
Master Thesis

Implementation of a SIP User Agent

for Mobile Devices

Institute of Broadband Communications (E388)

Faculty of Electrical Engineering
Vienna University of Technology

Under Supervision of o.Univ.Prof. Dr.-Ing. Harmen R. van As

and Proj.Ass. Dipl.-Ing. Klaus Umschaden

Samya Chahin

Vienna, 15. of October 2004

 (Signature)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

The Session Initiation Protocol (SIP) is becoming more and more the main protocol for the

initiation of two-way calls over IP Networks. It has been chosen by the 3GPP organization for

Voice over IP (VoIP) and general multimedia two-way applications.

Furthermore, on UMTS and wireless networks the use of high quality audio coding schemes

for communication purpose is possible. The goal of this master thesis is to implement a SIP

User Agent for mobile phones. Wireless devices, such as mobile phones, laptop computers and

personal digital assistants are gaining wide popularity. Their computing capabilities are

growing quickly. These devices can be connected to wireless networks with increasing

bandwidth. Moreover, the need for corresponding software is increasing greatly. The SIP

protocol is used in this thesis to initialize calls and the Real-time Transport Protocol is used for

the voice data exchange. In the future networks will develop, which enables the possibility to

transfer bigger amounts of data. Mobile phones will get more powerful and the need to build

corresponding powerful applications will grow too.

Samya Chahin SIP UA for Mobile Devices

Page 3 of 85

Preface

This master thesis has been written at the Institut of Broadband Communication, Vienna

University of Technic, Austria. First of all, I would like to thank my advisor DI Klaus

Umschaden for his support before and during the creation of this thesis, a lot of inspiring

discussions and some constructive criticism. He deserves a large part of the laurels for this

work, for his continuous patience and guidance.

I would like to express my gratitude to the Institut of Broadband Communication for giving me

the opportunity to complete my studies and to thank all my friends and colleagues from the

institutes at Vienna University of Technology. I’m really proud of having a chance to do my

master thesis under Prof. Van As’s supervise. He and DI Klaus Umschaden great guidance and

help let me have the opportunity to enter this so challenging and interesting field and finish my

work successfully at last.

Then, I would like to thank all my family, specially my husband, for staying always by my side.

Samya Chahin SIP UA for Mobile Devices

Page 4 of 85

1 Introduction..12

1.1 Motivation..13

1.2 Goal..13

2 General Overview of Mobile Devices ...15

2.1 Mobile Devices ..15

2.2 Mobile Applications...17

3 Java 2 Micro Edition..19

3.1 Architecture..20

3.2 Vitual Machine Layer ..21

3.2.1 C Virtual Machine..21

3.2.2 Kilo Virtual Machine ...21

3.3 Configuration Layer...22

3.3.1 Connected Limited Device Configuration ...22

3.3.2 Connected Device Configuration...26

3.4 Profile Layer ..27

3.4.1 Mobile Information Device Profile..27

3.4.2 MIDlets and Lifecycle of MIDlets...28

3.4.3 MIDP User Interface APIs...33

3.4.4 Networking ..33

3.5 The Wireless Toolkit..37

3.6 Critical Factor for Application Development ..41

4 Session Initiation Protocol ...42

4.1 What is SIP?...42

4.2 Call Flow Examples...44

4.2.1 Basic Session Establishment..44

4.2.2 SIP Registration ...45

4.2.3 Simple Session Establishment with SIP Proxy Server46

4.2.4 Call Establishment with SIP Redirect Server ..50

4.3 SIP Messages ...52

4.3.1 Requests ...52

4.3.2 Responses...52

4.4 SIP Header Fields ..53

4.5 SIP Components...55

4.5.1 User Agent ...55

4.5.2 User Agent Server..55

4.5.3 SIP Proxy Server..55

4.5.4 SIP Redirect Server..56

4.5.5 SIP Registrar Server...56

4.6 Session Description Protocol ...56

4.7 Examples for SIP User Agents ..57

4.7.1 The Microsoft Messenger ..57

4.8 Java SIP Packages for Mobile Devices..58

4.8.1 JAIN Sip Lite from National Institute of Standards and Technoloy58

4.8.2 SIP API for J2ME from Nokia...60

4.8.3 Comparison of SIP Packages ...62

4.8.4 The Choice ...62

4.9 Summary..63

5 Real-time Transport Protocol...64

5.1 Introduction..64

5.2 How does RTP work? ..64

5.3 RTP Header Fields...65

Samya Chahin SIP UA for Mobile Devices

Page 5 of 85

5.4 RTP and the Session Initiation Protocol ..67

5.5 Java Packages for Mobile Multimedia...68

5.5.1 Mobile Media Application Programming Interface...68

6 The Prototype...69

6.1 Introduction..69

6.2 Requirements ...69

6.3 RTP Implementation..70

6.4 General Class Architecture ..74

6.5 Graphical User Interface ..75

6.6 Mobile Media API ...76

6.6.1 Mobile Media API Architecture ..76

6.7 OnDO SIP Sever from Brekeke...78

6.8 Audio Playback..81

7 Summary..82

8 Conclusion and Outlook ..82

9 References..84

List of Tables

Table 2.1 Properties of different mobile devices

Table 2.2 Advantages and Disadvantages of the different mobile devices

Table 3.1 Classes contained in the CLDC

Table 3.2 MIDP Profile Characteristic

Table 3.3 Generic Connection Framework classes and their purpose

Table 3.4 Directories in each WTK project

Table 4.1 Functionality of SIP

Table 4.2 SIP request methods

Table 4.3 SIP response classes

Table 4.4 SIP header fields

Table 4.5 Comparison of SIP packages

Samya Chahin SIP UA for Mobile Devices

Page 7 of 85

List of Figures

Figure 3.1 Java frameworks and realated VM

Figure 3.2 J2ME with Configuration, Profile and Midlets

Figure 3.3 General J2ME Architecture

Figure 3.4 The CLDC Generic Connection Framework (GCF)

Figure 3.5 High Level Architecture of MIDP

Figure 3.6 The lifecycle of a MIDlet.

Figure 3.7 The MIDlet development process

Figure 3.8 Deploying a MIDlet on a mobile phone

Figure 3.9 MIDP User Interface class Hierarchy

Figure 3.10 Ktoolbar from the Wireless Toolkit of SUN Microsystems

Figure 3.11 Project Configuration

Figure 3.12 MIDlet Example running in the Emulator of the KToolbar

Figure 4.1 Session Initiation Protocol Stack

Figure 4.2 Basic SIP session setup

Figure 4.3 Registration Scenario

Figure 4.4 SIP session setup example with SIP proxy server

Figure 4.5 Proxy mode scenario

Figure 4.6 Redirect Mode Scenario

Figure 4.7 Microsoft Messenger

Figure 4.8 JAIN SIP Lite architecture

Figure 4.9 SIP API for J2ME architecture

Figure 4.10 SIP API for J2ME functionality

Figure 5.1 Data transmission protocols

Figure 5.2 RTP Header Fields

Figure 5.3 RTP Flow during SIP Message exchange

Samya Chahin SIP UA for Mobile Devices

Page 8 of 85

Figure 6.1 High level functional module

Figure 6.2 RTP Packet Class

Figure 6.3 RTP Sequence Diagram

Figure 6.4 General Class Diagram

Figure 6.5 Graphical User Interface of the SIP UA

Figure 6.6 Architecture of MMAPI

Figure 6.7 Player State Table

Figure 6.10 Registered users

Figure 6.11 Active session

Figure 6.12 Detail information about the session

Glossary

3GPP 3G Partnership Project

ADPCM Adaptive Differential Pulse Code Modulation

AMS Application Management Software

API Application Program Interface

ATM Asynchronous Transfer Mode

AVP Audio Video Profile

AWT Abstract Windowing Toolkit

CDC Connected Device Configuration

CF CompactFlash Cards

CLDC Connected Limited Device Configuration

CORBA Common Object Request Broker Architecture

CPU Central PRocessing Unit

CSRC Contributing source

CVM C Virtual Machine

GCF Generic Connection Framework

GPRS General Packet Radio System

GSM Global System for Mobile Communications

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

I/O Input/Output

IP Internet Protocol

IrDA Infrared Data Association

J2EE Java 2 Enterprise Edition

Samya Chahin SIP UA for Mobile Devices

Page 10 of 85

J2SE Java 2 Standard Edition

J2ME Java 2 Micro Edition

JAD Java Application Descriptor

JAIN Java API for Integrated Networks

JAM Java Application Manager

JAR Java Archive

JMF Java Media Framework

JNI Java Native Interface

JRE Java Runtime Environment

KVM Kilo Virtual Machine

MID Mobile Information Device

MIDP Mobile Information Device Profile

MIME Multipurpose Internet Mail Extensions

MMAPI Mobile Media Application Programming Interface

MMUSIC Multiparty Multimedia Session Control

NIST National Institute of Standards and Technology

OTA Over The Air Provisioning

PCM Pulse Code Modulation

PCMCIA Personal Computer Memory Card International Association Card

PDA Personal Digital Assistant

PDU Protocol Data Units

PSTN Public Switched Telephone Networks

QoS Quality of Service

RMI Remote Method Invocation

RTCP Real- time Transport Control Protocol

Samya Chahin SIP UA for Mobile Devices

Page 11 of 85

RTP Real-time Transport Protocol

SDP Session Description Protocol

SIP Session Initiation Protocol

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SSL/TLS Secure Socket Layer /Transport Layer Security

SSRC Synchronization source

TCP Transmission Control Protocol

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

UI User interface

UMTS Universal Mobile Telecommunications Service

URI Uniform Resource Identifier

VoIP Voice over IP

WAP Wireless Application Protocol

WLAN Wireless Local Area Network

WML Wireless Markup Language

WTK Wireless Toolkit

XML Extenible Markup Language

1 Introduction

Wireless devices, such as mobile phones, laptop computers and personal digital assistants are

getting wide popularity. Their computing capabilities are growing quickly. These devices can

be connected to wireless networks with increasing bandwidth. Moreover, the demand for

corresponding software is increasing greatly. The combined use of these technologies on

personal devices enables people to access their personal information as well as public resources

anytime and anywhere. Especially, it enables the mobile multimedia entertainment and

communication.

Providing flexible and programmable multimedia services at a lower cost to the end users in a

more efficient way has been one of the main motivations behind transition from a traditional

circuit switched network, Public Switched Telephone Networks (PSTN), to a packet based

network such as IP network. Most of the efforts underway now are limited to wire-line

network, however. As personal communication and ubiquitous access have become more

prevalent, it is necessary to come up with solutions which can support multiple applications

such as mobile IP-telephony, multimedia conferencing and other streaming applications over

wireless IP networks. Supporting multimedia operation over wireless links has to consider

several factors, such as mobile device, session signaling, wireless network and audio/video

coding schemes.

Second, several new protocols will form the basis of the mobile multimedia infrastructure:

Bluetooth for short-range connectivity of devices, Wireless Application Protocol (WAP) for

access to information from cellular phones, Real-time Transport Protocol (RTP) for transport

of audio and video streams over IP networks, Session Initiation Protocol (SIP), which is a

text-based protocol similar to Hyper Text Transfer Protocol (HTTP) and Simple Mail Transfer

Protocol (SMTP), for initiating interactive communication sessions between users that include

voice, video or chat. With these protocols, multimedia sessions over wired wireless network

can be signaled and managed very well.

The implementation of the SIP User Agent on mobile phones of this master thesis is just a

sample to show the possibility that all the latest technology in this field together can be

combined and provide a direction. As wireless network multimedia standards are developing,

more efforts should be devoted to support these standards in future solutions, which will enable

interoperability, and ensure the rapid adoption of new the technology.

This Thesis consists of six Chapters. Chapter 1 gives an introduction about the SIP and RTP

protocol and the motivation for the work presented in this Thesis. It also discusses the reasons

for choosing SIP as the signaling protocol. A short description of the main topics and

contributions of this work is also included. Chapter 2 explaines the currently available mobile

devices on the market and a comparison between them. A short description about mobile

applications is included too. Chapter 3 covers the J2ME framework. The functionality is shown

through simple examples. A comparison of the existing Java Virtual Machines is made and the

main packages used for mobile phones as the Connected Limited Device Configuration and

Mobile Information Device Profile are explained in more detail. This Chapter shows how all

J2ME components work together, how network connections can be estabished and the lifecycle

of MIDlets. Finally, the wireless toolkit will be introduced, because it is the development tool

used in this Thesis. Chapter 4 is a very important part of this Thesis and covers the SIP

protocol. It starts with the definition and shows call flow examples. The SIP messages, requests

and responses, are explained. The SIP components are presented and the SDP is introduced. As

an example of SIP User Agents currently available on the market, is shown with its

Samya Chahin SIP UA for Mobile Devices

Page 13 of 85

functionality. Finally, the available Java SIP packages for mobile devices are given, explaining

the architecture of each with a comparison and the reason is mentioned for why choosing one

of them for this Thesis. Chapter 5 gives an overview about the RTP protocol and why it is so

important for SIP in the real-time Data exchange. The RTP header fields are explained in detail

and how RTP fits in the architecture. Finally, the available Java packages for mobile

multimedia are intoduced.

Chapter 6 includes the practical part of the Thesis, which is the prototype. Starting with the

development steps used and the requirements needed to let this implementation possible. This

Chapter showes and explains how all components work together. Own implemented parts are

shown by sequence and class diagrams. A general class architecture is shown and a screenshot

of the prototype illustrates how it is really working. How sampled voice data are possible to be

played back through the Mobile Media API and how the UA was tested and call establishement

is verified, is explained in detail in this Chapter.

1.1 Motivation

Today, there are many kinds of mobile phones from different manufacturers, which use

different platforms. Network operators, device manufacturers and end users have different

needs and expectations regarding to the applications running on them.

Although at the beginning Internet has been used only for researcg purpose, today’s Internet

has increased usability enabling different kinds of media transmission. A new range of

communication services based on the Internet Protocol (IP) are now under use or deployment.

A promising new communication service area comes with the so called Internet Telephony

which together with User Mobility provides an interesting new communication paradigm. In

this manner it is not strange to expect that in a couple of years IP networking will eventually

replace the existing networking infrastructure even for mobile phones.

User Mobility is becoming more a requirement than an optional feature. The increasing variety

of wireless devices offering IP connectivity such as Laptops, Personal Digital Assistances

(PADs), handhelds and digital cellular phones make this mobile scenario already reality. User

Mobility can be viewed from two distinct aspects. Personal mobility is user related in the sense

that a user has access to network services based on user’s personal identification and

geographical position. Host mobility is movement oriented in the sense that when using

wireless devices, a user can cross different network, without loose of the network connection.

IP-based mobile networks offer a new communication paradigm with many communications

service scenarios.

Considering the aggregate value that results from a work that implements and evaluates one of

these standard solutions this master thesis has found its purpose.

1.2 Goal

The goal of this master thesis is to implement a prototype for a SIP User Agent for mobile

phones. Evaluation of the current technologies for mobile devices and if mobile phones are

powerful enough are a main part of this thesis. This SIP User Agent, as seen from the name,

uses the SIP protocol to build up calls and the RTP for the voice data exchange. I will go

through a deep analysis and design for RTP and after testing two different available Java SIP

packages, I will decide to use one of them. The implementation will be explained in detail in

chapter 7. The J2ME Framework is covered in a chapter alone and the functionality is shown

through simple examples. As the RTP plays an important role in the voice Data exchange it is

covered in a chapter separately.

Samya Chahin SIP UA for Mobile Devices

Page 14 of 85

Samya Chahin SIP UA for Mobile Devices

Page 15 of 85

2 General Overview of Mobile Devices

2.1 Mobile Devices

Mobile devices are devices which have not to be connected to a cable while working with

them. There are different groups of mobile devices. The life cycle of mobile devices are very

short. The optimal end device for all needs does not exist. The requirements for a mobile device

depends on the functionalities it should fullfill. Then it will be clear to decide for a Personal

Digital Assistant (PDA), because of its compact size and its relative big and high resolution

display or a mobile phone which exists in huge numbers in the market.

