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Kurzfassung

Diese Dissertation ist eine interdisziplindre Zusammenarbeit zwischen dem Forschungsfeld
der Astronomie und der digitalen Bildverarbeitung, die neue Perspektiven in beiden dieser Ge-
biete eroffnet. Einerseits profitieren die Astronomen von den neuen Verarbeitungsprozessen
und Analysemethoden, der verbesserten Leistungsfahigkeit sowie der Qualitédt der Ergebnisse,
andererseits erschlieBt sich den Technikern ein neuer Forschungs- und Anwendungsbereich.
Ein Beispiel hierfiir ist die digitale Bildverarbeitung, die durch ein Weltraumprogramm initiiert
wurde, ja sogar die Bildkompression hatte ihren Ursprung in einer Weltraumanwendung.

Das Ziel dieser Arbeit ist die Erkennung und die Entwicklung neuer Methoden und Software-
Werkzeuge fiir Weltraum-Observatorien, um Kompressionsstandards in der Weltraumastronomie
einzufiihren. Fiir die Validierung der Ergebnisse wurde der Fall von Infrarotastronomie beson-
ders analysiert. Die verwendeten Weltraumtechnologien haben grundsitzlich einen besonderen
technologischen Aufbau und sind mannigfaltigen duBeren Einfliissen ausgesetzt. Vor allem
Infrarotdetektoren unterscheiden sich von herkémmlichen bildgebenden Instrumenten durch
ihre hohere Ausleserate, was einen sehr viel hoheren Datenstrom bedingt.

Diese Arbeit stellt eine Losung fiir die Infrarotastronomie dar, wobei das Konzept ’On-
Board Verarbeitung” (OBP) fiir optimale Niitzung der Telemetriebandbreite und der limitiert
On-Board Ressourcen eingefiihrt ist. JPEG 2000 konnte eine intuitive Losung sein um die
Telemetrie-Anforderungen zu erfiillen. Eine groBe wissenschaftliche und wirtschaftliche Gesell-
schaft beschiftigt sich mit der Entwicklung und der Verbesserung dieser Bildkompressionsstan-
dards. Jedoch zeigen wir mit einem einfachen Beispiel in Kapitel 4.4, da JPEG 2000 nicht fiir
Infrarotastronomie geeignet ist, wihrend OBP die optimale Losung liefert. Thermische Infrarot
Sensordaten enthalten das ”Source” Signal und den Ungewiinschte ”Background”, der tausend
mal grosser als das Signal ist. Deswegen kann die generische Quantisierung (z.b. Fall von JPEG
2000) relevante Informationsverluste zur Folge haben, wihrend OBP unter Einbeziehung von
Sensoren “"Know-How”, die einzige Losung fiir optimale Leistung ist.

Die Vorgehensweise besteht aus der Kodierung der Daten, wodurch die Redundanz in den
Infrarotbildern iiber den Gebrauch eines Dictionarys ausgenutzt wird. Die Daten werden dann
mit einem neuartigen Kompressionsalgorithmus reduziert. Die Beurteilung der Leistung der
Algorithmen erfolgt unter der Riicksichtnahme von Kompressionsverhéltnis, Qualitét des Re-
sultats und Komplexitit des Algorithmus. Die Auswirkung auf die Zukunft der Informations-
technologie soll die Entwicklung von Dateniibermittlungssystemen sein, wobei die Kommu-
nikationsbandbreite, die Qualitit der Ergebnisse, und die Datenarchivierung beriicksichtigt wer-
den. Die OBP Losung hat ein verbessertes Kompressionsverhiltnis und qualitativ hochwer-
tigere Ergebnisse im Vergleich zu “state-of-the art” Kompressionsalgorithmen, was eine weitere
Reduzierung des Datentransfers beim Infrarot Weltraumsatelliten-downlink zur Folge hat.
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Abstract

During the past two decades, image compression has developed from a mostly academic
Rate-Distortion (R-D) field [130], into a highly commercial business [144]. Various lossless
and lossy image coding techniques have been developed [109].

This thesis represents an interdisciplinary work between the field of astronomy and digital
image processing and brings new aspects into both of the fields. In fact, image compression
had its beginning in an American space program for efficient data storage. The goal of this
research work is to recognize and develop new methods for space observatories and software
tools to incorporate compression in space astronomy standards. While the astronomers benefit
from new objective processing and analysis methods and improved efficiency and quality, for
technicians a new field of application and research is opened. For validation of the processing
results, the case of InfraRed (IR) astronomy has been specifically analyzed.

This work presents a solution for infrared astronomy, where the concept of On-Board
Processing (OBP) is introduced for efficient exploitation of the telemetry bandwidth and the
budget-limited space observatories. Indeed, IR astronomy, most commonly, requires space ob-
servatories because the Universe cannot be accessed from ground in the full IR range as Earth’s
atmosphere blocks most IR wavelengths. Thus, IR astronomy is a good candidate to support
our investigation. Furthermore, IR imaging with dedicated observations requires specific tech-
niques with a complex semiconductors technology. Thus, the resulting data is very sensitive to
noise, which make the feasibility of our approach challenging.

IR detectors consist, as a rule, of fewer pixels than those for the visual range, but the design
of multi-sensor instruments for space applications with special technologies and a harsh radi-
ation environment require high readout rates leading again to larger data volumes. Therefore,
although many applications exist, which generate or manipulate astronomical data (including
wavelet-based methods), transmitting image information still faces a bottleneck such that the
proposed techniques are often ad-hoc and sometimes inconsistent. One intuitional solution can
be the JPEG 2000 standard to achieve the telemetry requirements. Indeed, a large scientific and
commercial community is contributing for the development and the improvement of the JPEG
2000 compression codec. We demonstrate with a simple example in Section 4.4 the limitation
of this compression method (JPEG 2000), concerning this astronomical application while OBP
outperforms this generic compression codec. Indeed, thermal IR detector raw data (at wave-
lengths > 5um) consist of two constituent contributions: the source signal, and the unwanted
background. The background is generally higher than the source signal in the order of sev-
eral thousands. Therefore, generic quantization (e.g. case of JPEG 2000) may lead to drop
away the relevant information, while a dedicated compression technique using infrared detector
knowledge is the only way to optimal performance.

The performance of this solution (OBP) is being measured by considering the compression
ratio, result quality and algorithmic complexity. A new complexity analysis and measure is
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developed for Digital Signal Processor (DSP) architecture. The OBP complexity is evaluated
for the Analog Device processor ADSP 21020. The impact of this research on the future of
information technology is to develop data delivery systems where communication bandwidth
and quality are at a premium and archival storage is a costly endeavor. This new framework has
an improved compression ratio and result quality over the best-known pre-existing compression
algorithms, which will lead to a reduction of the data traffic for infrared observatories.
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Résumé

L’avancement rapide dans le domaine “compression d’image”, d’un aspect académique
taux-distorsion [130] jusqu’aux applications commerciales [144], a vu le développement de
plusieurs techniques de codages durant ces deux derniéres décennies.

Cette thése représente un travail interdisciplinaire entre le traitement numérique des images
et I’astronomie qui contribue par de nouveaux aspects dans les deux domaines. En effet, la
compression d’image a vu le jour dans un programme spatial américain dans les années 50.
le but de ce travail consiste en la reconnaissance et le développement de nouvelles méthodes
pour les observatoires spatiaux et de les incorporer dans les standards de compression pour
I’astronomie spatiale. Tandis que les astronomes bénéficient de nouvelles méthodes objectives
de traitement et d’analyse et d’une qualité meilleure de résultats, les techniciens profitent d’un
nouveau domaine de recherche et d’application. Pour valider ce traitement, le cas d’astronomie
en InfraRouge (IR) est spécialement analysé.

Dans cette thése, une solution est mise en oeuvre pour 1’astronomie en IR et le concept
traitement a bord (OBP) est introduit pour 1’exploitation efficace du canal de transmission
pour les observatoires spatiaux a resources limitées. En effet, I’astronomie en IR nécessite
des observatoires spatiaux, comme ’univers ne peut pas &tre accédé de la terre sur I’ensemble
longueurs d’onde IR a cause de 1’atmosphere qui bloque la majorité des radiations IR. En
plus, ’acquisition d’image IR exige des techniques spécifiques avec une technologie complexe.
Ainsi, le signal resultant est sensible au bruit ce qui rend la faisabilité de notre approche trés
critique.

JPEG 2000 est une solution intuitive pour le probléme de compression d’image. En ef-
fet, une grande communauté scientifique et commerciale contribue pour le déveleppement et
I’amélioration de ce standard de compression d’image. On démontre avec un exemple trés sim-
ple dans le paragraphe 4.4, la limitation de la méthode générique JPEG 2000, tandis que notre
solution proposée (OBP) est mieux adaptée aux images astronomiques IR. En effet, les données
sources des détecteurs IR consistent en deux contribution: le signal source (désiré) et le sig-
nal du télescope (bruit non- désiré). Le signal du télescope est générallement milliers de fois
plus grand que I’information nécessaire (signal source). De ce fait, la quantification générique
(’exemple de JPEG 2000) cause une perte de I’information, tandis que la compression dédiée
pour I’astronomie IR en utilisant la connaissance des caractéristiques des détecteurs est le seul
moyen pour aboutir a la solution optimale.

Les performances de cette solution (OBP) sont mesurées en tenant compte du taux de com-
pression, qualité des résultats et la complexité algorithmique. Une nouvelle méthode d’analyse
et de mesure de complexité est développée pour les processeurs de signaux. La complexité de
OBP est evaluée pour le processeur ADSP 21020 d’ Analog Device. L'impact de cette recherche
sur le futur de la technologie de I’information est le développement de systeéme de codage de
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données pour une exploitation optimale des canaux de transmission et de capacité de stockage.
La nouvelle méthode développée présente de meilleurs résultats (taux de compression, qualité,
complexité) comparés a ceux de I’état de I’art, ce qui réduit le trafic pour les observatoires
spatiales.
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Chapter 1

Introduction and Overview

1.1 Motivation

During the past few decades, InfraRed (IR) imaging has become a major tool in astronomy
due to the rapid advances in IR detector technology [43]. Our eyes are detectors, which are
designed to detect visible light waves (or visible radiation). Visible light is one of the few types
of radiation that can penetrate our atmosphere and be detected on the Earth’s surface.
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Figure 1.1: The electromagnetic spectrum



The full electromagnetic spectrum includes gamma rays, X-rays, ultraviolet, visible, IR, mi-
crowaves, and radio waves. These different forms of radiation all travel at the speed of light (c).
They differ, however, in their frequencies and wavelengths. The product of the frequency (v)
times the wavelength ) of electromagnetic radiation is always equal to the speed of light.

c=Uv.A (1.1)

Figure 1.1 depicts the above-listed regions of the electromagnetic spectrum respective to
wavelengths and frequencies. IR radiation lies between the visible and microwave portions of
the electromagnetic spectrum [107]. The wavelength range of IR radiation is broken into three
categories: near, mid and far IR. Near IR (0.7 um - 5 pm) refers to the part of the IR spectrum
that is closest to visible light and far IR (30 um — 1 000 pm) refers to the part that is closer to
the microwave region. Mid IR (5 um — 30 um) is the region between these two (near and far
IR) [43, 107].

IR radiation is invisible for the human eye [43]. Even objects that we think of as being very
cold, such as an ice cube, emit IR radiation. For this reason, IR telescopes can observe astro-
nomical objects that remain hidden for optical telescopes, such as cool objects that are unable
to emit in visible light. For this reason also, IR instruments need to be cooled down to temper-
atures below 3 degrees Kelvin, otherwise their own IR emission would spoil the observations.
Opaque objects, those surrounded by clouds of dust, are another specialty for IR telescopes: the
longer IR wavelengths can penetrate the dust, allowing us to see deeper into such clouds [43].

Indeed, IR astronomers can detect/observe a much wider part of objects of the Universe.
Many of the Universe’s constituent parts (such as stars) are found in dusty environments or
(such as galaxies) include a huge amount of dust features. IR detectors enable us to peer into
the obscured cocoons of star formations and into the heart of dusty galaxies [43, 54]. Further-
more, many interesting astrophysical phenomena are relatively cool (planets, interstellar gas
and dust), and hence radiate primarily at IR wavelengths [50]. On the other hand, several ob-
jects are best studied in the IR. These include cool stars which are too faint to be detected in
visible light (e.g. brown dwarfs), star forming regions which are embedded in thick dust and
cannot be seen in visible light, star-burst galaxies, our galactic center, planets, asteroids, light
from the distant Universe, which has been red-shifted [43] into the IR, and the dust between
the stars [50]. However, the Earth’s atmosphere acts as an umbrella for most IR wavelengths,
preventing them from reaching the ground, such that the water vapor at the Earth’s atmosphere
absorbs most of the IR radiations [43, 143]. Almost none of the IR portion of the electromag-
netic spectrum can reach the surface of the Earth, although some portions can be observed by
high-altitude aircrafts (such as the Kuiper Observatory [155]) or telescopes on high mountain-
tops (such as the peak of Mauna Kea in Hawaii). Therefore, a space observatory (equipped with
an IR-telescope) is required to detect this kind of radiation invisible to the human eye, and to
study the entire IR range.

Nowadays, astronomical data collected on-board space observatories impose enormous stor-
age and bandwidth requirements for downlink, regarding the continuous observation and the

high readout rates [122]. IR detectors consist, as a rule, of fewer pixels than those for visual
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1. Introduction and Overview

range, but the design of multi-sensor instruments leads to even higher data volumes. If multi-
ple detectors are operated in parallel to support multi-spectral or even hyper-spectral imaging,
then the data volumes multiply. Furthermore, small spacecrafts are usually used for deep space
missions. They are characterized by being restricted to low budget and consequently to low
data rate. Therefore, although many applications exist, which generate or manipulate astro-
nomical data [15, 95, 107, 134], transmitting image information still face a bottleneck such
that this constraint.has stimulated advances in compression techniques for astronomy [24, 72].
However, the proposed techniques are often ad-hoc and sometimes not appropriate for IR data.
For example, in [72], the listed methods involve filtering of information, which is not consid-
ered relevant, by making use of object recognition methods that face the background estimation
problem to guarantee not to destroy relevant information. Furthermore, this lessens the inter-
pretability of the results and limits the extension of the method to non-image data structures.

Figure 1.2. Example of an infrared image. a) Raw image at 1500 s integration time. b) One
interesting object in the image ’Galaxy SBS-0335-05210’. c¢) Resulting Image after denoising
(Noise from the electronic)

Indeed, thermal IR (mid and far IR) imaging is a measure of heat. To capture this energy,
a complex instrumentation is used such that the detectors are cooled down to few kelvins, to
not spoil the target signal. Therefore, the detector measures a composite signal: source + back-
ground. The source is considered as the object heat (observed target). The background is the
environment heat (telescope signal) whose amplitude is usually, for performance reason, far too
high than that of the observed target. To capture the IR image of the wished target, one has to
integrate several images over time (usually hours, depending on the wavelength), that is called,
integration time. Other observation techniques are also used to capture IR images of an object
including chopping and wavelength switching [13]. Therefore, the IR image acquired at time t
usually has no object structure, which make the compression task challenging, such that it has
to ensure that the relevant signal (observed source) is not lost while compression. Furthermore,




IR image acquisition is susceptible to heavy particles (glitches) that might on one side disturb
the signal accuracy, changing the electronic characteristics (e.g. responsivity), and on the other
side, it might increase the signal entropy that may decrease the compression efficiency. Fig-
ure 1.2 depicts an example of an image from the IR telescope GEMINI [121]. Figure 1.2 a)
shows the raw image at 1500 sec integration time. One interesting object (Galaxy) in the image
after a post processing can be found in Figure 1.2 b). Figure 1.2 c) shows the relevant image for
the astronomy expert after removing the noise and the stripping artifact due to the instrument
electronic. The challenge of data compression is to preserve as much information as possible
from the image such that the relevant image structure (e.g. Figure 1.2 b)) can be reconstructed.

Although data compression is still a major topic of research, the industry has already come
up with several compression standards, like ZIP, JPEG and JPEG2000 [109, 144, 145]. All
compression techniques exploit the fact that the data are highly redundant. This redundancy
allows us to reconstruct a signal (e.g. image or video) from compressed information that is
only a small fraction of the original data, in size. Of course, using compressed data implies
that the consuming application must first reconstruct the signal information. Thus, we are in
fact compensating for inadequate network bandwidth with processor-power. While technolo-
gies evolve, constraints on data quality grow with the challenging consumer demands and the
algorithms for compressing and decompressing visual information are becoming increasingly
complex [23, 97]. Therefore, a significant research effort has also been invested in analyzing
the performance of compression algorithms in terms of quality and complexity. Such an anal-
ysis forms the basis for optimizing the algorithms, and also for determining whether a given
algorithm is appropriate for the application at hand. To my knowledge, no real study has been
performed for astronomical IR data compression apart the use of wavelet-based compression
techniques [24, 72]. The IR data per definition contain high entropy due to the influence of
noise [43, 90]. Therefore, advanced compression techniques have to be used in order to satisfy
the quality requirements within a typical processing environment.

This thesis is concerned with integrating new data compression and caching techniques for
improving the efficiency of bandwidth-limited transmission channels in case of IR space astron-
omy. Generally, IR data are collected on-board of an observatory (satellite) that can overload
downlink bandwidths and on-board memory resources rapidly. This discrepancy is a common
phenomenon for deep space applications with very limited telemetry rates as well as for Earth
observation missions where admissible payload masses and energy budgets allow the assembly
of high-rate payloads. Hence, an efficient data compression method with knowledge on IR de-
tector characteristics is required for optimal performance.

The Institute of Computer-Aided Automation, Pattern Recognition and Image Processing
group together with the Institute for Astronomy of the University of Vienna have been involved
in the Herschel project [149] from the European Space Agency (ESA). They have developed
and implemented data compression algorithms for the IR Photo-detector Array Camera and
Spectrometer (PACS) [4, 12]. The compression method has been developed for the Ge:Ga
photo-conductor arrays [103, 138] and silicon bolometer arrays [83]. Due to the difference in
signal characteristics, the compression algorithms used depend on the detectors activated.



1. Introduction and Qverview

The PACS compression scheme is part of the contribution of this thesis. Furthermore, an ac-
curate investigation of the IR astronomical signal is performed to recognize a generalized com-
pression method for different types of IR detectors. We propose goal-driven compression with
new algorithms, which address both aspects of distortion/rate and complexity. Distortion/rate
theory is generally used to assess the merits and performances of a compression method. It
makes use of a quantitative measure of a distortion by mean of the calculation of the recon-
struction error versus the compression ratio achieved. On the other hand, the complexity of the
algorithm is relevant because it defines the feasibility of the method. Therefore, the implemen-
tation of the method has to be part of the method design.

Although we will specifically consider only data compression algorithms for IR astronomy,
the techniques developed here may be used to analyze any signal-processing algorithm. Our
approach integrates the two basic ideas of compression and caching into a single mechanism,
i.e. data are automatically cached whenever possible, avoiding retransmission altogether, and
if data have to be transmitted, they are compressed in a very efficient way, which surpasses
the performance of compression algorithms which are widely used at this time. Therefore, we
develop an optimized model for data compression that adapts the environment characteristics
and exploits the available resources better. The compression algorithms developed within this
thesis can be also used to utilize archival storage effectively.

The evaluation of the investigated methods are performed according to several metrics sup-
ported by experts in IR astronomy. Based on its simplicity, pixel-based Root Mean Square Error
(RMSE) or its derivatives Signal-to-Noise-Ratio (SNR), Peak Signal-to-Noise-Ratio (PSNR)
are dominant metrics in practice. However, RMSE does not take the spatial property of hu-
man’s visual perception into account that is the reason why it fails under many circumstances.
In this thesis, we use the Potential Information Loss (PIL) metric and the support of astronomers
for the assessment of the compression quality on images. PIL is a derivative of the Kullback-
Leibler (KL) information gain, which consider astronomical object profile as Gaussian curve.
Data from the InfraRed Astronomical Satellite (IRAS) [148], the Infrared Space Observatory
(ISO) [147] and the Herschel Space Observatory (HSO) [149] are used for test and evaluation
of the developed methods.

Astronomers’ community will profit from this investigation such that they will benefit from
new objective processing and analysis methods and improved efficiency and quality. The im-
pact of the research on the future of information technology will be the development of data
delivery systems for situations in which communication bandwidth and result quality are at a
premium and archival storage is an exponentially costly endeavor.

1.2 The Contribution of this Work

The work presented in this thesis contributes to further development of science (signal/image
processing) and enhancement of the understanding of the field “compression for infrared astron-
omy”. This work presents a solution for infrared astronomy by the recognition of an efficient
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data transmission for infrared space astronomy for:
e a better exploitation of the telemetry bandwidth by means of a study of:

— signal characteristics for infrared instruments and

— the light detection mechanism with infrared sensors

e and a better exploitation of the available processing resources by means of:

— quantitative measure of complexity

— assessment of the software and implementation complexity and its optimization for
embedded applications
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Figure 1.3. Main contributions of this work for further development of signal/image processing.
The novelty is displayed with boxes of discontinuous lines and dark (green color) background

Figure 1.3 illustrates a summary of the scientific contribution of the thesis in both fields
signal/image processing and astronomy. The boxes with dashed lines and dark (green color)
background are the novelty of the thesis into science.



1. Introduction and Overview

1.3 Outline

The thesis can be subdivided into two main parts, the one dealing with the analysis of the
infrared detectors signal for compression and the second part dealing with the compression per-
formance assessment in term of result quality and algorithmic complexity. The Herschel-PACS
camera has been used for the evaluation of the analysis results and for the proposed on-board
processing solution. ‘

In Chapter 2, important aspects from infrared astronomy are presented. In the first part,
the astronomical signal characteristics from infrared detectors and their mathematical formula-
tion are given including the light detection mechanism, the detector technology and the readout
modes. In the last part, typical images from infrared astronomy are illustrated and the astro-
nomical efficiency of the system is given.

Chapter 3 introduces preliminary notions on data compression. The formal definition of
data compression and conventional assessment criteria for compression algorithms are given.
Furthermore, the existing noise models, relevant for astronomy applications, are introduced. It
also presents state-of-the art compression methods for both signal and image processing appli-
cations. Dedicated methods for astronomical applications are also summarized in this chapter.

In Chapter 4, the main contribution of this work to the scientific research is presented. An
on-board processing framework has been proposed for infrared observatories constrained with
limited telemetry, processing resources and large data volume. All on-board processing modules
have been detailed and illustrated with examples. Finally, a demonstration of this framework
performance has been made on images from ISO. It is shown that the proposed solution outper-
forms the generic image compression standard JPEG2000 for infrared astronomy.

In Chapter 5, an investigation on the algorithmic complexity of the proposed processing
method for IR astronomy is performed. In the first part, a dedicated methodology for complex-
ity analysis and measure of any compression algorithm is given. In the second part, the resulting
approach is used to measure the on-board processing complexity on the Analog Device digital
signal processor ADSP 21020. It was shown that final complexity is the sum of the contribution
of all processing modules, that fit to the resource limitation.

Chapter 6 presents experimental results of the proposed processing concept on the Herschel-
PACS camera [149]. The PACS specific constraints have been detailed. An analysis of PACS
spectroscopy data (ramps) has been performed and observed models are included in an Atlas
with five ramp morphologies. The performance of the proposed on-board processing are eval-
uated on PACS data according to this Atlas using the introduced four metrics (Chapter 3) and
the compression ratio.

In the last Chapter, a summary of the thesis is given. Furthermore, possible extensions for
this investigation are proposed.



Chapter 2

Astronomical Aspects

Before we start, important photometric definitions are introduced in the first section. In the
second part, historical aspects of IR discovery are given. The signal characteristics of IR sensors
are detailed in the third part including the light detection mechanism, the detector technology
and types and the readout modes. In the last part, examples of astronomical images and object
classification are presented for illustration.

2.1 Photometric Definitions

The total outward flow radiation from a body is called its luminosity ”L” measured in Watts.
If divided into spectral intervals, this quantity becomes its monochromatic luminosity L, mea-
sured in units of Watts Hz~1, or L, measured in units of Watts um~!, where ) is the wavelength.
The power emitted from unit area of a source into unit solid angle is called the intensity ”I” and
it is measured in Watts sterad “'m~2. The same quantity, when divided into spectral intervals, is
called the specific intensity I,. Similarly for I,.

The received radiation, F), or F) per unit of frequency or wavelength, is measured in W m 2
Hz~! or W m~2 ym~!. This quantity is known as the monochromatic flux density or simply the
monochromatic flux in astronomical parlance. The monochromatic flux density is also called
the spectral irradiance and this is the astronomical signal of interest as it represents the science
product. Flux densities in frequency units can be converted into wavelength units and vice
versa. The flux density in unit frequency interval is F,,. Since Equation 1.1 we have

2

A
A= ——dv=-"dv @.1)
14 C

If we put d\ = 1, dv becomes the frequency interval corresponding to unit wavelength
interval and it is seen that

Fy =2.998X108Fv /)2 (22)

if expressed in the SI-system (Systéme Internationales d’unités). It is also interesting to
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2. Astronomical Aspects

note that

vE, = \F), (2.3)

In discussing the overall energy distribution of the radiation from an astronomical object,
logvF, or log)F, is often graphed against logv or log) to show in what frequency or wavelength
regime it emits the most power per decade.

If I'is the intensity of a ray of original intensity I, which has passed through a layer of absorbing
material, then the optical depth 7 of the material is given by

I=1Ie™" 2.4)

For 7 = 1, the ray energizes at e!

can write

~ (0.368 times its original strength. More specifically, we
I,\ = I)\o e ™ (25)

2.2 Discovery of the Infrared

The both musician and astronomer Sir Frederick William Herschel (1738-1822) [16] has dis-
covered the IR radiation in the year 1800. Herschel (see Figure 2.1) is perhaps most famous for
his discovery of the planet Uranus in 1781, the first new planet found since antiquity.

He was interested in learning how much heat passed through the different colored filters
he used to observe the Sun and noticed that filters of different colors seemed to pass different
levels of heat. He discovered the IR radiation while measuring the temperature of each color
from a directed sunlight through a glass prism by measuring the temperature just beyond the red
portion of the spectrum in a region apparently devoid of sunlight. To his surprise, he found that
this region had the highest temperature of all. Herschel’s experiment was important not only
because it led to the discovery of infrared, but also because it was the first time that someone
showed that there were forms of light that cannot be seen with human eyes. Herschel’s original
prism and mirror are on display at the National Museum of Science and Industry in London,
England.

Today, infrared technology has many exciting and useful applications. In the field of in-
frared astronomy, new and fascinating discoveries are being made about the Universe. Medical
infrared imaging is a very useful diagnostic tool. Infrared cameras are used for police and se-
curity work as well as in fire fighting and in the military. Infrared imaging is used to detect heat
loss in buildings and in testing electronic systems. Infrared satellites have been used to monitor
the Earth’s weather, to study vegetation patterns, and to study geology and ocean temperatures.

2.3 Infrared Signal Detection with Photodetectors

The simplest light-detection method possible with photodetectors is incoherent or direct detec-
tion, in which the signal involves the photocurrent itself (directly proportional to the power of

9



Figure 2.1: Sir William Herschel

incident light), or the difference in photocurrent between two separate exposures of the detec-
tor to light. In the following we consider the sensitivity of incoherent detection, asking the
question: what is the smallest power that can be detected in a given amount of time, given the
parameters of detector and instrument?

The basic incoherent-detection setup is shown schematically in Figure 2.2. Besides the
detector, it is assumed to include:

e some optical elements that can add significant amounts of light to the beam, in addition
to that provided by the signal power from a celestial source. The simplest example of
the addition of such background light is thermal (blackbody) emission from the optical
elements themselves, which is commonly the dominant background source at IR wave-
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2. Astronomical Aspects
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Figure 2.2: Light detection with photodetectors

lengths and longer (> 2 pm) for room-temperature optics. If the transmission of these
optics is represented by 1- €, then the signal is reduced by that factor, that is, an incident
power Pg is reduced to (1- €)Pg, and ¢, the effective emissivity of the optics, gives rise to
thermal radiation in the amount

2hv3 1
2 ev/kT _ |

Pg =€eB,(T)AvAQ = ¢ AVAQ, (2.6)
where T is the temperature of these optics, Av is the bandwidth of light which we are
concerned (assumed <<v), and A(Q is the area-solid angle product of the beam (assumed
<< 4mA). We will refer to any such optical elements as warm. At visible and shorter
wavelengths, blackbody emission from optics at normal room temperature is negligibly
small, so such optics can be considered cold in this wavelength range. However, other
sources of background not easily described as thermal emitters can come into play, such
as twilight, air-glow, and scattered streetlights in the case of a ground-based telescope.

If the atmosphere above an earth-bound telescope has non-unit transmission, it can be
considered among the warm optical elements. Most atmospheric absorption would be
from the lower layers of the air, which we presume safely to be at the same temperature
as the telescope.

optical elements that do not add significant background, and by analogy to those discussed
above can be called cold optical elements. This class of optical elements includes the
filters (usually several filter elements) that determine the Full Width at Half Maximum
(FWHM) bandwidth Av and center frequency v of light transmitted to the detector, with
peak transmission (v < 1) at the center frequency. Usually, ”cold” for these optics means
cryogenic temperatures, especially for IR wavelengths and longer. But detectors usually
need to operate at cryogenic temperatures for best performance at A > 1um, astronomical
detectors are usually cooled to Tg,; < 30 K by use of liquid helium (boiling point 4.2 K
at 1 atmosphere pressure), so filters are often made cold by placing them in the cryostat
with the detectors.
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Using IR and longer wavelengths as our example, just because there is a simple expression
for the background emission in this range, the power incident through the warm and cold optics
on the detector (one typical detector, if an array is used) is

P =1(1-¢)Ps+ 7Pp, 2.7

(see Figure 2.2), where Pp is given by Equation 2.6. We are trying to measure Pg, which is
the power from the celestial source, within the wavelength band determined by the filters, and
within the solid angle 2. What would keep us from measuring arbitrarily small signal power in
a given time is noise in the photocurrent. Usually, it is possible to design the readout circuitry
so that Johnson noise is negligible compared to photocurrent shot noise, so it is this process we
must consider.

