained in one big step.

To represent the states, three ExecutionState objects are
linked to a set of TokensValue objects that represent the
marking of the Petri net. The state objects are linked to
FireStep objects, which represent the firing of t1 and t2.
In addition, both the initial and the final states are linked
to the RunStep object that represents the complete Petri net
run. There is onetokensSequence list per tokensfield:
(1, 0) for p1 and p2, (0, 1, 0) for p3 and (0, 2) for p4 (not
shown). These sequences constitute alternative navigation
paths that facilitate queries, e.g., we can find the maximum
number of tokens reached by p1 by reading only two values.
Moreover, we can go from one such sequence back to the
complete trace, e.g., to find all states in which p4 had at least
two tokens. Regarding steps, we have access to the list of
the fired transitions by browsing the fireSequence list, e.g.,
to find states following directly a firing of t2. Likewise, we
have access to the list of run nets with runSequence.

Note that this example does not illustrate the creation or
deletion of objects within an execution. Such case is handled
with the help of the references from aExecutionState object
to value objects. Hence, an object created just before a state
means that this state and the following ones have references
to the values of this object. Likewise, an object deleted just

123

E. Bousse et al.

Fig. 6 Example of Petri net model and multidimensional domain-specific trace

before a state means that this state and the following ones
have no references to its values.

5.3 Resulting benefits

Among all the conceptswe create in a tracemetamodel, some
are generic (e.g., Trace), but the others are specific to the
xDSML(e.g.,TokensValue).Also,wemake sure not to have
any redundancy of concepts. In other words, we precisely
define the structure of execution traces ofmodels conforming
to an xDSML. Thereby, domain-specific analyses of traces
have direct access to these concepts, and do not have to rely
on complex queries or introspection to use domain-specific
data. We aim by that means to provide good usability (RQ3).

In addition, we provide several navigation paths for brow-
sing traces. Indeed, we create for each dynamic property
(e.g., tokens) and each step definition (e.g., FireStep)
of an xDSML a dedicated navigation path (e.g., tokens-
Sequence and fireSequence). This allows to enumer-
ate each value of a particular field, or each step of a particular
step rule, without having to enumerate all the states of the
trace. Moreover, all values and steps are connected through
execution states, allowing to go from one navigation path to

another. These navigation facilities offer improved usability
and scalability in time (RQ1 and RQ3).

5.4 Size of trace metamodels and models

To give a better understanding of the number of elements
created for a generated trace metamodel, and created in a
tracemodel conforming to such tracemetamodel, we provide
an analytical evaluation of our approach in the remainder
of this section. We call size of a metamodel the number of
metaclasses it contains, and size of a model the number of
objects it contains. In order to provide short and intuitive
formulas that still give relevant size estimates, we do not
take into account the number of properties in metaclasses,
and the number of fields in objects.

We use the notations NbCX for a number of metaclasses,
NbPX for a number of properties, NbRX for a number of
transformation rules, and NbOX for a number of objects.

Trace metamodel size. The size of a trace metamodel gener-
ated using our approach can be decomposed as:

NbCTMM = NbCbase + NbCtraced + NbCvalue + NbCstep

+NbCimplStep + NbCsubStep

123

Advanced and efficient execution trace management for executable domain-specific modeling…

with:

– NbCTMM the number of metaclasses in a trace metamodel
generated using our approach.

– NbCbase the number of metaclasses that are always gen-
erated by the approach (e.g., the root metaclass Trace).

– NbCtraced, the number of metaclasses to trace dynamic
objects (e.g., TracedPlace in Fig. 4).

– NbCstep, the number of metaclasses to trace execution
steps (e.g., FireStep in Fig. 4).

– NbCimplStep, the number of metaclasses to trace implicit
steps (e.g., RunImplicitStep in Fig. 4).

– NbCsubStep, the number of metaclasses to trace substeps
(e.g., RunSubStep in Fig. 4).

We can then calculate NbCTMM as follows for any
xDSML:

– We have five base metaclasses (Trace, ExecutionState,
Step, SmallStep, BigStep), hence NbCbase = 5.

– One traced metaclass is generated per dynamic metaclass
of the considered xDSML, hence NbCtraced = NbCdyn,
with NbCdyn the number of dynamic metaclass.

– One valuemetaclass is generated per dynamic property of
the considered xDSML, hence NbCvalue = NbPdyn, with
NbPdyn the number of dynamic properties.

– One step metaclass is generated per step rule, hence
NbCstep = NbRstep, withNbRstep the number of step rules.

– One implicitmetaclass andone substepmetaclass are gen-
erated for each big step metaclass, hence NbCimplicit =
NbCsubStep = NbRbigStep, with NbRbigStep the number of
big step rules.

Finally, by replacing all the terms in the decomposition of
NbCTMM, we obtain the following sum to compute the size
of a trace metamodel generated for a given xDSML:

NbCTMM = 5 + NbCdyn + NbPdyn + NbRstep + 2NbRbigStep

For instance, in the case of the Petri net xDSML shown
in Fig. 1 we have NbCdyn = 1, NbPdyn = 1, NbRstep = 2,
NbRbigStep = 1, therefore NbCTMM = 11. This corresponds
to the number of metaclasses that can be found in the gener-
ated trace metamodel shown in Fig. 4.

Note that even if the size of a generated trace metamodel
does linearly rise with the number of elements in the opera-
tional semantics, this has no significant negative impact on
the approach. Regarding usability RQ3, the potentially large
amount of metaclasses means that the generated metamodel
precisely captures with many details the possible content of
execution traces, which aims at facilitating the definition of
trace analyses. Regarding scalability (RQ1 and RQ2), the
size of a trace is only dependent on the executed model and

on the inner workings of the execution transformation, and
is entirely unrelated to the size of the trace metamodel. We
explain this last aspect in more detail in the following.

Trace model size. The size of an execution trace conforming
to a trace metamodel generated using our approach can be
decomposed in the following way:

NbOtrace = NbObase + NbOexeState + NbOtracedObj

+NbOvalues + NbOstep

with:

– NbOtrace the number of objects in a trace.
– NbObase the number of base objects in a trace, which
is always equal to 1 (one instance of the root metaclass
Trace).

– NbOexeState the number of ExecutionState objects.
– NbOtracedObj the number of traced objects (e.g., instances

of TracedPlace in Fig. 6).
– NbOvalues the number of value objects (e.g., instances of
TokensValue in Fig. 6).

– NbOstep the number of step objects (e.g., instances of
FireStep in Fig. 6).

For example, in the case of the Petri net execution shown
in Fig. 2, NbOexeState = 3, NbOtracedObj = 4, NbOvalues = 9,
NbOstep = 3, therefore NbOtrace = 20. This corresponds to
the number of objects in the trace shown inFig. 6, considering
that the two value objects of p4 are not shown.

In summary, the size of a trace heavily depends not only
on the initial state of an executed model (i.e., the initial num-
ber of dynamic fields and objects), but mostly on how the
execution transformation behaves for a given model (i.e., the
number of steps and the frequency of field changes). Dur-
ing an execution step, the changes in dynamic fields lead to
new execution state objects, value objects and traced objects.
Therefore, even a very large executedmodel (i.e.,with a large
number of dynamic fields and objects) may lead to small
execution traces if only very few dynamic fields change over
time. Likewise, a very small executed model (i.e., with a
small number of dynamic fields and objects) may lead to a
large execution trace if there is a large amount of steps along
with a high frequency of changes in the dynamic fields.

6 Execution trace construction

In this section, we present the part of our approach dedi-
cated to the construction of execution traces conforming to
a generated multidimensional domain-specific trace meta-
model. We first present how to generate a domain-specific
trace constructor tailored for the trace metamodel of a spe-

123

E. Bousse et al.

cific xDSML. Then we explain how to make use of such
constructors to capture execution traces of executed models.

6.1 Generating trace constructors

We call trace constructor a component that can be used dur-
ing the execution of a model to construct an execution trace,
i.e., a model conforming to an execution trace metamodel.
As shown in Fig. 3, this component must be called by the
execution transformation and must access the model being
executed to read its execution state.

Reflective versus generative trace construction. The con-
struction of an execution trace conforming to a trace meta-
model is necessarily dependent on the tracemetamodel itself.
However, in the previous section,we presented a procedure to
automatically generate the domain-specific trace metamodel
of a given xDSML, which means that the trace metamodel is
not known in the general case. Fortunately, it is possible to
analyze a trace metamodel generated using our procedure in
order to discover the names of the required generated meta-
classes and properties, as well as the dynamic subset of the
execution metamodel. Such analysis is made possible thanks
to the systematic structure of generated trace metamodels
(e.g., the Trace class always references all traced classes,
each of which references value classes). With this, there are
two main solutions that can be considered for constructing
traces conforming to a generated trace metamodel.

A first solution is to define a unique reflective generic trace
constructor, which would realize such analysis of the consid-
ered generated trace metamodel during the construction of
the trace (i.e., “on-the-fly”), and rely on reflection to instan-
tiate the discovered metaclasses.10 However, this has several
drawbacks: (1) analyzing the trace metamodel at each exe-
cution is a significant overhead; (2) using a reflective layer
to create and modify objects is commonly regarded as being
slow; (3) developing a correct reflective program is an error-
prone task, since most manipulated objects are not statically
typed, which strongly limits static checking; (4) if the trace
metamodel generation approach evolves over time, the trace
constructor would also evolve and hence become incompat-
ible with previously generated trace metamodels.

A second solution is to generate a domain-specific trace
constructor specific to the generated domain-specific trace
metamodel of a given xDSML. The main advantage of such
solution is that it only requires to analyze once the tracemeta-
model in order to generate the trace constructor, and avoids
relying on reflection for constructing the trace. In addition,
a generated trace constructor relies on typed objects and can
therefore be statically checked for errors. Lastly, a trace con-
structor generated for a legacy trace metamodel can always

10 e.g., inEMF:EObject o = EcoreUtil.create(eClass).

be used regardless of changes made to the trace metamodel
generation approach. For these multiple reasons, we chose
in this paper to generate domain-specific trace constructors
to construct execution traces, instead of relying on a unique
reflective trace constructor.

Since there are multiple ways to generate valid trace con-
structors, and since any model transformation language or
modeling environment can be used to implement them, we
do not provide in this paper a complete generation algorithm.
Instead, we first present a generic interface that each trace
constructor generated by our approach must comply with,
and we discuss the problem of efficiently capturing an execu-
tion state. We then present in Sect. 6.2 a simplified example
of a generated trace constructor for the Petri net xDSML
introduced in Fig. 1.

Generic interface for trace constructors. To limit the cou-
pling between the execution transformation and the trace
constructor, and to facilitate the evolution of the former, our
approach relies on a generic interface for trace construc-
tors11 (shortened to generic interface in the remainder of the
section) that is independent of the considered xDSML. As
we explain thereafter in Sect. 6.3, this choice facilitates the
automatic integration of a generated trace constructor with
the execution transformation.We consider a generic interface
composed of the following services:

– createRoot: create the root Trace object.
– addInitialState: create the first ExecutionState object
of the model, with one traced object per initial dynamic
object, and one value object per initial dynamic field.

– addState: add a new state in the trace if at least one
dynamicfield of themodel changed, or if dynamic objects
are created/deleted. This includes:

– create a new ExecutionState object.
– for each new dynamic object in the model, create a
corresponding new traced object, create initial value
objects for all its dynamic fields, and add these values
both to the corresponding traced object and to the new
execution state.

– for each dynamic field that changed, create a value
object, and add it to both the corresponding traced
object and to the new execution state.

– for each dynamic field that did not change, add the
existing last value of this field to the execution state.

– for each dynamic object removed from themodel, the
corresponding traced object will not be given new

11 Please note that we do not mean a universal generic interface for
any trace constructor for any trace construction approach, but simply a
high-level specification of what is expected from the trace constructors
generated by our approach. In other words, it is a way to describe how
all our constructors behave and interact with other components.

123

Advanced and efficient execution trace management for executable domain-specific modeling…

values anymore, and new execution states will not
refer to any value of the object anymore.

– addStep(stepRuleID, stepRuleParams): add a new Step
in the trace. This includes:

– create a new step object corresponding to the
stepRuleID and containing the stepRuleParams,

– if there was already a BigStep in progress, add the
new step object as a substep of this BigStep,

– set the current ExecutionState as the starting state
of the new Step.

– finishStep: set the current ExecutionState as the ending
state of the current Step.

Note that we intentionally do not specify the types of the
parameters of these different services, since they may heav-
ily depend on the considered modeling framework or model
transformation language (e.g., a step rule may be identified
by a name or by a pointer to the rule).

Efficient capture of execution state changes. An important
requirement for efficient execution trace management is to
limit the overhead induced by the construction of a trace dur-
ing the execution of a model (RQ4). However, the execution
state of a model (i.e., the values of all dynamic fields, and
the dynamic objects) can be arbitrarily large and complex
and can therefore be costly to read and capture in a trace.
To cope with this problem and to avoid reading the complete
state of the model at each execution step, a solution is to only
look at the changes that took place in the model since the last
captured state. From there, a new state can be constructed in
the trace by performing a shallow copy of this last captured
state (i.e., we do not copy the value objects, since they are
may be used by different state objects), and by updating the
copy based on the observed changes. Thereby, except for the
initial one, each state can be constructed with little effort.

6.2 Example of a trace constructor

As we previously explained, we do not provide in this paper
a complete code generation algorithm for trace construc-
tors. Instead, we present a simplified example of a trace
constructor generated for the Petri net xDSML introduced
in Fig. 1, and we use it to explain the logic behind the
expected generation procedure.Algorithms5, 6, 7 and8 show
the trace construction operations generated for the Petri net
xDSML introduced in Fig. 1. These operations comply with
the generic interfacewe introduced above, and they construct
an execution trace conforming to the execution trace meta-
model generated for Petri net shown in Fig. 4.

Example of addInitialState. Algorithm 5 shows the addIni-
tialState operation generated for Petri nets. Among other

parameters, it requires a map maptraced relating each object
of the executed model that contains at least one dynamic
field (e.g., a Place) to the corresponding traced object (e.g.,
a TracedPlace). This map is initially empty, and is filled
both by addInitialState during the creation of the initial state
of the trace, or by addState when a new dynamic object is
created in the executed model.