Generally there exists four different kinds of mobile devices. Mobile phones, PDAs, SimPads

and Laptops. Mobile phones are mainly for making calls. PDA is a organizer with or without a

built in phone. SimPad is a small computer with a touchscreen and could be used to enter the

Internet. Laptop is a mobile computer with nearly the same power as Personal Computers these

days. Table 2.1 shows an overview about the different groups:

 Mobile Phones

Target Group: Mass Market, Teenagers up to Bussiness

People

Availability: Wide spread

Prices: ranges are from 100 to 1000 euro.

Operating System (OS): is SymbianOS (earlier EPOC)

Programming Languages: Java (Java 2 Micro Edition), C++,

Wireless Markup Language (WML), i-mode (it is a

packet-based information service that delivers information to

mobile phones and enables the exchange of email from

handsets.)

CPU: slow 16-bit or 32-bit CPU

Memory: mostly < 50kB, in special devices could be up to

500kB.

Wireless Connection Types: Short Message Service (SMS),

Global System for Mobile Communications (GSM), General

Packet Radio System (GPRS), Infrared Data Association

(IrDA), Bluetooth and Universal Mobile Telecommunications

Service (UMTS)

Extras Cameras, Organizer, Email client

Samya Chahin SIP UA for Mobile Devices

Page 16 of 85

 Personal Digital Assistant (PDA)
Target Group: Bussiness People, Special Applications

Availability: Medium spread.

Prices: ranges are from 400,- to 1.000,- euro

OS: WinCE or PalmOS

Programming Languages: Java (J2ME), C++, C, VisualBasic,

WML, Hypertext Markup Language (HTML)

CPU: faster 32-bit CPU

Memory: 32MB to 64MB

Wireless Connection Types: SMS, GSM, GPRS, IrDA

Bluetooth, UMTS, Wireless Local Area Network (WLAN)

and with AddOn-Cards,

Extras: Cameras, Organizer, Emailclient, big Colour Display,

Touchscreen, Office Software, Audio/Video-Player, could be

extended by CompactFlash (CF) Cards or Personal Computer

Memory Card International Association (PCMCIA) Card

 SimPad

Target Group: Privat and Bussiness People, Special

Applications

Availability: Low Spread

Prices: from 1.000,- to 2.000,- euro

OS: WinCEOperating

Programming Languages: Java (J2ME), C++, C, VisualBasic,

HTML

CPU: faster 32-bit or 64-bit CPU

Memory: arround 32MB for Application Memory

Wireless Connection Types: SMS, GSM, GPRS,IrDA,

Bluetooth, UMTS, extended through WLAN and

PCMCIA-Cards,

Extras: Cameras, Organizer, Emailclient, Colour Display,

Touchscreen, Office Software, Audio/Video-Player

Laptop

Target Group: Busssiness People, Field Staff

Availability: Wide Spread

Prices: from 1.000,- to 3.000,- euro

OS: for example WinXP or Linux

Programming Languages: Java (Java 2 Standard Edition),

C++, C, VisualBasic, HTML

CPU: faster 32-bit or 64-bit CPU

Memory: arround 32MB up to many hundreds MB

Wireles Connection Types: SMS, GSM, GPRS, IrDA,

Bluetooth, UMTS, extended through WLAN and

PCMCIA-Cards

Extras: Cameras, Organizer, Emailclient, Colour Display,

Touchscreen, Office-Software, Audio/Video-Player

Table 2.1 Properties of different mobile devices

Samya Chahin SIP UA for Mobile Devices

Page 17 of 85

Mobile phones are getting more and more powerful and take more and more the role of PDAs.

Those phones are an interesting group for mobile applications because they are powerful, small

enough for the daily use and there exists a huge number of them on the market. Probably those

mobile phones will get more powerful in the next years with the same small size and will be the

daily digital assistent for communication and information exchange, organization, comfort,

security and remote control on the market and will replace the PDAs completely. Because

Mobile phones will play such an important role in the future, I chose the focus of my Master

Thesis to be about that group of devices.

The subsequent Table 2.2 shows advantages and disadvantages of the different devices.

Device Advantages Disadvantages

Mobile Phone

+ Small

+ Cheap

+ Wide Spread

+ Phone and programmmable device as one

unit

- Small Display

- Low Memory

- Slow CPU

- Complex Operation

PDA + Big display

+ Easy operation through touchscreen

+ Powerful

+ MDA: phone and programmmable device

as one unit

- PDA: phone function only

with extended modules

- As mobile phone too big and

too heavy

- High price

SimPad

+ Very big display

+ Easy use through touchscreen

+ Powerful

- Too heavy and to big for a

real mobile device

- High price

Laptop

+ Very big display

+ Easy use through keyboard and mousepad

+ Powerful as a desktop personal computer

- Too heavy and too big for a

real mobile device

- High price

Table 2.2 Advantages and Disadvantages of the different mobile devices

2.2 Mobile Applications

„Mobile Applications“ or often also called „Wireless Applications“ are developed mainly to be

used for mobile devices. Mobile devices could be programmable mobile phones, smartphones,

PDAs or mobile small computer like SimPads and laptops. The mobile devices are small, very

flexible and are location independent-that is why they are „Mobile“-and have either no or a

wireless connection to other devices-that is why they are „Wireless“).

The mobile device together with the suitable application is called „Mobile Solution“or

„Wireless Solution“. This is a system with very flexible and location independent properties

and possibilities.

The trend is no longer to develop applications for laptops or PDAs but to have nearly every

mobile phone together with special applications to have a multifunction device which opens

wide opportunities. Mobile phones are small, cheap and widely spread. Most of the new mobile

phones support the J2ME program interface.

Samya Chahin SIP UA for Mobile Devices

Page 18 of 85

Some years ago the company Palm released the first programmable PDA. Many developers

around the world started to write applications for those devices which enabled the success of

PDAs. Every end user was able to extend his PDA with the needed functionality.

Nowadays, there exist a huge number of applications for PDAs like Palm and PocketPC. After

J2ME came out as a platform independent programming language for mobile phones and other

mobile devices, they will have the same future. There exists already more than thousands of

games and tools which can be downloaded to the mobile phones.

3 Java 2 Micro Edition

Java 2 Micro Edition (J2ME) is a Java based framework for mobile devices such as cellular

phones. In this framework the following properties have been taken into account:

• Slow processor

• Little memory

• A small key pad

• Small display

• A limited source of power supply

• Low transfer speed compared to computers

The J2ME architecture defines configurations, profiles and optional packages as elements for

building complete Java runtime environments that meet the requirements for a broad range of

devices and target markets. Each combination is optimized for the memory, processing power,

and I/O capabilities of a related category of devices.

Figure 3.1 gives an overview about the different Java frameworks and the Java Virtual

Machines (JVM) in use.

Figure 3.1: Java frameworks and related VM [SUN]

Smart

Cards

Mobile phones

& entry level

PDAs Cards

High end PDAs

& embedded

devices

Servers &

Personal

computers

Servers &

enterprise

computers

Samya Chahin SIP UA for Mobile Devices

Page 20 of 85

As seen from the Fihure 3.1 there exists also two other Java based frameworks which are Java

2 Standard Edition (J2SE) and Java 2 Enterprise Edition (J2EE).

J2SE is a Java-based, runtime platform that provides many features for developing Web-based

Java applications, including database access, CORBA interface technology, and security for

both local network and Internet use. J2SE is the core Java technology platform.

J2EE is a Java-based, runtime platform used for developing, deploying, and managing

multi-tier server-centric applications on an enterprise-wide scale. J2EE builds on the features

of J2SE and adds distributed communication, threading control, scalable architecture, and

transaction management.

3.1 Architecture

All J2ME devices do not have the same perfomance capability or restrictions and at the same

time J2ME should be valid for a wide range of devices. Therefore, J2ME is devided into two

main parts, the configuration and the profile as shown in Figure 3.2.

The configuration describes the general, minmal functions for general device classes such as

mobile phones. The configuration describes the suitable Virtual Machine and the suitable

Application Program Interface (API). For each configuration there exist different profiles,

which help to gain a complete Java Runtime Environment (JRE). The profile consists of a limit

set of APIs, addressing only functional areas that were considered absolute requirements to

achieve broad portability and successful deployments. The JVM layer is an implementation of

a Java Virtual Machine that is customized for a particular device's host operating system and

supports a particular J2ME configuration. There exist two type of JVM which are C Virtual

Machine (CVM) and Kilo Virtual Machine (KVM) and will be explained in detail in the

subsequent section. A MIDlet is a Java program for embedded devices, more specifically the

J2ME virtual machine. Generally, these are games and applications that run on a cell phone.

[J2MICRO]

Figure 3.2 J2ME with configuration, profile and MIDlets

Host OS

Focus of

this Thesis

CVM KVM

MIDlets

Application

The device specific

configuration

contains the basic

classes

The Profile extends

the configurations to

Runtime Enviroment

Found. Pr.

CDC

MIDP

CLDC

Samya Chahin SIP UA for Mobile Devices

Page 21 of 85

In this Master Thesis I will concentrate mainly on the configuration for mobile phones and the

suitable profile which is called Mobile Information Device Profile (MIDP). Other available

configurations are just mentioned for completion.

Currently, there are two different types of configurations available: Connected Device

Configuration (CDC|) and Connected Limited Device Configuration (CLDC), which is

explained in detail in section 3.4.

3.2 Vitual Machine Layer

The JVM layer is an implementation of a JVM that is customized for a particular device's host

OS and supports a particular J2ME configuration.

There exist two famous Virtual Machines in the environment of J2ME. They are KVM and

CVM. These are the names of Java Virtual Machines for the CLDC (KVM) and the CDC

(CVM). Those are designed specifically to work in the constrained environment of a handheld

or embedded device. Additionally, they can be ported to different platforms. The CLDC and

CDC specifications do not require the use of the KVM or the CVM, only the use of a JVM that

fullfills the requirements of the CLDC or CDC specification.

3.2.1 C Virtual Machine

CVM is a full-featured JVM designed for devices needing the functionality of the Java 2

Virtual Machine feature set, but with a smaller footprint. This means less methods and less

functionality. It is used by the CDC which is the goal of embedded devices. The

implementation is not based on CVM, therefore I will not go into more detail about it.

3.2.2 Kilo Virtual Machine

The KVM, also known as the Kilo Virtual Machine, is a JVM designed for small,

resource-constrained devices such as cellular phones, pagers, personal organizers and mobile

Internet devices.

The goal of the KVM was to create the smallest possible complete JVM that can handle nearly

all the aspects of the Java programming language, and that would also run in a

resource-constrained device with only a few tens or hundreds of kilobytes of available

memory. Therefore it is called Kilo Virtual Machine, which means just several kilobytes.

The KVM is implemented in the C programming language, so it can easily be ported onto

various platforms for which a C compiler is available.

It is possible to start the KVM from the command line. Alternatively, on devices with user

interface capable of launching native applications (such as Palm OS), the KVM can be

configured to run in that way.

For devices that do not have such a user interface, the KVM provides a reference

implementation of a facility called the Java Application Manager (JAM), which serves as an

interface between the host OS and the virtual machine. The JAM assumes that applications are

available for downloading as Java Archive (JAR) files by using a network or storage protocol

(typically HTTP) implemented using the Generic Connection Framework (GCF). The JAM

reads the contents of the JAR file and an associated descriptor file from the Internet, and

launches the KVM with the main class as a parameter. For development and testing purposes,

desktop implementations of the KVM can be configured to use the JAM as an alternative

startup strategy.

Samya Chahin SIP UA for Mobile Devices

Page 22 of 85

The KVM does not support the Java Native Interface (JNI). Rather, any native code called

from the virtual machine must be linked directly into the JVM at compile time. Invoking native

methods is accomplished via native method lookup tables, which must be created during the

build process [J2ME].

3.3 Configuration Layer

3.3.1 Connected Limited Device Configuration

The Connected Limited Device Configuration (CLDC) has the goal to offer a standard, small

Java platform for resource constrained connected devices and is the used configuration for

mobile phones and similar devices. Generally, they have the following characteristics:

• 16 or 32 Bit-CPU

• 160 kB to 512 kB of total memory budget available for the Java platform

• Connectivity to a network, often with a wireless connection and limited bandwidth

(often 9600 bps or less)

• Low power consumption, often battery power is used

The CLDC defines the minimum required complement of Java technology components and

libraries for small connected devices. Primary topics focused by this specification are:

• Java language and virtual machine features

• Core Java libraries (java.lang.*, java.util.*)

• Input/output

• Networking

• Security

• Internationalization

This CLDC Specification shall not address the following features:

• Application life-cycle management (application installation, launching, deletion)

• User interface functionality

• Event handling

• High-level application model (the interaction between the user and the application)

Those mentioned features are the job of the profile MIDP implemented on top of the CLDC.

Future CLDC versions might include other areas. To restrict the scope of CLDC in order not to

exceed the strict memory limitations it could be also possible later to exclude any particular

device category[RIGGS].

Samya Chahin SIP UA for Mobile Devices

Page 23 of 85

Figure 3.3 General J2ME Architecture

The general architecture of a typical CLDC device is shown in Figure 3.3. The heart of a CLDC

implementation is the Java Virtual Machine. The virtual machine typically runs on top of a host

OS. The JVM for this configuration is the KVM designed to use few memory suitable for

limited devices. The „K“ from KVM stands for Kilo and expresses that few memory is used.

On top of the virtual machine resides the Java libraries. These libraries are divided into two

categories, those defined by the CLDC and those defined by profiles.

As mentioned the CLDC includes Java classes and Java applications are possible to be written

with this configuration and as all Java applications a single entry point for the application

should exists which is the main function used by the Virtual Machine:

public static void main(String[] args)

3.3.1.1 Restrictions of CLDC

In the CLDC there are the following restrictions:

1. No floating point support: The KVM doesn’t support floating points. Floating point

support was removed because the most of CLDC target devices do not have hardware

floating point support, and since the cost of supporting floating point in software was

considered too high. This is valid for the CLDC version 1.0. In version 1.1 floating

points are included, because cellular phones are getting more powerful but few or even

still no mobiles have this version preinstalled. For this Master Thesis version 1.0 was

used.

2. No Java Native Interface (JNI): It is not possible to use libraries from other

programming languages. A JVM supporting CLDC does not implement the JNI. The

way in which the virtual machine invokes native functionality is implementation

dependent. Support for JNI was eliminated mainly because of two reasons:

1) the limited security model provided by CLDC assumes that the set of native

functions must be closed .

2) the full implementation of JNI was considered too expensive given the strict memory

constraints of CLDC target devices.

3. No user defined class loader: The application can not influence the order the classees

could be loaded. The JVM can only load the classes in a specific order.

4. No reflections: Reflection means allowing a Java program to inspect the number and

the contents of classes, objects, methods, fields, threads, execution stacks and other

Profiles

CLDC Libraries

JVM

Host OS

Samya Chahin SIP UA for Mobile Devices

Page 24 of 85

runtime structures inside the virtual machine. Consequently, a JVM supporting CLDC

also does not support Remote Method Invocation (RMI), object serialization, or any

other advanced features of J2SE that depends on the presence of reflective capabilities.

5. No thread-groups or dameon-threads: Only simple threads are allowed

6. No serialisation of objects

7. No finalization method: Before an object is garbage collected, the Java runtime

system gives the object a chance to clean up after itself. This step is known as

finalization and is achieved through a call to the object's finalize method.

8. Weak references: A JVM supporting CLDC does not support weak references. A

weak reference is one that does not prevent the referenced object from being garbage

collected and is a reference that does not keep the object it refers to alive. It is not

counted as a reference in garbage collection. If the object is not referred to elsewhere as

well, it will be garbage collected.