2.3.1 Infrared Detector Technology

Infrared detector technology continues to advance at a rapid rate in astronomy [54]. Early
infrared astronomers used thermocouples and thermopiles (a sequence of thermocouples com-
bined in one cell) [43]. In the 1950’s astronomers started to use Lead-sulphide (PbS) detectors
to study infrared radiation in the 1 to 4 micron range [43]. When infrared radiation in this range
falls on a PbS cell it changes the resistance of the cell. This change in resistance can be mea-
sured and is related to the amount of infrared radiation, which falls upon the cell. To increase
the sensitivity of the PbS cell it was cooled to a temperature of 77 degrees Kelvin by placing it
in a flask filled with liquid nitrogen. Astronomers now use InSb (Indium Antimonide), HgCdTe
(Mercury Cadmium Telluridem) and Ge:Ga (Germanium Gallium) detectors [103, 143]. These
operate in a way similar to the Lead-sulphide detectors but use materials, which are much more
sensitive to the infrared. The development of infrared array detectors in the 1980’s caused an-
other giant leap in the sensitivity of infrared observations [43]. Basically a detector array is
a combination of several single detectors. These arrays allow astronomers to produce images
containing tens of thousands of pixels at the same time. Infrared arrays have been used on
several infrared satellite missions. In 1983 the IRAS mission used an array of 62 detectors.
Astronomers now typically use 256x256 arrays (that is 65,536 detectors) [13, 43, 54]. Due
to these breakthroughs in infrared technology, infrared astronomy has developed more rapidly
than any other field of astronomy and continues to bring exciting new views of the universe
[147, 148, 153, 154].

2.3.2 Individual Detectors

As mentioned in Chapter 1, IR starts to be considered different from the visible on technical
grounds at a wavelength of 1.1um. This represented the limit at which individual photons could
be detected, at least until recently. Typical detectors are classified as photovoltaic or photo-
conductive, according to whether they register photons by generating a current of electrons or
merely by changing their resistance.

Detectors are made of semiconductors and rely on the excitation of electrons from an energy
band in which they are immobile to the conduction band, where they are free to move about.
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2. Astronomical Aspects

The difference in energy levels determines the minimum energy required of the incident photon
if it is to have the desired effect. Materials that have suitable natural band structure are called
intrinsic and those which are doped to provide suitable levels or bands are called extrinsic. The
maximum wavelength that can be detected is given by the formula

/\cu.toff (um) = 1-24Eezcit (28)

where “E.,.;” is the excitation energy in electron-Volts.
The characteristics of a few common detector materials are given in the table 2.1 [43].

[ Material | Temperature (K) | Acytos (microns) ||
Si 295 1.11
Ge 295 1.85
InSb 77 54
HgCdTe [152] 77 2.5
Si:As 5 23
Si:As [116] 5 30
Si:Sb 5 36
Si:Sb [116] 5 40
Si:Ga [76] 10 17.5
Ge:Ga 115
Ge:Ga(stressed) [150] 200

Table 2.1: Maximum usable wavelengths for several common detector materials

The smaller the band-gap, the more likely electrons are to enter the conduction band un-
wanted, by thermal excitation. It is therefore necessary to cool these longer-Wavelength detec-
tors more than the shorter wavelength ones.

Detectors are characterized by their quantum efficiency, linearity, response time and dark
current. The quantum efficiency is the fraction of the incident photons that produce collectible
conduction electrons in the detector. The linearity of a detector must be checked, for example
by observing standard stars of widely different magnitudes. Compensation must be applied
if non-linear behavior is found. The response time of a detector to a change in photon flux
is also an important characteristic, affecting readout speed and frequency response. The dark
current is a source of noise. It consists of spurious conduction electrons arising from sources
other than photon detections, such as thermal excitation and electrical leakage within the array.
The readout noise is usually expressed as the error in determining the number of electrons
collected during the period of exposure. It is more a property of the readout electronics than
of the detector itself. For example, if an array has a readout noise of 30 electrons, it would
be exceeded by the Poisson statistical fluctuations in the detected signal only if |/n. exceeds
30, where “’n,.” is the number of conduction electrons. Recent developments in detectors have
included a solid-state photomultiplier which offers single-electron detection in the near- to mid-
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IR. The principles of these devices were discussed in [100].

Photoconductors

A photoconductor, as its name implies, is a material which increases its conductivity when il-
luminated. From a noise point of view, it suffers the disadvantage that a current must be passed
through it to detect the change in resistance produced. A common effect of this is noise with a
power spectrum that varies according to 1/f (flicker noise), where f is the measuring frequency.
Its extent is kept small by careful choice of contact type and bonding technique. It appears to
arise where surfaces contact each other, for example between the very small crystals that make
up a chemically-deposited PbS detector.

Photoconductors are usually made of doped Si or Ge. The dopant is chosen to provide im-
purity levels or bands at a level below the conduction band suitable for a particular range of IR
photon energies. Detectors of this kind are favored for wavelengths beyond 5m. The choice of
dopant also depends on the absorptivity of the compound at the wavelength of interest and the
thermal dark current generated.
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Figure 2.3: Typical photoconductor output signal
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2. Astronomical Aspects

Photoconductive gain relates the number of electrons collected at the output of the device to
the number of photons giving rise to conduction electrons. It is typically less than 1 due to loss
of electrons to recombination before they are collected. However, in some devices, such as the
solid-state photo-multiplier and some Blocked Impurity Band (BIB) detectors, gains in excess
of 1 may be obtained, though often with the introduction of extra noise.

Figure 2.3 shows typical photoconductor signal using the Cryogenic Readout Electronic [81]
with linear ramps. The bias was set to 100mV for the source flux of approximately 106 pho-
tons/s. The integration time (reset time) of this data is 1s. Difference between the integration
ramps for the source on/off states is clearly seen.
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Figure 2.4: Ge:Ga response to step illumination change

Figure 2.4 depicts an example of the photoconductor signal behavior (Photocurrent) for
the Multiband Imaging Photometer for Spitzer (MIPS) instrument from the Spitzer Space
Telescope (SST) [154] (formerly SIRTF, the Space Infrared Telescope Facility). This space
observatory has been launched last year and is already sending IR images from the Universe.
This figure shows the response of a Ge:Ga detector to a step change in illumination. The de-
tector shows a prompt response which is followed by a drop in photocurrent (the "hook’) and
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finally a slow increase to an equilibrium level (due to dielectric relaxation) [46]. Note that under
the very low backgrounds for a space observatory, the dielectric relaxation time constant can be
measured in hours. These non-ideal detector responses have posed significant problems in the
calibration of photoconductor data, especially since the photocurrent as a function of time can
depend on the illumination history in a complicated manner [110].

Photodiodes

Photodiodes (photo-voltaic devices) generate a current proportional to the number of incident
photons. They are operated where possible at zero voltage, in a feedback circuit, to avoid 1/f
noise. Generally, single-element detectors are limited by the input noise characteristics of the
field-effect transistors that amplify their signals. Much better noise performance is usually ob-
tained from modern array detectors than from single-element devices, essentially because the
individual elements are physically small and so have small electrical capacity, making for a
higher output voltage per electron, which overcomes the readout noise.

Figure 2.5 represents a typical output of a photodiode when reverse-biased, which is extremely
linear with respect to the illuminance applied to the photodiode junction [56].
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Figure 2.5: Linear photodiode output for reverse bias Vr
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2. Astronomical Aspects

In many design applications, the designer needs to know the minimum detectable light
(power) of the photodiode. The minimum incident power required on a photodiode to generate
a photocurrent equal to the total photodiode noise current is defined as the Noise Equivalent
Power (NEP).

noise current(A)

NEP =
E responsivity(A/W)

2.9

The NEP is dependent on the measuring system bandwidth. Since a photodiode light power
to current conversion depends on the radiation wavelength, the NEP power is quoted at a par-
ticular wavelength. The NEP is non-linear over the wavelength range, as it is the responsivity.

Blocked Impurity Band (BIB) Detectors

When it is attempted to make heavily-doped extrinsic photoconductors (in order to obtain high
quantum efficiency), it is found that the resistivity of the material becomes too low for the con-
struction of a low-noise detector in the normal way. For this reason, an insulating layer of pure
undoped material is introduced between the detector layer and the metallic contacts on the back
of the device which are used to connect it electrically to its readout circuit. Such a layer allows
the movement of charges promoted into the conduction band but blocks charge migration in
the impurity band. (The other connection of each detector is made to an optically thin buried
conducting layer on the input side.)
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Figure 2.6. Example readouts, from part of an SWS observation. Note the glitch approximately
half-way through the second slope, where the output suddenly increases. Also note the curvature
in the slopes, caused by the AC filter
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The same principle applies in the case of Impurity Band Conduction (IBC) detectors. The
names BIB and IBC are used by Boeing (formerly Rockwell) and Raytheon (formerly Santa
Barbara Research Center) for detectors constructed according to the same principle. Figure 2.6
gives a data example from the Short Wavelength Spectrometer (SWS) [65] SI:As BIB detec-
tors from the ISO mission [147] in which the individual datapoints from the non-destructive
readouts and reset pulses can be seen. The plot starts with a reset pulse, where the capacitor is
short-circuited causing the bit readout to spike high. The system stabilizes after about four read-
outs, and as light falls on the detector, the charge on the integrating capacitor slowly increases.
Careful analysis shows the system to require more than four readouts to stabilize.

Bolometers

An ideal bolometer, by definition, is a device that detects all the radiation falling on it. Al-
though various forms of bolometers have existed for 100 years or more, astronomical interest
is restricted to their modern form, in particular the Ga-doped Ge bolometer developed by Low
(1961) [73] and doped Si devices operating on similar principles. These devices are neither
photoconductors nor photodiodes.
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Figure 2.7: Example readouts from a PACS bolometer test
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A typical detector consists of a small chip of the doped material supported by very thin
wires, which act as electrical conductors for the measurement of its resistance and at the same
time connect it to a heat sink with a certain thermal resistance, which has to be chosen in ad-
vance according to the background level of radiation that is expected to strike it. The doping
level of the material is chosen to provide an optimum sensitivity of resistance to temperature at
around its operating temperature, which is typically 1-2K. The surface of the detector is black-
ened with a suitable absorptive paint. The sensitivity of the device is wavelength independent,
so long as the paint is absorptive and so long as the dimensions of the detector are larger than
the wavelength of the radiation.

The coefficient of change of resistance with temperature of a Ga-doped Ge bolometer is
dependent on its operating temperature, which means that it also depends on the background
flux striking it. Since this may vary according to the filters in use, as well as ambient conditions,
care must be taken to establish its sensitivity with sufficient frequency and for each waveband.

Figure 2.7 gives a data example from PACS [150] silicon bolometers operating at a temper-
ature of 0.3K for wavelength range 60-210 um. It is noted the signal difference between the
off-source and on-source observation.

2.3.3 Detector Arrays

A multi-element array consists of a large number of picture-elements or pixels arranged in rows
and columns. Whereas efficient visible arrays can be made on silicon and so are able to take
advantage of mature manufacturing technology, the same is not quite true for the infrared. In-
frared arrays are usually made at present as two-layered devices. The upper layer consists of
a suitable infrared-sensitive material formed into photoconductors or photodiodes. The read-
out of the array is done through the bottom layer, called the multiplexer, which is constructed
using conventional Si-based techniques. The performance of the multiplexer is in many ways
as critical to the success of the array as that of the IR-sensitive layer. The two parts are joined
electrically with one connection for each pixel. The interconnection is achieved through the
use of small indium pillars called ”bumps”. It is the ideal material for this purpose because of
its malleability and low melting point. During manufacture, the two layers are aligned under
an IR-viewing microscope and the bumps are welded by pressing them together. The layers of
an IR array inevitably have different thermal expansion properties and repeated cooling cycles
may lead to difficulties such as detachment of the bump bonds [43].

Each individual photodiode and its associated electronics (located on the silicon part of
the device) possesses a certain electrical capacitance C. Normally the voltage V across this
capacitor is set to a particular value (in the reverse” or non-conducting direction of the diode)
when the pixel is reset” at the beginning of an exposure. Electrons released as a result of
incoming photons discharge the capacitor according to the usual relation

AQ  nee

AV = < - (2.10)

where ”n.” is the number of electrons and "e” is the charge on an individual electron (1.6 x
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10~1° Coulomb).

Unfortunately, the capacitance of a diode is dependent on the voltage across it, so that the
relationship between voltage and the number of photons is to some extent non-linear, requiring
compensation during image processing. A discussion of this problem for the NICMOS 3 array
is given in [77].

The lower the capacitance, the higher is the voltage developed for each photon and the eas-
ier it is to overcome the inevitable electronic background noise. However, the capacitance can
only accept a certain number of electrons before it is fully discharged and, under conditions of
high background, it is desirable that this quantity, known as the well depth should be as large
as possible in order to permit reasonably long times between readouts. Thus the requirements
for high and low-background conditions differ. The design of the multiplexer electronics for
long-wavelength detectors is very much related to the background conditions that are expected.
Different systems are used when the background is low, such as in space-borne cryogenic tele-
scopes. Ground-based broad-band cameras have high backgrounds whereas ground-based spec-
trometers represent an intermediate case.

The duration of the exposure in an infrared camera is not controlled by a shutter because
it would have to be cold to avoid radiating and also because it would usually have to be rapid-
acting. Instead, the exposure time of a pixel is effectively the time between reset and readout.
One position of the (cold) filter wheel is usually made opaque to enable measurements of the
array to be made with no radiation falling upon it.

Readout Electronics

The readout of most IR arrays is called direct, because the voltage levels of the pixels are read
out directly, one-by-one, unlike in a visible-region Charged Coupled Device (CCD), where the
charge is first fed to a resettable integrating circuit. In a direct array, a pixel to be read out
is "addressed” by its x and y coordinates, and the voltage on the pixel, buffered by its private
source follower, is connected directly to the output bus of the chip. Each pixel also has a mosfet
switch, which can be used to connect it to the reset bus, if resetting is desired [43].

To avoid the problem of non-linearity caused by storing charge within the detector, a vari-
ant on the standard readout circuitry has been developed, incorporating a Capacitative Trans-
Impedance Amplifier (CTIA). Each detector is connected to a high-gain DC amplifier with
capacitative feedback. The photocurrent is collected in the feedback capacitor C until it is
discharged by a MOSFET switch. The output voltage of the stage is given by V=n./C. The
potential across the detector is automatically kept constant and near zero by this type of circuit.
In addition, the well depth can be made arbitrarily large by choice of the value of C. A dis-
cussion of amplifier performance was given in [60]. Most present-day multiplexers use on-chip
shift registers to generate the pixel x and y addresses sequentially, rather than individual address
lines or address decoders.
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Readout Modes

Every measurement of the number of electrons collected on a pixel has noise associated with
it. If the number of electrons is n., the noise from Poissonian statistics alone is /n.. However,
when the number of electrons detected is small, the Poissonian noise may often be smaller
than the RMS readout noise associated with the read-out process of the array itself. This latter
type of noise, as for a single detector, is usually expressed in terms of equivalent numbers of
electrons. In what follows, it will be seen that noise may be minimized by attention to the
employed readout procedure [43].

A. Noise Reduction: Because a direct readout array can be read many times without affecting
the charges accumulated on the individual detectors, an improvement in the random read-
out noise can often be obtained by making multiple measurements and averaging them. If
the Poissonian noise of the collected electrons should be dominant, naturally no improve-
ment will occur. In arrays that show glow from their output amplifiers, multiple readouts
may actually increase the Poissonian noise by increasing the background.

B. Simple Readout: In this mode, an exposure is made by simply resetting each pixel, expos-
ing, and reading the voltage developed at the end of the exposure time. Unfortunately, this
method is very noisy due to uncertainty in the voltage level at the start of the exposure,
arising form a fundamental limit to the accuracy of the reset process called kTC Noise.
This Noise associated with the gate capacitor of a Field-Effect Transistor (FET) and can
be non-negligible. The output RMS value of this noise voltage is given by:

kTC Noise(Voltage) = 4/ @C—rl,j (2.11)

where C is the FET gate switch capacitance, k is Boltzmann’s constant, and 7 is the
absolute temperature of the CCD chip measured in Kelvin.

C. Correlated Double Sampling: Correlated double sampling involves making two measure-
ments: one directly before a change being measured and the other directly afterward. By
taking the difference, the effects of

¢ the uncertainty in the initial voltage level and

e the long-term (i.e. low-frequency) drifts

are reduced. This technique is used very effectively in reading out the charge packets
from CCDs such as visible-region arrays and some early IR. Correlated double sampling
may be used with direct readout arrays by making the first measurement at the time a
reset is performed or directly afterward. The second measurement is made at the end of
the exposure, just before the next reset.

D. Reset-Read-Read: In this improved version of correlated double sampling, all pixels of
the array are reset in sequence before the beginning of an exposure, without reading the
output voltages (e.g. [38]). The completed reset is followed by the first readout sequence.
The array is read out again at the end of the exposure time. The desired signal is the
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difference between the two reads. This is the basic procedure in use at the present time
(e.g. [13]).

E. Multiple Fowler Sampling: By reading the whole array "n” times each at the beginning
and end of the exposure, and averaging before subtraction, the noise may be reduced by
a factor of order ”/n”. It is important to note that each pixel must be addressed freshly
each time it is read. The noise reduction does not occur if the signal is merely digitized
”n” times. The source of the noise is related to the addressing of the pixel, though its
cause is not well understood. The signal-to-noise ratio produced by multiple sampling
has been examined by Fowler and Gatley [38] and Garnett and Forrest [42]. They show
that in the read-noise limited case, optimal results are obtained by sampling continuously
for the first and last thirds of the exposure but omitting the middle third.

F. Continuous Readout: It is still possible to optimize the readout further by the technique
of continuous readout, where the readout process begins at the start of the exposure and
continues (without reset) until its completion. The output voltage is closely proportional
to the integration time and the slope of its value vs time becomes the measured quantity.
Each measurement effectively reduces the error in slope, so that the readout noise expe-
rienced in ordinary correlated double sampling is again reduced.

In [42], it is also shown, again for the read-noise limited case, that this line-fitting process
is slightly superior to optimal multiple Fowler sampling.

Array Controllers

The controller is an electronic box which provides a variety of well-stabilized fixed voltage
levels and pulsed waveforms suitable for driving the x-y addressing elements and reset circuitry
of the array. In addition it controls the operation of one or more sampling voltmeters used to
measure the output signals. The latter depend on analogue-to-digital converters, which usually
have a resolution of 16 binary bits (65536 discrete levels). The speed with which the converters
can function, determines the time taken to read out the array, together with the bandwidth of the
multiplexer electronics and the transfer characteristics of the signal train. It is always desirable
to keep these as short as possible in the interests of efficiency, but it becomes essential when the
background is high and array has to be read out many times per second.

Handling of Arrays

Infrared array detectors are exceedingly expensive even when compared to visible CCDs, thanks
to their experimental nature and the small numbers of them that are produced. They are also
very liable to damage through static electrical discharge and have to be handled very cautiously
with this in mind. Some arrays are imperfectly “passivated”, i.e. they are liable to change their
behavior if exposed to ordinary levels of atmospheric water vapor. The degradation produced in
this way is, however, generally reversible by baking the array at moderate temperatures under
high vacuum.
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2.3.4 Efficiency of a System
The design of an infrared astronomical instrument is governed by the need to maximize the

signal-to-noise ratio (Equation 3.10) of its output. Clearly, it is necessary to keep the throughput
of photons as high as possible and to minimize the extraneous background [43].

Throughput

In an instrument such as a camera, spectrograph or photometer, the throughput will be the
product of factors listed in Table 2.2

Considerations |

Atmospheric Transmission
Reflectivity of Mirrors
Telescope Secondary Mirror Obscuration
Dewar Window Transmission
Lenses Transmission
Filter Transmission
Efficiency of Diffraction Grating
Detector QE

Table 2.2: Summary of efficiency considerations [43]

Choice of Pixel Size

The individual picture-elements of an array are called pixels. For optimum accuracy and sen-
sitivity, the focal plane scale of the telescope must be matched to the pixel size. For example,
if the seeing is about one arcsec FWHM, the pixel scale should correspond to about 2-3 pixels
per arcsec to ensure good sampling for accurate photometry. On the other hand, if adaptive
optics are used, a much larger number of pixels per arcsec may be appropriate, since the images
themselves will be smaller.

In general, it is undesirable to over-sample an image because the readout noise will increase
according to the number of pixels involved in each stellar image. Many camera designs incor-
porate focal reducers of different ratios so that an appropriate choice can be made according
to the prevailing seeing. As the numbers of pixels in an array increase, the demands on the
optical designs of focal reducers become more severe. The wavelength range coverable by e.g.
an InSb detector may require that two focal reducer lenses are used so that their designs can be
optimized for particular wavelength ranges [43].
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The Unwanted Background

For ground-based instruments, the background against which the faint astronomical sources
must be detected arises from the sources listed in Table 2.3. The noise from these sources is
equal to the square root of the number of photons emitted per second.

I Background Elements |

Atmospheric Emissivity
Emission of Telescope Mirrors
Emission of Telescope Structure in Beam
Emissivity of Warm Windows
Emissivity of Surfaces within the Cryogenic Vessel
Scattered Light within Instrument

Table 2.3: The unwanted background [43]

If the background seen by a detector arises entirely from objects at ambient temperature,
then in the near-IR, a change of temperature can make a considerable difference to its level
because of the rapid rise of the blackbody curve at its short-wavelength end.

Low-temperature telescopes and detector surroundings remain essential if the full advan-
tages of space-borne instrumentation are to be realized. It becomes possible to cool the tele-
scope itself to very low temperatures without fear of condensation of atmospheric gases, and
very low backgrounds may be obtained [43].

2.3.5 Seeing in the Infrared
Atmospheric Turbulence

The angular resolution of all but the smallest telescopes is limited by the turbulence of the
Earth’s atmosphere, which gives rise to the blurring of images called seeing. Ideally, the image
of a point-like source in the focal plane of a telescope should be a classical diffraction pattern
with its strong central peak. In practice, the time-averaged image of such a source resembles a
two-dimensional Gaussian distribution. The usual measure of seeing quality is FWHM of the
distribution. The quality of the image produced by an optical system may also be described by
its Strehl ratio, which is the ratio of its intensity on-axis to that, which would be produced if
there were no aberrations [43].

Seeing in the infrared is somewhat better than in the visible. Provided the intrinsic minimum
given by the diffraction limit of the telescope does not come into account, it is found that

Image Size \702 (2.12)

Thus at 16um the images should have half the extension that they have at 0.5 pm.
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Seeing Compensation

By means of adaptive optics, a way for compensating the aberrations introduced by atmospheric
turbulence within the telescope, the seeing quality can be improved. The possibilities offered
by this technique are much more easily realized at IR wavelengths than in the visible. The
wavefronts of the light from a star as they enter a large telescope are bent and distorted from
their passage through the Earths atmosphere, so that as the light strikes the mirror it is in phase
over only small regions of the pupil, causing the instantaneous image of a point source to appear
as a series of “speckles”. The scale length over which phase coherence is preserved, is called
the Fried parameter, ry [43]. It is a function of wavelength A and zenith angle (:

ro(A ¢) o< A¥2F(() (2.13)

In the near IR, the image formed by a 2m or similar-sized telescope in good seeing is domi-
nated by a single large speckle moving about in the focal plane [43].

Isoplanatic Angle

An important concept in seeing compensation is the isoplanatic angle, namely a radius of a
circle in the sky over which the atmospheric wavefront disturbances can be considered identical.
It is thus a measure of the size of the region over which diffraction-limited images might be
obtained with ideal adaptive optics.

The timescale of image motion is proportional to the Fried parameter, so that the reaction
time needed in the adaptive optics can be longer in the IR than at shorter wavelengths [43].

Guide Stars

The operation of adaptive optics depends on having a suitably bright guide star from which the
corrections to the wavefront may be determined. Thus only fields within the isoplanatic angle
of such guide stars can be observed in this way. Although the requirements ease with increasing
wavelength, the usable regions are quite limited.

The use of artificial guide stars generated by lasers has been demonstrated [43].
Some account of military work in this field has been also given in [41]. Lloyd-Hart et al. [71]
present some astronomical images which have been sharpened using this technique.

Tip-Tilt and Software Seeing Compensation

The lowest order distortion produced by the atmosphere amounts to a linear shift of the image in
the focal plane of the telescope. This term is a large fraction of the image degradation produced
and it is relatively easy to design equipment to compensate for it [22]. The isoplanatic field
that applies to translational motion of the image is larger than that for full (diffraction-limited)
correction. The response time of the compensation system may be longer and guide stars from a
larger area of sky may be used. Close and McCarthy [22] describe an adaptive tip-tilt secondary
system and camera called FASTTRAC, attached to the 2.3m telescope at Steward Observatory.
They report a factor of two improvement in the Strehl ratio in the H-band, using a guide camera
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operating at K.

Tip-tilt compensation can also be applied in software when the readout rate of an array is
sufficiently rapid. The displacement of a bright star in the field of an individual exposure can
be measured and used to counter-shift the digital data before co-adding.

2.3.6 Some Representative Instruments

In the following sections some simple, representative instruments are discussed. The infrared
accessories for the 8-10m telescopes completed or near completion are similar in principle to
those described, but differ in terms of size, versatility and engineering complexity [43].

Photometer

Simple single-channel photometers still offer the best method for obtaining high-precision pho-
tometry of moderately bright uncrowded objects. Traditionally, star-sky chopping was accom-
plished by a rotating multi-bladed mirror and a fixed mirror in the focal plane, but this arrange-
ment led to extra noise at longer wavelengths (from diffraction of the moving mirror edges and
imperfect matching of the pupil in the two positions) and defocusing of the image. Chopping
is normally now accomplished by means of a stepwise oscillating secondary mirror within the
telescope, which effectively creates two positions on the sky, or beams, viewed alternately by
the detector. It is passed to a phase-sensitive detector (lock-in amplifier) which automatically
subtracts the signal in one sky patch from that in the other, synchronously with the chopping
action. The difference is integrated and recorded. By moving the telescope periodically, say
every 20 seconds, so that the objects is placed first in one beam and then in other, residual
”second-order” background can be subtracted. (This background arises from the fact that the
detector captures slightly different parts of telescope structure in the two positions of the chop-

ping secondary.)

Camera

The essential parts of an IR camera can be found in [43]. The field lens lies in the focal plane of
the telescope and forms an image of the exit pupil on a cold stop, close to whichever re-imaging
lens is in use. Re-imaging allows for magnifications of 1:1 and 1:0.5, to allow for different
seeing conditions or fields of view. Baffles are employed to reduce the effect of stray light.
Larger arrays mainly differ by having more elaborate optical components. For example, fast
doublet re-imaging lenses distort too much when used with larger arrays and better focusing of
the telescope exit pupil on the cold stop is achieved with an achromatic field lens.

- Array Camera Sensitivity

The sensitivity of an IR camera operating under background-limited conditions can be esti-
mated from the following formula, based on Poissonian statistics, for the SNR in combination
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with a known value on some particular telescope with the same thermal and night-sky back-
ground per arcsec?:

t
S/N o D(——X )12 2.14)
N arcsec?
where D is the diameter of the telescope, ¢ is the integration (exposure) time, 7 is the quan-
tum efficiency of the detector and N2, .. is the number of arcsec? over which the image is
* spread. The last factor, N2, ..., enters because the level of the background is proportional to the

-area covered by the image [43].

Spectrometers

In a spectrometer, the area of the sky to be measured is defined by a cold slit or aperture. The
next component in the optical path is a collimator, which renders the rays parallel before they
strike a diffraction grating at the image of the telescope exit pupil. The diffracted rays are then
focused by a ’camera” onto the detector array.

There are many alternatives on this simple theme. A high-dispersion spectrograph can be
constructed by having an echelon grating and an order-separating prism, so that a long spectrum
can be placed in parallel segments onto a detector array. A grism (grating-prism combination
in a single optical element) can be used in a camera to give spectroscopic coverage of a whole
field. The prism component deflects the spectrum at mid-range to compensate for the deflection
of the grating, so that the combination acts as an in-line disperser. Examples of such an instru-
ment are the NICMOS camera [152] of the Hubble Space Telescope (HST) [151] and the IRIS
camera of the Anglo-Australian Observatory (AAO) [2].

Efficient baffling is even more important in a spectrometer than in other IR instruments,
because each pixel of a camera is receiving a very small fraction of the desired spectrum. As-
tronomical spectrometers for the 8-m and other large telescopes have been described in the
literature. Their optical layout is usually complicated by the need for versatility (many disper-
sions and wavelength ranges) and compactness, which involves “folding” the long beam paths
with plane mirrors.

In practice, sensitivity can be calculated as for a camera but allowing for the inefficiency of
the extra optical components, especially the grating. The entrance slit may also be undersized
for good resolution, at the expense of the amount of light entering the spectrometer, and the
response pattern at a particular wavelength may be spread over many pixels.

