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Kurzfassung

Eine der praktisch erfolgreichsten formalen Verifikationstechniken ist Mo-
del Checking, ein Ansatz um logische Eigenschaften endlicher Zustands-
systeme algorithmisch zu verifizieren. Auf Eingabe eines Systemmodells in
Form eines endlichen Zustandsübergangsgraphen und einer in einer Tem-
porallogik formulierten Spezifikation, stellt ein Model Checker automatisch
fest, ob das Modell die Spezifikation erfüllt. In dieser Dissertation werden
verschiedene Ansätze zum Analysieren von Spezifikationen im Allgemeinen
und temporallogischen Spezifikationen im Speziellen untersucht. Durch der-
artige Methoden können zusätzliche Informationen gewonnen werden, um
zu entscheiden, ob das zu untersuchende System seine Anforderungen er-
füllt. Insbesondere werden die folgenden Fragen behandelt:

(i) Was kann über die Zusammensetzung zweier Teilsysteme, die ihre
jeweiligen Spezifikationen erfüllen, ausgesagt werden? Diese Frage ist be-
sonders dann von Bedeutung, wenn ein zusammengesetztes System zu groß
ist um als Ganzes untersucht zu werden. Der Schwerpunkt der vorliegenden
Arbeit liegt bei Systemen deren Komponenten zirkulär voneinander abhän-
gen. In diesem Kontext wird eine abstrakte zirkuläre Schnittregel und eine
abstrakte zirkuläre kompositionelle Schlussregel präsentiert.

(ii) Wie kann eine unvollständige temporallogische Spezifikation effizient
vervollständigt werden, so dass sie von einem gegebenen Modell erfüllt wird?
Derartige unvollständige Spezifikationen werden temporallogische Queries
genannt. Der Schwerpunkt der vorliegenden Arbeit liegt bei Queries mit
einer einzigen stärksten Lösung. Unter anderem werden syntaktische Frag-
mente solcher Queries und effiziente Lösungsalgorithmen präsentiert.

(iii) Wenn ein gegebenes Modell seine Spezifikation erfüllt, erfolgt dies
auf die intendierte Art? Die Beantwortung dieser Frage ist in der Literatur
bekannt unter dem Namen Vacuity Detection. Sie ist praktisch von großer
Bedeutung, da vacuous (d.h., auf triviale Weise) erfüllte Spezifikationen oft
auf ein Problem im Systemdesign oder der Spezifikation hinweisen. In der
vorliegenden Arbeit wird der klassische Vacuity-Begriff durch eine Parame-
trisierung verallgemeinert, die es ermöglicht ein Problem zu lösen, auf das
von Amir Pnueli hingewiesen wurde.
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Abstract

One of the practically most successful formal verification techniques is
model checking, an approach for algorithmically verifying logical properties
of finite state systems. Given a system model in the form of a finite state
transition graph and a specification expressed in some temporal logic, a
model checker automatically determines whether the model satisfies the
specification. In this thesis, we investigate several approaches in order to
reason about specifications in general and temporal logic specifications in
particular. By such reasoning methods, it is possible to obtain additional
information to support verification and validation engineers in their task
to decide whether the system under consideration satisfies its requirements.
In particular, we are interested in three main questions:

(i) Given the specifications satisfied by two systems, what can we say
about the system obtained by composing these systems? This question is
of great importance for composed systems that are too large to be handled
at once. Our focus lies in systems whose components depend on each other
in a circular manner. In this context, we present an abstract circular cut
and an abstract circular compositional reasoning rule.

(ii) Given a system model and an incomplete temporal logic specifica-
tion, how can the given specification be efficiently completed such that it
is satisfied by the model? Incomplete specifications of this kind are called
temporal logic queries. Our focus lies in queries with single strongest solu-
tions. Among other things, we present syntactic fragments of such queries
and efficient algorithms for solving them.

(iii) Given a system model that satisfies its specifications, does the model
satisfy the specification in the intended way? In the literature, deciding
this question is well known under the name vacuity detection. It is of great
importance in practice, since vacuously (i.e., due to a trivial reason) satis-
fied specifications often point to a real problem in either the system design
or the specification. We generalize the classical notion of vacuity by a pa-
rameterization, which enables us to solve a problem posed by Amir Pnueli.
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Chapter 1

Introduction

1.1 Motivation and Aims

It is an indisputable fact that our daily life is becoming more and more
dependent on automated systems. Especially in the last decades much re-
search and technological developments in this area have been made and
no end of this tendency is in sight. For example, control systems for air,
railway, and road traffic, medical instruments, weapon systems, space flight
systems, nuclear power control systems, financial systems, telecommuni-
cation systems, etc. are nowadays at least partially realized by integrated
computer systems. Since failures of such critical systems may result in
endangerment of human life or high costs, it is a very important and chal-
lenging problem to ensure their reliability.

In this thesis, we are concerned with the following tasks (IEEE Std 1012-
1998) within the extensive discipline of quality assurance in order to - at
least partially - ensure system reliability:

• Verification
Confirmation by examination and provisions of objective evidence
that specified requirements have been fulfilled.

• Validation
Confirmation by examination and provisions of objective evidence
that the particular requirements for a specific intended use are fulfilled.

The difference between verification and validation [WF02] is that verifica-
tion is based on a specification whereas validation is based on the intended
use of the system under consideration. Since the latter one requires the
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validator to understand the problem domain, it is impossible to completely
formalize the validation process and make it fully automatically. In con-
trast, verification means to demonstrate that the system is consistent with
its specification [CSOO, LCOO]. This can be done by mathematical meth-
ods in order to guarantee a maximal degree of objective evidence. If both
the specification and the system are given as formal expression and formal
model respectively, the verification process can in principle be performed
fully automatically. Such a formalization allows to detect very subtle de-
fects in the logic of the system that are unlikely to be found by other quality
assurance measures (e.g., testing).

Note, however, that even formal verification cannot guarantee the correct-
ness of a system, since the specification or the system model may be faulty.
Formal verification only increases the confidence in the system correctness.

One of the practically most successful formal verification techniques is
model checking, an approach for algorithmically verifying logical properties
of the behavior of finite state systems [McMOO]. In particular, given a
system model in the form of a finite state transition graph and a specification
expressed in some temporal logic (i.e., a logic formalism that is well suited for
specifying the relationship of events in time), a model checker automatically
determines whether the system model satisfies the specification. In the
negative case, it supplies a counterexample, i.e., a behavioral trace that
shows that the specification is not satisfied by the model.

Model checking was invented in the early 1980s and has been successfully
applied to the verification of computer hardware designs. For example, by
using model checking it was possible to find a number of previously unde-
tected errors in the IEEE Futurebus-f- cache coherence protocol (IEEE Std
896.1-1991) [CGH+95]. Due to the success of model checking in hardware
verification, there has also been much research in the last years for applying
model checking in protocol and software verification.

As mentioned above, a central notion in the context of verification and
validation is the one of a specification, i.e., a statement of requirements
for a system. Specifications are also important in other phases of system
development [WinOO]: In requirement analysis, it helps to crystallize the
customer's possibly vague ideas and reveals contradictions, ambiguities, and
incompleteness in the requirements. In system design, it captures precisely
the interfaces between the system components. In verification, it is the
statement against which the system is proven correct. In validation, it can
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be used to generate test cases for black-box testing. Finally, it serves as
a kind of documentation since it is an alternative, usually more abstract,
description of the system behavior.

In this thesis, we investigate several approaches in order to reason about
specifications in general and temporal logic specifications in particular.
Since specifications are meant to describe the system behavior as precisely as
possible, reasoning about specifications provides additional information to
support verification and validation engineers in their task to decide whether
the system under consideration satisfies the specified and intended require-
ments. In particular, we are interested in three main questions:

1. Given the specifications satisfied by two systems X\ and X2, what can
we say about the system obtained by composing Xi and £2? This
question is of great importance for composed systems that are too
large to be handled at once. If £2 depends on Xi but not vice versa,
then the specification satisfied by the sequential composition 3£i;3t2
can be easily obtained. However, a much more challenging problem
is the case of the parallel composition X1IIX2 of circular dependent
systems, i.e., Xi depends on X2 and vice versa:

Since Xi and X2 depend on each other, specifications are in general
satisfied by X\ only under assumptions on X2 and vice versa. Their
circular composition, however, does not satisfy both their specifica-
tions (without assumptions) in general, i.e., specifications of the com-
posed system cannot be concluded in a straightforward way from the
specifications of its components. In the literature, several composition
rules for specific formalisms and restricted classes of assumptions and
specifications that allow this kind of reasoning were presented.
In this thesis, we are interested in an abstract consideration of such
circular compositions, i.e., on abstract composition rules that allow us
to conclude specifications satisfied by a composed system from specifi-
cations satisfied by its circular dependent components independently
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of a particular formalism. Within this context, our focus lies on cir-
cular compositions of proofs, i.e., X\ and £2 are considered as proofs
and the corresponding specifications are considered as intermediate
results that were proved under certain assumptions. Then, by cir-
cular composition rules, the intermediate results can be combined in
order to obtain stronger results that hold without assumptions. The
cut rule in logic calculi can be seen as sequential counterpart of such
a circular composition rule under this interpretation.

2. Given a system model and an incomplete temporal logic specification,
how can the given specification be efficiently completed such that
it is satisfied by the model? Incomplete specifications of this kind
are called temporal logic queries, that are temporal logic formulas
with variables that have to be instantiated. In this terminology, our
reasoning task is to solve temporal logic queries in a given model.
More formally, given a model 9QT and a temporal logic query 7, we
want to find all formulas ip such that 9Jt |= 7[</?], that is, 93T satisfies
the specification resulting from replacing the variables in 7 by <p.
This kind of temporal logic queries was first considered by William
Chan [ChaOO]. He presented a syntactic fragment for which he claimed
that all queries in this fragment have a single strongest solution in all
models. Moreover, he presented an efficient algorithm based on this
property for solving queries in his fragment.
In this thesis, we are interested in general properties and syntactic
fragments of temporal logic queries with single strongest solutions
following Chan. More formally, we are interested in temporal logic
queries 7 satisfying that for every model Wl in which 7 has a solution,
there exists a solution f such that:

H 7 [v] if a nd only if

Several properties of temporal logic queries are scattered through the
literature; we are going to systematically investigate them and their
relationships. Moreover, we are interested in syntactic characteriza-
tions of temporal logic queries with strongest solutions for the most
important temporal logics LTL and CTL, as well as in algorithms for
solving such queries. Note that Chan presented an efficient algorithm
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for his fragment of CTL queries. However, in consideration of the
fact that his fragment was shown to be erroneous and that he neither
proved the correctness nor did he describe the underlying intuition
and mathematical principles of his algorithm, it is uncertain whether
the algorithm is correct. Thus, we are going to investigate Chan's
algorithm. In particular, we want to find out how Chan's algorithm
works and how it is related to the properties of queries in his frag-
ment. In addition, we want to prove the correctness of the algorithm
- provided that it is correct - and we are interested in generalizations
of Chan's and other existing temporal logic query solving algorithms.

3. Given a system model that satisfies its specification, does the model
satisfy the specification in the intended way? In the literature, de-
ciding this question is well known under the name vacuity detection.
Vacuously (i.e., due to a trivial reason) satisfied specifications often
point to a real problem in either the system design or the specifica-
tion, i.e., either the system does not work in the intended way or the
specification does not describe the system behavior in the intended
way. Since the intention of the system designer is crucial in this con-
text, vacuity detection obviously belongs to the field of validation.
There exist several approaches in the literature for detecting vacuity.
One of the most important ones is the work of Orna Kupferman and
Moshe Vardi [KV99]. Essentially, they showed that in many inter-
esting cases vacuity detection of a specification cp can be reduced to
model checking formulas ip[ip <— _L], i.e., formulas obtained by replac-
ing a subformula ip of <p by the constant truth value J_.
Note that vacuity detection in this sense is closely related to queries:
When replacing a subformula ip by a variable instead of the constant
truth value, we obtain a query 7. Then, we have

(p holds vacuously in 971 if and only if dJl \= 7[_L]

In this thesis, we are interested in the consequences of this simple
observation and are going to thoroughly investigate the resulting gen-
eralized framework. In particular, based on our insights we want to
solve a problem posed by Amir Pnueli [Pnu97], where he presented an
example of a vacuously satisfied specification that does not fall under
the common notion of vacuity.
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1.2 Results
In this section, we summarize the results achieved in the scope of this thesis:

1. A Circular Cut Rule
We present a circular counterpart of the classical cut rule in logic
calculi. With our circular cut rule, it is possible to compose proofs
that depend on each other in a circular manner. We could not find
such a proof-theoretic inference rule in the literature, although there
exist several approaches on circular compositional reasoning. The idea
formalized in our circular cut rule is used in our proofs of circular
dependent LTL and CTL query languages (cf. items 6 and 7 below).

2. A Circular Composition Rule
In analogy to the circular cut rule, we present a circular composi-
tion rule that formalizes circular compositional reasoning on a very
abstract level. In particular, our inference rule formalizes the com-
mon idea of various approaches on circular compositional reasoning
in the literature. With this rule at hand, arbitrary circular dependent
specifications of a certain form can be composed.

3. Basic Relationships
Motivated by Chan's temporal logic queries that are guaranteed to
have a single strongest solution in every model, we investigate sev-
eral properties and their relationships. In particular, we study exact
queries, i.e., queries that always have a solution that exactly charac-
terizes the set of all solutions if there exists any solution. We show
that a query is exact if and only if it is distributive over conjunction
if and only if it is monotonie and collecting. Although such relations
were already mentioned in the literature, this is the first time that they
are thoroughly investigated and proved in this generality. Moreover,
we show that the notion of monotonicity as introduced for temporal
logic queries is strictly weaker than the notion of monotonicity used
in database theory. These results were partially published in [SV04b].

4. Complexity Results
We fix the shortcomings in Chan's proof that deciding exactness of
CTL queries is ExpTiME-complete. In analogy to this proof, we show
that deciding exactness of LTL queries is PSPACE-complete.
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5. Exact LTL Queries
We present a syntactic characterization of exact LTL queries. In
particular, we define a context-free template grammar capturing all
monotonie single-variable LTL queries. Then, the non-terminals in
this grammar are divided into two classes. We prove that:

• All instantiations of templates derived from the non-terminals in
the first class are exact.

• For all templates derived from the non-terminals in the second
class there exists a simple instantiation that is not exact.

Both results are obtained by nested inductive proofs with complex
circular dependencies (cf. item 1). Note that such a template charac-
terization does not contradict the PSPACE-completeness of deciding
exactness of LTL queries. These results were published in [SV04b].

6. Exact CTL Queries
We present a large syntactic fragment of exact CTL queries. In partic-
ular, we define a context-free template grammar such that all instan-
tiations of templates derived in this grammar are exact. This result is
obtained by nested inductive proofs with complex circular dependen-
cies (cf. item 1). Unfortunately, we are not able to characterize exact
CTL queries as in the case of LTL. However, we argue that such a
characterization for CTL is a much more difficult task.
Note that the fragment of exact CTL queries presented here is much
more extensive than the fragment presented in the author's diploma
thesis [SamO2, SV03]. Also the proofs are much more complex.

7. Algorithmic Aspects of Exactness
Motivated by Chan's algorithm for solving exact CTL queries that are
guaranteed to have a solution in every model, we thoroughly investi-
gate those properties of such queries that are exploited in the algo-
rithm. In particular, we show that non-determinism can be eliminated
when solving exact queries is reduced to solving their subqueries. The
property that enables this is called intermediate collecting, an auxil-
iary property in our proofs of exactness.

8. Correctness of the Chan Algorithm
Based on our insights described in item 7, we prove that the Chan
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algorithm is correct when applied to the subclass of exact CTL queries
in our syntactic fragment (cf. item 6) that are guaranteed to have a
solution in every model.

9. Extension of the Chan Algorithm
We present a generalization of Chan's algorithm for solving all queries
in our syntactic fragment of exact CTL queries (cf. item 6). In addi-
tion, we prove the correctness of this extended Chan algorithm.

10. Non-propositional Solutions
Several algorithms for solving temporal logic queries have been devel-
oped in order to compute propositional solutions. We show how these
algorithms can be modified in order to compute also non-propositional
solutions. These results were published in [SV04a].

11. Parameterized Vacuity
We show how the classical notion of vacuity can be redefined in terms
of temporal logic queries and how vacuity detection can be reduced to
query solving. This provides us with a new point of view of vacuity
detection that leads naturally to a generalization by parameterizing
the vacuity detection process with a partially ordered set of vacuity
causes. Classical vacuity corresponds then to a parameterization with
the constant truth values. We call our generalized form of vacuity weak
vacuity. These results were published in [SV04a].

12. Problem posed by Amir Pnueli
We demonstrate that a problem posed by Amir Pnueli can be easily
solved by our generalized notion of vacuity. In particular, Pnueli
presented an example of a vacuously satisfied specification that does
not fall under the common notion of vacuity. However, it falls under
our notion of weak vacuity. This result was published in [SV04a].

1.3 Overview

This thesis is organized as follows: In Chapter 2, we summarize the
background knowledge necessary to understand the contents of the following
chapters. In particular, in Section 2.2, we introduce Kripke structures.
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Then, in Section 2.3, we introduce the most important temporal logics
LTL and CTL followed by a short overview of other important temporal
logics. Moreover, in Section 2.4, we describe model checking in general
and symbolic model checking in particular. Afterwards, in Section 2.5, we
introduce temporal logic queries and additional temporal operators used in
the context of temporal logic queries.

In Chapter 3, we explore the composition of circular dependent systems.
In particular, in Section 3.2, we present a circular counterpart of the classical
cut rule in logic calculi. Then, in Section 3.3, we show how the circular cut
rule can be applied in mutual inductive proofs. Moreover, in Section 3.4, we
deal with sequential and circular compositional reasoning rules. Afterwards,
we give an overview of related work in Section 3.5.

In Chapter 4, we investigate exact temporal logic queries. In particu-
lar, in Section 4.2, we consider several properties of temporal logic queries
and prove their relationships. Then, in Section 4.3, we present our syntac-
tic characterization of exact LTL queries together with the corresponding
proofs. Afterwards, in Section 4.4, we present our syntactic fragment of
exact CTL queries together with the corresponding proofs.

In Chapter 5, we analyze algorithms for solving temporal logic queries.
In particular, in Section 5.2, we thoroughly investigate those properties of
queries that are exploited in Chan's algorithm, we prove the correctness
of Chan's algorithm, and we generalize Chan's algorithm. Moreover, in
Section 5.3, we show how other temporal logic query solving algorithms can
be extended in order to compute also non-propositional solutions.

In Chapter 6, we deal with the task of detecting vacuously satisfied speci-
fications. In particular, in Section 6.2, we recall the basic notions of vacuity
detection. Then, in Section 6.3, we generalize classical vacuity to weak
vacuity and demonstrate its usefulness by several examples. Afterwards,
we give an overview of related work in Section 6.4.

Finally, we conclude in Chapter 7. In particular, we summarize the most
important results and we point out some remaining open questions.



Chapter 2

Background and Basic Notions

2.1 Introduction

In this chapter, we introduce the formal framework of this thesis. In
particular, we consider the technological background and mathematical
formalisms of model checking, a formal verification technique invented in
the early 1980s by Clarke and Emerson [CE82, EC82] and Queille and
Sifakis [QS82]. Given a model of the system to be verified and the corre-
sponding specification, model checking is to algorithmically decide whether
the model satisfies the specification. The formalisms used to build the
system models are Kripke structures and to express the specifications are
temporal logics. The most important temporal logics in the context of
model checking and also in the context of this thesis are the linear tem-
poral logic LTL and the computation tree logic CTL.

In addition, we introduce temporal logic queries, a formalism that allows
to extend model checking in such a way that specifications may contain
second-order variables that have to be instantiated appropriately. Temporal
logic queries are a basic concept used throughout this thesis which enables
us to reason about specifications in model checking in a uniform way. The
text in this chapter is complemented by many references to which we refer
the interested reader for further information on these topics.

This chapter is organized as follows: In Section 2.2, we introduce Kripke
structures and related terms. Afterwards, in Section 2.3, we define the most
important temporal logics in model checking. Model checking in general and
symbolic model checking in particular are then described in Section 2.4.
Afterwards, Section 2.5 deals with temporal logic queries and a syntactic
extension of temporal logics. Finally, we summarize in Section 2.6.
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2.2 Kripke Structures

Kripke structures are named after the philosopher and logician Saul
Kripke who published - among other things - fundamental works on the se-
mantics of modal logics [Kri63a, Kri63b]. His semantic approach is known
by the names possible world semantics, relational semantics, and Kripke
semantics. The key idea is to evaluate modal logic formulas in such a way
that the modal operators switch between possible worlds, each of them hav-
ing their own valuation of atoms. More precisely, modal logic formulas are
evaluated over Kripke models consisting of a set of possible worlds, an ac-
cessibility relation between these worlds, and a valuation function assigning
to each atomic proposition the set of possible worlds at which the atom
evaluates to true. In this generalized framework, classical logic amounts to
the special case of a single possible world.

The interested reader is referred to Bull and Segerberg [BS84], Stir-
ling [Sti93], Hughes and Cresswell [HC98], Blackburn et al. [BdRVOl], and
Clarke and Schlingloff [CS01] for an exhaustive introduction.

In model checking, Kripke models are usually called Kripke structures,
the possible worlds are called states, the accessibility relation is called tran-
sition relation, and the valuation function is usually considered as labeling
function that labels each state with a set of atomic propositions. This dif-
ferent terminology reflects the the more technological point of view in model
checking, where Kripke structures are used to model systems that have to
be verified. In particular, the states together with their labeling model the
system states at certain points in time and the transition relation models
the system behavior over time. A Kripke structure can therefore be seen as
a non-deterministic finite state machine without input relation whose states
are labeled with atomic propositions.

Definition 2.1 (Kripke structure). A Kripke structure Â over a set of
atomic propositions A is a tuple Â = (Q, A, so, £), where

• Q is a non-empty and finite set of states.

• A Ç Q x Q is a total transition relation.

• s0 G Q is the initial state.

• ê : Q —• p(A) is a total labeling function.
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Kripke structure Computation tree

Figure 2.1: A Kripke structure and its computation tree

For complexity considerations we denote the size of a Kripke structure Â
by \&\, which is defined as \Q\ + |A|. It is easy to see that, starting at any
state, a Kripke structure can be unwound into an infinite tree, the compu-
tation tree. Note that the computation tree contains no leaves because of
the totality of the transition relation. Figure 2.1 shows the graphical rep-
resentation of a Kripke structure and its corresponding computation tree
after unwinding the structure at the initial state.

Alternatively to computation trees, Kripke structures can also be seen
as a representation of the execution sequences starting at each state, i.e.,
the set of branches of the corresponding computation tree. Such execution
sequences are called computation paths.

Definition 2.2 (Computation path). A computation path or simply a
path 7T in a Kripke structure Â = (Q,A,so,£) is an infinite sequence of
states n : N -> Q such that (TT(Z), TT(Z + 1)) G A for all i e N . We write ?rn

to denote the computation path suffix of the computation path n satisfying
nn(i) = 7c(n + i) for all i E N.

For any state s in a Kripke structure fi, we write paths(s) to denote the
set of computation paths in Â satisfying TT(O) = s for all n £ paths(s). More-
over, for any set of states Q, we write paths(Q) to denote Us6Qpaths(s).
For any atomic proposition a and set of states Q, we write a e £(Q) and
a ^ £(Q) to denote a E £(s) and a ^ £(s) respectively for all s G Q.
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If we use a set of paths II where a set of states is expected, then II denotes
the set of states {TT(0) | IT € II}. Given a set X Ç N of indices, we write n1

to denote the set of paths denned by n1 = {nl \ i G J } . Note that we will
mostly use interval notation for the index set X.

2.3 Temporal Logics

Temporal logics are logic formalisms for expressing temporal properties.
Although such properties can also be expressed in classical higher-order
logic, temporal logics are more intuitive since they hide the explicit time
variables in temporal modalities like "eventually" or "always".

The philosopher and logician Arthur Prior [Pri57] is considered the found-
ing father of modern temporal logic. His modal logic based approach is also
known as tense logic. The applicability of temporal logics for describing
system properties and therefore its usefulness in formal verification was dis-
covered in the 1970s. One of the pioneers in this area was Amir Pnueli with
his seminal work on program verification [Pnu77, Pnu81].

The interested reader is referred to Emerson [Eme90], Manna and Pnueli
[MP92], Stirling [Sti93, StiOl], Gabbay et al. [GHR94, GRFOO], 0hrstr0m
and Hasle [0H95], van Benthem [vB95], Clarke et al. [CGP99], and Clarke
and Schlingloff [CS01] for an exhaustive introduction.

Temporal logics can be classified into linear time and branching time
logics [Lam80]. In linear time logics, time is considered to be of linear nature
(i.e., deterministic), and in branching time logics, time is considered to be
of branching nature (i.e., non-deterministic). We will now introduce the
two most important representatives of linear and branching time logics in
model checking, namely the linear temporal logic LTL and the computation
tree logic CTL. Both logics are based on the following common temporal
operators which are listed with their intuitive meaning:

• The next operator X ip:
Property tp holds at the next point in time.

• The future operator F <p:
Property (p holds eventually in the future.

• The global operator G cp:
Property ip holds always in the future.
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The strong until or simply until operator (pJJip:
Property <p remains true until property ip becomes true
and property ip must become true.

• The weak until or unless operator
Property ip remains true until property ip becomes true,
but property ip does not need to become true.

• The release operator (p~Rip:
Property ip remains true until property <p Aip becomes true,
but property (p does not need to become true.

As will be shown later, some of these operators are redundant since they
can be expressed by the other ones. Moreover, note that there exist several
variants of them, e.g., by distinguishing between the cases if the future
includes the present or not (cf. Clarke and Schlingloff [CS01]). We do not
consider variants of this kind. However, in Section 2.5, we will introduce
variants of the strong and weak until operator in order to increase the
expressive power in the context of temporal logic queries.

Remark 2.1. The distinction between temporal logics using the above tem-
poral operators and modal logics using the operators Box D and Diamond 0
are dealt differently with in the literature. For example, Blackburn et
al. [BdRVOl] consider all kinds of temporal logics as special modal log-
ics because all of them describe properties on relational structures. On the
other hand, Clarke and Schlingloff [CS01] use the term temporal logic only
for those modal logics that contain some kind of until operator. This point
of view can be justified by the fact that temporal logics with some kind of
until operator are more expressive [Kam68].

2.3.1 The Linear Temporal Logic

The linear temporal logic LTL can be seen as an extension of propositional
logic by temporal operators. Let us start with the definition of its syntax.

Definition 2.3 (LTL syntax). Let A be a set of atomic propositions.
Then, the syntax of LTL is defined in Table 2.1.
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(LTL) ::=

- •

X
(LTL)

A
(LTL)

(LTL)

U (LTL)

(LTL)

F
(LTL)

T
A (LTL)

(LTL)

W (LTL)

(LTL)

G
(LTL)

± |
V (LTL) |

(LTL) |

R (LTL) ;

Table 2.1: LTL syntax

As usual in model checking, the semantics of LTL formulas is denned over
paths in Kripke structures, i.e., over sequences of states. Such a definition
is based on the assumptions of a starting point in time, the infinity of time,
and the discrete nature of time [EmeQO].1

Definition 2.4 (LTL semantics) . The truth value of an LTL formula <p
on a path n in a Kripke structure Â, in symbols Â, n (=</?, is defined in
Table 2.2. An LTL formula <p holds in a Kripke structure Â with initial
state So, in symbols Â \= ip, iff Â, TT (= <p for all IT G paths(so).

For simplicity, if the Kripke structure Â is clear from the context, we also
write iv \= cp instead of &, n f= ip. Moreover, for any LTL formula <~p and
set of paths II, we write II |= <p and II ^ cp to denote n \= (p and n ^ (p
respectively for all TT e II. According to the semantics of the temporal
operators in LTL, it is easy to verify that the following equivalences hold:

• F(p «=> TU(p • G(p •&• (pW± <&

4- (G<p)V((pUij)) • (pUip & (Ftp)

Remark 2.2. Note that all the above temporal operators refer to the future
but not to the past. This is no restriction since LTL as well as LTL with
past have the same expressive power as it was shown by Kamp [Kam68]
and Gabbay [Gab89]. Hence, past operators do not increase the expressive
power. However, Laroussinie et al. [LMS02] showed that temporal logics
with past are exponentially more succinct.

1 There exist also approaches for dense time, e.g., when the underlying model is isomor-
phic to the rational numbers. However, some equivalences between temporal logic
formulas that we will use do not hold in this case (cf. Clarke and Schlingloff [CSOl]).
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Â, TT

Â,TT

Â, TT

Â, TT

Â, TT

Â,TT

Â, TT

Â, TT

Â,TT

Â, TT

Â, TT

Â,TT

h
h
h
h
h
h
h
h
h
h
h
h

T :

JL :

P •

~iip '.

(p Aip '•

V? V tp :

Xip :•

Ftp :•

Gip :

ipXJ ijj :-

(p*W ip :•

(pHLip :>

<=> t r u e

£> false

O- pG^(7r(0))

O Â,TT^Cp

$$• Â, TT \= cp and Â, TT \= ip

« • Ä , 7T | = ip Or ^ , 7T (= 7p

v ^ J t , 7T | = (p

&• 3n G N. Â, TTn \= cp

& Vz G N. Â, TT* f= ip

& 3n G N Vz < n. Â, TT{ \= <

^- Vi G N 3n < i. &, TT* (= </

^> Vz G N 3n < i. &, TT* \= ij.

p and Â, TT71 \= tp

7 or Â, TTn (= ip

) or Si,TTn \=(p

Table 2.2: LTL semantics

2.3.2 The Computation Tree Logic

In addition to linear time logics that are interpreted on computation
paths, there exist also temporal logics that are interpreted on computation
trees. Whereas the future in linear time logics as LTL is determined by
the computation path, the future in branching time logics interpreted on
computation trees is not determined, i.e., at each point in time there are
several choices between possible futures. In order to be able to express such
non-deterministic choices in temporal logics, two kinds of path quantifiers
are used. They are listed in the following with their intuitive meaning:

• The existential path quantifier E ip;
Property <p holds in some future (i.e., cp holds possibly).

• The universal path quantifier A ip:
Property ip holds in all futures (i.e., (p holds necessarily).

We are now able to define the computation tree logic CTL introduced by
Clarke and Emerson [CE82, EC82]. In CTL, every temporal operator must
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(CTL) ::= A | T | _L
-i (CTL) | (CTL) A (CTL) | (CTL) V (CTL)
A (PF) | E (PF) ;

(PF) ::= X (CTL) | F (CTL) | G (CTL)
(CTL) U (CTL) | (CTL) W (CTL) \ (CTL) R (CTL)

Table 2.3: CTL syntax

be immediately preceded by a path quantifier in order to select the paths
on which the temporal operator has to be evaluated.

Definition 2.5 (CTL syntax). Let A be a set of atomic propositions.
Then, the syntax of CTL is defined in Table 2.3.

Note that the non-terminal (PF) in Table 2.3 represents the path formulas
in CTL. The semantics of CTL formulas is now defined over computation
trees in Kripke structures, i.e., at states that are interpreted as roots of
computation trees when the Kripke structure is unwound at these states.

Definition 2.6 (CTL semantics). The truth value of a CTL formula (p at
state s in a Kripke structure Â, in symbols Â, s \= tp, is defined in Table 2.4.
A CTL formula ip holds in a Kripke structure Â with initial state So, in
symbols M. f= <p, iff Â, So \= <p.

For simplicity, if the Kripke structure Â is clear from the context, we also
write s \= </? instead of Â, s (= (p. Moreover, for any CTL formula <p and
set of states Q, we write Q \= <p and Q ^ <p to denote s \= <p and s ty= <p
respectively for all s G Q. If it is clear from the context, we also write
IT \= ip to denote ?r(0) (= ip for any CTL formula cp and path n. Moreover,
for any CTL formula ip and set of paths IT, we write H \= <p and IT \£ ip to
denote TT(O) f= tp and TT(O) ^ (p respectively for all n G FI.

Remark 2.3. Although CTL is a syntactic extension of LTL by path quan-
tifiers, both temporal logics have incomparable expressive power on Kripke
structures [CD88], i.e., there are formulas in LTL that are not expressible
in CTL and vice versa. However, there exist formulas that are express-
ible in both LTL and CTL. Maidl [MaiOO] and Buccafurri et al. [BEGLOl]
investigated this common fragment of CTL and LTL.
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Ä,

Si,

Si,

#,

Si,

Â,

Â,

Â,

Â,

Â,

Si,

Â,

s

s

s

s

s

s

7T

n

n

n

17

w

s

s

|=±

h ̂ v
\= <p Atjj

\= <p\/ tp

\=X<p

h F<P
h Gif
\= (pXJ tp

(= <p~W tp

\=<pRtp

\=E<p

(= A<p

:•& true
:<̂ > false

:& pe£(s)

:<^ &,8\£(p

:4^ Ä, s \= ip and ^,

:4$ Si, s \= (p or Si, s

:<̂ > ^ , T T ( 1 ) | = V 3

:<̂> 3neN. Â,7r(n)

:<£> Vi G N. Â, ?r(i) |=

:<̂ > 3n G N Vi < n. Â,TT(Ï)

:«• Vi G N 3n < i. Ä, 7r(z)

:<^ Vi G N 3n < i. S

:^ 3ir G paths(s). S

:̂ => VTT G paths(s). i

i,n(i)

i, 7T | =

^, 7T | =

H

M

ip

p and £, ?r(n) \= tp

p or Ä, 7r(n) [= T/J

; or Si, 7r(n) |= <̂

Table 2.4: CTL semantics
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2.3.3 Other Temporal Logics

In this thesis, we are primarily concerned with the temporal logics LTL
and CTL. Nevertheless, for the sake of completeness, we give a short overview
of other temporal logics that are relevant in the context of model checking.

ACTL (universal CTL) [GL94] is an important sublogic of CTL obtained
by allowing only universal path quantification. In order to avoid implicit ex-
istential path quantification, negations in ACTL are applied only to atomic
propositions, i.e., ACTL formulas must be in negation normal form. For
example, AX(A(a U ->b) A AF c) is in ACTL. Logics that allow only uni-
versal path quantification are typically used in compositional reasoning and
abstraction [CLM89, CGL94, GL94].

CTL* (extended CTL) [EH86] is a branching time logic that is more
expressive than both LTL and CTL. This logic is obtained by releasing
the constraint that temporal operators in CTL must be immediately pre-
ceded by a path quantifier, i.e., CTL* allows nested temporal operators
without path quantifiers between them. For example, EXGA(aUfr) and
AFG((aU6) V EXc) are in CTL*. Analogously to the case of CTL, the
universal fragment of CTL* is called ACTL* [GL94].

CTL+ [EH85] is another branching time logic that lies syntactically be-
tween CTL and CTL*. This logic is obtained by releasing the constraint on
path quantification in CTL only in the case of Boolean combinations. For
example, AXE( (aU6) A Fc) is in CTL+ . Emerson and Halpern [EH85]
showed that CTL and CTL+ have the same expressive power. However, it
was shown by Wilke [Wil99] and Adler and Immerman [AI03] that CTL+

is exponentially more succinct than CTL.
The propositional /x-calculus [EC80, Koz83] is a very expressive logic

based on fixpoint definitions. Although it is not very intuitive, many tem-
poral and program logics - including CTL* - can be encoded into the //-
calculus. In the context of symbolic model checking in Section 2.4.1, we
will present the fixpoint definitions of CTL operators.

2.4 Model Checking

Model checking [CGP99, CS01] is a formal verification technique invented
in the early 1980s by Clarke and Emerson [CE82, EC82] and Queille and
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LTL

CTL

CTL+

CTL*

Satisfiability / Validity

PSPACE-complete [SC85]

ExpTiME-complete [Eme90]

2-ExpTiME-complete [JL03]

2-ExpTiME-complete [EJ88]

Model Checking

PSPACE-complete [SC85]

P-complete [SchO3]

A^-complete [LMS01]

PSPACE-complete [CES86]

Table 2.5: Computational complexity

Sifakis [QS82]. Given a system model & in the form of a Kripke structure
and a system specification <p formulated in a temporal logic, model checking
is the problem of algorithmically deciding Â \= (p, i.e., whether the Kripke
structure 8. satisfies the temporal logic formula <p. In addition to this orig-
inally formulated model checking problem based on Kripke structures and
temporal logics, model checking can also be defined for arbitrary logic for-
malisms: Given an interpretation 971 of a logic formula <p, model checking
is the problem of deciding whether QJl is a model of (p.

Depending on the temporal logic in use, the computational complexity
of model checking differs significantly. Table 2.5 gives an overview of the
complexity of the satisfiability problem (i.e., given a formula, does there
exist a model that satisfies the formula?) and the model checking problem
(i.e., given both a model and a formula, does the model satisfy the formula?)
for some important temporal logics. For a survey on the complexity of
temporal logics see Emerson [Eme90] and Schnoebelen [SchO3].

Although these complexity results suggest that CTL model checking can
be done efficiently whereas LTL model checking is practically infeasible,
a refined analysis of their complexity justifies the practicability of both of
them. In particular, CTL model checking can be done in time linear in both
the size of the model and the length of the formula [CES86], and LTL model
checking can be done in time linear in the size of the model and exponential
in the length of the formula [LP85]. However, since specification formulas
are rather small in practice, the exponential complexity in the length of the
formula is negligible. In fact, both LTL and CTL are the most important
temporal logics in formal verification by model checking.
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There has been much research in the last two decades in order to find
efficient model checking algorithms for LTL and CTL. For example, beside
the first algorithms that are based on explicit state space labeling [EC82,
CES86] and tableau construction [LP85], there exist automata-theoretic
algorithms [VW86, KVWOO], algorithms based on binary decision diagrams
called symbolic model checking [BCM+92], and reductions to prepositional
satisfiability called bounded model checking [BCCZ99]. In order to increase
the efficiency of model checking, there has also been much research on
the combination with techniques like abstraction, compositional reasoning,
partial order reductions, symmetry reductions, on-the-fly evaluation, etc.
The most challenging problem in all these approaches is the state space
explosion, i.e., the huge number of states appearing when real-world systems
are modeled as Kripke structures.

In the following section, we take a closer look at symbolic model checking,
since we will use symbolic algorithms in Chapter 5.

2.4.1 Symbolic Model Checking

Symbolic model checking [BCM+92, McM93] is one of the most success-
ful approaches against the state space explosion problem. The idea is to
avoid the explicit construction of the Kripke structure by encoding it into
a Boolean function, which can be represented by a binary decision diagram
(BDD) as investigated by Bryant [Bry86, Bry92]. Since BDDs are often
more compact than other representations of Boolean functions, this ap-
proach allowed the verification of large systems that could not be handled
until then [BCM+92, BCL+94]. Note that the practical success of symbolic
model checking seems somehow surprising in consideration of the fact that
symbolic LTL, CTL, and CTL* model checking is PSPACE-complete even
for fixed formula length [KVWOO, SchO3].

Example 2.1. Let us now demonstrate how Kripke structures can be rep-
resented by BDDs. To this aim, consider the Kripke structure shown in
Figure 2.2 over the set of atomic propositions A = {a, b}. It is easy to see
that both states can be uniquely identified by their labelings, i.e., by the
Boolean formulas a A -*b and a Ab respectively.2 Now, in order to encode

2If there were states with identical labelings, we would have to add auxiliary atomic
propositions until the labelings became unique.
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Figure 2.2: Kripke structure to be encoded as BDD

the transition relation, we have to introduce two new atomic propositions a'
and b'. Each transition can then be seen as the pair consisting of its pre-
decessor state encoded by a and b and its successor state encoded by a'
and b'. In particular, an encoding of the three transitions in our example
yields a A ->b A a' A b', a Ab A a' A -itf, and a Ab A a' Ab'. Thus, the whole
Kripke structure can be encoded by

(a A -.ft A a' A b') V (a A b A a' A -i&') V (a A b A a' A b'). (2.1)

It remains to show how to represent this Boolean function by a BDD.
A binary decision diagram (BDD) [Bry86, Bry92] is a directed acyclic
graph that results from a binary decision tree when isomorphic subtrees
are merged and unnecessary nodes are removed. A binary decision tree is a
binary tree where each node is labeled with an atomic proposition and each
edge as well as each leaf is labeled with a Boolean truth value. Boolean
functions can be encoded into binary decision trees in such a way that each
branch of the tree encodes an interpretation by assigning the truth value
labeling an edge to the atomic proposition labeling its parent node. The
resulting truth value, when applying the corresponding Boolean function to
such an interpretation, is given by the labeling of the leaf.

A binary decision diagram resulting from such an encoding of our example
in (2.1) is shown in Figure 2.3. It can be easily verified that the interpre-
tations encoded into the paths that lead from the initial node to the leaf
labeled with 1 are exactly the models of the formula in (2.1). All other
interpretations are encoded into paths leading to the leaf labeled with 0.
Note that the ordering of atomic propositions in this example is the same on
each path, namely a < a' < b < b'. Such an ordering is the first of two prop-
erties that must be satisfied in order to obtain a canonical representation of
BDDs. The second property is that all isomorphic subtrees are merged and
all redundant nodes are removed. BDDs satisfying the first property are
called ordered (OBDDs), and OBDDs satisfying the second property are
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Figure 2.3: Binary decision diagram

called reduced (ROBDDs). The example in Figure 2.3 is therefore a reduced
ordered binary decision diagram (ROBDD) with ordering a < a' < b < b'.

Obviously, ROBDDs are maximal succinct representations of BDDs for
a fixed ordering of atomic propositions. The degree of succinctness, how-
ever, depends on the chosen ordering and finding the optimal ordering for
maximal succinctness is coNP-complete [Bry86].

We have now shown how Kripke structures can be encoded into BDDs.
In the remainder of this section, we describe how model checking can be
performed based on such a representation. To this aim, we restrict ourself
to CTL model checking, since symbolic model checking is primarily done
for CTL and we will need this knowledge in Chapter 5.

Since BDDs encode sets of states and sets of transition relations without
access to individual components, operations on BDDs have to be performed
on entire sets. There exist four basic operations on BDDs:

• pre3(S) = {s | 3s'. (s, s') G A A s' G S}

• prev(S) = {s I Vs'. (s, s') G A => s' G S}

• post3(<S) = {s' I 3s. (s, s') G A A s G S}

• postv(<S) = {s' I Vs. (s, s') G A => s G S}

Based on these operations and the fact that the powerset of the set of
states of a Kripke structure forms a complete lattice under set inclusion, it is
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possible to define the set of states [<£>] satisfying the CTL formula ip by least
and greatest fixpoints (in symbols, ßZ.r(Z) and UZ.T{Z) respectively).
The corresponding fixpoint characterization of CTL [EC80] is given by:

• fol ={sEQ\pe£(s)}

• H?I =Q\M

It is easy to see that these fixpoint definitions are monotonie. Hence,
the fixpoints always exist according to Knaster-Tarski [Tar55]. The model
checking problem is then reduced to deciding if the initial state is in [</?J.

2.5 Temporal Logic Queries

Temporal logic queries as introduced by Chan [ChaOO] are a formalism
motivated by database queries in order to extend model checking. The
idea is to allow variables to occur in temporal logic formulas that have to
be instantiated by appropriate solution formulas in such a way that the
resulting formulas are satisfied by the model.
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There has been active research in recent years on temporal logic queries.
The starting point was the work of Chan [ChaOO] who focused on a syn-
tactic fragment of CTL queries for which he presented an efficient symbolic
query solving algorithm. Afterwards, Bruns and Godefroid [BG01] gener-
alized Chan's idea by an automata-theoretic approach that allows to solve
queries of any temporal logic having a translation to alternating automata.
Gurfinkel et al. [GDC02, CG03], on the other hand, investigated CTL query
solving by using their multi-valued model checker XChek. At roughly the
same time, Hornus and Schnoebelen [HS02] dealt with more theoretical re-
sults on the computational effort of query solving for any fragment of CTL*.
Based on the author's diploma thesis [SamO2, SV03], it was then shown that
Chan's original work was erroneous. We will consider all these approaches
in more detail in Chapter 5.

Since temporal logic queries are a basic concept used throughout this
thesis, we introduce them now more formally.

Definition 2.7 (Temporal logic query). A temporal logic query is a
temporal logic formula where some subformulas are replaced by a special
variable ?, called placeholder. We denote the set of LTL queries by LTLQ
and the set of CTL queries by CTLQ.

It is straightforward to generalize this definition in such a way that a
query can contain different variables. For simplicity, however, we restrict
our considerations to queries with a single variable, namely the placeholder.
In the following, we will simply write query instead of temporal logic query
and model instead of Kripke structure if the definitions resp. results are
independent of a particular formalism.

Definition 2.8 (Solutions). Let 7 be a query, Wl be a model, and ip be a
formula. We write ^y[<p] to denote the result of substituting all occurrences
of the placeholder in 7 by <p. If 9JÎ (= 7[</?], then we say that (p is a solution
to 7 in DJl. We denote the set of all solutions to 7 in S0Î by

Example 2.2. Consider the Kripke structure Â shown in Figure 2.4 and let
71 = A(a U AX(c V AG ?)) and 7 2 = E(? U AG ?) be CTL queries. It can
be easily checked that Â \= 71 [b A AX d] and Â \= 72[aV6]. Hence, b A AX d
and a V b are solutions to 71 and 72 respectively in Â.
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Figure 2.4: Query solving example

A query 7 can be seen as a function 7 : (p 1—> j[(p] that maps formulas
to formulas. This point of view leads to an important and natural prop-
erty of queries, namely monotonicity. The following definition of monotonie
queries originates from Chan [ChaOO]. Note that monotonie means mono-
tonic increasing; the case of monotonie decreasing queries is symmetric.

Definition 2.9 (Monotonie query). A query 7 is monotonie iff <p =>• ip
implies 7[</?] =>• ^y[ip] for all formulas ip and ip.

Note that this kind of monotonicity differs from that used in database
theory, where a query 7 is interpreted as a function 7 : SJl 1—» sol(97l, 7) that
maps models to the sets of its solutions in these models [AHV95]. From
this point of view, a query 7 is said to be monotonie iff

9Jti C M2 implies SOti h i[<p] =^ 9Jt2 h 7 ^ ] (2.2)

for all models ÜJli and 9QÎ2- We will now show that this kind of monotonicity
is strictly stronger than monotonicity according to Definition 2.9.

Proposition 2.1. Monotonicity according to (2.2) is strictly stronger than
monotonicity according to Definition 2.9.

Proof. First, we show that if a query 7 is monotonie according to (2.2), then
it is also monotonie according to Definition 2.9. To this aim, assume for the
sake of contradiction that 7 is not monotonie according to Definition 2.9,
i.e., there exist formulas <p and ip and a model 9JI such that <p =$> ip and
ÜJI \= 7[y], but 971 ̂  ^[ip]- W.I.o.g., we can assume that there is an atomic
proposition p not occurring in j[tp] such that p 4$ <p holds globally in 97t.3

3Otherwise, we construct a new model in such a way that we add a new atomic propo-
sition p to 9JÎ such that p «=> <p holds globally.
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Since cp => ip, we know that always when p holds in 971 then also ip holds
in 971 but not necessarily vice versa. Now, let 971' be the model resulting
from 971 by adding p such that p <=> ip holds globally in 971'. Then, obviously
it holds that 971 Ç 971'. Thus, since 971 [= 7(99] and therefore 971 |= j\p], we
obtain by (2.2) that 97Î' f= -y\p}. This, however, is equivalent to 971' |= 7 ^ ] ,
since p <& ip holds globally in 97Î'. Now, recall that 971 and 971' differ only
in the truth values of p. Thus, since p does not occur in ^[ip], it follows
that 971 |= 7 ^ ] , which contradicts the assumption. Hence, monotonicity
according to (2.2) implies monotonicity according to Definition 2.9.

What remains to show is that this implication does not hold in the other
direction. To this aim, let 97Î be a model such that 971 ^ c and consider
the query 7 = ->c V ?. It is easy to see that 7 is monotonie according
to Definition 2.9. For the sake of contradiction, assume that 7 is also
monotonie according to (2.2). Since 971 ^ c, we know that 971 |= 7[-L]-
Now, let 971' be the model resulting from 971 by adding c such that 971' (= c.
Then, obviously it holds that 971 Ç 971'. Thus, since 971 |= 7[±], we obtain
by (2.2) that 971' (= 7[_L]. However, it is easy to see that 971' J4= 7[_L],
which contradicts the assumption. Hence, 7 is monotonie according to
Definition 2.9 but not monotonie according to (2.2). D

Note that throughout this thesis, we will use the term monotonie query in
the sense of Definition 2.9. Proposition 2.1 just points out a connection to
database queries, but it will not be used anymore. In contrast, the following
lemma will be used very frequently.

Lemma 2.1 ([ChaOO]). Let 7 be a monotonie query and 971 be a model.

1. The query 7 has a solution in 97Î iff 971 |= 7[T].

2. Every formula is a solution to 7 in 971 iff 971 |= 7[J-].

Proof. The if direction of 1 and the only if direction of 2 are trivial.
For the only if direction of 1 suppose that 971 |= *y[ip] for some formula <p.
Since ip =4> T, we obtain by monotonicity 97Î (= 7p~]. For the if direction
of 2 suppose that 971 (= 7[_L]. Since _L =>• ip for every formula ip, we obtain
by monotonicity 971 f= ~f[<p] for every formula ip. D

Another important and well-known property is that the composition of
monotonie queries is also monotonie.
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Lemma 2.2. Let 7 and 7' be monotonie queries. Then, 7(7'] is monotonie.

Proof. Let <p and z/> be formulas such that (p =$• ip. Since 7' is monotonie,
we know that 7'[< ]̂ =£> 7'[^]- Thus, since 7 is monotonie, we know that
7[7'M] ^ 7[Vfr/']]- Hence, since 7[7'[#]] is syntactically the same as 7(7'][0]
for all formulas 9, we obtain 7[7'][<p] => 7[7/][V;]) i-e-i 7[7'] is monotonie. D

2.5.1 Additional Temporal Operators

In Chapter 4, we will investigate syntactic fragments of temporal logic
queries where only a single occurrence of the placeholder is allowed. For
example, query 71 in Example 2.2 is such a query whereas 72 is not. In
order not to loose all queries with multiple occurrences of the placeholder,
we introduce four additional temporal operators following Chan [ChaOO]:

• The overlapping strong until operator: ipXJ ip = ipU ((p /\ip)

• The disjoint strong until operator: (p\Jip = <pU (-up A ip)

• The overlapping weak until operator: tp*Wip = </? W (ip A ip)

• The disjoint weak until operator: ipV/tp = <^W(-K/? A ip)

Of course, these temporal operators do not increase the expressive power
of LTL, CTL, and CTL*. However, they enable us to express a certain class
of temporal logic queries with multiple occurrences of the placeholder. For
example, the LTL query ? U (? A ip) would not be expressible by using the
standard temporal operators when only a single occurrence of the place-
holder is allowed. By using the overlapping strong until operator, however,
we are able to express the query ? Û ip = ?XJ (1 Aip).

Based on the equivalences in Section 2.3.1, it is easy to verify that also
the following equivalences hold:

(Gip)V (tpÎJip) • ipVtp & (Fip)

(ipVip)Wip • (pUip o (<p\/ip)XJip

Note that (p~Wip — <^W (ip A ip) «=> ipR<p, i.e., the overlapping weak
until operator is the same as the release operator with operands swapped.
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Hence, when using the additional temporal operators above, the release
operator can be omitted. Moreover, note that the additional temporal
operators cover some fragment of CTL+ when used in CTL. For example,

V ((ptJip)) and E ( ^ Ü ^ ) <£> E ( ( F ^ ) A

Negation. In addition to a restriction to a single occurrence of the place-
holder, we will also consider queries in negation normal form (NNF) in
Chapter 4, i.e., queries where negation appears only in front of atomic
propositions and the placeholder. However, in order to be able to trans-
form any temporal logic query into NNF and therefore to preserve expressive
power, the chosen query language must be closed under negation, i.e., the
negation of each operator in the language can be expressed by other oper-
ators in the language. The following list shows the equivalences between
temporal operators and their dual operators concerning negation:

• -iF</? <=> G-xp • -iG<£> <& F-xp

& -HJJU-xp

>((pWiJ)) <=> -nptj-xp •

These equivalences follow directly from the definitions of the operators
and can be easily verified. An additional equivalence not shown above is
that of the next operator, which is dual to itself, that is, ->X ip 4$ X -xp.

Special cases are the disjoint strong and weak until operators, which do
not have a dual operator in the above sense in our language. However, their
negations can be expressed by:

• ->((p\ji/j) «=> (ip v - i ^ ) w -xp • - i (v?wv>) ^ (<P v ->•?/>) û -xp

Note that the first argument of both operators is duplicated after nega-
tion. In particular, this means that if we allow only a single occurrence of
the placeholder, then it must not occur in the first argument of these op-
erators if they are under the scope of negation. Otherwise, there would
be several occurrences of the placeholder after building the NNF, e.g.,
->E(?Ü'0) <=J> A((? V -T0) W-i?). Of course, we could overcome this re-
striction by introducing new operators; however, placeholders in the first
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arguments of the disjoint strong and weak until operators will also be for-
bidden for monotonicity reasons.

Monotonicity. Now, let us consider a further property of these operators,
namely monotonicity. The easiest way to obtain monotonie queries is to
construct them by composing queries that are already known to be mono-
tonic (cf. Lemma 2.2). Thus, since the simplest queries to be composed are
those obtained from the temporal operators when replacing some arguments
by the placeholder, it is necessary to know which of them are monotonie.

