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Abstract The use of cloud-based storage systems for stor-
ing data is a popular alternative to local storage systems.
Beside several benefits of cloud-based storages, there are
also downsides like vendor lock-in or unavailability. More-
over, the selection of the best fitting storage solution can
be a tedious and cumbersome task and the storage require-
ments may change over time. In this paper, we formulate
a system model that uses multiple cloud-based services to
realize a redundant and cost-efficient storage.Within this sys-
tem model, we formulate a local and a global optimization
problem that considers historical data access information and
predefined quality of service requirements to select a cost-
efficient storage solution. Furthermore,we present a heuristic
optimization approach for the global optimization. Extensive
evaluations show the benefits of our work in comparisonwith
a baseline that follows a state-of-the-art approach. We show
that our solutions save up to 30% of the cumulative cost in
comparison with the baseline.

B Philipp Waibel
p.waibel@dsg.tuwien.ac.at

Johannes Matt
johannes.matt@aon.at

Christoph Hochreiner
c.hochreiner@dsg.tuwien.ac.at

Olena Skarlat
o.skarlat@dsg.tuwien.ac.at

Ronny Hans
ronny.hans@kom.tu-darmstadt.de

Stefan Schulte
s.schulte@dsg.tuwien.ac.at

1 Argentinierstrasse 8/184-1, 1040 Vienna, Austria

2 Rundeturmstrasse 10, 64283 Darmstadt, Germany

Keywords Cloud storage · Redundant storage · Erasure
coding · Vendor lock-in · Long-term storage · Global
optimization · MILP

1 Introduction

The use of cloud storage services to store data is a popular
alternative to traditional local storage systems, e.g., storage
on a local infrastructure [20]. Companies, government orga-
nizations, and even private persons use cloud storages as an
alternative to maintaining their own storage systems [4]. In
comparison with local storage systems, a cloud-based stor-
age solution can increase the availability and durability of the
data while lowering the IT maintenance cost. Particularly for
smaller and medium-sized enterprises, a cloud storage solu-
tion can help reducing the storage cost in comparison with
maintaining a local solution [15]. This cost reduction may
emerge due to a decrease in the IT maintenance cost, which
has to be considered for an own storage system.

Nowadays, several cloud storage providers exist, e.g.,
Amazon S3,1 Google Cloud Storage,2 or RackSpace Cloud-
Files3 [9]. Each of them offers different storage technologies,
different quality of services (QoSs) and pricing models.

This huge diversity of storages makes the decision, where
the data should be stored, all but trivial. A customer has
to take several constraints into account to find the best fit-
ting provider for her current use case. Among others, some
considerations can be: which storage technologies should be
used, which pricing model is the cheapest, which geograph-
ical location should be chosen, or which provider has to be

1 https://aws.amazon.com/s3/.
2 https://cloud.google.com/storage/.
3 http://www.rackspace.com/cloud/files.
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avoided due to company policies. Particularly, the different
pricing models are subject to a huge variety. They not only
differ from provider to provider but also between different
storage technologies and different geographical locations for
the same provider. Apart from “standard” storages, special-
ized long-term storage services like Amazon Glacier4 exist,
which require lower cost but also decreased QoS, i.e., data
retrieval may take hours.

Relying on only one cloud provider may lead to risks
which should be prevented: For instance, a provider could
increase the price of the storage or goout of business [2,7,23].
This results in theneed tomigrate thedata to another provider,
which involves additional migration cost, as well as imple-
mentation or administrative efforts. Even more problematic
is the situation when the provider is temporarily unavailable
or goes out of business. In the worst case, this may lead to
a total data loss. For instance, an outage in February 2017
of Amazon S3 in North Virginia [1] showed that even big
cloud storage providers struggle with service failures [5].
Moreover, cloud providers’ terms of usage and customer
properties may evolve over time, e.g., a cloud provider modi-
fies the pricingmodels, or the amount of stored data changes.
One way to prevent those risks is the redundant usage of
different storages. This does not only decreases the risk of
vendor lock-in [25] but also increases data availability and
durability.

In this work, we address the problem of cost-efficient data
redundancy in the cloud. We extend our former work [26],
where we formulated a local optimization problem, with a
global optimization problem that optimizes the placement of
all files, in the remainder of this paper called data objects, on
several cloud storages in a redundant and cost-efficient way.
Moreover, we provide a heuristic approach to solve the global
optimization problem.All three optimization approaches, the
local one from our former work [26], and the global and
heuristic approach from this work, consider predefined stor-
age requirements (i.e., availability, durability, and a vendor
lock-in factor) of the customer. Furthermore, all optimiza-
tion approaches consider access patterns of all data objects,
which is a significant cost factor [28].

The remainder of this paper is organized as follows:
In Sect. 2, we provide background information for our
approach.Afterward,wepresent the local, global, and heuris-
tic optimization approaches in Sect. 3. The evaluation setup is
described in Sect. 4, and the results of the evaluation are dis-
cussed in Sect. 5. Section 6 gives an overview of the related
work, and Sect. 7 concludes the paper.

4 https://aws.amazon.com/glacier/details/.

2 Background

Before the data object placements on several storages in a
redundant and cost-efficient way can be discussed, we have
to discuss some preliminaries.

2.1 Quality of service

When storing data on cloud storages, several QoS aspects
need to be considered. The main aspects are availabil-
ity, durability, and vendor lock-in factor since those three
QoS aspects define how probable or improbable a data loss
is [2,11,19,27].

Availability The availability defines the probability that a
service, here a storage service, is available for a specific time
span [3]. This QoS parameter is declared as availability of
the storage service over a given time span in percentage, e.g.,
99.99% over a year.

Durability The durability defines the probability that there
is no data loss, e.g., due to a hardware failure, on a storage
service. This QoS parameter is declared as the durability of
the stored data in a defined time span in percentage, e.g.,
99.99999% over a year.

Vendor lock-in factor Avendor lock-in situation can occur
if the data are stored on only one storage service which is not
reachable; therefore, the data are locked on this provider and
can not be accessed or migrated [28]. This unavailability of
the provider can be temporarily, e.g., networking issues; or
in the worst case, the provider can go out of business [5,25].
This parameter is declared as lockin = 1

N , where N is the
amount of used storages, and lockin ∈ (0, 1].

2.2 Erasure coding

Erasure coding is a redundancy mechanism where a data
object is split into n chunks in away that thewhole data object
can be reconstructed by any subset of sizem (m < n) of those
chunks [11,21,22,24]. An erasure coding configuration is
therefore defined by the tuple (m, n). By defining different
erasure coding configurations, the availability of a data object
can be increased or decreased.

This functionality makes erasure coding a superset of the
RAID technology and normal replication systems [27]. For
example, a RAID 5 can be described by the erasure coding
configuration (4, 5) and a normal replication by (1, 3), which
will generate three replications. Themain advantage of using
erasure coding instead of replication is the smaller additional
storage needed to achieve the same level of redundancy [27].

2.3 Pricing models

Storage service pricing models vary from storage provider
to storage provider. However, most pricing models have the
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Table 1 Amazon S3 price for EU Frankfurt region standard storage

Usage per month Price per GB in $

Storage price

Next 50 TB 0.0245

Next 450 TB 0.0235

>500 TB 0.0225

Outgoing traffic price

First 1 GB 0.000

Up to 10 TB 0.090

Next 40 TB 0.085

Next 100 TB 0.070

Next 350 TB 0.050

>524 TB On demand

same foundation: They account for the used storage, the used
outgoing traffic, and the amount of read andwrite operations.
Most of the pricing models do not charge the incoming traf-
fic or delete operations. Furthermore, most storage providers
use a block rate pricing model [18], where the cost decreases
the more the storage is used by a customer, i.e., the more data
is stored, the cheaper it is to store additional data. In addition,
large cloud storage providers often have several geographi-
cally distributed data centers, called regions, with different
pricing models. Notably, those providers often offer reduced
migration prices that are charged when data are migrated
from one region to another.