3.3.1.2 Class file verification

The VM goes through a process known as byte-code verification whenever it loads an

untrusted class. This process ensures that the byte codes of a class are all valid; that the code

never underflows or overflows the VM stack; that local variables are not used before they are

initialized; that field, method, and class access control modifiers are respected; and so on. The

verification step is designed to prevent the VM from executing byte codes that might crash it or

put it into an undefined and untested state where it might be vulnerable to other attacks by

malicious code. Byte-code verification is a defense against malicious hand-crafted Java byte

codes and untrusted Java compilers that might output invalid byte codes[OR].

A more compact and efficient verification solution has been specified for a typical CLDC

target device because the static and dynamic memory footprint of the standard Java classfile

verifier was too excessive.

The new classfile verifier operates in two phases, pre-verification and in-device verification.

Pre-verification generally takes place off-device, e.g., on a server machine from which Java

applications are being downloaded, or on the development workstation where new applications

are being developed. In-device verification is carried out inside the device containing the

virtual machine. The in-device verifier utilizes the information generated by the

pre-verification tool.

3.3.1.3 CLDC Libraries

In CLDC, some classes are taken from the J2SE. Those resides in the packages java.io,

java.lang and java.util. Due to the CLDC restrictions, those classes were changed or parts have

been taken out. Additionaly, there exists classes in the Generic Connection Framework (GCF)

as shown in Figure 3.4. This is a collection of classes with which connections as sockets or

HTTP-requests could be implemented in an abstract manner. In J2SE, some of the classes are

in the java.io- and java.net-Packages. The GCF does not implement any protocol. The

protocols are defined either at profile level or in the end device. Consequently, it is possible

that some mobile phones do not support all of the protocols.

Connection

DatagramConnection InputConnection OutputConnection StreamConnectionNotifier

Samya Chahin SIP UA for Mobile Devices

Page 25 of 85

Figure 3.4 The CLDC Generic Connection Framework (GCF)

In Table 3.1, I illustrate the classes included in the CLDC. It consists of the following

packages: java.io, which contains the classes responsible for input and output mainly through

data streams, java.lang a subset of the J2SE package which holds the basic classes for the Java

programming language, the java.util package, which holds some useful classes for the

collection frameworks and the date and time conversion functions. Finally, the

javax.microedition.io contains the classes for the GCF responsible for the network

connections.

System classes

(java.lang)

Object, Class, Runtime, System, Thread, Runnable (interface),

String, StringBuffer, Throwable

Data type classes

(java.lang)

Boolean, Byte,.Short, Integer, Long, Character

Collection classes

(java.util)

Vector, Stack,Hashtable,Enumeration (interface)

Input/ Output classes

(java.io)

InputStream, OutputStream, ByteArrayInputStream,

ByteArrayOutputStream, DataInput(interface), DataOutput

(interface), DataInputStream, DataOutputStream, Reader, Writer,

InputStreamReader, OutputStreamWriter, PrintStream

Calender and Time classes

(java.util)

Calendar, Date, TimeZone

Utility classes

(java.util and java.lang)

Random, Math

Samya Chahin SIP UA for Mobile Devices

Page 26 of 85

Exception classes

(java.lang, java.io and

java.util)

Exception, ClassNotFoundException, IllegalAccessException,

InstantiationException, InterruptedException, RuntimeException,

ArithmeticException, ArrayStoreException, ClassCastException,

IllegalArgumentException, IllegalThreadStateException,

NumberFormatException, IllegalMonitorStateException,

IndexOutOfBoundsException,

ArrayIndexOutOfBoundsException,

StringIndexOutOfBoundsException, NegativeArraySizeException,

NullPointerException, SecurityException, EmptyStackException,

NoSuchElementException, EOFException, IOException,

InterruptedIOException, UnsupportedEncodingException,

UTFDataFormatException

Error classes

(java.lang)

Error, VirtualMachineError, OutOfMemoryError

GCF classes and

interfaces

(javax.microedition.io)

Connection, ConnectionNotFoundException, Connector,

ContentConnection, Datagram, DatagramConnection,

InputConnection, OutputConnection, StreamConnection,

StreamConnectionNotifierConnection, DatagramConnectio,

InputConnection, OutputConnectionStream, ConnectionNotifier

Table 3.1 Classes contained in the CLDC

3.3.2 Connected Device Configuration

CDC is the Connected Device Configuration and the typical configuration for PDAs and other

devices with the following characteristic:

• 32 oder 64 bit-CPU

• At least 2 MB memory for Java

• Access to a network

The CDC contains nearly all of the J2SE classes and works with the normal JVM. Therefore,

the CDC contains all functionalities, classes and interfaces of CLDC. There is only one profile

available for CDC, which is called Foundation Profile. In this thesis I will not go into detail

about this configuration, because for the current generation of mobile phones the CDC plays a

minor role.

Samya Chahin SIP UA for Mobile Devices

Page 27 of 85

3.4 Profile Layer

3.4.1 Mobile Information Device Profile

Figure 3.5 High level architecture of MIDP

The MIDP is the Mobile Information Device Profile and is built to operate on top of the CLDC.

Usually, this profile is used by cellular phones, two-way pagers, and wireless-enabled personal

digital assistants (PDAs) [MIDP]. It consists of a limit set of APIs, addressing only functional

areas that were considered absolute requirements to achieve broad portability and successful

deployments. These include:

• Application delivery

• Application lifecycle (semantics of a MIDP application and how it is

controlled)

• Application signing model and privileged domains security model

• End-to-end transactional security (HTTP Security)

• MIDlet push registration (server push model)

• Networking

• Persistent storage

• Sound

• Timers

• User interface (UI) (including display and input, as well as the unique

requirements for games).

Following aspects are outside the scope of MIDP:

• System-level APIs:

The goal for MIDP APIs is to enable application programming, rather than

enabling system programming. Thus, low-level APIs are beyond the scope of

this specification. Therefore, power management or voice codecs are not

included in MIDP APIs.

MIDP

CLDC

JVM

Host OS

MIDP Applications

Samya Chahin SIP UA for Mobile Devices

Page 28 of 85

• Low-level security:

The MIDP specifies no additional low-level security features other than those

provided by the CLDC.

The Profile requires the following charcteristics in the end devices:

• The KVM must run in its own thread in the operating System in the end device

• Persistant memory access to access the network interface of the wireless.

• The MIDlet lifecycle (installation, choice, start, close and delete) must be managed by

an application management software in the device. The exact procedure is not

mentioned in the MIDP.

More charcteristics are shown in Table 3.2.

Display Screen-size: 96x54, Display depth: 1-bit, Pixel shape (aspect ratio):

approximately 1:1

Input One or more of the following user-input mechanisms: one-handed keyboard,

two-handed keyboard, or touch screen

Memory 256 kilobytes of non-volatile memory for the MIDP implementation and 8

kilobytes of non-volatile memory for application-created persistent data, 128

kilobytes of volatile memory for the Java runtime (e.g., the Java heap)

Networking Two-way, wireless network support with limited bandwidth

Sound The ability to play tones, either via dedicated hardware, or via software

algorithm.

Table 3.2 MIDP Profile Characteristic

3.4.2 MIDlets and Lifecycle of MIDlets

A J2ME Application is called MIDlet, if it is build upon the MIDP. Like applets, MIDlets are

managed in an execution environment that is slightly different from that of a Java application.

The initial entry point to a MIDlet is not the main method, and the MIDlet is not allowed to tear

down the JVM.

One way to easily build a Midlet is to use the Ktoolbar which is included in the WirelessToolkit

of SUN Microsystems. It builds the Midlet automatically instead of writing all parts from

scratch. In the practical part of my Master Thesis, I have used the WirelessToolkit which I will

explain in more detail later.

The MIDlet must extend the javax.microedition.midlet.MIDlet class. The MIDP platform

involves methods of the MIDlet to control the MIDlet's lifecycles. Additionally, MIDlet itself

can request a change in its state. Listing 3.1 shows how a Midlet looks like.

Samya Chahin SIP UA for Mobile Devices

Page 29 of 85

public class MyMIDlet extends MIDlet {

 // Optional constructor

 MyMIDlet() {

 }

 protected void startApp() throws MIDletStateChangedException {

 }

 protected void pauseApp() {

 }

 protected void destroyApp(boolean unconditional)

 throws MIDletStateChangedException {

 }

}

Listing 3.1 MIDlet Code

The Application Management Software (AMS) is the environment in which a MIDlet is

installed, started, stopped and uninstalled. The AMS is also sometimes called the Java

Application Manager (JAM). The AMS creates each new MIDlet instance, and controls its

state by directing a MIDlet to start, pause or destroy itself.

MIDlets are at any given time in one of three states: Paused, Active, or Destroyed. The state

diagram in Figure 3.6 shows how these states are related and the legal state transitions.

Figure 3.6 The lifecycle of a MIDlet.

When a MIDlet is instanciated it is in the Pause state. If an Exception occurs the status is

changed to Destroyed. The MIDlet changes it status to Active through the call of the method

startApp(). By calling the method destroyApp (boolean unconditional), the MIDlet is stopped

by enforcement. The parameter set to false will lead to a MIDletStateChangeException. If the

MIDlet handles this excpetion it will not change its status to Destroyed by enforcement.

Start

End

Paused

Destroyed

Active

new

pauseApp() startApp()

destroyApp()

destroyApp()

If exception is thrown

Samya Chahin SIP UA for Mobile Devices

Page 30 of 85

The developers mainly concentrate on what the MIDlet has to do in the Active state and to write

the code needed to let the MIDlet change into the Paused or Destroyed state. It is possible to

collect a group of related MIDlets into a MIDlet suite. All of the MIDlets in a suite are

packaged and installed onto a device as a single entity, and they can be uninstalled and

removed only as a group. The MIDlets in a suite share, both static and runtime resources of

their host environment. The Midlet application is ready to be deployed on a mobile phone when

it went through different steps of development, which are shown in Figure 3.7.

Figure 3.7 The MIDlet development process

First, the developer has to write the MIDlet code and then compile it using the J2SE which uses

the J2ME/MIDP package as its bootclasspath and generates the .class files, also called

bytecode of the application.

javac -bootclasspath \lib\midpapi.zip –d .\tmpclasses –classpath .\tmpclasses .\src*.java

Listing 3.2 Compile command

The source files of Listing 3.1 are compiled in the src directory and then saved into the

tmpclasses directory. Listing 3.1 illustrates this compilation procedure.

Obfuscation, which is an operation to compress the files, is used after that to hold the size of

files as small as possible. Listing 3.3 and Listing 3.4 show the Code before and after

obfuscation.

Java –

Source code
Compiling Preverify JAR- File JAD- File

Manifest

1. The developer

produces MIDlet

code

2. The compiler

compiles source

code

3. The JVM

performs a

preverify process

that the Mobile

Information

Device (MID) uses

only minimal

resources

5.All compiled

classes with the

images and Manifest

file are put together

into the JAR file

6.The Java

Application

Descriptor (JAD) file

will be together with

the JAR file installed

on the MID.

4. The Manifest File

contains all

important

information for using

the

configuration/profile

of the MIDlets

Samya Chahin SIP UA for Mobile Devices

Page 31 of 85

public class Test {

private String testname;

public String getTestname() {

return testname;

}

public void setTestname (String newname) {

testname = newname;

}

}

Listing 3.3 Code before obfuscation

The Obfuscator would change the code as follows:

public class a

{

private String a;

public String a() { return a; }

public void b(String b) { a = b; }

}

Listing 3.4 Code after obfuscation

The next step is to verify the bytecode. The bytecode verification process guarantees that an

application cannot access memory spaces or use resources outside of its domain. Bytecode

verification also prevents an application from overloading the Java language core libraries, a

method that could be used to bypass other application-level security measures.

Due to the high computational overhead of this operation, however, MIDP JVMs do not

perform complete bytecode verification at runtime. Instead, the application developer must

preverify the classes on a development platform or staging area before deploying the

application into mobile devices. The pre-verification process optimizes the execution flows,

creates stackmaps containing catalogs of instructions in the application, and then adds the

stackmaps to the pre-verified class files. At runtime, the MIDP JVM does a quick linear scan of

the bytecode, matching each valid instruction with a proper stackmap entry. Listing 3.5

illustrates this step.

Preverify -classpath \lib\midpapi.zip; .\tmpclasses -d .\classes .\tmpclasses

Listing 3.5 Preverify command

The preferified classes will be copied to the classes directory. The preferified classes are

collected together with the Manifest file, which holds important information about the

configuration version, profile version of the MIDlet, MIDlets name, version and vendor into a

JAR file. Listing 3.6 shows an example of a Manifest file

Samya Chahin SIP UA for Mobile Devices

Page 32 of 85

MIDlet-1: test, , test.sipua.Test

MIDlet-Name: SIPUA

MIDlet-Vendor: Unknown

MIDlet-Version: 1.0

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-2.0

Listing 3.6 Example of a Manifest file

The command to construct the JAR file is illustrated in Listing 3.7.

jar cmf Manifest.MF sipua.jar -c .\classes

Listing 3.7 Command to construct JAR files

At the end, there is a JAD file which holds information from the Manifest file and the size of

JAR file,. An example pf a JAD file is shown in Listing 3.8.

MIDlet-1: test, , test.sipua.Test

MIDlet-Jar-Size: 100

MIDlet-Jar-URL: SIPUA.jar

MIDlet-Name: SIPUA

MIDlet-Vendor: Unknown

MIDlet-Version: 1.0

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-2.0

Listing 3.8 Example of a JAD file

The JAR file together with the JAD file are deployed on the Mobile Information Device (MID).

They are called Midlet Suite. Figure 3.8 shows two ways for deploying a MIDlet on a mobile

phone.

Figure 3.8 Deploying a MIDlet on a mobile phone

GSM Network

This server

hosts the

Midlet

Path 2:

Download via

WAP (Over

The Air)

Path 1:

Download

the MIDlet

to the PC

Transmission to

the mobile phone

PC

Mobile

Phone

Internet
1a

1b

1c

2a 2b

2c

Over the air

(OTA)

Samya Chahin SIP UA for Mobile Devices

Page 33 of 85

There are two ways to install a MIDlet on a mobile phone. The first way is by a direct

connection from a PC to the end device (path 1) and the second through a Wireless Markup

Language (WML) site from Over The Air (OTA) or.

3.4.3 MIDP User Interface APIs

The MIDP User Interface (UI) consists of two types of APIs. One is the high-level and the

other the low-level API. The low-level API is based on use of the abstract class Canvas. The

high-level API’s classes as Alert, Form, List and TextBox are extensions of the abstract class

Screen. The high-level API classes are designed to provide abstractions and components that

are highly portable, as the actual implementation takes care of aspects such as drawing, font

characteristics, navigation and scrolling. The particular device’s implementation of these

classes performs the adaptation to its hardware and native UI look-and-feel.

The low-level API’s Canvas class allows applications to have more direct control of the UI. It

allows greater control of what is drawn on the display, and receiving low-level keyboard

events. It is the application programmer’s responsibility to ensure portability across MIDs with

different characteristics (e.g. display size, colour vs. black-and-white and different keyboard

types).

Figure 3.9 MIDP User Interface class hierarchy

3.4.4 Networking

One of the important aspects in J2ME is the network connectivity. Many advantages to the

mobile phone adds the network capability. They allow to get use of the powerful network

resources and to be able to make Internet connections. Most important is the capability to

access networks wirelessly.

J2ME networking was designed to address the different needs of a wide spectrum of mobile

devices. At the same time, the networking system must be device specific. To meet these

needs, the concept of a Generic Connection Framework (GCF) was introduced as mentioned

before. The idea of the GCF is to define the abstractions that cover the general aspects of

networking and file Input/Output (I/O) in the form of Java interfaces.

Section 3.1 illustrates the available connection classes in the GCF. In this section I want to give

an overview of the meaning about the different classes as shown in Table 3.2. This includes

Samya Chahin SIP UA for Mobile Devices

Page 34 of 85

connections can be set up.

GCF Interface Purpose

Connection

The most basic class for connections in the GCF. All other

connection types extend Connection.