This, however, can be easily proved. For example, to show that the
strong until operator is monotonie in its second argument, consider the
query 7 = 6 U ? and assume that ip => ip as well as n \= ^[<p] for any
formulas ip and ip and any path n. By the definition of the until operator,
this means that there exists n G N such that ?rn f= (p and for all i < n
it holds that nl \= 6. Thus, since (p =>• ip, we know that ?rn (= tp and
therefore TT |= i[ip]. Hence, the strong until operator is monotonie in its
second argument.

In the same way it can be easily shown that almost all temporal operators
introduced in this chapter are monotonie in all their arguments. The only
exceptions are the disjoint strong and the disjoint weak until operator, which
are not monotonie in their first argument as shown in the following example.

Example 2.3. Let 71 = ? Ü c and 72 = ? W c . Moreover, let IT be a path
such that £(TT(0)) = {a,c} and £(n(i)) = 0 for all i > 1. Then, it can be
easily verified that n f= ji[a A b] as well as n \= 72[a A b], but n ^ 71 [a]
and TV \£ 72 [a] although a A b =>• a. Note that this is a counterexample
to monotonicity in the sense of monotonically increasing. In order to show
that both queries are not monotonically decreasing either, let n be a path
such that i(n(0)) = {a} and £(ir(i)) = {c} for all i > 1. Then, it can be
easily verified that n |= 71 [a V b] as well as n \= 72 [a V b], but n \£ 7i [b] and
7T Y" 72[b] although b => a V b. Hence, 71 and 72 are neither monotonically
increasing nor monotonically decreasing.

Validity. Finally, we consider a property that we will need in Chapter 5 in
the context of query solving algorithms. Chan [ChaOO] presented a symbolic
algorithm for solving queries in his syntactic fragment of valid CTL queries.
A necessary condition for validity according to Chan is the existence of a
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solution in every Kripke structure, i.e., the validity of 7[T] is a necessary
condition for the validity of 7 (cf. Lemma 2.1). We will now show how
to restrict CTL queries syntactically in order to guarantee the existence
of a solution in every Kripke structure. In fact, queries composed of the
following "elementary" temporal logic queries always have a solution as can
be easily proved by structural induction [SamO2]:

• tpVl • X? • G? • </?U?

For example, the queries X((y> U ?) Wip) and tp U G(? W ip) always have
a solution. Therefore, in order to obtain a subset of a given set of queries
such that each query in this subset always has a solution, it suffices to
restrict the given set to those queries that are composed of the above oper-
ators. Note that this is only a sufficient condition, i.e., there may also exist
other queries that always have a solution.

2.6 Summary

The basic formalism for modelling systems in model checking are Kripke
structures, i.e., transition graphs with labeled nodes. Each node represents a
system state at a certain point in time and the atomic propositions labeling
the nodes represent the system properties at these states. Kripke structures
model the system behavior over time and their properties can be expressed
in logic formalisms called temporal logics. The most important temporal
logics in model checking and also in the context of this thesis are the linear
temporal logic LTL and the computation tree logic CTL. Given a Kripke
structure and a temporal logic formula, model checking is to decide whether
the Kripke structure satisfies the formula.

There exist several approaches and algorithms for answering this ques-
tion. Symbolic model checking is one of the most successful ones against
state space explosion problem. The idea behind this approach is to encode
Kripke structures into binary decision diagrams (BDDs) and to reduce the
model checking problem to the computation of fixpoints over sets of states.

An extension of model checking in the sense that formulas are not only
checked against the model but are extracted from the model under certain
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constraints is known by the term temporal logic queries, that are temporal
logic formulas containing variables that have to be instantiated in such a
way that the model satisfies the resulting formula. Temporal logic queries
are a fundamental concept used throughout this thesis.



Chapter 3

Circular Compositions

3.1 Introduction

Compositional reasoning is a well-known technique against the state space
explosion problem. Intuitively, compositional reasoning means to decom-
pose a large system into small subsystems that can be handled at once.
After verifying (or extracting) properties of these subsystems, they are com-
posed according to the compositional reasoning rules in use. In this way,
specifications of a large system can be deduced from the specifications of
its subsystems without constructing the large system explicitly.

A simple example of such a compositional reasoning rule is the sequential
composition rule in Hoare logic. A much more challenging task, however,
is the composition of parallel resp. concurrent systems, since such systems
may depend on each other in a circular manner. Hence, composition rules
for concurrent systems must be able to handle some kind of circularity. This
kind of reasoning is therefore called circular compositional reasoning.

Since, in general, properties of systems that depend on other systems
cannot be proved completely independently, it is necessary to make assump-
tions on their respective environments (i.e., on the behavior of systems on
which they depend). Therefore, the expression ((p)X(tp) in compositional
reasoning denotes that each system containing X as subsystem guarantees
property ip under the assumption (p. Let

(</?2 A <p3) Xi (fffi) (tpi A <p3) X2 (1P2) M £3 M

be such expressions denoting that the three systems X\, X2, and X3 guar-
antee properties ipi, ip2,

 a nd ^3 respectively under the corresponding as-
sumptions. For example, £2 guarantees property 1P2 under assumption ipx
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on X\ and assumption (p3 on £3. Consequently, system X\ depends on X2
and £3, system £ 2 depends on X\ and £3, and system £ 3 depends on £2-

The task of circular compositional reasoning is now to determine which
properties the composed system X1HX2IIX3 satisfies. In the ideal case, it
can be concluded that the formula

holds, i.e., the composed system satisfies tpi, ip2, a n d tpz without assump-
tions. Because of the circularity of the dependencies, however, such com-
positions are unsound in general. Therefore, in order to guarantee the
soundness of circular compositions, the dependencies between and the as-
sumptions on the systems have to satisfy certain conditions. There exist
several approaches in the literature to identify such conditions.

In this chapter, we consider circular composition rules from an abstract
point of view. In particular, we present a generic rule for a certain form
of assumptions and we prove its soundness. This composition rule can be
successively applied in order to compose circular dependent subsystems and
to remove assumptions in a systematic way. We believe that our abstract
considerations provide us with a new point of view on circular compositions.

Our original motivation for the work presented in this chapter, however,
comes from proof-theoretic applications. In particular, the system identi-
fiers X\, X2, and £3 above can also be seen as proof identifiers. Then, the
above expressions denote that property ip\ was proved under the assump-
tions <f2 and <£>3, property ip2 was proved under the assumptions ip\ and <pz,
and property 4*3 w a s proved under the assumption ip2- Consequently, com-
positional reasoning in this context means to compose auxiliary results ob-
tained by subproofs to a main result without proving it directly.

It is easy to see that the sequential composition rule under this interpre-
tation corresponds to the classical cut rule in logic calculi. Motivated by
our proof-theoretic application of composing circular dependent lemmas,
we therefore investigate a circular cut rule in logic calculi corresponding to
a circular compositional reasoning rule. The basic idea behind this rule will
be used in Chapter 4 in order to compose auxiliary results that circularly
depend on each other. In particular, our auxiliary results will be composed
to stronger results while the assumptions are successively removed until we
obtain our main result without assumptions.
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This chapter is organized as follows: In Section 3.2, we investigate our
circular cut rule as circular counterpart to the classical cut rule in logic
calculi. Afterwards, in Section 3.3, we show how the circular cut rule can
be applied in mutual inductive proofs. In particular, we present the non-
compositional proof method in Section 3.3.1 and the compositional proof
method using the circular cut rule in Section 3.3.2. Compositional reason-
ing in general is then covered by Section 3.4. Starting with an abstract
non-circular composition rule, we show that the circular case is unsound
in general and that a sound circular composition rule can be obtained in
analogy to the circular cut rule. In Section 3.5, we give a short overview of
related work. Finally, we summarize in Section 3.6.

3.2 A Circular Cut Rule

In this section, we present a compositional proof rule called circular cut
rule. This name arises from two reasons: First, written as proof rule in a
logic calculus, it reminds one of the classical cut rule:

r , £ h A,n
cut

In particular, it cuts out assumptions when composing properties that
depend on each other in a certain circular form. This leads to the sec-
ond reason: It enables us to resolve some kind of circular arguments. In
fact, the formal expressions handled by the proof rule are only circular at
the first sight (not surprisingly, since circular arguments are unsound in
general). Actually, the circularities we consider are of a spiral kind as illus-
trated in Figure 3.1. We will show that circular arguments based on such
spiral dependencies are sound. This result is easy to verify and was already
mentioned by several authors in the context of concurrency verification as
will be summarized in Section 3.5. In the following, we will consider this
property from a proof-theoretic point of view, since such kinds of circular
dependencies appear very frequently in our proofs in Chapter 4.

In order to be able to prove the soundness of circular compositions by
using our circular cut rule, we need the following property.

Definition 3.1 (Downward closed). Let n be a variable over N. A
formula (f is downward closed in n iff ip[n/c + 1] => ip[n/c] for all c G N.
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0(7)

0(5)

0(3)

a(7)

a(5)

a(3)

Figure 3.1: Spiral dependencies

Now, the following theorem presents our circular cut rule and states its
soundness. We use a sequent calculus style proof for better readability.

Theorem 3.1. The circular cut rule

T,Vz < m.ßji) h q(ni), A £,Vz < n2.a{i) h ß(n2),Tl
I> i /n ] , T,[n2/n} h a(n) A ß{n), A, n ccui

is sound if all formulas in T are downward closed in n\, all formulas in £ are
downward closed in n2, no formula in A contains n\, no formula in II
contains n2, and no formula i n F U S U A U l I U {a, ß} contains n.

Proof. Induction on n G N.

Induction start: Since Vi < 0. a(i) and Vz < 0. ß(i) are trivially true, we
obtain the following proof of the circular cut rule for the case n = 0.

T,Vz < ni.ß(i) ha(ni) ,A E,Vz < n2.a(i) h ß(n2),U
r[w1 /0]>Vz<0.j3(i)ha(0),A S[n2/0],Vi < O.q(i) h ß(Q),U

r[n!/0]ha(0),A S[n2/0] h 0 ( ) ,
AT*

r[ni/0], E[n2/0] h a(0) A /?(0), A, II

Induction step: Suppose that the inference rule is sound for all n < c and
we have inferred r[ni/n] ,£[n2 /n] h a(n) A/?(n),A,II. Thus, by succes-
sively applying weakening right, conjunction right, and contraction left, we
obtain r[ni/c],E[n2/c] h Vz < c.ß(i),A,U and T[ni/c], E[n2/c] h Vz <
c. a(z),A,II. The entire inference step from n < c t o n = c + l i s then
shown in Figure 3.2. D



Co

Q

IH: for all n < c : r[nx/n], Z[n2/n] h a(n) A ß(n), A, II £.
! r ,Vi<ni . ^(2)1-0(111), A $

r[ni/c], S[w2/c] h Vz < c. /?(z), A, n r[wi/c + 1], Vz < c. /3(i) h g(c + 1), A
r[ni/c], r[ni/c + 1], E[n2/c] h g(c + 1), A, Ü

r[n 1 /c+l] ,S[n 2 /c] l -g(c+l) ,A,n d |

(1) I"

IH: for all n < c : T[ni/n], E[n2/n] h a(n) A ß(n), A, II

T[rti/c], S[n2/c] h Mi < c. a(z), A, I I S [ n 2 / c + 1], Vz < c. a(i) h /?(c + 1),
+ l ] h ^ ( c + l ) , A , n
h ^ + ̂ A n d

(2)

(1) (2)
r[m/c], r[ni/c + I], S[n2/c], S[n2/c + 1] h a(c + 1) A /?(c + 1), A, n

T[nx/c + 1], E[n2/c + 1] h a(c + 1) A /?(c + 1), A, II

Figure 3.2: Induction step of the proof of Theorem 3.1

Ar
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Of course, the circular cut rule can be generalized to any well-founded
set. For our purposes, however, it is sufficient to consider the special case
of natural numbers. We will now show how the circular cut rule can be
applied in mutual inductive proofs.

3.3 Mutual Induction

Mutual induction is a variant of mathematical induction for proving sev-
eral statements that depend on each other in a circular manner. Since we
will use mutual induction in combination with other inductive proof meth-
ods, let us start with a short overview.

Mathematical induction [GT96, HMU01] is a very important method for
proving mathematical statements of the form S(n), where n G N. In its
most common form, it consists of proving:

1. S(n) holds true for n = 0.

2. Vn G N: If S{n) holds true, then S(n + 1) holds true.

Then, the induction principle based on the fifth Peano axiom allows us to
conclude that S(n) holds for all n G N.

There exist several equivalent variants of this inductive proof method. For
example, proving a statement S(n) for all n > no, can be simply done by
applying the above induction method to the statement S'(n) = S(n0 + n)
for all n G N. It is therefore easy to see that the above conditions for
induction start and induction step can be reformulated in order to prove
statements of the form S(ri), where n > no-

Another well known and equivalent inductive proof method is called
strong induction. For proving a statement S(n) for all n G N, it requires:

Vn G N: If S(i) holds true for all i < n, then S(n) holds true.

Note that this property combines induction start and induction step in a
single condition. In order to see this, consider the case n = 0. Then, the
antecedent of the condition is trivially satisfied and therefore S(n) must
be true for n = 0, which yields the induction start above. Note that we
have already used the principle of strong induction in the formulation of
the circular cut rule in Section 3.2.
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push

Figure 3.3: On/off switch

A generalization of the inductive proof method based on a well-founded
domain instead of natural numbers is called structural induction. Although
structural inductive proofs can be reduced to proofs by induction on natural
numbers, it is often more compact and readable to use the original domain.
Proofs by structural induction can be applied to all kinds of domains given
by inductive definitions, e.g., data structures, formal languages, recursive
functions, etc. In Chapter 4, we will frequently use structural induction to
prove properties of query languages defined by context-free grammars.

All the mentioned variants of mathematical induction can be used in
combination with a proof method called mutual induction. Although mu-
tual induction is not more powerful than the methods described above, it
enables us to prove statements of the form

S(n) = Si(n) A S2{n) A . . . A Sk{n)

in a more structured way. In particular, we consider S(n) as a collection
of statements Si(n),S2(n),... ,Sk(n) which we want to prove simultane-
ously and which mutually depend on each other. We illustrate the classical
approach of how to prove this by a simple example presented in [HMUOl].

3.3.1 Non-compositional

Consider the automaton of an on/off switch shown in Figure 3.3. Ini-
tially, the automaton is in state off. Then, by each push-action, it switches
between on and off. Therefore, the functionality of the automaton can be
characterized by the statement S(n) = Si(n) A S2(n), where

• Si(n): The automaton is in state off after n push-actions iff n is even.

• e>2(n): The automaton is in state on after n push-actions iff n is odd.
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Obviously, Si(n) is a statement about state off and <S2(n) is a statement
about state on. Since both states occur within a cycle in the automaton, the
corresponding statements depend on each other in the sense that if <Si(n) is
true for a fixed n, then ^ ( n + 1) is true, and if <S2(n) is true for a fixed n,
then Si(n+ 1) is true. Because of these dependencies, we show the truth of
statement S(n) by a single inductive proof. However, in order to make the
proof more structured, we consider S(n) as the collection of <Si(n) and ^ (n )
and divide the induction start and the induction step accordingly. This is
now exemplified in the proof of the following theorem [HMU01].

Theorem 3.2 (Example). The statement S(n) holds true for all n e N.

Proof. Induction on n 6 N.

Induction start:

> «Si(0): The if direction is trivially satisfied, since the automaton is in
state off after 0 push-actions. The only if direction is also trivially
satisfied, since 0 is an even number.

c> £2(0): The if direction is trivially satisfied, since 0 is not an odd number.
The only if direction is also trivially satisfied, since the automaton cannot
be in state on after 0 push-actions.

Induction step:

> *Si(n + 1): For the if direction, assume that n + 1 is an even number.
Hence, n is an odd number and we obtain by induction hypothesis that
the automaton is in state on after n push-actions. Since the automaton
switches by a single push-action from state on to state off, we know that
it is in state off after n + 1 push-actions.
For the only if direction, assume that the automaton is in state off after
n+1 pus/i-actions. Since there is only one possibility to switch to state off
by a single push-action, we know that the automaton is in state on after n
push-actions. Hence, we obtain by induction hypothesis that n is an odd
number, which trivially implies that n + 1 is an even number.

> Sï(n + 1): For the if direction, assume that n + 1 is an odd number.
Hence, n is an even number and we obtain by induction hypothesis that
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the automaton is in state off after n push-actions. Since the automaton
switches by a single push-action from state off to state on, we know that
it is in state on after n + 1 push-actions.
For the only if direction, assume that the automaton is in state on after
n+1 push-actions. Since there is only one possibility to switch to state on
by a single pus/i-action, we know that the automaton is in state off after n
push-actions. Hence, we obtain by induction hypothesis that n is an even
number, which trivially implies that n + 1 is an odd number.

This concludes the proof. D

In addition to splitting the induction start and the induction step ac-
cording to the substatements of S(n), we can also split the whole proof into
subproofs and compose them afterwards.

3.3.2 Compositional

A mutual inductive proof in the form as presented in Section 3.3.1 may
be easily comprehensible for this simple example. For more complex state-
ments consisting of many substatements with complex dependencies, how-
ever, a decomposition into subproofs would be desirable. To this aim, the
truth of each substatement has to be proved under the assumption of the
truth of the other substatements. Afterwards, the obtained results are com-
posed by further proofs in order to remove the auxiliary assumptions.

Let as illustrate this by the same example as in Section 3.3.1, where
S(n) = Si(n) A <S2(n). We start by proving statement Si(n) under the
assumption of the truth of statement ^ (n ) .

L e m m a 3.1 (Example ) . Let n G N and suppose that «^(i) holds true for
all natural numbers i < n. Then, Si(n) holds true.

Proof. For the if direction, assume that n is an even number. If n = 0, the
automaton must be in the initial state off. Otherwise, if n > 0, we know
that n — 1 is an odd number. Hence, by assumption on S2, it follows that
the automaton is in state on after n — 1 push-actions. Since the automaton
switches by a single push-action from state on to state off, it must be in
state off after n push-actions.

For the only if direction, assume that the automaton is in state off after n
push-actions. If n = 0, we trivially know that n is even. Otherwise, if n > 0,
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the automaton must be in state on after n — 1 ^ms/i-actions, since there is
only one possibility to switch to state off by a single push-action. Hence,
by assumption on 1S2, we know that n — 1 is an odd number, which trivially
implies that n is an even number. D

Analogously, in the following lemma we prove statement «S2 (n) under the
assumption of the truth of statement <Si(n).

Lemma 3.2 (Example). Let n G N and suppose that Si(i) holds true for
all natural numbers i < n. Then, S^n) holds true.

Proof. For the if direction, assume that n is an odd number. Thus, we know
that n — 1 is an even number. Hence, by assumption on «Si, it follows that
the automaton is in state off after n — 1 push-actions. Since the automaton
switches by a single pus/i-action from state off to state on, it must be in
state on after n push-actions.

For the only if direction, assume that the automaton is in state on after n
push-actions. Since the initial state is off, we know that n > 0. Thus, the
automaton must be in state off after n — 1 ̂ ms/i-actions, since there is only
one possibility to switch to state on by a single push-action. Hence, by
assumption on «Si, we know that n — 1 is an even number, which trivially
implies that n is an odd number. D

Now, we obtain the truth of «S(n) = <Si(n) A «S2(n) for all n G N by the
composition of Lemma 3.1 and Lemma 3.2. There are two possibilities to
do this: The first one is to use an inductive proof on n G N directly, and the
second one is to use the circular cut rule from Section 3.2. Both variants
are presented in the following.

Theorem 3.2 (Example). The statement S{n) holds true for all n G N.

Proof. Induction on n G N.
Induction start: If n = 0, then the assumption of Lemma 3.1 on «S2 and the
assumption of Lemma 3.2 on «Si are trivially satisfied. Hence, by Lemma 3.1
and Lemma 3.2, we know that iSi(O) and £2(0) are true. Thus, their con-
junction 5(0) = «Si(O) A 52(0) holds.
Induction step: Let n G N and assume that <S(i) holds for all natural num-
bers i < n. Then, both <Si(i) and £2(1) hold for all i < n + 1. Hence, by
Lemma 3.1 and Lemma 3.2, we know that both «Si(n +1) and <S2(n +1) are
true. Thus, their conjunction S(n + 1) = «Si(n -I-1) A <S2(n + 1) holds. D
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Proof. Application of the circular cut rule.

Vz < ni. S2(i) \~ «Si(ni) Vz < n2. Si(i) h <S2(n2)
hS i (n )A5 2 (n ) ccut

Since the first premise holds by Lemma 3.1 and the second premise holds
by Lemma 3.2, we obtain by the circular cut rule ccut and universal gener-
alization that S(n) = Si(n) A S2(n) holds for all n G N. D

The advantage of the circular cut rule in this simple example seems to be
negligible, since the same result can be achieved by a simple inductive proof.
However, when proving properties of more complex systems with nested
circular dependencies, the inductive proof becomes more sophisticated. The
application of the circular cut rule, on the other hand, remains as simple as
presented here and can in principle be applied automatically. In Chapter 4,
many possibilities for applying the circular cut rule in order to prove much
more complex properties will appear.

3.4 Compositional Reasoning

Proving properties of real-world systems is rarely possible to be done
directly, since such systems are often too large to be handled at once. Thus,
several techniques have been investigated to overcome this problem, e.g.,
symbolic representations, abstraction, and compositional reasoning. Our
focus in this section lies on the problem of solving circular dependencies in
compositional reasoning, where compositional reasoning means to deduce
properties of a composed system from properties of its components.

There are two main applications in practice for compositional reasoning:
The first one, as already mentioned, is that the whole system is too large
to be handled at once. In this case, the system has to be broken down into
small loosely coupled parts (i.e., modules) that can in principle be checked
separately. The second one is that we want to infer properties of a system
that consists of modules from which we only know their specification but
not their internal structure, i.e., we are not able to prove properties of the
composed system directly even if it is small enough. In both cases, the
aim of compositional reasoning is to deduce properties of the whole system
by only using the properties of its components and their dependencies.
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Figure 3.4: Circular composition of modules A, B, and C

This, however, is a very challenging problem in the presence of circular
dependencies. Figure 3.4 shows a simple example of such a system.

Note that because of the dependencies between the modules, their proper-
ties cannot be proved completely independently. Therefore, when verifying
that a particular module guarantees some property, it is in general necessary
to make assumptions on other modules. Such kind of reasoning is called
assume-guarantee reasoning. To get an idea of assume-guarantee reasoning,
let us consider the sequential composition rule in Hoare logic [Hoa69]:

ni {ft} {n}u2{Q}

The meaning of this rule in the context of assume-guarantee reasoning can
be interpreted as: If 111 guarantees TZ under the assumption V and II2 guar-
antees Q under the assumption 1Z, then the sequential composition n i ; ü 2

of III and II2 guarantees Q under the assumption J>. Note, however, that
this interpretation gives only an intuition of assume-guarantee reasoning,
but it is not exactly the same. In particular, formulas in assume-guarantee
reasoning as proposed by Pnueli [Pnu85] have the form (</?) X (tp). Although
this formula looks like a Hoare triple, it has a different semantics.

Let us write X Ç X' to denote that X is a component of X' for all systems
X and X'} In particular, we require that this relation is transitive and that
it satisfies X Q X\\X' for all systems X and X', where X\\X' denotes the
parallel composition of X and X'.

Definition 3.2. The formula (ip) X (ip) holds iff whenever X Ç X' such that
X' satisfies the assumption </?, then X' guarantees property ip.

xThe exact definition of the relation Ç depends on the application area (cf. [GL94]).
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Figure 3.5: Illustration of composition rules

It follows immediately from this definition that for any two systems X
and X' such that X n. X\ it holds that (<p) X (ip) implies (<p) X' (if)).

With such formulas at hand, it is now possible to express assume-guarantee
inference rules. Such a non-circular composition rule is given by:

(3.1)

The intuitive meaning of this rule is that if Xi guarantees T?AT/>I under the
environment assumption ipi and X2 guarantees tp2 under the environment
assumption y>2 and the assumption i? on 1 ^ then the composition J£I||J£2

of Xi and X2 guarantees 1? Aip\ A^2 under the environment assumption ip\ A
</?2- An illustration of rule (3.1) is shown in Figure 3.5 (a), where ip[ = tiAipi.
Note that the edges in Figure 3.5 represent the dependencies between the
components and their environment and do not indicate any timing behavior.

Theorem 3.3. The non-circular composition rule (3.1) is sound.

Proof. We show that the conclusion of rule (3.1) follows from the premises.
Since X2 E £ i | | £ 2 and (^2AT?) X2 (^2), we obtain (</?2AT9) £I | | J£2 (^2), which
trivially implies (<pi A(p2 AT?) XI | |X2 (^2)- Moreover, since Xi Ç X1IIX2 and
( ^ i ) ï i ( i f A ^ i ) implies {ipi} Xi (T?), we obtain (<pi) X1WX2 {&)• Thus, we
know that every X with X1IIX2 E X guarantees T? under the assumption ipi,
which allows us to remove the assumption $ from (<p\ A ^ A i ? ) 3Ci||3t2 (^2)-
Hence, we have (ipi A <p2) Xi||X2 (^2)-

In addition, since X\ Q X1IIX2 and (cpi) Xi (T? A T/»I), we have (ipi) Xi||3C2

(i? A ipi), which trivially implies {ipi A ^2) ̂ i | |^2 {& A ipi). Therefore, by
putting (</?! A (p2) Xi\\X2 (1P2) and {<pi A <p2) Xi\\X2 (T? A ̂ 1) together, we
obtain (<px A (£2) Xi\\X2 ($ A ipi A fa)• D
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Figure 3.6: Counterexample to circular composition

Note that the composition rule (3.1) is non-circular because £2 depends
on £\ but not vice versa (cf. Figure 3.5 (a)). Our focus, however, lies
on the case where £1 and £2 depend on each other in a circular manner
as shown in Figure 3.5 (b). The corresponding circular composition rule,
where ip[ = i?i A tp\ and ^ = ^ A ^ , is given by:

A £ 1 A (<p2 A A

A Vi A A
(3.2)

In contrast to the non-circular composition rule (3.1) above, the circular
composition rule (3.2) is not sound in general. Although most counterex-
amples to this rule in the literature use liveness properties, there exist also
counterexamples using safety properties.

Example 3.1. Let ipi = ip2 = T, ipi = ip2 — T, di = AG (x = 0), and
$2 = AG (y — 1). Moreover, let X\ = while y = 1 do x = 0; and
£2 = while x = 0 do y = 1 ;. Figure 3.6 shows a schematic represen-
tation of this example. Now, assume that 5Ci||£2 satisfies AG (x = 1) and
AG (y = 0). It is easy to see that this assumption does not contradict the
definition of £1 and £2. Then, both premises

(AG(y = l)> while y = 1 do x = 0; (AG(i = 0)>
(AG (x = 0)) while x = 0 do y = 1 ; (AG (y = 1))

are true; however, the conclusion of the circular composition rule (3.2) yields

which contradicts the assumption that £i||£2 satisfies AG (x = 1) and
AG (y = 0). Hence, rule (3.2) is unsound.

Although circular compositions of the form of rule (3.2) are unsound
in general, there exist many approaches in the literature to find sufficient
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conditions for its soundness. These approaches are typically based on a
restriction to a specific formalism and the introduction of techniques to
break the circularity. The soundness of the (allegedly) circular rule follows
then by an inductive argument.

For example, the circularity in Example 3.1 can be broken by the realistic
assumption that the system starts working at a certain point in time at
which the variables are initialized with x = 0 and y = 1. It is then easy to
see that there exists no property that is consistent with both 3^ and 3C2,
but contradicts the property inferred by rule (3.2). Thus, in the case of
discrete-time systems, the correctness of rule (3.2) can be shown by mutual
induction over time, where the initialization of the variables is used as
induction start. Note that for real-world systems, such a starting point
always exists, e.g., by a call in the case of a software component or by a
reset in the case of a hardware component. Therefore, in order to break
the circularity, it suffices to ensure that the guaranteed properties of the
components are satisfied at the starting point of the system. This holds
for all kinds of properties; liveness properties, however, permit a higher
degree of freedom to do this, e.g., ensuring that AF (x = 0) holds at the
starting point requires that x = 0 holds eventually but not necessarily at the
starting point itself. Maybe this is the reason why liveness properties are
mostly used in the literature as counterexamples to circular composition.

Note that the stepwise propagation between assumptions and guaranteed
properties, which allows the application of an induction argument, does not
need to progress over (discrete) time. It is easy to see that our approach
works over any domain that allows an inductive argument.

The following theorem states the soundness of rule (3.2) if it is restricted
in such a way that the circularity is broken as described above. In order to
avoid an explicit condition on the starting point of the composed system,
we use the same principle as for strong induction (cf. Section 3.3).

Theorem 3.4. The circular composition rule

is sound ifipi is downward closed in n\, <p2 is downward closed in n2, fa does
not contain n\, fa does not contain n2; and no formula <pi, ip^, fa, fa, i?i,
or §2 contains n.
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Figure 3.7: Example of circular composition

Proof. Since Xi C £i | |£2 and X2 E we know that:

(^2AVz<n2 .^(z)) *i | |£2 (tf2(n2) A

Thus, in analogy to the circular cut rule (cf. Section 3.2), we obtain the
soundness of the circular composition rule. D

The following simple example demonstrates how the circular composition
rule can be applied for circular compositional reasoning.

Example 3.2. Let A, B, and C be the modules in Figure 3.7, and suppose
that for all n G N we have already proved:

(Vz < n. x2(i) A Vz < n. x4(i)) A (x^n)) (3.3)

<yi<n.xi(ï)) B (i2(n)Ai3(n)> (3.4)
(Vz<n.x3(z)) C (xA(n)) (3.5)

We will now show how the circular composition rule can be applied in
order to prove that the composed system shown in Figure 3.7 satisfies

xi(n) A A A for all

Since Vz < c + 1. x4(i) implies Vi < c. x4(i) for all c 6 N (i.e., it
is downward closed), the circular composition rule is sound according to
Theorem 3.4 when applied to the formulas (3.3) and (3.4), which yields

(Vz < n. x2(i) A Vi < n. x4(z)} A (Vz < n. Xi(i)) B (x2(n) A xz(n))
(Vi < n. x4(z)) A\\B (xi(n) A x2(n) A x3(n))
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Now, by applying the circular composition rule again to the above result
and formula (3.5), we obtain

{\/i < n. x4(i)) A\\B (xi(n) A x2(n) A x3(n)) (Vz < n. x3(i)) C (x4(n))

(T) A||-B||C (xi(n) A x2(n) A x3(n) A x4(n))

Thus, since n is a free variable, we can apply universal generalization
in order to obtain the desired result. Hence, by successively applying the
circular composition rule, we have shown that the composed system in
Figure 3.7 satisfies X\[n) A x2(n) A 2:3(71) A 2:4(71) for all n EN.

3.5 Related Work

The following summarizes the most important publications in circular
compositional reasoning and shows how they relate to our work.

Misra and Chandy [MC81] introduced compositional assume-guarantee
reasoning for safety properties in the context of process communication.
They used assertions of the form r\h\s to specify a process h, where r and s
are predicates on traces of communication events. The triple r\h\s denotes
that: (i) s holds initially in h, and (ii) if r holds up to the A;th point in any
trace of h, then s holds up to the (fc+l)st point in that trace for all k > 0. It
is easy to see that such triples r\h\s implicitly express the conditions of our
circular cut rule in order to break circularity. The composition rule is then
formulated in their Theorem of Hierarchy, which allows to infer properties
of process networks from individual processes.

Pnueli [Pnu85] introduced a composition rule that is also able to handle
liveness properties. He was the first who proposed the use of temporal
logic for writing assume-guarantee specifications, and he introduced assume-
guarantee formulas of the form {<p) X (ip) as we have used in this chapter.

Stark [Sta85] presented an assume-guarantee proof rule independent of
the choice of a particular specification or programming language. His com-
position rule is based on the assumption that there exists a set of specifica-
tions that "cuts" the dependencies between the components. Such a cut set
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must satisfy five conditions: Four conditions on its relation to the assume-
guarantee properties and one condition to break circularity. Intuitively, the
condition to break circularity requires that on each cycle there is at least
one specification in the cut set that holds unconditionally. This property
corresponds to the existence of an induction start in our approach.

Abadi and Lamport [AL93, AL95] investigated assume-guarantee rea-
soning in the case where the assumptions are safety properties but the guar-
anteed properties can include liveness. In our approach, this means that the
guaranteed properties fix and $2 used as assumptions of other components
must be safety properties, and the guaranteed properties ipi and ip2 that
are not used as assumptions can include liveness. Obviously, the liveness
properties are then irrelevant concerning circularity, since tpi and -02 do not
appear in any cycle. Thus, the remaining properties that are relevant in
the context of circular compositions are still safety properties.

The results of Abadi and Lamport are based on semantic arguments and
are therefore independent of the choice of a particular specification lan-
guage or logic. They assume that the actions of the system components are
interleaving, i.e., the component's input and output cannot change simul-
taneously. In particular, this means that a guaranteed property can only
become false after the corresponding assumption has been violated. There-
fore, it is possible to apply an inductive argument when the assumptions
are initially satisfied. Hence, the basic reason why their composition rule
holds is the same as ours, although their approach is completely different.

McMillan [McM99] generalized the idea of Abadi and Lamport by mak-
ing the induction over time explicit. In particular, by assuming <p up to
time t — 1 when proving ip at time t and vice versa, it is possible prove p
and if) for all t G N by mutual strong induction (provided that </? and ip
hold at time 0). Since this approach is independent of the kind of proper-
ties expressed by <p and ip, it extends the results of Abadi and Lamport in
the sense that such a circular composition is sound even if the assumptions
include liveness properties. McMillan showed how to express this kind of
induction in temporal logic in order to verify it by model checking.

It is easy to see that this approach is based on exactly the same principle
as our circular cut rule. Our intention, however, was to find a general rule for
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solving circular dependencies in inductive proofs not necessarily over time.

Other works. De Roever et al. [dRdBH+01] gave a comprehensive survey
on concurrency verification including circular dependencies. Viswanathan
and Viswanathan [VV01] investigated a general framework of circular com-
positional reasoning concerning properties that are expressible by least and
greatest fixpoints. At the same time, Maier [MaiOl] presented a circu-
lar assume-guarantee proof rule within a set-theoretic framework. Most
recently, Amla et al. [AENT03] constructed an abstract compositional rea-
soning framework and defined an assume-guarantee reasoning method that
is sound and complete.

3.6 Summary

The classical cut rule in logic calculi allows the composition of proofs
that depend on each other in the following way: The first proof guarantees
property a and the second proof assumes property a. Then, a can be cut
out according to the sequent calculus inference rule

A,n
cut

However, if the two proofs depend circularly on each other, i.e., the first
proof assumes property ß and guarantees property a and the second proof
assumes property a and guarantees property ß, then the rule

T,ß\-a,A Z,a\-ß,Il
r ,Eh A,n

is unsound in general. Nevertheless, if a and ß are of a certain form, then
such a circular cut rule can be sound. In particular, the rule is sound if the
circularities are of a spiral kind, as shown in the following:

r,Vz < nvß(i) ha(rii),A £,Vz < n2.a(i) h/?(n2),II
T[m/n], E[n2/n] h a(n) A ß(n), A, II °°Ut

The same principle can be applied in compositional reasoning in order
to infer properties of a composed system from properties of its components
that depend on each other in a circular manner.



3 Circular Compositions 52

We will use circular compositions very frequently in Chapter 4 in order
to obtain our main results from circular dependent auxiliary results. In
particular, we will prove properties of query languages which are defined as
the union of several sublanguages that depend on each other in a circular
manner. To this aim, our strategy will be to prove properties of the sublan-
guages and compose them afterwards. However, when proving properties
of a sublanguage, we have to make assumptions on other sublanguages and
vice versa. Nevertheless, by using the principle of our circular cut rule,
we will be able to successively remove the assumptions and compose the
auxiliary results in order to obtain properties of the whole query languages.



Chapter 4

Exact Temporal Logic Queries

4.1 Introduction

Temporal logic queries (cf. Section 2.5) are a useful formalism for reason-
ing about temporal logic specifications. They enable us to express incom-
plete specifications that have to be completed appropriately by instantiating
variables in such away that the resulting specifications are satisfied by the
model. An interesting case in this context appears when such completions
can be reduced to a single completion, i.e., where the set of solutions to
a temporal logic query can be characterized by a single solution. Such a
strongest solution - if it exists - is called exact.

In this chapter, we investigate exact temporal logic queries, that are tem-
poral logic queries that always have an exact solution if the set of solutions
is not empty. In addition to always having an exact solution provided that
there exists any solution, exact temporal logic queries also have other in-
teresting properties. One of the most important ones is distributivity. A
temporal logic query 7 is distributive (over conjunction) iff

i[<p] A 7[V>] «• j[(p A if)]

for all formulas ip and ip. The close relationship between exact temporal
logic queries and distributivity was already noticed by Chan [ChaOO]. In
this chapter, we investigate this relationship systematically and show that
a temporal logic query is exact if and only if it is distributive.

As conjunction in general distributes over universal quantification only,
the distributivity of a query gives evidence that the occurrence of a vari-
able in the query is governed by universal quantification. Moreover, note
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that each distributive temporal logic query amounts to a set of equiva-
lences between temporal logic formulas. A simple example is the distribu-
tive query 7 = G ?, which amounts to the equivalences

for all formulas ip and ip. Such simple equivalences were already listed
by Emerson [Eme90]. They are obtained as special cases from our results
developed in this chapter. In particular, we will present extensive syntactic
fragments of exact resp. distributive LTL and CTL queries. In the case of
LTL, we are also able to show that our fragment is maximal.

The equivalences between temporal logic formulas based on distributivity
over conjunction also have the potential to be exploited in model checking.
For example, formulas of the form j[(p A ip] can be split into two smaller
formulas 7^ ] and 7 [•?//] that can be checked separately. Although it is not
to be expected that the reduced formula size will significantly affect the
performance of model checking, it is quite likely that each of the smaller
formulas ranges over a significantly fewer number of atomic propositions,
e.g., by loosely coupled concurrent systems with limited communication and
many internal variables. This situation can be exploited in model checking
when using existential abstraction, since a smaller number of variables in the
specification may reduce the size of the abstract model [CGL94, CGJ+03|.

Moreover, the auxiliary results appearing in the exactness proofs of our
fragments enable us to solve queries in these fragments efficiently. In partic-
ular, several variants of the collecting property (i.e., ^[ip] A^[ip] =>• 7[yA^>])
will be used in our proofs. These properties can be exploited in order to
eliminate existential choices in the evaluation of temporal operators. We
will describe this principle in detail in Chapter 5 and present an efficient
symbolic query solving algorithm based on this insight.

This chapter is organized as follows: In Section 4.2, we start by a system-
atic investigation of exact temporal logic queries and present several basic
results independently of a particular logic. Afterwards, in Section 4.3, we
present a syntactic characterization of exact LTL queries together with the
corresponding proofs of exactness and maximality. A syntactic fragment
of exact CTL queries together with the corresponding proof of exactness
and some comments towards a proof of its maximality are then presented
in Section 4.4. Finally, we summarize in Section 4.5.
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4.2 Basic Relationships

To obtain the maximum information a query provides, it is necessary to
consider all its solutions. However, since the number of solutions is likely
to be very large, it is desirable to have strongest solutions that subsume all
other solutions. We call such strongest solutions minimal solutions.1

Definition 4.1 (Minimal solution). A set of solutions A4 to a query 7
in a model 9JI is the set of minimal solutions iff M. is the smallest set such
that for every solution ip to 7 in Wl there exists ß £ M such that ß =>• (p.

Remark 4.1. Note that the set of minimal solutions does not need to exist
in general. For example, because of the infinite implication chain

F p <= X F p «= X X F p «= X X X F p « = • • • ,

there cannot exist a minimal solution that implies all these solutions in
models where p occurs in a cycle. Nevertheless, in order to guarantee the
existence of a set of minimal solutions, the formulas that are taken into
consideration as solutions can be restricted appropriately. Examples of
such restrictions are propositional formulas and length restricted formulas.

It is easy to see that if A4 is the set of minimal solutions to 7 in Wl,
then sol(9Jt, 7) Ç {<p | 3ß G A4. ß =>• (p}. The following proposition shows
that for monotonie queries also the converse inclusion holds, i.e., every
implication of the minimal solutions is a solution. In other words, if 7 is
monotonie, it holds that sol(9Jt, 7) = {</? | 3/x G A4. ß =>• (p}.

Lemma 4 .1 . Let A4 be the set of minimal solutions to a monotonie query 7
in a model 971. Then, the formula cp is a solution to 7 inÜXt iff there exists
ß G A4 such that \i => ip.

Proof. The only ^/direction is essentially the definition of minimal solutions.
For the if direction, let ß G A4 such that [i => (p. Thus, by monotonicity,
we obtain y[ß] => 7[<£>]. Since ß is a solution to 7, it follows that <p must
also be a solution. Hence, if ß => </?, then cp is a solution to 7 in ÜJl. D

that the set of solutions to a query together with logical implication form a
partially ordered set. The minimal solutions are the minimal elements of this set.
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It is easy to see that if the set of minimal solutions exists, then it is
semantically unique. However, in the following we are interested in a more
specific property; in fact, we are interested in the case where exactly one
minimal solution exists. We call this minimal solution the least solution.2

Definition 4.2 (Least solution). A solution \i to a query 7 in a model 9JI
is the least solution iff for every solution <p to 7 in 9Jt it holds that p => <p.

In the following, we define queries that always have a least solution.

Definition 4.3 (Bounded query). A query is bounded iff it has a least
solution in every model where the set of solutions is not empty.

Remark 4.2. Note that not every monotonie query is bounded. For example,
let 7 = F ? be an LTL query and TT be a path such that i(n{0)) = {p} and
£{TT{I)) = {q} for all i > 1. It is easy to see that 7 is monotonie and that p
and q are solutions to 7 on TT, that is TT \= 7JJ9] A 7(9]. Now, suppose that
there exists a least solution p to 7 on n. Then, we know that fj, =4> p and
ß =» q, which is trivially equivalent to ß => p A q. Thus, by Lemma 4.1, it
follows that p A q must also be a solution to 7 on TT. However, it is easy to
see that TT ^ j\p A q]. Hence, 7 is monotonie but not bounded.

One the other hand, note also that not every bounded query is monotonie.
For example, let 7 = ? Ü c be an LTL query and TT be a path such that
£(Tr(i)) = {c,p} for all i £ N. In order to see that 7 is bounded, note
that the conjunction of all solutions is always a least solution. So it is
sufficient to show that "f[ip] A 7 [•)/>] =>• 7[v A ip] for all formulas ip and ip.
Suppose that a \= i[<p] A 7 ^ ] for any path a. By definition, this implies
that there exist unique numbers k and / such that a ^ \= </?, a^0^ \= ip,
ak \= -,ip A c, and a1 \= ^tp A c. Thus, it follows that aV>.™*{k,i)) ^ ^ A ^
and crmin(fc'^ |= ->((pAi/j) Ac, which implies a J= ^[tp Aip]. So we have shown
that 7 is bounded. However, it is easy to see that p A q is a solution to 7
on TT, whereas p is not a solution. Hence, 7 is bounded but not monotonie.

Now, we introduce a special solution that exactly characterizes all other
solutions to a query. We call such a solution an exact solution.

2 The least solution (if it exists) is the least element in the partially ordered set of
solutions with respect to logical implication.
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Definition 4.4 (Exact solution). A solution £ to a query 7 in a model 97Î
is exact iff it holds that <p is a solution to 7 in 971 iff £ => </?.

The following proposition connects monotonie queries, least solutions,
and exact solutions. It is directly implied by Lemma 4.1.

Proposition 4.1. If a monotonie query has a least solution, then it is exact.

An interesting question in this context is about the relation between the
exact solution to a query and the exact solutions to its subqueries. In fact,
there is a nice relation when considering the conjunction of two queries.

Proposition 4.2. Let £1 be the exact solution to query 71 and £2 be the
exact solution to query 72. Then, £1 V £2 is the exact solution to 71 A 72.

Proof. Let £1 and £2 be the exact solutions to 71 and 72 respectively in
model 971. Thus, we have 971 f= 7i[<£>] iff £1 =^ f as well as DJÎ (= 72 [<p>]
iff £2 =>• <P- Hence, since (1 =^ ^ V £2 and £2 =>• £1 V £2, we know that
971 (= 7 l [ ^ V £2] A 72[fi V £>], which is equivalent to Jöt (= (71 A 72) [& V &]•
Thus, £i V £2 is a solution to 71 A 72 in 971. Now, let (£1 V £2) => V3 f° r a n v

formula </?. This is trivially equivalent to (-i£i A -^2) V ip, which in turn is
equivalent to (->£i V <p) A (-i£2 V <p), that is (£1 =»• <p) A (£2 =>• ¥>)• Since £1
and £2 are exact, we know that this holds iff 971 |= 71 [ip] A 72[<p], which is
equivalent to 97Î |= (71 A 72)[<p]- Hence, ip is a solution to 71 A 72 in 971 iff
(6 V 6 ) =» V- Thus, we have 971 (= (7 l A 72)^1 V £2] and 971 H (7i A 72) [</>]
iff (£1 V £2) => V, i-e., £1 V £2 is an exact solution to 7! A 72 in 971. D

Remark 4.3. Note that the above result holds also for the special case of
the conjunction between a formula and a query, that is <p A 7. Then, the
"exact solution" to (p - provided that ip holds in the model - is _L. Hence,
if £ is the exact solution to 7, we obtain 1 V ( <=> £ as the exact solution
to ip A 7, which is obviously true.

The following definition introduces the kind of queries in which we are
primarily interested in this chapter. Their set of solutions - provided that
it is not empty - can always be exactly characterized by a single formula.

Definition 4.5 (Exact query). A query is exact iff it has an exact solution
in every model where the set of solutions is not empty.
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By putting the above results together, we obtain the equivalence between
exact queries and queries that are both bounded and monotonie.

Theorem 4.1. A query is exact iff it is bounded and monotonie.

Proof. For the if direction, let 7 be a bounded and monotonie query. Thus,
since 7 is bounded, we know that there always exists a least solution if the
set of solutions is not empty. Hence, by Proposition 4.1, it follows that 7
is exact. For the only if direction, let 7 be an exact query. Thus, we know
that there always exists an exact solution if the set of solutions is not empty.
It is easy to see that every exact solution is also a least solution. Hence, 7 is
bounded. Now, let £ be the exact solution to 7 in any model Wl where the
set of solutions is not empty. Suppose that <p => ip and 9JT |= j[ip], i.e., <p is
a solution to 7 in Wl. Since £ is exact, we know that £ =>• (p and therefore
Ç => ip. Thus, ip must also be a solution to 7 in 971, that is 971 |= "f[ip].
Hence, 7 is monotonie. D

Remark 4.4. Note that the general results of Chan [ChaOO] are based on the
assumption that the considered queries are monotonie. So there is nothing
said about the existence of exact queries beyond the class of monotonie
queries. The above result, however, implies that there exist no exact queries
that are not monotonie. To our best knowledge, this is the first time that
this question has been clarified.

In order to present an alternative characterization of exact queries, we
need some additional properties.

Definition 4.6 (Collecting, Separating, Distributive). A query 7 is
collecting iff it satisfies i\ip\ A^[ip\ =>• ^[(pAip], and separating iff it satisfies
^[(p A ip] => 7[<p] A ̂ y[ip] for all formulas (p and ip. A query is distributive
(over conjunction) iff it is collecting and separating.

Now, we will show some relations between the above properties. Let us
start with a relation between collecting and bounded queries.

Lemma 4.2. Every collecting query is bounded.

Proof. Let 7 be a collecting query and 971 be a model. Consider the set S of
all solutions to 7 in 371, that is Q7Î |= Av,es7[</>]- Thus, since 7 is collecting,
it follows that 971 \= 7[A«S]- Moreover, since /\S =>• <p for every <p G S, we
know that / \ S is a least solution to 7 in 971. Hence, 7 is bounded. D
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The below result states that monotonicity and separability are equivalent.

Lemma 4.3. A query is separating iff it is monotonie.

Proof. Let 7 be a query. For the if direction, consider the valid implications
ip A ip => ip as well as ip A ip => ip. Thus, by monotonicity, we obtain
7[<£ A ip] =>• 7[</?] as well as y[(p A ip] =$• j[tp], which is trivially equivalent to
7[y? A ip] =4> ~/[<p] A 7[-0]- Hence, 7 is separating. For the only if direction,
suppose that (p => ip. Since (p =>• ip implies ip •& ip A ip, we know that y[ip]
is equivalent to -y[(p A ̂ ] . Thus, since 7 is separating, we obtain y[ip] •*=>•

A ̂ J =>• 7[V;]- Hence, 7 is monotonie. D

Finally, let us consider the relation between exact and collecting queries.

Lemma 4.4. Every exact query is collecting.

Proof. Let 7 be an exact query and £ be its exact solution in a model 9DÎ
where the set of solutions is not empty. Further, let <p and ip be any solutions
to 7 in 971, that is 971 f= 7^] A 7[?/>]. By definition, we know that £ => ip
and £ => ip, which is trivially equivalent to £ => <p A •0. Thus, <p /\ip must
be a solution to 7 in 97T, that is 97t |= j[ip A ̂ ] . Hence, 7 is collecting. D

By putting the above auxiliary results together, we obtain an alternative
characterization of exact queries in the following theorem.

Theorem 4.2. A query is exact iff it is distributive.

Proof. For the if direction, we know by Lemma 4.2 and Lemma 4.3 that
every distributive query is bounded and monotonie. Hence, by Theorem 4.1,
it follows that every distributive query is exact. For the only if direction, we
know by Theorem 4.1 and Lemma 4.3 that every exact query is separating.
In addition, by Lemma 4.4 we know that every exact query is collecting.
Hence, every exact query is distributive. D

The following result is directly implied by the previous theorem and the
equivalence between separability and monotonicity according to Lemma 4.3.

Corollary 4.1. A query is exact iff it is monotonie and collecting.
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Remark 4.5. Note that this equivalence provides a naive algorithm for com-
puting exact solutions to exact queries by building the conjunction of all
solutions. Due to the collecting property, we know that the resulting for-
mula must be a solution which trivially is a least solution. Thus, by Propo-
sition 4.1, we know that it is also an exact solution.

The following theorem shows the complexity for determining whether a
given LTL and CTL query is exact. Since such complexity results depend on
the particular formalism, we cannot prove them abstractly. In particular,
we use a reduction from and to the validity of LTL and CTL formulas
following the proof for validity of CTL queries by Chan [ChaOO].

Note that, in contrast to Chan, we use the standard temporal operators
in these reductions. Moreover, note that the placeholder occurs only once in
the used queries. Hence, the complexity remains unchanged when restrict-
ing the query language to the standard temporal operators and by allowing
only a single occurrence of the placeholder.

Theorem 4.3. Deciding whether a given LTL query is exact is PSPACE-
complete and whether a given CTL query is exact is ExpTlME-complete.

Proof. We show that deciding exactness of LTL and CTL queries is equiva-
lent to deciding validity of LTL and CTL formulas respectively. To this aim,
it suffices by Theorem 4.2 to show that deciding distributivity of LTL and
CTL queries is equivalent to deciding validity of LTL and CTL formulas
respectively. Then, we obtain our result by the fact that deciding validity
of LTL formulas is PSPACE-complete [SC85] and deciding validity of CTL
formulas is ExpTlME-complete [Eme90].

For the reduction to LTL and CTL validity, note that an LTL resp. CTL
query 7 is distributive iff the formula j\p] A j[q] <-> j\p A q] is valid for some
atomic propositions p and q not occurring in 7. The if direction follows by
contraposition when assuming that 7 is not distributive, i.e., there exists
a Kripke structure Â and formulas cp and ip such that ^ ^ 7[v] A 7 ^ ] <->
7[<£ A ip]. Now, we construct a new Kripke structure Â' from Â by labeling
states with new atomic propositions p and q iff <p and tp hold at these states
respectively. Then, it obviously holds that Â' \/= 7[p] A7(9] <-»• j\p Aq\. The
only if direction follows trivially from the definition of distributivity.

For the reduction from LTL and CTL validity, let ip be an LTL formula
and ip be a CTL formula. Moreover, let p and q be atomic propositions
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not occurring in <p or ip, and let 71 = (G(p) V (pU?) be an LTL query and
72 = (AG ip) V A(pU?) be a CTL query. Now, we will show that ip and ip
are valid iff 71 and 72 are distributive respectively.

The if direction follows by contraposition when assuming that <p and ip
are not valid, i.e., there exist Kripke structures Ai and Â2 such that &i \£ <p
and £2 H= ip- Since p and ç are not occurring in <p or ip, we can assume
w.l.o.g. that the initial states of &i and fi.2 are labeled with p, the immediate
successor states of these initial states are labeled with q, and no other states
of £1 and &2 are labeled with p or q. Moreover, we can assume w.l.o.g. that
the initial states are not immediate successor states of themselves. Then, it
is easy to see that &i |= 7i[p] A7i[g] and &2 f= 72 b] ̂  72 [9], but &i \£ 7i[pAg]
and Â2 Y"" 72 b A q\- Hence, both queries 71 and 72 are not collecting and
therefore not distributive.