Besides changing pricing models due to different
providers or regions, the pricing models can also differ by
storage technologies. For example, some providers offer
long-term storage solutions for seldom used data. Those stor-
ages often have cheap storage prices but a high traffic price in
comparison with conventional storages. Long-term storages
often also define a minimum storage duration, i.e., a Billing
TimeUnit (BTU). If such aBTU is defined and data are stored
on the storage, the whole BTU time is charged whether or not
the data are deleted or moved to another storage, before the
BTU is over. In addition, some storage providers also define a
minimum object size, i.e., Billing Storage Unit (BSU). Data
objects that are smaller than the BSU are charged with the
BSU size, despite the fact that only a part of the storage is
used.

Representative for other providers, Table 1 shows the pric-
ing model of the Amazon S3 region EU Frankfurt “standard
storage.” This cloud storage defines a block rate pricing
model for storage and outgoing data transfer. The billing
period of an Amazon S3 storage is one month. Addition-
ally to the prices shown in the table, Amazon charges for the
request commandsPUT,COPY,POST, andLIST$0.0054per
1,000 requests and for GET and all other requests $0.0043
per 10,000 requests, except the DELETE request which is

free of charge. The migration between Amazon S3 regions is
charged with $0.020 per GB. Incoming data transfer is also
free of charge.5

As has already been mentioned, beside different regions
some storage providers also offer different storage tech-
nologies. For instance, Amazon offers the following storage
technologies: Amazon S3 Standard, Amazon S3 Standard –
Infrequent Access (IA), and Amazon Glacier. Each storage
technology has different pricing schemes and properties, e.g.,
the Standard–IA has a cheaper storage price, in comparison
with Amazon S3 Standard, but also a lower availability. Fur-
ther, Standard–IA defines a BTU of 30days and a BSU of
128KB.

While the pricingmodels of most cloud storages are based
on a similar notion, there are some differences between them.
For instance, Amazon AWS S3 applies the block rate pricing
model for the traffic as well as for the storage. In com-
parison, Google Cloud Storage applies a block rate pricing
model for the outgoing data transfer, but not for the storage
cost.

3 Data object placement

After having defined some necessary preliminaries in the last
section, we are now able to discuss the system model, the
formal specification of the local and the global optimization
models, and the heuristic optimization approach.

Each optimization approach suggests the placement of
the chunks of the data objects, on several cloud storages,
in a cost-efficient way without violating predefined service-
level objectives (SLOs). Those SLOs are defined for each
data object by the owner of the data object. The SLOs
are availability, durability, and vendor lock-in as defined in
Sect. 2.

3.1 System model

For the data object placement optimization, we provide a
mixed-integer linear programming (MILP)-based local and
a global data placement approach and a heuristic approach.
In the following, we introduce the used variables, the cost
model, and the used decision variables, before we discuss
the optimization approaches.

3.1.1 Variables

In our system model, the set of all available storages is
labeled with S where s ∈ S = {s1, s2, . . .} defines one
storage of this set. N is the set of all data objects, and
F ∈ N = {F1, F2, . . .} is one data object of this set.
Next, f ∈ F = { f1, f2, . . .} defines a chunk of a data
object F , with |S| ≥ |F |. As described in Sect. 2.2, the

5 https://aws.amazon.com/s3/pricing/, as of July 16, 2017.
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amount of chunks of a data object depends on the used
erasure coding configuration. The parameter τ defines the
amount of historical information of a chunk (e.g., amount of
read and write operations) that is used for the optimization.
Under the assumption that the usage pattern of a data object
does not change over a period of time [16], our optimiza-
tion approach uses this information to predict future data
access.

Asmentioned in Sect. 2.3, several storage providers define
a block rate pricing model for the storage and traffic cost.
In the system model, bs defines one block of a block rate
pricing model of storage s and bs ∈ BTout

s = {b1, b2, . . .},
where BTout

s defines the set of all outgoing traffic price blocks.
Analogously, Bsto

s = {b1, b2, . . .} defines the pricing blocks
for the storage prices. Furthermore, bs = (bL ,s, bU,s, ps)
defines a triple that includes the lower bound of the pricing
block bL ,s , the upper bound bU,s , and the price of this block
ps .

3.1.2 Cost model

The cost model is used by the optimization to calculate the
cost that accrue by storing a chunk. The cost of storing a
chunk is composed of the storage cost, the traffic cost of the
chunk, and the cost of the performed read and write opera-
tions.

The total cost that is charged if a chunk f is stored on
storage s by considering the last τ min of the chunk’s his-
tory is calculated by (1). The total cost is calculated by
adding the used storage cost, the cost for read and write
operations, and the cost for the used incoming and outgo-
ing traffic. The single cost factors will be explained in the
following.

cs, f (τ ) = cSs, f (τ ) + cRs, f (τ ) + cWs, f (τ ) + cTins, f (τ )

+cTouts, f (τ ) (1)

The storage cost that are charged if the chunk f is stored on
s based on the last τ min of the chunk’s history is calculated
by (2). In the equation, the term pSs,γs, f calculates the current
storage price. Since several cloud storage providers use the
already discussed block rate pricing model, the current price
canbedifferent dependingon thepresent usageof the storage.
In pSs,γs, f , this is taken into account by the term γs, f that
calculates the present usage of the storage s and adds the
size of f to the result if f is currently not stored on the
storage. The resulting price is then multiplied with the chunk
size calculated by σ f (τ ) considering the last τ min of the
chunks history. This term also considers if a BSU is defined
for the storage. If this is the case and the chunk size is smaller
than the BSU, then σ f (τ ) uses the BSU instead of the actual
chunk size.

If storage s is a long-term storage, the BTU time has to
be considered as well. This is done by σ̂ f,BTU · h f . The term
σ̂ f,BTU calculates the storage size of the chunk f that is
charged for the remaining BTU time.

cSs, f (τ ) = pSs,γs, f · (σ f (τ ) + σ̂f,BTU · h f ) (2)

The charged cost for the write and read operations is cal-
culated by (3) and (4). The terms rWf (τ ) and r Rf (τ ) return
the amount of write and read operations of chunk f during
the last time period τ , respectively. Further, pWs defines the
price of a write operation and pRs of a read operation. Delete
operations are handled analogue.

cWs, f (τ ) = rWf (τ ) · pWs (3)

cRs, f (τ ) = r Rf (τ ) · pRs (4)

The outgoing and incoming traffic cost of a chunk f , in
the last time period τ , is calculated by (5) and (6). Since the
description of the outgoing traffic cost is also applicable to the
incoming traffic cost,wewill only discuss the outgoing traffic
cost defined in (5). toutf (τ ) defines the amount of read bytes

from chunk f during the last time period τ . The term pTouts,βs, f
returns the outgoing traffic price of storage s. Analogue to
storage cost calculation, defined in (2), the block rate pricing
model has to be considered also for the traffic cost calculation.
Analogue to γs, f in (2), this is done by βs, f in (5). βs, f

calculates the amount of read bytes from storage s, including
chunk f . If storage s is a long-term storage, data retrieval cost
can be charged as well. This additional price is considered
by prets,βs, f

. The variable h f is the same as in (2).

cTouts, f (τ ) = toutf (τ ) ·
(
pTouts,βs, f

+ prets,βs, f · h f

)
(5)

cTins, f (τ ) = t inf (τ ) · pTins,βs, f
(6)

Optional migration cost which occurs if a chunk f has to
be migrated from one storage to another is calculated by (7)
and (8). Which equation is taken to calculate the migration
cost depends on the migration type. If a chunk f has to be
migrated from one storage to another storage of the same
provider and this provider defines a special migration price,
(7) is used. If a chunk f has to be migrated from one storage
to another storage and the provider is different, (8) is used.
In (8), pTouts1,βs1, f

, pTins2,βs2, f
, and prets,βs, f

are analogously defined

as in (5) and (6). In (7), p
Tout,reg
s1,βs1, f

and p
Tin,reg
s2,βs2, f

define the same

but considering region migration prices. σ̂ f specifies the size
of the chunk f . r Rs1 and rWs1 define the amount of required
read and write operations. The terms pRs1 and pWs2 represent
the same as in (3) and (4).
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c
Mreg
s1,s2, f

=
(
p
Tout,reg
s1,βs1, f

+ p
Tin,reg
s2,βs2, f

+ prets,βs, f · h f

)
· σ̂ f

+ r Rs1 · pRs1 + rWs2 · pWs2
(7)

cMs1,s2, f =
(
pTouts1,βs1, f

+ pTins2,βs2, f
+ prets,βs, f · h f

)
· σ̂ f

+ r Rs1 · pRs1 + rWs2 · pWs2
(8)

3.1.3 Decision variables

In our optimization model, x(s, f ) ∈ {0, 1} defines if a chunk
f is stored on storage s (xs, f = 1) or not (xs, f = 0). The
optimization model uses the variable gS̃,F ∈ {0, 1}, where
S̃ = {s1, s2, . . . , sn} is a subset of the storage set S with
|S̃| = |F | and S̃ ⊆ S. gS̃,F = 1 indicates that all storages

of the subset S̃ have one chunk of F stored and gS̃,F = 0

indicates that at least one storage of S̃ does not store a chunk
of F .