ContentConnection

Manages a connection, such as Hypertest Transfer Protocol

(HTTP), for passing content, such as Hypertext Markup Language

(HTML) or Extenible Markup Language (XML). provides basic

methods for inspecting the content length, encoding and type of

content.

Datagram

Acts as a container for the data passed on a DatagraConnection.

DatagramConnection

Manages a DatagramConnection.

InputConnection

Manages an input stream-based Connection.

OutputConnection

Manages an output stream-based Connection.

StreamConnection

Manages the capabilities of a stream. Combines the methods of

both InputConnection and OutputConnection.

StreamConnectionNotifier

Listens to a specific port and creates a StreamConnection as soon

as activity on the port is detected.

Table 3.3 Generic Connection Framework classes and their purpose

The Connector class is used to create instances of a connection protocol using one of

Connector’s static methods. The Connector defines three variations of an open() method that

return a Connection instance. One method takes as an parameter a String which is a Unified

Resource Identifier (URI) and is composed of three parts: a scheme, an address, and a

parameter list. The general form of the name parameter is as illustrated in Listing 3.9.

<scheme>:<address>;<parameters>

Listing 3.9 General form of a name parameter

The scheme identifies the protocol of the connection, for example http, file, datagram or others.

The address part identifies to connect to : www.domain.org or file.txt and the resource

parameters identify other information that is required by the protocol to establish a connection

such as the connection speed. The parameters are specified as name=value pairs , when

needed. Some examples of the name URI are shown .

• http://www.google.com:8080

• socket://localhost:8080

• file:c:/filename.txt

• datagram://127.0.0.1:8099

• comm:0;baudrate=9600

Samya Chahin SIP UA for Mobile Devices

Page 35 of 85

When the URI is passed to the Connector.open() method, the Connector parses the URI into its

various parts , <scheme>:<address>;<parameters>.

The scheme, in combination with other information such as the root package name and a

platform identifier, allows the Connector to determine the right Connection implementation to

create.

Low level IP networking, which includes sockets (defined by

javax.microedition.io.StreamConnectionNotifier) for client server communication, datagram

(defined by javax.microedition.io.DatagramConnection), serial port, and file I/O

communication. Socket-based communication belongs to the connection-oriented TCP/IP

protocol. Datagram-based communication belongs to the connectionless UDP/IP protocol.

UDP provides a way for applications to send encapsulated raw IP datagrams without having to

develop a connection. Unlike the connection-oriented protocol, which requires source and

destination addresses, the datagram only requires a destination address. It is possible to handle

file I/O and allowing a MIDlet to register for network access to a local serial port.

Secure networking in J2ME involves additional interfaces available for secure communication.

Secure interfaces are supported by HTTPS and Secure Socket Layer /Transport Layer Security

(SSL/TLS) over the IP network.

The communication between a mobile device and a web server is based on the HTTP

(Hypertext Transfer Protocol) and defined by the javax.microedition.io.HttpConnection class.

HTTP is a connection-oriented request-response protocol in which the parameters of the

request must be set before the request is sent.

Here are some examples of making different connections:

For HTTP-based communication:

Connection conn = Connector.open("http://www.yahoo.com");

For stream-based socket communication:

Connection conn = Connector.open("socket://localhost:9000");

For datagram-based socket communication:

Connection conn = Connector.open("datagram://:9000");

For serial port communication

Connection conn = Connector.open("comm:0;baudrate=9000");

For invoking file I/O communication

Connection conn = Connector.open("file://myfile.dat");

The Connector.open() method also accepts the access mode (values READ, WRITE, and

READ_WRITE), and a flag to indicate that the caller wants a timeout notification.

Samya Chahin SIP UA for Mobile Devices

Page 36 of 85

• open(String name)

• open(String name, int mode)

• open(String name, int mode, boolean timeouts)

In secured networking, an HttpsConnection is returned from Connector.open() when an https://

connection string is accessed. A SecureConnection is returned from Connector.open() when an

ssl:// connection string is accessed.

No matter what type of URL is used, invoking Connector.open() opens an input stream of

bytes from the Connection to the java.io.InputStream. This method is used to read every

character until the end of the file (marked by a -1). If an exception is thrown, the JVM closes

the connection and streams [IBMNETW].

Samya Chahin SIP UA for Mobile Devices

Page 37 of 85

3.5 The Wireless Toolkit

There are many different tools for developing mobile applications. One of them is the Wireless

Toolkit from SUN Microsystems. The Wireless Toolkit (WTK) for J2ME developers offers a

way to construct MIDlets automatically. Moreover, it includes an emulator where it is possible

to test MIDlets.

To illustrate this, an example of a HelloWorld MIDlet is shown in Listing 3.10:

// Import of the needed packages

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class HelloWorld extends MIDlet implements CommandListener {

// Screen und Command-Objekt

private Form myScreen;

private Command EXIT_CMD = new Command("Exit", Command.EXIT, 1);

// Methods invoked at start from the MIDlets

protected void startApp() {

myScreen = new Form("MIDlet-Titel");

myScreen.addCommand(EXIT_CMD);

myScreen.setCommandListener(this);

myScreen.append("Hello World!");

Display.getDisplay(this).setCurrent(myScreen);

}

// Methods invoked when status changed to pause

protected void pauseApp() {}

// Methods invoked at end of the application

protected void destroyApp(boolean unconditional) {}

// Methods for the CommandListener-Interface

public void commandAction(Command c, Displayable d) {

if (c == EXIT_CMD) {

destroyApp(true);

notifyDestroyed();

}

}

}

Listing 3.10 HelloWorld-MIDlet

The abstract methods startApp(), pauseApp() and destroyApp() are inherited from the MIDlet

class. Therefore they must be implemented in the HelloWorld class. At start of the MIDlet the

method startApp() is invoked. This method constructs the Form and adds a text to it. After that,

Samya Chahin SIP UA for Mobile Devices

Page 38 of 85

the static method Display.getDisplay() calls the Display-Object of the MIDlets. The screen

object is set to the current screen and painted by calling the method setCurrent(). The method

commandAction() is a method of the CommandListener Interface that needs to be implemented

in the HelloWorld class. This method is invoked when for example a button is pressed.

At this moment, the current screen and the pressed button are imput parameters for the method.

The Command object EXIT_CMD is the button needed to terminate a Midlet. At start of the

Ktoolbar, the subsequent window is shown. In this window, a „New Project“ can be chosen to

create a new project. We will create the project „HelloWorld“ as illustrated in Figure 3.10.

Figure 3.10 Ktoolbar from the Wireless Toolkit of SUN Microsystems

After pressing on the „Create Project“ button, a window pops up. It allows tp provide

information about the MIDlet like MIDP and CLDC packages versions. This depends, on the

end device, on which the application should run. The UI for this configuration process is shown

in Figure 3.11.

Samya Chahin SIP UA for Mobile Devices

Page 39 of 85

Figure 3.11 Project Configuration

Those data are saved in the Manifest.MF file and in the HelloWorld.jad in the bin directory.

By creating the project, a new directory with the project name is created under

WTKHOME\apps\. In this project directory there are four other directories which are: bin, lib,

res und src. Table 3.4 gives an overview about the WTK directories.

Directory Description

bin KToolbar saves the Manifest.MF, JAD and JAR files in this directories

lib This directory contains external libaries for the application

res All pictures and icons should be placed here so that Ktoolbar can include it to

the Java Archive (JAR)

src This directory holds the source code

classes Here the preverified classes are placed by the KToolbar

tmpclasses

KToolbar saves the compiled classes, which are still not preverified, in this

directory

tmplib This directory is used for library compilations

Table 3.4: Directories in each WTK project

Now we can build our source code. The compiled code will be automatically preverified and

packed into a Hello-World.jar archiv. After this step finished, it is possible test and execute the

MIDlet.

When pressing „Run“ in the Ktoolbar the left hand side of Figure 3.12 is shown. Launching the

MIDlet, it shows the expected “HelloWorld!” text.

Figure 3.12 MIDlet example running in the emulator of the KToolbar

There are nowadays different higher-larger APIs from hardware vendors which are very useful.

On the website of SUN, those APIs could be found and used for mobile application

development. The following enumeration lists the most important representatives:

Samya Chahin SIP UA for Mobile Devices

Page 41 of 85

• Mobile Media API for playing video, sound, and other media, I used this package in

this master thesis for voice capturing and play back.

• Wireless Messaging API which provides platform independent access to wireless

communication resources like Short Message Service (SMS).

• Bluetooth API for communication with other bluetooth devices

• Java Speech API for incorporate speech technology into user interfaces for

applications. It supports command and control recognizers, dictation systems and

speech synthesizers.

• Mobile Game API for game development.

• Mobile 3D Graphics API for displaying 3D objects

• Location API for location based services

3.6 Critical Factor for Application Development

During development of Java applications for J2ME, different kind of problems arise because of

the different end devices. Those problems are the missing support of double operations, few

memory, slow transfere rates, slow CPU, and the missing possibility to serialise objects. A

developer must be in complete awareness of that and applications running in an emulator could

also fail to run in a real mobile phone at the end.

A real success is after testing it on different kind of mobile phones or just designing an

application for certain series of mobile phones and testing it for that group on a real mobile

phone which could be very expensive.

Samya Chahin SIP UA for Mobile Devices

Page 42 of 85

4 Session Initiation Protocol

This section describes the Session Initiation Protocol (SIP) [RFC3261], its functionality and

importance. SIP is so important mainly because of its mobility support. Types of mobility are

device or terminal mobility, user mobility and finally service mobility. Terminal mobility

allows the device to change its IP subnet and to be still reachable (e.g a redirect). Session

mobility allows a user to have the same session although changing the end device. Personal

mobility allows the user to be reachable on the same logical address on many devices. Finally,

the Service mobility allows the user to enter to his services by changing its network or his end

device.

This section goes mainly through different SIP scenarios, the SIP Messages, SIP Header fields,

explains the SIP User Agent components, the Session Description Protocol (SDP) and finally

some Java API for SIP for mobile devices.

4.1 What is SIP?

The SIP protocol is initially standardized by the Internet Engineering Task Force (IETF)

Multiparty Multimedia Session Control (MMUSIC) Working Group. It is an application-layer

signaling control protocol that sets up real-time multimedia sessions between groups of

participants and manages the creation, modification and termination of those sessions over

packet-based networks. A set of compatible media types used in the sessions are included by

the sessions in the session description part.

A main advantage of SIP is the mobility of the participants by proxying and redirecting

requests to the user's current location. The exact current location is known by the registration of

each user’s current location to a registrar server.

The sessions could include multimedia conferences, distance learning, Internet telephony and

similar applications.

To provide complete service to a mobile user, SIP should be used in conjunction with other

protocols. The Real-time Transport Protocol (RTP) and the Session Description Protol (SDP)

are used in the implementation of the SIP User Agent for a mobile device although other

protocols could have been used. An example which is usually used in conjuction is the Real-

time Transport Control Protocol (RTCP). In this work, it has not been used, due to the limited

capability of the mobile devices.

In this thesis, I will focus on SIP's capabilities for real time audio calls between two mobiles,

and how it sets up calls that then use RTP to actually send the voice data between mobiles. This

application could also send Instant Messages. Therefore, SIP provides two modes. One of them

is the Pager Mode, like sending SMS, and the other one is the Session Mode, that behaves like

a chat application.

Figure 4.1 shows the network layers and were the SIP signaling is located in those layers.

Samya Chahin SIP UA for Mobile Devices

Page 43 of 85

SIP

UDP TCP

IP

Data Link Layer

Physical Layer

Figure 4.1 Session Initiation Protocol Stack

In IP, there are two different phases of a voice call. The first phase is called the "call setup," and

includes all of the details needed to connect two telephones. Once the call has been setup, the

phones enter a "data transfer" phase of the call using different protocols to actually move the

voice packets between the two phones.

SIP is a very flexible protocol and is designed to be independent of the lower-layer transport

protocol. For example, in addition to simple telephone calls, SIP can also be used to set up

video and audio multicast meetings, or instant messaging conferences. SIP does more than just

handle call setup. The subsequent Table 4.1 shows the five major functions of SIP.

 Function Description

User location determination of the end system to be used for communication

User capabilities determination of the media and media parameters to be used.

User availability determination of the willingness of the called party to engage in

communications.

Call setup "ringing", establishment of the call at both, called and calling

party.

Call handling including transfer and termination of calls.

Table 4.1: Functionality of SIP

SIP can run over IPv4 [RFC2794] and IPv6 [RFC1924] and it can use either TCP or UDP. The

most common implementations use IPv4 and UDP. This minimizes the overhead and therefore

it performs best.

SIP devices can talk directly to each other but generally SIP traffic passes intermediary

network components like SIP proxies. These SIP proxies only handles the signalling messages

but once the call is set up, the multimedia data (voice data) packets are sent directly between

the SIP terminals without passing a proxy.

Recent mobile devices used to have their own telephone number. In SIP, an end station (caller

or callee) is identified by a unique SIP Uniform Resource Identifier (URI) . These URIs are

used in the SIP protocol. They have a similar form to an email address, typically containing a

username and a host name.

Samya Chahin SIP UA for Mobile Devices

Page 44 of 85

4.2 Call Flow Examples

Now I explain different call flow examples. I start with a basic example without and with SIP

proxy, then I will give a SIP registration example and finally I will describe SIP operation

using a redirect server.

4.2.1 Basic Session Establishment

The subsequent simple example explains the basic SIP operation. A SIP message exchange

between two users, Samya and Klaus shows Figure 4.2.

Figure 4.2: Basic SIP session setup

Samya uses a SIP application to call Klaus on his SIP aware mobile phone. Samya calls Klaus

using his SIP URI identity. It is sip: Klaus@ikn.tuwien.ac.at, where ikn.tuwien.ac.at is the

domain of Klaus's SIP service provider. Samya has a SIP URI of sip: Samya@hotmail.com.

Samya starts by sending an INVITE request with Klaus's SIP URI. INVITE is an example of a

SIP method. SIP is mainly based on requests and responses. Klaus's SIP mobile receives the

INVITE and alerts Klaus about the incoming call from Samya so that Klaus can decide whether

to answer the call. Klaus's SIP mobile indicates this in a 180 (Ringing) response. When

Samya's mobile receives the 180 (Ringing) response, it passes this information to Samya,

perhaps using an audio ringback tone or by displaying a message on Samya's screen.

Samya Chahin SIP UA for Mobile Devices

Page 45 of 85

As in the figure 4.2, Klaus decides to answer the call. By doing this, his SIP mobile sends a 200

(OK) response to indicate that the call has bee. The 200 (OK) contains a message body with the

SDP media description of the type of session that Klaus is willing to establish with Samya. As

a result, there is a two-phase exchange of SDP messages: Samya sent one to Klaus, and Klaus

sent one back to Samya. This two-phase exchange provides basic negotiation capabilities and

is based on a simple offer/answer model of SDP exchange. If Klaus did not wish to answer the

call or was busy on another call, an error response would have been sent instead of the 200

(OK), which would have resulted in no media session being established.

Finally, Samya's SIP software on the mobile sends an acknowledgement message, ACK, to

Klaus's SIP mobile to confirm the reception of the final 200 (OK) response. In this example, the

ACK is sent directly from Samya's mobile to Klaus's SIP mobile.

Samya and Klaus's media session has been estabilished successfully. Therefore, they send

media packets using the format to which they agreed in the exchange of SDP. In general, the

end-to-end media packets take a different path than the SIP signaling messages. At the end of

the call, Klaus disconnects first and generates a BYE message. This BYE is routed directly to

Samya's mobile. Samya confirms the receipt of the BYE with a 200 (OK) response, which

terminates the session and the BYE transaction. No ACK is sent - an ACK is only sent in

response to a response to an INVITE request.

4.2.2 SIP Registration

This registration example learns about the location of the user with address

klaus@ikn.tuwien.ac.at and binds this address to user’s location to which he wants the requests

to go which is 195.37.78.173.