For the only if direction, we know that <p and ip are valid, which implies
that also G<p and AG ip are valid. Thus, it is easy to see that fi. f= 71 [-L]
and Â \= 72[_L] for all Kripke structures Â. Hence, by Lemma 2.1, it follows
trivially that 71 and 72 are distributive. D

Therefore, since determining whether a given LTL and CTL query is
exact is very hard, we define syntactic fragments of exact LTL and CTL
queries in the remainder of this chapter. In particular, in the case of LTL,
we are able to present a syntactic characterization. Since the existence of
a simple grammar that characterizes all exact LTL queries is improbable
according to Theorem 4.3, we use query templates in the definition of our
grammar. Thus, when proving that a template satisfies some property,
the property has to be proved for all instantiations of the template, and
when proving that a template does not satisfy some property, the absence
of the property has to be proved for a single instantiation of the template.
Of course, template characterizations do not capture all exact queries, but
they allow an approximation that is consistent with our complexity results.

4.3 Exact LTL Queries

In this section, we present LTLQX, an exact query language based on LTL.
For simplicity, we restrict our considerations in the following to queries with
a single occurrence of the placeholder as introduced by Chan [ChaOO]. Note
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that this restriction can be slightly weakened by Proposition 4.2 and the
additional temporal operators introduced in Section 2.5.1.

Let us start with a class of monotonie LTL queries. To this aim, recall our
observations on the monotonicity of temporal operators in Section 2.5.1. It
is then easy to define a class of monotonie LTL queries.

Definition 4.7 (LTLQm). The language LTLQm is the largest set of LTL
queries with a single occurrence of the placeholder that do not contain a
subquery of the form 7 Ü (p or 7 W <p.

For example, the LTL query X (<p Ü G ?) is in LTLQm, whereas X (((p V
?)ÜV)) is not in LTLQm. The following lemma justifies our claim from
above and follows directly from Lemma 2.2 and the monotonicity of tem-
poral operators as investigated in Section 2.5.1.

Lemma 4.5. Every query in LTLQ71 is monotonie.

Now, according to Corollary 4.1 and Lemma 4.5, our next step towards
an exact query language is to restrict LTLQ™ to a class of collecting queries.
To this aim, LTLQm must be divided into sublanguages. The corresponding
deterministic grammar is shown in Table 4.1, where * is a special wildcard
symbol representing any LTL formula. For example, the template * U 7
represents all LTL queries of the form (p\J•y, where (p is an LTL formula.3

In the following, we write LTLQ1 for the language derived from the non-
terminal (Ql), LTLQ2 for the language derived from the nonterminal (Q2),
and so on. It is easy to see that LTLQm = ( j j = 1 LTLQ1 since every operator
allowed in LTLQm occurs in combination with every non-terminal.

Definition 4.8 (LTLQ*). The language LTLQ1 is defined as LTLQ1 =
LTLQ1 U LTLQ2 U LTLQ7. Its complement within LTLQm is given by
LTLQ1 = LTLQm\LTLQa: = LTLQ3 U LTLQ4 U LTLQ5 U LTLQ6.

Remark 4.6. Note that all these languages are sets of templates. How-
ever, for simplicity we identify these template sets with the sets of queries
obtained by instantiating the templates appropriately.

Moreover, note that negation does not appear in the grammar defined in
Table 4.1. This, however, is no restriction since after transforming a query

3A similar template characterization was also used by Buccafurri et al. [BEGLOl].
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(Ql) ::= ?

* Ü (Q2)

• A (Ql)

• Ü (Ql)

(Q2) ::= (Ql) U •

(Q2) U *

(Q3) ::= F (Ql)

G (Q6)

• U (Q6)

• Ü (Q4)

(Q6) W •

• W (Q4)

• V (Q3)

(Q3) Ü *

(Q3) W *

(Q4) ::= <Q3)U*

• V (Q4)

• W (Q4)

(Q5) ::= • Û (Q4)

* W (Q4)

(Q5) Ü *

(Q6) ::= • A (Q4)

X(Q6)

(Q7) ::= F (Q2)

G (Q5)

F(Q7)

• U (Q7)

(Q7) W *

• A (Q2)

(Q2) W *

• V (Ql)

(Ql) W *

(Ql) W •

• U (Q2)

F(Q5)

(Q4) Ü •

• Ü (Ql)

• Ü (Q5)

(Q4) W *

* W (Q5)

X(Q3)

* U (Q3)

(Q3) W •

(Q5) U •

X(Q4)

• W (Ql)

• W (Q6)

(Q5) W *

• V (Q5)

(Q6) Ü *

F(Q4)

• A (Q7)

G(Q7)

• Ü (Q7)

• W (Q7)

(Q2) Ü •

• W (Q2)

X(Q1)

• W (Ql)

* V (Q2)

(Q2) W •

F(Q6)

* U (Ql)

• Ù (Q5)

* Ü (Q6)

• W (Q5)

* W (Q6)

F(Q3)

* Û (Q3)

* W (Q3)

(Q6) U *
(Q4) U *

* W (Ql)

• A (Q5)

• W (Q5)

• A (Q6)

(Q6) W *

G (Ql)

• V (Q7)

(Q7) U •

* Ü (Q7)

* W (Q7)

• Û (Q2)

• W (Q2)

(Ql) Ü •

X(Q2)

* W (Q2)

G(Q4)

* U (Q5)

• Ü (Q6)

(Q4) W •

• W (Q6)

* A (Q3)

G (Q3)

• U (Q3)

• W (Q3)

(Q5) W •

• U (Q4)

• W (Q3)

X(Q5)

• V (Q6)

G (Q2)

X(Q7)

(Q7) Ü *

(Q7) W *

• W (Q7)

Table 4.1: LTLQX production rules
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o

H

o

Figure 4.1: LTLQ dependence diagram

into NNF (cf. Section 2.5.1), the negation in front of the placeholder can
be removed without loss of generality. To see this, consider a query 7 with
negation in front of the placeholder. Then, since 7 is monotonie decreasing,
the exact solution £ to 7 in a model Tt satisfies </? =>• £ iff <p is a solution to 7
in ÜJI. Hence, ->£ =>• -up iff -K/? is a solution to 7' in 071, where 7' is obtained
from 7 by removing the negation in front of the placeholder. Obviously, it
holds then that -nf is an exact solution to 7' iff £ is an exact solution to 7.

The dependencies between the non-terminals in the above grammar are
illustrated in Figure 4.1. This graph can be interpreted as an automaton
that analyzes a given query starting from the placeholder up to the top-
most operator. Its initial state is Ql because the placeholder occurs in
the definition of (Ql). For example, there is a transition from state Ql
to state Q7 because in the definition of non-terminal (Q7) there appears
G (Ql), i.e., there is an operator that leads from non-terminal (Ql) to non-
terminal (Q7). For simplicity, we omitted the transitions from each state to
itself and the labels on each transition. Since the grammar is deterministic,
each query can be uniquely assigned to a node in the graph. For example,
it can be easily verified that the query (6U(oA ?)) U c belongs to node Q4.
The states on the left hand side of the dotted line represent LTLQX and the
states on the right hand side represent its complement LTLQX.

In the following, we will show that all instantiations of templates in LTLQ1

are exact and that to each template in LTLQZ there exists a simple instan-
tiation that is not exact. This will be done by a series of nested inductive
proofs on the sublanguages of LTLQm. As we shall see soon, a major com-
plication in the proofs arises from the fact that the dependencies between
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these sublanguages are circular (cf. Chapter 3). Therefore, the non-trivial
dependencies as shown in Figure 4.1 are crucial in our proofs.

Remark 4.7. Note that there exist also exact queries in LTLQX. However,
such queries are instantiations of templates to which also non-exact instan-
tiations exist, i.e., the exactness depends on the chosen instantiation. The
existence of a simple grammar for all exact queries seems to be improbable
because it is hard to decide exactness (cf. Theorem 4.3).

4.3.1 Proof of Exactness

This section is devoted to the proof of one of the main results of this thesis,
namely the exactness of LTLQ1. To this aim, we show that all queries in
LTLQ1, LTLQ2, and LTLQ7 are collecting. Then, the exactness of LTLQX

follows by Corollary 4.1. However, since the collecting property introduced
in Section 4.2 is too weak, we need the following stronger variants.

Definition 4.9 (Collecting properties). Let 7 be an LTL query.
We say 7 is strong collecting iff for all paths TT and formulas cp and IJJ:
If 7T (= -y[(p] and ?rn |= 7^ ] for some n £ N, then ?rn f= 7 ^ A ip\.

We say 7 is boundary collecting iff for all paths n and formulas <p and ip:
If 7T (= y[(p] and 7Tn |= 7^ ] for some n G N, then nn \= ̂ [ipAtp] or TT f= 7[-L].
We say 7 is intermediate collecting iff for all paths TT and formulas <p and ip:
If 7T (= 7[<p] and irn \= J[I/J] for some n G N, then nn \= ̂ [(p A if>] or there
exists r < n such that iir (= 7[_L].
We say 7 is weak collecting iff it is collecting.

Note that every strong collecting query is also boundary collecting, every
boundary collecting query is also intermediate collecting (consider the case
r = 0 together with Lemma 2.1), and every intermediate collecting query
is also weak collecting (consider the case n = 0).

Now, let us start to prove the exactness of LTLQ1. This will be done by
a series of auxiliary results using the above collecting properties.

The following lemma is our first auxiliary result towards a proof for
LTLQ1 and LTLQ2. Since LTLQ1 and LTLQ2 depend on each other (cf. Fig-
ure 4.1), we have to make a preliminary assumption on subqueries in LTLQ1.
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Lemma 4.6. Let 7 G LTLÇJ2. Suppose that every subquery in LTLQ1 is
weak collecting. Then, 7 is intermediate collecting.

Proof. Structural induction on 7. See Appendix A.I for details. D

The following lemma is our second auxiliary result towards a proof for
LTLQ1 and LTLQ2. Since LTLQ1 and LTLQ2 depend on each other (cf. Fig-
ure 4.1), we have to make a preliminary assumption on subqueries in LTLQ2.

Lemma 4.7. Let 7 G LTLQ1. Suppose that every subquery in LTLÇP is
intermediate collecting. Then, 7 is weak collecting.

Proof. Structural induction on 7. See Appendix A.I for details. D

In order to obtain the assertion of Lemma 4.7 without its assumption, we
use an inductive proof on the number of subqueries in LTLQ2.

Lemma 4.8. Every query in LTLQ1 is weak collecting.

Proof. Induction on the number of subqueries in LTLQ2.
Induction start: If 7 G LTLQ1 contains no subquery in LTLQ2, then the as-
sumption of Lemma 4.7 is trivially satisfied. Thus, we can apply Lemma 4.7
to 7 and obtain that 7 is weak collecting.
Induction step: Let 7 be any LTLQ2 subquery of 7, and 7 be any LTLQ1

subquery of 7. Note that by definition every LTLQ2 query has an LTLQ1

subquery. Since the number of LTLQ2 subqueries of 7 must be less than the
number of LTLQ2 subqueries of 7, we can apply the induction hypothesis
and obtain that 7 is weak collecting. Thus, since 7 was chosen w.l.o.g., the
assumption of Lemma 4.6 is satisfied. So we can apply Lemma 4.6 to 7 and
obtain that 7 is intermediate collecting. Since 7 was chosen w.l.o.g., the
assumption of Lemma 4.7 is satisfied. Hence, we can apply Lemma 4.7 to 7
and obtain that 7 is weak collecting. D

The following corollary is directly implied by Lemma 4.6 and Lemma 4.8.

Corollary 4.2. Every query in LTLtf is intermediate collecting.

Remark 4.8. Note that, in principle, Lemma 4.8 and Corollary 4.2 can also
be obtained from Lemma 4.6 and Lemma 4.7 by applying our circular cut
rule from Section 3.2.



4 Exact Temporal Logic Queries 67

The following lemma is our first auxiliary result towards a proof for LTLQ7.
Since LTLQ4 and LTLQ5 depend on each other (cf. Figure 4.1), we have to
make a preliminary assumption on subqueries in LTLQ5.

Lemma 4.9. Let 7 G LTLCf. Suppose that for every subquery 7 G LTLÇJ*
it holds that G 7 is weak collecting. Then, F 7 is boundary collecting.

Proof. Structural induction on 7. See Appendix A.I for details. D

The following lemma is our second auxiliary result towards a proof for
LTLQ7. Since LTLQ4 and LTLQ5 depend on each other (cf. Figure 4.1),
we have to make a preliminary assumption on subqueries in LTLQ4.

Lemma 4.10. Let 7 G LTLCf. Suppose that for every subquery 7 G LTLQ1

it holds that F 7 is weak collecting. Then, G 7 is weak collecting.

Proof. Structural induction on 7. See Appendix A.I for details. D

In order to obtain the assertion of Lemma 4.9 without its assumption, we
use an inductive proof on the number of subqueries in LTLQ5.

Lemma 4.11. Let 7 G LTLQ^. Then, F 7 is boundary collecting.

Proof. Induction on the number of subqueries in LTLQ5.
Induction start: If 7 contains no subquery in LTLQ5, then the assumption
of Lemma 4.9 is trivially satisfied. Hence, we can apply Lemma 4.9 to 7
and obtain that F 7 is boundary collecting.
Induction step: Let 7 be any LTLQ5 subquery of 7. If 7 contains no LTLQ4

subquery, then the assumption of Lemma 4.10 is trivially satisfied. Oth-
erwise, let 7 be any LTLQ4 subquery of 7. Since the number of LTLQ5

subqueries of 7 must be less than the number of LTLQ5 subqueries of 7, we
can apply the induction hypothesis and obtain that F 7 is boundary col-
lecting. Thus, since 7 was chosen w.l.o.g., the assumption of Lemma 4.10 is
again satisfied. So in both cases we can apply Lemma 4.10 to 7 and obtain
that G 7 is weak collecting. Since 7 was chosen w.l.o.g., the assumption of
Lemma 4.9 is satisfied. Hence, we can apply Lemma 4.9 to 7 and obtain
that F 7 is boundary collecting. D

The following corollary is directly implied by Lemma 4.10 and Lemma 4.11.

Corollary 4.3. Let 7 G LTLC^'. Then, G 7 is strong collecting.
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Proof. Suppose that ?r (= G j[<p] and ?rn (= G 7 ^ ] for some n EN. Then, it
is easy to see that nn (= G 7(7?] AG 7 ^ ] . Hence, since G 7 is weak collecting
by Lemma 4.10 and Lemma 4.11, we obtain nn \= G 7[y? /\ip]. •

Remark 4.9. Note that, in principle, Lemma 4.11 and Corollary 4.3 can also
be obtained from Lemma 4.9 and Lemma 4.10 by applying our circular cut
rule from Section 3.2.

Note that every query in LTLQ7 contains a subquery of the form F 7,
where 7 e LTLQ2ULTLQ4, or of the form G 7, where 7 G LTLQ1ULTLQ2U
LTLQ5. Therefore, we can use Lemma 4.8, Corollary 4.2, Lemma 4.11, and
Corollary 4.3 as induction start in the proof of the following lemma.

Lemma 4.12. Every query in LTLQ7 is boundary collecting.

Proof. Structural induction on 7. See Appendix A.I for details. D

Remark 4.10. Note that Lemma 4.11 and Corollary 4.3 are used in the
proof of Lemma 4.12. This means that properties of queries that are not
exact (i.e., queries in LTLQ4 and LTLQ5) are needed in order to prove the
exactness of queries in LTLQ7 (cf. Figure 4.1).

Now, recall that LTLQX is defined as the union of LTLQ1, LTLQ2, and
LTLQ7 (cf. Definition 4.8). Moreover, as already mentioned, every bound-
ary collecting query is intermediate collecting and every intermediate col-
lecting query is (weak) collecting. Thus, we obtain the following corollary
by Lemma 4.8, Corollary 4.2, and Lemma 4.12.

Corollary 4.4. Every query in LTLQ1 is collecting.

Hence, since LTLQX is a subset of LTLQm, we obtain by Lemma 4.5,
Corollary 4.4, and Corollary 4.1 one of the main results of this thesis.

Theorem 4.4. Every query in LTLQ1 is exact.

4.3.2 Proof of Maximality
In this section, we will show that LTLQX is maximal in the sense that

each template in LTLQX has a simple instantiation that is not collecting
and therefore not exact. To this aim, we inductively construct a path n for
each such instantiation 7 such that IT f= 7[p] A 7(5] but n \t= j\p A q\. In
particular, the instantiations are simple in the following sense.
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Definition 4.10 (Simple query). A query 7 is simple iff every subformula
(without placeholder) of 7 is atomic and occurs only once in 7. We denote
the set of atomic propositions occurring in 7 by aprop(7).

For example, the query G (oU (b A X?)) is simple whereas the queries
G ((a V b) U X ?) and G (a U X (a A ?)) are not simple because a V b is not
atomic and a occurs twice respectively. Note that this property restricts
only the subformulas of a query.

It is easy to see that for every subquery 7 of a simple query 7 = 7 [7], it
holds that aprop(7)naprop(7) = 0. Thus, all subformulas of a simple query
are independent of each other as they are different atomic propositions. This
allows the inductive construction of a counterexample path by labeling the
states according to the atomic propositions in a query without affecting the
truth value of other subformulas.

Example 4.1. Consider the simple query 7 = (bXJ (a A ?)) Uc. Since 7 G
LTLQ4, there exists a path n such that n (= y\p] A7[ç] but TT =̂ 7[p A q] for
any atomic propositions p and q not occurring in 7. The construction of ir
for this simple example according to our proof is illustrated in Figure 4.2.
We start with an initial path on which for all n 6 N it holds that irAn (= p,
7r4n+2 |= q, and n j= G ->(p A q). Then, according to the structure of 7, we
successively add labels to the states of TT in such a way that we can always
achieve resp. preserve a counterexample by adding further labels. It is easy
to see that the resulting path in Figure 4.2 is indeed a counterexample to the
collecting property. Note that there exist simpler ad hoc counterexamples
to the query 7. The construction in Figure 4.2, however, illustrates the
general method that works for all queries.

An operation that we will also need for such a construction is the following.

Definition 4.11 (Concatenation). Let a be a path prefix of length n
and 7T be a path. Then, the concatenation of a and TT is given by

T(0 : i < n c n . .M).{ _ for all 1 G N.

Note that we will only use the special case where the path prefix a consists
of a single state. For simplicity, we identify this single state with the path
prefix itself, i.e., we identify state s with the path prefix a : 0 1—» s.
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(6U(aA?))Uc

LTLQ1

LTLQ3

LTLQ4

Figure 4.2: Counterexample path construction

Now, let us start with the auxiliary results towards a counterexample path
construction for queries in LTLQ1. As in the exactness proof of LTLQ1,
the tricky part in the current proof is to find suitable auxiliary results.

Recall that every query in LTLQ1 has a subquery in LTLQ1, which will
be used as the starting point in our proof. At first, we need the following
property, since LTLQ1 and LTLQ2 depend on each other (cf. Figure 4.1).

Lemma 4.13. Let 7 € LTLQ1 U LTL(f be simple. Further, let p and q be
atomic propositions not occurring in 7. Then, there exists a path ir such
that 7r4n (= 7[p], 7T4n+2 \= j[q], and ir2n ^ 7[p A q] for all n e N.

Proof. Structural induction on 7. See Appendix A.2 for details. D

Since LTLQ2 queries are the only subqueries of queries in LTLQ1 (cf. Fig-
ure 4.1), the previous lemma can be used to show the following property.

Lemma 4.14. Let 7 E LTLQ1 be simple. Further, let p and q be atomic
propositions not occurring in 7. Then, there exists a path n such that n4n |=
7[p] and n4n+2 (= j[q] for all n G N as well as TT \= G -17[p A q\.

Proof. Structural induction on 7. See Appendix A.2 for details. D

Remark 4.11. Note that Lemma 4.14 is used in the proofs of Lemma 4.15
and Lemma 4.17. This means that a property of queries that are exact (in
particular, queries in LTLQ1) is needed in order to prove the non-exactness
of queries in LTLQ3 and LTLQ5 (cf. Figure 4.1).
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Now, we will prove a series of auxiliary results. These results will then
be composed in order to obtain a counterexample path to the collecting
property for all simple queries in LTLQ*.

The following lemma is an auxiliary result on LTLQ5 and LTLQ6. Since
LTLQ5ULTLQ6 and LTLQ3ULTLQ4 depend on each other (cf. Figure 4.1),
we have to make preliminary assumptions on subqueries in LTLQ3 and
LTLQ4. For subqueries in LTLQ1, we can directly use Lemma 4.14.

Lemma 4.15. Let 7 G LTLÇP U LTLCf" be simple. Further, let p and q
be atomic propositions not occurring in 7. Suppose that for every LTLÇP
and LTLQ^ subquery 7 there exists a path a such that a4n f= 7[p] A ^[q]
and <j4n =̂ j\p A q] for all n G N. Then, there exists a path ir such that
7T4n j= 7[p] A 7[ç] for alln G N and IT \= G ^\p A q\.

Proof. Structural induction on 7. See Appendix A.2 for details. D

The following lemma is an auxiliary result on LTLQ6 that will only be
used in the proof of Lemma 4.17. Because of the additional assumption of a
preceding global operator, we obtain a stronger result than in Lemma 4.15.

Lemma 4.16. Let 7 = G 7 be a simple LTL query where 7 G LTLQ6.
Further, letp and q be atomic propositions not occurring in 7. Suppose that
for every LTLCf subquery 7 there exists a path a such that a \= G^\p\ A
G 7[ç] and a4n \£ 7[p A q] for all n G N. Suppose further that for every
LTLÇt" subquery 7 there exists a path a such that a4n \= j\p] A ̂ [q] and
<74n [£ 7[p A q] for all n G N. Then, there exists a path n such that -K \=
G j\p] A G y[q] and TT |= G -^[p A q].

Proof. Structural induction on 7. See Appendix A.2 for details. D

The following lemma is an auxiliary result on LTLQ3. Since LTLQ3 and
LTLQ4 U LTLQ5 U LTLQ6 depend on each other (cf. Figure 4.1), we have
to make preliminary assumptions on subqueries in LTLQ4, LTLQ5, and
LTLQ6. For subqueries in LTLQ1 and subqueries in LTLQ6 that are pre-
ceded by a global operator, we can directly use Lemma 4.14 and Lemma 4.16.

Lemma 4.17. Let 7 G LTLQ? be simple. Further, let p and q be atomic
propositions not occurring in 7. Suppose that for every LTLQ^ subquery 7
there exists a path a such that a |= G7[p] A G7[g] and ain Y1 ï\P A q] for
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all n G N. Suppose further that for every LTLCf and LTLC^ subquery 7
there exists a path a such that a4n \= 7[p] A 7[g] for all n G N and a \=
G -17[p A q]. Then, there exists a path ir such that n (= G 7[p] A G 7[g]
7T f= G->7[p Aç] .

Proof. Structural induction on 7. See Appendix A.2 for details. D

The following lemma is an auxiliary result on LTLQ4. Since LTLQ4

and LTLQ3 U LTLQ5 U LTLQ6 depend on each other (cf. Figure 4.1), we
have to make preliminary assumptions on subqueries in LTLQ3, LTLQ5,
and LTLQ6.

Lemma 4.18. Let 7 G LTLQ1 be simple. Further, let p and q be atomic
propositions not occurring in 7. Suppose that for every LTLCf', LTLCf,
and LTLCf subquery 7 there exists a path a such that a4n f= 7[p] A 7(9]
and a4n ^ j[p A q] for all n G N. Then, there exists a path n such that
n \= G 7[p] A G 7[g] and ir4n ^ 7 [ p A g ] for all n G N.

Proof. Structural induction on 7. See Appendix A.2 for details. D

Now, we have finished our basic results. In the following, we will succes-
sively reduce the number of assumptions in the above lemmas; in particu-
lar, we will first remove the assumptions on LTLQ4 subqueries. In order to
obtain the assertion of Lemma 4.17 without its assumption on LTLQ4 sub-
queries, we use an inductive proof on the number of subqueries in LTLQ4.

Lemma 4.19. Let 7 G LTL($ be simple. Further, let p and q be atomic
propositions not occurring in 7. Suppose that for every LTLCf and LTLQ^
subquery 7 there exists a path a such that a4n \= *f\p] A7[g] for alln G N and
a \= G -17[p A q\. Then, there exists a path ir such that TT |= G j\p] A G 7[g]
and IT \= G -17 [p A q].

Proof. Induction on the number of subqueries in LTLQ4.
Induction start: If 7 contains no subquery in LTLQ4, then the assumption
of Lemma 4.17 on subqueries in LTLQ4 is trivially satisfied. Thus, the
only remaining assumptions of Lemma 4.17 are on queries in LTLQ5 and
LTLQ6, which are satisfied by the actual assumptions. Hence, we obtain
the assertion by Lemma 4.17.
Induction step: Let 7 be any LTLQ4 subquery of 7. If 7 contains no
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subquery in LTLQ3, then the assumption of Lemma 4.18 on subqueries
in LTLQ3 is trivially satisfied. Otherwise, let 7 be any LTLQ3 subquery of 7.
Since the number of LTLQ4 subqueries of 7 must be less than the number
of LTLQ4 subqueries of 7, we can apply the induction hypothesis and obtain
the assertion for 7. Thus, since 7 was chosen w.l.o.g., the assumption of
Lemma 4.18 on subqueries in LTLQ3 is again satisfied. Hence, the only
remaining assumptions of Lemma 4.18 in both cases are on queries in LTLQ5

and LTLQ6, which are satisfied by the actual assumptions. So in both
cases we can apply Lemma 4.18 to 7. Since 7 was chosen w.l.o.g., the
assumption of Lemma 4.17 on subqueries in LTLQ4 is satisfied. Thus, the
only remaining assumptions of Lemma 4.17 are on queries in LTLQ5 and
LTLQ6, which are satisfied by the actual assumptions. Hence, we obtain
the assertion by Lemma 4.17. D

In order to obtain the assertion of Lemma 4.15 without its assumption on
LTLQ4 subqueries, we use an inductive proof on the number of subqueries
in LTLQ4.

Lemma 4.20. Let 7 G LTL(f U LTLCt be simple. Further, let p and q
be atomic propositions not occurring in 7. Suppose that for every LTLÇP
subquery 7 there exists a path a such that a4n \= 7[p] A7[g] and a4n \/= 7[pAg]
for all n G N. Then, there exists a path n such that ir4n (= 7[p] A 7(9] for
all n G N and n \= G ->7[p A q].

Proof. Induction on the number of subqueries in LTLQ4.
Induction start: If 7 contains no subquery in LTLQ4, then the assumption
of Lemma 4.15 on subqueries in LTLQ4 is trivially satisfied. Thus, the
only remaining assumption of Lemma 4.15 is on queries in LTLQ3, which
is satisfied by the actual assumption. Hence, we obtain the assertion by
Lemma 4.15.
Induction step: Let 7 be any LTLQ4 subquery of 7. If 7 contains no
subquery in LTLQ5 U LTLQ6, then the assumptions of Lemma 4.18 on
subqueries in LTLQ5 and LTLQ6 are trivially satisfied. Otherwise, let 7 be
any LTLQ5 or LTLQ6 subquery of 7. Since the number of LTLQ4 subqueries
of 7 must be less than the number of LTLQ4 subqueries of 7, we can apply
the induction hypothesis and obtain the assertion for 7. Thus, since 7 was
chosen w.l.o.g., the assumptions of Lemma 4.18 on subqueries in LTLQ5

and LTLQ6 are again satisfied. Hence, the only remaining assumption of
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Lemma 4.18 in both cases is on queries in LTLQ3, which is satisfied by
the actual assumption. So in both cases we can apply Lemma 4.18 to 7.
Since 7 was chosen w.l.o.g., the assumption of Lemma 4.15 on subqueries
in LTLQ4 is satisfied. Thus, the only remaining assumption of Lemma 4.15
is on queries in LTLQ3, which is satisfied by the actual assumption. Hence,
we obtain the assertion by Lemma 4.15. D

Now, we have obtained each result with assumptions on at most two kinds
of subqueries. In the following we continue in the same manner as above.
In order to obtain the assertion of Lemma 4.20 without assumptions, we
use an inductive proof on the number of subqueries in LTLQ3.

Lemma 4.21. Let 7 G LTLQP U LTLCf be simple. Further, let p and q be
atomic propositions not occurring in 7. Then, there exists a path IT such
that 7r4n |= 7[p] A j[q] for all n 6 N and n \= G ->7[p A q}.

Proof. Induction on the number of subqueries in LTLQ3.
Induction start: If 7 contains no subquery in LTLQ3, then the assumption
of Lemma 4.20 on subqueries in LTLQ3 is trivially satisfied and we obtain
the assertion by Lemma 4.20.
Induction step: Let 7 be any LTLQ3 subquery of 7. If 7 contains no
subquery in LTLQ5 U LTLQ6, then the assumptions of Lemma 4.19 are
trivially satisfied. Otherwise, let 7 be any LTLQ5 or LTLQ6 subquery of 7.
Since the number of LTLQ3 subqueries of 7 must be less than the number
of LTLQ3 subqueries of 7, we can apply the induction hypothesis and obtain
the assertion for 7. Thus, since 7 was chosen w.l.o.g., the assumptions of
Lemma 4.19 are again satisfied. So in both cases we can apply Lemma 4.19
to 7. Since 7 was chosen w.l.o.g., the assumption of Lemma 4.20 is satisfied.
Hence, we obtain the assertion by Lemma 4.20. D

Since the assumptions of Lemma 4.19 are satisfied according to Lem-
ma 4.21, we trivially obtain the following corollary by Lemma 4.19.

Corollary 4.5. Let 7 e LTLQ* be simple. Further, let p and q be atomic
propositions not occurring in 7. Then, there exists a path ir such that n \=
G 7[p] A G j[q] and n (= G -17[p A q].

Since the assumptions of Lemma 4.18 are satisfied according to Lem-
ma 4.21 and Corollary 4.5, we trivially obtain the following corollary by
Lemma 4.18.
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fi

7 G LTLQ3

7 G LTLQ4

7 G LTLQ5

7 G LTLQ6

<p = p

n

n

An

An

<P = Q

n

n

An

An

(f = p Aq

n

An

n

n

Table 4.2: Structure of counterexample paths

Corollary 4.6. Let 7 G LTLQ1 be simple. Further, let p and q be atomic
propositions not occurring in 7. Then, there exists a path n such that ir |=
G y\p] A G 7[g] and n4n ^ ~f\p A q] for all n G N.

Remark 4.12. Note that, in principle, Lemma 4.21, Corollary 4.5, and
Corollary 4.6 can also be obtained from to Lemma 4.15, Lemma 4.17, and
Lemma 4.18 by successively applying our circular cut rule from Section 3.2.

Now, let us summarize our results so far: According to Lemma 4.21,
Corollary 4.5, and Corollary 4.6, we know that for each simple query 7 in
LTLQ3, LTLQ4, LTLQ5, and LTLQ6 there exists a path TV such that

where / J : N —> N is a function in n defined in Table 4.2. Recall that
LTLQ* is defined as the union of LTLQ3, LTLQ4, LTLQ5, and LTLQ6 (cf.
Definition 4.8). Thus, by Lemma 4.21, Corollary 4.5, and Corollary 4.6 we
obtain the following property from the special case of n = 0.

Corollary 4.7. Let 7 G LTLQ10 be simple. Further, let p and q be atomic
propositions not occurring in 7. Then, there exists a path % such that n \=
l\p] A7[g] but 7T Y= 7[p A q], i.e., 7 is not collecting.

Finally, we obtain one of our main results by Corollary 4.7 and Theorem 4.2.

Theorem 4.5. Every simple query in LTLQ* is not exact.

Thus, we have shown that LTLQX is maximal in the sense that all tem-
plates not in LTLQX have simple instantiations that are not exact. Hence,
LTLQ31 represents a syntactic characterization of exact LTL queries.
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Remark 4.13. As already mentioned, LTLQX contains also exact queries.
However, these queries cannot be simple. In fact, whether a query in LTLQ1

is exact depends on the chosen instantiation. For example, the query
a U (6A (? U c)) € LTLQ3 is simple and therefore not exact. In contrast, the
queries a U (b A (? U G c)) G LTLQ3 and ((6 U ?) A X -a) U a e LTLQ4 are
exact. Note that it is not the case that all non-simple queries in LTLQX are
exact. For example, the query aU (X.b A (?Uc)) € LTLQ3 is not simple
and not exact. It certainly would be interesting to have a characteriza-
tion of all exact queries. In consideration of the PSPACE-completeness (cf.
Theorem 4.3), however, this seems to be very difficult. Nevertheless, there
remains the possibility of a characterization up to logical equivalence as
Maidl's characterization of ACTL n LTL [MaiOO].

4.4 Exact CTL Queries

In this section, we present CTLQ1, an exact query language based on
CTL. As in the case of LTL, we restrict our considerations to queries with a
single occurrence of the placeholder as introduced by Chan [ChaOO]. Recall
that this restriction can be slightly weakened by Proposition 4.2 and the
additional temporal operators introduced in Section 2.5.1.

Let us start with a class of monotonie CTL queries. To this aim, recall
our observations on the monotonicity of temporal operators in Section 2.5.1.
Moreover, note that our aim is to define a fragment of exact CTL queries
within the class of monotonie CTL queries. However, it is easy to see that
CTL queries containing an existential path quantifier cannot be exact be-
cause the existence of solutions tp and ip o n two different paths respectively
does not guarantee the existence of a solution cp A I/J, which contradicts
distributivity (cf. Theorem 4.2).

Example 4.2. For example, consider the CTL query 7 = E X ? and a Kripke
structure Â with initial state SQ consisting of two paths TTX and %2 such that
so = TTI(O) = 7T2(0), ^(TTI(1)) = {p}, and ^(TT2(1)) = {q}. Then, it trivially
holds that Â \= -y\p] and Â \= y[q], but Â ^ i\p A q].

Thus, it suffices to consider monotonie ACTL queries. Similarly to the
case of LTL, such a class can be easily defined.
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Definition 4.12 (ACTLQm). The language ACTLQm is the largest set
of ACTL queries with a single occurrence of the placeholder that do not
contain a subquery of the form A(7Ü<p) or

For example,_the CTL query AXA(<^ÜAG?) is in ACTLQ™, whereas
AX A((ip V ?) Vip) is not in ACTLQm. The following lemma justifies our
claim from above and follows directly from Lemma 2.2 and the monotonicity
of temporal operators as investigated in Section 2.5.1.

Lemma 4.22. Every query in ACTLQm is monotonie.

Now, according to Corollary 4.1 and Lemma 4.5, our next step towards
an exact query language is to restrict ACTLQ™ to a class of collecting
queries. To this aim, ACTLQm must be divided into sublanguages. The
corresponding deterministic grammar is shown in Table 4.3 and Table 4.4,
where * is a special wildcard symbol representing any CTL formula. For
example, the template A(*U7) represents all CTL queries of the form
A ( ( / J U 7 ) , where <p is a CTL formula.4

In the following, we write CTLQ1 for the language derived from the non-
terminal (Ql), CTLQ2 for the language derived from the nonterminal (Q2),
and so on. It is easy to see that ACTLQm = (Ji=i CTLQ1 since every oper-
ator allowed in ACTLQm occurs in combination with every non-terminal.

Definition 4.13 (CTLQ1). The language CTLQ" is defined as CTLQ* =
Uj=iCTLQ*. Its complement within ACTLQm is given by CTLQ1 =
ACTLQm\CTLQx = CTLQ11.

Remark 4.14. Note that all these languages are sets of templates. How-
ever, for simplicity we identify these template sets with the sets of queries
obtained by instantiating the templates appropriately.

Moreover, note that negation does not appear in the grammar defined in
Table 4.3 and Table 4.4. This, however, is no restriction since the negation
in front of the placeholder can be removed without loss of generality. Since
negation in is only allowed in front of atomic propositions and the place-
holder in order to avoid implicit existential path quantification, the same
argument as in the case of LTLQ* can be applied.

4A similar template characterization was also used by Buccafurri et al. [BEGLOl].
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(Ql) ::= ?
• V (Q2)
AX (Q6)

A((Q4)Û*)
A(*Ü(Q2))
A(*Ü(Q5))
A(*W (Q2))

A(* W (Q5))
AX (Ql)

A((Q1)W*)

<Q2> ::= * A <Q5)
A ( * Û (Q3))
A(* W (Q4))

AX (Q2)

<Q3> ::= AF (Q6)
A((Q4)U*)
A((Q7)U*)

AF (Q3)

(Q4) ::= • V (Q5)
A((Q6) Ü * )
A(*U(Q7))
A(*Û(Q7>)
A((Q3) W * )
A((Q7)W*)
A(* W (Q3))
A(*W(Q7))

• V (Q4)
A((Q4) W * )

• A (Q3)
AX <Q3>
AX (Q7)

A(*Û<Q4>)
A(*Ù<Q3))
A((Q3) W * )
A(*W(Q3>)

• A (Ql)
A((Q1)Û*)
A ( * W (Ql))

AX (Q5)
A((Q5) W * )
A(* W (Q5))
A(<Q2)Û*)

A((Q1)U*)
A((Q5)U*)
A(*U(Q6>)
A((Q3) U • )

AF (Q5)
A((Q7)Û*)
A(*Ù<Q7>)
A((Q1) W * )
A((Q5) W * )
A( (Q6) W • )
A ( * W <Q5>)
A(* W (Q6))

AF (Q4)
A(* W (Q4))

• A (Q4)
AX (Q4)

A((Q3) Û * )
A(*Û(Q5>)
A(*Ü(Q4>)
A((Q4) W * )
A(* W (Q4>)

• V (Ql)
A(*Ü(Q1))

A((Q5) Û * )
A(*W(Q3>)

• A (Q2)
A((Q2) W * )

A((Q2)U*)
A((Q6)U*)

• V (Q3)
A ( * U (Q3))

AF (Q7)
A(*u<g5>)
A(*U (Q6))

A((Q2) W*)

A((Q6)W*)

A((Q7)W*)

A(* W (Q6))

A(*W(Q7>)

A(*U(Q4))

(Q5) ::= A(*Û(Q6)) | A(*W(Q6)) | A(*W(Q7)) ;

Table 4.3: CTLQ* production rules (1)
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(Q6) ::= A((Q8)U*) | A((Q9)U*) | • V (Q6) ;

(Q7) ::= • A (Q6)
A((Q8) W * )

* V (Q7)

(Q8) ::= AF (Q9)
AG (Q4)

A(*U(Q9))
A(* W (Q9>)

AX (Q8)
A((Q8)Û*)
A(*U (Q8>)
A(* W <Q8>)

(Q9) ::= A(*W(Q8>)
A(<Q9>Û*)

(QIO) ::= AG (Q2)
* A (QIO)
AF (QIO)

A((Q1O) Û * )
A(*Ü (Q10))
A(* W (QIO))

(Qll) ::= AF(Q1)
A(*U<Q2))
A(*W(Ql>)
A(* W (Q2))

AX (Qll)
A((Q11) U * )
A(*Û(Qll))
A((Qll) W * )
A(*W(Qll>)

• V (Q8)
A((Q9) W * )

AG (Ql)
AG (Q6)

A ( * Û (Q9))
A(* W (Q9))

AF (Q8)
A ( * U (Q8))
A((Q8) W * )

• A (Q9)
A((Q9) W * )

AG (Q5)
• V (QIO)
AG (Q10)

A(*U(Q1O))
A((Q1O)W*)

A(*W(gio>)
AF (Q2)

A(*Û(Q1>)
A(* W (Q2))

• A (Qll)
AF (Qll)

A((Q11)Û*)
A ( * U (Qll))
A ( * W (Qll))

• V (Q9)
• A (Q7)

AG (Q3)
AG {Ql)

A(*Ü(Q9))
• A (Q8)
AG (Q8)

A(*Û(Q8>)
A(* W (Q8))

AX (Q9)
A ( * W (Q9))

AG (Q9)
AX (Q10)

A((Q1O)U*)
A ( * Û (QIO))
A((Q1O) W * )
A(*w<gio>)

A(*u<gi>)
A(*û(g2>)
A(*W(Q1))

• V (Qll)
AG (Qll)

A ( * U (Qll))
A(<gn> w * )
A(* W (Qll))

Table 4.4: CTLQ1 production rules (2)
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Figure 4.3: CTLQ dependence diagram

The dependencies between the non-terminals in the above grammar are il-
lustrated in Figure 4.3. As in the case for LTL, this graph can be interpreted
as an automaton that analyzes a given query starting from the placeholder
up to the topmost operator. Its initial state is Ql because the placeholder
occurs in the definition of (Ql). For example, there is a transition from
state Ql to state Q8 because in the definition of nonterminal (Q8) there ap-
pears AG(Ql), i.e., there is an operator that leads from nonterminal (Ql)
to nonterminal (Q8). For simplicity, we omitted the transitions from each
state to itself and the labels on each transition. Since our grammar is deter-
ministic, each query can be uniquely assigned to a node in the graph. For
example, it can be easily verified that the query AF A((a A ?) U b) belongs
to node Q3. Note that the states corresponding to the nonterminals (Q10)
and (Qll) were omitted for simplicity. These states have less interaction
with other states because they have only incoming edges (from Q2, Q5,
and Q9 to Q10, and from Ql and Q2 to Qll) but no outgoing edges.

In the following, we will show that all instantiations of templates in CTLQX

are exact. This will be done by a series of nested inductive proofs on the
sublanguages of CTLQX. As we shall see soon, a major complication in
the proofs arises from the fact that the dependencies between these sublan-
guages are circular (cf. Chapter 3). Therefore, the non-trivial dependencies
as shown in Figure 4.3 are crucial in our proofs.

Remark 4.15. Although the definition of CTLQX is quite complex, it does
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not contain all exact CTL queries, i.e., there are also exact queries in CTLQX.
However, the existence of a simple grammar for all exact queries seems to
be improbable because it is hard to decide exactness (cf. Theorem 4.3).

4.4.1 Proof of Exactness

This section is devoted to the proof of one of the main results of this
thesis, namely the exactness of CTLQX. To this aim, we show that all
queries in CTLQ1 are collecting. Then, the exactness of CTLQ* follows by
Corollary 4.1. Let us start with the following relation between states.

Definition 4.14 (Reachability). Let si and s2 be two states in a Kripke
structure. Then, state s2 is reachable from state Si, in symbols Si ~» s2, iff
there exists a path n G paths(si) such that 7r(n) = s2 for some n EN.

Moreover, since the collecting property introduced in Section 4.2 is too
weak, we need the following stronger variants.

Definition 4.15 (Collecting properties). Let 7 be a CTL query.
We say 7 is strong collecting iff for all states Si and s2 such that S\ ~» s2

and all formulas <p and tp:
If Si (= 7[v?] and s2 (= 7 ^ ] , then s2 |= ̂ [<p A ip].

We say 7 is boundary collecting iff for all states Si and s2 such that S\ ~~> s2

and all formulas tp and ip:
If s1 \= j[<p] and s2 \= 7 ^ ] , then s2 \= *y[(p A tp] or si \= 7[±].

We say 7 is intermediate collecting iff for all states Si and s2 such that
Si ~» s2 and all formulas tp and ^
If Si (= 7[</?] and s2 (= 7 ^ ] , then s2 (= 7[</? A ip] or there exists r < n such
that 7rr |= 7[_L] for all paths n G paths(si) with ir(n) = s2 for some n G N.

We say 7 is weak collecting iff it is collecting.

Note that every strong collecting query is also boundary collecting, every
boundary collecting query is also intermediate collecting (consider the case
r = 0 together with Lemma 2.1), and every intermediate collecting query
is also weak collecting (consider the case s\ = s2).

Now, let us start to prove the exactness of CTLQ1. This will be done by
a series of auxiliary results using the above collecting properties.
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The following lemma is an auxiliary result on CTLQ6 and CTLQ7. Since
CTLQ6 U CTLQ7 and CTLQ8 U CTLQ9 depend on each other (cf. Fig-
ure 4.3), we have to make preliminary assumptions on subqueries in CTLQ8

and CTLQ9.

Lemma 4.23. Let 7 G CTLÇP U CTLQ1. Suppose that every subquery
in CTLCf and CTLCf is strong collecting. Then, 7 is boundary collecting.

Proof. Structural induction on 7. See Appendix B.I for details. D

The following lemma is an auxiliary result on CTLQ1 and CTLQ2. Since
CTLQ1 U CTLQ2 and CTLQ3 U CTLQ4 U CTLQ5 depend on each other
(cf. Figure 4.3), we have to make preliminary assumptions on subqueries
in CTLQ3, CTLQ4, and CTLQ5. In addition, to be able to use Lemma 4.23,
we also have to make assumptions on queries in CTLQ8 and CTLQ9.

Lemma 4.24. Let 7 € CTLQ1 U CTLÇJ2. Suppose that every subquery
in CTLQ3', CTLQ1, and CTLff is intermediate collecting, and every sub-
query in CTLG? and CTLQ9 is strong collecting. Then, 7 is weak collecting.

Proof. Structural induction on 7. See Appendix B.I for details. D

The following lemma is an auxiliary result on CTLQ3, CTLQ4 and CTLQ5.
Since CTLQ3UCTLQ4UCTLQ5 and CTLQXUCTLQ2 depend on each other
(cf. Figure 4.3), we have to make preliminary assumptions on subqueries
in CTLQ1 and CTLQ2. In addition, to be able to use Lemma 4.23, we also
have to make assumptions on queries in CTLQ8 and CTLQ9.

Lemma 4.25. Let 7 e CTL($ U CTLCf U CTLCf. Suppose that ev-
ery subquery in CTLQ1 and CTLQ2 is weak collecting, and every sub-
query in CTLÇP and GTLCf is strong collecting. Then, 7 is intermediate
collecting.

Proof. Structural induction on 7. See Appendix B.I for details. D

The following lemma is an auxiliary result on CTLQ8 and CTLQ9. Since
CTLQ8UCTLQ9 and CTLQ6UCTLQ7 depend on each other (cf. Figure 4.3),
we have to make preliminary assumptions on subqueries in CTLQ6 and
CTLQ7. In addition, we need assumptions on queries in CTLQ1, CTLQ3,
and CTLQ4.
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Lemma 4.26. Let 7 G CTLCf U CTLCf. Suppose that every subquery
in CTLQ1, CTLCf', CTLQf, CTLCf, and CTLQ7 is weak collecting. Then,
7 is strong collecting.

Proof. Structural induction on 7. See Appendix B.I for details. D

Now, we have finished our basic results. In the following, we will succes-
sively reduce the number of assumptions in the above lemmas; in particular,
we will first remove the assumptions on CTLQ6 and CTLQ7 subqueries.
In order to obtain the assertion of Lemma 4.26 without its assumptions
on CTLQ6 and CTLQ7 subqueries, we use an inductive proof on the num-
ber of subqueries in CTLQ6 U CTLQ7.

Lemma 4.27. Let 7 G CTLCf U CTLCf. Suppose that every subquery
in CTLQ1, CTLQ5, and CTLQf is weak collecting. Then, 7 is strong
collecting.

Proof. Induction on the number of subqueries in CTLQ6 U CTLQ7.
Induction start: If 7 contains no subquery in CTLQ6 U CTLQ7, then the
assumptions of Lemma 4.26 on subqueries in CTLQ6 and CTLQ7 are triv-
ially satisfied. Thus, the only remaining assumptions of Lemma 4.26 are on
queries in CTLQ1, CTLQ3, and CTLQ4, which are satisfied by the actual
assumptions. Hence, we can apply Lemma 4.26 to 7 and obtain that 7 is
strong collecting.
Induction step: Let 7 be any CTLQ6 or CTLQ7 subquery of 7, and 7
be any CTLQ8 or CTLQ9 subquery of 7. Note that, by definition, ev-
ery CTLQ6 and CTLQ7 query has a CTLQ8 or CTLQ9 subquery (cf. Fig-
ure 4.3). Since the number of CTLQ6 U CTLQ7 subqueries of 7 must be
less than the number of CTLQ6 U CTLQ7 subqueries of 7, we can apply
the induction hypothesis and obtain that 7 is strong collecting. Thus, since
7 was chosen w.l.o.g., the assumptions of Lemma 4.23 are satisfied. So
we can apply Lemma 4.23 to 7 and obtain that 7 is boundary collecting.
Since 7 was chosen w.l.o.g., the assumptions of Lemma 4.26 on subqueries
in CTLQ6 and CTLQ7 are satisfied. Thus, the only remaining assumptions
of Lemma 4.26 are on queries in CTLQ1, CTLQ3, and CTLQ4, which are
satisfied by the actual assumptions. Hence, we can apply Lemma 4.26 to 7
and obtain that 7 is strong collecting. D
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In order to obtain the assertion of Lemma 4.24 without its assumptions
on CTLQ8 and CTLQ9 subqueries, we use an inductive proof on the number
of subqueries in CTLQ8 U CTLQ9.

Lemma 4.28. Let 7 G CTLQ1 U CTLÇf2. Suppose that every subquery in
CTLÇP, CTLQ1, and CTLQ? is intermediate collecting. Then, 7 is weak
collecting.

Proof. Induction on the number of subqueries in CTLQ8 U CTLQ9.
Induction start: If 7 contains no subquery in CTLQ8 U CTLQ9, then the
assumptions of Lemma 4.24 on subqueries in CTLQ8 and CTLQ9 are triv-
ially satisfied. Thus, the only remaining assumptions of Lemma 4.24 are on
queries in CTLQ3, CTLQ4, and CTLQ5, which are satisfied by the actual
assumptions. Hence, we can apply Lemma 4.24 to 7 and obtain that 7 is
weak collecting.
Induction step: Let 7 be any CTLQ8 or CTLQ9 subquery of 7, and 7 be
any CTLQ1 subquery of 7. Note that, by definition, every CTLQ8 and
CTLQ9 query has a CTLQ1 subquery (cf. Figure 4.3). Since the num-
ber of CTLQ8 U CTLQ9 subqueries of 7 must be less than the number
of CTLQ8 U CTLQ9 subqueries of 7, we can apply the induction hypothesis
and obtain that 7 is weak collecting. Thus, since 7 was chosen w.l.o.g.,
the assumption of Lemma 4.27 on subqueries in CTLQ1 is satisfied. So the
only remaining assumptions of Lemma 4.27 are on queries in CTLQ3 and
CTLQ4, which are satisfied by the actual assumptions. Hence, we can apply
Lemma 4.27 to 7 and obtain that 7 is strong collecting. Since 7 was cho-
sen w.l.o.g., the assumptions of Lemma 4.24 on subqueries in CTLQ8 and
CTLQ9 are satisfied. Thus, the only remaining assumptions of Lemma 4.24
are on queries in CTLQ3, CTLQ4, and CTLQ5, which are satisfied by the
actual assumptions. Hence, we can apply Lemma 4.24 to 7 and obtain that
7 is weak collecting. D

In order to obtain the assertion of Lemma 4.25 without its assumptions
on CTLQ8 and CTLQ9 subqueries, we use an inductive proof on the number
of subqueries in CTLQ8 U CTLQ9.

Lemma 4.29. Let 7 G CTLC? U CTLQ1 U CTLCJP. Suppose that every
subquery in CTLQ1 and CTLCJ2 is weak collecting. Then, 7 is intermediate
collecting.
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Proof. Induction on the number of subqueries in CTLQ8 U CTLQ9.
Induction start: If 7 contains no subquery in CTLQ8 U CTLQ9, then the
assumptions of Lemma 4.25 on subqueries in CTLQ8 and CTLQ9 are triv-
ially satisfied. Thus, the only remaining assumptions of Lemma 4.25 are
on queries in CTLQ1 and CTLQ2, which are satisfied by the actual as-
sumptions. Hence, we can apply Lemma 4.25 to 7 and obtain that 7 is
intermediate collecting.
Induction step: Let 7 be any CTLQ8 or CTLQ9 subquery of 7. If 7 contains
no subquery in CTLQ3 U CTLQ4, then the assumptions of Lemma 4.27 on
queries in CTLQ3 and CTLQ4 are trivially satisfied. Otherwise, let 7 be
any CTLQ3 or CTLQ4 subquery of 7. Since the number of CTLQ8 UCTLQ9

subqueries of 7̂  must be less than the number of CTLQ8 U CTLQ9 sub-
queries of 7, we can apply the induction hypothesis and obtain that 7 is
intermediate collecting. Thus, since 7 was chosen w.l.o.g., the assumptions
of Lemma 4.27 on subqueries in CTLQ3 and CTLQ4 are again satisfied. So
in both cases the only remaining assumption of Lemma 4.27 is on queries
in CTLQ1, which is satisfied by the actual assumptions. Hence, we can
apply Lemma 4.27 to 7 and obtain that 7 is strong collecting. Since 7 was
chosen w.l.o.g., the assumptions of Lemma 4.25 on subqueries in CTLQ8 and
CTLQ9 are satisfied. Thus, the only remaining assumptions of Lemma 4.25
are on queries in CTLQ1 and CTLQ2, which are satisfied by the actual
assumptions. Hence, we can apply Lemma 4.25 to 7 and obtain that 7 is
intermediate collecting. D

In order to obtain the assertion of Lemma 4.28 without its assumptions,
we use an inductive proof on the number of subqueries in CTLQ3UCTLQ4U
CTLQ5. Thus, we have reached our first result without assumptions.

Lemma 4.30. Every query in CTLQ1 and CTLÇJ2 is weak collecting.

Proof. Induction on the number of subqueries in CTLQ3UCTLQ4UCTLQ5.
Induction start: If 7 G CTLQ1 U CTLQ2 contains no subquery in CTLQ3 U
CTLQ4 U CTLQ5, then the assumptions of Lemma 4.28 are trivially sat-
isfied. Hence, we can apply Lemma 4.28 to 7 and obtain that 7 is weak
collecting.
Induction step: Let 7 be any CTLQ3, CTLQ4, or CTLQ5 subquery of 7,
and 7 be any CTLQ1 or CTLQ2 subquery of 7. Note that, by definition,
every CTLQ3, CTLQ4, and CTLQ5 query has at least a CTLQ1 subquery
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(cf. Figure 4.3). Since the number of CTLQ3 U CTLQ4 U CTLQ5 sub-
queries of 7 must be less than the number of CTLQ3 U CTLQ4 U CTLQ5

subqueries of 7, we can apply the induction hypothesis and obtain that 7
is weak collecting. Thus, since 7 was chosen w.l.o.g., the assumptions of
Lemma 4.29 are satisfied. So we can apply Lemma 4.29 to 7 and obtain
that 7 is intermediate collecting. Since 7 was chosen w.l.o.g., the assump-
tions of Lemma 4.28 are satisfied. Hence, we can apply Lemma 4.28 to 7
and obtain that 7 is weak collecting. D

Since the assumptions of Lemma 4.29 are satisfied according to Lem-
ma 4.30, we trivially obtain the following corollary by Lemma 4.29.