- Fourier Transform Spectrometers (FTS)

Fourier transform spectrometers, based on the Michelson principle [20], offer very high
resolution but are confined to the examination of bright objects. They are uncompetitive for faint
ones because they use one or two detectors which receive the photon noise of all wavelengths

(within the range selected by cold pre-filters), whereas more modern spectrometers are based
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on arrays and each detector receives only the flux associated with its wavelength interval. The
achievements of FT'S have been summarized by Ridgway and Brault [99].

2.3.7 Observing and Data Reduction

Before planning an observing program, it is necessary to understand the procedures involved in
data reduction. A typical exposure contains, besides the desired image, background contribu-
tions from telescope and atmospheric radiation. In addition, the sensitivity (quantum efficiency)
will vary across the array and there will be numbers of bad pixels, which may be dead (insensi-
tive) or have excessive dark current (and hence noise).

The typical night might include flat field exposures for each band in use, telescope focus
exposures, standard stars, program objects and comparison fields. The well-known data re-
duction packages such as IRAF (Kitt Peak National Observatory), MIDAS (ESO), FIGARO
(AAO), STARLINK (Rutherford-Appleton Laboratory) and ISO contain routines, which can be
used for infrared image reduction. Amongst these is the important facility to mosaic a group of
small-area images into a large final product.

Some on-line reduction facilities should be available for checking each image immediately
after acquisition, in case a repeated exposure should be necessary. For example, it is possible to
subtract a previous frame, taken with the same filter and exposure time, to get a rough image.
Some stellar images can be examined rapidly by a Gaussian fit to check the focus, the seeing
and the image quality before moving on to the next exposure [43].

Array Problems

The on-chip output amplifiers of many arrays have the undesirable property that they glow in
the infrared, causing pixels in their neighborhood to show high background levels. This effect
can be mitigated by operating the output circuitry at the lowest possible current levels for proper
operation and by switching it off during exposures.

Arrays frequently suffer from other problems such as memory effects, which cause im-
ages from previous exposures to re-appear as ghosts on later ones, especially when the electron
storage capacity of the array has been saturated by exposure to excessively bright sources. This
problem can sometimes be reduced or eliminated by multiple "pre-wipes” to read out the charge
very thoroughly.

Long-wavelength arrays on satellites often change their characteristics due to bombardment
with charged particles, such as are encountered when passing through the van Allen Belts,
and some form of annealing, such as a partial warming-up, may be necessary after each such
occasion [43]. The behavior of the NICMOS camera and arrays on HST, and the cameras on
ISO have been investigated in detail and several papers have been devoted to them (see [151]
and [147] for more details).
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Linearizing

As mentioned in previous sections, the data from infrared arrays may need to be linearized
before further processing. The linearizing consists of fitting the signal to the theoretical model
(expected detector output) in order to reduce the noise (electronics, readouts).

Removal of Instrumental and Sky Background

In principle, for a well-behaved detector and atmosphere, a frame can be cleaned of extraneous
background by subtracting a sky frame of equal exposure time, made at a nearby position that
does not contain astronomical objects. For large-format detectors, suitable patches of blank sky
may be impossible to find.

At long wavelengths, very short exposures may be made in synchronism with chopping.
The individual exposures may be added to, or subtracted from, an image accumulator according
to the position of the chopper. In this way, the first-order background is reduced. The telescope
may also be moved periodically, and a second subtraction is performed, to eliminate residual
effects caused by differences in the thermal radiation seen by the detector in the two positions
of the chopper [43].

Dithering: Dealing with Bad Pixels

Dithering refers to a technique where several exposures are made with the position of the tele-
scope slightly displaced each time, relative to the field center. The displacements may be larger
or smaller than the pixel spacing, according to the type of problem to be overcome [43].

A. Overcoming Background Variations: If dithering is used to overcome background varia-
tions, exposures may be made with shifts greater than the size of a stellar image, so that
the median averaging process works properly. Of course, if the field is very crowded,
chance coincidences of images on the shifted frames may lead to median averages which
do not represent the true background.

B. Isolated Bad Pixels: When there are many isolated bad pixels, a set of exposures with the
telescope displaced successively by one pixel width may be obtained. During data pro-
cessing, the numerical images may be counter-displaced. A perfect final image is then
formed by median-averaging the re-centered images pixel-by-pixel. Isolated anomalous
pixels are eliminated in this way. Alternatively, bad pixels may be mapped and “bridged
over” by replacing them with the average value of surrounding good pixels, though this
is not to be recommended.

C. Undersampling of Images: When a stellar image is undersampled, i.e., there are too few
pixels per image, it can be profitable to make multiple images with sub-pixel displace-
ments of the field. This ensures better photometry by reducing effects due to non-uniform
sensitivity across pixels or dead spaces between them.
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Sky Frame from Median Averaging

The median average of a set of measurements is the value, which has equal quantities of indi-
vidual measurements above and below it. For large samples with a Poissonian distribution, it
approaches the mean value.

As mentioned, a sky frame without stars is often impossible to obtain. An “empty” sky
frame may be generated by median averaging a number of frames of different fields, obtained
with the same exposure time and filter etc. The stellar images are eliminated by this process if
the fields are reasonably sparsely populated. However, before median averaging can take place,
it is usually necessary to adjust each pixel of the frame by a uniform amount for variations in the
background level, so that the mode (most frequently obtained pixel value) of each is the same.

In survey work, determination of the sky level by median averaging saves time by removing
the necessity of taking equal numbers of empty frames. The subtraction of a sky frame will, of
course, increase the random background noise of the reduced data. However, by taking a large
number of background frames and median averaging them, this source of additional noise can
be made negligible [43].

A. Flat Fielding: The sensitivity of the detector can be normalized by dividing it by a flat field
frame. Such a frame is constructed by observing the uniform source, for example a screen
or a featureless piece of sky, and subtracting a dark frame of equal duration. In the case
of a screen, a flat field free of telescope background and scattered light can be obtained
by subtracting an exposure with the illumination off, from one with illumination on. This
process can be repeated a sufficient number of times and the results averaged to make the
flat field essentially noise-free.

B. Standardization: For accurate work, measurements of standard stars should be undertaken
with sufficient frequency. These stars should be as near as possible in zenith angle to
the measured object to reduce errors due to imperfectly known extinction coefficients.
Ideally, they should be of similar color to the objects of interest in the infrared. On-
line reduction is valuable in assessing the photometric quality of the night and hence the
frequency with which standards must be observed.

C. Extraction of Photometric Information: The positions and intensities of stellar images
may be extracted efficiently and automatically by using a program (see [147, 148] for
more information). Such a program makes optimum fits to the images to reduce the
contribution of pixels with insignificant data to the noise. Calibration must be done sep-
arately, for example by using “aperture photometry” on the images and comparing the
results with the standard values. Corrections for extinction as a function of airmass must
be applied when standardizing the photometry.
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2.4 Aspects of Infrared Astronomy

Infrared astronomy includes the detection and study of the IR radiation (heat energy) emitted
from objects in the universe. Every object that has a temperature radiates in the IR. Much of
the information sent by the universe, in the form of electromagnetic radiation (or light), is in the
IR, which cannot be seen with visible light telescopes. Only a small amount of this IR informa-
tion reaches the Earth’s surface, yet by studying this small range of wavelengths, astronomers
have uncovered a wealth of new information. Only since the early 1980’s we have been able
to send IR telescopes into orbit around the Earth, above the atmosphere, which hides most of
the universe’s light from us. The new discoveries made by these IR satellite missions have been
astounding. The first of these satellites - IRAS [148]- detected about 350,000 IR sources, in-
creasing the number of cataloged astronomical sources by about 70 %.

Many objects in the universe, which are much too cool and faint to be detected in visible light,
can be detected in the IR. These include cool stars, IR galaxies, and clouds of particles around
stars, nebulae, interstellar molecules, brown dwarfs and planets. For example, the visible light
from a planet is hidden by the brightness of the star that it orbits. In the IR, where planets have
their peak brightness, the brightness of the star is reduced, making it possible to detect a planet
in the IR [43]. Many of the most interesting IR objects are associated with star formation. Stars
form from collapsing clouds of gas and dust. As the cloud collapses, its density and temperature
increase.

We often think of the vast areas of space between the stars as being completely empty.
However, this is not really true. Much of the space between the stars is filled with gas (primarily
hydrogen and helium) and tiny pieces of solid particles or dust (composed mainly of carbon,
silicon and oxygen) [43]. In some places, this interstellar material is very dense, forming
nebulae. Figure 2.8 shows an IR view of the gas and dust along the plane of our galaxy "Milky
Way’ with areas of dense gas and dust as well as areas, which are nearly empty.

Typical object structures in IR astronomy can be summarized under the following categories
[43, 88]:

e Point sources (e.g. field stars): mainly young and late-type stars are embedded in a
diffuse circumstellar medium that reduces the contrast between the objects and their sur-
roundings.

¢ Diffuse sources (c.g. nebulae): some nebulae show filamentary structures and/or knots
with irregular edges.

¢ Sources of different morphological types (e.g. galaxies): some galaxies show extended
structures like spiral arms, in which the IR emitting dust is concentrated

Figure 2.9 shows examples of astronomical objects observed at infrared wavelengths with
ISOCAM [13, 147]. Figures 2.9.A-G are images for different types of objects already reduced
for cosmic particles while Figure 2.9.H depicts ISOCAM raw images in 5.04 sec integration
time with cosmic particles influence from the solar flare. Figure 2.9.A and 2.9.B present a mo-
saic of an array of 32x32 pixels, at several positions, for galaxies observed by ISOCAM. Figure
2.9.E depicts galaxies at larger distance. Figure 2.9.C and 2.9.F show unresolved sources
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Figure 2.8: Milky Way galaxy seen by IRAS

where the objects of interests are blue dots (Figure 2.9.C) and white dots (Figure 2.9.F) with
size of a few pixels. Figure 2.9.D and 2.9.G are respectively resolved circumstellar shell and
resolved bright object (Jupiter) observed with ISOCAM.

The images shown in Figure 2.9.A-G are already reduced, freed from cosmic rays and
the background problem. Works for the reduction of the raw data related to these images can
be found in the papers [55, 108, 124, 132]. The simplest objects are blobs brighter than the
background, which may either have a Gaussian-like spatial distribution of pixels or a relatively
simple internal structure like 1 or 2 highlights of the blob. More complex objects are formed
by constellations of simple objects with a particular structure like a spiral. The existence of a
correlation, anticorrelation or non-correlation has important consequences for the interpretation
and compression of these observable quantities, which emerge from a combination of physical
quantities [39]. Relations between images are generally analyzed with the pixel-to-pixel corre-
lation function. However, this method gives little information in the case of an anticorrelation
on the scale of spiral arms, like in M51 (Figure 2.9.A), or when the diffuse emission on larger
scales has no counterpart in the other image (e.g. polarized IR emission) [74]. One alternative
is to use the multiscale analysis for these images to detect the dominant scales in this galaxy
and also to see if the decomposition can be useful to determine the statistical characteristics for
given scales in the maps. These characteristics can be exploited for the compression purpose.
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2. Astronomical Aspects

Figure 2.9. Examples of astronomical objects observed by ISO at infrared wavelengths. A:
Grand Design Spiral M51. B: Interacting Galaxy Pair ”Antennae Galaxies”. C: Quasar (Unre-
solved Source). D: Resolved Circumstellar Shell. E: Interacting Pair ARP220 at Larger Dis-
tance. F: Very Deep Integration in the Hubble Deep Field. G: Resolved Bright Object ”Jupiter”.
H: Cosmic Particles Influence in ISOCAM Raw Images
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Chapter 3

Preliminary Notions and State of the Art
Data Compression

First, the existing noise models, relevant for astronomy applications, are introduced. Then, the
formal definition of data compression is presented and the typical data compression concept is
depicted. Furthermore, state-of-the-art assessment criteria for compression methods are listed.
Then, the research status of the area ’data compression” relevant for the dissertation goals are
presented. In Section 3.6, a list of methods used for compression is given in a chronological
form starting from DCT [109] up to the multiscale approach [117]. Recent multiresolution
methods like the CurVeleT (CVT) [17] and the ConTourleT (CTT) transforms [28] that are
susceptible to be used for image compression are also presented in Section 3.6. Moreover, rele-
vant approaches for linear approximation of detector measurements, which can be exploited by
the compression method are presented. Then, state-of-the-art entropy coders are given. Section
3.7 lists the state-of-the-art compression methods used for space applications, which include
HCOMPRESS [134], FITSPRESS [95] and the Pyramidal Median Transform (PMT) [117].

3.1 Noise Generalities

Data and images generally contain noise. In most applications, it is necessary to know if a
data element is due to signal (i.e. it is significant) or to noise. Generally, noise in astronomical
data follows a Gaussian or a Poisson distribution, or a combination of both [117]. The noise
in IR astronomy has several origins: the detectors noise, the amplifier noise, the electric cross-
talk noise, the photon-shot noise or the pick-up noise [117]. Furthermore, astronomical data
suffer from cosmic ray impacts (glitches) and the transient behavior of the detectors, which may
cause potentially scientific data loss in case of integration over several samples for compression
purpose. Therefore, a deep investigation has to be made in order to prevent this noise before
data compression, because IR space observatories are frequently confronted with this type of
noise. In the following, the existing noise models are summarized.

34



3. Preliminary Notions and State of the Art Data Compression

3.1.1 Thermal or Johnson Noise

Johnson and Nyquist in the 1920s studied the noise resulting from the thermal agitation. This
thermally generated noise produces a spectrum that has about the same energy for each cycle
of bandwidth. This equal-power per cycle noise is termed “Gaussian” or “white noise”. Equa-
tion 3.1 from [102] gives the mathematical formulation of the Johnson noise V,, in voltage.

Vo =2VKTRB 3.1

where:

e V, is the noise voltage ( V/vHz)

e k is Boltzmann’s constant (1.38 X 1023 J/K)
e T is the temperature in degrees Kelvin (K)

e R is the resistance in ohms (W)

e B is the bandwidth in hertz (H 2)

On the other hand, it can have shot of Gaussian noise if the electric current (change flow)
does not flow in a uniform, well-behaved manner. Shot noise is often termed ”Rain on the Roof”
noise or the photon noise when applied to the photodetectors. Suppose a simple circuit, shown
in Figure 3.1, has a very small but steady Direct Current (DC) current ”I” running through it,
and that this can be measured by counting the charge carriers (electrons) as they pass some
point A. Because the electrons can collide with each other and with the charged metal ions in
the wire, they pass point A at completely random intervals. They also have a finite charge, g =
1.6022 x 10! coulombs or 4.803 x 1071 esu (electric charge unit), so although after counting
the electrons for many intervals of length At, it would result an average number N of

=14t (32)
q

during a period At, the number for any given At would be different; sometimes a few more,
sometimes a few less. Thus, what is the probability that exactly N (no bar) show up during a
time interval At? '

To answer this question, the exposure time At is first divided up into a very large number n
of equal segments of time. The average number arriving in a segment is N/n, and if n is very
large, N/n << 1. Let us use that limit. Since it cannot have less than one electron arrive, what
this means is that the probability that an electron arrives during one given segment is N/n ,
where the probability is simply the number of times something is likely to occur per time it is
tried; if something is sure to happen, its probability is 1. It is also seen from this limit that the
probability of an electron not arriving during the given segment is 1- N/n, since there is a total
probability of 1 that an electron will either show up or not show up, and that the probability of
two electrons showing up during the same segment is (/V/n)? so much rarer than single-electron
arrivals that multiple-electron events are henceforth neglected. The probability of the arrival of
electrons within N segments is therefore (N/n)" , and the probability of no electrons arriving
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Figure 3.1: Current with shot noise

within the remaining n-N segments is 1-(Nm)»N,

As described above, this noise is usually quantified using the probability and statistics. This
noise follows the Gaussian distribution with zero-mean and standard deviation 0. There are
different ways to estimate the standard deviation of Gaussian noise in an image [70]. Olsen [9]
made an evaluation of six methods and showed that the average method was best, and this is
also the simplest method. This method consists of filtering the image ”Im” with the average
filter and subtracting the filtered image from ”Im”. Then a measure of the noise at each pixel is
computed.

3.1.2 Flicker and 1/f Noise

In addition to the fundamental Johnson noise, many devices exhibit a second noise phenomenon
caused by the flow of electric current. Electron or charge flow (current) is not continuous, well-
behaved process. There is a randomness that produces an alternating current (random AC) on
the top of the main direct current flow. This noise is difficult to quantify and to measure. This
noise, in general, has a 1/ f spectrum and is termed “pink noise”. Pink noise has equal power
per octave of frequency (log2 scale). An empirical description of the 1/ f noise according to
Hooge [52, 53] is a spectrum with

a 1
= 33
Ntot f ( )

Where N,,; means the total number of moving charges in the device and f is the frequency.
The Hooge-Parameter « is a material characteristic.

Cyy =

3.1.3 Poisson Noise

In addition to the mean and variance, we can also discuss noise in terms of the shape of the
distribution for each data element. One common distribution for the values of each element is
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determined by the nature of light itself. Light isn’t a continuous quantity, but occurs in discrete
photons. These photons don’t arrive in a steady stream, but sometimes vary over time. Think of
it like a flow of cars on a road—sometimes they bunch together, sometimes they spread out, but
in general there’s an overall average flow. Discrete arrivals over a period of time are modeled
statistically by a Poisson distribution. If the noise in the data ”s” is Poisson, the Anscombe

transform [117]
H(s(z)) = 24/ s(z) + g 3.4)

acts as if the data arose from a Gaussian white noise model (Anscombe, 1948), with o=1,
under the assumption that the mean value of ’s” is large.

A Poisson distribution [45] is described by Equation 3.5
i

P(i) = %e:ﬂp(—m) (3.5)

where m is the mean and {!=1x2x3x...xi.
In Poisson distribution the mean=variance. It is similar to a Gaussian distribution with the
following exceptions/properties [117]:

e A Poisson distribution is for discrete values, not continuous ones.

e A Poisson distribution applies only to non-negative quantities—one counts arrivals, not
departures.

e A Poisson distribution has the property that its variance is equal to its mean.

3.1.4 Gaussian and Poisson Noise

For small Poisson parameter values, the Anscombe transformation looses control over the
bias [117]. Small numbers of detector counts will most likely be associated with the image
background .i.e. errors related to small values carry the risk of removing real objects, but not
of amplifying noise, because at increasingly low values, the pixel value is increasingly under-
estimated. Therefore, an extension of the Anscombe transformation has been performed by
Bijaoui [11] to cope with the Poisson model limitation by taking the combined noise into ac-
count.

The arrival of photons, and their expression by electron counts, on CCD detectors may be
modeled by a Poisson distribution. In addition, there is an additive Gaussian readout noise.
Consider the signal s(x), as a sum of a Gaussian Variable, -y, of mean g and standard deviation
o; and a Poisson variable, n, of mean my. Let us set s(z)=7y + an. where « is the gain.

The generalization of the variance stabilizing Anscombe formula can be written as:

t= g\/as(:c) + gaz +0?2—-ag (3.6)

With appropriate values of o, o and g, this reduces to Anscombe transformation (Equation 3.4).
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3.1.5 Other Types of Noise

The types of noise considered so far correspond to the general consideration in astronomical
imagery [117] for uniform noise distribution. However, not all IR detectors might have identical
characteristics and equivalent readout electronic. Let us describe now briefly methods, which
can be used for non-uniform and multiplicative noise.

e Additive non-uniform noise: If the noise is additive but non-uniform, the standard devi-
ation cannot be estimated for the whole data. However, it can often be assumed that the
noise is locally Gaussian and, then, a local standard deviation of the noise for every data
element can be computed. In this way, a standard deviation map of the noise is obtained
s,(x) and can be used for detector indexing or further processing.

e Multiplicative noise: If the noise is multiplicative, the data can be transformed to a
logarithmic scale, if isotropy is fulfilled. In the transformation space, the noise is additive,
and a hypothesis of Gaussian noise can be used in order to find the detection level at each
scale.

e Multiplicative non-uniform noise: In this case, the logarithm of the data is taken, and
the resulting signal is processed as for additive non-uniform noise above.

e Unknown noise: If the noise does not follow any known distribution, sigma-kappa clip-
ping method [114] can be used for the reduction of the noise in the data.

3.2 Definition of Data Compression

Data compression consists of finding and removing most, if not all, the redundancy from the
data for an efficient data transmission or storage (Figure 3.2). The degree of data reduction
obtained as a result of the compression process is known as the Compression Ratio (CR). This
ratio measures the quantity of compressed data in comparison with the quantity of original data
[49].

Origin
Data

<j——————; Data Decompression

— = DaaCompression. = .  |—>
al o : - S Compressed
Data

Figure 3.2: Basic data compression block diagram
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_ length of original data string
 length of compressed data string

3.7

Compression techniques can be classified into one of two general categories or methods -
Lossless or Lossy- [49].

e Lossless compression techniques are fully reproducible and are primarily restricted to
data operations. Data are compressed such their decompression should result in the ex-
act reconstruction of the original data. Other common terms used to reference lossless
compression include 'reversible’ and non-destructive compression.

e Lossy compression techniques may not be fully reproducible and are primarily restricted
to operations on images, video, or audio. The data are reduced by permanently eliminat-
ing certain information. Therefore, the use of the lossy compression techniques depends
on the application, respectively the data, at hand. Since the obtainable CR by the use
of lossy compression can significantly exceed the CR obtainable from lossless compres-
sion, the primary trade-off concerns the need for reproducibility versus the storage and
transmission requirements.

The general block diagram for data compression/decompression is depicted in Figure 3.3
[49]. The original data are shown in the top-left whereas the reconstructed data are represented
in the bottom-right side of the figure. The upper boxes show the data compression stage in two
steps: lossy and lossless. The lossy compression part consists of a decorrelation stage (usually
DCT, Wavelet..etc) [109, 135] and a quantization stage. Lossless data compression consists of
lossless entropy coding (e.g. Huffman, Lempel-Ziv, arithmetic coding...etc) [49]. The boxes
shown in the bottom of Figure 2 represent the decompression stage. It consists of reconstructing
the original data by decoding and demultiplexing the compressed data stream. The bandwidth-
limited transmission channel that links the two stages is depicted on top-right and bottom-left of
the figure. Constraints related to data compression are described in the following subsections.

Original Transformation : s s Transmission
data—1 - Quantization F— Coding Symbol — Y ol

= Lossy —— — ™ -~ - Lossless’ -

- - m—

— o — — a—

Compression

Transmission , Inverse Reconstructed
Channel Decoding Symbol — Trans formation - Data

Decompression

Figure 3.3: General block diagram for data compression/decompression
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3.3 The Reconstruction Error

The reconstruction error is a parameter used to assess the performance of a compression method.
It is applied to quantify the data distortion by means of the difference between the original
and the reconstructed data. There are several quantitative measures for this distortion. These
measures includes Mean Absolute Error (M AE), RMSFE, SNR, PSN R and K L information
gain; that is, the distortion measure often used in R-D (Rate-Distortion) optimization. In the
following, the definitions of the measures listed above are given.

e M AE: This is the simplest measure. If S is the original data and Sy, is the reconstructed
data, then the mean absolute error for N samples with index z is defined as follows:

N
1
MAE(S, Sg) = N > 1 S(&) - Sa(z) | (3.8)
r=1
e RMSE: In contrast to MAE, the RMSE averages the squares of the differences and
then the square root of the result is taken. The RM SE is an area weighted statistics. It
is calculated as the standard deviation of all reconstructed data set relative to the original
data. It is defined as follows:

RMSE(S, Sg) = J N Z — Sg(z))? (3.9)

e SNR: The SNR attempts to improve the RM SE equation by taking into account the
intensity of the reference. This is done by dividing the total reference power by the total
error power. Taking the logarithm is one way of reducing the range of values, and the 10
in front is the convenience factor.

— 10lo Z;V=1 S(x)z

Notice that this measure is inversely proportional to the previous two.
e PSNR: This criterion is widely used for the evaluation of compression methods. The

reason is that PSN R is mathematically repeatable and is highly susceptible to different
intensities.

(maw(S(w)) 'fnin(S(aC)))2
¥ Loe1(S(z) = Sr(2))?

e KL gain: This measure, also known as a relative entropy, makes use of the probability
distribution of the data. For instance, the original data S has a ’true’ probability distri-
bution () and an estimated distribution E. The K L information gain (DG k1) could be
calculated as follows [33]:

PSNR(S, Sg) = 10logio

(3.11)

DGki(Q,E) = aZp (2/8)loga (("’// b:q )) (3.12)
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where:

— a >0 constant,
— p(z/S) is the probability of occurrence of the element z in the original data S and

- p(z/Sg) is the probability of occurrence of the element z in the reconstructed data
Sg.

The KL information gain may be applied to to quantify the distortion by means of the
difference between the original data and the data reconstructed after compression.

e PJIL: This is a new ease-of-use metric served for the evaluation of quality of the recon-
structed image. This metric uses the assumption that an astronomical object in an image
has a profile which is closer to a Gaussian curve [117]. Therefore, the peak of the curve
is used as reference for the evaluation of the information loss

_ PDF(Sp())

PIL=1- 5 r 5 @)

(3.13)

where PDF is the Probability Density Function.

The histogram of the original and reconstructed images are used for the calculation of
PIL by means of the difference between both histograms i.e. by computing the sum of
the relative differences between all graylevel counts. In addition to its simplicity, PIL
metric seems to provide realistic results for compression evaluation [98].

The above listed metrics aim to measure the quality loss resulted from the applied data
compression methods. However, it is not obvious to have a single metric that fit to the human
interpretation (Human visual inspection). Our goal is to trace the curve (compression ratio
vs. reconstruction error) resulting from the processing of selected data, combining the listed
metrics, for an objective measure of the compression performance. Furthermore, at least 5
astronomers are solicited to support the evaluation of the compression method for a set of IR
astronomical images.

3.4 Compression Challenges

The major concern of a compression method is to recognize and remove all redundancy in the
data in order to reduce the traffic over the transmission channel. A redundancy may be investi-
gated in the 1-D detector signal depending on the sensors characteristics, by modeling the sensor
reaction (function) to the IR rays. A parametrized model can be used for the representation of
the 1-D detectors signals by a set of parameters and thus reducing the data volume. However,
cosmic particles (outliers) would disturb the detector output signal which makes the modeling
challenging. Further compression can be achieved by exploiting the source signal (signal of the
observed target) redundancy using e.g. multiresolution approach [121]. However, this latter
alternative usually presents high algorithmic complexity that makes the feasibility of these ap-
proaches challenging on the limited resources environment of IR astronomy. The quality vs.CR
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vs.algorithmic complexity trade-off has to be further investigated and analyzed.

The aim of this thesis is to concentrate on the exploitation of the redundancy from the sensor
to achieve the highest possible CR and to analyze the noise effect on the CR and algorithmic
complexity. The performance of a data compression method can be evaluated using the follow-
ing relevant parameters:

e The compression ratio vs. the Reconstruction Error (RE)

e The algorithmic complexity of the method

3.4.1 Compression Ratio vs. Reconstruction Error

The first criterion generally used to assess the performances of a compression method is the
achieved CR. It points out to the capability of the method to find and remove the redundancy in
the data. The more redundancy is removed the greater CR is achieved.

RE defines the quality of the data after reconstruction. The results quality criterion, which can
be retained for estimating the merits and performances of a compression method, in case of
astronomy, falls under these headings:

* Visual Aspect,

*

Signal to Noise Ratio,

*

Detection of real and faint objects,

*

Object morphology,

*

Astrometry and

*

Photometry.

As an experience from former joint projects [5, 12, 57, 93], it is necessary to work close
together with astronomers to find out a realistic solution for number of problems like:

o Transfer of astronomical aspects into computer terms,
e Reduction of problems into small sub problems that can be handled by the computer and

e Evaluation and verification of the results.

that can only be solved by a cooperative team of technicians and astronomers. Therefore,
the validation of the assessment is supported by astronomers, which is mandatory to validate the
reconstruction results and to support the quantitative error measures proposed in Section 3.3.
The main challenge is to trace the curve (CR vs. RE) resulting from the processing of different
data models, with support from astronomers, for an objective measure of the compression per-
formance
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34.2 The Algorithmic Complexity of the Method

Although the above-mentioned criteria are very important to design a compression method
[130], the complexity of the algorithm is of bigger importance because it defines the feasibility
of the method. This criterion should not be performed at latest stage of the design, but it has to
be taken into consideration to assess a compression method. Therefore, the implementation of
the method has to be part of the design of the method. Especially, for IR astronomy applications
where astronomers are interested for a compression method that have to fit the limited-resources
space observatories.

Usually, the execution time is used to assess the algorithmic complexity of a compression
method. Indeed, algorithmic complexity and execution time are highly correlated but not iden-
tical. The execution time mainly depends on the algorithm implementation and on the machine
where it is running. Starting from its complexity, one can deduce the execution time of a given
compression algorithm if the way the method is implemented and the hardware description are
known.

The complexity of an algorithm can be analyzed in two ways. One way involves only an
intuitive understanding of the complexity. Such techniques are classified as qualitative analysis
techniques. With qualitative analysis it is not possible to measure or quantify the gain when the
algorithm is optimized. The other approach to complexity analysis involves building a model
of the complexity. This allows objective comparison of different algorithms.

