
Using Domain-Specific
Languages for Event-Based QoS
Monitoring in Service-Oriented

Environments
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Matthias Irlacher
Matrikelnummer 0225106

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.-Prof. Dr. Schahram Dustdar
Mitwirkung: Dipl.-Ing. Dr.techn. Ernst Oberortner

Mag.rer.soc.oec. Philipp Leitner

Wien, 15.11.2011
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Matthias Irlacher
Rustengasse 8/12, 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

As the paradigm of Services-Oriented Architecture (SOA) gets more widespread, the quality of
the used services also gets more important. Not only is this Quality of Service (QoS) important
to human users, but to other services. Monitoring and automatic checks for violations of Services
Level Agreements (SLAs) are a necessary and interesting topic.

This thesis demonstrates and evaluates a system for the measuring of service quality using a
centralized monitor and a minimal-invasive framework at the clients and services. It uses three
domain-specific languages (DSLs) to describe SLAs (SLADSL), define measuring points and
their context (MPDSL) and create metrics based on the defined measuring points (MDDSL). In
addition to the languages, a system for distribution the measuring point information is proposed.
The concrete measurement takes place at the clients and services and the measured raw data is
sent to the monitor. The monitor uses transformations, generated from MDDSL statements, to
calculate metrics from the raw events in a Complex Event Processing (CEP) system.

The goal of this thesis was to find a fast, event-based approach to define and measure QoS prop-
erties, based on an existing approach by Ernst Oberortner. It had to be expressive, extensible
and at the same time try to keep the influence and dependence on the measured systems as small
as possible. Amongst other things, this should be achieved by using a separation of SLA, met-
ric descriptions and measuring point definitions and the possibility to change SLAs and metric
descriptions at runtime. The evaluation of the approach shows a minimal influence at the mea-
surement locations when using interceptor-based measurement. The central monitor proves to
be a bottleneck, but a possible solution is proposed by splitting the monitor into multiple sys-
tems. The concept of separate MPDSL and MDDSL allows to define a variety of QoS properties
and enables great extensibility, even including other measurement systems. An evaluation tests
the prototype and discusses some further improvements of the system.

iii

Kurzfassung

Da das Paradigma der Services-Oriented Architecture (SOA) sich immer weiter verbreitet, wird
auch die Qualität der benutzen Services immer wichtiger. Diese Quality of Service (QoS) ist
dabei nicht nur wichtig für menschliche Nutzer, sondern auch für andere Services. Das Über-
wachen und automatische Überprüfen auf Verletzungen von Services Level Agreements (SLAs)
sind ein notwendiges und interessantes Thema.

Diese Diplomarbeit demonstriert und evaluiert ein System, welches Servicequalität mittels eines
zentralen Monitors und eines minimal-invasiven Frameworks bei Clients und Services misst. Sie
verwendet drei domain-specific languages (DSLs) um SLAs zu beschreiben (SLADSL), Mess-
punkte und ihren Kontext zu definieren (MPDSL) und Metriken, basierend auf den definierten
Messpunkten, zu erstellen (MDDSL). Zusätzlich wird ein System zum Verteilen der Messpunkt-
Informationen vorgeschlagen. Das konkrete Messen findet bei Clients und Services statt, die
gemessenen Rohdaten werden daraufhin an den Monitor gesendet. Der Monitor benutzt Trans-
formationen, die aus MDDSL Beschreibungen generiert wurden, um in einem Complex Event
Processing (CEP)-System Metriken aus den Rohdaten zu generieren.

Das Ziel dieser Diplomarbeit war es, einen schnellen, event-basierten Ansatz zu finden, um QoS
Properties zu definieren und zu messen, basierend auf einem Ansatz von Ernst Oberortner. Er
musste ausdrucksstark und erweiterbar sein und gleichzeitig versuchen den Einfluss auf und die
Abhängigkeit von dem gemessenen System so klein wie möglich zu halten. Unter anderem soll-
te dies durch eine Trennung von SLA, Metrikbeschreibung und Messpunktdefinitionen, sowie
durch die Möglichkeit SLAs und Metrikbeschreibungen zur Laufzeit zu ändern, erreicht werden.
Die Evaluierung dieses Ansatzes zeigt einen minimalen Einfluss am Messort bei Benutzung ei-
ner Interceptor-basierenden Messung. Der zentrale Monitor erweist sich als Flaschenhals, doch
eine mögliche Lösung, durch Auftrennen des Monitors in mehrere Systeme, wird vorgeschlagen.
Das Konzept der getrennten MPDSL und MDDSL erlaubt uns eine Vielfalt von QoS Eigenschaf-
ten zu definieren und ermöglicht gute Erweiterbarkeit, sogar durch das Miteinbeziehen anderer
Messsysteme. Eine Evaluierung testet den Prototypen und diskutiert weitere Verbesserungen des
Systems.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Contribution . 3
1.4 Organization . 5

2 State of the Art 7
2.1 Service-Oriented Architectures . 7

2.1.1 Services . 7
2.1.2 The Basic Service-Oriented Architecture 8
2.1.3 Service Composition . 9
2.1.4 Benefits . 10

2.2 Web Services . 10
2.2.1 SOAP 1.1 . 11
2.2.2 WSDL 1.1 . 12
2.2.3 Discovery . 13

2.3 Quality of Service . 14
2.3.1 Metrics . 14
2.3.2 Service Level Agreements . 15
2.3.3 Measurement . 15

2.4 Complex Event Processing . 16
2.4.1 Events . 17
2.4.2 Concepts . 18

2.5 Domain-Specific Languages . 20
2.5.1 Generic Structure . 21
2.5.2 Patterns . 21
2.5.3 Advantages and Disadvantages . 23

3 Related Work 25
3.1 Monitoring . 25

3.1.1 Quality of Service Levels . 27
3.1.2 QoS Management . 28

3.2 Extended QoS Metrics . 30
3.2.1 Semantic Approaches . 32
3.2.2 Temporal QoS Parameter Evaluation 34
3.2.3 Monitoring Compositions . 35

vii

4 Background 39
4.1 Apache CXF . 39

4.1.1 Message Processing . 39
4.1.2 Building Web Services using CXF . 40

4.2 Esper . 42
4.2.1 Event Processing Concepts . 42
4.2.2 Performance . 44

4.3 Frag . 45
4.3.1 Core Language . 45
4.3.2 Using Domain-Specific Languages . 46
4.3.3 Embedding into Java . 46

4.4 QuaLa . 47
4.4.1 Architecture . 48
4.4.2 The Domain-Specific Languages . 48
4.4.3 Supported Measurements . 49

5 Design 51
5.1 Motivating Example . 51
5.2 Architecture . 53

5.2.1 Measuring Location Framework . 55
5.2.2 Monitor . 56

5.3 DSLs . 58
5.3.1 MPDSL . 58
5.3.2 SLADSL . 59
5.3.3 MDDSL . 63

6 Implementation 79
6.1 Components . 79

6.1.1 Monitor . 79
6.1.2 Measuring Location Framework . 82
6.1.3 Web Interface . 85

6.2 DSL Transformation . 87
6.2.1 SLADSL . 88
6.2.2 MDDSL . 88

7 Evaluation 91
7.1 Quantitative Evaluation . 91

7.1.1 Setup . 91
7.1.2 Performance of the MLF . 93
7.1.3 Performance of the Monitor . 95

7.2 Qualitative Evaluation, Open Problems and Limitations 97
7.2.1 Platform Impact . 97
7.2.2 Performance Impact . 97
7.2.3 Expressiveness of the DSLs . 100

viii

7.2.4 Security and Trust . 104
7.2.5 Areas of Application . 105

8 Conclusion and Future Work 107
8.1 Future Work . 108

A List of Abbreviations 109

B Listings 113
B.1 Used Metrics . 113

B.1.1 Standard Metrics . 113
B.1.2 Application-Specific Metrics . 120

B.2 Used SLA . 121
B.3 Used MP Definitions . 121

B.3.1 RMP . 121
B.3.2 AMP . 122
B.3.3 PMP . 122

B.4 Other listings . 124
B.4.1 Default Velocity Template For Actions 124

Bibliography 125

ix

1. Introduction

As more and more companies discover the advantages of the service-oriented paradigm, the
term Services-Oriented Architecture (SOA) recently became very widespread. SOA describes
an architectural approach, which uses independent services to build a software system. Cur-
rently Web services are a very popular form of service. As SOAs get more popular, the need for
contracts, specifying different kinds of requirements on a service, gets more and more attention.
Services Level Agreement (SLA) are such contracts which allow clients to determine a minimal
provided service quality. This quality is called Quality of Service (QoS) and describes non-
functional characteristics of the service. Some QoS attributes are declared by the provider, some
can be observed and some can even be declared by the service client [118]. They can be discrim-
inated by the place at which they are measured or based on certain predefined classes (such as
security, availability or reliability) as used in many taxonomies. Another possible differentiation
is between general QoS attributes and those specific to a certain domain or even application.
Taxonomies show that there is a great amount of different general metrics (e.g., [68], [110]), but
there is a possible infinite number of application-specific QoS properties. Measuring, collecting
and processing such a wide range of heterogeneous QoS attributes in a single system is a inter-
esting and difficult task. The measured QoS can not only be used for SLA violation detection,
but for many other purposes (e.g., selection of services, self surveilance or testing). As such,
monitoring of service quality is an important topic for both service providers and clients.

1.1 Motivation

Measuring QoS is an important and complex task in any reasonably big distributed system based
on the SOA paradigm. A useful system for monitoring of non-functional properties of Web
services should allow to monitor a broad spectrum of parameters and be extensible concerning
the specification of new measurement methods.

[118] mentions three types of QoS metrics, based on their origin:

• Provider-advertised metrics are specified by the service provider (e.g., security).

• Client-advertised metrics are based on clients evaluation and feedback (e.g., reputation).

• Observable metrics can be computed by monitoring the service or client in an objective
way (e.g., processing time, latency).

1

This thesis concentrates on observable metrics, allowing a detailed specification, especially of
performance-based metrics. In fact, [118] argues that the majority of metrics are observable. The
flexibility of the framework also enables input of custom provider-advertised or client-advertised
metrics.

Non-functional properties can be determined at different times in the lifecycle of a service. Some
properties are defined at design time, for example by choosing a specific authentication mecha-
nism. Others can be determined when the system is running, through active polling or passive
monitoring. The running system can be monitored before publishing it, to test its behavior or
a production system can be monitored while in use to determine its characteristics under load.
Monitoring a production system can be used for a variety of challenges. The QoS information
of one’s own services can be used to start adaptive actions to ensure future QoS or for SLAs
negotiation. QoS information of foreign services can be used for service selection, reputation
mechanisms or determination of penalties in case of contract violations. As every monitoring
system adds an overhead to the system (See the “invasion problem” in [115]), it is very impor-
tant to evaluate the solution, also determining its runtime behavior under load. Contracts can
change and, especially if monitoring a production system, a restart is not always a feasible op-
tion. Therefore the solution in this thesis supports the runtime changes of SLAs as well as of
measuring descriptions.

While [42] mentions the unlimited number of possible metrics, it refers particularly to QoS
metrics specific to an application domain. But even “standard” metrics, such as availability,
can be expressed in different ways. From experience, [59] notes that “non-modifiable textbook
definitions” of metrics would not be accepted by providers and customers alike. Therefore it is
of importance to specify those metrics in high detail. The possibility to explicitly define how
certain QoS parameters should be measured also allows to add custom metrics easily. This
helps with application-specific QoS metrics and enables the computation of complex metrics
with conditional expressions, calculations, different aggregations over different intervals, etc.
As a detailed description is in danger of being too dependent on a specific service architecture,
another goal is to stay as independent of the architecture as possible. This current solution
enables this by using the concept of parametrized Measuring Points (MPs) which can be easily
exchanged in the measurement description.

This custom metrics support requires advanced computation mechanisms. While some solutions
use temporal logic (see Section 3.2), the approach in this thesis uses domain-specific languages
(DSLs), programming languages specifically designed for a certain domain (see Section 2.5).
The use of DSLs has many advantages. It supports transformations from syntax to a model
and at the same time allows for a good separation of syntax and domain model. In the form
of internal DSLs it allows to reuse the language components of a host language (such as loops,
references). The Frag [101] programming language (see Section 4.3) supports such embedding
as well as the definition of a proper syntax in case of external DSLs. It was already used for
the Quality of Service Language (QuaLa), which built a foundation for this thesis, and can be as
easily embedded into Java as being used for code generation.

2

1.2 Problem Statement

One of the main targets of the thesis is to build a system which uses multiple DSLs for different
stakeholders, which together allow to surveil the QoS of Web services. The SLA and metric
specifications should be allowed to change at runtime, as a restart of a running web application
is not always an option. While achieving this, it should also remain flexible and extensible and
should be easily integrated into a running system. This thesis mainly discusses a monitoring
approach, which is supporting these requirements.
It incorporates two research questions from [115]:

• What are useful mechanisms for the monitoring of QoS?

• How can we collect, analyse and handle the incoming monitoring events?

There is a lot of literature about validation of SLAs, including the collection of QoS attributes,
but how to obtain QoS information of a concrete service is often overlooked [118]. This thesis
aims to provide a solution for monitoring Web services, from a detailed specification of how to
measure a QoS attribute over the validation of SLAs to the notification of necessary adaptation
components or responsible authorities.

1.3 Contribution

Besides providing an overview over current QoS monitoring approaches in SOA, including some
uses of monitoring in service management, this thesis presents an approach to QoS monitoring
of Web services. To specify the different documents it uses three DSLs (see Section 2.5). The
core system uses a Complex Event Processing (CEP) engine (see Section 2.4), a system for
processing and filtering events as well as aggregating simple events to complex events.

The presented approach is based on an early version of the QuaLa [79] by Ernst Oberortner (see
Section 4.4), with modifications and additions to support our goal. The QuaLa system allows
to measure performance-related QoS parameters (e.g., round trip time, marshaling time or pro-
cessing time) by defining the phases at which they should be measured. It uses two DSLs for
monitoring QoS of Web services at the client- and service-side using a centralized monitor. The
first DSL, called “High-level QuaLa” is used to describe SLAs, consisting of a list of services,
conditions and actions to be taken if a condition is violated. The second, called “Low-level
QuaLa”, is used to describe technical aspects of the services. These include the technical details
of the measured service (such as operations, address, etc.) as well as the structure of the frame-
work that is used by the service. Based on these DSLs, code for interceptors at the client and
service level is generated, using templates. For SLA verification, it uses CEP in the centralized
monitor.

3

The solution presented in this thesis uses the QuaLa by modifying and extending it. The contri-
bution of this thesis regarding the proposed method of monitoring can be split in four parts:

• A modification to the High-Level DSL of the QuaLa, extended using some syntactic and
semantic additions. It is used for describing SLAs. To better represent the usage in our
context, the modified DSL is called Services Level Agreement DSL (SLADSL) in this
thesis. Instead of generating Java code, it is now interpreted at runtime and translated into
CEP event transformation rules and queries for notifications and constraint verification.

• The Low-Level DSL of the QuaLa was heavily modified and reduced. It is now used to
define MPs, their parameters and their technical surroundings, used for addressing a single
point of interest in an application. As its purpose and model has changed heavily, the new
DSL is now called Measuring Point DSL (MPDSL).

• A new Measurement Description DSL (MDDSL) for the detailed description of measure-
ments. It allows to define QoS metrics using parametrized Measuring Points (MPs) from
the MPDSL and predefined functions for calculations, time dependencies, aggregation,
etc. Each metric definition is translated into multiple CEP transformation rules. The new
DSL strives to be as system-independent as possible, concerning the used Web service
framework, while keeping a high degree of expressiveness.

• A framework for service requestors and providers, which aims to blend naturally into the
monitored service, trying to cause as little impact on the service architecture as possible.
It currently supports MPs for performance-based metrics at the middleware of the client
and service provider using the interceptor pattern, MPs for repeated framework-initiated
events and basic support for application-specific metrics. The core of the framework ar-
chitecture consists of a central monitor and a system for distributing information on MPs
to different services and clients at runtime. The monitor is responsible for processing
the DSLs and transforms them to CEP transformation rules and queries. It also houses
the CEP engine. It collects incoming events and uses the transformations to calculate
metrics and queries to check for SLA violations. If a violation is detected, its action
subsystem notifies the corresponding authorities, declared in the SLA.

For evaluating the solution, a prototype is implemented using Java and the the Apache CXF [6]
framework, as the flexible interceptor architecture allows to hook into the various phases of
message processing (see Section 4.1). Esper [31] is used as a CEP solution. A Web interface is
implemented for visualization of historic QoS information and for managing of services, mea-
surement descriptions and an SLA. In an evaluation, the prototype is used to determine the
performance impact of the solution and the whole approach is discussed.

This thesis does not aim to build a complete management system, but concentrates on the mon-
itoring aspect. The main focus lies on event-based monitoring, detailed definition of metrics as
well as run-time changes of metrics and SLAs, while designing the system to assist in other re-
quirements. While it provides a solid base for adaptation, service selection and SLA negotiation,
those topics are out of its scope.

4

1.4 Organization

The rest of the thesis is organized as follows:

• Chapter 2 describes the state of the art of the topics mentioned in this thesis. It reflects
current knowledge about SOA, with a focus on technologies currently used in Web ser-
vices. Afterwards, the basics of QoS are discussed, including SLAs, metrics and some
measurement approaches. Some of the concepts of CEP are described in another section.
The last section of the chapter deals with DSLs. It discusses their general implementation
structure, generic patterns and also mentions some of the benefits and risks of using them.

• Chapter 3 shows current research efforts in the field of QoS monitoring and QoS metric
definition. In the first section, different monitoring approaches are presented as well as
some uses for monitoring and other related ideas. The second section describes some ap-
proaches how custom QoS metrics can be represented. Both sections include descriptions
of various measurement or even management architectures for Web service.

• Chapter 4 shows the foundation this thesis is build upon. At first the frameworks used
in this thesis and prototype are described: Apache CXF and Esper. The last two sections
deal with the Frag language, which is used for defining (and some transformation) of the
presented DSLs and the QuaLa, which some of the DSLs in this thesis are based on.

• Chapter 5 describes the design of the proposed solution. The general architecture is
shown, as well as an explanation of the used DSLs.

• Chapter 6 presents the implementation details of the prototype, which was developed for
this thesis. After describing the general structure and the process of DSL transformation,
some of the encountered problems are presented.

• Chapter 7 first evaluates the solution by measuring the performance impact of the frame-
work and the monitor, as well as the currently used metrics. Afterwards a quantitative
evaluation discusses challenges in the proposed system and limitations of the approach.

• Chapter 8 provides a short conclusion of this thesis and also mentions some possible future
work, based on the current progress.

5

2. State of the Art

This chapter discusses the technologies, which build the foundation of this thesis. At first,
Services-Oriented Architectures are explained, followed by a description of Web services as a
method of realization. A short overview of Quality of Service completes the part on Services-
Oriented Architectures. At last, the current state of the art in Complex Event Processing and
domain-specific languages is presented.

2.1 Service-Oriented Architectures

SOA is an architectural approach which uses services to build a software system. It is indepen-
dent of platform- or language-specific technical frameworks [85]. In the “Reference Model for
Service Oriented Architecture” [67], the Organization for the Advancement of Structured Infor-
mation Standards (OASIS) describes SOA as “a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains”. Those capabilities
are offered by services (see Subsection 2.1.1). [82] defines the process of SOA more directly as
“a way of reorganizing software applications and infrastructure into a set of interactive services”.
It builds the base of Service-Oriented Computing (SOC), which is described as “the computing
paradigm that utilizes services as fundamental elements for developing applications/solutions”.

2.1.1 Services

Services are one of the fundamental elements of SOA. They are autonomous, platform-independent
and can be described, published, discovered, and loosely coupled in new ways [84]. OASIS de-
fines them by referring to the capabilities from their SOA definition:

“A service is a mechanism to enable access to one or more capabilities, where
the access is provided using a prescribed interface and is exercised consistent with
constraints and policies as specified by the service description.” [67]

To be able to leverage the full potential of an SOA, [82] states that services should

• be technology neutral: Services must be invokable through common standard technolo-
gies, available on almost all systems or platforms.

• be loosely coupled: They must not depend on knowledge of internal structures or conven-
tions of the invoking or invoked service.

• support location transparency: They should have their service information in a location-
independent storage, like a repository, which is easily accessible to requestors.

7

Figure 2.1: The SOA Triangle in Theory and in Practice (from [74])

When designing a software system, the question of interface granularity arises. A service op-
erates on a business level transaction granularity rather than on a technical level [60](page
XVIII). [82] even writes of services as “a business function implemented in software [. . .]”,
although with a technical foundation.

While services, like components, are described by an interface, [85] notes that it is not appro-
priate to assume service is just another term for component, as they are independent of platform
or language specific frameworks. It also distinguish services from interfaces by stating that
there are extended contracts, agreements and even a particular ontological standpoint, which has
an influence on a services semantics, which go beyond “a collection of function signatures” [85].

2.1.2 The Basic Service-Oriented Architecture

The basic SOA is a relationship of three roles building the so-called “SOA triangle” [74] (see
Figure 2.1a):

• Service Provider: Service providers provide one or more services for requestors. A service
can be provided by constructing an entirely new service, by composing a new service
from existing services or applications(see Subsection 2.1.3) or by transforming an existing
application into a service [81](page 648).

• Service Requestor: A service requestor is the entity, which requests a service from the
provider. It does not need to know about the implementation of the service, as long as the
service provides the necessary interfaces and quality properties [81](page 261).

• Service Registry: A service registry is responsible for storing information about services.
It is also responsible for providing an infrastructure for managing of service information.
This especially involves support for publishing and querying. This way the registry allows
location transparency and decouples providers and requestor. As there are different ways
a registry can be built, [26] provides an overview of different realizations.

8

Those basic components interact in three predefined ways:

• Publish: The service provider sends a description of the service to the registry, which
stores the information into a repository for later queries.

• Find: If a service requestor wants to connect to a service, it can use the registry to find
a matching service. Matching can be done based on a varying set of parameters, as the
query languages and the stored binding data differ across registry approaches [26]. The
requestor then receives the corresponding service information (including the Web service
address), which allows it to bind to the specified service provider.

• Bind: After a service requestor acquired the binding information for the provider, it con-
nects to the service provider. It can then use the offered capabilities of the advertised
services.

In practice, registries are not commonly used [74, 83]. [74] even considers the SOA triangle
broken for Web services. Without a working registry(see Figure 2.1b), location transparency is
often omitted. Therefore, alternatives for some of the shortcomings of this approach have to be
found (e.g., using Event-driven SOA in [83] or using WS-MetadataExchange [21]). An analysis
of different types of registries can be found in [26].

2.1.3 Service Composition

There are two types of services: simple and composite services [82]. Simple services (or com-
ponent services) provide concrete capabilities. Composite services combine existing services in
new ways. This process is called “service composition” and is an important characteristic of
SOC. A well organized architecture fosters reuse of services through combination. This com-
bination can be done by static (predefined) binding or dynamic (run-time) binding. [74] claims
that static binding can lead to inflexible and non-adaptable architectures.

Composition of services can be seen from two perspectives: orchestration and choreography.

• Orchestration describes the interaction of services at a message level. It allows to build
an executable business process, controlled by one of the business parties [84]. In the area
of Web services, the Business Process Execution Language (BPEL) [3] is an example of
a language to orchestrate services.

• Choreography does not specify the exact business process, but describes the globally
visibly message exchanges or interaction rules between multiple business-processes or
end points [84]. For instance, the Web Services Choreography Description Language
(WS-CDL) [58] can be used to choreograph Web services.

According to [84], the distinction is rather artificial and the consensus is that both views should
be combined into a single language.

9

An important consideration when building a composite service is the selection of services, espe-
cially if the selection happens dynamically at run-time. The selection has a substantial influence
on the quality of the resulting composite service.

2.1.4 Benefits

[29] lists some of the benefits of using an SOA, for example:

• Leverage existing assets: SOA can provide a layer of abstraction, which allows for con-
tinuing use of existing assets by wrapping them as a service.

• Easier to integrate and manage complexity: SOA moves the integration point from the
implementation to the service specification. This makes integration of different systems
more manageable, even across business boundaries.

• More responsive and faster time-to-market: The use of existing components and ser-
vices shortens the software development life cycle. New business services are created
and changes can be responded to faster.

• Reduce cost and increase reuse: Loose coupling allows for better reuse and combination.
It therefore also avoids resource duplication and lowers costs.

Nevertheless, it also argues that SOA is not an universal solution and proposes a slow, incremen-
tal transformation to the new paradigm.

2.2 Web Services

The World Wide Web Consortium (W3C) describes Web services as follows:

“A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web ser-
vice in a manner prescribed by its description using SOAP messages, typically con-
veyed using Hypertext Transfer Protocol (HTTP) with an Extensible Markup Lan-
guage (XML) serialization in conjunction with other Web-related standards.” [69]

[83] notes that Web services are the most popular type of service. According to [85], there is
a bias in SOA literature towards Web architectures. Among others, [81](pages 12-19) mentions
the following interesting properties of Web services: Web services can be simple or complex.
Complex services are constructed by combining other services. They can be modeled in BPEL
(see Subsection 2.1.3). Web services can have functional or non-functional properties. Func-
tional properties describe the technical details of the service, such as encodings, invocation in-
formation, location, etc. Non-functional properties describe more abstract concerns as quality,

10

1 <soap : Enve lope xmlns : soap =" h t t p : / / schemas . xmlsoap . o rg / soap / e n v e l o p e /" >
2 <soap : Header >
3 < c a l l I D xmlns =" h t t p : / / compas . i n f o s y s . t uw ie n . ac . a t / " > ID_1 </ c a l l I D >
4 </ soap : Header >
5 <soap : Body>
6 <ns2 : methodA xmlns : ns2 =" h t t p : / / compas . i n f o s y s . t uw ie n . ac . a t / Se rv iceA ">
7 <paramA>valueA </ paramA>
8 <paramB >valueB </ paramB >
9 </ ns2 : methodA>

10 </ soap : Body>
11 </ soap : Envelope >

Listing 2.1: Example SOAP Request

performance or security. Finally, Web services can also be stateless or stateful. A stateless ser-
vice carries no information about previous calls. In contrast, a stateful service keeps its state
across multiple service calls. Processing of a new call is based on the state, which resulted from
previous service calls.

2.2.1 SOAP 1.1

The Simple Object Access Protocol (SOAP) is a standard of the W3C. Version 1.1 is specified
in [13]. Web services interact via message passing through the use of SOAP messages. SOAP
messages are XML-based, complex data types are described in XML schema. They are therefore
platform and technology neutral. A SOAP message can be sent over various communication
protocols. This is implemented through the use of bindings. A binding is a way to map a
SOAP message to a message of a specific transport protocol. The SOAP standard defines a
HTML binding [13] where SOAP messages are sent through POST requests. Other transmission
methods, such as the Java Message Service (JMS), a message-oriented middleware, are also
supported via different bindings [1].

Message Structure

SOAP messages are based on XML. The root-element is named “Envelope”. It contains an
optional Header and a Body element. A simple SOAP message is shown in Listing 2.1.

The Header serves as a means of extensibility. It can contain multiple header entries. New func-
tionality can be added to a message by adding new entries to the header (e.g., for authentication,
transaction management or payment) [13].
Each entry has two optional attributes.

• The actor attribute allows to define an addressee for this header entry. A message can
travel over many SOAP intermediaries on its path to the final recipient. Through the actor
attribute, any of those intermediaries can be target of a header entry. If an intermediary
receives a message, it MUST process and remove all header entries targeted at it. If the
actor attribute is omitted, the header entry is targeted at the final recipient.

11

1 <soap : Enve lope xmlns : soap =" h t t p : / / schemas . xmlsoap . o rg / soap / e n v e l o p e /" >
2 <soap : Header >
3 < c a l l I D xmlns =" h t t p : / / compas . i n f o s y s . t uw ie n . ac . a t / " > ID_1 </ c a l l I D >
4 </ soap : Header >
5 <soap : Body>
6 <soap : F a u l t >
7 < f a u l t c o d e > soap : Se rve r < / f a u l t c o d e >
8 < f a u l t s t r i n g > e x c e p t i o n T e x t 1 < / f a u l t s t r i n g >
9 < d e t a i l >

10 <ns1 : S e r v i c e E x c e p t i o n
xmlns : ns1 =" h t t p : / / compas . i n f o s y s . t uwi en . ac . a t / S e r v i c e ">

11 < e x c e p t i o n A t t r i b u t e A
xmlns : ns2 =" h t t p : / / compas . i n f o s y s . t uwi en . ac . a t / S e r v i c e ">

12 e x c e p t i o n T e x t 2
13 </ e x c e p t i o n A t t r i b u t e A >
14 </ ns1 : S e r v i c e E x c e p t i o n >
15 </ d e t a i l >
16 </ soap : F a u l t >
17 </ soap : Body>
18 </ soap : Envelope >

Listing 2.2: Example SOAP Fault Response

• The mustUnderstand attribute defines if the target actor (or final recipient) has to
process the semantics of the message. If the attribute is set to “1” and the actor can
not process the header, it must return a fault message. If the attribute is set to “0”, a
intermediary can silently drop the header entry if it does not fully understand it.

The Body is the main part of the message. It can have many body entries. A body entry can be,
for example, a request message, a response or a fault. SOAP defines a special remote procedure
call (RPC) encoding for invocations of remote procedures. It defines how the function signature
of a remote function can be mapped to a corresponding XML structure and how the parameters
and return values can be encoded into XML. In case of faults, there is exactly one Fault
element in the body. It contains a fault code, a human readable fault description and the name
of the actor, who caused the fault. An optional detail field contains application specific error
information concerning the body. If an error occurred while processing the header, it must be
absent. This allows a client to check if the body was processed by looking at the existence of the
detail field. Listing 2.2 shows an example of a SOAP fault.

2.2.2 WSDL 1.1

Web Services Description Language (WSDL) [17] is an XML-based standard of the W3C. It
allows to describe operations, the location and the required message encoding of a service. Like
SOAP, it uses XML schema to describe used data types which makes it platform and technology
neutral.

12

Structure

WSDL has an abstract and a concrete part. This separation provides a good extensibility to
different bindings.

• The abstract part defines the basic operations and messages. A port type is a set of
operations, which in turn consist of in- and/or out-messages and faults. Different operation
types (request-response, one-way, notification and solicit-response) can be implemented
through different order or combinations. A message consists of one or more parts. The
parts can, for example, represent function parameters in a remote call (see SOAP-Binding
RPC style in Section 2.2.2)

• The concrete part describes the mapping of the abstract operations to a concrete loca-
tion and protocol. The mapping to a protocol is provided by different bindings (see
Section 2.2.2). Also, the used bindings are described and how the binding should map
operations or types of a specific port type to the protocol (e.g., if a message should be
send through multiple HTTP requests or a single HTTP request and response). Each ser-
vice consists of ports which reference bindings and add additional information (e.g., an
address).

Bindings

The WSDL 1.1 standard defines support for a variety of bindings [17]. A binding provides the
mapping of abstract types and operations to concrete protocol-specific messages. One of those
bindings is the SOAP (1.1) binding. The user can select, among others, which transport protocol
to use (see Subsection 2.2.1), headers, body or fault for the SOAP message, a port address and
a style for the operation. The operation style allows to choose if the message should be encoded
according to the SOAP RPC encoding (see Section 2.2.1). Other bindings defined by the stan-
dard are the HTTP binding which supports HTTP GET and POST and a special Multipurpose
Internet Mail Extensions (MIME) binding for a variety of MIME types (e.g., “multipart/related”
or “text/xml”)

2.2.3 Discovery

There are different methods for service discovery. [69] lists three of them:

• via Registry: A service can register itself at a registry, but the owner of the registry has the
possibility to control who is allowed to add/modify registry entries and which information
is stored. The Universal Description, Discovery and Integration (UDDI) [19] is a typical
implementation of a Web service registry.

• via Index: In contrast to a registry, when using an index, the index owner selects which
services to add. It is not authoritative, but contains pointers to authoritative information.
Therefore if any information is outdated, it can be detected easily by referring to the
authoritative source. UDDI can also be used as an index instead of a repository.

13

• via Peer-to-Peer: In a peer-to-peer solution, there is no centralized information store. The
peers of the network communicate with each other to find a response to a query. This
provides a more reliable approach, but the communication overhead can also lead to a
decrease in efficiency.

2.3 Quality of Service

Literature on QoS typically speaks of two variants: QoS on the network level, such as telephony
or media streaming (e.g., [15, 54, 88]) and QoS on the application level, such as Web service
(e.g. [2, 72]). On the network level, typical QoS attributes include throughput or packet loss.
A system which provides QoS can also be seen as a system which provides mechanisms for
ensuring those attributes. On the application level, QoS describes non-functional properties of
the services itself, such as cost or security specifications. While functional properties describe
what the system does (e.g., through interfaces), non-functional properties describe how well it
is done. They add additional information about security, response times, reliability and other
qualities of the system. In SOA, QoS often describes non-functional properties of the services
themselves, of the network level or mixed properties (e.g., Accuracy, Latency and Round trip
time in [72]). Some researches see QoS as a part of non-functional attributes of a system, others
treat them as the same thing. In general, there does not seem to be a consistent opinion on the
exact bounds of the term.

2.3.1 Metrics

There are lots of different attributes, which can be measured in different ways. Literature pro-
vides a wide range of QoS properties. [81](page 36), for example, lists the following: avail-
ability, accessibility, conformance to standards, integrity, performance, reliability, scalability,
security and transactionality.
An interesting categorization is provided by [9]. It separates internal and external attributes.
Internal attributes can be calculated just by looking at the service. This includes attributes such
as processing time, wrapping time or accuracy. In order to get external attributes one must look
at the environment of the service. Those attributes, which [9] notes as being more important to
service requestors, include response time, security or availability.
[118] splits QoS metrics into three categories: observable, provider-advertised and consumer-
rated metrics. Application-specific metrics, which cross-cut the metrics from [118], are of addi-
tional interest, but are not always counted as true QoS metrics throughout literature.

• Observable metrics can be calculated based on objective observations from requestors or
services. [118] further distinguishes between metrics on IT level or business level. On IT
level, they include, for example, processing time or reliability. Metrics on business-level
are often domain-specific (e.g., the accuracy of a prediction).

• Provider-advertised metrics are published by the provider of the service (e.g., the price
for service usage).

14

• Consumer-rated metrics are calculated through evaluation of the service by the client (e.g.,
popularity or reputation). They provide a subjective view on the service.

• Application-specific or domain-specific metrics are used for a specific domain or applica-
tion. [42] mentions, that there is an unlimited possibility of metrics. For example, [9] lists,
among other QoS attributes, accuracy and precision. Those two measurements describe
the deviation from the real value (accuracy) or the number of digits after the decimal point
(precision) of a result.

2.3.2 Service Level Agreements

[55] defines SLAs as follows:

“A service level agreement is an agreement regarding the guarantees of a web
service. It defines mutual understandings and expectations of a service between
the service provider and service consumers. The service guarantees are about what
transactions need to be executed and how well they should be executed.” [55]

Important parts of the SLA include, among others, Services Level Objectives (SLOs) [55,66,93],
which are conditions which must be fulfilled, and penalties if they are not. If an SLO is violated,
penalties depend on the use case. When selecting a service based on QoS, another service can
be chosen. When using a reputation mechanism, reputation can be decreased. The penalties can
also be predefined costs or other compensations.