Corollary 4.8. Every query in CTLQ?', CTLQ?', and CTLCJ? is interme-
diate collecting.

Since the assumptions of Lemma 4.27 are satisfied according to Lem-
ma 4.30 and Corollary 4.8, we trivially obtain the following corollary by
Lemma 4.27.

Corollary 4.9. Every query in CTLCf and CTLCf is strong collecting.

Since the assumptions of Lemma 4.23 are satisfied according to Corol-
lary 4.9, we trivially obtain the following corollary by Lemma 4.23.

Corollary 4.10. Every query in CTLCf and CTLQ7 is boundary collecting.

Remark 4.16. Note that, in principle, Lemma 4.30, Corollary 4.8, Corol-
lary 4.9, and Corollary 4.10 can also be obtained from Lemma 4.23, Lem-
ma 4.24, Lemma 4.25, and Lemma 4.26 by successively applying our circular
cut rule from Section 3.2.

Now, we have shown the collecting property for almost all sublanguages
of CTLQZ. The only remaining case is CTLQ10. In order to show that
CTLQ10 is collecting, we need some further auxiliary results.

Lemma 4.31. Let 7 G CTLC? U CTLQe. Then, 7fr] implies AF7[±] .

Proof. Structural induction on 7. See Appendix B.I for details. D
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By using Lemma 4.31, it is now possible to show the following property.
Intuitively it says that if there globally exists any solution, then everything
is globally a solution. This result can then be used to prove the collecting
property of CTLQ10; in particular, that CTLQ10 is strong collecting.

Lemma 4.32. Let'ye CTLÇfu CTLQ5 U CTLQ9. Then, AG7[T] implies
AG7[±].

Proof. Structural induction on 7. See Appendix B.I for details. D

Note that every query in CTLQ10 contains a subquery of the form AG 7,
where 7 G CTLQ2 U CTLQ5 U CTLQ9. Therefore, we can use Lemma 4.32
as induction start in the proof of the following lemma.

Lemma 4.33. Let 7 G CTLQ10. Then, j[T] implies 7LL].

Proof. Structural induction on 7. See Appendix B.I for details. •

The following corollary is directly implied by Lemma 4.33.

Corollary 4.11. Every query in CTLQ10 is strong collecting.

Proof. Let 7 G CTLQ10 and Si as well as S2 be two states in a Kripke
structure such that s\ ~» S2- Suppose that Si |= *i[ip] and S2 |= r)[^\- Then,
by Lemma 2.1, we know that S2 |= 7p~]. Thus, by Lemma 4.33, we obtain
S2 |= 7[-L], which implies S2 |= 7(1/? A i/i] by Lemma 2.1. D

Now, recall that CTLQX is defined as the union of the above considered
CTL query languages (cf. Definition 4.13). Moreover, as already mentioned,
every strong collecting query is boundary collecting, every boundary collect-
ing query is intermediate collecting, and every intermediate collecting query
is (weak) collecting. Thus, we obtain the following corollary by Lemma 4.30,
Corollary 4.8, Corollary 4.9, Corollary 4.10, and Corollary 4.11.

Corollary 4.12. Every query in CTLQ* is collecting.

Hence, since CTLQ1 is a subset of ACTLQ™, we obtain by Lemma 4.22,
Corollary 4.12, and Corollary 4.1 one of the main results of this thesis.

Theorem 4.6. Every query in CTLQ* is exact.
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In contrast to the characterization of LTLQX, we are unfortunately not
able to prove the maximality of CTLQX in the sense that all simple queries
in CTLQX are not exact. We will now show that CTLQX is in fact not
maximal in this sense. To this aim, consider the simple query 7 = AF(a A
AF(6 V AG?)). It can be easily verified that 7 G CTLQX although 7 is
collecting as stated in the following proposition.

Proposition 4.3. The query 7 = AF(o A AF(6 V AG ?)) is collecting.

Proof. Let s be any state in a Kripke structure such that s (= 7[y] A i[ip]
for some formulas (p and ip. Moreover, let 7 = AF(b V AG?) , that is,
7 = A F ( a A 7 ) . Now, w.l.o.g., we choose any path n G paths(s). Thus,
we know that w \= F (a A 7 [</>]) A F (a A 7^]) . Hence, there exists a least
k 6 N such that TTk (= a A ï[(p] or irk (= a A ï[ip]. W.l.o.g., we can assume
that 7rfe |= a A j[<p\. Now, w.l.o.g., we choose any path a G paths(7r(A;)).
Thus, we know that a |= a A 7^] and a1 (= a A 7 ^ ] for some l G N. In
particular, this implies a \= y[(p] and a1 \= ï[ip]. It can be easily verified
that 7 G CTLQ4. Thus, by Corollary 4.8, we know that 7 is intermediate
collecting. Hence, we obtain a1 \= j[(p A ip] or there exists r < I and aT \=
7[-L]. By Lemma 2.1, this implies a (= Fj[ip A ip]. Since a G paths(7r(fc))
was chosen w.l.o.g., we know that nk (= AF*/[ip A ip\. It is easy to see
that this is equivalent to 7rfc |= j[(p A ip]. Thus, since ~nk (= a, we obtain
Trk \= a A î[ip A ip], which implies TT (= F(o A j[np Aip]). Since n G paths(s)
was chosen w.l.o.g., we know that s \= y[(p A ip]. Hence, 7 is collecting. D

Finally, let us remark that a proof of maximality by counterexample
construction as in the case of LTLQX in Section 4.3.2 is much more difficult
in the case of CTLQX. In particular, a counterexample to the collecting
property for queries in CTLQX is in general a computation tree instead of
a computation path as in the case of LTLQX.

4.5 Summary

An exact solution to a temporal logic query 7 in a Kripke structure & is a
temporal logic formula £ such that Â (= 7[£] and £ =4> (p iff fi. (= 7 ^ ] , i.e., a
solution that exactly characterizes the set of all solutions. A temporal logic
query is exact iff it has an exact solution in every Kripke structure where
the set of solutions is not empty.
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Exact temporal logic queries can be semantically characterized in several
equivalent ways. The most important one in this chapter is the following: A
temporal logic query is exact iff it is monotonie and collecting. Monotonie
in this context means that cp => ip implies i[ip] =$• i[ip], and collecting means
that j[ip] A y[i/)] implies ~f[<p A I/J] for all formulas <p and ip.

Such a characterization of exact temporal logic queries can be used to
obtain syntactic fragments of exact LTL and CTL queries. In particular,
Section 4.3 presents a syntactic fragment LTLQ1 of exact LTL queries. A
proof that all queries in this fragment are indeed exact is given in Sec-
tion 4.3.1, and a proof that this fragment is maximal in the sense of a
template characterization is given in Section 4.3.2. In addition, Section 4.4
presents a syntactic fragment CTLQX of exact CTL queries. A proof that
all queries in this fragment are indeed exact is given in Section 4.4.1. In
contrast to LTLQ*, the maximality of CTLQ1 could not be shown.

Exactness of temporal logic queries is an interesting property on its own
because it may give a better understanding of temporal logics. In particular,
the key property in this context is distributivity, another characterization
of exact temporal logic queries. A temporal logic query 7 is distributive
(over conjunction) iff 7 satisfies i[<p] A 7[•?/>] <=>• j[ip A ijj\ for all formulas (p
and ip. Each such distributive temporal logic query amounts to a set of
equivalences between temporal logic formulas.

Moreover, the auxiliary results used in our exactness proofs of temporal
logic queries show another interesting property. In particular, these results
enable us to eliminate existential choices when evaluating temporal oper-
ators. This can be exploited in order to obtain efficient symbolic query
solving algorithms for queries in CTLQ1 as discussed in Chapter 5.



Chapter 5

Solving
Temporal Logic Queries

5.1 Introduction

A natural question when investigating temporal logic queries is about
algorithms to solve them. There exist several such algorithms in the litera-
ture which we will describe at the end of this chapter. Our focus, however,
lies on the symbolic query solving algorithm introduced by Chan [ChaOO].
Although other algorithms are more general, a thorough investigation of
Chan's algorithm is interesting for several reasons.

Chan presented this algorithm in order to solve queries in his syntactic
fragment of valid CTL queries, but he neither proved its correctness nor did
he describe the underlying intuition and mathematical principles. Thus, it
was unknown how and why the algorithm works. Moreover, its correctness
was uncertain in consideration of the fact that Chan's fragment of valid
CTL queries was shown to be erroneous [SamO2, SV03].

We will prove that the Chan algorithm is correct for all queries in CTLQ1

that have a solution in every Kripke structure. The collecting properties
introduced in the previous chapter are crucial in this proof since they enable
us to eliminate some kind of non-determinism that appears in the evaluation
of temporal operators as shown in the following example.

Example 5.1. Consider the LTL formula <pUip, which we want to check
on path 7T. To this aim, let n be the least number such that 7rn ^ <p.
Trivially, this implies ir1 (= ip for all i < n. Now, by the semantics of the
strong until operator, we know that ?r f= (p U ip iff there exists i < n such
that IT1 (= I/J. These existential choices are the kind of non-determinism we
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are talking about in this chapter, i.e., in the worst case we have to check ip
at all positions i < n although only a single witness is needed.

The key observation exploited in Chan's algorithm is now that if ip ls of
a special form, then it suffices to check ip at a single position on TT, i.e., the
strong until operator can be determinized. In our terminology, if ip = j[ip']
such that 7 is intermediate collecting for a subformula ip', then n (= (pJJip
iff TTÎ0 f= ip, where io < n is the highest number such that irl° \= 7[T].

The correctness of the Chan algorithm is important on its own since it
is the only symbolic query solving algorithm known so far. Moreover, it
reveals the connection to the properties of exact CTL queries proved in the
previous chapter and justifies the corresponding exactness proofs. Finally,
a thorough understanding of Chan's original algorithm points us the way to
an extension in order to solve queries in the whole fragment CTLQX. The
definition of such an extension and the corresponding correctness proof is
the most important part of this chapter. Independently of these results, we
will also show how other query solving algorithms can be extended in order
to compute non-propositional solutions as well.

This chapter is organized as follows: In Section 5.2, we investigate CTLQ1

query solving based on the Chan algorithm. In particular, Section 5.2.1
shows how the collecting properties can be used to eliminate non-determi-
nism. Based on these results, we prove the correctness of the Chan algo-
rithm in Section 5.2.2. Afterwards, in Section 5.2.3, we present an extension
of the Chan algorithm for solving queries in the whole fragment CTLQX

and prove its correctness. The computation of non-propositional solutions
is then separately considered in Section 5.2.4. In Section 5.3, we summarize
further query solving algorithms and indicate how they can be extended
in order to compute non-propositional solutions. Finally, we summarize in
Section 5.4.

5.2 Solving Queries in CTLQ*

In this section, we show how the theoretical results of the previous chap-
ter can be used for eliminating non-determinism in order to obtain efficient
query solving algorithms. In particular, we investigate non-determinism
that appears when evaluating temporal operators, how it can be eliminated
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by exploiting the collecting properties, and study Chan's symbolic algo-
rithm. A thorough understanding of this algorithm will point us the way
to an extension in order to solve queries in the whole fragment CTLQX.
The most important part in this section is the definition of such an ex-
tended algorithm and the proof of its correctness. As already mentioned,
the collecting properties proved in the previous section are crucial in the
correctness proofs of both the Chan and the extended Chan algorithm.

In order to get an idea of the relationship between query solving and
the collecting properties, note that evaluating a temporal logic formula or
solving a temporal logic query comprises some kind of non-determinism in
general. For example, the existential path quantifier enables us to express
non-determinism on paths because it claims that there is a path satisfying
some property, but we do not know which one. Similarly, the future operator
enables us to express non-determinism on states. Therefore, when checking
s \= Ey? in a naive way, we have to check n \= <p in the worst case for
all 7T G paths(s). Similarly, when checking n (= F(p, we have to check
nn \= ip in the worst case for all n G N.

Obviously, the same holds when solving a query, i.e., in order to obtain
all solutions in the presence of non-determinism, a query must in general
be solved for all non-deterministic choices. This is easy to see because if
one case is omitted, this case could have provided a new solution that is
not subsumed by the ones computed so far. Moreover, even if we know that
there exists an exact solution, all non-deterministic choices must be checked
since otherwise we would not know whether the strongest solution found so
far is the strongest solution among all solutions.

The connection between computing an exact solution to queries in CTLQ1

and the collecting properties proved in the previous chapter is: The collect-
ing properties enable us to eliminate the above kinds of non-determinism.
In order to locate the cause of non-determinism in this context more sys-
tematically, note that temporal operators can be divided into universal and
existential ones. Let us consider some examples.

Example 5.2. For every path TT and formula ip it holds that ir \= G*y[<p] if
and only if Vz 6 N. n% f= y[<p]. Thus, solving a query G 7 can be reduced to
solving its subquery 7 at universally quantified positions on a path. Hence,
we classify the global operator G to be a universal operator.

In contrast, consider path ir in Figure 5.1. Obviously, it holds that
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7T (= aU7[</?], but a U 7 cannot be reduced to solving its subquery 7 at
universally quantified positions on n. However, for every path TC it holds
that % (= 9\Jy[<p] if and only if 3% G {j G N | j < n). irl (= y[<p], where
n G N is the least number such that ivn ty= 9. Thus, solving a query ÖU7
can be reduced to solving its subquery 7 at existentially quantified positions
on a path. Hence, we classify the strong until operator U with respect to
its second argument to be an existential operator.

Note, however, that the strong until operator with respect to its first
argument is universal. To see this, let n G N be the least number such that
7Tn |= 9 for any path n and formula 9. Then, for every formula (p, it holds
that n \= î[<p] U 9 if and only if Vi G {j G N | j < n}. ir{ f=

Consequently, the kind of non-determinism we consider in this section
arises from existential choices when solving a query top-down by a reduction
to solving its subqueries. The formal starting point of our investigations is
therefore the following definition.

Definition 5.1 (Universal, Existential). Let O be a temporal operator.
Then, we define O to be universal resp. existential with respect to its
operand ip on a path w iff for all queries 7 = 70 [7] such that 70 consists only
of operator O and the placeholder occurs only at the position of operand ip
in 70, there exists a set J Ç N such that for all formulas <p

universal
existential

I— r 1 -fr / ^ ^ -̂ - 7rî H ÏYP\
r^ 1 Vf 1 (̂  3 Î G T. IT1 \= y[(p]

We define O to be universal (resp. existential) with respect to its oper-
and ip iff it is universal (resp. not universal, but existential) on every path ?r
satisfying n \= 70[T] (resp. n \£ 70[J-]) for every query 70 defined as above.
Accordingly, we call 7 universally occurring resp. existentially occurring in
every query that contains such a query 7 above as subquery.

Note that all temporal operators used in this thesis are either universal
or existential with respect to a selected operand. This fact is summarized
in Table 5.1, where the placeholder indicates the corresponding operand.
It can be easily verified that this classification is consistent with the above
definition. For example, let 7 = AG(a V A(6U AX7)) . Then, A X 7 is
existentially occurring in 7, whereas 7 is universally occurring.
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Universal

X? ?U</> TÖ<p p U ?
G? ?W(p ?Wip ipW?

Existential

F?
</?U? iptll ipWl (pW?

Table 5.1: Classification of temporal operators

Note that also the path quantifiers can be classified in this way. In
particular, the universal path quantifier is universal and the existential path
quantifier is existential. However, since the existential path quantifier is not
allowed in CTLQX, we do not need to take care of this.

The following definition will enable us to easily describe an appropriate
set X according to Definition 5.1 for the existential operators in Table 5.1.

Definition 5.2 (Prefix indices). A set I Ç N of natural numbers is a
set of prefix indices iff for each n e l i t holds that for all i < n, i G X. In
particular, for any path n and formula <p, we define the set of prefix indices

^ ( v ) = {n G N | Vi < n. 7T* |= <p}.

Note that a set of prefix indices is either an initial segment of N (i.e., a
set of the form {i G N | i < n} for some n G N) or N itself. For example, let
7T be the path shown in Figure 5.1. Then, Xn(a) = {0,1,2}, ln(b) = {0},
and Xn(a V b) = N. The following lemma shows that for the strong until
operator with respect to its second argument, the set of prefix indices is an
appropriate set X according to Definition 5.1. It follows immediately from
the definition of the strong until operator and the set of prefix indices.

Lemma 5.1. For every path n, query 7, and formulas 9 and tp it holds that

Note that all existential operators in Table 5.1 are variants of the strong
until operator. Thus, by Lemma 5.1, we obtain also for the other existential
operators a set of indices encoding the existential choices.

Remark 5.1. Not surprisingly, there is a close relationship between the clas-
sification into universal and existential temporal operators and the first-
order quantification of the corresponding operands in the definition of their
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Figure 5.1: Prefix index example

semantics (cf. Table 2.4). For example, the semantics of n \= ipJJip is de-
fined by 3n Vz < n. IT1 \= <p and ?rn |= ip. Thus, the first operand <p of
the strong until operator is under universal quantification and its second
operand ip is under existential quantification. Accordingly, the strong until
operator is universal with respect to its first operand and existential with
respect to its second operand. However, there are also universal operators
whose corresponding operand is existentially quantified, e.g., the disjoint
strong until operator Ü with respect to its second operand. But in these
cases it is easy to see that the semantics of the operators can be equiva-
lently redefined by using a uniqueness quantifier instead of the existential
quantifier, which justifies our classification.

5.2.1 Eliminating Non-determinism

The following fact enables us to build up on the results of the previous
chapter in order to eliminate non-determinism in the form of existential
choices when solving queries in CTLQX. To this aim, recall that a query 7
is intermediate collecting iff for all paths n and formulas if and ip it holds
that: If 7T (= 7[<£>] and 7rn |= ^[ip] for some n € N, then nn (= 7 ^ A ip] or
there exists r < n such that ixr \= 7[J_].1

Proposition 5.1. All existentially occurring subqueries of queries in our
fragment CTLQ1 are intermediate collecting.

Proof. By Table 4.3 and Table 4.4, it is easy to see that all existentially
occurring subqueries (i.e., immediate subqueries of existential operators ac-
cording to Table 5.1) of queries in CTLQX are in CTLQ3, CTLQ4, CTLQ5,
CTLQ6, CTLQ7, CTLQ8, CTLQ9, and CTLQ10 only. Hence, by Corol-
lary 4.8, Corollary 4.9, Corollary 4.10, and Corollary 4.11, we know that
these queries are (at least) intermediate collecting. D

1Note that this was our definition of intermediate collecting for LTL queries. It is easy
to see that it can also be used in the case of CTL queries.
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Now, we show in the following lemma that these intermediate collecting
queries have a nice property on which our further results are based.

Lemma 5.2. Let 7 be an intermediate collecting query and n be a path.
Suppose that IT (= "i[y>\ and irn \= j[T] for some n G N. If for all i < n it
holds that nl \£ 7[-L], then irn \= *y[ip\.

Proof. Suppose that n f= j[cp] and irn f= 7[T]. Then, by definition of the
intermediate collecting property, we obtain ?rn |= 7 ^ A T] or there exists
r < n such that nr \= 7[_L]. Hence, if for alH < n it holds that -K% \f=- 7[-L],
we know that nn \= 7 [</?]. •

Since evaluating an existentially occurring query has in general to be done
at several states on a path, we need the following definition.

Definition 5.3 (Solutions). Let 7 be a query, n be a path, and Î Ç N .
Then, we define the set of solutions to 7 at positions in X on n by

S0li(7T,7) = [J{cp I IT1 f= 7[<p]}.
iei

For our purposes, the set X will be a set of prefix indices representing the
existential choices of positions on IT when solving an existentially occurring
subquery 7. Thus, in order to obtain all solutions, 7 has in general to
be solved at all states with indices in X. Note that if there exists i € X
such that nl \= 7[-L], then by Lemma 2.1 every formula is an element
of SO1I(TT, 7) and therefore the solutions at other states with indices in X
do not affect SO1I(TT, 7). This case is somehow exceptional since it can be
simply checked by evaluating the formula 7[_L] at all states with indices
in X, which can be performed by a single symbolic model checking call.

Otherwise, if no such a prefix index exists, it follows immediately from
the intermediate collecting property according to Lemma 5.2 that

SOl{io}(7T,7) Ç S0l{il}(7r,7) C S0l{i2}(7T,7) C • • • ,

where io < i\ < i% < • • • and nn (= 7 [T] for all n G {io, ii,i2, • • •} Ç X.

Hence, when solving an intermediate collecting query at several states on a
path, it suffices to solve the query at states with indices as high as possible.
In particular, if there exists a highest index n G X such that wn (= 7[T], it
suffices to solve the query at this single state.
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Example 5.3. Consider path TT shown in Figure 5.1 and query 7 = 0 U 7 .
Now, we want to solve 7 on TT by reducing it to solving 7 on TT. Since the
strong until operator with respect to its second argument is an existential
operator (cf. Table 5.1), i.e., 7 is an existentially occurring subquery, we
know that there exists a reduction of the form n \= ̂ [(p] iff 3z G X. TT1 (= j[(p]
for some set Î Ç N . By Lemma 5.1, we are allowed to choose X = X7r(a) =
{0,1,2}. Hence, we know that solving 7 on n can be reduced to solving 7
at states with indices in Xn(a) on TT, i.e., we obtain all solutions to 7 on n
by computing the solutions to 7 on TT°, TT1, and ?r2. In this simple example,
it is easy to see that this reduction is correct.

Let us now consider the case where 7 is intermediate collecting. In this
case we can determinize the above reduction in such a way that X becomes
a singleton set. In particular, if TT1 \= j[T] and nl ^ 7[J_] for all % G X7T(a),
it follows from the intermediate collecting property according to Lemma 5.2
that SO1{O}(TT,7) Ç SO1{I}(TT,7) Ç SO1{2}(TT,7)- Thus, the solutions obtained
by solving 7 on TT° and TT1 are also solutions on TT2. Hence, it suffices to
solve 7 on TT2, i.e., the state with highest index in X7V(a). So we know that
7T (= y[(p] iff 7T2 |= j[(p] for all formulas ip.

Since all existentially occurring subqueries of queries in CTLQ1 are inter-
mediate collecting according to Proposition 5.1, this principle of eliminating
existential choices can always be applied when solving queries in CTLQX.
We are now going to prove this insight formally which will enable us to
prove the correctness of the Chan algorithm.

Lemma 5.3. Let 7 be an intermediate collecting query, TT be a path, and
Î Ç N . Suppose that there is a least index m £ X and a highest index n G X
such that ixm |= 7[T] and 7rn |= 7[T]. If nl ^ j[_L] for all m < i < n, then

(7r,7) = SO1I(TT,7).

Proof. Since n G X, we know that sol{n}(?r,7) Ç soli(7r,7). In order to
show that SO1I(TT,7) Ç sol{n}(7r,7), let tp G SO1I(TT,7). Since ip G SO1I(TT,7),

we know that there exists j G X such that TT7 [= 7[</?]. By Lemma 2.1, this
implies tf \= 7p~]. Since m is the least index such that nm \= 7[T] and n
is the highest index such that ?rn f= 7[T], we know that m < j < n. So we
have 7T7 (= 7[</?] and nn (= 7[T], where j < n. Thus, if for all j < i < n
it holds that ix% \/= 7[_L], we obtain by Lemma 5.2 that ixn f= r)[<p\, that is,
ip G sol{n}(7T,7). Hence, SO1I(TT,7) C sol{n}(7r,7). D
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SO sk-l sk+ml

Figure 5.2: Path structure

Obviously, this lemma enables us to eliminate non-determinism, since
instead of solving 7 at all existential choices encoded in X, it suffices to
solve 7 at position n. Note, however, that Lemma 5.3 does not cover all
cases that may appear when solving a query. In particular, it says nothing
about the case where the highest index n G X does not exist. This case
occurs if X contains an infinite number of indices i satisfying irl \= 7[T].

Note that such indices must refer to states in a cycle, since only states in
a cycle have an infinite number of indices. This can be seen in Figure 5.2,
where the general structure of a path is illustrated. The infinite number of
indices of each state in a cycle is obtained by varying m G N.

Definition 5.4 (Cycle indices). For every path TT we define the set of
cycle indices cycle(Tr) = {i G N | i > k}, where k is the length of the path
prefix of n according to Figure 5.2.

Now, we are able to show the following lemma. Intuitively, it means that
the solutions to an intermediate collecting query at states within a cycle
are the same at all these states.

Lemma 5.4. Let 7 be an intermediate collecting query and ir be a path.
Further, let r,s G cycle(7r) such that itr \= 7[T] and TTS \= 7p~]. Ifn1 ^ 7[-L]
for all i G cycle(7r); then sol{r}(7r,7) = SO1{S}(TT,7).

Proof. Assume w.l.o.g. that r < s. In order to show that sol{r}(7r,7) Ç
SO1{S}(TT,7), let (p G sol{r}("7r,7). So we have ?rr j= 7[</?] and ns \= 7p~],
where r < s. Thus, if for all r < i < s it holds that TX% \£ 7[-L], we
obtain by Lemma 5.2 that ns \= 7[y], that is, (p G SO1{S}(TT,7). Hence,
we know that sol{r}(7r,7) Ç sol{s}(7r,7). On the other hand, in order to
show that sol{s}(7T,7) Ç sol{r}(7r,7), let <p G SO1{S}(TT,7). Further, let I
be the cycle length of n according to Figure 5.2. Since r G cycle(Tr), we
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know that ir(r) = ir(r + m • I) for all m G N. So we have ns \= ^[tp] and
nr+m-i |_ ^ [ T ] J where s < r + m • / for an appropriate large number m.
Thus, if for all s < i < r + m • I it holds that n% y= 7[_L], we obtain by
Lemma 5.2 that 7r r+m ' |= 7 ^ ] , that is, <p G sol{r}(7r,7). Hence, we know
that sol{s}(7T,7) Ç sol{r}(7r,7). D

Recall that if the highest index as required in Lemma 5.3 does not exist,
we know that there are indices in X that refer to states in a cycle. But then,
in order to eliminate existential choices, it suffices to choose any index that
refers to a state in a cycle, since the solutions at these states are the same
according to Lemma 5.4. This is shown in the following lemma.

Lemma 5.5. Let 7 be an intermediate collecting query, -K be a path, and
X Ç N. Suppose that there is a least index m G X and an index n G
cycle(Tr) f l l such that ?rm |= 7[T] and irn \= f[T]. If nl ty= 7[-L] for all
i > m, then sol{n}(?r,7) = SO1I(TT, 7).

Proof. Since n G X, we know that sol{n}(7r,7) Ç SO1I(TT, 7). In order to
show that solx(7T, 7) Ç sol{n}(7r, 7), let <p G SO1I(TT,7). Therefore, we know
that there exists j E X such that TTJ (= "y[(p\. Since m is the least index such
that nm \= 7[T], we know that m < j . If j < n, we have TT7 |= 7[</?] and
nn (= 7[T]. Thus, if for all j < i < n it holds that irl \£ 7[_L], we obtain by
Lemma 5.2 that 7rn (= 7 ^ ] , that is, ip G sol{n}(7r,7). Hence, we know that
SO1X(TT, 7) Ç sol{n}(7r,7). Otherwise, if j > n, we know that j G cycle(Tr)
since n G cycle(?r) (cf. Figure 5.2). Moreover, by Lemma 2.1, we know that
7TJ (= 7[T]. So we have n, j G cycle(Tr) and nn \= "f\T] as well as TTJ' |= 7[T].
Thus, if for all % G cycle(Tr) it holds that ~K% ^ 7[-L], we obtain by Lemma 5.4
that sol{n}(7r,7) = sol{j}(7r,7), that is, (p G sol{n}(7r,7). Hence, we know
again that SO1I(TT, 7) Ç sol{n}(7r, 7). D

Note that instead of computing the solutions at a single state in the cycle
according to Lemma 5.5, we could also compute the solutions at the set of
all states with indices i G cycle (n) (IX satisfying nl \= 7p~]. This is allowed
since the solutions at these states are the same according to Lemma 5.4.

Let us now demonstrate how the above results can be applied on order
to eliminate non-determinism when solving queries.

Example 5.4. Consider any path -K and the query 7 = ÖU7, where 7 is
intermediate collecting. By Lemma 5.1, we know that for every formula <p
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it holds that ir \= j[(p] iff there exists i G ln(9) such that it1 (= ï[<p]. Hence,
in the worst case we have to check all indices in ln(6) in order to determine
whether some formula (p is a solution to 7 on n.

Obviously, if there exists i G 2^(0) such that nl \= j[±], then every
formula is a solution to 7 on TT. Let us for the moment being assume that
for all i G 2*(0) it holds that TT* ^ -y[±]. Similarly, if for all i G 2*(0) it
holds that nl \£ 7p~], then 7 has no solution on n. Since this is also a
special case, we assume that there exists at least one i G Tn(6) such that
7Tl |= 7[T]. Note that these assumptions enable us to apply Lemma 5.3 and
Lemma 5.5. Although checking them seems to be complex, it can be easily
implemented by symbolic algorithms as we will do in the following sections.

Now, we have to distinguish between two cases. If there exists a highest
index n G 1-^(0) such that nn j= 7[T], we know by Lemma 5.3 that n (= i[<p]
iff 7rn |= 7[y?]. Otherwise, if no such highest index exists, then Tw(9) = N
and there exists n G cycle(Tr) such that irn \= 7[T]. Thus, we know by
Lemma 5.5 that IT \= ̂ [ip] iff nn J= j[(p\. Hence, in both cases, solving 7
can be reduced to solving 7 without existential choices.

In the following section, we will show how our results can be exploited
in CTLQX query solving algorithms. At first, we start with a thorough
analysis of Chan's algorithm. This algorithm is applicable to the valid
subset of CTLQX, i.e., queries in CTLQX that have a solution in every
Kripke structure. Afterwards, we present an extension of Chan's algorithm
that is able to solve all queries in our fragment CTLQ1.

5.2.2 The Chan Algorithm

The Chan algorithm was introduced by William Chan [ChaOO] in order
to solve queries in his syntactic fragment of valid CTL queries, i.e., CTL
queries that are exact and always have a solution. However, Chan neither
proved the correctness of his algorithm nor did he describe its functionality.
In the author's diploma thesis [SamO2, SV03], it was shown that Chan's
fragment of valid CTL queries is erroneous and a correct version was pre-
sented. It can be easily verified that the class of valid queries in CTLQ1

subsumes the fragment presented there. Note that valid queries within our
fragment CTLQX can be simply obtained by restricting the grammar in Ta-
ble 4.3 and Table 4.4 to those operators that guarantee validity according to
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Figure 5.3: Auxiliary sets in Chan's algorithm

our observations in Section 2.5.1. We will now prove that all valid queries
in CTLQ1 can be solved by Chan's symbolic algorithm (cf. Section 2.4.1).

Definition 5.5 (Auxiliary sets) . Following Chan, we introduce the fol-
lowing three macros (parameterized by ip and 7) as abbreviations:

TZV = ßZ.((QU posti(Z))n lip}) (Reachable set)

C^ = ^.(Tt^A-^j.) npost3(Z)) (Cycle set)

Bl = (QUpos t 3 (7V^ 7 [ ± ] ) ) \ ([[</?] U[7[_L]]]) (Boundary set)

The intuitive meaning of these three auxiliary sets is illustrated in Fig-
ure 5.3, where the initial set Q is assumed to consist of the four double-
circled states. The set T^A-^X] consists of those states that are reachable
from states in Q by going only through states at which <p A ~"7[-L] holds.
In particular, 7lj consists of all states that are reachable from states in Q.
The set C^ consists of all states within a cycle in 72.v?A-.7[±] • Finally, the set
B^ consists of the boundary of 72,¥,A-,7[x], i-e., the first states on each path
starting from Q that are not in T^A-^J . ] and at which 7[_L] does not hold.
The following lemma states the meaning of these sets more formally.
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Lemma 5.6. Let 7 be a query, ip be a formula, and Q be a set of states
in a Kripke structure. Moreover, let II Ç paths (Q) such that n G II iff
7Tl ty= 7[_L] for all i G 2^ (</?)• Then, 7 ^ , C^, and B^ are the sets of states
on paths n G paths(Q) such that

1- ?r(n) G TZp iff for all i < n it holds that IT1 \= if.

2. ir(n) eC^ iff ir EU, T-n((p) is infinite, and n G cycle(Tr).

3. ir(n) G B^ iff IT G II, T~K(<P) is finite, and n = max(2^(</?)).

Proof. We consider the three cases separately:

1. By the fixpoint definition of Hv, it is easy to see that starting from
the states in Q that satisfy <p, only successor states are added that
satisfy <p as well. This is repeated until a fixpoint is reached. Hence,
it follows trivially that 1ZV consists of exactly those states n(n) on
paths 7T G paths(Q) where it1 \= (p for all i < n.

2. By the fixpoint definition of C%, it is easy to see that C^ Ç ^ A ^ t x ] -
In particular, C^ consists of exactly those states that are in a cycle
that is entirely contained in 7£VA-,7[_L] . By the definition of TS^A-^X] J

we know that a cycle on a path n G paths (Q) is entirely contained
in T^A-^tx] iff 7T1 \= V3 A ~i7[-L] for all i G N. Hence, since !•„(<£) = N
iff 7ri (= tp for all i G N, and n G II iff tf ^ 7[_L] for all i G X*((p),
it follows that C£ consists of exactly those states ir(n) where TT G II,
X7r(</?) is infinite, and n G cycle(Tr).

3. By the definition of #^, it is easy to see that starting from 72.¥,A-,7[j_],
the set of all states 7r(n) on paths w G paths(Q) is computed where
for allz < n it holds that nl \= <p A ~i7[J-]- Then, all states satisfying
(p or 7[±] are removed. Therefore, the remaining set consists of those
states 7r(n) on paths n G paths (Q) where for a l i i < n it holds that
7Tl \= <f A ~'7[-L] and nn f= -up A -|7[-L]. Since Tn(<p) is finite with
n = max(X7r (</?)) iff 7rn y=- (p and nl \= (p for all i < n, we know that
Zn-M = {« 6 N I i < n j . Hence, since n G II iff TT* ^ 7[±] for
all z G jEn(ip), it follows that B^ consists of exactly those states n(n)
where TT G n , T^{ip) is finite, and n = max(Tn(</?)).

This concludes the proof. D
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Algorithm 1 Chan algorithm
1 function ExactSol(7, Q) begin
2 case 7 of
3 ? : return Q ;
4 6 V 7 : return ExactSol(7, Q \ [0J) ;
s AX 7 : return ExactSol(7, postg(Q)) ;
6 AF7 : return ExactSol(A(TU7), Q) ;
7 A G 7 : return ExactSol(A(7W±), Q) ;
s A(0 U 7) : return ExactSol(7, B% U CJ) ;
9 A(7W#) : return ExactSol(A((0 V 7) WO), Q) ;
10 A(7WÖ) : return Exact Sol (7, Q U post3 (ft-,*)) ;
11 A(9W7) : return ExactSol(7, iBj) ;
12 A(0 W7) : return ExactSol(7, (Q U post3(7eö)) \ |0J) ;
13 esac

14 end

Remark 5.2. Note that the states in ß ,̂ are those with the highest index on
each path satisfying the conditions of Lemma 5.3, and the states in Cv are
those within a cycle on each path satisfying the conditions of Lemma 5.5.
Moreover, note that the assumptions on states satisfying 7[T] in these lem-
mas can currently be ignored since the queries we consider are valid, i.e.,
these assumptions are always satisfied. Therefore, by using the above aux-
iliary sets, we are able to define a query solving algorithm that implements
the kind of determinization described in the previous section.

Chan's algorithm for solving valid queries in CTLQ1 is shown in Algo-
rithm 1. In order to prove its correctness, we need the following definition.
Recall from Section 2.3.2 that a CTL formula holds at a set of states in a
Kripke structure iff it holds at each state in this set.

Definition 5.6 (Solution states). Let 7 be a query and Q be a set of
states in a Kripke structure. A set of states S is a set of solution states to 7
at Q iff it holds that S \= ip implies Q (= j[cp] for all formulas (p. A set of
solution states S is unique (or simply the set of solution states) to 7 at Q
iff it holds that Q \= j[ip] implies S (= <p for all formulas <p.

It is easy to see that for every solution ip to a query 7 at a set of states Q



5 Solving Temporal Logic Queries 104

there exists a set of solution states S to 7 at Q such that S \= (p. Moreover,
note that a unique set of solution states is indeed unique if all states in the
Kripke structure are labeled differently. Otherwise, there may exist several
unique sets of solution states. However, since all these sets of solution states
must represent the same solutions by definition, they are equivalent. The
following proposition shows that a query is exact if and only if there always
exists a unique set of solution states to this query.

Proposition 5.2. A query 7 is exact iff for every set of states Q in a Kripke
structure satisfying Q (= 7[T] there exists a unique set of solution states.

Proof. For the if direction, assume that there exists a unique set of solution
states 5 to 7 at any set of states Q, i.e., Q \= j[(p] iff S \= cp for all
formulas (p. Now, let £ be the conjunction of all formulas cp satisfying
<S |= ip. Then, it obviously holds that S f= £ and S (= <p iff £ =>• <p. Thus,
by definition, we know that Q \= 7^] and Q (= /y[ip] iff £ => ip, i.e., £ is an
exact solution to 7 at Q. Hence, since Q was chosen w.l.o.g., 7 is exact.

For the only if direction, assume that 7 is exact and let Q be any set of
states. If 7 has no solution at Q, we know by Lemma 2.1 that Q \fc 7[T] and
we are done. Otherwise, since 7 is exact, there must exist an exact solution £
and therefore a set of solution states S to 7 at Q such that <S f= £. Thus,
since Q (= j[(p] iff £ =></?, we know that Q (= 7[y?] implies S (= (p for all
formulas cp. Hence, S is a unique set of solution states to 7 at Q.

We will now show that if all states in the Kripke structure are labelled
differently, then there exists no other unique set of solution states. To this
aim, let <S' be any unique set of solution states to 7 at Q. Now, let ips
and ips1 De the characteristic functions of S and S' respectively. Then,
we trivially have <S (= ip$ and S' \= V\s'- Hence, since S and S' are sets
of solution states, we obtain Q |= j[ips] and Q \= 7^5 ' ] . Thus, since
Q \= 7^5] implies S' \= ips, w e know that S' Ç S. Analogously, since
Q \= 7[ips>] implies »5 |= ips1-, w e know that S Ç <S'. Hence, S = S'. D

Now, we are able to prove the correctness of Chan's algorithm. Note that
for simplicity we will write set of solution states to denote the unique set of
solution states. This should not be confusing since we are only interested
in the unique set of solution states to exact queries.
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Theorem 5.1. Let 7 G CTLQ* be valid and Q be a set of states in a Kripke
structure. Moreover, let ExactSol be the function defined in Algorithm 1.
Then, ExactSol(7, Q) returns the unique set of solution states to 7 at Q.

Proof. Structural induction on 7.

Induction start:

> Let 7 = ?. Then, the assertion holds trivially since ExactSol(?, Q) = Q
and Q is the unique set of solution states to ? at Q.

Induction step:

> Let 7 = ÖV7. By induction hypothesis, we know that ExactSol(7, Q\[0|)
returns the set of solution states S to 7 at Q \ |0]. Therefore, we have
Q \ [0] |= ï[<p] iff S \= ip. Moreover, note that trivially Q n [0J |= 8.
Hence, since Q f= 0 V 7^] iff Q n J0] |= 0 and Q \ [0] |= 7^] , we know
that Q |= 9\/*f[(p\ iff 5 (= ip, i.e., <S is the set of solution states to 7 at Q.

t> Let 7 = AX 7. By induction hypothesis, we know that ExactSol(7,
postg(Q)) returns the set of solution states <S to 7 at postg(Q). Therefore,
we have posta (Q) (= ï\f] iff «S |= <̂ . Hence, since Q f= AX y[(p] iff
post3(Q) |= *f[<p], we know that Q \= AX.j[ip] iff S \= <p, i.e., S is the set
of solution states to 7 at Q.

t> Let 7 = AF7. Since AF7 o A ( T U 7 ) , the assertion follows from the
case of the strong until operator U.

> Let 7 = AG7. Since AG7 <£> A(7W_L) and A ( 7 W 1 ) <& A((J. V
7) W J_), we know that AG 7 <$• A ^ W l ) . Hence, the assertion follows
from the case of the overlapping weak until operator W.

> Let 7 = A(0U7). By induction hypothesis, we know that ExactSol(7,
&o U Ce) returns the set of solution states S to 7 at B] U Q. Therefore,
we have BJ UC] \= */[<p] iff S \= ip. Now, consider Q \= A(6 U *f[(p\), i.e.,
for each n G paths(Q) it holds that ?r (= 9U*f[cp\.
By Lemma 5.1, we know that TT (= 6Uj[ip] iff there exists i G X^iß) such
that TT1 \= 7[</?], that is, <p G soliT(e)(7r, 7). In particular, if there exists
i G XTT(0) such that ?rl |= j[±], then ?r (= 0U7[y?] is trivially true. Hence,
it suffices to consider only paths where n1 \/= 7[_L] for all i G 2^(0). Thus,
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let n Ç paths(Q) be the set of such paths, and for each n G II let us
distinguish between two cases:
(i) 2TT(0) is infinite: Since 7 is valid, we know that also 7 is valid,
which implies n1 \= 7[T] for all % G cycle(Tr). Thus, by Proposition 5.1
and Lemma 5.5, we know that SO1{J}(TT,7) = SOIX^^TT, 7) for every % G
cycle(Tr). Hence, since all states with indices in cycle(Tr) have the same
solutions, this implies that ?r (= Ô U 7 ^ ] iff 7rcycle^ |= j[ip].
(ii) 1TT(9) is finite: Since 7 is valid, we know that also 7 is valid, which
implies irl \= j[T] for all i G 1^(9). In particular, since 1^(6) is finite, this
implies that there exists n = max(X7r(ö)) satisfying nn \= 7[T]. Thus, by
Proposition 5.1 and Lemma 5.3, we obtain sol{n}(7r,7) = solx,^)^, 7).
Consequently, TT \= 9XJ *f[ip] iff 7rn |= 7M-
By Lemma 5.6, we know that C] consists of all states within cycles ac-
cording to item (i) on paths n G II where Tn(0) is infinite, and BQ consists
of all states with index n = max(Z,r(0)) according to item (ii) on paths
7T G II where ln(9) is finite. Therefore, it holds that Q |= A(9U*f[(p]) iff
B] UC] \= 7[<4 Hence, Q \= A{6Uy[(p]) iff S \= ip, i.e., S is the set of
solution states to 7 at Q.

> Let 7 = A ( 7 W 0 ) . Since A ^ W Ö ) <Ŝ> A((9 V 7) W6>), the assertion
follows from the cases of the overlapping weak until operator W and
disjunction.

> Let 7 = A(7*W0) = A((G7) V (7UÖ)). By induction hypothesis, we
know that ExactSol(7, QUpost3(7^.-1e)) returns the set of solution states S
to 7 at Q U pos tg(^e) . Therefore, we have Q U post3(Jl-,0) (= ï[<p] iff
S \= <p. Now, consider Q \= A(7(^7] Wo) , i.e., for each n G paths(Q) it
holds that n \=*/[ip]'W6. Let us distinguish between two cases:
(i) If 7T* ̂  0 for all i G N, we know that n \= 7[^] W 9 iff n \= G î[<p].
(ii) Otherwise, if there exists a least n G N such that TVU \= 9, it is easy
to see that TT (= ï[<p\ "W 9 iff IT1 (= 7[<p] for all i < n.
By Lemma 5.6, we know that TZ-,g consists of all states n(n) on paths
•K G paths(Q) such that %l \£ 9 for all i < n. Hence, Q U pos tg^^i )
consists of all states ir(ri) on paths n G paths(Q) such that IT1 \£ 9
for all i < n. Thus, it is easy to see that Q U post3(7?-,ö) consists of
all states on paths n G paths (Q) satisfying the condition of item (i),
and all states TT(Z) with i < n, where n is the least number such that
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7rn |= 9, on paths n G paths (Q) satisfying the condition of item (ii).
Therefore, it holds that Q ft A(*f[tp]W 9) iff Q U posta(7^e) |= î[p].
Hence, Q ft A(7^]WÖ) iff S ft <p, i.e., <S is the set of solution states
to 7 at Q.

> Let 7 = A(6>W7) = A((G6>) V (ÖU7)). By induction hypothesis,
we know that ExactSol(7, Bj) returns the set of solution states S to 7
at B]. Therefore, we have B\ ft j[(p] iff «S ft (p. Now, consider Q ft
A(0W7[</?]), i.e., for each TT G paths(Q) it holds that n ft ^ 7 ^ ] .
By Lemma 5.1, we know that if TT ^ Go , it holds that TT |= 0Wy[<p]
iff there exists i G X^ô) such that irl \= */[ip], that is, </? G soli^g)^,^).
In particular, if there exists i G In(9) such that IT1 ft 7[-L], then n \=
0W*f[(p] is trivially true. Also in the case of n |= G 9, we trivially ob-
tain 7T |= 6Wj[(p]. Hence, since IT ̂  Q9 iff ln(9) is finite, it suffices to
consider only paths where 1^{B) is finite and n1 \£ 7[_L] for all i G Xn(9).
Thus, let II Ç paths(Q) be the set of such paths, and TT G II.
Since 7 is valid, we know that also 7 is valid, which implies nl (= 7[T] for
all i G Tn(9). In particular, since ln{9) is finite, this implies that there
exists n = max(X7r(9)) satisfying nn \= 7p~]. Thus, by Proposition 5.1
and Lemma 5.3, we obtain sol{n}(7r,7) = S O I I ^ ^ T T , ^ ) . Consequently,
7T \=9W*f[<p] iff 7Tn |=7[V]-
By Lemma 5.6, we know that Bg consists of all states 7r(n) on paths
7T G IT, where n = max(ln{9)). Therefore, it holds that Q \= A(ÖW7[^])
iff B] \= 7[y>]. Hence, Q \= A(6Wf[<p]) iff S \= (p, i.e., S is the set of
solution states to 7 at Q.

> Let 7 = A(<9W7) = A((G0) V (0Ü7)) By induction hypothesis, we
know that ExactSol(7, (Q U postg^g)) \ |0J) returns the set of solution
states S to 7 at (QUpost3(7^))\[[6>]]. Therefore, we have (QUpost3(^0))\
[0] |= 7[p] iff 5 (= (p. Now, consider Q [= A ^ W ^ ] ) , i.e., for each
7T G paths(Q) it holds that_?r \= 9Wj[<p].
If 7T |= G 9, then TT (= flW^] is trivially true. Hence, it suffices to
consider only paths where n ^ G 9. Thus, let n Ç paths(Q) be the set
of such paths, and TT G n . Then, there exists a least n G N such that
nn ft 9. It is easy to see that n \= 6Wj[(p] iff nn ft y[<p].
By Lemma 5.6, we know that TZQ consists of all states n(n) on paths
•n G paths(Q) such that -K1 \= 9 for all i < n. Hence, Q U
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<p = T

v = ± 0

pi

pi

0
0

e \ IT WI

Table 5.2: Auxiliary sets with constant truth values

consists of all states ir(n) on paths TT G paths(Q) such that IT1 \= 9 for all
i < n. Thus, it is easy to see that (Q U postage)) \ [0] consists of all
states ?r(n) on paths TT G IT, where n is the least number such that nn ̂  9.
Therefore, it holds that Q \= A(9W^[(p]) iff (QUpost3(ft9))\[0] |= 7[<p].
Hence, Q \= A(9Wj[(p\) iff S \= cp, i.e., S is the set of solution states
to 7 at Q.

This concludes the proof. D

Remark 5.3. Note that the Chan algorithm can be improved in several
ways. For example, if ExactSol(7, 0) is called for any query 7, the sequence
of recursive calls can be aborted since the result will be 0 independently
of any further recursive calls. Moreover, the recursive calls for the cases
ÖV7, A(0U 7) , A( 7W0), A(0W7), and A(0W 7 ) can be simplified if
9 G {T, _!_}. This follows immediately from the definition of the auxiliary
sets in Chan's algorithm as shown in Table 5.2.

Obviously, in order to obtain an exact solution, we have to compute
the strongest formula (within the set of interesting solutions) that holds
at the unique set of solution states. In particular, if we are interested in
propositional solutions, the following definition is of interest.

Definition 5.7 (Characteristic function). Let Â be a Kripke structure
over the set of atomic propositions A. The characteristic function of a set
of states Q in Â is given by \/seQ(/\pee(s) P A APeA\t(s) ~^P)-

Now, the following corollary shows how to obtain a propositional exact
solution by Chan's algorithm. Of course, propositional solutions can be
further restricted to propositional solutions consisting of interesting atomic
propositions in order to decrease the computational effort.
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Corollary 5.1. Let 7 e CTLQ1 be valid and SQ be the initial state of a
Kripke structure Â. Moreover, let ExactSol be the function defined in Algo-
rithm 1. Then, the characteristic function of the set returned by ExactSol(7,
{so}) is a propositional exact solution to 7 in &.

Proof. Let Q be the set returned by ExactSol(7, {SQ}) and £ be the charac-
teristic function of Q. It is then easy to see that Q f= £. By Theorem 5.1,
this implies So (= 7[£], i.e., £ is a solution to 7 in Â. Now, let ip be any
propositional solution to 7 in Â, that is, s0 |= 7[</>]- Hence, by Theorem 5.1,
we know that Q\= <p. W.I.o.g., it can be assumed that <p is in conjunctive
normal form, that is, ip = <pi A . . . A ipn. Then, w.l.o.g., we choose any con-
junct tpi = a^i V . . . V a^m of (p. Since Q (= ip, it follows that Q \= <pi and
therefore Q (= a^j for some 1 < j < m. This means that for each s £ Q
there exists 1 < j < m such that a^ G i(s) or -"«ij G ̂ 4\£(s). Thus, since
<Pi was chosen w.l.o.g., we know that £=$•<£. Hence, £ is a propositional
exact solution to 7 in M.. •

Since the Chan algorithm is restricted to the valid subset of CTLQX, we
will now show how it can be extended in order to solve all queries in CTLQ*.

5.2.3 The Extended Chan Algorithm

As shown in the previous section, Chan's algorithm is based on the as-
sumption that solving a query can be reduced to solving its subqueries
without existential choices. Although this kind of determinization is not
possible in general, it can be performed for the whole fragment CTLQ1.
Recall that by Lemma 5.3 and Lemma 5.5, solving an intermediate collect-
ing query 7 at several states, whose indices on a path are given by a set T,
can be reduced to solving 7 at a single state with index in J . In particular,
if there exists a highest index in 1 such that 7 has a solution at the cor-
responding state, then it suffices to solve 7 at this single state. Otherwise,
if no such highest index in J exists, then it suffices to solve 7 at any state
with index in X that is in a cycle and at which 7 has a solution. Since
the Chan algorithm is restricted to valid queries, such highest indices resp.
cycle indices can be easily found because valid queries are guaranteed to
have a solution at every state. Hence, we can simply choose the maximum
of J , if it exists, or, otherwise, any cycle index in 1.
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However, when extending Chan's algorithm (see Algorithm 2) to the
whole fragment CTLQ1, validity is no longer guaranteed. Therefore, the
required states have to be computed in a more sophisticated way. In partic-
ular, we compute the set of states that correspond to highest indices resp.
cycle indices in X. Afterwards, we traverse the corresponding paths back-
wards until a state on each path is found at which 7 has a solution. These
are then the states with highest indices among the states at which 7 has a
solution, i.e., it suffices to solve 7 at this uniquely determined set of states.
This idea of computing the states at which 7 has a solution and that are
furthest away is implemented by the function FurthestSol in Algorithm 2.

The following lemma states the correctness of this function when the
fourth argument is set to false, i.e., when paths are ignored whose corre-
sponding set of prefix indices is infinite.

Lemma 5.7. Let 7 G CTLQ*, <p be a formula, Q be a set of states
in a Kripke structure, and FurthestSol be the function defined in Algo-
rithm 2. Moreover, let II Ç paths(Q) such that n G II iff Xn(<p) is finite,
•n1 f= 7[T] for some i G Xw((p), and irl \fc 7[J_] for all i G Xn((p). Then,
FurthestSol(7, <p, Q, false) returns the set of states S on paths n G II such
that ir(n) G S iff n is the highest index in Xn((p) satisfying irn \= 7[T].