Figure 4.3: Registration scenario

As shown in Figure 4.3, for registration the following steps have to be done:

1) First the User Agent has to send the required data which are From, To, Contact,

Expires fields with the “REGISTER” SIP method, to the SIP registrar server as shown

in Listing 4.1.

Samya Chahin SIP UA for Mobile Devices

Page 46 of 85

REGISTER sip:ikn.tuwien.ac.at SIP/2.0

From: sip:klaus@ikn.tuwien.ac.at

To: sip:klaus@ikn.tuwien.ac

Contact: <sip:195.37.78.173>

Expires: 3600

Listing 4.1 SIP REGISTER request

2) This server sends the important information to the Location Server to save that

klaus@ikn.tuwien.ac.at will be found at address 195.37.78.173.

3) After successfully saving this data the registrar server sends a SIP 200 OK response

back to the User Agent of Klaus. Listing 4.2 illustrates a successful response.

SIP/2.0 200 OK

To:Klaus <sip:kaus@ikn.tuwien.ac.at>;tag=a6c85cf

From:Registrar <sip: registrar@ikn.tuwien.ac.at>;tag=1928301774

Expires: 3600

Listing 4.2 SIP succesful response

Now any request to klaus@ikn.tuwien.ac.at goes to a proxy server, which binds this name to its

current location and the request will be forwarded to the current right location of Klaus. Klaus

has always to send a register request in case his current location changes or expiration of

registration has reached. Otherwise, future requests will not reach him.

4.2.3 Simple Session Establishment with SIP Proxy Server

The subsequent simple example explains the basic SIP operation with proxies. A SIP message

exchange between two users, Samya and Klaus shows Figure 4.2 The proxies are mainly

responsible to forward the reuqsts to the appropriate terminal.

Samya Chahin SIP UA for Mobile Devices

Page 47 of 85

Figure 4.4: SIP session setup example with SIP proxy server

Samya uses a SIP application to call Klaus on his SIP aware mobile phone. There exist two SIP

proxy servers that facilitate the session establishment. Samya calls Klaus using his SIP URI. It

is sip:Klaus@ikn.tuwien.ac.at, where ikn.tuwien.ac.at is the domain of Klaus's SIP service

provider. Samya has a SIP URI of sip: Samya@hotmail.com.

Samya starts by sending an INVITE request with Klaus's SIP URI to the proxy server of her

domain. INVITE is an example of a SIP method. The hotmail.com SIP server is a type of SIP

server known as a proxy server. A proxy server receives SIP requests and forwards them. In

this example, the proxy server receives the INVITE request and sends a 100 (Trying) response

back to Samya. The 100 (Trying) response indicates that the INVITE has been received and that

the proxy is working to forward the INVITE to the destination. SIP is mainly based on requests

and responses.

The hotmail.com proxy server tries to find the proxy server at ikn.tuwien.ac.at, possibly by

Domain Name Service (DNS) lookup to find the SIP server that serves the ikn.tuwien.ac.at

domain. The result is that it gets the IP address of the ikn.tuwien.ac.at proxy server and

forwards, or proxies, the INVITE request to this IP address. The ikn.tuwien.ac.at proxy server

checks the location server where, Klaus is and forwards the request to his UA.

Klaus's SIP mobile receives the INVITE and alerts Klaus to the incoming call from Samya so

that Klaus can decide whether to answer the call. Klaus's SIP mobile indicates this in a 180

(Ringing) response, which is routed back through the two proxies in the reverse direction.

When Samya's mobile receives the 180 (Ringing) response, it passes this information to

Samya, perhaps using an audio ringback tone or by displaying a message on Samya's screen.

As shown from the figure, Klaus decides to answer the call. By doing this, his SIP mobile sends

a 200 (OK) response to indicate that the call has been answered. The 200 (OK) contains a

message body with the SDP media description of the type of session that Klaus is willing to

establish with Samya. As a result, there is a two-phase exchange of SDP messages: Samya sent

one to Klaus, and Klaus sent one back to Samya. This two-phase exchange provides basic

negotiation capabilities and is based on a simple offer/answer model of SDP exchange. If

Klaus did not wish to answer the call or was busy on another call, an error response would have

Samya Chahin SIP UA for Mobile Devices

Page 48 of 85

been sent instead of the 200 (OK), which would have resulted in no media session being

established.

Finally, Samya's SIP software on the mobile sends an acknowledgement message, ACK, to

Klaus's SIP mobile to confirm the reception of the final 200 (OK) response. In this example, the

ACK is sent directly from Samya's mobile to Klaus's SIP mobile, bypassing the two proxies.

This occurs because the endpoints have learned each other's address from the Contact header

fields through the INVITE/200 (OK) exchange, which was not known when the initial INVITE

was sent.

Samya and Klaus's media session has been estabilished successfully. Therefore, they send

media packets using the format to which they agreed in the exchange of SDP. In general, the

end-to-end media packets take a different path than the SIP signaling messages. At the end of

the call, Klaus disconnects first and generates a BYE message. This BYE is routed directly to

Samya's mobile, again bypassing the proxies. Samya confirms the receipt of the BYE with a

200 (OK) response, which terminates the session and the BYE transaction.

A registration occurs when a client needs to inform a proxy or redirect server of its location.

During this process, the client sends a REGISTER request to the registrar server and includes

the address (or addresses) at which it can be reached. Registration is another common operation

in SIP. In our example, it would be that the ikn.tuwien.ac.at server can learn the current

location of Klaus.

Upon initialization, and at periodic intervals, Klaus's SIP mobile sends REGISTER messages to

a server in the ikn.tuwien.ac.at domain known as a SIP registrar. The REGISTER messages

associate Klaus's SIP URI (sip:Klaus@ikn.tuwien.ac.at) with the terminal where he currently

resides in (conveyed as a SIP URI in the Contact header field).

The registrar writes this association, also called a binding, to a database, called the location

service, where it can be used by the proxy in the ikn.tuwien.ac.at domain. Often, a registrar

server for a domain is co-located with the proxy for that domain. It is an important concept that

the distinction between types of SIP servers is logical, not physical.

Klaus is not limited to registering from a single device. For example, both, his SIP mobile at

home and the one in the office, could send registrations. This information is stored together in

the location service and allows a proxy to perform various types of searches to locate Klaus.

Similarly, more than one user can be registered on a single device at the same time.

Figure 4.5 shows another example of SIP operation in proxy mode. The condition to have

operation in proxy mode is that every User Agent has to tell the proxy (registrar) at which IP

address to be reached.

Samya Chahin SIP UA for Mobile Devices

Page 49 of 85

Figure 4.5: Proxy mode scenario

The detail of the messages will be explained in a subsequent section. In this section, I will just

focus on the establishment of a general call.

1. The User Agent sends a domain name server query request to get the IP address of the

proxy server of ikn.tuwien.ac.at.

2. The User Agent then sends an INVITE request to the proxy server. Listing 4.3 illustrates

the INVITE request.

INVITE sip:klaus@ikn.tuwien.ac.at

From: sip:Caller@sip.com

To: sip:klaus@ ikn.tuwien.ac.at

Call-ID: 345678@sip.com

Listing 4.3 SIP INVITE request

In this example caller, which can be found at sip.com wants to reach Klaus and does not

know his current location, so he sends the request to the proxy, which is responsible for

ikn.tuwien.ac.at.

3. The SIP proxy server asks the location server on which IP address Klaus could be

reached.

4. The loacation server sends the IP address to reach Klaus to the SIP proxy server.

5. Now, the Proxy is able to forward the INVITE request. This is illustrated in Listing 4.4.

Samya Chahin SIP UA for Mobile Devices

Page 50 of 85

INVITE sip:klaus@195.37.78.173

From: sip:Caller@sip.com

To: sip:klaus@ikn.tuwien.ac.at

Call-ID: 345678@sip.com

Listing 4.4 SIP INVITE request

6. After Klaus got the request, he answers with a 200 OK message as illustrated in Listing

4.5.

SIP/2.0 200 OK

From: sip:Caller@sip.com

To: sip:klaus@ikn.tuwien.ac.at

Call-ID: 345678@sip.com

Listing 4.5 SIP 200 OK response

7. The SIP proxy server forwards this 200 OK message back to the caller.

SIP/2.0 200 OK

From: sip:Caller@sip.com

To: sip:klaus@ikn.tuwien.ac.at

Call-ID: 345678@sip.com

8. Now the Caller acknowledges that he got the 200 OK message by sending a ACK

request.

ACK sip:klaus@ikn.tuwien.ac.at

9. Starting from this moment, both end phones know the locations of each other and

exchange of data can start directly between them, where by the Caller is reached on

Caller@sip.com and Klaus is reached on klaus@195.37.78.173.

4.2.4 Call Establishment with SIP Redirect Server

In the subsequent Figure 4.6 a redirect example is shown.

Samya Chahin SIP UA for Mobile Devices

Page 51 of 85

Figure 4.6: Redirect Mode Scenario

1) In this example, Caller, which can be found at sip.com wants to reach

Callee@home.com and sends this request to the SIP redirect sewrver.The User

Agent sends an INVITE request to a SIP Server, which acts as redirect server.

2) The redirect server asks the location server, where the Callee can be reached.

3) The loacation server sends the answer, which means the current address of the

Callee to the redirect server.

4) Now the redirect server is able to send back the current address telling the Caller

that Callee has moved and indicates the new domain name.

5) After the Callee gets the request, he sends a new ACK request to the redirect server.

6) Now, the Caller can reach Callee at his current address sending an INVITE request.

7) The Callee answers with a 200 OK.

8) Finally, the Caller sends an ACK request at this moment, both terminals know the

location of each other and an exchange of data can start directly between them. The

Caller is reached on Caller@sip.com and the Callee is reached on

Callee@home.com.

Samya Chahin SIP UA for Mobile Devices

Page 52 of 85

4.3 SIP Messages

There are two types of SIP messages, requests and responses. Clients originate requests and

send them towards a server. Responses are the answers from a server to a client.

4.3.1 Requests

A User Agent can establish, modify or terminate a session using requests. Table 4.2 shows the

main SIP request methods.

Message Description

INVITE Indicates a user or service is being invited to participate in a call

session.

ACK Confirms that the client has received a final response to an

INVITE request

BYE Terminates a call and can be sent by either the caller or the callee.

CANCEL Cancels any pending searches but does not terminate a call that

has already been accepted.

OPTIONS Queries the capabilities of servers.

REGISTER Registers the address listed in the To header field with a SIP

server. Creates binding location.

Table 4.2: SIP request methods

4.3.2 Responses

Responses inform about the success of requests.There exist two different types of responses

and six response classes.The first response type is the provisional response (1xx class). A

provisional response shows the progress of the request. The second type is the final response to

terminate SIP transactions. Table 4.3 enumerates the SIP response types and gives some

examples.

Type Message Description

Provisional 1xx Informational Responses

• 100 Trying

• 180 Ringing (processed locally)

• 181 Call is Being Forwarded

Final 2xx Successful Responses

• 200 OK

Samya Chahin SIP UA for Mobile Devices

Page 53 of 85

3xx Redirection Responses

• 300 Multiple Choices

• 301 Moved Permanently

• 302 Moved Temporarily

4xx Client Failure Responses

• 400 Bad Request

• 401 Unauthorized

• 482 Loop Detected

• 486 Busy Here

5xx Server Failure Responses

• 500 Internal Server Error

6xx Global Failure Responses

• 600 Busy Everywhere

Table 4.3: SIP response classes

4.4 SIP Header Fields

Every SIP message consists of three main parts, which are the start line, header and the body.

The start line shows the type of a message. This could be either the request information or the

status code of the response. In case of a request, a request URI is included to indicate to whom

this user or service belongs. In case of a response, a status code and the realated text is shown.

Moreover, the Protocol version is included at this start line.

The header part is used to show information about the message. A header could contain more

than one line and some header fields could appear more than once.

The body contains information about session characteristics. This contains for example used

codecs for audio or video could be shown. Message bodies may exist in requests as well as in

responses. SDP or Multiple Internet Mail Extensions (MIME) are examples of body

types.Listing 4.1 shows an example of INVITE message.

Samya Chahin SIP UA for Mobile Devices

Page 54 of 85

 INVITE sip:klaus@ikn.tuwien.ac.at SIP/2.0

 Via: SIP/2.0/UDP test.hotmail.com;branch=z9hG4bK776asdhds

 Max-Forwards: 70

 To: Klaus <sip:klaus@ikn.tuwien.ac.at >

 From: Samya <sip:samya@hotmail.com>;tag=1928301774

 Call-ID: a84b4c76e66710@test.hotmail.com

 CSeq: 314159 INVITE

 Contact: <sip:samya@test.hotmail.com>

 Content-Type: application/sdp

 Content-Length: 142

 v=0

 o=UserA 2890844526 2890844526 IN IP4 here.com

 s=Session SDP

 c=IN IP4 100.101.102.103

 t=0 0

 m=audio 49172 RTP/AVP 0

 a=rtpmap:0 PCMU/8000

Listing 4.1 SIP INVITE message

The first line of the message contains the method name as described, which is here INVITE.

The lines that follow are a list of header fields. Table 4.4 shows a minimum of the required set.

Header Field Description

Via contains the routing information important to route responses. It

also contains a branch parameter that identifies this transaction.

To contains a display name and a SIP or SIPS URI towards which the

request was originally directed.

From contains a display name and a SIP or SIPS URI that indicate the

originator of the request.This header field also has a tag parameter

containing a random string (1928301774 in Listing 4.1) that was

added to the URI by the User Agent. It is used for identification

purposes.

Call-ID contains a globally unique identifier for this call, generated by the

combination of a random string and the phone's host name or IP

address.

CSeq or

Command

Sequence

contains an integer and a method name. The CSeq number is

incremented for each new request within a dialog and is a

traditional sequence number.

Contact contains a SIP or SIPS URI that represents a direct route to the

contact, usually the username at a fully qualified domain name

(FQDN) or the IP addresses. The Contact header field tells others

where to send future requests.

Max-Forwards serves to limit the number of SIP aware devices a request can pass

on the way to its destination. It is decremented by one at each hop.

Samya Chahin SIP UA for Mobile Devices

Page 55 of 85

Content-Type contains a description of the message body.

Content-Length contains the message body count type.

Table 4.4: SIP header fields

The body of a SIP INVITE message contains a description of the session, encoded in some

other protocol format as the Session Description Protocol (SDP) [SDP]. In this protocol the

type of media, codec and sampling rate are included. The body part will be explained later in

detail in Section 4.8.

4.5 SIP Components

In this section I will explain the different types of SIP servers and their functionality.

4.5.1 User Agent

A User Agent consists of an end system and contains a User Agent Client (UAC) for generating

requests, and a User Agent Server (UAS) for generating responses. A UAC issues a request

based on some external actions as for example a user is clicking on a button and pocesses the

respective response. A UAS is capable of receiving a request and generating an appropriate

response.

A UAC sends requests, which may pass through some proxies to be forwarded to a UAS. When

the UAS generates a response, it is sent to the UAC via the same proxies.

Whether the request or response is inside or outside of a dialog (which represents a

peer-to-peer relationship between User Agents and are established by specific SIP methods,

such as INVITE and the request methods are playing an important role in the procedures of the

UAC and UAS.

4.5.2 User Agent Server

A User Agent Server (UAS) is a server which is generating responses to SIP requests (of

UACs). UASs should process the requests in the following order:

• Starting with authentication

• Method inspection

• Header inspection

• Content processing

• Processing the request

• Generating the response

4.5.3 SIP Proxy Server

A SIP proxy server operates as a server as well as a client to make requests for other clients or

servers. The requests are either processed intern or forwarded. A proxy server interprets,

rewrites or translates the message before forwarding it.