Algorithm 5: addInitialState generated for Petri nets
Input:

root : root Trace object
modelexe : the model being executed
maptraced : map with the traced object of each object of the

executed model
1 begin
2 stateinitial ← createObject(ExecutionState)
3 root.executionStates. add(stateinitial)
4 foreach o ∈ modelexe do
5 if o. is(Place) then
6 tracedo ← createObject(TracedPlace)
7 maptraced ← maptraced ∪ {o
→ tracedo}
8 root.tracedPlaces ←

root.tracedPlaces ∪ {tracedo}
9 vnew ← createObject(TokensValue)

10 vnew.tokens = o.tokens
11 stateinitial.tokensValues. add(vnew)
12 tracedo.tokensSequence. add(vnew)

The creation of the initial state first requires the creation
of the first ExecutionState object, which is added to the root
of the trace (lines 2–3). Then a loop is generated to manage
each possible sort of dynamic object using type checking
(lines 4–5). For Petri nets, a TracedPlace object is created
for each Place, and is added both to the aforementioned map
and to the root (lines 6–8). Finally, the initial value of each
tokens dynamic field is copied into a new TokensValue
object, and is added both to the corresponding dimension in
the traced object and to the execution state (lines 9–12).

Example of addState. Algorithm 6 shows the addState oper-
ation generated for the Petri nets xDSML trace constructor.
As explained in Sect. 6.1, to construct a new state, we rely on
the changes that occurred in the executedmodel since the last
capture state.We consider that an operation getFieldChanges
is available to obtain the list of changes in the mutable fields
of the executedmodel (line 2). These changes can be obtained
by defining an observer listening to the changes made to the
executed model (e.g., using EMF notifications). Note that, in
the general case, other operations similar to getFieldChanges
must be provided for obtaining which objects were created
or deleted from the executed model. Yet, in the case of Petri
nets, such operations are not necessary since no objects can
be created or deleted.

123

E. Bousse et al.

Algorithm 6: addState generated for Petri nets
Input:

root : root Trace object
modelexe : the model being executed
maptraced : map with the traced object of each object of the

executed model
1 begin
2 changes ← getFieldChanges()
3 statecurrent ← root.executionStates.last()
4 if statecurrent = null then
5 addInitialState(root,modelexe,maptraced)

6 else if changes �= ∅ then
7 statenew ← copyState(statecurrent)
8 root.executionStates. add(newState)
9 foreach fieldChange ∈ changes do

10 o ← fieldChange.changedObject
11 tracedo ← maptraced(o)
12 if o. is(Place) then
13 p ← fieldChange.changedProperty
14 if p. is(Place.tokens) then
15 vnew ← createObject(TokensValue)
16 vnew.tokens = o.tokens
17 vold ← tracedo.tokensSequence. last()
18 statenew.tokensValues. remove(vold)
19 statenew.tokensValues. add(vnew)
20 tracedo.tokensSequence. add(vnew)

First, if the trace is still empty, the operation addIni-
tialState is called to create the first ExecutionState object
(line 3). Then, if the initial state was already created, the
remainder of the operation consists in creating a shallow
copy of the last state (lines 7–8), and updating it accord-
ing to each change in the model (lines 9–20). A conditional
expression is generated for each metaclass containing at
least one dynamic field, and for each dynamic field. For
Petri nets, the only possible change is within a Place object
(line 12), more precisely the amount of tokens it holds (line
14). In that case, a new TokensValue object is created to
replace the former one within the copied ExecutionState
(lines 15–19). Finally, this new TokensValue is added to
the tokensSequence dimension in the corresponding
TracedPlace object
(line 20).

Example of addStep. Algorithm 7 shows the addStep oper-
ation generated for the Petri net xDSML trace constructor.
Among other parameters, it relies on a stack stacksteps that
contains all the ongoing steps, with the current one on the
top (retrieved line 4). A step is pushed on the stack when it
starts, and is popped from the stack when it ends.

For each possible step that can occur during the execu-
tion, a conditional expression is generated to obtain the step
metaclass corresponding to the stepRuleID of the occurred
step. For Petri nets, the two possibilities are the step rules
run (line 5) and fire (line 10). In each case, we first create

Algorithm 7: addStep generated for Petri nets
Input:

root : root Trace object
stepRuleID : ID of the step rule

stepRuleParams : parameters given to the rule
stacksteps : stack of all ongoing current steps

1 begin
2 stepnew ← null
3 statecurrent ← root.executionStates. last()
4 stepcurrent ← stacksteps. peek()
5 if stepRuleID = getRuleID(RunStep) then
6 stepnew ← createObject(RunStep)
7 stepnew.caller ← stepRuleParams[O]
8 root.runSequence. add(stepnew)
9 root.rootSteps. add(stepnew)

10 else if stepRuleID = getRuleID(FireStep) then
11 stepnew ← createObject(FireStep)
12 stepnew.caller ← stepRuleParams[O]
13 root.fireSequence. add(stepnew)
14 stepcurrent .subSteps. add(stepnew)

15 stepnew.startingState ← statecurrent
16 stacksteps. push(stepnew)

and initialize the corresponding step object (RunStep lines
6–7, FireStep lines 11–12), and we add the step to its cor-
responding dimension (lines 8 and 13). Next, the step object
must be added either as a root step, or as a substep of an exist-
ing big step. For Petri nets, since run is only called once as a
root step, the generated constructor can safely always add a
RunStep as a root step in the trace (line 9). Likewise, since
fire is only called from run, it can always safely be added as
a substep of the current step (line 14). Finally, the starting
state of the new step is set, and the new step is pushed onto
the stack (lines 15–16).

Algorithm 8: finishStep
Input:

root : root Trace object
stacksteps : stack of all ongoing current steps

1 begin
2 statecurrent ← root.executionStates. last()
3 stepcurrent ← stacksteps. pop()
4 stepcurrent .endingState = statecurrent

Definition of finishStep. Algorithm 7 shows the definition
of the finishStep operation. It only consists in retrieving the
current state (line 2) and step (line 3) in order to set the ending
state of the finishing step (line 4).

6.3 Integrating trace constructors with execution
transformations

We described above how to generate a trace constructor that
complies with a generic interface, with operations to add

123

Advanced and efficient execution trace management for executable domain-specific modeling…

Fig. 7 Sequence diagram illustrating the use of a trace constructor during the execution of a Petri net model

states and steps to the execution trace. To actually construct
a trace, these operations must be called by the execution
transformation at relevant instants of the execution of the
model. As we explained in Sect. 2.2, such instants are found
at the beginning and at the end of execution steps responsible
for changing the state of the executed model. Therefore, the
following calls must be done during an execution:

– Just before the execution: createRoot, addInitialState
– Just before a step: addState, addStep
– Just after a step: addState, finishStep.

Figure 7 shows a sequence diagram illustrating the use of
a trace constructor during the execution of a Petri net model.
For the sake of clarity, the transformation rules run and fire
are considereddefinedwithin themetaclassesNet andPlace.
The transformation is started through the use of an entry point
called main. This triggers the call to createRoot to create the
root Trace element of the trace, and addInitialState to create
the initial ExecutionState object along with initial Traced-
Placed objects for storing the tokens of all places. Then the
first step transformation rule run is called on the object net.
This triggers a call to addState, which does nothing since
there was no change in the model yet. A call to addStep is
also triggered, which adds a RunStep object in the trace and
pushes this step on top of the stack of the constructor. Then,
the step rule fire is called, which again triggers addState and

addStep, adding a new FireStep on top of the stack. Note
that run never changes the model before calling fire, which
means that this second call to addState still does not create
a new ExecutionState in the trace. However, after fire has
modified the model, the third call to addState creates the sec-
ondExecutionState in the trace.A call to finishStep follows,
which pops the FireStep from the stack and sets its ending
state. The following calls to fire are not shown in the Figure.
Finally, at the end of run, addState does not create any new
ExecutionState since the state is not modified at the end of
run, and finishStep pops the RunStep from the stack to set
its ending state.

In practice, because these calls aremade through a generic
interface, they can be integrated in the execution transforma-
tion in many different ways. For instance:

– The execution transformation can be manually modified
to integrate calls to the trace constructor. For instance,
the fire step rule shown in Fig. 2 can be modified to call
both addState and addStep at the very beginning, and both
addState and finishStep and the very end.

– A model or program transformation can be defined to
automatically make similar modifications to each step
transformation rule of the transformation.

– Aspect oriented programming (e.g., AspectJ) can be used
to specify pointcuts at the beginning and at the end of all
step rules to call the trace constructor.

123

E. Bousse et al.

– If the considered model transformation language provides
a notification mechanism to listen and react to applica-
tions of transformation rules (e.g., xMOF virtual machine,
@Step annotation in Kermeta), a listener can be defined
to call the operations of the trace constructor when step
rules are applied.

– If the considered execution environment relies on a ded-
icated execution engine responsible for applying the
transformation rules, this engine can produce calls to the
trace constructor in between the applications of the rules.

For our implementation (see Sect. 8), we considered the
GEMOC Studio as a target execution environment, which
provides a complete and configurable execution engine.
Therefore, we relied on the last solution.

7 Customization of domain-specific execution
traces

In this section, we present the last part of our approach, which
is the customization of trace metamodels to given appli-
cation contexts of xDSMLs. We first explain and motivate
this idea, and then introduce an illustrative example based
on the xDSML fUML. Thereafter, we present how the cus-
tomization of trace metamodels can be achieved by means of
so-called tracing annotations.

7.1 Motivation and objective

Trace metamodels generated with the proposed approach
provide domain-specific and optimized data structures for
capturing exhaustive data about the behavior of executed
models. Therewith, a trace metamodel generated with our
approach provides the basis for realizing any kind of trace
analysis for a given xDSML. In this paper, we call a specific
set of trace analyses to be applied on traces obtained from
the execution of any model conforming to a given xDSML
application context. An application context is specific to the
considered xDSML and concerns any model conforming to
this xDSML.

Depending on the considered application context, only a
subset of the exhaustive data captured by execution traces
constructed with our approach may be required to perform
the desired trace analyses. More precisely, an application
context may require only a subset of the dynamic informa-
tion captured about the execution states and execution steps
of an executed model. By narrowing the scope of the trace
metamodel down to the dynamic information required for
the considered application context, we can further improve
our approach with respect to all targeted research questions
RQ1–RQ4. In particular, we can obtain a trace metamodel
customized for a given application context, in order to trace

only the dynamic information required in this context regard-
ing the execution of any model conforming to the considered
xDSML. Therewith, customized trace metamodels provide
improved usability for defining trace analyses, lead to a
reduction of thememory consumption andmanipulation time
of traces, as well as to a reduced runtime overhead induced
by the construction of traces.

To further motivate and illustrate the customization po-
tential of trace metamodels, we introduce in the following
section a second xDSML, namely fUML [55], which is also
used in Sect. 9 to evaluate our approach.

7.2 Illustrative example

Foundational UML (fUML) is an executable subset of UML
standardized by the ObjectManagement Group (OMG) [55].
It comprises subsets of UML’s class modeling concepts and
activitymodeling concepts, and defines the execution seman-
tics of these concepts. In this paper, we focus on the part of
fUML that concern activities, which are elements represent-
ing the behavior of systems.

Excerpt of the fUML xDSML. Figure 8 depicts excerpts of
both the abstract syntax and the operational semantics of
fUML. At the top right, a subset of the abstract syntax shows
that an activity is composed of activity nodes and activity
edges. One specific type of activity nodes are actions defining
the behavior of an activity. Activity nodes are connected via
activity edges, in particular, via control flow edges and object
flow edges denoting the flow of control and the flow of data
among activity nodes, respectively.

fUML activities have token flow semantics similar to Petri
nets, except that tokens in an fUMLactivity can express either
control or data. The excerpt of the execution metamodel
shown at the right of Fig. 8 defines the dynamic properties
andmetaclasses introduced for realizing these semantics. The
dynamic metaclasses Token, ControlToken and ObjectTo-
ken are introduced to represent tokens that are created and
held by activity nodes. In addition, the dynamic metaclass
Offer is introduced to represent the tokens that are offered via
activity edges. The excerpt shows also the dynamic property
firing added to themetaclassAction to denote whether an
action is currently being executed. At the bottom, a selection
of rules of the execution transformation are shown: send-
Offers and receiveOffers are responsible for handling token
flows, while fire is responsible for executing activity nodes.

Excerpt of the generated fUML tracemetamodel. Weapplied
our generative approach from Sect. 5 to generate a mul-
tidimensional and domain-specific execution trace meta-
model for fUML. The resulting metamodel is shown in
Fig. 9. It defines four metaclasses for capturing the states

123

Advanced and efficient execution trace management for executable domain-specific modeling…

Execution MetamodelAbstract Syntax

Activity

ActivityNode

Action
ControlFlow ObjectFlow

 edge
*

 node
*

OpaqueAction

 source
1
 target
1

Action
 firing: Boolean

ActivityEdge

OfferToken

ControlToken ObjectToken

 offers
*

 offeredTokens
*

 heldTokens
*

ActivityNode

merges

imports

Execution transformation rules

ActivityEdge

 : offers tokens via outgoing activity edges.
 : consumes all tokens offered via incoming activity edges.

 : executes the activity node.

ActivityNode::sendOffers(Token[*])
ActivityNode::receiveOffer()
ActivityNode::fire(Token[*])

@Step
@Step
@Step

Fig. 8 Definition of the fUML xDSML (excerpt)

StepsStates

ExecutionState

TracedActivityNode HeldTokensValue
 heldTokensSequence

*

TracedActivityEdge OffersValue offersSequence
*

TracedToken

TracedOffer OfferedTokensValue
 offeredTokensSequence

*

TracedAction FiringValue
 firing: Boolean

 firingSequence
*

 heldTokens
*

 offers
*

 offeredTokens
*

 executionStates
*Trace

 tracedActivityNodes
*

 tracedTokens
*

 tracedActivityEdges
*

 tracedOffers
*

{ordered=true}

{ordered=true}

{ordered=true}

{ordered=true}

{ordered=true}

heldTokensValues
*

offers
Values
*

offeredTokensValues
*

firing
Values
* FireStep

SendOffersStep

ReceiveOffersStep

<<abstract>>

Step

<<abstract>>

BigStep

 rootSteps
*

{ordered=true}

 tracedActions
*

Fig. 9 Trace metamodel generated for the fUML xDSML (excerpt)

of the dynamic properties heldTokens, offers, of-
feredTokens, and firing introduced in the execution
metamodel of the xDSML, as well as five metaclasses for
capturing the states of objects of type ActivityNode, Token,
ActivityEdge, Offer, and Action. Lastly, the trace meta-
model contains three metaclasses for capturing the occur-
rences of the three big step rules sendOffers, receiveOffers,
and fire defined as part of the execution transformation of
fUML (the rules called by these big step rules are not shown).

fUML application contexts. The generated trace metamodel
can be used in any application context of fUML. For instance,
with themetaclassesHeldTokensValue andOfferedTokens-
Value, it is possible to trace the token flows between the
nodes of a fUML activity. With this information, we can
perform analyses on the token flows, such as analyzing the
reachability of nodes and deadlocks in the activity. With

the very same metaclasses, it is also possible to analyze the
input values and output values of actions and activities. Fur-
thermore, the metaclass FiringValue enables the tracing of
executed actions and therewith allows the performance of
analyses of executed actions, such as the analysis of the exe-
cution order of actions.