Proof. Since cycle is false, the set C is empty. It is easy to see that the
fixpoint li\ is then also empty. Consequently, the set U2 consists of the
states in ß j \ [7[T]J, i.e., those states in the boundary set B^ at which 7 is
unsatisfiable. More formally, by Lemma 5.6 it follows that U2 is the set of
states 7r(n) on paths TX G II, where n = max(J^(<£>)) and irn ty= 7p~].
Our aim is now to find the states with highest indices in Xw(<p) on the
corresponding paths at which 7 is satisfiable. Thus, starting at the set U2,
we traverse the paths n G II backwards in order to find the states with least
indices n G Xn(ip) such that IT1 ̂ = 7[T] for all i G X^cp) with i > n. This is
performed by the fixpoint computation of U3, i.e., the set U3 consists of the
states ?r(n) on paths TT G II where nl ^ 7p~] for all i G Xn((p) with i > n.
Hence, it is easy to see that p r e g ^ ) D H<pA-<i[±] is the set of states 7r(n) on
paths 7T G n , where TV1 \£ i[T] for all i G Xn((p) with i > n and there exists
i G Xn(ip) such that i > n.
Recall that, by Lemma 5.6, B^ consists of the states 7r(n) on paths -K G
where n = max(2w(y>)). Now, let S = ((pre3(W3) n 7 ^ 7 [ ± ] ) U ß j ) D Ifrf
and 7T G n . (i) If n is the highest index in X^i^p) such that ?rn |= 7[T]
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Algorithm 2 Extended Chan algorithm
function FurthestSol(7, </?, Q, cycle) begin

if cycle then C = CJ else C = 0 ;
aXbmD

U n
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

return ((pre3
end

(W3) n 7^A^[±] ) U ß j U C) D [7[T]] ;

function EExactSol(7, Q) begin
case 7 of

? :

0A7 :
0 V7 :
A X 7 :
AF7 :
AG7 :
A(7U0) :
A(7U0) :
A(0U7) :
A(0Û7) :
AJÔU7) :
A 1 '•v »A/ n 1 •

SM. \ Y T » 1/ 1 •
A(7W0) :
A(0W 7 ) :
A(0W7) :
A(0W 7 ) :

esac
end

return Q ;
return EExactSol(7, Q) ;
return EExactSol(7, Q \ [0]) ;
return EExactSol(7, posta(Q)) ;
return EExactSol(A(TU7), Q) ;
return EExactSol(A(7 W ± ) , Q) ;
return EExactSol(A((0 V 7) W0), Q) ;
return EExactSol(A(7W0), Q) ;
return EExactSol(7, FurthestSol(7,6, Q, true)) ;
return EExactSol(A(ö U (6 A 7)), Q) ;
return EExactSol(A(0 W7), Q) ;
return EExactSol(A((0 V 7) W0), Q) ;
return EExactSol(7, Q U post3(7?.-,ö)) ;
return EExactSol(7, FurthestSol(7,0, Q, false)) ;
return EExactSol(A(0W(0 A 7)), Q) ;
return EExactSol(7, (Q U post3(7?.ö)) \ [01) ;



5 Solving Temporal Logic Queries 112

and n = max (2^ (</?)), we know that n(n) G S since ix(n) £ £?J D [7p~]].
(ii) Otherwise, if n is the highest index in l„(<p) such that irn \= 7[T] and
n ^ max(Z„.((/?)), we know that ir(n) G S since ?r(n) G pre^(Us) n7?.v,A-,7[j.] D
[7[T]J. It is easy to see that S contains no other states. Hence, the assertion
follows by combining item (i) and item (ii). D

The following lemma states the correctness of function FurthestSol in
Algorithm 2 when the fourth argument is set to true, i.e., when also paths
are considered whose corresponding set of prefix indices is infinite.

Lemma 5.8. Let 7 G CTLQ*, ip be a formula, Q be a set of states in a
Kripke structure, and FurthestSol be the function defined in Algorithm 2.
Moreover, let II Ç paths(Q) such that TX G II iff TX1 ft 7[T] for some
i G ln((f) and TX1 ft j[±] for all i G !*(?). Then, FurthestSol(7, (p, Q, true)
returns the set of states S on paths TT G II such that n(n) E S iff

• Ifln((p) is infinite and TX1 f= 7[T] for some i G cycle(Tr):
n G cycle(Tr) and ?rn |= 7[T]

• IfXn((p) is finite or irl ft j[T] for all i G cycle(Tr):
n is the highest index in In(<p) satisfying nn \= y[T]

Proof. Since cycle is true, C denotes the set C^ of cycles on paths ir G II
where lw(<p) is infinite. In other words, by Lemma 5.6, this is the set
of states n(n) on paths TX G II where X7r(yj) is infinite and n G cycle(Tr).
Obviously, C\[7[T]J denotes the set of states in C at which 7 is unsatisfiable,
i.e., at which 7 has no solution. It is easy to see that the greatest fixpoint U\
consists thus of those cycles in C that are entirely contained in C \ [7p~]].
More formally, U\ is the set of states n(n) on paths TT G II where T^ip) is
infinite, nl ft "f[T] for all % G cycle(Tr), and n G cycle(7r).
The set IÀ2 is then defined as the union of the states in U\ and, in addition,
of the states in ß^\[7[T]], i.e., those states in the boundary set B^ at which
7 is unsatisfiable. More formally, by Lemma 5.6 it follows that B^\ [7[T]J is
the set of states 7r(n) on paths n G II where Xn((p) is finite, n = max^(</?)),
and ixn ft 7[T]. Note that 7 is unsatisfiable at all states in Z^-
Our aim is now to find the states with highest indices in X7r((/?) on the
corresponding paths at which 7 is satisfiable. Thus, starting at the set U2,
we traverse the paths TX G II backwards in order to find the states with least
indices n G Xn((p) such that nl ft 7[T] for all i G Tn{ip) with i > n. This
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is performed by the fixpoint computation of U3, i.e., the set U3 consists of
the states ?r(n) on paths n G II, where -n% \£ y[T] for all i G T^(<p) such
that i > n. Hence, it is easy to see that p r e g ^ ) D T^A-^J . ] is the set of
states 7r(n) on paths ?r G II, where ix% \£ 7[T] for all i G T^{tp) with i > n
and there exists i G Iw(<p) with i > n.
Recall that, by Lemma 5.6, B^ consists of the states 7r(n) on paths TT G II
where Z,r(</?) is finite and n = max(X7r(</?)), and C consists of the states iv(n)
on paths TT G II where Tn((p) is infinite and n G cycle(Tr). Now, let S =
((pre3(Z4)n7^A-,7[x])U^UC)n[[7[T]J and w G IL (i) If 2*(p) is infinite, n G
cycle(Tr), and 7rn f= 7[T], we know that n(n) G S since ir(n) G C D [7[T]J.
(ii) Otherwise, if J7r(y?) is infinite, n1 \/= "f[T] for all i G cycle(TT), and n is the
highest index in Tw(ip) such that 7rn [= 7[T], we know that n(n) G <S since
ir(n) G pre3(W3)n7?.vA-,7[j_]n[7[T]]. (iii) Otherwise, if 1n{<p) is finite, n is the
highest index in ln((p) such that nn (= 7p~], and n = max(JT(y?)), we know
that ir(n) G S since 7r(n) G ß j H |7[T]J. (iv) Otherwise, if lw(<p) is finite,
n is the highest index in T^i^p) such that 7rn (= 7[T], and n ^ max(Z7r(</?)),
we know that ir(n) G <S since ?r(n) G p r e g ^ ) HT2.¥,A-,7[x] D [7[T]J. It is easy
to see that S contains no other states. Hence, the assertion follows from
item (i) and by combining item (ii), item (iii), and item (iv). D

Now, we are able to prove the correctness of the extended Chan algorithm.

Theorem 5.2. Let 7 G CTLQ* and Q be a set of states in a Kripke struc-
ture. Moreover, let EExactSol be the function defined in Algorithm 2. Sup-
pose that Q \= 7[T], i.e., 7 has a solution at each state in Q. Then,
EExactSol(7, Q) returns the unique set of solution states to 7 at Q.

Proof. Structural induction on 7.

Induction start:

> Let 7 = ?. Then, the assertion holds trivially since ExactSol(?, Q) = Q
and Q is the unique set of solution states to ? at Q.

Induction step:

t> Let 7 = 9 A 7. By induction hypothesis, we know that ExactSol(7, Q)
returns the set of solution states S to 7 at Q. Therefore, we have Q |=
7[<£>] iff S \= if. Moreover, by assumption, we have Q \= 7[T], which
implies Q (= 9. Hence, since Q (= 9 A y[<p] iff Q \= 9 and Q f= ï[ip], we
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know that Q \= 9 A ï[ip\ iff S (= ip, i.e., <S is the set of solution states
to 7 at Q.

c> Let 7 = ÖV7. By induction hypothesis, we know that ExactSol(7, Q\[0])
returns the set of solution states S to 7 at Q \ [0|. Therefore, we have
Q \ [0] |= 7[p] iff <S ^ <p. Moreover, note that trivially Q D [0] h 0.
Hence, since Q |= 0 V 7[y>] iff Q D [0] |= 9 and Q \ [0] |= 7M, we know
that Q \= 9 V7[(/J] iff iS |= </?, i.e., 5 is the set of solution states to 7 at Q.

> Let 7 = AX 7. By induction hypothesis, we know that ExactSol(7,
posta (Q)) returns the set of solution states S to 7 at post3(Q). Therefore,
we have posta(Q) f= j[(p] iff S \= ip. Hence, since Q (= AX7^] iff
postg(Q) |= j[(p], we know that Q \= AX7^] iff S \= <p, i.e., S is the set
of solution states to 7 at Q.

t> Let 7 = AF7. Since AF7 <=> A(TU7), the assertion follows from the
case of the strong until operator U.

> Let 7 = AG7. Since AG7 & A(7"W±) and A ^ W i ) <̂> A((J_ V
7) W_L), we know that AG7 <&• A(j W±) . Hence, the assertion follows
from the case of the overlapping weak until operator W.

= AfyU0). Since A(7U0) <̂> A(7 W0) A AF0 and A( 7 W0) &
7 )W0) , we know that A(7U0)^>A((0V7)W0)AAF0. More-

over, by assumption, we have Q \= 7[T], which implies Q \= AF9.
Hence, the assertion follows from the cases of the overlapping weak until
operator W and disjunction.

> Let 7 = A( 7U0). By assumption, we have Q |= 7p~], which implies
Q \= AF9. Hence, since A(7Û0) <̂> A( 7 W0) A AF0, the assertion
follows from the case of the overlapping weak until operator W.

> Let 7 = A(0U7) and F = FurthestSol(7,9, Q, true). By induction hy-
pothesis, we know that ExactSol(7, T) returns the set of solution states <S
to 7 at T. Therefore, we have T \= 7^] iff S (= <p. Now, consider
Q h A(ÖU7[^]), i.e., for each n G paths(Q) it holds that -K (= Ô U ^ ] .
By Lemma 5.1, we know that TT |= Ö U ^ ] iff there exists i 6 X^{ff) such
that 7Tl |= 7[v?], that is, tp G solijr(e)(7r,7). In particular, if there exists
i G Zn(9) such that nl \= 7[-L], then n (= ÖU7[</?] is trivially true. Hence,
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it suffices to consider only paths where w1 \fc j[-L] for all % G In(9)- Thus,
let II Ç paths(Q) be the set of such paths, and for each TT G II let us
distinguish between two cases:
(i) X7r(ö) is infinite and rcl \= 7[T] for some i G cycle(7r): Then, by Propo-
sition 5.1 and Lemma 5.5, we know that SO1{J}(TT,7) = solj^(e)(7r,7) for
every i € cycle(Tr) such that irl (= 7[T]. Now, let C = {i G cycle(Tr) | nl f=
7p~]}. Hence, since all states with indices in C have the same solutions,
this implies that n |= $U7[</?] iff nc \= 7[</?].
(ii) ln(6) is finite or IT1 ^ 7[T] for all % G cycle(Tr): Recall that, by as-
sumption, we have Q \= 7[T], which implies that there exists i G T^{9)
such that nl \= 7[T]. In particular, since 1^(9) is finite or irz |£ 7[T] for
all i G cycle(Tr), this implies that there exists a highest index n G 2^(0)
such that 7rn |= 7p~]. Thus, by Proposition 5.1 and Lemma 5.3, we obtain
sol{n}(7r,7) = solide)(7T, 7). Consequently, n |= 6\Jj[ip] iff nn \= j[cp\.
By Lemma 5.8, we know that T consists of all states with cycle indices C
according to item (i) on paths TT Gil satisfying the conditions of item (i),
and of all states with highest index n G In(6) according to item (ii) on
paths 7T G II satisfying the conditions of item (ii). Therefore, it holds
that Q \= A{e\Jy[(p]) iff T \= 7 ^ ] . Hence, Q (= A(6Vy[(p]) iff S \= </?,
i.e., S is the set of solution states to 7 at Q.

> Let 7 = A(6>Û7). Since A(0Û7) <£> A(#U (ÖA7)), the assertion follows
from the cases of the strong until operator U and conjunction.

o Let 7 = A(#Ü7) . By assumption, we have Q \= 7[T], which implies
Q \= A F ^ # . Hence, since A(0Ü7) <£> A(9Wj) A AF^0_, the assertion
follows from the case of the disjoint weak until operator W.

> Let 7 = A(7"W0). Since A(7W0) «• A((ô V 7) W9), the assertion
follows from the cases of the overlapping weak until operator W and
disjunction.

> Let 7 = A(jW9) = A((G7) V (7ÛO)). By induction hypothesis, we
know that ExactSol(7, QUpost3(7^^)) returns the set of solution states S
to 7 at Q U post3(7^-,ö). Therefore, we have Q U post3(^_,e) (= j[ip] iff
S \= ip. Now, consider Q \= A(;y[ip]W9), i.e., for each -K G paths(Q) it
holds that n \= ̂ [ip] WÖ. Let us distinguish between two cases:
(i) If 7T* ̂  0 for all i G N, we know that ?r \= 7^ ] W 9 iff TT |= G
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(ii) Otherwise, if there exists a least n G N such that nn \= 9, it is easy
to see that TT (= 7[<p] W 0 iff nl (= j[(p] for all i < n.
By Lemma 5.6, we know that lZ-,g consists of all states 7r(n) on paths
TT G paths(Q) such that TTX ty= 9 for all i < n. Hence, Q U post3(72_,e)
consists of all states n(n) on paths TT e paths(Q) such that TT% Y=- 9
for all i < n. Thus, it is easy to see that Q U postgC^Ufl) consists of
all states on paths TT G paths(Q) satisfying the condition of item (i),
and all states TT(I) with i < n, where n is the least number such that
7rn j= 9, on paths TT G paths(Q) satisfying the condition of item (ii).
Therefore, it holds that Q \= A(î[ip]W 9) iff Q U p o s t 3 ( ^ e ) |= î[<p].
Hence, Q \= A(j[<p] W9) iff S f= ip, i.e., S is the set of solution states
to 7 at Q.

D> Let 7 = A ( 0 W 7 ) = A{(G9) V (ÔU7)) and T = FurthestSol(7,9, Q,
false). By induction hypothesis, we know that ExactSol(7,T) returns
the set of solution states S to 7 at T. Therefore, we have T |= 7^ ] iff
S \= tp. Now, consider Q \= A(6"W^[(p]), i.e., for each TT G paths(Q) it
holds that TT \= 9W 7 [<p].
Obviously, if TT ^ G 9, it holds that TT (= 9Wj[(p] iff there exists i G lw(9)
such that 7Tr |= 7[v?], that is, <p G solj^(e)(7r,7). In particular, if there ex-
ists i G 2^(0) such that TTX |= 7[-L], then TT \= Ö W ^ ] is trivially true.
Also in the case of n (= Go, we trivially obtain ?r (= ÖW^ip]. Hence,
since ?r ^ G 9 iff X7r(ö) is finite, it suffices to consider only paths where
ln(9) is finite and TT{ ̂  j[±] for all i G Iff(ô). Thus, let n Ç paths(Q)
be the set of such paths and TT G n.
Recall that by assumption Q \= 7[T], which implies that there exists i G
T-niß) such that TT1 \= 7[T]. In particular, since ^^(ö) is finite, this implies
that there exists a highest index n G ln(9) such that ?rn |= 7[T]. Thus,
by Proposition 5.1 and Lemma 5.3, we obtain sol{n}(7r, 7) = SO1XW(0)(TT, 7).
Consequently, TT \= 9~W ï[ip] iff TT" (= 7[</?].
By Lemma 5.7, we know that T consists of all states with highest in-
dex n G Xn(Q) on paths TT G n such that TT71 \= 7[T]. Therefore, it holds
that Q \= A ( Ö W ^ ] ) iff T \= 7 ^ ] . Hence, Q |= A ( W ^ ] ) iff S \= <p,
i.e., S is the set of solution states to 7 at Q.

> Let 7 = A(0W7). Since A ( Ö W T ) O A(9W (9 A 7)), the assertion
follows from the cases of the weak until operator W and conjunction.
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> Let 7 = A(0W7) = A((G0) V (OÜ7)). By induction hypothesis, we
know that ExactSol(7, (Q U post^(TZg)) \ [0]) returns the set of solution
states S to 7 at (QUpost3(7^))\[0|. Therefore, we have (QUpost3(^0))\
[0] |= *f[<p] iff S H ¥>• Now, consider Q f= A(0W7[</?]), i.e., for each
7T G paths(Q) it holds thatjrr \=9Wy[ip}.
If 7T |= G0, then n (= 0W7[<p] is trivially true. Hence, it suffices to
consider only paths where n y= G0. Thus, let II Ç paths(Q) be the set
of such paths and ix G II. Then, there exists a least n G N such that
7rn ^ 6. It is easy to see that n \= 9 Wy[(p] iff 7rn |= >y[ip].
By Lemma 5.6, we know that IZe consists of all states n(n) on paths
n G paths(Q) such that it1 f= 9 for all i < n. Hence, Q U post^(TZg)
consists of all states ?r(n) on paths n G paths(Q) such that TX% \= 9 for all
i < n. Thus, it is easy to see that (Q U postg^e)) \ [0] consists of all
states 7r(n) on paths n G n, where n is the least number such that nn \£ 9.
Therefore, it holds that Q \= A(0W7^]) iff (QUpost3(7^))\[0] |= 7^] .
Hence, Q \= A(0 W7[</?]) iff 5 f= <p, i.e., «S is the set of solution states
to 7 at Q.

This concludes the proof. D

Remark 5.4. Similar to the original Chan algorithm, the extended Chan
algorithm can also be improved in several ways (cf. Remark 5.3). More-
over, note that the assumption in Theorem 5.2 that 7 has a solution, can
be simply checked by a single model checking call before applying the ex-
tended Chan algorithm. Note that this assumption is much weaker than
the requirement of validity in the original Chan algorithm. In particular,
when solving a query is reduced to solving a subquery at several states,
from validity it follows that the subquery has a solution at each of these
states. From the assumption in Theorem 5.2, however, it follows that there
is at least one state at which the subquery has a solution. This fact is also
reflected in the proof of Theorem 5.2.

As already mentioned in the case of the original Chan algorithm, in order
to obtain an exact solution, we have to compute the strongest formula
(within the set of interesting solutions) that holds at the unique set of
solution states. In particular, the following corollary shows how to obtain
a propositional exact solution by the extended Chan algorithm. Its proof
is analogous to the proof of Corollary 5.1.
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Corollary 5.2. Let 7 G CTLQ1 and s0 be the initial state of a Kripke
structure &. Moreover, let EExactSol be the function defined in Algorithm 2.
Then, the characteristic function of the set returned by EExactSol(7, {so})
is a propositional exact solution to 7 in Â.

5.2.4 Non-propositional Solutions

By Corollary 5.1 and Corollary 5.2, we have already shown how to obtain
propositional exact solutions from the results of the Chan and the extended
Chan algorithm respectively. In this section, we investigate the computa-
tion of non-propositional solutions based on the set of solution states to a
given query. Of course, by the definition of a set of solution states, every
formula that holds at such a set is a solution. However, we are interested in
a systematic computation of such formulas that are as strong as possible.
To this aim, we show how to compute non-propositional solutions by mod-
ifying the functions ExactSol and EExactSol defined in Algorithm 1 and
Algorithm 2 respectively.

Since we are able to compute propositional exact solutions to queries
in CTLQX, the idea behind our approach is to solve queries 7' G CTLQX

at the set of solution states to a given query 7 G CTLQX. Then, if ip
is a propositional exact solution to 7', the formula 7'^?] must be a non-
propositional solution to 7. Obviously, the main restriction of this approach
is that 7' must be in CTLQX such that the extended Chan algorithm can
be applied, i.e., we are not able to compute all solutions in this way.

Example 5.5. For example, if we are interested in solutions that consist of
propositional formulas and nested next operators AX, the queries 7' to be
solved are of the form ?, AX?, AX AX?, AX AX AX?, . . . . Thus, if <p0,
<Pi, <P2, <P3, • • • a r e the corresponding propositional exact solutions, we know
that ipo, AKipi, AX AX</?2, AX AX AX ^3, . . . are non-propositional so-
lutions to the original query 7 G CTLQX. Since 7 is distributive over
conjunction, we know that also <po A AX(</?i A AX(</?2 A AX(v?3 A •••))) *s

a solution to 7. In fact, this solution must be relatively strong, since the
propositional solutions in it are exact.

We will now show how such solutions as in the above example can be
systematically computed by modifying the Chan resp. extended Chan al-
gorithm. To this aim, the maximum nesting depth n of the next operators
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is added as third argument to the functions ExactSol and EExactSol. This
number remains unchanged for all recursive calls except in the case of the
placeholder (i.e., Line 3 in Algorithm 1 resp. Line 11 in Algorithm 2), which
is redefined in the following way (for the case of Algorithm 1):

if n = 0 then
return char-p(Q) ;

else
return char^(Q) A AX ExactSol(AX?, Q, n - 1) ;

If n = 0, then the modified algorithm returns in principle the same result as
before. In particular, it returns the characteristic function char-p restricted
to a set of interesting atomic propositions V instead of the set of solution
states. Otherwise, if n > 0, it returns a solution consisting of propositional
exact solutions and nested next operators of the form

V>o A AX(<^ A AX((p2 A • • • A X ( ^ . ! A AXipn) •••)),

where <£>i are propositional exact solutions for all 0 < i < n. The correctness
of this modification can be easily proved by induction on n. In the same
way, several other kinds of non-propositional solutions with fixed nesting
depth of the temporal operators occurring in them can be computed as long
as the Chan resp. extended Chan algorithm is applicable.

5.3 Further Approaches

After the publication of the first algorithm for solving temporal logic
queries, namely the Chan algorithm [ChaOO], there has been active research
on more general query solving algorithms. All these approaches were de-
veloped in order to compute the set of propositional minimal solutions. In
this section, we summarize their basic ideas and we show how they can be
extended in order to compute also non-propositional solutions.

This will be done in analogy to the extension of the Chan algorithm in
Section 5.2.4. In particular, our focus lies on the case of solutions with
bounded nesting depth of temporal operators, where the next operator is
the only allowed temporal operator. It is then easy to see how extensions
for arbitrary non-propositional solutions can be obtained.
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The common basic principle of the following query solving algorithms is
to evaluate a query recursively on its syntactic structure. Thus, in order
to obtain non-propositional solutions, it suffices to redefine the case of the
placeholder (cf. Section 5.2.4). To this aim, let us first introduce some
notations. Since the solutions we are interested in consist of nested AX and
EX operators, we define 7A = AX? and 7E = EX?. Moreover, for every
query 7 and every set of formulas <£, we define 7 0 $ = / \ { T M I V e $}•
For example, if 7 = AX EX? and $ = {pA -yq,AFq,p V EXp}, then
7 o $ = AX EX (p A -.g) A AXEX AFç A AXEX(p V EXp).

5.3.1 Extended Alternating Automata

Bruns and Godefroid [BG01] showed how to solve queries of any tempo-
ral logic having a translation to alternating automata. To this aim, they
adapted the automata-theoretic approach of Kupferman et al. [KVWOO].
The key idea of this adaption is to generalize the transition function of
alternating automata in such a way that disjunction and conjunction are
replaced by special meet and join operations of an arbitrary finite lattice
over sets of propositional formulas:

A/\B = mm({a\/b | a e A,b e B}) and A\/_B = min(AU B)

The resulting automata are called extended alternating automata (EAA).
To solve a query 7 in a Kripke structure Â, the query has to be translated
into an EAA 2l7 and the product automaton of 2l7 and Â has to be built.
Each node of an accepting run of the resulting product automaton is la-
beled with an element of the underlying lattice (i.e., a set of propositional
formulas). The maximum value labeling the root of an accepting run of
the product automaton is the set of minimal solutions to 7 in Â. This
maximum value is computed by simultaneously checking non-emptiness for
every value of the underlying lattice.

Obviously, this approach can be generalized to arbitrary finite lattices
even over sets of non-propositional formulas. In particular, in order to
guarantee the finiteness of the lattice, we add the maximum nesting depth n
of temporal operators as fourth argument to the transition function. Note
that we restrict our considerations to the temporal operators used in [BG01].
Moreover, note that we use 71 and 72 to denote both queries and formulas.
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Then, for all sets V Ç A of atomic propositions and arities k G V C N, the
adapted transition function p is given by:

p(p,V,k,n) = | 0 : p e > 4 N 7 ,

,P,/c,n) V p("/2,V,k,n)

p(AX1,V,k,n) = / k

p(A(7lU72),P,A;,n) =

P>fc,n) A \ / ^ = 1 ( 0 ^ ( 7 ^ 7 2 ) , n))

p(72 ,P, fc, n) A (p(7 l ,P, h,n)v/\ k
c=l (c, A(7 l R 7 2 ) , n))

Intuitively, the arguments of the transition function p are the query 7,
the set of atomic propositions V labeling the actual state, the number of
successors k of the actual state, and the nesting depth n. The value of p is
the set of minimal solutions to 7 at the actual state.

The most interesting case of this generalization, however, is the case of
the placeholder, which is redefined in the following way:

p(l,V,k,n)= <

{A{p|peP}AAH>|pe.A\P}}
p(?,P,A;,0)y
{7A<>p(7A,^,A;,n-l)}y V : n > 0
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Note that this is the only case where the nesting depth n of temporal
operators of the solutions is changed. If n = 0, then the returned solution
is purely propositional. Otherwise, if n > 0, the returned solutions consist
of a combination of propositional solutions and universal and existential
quantified next operators. The minimality of these solutions is guaranteed
by the join operator V. Because of the stepwise recursive construction, non-
minimal solutions are excluded as early as possible. It is easy to see that
also other non-propositional solutions can be computed in this way.

5.3.2 Multi-valued Model Checking
Chechik, Devereux, and Gurfinkel [GDC02, GCD03, CG03, GCD03] in-

vestigated CTL query solving by using their multi-valued model checker
XChek. Multi-valued CTL model checking is based on two extensions of
standard model checking: (i) The labeling function of Kripke structures
allows variables not only to be true or false at a particular state but to have
a value of an underlying lattice, (ii) The temporal logic CTL is extended
to XCTL in order to refer to such values within formulas.

In the case of query solving, they used a lattice over sets of propositional
formulas for their multi-valued model checking framework. Query solving is
then reduced to multi-valued model checking by translating a given query
into a XCTL formula such that the value of this formula in the model is the
set of minimal solutions to the query.

In analogy to Bruns and Godefroid (cf. Section 5.3.1), this approach
can also be generalized to arbitrary finite lattices even over sets of non-
propositional formulas. In particular, in order to guarantee the finiteness
of the lattice, we add the maximum nesting depth n of temporal operators
as argument to the definition of the multi-valued semantics. Note that
we restrict our considerations to the temporal operators used in [GDC02].
Moreover, note that we use 71 and 72 to denote both queries and formulas.
Let -1 (negation), fl (meet), and U (join) be the usual lattice operations.
Then, for any lattice (£, ^>) and interpretation function J : Q x i - > £
assigning to each pair of an atomic proposition and a state an element of
the underlying lattice, the adapted multi-valued semantics is given by:

(s) = <p, for if e C
(s) = I(s,p), torpeA
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(s) = [7l]n(s)

[EX7l]n(S) = LJ

[EG7]B(s) =

[E(7lu72)]n(s) =

The most interesting case of this generalization, however, is again the
case of the placeholder, which is redefined in the following way by using
the set of all characteristic functions over the set of atomic propositions A
defined by $ = {/\{p \ p <E V} A /\{-^p | p e A \ V} | V Ç A}:

Trgpaths(s

[ ? ]o ( s )U{ 7 A o[ 7 A ] B _ 1 ( a )}U{ 7 Eo[ 7 E ] B _ 1 ( B )} : n > 0

Note that this is the only case where the nesting depth n of temporal
operators of the solutions is changed. If n = 0, then the returned solution
is purely propositional, namely the expression f {</?} = {</?' | cp =>• y'} where
V? is the characteristic function of the actual state. Otherwise, if n > 0,
the returned solutions consist of a combination of propositional solutions
and universal and existential quantified next operators. The minimality of
these solutions is guaranteed by the join operator LJ. Because of the step-
wise recursive construction, non-minimal solutions are excluded as early as
possible. Again, it is easy to see that also other non-propositional solutions
can be computed in this way.

5.3.3 Reductions to Model Checking

Hornus and Schnoebelen [HS02] dealt with more theoretical results on
query solving for arbitrary fragments of CTL*. They showed that decid-
ing whether there exists a single minimal solution in a fixed model and
computing this solution can be reduced to a linear number (in the size of
the model) of model checking calls. Moreover, they showed that a second



5 Solving Temporal Logic Queries 124

minimal solution can be reduced to a quadratic number, a third minimal
solution to a cubic number, etc. of model checking calls. Concerning the
number of minimal solutions to CTL queries, they proved that deciding
whether there exist at least k (in unary) minimal solutions is NP-complete
and counting the number of minimal solutions is jjP-complete.

Although they did not present an explicit algorithm, the following steps
can be extracted from their proofs. In order to compute the set of proposi-
tional minimal solutions to a query 7, a propositional formula tp is defined
and it is checked whether ^[ip] holds in the model. Then, (p is modified in
a sophisticated way and j[(p] is checked again. This procedure is repeated
until ip is identified to be a new minimal solution.

It is easy to see that also non-propositional solutions to a query 7 can
be computed in this way. To this aim, compute the set $ of proposi-
tional minimal solutions to the query 7(7'], where 7' is any query. Then,
7' o $ is obviously a non-propositional solution to 7. However, since Hornus
and Schnoebelen did not present a recursive algorithm over the syntactic
structure of queries, there is no natural extension for computing minimal
non-propositional solutions as in the approaches described above.

5.4 Summary

Temporal operators can be distinguished into universal and existential
ones with respect to each of their operands. For example, the global oper-
ator G is universal, since evaluating n f= G ip can be reduced to evaluating
Vz e N. IT1 \= if. Contrary, the future operator F is existential, since evalu-
ating 7T (= F ip can be reduced to evaluating 3z € N. TT1 (= ip.

In general, existential operators cause a high computational effort when
solving temporal logic queries. For example, in order to compute all solu-
tions to F 7 on path ir, the subquery 7 has to be solved at all positions on n.
However, if 7 is intermediate collecting (as defined in Chapter 4), solving
F 7 can be reduced to solving 7 at a single position on IT. In this way, it
is possible to eliminate non-determinism in the form of existential choices
when solving queries. Intuitively, this is done by computing a distance
depending on the temporal operator and choosing states that are furthest
away from the actual state but not further away than the computed distance
and such that the subquery has a solution at the chosen states. Although
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this condition seems to be quite complex, it can be efficiently implemented
by symbolic algorithms as it was done by Chan.

Chan's symbolic algorithm for solving temporal logic queries in the syn-
tactic fragment CTLQX is based on the kind of determinization described
above. In particular, all immediate subqueries of existential operators
in CTLQX are intermediate collecting. Hence, this property can be exploited
in order to solve such queries more efficiently. In fact, Chan's original algo-
rithm requires also another property, namely the existence of a solution in
every Kripke structure. However, the original algorithm can be extended in
order to solve all queries in CTLQ1. The main contributions of this chapter
were the presentation of such an extension and the correctness proofs of
both the Chan and the extended Chan algorithm.



Chapter 6

Parameterized Vacuity

6.1 Introduction

When a model checker detects that a specification <p is violated, it will
output a counterexample. If the specification is satisfied, however, there is
usually no feedback from the model checker; in particular, the user does not
know whether <p is satisfied vacuously, i.e., due to a trivial reason. One of the
simplest examples of vacuous satisfaction is antecedent failure [BB94], i.e.,
the situation when the antecedent <p of an implication y? => -0 is not satisfied
in the model, resulting in the vacuous truth of <p =>• ip. Since experience has
shown that vacuous satisfaction often hints at an error either in the model
or in the specification, vacuity detection has gained much interest in the
last years from both industry and academia. To cite Beer et al. from the
IBM Haifa Research Laboratory [BBDER97]:

Both the ability to detect trivial passes and the ability to gener-
ate interesting witnesses are of great importance in the practical
application of formal verification to hardware design. Our expe-
rience has shown that typically 20% of formulas pass vacuously
during the first formal verification runs of a new hardware design,
and that vacuous passes always point to a real problem in either
the design or its specification or environment. Of the formulas
which pass non-vacuously, examination of the witness traces dis-
covers a problem for approximately 10% of the formulas.

Intuitively, vacuity means that the truth value of a formula <p is inde-
pendent of the truth value of a subformula, i.e., the subformula can be re-
placed by any other formula without changing the truth value of <p. Thus,



6 Parameterized Vacuity 127

a naive approach for detecting vacuity would be to check the truth value of
a formula for all possible substitutions of all subformulas. However, this is
obviously infeasible in practice. Therefore, Kupferman and Vardi showed in
their seminal paper [KV99], that in the case of CTL*, vacuity detection can
be reduced to model checking if the subformulas occur with pure polarity
(i.e., under an even or an odd number of negations, but not mixed). In
particular, they showed that a formula ip is vacuously satisfied with respect
to a subformula tp iff the truth value of ip remains unchanged when replac-
ing ip by the constant truth values T (true) resp. J_ (false) depending on
the polarity of ip in ip. Thereafter, Beer et al. [BBDEROl] generalized this
result to any logic with polarity.

Example 6.1 (Classical vacuity). Note that the specification AX(pVAXg)
is trivially satisfied in every model where the stronger formula AXp holds
(since AXp => AX(p V AXg)). In this case, the subformula AX g can
be replaced by _L, that is, AX(p V _L) = AXp, without affecting the truth
value. Hence, AX(pV AXg) is vacuously satisfied.

The main motivation for the work presented in this chapter is the ob-
servation (already mentioned by Beer et al. [BBDEROl]) that the common
notion of vacuity described above does not suffice to capture the intuitive
range of "trivial" satisfaction.

Example 6.2 (Limits of classical vacuity). Note that the specification AX
AFp is trivially satisfied in every model where the stronger formula AXp
holds (since AXp =>• AX AFp). This form of trivial satisfaction however,
does not fall under the common notion of vacuity since neither p nor AF p
can be replaced by _L without affecting the truth value. A similar example
due to Pnueli [Pnu97] will be described later in more detail.

Therefore, we suggest a refined notion of vacuity (weak vacuity) which
is parameterized by a user-defined class 0 of vacuity causes. Under this
notion, a specification is vacuously satisfied if a subformula collapses to a
vacuity cause, and classical vacuity amounts to the special case where 6
consists of the constant truth values T and _L.

Example 6.3. Let O = {T, J_,p} be a given set of vacuity causes. Then,
the subformula AX g in Example 6.1 can be replaced by 1 G 9 without
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affecting the truth value. Hence, the specification is vacuously satisfied in
the classical sense. Moreover, in Example 6.2, the subformula A F p can be
replaced by the stronger formula p G 0 without affecting the truth value.
Hence, the specification is vacuously satisfied in our weaker sense.

In addition to a generalization of classical vacuity, we establish a close
relationship between the detection of weak vacuity and temporal logic query
solving, which gives rise to a systematic framework for weak vacuity.

This chapter is organized as follows: In Section 6.2, we summarize the
basic knowledge of vacuity detection that we need in this chapter. Then,
we present our generalization of vacuity in Section 6.3 consisting of three
subsections. Section 6.3.1 shows how the classical vacuity notion can be
embedded into temporal logic queries. The most important part of this
chapter is then presented in Section 6.3.2, where we introduce our general-
ization to weak vacuity. Afterwards, Section 6.3.3 shows how to construct
vacuity witnesses for weak vacuity. In Section 6.4, we give a short overview
of related work. Finally, we summarize in Section 6.5.

6.2 Background on Vacuity Detection

Since most of the definitions and results concerning vacuity use the sub-
stitution of subformulas of a given formula, Kupferman and Vardi [KV99]
introduced the notation ip[ip <— 9] to denote the result of substituting the
subformula ip (i.e., all occurrences of ip) of ip by 9. This enables us to for-
mulate the following two definitions which are adapted from [BBDER97].

Definition 6.1 (Affect). The subformula ip of formula <p affects <p in a
model 97T iff there is a formula 9 such that the truth values of ip and <p[ip <— 9]
are different in 9JÎ.

With this notion at hand, we are able to define what we mean by vacuity.

Definition 6.2 (Vacuity). The model 9Jt satisfies ip vacuously iff Tt j= <p
and there is some subformula tp of (p such that ip does not affect ip in 971.

Note that according to this definition, all subformulas have to be checked
in order to detect non-vacuity. For practical reasons, this can be easily
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modified in such a way that vacuity is checked with respect to user-selected
subformulas that are considered to be relevant. Therefore, a special kind of
vacuity was introduced by Beer et al. [BBDEROl], namely ^-vacuity. We
slightly adapt their definition in order to preserve a consistent terminology.

Definition 6.3 (^-Vacuity). Let ip be a subformula of formula (p. The
model dJl satisfies ip ip-vacuously iff 9JÎ f= <p and ip does not affect <p in 3JÎ.

It is easy to see that a formula is vacuously satisfied iff it is ^-vacuously
satisfied for some subformula ip. Kupferman and Vardi [KV99] showed
that if there exist multiple occurrences of ip in <p, then vacuity detection
is much harder because one occurrence of the subformula may be positive
(i.e., under an even number of negations) and another occurrence of the
same subformula may be negative (i.e., under an odd number of negations).
Therefore, they required that every subformula occurs only once, which
guarantees that the substituted subformula occurs with pure polarity (i.e.,
either positive or negative) which, on the other hand, guarantees some kind
of monotonicity. Under this assumption, they showed that checking ip-
vacuity of a satisfied formula <p can be reduced to model checking ip[ip «— A.]
(if ip occurs positive) resp. (p\ip *— T] (if ip occurs negative).

6.3 From Vacuity to Parameterized Vacuity

In this section, we show that temporal logic queries can be seen as a
uniform framework for vacuity detection and how the conventional concept
of vacuity can be nicely generalized by using terms of temporal logic queries.
To this aim, consider the query 7 = ip[ip <— ?], which we obtain by replacing
subformula ip by the placeholder. Obviously, it holds that ^[6] = <p[ip <— 6],
which indicates how to use temporal logic queries for vacuity detection.

Definition 6.4 (Annotate). A query 7 annotates a formula ip iff it holds
that *y[ip] = <p for some subformula ip of <p.

This definition enables us to encode selected occurrences of a subfor-
mula ip in cp into a query 7. Then, checking if ip affects ip can be done by
determining the solutions to 7. Hence, checking vacuity can be reduced to
query solving. In order to do this, we need another definition.
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Definition 6.5 (Equivalent). A query 7 is equivalent to a formula (p in
a model ÜJI, in symbols 7 =OT <p, iff for all formulas 9, ^[9] <& <p in 071.

6.3.1 Strong Vacuity

Now, we are able to define the classical notion of vacuity by terms of
temporal logic queries. We call it strong vacuity because later we will also
define a more general and therefore weaker form of vacuity.

Definition 6.6 (Strong vacuity). Let <p be a formula annotated by 7.
Then, the model DJl satisfies <p strong ^-vacuously iff SDÎ |= y and 7 =<JK (p.

Obviously, a comparison between vacuity and strong vacuity makes only
sense when the set of annotating queries that are taken into account for
strong vacuity detection contains only those queries in which all occurrences
of a subformula are simultaneously replaced by the placeholder. More for-
mally, the annotating queries must be given by the set

{<p[ip <— ?] I -0 is some subformula of <p}.

Then, it is easy to see that classical vacuity and strong vacuity coincide.
This is not surprising because so far we have essentially reformulated the
notion of vacuity by terms of temporal logic queries. However, as we will
see later, temporal logic queries provide us with another point of view of
vacuity which will be crucial towards a generalization.

Recall that Kupferman and Vardi [KV99] investigated vacuity of CTL*
formulas with respect to subformulas with pure polarity (i.e., either positive
or negative). Beer et al. [BBDEROl] showed that this approach can be
generalized to any logic with polarity. In terms of temporal logic queries,
this can be further generalized by considering arbitrary monotonie queries.
Note that pure polarity implies monotonicity but not vice versa.

The following lemma is our first step towards a generalization. Its proof
is similar to the proof of Theorem 1 in [KV99]. The main difference is
the use of Lemma 2.1, which is based on the purely semantical property
of monotonicity in contrast to Lemma 1 in [KV99], which is based on the
syntactic (and therefore more specific) property of pure polarity. Note that
it suffices to consider only queries that are monotonically increasing; the
case for queries that are monotonically decreasing is symmetric.
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Lemma 6.1. Let ip be a formula annotated by a monotonie query 7. Then,
it holds that 7 =an (p ijf 7p~] «=> ̂ y[±] in SOT.

Proof. For the i/ direction, assume that 7[T] •&• 7[±] in 971. Since 7 anno-
tates yj, we know that there exists a subformula ip of ip such that ~/[ip] = (p.
If 971 (= 7[-L], we know by Lemma 2.1 that every formula is a solution to 7
in 971. In particular, this implies 971 \= j[tp], that is, DDT |= tp. Otherwise, if
971 ̂  7[_L], then 97t ^ 7[T] either. Thus, by Lemma 2.1, we know that 7
has no solution in 97Î. In particular, this implies 971 ̂ = 7 ^ ] , that is, Wl\£ (p.
Hence, for every formula 9 it holds that 7(0] <=$> <£> in 97Î, that is, 7 =OT </?.

For the only if direction, assume that 7 =<xn <p. Thus, for every formula 6
it holds that ^[6] ^ ip in 971. In particular, this implies 7[T] «=> (p and
7[_L] <& (p'mVJl. Hence, we have 7fr] «=> 7[±] in 971. D

The following theorem can be proved by using Lemma 2.1 and Lemma 6.1.
In clear analogy to [KV99], it enables us to reduce vacuity detection with
respect to monotonie queries to a single model checking call.

Theorem 6.1. Let (p be a formula annotated by a monotonie query 7.
Then, the model 971 satisfies ip strong "/-vacuously iffVJl\= 7[-L]-

Proof. For the if direction, assume that 9JI f= 7[_L]. Since 7 annotates <p, we
know that there exists a subformula ip of cp such that 7 ^ ] = (p. Moreover,
since 3DT [= 7[_L], we know by Lemma 2.1 that every formula is a solution
to 7 in 971. In particular, this implies 971 |= 7 ^ ] , that is, 971 |= <p. Hence,
for every formula 6 it holds that 7(0] o> <p in 971, that is, 7 =m ip. So we
have 971 |= <p and 7 =grji <p, i.e., 971 satisfies (p strong 7-vacuously.

For the only if direction, assume that 971 |= ip and 7 =<m f- Since
7 annotates ip, we know that there exists a subformula ip of <p such that
j[tp] — <p. Hence, since 97Î |= <p, we trivially have 971 |= 7 ^ ] . Thus, by
Lemma 2.1, we obtain 97Î \= j[T]. Moreover, since 7 =an <P, we know by
Lemma 6.1 that 7[T] <^ j[±] in 971. So we have 97T |= 7[T] and 7[T] <=> j[±]
in 97Î. Hence, it holds that 97Î |= j[l]. D

An immediate consequence of this theorem is the following corollary.

Corollary 6.1. Let ip be a formula annotated by a monotonie query 7.
Then, checking whether a model 971 satisfies <p strong j-vacuously can be
done in time O(Cgrjt(|7[-L]|)), where Crm(k) denotes the complexity of checking
whether 971 satisfies a formula of length k.
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The key observation in the above theorem is that checking formula 7[_L]
in 971 can be seen as the computation of the strongest solutions to query 7
in 971. If there is a single strongest solution equivalent to _L, then 971 sat-
isfies ip strong 7-vacuously. Hence, we have reduced vacuity detection to
query solving. But what can we say if the strongest solutions to 7 in 97Î
are not equivalent to ±? We will answer this question by a generalization
of strong vacuity in the following section.

6.3.2 Weak Vacuity

Recall that a subformula ip does not affect the truth value of <p in 971
iff ijj can be replaced by any other formula without changing the truth
value of the resulting formula in 97t. However, as mentioned by Beer et al.
in [BBDER01], this definition of vacuity is sometimes "missing the point".
We demonstrate this by an example proposed by Amir Pnueli:

Example 6.4 (Pnueli [Pnu97]). Consider the formula AG AFp and let 971 be
a model such that 97Î (= AGp. Then, it trivially holds that 971 \= AG AFp.
Since it cannot be the case that 97Î \= AG _L, we know that AFp affects the
truth value of AG AFp in 971, i.e., 971 does not satisfy AG AFp strong 7-
vacuously, where 7 = AG ?. However, our intuition tells us that 971 satisfies
AG AFp vacuously since it holds due to a trivial reason, namely because
the stronger formula AGp holds in 971. In terms of temporal logic queries,
this means that 971 |= 7[AFp] holds vacuously because (i) 971 |= 7[p], (ii) 7
is monotonie, and (iii) p =>• AFp.

The approach proposed by Beer et al. [BBDEROl] for solving this problem
is to refine the standard definition of vacuity in such a way that formulas
as in the example above are identified as vacuously satisfied: "Instead of
checking whether a subformula can be replaced by any other subformula,
we will check whether it can be replaced by some 'simpler' formula." They
did not give a formal definition of the term "simpler" but they presented
some examples: p is simpler than AFp, AGp is simpler than AFp, and
(AGp) A (AFq) is simpler than A(pUç). From these examples it is easy
to see, especially with the knowledge of temporal logic queries in mind, that
"simpler" means stronger with respect to logical implication, i.e., p => AFp,
AGp => AFp, and (AGp) A (AFç) =» A(pUç).
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Our intuition to refine vacuity is therefore to define a formula to be vac-
uously satisfied if there is a subformula that can be replaced by a stronger
formula without affecting the truth value. Finding such stronger formulas
can be done by solving temporal logic queries. In fact, we will show that it
suffices to compute the minimal solutions to a query. However, as already
mentioned in Section 4.2, such minimal solutions do not need to exist in
general. Moreover, when computing some stronger formulas (not neces-
sarily minimal) they may not be interesting in the sense that they do not
justify the truth value of the original formula by a trivial reason. Therefore,
we have to restrict the set of potential solutions to a set of user-selected
formulas that are considered to be interesting for detecting vacuity - we
call the elements of this set vacuity causes.

Definition 6.7 (Vacuity causes). A set of vacuity causes 0 is a poset
with respect to logical implication of formulas in a given logic such that
every subset of 0 has a finite number of minimal and maximal elements.

In the following, we will implicitly assume that {_L, T} Ç 0 in order to
guarantee that strong vacuity is a special case of our generalization to weak
vacuity. Important natural examples of vacuity causes are:

• Classical vacuity causes {±, T}, which yields strong vacuity.

• Propositional vacuity causes (e.g., p => AFp)

• Bounded vacuity causes, i.e., formulas with a maximal nesting
depth of temporal operators. In particular:

- Local vacuity causes, where the next operator is the only al-
lowed temporal operator (e.g., AX(p V AXp) => AFp).

- Invariants (e.g., AGp =4> p)

The following definition formalizes our generalization by weakening the
requirement 9JI |= 7[_L] in Theorem 6.1 accordingly. Note that the definition
is parameterized by a set of vacuity causes.

Definition 6.8 (Weak vacuity). Let ^ be a formula annotated by a
monotonie query 7 such that if = 7^] , and let 0 be a set of vacuity causes.
Then, the model DJl satisfies <p weak ^-vacuously with vacuity causes in 0 iff
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1. M\= (p and t/> «=>• -1 or

2. there exists Ö G 0 such that ÜJI \= ~f[9] and 9 => ^, but V ^ #•

Remark 6.1. Note that the definition of weak vacuity makes only sense for
monotonie queries. Moreover, note that if (1) holds true, no solution strictly
weaker than ip can exist, since 9 =>• _L is true only for 9 <=*> _L.

A naive algorithm for detecting weak vacuity according to Definition 6.8
can be formulated as in Algorithm 3. However, in order to detect weak
vacuity, it suffices to compute the strongest resp. minimal solutions to 7
in ÜJI as stated in the following theorem. The restriction to minimal solu-
tions does not only reduce the computation effort but also provides more
compact information on the causes of weak vacuity.

Algorithm 3 Detecting weak vacuity

1 Select a subformula ip of <p.
2 Define 7 such that <p = 7 ^ ] .
3 if 9JÎ |= <p and ijj o- ± then / / Special case: ip <=>• _L
4 output _L ; / / Vacuity cause: _L
5 elsif ip <&• J_ then / / Regular case: ip «£> ±
e for all 9 e sol(QJl, 7) n 6 do
7 if9=>ip and ip ̂ > 9 then
s output 9 ; / / Vacuity cause: 9

Theorem 6.2. Let (p be a formula annotated by a monotonie query 7 and
Q be a set of vacuity causes. Further, let A4 be the set of minimal solutions
to 7 in a model DJt restricted to elements in G. Then, DJl satisfies cp weak
^(-vacuously with vacuity causes in 0 iff 9JI satisfies (p weak ^-vacuously
with vacuity causes in M..

Proof. Since condition (1) of weak vacuity (cf. Definition 6.8) is trivially
equivalent in both cases, it remains to show the equivalence of condition (2).

For the if direction, assume that there exists ß G M such that Wl \= j[ß]
and ß => tp, but ip =&• ß. Hence, since A4. Ç 0 , we trivially obtain that SDÎ
satisfies <p weak 7-vacuously with vacuity causes in 0 .
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Figure 6.1: Weak vacuity example

Figure 6.2: Vacuity causes

For the only if direction, assume that there exists a formula Ö G 0 such
that 971 f= 7[0] and 9 =ï tp, but ip =&• 9. Since .M Ç 6 is the set of minimal
solutions to 7 in 971 and 9 is a solution to 7 in 971, we know that there exists
fi E M such that n =4> 9. Thus, since 9 =>• r/>, we obtain ^ =>• •0. On the
other hand, if ip => [j,, then ip =$> 9 since /i => Ö. This, however, contradicts
ip 3> 9. Hence, there exists ß e M such that 971 |= 7[/i] and ß ^ iß but
ip j> fi, i.e., 97Î satisfies 9? weak 7-vacuously with vacuity causes in .M. D

The following corollary states an immediate practical application of the
previous theorem in Algorithm 3.

Corollary 6.2. Line 6 in Algorithm 3 can be replaced by

for all 9 e min(sol(97t, 7) n 0) do.

Remark 6.2. It is easy to see that the computation of solutions according
to Line 6 in Algorithm 3 can be optimized in such a way that sol(97l, 7)
directly computes the set of minimal solutions within 6. Moreover, note
that only those solutions computed in Line 6 are relevant that meet the
requirements of Line 7. Hence, formula ip can also be used to reduce the
search space during computation in Line 6.

Example 6.5. Consider the Kripke structure 8. shown in Figure 6.1 and the
poset 0 of vacuity causes shown in Figure 6.2. Further, let cp = XF q
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be the LTL formula for which we want to check vacuity with respect to
subformula ip = F q in Â. Thus, we define 7 = X ?. It is easy to see that
Â f= ip and that y> does not hold strong 7-vacuously in Â since Â \£ 7[J_]
(cf. Theorem 6.1).

Now, in order to check weak vacuity, let us consider the solutions to 7
in ß.. It is easy to see that sol(£, 7) D 0 = {XXç,pUç, Fq,T}, which
are the elements above the dotted line in Figure 6.2. This is also the set
computed in Line 6 in Algorithm 3. According to Theorem 6.2, however,
it suffices to consider the set min(sol(^,7) n 6 ) = {XXg,pUg}. Thus,
it remains to check the weak vacuity conditions of Line 7 in Algorithm 3,
which are satisfied by both formulas. Hence, the two vacuity causes XX g
and p\J q indeed cause weak 7-vacuity of XFq in Â.

Finally, it remains to show how to extract non-vacuity witnesses from the
Kripke structure under consideration, i.e., how to obtain a substructure that
proves that the given formula is not vacuously satisfied in the structure.

6.3.3 Witness Construction

If a formula is not satisfied by the model, the model checker returns a
counterexample, which helps the user to correct the error in the model or
the specification. On the other hand, if the formula is satisfied by the
model, standard model checkers do not return a witness, which would also
be helpful for the user to verify that the specification holds in the intended
way. In particular, after the vacuity detection process, where all errors caus-
ing vacuous satisfaction should have been corrected, a witness would prove
that the specification holds indeed non-vacuously. The generation of such
vacuity witnesses is discussed in [BBDER97, KV99, BBDER01, GC04b].
In this section, we reformulate the witness construction of Kupferman and
Vardi [KV99] in terms of temporal logic queries in order to obtain strong
vacuity witnesses. Afterwards, we show how to extend this approach in
order to obtain also weak vacuity witnesses.

At first, let us recall the relevant definitions of Beer et al. [BBDEROl].
One of the main difficulties in witness construction is to construct an in-
teresting witness, i.e., a witness that is as small as possible. To this aim, a
pre-order on models resp. witnesses is necessary.
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Definition 6.9 (Pre-order on models). Given a logic C, we define the
natural pre-order -<c of £ on the set of models: 9JI' -<c 3JÏ iff for all ip 6 C
it holds that DJl \= tp => M' |= <p.

Natural pre-orders on models of the temporal logics LTL, CTL, CTL*,
ACTL, and ACTL* can be found in [BBDER01]. Since it is clear now that
such a pre-order on models depends on the logic under consideration, we
will omit the subscript £ and simply write -< in the following.