The decision variable h f ∈ {0, 1} denotes that a chunk
f is currently stored on a long-term storage, indicated by
h f = 1, or not, indicated by h f = 0. The system model fur-
ther uses the decision variables zs1,s2 and ys1,s2 to indicate if
two storages are the same or are different but have the same
storage provider. The variable ys1,s2 ∈ {0, 1} defines if the
storages s1 and s2 are not identical but have the same storage
provider, indicated by ys1,s2 = 1; ys1,s2 = 0 otherwise. Anal-
ogously, zs1,s2 ∈ {0, 1} defines if the storages s1 and s2 are
not the same and have different storage providers, indicated
by zs1,s2 = 1; zs1,s2 = 0 otherwise.

The decision variables uTouts,bs
∈ {0, 1}, v

Tout
s,bs

∈ {0, 1}, and
oTouts,bs

∈ {0, 1} are used to indicate if the overall used outgoing
traffic of a storage is in a specific pricing step of a block rate
pricing model. uTouts,bs

= 1 indicates that the outgoing traffic
of storage s is bigger than the lower boundary bL ,s defined in
bs ; u

Tout
s,bs

= 0 otherwise. vTouts,bs
= 1 indicates that the outgoing

traffic of storage s is smaller than the upper boundary bU,s

defined in bs ; v
Tout
s,bs

= 0 otherwise. Furthermore, oTouts,bs
=

1 indicates that the traffic is between the lower and upper
bound of bs , which means that uTouts,bs

= 1 and v
Tout
s,bs

= 1 hold.

oTouts,bs
= 0 indicates that this is not the case. The variables

ustos,bs ∈ {0, 1}, vstos,bs ∈ {0, 1} and ostos,bs ∈ {0, 1} are used to
assess the block for the used storage of s.

3.2 Local placement problem

After defining the system model, we are now able to discuss
the local optimization problem. The local optimization prob-
lem defines the problem of finding a cost-efficient placement
of one data object F . Therefore, the optimization problem is
provided with the data object F and all available storages S.
Additionally, the problem takes the time period τ as input.

3.2.1 Objective function

(9) shows the objective function, which is set to minimize
the overall cost to store F .

min
∑
f ∈F

∑
s∈S

(
cs, f (τ ) · ws, f + cMfs ,s, f · z fs ,s

+ c
Mreg
fs ,s, f

· y fs ,s
) · xs, f

(9)

cs, f (τ ) ·ws, f calculates the overall cost to store the chunk
f on the storage s by taking the last τ min of the chunks usage
history into account. The term cs, f (τ ) is already discussed
in Sect. 3.1.2. The term ws, f ∈ [1,BTU] is a multiplier that
helps to specify if the overall storage cost can be reduced by
storing a chunk f on a long-term storage. If s is a long-term
storage, the calculation of the resulting value of the term
is initialized with the value of the BTU, i.e., ws, f =BTU.
The algorithm decreases ws, f each time there was no or rare
usage of the chunk according to the history,where the amount
of historical information is defined by the BTU. This is done
until all historical information is checked or untilws, f = 1. If
s is a standard storagewithout anyBTU, the value is always 1.

cMfs ,s, f · z fs ,s and c
Mreg
fs ,s, f

· y fs ,s calculate the migration
cost from one storage to another, without and with special
migration prices. The term fs returns the storage on which
the chunk f is currently stored. Finally, the decision variable
xs, f decides if the chunk f is stored on the storage s or not.

3.2.2 Constraints

Thefirst constraint (10) ensures that the selected storage solu-
tion of a data object fulfills the required vendor lock-in factor
lF . As mentioned above, the vendor lock-in factor is set for
each data object as a SLO.

1∑
f ∈F

∑
s∈S xs, f

≤ lF (10)

Constraints (11) and (12) ensure that the required dura-
bility and availability of a data object are fulfilled. In the
following we will only describe (11) because the description
of (12) is analogue.∑

S̃′∈rS̃,k

[ ∏
s∈S̃′ âs ·∏s∈S̃\S̃′(1−âs)

]
calculates the avail-

ability of the storage set S̃′, whereas S̃′ holds all possible
combinations of size k of the set S̃. Those combinations are
represented by rS̃,k . âs defines the availability of s. Con-
clusively, this part of the equation calculates the probability
that there are k simultaneously available storages. To com-
plete (11), we have to include the functionality that a system
which uses erasure coding with a coding configuration of
(m, n) and can withstand up to n − m simultaneous stor-
age failures. This is done by increasing k starting from m,
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i.e., the minimum amount of required chunks of F depicted

by Fm , to |S̃|. In the equation, this is achieved by
∑|S̃|

k=|Fm |.
Finally, the result is compared to aF · gS̃,F where aF defines
the required availability of the data object and gS̃,F defines if

each storage in S̃ has one chunk stored or not. gS̃,F is defined
by constraints (13) and (14) that define together a logic
AND.

|S̃|∑
k=|Fm |

∑

S̃′∈rS̃,k

[ ∏

s∈S̃′
âs

∏

s∈S̃\S̃′

(
1 − âs

) ]
≥ aF · gS̃,F (11)

|S̃|∑
k=|Fm |

∑

S̃′∈rS̃,k

[ ∏

s∈S̃′
d̂s

∏

s∈S̃\S̃′

(
1 − d̂s

) ]
≥ dF · gS̃,F (12)

gS̃,F ≥
∑

s∈S̃

∑
f ∈F

xs, f − (|F | − 1) (13)

gS̃,F ≤
∑
f ∈F

xs̃, f ∀s̃ ∈ S̃ (14)

With (15) it is ensured that only |F | assignments from the
chunks f ∈ F to the storages s ∈ S exist. Furthermore, (16)
and (17) ensure that each chunk is stored on only one storage
and (18) defines the decision variable boundaries.

∑
f ∈F

∑
s∈S

xs, f = |F | (15)

∑
s∈S

xs, f ≤ 1 (16)

∑
f ∈F

xs, f ≤ 1 (17)

gS̃,F ∈ {0, 1}; xs, f ∈ {0, 1}
zs1,s2 ∈ {0, 1}; ys1,s2 ∈ {0, 1} (18)

3.3 Global placement problem

In the following, we discuss the global optimization prob-
lem. In comparison with the local optimization problem, the
global optimization problem defines the problem of finding
the cheapest placement for all data objects on all available
storages S. The global optimization problem gets as an input
the sets S and N , which contain all data objects. Further, the
parameter τ is set to the length of the BTU, i.e., τ =BTU.
This way the global optimization gets the historic informa-
tion of the last BTU and can, therefore, precisely calculate if
the cost can be decreased by storing the chunk on a long-term
storage where the whole BTU is charged.