However, depending on the application context of fUML,
different analyses are required. This means that the usage
of traces may differ and, consequently, different levels of
granularity and detail of tracesmay be required. For instance,
if fUML models are used for modeling and analyzing high-
level business processes, only the execution order of actions
representing the steps of the modeled process might be of
interest. In this case, the required granularity of traces is
at the execution of one single action corresponding to the
execution of the big step rule fire. This means, that only the
state of the activity before and after the execution of a single

123

E. Bousse et al.

action are relevant in this context, but not intermediate states.
Furthermore, the dynamic data that has to be provided in
each captured state is reduced to the dynamic field firing
of actions. Hence, the level of detail required for traces is
substantially reduced in this application context. However, if
fUML is used as an object-oriented programming languages
as, for instance, advocated in [62], more detailed execution
traces are required, since not only the execution order of
actions are relevant for analyses of fUML activities, but also
the inputs and outputs of executed action, aswell as the object
manipulations performed by them.

Example of fUML trace analysis. Let us have amore detailed
look into a trace analysis that is part of the first application
context of fUML mentioned above, namely the analysis of
the executed actions of an fUML activity. Algorithm 9 shows
this analysis, which processes a trace conforming to the trace
metamodel generated for fUML in order to retrieve the set
of executed actions of an fUML activity.

Algorithm 9: getExecutedActions
Input:

trace : the analyzed Trace instance
Result:

executedActions : the set of executed actions
1 begin
2 foreach action : TracedAction ∈ trace.tracedActions do
3 foreach actionFiringValue : FiringValue ∈

action.firingSequence do
4 if actionFiringValue.firing then
5 executedActions ← executedActions ∪ action

The semantics of fUML specify that while an action is
being executed, its dynamic field firing is set to true.
This information is used by Algorithm 9 to compute the
set of executed actions of an fUML activity. In particular,
a traced action represented by a TracedAction object is
added to the list of executed action, if one of its firing
values represented by FiringValue objects holds the value
true.

The trace analysis implemented by Algorithm 9 uses only
a subset of the metaclasses and properties defined in the trace
metamodel generated for fUML. The used metaclasses and
properties are highlighted in gray color in the trace meta-
model shown in Fig. 9. In particular, the trace metamodel
elements relevant for the trace analysis are the metaclasses
TracedAction and FiringValue, as well as their proper-
ties firingSequence and firing. For navigating to
instances of TracedAction, themetaclassTrace and its prop-
erty tracedActions are required as well. However, the
trace metamodel elements dedicated to the tracing of token

flows, such as the metaclasses TracedToken and Traced-
Offer, are not needed for the analysis. As a consequence,
we could remove these concepts from the trace metamodel
to obtain a trace metamodel customized to this application
context of fUML.

7.3 Tracing annotations

In order to generate a domain-specific trace metamodel that
is customized to a specific application context, we must first
provide away to select the subset of dynamic information that
is relevant in this context for tracing the execution states and
execution steps of models conforming to the xDSML. We
propose to select this subset by annotating the operational
semantics of an xDSML with so-called tracing annotations.
There are two main cases to take into account: tracing anno-
tations on the execution metamodel of an xDSML, and
annotations on the execution transformation of an xDSML.

Tracing annotations applied on the execution metamodel
of an xDSML select the dynamic properties and dynamic
metaclasses that have to be considered for the construction
of execution traces for the considered application context.
In other words, each execution state stored within an exe-
cution trace should only capture dynamic field and dynamic
objects corresponding to the annotated dynamic properties
and dynamic metaclasses. This makes possible the reduction
of the level of detail of execution traces, i.e., the reduction of
the dynamic information captured about the execution state
of executed models. Please note that annotating a dynamic
metaclass is the same as annotating all its dynamic prop-
erties. Furthermore, annotating a dynamic metaclass is also
necessary in the case that no dynamic property of this meta-
class has been annotated in order to trace the creation and
destruction of instances of this dynamic metaclass.

Tracing annotations applied on the execution transfor-
mation of an xDSML select the step rules that have to be
considered for the construction of execution traces for the
considered application context. In other words, only execu-
tion steps corresponding to the execution of the annotated
step rules are captured within an execution trace. This makes
possible the reduction of the level of granularity of traces,
i.e., the amount of recorded execution steps and execution
states.

Example of tracing annotations for fUML. Figure 10 shows
the tracing annotations for fUML that are relevant for the
application context of Algorithm 9. Tracing annotations are
shown as labels with the prefix @ located next to the anno-
tated element. This set of tracing annotations selects only
those dynamic properties and step rules that are required for
retrieving the set of executed actions in an activity, namely
the dynamic property firing and the step rule fire.

123

Advanced and efficient execution trace management for executable domain-specific modeling…

imports

ActivityNode::fire(Token[*])@TracedStepRule @Step

Execution Metamodel

Action
 firing: Boolean@TracedProperty

Execution transformation rules

ActivityNode

Fig. 10 Excerpt of the operational semantic of fUML, with tracing
annotations relevant for the application context of Algorithm 9

7.4 Customization of trace metamodels and trace
constructors based on tracing annotations

Using tracing annotations as introduced in the previous sub-
section, language engineers of an xDSML can explicitly
define the dynamic properties and step rules of the xDSML
that are relevant for a particular application context, and
that should thus be traced during the execution of models.
The goal when using tracing annotations is to eventually
reduce the granularity of traces (i.e., the number of execu-
tion states captured in a trace), as well as the level of detail
of traces (i.e., the data that is captured for each execution
state).

To achieve this goal, the trace metamodel generation pro-
cedure introduced in Sect. 5 has to take defined tracing
annotations into account, such that only the selected dynamic
properties and step rules are considered in the generation of
the trace metamodel. This is done by analyzing the trac-
ing annotations and introducing only those elements into
the trace metamodel that are relevant for tracing as defined
by the tracing annotations. In particular, the tracing annota-
tions are provided as additional input to the trace metamodel
generation procedure defined in Algorithm 3. Based on this
additional input it is checked before creating metaclasses in
the trace metamodel whether the respective dynamic prop-
erty or step rule is selected for tracing by a tracing annotation.
Otherwise, no metaclass is added to the trace metamodel for
the respective element.

Regarding the generation of trace constructors as
described in Sect. 6, no adaptations are required since the
trace constructors are directly generated from the trace
metamodels. Because the generated trace metamodels only
contain concepts that are needed for tracing as defined by the
tracing annotations, corresponding trace constructors only
record the selected dynamic fields, dynamic objects, and exe-
cution steps.

7.5 Automated generation of tracing annotations

Tracing annotations can be manually defined by an expert to
select the dynamic properties and step rules of an xDSML
that are relevant for a particular application context, i.e.,
for performing a particular set of trace analyses. However,
since xDSMLs and trace analyses can be arbitrarily complex,
defining tracing annotations manually can be difficult and
error-prone. For instance, an element of the xDSML may be
annotated although it is never used in the application context,
leading to unnecessary data being captured in any execution
trace. Similarly, an element important for the application con-
textmight bemissedby the expert, resulting inmissingdata in
execution traces that may lead to undefinable trace analyses.

To cope with this problem, we propose an additional
procedure to automatically derive tracing annotations on
the operational semantics of an xDSML from the set of
trace analyses used in a particular application context of the
xDSML. This procedure takes as input (1) the set of trace
analyses constituting the considered application context, (2)
the trace metamodel that was used to define these trace anal-
yses, and (3) the operational semantics of the xDSML. The
steps are then as follows:

1. The static metamodel footprint of the trace analyses con-
stituting the considered application context is computed.
This static metamodel footprint captures the subset of
the trace metamodel that is used in the definition of these
trace analyses.

2. From the obtained static metamodel footprint, the trac-
ing annotations for the considered application context
are automatically derived and applied on the operational
semantics of the considered xDSML.

3. The automatically derived tracing annotations can then
be used to generate a new customized trace metamodel
that focuses on the dynamic information needed for the
considered application context.

In the remainder of the section,we explain the steps 1 and2
of this procedure. We first explain the concept of static meta-
model footprints and how to obtain such a footprint for trace
analysis. Then we show how the static metamodel footprint
of a trace analysis can be used to derive tracing annotations.
Step 3, i.e., generating a new customized trace metamodel
and a corresponding trace constructor, is achieved by apply-
ing the proposed approach presented in Sect. 7.4.

Static trace metamodel footprints. As mentioned above, to
automatically derive tracing annotations from a set of trace
analyses, we propose to first calculate the static metamodel
footprint of the considered trace analyses.

A static metamodel footprint is the set of metamodel
elements used in the definition of a particular model oper-

123

E. Bousse et al.

ation [37]. Static metamodel footprints can be computed
through a static analysis of the definition of the model oper-
ation. In our case, the investigated metamodel is a trace
metamodel and the investigated model operation is a trace
analysis. Hence, the static metamodel footprint is the set of
elements in a trace metamodel that are used by a trace anal-
ysis. To calculate this static trace metamodel footprint, the
abstract syntax tree of the definition of the trace analysis is
traversed and for every statement it is checked whether it
accesses a metaclass or property defined in the trace meta-
model. If this is the case, the accessed metaclass or property
is added to the footprint.

For trace analyses defined in imperative languages, such as
Kermeta [40] and the Epsilon Object Language (EOL) [42],
the static analysis is performed along the control flow graph
of the trace analysis. Statements of the trace analysis that
have to be investigated are, for instance, operation declara-
tions, variable declarations, and property navigation expres-
sions. For instance, for property navigation expressions, it
is checked whether they access properties of metaclasses
defined in the trace metamodel. Accessed properties are
added to the footprint. In case the trace analysis is defined in
a declarative language, such as triple graph grammars [61],
the static analysis is performed on the left-hand side of all
defined rules. For hybrid languages, those procedures are
combined.

Computing static metamodel footprints has been exten-
sively studied, and approaches exist for many languages,
such as for Kermeta [37,38], ATL [11,59], and OCL [11].
As we discuss in Sect. 8, for our experimentations, we have
implemented a static metamodel footprint calculator for the
Epsilon Comparison Language (ECL) [42], which is a hybrid
language allowing the definition of declarative rules and
imperative rule bodies. Imperative rule bodies are defined
with EOL.

It has to be noted that static metamodel footprints over-
approximate the set of model elements accessed by the
investigated model operation, i.e., the set of collected ele-
ments includes more elements than actually used by the
model operation. This is because static footprinting methods
only consider types used in the model operation and do not
investigate any conditions on the model’s state. Furthermore,
non-reachable statements in the model operation cannot be
detectedby static footprintingmethods.Tomitigate this prob-
lemof imprecision, dynamic analysismethods could be used.
However, compared to dynamic methods, static metamodel
footprints can be computed very efficiently and they are valid
for anymodel processed by the investigatedmodel operation.
A detailed evaluation of static footprinting techniques is out
of scope of this work, but for a detailed investigation of this
topic we refer the interested reader to [37].

Example of a static trace metamodel footprint. Let us con-
sider our illustrative example of a trace analysis determining
the executed actions of a fUML activity (cf. Algorithm 9).
This trace analysis comprises four statements, which access
in total six elements of the trace metamodel of the fUML
xDSML (the accesses to elements of the trace metamodel are
underlined in Algorithm 9): the metaclasses Trace, Traced-
Action, and FiringValue, as well as the propertiestraced-
Actions, firingSequence, and firing. These ele-
ments comprise the static trace metamodel footprint of this
trace analysis defined for fUML.

Generating tracing annotations from trace metamodel foot-
prints. A trace metamodel footprint calculated from the
static analysis of a trace analysis defines the elements
of the trace metamodel that are accessed to perform the
trace analysis. From this trace metamodel footprint, we can
automatically derive the tracing annotations needed for gen-
erating a trace metamodel that is reduced to those elements
relevant for the considered trace analysis. In particular, trac-
ing annotations are created for those dynamic metaclasses
and dynamic properties of the xDSML’s execution meta-
model that are traced by the metaclasses and properties of
the trace metamodel that are accessed by the trace analysis
as indicated by the trace metamodel footprint.

For identifying which dynamic metaclasses and dynamic
properties of the xDSML’s execution metamodel are traced
by the trace metamodel elements captured in the static trace
metamodel footprint, traceability information between the
execution metamodel and the trace metamodel is needed.
This traceability information can, for instance, be explicitly
captured in an own model that maps elements of the exe-
cution metamodel to elements of the trace metamodel, or
it can be automatically derived if the correspondences are
known. In our case, we store traceability links between trace
metamodel elements and execution metamodel elements
explicitly, namely as annotations of the trace metamodel.

For our illustrative example of a trace analysis for fUML
models defined in Algorithm 9, we derive two tracing anno-
tations. One tracing annotation is produced for the dynamic
property firing, because the metaclass FiringValue of the
trace metamodel is used for tracing values of this dynamic
property and is accessed in line 3 of the trace analysis. The
second tracing annotation is generated for the dynamic meta-
class Action, since the metaclass TracedAction of the trace
metamodel is used for tracing instances of this metaclass
Action and is accessed in line 2 of the trace analysis. The
other elements accessed by the considered trace analysis are
metaclasses and references that are introduced into the trace
metamodel solely for navigation purposes but are not directly
tracing dynamic objects or dynamic fields. Thus, no tracing
annotations have to be produced for them.

123

Advanced and efficient execution trace management for executable domain-specific modeling…

In case that an application context comprises more than
one trace analysis, the footprints of all these trace analy-
ses are computed and merged before generating the tracing
annotations. This way, tracing annotations are generated for
all dynamic metaclasses and dynamic properties of the exe-
cution metamodel that need to be traced for performing the
analyses. In case the set of trace analyses in the considered
application context changes, the tracing annotations have to
be recomputed.