Now, we are able to define what we understand by an interesting witness.
Note that we consider the more general concept of witnesses with respect
to a set of queries and not with respect to a single query. This is because a
witness that proves non-vacuity with respect to a set of queries simultane-
ously contains much more information than the individual witnesses with
respect to each single query in this set. The following definition is a straight
forward adaption of Beer et al. [BBDEROl].

Definition 6.10 (Interesting witness1). Let <p be a formula and F be a
set of queries that annotate ip. Further, let 93Î be a model and 6 be a set
of vacuity causes. Then, the model £ -< 9DÎ is an interesting strong (weak)
Y-vacuity witness of ip in DJl (with vacuity causes in O) iff € is a minimal
model with respect to -< such that for all 7 G F it holds that C does not
satisfy <p strong (weak) 7-vacuously (with vacuity causes in 0 ) .

Note that there exists an interesting 7-vacuity witness of a formula cp in
a model Tt iff ip does not hold 7-vacuously in 9JT [BBDEROl]. However,
note further that a single interesting witness with respect to a set of queries
does not need to exist as it is shown in the following example.

Example 6.6 (Beer et al. [BBDEROl]). There cannot exist a single inter-
esting strong F-vacuity witness of cp = p V q in any model, where F = {71 =
P V ?,72 = ? V q}. For the sake of contradiction, assume that there exists
such a witness <£. Then, we know that £ \= <p, but £ ^= 71 [-L] and € =̂ 72[_L].
However, since C ^ 7i[-L] implies € ^ p and £ ^ 72 [-L] implies € \£ q, we
have C ^ p V q, which contradicts € (= <p.

A restricted definition of an interesting witness is presented in [KV99] where only
paths are considered to be simple enough to be interesting. However, there may exist
simple witnesses (cf. Clarke et al. [CJLV02]) in cases where no path witnesses exist.
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Hence, if a single witnesses with respect to a set of queries does not exist,
we have to split the set and construct a witness for each subset. Thus, in
the worst case, we have to construct a witness for each query.

Kupferman and Vardi [KV99] defined a witness formula in order to gen-
erate an interesting witness. The following definition adapts their construc-
tion in terms of temporal logic queries.

Definition 6.11 (Strong vacuity witness formula). Let ip be a formula
and F be a set of monotonie queries that annotate cp. Then, the strong F-
vacuity witness formula of ip is given by

witness strongte,T) = V

It is easy to see by the proof of Theorem 7 in [KV99], that a minimal
(wrt. the pre-order on models) counterexample to -^witnessstrongte'> H in a
model Wl is an interesting strong F-vacuity witness of <p in 371. Now, let
us define a generalization of strong vacuity witness formulas in order to
generate an interesting vacuity witness concerning weak vacuity.

Definition 6.12 (Weak vacuity witness formula). Let </? be a formula
and F be a set of monotonie queries that annotate (p. Further, let 0 be a
set of vacuity causes. Then, the weak T-vacuity witness formula of ip with
vacuity causes in O is given by

witnessweakte, F, 6) = </? A f\ "^M-

The witness formula consists of a conjunction of the formula ip itself,
because ip must be true on the witness, and of formulas that must not be
true on the witness, namely formulas where the relevant subformulas tp have
been replaced by some stronger vacuity causes. The following theorem is
an analogous result to Theorem 7 in [KV99].

Theorem 6.3. Let ip be a formula and F be a set of monotonie queries
that annotate ip. Further, let Q be a set of vacuity causes. Then, a minimal
(wrt. the pre-order on models) counterexample to -^witnessweaktei^i®) *n

a model Wl is an interesting weak T-vacuity witness of ip indJl with vacuity
causes in Q.
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Proof. Since we reduce witness construction to counterexample construc-
tion by using the counterexample returned by a model checking tool, we
assume that the minimality of the witness (cf. Definition 6.10) is guaranteed
by the underlying counterexample techniques. Hence, it remains to show
that for all 7 G F it holds that (p does not hold weak 7-vacuously in <£. To
this aim, let (£ be a counterexample of -*witnessweak{t-p, F, 0 ) in 9DÎ. Then, <L
obviously satisfies witnessweak((f, F ,0 ) and therefore (£[=</?. Now, assume
that there exists a query 7 G F such that £ satisfies <p weak 7-vacuously
with vacuity causes in 0 . Since 7 annotates ip, we know that there exists
a subformula ip of ip such that 7 ^ ] = ip. Consequently, there exists 6 G 0
such that € \= 7(0] and 9 =4> ip, but ip =£> 9. Hence, since 0 is a set of
vacuity causes, there must exist a maximal v G 0 such that 9 =>• v, v =>• ip,
and ip =£• v. Thus, by the monotonicity of 7, we know that £ \= 7(1/] and
v =>• ip, but ip =£> v, which contradicts £ (= witnessweak((f,T, 0 ) . It follows
that for all 7 G F it holds that € does not satisfy ip weak 7-vacuously with
vacuity causes in 0 , i.e., <£ is an interesting weak F-vacuity witness of <p
in 9JI with vacuity causes in 0 . D

Example 6.7. Consider the Kripke structure Â shown in Figure 6.1 and the
poset 0 of vacuity causes shown in Figure 6.2. In order to compare strong
and weak vacuity witnesses, we need a formula that holds neither strong
nor weak vacuously in Ä with vacuity causes in 0 . From Example 6.5, we
know that, e.g., X X X q does not hold weak 7-vacuously (where 7 = X?)
and therefore not strong 7-vacuously. Thus, let <p = XXX q be the LTL
formula for which we want to construct vacuity witnesses. Since we consider
LTL formulas, counterexamples and vacuity witnesses are paths (cf. Beer
et al. [BBDEROl]). There exist three paths in Â: TTI = so, si, S2, SQ, S4,...,
7!"2 = so, si, s3, s2, s6, s4 , . . . , and n3 = s0, s5, s6, s4, s2 , . . . .

It is easy to see that all three paths are interesting strong 7-vacuity
witnesses of <p in VJl, i.e., all three paths are minimal and TT* \£ j[±] for
all 1 < i < 3. However, TT3 cannot be a weak 7-vacuity witness because
7T3 |= 7[Gç], i.e., there exists a formula stronger than XXg in 0 that
is a solution to 7 on 7^. More formally, ir^ is not a counterexample to
-iwitnessweak(<p,'y,Q) in Â (cf. Theorem 6.3), where witnessweak((p,7, Q) =
cp A -i7[Gç]. On the other hand, it is easy to see that TTI and n2 are
interesting weak 7-vacuity witnesses of (p in Â with vacuity causes in 0 .
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The remaining question for detecting weak vacuity is how to compute
the set of minimal solutions or at least one minimal solution that satisfies
the conditions of Theorem 6.2. To this aim, the query solving algorithms
presented in Chapter 5 can be used. Finally, let us remark that there are
two aspects of query solving for vacuity detection that potentially reduce
its complexity: First, the set of formulas that are taken into account as
solutions can be restricted to the set of vacuity causes. Second, it suffices
to find a (minimal) solution that is stronger than a given formula. These
constraints restrict the search space and therefore we believe that computing
solutions for vacuity detection can be done more efficiently.

6.4 Related Work

The following summarizes the most important publications in vacuity
detection. Those of them that are directly related to our work have already
been cited at the corresponding positions in the text. The other ones are
only described for the sake of completeness.

Beer et al. [BBDER97] is to our best knowledge the first paper in which
automatic vacuity detection was investigated. They restricted their consid-
erations to the syntactic class w-ACTL of witnessable ACTL formulas and
proved that for every w-ACTL formula cp there is a formula w(<p) such that
both ip and w(ip) are true in a model 9JI iff ip holds vacuously in ÜJI. In addi-
tion, they showed that if w(<p) does not hold in OJl, then any counterexample
is a non-vacuity witness to ip in DJÏ.

Kupferman and Vardi [KV99] noticed that every occurrence of a sub-
formula of a CTL* formula <p occurs either positive (i.e., under an even
number of negations) or negative (i.e., under an odd number of negations)
in (p. Together with their restriction to detect vacuity with respect to oc-
currences of subformulas, this enabled them to reduce vacuity detection to
model checking of formulas in which some subformula is replaced by a con-
stant truth value. They also showed how to generate non-vacuity witnesses
of linear witnessable formulas <p by defining a witness formula witness ((p)
such that a counterexample to -rwitness(ip) in a model VJl is an interesting
witness to <p in 071.



6 Parameterized Vacuity 141

Beer et al. [BBDEROl] generalized the approach of Kupferman and
Vardi [KV99] to vacuity detection in any logic with polarity (i.e., every
subformula occurs either positive or negative) and to witness construction
in any logic with a pre-order on the models.

Armoni et al. [AFF+03] investigated several kinds of vacuity semantics
(formula semantics, structure semantics, trace semantics) for LTL by using
universal propositional quantification. The focus of their work lay on vacu-
ity detection with respect to subformulas with multiple occurrences (some
of them under an even and some of them under an odd number of nega-
tions) . It was shown that all these semantics are equivalent for vacuity with
respect to subformulas of pure (i.e., either positive or negative) polarity.

Gurfinkel and Chechik [GC04a, GC04b] dealt with four-valued vacuity
(vacuously true, non-vacuously true, non-vacuously false, vacuously false)
and with mutual influence of subformulas when checking vacuity with re-
spect several subformulas simultaneously ("mutual vacuity"). In this way,
they showed how to encode different degrees of vacuity into a multi-valued
logic. Moreover, in [GC04a], they studied generalizations of the vacuity
semantics of Armoni et al. [AFF+03] by moving from LTL to CTL*, i.e.,
from traces to trees.

Bustan et al. [BFG+] recently investigated vacuity detection in the logic
RELTL, an extension of LTL by a regular layer. They defined a formula to
be regularly vacuous if there exists a regular subexpression e such that the
resulting formula after replacing e by a universal quantified second-order
interval variable remains true. Analogous to Kupferman and Vardi [KV99],
if the subexpression has pure polarity, then regular vacuity detection can
be reduced to regular model checking.

6.5 Summary

If a specification is not satisfied by the model, common model checkers
return a counterexample. Otherwise, if a specification is satisfied by the
model, it is in general unknown whether the specification holds vacuously,
i.e., due to a trivial reason. Practical experience has shown that vacuously
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satisfied specifications often hint at a real problem either in the model
or in the specification. Therefore, detecting vacuity is an important and
challenging task in verification and validation.

Kupferman and Vardi [KV99] showed that in certain cases vacuity de-
tection can be reduced to model checking. In particular, a formula is vac-
uously satisfied if the truth value of the formula remains unchanged in a
given model when replacing any (purely occurring) subformula by a con-
stant truth value. For example, the formula (p = AX(p V AF q) is vacuously
satisfied with respect to AF q if the truth value of AX(p V _L) = AXp re-
mains unchanged. This procedure can be easily reduced to the computation
of minimal solutions to temporal logic queries. For example, if ± is a mini-
mal solution to the query 7 = AX(pV?), then ip is vacuously satisfied with
respect to AF q.

The reduction of vacuity detection to query solving enables us to extend
the classical notion of vacuity. For example, if q but not _L is a minimal
solution to 7, then ip is not vacuously satisfied with respect to AF q in the
classical sense although it holds due to a trivial reason, namely because
the stronger formula j[q] holds in the model. Hence, the classical notion
of vacuity can be seen as an extreme case of vacuity, where the subformula
collapses to a constant truth value. This can be generalized by a parameter-
ization through a user-defined class of vacuity causes. Then, a specification
is vacuously satisfied if a subformula collapses to a vacuity cause.



Chapter 7

Conclusion and Outlook

7.1 Summary

In this thesis, we have investigated several approaches in order to reason
about specifications in general and temporal logic specifications in partic-
ular. Since specifications are meant to describe the system behavior as
precisely as possible, reasoning about specifications provides additional in-
formation to support verification and validation engineers in their task to
decide whether the system under consideration satisfies the specified and
intended requirements. In particular, we have studied three main questions:

1. Given the specifications satisfied by two systems, what can we say
about the system obtained by composing these systems?

2. Given a system model and an incomplete temporal logic specification,
how can the given specification be efficiently completed such that it
is satisfied by the model?

3. Given a system model that satisfies its specification, does the model
satisfy the specification in the intended way?

In Chapter 3, we dealt with the first question. In particular, we presented
the circular counterpart of the classical cut rule in logic calculi. We proved
that our circular cut rule is sound and we demonstrated how it can be used
in mutual inductive proofs. The investigation of such an inference rule was
motivated by our proofs in Chapter 4, where circular dependent lemmas on
properties of temporal logic query languages were systematically composed
in order to obtain stronger results by reducing the number of assumptions.
In this way, we obtained some of our main results. Moreover, in analogy
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to the circular cut rule, we presented a circular composition rule for com-
posing arbitrary circular dependent systems. Compositional reasoning had
already been investigated in the literature. Our rule formalizes the com-
mon idea of all these approaches on an abstract level. By a simple example,
we demonstrated how the circular composition rule can be successively ap-
plied in order to obtain specifications satisfied by composed systems from
specifications satisfied by their components.

In Chapter 4 and Chapter 5, we dealt with the second question. In
particular, in Chapter 4, we investigated several properties of temporal
logic queries and their relationship. Afterwards, we presented our syntactic
characterization of exact LTL queries in form of a deterministic, context-
free template grammar capturing all monotonie single-variable LTL queries.
The query templates derived in this grammar were divided into two classes:
LTLQX and LTLQX. At first, we proved that all LTL queries obtained by
instantiating the templates in LTLQX are collecting and therefore exact.
This was done by composing circular dependent auxiliary results that were
based on the properties strong collecting, boundary collecting, intermedi-
ate collecting, and weak collecting. Then, we proved that for all templates
in LTLQX there exists a simple instantiation that is not collecting and there-
fore not exact. This was done by constructing a counterexample path to
the collecting property for all such instantiations.

Afterwards, we presented our large fragment of exact CTL queries in form
of a deterministic, context-free template grammar capturing all monotonie
single-variable CTL queries. In analogy to the case of LTL, the query
templates derived in this grammar were divided into two classes: CTLQX

and CTLQX. We proved that all CTL queries obtained by instantiating
the templates in CTLQX are collecting and therefore exact. As in the case
of LTL, this was done by composing circular dependent auxiliary results
that were based on the properties strong collecting, boundary collecting,
intermediate collecting, and weak collecting. Unfortunately, we were not
able to prove the maximality of CTLQX as we have done for LTLQX. In
fact, we showed that there exist simple queries in CTLQX that are exact,
that is, CTLQ1 is not maximal. We argued that a syntactic characterization
in the case of CTL is much more difficult.

Further, in Chapter 5, we presented and analyzed several algorithms
for solving temporal logic queries. At first, we dealt with Chan's sym-
bolic query solving algorithm. To this aim, we divided the queries in our
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fragment CTLQ1 into universal and existential occurring ones. Then, we
showed that all existential occurring queries are intermediate collecting,
which enabled us to reduce non-determinism in the sense that existential
choices can be eliminated when solving such queries. In this way, we were
able to prove the correctness of Chan's algorithm. Moreover, based on our
insights, we were able to extend Chan's algorithm such that it is applicable
to the whole fragment CTLQX and not only to its valid subset. Finally,
we showed how several algorithms for solving temporal logic queries can be
modified in order to compute also non-propositional solutions.

In Chapter 6, we dealt with the third question. In particular, we redefined
the classical notion of vacuity by temporal logic queries in such a way that a
subformula of the formula to be checked is substituted by the placeholder.
Classical vacuity (strong vacuity) detection corresponds then to deciding
whether the constant truth value false (resp. true) is a solution to such a
query. We interpreted this procedure as finding a solution that implies the
original subformula, which led naturally to the generalized notion of weak
vacuity. In this way, we were able to solve a problem posed by Amir Pnueli.
He presented a specification that is trivially satisfied but does not fall under
the classical notion of vacuity; however, it falls under our notion of weak
vacuity. Finally, we described how to obtain weak vacuity witnesses.

7.2 Open Questions

In the following, we conclude this thesis by listing some remaining open
questions that point out the way for further research:

1. Recall that we proved the soundness of both the circular cut rule and
the circular composition rule. However, we did not consider com-
pleteness which is also a natural and important property of inference
rules. Moreover, it would be interesting to know which proof-theoretic
implications our circular cut rule involves.

2. Both the circular cut rule and the circular composition rule can be
used to compose proofs and systems respectively that depend on each
other in a circular manner. The kind of circularity, however, is fixed
in our inference rules. It would therefore be interesting to know if
there exist other kinds of circular dependencies that can be formalized
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in this way and that are not captured by our composition rule. In
addition, the exact relationship of our results to other compositional
reasoning approaches should be clarified.

3. Since our basic results on temporal logic queries were proved purely
semantically, they hold also for other logic based query languages.
Thus, a natural question concerns applications and further develop-
ments of our results in other logic formalisms. For example, what
can we say about exact first-order and exact monadic second-order
logic queries? In addition, what can we say about the expressive
power of exact queries in such formalisms?

4. Recall that our syntactic characterization of exact LTL queries is
based on templates. It is therefore possible to find refined character-
izations that are based on refined templates. Moreover, it is possible
that there exists a simple grammar that characterizes all exact LTL
queries modulo logical equivalence.

5. The task of finding a syntactic characterization of exact CTL queries
is certainly the most obvious starting point for future research. Such
a characterization has also immediate practical relevance, since our
extended Chan algorithm exploits the properties identified in this way.
Further possibilities to investigate exact CTL queries follow in analogy
to the case of LTL as described in item 4.

6. For both LTL and CTL, it would be interesting to investigate queries
with several placeholders. Of course, our basic results hold for an
arbitrary number of placeholders; our syntactic fragments, however,
are restricted to a single placeholder. Also most of the presented
algorithms require a single occurrence of the placeholder.

7. We described how the Chan resp. extended Chan algorithm works and
which properties it exploits in order to efficiently compute an exact
solution. It is possible that also other algorithms can be optimized
by exploiting similar properties. In addition, the principle on which
Chan's algorithm is based on (i.e., eliminating existential choices) may
also be useful in other fields.
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8. A more practical task is to implement the presented query solving
algorithms and to compare their efficiency by several benchmark tests.
To our best knowledge there exist no implementations except of the
algorithm by Chechik et al. described in Section 5.3.2. We believe
that the Chan resp. extended Chan algorithm is more efficient than
the other algorithms for queries on which it is applicable. Moreover,
an implementation of our weak vacuity detection algorithm in form
of an experimental tool would be useful.



Appendix A

Omitted Proofs for LTLQ/

A.I Proof of Exactness

Proof of Lemma 4.6
Lemma 4.6. Let 7 G LTLQ?. Suppose that every subquery in LTLQ1 is
weak collecting. Then, 7 is intermediate collecting.

Proof. Structural induction on 7.

Induction start:

> Let 7 = 7UÖ such that 7 G LTLQ1. Suppose that IT \= ̂ [ip] and
7rn |= ^[iß] for some n G N. Then, we know that there exists a least
k G N such that irk \= 6. If k < n, we trivially obtain the assertion by
7Tfc (= 7[_L]. Otherwise, if /c > n, we know that TT'™1*) \= ï[<p]Aï[ip]. Hence,
by assumption, we obtain TT'™'̂  (= ï[(pAip]. So we have 7rln'fe^ (= 'yf^A^]
and 7rfc |= 6, that is, TT" |= 7 ^ A V']-

> Let 7 = 7 W 6> = (G 7) V (7 U 6) such that 7 G LTLQ1. Suppose that n (=
7[</?] and 7rn |= 7 ^ ] for some n G N. Now, we have to distinguish between
two cases: (i) If 7rt°i0o) ^ 0, we know that TT |= G 7^] and ?rn |= G j[ip].
Thus, it holds that TT'"'00^ |= 7^] A7[^]. Hence, by assumption, we obtain
7rn |= G ^ A iß], which trivially implies n11 \= ̂ [(f A iß], (ii) Otherwise,
there exists a least k G N such that 7rfc f= Ö. If k < n, we trivially
obtain the assertion by nk j= 7[-L]. Otherwise, if k > n, we know that
%[n,k) j _ ̂ ,^j A jfy}_ Hence, by assumption, we obtain 7r'n'fe) (= 7[(p A z/>].
So we have 7rtn'fe) (= 7[v? A V] and 7rfe |= Ö, that is, ?rn (= 7}^ A ?/;] U 9,
which trivially implies ?rn \= ~f[ip A iß].
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Induction step:

> Let 7 = 9 V 7. Suppose that 7r |= 7^] and nn \= j[ip] for some n G N.
If 7T (= 0 or 7rn |= 0, we trivially obtain n \= j[±] resp. TT™ |= ^y[<p A V>]-
Otherwise, if IT \£ 9 and irn \£ 9, we know that n \= ï[(p] and irn \= j[iß].
Hence, by induction hypothesis, we obtain 7rn |= 7 ^ A ip] or an r G N
such that r <n and ?rr |= 7[J_], which trivially imply nn \= j[(p A ip] and
7rr |= 7[±] respectively.

> Let 7 = X 7 . Suppose that TT |= 7[<p] and ixn \= 7 ^ ] for some n G N.
Then, we know that TT1 |= ^[(p] and irn+1 (= 7f[V']- Hence, by induction
hypothesis, we obtain nn+1 \= ̂ [<p A ̂ j or an r G N such that r < n and
7Tr+1 (= 7[-L], which imply ?rn |= 7(9? A -0] and 7rr |= 7[_L] respectively.

t> Let 7 = 7UÖ. Suppose that ?r |= 7^] and irn (= 7 ^ ] for some n G N.
Then, we know that there exists a least k G N such that 7rfc |= 9. If
k < n, we trivially obtain the assertion by -nk (= 7[X]. Otherwise, if
A; > n, we know that 7r'n'fc) |= 7[v?] A7^] and irk \= 9. Hence, by induction
hypothesis, we obtain 7r'n>^ |= T'f^A^']- So we have n^n'k^ \= ̂ [ipAtp] and
irk \= 9, that is, nn f= -y[p A ^ ] -

> Let 7 = ÖU7. Suppose that n \= j[ip] and nn (= 7 ^ ] for some n G N.
Then, we know that there exist least k,l € N such that nk \= j[(p] and
irn+l \= *f[ij)]. Hence, by induction hypothesis, we obtain 7r

max(fe.n+0 |=
j[(p A tp] or an r G N such that min(fc, n + I) < r < max(/c, n + I) and
7rr (= 7[-L]. If r < n, we trivially obtain the assertion by TTT (= 7[-L].
Otherwise, since 7[±] implies */[ip A ^] by Lemma 2.1, we know that
either T T ^ h ö a n d 7rr h î[<P A ^ ] o r 7rtre'max(fc'n+')) |= Ö and 7rmi«(fe."+0 [=

A i/']. Thus, in both cases we have ?rn \= 7(̂ 5 A T/>].

> Let 7 = 7 W Ö = (G7) V (7UÔ). Suppose that n (= 7[v?] and ?rn f=
for some n G N. Now, we have to distinguish between two cases: (i) If
[̂0,00) ^ ^ w e k n o w t h a t ^ |_ G*f[(p] and ?rn |= G 7 ^ ] . Thus, it holds

that 7r'n'°°) (= *f[(p] A TJV']- Hence, by induction hypothesis, we obtain
7rn |= G7[</7 A ip], which trivially implies irn \= j[cp A ip]. (ii) Otherwise,
there exists a least k G N such that nk \= 9. If k < n, we trivially obtain
the assertion by irk \= 7[_L]. Otherwise, if A; > n, we know that n^n'k^ \=

Aj[i()]. Hence, by induction hypothesis, we obtain TT'71'^ |= ^[(p Atp}.
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So we have ^n'k) |= y[tp A ip] and nk \= 9, that is, irn \= 7[</? A tp] U 0,
which trivially implies 7rn |= 7 ^ A tp].

> Let 7 = Ö W 7 = (Go) V (ÔU7). Suppose that TT |= y[<p] and nn \= j[tp]
for some n G N. Now, we have to distinguish between two cases: (i) If
7rn \= G6, we trivially obtain TT" |= 7 ^ A V>]- (ii) Otherwise, there exist
least k, I G N such that nk \= y[<p] and nn+l (= 7^ ] - Hence, by induction
hypothesis, we obtain nmax(k<n+l) |= 7 ^ A ^j or an r G N such that
min(A;,n + Z) < r < max(A;,n + /) and nr \= 7[_L]. If r < n, we trivially
obtain the assertion by TT7" (= 7[_L]. Otherwise, since 7[_L] implies j[(pAip]
by Lemma 2.1, we know that either 7r[n>r) |= Ö and 7rr |= 7[v? A ^] or
7r[n,max(fc,n+0) )= ß a n d ^maxffc.n+o ^ ^ A ^ ] . Thus, in both cases we have

nn \= 9 U ^[p A ip], which trivially implies ?rn |= -y[<p A V']-

This concludes the proof. D

Proof of Lemma 4.7
Lemma 4.7. Lei 7 G LTLQ1. Suppose that every subquery in LTLÇP is
intermediate collecting. Then, 7 is weak collecting.

Proof. Structural induction on 7.

Induction start:

t> If 7 is the placeholder, then 7 is trivially weak collecting.

t> Let 7 = 9 A 7 such that 7 G LTLQ2. It is easy to see that 7[</?] A 7 ^ ] is
equivalent to 9 A (7^] Aj[ip]). Hence, by assumption, we obtain

> Let 7 = 7Û6> = 7U(7A6>) such that 7 G LTLQ2 . Suppose that n (=
IVP] A 7[^]- Then, we know that there exists a least k G N such that
7rfc |= # and therefore 7r[0'fel (= 7[y>] A ï[ip]. Hence, by assumption, we
obtain 7r'°'fel |= j[<p A iß]. So we have 7rt°'fc' \= j[(p A tp] and nk \= 9, that
is, TT

> Let 7 = 0 Û 7 = OU (9 A 7) such that 7 G LTLQ2 . Suppose that n \=
"f[ip\ A j[ip]. Then, we know that there exist least k,l G N such that
7rfc |= j[(p\ and n1 (= j[ip]. Hence, by assumption, we obtain 7rmax(fe>0 |=
j[<p A ip] or an r G N such that min(/c, I) < r < max(A;, I) and TT7" (= 7[J-].
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Consequently, since 7[_L] implies 7(1/3 A1/)] by Lemma 2.1, we know that
either T r ^ {= 0 and nr (= y[ip A ip] or Tr^max(kW f= 0 and ^

A ̂ ] . Thus, in both cases we have n f= ^[cp A ip].

> Let 7 = 0 Ü 7 = 0U(-i0 A 7) such that 7 G LTLQ2. Suppose that
7T (= 7[<p] A 7[^]. Then, we know that there exists a least k E N such
that nk f= -i0 and therefore nk f= 7[</?] A-yf^;]. Hence, by assumption, we
obtain irk \= j[ipAip]. So we have n ^ [= 0 and nk f= -10 Â yfy? Az/>], that
i s , 7T

> Let 7 = 7 W 0 = (G7) V (7U (7 A 0)) such that 7 G LTLQ2. Suppose
that n |= ~/[(p] A 7[^]. Now, we have to distinguish between two cases:
(i) If Ti-t0-00) ^ 0, we know that n^°°^ \= j[p] A 7 ^ ] . Hence, by assump-
tion, we obtain TT |= G ^ A ip], which trivially implies n (= j[ip A ip].
(ii) Otherwise, there exists a least k G N such that 7rfc |= 0 and therefore
7rt°'fc] |= 7[(/?] A 7[^]. Hence, by assumption, we obtain 7r[°>fel (= 7[</? A ^ j .
So we have 7rlo'fci |= j[(pAip] and 7rfc |= 0, that is, n \= y[<p Aip] Û0, which
trivially implies TT |= 7 ^ A ^ ] .

> Let 7 = 0 W 7 = (G0)V(0U (0A7)) such that 7 G LTLQ2. Suppose that
7T [= 7[<p] A 7 ^ ] . Now, we have to distinguish between two cases: (i) If
7T |= G 0, we trivially obtain ir (= 7[</?A'0]- (ii) Otherwise, there exist least
k, l G N such that 7rfc (= 7[</?] and ?r' |= 7[V>]- Hence, by assumption, we
obtain 7rmax(fc-0 j= [̂(̂ AV'] or an r G N such that min(/c, I) < r < max(fc, I)
and 7rr \= 7[_L]. Consequently, since 7LL] implies 7[</? A^] by Lemma 2.1,
we know that either 7r[°'rl |= 0 and ?rr (= 7 ^ A ̂ ] or Trfo.̂ CM)] |= 0 and
m̂axCfc.o |_ j^p/\ipY Thus, in both cases we have n \= 9~Û^[ipAip], which

trivially implies ir \= y[cp A tp].

> Let 7 = 0 W 7 = (G0) V (0U (-0 A 7)) such that 7 G LTLQ2. Suppose
that 7T |= 7[y?] A 7['0]. Now, we have to distinguish between two cases:
(i) If 7T |= G0, we trivially obtain ir (= 7 ^ A if}], (ii) Otherwise, there
exists a least k £ N such that ivk \= ->6 and therefore irk \= ï[(p] A ï[ip].
Hence, by assumption, we obtain nk \= j[ip A if}]. So we have 7r[°>fc^ (= 0
and ixk |= -i0 AT"[V? A V»], that is, TT (= 6\3 */[<ç A if)], which trivially implies
IT \= y[<p Aip].

Induction step:
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t> Let 7 = 0 A 7. It is easy to see that ^y[<p] A7[̂ >] is equivalent to 0 A (j[<p\ A
j[ip]). Hence, by induction hypothesis, we obtain ^[tp A ip].

> Let 7 = 0 V 7. It is easy to see that 7[</?] A j[ip] is equivalent to 0 V (7[</?] A
Hence, by induction hypothesis, we obtain *y[<p A ip}.

> Let 7 = X 7 . It is easy to see that j[<p] A -y[ip] is equivalent to X (7[<£>] A
Hence, by induction hypothesis, we obtain ^[<p A ip].

> Let 7 = 7 Û 0 = 7 U (7 A 0). Suppose that ?r (= 7[<p] A 7 ^ ] . Then, we
know that there exists a least k G N such that nk \= 9 and therefore
Trio.*) |= ^[(^j A7[^]. Hence, by induction hypothesis, we obtain 7rt°'fcl (=

A V']- So we have 7r'0'fcl |= 7[v? A iß] and ?rfe (= 9, that is, 7r |= j[(p A ^ ] .

t> Let 7 = OÜ7 = ÖU (-10 A 7). Suppose that ?r |= 7^ ] A 7 ^ ] . Then, we
know that there exists a least k G N such that 7rfe |= ->9 and therefore 7rfc (=
ï[(p] A 7[^]. Hence, by induction hypothesis, we obtain nk (= *y[(p A ^ ] .
So we have T T ^ |= Ö and 7rfe |= -<ö A 7 ^ A -0], that is, IT \= j[ip A ^ ] .

> Let 7 = 7 W Ö = (G7) V (7X1(7 A Ö)). Suppose that % \= y[tp] A ^ ]
Now, we have to distinguish between two cases: (i) If TT'0'00^ ^ 9, we
know that TT'0'00) |= 7(9?] A'y^]. Hence, by induction hypothesis, we obtain
7T |= G^f^A^], which trivially implies n \= "/[cpAip]. (ii) Otherwise, there
exists a least k G N such that irk (= 9 and therefore 7r[0'fc] (= 7 M ^ îbP]-
Hence, by induction hypothesis, we obtain ^°'k^ \= j[(p Aip]. So we have
[̂o.fcj ^ ^ A ^j a n d f̂e ^ 05 t n a t ig) ^ |_ ^ A ^,j û Ö, which trivially

implies n \= ^[tp A I/J].

> Let 7 = 9 W 7 = (Go) V (0U (-10 A 7)). Suppose that ?r [= 7[</?] A
Now, we have to distinguish between two cases: (i) If n \= G 9, we trivially
obtain TT |= ^[ip A ip]. (ii) Otherwise, there exists a least k G N such that
7Tfe |= -i0 and therefore 7rfe f= 7[(p] A'yfV']- Hence, by induction hypothesis,
we obtain nk \= ^y[(p Aip]. So we have 7r'°'fc) |= 0 and irk \= ->9 A j[(p A ip],
that is, 7T |= 9XJ j[p A tp], which trivially implies n |= ~/[(p A ip}.

This concludes the proof. D
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Proof of Lemma 4.9
Lemma 4.9. Let 7 G LTLtf. Suppose that for every subquery 7 G LTLCf
it holds that G 7 is weak collecting. Then, F 7 is boundary collecting.

Proof. Structural induction on 7.

Induction start:

> Let 7 = 7 U 0 such that 7 G LTLQ3 U LTLQ5 U LTLQ6. Suppose that
7T |= F 7 b ] and ?rn f= F 7[•!/;] for some n G N. Then, we know that there
exist fc,!GN such that nk \= 9 and ?rn+' {= 9. Since # trivially implies

A ?/>], we obtain 7rn+' j= 7[</? A ip] and therefore ?rn (= F 7[y? A ^ ] .

> Let 7 = 7 W Ö = (G7) V (7UÔ) such that 7 G LTLQ5. Suppose that
7T [= F7[v?] and ?rn |= F 7^ ] for some n G N. Now, we have to distinguish
between two cases: (i) If TT'0'00) ^= 9, we know that there exist k,l E N
such that 7Tfc h G7[p] and nn+l f= G 7 ^ ] , which implies 7rm««(fc.»+0 f=
G 7 b ] A GTJV*]. Hence, by assumption, we obtain 7r

max(k<n+l) [= G7[<p A
ip], which trivially implies 7r

max(fe'n+0 |= j[(p /\ ip] and therefore ?rn \=
F^[ip Aip]. (ii) Otherwise, there exists k eN such that nk \= 9. Iï k < n,
we trivially obtain 7rfe |= 7[_L] and therefore TT \= F7[_L]. Otherwise, if
k > n, we trivially obtain ixk \= "f[(p A ip] and therefore irn \= F ^[ip A ip].

Induction step:

> Let 7 = 9 V7. Suppose that ?r |= F7[</?] and 7rn (= F7[^] for some n G N.
Now, we have to distinguish between two cases: (i) If TT'0'00) ^ 0, we know
that there exist k, l G N such that irk (= 7^ ] and 7rn+' |= j[ip]. So we
have IT \= F 7[y?] and 7rn [= F ^ ^ ] . Hence, by induction hypothesis, we
obtain TT f= F7[J_] or 7rn |= F^[cp A ip], which trivially imply TT \= F7[_L]
and 7rn |= F7[v? A V] respectively, (ii) Otherwise, there exists k G N
such that TTk \= 9. If A; < n, we trivially obtain irk \= 7[_L] and therefore
TT (= F7[_L]. Otherwise, if k > n, we trivially obtain 7rfc f= 7 ^ A ̂ ] and
therefore 7rn |= F 7(̂ 3 A ip].

> Let 7 = X 7 . Suppose that TT \= F 7 b ] and ?rn |= F7(7//] for some n G N.
Then, we know that there exist k,l £ N such that TTk+1 f= 7^] and
7Tn+/+1 |= j[ip]. So we have TT1 \= Fj[cp] and ?rn+1 |= F 7 ^ ] . Hence, by
induction hypothesis, we obtain TT1 (= F7[_L] or 7rn+1 (= F ^ b A ^ ] , which
imply 7T |= F7[±] and irn |= F7[y> A ip] respectively.
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> Let 7 = 7 U 0 . Suppose that n \= F 7(93] and nn |= F 7 ^ ] for some
n G N. Then, we know that there exist k, l G N such that irk \= 9 and
wn+i |_ $ Since Ö trivially implies 7(93 Aip], we obtain ?rn+' |= 7(93 A ^]
and therefore nn \= F 7 [y? A ^ ] .

> Let 7 = ÖU7. Suppose that ?r (= F 7(93] and ?rn (= F7['0] for some
n G N. Then, we know that there exist k, I G N such that 7rfc |= 7 [93]
and nn+l (= 7[̂ >]. So we have n (= F 7 [93] and 7rn j= F T ^ ] . Hence, by
induction hypothesis, we obtain n (= F7[JL] or ?rn |= Fj[ip A V7], which
imply 7T |= F7[_L] and irn \= F j[(p A ip] respectively.

> Let 7 = 0 W 7 = (G0) V (0U7) . Suppose that TT [= F 7 ^ ] and nn \=
F~f[if>] for some n G N. Now, we have to distinguish between two cases:
(i) If there exists k G N such that wk \= G9, we trivially obtain nk \= j[±]
and therefore n j= F7[_L]. (ii) Otherwise, there exist k, l G N such that

and ?rn+/ |= 'yfV']- So we have TT |= FTJ«/?] and nn (=7T fe

Hence, by induction hypothesis, we obtain n \= F7[±] or TT" |=
which imply n |= F7[_L] and nn \= F 7[99 A ip] respectively.

This concludes the proof. D

Proof of Lemma 4.10

Lemma 4.10. Let 7 G LTLQP. Suppose that for every subquery 7 G LTLQ^
it holds that F 7 is weak collecting. Then, G 7 is weak collecting.

Proof. Structural induction on 7.

Induction start:

> Let 7 = 6 Û 7 = 6 U (0 A 7) such that 7 G LTLQ4. Consider the formula
G 7[9?] A G 7J/0], which is equivalent to G (7[y] A 7[V'])- Since 7[93] A 7[V>]
implies F7(9?] A F T ^ ] , we obtain by assumption GF7[9? A ip\. On the
other hand, it is easy to see that G 7(97] implies G 9. Thus, G 7(93] AG 7^]
implies G 9 A G F 7(9? A ip], which is equivalent to G 7(93 A ijj\.

> Let 7 = 0 W 7 = (G0) V (0U7) such that 7 G LTLQ1. Consider the
formula G 7(93] A G^[^)], which is equivalent to G (7(93] A 7[V>])- If 9
does not hold, we know that 7(93] A 7 ^ ] implies 7(93] A j[tp]. Hence, by
Lemma 4.8, we obtain 7(93 A tp]. Thus, G 7(93] A G 7 ^ ] implies G (9 V
7(93 A -0]), which is equivalent to G~f[<p Aip].
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> Let 7 = 6 W 7 = (G 0) V (0U (0 A 7)) such that 7 G LTLQ1 U LTLQ3 U
LTLQ4 U LTLQ6. Consider the formula G 7^ ] A G 7 ^ ] . It is easy to see
that G y[<p] implies G 0. Thus, since G 6 is equivalent to G G 6 and G 9
trivially implies -f[(p A ip], we have G 7[y? A ip].

Induction step:

> Let 7 = 9 A 7. It is easy to see that G 7[y?] A G 7 ^ ] is equivalent to
G 9 A (G ï[ip] A G 7|/0]). Hence, by induction hypothesis, we obtain G 9 A
G ï[<p A ip], which is equivalent to G 7[y? A ip].

> Let 7 = X 7 . It is easy to see that G 7 ^ ] A G 7 ^ ] is equivalent to
XG 7(1/?] A X G T ^ ] , which in turn is equivalent to X ( G 7 ^ ] A G7[/0]).
Hence, by induction hypothesis, we obtain XG7[<p A ip], which is equiv-
alent to Gy[(p A ip].

> Let 7 = 7 Û 0 = 7 U (7A0). It is easy to see that G 7 [<p] A G ^[ip] implies
G 7 ^ ] A G7[^] . Hence, by induction hypothesis, we obtain Gj[(p A ip].
On the other hand, it is easy to see that G ^[ip] implies G F 9. Thus, we
know that G j[(p] A G 7 ^ ] implies G 7[y? A ip] A G F 9, which is equivalent
to G~/[tp A ip].

> Let 7 = 7 W Ö = (G7) V (711(7 A 6)). It is easy to see that G 7 ^ ] A
G j[ip] implies G ï[(p] AG ï[ip]. Hence, by induction hypothesis, we obtain
G7[<^ A ip]. Thus, since G 7 ^ A ip] is equivalent to GG7[<p A ip] and
G 7[ip A ip] trivially implies ^[<p A ip], we have G 7 ^ A ip].

> Let 7 = 9 W 7 = (G0) V (ÖU (9 A 7)). Consider the formula G 7^] A
G7[^] . It is easy to see that G 7 ^ ] implies GO. Thus, since GO is
equivalent to G G 0 and G 0 trivially implies j[<pAip], we have G j[tp Aip],

This concludes the proof. D

Proof of Lemma 4.12

Lemma 4.12. Every query in LTLQ7 is boundary collecting.

Proof. Structural induction on 7.

Induction start:
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> Let 7 = F 7 such that 7 G LTLQ2. Suppose that n f= 7 ^ ] and 7rn (=
for some n e N . Then, we know that there exist fc^GN such that irk f=

and ?rn+' (= 7 ^ ] . Hence, by Corollary 4.2, we obtain 7r
nu«(fc.'*+0 f=

A ^J or an r G N such that min(A;, n + I) < r < max (A;, n + I)
and 7rr |= 7[-L]. So, if TT7" (= 7[-L], we trivially have TT |= 7[-L], and if
%max(k,n+i) ̂  ^ A ^ w e trivially have TTU |= 7 ^ A ip].

> Let 7 = F 7 such that 7 G LTLQ4. Suppose that TT (= j[ip] and ?rn (=
for some n G N, that is, TT |= F7[y>] and ?rn |= F 7 ^ ] . Hence, by
Lemma 4.11, we obtain ?r \= F*f[±] or 7rn f= Fy[ipAi/)}, that is, TT |= J[±]
and 7rn (= 7[y? A ip\ respectively.

> Let 7 = G 7 such that 7 G LTLQ1 U LTLQ2 U LTLQ5. Suppose that
7T (= 7[</?] and ?rn (= 7 ^ ] for some n G N. Thus, we know that TT^'00) (=
7[<̂ ] A 7r[V'], that is, ixn \= Gï[<p] A G 7 ^ ] . Hence, by Lemma 4.8 resp.
Corollary 4.2 resp. Corollary 4.3, we obtain TT'71'00^ (= 7[(/J A ^;], that is,

A Ip].

Induction step:

> Let 7 = # A 7. Suppose that 7r |= 7[</?] and nn \= ~f[ip] for some n G N.
Thus, we know that TT |= 7^] and ?rn |= 7["0]. Hence, by induction
hypothesis, we obtain n f= 7[_L] or 7rn (= 7[</?A^]. So we have n (= ÖA7[_L]
or 7rn [= Ö A 7[</? A ip], that is, TT (= 7[±] and 7rn |= 7[</? A V»] respectively.

i> Let 7 = Ö V 7. Suppose that ?r (= 7[</?] and ?rn (= 7 ^ ] for some n G N.
If n \= 6 or irn \= 6, we trivially obtain n \= 7[±] resp. 7rn |= 7 ^ A -0].
Otherwise, if TT ^ Ö and nn \£ 9, we know that n \= ï[ip] and TT" )= 7[V;]-
Hence, by induction hypothesis, we obtain TT \= 7[_L] or ?rn [= j[ip A ^ j ,
which trivially imply TT (= 7[_L] and ?rn [= 7 ^ A ̂ j respectively.

> Let 7 = X 7 . Suppose that TT (= 7[</?] and ?rn |= 7 ^ ] for some n G N.
Then, we know that TT1 f= ^[(p] and 7rn+1 |= T 1 ^ ] - Hence, by induction
hypothesis, we obtain TT1 \= j[±] or nn+1 \= j[cp A ip], that is, TT \= 7[J_]
and TTn \= j[<p A ip] respectively.

> Let 7 = F 7. Suppose that TT (= 7 ^ ] and TTn \= 7 ^ ] for some n G N.
Then, we know that there exist k, l G N such that TTk \= y[<p] and TTn+l f=

Hence, by induction hypothesis, we obtain 7rmin(fc'n+0 j= ŷ[j_] Or
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( ^ A ^,]_ S O j i f 7rmin(*,n+o ^ ^ [ J _ ] J w e trivially have TT (=

7[±], and if 7r™«(*,n+i) ^ ^ A V'], we trivially have nn \= ~f[<p A -0].

> Let 7 = G 7. Suppose that ?r |= 7[</?] and nn f= 7 ^ ] for some n G N.
Thus, we have 7r (= G7[</?] and ?rn }= G 7 ^ ] , which implies TT'™'00) \=

j[ip]. Hence, by induction hypothesis and Lemma 2.1, we obtain

> Let 7 = 7 U Ö . Suppose that ?r (= 7[y>] and nn \= j[ip] for some n e N.
Then, we know that there exist least k, l G N such that 7rfe (= Ö and 7rn+' |=
Ö. Thus, we have T T ^ ) |= 7 ^ ] and ^n'n+l) \= J[I/J]. If k < n and it does
not hold that 7r[0'fc) f= 7[±] or 7r[n'n+i) |= *([<p A ̂ ] , there must exist i0 < A;
and jo < I such that TTÎ0 =̂ 7[JL] and 7rn+:?0 ^ 7[<^ A ip]. However, since
TTÎ0 \= ^[ip] and 7rn+j0 [= 7 ^ ] , this contradicts the induction hypothesis.
Hence, we have either 7r[0'fc) [= y[±] and nk \= 6 or Trln>n+lï \= ^[ipAi/j] and
TTn+l |= Ö, that is, 7T |= 7[_L] and 7rn [= j[tp A ^] respectively. Otherwise,
if A; > n, we know that <!r[

n.™n(k.n+1)) |= [̂< ]̂ A ^ ] . Hence, by induction
hypothesis and Lemma 2.1, we obtain ^In.mm^k.n+i)) j _ ^ ^ A -0]. So we
have 7r[».n'in(*.»+Q) \= 7[<^ A ^] and 7rrain(fc'n+') (= Ô, that is, 7rn |= 7 ^ A -0].

t> Let 7 = 7 U Ö = 7X1(7 A Ö). Suppose that it \= ^[tp] and nn \=
for some n G N. Then, we know that there exist least k, l G N such
that 7Tfe \= 9 and 7rn+< f= 6. Thus, we have T T ^ I \= y[<p] and 7r[n'n+'] (=
7[-0]. If ife < n and it does not hold that T T ^ ' h T[-L] or 7r[n'n+z] |=
7[<^ A tp], there must exist i0 < k and jo < / such that TTÎ0 ^ 7[-L]
and 7rn+:î0 ^ j[(p A ip]. However, since irio (= 7[<p] and TT714"^0 [= 7 ^ ] ,
this contradicts the induction hypothesis. Hence, we have either 7r'°'fc' \=
7[±] and irk (= 6 or 7r[n'n+/) |= 7[y> A ^] and 7rn+i |= 9, tha t is, TT |=
7[±] and ?rn |= 7[<p A •?/;] respectively. Otherwise, if k > n, we know
that 7i-[»*.min(fe>re+0] |= ^y^] A ^ [ ^ ] . Hence, by induction hypothesis and
Lemma 2.1, we obtain 7r[n.™n(*.*+0] |= 7[<^A^]. So we have ni",™*Vt,n+i)) |=

A ij>] and 7rmin(fe'n+') f= Ö, that is, nn \= y[(p A ip].

t> Let 7 = 0 U 7 . Suppose that ?r (= 7 ^ ] and TT" [= -y[ip] for some n G N.
Then, we know that there exist least k, l G N such that irk (= 7 ^ ] and
7rn+; |= j[ip]. Hence, by induction hypothesis, we obtain 7r

mm(k<n+l) |=

7 [ ± ] or 7rmax(fc.n+') [= 7 ^ A ip]. If 7Tmin(fe'n+i) h 7[-L] and k < n, we have
l ) |= ^ a n d n

k [= 7[J_], that is, IT \= 7[_L]. Otherwise, since 7[_L]
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implies ^[(p A ip] by Lemma 2.1, we know that there exists r G {k, n + 1}
such that 7r[n'r) f= 0 and ?rr |= 7 ^ A ̂ ] , that is, TT" f= 7 ^ A -0].

> Let 7 = 0 Û 7 = 0U(0 A 7). Suppose that TT |= j[(p] and nn f=
for some n G N. Then, we know that there exist least k, l G N such
that 7rfc |= 7[v?] and ?rn+' (= j[ip]. Hence, by induction hypothesis, we
obtain 7r™n(*."+0 |= 7[_L] or 7rmax(fc'n+') |= 7 ^ A ip}. If 7rmin(fe'n+') |= 7[_L]
and k < n, we have 7r'0>fcl |= 0 and 7rfc |= 7[J-], that is, ir \= 7[J_].
Otherwise, since 7[_L] implies 7(9? Aip] by Lemma 2.1, we know that there
exists r G {k,n + 1} such that T T ^ |= 0 and nr \= ï[<p A "0], that is,
7Tn (= 7[<p A lp].

> Let 7 = ÖÜ7 = ÖU (->6 A 7). Suppose that n \= i[<p] and TT" (=
for some n G N. Then, we know that there exist least k,l eN such that
7Tfc |= -i9Aj[(f] and irn+l (= - IÖAT 1 ^] . Hence, by induction hypothesis, we
obtain 7rmin(fc'n+') |= 7(1] or 7r«"«(*.«+0 |= 7 [ ^ A ̂ ] . If 7rmin(fc'n+') |= 7(1]
and k < n, we have 7r[°iA:) |= Ö and 7rfe [= -iö A 7[-L], that is, n (= 7[J-].
Otherwise, since 7[J_] implies ï[(p A ip] by Lemma 2.1, we know that
Trln.n+O [_ 0 a n d ^n+i [= -,5) /\ ^[y, /\ ^ ] ; that is, 7Tn \= ̂ [(f A 1p).

t> Let 7 = 7 W Ö = (G7) V (7UÔ). Suppose that TT |= 7^ ] and TT" |=
for some n G N. Now, we have to distinguish between three cases: (i) If
[̂0,00) y_ Q^ w e k n o w that 7T |= G7[<p] and ?rn (= G7[^] , which implies

n[n,oo) |_ ^j-^j /\ 7[-0]. Hence, by induction hypothesis and Lemma 2.1,
we obtain ?rn f= G j[(p A ip], which trivially implies %n (= 7 ^ A ̂ ] .
(ii) Otherwise, if there exists a least k G N such that nk |= 0 and
TJ-KOO) ^ ^ w e k n o w t h a t fc < n a n d f n |_ G7[V>]- Thus, we have
Trto.fc) ^ 7[^] a n d [̂n.oo) ^ 7 ^ j _ I f i t d o e s n o t h o l d t h a t [̂o.fc) ^ 7[j_j o r

(̂n.oo) |_ 7[y, /\ ^ ] ; there must exist i0 < k and j0 such that TTÎ0 ^ 7[±]
and 7rn+:/0 ^ 7[y? A ̂ ] . However, since irl° \= ̂ [ip] and 7rn+:ï0 |= ï[ip], this
contradicts the induction hypothesis. Hence, we have either 7r[°'fe^ |= 7[±]
and nk \= 9, that is, w f= 7(1] U Ö, or ?rn \= Gj[(p A ip], which trivially
imply 7T f= 7[_L] and ?rn (= ^{ip A ip] respectively, (iii) Otherwise, there
exist least k, l G N such that nk f= Ô and ?rn+' f= 0. Thus, we have

[) a n d TTM+O |_ 7 ^ J if fc < n and it does not hold that

o r ^[n.n+0 |_ 7 ^ A ^ ] ; t n e r e m u s t e x i s t i0 < k and ;O < I
such that 7Tl° ^ 7[_L] and 7rn+:;o =̂ 7[<p A^] . However, since TTÎ0 |= ï\<p]
and 7rn+:;o (= T'fV'], this contradicts the induction hypothesis. Hence, we
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have either T T ^ |= 7[_L] and 7rfc \= 9 or ^n'n+l^> h ï[<P Aif;] and 7rn+' h 0,
that is, •K (= 7[±] U 9 and ?rn |= 7[<p A if;] U 0 respectively, which trivially
imply 7T |= 7[_L] and ?rn (= 7[<̂  A if;] respectively. Otherwise, if k > n,
we know that TMn(*.«-W)) [= 7[^] A ^[^] . Hence, by induction hypoth-
esis and Lemma 2.1, we obtain T T K ™ ^ ^ 1 ) ) |= ^ [^ A -0]. So we have
7r[n,min(fc,n+0) |= ^ A -0] a n d m̂inCfc.n+O ^ fl} t h a t j S j ̂ n [I ^ A ,̂] U 0,
which trivially implies ixn \= j[(p A if;].

t> Let 7 = 7 W Ö = (G7) V (711(7 A 0)). Suppose that n \= j[ip] and
TT" [= 7[-0] for some n E N. Now, we have to distinguish between three
cases: (i) If ir^^ ^ 0, we know that n \= Gy[tp] and 7rn |= G 7 ^ ] ,
which implies 7r[n'°°) |= *y[ip] A ï[ij;]. Hence, by induction hypothesis and
Lemma 2.1, we obtain nn \= G ^ A ^ i ] , which trivially implies ?rn \=
^[(p A if;], (ii) Otherwise, if there exists a least k G N such that nk \= 9
and TT'"'00) ^ Ö, we know that k < n and -nn |= G 7 ^ ] . Thus, we have

[] ^ [] 1
n[n,oo) |_ ^^p ^ ^ there must exist IQ < k and jo such that nl° \f= 7[±]
and 7rn+JO ^ 7(99 A T/;]. However, since nl° \= j[(p] and TT""1"-70 |= 7[^], this
contradicts the induction hypothesis. Hence, we have either 7r'°'fc' |= 7[_L]
and 7Tfe |= 9, that is, IT (= 7[±] Û#, or ?rn (= G ^ A tp], which trivially
imply 7T |= 7[_L] and irn \= j[<p A ifi] respectively, (iii) Otherwise, there
exist least k,l e N such that nk (= 9 and ?rn+' (= Ö. Thus, we have
7r[°-fc] |= y[(p] and 7r[n'n+'] |= 7 ^ ] . If fc < n and it does not hold that
Ti-io.fc] \= 7[J_] or 7r[n'n+'] f= 7 ^ A ip], there must exist i0 < A; and j 0 < I
such that 7Tî0 ^ 7[±] and 7rn+JO ^ 7[</? A if;]. However, since TTÎ0 (= ï[(p]
and 7rn+JO |= 7["0], this contradicts the induction hypothesis. Hence,
we have either TT^I (= 7[±] and ?rfc |= 9 or Tr^^+'l |= 7 ^ A if>] and
7r"+' (= 0} that is, TT [= ï[±] Û 9 and 7rn (= 7[v? A ̂ ] ÛO respectively, which
trivially imply ix \= 7[_L] and ?rn |= i[<p A ̂ »] respectively. Otherwise, if
k > n, we know that 7r['».min(M+0] (= <y[̂ ] A 7 ^ ] . Hence, by induction
hypothesis and Lemma 2.1, we obtain ^.mmik.n+i)] _̂ ^[^A-Î/;]. SO we have

7r[n,min(fc1n+0] ^ ^ A ,̂] a n d 7rmin(*.«+0 |= Ö, that is, 7Tn [= 7 ^ A Ip] Ü Ö,
which trivially implies nn \= ̂ y[ip A if>].