3.3.1 Objective function

The objective function of the global optimization problem
optimizes the placement of all chunks f ∈ F of all data
objects F ∈ N as shown in (19).

min
∑
s∈S

[ ∑
F∈N

∑
f ∈F

(
cRs, f (τ ) + cWs, f (τ )

+ cMfs ,s, f · zŝ,s + c
Mreg
fs ,s, f

· yŝ,s
) · xs, f

+ cstos (τ ) + cTouts (τ )

]
(19)

While for the local optimization the consideration of the
currently stored chunks of a storage was enough to identify
the current price in a block rate pricing model, this is not
applicable anymore for the global optimization. This is due
to the fact that by adding the possibility to migrate multiple
chunks at once, all chunks on a storage can change and, thus,
also the pricing step. To consider this, the global optimization
problem splits up the cost calculation cs, f (τ ). Therefore, it
models those cost calculations that may include a block rate
pricing model, namely the used outgoing traffic cost cTouts (τ )

and the used storage cost cstos (τ ), as constraints. Those cal-
culations are done by (25) for the outgoing traffic cost and by
(31) for the storage cost. The terms cRs, f (τ ) and cWs, f (τ ) cal-
culate the read/write operation cost, as defined in (3) and (4).

The migration cost are calculated by c
Mreg
fs ,s, f

and cMfs ,s, f as
defined in (7) and (8).

3.3.2 Constraints

The global optimization uses the same constraints as the local
optimization, i.e., (10) to (18). However, due to the fact that
the global optimization considers the placement of all files
at once, all local optimization constraints need to be defined
for all F ∈ N . Furthermore, the global optimization requires
further constraints, to include the storage cost and outgoing
traffic cost of a storage, which are discussed in the following.

(20) to (24) define if the outgoing traffic of storage s is in
the range of a block rate pricing model step. In (20) together
with (21), it is defined if the used outgoing traffic of storage
s is bigger than the lower boundary bL ,s of a pricing step
bs ∈ BTout

s = {b1, b2, . . .}. toutf (τ ) is defined analogue as
in (5), andM is a sufficient large constant that is at least larger
than the largest possible value of

∑
F∈N

∑
f ∈F toutf (τ ) ·xs, f .

bL ,s ≤
∑
F∈N

∑
f ∈F

toutf (τ ) · xs, f + M ·
(
1 − uTouts,bs

)

∀s ∈ S; ∀bs ∈ BTout
s ; ∃bL ,s ∈ bs

(20)

123



SOCA (2017) 11:411–426 417

bL ,s >
∑
F∈N

∑
f ∈F

toutf (τ ) · xs, f − M · uTouts,bs

∀s ∈ S; ∀bs ∈ BTout
s ; ∃bL ,s ∈ bs

(21)

(22) together with (23) indicates if the used outgoing traf-
fic of storage s is smaller than the upper boundary bU,s of a
pricing step bs ∈ BTout

s = {b1, b2, . . .}.
∑
F∈N

∑
f ∈F

toutf (τ ) · xs, f ≤ bU,s + M ·
(
1 − v

Tout
s,bs

)

∀s ∈ S; ∀bs ∈ BTout
s ; ∃bU,s ∈ bs

(22)

∑
F∈N

∑
f ∈F

toutf (τ ) · xs, f > bU,s − M · v
Tout
s,bs

∀s ∈ S; ∀bs ∈ BTout
s ; ∃bU,s ∈ bs

(23)

Finally, (24) defines if the outgoing traffic is between the
lower and upper boundary of a pricing block bs . This is the
case if the used outgoing traffic is bigger than the lower
boundary bL ,s , indicated by u

Tout
s,bs

, and smaller than the upper

boundary bU,s , indicated by v
Tout
s,bs

.

0 ≤ uTouts,bs
+ v

Tout
s,bs

− 2 · oTouts,bs
≤ 1 ∀s ∈ S; ∀bs ∈ BTout

s (24)

The information if the used traffic of a storage s is within
a pricing range, defined by oTouts,bs

, is then used to calculate
the cost that are charged due to the used traffic of a storage,
indicated by cTouts (τ ). This is done by (25) where ps defines
the price of the pricing range bs ∈ BTout

s = {b1, b2, . . .}.
∑
F∈N

∑
f ∈F

toutf (τ ) · ps · xs, f − M
(
1 − oTouts,bs

)

≤ cTouts (τ ) ≤
∑
F∈N

∑
f ∈F

toutf (τ ) · ps · xs, f

+ M · (1 − oTouts,bs
) ∀s ∈ S; ∀bs ∈ BTout

s ; ∃ps ∈ bs

(25)

Analogue as (20) to (24) defines if the used outgoing traffic
of a storage s is within a pricing range of a block rate pricing
model step, equations (26) to (30) define if the size of the
chunks stored on storage s is within a pricing range. Since
the description of (20) to (24) is also applicable to (26) to
(30), we will repeat it here in detail. In the following, σ f (τ )

is defined analogue as in (2), and M is a sufficient large
constant that is at least larger than the largest possible value
of

∑
F∈N

∑
f ∈F σ f (τ ) · xs, f .

bL ,s ≤
∑
F∈N

∑
f ∈F

σ f (τ ) · xs, f + M · (1 − ustos,bs
)

∀s ∈ S; ∀bs ∈ Bsto
s ; ∃bL ,s ∈ bs

(26)

bL ,s >
∑
F∈N

∑
f ∈F

σ f (τ ) · xs, f − M · ustos,bs

∀s ∈ S; ∀bs ∈ Bsto
s ; ∃bL ,s ∈ bs

(27)

∑
F∈N

∑
f ∈F

σ f (τ ) · xs, f ≤ bU,s + M · (
1 − vstos,bs

)

∀s ∈ S; ∀bs ∈ Bsto
s ; ∃bU,s ∈ bs

(28)

∑
F∈N

∑
f ∈F

σ f (τ ) · xs, f > bU,s − M · vstos,bs

∀s ∈ S; ∀bs ∈ Bsto
s ; ∃bU,s ∈ bs

(29)

0 ≤ ustos,bs + vstos,bs − 2 · ostos,bs ≤ 1 ∀s ∈ S; ∀bs ∈ Bsto
s (30)

Furthermore, analogue as (25) calculates the cost that
occur due to the used outgoing traffic of s, (31) calculates
the cost that occur due to the used storage of s.

∑
F∈N

∑
f ∈F

σ f (τ ) · ps · xs, f − M
(
1 − ostos,bs

)

≤ cstos (τ ) ≤
∑
F∈N

∑
f ∈F

σ f (τ ) · ps · xs, f

+ M · (1 − ostos,bs ) ∀s ∈ S; ∀bs ∈ Bsto
s ; ∃ps ∈ bs

(31)

Finally, (32) ensures that cTouts (τ ) and cstos (τ ) are positive
for all s ∈ S and that the remaining decision variables are
bounded to {0, 1}.

cTouts (τ ) ≥ 0; cstos (τ ) ≥ 0

uTouts,bs
∈ {0, 1}; oTouts,bs

∈ {0, 1}; v
Tout
s,bs

∈ {0, 1}
vstos,bs x ∈ {0, 1}; ustos,bs ∈ {0, 1}; ostos,bs ∈ {0, 1}

(32)

3.4 Heuristic placement

As a third optimization approach, we developed a heuris-
tic for the global optimization. This heuristic first applies a
classification of all data objects by the used storage size and
the used outgoing traffic. Subsequently, the best fitting stor-
age set for each of those classes is selected by optimizing a
representative data object. The result of this optimization is
then applied to all data objects in a class. Therefore, a nearly
optimal solution can be achieved by calculating the optimal
placement for only a couple of data objects.

Based on an intensive analysis of the global and local
optimization results, we identified that the main reasons of a
chunk migration are the outgoing traffic of a chunk and the
size of it. Therefore, the classification is based on these two
aspects. For defining the upper and lower boundaries of a
class, we are using a separation by quantiles for the storage
size classes. However, in comparison with the storage size
of the chunks, where each chunk has a size > 0, the traffic
of the chunks can be 0, i.e., all not used chunks. To take care
that all of them are in the same class, we define the traffic
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class boundaries based on the outgoing traffic instead of a
separation by quantiles, which could distribute those chunks
into several classes.

Algorithm 1 and 2 describe how our approach uses classi-
fication and the already discussed local optimization problem
to find a cheap storage solution for all chunks of all data
objects. In the following we first discuss the classification in
Algorithm 1 and then the optimization, described in Algo-
rithm 2, based on the results of the classification. Depending
on the requirements, this heuristic optimization can be per-
formed for each data object access or only in predefined
intervals, e.g., each 1,000th data object access. This is due
to the fact that our proposed heuristic optimizes the place-
ment of all chunks at a time and, thus, also considers the data
objects that were accessed before the optimization starts.