In this thesis, both kinds of complexity analysis techniques are addressed. First, data com-
pression algorithms are optimized based on qualitative analysis. Then, a new methodology to
measure the complexity is investigated (and used). The proposed measure takes into account
arithmetic operations, tests (or branches) and memory operations. The measure works in two
steps, one depending on the algorithm, and the other, on the architecture on which the algorithm
is implemented. The complexity of the algorithm is then expressed by a weighted sum of the
algorithm-dependent counters, where the weights are determined by the architecture-dependent
step. However, even with this well-defined methodology, analysis of the complexity analysis is
still a long and difficult process. One way to simplify the problem is to use the fact that most
algorithms can be divided into a succession of small tasks (or blocks). This is especially true
for image compression algorithms. Therefore, the complexities of the most common processing
blocks for image compression are studied separately. The complexity analysis of a new algo-
rithm then becomes the sum of the complexity of each one of its building blocks.

3.4.3 Additional Aspects

Compression is mandatory for IR space missions as the readout rate generally exceeds the
available telemetry bandwidth. Usually, lossy compression is required in order to fulfill the
high compression requirements in term of compression rate. Therefore, the method to be used,
should take into consideration the relevance in the data information as stated in Table 2.2. How-
ever, the compression method is faced with the noise, that is by definition incompressible, which
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is mainly originated from the unwanted background (Table 2.3), the cosmic particles and the
detector relaxation after the (cosmic hits) event.

As described in Figure 3.3, data compression consists of two steps: lossy and lossless. Gen-
erally, lossless compression leads to low data compression factor (up to 5 in case of astronomy),
especially for noisy data with higher entropy. Therefore, lossy compression is mandatory for
several applications (radar, space applications, telecommunications) [135] to achieve additional
CR. Although certain operational applications (e.g. CCD images of deployment of solar panels
or position of landing gear) allow a high amount of quality loss, noisy data has to be compressed
with care such that real objects (e.g. faint objects) are not lost while compression.

One of the most common methods for lossy compression (Figure 3.3) is transform coding
e.g. Discrete Cosine Transform (DCT) [109], WaVeleTs (WVT) [21], RidGeleTs (RGT)
[30]...etc. The objective is to minimize statistical dependence between the output values of the
transform. Desirable characteristics are decorrelation, energy concentration, and computational
efficiency. All these transforms assume that the original data is free of noise or that noise is
a part of significant data elements. In addition to the quality loss due to artifacts (blockiness)
problem [49, 117, 135] which limits the capabilities of these transforms, significant data (e.g.
faint objects in images) may not be reconstructed which leads to information loss. This is be-
cause some information with equivalent amplitude to the noise has been neglected.

However, compression is more challenging for IR astronomy applications as the source tar-
get amplitude is much lower than the background amplitude which makes the simultaneous
decorrelation critical. Therefore, more noise models have to be considered before compression
in order to preserve as much as possible data quality. Rate-Distortion (R-D) principle is intro-
duced in the next section. Then, state-of-the-art compression methods are presented afterward,
in addition to dedicated methods for astronomy applications.

3.5 Rate-Distortion Principle

In this Section, the trade-off between the compression rate and the image quality is exposed
(R-D). Effect of the noise on an adequate R-D trade-off is also given. Furthermore, discussion
about the adaptivity of the compression model to the R-D trade-off is made. Lossy compression
is a typical engineering trade-off: lower data quality for higher transmission rate. If the rate
decreases a large amount for a small decrease in data quality, then lossy compression is usually
considered desirable. For this reason, lossy compression is often evaluated with reference to a
rate-distortion curve.

The relationship between the rate and the distortion in a signal is depicted in Figure 3.4.
Note that R (entropy) is in bits/sample while the D (distortion) represents the reconstruction
error 3.3. .

It is shown that a lower bit rate R allows some acceptable distortion D in the signal. In
Figure 3.4(b) and (c), the equivalent constrained optimization problems, often unwieldy, are
given. Minimization of one parameter (R or D) is only done for a given reference (D or R).
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Figure 3.4. (a) Compression rate and distortion trade off. (b) and (c) Equivalent constrained
optimization problems giving a maximum rate or distortion

There exist several formulation of the R-D problem for instance:

A. Shannon Source Coding Theorem and Converse [112]: For a given maximum average dis-
tortion D, the rate-distortion function R(D) is the achievable lower bound for the trans-
mission bit-rate. R(D) is continuous, monotonically decreasing for B > 0 and convex.
Equivalently, the distortion-rate function D(R) can be used.

B. The Lagrangian Formulation [130]: Instead of the cost function D, with constrained R, or
R, with constrained D, the unconstrained Lagrangian cost function is used for a convex
R-D function and non-increasing, for D>0, subject to minimize

J=D+ AR
C. The Blahut’s Algorithm [130]: This algorithm intends to solve the Langrangian- formula-

tion of the R-D problem. It is used to compute the R-D bound or the optimality testing by
applying it to the tentative testing solution.

For fixed Probability Mass Function (PMF) ¢(y|z), optimal PMF ¢(y) is:

aly) = _ a(ylz)p(z) = q(y).f () (3.14)

zeX
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where p(z) is the PDF of z. For fixed ¢(y), optimal ¢(y|z) is:

q(y)e~4®2)
ey 4(2)e"d@2)

q(ylz) = 5 (3.15)

where p(y) is PDF of y and d(z, z) is the distortion parameter for (x,z).

D. The Kuhn-Tucker Optimality Conditions [130]: The Kuhn-Tucker condition for optimum
qy):

fly)=1ifq(y) >0f(y) <1ifq(y)=0 (3.16)

This method sets several constraints on R and D in order to investigate on the problem of
optimality of the solution.

Those methods listed above contribute to solving the mathematical problem R-D in order
to find the best compromise for rate/quality. Indeed, the signal considered is the signal of
interest which is noise-free. The question is how would the distortion behave while performing
compression on astronomical signal by removing the noise. Optimally, it will result in higher
compression rate for zero-distortion if the reconstructed signal represents the signal of interest.
However, compression using noise-removal is hardly achievable for IR astronomy applications
as the noise itself can not be mathematically defined and modeled due to the different noise
sources. Furthermore, even if the noise model is well-known, which is not the usual case,
the realization of such a compression for space applications is computationally prohibitive due
to the limited resources. Therefore, a compromise between compression performance (CR,
complexity) and data quality is investigated in the next sections.
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3.6 State-of-the Art Compression

The data compression process deals with the removal of the redundancies in the data repre-
senting the signal. The redundancy of data is mainly caused by the source information and its
quality (noisy or not), the sampling rate and the number of quantization levels. In the following
subsections, the research status of state-of-the-art lossy and lossless compression are presented.

3.6.1 Transform Coding Methods

The data compression also consists of a decorrelation stage using a signal transformation e.g.
DCT [109], WVT [21, 25, 113, 145], RGT [18] and CVT [17]. One of the basic image char-
acteristics we profit from is that the correlation among the neighboring samples is leading to a
reduced number of relevant transform coefficients if the transform acts as a decorrelating pro-
cedure. These fewer transform coefficients can be then quantized and coded efficiently [49].

For the image data compressor module most often the JPEG algorithm is employed. It uses
for the decorrelation stage the DCT for the space-frequency transformation on small blocks or
subsets of the image. It has however the adverse property of showing a block structure in the re-
constructed image, the so-called blockiness, the higher compression ratio the worse it becomes.
An alternative is the use of the multiscale transforms which does not require blocking the input
image. In case of WVT that are performed repeatedly (typically up to about 5 decomposition
levels), the corresponding coefficients of the different decomposition levels are correlated and
show a characteristic trend. This residual correlation is indicative of a further compression
potential. Figure 3.5 shows an illustration of 2-D WVT using the Mallat decomposition [79].
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Figure 3.5. Illustration of 2-D wavelet decomposition using the Mallat transform. The numbers
correspond to the decomposition steps that have been applied to produce the subbands. The
two letters indicate if the subband was passed through a high-pass (H) or a low-pass filter (L)
along the horizontal and vertical direction. The subband containing low-pass information in
both directions is situated on the upper-left part of the image. |2: represents subsampling the
subband by a factor 2

— L

Image

Standard compression methods (e.g. JPEG2000 [145]) get profits from this potential, espe-
cially when considering sets of transform coefficients as feature specific compounds. However,
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for image compression, the WVT has a problem with the orientation selectivity because it pro-
vides local frequency representation of image regions over a range of spatial scales, and there-
fore, it does not represent two-dimensional singularities effectively [120, 121]. Furthermore,
wavelet reconstruction contains many disturbing artifacts along edges because of the reduced
number of the maintained coefficients. In other words, WVT of images exhibits large coeffi-
cients even at fine scale, all along the image edges. In a map of the large wavelet coefficients
one sees the edges of the images repeated at scale after scale. While this effect is visually inter-
esting, it means that many wavelet coefficients are required to reconstruct the edges in an image
properly. Reducing this number of coefficients for compression purpose, will introduce then
artifacts on the edges of the reconstructed image.

RGT [18] was developed over several years in an attempt to break an inherent limit plaguing
wavelet denoising of images. This limit arises from the well-known and frequently depicted fact
that the 2- Dimensional (2-D) WVT of images exhibits large wavelet coefficients to represent
the image edges. A basic tool for calculating ridgelet coefficients is to view ridgelet analysis
as a form of wavelet analysis in the Radon domain. The ridgelet coefficients R¢(a, b, ) of an
object f are given by analysis of the RaDon Transform (RDT) via

Rg(a,b,q) = Rf(6,t)a"/*¢((t — b)/a)dt (3.17)

where:

e Rf(0,t) is the RDT of an object f for the orientation parameter ¢ and instant ¢.
e a > 0is a scale parameter and b is a location scalar parameter

e 1) is a wavelet.

Hence, RGT is precisely the application of 1-D WVT to the slices of the RDT where the
angular variable ¢ is constant and ¢ varying. Figure 3.6 shows an illustration of RGT on a 2-D
signal. It has been shown in [30] that ridgelet representation solve the problem of sparse ap-
proximation of smooth objects with straight edges. However, in image processing, edges are
typically curved rather than straight and ridgelets alone cannot yield efficient representation.
However, at sufficiently fine scales, a curved edge is almost straight, and so to capture curved
edges, one ought to be able to deploy ridgelets in a localized manner, at sufficiently fine scales.

Therefore, curvelets [17] have been introduced. They are based on multiscale ridgelets
combined with a spatial bandpass filtering operation to isolate different scales. The curvelet
decomposition of an image consists of the following steps (see also Figure 3.7):

o Subband Decomposition: The object f is decomposed into subbands using 2D WVT.

e Smooth Partitioning: Each subband is smoothly windowed into ’squares” of an appro.-
priate scale.

e Ridgelet Analysis: Each square is analyzed via the discrete RGT, which consists of RDT
and 1-D WVT.
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Figure 3.6: Illustration of the ridgelet transform

CVT [17] was initially developed in the continuous-domain via multiscale filtering and then
applying a block RGT [18] on each bandpass image. Later, the authors proposed the second-
generation CVT [19] that was defined directly via frequency partitioning without using RGT.
Both curvelet constructions require a rotation operation for the frequency decomposition, which
makes the construction possible in the continuous-domain but causes the implementation of the
CVT for discrete images — sampled on a rectangular grid — very challenging. In particular, ap-
proaching critical sampling seems very difficult in such discretized constructions [28, 120].

Another approach starts with a discrete-domain transform and then investigates its con-
© vergence to an expansion in the continuous-domain, which is named the contourlet transform
[28]. A discrete-domain multiresolution and multidirectional expansion using non-separable
filter banks is constructed, in the same way that wavelets are derived from filter banks. This
construction results in a flexible multiresolution, local, and directional image expansion using
contour segments due to the fast-iterated filter bank algorithm. CTT has however the adverse
property of showing other types of artifacts due to the discrete approach.

The performance of the data compression scheme (Figure 3.3) is dominated by the efficiency
of the signal transform in the decorrelation of the original data and therefore to facilitate the
compaction of the information. For an efficient data compression process, the transformation
should be:

e Orthogonal series expansions as it provides series of coefficients which are uncorrelated

e Unitary as it preserves the signal energy and pack most of the information into a smallest
number of them
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Figure 3.7: Illustration of the curvelet transform

e Linear as it offers a fast computation algorithm

An objective measure of the efficiency of the orthogonal transform is the coding gain G

1 X N
1
G= NZG?(H o2)"w (3.18)
=1 =1

where 0?2 is the variance of the output of the i analysis filter and N is the number of original
data samples. G indicates the factor by which the Mean Square Error (MSE) of the reconstruc-
tion is reduced when applying an optimal separate quantizer to each transform component. The
transformation that maximizes G is the Karhunen-Loeve Transform (KLT) [64]. The KLT is
signal dependent and extremely computationally complex comparing to DCT and WVT.

Shapiro [113] introduced the embedded image coding based on WVT, where all encoding
of the same image at low bit rates is embedded at the beginning of the bit stream. Therefore, the
quality of the reconstructed image depends on the given target bit rate. A wavelet coefficient
Z for a position (m, n) is said to be insignificant with respect to a threshold T"if | 27 | < T
This construction is based on the observation that if a wavelet coefficient at a coarse scale is
insignificant, then all coefficients in the same spatial location at finer scales are likely to be
insignificant. This leads to the definition of the Best Linear Unbiased Estimator (BLUE) for a
given v and v such that u = (z™)? and v = (7" !)?

usLus = E[u] — p%.(E[v] — ), (3.19)

v
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where p is the correlation coefficient of u and v, E[.] represents the expectation operator.
Thus, in addition to the decorrelation property of the WVT, the prediction of the insignifi-
cance across scales provides a substantial coding gain. The Shapiro algorithm uses successive
approximations quantization enabling the progressive transmission and adaptive arithmetic cod-
ing. Similar methods, but with advantages both in compression rate and speed are presented in
[106].

In [15], a full joint statistical mode is developed. It describes the interaction between pairs
of wavelet coefficients at adjacent spatial locations, orientations and scales. The wavelet co-
efficients at one scale are considered decorrelated and distributed according to a generalized
Gaussian probability density function.

The stochastic model is used for bit prediction resulting in an Embedded Predictive Wavelet
Image Coder (EPWIC), with superior efficiency compared to [113, 106]. As can be seen, the
compression behavior is dependent on the signal statistics. A high compression rate is obtained
for smooth signals, for which many of the WVT coefficients are zero or almost identical.

Up to here, only the statistics of the WVT coefficients were analyzed. No attempt was made
to model the signal to be compressed. Any observed image is affected by noise, which, from
the point of view of data compression, is reducing the data rate. Thus, a pre-processing step,
i.e. image separation from observation noise, is expected to lead to higher CR.

Donoho [31] introduced a simple denoising algorithm applied in the WVT domain. The
signal, we wish to estimate is defined on the interval [0,1].

Y=z+o0.2 (3.20)

where z is the original signal (noiseless), z is a white Gaussian noise of zero mean and unit
variance, and o is the noise level. The denoising algorithm minimizes the MSE, E[z — z'],
subject to the constraint: ”with high probability, z’ is at least as smooth as z”. The algorithm
has 3 steps:

1. Obtain the empirical wavelet coefficients using the interval-adapted pyramidal filtering.

2. Apply the soft thresholding non linearity where ¢ is a threshold depending on the noise
level o:

Ny(z) = sgn(z)(| z | —t) (3.21)
3. Invert the pyramid filter recovering the estimated signal z’.

In [86], it was observed that denoising could be encapsulated in the quantization process
of a WVT data compression algorithm, thus increasing the probability of longer zero streams.
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The algorithm was applied for the simultaneous cross-section estimation and data compression
of Synthetic Aperture Radar (SAR) images.

In [121], CVT has been used for astronomical image representation. It has been shown that
curvelet reconstruction does not contain disturbing artifacts along edges that one sees in wavelet
reconstructions. Although the results obtained by simply thresholding the curvelet expansion
are encouraging, there is still need for further improvement and especially in the realization of
the method with low complexity. Furthermore, CVT are well adapted for anisotropic features
but astronomical images also contain many isotropic features that can badly represented by only
CVT.

The methods listed so far consider the data of interest as an image. However, the 2-D signal
in IR astronomy is also a result of concatenated measurements from joined IR detectors. Each
detector may be read out several time for a dedicated astronomical efficiency. In this case, the
compression can be considered as an approximation of the detector measurements that best fit
to the sensor readings.

A mathematical procedure for finding the best-fitting curve to this given set of points is the
least squares method [63]. It minimizes the sum of the squares of the offsets (the residuals) of
the points from the curve. The sum of the squares of the offsets is used instead of the offset
absolute values because this allows the residuals to be treated as a continuous differentiable
quantity. This approach is optimal with respect to the Gaussian noise process. However, be-
cause squares of the offsets are used, outlying points can have a disproportionate effect on the
fit, a property that may not be desirable.

The RANdom SAmple Consensus method (RANSAC) [37] is another alternative for linear
fit. RANSAC is an analytic procedure for fitting a straight line out of set of measurements using
the following steps (see also Fig. 3.8):

1. Take randomly two samples and calculate the line which passes exactly through these
samples.

2. All samples that are within a pre-specified distance © to the line are put into the support
set.

3. Repeat this process many times.

4. Select the line with the largest support set (if there is more than one take the one with the
smallest residual error).

For the case where dealing with just few samples per line (4), all possible lines (6) can be
calculated. If dealing with lines containing more samples, the complexity of the solution expo-
nentially increases with the number of measurements. However, a subset of points can be taken
to speed up the processing. It has been shown that RANSAC obtains the theoretically optimal
breakdown point of 50%, i.e. it still can fit a line if not more than 50% of the measurements are
outliers.
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Figure 3.8: Illustration of RANSAC.

3.6.2 Entropy Coding Methods

So far, the status of research concerning the lossy part of data compression methods have been
listed. Indeed, several algorithms have been used in astronomy as backend lossless compres-
sion. They consist of character-oriented compression techniques (e.g. run-length encoding
[109], half-byte packing [49]...etc), statistical encoding techniques (e.g. Huffman coding
[109], arithmetic coding [49]...etc) or dictionary-based compression techniques (e.g. Lempel-
Ziv...etc) [49]. These algorithms differ in performance and complexity. Therefore, the choice
of one of these algorithms depends on the entropy in the data and on the available resources
(CPU power, memory). Evaluation of these algorithms for astronomy can be found in [23, 59].

In the following subsections, the run-length and arithmetic encoding are particularly detailed
as they are interesting for the dissertation research goals for their attractive characteristics e.g.
efficiency vs. complexity.

Run-Length Encoding:

Run-length encoding is a fast data compression method that physically reduces any type of
repeating character sequence, once the sequence of characters reaches a predefined level of
occurence. For the special case where the null character is the repeated character, run-length
compression can be viewed as a superset of null suppression. In this case,it simply ignores
nulls by encoding non-zero symbols and their relative position in the original sequence. In
other words, it encodes the number of nulls between the symbol and the one that was encoded
before.
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This is an example for encoding null character in sequence of symbols.

0 0COO0OA {SOURCE}

AO0OBOOOOO
AO0OB1C?7AS;3 {DEST}
The first symbol’s position information is always 0.

Note that that a symbol sequence, which does not at least contain as many nulls as other
symbols, is not compressed but expanded.

Arithmetic Coding:

One of the limitations associated with the other statistical encoding methods like Huffman and
Shannon-Fano coding is the fact that these methods are optimal only when the probabilities
associated with each symbol are integral powers of 1/2, which is usually not a good represen-
tation of reality [49]. For example, let us assume that the probability of a symbol is 1/3. Then,
-logy(1/3), i.e. logy3 or approximately 1.59 bits would be required to represent the symbol.
When Huffman or Shannon-Fano is used, two or more bits would be assigned to the symbol.
Then, each time the symbol is compressed, the encoding technique would result in the addition
of approximately 0.4 or more bits over the symbol’s entropy. As the probability of symbols
in a set increases, the coding variance between the entropy of the symbol and the number of
bits required to encode it using the Huffman or Shannon-Fano technique increases. Therefore,
arithmetic coding [49] has been developed, which does not require symbol probabilities to be
integral powers of 1/2 to obtain an optimum efficiency.

Arithmetic Coding [62] is a technique in which each symbol in a symbol set is assigned an
interval between 0 and 1 based upon its probability of occurrence. As astronomical data are
formed by the concatenation of separate symbols, those symbols are used to define smaller and
smaller intervals between O and 1, resulting in a set being represented by a floating number.
Thus, arithmetic coding results in the replacement of individual character codes used by Huff-
man and Shannon-Fano coding by the use of a single code for an entire symbols sequence.

The algorithm for encoding data using arithmetic coding works conceptually as follows:
e The encoding process begins with a current interval [L; H| initialized to [0; 1].

e For each symbol in the data, two steps are performed:

o The current interval is divided into subintervals, one for each possible alphabet sym-
bol. The size of a symbol’s subinterval is proportional to the estimated probability
that the symbol will be the next symbol in the data, according to the model of the
input.

o The subinterval corresponding to the symbol that actually occurs next in the data
stream is selected as the new current interval.
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¢ Enough bits are output to distinguish the final current interval from all other possible final
intervals.

The length of the final subinterval is clearly equal to the product of the probabilities of the
individual symbols, which is the probability p of the particular sequence of symbols in the data.
The final step uses almost exactly - logsp bits to distinguish the data. An additional mechanism
is needed to indicate the end of the data, either a special end-of-data symbol coded just once, or
some external indication of the data’s length.

In the second step, it is required to compute only the subinterval corresponding to the symbol
that actually occurs. To do this, two cumulative probabilities are defined,

i—-1

Pc; = Z pk (the cumulative probability) (3.22)
k=1
and .
Pn; = z pk (the next cumulative probability) (3.23)
k=1

The new subinterval is [L + Pci(H — L), L + Pni(H — L)]. The need to maintain and
supply cumulative probabilities requires the model to have a complicated data structure.

Example: a non-adaptive code, encoding the stream bbb’ using arbitrary fixed probability
estimates pa = 0.4, pb = 0.5, and pEOF = 0.1. Encoding proceeds as shown in Table 3.1.

| Current Interval | Action | Subinterval a | Subinterval b | Subinterval EOF | Input ||

[0.0000;1.000[ | subdivide | [0.000;0.400[ | [0.400;0.9000[ | [0.9000;1.000[ b
[0.4000;0.900[ | subdivide | [0.400;0.500[ | [0.600;0.8500[ | [0.8500;0.900[ b
[0.6000;0.850[ | subdivide | [0.600;0.700[ | [0.700;0.8250[ | [0.8250;0.850[ b
[0.7000;0.825[ | subdivide | [0.700;0.750[ | [0.750;0.8125[ | [0.8125;0.825[ | EOF
[0.8125;0.825[ | subdivide

Table 3.1: The basic arithmetic coding process

The final interval is [0.8125, 0.8250[, which in binary is approximately [0.11010 00000,
0.11010 01100(.

This interval is uniquely identified by putting out 11010 00. According to the fixed model,
the probability p of this particular file is (0.5)3 (0.1) = 0.0125 (exactly the size of the final
interval) and the code length (in bits) should be - logs & 6.322. In practice, 7 bits are needed to
represent 24 bits data which results on a CR of 3.42, excluding the probability table size.
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3.7 Astronomical Compression Methods

In this section, dedicated methods for astronomical data compression are listed. Compression
methods used in astronomy include HCOMPRESS [134], FITSPRESS [95] and Pyramidal
Median Transform (PMT) [117]. The first two methods are based on linear transforms, which
in principle help to reduce the redundancy of the pixel values in a block and to decorrelate
spatial frequencies or scale. PMT is similar to mathematical morphology method [111] in
the sense that both try to understand what is represented in the image. In the following, the 3
methods are briefly described:

1. HCOMPRESS was developed at Space Telescope Science Institute. It consists of the
Haar wavelet transform [123], linear quantization of the wavelet coefficients and Huff-
man backend coder. This method suffers from the introduction of visible artifacts in the
sky background, and error in the detected position of sources, caused by the transform.
Iterative reconstruction allows them to be suppressed but in this case the reconstruction
takes time [72].

2. FITSPRESS was developed at the center for Astrophysics in Harvard. It is wavelet-based
compression method for FITS images [95]. It uses a threshold on very bright pixels and
applies a linear wavelet transform. The wavelet coefficients are thresholded according
to a noise threshold, quantized linearly and run-length encoded. This method leads to
cross-like artifacts in the residual image, a loss of faint objects and a decrease in objects
brightness [72].

3. PMT compresses in the image what is considered as significant (objects) in the image.
It selects the object to be kept by using the pyramidal median transform, and codes this
information without any loss [117]. Thus, the first phase searches for the minimum set
of quantized multiresolution coefficients that produce an image of high quality (quality
means there is no visual artifacts in the decompressed image and the residual does not
contain any structure). Using this method, the non-selected information is lost and can
not be recovered. It is also not well-suited for infrared images as the objects are hidden
in the high-amplitude noise [13].

In another context, a multiresolution transform (similar to PMT) based on mathematical
morphology, has been used by Appleton [3] for cirrus (due to intergalactic dust phenomena)
filtering in infrared images. This method has been used for the post-processing of the astronom-
ical images after decompression, knowing the object structure.

The methods listed above seem to be either generic compression methods that are used to
reduce the data volume using a dedicated quantization of WVT coefficients or model-based
compression methods that directly extract the object of interest from raw images. However,
these methods are not adequate for IR astronomy applications, as there is no object structure in
the raw images. Long integration time over several images, generally hours (depending on the
wavelength), is required to detect objects in IR range. Furthermore, to my knowledge, there is
no real study on the modelization of the IR astronomical signal and no accurate investigation of
the compression efficiency and performance for such a signal. Therefore, we are concerned in
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this thesis to recognize the best compression that adapt the IR astronomy needs to the available
resources.
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Chapter 4

On-Board Processing

This chapter presents the main contribution of this work into science. First, the classical data
processing concept for space-borne missions is presented. Furthermore, optimal processing
concept for IR space observatory is motivated by the needs of high compression rate for the
particular IR detection system characteristics, which are mainly the high entropy. Then, an "In-
tegrated Processing” concept for IR observatories is proposed including an on-board processing
approach, which consists of moving part of the processing into the remote side using the de-
tection system know-how for optimal compression performance. Afterwards, the on-board pro-
cessing steps are presented and the involved processing modules are detailed. Finally, on-board
processing performance is demonstrated on infrared images from ISO [147] and the compres-
sion results are compared with those using the generic compression framework JPEG2000.

4.1 Classical Processing for Space Observatories

The classical concept for data transmission and processing from space-borne missions is re-
ported in Figure 4.1-a. This concept consists of two main parts: remote and local processing
parts.

1. Remote side

It is subdivided into two steps:

e Acquisition: As described in Section 2.3, acquisition systems transform radiant en-
ergy (astronomical signal) into an electrical signal from which an image can be
reconstructed using dedicated readout and sampling modes. Images are formed by
the optical system that projects radiation into a photodetector in the image plane.
The photodetector converts the radiation into a latent image as an electric signal that
is amplified, sampled and quantized for digital transmission.

e Compression: This part consists of the entropy coding of the acquired image for
the reduction of the data traffic on the transmission channel. The efficiency of this
lossless compression depends on the entropy in the data, and thus, on how much
redundancy are present in the image.
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2. Local side (user)

It is subdivided into two steps:

e Exploitation: Usually, the downlinked data are first decompressed, then calibrated
using normalized parameters. This step is performed to restore the data by predict-
ing the negative effect of the tasks of acquisition and compression. In other words,
the science images/signals are reconstructed using dedicated processing tools and
made available for usage.

e Application: During this step, the reconstructed images can be used for the purpose
they were intended for e.g. for scientific purpose (astronomy) or for operational
purpose (meteorology, geodesy, ecology...etc).

Such a scheme is inadequate for IR observatories, where the information rate largely ex-
ceeds channel capacity and high compression rate is mandatory to fulfill the transmission re-
quirements. In addition to that, IR detectors are continuously exposed to high energy cosmic
particles inducing a disturbance (glitches) of the detector signal and transient behavior, which
may increase the signal entropy and hence the capability to achieve the required CR even with
the most powerful compression algorithms.

Remote (@) Local
~ ~
Acquisition Compression |— Downlink 1 Exploitation Application
Remote ®
cmo Local
~ TN o "
Exploitati Exploitati icati
Acquisition xgh(;;e ]lon Compression  |—Downlink- pp(l)l;selzcm Application
SN——
Integrated Task

Figure 4.1. a.) Classical data compression b.) Data compression model using distributed data
exploitation —Integrated Processing—.

Therefore, it is more convenient that some processing is performed on-board i.e. to move
a part of data processing from the user side to the remote side. In other words, the alternative
to efficient data transmission is to make the on-board sensor intelligent, and hence capable for
interpreting the collected data. In the scientific literature several data compression algorithms
exist, which are nearly optimal for a wide class of data. They make use of information extraction
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methods in order to reduce the original data, by keeping the relevant information (parameters).
On the other hand, it turns out that techniques for information extraction strongly depend on the
kind of information or pattern to be sought and recognized. Those methods cannot be used for
IR astronomy, especially for mid and far-IR as the features of the object of interest cannot be
recognized at higher scale and lower integration period (see figure 1.2-a).

The global aim of this thesis is to recognize the optimal processing for space observatories’
IR data for efficient transmission. For this purpose, a new compression concept is proposed by
integrating part of the processing in the remote side, that is On-Board Processing (OBP).

4.2 Integrated Processing for Space Observatories

The integrated processing is presented in Figure 4.1-b). It consists of two main part: OBP at
the remote side and on-ground processing at the user side (local). A distributed processing (ex-
ploitation) on the remote and the user sides is used, so imposing to resort to data reduction (lossy
compression), with potentially negative effect to the applicative tasks to be run at the ground
station. This work is mainly focusing on the OBP part whereas the on-ground processing can
be another topic of research, though both steps are highly dependant.