> Let 7 = 0 W 7 = (Go) V (ÔU7). Suppose that n \= y[<p] and 7rn \=
for some n G N. Now, we have to distinguish between two cases: (i) If
7rn \= G 9, we trivially obtain 7rn (= 7 ^ A ̂ ;]. (ii) Otherwise, there exist
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least fc,lGN such that 7rfe (= 7[<£>] and nn+l \= ̂ [ip]. Hence, by induction
hypothesis, we obtain -jrmin(k'n+V (= 7[±] or 7r™«(M+0 f= 7[<^ A -0]. If
7rmin(fc,n+/) ^ ^[j_] a n d k < n, we have 7r[°-fc) |= 9 and ?rfc (= 7 [±] , that is,
•K \= 7[-L]. Otherwise, since 7[_L] implies *f[(pAip] by Lemma 2.1, we know
that there exists r G {k,n + 1} such that TT̂ 71'7") |= 9 and 7rr |= j[<p A ^ ] ,
that is, 7rn ( = Ö U 7 ^ A ^ ] , which trivially implies nn \= ̂ y[np A ip].

= Ö W 7 = (G0) V(0U(0A7)) . Suppose that ir h 7 M and yrn (=
for some n G N. Now, we have to distinguish between two cases: (i) If

7Tn |= Go, we trivially obtain TT" |= 7 ^ A -0]. (ii) Otherwise, there exist
least k, l G N such that nk \= j[<p] and irn+l \= 7 ^ ] . Hence, by induction
hypothesis, we obtain 7rmin(fc'n+') \= 7[_L] or ^"»«(fc^+O |= 7[<^ A # If
7rmin(fc,n+o |= ̂ [j_] a n ( j k < u, we have 7r[°'fcl f= 6> and ?rfc |= 7 [±] , that is,
7T |= 7[-L]. Otherwise, since 7[_L] implies ^[ip Aip] by Lemma 2.1, we know
that there exists r G {k,n + 1} such that ir^1^ (= Ö and 7rr |= 7[y? A ip],
that is, 7rn [= 9tjj[cp A tp], which trivially implies ?rn |= 7[</? A ip].

> Let 7 = Ö W 7 = ( G Ö ) V ( Ö U ( ^ A 7)). Suppose that ?r H 7[v] and
7rn |= 7[-0] for some n G N. Now, we have to distinguish between two
cases: (i) If nn (= G #, we trivially obtain 7rn |= 7[</? A Î/;]. (ii) Otherwise,
there exist least k, l G N such that nk \= ̂ 9 A 7[p] and 7rn+' (= -.6» A

Hence, by induction hypothesis, we obtain 7r
min(fc>n+0 |= 7[j_] or

.n+o ^ 7 [ ^ A ^ ] . If 7rmin(fc'n+') \= 7[J_] and A; < n, we have T T ^ (= Ô
and ?rfc |= ->9 A 7[_L], that is, ?r (= 7[J_]. Otherwise, since 7[±] implies
7[y?A^] by Lemma 2.1, we know that 7r[n'n+i) |= 0 and ?rn+' (=
that is, 7rn (= #Ü7[</? A ̂ ] , which trivially implies 7rn [= 7[yj A ip].

This concludes the proof. D

A.2 Proof of Maximality

Proof of Lemma 4.13

Lemma 4.13. Let 7 G LTLQ1 U LTLQJ2 be simple. Further, let p and q be
atomic propositions not occurring in 7 . Then, there exists a path n such
that 7r4n (= 7[p] , 7r4n+2 h 7[g], a«^ 7r2n ^ 7 b A Q] for al1 n G N.
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Proof. Structural induction on 7.

Induction start:

> If 7 is the placeholder, the assertion holds for path n iff for all n G N it
holds that p G £(7r4n), q G e(n4n+2), and {p, q) £ l{v2n).

Induction step:

> Let 7 = a A 7. By induction hypothesis, we obtain a path •K for 7. Since
a ^ aprop(7), we can assume w.l.o.g. that a G i(n2n) for all n G N. So
we have ?r4n |= a A 7[p], 7r4n+2 |= a A 7(9], and ir2n \= -17 [p A ç] for all
n e N . Thus, since -xp implies ->(aA<p) for all formulas <p, we obtain the
assertion for 7 on TT.

> Let 7 = a V 7. By induction hypothesis, we obtain a path TT for 7. Since
o; ^ aprop(7), we can assume w.l.o.g. that a £ £(7T2n) for all n G N. So
we have 7r4n |= 7[p], 7r4n+2 |= y[q], and ?r2n (= --a A-17^ A9] for all n G N.
Thus, since <p implies aV(/5 and -ia A -iy? is equivalent to ->(a V ip) for all
formulas y?, we obtain the assertion for 7 on n.

> Let 7 = X 7 . By induction hypothesis, we obtain a path a for 7. Let
7T = soa, where s is any state. So we have nAn \= X^fp], 7r4n+2 (= X ^ g ] ,
and 7r2n |= X ->7[p A g] for all n e N . Thus, since X -xp is equivalent to
-iX (p for all formulas ip, we obtain the assertion for 7 on n.

D> Let 7 = 7 U a. By induction hypothesis, we obtain a path n for 7. Since
a $L aprop(7), we can assume w.l.o.g. that a £ £(n2n) and a G £(7r2n+1)
for all neN. So we have ?r4n (= 7[p] A X a , ?r4n+2 (= 7[ç] A X a , and
7r2n |= -i7[p Aç] A ->a for all n G N. Thus, since y? A X a implies </?Ua
and —iy? A ->a implies ->(ip U a) for all formulas (/?, we obtain the assertion
for 7 on n.

> Let 7 = 7 Û a = 7 U (^Aa). By induction hypothesis, we obtain a path TT
for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a G £(TT2TI) for all
n G N. So we have TT4TI f= 7[p] A a, 7r4n+2 [= 7[g] A a, and 7r2n |= -i7[p A g]
for all n G N. Thus, since ipAa implies <pt]a and -K/? implies ->(<^Ûa)
for all formulas ip, we obtain the assertion for 7 on TT.
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> Let 7 = a U 7. By induction hypothesis, we obtain a path n for 7. Since
a ^ aprop(7), we can assume w.l.o.g. that a $. £(ir2n) for all n G N.
So we have ?r4n |= j\p], 7r4n+2 f= 7(9], and n2n f= -ia A -17 [p A ç] for all
n G N. Thus, since </? implies a U i p and -~>a A ->y? implies ->(aU</>) for
all formulas <p, we obtain the assertion for 7 on TT.

t> Let 7 = a Û 7 = a U (aA-y). By induction hypothesis, we obtain a path n
for 7. Since a £ aprop(7), we can assume w.l.o.g. that a G £(ir2n) and
a $ £(n2n+1) for all n G N. So we have ?r4n (= a A 7[p], 7r4n+2 h « A 7[g],
and 7r2n |= ->7[p A ç] A X- ia for all n G N. Thus, since a A (p implies
a Û if and -up A X -ia implies -1(0; Û <p) for all formulas <£>, we obtain the
assertion for 7 on TT.

I> Let 7 = a Ü 7 = aU(->a A 7). By induction hypothesis, we obtain a
path 7T for 7. Since a £ aprop(7), we can assume w.l.o.g. that a £ £(n2n)
for all n G N. So we have ir4n (= ->a A 7[p], 7r4n+2 |= -ia A 7[g], and
7r2n \= -*a A -17[p A g] for all n G N. Thus, since ->a A <p implies a\J ip
and -laA-xp implies ->(aÏJ <p) for all formulas <p, we obtain the assertion
for 7 on 7T.

t> Let 7 = 7 W a = (G7) V ( 7 U a ) . By induction hypothesis, we obtain
a path 7T for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a £
£(ir2n) and a G £(n2n+l) for all n G N. So we have ?r4n |= 7(p] A X a ,
7r4n+2 |= y[q] A X a, and n2n f= -i7[p A 9] A -.a for all n G N. Thus, since
y? A X a implies <p W a and -19? A -ia implies -1(9? W a) for all formulas </?,
we obtain the assertion for 7 on n.

t> Let 7 = i W a = (G7) V (711(7 A a)). By induction hypothesis, we
obtain a path n for 7. Since a ^ aprop(7), we can assume w.l.o.g. that
a G e{iT2n) for all n G N. So we have 7r4n f= 7[p] Aa, 7r4n+2 [= 7[g] A a, and
7T2n |= -17[p A q] for all n G N. Thus, since cp A a implies (p W a and -><£>
implies -i(tp W a ) for all formulas <p, we obtain the assertion for 7 on TT.

> Let 7 = (1W7 = ( G a ) V (a\J7). By induction hypothesis, we obtain a
path 7T for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a £ £(n2n)
for all n G N. So we have ?r4n (= 7[p], 7r4n+2 (= 7[g], and ?r2n |= -ia A
->7[pAç] for all n G N. Thus, since </? implies aW</? and ->aA-np implies

for all formulas ip, we obtain the assertion for 7 on 7r.
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> Let 7 = a W ] = (Ga) V (aU (a A 7)). By induction hypothesis, we
obtain a path n for 7. Since a £ aprop(7), we can assume w.l.o.g. that
a G £{ir2n) and a $ £(TT2II+1) for all n G N. So we have n4n \= a A 7(p],
7r4n+2 j= a A 7(9], and ?r2n |= ->7[p A q] A X -.a for all n G N. Thus, since
QAI/3 implies a; W<p and ̂ A X - i a implies -i(a Wip) for all formulas <p,
we obtain the assertion for 7 on TT.

> Let 7 = a W ) = ( G a ) V (aU(-«a A 7)). By induction hypothesis, we
obtain a path TT for 7. Since a £ aprop(7), we can assume w.l.o.g. that
a £ e(7T2n) for all n G N. So we have ?r4n (= -.aA7|>], ?r4n+2 (= - laA^g] ,
and 7r2n |= ->a A —t-yfp A q] for all n G N. Thus, since ->a A <p implies
aW(/? and -«a A -K/> implies - i ( a W ^ ) for all formulas (p, we obtain the
assertion for 7 on IT.

This concludes the proof. •

Proof of Lemma 4.14

Lemma 4.14. Let 7 G LTLQ1 be simple. Further, let p and q be atomic
propositions not occurring in 7. Then, there exists a path TT such that ?r4n (=
7[p] and ir4n+2 f= 7(9] for all n G N as uie/Z as TT |= G ->7[p A ç].

Proof. Structural induction on 7.

Induction start:

t> If 7 is the placeholder, the assertion holds for path n iff for all n G N it
holds that p G ^(TT4"), g G ̂ 7r4n+2), and {p,q} % l{jrn).

c> Let 7 = a A 7 such that 7 G LTLQ2. By Lemma 4.13, we obtain a path TT
for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a G i(TT2n) and
a i e(-K2n+1) for all n G N. So we have 7r4n |= a A 7[p], 7r4n+2 (= a A 7[g],
and 7T |= G (-ia V -17[p A ç]) for all n G N. Thus, since G (-** V -K/?)
is equivalent to G ->(a A ip) for all formulas </?, we obtain the assertion
for 7 on TT.

Let 7 = 7 Û a = 7 U ( 7 A a ) such that 7 G LTLQ2. By Lemma 4.13, we
obtain a path IT for 7. Since a £ aprop(7), we can assume w.l.o.g. that
a G £(TT2n) and a (f. e(n2n+1) for all n G N. So we have irAn (= j\p) A a,
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7r4n+2 \= ï[q] A a, and TT |= G (-^[p A g] V -.a) for all n e N . Thus, since
(f Aa implies <p Ü a and G (-K/? V -ia) is equivalent to G -i(<p A a) which
implies G - i ( ^ Û a ) for all formulas (p, we obtain the assertion for 7 on TT.

> Let 7 = a Û 7 = a U ( a A 7 ) such that 7 G LTLQ2. By Lemma 4.13, we
obtain a path TT for 7. Since a ^ aprop(7), we can assume w.l.o.g. that
a G £(ir2n) and a <£ £{-K2n+l) for all n G N. So we have 7r4n (= a A 7[p],
7r4"+2 \=aA y[q], and ?r |= G (-.a V ->7[p A <?]) for all n G N. Thus, since
a A <p implies aÛ<p and G (-<a V ->yj) is equivalent to G -i(a A <p) which
implies G ->(a Û ip) for all formulas </?, we obtain the assertion for 7 on TT.

> Let 7 = a Ü 7 = a U (-«a;A7) such that 7 G LTLQ2. By Lemma 4.13, we
obtain a path n for 7. Since a; ^ aprop(7), we can assume w.l.o.g. that
a i £(7T2n) and a G ̂ (7r2n+1) for all n G N. So we have 7r4n f= ^ a A 7[p],
7r4n+2 (= -ia A 7[g], and TT |= G (a V -17[p A ?]) for all n G N. Thus, since
-ia A (/? implies a\j (p and G (a V -iy?) is equivalent to G -i(->a A <p) which
implies G ->(a Ü </?) for all formulas </?, we obtain the assertion for 7 on TT.

> Let 7 = 7 W a = (G7) V (7U (7 A a)) such that 7 G LTLQ2. By
Lemma 4.13, we obtain a path n for 7. Since a £ aprop(7), we can
assume w.l.o.g. that a G £(?r2n) and a ^ £(n'2n+1) for all n G N. So we have
n4n ^ ^[p]Aa, 7r4n+2 |= y[q]Aa, and ?r |= GF^j\pAq]AG (-ff\pAq]V->a)
for all n G N. Thus, since <pAa implies tp W a and G F -up A G (->tp V -ia)
is equivalent to GF-xp A G->((p A a) which implies G ^ W a ) for all
formulas ip, we obtain the assertion for 7 on TT.

> Let 7 = a W ) = (G a) V (a U (a A 7)) such that 7 G LTLQ2. By
Lemma 4.13, we obtain a path IT for 7. Since a <£ aprop(7), we can
assume w.l.o.g. that a G £(iT2n) and a £ £(?r2n+1) for all n G N. So we
have 7T4n |= aA7[p], TT4TI+2 f= aA^fg], and TT f= G F - . a A G (-iaV-<7[pAg])
for all n e N . Thus, since a A <p implies a W <p and G F ->a A G (->a V -up)
is equivalent to G F -\a A G -i(a A </?) which implies G ->(a W<p) for all
formulas <p, we obtain the assertion for 7 on TT.

> Let 7 = a W ] = (Get) V (aU(->a A 7)) such that 7 G LTLQ2. By
Lemma 4.13, we obtain a path TT for 7. Since a £ aprop(7), we can
assume w.l.o.g. that a £ £(?r2n) and a G ^(-7r2n+1) for all n G N. So we
have 7r4n h ->aA7[p], ?r4n+2 |= -iaA7[g], and TT [= G F
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for all n G N. Thus, since ->aA<p implies a W <p and G F ->a A G (a V -xp)
is equivalent to G F ->a A G —•(—ICK A <p) which implies G -i(a W</?) for all
formulas y>, we obtain the assertion for 7 on TT.

Induction step:

> Let 7 = a A 7. By induction hypothesis, we obtain a path n for 7. Since
a ^ aprop(7), we can assume w.l.o.g. that a G £{n2n) for all n G N. So
we have 7r4n (= a A ï\p], n4n+2 \= a A 7(5], and ?r |= G -<7[p A g] for all
n e N . Thus, since G - ^ implies G->(aA(p) for all formulas ip, we obtain
the assertion for 7 on ?r.

> Let 7 = a V 7. By induction hypothesis, we obtain a path TT for 7. Since
a $. aprop(7), we can assume w.l.o.g. that a £ £(-Kn) for all n G N. So we
have 7r4n |= 7[p], 7r4n+2 |= 7(9], and TT |= G (-.a A ->y\p A q]) for all n e N .
Thus, since </? implies a V <p and G ( -o A -up) is equivalent to G -1(0: V <p)
for all formulas <p, we obtain the assertion for 7 on TT.

> Let 7 = X 7 . By induction hypothesis, we obtain a path a for 7. Let
7T = socr, where s is any state. So we have n4n \= X-yfp], ?r4n+2 |= X7[g],
and 7T |= XG -17[p A q] for all n G N. Thus, since XG -«p is equivalent to
G -iX ip for all formulas <p, we obtain the assertion for 7 on n.

> Let 7 = 7 Û a = 7 U ( 7 A a ) . By induction hypothesis, we obtain a
path 7T for 7. Since a £ aprop(7), we can assume w.l.o.g. that a G £(n2n)
for all n G N. So we have ?r4n (= 7[p] A a, 7r4n+2 (= 7[ç] A a, and
7T |= G -17[p A ç] for all n G N. Thus, since </? A a implies <p Û a and G -></?
implies G -i(</? Û a) for all formulas <̂ , we obtain the assertion for 7 on n.

o Let 7 = « Ü 7 = a U ( -0 A 7). By induction hypothesis, we obtain a
path 7T for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a ^ £(n2n)
for all n G N. So we have 7r4n (= —•« A 7[p], ?r4n+2 |= -ia A 7(9], and
7T |= G -17[p A g] for all n G N. Thus, since -ia A <p implies a Ü <p and
G -up implies G->(a\J<p) for all formulas cp, we obtain the assertion
for 7 on 7T.

t> Let 7 = 7 We* = (G7) V (7U (7 A a)). By induction hypothesis, we
obtain a path n for 7. Since a (£ aprop(7), we can assume w.l.o.g. that
a G £(7T2n) for all n G N. So we have n4n (= 7[p] A a, ?r4n+2 (= 7[g] A a,
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and n \= G -17 [p A q] for all n G N. Thus, since <p A a implies </?Wa
and G -«p implies G ->((p W a) for all formulas <p, we obtain the assertion
for 7 on IT.

> Let 7 = a W 7 = ( G a ) V (a;U(-ia; A 7)). By induction hypothesis, we
obtain a path n for 7. Since a £ aprop(7), we can assume w.l.o.g. that
a i e(-Kn) for all n G N. So we have ?r4n (= -.a A -y[p], ?r4n+2 ^ a A 7(9],
and 7T |= G -ia A G -17 [p A q] for all n G N. Thus, since ->a A(p implies
aW<p and G -ia AG -xp implies G ->(a W cp) for all formulas </?, we obtain
the assertion for 7 on IT.

This concludes the proof. D

Proof of Lemma 4.15

Lemma 4.15. Let 7 G LTLÇJ* U LTLÇf be simple. Further, let p and q
be atomic propositions not occurring in 7. Suppose that for every LTLQ?
and LTLQ^ subquery 7 there exists a path a such that aAn \= 7[p] A j[q]
and a4n \£ j\p A q] for all n G N. Then, there exists a path n such that
7T4n |= 7[p] A j[q] for allneN and ir \= G -rf\p A q].

Proof. Structural induction on 7.

Induction start:

> Let 7 = a A 7 such that 7 G LTLQ4. By assumption, we obtain a path TT
for 7. Since a £ aprop(7), we can assume w.l.o.g. that a G £(ir4n) and

and 7T |= G (-ia V -ry[p A g]) for all n G N. Thus, since G (-la V -><p)
is equivalent to G ->(a A ip) for all formulas ip, we obtain the assertion
for 7 on 7T.

> Let 7 = a U 7 = a U ( a A 7 ) such that 7 G LTLQ4. By assumption, we
obtain a path TT for 7. Since a £ aprop(7), we can assume w.l.o.g. that
a G l(n4n) and a $ £(7r[4n+i,4n+3]) f o r a l l n e N S o w e h a v e ^ n ^ a A7[p],

7r4n |= a A j[q], and IT \= G (->a V -17[p A ç]) for all n G N. Thus, since
a A<p implies aÛ (p and G (->a V -iy?) is equivalent to G -«(o; A <p) which
implies G ->(a Û tp) for all formulas <p, we obtain the assertion for 7 on 71".
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= ( G a ) V ( a U 7 ) such t h a t 7 G LTLQ1. By Lemma 4.14,
we obtain a path n for 7. Since a £ aprop(7), we can assume w.l.o.g. that
a G i(^4n'4n+^) and a <£ £{ir4n+2) for all n G N. So we have 7r4n f= 7[p],
n4n \= aAXaA X X ^ g ] , and TT (= G F - a A G -^[p A 9] for all neN.
Thus, since both <p and a A X a A XX <p imply a W <p and G F ->a A G -><p
implies G ->(a W ip) for all formulas <p, we obtain the assertion for 7 on TT.

> Let 7 = a W 7 = (Ga) V ( a U (a A 7)) such that 7 G LTLQ1. By
Lemma 4.14, we obtain a path n for 7. Since a ^ aprop(7), we can assume
w.l.o.g. that a G e(^4n'4n+2^ and a £ £(7r4n+3) for all n G N. So we have
7T4" |= aAy\p], 7r4n |= aAXaAXX(aA7[?]), and n f= GF-.a:AG-.7[pA<?]
for all n G N. Thus, since both a A <p and a A X a A XX (a A <p) imply
a'W<p and G F - i a A G-up implies G - i ( a W ^ ) for all formulas cp, we
obtain the assertion for 7 on n.

= o ; W 7 = (Ga)V(o;U (aA7)) such that 7 G LTLQ3ULTLQ4. By
assumption, we obtain a path n for 7. Since a £ aprop(7), we can assume
w.l.o.g. that a G £(7r4n) and a $_ £(^[^+1,^+3]^ for a l l n £ N S o w e h a v e

n4n \=aA j\p], n4n \= a A j[q], and n \= G F -IQ A G (->a V ->y\p A q}) for
all n G N. Thus, since a A<p implies aW</? and G F ->a A G (-10; V -up)
is equivalent to G F -ia A G -i(a A </?) which implies G ->(a W ip) for all
formulas <p, we obtain the assertion for 7 on 7r.

Induction step:

> Let 7 = a A 7. By induction hypothesis, we obtain a path TT for 7. Since
a; ^ aprop(7), we can assume w.l.o.g. that a G £(?r4n) for all n G N. So
we have 7r4n |= aA^fp], ?r4n [= a A ^ g ] , and n (= G ~>7[pAç] for all n G N.
Thus, since G -><̂  implies G -1(0; A (p) for all formulas <p, we obtain the
assertion for 7 on ir.

> Let 7 = a V 7. By induction hypothesis, we obtain a path n for 7. Since
a £ aprop(7), we can assume w.l.o.g. that a £ ê(nn) for all n G N. So we
have TT4n \= 7[p], n4n \= j[q], and TT \= G (-ia A ->7[p A g]) for all n G N.
Thus, since <̂  implies a V <p and G (-ia A -K£>) is equivalent to G -1(0; V y?)
for all formulas <p, we obtain the assertion for 7 on w.

o Let 7 = X 7 . By induction hypothesis, we obtain a path a for 7. Let
ir = s o a, where s is any state. So we have n4n \= X7[p], n4n \=
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and 7T (= XG ->7 [p A g] for all n G N. Thus, since XG -«/? is equivalent to
G -iX</9 for all formulas ip, we obtain the assertion for 7 on 7r.

> Let 7 = 7 Ü a = 7 U (7 Ace). By induction hypothesis, we obtain a path n
for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a G £(?r4n) for all
n G N. So we have 7r4n j= ^\p] Aa, 7r4n (= 7[g] Aa, and ?r |= G ->7[pAg] for
all n G N. Thus, since <p A a implies ipÛa and G -xp implies G -i(tp Û a)
for all formulas <p, we obtain the assertion for 7 on TT.

t> Let 7 = 7 W a = (G7) V (711(7 A a)). By induction hypothesis, we
obtain a path ?r for 7. Since a £ aprop(7), we can assume w.l.o.g. that
a G £(-K4n) for all n G N. So we have 7r4n (= -y[p] A a, ?r4n (= 7(9] A a,
and 7T (= G->7[p A 9] for all n G N. Thus, since (p A a implies <^Wa
and G ->ip implies G -i(<p W a ) for all formulas </?, we obtain the assertion
for 7 on 7T.

> Let 7 = a W ) = ( G a ) V ( a U ( a A 7)). By induction hypothesis, we
obtain a path n for 7. Since a £ aprop(7), we can assume w.l.o.g. that
a G i(n4n) and a $ £(?r4n+1) for all n G N. So we have ?r4n |= a A 7[p],
TT4" ^ a A 7[g], and ?r |= G F - i a A G ^\p A q] for all n G N. Thus,
since a A ip implies a "W ip and GF ->a A G -up implies G -i(a W<^) for
all formulas y>, we obtain the assertion for 7 on TT.

This concludes the proof. D

Proof of Lemma 4.16

Lemma 4.16. Let 7 = G 7 be a simple LTL query where 7 G LTLC^'.
Further, let p and q be atomic propositions not occurring in 7. Suppose that
for every LTLQ1 subquery 7 there exists a path a such that a \= Gï\p] A
G 7[g] and aAn )£ 7[p A 9] /or all n G N. Suppose further that for every
LTL(f subquery 7 ^/iere exists a path a such that a4n \= j\p] A 7[9] and
a4n \£ 7[p A 9] for all n G N. ITien, i/iere existe a po^/i n such that TT (=
G 7[p] A G 7(9] and n \= G -17[p A ç].

Proof. Structural induction on 7.

Induction start:
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> Let 7 = G (a A 7) such that 7 G LTLQ4. By assumption, we obtain a
path TT for 7. Since a £ aprop(7), we can assume w.l.o.g. that a G 1(TTU)

for all n G N. So we have TT (= G (a A 7[p]), ?r f= G (a A 7 [<?]), and
7T (= GF-i7[pAg]. Thus, since G (a At/?) is equivalent to G G {a Ac/?) and
G F -up implies G F -<(a A y>) which is equivalent to G -iG (a A ip) for all
formulas </?, we obtain the assertion for 7 on TT.

> Let 7 = G (a V 7) such that 7 G LTLQ5. By assumption, we obtain a
path 7T for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a <£ £(n4n)
and a G ^Tr^+L^+ai) for all n G N. So we have TT (= G (a V 7[p]),
7T f= G (a\/j[q]), and ?r [= GF (-^a A-^y\p A q]). Thus, since G(aVip) is
equivalent to G G (aVip) and GF (->aA-^<p) is equivalent to G ->G (aVy)
for all formulas <p, we obtain the assertion for 7 on TT.

Induction step:

> Let 7 = G (a A 7). By induction hypothesis, we obtain a path ?r for G 7.
Since o: ^ aprop(7), we can assume w.l.o.g. that a G £(?rn) for all n G N.
So we have ir (= G (a A 7[p]), TT |= G (a A j[q\), and n \= G -17[p A g].
Thus, since G (a A ip) is equivalent to G G (a A <p) and G —up implies
G F -i(a A <p) which is equivalent to G -<G (a A tp) for all formulas <p, we
obtain the assertion for 7 on ?r.

> Let 7 = G (et V 7). By induction hypothesis, we obtain a path 7T for G 7.
Since a ^ aprop(7), we can assume w.l.o.g. that a £ £(irn) for all n G N.
So we have TT |= G7[p], n (= G 7(9], and ?r (= G (-10; A ->7[p A q\). Thus,
since G ip implies GG (a V <p) and G (->a A -xp) implies G F (->a A -up)
which is equivalent to G ->G (a V tp) for all formulas cp, we obtain the
assertion for 7 on n.

> Let 7 = G X 7 . By induction hypothesis, we obtain a path a for G 7. Let
7T = s o <7, where s is any state. So we have TT \= XG7[p], TT f= XG^fg],
and TT \= XG-i*/\p A q\. Thus, since X.G<p is equivalent to GGXy?
and XG -up implies X G F ->ip which is equivalent to G ->GX <p for all
formulas <p, we obtain the assertion for 7 on TT.

I> Let 7 = G ( 7 Ï Ï a ) = G (711(7 A a)). By induction hypothesis, we
obtain a path TT for G 7. Since a £ aprop(7), we can assume w.l.o.g. that
a G £(TTn) for all n G N. So we have ?r Ç= G (7[p] A a) , TT \= G (7(9] A a),
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and TT |= G-i7[pAg]. Thus, since G (<p A a) implies G G ( y Û a ) and
G -up implies GF- i ( (^Ûa) which is equivalent to G - i G ( ^ U a ) for all
formulas <p, we obtain the assertion for 7 on TT.

> Let 7 = G ( 7 W a ) = G ( (G7)V(7U (7Aa;))). By induction hypothesis,
we obtain a path n for G 7. Since a £ aprop(7), we can assume w.l.o.g.
that a G £(irn) for all n G N. So we have ?r |= G (7[p] A a) , ?r (= G (j[q] A
a) , and TT (= G->7[pAg]. Thus, since G(<pAa) implies G G (cpW a) and
G -up implies G F ->((pW a) which is equivalent to G -iG (ip W a) for all
formulas ip, we obtain the assertion for 7 on IT.

This concludes the proof. D

Proof of Lemma 4.17
Lemma 4.17. Let 7 G LTLÇ? be simple. Further, let p and q be atomic
propositions not occurring in 7. Suppose that for every LTLÇfi subquery 7
there exists a path a such that a \= G *f\p] A G 7[g] and a4n ^ j\p A q] for
all n G N. Suppose further that for every LTLÇJ? and LTLQ6 subquery 7
there exists a path a such that cr4n (= 7[p] A 7[g] /or a// n G N and a |=
G ->7[p A g]. T/ien, i/iere eM5fs a pai/i TT SUC/I ^/iai TT f= G 7[p] A G 7[g] and

Proof. Structural induction on 7.

Induction start:

> Let 7 = F 7 such that 7 G LTLQ1 U LTLQ5 U LTLQ6. By Lemma 4.14
resp. assumption, we obtain a path TT for 7. So we have IT \= GFj\p],
n \= GF7[g], and TT \= G^lp A g]. Thus, since G-up is equivalent to
G -iF ip for all formulas <p, we obtain the assertion for 7 on TT.

> Let 7 = G 7 such that 7 G LTLQ4. By assumption, we obtain a path TT
for 7. So we have IT \= Gj\p], TT \= G7[g], and TT (= G F -17[p A g]. Thus,
since G <p is equivalent to G G ip and G F -><̂  is equivalent to G ->G ip for
all formulas ip, we obtain the assertion for 7 on TT.

t> Let 7 = G 7 such that 7 G LTLQ6. Then, we obtain the assertion by
Lemma 4.16.



A Omitted Proofs for LTLCf 171

t> Let 7 = 7 Û a = 711(7 A a) such that 7 G LTLQ4. By assumption,
we obtain a path TT for 7. Since a ^ aprop(7), we can assume w.l.o.g.
that a G £(ir4n) and a £ £^1^+IM+3]) for a n n G N. So we have
7T |= G 7[p] A G F a, TT \= G î[q] A G F a, and n \= G (-^[p A g] V -ia).
Thus, since G </? A G F a implies G (<p U a) and G (-><̂  V ->a) is equivalent
G -i(</? A a) which implies G -i(y)Ûa) for all formulas <p, we obtain the
assertion for 7 on ?r.

> Let 7 = a U 7 such that 7 G LTLQ1 U LTLQ5 U LTLQ6. By Lemma 4.14
resp. assumption, we obtain a path TT for 7. Since a £ aprop(7), we
can assume w.l.o.g. that a G £(nn) for all n £ N. So we have n \= G a A
G F 7[p], 7T |= G aAGF 7[ç], and ?r f= G ->7[pAg]. Thus, since G aAGF <p
implies G ( a U ^ ) and G-xp implies G->(aTJip) for all formulas <p, we
obtain the assertion for 7 on TT.

> Let 7 = « Û 7 = a U (a A 7) such that 7 G LTLQ1 U LTLQ5 U LTLQ6.
By Lemma 4.14 resp. assumption, we obtain a path TT for 7. Since a ^
aprop(7), we can assume w.l.o.g. that a G £(?rn) for all n G N. So we
have 7T f= GûAGF7[p] , IT \= G a A G F 7(9], and TT \= G-ry\pAq]. Thus,
since G a A G F <p implies G ( a Û ^ ) and G -up implies G -i(a Û <p) for all
formulas <p, we obtain the assertion for 7 on TT.

t> Let 7 = a Ü 7 = a U ( - a A 7) such that 7 G LTLQ4 U LTLQ5 U LTLQ6.
By assumption, we obtain a path n for 7. Since a £ aprop(7), we can
assume w.l.o.g. that a £ £(ir4n) and a G £(7^+1,4^+3]) for a n n e pj.
So we have TT |= G (a V j\p\) A G F -ia, ?r |= G (a V j[q\) A G F -.a,_and
TT (= G (a V -17[p Aç]). Thus, since G (a V <p) A G F ->a implies G (a Ü y)
and G (a V -<<p) is equivalent to G -i(->a A y?) which implies G ->(a Ü (p)
for all formulas <̂ , we obtain the assertion for 7 on IT.

o Let 7 = 7 W a = (G7) V (-yUa) such that 7 G LTLQ4. By assumption,
we obtain a path TT for 7. Since a $. aprop(7), we can assume w.l.o.g.
that a £ l{iTn) for all n G N. So we have TT \= G^\p], TT \= G7(9],
and TT \= G F -17[p A ç] A G -ia. Thus, since G </? implies G ( ^ W a ) and
GF-icp A G->a implies G-i(yjWa) for all formulas </?, we obtain the
assertion for 7 on TT.

a = ( G ^ V ^ U a ) such that 7 G LTLQ6. By Lemma4.16,
we obtain a path TT for G 7. Since a ^ aprop(7), we can assume w.l.o.g.
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that a i £{nn) for all n G N. So we have TT |= G G ^ ] , TT (= GG^fg],
and 7T |= G ->G j\p A g ] A G ->a. Thus, since G G <p implies G (ip W a)
and G->G(p A G ->a implies G - i ( ^ W a ) for all formulas <p, we obtain
the assertion for 7 on TT.

> Let 7 = ] W Q = (G7) V (711(7 A a)) such that 7 € LTLQ4. By
assumption, we obtain a path TT for 7. Since a £ aprop(7), we can
assume w.l.o.g. that a ^ i(-Kn) for all n G N. So we have IT \= G*y\p\,
TT |= G7[g], and n (= G F -vyfp A g] A G -ia. Thus, since G(/3 implies
G ( i p W a ) and G F - K ^ A G -ia implies G- i ( ipWa) for all formulas </?,
we obtain the assertion for 7 on TT.

> Let 7 = a W ] = (Ga) V ( a U 7 ) such that 7 G LTLQ5 U LTLQ6. By
assumption, we obtain a path ?r for 7. Since a ^ aprop(7), we can assume
w.l.o.g. that a <£ £{7T4n) and a € (̂7r[4»H-i>4n+3]) for a l l n e N S o w e h a v e

7T |= G (a: V 7[p]), 7T |= G (a V j[q]), and TT |= G F -.a A G -17[p A g].
Thus, since G (a V <p) implies G(aW<^) and G F - i a A G-xp implies
G -i(a W y ) for all formulas y, we obtain the assertion for 7 on 7r.

= ( G a ) V ( a U ( ^ a A 7 ) ) such that 7 e LTLQ4ULTLQ5U
LTLQ6. By assumption, we obtain a path IT for 7. Since a £ aprop(7),
we can assume w.l.o.g. that a $ l{ixAn) and a G e(^4n+1'4n+2^) for all
n G N. So we have TT f= G (a V 7[p]), TT |= G (a V 7[g]), and TT |=
G F -ia A G (a V->7[p Ac]). Thus, since G(aVyj) implies G (a W </?) and
G F -ia A G (a V -iy) is equivalent to G F ->a A G ->(->a A v?) which implies
G -i(a Wyj) for all formulas y?, we obtain the assertion for 7 on TT.

Induction step:

t> Let 7 = a A 7. By induction hypothesis, we obtain a path TX for 7. Since
a <£ aprop(7), we can assume w.l.o.g. that a G £(nn) for all n G N. So
we have TT |= G (a A 7[p]), n \= G (a A 7(9]), and TT |= G -17[p A q]. Thus,
since G -up implies G ->(aA(p) for all formulas (p, we obtain the assertion
for 7 on IT.

> Let 7 = a V 7. By induction hypothesis, we obtain a path TT for 7. Since
a ^ aprop(7), we can assume w.l.o.g. that a £ £(irn) for all n G N. So we
have 7T |= G^fp], TT f= G ^ g ] , and TT |= G (-ia A ->7[p A q}). Thus, since
G tp implies G (a V <p) and G (-»a A -K/J) is equivalent to G - i ( a V y ) for
all formulas ip, we obtain the assertion for 7 on TT.
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> Let 7 = X 7 . By induction hypothesis, we obtain a path a for 7. Let
n = s o a, where s is any state. So we have TT |= XG^fp], n f= XG^fç],
and 7T (= XG->7[p A q]. Thus, since XG<̂ > is equivalent to GX</? and
XG -up is equivalent to G -iX <p for all formulas ip, we obtain the assertion
for 7 on n.

t> Let 7 = F 7. By induction hypothesis, we obtain a path TT for 7. So we
have 7T |= G7[p], TT f= G7[g], and n \= G->7[p A g]. Thus, since G</?
implies G F y? and G -•</? is equivalent to G -iF (p for all formulas (p, we
obtain the assertion for 7 on n.

> Let 7 = G 7. By induction hypothesis, we obtain a path ir for 7. So we
have n \= G*/\p], ix |= G^fg], and n f= G->^\p A g]. Thus, since G<£>
is equivalent to G G cp and G -K/? implies G F -><£ which is equivalent to
G -iG ip for all formulas <p, we obtain the assertion for 7 on n.

> Let 7 = 7 U a ; = 7 U ( 7 A a ) . By induction hypothesis, we obtain a
path 7T for 7. Since a £ aprop(7), we can assume w.l.o.g. that a e £{nn)
for all n G N. So we have TX (= G (7[p] A a) , ?r )= G (7[g] A a), and
7T (= G->7[pAg]. Thus, since G {<p A a) implies G ( ^ Û a ) and G-<ip
implies G -i(<^Û a) for all formulas (p, we obtain the assertion for 7 on n.

> Let 7 = aU-y. By induction hypothesis, we obtain a path TT for 7. So
we have TT |= G7[p], ?r |= G7[g], and n [= G ->7[p A g]. Thus, since G(p
implies G (aXJ ip) and G -«/? implies G-i(aUi^) for all formulas <̂ , we
obtain the assertion for 7 on ?r.

t> Let 7 = « Û 7 = a U ( a A 7 ) . By induction hypothesis, we obtain a
path 7T for 7. Since a £ aprop(7), we can assume w.l.o.g. that a E ^(?rn)
for all n E N. So we have TT |= G (a A 7[p]), n f= G (a A 7[g]), and
7T [= G-i7[pAg]. Thus, since G(aA(p) implies G(aÛ<^) and G-up
implies G ->(a U <p) for all formulas (p, we obtain the assertion for 7 on n.

> Let 7 = a t ) = a U (-ia A 7). By induction hypothesis, we obtain a
path 7T for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a £ £(nn)
for all n e N. So we have TT (= G (-ici A 7[p]), TT [= G (-IQ: A 7[g]), and
7T |= G -i7[p A g]. Thus, since G (->a A <p) implies G ( a Ü </?) and G -19?
implies G ->(a Ü </?) for all formulas ip, we obtain the assertion for 7 on TT.



A Omitted Proofs for LTLQ0 174

> Let 7 = 7 W a = (G7) V (-yUa). By induction hypothesis, we obtain a
path 7T for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a £ £{ftn)
for all n G N. So we have TT (= G7[p], TT (= G 7(9], and ?r |= G -^[p A
q] A G -la. Thus, since G <£> implies G ( ^ W a ) and G -xp A G ->a implies
G ->((p W a ) for all formulas </?, we obtain the assertion for 7 on TT.

> Let 7 = y W a = (G7) V (7X1(7 A a)). By induction hypothesis,
we obtain a path n for 7. So we have TT \= Gï\p], n \= G7(9], and
7T (= G ->7[p A 9]. Thus, since G <£> implies G f ^ W a ) and G -xp implies
G -i(^)Wa) for all formulas <p, we obtain the assertion for 7 on TT.

> Let 7 = a; W 7 = ( G a ) V ( a U 7 ) . By induction hypothesis, we obtain a
path TT for 7. Since a ^ aprop(7), we can assume w.l.o.g. that a (jz £(nn)
for all n £ N. So we have n (= G7[p], ?r |= G 7(9], and TT |= G- ia A
G->j\pAq\. Thus, since Gy? implies G (aW<p) and G -iaAG-«p implies
G - i ( a W ^ ) for all formulas </?, we obtain the assertion for 7 on TT.

> Let ) = a W 7 = ( G a ) V (aU(->a A 7)). By induction hypothesis, we
obtain a path n for 7. Since a ^ aprop(7), we can assume w.l.o.g. that
a £ £(7rn) for all n G N. So we have TT |= G (->aA^\p\), n \= G (->aA7[g]),
and 7T (= G -ia A G -17(7? A ç]. Thus, since G (->a A y?) implies G (a W <p)
and G ->a A G -xp implies G ->(a W ip) for all formulas <p, we obtain the
assertion for 7 on TT.

This concludes the proof. D

Proof of Lemma 4.18
Lemma 4.18. Let 7 G LTLÇf be simple. Further, let p and q be atomic
propositions not occurring in 7. Suppose that for every LTLC^, LTLCf',
and LTLÇfi subquery 7 there exists a path a such that aAn f= 7[p] A j[q]
and a4n \£ 7[p A q] for all n G N. Then, there exists a path TT such that
7T |= G 7[p] A G 7[ç] and TT4n ^ »/\p A q] for all n G N.

Proof. Structural induction on 7.

Induction start:

> Let 7 = 7 U a where 7 G LTLQ3 U LTLQ5 U LTLQ6. By assumption,
we obtain a path TT for 7. Since a ^ aprop(7), we can assume w.l.o.g.
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that a $ £(?r4n) and a G £(7r[
4"+1-4n+3l) for all n G N. So we have

7T (= G(7[p]Vo;)AGFo;, 7T \= G (7[g]Va)AGFa, and 7r4n |= -.7[pAg]A->a:
for all n G N. Thus, since G (</?Vo;)AGFa implies G ( ^ U a ) and -upA-ia
implies ->(</? U a) for all formulas (p, we obtain the assertion for 7 on ?r.

> Let 7 = 7"Wa = (G7) V (-yUa) where 7 G LTLQ5. By assumption,
we obtain a path ir for 7. Since a ^ aprop(7), we can assume w.l.o.g.
that a $ £(n4n) and a G £(7r[

4n+1.4n+3]) for all n G N. So we have
7T (= G (7[p] V a), 7T f= G (7 [g] V a) , and ir4n (= -17 [p A g] A ->a for all
n G N. Thus, since G (<p V a) implies G(( / ;Wa) and -K/J A ^ a implies
-1(9? W a) for all formulas (p, we obtain the assertion for 7 on w.

Induction step:

> Let 7 = a V 7. By induction hypothesis, we obtain a path n for 7. Since
a ^ aprop(7), we can assume w.l.o.g. that a £ £(n4n) for all n G N. So
we have TT (= G 7[p], ?r |= G 7(9], and 7r4n (= -ia A -17[p A g] for all n G N.
Thus, since G y? implies G(aVip) and ->a A -iy? is equivalent to ->(a V </?)
for all formulas (p, we obtain the assertion for 7 on n.

> Let 7 = X 7 . By induction hypothesis, we obtain a path a for 7. Let
TT = s o a, where s is any state. So we have n \= XG^fp], w (= X G ^ g ] ,
and 7r4n |= X -17[p A g] for all n G N. Thus, since XG (p is equivalent to
GX <p and X -up is equivalent to ->X <p for all formulas tp, we obtain the
assertion for 7 on TT.

> Let 7 = 7 U a . By induction hypothesis, we obtain a path n for 7. Since
a £ aprop(7), we can assume w.l.o.g. that a ^ i(7r4n) and a G £(7r4n+1)
for all n G N. So we have TT |= G 7[p] A G F a, ?r |= G 7[g] A G F a, and
7T4n |= -17[p A g] A -10; for all n G N. Thus, since G y? A G F a implies
G (<p\Ja) and -xp A ->a implies -i(ipTJa) for all formulas <p, we obtain
the assertion for 7 on 7r.

> Let 7 = 0 U 7 . By induction hypothesis, we obtain a path % for 7. Since
a ^ aprop(7), we can assume w.l.o.g. that a £ £(nin) for all n G N. So
we have ?r |= G 7[p], ?r (= G 7[g], and n4n |= -ia A ->7[p A g] for all n G N.
Thus, since G<p implies G (aU<p) and ->a A -K/P implies -i(a\Jip) for all
formulas (p, we obtain the assertion for 7 on 7r.
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> Let 7 = a W 7 = ( G o : ) V ( a U 7 ) . By induction hypothesis, we obtain a
path n for 7. Since a £ aprop(7), we can assume w.l.o.g. that a £ £(?r4n)
for all n e l So we have TT |= G */\p], n \= G j[q], and ?r4n |= -laA-i^lpAq]
for all n G N. Thus, since G<p implies G ( a W ^ ) and ->a A -xp implies
->(a'W<p) for all formulas <p, we obtain the assertion for 7 on n.

This concludes the proof. D



Appendix B

Omitted Proofs for CTLQ*

B.I Proof of Exactness

Proof of Lemma 4.23
Lemma 4.23. Let 7 G CTL(f U CTLQ7. Suppose that every subquery
in CTLQP and CTLCf is strong collecting. Then, 7 is boundary collecting.

Proof. Structural induction on 7.
Let si and S2 be any states in a Kripke structure such that si ~» S2- W.I.o.g.,
we choose any path p G paths(si) such that p(n) = S2 for some n G N. Let
us define the set ü** = {TT G paths(si) | Vz < n. -K{%) = p(i)}. It is easy to
see that 11** is not empty and that paths(s2) = {irn | -K G

Induction start:

t> Let 7 = 0 V 7 such that 7 G CTLQ8 U CTLQ9. Suppose that s1 \=
and S2 (= 7[V;]J where si -w S2. If Si |= 0 or S2 (= 0, we trivially obtain
Si |= 7[JL] resp. s2 |= 7[v? A ip]. Otherwise, we know that si \= j[ip]
and s2 (= 7[^]. Hence, by assumption, we obtain s2 |= j[(p A -0], which
trivially implies S2 |= 7[y? A ip].

> Let 7 = A(7UÔ) such that 7 G CTLQ8 U CTLQ9. Suppose that si \=
7[</?] and s2 |= 7[V)], where si ^* s2. If si (= 0, we trivially obtain
si f= 7[J-]- Otherwise, we choose w.l.o.g. any path TT G II**. Recall that
by definition we have ?rn G paths(s2) for some n G N. Then, we know
that IT (= 7[</?] and that there exists a least A; G N such that 7rn+fc (= 0 and
therefore 7î"[n'n+fc) |= 7 ^ ] . Hence, by assumption, we obtain 7rtn>n+fe) |=
7[¥>A^]. So we have 7r[n-n+fc) \= 7[v?A^] and nn+k \= 6, that is, irn \= j[(pA
ip] U 6. Thus, since n G II** was chosen w.l.o.g., we obtain S2
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> Let 7 = A ( 7 W 0 ) = A((G7) V(7U0)) such that 7 G CTLQ8UCTLQ9.
Suppose that Si |= 7^ ] and s2 |= 7[/0L where Si ~> s2. If Si |= 6>,
we trivially obtain sx (= 7[J_]. Otherwise, we choose w.l.o.g. any path
7T G n ^ . Recall that by definition we have nn G paths (s2) for some
ra G N. Now, let us distinguish between two cases: (i) If there exists a
least k G N such that nn+k \= 9, we know that ?r |= y[(p] and 7rin'n+fc) |=
7['«/']• Hence, by assumption, we obtain 7r[n>n+fc) (= *f[<pAiß]. So we have
Trln.n+fc) ^ 7 [ ^ A V] and 7Tn+fc |= 0, that is, 7rn h ^ A ^ J U Ö , which
trivially implies ?rn |= *f[ip /\I(J}W9. (ii) Otherwise, if no such k exists,
we know that n \= y[ip] and TT^'00^ (= •=y['̂ ]. Hence, by assumption, we
obtain ir^00) \= ̂ [(pAip], that is, TT" |= G ^ A ^ I ] , which trivially implies
71-71 H 7[v A^]WÖ. Thus, since 7r G 11^ was chosen w.l.o.g., we obtain
52

Induction step:

t> Let 7 = Ö A 7. Suppose that Si )= 7[<p] and S2 |= 7|/0], where Si ^» S2-
Then, we know that si (= 7[<p] and s2 H ï[ip]- Hence, by induction
hypothesis, we obtain s\ [= 7[_L] or s2 |= 7[v? A ip]. Thus, we have S\ \= 9
and S2 (= $ as well as si (= 7[_L] or s2 (= 7 ^ A -0], which imply s\ (= 7[±]
and S2 |= 7[<£> A -0] respectively.

Let 7 = Ö V 7. Suppose that s\ \= j[(p] and S2 [= 7[^], where Si ^^ s2.
If si | =ö or s2 |= Ö, we trivially obtain s\ \= 7[_L] resp. S2 |= 7[v A ^ ] .
Otherwise, we know that S\ \= */[ip] and s2 (= ï[ip]- Hence, by induction
hypothesis, we obtain s\ (= 7[JL] or s2 |= 7 ^ A ip], which trivially imply
Si f= 7[JL] and s2 f= y[<p A -0] respectively.

This concludes the proof. D

Proof of Lemma 4.24

Lemma 4.24. Let 7 G CTLQ1 U CTLtf. Suppose that every subquery
in CTLÇP, CTLQ^, and CTLCJ? is intermediate collecting, and every sub-
query in CTLCf and CTLCf is strong collecting. Then, 7 is weak collecting.

Proof. Structural induction on 7.

Induction start:
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> If 7 is the placeholder, the assertion follows trivially.

> Let 7 = 0A7 such that 7 G CTLQ3UCTLQ4UCTLQ5. Since 7^] A
is equivalent to 0 A (ï[<p] Aj[ip]), we obtain by assumption 0 A j[ip A ip],
that is, 7[</? A ?/>]. Hence, 7 is weak collecting.

> Let 7 = AX 7 such that 7 G CTLQ3 U CTLQ4 U CTLQ5 U CTLQ6 U
CTLQ7. Suppose that s \= ̂ [np] Ay[ip]. W.I.o.g., we choose any path n G
paths(s). Then, we know that TT1 |= */[ip] A 7 ^ ] . Hence, by assumption
resp. Lemma 4.23, we obtain TT1 |= 7[</? A ip], that is, ?r |= X ^ A ip].
Thus, since TT G paths(s) was chosen w.l.o.g., we obtain s \= ̂ [(p A ip].

> Let 7 = Af t Û0) = A ( 7 U (7 A 0)) such that 7 G CTLQ3 U CTLQ4 U
CTLQ5. Suppose that s (= 7[</J] A 7 ^ ] . W.l.o.g., we choose any path
7T G paths(s). Then, we know that there exists a least k G N such that
7rfc [= 0 and therefore 7r'°'fcl f= 7[<̂ ] A ï[ip]. Hence, by assumption, we
obtain 7r'°'fc] (= j[p Aip]. So we have 7rl°ifc' |= j[(p A tp] and 7rfc |= 6, that
is, 7T |= 7[y? A ^jÛO. Thus, since n G paths(s) was chosen w.l.o.g., we
obtain s \= j[(p Aip].

> Let 7 = A ( 0 Û 7 ) = A ( 0 U (0 A 7)) such that 7 G CTLQ3 U CTLQ4 U
CTLQ5 . Suppose that s (= 7[y?] A 7[V;]- W.l.o.g., we choose any path
7T G paths(s). Then, we know that there exist least k,l Ç.N such that
7rfc |= 7[<£>] and TT' |= 7 ^ ] . Hence, by assumption, we obtain 7rmax(fe>0 (=
7[y» A V'] or an r G N such that min(fc, /) < r < max(k, I) and 7rr f= 7[-L].
Consequently, since 7[_L] implies ^[(p Aip] by Lemma 2.1, we have either
7rt°'r] \= 9 and nr \= 7 ^ A V>] or 7r[o.'«'i«(fc,0] [= 0 and nmax^k^ \= j[(p A ip],
that is, 7T |= 9\J'j[ip Aip]. Thus, since TT G paths(s) was chosen w.l.o.g.,
we obtain s \= *y[<p A ip].