There are two types of SLAs, when distinguishing based on the types of constraints: Hard
Contracts set hard limits to the values allowed for a property. Soft Contracts come in different
variations, which allow to soften those limits. As examples of soft contracts, [90] proposes the
use of soft probabilistic SLAs by using probability distributions. [93] monitors the values of the
QoS properties over time to calculate a “degree of SLA fulfillment”.

2.3.3 Measurement

There are many reasons why measuring QoS can be important. It can be used to simply test
performance of a service. When using compositions to measured QoS can be used to adapt
to changes in service quality on-the-fly and to ensure the certain overall QoS of the composed
service. If an SLA is used, clients can use the results to detect contract violations and enforce
penalties. Service providers, on the other hand, can use the measured data to start countermea-
sures before an SLO is violated.

15

[117] distinguishes different approaches to QoS measurement, according to the location where
the measurement is taken: consumer, service and third person.
This work also mentions different levels, measuring can take place at:

• Service level: The basic approach, which measures directly at the service or consumer.

• Communication level: Corresponds to the measurement by a third person. Messages be-
tween consumer and service are intercepted.

• Orchestration level: This approach monitors orchestrated services through mechanisms
provided by the orchestration engine.

While [54] does not monitor the QoS of services, but of network segments, its categorization
can also be applied to services:

• End-to-end monitoring measures the QoS by measuring between a sender and a receiver
[28]. When monitoring services, this corresponds to the service and the requestor.

• Distributed monitoring uses intermediate nodes between the sender and the receiver [28].
This allows to detect possible QoS degradations at the network. While this is generally an
issue with streaming, it could also detect the source of an availability problem or different
steps in the SOAP transmission process when using SOAP intermediaries.

Another way to distinguish monitoring methods is used by [2]:

• Active measurement sends packets to a monitored service to simulate user traffic or to
probe the service. When simulating user traffic, this adds additional load to the service
which can affect measurements and user experienced performance. When probing the
service, the results may not actually be the same as the the QoS for the user.

• Passive measurement only monitors traffic without sending any packets. This potentially
requires to monitor a lot of traffic.

2.4 Complex Event Processing

Complex Event Processing (CEP) is a relatively new concept, which incorporates some recent
views, but is based on some older ideas. This section is largely based on [65].
There are two current approaches to the processing of event streams: CEP and Event Stream
Processing (ESP). The definition of the two terms is subject to a lot of confusion among readers.
In [64], Luckham and Schulte write:

“The terms ESP and CEP are conceptual classifications. They can be useful in
delineating philosophies of event processing and intended applications, but do not
specify precisely the underlying capabilities of event processing engines.” [64]

16

So, both are in fact mechanisms for stream processing, but seen from a different perspective
with difference goals. A contrary approach to stream processing is rule engines. [98] defines the
difference of stream processing to rule engines as follows: Rule engines contain condition/action
pairs which are named rules. If a condition is met, an action is fired. Stream processing concen-
trates on streaming data. It uses SQL style syntaxes with special constructs for stream-oriented
processing (e.g., time windows)
[98] also defines some rules for stream processing systems:

• Data must be kept moving. This is one of the main differences to a traditional Database
Management System (DBMS).

• There has to be SQL-style processing on streams.

• An implementing system has to be able to cope with stream imperfections, such as miss-
ing, delayed or out-of-order events.

• Predictable outcomes must be generated by processing messages in a predictable manner.

• It must be possible to integrate stored and streaming data (e.g., for comparison to historic
events, or joins to extended data from a DBMS).

• Data safety and availability should be guaranteed for most applications.

• A distributed application needs support for scalability. Splitting on multiple processors or
machines should be possible.

• Instantaneous processing and response should be guaranteed through high performance.

For this thesis CEP is interpreted as an event processing mechanism, which uses continuous
queries on event streams or partially ordered clouds of events to query or build complex (aggre-
gated) events. It offers extended correlation mechanisms (e.g., patterns) and supports various
relationships between events, such as time, causality or aggregation.

2.4.1 Events

An event is a representation of an activity in a system. [65](page 88) notes three important
aspects of events:

• Significance: The significance is the activity which is represented (or signified) by this
event.

• Relativity: An activity is dependent or related to other activities through aggregation, time
or causality. Events have the same relationships as their correspondent activities. The
collection of those relationships of a specific event is called “relativity” of this event.

• Form: The form of an event is its representation in the system. This includes information
about the activity it represents and its context (relativity).

17

Defect Defect

Defect

Defect Repair Billing

Repair Billing

Exchange

causes

Figure 2.2: POSET of Events with Causality and a Selection (after [65]).

As already mentioned, there are three different types of relations between events [65](page 94):

• Time: The time relation is defined by the timestamps of the events. There may be more
than one time relation between events, as there can be more clocks which are not necessar-
ily synchronized. The time at which the events arrive at the system does not have to be the
same as the time the activity occurred (it occurred out-of-order), this must be considered
when using such a system.

• Cause: If an event causes another event, it has to happen before the other event for it to
happen (for more detail see Section 2.4.2).

• Aggregation: A complex event is build by aggregating other events in different ways.
Those so called members of the complex event can be simple events, generated because
of the detection of an activity, or complex events.

All of those relations are transitive and asymmetric. Each builds a partial ordering, therefore the
consideration of those attributes suggests a CEP solution.

2.4.2 Concepts

Some interesting concepts, related to CEP, are presented in [65]:

Event Patterns and Event Pattern Rules

An event pattern is used for matching partially ordered sets (POSETs) of events (see Figure 2.2).
It contains of a set of events as well as causal dependencies between those events, timing, data
parameters and context. It builds a template for a POSET of events [65](page 114).

An event pattern rule contains a trigger and an action. The trigger is an event pattern, the action
an event. If the trigger matches a POSET, the action is fired and an event generated.

18

Event Event

Event Event

Event Event Event Event

Event Event

Layer N

Layer N-1

Layer 1

A
b

st
ra

ct
io

n
high

low

MAPPING

MAPPINGS

Figure 2.3: Example Abstraction Hierarchy (based on [65](page 281))

Causality

According to [65](page 241), Causality can be split into two subcategories: static causality and
dynamic causality. When assuming that “activity A causes activity B”, in static causality, for B
to happen, A must have happened. In dynamic causality, this is not necessarily the case, without
looking at the context. It is even possible that A or B happens alone.
This leads to the conclusion, that the existence of events for A and B within the system does not
mean that an event with activity B happens because of A, without extra information. Therefore
[65] recognizes a need for a causality vector for each event, which contains all its causing
events.
Event pattern rules automatically define causality, at least between each trigger event and the
action [65](page 120).

Event Abstraction Hierarchies

An event abstraction hierarchy is a hierarchical structure which describes the building of com-
plex events in layers. Complex events can be built through aggregation of simple events or
other complex events. They can be organized in hierarchical layers which represent the abstrac-
tion level of the containing events (see Figure 2.3). The higher the layer, the more abstract the
meaning of events. Between those layers, mappings can be defined, to map the events of lower
layers to higher layers. In an information system architecture the events on the bottom could be
corresponding to technical activities, while the upper events represent business activities.

19

code

DSL Target Code

interpretation

Domain Model

generation

optional

Figure 2.4: Possible Generic Architecture (after [43](page 43))

2.5 Domain-Specific Languages

A definition of domain-specific languages (DSLs) can be found in [111]:

“A domain-specific language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to, a particular problem do-
main.” [111]

If this restriction to a problem domain is not given, it can be because some DSLs incorporate
additional constructs for added flexibility. This blurs the borders between DSLs and general
purpose languages (GPLs). [43](page 29) makes a good attempt at defining boundaries between
DSLs and similar ideas. To differentiate between external DSLs and GPLs, configuration files or
even “human jargon” is difficult. Similarly, internal DSLs can easily be confused with a normal
Application Programming Interface (API). On pages 27-28 [43] notes four defining criteria for
a DSL:

• Computer programming language: The language must be easy to read for humans, but
also executable for the computer.

• Language nature: An important property is fluency. This means, that the meaning must
not only come from expressions, but also from the relation between those expressions.

• Limited expressiveness: The language must not have too many capabilities. Additional
features reduce simplicity. A DSL should have the fewest possible features to describe
their domain.

• Domain focus: The focus of the language must lie on the domain, otherwise it is not useful
to choose a DSL over a GPL.

20

2.5.1 Generic Structure

A generically structured approach is shown in Figure 2.4. A DSL is parsed, interpreted and
the resulting data is fed into a domain model (called semantic model in [43] to separate it from
the general domain model of the application). It is important to notice that this model is not
necessarily the same as the DSL’s syntax tree [43](page 48). Sometimes the domain model is
all that is needed, but in some cases it is processed further. In code generation, source code for
another programming language is generated from the domain model. In practice there are many
possible implementation patterns.

2.5.2 Patterns

A common separation in DSLs is between internal and external DSLs:

• An External DSL has a discrete syntax.
This syntax can be unique to the language, or borrowed from another language (e.g.,
XML). It is parsed and the semantic information is entered into the domain model.
While simple approaches use a textual syntax, there are also graphical or table-like rep-
resentations. The boundary is not always as clear, as [99] considers Excel [75] a DSL
while [43](page 31) does not.

• An Embedded/Internal DSL is embedded into the code of another DSL or a GPL (the host
language). [47] notes the basic idea of a domain-specific embedded language (DSEL).
The idea behind this approach is, that an external DSL has a lot of overhead for parsing
and development. If existing language infrastructure can be used, the cost of implement-
ing a DSL can be reduced. An embedded DSL has no explicit grammar but uses the
grammar of the host language for its constructs. Its syntax tree is created on the call stack,
when the corresponding part of the host language is executed [43](page 50).
The approach of [47] is appropriate for languages, which are very modular, whose func-
tionality can be reduced by removing some components and which can be easily extended
(e.g., Haskell [102], a functional programming language). There are other approaches
which leave the host language unchanged but add a DSL through creative use of inter-
faces or other language structures. Fluent interfaces are such a way to implement some
kind of DSL. They are created by returning a modified object from a modifying method,
allowing to call yet another method and thus building a chain of method calls, sometimes
similar to a natural language grammar. An example for this is the way to create named
queries in the Java Persistence API (JPA) 2.0 [24].

There are many more patterns related to DSLs (e.g., [70, 97]).
[70] compiled DSL patterns and categorizes them into design patterns and implementation pat-
terns.

21

Design Patterns

Design patterns can be patterns about the relation of a DSL to existing languages.

• Language exploitation: The DSL uses another language as the base (host language). There
are three subtypes:

– piggyback: Partially uses the host language.
– specialization: Reduces the functionality of the host language (e.g., Haskell in [47])
– extension: Extends the functionality of the host language.

• Language invention: The DSL is a new language.

Another base for design patterns is, how the language is described. This can be in an informal or
in a formal way (e.g., through attribute grammars, rewrite rules, or abstract state machines) [70].

Implementation Patterns

Implementation patterns decide how the DSL is incorporated into the system

• Interpreter: An interpreter reads, decodes and executes the DSL.

• Compiler/application generator: The constructs, specified in a DSL, are translated into
another language. There is the possibility to create only parts of the target system and let
other code be written by hand. It is then very important to cleanly separate generated from
hand-written code [43](page 126).

• Preprocessor: DSL constructs are also translated into a another language, but static anal-
ysis is only done in the target language.

– Macro processing: Macro definitions are expanded to target language constructs.
– Source-to-source transformation: DSL constructs are converted to target language

constructs.
– Pipeline: Many DSLs are built as stages in a pipeline. The output of one stage is

input for another.
– Lexical processing: No complicated parsing takes place, just relatively simple lexical

scanning.

• Embedding: The DSL is embedded into a host language using only constructs of the host
language (e.g., by creating data types or operators).

• Extensible compiler/ interpreter: A compiler or interpreter for a GPL is extended to sup-
port domain-specific optimizations or code generation.

• Commercial Off-The-Shelf (COTS): Using existing tools in a restricted way for domain-
specific purposes.

• Hybrid: Some combination of the other patterns.

22

2.5.3 Advantages and Disadvantages

There are many potential benefits and risks when deciding to use a DSL.
The following lists provide an overview over some of them.

Advantages

A huge advantage of DSLs is their focus on a specific domain at a certain abstraction level.
DSLs should be very concise and easy to learn because of their limited expressiveness [111].
This limited expressiveness is counteracted by using appropriate formalisms for a certain domain
[97]. Reusability, maintainability and testability can be improved by using a DSL [111]. The
flexibility of DSLs supports a wide range of design patterns (see Section 2.5.2) for different
usage scenarios. By choosing the right level abstraction, it is possible to involve domain experts
more directly [111]. Domain knowledge can be reused, because it is expressed in a concrete
way. This knowledge can be validated and optimized at domain level [111]. [97] also speaks of
better runtime efficiency compared to “hard-coded program logic” and a modest implementation
cost, although this probably depends on the implementation pattern.

Disadvantages

There are two seemingly contrary risks when using DSLs. If many DSLs are developed and
used, the phenomenon of language cacophony [43](page 37) can occur. Too many languages
have to be learned, so it is difficult to bring new people to the system. The other problem is the
one of ghetto language [43](page 38). If a DSL is used for many different purposes, it looses its
domain-specificness and develops into a GPL. The problem here is one of maintainability and of
keeping it up-to-date with changes in technology, but also with finding new people for projects.
Another group of problems concerns the right level of abstraction. It is difficult to find the
right scope of a DSL and it is also difficult to find the right balance between DSL and GPL con-
structs [111]. [97] finds DSLs to not yet be well integrated into the software engineering process.
Training, design, implementation and maintenance add extra costs to the process, while limited
tool support makes it even more difficult [97]. In addition to those more abstract concerns, [111]
also notes a potential loss of efficiency, compared to hand-written software.

23

3. Related Work

As there is a lot of literature regarding QoS monitoring and the specification of QoS or SLAs,
there are lots of different architectures. This chapter tries to summarize current work in this
area and its relation to the approach of this thesis. The first section discusses general works
on monitoring and management architectures, including some specialized on quality classes in
SLAs. The second section is about approaches, emphasizing special QoS parameters. It covers
general and semantic approaches as well as custom QoS metrics using temporal evaluation or
the monitoring of custom QoS metrics in service compositions.

3.1 Monitoring

This section discusses related work in the field of QoS monitoring. In addition to general QoS
monitoring solutions and their architectures, works using quality levels and extended manage-
ment frameworks are described.

In [115] general requirements for a Web service monitoring system are defined. A central part
of the description is a quality model. The paper notes that state changes as well as other
events influence the quality of services. It identifies five classes, which should be monitored:
Response Message, Application Execution (e.g., wrong business logic, inconsistent data, mem-
ory leaks or deadlocks), Resource State Changing, Request Message and Management Oper-
ation). Management Operations, such as re-configuration or resource adding, should be mea-
sured to evaluate their correctness and effectiveness. The proposed measurement architecture
consists mainly of a central analyzer, which is able to check constraints, predict risks
and find problems, a high level representation, as well as probes and agents.
The high-level representation visualizes the analyzed results, such as violated con-
straints, current risks, the reason for the violation or risk and, potentially, a possible solution,
for administrators. Agents and probes are used to measure the concrete values, which are
used by the central analyzer. Agents are run in a separate process from the service and
extract information actively through API calls. Probes are embedded into the same process
as the services and extract events passively. They can be either be added through instrumenta-
tion or via interceptors. Another design decision is how much processing is done by the probe.
A probe can just capture events and relay them to the analyzer, or it can already analyze the
events and only send reports. The presented prototype is based on Apache Axis [100]. The
communication between agents, probes and the central analyzer is implemented
using Java remote method invocation (RMI) [80] for simplicity reasons. An evaluation led to
the result that instrumented probes provide the least deviation from the exact result and that the
separate monitor adds a performance penalty. While [115] uses probes and agents for measuring
of QoS, we propose the use of a framework which adds support for different MPs to the mon-

25

itored services. This allows for a greater flexibility, is easily extensible for new measurements
and supports application-specific QoS out of the box. Our current prototype does not support
monitoring of management operations, but this feature can be added through additional MPs.

Besides providing a short overview over some monitoring tools, [10] provides a QoS model and
and a monitoring solution. It aims to enhance server-side monitoring by providing a rich, but not
complete, server-side QoS model. The six defined QoS attributes are: availability - The proba-
bility that the service is available at a given time, accessibility - How many of the requests have
been validly responded to, in relation to all requests, performance - Throughput and Latency of
a service, reliability - How well a service can maintain service quality, security - How vulnerable
a service is, measured by searching in vulnerability databases for impact scores and regulatory -
How well a service conforms to rules, laws, standards, etc. Additional attributes, such as robust-
ness, accuracy and reputation are mentioned for future consideration. The paper also presents an
implementation of a server-side monitoring tool using Java Management Extensions (JMX) [51].
This prototype uses the Java system application server (now called Glassfish [46]) to build on
top of its basic monitoring support and integrates itself into the management console. A major
difference between this approach and the one presented in this thesis is, that the approach in this
thesis does not use predefined metrics, but allows for custom definitions of standard attributes. It
also supports metrics at the client-side and possibly other locations (e.g., SOAP intermediaries -
see Section 2.2.1) if corresponding MPs are created.

[110] presents an extended taxonomy of QoS metrics as well as a peer-to-peer based monitoring
framework for Grid applications. The main classes of the taxonomy are performance, depend-
ability (security, availability, accuracy, etc.), configuration, cost and custom metrics (service
specific measures). Often there are different ways of measuring a single metric (e.g., reliability
or availability can be measured through Mean Time Between Failures (MTBF) or Mean Time To
Repair (MTTR)). As there are a lot of QoS metrics, not each one can and should be measured at
the same time. A certain selection should occur. The architecture is based on four components:
sensors, middleware, a client user interface (UI) and a QoS Knowledge
base. The sensors collect data from resources and send it to the middleware. Each
resource has a unique ID and type (machine, network path, middleware or application). The
middleware in the prototype is based on SCALEA-G [92], a peer-to-peer infrastructure for mon-
itoring of Grid services. A QoS Knowledge base contains analysis rules for metrics and
resources as well as dependencies between those resources and historical data from previous
analyses. The client UI includes a GUI and a reasoning engine to reason about the collected
QoS data. This engine also allows for automatic rules which enable the system react to system
changes. In contrast to our approach, this approach uses peer-to-peer monitoring and a fixed
taxonomy. Our approach uses a more flexible measurement description DSL and a centralized
server. While the peer-to-peer solution promises better scalability, in our approach one server
could be used for each service, thus improving performance on heavy loads while having less
communications overhead. Similar ideas are, that there are lots of metrics which should only
be measured when necessary and that even generally accepted metrics can be measured in dif-
ferent ways. Our solution directly approaches these issues by assigning only needed MPs to the
services and by presenting the MDDSL for unambiguous definition of QoS metrics.

26

[103] separates provider-centric and client-centric measure collection. Some measurements
can be collected at both points (e.g., performance, availability, reliability), but some only at the
provider or client. Provider-centric attributes are generally close to the implementation of the
service. Client-centric attributes are mentioned as an important addition. Both types of attributes
are sent to a central QoS Measure Updater which updates the QoS information in a reg-
istry. Measurement on both the client and provider side can be implemented through low-level
packet monitoring, the use of a proxy as a mediator or SOAP engine library modification (i.e.,
modification of the library to emit necessary information). Some provider-centric attributes must
be monitored manually (e.g., security, accuracy and precision). A prototype is introduced, which
uses the library modification approach on Apache Axis [100]. It uses separation of measurement
collection and sending to reduce the influence of measurement during peak times and to foster
reuse of the individual components. Similar to our approach, [103] uses a centralized monitor
and supports different measurement methods at different locations. It also uses a separation of
measurement collection and sending to improve performance. Our solution allows to measure
the same properties without relying on fixed definitions, but by using metrics defined in the
MDDSL.

3.1.1 Quality of Service Levels

Some frameworks support different levels of service quality for one service. This enables service
providers to change their QoS intentionally, based on the selected quality class. That way, higher
paying customers can get higher service quality, less influenced by other customers.

The WS-QoS [104, 105] framework implements service monitoring and service selection. It
is possible to monitor predefined or custom QoS properties. It allows to define SLAs using
offers and requirements for services as well as quality classes of services. Offers repre-
sent the least provided QoS, while requirements represent the least needed QoS. A service can
provide different guarantees when used on a different quality level. The architecture is built of
the basic SOA triangle (see Figure 2.1(a)) with an additional broker. Instead of a registry, the
broker is used by the requestors to acquire a reference to a Web service, which implements a
certain interface and offers the needed QoS. In addition to the broker, there is a Requirement
Manager and a Monitor. The Requirement Manager stores clients QoS requirements.
The Monitor checks for the compliance of service offers. It also provides a graphical overview
over requirements and offers and can also be used to monitor headers of SOAP messages. [104]
emphasizes the network layer QoS support. Proxies are used by requestors and providers to
support certain requirements. As QoS information is sent in the header of the SOAP messages,
the proxies can be used to add support for QoS in the network layer by mapping the require-
ments to the lower level. To support custom QoS properties, an editor is implemented. It allows
to define an ontology for each added property. Compared to our solution there are not many sim-
ilarities. It uses quality classes and, in addition to offers of a service (promised constraints), it
supports requirements, which are enforced by the used proxies. The sending of QoS information
in the headers allows those proxies to set a certain required network quality level, but also adds
an overhead to the measurement. In addition there is an overhead of calling the proxy before
each invocation, which also does not exist in our approach.

27

3.1.2 QoS Management

The following approaches use monitoring as a part of an management framework. This allows
to view monitoring in an extended context. The monitored data can be used for SLA violation
detection (including a wide set of penalties to enforce the constraints), selection of services,
adaptation, reputation mechanisms, etc.

The CosmosQoS [62] framework is used for QoS evaluation and service selection. It uses a
proxy-based approach for measuring the QoS of services and supports a reputation appraisal
mechanism. The presented architecture is based on two types of proxies: regional proxies,
and an universal proxy. Regional proxies reside near the location of the clients,
at a networks gateway or proxy, and measure and store QoS information. The universal
proxy frequently queries the regional proxies to provide a more general overview of
all measured QoS properties. Based on the discrepancy between the price a requestor is willing
to pay and the price of the invocation and based on the deviation between the required QoS
values and the historical credibility, a score for each service can be calculated. This score is
used for matchmaking. It can be influenced by putting weights on the price, QoS deviation,
historical credibility and the QoS properties. While our prototype uses interceptors and the so-
lution also supports other MPs, the CosmosQoS framework only uses proxies as data sources.
Support for such proxies could be introduced by adding additional MPs, but [79](in Figure 4.27)
shows superior performance of interceptors to proxies. Another benefit of using interceptors is
the simpler infrastructure of the service. Our solution does not include evaluation of a service
for a concrete purposes but only measures the QoS values. A matchmaking component would
be a separate component in an extension of our architecture. Historical credibility can be added
by using a new MPs, which fires in case of SLA violations.

In [87], an overview of ways to monitor QoS and describe SLAs is presented as well as a system
for penalties. The proposed approach uses WS-Agreement [5] as a foundation. A SLA can be
used to constrain providers or clients, and typically contains SLOs. According to [87], those
SLOs should have a service quality level associated with them. Another important part of SLAs
are the penalty specifications. Penalties can be necessary if a single SLO is violated, if some
specific SLOs are violated or based on weighting of the SLOs. The penalties themselves can
be weighted based on the severity of the violation. Concerning monitoring, the paper advertises
the use of trusted third party monitors (external to the service) or trusted third party modules
(internal to the service). It states that those solutions are superior to requestor-only monitoring,
as a requestor can never prove by itself that the violation really occurred. The paper also strongly
promotes monetary penalties as they supposedly lead to a better overall QoS for both, service
providers and clients [87]. Instead of using WS-Agreement and quality levels, our solution uses a
separate and simple SLA language, tailored for better support of the different stakeholders [79].
Similar to [87], our approach also promotes a third party monitor and a third party module.
An interesting idea is the usage of SLO weighting and its influence on penalties. This could,
combined with different quality levels, provide a good extension to our current solution.

In contrast to our approach, [57] advertises using client feedback for monitoring. It highlights the
trustability and performance problems of trusted monitors, provider-side monitoring and active

28

probing to press the point. While the proposed solution does not try to make dishonest client
reports impossible, it argues that cheating is made uninteresting. To encourage honest reporting
of service quality attributes, a payment mechanism is proposed, which depends on the vote of
other clients and makes telling the truth the optimal solution for any client. While this only
works if a fraction of clients report truthfully, this is assumed and enforced by using external
trustful monitors. Additionally, collusion between clients is prevented by adding incentives for
leaving malevolent coalitions. Client feedback is an interesting and complex topic. While our
solution does support client feedback through user defined application-specific QoS metrics, it
is at the moment only implemented rudimentarily. As many challenges appear when using client
feedback and trying to prevent cheating, [57] provides a feasible approach which can be fit to
our solution.

[116] uses a special Arbiter component for adaptation support. It introduces an SLA model and
a QoS model and demonstrates an architecture, called SLAMon, for monitoring SLAs, using a
predefined set of QoS properties. The basic architecture of the approach includes Measurers,
a Monitor, an Analyzer and an Arbiter. The Monitor calls the Measurers regularly
to receive current measurements, which it stores in a database. The Measurers are created by
the monitored services. They support different kinds of services, such as Web service, HTTP
services or agent-based services [116]. The Analyzer checks for violations of the SLA. If a
violation is detected, it notifies the Arbiter, which can take appropriate actions. Alternative
services, which can be chosen, or other actions could be stored in a repository for automatic cor-
rection. Similar to our solution, the Measurers are partly embedded into the services and pro-
vide some technology-independence. As in our approach, adaptation would be separated from
the concrete monitoring subsystem. Measurers in [116] are polled by the Monitor, which
prevents timely updates and violation detection if not compromising performance by polling
frequently. Besides using user-defined QoS properties, the active notifications of the monitor by
the measurement components, is one of the advantages of our system.

The Vienna Runtime Environment for Service-oriented Computing (VRESCo) framework is in-
troduced in [74]. It aims to tackle current challenges in SOC. According to [74], the framework
supports, among others, service composition, dynamic binding (and rebinding), dynamic invo-
cation, searching, querying and notifications. Dynamic binding can be based on content of the
service or on QoS. It also allows various rebinding strategies. The framework is separated into
various services [74]:

• The Publishing and Metadata Service stores interface description and meta-
data of a service. Metadata incorporates functional as well as non-functional attributes.
The VRESCo framework does not use a separate registry but implements its own.

• The Searching and Querying Service implements searching for services. A
special query language was developed to support metadata querying as well as service
selection [73].

• The Binding and Invocation Service is used for dynamic binding. It is used
through a client library.

29

• The Notification Service supports notification of internal as well as external con-
sumers [71]. Its function is explained later in the text.

• The Composition Service. VRESCo has a separate orchestration language which
offers several of the features of the framework.

The monitor from [91] is used to monitor predefined QoS attributes. The monitored attributes
are measured by active probing [91]. In addition there are monitors at the service location [72]
which measure real service calls. Methods to evaluate a service include WSDL analysis, TCP
packet capturing and active probing (e.g., for throughput). The measuring implementation is
weaved into the client implementation using aspect-oriented programming [91]. Events from
the monitor are sent into VRESCo’s Notification System as external events and stored
in the registry. The Notification System also supports a variety of other events (e.g., for manage-
ment, querying or versioning). It is based on NEsper, a port of Esper [31](See Section 4.2) to
.NET. SLA obligations are translated to Esper Event Processing Language (EPL) [32](see Sub-
section 4.2.1), so violations can be easily checked [72]. Notifications are not only used internally,
but can be subscribed to and sent externally via WS-Eventing [12]. A more detailed description
of the eventing system can be found in [71]. As the VRESCo framework provides a complex
management solution, only the monitoring part is comparable to our approach. In [91], services
are measured using active probing instead of monitoring, thus testing the service actively in an
evaluation phase. Our approach does not actively invoke, but observe the service during its op-
eration. Similar to our approach, the VRESCo framework is also heavily event-based, showing
what flexibility event-based architectures allow, by providing a complete management solution.
It includes support for message invocations, leading to a tighter coupling of the application to
the framework. Our approach tries to minimize impact on the existing system by using non-
invasive techniques like interceptors and by not interfering with the way the used Web service
middleware operates. A big advantage of our system is the custom specification of QoS metrics
using a DSL and their incorporation into the event-based system.

3.2 Extended QoS Metrics

This section describes some relevant works which include some support for custom specification
of measurements. At first some general frameworks and approaches are presented, then different
detailing approaches, such as semantic approaches using ontologies, explicit inclusion of time
and monitoring of QoS compositions are showcased. As nearly every paper on the subject also
discusses a measuring framework, the architecture for each is also described briefly.

IBM [48] developed the Web Service Level Agreements (WSLA) framework [59]. It is used to
specify and monitor SLAs, including the description of the used QoS properties. A WSLA spec-
ifications are XML-based. They include the involved parties, service descriptions and obliga-
tions and references the WSDL document. The service descriptions define the SLA parameters
(e.g., QoS values) which should be measured and references a metric. Composite metrics are
composed of other composite metrics or atomic (resource) metrics. A composite metrics has a
corresponding function with other metrics as parameters. A resource metric has a measurement

30

directive which defines how it should be measured, by specifying a source and the method of
retrieval (push or pull). Obligations consist of SLOs (guarantees and the corresponding obligor)
and action guarantees. An action guarantee uses a reference to an SLO as a precondition. If
this condition is fulfilled, the corresponding action is taken. An important part of the runtime
architecture, which is used for the evaluation of SLAs, is the SLA Compliance Monitor. It con-
sists of three services. The Deployment Service is used to control the lifecycle of an SLA
and to split it into relevant parts for the other services. The Measurement Services uses
the metric definitions and supports a variety of data providers, which add support for specific
measurement implementations. The Condition Evaluation Service receives metric
updates from the Measurement Services and checks for condition violations. If a con-
dition is violated, the architecture allows to take corrective actions through a Management
Service, which proposes actions to the Business Entity. This Business Entity
internally represents business goals, policies and general knowledge and can approve to the ac-
tion or even propose alternatives. While the goal of this approach is similar to our approach,
even though the focus is on the measuring aspect, there are some important differences. The
WSLA framework uses an XML-based language for a very detailed SLA. Our solution splits
the measurement description and the SLA into separate documents. This, and the usage of a
external DSL, allows the SLA itself to be simplified for better support of stakeholders with dif-
ferent backgrounds. A similarity to our solution lies in the splitting of the document through
a deployment service for separation of concerns. Resource metrics can be roughly mapped to
MPs, while any metric used in an SLA is some kind of composite metric.

[42] proposes a framework for monitoring observable metrics based on a peer-to-peer architec-
ture, which extends the distributed QoS registry Q-Peer [61]. Every peer has a QoS monitor,
which consists of four modules, each in turn consisting of a number of “logical” processors: The
data collector filters information from the SOAP messages. The metric generator
generates the metric values from actual measured data, from a data collector or an external mon-
itor, combined with historic data. The feedback controller evaluates policies to detect
deviations in the services QoS and can subsequently take actions to limit the impact of the policy
violation. The configuration interface is used to feed those policies into the system.
A monitoring policy consists of a trigger and an action. It is decomposed into a data collection
policy, which defines how data should be measured and is send to the logical data collectors,
and a metric generation policy, which is specified in WS-Policy [112] and is sent to the log-
ical metric generators. The architecture supports measuring of single services (“single-party
monitoring”) or multiple services (“multi-party monitoring”) for one metric. It also allows to
calculate metric values from other metrics (“metric regeneration”). The most obvious difference
between the approach from [42] and our approach is its use of a peer-to-peer architecture while
our approach uses a centralized monitor. Our solution does not support multi-party monitoring
and metrics are not built based on other metrics, but always on MPs. Reuse currently happens at
the transformation level instead of reusing other metrics. A big similarity lies in the separation
of data collection policy and metric generation policy, which corresponds to MPs and the trans-
formations based on Measurement Descriptions (MDs). Advantages of our solution are the use
of DSLs for stakeholder support and its symbiosis with the event-based architecture inside the
monitor.

31

In [114], a management system for Web services is presented, which supports contract establish-
ment, monitoring, diagnosis and adaptation. When a contract is established, the Monitoring
Service is responsible for the monitoring part. There are two types of agents for monitor-
ing: Monitoring agents receive information actively from resource monitors. Probing
agents are used to poll resource data regularly or on-demand. Both agent types sent the mea-
surements to the Diagnostic Service. Using causal networks, it aggregates the received data and
is able to react to contract violations, to determine the reasons for those violations and to notify
other components. A separate Adaptation Service uses XML-based adaptation specifi-
cations to react if a contract violation occurs. [113] goes into a bit more detail concerning the
systems QoS specification. It supports a number of predefined characteristics, such as availabil-
ity, message ordering and information accuracy. To specify a QoS attribute, its characteristics,
value domain(nominal/ordinal/numeric) and range, and constraints, which describe its relation
to other attributes, are defined. One difference to our solution is that the aggregation of values
happens in a separate diagnostic service. While our monitoring system uses event processing,
the solution from [113] uses causal networks and includes diagnostics. This could be enabled
in our system by adding additional attributes to the sent events. Another difference is that our
approach only uses passive monitoring, storing all information in the monitor. Instead of polling
a probing agent, value updates are sent to the monitor as they happen. The monitor can then be
queried. At the moment our prototype only supports numeric data, but support for textual data
could be implemented. In addition to providing a DSL for the specification of measurements,
our approach also allows updates at runtime using a distribution system.

3.2.1 Semantic Approaches

Many approaches use ontologies as a means of knowledge representation. This allows for a
better cooperation between different systems as they can share ontologies or use translators be-
tween those ontologies to simplify communication of concepts. It also provides a good overview
of things to consider when implementing a similar system.

Some works provide ontologies for (semantic) Web services. The Web Service Modeling Ontol-
ogy (WSMO) [22] is such an effort. It can be used in combination with the Web Service Mod-
eling Language (WSML) [23], which is providing formal syntax and semantics. While [106]
extends WSMO by adding additional ontologies for modelling QoS characteristics, it does not
add a detailed description of how the measurement should be done. Nevertheless, ontologies
provide common concepts and including references to those ontologies might be an interesting
extension.