The OBP concept uses the IR detection systems know-how for optimal processing by adapt-
ing the methods to the signal characteristics. A model-based approach is used at the remote side
in order to reduce the data according to the IR signal models. Besides allowing for qualitative
data reduction at the airborne segment by means of a simple detection algorithm, this would
also yield a strongly reduced computational burden, and the capability of performing a refined
detection stage at the ground station on the decompressed data. Furthermore, knowing the data
model leads to a very high compression efficiency (CR).

The scheme in Figure 4.1-b) differs from the classical data compression concept by inte-
grating part of the the processing on-board the space observatory (Exploitation Phase 1).

1. Remote side: OBP
It is subdivided into three steps:

e Acquisition: It is identical to that in the classical concept.

e Exploitation Phasel: Figure 4.2 shows roughly the steps performed within this
phase. The basic idea is to perform on-board integration in order to achieve a high
CR. Thus, this reduction uses preliminary knowledge about the expected detector
signal for low information loss. However, the resulting signal is usually contami-
nated by outliers due to the cosmic particles hit (glitches). Therefore, care is taken
to not integrate over invalid detector readings by including glitch detection and re-
moval before the integration.

The glitch event is also a sort of noise, which has to be reduced for efficient entropy
encoding. However, it has to be to ensured that the noise reduction does not lead
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Figure 4.2: On board data reduction — Exploitation Phasel —

to relevant information loss. Therefore, the glitch detection has to be adapted to the
noise model using an adequate algorithm. Thus, this concept foresees to transmit a
fraction of the data in raw such that the noise model can be computed and monitored
at the user level for the update of the on-board glitch detection algorithm. Hence,
the noise (considered as non-relevant information) is lowered from the data before
the reduction using this adequate estimation of the noise. It can also be noticed that
the reconstruction error mainly depends on the robustness of the modeling and the
glitch removal.

e Compression: The lossless compression is adapted to the resulting signal from the
previous step for optimal efficiency. For this purpose, dedicated sorting algorithm
and entropy coders are proposed in this work, which are adapted to the IR detector
signal.

2. Local side (user): on-ground processing

It is subdivided into two steps:

e Exploitation Phase 2: This is the counterpart of the OBP. It is performed to restore
the data and make it available for usage, by predicting the negative effect of the tasks
of exploitation phase 1. Indeed, the accuracy of the on-board modeling of the noise
is relevant for image reconstruction. The multiscale filtering method [117] based on
WVT might be used for the extraction of the information of interest. Indeed, mul-
tiscale analysis is useful, especially for faint sources, such that one can reduce the
influence of noise by eliminating less important details in lower-resolution versions
of the image. Furthermore, it finds regions of interest for plan-guided analysis at
low cost in low resolution images, ignoring irrelevant details.

e Application: It is identical to that in the classical concept.

In the following sections, OBP concept is detailed and the individual processing steps are
described. Though, this concept can be adapted to any detector type, the presented algorithms
illustrate the case of the photoconductors. As mentioned before, on-ground processing that is
another research subject, which is correlated with the disseration goals, is not considered in this
thesis. Although, decompression scheme has also been developed for the OBP concept in order
to validate the feasibility of this proposed approach.
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4.3 On-Board Processing

It is clear that IR space astronomy imposes specific requirements, which consist of fulfilling the
bandwidth limited downlink requirement for a minimal data loss by means of limited on-board
resources (memory and CPU power) due to the high cost of space-qualified devices. Therefore,
improvement of the transmission reliability is possible while exploiting the signal model of the
used detection system, in order to adapt the compression ratio to the available bandwidth, and
by defining optimal schemes for coding information for different telemetry rates.

The On Board Processing (OBP) concept is then proposed to exploit this detection system
know-how for efficient transmission of IR data from space observatories. IR astronomy data
have high entropy due to the influence of noise [13, 43]. There are several sources of noise:
detector noise, amplifier noise, electric cross talk, and pick-up noise and glitches [43].

The main challenging noise source for the OBP approach is the glitches since on-board inte-
gration is used. Therefore, glitch detection is a critical task that can only be efficient if including
the user interaction for defining appropriate noise parameters for dedicated glitch detection al-
gorithmes.

The individual relevant processing steps used by the OBP approach is depicted in Figure 4.3.
The following subsections describe these individual modules in detail, with special emphasise
on the glitch detection, the oversampling reduction and the integration parts.

Raw Data from Acquisition

Raw Data Selection

v

Redundancy Reduction oo

\

Entropy Encoding

A
Telemetry to Downlink

Figure 4.3. A schematic diagram outlining the OBP concept. (Dark Grey color for the modules
where data are lossy compressed)
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4. On-Board Processing

4.3.1 Detector Selection

In this step data selection according to a specific detectors status map is performed. The de-
tectors selection makes use of on-board stored tables in order to discard non-relevant pixel’s
data from the downlink. As noted in Section 2.3.7, several detectors might be damaged in-flight
such that their output signal is irrelevant for the scientific purpose. Therefore, it is necessary
to isolate and remove them from the downlink for efficient exploitation of the telemetry band-
width. Furthermore, in many cases, it is not necessary to use the whole detector array for an
observation especially, if the object can be encapsulated in few pixels and the position of the
object in the array is known. Therefore, depending on the object structure, pixels that represent
the object of interest are selected and data from the other ones are discarded, whenever the point
source is localized within the detector array.

4.3.2 Preprocessing

This step is dedicated to compensate the detector performance (i.e. the resulting signal is differ-
ent from the mathematical model) by fitting the output data to the an expected model. The re-
ceived signal is transformed to the appropriate form (e.g. linearizing as shown in Section 2.3.7)
whenever the detector output model is known. Indeed, on-board signal correction (shape, lin-
earity) is useful for efficient compression in terms of rate and complexity. In fact, this is used to
reduce the noise (pick up and cross talk noise) in the data. It uses the characteristic of infrared
detectors where blind pixels (not exposed to the light) are used as reference for the correlated
pick up noise. A correlation matrix between the blind pixels on the reference lines and the
actual pixels is used to remove the correlated noise.

4.3.3 Glitch detection

This is a critical step in the OBP scheme as the result quality of the compression depends on
the glitch detection efficiency. Since on-board integration is performed, it has to be ensured to
not integrate over invalid sensor readings (i.e. glitches). The detection of such events will be
performed in the glitch detection module. The glitch detection will be done at the individual
readouts level “Intrinsic Deglitching” as well as at integration level “Extrinsic Deglitching” and
by considering subsequent integrated signals.

Intrinsic Deglitching: The idea is the use of a sigma-kappa clipping method for the detection
of outliers at readout level. This is a simple method that can be adapted to any signal
model respectively to any detector type. For illustration, let us consider the case of pho-
toconductors where the detector output is in the form of ramps. The intrinsic deglitching
makes use of the Slope Deviation Detection Method (SDDM), that is, the second deriva-
tive of the 1-D detector signal.

let us consider the case of 1-D detector signal ” X (¢)” with 3 glitch occurrences as shown
in Figure 4.4-A. SDDM performs the following steps:
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(first derivative). C- 2nd step of SDDM (second derivative)
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4. On-Board Processing

e Calculate the differences between all successive readouts in a ramp. As the readout
interval usually is equidistant, the differences represent the slopes of the 1st deriva-
tive functions using two successive readouts (see Figure 4.4-B).

D) = X(@E+1) — X(3) 4.1)

e Calculate the deviation of these slopes. It is the difference of the differences of
successive samples. In other words, it represents the second derivative of the raw
signal X (¢) (see Figure 4.4-C).

Dev(i) = D(i + 1) — D(3) (4.2)

If no glitches occur for a linear ramp, the output would be zero.

e Remove all deviations that are above 3 o, where the o represents the slope precision
i.e. the non-linearity threshold.

e Perform the median averaging in order to reconstruct the removed samples and to
make them available for the oversampling reduction.

Using this method, all detector outliers according to the o level are discarded. It has the
following advantages:

e Robust as all readouts are tested

e Fast as it only calculates samples differences. For N readouts (2N-2) operations are
required.

e Well-suited for IR space astronomy as each readout is equivalent to the number of
photons/time. For equidistant readout interval, this number is constant or near a
constant in the ideal case. The amplitude might changes for a glitch event, which
can be easily detected and rejected.

However, this method can be computationally expensive for limited processing resources
as OBP consists of several processing steps. Therefore, this intrinsic deglitching can
be further computationally improved as it solicits each readout twice for the difference
calculation. An improvement of this method is made by involving each sample once for
the difference calculation using different combinations. Indeed, the glitch event likely
occurs on more than one measuerement, depending on the detector type, the hit energy
amplitude and the electronics efficiency. Therefore, the difference calculation between a
subset of measurement is an alternative to speed-up the processing. The improved version
of SDDM is named Slope Deviation Error (SDE).

Six cases are considered and represented in Figure 4.5.

e SDE_REG_APP1: This is the SDE regular approachl that is equivalent to SDDM
where several readouts are two times solicited for the calculation of the subslopes
(the difference between subsequent samples). Then, the slope deviation is calculated
between all successive subslopes. For N readouts, there are 2N-2 operations.
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Figure 4.5: A schematic diagram for different approaches to slope deviation error

e SDE_REG_APP2: This is the SDE regular approach2 where all readouts are so-
licited one time for the calculation of the subslopes. Then, the slope deviation is
calculated between all successive subslopes. For N readouts, there are N-2 opera-
tions.

e SDE_REG_APP3: This is the SDE regular approach3 where all readouts are so-
licited one time for the calculation of the subslopes. Then, the slope deviation is
sequentially calculated for each pair of subslopes. For N readouts, there are (3N/4)-
2 operations.

e SDE_OVL_APP1: This is the SDE approachl with overlapping where subslopes are
calculated for readouts at odd index or even index positions. For example:

subslopel= readout3-readoutl,
subslope2= readout4-readout2,
subslope3= readout5-readout3
... etC.

Then, the slope deviation is calculated between all successive subslopes. For N
readouts, there are 2N-2 operations.
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4. On-Board Processing

e SDE_OVL_APP2: This is the SDE approach2 with overlapping where subslopes are
calculated as for SDE_OVL_APP1. Then, the slope deviation is calculated sequen-
tially for each pair of subslopes. For N readouts, there are N-2 operations.

e SDE_OVL_APP3: This is the SDE approach3 with overlapping where subslopes
are calculated as for SDE_OVL_APP1 but solicited only one time. Then, the slope
deviation is sequentially calculated for each pair of subslopes. For N readouts, there
are (3N/4)-2 operations.

Regular cases are noted (REG) while approaches with overlapping are noted (OVL).

For a compromise between efficient glitch detection and fast computation, the case of
SDE_REG_APP2 or SDE_OVL_APP?2 are sufficient for detecting the glitch using an ap-
propriate 0. However, SDE_REG_APP1 or SDE_OVL_APP1 are mandatory for short
integration ramps because resetting the detector signal for a new exposure can release
part of the glitch energy, which make the detection of the invalid measurements challeng-
ing.

Furthermore, the intrinsic deglitching cannot efficiently detect the transient behavior of
detectors if a long relaxation time is needed to discharge the cosmic hit energy. Therefore,
extrinsic deglitching is used to complement the glitch detection process.

Extrinsic Deglitching: In this case, the difference between integrated readouts is taken into

account in order to detect for glitches. The same approach used at readout level (SDDM)
is applied at integration level. If two subsequent integrations differ more than 20, there is
an indication of a glitch.

For short time constant, the indication of a glitch leads to the removal of the whole inte-
gration. The reconstruction of such data may be performed on-ground either by using the
median averaging of the subsequent integrations of by replacing it with the average value
of surrounding good integrations, although it is not recommended.

Indeed, the detection of glitch tails after the cosmic hit relaxation is a critical issue. Since
the behavior of the detector might change for some time after it has been hit by a glitch, this
is a critical issue. Indeed, for short time constant, the hit samples shall be discarded, otherwise
the user support is required for long duration observation in order to automatically detect this
transient behavior using an appropriate o.

The next thing to consider is the potential loss of scientific data. Of course, the glitch
detection will not be 100% correct. Therefore, the potential loss of scientifically valid data
can be quantified by the glitch detection rate and the number of ramps that will be integrated.
Assuming a glitch rate of every 10s/pixel, with a glitch tail of 0.5s, there is a probability of
Dgtiteh = 1/20 that a ramp is effected by a glitch. Then, the potential loss of scientific data p;,ss
can be calculated as follows:

Dioss = 1-—- (1 - pglitch,(]- - pdet))n (43)

67



where n is the number of integrated ramps and pg; is the glitch detection efficiency.
Table 4.1 lists the potential data loss for various numbers of integrations for different glitch
detection rates.

# ramps | no glitch detection | 50% 90% | 99%
2 9.75% 4.94% |0.99% | 0.1%
4 18.55% 9.63% | 1.99% | 0.19%
8 33.66% 18.33% | 3.93% | 0.39%
14 51.23% 29.84% | 6.77% | 0.67%

Table 4.1: Potential loss of scientific data

A glitch detection rate of more than 95% seems feasible, therefore the potential data loss
will be around 1%-3%. In fact, it will be lower because in the above calculations it was assumed
for simplicity that a glitch and its tail are independent events, which is not true. In fact, if the
glitch is detected its tail can be also tracked. In addition, it was assumed that when a glitch is
not detected, all integrated measurements will be lost. In fact, if a small glitch is missed and
integration over it is performed, this just decreases the signal to noise ratio. Another thing not
considered is a false negative rate, i.e. to discard a ramp even if it is not affected by a glitch,
this will of course also lead to a loss of scientific data. But this can be directly estimated. In
addition, this has no effect on the other data. From these considerations, it can be noticed that
the glitch detection efficiency is a driving factor for high CR with minimal loss of scientifically
valuable data.

4.3.4 Oversampling Reduction

The oversampling reduction is one of the crucial steps of the proposed data reduction con-
cept. For quantum efficiency purpose, the detectors readouts are oversampled at the multiplexer
stage. For the different oversampling techniques, see Section 2.3.3. The oversampling reduc-
tion method depends on the sensor used. It represents ramp-fitting in case of photoconductors,
while it is curve-fitting in case of photodiodes or bolometers (Section 2.3.2). For illustration
reason, the case of the photoconductors is considered. Extension to other detector types can be
easily made as far as the data model of the detector output is known.

In the case of photoconductors, ramps represent the detector output model. There are two
kind of ramps: linear and non linear. Let us focus first on linear ramps. The ramps are fitted to
the sensor readings in order to obtain the flux. Let us consider the samples belonging to a ramp
given by a vector X = [z1,...Z,|7. A linear ramp is given by

Xx=st+0+7 (4.4)

where s is the unknown slope, t are the known instants of sampling, o is the unknown offset
and 7 is a vector of random variables with distribution of every element assumed to be N(0, o),
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4. On-Board Processing

characterizing the noise process.

In order to obtain the parameters of interest this equation has to be solved in a robust manner.
Therefore, particular considerations on the detector measurements have to be taken into account.

1. Gaussian Noise;

For pure Gaussian noise, the contribution of each individual measurement to the ramp fit
is unique. By considering a ramp consisting of n data points, the statistical weight of each
sample is 1/n. In this case the least squares solution is the optimal one.

. Poisson Noise: For pure Poisson noise, all information relevant for the ramp fit is con-

tained in the last measurement. By considering a ramp consisting of n data points, the
statistical weight of the n** sample is 1, and the statistical weight of all other samples is 0.
In this case, the last measurement is the result of the ramp fit. Because of the simplicity
of this solution, this case will not be discussed in the following subsections.

. Combined Noise Sources: For combined noise sources, an intermediate solution is ex-

pected. By considering a ramp consisting of n data points, the statistical weight of each
sample increases with index k, k = 1,...,n. In this case, a combination approach is required
for the best ramp fit result.

In the following subsections, the ramp fitting options [12] for the oversampling reduction
are detailed and its feasibility respective to the glitch detection efficiency is discussed.

Least squares solution: The least squares solution can be easily calculated in analytic form,

and is optimal with respect to the Gaussian noise process. However, in case of extreme
outliers (i.e. glitches) it performs very poor. Fig. 4.6(a) shows an example where least
squares is performing very well. Whereas Fig. 4.6(b) shows the least squares solution on
the same data as in Fig. 4.6(a) where one sample is an outlier. One can clearly see that
the obtained ramp is far from being perfect. Therefore, in case the extreme outliers are
not detected/removed by the glitch detection module, the least square fit will not provide
the expected signal.

Robust solution: Since the solution has to be found in a robust manner, a robust fitting pro-

cedure has to be used. There have been many proposals how to obtain a solution to the
Equation 4.4 in the presence of outliers (e.g. see [48, 104]). RANSAC is one of these
proposals. As mentioned in Section 3.6.1, RANSAC obtains the theoretically optimal
breakdown point of 50%, i.e. it still can fit ramps if not more than 50% of the points are
outliers. Fig. 4.7(a) shows the same example like in Fig. 4.6(b) but fitted using RANSAC.
One can clearly see that in this case the outlier is ignored and we obtain a perfect fit.
Fig. 4.7(b) demonstrates the drawback of RANSAC, namely its low efficiency in remov-
ing Gaussian noise. Since the RANSAC solution is based only on two points there is no
possibility of reducing the Gaussian noise. To alleviate this problem, the robustness of
RANSAC with the optimality of the Least squares method can be combined.

RANSAC and Least Squares: The idea is very simple. First RANSAC is performed on the

ramp, then all points in the support set are taken to calculate the least squares solution.
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Figure 4.6: Least squares fitting.

(@ (b)

Figure 4.7: RANSAC Fitting.

Thereby, we have the robustness of RANSAC and in addition the efficiency of the least
squares solution. Fig. 4.8 demonstrates this on the example of Fig. 4.7(b). One can clearly
see that the solution obtained ignores the outlier and smooths the Gaussian noise.

The result of the ramp fitting are the slope and the offset of the ramps, and for each sample
on the ramp we have a flag if it is an outlier or not. If it is not an outlier we have in addition a
residual value. Therefore, if the glitch detection performs well, then the least square will be suf-
ficient to reduce the Gaussian noise while fitting the sensor reading. Otherwise, the combined
approach is mandatory for robustness against outliers at the price of additional processing time.
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Figure 4.8: Illustration of RANSAC and Least squares.

It can be shown that an extension to the non-linear ramps could be easily done whenever an
analytic model of the ramp is available. Furthermore, the fitting can be performed over a small
part of ramps (subramps), typically 4 samples, such that non linear ramps are also considered
to be linear in short time constant, if non linearity is above the 4 samples scale. Figure 4.9
illustrates an example of sub-ramp fitting for non linear ramps. The flux can be computed, then,
as a weighted mean of sub-slopes.

Example: 32-sampleramp
4. samplesto fit_;

Voltage . \

Slopel . | Slope2:: Slope3: Sloped.. | SlopeS:

.\\. Slope7| Slope8

A\

Time

Figure 4.9: Non-linear fitting: Least squares fitting of sub-ramps.
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4.3.5 Integration

This module will perform on-board integration of the sensor readings in order to achieve the
desired compression ratio. This is the lossy compression part of the approach. Special empha-
sis has to be paid in order to guarantee integration over the right readings — synchronized with
the positions of the chopper and the telescope pointing — and not to integrate over exposures
affected by glitches. Thus, the integration process first determines whether to discard all data of
an integration block if there is a lack of confidence in at least some of the samples. Then suc-
cessive integrations of a number of successive exposures within the same chopper and pointing
positions will be added, if they are free of glitches.

4.3.6 Redundancy Reduction

The previous modules represent the lossy, i.e. reduction, part of the data reduction/compression
system. The further modules constitute the lossless, i.e. compression, part. To achieve the high
required ratio, many iterated compression steps should be applied. After the integration, there
is a sequence of arrays we call frames with dimension M x N (i.e., A?, where A € RM*¥V is
an array of integrations at time ¢). Since temporarily and spatially adjacent measurements will
be similar, one can use this fact for further data reduction.

Another alternative for efficient lossless compression is to perform a proper sorting respec-
tive to the detector knowledge before the redundancy reduction. The aim of the data-sorting step
is to increase the local redundancy between successive samples in memory for fast and efficient
entropy coding. For example, in case of photoconductors, the method applied in this step makes
use of the detector knowledge under the assumption that the detector response to incident light
does not significantly change from ramp to ramp (excluding the glitch) at detector level i.e. the
first sample in the second ramp of one detector output is assumed to not deviate too much from
the first sample of the first ramp of the same detector. Under this assumption, the data-sorting
is first applied, according to the sample index in a ramp, for increasing the redundancy before
the redundancy reduction and entropy coding steps.

Ramp Samples Sorting: Figure 4.10 depicts an example of photoconductor’s data for 16-
sample ramps.

In case of 512 detectors and N’ ramps, data might be organized in a buffer as follows:

detectorl[rampl...rampN] detector2[ramp]...rampN]... detector512[ramp1l...rampN]

where the number of ramps (rampN) is equal to:
number of frames / number of samples per ramp (16 in our example).

By making use of this knowledge, the sorting can be performed as follows:
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Figure 4.10: Examples of a sequence of 16-sample ramps

1st sample of 1st ramp of 1st detector

1st sample of 2nd ramp of 1st detector

1st sample of Nth ramp of 1st detector

Ist sample of 1st ramp of 2nd detector
1st sample of Nth ramp of 2nd detector

1st sample of Nth ramp of 512th detector

2nd sample of 1st ramp

160
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16th sample of 1st ramp of 512th detector

16th sample of 2nd ramp of 512th detector

16th sample of Nth ramp of 512th detector.

Figure 4.11 illustrates the sorting result of the data illustrated on Figure 4.10. Using
this method, efficient redundancy reduction can be performed by sequentially looking
in memory for duplicated symbol at smaller distance (represented by plateaus in Fig-
ure 4.11).
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Figure 4.11: Sorting result of the 16-sample ramps sequence

Temporal Redundancy Reduction: Let us calculate:
At+1 — At _ At+1 CUAMT = A At+n (45)
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If subsequent frames are similar, then,

AT << [AM,1<i<n (4.6)

Therefore, It will result from this reduction:

Aland A™ 1<i<n 4.7)

Spatial Redundancy Reduction: After the temporal redundancy reduction, spatially neigh-
boring values in A*** should be similar (in the ideal case they are zero), therefore, ad-
ditional compression gain could be achieved by encoding the difference of neighboring
pixels.

4.3.7 Entropy Encoding

Redundancy reduction as outlined above, should have reduced the magnitude of pixels values
as much as possible. This fact makes it possible to make assumptions about the distribution
of the data, what is a prerequisite for efficient lossless coding. Generally, the astronomical
images have uniform background stray-light "Dark Current”. Therefore, the data packet related
will contain many identical sample values. The redundancy reduction is suitable to optimize the
data packet size. A combination between the RZIP [93] and arithmetic encoding [49] algorithms
is performed for further compression. The RZIP algorithm which is a variety of run-length
encoding was especially developed for PACS [150] data entropy coding, but can be adapted for
other detector data encoding using a proper sorting. Indeed, the RZIP entropy coder, like other
coding algorithm, finds its efficiency using a proper data sorting. The data sorting depends on
the instruments and detectors proper responsivity, that differs between detectors. Below, you
find the formal descriptions of the RZIP algorithm.

RZIP Algorithm: RZip is a character-oriented compression technique that was initially devel-
oped for PACS Header compression [93]. It is also intended for compression of any other
data, whenever the contexts are known. The emphasis was on writing an algorithm that
runs fast on the DSP and compresses data as efficient as possible.

The strategy of RZip for searching redundancies in the input buffer is closely related to
the data granularity. Let us consider an example of words with 32-bit wide. Therefore, a
symbol size of 32 bit ensures a good chance in finding recurring equal symbols. Another
important factor to consider is the word size of the CPU or — e.g. the DSP —. Most DSP
instruction sets only support 32-bit granularity.

So, RZip focuses on 32-bit words. Given an arbitrary 32-bit symbol of a data buffer, a
logical question can be asked, "Does it recur, or not?” If so, ”where in the buffer or how
often does it repeat?”
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Basically, RZip takes a symbol and looks ahead for recurrence within a certain index
range.. The index difference of the two occurrences is encoded taking already coded
indices into account. After that, the next occurrence of the symbol is sought if the end of
the buffer is not encountered. In case there are no more occurrences, the source buffer is
investigated for the next candidate symbol.

The distances can be encoded in different ways. One way is to use the maximum distance
as an indicator for no more recurrences. For example, a binary flag after a symbol in the
encoded data stream indicates either that an offset will follow or that there are no more
occurrences for the current symbol.

Two parameters determine the performance of the algorithm:
e The size of a symbol quantifies the number of bits per symbol. In our case, this is
fixed at 32 bit per symbol.
o A sets the width of the range to look ahead for recurring symbols. For instance, a A
of 4 means that 2* = 16 indexes will be checked.

For illustration of the method, an explanatory example run is given:
RZIP Example:

Let SOURCE be the data buffer to be compressed. Let DEST be the destination buffer
where the compressed data will be put.

A is the parameter that determines the number of bits to use for encoding ranges. In
the following example, 2 is chosen, therefore the effective offset counter § will be 0..3
(= 22 — 1). The size of a symbol shall be 32 bit.

The SOURCE (symbol buffer) may look like:
A ABCAACCSB B {SOURCE}

There is also need for a workbuffer WORK. At the beginning of the algorithm, it has to be
cleared.

0000O0O0OOOO {WORK}

a) Select the first unused (workbuffer = 0) symbol and the workbuffer to 1.

=
o »
(=
o N

A A CC B B {SOURCE}
0 00O0O0O0 {WORK}
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b) Look ahead if the symbol recurs within 6. If yes, code 1 within 1 bit and § within A
bits. Set the proper position of the found symbol in the workbuffer to 1. Reset the § to 0
and continue until no further occurrences are found, then code 0 in 1 bit.

¢) Go back to a) until the end of the buffer.

First, all As are coded.

A ABCAACCDBB {SOURCE}
1100110000 {WORK}
A vyoO . yv2y0 n {DEST}

The next symbol to code is B.

Next one is C.

And finally, B again.

A ABCAACCB B {SOURCE}
110000

1110 {WORK}
Ay0y2y0On B n {DEST}
AABCAACCTBHB {SOURCE}
1111111100 {WORK}
Ay0y2y0OnBn C . . yO0y0 n {DEST}
AABCAACCIBHEB {SOURCE}
1111111111 {WORK}

AyOy2y0OnBnCyOy0On B y0 n {DEST}

In this example, 10 symbols of 32 bit size are encoded to 4 symbols plus 10 flags plus
6 ranges A = 2 bit. So, the input stream was 320 bit and the output stream is 150 bit.
Therefore, the achieved CR in this case is 2.13.

Note that the difference between A A will be encoded O (0 symbols are between them).
The difference between A X X A will be encoded 2 if the X have not been coded before
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and if a range of 2 is allowed due to the set A (this should be the case). In case all As
have been already encoded, the difference between the Bs in B A C B will be encoded
as 1 (the As are already invisible due to the mask in the workbuffer).

Once a buffer has been compressed with a set of parameters, it can be encoded another
time with different parameters. For example, PACS header compression works best with
A = 6 applied twice. Using more than three iterations did not yield any more compression
in most cases.

Arithmetic Coding: The resulting data from RZIP are further compressed by the aritmetic
coder in order to reduce the statistical redundancy.

4.3.8 Raw Data Selection

This step is responsible for transmitting selected data that are lossless compressed using the
redundancy reduction and entropy coding modules. The main reason for this module is to
check the performance of the on-board data processing and the signal models, on ground, for
further algorithms adaptation and improvement. This is an important module, which allows the
user to access part of the raw data in order to monitor the OBP and interact with the individual
processing steps for the improvement of the processing performance.
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4.4 Application of the On-Board Processing for Astronomi-
cal Infrared Images

In this section, a demonstration of the OBP performance is made on astronomical IR images and
compared with those from the compression standards mainly JPEG2000. Further evaluation of
the OBP approach on a large database from PACS detector data is given in Chapter 6. State-of-
the art generic compression methods are applied on Mid-IR images from the ISO camera [147]
in order to present their performances for evaluation. Images from the starburst galaxy NGC
1808 [115], taken with ISOCAM [13] on January 1998 at the wavelength of 6.7 um, are used
to compare the performance of JPEG 2000 [126], ZIP [157] and RAR [156] with the proposed
framework "OBP”.

To fix ideas, the NGC 1808 is a barred spiral galaxy similar to the milky-way galaxy (our
galaxy). It is undergoing so much star formation it has been deemed a starburst galaxy. This
makes its study interesting in the IR range as it allows to peer into the dust. However, it is worth
to show the impressive NGC 1808 image (Figure 4.12) in the visual range, taken by Hubble
Space Telescope (HST) [151] on March 1998. The blue glow depicts regions with active star
formation. As filaments of dark dust are obscuring even more activity, it is interesting to further
analyze these activities in IR range.

Figure 4.12. Starburst galaxy NGC 1808 taken by the Hubble Space Telescope using the instru-
ment ”Wide Field Planetary Camera 2”

The science infrared image of NGC 1808 is depicted in Figure 4.13, as taken by ISOCAM
at 6.7um for the detector array of 32 x 32 pixels Charge Injection Device (CID), with 16-bit.
This image is a result of 19 minutes observation, after post-processing of 1032 raw images with
2.1 seconds exposure duration on each image. At the beginning of this selected exposure time,
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the pixels were reset to a constant charge and read out, after which the detector was exposed to
incoming radiation for the exposure time and read again. The quantum of measurement con-
sists, therefore, of a pair of RESET and End-Of-Integration (EOI) frames. Figure 4.14 depicts a
sequence of 30 selected raw images of NGC 1808. Images with odd index represent the constant
charge readout while images with even index represent the EOI frame. The white vertical line
represents the column 24 with dead pixels, detectors that were lost during the mission. Some
images show white dots and curves, which represent the cosmic particle hits (glitches), that in-
fluence the EOI raw images calibration. No on board reduction was needed for this observation
as the readout rate fits into the telemetry rate of about 4 Kbits/s. Otherwise, several images was
averaged on-board to fit the telemetry whenever a shorter exposure time was used. However,
most of the processing has been performed on-ground offline the observation.

