
Conflict-tolerant Model Versioning

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Sozial- und Wirtschaftswissenschaften

eingereicht von

Dipl.-Ing. Konrad Wieland
Matrikelnummer 0326085

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Diese Dissertation haben begutachtet:

(o.Univ.-Prof. Dr. Gerti Kappel) (Univ.-Prof. Geraldine Fitzpatrick, PhD.)

Wien, 09.12.2011
(Dipl.-Ing. Konrad Wieland)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Conflict-tolerant Model Versioning

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Sozial- und Wirtschaftswissenschaften

by

Dipl.-Ing. Konrad Wieland
Registration Number 0326085

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

The dissertation has been reviewed by:

(o.Univ.-Prof. Dr. Gerti Kappel) (Univ.-Prof. Geraldine Fitzpatrick, PhD.)

Wien, 09.12.2011
(Dipl.-Ing. Konrad Wieland)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Dipl.-Ing. Konrad Wieland
Zwinzstr. 1b/13, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

“Schöne Tage - nicht weinen, dass sie vergangen,
sondern lächeln, dass sie gewesen.”

Rabindranath Tagore

An dieser Stelle möchte ich mich bei allen Menschen, die mich in den letzten Jahren begleitet
und unterstützt haben, herzlichst bedanken.

Zu allererst möchte ich mich bei meiner Betreuerin Gerti Kappel bedanken, die mir die
Chance gegeben hat, im Zuge des Projekts AMOR1 eine Dissertation zu schreiben. Mit viel
Geduld und wertvollen Ratschlägen stand mir Gerti Kappel immer zur Seite. Auch bei Geraldine
Fitzpatrick, die mir in neuen Forschungsbereichen den Weg wies und wertvollen Input für diese
Dissertation lieferte, möchte ich mich hier bedanken. Thank you!

Martina Seidl und Manuel Wimmer standen mir in den letzten Jahren als erste Ansprechper-
sonen jederzeit zur Verfügung, was nicht als Selbstverständlichkeit erachtet werden darf. Dank-
bar bin ich ihnen außerdem für die vielen motivierenden Worte und hilfreichen Ratschläge.

Spezieller Dank gilt Philip Langer, der mich die letzten 8 Jahre an der TU Wien begleitete
und in allen Belangen unterstützte. Ohne ihn wäre ich nicht so weit gekommen und hätte diese
Dissertation wahrscheinlich nie zu einem Ende gebracht. Danke für Alles!

Danken möchte ich auch dem gesamten AMOR Team, das den Grundstein dieser Dissertati-
on legte: Petra Brosch, Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger,
Martina Seidl und Manuel Wimmer. An dieser Stelle möchte ich mich auch bei der Österreichi-
schen Forschungsförderungsgesellschaft FFG bedanken, die das Projekt finanziert hat.

Großes Dank gilt auch den folgenden Personen, die maßgeblich dazu beigetragen haben,
dass ich die letzten Jahre am Institut stets in positiver Erinnerung behalten werde: Robert En-
gel, Katja Hildebrandt, Christian Huemer, Philipp Liegl, Tanja Mayerhofer, Dieter Mayrhofer,
Christian Pichler, Michael Pöttler und Marco Zapletal.

Diese Dissertation wäre ohne Unterstützung von guten Freunden und Familie nie möglich
gewesen. Meine Eltern Elisabeth und Wolfgang und meine Schwester Roswitha gaben mir im-
mer Rückhalt im Leben. Dafür möchte ich mich von ganzem Herzen bedanken.

In den letzten Monaten hat vor allem eine Person mit mir viel durchmachen müssen: meine
Freundin Gini. Vielen Dank gilt ihrem Verständnis, ihrer Geduld und ihrer Unterstützung vor al-
lem in schwierigeren Zeiten. Sie ist nicht nur eine wichtige Konstante in meinem Leben, sondern
ein unersetzlicher Teil, der mir Ausgeglichenheit und Stärke gibt.

1Project AMOR (FIT-IT No. 819584)

iii

to my grandfather

v

Abstract
Model-driven software engineering (MDSE), which has recently gained momentum in academia
as well as in industry, changed the way in which modern software systems are built. In MDSE,
the task of programming, i.e., writing code in a textual programming language, is replaced by
modeling in a language such as the Unified Modeling Language (UML). The powerful abstrac-
tion mechanisms of models are not only used for documentation purposes, but also for compil-
ing executable code directly out of models. With the rise of MDSE, several problems solved
for traditional software engineering became urgent again because well established solutions are
not directly transferable from code to models. Among others, the collaborative development
of models is currently only limited supported by modeling tools and, consequently, it is mostly
a one-(wo)man show. Especially in the field of model versioning, which supports the asyn-
chronous modification of modeling artifacts by multiple developers, only first solutions start to
emerge.

The urgent need for a suitable infrastructure supporting effective model versioning has been
widely recognized by researchers as well as practitioners. Currently, however, there is a lack of
empirical studies on the needs of software developers in practice concerning the collaborative
development of software systems. The first contribution of this thesis tackles this problem and
provides an extensive survey about versioning in practice by the means of an online question-
naire and qualitative expert interviews. One result of the empirical study shows that conflicts
due to parallel modifications are considered harmful and, thus, developers try to avoid them.
Conflicts, however, should not be seen as negative result of collaboration but as chance for dis-
cussing ideas and for improving the system under development. As consequence, the second
contribution is a conflict-tolerant model versioning approach, where the developers may commit
their changes in the central repository without worrying about possible conflicts. This approach
merges two or more parallel versions by applying dedicated merge rules and, by this, it incorpo-
rates all modifications of the developers. This builds a good basis for discussing and resolving
conflicts collaboratively. Finally, when resolving conflicts a high degree of user interaction is
required. When setting models under version control with state-of-the art tools, however, con-
flicts are hardly accessible for the users. Also the empirical study has shown, that current version
control systems lack for a dedicated representation and visualization. Moreover, user support is
required to better understand the reasons behind the conflicting changes. The third contribution
tackles these deficiencies by visualizing occurred conflicts in terms of model annotations and
enriching them automatically with additional meta information to better understand the parallel
evolution of the model under development. The implemented prototype is evaluated by means
of a quasi-experimental study, which demonstrates the advantages of developing models in a
collaborative manner.

vii

Kurzfassung
Modell-getriebene Softwareentwicklung verändert die Art und Weise wie moderne Software-
systeme entwickelt werden. Modelle werden nicht mehr ausschließlich zu Dokumentationszwe-
cke verwendet, sondern auch zur Generierung ausführbaren Codes. Mit dem Aufkommen der
Modell-getriebenen Softwareentwicklung werden einige Probleme, die bereits für die traditio-
nelle Softwareentwicklung gelöst wurden, wieder aktuell, da sich diese Lösungen nicht direkt
auf Modelle anwenden lassen. Unter Anderem wird die Entwicklung von Modellen im Team
derzeit nur sehr eingeschränkt unterstützt. Speziell im Bereich der Modellversionierung, der die
asynchrone Bearbeitung von Modellen durch mehrere EntwicklerInnen unterstützt, erschienen
lediglich die ersten Lösungsansätze. Die Notwendigkeit effektiver Modellversionierungssyste-
me wurde sowohl von der Wissenschaft als auch von der Industrie erkannt. Es fehlen jedoch
empirische Studien, die die Bedürfnisse der SoftwareentwicklerInnen bei der kollaborativen
Entwicklung von Softwaresystemen aufzeigen. Daher wird in dieser Dissertation eine umfas-
sende Studie präsentiert, die durch einen online Fragebogen und qualitative Experteninterviews
diese Bedürfnisse aufzeigt. Ein Ergebnis dieser Studie ist, dass Konflikte, die durch parallele
Änderungen von Modellen entstanden sind, als schädlich empfunden werden und dass daher
von den EntwicklerInnen versucht wird, diese zur Gänze zur vermeiden. Jedoch sollten Konflik-
te nicht als negatives Resultat gemeinsamen Modellierens gesehen werden, sondern als Chance
um Ideen zu diskutieren und um das zu entwickelnde System zu verbessern. Daher wird in
dieser Dissertation ein Konflikt-toleranter Modellversionierungsansatz vorgestellt, bei dem die
EntwicklerInnen ihre Änderungen in ein zentrales Modell-Repository einchecken können, ohne
sich um Konflikte sorgen zu müssen. Dieser Ansatz fügt durch entsprechende Merge Regeln
mehrere parallele Versionen eines Modells zu Einer zusammen und berücksichtigt die Änderun-
gen aller EntwicklerInnen. Dieses gemergte Modell bildet eine gute Basis für Diskussionen über
die verschiedenen Änderungen und dient dazu, aufgetretene Konflikte gemeinsam aufzulösen.
Um über Konflikte entscheiden zu können, ist es notwendig, diese entsprechend zu visualisieren.
Dies wurde auch durch die empirische Studie bestätigt. Jedoch bieten aktuelle Versionierungs-
systeme keine adäquate Repräsentation von Konflikten. Um Konflikte zwischen zwei Modell-
versionen auflösen zu können, ist es auch notwendig zu verstehen, wie der jeweilige Konflikt
entstanden ist. Auch diese Anforderung kann von state-of-the-art Versionierungswerkzeugen
nicht erfüllt werden. Aus diesen Gründen wird in dieser Dissertation eine Visualisierung von
aufgetreten Konflikten auf Basis eines Modellannotationsmechansimus vorgestellt, mit dem das
Modell auch mit zusätzlichen Metainformationen angereichert wird, um besser die parallele
Evolution eines zu entwickelnden Modells zu verstehen. Dieser Mechanismus wurde in Form
eines Prototyps implementiert, der mittels einer experimentellen Studie evaluiert wurde, die die
Vorteile kollaborativen Modellierens veranschaulicht.

ix

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Contributions . 4
1.4 Methodology . 7
1.5 Thesis Outline . 8

2 Related Work 11
2.1 Collaborative Modeling . 11
2.2 Versioning . 15
2.3 Summary . 33

3 A Tour of AMOR 35
3.1 Introduction to (Meta-)Modeling with EMF and Ecore 36
3.2 Conflict Categorization . 38
3.3 The AMOR Workflow . 44

4 Survey on Versioning in Practice 47
4.1 Questionnaire . 48
4.2 Expert Interviews . 55
4.3 Lessons Learned . 62

5 Turning Collaborations into Annotations 67
5.1 Running Example . 69
5.2 Conflict-Tolerant Merging of Models . 71
5.3 Consolidation . 83
5.4 Summary . 88

6 Making AMOR Collaboration-Aware 91
6.1 Architecture and Implementation . 92
6.2 Annotation of Models . 96
6.3 Annotation Support with EMF Profiles . 98
6.4 Merging Models in AMOR . 110
6.5 Summary . 119

xi

7 Evaluation 121
7.1 General Setting . 121
7.2 Study Procedure . 122
7.3 Selection of Examples . 125
7.4 Elaboration of Questionnaire . 128
7.5 Results . 130

8 Conclusion 135
8.1 Contributions . 135
8.2 Discussion . 136
8.3 Future Work . 139

A Questionnaire 141

List of Figures 147

List of Tables 149

Bibliography 151

Curriculum Vitae 161

xii

CHAPTER 1
Introduction

1.1 Background

Software engineering, as any other engineering discipline, must provide the ability and means
to build systems which are so large and complex that they have to be built by teams or even by
teams of teams of engineers [GJM02]. Mistrík et al. [MGHW10] point out the importance of
collaboration support in software engineering as follows:

“Collaboration among individuals [..] is central to modern software engineering.
It takes many forms: joint activity to solve common problems, negotiation to resolve
conflicts, creation of shared definitions, and both social and technical perspectives
impacting all software development activity. [..] The grand challenge is not only
to ensure that developers in a team deliver effectively as individuals, but that the
whole team delivers more than just the sum of its parts.”

To support collaborative development, Software Configuration Management (SCM) pro-
vides key tools and techniques for making the parallel development of software systems more
manageable [Tic88]. Amongst others, SCM offers Version Control Systems (VCSs), which
allow reusing single-user development environments for parallel development. Central reposito-
ries, to which developers can commit their changes and from which developers can update their
local version to the latest version in the repository, support the management and administration
of software artifacts under development. Of course, this holds true not only for traditional, code-
centric software engineering, but also for model-driven software engineering (MDSE) [Sch06],
which has recently gained momentum in academia as well as in industry, changing the way
in which modern software systems are built. In MDSE, the task of programming, i.e., writing
code in a textual programming language such as Java, is replaced by modeling in a graphical
modeling language such as the Unified Modeling Language [Obj03]. The powerful abstraction
mechanisms of models are not only used for documentation purposes, but also for compiling
executable code directly out of models [Béz05]. MDSE, however, has huge implications on the
versioning process and conflict management as described in the following.

1

1.2 Problem Statement

With the rise of MDSE, several problems solved for traditional software engineering became
urgent again because well established solutions are not directly transferable from code to models.
For example, to provide collaborative modeling support, text-based versioning systems such as
Subversion1 and CVS2 have been reused, but quickly it has been realized that XML Metadata
Interchange (XMI) serializations of models are not the appropriate representation for detecting
and resolving conflicts between concurrently edited model versions. These incompatibilities
might be explained by the graph-based structure of models, which must be taken into account
by dedicated algorithms for matching, comparing, and merging models. While there has been
considerable work to understand and support code versioning, the implications and issues when
using model artifacts are less clear [ABK+09].

Dedicated VCSs for model versioning have been proposed which realize model specific
comparison, conflict detection, conflict resolution, and merge components. However, after hav-
ing surveyed the state of the art of model versioning systems and the literature stemming from
this heterogeneous research area (cf. [BKL+11a]), the following drawbacks have been identified.

Deficiency 1: Lack of empirical studies about (model) versioning in practice. In the re-
search field of model versioning, a plethora of research directions exists trying to meet the tech-
nical challenges of model versioning systems, mostly concerned with precise conflict detection
and supportive conflict resolution [ASW09]. However, there is currently a lack of empirical
studies trying to derive the “real” needs of software developers in practice concerning the col-
laborative development of software systems [Men02]. Such studies are highly needed, because
several possibilities exist for how software can be developed collaboratively, both on the techni-
cal level as well as on the organizational level. The latter aspect is often ignored, especially in the
model versioning research field. If we are able to understand real world experiences with model
versioning then we would be better able to identify criteria which should determine the selection
of versioning technologies as well as collaboration processes from an organizational viewpoint.
Furthermore, lessons learned of current best practices in collaborative software development for
the various development artifacts may be inferred from such studies. To the best of our knowl-
edge, only few investigations have been carried out in order to find answers to these questions.
For example, several issues arising from practice when merging different versions of a model
are identified in Bendix et al. [BE09]. However, these findings are based on informal interviews
within one company and do “not pretend to be general”. Furthermore, the premise of Bendix
et al. is that “model-centric development and its problems do not vary much from company to
company” which has not been proven so far. In addition, models can be used in different ways,
namely as sketches to discuss ideas and design alternatives, as blueprint for implementation, or
for direct code generation [Fow03] and, thus, the collaborative development of models seems to
vary from company to company.

1http://subversion.tigris.org
2http://cvs.nongnu.org

2

http://subversion.tigris.org
http://cvs.nongnu.org

Deficiency 2: Conflicts are considered harmful. In general, modeling activities always cap-
ture the personal view of the modeler on the system under development and the fact that each
team member perceives the system under development differently is directly reflected by the
models [Gru93]. Especially in early phases of the software development lifecycle, as long as the
team has not established a consolidated view on the system, the understanding and the intention
of the different team members might diverge.

One challenge within the modeling process is to create a common knowledge base. Tool
support is needed allowing the creation of a common representation of subjective knowledge
within the team in order to avoid misunderstandings. In this situation, awareness about conflict-
ing modeling activities might be valuable in order to find a common solution by learning about
the reasons that lead to the conflicts [RKdV08b].

The traditional tool support for collaborative software development, usually follows the
paradigm of either avoiding conflicts or of resolving conflicts as soon as possible, because
they are seen as “harmful”. Conflict avoidance is for example realized by the means of pes-
simistic version control systems which lock artifacts for exclusive modification by exactly one
developer. In contrast, optimistic versioning approaches support distributed, parallel team-work.
This comes along with the price of conflict resolution when concurrently evolved versions of one
model are merged. However, in such versioning systems the developer who is committing her
changes is solely responsible to resolve the occurred conflicts immediately, which is an error-
prone, time-consuming, and, thus, also an unpleasant task. The developer does not know the
intentions of the others and a high probability exists that some modifications may be inevitably
lost as they are removed in an undocumented manner. Such an approach is adequate for code
when the specification of the system is already established and the code has to be executable at
any point in time, e.g., by running test cases. In contrast to code, models are often used in an in-
formal manner for collecting ideas and discussing design alternatives in brainstorming periods.
As mentioned above, models may serve as sketches in early project phases [Fow03]. Models
are then used to manage and improve communication among the team members by establishing
common domain knowledge. Then, this loss of information is especially problematic.

To summarize, the challenge here is to introduce a new approach for model versioning, in
which conflicts are not seen as negative result of collaboration but as a chance to discuss design
alternatives or misinterpretations. The discussion of the conflicts might help to eliminate flaws
in the design which are probably harder to eliminate at the later point in time of the software
life cycle. The resulting merged model should incorporate all modifications of the participants
to finally reflect a consolidated version.

Deficiency 3: Conflicts are difficult to access. When developing models in teams following
the optimistic versioning paradigm conflicts may arise, which have to be resolved and user inter-
action is often required. A high degree of automation would enable an effective and time-saving
development of models [MD94]. However, a plethora of conflicts exists, where automation is
currently at its limit or is not appropriate at all [Men02]. Further difficulties in merging software
models arise from the fact that they express aspects of a software system at a very high level of
abstraction and, therefore, reveal a high amount of semantics, domain specific knowledge, and
modeling experience.

3

When merging models advanced user support in terms of proper representation and visual-
ization of the conflicts make the manual resolution practicable [BKL+11b]. It has been quickly
realized that XMI serializations are not the appropriate representation for detecting and resolv-
ing conflicts between concurrently edited model versions, because developers are familiar with
the concrete graphical syntax but not with computer internal representations. Thus, some ded-
icated approaches have been proposed for visualizing differences of models. They construct a
dedicated view using the concrete syntax, which combines and highlights changes of both mod-
els using coloring techniques [MGH05, OWK03]. Hence, the modeler remains in her familiar
modeling environment. However, these approaches require the implementation of specific editor
extensions.

Furthermore, additional information to support change and conflict awareness is highly valu-
able when changing models asynchronously [TG04]. This information should incorporate which
conflicting changes have been performed, who has performed them and when did the changes
take place. Thus, making this information more explicit would support the developers when
merging parallel versions of a model and would lead to better understanding of the reasons be-
hind the conflicts. In addition, understanding how conflicts are resolved is very challenging in
state-of-the-art versioning tools especially when two or more parallel versions exist.

To summarize, the challenge here is to find an approach which presents conflicts in a user-
friendly way and which enriches the model with information about the performed changes and
occurred conflicts. Furthermore, this approach should also extend the model with additional
meta information to better understand the evolution of the models and to support collaborative
negotiation and resolution of occurred conflicts when merging different versions of a model.

1.3 Contributions

The overall goal of this thesis is to provide a better collaboration support in the context of
model versioning without adding restrictions regarding the employed modeling editor or model-
ing language. Before discussing the individual contributions of this thesis in detail, we present
our optimistic versioning process including a conflict-tolerant merge approach from a devel-
oper’s point of view. In contrast to optimistic versioning, pessimistic versioning does not allow
for parallel modifications of the developers by locking the individual artifacts when modifying
them. The optimistic versioning process is depicted in Figure 1.1 and provides the context for
the contributions. Developer 1 and 2 may check out the same model in parallel indicated as
Version 1 from a common, central repository. Both perform changes on their local working
copies Version 1a and Version 1b. Developer 1 finishes her work firstly and commits
her changes back to the central repository. No conflicts occur, because no one else has com-
mitted changes in the meanwhile. When Developer 2 tries the same, the versioning system
rejects his changes if they are conflicting with the changes of Developer 1. If conflicts occur, the
highlighted merge process is passed through.

First of all, the changes applied by the developers on their local working copies have to be
identified. In the next step, conflicts between concurrent changes are calculated and reported.
The Conflict-tolerant Merge creates a merged version and annotates the reported conflicts. In
the validation phase, the merged model is checked whether it is valid and well-formed regarding

4

Developer 1

Developer 2 Version 1

Version 1

t1

Version 1a

Version 1b

t2 t3

Check Out

Check Out

Check In

Check In

Repository

t0

Co
nf

lic
t R

es
ol

ut
io

n

Ch
an

ge
 D

et
ec

tio
n

Co
nf

lic
t D

et
ec

tio
n

Co
nf

lic
t-

to
le

ra
nt

M

er
ge

Va
lid

at
io

n

Merge Process

Figure 1.1: Versioning Process

the modeling language’s rules. These inconsistencies and occurred conflicts have to be resolved
to finally obtain a consolidated model in the central repository.

The general merge process has been conjointly elaborated in the model versioning project
AMOR3, which is presented in more detail in Chapter 3. Next to this thesis, the PhD theses
of Philip Langer [Lan11] and Petra Brosch [Bro11] have been written within AMOR. Whereas
those dissertations deal with conflict detection and specific aspects of conflict resolution, this the-
sis contributes the Conflict-tolerant Merge component using a newly developed model annota-
tion mechanism. This component supports the developers in resolving conflicts collaboratively.
In the following, the contributions of this thesis, which build solutions for the aforementioned
deficiencies, are presented in more detail.

Contribution 1: Survey on Versioning in Practice. To tackle Deficiency 1, a comprehensive
empirical study is provided in this thesis, including on the one hand the results of an online
survey and on the other hand in-depth qualitative interviews. The overall goal of the empirical
study is to gain insights of how versioning is currently used in practice. By conducting an online
survey, we wanted to find out the state-of-the-art habits and processes for versioning software
artifacts. We were interested in factors such as team-size or the geographical distribution of
the team, because we conjectured that these have an impact on the motivation why versioning
systems are used. On the basis of these results, we further conducted expert interviews with
the aim to get insights how models are handled in their companies when developing them in a
team. By following this comprehensive approach, we are able to reason more objectively about
the influence of certain team characteristics on the collaborative software development. Fur-
thermore, these studies gave as valuable insights on collaborative software development, which

3www.modelversioning.org

5

www.modelversioning.org

point out many interesting research issues. For instance, when a software system is developed
in teams, only single-user environments are used in general, both for programming as well as
for modeling. The collaboration features are out-sourced to additional versioning systems which
coordinate the work of the various developers. Nevertheless, successful collaborative software
development is more than just relying on current features of versioning systems. On the one
hand the devision of labor and, on the other hand, the management of conflicts is of paramount
importance. In this thesis, we describe our attempts to get a better understanding of requirements
for model versioning in practice, based on which the following contributions of this thesis were
elaborated.

Contribution 2: Conflict-tolerant Model Versioning System. If conflicting modifications
occur in standard approaches, the developer, who committed her changes later than the other, is
alone responsible for the conflict resolution and has to resolve the conflict immediately. As Defi-
ciency 2 pointed out, when software models are typically employed for brainstorming, analysis,
and design purposes, especially in early project phases, such an approach bears the danger of
losing important viewpoints of different stakeholders and domain engineers, resulting in a lower
quality of the overall system specification. Thus, in this thesis, we propose conflict-tolerant
model versioning to overcome this problem. This new paradigm for optimistic versioning does
not force the developers to resolve conflicts immediately. Our system supports deferring the
resolution decision until a consolidated decision of the involved parties has been elaborated.
Well-defined merge rules are used by our algorithm to incorporate all changes of the modelers,
also when overlapping changes happen, and to mark conflicts by dedicated annotations which
are introduced in Contribution 3.

To summarize, with our conflict-tolerant model versioning system, modelers may commit
their changes without worrying about conflicts and their resolution. They check-in their changes
and if conflicts arise they do not have to be resolved immediately. This approach is based on the
assumption that conflicts are not considered as negative results of collaboration, but as chance
for improvements.

Contribution 3: Collaboration Support through Model Annotations. When merging mod-
els in a conflict-tolerant way as described above, occurred conflicts are annotated. Special focus
is set on change and conflict awareness to inform the user which changes resulted in a conflict,
where and when have these changes been performed and who was responsible for these changes
with the goal to better understand the reason behind the conflicts. Thus, the merged model is
enriched with meta-information annotations as specified by the merged rules. These annota-
tions provide information about the concurrent changes, the involved users, and time-related
metadata.

Additionally, the resolution process in the so-called consolidation phase is also supported by
this annotation mechanism to allow the resolution of the occurred conflicts collaboratively and
in an asynchronous manner. The resolution process itself is supported by a conflict resolution
model, with which the participants can be assigned to specific conflicts to propose resolutions
and find collaboratively a consolidated version. By this method, we transform conflicts into
collaborations which results in a higher acceptance of the consolidated model. In addition, the

6

versioning system should allow for a better comprehension of the evolution of a model also in
cases where conflicts arise. Since we have introduced a lifecycle to the conflicts and since we
store the information how a conflict is resolved, modelers can be fully aware of what happened
in the development process of a model.

The developed model annotation mechanism is following the principle of our model ver-
sioning system, which avoids restrictions regarding the employed modeling editor or modeling
language. Therefore, we ported the lightweight extension mechanism known from UML Profiles
to the realm of Eclipse Modeling Framework (EMF) models. By this, every EMF-based model
may be annotated with stereotypes containing tagged values. Stereotype applications may be
visualized on top of the graphical representation of a model to support the user in resolving all
annotated conflicts directly in the model. Annotations are saved in a separate model to avoid
polluting the merged model. However, when committing the merged model comprising con-
flicting changes, the annotation model is saved alongside the merged model to also allow other
modelers to investigate and resolve existing conflicts.

1.4 Methodology

The methodological approach used in this thesis conforms to the design science approach pre-
sented by Hevner et al. [HMPR04]. In general, the types of output produced by design research
are representational constructs, models, methods, or instantiations [MS95]. The principle layout
of design science research is depicted in Figure 1.2.

People Develop/Build

Justify/Evaluate
Methodologies

Organizations

Technology

Foundations

Environment IS Research Knowledge Base
Business

Needs
Applicable
Knowledge

Applications Additions

Asses Refine

Figure 1.2: Information Systems Research Framework based on [HMPR04]

The development of an artifact and its refinement based on different evaluation methods
constitutes the core of this research process. The design is driven by the environment defining
business needs and addressing these needs assures research relevance. Existing foundations and
methodologies are applied in the design of the artifact and, after evaluating this artifact, the
knowledge base is updated or new knowledge is added. In the following, we outline how we use
this approach within this thesis according to the design-science research guidelines [HMPR04].

• Design as an Artifact: The contributions of this thesis produce a viable artifact in terms of
a new paradigm for versioning software models. The conflict-tolerant merge component

7

as well as the generic model annotation mechanism called EMF Profiles were developed
to support this paradigm.

• Problem Relevance: These artifacts have been developed to solve important and relevant
business problems. An online survey and expert interviews were conducted pointing out
the needs for supporting a team of developers in merging parallel versions of a model.

• Design Evaluation: During the development phase, tests were conducted for refining and
improving the individual artifacts. In addition, the utility of the artifacts are rigorously
demonstrated via a well-executed, quasi-experimental study.

• Research Contributions: The contributions of the thesis are the artifacts themselves.
The major parts have been reviewed as well as assessed by several researchers in terms
of peer reviews inside the modeling and CSCW communities. The reviewers confirm that
the contributions presented in this thesis solve important, previously unsolved problems.

• Research Rigor: In the construction and evaluation phase rigorous and well-defined
methods are applied by following the design science research guidelines. The artifacts
are designed to meet the business needs identified by an online survey and expert inter-
views. Foundations of related disciplines such as collaborative modeling, software config-
uration management, or tolerating inconsistencies in software engineering, on which the
development of the presented contributions are based, were evaluated. In addition, well-
known methodologies providing guidelines for evaluating the artifacts were considered
(e.g., [CSG63], [RH09], [Yin02]).

• Design as a Search Process: The design of the artifacts was based on a search process in
which different design alternatives were considered. Some of them are also discussed in
this thesis.

• Communication of Research: This thesis as well as previous work on which the contri-
butions are based, are published within dedicated research communities to ensure repeata-
bility. This builds a new knowledge base for further research.

1.5 Thesis Outline

Parts of this thesis have been published in peer-reviewed books, journals, conferences, and work-
shops. In the following, the structure of the thesis is outlined and related publications are men-
tioned accordingly.

Chapter 2: Related Work. In this chapter, we present approaches and tools supporting the
collaborative development of models. Furthermore, we introduce fundamental concepts of ver-
sioning software artifacts and discuss state-of-the-art model versioning systems based on previ-
ous work [BKL+11a].

8

Chapter 3: A Tour of AMOR. This thesis has been elaborated in the context of the research
project “AMOR”. Therefore, we provide in this chapter an overview of the concepts and find-
ings that have been conjointly elaborated among all project team members. In particular, we
introduce the AMOR merge process, its principles, and a categorization of merge conflicts. This
chapter also contains content published in [BKS+10] and in [BKL+11a].

Chapter 4: Survey on Versioning in Practice. In this chapter, we present the results of our
online survey and expert interviews, with which we investigated versioning habits and processes
in practice and underline the relevance of the contributions of this thesis. In addition, lessons
learned of this survey are discussed. The questionnaire underlining the online survey is depicted
in Appendix A. The survey is also published in [WFK+11].

Chapter 5: Turning Collaborations into Annotations. Based on previous work [BLS+10b,
WLS+11], this chapter presents a new paradigm for optimistic versioning. Conflicts are toler-
ated to resolve them later on in a collaborative setting leading to one consolidated version of
the parallel modified model. Dedicated merge rules as well as a conflict resolution model is
provided.

Chapter 6: Making AMOR Collaboration-Aware. In this chapter, the extension of AMOR’s
core system is presented. The most important components to realize a collaboration-aware
model versioning system are presented. One key component, the light-weight model anno-
tation mechanism called “EMF Profiles”, is presented in more detail and is also published
in [LWWC11].

Chapter 7: Evaluation. This chapter provides the evaluation of the contributed artifacts. The
evaluation has been performed as a quasi-experimental study. The elaboration as well as the
results of the study are presented and discussed.

Chapter 8: Conclusion. Finally, the contributions of this thesis are summarized and their
limitations are critically discussed. In addition, an outlook on future work concludes this thesis.

9

CHAPTER 2
Related Work

Concerning the overall goal of this thesis, in this chapter we survey scientific approaches related
to the context and contributions of this thesis. Thus, two categories of related work have been
identified: (i) collaborative modeling and (ii) versioning.

First of all, we present dedicated approaches for supporting collaborative software devel-
opment and modeling in general in Section 2.1. In addition, when developing models collab-
oratively, conflicts may arise and, thus, different strategies emerged how to handle them. We
present representative approaches for each strategy.

Furthermore, when developing software, version control systems are often the first choice to
support collaboration. As this thesis is concerned with versioning software models, we present in
Section 2.2 techniques and systems in the area of software versioning and survey state-of-the-art
model versioning systems.

2.1 Collaborative Modeling

Software engineering, as any other engineering discipline, must provide the ability and means to
build systems which are so large and complex that they have to be built by teams or even by teams
of teams of engineers [GJM02]. In the last decades, a plethora of tools and methods have been
developed to support collaboration. In 1988, Johansen firstly introduced the a conceptualization
of Computer Supported Collaborative Work (CSCW) systems by considering the context of the
system’s use leading to the so-called “CSCW Matrix” depicted in Figure 2.1 [Joh88]; it is also
published in [Bae95].

In this matrix, two dimensions are distinguished: On the one hand a distinction is drawn
whether a group of people is working at the same place (collocated) or not (remote). And on
the other hand, whether group members may work at the same time (synchronously) or not
(asynchronously).

Face-to-face interactions take place if the members of a team are working in the same room
at the same time. Examples are decision rooms, single display groupware, etc. If the team mem-
bers collaborate also at the same time, but are situated not in the same place, a so-called remote

11

Face to Face Interactions
decision rooms, single display

groupware, shared table, wall displays,
roomware,…

Continuous Task
team rooms, large public display, shift

work groupware, project
management,…

Remote Interaction
video conferencing, instance messaging,

chats, virtual worlds, shared screens,
multi-user editors,…

Communication & Coordination
email, bulletin boards, blogs,

asynchronous conferencing, group
calenders, workflow, wikis, version

control,…

Time/Space
Groupware Matrix

Different Time
asynchronous

Same Time
synchronous

Sa
m

e P
la

ce
co

lo
ca

te
d

D
iff

er
en

t P
la

ce
re

m
ot

e

Figure 2.1: CSCW Matrix [Joh88]

interaction takes place. This situation occurs when using a video conferencing system, virtual
worlds or shared screens, etc. Baecker [Bae95] defines asynchronous groupware as support for
“communication and problem solving among groups of individuals who contribute at different
times, and typically also are geographically dispersed.” If the team members are indeed dis-
tributed the term communication & collaboration is used. This is applicable when using, for
example, wikis or version control systems for supporting collaborative development. If work-
ing asynchronously but the team is collocated at the same place a so-called continuous task is
performed. Examples for that are team rooms or typical project management tasks.

This thesis focuses on collaboratively developing software models, thus, we review in the
following state-of-the-art tools and techniques which support different team-based modeling
tasks. In general, models can be used in different ways, namely as sketch to discuss ideas
and design alternatives, as blueprint for implementation, or to generate code directly out of
them [Fow03]. Thus, various tools and techniques exist to support the collaborative development
of models. In in the following, we only want to point out some of them.

To support face-to-face modeling sessions, Renger et al. [RKdV08a] propose an interactive
whiteboard for synchronous modeling. Such approaches perfectly fit for conceptual designing
phases to create a shared understanding between different stakeholders about a system repre-
sentation. Also in the area of requirements engineering groupware for supporting face-to-face
sessions have been developed [NE00].

If the team is not located in the same place, support for remote collaboration is necessary.
Shared screens can be used for synchronously editing models. However, with shared screens
only one modeler may perform changes whereas the others act as observers. Thus, for example,
Fluegge [Flu09] and Thum et al. [TSS09]) propose collaborative editors for modeling with which

12

remote interactions are supported.
For asynchronous and remote software development versioning systems are indispensable

for supporting coordination and communication. Since these line-based and text-based systems
are not applicable for models, model versioning systems are required. In Section 2.2 different
versioning techniques are presented and state-of-the-art model versioning systems are discussed.
However, the price for developing models collaboratively, especially in an asynchronous way, is
that conflicts may arise due to parallel changes of the same model elements. Thus, the awareness
of conflicts and, furthermore, dealing with them are of significant importance. Over the years,
three different ways to handle conflicts in collaborative software development have solidified
[Edw97, Men02]: (i) avoiding conflicts, (ii) resolving conflicts, and (iii) tolerating conflicts.
Different approaches following one of these strategies are outlined in the following:

2.1.1 Conflict Avoidance

Probably the simplest way to deal with conflicts is to establish mechanisms which make the
occurrence of conflicts impossible. Conflict avoidance is realized either by real-time collabo-
rative editing or by pessimistic versioning. Conflicts can be minimized in the former, because
the developers work synchronously together on the same artifact and each developer is aware of
the modifications others have performed. Conflicts cannot occur in the later, because exclusive
rights to modify an artifact are granted.

Already in 1968, Engelbart and English showcased an approach to collaborative editing
in the conferencing system presented at his “mother of all demonstrations” [EE68]. Over
the years, several dedicated environments for real-time collaboration have been proposed (for
textual artifacts as well as for models) which provide sophisticated notification and commu-
nication mechanisms indicating that a resource is currently touched by an other team mem-
ber (e.g., [She03, FMP06]). Examples of collaborative modeling editors are SLIM [TSS09],
DAWN [Flu09], and SpacEclipse [GMB+11].

Pessimistic versioning, also known as locking, is supported by most standard versioning
systems such as Subversion (SVN), as well as by several dedicated model versioning systems,
allowing only the developer to modify a certain artifact if she possesses the lock on this artifact.
Code versioning (pessimistic as well as optimistic which we discuss below) has a long history
in computer science—the first systems date back to the 70s—and have become indispensable
for efficient software development [CW98, Men02]. As discussed before, a particular challenge
in model versioning is posed by the selection of an adequate level of granularity determining
the size of a lock since this has significant impacts on the work efficiency. The price of conflict
avoidance, resulting in consolidated states of the system only, has to be paid with restricted
flexibility during work, because the developers have to coordinate meetings for the real-time
editing approach or they have to spend time idle when waiting for resources to be unlocked
again.

2.1.2 Conflict Resolution

When applying optimistic versioning, the developers intentionally risk conflicts for more flex-
ibility during work, because optimistic versioning tools put no dependency constraints on the

13

developers. From time to time, when they save their work in the central repository, the differ-
ent versions of the artifact under development have to be merged. If a conflict is detected, it
has to be resolved immediately; otherwise it may not be committed in the central repository.
Thus, the developers may assume that the most recent version stored in the central repository
never contains any inconsistencies, i.e., that none were introduced when merging the concur-
rently evolved versions. The resolution step may be supported with the help of specific rules
or policies [MD94]. Although very simple, line-wise comparison has proven to be effective
for textual artifacts like source code. For software models, more sophisticated comparison and
conflict detection algorithms are required. This is because they have to take into account the
graph-based structure and their rich semantics which would be lost if models are serialized in
flat text files [ABK+09]. Therefore, recently several dedicated model versioning approaches
emerged which are presented in Section 2.2. Despite the precise conflict detection components,
merge problems might still occur, because conflicts are usually resolved by the person who does
the later check-in and this person might be (on purpose or by accident) undo the modifications
performed by other team members. For this problem, we offered a solution in [BSW+09], with
which we suggested to perform conflict resolution in the team instead of by an individual in or-
der to avoid misunderstandings. In many situations, conflicts indicate misunderstandings in the
specification, which might be especially valuable in early phases of the development process.
Hence, the idea is to collect and to tolerate conflicts and resolve them at a later point in time that
is discussed in the following.

2.1.3 Conflict Tolerance

During the late 80s to the late 90s, several works have been published which aim at managing
inconsistencies. Inconsistencies may arise, when syntactic properties (context-free or context-
sensitive) or semantical concerns (structural or behavioral) are violated. Conflicts may be seen
as a certain kind of inconsistencies in the software engineering process. One of the most inter-
esting commonalities of these works is that the authors considered inconsistencies not only as
negative result of collaborative development, but also see them as necessary means for identify-
ing aspects of systems which need further analysis or which need to reflect different viewpoints
of different stakeholders [NER01, SZ01]. Originally, the need for inconsistency-aware software
engineering emerged in the field of programming languages, especially when very large sys-
tems are developed by a team. Schwanke and Kaiser [SK88] have been one of the first who
proposed to live with inconsistencies by using a specially adapted programming environment
for identifying, tracking, and tolerating inconsistencies to a certain extent. A similar idea was
followed by Balzer [Bal89] for tolerating inconsistencies by relaxing consistency constraints.
Instead of forcing the developer to resolve the inconsistencies immediately as they appear, he
proposed to annotate them with so called “pollution markers”. Those markers comprise also
meta-information for the resolution such as who is likely capable to resolve the inconsistency
and for marking code segments which are influenced by the detected inconsistencies. Further-
more, Finkelstein et al. [FGH+94] presented the “ViewPoints” framework for multi-perspective
development allowing inconsistencies between different perspectives and their management by
employing a logic-based approach which allows powerful reasoning even in cases where incon-

14

sistencies occur [HN98]. In [BLS+10b] we proposed a first idea to tolerate conflicts in the
context of model versioning.

The main contribution of this thesis is in line with the mentioned approaches for tolerating
inconsistencies in software engineering. In particular, we also aim at detecting, marking, and
managing inconsistencies. Concerning the marking of conflicts, we also have a kind of pol-
lution markers as introduced by [Bal89]. However, we are strongly focusing on the parallel
development of models, thus we have additional kinds of conflicts as discussed in Section 3.2.
Furthermore, we are not only marking, but we have also to merge a tailored version, in which it
is possible to mark the conflicts and inconsistencies. Our goal is to support this approach without
adapting the implementation of the modeling environment and versioning system. This is mainly
supported by the powerful dynamic extension mechanism of EMF Profiles (cf. Section 6.3). A
dedicated conflict profile is used to annotate and visualize conflicts within the model without
polluting it. Thus, in the following related approaches for annotating models and for visualizing
conflicts are discussed.

As already mentioned, in this thesis, we are following the paradigm of developing models
independently of time and place. We want to support modeling in a team by developing a ver-
sioning system dedicated to software models. Thus, to lay out the foundations of versioning,
we collect and unify important concepts, terminologies, and design possibilities regarding arti-
fact and change representation from past achievements. To get a better picture of the present
situation, we then survey state-of-the-art model versioning systems.

2.2 Versioning

The history of versioning in software engineering goes back to the early 1970s. Since then,
software versioning was constantly an active research topic. As stated by Estublier et al. in
[ELH+05], the goal of software versioning systems is twofold. First, such systems are con-
cerned with maintaining a historical archive of a set of artifacts as they undergo a series of
changes and form the fundamental building block for the entire field of Source Configuration
Management (SCM). Second, versioning systems aim at managing the evolution of software
artifacts performed by a distributed team of developers.

In that long history of active research on software versioning, diverse formalisms and tech-
nologies emerged. To categorize this variety of different approaches, Conradi and Westfech-
tel [CW98] proposed version models describing the diverse characteristics of existing versioning
approaches. A version model specifies the objects to be versioned, version identification and or-
ganization as well as operations for retrieving existing versions and constructing new versions.
Conradi and Westfechtel distinguish between the product space and the version space within
version models. The product space describes the structure of a software product and its artifacts
without taking versions into account. In contrast, the version space is agnostic of the artifact’s
structure and copes with the dimension of evolution by introducing versions and relationships
between versions of an artifact, such as, for instance, their differences (deltas). Further, Con-
radi and Westfechtel distinguish between extensional and intentional versioning. Extensional
versioning deals with the reconstruction of previously created versions and, therefore, concerns
version identification, immutability, and efficient storage. All versions are explicit and have

15

State-based Operation-based

Te
xt

-b
a

se
d

G
ra

p
h

-b
a

se
d

A
rt

if
ac

t
R

e
p

re
se

n
ta

ti
o

n

Delta Identification and Representation

CVS

SVN Git

bazaar

EMF Store

Lippe & Oosterom (1992)JDiff

EMF Compare

MolhadoRef

Figure 2.2: Categorization of Versioning Systems

been checked in once before. Intentional versioning deals with flexible automatic construction
of consistent versions from a version space. In other words, intentional versioning allows for
annotating properties to specific versions and querying the version space for these properties in
order to derive a new product consisting of a specific combination of different versions.