The Web Service Offerings Language (WSOL) [109] is is an XML-based language for specify-
ing SLAs. It uses the idea of classes of services. Offerings are the formal representation of such
a class. This allows WSOL to define constraints on QoS, functional properties, payment, sim-
ple access rights, etc. Constraints on the operation of the service are defined through boolean or
arithmetic expressions. An offering can be scoped on the port- or service-level. While WSOL of-
ferings use ports and services from WSDL, they use other constraints and are therefore kept in a
separate file. WSOL uses external monitoring sources via a managementResponsibility
construct, but the constraints themselves are expressed in the WSOL specification. Alternative

32

services, to use in case a constraint is violated, can be defined. [108] describes the language fea-
tures in more detail, for example, service offerings and their relationships, service constraints,
management statements and reusability constructs. It also discusses some applications of the
framework for Web service management and composition and mentions that WSOL needs ad-
ditional, external ontologies of QoS metrics. At the moment it is assumed, that these ontologies
just list data types and units corresponding to names, later is is planned to include a more com-
plete set of ontologies. An effort to define common requirements for such ontologies is defined
in [107], while emphasizing the need for shared QoS ontologies. It proposes five different on-
tologies focusing on definitions of metrics, currency units and measurement units. To describe a
metric it uses a name, a textual description for humans, the measured property (e.g., time, quan-
tity of information) based on another ontology, formulas for metric computation and invariant
relationships to other metrics. The measurement unit ontologies includes base units (e.g., sec-
onds) as well as multiplicities of units (e.g., milliseconds), derived units (e.g., invocations per
second) and other concepts such as synonyms, abbreviations and conversion rules between those
metrics. This solution provides complex offerings, not only based on QoS but including other
attributes. Our approach concentrates on the measuring of service quality. Instead of using an
XML configuration, our approach uses DSLs, specifically tailored to different stakeholders, im-
proving usability. A possible future extension for our system would be a complete unit ontology,
as it is presented in [107]. This would, among other benefits, aid in automatic unit conversions.
As [109] only specifies alternative services in case of SLA violations, the possible reactions are
very limited. We suggest a separate adaptation component (like in [116]), which reacts on notifi-
cations from the monitor (see Subsection 5.2.2). According to [108], WSOL also provides some
support for dynamically managing the current offers of a service and the relationships between
those offers. These so-called SOM ports serve a similar purpose as the distribution system in
our approach.

[68] proposes an ontology for QoS and an agent-based architecture, which uses this ontology
for service selection. The agents act as autonomous brokers for service consumers. They share
the QoS information among each other using agencies. If a consumer wants to bind to a ser-
vice, he starts an agent proxy and provides his requirements via an XML policy language.
The agent uses the agencies and other agents to determine the best service. It also acts as a
proxy for the invocations, monitoring them in the process. An agent can also acquire feed-
back from the user. Knowledge representation is implemented via two main ontologies. The
Service Ontology is used to assign services to domains and to associate qualities with those
domains. In addition it can represent agents and their behaviors. The QoS Ontology is sepa-
rated into three sub-ontologies. The Upper QoS Ontology describes commonly used properties
and relationships between QoS properties. The Middle QoS Ontology represents QoS proper-
ties (“quality aspects”) in a hierarchical manner. It is supplemented by a Lower QoS Ontology
which is domain-specific. The agents in this approach act similar to a combination of broker
and proxies in other works, therefore every call has an additional overhead for the call to the
agent. In our system, a proxy can be used, but the current prototype uses interceptors which
has a performance benefit [79](pages 64-65). The system of [68] is strongly based on knowl-
edge representation, using a variety of ontologies. Those ontologies also include predefined
QoS attributes in the Middle QoS Ontology, but allowing extra domain-specific attributes using

33

another ontology. Our solution also allows to define new attributes, but includes the concrete
measurement process using predefined functions.

As there is a variety of ontologies available for SLA and QoS specification, it is not easy to
choose a fitting ontology. Interoperability can not be guaranteed without a common ontology
or transformations. [25] strives to unify those ontologies by providing a common set of require-
ments. It lists current solutions, highlighting their shortcomings, disadvantages and advantages
and provides concrete requirements for different scenarios. Requirements are listed for general
ontologies in this domain, QoS concepts, unit and conversion ontologies and SLAs and SLA con-
cepts. By providing those common requirements, this work can aid in unifying the abilities of
QoS monitoring systems. While some of the requirements are deliberately left out because they
are out of the scope of this thesis, some of them, such as unit conversion, would definitely be
worth including in future versions.

3.2.2 Temporal QoS Parameter Evaluation

To be able to measure some QoS parameter values, it is necessary to look on the temporal rela-
tionship of different measured events. Some approaches directly allow to specify QoS metrics
using time.

[86], for example, uses timed automatons to describe complex QoS metrics. It builds on a
SLAng [95], which allows to define SLAs by defining constraints for services as well as their
clients. The constraints are transformed into timed automatons, which accept a language repre-
senting violations of the constraints. In a presented prototype, events are collected via Axis [100]
Handlers and checked for violations using Checkers at the client and monitor. An evalu-
ation in the paper shows that this method has only little overhead, is non-intrusive and can
be implemented easily into existing applications. Like our approach this approach tries to be
non-intrusive. Instead of EPL it uses temporal logic. By using DSLs, our approach tries to
be easier to understand and to extend. In our system, SLOs are also negated and transformed
into another language for processing, but it supports additional measurements, for example,
availability-related measurements and general application-specific QoS measurements.

EVEREST(EVEnt REaSoning Toolkit) [96] is the monitoring framework of the SERENITY [94]
project. It uses EC-Assertion, an XML-based temporal logic language based on event-calculus,
to check for violations of SLAs. Event capturers intercept events of the application and
sends them to a monitor manager. The monitor manager is used to coordinate the
measuring process. It sends the messages to a monitor, which checks them against the EC
rules with simultaneous consideration of the system state. QoS properties are also expressed via
EC formulas (e.g., MTTR in [63]). Two challenges of this approach are time differences of the
machines comprising the system and the required monitoring lifetime of events [96]. To allow
to calculation of timing differences between two locations in a network it uses clock synchro-
nization. An algorithm is proposed to determine the necessary event lifetime. EVEREST+ adds
additional SLA violation prediction for the EVEREST framework [63]. Prediction specifications
allow to implement user-defined QoS predictors with different algorithms. They are trans-
formed to EC formulas by the Monitoring Specification Generator. The event

34

capturers roughly correspond to our client- and service-framework and MPs. The challenges of
time differences between multiple services are considered by using clock synchronization. Our
solution does not address this, but assumes unsynchronized clocks. It is, however, discouraged
but possible to compare timestamps from different systems. Concerning monitoring lifetime,
EPL provides direct support for time-constructs (such as timers or timeouts), simplifying the
managing of event lifetime. Thus timeouts can be set when creating the MD.

[20] uses EVEREST as its default monitor. The approach presented uses a management frame-
work defined in the SLA@SOI Project. It is based on the assumption, that there are complex
SLA hierarchies with dynamic SLAs, that can change, be renegotiated, etc. Besides monitor-
ing, the paper also heavily discusses SLA negotiation and its connection with monitoring. The
paper states that it is not reasonable to assume that QoS properties can be calculated without
historic data and that it also does not make sense to negotiate an SLA when it can not be con-
firmed that the monitoring system can monitor the properties. An architecture is proposed to
monitor the fulfilment of SLA contracts. It consists of Event Captors, an Event Bus, a
Monitoring Terms Derivation Module, a Terms Verification Module and
a Monitoring Engine. Event Captors have different implementations. They are used
to monitor resources or system states. The Event Bus implements a publish/subscribe ar-
chitecture. It is used to transmit events from the captors to monitors. The Monitoring
Terms Derivation Module translates SLAs into measurement terms in the form of as-
sertions written in EC-Assertions. The Terms Verification Module tests if the SLA
is monitorable by checking the pre-exchanged capabilities of the system. The Monitoring
Engine receives events, processes them and stores violations as historic data in a database for
future negotiations. As this solution builds on the EVEREST framework like [96], the relation
to our work is very similar. Some interesting aspects of this work include the SLA negotiation
and an emphasis on historic data, which would complement our monitoring system on the way
to a management system.

3.2.3 Monitoring Compositions

As it is important to monitor individual services in service compositions to be able to estimate
the resulting QoS of the composition, a lot of research focuses on monitoring compositions.
Although the following works use different approaches to monitor compositions of web services,
the task of providing custom QoS attributes for composition is very similar to that of atomic
services.

[16] describes a method of generating a monitoring system from an SLA and a business process.
Based on BPEL, certain events in a workflow are emitted, collected and processed. The proposed
SLA structure is built on and extends ideas from WSLA [49]. The approach allows to define
SLOs and metrics in a reusable way, through a typing system. SLOs are monitored and if a
violation is detected, action handlers are called. A SLO is built from different metrics. Metrics
are defined using event handlers and are allowed to have parameters. The events are
spawned from the business process. The concrete monitoring system consists of monitoring
clients. For every metric, SLO and action handler, such a client is generated and registered
into the system. It is then called based on a publish-subscribe mechanism. In contrast to our

35

work, [16] uses events which are sent from a workflow. Like [42] it reuses metrics, which our
approach does not do. An advantage of this system is that created metrics can have parameters,
which would be an interesting extension to our prototype (see 8.1).

A model-driven approach to create the monitoring infrastructure for a Web service composition
is introduced in [76]. Separation into multiple abstraction layers makes it possible to provide a
high level of platform independence. As the framework supports multiple interconnected meta-
models, it is possible to define the points in a Web service composition at which values should be
measured, the methods for calculating metrics as well as the indicators (which represent metrics)
using those methods. These methods are called calculation templates and provide a
way to reuse operations. The metric value is updated based on a update rule which is also
included in the indicator definition. To allow to measure a concrete value, the model has to be
transformed to a platform-specific model. Besides composition monitoring, another difference
between [76] and our work is, that our system does not generate all of the monitoring infrastruc-
ture beforehand. Instead, we use a fixed but flexible infrastructure, which allows changing of
measured properties at runtime, while maintaining similar domain-independence. The calcula-
tion templates correspond to the functions defined in the MDDSL, the indicators are similar to
our MPs.

[118] describes a way to measure QoS values in compositions and what should be considered
when measuring them. For that purpose, it proposes a method for metric computation and an
architecture for monitoring observable metrics. According to [118], challenges for such an ar-
chitecture include: a high number of possible events which are registered, complex relations
between the metrics and the storage of the events. To argue for a system which allows explicit
metric generation, the paper states that a standard QoS model for Web service in all domains
is not practical. A metamodel for QoS metrics is presented. To determine where the mea-
suring should take place, a workflow can be imported and an observation model is generated.
For every service execution an execution activation event definition and an
execution completion event definition are generated. The computational logic
is implemented through Event-Condition-Action (ECA) rules, based on those events. The frame-
work brings an own event computation engine. It uses state-based models with a mixture of
compilation and interpretation and includes a method for execution planning. For persistence it
uses a relational database. Both [118] and our approach assume that a standard QoS model could
not fulfill the needs of stakeholders, making explicit metric generation a must. An observation
model is extracted via workflow analysis, which could be used as a base for MPs in our system,
effectively extending it to a composition monitoring system. While this system uses ECA rules
and an own event computation engine, we use a standard and well tested CEP solution, which
not only provides advanced time- and pattern-constructs but also allows for future extensibility
through incorporation of new event types. Those new event types can even be queries through
new MPs, providing new possibilities to the metric designer.

In [11], two formerly separate approaches for composition monitoring, Astro and Dynamo, are
joined. Dynamo focuses on single processes, using Aspect-oriented Programming (AOP) and
the Web Service Constraint Language (WSCol) language to extract information from BPEL
processes. It allows to define properties with a very high granularity. Astro has a much higher

36

granularity. It uses a language called Run-Time Monitor Specification Language (RTML) to
aggregate events, which spawned from message exchanges, to complex events. RTML is based
on linear temporal logic. Through combining the two approaches, a highly flexible system
is generated. WSCol is used as a base language for defining basic events, which are defined
through their declaration, location (via XPath [18]) and runtime parameters. It is managed
through the Basic Events Manager. RTML is embedded into an external Composite
Properties Monitor and using linear temporal logic to calculate properties from basic
events using aggregation formulas, etc. Basically, it supports two kinds of properties: Instance
properties are defined per process instance and process properties are defined per
process. Although it is used for monitoring services compositions, this combined approach is
very similar to our approach. Basic events correspond roughly to our MPs. Specifications in
WSCol would provide a good MP for composition monitoring. The RTML corresponds to the
MDDSL. Both, our and this, solutions use events, but while [11] uses them for sending basic
events, our solution uses a CEP system for the transformation to complex events. This allows
to reuse complex events as basic events (e.g., for measuring the average SLA fulfillment) or for
integrating a penalty system directly into the event system. Another benefit of our solution, com-
pared to [11], is the ability to change measurements at runtime. The distribution management
system automatically notifies the clients of updates, enabled by the capabilities of the frame-
works at the client- and service-location.

In contrast to the prior works, [14] focuses on application-specific QoS attributes, such as color-
depth or refresh rate. For those attributes its not possible to determine automatically how the
QoS values of individual services aggregate to global QoS values. Therefore, for every attribute,
aggregation formulas have to be defined in addition to the basic specification. The approach
of [14] specifies a data type and a scale for each attribute. Included scales are ordinal, inter-
val, ratio or absolute. Aggregation formulas are defined for each combination of attribute and
workflow construct in a language which borrows heavily from the Object Constraint Language
(OCL) (a language for expressing constraints on Unified Modeling Language (UML) models).
A QoS Aggregation Tool is presented which includes an aggregation function
editor, a type checker for verifying the type system and a formula interpreter,
which evaluates the global QoS of a workflow. The ideal services for the composition are de-
termined at runtime. The workflow uses proxies for each service, which allow dynamic binding
and rebinding and act as “abstract services” [14]. Before binding to a service, the proxy chooses
appropriate services and sends them to a Binder component. The Binder optimizes a fitness
function for the workflow using genetic algorithms and returns a near optimal solution to the
proxy, which can then bind to the service Using such a system when composing services, even
the application-specific QoS of the composed service can be estimated based on the used ser-
vices. As every attribute in our system is defined by the user, no assumptions can be made how
they could be aggregated in different workflow constructs. Attributes, which enable this, could
be easily added to the MDDSL in future versions. This would enable a binding component to
find fitting services to reach the best possible overall QoS.

37

4. Background

This section describes the background of this thesis, consisting of the used frameworks and the
work it is based upon. The first section describes Apache CXF [6], the framework used for cre-
ating the Web service interfaces. It is also the framework on which the QoS of the Web services
is measured. The second section describes Esper [31], which is the used CEP framework. In the
third section the Frag [101] programming language is explained, which is used for implement-
ing the DSLs. The last section describes the QuaLa, which this thesis is built upon. It is a set of
DSLs and accompanied by an architecture for the measurement of the QoS of Web services.

4.1 Apache CXF

Apache CXF [6] is a framework for building services based on a variety of technologies. It
supports many WS-* standards such as WS-Addressing, WS-Security, etc. As Apache CXF is a
large, flexible and complex framework, and there are always many ways to do things, only the
parts which are necessary for this thesis are explained. Its documentation can be found in [7].

CXF provides a very flexible structure with a wide support of technologies. Data Bindings
describe how XML elements are mapped to Java objects and vice versa. Protocol Bindings map
formats and protocols onto transport technologies (e.g., SOAP, see Subsection 2.2.1). Transports
are used to hide transport protocol specific details from the other parts of the system. Different
transports include support for the HTTP, JMS, etc.

4.1.1 Message Processing

When a client or service sends or receives a message, an interceptor chain is created. Every
interceptor in a chain is called in a specific order, through their handleMessage-method.

If the message exchange is a request to a service, the client creates an outgoing chain and the
service creates an incoming chain. If the service replies, it creates an outgoing chain and the
client creates an incoming chain.

Interceptors build the basis for message processing in CXF. They can modify messages (includ-
ing headers), add to the messages, validate their content and/or throw faults. Chains are split
into various phases (e.g., Receive, Unmarshal, Send or Invoke) to impose a certain or-
dering. Inside each phase, the interceptors can be specified to be before of or after certain other
interceptors. Figure 4.1 shows exemplary calling orders of the interceptors in the chains. The
green bars are outgoing chains, the whites bar incoming chains and the red bars are fault chains.
The grey box symbolizes the invocation interceptor of the system, which invokes the service
implementation at the service’s CXF framework. It shows that the calling order of the custom

39

B) EXCEPTION ON INVOKE

A) NORMAL CALL

C) SERVER UNREACHABLE

CLIENT SERVICE

CLIENT SERVICE

CLIENT

Figure 4.1: Exemplary Calling Orders of the Interceptors

interceptors is strongly dependent on the call, as the sending of the message and the execution
of other chains are also executed by system interceptors.

If a fault is detected while processing a chain, it is unwrapped. This means that all called
interceptors get called in the reverse order on their handleFault-method. A special case takes
effect if a SOAP fault occurs. After unwrapping the respective chains, the service starts an extra
outgoing and the client an extra incoming fault chain which are used to send or receive the
corresponding SOAP fault messages.

4.1.2 Building Web Services using CXF

Web services can be built in a WSDL-first or Java-first way. Using WSDL-first, Java code is
generated based on a given WSDL file. Additional code can be added afterwards. Using Java-
first, Java code is annotated with JAX-WS [50] annotations, so a WSDL file can be generated.
This thesis uses the Java-first way.

Services

To build a Web service from a predefined Java interface, all that is needed are four annotations
(see Listing 4.1). The WebService annotation marks the interface as a Web service, the others
are only necessary in case of ambiguities (e.g., identical function names but different parameters)

40

1 @javax . jws . WebService (name=" E c h o S e r v i c e " ,
t a r g e t N a m e s p a c e =" h t t p : / / happens . a t / E c h o S e r v i c e ")

2 p u b l i c i n t e r f a c e IEcho
3 {
4 @javax . jws . WebMethod (opera t ionName =" echo ")
5 p u b l i c @javax . jws . WebResult (name=" e c h o R e t u r n ") S t r i n g

l o g i n (@WebParam (name=" echoParam ") S t r i n g echoParam) ;
6 }

Listing 4.1: An Example JAX-WS Annotated Web Service Interface

1 JaxWsProxyFactoryBean c l i e n t F a c t o r y =new JaxWsProxyFactoryBean () ;
2 c l i e n t F a c t o r y . s e t S e r v i c e C l a s s (IEcho . c l a s s) ;
3 c l i e n t F a c t o r y . s e t A d d r e s s (" h t t p : / / l o c a l h o s t : 9 0 0 0 / E c h o S e r v i c e ") ;
4 IEcho c l i e n t =(IEcho) c l i e n t F a c t o r y . c r e a t e () ;
5 S t r i n g echoTex t = c l i e n t . echo (" T e s t ") ;

Listing 4.2: Invocation of a Service

or to configure the conversion to WSDL. The WebService annotation is used to define a
name and a target namespace to the service, represented by the interface. The WebMethod
describes the name of a method in the WSDL. The WebResult and WebParam annotations,
respectively, describe the name of a return type and of a parameter of a method.

To start such a Web service, there are factory objects, which can be used to create a service based
on a service implementation (“serviceBean”), an interface(“service class”) and an address.

Clients

One way to build a client in CXF is through a ProxyFactory. It can create a proxy for an
annotated interface (as it was used to describe the service). Only an additional address attribute
is needed. An example for a client creation and invocation is shown in Listing 4.2.

Adding Interceptors

Interceptors can be added at various points. To add interceptors to a specific chain of a service,
they are annotated with interface annotations or inserted programmatically. The phase at which
the interceptor is inserted into the chain is determined by the interceptor itself. Features
provide a way to add capabilities to various components in CXF. To add a feature to a service
interface, the Features annotation can be used on the service’s interface. If a CXF client uses
this interface, it automatically uses the client part of the feature. Features can, for example,
be used to add multiple interceptors, other management components, etc. An example, which
uses three interceptors and a feature via annotations, can be seen in Listing 4.3.

41

1 @org . apache . c x f . i n t e r c e p t o r . I n I n t e r c e p t o r s (i n t e r c e p t o r s =
{"com . t e s t .A" , " com . t e s t . B" })

2 @org . apache . c x f . i n t e r c e p t o r . O u t I n t e r c e p t o r s (i n t e r c e p t o r s = {"com . t e s t . C" })
3 @org . apache . c x f . f e a t u r e . F e a t u r e s (f e a t u r e s =

" qos . measu r ing . QoSMeasurementFeature ")
4 p u b l i c i n t e r f a c e I T e s t
5 {
6 . . .
7 }

Listing 4.3: Adding Interceptors and a Feature to a Service

1 L i s t <Header > h e a d e r s = msg . g e t H e a d e r s () ;
2 QName headerQName=new QName(NAMESPACE, __HEADERNAME__) ;
3 SoapHeader h e a d e r = new SoapHeader (headerQName , __HEADEROBJECT__ , new

JAXBDataBinding (__HEADEROBJECTCLASS__)) ;
4 h e a d e r . s e t M u s t U n d e r s t a n d (f a l s e) ;
5 h e a d e r s . add (h e a d e r) ;

Listing 4.4: Example For Adding SOAP Headers in CXF

Adding Headers

When using Apache CXF, headers can be added to a SOAP message in different ways. In this
thesis, the headers are added in a SOAP interceptor, using the snippet in Listing 4.4.

4.2 Esper

This section provides a short introduction to Esper [31] and its query- and processing-language
EPL. Esper is a framework for CEP. Currently, there are two versions, for Java and .NET. As
the prototype in this thesis is based on Java, only the Java implementation is considered. Its
documentation can be found in [39].

Contrary to relational database systems, Esper works on data streams instead of tables. This
leads to an inverted scheme, where the query is fixed and the data is changing [41]. In addition
to event processing, it supports using a relational database system for joining static data to data
streams or other uses. As event processing is very dependent on time, Esper provides various
methods of time handling, including automatic or manual time progression and isolation of
different subservices [30].

4.2.1 Event Processing Concepts

Esper builds on many concepts, some already known from the Structured Query Language
(SQL), some particular to CEP. The basic concept of event processing is the data stream. Based
on this stream, SQL-like EPL [32] queries can filter, join and aggregate events. Additionally, it
is possible to create new data streams based on queries to build complex events.

42

Events

An event is something which occurs once and has a timestamp and additional properties (e.g.,
type or name). In Esper, an event should never be modified after being submitted to the engine.
It supports different kinds of event representations: Plain Old Java Objects (POJOs), XML rep-
resentation, Java maps or other representations through extensions. Events also support nesting
of other events.

Windows

Windows provide a data source in Esper and are used in a similar way to tables in SQL.
Named windows are global windows with a name, which can be used to insert, delete or query
events [32]. Mostly, they stream a specific type of event, although there are variant streams
for which this restriction does not apply. It is possible to create a named window explicitly or
to just “insert into” any (even previously unknown) named window and let it be created
automatically. Other windows are created using views.

Views

Views [34] are a mean to constrain data streams. They can be applied to windows, patterns or
other views. There are two types of views: data window views and derived-value views. Data
window views are used to store events for a specific duration and then release them. Joins or
aggregations use these windows to limit the number of used events. Typical data windows views
are time or length windows, which save events for a specific duration or a specified number of
events. Those two windows can be used in a tumbling manner or in the sliding default. Tumbling
(or “batch”) windows are evaluated and reset after a the specified time or the specified number
of events have passed. Sliding windows slide over the event stream, with new events entering
and old event falling out. They are reevaluated every time an event enters or leaves the window.
Detailed information on windows can be found in the Esper documentation on its processing
model [38].

Another important view is the grouped data window, which creates parallel windows for differ-
ent events, based on certain grouping criteria. Other data window views include sorted windows
or time-order view, both sorting the event stream. Derived-value views calculate new values
based on the input stream. Examples are the size view, which calculates the number of events in
a window, and statistic views (such as weighted average, univariate statistics, regression, etc.).
Most views provide an insert- and a remove-stream, corresponding to the events entering and
leaving the window. It is also possible to define custom views [35].

Filters

By specifying a filter on a data stream, only the events matching the filter are let through. This is
an alternative to using the WHERE-construct (used like in SQL), but used before applying other
constraining views (e.g., for getting the last five events with parameter A equal to 1).

43

1 SELECT f i r s t E v e n t . i d a s one , f o l l o w i n g E v e n t a s two
2 FROM p a t t e r n [
3 e v e r y f i r s t E v e n t =AEvent −>
4 (f o l l o w i n g E v e n t =BEvent (s e r v i c e = f i r s t E v e n t . s e r v i c e) AND NOT

AEvent (s e r v i c e = f i r s t E v e n t . s e r v i c e))
5 where t i m e r : w i t h i n (2 s e c)]

Listing 4.5: Example Esper Event Pattern

Aggregations

Aggregations are used similar to SQL. They create new values based on calculations over groups
or data view windows. Some predefined aggregation functions are COUNT, SUM or AVG. Esper
also allows to define custom aggregation functions [35].

Joins

Joins provide the ability to connect two or more streams based on certain properties. Like
in SQL, there are different types of joins. Joined events are generated when an event from
any of the used streams arrives. An alternative is using a join, where one stream is defined as
unidirectional. Only when an event comes from this stream, it is joined to the events in the other
data window. Special windows can be used to access relational databases. They are used like a
regular data windows, even allowing to access column values in the WHERE-part of the query or
to join events to static SQL data.

Patterns

Patterns [33] allow to defined complex flows of events, including content-related dependencies.
Some of the constructs provided are for event successions, logical expressions, sub-expression
repetition or timing. The every keyword specifies which parts of the pattern should be repeat-
edly queried instead of only once. Timing constructs allow to define timers for automatic event
generation, timeouts when waiting for an event succeeding another, etc. The example in List-
ing 4.5 shows a pattern which looks for a BEvent which follows an AEvent, arriving within
two seconds and having the same service parameter, without another AEvent (with the same
service parameter) in between.

4.2.2 Performance

According to [36], Esper provides a high performance with linear scalability between 100.000
and 500.000 events per second on a test system, using a dual CPU system with 2 Ghz. A
benchmark kit allows to measure the performance on a variety of systems. A collection of
measurements can be found in [37]. Some tips for improving performance can also be found in
the documentation.

44

4.3 Frag

Frag [101] is a dynamic object-oriented programming language written in Java. It is embeddable,
extensible and easily modifiable. It is possible to reduce the language to the very basics or to
extend it with extra language constructs. Per default, it also includes a parser. All those points
allow to use it in various approaches to DSL implementation. The language documentation, as
well as a detailed description on DSL usage, can be found at [45].

4.3.1 Core Language

One of the basic components in Frag is the command. Every line of code consists of a command,
possibly containing other commands. A command consists of an object, a methodName and
parameters. Objects are a core concept of the language. They have different relationships,
also including the subclass relationship. This way a complex, flexible class hierarchy can be
built. Every object can be a member of different classes, it can even use itself as a class. An
object has many default methods for adding classes, creating instances of itself or setting class
members. Methods themselves can be added through the method-method, which requires a
method name, a parameter list and a block of code as parameters. To define an object, the
create-method of the object representing its class is called. The predefined objects are defined
in Java, additional ones can be added via Frag.

Control Structures

All control structures are implemented as objects using parameters. Available control structures
are conditionals (if, switch), loops (while, for, foreach) and loop control statements
(break, continue). As an example, if can use two string parameters, the first is a condition,
the second is the code block which is executed if the condition evaluates to true. The parameter
strings are evaluated by the if-object itself, if necessary.

Mixins

Mixins are attached to objects and add functionality to them. This provides extra flexibility
compared to subclassing. A mixin is essentially a collection of methods which extend or override
the object’s default methods. That way, method calls can be intercepted or additional methods
can be added. Usages include logging, different serialization possibilities for data objects or an
alternative to templates (see Section 4.3.2).

Accessing the Interpreter

Frag provides direct access to its interpreter. An interp-object allows access to the environ-
ment, used objects, to stop the interpretation, etc. Another important object is the eval-object,
which executes strings as Frag code. It also allows to execute code some levels up the call stack
which can be useful for adding language features.

45

1 I n t e r p i n t e r p r e t e r = new I n t e r p () ;
2 Dual r e s u l t D u a l = i n t e r p r e t e r . e v a l (new Dual (" math add 42 9 ")) ;
3 NumberValue r e s u l t N u m b e r =NumberValue . asNumber (r e s u l t D u a l) ;
4 i n t i n t R e s u l t = r e s u l t N u m b e r . i n t V a l u e () ;

Listing 4.6: Invocation of a Frag Command From Java

4.3.2 Using Domain-Specific Languages

In Frag, there is an extra package for DSL support [44]. It contains support for creating a
language model, a configurable parser, and support for mapping the parsed tokens to the model.

Model

The model is created using classes and associations of those classes. Every model class is an
instance of FMF::Class and can use the standard class inheritance mechanism, as every object
can also be used as a class.

Associations are defined explicitly via instances of FMF:Association. They provide sup-
port for role names, multiplicities, navigation directions and two FMF:AssociationEnd
objects, representing the association ends. There are two subclasses of FMF:Association:
FMF:Aggregation and FMF:Composition. They have the same semantics as their UML
counterparts. Their association ends can have an aggregatingEnd attribute, to specify which
of both ends is the aggregating end.

Parser and Mapping

For external DSLs, Frag includes a lexical parser which uses rule definitions similar to Extended
Backus-Naur Form (EBNF) [27]. It uses a custom DSL for defining these rules. A mapping
defines, how the parsed tokens are transformed to the model. The mapping definition is specified
using a mapping DSL It uses flow elements such as repetition (rep), sequence (seq) and alter-
native (alt) as well as elements (elt, as a representation of a token) to describe the succession
of the parsed tokens. By running through this structure, it executes corresponding code, adding
objects and references between objects to the language model.

Code Generation

Frag also supports code generation through the use of templates or mixins. Mixins can be used
to extend the model elements with code to “serialize” them to code, which can be useful for
some complex transformations. Templates are used through configurable TemplateEngines.
They support placeholders, Frag code and direct access to the object being currently transformed.

4.3.3 Embedding into Java

Frag is written in Java and is easily embeddable into Java. To use a Frag interpreter in Java, one
creates an interpreter object and uses its “eval”-method to evaluate code. Frag internally uses

46

Figure 4.2: Design Decisions for the Framework Around QuaLa(From [79])

Dual objects for representation for all data. Such a Dual represents the programming language
syntax string as well as its concrete interpreted value. All methods use Duals as parameters
and return values. For different types of values in Frag (e.g., Numbers, Lists, Objects) there are
Java classes for representation and extraction from Duals (e.g., NumberValue, ListValue,
FragObject). Strings can be directly cast from Duals. References between objects in Frag
are resolved to FragObjects. For an example invocation, including conversion of the return
type, see Listing 4.6.

To check the type of a FragObject, its isType-method can be called, but it specifically
needs the type as a FragObject. To achieve this, the lookupObject-method can be used
to find global objects (e.g., types) inside of Frag.

4.4 QuaLa

The QuaLa and the architecture surrounding it are described in [79]. It is a collection of DSLs
to describe SLAs, services and the technical background of monitoring services. The provided
architecture is used to collect measured data, organize it in a reusable way and distribute notifi-
cations of SLA violations.

The framework presented in this thesis builds on some parts of the QuaLa and extends it. It also
reuses some of the architectural ideas, such as the use of a centralized monitor or interceptors
for performance-based measurements.

47

1 # phase s p e c i f i c a t i o n s
2 c x f : : OutPhase c r e a t e OutSe tup
3 c x f : : OutPhase c r e a t e OutSe tupEnding
4 . . .
5 ## c h a i n s p e c i f i c a t i o n s
6 c x f : : OutChain c r e a t e C l i e n t O u t −p h a s e s { OutSe tup OutSe tupEnding . . . }
7 . . .
8 ## m e t r i c s p e c i f i c a t i o n
9 RoundTripTime c l a s s e s c x f : : QoS

10 RoundTripTime c h a i n s C l i e n t O u t
11 RoundTripTime p h a s e s { OutSe tup OutSe tupEnding }

Listing 4.7: Example of the Low-Level DSL (After [79])

4.4.1 Architecture

Concerning the general architecture, [79] makes some design decisions (see Figure 4.2). The
QoS data of services is measured online, meaning that it is measured as it is produced, using
interceptors on each invocation. The data is sent to a centralized observer using a centralized
storage.

The general workflow, using the framework, is as follows: The DSLs are transformed into a
language model, which is equivalent to the domain model [79](page 100-101). Using templates,
this model is converted to an Apache CXF [6] interceptor class for each measured QoS attribute.
This interceptor is attached multiple times, varying its behaviour dependent on the phase (see
Subsection 4.1.1) it was attached to. This interceptor then locally calculates the time difference
between two phases and send them to the centralized monitor.

4.4.2 The Domain-Specific Languages

[79] presents some domain-specific languages, two of which are of relevance for this thesis.
The Low-Level DSL and the High-Level DSL constitute the QuaLa. They are split to support
differently skilled stakeholders. Together they describe the whole system.

The Low-Level DSL

The Low-Level DSL is used to describe the technical base of the measured services. In detail
it describes three different aspects. Firstly, it describes the technical details of the measured
services, similar to WSDL, plus some details for the code generation. An example is shown in
Listing 4.8 Secondly, it describes the structure of the used Web service framework (Apache CXF
in this case). Thirdly, it describes where and how the metrics can be measured based on the Web
service framework. The latter two aspects are shown in examples in Listing 4.7.

The High-Level DSL

This DSL is used for the description of SLAs (see Listing 4.9). A SLA has a name and can be
used for many services, which are referenced using a name. For each of those services, multiple

48

1 ## LOGIN SERVICE
2 ExampleSe rv i ce c l a s s e s c x f : : S e r v i c e
3 ExampleSe rv i ce package " a t . happens . e x a m p l e s e r v i c e "
4 ExampleSe rv i ce u r i " h t t p : / / l o c a l h o s t : 5 0 0 1 / s e r v i c e s / e x a m p l e s e r v i c e "
5 ExampleSe rv i ce wsdl " h t t p : / / l o c a l h o s t : 5 0 0 1 / s e r v i c e s / e x a m p l e s e r v i c e ? wsdl "
6 ExampleSe rv i ce namespace " h t t p : / / happens . a t / s e r v i c e s / e x a m p l e s e r v i c e "
7 ExampleSe rv i ce o p e r a t i o n s [l i s t b u i l d \
8 [c x f : : O p e r a t i o n c r e a t e echo −name " echo " −r e t u r n T y p e S t r i n g −p a r a m e t e r s

[l i s t b u i l d \
9 [c x f : : P a r a m e t e r c r e a t e echoParam −name " e c h o P a r a m e t e r " −t y p e S t r i n g]

10 [c x f : : P a r a m e t e r c r e a t e a u t h −name " a u t h e n t i c a t i o n " −t y p e S t r i n g]
11]
12]
13]

Listing 4.8: Example of the Low-Level DSL, Specifying a Service (After [79])

1 TheSLA {
2 Serv iceA {
3 UpTime>99% AND Proces s ingTime <1min => smsto "+00 000 000 000" ,
4 D e l i v e r y R a t e >70% => m a i l t o "x@x . com"
5 }
6 S e r v i c e B {
7 Proces s ingTime <2min => smsto "+00 000 000 000"
8 }
9 }

Listing 4.9: Example of the High-Level DSL

rules can be defined. Every rule consists of a condition (equivalent to a SLOs) and an action. The
action describes who should be notified and how if the condition is violated. The QoS attributes
used in the conditions are predefined in the syntax and the language model.

4.4.3 Supported Measurements

The framework supports the measuring performance-related metrics (see Figure 4.3). It dis-
tinguishes between negotiable, network-specific and provider-relevant performance-related QoS
properties. Negotiable properties are properties which are usually negotiated in SLAs. Exam-
ples are round trip time, processing time, response time or up-time. Network-specific properties
are usually not mentioned in an SLA but can be used to detect bottlenecks in service invocations.
They include marshaling time, execution time or network latency. Provider-relevant properties
describe the performance of the service provider, such as throughput, scalability and robustness.
The framework uses dedicated interceptors for each supported metric.

49

Figure 4.3: Measuring Points for Some Performance-Related Metrics (From [79])

50

5. Design

This section presents a motivating example, followed by a basic description of our solution. The
architecture of the different components and their interaction is shown in the next subsection.
Finally, the DSLs used for configuring and controlling the system are described in detail. While
discussing the solution, the differences and similarities to the QuaLa approach (see Section 4.4)
are highlighted.