Please note that the proposed procedure cannot be applied
for automatically generating tracing annotations for step
rules defined in the execution transformation of an xDSML.
This is because the calculated tracemetamodel footprint does
not provide enough information to derive at which execution
steps the state of an executedmodel should be recorded in the
trace. For deriving this information, the execution transfor-
mation has to be investigated to determine which step rules
have an impact onwhich traced dynamic objects and dynamic
fields. This additional static analysis of an xDSML’s exe-
cution transformation is left for future work. For now, we
generate tracing annotations for each step rule defined in the
execution transformation.

The procedure proposed in this section for automatically
deriving tracing annotations from existing trace analyses is
generally applicable for domain-specific trace metamodels.
The only prerequisite is that traceability information between
the execution metamodel and the trace metamodel is pro-
vided or can be derived, such that it can be determined which
element of the execution metamodel is traced by which ele-
ment of the trace metamodel.

8 Implementation

In this section, we present the implementation of our
approach within the language and modeling workbench GE-
MOC Studio. We first introduce the GEMOC Studio and
its execution framework. Then we give an overview of our
implementation.

8.1 GEMOC Studio

The GEMOC Studio12 is an Eclipse package built on top of
the Eclipse Modeling Framework (EMF). It is composed of
two main parts: a language workbench to define xDSMLs,
and a modeling workbench to use defined xDSMLs.

Language workbench. The language workbench of the GE-
MOC Studio can be used to design and implement tool-
supported xDSMLs. This includes defining the abstract
syntax (using Ecore), the concrete syntax (using Sirius Ani-

12 http://gemoc.org/studio.

mator13), and the operational semantics of an xDSML. The
operational semantics can be defined using various transfor-
mation languages, e.g., [40] or xMOF [49]. Each considered
model transformation language provides a way to define
which transformation rules are step rules: Kermeta provides
an annotation called @Step, and xMOF supports specific
Ecore annotations for operations. As we explain afterward in
Sect. 8.2, we implemented our approach as a component for
the language workbench.

Modeling workbench. Once designed and implemented in
the languageworkbench, the xDSMLsandassociateddomain-
specific tools are automatically deployed in the modeling
workbench of the GEMOC Studio. It allows system design-
ers to edit, execute, simulate, and animate their models,
while providing generic facilities for omniscient debugging
on the basis of execution traces [9]. Themodelingworkbench
includes advanced execution engines that can be used to exe-
cute any model conforming to an xDSML defined within
the language workbench. In particular, an execution engine
is responsible for applying the transformation rules of the
operational semantics of an xDSML.

Engine add-ons are optional components that become
notified by the engine about the progress of the execution
(e.g., beginning of the execution, start of a step, end of a step).
By reacting to engine notifications, an add-on may query
the engine or the executed model for many purposes, such
as providing a particular view on the execution, extracting
information, or even controlling the execution of the model.
As we will explain in Sect. 8.2, a trace constructor generated
with our approach is implemented as an engine add-on that is
deployed and used when executing a model in the modeling
workbench.

8.2 Implementation in the GEMOC Studio

We implemented the three parts of our approach within the
GEMOCStudio, namely the generation of tracemetamodels,
the generation of trace constructors, and the use of tracing
annotations. All the code for this work is open-source (EPL
1.0 licensed), and can be found in publicly available source
code repositories.14

Implementation of the generators. We implemented our
trace metamodel and trace constructor generators for the
GEMOC Studio using the Eclipse Modeling Framework

13 https://www.eclipse.org/sirius.
14 The Sirius Labs repository https://github.com/SiriusLab/
ModelDebugging/tree/master/trace/generator contains the genera-
tors, and the Moliz repository https://github.com/moliz/moliz.gemoc
contains the xMOF-specific libraries as well as the footprinting
libraries.

123

http://gemoc.org/studio
https://www.eclipse.org/sirius
https://github.com/SiriusLab/ModelDebugging/tree/master/trace/generator
https://github.com/SiriusLab/ModelDebugging/tree/master/trace/generator
https://github.com/moliz/moliz.gemoc

E. Bousse et al.

(EMF) and the programming languages Xtend and Java. The
input of our generators consists of an xDSML defined using
Ecore for the abstract syntax, and using either Kermeta or
xMOF for the operational semantics. The output is an Eclipse
plugin containing the execution trace metamodel defined
using Ecore, and an execution trace constructor written in
Java and relying on EMF libraries. This plugin is generated
from the specification of an xDSML within the language
workbench, and is automatically deployed into the modeling
workbench.

We have defined an intermediate representation format
that models only the information we need from operational
semantics. This intermediate representation contains sim-
plified descriptions of the elements introduced in both the
execution metamodel (e.g., dynamic properties) and the
execution transformation (e.g., step rules). We use this repre-
sentation to handle different formalisms for the specification
of operational semantics in source metamodels. Our gen-
erators rely on the intermediate representation to actually
generate the tracemanagement tooling according to theAlgo-
rithms 3 and 4 of Sect. 5 of our approach. Thereby, to apply
our approach to any EMF-based model transformation lan-
guage, the only requirement is to implement an extractor that
produces the intermediate representation.

Our generators can be called from the graphical user inter-
face to trigger the generation for an xDSML defined in the
language workbench of the studio.

Implementation of generated trace constructors. Aswe have
mentioned previously, a trace constructor generated by our
implementation takes the form of an engine add-on that is
deployed in the GEMOC Studio modeling workbench. This
greatly simplifies the integration of the trace constructor with
the execution transformation, as the engine only is responsi-
ble for notifying add-ons about the progress of the execution.
Therefore, the trace construction add-on must simply be
enabled, and no modifications of the execution transforma-
tion are required for enabling the construction of traces.

Implementation of tracing annotations. To represent trac-
ing annotations as defined in Sect. 7.3, we implemented a
simple metamodel using Ecore, and we use the generic tree-
based editor provided by EMF to manually create tracing
annotations conforming to this metamodel. Like explained
in Sect. 7.4, such tracing annotations can be provided to our
generators to produce customized trace metamodels.

The automated generation of a static metamodel foot-
print described in Sect. 7.5 has been implemented with
Java to analyze model operations specified with the Epsilon
Comparison Language (ECL) [42]. ECL is employed by
the semantic model differencing framework considered in
the evaluation of our approach (cf. Sect. 9). The footprint
metamodel needed for the generation of tracing annotations

was implemented using Ecore. The automatic transformation
of footprints into tracing annotation was implemented with
Java, and the generated annotations are directly suitable for
generating customized trace metamodels.

Examples of generated trace metamodels. We used our
implementation on a selection of xDSMLs that had previ-
ously been developed using the GEMOC Studio. Table 1
lists all the xDSMLs considered so far, along with links to
their source material, metrics on their size, links to their gen-
erated trace metamodels, and metrics on the generated trace
metamodels. Trace construction using the generated trace
constructors was also successfully tested for these languages.

9 Evaluation

To answer the posed research questions RQ1–RQ4, we have
evaluated our approach in a case study on the xDSML fUML
and the trace analysis activity semantic model differencing.
In this section, we first provide background information on
semantic model differencing, then give the setup of our case
study, and finally discuss the results of the evaluation.

9.1 Semantic model differencing

Managing the evolution of models is a crucial concern in
model-driven engineering sincemodels constitute the central
development artifacts. One important technique in this area
ismodel differencing, which is concerned with the identifica-
tion of differences among two models. Most of the existing
approaches in model differencing [1,45] apply a purely syn-
tactic approach meaning that they analyze two models in
order to identify syntactic differences among them, such as
additions, removals, and modifications of model elements.
However, since syntactic differences among executablemod-
els may also result in differences among their behaviors, it
is also of interest to identify these semantic differences. The
process of identifying semantic differences among models is
called semantic model differencing [46].

In previouswork [43],we have proposed a semanticmodel
differencing framework that relies on domain-specific analy-
ses of execution traces. In particular, the framework performs
a comparison of the execution traces of two models for iden-
tifying semantic differences among them. The comparison
algorithm is implemented with so-called semantic differenc-
ing rules that indicate which syntactic differences among the
execution traces constitute semantic differences among the
models. The semantic differencing rules are not only specific
to the used xDSML, but also specific to the semantic equiva-
lence criterion suitable for the particular application context
of the xDSML.

The definition of the semantic differencing rules depends
directly on the employed trace format. In its original ver-

123

Advanced and efficient execution trace management for executable domain-specific modeling…

Ta
bl
e
1

xD
SM

L
s
on

w
hi
ch

ou
r
im

pl
em

en
ta
tio

n
w
as

te
st
ed
,a
nd

th
e
re
su
lti
ng

ge
ne
ra
te
d
tr
ac
e
m
et
am

od
el
s

xD
SM

L
L
in
k

D
es
cr
ip
ti
on

Se
m
an

ti
cs

C
.

D
C
.

D
P.

SR
.

T
M
M

T
M
M

C
.

T
M
M

P.

Pe
tr
in

et
s

li
nk

a
Si
m
pl
e
Pe

tr
in

et
s
(s
ee

Fi
g.
1)

xM
O
F

3
0

1
2

li
nk

b
14

16

fU
M
L

li
nk

c
C
om

pl
et
e
fU

M
L

xM
O
F

10
7

58
56

17
8

li
nk

d
77
6

74
7

A
rd
ui
no
M
L

li
nk

e
Si
m
pl
e
A
rd
ui
no

ha
rd
w
ar
e
an
d
so
ft
w
ar
e
de
sc
ri
pt
io
ns

K
er
m
et
a

58
6

5
8

li
nk

f
50

73

T
FS

M
li
nk

g
T
im

ed
fin

ite
st
at
e
m
ac
hi
ne
s

K
er
m
et
a

11
3

5
7

li
nk

h
32

56

IM
L

li
nk

i
A
ut
om

at
io
nM

L
In
te
rm

ed
ia
te
M
od
el
in
g
L
ay
er

K
er
m
et
a

18
10

4
10

li
nk

j
51

62

M
in
iT
L

li
nk

k
M
in
id

ec
la
ra
tiv

e
m
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge

K
er
m
et
a

11
2

5
7

li
nk

l
29

44

A
ct
iv
ity

di
ag
ra
m
s

li
nk

m
A
ct
iv
ity

di
ag
ra
m
s,
in
sp
ir
ed

by
fU

M
L
,f
ro
m

T
T
C
’1
5
[5
0]