In this thesis, we only consider extensional versioning in terms of having explicit versions,
because this kind of versioning is predominantly applied in practice nowadays. Furthermore, we
focus on the merge phase in the optimistic versioning process (cf. Figure 1.1). In this section, we
first outline the fundamental design dimensions of versioning systems. Subsequently, we present
some representatives of versioning systems using different designs. Finally, we elaborate on
the consequences of different design possibilities considering the quality of the merged version
based on an example.

2.2.1 Fundamental Design Dimensions for Versioning Systems

Current approaches to merging two versions of one software artifact (software models or source
code) can be categorized according to two basic dimensions (cf. Figure 2.2). The first dimension
concerns the product space, in particular, the artifact representation. This dimension denotes the
representation of a software artifact, on which the merge approach operates. Most basically, the
used representation may either be text-based or graph-based. Some merge approaches operate
on a tree-based representation. However, we consider a tree as a special kind of graph in this
categorization. The second dimension is orthogonal to the first one and considers how deltas
are identified, represented, and merged in order to create a consolidated version. Approaches
for merging software models draw a lot of inspiration from previous works in the area of source
code merging. Especially graph-based approaches for source code merging form the foundation
for model versioning. Existing merge approaches either operate on the states, i.e., versions, of
an artifact, or on identified operations which have been applied between a common origin model
(cf. Version 0 in Figure 1.1) and the two successors (cf. Version 1 and 2 in Figure 1.1).

When merging two concurrently modified versions of a software artifact, conflicts might

16

inevitably occur. The most basic types of conflicts are Update/Update and Delete/Update con-
flicts. Update/Update conflicts occur if two elements have been updated in both versions whereas
Delete/Update conflicts are raised if an element has been updated in one version and deleted in
the other. A profound discussion on more complex types of conflicts is given in Chapter 3. For
more information on software merging in general, the interested reader is referred to [Men02].

Text-based merge approaches operate solely on the textual representation of a software arti-
fact in terms of flat text files. Within a text file, the atomic unit may either be a paragraph, a line,
a word, or even an arbitrary set of characters. The major advantage of such approaches is their
independence of the programming languages used in the versioned artifacts. Since a solely text-
based approach does not require language-specific knowledge it may be adopted for all flat text
files. This advantage is probably, besides simplicity and efficiency, the reason for the widespread
adoption of pure text-based approaches in practice. However, when merging flat files—agnostic
of the syntax and semantics of a programming language—both compile-time and run-time errors
might be introduced during the merge. Therefore, graph-based approaches emerged, which take
syntax and semantics into account.

Graph-based merge approaches operate on the graph-based representation of a software ar-
tifact for more precise conflict detection and merging. Such approaches de-serialize or translate
the versioned software artifact into a specific structure before merging. Mens [Men02] catego-
rized these approaches in syntactic and semantic merge approaches. Syntactic merge approaches
consider the syntax of a programming language by, for instance, translating the text file into the
abstract syntax tree and, subsequently, performing the merge in a syntax-aware manner. Conse-
quently, unimportant textual conflicts, which are, for instance, caused by reformatting the text
file, may be avoided. Furthermore, such approaches may also avoid syntactically erroneous
merge results. However, the textual formatting intended by the developers might be obfuscated
by syntactic merging because only a graph-based representation of the syntax is merged and has
to be translated back to text eventually. Semantic merge approaches go one step further and
consider also the static and/or dynamic semantics of a programming language. Therefore, these
approaches may also detect issues such as undeclared variables or even infinite loops by using
complex formalisms like program dependency graphs and program slicing. Naturally, these ad-
vantages over flat textual merging have the disadvantage of the inherent language dependence
(cf. [Men02]) and their increased computational complexity. Furthermore, it is not always trivial
to point the developer to the modifications that caused the conflict. If such a trace back to the
causing modifications is missing or inaccurate, it might be difficult for developers to understand
and resolve the raised conflicts, because they are reported based on a different representation,
i.e., the graph, of the artifact, and not in the textual representation the developer is familiar with.

The second dimension in Figure 2.2 considers how deltas are identified and merged in order
to create a consolidated version. This dimension is agnostic of the unit of versioning. Therefore,
a versioned element might be a line in a flat text file, a node in a graph, or whatsoever constitutes
the representation used for merging.

State-based merging compares the states, i.e., versions, of a software artifact to identify the
differences (deltas) between them and merge all differences which are not contradicting with
each other. Such approaches may either be applied to two states (Version 1 and Version 2 in Fig-
ure 1.1), called two-way merging, or to three states (including their common ancestor Version 0

17

in Figure 1.1), called three-way merging. Two-way merging cannot identify deletions since the
common original state is unknown. A state-based comparison requires a match function which
determines whether two elements of the compared artifact correspond to each other. The easiest
way to match two elements is to search for completely equivalent elements. However, the quality
of the match function is crucial for the overall quality of the merge approach. Therefore, espe-
cially graph-based merge approaches often use more sophisticated matching techniques based
on identifiers and heuristics (cf. [KN06] for an overview of matching techniques). Model match-
ing, or more generally the graph isomorphism problem is NP-hard (cf. [KR96]) and therefore
very expensive regarding its run time. If the match function is capable of matching also partially
different elements, a difference function is additionally required to determine the fine-grained
differences between two corresponding elements. Having these two functions, two states of the
same artifact may be merged with the algorithm shown in Algorithm 2.1. Please note that this
algorithm only serves to conceptually clarify basic state-based merging. This algorithm is appli-
cable for both, text-based and graph-based merging, whereas nX denotes the atomic element n
within the product space of Version X; that is, no for an element in the common origin version
and n1 or n2 for an element in the two revised versions, respectively.

Algorithm 2.1 iterates through each element no in the common origin version Vo of a soft-
ware artifact. The following two lines retrieve the elements matching with no from the two
modified versions Vr1 and Vr2. However, there might be no match for no in Vr1 or Vr2 since it
might have been removed. If no has a match in both versions Vr1 and Vr2, the algorithm checks
if it has been modified in the versions Vr1 and Vr2. If the matching element is different from the
original element no, i.e., it has been modified, in one and only one of the two versions Vr1 and
Vr2, the modified element is used for creating the merged version. If the matching element is
different in both versions, an Update/Update conflict is raised by the algorithm. If the matching
element has not been modified at all, the original unit no is used for the merged version. Next,
the algorithm checks if there is no match for no in one of the two modified versions, i.e., it has
been removed. If so, the algorithm determines whether it has been concurrently modified and
raises, in this case, a Delete/Update conflict. If the element has not been modified, it is removed
from the merged version. The element no is also removed, if there is no match in both modified
versions, i.e., it has been deleted in both versions. Finally, the algorithm adds all elements from
Vr1 and Vr2, which have no match in the original version Vo and which, consequently, are added
in Vr1 or Vr2.

Operation-based merging does not operate on the states of an artifact. Instead, the opera-
tion sequences which have been concurrently applied to the original version are recorded and
analyzed. Since the operations are directly recorded by the applied editor, operation-based ap-
proaches may support, besides recording atomic changes, also composite operations such as
refactorings (e.g., [KHWH10]). The knowledge on applied refactorings may significantly in-
crease the quality of the merge as stated by Dig et al. [DMJN08]. The downside of operation
recording is the strong dependency on the used editor, since it has to record each performed
operation and it has to provide this operation sequence in a format which the merge approach
is able to process. The directly recorded operation sequence might include obsolete operations
such as updates to an element which will be removed later on. Therefore, many operation-
based approaches apply a cleansing algorithm to the recorded operation sequence for more effi-

18

input : Common origin model Vo, two revised models Vr1 and Vr2
output: The merged model version Vm

1 foreach no ∈ Vo do
2 n1 ← match(no in Vr1);
3 n2 ← match(no in Vr2);
4 if hasMatch(no in Vr1) ∧ hasMatch(no in Vr2) then
5 if diff(no, n1) ∧ ¬ diff(no, n2) then
6 Use n1 in Vm
7 end
8 if ¬ diff(no, n1) ∧ diff(no, n2) then
9 Use n2 in Vm

10 end
11 if diff(no, n1) ∧ diff(no, n2) then
12 Raise Update/Update conflict
13 end
14 if ¬ diff(no, n1) ∧ ¬ diff(no, n2) then
15 Use no in Vm
16 end
17 end
18 if hasMatch(no in Vr1) ∧ ¬ hasMatch(no in Vr2) then
19 if diff(no, n1) then
20 Raise Delete/Update conflict
21 else Remove no in Vm
22 end
23 end
24 if ¬ hasMatch(no in Vr1) ∧ hasMatch(no in Vr2) then
25 if diff(no, n2) then
26 Raise Delete/Update conflict
27 else Remove no in Vm
28 end
29 end
30 if ¬ hasMatch(no in Vr1) ∧ ¬ hasMatch(no in Vr2) then
31 Remove no in Vm
32 end
33 end

34 foreach n1 ∈ Vr1 do
35 if ¬ hasMatch(n1 in Vo) then Add n1 to Vm
36 end
37 foreach n2 ∈ Vr2 do
38 if ¬ hasMatch(n2 in Vo) then Add n2 to Vm
39 end

Algorithm 2.1: State-based Merge Algorithm

19

cient merging. The operations within the operation sequence might be interdependent because
some of the operations cannot be applied until other operations have been applied. As soon
as the operation sequences are available, operation-based approaches check parallel operation
sequences (Version 0 to Version 1 and Version 0 to Version 2) for commutativity to reveal con-
flicts (cf. [LvO92]). Consequently, a decision procedure for commutativity is required. Such
decision procedures are not necessarily trivial. In the simplest yet least efficient form, each pair
of changes within the cross product of all atomic changes in both sequences are applied in both
possible orders to the artifact and both results are checked for equality. If they are not equivalent,
the changes are not commutative. After checking for commutativity, operation-based merge ap-
proaches apply all non-conflicting (commutative) changes of both sides to the common ancestor
in order to obtain a merged model.

In comparison to state-based approaches, the recorded operation sequences are, in general,
more precise and potentially enable to gather more information (e.g., change order and refactor-
ings), than state-based differencing. In particular, state-based approaches do not rely on a pre-
cise matching technique. Moreover, state-based comparison approaches are—due to complex
comparison algorithms—very expensive regarding their run-time in contrast to operation-based
change recording. However, these advantages come at the price of strong editor-dependence.
Furthermore, one part of the computational complexity which was saved in contrast to state-
based matching and differencing is lost again due to operation sequence cleansing and non-trivial
checking for commutativity. Nevertheless, operation-based approaches scale for large models
from a conceptual point of view because their computational effort mainly depends on the length
of the operation sequences and—in contrast to state-based approaches—not on the size of the
models [KHWH10].

Anyhow, the border between state-based and operation-based merging is sometimes blurry.
Indeed, we can clearly distinguish whether the changes are recorded or differences are derived
from the states, however, some state-based approaches derive the applied operations from the
states and use operation-based conflict detection techniques. This is only reasonable if a re-
liable matching function is available, for instance, using unique identifiers. On the contrary,
some operation-based approaches derive the states from their operation sequences to check for
potentially inconsistent states after merging. Such an inconsistent state might for instance be a
violation of the syntactic rules of a language. Detecting these conflicts is often not possible by
solely analyzing the operation sequences. Eventually, the conflict detection strategies conducted
in state-based and operation-based approaches are very similar from a conceptual point of view.
Both check for direct or indirect concurrent modifications to the same element and try to identify
illegal states after merging, whether the modifications are explicitly given in terms of operations
or whether they are implicitly derived from a match between two states.

Selected Representatives of Versioning Systems

In Figure 2.2, we cited some representatives for each combination of the two dimensions in the
domain of source code versioning as well as in the domain of model versioning. In the following,
we briefly introduce and compare the representatives listed in Figure 2.2. For a more detailed
description of existing model versioning approaches we kindly refer to Section 2.2.2.

20

The combination of text-based and state-based merge approaches are probably the most
adopted ones in practice. For instance, traditional central Version Control Systems such as
CVS1 and SVN2 use state-based three-way merging of flat text files. The smallest indivisible
unit of merging in these systems is usually a line within a text file, as it is the case for the
Unix diff utility [HM76]. Lines are matched across different versions by searching for the Least
Common Sub-sequence (LCS). For efficiency, usually only completely equal lines are matched
and, therefore, no dedicated difference function for deriving the actual difference between two
lines is required: A line is simply either matched and therefore equal, or unmatched and therefore
considered to be added or removed at a certain position in a text file. Consequently, parallel
modifications to different lines can be merged without user intervention as long as they are
at different positions. As soon as the same line is modified in both versions (Version 1 and
Version 2) or modified and concurrently deleted, a conflict is annotated in the merged file. As
stated earlier, due to their syntax and semantics unawareness, compile-time and run-time errors
might be introduced by the merge. The same applies to the distributed version control systems
(DVCS) git3 and bazaar4, since they are also state-based and line-based. The major difference
to SVN and CVS is their distributed nature. DVCS disclaim a single central repository and take
a peer-to-peer approach instead. Developers commit their changes to a local repository, i.e., a
peer, and push them to other remote peers as they wish. Besides several other organizational
advantages, this enables a higher commit frequency since a commit does not immediately affect
other developers. Changes might therefore be grouped into atomic commits and pushed to other
peers more easily which is a step towards operation-based merging.

MolhadoRef [DMJN08], a representative for text- and operation-based approaches, aims
at improving the merge result by also considering refactorings applied to object-oriented (Java)
programs. Applications of refactorings are recorded in the development environment. When two
versions are merged, all recorded refactorings are undone in both modified versions, then the
versions, excluding the refactoring applications, are merged in a traditional text-based manner,
and, finally, all refactorings are re-applied to this merged version. This significantly improves
the merge result and avoids unnecessary conflicts in many scenarios. However, as already men-
tioned, a strong dependency to the applied editor is given because the editor has to provide op-
eration logs. Furthermore, handling refactorings requires language-specific knowledge encoded
in the merge component.

Several state-based approaches exist which operate on a graph-based representation of the
versioned software artifact. In Figure 2.2, we cite two representatives for graph-based and state-
based approaches—one for source code, namely JDiff [AOH07], and one for software models,
namely EMF Compare5 [BP08]. JDiff is a graph-based differencing approach for Java source
code. Corresponding classes, interfaces and methods are matched by their qualified name or
signature. This matching also accounts for the possibility to interact with the user in order to
improve the match of renamed but still corresponding elements due to the absence of unique

1http://www.cvshome.org
2http://subversion.tigris.org
3http://git-scm.com
4http://bazaar.canonical.com
5http://www.eclipse.org/emft/projects/compare

21

http://www.cvshome.org
http://subversion.tigris.org
http://git-scm.com
http://bazaar.canonical.com
http://www.eclipse.org/emft/projects/compare

identifiers. For matching and differencing the method bodies, the approach builds enhanced
control-flow graphs representing the statements in the bodies and compares them. By this, JDiff
can provide information that accurately reflects the effects of code changes on the program at
the statement level. EMF Compare is a model comparison framework for EMF based models. It
facilitates heuristics for matching model elements and can detect differences between matched
elements on a fine-grained level (metamodel features of each model element). The matching and
differencing is applied on the generic model-based representation of the elements.

There are several purely operation-based approaches which record changes directly and ap-
ply merging on a graph-based representation. The first publication which introduced operation-
based merging was elaborated by Lippe and Oosterom [LvO92]. They proposed to record all
changes applied to an object-oriented database system. After the precise change-sets are avail-
able due to recording, they are merged by re-applying all their changes to the common ances-
tor version. In general, a pair of changes is conflicting if they are not commutative. EMF
Store [KHWH10] is an operation- and graph-based versioning system for software models.
Since EMF Compare and EMF Store are representatives of model versioning systems, they are
further elaborated on in Section 2.2.2.

Consequences of Design Decisions

To highlight the benefits and drawbacks of the four possible combinations of the versioning
approaches based on Figure 2.2, we present a small versioning example depicted in Figure 2.3
and conceptually apply each approach for analyzing its quality in terms of the detected conflicts
and derived merged version.

Consider a small language for specifying classes, its properties, and references linking two
classes. The textual representation of this language is depicted in the upper left area of Figure 2.3
and defined by the EBNF-like Xtext6 grammar specified in the box labeled Grammar. The same
language and the same examples are depicted in terms of graphs in the lower part of Figure 2.3.
In the initial version (Version 0) of the example, there are two classes, namely Human and
Vehicle. The class Human contains a property name and the class Vehicle contains a property
named carNo. Now, two users concurrently modify Version 0 and create Version 1 and Version 2,
respectively. All changes in Version 1 and Version 2 are highlighted with bold fonts or edges
in Figure 2.3. The first user changes the name of the class Human to Person, sets the lower
bound of the property carNo to 1 (because every car must have exactly one number) and adds an
explicit reference owns to Person. Concurrently, the second user renames the property carNo
to regId and the class Vehicle to Car.

Text-based versioning. When merging this example with text- and state-based approaches
(cf. Figure 2.4(a) for the result) where the artifact’s representation is a single line and the match
function only matches completely equal lines (as with SVN, CVS, Git, bazaar, etc), the first line
is correctly merged since it has only been modified in Version 1 and remained untouched in Ver-
sion 2 (cf. Algorithm 2.1). The same is true for the added reference in line 3 of Version 1 and the
renamed class Car in line 4 of Version 2. However, the property carNo represented by line 5 in

6http://www.eclipse.org/Xtext

22

http://www.eclipse.org/Xtext

Human : Class

Vehicle : Class

name : Property
type = string
lower = 1
upper = 1

owns : Reference
lower = 0
upper = *

G
raph-based R

epresentation

Version 0 Version 1

Version 2

Legend

<NodeName> : <Type>
<attributeName> = <value>

Containment Edge
Edge

Text-based R
epresentation

Version 0 Version 1

Version 2

1: class Human {
2: string[1..1] name
3: }
4: class Vehicle {
5: integer[0..1] carNo
6: }

1: class Person {
2: string[1..1] name
3: Vehicle[0..*] owns
4: }
5: class Vehicle {
6: integer[1..1] carNo
7: }

1: class Human {
2: string[1..1] name
3: }
4: class Car {
5: integer[0..1] regId
6: }

Grammar
Class:= "class" name=ID "{"

(properties+=Property)*
(references+=Reference)*

"}";
Reference:= target=[Class] "[" lower=BOUND

".." upper=BOUND "]" name=ID;
Property:= type=ID "[" lower=BOUND

".." upper=BOUND "]" name=ID;
terminal ID:= ('a'..'z'|'A'..'Z'|'_')+;
terminal BOUND:= (('0'..'9')+)|('*');

carNo : Property
type = integer
lower = 0
upper = 1

Person : Class

Vehicle : Class

carNo : Property
type = integer
lower = 1
upper = 1

Human : Class

Car : Class

name : Property
type = string
lower = 1
upper = 1

regId : Property
type = integer
lower = 0
upper = 1

name : Property
type = string
lower = 1
upper = 1

Figure 2.3: Versioning Example

Version 0 has been changed in both Versions 1 (line 6) and Version 2 (line 5). Although different
features of this property have been modified (lower and name), these modifications result in a
concurrent change of the same line and, hence, a conflict is raised. Furthermore, the reference
added in Version 1 refers to class Vehicle, which does not exist in the merged version anymore
since it has been renamed in Version 2. We may summarize that text- and state-based merg-
ing approaches provide a reasonable support for versioning software artifacts. They are easy
to apply and work for every kind of flat text file irrespectively of the used language. However,
erroneous merge results may occur and several “unnecessary” conflicts might be raised. The
overall quality strongly depends on the textual syntax. Merging textual languages with a strict
syntactic structure (such as XML) might be more appropriate than merging languages which
mix several properties of potentially independent concepts into one line. The latter might cause

23

1

Version 31: class Person {
2: string[1..1] name
3: Vehicle[0..*] owns
4: }
5: class Car {
6: <<UP/UP>>
7: }

a: integer[1..1] carNo
b: integer[0..1] regId
c: integer[1..1] regId

Version 31: class Person {
2: string[1..1] name
3: Car[0..*] owns
4: }
5: class Car {
6: <<UP/UP>>
7: }

a: integer[1..1] carNo
b: integer[0..1] regId
c: integer[1..1] regId

Rename-Op:
change Class.name;
update Property.type
pre@Class.name with
post@Class.name;

(a) (b)

owns : Reference
lower = 0
upper = *

Person : Class name : Property
type = string
lower = 1
upper = 1

Version 3

Car : Class regId : Property
type = integer
lower = 0
upper = 1

carNo : Property

type = integer
lower = 1
upper = 1

<<UP/DEL>>

owns : Reference
lower = 0
upper = *

Person : Class

Car : Class

regId : Property
type = integer
lower = 1
upper = 1

name : Property
type = string
lower = 1
upper = 1

Version 3

(a) (b)

X

Figure 2.4: Text-based Versioning Example: (a) state, (b) operation

1

Version 31: class Person {
2: string[1..1] name
3: Vehicle[0..*] owns
4: }
5: class Car {
6: <<UP/UP>>
7: }

a: integer[1..1] carNo
b: integer[0..1] regId
c: integer[1..1] regId

Version 31: class Person {
2: string[1..1] name
3: Car[0..*] owns
4: }
5: class Car {
6: <<UP/UP>>
7: }

a: integer[1..1] carNo
b: integer[0..1] regId
c: integer[1..1] regId

Rename-Op:
change Class.name;
update Property.type
pre@Class.name with
post@Class.name;

(a) (b)

owns : Reference
lower = 0
upper = *

Person : Class name : Property
type = string
lower = 1
upper = 1

Version 3

Car : Class regId : Property
type = integer
lower = 0
upper = 1

carNo : Property

type = integer
lower = 1
upper = 1

<<UP/DEL>>

owns : Reference
lower = 0
upper = *

Person : Class

Car : Class

regId : Property
type = integer
lower = 1
upper = 1

name : Property
type = string
lower = 1
upper = 1

Version 3

(a) (b)

X

Figure 2.5: Graph-based Versioning Example: (a) state, (b) operation

tedious manual conflict and error resolution.
One major problem in the merged example resulting from text-based and state-based ap-

proaches is the wrong reference target (line 3 in Version 1) caused by the concurrent rename
of Vehicle. Operation-based approaches (such as the MolhadoRef software configuration man-
agement system) solve such an issue by incorporating knowledge on applied refactorings in the
merge. Since a rename is a refactoring, MolhadoRef would be aware of the rename and resolve
the issue by re-applying the rename after a traditional merge is done. The result of this merge is
shown in Figure 2.4(b).

Graph-based versioning. Applying the merge on top of the graph-based representation de-
picted in Figure 2.3 may also significantly improve the merge result because the representation
used for merging is a node in a graph which more precisely represents the versioned software
artifact. However, as already mentioned, this advantage comes at the price of language depen-
dence because merging operates either on the language specific graph-based representation or
a translation of a language to a generic graph-based structure must be available. Graph- and
state-based approaches additionally require a match function for finding corresponding nodes
and a difference function for explicating the differences between matched nodes. The precise-
ness of the match function significantly influences the quality of the overall merge. Assume
matching is based on name and structure heuristics for the example in Figure 2.3. Given this
assumption, the class Human may be matched since it contains an unchanged property name.
Therefore, renaming the class Human to Person can be merged without user intervention. How-
ever, heuristically matching the class Vehicle might be more challenging because both the class
and its contained property have been renamed. If the match does not identify the correspondence

24

between Vehicle and Car, Vehicle and its contained property carNo is considered to be removed
and Car is assumed to be added in Version 2. Consequently, a Delete/Update conflict is reported
for the change of the lower bound of the property carNo in Version 1. Also the added refer-
ence owns refers to a removed class which might be reported as conflict. This type of conflict
is referred to as Delete/Use or delete-reference in literature [TELW10, Wes10]. If, in contrast,
the match relies on unique identifiers, the nodes can soundly be matched. Based on this precise
match, the state-based merge component can resolve this issue and the added reference owns
correctly refers to the renamed class Car in the merged version. However, the concurrent modifi-
cation of the property carNo (name and lower) might still be a problem since purely state-based
approaches usually take the element’s changes of only one version to construct the merged ver-
sion. Some state-based approaches solve this issue by conducting a more fine-grained difference
function to identify the detailed differences between two elements. If these differences are not
overlapping—as in our example—they can both be applied to the merged element. The result
of a graph-based and state-based merge without taking identifiers into account is visualized in
Figure 2.5(a).

Purely graph- and operation-based approaches are capable of automatically merging the
presented example (cf. Figure 2.5(b)). Between Version 0 and Version 1, three operations have
been recorded, namely the rename of Human, the addition of the reference owns and the update
concerning the lower bound of carNo. To get Version 2 from Version 0, class Vehicle and
property carNo have been renamed. All these atomic operations do not interfere, i.e., they are
commutative, and therefore, they all can be re-applied to Version 0 in order to obtain a correctly
merged version.

To sum up, a lot of research activity during the last decades in the domain of traditional
source code versioning has lead to significant results. Approaches for merging software models
draw a lot of inspiration from previous works in the area of source code merging. Especially
graph-based approaches for source code merging form the foundation for model versioning.
However, one major challenge still remains an open problem. The same trade-off as in tradi-
tional source code merging has to be made regarding editor- and language-independence versus
preciseness and completeness. Model matching, comparison and merging, as discussed above,
can significantly be improved by incorporating knowledge on the used modeling language as
well as language-specific composite operations such as refactorings. On the other hand, model
versioning approaches are also forced to support several languages at once because even in small
MDE projects several modeling languages are usually combined. Therefore, a generic infras-
tructure which may be adapted for several modeling languages is as valuable as it is challenging
to design.

2.2.2 State of the Art in Model Versioning

In the previous section, general versioning concepts have been introduced without putting special
emphasis on model versioning. These general concepts, being the result of intensive research
efforts of the past thirty years, constitute the basics for dedicated graph-based model versioning
systems, which emerged more recently. In this section, we focus on the state of the art in model
versioning and survey existing approaches in this area. These approaches are categorized based
on a set of features they offer and characteristics they have.

25

Selected Model Versioning Systems

In this section, we introduce current state-of-the-art model versioning systems and evaluate them
according to the features and characteristics discussed in the previous section. The considered
systems and the findings of this survey are summarized in Section 2.1 and profoundly discussed
in the following. Please note that the order in which we introduce the considered systems has no
further meaning. The name of the system is stated if it is available.

Alanen and Porres. One of the earliest works on the versioning of UML models was the
paper by Alanen & Porres [AP03], who presented various metamodel independent algorithms
for difference calculation, model merging as well as conflict resolution. They identified seven
elementary operations which are grouped into positive and negative operations. Whereas posi-
tive operations add model elements and can therefore be used to represent any model, negative
operations have the opposite effect and remove model elements. For calculating the differences
between the original version and the modified version, first an unambiguous mapping is created
which allows the calculation of the necessary changes to obtain the new version from the old
version. For the mapping, unique identifiers of the model elements are required. For the merge,
different situations are considered. Conflicts are reported if an updated element is deleted or
two ordered features are added. Then manual intervention is necessary for conflict resolution.
Finally, metamodel-aware automatic conflict resolution is suggested in order to repair the model
in such a manner that broken well-formed rules are again obeyed.

Oda and Saeki The version control support proposed by Oda & Saeki [OS05] builds upon
the facilities offered by a meta-CASE tool which allows the construction of modeling editors
for arbitrary modeling languages. Together with the typical functionalities also versioning fea-
tures like the calculation of differences are included into a modeling editor built from a given
metamodel. The generated tool offers a menu for performing check-in, check-out, and update
operations on the repository. When a model is changed within such an editor, the modifications
are recorded and stored to the central repository. Since the modeling editors are newly built by
the meta-CASE tool, the necessary functionality is included as required. Model elements are as-
signed a unique identifier and model specific operations may be defined. Also layout information
is considered within the versioning process.

Ohst, Welle, and Kelter. Within their merge algorithm, Ohst et al. [OWK03] put special em-
phasis on the visualization of the differences. They offer a preview to the user which contains
all modifications even if they are contradicting. The diagram shown in the preview may be
modified, conflicts may be manually resolved, and automatically applied merge decisions may
be undone. For the merge, unique identifiers of the model elements are required. Considered
conflicts are update/update and delete/update conflicts. For indicating the modifications, the
different model versions are shown in a unified document containing the common parts, the au-
tomatically merged parts, as well as the conflicts. For distinguishing the different parts, different
colors are used. In the case of Delete/Update conflicts, the deleted model element is crossed out
and decorated with a warning symbol to indicate the modification.

26

Mehra, Grundy, and Hosking. The approach of Mehra et al. [MGH05] also focuses on vi-
sualization support for comparison and merging tasks in CASE tools. Therefore, they provide
a plugin for the meta-CASE tool Pounamu, a tool for the specification and generation of multi-
view design editors. The diagrams are serialized in XMI, which are converted into a Java object
graph for comparison. The obtained differences are translated to Pounamu editing events which
have been applied on the model. Differences cover not only modifications performed on the
model, but also modifications performed on the visualization, e.g., editing events like Resize-
Shape. The differences between various versions are highlighted in the concrete syntax, i.e.,
in the diagram view, presented to the modeler who may accept or reject modifications. When a
modification is accepted it is applied on the model and stored within the repository.

Cicchetti, Di Ruscio, and Pierantonio. Cicchetti et al. [CDRP08] propose a domain- specific
language to specify conflicts and conflict resolution patterns. Conflicts are defined based on a
proprietary difference model which describes the modifications performed on subsequent ver-
sions of one model. To this end, the authors are able to establish an extendable set of conflicts,
represented as forbidden difference pattern. By this means, the realization of a customizable con-
flict detection component is possible. The difference model conforms to a difference metamodel
which is dedicated to the used modeling language. This difference metamodel is automatically
generated from the metamodel of the modeling language. When two different versions of a
common base model evolve, then the merged version may be obtained by composing the two
difference models. The result of the composition of two difference models is again a difference
model containing the minimal difference set, i.e., only these modifications are included, which
have not been overwritten by other operations. When the modifications are conflicting, this con-
flict has to be reported or resolved by applying a dedicated reconciliation strategy defined for
the conflict pattern.

ADAMS. Beside versioning features, the Advanced Artifact Management System ADAMS
offers process management functionality, coordination of multiple modelers, and the manage-
ment of traceability information [DLFOT06]. ADAMS may be integrated via specific plug-
ins into various modeling environments to realize model management and context- awareness,
i.e., every modeler knows who else is working on the same model element. De Lucia et
al. [DLFST09] present an ADAMS plug-in for versioning ArgoUML models. For ArgoUML,
XMI files with the diagram information, and additional files with layout information and meta
information about the models are considered and transformed into an internal format to be stored
within the model repository. If a model is checked-out or updated, the model stored in the repos-
itory is again converted back to the tool specific format. On the client-side, the deltas are calcu-
lated when the model is modified based on the assumption that unique identifiers are available.
Only the deltas are committed to the central versioning server where the merge process is per-
formed. In ADAMS it is possible to configure the unit of comparison. Changes to uncorrelated
elements are automatically merged, whereas for conflicting modifications manual intervention
is necessary. For newly introduced model elements, simple matching heuristics are applied to
check whether another modeler has introduced the same element. If a potential duplication is
detected, it is reported to the modeler and like in a conflict situation manual intervention is nec-

27

essary. In ADAMS, the layout information is also considered as a model and is therefore also
set under version control.

AMOR. To better compare our approach with the state-of-the-art systems, we also cover
AMOR in this evaluation. Our model versioning system AMOR [BKS+10], which is presented
in more detail in Chapter 3, implements a conflict detection component for the EMF metamod-
eling language Ecore which reports not only conflicts resulting from atomic changes, but also
from composite changes. These composite changes are not tracked following an operation-based
approach, but they are recalculated based on the versions of one model which are potentially con-
flicting. Due to this state-based approach, the conflict detection of AMOR is independent of any
modeling environment. For handling the conflicts, AMOR offers two different approaches: (i)
immediate conflict resolution and (ii) conflict tolerance, i.e., living with inconsistencies. If the
conflicts shall be resolved immediately, a conflict resolution recommender guides the modeler
during the conflict resolution process by suggesting potential, automatically executable resolu-
tion patterns. In some situations, it might be preferable, to defer the conflict resolution to a later
point in time. AMOR offers a mechanism to incorporate the changes of any modeler into one
model which is annotated with information about the conflicts [WLS+11].

CoObRA. The Concurrent Object Replication framework CoObRA developed by Schneider
et al. [SZN04] realizes optimistic versioning for the UML case tool Fujaba7. CoObRA records
the changes performed on the model elements and aligns incremental changes into groups. The
change protocols are committed to a central repository. When other modelers want to update
their local models, these changes are fetched from this repository and replayed on the local
model. To identify equal model elements, unique identifiers are introduced and the model ele-
ments are enhanced with versioning information. Conflicting changes are not applied (also the
corresponding local change is undone) and finally presented to the user who has to resolve these
conflicts manually. Repair mechanisms to fix model inconsistencies resulting from the merge
are shortly reported.

EMF Compare. The open-source, Java-based component EMF Compare [BP08], which is
part of the Eclipse Modeling Framework Technology (EMFT) project8, supports generic model
comparison and model merging. EMF Compare reports differences between Ecore models based
on two-way or three-way comparison approaches. Within the Eclipse environment, the differ-
ences are indicated on a tree-based representation of the models where conflicting changes are
highlighted in a dedicated color. Programmatic access of EMF Compare is also possible. For
comparing two models, EMF Compare distinguishes two phases: a matching phase and a differ-
encing phase building a match model as well as a difference model. The matching phase relies
on four metrics based on type, name, value, and relationship similarity. The difference model
provides information about inserted, deleted, and updated elements. The comparison and merge
algorithms are kept generic in order to make them applicable for any Ecore-based modeling
language, but the adaption to language-specific features is explicitly intended.

7http://www.fujaba.de
8http://www.eclipse.org/modeling/emft

28

http://www.fujaba.de
http://www.eclipse.org/modeling/emft

IBM Rational Software Architect (RSA). The RSA9, a UML modeling environment built
upon the Eclipse Modeling Framework, provides two-way and three-way merge functionality
for UML models. During the merge, not only syntax and the low-level EMF semantics are
considered, but even the semantics of UML elements is taken into account. The differences are
shown either in a tree-editor, or directly in the diagram. If the later view on the differences
is chosen, then modified elements are highlighted. Conflict resolution must be done by the
modeler manually, by either rejecting or accepting changes. Furthermore, the RSA offers a
model validation facility which checks the conformance of the merged version to the UML
metamodel.

EMF Store. The model repository EMF Store presented by Koegel et al. [KHWH10], which
has been initially developed as part of the Unicase10 project, provides a dedicated framework for
model versioning of EMF models. When a copy of a model is checked out, changes are tracked
within the client and committed to the repository. With this operation-based approach, an effi-
cient and precise detection of composite changes is possible coming along with the drawback
that composite operations like refactorings are only detectable if they are explicitly available
within the modeling editor. Changes obtained from the head revision of the repository and the
changes of the local copy, which have not been checked in so far, are considered. Having the two
lists of the performed changes, two kinds of relationships are established: “requires” and “con-
flicts”. Whereas the former relationship expresses dependencies between operations, the later
emphasizes contradicting modifications. Since the exact calculation of requires and conflicts
relationships would be too expensive, heuristics are applied to obtain an approximation. To keep
the conflict detection component flexible, a strategy pattern is implemented, which allows the
adaption to specific needs. For example, in Koegel et al. [KHWH10], the FineGrainedCDStrat-
egy is proposed, which works on the attribute and reference level. Basically, two changes are
conflicting, if the same attribute or the same reference is modified. All operations are classified
to a few categories for obtaining potentially problematic situations. Furthermore, the authors in-
troduce levels of severity to classify conflicts. They distinguish between hard conflicts and soft
conflicts referring to the amount of user support necessary for their resolution. Whereas hard
conflicts do not allow including both conflicting operations within the merged model, for soft
conflicts this is possible (with the danger of obtaining an inconsistent model). A wizard guides
the merge process.

Odyssey-VCS. The version control system Odyssey-VCS by Oliveira et al. [OMW05] is dedi-
cated to versioning UML models. For each project, behavior descriptors may be specified which
define how each model element should be treated during the versioning process. For the conflict
detection, it may be specified which model elements should be considered atomic. If an atomic
element is changed in two different ways at the same time, a conflict is raised. Behavior descrip-
tors are expressed in XML and therefore, Odyssey-VCS is customizable for different projects.
In the merge algorithm, all possible scenarios are considered, and the resulting actions, such as
safely adding both operations, reporting a conflict, doing nothing, etc., are taken. A validation of

9http://www.ibm.com/developerworks/rational/library/05/712_comp/index.html
10http://www.unicase.org

29

http://www.ibm.com/developerworks/rational/library/05/712_comp/index.html
http://www.unicase.org

the resulting model is not provided. Odyssey-VCS may be used either with a standalone client or
with arbitrary modeling tools. The communication with the server is realized with Web services.
More recently, Odyssey-VCS 2 by Murta et al. [MCPW08] has been released which is built on
top of Ecore resulting in a gain of flexibility concerning reflective processing of the model ele-
ments. Consequently, the conflict detection and merge algorithm is expressed in a more generic
manner. Additionally, Odyssey-VCS is capable of both, pessimistic versioning and optimistic
versioning. In the latter case, explicit branching is performed for storing not only the merged
version, but also the working copies the merge is based on.

SMOVER. The semantically-enhanced versioning system SMOVER by Reiter et al. [RAB+07]
aims at reducing the number of falsely detected conflicts resulting from syntactic variations of
one modeling concept. Furthermore, additional conflicts shall be identified by using knowledge
about the modeling language. This knowledge is encoded by the means of model transformations
which rewrite a given model to so-called semantic views. These semantic views provide canon-
ical representations of the model which makes certain aspects of the modeling language more
explicit. Consequently, more precise information about potential conflicts might be obtained
when the semantic view representation of two concurrently evolved versions are compared.

Features and Characteristics of Model Versioning Approaches

Physical Model Management (MM). At some point in time, it is necessary to physically store
the model versions. Therefore, a repository is required as well as a format in which the model
versions may be accessed by the versioning system.

Repository: Whereas some systems offer a complete solution with an integrated repository
where the historical information of the artifacts is stored, other approaches realize only the model
merge component and rely on available repositories, which administrate files of arbitrary kinds.

Standard Format: The models may either be serialized in a standard format, i.e., XMI, or a
format specific for the editor/versioning system. Consequently, transformations might be nec-
essary before the versioning system may be used. If a direct import and processing of the XMI
serialization, like it is the case in AMOR and Odyssey-VCS, versioning might be performed
independently of any modeling editor.

Differences. The various systems follow different approaches how differences are obtained
and represented, which are the basis for the calculation of conflicts.

Operation Tracking: Overall, the differences are either calculated retrospectively by a state-
based algorithm or directly tracked during the modeling activity in operation-based approaches.
Concerning the latter, more information is available, but a tighter coupling to the editors is given.
All approaches belong to one of these two categories, only AMOR is a special case as discussed
in the previous section. In AMOR, the atomic changes are obtained by a state-based comparison,
from which composite changes might be retrospectively recovered.

Matching Heuristics: All approaches use unique identifiers to match elements occurring in
all versions. EMF Compare, ADAMS as well as AMOR additionally apply certain heuristics
when no identifiers are available and to be able to match newly introduced elements.

30

Difference Model: Some approaches like EMF Compare, AMOR, and Cicchetti et al. repre-
sent differences as model. The differences are described in terms of operations from which, the
revised model may be recreated when applied to the origin model.

MM Differences Conflicts Flexibility
R

ep
os

ito
ry

St
an

da
rd

Fo
rm

at

O
pe

ra
tio

n
Tr

ac
ki

ng

M
at

ch
in

g
H

eu
ri

st
ic

s

D
iff

er
en

ce
M

od
el

C
on

fli
ct

M
od

el

C
on

fli
ct

-t
ol

er
an

ce

C
on

fli
ct

D
ep

en
de

nc
ie

s

G
ra

ph
ic

al
V

is
ua

liz
at

io
n

A
ut

om
at

ic
R

es
ol

ut
io

n

L
ay

ou
tI

nf
or

m
at

io
n

M
od

el
in

g
L

an
gu

ag
e

M
od

el
in

g
E

di
to

r

U
ni

to
fC

om
pa

ri
so

n

D
et

ec
ta

bl
e

O
pe

ra
tio

ns

D
et

ec
ta

bl
e

C
on

fli
ct

s

C
ol

la
bo

ra
tiv

e
R

es
ol

ut
io

n

N
-W

ay
M

er
ge

Alanen and Porres × × ×
Oda Saeki × × × ×
Ohst et al. ∼ × ×
Mehra et al. × × × × ×
Cicchetti et al. × × × × × × ×
ADAMS × × × × × × ×
AMOR ∼ × × × × × × × × ∼ × × × × × ×
CoObRA × × ×
EMF Compare × × × × × ×
RSA ∼ × × ×
EMF Store × × × × × × × × ×
Odyssey-VCS ∼ × × × ×
SMOVER ∼ × × × × × ×

× ... applicable feature
∼ ... partly applicable feature

Table 2.1: Evaluation of State-of-the-Art Model Versioning Systems

Conflicts. When modifications are contradicting, conflicts have to be reported. The various
systems follow different paradigms to represent, to report, and finally to resolve conflicts.

Conflict Model: Some approaches like EMF Compare, AMOR, and Cicchetti et al. consider
conflicts as first-class citizens and encode them not only implicitly within the algorithms. In
these approaches, dedicated conflict models are specified. The explicit specification of a conflict
model allows the serialization and an extended processing of conflicts.

Conflict-tolerance: Beside several conflict resolution strategies in versioning systems, the
possibility to tolerate conflicts to resolve them later on is only provided by AMOR.

Conflict Dependencies: Conflicts might depend on each other. This means that the resolu-
tion of one conflict makes the resolution of an other conflict obvious and in some cases even
unnecessary. AMOR groups different kinds of conflicts occurred between several concurrent
changes of the same model element.

Graphical Visualization: Most approaches report conflicts not using the concrete model
syntax, but a tree representation, only. For the human user, much information is lost this way.
Some approaches are able to decorate the models with the information about conflicts in the
concrete syntax. Only a few approaches exist which highlight changes using coloring techniques
as proposed by Ohst et al. [OWK03] and Mehra et al. [MGH05]. However, these approaches
require the implementation of special editor extensions. Thus, to the best of our knowledge,

31

AMOR started the first attempts of tackling these challenges using UML Profiles [BKL+11b]
and, furthermore, EMF Profiles [LWWC11].