As an input, the classification algorithm, depicted inAlgo-
rithm 1, requires the boundaries for the traffic and storage
classes. The first step of the algorithm is to sort all data
objects according to their used traffic and storage size, which
is done by themethods sortByTraffic() and sortByStorage() in
lines 2 and 3. Subsequently, empty lists for all traffic classes,
called trafficClasses, and for all storage classes, called stor-
ageClasses, are generated (lines 4 and 5) according to the
classes defined by the boundaries trafficBoundaries and stor-
ageBoundaries. Those empty lists are then filled with the
sorted data objects by themethod fillClasses() (lines 6 and 7).
Finally, the cartesian product of the lists trafficClasses and
storageBoundaries is created and stored in the list classes
(lines 9–14). This results in a list of all combinations of
the traffic and storage classes including their corresponding
chunks. This list is then used in Algorithm 2 for the opti-
mization.

Algorithm 1 Classification
Require: trafficBoundaries, storageBoundaries
1: function performClassification(dataObjs)
2: dataObjSortByTraffic ← sortByTraffic(dataObjs)
3: dataObjSortByStorage ← sortByStorage(dataObjs)
4: trafficClasses ← getTrafficClasses(trafficBoundaries)
5: storageClasses ← getStoClasses(storageBoundaries)
6: fillClasses(trafficClasses, dataObjSortByTraffic)
7: fillClasses(storageClasses, dataObjSortByStorage)
8: classes ← ∅
9: for all trafficClass ∈ trafficClasses do
10: for all storageClass ∈ storageClasses do
11: class ← merge(trafficClass, storageClass)
12: classes ← classes ∪ {class}
13: end for
14: end for
15: return classes
16: end function

Algorithm 2 gets as input all data objects that are sub-
ject for optimization, in our case all stored data objects, and
all available storages. At the beginning of Algorithm 2, the

performClassification() method is called (line 2), which is
described by Algorithm 1. The result of this call is a list of all
possible traffic and storage class combinations, including the
corresponding chunks. Algorithm 2 is then iterating through
this list (lines 3–15) and selects at the beginning of each
iteration, wherever the class is not empty (line 4), a repre-
sentative data object for the current class. This is done by the
method getRepresentativeDataObj() (line 5). The concrete
data object selection depends on the implementation of this
method. Possible implementations are, e.g., a random selec-
tion, the first or last data object of the class, or a data object
in the middle of the class. Subsequently, method localOpt()
(line 6) finds the best chunk placement for the representative
data object by solving the local optimization problem from
Sect. 3.2 and stores it in dataObj. Afterward, the result of the
optimization is read by the method getStorages() (line 7) that
returns the list of selected storages and stores it in selStorages.

This storage set is then applied for all data objects in the
current class. For this, the algorithm iterates through all data
objects in the class (lines 8–13). In each iteration, the first
step is tomap each chunk of a data object to one storage of the
selStorages list. This is done by themethod getMap(), and the
result is stored in chunkStgMap (line 9). To avoid unneces-
sary migration steps, this method has to consider that chunks
may already be stored on one of the selected storages. There-
fore, getMap() considers if a chunk is already stored on one
of the selected storages from the list selStorages. In this case,
the chunk will be mapped to the same storage again. In the
final step, each of those chunks to storage mappings is added
to the resulting list optimalPla (lines 10–12). At the end of
the execution of Algorithm 2, the list optimalPla holds the
final optimal chunk to storage mapping for all chunks of all
data objects.

Algorithm 2 Optimization
Require: allDataObjects, allStorages
1: optimal Pla ← ∅
2: classes ← performClassification(allDataObjects)
3: for all class ∈ classes do
4: if class not ∅ then
5: dataObj ← getRepresentativeDataObj(class)
6: localOptResult ← localOpt(allStorages, dataObj, τ )

7: selStorages ← getStorages(localOptResult)
8: for all dataObj ∈ class do
9: chunkStgMap ← getMap(selStorages, dataObj)
10: for all chunkStorage ∈ chunkStgMap do
11: optimalPla ← optimalPla ∪ {chunkStorage}
12: end for
13: end for
14: end if
15: end for
16: return optimalPla

Since there is no historical information available for the
first upload of a new data object, we use a fixed storage set
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for the first upload. Ideally, this fixed storage set includes the
cheapest storages in respect to the storage and traffic prices.

The complexity of the algorithm depends mainly on the
complexity of the selected local optimization solution, i.e.,
line 6 in Algorithm 2, and on the sorting of the data objects,
i.e., lines 2 and 3 in Algorithm 1. The complexity of Algo-
rithm 1 is O(max(n · log(n),m · w)), where n is the number
of data objects,m is the amount of traffic classes, andw is the
amount of storage classes. Algorithm 2 depends on the local
optimization, which is a NP-hard problem. To reduce and
limit the optimization duration a deadline-based approach
can be used, e.g., take the best solution after 2 min of search-
ing for the local optimization.

4 Evaluation setup

To evaluate all approaches, we prototypically implement
them by using the middleware presented in our former
work [26]. For the evaluation, we use a real-world cloud
storage access trace [14]. The scope of this evaluation is the
global and heuristic approaches. A detailed evaluation of the
local optimization approach can be found in our previous
work [26].

4.1 Prototype

We extended the middleware from our former work [26],
called CORA, with the global and the heuristic optimization
approaches. The middleware already provides the local opti-
mization.We apply CPLEX6 to solve the global optimization
problem.

In case of the global optimization, the prototype executes
the optimization for each data object access (i.e., read, write,
update, delete). The same applies for the local optimization.
However, to also include seldom used data objects, the local
optimization is performed on all not or rarely accessed data
objects in predefined intervals. For the heuristic approach,
the prototype also executes the optimization in predefined
interval steps. As a representative data object for a class, it
selects the data object that is in the middle of the class. If
the amount of data objects in a class is even, the implemen-
tation rounds up and takes the upper one. As a value for
the constant M , the prototype uses

∑
F∈N

∑
f ∈F toutf (τ ) for

the traffic price calculation and
∑

F∈N
∑

f ∈F σ f (τ ) for the
storage price calculation.

4.2 Storages

In the evaluation, we evaluate and analyze the behavior of
all three optimization approaches with real-world cloud stor-

6 http://www.ibm.com/software/commerce/optimization/cplex-
optimizer/.

Table 2 Evaluation Storages

Provider Region Storage Class

AWS S3 US Oregon Standard

AWS S3 US Oregon IA

AWS S3 US North California Standard

AWS S3 EU Frankfurt Standard

AWS S3 EU Frankfurt IA

AWS S3 Asia Pacific Tokyo Standard

AWS S3 Sao Paulo Standard

Google Cloud – Standard

self-hosted – Standard

self-hosted – Long-term

IA infrequent Access

age systems. Beside the public cloud storage solutions from
Amazon (AWS S3) and Google (Google Cloud Storage), we
use a self-hosted Swift7 storage system. Table 2 provides an
overview of the cloud storages used for the evaluation.

The evaluation uses the AWS S38 and Google Cloud Stor-
age9 pricingmodels. For the self-hosted standard storage, we
apply the AWS S3 Frankfurt standard storage pricing model
and the AWS S3 Frankfurt IA pricing model for the self-
hosted long-term storage.

4.3 Evaluation data

For the evaluation of our approaches, we use the access trace
of a public available dataset presented in [14]. This dataset
contains 30days of anonymized data objects’ access infor-
mation on cloud storages used bymore than 1,000,000 users.

For the evaluation of our optimization approaches, we
extracted a set of 188 data objects, to evaluate and com-
pare all optimization approaches, and a set of 10,400 data
objects, to evaluate the scalability of the heuristic approach.
To include heavily used data objects, as well as seldom used
data objects, both data sets include data objects with differ-
ent access frequencies. In the smaller data set (i.e., the 188
data objects set), 74% of the data objects are used less than
50 times, 16% are used more than 50 times and less than
500 times, and 10% are used more than 500 times in the full
30 days of the trace. The size of the data objects is between
20KB and 800MB. For the bigger dataset (i.e., the 10,400
data objects set), the access frequencies of the data objects
are: 64% are used less than 50 times, 34% are usedmore than
50 times and less than 500 times, and 2% are used more than
500 times. The size of the data objects is between 3KB and
2.2GB.