Samya Chahin SIP UA for Mobile Devices

Page 56 of 85

4.5.4 SIP Redirect Server

A SIP redirect server accepts SIP requests, maps the address into new addresses, and returns

these addresses to the client. In other words, it is a User Agent Server that generates responses

to requests it receives, directing the client to contact an alternate set of URIs. They do not

initiate requests and do not accept calls. They require lower state overhead than proxy servers

due to fewer messages to process. The redirect server offers services which are client device

dependent.
In some architectures, it may be desirable to reduce the processing load on proxy servers that

are responsible for routing requests, and improve signaling path robustness, by relying on

redirection. Redirection allows servers to push routing information for a request back in a

response to the client, thereby taking themselves out of the loop of further messaging for this

transaction while still aiding in locating the target of the request. When the originator of the

request receives the redirection, it will send a new request based on the URI(s) it has received.

By propagating URIs from the core of the network to its edges, redirection allows for

considerable network scalability.

4.5.5 SIP Registrar Server

A SIP registrar server is a server that accepts REGISTER requests and places the information it

receives in those requests to the location service for the domain it handles.

SIP offers a discovery capability. If a user wants to initiate a session with another user, SIP

must discover the current host(s) at which the destination user is reachable. This discovery

process is frequently accomplished by SIP network elements such as proxy servers and redirect

servers which are responsible for receiving a request, determining where to send it based on

knowledge of the location of the user, and then sending it there. To do this, SIP network

elements consult an abstract service known as a location service, which provides address

bindings for a particular domain. These address bindings map an incoming SIP URI,

sip:klaus@tuwien.ac.at, for example, to one or more URIs that are somehow closer to the

desired user, sip:klaus@ikn.tuwien.ac.at, for example. Ultimately, a proxy will consult a

location service that maps a received URI to the user agents at which the desired recipient is

currently residing.

4.6 Session Description Protocol

SDP is the protocol [SDP] used to describe multimedia sessions, and multimedia session

invitations. A multimedia session is defined, for these purposes, as a set of media streams that

exist for a duration of time.

SDP usually includes session information as session name, purpose and the time the session is

active and exists in the body of a SIP INVITE or 200 (OK) message.

Since the resources necessary for participating in a session may be limited, it would be useful

to include the following additional information:

• Information about the bandwidth to be used by the session.

• Contact information for the person responsible for the session.

To the media information belongs the following:

• Type of media, such as video and audio.

Samya Chahin SIP UA for Mobile Devices

Page 57 of 85

• Transport protocol, such as RTP/UDP/IP

• Media format, such as H.261 video or MPEG video.

The subsequent example shows a SDP payload which means: “receive RTP packets encoded

audio in PCMU 8000Hz on IP Address 100.101.102.103:49172”

v=0

o=UserA 2890844526 2890844526 IN IP4 here.com

s=Session SDP

c=IN IP4 100.101.102.103

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Listing 4.2 Session Description Protocol body

4.7 Examples for SIP User Agents

Sip User Agents are used in many chat applications, but the end user does not know that SIP is

used as the underlying protocol. Here in this section, I explain an example of an application

which is using SIP as its underlying protocol.

4.7.1 The Microsoft Messenger

Instant messenger programsnare widley spread on the Internet. Their main job is the capability

of sending short text messages. Many applications are expanded now to support also live audio

and video conversations. There are many vendors which offer this service. One of the famous

one is the Microsoft Messenger from the Microsoft corperation.

Microsoft Messenger holds buddies in a list and shows for each user in the list his current status

to indicate whether he is Online, Offline, Away etc. For better administration users could be

divided into groups. An audio conversation starts easily by clicking on a button in the

Messenger window on the selected user to call. When a user receives a message, the Messenger

window is opened automatically indicating the person who has send it. Many people are using

now live audio conversation to avoid the high billing invoices of calling someone in other

countries and that is why it lead to very great success.

The subsequent figure 4.7 shows the Microsoft Messenger. The left hand side illustrates the list

holding the different buddies and the right hand side shows a messenger window opened for

user “Samar”.

Samya Chahin SIP UA for Mobile Devices

Page 58 of 85

Figure 4.7: Microsoft Messenger

4.8 Java SIP Packages for Mobile Devices

There exist only two Java SIP packages for the J2ME platforms which are Java API for

Integrated Networks (JAIN) Sip Lite from the National Institute of Standards and Technology

(NIST) and SIP API for J2ME from Nokia. JAIN Sip Lite is open source. The SIP API for

J2ME could only be used for educational use for free and for a limited time only. The main

problems in design of applications for mobile devices is the small memory requirements,

therefore attention is required to ensure a small memory footprint.

4.8.1 JAIN Sip Lite from National Institute of Standards and Technoloy

JAIN stands for Java API for Integrated Networks, in the INAP (Intelligent Network

Application Protocol) specification. It is an interface for wireless devices that provides a

uniform interface to wireless, traditional Internet access, the Public Switched Telephone

Network (PSTN), and Asynchronous Transfer Mode (ATM).

JAIN SIP Lite is a high-level API. Developers can easily create applications, such as User

Agents, which have SIP as their underlying protocol. JAIN SIP Lite is a thin Java API that can

be used as a high-level wrapper around the SIP protocol that will support application

developers with an easy to use API.

Click on this Button to start

live audio conversation with

Samar

Samya Chahin SIP UA for Mobile Devices

Page 59 of 85

The target audience for JAIN SIP Lite are application developers. In writing applications, the

complexity of SIP is of no real relevance. Therefore, the developer will not need to know or be

concerned with any of the protocol details. For this reason, the vendor-specific implementation

of the API will be responsible for headers such as Call-ID, CSeq, and Via.

Therefore, exposure of such headers are not necessary.

The purpose of the JAIN SIP Lite API will be to support SIP functionality as defined in the old

RFC SIP specification [RFC2543]. This implies that any application that uses this API should

be able to perform UA functionality as defined in this old SIP specification.

Architecture of JAIN SIP Lite

The basic model behind JAIN SIP Lite is that of a three-tier approach which consists of the

three main classes CallProvider, Call and Dialog. The CallProvider has two roles. In a typical

JAIN architecture, this class is acting as the Provider. The role of

the CallProvider is to create Calls. A Call is the second level of the architecture. Each Call

created is identified by a call-id which remains constant over the lifetime of the Call. The Call

is responsible for creation and management of Dialogs. The Dialog is the third level of the

architecture. Each Dialog is created using a To address and a From address which remain

constant over the lifetime of the Dialog. The Dialog also carries the call-id of the Call that

created it. This also remains contant over the lifetime of the Dialog. The Dialog is responsible

for message creation and management. Configuration and initial set-up is the responsibility of

the SIPStack object which provides an entry point into the stack and access to the CallProvider

object. None of the Listener interfaces of Figureb4.8 below implement the

java.util.EventListener to ensure compliance with J2ME.

Figure 4.8 Jain SIP Lite architecture

(Call-id, From, To)

CallProvider

*

*

(Call-id)

CallProviderListener

Call

Dialog

Call Listener

Dialog Listener

Samya Chahin SIP UA for Mobile Devices

Page 60 of 85

Call

The Call object is responsible for creating and managing Dialogs. On creation, a Call object is

created with a unique call-id which remains constant over the lifetime of the Call. All Dialogs

created by a Call object will contain the same call-id. In this way Dialogs can be connected to

a specific Call. For incoming requests and responses, the Dialog can be retrieved using this

incoming message.

CallListener

The CallListener interface listens for all new incoming Dialogs. The CallListener interface is

implemented by the application so that all new Dialogs within a call can be handled as

neccessary. A CallListener implementation must be registered with the Call in order

that events can be recieved by the listening application.

Dialog

The Dialog object is responsible for creation and management of both, request and response

messages. Each Dialog is created with a To address and a From address which remain constant

over the lifetime of the Dialog. The Dialog is also created with the unique call-id from the Call

object which is responisble for its creation.

DialogListener

The DialogListener interface listens for all incoming requests and responses for the specific

Dialog it is registered with. Incoming messages are routed through the appropriate method,

depending on whether they are requests or responses. A DialogListener implementation must

be registered with the Dialog in order that incoming messages can be recieved by the

listening application.

4.8.2 SIP API for J2ME from Nokia

SIP API for J2ME is a Java API written from Nokia. The implementation of the SIP for J2ME

API will be integrated in the mobile phone and will make the link between the terminal's native

SIP implementation and the the Mobile Information Device Profile (MIDP), environment.

As more and more small devices are supporting the J2ME platform, it is essential that any

specification targeting that domain extends the Generic Connection Framework (GCF) pattern

to integrate easily with that platform. This means, every new SIP connection can be obtained

through the unique connector factory. SIP for J2ME also follows the simple and lightweight

structure that all the other protocol frameworks standardized in MIDP do, i.e. HttpConnection,

SocketConnection. This ensures a very flat class structure that inherently simplifies usage.

Similar to HttpConnection in the J2ME platform, SIP for J2ME is defined at the transaction

level. This choice makes the API multipurpose and does not limit its use by including any

assumptions of its intended usage, e.g. Voice over IP.

As a consequence, a MIDlet that is implemented at the transaction level must handle the flow

of messages. A MIDlet is a programm written in Java and runs on mobile phones as explained

in Chapter 3. The Hypertext Transfer Protocol (HTTP) like functionality has been extended to

support the receiving of requests that exist in SIP and HTTP, e.g. blocking calls are extended

with an event mechanism that allow application developers to choose the optimal

programming style.

Samya Chahin SIP UA for Mobile Devices

Page 61 of 85

For the sake of reducing the MIDlet code size, some helper functions are provided to assist in

the basic SIP tasks [SUNSIP]. Note, that a MIDlet is free to ignore these helper functions to

make previous flexibility requirements possible. Examples of helper functions include:

• Automatic initialization of mandatory headers in requests

• Creation of pre-initialized responses and acknowledgments

• Support for subsequent SIP dialogs

• Support for automatic request refreshes

Architecture of SIP API for J2ME

The API is designed to be a compact and generic SIP API, which provides SIP functionality at

transaction level. The API is integrated in the GCF defined in the Connected Limited Device

Configuration (CLDC). The SIP API for J2ME is designed as an optional package that can be

used with many J2ME profiles. Figure 4.9 shows the simplified class diagram of the API,

relation of classes, inheritance from javax.microedition.Connection and relation to

javax.microedition.Connector.

Figure 4.9 SIP API for J2ME architecture

The subsequent figure shows what interfaces a terminal is using to implement SIP User Agent

Client (UAC) and User Agent Server (UAS) functionality respectively with SIP API for J2ME.

In reality, applications will use both, SIP client and server connections in the same terminal

(terminal A in Figure 4.10) and thus implementing both, UAC and UAS functionality

[NOKIA].

javax.microedition.

Connector

javax.microedition

.Connection

SipDialog

SipConnection
SipConnection

Notifier

SipClientConnection SipServerConnection

SipAddress

SipHeader

SipClientConnection

Listener

SipServerConnection

Listener

SipRefresh

Helper

SipRefresh

Listener

SipException

Samya Chahin SIP UA for Mobile Devices

Page 62 of 85

Figure 4.10 SIP API for J2ME functionality

4.8.3 Comparison of SIP Packages

As explained SIP for J2ME from Nokia is part of the MIDP which leads to the requirement that

the mobile phone has the version of MDIP which already includes SIP for J2ME installed on

the mobile. That is why the package size and the memory footprint is hold small and perfectly

for using in developing applications for mobile devices.

JAIN SIP Lite is a high-level open source API which hides all the detail of the protocol from

the developer, but developers are at the same time free to change code parts for improvement

on that API which gives the developer a great area of flexebility in development.

 Nokia NIST

Flexibility in use - not allowed and not possible to change

any code parts

+ open sourse, developer can

change any code parts

Memory + Not much memory Needs much memory

Requirements - Mobile must have J2ME package

installed as part of MIDP

+ Flexibel to use on any

mobile

Table 4.5 Comparison of SIP packages

4.8.4 The Choice

SIP API for J2ME

Sip Client

Connection

Sip Connection

Notifier

Sip Server

Connection
SIP

Network

Send Request

Receive Request

Send Response
Receive Response

Send Request Receive Request

Send Response
Receive Response

Terminal A

UAC and UAS
Other SIP

Terminal

Samya Chahin SIP UA for Mobile Devices

Page 63 of 85

Although SIP API for J2ME uses a small footprint and is part of the GCF, I decided to use

JAIN Sip Lite, because it is open source and optmization is allowed. Moreover, because SIP

API for J2ME is part of the CLDC, the mobile should have preinstalled this package included

with the SIP API for J2ME and there is unfortantely no device which currently supports this.

Nokia emulators could be used for tests but for developing the audio UA, the emulator should

also be able to provide audio capturing, which is still not possible.

4.9 Summary

Session Initiation Protocol (SIP) is a protocol, which is responsible for creating, managing and

tearing down sessions between one or more end-points in an IP network. There are two main

components of SIP system mentioned in this section. The Uas, which act as the end-points, are

responsible for creating, sending and responding to SIP requests. Proxies provide name

resolution and user location for these SIP requests. The ability to create sessions means that a

number of different services, such as Instant Messaging and voice applications become

possible. In this section, I explained the SIP protocol and gave some call flow examples to

illustrate how components work together. At the end, I showed and explained the Java

available SIP packages, a comparison between them and why I have chosen to use the NIST

JAIN SIP Lite package.

Samya Chahin SIP UA for Mobile Devices

Page 64 of 85

5 Real-time Transport Protocol

5.1 Introduction

Real-time Transport Protocol (RTP) is a standard transport protocol for transmitting real time

data such as interactive audio and video suitable for applications over packet-oriented data

networks such as the Internet [RTP].

The mode of transmission can be unicast or multicast type and there is no guarantee of any

Quality of Service (QoS) for the real time service. The data transport is monitored by another

protocol called Real-time Transport Control protocol (RTCP), which allows monitoring of the

data delivery and control of data loss in a manner scalable to large multicast networks.

RTP is proposed by the Internet Engineering Task Force (IETF) in the Request for Comments

(RFC) 1889. RTP is accepted as a universal standard for the real time multimedia transmission.

5.2 How does RTP work?

As an example to show how RTP is working, a simple multicast audio conference is explained.

In this Thesis I am concentrating on audio transmission over RTP for mobile devices.

Participants in an audio conference are sending their audio data in small data chunks of say 20

ms duration. Each chunk is preceded by a RTP header and that is again put into an User

Datagram Protocol (UDP) packet [RFC768]. The Transmission Control Protocol (TCP)

cannot support the real time services because the fact that TCP is rather a slow protocol,

requiring a three way hand shake [RFC793]. Hence, UDP is used as transport protocol.

Although UDP is an unreliable protocol, which does not support retransmissions upon packet

loss, it has some features like multiplexing and check sum services, which favors the real time

services. RTP has some various services to solve the problem of lost and double packets.

Figure 5.1 illustrates the RTP Stack.

RTP/RTCP

UDP

IP

Data Link Layer

Physical Layer

Figure 5.1 Real-time Transport (Control) Protocol Stack

The RTP header contains meta information about the packet and indicates the codec of the data

packetd transported, such as Pulse Code Modulation (PCM) or Adaptive Differential Pulse

Code Modulation (ADPCM). This is important to let the other side when receiving the packet

Samya Chahin SIP UA for Mobile Devices

Page 65 of 85

knows which decoding to use to return the data in its original format. The RTP packet could

reach the receiving side in a wrong order, so a sequence number and timing info are also

included in the RTP header to let the receiver be able to reconstruct the packets order. The

sequence number is also important to calculate how many packets are being lost during

transmission. The audio or video application periodically multicasts a reception report with the

name of its user on the RTCP port. The report contains information about the media stream, it

shows for example, how many packets have been lost. It informs the RTP layer to adjust its

coding and transmission parameters for the proper delivery of the data. When a participant

wants to leave the conference, it sends a RTCP BYE packet. Audio and video data are

transmitted as separate RTP sessions and RTCP packets are transmitted for each medium using

two UDP port pairs and or multicast addresses.