Automatic Conflict Resolution: Most approaches require manual conflict resolution. In
AMOR and the approach of Cicchetti et al. [CDRP08], automatically executable conflict res-
olution patterns are defined which are recommended to the modeler in charge of the conflict
resolution. In EMF Store, hard and soft conflicts may be defined. Soft conflicts do not require
any user intervention and only a warning is shown.

Layout Information: When models are modified, also the layout of the diagram is poten-
tially changed. Some systems like the approaches of Oda and Saeki [OS05]) and Mehra et
al. [MGH05] also consider layout information to be put under version control. In most ver-
sioning systems, however, this information is neglected and no dedicated merging actions are
provided.

Flexibility. The versioning systems often put special emphasis on being independent from
any modeling language and modeling editor and being extensible with respect to the detectable
operations, the detectable conflicts, and the automatically applicable resolution patterns.

Modeling Language: The versioning systems which foster language independence, require
the modeling languages whose models shall be put under version control to be specified either
in Meta Object Facility (MOF) or in Ecore. Other approaches consider one language only, for
example, CoObRA is implemented for models formulated in Fujaba, only.

Modeling Editor: Whereas some versioning systems are tightly integrated with a modeling
editor, other versioning systems aim for tool independence. Even operation-based systems might
be designed in such a way that they may be used with different editors - then customized plugins
have to be implemented, like in ADMAS and EMF Store.

Unit of Comparison: Some versioning systems, such as Odyssey-VCS and ADAMS, allow
the configuration of the granularity level. It is possible to specify which model elements are
considered as atomic and which have to be further decomposed. This configuration directly
influences the number of reported conflicts.

Detectable Operations: In most versioning systems, the set of detectable operations is fixed.
In some versioning systems, this set may be extended. For example in AMOR, this extension
is supported by the means of operation specifications. In this way, AMOR may be extended to
detect composite operations without programming effort.

Detectable Conflicts: In most versioning systems, the detectable conflicts are hardcoded
into the conflict detection algorithm. AMOR’s conflict detection uses the information stored in
the pre- and postconditions of the operation specifications. With the addition of new operation
specifications, additional conflicts are therefore detectable. Cicchetti et al. propose to describe
conflict patterns by the means of models. The set of conflict patterns is extensible. Thus, fur-
ther conflicts than the simple Update/Update and Delete/Update conflicts may be described and
detected. A detailed discussion of these further potential conflicts is given in the next section.

Collaborative Resolution: In nearly all versioning systems, the user who is checking-in her
changes is responsible for resolving the occurred conflicts. In AMOR, collaboration is also sup-
ported when resolving conflicts. Several users may be assigned to a conflict, who may prioritize
how to resolve it.

32

N-Way Merge Only AMOR provides the possibility to merge more than two parallel versions
into one common merged model as proposed by [BLS+10b] and elaborated in this thesis. this
means, that the changes and occurred conflicts between the first two parallel versions are also
considered, when a third (or N) version is committed.

2.3 Summary

In this chapter, we have surveyed related work in the area of collaborative modeling and state-of-
the-art model versioning systems. As we have seen in Section 2.1 different approaches for devel-
oping models have emerged. There are many techniques and tools focusing at the synchronous
development of models. With face-to-face sessions or remote interactions conflicts can be min-
imized or even avoided in advance, but working at the same time is not always possible or even
required. Thus, to develop software asynchronously and probably geographically dispersed, ver-
sion control systems are indispensable. Especially optimistic versioning control systems put no
dependencies on developers. Thus, also for models, optimistic versioning is requested. All of
the presented state-of-the-art versioning approaches contribute important ideas and concepts for
building reliable model versioning systems, whereby for some of them deployable software or
even the source code is available; others are still subject to ongoing development work. When
we consider the time of publication, the majority of the systems has been presented in the last
few years. This might be closely related with the maturity of the Eclipse Modeling Framework,
which offers a sophisticated environment for the development of such model manipulation tools.

As we have seen in Section 2.2, the different versioning systems tackle very manifold chal-
lenges of the versioning process and therefore it is kind of difficult to directly compare the sys-
tems, or even perform a competitive evaluation. However, supportive conflict resolution poses
also a big challenge in model versioning and, after evaluating current systems, we can say that
it is mainly neglected. To tackle these deficiencies, collaborative modeling approaches can be
taken as inspiring examples. Conflicts should not be seen as negative results of collaboration
but as chance to discuss design alternatives or misinterpretations. Thus, we enhanced AMOR
in such a way that the users are not left alone and, additionally, are better supported when re-
solving conflicts. Beside a better visualization of conflicts and the consideration of conflict
dependencies, we have introduced a conflict tolerant approach to incorporate all versions of the
participating modelers and to annotate occurred conflicts building a good basis for resolving the
conflicts collaboratively leading to a consolidated, merged model. Special focus is set on change
and conflict awareness (cf. [TG04]) to better track asynchronous changes of all participants by
highlighting what changes have been performed, where and when have changes been performed
and who has performed them with the goal to better understand the reason behind them. In the
next chapter, the model versioning system AMOR is presented in more detail.

33

CHAPTER 3
A Tour of AMOR

The content of this thesis has been elaborated in the context of the national funded project
AMOR—Adaptable Model Versioning. In this chapter we give an overview of the model ver-
sioning system developed within AMOR, which is also called AMOR. For further details on
the overall project, we kindly refer to our project homepage1. The overall research goal of the
project AMOR is to provide an adaptable versioning framework allowing for proper versioning
support while ensuring generic applicability for various Domain Specific Modeling Languages
(DSML) [AKK+08]. In particular, within this project three major aspects are considered:

(a) The adaptation of the framework with language specific information allows a more precise
conflict detection on the one hand and a more compact conflict report on the other hand, that
is presented in the PhD thesis of Philip Langer [Lan11].

(b) Furthermore, AMOR supports the developer when resolving conflicts with the help of dedi-
cated suggestions. In addition, not only the abstract but also the concrete syntax of a model
is considered in this phase. These two points are elaborated in the PhD thesis of Petra
Brosch [Bro11].

(c) Orthogonally to both aspects, appropriate support for developing models in teams is pre-
sented in this thesis. Conflicts are not seen as negative results of collaboration, but as
chance for discussing ideas and design alternatives. Thus, a conflict-tolerant approach is
presented including dedicated merge rules which additionally enrich the models with meta-
information that supports asynchronous collaborative modeling.

Since AMOR is conducted with the (meta-)modeling framework EMF and Ecore, for the sake
of completeness, an introduction of these concepts and techniques are given in the following
section. In AMOR as well as in all other optimistic model versioning systems, coping with
conflicts plays a central role when two or more developers work on the same artifact in parallel

1Project AMOR (FIT-IT No. 819584), www.modelversioning.org

35

www.modelversioning.org

and independent of each other. Thus, in the following, we present our categorization of conflicts
which might occur when the same model is changed by two developers in parallel. Such a
taxonomy of conflicts between model versions is indispensable for the successful establishment
of dedicated model versioning systems.

Furthermore, we present the basic workflow of AMOR in Section 3.3 by outlining the major
components.

3.1 Introduction to (Meta-)Modeling with EMF and Ecore

When talking about models in this thesis, we refer to models that are based on the Eclipse Mod-
eling Framework2 (EMF) [SBPM08]. EMF is a matured Eclipse-based framework providing a
powerful metamodeling support within the Eclipse ecosystem. During the last years, EMF has
found significant recognition among researchers and practitioners, which is also why we choose
EMF as the underlying modeling technology. EMF offers, besides the meta-metamodeling lan-
guage Ecore, which is introduced below, facilities for code generation, generation of modeling
editors, reflective APIs to generically access and manipulate models, and much more. Based
on EMF many very powerful technologies have been built, which allow, for instance, to persist
models in relational databases, to transform models, and much more. In the following, however,
we focus on introducing the metamodeling language Ecore and discuss its relationship to the
well-known metamodeling stack [K0̈6].

The heart of EMF is its metamodeling language Ecore, a Java-based implementation of
the Essential Meta Object Facility (EMOF) [Obj04] standardized by the Object Management
Group (OMG). Using Ecore, developers may specify a metamodel to define the abstract syntax
of a new modeling language. This metamodel may then be used to generate modeling editors
for creating models, that is, instances of the developed metamodel. The relationship among
meta-metamodels, metamodels, and models may best described in terms of the metamodeling
stack [K0̈6]. The metamodeling stack consists of three layers called M3, M2, and M1 whereas
a model in M2 is an instances of a model in M3 and a model in M1 is an instance of a model in
M2.

M3: Meta-metamodel. In the most upper layer in the metamodeling stack, namely M3, the
meta-metamodeling language is located (cf. Figure 3.1). In the context of EMF, this meta-
metamodeling language is constituted by Ecore. The core language elements of Ecore are de-
picted in the upper area of Figure 3.1 in terms of a UML R©class diagram. Please note that we do
not present all language elements and features in this figure. Instead, we concentrate on those
classes and features that are of paramount importance in the current context. Ecore allows to
model EClasses, which may contain an arbitrary number of structural features. For struc-
tural features upper and lower multiplicities have to be defined. Additionally, structural features
having an upper multiplicity greater than 1, may be defined as ordered. Structural features are
divided into two distinct subsets, namely EReferences and EAttributes. Attributes as
well as references must have a type. For attributes, primitive data types such as String, Boolean,

2http://www.eclipse.org/modeling/emf

36

http://www.eclipse.org/modeling/emf

1..1

ENamedElement

Shop

M
3

Meta-
metamodel

M
2

Metamodel

M
1

Model

name : EString

EClass EStructuralFeature
ordered : EBoolean
upperBound : EInt
lowerBound : EInt

EReference
containment : EBoolean

EAttribute
type: EDataType

type

state : EClass

0..*
features

name = "State"
trans : EClass

name = "Transition"

so : EReference
name = "source"
...

ta : EReference
name = "target"
...

type

type

features

features

na : EAttribute
name = "name"
...

ev : EAttribute
name = "event"
...

featuresfeatures

idle : State
name = "Idle"

dialTone : State
name = "DialTone"

h : Transition
event = "hangup"

l : Transition
event = "lift"

target

source

source

target

Idle DialTone

hangup

lift

Figure 3.1: Metamodeling with Ecore

and Integer are allowed. References refer to classes for defining their types and may additionally
be defined as containments. This means that referenced elements are nested inside the container
element and, therefore, the deletion of a container element results in cascaded deletions of all
directly and indirectly contained elements. It is worth noting that Ecore is recursively specified
again by Ecore. This means that, for example, EReference is indeed an instance of EClass
having the name “EReference”. This class again contains, for instance, the structural feature
“containment”, which is an instance of EAttribute and so on.

37

M2: Metamodel. The meta-metamodeling language may now be used to create metamodels.
A metamodel specifies the abstract syntax of a modeling language and is an instance of Ecore,
which resides in M3—therefore a metamodel resides on M2. In Figure 3.1, we provide a small
example of such a metamodel in terms of an object diagram. In particular, this metamodel is
a simplified excerpt of the state machine metamodel. Basically, a state machine consists of
States and Transitions. Therefore, we have two instances of Ecore’s EClass, one for
states and one for transitions. Both classes contain an attribute (i.e., an instance of Ecore’s
EAttribute): a state has a name and a transition has an event. Transitions further refer to
the source state and the target state. Therefore, the metamodel for state machines contains two
instances of EReferences, namely source and target.

M1: Model. The metamodel in M2 may now be instantiated to specify arbitrarily many state
machines on M1. In Figure 3.1, we illustrate a small state machine comprising two states and two
transitions between those states. More precisely, the states are instances of the corresponding
class State in the metamodel residing in M2. In the upper area of M1 in Figure 3.1, the small
state machine model is depicted in terms of an object diagram and in the lower area of M1, the
same model is illustrated by the commonly used concrete syntax of state machines for the sake
of readability.

3.2 Conflict Categorization

As discussed in the previous sections, one key element in model versioning is a conflict. How-
ever, the term conflict is strongly overloaded and differently co-notated. In the case of meta-
model violations, the term conflict is used synonymously to the term inconsistency. Current
model versioning systems mainly focus on single changes that are directly contradicting as they
may be detected in an efficient and language independent way. Nevertheless, there is a multi-
tude of further problems which could occur when merging two independently evolved models.
Therefore, in this section we first present a comprehensive categorization of conflicts based on
our previous work [BKL+11b, BLS+10a, BKL+11a].

The practical application of versioning systems depends on the quality of the merge com-
ponent, especially on model comparison and conflict detection. In general, merge conflicts on
models may occur either if one change invalidates another change, or if two changes do not
commute [LvO92]. In order to better understand the notion of conflicts, different categories
were set up to group specific issues. In the field of software merging, textual, syntactic, seman-
tic, and structural conflicts were surveyed in [Men02]. While textual conflicts are detected by a
line-based comparison of the program (cf. Section 2.2), syntactic merging operates on the parse
tree or abstract syntax graph, and thus, ignores conflicts resulting from textual reformatting.
A syntactic-aware merging component takes the programming language’s syntax into account
and reports conflicts causing parse errors. Semantic merging goes one step further and reflects
the semantic annotation of the parse tree, as done in the semantic analysis phase of a compiler.
Here, static semantic conflicts like undeclared variables or incompatible types are detected. A
structural conflict occurs due to changes overlapping with restructured and refactored parts of
the program. Then, it is not decidable where to integrate the changes.

38

First attempts to apply this conflict categorization to model versioning failed. In fact, the
term semantics itself is in the field of modeling heavily overloaded [HR04], referring to lan-
guage semantics and real-world semantics. The assignment to a certain category is often based
on objective preferences and, consequently, ambiguous. Already in small models, a separation
between syntactic conflicts and semantic conflicts quickly blurs, especially when the metamodel
is enriched with additional constraints such as OCL constraints in the case of UML. For instance,
two modelers are working on a UML class diagram consisting of the two classes Circle and
Ellipse. Each of them adds an inheritance relationship between the two classes. Unfortu-
nately, both modelers disagree regarding the direction of the generalization and introduce a new
inheritance relationship in the opposite direction. As a result, the merged model contains an
inheritance cycle. This conflict may be either referred to as syntactic since such cycles are for-
bidden by the UML metamodel, or as semantic, since it is not clear how to interpret the case,
that a class is subclass of its own subclasses. Further, even, if such conflicts could be clearly
assigned to those categories, it would not provide any insights on how to detect and resolve that
kind of conflicts.

From the analysis of many conflict scenarios, we learned during the development of AMOR
that the number of reasons why a conflict might occur is limited in regards to the existing lan-
guage definitions. We identified two main groups of conflicts, namely overlapping changes and
violations (cf. Figure 3.2).

Contradicting
Changes

m
ic

p
p

in
g

g

es

Equivalent
Changes

Language Knowledge

A
to

m

O
ve

rl
ap

C
h

an

Domain Knowledge

• Update/Update
• Delete/Update

• Add/Add
• Add/Update

Metamodel

io
n

s Common
Knowledge

Redundancy
Different language

constructs with
equivalent semantics

Different words
with equivalent

semantics

e
/ A

to
m

ic

Operation
Contract

• Well-formedness Rule
• Abstract SyntaxV

io
la

t

User-defined
Knowledge

g
• Upper Ontology
• Thesaurus
• ...

C
o

m
p

o
si

te

• Use Case Description
• Requirement Specification
• ...

• Pre-/Postconditions

Figure 3.2: Conflict Categorization

39

V1

V1a

V1b

V1

V1a

V1b

V1

V1a

V1b

Car
type
horsepower

Car
type
engine

(a) Contradicting Update/Update

(b) Contradicting Delete/Update

(c) Equivalent Add/Add Conflict

Employee Car

bday

Employee Car

birthday

Employee Car

doB

Employee Car

Employee Car

color

Employee

Figure 3.3: Conflict Examples: Overlapping Changes

3.2.1 Overlapping Changes

Overlapping Changes refer to two opposite atomic changes (add, delete, update) on an overlap-
ping part of the model with respect to the unit of comparison, e.g., a feature of a model element or
a container element. We further distinguish between two types of overlapping changes, namely
contradicting changes and equivalent changes. While conflicts of the first category arise due to
directly competing changes, the latter category covers parallel changes leading to an equivalent
result.

Contradicting changes. Such changes find their expression in update/update and Delete/Up-
date conflicts. Update/Update conflicts occur when an existing element of the common ancestor
model is changed in both versions differently (cf. the multiplicity in Figure 3.3 (a)). Delete/Up-
date conflicts emerge either due to the concurrent update and deletion of the same element, or
due to an update of an element and the deletion of the container element, e.g., a property is added
and the corresponding class is deleted, like in the example in Figure 3.3 (b).

Equivalent changes. If parallel Update/Update, Delete/Delete and Add/Add changes are the
“same”, they are referred to as equivalent changes and only one of the two changes has to be
integrated into the merged version to completely reproduce the intention of both modelers. In
the case of add/add changes, no common ancestor of the affected model element is available, but
redundant elements are added to the merged versions if all changes are naively merged. If the

40

V1

V1a

V1b

V1

V1a

V1b

V1

V1a

V1b

(a) Redundancy (Domain Knowledge)

(b) Redundancy (Language Knowledge)

(c) Metamodel Violation

A1

A2

B

Person

Person
lastname

A1

A2

B

A1

A2
B

Person
surname

Employee Car

Employee Car

Employee Car *

Figure 3.4: Conflict Examples: Redundancies and Metamodel Violation

duplicate elements are deep equal, i.e., all features and containments have the same values, only
one of the elements should be inserted in the merged model and no conflict should be reported.
However, if there are slight differences like the properties horsepower and engine in the
classes Car of Figure 3.3 (c), an add/add conflict should be raised.

3.2.2 Violations

A1

A2

B

Figure 3.5: Naive Merge of
Example (b) of Figure 3.4

Besides the directly competing changes which are overlapping in
terms of editing the same element in the “materialized” model,
also combinations of changes in different elements may lead to
an inconsistent model. This kind of conflict is harder to detect, as
additional knowledge is necessary. This knowledge regards the
underlying modeling language and the modeled domain.

Redundancy may be introduced to a model either by equiva-
lent modeling concepts or variations in natural language express-
ing equivalent facts. Figure 3.4 (a) shows a redundancy conflict,
as both modelers add the properties lastname and surname
to the class Person in parallel, which are synonyms. Different
modeling concepts may also express equivalent semantics. For example, the actions A1 and A2
of the UML activity diagram depicted in Figure 3.4 (b) may trigger the execution of action B
using an implicit join by modeling a simple control flow, or by modeling the synchronization
explicitly using a join node. As defined in the UML 2.3 Standard [Obj10], an action may by

41

V1

V1a

V1b

V1

V1a

V1b

V1

V1a

V1b

(a) Operation Contract Violation

(b) Common Knowledge Violation

(c) User-defined Knowledge Violation

(g) Operation Contract Violation (h) Common Knowledge Violation (i) User-defined Knowledge Violation

+ getGender()
+ setGender(…)

Person
- gender

Person
+ gender

Person
+ name
- gender

Apple
nutritionalVal

Pear
nutritionalVal

Apple
nutritionalVal

Pear
nutritionalVal

Bread
nutritionalVal

Fruit
nutritionalVal

Pear Apple

Accepting
Money

skip

insert coin

Return
Money

Vending

Accepting
Money

skip

insert coin

Good Bye
Message

Vending

Accepting
Money

skip

insert coin

Good Bye
Message

Vending

Figure 3.6: Conflict Examples: Operation Contract Violation and Domain Knowledge Violation

default only start its execution when all incoming control flows offer a control token. Thus,
Version 1 and Version 2 have equal semantics, i.e., the execution of A1 and A2 is required to
execute B. However, naively merging these two variants would not only result in a redundant
model, further, redundant parts in the model might lead to unexpected traces. This is also the
case for our example depicted in Figure 3.5. The merge leads to multiple outgoing control flows
and, according to the UML 2.3 Standard [Obj10], introduces race conditions, as the token is
offered to all outgoing edges, but may be accepted by only one target. B requires one token on
each incoming control flow, which is never fulfilled. Thus, a deadlock occurs.

:A :B

t

t+1

Employee Car
*

Figure 3.7: Naive Merge of Example
(c) of Figure 3.4

Metamodel violations may also be caused by con-
current changes, which do not overlap, but lead to an in-
consistent model with respect to formal language con-
straints like the metamodel itself or additional OCL
constraints. For an example of a metamodel violation,
consider a UML class diagram consisting of the two
classes Employee and Car, and an association be-
tween them (cf. Figure 3.4 (c)). One modeler change

42

the association to be composite and the other sets the association end to unbound (*). They do
not syntactically overlap, thus, when merging naively as depicted in Figure 3.7), a car would be
part of multiple employees which is restricted by the UML metamodel.

Operation contract violations denote conflicts where a composite operation applied on one
version is invalidated by a change of the other version. A composite operation is a set of asso-
ciated atomic changes necessary to perform a larger change like a refactoring. Each composite
operation formulates a contract in terms of pre- and postconditions, e.g., requiring the exis-
tence or non-existence of specific elements, or specific values for features. Only the union of
all atomic changes reflects the intention of the change and therefore, if a change of the opposite
version violates the contract, a composite operation should not be divided and partially applied.
Figure 3.6 (a) shows an example for an operation contract violation. One modeler applies an
encapsulate field refactoring to all public properties, i.e., name and gender, of class
Person. The refactoring sets the properties to private and generates public getter and setter
methods. A parallel change setting the property gender to private invalidates the operation
contract and a conflict should be reported.

Common knowledge available in upper ontologies, thesauri, or other kinds of knowledge
bases may be used to detect violations of real-world semantics. Consider two classes Apple
and Pear with a common property nutritionalVal (cf. Figure 3.6 (b)). While one mod-
eler applies a pull up field refactoring to shift the common property to a newly created
superclass named Fruit, the other modeler adds a new class Bread with the same property
to the class diagram. A refactoring aware merge would include the newly introduced class into
the pull up field operation, resulting in a Bread of type Fruit, which does not reflect
reality.

User-defined knowledge from use case descriptions, requirement specifications and other
models restricts the modeled domain and therefore may be used to detect further violations.
With such information available,

A ti

insert coin
Vending

Accepting
Money

skip Return
Money

Figure 3.8: Naive Merge of Example
(c) of Figure 3.6

conflicts like the one depicted in Figure 3.6 (c)
may be detected. A simple vending machine, ex-
pressed as UML state machine, containing the three
states accepting money, vending, and Good
Bye Message is refined by two modelers in parallel.
One modeler changes the state Good Bye Message
to Return Money, to express the fact, that in case
of aborting the vending process, the inserted money
should be returned. Concurrently, the other modeler
changes the flow going from Vending to the final state
to show the Good Bye Message in between. In the merged version depicted in Figure 3.8,
the vending machine would return the money after vending, which may contradict requirement
specifications.

43

3.3 The AMOR Workflow

In this section, we show how the model versioning system AMOR supports the developers to
merge the different versions of the same model. Basically, AMOR’s conflict detection compo-
nent reports conflicts due to overlapping changes and violations concerning language knowledge
(cf. Figure 3.2).

In the following, we outline how the different components of AMOR operate. An overview
of the basic workflow of AMOR is presented in Figure 3.9.

Conflict
Report

Resolution
Pattern
Storage

V2Merged
Model

Operation
Repository

Oper-
ations

Conflict
Detection

2
Conflict

Resolution

4
Validation

5

Operation
Definition

0

V1

V1a

V1b

Change
Detection

1
Change
Report

Merged
Model

Conflict-
tolerant Merge

3

Figure 3.9: The AMOR Workflow

0: Operation Definition. In step 1 the merge process comprises the detection of changes. Be-
side atomic changes like insert, update, and delete, modelers may also have performed compos-
ite operations like refactorings. Detecting and regarding these composite operations enhances
the preservation of both modelers’ intentions, as reported in [DJ06]. Of course, composite op-
erations are always specific to a certain modeling language. The AMOR conflict detection com-
ponent may be enhanced with user-defined composite operation specifications, which describe
composite operations in terms of a set of atomic operations and necessary pre- and postcon-
ditions. AMOR provides a tool called EMF Modeling Operations3 to easily specify composite
operations for specific languages by example [BLS+09]. These operation specifications are then
either interpreted by the AMOR system or used to derive executable representations like graph
transformations.

1: Change Detection. Once an operation specification is created and included in the opera-
tion Repository, the change detection is able to identify applications of the respective composite
operation. The detection mechanism is implemented by searching for the operation pattern con-
tained in the operation specification. If the pattern is found and the model elements referenced
by the matching operations fulfill the pre- and postconditions, an application of the composite
operation is at hand. This detection allows a more compact representation of the difference and
conflict reports by folding atomic operations which belong to a composite operation.

3http://www.modelversioning.org/emf-modeling-operations

44

http://www.modelversioning.org/emf-modeling-operations

2: Conflict Detection. Based on the applied changes, conflicts are easily detected if the same
element is modified in different versions of a model. Conflicts resulting from changes of dif-
ferent elements are much harder to detect. Especially, if composite operations are involved,
standard versioning systems do not reveal conflicts and merge problems related to the applica-
tion of the composite operation. To overcome this drawback, AMOR creates a tentative merge
by first applying all non-interfering atomic changes and subsequently by replaying the executed
composite operations to the common base version. Consequently, added or changed model ele-
ments are enclosed in the reapplied composite operation. On the one hand, this maximizes the
combination of the original modelers’ intentions and, on the other hand, reveals inconsistencies
concerning the compatibility of operations. For instance, such inconsistencies occur if a com-
posite operation cannot anymore be executed to the model after all atomic changes are applied.
This is accomplished by testing the preconditions of the respective composite operation in the
tentatively merged model.

3: Conflict-tolerant Merge. All detected changes are now incorporated within a new merged
version of the model with the help of dedicated merge rules. In addition, conflicts are marked
by a language independent model annotation mechanism, which do not destroy the syntax of
the model and, thus, the dependence to its metamodel is ensured. Furthermore, the detected
conflicts are enriched with meta-information such as the responsible developers and do not have
to be resolved immediately. This, approach gives the developers the chance to assign developers
to conflicts, to discuss them and, finally, to find a consolidated version of model, which reflects
the intentions and requirements of all developers.

4: Conflict Resolution. The afore assigned users can now prioritize one of the two conflicting
operations or propose a custom resolution of a concrete conflict. After this resolution proposal
is reviewed by the others and finally accepted, the conflict annotation is hidden but still available
in the central model repository for provenance reasons. In addition, the developers are also
supported by resolution suggestions, which may be either manually defined or they are learned
from the situations when the modelers resolve the conflicts.

5: Validation. In the validation phase, the merged model is validated. Validation means to re-
veal violations of rules and constraints defined by the modeling language. Whenever a violation
is detected diagnostics are returned which describe the severity of the constraint violation and
provide an error message. These violations are then treated like other conflicts and, thus, they
also have to be resolved.

45

CHAPTER 4
Survey on Versioning in Practice

In the heterogeneous field of model versioning, a plethora of research directions exist trying to
meet the technical challenges of model versioning systems, mostly concerned with precise con-
flict detection and supportive conflict resolution [ASW09]. However, there is currently a lack of
empirical studies trying to derive the “real” needs of software developers in practice concerning
the collaborative development of software systems [Men02]. Such studies are highly needed, be-
cause several possibilities exist for how software can be developed collaboratively as presented
in Section 2.1. Furthermore, lessons learned of current best practices in collaborative software
development for the various development artifacts may be inferred from such studies. To the
best of our knowledge, only few investigations have been carried out in order to find answers
to these questions. For example, several issues arising from practice when merging different
versions of a model are identified in [BE09]. However, these findings are based on informal
interviews within one company and they do “not pretend to be general” applicable. Further-
more, the premise of [BE09] is that “model-centric development and its problems do not vary
much from company to company” which has not been proven so far. However, models can be
used in different ways, namely as sketch to discuss ideas and design alternative, as blueprint for
implementation, or for direct code generation [Fow03] and, thus, the collaborative development
of models varies from company to company.

To tackle these mentioned deficiencies, this chapter provides a comprehensive empirical
study, including on the one hand a survey and on the other hand in-depth qualitative interviews.
The overall goal of the empirical study is to gain insights of how versioning is currently used in
practice. By conducting an online survey, we wanted to find out the state-of-the-art habits and
processes of versioning in general. On the basis of these results, we further conducted interviews
with experts, to get insights how models are handled in their companies when developing them
in team. By using this comprehensive approach, we are able to reason more objectively about
the influence of certain team characteristics on the collaborative software development. Fur-
thermore, these studies gave as valuable insights on collaborative software development, which
point out many interesting research issues, of which some of them are tackled in this thesis. The
next section presents the results of an online survey with 90 participants to get an overview of

47

general versioning habits and processes in practice. Subsequently, to get deeper insights into
status quo, experiences, and requirements of software and model versioning, we additionally
conducted 10 expert interviews to understand best-practices in industry. Talking directly with
software developers and IT managers of different domains has led to interesting and important
findings, which are presented in Section 4.2. To connect both empirical studies, we present in
Section 4.3 lessons learned from the questionnaire and expert interviews that will positively im-
pact the development of the features offered by current model versioning systems and give hints
how to improve collaborations in software engineering projects.

4.1 Questionnaire

In 2010, we conducted a survey on versioning in software development, with a special focus on
model versioning. The questionnaire is depicted in Appendix A. The data gained by the online
survey was analyzed with the help of the tool “R”1. MS Excel2 was used for the visualization.
Furthermore, χ2 tests have been done in “R” to show if the answers of two questions statistically
significantly influence each other. In particular, a χ2 test proves whether two properties are
independent of each other with a certain probability of error (α).

4.1.1 Selection of Participants

In this survey, 90 people participated. The participants were recruited through the help of social
networks and public as well as private mailing lists. Our project partner, who is selling a widely
adopted modeling tool, sent out invitations for participating in this survey. As a result, we could
gather participants who were working in the area of software development and who probably
had knowledge in modeling. Furthermore, we sent out invitations via mailing lists of research
communities in the area of computer science, especially software and model engineering.

4.1.2 Elaboration of Questionnaire

The questions in the survey aimed at how versioning systems are employed and which patterns
and behaviors are applied when developing software in teams. Since we assumed that MDSE is
not so widely adopted in practice yet to find enough participants, we formulated the questions in
such a manner that we could expect a broad spectrum of feedback. Thus, we basically did not
distinguish which artifact is set under version control. To find out if and how models are treated
in the versioning process, we conducted expert interviews as presented in Section 4.2.

On the one hand, we elaborated questions, which aimed on meta information on the partic-
ipant’s projects. We asked, which roles did they play, how many people participated, was the
team geographically distributed, etc. On the other hand, we elaborated questions, which tried
to find out the used versioning strategy, the versioning habits and processes, and how occurred
conflicts are handled. The results of this survey are presented in detail in the following.

1http://www.r-project.org
2http://office.microsoft.com/de-at/excel

48

http://www.r-project.org
http://office.microsoft.com/de-at/excel

19 36 29 1 4 89

21,3%

40,4%

32,6%

1,1%
4,5%

architect
developer
manager
tester
others

Figure 4.1: Roles of Survey Participants

4.1.3 Results

Meta Information on Projects

Overall, 40% of all participants were software developers, 33% managers, 21% software archi-
tects, and only 1% stated to work as tester as depicted in Figure 4.1. The respondents mainly
work within small and middle-sized teams. More than half (57%) work in a team with up to
20 persons and 37% work with 5 or less persons. 6% of all persons work with large teams of
more than 20 or even 100 participants. Approximately half of all respondents work with col-
leagues who are situated in the same building. Another 15% work in the same town, 22% in
the same time zone and 11% are distributed all over the world. If we combine the geographical
distribution with the team size, we can see that 50% of the survey participants work with their
team in the same building and with up to 20 persons or less. The small group of interviewees
working within big teams is distributed all over the world. Figure 4.2 depicts the combination
of the team size and geographical distribution. Since the number of those people, who said they
were distributed all over the world or working in the same time zone, is too small for statistical
tests, we only distinguish in this chapter whether the team works inside the same building (53%)
or if it is distributed (47%).

Versioning Strategy

As already discussed in the previous chapters, basically two different versioning strategies exist.
Pessimistic versioning locks a specific artifact when it is changed, whereas optimistic versioning
allows for concurrent development on the same artifact. According to the survey results, 79%
of all interviewees use the optimistic versioning paradigm when developing software and 18%
set their software artifacts under pessimistic version control. Only 3% of all interviewees do
not use any version control system. Furthermore, 73% of all participants are convinced that
locking of one resource causes delays in the project progress. Furthermore, Figure 4.3 depicts
the relation between geographical distribution of a development team and the used versioning
strategy within this team. 87.5% of the teams which are developing distributed use optimistic
versioning and only 12.5% use pessimistic versioning. When working in the same building

49

1

3

5

1
0 0

15

5

0 0

8

4

1 1

21

24

0

5

10

15

20

25

30

more up to 100 up to 20 up to 5

all over the world
in the same time zone
in the same town
in the same building

60,0%

70,0%

80,0%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

more than 100 up to 100 up to 20 up to 5

in the same building

distributed

Figure 4.2: Geographical Distribution and Team Size

76.1% are versioning in an optimistic way and 23.9% in a pessimistic way. The number of
those people, who are versioning optimistically or pessimistically does not significantly differ
between the different kinds of geographical distribution (χ2=1.84; α=0.05). However, the team

0,0%

10,0%

20,0%

30,0%

12,5%
23,9%

10,0%
20,0%
30,0%
40,0%
50,0%
60,0%
70,0%

optimistic
pessimistic

0,0%

12,5%

0,0%
10,0%
20,0%

distributed same building

12 5%

distributed same building

87,5%

12,5%

76,1%

23,9%

optimistic
pessimistic
optimistic
pessimistic

Figure 4.3: Geographical Distribution and Used Versioning Strategy

size significantly influence the applied versioning strategy (χ2=12.016; α=0.05). In teams with
up to 5 persons the number of those who apply pessimistic versioning is remarkably high. 35%
of small teams use pessimistic versioning, whereas in larger teams this strategy is only used in
1-2% of cases. However, as mentioned above, overall only 18% used pessimistic versioning and,
thus, the level of use in total is not very high.

Two main reasons exist as to why a versioning system is used: 58% of all respondents
state that they use a version control system for concurrent development of multiple developers
on one artifact. Since version control systems do not discard old versions of an artifact, it is
possible to trace the changes between these versions, and this is given as the main reason for
34% of all respondents. Finally, 5% of respondents use a VCS to enable explicit branches of the

50

92,0%

80,0%

65,0%

33,0%
27,0%

18,0%20 0%
30,0%
40,0%
50,0%
60,0%
70,0%
80,0%
90,0%

100,0%

18,0%

0,0%
10,0%
20,0%

Figure 4.4: Artifacts under Version Control

developed software. With the help of branches different versions of the software are available
in the repository in parallel. As depicted in Figure 4.4, over 90% of the survey participants
are versioning source code and 80% are also versioning documentation. 65% use versioning
facilities for software models and 33% state that they also set requirement specifications under
version control. Furthermore, 27% are also versioning change requests and 18% other artifacts.

Versioning Process

In the following, answers to questions about the versioning processes and habits of the survey
participants are presented. Here we were looking to see if the team size and the geographical
distribution within a team influence these processes. We found that the team size does not
significantly influence the versioning processes no matter whether the team consists of more or
less than 5 people. In the following we discuss the relation between the geographical distribution
and the versioning processes. 62% of all survey participants do not have a standard process,
either on an enterprise level or on a project level, as to how versioning has to be performed.
36% do have a standard process and 2% plan to develop such a standard process. Interestingly
though, as depicted in Figure 4.5, the teams which are not situated in the same building use a
standard process in 75% of all cases. Within teams working together in the same building, this
amount is considerably smaller (53%). The usage of a predefined process differs significantly
on the basis of the geographical distribution of the team (χ2=4.756; α=0.05). When asked
about authorization policies, 71% state that they do not have different levels of authorization
for changing artifacts within a project. That means that they do not distinguish in advance
whether developers may change or only read a resource. Another 23% use different levels of
authorization within the development process and 6% plan to implement them. In this case,
the geographical distribution does not influence the decision about whether different levels of
authorization exist or not (χ2=1.747; α=0.05).

For 34% of the interviewees a changed artifact should be committed into the central repos-

51

building not in the same building

yes 25 31 Q3Q13

no 22 10 X^2

4,756

unterscheiden sich signifikant

same building distributed distributedg

standard proc 53,2% 75,6% standard proc 75,6%

no pre‐define 46,8% 24,4% no pre‐define 24,4%

53,2%

75,6%

60,0%

70,0%

80,0%

53,2%

46,8%

24,4%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

,

standard process

no pre‐defined process

0,0%

10,0%

same building distributed

distributed same building

75,6%

24,4%

53,2%46,8%

standard process

no pre-defined no pre-defined
process

Figure 4.5: Geographical Distribution and Standard Process

itory whenever certain functionality is finished. Others (27%) believe that a developer should
commit her changes when she leaves the workplace and 26% think that it should not be reg-
ulated at all. 13% guess that a commit should be performed after testing. In relation to the
geographical distribution of the respective team members, most (39%) of the teams working in
the same building do not use a systematic approach specifying when a commit is performed (cf.
Figure 4.6). In contrast, most of the distributed teams have processes where changes have to
pass certain tests or certain functionality has to be finished. The answers of both questions are
not stochastically independent (χ2=19.963; α=0.05).

Q4Q19

16,7%

33,3%

70,8%
78,3%

83,3%

66,7%

29,2%
21,7%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

after testing certain
functionality is

finished

employee leaves
the workplace

not regulated

same building
distributed

Figure 4.6: Geographical Distribution and Commit Cycles

Furthermore, we asked for criteria based by which a changed version is finally accepted.
The survey participants were allowed to give more than one answer. In most cases (40%) the
acceptance of changes is not based on any criteria. In 35% of cases the confirmation by a person
in charge is necessary and in 20% of cases unit tests have to be successfully passed. As depicted

52

in Figure 4.7, if no criteria exist, it can be deduced that the team is mostly (74%) working in
the same building and, in contrast, teams which are distributed mostly define one person who
may accept the changes (78%). It exists a highly significant dependence between geographical
distribution within team and the change acceptance creteria (χ2=19.8; α=0.05).

same buildingdistributed

confirmation b 0,15 0,60

tests have to b 0,30 0,19

there are no c 0,55 0,21

0,70

0 600 30

0,40

0,50

0,60

0,70

same b

di ib

0,15

0,30

0,55
0,60

0,19 0,21

0,00

0,10

0,20

0,30

,

same b

distrib

74 3%
78,1%80 0%

90,0%

0,00

confirmation by a person in charge tests have to be passed there are no criteria

63,6%

74,3%
78,1%

36 4%

50,0%

60,0%

70,0%

80,0%

90,0%

b ildi

21,9%

36,4%

25,7%

0 0%

10,0%

20,0%

30,0%

40,0%

50,0%

same building
distributed

0,0%

10,0%

confirmation by a
person in charge

tests have to be
passed

there are no criteria

Figure 4.7: Geographical Distribution and Change Acceptance Criteria

According to the survey results, 56% of the interviewees state that big changes like refac-
torings, which change the structure of the system, may be performed by every developer in the
team. In contrast, in 44% of all cases only one person in charge may perform such big changes.
As depicted in Figure 4.8, we can see that teams which are not situated in the same building
choose a more systematic approach: 79.5% of these distributed teams have a person in charge
who is allowed to perform big changes. In contrast, only 21% of those teams working in the
same building assign one person who is responsible for performing big changes like refactor-
ings. A highly stochastic dependence exists whether the team is distributed or not (χ2=29.055;
α=0.05).

Coping with Conflicts

When asked about effort related to conflict resolution, 75% of all interviewees stated that the
most effort occurred when using a versioning system. 12.5% state that “updates” of the local
working copies cause the most effort. Other answers like “conflict detection” or “unlocking
artifacts” are only given in 1-3% in each case.

As depicted in Figure 4.9, in 47% of all cases, the developer who is committing her changes
is alone responsible to resolve the conflicts. 31% state that all developers who caused the con-
flicts by parallel modifications have to resolve them. In 11% of all cases a person in charge
resolves the conflicts and in 9% the whole team resolves them. When resolving conflicts, most
respondents (74%) state that quality is the most important criteria. 24% state that effort should

53

0,0%

,

person in charge everybody

79,5%

22,0%

distributed

20,5%

78,0%

same building

person in charge
everybody

Figure 4.8: Geographical Distribution and Permission for Refactorings

be as minimal as possible. Only 2% were concerned that the conflicts be resolved in the shortest
time.

developer wh 47,7%
all participatin 31,8%
a person in ch 11,4%
whole team 9,1%

47,7%

31,8%

11,4% 9,1%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

developer who
commits

all participating
developers

a person in
charge

whole team

47,7%

31,8%

11,4%

9,1%
developer who commits

all participating
developers
a person in charge

whole team

Figure 4.9: Responsibilities for Conflict Resolution

Finally, 61% of the interviewees consider visual conflict resolution support as the most im-
portant requirement for a model versioning system whether they had already used it or not (cf.
Figure 4.10). For 25% the conflict detection phase is most important and 14% consider cus-
tomizable automatic conflict resolution support as most important requirement.

conflict detection customizeable automatic confl visual conflict resolution support

22 13 54 89

conflict detection customizeable automatic confl visual conflict resolution support

24,7% 14,6% 60,7%

60,7%

50,0%

60,0%

70,0%

24,7%

14,6%
20,0%

30,0%

40,0%

50,0%

14,6%

0,0%

10,0%

20,0%

conflict detection customizeable automatic
conflict resolution

visual conflict resolution
supportconflict resolution support

24,7%
conflict detection

customizeable

14,6%60,7%

customizeable
automatic conflict
resolution
visual conflict
resolution supportresolution support

Figure 4.10: Most Important Requirements

54

Overall Findings

The results of the survey show that versioning is an integral component of the developers’ work
since nearly 100% of all respondents state to use it. It indicated that, in general, they want to
develop their artifacts in an optimistic way independently of the other team members to avoid
unnecessary delays in the development process. Most survey participants use textual versioning
systems like SVN, which work well for textual artifacts like code. However, as indicated by the
numbers of respondents also using models under version control, there is evidence that models
have gained momentum in developing IT systems.