7 https://wiki.openstack.org/wiki/Swift.
8 https://aws.amazon.com/s3/pricing/.
9 https://cloud.google.com/storage/pricing.
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Besides normal cloud storage usage, the used access trace
includes three DDOS attacks that increase the usage of the
storages drastically. We did not include those attacks in our
evaluation, because we only consider the normal usage of a
cloud storage.

Since the tracewas taken froman already running andused
cloud storage solution, the trace also includes data objects
that were uploaded to the storage before the recording of
the trace started but read during the recording period. To
make sure that those data objects can also be used for our
evaluation, we simulated an upload at the beginning of the
evaluation.

Furthermore, we define that each data object has to be
stored with a durability of 99.999999%, an availability of
99.99%, and a vendor lock-in factor of 0.5.

4.4 Evaluation process

For each evaluation scenario, we iterate through the access
traces of each data object in the used data object set and
perform the recorded operations (i.e., upload, update, read,
and delete).

All evaluations use the entire 30days of the trace and the
full storage provider set of Table 2. We set the BTUs and
billing periods for all long-term storages to one week, to
be able to evaluate the whole behavior of the optimization
approaches. Furthermore, the history time step interval is
set to 12 h and the amount of used history time steps for
the local and the heuristic approaches to five steps, which
results in the consideration of 2.5days of historical access
information. As mentioned in Sect. 3.3, the global optimiza-
tion always uses all history steps from the last BTU for the
optimization. As storages for the first upload of a new data
object of the heuristic approach, we use the storages AWS S3
EUFrankfurt standard storage, AWSS3USOregon standard
storage, and self-hosted standard storage. In case of the local
optimization, the optimization of all not used data objects is
set to 8days. Thus, it is guaranteed that the optimization can
use the history information of a whole week.

To evaluate the behavior of the heuristic with different
class boundaries, we run the 10,400 data objects set evalua-
tion with different boundaries, as discussed in Sect. 3.4.

To also measure the required efforts of the approaches and
the prototype, in terms of time and memory, we further log
the duration of each optimization run and the size of the used
metadata.

4.5 Baseline

As a baseline, for each evaluation scenario, we disable the
optimization and define a fixed set of storages that is equally
used. This baseline simulates the cost in the case when no
optimization is applied. This fixed storage set contains the

three cheapest standard storages: AWS S3 EU Frankfurt
standard storage, AWS S3 US Oregon standard storage, and
self-hosted standard storage.

5 Evaluation scenarios

In Sect. 5.1, we evaluate and compare all three optimization
approaches, i.e., the local, global, and heuristic optimization,
with the baseline by using the small test set. In Sect. 5.2,
we then compare the heuristic with the baseline in a second
evaluation scenariowith the larger test set. Finally,wediscuss
the performance of all three approaches in Sect. 5.3.

5.1 Evaluation scenario 1

In the first evaluation scenario, we evaluate the behavior
of the global optimization and compare the results with
the results of the local and heuristic approaches. Since the
global optimization is triggered after each data object access
for all data objects at once, the runtime of this optimiza-
tion increases exponentially with the amount of data objects.
Therefore, the maximal amount of data objects that can be
handled by the global optimization has a smaller upper bound
than for the other optimization approaches. Nevertheless,
our prototype can handle enough data objects to be able to
compare the quality of the local optimization and heuristic
approachwith the global optimal solution. As an erasure cod-
ing configuration, we use for the baseline, the local approach,
and the heuristic approach a (2,3) configuration since this
configuration offered the best solutions in respect of the cost,
the availability, and the optimization duration in our previ-
ous work [26]. For the global optimization, we evaluate the
behavior with the erasure coding configurations (2,3), (2,4),
and (3,4). The (2,4) configuration provides a high availabil-
ity, i.e., only two of four storages have to be available to read
a data object; nevertheless, this results in bigger chunks. The
(3,4) configuration has smaller chunks and , however, also a
smaller availability, since three storages out of four have to
be available.

For the heuristic approach, we set the optimization inter-
val to each data object access. As class boundaries for the
heuristic, we use the storage quantiles (sq) = {25,50,75} and
four traffic classes.

Evaluation Hypothesis At the beginning of the evalua-
tion, all optimization approaches select the cheapest storages.
Since the baseline also uses the cheapest storages, there
should not be any difference. After a while, the global opti-
mization starts to migrate chunks to long-term storages. This
increases the cost of the global optimization, because of the
additional BTU cost due to the chunks that are now stored on
long-term storages. For the local optimization, the migration
of not or rarely used chunks to long-term storages starts after
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Fig. 1 Cumulative cost for the first evaluation scenario

0 100 200 300 400 500 600 700
Time (Hours)

D
at

a 
O

bj
ec

t C
hu

nk
 a

m
ou

nt
0

50
10

0
15

0

S3 Oregon
S3 Oregon IA
S3 Frankfurt
S3 Frankfurt IA

Google Cloud
Self−hosted
Self−hosted IA

Fig. 2 Data object chunk distribution of the global optimization with
a (2,3) erasure coding configuration in the first evaluation scenario

8days. Before this point in time only chunks are optimized
that are often used. Since those chunks are already on the
cheapest standard storages, this optimization will not trig-
ger any changes. Since the heuristic approach uses the local
optimization as optimization strategy, the first migration of
several chunks to long-term storages takes place at a similar
point in time.

Evaluation Execution Figure 1 shows the cumulative cost
of each optimization approach and of the baseline. Figure 2
shows the distribution of the chunks on the different stor-
ages during the global optimization evaluation with the (2,3)
erasure coding configuration. For a clearer graph, only those
storages that are selected are shown.

As shown in Fig. 1, at the beginning the cost for all opti-
mization approaches (except for the global optimization with
the (2,4) configuration) and the baseline are the same, due to
the already cheapest standard storage selection. The global
optimization with the (2,4) configuration is more expensive
due to the bigger chunks; however, this configuration offers
the highest availability. After 25 and 55 h, the global opti-
mization migrates not or rarely used chunks to long-term
storages, which increases the cost due to the additional BTU
cost. This is also shown in Fig. 2 where chunks are trans-
ferred from standard storages, i.e., AWS S3 US Oregon, to

long-term storages, i.e., AWS S3 US Oregon IA. Since the
whole BTU cost is charged as soon as a chunk is stored on a
long-term storage, no additional cost is added for the long-
term storage as long as the BTU time is not over. After 160
h, the cost of the global optimization with the (2,3) and (3,4)
configurations is again the same as for the baseline. From
this point in time, the global optimization runs with those
two configurations provide cheaper placement solutions than
the baseline and the other optimization approaches. Since the
global optimization with the (2,4) configuration was already
at the beginning more expensive than the baseline, it stays
more expensive also after this point in time.

After 190 h, all additional cost of the global optimization
runs regarding the BTU of the long-term storages is charged
and therefore the cost graph raises faster again. At approx-
imately the same time, the heuristic and local optimization
starts to migrate data from standard storages to long-term
storages. Similar to the global optimization, this increases
the cost due to the additional BTU cost. As shown in the
cost graph (Fig. 1), the cost of the heuristic is bigger than for
the local optimization. This means that the heuristic migrates
more files to long-term storages than the local optimization.
This happens because the heuristic performs the migration
of all data objects from one class, by the use of the local opti-
mization result for one data object, at once. Furthermore,
it can be seen that the global optimization with the (3,4)
configuration does again migrate some chunks to long-term
storages.

After 300 h, the cost of the heuristic and local optimiza-
tion is lower than the baseline. As shown in Fig. 1, from this
point in time the heuristic requires less cost than the local
optimization. After 380 h, it can be seen that the local opti-
mization performs again an optimization of all not or rarely
used chunks that increases the cost due to the BTU.However,
after a short amount of time the cost is again lower than the
baseline.