5.3 RTP Header Fields

The RTP header has the following format. The first twelve octets are present in every RTP

packet, while the list of Contributing source (CSRC) identifiers are present only in packets,

which are passed. A CSRC is a source of a stream of RTP packets that has contributed to the

combined stream produced by an RTP mixer. A mixer receives streams of RTP data packets

from one or more sources, possibly changes the data format, combines the stream in some

manner and then forward the combined stream adding its own mixer’s identifier called

Synchronization source (SSRC) in order to preserve the identity of the original sources

contributing to the mixed packet. Susequently, I outline the responsibilities of each RTP header

field illustrated in Figure 5.2.

Figure 5.2 RTP Header Fields

Version (V): 2 bits , shows the current version of RTP, which is 2.

Padding (P): 1 bit. If the padding bit is set, the packet contains one or more additional padding

octets at the end which are not part of the payload. The last octet of the padding contains a

count of how many padding octets should be ignored. Padding may be needed by some

encryption algorithms with fixed block sizes or for carrying several RTP packets in a

lower-layer protocol data.

Samya Chahin SIP UA for Mobile Devices

Page 66 of 85

Extension (X): 1 bit. If X is set, the fixed header is followed by exactly one header extension.

CSRC count (CC): 4 bits. The field indicates the number of CSRC identifiers that follow the

fixed headers. As mentioned before, the field has a non-zero value only if passed through a

mixer.

Marker bit (M): 1 bit. If M is set, it indicates some significant events like frame boundaries to

be marked in the packet stream. For example, an RTP marker bit is set if the packet contains a

few bits of the previous frame along with the current frame.

Payload type (PT): 7 bits. PT indicates the payload type carried by the RTP packet. RTP

Audio Video Profile (AVP) contains a default static mapping of payload type codes to payload

formats.

Sequence number: 16 bits. The number increments by one for each RTP data packet sent, with

the initial value set to a random value. The receiver can use the sequence number not only to

detect packet loss but also to restore the packet sequence.

Time stamp: 32 bits. The time stamp reflects the sampling instant of the first octet in the RTP

data packet. The sampling instant must be derived from a clock that increments monotonically

and linearly in time to allow synchronization and jitter calculations at the receiver. The initial

value should be random, so as to prevent known plain text attacks. For example, if the RTP

source is using a codec, which is buffering 20 ms of audio data, the RTP time stamp must be

incremented by 160 for every packet irrespective of the fact that the packet is transmitted or

dropped.

SSRC: 32 bits. This field identifies the source that is generating the RTP packets for this

session. The identifier is chosen randomly, so that no two sources within the same RTP session

have the same value.

CSRC list: The list identifies the contributing sources for the payload contained in this packet.

The maximum number of identifiers is limited to 15, as is apparent from the CC field (All zeros

is prohibited in CC field). If there are more than 15 contributing sources, only the first fifteen

sources are identified.

One observation that can be drawn from the RTP packet is that it does not contain the

delimiting field, as it is done in the lower layer protocol data units (PDU). The reason behind

this is that the payload of RTP is the same as that of IP payload and hence not required. If the

same user is using multiple media during a session, say for example audio and video, separate

RTP sessions are opened for each one of them. Hence there is no multiplexing of media at the

RTP level. It is up to the lower layers to multiplex the packets from various media and send on

a single channel. But RTCP maintains one identifier called CNAME, which is the same for all

the media initiated by one user. Hence CNAME is the only identifier at the RTP layer level that

can identify the media originated from a user. The overhead of RTP header is considerably

large as seen from above. To reduce this, RTP header compression is proposed.

In the prototype of this Thesis, the RTCP is out of scope although it is an inportant part of the

RTP protocol. It was not implemented due to the limited performance and memory capability

of the mobile devices, so I am not going into more detail of RTCP especially, because it offers

control and monitoring, but it never gurantees QoS.

Samya Chahin SIP UA for Mobile Devices

Page 67 of 85

5.4 RTP and the Session Initiation Protocol

The IETF has proposed the Session Initiation Protocol (SIP) for establishing, modifying and

terminating multimedia calls over the Internet as mentioned in Section 4 in detail. RTP/RTCP

is used as the protocol for media transfer. The detailed flow diagram of SIP was presented in

Figure 4.2 of the basic SIP seesion setup.

The caller User Agent Client sends an INVITE message to a friend. This message also contains

an SDP packet describing the media capabilities of the calling terminal. The UAS or SIP proxy

server receives the request and immediately responds with a 100 (Trying) response message.

The UAS starts ringing to inform the callee of the new call. Simultaneously, a 180 (Ringing)

message is sent to the UAC. The friend picks up the call and the UAS sends a 200 (OK)

message to the calling UA. This message also contains an SDP packet describing the media

capabilities of the friend’s terminal. The calling UAC sends an ACK request to confirm the 200

(OK) response was received. After that an RTP session is opened on the port written in the SDP

packet and the Uas start to send rtp packets. An example SDP description is shown in Listing

5.1.

 v=0

 o=UserA 2890844526 2890844526 IN IP4 here.com

 s=Session SDP

 c=IN IP4 100.101.102.103

 t=0 0

 m=audio 49172 RTP/AVP 0

 a=rtpmap:0 PCMU/8000

Listing 5.1 SDP Fields

After Samya’s UA gets this request the SDP part got parsed. In this example the UA knows

after parsing to send RTP packets encoded audio in PCMU 8000Hz on IP Address

100.101.102.103:49172.A UA handling a media flow that comprises several "m" lines sends

media to different destinations (IP address/port number) depending on the codec used at any

moment. If several "m" lines contain the codec used media is sent to different destinations in

parallel as shown in Listing 5.2 .

m=audio 30000 RTP/AVP 0

a=rtpmap:0 PCMU/8000

m=audio 30002 RTP/AVP 8

a=rtpmap:0 PCMU/8000

m=audio 30004 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

Listing 5.2 SDP Fields for opening multiple rtp sessions

This would mean if it is part of example in Listing 5.1 that RTP packets encoded audio in

PCMU 8000Hz have to be send on IP Address 100.101.102.103:30000,

100.101.102.103:30002 and 100.101.102.103:30004.

Samya Chahin SIP UA for Mobile Devices

Page 68 of 85

5.5 Java Packages for Mobile Multimedia

Java packages for Mobile Multimedia should extends the functionality of the J2ME platform

by providing audio, video and other time-based multimedia support to resource-constrained

devices. It should allow Java developers to gain access to native multimedia services available

on a given device. There is only one Java package for mobile multimedia available on the

market, which is the Mobile Media Application Programming Interface (MMAPI).

5.5.1 Mobile Media Application Programming Interface

The MMAPI provides support for multimedia applications on Java-enabled devices. It is a

small part of the Java Media Framework (JMF) and developed by the same group and it is the

only Java package available for developing multimedia applications. Unfortunately, it has not

all the capabilities of the JMF, but it provides the developer with basic functionalities.

The devices, on which the media run, can range from simple cellular phones to more

sophisticated devices, such as PDAs and set-top boxes that support advanced sound and

multimedia capabilities. This API allows simple access and control of time-based media, such

as audio and video, and is both, scalable and extensible to support more sophisticated

multimedia features.

This API is an optional package, which means, that the different functionalities supported are

not mandatory included in each mobile which has the package preinstalled. The different

features could be checked by different functions or explained separately in a vendors specific

mobile/device document.

In general, the MMAPI is a Java package that allows a consumer device to access time-based

multimedia functionality, such as audio clips, Musical Instrument Digital Interface (MIDI)

sequences, movie, clips, and animations. Time-based multimedia plays an important role in

many applications. In the MMAPI, the details of which codecs are supported are left to the

profile (such as the Mobile Information Device Profile described in Chapter 3.4). Audio

formats supported, are only Pulse Code Modulation (PCM) and Wave (WAV) formats. I will

go into more detail about the technical part of MMAPI in the subsequent chapter.

Samya Chahin SIP UA for Mobile Devices

Page 69 of 85

6 The Prototype

6.1 Introduction

For development of the SIP User Agent (UA) for mobile devices, I used a text editor and the

Wireless Toolkit (WTK) from SUN (chapter 3). To develop this UA, I went through the

following steps:

• Construct small MIDlets to get the functional know how of the Graphical User

Interface (GUI), the Generic Connection Frameworks (GCF) and the Mobile Media

API (MMAPI) package.

• Implementing the Real-time Transport Protocol (RTP) and testing it by sending packets

and receiving them, checking if all packets are received in the right order and that no

packets are lost.

• Downloading a free SIP proxy Server from Brekeke [BREKEKE](section 6.7) to

register to it and to test the prototype. The web based dministration tool helped me to

verify who was registered and what calls were in progress. I was able to check the

registration of the SIP UA at the SIP server by logging in at the SIP Server.

• Testing the JAIN SIP Lite package and getting used to its functionalities.

• Constructing the prototype by using the JAIN SIP Lite packge and test example with

the MMAPI and RTP implementation to get the functionalities needed. The registration

of the SIP UA to the proxy was checked by the Ondo SIP server admin web tool.

• Drawing the class diagram, sequence diagram and sketch on papers how the user

interface will be with navigation.

6.2 Requirements

The SIP UA consists of three main parts which are JAIN SIP Lite, Mobile Media API and the

RTP Protocol package. To be able to let the SIP UA run on a mobile phone, it must contain the

following:

• MMAPI must be preinstalled on the mobile and voice capturing must be allowed on

this mobile phone

• Connected Limited Device Configuration (CLDC) version 1.0 and Mobile Information

Device Profile (MIDP) version 2.0 must also be preinstalled

Mobile phones having those packages preinstalled, have the required memory and Central

Processing Unit (CPU) speed suitable for thie UA implementation.

Attention has to be given to the MMAPI, because not every mobile having this package

preinstalled has the capability to capture audio. This is an optional property and has to be

checked in the manufactory papers for the specific mobile phone on which the UA is intended

to be run.

Samya Chahin SIP UA for Mobile Devices

Page 70 of 85

6.3 RTP Implementation

The Real-time Transport Protocol (RTP) has become a widely implemented Internet standard

protocol for transport of real-time data. This implementation, which is available as

at.ikn.j2me.protocol.RTP package, can be easily incorporated into an application, which then

has access to all the transport level features that RTP provides.

The overall architecture was determined by the need to have a modular, simple and platform

independent RTP implementation to easily integrate into any application requiring RTP. The

RTP part is explained seperatly from the SIP part.

Session:

The top most class the user of the package interacts with is Session. This class encapsulates the

RTP related setup, startup and shutdown procedures. Session also serves as the interface where

it is possible to control object's states and their interactions.

From the user's perspective, the Session interacts with the network and is responsible for

sending and receiving RTP packets. Network interaction constitutes can be classified into two

distinct processes:

• Synchronous processes: Sending RTP packets

• Asynchronous processes: Receiving RTP packets

The synchronous interaction with the network is straightforward, this is driven by the

application (the user of the package) and is invoked by calling the Session.SendRTPPacket()

function.

The asynchronous interaction, on the other hand, requires the RTP receivers to run on separate

threads and wait for the packet arrival. Following the reception of a packet, several tasks are

performed among which is posting of the packet arrival event.

Figure 6.1 High level functional module

RTP Packet Sending and Receiving:

Figure 6.1 shows the object model where Session uses the RTPThreadHandler object to send

and receive RTP packets. The RTPThreadHandler class is inherited from Thread and the

RTP Receiver

Session

RTPThreadHandler

Samya Chahin SIP UA for Mobile Devices

Page 71 of 85

function which receives the RTP packets, runs in an infinite loop. This loop is started directly

by calling or using Session.Start() method which starts the Receiver. RTPThreadHandler class

also acts as a sender by providing the SendPacket() function.

RTP reception updates the Session information that are necessary to hold an RTP session with

minimal interaction from the application. This makes it easy for applications, which do not

necessary need to concern themselves with the protocol details, to use this package and with

only a few lines of code, have a fully functional RTP session. An example shows Listing 6.1.

// Construct a new Session object

rtpSession = new Session ("234.5.6.7", // ToIPAddress

 8000, // localReceivPort

 8001, // RTPSendToPort

);

// Set the session parameters

rtpSession.setPayloadType (5);

// Start the session

rtpSession.Start();

// Send a test packet.

rtpSession.SendPacket (String ("Test").getBytes());

// Stop the session

rtpSession.Stop();

Listing 6.1 Construction of a RTP session

It was mentioned earlier that when a RTP packet arrives, session level states are updated.

Furthermore, it is necessary to forward the RTP packets over to the user of the session

(application or any other class requiring the received RTP packets).

The event model in this package is based on the one implemented by the Java Abstract

Windowing Toolkit (AWT) 1.1. In the AWT event-model, asynchronous events, such as

button-click, are handled by registered listeners. A listener is a class, which implements an

interface specified by the event-model. For instance, there exists the mouseListener interface in

AWT. Any class interested in mouse events must implement this interface. Additionally, the

interested class instance must register itself with the event source by calling the method

addMouseListener and passing its own instance reference. This step of registration will allow

the event dispatcher to call the appropriate event handling functions in the listener when an

event is posted. The dispatcher guarantees that the listener, which declares that it implements

the interface, indeed does implement all the methods. This guarantee is in effect given by the

compiler, which will produce compile-time errors until an implementation, even if empty, is

provided by the interface implementor.

Following the same model, an interface, RTP_actionListener is made available. It is not

required by the application classes to implement any of these interfaces. The only requirement

is that once an application class is declared that it implements the interface, it must provide

handlers for each method. The objects passed to the event handler are classes which

encapsulate the RTP packets.

Samya Chahin SIP UA for Mobile Devices

Page 72 of 85

The RTP Packet class and all its attributes are illustrated in Figure 6.2.

RTPPacket

CSRCCount : long

SequenceNumber : long

TimeStamp : long

SSRC : long

data[] : byte

(from RTP)

Figure 6.2 RTPPacket class

When the Session.postAction() is called, the registered RTP_actionListener is checked.. This

method is provided with the newly constructed RTPPacket object. An alternative is to post the

byte data stream instead, but from the user's point of view, it is easier to work with objects and

attributes than to parse bits and bytes out of a byte datagram. To the user, an incoming RTP

packet is nothing more than an object instance of the RTPPacket class. The user is not required

to do anything with any of the attributes, most often, it will only need the data attribute, which

contains the payload.

The sequence diagram in Figure 6.3 shows the interaction between the Session, the session

instantiator, which implements the RTP_actionListener interface, the RTP receiver and the

RTPPacket object.

RTP Session Instantiator

RTP_actionListiner
Session RTPThreadHandler

(2) RTP packet arrival

from the network

1) addRTP_actionListiner(this)

1.5) store th...

3) Instantiate a

new RTPPacket Object

3.5)

postAction(RTPPacket)

4) Is a RTP_actionListener

registered?

5) handle RTPEvent

(RTPPacket)

Samya Chahin SIP UA for Mobile Devices

Page 73 of 85

Figure 6.3 RTP Sequence Diagram

Sequence 1 and 1.5: The registration takes place. Here, instance of the class which is

implementing the reference in order to post the RTP events to this listener.

Sequence 2: The asynchronous event, i.e. the RTP packet reception.

Sequence 3: The RTP receiver, instantiates a RTPPacket object and populates its fields. It then

posts the packet object to the Session in sequence 3.5.

Sequence 4: The Session determines if any RTP_actionListener is registered. In this case, the

Listener waits for a notification.

Sequence 5: The packet object is sent to the RTP_actionListener.

In general, following rules and guidelines apply while working with the events model and

actionListener interfaces:

A class must implement the RTP_actionListener interface:

class MyClass implements RTP_actionListener { …}

Only one registered listener will get the event notifications. For instance, there are two classes,

A and B, that implement the RTP_actionListener interface, and if instance of A followed by B

registers itself by calling the Session.addRTP_actionListener() function, then the last

registration will overwrite the one preceding it. It is necessary to understand that there can only

be one instance registered for RTP_actionListener. If a class implements both interfaces, it

must provide implementation for methods in both the interfaces.

Code examples in Listing 6.2 may help clarify the event model.