5.1 Motivating Example

As a base for this chapter, this section presents a motivating example of a monitored Web service.
The example service is used to upload, search and organize music online. It can be used to store
your music database online and access it from everywhere. In addition, it proposes new songs
or Internet radios based on currently owned songs.

It implements the following interfaces:

Interface Methods Explanation
ILogin boolean login(String user,String passwd) Log into the service.

void logout() Log out of the service.

IManage
void upload()

Load a music file onto the
platform.

void rename(int id,String newName) Rename an uploaded file.
void delete(int id) Delete an uploaded file.
Metadata[] list() List all uploaded files.
MusicFile get(int id) Get a specific file by ID.

IQuery
Metadata[] simpleSearch(String text)

Search all metadata for a
simple search string.

URL[] proposeRadioStations(int count)

Let the service propose a
radio station, based on
the currently uploaded
music.

Using such a Web Service involves different stakeholders with different needs. To agree on the
guaranteed QoS of this service, constraints are defined in an SLA. Clients choose the service
they are going to use based on the guaranteed QoS from the SLA and the measured QoS.

If a QoS guarantee is violated, the clients want compensations or penalties for the service oper-
ator. They also want to be able to rate certain service qualities. The service operator wants to
ensure its conformance to the SLA. He tries to adapt its infrastructure and processing mecha-

51

Attribute measured at Explanationclient service
Pe

rf
or

m
an

ce
-r

el
at

ed

Processing Time 2 2�
Time it takes for the server to execute
a called method (excluding
marshalling, etc.)

Round Trip Time 2� 2
Overall time it takes for a remote call
to return control.

Error Rate 2 2�
Percentage of exceptions in a certain
time span.

Load 2 2�
Number of invocations in a certain
time span.

Network Latency 2� 2�
The time it takes invocation and
response to travel over the network.

Latency 2� 2�
The time invocation and response
travel through the network and the
framework.

Av
ai

la
bi

lit
y-

re
la

te
d

Server Availability 2 2�
Percentage of time the server is online,
calculated via heartbeats.

Client Availability 2� 2
Percentage of time the server is online,
calculated via reachability from
clients.

Mean Time Betw. Failures
(MTBF)

2� 2
Mean time between two separate
failures of a service.

Mean Time To Failure
(MTTF)

2� 2
Mean time it takes from a service
going online to it failing.

Mean Time To Repair
(MTTR)

2� 2
Mean time it takes from a service
failure to the repair.

A
pp

.-s
pe

c. Search Result Accuracy 2� 2�
Percentage of successful finds in all
search requests.

Proposition Quality 2� 2
Subjective quality of a proposition,
rated by the client.

Table 5.1: The Measured QoS Attributes and Their Measurement Location

nisms to prevent penalties, arising from contract violations. In addition it wants to keep some
user perceived QoS attributes (e.g., round trip time) low, to be an interesting choice for service
selection. To achieve this, the system uses our approach to QoS monitoring.

The currently implemented QoS attributes and where they are measured is shown in Table 5.1.

52

5.2 Architecture

To overcome this challenge, this thesis proposes a system for QoS monitoring using DSLs and
CEP. The system is comprised of services, clients and a separate central monitor. It supports the
definition of SLAs, violation checking through flexible QoS measurement and actions in case
of SLA violations. For definition of the SLAs, a modified version of the High-Level QuaLa
from [79] (see Section 4.4.2) is used. It supports condition-action rules, with conditions being
boolean expressions on metrics, defined in the MDDSL. Supported actions can be added
using plugins.

The basic architecture adds a monitoring component to the SOA triangle. As the registry is
not relevant for this approach, only the three main components, and the Web interface are
shown in Figure 5.2.

The three components are:

• Service: The monitored service, providing functionality. Houses a library to support
measurement by the framework.

• Client: The client, using the service. Can use the library to support additional client-
side measurements.

• Monitor: Used for measurement administration as well as the collection and evaluation
of measurements.

The same library can be used for clients and services. For some systems which are both, synergy
effects (e.g., reducing some sending overhead) can be taken advantage of.

Flexible QoS measuring is implemented by using the MDDSL to describe how to monitor a spe-
cific metric. Those metrics are used in the SLA, where constraints on them are formulated for
specific services and actions are defined, based on existing action plugins. To describe a metric,
Measurement Descriptions (MDs) are used, formulated in the MDDSL. It uses functions to
build metrics from basic events, originating from Measuring Points (MPs). MPs are predefined,
parametrized data sources on clients or services. An example MP could attach itself to a phase
in an Apache CXF (see Section 4.1) invocation chain and fire events containing information
about the corresponding invocation. The SLA, the measured services and the MDs are stored
and managed only in the central monitor. At runtime, the needed MPs are calculated from the
SLA and, the information is distributed to the corresponding services through the Measuring
Location Framework (MLF), which is the part of the framework residing at the clients or ser-
vices. When an MP fires, the framework sends the data to the central monitor, which uses the
MD to calculate the metrics. The monitor translates the MDDSL to event transformations. If it
receives a measurement event, it uses them to calculate the metrics. The constraints and action
specification in the SLA are also translated to transformation rules, to allow the CEP system to
check for SLA violations. A depiction of the process is shown in Figure 5.1. In case of a vio-
lation, an ActionEvent is sent. The Action System checks for such events, and triggers

53

Clients/Services

Monitor

Clients/Services

SLA

MPsMPsMPsMPs

MPsMPsMPsTransformations

MPsMPsMPsAction
Transformations

Supported Actions
(Action Plugins)

Supported Actions
(Action Plugins)

Supported Actions
(Action Plugins)

Supported Actions
(Action Plugins)

Data of Monitored
Services

MDs

Event System

Action System

uses

uses

uses

attached
(interceptors)

CXF Framework
MCF

AMPs RMPs PMPs

Data of Monitored
Services

fired events

Figure 5.1: Data Flow of the DSL Documents

the corresponding actions. All events and transformations support causality, enabling a notified
component to detect the cause of an SLA violation.

The process can also be seen as two separate circuits (see Figure 5.2):

• MD distribution (blue): Via the Web interface, the stakeholders can edit their ar-
tifacts in the monitor. Monitored services can be registered and new MDs can be de-
fined. Both can be used in the SLA which spans various services. The monitor distributes
the information which data has to be measured (the MPs) to the clients and/or services.
Clients poll this information if needed, as there is often no way to determine or address
the clients before the invocation. Registered services are notified actively through their
Distribution Interface.

• Measuring (black): MPs are attached to the services or clients. If a MPs has data to
send (for example, if a certain step of an invocation is reached), the framework sends its
measured data to the monitor as an event. This events also contains the name of the MP for

54

Client

Monitor

Service

measurements measurements

Request/Response

MP pushing

Web Interface

SLA, service and MD
administration

MP polling

QoS querying

notifications?

Figure 5.2: Overview of the System Architecture

identification reasons. On the monitor, the CEP transformations convert the simple events
to metrics through a series of intermediate complex events, maintaining causal relations.
The monitor stores this metric data and verifies the SLA. If a violation is detected, its
Action System fires an action and notifies the agent (stakeholder, computer program,
etc.) specified in the SLA. The QoS data can also be queried through a Web interface.

5.2.1 Measuring Location Framework

The concrete measurement takes place in a framework at the services and clients location, called
the MLF. A comparison of different measurement locations can be found in [79]. It found that a
proxy-based approach has a big performance overhead, while an interceptor-based is comparable
to an inline approach. Another possible approach would be aspect-oriented weaving of code into
the service, but the interceptor approach provides additional flexibility. Specifically, it allows to
intercept method calls at various phases (see Subsection 4.1.1). This allows to measure steps
of the calling process, such as marshalling or the raw network sending time. In addition to this
measurement, other more general measurements can also be taken if the corresponding MPs are
supported. Although the raw data (mostly timestamps and call metadata) is measured on site,
the data is sent to the central monitor for processing. This avoids the overhead of calculations
at the service and therefore reduces measurement distortion. It also allows additional validity
checks at the monitor.

The MLF has two important functions: retrieving of MP updates and measuring of QoS data.
They are implemented using three basic components: A Distribution Interface, the
MP Management Subsystem and the Sending Subsystem. The Distribution
Interface exists only for services who get notified of MP changes by the monitor, but not
for clients, as they instead poll the MP updates of the used services. It only has one method,

55

which accepts a service Uniform Resource Locator (URL), a timestamp and a list of MPs which
should be measured. The MP Management Subsystem is separated into one QoS manager
for each used or provided service. It stores the currently used MPs and attaches them at the
appropriate position. If an MP is no more used, it is removed from its location and deleted.

There are many different possible types of MPs. Three basic types, important for the current
task are:

• Application-Specific Measuring Points (AMPs): MPs fired by the application or the client
for application-specific measurements. Even though they are not measured automatically,
they are registered to allow the MLF to discard invalid measurements. There are two types
of AMPs: Application-Specific Time Measuring Points (AtMPs) and Application-Specific
Value Measuring Points (AvMPs), which can be used to send values or timestamps, re-
spectively.

• Repeated Measuring Points (RMPs): MPs which fire repeatedly in a certain interval. This
is used for some availability-related measurements

• Phase Measuring Points (PMPs): MPs which are attached to a phase in a method call.
To allow a very fine placement, PMPs are technology-dependent. Other Web service
frameworks have different phases or no interceptor system at all. In this case, other MPs
take over this place.

There are lots of other possible MPs which could extend the functionality of the system. Some
are mentioned in Section 7.2.3.

If an attached MP is activated, an event is sent to the Sending Subsystem. This event con-
tains the name of the MP which uniquely identifies is and IDs for the current call and method.
This name is created from the service address, the type and parameters of the MP (see Sec-
tion 5.3.3). The call- and method-IDs allow correlation of a MP to the method of an
interface or to a specific call. While the method-ID can be calculated by the interface, the
call-ID is generated by the MLF on the client for each invocation and sent to the service with
the message. The Sending Subsystem is used instead of directly sending the request for
two main reasons. First, it caches measurements and sends them grouped, reducing the sending
overhead. Second, it is able to order events based on their arrival, keeping the timestamp order
intact for each service. Therefore the monitor does not have to handle out-of-order events and
the MDs can be kept simple. To avoid delays, because the events are sent to the monitor, they
are queued and send by another thread.

5.2.2 Monitor

The monitor acts as a separate management- and measurement-instance. Calculating of the
metrics is separated from the measurement location to reduce the calculation impact on site.
The separation also allows some independent measurements which are inherently more reliable
than measurements reported from a foreign computer system. Measured QoS information is
centrally stored at the monitor, but it could also be sent to a registry.

56

Action System
Constraint System

Database

DSL InterpreterManagement System

SLAservicesMDs

Management IF

Event System

Measurement System

QoS Storage
Query IF

Actions

PluginsMD
notification

Measurement IF

Figure 5.3: Components of the Monitor

In Figure 5.3, the general structure of the monitor is shown. Three Interfaces provide the basic
communication with the outside. The Management Interface is used for management of
SLAs, MDs and services. The Measurement Interface receives measurements from the
MLF. The Query Interface can be used to query current QoS values and historic data.

Updates through the Management Interface are sent directly to the Management Sys-
tem. It stores the SLAs, MDs and services into the database and translates the SLAs and MDs
to CEP transformations (see Section 5.3.3). When transforming an SLA, it checks for the used
metrics and collects the needed MPs from their corresponding MDs. The event transformations
gained from translating the SLA and MDs are stored into the Measurement System. Ac-
companying the transformations, the needed MPs (and the services they are needed from) are
also submitted to the Measurement System, which notifies the matching services.

In the Measurement System, the simple events, received from the Measurement In-
terface, are transformed in various steps to complex QoS metrics, based on the transforma-
tions gained from the MDs. To detect violations of the SLA, the SLOs and the corresponding
actions of the SLA are also translated into event transformations. They are stored into the Con-
straint System which waits for changes in the QoS metric values and fires action events
in case of a constraint violation. These events are collected by the Action System. The
Action System has a plugin feature to support different action types, such as HTTP invo-
cations, EMail or simple console output. Other types of plugins could easily be attached. The
plugins are activated if a corresponding event was fired, receiving the action event, including the
complete causal history of the constraint violation. A possible adaptation component, notified
through a plugin, could then adapt the service according to the cause of the SLA violation.

57

5.3 DSLs

There are three main DSLs used in this approach. The MPDSL describes a model of the infras-
tructure of the measured system for use in MP definition. It based on the Low-Level DSL
from [79] but heavily reduced and extended to define MPs. The Measurement Description
DSL (MDDSL) allows to define QoS metrics (so-called MDs), based on those defined MPs.
They are used by the SLADSL to describe SLAs. The SLADSL supports different services, con-
straints (SLOs) and actions to be taken if a constraint is violated or its violation ceases. While
it is based on the High-Level DSL from [79], some minor syntactical additions are made. The
main changes lie in the processing of the DSL.

5.3.1 MPDSL

The MPDSL is an internal DSL, using Frag (see Section 4.3) as its host language. Its syntax
is used from Frag. Its QuaLa pendant was a part of the Low-Level DSL, used to describe
the technical structure of the framework of the measured system and for code generation (see
Section 4.4.2. As the client code is no longer generated from the DSLs, but the MLF only
interprets the DSLs, the service model (including operations and parameters) was removed. The
services are now stored separately, to allow exchanging at runtime. The SLA only references
them through their assigned names.

The QuaLa defined the metrics only by specifying a list of phases, where the interceptors should
be attached. In the refinement, metric definition is moved to the new MDDSL. The new MPDSL
is used to describe the model for a specific Web service framework (e.g., Apache CXF). It also
defines the supported MPs of this framework. Those MPs can then be used in the MDDSL.

To support a new framework in the DSL, including MPs, at least one of two Measuring-
Point classes of the MDDSL model have to be extended. The TimeMeasuringPoint is
for MPs which send timestamp data to the monitor. The ValueMeasuringPoint is for MPs
which send a numerical value to the monitor. Those two classes are part of the MDDSL model.
Other classes can be introduced to model the service framework and parametrize the MPs. In
addition to extending one of the two classes, every MP has to have a getMPdata function,
which receives a service name and returns a Frag object. This object should define a globally
unique MP type, a location (CLIENT/SERVER), other attributes with string values for all rele-
vant properties, and a unique MP name, which contains type, location and all relevant properties
which make this MP unique. The DSLResolver converts it to a Java MeasuringPoint
object for distribution to the MLFs. Definitions of the used MPs can be found in Section B.3.

As the MLF needs to know how to measure a certain MP, defining it here is not enough, it also
has to have an implementation at the MLF. By examining its parameters, the MLF is able to
find a place to “attach” it and to determine parameters some other features of the MP (e.g., time
intervals). When the MLF fires an MP, it creates a QoSTimeEvent or a QoSValueEvent,
depending on the type of MP. This event contains the measured value, the MP’s name, location
(CLIENT/SERVER), service address and potentially a call- and a method-ID. The model of the
CXF framework that was used in the prototype, can be seen in Figure 5.4.

58

Part of the MDDSL model

-isFault : boolean
-before : List(String)
-after : List(String)

PhaseMeasuringPoint

+customName : String
+location : EnumLocation

AppSpecMeasuringPoint

+location : EnumLocation

RepeatedMeasuringPoint

+value : double
-unit : EnumTimeUnit

desc::TimeInterval desc::TimeMeasuringPoint desc::ValueMeasuringPoint

+type : EnumChainType
+location : EnumLocation

Chain

+cxfname : String

Phase

+measuringPoint*

+phase1

+measuringPoint *

+interval 1

+chain

1

+phase

*

+MILLISECONDS
+SECONDS
+HOURS
+DAYS

«enumeration»
EnumTimeUnit

+CLIENT_IN
+CLIENT_OUT
+CLIENT_FAULT_IN
+SERVER_IN
+SERVER_OUT
+SERVER_FAULT_OUT

«enumeration»
EnumChainType

+CLIENT
+SERVER

«enumeration»
EnumLocation

Figure 5.4: Example Model for the CXF Framework, Originally Defined in the MPDSL

5.3.2 SLADSL

The SLADSL is an external DSL, based on the High-Level DSL of the QuaLa. Model and
syntax were adapted to fit runtime processing instead of code generation and to allow to filter
unwantedly repeated events. It is used to define SLAs using constraints (corresponding to SLOs)
and actions which are evoked if the constraints are violated.

Model

The structure of the model for the DSL is shown in Figure 5.5. Every SLA defined by the
SLADSL has a name and can span a number of services, referenced by their name. For each
service, constraints are defined. A constraint consists of a repetition type, a con-
dition and an action. The repetition type defines when an action event should be
fired:

• WHEN_NOT: The event is fired when the condition is first violated (evaluates to false). If
the condition later evaluates to true and then to false again, it fires again.

• WHILE_NOT: The event is fired every time the value of one of the metrics changes, but
only while the condition is violated.

59

Part of the MDDSL model

-name : String

SLA

+name : String

Service

+sla

1

+services

*

+WHILE_NOT
+WHEN_NOT
+ON_CHANGE

«enumeration»
EnumRepetition

+MILLISECONDS
+SECONDS
+MINUTES
+HOURS
+DAYS
+PERCENT
+TIMES

«enumeration»
desc::EnumUnits

+GREATERTHAN
+LESSTHAN
+GREATEROREQUAL
+LESSOREQUAL
+EQUALS

«enumeration»
EnumPredicates

+AND
+OR
+XOR

«enumeration»
EnumOperators

+repetition : EnumRepetition

ConstraintCondition

+metric : String
+predicate : EnumPredicates
+value : double
+unit : desc::EnumUnits

AtomicCondition

+operator : EnumOperators

CombinedCondition

+name : String
+parameter : String

Action

+condition *

+firstCondition *

+condition*

+secondCondition*

+service1

+rules*

+sla1

+services1

+sla

1

+services

1

Figure 5.5: Model of the SLADSL

• ON_CHANGE: The event fires when the violation status changes from false to true or
backwards. Intermediate events are dropped.

This way, superfluous action events can be prevented.

The condition is a boolean expression. An atomic condition consists of a comparison
between a metric name and a double value. A combined condition uses two condi-
tions and a boolean operator (AND/OR) to build complex expressions. The metric names
must reference the name of an MD, defined in the MDDSL.

An action consist of the name of an action and a parameter. While the QuaLa High-Level DSL
uses fixed names for the actions, the SLADSL aims to be more flexible by referencing the plugin
names of the Action System. This adds the need to check for the existence of the necessary
plugins, when the SLA has been edited. If an action is invoked, the parameter as well as the
events causing the invocations are sent to the corresponding plugin.

Syntax

The syntax of the SLADSL corresponds closely to the model. One thing to be noted is, that
multiple combined conditions do not have to be put in brackets. They are then evaluated
from left to right. Also short-circuit evaluation is not implemented. An example of the syntax
can be seen in Listing 5.1.

60

1 ExampleSLA
2 {
3 Login
4 {
5 WHEN NOT R e p u t a t i o n >95% => c o n s o l e " e r r " ,
6 ON CHANGE S e r v e r A v a i l a b i l i t y >99% => m a i l t o " mat th ia s@happens . a t " ,
7 WHILE NOT C l i e n t A v a i l a b i l i t y >95% => c o n s o l e " o u t " ,
8 WHILE NOT (Latency >1ms OR NetworkLatency >1ms) AND RoundTripTime <100ms =>

h t t p " h t t p : / / l o c a l h o s t : 8 0 / s c r i p t " ,
9 WHEN NOT Proces s ingTime >30ms => m a i l t o " mat th ia s@happens . a t " ,

10 WHILE NOT Load <8 t i m e s AND E r r o r R a t e <95% => c o n s o l e " o u t " ,
11 ON CHANGE MeanTimeBetweenFai lures >2ms AND (MeanTimeToRepair >3ms OR

MeanTimeToFailure >4ms) => c o n s o l e " e r r "
12 }
13 }

Listing 5.1: Example SLA, Written in the SLADSL

Transformation to EPL

service = http://localhost/svc
repetition =

 : Constraint booleanOperator = OR

 : CompositeCondition+constraint

+condition

booleanOperator = AND

 : CompositeCondition

metricName = C
comparator = LESSTHAN
value = 4
unit = ms

 : AtomicCondition

metricName = A
comparator = GREATERTHAN
value = 2
unit = ms

 : AtomicCondition

metricName = B
comparator = GREATERTHAN
value = 3
unit = ms

 : AtomicCondition

actionName = console
actionParameter = out

 : Action

Figure 5.6: Example Object Model of the SLADSL

The predecessor of this DSL (the High-Level QuaLa) was used to build a skeleton for a service.
It therefore used the additional information from the Low-Level QuaLa to create the necessary
classes, interceptors, etc. Our approach uses the new SLADSL at runtime. It is not converted
to Java code, instead EPL (see Subsection 4.2.1) transformations are generated. This way the
values, which are measured for each metric, are transformed in a series of steps to action events,
which can be picked up by the plugins. Figure 5.6 shows a part of an object model as it would
be created from an SLADSL specification. It is used as a base for the transformations below.

When parsing the SLADSL, two transformations are generated for each constraint (see
Figure 5.7). The first transformation is used to calculate if the condition is violated or
not. It is evaluated every time a measurement changes. Every time a measurement changes,
it creates a ConstraintEvents from the required measurements. actionName and ac-
tionParameter are retrieved from the Action object. repetition, serviceURI and
the endpoints in the FROM-clause are retrieved from the Constraint object.

61

INSERT INTO ConstraintEvent SELECT
'console' as actionName,
'out' as actionParameter,

'(((A>2) AND (B>3)) OR (C<4))' as condition,
{'A'||cast(A.value,string),'B'||cast(B.value,string),'C'||cast(C.value,string)} as measurementValues,

'http://localhost/svc' as serviceURI,
NOT (((A.value>2) AND (B.value>3)) OR (C.value<4)) as violated,

'WHILE_NOT' as repetition,
max(A.timestamp,B.timestamp,C.timestamp) as timestamp,

Arrays.asList({A,B,C}) as causingSLAEvents
FROM

SLAEvent(endpoint='http://localhost/svc',measurement='A').win:length(1) as A,
SLAEvent(endpoint='http://localhost/svc',measurement='B').win:length(1) as B,
SLAEvent(endpoint='http://localhost/svc',measurement='C').win:length(1) as C

Figure 5.7: Transformation From Measurements (SLAEvents) to Constraint Events

The other (green) parameters are retrieved from the condition tree:

• condition is a reformatted condition string for later evaluation by the action plugin.

• measurementValues contains pairs of metrics and their values.

• violated calculates if the condition was violated or not.

• timestamp takes the timestamp of the last received event and makes it the Constrain-
tEvents timestamp.

• causingSLAEvents contains references to the metric events that caused this Con-
straintEvent.

The FROM-clause opens a stream for each metric, joining them, while retaining only the last
measurement for a metric. This causes a ConstraintEvent to fire, every time a one of the
measurements changes.

The output events of the condition transformations are the base for the repetition transforma-
tions. Depending on the repetition type, one of three transformations is chosen (see Figure 5.8).
The first part of the transformations is always the same, copying relevant values from the
ConstraintEvent and adding the ConstraintEvent as the causingConstrain-
tEvent. The second part (a, b or c) is determined by the repetition type. While the
serviceURI can be fetched from the constraint, the condition is generated from
the condition tree. Through referencing previous values of a property (violated), these
transformations filter the unneeded events from the stream and create ActionEvents only for
“interesting” events.

62

FROM
ConstraintEvent(serviceURI='http://localhost/svc', condition='((A>2ms)AND(B>3ms))OR(C<4ms)', repetition='WHEN_NOT',

actionName='console', actionParameter='out') AS ConstrEvt
HAVING

(NOT prior(1,violated)=violated) AND violated=true

FROM
ConstraintEvent(serviceURI='http://localhost/svc', condition='((A>2ms)AND(B>3ms))OR(C<4ms)', repetition='ON_CHANGE',

actionName='console', actionParameter='out') AS ConstrEvt
HAVING

(NOT prior(1,violated)=violated)

FROM
ConstraintEvent(serviceURI='http://localhost/svc', condition='((A>2ms)AND(B>3ms))OR(C<4ms)', repetition='WHILE_NOT',

actionName='console', actionParameter='out', violated=true) AS ConstrEvt

INSERT INTO ActionEvent SELECT
actionName,actionParameter,serviceURI,

violated,repetition,timestamp, ConstrEvt as causingConstraintEvent

c) repetition = WHILE_NOT

b) repetition = ON_CHANGE

a) repetition = WHEN_NOT

Figure 5.8: Transformation From Constraint Events to Action Events

5.3.3 MDDSL

The MDDSL is an internal DSL, used for describing how QoS measurements should be taken. It
uses Frag As a host language, taking advantage of the programming language constructs, espe-
cially lists, references and potentially loops or calculations. The measurements are described in
the form of MDs, where each MD describes one way to measure a metric. It works by utilizing
MPs, defined in the MPDSL, and applying various functions to calculate complex metrics. It
also adds a unit- and a name-parameter to the metric.

Based on the QuaLa Low-Level DSL, where metrics are defined at design time of the service,
the MDDSL goes a step further and allows to define more complex measurements, which ad-
ditionally can be changed at runtime. It allows to define custom metrics as well as detailed
descriptions of how to measure performance-based, availability-based or other metrics. The
predefined functions are transformed into EPL transformations, following a CEP approach. The
EPL brings a huge flexibility and also a lot of complexity because of the variety of possible
metrics. The MDDSL strives to simplify the metric creation process, hiding the complexity of
EPL as well as the whole structure of the event system. This allows the user to focus on the
metrics instead of the technical details and potential traps of event processing.

Model

As the MDDSL uses an internal syntax, it consists only of Frag constructs. The model is shown
in Figure 5.9. To create am MD, a Metric class and function classes of the MDDSL model
and MPs from the MPDSL have to be instantiated. The main object for an MD is the Metric
object, which defines the unit, the name and a function how to calculate the metric. At the
moment, valid units are: MILLISECONDS, SECONDS, MINUTES, HOURS, DAYS, PERCENT

63

desc::TimeInterval

+value : double
+unit : EnumTimeUnit

desc::TimeMeasuringPoint desc::ValueMeasuringPoint

«enumeration»
EnumTimeUnit

+MILLISECONDS
+SECONDS
+HOURS
+DAYS

desc::TimeExpression desc::ValueExpressiondesc::Metric

+name : String
+unit : EnumMetricUnit

desc::ValueFunctiondesc::TimeFunction

1

1

«enumeration»
EnumAggregationIntervalUnit

+MILLISECONDS
+SECONDS
+HOURS
+DAYS
+EVENTS

desc::AggregationInterval

+value : double
+unit : EnumAggregationIntervalUnit

«enumeration»
EnumAggregate

+ALL
+SAME_METHOD
+SAME_CALL

«enumeration»
EnumMetricUnit

+MILLISECONDS
+SECONDS
+HOURS
+DAYS
+EVENTS

...Time Functions... ...Value Functions...

Figure 5.9: Model of the MDDSL (With Placeholder for the Functions)

and TIMES. In the SLADSL they correspond to ms, sec, min, h, d, % and times, although
times can be left out, as it is the default. The function parameter requires a function, which
produces a QoSValueEvent.

The main part of the MDDSL are the predefined functions. By implementing various needed
constructs, they move the abstraction from the very technical event-based processing language
to a higher level. Every function has parameters. They can be any kind of Frag object or
any TimeExpression or ValueExpression. This includes MPs or other functions. By
nesting functions, even complex time-based metrics can be defined. Some of the functions are
aggregations. They aggregate events over time or over a certain number of events and create a
new event based on the collected events. These functions have two different aggregation types:

64

SAME_CALL or SAME_METHOD. When stating the aggregation attribute, the function cal-
culates the new event separately for different calls or different methods. This is based on the
call-ID or method-ID which is sent with some MPs. It allows to define, for example, the
time between two specific events in a single call or more complex things, such as calculating the
overall average of the cumulative (sum) processing time of a single method in a certain interval.
If the aggregation attribute is left empty, all events are taken into account. Aggregation
functions also use aggregation intervals. They require a timespan or a number of events to be
specified through an AggregationInterval object.

An example visualization for a metric can be seen in Figure 5.10. Other metrics, expressed in
the MDDSL, can be found in Section B.1.

Predefined Functions

The predefined functions can be separated into functions which create TimeEvents (called
TimeFunctions) and functions which create ValueEvents (called ValueFunctions).

The MDDSL defines twelve ValueFunctions:

Function Parameters Description

SUM
of(valueevent)
interval(interval)
aggregation(aggType)

The sum of all ValueEvents in a certain
interval.

AVG
of(valueevent)
interval(interval)
aggregation(aggType)

The average value of all ValueEvents in a
certain interval.

IF

value(valueevent)
comparison(string)
then(double),
else(double)

comparison consists of a comparison
operator and a numerical value. The value
is compared against this value using the
operator. If the comparison evaluates to true,
the resulting ValueEvent has the value
defined in then or else the value of else.

INTERVAL
between(timeevent)
aggregation(aggType)

Calculates the time between every two
occurences of the specified event.

LIMIT

of(valueevent)
lower(double)
upper(double)
lowerInclusive(boolean)
upperInclusive(boolean)

Only forwards the ValueEvents with
values between the upper and lower
bound. Allows to specify if the upper and
lower bounds are inclusive or exclusive

CALCULATION
calculation(string)
parameters(hashtable)
aggregation(aggType)

Uses a hashtable to fill the events into the
calculation, according to their name. Creates
a ValueEvent with the resulting value.

VALUEUNION events(valueevents)
Joins multiple streams of ValueEvents
into one.

65

TIMEBETWEEN
from(timeevent)
to(timeevent)
aggregation(aggType)

Calculates the elapsed time between the two
TimeEvents, based on their timestamp.

MONITORTIMEAT at(timeevent)
Calculates the time at the monitor and sets it
as a value, when a certain event arrives.

COUNT
of(timeevent)
interval(interval)
aggregation(aggType)

The number of TimeEvents in a certain
interval.

TUMBLING_COUNT
of(timeevent)
interval(interval)

Same as COUNT, but resets after the
specified timespan instead of letting old
events fall out.

SETVALUEONEVENT
on(timeevent)
value(double)

Creates a ValueEvent with the
corresponding value, when an certain event is
received.

Table 5.2: The MDDSL ValueFunctions

The other two defined functions are TimeFunctions:

Function Parameters Description

ONEVENTCHANGE
events (timeevents)
fireOn(timeevents)

Listens to a stream consisting of all specified
events. If the stream changes from one
event type to another which was specified in
fireOn, it forwards the event.

UNION events(timeevents)
Joins multiple streams of TimeEvents into
one.

Table 5.3: The MDDSL TimeFunctions

As the time on the monitor is not necessarily equal to the time on the client and/or service (see
also Section 5.3.3), all TimeEvents use the time at their source, except when coming from a
TimeFunction. TimeFunctions reuse the timestamps of the client/service.

An example of how to use PMPs and the predefined functions to describe the network latency
(see Section 5.1) can be seen in Figure 5.10. All metrics which are used in the motivating
example, can be found as MDDSL scripts in Section B.1.

Challenges

When coordinating events from three different sources (client, service and monitor), time plays
an important role. It can not be assumed that every source has the same time, especially when
trying to measure at millisecond level. Because of this problem, it is not possible to directly

66

TIMEBETWEEN
SAME_CALL

TIMEBETWEEN
SAME_CALL

UNION

CALCULATION
"(A-B)/1000000"

SAME_CALL

Network Latency (ms)

Figure 5.10: Visualization of the Network Latency - Measurement Description

measure, for example, the time between the sending on the client and the receiving at the service.
For this thesis the following methods were considered as solutions for this problem :

• Clock synchronization: When synchronizing the clocks, using a clock synchronization
protocol (e.g., the Network Time Protocol (NTP) [78]) typical accuracy is very heteroge-
nous. Local networks generally have a much higher accuracy than networks with higher
load and worse predictability, for example, the Internet. Nevertheless, some papers use
some kind of clock synchronization (e.g., [96]).

• Using monitor time: By using the event arrival time at the monitor, only a single time
source would be needed. This would introduce the need to send the events instantly, as
they are measured, and add a big overhead to the measurement, because of the sending
process and the networking delay between the points of measurement and the monitor.
It would also skew the results when comparing sources, which have a different network
distance to the monitor.

• Staying time difference independent: This could be achieved by designing the metrics in
a way which does not calculate time differences between different time sources. For the
network latency, this means that metric designers should not measure the time between
the client sending and the service receiving, but the round trip time and subtract the time
between the receiving and the sending of the response at the service. This requires some
additional minor knowledge of distributed systems.

67

Our solution uses the third approach, dealing with the time differences at metric level. Yet, the
first approach is not actively prevented. If the clock is synchronized externally, calculations
could be made between different time zones. Using the third approach adds some requirements
to the metric generation. As the monitor has a different timezone than the measuring points,
aggregations can not be implemented accurately when not using monitor time. Although the
CEP system has the possibility to use object timestamps to advance time instead of the system
time, a sliding aggregator (e.g., SUM) should also update when an object leaves the relevant time
window. This is not possible if the time of the measuring point is not permanently updated.
Therefore all aggregation functions use monitor time.

Another challenge is the ordering of events. If events are just sent as the occur, there is no
guarantee that they arrive at the monitor in order, because of the network delay. An option
would be restoring the order at the monitor, introducing some weaknesses, such as a potential
notification delay when an event goes missing or an additional calculation overhead. Another
option would be to ignore the ordering at the DSL level. This would make the language more
complex and the metrics more difficult to understand and to create. Our solution uses the fact
that the MLF already caches the events before sending for performance reasons. It is possible to
ensure the order of the events when getting into the cache, therefore, when sending the blocks
of events serially, the order of events for a single measured location (client or service) remains
the same. Between two different measurement locations, the correct ordering as well as the
same time can not be guaranteed without taking into consideration the concrete implementation
(e.g., the phase order in CXF). This would make the solution largely technology dependent and
was not necessary, as most metrics do not directly measure between two separate measurement
locations.

DSL Transformation

The transformation of the MDDSL is done at runtime, when an MD is sent to the monitor and
it is used in an SLA. It is converted into a MeasurementDescription object, including its
properties, a list of used MPs and the transformations necessary to compute the metric. It can
only be converted if it is used in an SLA, because the transformations include the service for
which the measurement should be taken.

Transformation of the MPs is relatively straightforward. Every parameter of the MP is mapped
to the corresponding attribute of an MeasuringPoint object. As the definition of the MPs is
also defined in Frag, some validation can be done before the translation process. An important
part of the translation is the generation of the name. Based on its parameters, its type and the
address of the service where it is measured (which was obtained from the SLA), the name is
generated. This name is sent with every measurement to be able to correlate the measurements
to the MPs. Structure and examples of the names of the currently supported MPs can be seen in
Figure 5.11.