K
er
m
et
a

29
23

11
10

li
nk

n
61

10
0

T
ra
ce

m
et
am

od
el
s
si
ze
s
m
ay

di
ff
er

fr
om

re
su
lts

ob
ta
in
ed

w
ith

fo
rm

ul
as

fr
om

Se
ct
.5
.4

du
e
to

im
pl
em

en
ta
tio

n-
sp
ec
ifi
c
co
nc
er
ns
,i
nh

er
ita

nc
e
re
la
tio

ns
hi
ps
,a
nd

ov
er
ri
dd

en
ru
le
s

Se
m
an
ti
cs

L
an
gu
ag
e
us
ed

to
de
fin

e
th
e
op
er
at
io
na
ls
em

an
tic
s,
C
.N

um
be
ro

fs
ta
tic

m
et
ac
la
ss
es
,D

C
.N

um
be
ro

fd
yn

am
ic
m
et
ac
la
ss
es
,D

P.
N
um

be
ro

fd
yn
am

ic
pr
op
er
tie
s.
SR

.N
um

be
ro

fs
te
p
ru
le
s,

T
M
M

G
en
er
at
ed

tr
ac
e
m
et
am

od
el
,T

M
M

C
.N

um
be
r
of

m
et
ac
la
ss
es

in
th
e
ge
ne
ra
te
d
tr
ac
e
m
et
am

od
el
,T

M
M

P.
N
um

be
r
of

pr
op
er
tie
s
in

th
e
ge
ne
ra
te
d
tr
ac
e
m
et
am

od
el

a
ht
tp
s:
//
gi
th
ub
.c
om

/m
ol
iz
/m

ol
iz
.g
em

oc
/t
re
e/
m
as
te
r/
ex
am

pl
es
/p
et
ri
ne
t/
la
ng

ua
ge
_w

or
kb

en
ch

b
ht
tp
s:
//
gi
th
ub
.c
om

/m
ol
iz
/m

ol
iz
.g
em

oc
/t
re
e/
m
as
te
r/
ex
am

pl
es
/p
et
ri
ne
t/
la
ng
ua
ge
_w

or
kb
en
ch
/o
rg
.m

od
el
ex
ec
ut
io
n.
xm

of
.e
xa
m
pl
es
.p
et
ri
ne
t.t
ra
ce
/m

od
el
/p
et
ri
ne
tC
on
fig

ur
at
io
nT

ra
ce
.e
co
re

c
ht
tp
s:
//
gi
th
ub
.c
om

/m
ol
iz
/m

ol
iz
.g
em

oc
/t
re
e/
m
as
te
r/
ex
am

pl
es
/f
um

l/
la
ng
ua
ge
_w

or
kb
en
ch

d
ht
tp
s:
//
gi
th
ub
.c
om

/m
ol
iz
/m

ol
iz
.g
em

oc
/t
re
e/
m
as
te
r/
ex
am

pl
es
/f
um

l/
la
ng
ua
ge
_w

or
kb
en
ch
/o
rg
.m

od
el
ex
ec
ut
io
n.
xm

of
.e
xa
m
pl
es
.f
um

l.t
ra
ce
/m

od
el
/f
um

lC
on
fig

ur
at
io
nT

ra
ce
.e
co
re

e
ht
tp
s:
//
gi
th
ub
.c
om

/g
em

oc
/a
rd
ui
no
m
od
el
in
g/
tr
ee
/m

as
te
r/
de
v/
la
ng
ua
ge
_w

or
kb
en
ch
_s
eq
ue
nt
ia
l

f
ht
tp
s:
//
gi
th
ub
.c
om

/g
em

oc
/a
rd
ui
no
m
od
el
in
g/
tr
ee
/m

as
te
r/
de
v/
la
ng
ua
ge
_w

or
kb
en
ch
_s
eq
ue
nt
ia
l/
or
g.
ge
m
oc
.a
rd
ui
no
.s
eq
ue
nt
ia
l.x

ar
du
in
o.
tr
ac
e/
m
od
el
/a
rd
ui
no
T
ra
ce
.e
co
re

g
ht
tp
s:
//
gi
th
ub
.c
om

/g
em

oc
/g
em

oc
-s
tu
di
o/
tr
ee
/m

as
te
r/
of
fic
ia
l_
sa
m
pl
es
/T
FS

M
_P

la
in
K
3/
la
ng
ua
ge
_w

or
kb
en
ch

h
ht
tp
s:
//
gi
th
ub
.c
om

/g
em

oc
/g
em

oc
-s
tu
di
o/
tr
ee
/m

as
te
r/
of
fic
ia
l_
sa
m
pl
es
/T
FS

M
_P

la
in
K
3/
la
ng
ua
ge
_w

or
kb
en
ch
/o
rg
.g
em

oc
.s
am

pl
e.
tf
sm

.s
eq
ue
nt
ia
l.x

tf
sm

.tr
ac
e/
m
od

el
/t
fs
m
T
ra
ce
.e
co
re

i
ht
tp
s:
//
gi
th
ub
.c
om

/m
ol
iz
/m

ol
iz
.g
em

oc
/t
re
e/
m
as
te
r/
ex
am

pl
es
/i
m
l/
la
ng

ua
ge
_w

or
kb

en
ch

j
ht
tp
s:
//
gi
th
ub
.c
om

/m
ol
iz
/m

ol
iz
.g
em

oc
/t
re
e/
m
as
te
r/
ex
am

pl
es
/i
m
l/
la
ng

ua
ge
_w

or
kb

en
ch
/o
rg
.m

od
el
ex
ec
ut
io
n.
xm

of
.e
xa
m
pl
es
.im

l.s
eq
ue
nt
ia
l.s
eq
ue
nt
ia
lim

l.t
ra
ce
/m

od
el
/i
m
lT
ra
ce
.e
co
re

k
ht
tp
s:
//
gi
th
ub
.c
om

/t
et
ra
bo

x/
m
in
itl
/t
re
e/
m
as
te
r

l
ht
tp
s:
//
gi
th
ub
.c
om

/t
et
ra
bo

x/
m
in
itl
/t
re
e/
m
as
te
r/
pl
ug

in
s/
or
g.
te
tr
ab
ox

.e
xa
m
pl
e.
m
in
itl
.tr
ac
e/
m
od

el
/m

in
itl
T
ra
ce
.e
co
re

m
ht
tp
s:
//
gi
th
ub
.c
om

/g
em

oc
/a
ct
iv
ity

di
ag
ra
m
/t
re
e/
m
as
te
r/
de
v/
ge
m
oc
_s
eq
ue
nt
ia
l/
la
ng

ua
ge
_w

or
kb

en
ch

n
ht
tp
s:
//
gi
th
ub
.c
om

/g
em

oc
/a
ct
iv
ity

di
ag
ra
m
/t
re
e/
m
as
te
r/
de
v/
ge
m
oc
_s
eq
ue
nt
ia
l/
la
ng
ua
ge
_w

or
kb
en
ch
/o
rg
.g
em

oc
.a
ct
iv
ity

di
ag
ra
m
.s
eq
ue
nt
ia
l.x

ac
tiv

ity
di
ag
ra
m
.tr
ac
e/
m
od

el
/a
ct
iv
ity

di
ag
ra
m
T
ra
ce
.

ec
or
e

123

https://github.com/moliz/moliz.gemoc/tree/master/examples/petrinet/language_workbench
https://github.com/moliz/moliz.gemoc/tree/master/examples/petrinet/language_workbench/org.modelexecution.xmof.examples.petrinet.trace/model/petrinetConfigurationTrace.ecore
https://github.com/moliz/moliz.gemoc/tree/master/examples/fuml/language_workbench
https://github.com/moliz/moliz.gemoc/tree/master/examples/fuml/language_workbench/org.modelexecution.xmof.examples.fuml.trace/model/fumlConfigurationTrace.ecore
https://github.com/gemoc/arduinomodeling/tree/master/dev/language_workbench_sequential
https://github.com/gemoc/arduinomodeling/tree/master/dev/language_workbench_sequential/org.gemoc.arduino.sequential.xarduino.trace/model/arduinoTrace.ecore
https://github.com/gemoc/gemoc-studio/tree/master/official_samples/TFSM_PlainK3/language_workbench
https://github.com/gemoc/gemoc-studio/tree/master/official_samples/TFSM_PlainK3/language_workbench/org.gemoc.sample.tfsm.sequential.xtfsm.trace/model/tfsmTrace.ecore
https://github.com/moliz/moliz.gemoc/tree/master/examples/iml/language_workbench
https://github.com/moliz/moliz.gemoc/tree/master/examples/iml/language_workbench/org.modelexecution.xmof.examples.iml.sequential.sequentialiml.trace/model/imlTrace.ecore
https://github.com/tetrabox/minitl/tree/master
https://github.com/tetrabox/minitl/tree/master/plugins/org.tetrabox.example.minitl.trace/model/minitlTrace.ecore
https://github.com/gemoc/activitydiagram/tree/master/dev/gemoc_sequential/language_workbench
https://github.com/gemoc/activitydiagram/tree/master/dev/gemoc_sequential/language_workbench/org.gemoc.activitydiagram.sequential.xactivitydiagram.trace/model/activitydiagramTrace.ecore
https://github.com/moliz/moliz.gemoc/tree/master/examples/petrinet/language_workbench
https://github.com/moliz/moliz.gemoc/tree/master/examples/petrinet/language_workbench/org.modelexecution.xmof.examples.petrinet.trace/model/petrinetConfigurationTrace.ecore
https://github.com/moliz/moliz.gemoc/tree/master/examples/fuml/language_workbench
https://github.com/moliz/moliz.gemoc/tree/master/examples/fuml/language_workbench/org.modelexecution.xmof.examples.fuml.trace/model/fumlConfigurationTrace.ecore
https://github.com/gemoc/arduinomodeling/tree/master/dev/language_workbench_sequential
https://github.com/gemoc/arduinomodeling/tree/master/dev/language_workbench_sequential/org.gemoc.arduino.sequential.xarduino.trace/model/arduinoTrace.ecore
https://github.com/gemoc/gemoc-studio/tree/master/official_samples/TFSM_PlainK3/language_workbench
https://github.com/gemoc/gemoc-studio/tree/master/official_samples/TFSM_PlainK3/language_workbench/org.gemoc.sample.tfsm.sequential.xtfsm.trace/model/tfsmTrace.ecore
https://github.com/moliz/moliz.gemoc/tree/master/examples/iml/language_workbench
https://github.com/moliz/moliz.gemoc/tree/master/examples/iml/language_workbench/org.modelexecution.xmof.examples.iml.sequential.sequentialiml.trace/model/imlTrace.ecore
https://github.com/tetrabox/minitl/tree/master
https://github.com/tetrabox/minitl/tree/master/plugins/org.tetrabox.example.minitl.trace/model/minitlTrace.ecore
https://github.com/gemoc/activitydiagram/tree/master/dev/gemoc_sequential/language_workbench
https://github.com/gemoc/activitydiagram/tree/master/dev/gemoc_sequential/language_workbench/org.gemoc.activitydiagram.sequential.xactivitydiagram.trace/model/activitydiagramTrace.ecore
https://github.com/gemoc/activitydiagram/tree/master/dev/gemoc_sequential/language_workbench/org.gemoc.activitydiagram.sequential.xactivitydiagram.trace/model/activitydiagramTrace.ecore

E. Bousse et al.

sion, our semantic model differencing framework utilizes
a generic and clone-based trace metamodel for represent-
ing execution traces. More precisely, a trace conforming
to this metamodel is a sequence of clones of the executed
model that capture the model’s execution states after each
state change.15 The usage of a generic and clone-based trace
metamodel has two key implications on the trace analysis
implemented in semantic differencing rules:

1. The generic and clone-based trace metamodel lacks
usability for defining domain-specific trace analyses,
since a state is a collection of objects of any type requiring
type checking and casting for the analyses. This implies
complex rules that are hard to read and comprehend.

2. Scalability in time is an issuewhen employing the generic
and clone-based trace metamodel, because comparing
two traces requires the traversal of all execution states,
even if the trace comparison considers only a subset of
the execution states.

To overcome these issues, we propose to enhance seman-
tic model differencing by relying on multidimensional and
domain-specific execution traces as presented in this work.
By doing so we expect both better usability of traces for
defining semantic differencing rules resulting in less complex
semantic differencing rules that are easier to comprehend, as
well as better scalability in time of the trace comparison per-
formed by the semantic differencing rules. Furthermore, by
relying on a multidimensional domain-specific trace meta-
model instead of a generic clone-based one, we expect a
lower memory consumption and a lower runtime overhead
of the trace construction.

9.2 Case study

As explained above, we have evaluated our approach onmul-
tidimensional and domain-specific execution traces in a case
study on semantic model differencing. For this, we have
adapted our semantic model differencing framework [43] to
analyze multidimensional domain-specific execution traces
instead of generic clone-based ones.16

Considered xDSML. Based on this adapted semantic differ-
encing framework, we have performed a case study on the
real world xDSML foundational UML (fUML) [55] that we
presented in Sect. 7.2. For this, we have first defined the
execution semantics of fUML in an operational way with

15 The trace constructor associated to the generic and clone-based trace
metamodel relies on the class EcoreUtil.Copier provided by EMF to
create clones of the executed model.
16 All evaluation material may be found at https://github.com/moliz/
moliz.gemoc.

xMOF [49]. The execution metamodel of fUML extends one
metaclass of the language’s abstract syntax metamodel and
defines 58 dynamic metaclasses, as well as 56 dynamic prop-
erties. The execution transformation contains 178 step rules.

Trace metamodels. Based on the definition of fUML devel-
oped with xMOF, we have generated a multidimensional
and domain-specific trace metamodel for fUML, as well
as an accompanying trace constructor by applying our pro-
posed approach. The generated trace metamodel comprises
56 metaclasses for capturing values of dynamic fields, 300
metaclasses for capturing object states, and 415 metaclasses
for capturing execution steps. The accompanying trace con-
structor comprises 16 196 lines of Java code.

In addition, we have defined tracing annotations for fUML
that narrow the scope of traces down to the data actually
needed for performing the semantic differencing of fUML
models. The tracing annotations select onemetaclass and two
dynamic properties of the execution metamodel, as well as
three step rules of the execution transformation of fUML for
tracing. As a consequence of the defined tracing annotations,
the size of the generated multidimensional and domain-
specific trace metamodel is reduced to two metaclasses
for capturing values of dynamic fields, ten metaclasses for
capturing object states,17 and 39 metaclasses for capturing
execution steps.18 The associated generated domain-specific
trace constructor is composed of 832 lines of Java code.

Semantic differencing rules. In our previous work [43], we
had defined a set of semantic differencing rules for fUML
based on a generic and clone-based trace metamodel. These
rules were defined using the Epsilon Comparison Language
(ECL) [42]. We have adapted these rules to carry out the
semantic differencing on multidimensional and domain-
specific traces, instead of generic and clone-based ones. Note
that these adapted rules can also be directly used for the
customized fUML trace metamodel obtained with tracing
annotations described above.

9.3 Experiments

To answer all research questions RQ1–RQ4 that we intro-
duced in Sect. 4, we have conducted the following series of
experiments and measures with the considered use case.

17 This high amount of metaclasses for capturing object states is due
to the types of the annotated dynamic properties and the types of the
parameters of the annotated step rules, which require additional meta-
classes for tracing.
18 The high amount of metaclasses for representing only three anno-
tated step rules is due to inheritance relationships in the execution
metamodel of fUML. In particular, the metaclasses for which the anno-
tated step rules are defined have many subtypes and for each subtype,
a metaclass has to be produced in the trace metamodel.

123

https://github.com/moliz/moliz.gemoc
https://github.com/moliz/moliz.gemoc

Advanced and efficient execution trace management for executable domain-specific modeling…

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Ti
m

e
(µ

s)
 L

g
10

^x

generic trace domain-specific trace customized domain-specific trace

Fig. 11 Execution time of the semantic differencing rules of fUML for generic and domain-specific traces. Each identifier is a different pair of
models whose traces have been compared

For answering RQ3 (usability), we have compared the
complexity of the two variants of semantic differencing
rules defined for fUML, i.e., the semantic differencing rules
defined based on the multidimensional and domain-specific
trace metamodel generated with the approach proposed in
this work, and the semantic differencing rules defined based
on the generic and clone-based trace metamodel originally
employed by the semantic model differencing framework.
We measured the complexity by performing a static analysis
of the defined semantic differencing rules.

For the other research questions, we have used the GE-
MOC Studio to execute a set of real world fUML models
taken from a semanticmodel differencing case study realized
by Maoz et al. [47] in four different configurations:

C1 without the construction of execution traces,
C2 with the construction of generic and clone-based execu-

tion traces,
C3 with the construction of multidimensional and domain-

specific execution traces, and
C4 with the construction of multidimensional and domain-

specific execution traces that are customized to the
developed semantic differencing rules by means of trac-
ing annotations.

For answering RQ1 (scalability in time), we have mea-
sured the time needed for executing the semantic differencing
rules on the three different types of execution traces con-
structed for the considered set of fUML models, i.e., the
traces constructed with the configurations C2–C4. The mea-
surements where repeated ten times and the arithmetic mean
execution timewas analyzed for answering the research ques-
tion.

For answering RQ2 (memory), we have measured and
compared the memory used by the execution traces con-
structed in the configurations C2–C4. More precisely, for
each execution and constructed trace, we produced a mem-
ory dump of the heap of the Java Virtual Machine, and we

analyzed it using the Eclipse Memory Analyzer.19 Thanks to
precise queries, our analysis only measures the exact mem-
ory usage of an execution trace, leaving aside the memory
used by the environment or by the loaded metamodels.

Finally, for answering RQ4 (trace construction overhead),
we have compared the runtime overhead induced by the con-
struction of the different types of execution traces in the
configurations C2–C4, by comparing each execution time
to the configuration C1 where no trace was constructed. The
measurements where repeated five times and the arithmetic
mean was analyzed for answering the research question.

The experiment conducted for answering research ques-
tion RQ1 was performed on an Intel Core i7-4600U CPU,
2.10 GHz, 2.69 GHz, with 12 GB RAM, running Windows
8.1 Pro 64-Bit. The experiments conducted for answering the
research questions RQ2 and RQ4were performed on an Intel
Core i5-4210U CPU, 1.70 GHz, with 12 GB RAM, running
Fedora 23 64 bits.

9.4 Results

In the following, we present the results of the evaluation and
discuss the answers to the research questions RQ1–RQ4 that
follow from these results.