For the global optimization runs, the cost is not changing
drastically after 190 h and after 300 h for the heuristic. This
shows us that the selected placement does not need to be
further optimized. For the global optimization with the (2,3)
configuration, this is also observed in Fig. 2, where after all
migrations are done no further changes are needed by the
optimization.

Results Altogether at the end of the evaluation, all opti-
mization approaches, except the global optimization with the
(2,4) configuration, provide better results, with respect to the
cost, than the baseline. In comparison with the baseline, we
are able to save 11% with the local optimization, 24.61%
with the heuristic, and 31.36% with the global optimization
with the (2,3) configuration and 26.98% with the (3,4) con-
figuration. In case of the global optimization with the (2,4)
configuration, the cost increases by 1.68% in comparison
with the baseline. Nevertheless, this configuration offers the
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highest availability of all discussed configurations, because
it only requires two out of four available storages to read a
data object. In comparison, the discussed local optimization
needs two out of three available storages. For longer eval-
uation runs the pricing differences, in comparison with the
baseline, would increase even more due to the linear cost
increase after the optimization of the not used data objects
took place.

5.2 Evaluation scenario 2

The aim of this evaluation scenario is to evaluate the heuristic
with a large amount of data objects against the baseline. Since
the optimization duration of the global optimization increases
exponentially with the amount of data objects, and since the
optimization is performed for each data object access, it is
infeasible to apply it to this large dataset. Therefore, we did
not include the global optimization in this evaluation sce-
nario. The same applies for the local optimization. Since this
optimization optimizes each data object after it was accessed
and in predefined intervals all not used data objects, a lot
of optimizations take place and the optimization duration
increases with the amount of data objects. Therefore, also the
local optimization is not applicable anymore for this amount
of data objects.

For this evaluation scenario, we set the optimization inter-
val of the heuristic approach to each 1,000th data object
access. Furthermore, we evaluate the heuristic approach with
different class boundaries. Those boundaries are (a) storage
quantiles (sq) = {25, 50, 75}, amount of traffic classes (tc)
= 4; (b) sq = {25, 50, 75}, tc = 2; and (c) sq = {16, 32,
47, 64, 81}, tc = 4. Furthermore, we set the erasure coding
configuration for all approaches to (2,3).

Evaluation Hypothesis The heuristic approach shows a
similar behavior as in the first scenario and the evaluation
scenarios from our previous work [26]. Therefore, at the
beginning no difference is expected between the baseline
and the heuristic approach, since both approaches use the
cheapest standard storages at the beginning. After some time,
depending on the configuration of the heuristic, the heuristic
starts to migrate chunks from standard storages to long-term
storages, which will again increase the cost due to the BTU.
As soon as the BTU is over, the cost will be lower than the
baseline and stays lower for the rest of the evaluation.

Evaluation Execution Figure 3 presents the cumulative
cost, and Fig. 4 shows the chunk distribution on the different
storages with the class boundaries (b).

As observed in Fig. 3, the cost at the beginning of the
evaluation is the same for the baseline and the heuristic. This
is due to the already cheapest storage selection of the baseline
and the fixed storage set that is used for the first upload of a
data object in case of the heuristic.
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Fig. 3 Cumulative cost for the second evaluation scenario
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Fig. 4 Data object chunk distribution of the heuristic with class bound-
aries b in the second evaluation scenario

As can be seen after around 150 h, all three heuristic eval-
uations start to migrate chunks from standard storages to
long-term storages. As in the first scenario, this increases
the cost due to the BTU of the long-term storages. However,
consequently for the remainder of the BTU no additional
storage cost is charged. This migration is also observed in
Fig. 4. Furthermore, in Fig. 4 it is observed that at 180 h a
second migration of some chunks from standard storage to
long-term storage takes place.

Figure 3 shows that after 280 h the cost of the heuristic
evaluations is lower than the baseline and stays lower for the
rest of the evaluation.

In Fig. 4 it is further observed that after 200 h a migration
takes place that migrates chunks from Amazon AWS S3 EU
Frankfurt to Google Cloud Storage. Furthermore, it can be
observed that at 490 h some data chunks are migrated from
Google Cloud Storage to AWS S3 EU Frankfurt and back
at 520 h. Those migrations are the results of a change of
the access patterns. Similar migrations take place at 560 h
and 570 h. Since the heuristic optimizes the placement of all
chunks in a class by optimizing a representative data object,
a change in the access pattern of this data object can result in
the migration of multiple chunks. However, as can be seen
in the cost graph (Fig. 3) this migration does not have a big
impact on the overall cost.
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Table 3 Average optimization durations of the first evaluation scenario in milliseconds (standard deviation)

Period of time Optimization approach

Global (2,3) Global (2,4) Global (3,4) Heuristic

2014-01-12 - 2014-01-16 5234.68 (σ = 1874.43) 16545.00 (σ = 8244.95) 18441.40 (σ = 9194.95) 101.64 (σ = 111.40)

2014-01-16 - 2014-01-20 8220.39 (σ = 681.44) 30195.59 (σ = 3895.66) 31273.46 (σ = 3537.07) 66.82 (σ = 57.98)

2014-01-20 - 2014-01-24 8619.54 (σ = 735.15) 31161.40 (σ = 2385.11) 34398.01 (σ = 2018.19) 63.76 (σ = 51.82)

2014-01-24 - 2014-01-28 7848.41 (σ = 551.78) 28316.06 (σ = 1485.12) 32774.72 (σ = 2371.04) 46.02 (σ = 35.39)

2014-01-28 - 2014-02-01 7796.64 (σ = 574.05) 27802.95 (σ = 1832.27) 31537.52 (σ = 1940.05) 50.89 (σ = 46.55)

2014-02-01 - 2014-02-05 8427.38 (σ = 698.55) 32041.39 (σ = 1752.86) 35216.57 (σ = 2029.41) 129.25(σ = 82.02)

2014-02-05 - 2014-02-09 8776.35 (σ = 671.00) 33185.79 (σ = 2757.59) 36707.68 (σ = 2467.75) 83.61 (σ = 37.67)

2014-02-09 - 2014-02-13 8837.22 (σ = 666.09) 35158.29 (σ = 3728.90) 37827.12 (σ = 2075.87) 65.32 (σ = 46.79)

Table 4 Average optimization durations of the second evaluation scenario in milliseconds (standard deviation) with the class configurations defined
in 5.2

Period of time Optimization approach

Heuristic (a) Heuristic (b) Heuristic (c)

2014-01-12 - 2014-01-16 1172.64 (σ = 1197.39) 1975.32 (σ = 1538.12) 2367.85 (σ = 2254.36)

2014-01-16 - 2014-01-20 1674.16 (σ = 1235.99) 1825.43 (σ = 1587.28) 2452.91 (σ = 2356.32)

2014-01-20 - 2014-01-24 2805.21 (σ = 2043.55) 3690.85 (σ = 2509.79) 5010.23 (σ = 3270.17)

2014-01-24 - 2014-01-28 3311.27 (σ = 2042.38) 3243.43 (σ = 2401.33) 5425.47 (σ = 3161.41)

2014-01-28 - 2014-02-01 3073.95 (σ = 2430.86) 3495.16 (σ = 2668.05) 5527.75 (σ = 4072.79)

2014-02-01 - 2014-02-05 2330.78 (σ = 2137.01) 3089.97 (σ = 2841.69) 5250.59 (σ = 3957.38)

2014-02-05 - 2014-02-09 2786.73 (σ = 2208.62) 2871.69 (σ = 2861.58) 4078.78 (σ = 4018.28)

2014-02-09 - 2014-02-13 3588.81 (σ = 2340.87) 4402.05 (σ = 3440.64) 6194.82 (σ = 4666.80)

Result At the end of the evaluation, it can be seen that the
heuristic approach requires less cost than the baseline for all
class boundaries. In fact the biggest cost saving was achieved
by the class boundaries (b) with a cost saving, in comparison
with the baseline, of 32.16%. The one with the lowest cost
saving was the one with the class boundaries (a) with a cost
saving of 30.9% in comparison with the baseline.