One of the generated transformation transforms the events of the top-most function to SLAEvents
(see Figure 5.12)

68

AMvP[<<SERVICEURL>>|<<LOCATION>>|<<CUSTOMNAME>>]

AMvP[http://127.0.0.1/svA|SERVER|demoAvMP]

RMP[<<SERVICEURL>|<<LOCATION>>|<<INTERVAL>>]

RMP[http://127.0.0.1/svA|SERVER|5 MINUTES]

PMP[<<SERVICEURL>|<<CHAIN>>|<<PHASE>>|<<ISFAULT>>|AFT|<<AFTERLIST>>|BEF|<<BEFORELIST>>]

PMP[http://127.0.0.1/svA|SERVER_IN|receive|NORMAL|AFT|int.CeptA,int.CeptB|BEF|int.CeptC]

AMtP[<<SERVICEURL>>|<<LOCATION>>|<<CUSTOMNAME>>]

AMtP[http://127.0.0.1/svA|SERVER|demoAtMP]

Figure 5.11: MP Names and Examples

INSERT INTO SLAEvent SELECT

'FaultsInLastMinute' as measurement,

Event.value as value,

'<<SERVICEURL>>' as endpoint,

System.currentTimeMillis() as timestamp,

'TIMES' as unit,

Event.self as causingQoSValueEvent

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>',source='<<FAULTPOINT_NAME>>') as Event

set concern [desc::Metric create -name "FaultsInLastMinute"]

 set faultCount [desc::COUNT create]

 $faultCount of $faultPoint

 $faultCount interval [desc::AggregationInterval create -value 1 -unit MINUTE]

$concern value $faultCount

$concern unit TIMES

Figure 5.12: Transformation from the Uppermost Function to a Measurement (SLAEvent)

The transformation for functions follows a general scheme. For every function, there is at least
one transformation. It creates events with a unique source. The source represents the name
of the function which created the event. This name is build by coalescing the name of the
function and its parameters. If one of these parameters is another function or MP, its name is
used. The name has to be unique for this combination of parameters, to avoid duplicate event
sources. Another important part of each transformation is the causality reference. Every
transformation should add a reference to the causing event(s) to the event it creates, as described
in Section 2.4.2. This makes is possible to detect causes of an SLA violation. Aggregation
types, as mentioned above, are supported for many functions. They determine if the resulting
event is calculated from events which share a common call (SAME_CALL), common method

69

(SAME_METHOD) or just their source and type. The aggregation type is propagated when a func-
tion uses data from another function, for example if a SUM function with SAME_METHOD aggre-
gation uses a TIMEBETWEEN function as an event source (of parameter), the TIMEBETWEEN
function also uses SAME_METHOD. When inheriting aggregation types, the SAME_CALL type is
stronger than SAME_METHOD, which in turn is stronger than an unset aggregation type, meaning
that a stronger type can overwrite a weaker inherited type. SAME_CALL aggregation is always
a SAME_METHOD aggregation as well. Call-IDs and method-IDs are sent with the events
and functions try to forward them, but that is not always possible when not using any aggregation
type. There are two types of intervals: AggregationIntervals and TimeIntervals.
Both have a value and a unit and are used to describe the size of a viewing window (e.g., for
the size of the window, a SUM function is using). TimeIntervals only support time spans:
milliseconds, seconds, minutes, hours and days. AggregationIntervals
support a certain event count by using the events-unit.

As every function is transformed differently, the following list shows the use of every func-
tion and the corresponding transformation. Red text in the transformation declares data which
is either filled in from the MDDSL instantiation (if it has the same name), or otherwise cal-
culated from it. SERVICEURL is always determined from the SLA and AGGREGATION is
inherited (see above) or overwritten with a stronger aggregation type. INTERVALs are converted
to INTERVAL_ESPER, using a Esper-understandable syntax, and INTERVAL_NAME, which is
a general independent notation. Text for SAME_METHOD aggregation is shown in dark green.
Text for SAME_CALL aggregation is shown in light green. Blue ORs show possible alternatives
in the same line. Blue JOINLISTs symbolize joining a list using the included text as a template
and the second parameter as a placeholder between the elements. The list elements are named
like the list, without an attached “_LIST”. Their sources have an attaches “_NAME”. When
joining hash tables, the used convention is that the hash table is a list of key-value pairs, where
the prefix “_KEY” represents the key and “_VALUE” the value.

INSERT INTO QoSValueEvent SELECT

'SETVALUEONEVENT[<<VALUE>>|<<ON_NAME>>]' as source,

'<<SERVICEURL>>' as endpoint,

cast(<<VALUE>>,BigDecimal) as value,

methodID,callID,

Arrays.asList({EventA.self}) as causedBy

FROM

QoSTimeEvent(endpoint='<<SERVICEURL>>',source='<<ON_NAME>>') as EventA

set valueOnEvent [desc::SETVALUEONEVENT create]

$valueOnEvent on <<TIMEEXPRESSION>>

$valueOnEvent value <<VALUE>>

Figure 5.13: MDDSL Transformation of the SETVALUEONEVENT-Function

The SETVALUEONEVENT-function is used to create a ValueEvent when a TimeEvent is
received. It does not support any aggregations, as it only has one event parameter.

70

INSERT INTO QoSValueEvent SELECT

'INTERVAL[<<BETWEEN_NAME>>|<<AGGREGATION>>]' as source,

'<<SERVICEURL>>' as endpoint,

cast(Math.abs(EventA.timestamp-prev(1,EventA.timestamp)),BigDecimal) as value,

EventA.methodID as methodID,

Arrays.asList({EventA.self}) as causedBy

FROM

QoSTimeEvent(endpoint='<<SERVICEURL>>',source='<<BETWEEN_NAME>>').std:groupwin(methodID)

.win:length(2) as EventA

HAVING NOT

prev(1,EventA.timestamp) IS NULL

set timeBetweenEvents [desc::INTERVAL create]

$timeBetweenEvents between <<TIMEEXPRESSION>>

Figure 5.14: MDDSL Transformation of the INTERVAL Function

INTERVAL fires a ValueEvent, containing the time difference to the last event, every time
a TimeEvent is received. The difference is calculated by subtracting the timestamps. It only
supports SAME_METHOD aggregation.

INSERT INTO QoSValueEvent SELECT

'IF[<<VALUE_NAME>>|<<COMPARISON_NAME>>|<<THENVALUE>>|<<ELSEVALUE>>]' as source,

'<<SERVICEURL>>' as endpoint,

(case when <<COMPARISON_ESPER>>

then cast(<<THENVALUE>>,BigDecimal)

else cast(<<ELSEVALUE>>,BigDecimal) end) as value,

callID,methodID, Arrays.asList({self}) as causedBy

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>',source='<<VALUE_NAME>>')

set ifMP [desc::IF create]

$ifMP value <<VALUEEXPRESSION>>

$ifMP comparison "<<COMPARISON>>"

$ifMP then <<THENVALUE>>

$ifMP else <<ELSEVALUE>>

Figure 5.15: MDDSL Transformation of the IF Function

The IF-function allows to create ValueEvents based on a condition involving another
ValueEvent. It uses Esper’s CASE-WHEN construct to implement the conditional. Its com-
parison parameter is currently directly used in Esper, using “value” as a variable for the event
received through the value parameter. IF supports only one parameter, therefore it does not
use any aggregation types.

71

INSERT INTO QoSValueEvent SELECT

'SUM[<<OF_NAME>>|<<INTERVAL_NAME>>|<<AGGREGATION>>]' as source,

'<<SERVICEURL>>' as endpoint,

COALESCE(SUM(EventA.value),0) as value,

allEvents(self) as causedBy,

EventA.methodID as methodID

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>',source='<<OF_NAME>>').std:groupwin(methodID)

.win:length(<<INTERVAL_ESPER>>) OR .win:time(<<INTERVAL_ESPER>>)

as EventA

GROUP BY EventA.endpoint,EventA.methodID

set sumOfMP [desc::SUM create]

$sumOfMP of <<VALUEEXPRESSION>>

$sumOfMP aggregation <<AGGREGATION>>

$sumOfMP interval <<INTERVAL>>

Figure 5.16: MDDSL Transformation of the SUM-Function

The SUM-function calculates the sum of all specified ValueEvents (of) in a certain sliding
interval. The SAME_CALL-aggregation is not supported, because this would lead to the
system waiting for future events for every past call, as the monitor does not know when a call
is over. Depending on the type of interval, a time- or length-window is used. SUM uses the
Esper COALESQUE function to return 0 if the specified interval gets empty. allEvents() is
a custom Esper aggregation function to get all events from a window. The self property is a
reference to the QoSValueEvent and was added for convenient access.

INSERT INTO QoSValueEvent SELECT

'LIMIT[<<OF_NAME>>|<<LOWLIMIT>><<LOWINCLUSIVE>>|<<UPLIMIT>><<UPINCLUSIVE>>]' as source,

'<<SERVICEURL>>' as endpoint,

value,callID,methodID,Arrays.asList({self}) as causedBy

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>',source='<<OF_NAME>>')

WHERE

value>=<<LOWERLIMIT>> AND value<=<<UPPERLIMIT>>

set limitOfMP [desc::SUM create]

$limitOfMP of <<VALUEEXPRESSION>>

$limitOfMP lower <<LOWLIMIT>>

$limitOfMP upper <<UPLIMIT>>

$limitOfMP lowerInclusive <<LOWINCLUSIVE>>

$limitOfMP upperInclusive <<UPPINCLUSIVE>>

Figure 5.17: MDDSL Transformation of the LIMIT Function

LIMIT forwards ValueEvents only when their value is within in a certain interval. LOW-
INCLUSIVE and UPPINCLUSIVE can be set to “exclusive” or “inclusive”, influencing the
comparison in the transformation.

72

INSERT INTO QoSValueEvent SELECT

'AVG[<<OF_NAME>>|<<INTERVAL_NAME>>|<<AGGREGATION>>]' as source,

'<<SERVICEURL>>' as endpoint,

roundingAVG(EventA.value,5,RoundingMethod.HALF_UP) as value,

allEvents(self) as causedBy,

EventA.methodID as methodID

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>',source='<<OF_NAME>>').std:groupwin(methodID)

.win:length(<<INTERVAL_ESPER>>) OR .win:time(<<INTERVAL_ESPER>>)

as EventA

GROUP BY EventA.endpoint,EventA.methodID

HAVING AVG(EventA.value) IS NOT NULL

set avgOfMP [desc::AVG create]

$avgOfMP of <<VALUEEXPRESSION>>

$avgOfMP aggregation <<AGGREGATION>>

$avgOfMP interval <<INTERVAL>>

Figure 5.18: MDDSL Transformation of the AVG Function

AVG works essentially the same as SUM. The only two difference is, that AVG does not output
any 0-valued events if the interval gets empty. It uses a custom, roundedAVG aggregation
function, because the original version throws ArithmeticExceptions if a BigDecimal
value can not be expressed in decimal notation. The new function uses rounding in such cases.

INSERT INTO QoSValueEvent SELECT

'VALUEUNION[<<EVENTNAME_LIST>>]' as source,

'<<SERVICEURL>>' as endpoint,

value,callID,methodID, Arrays.asList({self}) as causedBy

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>`',source='<<ONE_OF_EVENTS>>')

INSERT INTO QoSValueEvent SELECT

'VALUEUNION[<<EVENTNAME_LIST>>]' as source,

'<<SERVICEURL>>' as endpoint,

value,callID,methodID, Arrays.asList({self}) as causedBy

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>`',source='<<ONE_OF_EVENTS>>')

INSERT INTO QoSValueEvent SELECT

'VALUEUNION[<<EVENTNAME_LIST>>]' as source,

'<<SERVICEURL>>' as endpoint,

value,callID,methodID, Arrays.asList({self}) as causedBy

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>`',source='<<ONE_OF_EVENTS>>')

set unionOfList [desc::VALUEUNION create]

$unionOfList events <<VALUEEXPRESSION_LIST>>

Figure 5.19: MDDSL Transformation of the VALUEUNION Function

VALUEUNION is an example for an MDDSL function, which creates multiple transformations.
For every event in the events list, a transformation is created which forwards the events and
sets them to a single source, effectively joining the event streams. ONE_OF_EVENTS contains
one event of the list for each transformation. EVENTNAMES_LIST is a comma separated list of
the names of the events’ sources.

73

INSERT INTO QoSValueEvent SELECT

'VALUEUNION[<<EVENTNAME_LIST>>]' as source,

'<<SERVICEURL>>' as endpoint,

value,callID,methodID, Arrays.asList({self}) as causedBy

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>`',source='<<ONE_OF_EVENTS>>')

INSERT INTO QoSValueEvent SELECT

'VALUEUNION[<<EVENTNAME_LIST>>]' as source,

'<<SERVICEURL>>' as endpoint,

value,callID,methodID, Arrays.asList({self}) as causedBy

FROM

QoSValueEvent(endpoint='<<SERVICEURL>>`',source='<<ONE_OF_EVENTS>>')

INSERT INTO QoSTimeEvent SELECT

'UNION[<<EVENTNAME_LIST>>]' as source,

'<<SERVICEURL>>' as endpoint,

value,callID,methodID, Arrays.asList({self}) as causedBy

FROM

QoSTimeEvent(endpoint='<<SERVICEURL>>`',source='<<ONE_OF_EVENTS>>')

set unionOfList [desc::UNION create]

$unionOfList events <<TIMEEXPRESSION_LIST>>

Figure 5.20: MDDSL Transformation of the UNION Function

UNION works exactly as VALUEUNION, except it uses and creates TimeEvents instead of
ValueEvents.

INSERT INTO QoSValueEvent SELECT

'CALCULATION[ALL|<<CALCULATION>>]' as source,

'<<SERVICEURL>>' as endpoint,

(<<CALCULATION_ESPER>>) as value,

Arrays.asList({

JOINLIST(<<PARAMETER_HASHTABLE>>,',')

<<PARAMETER_KEY>>

ENDJOINLIST

}) as causedBy

FROM

JOINLIST(<<PARAMETER_HASHTABLE>>,' inner join ')

QoSValueEvent(endpoint='<<SERVICEURL>>',source='<<PARAMETER_VALUE>>').std:lastevent(

) AS <<PARAMETER_KEY>>

ENDJOINLIST

set relationInPercent [desc::CALCULATION create]

$relationInPercent calculation '<<CALCULATION>>'

$relationInPercent parameters <<PARAMETER_HASHTABLE>>

Figure 5.21: MDDSL Transformation of the CALCULATION Function

The transformation for the CALCULATION-function is different whether it is using an aggrega-
tion type or not. Both cases are visualized separately. They use the calculation attribute
and the parameters hash map to do calculations. In calculation, the parameter keys are
substituted with the sources of the corresponding events, always using the latest received values
for each source. FIRST_PARAMETER_KEY refers to the key of the first parameter.

74

INSERT INTO QoSValueEvent SELECT

'CALCULATION[<<AGGREGATION>>|<<CALCULATION>>]' as source,

'<<SERVICEURL>>' as endpoint,

(<<CALCULATION_ESPER>>) as value,

Arrays.asList({

JOINLIST(<<PARAMETER_HASHTABLE>>,',')

<<PARAMETER_KEY>>

ENDJOINLIST

}) as causedBy,

<<FIRST_PARAMETER_KEY>>.methodID as methodID,

<<FIRST_PARAMETER_KEY>>.callID as callID

FROM

JOINLIST(<<PARAMETER_HASHTABLE>>,' inner join ')

QoSValueEvent(endpoint='<<SERVICEURL>>',source='<<PARAMETER_VALUE>>').win:time(<<MAX_WAIT_I

NTERVAL_ESPER>>) AS <<PARAMETER_KEY>> ON

<<PARAMETER_KEY>>.callID=<<FIRST_PARAMETER_KEY>>.callID

OR

QoSValueEvent(endpoint='<<SERVICEURL>>',source='<<PARAMETER_VALUE>>').std:groupwin(methodID

).std:lastevent() AS <<PARAMETER_KEY>> ON

<<PARAMETER_KEY>>.methodID=<<FIRST_PARAMETER_KEY>>.methodID

ENDJOINLIST

set calculate [desc::CALCULATION create]

$calculate calculation '<<CALCULATION>>'

$calculate parameters <<PARAMETER_HASHTABLE>>

$calculate aggregation <<AGGREGATION>>

$calculate maximumWaitInterval <<MAX_WAIT_INTERVAL>>

Figure 5.22: MDDSL Transformation of the CALCULATION Function With Aggregation

If the aggregation type is set, another transformation is used for the CALCULATION-function.
The blue OR shows that grouping by call or method in this case are alternatives. When group-
ing by call, a time interval is needed, to prevent infinite waiting. It is set through the maxi-
mumWaitTime property.

INSERT INTO QoSValueEvent SELECT

'MONITORTIMEAT[<<AT_NAME>>]' as source,

'<<SERVICEURL>>' as endpoint,

cast(System.currentTimeMillis(),BigDecimal) as value,

callID,methodID, Arrays.asList({EventA.self}) as causedBy

FROM

QoSTimeEvent(source='<<AT_NAME>>',endpoint='<<SERVICEURL>>') as EventA

set monitorTimeAtA [desc::MONITORTIMEAT create]

$monitorTimeAtA at <<TIMEEXPRESSION>>

Figure 5.23: MDDSL Transformation of the MONITORTIMEAT Function

MONITORTIMEAT is a simple function, used to calculate the time at which a certain TimeEvent
is processed at the monitor.

75

INSERT INTO QoSValueEvent SELECT

'TIMEBETWEEN[<<FROM_NAME>>|<<TO_NAME>>|<<AGGREGATION>>]' as source,

'<<SERVICEURL>>' as endpoint,

cast(Math.abs(EventB.timestamp-EventA.timestamp),BigDecimal) as value,

EventA.methodID as methodID,EventA.callID as callID,

Arrays.asList({EventA.self,EventB.self}) as causedBy

FROM

pattern[every EventA=QoSTimeEvent(endpoint='<<SERVICEURL>>',source='<<FROM_NAME>>') ->

(EventB=QoSTimeEvent(endpoint='<<SERVICEURL>>',source='<<TO_NAME>>',methodID=EventA.methodI

D,callID=EventA.callID) AND NOT

QoSTimeEvent(endpoint='<<SERVICEURL>>',source='<<FROM_NAME>>',methodID=EventA.methodID,call

ID=EventA.callID)) where timer:within(<<MAX_WAIT_INTERVAL_ESPER>>)]

set timeBetweenAAndB [desc::TIMEBETWEEN create]

$timeBetweenAAndB from <<TIMEEXPRESSION>>

$timeBetweenAAndB to <<TIMEEXPRESSION>>

$timeBetweenAAndB aggregation <<AGGREGATION>>

$timeBetweenAAndB maximumWaitInterval <<MAX_WAIT_INTERVAL>>

Figure 5.24: MDDSL Transformation of the TIMEBETWEEN Function

The TIMEBETWEEN-function is used in most measurements and measures the time between
two TimeEvents. The function uses the last (for every aggregation) received from event to
determine the time a following to event. In case of a new from event, the timer is reset. The
maximumWaitInterval uses a TimeInterval to define a maximum time to wait for the
second event. This prevents waiting for events which are lost on the way or maliciously omitted.

INSERT INTO QoSValueEvent SELECT

'COUNT[<<OF_NAME>>|<<INTERVAL_NAME>>|<<AGGREGATION>>]' as source,

'<<SERVICEURL>>' as endpoint,

cast(COUNT(EventA.timestamp),BigDecimal) as value,

EventA.methodID as methodID,

allEvents(self) as causedBy

FROM

QoSTimeEvent(source='<<OF_NAME>>',endpoint='<<SERVICEURL>>').std:groupwin(methodID)

.win:time(<<INTERVAL_ESPER>>) as EventA

GROUP BY EventA.endpoint,EventA.methodID

set countOfMP [desc::COUNT create]

$countOfMP of <<TIMEEXPRESSION>>

$countOfMP aggregation <<AGGREGATION>>

$countOfMP interval <<INTERVAL>>

Figure 5.25: MDDSL Transformation of the COUNT Function

COUNT is an aggregation function, similar to SUM and AVG, which calculates the number of
events in a certain interval. As it counts events, the only supported interval is a TimeIn-
terval. Other than that, it has the same restrictions.

76

INSERT INTO QoSValueEvent SELECT

'TUMBLING_COUNT[<<OF_NAME>>|<<INTERVAL_NAME>>]' as source,

'<<SERVICEURL>>' as endpoint,

cast(COUNT(*),BigDecimal) as value,

allEvents(self) as causedBy

FROM

QoSTimeEvent(source='<<OF_NAME>>',endpoint='<<SERVICEURL>>')

.win:time_batch(<<INTERVAL_ESPER>>,'FORCE_UPDATE') as EventA

set countOfMP [desc::TUMBLING_COUNT create]

$countOfMP of <<TIMEEXPRESSION>>

$countOfMP aggregation <<AGGREGATION>>

$countOfMP interval <<INTERVAL>>

Figure 5.26: MDDSL Transformation of the TUMBLING_COUNT Function

TUMBLING_COUNT does the same as COUNT, except it uses a tumbling window, clearing all
events at the end of an interval. It also sends events if the interval is empty, but does not support
any aggregation type.

INSERT INTO QoSTimeEvent SELECT

'ONEVENTCHANGE[

JOINLIST(<<FIREON_LIST>>,',')

<<FIREON_NAME>>

ENDJOINLIST | JOINLIST(<<EVENT_LIST>>,',')

<<EVENT_NAME>>

ENDJOINLIST

]' as source,

endpoint,timestamp,callID,methodID,Arrays.asList({self,prev(1,self)}) as causedBy

FROM

QoSTimeEvent(endpoint='<<SERVICEURL>>',

JOINLIST(<<EVENT_LIST>>,'OR')

source='<<EVENT_NAME>>'

ENDJOINLIST

).win:length(2)

WHERE

NOT prev(1,source)=source AND (

JOINLIST(<<FIREON_LIST>>,'OR')

source='<<FIREON_NAME>>'

ENDJOINLIST

)

set onChange [desc::ONEVENTCHANGE create]

$onChange events <<EVENT_LIST>>

$onChange fireOn <<FIREON_LIST>>

Figure 5.27: MDDSL Transformation of the ONEVENTCHANGE Function

The ONEVENTCHANGE-function observes a stream, consisting of every event from the events-
list. It fires if it detects an event from the fireOn-list, but only if the last received event was
not from the same source.

77

6. Implementation

To be able to demonstrate and evaluate the concept, a prototype was implemented. This chap-
ter describes the implementation of this prototype, following a similar structure to the design
chapter. The first section describes how the components of the system were implemented, based
on the general design. Afterwards, a section describes the concrete structure of the DSL trans-
formation process. Finally, a section is dedicated to general problems which occurred while
implementing the presented concept with the technologies used in the prototype.

The prototype is programmed in Java, using Apache CXF version 2.3.6 as its Web service frame-
work. CXF is also used for MP distribution and as an administration interface for the monitor.
The currently used MLF is able to measure AMPs(AtMPs and AvMPs), RMPs and PMPs in
CXF. The events are sent to the monitor via Java RMI at the moment. As predetermined by
the DSL design, the prototype uses Frag as a framework for DSL transformation. Esper is used
as the CEP engine for internal event processing. The Web interface is implemented as a
JavaServer Faces (JSF) [53] Web application. All permanent data is stored in a MySQL [77]
database.

6.1 Components

This section details the implementation of the prototype. The monitor implementation is fol-
lowed by an implementation of the MLF for the Apache CXF framework. Lastly, the Web
interface is presented.

6.1.1 Monitor

The monitor is the core of the monitoring system. It manages the SLA, the MDs and the ser-
vices which should be monitored. It also distributes the MPs to the services and collects the
measurements to combine them to metrics. The metrics are used to check for SLA violations
and, if necessary, send notifications.

Interface Implementation

In our prototype the Measurement Interface and the Query Interface are com-
bined into a single IQoSMonitor interface. As SLA and MDs are sent to the interface as DSL
strings, the interface uses the DSLResolver to convert it to Java objects. It then forwards all
requests to the corresponding systems, while taking care of locks to avoid race conditions. In ad-
dition, it also saves the accepted DSL in the database for permanent storage. It obtains a lock to
the event system and forwards the measurements. For performance reasons, the Measurement
Interface is implemented using Java RMI.

79

DSLResolver

The DSLResolver is used to convert the MDDSL and SLADSL statements to Java objects.
For every translation request it initializes a Frag interpreter and sends the DSL string. Frag in-
terprets it, but the result are FragObjects, which can not be easily read in Java. Therefore the
DSLResolver transforms the structure into a Java object model. Some semantic verification is
done by the resolver, using additional information sent by the interface. That way, for example,
it can be checked if the SLA only uses existing services and metrics which are defined by MDs.
The detailed transformation process is described in Section 6.2

EventEngine

The EventEngine wraps, initializes and configures the Esper system. The rest of the system
can add groups of Transformation objects, which wrap an EPL string. Queries are im-
plemented through so-called EventEnginePlugins. Other subsystems in the monitor can
register such plugins to be notified of certain events or to add transformations without the use of
Transformation objects.

The engine differentiates between transformations and transformations groups (simply a list of
transformations). Transformation groups are used to group transformations which belong to
each other, such as the transformations generated from a single MD. Any entity in the system
can add a transformation group and retrieve an ID which identifies it. This makes it easy to
manage it and to delete it from the EventEngine if necessary. To avoid duplicate transfor-
mations (not transformation groups), a special hash map is used, which has a reference counter
associated with each transformation. This way, duplicates can be avoided and the transformation
is only deleted when the last reference is removed. Because of the automatic generation of the
transformations and the special design of the DSL translation, it can be assumed that transfor-
mations which produce events with the same source parameter also have the same syntax. This
makes it easier to detect duplicates. Instead of elimination duplicates, the event names could also
be unique for every transformation instead of being unique for the way an event is generated,
but by avoiding duplicate events, a performance benefit is gained, especially when using many
similar measurements in one service.

The plugins are implemented by extending the EventEnginePlugin and implementing the
initialize()-function. This function is called when the plugin is added and provides access
to the EventEngine. Plugins can then add transformations or register themselves as observers
to an EPL query, submitted through the registerQuery() function.
Currently implemented plugins are:

• HistoryPlugin: A plugin, which saves the measured metrics to the MySQL database.
The query only outputs events every five seconds and all events received in this time span
are added to the database as a batch, for performance optimization.

• ConsoleOutputPlugin: A debug plugin which outputs all events to the console, as
they occur.

80

1 @Act ionPlugin (scheme =" m a i l t o " , simpleName =" EMail−Ac t i on ")
2 p u b l i c c l a s s E M a i l A c t i o n P l u g i n e x t e n d s A c t i o n S y s t e m P l u g i n

Listing 6.1: Example Action Plugin Annotation

• QoSActionPlugin: This plugin checks for ActionEvents, which are generated by
the constraint systems transformations. If an ActionEvent is detected, it notifies the
Action System.

Measurement System

The Measurement System gets MDs as Java objects and stores them. These MD objects
contain the metric name, the service URI, a list of used MPs and a set of Transformation
objects. To add an MD, it is split into the MP list and the transformations. While the MPs
are sent to the corresponding services via Web service calls, the MDs are stored at the monitor,
separately for each service. This is done through synchronization, only adding new MDs and
deleting old ones. If an MD has been changed, the MDs are synchronized by name, including
all services. If an SLA has changes, they are synchronized by service. The transformations are
added the the EventEngine. The resulting IDs are stored with the MDs of a service, to be
able to remove the transformations from the EventEngine, when the MD is changed or no
longer used.

Constraint System

The Constraint System receives Constraint Java objects from the Management
Interface. It transforms them to two types of EPL transformations: ConstraintEvent
transformations and ActionEvent transformations. Details on this transformation process
can be found in Subsection 6.2.1. They are added to the EventEngine, storing the transfor-
mation IDs and the constraints themselves. If new constraints are set, they are synchronized to
the existing constraints, adding new ones and removing old ones.

Action System

The Action System has two parts: the ActionPlugin in the EventEngine and the
ActionSystem. As mentioned before, the ActionPlugin waits for ActionEvents and
sends them to the ActionSystem. The ActionEvent contains information about the Ac-
tionPlugin which should be executed as well as a parameter.

Plugins are registered through the registerPlugin() function at system startup. They have
to extend the class ActionSystemPlugin and have an ActionPlugin annotation, which
determines how the plugin can be referenced in an SLA (see Listing 6.1).

81

1 DB_URI= j d b c : mysql : / / l o c a l h o s t / QoS
2 DB_USERNAME=__USERNAME__
3 DB_PASSWORD=__PASSWORD__
4 MONITOR_MANAGEMENT_ADDRESS= h t t p : / / 1 9 2 . 1 6 8 . 1 0 0 . 1 : 1 0 0 0 0 / qos−m o n i t o r
5 MONITOR_MEASUREMENT_ADDRESS= / / 1 9 2 . 1 6 8 . 1 0 0 . 1 / QoSMonitor

Listing 6.2: Configuration File (monitor.properties) for the Monitor

There are two possibilities for implementing an ActionSystemPlugin:

• By implementing ‘‘notify(String address,ActionEvent event)’’.

• By implementing ‘‘notify(String address,String content)’’ and call-
ing super(String templatePath) in the constructor, with the path to a Apache
Velocity [8] template, which is used to transform the ActionEvent to text. In this template,
event references the ActionEvent and util references an utility whose urlEscape
method can be used to transform text to an URL compatible encoding. If no path is spec-
ified in the call to super(), a default template is used which contains all information from
the ActionEvent (see Subsection B.4.1).

When interpreting an ActionEvent, an important part is causality. The causing Constrain-
tEvent can be retrieved by getting the causingConstraintEvent attribute.
The SLAEvents (containing the metric values) which caused the ConstraintEvent can be
retrieved through the causingSLAEvents attribute. Each SLAEvent has a causing QoS-
ValueEvent (causingQoSValueEvent). From then on, the causing event tree can be
traversed using the causedBy attribute, which contains a list of QoSValueEvents or QoS-
TimeEvents.

Configuration

The configuration works via a “monitor.properties”-file. It contains access data for the MySQL
database, a MONITOR_MEASUREMENT_ADDRESS and a MONITOR_MANAGEMENT_ADDRESS
parameter for the location of the interfaces of the monitor:

6.1.2 Measuring Location Framework

For every framework that is supported, there must be an MLF implementation and an MPDSL
document. The current prototype supports the Apache CXF framework and the three MPs,
presented in Subsection 5.2.1. It basically consists of tree parts: the MP Management and
Measuring Subsystem, the Sending Subsystem and the System Integration. Adding a mes-
sage to the Sending Subsystem does not send it but waits for a send command. This allows
grouped and delayed sending of measurements.

82

MP Management Subsystem

The MP Management Subsystem is the core of the MLF. The main work of the system
is done by the QoSManagers. For every provided or used service, either a ServerQoS-
Manager or a ClientQoSManager is created. The ServerQoSManager also creates the
interface for receiving MP updates, if not already created by another ServerQoSManager. The
ClientQoSManager is also used to query the monitor for MP updates.

When a new MP is received by any QoSManager, an object is created which can measure this
kind of MP. Both, the MP and the object are stored in a table for easy lookup. The current
prototype supports three MPs, which were defined in Subsection 5.2.1:

PMPs - PhaseMeasuringPoints : To attach a PMP, a QoSInterceptor is created. It is
added to the chain and phase which is specified in the PMP and before respectively after the spec-
ified interceptors. If the PMP which corresponds to the interceptor has its ISFAULT property
set, it fires if its handleFault-method is called. Otherwise it fires if its handleMessage-
method is called.

Every measurement contains a method-ID and a call-ID. The method-ID can be queried
from the CXF framework at the client and the service, but the call-ID has to be generated for
every call. A problem occurring it, that the call-IDs at the service and the client have to be
synchronized. Our framework design solves this by sending the call-ID with the message,
but the content of the message is not known at any phase in the message processing process.
To solve this, multiple IDInterceptors are used. When a client sends a message, an ID-
Interceptor creates a permanent call-ID. When the message is received at any other
location, a temporary ID is created and assigned to the call. Later, when the message has been
unwrapped, the call-ID is read from the header and assigned to the message. To avoid wrong
IDs, all events with the old IDs have to be renamed in the sending system. This also means that
messages with temporary IDs can not be sent until the have received their corrected, permanent
call-IDs. The Sending Subsystem provides support for this.

RMPs - RepeatedMeasuringPoints : Every RMP is attached via a RepeatedExecute-
Measurement object. It converts the interval value of the RMP from the specified value to
milliseconds and uses a ScheduledThreadPoolExecutor to execute a task periodically. The task
adds an event to the Sending Subsystem and immediately requests sending.

AMPs - ApplicationSpecificMeasuringPoints : To attach an AMP (AtMPs or AvMPs), the
QoSManager just registers the MP in the table. This type of MP does not fire automatically
but requires user intervention. The user can request a ApplicationSpecificTimeMea-
surement or ApplicationSpecificValueMeasurement object (see Section 6.1.2).
This object contains the functionality to add a new time- or value-event to the Sending Sub-
system and request sending. Sending is only allowed if the AMP was attached previously. It
is done through the sendValue() and sendTime() functions, depending on the AMP type.

83

1 A p p l i c a t i o n S p e c i f i c V a l u e M e a s u r e m e n t ampValueSender ;
2 A p p l i c a t i o n S p e c i f i c T i m e M e a s u r e m e n t ampTimeSender ;
3
4 ampValueSender= Mon i to r ingSys t em . g e t A p p l i c a t i o n S p e c i f i c V a l u e S e n d e r (

" h t t p : / / l o c a l h o s t : 3 0 0 0 / demo " , M e a s u r i n g P o i n t . SERVER, " FPS ") ;
5 ampSender . sendValue (new BigDecimal (2))) ;
6 ampTimeSender= Mon i to r ingSys t em . g e t A p p l i c a t i o n S p e c i f i c T i m e S e n d e r (

" h t t p : / / l o c a l h o s t : 3 0 0 0 / demo " , M e a s u r i n g P o i n t . SERVER, " myTime ") ;
7 ampSender . sendTime () ;

Listing 6.3: Using the Framework to Send AMP Data.

1 @Features (f e a t u r e s = ‘ ‘ qos . measu r ing . QoSMeasurementFeature ’ ’)

Listing 6.4: Annotation for Registering the Monitored Service

Sending Subsystem

The Sending Subsystem is used for caching and sending events from MPs. It keeps all
events in the right order through a queue. Sending is delayed to reduce sending overhead by
sending the events grouped and because of the temporary call-IDs (see Section 6.1.2).

When an event is added to the Sending Subsystem it is cached in a queue. It supports
changing the call-IDs of a group of events. The thread processes the queue until it reaches
its end or an event which has not yet received its permanent call-ID. It then sends all events
in one package to the monitor, preserving their order. If there are any more events in the queue,
they are send later, after a predetermined delay.

In the current prototype, the events are send to the monitor using Java RMI. Future versions
should rely on more platform independent methods (e.g., socket communication).

System Integration

The system is incorporated into an existing CXF application through the use of a Feature (see
Section 4.1.2). To use it, a simple annotation has to be added to the Java interface or imple-
mentation class (see Listing 6.4). When the service is initialized, the Feature is also initialized,
creating the necessary QoSManagers. If the Feature is added to the interface which the client
uses for the proxy generation, it also uses the Feature.

To use application-specific measurements (through AMPs), the Monitoring System pro-
vides operations to receive objects which can be used for directly sending these measurements.
The sender object can and should be reused, if needed. In the example (Listing 6.3), two senders
are requested to send measurements to a service. The first sends BigDecimal-valued “FPS”
information using the sendValue() function, the second sends a current timestamp using its
sendTime() function.