Figure 4.13: Starburst galaxy NGC 1808 taken by ISOCAM at 6.7um

On the other hand, OBP is mandatory for larger detector arrays and, thus, higher data vol-
ume as the data rate exceeds the available telemetry bandwidth. What is, then, the best and
adequate method to fit the telemetry?

As a first step, JPEG 2000 [126], ZIP [157] and RAR [156] methods are applied to these
NGC 1808 raw images (1032 frames) for performance evaluation. Figure 4.16 depicts the
resulting image from OBP for a compression ratio of 15. Figure 4.15 depicts the resulting
image after JPEG 2000 compression of individual raw images for a compression ratio of 6. This
JPEG2000 implementation [128] (Kakadu software) uses EBCOT algorithm (Embeded Block
COding with Optimized Truncation) [127] for the quantization of the wavelet coefficients and
the binary arithmetic coder as backend entropy codec. The quality loss compared to the original
image (Figure 4.13) can be observed, which is due to the performed quantization by means
of the EBCOT algorithm. For better error display, both reconstructed images are plot as a 1-
Dimensional signal in Figure 4.17. On the X-axis, the pixel indices (1-1024) are represented
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4. On-Board Processing
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Figure 4.14. Selected ISOCAM raw images sequence (30 images) during NGC 1808 observation
at6.7um

while pixel values, for both original image and JPEG2000 reconstructed image, are depicted on
the the Y-axis. It is shown in this figure the approximation error due to the EBCOT quantization.

For further assessment, the lossless codecs ZIP and RAR are run over the NGC 1808 raw
images and compared to JPEG 2000 results in terms of compression ratio, processing time and
memory usage.

ZIP’s implosion algorithm finds duplicated strings in the input data. The second occur-
rence of a string is replaced by a pointer to the previous string, in the form of a pair (distance,
length). Afterward, distances and lengths are themselves compressed using Shannon-Fano en-
coding [49], which is somewhat similar to Huffman coding [49]: frequent values are encoded
on fewer bits than unlikely values.

RAR is a compressed archive format developed by Eugene Roshal that uses several encod-

81



Figure 4.15. Resulting NGC 1808 image after JPEG 2000 compression (Kakadu method) for a
compression ratio of 6

Figure 4.16: Resulting NGC 1808 image after OBP for a compression ratio of 15

ing algorithms mainly Huffman-like [49] to support several compressed formats.

Compression results using the above listed generic methods are reported in Table 4.2 for
comparison purpose. The results for the proposed method "OBP” is also reported in this table.
All methods have been run on a 450 MHz Pentium PC with Windows Nt 4. It is noted he highest
compression ratio for faster processing time, and lower memory space needed by OBP for the
reduction of NGC1808 raw images compared to the generic compression methods. The OBP
approach makes use of the IR astronomy signal characteristics and the limited resources for a
better of fit the compression needs to the available resources. Note also that the resulted NGC
1808 image using OBP approach is equivalent to the original image in Figure 4.13. An evalua-
tion of OBP on a IR data from a large database from PACS detector test is made in Chapter 6.
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Figure 4.17: Illustration of the original and JPEG2000 compressed image on a 1-D plot
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| Method | CR [ Processing Time (msec.) | Memory Usage (KB) | PSNR | PIL (%) ||

ZIp 1.39 24285 37240 INF 0

RAR 1.40 34500 18912 INF 0
JPEG 2000 | 6.38 158600 4128 54 3.34
OBP 15.44 120 1900 97 0.08

. Table 4.2. Comparison of compression performances on NGC 1808 raw IR images(1032 frames)
between JPEG 2000, ZIP, RAR and the proposed approach (OBP)
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Chapter 5

Complexity Related Aspects

This chapter intends to estimate the complexity of the OBP concept for an assessment of the
feasibility of this approach for IR space observatories. Indeed, IR space observatories usually
have limited budget and therefore, limited resources. Thus, an evaluation of the complexity
of OBP for the available processing resources is mandatory to validate the realisability of this
concept. First of all, the criteria to assess the complexity of an algorithm are investigated for the
case of Digital Signal Processors (DSP), which are the common processing platform in space
applications. Then, a formulation for a quantitative estimation of the complexity of a compres-
sion algorithm is made. It is then used to measure OBP complexity on a DSP.

This chapter can be subdivided into 2 parts: complexity analysis and OBP complexity mea-
sure. In the first part, a methodology for complexity analysis of a compression algorithm is
given. Using arithmetic and memory operations, a complexity measure for a given algorithm
can be performed by choosing appropriate weights that depend on the platform architecture.
The resulting approach is used to measure the OBP complexity on the Analog device DSP —
ADSP 21020 - in the second part of this chapter. The final complexity is the sum of the contri-
bution of all OBP modules to given input data with size "N”.

5.1 Complexity Definition and Measures

The complexity of an algorithm can be described as the number of steps required for this given
algorithm to solve a computational problem. The level in difficulty in solving mathematically
posed problems are measured by the time, number of steps or arithmetic operations, or mem-
ory space required, respectively called, time complexity, computational complexity, and space
complexity. The interesting aspect is usually how complexity scales with the size of the input,
where the size of the input is described by some number ”N”. Thus an algorithm may have
computational complexity O(f(N)), where ’f” is the complexity function that is proportional to
the number of required steps.

Complexity is a very important parameter for data compression theory and applications.
The reason is that it is often desired that the algorithm works in a transparent manner to the

user. Thus, its execution should require minimum resources and be executed as fast as possible.
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5. Complexity Related Aspects

The complexity of a given algorithm can be analyzed in two ways: qualitatively and quanti-
tatively [97]. Qualitative analysis usually means determining the complexity of the algorithm
relative to other algorithms. Such analysis does not usually allow to quantify the difference
in complexities between algorithms. Quantitative analysis methods assess the complexity of a
given algorithm in absolute terms, and often provide a numerical estimate of the complexity.
Therefore, using quantitative analysis, it is also possible to state, for example, that algorithm A
is three times less complex than algorithm B. Measuring the complexity of a given algorithm
is along and difficult process. Currently, very few methods exist to measure the complexity
of entire signal processing algorithms. In the case of simple algorithms, such as the DCT, the
number of arithmetic operations can give a good estimate of the algorithm complexity. However
this is not sufficient for more complex schemes such as image compression algorithms. In the
following subsections, both complexity analysis techniques are detailed.

5.1.1 Qualitative Complexity

The first approach taken to understand and optimize the complexity of signal processing al-
gorithms is based on an intuitive understanding of the complexity. For instance let say that it
is possible to find two algorithms realizing the same task. Suppose, the first one is based on
integer arithmetic, whereas the second one uses floating-point arithmetic. It is known that even
with the most modern computer architectures, floating-point operations are more complex than
their integer equivalents. However, it is difficult to quantify this difference without considering
a specific hardware architecture [97].

Let us propose another example, in which it is well known that two algorithms differ in com-
plexity because of the amounts of memory they require. However, the relationship between the
size of the memory and the complexity is not defined. Therefore, the difference in complexity
is not quantifiable. Nowadays, the wavelet transform, or more precisely, the Discrete Wavelet
Transform (DWT), is one of the most commonly used signal processing tool. It is very demand-
ing in terms of arithmetic and memory operations. A good example is the comparison between
the DCT-based codec JPEG and the DWT-based codec JPEG 2000 [145], which shows that
JPEG2000 is computationally more demanding than its predecessor. There exist fast wavelet-
transform algorithms based on filter banks [79, 131], and the lifting scheme [125, 26]. The
latter technique allows to compute an integer version of the DWT, called the Integer Wavelet
Transform (IWT). Evidently, the IWT has lower complexity than the original DWT. It can also
be used to speed-up the wavelet-transform based algorithms for lossless image compression.

5.1.2 Quantitative Complexity

While qualitative analysis only gives an intuitive understanding of the algorithm complexity, it
is more interesting to be able to quantify the reduction in complexity as a result of some opti-
mization. A measure of the complexity is also needed to compare different algorithms realizing
the same task.

Image compression is a typical example. Several algorithms can compress a given image with
approximately the same efficiency. However, it is useful to evaluate them using the complex-
ity criterion. How can these algorithms be compared? The nature of the algorithms and the
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reasons for their compression-efficiency may be based on very different principles. Moreover,
the algorithms cannot be characterized purely in terms of arithmetic operations. This makes it
difficult to use common measures of the complexity. This leads to consider new methodologies
to measure the complexity for these algorithms. Such a measure should not only incorporate
notions linked to the number of arithmetic operations, but also the number of memory oper-
ations. Another aspect that should also be taken into consideration is the number of logical
tests, or branches. A realistic measure should incorporate all those aspects. In practice, it is
very difficult to apply such a comprehensive complexity-measure to an entire algorithm as a
unit. However, most algorithms can be broken down into smaller components. For instance,
compression algorithms are often based on a block transform followed by a quantization step,
and finally an entropy coding scheme. Many compression algorithms use the same transform
and the same quantization procedures. Therefore, the complexity of these blocks needs to be
computed only once.

Finally, as mentioned before, a quantitative measure of complexity can also be used to com-
pare algorithms. This is especially appropriate for comparing compression algorithms which
vary greatly in nature, and therefore cannot be easily compared in qualitative terms. Fur-
thermore, quantitative complexity-analysis can be effectively used to design rate-complexity
or distortion-complexity functions for compression algorithms. This is a logical extension of
the common rate-distortion approach used in these algorithms. Reichel [97] has investigated
a general-purpose approach for quantitative measure of the complexity for the DWT-based
codecs, based on the classification of the operations into categories. He has then, verified this
approach to Pentium I and Pentium III by choosing appropriate weights for each category.

5.2 Software Complexity

One way to measure the complexity of signal processing algorithms is to look at their resulting
software implementations. The complexity of the software can be, then, measured. This gives
information concerning the original algorithm. This solution is only an approximation as the
notion of complexity is often very different between the programming and the signal processing
worlds. In fact, the most commonly used complexity measure of signal processing algorithms is
the execution time on a given implementation. A review of many software complexity measures
can be found in [139]. The different methods are compared, pointing out the aspects they
can handle and the ones they fail to incorporate. However, it is possible to select a subset of
measures that are similar to the aspects relevant to the application at hand.

5.3 Implementation Complexity

One of the major approaches to the construction of correct concurrent programs is successive re-
finement: start with a high-level specification, and construct a series of programs, each of which
“refines” the previous one in some way. In the realm of shared-memory concurrent programs,
this refinement usually takes the form of reducing the grain of atomicity of the operations used
for interprocess communication and synchronization. For example, a high-level design might
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assume that the entire global state can be read and updated in a single atomic transition, whilst a
low-level implementation would be restricted to the operations typically available in hardware:
atomic reads and writes of registers, test-and-set of a single bit, load-linked/store-conditional,
compare-and-swap, etc. Each of the successive refinements is considered correct if and only
if it conforms to the specification. The notions of conformance to a specification leads to the
implementability concept or, in other terms, how challenging is the software implementation.

5.4 State-of-the art Complexity Measurements and Optimiza-
tions

The estimation of the complexity of signal processing algorithms is a very old problem. Some
signal processing algorithms have already been studied in terms of complexity. Often, only
the pure arithmetic complexity (additions, multiplications) was studied. Moreover, the studied
algorithms correspond generally to the transform parts of the codec and are thus mostly arith-
metic based. One of the pioneers in the domain is Winograd, who studied the multiplicative
complexity of many basic signal processing tools. He started with Finite Impulse Response
(FIR) filter analysis in [136]. He then analyzed the Discrete Fourier Transform (DFT) [137]
and the DCT [35]. Most of the time, the analysis is followed by an optimization of the scheme
according to the measured features. All the studied algorithms are perfectly deterministic and
the complexity is independent from the input data.

Another signal processing tool that has been often studied is the Fast Fourier Transform
(FFT). In [47] different FFT algorithms are compared in terms of computational speed, mem-
ory requirements, implementation complexity, ease of testing and accuracy. However, FFT is
rarely used in data compression, because it introduces complex numbers. Its real version, i.e.
DCT is generally used instead. Fast algorithms have been designed where the number of mul-
tiplications is minimized [34]. DWT was also studied in terms of arithmetic operations in [58].
However the analysis of the transform is very rudimentary. A better comparison of many im-
plementations of the transform can be found in [101].

In the framework of the JPEG algorithm, many data dependent complexity measurements
and optimizations have been performed. Each time, only the DCT part of the algorithm has
been studied. Variable complexity inverse DCT algorithms were proposed in [40] and [66]. In
both cases, the algorithm uses the fact that DCT coefficients are mostly zero because of the
quantization. The same type of optimization was also proposed for the forward DCT [67] and
the inverse DWT [36]. The complexity is measured using arithmetic operations, branches and
memory accesses. The number of operations are summed after having been multiplied by the
following weights: 1 for additions and shift, 3 for multiplications, 5-6 for tests and 1 for each
memory access. All those algorithms lead to the same output as the conventional version of the
transform. There is only vague information about how those weights were determined.

Another approach to complexity optimization is to trade complexity for the accuracy of the

transform: the complexity can be reduced if the algorithm is allowed to give only an approx-
imation of the correct transform. This strategy has been used for the DCT transform in [68].
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This simplified inverse DCT sets some coefficients to zero in order to reduce the number of
operations. The images are compressed using the JPEG codec at different bitrates. The total
distortion, due to the approximate DCT and to the compression, is measured as a function of
the number of multiplications. This allows plotting the complexity/distortion curve of the al-
gorithm. Varying the size of the block can also be used to modify the relationship between the
complexity and the performance of the transform. Let us recall that the DCT is conventionally
performed on blocks of 8x8. In [44], the block size of the transform is varying in order to find
a R-D optimum. The number of multiplications is used to measure the complexity. The rate
and the distortion are predicted analytically using a first order regressive model and a Laplacian
distribution. Even if the primary aim of the author is to find a R-D optimum, a 3-D plot of the
complexity/distortion/rate function is provided.

Much less research was done concerning memory utilization. However, JPEG is already
relatively memory efficient because of the block structure of the DCT. On the other hand, DWT
based algorithms do not naturally use a block structure. This has encouraged algorithms mini-
mizing the overall memory demands. The memory bandwidth of an optimized DWT codec was
studied in [89]. This algorithm corresponds to one mode of JPEG2000.

Again, most of the previously cited works concentrated on the transform part of the al-
gorithm. To my knowledge, only Nielsen [85] and Reichel [97] have tried to measure the
complexity of a full compression system. Nielsen developed a model for the complexity and
applied it to voice coding algorithms. Sadly, the paper is incomplete and this approach was
not followed in other papers. The measure was based on arithmetic and memory complexity
(reads and writes), ’smartness of the programmer”, parallelism and architecture considerations.
A simple example of FIR filtering is used to demonstrate the technique. The following articles
on the subject did not further investigate the problem and only use execution time as a measure
of the complexity [84]. Reichel [97] studied the complexity related aspects for image compres-
sion algorithms. He presents a general framework for measuring the algorithmic complexity
using the arithmetic and memory operations. In this chapter, an extension of Reichel’s work is
performed for DSP-based applications and the OBP concept is particularly evaluated.

5.5 Measuring the Complexity

The concept of arithmetic complexity is the most commonly used type of complexity. It is also
very intuitive. Obviously an algorithm doing two additions is more complex than an algorithm
doing only one addition. But what about an algorithm performing an addition and a multiplica-
tion. Which one is more complex? From a mathematical point of view the two operations are
equivalent, they both have the same properties. From a software point of view, the multiplica-
tion is a much more complex operation as it generally needs more CPU cycles to be computed.
Some researchers have stated that in modern architectures the two operations are equivalent and
that the arithmetic complexity is simply the total number of operations [97]. A more general
approach will be taken in Section 5.5.1, where weights are applied to each operation. Changing
the definition of the arithmetic complexity will then simply correspond to a modification of the
weights.
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The branches complexity corresponds to the act of taking a decision. Algorithms that are
very regular, where the same paths are always taken, will be less complex than others were
multiple choices must be made. This refers to two aspects of the branches complexity. The
presence of a test will increase the complexity of a scheme, but the cost of the operation will
also depends on the behavior of the branch. This principle will be explained in more details in
Section 5.5.1.

The idea of memory complexity is much less intuitive. In fact it can be divided into two
types of complexity [97]: The memory stock and the memory bandwidth. The memory stock
corresponds to the amount of memory needed to execute the algorithm. An algorithm based on
local information, such as a block of pixels, is less complex than an algorithm working on global
information, which needs to access the entire data. The other memory related complexity is the
bandwidth complexity. Basically, this term refers to the number o Digital Signal Processor
(DSPf times the data must be accessed to perform the algorithm. An algorithm that needs to
access each input only once is less complex than one that will need multiple accesses. Those
two memory related complexities will be studied in more detail in Section 5.5.2.

A measure is proposed, which allows the comparison of the memory and the arithmetic
complexity. Once the measures are defined, they should be applied to data or image com-
pression algorithms, like OBP. In fact most algorithms can be subdivided in small processing
blocks. For instance, transform based codecs can be divided in a transform, a quantization and
an entropy coder block. In many cases, different algorithms use the same blocks. Thus the
computation of the complexity can be highly reduced since parts of the algorithm were already
analyzed. In other words, it is highly desirable to decompose an algorithm into sub-blocks of
known complexity. The final complexity would simply be the sum of the contribution of each
block.

5.5.1 Arithmetic Complexity

There are many types of arithmetic operations. The complexity of each operation depends on the
hardware architecture. Historically, the multiplication was considered as the most demanding
operation [97] and many algorithms were optimized according to this feature. In the proposed
approach all operations will be considered. Finally, the overall arithmetic complexity is the
weighted sum of all operations. In the rest of this section, the term complexity will always
refer to the arithmetic complexity unless stated otherwise. However, it is not sufficient to define
the relevant operations for the analysis of the arithmetic complexity. It is also necessary to
define a counting methodology, which can be applied on algorithms of different nature. The
methodology developed in this section is based on the execution time. Thus, automatic and
semi-automatic methods can be, then, developed to compute the arithmetic complexity of the
whole scheme.

89



The Counters

There are different types of arithmetic operations. It is very confusing to ”count” each one of
them separately. In order to simplify the computation of the complexity, the operations can
be grouped into categories. All operations in a given category have similar complexity. This
approach is mainly focused on software implementations. Using a-priori knowledge on the
DSP architecture, we propose to divide the operations into four distinct categories. It will be
shown in the next section that they correspond to different execution times, and thus complexity.
A counter is associated with each categories. It corresponds to the number of occurrences of
operations from the category. The following categories were used [97]:

e Basic bit and logical operations (C}): Bits-shifts, logical operations, bit manipulation, etc.
e Basic arithmetic operations (C,): Additions, subtractions, comparisons, etc.
e Semi-complex arithmetic operation (Cy,): Multiplications, etc.

e Complex arithmetic operation (C,): Divisions, etc.

To these arithmetic operations, two more groups will be added. The first is the use of look-
up tables. As this can replace complex arithmetic operations, it is taken in consideration using
the counter C;. The second corresponds to branches and tests (if, for, while, etc.) and is rep-
resented by C,,. This branch counter corresponds to the act of taking a decision and not to the
assembler understanding of the branch.

For each group the total number of operations should be computed. The influence on the
final measure of complexity depends on the architecture. Thus the overall arithmetic complexity
C ar can be computed using the following formula:

Car = wiC + w,Cq + W Cry + wCe + wi Cy + wpCp 5.1

where the weights depend on the architecture on which the algorithm will be implemented.
The concept behind this model can be validated using a simple CPU architecture for software
implementation. Operations are executed in a sequential manner. Each arithmetic operation
takes a given number of cycles to execute, which is independent of the operations preceding
and/or following. The total execution time is then the sum of all individual contributions. This
does not take into account memory operations directly. Most modern CPU architectures have
multiple arithmetic units. Moreover, the processing time of each operation depends on the
surrounding ones. In this case, the hypotheses of the model are no longer valid. It will be
shown in the following sections that the model allows a fair prediction of the execution time of
different kind of algorithm even for the complex processors of embedded systems.

The Weights

In order to evaluate the arithmetic complexity of an algorithm, the counters must be summed
according to Eq. 5.1. As stated in the previous section, the weights are dependent on the ar-
chitecture where the algorithm is implemented. In this section, the weights are estimated for
the DSP architecture (more precisely the Analog Device ADSP 21000 family) [140] and for the
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Celeron architecture from Intel [142]. The estimation is based on the principle that the com-
plexity is proportional to the execution time of the algorithm. However, we are interested in
the execution time of a given operation in a real software environment and not in the theoretical
number of cycles given by Analog Device or Intel. To do so, basic programs were implemented,
each of them performing one type of operation inside a loop. The complexity of the operation
is then evaluated using the difference of execution time between the loop with and without the
operation to measure. In order to improve the precision of the measure, up to five operations of
the same type can be made inside the loop. By hypothesis, the complexities are additive, thus,
the relationship between the execution time and the number of operations is linear. The slope
of the time for one iteration-loop as a function of the number of operations per iteration, gives a
fair estimate of the execution time for the operation. This allows a good estimation of operation
complexity in a real software environment.

One of the difficulties of such an approach is that we would like to measure only the com-
plexity of the operation without the different memory access times. To solve this problem, we
make sure that the number of variables accessed during the loop stays constant, with and with-
out the operation to measure. An example of a loop is presented in Table 5.1 by means of the
ANSI C language, where C1 and C2 are two declared variables and initialized to 1.

Reference One Addition |  Two Addition ||
for(i=0;i<1000;i++) | for(i=0;i<1000;i++) | for(i=0;i<1000;i++)
C1=C2; C1=C1+C2; C1=C1+C2+5;

Table 5.1: Basic example of a loop for measuring the execution time of the addition

The execution times have been tested on two different computers with ADSP 21020 pro-
cessors (33 MHz clock speed) [141] and on Celeron processor [142] with clock speed of 500
MHz. Moreover many loop sizes have been tested. In order to compare the results obtained on
the different computers, they are normalized with regards to the processor speed. The measure
is expressed in terms of number of cycles needed to compute the operation. A rough estimate
of the processing time of the loop is subtracted from the measured data.

Simple Operations— To access the complexity of the category represented by C; four different
operations were used: the logical ”or” and “and” and the left and right bit shifts. The
results of the simulations on the two platforms are presented in Figure 5.1. A linear fit
of the data is also included in order to determine the slope of time vs. the number of
operations.

In can be observed that the processing time of the operations is fairly constant. Each
logical operation needs approximately 0.89 to 1.2 cycles to be computed on the Celeron
and ADSP respectively. The ADSP processor seems to need less extra time compared
to the Intel Celeron processor. The ADSP processor has instruction cache possibility for
faster computational processing.

The complexity of the category C, is computed in a similar manner in Figure 5.1(b). The
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Figure 5.1. Required time to compute 1,2 or 3 operations in computer cycles. (A) Two logical
operations (AND, OR) and a SHIFT have been tested for the Celeron and ADSP 21020. (B)

Complexity of the addition on the ADSP 21020 and the Intel Celeron

slope of the curves is approximately 0.72 and 0.98 for respectively the ADSP 21020 and
the Celeron processors.

Complex Operations— The two categories C,, and C. behave differently from the two previous
ones. In this case, very different execution times can be observed if the two operands are
variable or if one of them is constant. The results for the multiplication and the division
are presented respectively in Figure 5.2-A and Figure 5.2-B.
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Figure 5.2. Required time to compute 1,2 or 3 operations in computer cycle on two different
processor architectures ADSP 21020 and Intel Celeron. (A) multiplications (B) Divisions

Branches— The branches are special operations, in the sense that for many architectures their
complexity is not constant. Most modern processors use the notion of pipelining to speed
up the computation process. This means that the operations are processed in some sort of
parallel manner. For instance the first part of the pipeline can take care of the instruction
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decoding, while the second one execute the instruction itself. Modern architectures can
have up to 16 levels of pipeline. When a branch has to be executed, two solutions are
possible. Either the pipeline is stopped until the decision concerning the branch has been
made, or the system tries to predict the result of the branch and carries the most probable
operations. If the prediction was correct, then the gain over the first solution is large. But
if a wrong decision was taken, the whole content of the pipeline must be discarded and all
variables must be returned to their original values. It is obvious that this is a very costly
operation. Future architectures will use the notion of predicate. In this case both paths of
the branch are executed simultaneously. Once the result of the branch is known, only the
values corresponding to the correct path are kept.

In the case of The ADSP-21000 family, processing the instructions is performed in three
clock cycles:

¢ In the fetch cycle, the DSP reads the instruction from either the internal instruction
cache or program memory.

e During the decode cycle, the instruction is decoded, generating conditions that con-
trol instruction execution.

¢ In the execute cycle, the ADSP-21020 executes the instruction; the operations spec-
ified by the instruction are completed.

These cycles are overlapping, or pipelined, as shown in Table 5.2. In a sequential pro-
gram flow, when one instruction is being fetched, the instruction fetched in the previous
cycle is being decoded, and the instruction fetched two cycles before is being executed.
Thus, the throughput is one instructio Digital Signal Processor (DSPn per cycle, and thus,
complexity is reduced.

[ Time (cycles) | Fetch | Decode | Execute ||

1 0x08

2 0x09 | 0x08

3 0x0A | 0x09 0x08
4 0x0B | 0x0A 0x09
5 0x0C | 0x0OB 0x0A

Table 5.2: Pipelined Execution Cycles

The branches in ADSP processor consists of CALL, JUMP, RTS (ReTurn from Subroutine)
and RTI (ReTurn from Interrupt). The CALL instruction initiates a subroutine. Both
jumps and calls transfer program flow to another part of program memory, but a call also
pushes a return address onto the Program Counter (PC) stack so that it is available when
a return from subroutine instruction is later executed. Jumps branch to a new location
without allowing return. A return causes the processor to branch to the address stored
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at the top of the PC stack. There are two types of returns:RTS and RTI. The difference
between the two is that the RTI instruction not only pops the return address off the PC
stack but also pops the status stack if status registers have been pushed as a result of an
external interrupt. There are several parameters that have to be specified for a branch, for
different complexities [140].

For Celeron or Pentium processors, large pipelines are used and the processors have a
complex unit in charge of predicting the result of the branches. In this case, if the branch
is predicted correctly, its complexity will be quit low. On the other hand, if the prediction
is wrong, the complexity will be much larger. In order to simplify the measure, the
complexity of branches can be divided in three groups. The first one corresponds to
branches that are taken with only small or large probabilities. A typical example are
loops, where the same decisions are taken most of the time. In this case, the complexity of
this operation is minimal. The second group is the branches that cannot be predicted, like
a test on the sign of uniformly distributed data. This leads to the maximum complexity of
the operation. The last group is the branches with known probability [97].

Summary- The time needed to perform each type of operation is summarized in Table 5.3.

The complexity weights are derived from the execution time. The execution times are
normalized according to the fastest operation and rounded to the nearest half integer. For
each category, the execution speed is indicated together with the approximate weight. It
can be observed that if the absolute time needed to perform an operation is different from
the Celeron to ADSP21020 processor, their relative weights are approximately constant.
The fact that some operations were measured to take less than one cycle is due to the
measurement errors.

[ | w, | wa [ Wy, Var. [ w.Const. | w.Var. | w, | wy(Pp) [
Celeron 1 1 1 7 8 1 || (min(6.5, 13.P,+1)) [97]
ADSP-21020 | 1 1 1 5 6 1 4.Py+1

Table 5.3. Complexity weights. The time necessary to compute each type of operation is ex-
pressed in cycles per operation. The weight w, depends on the size of the data. Only the mini-
mum weight is indicated in this table. The weights are computed by normalizing the execution
times in regards to the fastest operation and a rounding to the nearest half integer

From this table, there is evidence of non-constant complexity. In this case, special care
must be taken during the analysis. If different types of operations are present, then the
category should be subdivided into sub-groups of equivalent complexity. The most com-
plicated category is the branches. Thus, in many analyses these counters will be presented
in a separate table, together with the probability p,. Finally, the weights w; can be con-
sidered as a pure memory operation. For this reason, its complexity is equal to one read
operation (see next Section).
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5.5.2 Memory Complexity

The meaning of memory complexity is even less clear than the arithmetic one. As stated in the
definition, the simplest notion is to say that an algorithm is more complex if it needs more mem-
ory for its execution. This type of complexity refers to the amount or the quantity of memory.
It is called the storage complexity. Another aspect that should also be taken into consideration
is the number of memory accesses. An algorithm could need only a small size of storage, but
access it many times. Does it mean that its memory complexity is larger than another one ac-
cessing the same storage but only once? This second type of memory complexity is called the
bandwidth complexity. An algorithm accessing the memory frequently is said to have a high
bandwidth complexity.

Once the two memory complexities have been defined, it is interesting to understand their
relationship. How can the two complexities be compared/combined? Even more, how can they
be compared to the arithmetic complexity?

To answer these two questions, weights have been given to the different types of memory
operations [97]. The value of these weights depend on the size of the storage. This way the two
types of memory complexity are highly linked. The determination of the weights is based, in
this study, on the execution time. This is the same approach that was taken in Section 5.5.1 to
weight the different arithmetic operations.