Conflict resolution causes the most effort in the development process. When merging con-
flicting versions the main objective is that the result should by of high quality. High quality
could be reached through adequate versioning systems and well-defined collaboration patterns
and processes that support the developers to find a consolidated model. Especially when the
development is distributed (not in the same building) well-defined and systematic processes are
important.

To get more insight into the versioning processes and habits in real-world projects, we have
additionally interviewed experts of different domains. In the first place, we tried to find out, what
the versioning strategies look like, when models are under version control. The most important
answers/findings of these interviews are presented in the following section.

4.2 Expert Interviews

In 2010, we have conducted 10 expert interviews to identify the state of the art when developing
models collaboratively supported by any SCM tool. Our interviewees gave us insights how
concurrent development works in different areas. We succeeded in finding representative people
of different domains working in different areas of software development.

To understand the experience of real software practices from their perspective, we decided
to take a qualitative approach and to conduct semi-structured narrative interviews [Wen01]. In
preparation, we identified a number of broad themes that we hoped to cover with the participants
and wrote these up as an interview guide. These included: a discussion of their role, a presenta-
tion of their projects, stories of their collaborative work, reviews of their versioning habits, etc.
The actual interviews were then conducted as open-ended conversations, enabling us to follow
leads as brought up by the interviewees, with the guide playing a background shaping role to
how we engaged in the conversation. The duration of the interviews varied between half an
hour and two hours and took place usually in the offices of the interview partners. The inter-
views were audio recorded and later transcribed. Since most of the interviews were conducted
in German, the quotes presented below were translated to English as exactly as possible. A
qualitative thematic analysis was conducted with the transcripts to draw out emergent themes.
In the following, we shortly describe the roles of our interview partners and how their working
environments look like before going on to discuss these themes.

55

4.2.1 Selection of Participants

We recruited our participants with the help of our academic and industrial network. The set of
interview partners included software developers working in big companies and in very small
institutions, requirement engineers, and project managers. They have one thing in common: in
their companies or institutions software is developed in a team.

The roles of our interview partners vary from IT managers in big international concerns such
as IBM or SAP to research tool developers working in a small team. All interviewees are work-
ing in the area of software development and use models either for documentation purposes, for
defining requirements or for generating code. In the interviews we have discussed the experi-
ences of the interview partners gained in one or two concrete projects. In Table 4.1, an overview
of the background of the interview partners is presented. As depicted in this table, our inter-
view partners are assigned to different letters (from A to J). In the second column the role of the
interviewee s/he plays in the company or project is depicted. The third column notes the size
of the project team(s) and the forth column the geographical distribution of this team on which
the interview is based. To better understand or interpret the responses, the fifth column depicts
how the interviewee usually uses models. We distinguish—according to [Fow03]—between the
usage as sketches (Sk), as blueprints (Bl), or as programming language (Pr), whereby it has to
be noted, that the borders between models used as sketches and models used as blueprints are
blurry.

Role Team Size Geo. Distribution Usage of Models
A Chief Development Architect Up to 100 All over the world Sk, Bl, Pr
B Software Engineer (a) Up to 10,

(b) more than 20
(a) Same building,
(b) all over the world

Sk, Bl
Sk, Bl

C Developer More than 20 Same building Sk, Bl
D Scientific Project Manager

(Requirement Engineering)
Up to 10 Same room Sk

E Researcher and Developer Up to 5 Same town Sk, Bl, Pr
F Researcher and Developer Up to 10 Same town Sk,Bl
G Chief Information Officer (CIO) Up to 100 All over the world Sk, Bl, Pr
H Scientific Project Manager

(Requirement Engineering)
Up to 10 Same room Sk

I Independent Consultant
(Open Source Software)

More than 20 All over the world Sk, Bl

J Developer (Freelancer) Up to 3 Same town Sk, Bl, Pr

“Sk” ... as sketches
“Bl” ... as blueprints

“Pr” ... as programming language

Table 4.1: Overview of the Interview Partners

Interview partner A is chief development architect of a big, international concern and he
reported of large projects with development teams spread all over the world, for which he was
responsible in the past.

Interviewee B is working as a software engineer and has participated in two very different
projects. One project was also a large international project in which different developer teams
were spread all over the world and the other project was, in contrast, a local, national project, in
which approximately 10 developers were involved.

56

The next interviewee (C) worked as a developer in big international company and he re-
ported his experiences of middle-sized projects of which all developers were situated in the
same building.

Interview partner D is a well-known expert in the area of requirement engineering, who gave
us deep insights in the collaborative development of requirement specifications. Usually, up to
10 people participated in his projects and all team members were situated in the same room.

Interviewee F is developing tools used for model-driven engineering. He reported about his
projects at his university, where the challenge was to coordinate his students when supporting
him in developing further his tools. They worked on new features in parallel and independently
of each other and, thus, his experiences in optimistic versioning were also very interesting and
important, although they do not stem from an industrial context.

A quite similar situation appropriate for interview partner E: fairly small group of developers
situated in the same building. In contrast to F, he mainly worked in his project alone. However,
he also got support from students leading to big challenges when working collaboratively.

Interview partner G is Chief Information Officer (CIO) at a national company with one of
the largest IT departments. He is responsible for the development of different IT solutions,
which are developed by different teams situated all over the world. His management view on
the collaborative development of software artifacts gave us also interesting inputs from another
perspective.

Interview partner H is also working in the area of requirement engineering like interview
partner D. H is researcher and is developing group support systems to support the collaborative
development of requirements.

Interviewee I reported in the interview about his numerous open source projects. His ex-
periences gave us deep insights into the collaboration processes in the open source community.
There, software is also developed within a team with more than 20 participants spread all over
the world. Especially in the open source community, optimistic versioning place a crucial role.

Finally, we have also interviewed a software developer (J) working as freelancer. For his
projects, he usually managed to get support from one or two other developers in later phases of
his projects. This challenging situation gave as also very absorbing inputs.

This variety of different domains, team sizes, geographical distribution of the team members,
and different kinds of development processes leads to interesting findings that we describe here.
These let us derive lessons learned of best practices for model versioning.

4.2.2 Elaboration of Questions

Based on the questionnaire, we elaborated questions for our interview partners. Since our in-
terviews varied due to the different roles of the interview partners, the elaborated questions
represented only a guideline for the open-ended conversations. The overall goal of the questions
was to find the strategies and habits when setting models under version control. Of course, the
interviews also cover experiences with other software artifacts.

57

4.2.3 Results

In the following, the most important results of the interview are presented. After presenting the
big picture, we distinguish between the versioning processes in big and in small teams. This dis-
tinction is only used to better group the individual statements of the interviewees. Special focus
is set on the resolution of conflicts. Finally, we present the main requirements for versioning of
our interview partner. As code-centric development is still the standard way to develop software,
most experiences and answers are closely related to code. Nevertheless, the wish list for model
versioning is long. In fact, it can be seen as indispensable tool for putting MDSE into practice.

Big Picture

Most of the interviewees have worked or are working with a traditional versioning system like
SVN. Most of the interviewees put every software artifact, including models under optimistic
version control. However, three interviewees (F, H, and I) mentioned in the interview, that they
lock models when changing them.

Developer F stated: “In general, tool support for developing models is nowadays insuffi-
cient especially when modifying them in parallel.” Moreover, Consultant I stated: “Versioning
models with SVN is everything but not recommendable, because merging two versions is far too
complex.” And IT Manager G is convinced: “...that optimistic model versioning can be used in
industry in 10 years.”

In addition, in all projects in which B and F have been involved, parallel modifications of
the same artifact were allowed. However, also both developers complain about the tool support
when merging the parallel modifications. For instance B claims: “Merging branches or parallel
versions costs at least two working days with state-of-the-art tools—no matter if we have merged
models or code.”

When developing requirements, asynchronous development is not possible. Both, D and
H stated that requirements can only be defined in workshops where all participants develop
requirements collaboratively and synchronously. D states: “I only see disadvantages when re-
quirements are not defined synchronously within the team.” The requirement engineers that we
have interviewed have their own group support system, which allow finding easily a consolidated
model reflecting the requirements. Both are convinced that only in this way misunderstandings
can be eliminated in time. H states: “Misunderstandings or conflicts have to be eliminated as
soon as possible in a software development project. The earlier the better. [..] In later project
phases it often leads to expansive delays.”

In the following, we present the versioning processes and habits which have been described
by our interview partners according to their personal experiences. We distinguish between big
and small development teams. According to the table presented above, we can distinguish be-
tween small teams with less than 10 developers and big teams with more than 10 and up to 100
developers. To better group the results of the interviews, we had to discard the classification of
the team size used in Section 4.1.

58

Versioning Processes in Big Teams

Manager G has successfully managed very large IT projects in central Europe, in which up to
100 people have been involved. According to the interview, parallel development only works
through the exact assignment of packages and modules to dedicated developers and it is of huge
significance that the interfaces between all participants are well defined to avoid conflicts: “If
conflicts arise, we have a big problem—we have done something wrong. [..] We then have to
organize workshops where the development teams have to discuss the occurred problems.” Since
the developers are usually distributed in different countries and also in different time zones these
workshops are also conducted via virtual online meetings. Also for Manager I, who has a lot
experience in developing open source software, the avoidance of conflicts when developing in
big teams, which can be distributed all over the world, is important: “I would not go so far to
say that every artifact has to be locked when changing it. However, it is important to separate
exactly the responsibilities in advance.” For him it is also very useful to allow branches in the
development process, but he knows that “merging of two branches is very difficult and error-
prone, because it happens very often that many conflicts arise.”

Developer B has also worked in a large project in which the developers were distributed all
over the world all artifacts (also documentation) have been put under optimistic version control.
The developers were usually allowed to modify all artifacts, but critical artifacts were locked
when changing them. After this project experience he recommends to “...commit or update
changes to the central repository in as short as possible cycles to avoid the resolution of re-
ally big conflicts. [..] Due to different time zones of the responsible developers it was very
hard to communicate the different intentions”. In contrast to manager I, he cannot recommend
branching, because, as already mentioned above, it would cost too much time merging the dif-
ferent branches. According to his experiences, it usually took at least one whole working day to
include all changes in the main branch.

Versioning Processes in Small Teams

All interviewees, who participated in projects with not more than 10 developers, reported that
all artifacts have been put under optimistic version control.

Developers B, C, and F stated in the interviews that a useful separation of the artifacts under
development and their assignment to the dedicated developers are of significant importance.
Despite the small number of participants they try to avoid conflicts due to error-prone and time-
consuming resolution of these conflicts. Developer C states: “In our projects, we had less
conflicts, because we have split up all the packages in such a way that it was nearly impossible to
change the same class in parallel”. The participants used many different strategies for separating
code or models. For instance, Developer F uses the following strategy: “Our students support
us in implementing new features of our MDE tools. Thus, we separate our artifacts according
to these features trying to avoid conflicts.” Developer B reported that in his projects they have
“...tried to hold the files as small as possible...”, also with the objective to have as less conflicts
as possible.

We have also asked the interviewees how often a commit of the changes should be per-
formed. Most of the interviewees mentioned that they do not have any when developing in small

59

teams. “We have committed our changes only after big changes. [..] I don’t want to say that
this is good or bad, but in all projects it was common.” Developer E has mostly developed his
tools alone and, thus, no conflicts have arisen. He has used versioning systems for traceability
reasons. He said: “I tried to have as small commits as possible, because in my opinion, it is
most important that the code in the repository compiles.”

Conflict Resolution

When it comes to a conflict due to concurrent changes, conflicts have to be resolved before a
merged version can be produced. First of all, Manager I and Developer J are convinced that the
automatic resolution of the occurred conflicts is not a good strategy to have one consolidated
version at the end. Developer J states: “Automation would lead to even more problems. [..] It is
not ensured that the result is correct.” This points to the importance of issues such as trust and
control over the quality of the process. In the projects, which were managed by Developer F or
Manager I, one person in charge was responsible to review the changes of the other developers
and to resolve occurred conflict. Developer F states: “In our small university projects I was re-
sponsible to resolve the conflicts, because I wanted to make sure that the merged version doesn’t
include several errors.” Conflict resolution is not always performed by one single person. In the
large projects of architect A he has “assigned developers to specific problems. Not only the two
developers who were responsible for the conflict. [..] They have to discuss the occurred con-
flicts.” Developer B also reported that they resolved conflicts collaboratively: “We have chatted
or even organized workshops when serious conflicts occurred.”

When defining requirements H and D reported in the interview that conflicting requirement
specifications are always resolved within the team. In addition, a facilitator mediates this conflict
resolution session to have consolidated requirements at the end.

The Ideal Versioning Scenario

Finally, we asked all interview partners about what their ideal versioning system would look
like and which features they miss in current systems. As already discussed above, all interview
partners agree that, in general, versioning support for models is insufficient to use it in prac-
tice. In addition, according to the experiences all interview partners had gained in the past, we
asked, whether they would change the versioning processes and habits in future projects. In the
following, the most important and interesting statements are discussed.

First of all, for Manager D the most important requirement a model versioning system should
fulfill is “that it is a simple, easy to use tool. Nobody would use it if it is not intuitive and
really simple.” Models can be expressed using their abstract syntax or concrete syntax. The
abstract syntax of a model is defined by so-called metamodels [K0̈6] and the concrete syntax
represents the notation - graphical or textual - of the modeling language. Concerning the conflict
resolution in current model versioning systems, Chief Development Architect A criticizes the
way in which the separation of the concrete and abstract syntax impairs the usability of the used
versioning system: “When modeling in the concrete syntax, I want to resolve occurred conflicts
also in the concrete syntax. [..] There are many open research challenges. For instance, how to
visualize conflicts of the domain model if they are not available in the concrete syntax?” Some

60

language concepts, which have a particular representation in the concrete syntax, are not even
explicitly represented in the metamodel. Instead, these concepts are hidden in the metamodel
and may only be derived by using specific combinations of attribute values and links between
objects [KKK+06]. Moreover, for Manager I and Developer C, it also important that not only
the conflicts but also the changes can be visualized in a dedicated way. Changes, conflicts and
how these conflicts are resolved should be represented explicitly enabling “better support to see
the evolution of a model. [..] Browsing between the different versions of a model would be very
beneficial”, claims Manager I.

In traditional versioning systems, the developer who checks in later is left alone with the
error-prone task of resolving conflicts. Thus, Architect A wants to “assign people to specific
conflicts, who are together responsible to resolve them.”

For Developer B, it would be a beneficial that versioning systems allow for automatic com-
mits and updates to reduce the amount of conflicts when developing in parallel. “[..] But that
would only work when the versioned artifacts are well distributed.” The possibility of a use-
ful separation or modularization of a model is also a requirement of Developer E to a model
versioning system. He states: “When we could divide a model into different modules, conflicts
could be better avoided. I think that there are some approaches in different research areas that
could be implemented for models.” In addition, his ideal versioning system would also consider
the fact that different artifacts can depend on each other: “When generating code out of models,
and I change the model, it would be great if the dedicated code is synchronized by the versioning
system.” Furthermore, developer E would like to have the integration of a bug report system
especially adapted for models.

Finally, Developer E and J would like to have a versioning system, with which occurred
conflicts can be resolved later on. E states: “I often just want to commit my changes and do not
want to resolve the conflicts immediately. [..] My work is saved and on the next working day I
can discuss the conflicts with the other developer.”

Overall Findings

Confirming the survey results, optimistic versioning of code is used within every software engi-
neering project that our participants discussed. For models, the situation is different: tool support
is more unsatisfactory. Thus, models are often locked when changing them. No matter which
artifacts are under version control, in general, developers try to avoid conflicts due to missing
adequate tool support when resolving these conflicts. However, not only technical issues such
as precise conflict detection have to be tackled. Aspects of collaborative work cannot be ignored
when trying to resolve conflicts. Especially from the area of requirement engineering, we can
learn that conflicts are not always negative results of collaboration. Several interview partners
claimed that conflicts have to be discussed and have to be resolved collaboratively. Furthermore,
it can be deduced, that the constant evolution of the software artifacts have to be more compre-
hensible. Change-awareness is crucial when developing in parallel and independently of each
other.

Due to the presented interview and survey results, we present in the following lessons learned
to improve collaboration when using a versioning system dedicated to models.

61

4.3 Lessons Learned

In this chapter, we have been concerned to understand the realities of collaborative development
supported with versioning systems. To address this we have conducted both a survey and in-
depth interviews. Across both of these we see common themes emerging which we present
here as lessons learned, along with a discussion of the implications of these lessons for future
research directions if appropriate.

Model Versioning Tools are needed. 65% of our survey respondents set also models under
version control. All respondents use traditional versioning systems such as SVN, which makes
collaboration worse because models are usually serialized and stored as XMI in versioning sys-
tems. Traditional VCSs perform their comparison and conflict detection on the XMI serialization
and, thus, detected conflicts have to be resolved also on XMI level. XMI is not intended to be
edited by humans and, moreover, models are usually developed graphically or at least with a
tree-based editor. Through these barriers developers usually refrain from modeling in parallel
and independent of each other. Instead, they often lock the complete models to avoid conflicts.

Stick to known notation. Current text-based versioning systems match with textual program-
ming languages in the sense that the familiar notation of programmers used in programming
environments is also supported by the versioning systems when visualizing changes and con-
flicts. In our interviews, a recurring practical need has been mentioned, namely to have ver-
sioning support within the concrete syntax of the models defined in graphical modeling lan-
guages. Of course, this result is not unexpected, because modelers are usually familiar with the
concrete graphical syntax, but not with computer internal representations like XMI or abstract
syntax graphs. In addition, 60% of the survey participants find visual conflict resolution as most
important requirement. Some dedicated approaches have been proposed for visualizing differ-
ences of models [MGH05,OWK03]. They construct a dedicated view using the concrete syntax,
which combines and highlights changes of both models using coloring techniques. However,
these approaches require special extensions of the modeling editors being a barrier for adop-
tion. In [BKL+11b], the visualization of changes and conflicts with the help of UML Profiles3

is presented which do not require for heavy-weight editor extensions. However, none of the
respondents and none of the interview partners are using some dedicated versioning tools for
models due to the dominance of text-based versioning systems which are well-known by the
developers.

Division of work as key for parallel development. Most interview partners stated that, in
general, they try to avoid conflicts, but do not want to lock the artifacts. According to the survey,
most participants claim that locking of artifacts lead to delays in the project. Thus, appropriate
mechanisms are necessary which enable an efficient division of work. In particular, several in-
terview partners pointed out that the exclusive access to an artifact is realized by establishing
clear structures and well-defined interfaces. Therefore, in the requirement phase of a project,

3http://www.omg.org/technology/documents/profile_catalog.htm

62

http://www.omg.org/technology/documents/profile_catalog.htm

where the goal is to find the structure for the system to implement, special partitioning tech-
niques and design approaches are needed for models. Whereas for object-oriented programming
languages, structuring the software in packages and classes is a well-established design tech-
nique [Dij97, Par72], in domain-specific languages such structuring mechanism might not be
available.

The more distributed teams are, the more discipline is needed. The results of the question-
naire clearly show that teams which are geographically distributed, i.e., not in the same building,
work in a more systematic and disciplined way concerning their versioning habits and processes.
Predefined collaboration patterns exist that orchestrate the versioning behavior of the team mem-
bers. In most cases, a commit into the central repository is only allowed when the changes pass
predefined tests or certain functionality is finished. In addition, in 60% of all cases these changes
need to be confirmed by a person in charge. Furthermore, big changes like refactorings may not
be performed by every team member. Although optimistic versioning is used, conflicts have to
be avoided by a good separation of responsibilities and well defined interfaces between them,
because conflict resolution is too time-consuming especially when the teams are distributed all
over the world.

Commit cycles are kept short but systematic. What we also can learn from our interview
partners is that commit cycles should be as short as possible to avoid the resolution of a bunch of
conflicts at once. One interviewee would actually like to configure the VCSs to enable automatic
updates and commits. However, most interview partners agree that a systematic approach is
necessary: tests have to be passed or a concrete feature has been completely finished. In addition,
the survey results show that most respondents commit after a certain functionality is finished.
Concerning the need for frequent commits, one important aspect is that the developer has the
possibility to switch to different development states. However, propagating the changes directly
to the global repository seems to be problematic, because inconsistent states may be checked
out in parallel. Therefore, distributed versioning systems are gaining some popularity which
allow to have a local repository for each developer. However, only 3% of our respondents use
distributed versioning systems, the rest is using SVN and CVS.

Branching is expensive. According to two interview partners branching is often used when
complete features of a system are developed independently of each other. For example, at the
university of one interview partner different students support him to further develop his tool.
They have to work on an own branch to avoid conflicts in the main branch. However, the price
of branching is time-consuming merging of two branches. The other interview partner also
reported similar experiences in the open source community. It usually took at least one whole
working day to include all changes correctly into the main branch and to ensure that the system
works correctly afterwards.

Define requirements synchronously. From our interviews with experts in the field of require-
ment engineering, we can learn that defining requirements has to be done together and syn-
chronously within the team. It would be too expensive later on in the project phase, to resolve

63

conflicts due to misinterpretations of requirements. This is in accordance with studies concen-
trating on the costs of bugs which are introduced in different phases of the software development
lifecycle. Therefore, it is not surprising that dedicated synchronous development environments
have been proposed. For example, [DH07] also propose a synchronous environment for soft-
ware development. Here the hypothesis is that conflicts can be avoided through awareness, as is
similarly provided by the event notification service associated with CVS use in [FMP06]. Con-
sider for example that when one modeler is working on a certain model fragment and another
modeler is also opening this model fragment, both modelers are informed that they are concur-
rently working on a certain part of the model. Then they have the possibility to consolidate their
planned changes with the help of collaborative tool features such as chats.

Critical cross-cutting changes require locking. According to the survey most respondents
are versioning their artifacts in an optimistic way. However, interview partners claimed that
certain artifacts are locked when performing critical cross-cutting changes like refactorings to
avoid several conflicts, which would be hard to resolve. However, the question arises which parts
or files have to be locked. Since most survey respondents claim that locking leads to delays in the
projects, the design of the artifacts enabling reasonable locking plays an important role. At this
point, we want to refer to the above mentioned challenge concerning the separation of artifacts
as key for parallel work and to the systematic versioning in case of distributed teams.

Conflict as first-class citizens. When different developers work in parallel and independently,
it might easily happen that the modifications are not comprehensible any more. In traditional
VCSs it is nearly impossible to get to know in which way a conflict is resolved, because this
provenance information is missing. According to the interviews, it is often very important to
see which part of an artifact is modified by which developer and in which way it is changed.
Also when a conflict occurs it is beneficial to know how a conflict was resolved and who was
responsible for the resolution decision. This information about the resolution process should
be explicitly available in versioning systems. When making the participants aware of changes,
conflicts as well as the resolution process, the evolution of a system is becoming more compre-
hensible. Similar to the handling of bugs in nowadays software development, the representation
and persistence of conflicts between various developers as well as the definition of lifecycles for
conflicts is of paramount importance.

Conflicts are resolved collaboratively. For the majority of the survey participants quality is
the most important property when resolving conflicts. This is also confirmed by several inter-
view partners. The developer who is committing her changes later than the other developers is
responsible to resolve the occurred conflicts. In traditional VCSs, the developer who commits
her changes bears the full responsibility when resolving conflicts, which may lead to undesired
results. The developer does not always fully grasp the intentions behind the changes of the other
developers. Thus, it is very difficult or impossible to finally have a consolidated version of the
model reflecting the intentions of all developers. In the interviews, it is often mentioned, that
conflict resolution has to be done by the responsible developers, not by a single person, who

64

has checked in her changes. Several interview partners reported that they meet each other for
face-to-face meetings or they organize workshops in which they discuss the occurred conflicts.

Allow for conflict tolerance. When talking about the ideal versioning system with our inter-
view partners, it is requested to commit the changes without worrying about potential conflicts.
In this context, it is desirable to keep all or at least many of the model changes, even if they
are conflicting. The interview partners want to resolve the conflict at a later point in time and,
in addition, if all changes are committed and the conflicts are marked it forms a good basis for
discussion. Thus, a versioning system for tolerating conflicts should allow to explicitly repre-
senting and persisting conflicts as well as to allow tracking conflicts to resolve them later on. A
first idea of tolerating conflicts in the context of model versioning is proposed by [BLS+10b].

65

CHAPTER 5
Turning Collaborations into

Annotations

Modeling activities express the personal view of the modeler on the system under development
and the fact that each team member perceives the world or the system differently, is directly
reflected by the models. Especially in early phases of the software development cycle, when the
team did not establish a consolidated view on the system, the subjective understanding and the
intention of the different team members might diverge. According to the survey presented in
Section 4.3, this is of crucial importance when defining requirements to avoid misinterpretations
at the beginning of a software development project.

One challenge within the modeling process is to create a common knowledge base. Tool
support is needed allowing the creation of a common representation of individual assumptions
within the team in order to avoid misunderstandings. As we have learned from the survey pre-
sented in the chapter before, models are one of the most used artifact in software design, and,
thus, tools for making the developers aware about conflicting modeling activities might be valu-
able in order to find a common solution by learning about the reasons that lead to the conflicts
(cf. [RKdV08b]).

The traditional tool support for collaborative software development usually follows the para-
digm of either avoiding conflicts or of resolving conflicts as soon as possible. According to the
survey results, project participants try to avoid conflicts in general. Conflict avoidance is for
example realized by the means of pessimistic version control systems which lock artifacts for
exclusive modification by exactly one developer. However, according to the survey, locking of
artifacts leads to undesired delays in the development project. In contrast, optimistic versioning
approaches support distributed, parallel team-work. This comes along with the price of conflict
resolution when concurrently evolved versions of one model are merged. Figure 5.1(a) shows
a typical versioning scenario with conflicting modifications. The modeler Alice creates a new
version of a model (V1) and commits this model to the central model repository. The modelers
Harry and Sally check out the current version and perform their changes in parallel. Harry
deletes an element which is extended by Sally at the same time. Assume that Harry is the first

67

V2

V1b

V1

1

?

V1a

V1

Harry

Sally

Alice
Central Model

Repository

Harry

Sally

Alice
Central Model

Repository

(a) (b)

Figure 5.1: (a) Continuous Conflict Resolution and (b) Conflict Tolerance

who finishes his work and he is also the first who checks in his version into the repository.
Afterwards, Sally tries the same, but the VCS rejects her version V1b, because her changes
are conflicting with Harry’s changes. In standard VCS, Sally is responsible for resolving the
conflict immediately. Even when assuming that Sally does not want to corrupt Harry’s work,
still information might get lost, because she might not be aware of all intentions Harry had when
doing his work. Also Harry is not aware how Sally is doing the merge. Finally one conflict-
free version is checked in with the consequence that some modifications may be inevitably lost
as they are removed in an undocumented manner. In contrast to code, models are often used
in an informal manner for collecting ideas and discussing design alternatives in brainstorming
periods [Fow03]. Models are then used to manage and improve communication among the
team members by establishing common domain knowledge. Then this loss of information is
especially problematic. According to the survey presented in Section 4.3, the discussion of
the conflicts might have helped to eliminate flaws in the design which are probably harder to
eliminate at the later point in time of the software development life cycle. In the interviews, it is
often mentioned, that conflict resolution has to be done by the responsible developers or by the
whole team collaboratively, not by a single person, who has checked in her changes.

In this context, a new paradigm shift as depicted in Figure 5.1(b), namely to tolerate conflicts,
is requested explicitly in our survey (cf. Section 4.3), because it is desirable to keep all (or at
least many) of the modifications, even if they are conflicting. The conflicts may help to develop
a common understanding of the requirements on the new system. To support versioning in early
project phases, we propose a versioning system which temporarily tolerates conflicts enabling a
creative design process without destroying the model’s structure to use common modeling tools
for editing. The developers do not have to worry about possible conflicts when checking in as
requested by the survey participants. We also learned from the survey that in traditional VCSs it
is nearly impossible to get to know in which way a conflict is resolved, because this provenance
information is missing. This information about the resolution process should be explicitly avail-
able in the versioning system. To make the participants aware of changes, conflicts as well as the
resolution process, the evolution of a system is getting more comprehensible. In addition, the

68

Standard Merge Scenario in VCSs

CarEmployee
type name

bday

V1

Alice

Employee
name
birthday

V1a

Harry

Employee
name
doB

V1c
*

Joe

Employee
name
bday
type

V1b

Sally

Car
carType
color

Car
type
engine

Employee
name
birthday
carType
color

V2

Employee
name
doB
carType
color

V3
Car

engine

*

1

1

Sally

Joe

1

1

Figure 5.2: Running Example: Merging in Current VCSs

survey shows that merging models should be possible in the concrete syntax of a model defined
in a graphical modeling language. Thus, we present a system with which conflicts are visualized
on top of the concrete syntax of a model. The model is enriched with meta information about
the performed changes and resolutions.

5.1 Running Example

The example depicted in Figure 5.2 describes a merge scenario which demonstrates typical prob-
lems when developing models in a distributed team following the standard versioning process.
All team members may check-out and modify the model in parallel and independent of each
other. And when a conflict arises, the developer who is committing her changes is solely respon-
sible to resolve the conflict immediately.

V1. Alice creates a new model in terms of a UML Class Diagram1 containing the two classes
Employee and Car. She adds the attributes name and bday—representing the birthday of a
person—to the class Employee and type to the class Car. Finally, she defines an association
between these two classes and sets the multiplicity to 1 to define that one employee is assigned to
exactly one car. After she has finished, she checks in the new model (called V1) into the central
repository of the VCS. Now, the modelers Harry, Sally, and Joe want to continue working on
this model and therefore, they check out the current version V1 of the model from the central
repository to perform their changes.

V1a. In Harry’s opinion, a car is always owned by exactly one employee. Therefore, he
modifies the association to express a containment relationship (noted by the black diamond). In
addition, he changes the attribute bday of the class Employee to birthday and adds a new

1http://www.omg.org/spec/UML/2.2

69

attribute, namely color, to the class Car. In addition, he changes the name of the attribute
type to carType.

Resolution. Because Harry is the first to check in, he has no conflicts to resolve. His version
is now the latest version within the repository.

V1b. In Sally’s opinion one car always belongs to one employee and, thus, she inlines the
class Car in order to ensure efficient querying. In particular, she moves the attribute type from
class Car to Employee and subsequently deletes the class Car.

When Sally commits her changes, the VCS rejects her modifications because they are con-
flicting with the already performed changes of Harry. A so called Delete/Update conflict occurs
since the deleted class Car has been changed by another modeler (Harry). Consequently, Sally
is responsible to resolve this conflict according to the process of standard VCS.

Resolution. In Sally’s opinion, the class Car is still unnecessary in the model, although
Harry has updated this class by adding a new attribute. Therefore, she decides to inline the
added attribute of Harry, namely color, into the class Employee and to still abandon the
class Car. Version V2 now consists of the class Employee containing the attributes added or
updated by Alice, Harry, and Sally.

V1c. Joe has also checked out the version of Alice (V1) and performs his changes in parallel
to Harry and Sally. He renames the attribute bday to doB (date of birth) in the class Employee
and adds to the class Car a new attribute called engine. Furthermore, Joe is of the opinion that
one car may belong to several employees and therefore, he sets the multiplicity of the association
to unbound indicated by the asterisk in the model.

Resolution. Now, Joe tries to check in his version V1c into the central repository but different
conflicts are reported by the VCS, because Joe’s version is now conflicting with the current
version V2 in the repository. Recall that V2 is the version of the model covering Harry’s and
Sally’s modifications consolidated by Sally. Now an Update/Update conflict is reported because
both, Harry and Joe, have updated the attribute bday in different ways. Joe decides to take
his version namely doB. In addition, also a Delete/Update conflict is reported, because Joe has
updated the class Car by adding a new attribute—namely engine—to this class. He decides
not to delete the class Car in contrast to the decision of Sally.

The new version V3 of the model is put into the repository after Joe has resolved the con-
flicts. Although version V3 is a valid model, it contains several flaws resulting from the conflict
resolutions.

The final version of the example model does not reflect all intentions of the participating
modelers, because only one single modeler was responsible for the merge of two versions. Also
when assuming that all modelers do their best to resolve occurred conflicts, it is particularly
difficult for them to understand the motivation behind the changes of the others, especially, if
more than two modelers performed changes in parallel.

In particular, the version V3 of the example described above does not reflect the idea of
Harry to consider a car as part of one employee as expressed by the composition. It does also
not reflect the idea of Sally to have only one single class for efficiency reasons. Furthermore,
in V3 the attributes carType and color have become part of the class Employee that is
obviously undesired assuming that the class Car is retained. Over the evolution of the model
the information that these attributes are referring to the car get lost since no indications for that

70

exist anymore.
To summarize, the final version of the model contains several flaws and does not reflect

several of the modelers’ original intentions. The reason for that undesired situation is mainly
that only one modeler was responsible to resolve all conflicts on her/his own. Furthermore,
currently only limited tool support is available for such tasks. As an ultimate result, changes,
opinions, and potentials for obviously important discussion are destroyed by this versioning
paradigm.

5.2 Conflict-Tolerant Merging of Models

The overall goal of our Conflict-tolerant Merge is to incorporate all changes concurrently per-
formed by two modelers into a new version of a model. The merge implements our major
premise that no information on conflicts gets lost and that irrespectively of any occurring con-
flicts the merge process is never interfered by forcing users to immediately resolve conflicts. To
realize this goal, we have to focus on overlapping changes (cf. Section 3.2), because they are
responsible for hindering the production of a merged version.

5.2.1 Overlapping Changes Revisited

When two changes interfere with each other, i.e., they either result in different models when
applied in different orders or one change hinders the other change, then conflicts due to overlap-
ping changes shall be reported. Table 5.1 shows which change combination leads to a conflict,
if they are performed on the same model element in parallel. Conflicts are marked with ×, and
the combination of non-conflicting changes, which might potentially result in an undesired sit-
uation, of which the users should be notified, are marked with ∼. In the following, we shortly
describe the table and in the next section a detailed presentation of the conflicting situations is
presented. One important characteristic of overlapping changes is that no unique and complete
merged version can be produced without defining priorities for changes.

Insert Delete Update Use Move
Insert
Delete × × ×
Update × × ∼ ∼

Use × ∼ ∼
Move × ∼ ∼ ×

× ... Conflict

∼ ... Warning

Table 5.1: Overlapping Changes

Inserts are never considered as source for conflicts in the scope of this thesis, because when
an element is introduced by one modeler, the other modeler cannot apply a contradicting dele-
tion, update, and move on the same element. However, some conflict detection approaches report

71

insert/insert conflicts, when the “same” model element is introduced by multiple modelers. This
is usually the case, when the comparison is not based on artificial identifiers, but on matching
heuristics such as string comparisons. In this thesis, we do not consider such situations, because
we use only artificial identifiers and a merged model comprising both model elements may be
produced anyway.

When two modelers delete the same model element in parallel, no conflict has to be reported,
as the intention as well as the result of both changes is the same. All other change combinations
applied to the same model element lead to conflicts, e.g., when two modelers update the same
feature (such as the name) of a model element, in a different way. In the running example
(cf. Figure 5.2) several Update/Update conflicts caused by the parallel modifications of one
element, such as of the attribute bday in the class Employee, occur. In such situations, it is
not possible to produce one unique merged version including both changes without extending
the modeling language. The same is true for Delete/Update conflicts, e.g., consider our running
example where Sally deletes the class Car which is modified by Harry and Joe.

If a model element is deleted and, concurrently, a reference value using the same element as
target is inserted, a Delete/Use conflict is reported. Consider a model of two classes A and B.
One modeler deletes the class B whereas the other modeler concurrently set a reference to the
same class. The deleted class B is used as a new reference value and, thus, a Delete/Use conflict
occurs.

Special kinds of Delete/Update conflicts are Delete/Move conflicts where the update oper-
ation is actually a move operation. Of course, when one modeler moves a model element and
the other modeler deletes it, a conflict has to be reported. Finally, another source for conflicts
is when one element is moved to different containers by two modelers in parallel. For instance,
assume that an attribute is moved from class A to class B by modeler 1 and modeler 2 moved
the attribute from class A to class C. The container has to be unique for each model element;
therefore this situation must result in a Move/Move conflict. In fact, a move operation is a spe-
cial kind of update operation, but drawing the distinction between these operations give the user
more detailed information.

Another special combination of changes exists when an element is moved to a different con-
tainer and exactly this element is updated in parallel by another modeler. When both versions
are merged, no conflict is reported by the system, because both operations can be performed
independently of each other. For instance, an element is moved to the new container and, in
parallel, it is updated. The same result is produced when the changes are executed in the re-
verse order. Now one may conclude that these situations are not problematic. However, the
modelers should be aware of them, because the new context of the moved element may lead
to undesired situations. Although coming from another background, [DA00] define context as
“any information that can be used to characterize the situation of an entity. [..]”. Furthermore,
they define a system as context-aware “if it uses context to provide relevant information [..] to
the user, where relevancy depends on the user’s task.” We also want to make the modelers aware
of the new context, i.e., new container, of the moved element when it is changed in parallel by
another modeler. For instance, in the running example Sally moves the attribute type from
the class Car to the class Employee and deletes the class Car. In parallel it is renamed to
carType. The attribute carType is now contained by the class Employee and, in addition,

72

the class Car is not deleted in the final version. This example shows that the context of an
element is very important to reason about the meaning of an element. Thus, in Table 5.1, ∼ is
used which means that not a conflict is reported but a Move/Update warning is raised. In such
cases the modeler who updates the element should verify if her update makes sense also in the
new context after applying the move.

Similar situations occur, when a use operation is performed and, in parallel, the used element
is updated or moved. If an element is used by another element and the used element is updated
or moved, both operation can be performed, but we report an Use/Update or Use/Move warning
to notify the user that an undesired situation might occur which can be checked by the modeler.

5.2.2 Conflict Tolerant Merge Rules

In the following, we present the different types of conflicts and introduce for each conflict type
a dedicated rule specifying how a merged model is produced when two or more conflicting
operations are at hand. The merged model is produced with the help of annotations and priorities
for changes. Thus, these two aspects are presented in detail.

In order to allow for generic definitions of the merge rules, we make use of the UML Ob-
ject Diagram notation to represent the model fragments. This means that each model element is
represented by an object. An object has links to other objects as well as attribute values for pos-
sessing simple data values. Please note that there is a specific kind of link called containment
link which expresses container/containee relationships. In the following figures, such contain-
ment links are depicted by a black diamond at the container side. The containment links are
especially used in these figures if moves of an element, i.e., changes of the container, are in-
volved. For the sake of clarity, we distinguish between 3-way merge rules and N-way merge
rules with N greater than 3 in the following.

3-Way Merge Rules

Update/Update Conflict. As depicted in Figure 5.3, an Update/Update conflict arises if the
same feature f1 of object o1 is changed in two different ways in parallel. Since both updates
cannot be performed when merging without overriding each other, the original value namely x
of the feature f1 is preserved in o1.

To mark this conflict, the modified object is annotated with an UpdateUpdate annotation
containing values of both concurrent changes. The annotation includes the involved feature of
the object. Finally, meta-information is added to the annotation such as user-related and time-
related information. This meta-information is provided for each conflict annotation.
Delete/Update Conflict. In Figure 5.4 the merge rule for Delete/Update conflicts is depicted. A
Delete/Update conflict is reported, when the same object o1 is changed by updating one of its
features while it is deleted in parallel.

In this case, we prioritize the update and annotate the object o1 with a Delete/Update anno-
tation. In this annotation, the old value and the update value of the changed feature is preserved.
Please note that in order to represent this kind of conflict in a model, the deletion is not executed
but only marked by the annotation. The actual deletion is deferred as long as the modelers reach
the conclusion that the deletion has a higher priority as the update.

73

MergeRule: Update/Update

f1 = x

o1:Object

f1 = y

f1 = x

<<UpdateUpdate>>
--Involved Elements
Upd_feature= {f1}
Upd_value ={<USER_B : y> ,
<USER_C : z>}
--User-related Metadata
User_upd= {USER_B, USER_C}
Owner= USER_A
--Time related Metadata
…

Origin Version created by USER_A

Merged Version

Update by USER_B

o1:Object

o1:Object

Update by USER_C

f1 = z

o1:Object

f1 = a

Merged Version (User_B + User_C)

Merged Version

o1:Object

Update by USER_D

f1 = x

o1:Object

f1 = x

<<UpdateUpdate>>
--Involved Elements
Upd_element= {f1}
Upd_value ={<USER_B : y> ,
<USER_C : z>}
--User-related Metadata
User_upd= {USER_B, USER_C}
Owner= USER_A
--Time related Metadata
…

o1:Object

<<UpdateUpdate>>
--Involved Elements
Upd_element= {f1}
Upd_value ={<USER_B : y> ,
<USER_C : z>, <USER_D : a>}}
--User-related Metadata
User_upd= {USER_B, USER_C,
USER_D}
Owner= USER_A
--Time related Metadata
…

<<UpdateUpdate>>
--Involved Elements
Upd_feature= {f1}
Upd_value ={<USER_C : z> ,
<USER_D : a>}
--User-related Metadata
User_upd= {USER_C, USER_D}
…

Figure 5.3: Merge Rule for Update/Update Conflict
MergeRule: Delete/Update

f1 = x

o1:Object

f1 = y

f1 = y

<<DeleteUpdate>>
--Involved Elements
Upd_feature = {f1}
Upd_value = {y}
Old_value ={x}
--User-related Metadata
User_del = USER_C
User_upd = USER_B
Owner = USER_A
--Time related Metadata
…

Origin Version created by USER_A

Merged Version

Update by USER_B

o1:Object

o1:Object

Delete by USER_C

f1 = z

Merged Version (User_B + User_C)

Merged Version

o1:Object

Update by USER_D

<<DeleteUpdate>>
--Involved Elements
upd_feature = {f1}
upd_value = {y}
old_value ={x}
--User-related Metadata
User_del = USER_C
User_upd = USER_B
Owner = USER_A
--Time related Metadata
…

o1:Object

f1 = x

o1:Object

<<UpdateUpdate>>
--Involved Elements
Upd_feature= {f1}
Upd_value ={<USER_B : y> ,
<USER_D : z>}
--User-related Metadata
User_upd= {USER_B, USER_D}
Owner= USER_A
--Time related Metadata
…

<<DeleteUpdate>>
--Involved Elements
upd_feature = {f1}
old_value = {x}
upd_value ={<USER_B :
y> , <USER_D : z>}
--User-related Metadata
User_upd = USER_D
User_del = USER_C
User_upd = USER_B
Owner = USER_A
--Time related Metadata
…

f1 = x

Figure 5.4: Merge Rule for Delete/Update Conflict

Delete/Use Conflict. The merge rule for Delete/Use conflicts is depicted in Figure 5.5. The
object o2 is used as reference value of feature f1 of the object o1. In parallel, the used object
o2 is deleted.