84

1 Q o S C o n f i g u r a t i o n . s e t ("MONITOR_MANGEMENT_ADDRESS" ,
" h t t p : / / 1 9 2 . 1 6 8 . 1 0 0 . 1 : 1 0 0 0 0 / qos−m o n i t o r ") ;

2 Q o S C o n f i g u r a t i o n . s e t ("MONITOR_MEASUREMENT_ADDRESS" ,
" / / 1 9 2 . 1 6 8 . 1 0 0 . 1 / QoSMonitor ") ;

3 Q o S C o n f i g u r a t i o n . s e t (" SENDING_IDLE_DELAY" , " 1 0 0 0 ") ;
4 Q o S C o n f i g u r a t i o n . s e t ("MAX_BATCH_SEND" , " 1 5 0 ") ;
5
6 Q o S C o n f i g u r a t i o n . s e t (" DISTRIBUTION_INTERFACE_ADDRESS " ,

" h t t p : / / 1 9 2 . 1 6 8 . 1 0 0 . 2 : 9 0 0 0 / q o s s e r v i c e m a n a g e r ") ; / / on ly s e r v i c e
7 Q o S C o n f i g u r a t i o n . s e t ("MY_ADDRESS" , " 1 9 2 . 1 6 8 . 1 0 0 . 3 ") ; / / on ly c l i e n t

Listing 6.5: Programmatic Configuration of the MLF

Configuration

The configuration for the MLF can be done programmatically through the QoSConfigura-
tion class. Both, client and service, support the MONITOR_MEASUREMENT_ADDRESS prop-
erty. It is used to specify the address of the monitor, for sending the measurements. They
also support the MONITOR_MANAGEMENT_ADDRESS property, which is used to define the
address of the monitor where current MPs can be queried. To configure the Sending Sub-
system, the SENDING_IDLE_DELAY property is used to define the delay which should be
waited if there are no new events to send. The MAX_BATCH_SEND property allows to specify
a maximum number of events to send to the monitor in one batch. Limiting this value prevents
a build-up of events without sending. A higher value improves performance by reducing the
calls to the monitor, but delays the sending of the events. Services support a DISTRIBU-
TION_INTERFACE_ADDRESS, to specify the Distribution Interface address for
this instance of the MLF. It is shared among all provided services. The client supports the
MY_ADDRESS property, which can be used to specify an address for the client.

6.1.3 Web Interface

The Web interface is used to add services, MDs and SLAs to the monitor. It is simply
a Web interface for the functionality provided by the monitors management and query Web
services. All shown data is received from the monitor, and all changes are directly committed to
the monitor. The interface is implemented as a Web application archive, using JSF. In addition
it uses JBoss RichFaces 3.3.3 [89] and Facelets [52] for its UI components.

The Web application is separated into two parts. The first part is the search for historical data
(past measurements). It allows to query and compare multiple metrics of multiple services over
a certain time span. The result is shown in a zoomable and pannable graphical form and in a
table (see Figure 6.1. The second part is the administration panel. It provides an overview of
the current SLA, monitored services and registered MDs which can be used in the SLA. It also
provides means to add, edit or delete them. Each editable component has its own add/edit page.
Validity checks are done by the monitor and validation errors are shown on the pages.

85

Figure 6.1: Screenshot of a Search Result in the Web Interface.

86

1 MONITOR_MANAGEMENT_ADDRESS= h t t p : / / 1 9 2 . 1 6 8 . 1 0 0 . 1 : 1 0 0 0 0 / qos−m o n i t o r

Listing 6.6: Configuration of the Web Interface (visualizer.properties)

Configuration

The interface must be configured in the file “WEB-INF/config/visualizer.properties”.
It supports a MONITOR_MANAGEMENT_ADDRESS parameter to specify the location of the
monitor.

6.2 DSL Transformation

The transformation process varies, depending on the DSL. Generally, all used DSLs are inter-
preted by a instance of Frag.

The MPDSL uses the syntax of Frag and is interpreted by Frag at compile time. Its definitions
are used later when an MD, using the MPDSL definitions, is transformed.

All other DSLs are used through the Java DSLResolver class. The resolver initializes a Frag
interpreter and executes a common initialization code. This code includes files for the MPDSLs
models and for the esper-generator, which is the main file for translating the MDDSL and
SLADSL documents. The resolver then calls the needed methods of the esper-generator.

The DSLResolver has four methods:

• SLA loadSLA(String slaCode,
Map<String,String> serviceNameToUriMap
Translates the SLA code and returns a SLA Java object. The serviceNameToUriMap
is used to translate the service names to its Uniform Resource Identifier (URI). It is derived
from the service specification. To translate the SLA it calls the loadSLA-method of the
esper-generator.

• MeasurementInfo loadMeasurement(String measurementCode)
Loads the name and the unit of an MD in a MeasurementInfo object. To get the
information it calls the loadQoSConcern-method of the esper-generator.

• List<MeasurementDescription> resolveAllMDsForService(
String serviceName, SLA sla,List<String> measurementCodes,
Map<String, String> serviceNameToUriMap)
Loads all MDs for a specific service. The sla parameter is the Java object which was re-
ceived from converting the SLA. It uses the loadQoSConcern-method of the esper-
generator to load all measurements into memory and then uses the generateMea-
surementDescriptionsFromService-method to get all translated MDs for this
service.

87

• List<MeasurementDescription> resolveMDsForAllUsingServices(
String measurementCode, SLA sla,
Map<String, String> serviceNameToUriMap)
Loads an MD for all services which are using it. It also uses the loadQoSConcern-
method to load the measurement and then uses the generateAllMeasurementDe-
scriptions-method to create a MeasurementDescription Java object for every
service which uses this measurement.

6.2.1 SLADSL

If an SLA changes, the interface sends the new SLA to the DSLResolver. It initializes a Frag
interpreter, loads the used measurements and lets Frag interpret the SLA using the “loadSLA”
method of the esper-generator.

The SLADSL is an external DSL which is interpreted using Frag’s DSL framework. At first,
the SLADSLParser uses the prepared rules to parse the DSL text into tokens. The structure is
rather simple, following the structure of the model. The conditions are parsed recursively. The
tokens are then mapped, using the SLADSLMapping. In the process of mapping, all tokens are
evaluated and inserted into the model at appropriate positions. For each type of token there is a
special mapping. The mapping works recursively, where the currently active object is sent with
the recursion and populated on the way. In addition to this filling of the model, there is a mixin
for the condition which simplifies the detection of used measurements for a single condition.

When the DSLResolver receives the SLA Frag object, it parses them into simple Java objects,
as the Frag objects are rather inconvenient to use. The result is returned to the interface. If
necessary, the Measurement and Distribution System then updates the used MDs
and notifies the affected services.

6.2.2 MDDSL

As the MDDSL is an internal DSL, it is written using the Frag language. The Web interface
receives the MDs and forwards it to the monitor. The translation of the MDDSL mixes a lot with
the SLADSL as the MDs are only fully interpreted if they are used in an SLA. If the SLA
changes, all MDs in all services are updated. If an MD changes, only this metric is updated
in every service it is used in. The Measurement and Distribution System of the
monitor provides the necessary special synchronization methods.

To translate the MDDSL, the received text is sent to the DSLResolver which executes the
loadQoSConcern-method of the esper-generator. The interpretation consists of exe-
cuting the Frag code. This would pose a security risk in an open system and requires an addi-
tional authentication system. This was, however, out of the scope of this thesis and not crucial
for demonstration of the general concept. The metric object is always named “concern”, so
the engine can easily inspect it after execution. It is added to a global list of concerns for later
use. The loadQoSConcern-method returns the name and the unit of the measurement.

88

A more concrete translation is done when an SLA is added, because the transformation needs
to know which services the MD is assigned to. Both, resolveAllMDsForService and
generateAllMeasurementDescriptions of the esper-generator use the gen-
erateMDForService-method. It uses a service’s URI and an MD to generate a Frag object
which contains the measurement name, the used service, the used MPs, and the used Esper trans-
formations. The transformations and used MPs are generated through mixins of the MDDSL
Metric object and functions and the MPs.

Beginning from the Metric object, the functions are called recursively until the MPs are
reached. Every function and MP has a generateEsper-method, which is used to trans-
form the function to EPL. Before creating the transformation, all used functions are transformed
recursively. The generateEsper method has three parameters: informationObj is used to
collect all needed transformations and used MPs, aggregationObj is used to inform the
current function of its “inherited” aggregation status (see Section 5.3.3) and service holds
the current service URI which is to be used. It returns the name of the function which is set as
the source of events which are generated by its transformation. That way, a new function can
use the name of its used functions to select its incoming events. The mixins of the different
MPs only add a Frag object to the list of used MPs, which contains the MPs parameters and the
generated name of the MP (see Section 5.3.3).

The resulting Frag objects are returned by the Frag interpreter, which converts them to Java
objects, which are easier to handle. They are then then sent to the Measurement and Dis-
tribution System, synchronizing them with the currently used MPs.

89

7. Evaluation

This chapter contains an evaluation of the proposed solution from this thesis. At first, the perfor-
mance and performance impact of the system are shown in a quantitative evaluation. Afterwards,
a qualitative evaluations highlights various aspects of the system, like the expressiveness of the
languages and trustability, in a critical discussion.

7.1 Quantitative Evaluation

The quantitative evaluation consists of various performance tests of the framework. Performance
can be measured at two locations: at the MLF and at the monitor. The MLF has a direct perfor-
mance influence on calls and the measurements of the framework. Therefore its impact has to be
minimized. The calculations are done by the monitor, therefore the MLF’s overhead lies in ob-
taining the data for the used MPs, and the sending to the monitor. As the monitor already queues
the received events, the performance of the MLF can be increased by reducing the distance to
the monitor.

The monitor itself only has an indirect influence on the measurements. If the monitor is over-
loaded, its response time can be low. This can delay the sending of events at the MLF which can
ultimately lead to a build-up of events at the MLF, decreasing performance. Another influence
is the used network capacity by the sent measurements.

7.1.1 Setup

The performance evaluation setup is composed of three computers in a 100mbit Ethernet net-
work. Every computer uses the Sun JVM version 1.6.0_27-b07.

• The monitor runs on a Windows Vista PC, using an Intel Core 2 Quad Q660 at 2x2,4 Ghz
with 3GB RAM.

• The measured service runs on a Windows 7 Laptop, using an Intel i3 M330 at 2x2,13
Ghz with 4GB RAM. The Jetty server of the Apache CXF framework is configured to use
between 10 and 50 parallel threads.

• The clients run on a Window 7 PC, using an Intel Core 2 Duo E6600 at 2x2,4 Ghz with
2GB RAM. Depending on the test, a custom client, using the MLF or Apache JMeter [56],
is used to generate the Web service calls.

The tests use the metrics which were presented in the motivating example (see Table 5.1), except
for the application-specific metrics, because they are not calculated based on the Web service

91

Metric PMPs RMPs AMPs transformations
MTTR 0/2 0 0 6

Network Latency 3/2 0 0 6
MTBF 0/2 0 0 5
MTTF 0/2 0 0 6

Server Availability 0 1 0 5
Search Result Accuracy 0 0 1/1 5

Client Availability 0/2 0 0 7
Error Rate 0/2 0 0 7
Latency 3/2 0 0 6

Load 1/0 0 0 3
Proposition Quality 0 0 0/1 3
Round Trip Time 0/2 0 0 3
Processing Time 3/0 0 0 5

Total 10/16 1/0 1/2 67
Unique 6/5 1/0 1/2 60

Table 7.1: Comparison of the Metrics, the Generated MPs (Service/Client) and Transforma-
tions.

calls. Table Table 7.1 shows a comparison of the metrics, concerning the MPs they use and the
transformations which are generated based on their description. The full text of the descriptions
can be found in Section B.1.

The SLA which was chosen for these tests uses every metric, but makes sure that no actions fire,
to keep the event log clean. It can be read in Section B.2.

Testing of every metric was achieved by implementing a test run which shuts down the service
in certain intervals while the clients and the monitor keep running. This leads to a reproducible
and testable scenario. To show all metrics, the complete system runs for 30 minutes, with three
intentional service failures (three minutes after minute 5 and one minute after minutes 15 and
22). The client initiates 5 calls per second. The results are split into three graphs, according to
their units and their purpose (see Figure 7.1). The number of events which are generated by the
transformations, which ultimately build these measurements, is discussed in Subsection 7.1.3.

92

Figure 7.1: Example Measurements in Three Graphs

7.1.2 Performance of the MLF

One big problem when measuring service calls is the overhead the measuring introduces. There-
fore this approach tries to minimize the measurement impact by (re)using interceptors and by
using a separate monitor. Nonetheless, the interceptors and the process of sending the measure-
ments to the monitor introduces an overhead. Therefore, this section evaluates the performance
of the MLF at the client and the service. To avoid any influence by the event calculation, the
monitor was set to receive events but not calculate any metrics. At the used configuration (using
all shown metrics), the service has 8 unique PMPs (correspond to interceptors) and the client
has 7 unique PMPs (see Table 7.1).

A first noticeable point is, that the measurement result using interceptors is not the same as with
inline measurement, as the interceptors are located at a different position. Therefore a kind of
accuracy can be computed when using the framework. The values were obtained by recording
10 calls per second for 10 minutes, while the processing time is about 100ms. Only the last
minute was used to calculate the values, to avoid too much influence of the Java optimization,
and the values are rounded to six decimal places. When comparing the inline round trip time
to the framework-measured Round Trip Time, the inline measured time is always bigger than
the framework-measured one. The mean of the differences lies at 0,476848 milliseconds with a

93

variance of 0,006429 at the service computer. The inline processing time is always smaller than
the one measured from the framework. The mean of the differences lies at 0,210954 milliseconds
with a variance of 0,002547 at the client computer.

Different parts of the MLF have different influence on the measured results. The measurement
itself, done by the interceptors, and the infrastructure for ID-generation and -alignment have a
direct influence on the call duraction. The sending process runs in a separate thread and has an
indirect influence.

To measure the overhead of the framework, one possibility is to calculate the overall time a call
takes. The other possibility is to measure the overhead which is directly generated through the
runtime of the interceptors.

Overall measurement

Figure 7.2: Performance of the MLF at the Service

To find the overhead of using the framework, the service is tested under different loads. The
client essentially uses the same system but at much lower calls per second. At very low call
rates (below 100 calls per second) the difference is not significant. Also measuring of the client
is always influenced by the used service, therefore only the service is measured at high call rates.

Apache JMeter was used to generate the calls for the service performance evaluation. It rounds
the call duration to milliseconds. In earlier tests Java optimizations led to a better performance
when using high call frequencies. This could be reduced by using a warm-up period of three
minutes before measuring for three minutes. In the warm-up period, as many calls as possible
are sent to reduce the optimization influence. This procedure is done for the service with an
activated MLF and without the MLF. Figure 7.2 shows that at low call rates the difference is not
measurable with the used measurement technique. It can be seen that the overhead of using the
framework is very small, but increases slightly when using higher call rates.

94

Interceptor overhead

Figure 7.3: Direct Influence of the Interceptors

A part of the total overhead is caused by the used interceptors. As the interceptors are called
serially and synchronously, their run time has a direct influence on the round trip time of a service
call. To directly measure this overhead, the run time of the interceptors at different call rates was
averaged over three minutes. Before measuring, a warm-up period of three minutes was used, as
in the overall measurement. The QoSInterceptor share shows the time it takes to get the current
time and add it to the measurement queue. IDInterceptor time is the time it takes to add call-
and method-IDs to the message and replace old ones if necessary. The measurement shows
that the IDInterceptor generally takes more time than the QoSInterceptor. When
comparing percentages, the QoSInterceptor starts at 15,2%, at 500 calls per second the
share grows to 25,8%.

7.1.3 Performance of the Monitor

It is more difficult to measure the performance of the monitor, as the events are queued when they
are added. Therefore the response time is not a useful indicator of performance. When looking
at performance tests for Esper, events per second are used to compare performance on different
computer systems. As first tests showed, causality added considerable memory overhead. To
avoid memory overflows, causality was deactivated for these tests. Nevertheless, it does not
influence the number of events generated. For a discussion on this, see Subsection 7.2.2.

To get an overview of the load the framework generates, the generated events and the events
coming from the MLF are counted. [37] recommends the following parameters for the Sun Java
VM: -Xms2g -Xmx2g -XX:NewSize=128m -XX:MaxNewSize=128m
This sets the initial and maximum heap size to 2 GB and the heap memory size for fresh ob-
jects to 128 MB. Service and client are configured to send at maximum 150 events in one try
(MAX_BATCH_SEND) and to wait 100ms if idle (SENDING_IDLE_DELAY). To get the neces-

95

Figure 7.4: Event per 10 Seconds, Generated From the Framework

sary event numbers, Esper statement metrics were used. Esper statement metrics allow to output
the number of incoming (input), and outgoing (insert and remove stream) events. In general,
the activation of the performance metrics impacts performance, but as the interest only lies in
obtaining the event counts, this is not relevant in our context. The number of transformations
and MPs which generate events can be seen in Table 7.1.

To achieve the results from Figure 7.4, the performance metrics were queried every ten seconds.
The statements were grouped by metric and the event count summed up. Some statements are
shared by multiple metrics (e.g., by RoundTripTime and Latency). The first diagram in the
figure shows the metrics which generate a lot of events regularly. Visible peaks which follow
gaps are caused by delayed calls at the borders of the query interval. The second diagram shows
the rest of the metrics, which generate few events over a longer timespan. In addition to the
events generated by the transformations, every constraint fires an event if one of its metric values
changes. If it is violated, it fires events, depending on the repetition type (see Subsection 5.3.2).
For every ConstraintEvent that is fired, an additional ActionEvent is created.

96

7.2 Qualitative Evaluation, Open Problems and Limitations

This section contains a critical evaluation of the results of this thesis. It discusses different
aspects, like the impact on the system and performance, the expressiveness of the DSLs, security
and trust. At the end, possible areas of application are mentioned.

7.2.1 Platform Impact

When using an additional framework for QoS monitoring, the impact of this decision has to be
weighed. One goal of our system is to be easily integrated into existing applications. Another is
to be as platform independent as possible.

Regarding the first point, there is not much need for change, when incorporating the measure-
ment functionality into other systems. To use the current prototype, all that is needed is adding
the feature to the Web service interface (see Section 6.1.2) and some minor configuration of the
measurement system (see Section 6.1.2). An important thing to consider is, that there must be
an MLF for every supported Web service framework. The system is independently configurable
and uses an additional and configurable interface for MP management. Nonetheless, two things
have to be considered when using the framework. First, it sends a call ID with the message.
This adds a bit of overhead to the SOAP message, concerning the size, but has no influence on
the rest of the message content, as it is send through SOAP headers. Second, it influences the
performance of the measured system by using system resources and by adding the call ID to the
SOAP message.

Concerning the platform independence, the monitor itself must not be platform independent as
it is decoupled from the MLF, which resides at the clients and services. In the current prototype,
the MLF uses Java RMI for communication with the monitor. A first Web service-based solution
proved to be very slow and inefficient. In future versions, this should be changed so a more
system independent method, like sockets. The MLF implements measurement functionality for
a certain system and can therefore not be totally system independent. This highlights a design
challenge for MPs. It is possible to use the MLFs as a layer for platform independence, but
this requires very general MP definitions which then could be mapped to the currently used
architecture by the MLF. This would reduce the granularity of where the MPs are “attached”
and might not be wishful. However, if fine-grained MPs, like the demonstrated PMPs, are used,
the metric is dependent on a specific MLF (in our case the MLF for Apache CXF). This is a
problem especially for clients, where it can not always be said beforehand, which framework
the client uses. The more fine grained the MP, the more platform dependent the metrics get. So,
depending on the use case, different granularity MPs might be interesting.

7.2.2 Performance Impact

Another influence on the system is caused by the resource usage of the framework, which re-
sults in a slow down of the measured application and a skewing of the measurement results.
Concerning performance, there are two relevant parts of the system which should be regarded
separately.

97

The MLF is the first part. As already mentioned in the quantitative evaluation, it has a direct in-
fluence on the calling process. The evaluation showed that the performance of the framework is
not very big, especially concerning the measurement and the ID handling. ID handling, which is
necessary for correlation of the measurements, has an additional influence of the measurements,
as a call ID has to be sent with the message. This is, however, a lot less than sending measure-
ment results with the message and allows to calculate metrics which are combined from client
and server measurements. As the sending of the measurement is done in a separate Thread, it
has no direct influence, but as the number of events can be very high (depending on the MDs),
the sending overhead must not be ignored. Therefore it is very important to keep the send-
ing overhead small by choosing an appropriate sending configuration (MAX_BATCH_SEND and
SENDING_IDLE_DELAY) and by keeping the monitor close to the MLF. Keeping the monitor
close to the MLF is not always possible for clients, but clients generally have much less calls per
timespan than services. A big performance improvement came from substituting Web service
calls with Java RMI calls in the prototype. A socket-based solution, as it is also recommended
in [115], would further improve the call times and the system independence.

The monitor has only indirect influence which is further reduced by enqueueing the measure-
ments. If the monitor blocks longer, because of an overload, the resulting delay can, however,
cause a accumulation of events in the MLF which increases its resource consumption.

One reason for possible performance problems at the monitor is the number of transformations
and events. The generated events can be seen in Figure 7.4, while the number of generated
transformations is listed in Table 7.1. Both these values, and the incoming events of each trans-
formation have an impact on the performance of Esper. As the proposed system uses limited-
functionality DSLs for the generation of MDs, most metrics could be expressed using less trans-
formations and therefore generating less events. Although the Esper solution patterns [40] advise
to split complex statements into simpler substatements and smaller statements can be reused by
other metrics, it can be assumed that an EPL-only version would, in many cases, be more effi-
cient. Often functions add statements which could be combined with other statements to improve
performance. Aggregations with sliding windows lead to a rapid increase in events by causing
two output events per input event. This is especially a problem when aggregating over many
calls, as for example in Latency, ErrorRate or ClientAvailability. To decrease the
sent events, tumbling windows could be used instead of sliding windows. Instead of adding two
events per incoming event, this only adds one event per defined timespan. If sliding windows
are required, another solution could be the introduction of new functions. The main thing to
notice is, that metric designers must be well aware of the underlying event based system to write
efficient metrics. For example, some of the current metrics (MeanTimeBetweenFailures,
MeanTimeToFailure and MeanTimeToRepair) currently use client calls to determine if
the service is available. This could be made more efficient, if the mechanisms for ServerA-
vailability would be used. ClientAvailability itself could be improved by using a
tumbling average aggregation.

Another problem of the monitor is its memory consumption. A problem which occurred early
in testing was the huge overhead of the causality mechanism. The system stored references to
all events which were causing another events in the caused event. For big aggregations over

98

MD Monitor 1a MD Monitor 1b MD Monitor 2

Constraint Monitor 1

MD Monitor 2+3 MD Monitor 3

Constraint Monitor 2 Constraint Monitor 3

Action Handler 2+3Action Handler 1

Service 1Service 1 Service 2Service 2 Service 3Service 3

Figure 7.5: Potential Scaling of the Monitor.

lots of events, this caused the heap to overflow. To counter this, causality was deactivated for
the MDDSL functions while testing. As a possible solution, causality could be made optional
for all functions. This way, developers can select themselves if events should be retained for a
function. In ClientAvailability, storing the events of thousands of calls could fill the
heap, but averaging over the last 20 times to failures might be acceptable. A rule of thumb could
be to keep aggregation windows short, and tumbling, if possible.

The general problem of the monitor requiring lots of events and memory could be handled by
splitting the monitor into multiple instances. One instance could be responsible for one group
of services, one service or even one metric. This instance should be close to the service, as this
is where most events are generated. To add additional scalability, the computation of a single
metric can also be split over more than one computer system. A potentially very useful sepa-
ration could be introduced by separating the event system of the monitor according to different
layers of events. The first layer is the transformation of the input events to metric values. As
mentioned before, this could also be split by metrics and/or services. The next layer computes
the constraints and determines which actions are to take. The last layer received action events
and executes the corresponding action. An image of this structure can be found in Figure 7.5.

99

7.2.3 Expressiveness of the DSLs

The proposed solution uses three DSLs with different goals and different stakeholders. This
subsection deals with the expressiveness of each of the languages and possible extensions.

MDDSL

The MDDSL provides the functions which are used to build the MDs, which are used to cal-
culate the metrics. Based on a fixed set of MPs, the expressiveness of the MDDSL limits the
possible supported metrics. Additional MPs could extend the functionality further, but this re-
quires Java implementation effort. If there are no special reasons, MPs should be kept simple
and calculations done using the MDDSL.

The functions of the MDDSL can be used for value comparisons, transformations of values,
conditions, calculations and different aggregations. They are deliberately kept very general to
support a wide rage of features, to keep the number of functions small and to foster reuse. To
determine the necessary functions, interesting QoS attributes were collected and examined. This
means that the functions are not a complete set. Also, application-specific metrics are very
diverse, which makes the selection of appropriate general functions difficult. As the granularity
of the functions is very coarse, often many functions are needed to express a certain metric. This
creates many events which would not be needed with a more compact transformation. Through
the use of Frag, it is however easily possible to add new functions.

The current framework already supports different types of measurements. Performance-based
metrics are supported on a per-call, per-method or general level, availability-based metrics can
be implemented and even basic application-specific metrics are supported. Application-specific
metrics are difficult to handle, especially when they should be associated with a specific call, this
is discussed in the MPDSL section. General metrics are also very diverse, but the development of
the language showed that many attributes can be calculated using a small set of functions. If the
MPs are flexible enough, it is often possible to add new types of metrics without adding functions
or MPs. For example, “scalability” could be implemented as the relation of performance to load.
Other metrics require additional MPs as sensors, but the rest of the calculation is very similar to
other measurement (e.g., reliability - how good does the service fulfill the SLA).

Currently, most of the extensibility of the framework is achieved by adding new MPs. However,
the MDDSL can also be extended by adding new functions to the DSL using the Frag program-
ming language. When adding such a new functions, only a class and a generateEsper-
method for the function has to be generated. This method must correspond to some rules and
conventions. It should handle aggregation types (like SAME_CALL and SAME_METHOD), it
must generate a name and it must generate a transformation which generates events with the
name of the function and its parameters as the source. For performance and extensibility rea-
sons it might also be interesting to add a function which can be used to dynamically add Esper
statements inside of metrics. This would reduce the need to create additional functions in Frag.

A big limitation of the current MDDSL lies in type support. Currently only floating point mea-
surements are supported. [113] mentions nominal and ordinal properties, which could also be

100

implemented. Both types can be simulated by using fixed values, but real support would be
more convenient. Textual properties are not supported at all. Measuring currently uses long-
timestamps, calculations use BigDecimal values. Using BigDecimal instead of double
for more precision added some problems. BigDecimal values can not be divided easily, as
sometimes the result is not terminating in decimal notation, therefore a “division”-function had
to be added for calculations. This function allows to specify a precision and a rounding method
(for an example see the Load function in Section B.1.1), which are used if there is no terminat-
ing result . The Esper AVG aggregation supports BigDecimal, but in some cases the resulting
average value can not be expressed in a decimal notation. Therefore a customized aggregation
function had to be defined, which is used in the MDDSL AVG function. If the average is not
expressible in decimal notation, it rounds the value according to the parameters.

Another future challenge is the initialisation of the metrics. This problem has two manifesta-
tions. First, when using aggregations, calculations, etc. any values which were measured before
the system was turned off and on again, are lost. One effect of this is that any long running
metrics, like MeanTimeBetweenFailures, do not work correctly if the system was shut
down in between. The calculation function can fire only if all used values are present. While
this seems obvious at first, if one needs to calculate a relation like a/a+b where a is the number
of successful calls and b is the number of erroneous calls, this leads to problems. As long as
only successful calls (a) are received, the calculation does not send out new events. To be able
to compute this, b must be initialized with zero, but a must not be initialized, as this would re-
sult in a division by zero. For some functions it might be feasible to initialize some values with
defaults, but some require historical data. This data could be acquired from a historic database,
but this requires additional storage of low-level events.

Another interesting fact, caused by the lack of historic data for a certain measurement, can be
seen at the beginning of the ErrorRate measurement in Figure 7.1. The ErrorRate is nor-
mally calculated over a timespan of five minutes. Directly after the start, this timespan is not yet
available, leading to a much stronger influence of a single error to the total measurement. This
could already trigger some actions. When changing a metric in the monitor, all modified state-
ments (e.g., their aggregation times) are reset. Old aggregated values are no longer used in the
new statement. This is caused by Esper’s design and can not easily be changed. All statements
which receive events from theses statements are also updated and reset, as the naming conven-
tion requires the statements to change their “source” parameter. At least limited initialization
support should be implemented through special MDDSL constructs or function properties.

A limitation concerning time handling has already been mentioned in Section 5.3.3. The monitor
can currently only aggregate over monitor time. A “manual” aggregation scheme which used
MLF could be implemented, but this would have problems with events falling out of aggregation
windows. If a periodic timestamp call was sent by the service, this could be used to advance
time. This would, however, only be used for the services, and make the monitor more dependent
on a trustable MLF.

An interesting extension for the metric definition would be the inclusion of a metric ontology.
This could make our measurements better comparable for semantic based systems.

101

SLADSL

The current SLA is kept very simple to support the corresponding stakeholders. It supports con-
straints on single services and actions if those constraints are violated. For smaller applications,
this might be acceptable, but there are some circumstances that require additional features of the
SLA.

[107] proposes an ontology which supports different units and conversions between them. In
our system, all metrics use a single unit. Inside the MD, the values are converted statically to
this unit via event processing. The SLA must use the same unit when referencing the metric.
This could be improved by using automatic unit conversions when interpreting the SLADSL.
This would reduce the event count of most metrics and make editing the SLAs easier.

To make editing and metric generation more graphic, aggregation functions could be added to the
SLA. This could allow to formulate constraints like “80% of the processingTime-values in the
last 2 minutes must be smaller than 10ms” or similar. Also current default metrics which already
calculate means or sums could be simplified (e.g., TimeToFailure instead of MeanTimeToFailre)
and only aggregated in the SLA. When using the split monitor variant from Subsection 7.2.2,
this could also shift some of the load to the lesser used constraint monitors, if wanted.

Parametrization of metrics could further improve the SLADSL. This would also impact the
MDDSL, which then must support placeholders for parameters. Example parameters could
include aggregation window sizes, maximum waiting times or even calculations. To support the
measurement of specific methods of a services interface, it would also be required to add method
name parameters to the metric. Otherwise, the MDs would be dependent on the service, which
is discouraged. The method-ID is already present for PMPs, therefore a change would only
require the addition of parameters to metrics.

Some works require an SLA to have additional attributes, e.g., a validity period [25]. This is
not supported at the moment, but could be at future iterations. Another limitation is the support
of multiple services but no exact specification of clients. With the current solution it is neither
possible to define constraints which constrain a single general client, nor a single manually
specified client. Support for the first could be added by adding a SAME_CLIENT aggregation
type, which can be added in parallel to SAME_CALL or SAME_METHOD. The second could be
supported by adding filters which filter by client address. Both solutions require a unique client
identification which must not only consist of the IP address, but of an additional identifying
token. Metric also can not be calculated over multiple services, caused by the structure of the
SLA

Some interesting approaches can be seen in literature. Different “QoS Levels” are used to pro-
vide different QoS guarantees to different clients [105]. This is neither supported by the SLA
nor by the framework itself. The current solution only monitors QoS and is not used for QoS
management. To monitor such a setup, it would be required to implement client identification,
as mentioned before. The second interesting approach is “Soft Contracts”. [90] uses probability
distributions to detect possible future SLA violations. This could be used to fire warning actions
before violations actually occur, therefore preventing punishments.

102

MPDSL

The MPDSL uses the Frag language to build an MP in form of a class, making it highly flexible.
An MP only consists of parameters which have to be understood and interpreted by the MLF.
Concerning MPs, the MLFs could be extended in a variety of ways.

As already mentioned before, the granularity of MPs is difficult to find. When using a flexible
monitor, the MLFs could advertise their supported MPs and the monitor could choose which
ones to activate, based on the measurement. The need for negotiating monitoring capabilities is
mentioned in [20], although on another level of granularity. Conversions between different MPs
are also an option.

A big bonus of using the MPDSL is the extensibility it supports. The following list of possible
new or changed MPs is by far not complete. It should also be considered, that an MLF must not
reside at the client or service, but all it needs is a interface for the MP distribution.

• Application-Specific MPs are currently very simple. It is not possible to associate an
application-specific measurement with a single call, as the implementation of the MLF
does not support this. This was a deliberate decision, as adding this would have had a
much higher influence on the application as is was the goal of this thesis. For some uses,
this might not be so important.

• PMPs could be extended to support other locations than services or clients like, for ex-
ample, SOAP intermediaries. This could also be used to simulate proxy-based measure-
ments, where appropriate. When monitoring compositions, an MLF could exist for the
whole composition, and an extended PMP could be specified to attach to a location inside
a used service. VRESCo, for example, uses TCP monitoring, which could also be added
through additional MPs.

• A very interesting MP could be used to measure the adherence to an SLA. This can be
used to measure a kind of reliability.

• Some MPs could support active polling of resources. That way, MPs combine the func-
tionality of agents and probes from [115]. In addition, this would enable the framework
to measure system which lie outside of its influence.

• For an even better extensibility, an MP in an MLF could act as an adapter for another
measurement framework.

• To better support application-specific measurements, special MPs could be added which
extract data from requests and/or responses via XPath. While this could lead to a more
flexible QoS measurement and could also shift some measurement to the application-level
if needed, the usage of XPath could also break streaming, as the whole SOAP message
must be read to build up a document model.

The last two types of MPs would provide the most benefit, if the framework would support
textual data as values.

103

7.2.4 Security and Trust

An important topic, especially for publicly available software is security. At the moment, the
prototype does not support authentication. This could, however, be implemented easily. To be
sure that a measurement comes from a certain service, each service could either be authenticated
using a secret keyword or by using encryption. Both could be stored at the monitor with the
service registration. For most clients this is of no use, as client are often not known before
runtime. To make sure measurements can be tracked to a client, at least am IP address should be
extracted from the request and handed down for some measurements by using causality. It might
even be interesting to allow SAME_CLIENT aggregations in the MDDSL. For static clients,
registration and automatic MP updates could be added. On the other side, services must be sure
that MP updates are legitimate, so notifications from the monitor must also use authentication.
In this case, a digital signature would be an appropriate means of authentication. For clients,
who request MP updates, this would also provide additional security. Authentication should
be provided at messaging framework level to avoid overhead from processing unauthenticated
requests and therefore open doors for denial of service attacks.

The above measures can make sure that a measurement comes from the right source, but as the
service providers generally have interest in manipulating measurements to their benefit, steps
have to be taken to prevent fake measurements. One problem stems from the way time is man-
aged in the system when using PMPs or RMPs. As already mentioned in Section 5.3.3, time
handling is a challenge in a distributed system. When using the time at the MLF, the clock
could possibly be subject to manipulations by the service provider, event though the Java Sys-
tem.nanoTime() is used instead of System.currentTimeMillis(). Another possi-
bility to manipulate the time is the editing of messages which are sent to the monitor. At the
moment, the client generates call IDs. The monitor can not be sure that the client does not use
two identical call IDs in short succession, which would disturb the event calculation.

To solve these challenges, there are two complementary solutions. First, the monitor could
verify the events. As the monitor is agnostic of the measured frameworks, the knowledge must
come from the metric designers. Some verifications might be added to the DSL, or additional
EPL statements could be added to check for manipulation attempts (e.g., duplicate phases for
one call ID, backward running time, etc.). Another possibility for monitoring services could be
to use regularly sent events to check for discrepancies in local and remote time. [57] proposes
the use of client feedback to verify measurements at the monitor. The other solution is provided
by using a trusted module. This could be difficult, as the measurement itself is done at the
clients/services CXF framework. If would be required to check for the identity of the attached
MPs regularly and to implement the MLF in a tamper-proof way. This could provide almost
impossible if installed on a foreign computer system.