5.3 Performance assessment

In the following we evaluate the performance of our imple-
mented middleware and the global and heuristic approach by
analyzing the optimization duration and amount of required
metadata. A detailed performance analysis of the local opti-
mization approach can be found in our former work [26].

Duration During the runs of the two evaluation scenarios
presented in Sects. 5.1 and 5.2, we have logged the duration
of each optimization of the global and heuristic approach.
Table 3 shows the average optimization duration and its stan-
dard deviation inmilliseconds of the first scenario andTable 4
the durations of the second scenario with the class configu-
rations defined in 5.2. As observed in Table 3, the global
optimization has a long optimization duration, with an aver-
age duration of more than 5,000 ms in case of the (2,3)

configuration, since each optimization considers all chunks
and all possible storage combinations of them. In case of
the (2,4) and (3,4) configuration the optimization duration is
bigger than 16,000 ms. This is due to the fact that each data
object is split into four chunks which results in 752 chunks,
in comparison with 564 chunks for the (2,3) configuration. In
case of the heuristic approach optimization durations in the
first scenario most of the average durations are below 80 ms.

In the second evaluation scenario (Table 4), it can be
observed that the average heuristic duration also increases
to durations over 1,000 ms for the class configuration (a) and
to durations over 2,000 ms for the class configuration (c).
This increase is, on the one hand, due to the fact that the
heuristic approach uses the local optimization to calculate
the best storage set for a class, and on the other hand, due to
the pre-processing, i.e., sorting of the data objects, and post-
processing, i.e., setting the selected storages for all chunks
in a class. The complexity of both sides increases with the
amount of data objects. Furthermore, it can be observed that
by changing the class configuration the optimization duration
increases or decreases. For instance, with the class configura-
tion (a) the average optimization duration is under 3,600 ms;
however, with the class configuration (c) most of the opti-
mization durations are over 5,000 ms. Nevertheless, it has to
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be noted that this optimization technique is only executed in
predefined intervals. In case of the values from Table 4, an
optimization is done after 1,000 data object accesses.

Metadata Each proposed optimization approach relies on
metadata of each data object, e.g., historic information of the
chunks, which are stored in a database. Nevertheless, each
proposed optimization approach only requires the informa-
tion of the last BTU time and billing period. This allows the
middleware to prune the metadata and decreases the amount
of required storage for the metadata. For example, the sec-
ond scenario, which uses the biggest amount of data objects
and therefore has the biggest amount of metadata, stores only
around 111 MB of metadata at a time.

6 Related work

In recent years, the redundant storage of data in the cloud has
been a vivid field of research. Substantial efforts have been
undertaken, however, with some important limitations.

Similar to our own work, Scalia aims at minimizing the
cost for redundant data storage in the cloud [19]. To achieve
this, the system focuses on performing a runtime analysis of
the access patterns of the data objects and uses this informa-
tion to adapt the data placement. For that, the system holds
historical access information, e.g., the size of a data object
chunk or input and output traffic for each data object, which
are then used in a placement algorithm. Similar to CORA,
Scalia applies erasure coding. For the placement optimiza-
tion, Scalia relies on a heuristic to find a cost-efficient data
placement solution. The heuristic resembles the well-known
multi-dimensional knapsack problem. In comparison with
our work, the proposed optimization approaches of Scalia do
not provide a local and global optimization solution based on
MILP. In addition, Scalia does not include long-term storage
solutions and therefore does not recognize BTUs. Further,
Scalia also does not include the block rate pricing models of
some providers. Instead, it uses a simplified pricing model.
As a result, the pricing model applied by Scalia is not com-
pletely realistic. Nevertheless, Scalia comes closest to our
own work.

Similar to Scalia, RACS uses erasure coding to split data
objects into several data object chunks and to store them on
several cloudproviders [2]. In contrast toScalia andourwork,
RACS does not monitor the usage of the data objects. Hence,
RACS is not able to take this information into account for
finding a cost-efficient data placement.

Another cost-efficient multi-cloud storage system is
CHARM [28]. Similar to our work, CHARM offers the func-
tionality to find the cheapest storage solution from a set of
available cloud storage providers to realize high availability
and to avoid vendor lock-in. However, in comparison with
our work, the system uses two separate redundancy mecha-

nisms, replication and erasure coding. The system uses the
access history of a data object to determine whether the stor-
age cost is lower for one of these two mechanisms. CHARM
uses a similar pricing model as Scalia, leading to the same
limitations.

MetaStorage uses full replication to store data objects on
several cloud storage providers aiming at a high data avail-
ability [6]. To distribute data objects among the available
providers, the system uses a distributed hash table, which
makes MetaStorage highly scalable. In contrast to our work,
MetaStorage does not include any optimization of the place-
ment to find the cheapest provider set. Furthermore, all
data objects are fully replicated among the different storage
providers. This redundancy mechanism raises the amount of
needed traffic and storage and therefore increases the cost.

Chang et al. present in their work [10] a mathematical
solution to choose the placement of data objects on different
cloud storage systems tomaximize the availability for a given
budget. However, they only take the storage cost into account
and do not include the traffic or migration cost. Furthermore,
their equations do not include long-term storage solutions.
The same also applies for the work of Mansouri et al. [17]
where they also present a mathematical formulation of the
same problem as in [10]. Nevertheless, they do not include
the additional cost for traffic, data migration and long-term
storage, as well. By not taking the traffic cost into account,
the system cannot react to changes in the usage pattern if, for
example, a data object changes from not used to often used.

While the cost of storing data (without transfer cost) is
regarded in further approaches [10,17], other approaches do
not take into account any cost [8]. Beside the usage of a
redundant storage functionality in the cloud, there are also
several peer-to-peer (P2P) systems that are offering similar
functionalities, like [12,13]. The usage of different redun-
dancy mechanisms, i.e., replication and erasure coding, was
also analyzed in P2P settings [22,27].

Apart from Scalia and CHARM, none of the abovemen-
tioned approaches provide a cloud-based redundant storage
system that monitors the usage of the data objects and
dynamically optimizes the placement of the data objects in
a cost-efficient way while taking into account SLOs. To the
best of our knowledge, none of the discussed approaches
include the usage of long-term storages to store not or rarely
accessed data objects. Therefore, state-of-the-art solutions,
as discussed above, do not recognize BTUs and BSUs. Last
but not least, none of the discussedworksmodels the problem
using MILP.

7 Conclusion

To use all benefits of cloud storages without the risk of a ven-
dor lock-in, the use of several cloud storages is an obvious
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choice. In the work at hand, we extended our previous work
in this area by formulating the global optimization problem
of storing data objects on a set of storages in a redundant and
cost-efficient way. To overcome the data object amount limit
of the global optimization approach, we further formulated
a heuristic approach for the global optimization based on a
classification solution. In the end, we evaluated the two new
approaches and compared the results with placement solu-
tionswithout an optimization butwith a fixed provider set and
the local optimization approach from our former work [26].

In our evaluation, we showed that our solutions provide
less cost in comparison with the baseline. Further, we pre-
sented that our heuristic approach can also handle larger
amount of data despite the complexity of the optimization
problem.

In our future work, we plan to improve our approaches
even more. This will include the analysis of different
approaches to predict the usage of the data more precisely so
cheaper storage solutions can be found earlier. To get a more
dynamic solution, we plan to extend our approach in a way
that it can dynamically adapt its configuration parameters,
e.g., erasure coding configuration or optimization intervals,
to elastically adapt to different situations. In regard to the
architecture of the middleware CORA, we plan to extend it
to a decentralized architecture that is capable to serve several
requests in parallel and to increase the resilience of the mid-
dleware. Furthermore, we plan to evaluate our approaches in
different real-world scenarios, e.g., big data processing.

Besides the cost efficiency, the privacy and latency aspects
of cloud storages play important roles. We plan to analyze
how the privacy aspects can be considered by using hybrid
cloud storage solutions and encryption. With respect to the
latency, we plan to extend the optimization approaches in
a way that they also consider latency aspects during the
data object placement optimization. This extension then
minimizes, besides the cost, also the traffic latencies, i.e.,
download and upload latency.
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