> Let 7 = A ( 0 Ü 7 ) = A ( 0 U (-.0 A 7)) such that 7 G CTLQ3 U CTLQ4 U
CTLQ5 . Suppose that s (= ~f[(p] A j[ip]- W.l.o.g., we choose any path
7T G paths(s). Then, we know that there exists a least k G N such that
7Tfc |= -i0 and therefore ?rfc [= 7[<p] A ï[ip]. Hence, by assumption, we
obtain nk \= î[<p Aip]. So we have 7r'Oifc) (= 0 and irh \= ->6 A ï[(p A ip],
that is, 7T |= 9\Jj[(p Aip]. Thus, since TT G paths(s) was chosen w.l.o.g.,
we obtain s (= ^[(p A ip].
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> Let 7 = A ( 7 W 0 ) = A ( ( G T ) V ( 7 Û 0 ) ) such that 7 G CTLQ3UCTLQ4U
CTLQ5. Suppose that s (= ~f[ip] A 7 ^ ] . W.I.o.g., we choose any path
7T G paths(s). Now, let us distinguish between two cases: (i) If there
exists a least k € N such that nk f= 0, we know that TT'0'*' (= 7^ ] A ï[ip].
Hence, by assumption, we obtain TT'0'^ \= j[cp Atp]. So we have 7r[°'fc' (=
7[<p A ̂ ] and 7rfc |= 0, that is, TT |= j[<p A T/>] Û0, which trivially implies
K H 7[v A ip] W o . (ii) Otherwise, if no such A; exists, we know that
n[°,°°) |= 7^ ] A 7 [?/;]. Hence, by assumption, we obtain TT'0'00) f= 7[</> A^],
that is, IT \= G7[y A ip], which trivially implies n \= *f[ip A ip] WÔ. Thus,
since 7r G paths(s) was chosen w.l.o.g., we obtain s (= 7[y? A ^ ] .

> Let 7 = A(0 W 7 ) = A((GÖ) V(0Û7)) such that 7 G CTLQ3uCTLQ4U
CTLQ5. Suppose that s |= 7(99] A 7 ^ ] . W.l.o.g., we choose any path
7T G paths(s). Now, let us distinguish between two cases: (i) If TT (=
G0, we trivially have ?r |= Ö W ^ A ip]- (ü) Otherwise, we know that
there exist least k,l G N such that ?rfc |= y[<p] and TT' (= 7[?/>]. Hence,
by assumption, we obtain 7rmax(fe'') |= 7 ^ A ip] or an r G N such that
min(A;,/) < r < max(fc, /) and ?rr |= 7[JL]. Consequently, since 7[_L]
implies ^[ipAijj] by Lemma 2.1, we have either TT'0'7"' |= Ö and TT7" (= T'^A^]
or 7r[°'majc(fc^] |= 0 and 7rmax(fci') |= 7 ^ A ^ ] , that is, ?r |= 0Û7[y>A^], which
trivially implies TT |= 9W*/[(p Aip). Thus, since ?r G paths (s) was chosen
w.l.o.g., we obtain s (= 7[<p A ip].

> Let 7 = A(0 W 7 ) = A((G0) V(0Ü7)) such that 7 G CTLQ3UCTLQ4U
CTLQ5. Suppose that s |= 7^] A 7 ^ ] . W.l.o.g., we choose any path
7T G paths(s). Now, let us distinguish between two cases: (i) If TT (= G 9,
we trivially have TT \= ÖW7[(/3 A ip]. (ii) Otherwise, we know that there
exists a least k G N such that 7rfc |= -10 and therefore 7rfe (= 7[y] A 7 ^ ] .
Hence, by assumption, we obtain 7rfc |= */[(p Atp]. So we have 7r̂ 0'fc^ |= 9
and nk (= -i0 A7[̂ > A V"], that is, 7r |= Ö Ü ^ ^ A ip], which trivially implies
7T |= 0W7[(/7 A ^ ] . Thus, since n G paths(s) was chosen w.l.o.g., we
obtain 5 (= ^[cp A ip].

Induction step:

> Let 7 = 9 A 7. Since 7[<p] A 7['0] is equivalent to 9 A (ï[tp] A
obtain by induction hypothesis 0 A 7[<p A -0], that is, -y[<p A ip].
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> Let 7 = 9 V 7. Since ^[<p] A ^[ip] is equivalent to 6 V (T"[V?] A 7[t/>]), we
obtain by induction hypothesis 9 V j[(p A ip], that is, j[ip A ip].

> Let 7 = A X 7 . Suppose that s |= *y[(p] A^ip]. W.I.o.g., we choose any
path TT G paths(s). Then, we know that TT1 (= j[(p\ A ï[ip]. Hence, by
induction hypothesis, we obtain TT1 |= *f[<p A ip], that is, TT (= ~X.*y[ip A ip].
Thus, since TT G paths(s) was chosen w.l.o.g., we obtain s (= 7(9? A ip].

> Let 7 = A(7Û0) = A ( 7 U ( 7 A 0)). Suppose that s |= 7^ ] A 7 ^ ] .
W.l.o.g., we choose any path n G paths(s). Then, we know that there
exists a least k G N such that nk \= 9 and therefore TT'0'^ |= î[(p] A î[tp].
Hence, by induction hypothesis, we obtain 7rt°ifcl (= ^\ip Atp]. So we have
n[o,k] |L 7 ^ A ^,j a n d f̂c |_ ö j t h a t iSj ^ ^ 7 [ ^ A ^]Û6>. Thus, since

7T G paths(s) was chosen w.l.o.g., we obtain s (= 7(7? A ^ ] .

> Let 7 = A(0Ü7) = A(eXJ(->0 A 7)). Suppose that s f= 7^] A
W.l.o.g., we choose any path TT G paths(s). Then, we know that there
exists a least k G N such that nk (= ->$ and therefore nk (= 7[</?] A Ï[I/J].

Hence, by induction hypothesis, we obtain Trk \= ^[(p A ip]. So we have
n[o,k) j l ^ a n d nk |_ _,ö A 7 ^ A ^ j^ t h a t iS) 7T |= 51 t j 7[<p A ?/;]. Thus, since

IT G paths(s) was chosen w.l.o.g., we obtain s (= 7 ^ A ^ ] .

> Let 7 = A ( 7 W 0 ) = A((G7) V (7Ü0)) . Suppose that s |= 7 ^ ] A
W.l.o.g., we choose any path n G paths(s). Now, let us distinguish
between two cases: (i) If there exists a least fceN such that irk \= 9,
we know that TT'0'^ |= ï[tp] A 7 ^ ] . Hence, by induction hypothesis, we
obtain 7rf°'fc' |= j[<pAip]. So we have 7rt°'fcl |= j[<pAip] and irk (= 9, that is,
TT \= ï[tpAip] Û 9, which trivially implies TT \= ̂ [ipAip] WÖ. (ii) Otherwise,
if no such k exists, we know that TT'0'00) |= ï[(p] A ^ ^ ] . Hence, by induction
hypothesis, we obtain TT^°'°°^ \= ï[(p A ip], that is, TT (= G ^ A ip], which
trivially implies n \= ̂ [ip A ip] W # . Thus, since TT G paths (s) was chosen
w.l.o.g., we obtain s (= ^[ip A ip].

> Let 7 = A ( 0 W 7 ) = A((G0) V (ÖÜ7)). Suppose that s \= j[np] A
W.l.o.g., we choose any path TT G paths(s). Now, let us distinguish
between two cases: (i) If TT |= G 9, we trivially have TT (= Ö W ^ A ip].
(ii) Otherwise, we know that there exists a least k G N such that TTk f= ->9
and therefore 7rfc (= 7^ ] A7[^]. Hence, by induction hypothesis, we obtain
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7Tfc |= *j[<p Aip]. So we have 7r[°'fc) |= 6 and irk \= -<6 A y[ip A ip], that is,
7T |= 9\Jy[ip A ip], which trivially implies ix \= 9~Wï\ip A ip]. Thus, since
n G paths(s) was chosen w.l.o.g., we obtain s |= j[<p A ip].

This concludes the proof. D

Proof of Lemma 4.25

Lemma 4.25. Let 7 G CTLC? U CTLCf U CTLCf'. Suppose that every
subquery in CTLQ1 and CTL02 is weak collecting, and every subquery
in CTLCf and CTLCf is strong collecting. Then, 7 is intermediate collecting.

Proof. Structural induction on 7.
Let s\ and s2 be any states in a Kripke structure such that Si -w s2. W.l.o.g.,
we choose any path p G paths(si) such that p{n) — s2 for some n G N. Let
us define the set 11^ = {ir G paths(si) | Vz < n. n(i) = p(i)}. It is easy to
see that 11^ is not empty and that paths(s2) = {^n I TT G

Induction start:

> Let 7 = A F 7 such that 7 G CTLQ6 U CTLQ7. Suppose that s1 \=
and S2 \= ^y[ip], where Si ~» S2. W.l.o.g., we choose any path n G
Recall that by definition we have nn G paths(s2) for some n G N. Then,
we know that there exist k,l EN such that nk \= */[<p] and 7rn+i (= 7 ^ ] .
Hence, by Lemma 4.23, we obtain 7rmin(fc'n+^ \= 7LI] or 7rmax(*."+0 [=
7[(/? A ip]. If 7rmin(fc.n+0 [= 7[j_] and k < n, we are done because 7[_L]
trivially implies 7[-L], that is, pk \= j[-L\. Note that in this case it holds
that irk (= 7[_L] for all TT G 11^. Otherwise, since 7[±] implies ï[(p A ip]
by Lemma 2.1, we know that there exists r G {k,n +1} such that 7rr (=
ï[<pAip], that is, 7rn (= F T ' ^ A ' ^ ] . Thus, since ?r G 11^ was chosen w.l.o.g.,
we have s2 |= 7[tp A ip].

> Let 7 = A(7 U0) such that 7 G CTLQ1 U CTLQ2 U CTLQ6 U CTLQ7.
Suppose that si |= ~j[<p\ and s2 (= 7fa/'], where sx ^> s2. W.l.o.g., we
choose any path TT G IT^. Recall that by definition we have nn G paths(s2)
for some n G N. Then, we know that there exists a least k G N such that
7rfc (= #. If A; < n, we are done because 6 trivially implies 7[-L], that is,
pk (= 7[J_]. Note that in this case it holds that 7rfc |= 7[_L] for all -K G n ^ .
Otherwise, if k > n, we know that n^n'k^ \= ^[cp] A ï[ip]. Hence, by
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assumption resp. Lemma 4.23 and Lemma 2.1, we obtain n^1'^ |=
So we have iv[n>k) (= j[cp A iß] and nk (= 0, that is, nn f= 7[<p A i>] U0.
Thus, since TT G ITJ' was chosen w.l.o.g., we have S2 |= 7[<p A iß].

> Let 7 = A ( 7 U 0 ) = A ( 7 U ( 7 A 0)) such that 7 G CTLQ6 U CTLQ7.
Suppose that Si (= 7^ ] and S2 H T^L where Si —> S2. W.l.o.g., we
choose any path n G 11^. Recall that by definition we have irn G paths(s2)
for some n G N. Then, we know that there exist least fc,!çN such that
TTk \=6 and irn+l \= 0. If fc < n, we have 7rfc |= ï[ip) and 7r[n'n+'l |= 7 ^ ] .
Hence, by Lemma 4.23, we obtain ?rfc |= 7[_L] or 7i-[n'n+'l \= j[<p A iß]. If
7rfc [= 7[_L], we are done because we have 7[_L] A 0 which trivially implies
7[-L], that is, pk \= 7[_L]. Note that in this case it holds that 7rfe |= 7[±] for
all n G n*i. Otherwise, we have 7r[n'n+'! [= 7[<p A^] and nn+l (= 6>, that is,
7rn |= 7[(p A^] Û 6. Otherwise, if k > n, we know that 7rfn'fcl (= 7[(/?] A^^] -
Hence, by Lemma 4.23 and Lemma 2.1, we obtain 7r'n'fcl \= *f[<p A tp]. So
we have T T ^ |= 7 ^ A ̂ ] and 7rfe |= Ô, that is, irn \= j[cp Aip]\J6. Thus,
since n G 11^ was chosen w.l.o.g., we have S2 \= i[(p A iß].

> Let 7 = A ( Ô U T ) such that 7 G CTLQ6 U CTLQ7. Suppose that sx H
7[y] and S2 (= 7[^]) where si ~» S2. W.l.o.g., we choose any path TT G
n^i. Recall that by definition we have nn G paths(s2) for some n G N.
Then, we know that there exist least k, l G N such that nk \= *f[<p] and
TTn+l \= j[iß]. Hence, by Lemma 4.23, we obtain 7rmin<*>n+') |= j[±] or
7rmax(*,n+o ^1 ^ [^ A ^]_ j f 7rmin(fe,n+!) |_ 7|j_] a n d jt < n, we are done

because 7[±] trivially implies 7[-L], that is, pk \= 7[J-]- Note that in this
case it holds that irk \= 7[±] for all TT G 11^. Otherwise, since 7[_L] implies
7[</? A iß] by Lemma 2.1, we know that there exists r G {k, n + 1} such
that 7r(n'r) |= 9 and 7rr \= y[<p Aip], that is, nn \= 9Uî[<p Aiß]. Thus, since
7T G 11^ was chosen w.l.o.g., we have s2 |= j[(p A iß].

> Let 7 = A(0Û7) = A(ÖU(Ö A 7)) such that 7 G CTLQ6 U CTLQ7.
Suppose that Si [= 7[(/?] and s2 |= 7[^], where si ^> S2. W.l.o.g., we
choose any path ?r G 11^. Recall that by definition we have nn G paths(s2)
for some n G N. Then, we know that there exist least k,l eN such that
7rk \= 9 A 7[y] and nn+l \= 9 A 7["0]. Hence, by Lemma 4.23, we obtain
7rmin(fe,n+0 |1 7[j_j Qr ^max .̂n+i) ^ 7 ^ A ^ j_ Jf ^minfon+l) ^ 7|j_] & n d

k < n, we are done because we have 0 A-yfJ.] which trivially implies 7[-L],
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that is, pk \= 7[J_]. Note that in this case it holds that nk \= y[±] for all
n G 11^. Otherwise, since 7[_L] implies î[ip A ip] by Lemma 2.1, we know
that there exists r e {k,n + 1} such that TT '̂7"' (= 9 and ?rr \= ^[ip A -0],
that is, 7rn |= OÛ7[</? A^]- Thus, since TT G n*i was chosen w.l.o.g., we
have s2 f= 7[</? A ^ j .

> Let 7 = A(0Ü7) = A(0U (-.0 A 7)) such that 7 G CTLQ6 U CTLQ7.
Suppose that si \= j[(p] and s2 (= 7[^], where Si -w s2. W.l.o.g., we
choose any path TT G 11^. Recall that by definition we have 7rn G paths(s2)
for some n G N. Then, we know that there exist least k,l eN such that
nk f= ->6 Aj[<p] and 7rn+/ |= -iö A 7 ^ ] . Hence, by Lemma 4.23, we obtain
m̂inCfc.n+J) |1 ^[j_j Qr ^maxik.n+f) ^ ^ A ^]_ j f „.min .̂n+I) ^ ^ Ĵ_j a n d

A; < n, we are done because we have -10 A 7[±] which trivially implies
7[-L], that is, pk \= j[-L}- Note that in this case it holds that 7rfc (= j[±]
for all 7T G n ^ . Otherwise, since 7[JL] implies 7[</? AT/»] by Lemma 2.1, we
know that 7^'"+') H ö a n d Tn+i H -ÖA7^A^], that is, ?rn h Ö
Thus, since ir G 11^ was chosen w.l.o.g., we have s2 |= ^[<p A -0]

> Let 7 = A(7WÖ) = A((G 7 )V(7UÖ)) such that 7 G CTLQ^UCTLQ^U
CTLQ6UCTLQ7. Suppose that sx |= 7^] and s2 (= 7 ^ ] , where sx -~* s2.
W.l.o.g., we choose any path n G 11^. Recall that by definition we have
7rn G paths(s2) for some n G N. Now, let us distinguish between two
cases: (i) If there exists a least k G N such that irk \= 9, we are done
if k < n because 9 trivially implies 7[-L], that is, pk \= 7[-L]. Note
that in this case it holds that irk f= 7[±] for all TT G 11^. Otherwise,
if k > n, we know that 7r'n'fc) f= 7[</?] A ^[tp]. Hence, by assumption
resp. Lemma 4.23 and Lemma 2.1, we obtain n^n'k^ (= 7[<£> A ip\. So we
have 7i-[n'fc) \= 7[<p A ijj] and 7rfc |= 9, that is, nn \= ï[<p Atp]U9, which
trivially implies nn |= ï[(p A^]WÖ. (ii) Otherwise, if no such k exists,
we know that TT \= Gj[ip] and 7rn (= G 7 ^ ] , which implies 7r'n'°°^ |=
7[yj] A7["0]. Hence, by assumption resp. Lemma 4.23 and Lemma 2.1, we
obtain 7r'n'°°) |= 7[^>A^], that is, 7rn (= G j[(p Atp], which trivially implies
7rn |= >y[(p A if)]W6. Thus, since IT G 11^ was chosen w.l.o.g., we have
s2 \=-y[(pAi/j].

> Let 7 = A ( 7 W 0 ) = A((G7)V(7ÛÔ)) such that 7 G CTLQ6 U CTLQ7.
Suppose that si \= ^[(p] and s2 |= 7 ^ ] , where si —» s2. W.l.o.g., we
choose any path n G n ^ . Recall that by definition we have irn G paths(s2)
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for some n G N. Now, let us distinguish between three cases: (i) If there
exist least k,l e N such that 7rfc f= 9 and -nn+l (= 9, then it holds that
7i-[o,fc] |= ^<p] and Trh.n+J] j _ ^ ^ j n particular, if k < n, we know
that 7Tfc (= j[(p] and 7r'n'n+'' (= 7 ^ ] . Hence, by Lemma 4.23, we obtain
7rfc |= 7[_L] or 7rtn'n+'l |= y[ip A ip]. If nk \= 7[-L], we are done because
we have 7[_L] A 9 which trivially implies y[-L], that is, pk (= 7[J-]. Note
that in this case it holds that nk \= 7[JL] for all n G 11^. Otherwise,
we have 7r^n+<l (= 7[<p A -0] and 7rn+ 'oh Ö, that is, TT" \= y[tp A ̂ ] Û0,
which trivially implies TT™ |= ")[<p A^JWÖ. Otherwise, if A; > n, we know
that 7r[n'fcl |= 7[yj] A j[ip). Hence, by Lemma 4.23 and Lemma 2.1, we
obtain n^n>k^ \= j[(p A ip). So we have 7r[n'fc' (= 7[y? A V'] and nk \= 9,
that is, 7rn (= 7 ^ A ^ ] U Ö , which trivially implies nn \= j[tp A ip) WÔ.
(ii) Otherwise, if no such / exists but there exists a least fc G N such
that 7rfc (= 0, then it holds that k < n, TT^I |= 7 ^ ] , and nn \= G 7 ^ ] .
In particular, we know that 7rfc \= ^[np] and TT'"'00) |= */[ip]- Hence, by
Lemma 4.23, we obtain nk \= *y[±] or n^n'°°^ \= î[p Aip}. If 7rfc (= 7LI],
we are done because we have 7[_L] A 9 which trivially implies 7[-L], that
is, pk \= 7[-L]. Note that in this case it holds that irk \= ~/[l] for all
7T e n*i. Otherwise, we have TT1"'00) |= ^[ipAifj], that is, 7rn \=Gj[<pAip],
which trivially implies irn [= ^[ip A ̂ ] W o . (iii) Otherwise, if no such k
and Z exist, we know that n f= G^ip] and 7rn (= G^f^], which implies
-ïï-tn.oo) |= 7[y?] A y[tp]. Hence, by Lemma 4.23 and Lemma 2.1, we obtain
TJ-KOQ) (= j[(p /\ ^ j 5 th a t j S ) Tj-n [= G7[(/? A ip], which trivially implies
7rn |= 7[<̂  Ai/i]WÖ. Thus, since TT G n ^ was chosen w.l.o.g., we have
s2

> Let 7 = A(ö W 7) = A((G Ö) V (Ö U 7)) such that 7 G CTLQ6 U CTLQ7.
Suppose that si [= 7[yj] and s2 (= 7['0], where si ~^ S2. W.l.o.g., we
choose any path n G 11^. Recall that by definition we have ixn G paths(s2)
for some n G N. Now, let us distinguish between two cases: (i) If there
exist least k,l G N such that nk (= j[(p] and 7rn+' [= T1^]) we know
by Lemma 4.23 that 7rmin(fc-n+/) \= ï[±] or n™**(k,n+i) ^ ^ A^y I f

7rmin(fc,n+o |_ ĵ-j_j a n ( j ^ < n, we are done because 7[_L] trivially implies
7[-L], that is, pk (= 7[-L]. Note that in this case it holds that irk \= 7[J_]
for all 7T G n ^ . Otherwise, since 7[_L] implies ^[ip Aip] by Lemma 2.1, we
know that there exists r G {k, n+l} such that n^n'r^ (= 9 and nr (= 7[y?A^],
that is, 7rn |= ÖU7[y? A ̂ J, which trivially implies nn \= 9Wj[<p Atp].



B Omitted Proofs for CTLQX 186

(ii) Otherwise, if no such k and I exist, we know that TT71 |= G 9, which
trivially implies irn (= flW^ A ip]. Thus, since TT G II** was chosen
w.l.o.g., we have 52 f= 7[<£ A ip].

> Let 7 = A ( 0 W 7 ) = A((G0) V(0Û7)) such that 7 G CTLQ6UCTLQ7.
Suppose that si |= ^y[ip] and S2 [= ~f[ip], where Si ~~> S2- W.I.o.g., we
choose any path n G Ilf,*. Recall that by definition we have irn G paths(s2)
for some n £ N. Now, let us distinguish between two cases: (i) If there
exist least k, l G N such that 7rfc \= 9 A 7[93] and ?rn+' f= Ö A 7 ^ ] , we
know by Lemma 4.23 that 7rmin(*-n+') \= y[±] or n^^i^n+i) ^ ^ A ^]
If 7r

min(*>n+0 1= ̂ jj_] a n ( j A: < n, we are done because we have 9 A 7[-L],
which trivially implies 7[-L], that is, pk f= 7[J-]. Note that in this case
it holds that 7rfc (= 7[_L] for all TT G IPf*. Otherwise, since y[±] implies
^[(p Aip] by Lemma 2.1, we know that there exists r G {k,n + l} such that
Trh.H f= 6> and nr \= 7 ^ A ip], that is, ?rn |= 6tSï[ip A ip], which trivially
implies ?rn |= Ö W ^ A ^ ] . (ii) Otherwise, if no such k and I exist, we
know that irn \= G 9, which trivially implies TT" |= Ô W ^ A tp]. Thus,
since ?r G 11^ was chosen w.l.o.g., we have s2 (= 7 ^ A ip].

> Let 7 = A(9 W 7 ) = A((G 9) V (ö Ü 7)) such that 7 G CTLQ6 U CTLQ7.
Suppose that si \= j[ip] and s2 H T^L w n e r e s i ^* ^2- W.l.o.g., we
choose any path n G 11^. Recall that by definition we have irn G paths(s2)
for some n G N. Now, let us distinguish between two cases: (i) If there
exist least k,l E N such that 7rfe |= ->9 A y[<p] and irn+l (= ->9 A ï[ip], we
know by Lemma 4.23 that 7rmin(fc>"+0 |= 7[±] or ^^(^ ,"+0 (= ^ A -0].
If 7r

min(fc.n+0 |= ^y[x] and k < n, we are done because we have ->9 A 7[-L],
which trivially implies 7[_L], that is, pk (= 7[J-]- Note that in this case
it holds that irk \= j[±] for all TT G n ^ . Otherwise, since 7[_L] implies
T'^A'^] by Lemma 2.1, we know that n^n'n+l^ \= 9 and 7Tn+l \= -i9Aï[(pAip],
that is, ix11 \= 9Ü*/[(p A ip], which trivially implies irn \= 9Wj[<p A ip].
(ii) Otherwise, if no such k and I exist, we know that TTn \= G9, which
trivially implies irn |= Ö W ^ A ^ ] . Thus, since TT G H^ was chosen
w.l.o.g., we have S2 |= j[<p A ip].

Induction step:

> Let 7 = 9 V 7. Suppose that Si |= 7[y] and s2 |= 7[V'], where Si ~* S2-
If Si (= Ö or s2 |= Ö, we trivially obtain s\ \= j[l] resp. S2 (=
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Otherwise, we know that Sx f= j[ip] and s2 (= îbP]- Hence, by induction
hypothesis, we obtain S2 |= ï[(p A iß] or an r G N such that r < n and
p r (= 7[-L], which trivially imply s2 [= 7[^^V;] a n d Pr H 7[-L] respectively.
Note that in the latter case it holds that ?rr f= 7[±] for all n G

> Let 7 = A F 7 . Suppose that Sx f= 7[y>] and S2 |= 7["0], where Sx ~» S2.
W.I.o.g., we choose any path n G Ê^ . Recall that by definition we
have 7rn G paths(s2) for some n G N. Then, we know that there exist
k,l G N such that nk \= j[<p] and irn+l (= 7 ^ ] . Hence, by induction
hypothesis, we obtain 7r

max(fc.n+0 (= ^[(^ A 0] or an r G N such that
min(fc, n + l) < r < max(A;, n + I) and TT7" (= 7[-L]. If r < n, we are done
because 7[_L] trivially implies 7[-L], that is, pr \= 7[-L]. Note that in this
case it holds that 7rr |= 7[J_] for all n G 11^. Otherwise, since 7[J_] implies
ï[(p A -0] by Lemma 2.1, we have ?rr \= *y[<p A ̂ ] or •K

max(k<n+l) |= ^[yj A ̂ J,
that is, 7rn |= F7[(/? A if;]. Thus, since ?r G n ^ was chosen w.l.o.g., we
obtain s2 \= *y[(f A ip].

t> Let 7 = A(7U 0). Suppose that Sx |= 7[</?] and s2 |= 7['0]> where Sx ~* s2.
W.l.o.g., we choose any path TT G n ^ . Recall that by definition we have
7rn G paths(s2) for some n G N. Then, we know that there exists a least
fceN such that -nk \= 6. If A; < n, we are done because 9 trivially implies
7[_L], that is, pk \= 7[i-]. Note that in this case it holds that nk \=
for all 7T G n ^ . Otherwise, if k > n, we know that 7r'n'fc) |= ï[tp] A
Hence, by induction hypothesis, we obtain 7rln'fc^ |= ï[<p Aip]. So we have
n[n,k) j= ^ A ^] a n d nk ^ ö> t h a t iS; wn |_ ^ ^ A V;] U (9. Thus, since

7T G n*i was chosen w.l.o.g., we obtain s2 \= 7[<P A V1]-

t> Let 7 = A(ÖU7). Suppose that Sx (= 7[(/?] and s2 |= 7[^], where Sx -^ s2.
W.l.o.g., we choose any path n G n ^ . Recall that by definition we have
7rn G paths(s2) for some n G N. Then, we know that there exist least
fc,l £ N such that nk \= *y[ip] and irn+l \= ^[ip]. Hence, by induction
hypothesis, we obtain 7r

max(fc>n+0 (= ^ [^ A ip] or an r G N such that
min(/c, n +1) < r < max(fc, n + l) and 7rr (= 7[J-]- If r < n, we are done
because 7[_L] trivially implies 7[-L], that is, pr \= 7[-L]. Note that in this
case it holds that irT (= 7[±] for all ix G 11^. Otherwise, since j[±] implies
j[<p A iß] by Lemma 2.1, we have either 7r'n'r) |= 9 and nr \= >y[ip A iß] or
7r[n,max(fcIn+0) [= Q a n c l m̂axCfc.n+O ^ ^ [^ A ^ t h a t is> TT" f= ÖU^yJ A #
Thus, since ?r G n ^ was chosen w.l.o.g., we obtain S2 |= 7[y A •)/>].
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o Let 7 = A ( T " W 0 ) = A((GôO V (7U0)). Suppose that s1 \= 7^ ] and
S2 \= 7^]) where Si ~> s2. W.l.o.g., we choose any path IT G 11^. Recall
that by definition we have irn G paths(s2) for some n G N. Now, let
us distinguish between two cases: (i) If there exists a least k G N such
that irk \= 6, we are done if k < n because 9 trivially implies 7[-L],
that is, pk \= 7[-L]. Note that in this case it holds that nk (= 7[JL] for
all 7T G n**. Otherwise, if k > n, we know that 7r'n'fe) (= */[<p] A ï[ip].
Hence, by induction hypothesis, we obtain TT'™1^ (= j[<p Aip]. So we have
Ti-Kfc) |= j^p /\ ^] a n ( j >n-k |= Q} that is, 7rn (= 7[<£> A^]UÖ, which trivially
implies nn \= ̂ [tp A tp] W 0 . (ii) Otherwise, if no such A; exists, we know
that 7T |= G 7 ^ ] and nn j= G ^ ] , which implies 7rtn'°°) |= ^[<p\ A î[îp].
Hence, by induction hypothesis, we obtain TTI™'00) |= ^[ip A ip], that is,
7Tn |= G*/[<p A tp], which trivially implies ixn (= ï[<p A ip] WÖ. Thus, since
7T G n*i was chosen w.l.o.g., we obtain s2 |= 7[(/? A ip).

> Let 7 = A ( 0 W 7 ) = A((G0) V (0U7)). Suppose that Si |= 7^ ] and
s2 f= 7['0], where S\ ~* s2. W.l.o.g., we choose any path n G IT^.
Recall that by definition we have IT71 G paths(s2) for some n G N. Now,
let us distinguish between two cases: (i) If there exist least k,l E N
such that nk \= ï[(p] and irn+l (= 7 ^ ] , we obtain by induction hypothesis
nmax(k,n+i) |_ ^ [ ^ / ^ j or an r G N such that min(A;, n+l) <r< max(fc, n+
/) and 7rr |= 7[X]. If r < n, we are done because 7[_L] trivially implies
7[_L], that is, pr \= 7[J-]. Note that in this case it holds that TT7" (= 7[_L]
for all 7T G n ^ . Otherwise, since 7[_L] implies ï[ip A ip] by Lemma 2.1,
we have either -K^11'^ (= 0 and 7rr |= 7(9? A ip] or (̂".maxC^̂ +O) [= ^ a n d
^max{k,n+i) \^_ ^^ ^ ^ ^at is, 7Tn |= 9\5*/[ip A ip), which trivially implies
7rn |= 9Wj[ip Atp]. (ii) Otherwise, if no such k and I exist, we know
that 7rn |= G#, which trivially implies 7rn |= 9Wj[(p A ip]. Thus, since
7T G n*^ was chosen w.l.o.g., we obtain s2 (= ~f[ip A ip].

This concludes the proof. D

Proof of Lemma 4.26
Lemma 4.26. Let 7 G CTLCf U GTLCf'. Suppose that every subquery
in CTLQ1, CTLQ?', CTLCf, CTLQP, and CTLQ1 is weak collecting. Then,
7 is strong collecting.
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Proof. Structural induction on 7.
Let si and S2 be any states in a Kripke structure such that Si ~> S2- W.I.o.g.,
we choose any path p G paths(si) such that p{n) = s% for some n G N. Let
us define the set 11^ = {TT G paths(si) | Vz < n. ir(i) = p(i)}. It is easy to
see that TIQ is not empty and that paths(s2) = {irn \ n G n ^ } .

Induction start:

> Let 7 = A G 7 such that 7 G C T L Q ^ C T L Q ^ C T L Q ^ C T L Q ^ C T L Q 7 .
Suppose that si \= *y[(p] and s? \= ~f[ip], where Si ~> S2- W.I.o.g., we
choose any path n G 11^. Recall that by definition we have ?rn G paths(s2)
for some n G N. Then, we know that ir (= G7[</?] and 7rn (= G^fV'],
which implies yr^'00' \= j[<p] A 7 ^ ] . Hence, by assumption, we obtain
[̂n.00) ^ ^ A ^ t h a t igj wn ^ G ^ A ^ ] . Thus, since n G II£ was

chosen w.l.o.g., we have S2 \= ~/[<p A ip].

Induction step:

> Let 7 = Ö A 7. Suppose that si (= *y[(p] and S2 |= 7[^], where si -^ S2-
Then, we know that Si (= ï[<p] and S2 |= T'[V>]- Hence, by induction
hypothesis, we obtain S2 \= 7[</? A ̂ ] - Thus, we have S2 |= 0 and 52 [=
j[ip A -0], that is, s2 \= i[<p A V»]-

Let 7 = A X 7 . Suppose that s\ \= j[(p] and S2 (= 7[^], where Si ^* S2.
W.l.o.g., we choose any path n G 11^. Recall that by definition we
have 7rn G paths(s2) for some n £ M . Then, we know that n1 \= j[tp] and
?rn+1 (= *f[tp]. Hence, by induction hypothesis, we obtain 7rn+1 |= ̂ [cpAip],
that is, nn \= X ^ A ip]. Thus, since ir G n ^ was chosen w.l.o.g., we
have S2 \= 7[v? A ip].

> Let 7 = A F 7 . Suppose that s\ \= i[(p] and S2 \= 7["0], where s\ -^ S2.
W.l.o.g., we choose any path n G n ^ . Recall that by definition we have
7rn G paths(s2) for some n G N. Then, we know that there exist k, l G N
such that ?rfc (= 7[<£>] and nn+l (= 7[^]. Hence, by induction hypothesis,
we obtain 7rmax(fe>n+0 |= 7 ^ A -0], that is, nn \= Fï[ip A if>]. Thus, since
7T G n ^ was chosen w.l.o.g., we have S2 |= 7[</? A V7]-

> Let 7 = A G 7 . Suppose that si (= 7(̂ 3] and S2 |= 7['0], where Si ~» S2.
W.l.o.g., we choose any path ?r G 11^. Recall that by definition we have
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7T™ G paths(s2) for some n G N. Then, we know that ?r |= G7[<p] and
7rn |= G'yfV'], which implies TT'71'00) |= 7[y>] A T ^ ] . Hence, by induction
hypothesis, we obtain ir^n'°°^ |= ^[tpAijj], that is, irn (= G ^ A ^ ] . Thus,
since IT G 11^ was chosen w.l.o.g., we have s2 (= i[(p A ?/>].

> Let 7 = A(7ÛO) = A ( 7 U (7 A 0)). Suppose that sx j= j[<p] and s2 |=
7['0], where Si ~> S2. W.l.o.g., we choose any path TT G 11^. Recall that
by definition we have 7rn G paths(s2) for some n G N. Then, we know
that 7T (= 7[</?] and that there exists a least A; G N such that nn+k j= 0
and therefore n^n'n+k^ f= 7 ^ ] . Hence, by induction hypothesis, we obtain
n[n,n+k] ^ ^ , ^ A ^ j _ g 0 w e h a v e [̂n.n+fc] |_ ^ ^ A ^ j a n d ^n+k ^ ^ t h a t

is, 7Tn |= 7[</? A 7/;] ÛO. Thus, since TT G Ii.ss\ was chosen w.l.o.g., we have

s2 (=7b A-0].

> Let 7 = A(ÖÜ7). Suppose that s\ (= 7[<p] and S2 (= 7[^], where s\ -w S2.
W.l.o.g., we choose any path TT G n ^ . Recall that by definition we have
TT" G paths(s2) for some n G N. Then, we know that there exist least
k,l G N such that xk j= 7[y?] and nn+l \= 7^ ] - Hence, by induction
hypothesis, we obtain n

m^(k'n+l) \= *y[(pAif>]. So we have 7rKmax(fe>™+')) (= 6>
and 7rmajc(fc>"+') |= 7[^A^], that is, nn \= Ô U ^ A ^ ] . Thus, since n G
was chosen w.l.o.g., we have s2 (= 7[<̂  A ^ ] .

> Let 7 = A ( # Û 7 ) = A(ÖU(Ö A 7)). Since we have already shown the
assertion for conjunction and the strong until operator U with respect to
its second argument, we are done.

> Let 7 = A ( 0 Ü 7 ) = A(0U (-10 A 7)). Since we have already shown the
assertion for conjunction and the strong until operator U with respect to
its second argument, we are done.

> Let 7 = A(7W<9) = A((G7) V (7UÖ)). Suppose that s± \= 7^ ] and
S2 \= ity], where Si -w S2- W.l.o.g., we choose any path n G 11^. Recall
that by definition we have irn G paths(s2) for some n G N. Now, let
us distinguish between two cases: (i) If there exists a least k G N such
that 7Tn+fe (= 6, we know that n f= y[ip] and 7r[n'n+fc] |= 7 ^ ] . Hence,
by induction hypothesis, we obtain 7rtn>n+fcl |= 7 ^ A ip]. So we have
[̂n.n+fe] ^ ^ A ^] a n d n̂+fc ^ ö j t h a t j g j ̂ n |L ^ ,^ A ^] Ü Ö, which

trivially implies TT™ [= j[<fAilj}W9. (ii) Otherwise, if no such k exists, we
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know that -K \= ̂ [np] and n^n>o°^ f= ï[ip]. Hence, by induction hypothesis,
we obtain n^n'°°^ (= ^[ip A ip], that is, ?rn f= G 7 ^ A tp], which trivially
implies nn f= j[ip A ip] W # . Thus, since ir G n ^ was chosen w.l.o.g., we
have S2 (= 7[y? A tp].

> Let 7 = A(ÖW7) = A((G0) V (ÖU7)). Suppose that si (= 7^ ] and
S2 H 7["0]) where si *~* S2. W.l.o.g., we choose any path ir G 11^. Recall
that by definition we have irn G paths(s2) for some n G N. Now, let
us distinguish between two cases: (i) If there exist least k,l £ N such
that nk (= 7[73] and nn+l \= ï[i/)], we obtain by induction hypothesis

C J ) ^ ^ A ^ ] _ So We have 7r[«.™«(*In+/)) j= Q & n d ^maxtfc.n+J) ^
], that is, 7rn |= Ö U T ' ^ A V ' ] , which trivially implies ?rn \= 0~W^[cpA

ip\. (ii) Otherwise, if no such k and / exist, we know that 7rn (= G 9, which
trivially implies nn f= ÖW7[(p A ̂ ] . Thus, since n G 11^ was chosen
w.l.o.g., we have S2 f= 7[<p A V1]-

t> Let 7 = A(ÖW7) = A(9W (9 A 7)). Since we have already shown the
assertion for conjunction and the weak until operator W with respect to
its second argument, we are done.

> Let 7 = A(9 W7) = A(#W (-1Ö A 7)). Since we have already shown the
assertion for conjunction and the weak until operator W with respect to
its second argument, we are done.

This concludes the proof. •

Proof of Lemma 4.31
Lemma 4.31. Let 7 G CTLQ? U CTLQ6. Then, 7[T] implies AF7[±].

Proof. Structural induction on 7.

Induction start:

> Let 7 = A(7 U 0) such that 7 G CTLQ1 U CTLQ2 U CTLQ4 U CTLQ5 U
CTLQ7 U CTLQ8 U CTLQ9. If s |= 7[T], we choose w.l.o.g. any path
7T G paths(s). Then, we know that there exists n G N such that nn \=
9. Hence, since 9 trivially implies 7[-L], we obtain 7rn (= 7[J_], that is,
7T |= F7[_L]. Thus, since n G paths(s) was chosen w.l.o.g., we have
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Induction step:

> Let 7 = 9 V 7. If s (= 7[T] and s \= 6, we trivially have s [= 7[±] and
therefore s f= AF7[_L]. Otherwise, if s (= 7[T] and s ^ 0, we know
that s (= 7[T]. Hence, by induction hypothesis, we obtain s \= A F T J - L ] .

Thus, since 7[±] trivially implies 7[-L], we have s \= AF7[±] .

> Let 7 = A F 7 . If s |= 7[T], we choose w.l.o.g. any path ir G paths(s).
Then, we know that there exists n G N such that nn \= j[T]. Hence,
by induction hypothesis, we obtain ixn \= AF7[±] , which implies TT (=
F7[±]. Consequently, since j[±] implies 7[_L], we have IT (= F7[_L].
Thus, since n € paths(s) was chosen w.l.o.g., we have s (= AF7[_L].

> Let 7 = A(7UÖ). If s (= 7[T], we choose w.l.o.g. any path TT e paths(s).
Then, we know that there exists n EN such that 7rn (= Ö. Hence, since 9
trivially implies 7[_L], we obtain nn \= 7[-L], that is, n (= F7P-] . Thus,
since TT G paths(s) was chosen w.l.o.g., we have s (= AF7[±] .

> Let 7 = A(#U7) . If s (= 7p~], we choose w.l.o.g. any path n e paths(s).
Then, we know that there exists n G N such that ?rn |= 7[T]. Hence,
by induction hypothesis, we obtain nn \= AFj[A.], which implies ?r \=
Fj[l]. Consequently, since 7[_L] implies 7[-L], we have ir \= F7[±].
Thus, since TT G paths(s) was chosen w.l.o.g., we have s |= AF7LL].

This concludes the proof. D

Proof of Lemma 4.32

Lemma 4.32. Let 7 G CTLQ?UCTLÇfuCTLQ9. Then, AG7[T] implies

AG7[-L].

Proof. Structural induction on 7.

Induction start:

> Let 7 = A(0Û7) = A(9U(9 A 7)) such that 7 G CTLQ3 U CTLQ6.
It is easy to see that AG7[T] implies both AG9 and AGAF^T] ,
Hence, by Lemma 4.31, we obtain AG AFAF-yfJL], which is equivalent
to AGAF7[1]. So we have AGO and A G A F ^ l j , that is, AG7[JL].



B Omitted Proofs for CTLQf 193

> Let 7 = A(0W 7 ) = A((G0) V(0U7)) such that 7 e CTLQ3UCTLQ4U
CTLQ6UCTLQ7UCTLQ8. It is easy to see that AG7[T] implies AGO,
which in turn trivially implies AG7P-].

Induction step:

> Let 7 = 6 A 7. Since AG7[T] is equivalent to (AGÔ) A (AG^T]), we
obtain by induction hypothesis (AGO) A (AG7[_L]). Hence, we have
AG(0 A7[JL]), that is, AG7[_L].

o Let 7 = AX 7. Since AG7[T] is equivalent to AX AG7[T], we obtain
by induction hypothesis A X A G ^ l ] . Hence, we have A G A X ^ l ] ,
that is, AG7LL].

t> Let 7 = A(7 Û 9) = A(7 U (7A9)). It is easy to see that AG 7[T] implies
both AG7[T] and AG AF6. Hence, by induction hypothesis, we obtain
AG7[_L]. So we have AG7LL] and AG AF6, that is, AG7[J_].

o Let 7 = A(7W6>) = A((GT") V (7ÛÔ)). It is easy to see that AG7[T]
implies A G T J T ] . Hence, by induction hypothesis, we obtain AG7[1].
Thus, since AG7[1] is equivalent to AGAG^fl ] , and AG 7(1] implies
7[J_], we have AG7[1],

> Let 7 = A(0W7) = A((G0) V (OÛ7)). It is easy to see that AG7JT]
implies AGO. Hence, since AGO trivially implies AG7[_L], we obtain
AG7[-L].

This concludes the proof. D

Proof of Lemma 4.33
Lemma 4.33. Let 7 G CTLQ10. Then, i[T] implies j[±].

Proof. Structural induction on 7.

Induction start:

o Let 7 = AG7 such that 7 G CTLQ2 U CTLQ5 U CTLQ9. Then, the
assertion holds according to Lemma 4.32.

Induction step:
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> Let 7 = ÖA7. Since 7[T] is equivalent to 9Aj[T], we obtain by induction
hypothesis 9 A-yfl], that is, 7[-L].

> Let 7 = ÖV7. Since 7[T] is equivalent to 0V7[T], we obtain by induction
hypothesis 0 V7[ l ] , that is, 7[-L].

> Let 7 = A X 7 . Suppose that 5 f= 7p~]. W.I.o.g., we choose any path
7T G paths(s). Then, we know that TT1 (= 7[T]. Hence, by induction
hypothesis, we obtain TT1 f= 7[_L], that is, TT (= X ^ l ] . Thus, since
7T G paths(s) was chosen w.l.o.g., we have s f= 7[_L].

> Let 7 = A F 7 . Suppose that s (= 7[T]. W.l.o.g., we choose any path
7T G paths(s). Then, we know that there exists n G N such that irn f=
7[T]. Hence, by induction hypothesis, we obtain irn |= 7[_L], that is,
7T f= F7[±] . Thus, since TT G paths(s) was chosen w.l.o.g., we have

> Let 7 = A G 7 . Suppose that s f= 7[T]. W.l.o.g., we choose any path
7T G paths(s). Then, we know that TT'0'00^ \= 7[T]. Hence, by induction
hypothesis, we obtain TT^0'00) (= 7[-L], that is, TT \= Gj[±]. Thus, since
7T G paths(s) was chosen w.l.o.g., we have s [= 7[_L].

> Let 7 = A(7U0) . Suppose that s (= 7[T]. W.l.o.g., we choose any path
7T G paths(s). Then, we know that there exists a least n G N such that
nn \= 6 and therefore Tr'0'^ |= 7[T]. Hence, by induction hypothesis, we
obtain ir^ \= f[±]. So we have 7r[0'n) f= 7[J_] and ?rn |= Ö, that is,
7T |= 7[1]UÖ. Thus, since ix G paths(s) was chosen w.l.o.g., we have

> Let 7 = A(7Û0) = A(7U(7AÖ)). Suppose that s (= 7[T]. W.l.o.g., we
choose any path ?r G paths(s). Then, we know that there exists a least
n G N such that ?rn f= 0 and therefore 7r[°'n! |= 7[T]. Hence, by induction
hypothesis, we obtain 7r!°'n' (= 7[J_]. So we have 7r[°'n' |= 7[±] and ?rn \= 9,
that is, IT |= 7[J_]Û#. Thus, since TT G paths(s) was chosen w.l.o.g., we
have s f= 7[-L].

> Let 7 = A(0U7) . Suppose that s (= 7[T]. W.l.o.g., we choose any path
TT G paths(s). Then, we know that there exists a least n G N such that
TTn f= 7[T]. Hence, by induction hypothesis, we obtain TTU \= 7[J_]. So
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we have TTI0-") |= 9 and nn (= 7[±], that is, n \= Ö U ^ l ] . Thus, since
7T G paths(s) was chosen w.l.o.g., we have s \= j[-L].

> Let 7 = A(0Û7) = A(0U(0 A 7)). Since we have already shown the
assertion for conjunction and the strong until operator U with respect to
its second argument, we are done.

> Let 7 = A(0Ü7) = A(0U (->9 A 7)). Since we have already shown the
assertion for conjunction and the strong until operator U with respect to
its second argument, we are done.

> Let 7 = A ( 7 W 0 ) = A((G7) V (7UÖ)). Suppose that s \= y[T].
W.l.o.g., we choose any path n G paths(s). Now, let us distinguish be-
tween two cases: (i) If there exists a least n G N such that irn f= 9,
we know that 7r'°'n) |= 7[T]. Hence, by induction hypothesis, we obtain

[) [)

which trivially implies TT |= 7[±] W Ö. (ii) Otherwise, if no such n exists,
we know that 7r'0'°°) \= 7[T]. Hence, by induction hypothesis, we obtain
[̂0,00) \_ ^±^ t h a t iS) n |= G7[±], which trivially implies n \= j[±] WÔ.

Thus, since TT G paths(s) was chosen w.l.o.g., we have s f= 7[-L].

> Let 7 = A ( 7 W 0 ) = A((G7) V (7ÛÔ)). Suppose that s H T [ T ] -
W.l.o.g., we choose any path IT G paths(s). Now, let us distinguish be-
tween two cases: (i) If there exists a least n G N such that irn \= 9,
we know that TT!0'"' f= 7[T]. Hence, by induction hypothesis, we obtain
7rto'nl |= 7[±]. So we have 7r[°-nl |= yfj.] and ?rn h #, that is, ?r |= y[±] Ü Ö,
which trivially implies TT (= 7[±] W 9. (ii) Otherwise, if no such n exists,
we know that 7r!0'°°) |= 7[T]. Hence, by induction hypothesis, we obtain
[̂0,00) ^ 7[_L]) t h a t iS; n |L G7[_L], which trivially implies ?r |= 7 [ l ] W ô .

Thus, since TT G paths(s) was chosen w.l.o.g., we have s |= 7[_L].

> Let 7 = A(ÔW7) = A((G0) V (ÔU7)). Suppose that 5 (= 7[T].
W.l.o.g., we choose any path IT G paths(s). Now, let us distinguish be-
tween two cases: (i) If there exists a least n G N such that ?rn \= 7[T],
we obtain by induction hypothesis 7rn (= 7[J-]. So we have TT'0'") (= Ö and
?rn (= 7[-L], that is, ?r |= 0U7LI], which trivially implies IT (= Ô W ^ l ] ,
(ii) Otherwise, if no such n exists, we know that IT (= G 9, which trivially
implies n f= Ö W ^ l ] , Thus, since TT G paths(s) was chosen w.l.o.g., we
have s |= 7 [_!_].
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> Let 7 = A(#W7) = A(0W(# A 7)). Since we have already shown the
assertion for conjunction and the weak until operator W with respect to
its second argument, we are done.

> Let 7 = A(0 W7) = A(0W (-10 A 7)). Since we have already shown the
assertion for conjunction and the weak until operator W with respect to
its second argument, we are done.

This concludes the proof. D
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A, see transition relation
o, see path, concatenation
=, see equivalent
?, see placeholder
CI, see component

ACTL, 19
ACTL*, 19
ACTLCT, 77
affect, 128
alternating automata

extended, 120
annotate, 129
aprop(-), 69

B, see boundary set
BDD, see binary decision diagram
binary decision diagram, 22

basic operations, 23
ordered, 22

reduced, 23
binary decision tree, 22
boundary collecting, 65, 81
boundary set, 101
bounded query, 56

C, see cycle set
Chan algorithm, 103

auxiliary sets, 101
boundary set, 101
cycle set, 101
reachable set, 101

extended, 111
characteristic function, 108
collecting query, 58

boundary, 65, 81
intermediate, 65, 81
strong, 65, 81
weak, 65, 81

component, 44
composition rule

circular, 46, 47
non-circular, 45

computation path, see path
computation tree, 12
computation tree logic, 13, 16

extended, 19
fixpoint characterization, 24
model checking, 20
semantics, 17
syntax, 17
universal, 19

CTL, see computation tree logic
CTL+, 19
CTL*, 19
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CTLQ, 25
CTLQZ, 77, 87
CTLQ*, 77, 88
cut rule, 35

circular, 36
cut set, 49
cycle(-), 98
cycle index, 98
cycle set, 101

distributive query, 58
downward closed, 35

EExactSol(-,-)>
equivalent, 130
exact query, 57
exact solution, see solution
ExactSol (•,•)> 1 0 3

existential
occurring query, 93
operator, 93

F, see future operator
FurthestSol (-,-,•,•), H I
future operator, 13

G, see global operator
global operator, 13

J(-), 94
induction

mutual, 39
strong, 38
structural, 39

interesting witness, 137
intermediate collecting, 65, 81

Kripke model, 11
Kripke structure, 11

£(•), see labeling function
labeling function, 11, 12
least solution, see solution
linear temporal logic, 13, 14

model checking, 20
semantics, 15
syntax, 14

LTL, see linear temporal logic
LTLQ, 25
LTLQm, 62
LTLQX, 62, 68
LTLQ1, 62, 75

minimal solution, see solution
model checking, 2, 20

bounded, 21
symbolic, 21

monotonie query, 26
^-calculus, 19
mutual induction, see induction

negation normal form, 29
next operator, 13
NNF, see negation normal form

OBDD, see BDD, ordered

path, 12
concatenation, 69

path formula, 17
path quantifier, 16

existential, 16
universal, 16

paths(-), 12
placeholder, 25
postv(-)) 23
post3(-), 23
pre-order on models, 137
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prev(-), 23
pre3(-), 23
prefix indices, 94

R, see release operator
TZ, see reachable set
reachability, 81
reachable set, 101
reasoning

assume-guarantee, 44
compositional, 43

release operator, 14
ROBDD, see OBDD, reduced

separating query, 58
simple query, 69
sol(-,-)> 25, 96
solution, 25

exact, 57
least, 56
minimal, 55

solution states, 103
unique, 103

specification, 2
spiral dependencies, 35
state space explosion, 21
strong collecting, 65, 81
strong induction, see induction
strong until operator, 14

disjoint, 28
overlapping, 28

strong vacuity, see vacuity
structural induction, see induction

77template, 61, 62,
temporal logic, 2, 13
temporal logic query, 25

bounded, 56

collecting, 58
boundary, 65, 81
intermediate, 65, 81
strong, 65, 81
weak, 65, 81

distributive, 58
exact, 57
existentialiy occurring, 93
monotonie, 26
separating, 58
simple, 69
solution, see solution
universally occurring, 93
valid, 30

temporal operator, 13
existential, 93
future, 13
global, 13
monotonie, 30
next, 13
release, 14
strong until, 14

disjoint, 28
overlapping, 28

universal, 93
unless, 14
until, 14
weak until, 14

disjoint, 28
overlapping, 28

tense logic, 13
time logic

branching, 13
linear, 13

transition relation, 11

U, see strong until operator
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Û, see strong until operator,
overlapping

Ü, see strong until operator,
disjoint

universal
occurring query, 93
operator, 93

unless operator, 14
until operator, 14

vacuity, 128, 129
strong, 130
weak, 133

vacuity cause, 133
valid query, 30
validation, 1
verification, 1

W, see weak until operator
W, see weak until operator,

overlapping
W, see weak until operator,

disjoint
weak collecting, 65, 81
weak until operator, 14

disjoint, 28
overlapping, 28

weak vacuity, see vacuity
witness formula, 138

X, see next operator
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