104

7.2.5 Areas of Application

Based on the evaluation above, there are two relevant areas of applications. First, it could be
used for the testing of a service prior to publishing. At this constellation, some of the challenges
can be easily cast aside. Especially security and trust can be neglected. On the other side, the
metric distribution system would only be useful if the measured system is very complex.

Another possibility is to use it on a running productive system. While the prototype is not yet
suitable for any use in a productive environment, future versions could be used to monitor such
systems. In that case, all of the above mentioned challenges, as well as benefits apply. Special
care must be put on checking trustability, platform-independence (especially for the clients) and
performance. A benefit of this system is, that it can easily be deactivated at runtime without any
negative effects. If no metrics are used, the only influence on the measured system is the used
memory and the existance of the Distribution Interface (only at services).

105

8. Conclusion and Future Work

The SOA paradigm gets more and more widespread and many companies decide to use services
for their infrastructure. Big corporations like Amazon [4] provide additional Web service for
different purposes. This leads to a wide availability of services. The opportunity to use a variety
of foreign services directly or via compositions makes it more important to monitor the service
quality. The contracts are defined using SLAs. In literature, there are lots of solutions for service
monitoring and QoS managing, but many lack a detailed specification of how to measure specific
QoS metrics.

One of the goals of this thesis was to make the metric specification more detailed, so that the
exact measuring description can be compared. The second research goals was to find a new
method how we can monitor many QoS properties of a service with as less impact on the ser-
vice as possible. The final goal was to find out how these measurements can be collected and
analyzed. The solution should have a minimal performance footprint and should have as less
influence on the service implementation as possible. It should also be able to measure a broad
spectrum of QoS values and remaining extensible for new, yet unspecified, measurements.

To achieve this, several DSLs were used. Each has a different purpose and is used at a different
time. The SLADSL is used for SLA description, the MPDSL specifies measuring points at the
measurement location and the MDDSL is used to describe metrics, based on the MPs defined in
the MPDSLs. Metric descriptions are collected at a centralized monitor and are used in an SLA.
The used measuring points are distributed through a distribution system to the corresponding
measurement locations. The measurements are sent from the locations directly to the monitor,
where they are processed, using a CEPs framework. Potential violations of the SLA are then
detected and appropriate actions, which were specified in the SLA, taken.

This thesis showed that DSLs are well suited for the purpose of describing SLAs and how to
measure certain metrics. As application-specific QoS properties are very diverse, the MDDSL
should be extended to allow for more support of application-specific metrics. A literature review
shows, that the currently used SLA also has room for improvement by adding more functionality.

Performance impact on the measurement location is negligibly small, whereas the central moni-
tor proves to be a potential bottleneck in the scenario. Nevertheless, the event-based structure of
the monitor makes it easy to split it up, providing good scalability, from the service to the metric
level.

In total, it can be said, that the measurement of QoS and the description of SLAs is of a very wide
scope. Therefore many additional features can still be added to form a complete measurement
solution. The flexibility and extensibility of the framework, especially the use of DSLs and the
event-based structure of the monitor, facilitate the adding of new functionality and make this
solution very useful.

107

8.1 Future Work

As already said, the architecture of the system leaves a lot of room for extensions. An interesting
step would be to test the system under circumstances, which are closer to the real world, like
using more, distributed, clients and therefore a more realistic load. This could lead the way to
better performance optimizations.

To make the system better usable in practice, the centralized monitor should be split up into
a set of smaller monitors, as proposed in Figure 7.5. Doing this requires some modifications
of the monitor code, but the structure allows for an easy separation. This would improve the
monitors performance and remove the monitor as a bottleneck. Another important step would
be to add authentication to the MLFs and the monitor, to prevent attacks from external sources,
and better support for trustability. One thing that is not yet implemented in the prototype is
the implementation of optional causality. As the evaluation showed, the proposed method of
adding causality leads to an extensive use of memory in some aggregations. Making causality
optional for every metric could keep both advantages, the lower memory profile and the keeping
of causality, where necessary. To further improve the prototype, sockets should be used instead
of Java RMI, as this would increase performance and platform-independence.

To improve the area of use, the SLADSLs should be extended to support additional features
like a validity period, unit conversions, aggregate functions and potentially soft contracts. If
the MDDSL is updated to support parameters for MDs, the MDDSL can better support client-
side constraints and make SLAs more expressive. More functions for MDs would not only
allow to define a broader spectrum of application-specific QoS metrics, but might also improve
performance by reducing the number of used functions for each metric. An improvement of the
usability of the system could be achieved by providing a detailed instruction of how to add new
functions to the MDDSLs and a guide how to design MPs.

108

A. List of Abbreviations

AOP Aspect-oriented Programming

AMP Application-Specific Measuring Point

AtMP Application-Specific Time Measuring Point

AvMP Application-Specific Value Measuring Point

API Application Programming Interface

BPEL Business Process Execution Language

CEP Complex Event Processing

DBMS Database Management System

DSL domain-specific language

DSEL domain-specific embedded language

EBNF Extended Backus-Naur Form

ECA Event-Condition-Action

EPL Event Processing Language

ESP Event Stream Processing

GPL general purpose language

HTTP Hypertext Transfer Protocol

JMS Java Message Service

JMX Java Management Extensions

JPA Java Persistence API

JSF JavaServer Faces

MIME Multipurpose Internet Mail Extensions

MD Measurement Description

MDDSL Measurement Description DSL

109

MLF Measuring Location Framework

MP Measuring Point

MPDSL Measuring Point DSL

MTBF Mean Time Between Failures

MTTR Mean Time To Repair

NTP Network Time Protocol

OASIS Organization for the Advancement of Structured Information Standards

OCL Object Constraint Language

PMP Phase Measuring Point

POSET partially ordered set

POJO Plain Old Java Object

QoS Quality of Service

QuaLa Quality of Service Language

RPC remote procedure call

RMI remote method invocation

RMP Repeated Measuring Point

RTML Run-Time Monitor Specification Language

SLA Services Level Agreement

SLADSL Services Level Agreement DSL

SLO Services Level Objective

SOA Services-Oriented Architecture

SOC Service-Oriented Computing

SOAP Simple Object Access Protocol

SQL Structured Query Language

UDDI Universal Description, Discovery and Integration

UI user interface

URI Uniform Resource Identifier

110

URL Uniform Resource Locator

UML Unified Modeling Language

VRESCo Vienna Runtime Environment for Service-oriented Computing

WS Web service

WSCol Web Service Constraint Language

WSDL Web Services Description Language

WSLA Web Service Level Agreements

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WSOL Web Service Offerings Language

WS-CDL Web Services Choreography Description Language

W3C World Wide Web Consortium

XML Extensible Markup Language

111

B. Listings

B.1 Used Metrics

B.1.1 Standard Metrics

Network Latency

1 ## NETWORK LATENCY ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " NetworkLatency "]
3 s e t m i l l i L a t e n c y [desc : : CALCULATION c r e a t e]
4 s e t t o t a l S e n d T i m e [desc : : TIMEBETWEEN c r e a t e]
5 s e t f r o m P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
6 $ f r o m P o i n t phase C l i e n t O u t S e n d
7 s e t t o P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
8 $ t o P o i n t phase C l i e n t I n R e c e i v e
9 $ t o t a l S e n d T i m e from $ f r o m P o i n t

10 $ t o t a l S e n d T i m e t o $ t o P o i n t
11 $ t o t a l S e n d T i m e a g g r e g a t i o n SAME_CALL
12 $ t o t a l S e n d T i m e maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 2

−u n i t MINUTES]
13 s e t s e r v e r R o u n d T r i p [de sc : : TIMEBETWEEN c r e a t e]
14 s e t f r o m P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
15 $ f r o m P o i n t phase S e r v e r I n R e c e i v e
16 s e t t o P o i n t [de sc : : UNION c r e a t e]
17 s e t f a u l t P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
18 $ f a u l t P o i n t phase S e r v e r F a u l t O u t S e n d
19 s e t o k P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
20 $ o k P o i n t phase Se rve rOutSend
21 $ t o P o i n t e v e n t s [l i s t b u i l d $ f a u l t P o i n t $ o k P o i n t]
22 $ s e r v e r R o u n d T r i p from $ f r o m P o i n t
23 $ s e r v e r R o u n d T r i p t o $ t o P o i n t
24 $ s e r v e r R o u n d T r i p a g g r e g a t i o n SAME_CALL
25 $ s e r v e r R o u n d T r i p maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 2

−u n i t MINUTES]
26 $ m i l l i L a t e n c y c a l c u l a t i o n ‘ (TST−SRT) /1000000 ‘
27 $ m i l l i L a t e n c y p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t TST $ t o t a l S e n d T i m e −s e t

SRT $ s e r v e r R o u n d T r i p]
28 $ m i l l i L a t e n c y a g g r e g a t i o n SAME_CALL
29 $ m i l l i L a t e n c y maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 1

−u n i t MINUTES]
30 $ c o n c e r n v a l u e $ m i l l i L a t e n c y
31 $ c o n c e r n u n i t MILLISECONDS

113

Latency

1 ## LATENCY ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " La tency "]
3 s e t m i l l i L a t e n c y [desc : : CALCULATION c r e a t e]
4 s e t roundTr ipTime [desc : : TIMEBETWEEN c r e a t e]
5 s e t f r o m P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
6 $ f r o m P o i n t phase C l i e n t O u t S e t u p
7 s e t t o P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
8 $ t o P o i n t phase C l i e n t O u t S e t u p E n d i n g
9 $roundTr ipTime from $ f r o m P o i n t

10 $roundTr ipTime t o $ t o P o i n t
11 $roundTr ipTime a g g r e g a t i o n SAME_CALL
12 $roundTr ipTime maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 2

−u n i t MINUTES]
13 s e t p r o c e s s i n g T i m e [desc : : TIMEBETWEEN c r e a t e]
14 s e t f r o m P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
15 $ f r o m P o i n t phase S e r v e r I n I n v o k e
16 $ f r o m P o i n t b e f o r e [l i s t b u i l d

‘ o rg . apache . c x f . i n t e r c e p t o r . S e r v i c e I n v o k e r I n t e r c e p t o r ‘]
17 s e t t o P o i n t [de sc : : UNION c r e a t e]
18 s e t f a u l t P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
19 $ f a u l t P o i n t phase S e r v e r I n I n v o k e
20 $ f a u l t P o i n t b e f o r e [l i s t b u i l d

‘ o rg . apache . c x f . i n t e r c e p t o r . S e r v i c e I n v o k e r I n t e r c e p t o r ‘]
21 $ f a u l t P o i n t i s F a u l t t r u e
22 s e t o k P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
23 $ o k P o i n t phase S e r v e r I n I n v o k e
24 $ o k P o i n t a f t e r [l i s t b u i l d

‘ o rg . apache . c x f . i n t e r c e p t o r . S e r v i c e I n v o k e r I n t e r c e p t o r ‘]
25 $ t o P o i n t e v e n t s [l i s t b u i l d $ f a u l t P o i n t $ o k P o i n t]
26 $ p r o c e s s i n g T i m e from $ f r o m P o i n t
27 $ p r o c e s s i n g T i m e t o $ t o P o i n t
28 $ p r o c e s s i n g T i m e a g g r e g a t i o n SAME_CALL
29 $ p r o c e s s i n g T i m e maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 2

−u n i t MINUTES]
30 $ m i l l i L a t e n c y c a l c u l a t i o n ‘ (RTT−PT) /1000000 ‘
31 $ m i l l i L a t e n c y p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t RTT $roundTr ipTime −s e t PT

$ p r o c e s s i n g T i m e]
32 $ m i l l i L a t e n c y a g g r e g a t i o n SAME_CALL
33 $ m i l l i L a t e n c y maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 1

−u n i t MINUTES]
34 $ c o n c e r n v a l u e $ m i l l i L a t e n c y
35 $ c o n c e r n u n i t MILLISECONDS

114

Client Availability

1 ## CLIENT AVAILABILITY ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " C l i e n t A v a i l a b i l i t y "]
3 s e t r e l a t i o n I n P e r c e n t [de sc : : CALCULATION c r e a t e]
4 s e t r e l a t i o n [desc : :AVG c r e a t e]
5 s e t o k O r F a u l t [de sc : : VALUEUNION c r e a t e]
6 s e t onOK [desc : : SETVALUEONEVENT c r e a t e]
7 s e t okMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
8 $okMP phase C l i e n t O u t S e t u p E n d i n g
9 $onOK on $okMP

10 $onOK v a l u e 1
11 s e t onERR [desc : : SETVALUEONEVENT c r e a t e]
12 s e t fau l tMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
13 $fau l tMP phase C l i e n t O u t S e t u p
14 $fau l tMP i s F a u l t t r u e
15 $onERR on $fau l tMP
16 $onERR v a l u e 0
17 $ o k O r F a u l t e v e n t s [l i s t b u i l d $onOK $onERR]
18 $ r e l a t i o n o f $ o k O r F a u l t
19 $ r e l a t i o n i n t e r v a l [de sc : : A g g r e g a t i o n I n t e r v a l c r e a t e −v a l u e 10 −u n i t

MINUTES]
20 $ r e l a t i o n I n P e r c e n t c a l c u l a t i o n ‘REL∗100 ‘
21 $ r e l a t i o n I n P e r c e n t p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t REL $ r e l a t i o n]
22 $ c o n c e r n v a l u e $ r e l a t i o n I n P e r c e n t
23 $ c o n c e r n u n i t PERCENT

Load

1 ## LOAD ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " Load "]
3 s e t c o u n t P e r S e c o n d [desc : : CALCULATION c r e a t e]
4 s e t c o u n t E v e n t s [de sc : : COUNT c r e a t e]
5 s e t rece iveMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
6 $receiveMP phase S e r v e r I n R e c e i v e
7 $ c o u n t E v e n t s o f $receiveMP
8 $ c o u n t E v e n t s i n t e r v a l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 2 −u n i t MINUTES]
9 $coun tPe rSe cond c a l c u l a t i o n

‘ d i v i s i o n (CNT, c a s t (2∗60 , BigDecimal) , 5 , RoundingMode . HALF_UP) ‘
10 $coun tPe rSe cond p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t CNT $ c o u n t E v e n t s]
11 $ c o n c e r n v a l u e $coun tPe rS econd
12 $ c o n c e r n u n i t TIMES

115

Mean Time Between Failures (MTBF)
1 ## MEAN TIME BETWEEN FAILURES ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " MeanTimeBetweenFai lures "]
3 s e t milliMTBF [desc : : CALCULATION c r e a t e]
4 s e t avgTimeBetwFai l [de sc : :AVG c r e a t e]
5 s e t t i m e B e t w e e n F a i l u r e s [de sc : : INTERVAL c r e a t e]
6 s e t o n F a u l t [de sc : : ONEVENTCHANGE c r e a t e]
7 s e t okMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
8 $okMP phase C l i e n t O u t S e t u p E n d i n g
9 s e t fau l tMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]

10 $fau l tMP phase C l i e n t O u t S e t u p
11 $fau l tMP i s F a u l t t r u e
12 $ o n F a u l t e v e n t s [l i s t b u i l d $okMP $fau l tMP]
13 $ o n F a u l t f i r e O n [l i s t b u i l d $fau l tMP]
14 $ t i m e B e t w e e n F a i l u r e s be tween $ o n F a u l t
15 $avgTimeBetwFai l o f $ t i m e B e t w e e n F a i l u r e s
16 $avgTimeBetwFai l i n t e r v a l [de sc : : A g g r e g a t i o n I n t e r v a l c r e a t e −v a l u e 20

−u n i t EVENTS]## or TIME?
17 $milliMTBF c a l c u l a t i o n ‘MTBF/1000000 ‘
18 $milliMTBF p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t MTBF $avgTimeBetwFai l]
19 $ c o n c e r n v a l u e $milliMTBF
20 $ c o n c e r n u n i t MILLISECONDS

Mean Time To Failure (MTTF)
1 ## MEAN TIME TO FAILURE ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " MeanTimeToFai lure "]
3 s e t milliMTTF [desc : : CALCULATION c r e a t e]
4 s e t avgTimeToFai l [de sc : :AVG c r e a t e]
5 s e t t i m e T o F a i l [de sc : : TIMEBETWEEN c r e a t e]
6 s e t okMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
7 $okMP phase C l i e n t O u t S e t u p E n d i n g
8 s e t fau l tMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
9 $fau l tMP phase C l i e n t O u t S e t u p

10 $fau l tMP i s F a u l t t r u e
11 s e t o n F a u l t [de sc : : ONEVENTCHANGE c r e a t e]
12 $ o n F a u l t e v e n t s [l i s t b u i l d $okMP $fau l tMP]
13 $ o n F a u l t f i r e O n [l i s t b u i l d $fau l tMP]
14 s e t o n R e p a i r [de sc : : ONEVENTCHANGE c r e a t e]
15 $onRepa i r e v e n t s [l i s t b u i l d $okMP $fau l tMP]
16 $onRepa i r f i r e O n [l i s t b u i l d $okMP]
17 $ t i m e T o F a i l from $onRepa i r
18 $ t i m e T o F a i l t o $ o n F a u l t
19 $ t i m e T o F a i l maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 7

−u n i t DAYS]
20 $avgTimeToFai l o f $ t i m e T o F a i l
21 $avgTimeToFai l i n t e r v a l [de sc : : A g g r e g a t i o n I n t e r v a l c r e a t e −v a l u e 20

−u n i t EVENTS]## or TIME?
22 $milliMTTF c a l c u l a t i o n ‘MTTF/1000000 ‘
23 $milliMTTF p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t MTTF $avgTimeToFai l]
24 $ c o n c e r n v a l u e $milliMTTF
25 $ c o n c e r n u n i t MILLISECONDS

116

Mean Time To Repair (MTTR)

1 ## MEAN TIME TO REPAIR ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " MeanTimeToRepair "]
3 s e t milliMTTR [desc : : CALCULATION c r e a t e]
4 s e t avgTimeToRep [desc : :AVG c r e a t e]
5 s e t t i m e T o R e p a i r [de sc : : TIMEBETWEEN c r e a t e]
6 s e t okMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
7 $okMP phase C l i e n t O u t S e t u p E n d i n g
8 s e t fau l tMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
9 $fau l tMP phase C l i e n t O u t S e t u p

10 $fau l tMP i s F a u l t t r u e
11 s e t o n F a u l t [de sc : : ONEVENTCHANGE c r e a t e]
12 $ o n F a u l t e v e n t s [l i s t b u i l d $okMP $fau l tMP]
13 $ o n F a u l t f i r e O n [l i s t b u i l d $fau l tMP]
14 s e t o n R e p a i r [de sc : : ONEVENTCHANGE c r e a t e]
15 $onRepa i r e v e n t s [l i s t b u i l d $okMP $fau l tMP]
16 $onRepa i r f i r e O n [l i s t b u i l d $okMP]
17 $ t imeToRepa i r from $ o n F a u l t
18 $ t imeToRepa i r t o $onRepa i r
19 $ t imeToRepa i r maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 7

−u n i t DAYS]
20 $avgTimeToRep of $ t imeToRepa i r
21 $avgTimeToRep i n t e r v a l [de sc : : A g g r e g a t i o n I n t e r v a l c r e a t e −v a l u e 20 −u n i t

EVENTS]## or TIME?
22 $milliMTTR c a l c u l a t i o n ‘MTTR/1000000 ‘
23 $milliMTTR p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t MTTR $avgTimeToRep]
24 $ c o n c e r n v a l u e $milliMTTR
25 $ c o n c e r n u n i t MILLISECONDS

Round-Trip Time

1 ## ROUND TRIP TIME ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " RoundTripTime "]
3 s e t mi l l iRTT [desc : : CALCULATION c r e a t e]
4 s e t roundTr ipTime [desc : : TIMEBETWEEN c r e a t e]
5 s e t f r o m P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
6 $ f r o m P o i n t phase C l i e n t O u t S e t u p
7 s e t t o P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
8 $ t o P o i n t phase C l i e n t O u t S e t u p E n d i n g
9 $roundTr ipTime from $ f r o m P o i n t

10 $roundTr ipTime t o $ t o P o i n t
11 $roundTr ipTime a g g r e g a t i o n SAME_CALL
12 $roundTr ipTime maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 2

−u n i t MINUTES]
13 $mi l l iRTT c a l c u l a t i o n ‘RTT/1000000 ‘
14 $mi l l iRTT p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t RTT $roundTr ipTime]
15 $ c o n c e r n v a l u e $mi l l iRTT
16 $ c o n c e r n u n i t MILLISECONDS

117

Server Availability
1 ## SERVER AVAILABILITY ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " S e r v e r A v a i l a b i l i t y "]
3 s e t a v a i l a b i l i t y I n P e r c e n t [de sc : : CALCULATION c r e a t e]
4 s e t a v e r a g e A v a i l a b i l i t y [de sc : :AVG c r e a t e]
5 s e t i s A v a i l a b l e [de sc : : IF c r e a t e]
6 s e t t umb l ingCoun t [de sc : : TUMBLING_COUNT c r e a t e]
7 s e t repMP [c x f : : R e p e a t e d M e a s u r i n g P o i n t c r e a t e]
8 $repMP l o c a t i o n SERVER
9 $repMP i n t e r v a l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 10 −u n i t

SECONDS]
10 $ tumbl ingCoun t o f $repMP
11 $ tumbl ingCoun t i n t e r v a l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 20 −u n i t

SECONDS]
12 $ i s A v a i l a b l e v a l u e $ tumbl ingCoun t
13 $ i s A v a i l a b l e compar i son " va lue >0"
14 $ i s A v a i l a b l e t h e n 1
15 $ i s A v a i l a b l e e l s e 0
16 $ a v e r a g e A v a i l a b i l i t y o f $ i s A v a i l a b l e
17 $ a v e r a g e A v a i l a b i l i t y i n t e r v a l [de sc : : A g g r e g a t i o n I n t e r v a l c r e a t e −v a l u e

10 −u n i t MINUTES]
18 $ a v a i l a b i l i t y I n P e r c e n t c a l c u l a t i o n ‘SA∗100 ‘
19 $ a v a i l a b i l i t y I n P e r c e n t p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t SA

$ a v e r a g e A v a i l a b i l i t y]
20 $ c o n c e r n v a l u e $ a v a i l a b i l i t y I n P e r c e n t
21 $ c o n c e r n u n i t PERCENT

ErrorRate
1 ## ERROR RATE ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " E r r o r R a t e "]
3 s e t r e l a t i o n I n P e r c e n t [de sc : : CALCULATION c r e a t e]
4 s e t r e l a t i o n [desc : :AVG c r e a t e]
5 s e t okOrExc [desc : : VALUEUNION c r e a t e]
6 s e t onEXC [desc : : SETVALUEONEVENT c r e a t e]
7 s e t except ionMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
8 $except ionMP phase S e r v e r F a u l t O u t S e n d
9 $onEXC on $except ionMP

10 $onEXC v a l u e 1
11 s e t onOK [desc : : SETVALUEONEVENT c r e a t e]
12 s e t okMP [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
13 $okMP phase Se rve rOutSend
14 $onOK on $okMP
15 $onOK v a l u e 0
16 $okOrExc e v e n t s [l i s t b u i l d $onOK $onEXC]
17 $ r e l a t i o n o f $okOrExc
18 $ r e l a t i o n i n t e r v a l [de sc : : A g g r e g a t i o n I n t e r v a l c r e a t e −v a l u e 5 −u n i t

MINUTES]
19 $ r e l a t i o n I n P e r c e n t c a l c u l a t i o n ‘REL∗100 ‘
20 $ r e l a t i o n I n P e r c e n t p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t REL $ r e l a t i o n]
21 $ c o n c e r n v a l u e $ r e l a t i o n I n P e r c e n t
22 $ c o n c e r n u n i t PERCENT

118

Processing Time

1 ## PROCESSING TIME ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " P r o c e s s i n g T i m e "]
3 s e t m i l l i P T [desc : : CALCULATION c r e a t e]
4 s e t p r o c e s s i n g T i m e [desc : : TIMEBETWEEN c r e a t e]
5 s e t f r o m P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
6 $ f r o m P o i n t phase S e r v e r I n I n v o k e
7 $ f r o m P o i n t b e f o r e [l i s t b u i l d

‘ o rg . apache . c x f . i n t e r c e p t o r . S e r v i c e I n v o k e r I n t e r c e p t o r ‘]
8 s e t t o P o i n t [de sc : : UNION c r e a t e]
9 s e t f a u l t P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]

10 $ f a u l t P o i n t phase S e r v e r I n I n v o k e
11 $ f a u l t P o i n t b e f o r e [l i s t b u i l d

‘ o rg . apache . c x f . i n t e r c e p t o r . S e r v i c e I n v o k e r I n t e r c e p t o r ‘]
12 $ f a u l t P o i n t i s F a u l t t r u e
13 s e t o k P o i n t [c x f : : P h a s e M e a s u r i n g P o i n t c r e a t e]
14 $ o k P o i n t phase S e r v e r I n I n v o k e
15 $ o k P o i n t a f t e r [l i s t b u i l d

‘ o rg . apache . c x f . i n t e r c e p t o r . S e r v i c e I n v o k e r I n t e r c e p t o r ‘]
16 $ t o P o i n t e v e n t s [l i s t b u i l d $ f a u l t P o i n t $ o k P o i n t]
17 $ p r o c e s s i n g T i m e from $ f r o m P o i n t
18 $ p r o c e s s i n g T i m e t o $ t o P o i n t
19 $ p r o c e s s i n g T i m e a g g r e g a t i o n SAME_CALL
20 $ p r o c e s s i n g T i m e maximumWai t In te rva l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 2

−u n i t MINUTES]
21 $ m i l l i P T c a l c u l a t i o n ‘PT /1000000 ‘
22 $ m i l l i P T p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t PT $ p r o c e s s i n g T i m e]
23 $ c o n c e r n v a l u e $ m i l l i P T
24 $ c o n c e r n u n i t MILLISECONDS

119

B.1.2 Application-Specific Metrics

Search Result Accuracy

1 ## SEARCH RESULT ACCURACY ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " S e a r c h R e s u l t A c c u r a c y "]
3 s e t l i m i t e d A c c u r a c y [desc : : LIMIT c r e a t e]
4 s e t a c c u r a c y I n P e r c e n t [de sc : : CALCULATION c r e a t e]
5 s e t c o u n t O f F i n d i n g [desc : : COUNT c r e a t e]
6 s e t f indingMP [c x f : : AppSpecTimeMeasur ingPoin t c r e a t e]
7 $f indingMP l o c a t i o n CLIENT
8 $findingMP customName ‘ Resul tOkay ‘
9 $ c o u n t O f F i n d i n g o f $f indingMP

10 $ c o u n t O f F i n d i n g i n t e r v a l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 5 −u n i t
MINUTES]

11 s e t c o u n t O f S e a r c h [desc : : COUNT c r e a t e]
12 s e t searchMP [c x f : : AppSpecTimeMeasur ingPoin t c r e a t e]
13 $searchMP l o c a t i o n SERVER
14 $searchMP customName ‘ SearchDone ‘
15 $ c o u n t O f S e a r c h o f $searchMP
16 $ c o u n t O f S e a r c h i n t e r v a l [de sc : : T i m e I n t e r v a l c r e a t e −v a l u e 5 −u n i t

MINUTES]
17 $ a c c u r a c y I n P e r c e n t c a l c u l a t i o n

‘ d i v i s i o n (100∗FIND , SEARCH, 5 , RoundingMode . HALF_UP) ‘
18 $ a c c u r a c y I n P e r c e n t p a r a m e t e r s [H a s h t a b l e c r e a t e −s e t FIND

$ c o u n t O f F i n d i n g −s e t SEARCH $ c o u n t O f S e a r c h]
19 $ l i m i t e d A c c u r a c y o f $ a c c u r a c y I n P e r c e n t
20 $ l i m i t e d A c c u r a c y upper 100
21 $ l i m i t e d A c c u r a c y u p p e r I n c l u s i v e t r u e
22 $ l i m i t e d A c c u r a c y lower 0
23 $ l i m i t e d A c c u r a c y l o w e r I n c l u s i v e t r u e
24 $ c o n c e r n v a l u e $ l i m i t e d A c c u r a c y
25 $ c o n c e r n u n i t PERCENT

Proposition Quality

1 ## PROPOSITION QUALITY ##
2 s e t c o n c e r n [desc : : M e t r i c c r e a t e −name " P r o p o s i t i o n Q u a l i t y "]
3 s e t a v e r a g e Q u a l i t y [de sc : :AVG c r e a t e]
4 s e t l i m i t e d Q u a l i t y [de sc : : LIMIT c r e a t e]
5 s e t p r o p Q u a l i t y [c x f : : AppSpecValueMeasur ingPoin t c r e a t e]
6 $ p r o p Q u a l i t y l o c a t i o n CLIENT
7 $ p r o p Q u a l i t y customName " P r o p o s i t i o n Q u a l i t y "
8 $ l i m i t e d Q u a l i t y o f $ p r o p Q u a l i t y
9 $ l i m i t e d Q u a l i t y uppe r 100

10 $ l i m i t e d Q u a l i t y u p p e r I n c l u s i v e t r u e
11 $ l i m i t e d Q u a l i t y lower 0
12 $ l i m i t e d Q u a l i t y l o w e r I n c l u s i v e t r u e
13 $ a v e r a g e Q u a l i t y o f $ l i m i t e d Q u a l i t y
14 $ a v e r a g e Q u a l i t y i n t e r v a l [de sc : : A g g r e g a t i o n I n t e r v a l c r e a t e −v a l u e 10 −u n i t

MINUTES]
15 $ c o n c e r n v a l u e $ a v e r a g e Q u a l i t y
16 $ c o n c e r n u n i t PERCENT

120

B.2 Used SLA
1 WatchmeSLA
2 {
3 S e r v i c e
4 {
5 WHEN NOT S e r v e r A v a i l a b i l i t y >=0% => m a i l t o " mat th ia s@happens . a t " ,
6 WHEN NOT C l i e n t A v a i l a b i l i t y >=0% => m a i l t o " mat th ia s@happens . a t " ,
7 WHEN NOT (Latency >=0ms OR NetworkLatency >=0ms) AND RoundTripTime >=0ms =>

m a i l t o " mat th i a s@happens . a t " ,
8 WHEN NOT Proces s ingTime >=0ms => m a i l t o " mat th ia s@happens . a t " ,
9 WHEN NOT Load >=0 t i m e s AND E r r o r R a t e >=0% => m a i l t o " mat th ia s@happens . a t " ,

10 WHEN NOT MeanTimeBetweenFai lures >=0ms AND (MeanTimeToRepair >=0ms OR
MeanTimeToFailure >=0ms) => m a i l t o " mat th i a s@happens . a t " ,

11 WHEN NOT S e a r c h R e s u l t A c c u r a c y >=0% AND P r o p o s i t i o n Q u a l i t y >=0% => m a i l t o
" mat th ia s@happens . a t "

12 }
13 }

B.3 Used MP Definitions

B.3.1 RMP
1 FMF : : Enum c r e a t e Locat ionEnum −se tEnumValues {
2 CLIENT SERVER
3 }
4 FMF : : C l a s s c r e a t e R e p e a t e d M e a s u r i n g P o i n t −s u p e r c l a s s e s

desc : : T imeMeasur ingPo in t − a t t r i b u t e s {
5 l o c a t i o n LocationEnum
6 }
7 FMF : : A s s o c i a t i o n c r e a t e R e p e a t e d M e a s u r i n g P o i n t I n t e r v a l −ends {
8 { R e p e a t e d M e a s u r i n g P o i n t −roleName m e a s u r i n g P o i n t −n a v i g a b l e f a l s e

−m u l t i p l i c i t y ∗}
9 { desc : : T i m e I n t e r v a l −roleName i n t e r v a l −n a v i g a b l e t r u e −m u l t i p l i c i t y 1 }

10 }
11
12 R e p e a t e d M e a s u r i n g P o i n t method getMPdata { s e r v i c e } {
13 s e t mp [O b j e c t c r e a t e]
14 $mp s e t name [s t r i n g b u i l d ‘RMP[‘ $ s e r v i c e ‘ | ‘ [s e l f l o c a t i o n] ‘ | ‘ [[s e l f

i n t e r v a l] v a l u e] [[s e l f i n t e r v a l] u n i t] ‘] ‘]
15 $mp s e t t y p e "RMP"
16 $mp s e t l o c a t i o n [s e l f l o c a t i o n]
17
18 $mp s e t i n t e r v a l [s t r i n g b u i l d [[s e l f i n t e r v a l] v a l u e] [[s e l f i n t e r v a l]

u n i t]]
19 r e t u r n $mp
20 }

121

B.3.2 AMP
1 FMF : : C l a s s c r e a t e AppSpecValueMeasur ingPoin t −s u p e r c l a s s e s

desc : : V a l u e M e a s u r i n g P o i n t − a t t r i b u t e s {
2 customName s t r i n g
3 l o c a t i o n LocationEnum
4 }
5 FMF : : C l a s s c r e a t e AppSpecTimeMeasur ingPoin t −s u p e r c l a s s e s

desc : : T imeMeasur ingPo in t − a t t r i b u t e s {
6 customName s t r i n g
7 l o c a t i o n LocationEnum
8 }
9 AppSpecValueMeasur ingPoin t method getMPdata { s e r v i c e } {

10 s e t mp [O b j e c t c r e a t e]
11 $mp s e t name [s t r i n g b u i l d ‘AvMP[‘ $ s e r v i c e ‘ | ‘ [s e l f l o c a t i o n] ‘ | ‘ [s e l f

customName] ‘] ‘]
12 $mp s e t t y p e "AvMP"
13 $mp s e t l o c a t i o n [s e l f l o c a t i o n]
14
15 $mp s e t customName [s e l f customName]
16 r e t u r n $mp
17 }
18 AppSpecTimeMeasur ingPoin t method getMPdata { s e r v i c e } {
19 s e t mp [O b j e c t c r e a t e]
20 $mp s e t name [s t r i n g b u i l d ‘AtMP[‘ $ s e r v i c e ‘ | ‘ [s e l f l o c a t i o n] ‘ | ‘ [s e l f

customName] ‘] ‘]
21 $mp s e t t y p e "AtMP"
22 $mp s e t l o c a t i o n [s e l f l o c a t i o n]
23
24 $mp s e t customName [s e l f customName]
25 r e t u r n $mp
26 }

B.3.3 PMP
1 FMF : : Enum c r e a t e ChainTypeEnum −se tEnumValues {
2 CLIENT_IN CLIENT_OUT CLIENT_FAULT_IN SERVER_IN SERVER_OUT SERVER_FAULT_OUT
3 }
4 FMF : : C l a s s c r e a t e Chain − a t t r i b u t e s {
5 t y p e ChainTypeEnum
6 l o c a t i o n LocationEnum
7 }
8 FMF : : C l a s s c r e a t e Phase − a t t r i b u t e s {
9 cxfname S t r i n g

10 }
11 FMF : : A g g r e g a t i o n c r e a t e Cha inPhase s −ends {
12 { Chain −roleName c h a i n −m u l t i p l i c i t y 1 −a g g r e g a t i n g E n d t r u e −n a v i g a b l e

t r u e }
13 { Phase −roleName p h a s e s −m u l t i p l i c i t y ∗ −n a v i g a b l e t r u e }
14 }
15 FMF : : C l a s s c r e a t e P h a s e M e a s u r i n g P o i n t −s u p e r c l a s s e s desc : : T imeMeasur ingPo in t

− a t t r i b u t e s {
16 i s F a u l t b o o l e a n

122

17 a f t e r s t r i n g
18 b e f o r e s t r i n g
19 } −d e f a u l t s {
20 i s F a u l t f a l s e
21 } ## a f t e r and b e f o r e a r e l i s t s
22 FMF : : A s s o c i a t i o n c r e a t e P h a s e M e a s u r i n g P o i n t P h a s e −ends {
23 { P h a s e M e a s u r i n g P o i n t −roleName m e a s u r i n g P o i n t −n a v i g a b l e t r u e

−m u l t i p l i c i t y ∗}
24 { Phase −roleName phase −n a v i g a b l e t r u e −m u l t i p l i c i t y 1 }
25 }
26 FMF : : A s s o c i a t i o n c r e a t e P h a s e M e a s u r i n g P o i n t C h a i n −ends {
27 { P h a s e M e a s u r i n g P o i n t −roleName m e a s u r i n g P o i n t −n a v i g a b l e t r u e

−m u l t i p l i c i t y ∗}
28 { Chain −roleName c h a i n −n a v i g a b l e t r u e −m u l t i p l i c i t y 1 }
29 }
30
31 P h a s e M e a s u r i n g P o i n t method getMPdata { s e r v i c e } {
32 i f { [s e l f i s F a u l t] } { s e t fau l tName ‘FAULT‘ } e l s e { s e t fau l tName ‘NORMAL‘ }
33 s e t a f t e r L i s t [l i s t s o r t [s e l f a f t e r]]
34 s e t b e f o r e L i s t [l i s t s o r t [s e l f b e f o r e]]
35 s e t a f t e rName [l i s t j o i n $ a f t e r L i s t " , "]
36 s e t beforeName [l i s t j o i n $ b e f o r e L i s t " , "]
37
38 s e t mp [O b j e c t c r e a t e]
39 $mp s e t name [s t r i n g b u i l d ‘PMP[‘ $ s e r v i c e ‘ | ‘ [[s e l f phase] c h a i n] ‘ | ‘ [[s e l f

phase] cxfname] ‘ | ‘ $faul tName ‘ | AFT | ‘ $af terName ‘ | BEF | ‘ $beforeName ‘] ‘]
40 $mp s e t t y p e "PMP"
41 $mp s e t l o c a t i o n [[[s e l f phase] c h a i n] l o c a t i o n]
42
43 $mp s e t phase [[s e l f phase] cxfname]
44 $mp s e t c h a i n [[s e l f phase] c h a i n]
45 $mp s e t i s F a u l t [s e l f i s F a u l t]
46 $mp s e t a f t e r L i s t $a f t e rName
47 $mp s e t b e f o r e L i s t $beforeName
48 r e t u r n $mp
49 }
50
51 c x f : : Chain c r e a t e C l i e n t I n −t y p e CLIENT_IN − l o c a t i o n CLIENT
52 c x f : : Chain c r e a t e C l i e n t F a u l t I n −t y p e CLIENT_FAULT_IN − l o c a t i o n CLIENT
53 c x f : : Chain c r e a t e S e r v e r I n −t y p e SERVER_IN − l o c a t i o n SERVER
54 c x f : : Chain c r e a t e C l i e n t O u t −t y p e CLIENT_OUT − l o c a t i o n CLIENT
55 c x f : : Chain c r e a t e S e r v e r O u t −t y p e SERVER_OUT − l o c a t i o n SERVER
56 c x f : : Chain c r e a t e S e r v e r F a u l t O u t −t y p e SERVER_FAULT_OUT − l o c a t i o n SERVER
57
58 c x f : : Phase c r e a t e C l i e n t I n R e c e i v e −cxfname " r e c e i v e " −c h a i n C l i e n t I n
59 c x f : : Phase c r e a t e C l i e n t I n P r e S t r e a m −cxfname " pre−s t r e a m " −c h a i n C l i e n t I n
60 c x f : : Phase c r e a t e C l i e n t I n U s e r S t r e a m −cxfname " use r−s t r e a m " −c h a i n C l i e n t I n
61 c x f : : Phase c r e a t e C l i e n t I n P o s t S t r e a m −cxfname " pos t−s t r e a m " −c h a i n C l i e n t I n
62 c x f : : Phase c r e a t e C l i e n t I n R e a d −cxfname " r e a d " −c h a i n C l i e n t I n
63 # [. . .]

123

B.4 Other listings

B.4.1 Default Velocity Template For Actions
1 # i f ($ e v e n t . v i o l a t e d)
2 S e r v i c e $ e v e n t . s e r v i c e U R I v i o l a t e d c o n d i t i o n

" $ e v e n t . c a u s i n g C o n s t r a i n t E v e n t . c o n d i t i o n " when
${ e v e n t e v e n t . c a u s i n g C o n s t r a i n t E v e n t . valueMap } . Send ing a message t o
$ e v e n t . a c t i o n P a r a m e t e r v i a $ e v e n t . ac t ionName .

3 Caused By C o n s t r a i n t E v e n t : ${ e v e n t . c a u s i n g C o n s t r a i n t E v e n t }
4 Caused By SLAEvents :
5 # f o r e a c h ($ s l a C a u s e i n $ e v e n t . c a u s i n g C o n s t r a i n t E v e n t . caus ingSLAEvents)
6 x $ s l a C a u s e
7 c au s ed by :
8 # s e t ($ c u r r e n t Q o S E v e n t = $ s l a C a u s e . caus ingQoSValueEven t)

p a r s e (" t e m p l a t e s / QoSEven tCausesRecurs ive . t p l ")
9

10 # end
11 #{ e l s e }
12 S e r v i c e $ e v e n t . s e r v i c e U R I does n o t v i o l a t e c o n d i t i o n

" $ e v e n t . c a u s i n g C o n s t r a i n t E v e n t . c o n d i t i o n " when
${ e v e n t . c a u s i n g C o n s t r a i n t E v e n t . valueMap } anymore . Send ing a message t o
$ e v e n t . a c t i o n P a r a m e t e r v i a $ e v e n t . ac t ionName .

13 # end

124

Bibliography

[1] Phil Adams, Peter Easton, Eric Johnson, Roland Merrick, and Mark Phillips. SOAP
over Java Message Service 1.0. W3C Working Draft, W3C, October 2010. http:
//www.w3.org/TR/2010/WD-soapjms-20101026/.

[2] M. Aida, N. Miyoshi, and K. Ishibashi. A scalable and lightweight QoS monitoring
technique combining passive and active approaches. In Proceedings of the 22nd Annual
Joint Conference of the IEEE Computer and Communications Societies, volume 1 of
INFOCOM 2003, pages 125 – 133 vol.1, march-3 april 2003.

[3] Alves, Alexandre and Arkin, Assaf and Askary, Sid and Barreto, Charlton and Bloch,
Ben and Curbera, Francisco and Ford, Mark and Goland, Yaron and Guízar, Alejandro
and Kartha, Neelakantan and Kevin Liu, Canyang and Khalaf, Rania and König, Dieter
and Marin, Mike and Mehta, Vinkesh and Thatte, Satish and van der Rijn, Danny and
Yendluri, Prasad and Yiu, Alex. Web Services Business Process Execution Language
Version 2.0. OASIS Standard, OASIS, April 2007. http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[4] Amazon Web Services. http://aws.amazon.com/de/. Last visited 10/31/11.

[5] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki
Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web Services Agree-
ment Specification (WS-Agreement). Technical report, Open Grid Forum, Grid Resource
Allocation Agreement Protocol (GRAAP) WG, March 2007.

[6] Apache CXF. http://cxf.apache.org/. Last visited 06/20/11.

[7] Apache CXF - User’s Guide. http://cxf.apache.org/docs/index.html.
Last visited 06/02/11.

[8] The Apache Velocity Project. http://velocity.apache.org/. Last visited
08/26/11.

[9] Saeed Araban and Leon Sterling. Quality of Service for Web Services. WSEAS Transac-
tion on Computers, 3(4):1136–1141, 2004. Obtained from http://www.wseas.us/
e-library/conferences/austria2004/papers/482-350.pdf.

[10] Natee Artaiam and Twittie Senivongse. Enhancing Service-Side QoS Monitoring for
Web Services. In Proceedings of the 2008 Ninth ACIS International Conference on Soft-
ware Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing, pages 765–770, Washington, DC, USA, 2008. IEEE Computer Society.

125

http://www.w3.org/TR/2010/WD-soapjms-20101026/
http://www.w3.org/TR/2010/WD-soapjms-20101026/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://aws.amazon.com/de/
http://cxf.apache.org/
http://cxf.apache.org/docs/index.html
http://velocity.apache.org/
http://www.wseas.us/e-library/conferences/austria2004/papers/482-350.pdf
http://www.wseas.us/e-library/conferences/austria2004/papers/482-350.pdf

[11] Luciano Baresi, Sam Guinea, Marco Pistore, and Michele Trainotti. Dynamo + Astro:
An Integrated Approach for BPEL Monitoring. In Proceedings of the 2009 IEEE Inter-
national Conference on Web Services, ICWS ’09, pages 230–237, Washington, DC, USA,
2009. IEEE Computer Society.

[12] Don Box, Luis Felipe Cabrera, Craig Critchley, Francisco Curbera, Donald Fergu-
son, Steve Graham, David Hull, Gopal Kakivaya, Amelia Lewis, Brad Lovering, Peter
Niblett, David Orchard, Shivajee Samdarshi, Jeffrey Schlimmer, Igor Sedukhin, John
Shewchuk, Sanjiva Weerawarana, and David Wortendyke. Web Services Eventing (WS-
Eventing). W3C Member Submission, W3C, March 2006. http://www.w3.org/
Submission/2006/SUBM-WS-Eventing-20060315/.

[13] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Proto-
col (SOAP) 1.1. W3C Note, W3C, May 2000. http://www.w3.org/TR/2000/
NOTE-SOAP-20000508/.

[14] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, Francesco Perfetto, and
Maria Villani. Service Composition (re)Binding Driven by Application-Specific QoS. In
Asit Dan and Winfried Lamersdorf, editors, Service-Oriented Computing - ICSOC 2006,
volume 4294 of Lecture Notes in Computer Science, pages 141–152. Springer Berlin /
Heidelberg, 2006.

[15] P. Carvalho, S.R. Lima, A. Ferreira, E. Freitas, and F. Leitao. Providing Cost-effective
QoS Monitoring in Multiservice Networks. In Proceedings of the 5th Euro-NGI confer-
ence on Next Generation Internet networks, NGI ’09, pages 1 –8, july 2009.

[16] Tony Chau, Vinod Muthusamy, Hans-Arno Jacobsen, Elena Litani, Allen Chan, and Phil
Coulthard. Automating SLA modeling. In Proceedings of the 2008 conference of the
center for advanced studies on collaborative research: meeting of minds, CASCON ’08,
pages 10:126–10:143, New York, NY, USA, 2008. ACM.

[17] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
Services Description Language (WSDL) 1.1. W3C Note, W3C, March 2001. http:
//www.w3.org/TR/2001/NOTE-wsdl-20010315.

[18] James Clark and Steve DeRose. XML Path Language (XPath). W3C
Recommendation, W3C, November 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116/.

[19] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI Version 3.0.2.
UDDI Spec Technical Committee Draft, OASIS, October 2004. http://uddi.org/
pubs/uddi-v3.0.2-20041019.htm.

[20] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour. Establishing and Mon-
itoring SLAs in Complex Service Based Systems. In Proceedings of the 2009 IEEE
International Conference on Web Services, ICWS 2009, pages 783 –790, july 2009.

126

http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

[21] Doug Davis, Ashok Malhotra, Katy Warr, and Wu Chou. Web Services Metadata Ex-
change (WS-MetadataExchange). W3C Working Draft, W3C, August 2010. http:
//www.w3.org/TR/2010/WD-ws-metadata-exchange-20100805.

[22] Jos de Bruijn, Christoph Bussler, John Domingue, Dieter Fensel, Martin Hepp, Uwe
Keller, Michael Kifer, Birgitta König-Ries, Jacek Kopecky, Rubén Lara, Holger Lausen,
Eyal Oren, Axel Polleres, Dumitru Roman, James Scicluna, and Michael Stollberg. Web
Service Modeling Ontology (WSMO). W3C Member Submission, W3C, June 2005.
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/.

[23] Jos de Bruijn, Dieter Fensel, Uwe Keller, Michael Kifer, Holger Lausen, Reto Krum-
menacher, Axel Polleres, and Livia Predoiu. Web Service Modeling Language (WSML).
W3C Member Submission, W3C, June 2005. http://www.w3.org/Submission/
2005/SUBM-WSMO-20050603/.

[24] DeMichiel, Linda. JSR 317: Java Persistence API, Version 2.0. Technical report, Sun
Microsystems, Java Persistence 2.0 Expert Group, 2008. http://www.jcp.org/
en/jsr/detail?id=317.

[25] Glen Dobson and Alfonso Sanchez-Macian. Towards Unified QoS/SLA Ontologies. In
Proceedings of the IEEE Services Computing Workshops, pages 169–174, Washington,
DC, USA, 2006. IEEE Computer Society.

[26] Schahram Dustdar and Martin Treiber. A View Based Analysis on Web Service Reg-
istries. Distributed and Parallel Databases, 18:147–171, September 2005.

[27] ISO/IEC 14977 - Extended BNF. http://standards.iso.org/ittf/
PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E)
.zip. Last visited 10/27/11.

[28] H.H. Elazhary, S.S. Gokhale, and R.A. Ammar. An efficient QoS distribution monitoring
scheme. In Proceedings of the 10th IEEE Symposium on Computers and Communica-
tions, ISCC 2005, pages 813 – 818, june 2005.

[29] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte, Pål Krogdahl, Min
Luo, and Tony Newling. Patterns: Service-Oriented Architecture and Web Services. IBM
Redbooks, July 2004.

[30] Esper - API Reference. http://esper.codehaus.org/esper-4.2.0/doc/
reference/en/html/api.html. Last visited 10/26/11.

[31] Esper - Complex Event Processing. http://esper.codehaus.org/. Last visited
05/11/11.

[32] Esper - EPL Reference: Clauses. http://esper.codehaus.org/esper-4.2.
0/doc/reference/en/html/epl_clauses.html. Last visited 10/26/11.

127

http://www.w3.org/TR/2010/WD-ws-metadata-exchange-20100805
http://www.w3.org/TR/2010/WD-ws-metadata-exchange-20100805
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/
http://www.jcp.org/en/jsr/detail?id=317
http://www.jcp.org/en/jsr/detail?id=317
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/api.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/api.html
http://esper.codehaus.org/
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/epl_clauses.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/epl_clauses.html

[33] Esper - EPL Reference: Patterns. http://esper.codehaus.org/esper-4.2.
0/doc/reference/en/html/event_patterns.html. Last visited 10/26/11.

[34] Esper - EPL Reference: Views. http://esper.codehaus.org/esper-4.2.0/
doc/reference/en/html/epl-views.html. Last visited 10/26/11.

[35] Esper - Extension and Plug-in. http://esper.codehaus.org/esper-4.2.0/
doc/reference/en/html/extension.html. Last visited 10/26/11.

[36] Esper - Performance-Related Information. http://esper.codehaus.org/
esper/performance/performance.html. Last visited 05/30/11.

[37] Esper - Performance Wiki. http://docs.codehaus.org/display/ESPER/
Esper+performance. Last visited 10/26/11.

[38] Esper - Processing Model. http://esper.codehaus.org/esper-4.2.0/
doc/reference/en/html/processingmodel.html. Last visited 11/02/11.

[39] Esper - Reference Documentation. http://esper.codehaus.org/esper-4.
2.0/doc/reference/en/html/. Last visited 10/26/11.

[40] Esper - Solution Patterns. http://esper.codehaus.org/tutorials/
solution_patterns/solution_patterns.html. Last visited 11/02/11.

[41] Esper - Technology Overview. http://esper.codehaus.org/esper-4.
2.0/doc/reference/en/html/technology_overview.html. Last visited
10/26/11.

[42] Li Fei, Yang Fangchun, Shuang Kai, and Su Sen. A Policy-Driven Distributed Framework
for Monitoring Quality of Web Services. In Proceedings of the 2008 IEEE International
Conference on Web Services, ICWS ’08, pages 708 –715, sept. 2008.

[43] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition,
2010.

[44] Frag - Creating DSLs with Frag. http://www.infosys.tuwien.ac.at/
Staff/zdun/frag-doc/DSLToc.html. Last visited 06/09/11.

[45] Frag Documentation. http://www.infosys.tuwien.ac.at/Staff/zdun/
frag-doc/. Last visited 06/09/11.

[46] GlassFish - Open Source Application Server. http://glassfish.java.net/.
Last visited 05/04/11.

[47] Paul Hudak. Building domain-specific embedded languages. ACM Computing Surveys,
28, December 1996.

[48] IBM. http://www.ibm.com/. Last visited 05/23/11.

128

http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/epl-views.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/epl-views.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/extension.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/extension.html
http://esper.codehaus.org/esper/performance/performance.html
http://esper.codehaus.org/esper/performance/performance.html
http://docs.codehaus.org/display/ESPER/Esper+performance
http://docs.codehaus.org/display/ESPER/Esper+performance
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/processingmodel.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/processingmodel.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/
http://esper.codehaus.org/tutorials/solution_patterns/solution_patterns.html
http://esper.codehaus.org/tutorials/solution_patterns/solution_patterns.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/technology_overview.html
http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/technology_overview.html
http://www.infosys.tuwien.ac.at/Staff/zdun/frag-doc/DSLToc.html
http://www.infosys.tuwien.ac.at/Staff/zdun/frag-doc/DSLToc.html
http://www.infosys.tuwien.ac.at/Staff/zdun/frag-doc/
http://www.infosys.tuwien.ac.at/Staff/zdun/frag-doc/
http://glassfish.java.net/
http://www.ibm.com/

[49] IBM. WSLA: Web Service Level Agreements. http://www.research.ibm.com/
wsla/. Last visited 05/05/11.

[50] Java API for XML Web Services 2.0 Final Release. http://download.
oracle.com/otndocs/jcp/jaxws-2_0-fr-eval-oth-JSpec/. Last vis-
ited 10/27/11.

[51] Java Management Extensions (JMX). http://www.oracle.com/technetwork/
java/javase/tech/javamanagement-140525.html. Last visited 11/07/11.

[52] JavaServer Facelets. http://facelets.java.net/. Last visited 08/24/11.

[53] JavaServer Faces Technology. http://www.oracle.com/technetwork/java/
javaee/javaserverfaces-139869.html. Last visited 08/22/11.

[54] Yuming Jiang, Chen-Khong Tham, and Chi-Chung Ko. Challenges and approaches in
providing QoS monitoring. International Journal of Network Management, 10:323–334,
November 2000.

[55] Li jie Jin, Li jie Jin, Vijay Machiraju, Vijay Machiraju, Akhil Sahai, and Akhil Sahai.
Analysis on service level agreement of web services. Technical report, HP Laboratories,
2002.

[56] JMeter. http://jakarta.apache.org/jmeter/. Last visited 10/24/11.

[57] Radu Jurca, Boi Faltings, and Walter Binder. Reliable QoS monitoring based on client
feedback. In Proceedings of the 16th international conference on World Wide Web, WWW
’07, pages 1003–1012, New York, NY, USA, 2007. ACM.

[58] Kavantzas, Nickolas and Burdett, David and Ritzinger, Gregory and Fletcher, Tony and
Lafon, Yves and Barreto, Charlton. Web Services Choreography Description Language
Version 1.0. W3C Candidate Recommendation, W3C, November 2005. http://www.
w3.org/TR/2005/CR-ws-cdl-10-20051109/.

[59] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Moni-
toring Service Level Agreements for Web Services. Journal of Network and Systems
Management, 11:57–81, March 2003.

[60] Dirk Krafzik, Karl Banke, and Dirk Slama. Enterprise SOA: service-oriented architecture
best practices. Pearson Education, Inc., 2005.

[61] Fei Li, Fangchun Yang, Kai Shuang, and Sen Su. Q-Peer: A Decentralized QoS Reg-
istry Architecture for Web Services. In Proceedings of the 5th international conference
on Service-Oriented Computing, ICSOC ’07, pages 145–156, Berlin, Heidelberg, 2007.
Springer-Verlag.

[62] N.W. Lo and Chia-Hao Wang. Web services QoS evaluation and service selection frame-
work - a proxy-oriented approach. In Proceedings of the 2007 IEEE Region 10 Confer-
ence, TENCON 2007, pages 1 –5, 2007.

129

http://www.research.ibm.com/wsla/
http://www.research.ibm.com/wsla/
http://download.oracle.com/otndocs/jcp/jaxws-2_0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/jaxws-2_0-fr-eval-oth-JSpec/
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://facelets.java.net/
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://jakarta.apache.org/jmeter/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

[63] Davide Lorenzoli and George Spanoudakis. EVEREST+: run-time SLA violations pre-
diction. In Proceedings of the 5th International Workshop on Middleware for Service
Oriented Computing, MW4SOC ’10, pages 13–18, New York, NY, USA, 2010. ACM.

[64] David Luckham and Roy Schulte. Event Processing Glossary - Version 1.1. glossary,
Event Processing Technical Society, July 2008. http://complexevents.com/
wp-content/uploads/2008/08/epts-glossary-v11.pdf.

[65] David C. Luckham. The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[66] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard Franck.
Web Service Level Agreement (WSLA) Language Specification. Technical report,
IBM Corporation, January 2003. http://www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf.

[67] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, and Rebekah
Metz. Reference Model for Service Oriented Architecture 1.0. OASIS Standard, OA-
SIS, October 2006. http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.
html.

[68] E. Michael Maximilien and Munindar P. Singh. A Framework and Ontology for Dynamic
Web Services Selection. IEEE Internet Computing, 8:84–93, September 2004.

[69] Francis McCabe, David Booth, Christopher Ferris, David Orchard, Mike Champion, Eric
Newcomer, and Hugo Haas. Web Services Architecture. W3C Note, W3C, February
2004. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[70] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys, 37:316–344, December 2005.

[71] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Advanced
event processing and notifications in service runtime environments. In Proceedings of the
second international conference on Distributed event-based systems, DEBS ’08, pages
115–125, New York, NY, USA, 2008. ACM.

[72] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Com-
prehensive QoS monitoring of Web services and event-based SLA violation detection.
In Proceedings of the 4th International Workshop on Middleware for Service Oriented
Computing, MWSOC ’09, pages 1–6, New York, NY, USA, 2009. ACM.

[73] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. End-
to-End Support for QoS-Aware Service Selection, Binding, and Mediation in VRESCo.
IEEE Transactions on Services Computing, 3:193–205, July 2010.

130

http://complexevents.com/wp-content/uploads/2008/08/epts-glossary-v11.pdf
http://complexevents.com/wp-content/uploads/2008/08/epts-glossary-v11.pdf
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[74] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and Schahram
Dustdar. Towards recovering the broken SOA triangle: a software engineering perspec-
tive. In Proceedings of the 2nd international workshop on Service oriented software en-
gineering: in conjunction with the 6th ESEC/FSE joint meeting, IW-SOSWE ’07, pages
22–28, New York, NY, USA, 2007. ACM.

[75] Microsoft Excel - Spreadsheet - Office.com. http://office.microsoft.com/
en-us/excel/. Last visited 09/01/11.

[76] C. Momm, M. Gebhart, and S. Abeck. A Model-Driven Approach for Monitoring Busi-
ness Performance in Web Service Compositions. In Proceedings of the fourth Interna-
tional Conference on Internet and Web Applications and Services, ICIW ’09, pages 343
–350, may 2009.

[77] MySQL :: The world’s most popular open source database. http://www.mysql.
com/. Last visited 08/23/11.

[78] NTP: The Network Time Protocol. http://ntp.org/. Last visited 08/12/11.

[79] Ernst Oberortner. Monitoring Quality of Service in Service-oriented Systems: Architec-
tural Design and Stakeholder Support. PhD thesis, Vienna University of Technology,
February 2010.

[80] Oracle. Java RMI. http://www.oracle.com/technetwork/java/javase/
tech/index-jsp-136424.html. Last visited 05/05/11.

[81] Michael P. Papazoglou. Web services: principles and technology. Prentice Hall, 2007.

[82] Mike P. Papazoglou. Service -Oriented Computing: Concepts, Characteristics and Direc-
tions. In Proceedings of the Fourth International Conference on Web Information Systems
Engineering, WISE ’03, pages 3–, Washington, DC, USA, 2003. IEEE Computer Society.

[83] Mike P. Papazoglou and Willem-Jan Heuvel. Service oriented architectures: approaches,
technologies and research issues. The VLDB Journal, 16:389–415, July 2007.

[84] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing:
State of the Art and Research Challenges. Computer, 40(11):38 –45, November 2007.

[85] Randall Perrey and Mark Lycett. Service-Oriented Architecture. In Proceedings of the
2003 Symposium on Applications and the Internet Workshops (SAINT’03 Workshops),
SAINT-W ’03, pages 116–, Washington, DC, USA, 2003. IEEE Computer Society.

[86] Franco Raimondi, James Skene, and Wolfgang Emmerich. Efficient online monitoring of
web-service SLAs. In Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, SIGSOFT ’08/FSE-16, pages 170–180, New
York, NY, USA, 2008. ACM.

131

http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://www.mysql.com/
http://www.mysql.com/
http://ntp.org/
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

[87] Omer Rana, Martijn Warnier, Thomas B. Quillinan, and Frances Brazier. Monitoring
and Reputation Mechanisms for Service Level Agreements. In Proceedings of the 5th
international workshop on Grid Economics and Business Models, GECON ’08, pages
125–139, Berlin, Heidelberg, 2008. Springer-Verlag.

[88] T. Raty, M. Karinsalo, T. Heikkila, and M. Sihvonen. Comparison of SECNM’s dis-
tributed and end-to-end QoS monitoring, regarding a TLS and an unsecured connection.
In Proceedings of the 14th International Conference on Advanced Computing and Com-
munication, ADCOM 2006, pages 167 –172, dec. 2006.

[89] RichFaces Project Page - JBoss Community. http://www.jboss.org/
richfaces. Last visited 08/22/11.

[90] Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard. Probabilistic QoS and
Soft Contracts for Transaction-Based Web Services Orchestrations. IEEE Transactions
on Services Computing, 1:187–200, October 2008.

[91] Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrapping Performance
and Dependability Attributes of Web Services. In Proceedings of the IEEE International
Conference on Web Services, pages 205–212, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[92] SCALEA-G. http://www.dps.uibk.ac.at/projects/scaleag/. Last vis-
ited 05/09/11.

[93] F. Schulz. Towards Measuring the Degree of Fulfillment of Service Level Agreements. In
Proceedings of the 3rd international conference on Intercultural collaboration, volume 3
of ICIC 2010, pages 273 –276, june 2010.

[94] Serenity Project. http://www.serenity-project.org/. Last visited 05/12/11.

[95] The SLAng SLA Language. http://uclslang.sourceforge.net/. Last vis-
ited 10/27/11.

[96] George Spanoudakis, Christos Kloukinas, and Khaled Mahbub. The runtime monitoring
framework of serenity. In Security and Dependability for Ambient Intelligence, volume 45
of Advances in Information Security, pages 213–237. Springer US, 2009.

[97] Diomidis Spinellis. Notable design patterns for domain-specific languages. Journal of
Systems and Software, 56:91–99, February 2001.

[98] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of real-time
stream processing. SIGMOD Record, 34:42–47, December 2005.

[99] W. Taha. Plenary talk III Domain-specific languages. In Proceedings of the 2008 In-
ternational Conference on Computer Engineering & Systems, ICCES 2008, pages xxiii
–xxviii, November 2008.

132

http://www.jboss.org/richfaces
http://www.jboss.org/richfaces
http://www.dps.uibk.ac.at/projects/scaleag/
http://www.serenity-project.org/
http://uclslang.sourceforge.net/

[100] The Apache Software Foundation. Apache Axis. http://axis.apache.org/
axis/. Last visited 05/05/11.

[101] The Frag Language. http://frag.sourceforge.net/. Last visited 05/30/11.

[102] The Haskell Programming Language. http://www.haskell.org/. Last visited
05/31/11.

[103] Niko Thio and Shanika Karunasekera. Automatic Measurement of a QoS Metric for Web
Service Recommendation. In Proceedings of the 2005 Australian conference on Software
Engineering, pages 202–211, Washington, DC, USA, 2005. IEEE Computer Society.

[104] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A concept for QoS inte-
gration in web services. In Proceedings of the Fourth international conference on Web
information systems engineering workshops, WISEW’03, pages 149–155, Washington,
DC, USA, 2003. IEEE Computer Society.

[105] M. Tian, A. Gramm, H. Ritter, and J. Schiller. Efficient Selection and Monitoring of
QoS-Aware Web Services with the WS-QoS Framework. In Proceedings of the 2004
IEEE/WIC/ACM International Conference on Web Intelligence, WI ’04, pages 152–158,
Washington, DC, USA, 2004. IEEE Computer Society.

[106] Ioan Toma, Douglas Foxvog, and Michael C. Jaeger. Modeling QoS characteristics in
WSMO. In Proceedings of the 1st workshop on Middleware for Service Oriented Com-
puting (MW4SOC 2006), MW4SOC ’06, pages 42–47, New York, NY, USA, 2006. ACM.

[107] Vladimir Tosic, Babak Esfandiari, Bernard Pagurek, and Kruti Patel. On Requirements
for Ontologies in Management of Web Services. In Christoph Bussler, Richard Hull,
Sheila McIlraith, Maria Orlowska, Barbara Pernici, and Jian Yang, editors, Web Services,
E-Business, and the Semantic Web, volume 2512 of Lecture Notes in Computer Science,
pages 237–247. Springer Berlin / Heidelberg, 2002.

[108] Vladimir Tosic, Bernard Pagurek, Kruti Patel, Babak Esfandiari, and Wei Ma. Man-
agement Applications of the Web Service Offerings Language (WSOL). Information
Systems, 30(7):564–586, 2005.

[109] Vladimir Tosic, Kruti Patel, and Bernard Pagurek. WSOL - Web Service Offerings Lan-
guage. In Christoph Bussler, Richard Hull, Sheila McIlraith, Maria Orlowska, Barbara
Pernici, and Jian Yang, editors, Web Services, E-Business, and the Semantic Web, volume
2512 of Lecture Notes in Computer Science, pages 57–67. Springer Berlin / Heidelberg,
2002.

[110] Hong-Linh Truong, Robert Samborski, and Thomas Fahringer. Towards a Framework
for Monitoring and Analyzing QoS Metrics of Grid Services. In Proceedings of the Sec-
ond IEEE International Conference on e-Science and Grid Computing, E-SCIENCE ’06,
pages 65–, Washington, DC, USA, 2006. IEEE Computer Society.

133

http://axis.apache.org/axis/
http://axis.apache.org/axis/
http://frag.sourceforge.net/
http://www.haskell.org/

[111] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices, 35:26–36, June 2000.

[112] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad Yend-
luri, Toufic Boubez, and Ümit Yalçinalp. Web Services Policy 1.5 - Framework.
W3C Recommendation, W3C, September 2007. http://www.w3.org/TR/2007/
REC-ws-policy-20070904/.

[113] Changzhou Wang, Guijun Wang, Haiqin Wang, Alice Chen, and Rodolfo Santiago. Qual-
ity of Service (QoS) Contract Specification, Establishment, and Monitoring for Service
Level Management. In Proceedings of the 10th IEEE on International Enterprise Dis-
tributed Object Computing Conference Workshops, EDOCW ’06, pages 49–, Washington,
DC, USA, 2006. IEEE Computer Society.

[114] Guijun Wang, Changzhou Wang, Alice Chen, Haiqin Wang, Casey Fung, Stephen
Uczekaj, Yi-Liang Chen, Wayne Guthmiller Guthmiller, and Joseph Lee. Service Level
Management using QoS Monitoring, Diagnostics, and Adaptation for Networked Enter-
prise Systems. In Proceedings of the Ninth IEEE International EDOC Enterprise Com-
puting Conference, EDOC ’05, pages 239–250, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[115] Qianxiang Wang, Yonggang Liu, Min Li, and Hong Mei. An Online Monitoring Ap-
proach for Web services. In Proceedings of the 31st Annual International Computer
Software and Applications Conference, volume 1 of COMPSAC 2007, pages 335 –342,
july 2007.

[116] Ke Xu, Xiaoqi Zhang, Meina Song, and Junde Song. Research on SLA management
model in service operation support system. In Proceedings of the 5th International Con-
ference on Wireless communications, networking and mobile computing, WiCOM’09,
pages 4912–4915, Piscataway, NJ, USA, 2009. IEEE Press.

[117] M.H. Zadeh and M.A. Seyyedi. Qos monitoring for web services by Time Series Fore-
casting. In Proceedings of the 3rd IEEE International Conference on Computer Science
and Information Technology, volume 5 of ICCSIT 2010, pages 659 –663, july 2010.

[118] Liangzhao Zeng, Hui Lei, and Henry Chang. Monitoring the QoS for Web Services. In
Proceedings of the 5th international conference on Service-Oriented Computing, ICSOC
’07, pages 132–144, Berlin, Heidelberg, 2007. Springer-Verlag.

134

http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/

	Introduction
	Motivation
	Problem Statement
	Contribution
	Organization

	State of the Art
	Service-Oriented Architectures
	Services
	The Basic Service-Oriented Architecture
	Service Composition
	Benefits

	Web Services
	SOAP 1.1
	WSDL 1.1
	Discovery

	Quality of Service
	Metrics
	Service Level Agreements
	Measurement

	Complex Event Processing
	Events
	Concepts

	Domain-Specific Languages
	Generic Structure
	Patterns
	Advantages and Disadvantages

	Related Work
	Monitoring
	Quality of Service Levels
	QoS Management

	Extended QoS Metrics
	Semantic Approaches
	Temporal QoS Parameter Evaluation
	Monitoring Compositions

	Background
	Apache CXF
	Message Processing
	Building Web Services using CXF

	Esper
	Event Processing Concepts
	Performance

	Frag
	Core Language
	Using Domain-Specific Languages
	Embedding into Java

	QuaLa
	Architecture
	The Domain-Specific Languages
	Supported Measurements

	Design
	Motivating Example
	Architecture
	Measuring Location Framework
	Monitor

	DSLs
	MPDSL
	SLADSL
	MDDSL

	Implementation
	Components
	Monitor
	Measuring Location Framework
	Web Interface

	DSL Transformation
	SLADSL
	MDDSL

	Evaluation
	Quantitative Evaluation
	Setup
	Performance of the MLF
	Performance of the Monitor

	Qualitative Evaluation, Open Problems and Limitations
	Platform Impact
	Performance Impact
	Expressiveness of the DSLs
	Security and Trust
	Areas of Application

	Conclusion and Future Work
	Future Work

	List of Abbreviations
	Listings
	Used Metrics
	Standard Metrics
	Application-Specific Metrics

	Used SLA
	Used MP Definitions
	RMP
	AMP
	PMP

	Other listings
	Default Velocity Template For Actions

	Bibliography