This conflict is handled similar to a Delete/Update conflict. The deletion of object o2 is not
performed and the reference to this object is still available in the merged version. In this version,
the deleted object is annotated and the old value of the changed feature f1 is preserved in this

74

MergeRule: Delete/Use

f1 = x

o1:Object

f1 = o2

f1 = o2

<<DeleteUse>>
--Involved Elements
Use_feature = {o1.f1}
Use_value = {o2}
Old_value ={x}
--User-related Metadata
User_del = USER_C
User_use = USER_B
Owner = USER_A
--Time related Metadata
…

Origin Version created by USER_A

Merged Version

Use by USER_B

o1:Object

o1:Object

Delete by USER_C

o2:Object

o2:Object

o1:Object

o2:Object

Figure 5.5: Merge Rule for Delete/Use Conflict

annotation.
Move/Move Conflict. When an object o1 is concurrently moved into different container (c2
and c3) as depicted in Figure 5.6 a so-called Move/Move conflict arises due to the fact that the
container of an object always has to be unique.

MergeRule: Move/Move

<<MoveMove>>
--Involved Elements
Container = {<USER_B : c2 >,
<USER_C : c3>}
--User-related Metadata
Users_mov = {USER_B,
USER_C}
Owner = USER_A
--Time related Metadata
…

Origin Version created by USER_A

Merged Version

Move by USER_B Move by USER_C

o1:Object c1:Object

o1:Object

c2:Object

o1:Object

c3:Object

c1:Object

o1:Object

Figure 5.6: Merge Rule for Move/Move Conflict

This conflict is handled similarly to an Update/Update conflict, i.e., the original structure is
retained and the contradicting changes are not executed but only annotated. Since both move

75

operations cannot be executed together, the object o1 is still contained by c1, the original con-
tainer, after merging and is marked with a Move/Move annotation. This annotation contains
both container objects, i.e., c2 and c3, to which object o1 has been concurrently moved.

Delete/Move Conflict. A special kind of Delete/Update conflicts are Delete/Move conflicts.
Such conflicts arise when the object, which is moved into another container, is concurrently
deleted. Figure 5.7 illustrates such a situation in which the object o1 is moved into the container
c2 while o1 is concurrently deleted.

MergeRule: Delete/Move

<<DeleteMove>>
--Involved Elements
Old_container = {c1}
--User-related Metadata
User_del= USER_B
User_mov = USER_C
Owner = USER_A
--Time related Metadata
…

Origin Version created by USER_A

Merged Version

Delete by USER_B Move by USER_C

o1:Object c1:Object

c1:Object

o1:Object

c2:Object

c2:Object

o1:Object

Figure 5.7: Merge Rule for Delete/Move Conflict

As already mentioned, this conflict is similar to the Delete/Update conflict. Therefore it
is handled analogously during merging. The delete operation is not executed, the object is
moved into the new container, and it is appropriately annotated with a Delete/Move annotation
as depicted in Figure 5.7.

Move/Update Warning. Figure 5.8 depicts a situation, where the object o1 is moved into a new
container c2 and a feature f1 of object o1 is concurrently updated. Basically, both operations
can be executed, and therefore no conflict should be reported. However, when changing the
context of a model element by moving it into another container while having concurrent updates
may lead to undesired situations.

To give the modelers the chance to review such situations, the moved object is annotated
with a dedicated warning to make the modeler aware of a potential problem. In particular, a
Move/Update annotation is attached to the moved object which also comprises the old value of
the updated feature. Please note that warnings are visualized in another way than conflicts.

Other kinds of warning are the Use/Update Warning and the Use/Move Warning. Similar
to the Move/Update Warning, both concurrent operations are executed during the merge and the
updated or moved element, which is referenced (“used”) is annotated with a dedicated warning.

76

<<MoveUpdate>>
‐‐Involved Elements
Upd_feature= {f1}
Old_value ={x}
‐‐User‐related Metadata
User_move= USER_B
User_upd = USER_C
Owner = USER_A
‐‐Time related Metadata
…

Origin Version created by USER_A

Merged Version

Move by USER_B Update by USER_C

f1 = x

o1:Objectc1:Object

f1 = x

o1:Object

c2:Object

f1 = y

o1:Object

c1:Object

f1 = y

o1:Object

c2:Object

Figure 5.8: Merge Rule for Move/Update Warning

N-Way Merge Rules

In the previous subsection, we have presented different merge rules, which are applied if a
conflict arises between two users. This so-called three-way merging is insufficient when three
or more users perform their changes to the same model in parallel following the conflict-tolerant
merge approach. For instance, when two users rename the same model element differently, the
original value remains in the merged model and both update values are kept in the dedicated
conflict annotation. If a third user also renames the same element differently, no conflict would
be reported. Thus, in the following, we present merge rules, which are applied, when three or
more modelers change the same model element in parallel. When merging in a conflict-tolerant
way and two or more users participate, it is important that also the already reported conflicts in
terms of annotations are checked. For instance, when a Delete/Update conflict occurs between
two versions, the update is executed, the deletion is omitted, and the dedicated model element is
marked as conflict. If a third user has also updated the same model element in parallel, the merge
rules presented in 5.2.2 would not match. Therefore, the conflict detection must also check the
applied annotations of the changed attribute.

Furthermore, we want to present the modelers with the conflicts in an aggregated way to
avoid an overload of similar conflict annotations applied on the same element. For instance,
if a model element is already annotated by a Delete/Update conflict and a third modeler also
changes the same element in terms of an update, a Delete/Update and an Update/Update conflict
would additionally be reported. Thus, we extend the first conflict annotation resulting in only
one Delete/Update annotation containing information about one deletion and two updates. Each
change type can be instantiated as often as necessary. This means, that in the case described
before, any number of deletes or updates might be performed on one element, but only one
conflict annotation is applied.

77

MergeRule: Delete/Update

f1 = x

o1:Object

f1 = y

f1 = y

<<DeleteUpdate>>
--Involved Elements
Upd_feature = {f1}
Upd_value = {y}
Old_value ={x}
--User-related Metadata
User_del = USER_C
User_upd = USER_B
Owner = USER_A
--Time related Metadata
…

Origin Version created by USER_A

Merged Version

Update by USER_B

o1:Object

o1:Object

Delete by USER_C

f1 = z

Merged Version (User_B + User_C)

Merged Version

o1:Object

Update by USER_D

<<DeleteUpdate>>
--Involved Elements
Upd_feature = {f1}
Upd_value = {y}
Old_value ={x}
--User-related Metadata
User_del = USER_C
User_upd = USER_B
Owner = USER_A
--Time related Metadata
…

o1:Object

f1 = x

o1:Object

<<UpdateUpdate>>
--Involved Elements
Upd_feature= {f1}
Upd_value ={<USER_B : y> ,
<USER_D : z>}
--User-related Metadata
User_upd= {USER_B, USER_D}
Owner= USER_A
--Time related Metadata
…

<<DeleteUpdate>>
--Involved Elements
Upd_feature = {f1}
Old_value = {x}
Upd_value ={<USER_B :
y> , <USER_D : z>}
--User-related Metadata
User_upd = USER_D
User_del = USER_C
User_upd = USER_B
Owner = USER_A
--Time related Metadata
…

f1 = x

Figure 5.9: Merge Rule for Delete/Update/Update Conflict

In the following, we present two example merge rules where (i) a Delete/Update conflict
and (ii) an Update/Update conflict are extended by a further update of the same model element
performed by a third user.

In Figure 5.9, a merge rule is depicted for the following scenario: User B has updated the
feature f1 of object o1 from the value x to y, which was deleted by User C, leading to a
Delete/Update conflict as already discussed in Section 5.2.2 and depicted in Figure 5.4. How-
ever, User D has also updated the feature f1 to the value z in parallel. Thus, with this rule the
already applied Delete/Update conflict annotation is extended by including the update value and
additional information of User D. This rule is needed, because it has to be checked, whether
the updated object has already been deleted by analyzing all already applied annotations of this
object. Since the object o1 has already been deleted as indicated by the first Delete/Update
conflict, the update of User D has to be seen as a concurrent change. The Delete/Update conflict
annotation is extended to present the users the conflicts in a minimal and more comprehensible
way as depicted at the bottom of Figure 5.9.

As mentioned before, the Conflict-tolerant Merge ensures that the changes of n users are
considered when merging. For example, if a fourth user has also concurrently updated the same
feature, the procedure is repeated and the applied annotation is extended again. In the following,
we present another merge rule as depicted in Figure 5.10. In this scenario, three users perform
three concurrent updates of the same model element.

User B and C has concurrently updated the feature f1 of object o1. The merge rule for

78

MergeRule: Update/Update

f1 = x

o1:Object

f1 = y

f1 = x

<<UpdateUpdate>>
--Involved Elements
Upd_element= {f1}
Upd_value ={<USER_B : y> ,
<USER_C : z>}
--User-related Metadata
User_upd= {USER_B, USER_C}
Owner= USER_A
--Time related Metadata
…

Origin Version created by USER_A

Merged Version

Update by USER_B

o1:Object

o1:Object

Update by USER_C

f1 = z

o1:Object

f1 = a

Merged Version (User_B + User_C)

Merged Version

o1:Object

Update by USER_D

f1 = x

o1:Object

f1 = x

<<UpdateUpdate>>
--Involved Elements
Upd_element= {f1}
Upd_value ={<USER_B : y> ,
<USER_C : z>}
--User-related Metadata
User_upd= {USER_B, USER_C}
Owner= USER_A
--Time related Metadata
…

o1:Object

<<UpdateUpdate>>
--Involved Elements
Upd_element= {f1}
Upd_value ={<USER_B : y> ,
<USER_C : z>, <USER_D : a>}}
--User-related Metadata
User_upd= {USER_B, USER_C,
USER_D}
Owner= USER_A
--Time related Metadata
…

<<UpdateUpdate>>
--Involved Elements
Upd_feature= {f1}
Upd_value ={<USER_C : z> ,
<USER_D : a>}
--User-related Metadata
User_upd= {USER_C, USER_D}
…

Figure 5.10: Merge Rule for Update/Update/Update Conflict

this Update/Update conflict is depicted in Figure 5.3. The original value x of f1 remains in
the merged model and the update values y and z are included in the conflict annotation. Now,
User D has also updated the f1 to the value a in parallel to User B and C. Although two more
Update/Update conflicts are reported, the already applied Update/Update conflict annotation is
extended by the third update. This annotation now contains all three updates.

Furthermore, it might happen that three or more different change types are performed on the
same model element. Thus, beside the conflict pairs presented before, the following aggregated
conflicts and warnings have to be introduced. The order of the individual change types of each
combination does not matter and, for each change type, any number of changes can be included
in the conflict annotation as discussed above.

• Delete - Update - Use Conflict

• Delete - Move - Use Conflict

• Delete - Move - Update Conflict

• Delete - Update - Use - Move Conflict

• Update - Move - Use Warning

For instance, if a Delete/Update conflict annotation is already applied due to the changes of User
A and B, and User C now “uses” this Element by setting a reference, the conflict annotation
is extended to indicate a Delete/Update/Use Conflict. If a User D would also perform a use

79

operation in parallel, the Delete/Update/Use conflict annotation would be extended by including
the second use operation as presented by the examples before. Similar to this scenario, all other
combinations may be built to ensure that N parallel versions of a model may be merged in a
conflict-tolerant way and that the conflicts are presented to the users in an aggregated view.

5.2.3 The Merge Algorithm at a Glance

In this subsection, we present an overview on the conflict-tolerant merge algorithm. Figure 5.11
depicts a UML Class Diagram including all classes used in this algorithm. The diagram con-
tains a class Model representing a versioned software model. A Model contains one root
ModelElement, which again might contain several child elements. Each model element has
an ID and knows its container model element. Model elements may be enriched with several
Annotations and can be further described by MetaInfos which contains information about
the users who recently changed the model elements, the Changes themselves, and the base
version. The aggregated annotations presented in the previous subsection are not depicted for
reasons of clarity.

The algorithm consists of two phases, in particular, the fusion phase and the validation phase.
In the fusion phase, the algorithm iterates over all changes and checks for conflicts by using the
afore presented conflict rules. Once the conflicts are identified, a copy of the common origin
model of the modified models is created and all non-conflicting changes are applied to this copy.
Next, conflicting changes are regarded and merged as presented in the previous section. By this,
all conflicts are resolved by prioritizing updates and moves over deletions and contradictory up-
dates are omitted. Furthermore, annotations indicating the conflict and providing all relevant
meta-data are immediately added to the involved model elements. This allows us to fully au-
tomatically produce a merged model in any case which is additionally enhanced with conflict
information based on annotations.

In the validation phase, the merged model is validated. Validation means to reveal violations
of rules and constraints defined by the modeling language. Thus, we reuse model validation
frameworks which are able to detect language constraint violations in the merged model. As in
the fusion phase, we annotate all model elements which are subject to violations in this phase.
Therefore, we iterate through all revealed violations and annotate the elements involved in the
violation by so-called Violation annotations.

5.2.4 Merging the Running Example

In this subsection, the afore presented merge algorithm is applied to the running example (cf.
Figure 5.2) in order to illustrate its function in more detail. In contrast to the standard merge
depicted in Figure 5.2, where conflicts are resolved immediately comparing changed models
pairwise, Figure 5.12 illustrates the merge results obtained using the Conflict-tolerant Merge
and the annotations of the elements marked with the corresponding number.

80

Model
+clone()
+apply(Change)
+getUserView(User)
+getElementById(String)

ModelElement
+getId()
+getContainer()
+apply(Change)
+annotate(Annotation)
+annotate(Annotation, Feature)
+annotate(Annotation, Violation)
+addMetaInfo(MetaInfo)
+markAsDeleted()
+isDeleted()
+isUpdated()
+isUpdated(Feature) Conflict

Change
+getElement()
+getUser()
+getBaseVersion()

Update
+getFeature()
+getValue()

Delete Insert

child

container rootElement

1 0..1
*

affectedElement

1

*

changedBy

MetaInfo
+getElement()
+getUser()
+getBaseVersion()

*
metaInfo

*

Violation UpdateUpdate DeleteUpdate

Annotation
annotations
*

Move

Model

children
container

rootElement
1

0..1

*

Change

affectedElement 1

*
changedBy

Conflict

Violation

UpdateUpdate DeleteUpdate

Annotation
annotations
*

DeleteUse DeleteMove

Warning

MoveUpdate

Update Delete Insert

Move

MetaInfo *
metaInfo

ModelElement

*

Use

MoveMove

UseUpdate

UseMove

Figure 5.11: Changes and Annotations at a Glance

Merging V1a with V1b into V2

In the example introduced in Section 1.1, Sally checks in after Harry has committed his changes
to the common repository. His changes comprise the insertion of the attribute color in class
Car, and three updates. He updated the name of attribute bday to birthday in class Employee,
also the name of the attribute type to carType, and changed the aggregation type of the refer-
ence connecting Employee and Car from unspecified to composition. Consequently,
the classes Car and Employee as well as the reference have to be considered as updated when
Sally’s version V1b is merged with the latest version V1a of Harry.

Fusion Phase. Sally’s changes comprise a move of the attribute type, a deletion of class
Car, and a deletion of the reference connecting Employee and Car. Subsequently, the merge
algorithm iterates over all changes of Sally and checks for each changed element if an afore
presented merge rule has to be applied. For the first change, i.e., the move of the attribute type,
the conditions of the “Move/Update rule” match, because this element has been concurrently
updated by Harry. Since the rule executes both operations and annotates the element with a
Move/Update Warning, in the merged version V2 the attribute carType is contained by
the class Employee and annotated with the according conflict. The second change of Sally is
the deletion of the class Car leading to a Delete/Update conflict, because the same class has
been updated by Harry by inserting the attribute color. The “Delete/Update” rule ignores the
deletion of the class Car, executes the the insertion of the attribute, and attaches the class with
a Delete/Update Conflict annotation. The same is true for the third change of Sally,
i.e., the deletion of the reference between the classes Car and Employee: the deletion of
the reference is ignored but is updated to a composition and a Delete/Update Conflict

81

Conflict-tolerant Merge

CarEmployee
type name

bday

V1

Alice

Employee
name
birthday

V1a

Harry

Employee
name
doB

V1c
*

Joe

Employee
name
bday
type

V1b

Sally

Car
carType
color

Car
type
engine

Employee
name
birthday
carType

V2

Car
color

Employee
name
bday
carType

V3
Car

color
engine

3

12

5

6

1
2

3

5

6

Delete/Update
Conflict
Delete/Update
Conflict
Move/Update
Warning

Update/Update
Conflict

*

Violation

4

1

1

1

1

1

Delete/Update
Conflict4

Conflicts

Figure 5.12: Conflict-tolerant Merge of the Running Example and Annotated Conflicts

annotation is applied to the reference. Since Harry has updated the name of the attribute bday
to birthday and Sally did not perform any operation on this element, no special merge rule
matches and, thus, the update of Harry is performed without annotating the attribute.

Validation Phase. Now the merged version is validated but since there are no language
violations in this model, the merge algorithm terminates and the merged version is published
into the central repository (cf. V2 in Figure 5.12).

Merging V2 with V1c into V3

According to Figure 5.2, Joe checks in his version V1c, which has to be merged with the head
version V2 in the repository.

Between V1 and V2, Harry and Sally performed several changes, which are encompassed
in V2. Recall that Harry updated the attribute bday as well as the type of the reference from
Employee to Car. Moreover, he added an attribute to Car. Sally removed the class Car and
also the reference between Employee and Car.

Fusion Phase. The first change of Joe comprises the renaming of the attribute bday to doB.
Since this attribute has also been updated concurrently by Harry, the condition of “Update/Up-
date” merge rule matches. Consequently, the rename of Harry is reverted to its original name
bday and an Update/Update Conflict annotation is applied. Recall that the new val-
ues of this element, i.e., birthday and doB, are not deleted. Instead, they are saved as meta
information in the annotation. The next change of Joe concerns the insertion of the attribute
engine into the class Car. Since the class Car is already attached with a Delete/Update
Conflict annotation, this annotation is extended containing also the information about the
update operation of Joe. The final change of Joe concerns the update of the reference multiplic-
ity which, in particular, has been set to unbounded (notated as *). Since no merge rule matches,

82

this operation can be performed without causing a conflict.
Validation Phase. After all changes have been handled, we may move on to the validation

phase. When the merged version of the model V3 is validated, a language violation is reported.
References of type Composition may not have an unbound multiplicity. Consequently, each
element involved in this violation is marked with a Violation annotation. In our example,
only the reference is involved and annotated.

5.3 Consolidation

After all developers have finished to contribute changes to the repository, the all-encompassing
head revision in the repository might contain several conflicts and inconsistencies. At a certain
point in time during the software development project, a consolidated model version which re-
flects a unified view on the modeled domain has to be found by all participants before the model
is further used. This point in time may be defined for each development project depending on
the applied development process. Thus, the versioning process does not dictate the develop-
ment process. In contrast, developers have the freedom to choose when resolving the conflicts
according to the project phase and the purpose of the used model.

5.3.1 Conflict Resolution

For supporting the consolidation phase, we have developed a dedicated structural model defining
the relevant information about a conflict resolution as well as a dedicated behavioral model for
formalizing the life cycle of conflicts. The resulting Conflict Resolution Model is depicted in
Figure 5.13. A ModelElement may be annotated by a conflict as already discussed in the
previous section. A conflict may be assigned to different users, which are responsible to resolve
the conflict. These users may propose different resolutions, but exactly one of these resolutions
has to be finally accepted in order to resolve the conflict. Two possible kinds of resolution
strategies exist: (1) either select one out of the conflicting changes, or (2) discard both and
perform a custom resolution, which may contain several changes. In the latter case, the modeled
resolution is stored as its own Diff to comprehend afterwards what happened to the conflict in
the resolution process.

Furthermore, a conflict may depend on another conflict: Coming back to the example de-
picted in Figure 5.12, a Delete/Update conflict is already annotated on class Car, because Sally
has deleted this class which is updated by Harry by introducing the new attribute color. Since
Joe has also introduced in parallel the attribute engine in the same class, a further Delete/Up-
date conflict is reported, but, as described before, the conflict annotation is integrated in the
Delete/Update conflict annotation already applied on the class Car. The resolution of one con-
flict is now dependent on the resolution of the other conflict. In our example, if the class Car
should remain in the model, both independent updates, i.e., insertion of attribute color and
engine are prioritized if they are not contradicting. More investigations on how to automati-
cally resolve dependent conflicts will be conducted in future work and, thus, we do not go into
more detail in this thesis.

83

state : ConflictState 0..*

0..1

Diff
0..1

0..*

open resolution
proposed

deferred

reopen

resolved assigned

Modeler takes
possession

Ownership is changed

Accept
resolution

Reject resolution

Modeler elaborates
resolution

Modeler deferes working
on the conflict

Modeler elaborates
resolution

XOR

Annotation ModelElement
*

User

0..*
proposed

Resolution

annotations

assignedTo

dependsOn

prioritizedChange

customResolution

Conflict Lifecycle

1..*

conflictingChange

proposed
Resolution

Change
Conflict

2..*

Resolution

affectedElement

changedBy
*

1

Figure 5.13: Conflict Resolution Model with Conflict Lifecycle

In the conflict resolution process, a conflict passes through different states which is compa-
rable with the lifecycle of a bug in a dedicated tracking system like Bugzilla2. At the bottom of
Figure 5.13 these states are depicted with the help of a UML State Diagram: When a conflict
is reported it is in the state open. Now, modelers can be assigned to the dedicated conflict.
These modelers are not necessarily the same like those who have caused the conflict, but may
also include the modeler who has created the model element. After that, modelers may now
elaborate the resolution or explicitly defer working on the conflict. Therefore, there is the ad-
ditional state deferred that is important to make the other modelers aware of the deferral of
the conflict resolution if, for example, more time is needed to resolve the conflict. As soon as a
resolution has been elaborated by the assigned modelers, a conflict is in the state resolution
proposed and can be reviewed by the others. If this resolution is rejected, the conflict can
be reopened to start a new resolution phase. In the opposite case, the conflict is in the state
resolved which directly leads to the end state of its lifecycle.

In Figure 5.14 the resolution process is depicted for a concrete Delete/Update conflict. In this
example, the deletion of the class Car is conflicting with the insertion of the attribute color
leading to a Delete/Update conflict. Since our conflict tolerant merge does not execute conflict-
ing delete operations, but only marks the involved elements as deleted, the class Car remains
in the merged version of the model and the attribute color is also included. In the first step,
the class is annotated with a dedicated annotation and the state of the conflict is open. In the
second step, the user Harry is assigned to the conflict, who is now responsible to resolve it.
He proposes a new resolution, by selecting the update of the class Car. This is represented in

2http://www.bugzilla.org/docs/2.18/html/lifecycle.html

84

http://www.bugzilla.org/docs/2.18/html/lifecycle.html

Car : Class c1 : DeleteUpdate
state = open

(1) New Delete/Update conflict

Car : Class c1 : DeleteUpdate
state = assigned

(2) Modeler takes possession

Harry : User

Car : Class c1 : DeleteUpdate
state =
resolutionProposed

(3) Modeler elaborates resolution

color : Attribute

color : Attribute

color : Attribute

Car : Class

(4) Accept resolution

color : Attribute

c1 : DeleteUpdate
state = resolved

up1 : Update

del1 : Delete

Harry : User

assignedTo

conflictingChange

res1 : Resolution

proposedResolution

conflictingChange

up1 : Update

del1 : Delete
conflictingChange

conflictingChange

up1 : Update

del1 : Delete
conflictingChange

conflictingChange

assignedTo

prioritized
Change

proposedResolution

Figure 5.14: Delete/Update Conflict Resolution Example

the model by having a link from the resolution object to the prioritized change, i.e., the update
object in our example. After this resolution proposal is reviewed by others and finally accepted,
the merged version still contains the class Car with its attribute color. Finally, the conflict
annotation is hidden but still available in the central model repository for provenance reasons.

In the following, a second example depicted in Figure 5.15 is presented where the resolu-
tion of an Update/Update conflict is conducted. Harry and Joe have concurrently changed the
name of the attribute bday, which was created by Alice, to birthday and doB, respectively.
Thus, in the merged version the attribute has its origin name bday and it annotated with an
Update/Update conflict. The state of the conflict is open. In a second step, not only Harry and
Joe are assigned to this conflict to resolve it, but in this concrete example also Alice, because
she is the creator of the model element. Thirdly, since birthday is a more proper name for an
Employee’s birthday, they decide to prioritize the update of Harry, i.e., Up2. Note that more
than one modeler may propose more than one resolution proposal. However, in this example
only Alice explicitly proposes the resolution of the conflict. Finally, the resolution proposal is
accepted and the update is performed. Now, the attribute is named birthday. The state of
the conflict is changed to resolved and, as mentioned before, it is hidden but kept in the
repository.

85

bday : Attribute c2 : UpdateUpdate
state = open

bday : Attribute c2 : UpdateUpdate
state = assigned

Harry : User

bday : Attribute c2 : UpdateUpdate
state =
resolutionProposed

Harry : User

res2 : Resolution

birthday : Attribute c2 : UpdateUpdate
state = resolved

Joe : User

Joe : User

(1) New Update/Update conflict

(2) Modeler takes possession

(3) Modeler elaborates resolution

(4) Accept resolution

assignedTo

Alice : User

Alice : User
assignedTo

up2 : Update

up1 : Update

up2 : Update

up1 : Update

up2 : Update

up1 : Update

proposedResolution

conflictingChange

conflictingChange

conflictingChange

conflictingChange

conflictingChange

conflictingChange

prioritizedChange

Figure 5.15: Update/Update Conflict Resolution Example

5.3.2 Consolidating the Running Example

The consolidation phase is supported by an adequate visualization of all conflicts in the uncon-
solidated model. This view serves as a basis to discuss existing issues and different points of
view.

Car Employee
color
carType
engine

name
birthday

V4

* * Car Employee
color
engine

name
bday
carType

V3
* 1

Merged Version Consolidated Version

Consolidation

1
2

3
5

6

4

Figure 5.16: Consolidated Version by Turning Conflicts into Collaborations

Coming back to our running example, Harry, Sally, Joe, and Alice collaborate to resolve

86

all existing conflicts. Different possibilities exist how the developers are able resolve the oc-
curred conflicts collaboratively. In this chapter, we presented the possibility of asynchronous
conflict resolution, where the assigned modelers can prioritize one of the conflicting operations.
In [BSW+09] we proposed synchronous conflict resolution, where the modelers may remotely
discuss and resolve the conflicts together. Also for this kind of resolution, the conflict annota-
tions build a good basis for discussion. When evaluating the Conflict-tolerant Merge as presented
in Chapter 7, we used face-to-face session for resolving the occurred conflicts. In the follow-
ing, we discuss a potential collaborative resolution for each conflict in the running example in
more detail. Supported by the conflict report and the provided metadata, they find a consolidated
version which is depicted in Figure 5.16 by resolving the following six conflicts:

1. Delete/Update: Class Car. First of all, the modelers have to decide whether the class Car
is needed. Since Sally was of the opinion that exactly one car is assigned to one employee,
she has deleted the class Car and has inlined its attributes to the class Employee to
ensure the efficient querying of information. However, after Harry and Joe communicate
their opinions, all participants are convinced to keep the class Car in the model. Due to
this decision, both attributes, i.e., color and engine, remains in the class Car.

2. Delete/Update: Reference employee-to-car. Since class Car is not deleted, the reference
between both classes is also retained.

3. Move/Update: Attribute carType. The assigned modelers also check the occurred warning
and notice that the attribute carType is now in the “wrong” class. Therefore, it is moved
back to its origin class Car.

4. Update/Update: Attribute bday. Harry and Joe have concurrently renamed the attribute
bday, which has been introduced by Alice. Both agree, that bday and doB may lead to
misunderstandings and, therefore, decide to use birthday.

5. Violation: Reference cardinality. Harry has introduced the containment relationship be-
tween the two classes and Joe has set the multiplicity to “unbound” leading to a meta-
model violation. They discuss the different possibilities and decide to resolve it manually
as depicted in Figure 5.17. In the final version, a company car can be assigned to more
than one employees and one employee can be assigned to more than one car. Thus, the
containment relationship is converted back to a non-containment relationship and both
multiplicities are set to “unbound”.

After Harry, Sally, Joe, and Alice have finished the resolution of all conflicts and, further-
more, all resolution proposals are accepted by the responsible modelers, the consolidated version
of the model is then saved in the repository as new version V4.

The presented example illustrates that it is highly beneficial to conjointly discuss each con-
flict because there are different ways to resolve them due to the different viewpoints of the
involved modelers. Conflict resolution is an error-prone task when only one modeler has the
full responsibility to resolve conflicts. Our presented approach counteracts this problem. We re-
tain all information necessary to make reasonable resolution decisions is kept and collaboration

87

ref1 : Reference v1 : Violation
state = open

ref1 : Reference v1 : Violation
state = assigned

Harry : User

ref1 : Reference v1 : Violation
state =
resolutionProposed

Harry : User

res1 : Resolution

up2 : Update

ref1 : Reference v1 : Violation
state = resolved

Joe : User

Joe : User

(1) New Violation

(2) Modeler takes possession

(3) Modeler elaborates resolution

(4) Accept resolution

assignedTo

customResolution

assignedTo

assignedTo

assignedTo

sourceMultiplicity = *
targetMultiplicity = 1
composition = true

up1 : Update

sourceMultiplicity = *
targetMultiplicity = 1
composition = true

sourceMultiplicity = *
targetMultiplicity = 1
composition = true

modelElement= ref1
feature = targetMultiplicity
value = *

sourceMultiplicity = *
targetMultiplicity = *
composition = false

modelElement = ref1
feature = composition
value = false

proposedResolution
diff1 : Diff

Figure 5.17: Violation Resolution Example

and discussion is fostered. The resulting final version (cf. Figure 5.16) reflects all intentions
much better than this could have been achieved by one modeler on her own. In summary, such
a consolidation leads to a unification of the different viewpoints and finally to a model of higher
quality accepted by all team members.

5.4 Summary

In this chapter, we presented a novel approach for optimistic model versioning. Instead of forc-
ing the modelers to resolve merge conflicts immediately, our system supports deferring the res-
olution decision until a consolidated decision of the involved parties has been elaborated. Well-
defined merge rules are used by our algorithm to incorporate all changes of the modelers, also
when overlapping changes happen, and to mark conflicts by dedicated annotations. The resolu-
tion process itself is supported by a conflict resolution model, with which the participants can
be assigned to specific conflicts to propose resolutions and find collaboratively a consolidated
version. By this method, we transform conflicts into collaborations which results in a higher

88

acceptance of the consolidated model. In the next chapter, we present the realization of this
approach in the context of our model versioning system AMOR.

89

CHAPTER 6
Making AMOR Collaboration-Aware

We created a prototypical implementation of the concepts presented before which is presented
in this chapter and evaluated in Chapter 7. Our implementation is realized as Eclipse1 plug-in
and is built upon the Eclipse Modeling Framework (EMF) [BSM+03], one of the most adopted
(meta-)modeling frameworks in practice. Due to this widespread adoption, a plethora of mod-
eling languages are specified in EMF—among them UML 2.0. Using the powerful reflection
mechanisms of EMF, we designed our implementation to support every EMF-based modeling
language. In the following, we outline the architecture of the Conflict-tolerant Merge and the
implementation of all components required to realize the presented concepts. One of the main
components is the light-weight annotation mechanism called EMF Profiles, which we present
in detail in Section 6.3 after discussing other model annotation mechanisms in Section 6.2. The
design rationale for the Conflict-tolerant Merge in conjunction with EMF Profiles is recalled in
the following:

• User friendly visualization: Merge conflicts as well as the information on performed
changes are presented in the concrete syntax.

• Integrated view: All information is visualized within a single diagram to provide a com-
plete overview of conflicts.

• Preventing metamodel pollution: The models incorporating the conflict information are
still compliant to their metamodel.

• No editor modifications: The visualization of conflicts in Ecore-based models are possible
without modifying the graphical Ecore editors.

• Model-based representation: If models are exchanged between different Ecore tools, the
conflict information is not lost, because conflicts are explicitly represented as model ele-
ments.

1http://www.eclipse.org

91

http://www.eclipse.org

V1c V1c V1c V1b

CTAnnotator

Change
Detector

Change
Report

Conflict
Report

Default
Merge
Rules

Annotated
Merged
Model

V1a

CT
Merge
Rules

EMFProfiles

CT
Conflict
Profile

<<use>>

Conflict
Detector

Merged
Model

Default
Merger

CTMerger
<<instantiate>>

Legend:
In this thesis
developed artifact

Existing artifact

In this thesis
developed component

Existing component

Jointly developed
component [LWWC11]

Information flow

Dependency
relationship

Provided/required
interface relationship

Figure 6.1: Architecture of Conflict-tolerant Merge Tool

6.1 Architecture and Implementation

To better understand our design decisions, we want to recall in the following the requirements
for the approach presented in this thesis: Overall, we want to mark conflicts to resolve them
later on. Thus, the author of this thesis developed a model merge tool following the Conflict-
tolerant Merge rules (cf. Section 5.2.2 and implemented conjointly an annotation mechanism
(cf. [LWWC11]), which annotates conflicts or changes, as light-weighty as possible to reuse
existing modeling editors. In addition, the Conflict-tolerant Merge including the conflict anno-
tations should not be restricted to only certain modeling languages. Following the principles of
AMOR any Ecore-based modeling language should be supported. In contrast to traditional/state-
of-the-art merge tools, our system should provide the possibility to merge any number of parallel
versions of a model while considering the difference and conflicts between all versions. Finally,
for supporting the modelers to better understand the changes of the others and to resolve the
occurred conflicts, we also want to visualize the changes and conflicts in the concrete syntax,
e.g., graphical notation, of the models.

In Figure 6.1, the most important components of the Conflict-tolerant Merge are visualized
and described in the following.

92

Change Detector

To identify the changes applied between an origin model and a revision of it, two different
approaches exist. On the one hand, state-based approaches take two versions of a model as
input and compute the model differences by comparing these two model states [Men02]. On
the other hand, as introduced by [LvO92], operation-based approaches obtain the changes by
directly recording them in the modeling environment as they are performed by the user. Both
approaches have their advantages and disadvantages and are already discussed in Chapter 2.
In comparison to state-based approaches, change recording is, in general, more precise and
potentially enables to gather more information (e.g., the order in which the changes have been
applied) than state-based approaches. However, these advantages come at the price of inherently
strong editor-dependence because the editor used for modifying the model has to be capable of
recording changes and must represent them in a common format. To avoid depending on the
used editor, we conduct in AMOR state-based model differencing based on the extensible model
comparison framework EMF Compare [BP08]. To increase the precision of EMF Compare, we
implemented an extension to EMF Compare exploiting universally unique identifiers (UUIDs)
which are attached to each model element and which are, once assigned, never changed anymore.
Thus, using UUIDs also moved and intensively changed model elements can be recognized
across two versions of the same model which allows for a more precise computation of applied
changes. Once, the changes between an original model and two revisions of it are identified, they
are saved to two so-called difference models and passed to the conflict detection component.

For more details on the Change Detector as well as the Conflict Detector,
which is presented in the following, we kindly refer to [Lan11].

Conflict Detector

Having identified the precise changes concurrently applied by two users, we may now proceed
with detecting conflicts between them. In Section 5.2, we introduced rules for detecting, anno-
tating, and merging conflicts. These rules involve a change pattern which specifies two changes
concurrently applied to the same origin model element (cf. upper left area of Figures 5.3–5.8).
Hence, as soon as such a pattern exists in the difference models, a corresponding conflict is
at hand. For instance, having two updates changing the same model element, a conflict shall
be raised (cf. Figure 5.3). Having these rules, implementing the conflict detection component
is largely straightforward. Generally speaking, for all change combinations of both difference
models it has to be checked whether one of the aforementioned conflict patterns matches and
raises, in case a match is at hand, a proper conflict. However, for the sake of efficiency, we re-
frain from checking the complete cross product of all change combinations between all changes
of both difference models. In contrast, both difference models are translated in a first step into an
optimized view which sorts all changes based on their type into potentially conflicting combina-
tions. Secondly, these combinations are triaged whether they are spatially affected overlapping
parts of the original model. Finally, all remaining combinations are checked in detail by eval-
uating the rules presented before. Once, all conflicting combinations of changes are identified,
they are marked accordingly to be regarded in the following step.

Besides conflicting changes, the merged model may incorporate violations of the confor-

93

mance rules of the respective modeling language. For detecting such violations, the EMF Val-
idation Framework2 can be used. By this, each EMF-based model may be validated to detect
violations of constraints arising directly from the metamodel as well as those coming from ad-
ditionally defined constraints expressed in OCL or Java. Whenever a violation is detected, diag-
nostics are returned which describe the severity of the constraint violation and provide an error
message as well as the model elements involved in the respective violation. This information is
used to mark violations besides overlapping changes in the merged model in the next step. The
integration of the EMF Validation Framework has not been conducted yet. However, it is subject
to future work.

CTMerger

Instead of the Default Merger, we implemented the so-called CTMerger, which overwrite
the Default Merge Rules by the CT Merge Rules presented in Chapter 5. Although
the Conflict-tolerant Merge allows for incorporating the changes of any number of parallel ver-
sions of a model, in fact two versions are compared, i.e. the head version in the repository and
the newly committed version. However, compared to a standard versioning system, this system
is designed to tolerate conflicts as long as the developers want to resolve them. Thus, from the
user’s point of view all parallel versions are incorporated to one merged versions and the con-
flicts between all versions are annotated. The general process of the CTMerger is depicted in
Figure 6.2.

An Origin Model (V0) is in the Central Repository and Modeler A and B per-
forms their changes in parallel (cf. Mark 1).

When Modeler A checks in her version, the changes of diff1 are applied in step 2 lead-
ing to a new Head Model in the repository. When Modeler B checks in, the Conflict
Detector identifies all conflicting changes between the changes of diff1 and diff2. After-
wards, we may create a merged model according to the merge rules specified in Section 5.2. In
the third step, a copy of the common origin model is created. Of course, in this copy the UUIDs
of the origin model must be retained. Next, all non-conflicting changes contained by both differ-
ence models are reapplied to the created copy (cf. Mark 4). Therefore, we implemented a ded-
icated model transformation engine based on the merging framework of EMF Compare [BP08]
which is able to transform a model according to the afore detected model differences. The
model elements to be transformed are identified using the aforementioned UUIDs. In the next
step, we handle conflicting changes according to the conflict-tolerant merge rules presented in
Section 5.2.2. To recall, if a Delete/Update, Delete/Use or Delete/Move conflict occur, the
change operation is prioritized over the deletion by the CTMerger and applied to the merged
model. When an Update/Update or Move/Move conflict occur, no change is applied to the
merged model.

The occurred conflicts are marked by means of annotations leading to an Annotated
Merged Model in the central repository. If a Modeler C has additionally checked out the
Origin Model, the Origin Model, is copied again and the non-conflicting changes of all
three diffs are applied to this model. Finally, the occurred conflicts are handled as described

2http://www.eclipse.org/modeling/emf/?project=validation#validation

94

http://www.eclipse.org/modeling/emf/?project=validation#validation

Origin Model V0 Head Model

Revised Model

apply Changes
and annotations

Annotated
Merged Model

V0 + +

Central
Repository

apply Changes

Modeler B

Modeler A

copy

2 1

1

2

apply Changes 1

1

2

3

4

4

Figure 6.2: Overview of CTMerger Process

above. But now, the already applied annotations of the conflicts between Modeler A and B have
to be considered when detecting and reporting conflicts between the version of Modeler C and
the Annotated Merged Model in the repository as described in Chapter 5.

CTAnnotator

Finally, the merged model is enriched with the conflict and violation annotations as specified
by the merge rules in Figures 5.3–5.8 conforming to the annotation metamodel depicted in Fig-
ure 5.11. Unfortunately, EMF does not inherently provide a common annotation mechanism for
enriching a model with additional information. Therefore, we ported the lightweight extension
mechanism known from UML Profiles [FFVM04] to the realm of EMF models as presented
by [LWWC11]. By this, every EMF-based model may be annotated with stereotypes containing
tagged values. If, for instance, an update/update conflict appeared (cf. Figure 5.3), the corre-
sponding stereotype UpdateUpdate is applied to the object which was concurrently modified.
This stereotype contains information—in terms of tagged values—on the contradictory updated
values as well as the users who performed the conflicting changes. Stereotype applications may
be visualized on top of the graphical representation of a model to support the user in resolv-
ing all annotated conflicts directly in the model. Annotations are saved in a separate model to
avoid polluting the merged model. However, when checking-in the merged model comprising
conflicting changes, the annotation model is saved alongside the merged model to also allow
other modelers to investigate and resolve existing conflicts. More details about this annotation
mechanism is presented in Section 6.3.

As discussed in Section 5.3, users may resolve conflicts by applying either one of the two
changes or by performing a new custom set of changes. All of these options may be performed
directly in the modeling editor. We exploit the SelectionListener interface which is im-

95

plemented by all EMF-based editors to allow for displaying all annotated conflicts in a dedicated
view whenever a model element is selected by the user in the modeling editor. In this dedicated
view, the user may now choose how to resolve the displayed conflict. Once this is done, the
tagged value representing the state of the conflict is changed accordingly. After all or a subset
of all conflicts are resolved, the model alongside the updated annotation model is again checked
into the repository. As argued earlier, it is often desired by developers to collaboratively resolve
certain conflicts in a synchronous manner in contrast to resolve a conflict by oneself [BSW+09].
Although this has not been integrated in our implementation yet, users may use Connected Data
Objects3 (CDO), a distributed shared model framework which allows for simultaneously editing
EMF-based models over a network. Since the actual model as well as the annotation model
is based on EMF, also a distributed collaborative resolution of existing conflicts is possible by
using the CDO technology. In the evaluation of the approach, which is presented in Chapter 7,
the participants had to consolidate their models in face-to-face sessions and they resolved the
conflicts manually.

6.2 Annotation of Models

In the following, we outline different approaches for annotating models in general and, addition-
ally, discuss approaches focusing on annotating and visualizing conflicts.