Amount

As presented before, the storage complexity can be measured using the amount of memory
necessary to execute the algorithm. This amount is easily derived from the description of the
algorithm and its size will be called s,. For instance, a block-based algorithm ne Digital Signal
Processor (DSPeds to store only the block in memory. Its complexity is proportional to the size
of the block. On the contrary, algorithms that are not block based generally have a complexity
proportional to the size of the input data. This is the case of most wavelet-based algorithm. The
difficulty is to quantify this difference.

The simplest case is when the algorithm has to be implemented in a dedicated architec-
ture. Then, the storage complexity is directly proportional to the size of the memory needed to
execute the algorithm. However, if the algorithm is implemented in an existing platform, the
complexity becomes dependent of the existing memory architecture.

Most modern architectures are based on M levels of memory [97]. Where the size s,, of the
memory Mem,, increases and its access speed 7, (or wy, for writing) decreases with m. Data
are stored in the smallest memory Mem,,, which can fully hold them. When data are needed
by the processing unit, the portion that needs to be accessed is transferred to Mem,,_;. This
procedure is repeated until Mem; is reached. This way, neighboring data are already stored
in fast memories. This transfer from one memory to another is generally done outside the
processor. This means that many memory operations can be conducted without increasing the
computing time. With this architecture in mind, two algorithms holding in memory Mem,, have
the same complexity in terms of amount of memory.
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Bandwidth

Determining the bandwidth complexity of an algorithm is a much more complicated problem
than measuring its memory needs. Like the arithmetic complexity, the bandwidth is dependent
on the algorithm but also on the implementation. It also depends on internal parameters of the
algorithm, such as the size of the bitstream, and the nature of the input data. The fact that the
bandwidth is sensitive to the same parameters as the arithmetic complexity is a motivation for
using the same methodology.

Only two types of memory operations are possible when bandwidth is concerned. Data can
only be read from or written to memory. However, due to the structure of the memory, the time
depends on the way the data are accessed. In the following, a distinction is made between data
accessed sequentially or in a pseudo-random order. If the information is read in a sequential
order, then the data have a high probability to be found in the cache memory with the fastest
speed. In case of random access, this probability is much smaller and depends on the size of the
data set. The complexity counters linked to the memory operations are:

e Cr: Number of read operations from the memory.
e Cw: Number of write operations to the memory.

e C)p: Complexity relative to the memory bandwidth.

In most algorithms, only one sub-type of memory access is performed. All memory accesses
are either done on local data or on pseudo-random order. The final memory complexity is
computed by summing the memory counters according to their relative complexity, i.e.:

CMB = wr.C,» + ww.C'w (52)

where w, and w,, are the weights for respectively, the Read and Write operations.

The same methodology as the one described in Section 5.5.1 can be used for the two memory
categories [97]. The only difference is that the procedure is now simplified by keeping only
memory operations. The simplification also uses the fact that CPUs have a given number of
registers (or buffers) that are used to store local variables. Thus, variables such as loop counters
can be neglected in the bandwidth count.

Weights Calculation

The weights can be derived from the speed of the memory as described in [97] using the
following equations:

tr = p1tr1 + (1 — p1)(patr2 + (1 — p2)(p3trs + (1 — p3)(...))) (5.3)
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where ¢, and t,, are the time needed to respectively read and write information from/to
memory. For a data size s,, p,, for random memory access can be expressed as follows:

Pm = maz(l, Sm/Sa) (5.4)

where s, is the size of the memory level m. In case of a sequential access of a memory, p,,
can be simplified to:

DPm = (bm - bm—l)/bm 5.5
where b,, is the size the data block transferred from MEM,,,; to MEM,,, and by=1.

Like in the case of the arithmetic operations or the single memory model, the weights are
directly proportional to the memory speed. Thus algorithms working with data of size inferior
to Mem; will have much smaller complexity than algorithms needing more memory. If a large
amount of memory is needed, then great care must be taken in order to ensure that the accesses
are not random. It should also be noted that if the most recent processors have a very fast small
memory, the largest one is, proportionally to the speed of the processor, very slow. This is ex-
plained by the fact that the external memory has its own clock frequency, which is independent
of the one of the processor. Fast processors will then see a memory which is slower compared
to them [97].

5.5.3 The combination: Arithmetic and Memory Complexity

So far two very different types of complexity have been presented. The arithmetic (including
the branches) and the memory complexity. In both cases, weights series have been presented.
In this section, the two complexities will be merged in simple examples. Thus it can be verified
that the total complexity of a scheme including the two types of complexity corresponds to the
sum of each individual contribution.

The first example combines a read operation and a multiplication. The read is performed
using sequential access of the memory. The multiplication is performed between two variables:
a random number and the value read from memory. The predictions are presented together with
the experimental results in Figure 5.3. It can be seen that the total complexity corresponds to
the addition of the two types of complexity. Moreover the prediction is very close to the mea-
sured data. For low memory demands, most of the complexity comes from the multiplication.
When the data do not hold in Mem; (L.1) anymore, the importance of the multiplication and the
memory access is approximately equivalent. But as soon as the RAM (Memj3) must be used,
the memory access becomes the major complexity factor.

Another verification can be performed using sequential access of the memory and the Mod-
ulo operator (i.e. return the remainder of an integer division) on a variable. In this case, the
complexity cost of this Modulo operation is much larger than the one for the memory access.
The results are presented in Figure 5.4.
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Figure 5.3. Number of cycles needed to read a value from the memory in a sequential manner
and multiply it with a number for both Intel Celeron and ADSP 21020 processors. Predicted
and measured times are depicted

In the second example, the prediction is adequate for the ADSP21020 but not optimal for the
Celeron. It can be observed that in this last case, the measured data correspond approximately
to the execution time of the modulo operation. However, the large cost expected by the read in
the main memory (RAM) is not observed. It is justified by the fact that in this last generation of
processors, there are some cases where operation can be executed in parallel. The model fails to
predict such behavior as it is based on the assumption that the level of parallelism between the
instruction is independent of the context. However, Reichel’s experiments [97] have shown that
this case of failure occurs only when one operation is much more complex than the other one.
The last example is a merging between a division by a constant, a read and a write operation. But
still the overall complexity is once again close to the sum of the complexity of each individual
operation.

5.6 Complexity Calculation of the On-Board Processing

In this Section, the complexity of the proposed OBP (Chapter 4) is estimated according to the
analysis performed in the previous sections. For an appropriate estimation, OBP modules are
represented by flowcharts, that is, the simplest way to visualize algorithms. Then, complexity
prediction of every module is performed. Finally, the overall complexity of OBP will be the
sum of the individual modules complexity. Please note that complexity measure is related to
the size of the input data ”IN”, that is the number of detectors ” D” multiplied by the number of
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Figure 5.4. Time needed to read a value from the memory in a sequential manner and use
Modulo operator (i.e. return the remainder of an integer division) for a random variable, on
both Intel Celeron and ADSP 21020 processors. Predicted and measured times are depicted.
The measured execution time in case of the Celeron processor corresponds to the execution time
of the modulo without the memory access

frames "F”: "IN = D x F”. Therefore, the final complexity is estimated according to "IN”. In
the following, flowcharts for the individual modules are given and their complexity is estimated
for the ADSP 21020 processor.

5.6.1 Flowchart for the Raw Data Selection Module

As described in Chapter 4, raw data selection mainly consists of the transmission of lossless
compressed selected raw data. This has two advantages: the first one is the check for the
correctness of the on-board processing, and the second advantage is the easy maintenance of
the lossy compression such that if detector signal model or glitch occurrence change, then the
oversampling or glitch detection methods have to be adapted for minimal scientific loss and
high compression efficiency.

Figure 5.5 depicts a typical flowchart for the raw data selection method. The complexity
measure of this algorithm can be performed according to the criteria described in Section 5.5.
The resulting complexity Crcg is then:

Crcs =3Rs.F +1 (5.6)

where Rg is the number of selected raw channels.
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Figure 5.5: Flowchart of the raw data selection module (Case of Herschel-PACS)

5.6.2 Flowchart for the Detector Selection Module

Detector selection is important for the transmission of data (pixels) of interest. It has the ad-
vantage of an optimal exploitation of the telemetry bandwidth by discarding dead pixels data or
non-relevant information from the bitstream for higher scientific gain.

Figure 5.6 depicts a typical flowchart for detector selection module. The complexity Cpxs
for this algorithm can be measured as follows:

Cpxs =Ds.F+D.F+3D+1 5.7

where Dy is the number of selected detectors.

5.6.3 Flowchart for the Preprocessing Module

The preprocessing module has the task of correcting the received signal to a predefined model.
This latter is supervised by electronic engineers during the design, manufacturing and testing of
the detectors. Different types of correction can be performed on-board, by using simple opera-
tions (arithmetics) for calibration, to complex operations (convolution) for filtering. Figure 5.7
illustrates a flowchart for the preprocessing module with simple operations to ease complex-
ity estimation. It represents the case of Herschel-PACS 6 where two imaging types are used
”photometry” and “spectroscopy”
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Figure 5.8: Flowchart of a glitch detection module using the SDDM method

The complexity Cpp for this algorithm can be measured as follows:

Cpp = DsF +4 (58)

It is noticed that the complexity C'pp depends on the number of selected detectors.

5.6.4 Flowchart for the Glitch Detection Module

This global goal of this module is to detect and remove outliers (glitches) from the data stream
before integration. The flowchart depicted in Figure 5.8 presents a glitch detection algorithm
using the SDDM method that is described in Chapter 4.

The complexity Cgp for this algorithm is measured as follows:

Csp = Dg(9F — 24) + 1 - (5.9)

The resulting symbolic number of frames after glitch detection and some samples removal
is Fg.

5.6.5 Flowchart for the Oversampling Reduction Module

This module aims to reduce the oversampling of typical measurements, introduced by the elec-
tronics to improve the astronomical system efficiency. Indeed, the oversampling reduction is
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Figure 5.9: Flowchart of a typical oversampling reduction module

a critical part of the OBP as it is a lossy compression and care must be taken to not lose rele-

vant information. Figure 5.9 presents a simple oversampling reduction method using the mean

algorithm. That is exactly the simplest method used for the noise reduction (see Section 2.3.3).
The complexity Cog for this algorithm can be measured as follows:

Cor = D3(4FG + 3) +1 (5.10)

For fast processing the division, that is a complex arithmetic operation, is replaced by an
equivalent but simple operation, which is the bit shift operator (shift to the right). Indeed,
division by 4 is equivalent to a bit shift of 2. The number of frames after mean calculation is
then, FA = Fg/4

5.6.6 Flowchart for the Integration Module

The complexity calculation of the integration module is similar to the one for oversampling
reduction as the mean algorithm is also used. Figure 5.10 gives an overview of the integration
algorithm for Herschel-PACS taking into account some instruments configuration like chopper
position (observing the same target) and grating position (observing through the same spectral
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Figure 5.10: Flowchart of the integratioh module (Case of Herschel-PACS)

bandwidth). Indeed, integration over time is efficient only if several frames from the same
source target and frequency band are considered.
The complexity measure Cr for this algorithm is:

Cir = Dg(4F4 +8) + 1 (5.11)

The number of frames after integration is then, F; = F4/IT, where IT if the number of
integrated frames.

5.6.7 Flowchart for the Redundancy Reduction Module

In this module, the redundancy in the data stream is forced through a proper sorting method. Af-
terwards, this reduction is reduced as a first step for lossless compression. Figure 5.11 presents .
a typical photoconductor’s ramps sorting flowchart while Figure 5.12 depicts the redundancy
reduction steps.

Their combined complexity Crgr can be computed as follows:

Crr=6Dg.Fy+6 (5.12)

5.6.8 Entropy Encoding Module

As described in Chapter 4, OBP makes use of two entropy encoders namely, the RZIP algorithm
and the arithmetic coding. Complexity analysis of the arithmetic coding flowchart has already
been performed by Reichel [97] for different platforms. The complexity of the RZIP algorithm
can be performed in a similar way. RZIP is a symbol-oriented compression technique, where the
symbols format is integer for low computational cost. RZIP can be tuned to look for duplicate
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Figure 5.11: Flowchart of the ramp sorting module (Case of Herschel-PACS)

symbols at different distances (2") where n belongs to the range [3,10] for realistic coding.
RZIP replaces the duplicate symbol by a distance.

For instance, for n=3 RZIP searches for duplicate symbols occurrence at distance limited
to 8 integers (32 Bytes). A distance coded in 4(n + 1) bits replaces each duplicate symbol.
The total bitstream is calculated as follows:
Code = (32.symbols + (n + 1)duplicates)bits (5.13)

Note that only duplicates that are located at the dedicated distance (8 in our case) are taken
into account, which makes the task of the data sorting critical. Indeed, this limitation is related
to the processing time for lossless compression that has to be acceptable. Indeed, the computa-
tional cost is proportional to the distance chosen. The bigger is the distance, the slower is the
algorithm.

The computational cost Cry is:

Crz = K.INT.distance 5.19)

where
K: memory access operations (read, write),
INT:': the total number of integers (Size of input data) and

distance: 2™-1.
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Figure 5.12. Flowchart of the temporal and spatial redundancy reduction module (Case of
Herschel-PACS)

Several iterations of RZIP with small distances e.g. 8 (range 3) have to be performed for
efficient compression in terms of compression ratio and complexity. Therefore, as RZIP has the
property to be fast for well-sorted data, an adequate range, which depends on the block size,
can be used to efficiently code the sorted data.
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Chapter 6

Case Study: HERSCHEL-PACS Infrared
Camera

In this chapter, the Herschel-PACS mission from the European Space Observatory is detailed.
The scientific specifications of PACS, relevant for our investigation goals, are also presented
including the compression challenges. Typical PACS data from the detector test (year of 2003
and 2004) are also given in this chapter. Experimental analysis and results are presented for the
on-board processing approach.

6.1 The Herschel Mission

The Herschel Space Telescope (HSO) (formerly “Far InfraRed and Submillimetre Telescope”
(FIRST)) will perform photometry and spectroscopy in the 57-670 um range. It will have
a radiatively cooled telescope and carry a science payload complement of three instruments
housed inside a superfluid helium cryostat. It will be operated as an observatory for a minimum
of three years following launch and transit into an orbit around the Lagrangian point L2 in the
year 2007. The Lagrangian point L2 (see Figure 6.1) is 1.5 million Km far from the Earth away
from the sun. It is a very good position for exploring the Universe, avoiding the undesirable
emission of heat radiation from the Earth, the Moon and the Sun, which would cause too much
interference in the measurements.

Figure 6.1: Illustration of the Lagrangian points .1 and L2 (not to scale)
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Figure 6.2 depicts an illustration of the HSO as imagined by an artist. Herschel is CornerStone

number 4 (CS4) in the European Space Agency (ESA) “Horizon 2000” science plan. It will be
the largest space telescope of its kind when launched. Herschel’s 3.5-metre diameter mirror will
collect long-wavelength infrared radiation from some of the coolest and most distant objects in
the Universe. Herschel will be the only space observatory to cover the range from far-infrared
to submillimetre. The scientific objectives of Herschel are exploring the formation of stars and
galaxies. HSO will solve the mystery of how stars and galaxies were born.
The Herschel satellite is approximately 7 metres high and 4.3 metres wide, with a launch mass
of around 3.25 tonnes. It will be launched with another mission, Planck - a mission to study the
cosmic microwave background radiation. The two spacecrafts will separate soon after launch
and will operate independently. The HSO will travel to the L2 orbit for an operational lifetime
of three years minimum and will potentially offer about 7000 hours of science time per year.
The HSO is a multiuser observatory accessible to astronomers from all over the world.

Figure 6.2: Artist’s impression of Herschel (~1998)
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6. Case Study: HERSCHEL-PACS Infrared Camera

The HSO [149] will carry the infrared telescope and will house three scientific instruments
inside its superfluid Helium cryostat that are, Photodetector Array Camera and Spectrometer
(PACS), Heterodyne Instrument for the Far Infrared (HIFI) and Spectral Photometer Imaging
REceiver (SPIRE). These three instruments are built by different European consortia with inter-
national cooperation (see Table 6.1). PACS and SPIRE are cameras that will allow Herschel to

Instrument | Principal Investigator (PI) location | spectral range
PACS MPE Garching, Germany 57-210 pym
HIFI SRON Groningen, The Netherlands | 480-1910 GHz
SPIRE Univ. of Wales/Cardiff, UK 200-670 pm

Table 6.1: The scientific payload of the Herschel Space Observatory.

take pictures in six different “colors” in the far-infrared. HIFI is a spectrometer with extremely
high resolution. The scientific payload complement was approved by the ESA in February 1999.

The case-study for the thesis investigation is the PACS instrument [150]. The evaluation of
the OBP concept is performed on PACS data. In the following section, PACS and its objectives
will be described further.

6.2 The PACS Instrument Description

PACS [94] employs two Ge:Ga photoconductor arrays (stressed/unstressed), and two bolometer
arrays to, respectively, perform imaging line spectroscopy and imaging photometry in the 60 -
210um wavelength band (Figure 6.3).

In photometry mode, it will simultaneously image two bands, 60 - 90zm or 90 - 130m and
130 - 210pm, over fields of view of 1.75 x 3.5 arcmin with full beam sampling in each band.
In spectroscopy mode, it will image a field of about 50 x 50 arcsec, resolved into 5 x 5 pixels,
with an instantaneous spectral coverage of about 1500 km/s and a spectral resolution of about
175 km/s. In both modes background-noise limited performance is expected, with sensitivities
(5 sigma in 1h) of 3 mJy or 2.5 x 10-18 W/m?, respectively.

PACS will contribute to track the energy released during the formation of stars and galaxies
in IR range, since dust layers prevent the escape of radiation at shorter wavelengths. While
the formation of stars can be observed in our galactic neighborhood, the observation of form-
ing galaxies allows a look in the very distant and therefore very young universe. Together
with SPIRE, deep multi-band photometric surveys will be used, searching for far IR-luminous
galaxies at high z. Afterwards, spectroscopy imaging is used to follow-up the power sources
(Active Galactic Nuclei (AGN)/starburst), and investigate how they evolve. Figure 6.4 and Fig-
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Figure 6.3: PACS instrument in-development (July 2004)

ure 6.5 illustrate an example of respectively photometry and spectroscopy observation using
PACS [150].

Figure 6.4: Photometry surveys using PACS and SPIRE
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Figure 6.5: Follow-up spectroscopy using PACS

6.2.1 Design Concept

A. Photometry: Imaging photometry is performed in two bands simultaneously (60 — 90 ym

or 90 — 130 pum and 130 — 210 um) using a dichroic beam splitter. Two filled silicon
bolometer arrays will be used in photometry:

e Blue bolometer: 64 x 32 pixels with a field of view of 3.5 arcmin x 1.75 arcmin at
wavelength range: 60 — 130 ym
e Red bolometer: 32 x 16 pixels with field of view: 3.5 arcmin x 1.75 arcmin at

wavelength range: 130 — 210 mm

Figure 6.6 shows the focal plane footprint in photometry. It shows the projection of the
blue or red bolometer arrays on the field of view. Figure 6.7 represents typical bolometer
arrays for PACS. It depicts a single pixel structure and whole detector matrix as well.

32X16 pixels 64X32 pixels
6.6"X6.6" 3.3"X3.3"

1’

Figure 6.6: The focal plane foot print in photometry
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The bolometer performance mainly depends on the readout scheme used at the multi-
plexer stage. Figure 6.8 shows the readout concept of the bolometer arrays. It consists of
a modulation stage where the measurement is stored in a cold buffer and of an amplifi-
cation stage where a resulting differential signal (between off-light and on-light pixels) is
amplified, integrated and injected into the multiplexer stage. The resulting signal is after-
wards oversampled while converted from analog to digital. That are the resulting science
data that consist of the photometric observation, which have to be transmitted to ground.

The measured noise spectrum from the above described readout scheme is depicted in fig-
ure 6.9. The red line indicates the required noise to reach the expected Noise Equivalent
Power (NEP). Except for low frequencies the measured noise is equal to or below the
required noise. This makes the observation reconstruction at low frequency challenging
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Figure 6.8: Readout scheme of the bolometer arrays

and thus, the efficient data transmission for high compression ratio would need proper
attention.
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Figure 6.9: Measured noise spectrum in photometry

B. Spectroscopy: Integral field line spectroscopy is used at wavelength range 57 — 210 pm.
An optical image slicer rearranges 2D field of view (5 x 5 pixels) along 1D slit (1 x 25
pixels). Figure 6.10 shows the projection of the focal plane onto the detector arrays.

A long-slit grating spectrograph (R ~ 1500)(see Figure 6.11) disperses light while used
in 3 orders:

- 1st order (red detector) 105 — 210 micron

- 2nd order (blue detector) 72 — 105 micron
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Figure 6.10: Projection of the focal plane onto the detector arrays (spectroscopy mode)

- 3rd order (blue detector) 57 — 72 micron.

The grating efficiency in each wavelength range is given in Figure 6.12.

The dispersed slit image is projected on two 16 x 25 pixel filled arrays of Ge:Ga photo-
conductors (see Figure 6.13). They are unstressed for the wavelength range 40 — 120um
and stressed for the range 120 — 210um. Furthermore, there are also two test channels for
each row, for calibration and validation purposes.

There are 25 linear modules for integrated Cryogenic Readout Electronics (CRE). The
schematic CRE system is presented in Figure 6.14. It consists of a Capacitive feedback
TransImpedance Amplifier (CTIA) for each pixel, based on AC-coupled inverter or DC-
coupled differential amplifier stage in silicon CMOS technology. There are 16 CTIAs
multiplexed on each CRE chip for each linear detector module. Figure 6.15 shows CRE
chips integrated in detector module. Furthermore, for design simplification, there is an
additional empty module in warm electronics, which results in a total of data channels of
18 x 26.

The spectral channels are simultaneously recorded for each spatial element. The mea-
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Figure 6.11. Image of the grating that is developed by Centre Spatial de Liege (CSL) in Belgium
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Figure 6.12: Grating efficiency respective to the wavelength ranges

sured responsivities for two light levels and detector modules temperatures are shown in
Figure 6.16. The responsivity is defined as the signal current

Lout
I — 6.1

through the detector per incoming photon power Ppp:

[out
R=—7" 6.2)
8%
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Figure 6.13: PACS photoconductors array

Figure 6.14: Cryogenic Readout Electronics (CRE)

where Ry, is the feedback resistance. The responsivities show the well-known non-linear
dependence of the applied bias voltage. Indeed, the output signal is given by the bias
voltage Uy, times the ratio of the resistances of Ry, and the detector Rge;. While Upiqs
and Ry, remains constant, the detector resistance changes with the intensity of the ab-
sorbed light. Therefore, the output signal is a direct measure of the absorbed photon
power. As in previous measurements, the pixels can be grouped into a type of high and
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Figure 6.16: The measured responsivities for two light levels

Measured NEP at two light levels and detector module temperatures is presented in
Figure 6.17. The NEP can be calculated from the measured noise voltage Uy and re-
sponsivity:

Un

p=—=_
NE be*R

(6.3)

The NEP is a very important figure of merit since it is inversely proportional to the
signal-to-noise ratio of a measurement, which actually determines the sensitivity of the
instrument.

At bias voltages below 30 mV the measured /VEP is still dominated by the noise of the
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Figure 6.17: The measured NEP for the photoconductors

readout electronics, whereas at bias voltages exceeding 60 mV the noise is rising steeply
because of the avalanche effect. At intermediate bias voltages the N E'P is independent
of the bias voltage. In that range, the NEP is limited by the noise of the photon back-
ground. At the higher flux level, the N E P shows more scatter and the avalanche effect
starts to dominate the noise at lower bias voltages.

The derived quantum efficiency at two light levels and detector module temperatures is
presented in Figure 6.18. The quantum efficiency is the probability of a photon which
hits the detector to produce a charge carrier. If the NEP is limited by the noise of the
photon background, the quantum efficiency () is calculated as follows:

_4*Eph*Pph*B

@ NEP?

6.4)
where

B— 1
1 — exp(—Epn/kTeB)

6.5)
E,h and P,h are the energy of single photon and the total received photon power, respec-
tively.

Since the quantum efficiency is proportional to 1/N EP?, each fluctuation in the NEP
translates to larger fluctuations of the calculated quantum efficiency. Especially for the
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Figure 6.18: The measured quantum efficiency for the photoconductors

higher flux level the calculated quantum efficiency varies between 0 and 100%. We there-
fore put more emphasis on the measurements at the lower flux level.

In the background limited regime (bias voltages between 30 and 60 mV) the quantum
efficiency varies between 20 and 50% with a mean value of about 33%. This is somewhat
above the requirement of 30%. Although the scatter for the higher flux level is large,
these measurements seem to suggest a mean value above 40%.

@ 622 The PACS Instrument Units

A. The Optical System: The light from the telescope or one of the internal calibration sources
is directed into the spectrometer and photometer section of the instrument. In the spec-
trometer, the optical image slicer re-arranges the 5 x 5 pixel field of view along a slit of
1 x 25 pixel which is dispersed by the grating. A dichroic beamsplitter separates the two
spectroscopic bands before the light reaches the Ge:Ga photoconductors.

In the photometer the light is separated in the two photometric bands and imaged on the
blue and red bolometers. Figure 6.19 illustrates the optical flow to and within PACS.

B. The Chopper: The chopper will be used for spatial modulation and for observation of in-
ternal calibration sources. Electromagnetic linear drive with magnetoresistive position
sensors are used for this purpose. Figure 6.20 depicts an image of the chopper that is
developed by Max-Planck Institute for Astronomy (MPIA) in Germany.
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Figure 6.19. The optical flow for PACS imaging in flowchart (top figure) and in simulation
(bottom figure) .

C. The Instrument Units: The PACS instrument consists mainly of two parts that are mounted
on different locations on the spacecraft. One part is located inside the cryostat in the fo-
cal plane on the Optical Bench (OB) at cryogenic temperatures. This part is the instru-
ment Focal Plane Unit (FPU). The other part of the instrument is located on the SerVice
Module (SVM) and includes the instrument Warm Electronics (WE) Units and the Warm
Interconnecting Harness (WIH). The instrument block diagram in Figure 6.21 illustrates
the electrical and configuration aspects (the manufacturer of the respective unit is also
indicated).

The red boxes consists of the Signal Processing Unit (SPU), that is responsible for data
reduction for efficient transmission on the limited telemetry bandwidth. The SPU is the
unit where the proposed OBP approach is implemented. The following sections contain
the quantitative summary of the compression challenges for PACS. An evaluation of the
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Figure 6.20: Image of the chopper
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Figure 6.21: Scheme of PACS instrument units

OBP approach is performed on PACS data in terms of result quality and complexity.

121



6.3 PACS Constraints

In this section, the relevant PACS specifications for the On-Board Processing (OBP) frame-
work are presented. The main challenge is the high data rate of the instrument for the limited
telemetry bandwidth. The maximum raw data stream of 4000 Kbits/s has to be downlinked
within a dedicated telemetry rate in the order of 118 Kbits/s. Therefore, a compression ratio of
34 is required in this case for an adequate transmission. In addition to that, the detectors data
mostly consist of the telescope background, on which the source signal of interest is merged
for a signal-to-noise ratio of the order of 1000. Furthermore, the detectors are continuously
exposed to high energy cosmic particles inducing a disturbance (glitches) of the readout voltage
which decrease the signal to-noise ratio and hence the data accuracy level. In the sequel, PACS
signal specifications and transmission constraints are detailed.

6.3.1 PACS Signal Description

This section contains the scientific performance of the in-development PACS instrument (status
from July 2004). This information needs to be verified by test, analysis or a combination of the
two and shall serve the purpose of demonstrating that the instrument will operate as intended
for the particular mission. The following specifications are reported for the PACS instrument
interface design document [33] from July 2004.

Background and system noise levels in spectroscopy and photometry modes are given below
in Table 6.2. The sensitivity of the photometer critically depends on the knowledge of the IR
background from telescope and other sources, which couple into beam. An increase in back-
ground flux would affect the sensitivity figures: approximately proportionally to the square root
of the background level while a decrease of the background could lead to slight improvements
in sensitivity. Other parameters that determine the system sensitivity are the telescope main
beam efficiency, pixel geometric efficiency, detective QE, transmission of filters and optics, and
spectral bandwidth. Some of these parameters have been measured, others are the results of
modeling and will be updated in a later stage of the PACS development.

Mode A R Telescope | Background | 7 Coupling | System NEP
[micron] | (Resolu.) | Efficiency | Signal [W] Correction | [W.Hz™1/?]
Phot. 60-85 2.9 0.64 2.4x 10712 ] 0.16 56 9.2x10~1°
Phot. | 85-130 2.4 0.73 2.7x 10712 |0.11 34 5.9x10~ 1
Phot. | 130-210 2.2 0.77 6.3x 10712 | 0.18 18 3.0x10~1°
Spec. 60 2650 0.55 3.3x 1071 1 26 1.2x10°16
Spec. 90 2400 0.69 2.0x 10~ 4 1 23 6.2x10-16
Spec. 130 1100 0.74 2.7x 1071% | 0.64 22 5.2x10°16
Spec. 180 1650 0.77 7.1x 10~ | 0.35 37 4.5x10~16

Table 6.2: PACS instrument sensitivity
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6. Case Study: HERSCHEL-PACS Infrared Camera

In Table 6.2, the assumed detector N E P, in addition to background photon noise is 1016
W/Hz,, in photometry and 5x10~'8 W/Hz, /2 in spectroscopy. Furthermore, the point source
detection limit for 1 hour and 5S¢ is in the range of [1.9 - 4.4] mJy in photometry while it is
in the range of [3.1x 107!8 - 7.8x 107!¥] Wm™2 in spectroscopy depending on the observation
wavelength.