RQ1:Reduction of tracemanipulation time. Figure 11 shows
the execution times measured for applying the semantic
differencing rules on the traces of the considered example
models. The X -axis shows the identifier of the compared
model-pair and the Y -axis shows the measured execution
time in microseconds on a logarithmic scale.

As can be seen from themeasurements, the rules analyzing
traces conforming to the multidimensional domain-specific
trace metamodel outperform the rules analyzing generic and
clone-based traces. They are executed between 40 and 87
times faster with an average of 62. The main hypothesis for

19 http://www.eclipse.org/mat/.

123

http://www.eclipse.org/mat/

E. Bousse et al.

explaining this result is that the multidimensional structure
of the domain-specific trace metamodel allows to efficiently
explore the trace through dedicated navigation paths related
to specific model elements. The usage of a customized
domain-specific trace metamodel specific to the semantic
differencing rules brought no major performance improve-
ments for the performed trace analysis itself. However, the
time needed for loading the analyzed traces was significantly
reduced due to the reduced size of the traces. Please note that
the time needed for loading the traces is not included in the
execution times shown in Fig. 11.

These results allow us to answer RQ1 as follows: mul-
tidimensional domain-specific trace metamodels provide a
smaller tracemanipulation time compared to a generic clone-
based trace metamodel.

RQ2: Reduction of memory consumption. Figure 12 shows
the memory consumption of the execution traces obtained
with the generic and the domain-specific trace metamodels,
while Fig. 13 shows the memory consumption of the cus-
tomized domain-specific trace metamodel. Each data point
represents the amount of memory used by an execution trace
obtained from execution of one particular model. The X -axis
shows the amount of execution states captured by the consid-
ered trace. The Y -axis shows the amount of memory used by
the trace in kilobytes (kB). The generic and domain-specific
traces are put on the same graph because they both contain
the same amount of execution states, while the customized
domain-specific traces contain less execution states due to
the performed customizations.

Generic traces require 4.1 to 4.5 times more memory
than domain-specific traces with an average of 4.3. Domain-
specific traces require 20.4 to 25.4 times more memory

Fig. 12 Memory consumption of generic and domain-specific traces,
ordered by the amount of execution states constructed

Fig. 13 Memory consumption of customized domain-specific traces,
ordered by the amount of execution states constructed

Table 2 Complexity of the semantic differencing rules of fUML
defined for the generic (G) and domain-specific (DS) trace metamodel

Elements G DS Reduction (%)

Lines of code 109 45 59

Statements 62 27 56

Operations 15 6 60

Operation calls (analysis-specific
operations)

19 6 68

Loops 5 4 20

Conditions 11 2 73

Type checks 4 0 100

Feature accesses 18 10 44

than customized domain-specific traces with an average of
22.6. In addition, we observe that the memory consump-
tion of domain-specific traces increases less rapidly with
an increased number of execution states than the memory
consumption of generic traces, which suggests better scala-
bility in memory for large executions. Our main hypothesis
for explaining this result is that domain-specific traces are
designed to only contain the evolution of dynamic objects
with minimal redundancy and, hence, consume less memory
than clone-based ones that contain significant redundancy.

To summarize and answer RQ2, we observe that domain-
specific traces are more efficient in memory than generic and
clone-based traces. Moreover, customized domain-specific
traces reduce even more significantly the memory consump-
tion for a specific application context.

RQ3: Complexity reduction of trace analyses. Table 2 com-
pares the complexity of the semantic differencing rules
defined for fUML based on the generic and clone-based trace
metamodel, and the multidimensional and domain-specific

123

Advanced and efficient execution trace management for executable domain-specific modeling…

Fig. 14 Runtime overhead due to the trace construction, for each executed model and each trace metamodel

trace metamodel. For all elements, we observe a significant
reduction of the complexity of the rules ranging from 20 to
100%.

The trace analysis defined on traces conforming to the
generic and clone-based trace metamodel comprises 109
lines of code distributed in 15 operations defining 62 state-
ments in total. Five loops are required for traversing the states
captured in the traces, as well as the quite complex data
structure of the executionmetamodel of fUML. Furthermore,
four type checks and 18 feature navigation expressions are
required during these traversals to extract the data necessary
for the trace comparison.

The trace analysis defined based on tracemodels conform-
ing to the generated multidimensional and domain-specific
trace metamodel consists of 45 lines of code, six operations,
and 27 statements. This reduction of 56% in terms of overall
statements is mainly due to the multidimensional structure
of the generated domain-specific trace metamodel enabling
a more efficient traversal of the execution traces. In contrast
to the generic trace metamodel, there is no need to traverse
the complex data structure of the execution metamodel of
fUML, but instead the objects relevant for performing the
trace comparison can be directly accessed. Furthermore, due
to the domain-specific nature of the trace metamodel, type
checks become obsolete.

These results allow us to answer RQ3 as follows: multi-
dimensional and domain-specific trace metamodels simplify
the definition of domain-specific trace manipulations com-
pared to a generic and clone-based trace metamodel.

RQ4: Reduction of runtime overhead for trace construction.
Figure 14 shows the runtime overhead induced by con-
structing execution traces, i.e., the percentage of additional
execution time spent on constructing a trace, using the three
considered trace metamodels and corresponding trace con-
structors. The X -axis shows the identifiers of each executed
model, and the Y -axis shows the percentage of runtime over-
head due to trace construction. Please note that some results
are negative in the case of customized domain-specific traces

because the execution times are overall very close to the case
without trace construction, and because execution time mea-
surements are subject to fluctuations.

On average, the runtime overhead comprises 7.81%
for constructing a generic trace, 7.25% for construction a
domain-specific trace, and 0.86% for constructing a cus-
tomized domain-specific trace. Overall, we observe that the
overhead for constructing domain-specific traces is similar
to the overhead for constructing generic traces, and heavily
depends on the considered execution.

Our hypothesis for explaining these results is that despite
the fact that a domain-specific trace constructor has much
less elements to create, it contains a significant amount of
conditional expressions to analyze the execution state of the
executed model, while a generic trace constructor can simply
copy each object of the executed model into the trace. Con-
structing a customized domain-specific trace, on the other
hand, always induces a smaller overhead on the execution,
which is due to both the very small amount of calls made to
the trace constructor (since few step rules are traced) and the
small amount of data stored in each execution state (since
fewer dynamic properties are considered).

To summarize and answer RQ4, our approach does not
significantly reduce the runtime overhead induced by con-
structing domain-specific traces as compared to generic
clone-based traces, although the overhead remains quite low
and under 10%. However, the construction of a trace con-
forming to a customized domain-specific trace metamodel
tailored for a considered application context has a negligible
overhead on the execution, even below 1%.

10 Related work

In this section, we present existing approaches that are com-
parable to our solution.Wefirst focus onmethods for defining
domain-specific trace metamodels, then we look at existing
work on multidimensional trace data structures and finally
we examine how self-defining trace formats can be related
to our work.

123

E. Bousse et al.

10.1 Defining domain-specific trace data structures

Hegedüs et al. [34] propose a generic execution trace meta-
model thatmust bemanually extended into a domain-specific
trace metamodel using inheritance relationships. They con-
sider a trace to be a sequence of both changes and snapshots of
objects of the model, with no representation of the complete
execution state. We can summarize three main differences
with our approach. First, the structure is different from ours,
both because we take into account the complete execution
states of the model, and because we only consider high-level
changes (i.e., execution steps) corresponding to a relevant
subset (i.e.,domain-specific) of the execution semantics. Sec-
ond, their approach consists in extending a generic execution
tracemetamodel using inheritance, while we generate a com-
pletemetamodel with customizedmetaclasses and properties
for the considered xDSML. Thereby, we aim to avoid both
type checks and casting, and to provide tracemetamodels that
are closer to the domain of the considered xDSML. Lastly,
their approach ismanual, while ours is generative and autom-
atized.

In the context of the TopCased project [13,14,17], we
proposed the definition of a trace management metamodel
specific to the model of computation of an xDSML. Such a
trace metamodel is only concerned with event occurrences in
an execution (corresponding to execution steps), while our
present approach considers also execution states. In addition,
like the approach by Hegedüs et al. [34], their approach is
manual while ours is generative and automatized.

Gogolla et al. [27] generate filmstrip models from UML
metaclass diagrams to represent the evolution of a system’s
state. Such filmstrip models incorporate the original UML
metaclasses, and thus match what we call domain-specific
trace metamodels. However, the generated metaclasses are
almost identical to the ones from the input UML metaclass
diagrams, hence leading to a trace metamodel equivalent to
a clone-based one. Yet, as we have previously explained and
shown with our evaluation, clone-based approaches do not
scale in memory and offer poor usability.

Meyers et al. [51] propose the ProMoBox framework,
which generates a set of metamodels from an annotated
xDSML, including a trace metamodel. More precisely, they
provide a clone-based generic execution trace metamodel
that is extended into a domain-specific metamodel by their
generative approach. While being generative like ours, their
approach differs from our approach inmultiple aspects. First,
they consider an abstract syntax whose properties are anno-
tated either as runtime or event to identify dynamic elements
and event-related elements, while we consider the abstract
syntax and the execution metamodel to be separated. Indeed,
such separation makes possible a better separation of con-
cerns and interchangeability of semantics. Furthermore, it
facilitates a fully automated derivation of the concepts that

have to be introduced into a domain-specific tracemetamodel
for capturing the execution states and execution steps of a
model. Second, the obtained tracemetamodel is clone-based,
since each recorded execution state is a complete snapshot of
the executedmodel with the same limitations as the approach
proposed by Gogolla et al. [27]. Finally, similarly to the
approach by Hegedüs et al. [34], inheritance relationships
are used to extend a base trace metamodel, while we gener-
ate new metaclasses to avoid having to rely on introspection
and casting when manipulating traces.

10.2 Multidimensional trace data structures

Few approaches propose multidimensional facilities to fol-
low the evolution of specific model elements within a trace.

Filmstrip models from Gogolla et al. [27]—mentioned
above for their domain-specific aspect—provide a structure
that makes possible to follow the evolution of a single object
of amodel, which facilitates the analysis of specific elements.
This is very similar to the dimensions we propose in our
approach. However, because a new snapshot of an object is
created at each execution step, following suchnavigationpath
requires as many iterations as browsing the complete execu-
tion trace of the model. Moreover, we consider a dimension
to be at the level of a field, while they consider the level of
an object.

KMF runtime versioning [32] stores the versions of each
object of a model separately, allowing to enumerate the
states of a specific object of the executed model. Their
approach does allow to navigate among the states of a model
from the perspective of a specific element of the model,
hence with much fewer iterations. However, their approach
is generic and does not capture a domain-specific execution
trace metamodel. Moreover, similarly to Gogolla et al. [27],
they consider changes at the level of an object.

10.3 Self-defining trace formats

Self-defining trace formats are formats allowing to define the
data structure of a tracewithin themetadata of the trace itself.
This can be compared to a model that would embed its own
metamodel. Examples of such trace formats include Pablo
SDDF [3], Pajé [60] and the trace metamodel of the SOC-
Trace project [57]. For the tracing of embedded systems and
operating systems, a well-known self-defining trace format
is the Common Trace Format (CTF) [20].

While a self-defining trace format cannot directly be used
to construct the traces of an xDSML, it could potentially
be an interesting alternative to MOF for the definition of
trace metamodels. For instance, adapting our approach to
generate domain-specific metadata for the Common Trace
Format (CTF) [20] would make possible to benefit from a
verymemory efficient binary format. However, sincewe con-

123

Advanced and efficient execution trace management for executable domain-specific modeling…

sider xDSMLs to be defined using metamodels defined with
MOF, using such meta-formats for execution traces would
make it difficult to properly define linkswithin the executable
model at both the metamodel and the model level. Moreover,
to our knowledge, self-defining trace formats do not provide
multidimensional navigation facilities.

11 Conclusion

Dynamic V&V of models requires the ability to model
executions traces. We identified three important require-
ments regarding the definition of a trace metamodel for an
xDSML: It must provide good usability for the development
of domain-specific trace analyses, good scalability in time for
manipulating traces, and good scalability in memory. Exist-
ing trace formats are not adequate because of their distance
to the domain of an arbitrary xDSML and because of their
lack of alternative trace exploration means. The approach we
presented consists in automatically generating amultidimen-
sional and domain-specific trace metamodel of an xDSML,
using the xDSML’s definition of what the execution state of
a model is, and which steps may occur during an execution.
We reify the dynamic properties of the execution metamodel
into metaclasses, allowing both to reduce redundancy of data
captured in traces, and to narrow the scope of the trace meta-
model to the considered xDSML.We also provide navigation
paths both to follow the evolution of each dynamic field of
the model over time, and to follow the occurrences of each
step definition. This allows an efficient navigation of traces,
i.e., an exploration without visiting each state of the trace.
Furthermore, we propose the concept of tracing annotations,
which can be used to further reduce the scope of the trace
metamodel to the dynamic data and execution steps that are
relevant for a particular application context of the considered
xDSML.This improves the usability of tracemetamodels and
traces, reduces the memory footprint of traces, and improves
the performance of the trace construction and analyses. Our
evaluation was done by the generation of a trace metamodel
for fUML and its utilization for semantic differencing of sev-
eralmodels. The results show a simplification of the semantic
differencing rules and faster execution times of the rules,
when compared to a naïve and generic trace metamodel. Fur-
thermore, we observed a reduced memory footprint of traces
as well as a reduced runtime overhead induced by the trace
construction during the execution of models.

12 Perspectives

There are many direct perspectives for this work. We present
a selection of them in the following paragraphs.

Interactions with the execution environment. A model may
interact with its execution environment for allowing an exter-

nal source (e.g., the user, a solver, sensors) to provide input
data or to resolve non-deterministic situations. Therefore, if
the operational semantics of an xDSML explicitly defines
the possible external stimuli that a conforming model can
handle, this information could be taken into account in the
corresponding domain-specific tracemetamodel. This would
allow to capture even more precise execution traces from
models conforming to an xDSML. For instance, a step could
contain information on the external stimulus responsible for
its application.