6.2.1 General Model Annotation Mechanisms

One alternative to profiles as an annotation mechanism is to use weaving models (e.g., by using
Modelink4 or the Atlas Model Weaver5 [FBJ+05]). Model weaving enables to compose differ-
ent separated models, and thus, could be used to compose a core model with a concern-specific
information model in a non-invasive manner. However, although weaving models are a power-
ful mechanism, annotating models with weaving models is counter-intuitive. Since this is not
the intended purpose of weaving models, users cannot annotate models using their familiar en-
vironment such as a diagramming editor which graphically visualizes the core model. Current
approaches only allow for creating weaving models with specific tree-based editors in which
there is no different visualization of the core model and the annotated information. Not least
because of this, weaving models may quickly become very complex and challenging to manage.

Recently, Kolovos et al. presented an approach called Model Decorations [KRDM+10]
tackling a very similar goal as EMF Profiles. Kolovos et al. proposed to attach (or “decorate”)
the additional information in terms of text fragments in GMF’s diagram notes. To extract or
inject the decorations from or into a model, hand-crafted model transformations are employed
which translate the text fragments in the notes into a separate model and vice versa. Although
their approach is very related to ours, there also are major differences. First, for enabling the
decoration of a model, an extractor and injector transformation has to be manually developed
which is not necessary with EMF Profiles. Second, since Kolovos et al. exploit GMF notes,

3http://wiki.eclipse.org/CDO
4http://www.eclipse.org/gmt/epsilon/doc/modelink
5http://www.eclipse.org/gmt/amw

96

http://wiki.eclipse.org/CDO
http://www.eclipse.org/gmt/epsilon/doc/modelink
http://www.eclipse.org/gmt/amw

only decorating GMF-based diagrams is possible. In contrast to our approach, models for which
no GMF editor is available cannot be annotated. Third, the annotations are encoded in a tex-
tual format within the GMF notes. Consequently, typos or errors in these textual annotations
cannot be automatically identified and reported while they are created by the user. Furthermore,
users must be familiar with the textual syntax as well as the decoration’s target metamodel (to
which the extractor translates the decorations) to correctly annotate a model. In EMF Profiles,
stereotypes may only be applied if they are actually applicable according to the profile definition
and editing the tagged values is guided by a form-based property sheet. Consequently, invalid
stereotype applications and tagged values can be largely avoided.

EMF Facet6, a spin-off of the MoDisco subproject [BCJM10] of Eclipse, is another approach
for non-intrusive extensions of Ecore-based metamodels. In particular, EMF Facet allows to
define additional derived classes and features which are computed from already existing model
elements by model queries expressed, e.g., in Java or OCL. Compared to EMF Profiles, EMF
Facet targets on complementary extension direction, namely the dynamic extension of models
with additional transient information derived from queries. In contrast, EMF Profiles allow
to add new (not only derived) information and is able to persist this additional information in
separate files. Nevertheless, the combination of both complementary approaches is worth to be
subject for future work. For example, this would allow to automatically extend or complete
models based on EMF Facet queries and persist this information with EMF Profiles.

The concept of meta-packages has been proposed in [CESW04] for the lightweight exten-
sion of the structural modeling language XCore which is based on packages, classes, and at-
tributes. New modeling concepts are defined by extending the base elements of XCore and can
be instantly used in the standard XCore editor. Compared to meta-packages, EMF Profiles are
more generic, because not only one modeling language may be extended, but any Ecore-based
modeling language.

6.2.2 Visualization and Annotation of Conflicts

In the following, we review approaches which support the visualization of changes and con-
flicts. Therefore, we consider not only the literature on software modeling, but also the literature
on ontology engineering. Ontologies are usually established by communities, and therefore so-
phisticated mechanisms are required to enable collaborative work. As the ontology engineering
process is highly interactive, mechanisms are required to keep conflicts in order to establish a
consolidated opinion of the community.

Software Modeling. The visualization of differences between model versions by using differ-
ent coloring and highlighting techniques are proposed by [MGH05] and [OWK03]. The mod-
ifications are shown in unified diagrams which incorporate the changes of both users. The ap-
proach of Ohst et al. has been implemented in [Nie04], but due to a restricted merging approach
only conflicts concerning contradicting updates of attribute values as well as element moves
are marked explicitly in the unified diagrams. Furthermore, tool-specific extensions have to be
implemented for modeling editors in order to use this approach. Mehra et al. [MGH05] also

6http://www.eclipse.org/modeling/emft/facet

97

http://www.eclipse.org/modeling/emft/facet

report on changes concerning the concrete syntax. For each movement of the shape of a model
element, the original as well as the new position of the shape connected by a line is shown.
Many overlapping highlighted model elements are generated when a large number of changes
has occurred. The approach has been implemented for the meta-CASE tool Pounamu [ZGH+07]
for providing generic visualization support for modeling languages defined in Pounamu, but for
UML modeling environments there is no support available.

Ontology Development. Ontologies are kind of conceptual models. Thus, there are many
similarities between building an ontology and a structural model such as an UML class dia-
gram. Furthermore, several works are geared towards integrating models and ontologies such
as [WRK+06]. Ontologies cover common knowledge of a certain domain, and usually the build-
ing of an ontology is a community activity in order to collect common domain knowledge and
in order to establish a common terminology. Hence, the ontology engineering community needs
tools for collaboratively developing ontologies [SNTM08]. Often, ontologies are constructed by
the means of Wikis like LexWiki7 intended to define terminologies. Therefore, the participat-
ing engineers can comment the current status and propose changes in a text-based manner by
annotations. These annotations are later examined by curators which are editing the ontologies
in standard ontology editors separated from LexWiki. OntoWiki [ADR06] supports to change
and rate ontology definitions via a Web-based interface. However, OntoWiki cannot represent
conflicting changes explicitly. Collaborative Protégé [TNTM08] also allows for collaborative
ontology development with annotations on ontology changes, proposals, votings, as well as dis-
cussions. The authors recognize the need for synchronous and asynchronous development as
one of the main requirements for ontology engineering, but for the moment only synchronous
development is supported. Consequently, conflict detection and visualization is not treated by
these approaches in contrast to this thesis. Furthermore, ontologies are developed in abstract
syntax using tree editor, thus no concrete syntax conflicts are considered.

As mentioned before, with our annotation mechanism, namely EMF Profiles, any EMF-
based models can be extended in a light-weight way. Thus, it provides an easy way for marking
conflicts and for enriching models with metadata when merging in a conflict-tolerant way. Based
on previous work [LWWC11], the full potential of EMF Profiles is presented in the following:

6.3 Annotation Support with EMF Profiles

Domain-Specific Modeling Languages (DSMLs) have gained much attention in the last decade
[KT08]. They considerably helped to raise the level of abstraction in software development by
providing designers with modeling languages tailored to their application domain. However,
as any other software artifact, DSMLs are continuously subjected to evolution in order to be
adapted to the changing needs of the domain they represent. Currently, evolving DSMLs is a
time-consuming and tedious task because not only its abstract and concrete syntax but also all
related artifacts as well as all DSML-specific components of the modeling environment have to
be re-created or adapted.

7http://biomedgt.org

98

http://biomedgt.org

UML has avoided these problems by promoting the use of profiles. Indeed, the profile
mechanism has been a key enabler for the success and widespread use of UML by providing
a lightweight, language-inherent extension mechanism [Sel07]. Many UML tools allow the
specification and usage of user-defined profiles and are often shipped with various pre-defined
UML Profiles. Induced by their widespread adoption, several UML Profiles have even been
standardized by the OMG8. In the last decade, many debates9 on pros and cons of creating new
modeling languages either by defining metamodels from scratch (with the additional burdens of
creating a specific modeling environment and handling their evolution) or by extending the UML
metamodel with UML Profiles (which provide only a limited language adaptation mechanism)
have been going on.

However, in this chapter we propose a different solution to combine the best of both breeds.
We advocate for adapting the UML Profiles concept as an annotation mechanism for existing
DSMLs. We believe the usage of profiles in the realm of DSMLs brings several benefits:
(1) Lightweight language extension. One of the major advantages of UML Profiles is the ability
to systematically introduce further language elements without having to re-create the whole
modeling environment such as editors, transformations, and model APIs.
(2) Dynamic model extension. In contrast to direct metamodel extensions, also already existing
models may be dynamically extended by additional profile information without recreating the
extended model elements. One model element may be further annotated with several stereotypes
(even contained in different profiles) at the same time which is equivalent to the model element
having multiple types [AK07]. Furthermore, the additional information introduced by the profile
application is kept separated from the model and, therefore, does not pollute the actual model
instances.
(3) Preventing metamodel pollution. Information not coming from the modeling domain, can
be represented by additional profiles without polluting the actual domain metamodels. Consider
for instance annotating the results of a model review (as known from code reviewing) which
shall be attached to the reviewed domain models. Metaclasses concerning model reviews do
not particularly relate to the domain and, therefore, should not be introduced in the domain
metamodels. Using specific profiles instead helps to separate such concerns from the domain
metamodel and keeps the metamodel concise and consequently, the language complexity small.
(4) Model-based representation. Additional information, introduced to the models by profile ap-
plications, is accessible and processable like ordinary model information. Consequently, model
engineers may reuse familiar model engineering technologies to process profile applications.
Due to their model-based representation, profile applications may also be validated against the
profile definition to ensure their consistency as it is known from metamodel/model conformance.

Until now, the notion of profiles has not been adopted in current metamodeling tools. Thus,
the contribution behind the EMF Profiles project is to adapt the notion of UML profiles to
arbitrary modeling languages residing in the Eclipse Modeling Framework10 (EMF) which is
currently one of the most popular metamodeling frameworks. Thanks to this, existing modeling

8http://www.omg.org/technology/documents/profile_catalog.htm
9Consider for instance the panel discussion “A DSL or UML Profile. Which would you use?” at MoDELS’05

(http://www.cs.colostate.edu/models05/panels.html)
10http://www.eclipse.org/modeling/emf

99

http://www.omg.org/technology/documents/profile_catalog.htm
http://www.cs.colostate.edu/models05/panels.html
http://www.eclipse.org/modeling/emf

languages may easily be extended by profiles in the same way as it is known from UML tools.
Besides this, we propose two novel techniques to enable the systematic reuse of profile defini-
tions across different modeling languages. First, we introduce generic profiles which are created
independently of the modeling language in the first place and may be bound later to several
modeling languages. Second, we propose meta profiles for immediately reusing them for all
modeling languages. Finally, we present how our prototype called EMF Profiles is integrated in
EMF and how it is used for the Conflict-tolerant Merge.

6.3.1 From UML Profiles to EMF Profiles

In this section, we present the standard profile mechanism (as known from UML) for EMF.
Firstly, we disclose our design principles. Secondly, we discuss how the profile mechanism
may be integrated in EMF in a way that profiles can seamlessly be used within EMF following
the previous design principles. Finally, we show how profiles as well as their applications are
represented based on an example.

Design Principles

With EMF Profiles we aim at realizing the following five design principles. Firstly, annotating a
model should be as lightweight as possible; hence, no adaptation of existing metamodels should
be required. Secondly, we aim at avoiding to pollute existing metamodels with concerns not
directly related to the modeling domain. Thirdly, we aim at separating annotations from the base
model to allow importing only those annotations which are of current interest for a particular
modeler in a particular situation. Fourthly, the annotations shall be conforming to a formal
and well-known specification such as it is known from metamodel/model conformance. Finally,
users should be enabled to intuitively attach annotations using environments and editors they are
familiar with. Consequently, annotations shall be created either on top of the concrete (graphical)
syntax of a model or on top of the abstract syntax using e.g., generic tree-based editors.

Integrating Profiles in the EMF Metalevel Architecture

The profile concept is foreseen as an integral part of the UML specification. Therefore, the UML
package Profiles, which constitutes the language for specifying UML Profiles, resides, in terms
of the metamodeling stack [K0̈6], at the meta-metalevel M3 [Obj07] as depicted in Figure 6.3.
A specific profile (aProfile), as an instance of the meta-metapackage Profile, is located at the
metalevel M2 and, therefore, resides on the same level as the UML metamodel itself. Thus,
modelers may create profile applications (aProfileApplication on M1) by instantiating aProfile
just like any other concept in the UML metamodel.

To embed the profile mechanism into EMF, a language (equivalent to the package Profiles
in Figure 6.3) for specifying profiles is needed as a first ingredient. This is easily achieved
by creating an Ecore-based metamodel which is referred to as Profile MM (cf. column Profile
Definition in Figure 6.4). Specific profiles, containing stereotypes and tagged values, may now
be modeled by creating instances, referred to as aProfile, of this profile metamodel. Once a
specific profile is at hand, users should now be enabled to apply this profile to arbitrary models

100

M
3

UML
Core Profiles

«import»

M
2 UML aProfile

«instanceOf» «instanceOf»

«instanceOf» «instanceOf»

«extend»

M
1 aUML

Model
aProfile

Application
«extend»

Figure 6.3: UML Architecture

by creating stereotype applications containing concrete values for tagged values defined in the
stereotypes. In UML, a stereotype application is an instance—residing on M1—of a stereotype
specification in M2 (cf. Figure 6.3).

Unfortunately, in contrast to the UML architecture, in EMF no profile support exists in M3.
The level M3 in EMF is constituted only by the metamodeling language Ecore (an implemen-
tation of MOF [Obj04]) which has no foreseen profile support. Extending Ecore on level M3

to achieve the same instantiation capabilities for profiles as in UML is not a desirable option,
because this would demand for an extensive intervention with the current implementation of the
standard EMF framework. Therefore, in EMF, our profile metamodel (ProfileMM in column
Profile Definition of Figure 6.4) is defined at level M2 and the user-defined profiles (aProfile)
reside onM1. As an unfortunate result, a defined stereotype in aProfile cannot be instantiated for
representing stereotype applications (as in UML), because aProfile is already located onM1 and
EMF does not allow for instantiating an instance of a metamodel, i.e., EMF does not directly
support multilevel modeling [AK01].

() M t l l Lifti (b) M t l l Lifti

M
3

(a) Metalevel Lifting
by Transformation Profile Definition (b) Metalevel Lifting

by Inheritance

Ecore
«instanceOf»

«instanceOf»

M
2 aProfile as MM

«instanceOf»

Profile MM
«transformedTo»

«instanceOf»

«inheritsFrom»

M
1

aProfile aProfile
Application

aProfile
Application

«instanceOf»

Figure 6.4: EMF Profile Architecture Strategies

101

Profile

iconPath : EString
Stereotype

Profile

Ecore

abstract: EBoolean
eSuperTypes : EClass
…

EClass
nsURI : EString
eClassifiers : EClassifier
…

EPackage

base

1

base

0..*

Standard EMF Profile

Generic Profile Meta Profile

isMeta : EBoolean
Stereotype

EClass

GenericType

<<merge>> <<merge>>

Complete EMF Profile <<merge>><<merge>>

expr : OCLExpression
Condition

0..*
isMeta : EBoolean

Profile

ProfileApplication

ProfileApplication

0..*

appliedTo : EObject
StereotypeApplication

Figure 6.5: EMF Profile Metamodel

Therefore, more sophisticated techniques have to be found for representing stereotype ap-
plications in EMF. In particular, we identified two strategies for lifting aProfile from M1 to M2

in order to make it instantiable and directly applicable to EMF models.
(1) Metalevel Lifting By Transformation. The first strategy is to apply a model-to-model
transformation which generates a metamodel on M2, corresponding to the specified profile on
M1. The generated metamodel, denoted as aProfile as MM in the first column of Figure 6.4,
is established by implementing a mapping from Profile concepts to Ecore concepts. In particu-
lar, the transformation generates for each Stereotype a corresponding EClass and for each
TaggedValue a corresponding EStructuralFeature. The resulting metamodel is a di-
rect instance of Ecore residing on M2 and therefore, it can be instantiated to represent profile
applications.
(2) Metalevel Lifting By Inheritance. The second strategy allows to directly instantiate profiles
by inheriting instantiation capabilities (cf. «inheritsFrom» in the right column of Figure 6.4).
In EMF, only instances of the meta-metaclass EClass residing on M3 (e.g., the metaclass
Stereotype) are instantiable to obtain an object on M1 (e.g., a specific stereotype). Con-
sequently, to allow for the direct instantiation of a defined stereotype on M1, we specified the
metaclass Stereotype in Profile MM to be a subclass of the meta-metaclass EClass. By
this, a stereotype inherits EMF’s capability to be instantiated and thus, a stereotype application

102

may be represented by a direct instance of a specific stereotype.

We decided to apply the second strategy, because of the advantage of using only one artifact for
both, (1) defining the profile and (2) for its instantiation. This is possible because by this strategy,
a profile is now a dual-faceted entity regarding the metalevels which is especially obvious when
considering the horizontal «instanceOf » relationship between aProfile and aProfileApplication
(cf. Figure 6.4). On the one hand, a profile is located on M1 when considering it as an instance
of the profile metamodel (ProfileMM on M2)). On the other hand, the stereotypes contained in
the profile are indirect instances of EClass and are therefore instantiable which means that a
profile may also be situated on M2. Especially, when taking the latter view-point, the horizon-
tal «instanceOf » relationship between profile and profile application shown in Figure 6.4 will
become the expected vertical relationship as in the UML metalevel architecture.

6.3.2 The EMF Profile Metamodel

The metamodel of the profile definition language is illustrated in package Standard EMF Profile
of Figure 6.5. As a positive side effect of choosing the metalevel lifting strategy 2, the class
Stereotype may contain, as being a specialization of EClass, also EAttributes and
EReferences, which are reused to represent tagged values. Thus, no dedicated metaclasses
have to be introduced to represent the concept of tagged values. Please note that stereotype
applications also require having a reference to the model elements to which they are applied.
Therefore, we introduced an additional metamodel package, namely ProfileApplication in Fig-
ure 6.5. This metamodel package contains a class StereotypeApplication with a refer-
ence to arbitrary EObjects named appliedTo. Whenever, a profile (instance of the Profile
package) is saved, we automatically add StereotypeApplication as a superclass to each
specified stereotype. To recall, this is possible because each Stereotype is an EClasswhich
may have superclasses. Being a subclass of StereotypeApplication, stereotypes inherit
the reference appliedTo automatically. In the following subsection, we further elaborate on
the EMF Profile metamodel by providing a concrete example. Please note that the so far unmen-
tioned packages Generic Profile and Meta Profile in Figure 6.5 are discussed in Section 6.3.3.

Applying the EMF Profile Metamodel

To clarify how profiles and profile applications are represented from a technical point of view, we
make use of a small example. In particular, a simplified version of the well-known EJB profile
is applied to an Entity-Relationship (ER) model [Che76]. Figure 6.6(a) depicts an excerpt of the
ER metamodel and the EJB profile. The EJB profile contains the stereotypes SessionBean
and EntityBean, which both extend the metaclass Entity of the ER metamodel. Besides,
the profile introduces the stereotype IDAttribute extending the metaclass Attribute to
indicate the ID of an Entity.

As already mentioned in the previous subsection, internally, we use the ProfileApplica-
tion metamodel (cf. Figure 6.6(b)) to weave the necessary concepts for a profile’s applica-
tion into a profile model. In particular, the class ProfileApplication acts as root el-
ement for all StereotypeApplications in a profile application model. Furthermore, all

103

EJBProfileApplication

<<stereotype>>
EntityBean

isUserManaged : Boolean

<<metaclass>>>
ER::Entity

<<stereotype>>
IDAttribute

<<metaclass>>
ER::Attribute

<<stereotype>>
SessionBean

isStateful : Boolean

<<profile>> EJB

: ProfileApplication

: EntityBean
isUserManaged : true

appliedTo
1 : Entity

appliedTo

: SessionBean
isStateful : true

: IDAttribute

2 : Attribute

appliedTo

: IDAttribute

appliedTo

BaseModel

(a)

(c)

ER

<<import>>

(b)

ProfileApplication
0..* appliedTo : EObject

StereotypeApplication
stereotypeApplications

<<stereotype>>
EntityBean

<<stereotype>>
IDAttribute

<<stereotype>>
SessionBean

<<profile>> EJB

StereotypeApplication

<<merge>>

Entity Attribute0..*

ProfileApplication

<<instanceOf>>

<<instanceOf>>

name : Affiliationname : Person

name : String name : String

3 : Attribute
name : RegNo

4 : Entity
name :
PersonSearchService

5 : Attribute
name : URI

appliedTo

Figure 6.6: EMF Profiles by Example: (a) Profile definition user-view, (b) Internal profile rep-
resentation, (c) Profile application

Stereotypes inherit the reference appliedTo from StereotypeApplication. When
instantiating (i.e., applying) the EJB profile, a root element of the type ProfileApplication
is created which may contain stereotype applications as depicted in Figure 6.6(c). For determin-
ing the applicability of a stereotype s to a particular model element m, it is checked whether
the model element’s metaclass (m.eClass()) is included in the list of metaclasses that are
extended by the stereotype (s.getBase()). If so, the stereotype s is applicable to model ele-
ment m. Each stereotype application is represented as a direct instance of the respective stereo-
type (e.g., «EntityBean») and refers to the model element in the BaseModel to which it is applied
by the reference appliedTo (inherited from the class StereotypeApplication). Please
note that the EJB profile application resides in a separated model file and not in the original ER
model denoted with BaseModel in Figure 6.6.

104

6.3.3 Going Beyond UML Profiles

Originally, the profile mechanism has been specifically developed for UML. Hence, profiles
may only extend the UML metamodel. In the previous section, we showed how this lightweight
extension mechanism is ported to the realm of DSMLs. However, in this realm a whole pantheon
of different DSMLs exists which are often concurrently employed in a single project. As a result,
the need arises to reuse existing profiles and apply them to several DSMLs. Thus, we introduce
two dedicated reuse mechanisms for two different scenarios:
(1) Metamodel-aware Profile Reuse. The first use case scenario is when users aim to apply a
profile to a specific set of DSMLs. Being aware of these specific DSMLs’ metamodels, the user
wants to take control of the applicability of stereotypes to a manually selected set of metaclasses.
(2) Metamodel-agnostic Profile Reuse. In the second use case scenario, users intend to use a
profile for all DSMLs without the need for further constraining the applicability of stereotypes.
Therefore, a stereotype shall—agnostic of the DSMLs’ metamodels—be applicable to every
existing model element.

To tackle scenario (1), we introduce generic profiles allowing to specify stereotypes that ex-
tend so-called generic types. These generic types are independent of a concrete metamodel and
may be bound to specific metaclasses in order to reuse the generic profile for several metamod-
els. For tackling scenario (2), we propose meta profiles which may immediately be applied to
all DSMLs implemented by an Ecore-based metamodel.

Generic Profiles

The goal behind generic profiles is to reuse a profile specification for several “user-selected”
DSMLs. Therefore, a profile should not depend on a specific metamodel. Inspired by the con-
cepts of generic programming [MS89], we use the notion of so-called generic types instead. In
particular, stereotypes within a generic profile do not extend concrete metaclasses as presented
in the previous section, they extend generic types instead. These generic types act as placehold-
ers for concrete metaclasses in the future. Once, a user decides to use a generic profile for a
specific DSML, a binding is created which connects generic types to corresponding concrete
metaclasses contained in the DSML’s metamodel. For one generic profile there might exist an
arbitrary number of such bindings. Consequently, this allows for reusing one generic profile for
several DSMLs at the same time. Furthermore, it enables users to first focus on the development
of the profile and reason about the relationship to arbitrary DSMLs in a second step.

As example, consider the same EJB profile which has been specified in terms of a concrete
profile in Section 6.3.1. Now, we aim at specifying the same profile in a generic way to enable
its use also for other DSMLs. In particular, we show how the EJB profile may first be speci-
fied generically and we subsequently illustrate the binding of this generic profile again for ER
models. We get the same modeling expressiveness as before but now in a way that allows us
to reuse the EJB profile when using other data modeling languages. The original EJB profile
for ER extends two metaclasses, namely the stereotypes SessionBean and EntityBean
extend the metaclass Entity, and the stereotype IDAttribute extends Attributes (cf.
Figure 6.6). To turn this concrete profile into a generic one, we now use two generic types,

105

name : EString

T Container

<<stereotype>>
EntityBean

isUserManaged : EBoolean

<<stereotype>>
IDAttribute

<<stereotype>>
SessionBean

isStateful : EBoolean

T Property

<<metaclass>>
EClass

<<metaclass>>
EAttribute

Generic Profiles Example

self.eAttributes
->exists(a|

a.name="name" and
a.eType =
EString)

<<profile>> EJB
Container, Property

eAttributes

Ecore

«bind» <Container->EClass, Property->EAttribute>

name : EString

<<generictype>>
Container

<<stereotype>>
EntityBean

isUserManaged : EBoolean

<<stereotype>>
IDAttribute

<<stereotype>>
SessionBean

isStateful : EBoolean

<<generictype>>
Property

<<profile>> EJB
Container, Property

ER

«bind» <Container->Entity, Property->Attribute>

self.eAttributes
->exists(a|

a.name="name")

Entity Attribute0..*

name : String name : String

Figure 6.7: Generic EJB Profile and its Binding to the ER metamodel

named Container and Property in Figure 6.7, instead of the two concrete types Entity
and Attribute.

Before we describe how generic profiles may be bound to concrete DSMLs, we first dis-
cuss conditions constraining such a binding. When developing a concrete profile, the extended
DSML is known and consequently only suitable metaclasses are selected to be extended by the
respective stereotypes. For instance, in the concrete EJB profile for ER, the class Entity may
be annotated with the stereotype EntityBean. For marking the Entity’s ID attribute, the
EJB profile introduces the stereotype IDAttribute which extends the class Attributes.
This is reasonable, because we are aware of the fact that instances of the class Entity contain
instances of the classAttribute in the ER metamodel, otherwise it obviously would not make
any sense to extend the metaclass Attribute in this matter. However, generic profiles are de-
veloped without a concrete DSML in mind. Hence, profile designers possibly need to specify
conditions enforcing certain characteristics to be fulfilled by the (up to this time) unknown meta-
classes to which a generic type might be bound in future.

Therefore, EMF Profiles allows to attach conditions to generic profiles. Such conditions are
specified by simply adding references or attributes to generic types. This is possible because, as a
subclass of EClass, generic types may contain instances of EReference and EAttribute.
By adding such a reference or attribute in a generic type, a profile designer states that there must
be a corresponding reference or attribute to the metaclass which is bound to the generic type.
Internally, these references and attributes are translated to OCL constraints which are evaluated
in the context of the metaclass a user intends to bind.

Furthermore, the profile designer must specify which meta-features, such as the cardinality
of the reference or attribute in a generic type, shall be enforced. In our example in Figure 6.7,
the profile designer specified a reference from the generic type Container to Property as
well as an attribute name in Property. To enforce this, the OCL constraints in Listing 6.1 are
generated. These constraints must be satisfied by each metamodel on which we want to apply
this profile on.

106

Listing 6.1: OCL Constraints generated for Container and Property
1 c o n t e x t C o n t a i n e r inv :
2 s e l f . e R e f e r e n c e s −> e x i s t s (r | r . eType = P r o p e r t y) }
3 c o n t e x t P r o p e r t y inv :
4 s e l f . e A t t r i b u t e s −> e x i s t s (a | a . name = " name " and a . eType = E S t r i n g)

Once the stereotypes and generic types are created, the profile is ready to be bound to
concrete DSMLs. This is simply achieved by selecting suitable metaclasses of a DSML for
each generic type. In our example depicted in Figure 6.7, the generic types Container and
Property are bound to the metaclasses in the ER metamodel Entity and Attribute, re-
spectively, in order to allow the application of the generic EJB profile to ER models. When the
binding is established, it can be persisted in two different ways. The first option is to generate a
concrete profile out of the generic profile for a specific binding. This concrete profile may then
be applied like a normal EMF profile as discussed in Section 6.3.1. Although this seems to be
the most straightforward approach, the explicit trace between the original generic profile and the
generated concrete profile is lost. Therefore, the second option is to persist the binding directly
in the generic profile definition. Whenever a user intends to apply a generic profile to a concrete
DSML, the EMF Profile framework searches for a persisted binding for the concrete DSML’s
metaclasses within the profile definition. If a binding exists, the user may start to apply the
profile using this persisted binding. Otherwise, the user is requested to specify a new binding.

To support generic profiles, we extended the EMF Profile metamodel by the class
GenericType (cf. Fig 6.5). Generic types inherit from EClass and may contain
Conditions representing more complex constraints going beyond the aforementioned en-
forced references and attributes for bound metaclasses.

Meta Profiles

With meta profiles we tackle a second use case for reusing profiles for more than one DSML.
Instead of supporting only a manually selected number of DSMLs, with meta profiles we aim
at reusing a profile for all DSMLs without the need of defining an explicit extension for each
DSML. This is particularly practical for profiles enabling general annotations which are suitable
for every DSML. In other words, stereotypes within a meta profile must be agnostic of a specific
metamodel and shall be applicable to every model element irrespectively of its metaclass, i.e.,
its type.

In EMF, every model element is an instance of a metaclass. Each metaclass is again an
instance of Ecore’s EClass. Therefore, meta-stereotypes in a meta profile do not extend meta-
classes directly. Instead, they are configured to be applicable to all instances of instances of
EClass and, consequently, to every model element (as an instance of an instance of EClass).
This approach is inspired by the concept of potency known from multilevel metamodeling [AK01].
Using the notion of potency, one may control on which metamodeling level a model element may
be instantiated. By default, the potency is 1 which indicates that a model element may be instan-
tiated in the next lower metamodeling level. By a potency p ≥ 1 on a metamodeling level n, a
model element may be configured to be also instantiable on the level n − p instead of the next
lower level only. In terms of this notion of potency, a meta-stereotype has a potency of p = 2.

107

<<meta-stereotype>>
ReviewDecision

reviewer: EString
reviewDate. EDate

Metaprofile

<<meta-profile>> ModelReview

<<meta-metaclass>>
EClass

<<meta-stereotype>>
Declined

reason: EString

<<meta-stereotype>>
Approved

<<meta-stereotype>>
Rework

assignedTo: EString
reason: EString

Application to a simplified
Event-driven Process Chain Model

: Approved
reviewer : "Homer"
reviewDate : 23/06

: Event
name : "order received"

: Function
name : "check order"

: LogicalConnector
type : OR

: Rework
reviewer : "Homer"
assignedTo: "Bart"
reason : "Change to XOR"

appliedTo
appliedTo

BaseModel

: Approved
reviewer : "Homer"
reviewDate : 23/06

: UseCase
name : "Order Goods"

: Include

: UseCase
name : "Cancel Order"

: Declined
reviewer : "Homer"
reason : "Every order canceled?"

appliedTo appliedTo

BaseModel

Application to a simplified
Use-Case Diagram

M2

M1

Figure 6.8: Meta Profile Example: The Model Review Profile

Meta profiles are created just like normal profiles. However, a new attribute, namely isMeta,
is introduced to the profile metamodel for indicating whether a stereotype is a meta-stereotype
(cf. Figure 6.5). The Boolean value of this attribute is regarded by EMF Profiles when evalu-
ating the applicability of stereotypes. In particular, if isMeta is true, a stereotype is always
considered to be applicable to every model element, irrespectively of its metaclass.

Our example for presenting meta profiles is a model review profile (cf. Figure 6.8). The goal
of this profile is to allow for annotating the results of a systematic examination of a model. Since
every model irrespectively of its metamodel can be subject to a review, this profile is suitable for
every DSML. For simplicity, we just introduce three stereotypes in the review profile, namely
Approved, Rework, and Declined, which shall be applicable to every kind of element in
every DSML. Therefore, these three stereotypes extend the class EClass and are marked as
meta-stereotypes (indicated by meta-stereotype in Figure 6.8). By this, the applicability
of these stereotypes is checked by comparing the meta-metatypes of model elements with the
metaclasses extended by the stereotypes. As a result, the metaprofile in our example is applicable
to every element in every DSML.

In the example shown in Figure 6.8, we depicted the Object Diagram of two separate appli-
cations of the same metaprofile to two models conforming to different metamodels. In the first
Object Diagram, an Event and one LogicalConnector within an Event-driven Process
Chain (EPC) model have been annotated with the meta-stereotype Approved and Rework,
respectively. This is possible because both instances in the EPC model are instances of a meta-

108

class which is again an instance of EClass. The same meta profile may be also applied to any
other modeling language. Of course, also UML itself is supported by EMF Profiles. There-
fore, the model review profile may be also applied to, for example, a UML Use Case Diagram
(cf. Figure 6.8). In this figure, the stereotype Approved has been assigned to the UseCase
named “Order Goods” and the stereotype Declined has been applied to the Include
relationship.

Summary

Both techniques for enabling the reuse of profiles for several DSMLs have their advantages and
disadvantages depending on the intended use case. Meta profiles are immediately applicable to
all DSMLs without further user intervention. However, with meta profiles no means for restrict-
ing the use of such profiles for concrete DSMLs exist. If this is required, generic profiles are
the better choice. When specifying generic profiles, explicit conditions may be used to control
a profile’s usage for concrete DSMLs. On the downside, this can only be done with additional
efforts for specifying such conditions in the generic profile and creating manual bindings from
generic profiles to concrete DSMLs.

6.3.4 A Tour on EMF Profiles

In this section, we present our prototypical implementation of EMF Profiles which is realized
as Eclipse plug-in on top of the Eclipse Modeling Framework and Graphical Modeling Frame-
work11 (GMF). Please note that we refrained from modifying any artifact residing in EMF or
GMF. EMF Profiles only uses well-defined extension points provided by these frameworks for
realizing profile support within the EMF ecosystem. For a screencast of EMF Profiles, we kindly
refer to our project homepage12.

Profile Definition. To define a profile, modelers may apply either the tree editor automat-
ically generated from the Profile Metamodel or our graphical EMF Profiles Editor, which is
realized with GMF (cf. Figure 6.9 for a screenshot). The graphical notation used in this editor
takes its cue from the UML Profiles syntax.

With these editors, modelers may easily create stereotypes containing tagged values and set
up inheritance relationships between stereotypes and extension relationships to metaclasses of
arbitrary DSML’s metamodels. Metaclasses may be imported by a custom popup menu entries
when right-clicking the canvas of the editor and are visualized using the graphical notation from
Ecore.

Profile Application. Defined profiles may also be applied using any EMF-generated tree-
based editor or any GMF-based diagramm editor. The screenshot depicted in Figure 6.10, shows
the afore presented EJB profile applied to an example Ecore diagram. To apply profiles, our
plugin contributes a popup menu entry (cf. Figure 6.10 (1)) which appears whenever a model el-
ement is right-clicked. By this menu, users may apply defined profiles (i.e., creating new profile
application) or import already existing profile applications. Once a profile application is created

11http://www.eclipse.org/gmf
12http://www.modelversioning.org/emf-profiles

109

http://www.eclipse.org/gmf
http://www.modelversioning.org/emf-profiles

Figure 6.9: EJB Profile Defined on Ecore with Graphical EMF Profiles Editor

or imported, stereotypes may be applied using the same popup menu. When a stereotype is ap-
plied, the defined stereotype icon is attached to the model element (cf. Figure 6.10 (2)). For this
purpose we used the GMF Decoration Service, which allows to annotate any existing shapes by
adding an image at a pre-defined location. Furthermore, we created a Profile Applications view,
which shows all applied stereotypes of the currently selected model element (cf. Figure 6.10 (3)).
The currently selected model element is retrieved using the ISelectionProvider interface
which is implemented by every EMF or GMF-based editor. For assigning the tagged values of
an applied stereotype, we leverage the PropertyView (cf. Figure 6.10 (4)) which generically
derives all defined tagged values from the loaded profile‘s metamodel. The separate file resource
which contains the profile applications is added to the EditingDomain of the modeling ed-
itor. Hence, as soon as the model is saved, all profile applications are saved as well. Finally,
profile applications can be unloaded and reloaded at any time without loosing the application
information.

6.4 Merging Models in AMOR

We adapted the notion of UML Profiles to the realm of DSMLs residing in the Eclipse Mod-
eling Framework. Using our prototype EMF Profiles, DSMLs may be easily extended in a
non-invasive manner by defining profiles in the same way as done in UML tools. Moreover, we

110

Figure 6.10: EJB Profile Applied to Ecore Instance

introduced two novel mechanisms, namely Generic Profiles and Meta Profiles, for reusing de-
fined profiles with several DSMLs. Although, the presented approach has been presented based
on EMF, the general procedure is also applicable for other metamodeling frameworks which
comprise a similar metalevel architecture as EMF. Furthermore, the presented metalevel lifting
strategies may also be adopted for other scenarios in which model elements on M1 need to be
instantiated.

We are applying EMF Profiles in the context of our model versioning system AMOR to sup-
port the Conflict-tolerant Merge as presented in this thesis. We use EMF Profiles for marking
conflicts caused by concurrent changes of the same model artifact using a conflict profile and for
adding metadata to the involved model elements. The profile has been defined as meta profile,
which is generically applicable, i.e., independent of the used modeling languages. Furthermore,
it is based on the conflict annotation model as depicted in Figure 5.11 and the resolution model
as depicted in Figure 5.13. Coming back to the running example introduced in Chapter 5, a
screenshot of Eclipse consisting of the merged model is depicted in Figure 6.11, in which the
parallel versions of Harry, Sally, and Joe are merged into one version. The occurred conflicts are
automatically annotated using EMF Profiles and are visualized with dedicated conflict icons. As
already mentioned in the previous section, the icons can be defined for each stereotype in the
profile model. If a user selects an annotated model element, the applied conflict annotations are
presented in the “Profiles Applications” view. In the screenshot, the Update/Update conflict ap-
plied on the attribute bday of the class employee is selected. At the bottom of this screenshot,

111

Figure 6.11: Conflict-tolerant Merge as Eclipse Plug-in

the tagged values of this stereotype are presented in terms of properties. The users may now see
that Harry and Joe have concurrently renamed the attribute to birthday and doB, respectively.
Both users are also assigned to this conflict and have chosen to prioritize the update of Harry.
Thus, the status of the conflict is set on resolution proposed.

Using the EMF Profiles API for Annotating Conflicts

In contrast to the EJB Profile example presented in the section before, the stereotypes defined in
the conflict profile are automatically applied by the CTAnnotator of the Conflict-tolerant Merge
using the API of EMF Profiles. EMF Profiles is shipped with a dedicated API, alongside the
graphical user interfaces presented above to ease the programmatic application of profiles. In
the following, we briefly present the usage of this API in terms of an example. In this example,
we show how the Conflict-tolerant Merge annotates an Update/Update conflict after applying
the dedicated merge rule presented in Section 5.2.2. The corresponding Java code is depicted in
Listing 6.2. In line 2 of this listing, the resource containing the model to be annotated is loaded.
Before we may apply the conflict profile to specific conflicts of the conflict report, we first have
to load the resource containing the corresponding profile definition (cf. line 8) and retrieve the

112

instance of Profile representing the conflict profile from this resource (cf. line 9). To ease the
application of stereotypes, EMF Profiles provides the interface IProfileFacade and an im-
plementation of this interface called ProfileFacadeImpl, which is instantiated in line 15.
Next, we specify a resource to which the profile application shall be saved and load the profile
to be applied using the facade (cf. line 16–17). Please note that users may load multiple profiles
to be applied at the same time with one profile facade instance. In the next step, we assign
stereotypes to variables. In our case, the stereotype “UpdateUpdate” of the conflict profile is
assigned to updUpdStereo (cf. line 20). Now, we are set up to apply stereotypes to conflicts.
Therefore, the conflict report is iterated through and when an instance of an UpdateUpdate
conflict is found (cf. line 20-22), we may apply a dedicated stereotype and its tagged values
as follows. Using the method isApplicable(updateUpdate, originElement) of
the facade, we may check whether the stereotype UpdateUpdate is applicable to the speci-
fied model element in the origin model (cf. line 30). If this is the case, we may use the facade
to apply the stereotype using the method apply(updateUpdate, originElement) as
depicted in line 31. This method returns the created instance of stereotype application called
application. The facade may also be used to retrieve all features (i.e., tagged values) of a
stereotype (cf. line 36) as well as to assign specific values for them (cf. line 43). In our case,
the update value of one parallel version (e.g., of User A) is assigned to a tagged value of the
Update/Update stereotype.

In [PWWZ11], we proposed conflict-tolerant model versioning for supporting collaboration
in cross-organizational modeling. This use case scenario is presented in the following.

Use Case: Collaborative Business Document Modeling

Business documents, also serialized in XMI like software models, are typically defined through
Standard Developing Organizations (SDOs) such as the United Nations Centre for Trade Facili-
tation and eBusiness (UN/CEFACT). In today’s highly dynamic environment with ever-changing
market demands, SDOs are confronted with the need to constantly evolve their standardized
business documents based on the needs of business partners utilizing these documents. However,
the business document development process between SDOs and business partners is currently
lacking efficient collaborative support that is described in more detail in [PWWZ11]. Thus, we
extended the conflict-tolerant merge approach by the means of a reference model supporting
hierarchical collaborative cross-organizational business document modeling, and adapted the
conflict resolution model depicted in Figure 5.13, p. 84 to find a consolidated version of a new
business document model.