// One class that implements the RTP_actionListener interface and registers itself

class MyClass implements RTP_actionListener {

MyClass {

Session rtpSession = new Session (…);

rtpSession.addRTP_actionListener (this);

…

}

public void handleRTPEvent(RTPPacket rtppkt) {

// RTP event handler..

}

} // end

Listing 6.2 Class implementing RTP_actionListener interface

Samya Chahin SIP UA for Mobile Devices

Page 74 of 85

RTP Limitations:

Number of RTP Action listener registrations maintained by java.RTP.Session is limited to

one.

6.4 General Class Architecture

In this section, I explain the general Architecture of the SIP UA. Figure 6.4 shows this

architecture. It consist of a main class, which is the UA class.

UA

It does the most important work. After a user presses a certain action in the SignInWindow, the

UA class decides which class to call. For example, if a user wants to register on a SIP server and

waits to receive calls on a certain port, the UA calls the RegisterProcessing class.

RegisterProcessing

It is responsible for registeration to a SIP server and handles all messages related to this

registration.

MessageProcessing

It is responsible for all incomming and outgoing message processing by analysing the content

of the incoming message.

ByeProcessing

The ByeProcessing class is doing all the work for constructing a BYE message or analysing a

received BYE message.

MicCapture

The MicCapture class is responsible for doing the microphone audio capture. It is involved

when a deal about the RTP media port is known by the MessageProcessing class and the

captured samples are put into RTP packets.

PcmPlayer

This class is responsible for a playback of the collected voice samples back.

Session

Is holding a valid session for doing the work of listening to the incoming rtp packets on certain

ports.

The SipUAMidlet, MainWindow and SignInWindow are the user interfaces classes.

SipUAMidlet

MIDlet

(from j2me)

MainWindow

SignInWindow

UA
RegisterProcessing

Debug

Samya Chahin SIP UA for Mobile Devices

Page 75 of 85

Figure 6.4 General Class Diagram

6.5 Graphical User Interface

When the User Agent is started, a signin window is displayed. The user has to fill in the text

boxes for the needed information like the SIP server IP address and port to register there. Its

own IP address and the port, on which to receive the calls (RTP packets) and finally the SIP

URL and the contact SIP URL. The available menu shows different actions the user can take as

SignIn, SignIn&Invite and Quit. If the user chooses to sign in only, it gets registered and waits

for any incomming calls. Once an incomming call arrives, a diplay message indicating that the

audio conversation has started, is shown. The user can decide any time to either just break

down the current call but still listening for other incomming calls or completely sign out and

the user will no longer be reachable. This scenario shows Figure 6.5.

Samya Chahin SIP UA for Mobile Devices

Page 76 of 85

Figure 6.5 Graphical User Interface of the SIP UA

6.6 Mobile Media API

The Mobile Media API package specifies a small multimedia API for Java enabled devices,

like simple cellular phones or even more sophisticated, multimedia devices. This API allows

simple access and control of audio and video time-based media. It is both, scalable and

extensible to support more sophisticated multimedia features.

MMAPI is designed to be protocol and format indifferent. It contains all of the functionality

needed to support any new implementation protocols and many more. It allows API

implementors and Java profile creators to choose which media formats they will support.

6.6.1 Mobile Media API Architecture

The Mobile Media API is based on four fundamental concepts:

• A Player knows how to interpret media data. One type of player, for example, might

know how to produce sound based on MP3 (Motion Picture Experts Group 1 Layer 3)

audio data. Another type of player might be capable of showing a QuickTime movie.

Players are represented by implementations of the javax.microedition.media.Player

interface.

• You can use one or more controls to modify the behavior of a Player. You can get the

controls from a Player instance and use them while the Player is rendering data from

media. For example, you can use a VolumeControl to modify the volume of a sampled

audio Player. Controls are represented by implementations of the

javax.microedition.media.Control interface; specific control subinterfaces are in the

javax.microedition.media.control package.

• A data source knows how to get media data from its original location to a Player. Media

data can be stored in a variety of locations, from remote servers to resource files or

Record Management System (RMS) databases. Media data may be transported from its

original location to the player using Hypertext Transfer Protocol (HTTP), a streaming

protocol like RTP, or some other mechanism.

javax.microedition.media.protocol.DataSource is the abstract parent class for all data

sources in the Mobile Media API.

• Finally, a manager ties everything together and serves as the entry point to the API. The

javax.microedition.media.Manager class contains static methods for obtaining Players

or DataSources [MMAPI].

Samya Chahin SIP UA for Mobile Devices

Page 77 of 85

Figure 6.6 Architecture of MMAPI [SUN]

The simplest way to obtain a Player is to use the first version of createPlayer() and pass in a

String that represents media data. For example, you can specify an audio file on a web server:

Player p = Manager.createPlayer("http://webserver/music.mp3");

There is another createPlayer() method, which is used in this Thesis, which allows to create a

Player from an InputStream, because the received RTP packets were collected in a buffer at the

receiver side and converted to an InputStream and played back using this type of Player as

shown in Listing6.3.

public static Player createPlayer(InputStream stream, String type) throws IOException,

MediaException

Listing 6.3 creatPlayer() Method

When a Player is created, the playback begins with the start() method. Playback helps to

understand the life cycle of a Player. Playback consists of four states.

When a Player is first created, it is in the UNREALIZED state. After a Player has located its

data, it is in the REALIZED state. If a Player is rendering an audio file from an HTTP

connection to a server, the Player reaches REALIZED after the HTTP request is sent to the

server. The HTTP response is received, and the DataSource is ready to begin retrieving audio

data. The next state is PREFETCHED, and is achieved when the Player has read enough data

to begin rendering. Finally, when the data is being rendered, the Player's state is STARTED.

The Player interface provides methods for state transitions, both forwards and backwards

through the cycle described above. The reason is to provide the application with control over

operations that might take a long time. You might, for example, want to push a Player through

the REALIZED and PREFETCHED states so that a sound can be played immediately in

response to a user action.

Samya Chahin SIP UA for Mobile Devices

Page 78 of 85

Figure 6.7 Player State Table

The Mobile Media API does not require any specific content types or protocols, but it can find

out at runtime what is supported by calling Manager's getSupportedContentTypes() and

getSupportedProtocols() methods. If the Manager fails to find a Player for a content type or

protocol because it is not supported, it will throw an exception. A different content type has to

be used in that case or a polite message should be displayed to the user.

6.7 OnDO SIP Sever from Brekeke

A SIP Servers can act as a SIP registrar, proxy or redirect server as explained in Chapter 4.

The OnDO SIP server from Brekeke is the name of the SIP proxy and registrar server

developed and sold by Brekeke Software, Inc. The product has flexible control routing

functions.

All operations are performed from the administration tool. Since OnDO SIP Server's

administration tool is web-based, maintenance can be performed remotely. From the

administration tool, you can start/stop the server, define or modify dial plans, create users or

modify settings. When using OnDO SIP Server in educational institutions, licenses are free to

students or staff members and could be easily download and installed.

The OnDO SIP Server is a call control server compliant with IETF SIP standard [RFC3261].

The server can act as registrar and proxy server, and performs call routing. With OnDO SIP

Server, it is possible to use SIP hardphones and SIP softphones.

I was able to verify the registration of the SIP UA at the SIP server by logging in at the SIP

server and clicking the Registered heading.

The subsequent images show the user interface of the web administration tool:

First a login window appears and by typing the right administrator user name and password, the

status of the Sip Server is shown. This could be either Active or Inactive. By a button press a

Shutdown of the SIP server can easily be done.

When pressing on the Registered link, the SIP server shows all the registered user with detail

information, as illustrated in Figure 6.8. The users in the Figure were registered through the

prototype and not through the web admin tool.

Unrealized

Manager.createPlayer

Closed close

Started

Realized
Prefetched

realize
close

close

close

start

 stop

prefetch

deallocate

Samya Chahin SIP UA for Mobile Devices

Page 79 of 85

Figure 6.8 Registered users

The SIP server is able to display the currently running sessions. By clicking on the Sessions

link and by clicking on the SessioID, the detail information about the chosen session is

displayed as shown in Figure 6.9.

Samya Chahin SIP UA for Mobile Devices

Page 80 of 85

Figure 6.9 Active session

Figure 6.12 Detail information about the session

Samya Chahin SIP UA for Mobile Devices

Page 81 of 85

6.8 Audio Playback

Unfortantely, mobile devices are still not powerful enough for playing back audio sampled

data. The available player of the MMAPI package needs much time to set the pointer at the

beginning of the buffer for every new collected audio sample. This time delay has lead to the

problem packets are not played back and therefore no clear audio conversation is possible.

Even by trying to use two parallel buffers, the problem is even much worse during player reset,

because of the time to switch between the two different buffers. I am sure that mobile phones

will get much powerful in the future and a solution like using two different buffers will work.

Samya Chahin SIP UA for Mobile Devices

Page 82 of 85

7 Summary

The aim of this Thesis was to realise a SIP User Agent for mobile devices. The architecture

consists of three main parts, which are the SIP, RTP and media playback part. To be platform

independent, Java was chosen for the implementation.

First, I gave an introduction about the SIP and the RTP and the motivation for the work

presented in this Thesis. Then I discussed the reasons for choosing SIP as the signaling

protocol and mentioned a short description of the main topics and contributions of this work.

Afterwards, I explained the currently available mobile devices on the market, a comparison

between them and a short description about mobile applications. Then, I went deeply through

the J2ME framework. I showed the functionality through simple examples and compared the

existing Java Virtual Machines and the main packages used for mobile phones. These are the

Connected Limited Device Configuration and Mobile Information Device Profile, which have

been explained in more detail. How all J2ME components fit together, how network

connections can be estabished and the lifecycle of MIDlets have been shown. Finally, the

wireless toolkit was introduced, because it was the development tool used in this Thesis. Then

in Chapter 4, which is a very important part of this Thesis, I covered the SIP. It started with the

definition and showed call flow examples. The SIP messages, requests and responses, were

explained. The SIP components were presented and the SDP was introduced. An example of a

SIP User Agent with its functionality currently available on the market was shown. Finally, the

available Java SIP packages for mobile devices were discussed, explaining the architecture of

each with a comparison. These are JAIN SIP Lite and SIP API for J2ME. I chose JAIN SIP Lite

for the practical part of this Thesis, because it is open source and optimization is allowed. After

that, I gave an overview about the RTP and why it is so important for SIP in the real-time data

exchange. The RTP header fields were explained in detail and how RTP fits in the architecture.

Finally, the available Java packages for mobile multimedia were intoduced. Chapter 6, which

is the final Chapter, includes the practical part of the Thesis, which is the prototype. Starting

with the development steps used and the requirements needed to make this implementation

possible. This Chapter showed and explained how all components work together. Own

implemented parts were shown by sequence and class diagrams. A general class architecture

was presented and screenshots of the prototype illustrates how it is really working. Through the

Mobile Media API, it was possible to send and play back voice data. The UA was tested and

call establishement was verified by the prototype.

8 Conclusion and Outlook

Session Initiation Protocol (SIP) is used for setting up communication sessions such as

conferencing, telephony, whiteboarding and instant messaging on the Internet. It bridges the

gap between the Internet and conventional telephony. Through the prototype of this Thesis this

was verified and wireless IP calls were successfully established.

Commercial SIP-based products and services already include IP phones, PC clients, SIP

servers and IP telephony gateways. It has huge potential for use in third-generation (3G)

wireless networks, in mobile applications, and in providing the essential infrastructure for

Internet telephony, including quality of service and security. So there is a huge future for

developing new applications waiting. As stated by the telecomm magazin in march 2003:

Two of the fastest-growing areas of development in the telecom industry in recent years have

been mobile telephony and IP-based communications. It's no coincidence, therefore, that these

two areas are converging and at the center of this move towards greater mobility for IP is SIP

Samya Chahin SIP UA for Mobile Devices

Page 83 of 85

(Session Initiation Protocol). SIP is becoming for person-to-person IP communications what

HTTP is for the Internet and, while much of its early development was focused on fixed-line

web services, the attention of many developers has now switched toward mobile networks.

Making SIP work with wireless devices will allow next-generation mobile users to access

multi-function IP-based services which can combine voice, messaging and e-mail on their

cellular handset or PDA. SIP has won some heavyweight backing in the mobile industry; the

3GPP (3G Partnership Project), the body which produces 3G standards for evolved GSM

networks, has already decided to base 3G mobile call set-up on SIP. Companies such as

Microsoft, Nokia and Vodafone are other notable names to take up the protocol.

SIP addresses the needs of IP telephony from an Internet perspective. IP telephony will replace

traditional telephony systems, which includes next generation mobile communication

networks. The bandwidth will increase and by greater bandwidth, a very good speech quality

and powerful applications will be enabled. SIP will be embedded in 3G phone handsets and

Personal Digital Assistants and as shown from the prototype, it is possible to have wireless IP

voice sessions on mobile devices.

Samya Chahin SIP UA for Mobile Devices

Page 84 of 85

9 References

[BREKEKE] Brekeke: OnDo Sip Server; http://www.brekeke.com/

[IBMNETW] Networking with J2ME, Entigo,

http://www-106.ibm.com/developerworks/wireless/library/wi-jio/ (01 Sep

2002)

[J2ME] Eric Giguère (2002): Java 2 Mirco Edition; Wiley, Professional Developer’s

Guide Series; ISBN 0-471-39065-8

[J2MICRO] James P. White and David A. Hemphill; Java 2 Micro Edition - 04/04/2002

[MIDP] C. Enrique Ortiz, Eric Giguère (2001): Mobile Information Device Profile for

Java 2 Mirco Edition; Wiley, Professional Developer’s Guide Series; ISBN

0-471-03465-7

[MMAPI] Eidenberger, Horst : Medienverarbeitung in Java : Audio und Video mit Java

Media Framework & Mobile Media API / Horst Eidenberger ; Roman

Divotkey. - 1. Aufl. . - Heidelberg : dpunkt, 2004.

[NOKIA] Nokia Forum, http://www.forum.nokia.com/

[OR] Kim Topley (2002): J2ME in a Nutshell; O’Reilly; ISBN 0-596-00253-X

[RFC3261] J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson, R.

Sparks,M. Handley,E. Schooler, SIP: Session Initiation Protocol, Internet

Engineering Task Force. RFC 3261, June 2002

 [RFC793] Information Sciences Institute, University of Southern California,4676

Admiralty Way, Marina del Rey, California 90291, Transmission Control

Protocol, Internet Engineering Task Force. RFC 793, September 1981

[RFC2794] P. Calhoun, C. Perkins, Mobile IP Network Access Identifier Extension for

IPv4, Internet Engineering Task Force. RFC 2794, March 2000

[RFC1924] R. Elz, A Compact Representation of IPv6 Addresses, Internet Engineering

Task Force. RFC 1924, April 1996

[RFC768] J. Postel, User Datagram Protocol, Internet Engineering Task Force. RFC 768,

August 1980

[RIGGS] Roger Riggs u.a. (2001): Programming Wireless Devices with the Java 2

Platform, Micro Edition; Addison-Wesley; ISBN 0-201-74627-1

[RTP] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson: Realtime Transport

Protocol. Internet Engineering Task Force. RFC 1889, Jänner 1996

[SDP] M. Handley, V. Jacobson: Session Description Protocol. Internet Engineering

Task Force. RFC 2327, April 1998

Samya Chahin SIP UA for Mobile Devices

Page 85 of 85

[SIPOLD] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg: SIP: Session Initiation

Protocol. Internet Engineering Task Force. RFC 2543, März 1999

[SIPTEL] R. Pailer, S. Bessler, K. Peterbauer, V. Nisanyan, J. Stadler: A Serviceplatform

for Internet-Telecom Services using SIP. SmartNet2000, Mai 2000

[SUN] SUN Mircosystems: Java 2 Micro Edition; http://java.sun.com/j2me/ und SUN

Wireless Developer Homepage; http://wireless.java.sun.com/