Execution branches. Depending on the operational seman-
tics, executing a model can be non-deterministic. This means
that a single model may yield different executions, and there-
fore different execution traces. In particular, the semantics
may handle input stimuli (see previous paragraph), or may
contain a concurrency model which introduces non-determi-
nism [15]. Yet, different executions may share a common
prefix before diverging. Consequently, it would be possible
to use a single execution trace model to represent a set of
executions sharing a common prefix, which would result in
a reduction of the memory footprint, and give the possibility
to explore these different executions when analyzing a trace.
Such branches in an execution trace could be used by trace
analyses to efficiently look atmultiple similar scenarios. This
would require generating appropriate trace metamodels that
allow the construction of different branches, each starting
from an execution state of another branch.

Common generic structural interface. Although defining a
generic trace manipulation for a domain-specific trace meta-
model is possible, it is not possible to directly reuse it for
another xDSML. A solution to manipulate any domain-
specific trace in a generic way is the definition of a common
generic structural interface, such as a generic trace meta-
model.We already proposed such idea andmetamodel in [9].
In that paper, given an xDSML, we proposed to automati-
cally generate a one-way model transformation to obtain a
generic trace from a domain-specific one, in order to enable
the generic analysis of traces. However, other solutions can
be considered for also enabling the generic modification of
traces, such as a bidirectional model transformation between
the generic and domain-specific trace metamodels, or meta-
model substitutability techniques such as model subtyping
[28].

Compression of traces. To further reducememory consump-
tion of execution traces, it is possible for certain types of value
changes to store the delta between a former value and a new
value, instead of a complete new value. For instance, if a
dynamic field is a collection of elements, an execution state
can contain additions and removals of elements instead of
a complete new collection. Likewise, if a dynamic field is a

123

E. Bousse et al.

string, the same can be accomplished by looking at additions
and removals of substrings. However, for a given execution
state, such storage model would require reading a complete
sequence of deltas to reconstruct the actual value of such
dynamic field. Another perspective is the detection of redun-
dant patterns within execution steps, as proposed in [30],
in order to store patterns only once and to be able to create
simpler pattern instances inside the trace.

Extended notion of dimension. Our approach defines a
dimension as the sequence of values reached by a single
dynamic field of an executed model. We chose this low
level of granularity so that even the smallest change in
the execution state may be tracked efficiently when read-
ing a trace. However, trace analyses might require to follow
the evolution of multiple dynamic fields at the same time,
which may require some non-intuitive queries when using
our generated trace metamodels. Therefore, coarse-grained
possibilities could also be explored, such as having one
dimension per dynamic object (similarly to [27]), each con-
taining the sequence of states reachedby anobject.Andgoing
further, in order to consider any level of granularity, a dimen-
sion could be more generally based on a tuple of dynamic
fields, possibly scattered among different dynamic objects.
Defining what dimensions should be considered for a given
set of trace analyses could also be part of an extension of the
customization process that we proposed.

Acknowledgements Open access funding provided by TU Wien
(TUW). This work is supported by the ANR INS Project GEMOC
(ANR-12-INSE-0011), the COST Action MPM4CPS (IC1404), the
ChristianDoppler Forschungsgesellschaft CDL-Flex, theBMWFW, the
Austrian Science Fund (FWF): P 28519-N31, the Austrian Agency for
Cooperation in Education and Research (OeAD) under the grand num-
ber FR 08/2017 and by the French Ministries of Foreign Affairs and
International Development (MAEDI) and the French Ministry of Edu-
cation, Higher Education and Research (MENESR).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Alanen,M., Porres, I.:Difference and union ofmodels. In: Proceed-
ings of the 6th International Conference on the Unified Modeling
Language (UML’03), LNCS, vol. 2863, pp. 2–17. Springer (2003).
doi:10.1007/978-3-540-45221-8_2

2. Alawneh, L., Hamou-Lhadj, A.: MTF: a scalable exchange format
for traces of high performance computing systems. In: Proceedings
of the 19th International Conference on Program Comprehension
(ICPC’11), pp. 181–184. IEEE (2011). doi:10.1109/ICPC.2011.15

3. Aydt, R.: The Pablo Self-Defining Data Format. Technical Report,
Department of Computer Science at the University of Illinois at
Urbana-Champaign (1992)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

5. Bandener, N., Soltenborn, C., Engels, G.: Extending DMM behav-
ior specifications for visual execution and debugging. In: Proceed-
ings of the Third International Conference on Software Language
Engineering (SLE’10), vol. 6563 LNCS, pp. 357–376. Springer,
Berlin (2010). doi:10.1007/978-3-642-19440-5_24

6. Bendraou, R., Combemale, B., Crégut, X., Gervais, M.P.: Defi-
nition of an executable SPEM 2.0. In: Proceedings of the 14th
Asia-Pacific Software Engineering Conference (APSEC’07), pp.
390–397. IEEE (2007). doi:10.1109/APSEC.2007.38

7. Bousse, E., Combemale, B., Baudry, B.: Scalable armies of model
clones through data sharing. In: Proceedings of the 17th Interna-
tional Conference on Model Driven Engineering Languages and
Systems (MODELS’14), LNCS, vol. 8767, pp. 86–301. Springer
(2014). doi:10.1007/978-3-319-11653-2_18

8. Bousse, E., Combemale, B., Baudry, B.: Towards scalable mul-
tidimensional execution traces for xDSMLs. In: Proceedings of
the 11th Workshop on Model-Driven Engineering, Verification
and Validation (MoDeVVa’14), CEUR-WS, vol. 1235, pp. 13–18.
CEUR (2014). http://ceur-ws.org/Vol-1235/paper-03.pdf

9. Bousse, E., Corley, J., Combemale, B., Gray, J., Baudry, B.: Sup-
porting efficient and advanced omniscient debugging for xDSMLs.
In: Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Software Language Engineering (SLE’15), pp. 137–148.
ACM (2015). doi:10.1145/2814251.2814262

10. Bousse, E., Mayerhofer, T., Combemale, B., Baudry, B.: A gen-
erative approach to define rich domain-specific trace metamodels.
In: Proceedings of the 11th European Conference on Modelling
Foundations and Applications (ECMFA’15), LNCS, vol. 9153, pp.
45–61. Springer (2015). doi:10.1007/978-3-319-21151-0_4

11. Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault
localization in model transformations. IEEE Trans. Softw. Eng.
41(5), 490–506 (2015). doi:10.1109/TSE.2014.2375201

12. Combemale, B., Crégut, X., Garoche, P.L., Thirioux, X.: Essay on
semantics definition in mde—an instrumented approach for model
verification. J. Softw. 4(9), 943–958 (2009). doi:10.4304/jsw.4.9.
943-958

13. Combemale, B., Crégut, X., Giacometti, J.P.,Michel, P., Pantel,M.:
Introducing simulation and model animation in the MDE topcased
toolkit. In: Proceedings of the 4thEuropeanCongress onEmbedded
Real Time Software and Systems (ERTS’08) (2008)

14. Combemale, B., Crégut, X., Pantel, M.: A design pattern to build
executable DSMLs and associated V&V tools. In: Proceedings of
the 19th Asia-Pacific Software Engineering Conference, pp. 282–
287. IEEE (2012). doi:10.1109/APSEC.2012.79

15. Combemale, B., Deantoni, J., Larsen, M.V., Mallet, F., Barais, O.,
Baudry, B., France, R.: Reifying concurrency for executable meta-
modeling. In: Proceedings of the 6th International Conference on
Software Language Engineering (SLE’13), LNCS, vol. 8225, pp.
365–384. Springer (2013). doi:10.1007/978-3-319-02654-1_20

16. Corley, J., Eddy, B.P., Gray, J.: Towards efficient and scalabale
omniscient debugging for model transformations. In: Proceedings
of the 14th Workshop on Domain-Specific Modeling (DSM’14),
pp. 13–18. ACM (2014). doi:10.1145/2688447.2688450

17. Crégut, X., Combemale, B., Pantel, M., Faudoux, R., Pavei, J.:
Generative technologies for model animation in the TopCased plat-
form. In: Proceedings of the 6th EuropeanConference onModeling
Foundations and Applications (ECMFA’10), LNCS, vol. 6138, pp.
90–103. Springer, Berlin (2010). doi:10.1007/978-3-642-13595-
8_9

18. Csertan,G.,Huszerl,G.,Majzik, I., Pap,Z., Pataricza,A.,Varro,D.:
VIATRA-visual automated transformations for formal verification
and validation of UMLmodels. In: Proceedings of the 17th Interna-
tional Conference on Automated Software Engineering (ASE’02),
pp. 267–270. IEEE (2002). doi:10.1109/ASE.2002.1115027

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/978-3-540-45221-8_2
http://dx.doi.org/10.1109/ICPC.2011.15
http://dx.doi.org/10.1007/978-3-642-19440-5_24
http://dx.doi.org/10.1109/APSEC.2007.38
http://dx.doi.org/10.1007/978-3-319-11653-2_18
http://ceur-ws.org/Vol-1235/paper-03.pdf
http://dx.doi.org/10.1145/2814251.2814262
http://dx.doi.org/10.1007/978-3-319-21151-0_4
http://dx.doi.org/10.1109/TSE.2014.2375201
http://dx.doi.org/10.4304/jsw.4.9.943-958
http://dx.doi.org/10.4304/jsw.4.9.943-958
http://dx.doi.org/10.1109/APSEC.2012.79
http://dx.doi.org/10.1007/978-3-319-02654-1_20
http://dx.doi.org/10.1145/2688447.2688450
http://dx.doi.org/10.1007/978-3-642-13595-8_9
http://dx.doi.org/10.1007/978-3-642-13595-8_9
http://dx.doi.org/10.1109/ASE.2002.1115027

Advanced and efficient execution trace management for executable domain-specific modeling…

19. DeAntoni, J., Mallet, F., Thomas, F., Reydet, G., Babau, J.P.,
Mraidha, C., Gauthier, L., Rioux, L., Sordon, N.: RT-simex:
retro-analysis of execution traces. In: Proceedings of the 18th Inter-
national Symposium on the Foundations of Software Engineer-
ing (FSE’10), pp. 377–378. ACM (2010). doi:10.1145/1882291.
1882357

20. Desnoyers, M.: Common Trace Format (CTF) Specification
(v1.8.2) (2013). http://git.efficios.com/?p=ctf.git;a=blob_plain;f=
common-trace-format-specification.md;hb=master

21. Eichler, H., Soden, M.: An Approach to Behaviour Comparison
Using Execution Traces. Technical Report, Department of Com-
puter Science, Humboldt University Berlin (2009)

22. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta-
modeling: a graphical approach to the operational semantics of
behavioral diagrams in UML. In: Proceedings of the Third Interna-
tional Conference on the Unified Modeling Language (UML’00),
LNCS, vol. 1939, pp. 323–337. Springer, Berlin (2000). doi:10.
1007/3-540-40011-7_23

23. Eschweiler, D.,Wagner,M., Geimer,M., Knüpfer, A., Nagel,W.E.,
Wolf, F.: Open trace format 2: the next generation of scalable trace
formats and support libraries. In: Proceedings of the 14th Inter-
national Conference on Parallel Computing, Advances in Parallel
Computing, vol. 22, pp. 481–490. IOS Press (2011). doi:10.3233/
978-1-61499-041-3-481

24. Esmaeilsabzali, S., Day, N.A.: Prescriptive semantics for big-step
modeling languages. In: Proceedings of the 13th International
Conference on Fundamental Approaches to Software Engineer-
ing (FASE’10), LNCS, vol. 6013, pp. 158–172. Springer, Berlin
(2010). doi:10.1007/978-3-642-12029-9_12

25. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a
newgraph rewrite languagebasedon the unifiedmodeling language
and java. In: Proceedings of the 6th InternationalWorkshop Theory
and Application of Graph Transformations (TAGT’98), vol. 1764,
pp. 157–167 (2000). doi:10.1007/978-3-540-46464-8_21

26. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D.,
Mohr, B.: The Scalasca performance toolset architecture. Concurr.
Comput. Pract. Exp. 22(6), 702–719 (2010). doi:10.1002/cpe.1556

27. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.:
From application models to filmstrip models: an approach to auto-
matic validation of model dynamics. In: Modellierung 2014, LNI,
vol. 225, pp. 273–288. GI (2014)

28. Guy,C., Combemale, B.,Derrien, S.: OnModel Subtyping. In: Pro-
ceedings of the 8thEuropeanConference onModelingFoundations
and Applications (ECMFA’12), LNCS, vol. 7349, pp. 400–415.
Springer (2012). doi:10.1007/978-3-642-31491-9_30

29. Haerder, T., Reuter, A.: Principles of transaction-oriented database
recovery. ACM Comput. Surv. 15(4), 287–317 (1983). doi:10.
1145/289.291

30. Hamou-Lhadj, A., Lethbridge, T.C.: A metamodel for the com-
pact but lossless exchange of execution traces. Softw. Syst. Model.
11(1), 77–98 (2010). doi:10.1007/s10270-010-0180-x

31. Harel, D., Lachover, H., Naamad, A., Pnuelli, A., Politi, M.,
Sherman, R., Shtull-trauring, A., Trakhtenbrot, M.: Statemate: a
working environment for the development of complex reactive
systems. IEEE Trans. Softw. Eng. 16(4), 403–414 (1990). doi:10.
1109/ICCSSE.1988.72235

32. Hartmann, T., Fouquet, F., Nain, G., Morin, B., Klein, J., Barais,
O., Traon, Y.L.: A native versioning concept to support histor-
ized models at runtime. In: Proceedings of the 17th International
Conference onModel Driven Engineering Languages and Systems
(MODELS’14), LNCS, vol. 8767, pp. 252–268. Springer (2014).
doi:10.1007/978-3-319-11653-2_16

33. Hegedüs, Á., Bergmann, G., Ráth, I., Varró, D.: Back-annotation
of simulation traces with change-driven model transformations.
In: Proceedings of the 8th International Conference on Software

Engineering and Formal Methods (SEFM’10), pp. 145–155. IEEE
(2010). doi:10.1109/SEFM.2010.28

34. Hegedüs, Á., Ráth, I., Varró, D.: Back-Annotation Framework for
Simulation Traces of Discrete Event-based Languages. Techni-
cal Report, BME (2010). https://inf.mit.bme.hu/sites/default/files/
publications/Hegedus_TechRep_201004.pdf

35. Hegedüs, A., Ráth, I., Varró, D.: Replaying execution trace models
for dynamic modeling languages. Period. Polytech. Electr. Eng.
56(3), 71–82 (2012)

36. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment of MDE in industry. In: Proceedings
of the 33rd International Conference on Software Engineering
(ICSE’11), pp. 471–480. ACM (2011). doi:10.1145/1985793.
1985858