6.3.2 PACS Signal-to-Noise Ratio

In this section the calculations of the ratio between the telescope signal and the source signal
are performed. These numbers are computed according to the signal specifications given in the
previous section. The background and the system noise level in spectroscopy and photometry
modes are described below.

Photometry

The bolometer signal is injected to the 16-bits Analog to Digital Converter (ADC) with a dy-
namic range of 3.3V. However, the real dynamic range per sample is 15 bits (significant) because
areserve of 1V for the signal is foreseen. The data are buffered on an output register before the
processing.

The estimated SN R on the received background - if such a total power measurement could
be done, which of course is not possible with the bolometers — would be ~ 7000 in 1/40 s (40 Hz
readout rate). The dynamic range in the subtracted signal should be ~10 % of the total power,
caused by variation in the pixel responsivity or thermistor tolerances. Thus, 10 bits (1024 lev-
els) are sufficient to represent the signal. With 15 effective bits in the ADC, this leaves 5 bits
for noise sampling, which will be reduced to the proper ~ 4 bits at the data processing level.
For bright sources, a SN R of ~10000 is expected, which leaves only 2 bits for the noise, but
this is not a problem as the SN R is so high that a small amount of quantization noise can be
tolerated.

The SN R for PACS bolometers can be estimated according to the information provided in
Table 6.2. The Coupling Correction ”C'C” is a factor taking the telescope and pixel efficiencies
into account. Since, the total NEP (T'OT N E P) is required for the calculation of the SN R, the
coupling correction is used to retain the values of all NE P contributing sources (SY SN EP):

TOTNEP),=SYSNEP,/CC, (6.6)

Then, the SN R for 1 second integration, can be calculated using the relation:

SNRy = BG\V2/TOTNEP, (6.7)

where BG),, is the background signal for a dedicated wavelength ”\”.
For 4 samples averaging (oversampling reduction), the sampling rate is reduced from 40H z
to 10H 2. Therefore, the SN R can be calculated for an integration interval of 1/10s:

SNR\@10Hz = SNR,/V10 (6.8)
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By calculating the SN R for a particular wavelength, the number of bits allocated to the
noise (containing the source signal) is finally:

bits = Round[log2(2'® /SN Ry)] + 1(signbit) (6.9)
where ” Round” is the rounding to the upper value and log, denotes the dual logarithm

logy (x) = In(z)/In(2).

Using Equation 6.9, the bits allocated to the noise are calculated for the different wavelength
and represented in Table 6.3.

[ A [microns] | SNRy | SNR,Q10Hz | bits ||

60-85 21200 6700 4.3
85-130 22500 7120 4.3
130-210 | 55700 17610 2.9

Table 6.3: PACS SN R in photometry

Based on this estimation, redundancy reduction step of the OBP should reduce the signal
dynamic range to an average number of 5 bits (4.3 bits) before its encoding to 4 bits by the
RZIP and arithmetic coders.

Spectroscopy

The SN R in spectroscopy is estimated using the same methodology as for photometry. The
only difference if that the calculated SN R concerns ramp slopes and not sample averages.

For 8-sample slopes, the sampling rate is reduced from 256 Hz to 32 Hz. Therefore, the
SNR is calculated for an integration interval of 1/32s:

SNR\@32Hz = SNRy/V/32 (6.10)

Using Equation 6.9, the bits allocated to the noise are calculated for the different wavelength
and represented in Table 6.4.

[ A [microns] | SNRy | SNR,Q32Hz | bits
60 10200 1800 6.2
90 1090 193 9.4
130 1600 283 8.8
180 836 148 9.8

Table 6.4: PACS SN R in spectroscopy
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Based on this estimation, redundancy reduction step of the OBP should reduce the signal
dynamic range to an average number of 10 bits (9.8 bits) before its encoding by the RZIP and
arithmetic coders.

6.3.3 PACS Telemetry Rates

For transmission of science data, three modes are foreseen: prime, burst and parallel modes. In
the PACS prime mode, the maximum 24 hours average telemetry rate is limited to 118 Kbit/s for
the science data. In the burst mode, it is limited to 300 Kbit/s for a maximum total duration of
30 minutes per 24 hour period. During “parallel” observations (PACS and SPIRE instruments
together), the spacecraft shall be capable of receiving data from PACS at a maximum 24 hr aver-
age rate of 42 kbit/s for the science data. Please note, there is 3 hours daily telecommunication
period between the spacecraft and the ground station in Perth (Australia) for the transmission
of the instruments data.

Therefore for the prime mode, the nominal transmission mode, a typical compression ratio of
34 is required’.

6.3.4 Summary of PACS Constraints for Data Processing

In what follows, PACS constraints, that are relevant for the OBP, are summarized for photometry
(Table 6.5) and spectroscopy (Table 6.6).

Signal/Noise ratio ~ 6700 — 17600
Glitch rate 10s/pixel

Glitch tails < 0.3s

Detector output 16bit

Significant bits 15bit

Data rate 1700 Kbits/s

Typical compression ratio 16

Table 6.5: Assumed photometry characteristics

The OBP is implemented on the SPU sub-system for the reduction of the science data to
fit the telemetry bandwidth. This task is achieved by the Application SoftWare (ASW) and
related programs, implemented on the SPU DSPs. Furthermore, the SPU has to control the
communication functionality with neighboring sub-units, the DEtector Controller/MEchanical
Controller (DEC/MEC) and Data Processing Unit (DPU), for optimal data flow between the
detector and the spacecraft.

!This is for the PACS prime spectroscopy mode, in what follows will only consider this mode, because PACS
will operate on this mode for 950f the mission. Furthermore, for the other modes the requirements for the com-
pression are less demanding
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Signal/Noise ratio ~ 140 — 1800

Glitch rate 10s/pixel
Glitch tails < 0.5s
Detector output 16bit
Significant bits 16bit

Data rate 4000 Kbits/s

Typical compression ratio 34

Table 6.6: Assumed spectroscopy characteristics

The target hardware where OBP is implemented has the following specifications/ con-
straints:

e TSC21020F IEEE 32/40 bits Floating Point Digital Signal Processing at up to 18 MHz
and 54 MFLOPs

e 256k x 48 bits EEPROM program bank ((Error Detection And Correction) (EDAC pro-
tected) i.e. 1.5 MBytes

e 512k x 48 bits Program RAM (EDAC protected) i.e. 3 MBytes

e 512k x 32 bits Data RAM and 512k x 40 bits Expansion RAM (both banks EDAC pro-
tected) 1.e. 2 MBytes.

e Communication links: 3 bi-directional IEEE-1355 controlled by SMCS332 capable of
100 Mbps data rates.

Therefore, under these circumstances (18 MHz CPU, 54 MFlops and 4 MB data memory),
OBP has to reduce the 4000 Kbits/s by a factor of about 34 to fit the telemetry bandwidth.

6.4 Illustration of PACS Data

The signals presented in this section represent engineering data from PACS detector test on July
2004. As the signal is out of specifications (ESA and contractors), detectors tuning still has to be
performed to reach the dedicated PACS instrument performance. Figure 6.22 depicts a sequence
of 1D signals from PACS bolometers (photometry) for different chopper plateaus. Figure 6.23
shows a 1D signal from 8 different PACS photoconductors (spectroscopy) for 64-sample ramps.

These are different ramp shapes in spectroscopy while the photometry data seem to have
stable signal. Please note that these data are free from glitches and that the real signal might
look different at L2 likely with high cosmic radiation.
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Figure 6.22: PACS photometry data from selected detectors
127



" Bird Deledtor 17 “Bind Détector 18

- “Active Ditoctar 187 - Actie Dtectars:

i B et

o w2 w4 0 0 ™
v

Figure 6.23: PACS spectroscopy data from selected detectors with 64-sample ramps

6.5 PACS Data Analysis

In this section, analysis for spectroscopy ramps is performed to investigate the best processing
strategy. Spectroscopy is chosen for the high demanding compression (CR=34) and the high
data rate (4000 Kbits/s). This analysis can easily be extended to photometry data.

For the best processing strategy, ramp models [10] have been considered while observing
test data from the PACS database (Six-Pack data). Therefore, an Atlas of PACS ramps [1] has
been built for the classification of the different models. These ramp models can be exploited
in by the preprocessing and the oversampling reduction processing step. The preprocessing
module can use this information for correcting the detector measurements to one of those ramp
model depending on the detector setting. Also, the oversampling reduction method can be cho-
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Figure 6.24: Typical spectroscopy ramp model

sen accordingly to the ramp characteristics. For instance, for curved ramps, adequate sub-ramp
length has to be chosen by the user for best non-linear approximation and acceptable complex-
ity. The user can use the input from the raw data selection module to adapt the oversampling
reduction method to the estimated ramp model.

In the following sections, these ramp models are detailed.

6.5.1 PACS Input Data

The relevant test parameters for the generation of PACS data are summarized below:

e Number of detector modules (CREs): 6

Module temperature: 1.8 K

Black body temperatures: 33 and 50 K

Integrating capacitors: 0.1, 0.3, 1.0, and 3.0 pF.

Bias levels: 30, 40, 50, and 60 mV

64-sample ramps are considered
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Currently, the input data, also called ”Six-Pack data”, have been generated from April - July
2003. There are 33 files in total. Each file contains data on all 18 channels for all 6 modules. For
each test setup and each module and each channel, there is an averaged ramp. All subsequent
analyses are carried out on these averaged ramps. Thus, the total number of ramps are:

33 Files X 6 Modules X 18 Channels = 3,564 averaged ramps

6.5.2 Ramp Morphology

Figure 6.24 [1] shows one example (averaged) data ramp on which distinct morphological re-
gions and features are labeled. All ramps are characterized using these regions and features.
They are described as follows:

A. Hook: The curved part at the beginning of the ramp resembling a hook. This does not exist
for all ramps. The hook section begins at the first readout and ends at readout number
2Pm. Pm is the readout that contains the maximum value of the ramp.

“hookv” is the signal level at hook maximum, Pm. “hookd” is the depth of the hook. It
is defined as the difference between the second readout and the hook maximum readout
(Pm).

B. Intermediate: It is the middle section of the ramp, although when the ramp is not saturated
this section continues until the end of the ramp. The intermediate section begins at 2Pm,
where the hook section ends. It stops at either when the ramp ends or where saturation is
detected.

C. Saturated: If it exists, this is the end part of the ramp and begins where the intermediate
part ends. When the ramp slope is consistently found to be O or near O towards the end,
there is, then, evidence for saturation.

First, it is assumed that the saturated part of the ramp is in the second half of all readouts.
Second, slopes are obtained by calculating the differences between subsequent readouts.
Third, the set of slopes that are above the average slope are examined for the entire data
set and compared to the set of slopes with values below the average slope. If the differ-
ence/distance between the two averages is found to be significant (given the dispersion
in the high- and low- averaged slopes), it is declared that a saturated region exists. This
method is, unfortunately, not 100% accurate, but the error in determining the saturated
component does not significantly change any of the conclusions.

6.5.3 Ramp Types

After visual inspection of all ramps, five distinct morphological shapes for the ramps are found
in the test setup considered here. A typical example of each type is shown in Figure 6.25 and
discussed below.
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Figure 6.25: PACS spectroscopy Atlas
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A. Straight Ramps: These ramps show no hook region nor saturation, and the intermediate
section is best approximated by a straight line. By definition, the location of the hook is
the maximum value of the ramp. All ramps where the maximum value is in the first or
second readout are considered straight ramps.

B. Hooked Ramps: These ramps show a clear hook region, are otherwise straight and without
saturation. Extending the definition just given above, ramps in which the ramp maximum
is located after the 2nd readout are considered hooked .

C. Concave Ramps: These ramps are hooked ramps but with a non-linear intermediate section
and a saturated end section. The non-linearity is identified by fitting the intermediate
section of the ramp with a second order polynomial function. The fit is not meant to
suggest that second order polynomials describe the non-linearity adequately. Rather, the
fit is used to identify those ramps that have a significant non-linear coefficient. That is, if
the second order polynomial is written as:

y(z) = Ap + A1z + Agz? (6.11)

Then, ramps with non-linear intermediate sections have significant/non-zero values for
As. When the coefficient A, is negative, these ramps are termed “concave” resembling
optical surfaces with similarly directed curvature.

D. Convex Ramps: Similar to concave ramps, these ramps are hooked ramps with a nonlinear
intermediate section. For convex ramps, however, the coefficient A, has positive value.
The last few readouts of the ramps are not saturated in this case.

E. Non-concave Saturated Ramps: These are convex or straight ramps but with a saturated
section at the end.

6.5.4 Analytical Ramp Model

So far, ramp models from observed detector data have been derived. In this section, the mathe-
matical model of the ramp is presented, as formulated by Poglitsch [94], that is resulting from
the detector design. |

The key idea is to represent a ramp by 8 parameters and, therefore, achieving a CR of 8.
The physical ramp model "y’ is described as follows:

Py
y(z) = PO(\/;pl/Pz2 + Ps)exp((2Pit)/Py) — Ps)

where z is the number of readouts per ramp,

—Py))+ Ps+ Ps(1 —exp(—z/P;)) (6.12)

t is the time = 2 /256 expressed in seconds and

Py...P; are the 8 required parameters to solve this mathematical equation.
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Figure 6.26: Ramp analytical model vs. measurement

The estimation of the eight parameters is a challenging problem. The implementation of
this model in Fortran and in Java failed to exactly fit all ramps from the ”Six-Pack” data. Fur-
thermore, this fitting method is computationally expensive to deal with real time processing.
Figure 6.26 depicts the fitting result using this analytical model respective to the ramp result
from detector measurements. Therefore, a combination between the mathematical model and
the measurements (modelled ramps) is a good compromise to find the best approximation of
the detector signal, such that the measurements can be used to correct the mathematical model.

6.6 Tests and Evaluation of the On-board Processing

In this section, the evaluation of the OBP concept on PACS is performed. The key concepts i.c.
glitch detection and oversampling reduction are considered.

As the spectroscopy case is the most critical and demanding in terms of CR and processing
power, the case of photoconductors where the detector output is of the form of ramps is con-
sidered. The maximum possible compression rate we could obtain by a lossless compression
(i.e., the original measurements can be recovered) can be computed as follows: A compression
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ratio of 16/10 (see Section 6.3.2) is obtained by eliminating non-significant bits via redundancy
reduction. An additional compression factor of 4 is obtained by calculating the slope/subslopes
of the ramp, which has to be given at least with the accuracy of the SN R. Therefore, 16 bit for
the slope are sufficient. A further lossless compression of the signal is not possible because it
basically contains the noise of the telescope, which is by definition, incompressible. This noise
cannot be eliminated because the astronomical science signal can be lost. Therefore, a lossless
CR of 6.4 is achieved and an additional CR of 5.4 has to be obtained in order to fit detector
data into the telemetry rate. Since lossless compression is not feasible for such rate we have
to perform on-board integration. Either, we have to integrate over 6 slopes?, or to fit for larger
subslope length (> 16).

The important issue to consider is the potential loss of scientific data depending on the inte-
gration time and on glitch detection efficiency. This loss is already quantified in Section 4.3.3
where its results are used during this evaluation.

6.6.1 Oversampling Reduction Results

Table 6.7 summarizes the test results for the oversampling reduction methods on PACS spec-
troscopy data.

From the table results, it is noted that the least squares method combined with SDE glitch
detection offers the best adequate results in terms of computing time and robustness to outliers.

RANSAC seems to be prohibitive for DSP applications due to its high computational com-
plexity.

6.6.2 Compression Results

The on-board processing concept has been tested on a benchmark of 24 hours observations
spread out over 6 months data. The data includes additive simulated glitches. This is the
summary of the test parameters:

Number of detector modules (CRE): 6.

Module temperature: 1.8 K

Black body temperature: 33 and 50 K

Integrating capacitors: 0.1, 0.3, 1.0, and 3.0 pF

Bias levels: 30, 40, 50 and 60 mV

Number of samples per ramp: 64, 256 and 512

e Number of simulated glitches per second: 20

2In fact, integration over 5 slopes should be sufficient because due to the decrease in signal to noise ratio we
could gain the rest by temporal and spatial redundancy reduction
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6. Case Study: HERSCHEL-PACS Infrared Camera

Method sample/ | Processing Performance Glitch
ramps | Time [%] Evaluation Detection
64 31 Not recommended
Least Squares 4 37 for cumulative process Not Suited
8 39 Better for subramp
64 >100 Slow. Recommended Good for
RANSAC 4 >100 for cumulative process | electrical outliers
8 >100 detection
RANSAC+ 64 >100 Slow. Recommended Good for
Least Squares 4 >100 for cumulative process | electrical outliers
8 >100
64 12 Fast. Robust to best suited
SDE_REG_APP1 4 17 non-linearity for glitch
8 18 and saturation detection
64 5 Fast. Robust to best suited
SDE_OVL_APP1 4 9 non-linearity for glitch
8 10 and saturation detection
64 7 Fast. Robust to best suited
SDE_REG_APP2 4 11 non-linearity for glitch
8 11.5 and saturation detection
64 4 Fast. Robust to best suited
SDE_REG_APP3 4 6.7 non-linearity for glitch
8 7.5 and saturation detection

Table 6.7: Test results of the oversampling reduction methods on PACS 64-sample ramps

o Glitchtail: < 0.55s
o Number of tested files: 660

e Number of ramps: 660 Files X 6 Modules X 18 Channels X 1100 Ramps

The used glitch detection method is SDDM (SDE_REG_APP2) while least squares fit was
used for subramps fitting. Table 6.8 depicts the quantitative results for the test of OBP on these
data.

The compression performance is evaluated by calculating PIL, RMSE, SNR, PSNR
and CR for ramp length between 64 to 512 samples. The errors are computed between the orig-
inal and the reconstructed ramps from sub-slopes. Three subramp lengths (4, 8 and 16 samples)
are considered for the calculation of subslopes (slopes over parts of the ramp). The results are
also made for different integrations between subsequent slopes: 1 (for no integration), 2 and 4.

As a first remark, CR is inversely proportional to the ramp length. Indeed, the lossless

compression is more efficient the more the ramps are available, as it exploits the redundancy
between subsequent ramps. As the maximum number of samples to store in buffer is fixed to
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Samples | Samples per | Slopesper | CR | PIL | RMSE SNR PSNR
per Ramp | Subramp | Integration in[%]

64 4 1 20.3 | 0.5859 | 22.7155 | 85.1347 | 31.6397

4 2 34.2 | 0.9045 | 39.5735 | 81.9164 | 30.9459

4 4 50.1 | 1.5934 | 67.2158 | 73.2973 | 30.3768

8 1 35.6 | 0.9495 | 40.6454 | 83.3543 | 31.0973

8 2 53.8 | 1.7102 | 70.3416 | 75.8434 | 30.2223

16 1 58.2 | 1.7220 | 68.2575 | 75.7197 | 30.3019

128 4 1 18.4 | 0.4195 | 20.6589 | 87.4799 | 33.3454

4 2 29.4 | 0.8104 | 35.3481 | 84.2544 | 32.9818

4 4 47.9 | 1.3304 | 62.2487 | 73.9230 | 32.9748

8 1 32.3 | 0.8159 | 35.3415 | 84.1694 | 33.0001

8 2 50.1 | 1.3910 | 63.4834 | 79.9998 | 32.0478

16 1 54.5 | 1.5111 | 64.3269 | 77.9972 | 32.0039

256 4 1 11.9 | 0.3559 | 18.8654 | 90.6587 | 35.4648

4 2 26.7 | 0.7950 | 33.7613 | 85.3187 | 33.4858

4 4 42.6 | 1.3045 | 60.0023 | 81.2876 | 33.0718

8 1 30.5 | 0.8004 | 34.9897 | 84.5484 | 33.2354

8 2 45.2 | 1.3159 | 61.1604 | 79.2348 | 32.9926

16 1 50.3 | 1.4208 | 63.7325 | 78.1734 | 32.9736

512 4 1 8.1 [ 0.3443 [ 17.5986 | 95.1874 | 38.1944

4 2 23.6 | 0.7501 | 30.0186 | 91.2743 | 36.1875

4 4 36.2 | 1.1094 | 56.3482 | 84.3445 | 34.8448

8 1 26.0 | 0.7854 | 33.9720 | 90.4513 | 36.1057

8 2 40.1 | 1.1972 | 59.3458 | 85.5364 | 34.4428

16 1 44.9 | 1.3008 | 60.0046 | 84.0029 | 34.1484

Table 6.8: Test results of the on-board processing on different PACS ramp lengths

512, 1 ramp per detector is considered in case of 512-sample ramps while 8 ramps per detector
are considered in case of 64-sample ramps. Therefore, the smaller the ramp length is, the more
redundancy is in the buffered data.

It is noted also that CR and PIL are proportional to the subramp length, the bigger the
subramp length is, the more compression and data loss is obtained. In the same manner, the
number of integrations is proportional to the P/ L and CR. The other metrics (RMSE, SNR,
PSN R) seem not to give a consistent behavior respective to the change of the subramp length
such that a significant change in subramp length may not cause a significant change in the error.
Therefore, the following conclusions are based on P L metric.

For 64-sample ramps, it is noted that 4-sample subramps including 2 integrations or 8-
sample subramps without integration are sufficient to fit the PACS telemetry bandwidth (CR>34).
Though, the first alternative is likely appreciated due to the smaller PIL (0.90).
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6. Case Study: HERSCHEL-PACS Infrared Camera

In case of 128-sample ramps, one can clearly see that the option with 4-sample subramps
without integration is the best regarding the smaller PI L, although the CR is slightly below the
requirement. Other alternatives are 4-sample subramps including 4 integrations or 16-sample
subramps.

The case of 256-sample ramps is similar to the previous one, where 8-sample subramps
without integration can be appreciated due to the attractive PIL.

In the last case (512-sample ramps), the option with 4-sample subramps including 4 inte-
grations seems to be the best for the required CR and an acceptable PIL.

It is noted in all cases, that options with P/L < 1% are very common and attractive using
this OBP scheme for smaller ramp length while other cases are also acceptable as, in all cases,
PIL < 3% (The science requirement).
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Figure 6.27. Souvenir image after the success of the first light from PACS with detectors cooled
down to 70.27 K” (22 July 2004
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Chapter 7

Conclusion and Perspectives

This thesis presents a novel work for efficient transmission of infrared images from limited bud-
get infrared observatories. The framework ”On-Board Processing” (OBP) has been introduced
for optimal exploitation of the telemetry bandwidth and the processing resources to feed the
infrared observatory needs. The processing concept makes use of the infrared detectors signal
characteristics knowledge to reach the best achievable compression ratio, that cannot be attained
by generic compression methods (e.g. JPEG 2000).

In the following subsections, the summary of the thesis is presented. Furthermore, the
main contributions and innovations of this work to the scientific community are listed. Possible
extensions of this work and further investigations are also proposed.

7.1 Summary

In this work, a solution has been presented to infrared space astronomy for efficient data trans-
mission and better exploitation of the telemetry bandwidth and the available processing re-
sources. Figure 7.1 summarizes the thesis work.

Chapter 1 outlines the motivation for the need of a novel general framework for efficient data
transmission from space observatories. Infrared detectors - an increasingly important technol-
ogy in astronomy - served as an example to demonstrate that the novel compression approach
can deal with high entropy data and limited processing resource budget. Furthermore, com-
pression challenges for space applications are pointed out. The need for recognition of optimal
processing tool within infrared astronomy constraints is stressed. The contribution of this work
to the scientific research is also summarized in this chapter.

In Chapter 2, infrared astronomy aspects, relevant for the dissertation goals, are presented.
A brief description of infrared space technology is given. Then, signal characteristics of infrared
detectors are investigated. Afterwards, the light detection mechanism using infrared sensors is
detailed and the resulting signal models for diverse types of detectors are illustrated. Finally,
typical images from infrared astronomy are illustrated and the astronomical efficiency of a sys-
tem is summarized.
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7. Conclusion and Perspectives

In Chapter 3, preliminary notions that are necessary to follow the dissertation work are
introduced. The formal definition of data compression is presented. Also, the conventional
evaluation criteria for the validation of processing results like signal-to-noise ratio are reported.
A new criterion Potential Information Loss (PIL) is introduced for an objective quantitative
evaluation. Also, the existing noise models with respect to their statistics are presented. Then,
Rate-Distortion theory is briefly given. Furthermore, this chapter contains state-of-the-art com-
pression methods, that are relevant for the thesis investigation. Recent image compression
techniques make use of wavelet-based approaches for specific performances. Indeed, wavelets
have the advantage to be multiresolution, localized and achieving the critical sampling. There-
fore, it is embedded in the image compression standard "JPEG 2000”. Finally, techniques that
were dedicated to astronomical image compression have been also outlined and compression
challenges are summarized.

Chapter 4 presents the contribution of this work to science, that is, the processing of as-
tronomical data from infrared observatories. This novel framework is dedicated for efficient
infrared data compression, on-board space observatories. It deals with limited-budget space
observatories constrained with limited telemetry, processing resources and large data volume.
The individual modules of the proposed framework On-Board Processing (OBP) are detailed
with special emphasize to the glitch detection, oversampling reduction and integration steps.
This latter modules are the lossy part of the compression concept, that drive the result quality
and the efficiency of the compression. It was demonstrated with a simple example that OBP
outperforms the generic compression method "JPEG2000” on infrared image compression.

Additionally to compression performance and quality, the importance of algorithm com-
plexity for the design of a compression method is stressed in Chapter 5. Indeed, the complexity
of an algorithm defines the feasibility and the applicability of the method. Therefore, exist-
ing methods for computing algorithm complexity were briefly introduced. Following that, two
approaches for complexity-analysis were presented. The first one analyzes and optimizes the
complexity in an intuitive manner. The second approach proposes a methodology for measuring
and quantifying the complexity. Furthermore, the complexity measurements and optimizations
for DSP are given. Then, an evaluation of OBP complexity on Digital Signal Processor (DSP)
based applications (case of ADSP21020) is performed.

Chapter 6 presents the case-study, Herschel-PACS [150], for the validation of the proposed
framework feasibility on IR astronomy. First, the Herschel-PACS mission is summarized. Then,
compression constraints for PACS observation are detailed. Examples of PACS detector data are
depicted for illustration of the problem. Afterwards, an analysis of the PACS most demanding
mode “spectroscopy” is performed, by comparing the analytical models to the observations. An
Atlas of models has been built, based on observed morphologies in the data. Finally, an evalua-
tion of OBP on PACS data is performed and the processing results are given. The evaluation is
performed using the criteria described in Chapter 3.
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7.2

Main Achievements

This section summarizes the main contributions of the work presented in this thesis for further
development of science (signal/image processing) and enhancement of the understanding of the
field "Compression”.

The statement of the problem is presented for space observatories where the readout rate
largely exceeds the available downlink bandwidth. The description of the constraints is
related to image processing for space applications.

The proposition of the novel general framework On Board Processing (OBP) is given,
which consists of data reduction on the remote satellite for efficient data transmission,
that is required to fit the telemetry.

Evaluation of the proposed framework is performed using standard metrics. Furthermore,
a new quality measure (PIL) has been proposed, that presents an objective quantitative
evaluation of the framework feasibility.

The constraints of the OBP approach are investigated for high compression efficiency and
acceptable image quality. They are related to noise and complexity aspects.

The problem was illustrated on infrared astronomy with a complex detector technology,
in which the resulting detector signal presents high entropy, and different noise models
for diverse types of sensors and readout modes.

Investigation on the infrared astronomical signal has been performed, by a detailed study
of the light detection mechanism and noise behavior has been presented for different
acquisition techniques.

State-of-the-art Rate-Distortion theory has been summarized and the different mathemat-
ical methods that contribute to the formulation of the R-D problem have been presented.

OBP approach has been presented in details with individual processing steps, with special
emphasise on the glitch detection and the oversampling reduction steps.

Feasibility of the OBP for IR astronomy has been investigated by studying the com-
plexity issues, as space astronomy is most likely constrained with the limited processing
resources.

Qualitative and quantitative measures of the complexity are presented. Complexity as-
pects of the OBP approach have been formulated for embedded DSP, that is the usual
platform dedicated for space applications.

The case-study Herschel-PACS [150] has been used for the validation of the investigation
results. The feasibility of the OBP approach on real astronomical applications has been
demonstrated on this infrared instrument (PACS).

An Atlas has been built for PACS spectroscopy. Based on observational data, the ramps
(spectroscopy data) have been classified into five categories depending on their morphol-

ogy.

142



7. Conclusion and Perspectives

e The developed compression framework is integrated on the PACS instrument [4] for effi-
cient transmission of astronomical images in the wavelength range of 57-210um.

7.3 Future Work

The work presented in this dissertation can be extended in several ways. This section proposes
a list of topics, which might be interesting for further investigation.

e Feasibility measure of the proposed framework for other applications, like medical imag-
ing (X-rays) or optical imaging.

e Investigation of data reconstruction at the user level for data loss while compression due
to cosmic particles (glitches).

e Analysis of the data reconstruction respective to the transmission loss. Reconstruction
rate vs. telemetry loss.

o Assessment of other methods than wavelets, like curvelet [17] or contourlet [28] trans-
forms, for on-ground data reduction in order to reconstruct faint sources.

¢ Investigation on entropy coders for optimal infrared astronomical data lossless compres-
sion.

e Extension of the complexity measures for other architectures than the DSPs.

... For any other ideas, please mail me at nabil@prip.tuwien.ac.at...
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