(i) Reference Model for Collaborative Cross-organizational Modeling. Our reference model
is designed for collaborative scenarios meeting the following two characteristics, which are pre-
scribed by the UN/CEFACT. First, the reference model addresses a cross-organizational aspect
meaning that the different stakeholders involved in the collaborative process are spread across
different organizations and institutions. Second, the stakeholders form a hierarchy, i.e., one
stakeholder may overrule decisions of another stakeholder involved in the same development
process. Based on these needs, we define a generic reference model supporting hierarchical
collaborative cross-organizational modeling, as illustrated in Figure 6.12. The reference model

113

Listing 6.2: Code Excerpt for Annotating Update/Update Conflicts
1 / / Load t h e model t o be a n n o t a t e d
2 Resource modelResource = . . . ;
3
4 / / D e t e c t c o n f l i c t s
5 C o n f l i c t R e p o r t c o n f l i c t R e p o r t = . . . ;
6
7 / / Load t h e p r o f i l e
8 Resource p r o f i l e R e s o u r c e = . . . ;
9 P r o f i l e c o n f l i c t P r o f i l e = (P r o f i l e) p r o f i l e R e s o u r c e . g e t C o n t e n t s () . g e t (0) ;

10
11 / / Cr ea t e t h e r e s o u r c e t h a t c o n t a i n s t h e p r o f i l e a p p l i c a t i o n
12 Resource p r o f i l e A p p l i c a t i o n R e s o u r c e = . . . ;
13
14 / / I n i t i a l i z e t h e p r o f i l e f a c a d e
15 I P r o f i l e F a c a d e p r o f i l e F a c a d e = new P r o f i l e F a c a d e I m p l () ;
16 p r o f i l e F a c a d e . s e t P r o f i l e A p p l i c a t i o n R e s o u r c e (p r o f i l e A p p l i c a t i o n R e s o u r c e) ;
17 p r o f i l e F a c a d e . l o a d P r o f i l e (c o n f l i c t P r o f i l e) ;
18
19 / / A s s i g n s t e r e o t y p e s t o v a r i a b l e s
20 S t e r e o t y p e updUpdStereo = p r o f i l e . g e t S t e r e o t y p e (" UpdateUpdate ") ;
21 . . .
22
23 ELis t < C o n f l i c t > c o n f l i c t s = c o n f l i c t R e p o r t . g e t C o n f l i c t s () ;
24 f o r (C o n f l i c t c o n f l i c t : c o n f l i c t s) {
25 i f (c o n f l i c t i n s t a n c e o f UpdateUpdate) {
26 UpdateUpdate u p d a t e U p d a t e = (UpdateUpdate) c o n f l i c t ;
27 D i f f E l e m e n t change = u p d a t e U p d a t e . g e t L e f t C h a n g e () ;
28 EObjec t o r i g i n E l e m e n t = D i f f U t i l . g e t L e f t E l e m e n t (change) ;
29
30 / / Apply s t e r e o t y p e
31 S t e r e o t y p e u p d a t e U p d a t e = c o n f l i c t P r o f i l e . g e t S t e r e o t y p e (" UpdateUpdate ") ;
32 S t e r e o t y p e A p p l i c a t i o n a p p l i c a t i o n = n u l l ;
33 i f (p r o f i l e F a c a d e . i s A p p l i c a b l e (upda teUpda te , o r i g i n E l e m e n t)) {
34 a p p l i c a t i o n = p r o f i l e F a c a d e . a p p l y (upda teUpda te , o r i g i n E l e m e n t) ;
35 }
36
37 / / S e t t a gg ed v a l u e s
38 E S t r u c t u r a l F e a t u r e updUpdFea ture = D i f f U t i l . g e t U p d a t e d F e a t u r e (change) ;
39 E A t t r i b u t e l e f t V a l u e F e a t u r e = updUpdStereo . g e t E A t t r i b u t e s () . g e t (0) ;
40 / / Value upda ted by User_A
41 S t r i n g updValue = D i f f U t i l . g e t L e f t E l e m e n t (change)
42 . eGet (updUpdFea ture) . t o S t r i n g () ;
43 / / S e t t a gg ed v a l u e f o r s a v i n g t h e up da t e v a l u e
44 p r o f i l e F a c a d e . s e t S t e r e o t y p e A p p l i c a t i o n F e a t u r e V a l u e (a p p l i c a t i o n ,
45 l e f t V a l u e F e a t u r e , updValue) ;
46 . . .
47
48 }
49 }

114

Facilitator

Re
vi

sio
n

Ph
as

e
Co

ns
ol

id
at

io
n

Ph
as

e
Review Changes

Accept Change Reject Change

no

yes

Apply
Consolidated

Changes

Re
le

as
e

Ph
as

e

Release

Participant

Propose Changes

Variability

Peer Review

Conflict
Resolution by

Delegation

Conflict
Resolution by
Enforcement

no yes

Activity Legend:

Conflict
Resolution by

Voting

Conflict?

More
Changes?

1

2

3c 3a 3b

4a

4b

5

4c

6

Figure 6.12: Reference Model for Collaborative Cross-organizational Modeling

describes a generic workflow as well as offers variability aspects for customizing the workflow
for a particular collaboration scenario. Generally speaking, the workflow comprises three differ-
ent phases, namely the Revision phase, the Consolidation phase, as well as the Release phase.
Furthermore, two different stakeholders are involved in the different phases whereas each stake-
holder takes on a particular role. The roles defined in our reference model are Participant as
well as Facilitator, forming a hierarchical relationship. In other words, the Participant may pro-
pose changes to a particular model and the Facilitator reviews the proposed changes and decides
whether the changes are applied to the model.

Revision Phase. Throughout the Revision phase, different Participants may propose changes
for a model in parallel and independently from each other (cf. Mark 1). Business partners would
take on the role of Participant and propose changes to business document model contained in
the model repository.

Consolidation Phase. At a given point in time, the Facilitator brings the Revision phase to
an end and initiates the Consolidation phase. In this phase, the Facilitator reviews the proposed
changes, indicated through Review Changes (cf. Mark 2). Applied to our example, UN/CEFACT
takes on the role of the Facilitator.

115

In case the proposed change is not conflicting with any other changes, the Facilitator de-
cides whether to Accept (cf. Mark 3a), Reject (cf. Mark 3b), or Peer Review (cf. Mark 3c) a
particular change. In case the change is Accepted it is then ready to be incorporated into the
model. However, the Facilitator may as well decide to Reject a particular change. Furthermore,
the Facilitator may want to discuss the proposed change with the Participant, indicated through
the activity Peer Review which represents the first variability aspect within our reference model.
This means that the detailed workflow within the activity can be customized to fit the require-
ments of a particular scenario. For example, in the Peer Review activity, the Participant may
then either accept or reject the Facilitator’s alternative, as well as suggest another alternative to
the Facilitator.

However, it may occur that two different Participants propose changes resulting in a con-
flict. In this case we propose three options for handling conflicting changes including Conflict
Resolution by Delegation (cf. Mark 4a), Conflict Resolution by Voting (cf. Mark 4b), as well
as Conflict Resolution by Enforcement (cf. Mark 4c). All three options for resolving conflicts
represent further variability aspects of our reference model and could be extended in future. In
pursuing the first option, the Facilitator resolves the conflicting changes and makes a decision,
which may overrule change requests of the Participants. In utilizing the second option, i.e.,
Conflict Resolution by Delegation, the Facilitator does not influence the decision process, but
leaves the process of resolving the conflict up to the Participants. For instance, in a customized
reference model fitting a certain business scenario, Participants may utilize synchronous collab-
oration techniques for resolving conflicts. In the third option, the Facilitator provides several
alternatives for resolving the conflict to the Participants. The Participants may then vote for a
particular conflict resolution. After completing the second or third option, the Facilitator reviews
the outcome of the conflict resolution strategy. In case the pursued conflict resolution strategy
resulted in another conflict, a new review cycle is started (cf. Mark 2).

Regardless, whether a change has been accepted at the very beginning, has been peer re-
viewed, or has been resolved following a particular conflict resolution strategy, once an agree-
ment between the Facilitator and the Participant is found, the consolidated change is incorpo-
rated into the model (cf. Mark 5).

Release Phase. Assuming that all changes are consolidated, the Facilitator introduces the
Release phase. In this phase, a new, consolidated, version of the model is released (cf. Mark 6).

(ii) Conflict Resolution. Following UN/CEFACT’s approach, business partners may request
changes to the business document models. As elaborated on earlier, it may occur that different
business partners submit change requests resulting in a conflict. For instance, consider the exam-
ple scenario illustrated in Figure 6.13, which is an excerpt of the running example introduced in
Section 5.1. It is assumed, that the business document model provided by UN/CEFACT contains
two classes, namely again, Employee as well as Car having different attributes. Due to chang-
ing market requirements and evolving business needs, business partners are confronted with the
need to update their business documents often requiring to update the underlying metamodel.
Following UN/CEFACT’s approach, business partners have to submit their change requests to
UN/CEFACT. For instance, as illustrated in Figure 6.13, Business Partner A proposes to change
the attribute bday to birthday resulting in an intermediary version V1a. At the same time,

116

Car Employee
type name

bday

V1

V1a

V1b

V2

UN/CEFACT

Business Partner A

Business Partner B

Car Employee
type name

birthday

Car Employee
type name

doB

Car Employee
type name

bday

Update/Update
Conflict

Figure 6.13: Conflict Example

Business Partner B proposes changing the same attribute from bday to doB resulting in ver-
sion V1b. Consequently, UN/CEFACT reviews the change requests and plans to release a new
version thereof. However, as illustrated in Figure 6.13, the changes proposed by both business
partners result in an Update/Update conflict since the same attribute is renamed differently.

As discussed earlier, our reference workflow model provides three different options for re-
solving conflicts. For all three options, we present a Conflict Resolution Model defining the
relevant information about a concrete conflict resolution. A generic conflict resolution model
is presented in 5, which we have adopted and extended in this section to satisfy the needs of
this use-case. In particular, one option of the reference workflow is to involve the business part-
ners themselves in resolving the conflict represented through Conflict Resolution by Delegation.
This option has the advantage, that business partners may discuss changes amongst themselves
for reaching an ideal agreement fitting the requirements of both business partners. Therefore,
we firstly present the Conflict Resolution Model supporting cross-organizational modeling and,
secondly, we demonstrate the Conflict Resolution by Delegation pattern based on the example
presented above.

Adopted Conflict Resolution Model. For supporting the consolidation phase, we have de-

state : ConflictState
0..*

0..1

Diff
0..1

0..*
XOR

Annotation ModelElement
*

Participant
proposed

Resolution

annotations

assignedTo

prioritizedChange

customResolution
1..*

conflictingChange

proposed
Resolution

Change

2..*

Facilitator

accepted
Resolution

Resolution

1

Conflict

affectedElement

changedBy

1

*

Figure 6.14: Adopted Conflict Resolution Model

veloped a dedicated model defining the relevant information about a concrete conflict resolution.
The resulting Conflict Resolution Model is depicted in Figure 6.14. A ModelElement may
be annotated by a conflict. A conflict links two conflicting changes and may be as-

117

bday : Attribute

bday : Attribute

BPB : Participant

bday : Attribute c1 : UpdateUpdate

BPB : Participant

res1 : Resolution

bday : Attribute

BPA : Participant

BPA : Participant

(1) New Update/Update conflict

(2) Conflict Resolution delegated to BPA and BPB

(3) Business Partners elaborates resolution

(4) Facilitator accepts resolution after review

assignedTo

assignedTo

up2 : Update

up1 : Update

up2 : Update

up1 : Update

up2 : Update

up1 : Update

proposedResolution

conflictingChange

conflictingChange

conflictingChange

conflictingChange

conflictingChange

conflictingChange

prioritizedChange

c1 : UpdateUpdate

c1 : UpdateUpdate

assignedTo

assignedTo

c1 : UpdateUpdate up2 : Update

UNCEFACT : Facilitator res1 : Resolution

prioritizedChange

acceptedResolution

birthday : Attribute

(5) Accepted resolution is performed

conflictingChange

Figure 6.15: Conflict Resolution by Delegation

signed to different participants, i.e., business partners, which are responsible to resolve the
conflict. In case multiple conflicts exist for the same ModelElement, the ModelElement
is annotated with multiple conflicts. These participants may propose different resolutions,
but exactly one of these resolutions has to be finally accepted by the facilitator in order
to resolve the conflict and, furthermore, to apply the consolidated changes. No matter which
consolidation strategy is chosen, two kinds of concrete resolution possibilities exist: (1) either
select one out of the conflicting changes, or (2) discard both and perform a custom resolution,
which may contain several changes. In the latter case, the modeled resolution is stored as its
own Diff to comprehend afterwards what happened to the conflict in the resolution process.

Conflict Resolution by Example. In Figure 6.15, we present the Conflict Resolution by
Delegation process on the basis of the example presented before. Please note, that due to read-

118

ability, only the most important relationships are illustrated. In this concrete example, a conflict
occurred due to concurrent changes of the attribute bday. Again, Business Partner A (BPA)
has renamed the attribute to birthday, whereas Business Partner B (BPB) has renamed the
same attribute to doB leading to a so-called Update/Update conflict. The facilitator decides
to delegate the resolution of this conflict to both business partners and, thus, BPA and BPB are
assigned to the Update/Update conflict to collaboratively propose a resolution. They decide
to prioritize the update of BPA, i.e. up2. The facilitator may now accept or reject the proposed
resolution. In our example, the proposed resolution, i.e., the rename of the attribute bday to
birthday, is accepted and, thus, the change is applied to the model.

6.5 Summary

In this chapter, we have presented the architecture of the Conflict-tolerant Merge and gave in-
sights of the CTMerger process. One of the major components of the Conflict-tolerant Merge is
the light-weight model annotation mechanism called EMF Profiles, of which we presented the
design principles and rationale behind it in more detail. Furthermore, EMF Profiles also pro-
vides advanced reuse mechanisms, such as meta profiles, which are immediately applicable to all
DSMLs without further user intervention. The Conflict-tolerant Merge uses such a meta profile
to automatically annotate occurred conflicts when merging parallel versions of any Ecore-based
model. These conflicts are additionally visualized with dedicated icons defined in the conflict
profile.

Finally, we presented a use case scenario, which underlined the need for the Conflict-tolerant
Merge in the context of cross-organizational modeling of business documents. In the next chap-
ter, we present the evaluation of our approach in terms of a quasi-experimental study.

119

CHAPTER 7
Evaluation

In this chapter, we report on our initial evaluation of the Conflict-tolerant Merge presented in
this thesis in comparison with EMF Compare1, the state-of-the-art tool for three-way model
comparison and model merging for EMF-based models. We decided to use EMF Compare,
because it is part of the Eclipse Modeling Project2 and freely available. We have done a quasi-
experimental study [CSG63] with 18 participants and interviewed them afterwards with the help
of a questionnaire. In the following, we describe the study in detail, discuss the challenges
encountered by the participants, and present the results and our findings of this evaluation. The
evaluation is based on observations and valuable feedback from our participants.

7.1 General Setting

As already discussed in previous chapters, the Conflict-tolerant Merge follows a new paradigm
for developing models in teams. It offers an alternative to the traditional versioning paradigm,
in which the developer who commits the changes is solely responsible for resolving the detected
conflicts immediately. To simulate this iterative process, we used EMF Compare (version 1.1.2),
which offers a tree-based representation of two versions of the model and correspondences be-
tween the detected conflicts. In contrast, the Conflict-tolerant Merge incorporates all changes
of all developers, marks occurred conflicts with the help of EMF Profiles and at a later point
of time the conflicts are resolved leading to a consolidated model. In addition, this annotation
mechanism offers the possibility to visualize the conflicts in the concrete, e.g., graphical syntax
of the models.

With the help of this evaluation, we want to gain experiences of using both systems based
on the following assumptions:

1. The Conflict-tolerant Merge avoids that changes of participants get lost when merging
different versions of a model.

1http://www.eclipse.org/emf/compare/
2http://eclipse.org/modeling/

121

http://www.eclipse.org/emf/compare/
http://eclipse.org/modeling/

P
ha

se
 3

Participant

Go Through
Example 1 with
EMF Compare

Observer

Explain Setting

Give Tool Tutorial

Go Through
Example 2 with

CT Merge

Answer Questions /
Discussion

Analyse Data

Next_Groups > 0

Interpret Results

Discuss
Questionnaire

P
ha

se
 1

P
ha

se
 2

Next_Groups = 0

Figure 7.1: Study Procedure

2. The Conflict-tolerant Merge makes the reason why conflicts occur more obvious.

3. Collaborative conflict resolution based on Conflict-tolerant Merge leads to more accepted
models.

The evaluation of the approach was conducted with groups of participants, which had to change
a pre-defined model in parallel and independently of each other with the help of concrete change
requests. One individual group, i.e., one run, passed through different phases, which are de-
scribed in the following subsection in detail. The whole procedure is repeated for each group.

7.2 Study Procedure

In this study, we distinguished between two different roles: the observer and the participant.
The author of this thesis assumed the role of the observer, who was responsible for preparing
this evaluation and for the trouble-free execution of the study.

122

In total, 18 participants took part in the study. All of them had knowledge in modeling, did
not already work with one of the tools, and did not participate in the AMOR project to ensure
that they answer in an objective way. We decided to invite participants with an industrial as well
as research background. Three different “kinds” of groups were assembled by us: (i) purely
scientific group, (ii) purely industrial group, and (iii) mixed group. In total, 10 participants were
working in industry and 8 in research institutions (Academia). The allocation of the participants
to the individual groups is depicted in Table 7.1.

Group Academia Industry
1 0 3
2 3 0
3 3 0
4 1 2
5 0 3
6 1 2

Table 7.1: Allocation of Participants

Each group contained three participants (Participant A, Participant B, and Participant C) who
had to perform predefined changes in parallel and independently. They were randomly allocated
to these roles. They worked on a prepared model and had to merge these three versions including
the resolution of occurred conflicts.

The whole procedure of the evaluation is depicted in Figure 7.1. One run with one group
contained three phases and the duration of it was not restricted.

Phase 1: Preparation. The first phase started with an introduction, in which the general set-
ting and the context of the evaluation were explained. The two different kinds of versioning
paradigms and the two example models were presented. In the next step, the tools were pre-
sented to avoid that learning how to use a tool influences the evaluation results. After the short
tool tutorials, the last step of phase 1 was to discuss each statement of the questionnaire, which
was to be filled-in in phase 3 by the participants, to ensure that each question was not misinter-
preted.

Phase 2: Modeling. For this phase, we prepared two different—but very similar—examples
(Example A is depicted in Figure 7.3 and Example B in Figure 7.4). First, the participants have
to go through one of the examples with EMF Compare and, secondly, through the other example
with the Conflict-tolerant Merge. These two subprocesses of this phase are presented in more
detail in the following.

The three participants got predefined change requests, which stated how they had to change
the prepared models leading to three different versions of the model. The change requests for one
participant contained almost four small modifications. The overall goal for the participants was
the development of a merged version of each example, which was accepted by all participants.

The first subprocess describing the traditional versioning paradigm, which is simulated with
the help of EMF Compare, is depicted in Figure 7.2 (a). Participants A, B, and C changed the
model in parallel and independently of each other. First, Participant A had to check in her version

123

Subprocess EMF Compare

Modify Model
(Participant A)

Modify Model
(Participant B)

Modify Model
(Participant C)

Merge Versions
(Participant B)

Merge Versions
(Participant C)

Analyze Merged
Model

Subprocess CT Merge

Modify Model
(Participant A)

Modify Model
(Participant B)

Modify Model
(Participant C)

Consolidate
Merged Model

Analyze
Consolidated Model

(a) (b)

Figure 7.2: (a) Subprocess using EMF Compare and (b) Subprocess using CT Merge

resulting in a new head version in the central repository. When Participant B also tried the same,
EMF Compare reported conflicts, which had to be resolved by her alone, when merging her
version with the head version. When she finished merging the different versions of the model,
a new head version was in the repository. Now, Participant C checked-in her changes and she
had also to resolve conflicts when merging her version with the head version. At the end, all
participants were invited to analyze the final result and to discuss the merged model.

After this process, the participants got another model and had to change it according to new
change requests, which, again, are very similar to the change requests of the first example. Now,
they used the Conflict-tolerant Merge tool to get a merged model. This second subprocess is de-
picted in Figure 7.2 (b). Now, the participants did not have to resolve the conflicts immediately
after they checked-in. The Conflict-tolerant Merge incorporated all changes of all three partic-
ipants and annotated the occurred conflicts. After all participants finished changing the model,
they discussed the merged version and resolved the conflicts together. After that, they analyzed
the consolidated version of the model. For this study, we decided that the participants had to re-
solve the conflicts in a face-to-face session. However, the Conflict-tolerant Merge builds a good
basis also for other synchronous and asynchronous conflict resolution approaches as discussed
in Section 5.3 of this thesis.

Phase 3: Post-processing. After the participants went through both examples, the post-processing
phase was conducted. The participants had to answer the before discussed statements of the
questionnaire and gave feedback during a final discussion. The questions and the discussion
aimed to gather pros and cons of both systems and to get answers to the assumptions presented
in Section 7.1.

124

Figure 7.3: Example A: E-Learning System

7.3 Selection of Examples

In the following, we shortly present the examples used in the study. We decided to take two
different examples for each tool to ensure objectiveness. Furthermore, two different domains
were chosen, i.e., cinema platform and e-learning system, with which all participants were fa-
miliar with. We also tried to keep the models quite simple and defined change requests, which
were—in our opinion—not too complex.

7.3.1 Example A

Example A represents the original model of an e-learning system as depicted in Figure 7.3. This
system consists of a class Teacher and Student; both inherit from a common superclass
User. A User may participate in a Course, which contains different tasks. Students may
submit Assignments to a task, which are evaluated by a teacher.

The change requests for the participants and the resulting conflicts are presented in Table 7.2.
“D/U” indicates a Delete/Update conflict, “U/U” indicates an Update/Update conflict, and a
Move/Move conflict is represented by “M/M”. In addition, a × indicates that a conflict between
the two change requests is already marked with the dedicated abbreviation in the table.

Occurred Conflicts:

• Participant A changed the datatype of AuthType from String to Boolean, whereas
Participant B created an enumeration containing different types of authorization. These
concurrent changes led to an Update/Update conflict.

• Participant A performed the refactoring “Extract Class” on the attribute deadline of
the class Task. She deleted this attribute, created a new class Duration, included the
attributes start and end, and set a reference between the classes Task and Duration.
In contrast, Participant B renamed the attribute deadline to end and included a new
attribute start. Since the attribute deadline was deleted and updated in parallel, a
Delete/Update conflict occurred.

125

• The final task of Participant A was to include the attributes abstract and details
to the class Description. In contrast, Participant C deletes the class Description
and, instead, she added an attribute description to the class Task. These concurrent
changes led to Delete/Update conflict.

• Participant B moved the attribute login to the class Course whereas Participant C
moved the same attribute to the newly added class Configuration. Here, a Move/-
Move was reported by the Conflict-tolerant Merge. EMF Compare could not report such
a conflict. Instead, it duplicated the moved model element.

• Finally, Participant B and C concurrently renamed the attribute points in the classes
Task and Assignment leading to Update/Update conflicts.

CR# Change Request A1 A2 A3 B1 B2 B3 B4 C1 C2 C3
Participant A

A1
The system should only distinguish
whether a user of the system has the
necessary authorization or not.

U/U

A2
Instead of a simple attribute deadline,
the duration of a task with a start and
an end date should be in an own class.

D/U

A3 A description of a task should contain
an abstract and additional details. D/U

Participant B

B1 Different authorization types should be
included like “admin”, “standard”, etc. ×

B2 The login status of a user should be
handled in the dedicated course. M/M

B3 A task should have a start and end date. ×

B4
The difference between points of tasks
and points of assignments should be
more clear.

U/U

Participant C

C1 The description of a task should not be
an own class. ×

C2 The login status of a user should be
handled in an own configuration class. ×

C3
The difference between points of tasks
and points of assignments should be
clearer.

×

U/U ... Update/Update Conflict
D/U ... Delete/Update Conflict

M/M ... Move/Move Conflict
× ... Conflict already marked in the table

Table 7.2: Change Requests for Example A

7.3.2 Example B

Example B represents a cinema platform as depicted in Figure 7.4. On such a platform, two
different kinds of users exist, namely Visitor and Admin. Both inherit from the common
superclass User. The administrator may create on the platform a new Cinema with its Rooms
or a new Film, which can be rated by the visitors.

126

Figure 7.4: Example B: Cinema Platform

The change requests for the participants and resulting conflicts are presented in Table 7.3.

Occurred Conflicts:

• In this example, Participant A deleted the class Rating and added an attribute rating
to class Film. In contrast, Participant B added to the deleted class an attribute stars
and, thus, a Delete/Update conflict is reported.

• Participant A moved the attribute language of the class Room into the class Film,
whereas Participant C moved the same attribute into another class, namely Cinema, lead-
ing to a Move/Move conflict.

• Furthermore, Participant A and B renamed the class Room to Hall or to CinemaHall,
respectively. This concurrent change led to a Update/Update conflict.

• Participant B deleted the attribute chairs and added instead a new class Chairs with
the attributes row and number. In contrast, Participant C renamed the attribute chairs
to seats leading to an Delete/Update conflict.

• Finally, Participant B changed the datatype of the attribute age of the class Visitor
from String to Integer. In parallel, Participant C set the datatype of the same at-
tribute to a newly added enumeration containing literals such as under12, under14,
etc. These changes led to an Update/Update conflict.

127

CR# Change Request A1 A2 A3 B1 B2 B3 B4 C1 C2 C3
Participant A

A1 The film rating should be an attribute of
a film instead of an own class. D/U

A2 The attribute language should describe
a film (not a room). M/M

A3 Rename the class room to hall. U/U
Participant B

B1
A rating should additionally have an at-
tribute, which represents the actual rat-
ing in terms of stars.

×

B2
The seats of a room should be reflected
in an own class to include the attributes
row and number.

D/U

B3 Rename the class room to “Cinema-
Hall”. ×

B4 The age of a visitor should be repre-
sented as Integer value. U/U

Participant C

C1 The attribute language should describe
a cinema (not a room). ×

C2 Rename the chairs of a room to seats. ×

C3
Three different types of the age of a
visitor exist, namely “under12”, “un-
der14” and “under16”.

×

U ... Update/Update Conflict
D ... Delete/Update Conflict

M ... Move/Move Conflict
× ... Conflict already marked in the table

Table 7.3: Change Requests for Example B

7.4 Elaboration of Questionnaire

After the examples were conducted with EMF Compare and with the Conflict-tolerant Merge,
the participants had to rate different statements. Five answers each question were possible,
namely “strongly agree”, “agree”, “disagree”, and “strongly disagree”. In addition, the answer
“don’t know” was also possible. The selection of the statements was based on two criteria. They
should give us the possibility to (i) test the above mentioned hypotheses and (ii) to check if ob-
jective and generally applicable criteria for the comparison of different data integration methods
are fulfilled. These criteria are described in [BLN86] and are also suitable when merging dif-
ferent versions of a model in the context of model versioning, because the general problems are
quite similar. Although the criteria can be taken as granted, all integration methods have to pit
against them. In the following, we shortly describe them in the context of this evaluation:

• Completeness: If two versions of a model are merged, the resulting model should be
complete, i.e., all changes of the participants should be incorporated in this model.

• Correctness: It is not enough that all changes of the participants are incorporated in the
merged model. They also have to be incorporated correctly.

• Minimality: Although it has to be ensured that all changes of all participants are incorpo-
rated in the merged model, the model should also be minimal. This means that redundant
elements should not be available in the merged model.

128

• Understandability: In addition, the changes of the participants, the occurred conflicts,
and the merged model should be understandable. That means it should be comprehensi-
ble or obvious, which model element has been concurrently changed when regarding the
resulting merged model.

In Table 7.4, the statements, which had to be rated by the participants are listed according to
the assumptions:

S# Statements of Questionnaire C
Hypothesis 1: The Conflict-tolerant Merge avoids that changes of participants
get lost when merging different versions of a model.

1. In contrast to EMF Compare, the CT Merge incorporates all of my
changes.

C
om

pl
.

2. In contrast to EMF Compare, the CT Merge incorporates the
changes of the other developers.

Hypothesis 2: The Conflict-tolerant Merge makes the reason why conflicts oc-
cur more obvious.

3. The merged model of the CT Merge is more comprehensible than
the one of EMF Compare.

U
nd

er
st

an
da

bi
lit

y

4. The changes and resulting conflicts are more comprehensible when
using the CT Merge than merging with EMF Compare.

5.

The changes and resulting conflicts are more comprehensible if
they are visualized in a merged model in terms of annotations than
being visualized between different versions of the original model in
terms of correspondences.

Hypothesis 3: Collaborative conflict resolution based on Conflict-tolerant
Merge leads to more accepted models.

6. All of my changes are more adequately incorporated in the final
model of the CT Merge than in the one of EMF Compare.

C
or

re
ct

ne
ss

/M
in

im
al

ity

7.
I do more agree with the changes of the other developers incorpo-
rated in the final model of the CT Merge than in the one of EMF
Compare.

8. Changes incorporated in the final model of the CT Merge are less
redundant than in the one of EMF Compare.

9. All changes incorporated in the final model of the CT Merge are
more correct than in the one of EMF Compare.

S# ... Statement Number

C ... Data Integration Criteria

Compl. ... Completeness

Table 7.4: Statements to be Rated by the Participants

129

7.5 Results

In the following, we present the results of the questionnaire and the most important observation
as well as a critical discussion about this study.

7.5.1 Results of Questionnaire and Observations

After the whole study, we analyzed the filled-in questionnaire. The results and are presented in
Table 7.5.

We transformed the possible answers into numerical values to empirically analyze them.
“Strongly agree” is represented by “1”, “agree” by “2”, “disagree” by “3”, and “strongly dis-
agree” by “4”. In the analysis, the “don’t know” answers were subtracted out for the following
reason. In all cases in which a participant gave the answer “don’t know”, there was a reason why
she could not rate the statement. Thus, it never happened that a participant simply did not have
an opinion regarding a statement.

St
at

em
en

t

M
ea

n
Va

lu
e

M
ed

ia
n

M
in

Va
lu

e

M
ax

Va
lu

e

To
ta

lN
um

be
r

(*
)

“D
on

’t
kn

ow
”

G
en

er
al

ly
A

gr
ee

(1
+2

)

G
en

er
al

ly
D

is
ag

re
e

(3
+4

)

“S
tr

on
gl

y
ag

re
e”

(1
)

“A
gr

ee
”

(2
)

Assumption 1: The Conflict-tolerant Merge avoids that changes of participants
get lost when merging different versions of a model.
1. 1.31 1.00 1 2 16 2 100.0% 0.0% 68.8% 31.3%
2. 1.44 1.00 1 2 18 0 100.0% 0.0% 55.6% 44.4%
Assumption 2: The Conflict-tolerant Merge makes the reason why conflicts occur
more obvious.
3. 1.17 1.00 1 2 18 0 100.0% 0.0% 83.3% 16.7%
4. 1.17 1.00 1 2 18 0 100.0% 0.0% 83.3% 16.7%
5. 1.38 1.00 1 2 16 2 100.0% 0.0% 62.5% 37.5%
Assumption 3: Collaborative conflict resolution based on Conflict-tolerant
Merge leads to more accepted models.
6. 1.79 2.00 1 3 14 4 92.9% 7.1% 30.8% 69.2%
7. 1.65 2.00 1 2 17 1 100.0% 0.0% 35.3% 64.7%
8. 1.50 1.50 1 2 6 12 100.0% 0.0% 50.0% 50.0%
9. 1.70 2.00 1 2 10 8 100.0% 0.0% 30.0% 70.0%

(*) ... without “Don’t Know”
“strongly agree” ... 1

“agree” ... 2
“disagree” ... 3

“strongly disagree” ... 4

Table 7.5: Results of Questionnaire

In the first column, references to the statements (S1-S9) of the questionnaire are listed. For
each statement, the mean value and median are presented, as well as the minimum and maximum
value. Furthermore, the total number of answers, which are used for calculating the mean value
and median, are presented. This number represents the answers without “don’t knows”, which

130

in turn are summed up and presented in the next column. Finally, we compared the amount of
participants who generally agreed with a statement with those who generally disagreed. Finally,
we present in the last two columns the difference between participants who strongly agree with
those who simply agree with a statement. In addition to the results of the questionnaire, we
report about our observations and the feedback from our participants.

All of the participants (68.8% strongly agreed and 31.3% agreed) generally agreed with
statement 1 that, in contrast to EMF Compare, the Conflict-tolerant Merge incorporates all of
their self-performed changes. Furthermore, all participants (55.6% strongly agreed and 44.4%
agreed) stated that, in contrast to EMF Compare, the Conflict-tolerant Merge incorporates also
the changes of the others (cf. statement 2). After the first example was conducted with EMF
Compare, most of the participants claimed that their changes are not available in the merged
model. In particular, we observed that all participants in the role of Participant A, who have
been the first committing their changes, missed them completely. But also the participants in the
role of Participant B missed nearly all of her changes. It was often the case that the participants
in the roles of Participant B and C did not understand the changes and, especially, the conflicts
when using EMF Compare. Thus, they ignored the changes of the others leading to a merged
model including only their own changes.

The understandability of the merged model and the occurred conflicts are demonstrated with
statements 3 and 4, respectively. All participants generally agreed (83.3% strongly agreed and
16.7% agreed) with statement 3 that the merged model of the Conflict-tolerant Merge is more
comprehensible than the one of EMF Compare (cf. statement 3). Also the occurred conflicts
were more comprehensible when using the Conflict-tolerant Merge (83.3% strongly agreed and
16.7% agreed) as demonstrated with statement 4. We observed that all of the participants strug-
gled to comprehend why a conflict occurred when merging with EMF Compare. In addition, for
all participants it was difficult to comprehend the intentions behind the parallel changes of the
other participants which led to a conflict.

The reason for these results might be explained by statement 5: All participants (62.5%
strongly agreed and 37.5% agreed) stated that visualizing conflicts in terms of annotations in
a merged model instead of visualizing them with the help of correspondences between two
versions of a model leads to more understandability. For all participants it was easier to com-
prehend the conflicts in a merged version of the model although all changes of three participants
are merged instead of having two different versions side by side and then producing a merged
version. Further, newly added and also deleted elements are visualized in EMF Compare with
correspondences pointing somewhere between two elements in the tree view. This situation led
to confusions by nearly all participants, because there did not exist a correspondent model ele-
ment. Overall, the high understandability of the conflicts and the resulting merged model when
using the Conflict-tolerant Merge can be explained by the possibility of visualizing the conflicts
in the concrete syntax of the models, in which the participants also performed their changes. In
contrast, merging with EMF Compare was impeded by the mismatch of modeling in the concrete
syntax and resolving the conflicts in the abstract syntax of the model.

92.9% of all participants (30.8% strongly agreed and 69.2% agreed) generally agreed that
their changes are more adequately incorporated in the final model of the Conflict-tolerant Merge
than in the one of EMF Compare that was demonstrated with statement 6. However, some of the

131

participants (4 out of 18) stated “don’t know” at statement 6, because when using EMF Compare
it often happened that no single change was incorporated in the merged model, because the par-
ticipants declined the changes of the others when merging due to problems in understanding the
changes and resulting conflicts. Thus, it was difficult to assess if a change is “more adequately”
incorporated with the Conflict-tolerant Merge.

A similar problem became evident regarding statement 9: Although all participants agreed
that all of their changes in the merged version are more correct when using the Conflict-tolerant
Merge, 8 participants could not rate this statement, because a comparison with EMF Compare
was not possible, when no change was incorporated.

Statement 7 demonstrated, if the participants did more agree with the changes of the oth-
ers incorporated in the final model. All participants agreed (35.3% strongly agreed and 64.7%
agreed) that the acceptance of the concurrent changes of the others, which led to conflicts, in-
creased with the conflict-tolerant approach, because they better understood the reasons behind
the changes.

Finally, to prove that the final models were minimal in the sense that no redundancies existed
in the final model, statement 8 was established. However, it did not deliver a result because
most of the participants (12 out of 18) could not rate this statement. On the one hand, no
redundancies occurred after merging with EMF Compare due to discarding some of the changes
by the participants, and, on the other hand, some participants did not recognize the redundancies.
Redundancies would occur when merging with EMF Compare, because it duplicates a model
element when two developers move it concurrently. However, 6 out of our 18 participants agreed
with statement 8 that the changes incorporated in the final model of the Conflict-tolerant Merge
are less redundant than in the one of EMF Compare.

7.5.2 Implications for Assumptions

Implication for Assumption 1: This assumption was that the Conflict-tolerant Merge avoids
that changes of participants get lost when merging different versions of a model. Statement 1
and 2 of the questionnaire have been established to check if the merged models are complete.
This means that no changes of the participants get lost when merging parallel versions of one
model. In the final discussions and according to the results of the questionnaire, all participants
agreed that the Conflict-tolerant Merge incorporates their own changes and the changes of the
others.

Implication for Assumption 2: Statement 3, 4, and 5 were established to find out the under-
standability of the produced artifacts. According to the observations, interviews, and question-
naire the changes of the participants, the resulting conflicts, and the merged model are more
comprehensible when using the Conflict-tolerant Merge. Also the visualization of conflicts in
terms of annotations in the merged model are more preferred by the participants of this evalua-
tion. We may state that the Conflict-tolerant Merge makes the reason why conflicts occur more
obvious.

132

Implication for Assumption 3: Statement 6 and 7 led to clear results. However, statement 8
could not be answered by several participants as discussed in the subsection before. Thus, we
cannot report that the merged model is minimal when using the Conflict-tolerant Merge tool.
We also observed that many participants did discovered redundancies in the final model. To test
such a criterion, other tests would be more adequate than user experiments like conducted for the
evaluation of this thesis. Concerning statement 9, 8 out of 18 participants could not say whether
they agree or disagree with this statement. However, we have also collected qualitative data in
terms of observations during the study and interviews after the study. Overall, all participants
confirmed that collaborative conflict resolution based on the Conflict-tolerant Merge leads to a
final model which is more accepted than merging with EMF Compare following the traditional
versioning paradigm.

7.5.3 Critical Discussion

In this quasi-experimental study, we gained experiences about the usage of the Conflict-tolerant
Merge when merging different versions of model in a small team. We conducted a comparison
with EMF Compare, but due to the lack of empirical evidence, we do not want to rate both
tools. This evidence will be checked when conducting real-world case studies or controlled
experiments in future. In the following, we outline findings of the presented initial evaluation,
which will help us to conduct such case studies or experiments.

Within each individual run of the study presented before, three people participated who took
different roles with different tasks. For example, it happened that all changes of Participant C
were also correctly incorporated with EMF Compare, because she was responsible for the last
merge. In contrast, the changes of Participant A and B were at least partly discarded during the
merge. This influenced the rating of the statements.

Furthermore, the study was conducted with predefined processes following the conflict-
tolerant merge approach and the traditional versioning paradigm. We consider the Conflict-
tolerant Merge as basis for collaborative conflict resolution. However, it would also lead to
interesting findings when the participants had to resolve the conflicts alone using the Conflict-
tolerant Merge. On the other side, EMF Compare is however not designed for resolving the
conflicts collaboratively but it would be another interesting variability of the process to let the
participants resolve the conflicts together.

We used two different examples for the evaluation to facilitate that one group may evaluate
both tools. We designed both examples and the change requests as similar as possible although
we used two very different domains to ensure an objective rating of both tools. In addition, for
each group we switched example A and B to avoid that the used example influenced the rating of
a tool. That means three groups used example A in combination with EMF Compare and, then,
example B with the Conflict-tolerant Merge and the other three groups started with example B
using EMF Compare.

Furthermore, we prepared relatively small models and not too complex change request for
the participants. Another interesting finding would be if the future experiments would lead to
the same results when larger models and more complex change requests are used.

As already mentioned, we did not restrict the duration of one individual run, because we
wanted to focus on the usability of the systems and the applicability of the conflict-tolerant

133

approach. In future experiments, it would lead to interesting findings, if the time for merging
with EMF Compare is restricted and the quality of the model is then evaluated.

134

CHAPTER 8
Conclusion

In the following, we briefly recall the major contributions presented in this thesis, discuss the
lessons learned from conducting the research, and conclude with an outlook on future work.

8.1 Contributions

Three major contributions have been elaborated in detail:

Survey on Versioning in Practice. To overcome the lack of empirical studies in the area
of software and model versioning, we have conducted an online survey with 90 participants
and in-depth interviews with ten experts. Such studies are needed to gather requirements from
practice with empirical evidence. We were able to gain participants from industry as well as from
different research communities. Thus, the heterogeneity of participants enabled us to get insights
into a broad spectrum of different application scenarios in the domain of versioning. Moreover,
with the help of the empirical study, we learned how the challenge of coping with collaborative
development is currently addressed in practice. The results of the questionnaire showed us
how the state-of-the-art versioning habits and processes look like when setting different artifacts
under version control. The expert interviews gave us deep insights in experiences stemming
from applying versioning tools in different modeling domains. We learned that the current best
practice is to find a reasonable division of work among project members. However, dividing the
work still does not avoid entirely the possibility of conflicts. If conflicts occur, dedicated tool
support for the management of conflicts is urgently needed, especially they occur in concurrently
changed models.

Conflict-tolerant Model Versioning System. In this thesis, we have presented a new paradigm
for optimistic model versioning. Instead of forcing the developers to resolve the conflicts imme-
diately and alone, we have extended our model versioning system AMOR with a conflict-tolerant

135

model merge strategy. Thereby, several parallel versions of a model are merged into one com-
mon version using dedicated merge rules. The detected conflicts between all versions are marked
in order to delay the conflict resolution to a later point in time when the involved developers are
ready to address and resolve occurred conflicts. The merged model constitutes a good basis for
discussing and resolving conflicts in a team. Moreover, in this thesis we also presented a conflict
resolution model, which allows to assign developers to a specific conflict and to prioritize the
concurrent changes in an asynchronous manner. Since we have also introduced a lifecycle for
conflicts and maintain the information on how a conflict is has been resolved, developers are
fully aware of what happened in the development process of a model. The evaluation of the
conflict-tolerant approach clearly showed that the evolution of a model is more comprehensible
and a consolidated version of the concurrently changed model can be found more easily among
all developers. This approach is supported by a light-weight model annotation mechanism,
which is summarized in the following description of the third contribution of this thesis.

Collaboration Support through Model Annotations. When merging parallel versions of a
model in a conflict-tolerant way, conflicts are annotated. In addition, these conflict annotations
are enriched with meta information to better support the understanding of the parallel changes
of all participants. We also showed in this thesis how this model annotation mechanism supports
the developers when resolving the conflicts in an asynchronous way. This light-weight annota-
tion mechanism, called EMF Profiles, follows the principle of AMOR which avoids restrictions
regarding the modeling language and modeling editor. Thereby, every EMF-based model may
be annotated with stereotypes containing tagged values. The annotations are saved in a separate
model to avoid polluting the annotated model. In this thesis, we also presented two novel tech-
niques to enable the systematic reuse of profile definitions across different modeling languages.
In addition, the conflict profile may also be flexibly extended to add new kind of conflicts and
warnings.

8.2 Discussion

From conducting the research work presented in this thesis, we have learned that the rise of
model-driven software development poses a new challenge, namely the concurrent and collab-
orative development of models. Therefore, dedicated model versioning systems are needed to
address this challenge. However, state-of-the-art model versioning systems largely focus on the
technical aspect of model versioning and often neglect the fact that the major purpose of version-
ing is to support people in developing software artifacts collaboratively. Thus, the contributions
of this thesis aimed at addressing this deficiency of current approaches. More precisely, the goal
of this thesis was to improve the support of groups of developers when concurrently developing
models and, therefore, to bridge the gap between the research areas of model versioning and col-
laborative modeling—on the basis of the maxim that software is by and for people. Following
this maxim, the first step was to obtain important input not only from a broad variety of literature
but also from deriving requirements from people developing software in practice. Therefore, we
conducted an online survey and expert interviews. Finally, we performed an evaluation of the

136

presented contributions by gathering experiences and valuable feedback from people, who took
time to test our tool.