37. Jeanneret, C.,Glinz,M.,Baudry,B.: Estimating footprints ofmodel
operations. In: Proceedings of the 33rd International Conference
on Software Engineering (ICSE’11), pp. 601–610. ACM (2011).
doi:10.1145/1985793.1985875

38. Jeanneret, C., Glinz, M., Baudry, B.: Footprinting Operations
Written in Kermeta. Technical Report IFI-2011.0002, University
of Zurich, Department of Informatics (IFI) (2011). https://www.
merlin.uzh.ch/contributionDocument/download/2130

39. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Pro-
ceedings of the Workshop on Model Transformations in Practice
(MTiP’05), LNCS, vol. 3844, pp. 128–138. Springer, Berlin
(2006). doi:10.1007/11663430_14

40. Jézéquel J.M., Combemale B., Barais O., Monperrus M., Fouquet
F. (2013) Mashup of metalanguages and its implementation in the
Kermeta language workbench. Softw. Syst Model. doi:10.1007/
s10270-013-0354-4

41. Kelly, S., Pohjonen, R.:Worst practices for domain-specificmodel-
ing. IEEE Softw. 26(4), 22–29 (2009). doi:10.1109/MS.2009.109

42. Kolovos, D., Rose, L., García-Domínguez, A., Paige, R.: The
epsilon book (2016). https://www.eclipse.org/epsilon/doc/book

43. Langer, P., Mayerhofer, T., Kappel, G.: Semantic model differenc-
ing utilizing behavioral semantics specifications. In: Proceedings
of the 17th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS’14), LNCS, vol. 8767, pp.
116–132. Springer (2014)

44. Leucker,M., Schallhart, C.: A brief account of runtime verification.
J. Log. Algebr. Program. 78(5), 293–303 (2009). doi:10.1016/j.
jlap.2008.08.004

45. Lin, Y., Gray, J., Jouault, F.: DSMDiff: a differentiation tool for
domain-specific models. Eur. J. Inf. Syst. 16(4), 349–361 (2007)

46. Maoz, S., Ringert, J.O., Rumpe, B.: A manifesto for semantic
model differencing. In: Models in Software Engineering: Work-
shops and Symposia at MODELS 2010, Reports and Revised
Selected Papers, LNCS, vol. 6627, pp. 194–203. Springer (2011).
doi:10.1007/978-3-642-21210-9_19

47. Maoz, S., Ringert, J.O., Rumpe, B.: ADDiff: Semantic differencing
for activity diagrams. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, pp. 179–189. ACM (2011). doi:10.1145/
2025113.2025140

48. Mayerhofer, T., Langer, P., Kappel, G.: A runtime model
for fUML. In: Proceedings of the 7th Workshop on Mod-
els@run.time (MRT’12), pp. 53–58. ACM (2012). doi:10.1145/
2422518.2422527

49. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: exe-
cutable DSMLs based on fUML. In: Proceedings of the 6th Inter-
national Conference on Software Language Engineering (SLE’13),
LNCS, vol. 8225, pp. 56–75. Springer (2013). doi:10.1007/978-3-
319-02654-1_4

50. Mayerhofer, T.,Wimmer,M.: TheTTC2015model execution case.
In: Proceedings of the 8th Transformation Tool Contest (TTC’15),

123

http://dx.doi.org/10.1145/1882291.1882357
http://dx.doi.org/10.1145/1882291.1882357
http://git.efficios.com/?p=ctf.git;a=blob_plain;f=common-trace-format-specification.md;hb=master
http://git.efficios.com/?p=ctf.git;a=blob_plain;f=common-trace-format-specification.md;hb=master
http://dx.doi.org/10.1007/3-540-40011-7_23
http://dx.doi.org/10.1007/3-540-40011-7_23
http://dx.doi.org/10.3233/978-1-61499-041-3-481
http://dx.doi.org/10.3233/978-1-61499-041-3-481
http://dx.doi.org/10.1007/978-3-642-12029-9_12
http://dx.doi.org/10.1007/978-3-540-46464-8_21
http://dx.doi.org/10.1002/cpe.1556
http://dx.doi.org/10.1007/978-3-642-31491-9_30
http://dx.doi.org/10.1145/289.291
http://dx.doi.org/10.1145/289.291
http://dx.doi.org/10.1007/s10270-010-0180-x
http://dx.doi.org/10.1109/ICCSSE.1988.72235
http://dx.doi.org/10.1109/ICCSSE.1988.72235
http://dx.doi.org/10.1007/978-3-319-11653-2_16
http://dx.doi.org/10.1109/SEFM.2010.28
https://inf.mit.bme.hu/sites/default/files/publications/Hegedus_TechRep_201004.pdf
https://inf.mit.bme.hu/sites/default/files/publications/Hegedus_TechRep_201004.pdf
http://dx.doi.org/10.1145/1985793.1985858
http://dx.doi.org/10.1145/1985793.1985858
http://dx.doi.org/10.1145/1985793.1985875
https://www.merlin.uzh.ch/contributionDocument/download/2130
https://www.merlin.uzh.ch/contributionDocument/download/2130
http://dx.doi.org/10.1007/11663430_14
http://dx.doi.org/10.1007/s10270-013-0354-4
http://dx.doi.org/10.1007/s10270-013-0354-4
http://dx.doi.org/10.1109/MS.2009.109
https://www.eclipse.org/epsilon/doc/book
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1007/978-3-642-21210-9_19
http://dx.doi.org/10.1145/2025113.2025140
http://dx.doi.org/10.1145/2025113.2025140
http://dx.doi.org/10.1145/2422518.2422527
http://dx.doi.org/10.1145/2422518.2422527
http://dx.doi.org/10.1007/978-3-319-02654-1_4
http://dx.doi.org/10.1007/978-3-319-02654-1_4

E. Bousse et al.

CEURWorkshopProceedings, vol. 1524, pp. 2–18.CEUR-WS.org
(2015). http://ceur-ws.org/Vol-1524

51. Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Vangheluwe, H.,
Wimmer, M.: ProMoBox: a framework for generating domain-
specific property languages. In: Proceedings of the 7th International
Conference on Software Language Engineering (SLE’14), LNCS,
vol. 8706, pp. 1–20. Springer (2014). doi:10.1007/978-3-319-
11245-9_1

52. OASIS: Web Services Business Process Execution Language
Version 2.0 (2007). https://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html

53. Object Management Group: OMG Unified Modeling Language
(OMG UML), V 2.5 (2013). http://www.omg.org/spec/UML/2.5

54. Object Management Group: UML Testing Profile (UTP), V 1.2
(2013). http://www.omg.org/spec/UTP/1.2/

55. Object Management Group: Semantics of a Foundational Subset
for Executable UMLModels (fUML), V 1.2.1 (2015). http://www.
omg.org/spec/FUML/1.2.1

56. Object Management Group: Meta Object Facility (MOF) Core
Specification, V 2.5 (2016). http://www.omg.org/spec/MOF/2.5

57. Pagano, G., Dosimont, D., Huard, G., Marangozova-Martin, V.,
Vincent, J.M.: Trace management and analysis for embedded
systems. In: Proceedings of the 7th International Symposium
on Embedded Multicore Socs (MCSoC’13), pp. 119–122. IEEE
(2013). doi:10.1109/MCSoC.2013.28

58. Pnueli, A.: The temporal logic of programs. In: 18th Annual
Symposium on Foundations of Computer Science (SFCS’77), pp.
46–57. (1977). doi:10.1109/SFCS.1977.32

59. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Reverse engineer-
ing of model transformations for reusability. In: Proceedings of
the 7th International Conference on the Theory and Practice of
Model Transformations (ICMT’14), LNCS, vol. 8568, pp. 186–
201. Springer (2014). doi:10.1007/978-3-319-08789-4_14

60. Schnorr, L.M., Stein, O., Chassin, J.: Paje trace file format,
V 1.2.5 (2013). http://paje.sourceforge.net/download/publication/
lang-paje.pdf

61. Schürr, A.: Specification of graph translators with triple graph
grammars. In: Proceedings of the 20th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG’94), pp.
151–163. Springer (1995)

62. Seidewitz, E., Cuccuru, A.: Agile programming with executable
models: an open-source, standards-based eclipse environment. In:
Proceedings of the 2014 Conference on Systems, Programming,
and Applications: Software for Humanity (SPLASH’14), Com-
panion Volume, pp. 39–40. ACM (2014). doi:10.1145/2660252.
2664664

63. Soden, M., Eichler, H.: Towards a model execution framework for
Eclipse. In: Proceedings of the 1st Workshop on Behaviour Mod-
elling in Model-Driven Architecture (BD-MDA’09). ACM (2009).
doi:10.1145/1555852.1555856

64. STMicroelectronics: KPTrace Specification (2012). http://www.
stlinux.com/stworkbench/interactive_analysis/stlinux.trace/kptra
ce_traceFormat.html

65. Tatibouët, J., Cuccuru, A., Gérard, S., Terrier, F.: Formalizing
execution semantics of UML profiles with fUML models. In: Pro-
ceedings of the 17th International Conference on Model Driven
Engineering Languages and Systems (MODELS’14), LNCS, vol.
8767, pp. 133–148. Springer (2014). doi:10.1007/978-3-319-
11653-2_9

66. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice
in model-driven engineering. IEEE Softw. 31(3), 79–85 (2014).
doi:10.1109/MS.2013.65

Erwan Bousse is a postdoc-
toral researcher at the Business
Informatics Group at TU Wien.
He has obtained his Ph.D. in
France in 2015 at the Univer-
sity of Rennes 1 for his work on
execution traces and omniscient
debugging of executable mod-
els. His current research inter-
ests include model transforma-
tion testing, language engineer-
ing, model execution, and effi-
cient execution trace manage-
ment for executable models. For
more information, please visit

http://www.big.tuwien.ac.at/staff/ebousse.

Tanja Mayerhofer is a post-
doctoral researcher at the Busi-
ness Informatics Group at TU
Wien. She has received her
Ph.D. in 2014 from TU Wien
for her work on executable
modeling based on fUML. Her
current research interests focus
on model-driven engineering,
specifically on modeling lan-
guage engineering, model exe-
cution, and model analysis.
For more information, please
visit http://www.big.tuwien.ac.
at/staff/tmayerhofer.

Benoit Combemale received his
Ph.D. in Computer Science from
the University of Toulouse in
2008, and his habilitation in
Computer Science from the Uni-
versity of Rennes in 2015. He
first worked at Inria before join-
ing the University of Rennes 1
in 2009. He is now associate
professor of Computer Science
at the University of Rennes 1,
specializing in software engi-
neering, and a member of both
the IRISA and Inria Labs. His
research interests include model-

driven engineering (MDE), software language engineering (SLE), and
validation & verification (V&V). For more information, please visit
http://people.irisa.fr/Benoit.Combemale/.

123

http://ceur-ws.org/Vol-1524
http://dx.doi.org/10.1007/978-3-319-11245-9_1
http://dx.doi.org/10.1007/978-3-319-11245-9_1
https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UTP/1.2/
http://www.omg.org/spec/FUML/1.2.1
http://www.omg.org/spec/FUML/1.2.1
http://www.omg.org/spec/MOF/2.5
http://dx.doi.org/10.1109/MCSoC.2013.28
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/978-3-319-08789-4_14
http://paje.sourceforge.net/download/publication/lang-paje.pdf
http://paje.sourceforge.net/download/publication/lang-paje.pdf
http://dx.doi.org/10.1145/2660252.2664664
http://dx.doi.org/10.1145/2660252.2664664
http://dx.doi.org/10.1145/1555852.1555856
http://www.stlinux.com/stworkbench/interactive_analysis/stlinux.trace/kptrace_traceFormat.html
http://www.stlinux.com/stworkbench/interactive_analysis/stlinux.trace/kptrace_traceFormat.html
http://www.stlinux.com/stworkbench/interactive_analysis/stlinux.trace/kptrace_traceFormat.html
http://dx.doi.org/10.1007/978-3-319-11653-2_9
http://dx.doi.org/10.1007/978-3-319-11653-2_9
http://dx.doi.org/10.1109/MS.2013.65
http://www.big.tuwien.ac.at/staff/ebousse
http://www.big.tuwien.ac.at/staff/tmayerhofer
http://www.big.tuwien.ac.at/staff/tmayerhofer
http://people.irisa.fr/Benoit.Combemale/

Advanced and efficient execution trace management for executable domain-specific modeling…

Benoit Baudry is a research sci-
entist at INRIA since 2004 and
leads theDiverSE research group
(EPI) since 2013. His research
focuses on software design, test-
ing and analysis. Most of his
work is driven by empirical
observations about software and
how quality can be improved. He
contributes in the areas of soft-
ware testing, model-driven engi-
neering, software metrics, and
automatic software diversifica-
tion. For further information,
please visit http://people.rennes.
inria.fr/Benoit.Baudry/.

123

http://people.rennes.inria.fr/Benoit.Baudry/
http://people.rennes.inria.fr/Benoit.Baudry/

	Advanced and efficient execution trace management for executable domain-specific modeling languages
	Abstract
	1 Introduction
	2 Background
	2.1 Domain-specific modeling languages
	2.2 Executable domain-specific modeling languages
	2.3 Execution trace

	3 Motivation
	3.1 Requirements for an execution trace metamodel
	3.2 Limitations of existing trace formats and approaches

	4 Approach overview
	4.1 Proposal and research questions
	4.2 Considered process

	5 Generation of multidimensional domain-specific trace metamodels
	5.1 Observations and technical challenges
	5.2 Execution trace metamodel generation
	5.3 Resulting benefits
	5.4 Size of trace metamodels and models

	6 Execution trace construction
	6.1 Generating trace constructors
	6.2 Example of a trace constructor
	6.3 Integrating trace constructors with execution transformations

	7 Customization of domain-specific execution traces
	7.1 Motivation and objective
	7.2 Illustrative example
	7.3 Tracing annotations
	7.4 Customization of trace metamodels and trace constructors based on tracing annotations
	7.5 Automated generation of tracing annotations

	8 Implementation
	8.1 GEMOC Studio
	8.2 Implementation in the GEMOC Studio

	9 Evaluation
	9.1 Semantic model differencing
	9.2 Case study
	9.3 Experiments
	9.4 Results

	10 Related work
	10.1 Defining domain-specific trace data structures
	10.2 Multidimensional trace data structures
	10.3 Self-defining trace formats

	11 Conclusion
	12 Perspectives
	Acknowledgements
	References