Survey. The survey provided us with first insights in the versioning process applied in practice
and the versioning habits of our survey participants. However, also several additional questions
arose from analyzing the survey data, because different stakeholders of a versioning system have
diverging requirements and expectations on such a system. To investigate the applied version-
ing process, the best practices in versioning, and the requirements for versioning systems with
respect to different stakeholders of a versioning system more deeply, we decided to conduct
semi-structured interviews with different people coming from different domains. The broad va-
riety of people working at different institutions and having diverging roles led to very different
interviews regarding the duration but also regarding the gained insights. It was very challenging
to analyze the results of these interviews in order to get a unified picture of the interviewee’s
expectations and opinions. Due to the broad variety of people and their different viewpoints, we
were not able find a consolidated picture of all comments of the interviewees and we could not
address all of the ideas, expectations, and requirements learned from the interviews. Neverthe-
less, we have elaborated several very interesting requirements, which most of the interviewees
agreed upon. These common requirements constituted the input for our further research.

Conflict Tolerance. For instance, one of the requirements that all interviewees directly or
indirectly mentioned, concerned the inevitability of conflicts, despite a reasonable division of
work, and the major challenge that is posed when a conflict occurs. Many of the interviewees
mentioned that a conflict often interferes the entire work, because a team member is forced
to resolve the conflict immediately. For resolving this conflict, the team member often has to
consult the other developers, who applied the conflicting changes, in order to understand their
rationale; otherwise, important changes might get lost. Thus, resolving a conflict might prevent
several developers from doing their actual work.

To address this issue derived from the interviews, we proposed the Conflict-tolerant Merge.
We managed to develop a system with which merging of different parallel versions is possible
without worrying immediately about the critical resolution of occurred conflicts. Thus, devel-
opers may proceed with their work and complete the work items they are currently working on
according to the applied development process. Also, another major requirement that was raised
commonly by several interviewees concerns the tangibility and understandability of conflicts.
Several interviewees mentioned that it is hard to understand the underlying conflicts when only
considering changes applied to models without having available the model resulting from these
changes. Using the conflict-tolerant merge in combination with our annotation mechanism, we
aimed at making conflicts more tangible and comprehensible. Whenever the developers are able
to come together and collaborate on the resolution of occurred conflicts, they are able to cre-
ate a basis for discussing and resolving the conflicts. Thereby, developers may reason about a
conflicting model and not only about conflicting changes.

Conflict-tolerant merging also has its disadvantages in certain settings. When models and
teams working on these models get larger and larger, conflict-tolerant merging might cause a
“rank growth” of parallel versions and conflicts. The larger the model and the more people

137

working those models, the more important gets a discipline handling of the conflicts. Compa-
rable to bugs, conflicts also need to be tracked and monitored precisely. Also, when living with
conflicts in the most current version of a model, the resolution of conflicts has to be integrated
into the applied development process. The right point in time to resolve all or a subset of con-
flicts strongly depends on the specific development process. Therefore, one important next step
is to review existing development processes and how they are conducted in practice, to iden-
tify the best place in the process for resolving conflicts and tightly integrate this step into the
process. Another challenge arising from large models and large teams concerns the scalability
of the visualization of conflicts. If a model with thousands of model elements comprises hun-
dreds of unresolved conflicts, developers may quickly become overcharged. Therefore, further
research is required to investigate the impact of conflicts in large models and to develop adequate
techniques for conflict filters and views.

Although this thesis is only concerned with model versioning, the concept behind the con-
flict tolerant merge seems to be beneficial for versioning in general (i.e., also for code and doc-
uments). Especially for documents, it is likely that the advantages of our merge strategy help
authors to collaboratively work on their documents. In this domain, several research has been
conducted for synchronous editing (e.g., [MM93]), but our merge strategy might improve the
asynchronous collaboration in writing. When adopting conflict-tolerant merging for code, how-
ever, one major challenge is that the merged code might not be executable any more. Code that
cannot be compiled and executed anymore might be very hard to analyze and has to be fixed
before developers may investigate the affect of certain changes on the functioning of a program.
This aspect might mitigate the advantages of conflict-tolerant merging for code.

Conflict-tolerant merging is to a certain extent also reflected in current text-based versioning
systems. For instance, if a conflict occurs using SVN, a merged version is generated, which
duplicates the text lines that have been concurrently modified. Moreover, these duplicated text
lines are surrounded by dedicated conflict markers to indicate the conflict more prominently.
Developers may now use this version, mark it as resolved and save them into the repository again.
In this way, the resolution of the conflict is postponed to another point in time. However, in
contrast to the approach proposed in this thesis, the conflicting changes are not really merged; the
concurrently changed lines are simply duplicated and important meta-data about the conflict is
missing. Moreover, the conflict annotation is intermingled with the code and destroys readability
and understandability of both the code and the conflict.

EMF Profiles. We developed EMF Profiles with the purpose to annotate occurred conflicts
between EMF-based models and visualize them appropriately. In addition, we also annotate
critical situations, which contain per se no conflicts, with warnings to increase the awareness of
contradicting modification in a team. It provides a new way for presenting changes and con-
flicts in the context of model versioning. Since every EMF-based models can be annotating with
EMF Profiles, the capability of this project is way beyond the use case in model versioning.
For example, we will use EMF Profiles for enhancing code generation capabilities using anno-
tated models and for annotating models during model reviews. When using EMF, a situation in
which annotating and extending an EMF model is necessary, might easily occur, but changing
its metamodel is a tedious task to make this possible. There are many reasons why changing

138

the metamodel is not desired. For example, the additional information is only needed for one
particular project and you do not want to pollute others; or you want to avoid the tedious task
to recreate the graphical modeling environment and migrate already existing models to the new
metamodel version. This light-weight model annotation mechanism is realized by adopting the
idea of UML profiles, which have been a key enabler for the success of UML.

8.3 Future Work

In the following, we discuss current limitations of the approach presented in this thesis and
interesting directions for future work.

Usability. First of all, increasing the usability of our research prototype presented in this thesis
is one important task for future work. Not only the look-and-feel could be improved but also
new features may be added. As presented in Chapter 6, the conflict annotation and the additional
meta-information are saved as separate model. This gives us many different possibilities to im-
prove the usability and to add new features for supporting the users during the merge. Conflicts
may be integrated in a bug tracking tool or may be send to other users for resolving them, etc.
Currently, much information is put in the properties view, which could be improved from an us-
ability point of view. Furthermore, to tackle the problem of scalability of the visualized conflicts
or warnings, different views and filters are necessary to avoid that the developers are becoming
overcharged.

Diagram Versioning. The presented approach shows detected conflicts in the concrete or
graphical syntax of a model. However, also this layout information of the model has to co-
evolve with the model. Thus, the diagram should be put under version control. Due to the fact
that diagram information is nowadays also represented in terms of models, model versioning
features might be reused, whereby the nature of 2D diagram layout must not be neglected. The
most challenging question is how to preserve the mental map (cf. [MELS95]) of all developers
when merging several parallel versions. In addition, no general notion has been established yet
which concurrently performed layout changes are in fact contradicting changes (e.g., also con-
sidering the inconvenience of small unintended changes when a modeler moves an element one
pixel without intending it).

EMF Profiles. One of the major components of the approach presented in this thesis is the
EMF Profiles project. One conflict profile is used to annotate occurred conflicts between two or
more concurrent changes. In the future, we plan to elaborate on more sophisticated restriction
mechanisms to allow constraining the application of stereotypes (e.g. with OCL conditions) and
composing several independent profiles which are not mutually complementary in one profile
application as proposed by [NGTS10]. A consistent mix of several profiles requires a mechanism
to specify conditions constraining applicability across more than one profile. For instance, one
may need to specify that a stereotype of profile A may only be applied after a stereotype of
profile B, holding a specific tagged value, has been applied.

139

Composite Changes. In this thesis, we have considered atomic and overlapping changes when
merging different versions of a model. However, also other kinds of conflicts may arise when
changing the model in parallel as presented in Section 3.2. For example, Philip Langer presented
in his thesis [Lan11] the detection of conflicts due to composite changes such as model refactor-
ings. When considering also composite changes the question arises how to support the user in
resolving such conflicts by the annotation mechanism presented in this thesis.

Real-world Case Studies. As already discussed in Chapter 7, the experimental study to evalu-
ate the presented approach was conducted in an artificial context. In addition, interesting findings
might arise, when using the approach in a broader industrial context. Real-world case studies
would better demonstrate the usefulness and scalability of the approach. However, this would
go beyond the scope of this thesis and, thus, it is left for future work.

140

APPENDIX A
Questionnaire

On the following pages, we “print” the questionnaire as it was depicted on our project homepage
http://www.modelversioning.org.

141

http://www.modelversioning.org

142

143

144

145

146

List of Figures

1.1 Versioning Process . 5
1.2 Information Systems Research Framework based on [HMPR04] 7

2.1 CSCW Matrix [Joh88] . 12
2.2 Categorization of Versioning Systems . 16
2.3 Versioning Example . 23
2.4 Text-based Versioning Example: (a) state, (b) operation 24
2.5 Graph-based Versioning Example: (a) state, (b) operation 24

3.1 Metamodeling with Ecore . 37
3.2 Conflict Categorization . 39
3.3 Conflict Examples: Overlapping Changes . 40
3.4 Conflict Examples: Redundancies and Metamodel Violation 41
3.5 Naive Merge of Example (b) of Figure 3.4 . 41
3.6 Conflict Examples: Operation Contract Violation and Domain Knowledge Violation 42
3.7 Naive Merge of Example (c) of Figure 3.4 . 42
3.8 Naive Merge of Example (c) of Figure 3.6 . 43
3.9 The AMOR Workflow . 44

4.1 Roles of Survey Participants . 49
4.2 Geographical Distribution and Team Size . 50
4.3 Geographical Distribution and Used Versioning Strategy 50
4.4 Artifacts under Version Control . 51
4.5 Geographical Distribution and Standard Process 52
4.6 Geographical Distribution and Commit Cycles . 52
4.7 Geographical Distribution and Change Acceptance Criteria 53
4.8 Geographical Distribution and Permission for Refactorings 54
4.9 Responsibilities for Conflict Resolution . 54
4.10 Most Important Requirements . 54

5.1 (a) Continuous Conflict Resolution and (b) Conflict Tolerance 68
5.2 Running Example: Merging in Current VCSs . 69
5.3 Merge Rule for Update/Update Conflict . 74
5.4 Merge Rule for Delete/Update Conflict . 74

147

5.5 Merge Rule for Delete/Use Conflict . 75
5.6 Merge Rule for Move/Move Conflict . 75
5.7 Merge Rule for Delete/Move Conflict . 76
5.8 Merge Rule for Move/Update Warning . 77
5.9 Merge Rule for Delete/Update/Update Conflict 78
5.10 Merge Rule for Update/Update/Update Conflict 79
5.11 Changes and Annotations at a Glance . 81
5.12 Conflict-tolerant Merge of the Running Example and Annotated Conflicts 82
5.13 Conflict Resolution Model with Conflict Lifecycle 84
5.14 Delete/Update Conflict Resolution Example . 85
5.15 Update/Update Conflict Resolution Example . 86
5.16 Consolidated Version by Turning Conflicts into Collaborations 86
5.17 Violation Resolution Example . 88

6.1 Architecture of Conflict-tolerant Merge Tool . 92
6.2 Overview of CTMerger Process . 95
6.3 UML Architecture . 101
6.4 EMF Profile Architecture Strategies . 101
6.5 EMF Profile Metamodel . 102
6.6 EMF Profiles by Example: (a) Profile definition user-view, (b) Internal profile rep-

resentation, (c) Profile application . 104
6.7 Generic EJB Profile and its Binding to the ER metamodel 106
6.8 Meta Profile Example: The Model Review Profile 108
6.9 EJB Profile Defined on Ecore with Graphical EMF Profiles Editor 110
6.10 EJB Profile Applied to Ecore Instance . 111
6.11 Conflict-tolerant Merge as Eclipse Plug-in . 112
6.12 Reference Model for Collaborative Cross-organizational Modeling 115
6.13 Conflict Example . 117
6.14 Adopted Conflict Resolution Model . 117
6.15 Conflict Resolution by Delegation . 118

7.1 Study Procedure . 122
7.2 (a) Subprocess using EMF Compare and (b) Subprocess using CT Merge 124
7.3 Example A: E-Learning System . 125
7.4 Example B: Cinema Platform . 127

148

List of Tables

2.1 Evaluation of State-of-the-Art Model Versioning Systems 31

4.1 Overview of the Interview Partners . 56

5.1 Overlapping Changes . 71

7.1 Allocation of Participants . 123
7.2 Change Requests for Example A . 126
7.3 Change Requests for Example B . 128
7.4 Statements to be Rated by the Participants . 129
7.5 Results of Questionnaire . 130

149

Bibliography

[ABK+09] K. Altmanninger, P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and
M. Wimmer. Why Model Versioning Research is Needed!? An Experience Re-
port. In Proceedings of the Joint MoDSE-MCCM 2009 Workshop @ MoDELS’09,
2009.

[ADR06] S. Auer, S. Dietzold, and T. Riechert. OntoWiki - A Tool for Social, Semantic
Collaboration. In Proceedings of the 5th International Semantic Web Conference
(ISWC’06), volume 4273 of LNCS, pages 736–749. Springer, 2006.

[AK01] C. Atkinson and T. Kühne. The Essence of Multilevel Metamodeling. In Pro-
ceedings of the 4th International Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools (UML’01), volume 2185 of LNCS,
pages 19–33. Springer, 2001.

[AK07] C. Atkinson and T. Kühne. A Tour of Language Customization Concepts. Ad-
vances in Computers, 70:105–161, 2007.

[AKK+08] K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger, M. Seidl,
W. Schwinger, and M. Wimmer. AMOR—Towards Adaptable Model Version-
ing. In Proceedings of the 1st International Workshop on Model Co-Evolution
and Consistency Management @ MoDELS’08, 2008.

[AOH07] T. Apiwattanapong, A. Orso, and M. Harrold. JDiff: A Differencing Tech-
nique and Tool for Object-oriented Programs. Automated Software Engineering,
14(1):3–36, 2007.

[AP03] M. Alanen and I. Porres. Difference and union of models. In Proceedings of the
International Conference on the Unified Modeling Language (UML’03), pages
2–17. Springer Verlag, 2003.

[ASW09] K. Altmanninger, M. Seidl, and M. Wimmer. A Survey on Model Versioning
Approaches. International Journal of Web Information Systems, 5(3):271–304,
2009.

[Bae95] R. Baecker. Readings in human-computer interaction: toward the year 2000. The
Morgan Kaufmann Series in Interactive Technologies Series. Morgan Kaufmann
Publishers, 1995.

151

[Bal89] R. Balzer. Tolerating inconsistency. In Proceedings of the 5th International Soft-
ware Process Workshop (ISPW ’89), pages 41–42. IEEE Computer Society, 1989.

[BCJM10] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. MoDisco: a generic and ex-
tensible framework for model driven reverse engineering. In Automated Software
Engineering (ASE’10), pages 173–174. ACM, 2010.

[BE09] L. Bendix and P. Emanuelsson. Requirements for Practical Model Merge - An
Industrial Perspective. In Proceedings of the 12th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’09), volume 5795
of LNCS, pages 167–180. Springer, 2009.

[Béz05] J. Bézivin. On the unification power of models. Software and Systems Modeling,
4(2):171–188, 2005.

[BKL+11a] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wimmer. Emerg-
ing Technologies for the Evolution and Maintenance of Software Models, chapter
The Past, Present, and Future of Model Versioning. IGI Global, 2011.

[BKL+11b] P. Brosch, H. Kargl, P. Langer, M. Seidl, K. Wieland, M. Wimmer, and G. Kap-
pel. Conflicts as First-Class Entities: A UML Profile for Model Versioning. In
Models in Software Engineering - Workshops and Symposia at MODELS 2010,
Reports and Revised Selected Papers, pages 184–193, Springer, 2011. LNCS Vol-
ume 6627.

[BKS+10] P. Brosch, G. Kappel, M. Seidl, K. Wieland, M. Wimmer, H. Kargl, and P. Langer.
Adaptable model versioning in action. In Modellierung 2010, volume 161 of LNI,
pages 221–236. GI, 2010.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of method-
ologies for database schema integration. ACM Computing Survey, 18:323–364,
1986.

[BLS+09] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel, W. Rets-
chitzegger, and W. Schwinger. An Example is Worth a Thousand Words: Com-
posite Operation Modeling By-Example. In Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems (MoDELS’09),
pages 271–285. Springer, 2009.

[BLS+10a] P. Brosch, P. Langer, M. Seidl, K. Wieland, and M. Wimmer. Colex: a web-based
collaborative conflict lexicon . In Proceedings of the 1st International Conference
on Model Comparison in Practice (IWMCP), pages 42–49. ACM, 2010.

[BLS+10b] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, and G. Kappel. Con-
current Modeling in Early Phases of the Software Development Life Cycle. In
Proceedings of the 16th International Conference on Collaboration and Technol-
ogy (CRIWG’10), pages 129–144, 2010.

152

[BP08] C. Brun and A. Pierantonio. Model Differences in the Eclipse Modeling Frame-
work. UPGRADE, The European Journal for the Informatics Professional,
9(2):29–34, 2008.

[Bro11] P. Brosch. Conflict Resolution in Model Versioning. PhD thesis, Vienna Univer-
sity of Technology, 2011.

[BSM+03] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose. Eclipse Modeling
Framework (The Eclipse Series). Addison-Wesley, 2003.

[BSW+09] P. Brosch, M. Seidl, K. Wieland, M. Wimmer, and P. Langer. We can work it
out: Collaborative Conflict Resolution in Model Versioning. In Proceedings of
the 11th European Conference on Computer Supported Cooperative Work (EC-
SCW’09), pages 207–214. Springer, 2009.

[CDRP08] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing Model Conflicts in Dis-
tributed Development. In Proceedings of the International Conference on Model
Driven Engineering Languages and Systems (MoDELS’08), LNCS, pages 311–
325. Springer, 2008.

[CESW04] T. Clark, A. Evans, P. Sammut, and J. Willans. Applied Metamodelling, A Foun-
dation for Language Driven Development. Ceteva, Sheffield, 2004.

[Che76] P. P.-S. Chen. The Entity-Relationship Model—Toward a Unified View of Data.
ACM Transactions on Database Systems, 1:9–36, 1976.

[CSG63] D. Campbell, J. Stanley, and N. Gage. Experimental and quasi-experimental
designs for research. Houghton Mifflin Boston, 1963.

[CW98] R. Conradi and B. Westfechtel. Version Models for Software Configuration Man-
agement. ACM Computing Surveys, 30(2):232, 1998.

[DA00] A. Dey and G. Abowd. Towards a better understanding of context and context-
awareness. In Proceedings of the Workshop on the What, Who, Where, When and
How of Context-Awareness. ACM Press, 2000.

[DH07] P. Dewan and R. Hegde. Semi-synchronous conflict detection and resolution in
asynchronous software development. In Proceedings of the 2007 Tenth European
Conference on Computer-Supported Cooperative Work, pages 159–178. Springer,
2007.

[Dij97] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1st edition,
1997.

[DJ06] D. Dig and R. Johnson. How Do APIs Evolve? A Story of Refactoring. Journal
of Software Maintenance and Evolution: Research and Practice, 18(2):83–107,
2006.

153

[DLFOT06] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. ADAMS: Advanced Artefact
Management System. In Proceedings of the European Conference on Software
Maintenance and Reengineering (CSMR’06), pages 349–350. IEEE, 2006.

[DLFST09] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora. Concurrent Fine-Grained
Versioning of UML Models. In European Conference on Software Maintenance
and Reengineering, pages 89–98. IEEE, 2009.

[DMJN08] D. Dig, K. Manzoor, R. Johnson, and T. Nguyen. Effective Software Merging
in the Presence of Object-Oriented Refactorings. IEEE Transactions on Software
Engineering, 34(3):321–335, 2008.

[Edw97] W. K. Edwards. Flexible Conflict Detection and Management in Collaborative
Applications. In Proceedings of the 10th Annual ACM Symposium on User Inter-
face Software and Technology (UIST’97), pages 139–148. ACM, 1997.

[EE68] D. Engelbart and W. English. A research center for augmenting human intellect.
In Proceedings of the Fall Joint Computer Conference, part I, pages 395–410.
ACM, 1968.

[ELH+05] J. Estublier, D. Leblang, A. Hoek, R. Conradi, G. Clemm, W. Tichy, and
D. Wiborg-Weber. Impact of Software Engineering Research on the Practice of
Software Configuration Management. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 14(4):383–430, 2005.

[FBJ+05] M. D. D. Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas. AMW: a generic
model weaver. In Journée sur l’Ingénierie Dirigée par les Modeles (IDM’05),
2005.

[FFVM04] L. Fuentes-Fernández and A. Vallecillo-Moreno. An Introduction to UML Pro-
files. UPGRADE, The European Journal for the Informatics Professional, 5(2):5–
13, 2004.

[FGH+94] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsis-
tency Handling in Multperspective Specifications. IEEE Transactions on Software
Engineering, 20(8):569–578, 1994.

[Flu09] M. Fluegge. Entwicklung einer kollaborativen Erweiterung fuer GMF-Editoren
auf Basis modellgetriebener und webbasierter Technologien. Master’s thesis,
University of Applied Sciences Berlin, 2009.

[FMP06] G. Fitzpatrick, P. Marshall, and A. Phillips. CVS integration with notification and
chat: lightweight software team collaboration. In Proceedings of the 2006 20th
anniversary conference on Computer Supported Cooperative Work, CSCW ’06,
pages 49–58. ACM, 2006.

[Fow03] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. Addison-Wesley Longman Publishing Co., Inc., 2003.

154

[GJM02] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineer-
ing. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 2002.

[GMB+11] J. Gallardo, A. Molina, C. Bravo, M. Redondo, and C. Collazos. An ontological
conceptualization approach for awareness in domain-independent collaborative
modeling systems: Application to a model-driven development method. Expert
Systems with Applications, 38(2):1099 –1118, 2011.

[Gru93] T. R. Gruber. A translation approach to portable ontology specifications. KNOWL-
EDGE ACQUISITION, 5:199–220, 1993.

[HM76] J. Hunt and M. MCillroy. An Algorithm for Differential File Comparison. Tech-
nical report, AT&T Bell Laboratories Inc., 1976.

[HMPR04] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Information
Systems Research. MIS Quarterly, 28:75–105, 2004.

[HN98] A. Hunter and B. Nuseibeh. Managing Inconsistent Specifications: Reasoning,
Analysis, and Action. ACM Transactions on Software Engineering and Method-
ology, 7(4):335–367, 1998.

[HR04] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics of “seman-
tics”? Computer, 37(10):64–72, 2004.

[Joh88] R. Johansen. GroupWare: Computer Support for Business Teams. The Free Press,
1988.

[K0̈6] T. Kühne. Matters of (meta-) modeling. Software and Systems Modeling, 5:369–
385, 2006.

[KHWH10] M. Kögel, M. Herrmannsdörfer, O. Wesendonk, and J. Helming. Operation-based
Conflict Detection on Models. In Proceedings of the International Workshop on
Model Comparison in Practice @ TOOLS Europe 2010. ACM, 2010.

[KKK+06] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger,
W. Schwinger, and M. Wimmer. Lifting Metamodels to Ontologies: A Step to the
Semantic Integration of Modeling Languages. In 9th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’06), volume 4199
of LNCS, pages 528–542. Springer, 2006.

[KN06] M. Kim and D. Notkin. Program Element Matching for Multi-version Program
Analyses. In Proceedings of the International Workshop on Mining Software
Repositories (MSR’06), 2006.

[KR96] S. Khuller and B. Raghavachari. Graph and network algorithms. ACM Computing
Surveys, 28(1):43–45, 1996.

155

[KRDM+10] D. Kolovos, L. Rose, N. Drivalos Matragkas, R. Paige, F. Polack, and K. Fernan-
des. Constructing and Navigating Non-invasive Model Decorations. In Theory
and Practice of Model Transformations (ICMT’10), volume 6142 of LNCS, pages
138–152. Springer, 2010.

[KT08] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society Press, 2008.

[Lan11] P. Langer. Adaptable Model Versioning Based on Model Transformations by
Demonstration. PhD thesis, Vienna University of Technology, 2011.

[LvO92] E. Lippe and N. van Oosterom. Operation-Based Merging. In ACM SIGSOFT
Symposium on Software Development Environment, pages 78–87. ACM, 1992.

[LWWC11] P. Langer, K. Wieland, M. Wimmer, and J. Cabot. From UML Profiles to
EMF Profiles and Beyond. In Proceedings of the 49th International Conference
on Objects, Models, Components, Patterns, TOOLS Europe 2011. LNCS 6705,
Springer, 2011.

[MCPW08] L. Murta, C. Corrêa, J. Prudêncio, and C. Werner. Towards Odyssey-VCS 2:
Improvements Over a UML-based Version Control System. In Proceedings of
the International Workshop on Comparison and Versioning of Software Models,
pages 25–30. ACM, 2008.

[MD94] J. P. Munson and P. Dewan. A Flexible Object Merging Framework. In Proceed-
ings of the 1994 ACM Conference on Computer Supported Cooperative Work
(CSCW’94), pages 231–242. ACM, 1994.

[MELS95] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental
map. Journal of Visual Languages and Computing, 6(2):183–210, 1995.

[Men02] T. Mens. A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

[MGH05] A. Mehra, J. Grundy, and J. Hosking. A Generic Approach to Supporting Dia-
gram Differencing and Merging for Collaborative Design. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, pages
204–213. ACM, 2005.

[MGHW10] I. Mistrík, J. Grundy, A. Hoek, and J. Whitehead. Collaborative Software Engi-
neering. Springer, 2010.

[MM93] S. Minor and B. Magnusson. A Model for Semi-(a)Synchronous Collaborative
Editing. In In Proceedings of the Third European Conference on Computer Sup-
ported Cooperative Work, pages 219–231. Kluwer Academic Publishers, 1993.

[MS89] D. Musser and A. Stepanov. Generic Programming. In Symbolic and Algebraic
Computation, volume 358 of LNCS, pages 13–25. Springer, 1989.

156

[MS95] S. T. March and G. F. Smith. Design and natural science research on information
technology. Decision Support Systems, 15(4):251 – 266, 1995.

[NE00] B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In Pro-
ceedings of the Conference on The Future of Software Engineering, ICSE ’00,
pages 35–46. ACM, 2000.

[NER01] B. Nuseibeh, S. M. Easterbrook, and A. Russo. Making inconsistency respectable
in software development. Journal of Systems and Software, 58(2):171–180, 2001.

[NGTS10] F. Noyrit, S. Gerard, F. Terrier, and B. Selic. Consistent Modeling Using Multiple
UML Profiles. In Model Driven Engineering Languages and Systems (MoD-
ELS‘10), pages 392–406. Springer, 2010.

[Nie04] J. Niere. Visualizing Differences of UML Diagrams With Fujaba. In Proceedings
of the International Fujaba Days 2004, 2004.

[Obj03] Object Management Group (OMG). Unified Modeling Language 2.0 (UML).
http://www.omg.org/cgi-bin/doc?ptc/2003-09-15, 09 2003.

[Obj04] Object Management Group (OMG). Meta-Object Facility 2.0 (MOF). http:
//www.omg.org/cgi-bin/doc?ptc/03-10-04, 10 2004.

[Obj07] Object Management Group (OMG). Unified Modeling Language Infrastructure
Specification, Version 2.1.2, http://www.omg.org/spec/UML/2.1.2/
Infrastructure/PDF, 2007.

[Obj10] Object Management Group (OMG). Unified Modeling Language Specification,
Version 2.3, http://www.omg.org/spec/UML/2.3/, 2010.

[OMW05] H. Oliveira, L. Murta, and C. Werner. Odyssey-VCS: A Flexible Version Control
System for UML Model Elements. In Proceedings of the International Workshop
on Software Configuration Management, pages 1–16. ACM, 2005.

[OS05] T. Oda and M. Saeki. Generative Technique of Version Control Systems for Soft-
ware Diagrams. In Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’05), pages 515–524. IEEE, 2005.

[OWK03] D. Ohst, M. Welle, and U. Kelter. Differences between versions of uml diagrams.
ACM SIGSOFT Software Engineering Notes, 28(5):227–236, 2003.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15:1053–1058, December 1972.

[PWWZ11] C. Pichler, M. Wimmer, K. Wieland, and M. Zapletal. Towards Collaborative
Cross-Organizational Modeling. In Proceedings of the 2nd International Work-
shop on Cross Enterprise Collaboration (CEC 2011) @ BPM 2011, volume 0099
of LNBIP. Springer, 2011.

157

http://www.omg.org/cgi-bin/doc?ptc/2003-09-15
http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
http://www.omg.org/spec/UML/2.3/

[RAB+07] T. Reiter, K. Altmanninger, A. Bergmayr, W. Schwinger, and G. Kotsis. Models
in Conflict – Detection of Semantic Conflicts in Model-based Development. In
Proceedings of International Workshop on Model-Driven Enterprise Information
Systems @ ICEIS’07, pages 29–40, 2007.

[RH09] P. Runeson and M. Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14:131–164,
2009.

[RKdV08a] M. Renger, G. Kolfschoten, and G.-J. de Vreede. Using Interactive Whiteboard
Technology to Support Collaborative Modeling. In Groupware: Design, Imple-
mentation, and Use, volume 5411 of LNCS, pages 356–363. Springer Berlin /
Heidelberg, 2008.

[RKdV08b] M. Renger, G. L. Kolfschoten, and G.-J. de Vreede. Challenges in Collaborative
Modeling: A Literature Review. In Proceedings of the 4th International Work-
shop CIAO! and 4th International Workshop EOMAS, volume 10 of Lecture Notes
in Business Information Processing, pages 61–77. Springer, 2008.

[SBPM08] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2008.

[Sch06] D. Schmidt. Guest Editor’s Introduction: Model-driven Engineering. Computer,
39(2):25–31, 2006.

[Sel07] B. Selic. A Systematic Approach to Domain-Specific Language Design Using
UML. In Int. Symposium on Object-Oriented Real-Time Distributed Computing,
pages 2–9. IEEE Computer Society, 2007.

[She03] H. Shen. Internet-Based Collaborative Programming Techniques and Environ-
ments. PhD thesis, Griffith University, 2003.

[SK88] R. W. Schwanke and G. E. Kaiser. Living With Inconsistency in Large Systems.
In Proceedings of the International Workshop on Software Version and Configu-
ration Control, pages 98–118, 1988.

[SNTM08] A. Sebastian, N. F. Noy, T. Tudorache, and M. A. Musen. A Generic Ontology for
Collaborative Ontology-Development Workflows. In Proceedings of the 16th In-
ternational Conference on Knowledge Engineering and Knowledge Management
(EKAW’08), volume 5268 of LNCS, pages 318–328. Springer, 2008.

[SZ01] G. Spanoudakis and A. Zisman. Inconsistency management in software engineer-
ing: Survey and open research issues. In Handbook of Software Engineering and
Knowledge Engineering, pages 329–380. World Scientific, 2001.

[SZN04] C. Schneider, A. Zündorf, and J. Niere. CoObRA – A Small Step for Develop-
ment Tools to Collaborative Environments. In Proceedings of the Workshop on
Directions in Software Engineering Environments, 2004.

158

[TELW10] G. Taentzer, C. Ermel, P. Langer, and M. Wimmer. Conflict Detection for Model
Versioning Based on Graph Modifications. In Proceedings of the International
Conference on Graph Transformations, volume 6372 of LNCS, pages 171–186.
Springer, 2010.

[TG04] J. Tam and S. Greenberg. A Framework for Asynchronous Change Awareness
in Collaboratively-Constructed Documents. In Groupware: Design, Implementa-
tion, and Use, volume 3198 of LNCS, pages 67–83. Springer Berlin / Heidelberg,
2004.

[Tic88] W. Tichy. Tools for software configuration management. In Proceedings of the
International Workshop on Software Version and Configuration Control, pages
1–20. Teubner Verlag, 1988.

[TNTM08] T. Tudorache, N. F. Noy, S. W. Tu, and M. A. Musen. Supporting Collabo-
rative Ontology Development in Protégé. In Proceedings of the 7th Interna-
tional Semantic Web Conference (ISWC’08), volume 5318 of LNCS, pages 17–32.
Springer, 2008.

[TSS09] C. Thum, M. Schwind, and M. Schader. SLIM–A Lightweight Environment for
Synchronous Collaborative Modeling. In Proceedings of the Intenational Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS’09), pages
137–151. Springer, 2009.

[Wen01] T. Wengraf. Qualitative research interviewing: biographic narrative and semi-
structured methods. SAGE Publications, 2001.

[Wes10] B. Westfechtel. A Formal Approach to Three-way Merging of EMF Models. In
Proceedings of the International Workshop on Model Comparison in Practice @
TOOLS’10, pages 31–41. ACM, 2010.

[WFK+11] K. Wieland, G. Fitzpatrick, G. Kappel, M. Seidl, and M. Wimmer. Towards an
Understanding of Requirements for Model Versioning Support. Accepted at In-
ternational Journal of People-Oriented Programming, 1(2), 2011.

[WLS+11] K. Wieland, P. Langer, M. Seidl, M. Wimmer, and G. Kappel. Turning Conflicts
into Collaboration: Concurrent Modeling in the Early Phases of Software Devel-
opment. Submitted at Computer Supported Cooperative Work (CSCW), 2011.

[WRK+06] M. Wimmer, T. Reiter, H. Kargl, G. Kramler, E. Kapsammer, W. Retschitzeg-
ger, W. Schwinger, and G. Kappel. Lifting metamodels to ontologies - a step to
the semantic integration of modeling languages. In Model Driven Engineering
Languages and Systems, volume 4199 of LNCS, pages 528–542. Springer, 2006.

[Yin02] R. K. Yin. Case study research: design and methods. Applied Social Research
Methods Series. SAGE Publications, 2002.

159

[ZGH+07] N. Zhu, J. Grundy, J. Hosking, N. Liu, S. Cao, and A. Mehra. Pounamu: A meta-
tool for exploratory domain-specific visual language tool development. Journal
of Systems and Software, 80:1390–1407, 2007.

160

Curriculum Vitae

Dipl.-Ing. Konrad Wieland, BSc

Zwinzstr. 1b/13
1160 Wien
Austria

Email: wieland@big.tuwien.ac.at
Web: http://www.big.tuwien.ac.at/staff/kwieland
Date of Birth: 24-Feb-1985
Nationality: Austria

Education

2009 - 2011 PhD Studies in Business Informatics
Vienna University of Technology, Austria
Supervision:
o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel
Univ.-Prof. Geraldine Fitzpatrick, PhD

2008 - 2009 Master Studies Business Informatics
Vienna University of Technology, Austria
Emphasis on: “Rechtliche Aspekte des IT-Managements”

2003 - 2008 Bachelor Studies Business Informatics
Vienna University of Technology, Austria
Emphasis on: “Decision Support in E-Government”

2003 Graduation from Secondary School, Vienna

161

Work Experience (Excerpt)

April 09 - Nov 11 Research Assistant and PhD Student
Business Informatics Group at Vienna University of Technology, Austria
Research Interests: MDSE, CSCW
Teaching: Model Engineering, Web Engineering

Sept 08 - Mar 09 Project Participant at “ZKK”
Vienna University of Technology, Austria
Establishment of “Vienna PhD School of Informatics”

Jul 09 - Mar 09 Project and Research Assistant at E-Voting.CC Gesellschaft
für elektronische Wahlen und Partizipation gGmbH

Jul 08 - Mar 09 Teaching Assistant at Information & Software Engineering Group at
Vienna University of Technology, Austria
Teaching: Business Process Modeling and Business Engineering,
Project Management, Security

Mar 06 - Jun 08 Tutor at Information & Software Engineering Group at
Vienna University of Technology, Austria
Teaching: Business Process Modeling and Business Engineering

2005 - 2010 Sport Management at Sport Productions GmbH
Organization of Tennis Tournaments and Referee

2003 - 2009 Austrian National Union of Students at
Vienna University of Technology, Austria

Publications

2011

1. C. Pichler, K. Wieland, M. Wimmer, M. Zapletal: “Towards Collaborative Cross-Organizational
Modeling”; accepted at 2nd International Workshop on Cross Enterprise Collaboration
(CEC 2011) @ BPM 2011, volume 0099 of LNBIP, Springer, 2011.

2. K. Wieland, G. Fitzpatrick, G. Kappel, M. Seidl, M. Wimmer: “Towards an Understand-
ing of Requirements for Model Versioning Support”; accepted at International Journal of
People-oriented Programming, IGI Global, 2011.

3. P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wimmer. Emerging
Technologies for the Evolution and Maintenance of Software Models, chapter The Past,
Present, and Future of Model Versioning, IGI Global, 2011.

162

4. K. Wieland, P. Langer, M. Seidl, M. Wimmer, G. Kappel: “Turning Conflicts into Collab-
orations: Concurrent Modeling in the Early Phases of Software Development”; submitted
at: Computer Supported Cooperative Work, Springer, 2011.

5. P. Langer, K. Wieland, M. Wimmer, J. Cabot: “From UML Profiles to EMF Profiles
and Beyond”; in: Proceedings of the 49th International Conference on Objects, Models,
Components and Patterns (TOOLS’11), 2011.

6. M. Brandsteidl, K. Wieland, C. Huemer: “Novel Communication Channels in Software
Modeling Education”; in: “Models in Software Engineering - Workshops and Symposia
at MODELS 2010, Reports and Revised Selected Papers”, Lecture Notes in Computer
Science Volume 6627, Springer, 2011, 40 - 54.

7. P. Brosch, H. Kargl, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel: “Conflicts
as First-Class Entities: A UML Profile for Model Versioning”; in: “Models in Software
Engineering - Workshops and Symposia at MODELS 2010, Reports and Revised Selected
Papers”, Lecture Notes in Computer Science Volume 6627, Springer, 2011, ISBN: 978-3-
642-21209-3, 184 - 193.

2010

7. P. Brosch, H. Kargl, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel: “Represen-
tation and Visualization of Merge Conflicts with UML Profiles”; in: “Proceedings of the
International Workshop on Models and Evolution (ME 2010) @ MoDELS 2010”, Online
Publication, 2010, 53 - 62.

8. P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer: “Colex: A Web-based Collab-
orative Conflict Lexicon”; in: “Proceedings of the 1st International Workshop on Model
Comparison in Practice @ TOOLS 2010”, ACM, 2010, 42 - 49.

9. P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel: “Concurrent Mod-
eling in Early Phases of the Software Development Life Cycle”; in: “Proceedings of the
16th Collaboration Researchers’ International Working Group Conference on Collabora-
tion and Technology (CRIWG 2010)”, Springer, 2010, 129 - 144.

10. P. Brosch, M. Seidl, K. Wieland: “Guiding Modelers through Conflict Resolution: A
Recommender for Model Versioning”; Poster: SPLASH’10, Reno/Tahoe, Nevada, USA;
10-17-2010 - 10-21-2010; in: “SPLASH’10: Proceedings of the ACM international con-
ference companion on Object oriented programming systems languages and applications
companion”, ACM, (2010).

11. P. Brosch, G. Kappel, M. Seidl, K. Wieland, M. Wimmer, H. Kargl, P. Langer: “Adaptable
Model Versioning in Action”; “Modellierung 2010”, GI, LNI 161 (2010); 221 - 236.

12. P. Langer, K. Wieland, P. Brosch: “Specification, Execution, and Detection of Refactor-
ings for Software Models”; in: “Proceedings of the Work-in-Progress Session at the 8th

163

International Conference on the Principles and Practice of Programming in Java (PPPJ
2010)”, CEUR-WS.org, 2010, Paper ID 5, 5 pages.

13. P. Brosch, K. Wieland, G. Kappel: “Conflict Resolution in Model Versioning”; Poster: 1st
International Master Class on Model-Driven Engineering, Oslo, Norwegen; 09-30-2010
- 10-02-2010; in: “1st International Master Class on Model-Driven Engineering, Poster
Session Companion”, (2010), 17 - 18.

2009

14. K. Altmanninger, P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, M. Wimmer:
“Why Model Versioning Research is Needed!? An Experience Report”; in: “Proceedings
of the Joint MoDSE-MC-CM 2009 Workshop”, (2009), Paper ID 8, 12 pages.

15. P. Brosch, M. Seidl, K. Wieland, M. Wimmer, P. Langer: “The Operation Recorder:
Specifying Model Refactorings By-Example”; in: “Companion to the 24th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2009”, ACM, 2009, 791 - 792.

16. P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel, W. Retschitzegger, W.
Schwinger: “An Example Is Worth a Thousand Words: Composite Operation Modeling
By-Example”; in: “Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’09)”, Springer, LNCS 5795 (2009), 271
- 285.

17. P. Brosch, M. Seidl, K. Wieland, M. Wimmer, P. Langer: “By-example adaptation of the
generic model versioning system AMOR: how to include language-specific features for
improving the check-in process”; in: “Companion to the 24th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2009”, ACM, 2009, 739 - 740.

18. P. Brosch, M. Seidl, K. Wieland, M. Wimmer, P. Langer: “We can work it out: Col-
laborative Conflict Resolution in Model Versioning”; in: “Proceedings of the 11th Euro-
pean Conference on Computer Supported Cooperative Work (ECSCW 2009)”, Springer,
(2009), 207 - 214.

19. K. Wieland: “Advanced Conflict Resolution Support for Model Versioning Systems”; in:
“Proceedings of the Doctoral Symposium at MODELS 2009”, School of Computing,
Queen’s University, 2009, Paper ID 4, 6 pages.

164

	Introduction
	Background
	Problem Statement
	Contributions
	Methodology
	Thesis Outline

	Related Work
	Collaborative Modeling
	Versioning
	Summary

	A Tour of AMOR
	Introduction to (Meta-)Modeling with EMF and Ecore
	Conflict Categorization
	The AMOR Workflow

	Survey on Versioning in Practice
	Questionnaire
	Expert Interviews
	Lessons Learned

	Turning Collaborations into Annotations
	Running Example
	Conflict-Tolerant Merging of Models
	Consolidation
	Summary

	Making AMOR Collaboration-Aware
	Architecture and Implementation
	Annotation of Models
	Annotation Support with EMF Profiles
	Merging Models in AMOR
	Summary

	Evaluation
	General Setting
	Study Procedure
	Selection of Examples
	Elaboration of Questionnaire
	Results

	Conclusion
	Contributions
	Discussion
	Future Work

	Questionnaire
	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae

