
User-Oriented Rule Management
for Complex Event Processing

Applications
DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Hannes Obweger
Matrikelnummer 0425962

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Christian Huemer

Diese Dissertation haben begutachtet:

(Ao.Univ.Prof. Mag. Dr.
Christian Huemer)

(Ao.Univ.Prof. Dipl.-Ing. Mag.
Dr. Stefan Biffl)

Wien, 15.12.2011
(Hannes Obweger)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

User-Oriented Rule Management
for Complex Event Processing

Applications
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Hannes Obweger
Registration Number 0425962

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Christian Huemer

The dissertation has been reviewed by:

(Ao.Univ.Prof. Mag. Dr.
Christian Huemer)

(Ao.Univ.Prof. Dipl.-Ing. Mag.
Dr. Stefan Biffl)

Wien, 15.12.2011
(Hannes Obweger)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Hannes Obweger
Staudingergasse 13/24, 1200 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich
die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass
ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen
–, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach
entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Abstract

In recent years, Complex Event Processing (CEP) [71] emerged as a new
paradigm for monitoring business environments and automated, event-driven
decision making. Application thereof are manifold, ranging from logistics to
fraud detection and automated trading. The business model behind CEP is
Sense and Respond (S&R) as proposed by Stephan Haeckel [49]. It is rooted
in the idea that purposeful adaptive system design is more effective to deal
with discontinuities and fast-moving industry environments as compared to
traditional plan-and-execute strategies.

One of the key elements of almost any CEP application are event-pattern
rules, which have been called “the foundation for successful applications of
CEP” [71]. Describing event-processing logic of the form

if an event pattern p is detected, then execute action(s) A

these rules showed to be useful across different conceptual layers of a system:
On the level of low-level (pre-)processing and integration logic, event-pattern
rules can be applied to continuously filter, transform, and aggregate events as
emerging from underlying source systems. On the level of high-level business
logic, event-pattern rules allow detecting noteworthy business situations and
acting on their occurrence in near real time.

With the ongoing move of CEP towards the mainstream of enterprise com-
puting, more and more persons are involved in the design, creation, and main-
tenance of event-driven applications. This raises concerns about the usability
and manageability of CEP within the organizational framework conditions of
an enterprise: Given larger and more heterogeneous user groups, it becomes
increasingly important that the different event-pattern rules of an applica-
tion can be created, deployed, and administrated by responsible and qualified
personnel. Business logic, on the one hand, requires deep knowledge of the
business environment, and will typically be in the responsibility of domain
experts. Processing logic, on the other hand, requires a detailed understand-

8

ing of the given CEP framework and its integration with underlying source
systems, and will typically be managed by IT experts. As a consequence, a
comprehensive approach to rule management for CEP applications must pro-
vide workflows and tools that are tailored to the particular skills, competences,
and responsibilities of these user groups.

This thesis contributes to the field of Complex Event Processing a novel ap-
proach to user-oriented rule management. Our approach caters to the needs of
IT experts as well as technically inexperienced business users, for which com-
plementary, yet clearly decoupled workflows are presented. These workflows are
rooted in a conceptual differentiation of event-pattern rules by their general
function within an event-based application: Infrastructural rules, on the one
hand, prepare data for other parts of the application, but do not by themselves
respond to the underlying business environment. Sense-and-respond rules, on
the other hand, set up on the resulting, readily-preprocessed event-based im-
age of underlying source systems and act on noteworthy business situations by
directly or indirectly triggering actions in the business environment.

In the proposed framework, IT experts define infrastructural rules in a sin-
gle, comprehensive model, in parallel and fully integrated with the other el-
ements of an application’s event-processing infrastructure. Sense-and-respond
rule management, by contrast, builds upon a sophisticated system of config-
urable building blocks of pattern-detection and reaction logic. Prepared by
technically versed domain experts according to the general requirements of
an application scenario, these building blocks can be assembled to concrete
event-pattern rules by technically inexperienced business users in a way that
entirely abstracts from underlying complexity. The proposed framework has
been successfully implemented as part of the general-purpose event-processing
framework Sense-and-Respond Infrastructure (SARI) [114]. We present the key
architectural elements of this implementation and elaborate on the front-end
tools of our system.

Further contributions of this thesis are novel approaches to entity-based state
management and hierarchical pattern modeling. These approaches were de-
signed to naturally complement the proposed approach to user-oriented rule
management and have been successfully implemented as part of SARI.

Entity-based state management addresses the problem of monitoring a com-
plex, durable entity – e.g., a counter, a customer, or a queue – which state is
accessible only in the form of continuous, low-level update events. We extend
SARI by the concept of business entity providers, which encapsulate arbitrary
state-calculation logic and manage state in the form of typed, application-
wide, identifiable data structures. These so-called business entities can then
be updated and monitored for exceptional states using event-pattern rules. Us-
ing entity-based state management, the proposed rule-management framework
becomes applicable also in entity-centric environments, which are difficult, if
not impossible, to approach with purely event-based strategies.

9

Hierarchal pattern modeling facilitates reuse of pattern-detection logic on the
level of individual event patterns, which otherwise have to be modeled in sep-
arate, potentially redundant decision graphs. Reusability is achieved through
special language elements – so-called sub-pattern components – which serve as
references to sub-level pattern-detection logic in the super-level event patterns
in which they are used. These elements can be integrated with the other ele-
ments of SARI’s graphical event-pattern language in an accustomed workflow
and configured to the given application context through input parameters. Tai-
lored evaluation strategies enable high-performance event processing as well
as arbitrary nestings of pattern-detection logic.

Our research is framed by a novel, model-driven view on SARI. Splitting the
overall complexity of a SARI application into smaller, easier-to-understand
sub-models, this view aims to serve as a basis for future research and facilitate
communication, interchange, and cooperations within the event-processing
community.

The presented contributions are thoroughly evaluated for technical feasibility,
applicability, and utility in real-world business scenarios. Technical feasibility
of our concepts is proofed by their successful implementation within SARI.
Applicability is demonstrated using an exemplary SARI application for event-
based service assurance, where SARI is applied as an extension to a widespread
workload automation and job scheduling platform. Utility in practical business
environments has been investigated in a case study, conducted at a leading
manufacturer of agricultural machinery.

Kurzfassung der Dissertation

Complex Event Processing (CEP) [71] ermöglicht die kontinuierliche, ereignis-
basierte Überwachung von komplexen Systemen. Relevante Ereignisse in der
Geschäftsumgebung – etwa der Eingang einer Bestellung, das Fehlschlagen ei-
nes Transportprozesses oder das Versenden einer E-Mail – werden dabei in na-
her Echtzeit verarbeitet und anhand kausaler, temporaler oder räumlicher Be-
ziehungen zueinander in Kontext gesetzt. Auf Basis dieser Relationen können
schließlich geschäftsrelevante Informationen hergeleitet werden, welche im Falle
einer getrennten Verarbeitung der einzelnen Ereignisse nicht ersichtlich wären.
Mögliche Anwendungsgebiete für CEP finden sich u.A. in den Bereichen Lo-
gistik und Betrugserkennung, sowie im automatisierten Aktienhandel.

Ein zentrales Element vieler CEP-Applikationen sind sogenannte Ereignisre-
geln. Diese Regeln beschreiben Ereignisverarbeitungslogik der Form

Wenn ein Beziehungsmuster (event pattern) p erkannt wird,
dann führe Aktion(en) A aus

und können auf unterschiedichen konzeptuellen Ebenen einer Applikation ein-
gesetzt werden. Im Bereich der Vorverarbeitungs- und Integrationslogik werden
Ereignisregeln für das Filtern, Transformieren, und Aggregieren von Ereignis-
daten eingesetzt. Im Bereich der Geschäftslogik ermöglichen Ereignisregeln die
automatisierte Erkennung von relevanten Geschäftssituationen. Als Reaktion
auf solche Situationen können dann entsprechende (Gegen-)Maßnahmen an-
gestoßen werden.

Mit der fortschreitenden Verbreitung von CEP wird es aus Unternehmens-
sicht zunehmend bedeutsamer, dass die verschiedenen Ereignisregeln einer
CEP-Anwendung durch entsprechend qualifiziertes Personal erzeugt, ange-
wandt und verwaltet werden können. Vorverarbeitungs- und Integrationslogik

0 Die in dieser Kurzfassung gewählten Fachbegriffe entsprechen der Terminologie
Bruns und Dunkels [15].

12

benötigt detailliertes Wissen über die Gesamtarchitektur einer Applikation, so-
wie die Einbindung dieser Applikation mit darunterliegenden Quellsystemen.
Solche Kenntnisse bestehen üblicherweise in der IT-Abteilung eines Unterneh-
mens, sodass die Erstellung und Verwaltung entsprechender Ereignisregeln von
technisch-versierten Mitarbeitern betrieben werden sollte. Im Gegensatz dazu
benötigt Geschäftslogik das Wissen von Domänenexperten: Welche Situationen
stellen eine Gefahr oder Chance dar, und welche erfordern keine weitere Be-
achtung? Welche Aktionen sollen im Falle einer bestimmten Geschäftssituation
getätigt werden? Ein gesamtheitliches, benutzergruppenübergreifendes Regel-
verwaltungssystem für CEP-Anwendung muss daher für IT-Experten ebenso
wie für technisch unerfahrene Domänenexperten effizient benutzbar sein.

Die vorliegende Dissertation beschreibt ein neuartiges Regelverwaltungssystem
für CEP-Anwendungen. Dieses System ermöglicht es IT-Experten ebenso wie
Domänenexperten, Ereignisregeln entsprechend ihrer spezifischen Fähigkeiten
und Verantwortungen zu erstellen, auszuführen und zu administrieren. Das
vorgestellte Framework basiert dabei auf einer konzeptuellen Unterscheidung
von Ereignisregeln nach ihrer grundsätzlichen Funktion innerhalb einer CEP-
Anwendung: Die Gruppe der sogenannten Infrastrukturregeln beinhaltet all je-
ne Regeln, welche Daten für andere Teile einer CEP Anwendung vorbereiten,
jedoch nicht selbstständig in die Geschäftsumgebung zurückwirken. Im Gegen-
satz dazu beinhaltet die Gruppe der sogenannten Sense-and-Respond-Regeln
all jene Regeln, die direkt oder indirekt in das Geschäftsumfeld zurückwirken,
dabei aber keine Daten für andere Teile der Applikation bereitstellen. Für
die beschriebenen Gruppen werden sich gegenseitig ergänzende, jedoch sauber
getrennte Regelverwaltungsstrategien vorgestellt.

Infrastrukturregeln werden im vorliegenden Framework als vollständige, un-
mittelbar ausführbare Artefakte modelliert. Technisch-versierte Benutzer er-
zeugen und verwalten diese Artefakte gemeinsam mit den anderen Elementen
der sogenannten Ereignisverarbeitungsinfrastruktur einer CEP-Anwendung,
also all jenen Elementen, die eine vollständige, ereignisbasierte Abbildung
der darunterliegenden Geschäftsumgebung erzeugen ohne selbst in diese
zurückzuwirken. Im Gegensatz dazu basiert die Erzeugung und Verwaltung
von Sense-and-Respond-Regeln auf einem Bausteinsystem konfigurierbarer
Mustererkennungs- und Reaktionslogik. Diese Bausteine werden von technisch-
versierten Benutzern vorbereitet und können von Domänenexperten ohne tech-
nisches Hintergrundwissen zu konkreter Geschäftslogik zusammengesetzt wer-
den. Das vorgestellte Framework wurde als Erweiterung zum generischen Er-
eignisverarbeitungsframework Sense-and-Respond Infrastructure (SARI) [114]
erfolgreich implementiert. Implementierungsdetails werden im Zuge dieser Dis-
sertation ausführlich beschrieben.

Die vorliegende Dissertation beschreibt weiters neuartige Ansätze zu En-
titäten-basierter Zustandsverwaltung und hierarchischer Muster-Modellierung.

13

Diese Konzepte ergänzen das vorgestellte Regelverwaltungssystem und wurden
als Teil von SARI implementiert.

Entitäten-basierte Zustandsverwaltung ermöglicht die Überwachung von dau-
erhaften, komplexen Entitäten wie etwa Zählern, Benutzerkonten, oder Warte-
schlangen, selbst wenn der gegenwärtige Zustand dieser Entitäten ausschließ-
lich als eine Folge inkrementeller Änderungsereignisse verfügbar ist. Der vor-
gestellte Ansatz erweitert SARI um sogenannte Business-Entity-Provider ; die-
se – als weitestgehend frei implementierbare Plugins konzipierten – Kompo-
nenten kapseln beliebige Zustandsberechnungen und verwalten Zustände als
applikationsweite, eindeutig identifizierbare Datenstrukturen. Die verwalteten
Datenstrukturen – in weiterer Folge als Geschäftsobjekte bezeichnet – können
dann über Ereignisregeln ausgelesen und aktualisiert werden. Mittels des vor-
gestellten Ansatzes wird das beschriebene Regelverwaltungssystem auch in En-
titäten-lastigen Geschäftsumgebungen anwendbar. Solche Szenarien sind mit
ausschließlich ereignisbasierten Strategien kaum handhabbar.

Hierarchische Muster-Modellierung ermöglicht die Wiederverwendung von
Mustererkennungslogik auf der Ebene von individuellen Beziehungsmustern.
Eine solche Wiederverwendbarkeit ist in SARI, ebenso wie in zahlreichen an-
deren CEP-Frameworks, nicht oder nur in eingeschränktem Maße gegeben, so-
dass Ereignismuster stets von Grund auf und in potentiell redundanter Form
erstellt werden müssen. Der vorgestellte Ansatz basiert auf neuartigen Sprach-
elementen, welche als Referenzen auf andere, in weiterer Folge logisch unterge-
ordnete Beziehungsmuster interpretiert werden. Diese Sprachelemente können
in gewohnten Abläufen mit bestehenden Sprachelementen integriert und hin-
sichtlich des gegebenen Anwendungsfalles konfiguriert werden. Spezialisierte
Auswertungsstrategien ermöglichen performante Ereignisverarbeitung sowie
beliebige Verschachtelung von Mustererkennungslogik.

Die vorgestellten Konzepte sind in eine umfangreiche, modellorientierte Be-
schreibung von SARI eingebunden. Diese Beschreibung unterteilt SARI-
Anwendungen in kleinere, einfacher zu verstehende Sub-Modelle und soll eine
Basis für zukünftige Erweiterungen darstellen. Weiters soll die Beschreibung
Austausch und Zusammenarbeit innerhalb der Fachwelt erleichtern.

Die vorgestellten Konzepte werden abschließend hinsichtlich ihrer technischen
Machbarkeit, Anwendbarkeit und ihrer Nützlichkeit in praktischen Anwen-
dungsfällen evaluiert. Technische Machbarkeit wird anhand der vollständigen
Implementierung der Konzepte dargelegt. Anwendbarkeit wird auf Basis einer
Beispielsanwendung für ereignisbasierte Service Assurance untersucht; hier-
bei wird SARI als Erweiterung zu einer weitverbreiteten Job-Scheduling- und
Workload-Automation-Plattform eingesetzt. Die Nützlichkeit des vorgestell-
ten Regelverwaltungssystems in praktischen Anwendungsfällen wird in einer
Fallstudie, durchgeführt bei einem weltweit führenden Produzenten landwirt-
schaftlicher Gerätschaft, untersucht.

Contents

1 Introduction . 21
1.1 Motivation . 21
1.2 Event-Pattern Rules: Applications and Challenges 24
1.3 Scope of this Thesis . 26
1.4 Research Method . 29
1.5 Contributions . 29
1.6 Evaluation . 33
1.7 Structure of this Thesis . 34

2 Principles of Complex Event Processing 37
2.1 Events . 37
2.2 Event Types . 38
2.3 Event Patterns . 39
2.4 Event-Pattern Rules . 39
2.5 Complex Events . 40
2.6 Preliminary Example . 40

3 Sense-and-Respond Infrastructure . 43
3.1 Introduction . 43

3.1.1 Key Characteristics . 44
3.1.2 Sense-and-Respond Loop . 44
3.1.3 SARI Applications in a Nutshell . 45

3.2 A Model-Based View on SARI Applications 48
3.3 Event Model . 51

3.3.1 Meta Model . 51
3.3.2 Example . 52

3.4 Correlation Model . 53
3.4.1 Meta Model . 53
3.4.2 Correlation Band Implementations 54
3.4.3 Example . 55
3.4.4 Correlating Events at Run Time . 56

16 Contents

3.5 Event Processing Model . 57
3.5.1 Meta Model . 57
3.5.2 Event Adapters . 59
3.5.3 Event Services . 59
3.5.4 Intermediate Sockets . 60
3.5.5 Example . 60

3.6 System Architecture . 61
3.6.1 Data Layer . 61
3.6.2 Back-End Layer . 63
3.6.3 Front-End Layer . 64

3.7 Event Access Expressions . 64
3.7.1 Basic Operators . 65
3.7.2 Handling Collection Types . 65
3.7.3 Accessing Single Events . 65
3.7.4 Accessing Sequences of Events . 66
3.7.5 Functions . 67

4 Decision Graphs . 69
4.1 Introduction . 69

4.1.1 Key Characteristics . 71
4.1.2 Decision Graphs and Rules . 72
4.1.3 Outlook . 72

4.2 Meta Model . 72
4.3 Rule Components . 74

4.3.1 Common Characteristics . 74
4.3.2 Condition Components . 75
4.3.3 Time-Based Components . 77
4.3.4 Action Components . 79

4.4 Example . 80
4.5 Managing Decision Graph State . 81

4.5.1 Merging Decision-Graph States . 82
4.5.2 Stateless Decision Graphs . 82

5 A Framework for User-Oriented Rule Management 85
5.1 Introduction . 85
5.2 Conceptual Foundations . 88
5.3 Related Work . 91

5.3.1 Rule Management for Event-Based Systems 91
5.3.2 Complex Event Processing for Business Users 92
5.3.3 Layered Event-Processing Models 94
5.3.4 Differentiating Rules in Event Processing 95
5.3.5 Business Rule Management Systems 96

5.4 Infrastructural Rule Management . 98
5.4.1 Requirements . 98
5.4.2 Model Overview . 99

Contents 17

5.4.3 Rule Definitions . 100
5.5 Sense-and-Respond Rule Management . 102

5.5.1 Requirements . 103
5.5.2 Model Overview . 104
5.5.3 Pattern Definitions . 110
5.5.4 Action Definitions . 113
5.5.5 Business Patterns . 115
5.5.6 Business Actions . 118
5.5.7 Sense-and-Respond Rules . 119
5.5.8 Rule Spaces . 122

5.6 User Rights Management . 125
5.7 Implementation Architecture . 127

5.7.1 Data Layer . 128
5.7.2 Back-End Layer . 129
5.7.3 Front-End Layer . 131

5.8 Modeling Studio . 131
5.8.1 Pattern and Rule Definition Editor 132
5.8.2 Action Definition Editor . 132
5.8.3 Rule Space Editor . 132

5.9 Web Client . 137
5.9.1 Integration . 137
5.9.2 Interface Overview . 138
5.9.3 Rule Monitoring . 139
5.9.4 Rule Creation from Scratch . 139
5.9.5 Rule Creation from Template . 145
5.9.6 Handling Inconsistent Rules . 146

6 Entity-Based State Management . 149
6.1 Introduction . 149

6.1.1 State Management in Complex Event Processing 150
6.1.2 Business Entity Providers: An Architectural Overview . 151
6.1.3 Business Entities in SARI Rule Management 152
6.1.4 SARI Application Model – Revisited 155
6.1.5 Outlook . 155

6.2 Related Work . 156
6.3 Meta Model . 158
6.4 Exemplary Business Entity Providers . 160

6.4.1 Scores . 161
6.4.2 Base Entities . 162
6.4.3 Sets . 165

6.5 Correlation Model Extensions . 167
6.5.1 Meta Model . 167
6.5.2 Example . 168

6.6 Decision Graph Model Extensions . 169
6.6.1 Business Entity Actions . 169

18 Contents

6.6.2 Business Entity Conditions . 171
6.6.3 Handling Internal Business Entities 174

6.7 Implementation . 175
6.7.1 Data Layer . 176
6.7.2 Back-End Layer . 177
6.7.3 Front-End Layer . 178
6.7.4 Business-Entity Management at Run Time 178
6.7.5 Reference Business-Entity Providers 179

6.8 Example . 181
6.9 Summary . 183

7 Hierarchical Pattern Modeling . 185
7.1 Introduction . 185
7.2 Related Work . 190
7.3 Decision Graph Model Extensions . 192

7.3.1 Pattern Definitions . 192
7.3.2 Sub-Pattern Component . 194

7.4 Evaluation . 197
7.4.1 Evaluation by Expansion . 198
7.4.2 Hierarchical Evaluation . 201
7.4.3 Discussion and Comparison . 202

7.5 Example . 204

8 Example . 209
8.1 Introduction . 209
8.2 System Overview . 210
8.3 Event Model . 211
8.4 Business Entity Model . 212
8.5 Correlation Model . 213
8.6 Event Processing Model . 213
8.7 Infrastructural Rules . 215
8.8 Sense-and-Respond Rules . 217

8.8.1 Rule Spaces Overview . 217
8.8.2 Runtime Monitoring: Pattern Definitions, Business

Patterns . 218
8.8.3 Runtime Monitoring: Action Definitions, Business

Actions . 221
8.9 Discussion . 221

9 Case Study . 223
9.1 Introduction . 223
9.2 Project Environment . 224
9.3 Problem . 225
9.4 Project Structure . 225
9.5 Application Overview . 226

Contents 19

9.6 Discussion . 228

10 Conclusion . 233
10.1 Summary . 233
10.2 Evaluation Against Design Science . 237
10.3 Open Issues and Future Work . 241

References . 253

1

Introduction

1.1 Motivation

There are events which are so great that if a writer has participated in
them his obligation is to write truly rather than assume the presumption
of altering them with invention.

When Hemingway [52] wrote this, he was talking about the Spanish civil war,
and he could have said similar things about a graceful corrida de torros, a dev-
astating knockout, a long but fruitless safari, or a hazy sunrise on the Cuban
sea. Albeit honorable and truthful, thoughts like this may not always be neces-
sary when it comes to the more “everyday” events a person or company is faced
with day by day: The ringing of an alarm clock, the late arrival of a subway
train, the receipt of a customer request, or the cancellation of a cargo flight.
Still, the appropriate and timely reception of such occurrences and their possi-
ble incorporation into future actions and decisions is crucial for the immediate
and long-term success of an individual or corporation. “Event processing” in
this very common sense is fundamental to every intelligent being, and as soon
as individual events need to be combined based on complex interrelationships,
it requires skills that go far beyond primitive stimulus-response patterns.

In computer science, event-based computing is nothing new, but “has been
going on for more than fifty years” [73]. Over decades, event-based techniques
were developed independently “in different areas to address similar challenges
introduced by scale, system evolution, and real-time requirements” [83]. In
discrete event simulation, for example, the behavior of a complex system such
as a hardware design, a factory production line, or a natural phenomenon like
weather is modeled by generating events that mimic the interactions between

0 This thesis is formatted based on a LATEX template provided by Gockel [45].

22 1 Introduction

the components of the system.1 Active databases enable application develop-
ers to automatically invoke operations in response to database update events
such as inserts. In software engineering, event-based interactions can be found
in software patterns such as the observer pattern [55] and are prominently
employed in graphical user interface systems [83].

With the invention of message-oriented middlewares, the rise of the Internet,
and the rapid uptake of e-commerce, event-based communication had even-
tually become the basis for “running applications everywhere – in business,
government, and in the military” [74]:

“Any large enterprise had linked its applications across the networks
from office to office, sometimes around the globe. It now operated on
top of what was referred to as ‘the IT layer’. Business and manage-
ment level events – say trading orders, or planning schedules or just
plain email – were entering its IT layer from all corners of the globe,
from external sources as well as from its own internal offices. [. . .] En-
terprises were essentially operating in a veritable cloud of application
level events.” [74]

In this new and challenging context, considerable efforts were made to establish
the technical infrastructures and operational workflows that enable enterprises
to (i) transfer events in a fast and reliable manner, and (ii) react timely, and
often in a fully automated manner, to the occurrence of individual events such
as the receipt of an order. Although counterexamples are available until today,
these problems could be solved well by many companies. But what about the
high-level trends, processes, and activities that are not signified by separate
data items? That can only be recognized as a combination of dozens, if not
hundreds or thousands, of structurally and temporally disconnected events?
That, in some cases, are intended to remain undiscovered, e.g., when fraud is
committed? What about “connecting the dots” [27]? High-level information
that one might want to extract from a company’s event cloud may include:

• Are all customers served according to agreed service levels? Does a partic-
ular customer qualify for promotions or premium conditions, e.g., due to
loyal buying behavior?

• Is the system at risk? Are our services abused for criminal purposes, e.g.,
money laundry?

• Are there new market opportunities, e.g., due to price adjustments of mul-
tiple competitors?

For a long time, companies relied on technologies such as data warehousing,
data mining, or visual analysis to answer questions like these. All these ap-

1 Discrete event simulation, network development, active databases, and middleware
solutions have been identified as the “primeval soup” of Complex Event Processing
by Luckham [73]. Other uses of events are discussed in the literature (e.g., [83, 37]).

1.1 Motivation 23

proaches can provide great insights into the state of a company. However, they
depend on discrete snapshots of a system (e.g., created periodically using an
Extraction/Transformation/Load process) and are typically not optimized for
the characteristics of event data.

Complex Event Processing (CEP) as originally proposed by David Luck-
ham [71] emerged as a discipline around the year 2000 to fill this gap in enter-
prise computing. CEP is no longer limited to the transport of events, or the
handling of individual ones, although these steps occur in almost any CEP ap-
plication. Its main purpose is to put events in context, and to deduce knowledge
that is otherwise inaccessible when viewing events one by one. The key to such
knowledge are complex events, i.e., events that signify occurrences at a higher
level of abstraction and are derived from sets of lower-level events through spe-
cialized algorithms. In the online-gambling domain, for example, a particular
sequence of pay-in, bet placement, and cash-out actions could be combined
into a higher-level “money laundry” event based on known fraud patterns.
Still, detecting and creating such events is not possible without complementary
processing steps such as the enrichment, filtering, or transformation of (simple
as well as complex) events. In contrast to data warehousing, data mining, or
visual analysis, CEP processes events “on the fly” and in a fully automated
manner. It therewith facilitates what Stephan Haeckel [49] called a sense-and-
respond organization: A company that is “aggressively open”, actively probes
for environmental and internal signals, identifies business challenges as they
happen, and responds to them with minimal latency.

Today, about ten years after its introduction, Complex Event Processing
has made its way into the mainstream of enterprise computing. Numerous
projects have been initiated, in the industry (cf. [48, 135]) as well as in
academia (e.g., [1, 2, 4, 31, 117, 140, 141]) and the Open Source community
(e.g., [36, 93]). The CEP market, long dominated by startups and university
spin-offs, is estimated at US$ 580 million by 2013 [19] and fiercely contested
by some of the industry’s most prominent players. At the time of writing, this
includes Microsoft [78], Oracle [94], IBM [56], and SAP [84]. According to stud-
ies, “event processing is the fasted growing segment of enterprise middleware
software” [37].

As a result of these developments, more and more people are involved in the
design, creation, and maintenance of event-driven applications. At the same
time, vendors of CEP technology have not been able to provide technologies,
tools, and workflows that are oriented towards larger, more heterogeneous
user groups. Still, notable skills and high-end development environments are
required also for tasks that should be in the responsibility of domain experts
and business users. This is especially fatal when it comes to the creation,
deployment, and administration of event-pattern rules, which find use in almost
every event-processing framework and have been called “the foundation for
successful applications of CEP” [71].

24 1 Introduction

In this thesis, we present a novel approach to rule management for Complex
Event Processing applications. It caters to the needs of IT experts as well as
business users through tailored workflows, artifacts, and tools. Our approach
has been fully implemented as part of the general-purpose event-processing
framework Sense-and-Respond Infrastructure (SARI) [114] and successfully
applied in use cases from different business domains.

Outlook

The remainder of this chapter is structured as follows: In Section 1.2, we discuss
the extraordinary role of event-pattern rules in CEP and the challenges that
arise from their management in practical business environments. In Section 1.3,
we define the scope of this thesis. The applied research method is discussed
in Section 1.4. In Section 1.5 and Section 1.6, contributions and evaluations
of our research are summarized. The structure of this thesis is outlined in
Section 1.7.

1.2 Event-Pattern Rules: Applications and Challenges

The ultimate aim of CEP is to detect noteworthy business situations in large
sets of events and react to their occurrences in near real time. With the evo-
lution of event processing from hardcoded conditions deep within purpose-
specific applications towards stand-alone, general-purpose event-processing
frameworks, event-pattern rules of the form

if an event pattern p is detected, then execute action(s) A

have proved particularly suitable for this purpose. Within an event-processing
application, event-pattern rules may be evaluated on streams of input events
and produce new events in response to the presence or absence of a specified
class of event situations. In further consequence, these response events may
cause respective actions in the business environment.

Practical CEP is, however, much more than “just” high-level sense-and-
respond business logic. CEP instead reveals much of its power when it comes
to the integration of multiple and highly heterogeneous event producers and
event consumers, the preprocessing of raw, per se disconnected event data at a
low level of abstraction, and the removal of erroneous, duplicate, or irrelevant
input. Sense-and-respond business logic may thus be considered the top of a
pyramid, resting upon considerable amounts of what we call “processing logic”
to be applied prior to and after the high-level decision making. Processing tasks
typically performed within an event-based application include:

1.2 Event-Pattern Rules: Applications and Challenges 25

• Aggregations describe the generation of more abstract, higher-level com-
plex events from collections of lower-level occurrences, making the signi-
fied activities better understandable to humans and easier to handle in
downstream event-processing logic. A typical event aggregation may, for in-
stance, aggregate related pairs of “Account Opened” and “Account Closed”
events that occur within a specified time frame to “Short-Term Account
Creation” events.

• Filtering allows reducing the overall set of events to those that are relevant
for the given processing task.

• Transformations take a single event as input and produce a single event
as output, whereas the output event is derived from the input event.

Just like high-level situation detection, all these processing tasks (i) depend
on the detection of a specific event pattern in order to be executed – single
events in case of transformations and simple filters, event situations in case of
complex filters and aggregations – and (ii) generate output events in response
to a matched pattern. In practical CEP applications, event-pattern rules are
therefore used for both: high-level, sense-and-respond business logic on the
one hand, low-level event aggregations, filtering, and transformations on the
other. In the majority of frameworks, one and the same rule evaluation tech-
nique, one and the same rule description language, and one and the same rule
management approach are used for these purposes.2

Event-pattern rules still differ, however, regarding their particular function in
an application, show different characteristics, and will typically be associated
with different user groups within an enterprise.

Business logic, on the one hand, is likely to change over time and to evolve along
with the objectives of a business, e.g., when new risks and opportunities are
identified, or new markets and customer groups emerge. In the online-gambling
domain, for example, “the ever-evolving cat-and-mouse game between players
and merchants” [29] forces betting providers to continuously widen their fraud-
detection strategies and tweak existing patterns of fraudulent user behavior.
Business logic will typically be defined by domain users with a deep knowledge
of the business environment and a clear understanding of the specific actions
needed to keep business going day to day. However, these users will typically
lack the technical skills that are necessary to define complex event-processing
logic in a way that can be interpreted by the CEP engine at hand.

2 Using one and the same technique for expressing business logic and processing
logic becomes especially obvious when comparing situation detection and aggre-
gation. In the words of Luckham [71], “constraints [rules that are concerned with
situation detection, H.O.] can be regarded a special kind of map [rules that are
concerned with aggregation, H.O.]. However, the purpose of a constraint is not
filtering or aggregation, but detection. This is a rather subtle distinction, but it
is an important one.”

26 1 Introduction

Processing logic, on the other hand, typically remains relatively stable over
time and is seldom affected by changes in the high-level decision making; for
example, when monitoring a stream of betting events for a newly-discovered
fraud technique there is usually no need to change the way in which erroneous
events are rectified or filtered. Processing logic requires, however, a deep knowl-
edge about the various event producers, event consumers and their interfaces,
the interaction patterns employed to sense and respond events, and the ways
in which event data shall be processed and routed through the application.
As a consequence, processing logic will typically be administrated by IT ex-
perts with a deep understanding of the employed CEP framework. In practice,
such users will often lack the skills and competences for high-level, operational
decision making.

To fully unleash the power of CEP across all parts of an organization, an ap-
proach to rule management for Complex Event Processing systems – i.e., the
overall set of tools and workflows provided for the creation, application, and
administration of event-pattern rules – must therefore cater to the needs of
IT experts as well as business users. Business users must be provided facilities
to define high-level decision-making logic in a non-technical, business-oriented
manner. IT experts, by contrast, must be provided facilities to define process-
ing logic such as event aggregations, filters, and transformations in an effective
manner with little administrative overhead. Following from these highly diver-
gent and partly opposing requirements, approaches that focus on only one
group of users will inevitably fail to support the work of the other. This, in
turn, leads to increased costs and reduced agility, an error-prone IT infrastruc-
ture, and discontent among employees.

1.3 Scope of this Thesis

For many years, discussions on CEP have primarily focused on purely techni-
cal qualities such as expressiveness and performance (cf. [54]). These issues are
doubtlessly essential for CEP to qualify for large-scale environments, and also
serve as an argument “pro CEP” compared with well-established approaches
such as Business Rule Management (BRM) and Business Process Management
(BPM) [14]. We claim, however, that usability and maintenance are equally
important for the success of CEP in industrial settings where large, heteroge-
neous user groups are involved in the setup and maintenance of event-driven
applications.

This thesis addresses the problem of designing, implementing, and evaluating
a rule management system for Complex Event Processing applications that
caters to the needs of IT experts as well as business users. Rule management,
which we understand as

1.3 Scope of this Thesis 27

the overall set of tools and workflows provided for the creation, de-
ployment, and administration of event-pattern rules,

has been identified as a key issue for the future development of CEP both in
the academic community [27, 72] and in the industry [33].

In the course of our research, the following concepts have been elaborated:

• Rule management framework. The centerpiece of our work is an in-
novative framework for user-oriented rule management. Starting from a
conceptual differentiation of event-pattern rules into infrastructural rules
(processing logic) and sense-and-respond rules (business logic), we present
a suite of user roles, workflows, tools, and artifacts that is tailored to the
particular skills, responsibilities, and requirements of IT experts as well as
business users.

• Entity-based state management. As a first extension to this frame-
work, we present a novel approach to state management for CEP applica-
tions. It is based on the idea of durable, application-wide data structures
– so-called business entities – which can be updated and monitored for ex-
ceptional situations through event-pattern rules. Using entity-based state
management, the presented rule-management framework becomes appli-
cable also in data-centric business environments that are difficult, if not
impossible, to approach with purely event-based strategies.

• Hierarchical pattern modeling. As a second extension to the proposed
framework, we investigate a novel approach to hierarchical pattern mod-
eling. It enables reuse of event patterns within other, higher-level event
patterns and aims to reduce the overall degree of complexity and redun-
dancy of an application’s event pattern library. Within the proposed rule-
management framework, hierarchical pattern modeling aids the work of IT
experts and technically versed domain experts.

The presented concepts are designed and implemented on the basis of Sense-
and-Respond Infrastructure (SARI) as originally proposed by Schiefer and
Seufert [114]. SARI is a general-purpose CEP framework that has proved suc-
cessful in a wide range of business domains, ranging from fraud detection
and prevention [109, 125] to logistics [112], medical care [133], and automated
product recommendation [67]. Commercial distributions of SARI are available
under the name UC4 Decision [132] (formerly: Senactive InTime) and have
been awarded “innovative, impactful, and intriguing” in Gartner’s Cool Ven-
dor Report 2008 [43]. The conceptual foundations of SARI, its architecture
and key concepts are discussed in great detail in Chapter 3 of this thesis.

Figure 1.1 sketches the scope of the proposed concepts within SARI.

28 1 Introduction

Organizational Structures
and Workflows

Interfaces

Artifacts

Event Processing
Strategies

Infrastructure

Se
n

se
-a

n
d

-R
e

sp
o

n
d

 In
fr

as
tr

u
ct

u
re

R
u

le
 M

an
ag

e
m

e
n

t
Fr

am
e

w
o

rk

H
ie

ra
rc

h
ic

al
 P

at
te

rn
 M

o
d

e
lin

g

En
ti

ty
-B

as
e

d
 S

ta
te

 M
an

ag
e

m
e

n
t

Major Impact Minor Impact

Figure 1.1. Scope of this Thesis

On the left-hand side, SARI is divided into five layers ranging from the or-
ganizational settings in which it is used to the low-level infrastructure of the
framework. The organizational structures and workflows layer refers to the
distribution of roles and responsibilities within a company and the strategies
applied in dealing with the system. The interfaces layer refers to the suite of
front-end tools provided for setting up and maintaining a SARI application.
The artifacts layer refers to the logical elements of a SARI application to be
created and administrated through these interfaces. This may, for example,
include event types, event patterns, or event-pattern rules. The event process-
ing strategies layer refers to the methods and techniques employed for the
execution of user-defined event processing logic. Most notably, this includes
the evaluation of event-pattern rules on incoming event streams. The infras-
tructure layer refers to low-level activities such as the balancing of event pro-
cessing workload among distributed machines, synchronization between these
machines, event data persistence, or fail-over mechanisms.

On the right-hand side, the proposed concepts are shown together with their
impact on existing SARI functionality and usage patterns. The core rule-
management framework imposes a set of user roles and workflows, for which
tailored interfaces, rule-management artifacts, and event-processing strategies
are provided. The proposed approaches to entity-based state management and
hierarchical pattern modeling are generally independent from the organiza-
tional settings of a company. However, they come with new artifacts and re-
quire significant changes in SARI’s event processing algorithms. Minor changes
are also needed in SARI’s front-end tools. Our research does not touch on the
infrastructural layer of SARI.

1.5 Contributions 29

1.4 Research Method

Research on Complex Event Processing is often conducted at the intersection
of computer science and the Information Systems (IS) discipline (e.g., [66]),
who’s goal is to develop “knowledge concerning both the management of in-
formation technology and the use of information technology for managerial
and organizational purposes” [143]. This is especially true if the research focus
is on usability and manageability within the organizational framework con-
ditions of an enterprise, as it is the case in the present thesis. Within the
information systems discipline, two complementary paradigms exist [13]: The
behavioral-science paradigm, on the one hand, seeks to empirically investigate
the use and impact of existing information systems on individuals, groups, or
organizations, and to develop theories that explain or predict human behavior.
The design-science paradigm, on the other hand, is rooted in engineering [121]
and seeks to create and evaluate innovate IT artifacts that solve organizational
problems. Such IT artifacts can be separated into constructs (i.e., vocabulary
and symbols), models (i.e, abstractions and representations), methods (i.e., al-
gorithms and practices), and instantiations (i.e., implemented and prototype
systems) [53].

In their widely cited work on “Design Science in Information Systems Re-
search”, Hevner et al. [53] present a framework of guidelines and criteria for
the successful conduction of design-science research (Table 1.1). The work pre-
sented in this thesis is oriented towards Hevner’s framework and focuses on the
design and implementation of an innovative rule management framework for
Complex Event Processing applications; while technical feasibility, applicabil-
ity, and utility of the proposed concepts are thoroughly evaluated, behavioral
user studies are outside the scope of this thesis. In the following sections, the
core guidelines of Hevner’s framework – namely, (i) providing valuable con-
tributions in the area of the developed design artifacts, and (ii) the rigorous
evaluation of these artifacts – are discussed in the context of our work.

An evaluation against the complete set of criteria is given in Chapter 10,
“Conclusion”.

1.5 Contributions

Following Hevner et al. [53], design-science research “must provide clear contri-
butions in the areas of the design artifact, design construction knowledge [. . .]
and/or design evaluation knowledge [. . .].” This thesis contributes to the field
of Complex Event Processing, for which a novel approach to user-oriented rule
management is presented. Further contributions are a model-driven reference
description of SARI, a novel approach to entity-based state management, and
a novel approach to hierarchical pattern modeling.

30 1 Introduction

Guideline Description

1 Design as an Artifact Design science requires the creation of a purposeful IT
artifact.

2 Problem Relevance Design science must be relevant with respect to an im-
portant business problem.

3 Design Evaluation Design science must evaluate the utility, quality, and ef-
ficacy of a design artifact using well-executed evaluation
methods.

4 Research Contributions Design science must provide clear and verifiable contri-
butions in the areas of the design artifact, design foun-
dations, and/or design methodologies.

5 Research Rigor Design science relies upon the application of rigorous
methods in both the construction and evaluation of the
design artifact.

6 Design as a Search Process Design science must apply a search process to reach de-
sired ends while satisfying laws in the problem environ-
ment.

7 Communication of Research Design science must be presented effectively both to
technology-oriented as well as management-oriented au-
diences.

Table 1.1. Guidelines for Design-Science Research [53]

A Model-Driven View on Sense-and-Respond Infrastructure

Problem. Sense-and-Respond Infrastructure (SARI) [114] is both the result
and the foundation of considerable research efforts in the fields Complex Event
Processing, Information Visualization, Data Mining, and Data Management
(e.g, [92, 104, 105, 107, 108, 109, 111, 112, 113, 114, 123, 125, 133]). Commercial
distributions of SARI have been successfully applied in industrial settings rang-
ing from finance to manufacturing and e-commerce, and are well-recognized in
leading analyst reports [43, 48, 135]. Still, SARI lacks a complete and techni-
cally oriented reference description that may serve as a basis for future research
and facilitate communication, interchange, and cooperations within the event
processing community.

Contribution. This thesis introduces a model-driven view on SARI. In this
view, the overall complexity of a SARI application is decomposed into a col-
lection of smaller, easier-to-understand sub-models, each of which is in de-
fined relationships to other sub-models. Therewith, this thesis aims to con-
tribute to ongoing efforts towards clarifying terminologies and classifying
event-processing strategies among the members of the event processing com-
munity, especially driven by the Event Processing Technical Society (EPTS).3

3 http://www.ep-ts.com

http://www.ep-ts.com

1.5 Contributions 31

A Framework for User-Oriented Rule Management

Problem. Event-pattern rules of the form “if an event pattern p is detected,
then execute action(s) A” can be used on different conceptual layers of an
event-based application, in low-level pre-processing and integration steps (such
as aggregation, filtering, and transformation) as well as in high-level, sense-
and-respond -based decision making. With the growing role of CEP in enter-
prise computing, it hence becomes increasingly important for companies that
event-pattern rules are manageable to personnel that are best qualified to op-
erate on these layers, using workflows and tools that are geared towards the
particular skills, competences, and responsibilities of these user groups. To our
best knowledge, existing CEP frameworks have not been able to satisfy this
requirement.

Contribution. This thesis presents a novel approach to rule management for
Complex Event Processing applications. It caters to the needs of IT experts as
well as business users, for which complementary, yet clearly decoupled work-
flows are presented. These workflows are rooted in a conceptual differentiation
of event-pattern rules by their general function within an event-based appli-
cation: Infrastructural rules, on the one hand, prepare data for other parts of
the application, but do not by themselves respond to the underlying business
environment. Sense-and-respond rules, on the other hand, set up on the result-
ing, readily-preprocessed event-based image of the underlying source systems
and act on noteworthy business situations by directly or indirectly triggering
actions in the business environment.

In the proposed framework, IT experts define infrastructural rules in a
single, comprehensive model, in parallel and fully integrated with the other el-
ements of an application’s event-processing infrastructure. Sense-and-respond
rule management, by contrast, builds upon a sophisticated system of config-
urable building blocks of pattern-detection and reaction logic. Prepared by
technically versed domain experts according to the general requirements of
an application scenario, these building blocks can be assembled to concrete
event-pattern rules by technically inexperienced business users in a way that
entirely abstracts from underlying complexity. Similar, the deployment of so-
created sense-and-respond rules is performed in a fully automated and trans-
parent manner based on predefined associations between building blocks and
rule-execution agents. Despite significant differences in the creation and de-
ployment of event-pattern rules, both infrastructural and sense-and-respond
rule management set up on SARI’s unified rule-evaluation model, which facil-
itates a lean, easy-to-maintain back-end architecture.

The proposed framework has been successfully implemented within SARI.
Applicability and utility in real-world use cases is demonstrated using an ex-
emplary application scenario and a case study.

32 1 Introduction

Entity-Based State Management

Problem. Complex Event Processing using event-pattern rules has proved
suitable for detecting noteworthy business situations of a defined length and
structure, where the focus is on relationships between the involved events. By
contrast, challenges arise when the overall state of a complex, durable busi-
ness entity – e.g., a counter, a server, or a task queue – shall be derived from
incremental, low-level updates of that state, and each update is represented
by a (possibly complex) event. Depending on the given event-processing ar-
chitecture, these challenges may include (i) the demand for a separate, non-
volatile data management layer, (ii) the potential complexity of calculating
overall entity state from low-level updates, (iii) the need for actively reacting
on entity-level state changes, (iv) the integration of entity data with existing,
otherwise event-specific concepts, and (v) general ease of use for end users.

Contribution. In this thesis, we present a novel approach to state manage-
ment for Complex Event Processing applications. We propose business entity
providers, which encapsulate arbitrary state-calculation logic and manage state
in the form of typed, application-wide data structures. Using a plug-in-based
component model, business entity providers can be integrated into a SARI ap-
plication based on the specific requirements of a business scenario. We present
extensions to SARI’s original event-processing capabilities that enable access-
ing business entities well-integrated with event-pattern detection, and demon-
strate our approach in a real-world scenario from the workload automation
domain. While business entity providers may be used with any application
architecture that is suitable for the particular problem at hand, the proposed
concept is designed to naturally complement the novel approach to rule man-
agement and make it applicable also in entity-centric business environments.
Technical feasibility is demonstrated in an experimental extension of SARI and
reference implementations for commonly needed business entity providers.

Hierarchical Pattern Management

Problem. The novel rule-management framework of Sense-and-Respond In-
frastructure inherently builds upon the reuse of event patterns on the level of
business-user-defined sense-and-respond rules, which are assembled from build-
ing blocks of pattern-detection and reaction logic. By contrast, SARI’s original
event-processing facilities do not support the reuse of pattern-detection logic
on the level of event patterns: Each event pattern must instead be defined indi-
vidually and from scratch, even though considerable commonalities may exist
between event patterns. As a result thereof, event patterns may reach a high
level of complexity, show redundancies, and become limited in expressiveness
whenever configurations shall apply to conceptually separated, self-contained
parts of an event pattern. In general, reusability on the level of event patterns

1.6 Evaluation 33

is not well supported in state-of-the-art CEP frameworks, especially when the
focus is on a natural and consistent workflow for end users of a system.

Contribution. This thesis presents a novel approach to hierarchical pat-
tern modeling for SARI. Our approach allows incorporating sub-level pattern-
detection logic into super-level event patterns through novel event-pattern lan-
guage elements – so-called sub-pattern components – which serve as a reference
to the incorporated event pattern and can be integrated with the other ele-
ments of SARI’s event-pattern language. Through the use of typed input and
output parameters, sub-level event patterns can be configured based on the
specific context in which they are used, and underlying complexity is hid-
den from the user. We present tailored evaluation strategies that enable high-
performance event processing as well as arbitrary nestings of pattern-detection
logic and demonstrate the feasibility of our approach through a full-featured
implementation.

1.6 Evaluation

In the course of our research, the proposed concepts have been evaluated for
technical feasibility, applicability, and utility in industrial settings using the
following methods:

Implementation

Technical feasibility of the presented concepts is demonstrated through their
successful implementation within SARI. Full implementations are available for
the proposed approaches to user-oriented rule management and hierarchical
pattern modeling, which could also be commercialized as part of UC4 Decision
from version 9.00 onwards. The presented approach to entity-based state man-
agement was implemented as an experimental extension to SARI along with
reference implementations for commonly required business entity providers.
Commercial distributions of SARI currently ship with a simplified version of
the proposed approach that is restricted to the use of scores and persistent
data management (see Chapter 6 for further details). Implementation details
are presented in the respective chapters.

Exemplary Application Scenario

Applicability of the proposed concepts is evaluated using an exemplary SARI
application for event-based service assurance, where SARI is applied as an

34 1 Introduction

extension to the UC4 Automation Engine [130].4 The presented application
implements the proposed differentiation of event-pattern rules into infrastruc-
tural rules and sense-and-respond rules and makes extensive use of entity-
based state management; hierarchical pattern modeling is demonstrated in a
separate example to be found in the respective chapter. The application has
been developed by members of the UC4 Senactive development team and has
been successfully set up at customers from different business domains.

Case Study

Utility in practical business environments is evaluated using a case study,
where the setup and operation of the proposed concepts is analyzed in the
context of a real-use situation. Through observation and qualitative interviews,
it especially aims to investigate how the proposed distribution of user roles is
put into practice and how presented rule-management concepts are adopted
in the given application scenario. Our case study spans a period of seven days
and is conducted at a leading manufacturer of agricultural machinery.

1.7 Structure of this Thesis

The remainder of this thesis is structured as follows:

Chapter 2 discusses the fundamental concepts of Complex Event Processing,
namely events, event types, event patterns, event-pattern rules, and complex
events. The presented concepts are demonstrated in a preliminary example
from the logistics domain.

Chapter 3 provides a detailed introduction to Sense-and-Respond Infrastruc-
ture. It particularly focuses on SARI’s application model, for which a novel,
model-driven view is elaborated. Each sub-model of this view is discussed
in terms of one or more abstract meta models and exemplary realizations of
these models. Chapter 3 furthermore presents the implementation architecture
of SARI and discusses the most relevant features of SARI’s tailored language
for accessing event streams, Event Access Expressions.

Chapter 4 completes the model-driven view on SARI applications by discussing
the central decision graph model, which forms the basis for any rule-based event
processing in SARI. We discuss the basic meta model for decision graphs, their
evaluation during run time and give a detailed introduction to SARI’s core rule
component library. Rule components encapsulate easy-to-understand pieces of

4 Service assurance is understood as the proactive monitoring of business environ-
ments with the goal of detecting fault patterns and ensuring reliability and per-
formance in a system landscape.

1.7 Structure of this Thesis 35

event-processing logic (such as the occurrence of an event of type T , with
certain event attribute values) and, together with precondition relationships
between them, form the base elements of any decision graph.

Chapter 5 presents the proposed framework for user-oriented rule management.
Following an introductory discussion on the conceptual foundations of our work
– i.e., a differentiation of rules into infrastructural rules and sense-and-respond
rules, a collection of user roles and appropriate workflows – we present in detail
our approaches to infrastructural rule management and sense-and-respond rule
management. We discuss user rights management for these approaches and
illustrate the implementation of our framework as an extension to the base
architecture of SARI. A particular focus is placed on extensions of the front-
end layer of SARI, namely, an extended IDE for power users and a simplified
web interface for business users.

Chapter 6 presents our approach to entity-based state management. We in-
troduce the concept of business entity providers, which encapsulate arbitrary
state-calculation logic and manage state in the form of typed, application-wide
data structures. Based on an abstract meta model, reference implementations
for three commonly required kinds of business entities – namely, scores, base
entities, and sets – are discussed. We elaborate extensions to SARI’s original
correlation and decision-graph model that enable accessing business entities
well-integrated with event-pattern detection and discuss the implementation
of our framework within SARI. Our approach is demonstrated using a real-
world scenario from the workload automation domain.

Chapter 7 presents our approach to hierarchical pattern modeling. We extend
SARI’s original decision graph model by the novel sub-pattern component and
discuss tailored evaluation strategies that enable high-performance event pro-
cessing as well as arbitrary nestings of pattern-detection logic. Applicability
of our approach is demonstrated using an example from the fraud-detection
domain.

Chapter 8 demonstrates the proposed framework using a real-world SARI ap-
plication for event-based service assurance, which we understand as the proac-
tive monitoring of business environment with the goal of detecting fault pat-
terns and ensuring reliability and performance in a system landscape. The
application is discussed following the model-driven view on SARI applications
with a particular focus on the application’s infrastructural rules and sense-
and-respond rule-management artifacts.

Chapter 9 presents the results of a case study conducted at a leading manu-
facturer of agricultural machinery.

Chapter 10 summarizes and concludes this thesis and gives an outlook to future
research issues.

2

Principles of Complex Event Processing

Abstract Complex Event Processing (CEP) provides methods and techniques to
extract high-level information from large sets of events, identify noteworthy business
situations, and take subsequent action in near real time. In this chapter, the fun-
damental principles of CEP are summarized: Events refer to “things that happen”
as well as to the programming entities that represent such occurrences. Event types
describe the structure of a class of events. Event patterns are abstract definitions
of classes of (complex) event situations such as a delayed shipment process or an
attempt to commit fraud. Event-pattern rules associate such patterns with one or
more actions to be executed whenever a combination of events matches the pattern.
We conclude this section by a preliminary example from the logistics domain.

2.1 Events

The concept of events is pertinent to almost every scientific discipline. In com-
puter science, events are used in different areas such as active databases, dis-
tributed computing, and software engineering, and several definitions have
been developed (e.g., [39, 40, 61, 75, 142]).

In the context of (complex) event processing, Etzion and Niblett [37] define
events as follows:

“An event is an occurrence within a particular system or domain; it is
something that has happened, or is contemplated as having happened
in that domain. The word event is also used to mean a programming
entity that represents such an occurrence in a computing system.”

The above definition gives two meanings of the term event. The first meaning
matches the very common understanding of events and is closely related to the
Oxford English Dictionary ’s definition of event as “something that happens or
is thought of as happening” (cf. [71]). The second meaning refers to the data

38 2 Principles of Complex Event Processing

item that represents such a occurrence within an event processing application.
To avoid ambiguity, the term event object is sometimes used to refer to events
as programming entities; in the remainder of this thesis, it is used only if the
meaning could not otherwise be told from the context.

For events in the sense of programming entities, Luckham [71] identified the
following aspects:

• Form. Events have a particular form, i.e., are instances of a certain kind of
data structure. In most of today’s CEP framework, events are represented
as tuples of named data components, so-called event attributes. Such a
tuple of event attributes may, for example, be implemented as an XML
document or an object in an object-oriented programming language.

• Significance. An event always signifies an occurrence, i.e., an actual ac-
tion or state change in the monitored source system. Typically, this so-
called significance is further characterized via the event’s event attributes;
for example, an event indicating the start of a transport process could in-
clude the transport’s start time (i.e., the event’s time of occurrence), the
carrier, the truck’s ID, and the quality and quantity of transported goods.

• Relativity. An event is always related to other events, by time (i.e., two
or more events occur within a specified time frame), causality (i.e., one
event causes another event), or membership (i.e., two or more events be-
long to one and the same higher level event, e.g., to the same order process).
Relationships are typically encoded in the event’s event attributes, so that
relationships can be reconstructed on structurally decoupled events; for ex-
ample, two events of a particular transport process would typically include
the same transport ID in their event attributes.

In the following, we refer as raw events to events that are retrieved directly
from the source system and as virtual events to events that are generated
within the event-processing application. Moreover, we refer as output events
to events that are intended to directly or indirectly impact on the source
system, e.g., that cause an email to be sent.

2.2 Event Types

Modern CEP frameworks are typically typed, i.e., the form of a class of events
is defined through an event type to which all members of this class must con-
form. A detailed discussion of event type models in CEP is given by Rozs-
nyai et al. [108].

2.4 Event-Pattern Rules 39

2.3 Event Patterns

According to Eckert and Bry [34], CEP use cases can be distinguished into (i)
the detection of predefined combinations of events – so-called event patterns
– within a company’s event cloud, and (ii) the identification of previously
unknown patterns through machine learning or data mining algorithms. At
the time of writing, research primarily focuses on the detection of predefined
event patterns, and so does this thesis.

Following Etzion and Niblett [37],

“an event pattern is a template specifying one or more combinations
of events. Given any collection of events, you may be able to find one
or more subsets of those events that match a particular pattern. We
say that such a subset satisfies the pattern.”

In general-purpose CEP frameworks, event patterns must be defined by the
adopters of a framework according to the particular high-level trends, pro-
cesses, and activities that they are interested in. Most CEP engines provide
a tailored language for describing such a pattern; this language is typically
referred to as Event Pattern Language (EPL). The efficient, near real-time
evaluation of so-defined event patterns also for large amounts of events is a
key requirement to any CEP framework.

2.4 Event-Pattern Rules

Only in the rarest of cases, event-pattern detection is performed as an end
in itself – if a relevant pattern is detected, it will instead be demanded to
automatically trigger an action (e.g., block a user that shows fraudulent be-
havior), notify a responsible user (e.g., send an email to an administrator),
or consider this fact in further, higher-level pattern detection steps. In CEP,
so-called event-pattern rules associate an event pattern – the so-called trig-
ger – with a collection of actions to be taken whenever the event pattern is
matched. Event-pattern rules are “the foundation for successful applications
of CEP” [71], and their end-user-oriented creation, deployment, and adminis-
tration within practical business environments is the main research objective
of this thesis.1

1 At the time of writing, alternative approaches to event processing are, in fact, still
in their infancy (although for an integration of CEP with neural networks refer to
Widder et al. [138]).

40 2 Principles of Complex Event Processing

2.5 Complex Events

Eponymous to CEP, the term complex event generally refers to events that
are aggregated from sets of lower-level events, their so-called members. These
members may comprise multiple event types, occur at different points in time,
and emerge from different sources. Complex events are typically generated
using above-described event-pattern rules, then sometimes referred to as ag-
gregation rules.

2.6 Preliminary Example

In the following, the above-presented core concepts of CEP shall be demon-
strated using a simplified example from the logistics domain.2 In the given
scenario, all drivers of a logistics company are equipped with handheld devises
on which both the sender and the receiver of a freight confirm the successful
handover of the transported goods. Moreover, all trucks are equipped with
thermometers that measure the inside temperature at regular time intervals.
All these data are continuously transfered to the carrier’s head office, where
they are transformed into event objects of respective event types – “Trans-
port Started”, “Transport Ended”, and “Temperature Update” – and fed into
a CEP application. Table 2.1 lists the event types of the presented scenario
along with their visual representation used in Figure 2.1 below; all events carry
the transport’s unique transport ID as an event attribute.

In the CEP application, an event pattern “Failed Transport” is evaluated on
the incoming event stream to detect all transports where

more than 5% of all measurements are above a treshold of +5 ◦F.

In event-pattern rules, this pattern can be used to trigger counteractions in
the underlying business environment, e.g., by sending an email to responsi-
ble personnel or automatically invoking an operation in the carrier’s IT sys-
tem. Alternatively, an event-pattern rule could be applied to create a complex
“Transport Failed” event; this event could then contribute to higher level event
patterns, e.g., to detect recurring failures of a particular truck.

2 The presented example is loosely based on an example originally given by Rozs-
nyai [105].

2.6 Preliminary Example 41

Event Type Description

Transport Start Signifies the start of a transport process.

Transport End Signifies the end of a transport process.

Temperature Update Signifies a measurement made by a truck’s temperature
sensor. Temperature updates are generated at regular time
intervals and carry the current temperature as an event
attribute. In Figure 2.1, temperature updates are depicted
in green if the temperature is below +5 ◦F and in red oth-
erwise.

Table 2.1. Event Types

e [Temperature Update]

Transport ID:
Temperature:
...

42
4°F

...

CEP Application

Transport Failed

Figure 2.1. Preliminary Example (cf. [105])

3

Sense-and-Respond Infrastructure

Abstract Since introduced to a wider community by David Luckham, Complex
Event Processing has inspired projects of commercial as well as academic nature.
This chapter presents Sense-and-Respond Infrastructure (SARI), a general-purpose
event-processing framework which forms the basis for our research on user-oriented
rule management. We particularly focus on SARI’s application model, for which
a novel, model-driven view is elaborated. In this view, the overall complexity of
a SARI application is decomposed into a collection of smaller, easier-to-understand
sub-models, each of which is in defined relationships to other sub-models. We present
the implementation architecture of SARI and discuss the most relevant features of
SARI’s tailored language for accessing event streams, Event Access Expressions.1

3.1 Introduction

In recent years, Complex Event Processing (CEP) has emerged as a new
paradigm for the real-time monitoring of business environments and auto-
mated, event-driven decision making. Since introduced to a wider community
by David Luckham and his seminal work on “The Power of Events” [71], CEP
has inspired numerous projects of academic as well as commercial nature, and
also in the Open Source community.

In this chapter, we present Sense-and-Respond Infrastructure (SARI) as origi-
nally proposed by Schiefer and Seufert [114]. SARI is a generic CEP framework
that has proved successful in a wide range of business domains ranging from
fraud detection and prevention [109, 125] to logistics [112], medical care [133],
and automated product recommendation [67]. SARI, along with its specific
characteristics, features, and restrictions, serves as a basis for our research
on user-oriented rule management as presented in Chapter 5, Chapter 6, and
Chapter 7 of this thesis.

1 This chapter is based on the work of Obweger et al. [89].

44 3 Sense-and-Respond Infrastructure

3.1.1 Key Characteristics

In the course of our research, we identified the following key characteristics of
SARI in relation to other CEP frameworks:

Applicability across business domains. In contrast to solutions that are
tailored to the requirements of a specific field such as finance, SARI was de-
signed as a general-purpose event-processing framework to be used in arbi-
trary business environments. Use-case-specific logic is managed in so-called
SARI applications, which can be defined by the end user or provided as part
of a ready-to-use, customer-specific distribution. The different logical parts of
a SARI applications are discussed in Section 3.3 to Section 3.5 of this chapter.

Rule-based computing using Event/Condition/Action rules. Rule-
based event processing is a fundamental principle of CEP. In contrast to query-
based (e.g., [36, 78, 127]) and inference-based (e.g., [59, 128]) strategies that
have also been discussed in the literature, SARI employs an Event/Condi-
tion/Action (ECA) based approach to rule-based event processing. In an ECA
rule, an event pattern – e.g., a particular sequence of cash-in, bet placement,
and cash-out actions taken by a user of an online-gambling platform – is associ-
ated with one or more actions to be executed whenever the pattern is fulfilled.
Decision graphs, which form the basis for rule-based event processing in SARI,
are discussed in great detail in Chapter 4.

Usability and manageability. SARI was designed with a particular focus
on usability and manageability from an end-user perspective. This reflects in a
clear, well-structured application model and sophisticated front-end tools. Our
research on user-oriented rule management further reinforces this emphasis by
providing rule-management facilities tailored to the skills, responsibilities, and
requirements of technically versed users as well as business users.

Scalability and reliability. Several event processing solutions have been de-
signed to provide efficient centralized situation-detection mechanisms (e.g., [4,
25, 44] – cf. [115]). SARI allows distributing the event-processing workload of
an application over a network of self-contained event-processing nodes, with
failover strategies in case of crashes. The execution of SARI applications in a
distributed environment is discussed in greater detail in Section 3.6.

3.1.2 Sense-and-Respond Loop

The main concept behind SARI’s approach to event processing is the so-called
Sense-and-Respond Loop [114] as shown in Figure 3.1. Especially emphasizing
the idea of a continuous, self-adjusting integration between CEP and underly-
ing business environments, Sense-and-Respond Loops divide event processing
into a sequence of five stages, namely (i) Sense, (ii) Interpret, (iii) Analyze,
(iv) Decide, and (v) Respond. Table 3.1 discusses these stages in greater detail.

3.1 Introduction 45

Decide:
Make decisions

Analyze:
Discover Situations or
Exceptions

Interpret:
Transform events into
business information

Source Systems

SARI
Sense:
Receive and unify events
from source system

Respond:
Put response into actions

1

2 3 4

5

Figure 3.1. Sense-and-Respond Loop

3.1.3 SARI Applications in a Nutshell

SARI was designed as a generic event-processing framework that may set up
on arbitrary source systems. Solutions to concrete business problems – for
example, for detecting fraudulent user behavior in an online-gambling plat-
form, or monitoring and controlling the transports of a logistics company – are
managed as so-called SARI applications, which encapsulate the environment-
specific integration approach and the problem-specific event-processing logic
for one particular use case. As an introduction to the more detailed, primarily
model-driven view on SARI applications as is presented throughout the fol-
lowing sections, Figure 3.2 provides a first overview of the most relevant parts
of a SARI application.

Source Systems

Event Processing Map

Respond Socket

Event Service

Input
Stream

Response
Events

Decision Graph 1
Decision Graph 2
...
Decision Graph n

e [Fraud Warning]

ID:
Time:
Reason:
MatchID:
...

a72g8 - …
2010/07/05 …

„Suspicious …“
42
...

Rule Service

Sense Socket

a.)

c.)b.)

Channel

Figure 3.2. SARI Application Overview

46 3 Sense-and-Respond Infrastructure

Event processing maps. The central concept of a SARI application is the
event processing map (Figure 3.2a.), a user-defined orchestration of sense sock-
ets, respond sockets, and event services. Following the idea of a service-oriented
approach to event processing, elements of an event processing map operate
as independent, self-contained processing units that may receive input events
from other elements of a processing map, and/or publish output events. Out-
put events produced by a map element are routed to other map elements
according to a set of channels between these elements. As shown for an ex-
emplary “Fraud Warning” event in Figure 3.2b., events in SARI may further
characterize an action or state change through a collection of event attributes
as defined in their event type.

Sockets. Sense sockets and respond sockets implement the “entry points”
(sense) and “exit points” (respond) for event data within an event processing
map. So-called event adapters are the most common kind of sockets and serve
as the actual interface between a SARI application and underlying source sys-
tems: Depending on their implementation, event adapters translate real-world
actions and state changes (such as a user actually placing a bet in an online-
gambling platform) into event representations of a certain event type (sense),
and vice versa (respond). Typical event-adapter implementations exchange
data via message-queue systems, read them from log files, or invoke methods
on an API.

Event services. Event services receive events from sockets or other event
services, process them based on implementation-specific logic and, where nec-
essary, feed back to the event processing map through output events. Event
services cover the actual event-processing logic of an SARI application; typical
implementations could, for instance, filter duplicate events, publish events to
a data repository for later analysis, or serve as a hub.

Rule services and decision graphs. Rule services (3.2c.) are special event-
service implementations that allow evaluating a collection of so-called decision
graphs on the incoming event stream. Decision graphs describe in an integrated
model (i) a noteworthy event situation – a so-called event pattern – to be
fulfilled by one or more events of an event stream, and (ii) one or more actions
to be executed when such a pattern is detected. In its basic form, the action
part of a decision graph always describes the generation of one or more response
events; an exemplary decision graph could, for instance, detect a certain fraud
technique and create an event of type “Fraud Alarm”, with event attributes for
the involved user account, etc. Depending on the function of a decision graph
within SARI, a response event may be subject to further event-processing steps
or trigger a real-world action in the underlying source system.

3.1 Introduction 47

Sense

Description What actions and state-changes occur in the business environment?

Function Continuous capturing of raw data, indicating real-world events, from underlying
source systems. Unification of these data based on their basic semantics and
delegation to SARI’s event-processing facilities.

Example A user logged in as “JQ Public” places a bet on the website of an online-gambling
provider. SARI retrieves chunks of data from the provider’s web servers via a
messaging system. Depending on their semantics, incoming data are transformed
to events of a respective event type, e.g., into events of type “Bet Placed”, “Bet
Canceled”, etc.

Interpret

Description What do the captured data indicate? What do the data mean for the current
situation of the organization?

Function Transformation of the captured events into higher-level business information such
as business situations and key performance indicators. (Key performance indi-
cators are not discussed as part of SARI’s basic event-processing capabilities
as presented in this chapter, but are introduced along with their integration to
SARI’s approach to rule-based event-processing in Chapter 6.)

Example Incoming events relating to a concrete betting process – e.g., indicating the
placement, possible adaptations, and the final result of bet #1742 – are identified
as related, in sum representing a coherent real-world situation.

Analyze

Description Which business opportunities and risks arise in the business environment? What
are the possibilities to improve the current situation of the organization?

Function Analysis of incoming business information for exceptional situations in the busi-
ness environment and time-critical business opportunities. Prediction of the per-
formance and assessment of the risks for changing the business environment.

Example The behavior of user account “JQ Public” is continuously monitored for fraud-
ulent behavior. Since bet #1742 is one of several bets from this user concerning
a sports event that was identified as potentially fixed by an international early-
warning system, SARI detects a potential fraud for “JQ Public” and bet #1742.

Decide

Description Which strategy is the best to improve the current situation of the organization?
What are the actions required to successfully put a decision into action?

Function Finding the best option for improving the current business situations. Determine
the most appropriate action for a response to the business environment.

Example Having detected fraudulent behavior of user account “JQ Public”, SARI decides
to immediately block the concerned account from all online activities, including
the possibility to cash-out money.

Respond

Description Who has to implement the decision? How can the decision be put into action?

Function Respond to business environment by communicating the decision to the business
environment as a command or suggestion (e.g. by e-mail), or by directly adapting
and reconfiguring business processes in a source system.

Example The decision to block “JQ Public” from all online activities is forwarded to the
provider’s web server via a messaging system. The web server implements the
decision and marks “JQ Public” as blocked in the user-management system.

Table 3.1. Stages of the Sense-and-Respond Loop [114, 131]

48 3 Sense-and-Respond Infrastructure

Outlook

The remainder of this chapter is structured as follows: Section 3.2 presents a
model-driven view on SARI, splitting the overall complexity of a SARI applica-
tion into a collection of smaller, easier-to-understand sub-models. The different
sub-models of this view, namely the event model, the correlation model, and
the event processing model, are discussed in great detail in Section 3.3 to
Section 3.5; the central decision-graph model, serving as the immediate foun-
dation for our research contributions, receives special attention in Chapter 4.
Section 3.6 provides an overview of SARI’s basic implementation architecture.
We conclude this chapter with a brief introduction to Event Access Expres-
sions, a tailored language for accessing streams of events, in Section 3.7.

3.2 A Model-Based View on SARI Applications

Within the inherently generic Sense-and-Respond Infrastructure, SARI ap-
plications describe environment-specific integration approaches and problem-
specific processing logic for concrete use cases. To provide manageability and
usability also for large-scale solutions, SARI splits the overall definition of
an application into a collection of smaller, decoupled sub-models. Each of
these sub-models describes a certain aspect of a solution, beginning with the
structure of all possible event data and ending with the orchestration of self-
contained event-processing units such as event adapters and event services.2

Figure 3.3 shows the various sub-models of the SARI application model, along
with the relationships between them.

Decision Graph Model

Event Model

define relations

define noteworthy
business situations

Ev
e

n
t

P
ro

ce
ss

in
g

M
o

d
e

l

define response-
event actions

co
n

fi
g

u
re

 r
u

le
 s

er
vi

ce
s

Correlation Model

Ev
en

t
D

at
a

M
o

d
el

Figure 3.3. SARI Application Model

2 A comparable, also model-driven approach has recently been used by Etzion and
Niblett [37] for describing event processing in a platform-independent manner.

3.2 A Model-Based View on SARI Applications 49

Event Model

The event model provides abstract descriptions of all kinds of events that may
occur within a SARI application, i.e., that may emerge directly from underly-
ing source systems or be created virtually during the event processing. These
descriptions – referred to as event types in the remainder of this thesis – declare
all relevant characteristics of the represented occurrence itself and the context
in which it occurs. For example, in the logistics domain, an event model would
typically define event types such as “Order Placed”, with properties such as
the corresponding user account and the kinds and quantities of goods, “Order
Shipped”, etc. Event types form the foundation of any SARI application and
allow all higher-level models to be defined in a type-safe manner.

The event model is discussed in greater detail in Section 3.3.

Correlation Model

The correlation model defines how events of different event types relate to each
other, i.e., whether they belong to a coherent sequence of real-world business
occurrences such as a business process. For example, given an event model
with two event types “Order Placed” and “Shipment Started”, a correlation
relationship “Order Process” could link pairs of “Order Placed” and “Shipment
Started” events by their order IDs. At run time, so-defined classes of event
situations are then used to partition the overall set of events and handle these
partitions separately within the SARI application’s event-processing logic.

The correlation model directly builds upon the event model to define relation-
ships between events in an abstract manner. By itself, the correlation model
serves as a basis for the decision graph model, through which application de-
signers define classes of “noteworthy” event situations by imposing additional
constraints on sets of correlated events.

The correlation model is discussed in greater detail in Section 3.4.

Event Data Model

A SARI application’s event model and correlation model together form the ap-
plication’s event data model, providing an abstract description of the underly-
ing business environment on the level of individual occurrences (event model)
as well as event situations (correlation model). While generally decoupled from
the overlaying event-processing logic, it is obvious that a well-designed, target-
aimed event data model “as thin as possible, as rich as necessary” is crucial
for efficient application development.

50 3 Sense-and-Respond Infrastructure

Decision Graph Model

The decision graph model defines event-processing logic of the form “if a note-
worthy event situation – a so-called event pattern – occurs in an event stream,
then execute respective reaction logic” in so-called decision graphs. Decision
graphs are directly interpretable to SARI and form the basis for any rule-based
event processing within the system.

In its basic form, the decision graph model builds upon the event data model
for pattern detection purposes and the event model for defining reaction logic.3

An event pattern may be considered as an additional constraint on either a
class of individual occurrences as defined in the event model or on a class of
business situations as defined in the correlation model. For example, an event
pattern “order delayed by x days” would select from the overall set of all
“order processes” only those cases that are delayed by x days or longer. The
action part of a decision graph allows generating response events as defined in
the event model. By themselves, decision graphs are referenced in the event
processing model to be executed as part of a specific processing path through
a SARI application.

Due to its paramount importance for the presented research contributions, the
decision graph model receives special attention in Chapter 4 of this thesis.

Event Processing Model

As a fourth and final sub-model, the event processing model defines

(i) how real-world actions and state changes shall be translated into events
of respective event types,

(ii) how these events shall be processed in order to deduce valuable knowledge
and act properly on exceptional business situations, and

(iii) how the system shall feed back into the underlying business environment

as orchestrations of self-contained event-processing units, so-called event pro-
cessing maps. The elements of an event processing map produce and/or con-
sume events and are connected to each other through a set of channels.

The event processing model builds upon the event data model, which allows
event processing maps to be defined in a type-safe manner. Decision graphs as
defined in the decision graph model are mapped to rule services, special event
services that evaluate sets of decision graphs on the incoming stream of events
and publish possible response events.

The event processing model is discussed in greater detail in Section 3.5.

3 Extensions to the base decision-graph model are discussed in Chapter 5, Chapter 6,
and Chapter 7.

3.3 Event Model 51

3.3 Event Model

Forming the bottom layer of the proposed architecture, the event model pro-
vides abstract descriptions of all kinds of events that may emerge from under-
lying source systems or be created virtually during the event processing.

SARI’s approach to event typing as fully described by Rozsnyai et al. [108]
is oriented towards the type systems of modern object-oriented programming
languages. Enhanced typing concepts such as duck typing and virtual event
types contribute to the aim of a straightforward, end-user oriented approach
to application development; these concepts are, however, outside the scope of
this thesis.

3.3.1 Meta Model

Figure 3.4 sketches the base meta-model for a SARI application’s event-type
library. An event type

T = {a1, a2, . . . , an | aj = (ij , tj)}

is defined by a set of event attributes, each having a unique identifier i and an
attribute type t. SARI features three basic kinds of attribute types:4

• Single-value types include primitive types (such as integers, strings, etc.)
as well as event types (i.e., an event may hold auxiliary events as event
attributes)

• Collection types are lists of attribute-typed elements

• Dictionary types associate attribute-typed values with primitive-typed keys

An event type T ′ may furthermore be in a subtype relationship with a base
event type T , T :> T ′. As usual, a sub event-type inherits all event attributes
from the base type, T ⊆ T ′. By definition, each event type in a SARI applica-
tion must originate from a root event type “Base Event”. The “Base Event”
type defines a time stamp “Creation Time” – holding an event’s time of oc-
currence – as well as a unique identifier “ID”.

Each event occurring in a SARI application must then be an instance of exactly
one event type T as defined in the application’s event model, i.e., define a
concrete event-attribute value for each event attribute defined in T . Formally,
a SARI event eT : T is therefore defined by a set of event-attribute/value
tuples,

eT = {(a1, v1), (a2, v2), . . . , (an, vn) | an = (ij , vj), {a1, a2, . . . , an} = T, vj : tj}
4 Unless otherwise stated, the described attribute-type model applies to all (non-

event-) data types as discussed in the remainder of this thesis.

52 3 Sense-and-Respond Infrastructure

Single-Value Type

Event Type

Event Attribute

Attribute Type

*

0..1 1

1
*

1
1

1

*

Collection Type

* *

1

Attribute Type Model

Dictionary Type

Primitive Type

Figure 3.4. Event Type Meta-Model

where eT contains a tuple for each event attribute in T and each event-attribute
value conforms to the respective event-attribute type.

For the purpose of this work, we define the following methods on SARI events
as defined above:

Let T be the set of all event types and let E be the set of all events. We define
a method typeof : E → T , returning the runtime event type of a given SARI
event e, as follows:

typeof(e) = T | e : T

Let e be a event of an event type T , e : T , and let a = (i, t) be an event
attribute in T , a ∈ T . We define a method valuee : a→ t, returning the value
of a in e, as follows:

valuee(a) = v | (a, v) ∈ e

3.3.2 Example

Figure 3.5 shows an exemplary event type “Order Received”, signifying the
real-world action of an order being handed over to its receiver. Apart from the
ever-present “ID” and “Creation Time” attributes, the event type declares an
integer-typed “Order ID”, an integer-typed “Customer ID”, and a list of “Or-
der Positions” of type “Order Position”. An order position could, for instance,
be defined by a string-typed “Item ID” and an integer-typed “Quantity”.

3.4 Correlation Model 53

Order Received

ID
Creation Time
Order ID
Customer ID
Order Positions

[GUID]
[DateTime]

[Integer]
[Integer]

[List<OrderPosition>]

Figure 3.5. Exemplary Event Type

3.4 Correlation Model

Setting up on the event model, the correlation model defines how events of
different event types relate to each other, i.e., whether they belong to a coherent
sequence of real-world business occurrences such as a business process. So-
defined classes of event situations allow partitioning the overall set of events
during event processing and form the basis for the decision graph model as
described in Chapter 4.

In SARI, correlation information is defined in so-called correlation sets [77,
112], a declarative model that allows incorporating and combining different
correlation approaches through correlation bands. Each correlation set thereby
corresponds to one class of event situations: For instance, in the logistics do-
main, a correlation set “Shipment” might correlate the events of all shipment
processes as emerging from the source system. A concrete event-situation in-
stance – e.g., the events of the certain shipment process #42 – is referred to
as correlation session.

3.4.1 Meta Model

Figure 3.6 sketches the meta-model for correlation sets. A correlation set

c = {b1, b2, . . . , bn} , n ≥ 1

is defined by a non-empty collection of correlation bands. Each correlation
band describes a specific correlation approach for events of one or more event
types as defined in the SARI application’s event model, thereby defining a
certain part of the overall event situation. Available correlation-band imple-
mentations are described in Section 3.4.2 below.

For the purpose of this work, we define the following methods on correlation
bands and correlation sets:

Let b be a correlation band and let E be the set of all events. We define a
method correlateb : E× E→ {0, 1} as follows:

54 3 Sense-and-Respond Infrastructure

1
1..*

Correlation Band

Correlation Set

Self-Referencing
Correlation Band

Elementary
Correlation Band

Knowledge-Based
Correlation Band

* 1..*
Event Type

Figure 3.6. Correlation Set Meta-Model

correlateb(e, f) =

{
1 e and f are correlated with respect to b

0 otherwise

Let c be a correlation set and let E be the set of all events. We define a method
correlatec : E× E→ {0, 1} as follows:

correlatec(e, f) =

{
1 ∃b ∈ c : correlateb(e, f) = 1

0 otherwise

Let c be a correlation set, let E be the set of all events, and let S =
{s1, s2, . . . , sn}, si = {e1, e2, . . . , em | ei ∈ E} be the collection of correlation
sessions for c. We define a method sessions : E→ E∗, returning the correlation
sessions for an event e with respect to c, as follows:

sessionc(e) =

{
s ∪ {e} ∃s ∈ S : ∃f ∈ s : correlatec(e, f) = 1

{e} otherwise

3.4.2 Correlation Band Implementations

At the time of writing, SARI features the following correlation bands:

Elementary correlation bands correlate events of different types based
upon equal event-attribute values. Let T = {T} be an event-type library. An
elementary correlation band is defined by e ⊆ {(T, a) | T ∈ T, a ∈ T}, i.e., a
non-empty set of event types together with an event attribute per type. Given
a correlation band e = {(T1, a1), (T2, a2), . . . , (Tn, an)}, two events ei : Ti
and ej : Tj are correlated (and thus part of the same correlation session) if
valueei(ai) = valueej (aj). Note that a correlation band’s event attributes do
not necessarily have the same identifier.

3.4 Correlation Model 55

Self-referencing correlation bands allow implementing scenarios where
events explicitly define references to their (causal) predecessors. As with
elementary correlation bands, a self-referencing correlation band s ⊆
{(T, a) | T ∈ T, a ∈ T} is defined by a nonempty set of event types, and, for
each event type, an event attribute. Two events e and f , f : Ti, are then
correlated if valuee(ID) = valuef (ai), where ID signifies the unique identifier
attribute of an event.

Knowledge-based correlation bands are similar to elementary correlation
bands, however, for evaluating “equality” between event-attribute values, an
external knowledge base is queried. For example, two string values “Vienna”
and “Wien” could be detected as equivalent via an (online) dictionary. A
knowledge-based correlation band k = (e, b) therefore extends an elementary
correlation set e by a knowledge base b, offering methods for testing equality
between two event-attribute values. Knowledge-based correlation bands have
been investigated in great detail by Moser et al. [82].

Correlation sets may be (re-)used as correlation bands in higher-level cor-
relation sets. Though rarely applied in practice, this enables the hierarchical
modeling of event situations.

3.4.3 Example

Figure 3.7 shows an exemplary correlation set from the logistics domain. An
elementary correlation band b1 describes the correlation approach for “Order
Received”, “Shipment Ready” and “Order Shipped” events as being based
upon equal order IDs. A second, self-referencing correlation band b2 describes
the correlation approach for “Order Shipped” and “Shipment Received” events
as being based upon an explicit reference from the “Shipment Received” events
to the causally preceding “Order Shipped” event.

Order Received

ID
Order ID
...

[GUID]
[Integer]

...

Order Shipped

ID
Order ID
...

[GUID]
[Integer]

...

Shipment Received

ID
Predecessor Event
...

[String]
[GUID]

...

Correlation Band 2Correlation Band 1

]

] [

...

Figure 3.7. Exemplary Correlation Set

56 3 Sense-and-Respond Infrastructure

3.4.4 Correlating Events at Run Time

Within SARI, event correlation is made accessible to the user-defined event-
processing logic of a SARI application through a system-wide correlation ser-
vice. This service allows (i) correlating a given event based on the application’s
correlation model, and (ii) retrieving all correlations sessions in which this
event participates. SARI thereby follows an “on demand” approach to event
correlation, meaning that an event must explicitly be correlated in order to be
accessible as part of a correlation session in subsequent retrievals.

At run time, each correlation band of a SARI application’s correlation model
is used independently for grouping incoming events into respective correlation
sessions. Correlation sets finally serve as bridges between subordinate correla-
tion bands: Whenever two or more correlation sessions for correlation bands of
a common correlation set intersect, these correlation sessions are merged into
a single, common correlation session. Incoming events are then added to the
newly-merged correlation session when they correlate with an element of the
merged session according to at least one of the associated correlation bands.

Figure 3.8 illustrates the described handling of correlation sessions for a simple
correlation set s = (b1, b2), where b1 defines an event-correlation approach for
events of type T1, T2 and T3, and b2 defines an event-correlation approach for
events of type T3 and T4.

e1

e3

e1

CB1 [T1, T2, T3]

e1 e3 e2

e2e1 e3

e4

e1 e3 e5 e2

e4

e3:T2

correlateCB1(e3, e1)

e2e2 e2:T4

e1:T1

e4 e4:T1

e5

CB2 [T3, T4]

e5:T3

correlateCB1(e5, e3)
correlateCB2(e5, e2)

Incoming Event Stream

Time

Correlation Sessions

new

new

add

new

add
merge

Figure 3.8. Correlating Events at Run Time

3.5 Event Processing Model 57

3.5 Event Processing Model

Setting up on the event data model and the decision graph model, the event
processing model describes the overall functionality of a SARI application, as
well as its integration with underlying source systems, by means of one or
more event processing maps. Event processing maps are user-defined orches-
trations of sense sockets, event services, and response sockets. Following the
idea of a service-oriented approach to event processing, these elements operate
as independent, self-contained processing units that may receive input events
from other elements of a map, and/or publish output events. Output events
produced by a map element are routed to other map elements according to a
set of channels between these elements. Event processing maps are comparable
to the concept of event processing networks [37, 120].

3.5.1 Meta Model

Figure 3.9 and Figure 3.10 show the meta-model for event processing maps.

Event Processing Map

Sense
Socket

Response
Socket

Event
Service

Channel

1

1

*

*

1

1

1

*

*

*

1 **

*

1

*

Output
Port

Input
Port

1

- Event Type

- Event Type

Event Processing
Model

*

*

*

*

Figure 3.9. Event Processing Meta-Model

Sense sockets introduce new events into an event processing map. Depend-
ing on the implementation of a socket, these events may emerge directly from
the underlying business environment (in case of sense event adapters; see Sec-
tion 3.5.2), or come from another event processing map (in case of intermediate
sockets; see Section 3.5.4). Sense sockets are associated with event processing
maps in an m-to-n relationship, meaning that a single socket can be used in
several maps. In such a case, separate instances of an event are published to
all event processing maps in which a socket is used.

58 3 Sense-and-Respond Infrastructure

Sense
Socket

Respond
Socket

Event
Service

Intermediate
Socket

Sense Event
Adapter

Respond Event
Adapter

MSMQ Sense
Adapter

Log-File
Adapter

DP Pull
Adapter

MSMQ Resp.
Adapter

Webservice
Call Adapter

Mail
Adapter

Rule Service

Data Enrichment
Service

Decryption
Service

Figure 3.10. Map Element Hierarchy

Event services receive events from sockets or other event services, process them
based on implementation-specific logic and, where necessary, feed back to the
event processing map through output events. Event services are associated
with event processing maps in an 1-to-n relationship, meaning that each event
service instance belongs to exactly one event processing map.

Respond sockets consume events as generated in, or routed through, the or-
chestration of event services. Depending on the implementation, outgoing event
data may be routed back into a source system (in case of respond event
adapters; see Section 3.5.2), or be forwarded to other event processing maps
(in case of intermediate sockets). As with sense sockets, response sockets are
associated with event processing maps in an m-to-n relationship

Sense sockets, event services and response services publish and/or receive
events through collections of typed input ports and output ports, each associ-
ated with an event type as defined in the SARI application’s event model. De-
pending on the implementation of a map element, these collections may either
be user-defined (for rule services and intermediate sockets), or predetermined
by the implementation (for any other map element). At run time, whenever a
map element produces an event e, e is published via all output ports of the
respective element with an event type Tout conforming to e, i.e., where Tout is
a super-type relationship to the implementation type of e, Tout :> typeof(e).
When there is no output port fulfilling these conditions, e is discarded and not
considered for further event processing steps.

Channels associate an output port out of a map component ci with an input
port i of another map component cj , indicating that events as published via
out shall be routed to in. Building upon typed ports rather than on map
components directly, channels allow type-safe communications between the
elements of an event processing map: In the proposed model, channels can only
be established between pairs of output- and input ports that are compatible
to each other, i.e., where the event type Tout of the output port is in a subtype
relationship to the event type Tin of the input port, Tin :> Tout.

3.5 Event Processing Model 59

3.5.2 Event Adapters

Event adapters represent the technical interface between SARI and underlying
business environments. An event adapter may be considered as a data gateway
that, on one end, plugs into a source system in order to receive or publish data
in a technology-specific format, and, on the other end, exchanges event data
with the various event-processing maps of the SARI application. Sense event
adapters detect actions and state-changes in the source system and translate
these data into events of respective event types as defined in the SARI appli-
cation’s event model: A sense event-adapter could, for example, pull data from
a message queue of “new orders” as being placed on a online-shopping plat-
form, and based on these data, publish events of type “New Order” with event
attributes describing the kind and quantity of goods and a customer identi-
fier. Response event adapters retrieve events from the various event-processing
maps to which they belong and transform these events into respective actions
to be triggered in the source system: A sense adapter could, for instance, insert
data into a database or message queue, call an API, or send an email.

Event adapters can be implemented as custom .NET assemblies by extending
a SARI-provided base class, which enables application developers to perfectly
align their event adapters with the given IT infrastructure. SARI distributions
typically ship with a collection of predefined, configurable event adapters for
the most common integration points, e.g., for diverse messaging systems, web
services, or log files. For a more detailed discussion on event adapters and pos-
sible implementation approaches, the interested reader may refer to Roth [103].

3.5.3 Event Services

Operating between “sense” and “respond”, orchestrations of event services
describe the problem-specific event-processing logic of a SARI application.
Depending on its implementation, each event service thereby represents a par-
ticular unit of work to be applied on incoming events. Most prominently, this
includes the filtering of events, their transformation (including their enrich-
ment by external data), event-data aggregation, or situation detection; still,
any other event-triggered activity is possible as well. The ultimate outcome
of a event processing map’s network of event services is routed to the map’s
collection of respond sockets, through which they feed back into the business
environment.

As with event adapters, event services can be implemented as .NET assemblies
by extending a SARI-provided base class. Still, custom event-service implemen-
tations not only require a development environment and programming skills,
but also are cumbersome to change during a SARI application’s lifecycle. It is

60 3 Sense-and-Respond Infrastructure

therefore advisable to use a rule-based approach to event processing, incorpo-
rating rule services and decision graphs as described in Chapter 4, wherever
applicable.

Rule services are special event services that allow evaluating a number of
decision graphs on the incoming event stream. In their basic form, the action
part of a decision graph always describes the generation of one or more response
events; such response events are then published via the rule service’s output
ports as discussed above. As a consequence, a rule service not only provides
the evaluation environment for decision graphs but also defines the specific
context(s) in which a decision graph operates.

3.5.4 Intermediate Sockets

Intermediate sockets are special map elements that may be used in event pro-
cessing maps both as sense sockets and as respond sockets, where incoming
events are immediately and without changes re-published to the event pro-
cessing model. Intermediate sockets hence provide a communication interface
between the various event-processing maps of a SARI application, allowing
application designers to split a complex event-processing flow into a set of
smaller, easier-to-understand event processing maps.

3.5.5 Example

Figure 3.11 shows a simple event processing map for integrating and processing
events from a workload automation system. On its input side, the map captures
task events as well as different kinds of resource-tick events through tailored
sense adapters; while task events indicate the completion of a task in the work-
load automation system, resource tick events provide information about the
current resource utilization at regular time intervals. In the “Enrichment” ser-
vice, incoming task events are enriched to prepare the event data for later rule
processing. A typical example would be the attachment of additional task data;
consider, for instance, scenarios where a source event only holds a task ID while
the task’s estimated runtime is required for the downstream decision-making
logic. The “Unification” service creates from the different kinds of resource-
tick events a single, unified resource-update event, eventually publishing the
most recent state of a IT landscape whenever some kind of update is signified.
The central rule service processes the incoming event according to a collection
of decision graphs and publishes response events to the map’s response-event
adapters. These adapters transmit the response events to external systems by
sending emails or invoking a script in the underlying workload automation
system.

3.6 System Architecture 61

Script
Execution
Adapter

Mail
Adapter

Rule Service

Enrichment Service

Unification Service

Task Event
Adapter

Resource Tick
Adapters

Figure 3.11. Exemplary Event-Processing Map

3.6 System Architecture

SARI was designed to provide efficient and reliable event processing across ar-
bitrary business domains. To meet these requirements also in large-scale envi-
ronments, SARI is implemented as a distributed system of self-contained event-
processing nodes, enabling companies to balance the overall event-processing
workload of their SARI applications across a network of virtual or physical
hosts. SARI application development, the distribution of SARI applications
over the network of event-processing nodes, as well as the ex-post analysis of
historic event data is made accessible to technically versed end users through
a suite of graphical front-end tools.

Figure 3.12 provides an overview of the basic SARI architecture as it stands at
the time of writing. This architecture can be separated both vertically – into a
data layer, a back-end layer and a front-end layer – and horizontally, into com-
ponents concerned with application management and components concerned
with application execution and monitoring.

3.6.1 Data Layer

Forming the bottom layer of the presented architecture, the data layer is con-
cerned with the persistent management of system-level as well as application-
level data in a collection of relational databases. At the time of writing, SARI
distributions come with native support for recent versions of Microsoft SQL
Server, Oracle, and DB2.

The administration database (Figure 3.12a.) contains all system-level data, i.e.,
all data that are not created as a result of executing a particular SARI applica-
tion. Most notably, these data include application descriptions for all available
SARI applications, deployment groups, as well as data from the installation’s
user management system. An application description (b.) is an XML represen-
tation of the static structure of a SARI application, including all event types,
correlation sets, decision graphs, and event processing maps as described in

62 3 Sense-and-Respond Infrastructure

Administration
Database

D
at

a
La

ye
r

B
ac

k-
En

d
Fr

o
n

t-
En

d

Event Analyzer

Modelling
Studio

Admin

DatabaseAdmin

DatabaseApplication
Database

Worker Nodes

create/edit

applications

get list of

applications

register

deploy

applications

Administration Node

refer

a
e

f

g

h j

.NET Remoting Database Access

b

c

Management
Studio

i

create/edit

deployment groups

Application Management
Application Execution

and Monitoring

User
Information

Deployment
Groups

Application
Descriptions

d

Figure 3.12. Implementation Architecture

the above sections. Deployment groups (c.) describe the distribution of SARI
applications across the network of worker nodes and are discussed in greater
detail in Section 3.6.2 below. User data (d.) include login information as well
as respective user roles and are typically queried whenever attempts to log on
to a front-end tool. The administration database is directly accessed by the
administration node only.

Application databases (e.) exist per SARI application and contain all data
that are produced during the execution of the corresponding applications.
Application-level data include, among others, current event and correlation
data (for the synchronization of multiple worker nodes) and historic event
data (for the ex-post analysis of a system). Application databases are refer-
enced in the application description of the corresponding SARI application
and continuously accessed by the different worker nodes of the system. In

3.6 System Architecture 63

the front-end layer, the Event Analyzer may query an application database in
order to retrieve (and, in further consequence, visualize) historic event data.

3.6.2 Back-End Layer

SARI’s back-end layer is responsible for executing the system’s SARI appli-
cations in a scalable and failsafe environment. It includes a central coordina-
tion unit – the so-called administration node – as well as a network of event-
processing nodes, the so-called worker nodes. SARI’s back-end components are
implemented as .NET assemblies that can be executed as console applications
or Windows services. For interacting with each other and/or SARI’s front-end
layer, .NET Remoting is used.

The administration node (f.) is the key element of the SARI architecture and
a prerequisite for creating, managing, and deploying SARI applications. Most
basically, the administration node serves as an interface to the different SARI
applications of a system: As depicted in Figure 3.12, the administration node
is the only element of the SARI architecture that has direct access to the ad-
ministration database and the current set of application descriptions. All other
components must connect with the administration node in order to query, cre-
ate, or update SARI applications, and/or to register as listeners to be notified
in case of changes.

For their actual execution in the SARI system, SARI applications are dis-
tributed from the administration node to a network of worker nodes (g.).
Worker nodes are generally independent, self-contained execution units which
are able to run in parallel an arbitrary number of application instances. The
collection of applications to be hosted by a given worker node is defined using
above-mentioned deployment groups. These associate in a m-to-n relationship

(i) a set of SARI applications, and

(ii) a set of worker nodes these applications shall be executed on.

It follows from the m-to-n relationship that several instances of a SARI appli-
cation may exist in parallel, distributed across multiple worker nodes. These
application instances operate generally independent from each other, mean-
ing that sense event adapters, event services, and respond event adapters run
as separate instances on each worker node. To avoid duplicate processing of
events, sense-adapter implementations must ensure that real-world occurrences
are transformed by exactly one instance. Synchronization between multiple
worker nodes is based on the concept of correlation sessions, which are shared
among all instances of an application. For more details on the use of correla-
tion sessions for synchronization purposes, the interested reader may refer to
the work of McGregor and Schiefer [77].

64 3 Sense-and-Respond Infrastructure

3.6.3 Front-End Layer

SARI distributions come with a suite of graphical front-end tools for creating
and administrating SARI applications, controlling their deployment on the
network of worker nodes, and analyzing their performance based on historic
event data. All these tools are .NET-based Windows applications and connect
with the administration node via .NET Remoting.

The Modeling Studio (h.) is an extensive, power-user-oriented IDE that al-
lows creating, editing, and deleting SARI applications. Graphical editors are
provided for all logical parts of a SARI application as described in the above
sections, including event types, correlation sets, decision graphs, and event
processing maps. A new or updated SARI application is forwarded to the ad-
ministration node, which persists the respective application description and
triggers its (re-)deployment on the system’s set of worker nodes.

The Management Studio (i.) allows authorized users to administrate deploy-
ment groups, as well as to manually deploy or un-deploy SARI applications on
the current set of worker nodes.

The Event Analyzer (j.) enables business analysts to investigate the behavior
of a SARI application based on historic event data, using tailored event-data
visualizations and data-mining tools. The key visualization techniques of the
Event Analyzer build upon the Event Tunnel metaphor as discussed in great
detail by Suntinger et al. [123]. Other visualizations include a text view (ren-
dering events and correlation sessions as a chronologically ordered, pageable
list similar to the renderings of modern WWW search engines) and an Excel-
based spreadsheet view. Event-based similarity searching [92] operates in full
integration with the Event Analyzer’s visualization techniques, allowing ana-
lysts to highlight those correlation sessions that are most similar to a reference
event sequence.

3.7 Event Access Expressions

Across all parts of SARI’s application model and implementation architecture,
access to event instances is unified through a tailored, business-user-oriented
event-access language, so-called Event Access (EA) Expressions. EAExpres-
sions can generally be separated into (i) expressions on invidiual events of
specified event types, and (ii) expressions on sequences of events, typically
containing events of multiple event types. In both forms, EAExpressions play
a crucial role in the detection of noteworthy event situations using decision
graphs as discussed in the following chapter. In the following, we give an intro-
duction to the basic syntax and functionality of EAExpressions; for more de-
tailed discussions, the interested reader may refer to Rozsnyai et al. [105, 106].

3.7 Event Access Expressions 65

3.7.1 Basic Operators

EAExpression statements can be composed from lower-level expressions
through a collection of basic operators well-known from common program-
ming languages.

Relational operators include “equal”, “not equal”, “greater than”, “greater
than or equal”, “smaller than”, as well as “smaller than or equal”, all in Pascal-
like syntax. While equality and non-equality can be applied to expressions of
any type, “greater than”, “greater than or equal”, “smaller than”, and “smaller
than or equal” are restricted to expressions of continuous types, i.e., numeric
values, timestamps, and time spans.

Boolean operators include the three basic binary operators “AND”, “OR”
and “XOR” as well as the unary “NOT” operator. Boolean operators can be
applied to (pairs of) Boolean values only.

Arithmetic operators include addition, subtraction, multiplication, divi-
sion, and modulo, all in C-like syntax. Being typically applicable to numeric
operands, EAExpressions allows using “addition” and “subtraction” to per-
form selected calculations on time stamps and time spans: Two time stamps
may, for instance, be subtracted from each other, resulting in a time span
representing the difference between these time stamps. Additions of two time
stamps, by contrast, would be semantically wrong. When at least one operand
is a string, the “+” symbol results in string concatenation.

3.7.2 Handling Collection Types

The SARI data model provides two collection types, namely lists and dictio-
naries. EAExpressions provide access to the elements of both data structures
in C-like brace notation; while collections must be provided the desired index,
dictionaries must be provided the element’s key. EAExpressions moreover pro-
vide diverse binary operators for collections, including, among others, “CON-
TAINS” (returning whether an element or a list of elements is contained in a
collection) and “CONTAINSANY” (returning whether any element of a list of
elements is contained in a collection).

3.7.3 Accessing Single Events

When defined on single events of a specified event type, EAExpressions pro-
vide access to the various event attributes of an event through the attributes’
identifiers, which are available as respectively-typed literals; when the EAEx-
pression is evaluated on a certain event e, the concrete event-attribute values
of e are retrieved.

66 3 Sense-and-Respond Infrastructure

An exemplary EAExpression on events of type “Order Retrieved” as discussed
in Section 3.3.2, testing whether the event’s customer ID lies in a certain range,
could thus be defined as follows:

(CustomerID >= 1000) AND (CustomerID < 2000)

3.7.4 Accessing Sequences of Events

Being strongly-typed, EAExpressions on sequences of events must restrict the
overall set of events to events of a certain event type before particular event
attributes can be accessed. Such a reduction is achieved through (generally
type-based) filtering, which forms the key element of most practical event-
sequence expressions. Having selected events of a certain event type, sets of
event-attribute values may be established in common dot-notation.

The most basic filtering approach is called implicit filtering, where an event-
attribute identifier is simply prefixed with the name of the concerned event
type. Applied on a given sequence of events, such an expression then accesses
the most recent instance of that type in the sequence, i.e., the instance with the
latest time of occurrence. An exemplary expression, accessing the customer ID
of the most recent “Order Received” event, could thus be defined as follows:

OrderShipped.CustomerID

Apart from implicit filtering, filtering can be separated into content-based filter-
ing, which is based on event-attribute values, and index-based filtering, which
is based on the particular position of an event instance in the event sequence.

For content-based filtering, an EAExpression specifies the name of a concerned
event type T along with a Boolean expression on events of type T in round
brackets. Evaluated on a given stream of events, the expression then returns all
T events that conform to the specified expression. An exemplary expression,
retrieving all “Order Received” events with a customer ID lying in a certain
range, could be defined as follows:

OrderShipped((CustomerID >= 1000) AND (CustomerID < 2000))

For index-based filtering, an EAExpression specifies the name of a concerned
event type T along with an index or a range of indexes in square brackets:
Ranges of indexes must be specified in Phyton-like “i..j” syntax; while events
are generally ordered by the time of their occurrence, an index i may be pre-
fixed with “&” to refer to the ith event in reverse order. Evaluated on a given
stream of events, the expression then returns all T events on the specified in-
dex or within the specified range. An exemplary expression, retrieving the four
most recent “Order Received” events, could thus be defined as follows:

3.7 Event Access Expressions 67

OrderShipped [&3..&0]

Given an event type T , content-based filtering and index-based filtering can
be combined in a common expression. Filters are thereby evaluated “from left
to right”; consequently, the following expressions would yield different results:

OrderShipped(CustomerID > 1000) [&3..&0]

OrderShipped [&3..&0] (CustomerID > 1000)

Given a filtering on T -events as discussed above, an expression could eventually
access the event-attribute values of all resulting T -events in common dot-
notation. For example, the following expression would return the order IDs of
all “Order Received” events with a customer ID greater then 1000:

OrderShipped(CustomerID > 1000).OrderID

3.7.5 Functions

EAExpressions provide a whole range of functions on single as well as lists of
values; for instance, the average of a list of numeric values could be calculated
as follows:

Avg(OrderPlaced(TotalCosts > 1000).TotalCosts)

For a detailed listing of functions, the interested reader may refer to the work
of Rozsnyai [105].

4

Decision Graphs

Abstract Sense-and-Respond Infrastructure (SARI) is a general-purpose Complex
Event Processing framework that has proved useful in a variety of business domains.
In order to provide manageability and usability also for large-scale solutions, SARI
splits the overall definition of an application into a collection of smaller, decoupled
sub-models. This chapter presents the central decision graph model of a SARI appli-
cation. Describing event-processing logic of the form “if a noteworthy event situation
occurs in the incoming stream of event, then trigger respective actions”, it forms the
foundation for any rule-based event processing in SARI. We present a meta model
for decision graphs and discuss the relationship between decision graphs and event
correlation at design time as well as run time. We introduce a library of rule com-
ponents, which encapsulate easy-to-understand pieces of event-processing logic and
form the nodes of a decision graph.1

4.1 Introduction

Sense-and-Respond Infrastructure (SARI) as originally proposed by Schiefer
and Seufert [114] is a general-purpose Complex Event Processing framework
that has proved useful in a variety of business domains such as online gambling,
logistics, and automated product recommendation. In order to provide man-
ageability and usability also for large-scale solutions, SARI splits the overall
definition of an application into a collection of smaller, decoupled sub-models.
Each of these sub-models then describes a certain aspect of a solution, be-
ginning with the structure of all possible event data and ending with the
orchestration of self-contained event-processing units such as event adapters
and event services.

1 This chapter is based on the work of Obweger et al. [89].

70 4 Decision Graphs

In this chapter, we present the central decision graph model, which may be
considered the key element of a model-driven view on SARI applications. De-
cision graphs describe in an integrated model (i) a noteworthy event situation
– a so-called event pattern – to be fulfilled by one or more events of an event
stream, and (ii) one or more actions to be executed when such a pattern is
detected. Decision graphs are directly interpretable to SARI using a special
event-service implementation and form the foundation for any rule-based event
processing logic in the system. As such, the decision graph model directly un-
derlies our approach to user-oriented rule management as presented in Chap-
ter 5 of this thesis. Extensions to the base decision-graph model are presented
in Chapter 6 and Chapter 7, where we use decision graphs for updating and
monitoring business entities as well as hierarchical pattern modeling.

Figure 4.1 shows the decision graph model in the context of the overall SARI
application model.

Decision Graph Model

Event Model

define relations

define noteworthy
business situations

Ev
e

n
t

P
ro

ce
ss

in
g

M
o

d
e

l

define response-
event actions

co
n

fi
g

u
re

 r
u

le
 s

er
vi

ce
s

Correlation Model

Ev
en

t
D

at
a

M
o

d
el

Figure 4.1. Decision Graphs in the SARI Application Model

The decision graph model builds upon the event data model for pattern de-
tection purposes and the event model for defining reaction logic. An event
pattern may be considered as an additional constraint on either a class of sin-
gle business occurrences as defined in the event model or on a class of business
situations as defined in the correlation model. For instance, an event pattern
“order delayed by x days” would select from the overall set of all “order pro-
cesses” only those cases that are delayed by x days or longer. The action part
of a decision graph allows generating response events as defined in the event
model. By themselves, decision graphs are referenced in the event processing
model to be executed as part of a particular processing path through a SARI
application.

4.1 Introduction 71

4.1.1 Key Characteristics

Schiefer et al. [112, 113] identified the following key characteristics of decision
graphs, among others:

Building rules with Divide and Conquer. Powerful event-pattern rules
are key to successful applications of CEP. Still, describing classes of notewor-
thy event situations in an abstract manner may place heavy demands on users.
SARI aims to simplify this process by employing a “divide-and-conquer”-like
approach to modeling rules, where application developers compose complex de-
cisions from easy-to-understand pieces of event-processing logic such as “the
occurrence of an event of type T with certain attribute values” or “the gener-
ation of a response event of type U” These pieces – encapsulated in so-called
rule components – are connected to each other in a directed, acyclic decision
graph. At run time, the so-defined predecessors in the decision graph are then
considered as preconditions in the event-processing logic: To activate a com-
ponent c – and thus bring it to play into the evaluation process – a concrete
event situation must conform to (at least) one valid path through the decision
graph. Depending on the evaluation result of c, further parts of the decision
graph are activated, and so forth.

Decoupling event correlation and event-pattern detection. In many
CEP solutions, relationships between events as well as conditional restrictions
(e.g., on the quantity, ordering, or attribute values of events) are defined in
a single, integrated event-pattern model. SARI allows for a strict decoupling
of event correlation on the one side and event-pattern detection on the other:
An application’s correlation model defines how events generally relate to each
other, e.g., whether or not two “Transport Update” events belong to the same
delivery process. Decision graphs set up on a so-defined, “common” class of
event situations and define those characteristics of a concrete situation in-
stance that make it noteworthy in a certain sense. The proposed decoupling
not only simplifies the creation of decision graphs, but also enables the reuse
of correlation information across SARI, e.g., for analysis purposes.

Event-triggered rule evaluation. The main value of CEP systems con-
sists in responding to noteworthy business situation in near real time, on the
occurrence of a decisive business event. The evaluation of decision graphs is
entirely event triggered, meaning that any evaluation step is directly or indi-
rectly caused by the occurrence of an event. As a consequence, detections of
noteworthy event situations along with possible reactions to these occurrences
can be carried out with minimal latency.

Graphical rule modeling. The described, graph-based composition of gener-
ally self-contained components is in full accordance with a graphical approach
to rule modeling, enabling both a comprehensive view of the overall decision
graph and quick and easy access to the various rule components. SARI fea-
tures a graphical decision-graph editor, allowing users to add, configure, and

72 4 Decision Graphs

connect graphical representations of rule components. Possible renderings of
rule components are presented in Section 4.3.

Service-oriented rule processing. Decision graphs are assigned to and ex-
ecuted by so-called rule services as described in Section 3.5, special event ser-
vices that retrieve the correct decision-graph evaluation state for an incoming
event and adapt this state based upon the represented event-processing logic.

4.1.2 Decision Graphs and Rules

One may argue that due to their general semantics – “if event pattern, then
action” – decision graphs would directly and without restrictions qualify for
modeling event-pattern rules. Such an approach has been applied in earlier
research on rule-based event processing in SARI [113]. However, while well-
suited for technically versed users, it proved to be inappropriate for domain
experts with little or no technical expertise.

In the remainder of this thesis, we introduce several abstraction layers that set
up on decision graphs in order to ease the creation of meaningful event-pattern
rules. Independent from these extensions, decision graphs continue to be the
base model for rule-based event processing: Rule services execute a collection
of decision graphs, no matter which abstraction layers may exist beyond them.

4.1.3 Outlook

The remainder of this section is structured as follows: In Section 4.2, we present
a meta model for decision graphs. Rule components, which encapsulate easy-
to-understand pieces of event-processing logics and form the key elements of a
decision graph, are presented in Section 4.3. Section 4.4 discusses an exemplary
decision-graph from the fraud-detection domain. The management of decision-
graph states at run time is discussed in Section 4.5.

4.2 Meta Model

Figure 4.2 shows the meta-model for decision graphs. A decision graph

g = (C,P, c,∆t)

is defined by a non-empty set of rule components C, a non-empty set of precon-
dition relationships P , a correlation set s, as well as a time window ∆t. The
correlation set c and the time window ∆t together form the decision graph’s
correlation configuration, which is optional.

4.2 Meta Model 73

Output Port

Input Port

1

1

1

*

Decision
Graph

1

*

1

*

0..1 1

Rule Component Precondition
Relationship1

*

*

*

Condition
Component

Time-based
Component

Action
Component

- Precondition
Operator

Correlation
Configuration

- Time Window

* 1

Correlation Set

Figure 4.2. Decision Graph Meta-Model

Rule components. Encapsulating easy-to-understand pieces of pattern-
detection or reaction logic, rule components form the nodes and basic elements
of any decision graph. Depending on its implementation, each rule component
c ∈ C has a collection of input ports IN and a collection of output ports
OUT. While input ports allow generally activating a rule component, output
ports represent possible results of the encapsulated logic. Dependencies be-
tween components are modeled as precondition relationships between output
ports and input ports. To allow multiple preconditions, a binary precondition
operator pin ∈ {AND, OR, XOR} specifies whether all (AND), at least one (OR),
or exactly one (XOR) precondition must be fulfilled in order to activate an
input port in.

Rule components can generally be separated into condition components, time-
based components, and action components. We discuss these categories in
greater detail in Section 4.3 below.

Precondition relationships. Given the set of rule components, precondition
relationships define under which conditions – i.e., under which state of the de-
cision graph – a rule component is activated. Depending on the rule-component
implementation, this activation may bring it to play in the pattern-detection
process or cause it to trigger a described action. A precondition relationship
p = (in, out) associates an output port out of a rule component ci ∈ C with
an input port in of another rule component cj ∈ C. Cyclic dependencies are
forbidden.

Correlation set. The proposed, model-driven approach to rule composition
builds upon a strict decoupling of event correlation and event-pattern detec-
tion: While event correlation defines classes of event situations as a common
level based on relationships between events, event-pattern detection defines for
a given correlation set those characteristics of an event situation that make
it noteworthy in a specific context. A decision graph’s correlation set conse-
quently defines the class of event situations upon which a decision graph shall

74 4 Decision Graphs

be evaluated; given a correlation set c, the decision graph is evaluated sepa-
rately for each correlation session of c. When no correlation set is defined, a
decision graph is evaluated independently for each incoming event.

A more detailed discussion on the interplay between correlation sessions and
decision-graph states is presented in Section 4.5 below.

Time window. Given a correlation set c, the time window ∆t allows restrict-
ing the events of a correlation session that are considered for pattern detection
at a certain point in time. Consider a decision graph that acts on the oc-
currence of an event e; for performing calculation on the underlying event
situation, a preceding event f of the correlation session sc,e = sessionc(e) is
then considered only if valuee(CreationTime) − valuef (CreationTime) ≤ ∆t.
By default, ∆t =∞ is assumed.

4.3 Rule Components

Rule components are the basic elements of any decision graph and make the
proposed model a flexible and extendible toolkit for defining rule-based event-
processing logic. In its current version, SARI provides a predefined library of
rule components for commonly required pattern-detection and reaction tasks.
These rule components can be adjusted by the user to perfectly suit the given
business needs. Depending on their general function in a decision graph, rule
components can thereby be separated into

• condition components,

• time-based components, and

• action components.

In the following, we discuss these categories in greater detail and introduce
the respective elements of SARI’s basic rule-component library. In the course
of this thesis, additional rule components are introduced.

4.3.1 Common Characteristics

Independent from their concrete implementation, rule components have ac-
cess to – and, thus, may apply the encapsulated logic on – the concrete event
situation that underlies the current evaluation step: Event conditions (Sec-
tion 4.3.2), for example, evaluate Boolean functions against user-defined char-
acteristics of event situations in order to decide whether to activate a “true”
port or a “false” port. For a decision graph g = (C,P, c,∆t) and a most recent
incoming event e – i.e., the event that has triggered the current evaluation
step – the underlying event situation sg,e is thereby defined as follows:

4.3 Rule Components 75

• for decision graphs that set up on a correlation set (c 6= ε), sg,e is con-
stituted by those events of the correlation session sc,e = sessionc(e) of
e according to c which lie in the specified time window ∆t, i.e., with tv
indicating the time of occurrence of an event v,

sg,e = (f1, f2, . . . , fn | fi ∈ sessionc(e), te − tfi ≤ ∆t)

• for so-called stateless decision graphs (c = ε), sg,e = (e), i.e., the trigger-
ing event only. Stateless decision graphs are discussed in greater detail in
Section 4.5.

Unless otherwise stated, we assume that user-definable properties of a rule
component are declared as Event Access (EA) Expressions on the underly-
ing event situation. Note, however, that user-defined expressions can easily be
erroneous, e.g., due to divisions by zero or null-value errors. For all rule com-
ponents that use user-defined expressions for accessing the underlying event
situations, we therefore provide a Boolean “Ignore evaluation errors” property,
indicating whether to simply ignore evaluation errors or to trigger a special ex-
ception event. Exception events are published via the respective rule service’s
special exception port and can be handled just like any other event in down-
stream event-processing logic. Further, implementation-specific configurations
are introduced below.

4.3.2 Condition Components

Condition components include all components that evaluate user-defined
Boolean expressions on the underlying event situation and activate their out-
put ports depending on the results of this evaluation. Condition components
therewith allow modeling those characteristics of a class of event situations
that make it noteworthy in a certain sense, and typically cover major parts
of the pattern-detection side of a decision graph. For enhanced, time-related
aspects, condition components must be combined with time-based components
as described in Section 4.3.3 below.

Input and output ports. On their input side, all condition components fea-
ture a single activator port: Only if all required preconditions are fulfilled, the
described pattern-detection logic is considered in the evaluation process. Oth-
erwise, if the preconditions are not fulfilled, all output ports are de-activated
and the component is ignored for event processing. On their output side, a set
of output ports represent the possible results of an evaluation. In all of the
following descriptions, we assume that a component is active, i.e., that all its
preconditions are fulfilled.

Sticky evaluation. In addition to implementation-specific configurations, all
condition components provide a Boolean “Sticky evaluation” property, indicat-
ing whether or not activated output ports shall retain their activation across

76 4 Decision Graphs

subsequent evaluations of the encapsulated pattern-detection logic. Consider a
condition component with two output ports “true” and “false”, with pattern-
detection logic evaluating to true at a time stamp t1 and to false at a time
stamp t2, where t1 < t2. While the true port would in any case be activated
at t1, the further behavior depends on the chosen evaluation mode: When a
component is defined to be sticky, the false port would be activated in addition
to the previously-activated true port. Otherwise, when the sticky-evaluation
flag is set to false, activation would switch from the true port to the false port,
causing only the false port to be active after t2.

Event Conditions

An event condition c = (T, xb) evaluates a Boolean expression xb on the under-
lying event situation whenever an event of a user-defined, “triggering” event
type T occurs in the incoming event stream. Depending on the result of this
evaluation, a “true” output port or a “false” output port is activated. In many
cases – although, not necessarily – the result of an event condition depends on
the most recent event of an event situation, which is the triggering event itself.
A so-defined event condition then describes the occurrence of a certain kind
of event and may be considered as the core element of most decision graphs.

Figure 4.3 shows the shape rendering of an exemplary event condition “CPU-
related alarm”, describing the occurrence of an event of type “Alarm” with an
error code of 17 or 39.2

AND

CPU-related alarm

ErrorCode = 17

ErrorCode = 39

Conditions (OR)

Alarm

True False

Triggering
Event Type

Conditions

Title Precondition Port

Result Ports

Sticky Evaluation
Configuration

Figure 4.3. Event Condition Component

To ensure correct pattern detection also when several event conditions for a
given “triggering” event type T are involved, event conditions are evaluated
“bottom up”, i.e., for an incoming event e : T , a component is always evaluated
prior to its predecessors in the decision graph. Otherwise, an (originally active)
component could be deactivated by a predecessor before being evaluated itself.

2 Note that in the presented example, the condition’s Boolean expression is defined
as an EAExpression on a single event of the triggering event type T ; when this
approach is used, the expression is always evaluated on the triggering event e : T .

4.3 Rule Components 77

Event Cases

Event cases are similar to event conditions, however, they allow users to group
sets of Boolean expressions in a single rule component. An event case c = (T,C)
is defined by a triggering event type T and a collection of cases C, where each
case ci ∈ C, ci = (i, xb) is defined by an identifier i and a Boolean expression xb.
When for an incoming event e : T , a case xb evaluates to true, a corresponding
output port outci is activated. When all cases evaluate to false, an (optional)
default port outdefault is activated. As with event conditions, event cases are
evaluated “bottom-up”.

Figure 4.4 shows an exemplary case “Handle memory shortage”, activating
its output ports “Warning” and “Alarm” depending on the current memory
utilization of a supervised device.

AND

Handle memory shortage

Warning: Utilization > 0.7

Alarm: Utilization > 0.9

Cases

RAMTick

Warning Alarm

Precondition Port

Triggering
Event Type

Conditions

Title

Default

Default PortCase Ports

Figure 4.4. Event Case Component

4.3.3 Time-Based Components

Condition components as described in the above section always depend on
a trigger to actually evaluate the encapsulated pattern-detection logic. With
the set of rule components as described by now, such a trigger is – directly or
indirectly – constituted by the occurrence of a concrete event, which may either
trigger a component by itself or fulfill the component’s preconditions. In many
real-world use cases, however, actions may depend on temporal conditions
rather than on the immediate occurrence of event. Consider, for instance,
typical use cases from the logistics domain, where actions shall be triggered
in case that a transport is delayed for more than a specified time interval:
An action should then not be executed with the eventual occurrence of the
(delayed) “Transport Ended” event, but with the expiration of a use-case-
specific time interval beginning with the “Transport Started” event, if the
corresponding “Transport Ended” event does not occur within this time span.

Time-based components complement the above-described, basic pattern-
detection facilities by using internal clocks for activating their output ports.

78 4 Decision Graphs

As with condition components, all time-based components feature a Boolean
“Sticky evaluation” property, indicating whether existing output-port activa-
tions shall be reset with new evaluations.

Timers

Timer components have two precondition ports for starting and stopping an
internal timer. When a running timer is stopped within a user-defined time
span ∆t, an output port “Not Fired” is activated; otherwise, after the ex-
piration of ∆t, an output port “Fired” is activated. Timer components are
typically used to actively respond to the delayed occurrence of an event as
illustrated in the above example.

Figure 4.5 shows an exemplary timer with a constant time span of 10 minutes.

ANDAND

Fired Not Fired

Start Port

Not Fired PortFired Port

Timer
Details

Start Stop

Fixed Time Span:

10 Minutes

Stop Port

Figure 4.5. Timer Component

Schedulers

Schedulers facilitate recurring activations of downstream rule components.
Schedulers do not have an input port; an output port “Scheduled” triggers
regularly at user-defined intervals ∆t. Figure 4.6 shows an exemplary sched-
uler shape with a constant time interval of 60 minutes.

Trigger summary

Scheduled

Scheduled Port

Schedule
Details Schedule Settings:

This scheduler triggers periodically

every 60 minutes.

Title

Figure 4.6. Scheduler Component

4.3 Rule Components 79

4.3.4 Action Components

Action components encapsulate reaction logic to be executed whenever a com-
ponent is activated, i.e., whenever an event situation conforms to a compo-
nent’s precondition. Unlike the pattern-detection part of a decision graph,
such logic may be destructive, i.e., may affect the state of the SARI appli-
cation and/or the underlying business environment. Typically serving as the
end nodes of a decision graph, action components provide a single output port
that simply loops through the activation state of the component’s precondition
port.

For all action components, SARI allows for the following base configuration:

• Reset Rule State: SARI’s rule engine allows resetting the state of a
decision graph for a given correlation set. When the “Reset Rule State”
flag is set for an action component, the decision graph is reset automatically
each time the component is activated, i.e., all output ports/dependencies
are set to inactive.

• Silence Interval: Silence intervals enable application developers to pre-
vent cascading actions in case of high-frequent activations of a respective
action component: Beginning with the first successful execution of the en-
capsulated action, a so-configured component then suppresses all further
executions for a user-defined time span.

Response Event Actions

Response-event components generate a response event based on a user-defined
response-event template. The response-event template is defined by an event
type T , and for each event attribute (i, t) in T , an expression on the underlying
event situation returning a value of type t. On activate, these expressions are
applied on the given event situation in order to calculate the concrete event-
attribute values.3 After finishing the current decision-graph evaluation step,
the so-defined response event is published to the SARI application’s process-
ing model, where it may be subject to further event processing and/or cause
concrete state changes or actions in the underlying business environment.

Figure 4.7 shows an exemplary response-event action component “Server
crashed or shut down”, which could, for example, be activated whenever the
time between two events coming from a server is longer than expected. As a
result of the component’s activation, a response event of type “Server Down”,
with event attributes signifying the concerned server name and time stamp of
the most recent “Resource Tick” event, is generated.

3 The default attributes of an event – i.e., its time of occurrence and unique ID –
are implicitly generated and need not to be defined.

80 4 Decision Graphs

OR Precondition PortTitle

Server: ResourceTick.Server

Last Heartbeat: ResourceTick.CreationTime

Server Down

Event Attributes

Response-
Event Type

Attribute
expressions

Server crashed or shut down

Figure 4.7. Response-Event Action Component

4.4 Example

Figure 4.8 shows the rendering of a simple decision graph from the fraud-
detection domain, assembled from three event conditions and one response
event action. In the example, a “Suspicious Bet Placed” event is generated
whenever a high-stake bet (with a bet amount greater than 100$) is followed
by an external warning from at least one of two global early-warning systems.
Via its event attributes, the response event carries the involved account ID,
the bet ID, and a warning message. Note that correlation information – i.e.,
that all events must belong to the same sports event – is not defined in the
decision graph directly, but would be modeled in a separate correlation set.

True False

ESSA Warning

No conditions defined

External warning

True False

WLA Warning

No conditions defined

External warning

OR

Suspicious bet

BetID: BetPlaced.BetID

AccountID: BetPlaced.BetID

ExternalWarningMessage: ...

Suspicisious Bet Placed

Event Attributes

True False

High-stakes bet

Bet Placed

Amount > 100

Conditions

Figure 4.8. Exemplary Decision Graph

4.5 Managing Decision Graph State 81

4.5 Managing Decision Graph State

As discussed in Section 4.1, SARI provides for a general separation be-
tween event correlation and event-pattern detection: Whereas event correlation
groups events that are generally related to each other, event-pattern detection
selects from these groupings those that are noteworthy in a certain context. In
SARI’s application model, this separation reflects in a decoupling between the
correlation model as discussed in Section 3.4 and the decision graph model.

During run time, SARI implements the described separation by managing the
state of a decision graph – i.e., the set of active dependencies between rule
components as well as running timers and schedulers – separately for each
correlation session of the decision graph’s correlation set c. For an incoming
event e, a rule service implicitly correlates e according to c as described in
Section 3.4.4 and retrieves the specific correlation session sc,e = sessionc(e)
in which e participates. Based upon this correlation session, the rule service
retrieves the decision-graph state from a (rule-service level) state manager,
or, if such state is not yet available, creates a new one. The decision-graph
state then serves as the basis for processing e and is adapted depending on
the described event-processing logic. After the processing of e, the adapted
decision-graph state is updated at the state manager for subsequent event
processing. As with correlation sessions, decision-graph states can be managed
in memory or persistently in a database.

Figure 4.9 illustrates the management of decision-graph state by the example
of a simple decision graph g = (C,P, c,∆t). For the sake of simplicity, we
assume that ∆t =∞.

An incoming event e1 is correlated based on c and establishes a new corre-
lation session sc,e1 . This new correlation session is not yet associated with a
decision-graph state. As a consequence, a new state is created and attached to
the correlation session. e1 is processed based on this initial decision-graph state
and activates the left-hand output port of the decision graph’s initial rule com-
ponent r1; all other rule components are inactive for the given decision-graph
state. e2 also establishes a new correlation session and associated decision-
graph state. The third and final event e3 is correlated to e1, meaning that e3 is
added to the pre-existing correlation session sc,e1 . e3 is then evaluated based
on the decision graph state attached to sc,e1 , in which the left-hand output for
of the initial rule component has been activated based on the occurrence of e1.
e3 finally activates the output port of the – now active – rule component r2.

82 4 Decision Graphs

e1Incoming Event Stream e2

Correlation Sessions
for Correlation Set s

Decision-Graph States
Before Processing

Decision Graph States
After Processing

e1 e1 e2

e3

e1 e2

e3
new

new

new

new

correlates(e3, e1)

add

Time

r1

r2

Figure 4.9. Handling Decision-Graph State at Run Time

4.5.1 Merging Decision-Graph States

Whenever a correlation set is composed from more than one correlation band,
merges between correlation sessions may occur. With decision-graph state be-
ing associated with correlation sessions in a 1-to-1 relationship, this inevitably
leads to situations where two decision-graph states – one for each pre-merge
correlation session – needs to be combined into one. For performance reasons,
SARI follows what we call an activation-based merging approach, where output
ports are activated in the merged decision-graph state if they are activated in
at least one of the original decision-graph states. Running timers are adopted;
if a timer is running for both decision-graph states, the earlier start time is
chosen.

4.5.2 Stateless Decision Graphs

Given a correlation configuration, decision graphs further characterize classes
of event situations as defined in the correlation model. In certain cases, how-
ever, decisions can be taken on the level of individual events, independently
from possible higher-level processes to which these events may relate.

In SARI, such scenarios can be modeled as decision graphs by simply omitting
the correlation configuration: As the evaluation state of a decision graph is
managed per correlation session, a so-defined decision graph is then evaluated
independently for each incoming event; in other words, for each incoming event
the decision graph is set to its initial evaluation state, with all output port-
s/dependencies inactive. We refer to these kinds of decision graphs as stateless
in the remainder of this thesis.

4.5 Managing Decision Graph State 83

Figure 4.10 shows a typical stateless decision graph from the fraud-detection
domain. For each incoming event of type “Alarm” with an error code of 42,
an “Email” event with respective attribute values is generated.

Alarm #42

ErrorCode = 42

Conditions

Alarm

True False

Receiver: „john.q.public@acme.com“

Priority: 3

Text: „Alarm! Alarm!“

Email

Event Attributes

Send Email

Figure 4.10. Exemplary Stateless Decision Graph

5

A Framework for User-Oriented Rule
Management

Abstract Event-pattern rules are “the foundation for successful applications of
Complex Event Processing” [71] and find use on different conceptual layers of a
event-based system. Today, when more and more people are involved in the setup
and maintenance of event-based applications, it hence becomes increasingly impor-
tant for companies that the different event-pattern rules of an application can be
created, deployed and administrated by responsible and qualified personnel. This
chapter presents a novel approach to user-oriented rule management for Sense-and-
Respond Infrastructure (SARI). It caters to the needs of IT experts as well as business
users, for which complementary, yet clearly decoupled workflows are presented. We
present the conceptual foundations of our framework and present in great detail or
approaches to infrastructural rule management and sense-and-respond rule manage-
ment. We discuss user rights management for these approaches and illustrate the
implementation of our framework as an extension to the base architecture of SARI.
A particular focus is placed on extensions of the front-end layer of SARI, namely, an
extended IDE for power users and a simplified web interface for business users.1

5.1 Introduction

Event-pattern rules of the form

if an event pattern p is detected, then execute action(s) A

are a key element of Complex Event Processing (CEP) and proved suitable
for describing high-level business logic as well as low-level (pre-)processing and
integration steps. Depending on their function, event-pattern rules are typi-
cally associated with different user groups of an enterprise: While processing
logic will typically be managed by IT experts, business logic will typically be
in the responsibility of technically inexperienced domain experts. An approach
to rule management for Complex Event Processing systems – i.e., the overall

1 This chapter is based on the work of Obweger et al. [90] and Kavelar et al. [62].

86 5 A Framework for User-Oriented Rule Management

set of tools and workflows provided for the creation, application, and adminis-
tration of event-pattern rules – must therefore cater to the needs of IT experts
as well as business users. IT experts must be provided with facilities to define
event-pattern rules in an effective manner with little administrative overhead.
Business users, by contrast, must be provided with facilities to define rules
in a non-technical, business-oriented manner. Following from these highly di-
vergent and partly opposing requirements, approaches that focus on only one
group of users will inevitably fail to support the work of the other.

In cases where a rule-management system caters to the needs of IT experts
but neglects the needs of business users, business users are either required
to have extensive technical skills or rely on technical experts to implement
changes in the business logic. The former option may appear favorable at first
sight; it is, however, infeasible in practice and will raise security concerns if a
CEP framework gains unrestricted access to an event-based application. The
latter option is generally practicable, however, imposes significant overhead
on both the IT department – for implementing changes in the business logic
as requested by business users in a timely manner – and business users, for
documenting and communicating the requested business logic in a form that
is clear and complete enough to be usable by the IT department. Figure 5.1
sketches the described workflow.

Ev
en

t-
B

as
ed

A

p
p

lic
at

io
n

Business
User

Technical
Expert

Define/change
business logic

Model and
deploy

1

Business and
processing logic

Source System

2

Figure 5.1. Rule Management in Power-User-Oriented CEP Systems

In cases where a rule-management system caters to the needs of business users
but neglects the needs of IT experts, IT experts are required to cope with re-
strictions and/or unnecessary abstractions for implementing low-level process-
ing logic. If required functionality is not available at all, a separate integration
layer must be introduced for pre-processing issues. Such approach has been
proposed for the integration of CEP and business rule engines (BREs) [14];

5.1 Introduction 87

B
u

si
n

es
s

R
u

le
 E

n
gi

n
e

Business logic

Ev
en

t-
B

as
ed

A

p
p

lic
at

io
n

Processing logic

Source System

1

2

Model and
deploy

Model and
deploy

Business
User

Technical
Expert

Figure 5.2. Rule Management in CEP/BRE Architectures

however, besides resulting in additional efforts for purchasing, maintaining,
and getting acquainted with two separate products, it neglects the importance
of temporal aspects for high-level business logic. These are not well supported
by state-of-the-art BREs. Figure 5.2 sketches the described workflow.

In this chapter, we present a novel approach to rule management for Sense-
and-Respond Infrastructure. It caters to the needs of IT experts as well as
business users, for which complementary, yet clearly decoupled workflows are
presented. IT experts define event-pattern rules in a single, comprehensive
model, in parallel and fully integrated with the other elements of an applica-
tion’s event-processing infrastructure. Business users assemble event-pattern
rules from prepared, configurable building blocks of pattern-detection and re-
action logic in a simplified, wizard-based interface. The resulting change in the
rule management workflow is depicted in Figure 5.3.

Outlook

The remainder of this chapter is structured as follows: Section 5.2 the con-
ceptual foundations of our approach. In Section 5.3, related work is discussed.
In Section 5.4 and Section 5.5, we present our approaches to infrastructural
rule management and sense-and-respond rule management in greater detail.
User rights management for these approaches is discussed in Section 5.6. Sec-
tion 5.7 provides an overview of the implementation architecture of our ap-
proach, which extends SARI’s base architecture as presented in Section 3.6
across all layers of the system. The two major extensions on the front-end
layer of the architecture – namely, an extended version of the Modeling Studio
and a novel, web-based rule-management tool for business users – are discussed
in Section 5.8 and Section 5.9, respectively.

88 5 A Framework for User-Oriented Rule Management

Ev
en

t-
B

as
ed

A

p
p

lic
at

io
n

Business Logic

Prepared
Business Logic

Processing Logic

Business
User

Technical
Expert

Source System

Figure 5.3. Rule Management in SARI

5.2 Conceptual Foundations

The presented approach to user-oriented rule management is rooted in a con-
ceptual differentiation of event-pattern rules by their general function within
an event-based application, into infrastructural rules and sense-and-respond
rules. Both kinds of rules are fully equivalent regarding their basic semantics:
In either case, actions are triggered in response to detections of event patterns
in an underlying stream of events. They differ, however, in the way they are
created, applied, and administrated in the proposed rule-management system.
Figure 5.4 illustrates the roles of infrastructural rules and sense-and-respond
rules within an event-based application.

Infrastructural rules, on the one hand, include all rules that provide input
for other parts of an event-based application, but not by themselves respond to
the underlying source system. Along with the event model, correlation model,
and event processing model, the collection of infrastructural rules of an ap-
plication may therefore be considered the event-processing infrastructure for
creating an event-based, near real-time image of the underlying business envi-
ronment: All relevant real-world actions and state changes are then accessible
at a proper level of granularity, via accordingly pre-processed events.

As part of a so-defined integration layer between the real-world business en-
vironment and high-level decision making, effective and properly orchestrated
infrastructural rules are obviously critical to the general functioning and per-
formance of an event-based application. In the proposed framework, infras-
tructural rules are therefore managed by well-trained power users of a system
– so-called system operators – in parallel and fully integrated with the other
elements of an event-processing infrastructure. System operators model infras-
tructural rules in a single, comprehensive model, as so-called rule definitions.

5.2 Conceptual Foundations 89

Event-Based Image of S

t

Source System S

R
 E S P

 O
 N

 D

Even
t-B

ased
 A

p
p

licatio
n

System
Operator

Rule
Manager

Business
Operator

Sense-and-Respond Rules

Infrastructural Rules

Rule Definition Pattern Definition Action Definition

Solution
Designer

Figure 5.4. Infrastructural Rules vs. Sense-and-Respond Rules

These rule definitions are immediately interpretable to SARI and can be de-
ployed by directly assigning them to one or more of the application’s rule
services. The proposed workflow especially focuses on efficiency, transparency,
and immediacy, and strives to minimize administrative overhead as would
emerge from a more abstracted approach.

Sense-and-respond rules, on the other hand, include all rules that do not
serve as an input for other parts of an event-based application, but directly or
indirectly respond to the underlying business environment. Setting up on an
up-and-running event-processing infrastructure (including the infrastructural
rules of an application), sense-and-respond rules continuously monitoring the
provided event-based image for relevant business situations and trigger respec-
tive actions in response.

Implementing the high-level business logic of an event-based application, sense-
and-respond rules are critical to the proper monitoring and controlling of a
business environment. Still, creating and applying such rules “from scratch”
would not only require the domain-specific expertise of customer-side repre-
sentatives, but would also force these users to get acquainted with the diverse
mechanisms for creating and applying event-pattern rules as part of an event-
based application. We therefore propose a three-step workflow for sense-and-
respond rule management:

In the first step of the workflow, well-trained power users of the employed CEP
platform – so-called solution designers – define a catalog of configurable build-
ing blocks of (i) encapsulated pattern-detection logic (pattern definitions), and
(ii) encapsulated reaction logic (action definitions) based on the general moni-
toring and steering requirements of the given business scenario. With the focus
on reusability across different use cases and information hiding, these event-
level building blocks expose a collection of named, typed, and documented in-

90 5 A Framework for User-Oriented Rule Management

put parameters, which allows them to be configured without having to change
and/or understand the low-level event-processing logic.

In the second step, senior domain experts – so-called rule managers – refine
the prepared building blocks with respect to the concrete application scenarios
in which they are to be used. Focusing on easy of use, rule managers simplify
the instantiation of a building block by further specifying the encapsulated
event-processing logic (through setting or restricting the domain of input pa-
rameters) and providing for each so-defined refinement a high-level, textual
representation with placeholders for all unset input parameters. The result-
ing business-level building blocks fully abstract from underlying complexity:
From an end-user point of view, the prepared catalog of event-processing logic
appears as a collection of relevant business situations (e.g., “suspicious user
behavior”) and possible actions (e.g., “notify fraud-prevention department”).

In the third and final step, appropriately configured buildings blocks are as-
sembled to concrete sense-and-respond rules of the form “if pattern, then ac-
tion(s)” depending on the current requirements of an enterprise. The creation
and maintenance of the concrete event-pattern rules still requires domain-
specific, detailed knowledge of the source system; however, it fully abstracts
from the event-base foundations of an application. Also, due to sense-and-
respond rules’ “read only” access to the underlying event stream of real-world
actions and state changes, they may be added, changed, and removed with-
out having to consider any side-effects to other parts of the application. The
process of instantiating concrete sense-and-respond logic from prepared build-
ing blocks can therefore be performed by so-called business operators, which
usually are domain experts with little or no technical expertise.

Covering both processing logic and business logic, the overall process of creat-
ing a full-fledged, up-and-running event-based application can be summarized
as follows:

• System operators establish an event-processing infrastructure, including
all infrastructural rules of an application. This event-processing infrastruc-
ture establishes a near real-time, event-based image of the underlying busi-
ness environment, including event representations for all relevant actions
and state changes at a proper level of granularity.

• Solution designers create a catalog of event-level building blocks of en-
capsulated pattern-detection logic and reaction logic based on the general
monitoring requirements of the given business scenario.

• Rule managers refine the prepared building blocks to so-called business-
level building blocks, by further specifying the encapsulated event-
processing logic and providing a high-level, textural representation.

• Business operators assemble these business-level building blocks to con-
crete sense-and-respond rule logic.

5.3 Related Work 91

5.3 Related Work

In the following, we present existing work related to rule management in Com-
plex Event Processing systems. Beginning with work on the particular issue of
rule management in Section 5.3.1, we address the current discussion on CEP
for business users in Section 5.3.2 and show existing applications of layered
event-processing models in Section 5.3.3. We discuss existing differentiations
between event-pattern rules in Section 5.3.4 and elaborate on possible sim-
ilarities and differences between the proposed approach and Business Rule
Management Systems in Section 5.3.5.

5.3.1 Rule Management for Event-Based Systems

For many years, CEP-related research has primarily focused on technical qual-
ities such as expressiveness and performance. While some efforts have been de-
voted to the development of easy-to-use EPLs and less programming-centered
approaches to rule creation, there is little work on the broader issue of rule
management in event-based systems.

Luckham [72] sees rule management as one of the challenges for future Complex
Event Processing. He defines rules management as follows:

“Rules management is about (1) writing correct rules – that say what
you mean, (2) organizing rule sets for efficient execution, so the rules
engine tries only the rules that might apply at any time, (3) making
changes correctly, which involves knowing how a new rule will interact
with existing rules, and of course (4) ensuring logical consistency and
absence of redundancies.”

Our approach to rule management addresses point 1 of the definition – writing
correct rules – by providing rule-authoring facilities tailored to the different
user groups in a company. Point 2 – organizing rule sets for efficient execution
– is addressed through rule spaces, which group end-user defined rules and
map them to rule services so that only relevant events are considered for rule
evaluation. Point 3 – making changes correctly, in a way that is aware of other
rules and possible side effects – is supported by the proposed workflows for
both power users and business users: Whereas power users have full access
to a system and the various infrastructural rules therein, sense-and-respond
rules set up on the event-based image of a business environment in a read-only
manner and thus can be created, changed, and removed without side-effects.
Point 4 – ensuring logical consistency and absence of redundancies – is not
currently addressed in the presented approach, but is subject to future work.

Sen and Stojanovic present GRUVe [118], a four-phase methodology for man-
aging complex event patterns – so-called CEPATs – throughout their life cycle.

92 5 A Framework for User-Oriented Rule Management

It is based upon the idea to “enable non-technicians to search incrementally
for the most suitable form of requested CEPATs and to continually improve
their quality taking into account changes that might happen in the internal
or external world”. The goal of the initial generation phase of the methodol-
ogy is to create a first version of the requested event pattern and to represent
it in an RDFS-based format.2 The authors list several approaches to event-
pattern creation, namely creation from scratch (for power users), querying an
event-pattern repository, as well as data mining on system data such as log
files. The RDFS representation is then used in the refinement phase, where
based on semantic relationships between the event pattern at hand and ex-
isting event patterns, similar event patterns are presented to the user. In the
usage phase, the event pattern is deployed in the CEP framework. It is con-
tinuously monitored and statistics such as the number of matches per time
unit are collected. In the final evolution phase, improvements to the evaluated
CEPATs are suggested based on the usage statistics. The authors present a
web application that implements the generation and the refinement phase; us-
age and evolution are left for future work. We agree with the authors that reuse
of event-processing logic is of paramount importance for a user-friendly rule or
event-pattern management framework. We believe, however, that a common
workflow for power users and business users will in almost any case fail to
support the work of at least one group of users. Our framework supports the
reuse of event-processing logic through the separation of abstracted “build-
ing blocks” and instantiations thereof. Reuse on the level of abstract pattern
definitions will be discussed in great detail in Chapter 7.

5.3.2 Complex Event Processing for Business Users

While little work addresses the general issue of rule-management in event-
based systems, there is an active discussion on how to make (complex) event
processing accessible to business users with restricted technical skills. The
proposed rule-management system defines a workflow tailored to the needs of
business users. Equally important, a parallel workflow enables IT experts to
operate with mininal administrative overhead.

Event processing for business users has been discussed prominently in re-
cent academically-oriented monographs on event processing, by Etzion and
Niblett [37] and by Chandy and Schulte [27]. Etzion and Niblett list the de-
velopment from programming-centered to semi-technical development tools as
one of the emerging directions in event processing. They see “an increasing
trend towards allowing business users and business analytics, who might not

2 RDF Schema [139] is an extensible knowledge representation language that allows
defining ontologies. Represented in an RDFS-based format, relationships such as
disjoint from, sub/superset of, or instance of can be evaluated on pairs of event
patterns.

5.3 Related Work 93

have deep programming skills, to compose all or part of an event processing
application”, through higher levels of abstraction. The authors identify IBM
WebSphere Business Events [56] as an early example of this trend. Chandy
and Schulte identify the ability to “enable business users to tailor systems to
their needs” as a major criterion for the relevance of an event-based system
and claim that a one-size-fits-all specification of events and responses doesn’t
work. On the contrary, the authors point towards increasing efforts of such an
approach, remarking that several roles in a company must – to some extend –
be trained to the event-processing system:

“IT staff in the enterprise learn event specification notations provided
by vendors and set up business-oriented templates for end users; power
business users create their own macros; and, finally, each business user
spends time learning how to use tools to tailor the system to that user’s
individual needs.”

Note that the discussed assignment of responsibilities to the various user
groups within an enterprise largely conforms to the architecture proposed in
Section 5.2. Chandy and Schulte furthermore point out the relevance of sys-
tematic event(-pattern) management for successful implementations of event
processing. They remark, however, that such features are not yet available in
any commercial registry or repository. Through a repository of building blocks,
describing noteworthy event situations and possible reactions in an abstract
manner, our approach introduces pattern-management capabilities to SARI.

Event-processing frameworks suitable to business users have furthermore been
requested by actual and potential adopters of CEP. ebizQ [33] presents the
results of an online customer survey on event processing in companies, indi-
cating that 84% businesses would like to have event rules defined by “business
specialists” or “business analysts”, and only 16% want to have them defined
by IT developers.

Mismatches between the complexity of event-processing logic on the one side
and the abilities of potential adopters on the other side have been highlighted
by von Ammon et al. [8], which consider the resulting problems a major reason
why future CEP applications will “delay to be set up”. The authors suggest
the definition of domain-specific reference models for event processing, thereby
orienting themselves on the theory of design patterns [5] as well known, for in-
stance, from software engineering (e.g., [20, 41, 116]). Design patterns for event
processing have been discussed in academic contexts [12, 24, 97] as well as in
the industry [30]. We fully agree that a comprehensive and widely accepted
pattern language for CEP would be a significant step in the development of
the discipline. We believe, however, that design patterns will primarily address
technically versed users, and that business users are not willing and/or capa-
ble to work through collections of design patterns and transfer them to the
concrete event-processing software at hand. Design patterns may therefore be
an important source of knowledge for system operators and solution designers

94 5 A Framework for User-Oriented Rule Management

at the bottom layers of our architecture; business operators, by contrast, are
not concerned with the “how” of event processing but instead may focus on
the “what” only.

Turchin et al. [129] claim that independent from the definition of concrete
event-processing logic in a CEP framework, domain experts will often fail to
specify the exact parameters and thresholds required to optimally monitor a
system: “While it is reasonable to expect that domain experts will be able
to provide a partial rules specification, providing all the required details is a
hard task, even for domain experts”. The authors propose an approach to rule
parameter prediction and correction, where the rule parameters are initialized
and/or adapted dynamically based on statistical methods. While such an ap-
proach is reasonable in domains such as intrusion detection, we believe that
companies will typically demand highest transparency about the rules at play.
In our system, any changes in the event-processing logic are therefore induced
by explicit user actions and logged in so-called rule histories.

5.3.3 Layered Event-Processing Models

The presented approach to rule management builds upon a differentiation
of event-pattern rules into infrastructural rules and sense-and-respond rules.
Conceptually, this separation results in a two-layered architecture for event-
processing applications. While seldom associated with different workflows and
user groups, layered application models have a long tradition in CEP.

In his widely cited work on “The Power of Events” [71], Luckham presents
a layered architecture for event-processing networks. At the adapter layer,
external events are transformed into a format that is interpretable to the CEP
framework at hand. At the filtering layer, irrelevant events are eliminated
from further processing. At the map layer, aggregation rules and situation-
detection rules implement the concrete event-processing logic. Via the adapter
layer, response events are routed back to external systems.

Paschke and Vincent [99] present a general reference architecture for event
processing. They refer as event processing medium to a platform that, on the
bottom end, receives low-level “atomic events” from event sources, processes
these events stepwise and, on the upper end, sends high-level “business events”
to event consumers. The authors separate the event processing medium into
event selection, event aggregation, and event handling. Event selection and
event aggregation largely conform to the processing tasks of filtering and ag-
gregation as described in Section 1.2. Event handling includes the detection of
noteworthy situations, the rating of events within the contexts in which they
occur, and event prediction. Thus, it may be considered as the business logic
of an application. According to the purpose of a high-level reference architec-
ture, the authors do not go into further detail on how these phases shall be

5.3 Related Work 95

implemented and how respective event-processing logic shall be defined and
administrated.

In contrast to the above architectures we do not draw a distinction between
filtering and transformation from an architectural point of view. Instead, in-
frastructural rules include all rules that produce input for other parts of an
event-based application. While aggregation and situation-detection issues are
consolidated into a common layer by Luckham, we consider situation detection
as a separate layer in accordance to Paschke and Vincent.

In their extensive work on stream-data processing, Chakravarthy and Jiang [26]
present MavEStream, a layered architecture that allows integrating continu-
ous query processing and Complex Event Processing. At the bottom layer,
a stream-processing system is responsible for low-level data aggregations and
filtering. At the second layer, events are generated. At the third layer, CEP
is used for detecting complex events from raw events as emerging from the
second layer. At the fourth and final layer, actions are associated with trigger-
ing events in event-pattern rules. The proposed separation into infrastructural
rules and sense-and-respond rules is comparable to Stage 3 and Stage 4 of
MavEStream, which address the CEP part of the architecture.

Kellner and Fiege [63] present the separation of two viewpoints in a CEP
application, which facilitates a business-oriented, top-down approach to event
processing based on the concept of Key Performance Indicators (KPIs). In
the derivation viewpoint, KPIs (e.g., the number of items produced in the
last hour) are derived from lower-level events (e.g., “Item Produced”) through
filtering and aggregation rules. In the interpretation viewpoint, target values
are specified for the various KPIs and relevant business situations are defined
to be reported when the actual values fall below respective thresholds (e.g.,
the opportunity for maintenance is detected when a utilization rate drops
below 50%). The authors claim that “changes in situations to be detected can
be handled without affecting the derivation of values for KPIs that are more
stable”. Similarly, we argue that infrastructural rules are more stable while
sense-and-respond rules enable quick adaptations of the business logic. While
there is no explicit notion of KPIs in basic SARI as discussed in Chapter 3,
we introduce respective mechanisms in Chapter 6 and align them with our
approach to rule management.

5.3.4 Differentiating Rules in Event Processing

Bry and Eckert present XChangeEQ [16, 17, 34], a high-level EPL that builds
upon a differentiation of event-pattern rules into deductive rules and reactive
rules depending on their function in an event-based application [34]:

“Deductive Rules define new events based on event queries; they are
comparable with views in databases and have no side-effects. We em-

96 5 A Framework for User-Oriented Rule Management

phasize that these deductive rules operate on events, not on facts (like
‘traditional’ deductive rules from logic programming and deductive
databases). Reactive rules specify how to react to (complex) events,
e.g., with database updates or procedure calls.”

The presented distinction is primarily a conceptual one since both kinds of
rules conform to the same, Event/Condition/Action-based style of event pro-
cessing – “While it is possible to ‘abuse’ reactive rules to simulate or implement
deductive rules [...], this is undesirable” [16]. Yet, in contrast to most other
EPLs and CEP frameworks, XChangeEQ prescribes different (although very
similar) syntaxes for the different kinds of rules.

The notion of deductive rules and reactive rules is comparable to the notion of
infrastructural rules and sense-and-respond rules, respectively. It is, however,
necessary to take a closer look at the issue of side effects. While the authors
consider (lower-level) deductive rules as free from side effects, we state this for
(higher-level) sense-and-respond rules. This difference is apparently rooted in
different understandings of side effects: Whereas Eckert and Bry locate side
effects outside the actual event-processing environment, side effects in our un-
derstanding concern the event-processing environment itself and therefore are
given if – and only if – a rule produces input for other parts of an application.

5.3.5 Business Rule Management Systems

In the field of business rules, rule management has long been recognized as an
important component for practical deployments. Business Rule Management
(BRM; e.g., [51, 81, 102]), which complements business rule engines with rule
repositories and rule authorizing tools, has developed into an industry and
research field in its own right. Similar to our work, Business Rule Management
Systems (BRMSs) especially aim to provide tailored workflows for the different
user groups in a company. In the following, we give a brief introduction to the
most prominent concepts in BRM3 and discuss how they relate to CEP in
common and our work in specific.

The rule repository is typically considered the key element of a BRMS. Fea-
tures provided by modern rule repositories include versioning, role-based per-
missions, collaboration among remote users and synchronization of concurrent
updates, hot rule deployment (i.e., the possibility to add, change and remove
rules without having to stop the system) as well as scheduled rule activation
and deactivation. Full-fledged rule repositories are seldom provided by CEP
frameworks, which may be owed to the relative youth of the discipline and the
focus on operational issues in research so far. In the proposed rule-management

3 This introduction is largely based on Graham’s review of the most prominent
commercial BRMSs [47]. Further information is available at the various companies’
websites and in respective secondary literature [11].

5.3 Related Work 97

framework, we opted against a dedicated repository for infrastructural rules.
Infrastructural rules are instead considered an integral part of an application
description, which is subject to a repository at the SARI architecture’s admin-
istration database (see Section 3.6.1) as a whole. A rule repository is, however,
provided for sense-and-respond rules, which are changed on a regular basis
by multiple – often remote – users. Our repository supports role-based per-
missions, collaboration among remote users, hot deployment, as well as rule
scheduling. Versioning and synchronization are provided in basic forms, with
further improvements planned for future work.

In addition to a rule repository, BRMSs provide rule-authoring facilities for
both technically versed users and business users. Most BRMSs aim to pro-
vide a rule syntax that is close to natural language, often in addition to a
more technical syntax for developers. Prominent examples are Blaze Advisor’s
Structured Rule Language [136] or ILOG JRules’ Business Authoring Lan-
guage [57]. While some of these languages are restricted to syntactic sugar
(such as “client’s age is 17” instead of “client.age = 17”), others allow defining
“verbalizations” (in terms of ILOG JRules) of the underlying object model
to achieve a more natural look and feel. Domain Specific Languages ([32])
are an extension to natural-looking, yet general purpose rule languages. Here,
qualified users may define a language that is particularly suitable to the given
application domain. Prominent examples are JRules’ Business Rule Language
Definition Framework (BRLDF) and the domain-specific language support in
JBoss Drools [58]. Haley Expert Rules [50] allows its users to start with rules
defined in a custom – yet, English-grammar based – language and derive a re-
spective object model based on these rules. To our best knowledge, there is no
EPL that seriously claims to be close to natural language; neither have DSLs
in the described sense4 been used in event processing. We believe that this is
because of the increased complexity of event-pattern rules in comparison to
business rules.

Rule templates are partially defined rules with placeholders that can be popu-
lated later on by a business user. While in some languages the original syntax
is presented to the end user, others allow to define custom text (or HTML)
to be shown with the placeholders – see Blaze Advisor’s Rule Maintenance
Applications for a prominent example. Allowing users to configure and in-
stantiate arbitrarily complex rule logic without requiring deeper knowledge
of the underlying rule language, rule templates are well-suited for CEP. Rule
templates have, for instance, been used with AMiT (cf. [3]). The proposed
rule-management workflow for business users builds upon a concept that is
closely related to rule templates. However, template-like structures are pro-

4 As most EPLs provide good support for accessing event attributes and temporal
reasoning, EPLs are often considered as “domain specific” with respect to event
processing in general (e.g. [137]). In the course of this discussion, we use the term
DSL for languages that are specific to a certain application domain.

98 5 A Framework for User-Oriented Rule Management

vided on the level of patterns and actions instead of complete rules (although
templates for complete rules are presented as an extended concept). Also, we
separate the logic part of a template from the presentation part, which en-
ables reuse of rule logic across different contexts and multi-language support.
Finally, in contrast to the vast majority of BRMSs, we consider templates as
self-contained, identifiable entities. This enables us to maintain a connection
between concrete rules and the building blocks from which they were created,
which in turn leads to a consistent and up-to-date rule base.

Decision tables allow users to define business policies in tabular form, associat-
ing pattern parameters (such as the age of a customer) with action parameters
(such as the resulting insurance rating). Decision tables are available with se-
lected CEP frameworks such as TIBCO’s BusinessEvents [128].

A recent development in BRM is the integration of BRMSs with office suites.
Several frameworks allow decision tables to be defined in spreadsheet software
such as Microsoft Excel. ILOG JRules also integrates with Microsoft Word,
which enables business users to write rules as part of normal text documents.
We are not aware of any comparable approach in CEP.

5.4 Infrastructural Rule Management

In Section 5.1 we have introduced the notion of infrastructural rules for all
rules that prepare data for other parts of an application, but do not by them-
selves respond to the source system. Along with event types, correlation sets,
and event processing maps, infrastructural rules form the event-processing in-
frastructure of an application and contribute to a near real-time, event-based
image of the underlying business environment.

In the following, we discuss the proposed approach to infrastructural rule
management. It is based on the idea of letting power users of an event-
processing framework – so-called system operators – define infrastructural
event-processing logic in a single, comprehensive model, and directly apply
it at respective event services.

5.4.1 Requirements

From the basic differentiation into infrastructural rules and sense-and-respond
rules we derived the following requirements for an approach to infrastructural
rule management:

• Expressiveness: Rule-based event processing has proved useful for a wide
range of infrastructural issues, including the filtering of irrelevant and erro-
neous data, event-data enrichment, and the aggregation of low-level events

5.4 Infrastructural Rule Management 99

to higher-level composite events. Infrastructural rules must therefore be
expressive enough to enable application developers to establish an appro-
priate event-based image of the given source system.

• Efficiency of use: Infrastructural rules are created and applied by power
users with a deep understanding of the given event-processing framework.
To facilitate the efficient creation of an event-processing infrastructure,
an approach to rule management should therefore make the creation and
deployment of infrastructural rules as immediate, clear and transparent as
possible. These aspects should be emphasized in preference to concepts such
as decoupling of pattern-detection logic and reaction logic or a however-
defined abstraction from underlying complexity. Infrastructural rule man-
agement should furthermore minimize any overhead that may arise from
administrating rules and their assignment to rule services.

• Full and system-wide access: Being part of the event-processing infras-
tructure of an application, adding, changing, or removing infrastructural
rules may affect calculations in diverse parts of an event processing map. An
approach to infrastructural rule management should therefore provide full
access to the application, enabling users to investigate and handle possible
side effects.

5.4.2 Model Overview

Figure 5.5 provides an overview of the proposed approach to infrastructural
rule management.

System
Operator

Rule Definition

Event Processing Maps

Figure 5.5. Overview of Infrastructural Rule Management

100 5 A Framework for User-Oriented Rule Management

Given the specific requirements for the event-processing infrastructure of an
application, power users of a CEP framework – so-called system operators
– model infrastructural event-processing logic as application-wide rule defini-
tions in parallel and fully integrated with the other elements of an application.
Rule definitions encapsulate event-processing logic of the form “if pattern, then
action(s)” in a single, integrated model that is directly interpretable to SARI.
As a consequence, rule definitions can be applied to incoming event streams
without further instantiation steps.

For their enactment as part of a SARI application, system operators assign
rule definitions to one or more rule services across the event processing maps
of an application. During run time, each rule service then evaluates an inde-
pendent instance of the encapsulated event-processing logic on the incoming
event stream and publishes possible response events to downstream event-
processing units. As both event-processing maps and rule definitions are de-
fined and administrated by system operators, rule services can be associated
with appropriate pre- and post-processing steps according to the hosted set of
rule definitions.

5.4.3 Rule Definitions

In the proposed architecture, rule definitions allow modeling infrastructural
event-processing logic such that it can directly and without further instan-
tiation steps be applied as part of an event-processing infrastructure. Rule
definitions describe such logic in the form of reactive decision graphs, decision
graphs which, by themselves, cover the execution of reaction logic in response
to the detection of noteworthy event situations. The decision graph of a rule
definition is thereby assembled from

• a non-empty collection of condition components and/or time-based compo-
nents as described in Section 4.3.2 and Section 4.3.3, and

• a non-empty collection of action components as described in Section 4.3.4.
While basic SARI as presented in Section 3 and Section 4 features only one
kind of action component – namely, response action components – further
components are introduced in Chapter 6.5

A so-defined rule definition clearly implies a tight coupling of pattern-detection
logic and response logic, preventing users from reusing event-processing logic
in other contexts. Note, however, that infrastructural rules typically encom-
pass highly purpose-specific logic that is required exactly once in a system
and makes sense only “as is”. Decoupling the pattern-detection part and the

5 Signals as are used in sense-and-respond rule management are special action com-
ponents and are not available with rule definitions.

5.4 Infrastructural Rule Management 101

reaction part of an infrastructural rule would therefore cause considerable ef-
fort not only for the actual decoupling, but also for the administration of
the so-created sub-entities, for little or no gain. Also, using a single decision
graph provides a comprehensive view on a rule. This simplifies the creation of
complex rule logic as well as bug-fixing.

Meta Model

Figure 5.6 shows the meta model for rule definitions. A rule definition r =
(i, n, d, g) is defined by an application-wide identifier i, a display name n, a
human-readable description d, and a reactive decision graph d. Rule definitions
are associated with rule services in an n-to-m relationship.

Decision Graph

Condition Components,
Time-Based Components,

Action Components

1

1

1

- Identifier
- Display Name
- Description

1

Rule Service Rule Definition* *

Figure 5.6. Rule Definition Meta-Model

Example

Figure 5.7 shows an exemplary rule definition “Short-term betting transaction”
from the fraud-detection domain. Deployed on a rule service, it generates an
event of type “Short-term betting transaction” whenever a user pays into a
(near-) empty account, places and wins a single high-risk bet, and immedi-
ately pays off in full. for both pay-in and cash-out, an impreciseness of 5% is
considered. A so-defined user behavior – especially when observed repeatedly
– is highly suspicious and may indiciate fraud.

102 5 A Framework for User-Oriented Rule Management

True False

Cash-in to empty account

Cash In

CashInAmount > 1000

TotalAmount / CashInAmount < 1.05

Conditions (AND)

True False

Bet won

Bet Won

Odds > 3

Conditions

True False

Clear out account

Cash Out

Conditions (AND)

TotalAmount / CashOutAmount < 0.05

CashIn.TimeStamp – TimeStamp < 24h

Generate response event

Short-Term Betting Transaction

Output Parameters

Figure 5.7. Exemplary Rule Definition

5.5 Sense-and-Respond Rule Management

In Section 5.1 we have introduced the notion of sense-and-respond rules for all
rules that do not prepare data for other parts of an application, but directly
or indirectly respond to the source system. Setting up on an up-and-running
event-processing infrastructure, sense-and-respond rules continuously monitor
the event-based image of a business environment for relevant business situa-
tions and trigger respective actions in response.

In this section, we discuss the proposed approach to sense-and-respond rule
management. It is based on the idea of (i) technically versed solution designers
and senior domain experts – so-called rule managers – preparing building
blocks of pattern-detection logic and reaction logic, and (ii) business operators
assembling these building blocks to concrete rule logic of the form “if pattern,
then action(s)”.

The remainder of this section is structured as follows: In Section 5.5.1, we sum-
marize the requirements for a sense-and-respond rule-management system. In
Section 5.5.2, we present an overview of our approach. The various artifacts
of this approach, namely pattern definitions, action definitions, business pat-
terns, business actions, sense-and-respond rules, and rule spaces, are discussed
in Section 5.5.3 to Section 5.5.8.

5.5 Sense-and-Respond Rule Management 103

In the following, unless otherwise stated, we assume that all presented enti-
ties, as well as their various sub-entities, have a unique identifier, a display
name, and an optional, human-readable description. For concrete examples,
we resort to a real-world application for event-based service assurance in the
workload automation domain, where SARI is employed as an add-on to the
UC4 Automation Engine [130] with the goal of detecting fault patterns and
ensuring the reliable, high-performing operation of a system landscape. The
presented application is discussed in greater detail in Chapter 8.

5.5.1 Requirements

From the basic separation into infrastructural rules and sense-and-respond
rules and the idea of easy-to-use building blocks of event-processing logic, we
derived the following requirements for an approach to sense-and-respond rule
management:

• Decoupling of pattern-detection logic and reaction logic: Allowing busi-
ness users to assemble rules from building blocks of pattern-detection and
reaction logic first of all requires having these parts available as separate en-
tities, in a way that allows combining and integrating them in an arbitrary
manner.

• Reusability of building blocks across different application scenarios, i.e.,
configurability : While building blocks need to be prepared by technically
versed users according to the basic monitoring requirements of a business
environment, it is not applicable to predefine tailored event-processing logic
for any possible use case in that environment. For instance, one would usu-
ally refrain from predefining email actions for all employees of a company.
Building blocks therefore need to be configurable by business operators,
in a way that abstracts from the low-level event-processing logic that is
represented by a building block. A building block then serves as a tem-
plate which, when all required data are provided by a business operator, is
instantiated to concrete event-processing logic as part of a rule.

• Ease of use: Sense-and-respond rules are typically administrated by busi-
ness users with little or no technical expertise. Creating and deploying these
rules shall be as straightforward and fail-safe as possible and fully abstract
from the event-based foundation of decision making. In other words, busi-
ness operators shall neither have to care about the implementation of build-
ing blocks, nor about the execution of concrete sense-and-respond rules as
part of an event-based application.

• Personalized rule management: In many business scenarios – although,
not necessarily – sense-and-respond rules may be defined within a business
operator’s particular area of responsibility rather than as application-wide
steering logic. For instance, a system administrator could demand receiving

104 5 A Framework for User-Oriented Rule Management

an email whenever an alarm occurs on a server for which he or she is re-
sponsible (while another administrator may want to receive a short message
for severe errors only and a third is on vacation anyway).6 To adequately
support a user-centered approach to sense-and-respond rule management,
a framework needs to support a notion of rule ownership so that each rule
can be associated with a specific user. This, in turn, enables restricting the
visibility or accessibility of rules on a user basis.

• Rule activation and scheduling: In contrast to infrastructural rules
which typically shall run 24/7, high-level business logic as realized through
sense-and-respond rules may often be subject to temporal restrictions, such
as, for instance, being suspended on weekends and holidays. An approach
to sense-and-respond rule management shall therefore provide mechanisms
that allow business operators to pause and resume the execution of event-
processing logic easily, without having to remove and re-create a rule in its
entirety. Moreover, the approach shall provide mechanisms for the sched-
uled execution of sense-and-respond rules – e.g., based on a calendar –
where the activation state of a rule is adapted automatically.

• Hot deployment: Given a running event-processing infrastructure and a
collection of predefined building blocks, business operators shall be able to
work autonomously, generally independent from other users of an applica-
tion or any kind of temporal restrictions. As a consequence, an approach to
sense-and-respond rule management requires a possibility for “hot deploy-
ment”, i.e., to enact, change, and remove event-processing logic without
having to stop and restart an event-based application as a whole.

• Security: An approach to sense-and-respond rule management shall even-
tually enable rule managers to clearly define the competences of a business
operator, e.g., through specifying what building blocks are available to the
business operator for creating sense-and-respond ruling logic. Business op-
erators shall not have access to the event-processing infrastructure of an
application at any point in time.

5.5.2 Model Overview

Figure 5.8 provides an overview of the proposed approach to sense-and-respond
rule management.

The key concept of the model is that of configurable “building blocks” of event-
processing logic, which can be assembled to sense-and-respond logic without
having to understand the event-based foundations of decision making. Build-
ing blocks may thereby be considered as templates, which typically must be

6 The role of personalized information delivery in Complex Event Processing is, for
instance, highlighted by Vidačković et al. [134].

5.5 Sense-and-Respond Rule Management 105

Pattern Definition Action Definition

Pattern Detection Reaction

Event-Level
Building Blocks

Business-Level
Building Blocks

Sense-and-Respond
Rule

Concrete
Rule Logic

A
b

st
ra

ct
C

o
n

cr
et

e

Rule Space

* *

Business
Operator

Rule
Manager

Solution
Developer

System
Operator

Input Parameters

Output Parameters

Business Pattern Business Action

If <event situation> ... … then <do action>

Textual Representation

* *

Rule Service

Figure 5.8. Overview of Sense-and-Respond Rule Management

provided with additional information in order to be instantiated and used as
part of concrete rule logic.

In the presented model, building blocks are separated in vertical direction,
into pattern-detection logic and reaction logic, and in horizontal direction, into
event-level building blocks and business-level building blocks. The vertical sepa-
ration follows naturally from a decoupling of pattern-detection logic and reac-
tion logic, which we identified as a key requirement to the proposed approach
in Section 5.5.1. In horizontal direction, a separation of more generic event-
level building blocks and more specific business-level building blocks facilitates
both the reusability of building blocks and their ease of use from a business
operator’s point of view.

Rule spaces organize building blocks and sense-and-respond rules based on
basic organizational tasks for which they are relevant. Besides structuring the
overall event-processing logic of an application, rule spaces form the point of
integration between sense-and-respond rules and the event-processing infras-
tructure of an application.

106 5 A Framework for User-Oriented Rule Management

Event-Level Building Blocks

Event-level building blocks encapsulate low-level event-processing logic in the
form of decision graphs and response-event templates, respectively. While not
directly visible to business operators, event-level building blocks form the ulti-
mate foundation of our approach to rule management; any sense-and-respond
rule is, in fact, assembled from instantiations of so-defined pieces of event-
processing logic. In the proposed workflow, event-level building blocks are de-
signed by so-called solution designers based on the general monitoring and
steering requirements of the given business scenario, and organized in rule
spaces based on the organizational tasks for which they are relevant. An event-
level building block may thereby be used in several rule spaces, resulting in an
n-to-m relationship.

Typically describing event-processing logic of high complexity, the focus with
event-level building blocks is (i) on reusability across different application sce-
narios, and (ii) on information hiding. Reusability is achieved through a set
of typed input parameters for all points of variability; to apply the event-
processing logic in a specific use case, values for these input parameters must
be specified. Information hiding is achieved through the set of input parameters
on the “input side” of an event-level building block. On the “output side”, pat-
tern definitions specify a collection of typed output parameters, which provide
insights to a triggering event situation in an abstracted and controller man-
ner. Multiple signals allow distinguishing between different manifestations of a
business situation. Action definitions, by contrast, do not expose a so-defined
output interface.

Pattern definitions and action definitions are presented in greater detail in
Section 5.5.3 and Section 5.5.4, respectively. As several concepts apply to both
kinds of entities, our discussion primarily focuses on pattern definitions. The
action part is addressed more briefly, with the spotlight on possible differences
to the pattern part.

Business-Level Building Blocks

Event-level building blocks as discussed above form the ultimate foundation
of any concrete sense-and-respond rule. However, due to their high level of
generality, business users might easily be overwhelmed by using them directly.

Serving as an intermediate layer between the low-level event-processing logic
of a rule space and business operators, the basic aim of business-level build-
ing blocks is to simplify the instantiation of an underlying event-level building
block with respect to the specific use cases in which it is to be used. This is
achieved through a further specification of the underlying event-level building

5.5 Sense-and-Respond Rule Management 107

block: While a business-level building block would typically remain config-
urable to some extend (although, not necessarily), it may further specify the
underlying event-level building block by setting input parameters or restricting
their input domains. In case of pattern-detection logic, a business-level build-
ing block may furthermore restrict the set of signals that are relevant for the
described class of event situations. Business-level building blocks eventually de-
fine a textual representation of the encapsulated event-processing logic, with
placeholders for all unset input parameters. These textual representations are
then presented to business operators, which assemble sense-and-respond logic
as natural-language sentences from so-defined clauses. Underlying event-level
building blocks are not visible to business operators at any point in time.

Business-level building blocks set up on the event-level building blocks of a
rule space in a 1-to-n relationship, meaning that one event-level building block
may form the basis for an arbitrary collection of business-level building blocks.
Given a rule space with a collection of event-level building blocks as defined
by a solution designer, business-level building blocks are defined by senior
business users – so-called rule managers – based on the specific problems
business operators are going to face in their daily work. Simply “wrapping”
event-level building blocks, the creation, modification, and deletion of business-
level building blocks does not require adaptations of the underlying event-
processing infrastructure and, thus, can be performed after the basic set up of
an application.

Business patterns and business actions are presented in greater detail in Sec-
tion 5.5.5 and Section 5.5.6, respectively. As with event-level building blocks,
our discussion primarily focuses on the pattern part of the model.

Sense-and-Respond Rules

In the final step of the proposed workflow, domain experts with little or no
knowledge of the event-based foundations of a SARI application – so-called
business operators – use business-level building blocks to assemble and instan-
tiate concrete sense-and-respond rules of the form “if pattern, then action(s)”.
Setting up on the event-based image of a business environment and directly or
indirectly feeding back to this business environment, sense-and-respond rules
eventually represent the actual decision-making logic of an application.

Having selected a rule space, business operators choose a business pattern and
associate it with one or more business actions according to the monitoring task
they want to implement. In parallel, business operators define concrete input-
parameter values for all previously unset input parameters of the incorporated
building blocks: In case of business actions, input-parameter values may be
calculated from output parameters of the associated business pattern. The
described approach therefore enables reaction logic to dynamically adapt to

108 5 A Framework for User-Oriented Rule Management

the triggering event-situation instance. In case of business patterns, input-
parameter values are necessarily constant.

As both kinds of business-level business entities abstract from the represented
event-processing logic through a high-level textual representation, creating a
sense-and-respond rule can be presented to the user as assembling a natural-
language sentence from prepared clauses and replacing input-parameter place-
holders in that sentence by concrete values.

Sense-and-respond rules are presented in greater detail in Section 5.5.7.

Rule Spaces

Event-level building blocks (in an n-to-m relationship) as well as business-level
building blocks (in a 1-to-n relationship)7 are organized in so-called rule spaces
based on the organizational tasks for which they are relevant. Structuring the
overall set of sense-and-respond event-processing logic of an application, rule
spaces play a crucial role for both (i) the creation of sense-and-respond rules
through business operators, and (ii) the integration of sense-and-respond rules
with the event-processing infrastructure of an application in a way that is
transparent for business users.

Creating sense-and-respond rules. Business operators always create sense-
and-respond rules within a rule space, based on the business-level building
blocks of this rule space. With rule spaces grouping event-processing logic that
makes sense concerning a certain organizational task, business operators are
thereby confronted with task-relevant building blocks only, which facilitates a
quick, secure, and fail-safe rule creation process. Rule spaces eventually serve
as the primary unit for user rights management, as they can be assigned to
business operators depending on their specific skills and functions within a
company. User rights management in sense-and-respond rule management is
discussed in greater detail in Section 5.6.

Integrating sense-and-respond rules. In the proposed approach, all sense-
and-respond rules of a rule space are guaranteed to be assembled from instan-
tiations of the event-level building blocks of this rule space. Based on the
collection of event-level building blocks of a rule space – however, independent
from both business-level building blocks and the concrete sense-and-respond
rules in that rule space – it is therefore possible to deduce

(i) what kinds of input events must be fed to a rule space, and

7 A 1-to-n relationship between rule spaces and business-level building blocks is
not a technical necessity; instead, a business-level building block could be part
of multiple rule spaces as long as the underlying event-level business pattern is
available with all these rule spaces. In the proposed architecture, we opted for the
1-to-n relationship to reduce the number of application-wide entities.

5.5 Sense-and-Respond Rule Management 109

(ii) what event-processing logic must be applied to the response events of a
rule space,

such that the however-defined sense-and-respond rules of a rule space actually
work as part of an event-based application. By decoupling the pre- and post-
processing from the concrete decision-making logic, rule spaces allow bridging
the gap between solution designers and system operators in their (often parallel
and inherently cooperative) work on an application that is ready to use for
rule managers and business operators: Given a rule space with a set of event-
level building blocks as defined by a solution designer, a system operator maps
this rule space to one or more rule services, which are then said to “host”
the rule space. Depending on the used event types on both the input and
the output side of the rule space, such a rule service must then be integrated
into the event-processing infrastructure of an application as part of an event
processing map. During run time, all sense-and-respond rules that are created
within a rule space are assigned to the hosting rule services implicitly; i.e.,
whenever a business operator creates a rule, this rule is automatically and
transparently applied in appropriate parts of an underlying event processing
map.

In accordance with the overall role of sense-and-respond rules as sketched in
Figure 5.4 – setting up on an event-based image of the underlying business
environment – a rule space may now be considered as setting up on an event-
based image of a certain “aspect” of the underlying business environment.
Which parts of a source system actually belong to such an aspect is defined by
system operators, through the specific event-processing logic that precedes the
concerned rule service(s) in the application’s event processing maps. Figure 5.9
illustrates the described role of rule spaces in a SARI application.

 Source
System S

Event-Based
Application

Event-Based
Image of a

Certain Aspect
of S

Rule Space

R
 E

 S
 P

 O
 N

 D

t

Figure 5.9. Rule Spaces in a SARI Application

Rule spaces are presented in greater detail in Section 5.5.8.

110 5 A Framework for User-Oriented Rule Management

5.5.3 Pattern Definitions

Pattern definitions represent pattern-detection logic in a form that can be
interpreted by SARI for the automated analysis of incoming event streams.
Together with their counterpart for reaction logic – so-called action defini-
tions – pattern definitions form the base elements of the proposed approach to
sense-and-respond rule management: Any sense-and-respond rule is, eventu-
ally, based on an instantiation of a pattern definition. When an event situation
matches the pattern, the associated reaction logic is triggered.

Pattern definitions are based on an abstract decision graph, which allows in-
stantiations of the represented pattern-detection logic to be evaluated on com-
mon rule services. Focusing on reusability and information hiding, pattern
definitions abstract from the encapsulated pattern-detection logic through col-
lections of input parameters and output parameters, respectively. Input param-
eters allow configuring pattern-detection logic based on the specific context in
which it is used without having to understand and/or change the underlying
decision graph. Output parameters provide access to selected characteristics
of a triggering event situation in a controlled and abstracted manner. Signals
allow distinguishing between different manifestations of an event situation.

In the proposed workflow, pattern definitions are created and assigned to rule
spaces by technically versed solution designers based on the general monitor-
ing requirements of the given business scenario. Pattern definitions are then
used by rule managers to create business patterns, which are typically less
generic and can be used by business operators for assembling concrete sense-
and-respond rules.

Meta Model

Figure 5.10 shows the meta model for pattern definitions. A pattern definition
p = (IN,OUT, d) is defined by a collection of input parameters IN, a collection
of output parameters OUT, and a passive decision graph d. A decision graph is
said to be passive when it is assembled from condition components, time-based
components, and so-called signals only.

Input parameters. Input parameters allow configuring the pattern-detection
logic of a pattern definition based on the specific use case in which it is used,
without having to change or understand the encapsulated low-level pattern-
detection logic. Within the decision graph of a pattern definition, input param-
eters may be used as typed placeholders – so-called decision graph variables –
in the various expressions of the used rule components; for instance, given an
input parameter “ServerID” of type String, a condition component could be
configured to evaluate the following condition on a triggering “Alarm” event:

Alarm.Server > $ServerID

5.5 Sense-and-Respond Rule Management 111

1

- Identifier
- Data Type
- Validator

*Pattern Definition Input Parameter

Decision Graph

Condition Components,
Time-Based Components,

Signals

1

Signal

Output Parameter

- Identifier
- Data Type

- Output Parameter Expressions

*

1

1 1..*

1

Figure 5.10. Pattern Definition Meta-Model

In an instantiation of the encapsulated pattern-detection logic, the component
would then activate its “true” port only with those events that come from the
specified server.

An input parameter in = (i, n, d, t, validate) is defined by an identifier i, a
display name n, a description d, a data type t, and an optional validator
validate : t → {0, 1}. If specified, a validator allows further restricting the
set of possible input-parameter values for in; given an input-parameter value
v : t, validate(v) = 1 must hold. On the level of pattern definitions (as well as
action definitions),8 validators would typically be used to ensure the syntactic
consistency of the encapsulated event-processing logic, e.g., to avoid division
by zero.

Output parameters. In almost any use case, the action part of an event-
pattern rule needs access to selected characteristics of the triggering event
situation. The extraction of relevant data from an event situation requires,
however, detailed knowledge of both the triggering event situation as a whole
and the events it is made of. Pattern definitions provide for an abstraction
of the triggering event situation through the use of output parameters, which
allow rule managers to specify those aspects of a triggering event situation that
are supposed to be relevant when using the pattern definition in a concrete
sense-and-respond rule. For integrating the action part with the pattern part
of a rule, business operators may then resort to a plain list of typed, named,
and documented data fields, with the event-based source of the data being
hidden entirely. In the proposed model, an output parameter out = (i, n, d, t)
is defined by an identifier i, a display name n, a description d, and a data

8 Validators can also be defined as part of a input-parameter configuration on the
level of business patterns and business actions as described in Section 5.5.5 and
Section 5.5.6, respectively. Here, validators are used to restrict the scope of a
pattern definition or action definition with respect to the specific context in which
it is to be used.

112 5 A Framework for User-Oriented Rule Management

type t. The actual value of an output parameter is calculated in the various
signals of the pattern definition’s decision graph, where expressions for each
output parameter are specified.

Decision graph. The actual pattern-detection logic of a pattern definition
is defined as a decision graph, which allows evaluating instantiated pattern-
detection logic on a usual rule service. The decision graph of a pattern defi-
nition is required to be passive, which means that is must not contain action
components in the common sense as discussed in Section 4.3.4. Instead, the
specific actions to be executed when an event situation is detected are spec-
ified in sense-and-respond rules by business operators. A decision graph still
requires, however, a dedicated class of rule components to signify the end nodes
of the described pattern-detection logic.

We therefore introduce signals, special action components that abstract from
concrete reaction logic and simply notify the detection of an event situation to
arbitrary signal listeners. A signal s = (i,XOUT) is defined by an identifier i
and a collection of output-parameter expressions XOUT, with an appropriately-
typed expression on the triggering event situation and the collection of input
parameters for each output parameter in OUT. When a signal is activated, the
output-parameter expressions are evaluated and concrete output-parameter
values are calculated. In a sense-and-respond rule, the so-calculated output
parameter values are then passed over to the action part of the rule.

Figure 5.11 shows an exemplary signal “Fraud detected”, with output-
parameter expressions for three output parameters “Fraud Type”, “Account
ID” and “Amount”. While the first expression simply passes a constant, the
second and the third extract the demanded information from the triggering
event situation.

AND
Precondition PortTitle

Output Parameter Expressions

Signal Identifier

Fraud Type: „Bet By Official“

Output Parameters

Fraud Detected

Account ID: BetPlaced.AccountID

Amount: BetWon.Amount

Bet by official

Figure 5.11. Signal Component

By definition, the decision graph of a pattern definition must contain at least
one signal, and a single signal would be the right choice in a majority of use
cases. In certain scenarios, however, a business situation may occur in different
manifestations: Consider a pattern definition that detects security violations
to a IT systems; here, although equivalent regarding their basic semantics,
one could distinguish between an “Anomaly”, a “Warning”, and an “Alarm”

5.5 Sense-and-Respond Rule Management 113

based on the exact sequence of events and/or their specific attribute values.
In such cases, the decision graph of a pattern definition may contain multi-
ple signals, each with its separate collection of output-parameter expressions.
The collection of signals then describes possible output states of a pattern
definition.

Example

Table 5.1 shows a simple pattern definition “DB transaction duration check”.
Based on an incoming event of type “DB Log Message”, it checks whether the
represented database transaction outruns a user-defined maximum duration.
As output parameters, it provides access to the actual transaction duration,
the maximum duration (which is simply passed through from the input pa-
rameter), as well as the transaction type. Being based on the occurrence of
a single event, the pattern definition sets up on a stateless decision graph,
meaning that it does not have an underlying correlation set.

Input Parameters ID Type Validator

Accepted Transaction Duration Time span x ≥ 0

Decision Graph

Test incoming DB log message

DB Log Message

TransactionTime > $AcceptedTransactionDuration

Conditions

Long running transaction detected...

S1

Accepted Transaction Duration: $AcceptedTransactionDuration

Output Parameters

Actual Transaction Duration: DbLogMessage.TransactionTime

True False

Transaction Type: DbLogMessage.TransactionType

Output Parameters ID Type

Actual Transaction Duration Time span

Accepted Transaction Duration Time span

Transaction Type String

Table 5.1. Exemplary Pattern Definition

5.5.4 Action Definitions

Action definitions form the counterpart to pattern definitions on the level
of event-level building blocks as sketched in Section 5.8. An action definition

114 5 A Framework for User-Oriented Rule Management

encapsulates an abstract response-event template, which may be considered
as a blueprint for concrete response events to be generated when instantiated
reaction logic is executed as part of a sense-and-respond rule. In turn, such a
response event would actually trigger the represented action in a downstream
event service, or in the underlying source system.

Meta Model

Figure 5.12 shows the meta model for action definitions. An action defi-
nition a = (IN, r) is defined by a collection of input parameters IN and
a response-event template r. As with pattern definitions, input parameters
allow configuring the encapsulated event-processing logic depending on the
specific context in which it is used. Within an action definition, an input
parameter may now be used as a typed placeholder in the diverse event-
attribute expressions of the response-event template. Event-attribute values
(and, thus, the basic semantics) of a response event then depend on the con-
crete input-parameter values as eventually specified in a business action or
a sense-and-respond rule. The response-event template describes the general
structure of the action definition’s event representation. A response-event tem-
plate r = (t,X) | X = {x1, x2, . . . , xn} is defined by an event type t, and, for
each event attribute ai = (ii, ti) ∈ t, an expression xi on the collection of input
parameters IN returning a value of type ti.

1

- Identifier
- Data Type

*Action Definition Input Parameter

Response Event Template

1

1

response [T]

a1:
a2:
...
an:

x1

x2

...
xn

Figure 5.12. Action Definition Meta-Model

Example

In workload automation, overload situations may often be resolved automat-
ically through additional resources or rescheduling of tasks. The example ap-
plication for event-based service assurance therefore provides a variety of so-
called system actions: Based on a web-service call, they directly feed back into

5.5 Sense-and-Respond Rule Management 115

the automation platform, where they may request machines, pause or can-
cel running tasks, or delay the execution of scheduled ones. Table 5.2 shows
an exemplary action definition “Start automation platform task”. Exposing a
string-typed input parameter “Task”, it eventually results in a respectively-
configured “Web Service Action” event, where the “Arguments” attribute is
calculated from the provided task name. While the method name is provided
as a constant, the exact path to the web service’s WSDL is read from an
application-wide resource string.

Input Parameters ID Type Validator

Task String -

Response-Event Template Response-Event Type:

com.example.common.WebServiceAction

Event Attribute Expression

ID Type

WSDL String $$WSDLPath

Method String “executeObject”

Arguments List {$Task, “UTC”, Now(), . . . }
.

Table 5.2. Exemplary Action Definition

5.5.5 Business Patterns

In the proposed architecture, business patterns represent pattern-detection
logic in a way that is understandable and usable to business users with little
or no knowledge of the event-based foundations of decision making. A business
pattern further specifies the (in many cases, relatively generic) class of event
situations described by an underlying pattern definition, which enables rule
managers to optimize the instantiation of the represented pattern-detection
logic with respect to the specific contexts in which it is used. This specification
is limited to the interface of the pattern definition – to input parameters on the
input side of the pattern definition, to signals on the output side – and has no
effect on the actual pattern-detection logic. In addition, business patterns pro-
vide a textual representation of the described class of event situations, with
placeholders for all previously unset input parameters. Together with their
counterparts for reaction logic – so-called business actions – business patterns
and their textual representations are eventually presented to business opera-
tors, which assemble concrete sense-and-respond logic as a natural-language
sentence from the so-defined clauses.

116 5 A Framework for User-Oriented Rule Management

Meta Model

Figure 5.13 shows the meta model for business patterns. Let p be a pat-
tern definition, and let S denote the signals in p. A business pattern bp =
(p, C, Striggering, t) is then defined by an underlying pattern definition p, a col-
lection of input parameter configurations C for all input parameters of p, a
non-empty collection of triggering signals Striggering ⊆ S, and a textual rep-
resentation t. While input-parameter configurations and the set of triggering
signals allow specifying the class of event situations described by a business
pattern, the textual representation serves as a layer of abstraction between
the encapsulated pattern-detection logic on the one hand and the business
operator on the other.

* 1

- Identifier
- Display Name
- Triggering Signals

Business Pattern Pattern Definition

1
*

Input Parameter
Configuration

- Default Value
- Editable
- Validator

Textual Representation

1

*

Rule Space

1

1

Figure 5.13. Business Pattern Meta-Model

Input parameter configurations. Input-parameter configurations allow
further specifying the underlying pattern definition by setting or restrict-
ing the input domain of its input parameters. Given an input parame-
ter in = (i, n, d, t, validatebase), an input-parameter configuration cin =
(v, d, validate) ∈ C for in is defined by an optional input-parameter value
v : t, an editable flag d ∈ {0, 1}, and an optional validator validate : t→ {0, 1}.
If the editable flag is set, v can still be adapted during the instantiation of
sense-and-respond rules; in such a case, v may be considered a default value
for in. If no input-parameter value is specified, d is set by definition. The val-
idator validate allows further restricting the set of possible values for in. If
a validator validatebase is specified for the concerned input parameter in the
underlying pattern definition, validate must be a specialization of its base val-
idator, i.e., validatebase(x) = 1 → validate(x) = 1. Note that a validator is
of practical relevance for editable parameters only; predefined values are not
subject to validation.

5.5 Sense-and-Respond Rule Management 117

Triggering signals. In contrast to pattern definitions, business patterns do
not distinguish between different manifestations of a business situation on
the level of signals; in general, a business pattern triggers if any signal is
activated in the underlying decision graph. A rule manager may, however,
restrict the set of signals that are generally relevant for a business pattern. For
instance, having a pattern definition “Security violation” with three signals
“Anomaly”, “Warning”, and “Alarm”, a first, more general business pattern
“Security violation” could trigger based on all three signals. A second, more
specific business pattern “Security alarm” could be restricted to the “Alarm”
signal so that detections of less severe situations in the underlying decision
graph would not affect the business pattern. In the proposed meta model, the
collection of triggering signals Striggering ⊆ S indicates which signals of the
underlying pattern definition shall be considered.

Textual representation. The textual representation t of a business pattern
provides a natural-language description of the represented class of event sit-
uations, with placeholders for all editable input parameters.9 To facilitate a
high-level, business-oriented approach to rule creation, the textual representa-
tion would typically describe the real-world business situation that originally
caused a matching event situation, rather than describing the exact event se-
quence by itself. For instance, given a fraud pattern, one would speak of a
“fraud attempt in league x” rather than a specific sequence of “Cash In”, “Bet
Placed”, and “Cash Out” events. During the assembling of business-level build-
ing blocks to concrete sense-and-respond rules, the placeholders of a textual
representation are eventually replaced by the desired input-parameter values.
By definition, a textual representation for business patterns is required to begin
with the term “if” or its equivalent in another language.

Example

Table 5.3 shows an exemplary business pattern “2 seconds DB transaction”
based on the pattern definition “DB transaction duration check” as presented
in Section 5.5.3. Setting a non-editable expression of two seconds – TimeS-
pan(0, 0, 2) in Event Access Expression (see Section 3.7) syntax – for input
parameter “Accepted Transaction Duration”, the business pattern can be used
by business operators directly, without having to specify further properties. As
a consequence, the business pattern’s textual representation does not specify
any input-parameter placeholders.

9 The textual representation of a business-level building blocks is not to be confused
with the common description of rule-management entities. While the former is
directly used to instantiate event-processing logic and thus must conform to a
specified structure, the latter is purely descriptive and may be omitted if no further
information is required.

118 5 A Framework for User-Oriented Rule Management

Pattern Definition DB transaction duration check (Section 5.5.3)

Textual Representation (if) a database transaction takes longer than 2 seconds

Input Parameter ID Expression Editable

Configurations Accepted Transaction Duration TimeSpan(0, 0, 2) 5

Triggering Signals Signal ID Triggering

S1 3

Table 5.3. Exemplary Business Pattern

5.5.6 Business Actions

Business actions form the counterpart to business patterns on the level of
business-level building blocks as sketched in Section 5.8. As with business pat-
terns, business actions further restrict the event-processing logic of an under-
lying event-level building block – in this case, of an action definition – and
provide a natural-language description with placeholders for all previously un-
set input parameters.

Meta Model

Figure 5.14 shows the meta model for business actions. A business action
ba = (a,C, t) is defined by an underlying action definition a, a collection of
input parameter configurations C for all input parameters of a, and a textual
representation t. Input parameter configurations for business actions are gener-
ally equivalent to input parameter configurations for business patterns as dis-
cussed above. The textual representation of a business action would typically
describe its ultimate result (as it would be visible to a business operator) rather
than its immediate, technical implications; for instance, a business action that
results in an “Email” event would be described as “sending an email”. By
definition, a textual representation for business actions begins with the term
“then” or its equivalent in another language.

Example

Figure 5.4 shows an exemplary business action “Start task” based on the ac-
tion definition “Start automation platform task” as presented in Section 5.5.4.
Unlike the exemplary business pattern as discussed before, it leaves the under-
lying event-level building block’s input parameter editable, however, specifies
a validator in accordance with the specific context – i.e., rule space – in which
it is used. The editable input parameter is available as a placeholder in the
business action’s textual representation. In the remainder of this thesis, we
show placeholders colored and in italic font.

5.5 Sense-and-Respond Rule Management 119

* 1

- Identifier
- Display Name
- Textual Description

Business Action Action Definition

1
*

Input Parameter
Configuration

- Default Value
- Editable
- Validator

1

*

Rule Space

Figure 5.14. Business Action Meta-Model

Action Definition Start automation platform task (Section 5.5.4)

Textual Representation (then) start Task

Input Parameter ID Expression Editable Validator

Configurations Task - 3 x ∈ {JOBP.INFSTR.PROVISIONHOST, . . .}

Table 5.4. Exemplary Business Action

5.5.7 Sense-and-Respond Rules

In the proposed architecture, business patterns and business actions are even-
tually presented to business operators to create concrete event-processing logic
in the form of sense-and-respond rules. As both kinds of business-level building
blocks abstract from the underlying complexity through a high-level textual
representation of the event-processing logic, the process of assembling a sense-
and-respond rule can be presented to the user as assembling a natural-language
sentence in the form “if real-world situation, then real-world action(s)” from
prepared clauses. Input parameters are seamlessly integrated into the textual
representations and can successively be replaced by concrete values during the
instantiation process.

In addition to the basic association of an instantiated business pattern with
one or more instantiated business actions, sense-and-respond rules provide
a mechanism for setting the activation state of a rule: Only if a sense-and-
respond rule is active it is considered for event processing. In accordance with
the basic requirements as discussed in Section 5.5.1, sense-and-respond rules
may either be activated and paused manually, or be executed in a scheduled
execution mode. In the latter case, the activation state of a rule is adapted
automatically based on predefined time conditions.

Sense-and-respond rules are created and exist within rule spaces, which group
building blocks and allow mapping sense-and-respond rules to rule services
in a way that is transparent for business users. Each sense-and-respond rule

120 5 A Framework for User-Oriented Rule Management

is furthermore associated with a rule owner, who is typically, although not
necessarily, its creator. The role of rule owners in user rights management is
discussed in greater detail in Section 5.6.

Meta Model

Figure 5.15 shows the meta model for sense-and-respond rules. A sense-and-
respond rule r = (bp,Xbp, B, a, S, t) is defined by a business pattern bp, a
collection of input parameter expressions Xbp for all input parameters of bp, a
collection of bindings B, an activation state a, a collection of scheduling con-
ditions S, and an optional template t. Bindings associate the business pattern
of a rule with business actions. A binding b = (ba,Xba, C) ∈ B is defined by
a business action ba, a collection of input-parameter expressions Xba for all
input parameters of ba, and a collection of conditions C.10

* 1

Business-Pattern
Input-Parameter Expressions
Activation State
Scheduling Conditions

*

1

1..*

Rule Space

-

-
-

Binding

Conditions
Business-Action
Input-Parameter Expressions

-
-

*

Business Pattern

1

*

Rule Instance

1

*

1

Condition

Business Action *

1 *

0..1

*

Rule Owner

Template

1

*

1
1

Figure 5.15. Sense-and-Respond Rule Meta-Model

Input parameter expressions. Input parameter expressions define concrete
values for the diverse input parameters of the rule’s business pattern and
its business actions, respectively. In case of business actions, input param-
eter expressions may calculate such a value from the output parameters of
the business pattern. This enables rule managers to adapt reaction logic dy-
namically based on the triggering event-situation instance. Business-pattern
input-parameter expressions, by contrast, are necessarily constant.

10 Serving as an auxiliary construct for associating business patterns with business
actions rather than being visible as an independent entity to business operators,
bindings do not have a display name and human-readable description.

5.5 Sense-and-Respond Rule Management 121

Conditions. In the proposed approach to sense-and-respond rule manage-
ment, the role of business operators in defining relevant business situations is
deliberately focused on choosing an appropriate business pattern and providing
concrete values for its input parameters. Conditions provide a simple mecha-
nism for business operators to further specify the so-defined pattern-detection
logic based on the characteristics of a triggering event-situation instance, in
a way that abstracts from the event-based foundations of decision making. A
condition may basically be considered as a Boolean expression involving one
or more output parameters of the business pattern, which is evaluated when
the business pattern triggers. Only if all conditions of a binding evaluate to
true, the associated business action is executed.

In the proposed meta model, a condition c = (IN, x, t,XIN) ∈ C is defined
by a collection of typed input parameters IN, a Boolean expression x on the
output parameters of the business pattern and the collection of input param-
eters, a human-readable textual representation with placeholders for all input
parameters, and a collection of input-parameter expressions XIN for all input
parameters in c.11 Although conceptually equivalent, we distinguish between
condition and so-called exceptions in the web-based rule creation interface as
presented in Section 5.9. Exceptions must evaluate to false and thus could be
defined in a negated form as conditions.

Activation State. The activation state a ∈ {active, paused, scheduled}
of a sense-and-respond rule indicates whether the rule is manually paused,
manually activated, or its activation state shall be calculated from the set
of scheduling conditions as discussed below. If no scheduling conditions are
defined – i.e., S = ∅ – the latter option is unavailable.

Scheduling conditions. Scheduling conditions specify the automated activa-
tion of a sense-and-respond rule when executed in scheduled execution mode.
Let T be the set of all time stamps. A scheduling condition s : T → {0, 1} ∈ S
is then defined as a Boolean expressions on time stamps, indicating whether
the rule is active at given point in time or not. Given an incoming event e, e
is processed if s(valuet(e)) = 1∀ s ∈ S.

Template. The template t signifies whether the sense-and-respond rule was
created “from scratch” or based on a template. Templates are partially-defined
rules for commonly needed event-processing logic and are discussed in greater
detail with rule spaces in Section 5.5.8.

11 Albeit not a technical necessity on the level of sense-and-respond rules, the concept
of input parameters and input parameter expressions enables preparing partially-
defined conditions, where only input-parameter values must be specified by a busi-
ness operator. Such constructs are used in the web interface to ease the creation of
sense-and-respond rules and also are an important part of templates as discussed
in Section 5.5.8. Similar, textual representations allow rendering conditions in a
way that is understandable to business users.

122 5 A Framework for User-Oriented Rule Management

Example

Figure 5.16 shows an exemplary sense-and-respond rule “Host Provision-
ing HP1 - Transactions > 2 seconds”, assembled from the above-presented
business-level building blocks “2 seconds DB transaction” and “Start task”.
A condition ensures that the action is not triggered for database transactions
of type COMMIT, which in the presented scenario are known to take longer
than two seconds even if sufficient resources are available. Running in sched-
uled execution mode, the rule is configured to be deactivated during a defined
maintenance interval through the following scheduling condition s1:

s1(t) =

{
0 t ∈ [(Feb 29, 2012, 04:08 pm), (Feb 29, 2012, 11:07 pm)]

1 otherwise

Figure 5.16. Exemplary Sense-and-Respond Rule

5.5.8 Rule Spaces

Rules spaces group the event-level building blocks (in an n-to-m relationship)
and the business-level building blocks (in a 1-to-n relationship) of a SARI ap-
plication based on organizational tasks to which they belong; for instance, a
rule space “Fraud Detection” could contain event-processing logic for detect-
ing different kinds of fraudulent user behavior, notifying the fraud department,
and blocking a user account automatically. In the proposed architecture, rule
spaces therewith form the basic workspaces for business operators: Each sense-
and-respond rule is created within a rule space, based on the business-level
building blocks of this rule space. In addition, rule spaces serve as the key
point of integration between sense-and-respond rules and the event-processing
infrastructure of an application: Each rule space is assigned to a collection of
rule services, which then execute all sense-and-respond rules of that rule space.
Whereas the creation of a rule space and the grouping of event-level building
blocks is up to solution designers, the assignment of rule spaces to appropri-
ately configured rule services lies in the responsibility of system developers.

Besides grouping building blocks that make sense regarding a certain aspect
of an application, rule spaces provide additional mechanisms for guiding the

5.5 Sense-and-Respond Rule Management 123

work of business operators: Prepared bindings allow defining combinations of
business patterns and business actions which are particularly useful and thus
shall be suggested to a business operator. Templates are partially-defined rules
for commonly needed event-processing logic.

Meta Model

Figure 5.17 and Figure 5.18 show the meta model for rule spaces. Let Ptotal

and Atotal be the overall sets of pattern definitions and action definitions of
an application. A rule space s = (P,A,BP,BA, B, T) is then defined by a
collection of pattern definitions P ⊆ Ptotal, a collection of action definitions
A ⊆ Atotal, a collection of business patterns BP based on the pattern definitions
in P , a collection of business actions BA based on the action definition in A,
a collection of prepared bindings B, and a collection of templates T .

*

Action Definition Business Action

Pattern Definition Business Pattern

*
*

*

1

*
1

1

*

*

Rule Service Rule Space* *
1

*

Figure 5.17. Rule Space Meta-Model

Business Pattern

Business Action

*

*

*

1 1

1 1

1

1..*

Rule Space

*
* *

1 1

Prepared Binding Template Binding

Business-Pattern
Input-Parameter Expressions

-Business-Action
Input-Parameter Expressions

- -
-

Conditions
Business-Action
Input-Parameter Expressions

Figure 5.18. Rule Space Meta-Model: Prepared Bindings and Templates

Prepared bindings. Prepared bindings enable a rule manager to prepare
associations between business patterns and business actions which are consid-
ered as meaningful and/or commonly requested in practical use cases. In the
presented model, a prepared binding pb = (bp, ba,Xba) is defined by a business
pattern bp, a business action ba, and a collection of input-parameter expres-
sions Xba for the input parameters of ba. When creating a sense-and-respond

124 5 A Framework for User-Oriented Rule Management

rule based on bp, all “prepared” business actions – i.e., all business actions for
which a prepared binding to bp exists in B12 – are suggested to the business
operator as being particularly suited in response to the given business situ-
ation.13 When adding a prepared business action, possible input-parameter
expressions of the prepared binding are set as default values. Note that for one
tuple of business patterns and business actions, at most one prepared binding
may be defined.

Templates. Templates are structurally equivalent to sense-and-respond rules,
however, may leave open input-parameter expressions for the business pattern,
for all conditions and for all business actions. Templates may therefore be
considered not-yet-finished sense-and-respond rules: To create a full-fledged
rule from a template, a user simply defines the still missing input-parameter
expressions, if any. Rule managers typically provide templates for rule logic
that is required frequently, with equal or similar configurations. In the proposed
meta model, a template t = (bp,Xbp, B) is defined by a business pattern bp, a
collection of input-parameter expressions Xbp for input parameters of bp, and
a collection of bindings B. In contrast to sense-and-respond rules, collections
of input-parameter expressions are not necessarily complete.

Example

Our exemplary SARI application for event-based service assurance provides a
total of six rule spaces, each of which is concerned with a different aspect of
the underlying automation platform such as the runtime of individual tasks,
exceptional log file entries, or access denials. The “Database protection mon-
itoring” rule space is concerned with monitoring the automation platform’s
data repository, which is used to keep track on the various actions of the plat-
form and also serves as the basis for messaging in order to keep it reliable and
persistent. On the pattern-detection side, the database-protection rule space
provides diverse business patterns for testing the duration of transactions (e.g.,
“2 seconds DB transaction” as discussed in Section 5.5.5), detecting individ-
ual errors by their error code, and detecting accumulations of errors as well
as critical database calls. On the reaction side, it provides different business
actions for notifying responsible departments within a company as well as a
whole range of business actions for starting, pausing, and canceling actions in
the automation platform (e.g., “Start task” as discussed in Section 5.5.6).

12 In the following, whenever speaking of prepared business actions, we assume that
the respective business pattern is clear from the context.

13 Whether or not non-prepared business actions are available depends on the specific
authorizations of a business operator in the given rule space. A detailed discussion
of user rights management are presented in Section 5.6.

5.6 User Rights Management 125

5.6 User Rights Management

Sense-and-Respond Infrastructure follows a role-based approach to user rights
management, where the specific authorizations of a user depend on the roles
he or she is granted. From the various roles available, only a limited number
concerns the aspect of rule management as presented in this thesis.14 These
roles conform closely – although, not entirely – to the conceptual user roles as
introduced in Section 5.4 and Section 5.5 before.

In the following, we discuss rule-management-relevant user roles and their
specific permissions beginning with the highest-level super administrator role
and ending with the lowest-level business operator role. All these user roles are
structured in a linear hierarchy, meaning that a higher-level user role inherits
all authorizations from lower-level user roles.

Super Administrators

Super administrator form the top-most layer of SARI’s overall role hierarchy,
and, as such, have full and unrestricted access to a SARI installation. Having
the exclusive competence to create new SARI applications and manage user
rights, super administrators are necessarily involved in the set up of a rule-
based SARI application. Super-administrator rights are not required for the
actual definition of an event-processing infrastructure and high-level sense-
and-respond logic.

Application Developers

For any rule-management user role other than super administrators, SARI
applications serve as a central “unit of authorization”: Each user is associated
with a collection of SARI applications for which this user is then generally
authorized. Otherwise, if a user is not authorized for a SARI application, this
application is not at all visible to him or her.

Application developers have full and unrestricted access to the SARI appli-
cations for which they are authorized. However, they may not delete them or
create new SARI applications. In the proposed rule management system, so-
defined permissions would be granted to both system operators and solution
designers. Since these actors typically work in close collaboration, no conflicts
should occur.

14 The majority of roles in fact concerns the ex-post analysis of event data as dis-
cussed by Suntinger et al. [123, 124], as well as the deployment of SARI applica-
tions.

126 5 A Framework for User-Oriented Rule Management

Rule Managers

At the bottom layers of the proposed user-role hierarchy – i.e., for rule man-
agers and business operators – rule spaces serve as a second unit of authoriza-
tion subordinate to SARI applications: Given an accessible SARI application, a
user is associated with a collection of rule spaces of this application for which
this user is then generally authorized. If a user is not authorized for a rule
space, this rule space is not at all visible to him or her.

Rule managers are authorized to create, modify, and remove the business-level
building blocks, prepared bindings, and templates of a rule space. Assuming
that the various rule managers of a rule space operate in close collaboration,
each rule manager has full access to all elements independent from an entity’s
original creator.

Business Operators

Business operators are generally authorized to administer sense-and-respond
rules based on a predefined set of business-level building blocks, prepared bind-
ings, and templates, but do not have access to any other part of a SARI ap-
plication. Within this basic scope, the business operator role provides for the
following detail settings:

• Rule access mode: Unlike infrastructural rule management, sense-and-
respond rule management provides a notion of rule ownership; whereas per
default, each rule is owned by its creator, the owner of a sense-and-respond
rule may be changed by any user that has write access to this rule. In
the proposed user-role hierarchy, business operators have full access to all
sense-and-respond rules of which they are the owners. The rule access mode
defines whether rules of another owner are (i) fully accessible, (ii) visible
but not editable, or (iii) entirely hidden from the user.

• Prepared bindings only: Prepared bindings enable rule managers to
declare business pattern/business action pairs that are considered particu-
larly useful in the given business scenario. The prepared bindings only flag
indicates whether a business operator is forced to create sense-and-respond
rules from such prepared bindings or may define non-prepared bindings.

• Editable templates: Templates enable rule rule managers to predefine
partially-defined rules for commonly needed event-processing logic. The
editable templates flag indicates whether the structure of a template must
always be instantiated as is, or instead may serve as a default structure
that can be modified during rule creation. In the latter case, a template
must explicitly be “broken” in order to be modified in structure. A result-
ing sense-and-respond rule then does not maintain any reference to the
template from which it originates.

5.7 Implementation Architecture 127

Provided that a user is generally authorized to view the rule space, any higher-
level user role has full access to the sense-and-respond rules of a rule space.

5.7 Implementation Architecture

We fully implemented the proposed approach to rule management as an ex-
tension to the basic SARI architecture as discussed in Section 3.6. Figure 5.19
shows those parts of the extended architecture that directly and indirectly par-
ticipate in the management and execution of infrastructural rules and sense-
and-respond rules, respectively. Unless otherwise stated, all elements, mecha-
nisms, and communication channels of the original architecture are preserved.

Administration
Database

D
at

a
La

ye
r

B
ac

k-
En

d
Fr

o
n

t-
En

d

create/edit

applications

Administration Node

a

c

e

.NET Remoting Database Access

b

Application Management
Application Execution

and Monitoring

Admin

DatabaseAdmin

DatabaseApplication
Database

Worker NodeWorker Node

Modelling
Studio

Worker Node

Rule Instance Monitor

Web Client

Regular Method Call

Rule Instance 1

...
Rule Instance n

Rule Instance 3
Rule Instance 2

Application
Descriptions

+ Rule Definitions,
Pattern Definition,
Action Definitions,

Rule Spaces

d

f

g

h

i

Figure 5.19. Implementation Architecture

128 5 A Framework for User-Oriented Rule Management

5.7.1 Data Layer

On the data layer of SARI, a central administration database (Figure 5.19a.)
and a collection of application databases (c.) contain all system-level and all
application-specific data, respectively.

The key element of the administration database is the collection of application
descriptions (b.), which are XML-formatted definitions of the static structure
of all SARI applications of a system. From the proposed approaches to in-
frastructural and sense-and-respond rule management, all elements except of
concrete sense-and-respond rules may be considered as static in that they are
not changed during the run time of an application. In the proposed implemen-
tation, we therefore persist all rule definitions (along with the mappings to
rule services), pattern definitions, action definitions, and rule spaces of a rule-
management system as direct parts of the respective application description.
As a consequence, changes in these elements require an entire redeployment of
a SARI application. Consistency among the parts of an application description
is guaranteed through higher-level elements such as the administration node.

For each SARI application of a system, a separate application database con-
tains all data necessary for the execution of the application. In the extended
architecture, we use the application database to store the various sense-and-
respond rules of an application. Keeping sense-and-respond rules separate from
the application description allows them to be updated at any point in time
without having to redeploy the entire application. The key element of the ex-
tended schema is the “Rules” table (d.), which basically contains the most
recent versions of all rules along with the rule spaces to which they belong. It
is queried both by the various worker nodes of a system and the web client.

Figure 5.20 shows the full schema for sense-and-respond rules. The display
name, description, owner, rule space, and activation mode of a rule are avail-
able as separate columns. The exact structure of a rule along with all input-
parameter expressions, as well as the collection of scheduling conditions, are
stored as XML-formatted texts. The version field is increased whenever a rule
is updated and is used to detect (i) rule updates in the back-end-layer, and (ii)
concurrent updates of multiple users. Similarly, a rule-space-level version field
is updated at the “Rule Space” table whenever an update occurs among the
rules of a rule space. This includes the creation of new rules as well as updates
and deletions. The “Rule History” table eventually contains an entry for each
update to a rule, including an XML-formatted description of the update, a
reference to the responsible user, and a time stamp. s

The proposed schema refers to rule spaces, business-level building blocks, and
templates via their identifiers to avoid redundancies among the application de-
scription and the application database. Listing 5.1 shows the XML-formatted
definition of an exemplary rule “Host Provisioning HP1 - Transactions > 2
seconds” as discussed in Section 5.5.7.

5.7 Implementation Architecture 129

*

1

Rule Spaces

PK ID

Version

Rules

PK ID

Display Name
Description
Rule Space
Owner
Structure
Scheduling Conditions
Activation Mode
Version

FK1
FK2

Rule History

Rule ID
Update Description
Time Stamp
UserFK1

0..1

*

Figure 5.20. Sense-and-Respond Rule Schema

<RuleInstance xmlns="http://www.uc4.com/Decision/RuleInstance">
<PatternActionInstance >

<BusinessPattern identifier="DbLongRunningTransaction"/>
<Bindings >

<Binding identifier="1D7BE553">
<BusinessPattern identifier="DbLongRunningTransaction">

<Condition identifier="2E4FA01F" inverted="false">
<Expression >

<![CDATA [$ OUT_TransactionType <> $x]]>
</Expression >
<InputTemplate >

<![CDATA [${ OUT_TransactionType} is different from ${x}]]>
</InputTemplate >
<InputParameters >

<Parameter displayName="x" identifier="x">
<Expression >

<![CDATA [" COMMIT"]]>
</Expression >
<SingleValueType >

<RuntimeType type="System.String"/>
</SingleValueType >

</Parameter >
</InputParameters >

</Condition >
</BusinessPattern >
<BusinessAction identifier="StartUC4Object">

<ParameterExpression identifier="ObjectName">
<![CDATA ["JOBP.INFSTR.PROVISIONHOST"]]>

</ParameterExpression >
</BusinessAction >

</Binding >
</Bindings >

</PatternActionInstance >
</RuleInstance >

Listing 5.1. Exemplary Sense-and-Respond Rule Description

5.7.2 Back-End Layer

The back-end layer of the SARI architecture is constituted by a central ad-
ministration node (e.) and a collection of worker nodes (f.).

The administration node serves as an interface between the application descrip-
tion of a SARI application and other elements of the architecture, including
the various worker nodes and the Modeling Studio. When receiving an up-

130 5 A Framework for User-Oriented Rule Management

dated version of an application description, it updates the SARI description
in the application database and, depending on the defined deployment groups,
deploys it on worker nodes. In the presented implementation architecture, up-
dates to an application description have no immediate effect on the concrete
sense-and-respond rules as stored in the respective application database, mean-
ing that these data may become inconsistent. Table 5.5 summarizes possible
sources of inconsistency.

Inconsistency Description

Missing business actions One or more of a rule’s business actions were deleted
from the respective rule space.

Missing business pattern A rule’s business pattern was deleted from the respec-
tive rule space.

Missing rule space A rule’s rule space was deleted entirely from the appli-
cation description.

Missing input-parameter expressions One or more building blocks of a rule space were ex-
tended by unset input parameters.

Illegal input-parameter expressions One or more input-parameter expressions turned in-
valid, e.g., due to changes in the respective input pa-
rameter (to a differing data type), in the respective
input-parameter configuration (to non-editable, with
a differing default expression), or in the application’s
global resources (so that a referred constant is not avail-
able any more).

Deviations from template A (template-based) rule’s template was changed so that
the rule does not conform to the current version of the
template.

Table 5.5. Sources of Sense-and-Respond Rule Inconsistency

In the present version of our rule-management system, we require inconsisten-
cies to be explicitly resolved by end users. A detailed discussion on possible
resolvement strategies is given in Section 5.9.

On the application-execution side of the SARI architecture, a collection of
worker nodes is concerned with the execution of SARI applications in a dis-
tributed environment. While worker nodes extract the infrastructural rules of
an application from the application description during deployment, sense-and-
respond rules are retrieved from the underlying application database. During
run time, worker nodes thereby need to support the “hot deployment” of sense-
and-respond rules as discussed in Section 5.5.1: Whenever a rule is created,
changed, or deleted, it must be retrieved from the application database and
deployed/undeployed with little or no latency.

For each deployed SARI application, worker nodes therefore run a so-called
rule monitoring service (g.), which continuously monitors the rule-related ta-
bles of the respective application database. If a rule is created or modified,
the rule data are retrieved from the application database and a full-fledged
run time object is assembled from the various building blocks as available at
the application description. Invalid rules are ignored for event processing un-

5.8 Modeling Studio 131

til inconsistencies are resolved. On start up, the various rule services of an
application register at the rule-monitoring service. After receiving the initial
collection of sense-and-respond rules during registration, they are subsequently
provided with updates in near real time.

Designed with configurability in mind, the proposed implementation allows
arbitrary implementations of a rule-monitoring service: While the default im-
plementations follow a pull-based approach by querying rule-related tables at
regular time intervals, more sophisticated implementations could set up on
database triggers or related concepts.

5.7.3 Front-End Layer

On the front-end layer of the extended architecture, two tools are involved in
rule management: The Modeling Studio (h.) is used to define the static struc-
tures of a rule-management system. An easy-to-use web interface (i.) allows
defining sense-and-respond rules in a business-user-friendly fashion.

The creation and management of rule definitions, action definitions, and pat-
tern definitions, as well as the basic set up of rule spaces, is provided to sys-
tem operators and solution designers as part of the already-known Modeling
Studio. The Modeling Studio is currently also used by rule managers for the
configuration of rule spaces, i.e., the creation of business-level building blocks,
prepared bindings, and templates.15 These users then have no access to any
other part of a SARI application. Focusing on the aspects that are relevant
for rule management, the Modeling Studio is discussed in greater detail in
Section 5.8.

The rule-management web client enables business operators to administrate
sense-and-respond rules in a way that fully abstracts from the event-based
foundations of decision making. The web client retrieves application descrip-
tions and user data directly from the administration database and retrieves
the current set of sense-and-respond rules from the application database. Col-
laboration among remote business operators is supported through the above-
described version field, which enables detecting parallel and potentially con-
flicting updates. The web client and its exact integration with the overall
architecture is discussed in greater detail in Section 5.9.

5.8 Modeling Studio

In the proposed architecture, the Modeling Studio serves as a comprehensive,
power-user oriented IDE for SARI application development. This includes the

15 A tailored tool for rule managers is planned for future work.

132 5 A Framework for User-Oriented Rule Management

creation and administration of rule definitions, pattern definitions, action def-
initions, and rule spaces. The Modeling Studio is used by system operators,
solution designers as well as rule managers. While system operators and solu-
tion designers have full access to the various elements of a SARI application,
system operators are authorized for the administration of business-level build-
ing blocks in predefined rule spaces only. In the following, we present the
various editors provided for rule-management entities.

5.8.1 Pattern and Rule Definition Editor

Figure 5.21 shows the Modeling Studio’s pattern-definition editor, displaying
an exemplary pattern definition “DB transaction duration check” as discussed
in Section 5.5.3.

The pattern editor is structured as follows: In the rule components toolbar
(Figure 5.21a.), action buttons allow adding condition components, time-based
components, as well as signals to the pattern definition’s decision graph. The
input parameter control (b.) and the output parameter control (c.) enable so-
lution designers to define the input parameters and output parameters of a
pattern definition. The decision-graph panel (d.) shows the actual decision
graph of a rule definition. Here, users may position rule components and es-
tablish dependencies between them. In the detail panel (e.), tailored config-
uration panels are shown for all rule components currently selected in the
above decision-graph panel. The ever-present “General” tab allows defining
the correlation set and time window of a decision graph.

The Modeling Studio’s rule definition editor is similar to the pattern definition;
however, it allows adding response-event actions instead of signals and does
not provide any facilities for defining input and output parameters.

5.8.2 Action Definition Editor

Figure 5.22 shows the Modeling Studio’s action-definition editor, displaying
an exemplary action definition “Start UC4 task” as discussed in Section 5.5.4.
As with the afore-mentioned pattern editor, an input-parameter control (Fig-
ure 5.22a.) shows the collection of input parameters of the given action defi-
nition. In the response-event template control (b.), an event-type selector al-
lows choosing the event type of the encapsulated response-event template, and
event-attribute expressions can be defined.

5.8.3 Rule Space Editor

Figure 5.23 to Figure 5.25 show the Modeling Studio’s rule-space editor, dis-
playing an exemplary rule space “Database protection monitoring” as dis-

5.8 Modeling Studio 133

Figure 5.21. Pattern Definition Editor

Figure 5.22. Action Definition Editor

134 5 A Framework for User-Oriented Rule Management

cussed in Section 5.5.8. The editor is roughly separated by a central tabbed
pane into pages for managing the pattern and action parts of a rule space, as
well as its templates.

Managing Pattern Definitions and Business Patterns

Figure 5.23 shows the pattern page of the rule-space editor. On the left-hand
side, the elements box (Figure 5.23a.) shows all pattern definitions of the rule
space along with the business patterns derived from them. Pattern definitions
can be added to the rule space per drag and drop, or via a wizard-based dialog
to be opened from the toolbar. The toolbar furthermore provides action but-
tons for creating new business patterns – again, opening a wizard-based dialog
– or deleting the current selection. On the right-hand side of the editor, the
business pattern editor allows editing the currently selected business pattern.
The business pattern editor is structured as follows:

Textual description editor (b.). The user provides the textual description
of the business pattern. In further consequence, this description is provided
to business operators at the web client. Placeholders for input parameters are
shown colored and can be added to the description via a drop-down list.

Input-parameter configuration panel (c.). The user defines the various
input-parameter configurations of the business pattern. For each input param-
eter, he or she may specify a value, which can be marked as editable – i.e.,
as a default value – via the adjacent checkbox; if no value is specified, the
input parameter is editable by definition. Additional controls allow specifying,
editing, and removing the parameter’s validator, which is to be defined in a
separate dialog depending on the input-parameters specific data type.

Triggering signals editor (d.). From a list of all signals of the underly-
ing pattern definition, the user selects those signals that are relevant for the
specified business pattern. By definition, at least one signal must be selected.

Prepared bindings list (e.). The user is provided all prepared bindings
for the current business pattern, and may define new prepared bindings via
a wizard-based dialog. Structured similar to the template wizard as discussed
below, this dialog allows the user to select a business action and specify ex-
pressions for all input parameters of this business action.

Managing Action Definitions and Business Action

Figure 5.24 shows the action page of the rule-space editor. It is generally
equivalent to the pattern page, however, does not provide a triggering-signals
editor. Prepared bindings are shown with both their business patterns and
their business actions, meaning that a prepared binding pb = (ba, bp, . . .) is
listed in the prepared bindings list of ba as well as bp.

5.8 Modeling Studio 135

Figure 5.23. Pattern Page of the Rule Space Editor

Figure 5.24. Action Page of the Rule Space Editor

136 5 A Framework for User-Oriented Rule Management

Managing Templates

Figure 5.25 shows the action page of the rule-space editor. On the left-hand
side, the various templates of the rule space are shown in a list-based control.
On the right-hand side, a preview of the currently selected template is pro-
vided. Users create and edit templates in a wizard-based dialog as shown in
Figure 5.26: Based on a chosen business pattern, business actions, and con-
ditions/exceptions may be added to a nesting of building blocks, and input-
parameter expressions may be defined. For a detailed discussion of the used
approach to rule assembling, the interested reader may refer to Section 5.9.4.

Figure 5.25. Templates Page of the Rule Space Editor

Figure 5.26. Template Creation Wizard

5.9 Web Client 137

5.9 Web Client

The proposed architecture provides for a business-oriented, web-based user
interface to enable sense-and-respond rule management in ways that fully ab-
stract from the event-based foundations of decision making. In the course of
our research, we fully implemented the Decision Web Client – shortly re-
ferred to as web client in the remainder of this thesis – as an extension to
the existing collection of SARI front-end tools. It is based on the Google Web
Toolkit (GWT) [46] and makes use of several other free-to-use third-party li-
braries both on the front-end side (e.g., to support “drag and drop”) and on
the back-end side.

In the following, we present the integration of the web client with other parts
of the overall SARI architecture (5.9.1) and discuss how the different rule-
management tasks of a business operator can be accomplished. This includes
rule monitoring (5.9.3) as well as different approaches to rule creation (5.9.4,
5.9.5) and resolving inconsistencies (5.9.6).

5.9.1 Integration

Figure 5.27 shows the integration of the web client with other elements of the
overall SARI architecture.

Admin
Database

Web Interface
Frontend

Web Interface
Backend

verify login,
retrieve application

descriptions

retrieve
application
description

retrieve
S&R rules update S&R rules

Application
Database

<refers>

Admin Database
Connection String

Login, Application Selection: Rule Management:

Admin
Database

Web Interface
Frontend

Web Interface
Backend

Application
Database

Figure 5.27. Web Client Integration

When a user logs in to the system, the web interface connects to the system’s
administration database with a connection string that is specified in a back-
end-side configuration file. After validating the specified user credentials, the
web interface retrieves all application descriptions and presents them to the
user in a tree-based application-selection control. Having a SARI application

138 5 A Framework for User-Oriented Rule Management

chosen by the user, the connection string for the respective application database
is parsed from the respective application description.

In the following, whenever the user triggers an activity or the list of sense-and-
respond rules is refreshed, the web interface connects with the administration
database to retrieve the up-to-date version of the application description, and
with the application database to retrieve the current set of sense-and-respond
rules. When creating a new rule, the new data is written to the application
database.

5.9.2 Interface Overview

Figure 5.28 shows the main page of the web interface. It is used by business
operators to investigate the current set of sense-and-respond rules and serves
as a starting point for creating, editing, and deleting sense-and-respond rules.

Figure 5.28. Web Client Overview

5.9 Web Client 139

The application selector (Figure 5.28a.) allows business operators to switch
between the various SARI application of the system through a tree-based drop-
down control. If a user is authorized for one application only, the selector is
entirely hidden. The rule administration toolbar (b.) contains action buttons
for creating sense-and-respond rules from scratch or based on a template, edit-
ing rules, and deleting rules. Next to the rule administration toolbar, the rule
monitoring toolbar (c.) allows refreshing the view of existing sense-and-respond
rules as shown in the central rule table (d.), and filtering these rules through
a drop-down control. The rule table lists all existing sense-and-respond rules
of the current SARI application that (i) are visible to the logged-in user, and
(ii) conform to the specified filter. The detail panel (e.) eventually shows the
structure of a sense-and-respond rule along with its rule history; in case of an
invalid rule, a detailed error message is shown.

5.9.3 Rule Monitoring

Rule monitoring – i.e., examining the overall collection of sense-and-respond
rules along with their activation states and change histories – typically precedes
any concrete rule-management action such as creating or removing a specific
rule.

The key element for rule monitoring is the rule table on the web client’s main
page as shown in Figure 5.28. It lists all sense-and-respond rules of the selected
SARI application which the logged-in user is authorized to see. For each rule,
the rule table shows the current activation state, the display name, an icon
indicating whether the rule is based on a template or not, as well as the rule’s
rule space and owner. A list entry can furthermore be expanded to show the
collection of scheduling conditions, if available. A rule’s rule owner as well as
its activation state can be changed directly in the rule table through respective
drop-down controls. For any other change, the rule must explicitly be edited,
which opens a wizard similar to rule creation as discussed below. If a rule is
visible yet not editable to the logged-in user, it is shown grayed out. The rule
table is automatically refreshed at regular time intervals; also, it may explicitly
be refreshed by the user.

The filtering control as available in the rule monitoring toolbar allows restrict-
ing the set rules to be shown in the rule table. Filtering can be performed
by rule space, by rule owner, or based on the display name of a rule. The
dropped-down filtering control is shown in Figure 5.29.

5.9.4 Rule Creation from Scratch

The proposed approach to sense-and-respond rule management provides for
two approaches to rule creation: Users may either create a rule from scratch

140 5 A Framework for User-Oriented Rule Management

Figure 5.29. Dropped-Down Rule Filtering Control

– by selecting a business pattern and associating it with a collection business
patterns according to the monitoring task that shall be implemented – or based
on a predefined template. In the web client, both approaches are available
through wizard-based workflows. In the following, we present the workflow
for rule creation from scratch. Template-based rule creation is discussed in
Section 5.9.5.

The presented workflow can generally be separated into four phases: rule-space
selection, pattern selection, rule assembling, and rule finalization. A separate
wizard page is provided for each phase.

Rule Space Selection

Figure 5.30 shows the first page of the rule-creation wizard, where the user
selects the concerned rule space from a drop-down list. Rule spaces that are
not ready for rule creation – i.e., that lack business-level building blocks – are
marked visually and cannot be selected. If a user is authorized for one rule
space only, this step of the rule-creation wizard is skipped entirely.

Pattern Selection

Figure 5.31 shows the second page of the rule-creation wizard, where the user
is presented the various business patterns of the previously selected rule space
in a list-based control. Showing the display name of the represented business
pattern per default, a list item can be expanded to show the business pattern’s

5.9 Web Client 141

Figure 5.30. Rule Space Selection

description as well. When the user selects a business pattern, its textual rep-
resentation as well as its output parameters (along with their data types and
descriptions) are shown in separate boxes.

Rule Assembling

Figure 5.32 shows the third page of the rule-creation wizard, where web-client
users assemble and instantiate a full-fledged sense-and-respond rule based upon
the previously-selected business pattern.

The wizard page can generally be separated into a left-hand side rule structure
panel (Figure 5.32a.) and a right-hand side element selector (b.). The former
shows the current structure of a sense-and-respond rule as a nesting of natural-
language clauses as provided by business-level building blocks, conditions, and
exceptions. It is initialized with the chosen business pattern, which – unlike
any other block – cannot be removed from the nesting. The element selector
provides tabs for business actions, conditions, and exceptions. The action selec-
tor lists all prepared business actions (here titled “suggested actions”), and –
provided that the logged-in user is authorized to define non-prepared bindings
– all non-prepared business actions (here titled “other actions”). Conditions
and exceptions are generated automatically based on the output parameters
of the chosen business pattern in a type-aware manner.

142 5 A Framework for User-Oriented Rule Management

Figure 5.31. Pattern Selection

Figure 5.32. Rule Assembling

5.9 Web Client 143

Web-client users may now add elements from the element selector to the rule
structure. This can either be done via the “add” button, which adds an element
depending on the present selections, or per “drag and drop”. In accordance
with the sense-and-respond rule meta-model, each sub-nesting below the top-
level represents a binding, which in turn is defined by exactly one business
action and an arbitrary number of conditions/exceptions. Building blocks can
be removed from the rule structure depending on the current selection via the
“remove” button or by pressing “delete”.

In parallel, web-client users use the wizard page to specify concrete input-
parameter values for all parts of the sense-and-respond rule. Placeholders for all
previously unset input parameters are rendered as hyperlinks, showing either
the display name of the input parameter or its current value in an easy-to-
read formatting. Clicking such a hyperlink opens an input parameter dialog as
depicted in Figure 5.33, through which an input parameter may be specified
or reset to its default value. The web client generally provides four modes for
specifying input-parameter values:

Figure 5.33. Input Parameter Dialog

• Constant: The user is provided a type-specific editor which allows spec-
ifying a constant value in the easiest possible manner. The type-specific
editor for a date-typed input parameter value is shown in Figure 5.33. The
constant mode is the only mode available when a validator is specified.

• Output-parameter mapping: The user is provided a list of all output
parameters of the business pattern that are in a sub-type relationship to the
selected input parameter. If chosen, such an output parameter is then di-
rectly mapped to the input parameter, meaning that for a triggering event
situation, the calculated output-parameter value is used to dynamically
adapt the associated reaction logic. Output-parameter mappings are avail-
able for the input parameters of business actions and conditions/exceptions
only.

• EA Expression: Technically versed web-client users may specify EA Ex-
pressions directly, which provides a maximum of expressiveness and allows
calculating input-parameter values from an arbitrary number of output pa-

144 5 A Framework for User-Oriented Rule Management

rameters. The used EA Expression editor provides basic type-checking to
reduce the risk of defining illegal expressions.

• Concatenation: EA Expressions provide great expressiveness, however,
they may often be difficult to use for business operators. Available for
string-typed input parameters only, the concatenation mode enables users
to concatenate strings in a way that abstracts from the exact syntax of EA
Expressions. It allows adding pieces of constant strings as well as output
parameters to a list of substrings. Such substrings can then be removed
and reordered freely. The concatenation control is shown in Figure 5.34.

Figure 5.34. Defining Input-Parameter Values in Concatenation Mode

The user may eventually proceed to the final step of the wizard when at
least one business action is associated with the business pattern, and all input
parameters of the rule are set.

Rule Finalization

Figure 5.35 shows the forth and final page of the rule-creation wizard. Having
defined a full-fledged sense-and-respond rule in the previous steps of the work-
flow, the user is now asked to provide a display name and to specify the rule’s
initial activation state. In case of scheduled execution mode, an additional con-
trol allows specifying different kinds of scheduling conditions; in a separate,
pop-up-like control, users may choose from the days of a week on which days
a rule shall be paused, or specify a non-recurring pause interval by its exact
start and end time. After finishing the rule-creation wizard, the so-defined
sense-and-respond rule is eventually written to the application database, and
in further consequence, enacted at the various worker nodes of the given SARI
installation.

5.9 Web Client 145

Figure 5.35. Rule Finalization

5.9.5 Rule Creation from Template

As with rule creation from scratch, the presented workflow can generally be
separated into four phases: rule-space selection, template selection, template
instantiation, and rule finalization. Again, a separate wizard page is provided
for each phase. Rule-space selection and rule finalization are fully equivalent
to rule creation from scratch, and thus are not handled in the course of this
discussion.

Template Selection

Figure 5.36 shows the second page of the rule-creation wizard. Having selected
a rule space in the previous step, the web-client user is now presented the
various templates of that rule space in a list-based control. When the user
selects a template, its structure is shown in the right-hand side panel. The
user confirms his selection by proceeding to the next wizard page.

Template Instantiation

Figure 5.37 shows the third page of the rule-creation wizard, where the user
is asked to provide input-parameter values for all previously unset input pa-
rameters of the chosen template. The wizard page is generally equivalent to

146 5 A Framework for User-Oriented Rule Management

Figure 5.36. Template Selection

the rule assembling step in rule creation from scratch; however, it is initialized
with the template’s structure and does not allow adding or removing building
blocks. Also, preset input-parameter values cannot be changed.

Available for authorized users only, an “unlock” button allows breaking a
template. After using this button, the rule creation process changes to the
from-scratch workflow and the rule structure can be adapted freely.

5.9.6 Handling Inconsistent Rules

In proposed implementation, updates to the application description of SARI
architecture – including all pattern definitions, actions definitions, and rule
spaces of an application – have no immediate effect on the set of sense-and-
respond rules as stored in the respective application database. Changes in the
static structure of a SARI application may therefore lead to inconsistent sense-
and-respond rules, which are not further executed by the SARI back-end until
resolved via the web client.

For the current version of the proposed rule management system, we provide
for resolvement strategies as listed in Table 5.6.

In accordance with the presented listing, the web client generally separates be-
tween repairable and non-repairable rules; while repairable rules can be opened
in the editing wizard and in this way repaired by the user, non-repairable rules
can only be deleted. Depending on the so-defined degree of inconsistency, rules

5.9 Web Client 147

Figure 5.37. Template Instantiation

Inconsistency Resolvement Strategy

Missing business actions The missing business actions must be removed from
the concerned rule and, if necessary, replaced by new
reaction logic.

Missing business pattern The pattern part may be considered as the foundation
of a event-pattern rule. In the proposed implementa-
tion, the concerned rule must therefore be deleted.

Missing rule space As rules cannot be moved between rule spaces, the con-
cerned rule must be deleted.

Missing input-parameter expressions Input-parameter expressions must be defined for all
missing input parameters.

Illegal input-parameter expressions Input-parameter expressions must be redefined for all
concerned input parameters.

Deviations from template The concerned rule must be reconstructed to conform
to its template.

Table 5.6. Sources of Sense-and-Respond Rule Inconsistency

are marked in the rule table with a “warning” symbol or an “error” symbol.
In any case, a detailed description of the inconsistency is shown in the detail
panel. After repairing and saving a rule, the update is detected by the SARI
back-end and the now consistent rule is deployed as usual.

In the editing wizard, repairing inconsistent rules is supported by marking
those elements that must be removed, changed, or added to the rule at hand.
Figure 5.38 shows the rule-assembling wizard page for a rule deviating from
its template.

148 5 A Framework for User-Oriented Rule Management

Figure 5.38. Repairing Inconsistent Rules

6

Entity-Based State Management

Abstract Complex Event Processing using event-pattern rules has proved suitable
for detecting noteworthy business situations of a defined length and structure. By
contrast, challenges arise when the state of a complex, durable entity – e.g., a counter,
a server, or a task queue – shall be derived from continuous streams of low-level up-
dates. This presents a novel approach to state management for Complex Event Pro-
cessing applications. We propose business entity providers, which encapsulate arbi-
trary state-calculation logic and manage state in the form of typed, application-wide
data structures. Using a plug-in-based component model, business entity providers
can be integrated into a Sense-and-Respond Infrastructure (SARI) application based
on the specific requirements of a business scenario. We present extensions to SARI’s
original correlation and decision-graph model that enable accessing business enti-
ties well-integrated with event-pattern detection. Our approach is demonstrated in
a real-world scenario from the workload automation domain.1

6.1 Introduction

The presented approach to rule management builds upon the basic idea of (i)
letting infrastructural rules establish an event-based image of the underlying
source system, and (ii) applying sense-and-respond rules on this image to de-
tect and handle noteworthy business situations. In many application scenarios
that are centered around business entities, it may though be more natural – if
not technically imperative – to detect such situations based on the aggregated
state of these entities, rather than on continuous streams of state changes
and actions related to them. In this chapter, we present a novel approach to
state management for Complex Event Processing applications. It is seamlessly
integrated with the basic event-processing facilities of Sense-and-Respond In-
frastructure as discussed in Chapter 4 of this thesis and naturally complements
the novel approach to rule management as discussed in Chapter 5.

1 This chapter is based on the work of Obweger et al. [91].

150 6 Entity-Based State Management

6.1.1 State Management in Complex Event Processing

Complex Event Processing based on event-pattern rules works particularly well
for detecting noteworthy business situations of a defined length and structure,
where the focus is on relationships between the involved events. By contrast,
rule-based CEP faces significant challenges when the overall state of a complex,
durable entity – e.g., a counter, a server, or a task queue – shall be derived
from incremental, low-level updates of this state, and each update is repre-
sented by a (possibly complex) event. The state of such entities may, however,
be of paramount importance for the monitoring of a system. Consider an ex-
ample from the workload automation domain: Provided events of type “Task
enqueued” and “Task started”, a system administrator might wish to be no-
tified whenever the average sojourn time of a task queue exceeds a specified
threshold.

We identified the following challenges for state-of-the-art, rule-based CEP:

• Durable entity state. Many CEP engines use sliding time windows to
detect event patterns of a defined length and to limit the number of events
which must be kept in memory. While this strategy is suitable for event-
pattern detection, it generally contradicts with the idea of durable busi-
ness entities. By contrast, entity data require a separate, non-volatile data-
management layer that can be updated based on incoming events and takes
into account the specific characteristics of the managed entities. Entity
data, their development over time and possible relationships to event data
may eventually provide valuable insights to the behavior of a system and
should be available for ex-post analysis.

• Complex state-calculation logic. Calculating the overall state of an
entity from low-level updates may be of considerable complexity; consider,
for instance, the above calculation of average sojourn time from a series of
“add” and “remove” operations. Implementing such logic directly within
event-pattern rules easily bloats an application and makes it difficult to
read and maintain. Calculation of entity state should instead be encapsu-
lated and decoupled from end-user-defined business logic.

• Active entity monitoring. In many CEP frameworks, durable data can
only be accessed at the occurrence of an event, in the “condition” or “ac-
tion” part of a rule. Such event-driven access is perfectly useful when the
state of an entity shall be tested at particular points in time, e.g., whenever
an alarm occurs a source system. It is, however, impractical when entities
shall be monitored continously and noteworthy states shall be detected in-
dependent from the exact point in time in which they occur. To avoid a
tight coupling between the updating and monitoring of business entities in
such scenarios, a framework should enable rules to actively react to entity-
level state changes, generally independent from the events and rules that
originally caused these state changes.

6.1 Introduction 151

• Context-aware data access. Concepts such as contexts [4] and correla-
tion sets (Section 3.4) have been developed to partition the overall set of
events based on user-defined relationships between events. For the sake of
consistency across event-pattern detection and state management, access
to entity data should be integrated with contexts and related concepts, if
such are available.

• Ease of use. As a general concern, the definition of application-specific
state-management logic, the monitoring of business entities, as well as their
integration with event-pattern detection should be oriented towards end
users and require as little technical expertise as possible.

6.1.2 Business Entity Providers: An Architectural Overview

In this chapter, we present a novel approach to state management for Sense-
and-Respond Infrastructure. We introduce business entity providers, which en-
capsulate custom state-calculation logic and manage virtual entities as system-
wide, typed data structures. The presented architecture allows business entity
providers to be implemented as plug-in-like components that can be incor-
porated depending on the specific requirements of a given business scenario.
Within this architecture, plugged-in business entity providers expose easy-to-
use interfaces for updating and querying entities to end-user-defined event-
processing logic. Extensions to SARI’s original correlation and decision-graph
model enable accessing entities fully integrated with event-pattern detection.

Figure 6.1 shows the presented approach from a high-level perspective. On the
“updating” side of a business entity provider, event-pattern rules are applied
on the incoming stream of business occurrences for filtering, transforming, and
aggregating events, as well as to detect events that signify updates to the state
of an entity. In the action part of such a rule, the concerned business-entity
instance is identified from the detected event pattern and the respective update
operation is invoked on the business entity provider.

On the “monitoring” side, event-pattern rules may then use the query interface
of a business entity provider to monitor business entity states for exceptional
values, e.g., to test the load of a task queue against a specified threshold. The
proposed architecture supports two access modes: On the one hand, event-
pattern rules may run a query on demand, e.g., at the occurrence of an event.
On the other hand, event-pattern rules may evaluate a condition continuously
and react to exceptional states independent from the events that originally
caused that update. Depending on the used data-management approach, a
business entity provider may also provide historic entity data to tailored data
mining and visualization tools for the ex-post analysis of a system.

152 6 Entity-Based State Management

EP A

Update Interface

Query Interface

EP A EP A Ev
e

n
t

P
ro

ce
ss

in
g

A
p

p
lic

at
io

n

Sensing, Filtering, Data staging, Updating

EP A EP A

So
u

rc
e

 S
ys

te
m

RESPOND

SENSE

B
u

si
n

e
ss

En
ti

ty

P
ro

vi
d

e
r

EPA

EPA

Real-time monitoring Ex-post analysis

EP A

EP A Event-Pattern Rule (Event Pattern, Action) Events

State derivation logic
State management

Business Entity

Figure 6.1. A High-Level View on Business Entity Providers

Facilitating the integration of custom state calculation and management logic,
the presented solution enables companies to exploit the benefits of CEP also
in entity-centric business scenarios. These are difficult, if not impossible, to
approach with purely event-based strategies. By exposing their functional-
ity through easy-to-use interfaces, business entity providers simplify end-user-
defined event-processing logic, which may now focus on event-pattern detection
rather than on low-level calculations. The proposed architecture furthermore
supports a clear separation of concerns between state updating and state mon-
itoring: Updating rules can be defined with the general goal of keeping business
entities up-to-date, independently from possible monitoring logic. Conversely,
monitoring rules can focus on high-level decision making and may be added
and removed without having to touch the low-level infrastructure of an appli-
cation. The presented architecture outperforms problem-specific, ad-hoc solu-
tions – e.g., a handmade event service concerned with the management of a
particular kind of data – by providing full integration with the framework’s
rule model independent from the concrete business-entity provider implemen-
tations in use.

6.1.3 Business Entities in SARI Rule Management

The presented approach to state management seamlessly integrates with the
proposed differentiation of rule-based event-processing logic into infrastruc-
tural rules and sense-and-respond rules as discussed in Chapter 5. Following
from that, it seamlessly integrates with the proposed approach to user-oriented
rule management:

6.1 Introduction 153

Updating rules. Pure updating rules – i.e., rules that are applied with the
goal of keeping business entities up to date and in sync with possible real-world
correspondances – prepare data for other parts of an application, but do not
by themselves respond to the business environment. By definition, pure up-
dating rules are therefore part of the event-processing infrastructure of a SARI
application. As is it typical for infrastructural rules, updating rules require a
detailed and comprehensive understanding of the event-processing application
at hand and its integration with underlying source systems. Also, updating
rules will typically remain relatively stable over time.

Business entities. Business entities that are kept up to date through a col-
lection of updating rules and made available for arbitrary monitoring logic
may be considered as part of the event-based image of an underlying business
environment. Business entities therewith complement the preprocessed events
of such an image, which describe the business environment on the level of dis-
crete actions and state changes. Figure 6.2 sketches such business entities in a
high-level perspective on SARI applications.

Monitoring rules. Pure monitoring rules – i.e., rules that use business en-
tities to detecting exceptional business situations and trigger respective ac-
tions in the underlying business environment – do not prepare data for any
other part of the application, but directly or indirectly, respond to the busi-
ness environment. By definition, pure monitoring rules are therefore part of a
SARI application’s sense-and-respond layer for event-driven control and de-
cision making. As it is typical for this layer, monitoring rules require a deep
knowledge of the underlying business environment and are subject to frequent
change, e.g., whenever new risks or business opportunities are identified.

Event-Based Image of S

t

Source System S

R
 E S P

 O
 N

 D

Even
t-B

ased
 A

p
p

licatio
n

Sense-and-Respond Rules

Event Stream Business Entities

Infrastructural Rules

Figure 6.2. Infrastructural Rules vs. Sense-and-Respond Rules

154 6 Entity-Based State Management

For large-scale event-processing applications that require business logic to be
(i) changed frequently, and/or (ii) managed by business users with limited
technical skills, we suggest an overall architecture and application-development
workflow that is structured as follows:

• System operators set up the event-processing infrastructure of an appli-
cation to constantly update a set of business entities and keep them in sync
with their real-world correspondences. System operations operate with the
general goal of establishing virtual representations of all business entities of
the underlying business environment that could be relevant for monitoring
purposes, rather than with a specific monitoring tasks in mind.

• Solution designers and rule managers create collections of pattern def-
initions and business patterns based these business entities.

• Business operators assemble these business patterns with standard busi-
ness actions to concrete sense-and-respond rules. It is not at all visible to
business operators whether events, business entities, or both are used to
model and detect the business situations they are interested in.

Internal Business Entities

The above-described integration of business entities with the proposed rule-
management framework facilitates end-user-oriented event processing also in
entity-centric environments. It is essential to note, though, that the concept
of business entities does not dictate this particular style of application devel-
opment. In business environments that are

(i) limited in scope,

(ii) remain stable over time,

(iii) are managed by users that are technically versed, or

(iv) where from a large overall number of business entities only few need to
be monitored at a point in time,

it may instead be more efficient to combine both the updating and the monitor-
ing of business entities within one and the same decision graph. For example,
when a certain reaction is required if, and only if, the size of a queue exceeds
a constant threshold, logic for updating and monitoring this queue could well
be expressed in a single infrastructural rule. Similar, if an online-gambling
provider decides to observe user accounts on a selected basis, associated busi-
ness entities could be updated and monitored within the pattern-detection
part of sense-and-respond rules, where the user ID is passed as an input pa-
rameter. In the course of this chapter, we refer to business entities that are
relevant within the scope of an individual decision graph as internal business
entities.

6.1 Introduction 155

6.1.4 SARI Application Model – Revisited

In Chapter 3 and 4 of this thesis, a model-driven view on SARI applica-
tions, splitting the overall complexity of an application into smaller, easier-
to-understand sub-models, has been investigated. Figure 6.3 sketches the var-
ious sub-models of a SARI application, extended by a novel business entity
model. The business entity model contains the list of plugged-in business entity
providers along with the application-specific configurations of these providers.
Most prominently, application-specific configurations consist of a number of
business entity types (Section 6.3), describing the exact structure of a cer-
tain class of business entities to be managed. Within a SARI application, the
business entity model is referenced by the correlation model as well as the de-
cision graph model, both for the definition of pattern-detection logic (through
business entity conditions, Section 6.6.2) and the definition of reaction logic
(through business entity actions, Section 6.6.1).

Decision Graph Model

Event Model

define relations

define noteworthy
business situations

Ev
e

n
t

P
ro

ce
ss

in
g

M
o

d
e

l

define response-
event actions

co
n

fi
g

u
re

 r
u

le
 s

er
vi

ce
s

Correlation Model

Ev
en

t
D

at
a

M
o

d
el

Business Entity Model

define noteworthy
business situations

define update actions

Figure 6.3. SARI Application Model, including the Business Entity Model

6.1.5 Outlook

The remainder of this chapter is structured as follows: In Section 6.2, we dis-
cuss related work. In Section 6.3 we present the meta model for business entity
providers. Possible realizations of the described meta model are discussed in
Section 6.4, where we introduce provider implementations for scores, base en-
tities, and sets. Section 6.5 and Section 6.6 provide extensions to the original
correlation model and decision-graph model as discussed in Chapter 3 and

156 6 Entity-Based State Management

Chapter 4 of this thesis. These extensions facilitate the integration of business
entities with SARI’s approach to rule-based event processing. In Section 6.7,
an experimental implementation of our approach is presented. We demonstrate
our solution by a concrete example from the workload automation domain in
Section 6.8 and conclude this chapter in Section 6.9.

6.2 Related Work

Etzion and Niblett [37] list global state elements as one of seven core building
blocks for event-processing applications. In their terminology, event process-
ing state refers to data that are available across event-processing agents and
can be updated by an event-processing application. The authors suggest a
model where event-processing state is managed by dedicated event-processing
agents, which receive events from other agents and adapt the state based on
incoming events’ event-attribute values. In contrast to the presented model,
our approach enables updates to be triggered directly and synchronously from
within event-pattern rules, which aims to simplify the overall event-processing
logic of an application.

In inference-based approaches, reasoning about (complex) events is naturally
integrated with reasoning about durable data, with both kinds of data being
managed as facts in working memory. Logic-based approaches based on Event
Calculus [64] and its variants (e.g., [96]) use fluents to model entity state.
In the words of Shanahan [119], a fluent represents “anything whose value is
subject to change over time”. In the following, we focus on approaches that
perform event-pattern detection directly on volatile (streams of) events and
do not per se set up on an underlying knowledge base.

In stream-oriented event processing, query tables [122] and related concepts
have been introduced to make durable data joinable with event data and up-
datable within event-stream queries. While query tables provide means for per-
sistent data management, the calculation of entity state must still be defined
as part of a rule, using the framework’s Event Processing Language (EPL).
FlexStreams [126] allow incorporating procedural, potentially stateful logic as
part of a query. Kozlenkov et al. [60] present a context-aware approach to state
management that builds upon a separation between stream processing and
inference-based state management: Whenever an event changes the state of a
specific context in which it occurs, the resulting state changes are forwarded to
the event-processing engine, where further patterns may be detected. In both
approaches, state management is well encapsulated and allows users to define
event-processing logic in a decoupled manner. However, to our best knowl-
edge, both approaches dictate a certain style of programming (procedural vs.
inference-based). As a consequence, their usefulness could vary depending on
the given application scenario and the data to be managed. By contrast, the

6.2 Related Work 157

proposed state-management framework enables application developers to in-
tegrate arbitrary business-entity provider implementations. These providers
may, in fact, be based on procedural or inference-based programming tech-
niques, but could equally adhere to any other programming paradigm that is
supported by the underlying implementation framework.

Several rule-based event-processing frameworks allow accessing persistent data
sources – e.g., Web data such as XML or RDF [18], or databases – in the
“condition” and “action” part of a rule. When using passive data storages
such as files or non-active databases, entity state must be calculated directly
within rules and explicitly be retrieved in order to be monitored. Active ob-
ject databases [100] allow encapsulating durable data along with functions for
updating these data, and furthermore provide means for active entity moni-
toring. Rules in active databases are, however, internally-oriented (i.e., limited
to events that occur within the underlying database) and are typically de-
fined with a global scope (cf. [98]). Being identifiable via (possibly composite)
keys and accessible through easy-to-use interfaces, the proposed concept of
business entities is, in some respects, comparable to objects in (active) object
databases. In contrast to these systems, our framework provides an additional
layer of abstraction that allows incorporating arbitrary state-calculation logic
and data-management strategies. In addition, a type model is provided that
enables end users to easily configure plugged-in business entity providers based
on the specific requirements of an application scenario.

Kellner and Fiege [63] present the separation of two viewpoints in a CEP
application based on Key Performance Indicators (KPIs). In the derivation
viewpoint, KPIs are derived from lower-level events through filtering and ag-
gregation rules. In the interpretation viewpoint, relevant business situations
are modeled based on target values for these KPIs. Our approach generalizes
the concept from KPIs to arbitrary kinds of business entities and is fully inte-
grated with the rule model of SARI: Using the rule model, business situations
can be defined based on event patterns, exceptional entity states, or both.
Similar to the authors’ work, we provide for a strict decoupling between up-
dating and monitoring so that each aspect can be handled independent from
the other.

The concept of business entities (also: business artifacts, adaptive documents)
as typed, identifiable and globally-accessible data has successfully been applied
in the context of Business Process Management (BPM) (e.g., [28, 65, 86]).
Nandi et al. [85] present the Business Entity Definition Language (BEDL),
which is intended to evolve into a standard for modeling business entities. In
BEDL, a business entity type consists of an information model (defining the at-
tributes of an entity), a lifecycle model (defining the possible states of an entity
as a finite-state-machine), access policies (defining what roles have authority
to modify data and cause state transitions) and an event model (providing no-
tifications of state and data changes to subscribers). Given a definition of one

158 6 Entity-Based State Management

or more business entity types, a business entity runtime then provides access to
so-defined entity instances to business processes, e.g., defined in an extension
to WS-BPEL [95]. Similar, business entity providers manage data based on
user-defined business-entity types and provide interfaces for updating, query-
ing, and monitoring data through event-pattern rules. In contrast to BEDL,
business entities do not provide a inherent event model, but allow monitoring
rules to formulate and run arbitrary queries based on a set of query proper-
ties.2 State-machine-based lifecycles of business entities are not an integral
part of the proposed framework, but could be provided by an entity-provider
implementation.

6.3 Meta Model

The presented framework is designed as a generic state-management layer
that can be equipped with plug-in-like business entity providers depending
on the requirements of a given use case. Each business entity provider en-
capsulates state-management logic for a certain “kind” of entity; a business
entity provider could, for instance, be provided for queues as discussed in
Section 6.1. Apart from a basic structure prescribed by the framework, this
state-management logic can be defined freely by the implementer of a busi-
ness entity provider – e.g., using OOP and in-memory data management, SQL
statements, or any other suitable approach – and optimized with respect to
the managed data.

Figure 6.4 sketches the meta model for business entity providers, defining the
basic structure to which a business entity provider must adhere in the pro-
posed architecture. The meta model is roughly separated into a non-empty
collection of business entity types, a collection of business entities conforming
to these types, as well as collections of update and query interfaces for ac-
cessing business entities. All other elements of a business entity provider are
implementation-specific and generally invisible to the end users of a system.

Business Entity Types

While the basic semantics of a business entity provider are given through
its implementation, the proposed framework allows tailoring a provider to
the specific application in which it is used through a non-empty collection of

2 While an inherent event model has been investigated for business entities in SARI
– here, the designer of an entity type could specify noteworthy situations and a
rule could register to such a situation – it showed to be too restrictive for practical
use cases. In particular, the approach would conflict with the intended decoupling
between modeling/updating and monitoring business entities.

6.3 Meta Model 159

Key Property

Business Entity Type

1
*

Update Function

Query Interface

Query Property*

Business Entity Provider

1

1

1

Business Entity

1

*

A
p

p
lic

at
io

n
-S

p
ec

if
ic

C

o
n

fi
gu

ra
ti

o
n

conforms to Update Interface

*

accesses

A
p

p
lic

a
ti

o
n

-S
p

ec
if

ic
Ev

en
t

P
ro

ce
ss

in
g

 L
o

g
ic

is derived from

1

Figure 6.4. Business Entity Provider Meta-Model

business entity types. Each business entity type specifies the exact structure of
a certain class of business entities to be managed. For example, given a business
entity provider for queues, a business entity type could describe a class “Task
queue” of queues, with respective characteristics. Albeit business entity types
are generally provider-specific – see Section 6.4 for concrete examples – the
proposed architecture requires all business entity types to define a (possibly
composite) key, through a non-empty collection of key properties K. Each key
property k = (i, t) ∈ K is defined by an identifier i and a primitive data type
t. At run time, a tuple of key-property values can then be used to identify a
specific instance of that type, e.g., when updating or querying its state.

Apart from business entity types, business entity providers may require further,
provider-specific configurations for the various SARI applications in which they
are used. For example, a business entity provider that sets up on an RDBMS for
persistent data management may require the application developer to specify
a valid database connection string, etc.

The overall collection of plugged-in business entity providers, along with their
business entity types and further application-specific configurations, forms the
business entity model of a SARI application as sketched in Section 6.1. The
business entity model is referenced by the extended correlation model as well
as the extended decision graph model for the definition of entity-aware pattern-
detection and reaction logic.

Business Entities

During run time, business entity providers manage state as collections of busi-
ness entities. Each business entity e : T , e = (VK , . . .), conforms to exactly
one business entity type T = (K, . . .) and is uniquely identified by a tuple of
key-property values VK for all key properties in K. By definition, the key of
a business entity is immutable, i.e., it must remain constant throughout its
lifecycle.

160 6 Entity-Based State Management

Update and Query Interfaces

Business entity providers provide access to the managed business entities
through easy-to-use update and query interfaces. In the proposed architecture,
these interfaces are exposed per business entity type. A caller must therefore
specify the concerned business entity type in order to access an interface.

The update interface for a business entity type T = (K, . . .) is defined by a non-
empty collection of update functions for creating, modifying, and destroying
T -typed business entities. By definition, an update function takes as input

• a non-empty collection of key property values VK , identifying the entity to
which the update shall apply, and

• a collection of function parameters Vf , further specifying the demanded
update operation.

The query interface for a business entity type T = (K, . . .) provides access to
the managed entities through a non-empty collection of typed query properties.
Provided the unique key of an entity, these properties may be used to define
conditions on the current state of that entity; for example, a rule could test
if the query property “Size” of a queue is greater than 100. Query properties
are typically provided for all type-specific and type-independent3 properties of
T -typed entities. In addition, query properties may be available for aggregates
and meta information such as the last update time stamp.

6.4 Exemplary Business Entity Providers

Based on the above meta model, the proposed framework enables application
developers to integrate arbitrary business-entity provider implementations de-
pending on the specific problems that need to be solved. In the following, we
illustrate the presented model by the example of three commonly required
kinds of entities: Scores, base entities, and sets. Business entity providers for
these entities have been implemented as part of our prototype (see Section 6.7
for further details) and showed to be useful in many practical application sce-
narios.

In their type model, all of the following examples provide

(i) a Boolean history property, indicating whether the provider shall main-
tain the complete history of an entity, as well as

3 To avoid naming conflicts among type-specific and type-independent properties, a
provider-implementation may mark selected terms as reserved, which then cannot
be used in a business-entity type.

6.4 Exemplary Business Entity Providers 161

(ii) a Boolean persistence property, indicating whether entity states shall be
kept persistent in a database or managed in memory only.

6.4.1 Scores

Scores associate a tuple of key properties with a single, numeric score value.
Through the provider’s update interface, this value can be set, incremented,
and decremented. Query properties are available for the current score value and
a collection of “moving” aggregates, such as the moving average and median.
Albeit simple, scores form the basis for concepts such as counters and Key
Performance Indicators (KPIs) and are part of almost any practical SARI
installation. Monitoring rules are typically used to detect scores that are above
or below a certain threshold.

Meta Model

Figure 6.5 shows the meta model for score types. A score type s = (K, d, a) is
defined by a non-empty collection of key properties K, a numeric default value
d ∈ N and an optional aggregation configuration a. In accordance with the
base entity-type model as presented in Section 6.3, key properties define the
(possibly composite) identifier of a score instance. The default value defines
the initial value of a newly-created score instance; also, an update function
is provided to explicitly reset a score to its initial value. The aggregation
configuration specifies either a number of updates or a time span over which
moving aggregates shall be calculated from progressing score values.4 If no
aggregation configuration is provided, respective query properties for moving
averages are not available.

1

- Identifier
- Data Type

1..*

- Default Value
- Persistent Data Management
- History

Score Type Key Property

Figure 6.5. Score Type Meta-Model

4 As an example for time-window-based aggregates, consider a use case from ITSM
where average server utilizations shall be calculated over time windows of n min-
utes independent of the number of update events within these time windows. As
an example for update-based aggregates, consider a use case from online gambling
where a user’s average bet amount shall be calculated from the last m bets inde-
pendent of the times at which these bets took place.

162 6 Entity-Based State Management

Update Interface

Table 6.1 lists the update functions for scores of a score type S = (K, d, a).
Note that neither score providers nor any of the following examples offer sep-
arate update functions for creating new business entity instances; instances
are instead created implicitly, with the first call of an update operation for a
non-existent instance. For example, when increasing a not-yet-existent score
instance of a score type S = (K, d, a) by a value v, it is in fact instantiated
with a score value of d+ v.

Function Parameters Summary

set value (Double) Sets the score to the specified value.

reset – Resets the score to the score type’s default value.

increment addend (Double) Increments the score by the specified value.

decrement subtrahend (Double) Decrements the score by the specified value.

destroy – Removes the score instance, meaning that the score in-
stance is not considered in subsequent queries and would
be re-initialized with the score type’s default value in case
of an update operation. Destroying a score does not af-
fect a possible score history, which remains available for
analysis purposes.

Table 6.1. Update Functions for Scores

Query Interface

Table 6.2 lists the query properties for scores of a score type S = (K, d, a).
Further query properties are available for all key properties in K. Moving ag-
gregates – i.e., MovingAverage, TimeWeightedMovingAverage, MovingMedian,
MovingMinimum and MovingMaximum – are available only if an aggregation
configuration is provided.

Example

Figure 6.6 shows an exemplary score type “Alarms per Server and Job Type”
with two string-typed score properties “Server” and “Job Type”. Score values
are initialized with a default value of zero, aggregated over a time span of 60
minutes, and kept persistent. Score histories shall be maintained.

6.4.2 Base Entities

Base entities associate a tuple of key properties with a collection of entity
properties, which can be updated and queried via the provider’s interfaces.

6.4 Exemplary Business Entity Providers 163

Property Type Summary

Value Double The score’s current value.

LastUpdate TimeStamp The time stamp of the last score update.

MovingAverage Double The moving average over the progressing score
value according to the aggregation configura-
tion a.

TimeWeightedMovingAverage Double The time-weighted moving average over the pro-
gressing score value according to a.

MovingMedian Double The moving median over the progressing score
value according to a.

MovingMinimum Double The moving minimum over the progressing
score value according to a.

MovingMaximum Double The moving maximum over the progressing
score value according to a.

Table 6.2. Query Properties for Scores

Server
Job Type

[String]
[String]

Default Value
Aggregation Configuration
Store History
Persistent Data Management

0
60s

Alarms per Server and Job Type

Figure 6.6. Exemplary Score Type

Base entities are typically used as virtual representations of complex real-
world entities such as customers or products: Whenever an event indicates
an update to a real-world entity, this update is “mirrored” to the respective
base-entity instance. Monitoring rules are typically used to detect exceptional
events based on the current state of a related entity; for instance, a rule could
trigger an alert if a delay is signified for an order of a customer with the
property “Rating” set to “Premium”.

Meta Model

Figure 6.7 shows the meta model for business object types. A business object
type B = (K,P) is defined by a collection of key properties K and a collection
of entity properties P . An entity property p = (i, t, d) ∈ P is defined by an
identifier i, a primitive data type t, and a default value d : t. The default value
defines the initial value of an entity property in a newly-created base-entity
instance.

Update Interface

Table 6.3 lists the update functions for base entities.

164 6 Entity-Based State Management

1

- Identifier
- Data Type

1..*
Business Object Type Key Property

- Identifier
- Data Type
- Default Value

Entity Property

1

*

Figure 6.7. Base Entity Type Meta-Model

Function Parameters Summary

set< i > value (t) E.g., setFirstName; sets the specified property p = (i, t).

reset< i > – E.g., resetFirstName; resets the specified property p = (i, t)
to its default value.

reset – Resets all properties.

destroy – Removes the entity.

Table 6.3. Update Functions for Base Entities

Query Interface

The proposed base-entity provider exposes querying properties for all key and
entity properties of a concerned base entity type, returning the (current) value
of such a property for a given base-entity instance. The last update time (Last-
Update) is provided as a type-independent query property.

Example

Figure 6.8 shows an exemplary base-entity type “Customer”, where the rep-
resented individual’s unique social security number is used as a key property.
Further characteristics are available as entity properties.

Social Security Number [String]

Customer

Second Name
First Name
Date of Birth
Customer Category

[String]
[String]

[DateTime]
[String]

Store History
Persistent Data Management

null
null
null
„Default“

Figure 6.8. Exemplary Base Entity Type

6.4 Exemplary Business Entity Providers 165

6.4.3 Sets

Sets are an extension to above-described base entities that allow modeling col-
lection data such as FIFO queues, priority queues, or stacks. Besides grouping
a number of entity properties, sets act as a container for multi-variate set
elements, which by themselves are defined by a set element identifier and
a collection of set element properties.5 Sets are particularly useful for queue
monitoring, which is a key task in domains such as Service Level Management
(SLM). For example, rules could be used to detect overflow situations and
automatically request additional resources in response.

Meta Model

Figure 6.9 shows the meta model for set types. A set type S = (K,P,E)
is defined by a non-empty collection of key properties K, a collection of set
properties P , and a set element type E. Set properties are properties of the
a instance itself and would typically include meta information such as the
maximum capacity of a buffer, the guaranteed maximum waiting time in a
job queue, etc.6 The set element type defines the structure of elements to be
contained in a set of type S. A set element type E = (KE , PE) is defined
by a non-empty collection of set-element key properties KE and a collection
of set-element properties PE . Set-element key properties are used to identify
a set element when it is inserted and removed from a set. Set-element object
properties further specify a set element and may provide additional information
when analyzing the content of a set through the provider’s query interface.

Update Interface

Building upon the above-described base-entity provider, the proposed set
provider offers all basic update functions for setting and re-setting set proper-
ties as listed in Table 6.4. Set-specific update functions are listed in Table 6.4.

5 We refer to the entity properties of a set as set properties in the remainder of this
thesis.

6 It is essential to note that set properties are purely descriptive and have no im-
pact on the actual behavior of a set provider. For example, having a property
“Capacity” set to 1000 would not per se prevent a rule from inserting n > 1000
elements to that set. A monitoring rule could, however, test the actual size of the
set against the current value of the “Capacity” property and signify an overflow
situation if necessary.

166 6 Entity-Based State Management

1

- Identifier
- Data Type

1..*
Set Type Key Property

- Identifier
- Data Type
- Default Value

Entity Property

1

*

Set Element Type

1

1

1..*

*

1

1

Figure 6.9. Queue Type Meta-Model

Function Parameters Summary

insert keyProperties (Object[])
properties (Object[])

Inserts a new item with the specified key and object
properties. No changes if the so-identified queue item
is already queued.

remove keyProperties (Object[]) Removes the specified item from the queue. No
changes if the so-identified item is not in the queue.

Table 6.4. Update Functions for Sets

Query Interface

As with base entities, the proposed set provider exposes query properties for
all key and set properties of a concerned set type S = (K,P,E). Set-specific
query properties are listed in Table 6.5.

Property Type Description

Elements List<SetElement> A typed list of data records describing the cur-
rent content of a set. List items expose proper-
ties for all set-element (key) properties in E as
well as the exact time stamp at which an item
was added to the set.

MeanSojournTime TimeSpan The mean sojourn time among the current set
of elements; zero in case of an empty set.

MinimumSojournTime TimeSpan The minimum sojourn time among the current
set of elements; zero in case of an empty set.

MaximumSojournTime TimeSpan The maximum sojourn time among the current
set of elements; zero in case of an empty set.

Table 6.5. Querying Properties for Sets

Example

Figure 6.10 shows an exemplary set type “Task Queue”, where a string-typed
queue ID is used as a key property and an integer-typed configuration “Ca-
pacity” is available as a set property. The set’s content – representing tasks as
executed by an underlying automation platform – is defined by a unique task
ID and set-element properties for a task’s type, owner, and priority.

6.5 Correlation Model Extensions 167

Queue ID [String]

Task Queue

Capacity Integer 300

Store History
Persistent Data Management

Task ID [Integer]

Task Type
Owner ID
Priority
...

[String]
[Integer]
[Integer]

...

null
null
null

Figure 6.10. Exemplary Set Type

6.5 Correlation Model Extensions

In a model-driven view on SARI applications, the correlation model (Sec-
tion 3.4) defines how events of different event types relate to each other, e.g.,
with respect to a common business process from which they arise. Applied
on a continuous stream of business occurrences, an application’s correlation
model results in a partitioning of event data into groups of related events –
so-called correlation sessions – which can be handled separately during the
event processing.

In practical application scenarios, semantic relationships may, however, exist
not only between events, but also between events and entities, and between dif-
ferent kinds of entities. As a first extension to SARI’s base application model,
we present a generalization of the original correlation model as discussed in
Section 3.4. The generalized model allows defining relations not only between
events, but between any type of data exposing a non-empty collection of typed
and immutable properties. The so-defined, abstract class of correlatable ele-
ments includes events as well as business entities: While events can be corre-
lated based on their event attributes, business entities can be correlated based
on their key properties. Within an event-pattern rule, a so-defined relation-
ship then identifies the business entities that are generally concerned with the
occurrence of an event or the status change of another business entity.

6.5.1 Meta Model

Figure 6.11 shows the meta model for generalized correlation sets. A general-
ized correlation set

sg = {b1, b2, . . . , bn} , n ≥ 1

is defined by a non-empty collection of generalized correlation bands. A gen-
eralized correlation band b ∈ sg specifies a correlation approach for one or

168 6 Entity-Based State Management

more correlatable entity types, where each correlatable entity type C is defined
by a non-empty collection of immutable properties. An immutable property
p = (i, d) is defined by an identifier i and a data type t; in a correlatable en-
tity c : C, the value of an immutable property is required to remain constant
during the lifetime of that entity. The abstract concept of a correlatable entity
type is implemented by event types and business types. In the former case, im-
mutable properties are given through the set of event attributes. In the latter
case, immutable properties are given through the set of key properties.

1
*

Correlation Band

Correlation Set

Elementary
Correlation Band

Knowledge-Based
Correlation Band

* 1..*
Correlatable Entity Immutable

Property

- Identifier
- Data Type

1..*1

Event Type
(Event Attributes)

Business Entity Type
(Key Properties)

Self-Referencing
Correlation Band

Figure 6.11. Generalized Correlation Set Meta-Model

From the original set of correlation band implementations as presented in
Section 3.4.2, elementary correlation bands and knowledge-based correlation
bands can be used with generalized correlatable elements without restrictions.
Given a library T = {T} of correlatable data types, a generalized variant
of the elementary correlation band is defined by e ⊆ {(T, a) | T ∈ T, a ∈ T},
i.e., a non-empty set of correlatable data types together with an immutable
property per type. The self-referencing correlation band depends on a unique
identifier and a temporal order of elements to correlate; as both aspects are
not necessarily available with the generalized correlatable-element model, this
correlation-band implementation is restricted to event types only.

6.5.2 Example

Figure 6.12 shows an exemplary extended correlation set on the event types
of an order process and a base entity of type “Customer”. As shown here, the
granularity of correlation sessions is not necessarily equal to the granularity
of business entities: While correlation sessions exist per process ID, entities
exist per customer ID; thus, a single entity may be associated with several
correlation sessions. Conversely, in other scenarios, a single correlation session
could equally be associated with several entities.

6.6 Decision Graph Model Extensions 169

Order Received

Order ID

Customer ID

String

String

... ...

... ...

Order ID String

... ...

... ...
Order ID String

... ...

... ...

Base Entity:
Customer

Order Shiped Transport Update

Base Correlation Set

Customer ID String

Figure 6.12. Exemplary Extended Correlation Set

6.6 Decision Graph Model Extensions

Describing event-processing logic of the form “if pattern, then action”, a SARI
application’s decision graph model forms the basis for low-level, infrastructural
processing steps as well as high-level, sense-and-respond -based decision mak-
ing. In the proposed application architecture for entity-aware event processing,
decision graphs consequently find a use on both the “updating side” and the
“monitoring side” of business entity providers: On the updating side, decision
graphs are applied in the form of infrastructural rules to detect updates to
business entities in incoming event streams and trigger respective update op-
erations in response. On the monitoring side, decision graphs are used within
sense-and-respond rules to detect exceptional entity states either individually
or as part of complex event patterns.

In the following, we extend the original decision-graph model as discussed in
Chapter 4 towards its seamless integration with business entities and business
entity providers. We introduce two novel rule components – business entity
actions (Section 6.6.1) and business entity conditions (Section 6.6.2) – which
enable application developers to update and monitor business entities directly
from decision graphs. In Section 6.6.3, we discuss the handling of internal
business entities based on special decision-graph variables. All extensions are
based on the abstract meta model for business entity providers and therefore
are usable with any provider implementation that conforms to the presented
specifications.

6.6.1 Business Entity Actions

On the updating side of a business entity provider, event-pattern rules are ap-
plied to detect the (possibly complex) events that indicate updates to business
entities, and to trigger the respective update operations in response. Depend-
ing on the given business scenario, the detection of business-entity updates
may be of notable complexity and require several processing steps, includ-
ing filtering, event transformation, event aggregation, and situation detection.
While the base decision-graph model provides all necessary means for filter-
ing, transforming, and aggregating events, it does not currently enable the
management of business entities based on detected event situations.

170 6 Entity-Based State Management

As a first extension to the original rule-component library, business entity ac-
tions enable application developers to directly and synchronously invoke a
user-defined update operation on a user-defined “target set” of business en-
tities. Depending on the given use case, this target set may be derived dy-
namically from the underlying correlation set, based on a user-defined target
business-entity type T : When the rule component is activated for a correlation
session s, the basic target set is constituted by all T -typed business entities
that are correlated to s. Alternatively, if no correlation is specified for T in the
given decision graph, the operation is aimed at all T -typed business entities.
In either case, further restrictions to the base target set can be specified based
on the entities’ key properties, through so-called key property expressions.

In the proposed application architecture, business entity actions are typically
used in infrastructural rules to establish application-wide, virtual representa-
tions of underlying real-world entities and states. Business entity actions may
also be used in pattern definitions; business entities must then be managed
internally to keep resulting sense-and-respond rules free from side effects. The
handling of internal business entities within the presented decision graph model
is discussed in detail in Section 6.6.3.

Meta Model

Figure 6.13 shows the meta model for business entity actions. A business en-
tity action a = (p, T,XK , f,Xf) is defined by a business entity provider p,
a business entity type T = (K, . . .) for p, an optional collection of key prop-
erty expressions XK , an update function f for T , and a collection of function
parameter expressions Xf for all function parameters of f .

Business Entity Type

Key Property

Business Entity Action

- Key Property Expressions
- Function Parameter Expressions

*

Output Port

Update Function

Function Parameter

Input Port

*

2

1

1

1

1

1

1..*

*
1

1

*

Figure 6.13. Business-Entity Action Meta-Model

Business entity provider and business entity type. Every business entity
action needs to specify the general target of the represented update operation,
i.e., identify the exact set of business-entity instances that shall be changed in

6.6 Decision Graph Model Extensions 171

case of an update. On a general level, this target is defined as a certain “kind”
of entity, through the component’s business entity provider p and a business
entity type T for p. By default, a business-entity action is then applied to all
T -typed entities that are correlated to the active correlation session, i.e., the
correlation session for which a was activated in the containing decision graph
d 3 a. If no correlation session is available or no correlation relationship is
specified for T , the update is applied to all T -typed entities.

Key property expressions. A correlation-based approach to business-entity
management is in line with the core event-processing facilities of SARI and of-
ten leads to decision graphs that are very simple and easy to understand.
However, it does not always allow specifying target sets at a sufficient level of
granularity. In the proposed meta model, key property expressions therefore
enable application developers to further specify the base target set based on se-
lected key properties in K. Whenever a business-entity action is activated, the
component’s key-property expressions are evaluated on the underlying event
situation, resulting in a collection of concrete key-property values VK . The
described update operation is then applied to an element of the base target
set if and only if its unique key conforms VK .

Update function and function-parameter expressions. Given a certain
target set of business entities, business entity actions specify the exact kind
of update operation to be invoked on these entities by means of an update
function f for T and a collection of function parameter expressions Xf for all
function parameters of f . When the rule component is activated, concrete val-
ues are calculated from Xf and passed as function parameters to the business
entity provider.

Example

Figure 6.14 shows an exemplary business entity action for incrementing scores
of a type “Alarms per server”. We assume that the component is used in
a stateless decision graph (Section 4.5), meaning that the concerned score
instance must be specified using a key-property expression on the triggering
alarm event. The only function parameter expression is defined as a constant,
but could as well be used to calculate a value dynamically.

6.6.2 Business Entity Conditions

On the monitoring side of a business entity provider, event-pattern rules are
applied for the real-time detection of noteworthy entity states. From practical
use cases, two access modes have been identified for rule-based entity moni-
toring:

172 6 Entity-Based State Management

OR Precondition Port

Server: AlarmEvent.Server

Alarms per Server (Score)

Key Properties

Business Entity Provider and
Business Entity Type

Key Property Expressions

Increment Score

Title

Parameters

Value: 1

IncrementUpdate Function

Function Parameter
Expressions Evaluated

f

Figure 6.14. Business Entity Action Component

• On demand access: In on-demand access mode, the state of an entity
shall be checked at a certain point in time – e.g., on the occurrence of
an event – while subsequent developments of that entity are not taken
into account. As an example, consider a use case where an action shall
be triggered whenever an alarm occurs on an overloaded server: Here, one
would monitor an event stream for alarm events and query a respective
score whenever such an alarm is detected.

• Continuous access: In continuous access mode, the state of an entity
shall be checked continuously, enabling rules to react on noteworthy states
independent from the exact point in time in which they occur. As an ex-
ample, consider a use case where an action shall be triggered whenever an
overload situation occurs on a server: Here, one would continuously monitor
respective scores and fire whenever a threshold is exceeded.

As a second extension to the base rule-component library, business entity con-
ditions allow monitoring business entities according to these access modes,
based on a user-defined, Boolean condition expression on one or more business
entities. As with business-entity actions, the targeted set of business entities
may be derived dynamically from the active correlation session and can fur-
ther be restricted based on key-property values. During pattern detection, the
chosen expression is then evaluated separately for each element of the target
set. Depending on the results of these evaluations and a user-defined binary
connective (indicating whether all, at least one, or exactly one business entity
must fulfill the condition), an output port for “true” or “false” is activated.
If a condition is evaluated on exactly one business entity, so-called variable
expressions allow retrieving the actual values of a business entity and making
them accessible to downstream rule logic through decision-graph variables.

In the proposed application architecture, business entity conditions are typi-
cally used in pattern definitions for the monitoring of application-wide business
entities. In selected scenarios, business entity conditions may also find a use in
infrastructural rules, where higher-granular business entities may be updated
based on lower-granular business entities; for example, scores of a type “Alarms
per Day and Server” could be aggregated to scores of a type “Alarms per Week

6.6 Decision Graph Model Extensions 173

and Server”, etc. In either case, business entity conditions may be used for the
monitoring of internal business entities as discussed in Section 6.6.3.

Meta Model

Figure 6.15 shows the meta model for business-entity conditions. A business-
entity condition c = (p, T,XK , xb, c,m) is defined by a business entity provider
p, a business entity type T = (K, . . .) for p, an optional collection of key-
property expressions XK , a Boolean condition expression xb, a binary con-
nective c ∈ {AND, OR, XOR}, an execution mode m ∈ {on demand, continuous},
and an optional collection of variable expressions V . A single activator port
and output ports for “true” and “false” are provided for the component’s in-
tegration with the other elements of a decision graph.

Business Entity TypeBusiness Entity Condition

- Key Property Expressions
- Condition Expression
- Binary Connective
- Variable Expressions

*

Output Port

Input Port

*

2

1

1

1

1

1..*

1

1

Key Property

Query Property

Figure 6.15. Business-Entity Condition Meta-Model

Provider, type, and key-property expressions. As with business en-
tity actions, the target set of a business entity condition is defined through
a business-entity provider p, a business-entity type T = (K, . . .) for p, and
an optional collection of key-property expressions XK . At run time, a query
is evaluated on all business entities that are correlated to the active correla-
tion session7 and conform to the calculated key-property values, if such are
available.

Condition expression and binary connective. The actual query logic of
a business entity condition is specified as a type-safe condition expression xb
on the underlying event situation and all query properties for T on p. During
pattern detection, this condition expression is evaluated independently for each
element of the target set. The business entity condition’s binary connective c
specifies whether all (AND), at least one (OR), or exactly one (XOR) element
must conform to xb in order for the component’s “true” port to be activated.

7 As before, a query is aimed at all entities of the chosen business entity type T if
no correlation session is available or no correlation is specified for T .

174 6 Entity-Based State Management

Execution mode. The execution mode m ∈ {on demand, continuous} spec-
ifies under which conditions the above-described condition expression is eval-
uated and the respective output port is activated. In case of on demand exe-
cution, the evaluation process is executed on activate, i.e., each time the pre-
conditions of the condition are fulfilled. In case of continuous execution, the
evaluation process is triggered whenever a targeted, T -typed business entity
is updated at the business entity provider. As a consequence, the component
allows reacting to state changes actively and fully decoupled from low-level
updating logic.

Variable expressions. Conditional logic based on Boolean condition expres-
sions showed to be an appropriate and intuitive means for modeling noteworthy
entity states. Still, situations may arise where the actual values of a monitored
business entity are required: Consider an example from IT service management
(ITSM), where notifications shall be sent whenever the number of alarms of a
server exceeds a certain threshold; here, a system administrator might want to
retrieve the exact number of alarms (rather than the threshold that has been
exceeded) as part of a notification.

In the proposed meta model, access to the actual values of a business
entity is provided through a collection of so-called variable expressions. A
variable expression v = (i, t, x) ∈ V is defined by a variable identifier i, a
data type t, and an expression x on the query properties for T returning a
value of type t. During run time, variable expressions are evaluated together
with the component’s condition expression according to the chosen execution
mode. The results of these evaluations are then assigned to respectively-named
decision-graph variables, from which they can be retrieved in other rule compo-
nents. To ensure a 1-to-1 relationship between retrieved values and monitored
business-entity instances, variable expressions can currently be defined only
if the condition is guaranteed to be evaluated on exactly one business entity.
This is the case if all key properties of T are either used in the underlying
correlation set or specified through key-property expressions.

Example

Figure 6.16 shows an exemplary business entity condition on base entities of
type “Customer”.

6.6.3 Handling Internal Business Entities

In the proposed framework, business entities are managed as application-wide
data structures regardless of how they are eventually used in the given SARI
application. In order to prevent parallel, mutually-interfering updates between
different uses of internal business entities, it must therefore be ensured by

6.7 Implementation 175

OR Precondition Port

Alarms per Server (Score)

Key Properties

Business Entity Provider and
Business Entity Type

Key Property Expressions

Check Score

Title

Condition (continuous, any):

Condition, Execution Mode,
Binary Connective

Ouput Ports

Value > 100

True False

Figure 6.16. Business Entity Condition Component

the application developer that each use operates on an independent subset
of business-entity instances. Most naturally, such an association can be es-
tablished by expanding the address space of the concerned business entity by
an additional key property. For each use of the given business-entity type, a
distinct scope identifier must then be assigned to this key property.

As a third and final extension to the base decision-graph model, we therefore
introduce a special decision-graph variable

$RuleIdentifier

It provides access to the unique, string-typed identifier of the current decision-
graph instance. If internal business entities are required, this value must be
provided as a key-property expression for the respective key property. The
rule identifier is implicitly available with all decision graphs and cannot be
modified, e.g., as part of a variable expression.

6.7 Implementation

In the course of our research, the presented approach to state management has
been implemented as an experimental extension to the basic SARI architecture
as discussed in Section 3.6 and Section 5.7 of this thesis. Figure 6.17 shows the
extended SARI architecture from a high-level perspective. Unless otherwise
stated, all elements, mechanisms, and communication channels of the original
architecture are preserved. In the following, we discuss the different layers
of the extended architecture in Section 6.7.1 to Section 6.7.3 and illustrate
the management of business entities at run time in Section 6.7.4. Reference
provider-implementations for scores, base entities, and sets are discussed in
Section 6.7.5.

176 6 Entity-Based State Management

Administration
Database

D
at

a
La

ye
r

B
ac

k-
En

d
Fr

o
n

t-
En

d

.NET Remoting Database Access

a

Application Management
Application Execution

and Monitoring

Admin

DatabaseAdmin

DatabaseApplication
Database

Worker NodeWorker Node

Modelling
Studio

Worker Node

Event Analyzer

File Access

Application
Descriptions

+ Business Entity
Types

h

k

refer

Provider
Implementations

Provider Manager Service

Business Entity ProviderBusiness Entity ProviderWorker Instance

Update Query

Admin

DatabaseAdmin

DatabaseBusiness Entity
Databases

Provider
Configuration

b

cd

g

Administration
Node

Administration Instancee

f

Figure 6.17. Implementation Architecture

6.7.1 Data Layer

The data layer of the extended SARI architecture contains all elements of the
original architecture, including the central administration database and a col-
lection of application databases for all SARI applications of the given system.
On the application-management side of the architecture, extended applica-
tion descriptions (Figure 6.17a.) are used to persist the novel business entity
model of a SARI application in an XML-based syntax. During the creation,
editing, and deployment of a SARI application, business-entity-related data
are retrieved from, and delivered to, the particular business-entity provider
implementations to which they belong. On the application-execution side of
the architecture, an optional set of business entity databases (b.) may be used
by the different business-entity providers for persistent data management.8

8 For the sake of consistency with the overall SARI architecture and to minimize
the infrastructural requirements of a business-entity provider, the proposed archi-
tecture provides provider implementations with access to the application database

6.7 Implementation 177

Again, the exact structure of these data sources is provider-specific, and no
restrictions are imposed by SARI. The used business-entity databases will typ-
ically be referenced in the application-specific configurations of the plugged-in
business-entity providers, i.e., in the extended application description.

6.7.2 Back-End Layer

On the back-end layer of the extended architecture, the actual business-entity
provider implementations are provided as .NET assemblies (c.) and referenced
in an XML-based configuration file (d.).

On the administration-management side, the administration node parses the
configuration file on start up and instantiates the so-called administration in-
stances (e.) of all plugged-in business-entity providers.9 The administration
instance of a business-entity provider delivers all functionality that is required
during the design time of a SARI application: Wizard-based configuration and
type-creation dialogs are provided for the definition of a SARI application’s
business entity model using the Modeling Studio. Given the resulting business-
entity types, description objects for the different update and query interfaces
are exposed. The administration instance eventually provides facilities for the
XML-based serialization of business-entity types in order to be persisted as
part of an extended application description.

On the application-execution side, worker nodes are provided the list of
business-entity provider assemblies when first registering at the administration
node. Each worker node then instantiates a so-called worker instance (f.) per
business-entity provider and SARI application in which it is used. Worker in-
stances provide all functionality that is required during the run time of a SARI
application: Most basically, this includes updating business entities based on
update functions as well as the evaluation of queries on the list of query prop-
erties. In both cases, worker instances expect updates and queries to be passed
together with a set of key-property values. The update or query is then evalu-
ated on all business-entity instances that conform to the passed key-property
values. Within a worker node, the list of worker instances is eventually passed
to a central provider management service (g.). The provider-management ser-
vice is accessible from all event services of an application and performs common
tasks such as inter-service and inter-worker communication, the interpretation
of correlation sets (see Section 6.7.4 for further details), as well as high-level
exception handling.

of a SARI application. In order to use the application database, an entity provider
must support all DBMSs that are supported by the SARI version at hand.

9 Within the assembly, the different logical parts of a business-entity provider are
identified based on predefined interfaces that must be implemented.

178 6 Entity-Based State Management

6.7.3 Front-End Layer

On the application-management side of the extended architecture, the well-
known Modeling Studio (h.) is used by system operators, solution designers,
as well as rule managers for the development and deployment of entity-driven
SARI applications. From the underlying administration node, the Modeling
Studio retrieves all entity-related data that are required during the design time
of a SARI application: For the definition of a SARI application’s business entity
model, the Modeling Studio retrieves provider-specific configuration and type-
definition wizards to be dynamically plugged into the basic user interface. For
the integration of business entities with the other parts of a SARI application,
the Modeling Studio retrieves update and query-interface descriptions for all
business-entity types of the business entity model. These descriptions are then
used in the respective editors for the type-safe definition of correlation sets
and decision graphs. For example, in SARI’s graphical decision-graph editor as
sketched in Section 5.8, the creation of business-entity actions and conditions
is supported by a step-by-step workflow where users successively chose the
concerned business entity provider, business entity type, and eventually specify
an update operation or condition expression.

On the application-analysis side, the Event Analyzer (i.) facilitates the ex-
post analysis of a SARI application through a collection of visualization and
data mining tools for historic event data. Similar to their integration with the
Modeling Studio, future provider implementations could easily deliver tailored
visualization tools for persistent entity data to be dynamically plugged into
the base Event Analyzer interface. From the extended application description,
the Event Analyzer could retrieve the business entity model of an investigated
SARI application, e.g., to establish connections to the used business-entity
databases with no further configuration steps required. While visualization
methods for scores have been implemented as a permanent extension to the
Event Analyzer, plug-in-based integration mechanisms are subject to future
work.

6.7.4 Business-Entity Management at Run Time

Within the different worker nodes of a SARI installation, worker instances of
all plugged-in business entity providers are managed in a central provider man-
agement service. Whenever a business entity action or an on-demand business
entity condition is activated in a decision graph, the executing rule service syn-
chronously calls the provider-management service and passes all data necessary
for performing the update or query. In any case, these data include the active
correlation session, if such is available: Based on the correlation session and the
concerned business entity type, the provider-management service derives a set
of key-property values describing the concerned set of business entities. These

6.7 Implementation 179

key-property values are then passed to the actual business entity provider for
performing the update or query.10

Figure 6.18 sketches the approach to continuous entity monitoring. On start
up, all rules containing a continuous business-entity condition are registered
as listeners at the provider-management service (Figure 6.18a.). At run time,
whenever an update to a business entity e : T is performed at a business en-
tity provider (b.), a special notification event is published across all worker
instances of that business-entity provider to all registered rule services that
are concerned with the affected business-entity type T (c.). Such a notifi-
cation event contains the unique identifiers of the concerned business-entity
provider and business-entity type as well as all key properties of the concerned
business-entity instance. Based on these data, notified rule services then use
SARI’s basic correlation mechanism to retrieve the decision-graph states for
all related correlation sessions (d.). For each activated session, the incoming
notification event is tested against the condition’s key-property expressions. If
the condition is concerned with the update, the provider management is called
as with on-demand evaluations (e.).

Note that notification events – just like any “common” event – are processed
asynchronously by default; thus, a (potentially noteworthy) state at time
stamp t1 may be re-set before the actual evaluation is triggered at time stamp
t2. While such issues showed to be of little relevance in many practical use
cases, we implemented an alternative, synchronous execution mode for single-
worker environments to the expense of overall event-processing performance.
Further improvements to this mode, as well as its adaptation for multi-worker
environments, are subject to future work.

6.7.5 Reference Business-Entity Providers

The proposed framework is designed as a generic state-management layer that
can be equipped with arbitrary business-entity provider implementations de-
pending on the particular problems that need to be solved. Apart from the
basic structure prescribed by the framework and the presented SARI architec-
ture, these implementations may adhere to any programming paradigm and
data-management strategy that is suitable for the particular kind of data.

In the course of our research, reference provider-implementations have been
developed for scores, base entities, and sets as discussed in Section 6.4. Via
their entity-type model, these implementations can be configured to (i) use an
in-memory database, or (ii) use the application database for managing entity

10 On the update interface of a business entity provider, function calls are received
generally independent from triggering events and their exact time of creation.
Thus, if a strict ordering of events is required, this must be ensured explicitly
through a preceding resequencer [55] service.

180 6 Entity-Based State Management

Business Entity ProviderRule Service

...

Subscription r1

...

r1

A 67

A 100

B 107

A

B

C

value > 100

Evaluate query

...

Subscription r1

...

r1

A 67

A 100

B 107

A

B

C

value > 100

N [Notification: T]

Key Property 1:
Key Property 2:

A
B

Activate
correlation sessions

...

Subscription r1

...

value > 100

r1

A 67

A 100

B 107

A

B

C

Notify update:

N [Notification: T]

Key Property 1:
Key Property 2:

A
B

...

Subscription r1
...

value > 100

r1

A 67

A 100 +1

B 107

A

B

C

Update:

A B +1

A 67

A 100

B 107
...

Subscription r1

...

value > 100

r1

A

B

C

Register

(a)

(b)

(c)

(d)

(e)

Figure 6.18. Continuous Entity Monitoring

6.8 Example 181

states. In either case, all update-function calls and queries are translated into
SQL statement, and, wherever possible, directly forwarded to the underlying
DBMS. The used schemata provide for each business entity type one or more
value tables containing the current state of a business entity. For respectively-
configured entity types, one or more history tables contain the history of an
entity over time. The described separation allows keeping value tables rela-
tively small: As the majority of queries concern the most recent value of a
business entity, this leads to better overall querying performance in many use
cases.

For a detailed discussion on the employed data-management strategies for
scores, the interested reader may refer to Roth et al. [104].

6.8 Example

In the course of this section, the presented approach to entity-based state
management is demonstrated in a real-world example from the IT process au-
tomation domain. In the presented scenario, SARI is applied on top of the UC4
Automation Platform [130] to dynamically balance task-execution workloads
on the basis of regular performance snapshots, task execution events, and the
current state of the platform’s task queues.

Figure 6.19 sketches the scenario from a high-level perspective.

SARI Application

Automation
Engine

Task Queues

Task
Execution
Agents SMTP

ServerSo
u

rc
e

 S
ys

te
m

if AverageSojournTime > 5m then …
if Count(Elements) < 20 then ...

Queue Configuration
Changed

Task Enqueued

Task Finished

Performance Snapshot

Log File Entry

1

2
3

4
5

Events:

1

2

3

4

5

Actions:

Automation Engine Action

Email

a

b

a b

...

Figure 6.19. Example Overview

In the source system, the automation platform distributes tasks on a network
of (virtual or physical) task execution agents. To control the load on such
agents, the platform uses extended task queues as an intermediate layer be-
tween its engine and the executing agents: Besides providing priority-aware
queuing functionality, such a queue allows configuring a certain number of ex-
ecution slots. All tasks that lie within these slots are then executed in parallel
on the associated agent. During run time, the number of slots can be adapted

182 6 Entity-Based State Management

dynamically, e.g., based on a schedule or on demand by a user. SARI contin-
uously senses the given IT landscape at several integration points: Events of
type “Task enqueued”, “Task finished” and “Queue configuration changed”
are retrieved directly from the platform. “Performance snapshot” events are
published at regular intervals on all agent hosts. “Log file” events are gener-
ated whenever message are written to the log. Conversely, SARI may trigger
actions directly on the platform and send email notifications.

The described scenario illustrates many of the challenges rule-based CEP is
faced with in entity-centric environments: Serving as a key indicator to the
health of a system, the overall state of task queues needs to be calculated
from incremental, low-level updates and made accessible to rule-based deci-
sion making. Counteractions will typically be required whenever a task queue
reaches an exceptional state, e.g., whenever its load exceeds a certain thresh-
old. To support this behavior decoupled from low-level updating logic, means
for active entity monitoring must be provided. Eventually, the application’s
business logic is likely to change over time and should be understandable and
editable to users with limited technical skills.

In the example SARI application, a set type “Task Queue” is used to track the
overall state of underlying, real-world task queues and make it accessible to
rule-based monitoring logic. It is defined by a single key property “Host ID”
(identifying a queue by the host to which it belongs), a set of entity properties
including an integer-typed property “Execution Slots”, as well as a collection
of set-element properties including a task’s ID, type, and priority.

Figure 6.20 shows an exemplary infrastructural rule for updating the resulting
business entities: In response to incoming “Task enqueued” events, the “insert”
operation is called for the correlated task queue. Further updating rules are
applied to remove tasks and to update the number of slots.

Task Queue (Set)

Insert into queue

Parameters

ID: TaskStarted.TaskID

Insert

Type: TaskStarted.TaskType

Priority: TaskStarted.Priority

True

Task enqueued

Task Event

No conditions defined

Conditions

False

f

Figure 6.20. Exemplary Updating Rule

6.9 Summary 183

Figure 6.21 shows a simple pattern definition for detecting overload situa-
tions: Executed in continuous access mode, a condition triggers the pattern’s
signal whenever a queue’s load exceeds the number of execution slots by a
user-defined factor. The concerned queue’s identifier is published as an output
parameter. Within the pattern definition, this identifier is retrieved from the
incoming signal (TaskQueue.Identifier), which is accessible throughout the
processing steps that follow from its occurrence.

Task Queue (Set)

Condition (continuous, any):

Count(Elements) > $Factor * NumberOfSlots

Check for overload

Overload detected

Signal

Queue: TaskQueue.Identifier

Output Parameters

True False

Figure 6.21. Exemplary Pattern Definition for Continuous Entity Monitoring

Figure 6.22 demonstrates on-demand access to task queues: Here, the number
of high-priority file transfers is retrieved and tested against a user-defined
threshold whenever an event of type “Recurring file-write error” occurs. In
response, the automation engine could be instructed to throttle the number
of file transfers or to provision an additional agent. Recurring file-write errors
are detected through a preceding infrastructural rule from accumulations of
“Log file” events.

6.9 Summary

In this chapter, we presented a novel approach to state management for Com-
plex Event Processing. It is based on the idea of business entities, which we
understand as identifiable, typed data structures that are accessible across
an application. The proposed framework allows integrating arbitrary business
entity providers as plug-in-like components depending on the specific require-
ments of a business scenario. The model is fully integrated with SARI’s ECA-
based rule model, which enables users to define event patterns fully integrated
with updating and monitoring business entities.

Existing challenges in state-of-the-art, event-pattern-rule-based CEP as dis-
cussed in Section 6.1 are addressed as follows:

184 6 Entity-Based State Management

Task Queue (Set)

Condition (on demand, any):

Count(Elements <Priority = 1 AND

 Type = „FileTransfer“>) > $MaxTasks

of high-priority file transfers

Recurring file-write errors

Recurring File-Write Error

Conditions

True False

Notify situation

Automation Platform Action

Output Parameters

True False

Figure 6.22. Exemplary Pattern Definition for On-Demand Entity Monitoring

• Durable entity state, complex state-calculation. Within SARI ap-
plications, business entity providers fully encapsulate the calculation of
complex entity states from low-level updates, as well as the management
of resulting data over time. Access to business entities is provided through
easy-to-use update and query interfaces.

• Active entity monitoring. In the proposed framework, business entities
can be monitored based on two access modes – on-demand vs. continuous
access. In the latter case, a rule evaluates its conditions whenever an update
to a business entity is signified, independent from the events that originally
caused that update.

• Context-aware data access. The concept of business entities is fully
integrated with SARI’s correlation model, which enables users to define
semantic relationships between events and the business entities to which
they belong. In an event-pattern rule, updates and queries are implicitly
directed towards those business entities of a user-defined type that are
associated with the triggering event or business entity.

• Ease of use. The presented approach explicitly focuses on usability from
a business-user perspective. For the simple definition of state-management
logic, a type model for business entities is presented that enables end users
to configure prepared state-management logic according to the specific re-
quirements of their application. Access to so-defined business entities is
well integrated with SARI’s decision-graph model and can be defined us-
ing predefined, easy-to-use rule components.

7

Hierarchical Pattern Modeling

Abstract The novel rule-management framework of Sense-and-Respond Infrastruc-
ture (SARI) inherently builds upon the reuse of pattern-detection logic on the level
of sense-and-respond rules. By contrast, SARI’s original event-processing facilities
do not support the reuse of pattern-detection logic on the level of event patterns:
Each decision graph must instead be defined individually and from scratch, even
though considerable commonalities may exist between event patterns. This chapter
presents an approach to hierarchical pattern modeling for SARI. It allows integrating
sub-level pattern-detection logic into super-level decision graphs through novel rule
components – so-called sub-pattern components – which serve as a reference to pattern
definitions and can be integrated with the other elements of SARI’s rule-component
library. We present tailored evaluation strategies that enable high-performance event
processing as well as arbitrary nestings of pattern definitions and demonstrate our
approach in an example from the fraud-detection domain.1

7.1 Introduction

The presented approach to user-oriented rule management inherently builds
upon reuse of pattern-detection logic on the level of sense-and-respond rules,
which are assembled from prepared, configurable “building blocks”. For exam-
ple, given a pattern definition “Putter-on fraud”2 with a string-typed input
parameter “League”, business users could use this pattern in a variety of con-
crete event-pattern rules such as “If putter-on fraud in ‘Premier League’, then
block user account”, “If putter-on fraud in ‘Primera Division’, then notify fraud
department”, etc.

1 This chapter is based on the work of Obweger et al. [87].
2 In sports betting, the term “putter-on” refers to a person that places bets as a

strawperson, on behalf of an official or sportsman that is directly involved in the
concerned game.

186 7 Hierarchical Pattern Modeling

Reuse is, by contrast, not supported on the level of individual event patterns:
In the proposed rule-management framework, each decision graph (i.e., each
pattern definition, see Section 5.5.3, or rule definition, see Section 5.4.3) must
instead be designed individually and from scratch, even if some of the de-
scribed event patterns may have larger parts in common.3 In practical use
cases, commonalities between event patterns showed to be the rule rather
than the exception, though: Consider a (sub-) event pattern “Short-term bet-
ting transaction” as discussed in Section 5.4.3, where a user pays into a (near-)
empty account, places and wins a single high-risk bet, and immediately pays
off in full. While not automatically indicating fraud on its own, this pattern
may contribute to a whole range of fraud strategies depending on its specific
shape (e.g., the specific amount of money involved) and the context in which
it occurs.

In the course of our research, we identified the following weaknesses as directly
or indirectly attributable to missing reusability on the level of decision graphs:

• High-complex event-processing logic: Forcing application developers
to define complex event situations “from scratch” and in a single, com-
prehensive model, the existing approach quickly results in event-processing
logic of high complexity, incorporating dozens of events and relationships
between them. Such event patterns not only place high demands on appli-
cation developers, but also make an application difficult to read and prone
to errors of semantic as well as syntactic nature. The restricted usability
of event patterns eventually complicates the setup and maintenance of an
application and leads to higher costs for adopters of an event-processing
framework.

• Redundancy: Commonalities between two or more event patterns in-
evitably lead to redundancies within an application’s event processing logic.
Such redundancies may in turn lead to inconsistencies between event pat-
terns, increased administration efforts, and reduced maintainability.

• Limited expressiveness: In many cases – although, not necessarily – cer-
tain parts of a complex event pattern may be considered as self-contained
procedures and processes that occur as part of a superordinate, more com-
plex parent process. Depending on the chosen event-processing language,
defining such child processes within a single, comprehensive event pattern
may impede modeling aspects that are restricted to certain sub-processes
only. For instance, in SARI’s decision graph model, the “reset evaluation
state” option as is available with all action components can only be applied
to a complete decision graph rather than certain parts of it.

From the above weaknesses, we derived the following requirements towards
reusability on the level of event patterns:

3 In the following, when speaking of reusability, we refer to reusability on the level
of event patterns and decision graphs.

7.1 Introduction 187

• Reuse by reference: To avoid redundancies, an approach to reuse of
pattern-detection logic must realize reuse by reference as, for instance,
known from object-oriented programming. A superordinate event pattern
thereby contains pointers to one or more sub-level event patterns rather
than the actual pattern-detection logic by itself. Referred event patterns
remain as self-contained entities and may be used in an arbitrary number
of super-level event patterns. Alternative approaches to reuse are discussed
as part of related work in Section 7.2.

• Expressiveness: An approach to reuse shall enable users to combine sub-
ordinate event patterns in an arbitrary manner and associate these event
patterns with arbitrary pre- and postconditions. Generally speaking, given
a collection of event patterns, the approach shall enable users to express the
largest-possible number of superordinate event patterns from combinations
of these patterns.

• Configurability: Maximum reusability can be obtained only if pattern-
detection logic can be defined in a form that is inherently generic and
can be adapted with respect to the different contexts in which it is to be
used. Pattern-detection logic must therefore be decoupled from any kind
of (purpose-specific) reaction logic and furthermore be configurable.

• Ease of use: An approach to reuse shall be well-integrated with the exist-
ing pattern-modeling facilities of an event-processing framework and sup-
port a continuous flow of work across both the creation of new event pat-
terns and the integration of existing event patterns. To ease the coopera-
tion between multiple application developers and facilitate the definition
of event-pattern libraries, the approach shall furthermore provide a con-
cept of information hiding for event patterns. In particular, the approach
shall enable users to incorporate event patterns without having to know
and understand their exact structure, based on documented interfaces and
high-level descriptions of their semantics.

• Performance: The approach shall deliver a good overall event-processing
performance. In particular, incorporating an event pattern as part of an-
other event pattern shall not have any significant impact on a frame-
work’s event-processing performance in comparison to a possible stand-
alone, single-model equivalent.

In this chapter, we present a novel approach to hierarchical pattern mod-
eling for Sense-and-Respond Infrastructure. Together with the proposed rule-
management framework, it enables reuse of pattern-detection event-processing
logic not only on the level of sense-and-respond rules, but also on the level of
event patterns, which may now be composed from collections of sub-level event
patterns in a hierarchical decision graph.

188 7 Hierarchical Pattern Modeling

The main idea of our approach is that of letting users refer and incorporate
encapsulated pattern-detection logic into a higher-level decision graph in the
form of configurable, easy-to-use rule components, so-called sub-pattern com-
ponents. These rule components can be integrated into a decision graph just
like any other rule component in non-hierarchical decision graphs: Via its input
port, a sub-pattern component can be equipped with arbitrary preconditions
in full accordance with the modeling workflow for non-hierarchical decision
graphs. Via its output ports, the represented pattern-detection logic can by
itself be used as a precondition for downstream rule components. In the pro-
posed model, output ports allow separating different manifestations of a de-
tected event situation; for instance, one could distinguish between “normal”,
“serious” and “extreme” manifestations of an alert and activate downstream
parts of a decision graph accordingly. Input parameters allow configuring sub-
level decision graphs depending on the specific contexts in which they are used.
Input-parameter values are specified at the referring rule component and can
be calculated dynamically from preceding events where necessary. Output pa-
rameters provide insights to selected characteristics of matched sub-level event
situations in a controlled and abstracted manner and can be mapped to “local”
variables in the super-level decision graph. The proposed evaluation strategies
are tailored to the characteristics of hierarchical pattern definitions and facil-
itate arbitrary nestings of patter-detection logic.

Taken together, the proposed approach fulfills the above key requirements as
follows: Reuse by reference is achieved through the idea of sub-pattern compo-
nents, which serve as pointers to sub-level pattern-detection logic. Expressive-
ness is achieved through the arbitrary integration of sub-pattern components
into super-level decision graphs. Configurability is achieved through the use
of input parameters. Ease of use and information hiding is achieved through
input parameters and output parameters. High event-processing performance
is achieved through tailored, integrated evaluation strategies.

Figure 7.1 illustrates the detection of hierarchical event patterns in a simple
example. Consider a rule from the fraud-detection domain, where a notification
shall be triggered if

(i) a user repeatedly carries out high-stake short-term transactions, i.e., if
the user pays into his account, places a single high-risk bet, and imme-
diately pays off in full, and

(ii) the user’s total balance is above a certain threshold.

In the underlying decision graph, this event situation could be assembled as
a combination of respectively-configured sub-patterns. If these individual pat-
terns are detected under the specified temporal and/or contextual constraints
in the incoming event stream, the overall event pattern is matched and the
associated action is executed.4

4 A more detailed discussion of the given example is presented in Section 7.5.

7.1 Introduction 189

Source System

Event-Based
Application

Event Stream

Sub-pattern a

Sub-pattern b

Figure 7.1. Hierarchical Event-Pattern Detection

SARI Application Model – Revisited

Figure 7.2 sketches the model-driven view on SARI applications, extended by
hierarchical decision graphs. In contrast to the original model, decision graphs
may now refer to other decision graphs for their integration as part of higher-
level, hierarchical event-processing logic.

Decision Graph Model

Event Model

define relations

define noteworthy
business situations

Ev
e

n
t

P
ro

ce
ss

in
g

M
o

d
e

l

define response-
event actions

co
n

fi
g

u
re

 r
u

le
 s

er
vi

ce
s

Correlation Model

Ev
en

t
D

at
a

M
o

d
el

Business Entity Model

define noteworthy
business situations

define update actions

use as sub-level
pattern-detection logic

Figure 7.2. SARI Application Model with Sub-Pattern Relationships

190 7 Hierarchical Pattern Modeling

Outlook

The remainder of this chapter is structured as follows: In Section 7.2, we discuss
related work. In Section 7.3, extensions to the base decision-graph model are
presented. Section 7.4 discusses the evaluation of hierarchical decision graphs
during the execution of an event-processing application. A concrete example,
illustrating the use of hierarchical pattern-detection logic in the context of
online gambling and fraud detection is presented in Section 7.5.

7.2 Related Work

Hierarchical structures have always played a crucial role for describing complex
situations and procedures. Allen’s interval-based temporal logic [6] laid the for-
mal foundations for hierarchical representations. It specifies thirteen possible
relationships between two intervals: before, equal, meets (where an interval
t1, t2 directly follows an interval t3, t4, t2 = t3), overlaps, during, starts (where
two intervals have the same start time) and its counterpart finished.5 The pro-
posed approach to hierarchical pattern modeling allows assembling sub-level
pattern definitions in a decision graph, where temporal relations between the
represented intervals can be specified as series and parallel combinations of
two or more sub-pattern components. With respect to Allen’s temporal logic,
these combinations allow distinguishing between serial relationships (i.e., be-
fore and meets) and parallel relationships. Further distinctions are not per se
expressible. If such are required, these must be explicitly ensured in a (post-)
condition component based on output parameter values.

Event-abstraction hierarchies as originally discussed by Luckham [71] describe
a step-by-step aggregation of events from low-level core events to high-level
business situations, where events of the first layer contribute to event pattern-
s/complex events on the second layer, and so forth. Event-abstraction hierar-
chies thereby establish different views to a system, which may be optimized
towards the demands of different groups of stakeholders. Event-abstraction
hierarchies are – more or less explicitly – supported by any modern event-
processing framework, including SARI. Here, the separation between infras-
tructural and sense-and-respond rules may, in fact, be considered a further
extension of event-abstraction hierarchies, where the top-most layer is con-
ceptually separated from lower ones and made accessible to business users.
Hierarchical pattern modeling as proposed in this chapter shall therefore serve
as a complement rather than a replacement for event-abstraction hierarchies:
While event-abstraction hierarchies follow an indirect approach to reuse based

5 A framework for mining meets, overlaps and during relationships between recur-
ring patterns in long strings of tokens has been proposed by Mooney and Rod-
dick [80].

7.2 Related Work 191

on detected events (and therefore reduce overall pattern-detection efforts),
hierarchical event patterns directly incorporate the actual pattern-detection
logic (and therefore reduce the overall number of event instantiations). On a
more technical level, direct reuse provides greater control over sub-level event
patterns.

In Rapide [71], direct reuse of pattern-detection logic is enabled through the
concept of pattern macros. A pattern macro associates an event pattern with
an easy-to-understand macro name and a list of pattern parameters. At run
time, the macro call is replaced by the represented event pattern in a so-called
expansion process. Being performed on demand – i.e., only if the represented
event pattern is actually required in the pattern-detection process – pattern-
macro expansion facilitates recursive nestings of event patterns. Hierarchical
pattern modeling adopts from pattern macros the lazy expansion strategy and
its support for recursive pattern-detection logic. However, it follows a very dif-
ferent approach in the handling of input and output parameters. ruleCore and
its ruleCore markup language (rCML) [117] features the stepwise composition
of composite events from sets of basic events and/or other composite events
in an XML-based syntax, where they can be combined using operators such
as or, and, and sequence. At run time, complex patterns are evaluated in an
integrated, tree-based algorithm. In contrast to the proposed approach, event
patterns in ruleCore can not be adapted to different contexts (e.g., through
input parameters or similar concepts), which we believe is a key criterion for
end-user-oriented application development.

In Event Stream Processing (ESP), concepts such as sub-queries and joins pro-
vide the basic means for combining lower-level event patterns. Mangkorntong
and Rabhi [76] present an approach to event-pattern composition where event
patterns are described along with sets of typed event-pattern parameters in
a generic, system-independent model. Associated with such a model, vendor-
specific representations for different event-processing systems may exist. In
the proposed architecture, so-defined event patterns may then be combined to
higher-level event patterns by “binding” respective parameters; for instance,
the parameter “Output stream” of a first sub-pattern may be associated with
an input parameter “Input stream” of a second sub-pattern, etc. The authors’
work offers a sophisticated parameter model that allows modeling complex de-
pendencies between parameters (both on the level of input-parameter values
and on the level of input-parameter data types), which is not currently sup-
ported with hierarchical pattern modeling in SARI. Yet, to our best knowledge,
there is no consistent workflow across the definition of low-level, non-composite
patterns and the definition of hierarchical event patterns. Also, the composi-
tion of event patterns appears to be restricted to the various parameters of the
involved sub-patterns and does not allow incorporating any further pattern-
detection logic specific to the super-level pattern.

192 7 Hierarchical Pattern Modeling

Liu and Rundensteiner [70] and Liu et al. [68, 69] introduce the concept of
event-pattern hierarchies as directed, acyclic graphs of event-pattern queries
with edges representing sub-query relationships. In their work, a pattern query
is defined as a sequence of event types to be detected in the specified order in
an incoming stream of events. A so-defined pattern query q is in a sub-query
relationship to another query q′ if it (i) contains additional event types (pattern
hierarchy), or (ii) uses an event type T as a replacement for an event type T ′

so that T ′ :> T (concept hierarchy). Based on the resulting graph structure,
the authors propose a technology where interrelationships between queries are
exploited for optimized shared processing and maximum reuse of intermediate
results. While the authors’ approach aims to detect hierarchies “a posteriori”
(in queries that have originally been defined in an independent manner, by
different users of a system) with the goal of performance optimization, our
approach provides for hierarchies to be modeled explicitly with the goal of
reusability and ease of use. Performance optimizations based on hierarchical
structures are not currently addressed in the proposed solution. Still, further
improvements of the present evaluation strategies are subject to future work.

7.3 Decision Graph Model Extensions

In the course of this chapter, the concept of hierarchical pattern modeling has
been introduced as a novel approach to reuse on the level of event patterns and
low-level, infrastructural application development. In the following, we present
different extensions to SARI’s base decision-graph model, which are necessary
for modeling hierarchical pattern-detection logic in a way that is suitable for
the targeted user group. We give a short recapitulation of pattern definitions
as originally discussed in Chapter 5 of this thesis and extend SARI’s existing
rule-component library by novel sub-pattern components.

7.3.1 Pattern Definitions

Hierarchical pattern modeling builds upon on the basic idea of letting users as-
semble complex event patterns through special rule components, which serve as
pointers to the required, lower-level pattern-detection logic. To be (re-)usable
as part of hierarchical decision graphs, pattern-detection logic must thereby
be represented in a form that adheres to the following requirements:

• Reuse by reference: To be incorporated “by reference” into higher-level
event-processing logic, meaningful pieces of pattern-detection logic must
be uniquely addressable as part of an event-based application. This is the
case if pattern-detection logic is available in the form of identifiable, self-
contained artifacts.

7.3 Decision Graph Model Extensions 193

• Configurability: To obtain maximum reusability, pattern-detection logic
must be configurable and decoupled from any kind of (purpose-specific)
reaction logic.

• Ease of use: To ensure usability from an end user’s perspective and
facilitate cooperation between multiple application developers, pattern-
detection logic shall realize a form of information hiding, i.e., be usable
based on documented interfaces and high-level descriptions of the repre-
sented semantics.

Within SARI’s existing event-processing facilities, the described requirements
are effectively fulfilled through the concept of pattern definitions as presented
in Chapter 5 of this thesis. Figure 7.3 recapitulates the respective meta model.
A pattern definition p = (IN,OUT, d) is defined by a collection of input pa-
rameters IN, a collection of output parameters OUT, and a passive decision
graph d. A decision graph is said to be passive if it is composed from condition
components, time-based components, and signals only.

1

- Identifier
- Data Type
- Validator

*Pattern Definition Input Parameter

Decision Graph

Condition Components,
Time-Based Components,

Signals

1

Signal

Output Parameter

- Identifier
- Data Type

- Output Parameter Expressions

*

1

1 1..*

1

Figure 7.3. Pattern Definition Meta-Model

Input parameters. Input parameters allow configuring the represented
pattern-detection logic depending on the specific context in which it is used.
Within the pattern definition’s decision graph, input parameters can be used
as typed placeholders across all rule components.

Output parameters. In many cases, continuing processing steps demand
access to selected characteristics of a matching event situation, e.g., to dy-
namically adapt associated reaction logic in a sense-and-respond rule. Output
parameters enable designers of pattern definitions to specify such character-
istics in the form of typed, named, and documented data fields; the exact
calculation of the corresponding values is specified with the different signals of
the underlying decision graph and therefore encapsulated as part of a pattern
definition.

194 7 Hierarchical Pattern Modeling

Decision graph and signals. The actual pattern-detection logic of a pat-
tern definition is defined as a passive decision graph, which is assembled from
condition components, time-based components, as well as a non-empty collec-
tion of signals. Signals are special rule components that signify the detection
of a matching event situation to arbitrary signal listeners. Multiple signals al-
low distinguishing different manifestations of an event situation, e.g., between
“high”, “serious” and “extreme” overload situations.

For a detailed discussion on pattern definitions, the interested reader may refer
to Section 5.5.3.

7.3.2 Sub-Pattern Component

Pattern definitions provide effective means for describing pattern-detection
logic in a form that facilitates reuse and hides underlying complexity. To sup-
port the modeling of complex pattern-detection logic from combinations of so-
defined pattern definitions, we extend SARI’s existing rule-component library
as presented in Chapter 4 of this thesis by the novel sub-pattern component.
Within a decision graph d, a sub-pattern component subp ∈ d serves as a
reference to a sub-level pattern definition p and thereby establishes a hierar-

chical sub-pattern relationship, d
sub→ p. From an end user’s perspective, the

sub-pattern component then represents the referenced sub-level pattern defi-
nition p in the super-level decision graph, where each signal in p corresponds
to an output port of the sub-pattern component, and output parameters are
mapped to local decision-graph variables. In order to fulfill the component
and activate an output port outi (representing a signal signali ∈ p), an event
situation must comply to

(i) all preconditions of subp ∈ d in d, and

(ii) all preconditions of signali in p as configured based on user-defined input-
parameter values for subp.

Figure 7.4 illustrates the described semantics in a simple example. In the
shown decision graph, an incoming event e1 matches the initial event condition
c1.1 ∈ d and causes the sub-pattern component subp to be activated. In fur-
ther consequence, subp represents the pattern-detection logic of a respectively-
configured instance of p within d: The following events e2 and e3 together
match the resulting sub-level event pattern and cause the sub-pattern compo-
nent’s output port to activate. e4 ∈ d matches the final condition c1.2 ∈ d and
triggers a signal.

7.3 Decision Graph Model Extensions 195

Tim
e

e2

e1

e3

e4

5 match

2 activate, configure

4 activate

6 activate

S2.1

Event Stream
Super-Level

Decision Graph d
Sub-Level

Pattern Definition p

Signal s2.1

Condition c2.2

Condition c2.1
Condition c1.1

Sub-Pattern subp

Condition c1.2

Signal s1.2Signal s1.1

3 match

1 match

Figure 7.4. Pattern Detection with Sub-Pattern Components

Meta Model

Figure 7.5 shows the meta model for sub-pattern components. Let p =
(IN,OUT, d) be a pattern definition defined by a collection of input parame-
ters IN and a collection of output parameters OUT. A sub-pattern component
sub = (p,XIN ,MOUT) is then defined by a referred sub-level pattern definition
p, a collection of input-parameter expressions XIN for all input parameters in
p and a collection of output parameter mappings MOUT for all output param-
eters in p. A single activator port pin and a collection of output ports Pout are
provided for the component’s integration with the other elements of a decision
graph,

Pattern Definition

*

*

Signal

Sub Pattern Component

- Input Parameter Expressions
- Output Parameter Mappings

1..*
Output Port

Input Parameter

Output ParameterInput Port

*

1..*

1

1

1

1

1

11

Figure 7.5. Sub-Pattern Component Meta-Model

Sub-level pattern definition. The sub-level pattern definition represents the
actual pattern detection logic that is referred by and integrated into the super-
level decision graph g through sub. The proposed model allows integrating any
pattern definition that fulfills the following conditions:

196 7 Hierarchical Pattern Modeling

(i) Equal correlation sets: SARI’s approach to rule-based event processing
builds upon a separation between event correlation and pattern detection,
where decision graphs are evaluated independently for each correlation
session of the associated correlation set. To guarantee the evaluation
of sub-level components in accordance with the expected semantics, a
referred sub-level pattern definition must therefore be based on the same
correlation set as the super-level decision graph; i.e., given a sub-level
pattern definition with a decision graph gsub = (C,P, c,∆t) and a super-
level decision graph gsuper = (C ′, P ′, c′, ∆t′), c = c′ must hold.

(ii) Non-infinitive recursions: The proposed approach facilitates recursive
pattern definitions, both through direct and indirect recursions. To avoid
infinite recursions, a recursive pattern definition must specify an exit con-
dition that not again results in a recursion. Such an exit condition is given
only if preconditions are defined for a recursive sub-pattern component
at some level of the hierarchy.

Input parameter expressions. The concept of pattern definitions has been
designed with the focus on reusability across different application scenarios.
In the proposed architecture, the referenced sub-level pattern definition can
be configured according to the context in which it used through a collection
of input parameter expressions XIN for all input parameters in p. When the
sub-pattern component is activated as part of the super-level decision graph,
these expressions are evaluated and the resulting values are made available to
the referenced pattern-detection logic.

Output parameter mappings. In the proposed architecture, output pa-
rameters of a referred sub-level pattern definition are accessible to super-level
event-processing logic, both at design time and during run time. To resolve
possible naming conflicts between the inherent variables of a decision graph
(e.g., input parameter placeholders) and the output parameters of a sub-level
pattern definition, the sub-pattern model provides for the definition of so-called
output-parameter mappings for selected output parameters of p. An output-
parameter mapping m = (out, iD) ∈MOUT is defined by an output parameter
out = (i, t) and a variable identifier iP . In a decision graph d 3 sub, the output
parameter out is then accessible through a variable v = (iD, t). If no output
parameter mapping is defined for an output parameter, this output parameter
is not accessible in a super-level decision graph.6

Input and output ports. Just like any other rule component, sub-pattern
components are integrated with the other elements of a decision graph through
collections of input ports and output ports. On the input side, a single activator

6 Naming conflicts are not a major issue in real-world scenarios. In SARI’s rule and
event-pattern modeling facilities, default output-parameter mappings are therefore
created for all output parameters of a sub-level pattern definition such that ∀m ∈
MOUT : iout = iD. These mappings can then be changed by the user.

7.4 Evaluation 197

port pin allows defining preconditions for the referenced sub-level pattern-
detection logic. On the output side, output ports are available for all signals of
the referenced sub-level pattern definition. During run time, an output port is
then activated whenever the corresponding signal is activated in the sub-level
pattern definition.

Example

Figure 7.6 shows an exemplary sub-pattern component “High CPU utiliza-
tion”, referring to a pattern definition of the same name. Static input-
parameter expressions are defined for the sub-level pattern definition’s input
parameters. From the sub-level pattern definition’s output parameters, the
“Utilization” parameter is mapped to a local variable of the same name. Pos-
sible other output parameters are not mapped and, thus, are not accessible
in the super-level decision graph. The sub-level pattern definition’s signals –
“Extreme”, “Serious” and “High” – are accessible through output ports.

AND

High CPU utilization

Title Precondition Port

Input-Parameter
Expressions

Pattern Definition: High CPU utilization

Server: „R2D2"

Moving Average Window: 180 seconds

Sub-Level
Pattern Definition

Input Parameters

Utilization: $utilization

Output Parameters

Serious High

Output Ports

Extreme

Output-Parameter
Mappings

Figure 7.6. Sub-Pattern Component

7.4 Evaluation

While the presented approach to hierarchical pattern-modeling has been de-
signed with the goal to seamlessly integrate with the original rule model from
an end user’s perspective, it inevitably requires changes to the actual evalua-
tion of decision graphs in SARI’s back-end. In the course of our research, we
investigated two possible approaches to the evaluation of hierarchical decision
graphs: Evaluation by expansion builds upon a stepwise flattening of hierarchi-
cal structures so that the original evaluation strategy can be applied without
further adaptations. In the hierarchical evaluation approach, the various lay-
ers of hierarchical pattern-detection logic are treated as separate – though

198 7 Hierarchical Pattern Modeling

interconnected – decision graphs. In the following, we present the described
evaluation modes in greater detail, discuss possible “pros” and “cons” and
compare the approaches’ suitability for real-world applications of CEP.

7.4.1 Evaluation by Expansion

As a first evaluation strategy, evaluation by expansion has been designed with
the basic goal of minimizing changes to the original evaluation mechanism and
decision-graph state-management logic. The proposed approach builds upon
the idea of adequately replacing a sub-pattern component by the referenced
sub-level pattern-detection logic as soon as it is activated for one of the un-
derlying correlation sessions. We refer to such a replacement as expansion in
the remainder of this section. On the flattened decision graph, evaluation and
state management can be performed without further adaptations.7

Algorithm 7.1 outlines the Expand algorithm in pseudo code: Expand receives
a super-level decision graph d, a referred sub-level pattern-definition p as well
as a referring sub-level component sub; p.initials refers to all components in p
that do not have preconditions. Expand is called when the preconditions for
sub are fulfilled for the first time. Unless otherwise stated, all operations are
applied on d.

In lines 1 and 2, we replace sub by the referenced sub-level pattern-detection
logic p excluding all signals and ingoing connections thereof.

In lines 3 to 6, we establish dependencies between

• all predecessors of sub in d, and

• all initial components in p.

Furthermore, we set the precondition operators of all initial components in p
to the precondition operator as defined for sub.

In lines 7 to 12, the above step is repeated accordingly for signal compo-
nents/output ports: For each signal component signali ∈ p, we establish de-
pendencies between

• all predecessors of signali in p, and

• all successors of the corresponding port outi in d.

7 It is essential to note that the described approach does not manipulate the actual
decision graph as originally modeled by the user, but rather is applied within the
respective decision-graph evaluator. Decision-graph evaluators are created from
decision graphs at run time and perform the actual event processing based on
incoming events and associated decision-graph states (see Section 4.5 for further
details).

7.4 Evaluation 199

Algorithm 7.1 Expand(d, p, sub)

1: remove sub
2: add (p \ p.signals))

// reconnect “in”
3: connect sub.predecessors with p.initials
4: for all initial ∈ p.initials do
5: initial.operator ← sub.operator
6: end for

// reconnect “out”
7: for all signal ∈ p.signals do
8: connect signal.predecessors with sub.outport[signal].successors
9: for all successor ∈ sub.outport[signal].successors do

10: successor.operator ← signal.operator
11: end for
12: end for

// replace input and output parameters
13: replace p.inputParameters by sub.expressions
14: for all signal ∈ p.signals do
15: replace signal.outputParameters by signal.expressions
16: end for

We again adapt the precondition operators of all successors in d. (Note that if
a successor has further preconditions and the original operator differs from the
operator of signali, the newly-established dependencies must be grouped, e.g.,
via an intermediate rule component that evaluates to “true” by definition.)

In lines 13 and 16, we replace any occurrence of an input parameter ini in
p by the corresponding expression xini as defined in sub; this replacement
includes all occurrences in output-parameter expressions as defined in signal
components. Finally, we replace any occurrence of an output parameter outi
in d by its expression xouti .

Figure 7.7 and Figure 7.8 sketch the behavior of the Expand algorithm in a
simple example. Figure 7.7 shows the starting situation. Figure 7.8a. shows P
after replacing the sub-pattern component and reconnecting pre- and postcon-
ditions. Figure 7.8b. shows the final outcome of Expand, with resolved input-
(green) and output-parameters (red).

After finishing Expand, the basic evaluation for non-hierarchical pattern-
detection logic can be continued without restrictions.

200 7 Hierarchical Pattern Modeling

Sub-Pattern p1.1

Condition c1.1

in_thresh: x

Event Action e1.1

attr1: $out_diff

Condition c1.2

Event Action e1.2

attr1: $out_diff

Input Parameters:
in_thresh [Integer]

Output Parameters:
out_diff [Integer]

Condition c2.1

Condition c2.2

y > $in_thresh

Signal s2.1

Signal s2.2

out_diff:
 y – $in_thresh

out_diff:
 $in_thresh – y

Figure 7.7. Applying Expand to an Exemplary Decision Graph (1 of 2)

Condition c1.1

Condition c1.2

Condition c2.1

Condition c2.2

y > $in_thresh

Event Action e1.2

attr1: $out_diff

Event Action e1.1

attr1: $out_diff

Condition c1.1

Condition c1.2

Condition c2.1

Condition c2.2
y > x

attr1: y - xattr1: x - y

a.) b.)

Event Action e1.2Event Action e1.1

Figure 7.8. Applying Expand to an Exemplary Decision Graph (2 of 2)

7.4 Evaluation 201

7.4.2 Hierarchical Evaluation

Evaluation by expansion as presented in the above section allows maintaining
the original evaluation and state-management approach as has been used for
non-hierarchical decision graphs. However, by resolving hierarchical structures
in their entirety, it impedes treating the various layers of a decision graph
separately. This is needed when configurations shall apply to a certain sub-level
event pattern only. As a consequence, an alternative evaluation approach has
been investigated that is more aligned with the specific structure of hierarchical
decision graphs.

Using the so-called hierarchical evaluation approach, a new, generally self-
contained decision-graph evaluator is instantiated with the first activation of
a sub-pattern component in a decision graph. This evaluator is based on the
referenced sub-level decision graph and made accessible for subsequent process-
ing steps. The top-level decision-graph evaluator then registers as a listener to
the sub-level decision graph’s signals. During run time, the top-level decision-
graph evaluator is synchronously notified whenever a signal is activated in
the sub-level decision-graph evaluator. The hierarchical structure of decision-
graph evaluators is also reflected in state management, where the data of a
sub-level decision graph are managed as a part of the top-level decision-graph
state for each underlying correlation session. Note that in contrast to top-level
decision-graph evaluators where possible input-parameter values are equal for
all correlation sessions, input-parameter values for sub-level decision graphs are
calculated dynamically and, thus, may be distinct for each correlation session.
Input-parameter values for sub-level decision graphs are therefore managed as
part of the sub-level decision-graph state.

The behavior of a decision-graph evaluator is now defined as follows:

1. Given an incoming event or signal, the state of a decision graph is retrieved
along with the states of all sub-level decision graphs, if available.

2. The incoming event is processed based on the represented decision graph
“bottom up”, i.e., each rule component is evaluated prior to all its precon-
ditions in the decision graph.

3. If a sub-level component is active, the incoming event or signal is forwarded
to the corresponding sub-level decision-graph evaluator, where it is pro-
cessed in the described fashion and may be forwarded to sub-sub-level
evaluators, and so forth.

4. If a signal is activated in the sub-level decision-graph evaluator, the re-
spective output port is synchronously activated in the super-level decision-
graph evaluator. Here, the activation may cause further processing steps,
e.g., may trigger an action.

202 7 Hierarchical Pattern Modeling

5. If a sub-level component is deactivated as a result of the given event or
signal, the state of the sub-level decision graph is reset for the given cor-
relation session.

Extended Sub-Pattern Configurations

By managing the various layers of hierarchical pattern-detection logic as sepa-
rate decision graphs, the presented approach provides a degree of flexibility in
the activation, deactivation, and configuration of sub-level pattern-detection
logic that is not available with evaluation by expansion as discussed above.
When the hierarchical evaluation strategy is applied, sub-pattern components
may therefore provide the following, extended configurations to application
developers:

• Reset on activate. The Boolean “reset of activate” property specifies
whether the state of a sub-level decision graph shall be reset with each
activation of the sub-pattern component in the super-level decision graph.
Reset on activate would be required if the preconditions of a sub-pattern
component must be fulfilled exactly once before the represented sub-level
pattern definition.

• Recalculate input parameters. The Boolean “recalculate input parame-
ters” property specifies whether the input parameters of a sub-level pattern
definition shall be recalculated whenever the sub-pattern component is ac-
tivated. The described property is of practical relevance only if the “reset
on activate” property is set to false. (After a sub-level decision graph has
been reset, input-parameter values are re-calculated anyway.)

7.4.3 Discussion and Comparison

In the course of our research, we identified the following key requirements for
evaluation strategies for hierarchical decision graphs. An approach must

(i) conform to the described semantics of sub-pattern components,

(ii) support arbitrary nestings of decision graphs, including direct and indi-
rect recursions,

(iii) allow evaluation steps across all (activated) layers of a decision graph;
for instance, an incoming event shall generally be able to trigger event
conditions both on the main layer and all sub-level pattern definitions of
a decision graph.

7.4 Evaluation 203

Both evaluation by expansion and hierarchical evaluation fulfill these require-
ments. For both approaches, recursions are supported through “on demand”
expansions and “on demand” instantiations of sub-level evaluators, respec-
tively. Evaluation steps on all (activated) layers are implicitly given with the
default evaluation approach for non-hierarchical decision graphs as used with
evaluation by expansion. With hierarchical evaluation, this is ensured by ex-
plicitly forwarding events and signals to lower-level evaluators.

While both approaches conform to the basic semantics of sub-pattern compo-
nents, their eventual results may differ in certain evaluation scenarios. This
is due to the different handling of input parameters and output parameters.
With evaluation by expansion, all parameter expressions are resolved and in-
tegrated into the different expressions of an expanded, thus non-hierarchical
decision graph. As a consequence, input and output-parameter expressions are
implicitly re-evaluated with each evaluation of an expression in which the re-
spective parameter participates. By contrast, using the hierarchical evaluation
approach, calculated input and output-parameter values are passed down and
up the hierarchy and used in the receiving layer until new values are passed.
Experience from real-world use cases showed that the latter approach better
matches the expected semantics of a sub-pattern component. Moreover, while
not discussed in the above section, input-parameter handling “by expansion”
could relatively easily be implemented as a further option for hierarchical eval-
uation.

More decisive, evaluation by expansion is generally opposed to any operation
that shall be restricted to exactly one layer of a hierarchical decision graph.
Such an operation is, for instance, given through the “reset evaluation state”
option as may be specified for action components (including signals). When
using evaluation by expansion, this configuration must either be ignored (which
necessarily distorts the semantics of a pattern definition), or information about
which parts of a flattened decision graph belong to a certain layer of the original
decision graph must be maintained. The latter approach again complicates the
base evaluation approach, whose simplicity was considered a major advantage
in comparison to the hierarchical evaluation approach.

Taken together, while a hierarchical evaluation approach requires considerable
adaptations of the existing evaluation strategy, it offers greater flexibility and
is certainly better suited for future extensions of the decision graph model. For
the eventual implementation of hierarchical decision graphs we therefore opted
for the hierarchical evaluation approach instead of the easier-to-implement, yet
less flexible evaluation by expansion.

204 7 Hierarchical Pattern Modeling

7.5 Example

In the following, we present a hierarchical decision graph for monitoring user
behavior in an online-betting platform. We assume that an event-based appli-
cation shall notify the betting provider’s fraud department if

(i) a user repeatedly carries out high-stake short-term transactions, i.e., if
the user pays into his account, places a single high-risk bet and immedi-
ately pays off in full, and

(ii) the user’s total balance is above a certain threshold.

User behavior as described in the former condition is highly suspicious of fraud:
The user is clearly focused on selected – possibly fixed – sports events. Also,
the user seems to be afraid of being discovered, therefore trying to keep those
periods where money is held by the betting provider as short as possible. The
latter condition, by contrast, restricts alarms to those cases that are relevant
in terms of monetary profit.

Table 7.1 shows a pattern definition for detecting above-described short-term
transactions. Series-connected event conditions check if a user pays into a
(near-) empty account, wins a bet and pays off in full within a user-defined
time span; for both pay-in and cash-out, an impreciseness of 5% is considered.
The bet’s odds as well as the paid-in amount can be tested against user-
defined thresholds. For the sake of reusability, the pattern definition does not
consider repetitiveness, but instead notifies any occurrence of the described
event situation.

Table 7.2 shows a pattern definition for monitoring a user’s overall balance.
Whenever a “Bet Won” event occurs, a score “Balance” for the user’s account
is increased by the given revenue; reversely, the measure is decreased in case of
“Bet Lost” events. When a measure exceeds a user-defined threshold, a signal
is published.

Figure 7.9 shows the complete decision graph. On the left-hand side, the de-
cision graph features a “High profit” sub-pattern component with a threshold
of 5000 dollars. Users therefore qualify as potential fraudsters only if their
overall gains are above that threshold. On the right-hand side, a score “Sus-
picious Transactions” counts the occurrence of “short-term transaction” event
patterns (with a minimum pay-in amount of 100$) per user account. A down-
stream condition tests the measure value against a threshold of three. Finally,
if both the left and the right-hand side are fulfilled, an email is generated.

7.5 Example 205

Input Parameters ID Type Validator

Amount Integer x ≥ 0

Odds Float x ≥ 0

Decision Graph

True False

Cash-in to empty account

Cash In

CashInAmount > $amount

TotalAmount / CashInAmount < 1.05

Conditions

True False

Bet won

Bet Won

Odds > $odds

Conditions

True False

Clear out account

Cash Out

Conditions (AND)

TotalAmount / CashOutAmount < 0.05

CashIn.TimeStamp – TimeStamp < 24h

Signal: Short-term transaction

Hit

Profit: CashOut.Amount – CashIn.Amount

Output Parameters

Account: CashIn.Account

Output Parameters ID Type

Profit Integer

Account Integer

Table 7.1. Pattern Definition “Short-Term Transaction”

206 7 Hierarchical Pattern Modeling

Input Parameters ID Type Validator

Threshold Float

Decision Graph

OR

Signal: High profit

Hit

Balance: $balance

Output Parameters

True False

Bet lost

Bet Lost

No conditions defined

True False

Bet won

Bet Won

No conditions defined

Increment balance

Balance (Score)

Increment

Decrement balance

Balance (Score)

Check balance

Balance (Score)

Condition (on demand):

Value > $threshold

Variable Expressions

$balance: Value

True False

Parameters

Value: BetLost.Amount

Decrementf

Parameters

Value: BetWon.Amount

f

Output Parameters ID Type

Balance Float

Table 7.2. Pattern Definition “Balance Above Threshold”

7.5 Example 207

AND

Trigger Alert

EMail

Receiver: „admin@obweger.org“

Event Attributes

Priority: 3

Subject: Fraud Warning

Text: „Alarm for account “ + $account

High-profit account

Pattern Definition: Balance Check

Threshold: 5000

Input Parameters

No mappings defined

Output Parameters

Hit

Short-term transaction

Pattern Definition: Short-Term T...

Amount: 100

Input Parameters

Output Parameters

Hit

Odds: -1

Count pattern

Short-Term Transactions

(Score)

Increment

Parameters

Value: 1

f

Check threshold

Condition (on demand):

Value > 3

True False

Short-Term Transactions

(Score)

Account: $account

Figure 7.9. Rule Definition “Send Email on Suspicious User Behavior”

8

Example

Abstract In the course of this thesis, a user-oriented rule management system for
Complex Event Processing applications, along with extensions for hierarchical pat-
tern modeling and entity-based state management, has been proposed. This chapter
demonstrates the proposed framework using a real-world SARI application for event-
based service assurance, which we understand as the proactive monitoring of business
environments with the goal of detecting fault patterns and ensuring reliability and
performance in a system landscape. The presented application is discussed following
the model-driven view on SARI applications, with a particular focus on the applica-
tion’s infrastructural rules and sense-and-respond rule-management artifacts.1

8.1 Introduction

One of the major challenges observed in corporations with distributed, inho-
mogeneous IT landscapes is to manage the proper execution of IT processes
and ensure the performance of potentially thousands of servers across discon-
nected data centers. Early in the history of enterprise computing, IT Process
Automation has been developed to overcome these difficulties, and today it
forms the nerve center of almost any larger company’s IT infrastructure. Still,
traditional IT process automation is driven by scheduled batch execution and
lacks capabilities for flexible, event-driven execution. In recent times, Complex
Event Processing has therefore been recognized as an important complemen-
tary technology to automation platforms (cf. [42]). Using CEP, adopters of IT
process automation are capacitated to launch tasks in response to complex
events, emitted from multiple, potentially disconnected sources and processed
in near real time. While unified solutions are the exception rather than the
rule, more and more vendors strive to integrate their core frameworks with
proprietary or third-party event-processing systems.

1 This chapter is based on the work of Obweger et al. [88].

210 8 Example

In this chapter, the proposed approach to user-oriented rule management is
demonstrated by the example of a real-world SARI application for event-based
service assurance, where SARI is applied as an extension to the UC4 Automa-
tion Engine [130]. We understand service assurance as the proactive monitor-
ing of business environments with the goal of detecting fault patterns and en-
suring reliability and performance in a system landscape, based on event data
from both the technical infrastructure (including individual hosts, databases,
and network connections) and the application layer of a corporation (which,
besides the central automation platform, typically includes other enterprise
systems such as Enterprise Resource Planning [ERP] or Customer Relation-
ship Management [CRM] systems). As such, service assurance includes – yet,
is not restricted to – disciplines such as Business Service Management (BSM)
and Application Performance Management (APM). Service assurance in the
described sense has, for instance, been discussed in the context of cloud com-
puting [110].

The presented SARI application has been developed by members of the UC4
Senactive development team based on customer requests and input gathered
from the company’s consulting, sales, and pre-sales personnel. It is distributed
with UC4 Decision as an extension to the core automation platform and has
been successfully set up at customers from different business domains.

Outlook

The remainder of this chapter is structured as follows: Section 8.2 provides an
overview of the described application scenario. In Section 8.3, Section 8.4 and
Section 8.5 we discuss the event model, business entity model, and correlation
model of the presented SARI application for event-based service assurance.
In Section 8.6, the event processing model is presented. The application’s
infrastructural rules, as well as the diverse parts of the application’s sense-
and-respond rule management configuration, are presented in Section 8.7 and
Section 8.8.

8.2 System Overview

Figure 8.1 sketches the described environment from a high-level perspective.
The core element of a customer’s IT landscape is the UC4 Automation Engine,
which provides all necessary facilities for defining and scheduling tasks, model-
ing dependencies between tasks, distributing tasks on a network of agents, and
calculating forecasts. To support IT services and cloud computing use cases,
the automation engine can be logically separated into so-called clients, where
each client operates and is managed generally independent from all others. As

8.3 Event Model 211

an exception, the ever-present default client #0 (zero) enables super admin-
istrators to monitor executions in all non-default clients, but does not allow
task executions by itself.

Connected to the automation platform, a collection of agents is responsible
for actually carrying out tasks as provided by the automation engine. Agents
are available for all current operating systems, as well as for a wide range
of enterprise applications: While former are responsible for carrying out basic
system operations such as file transfers and command-line actions, latter allow
triggering application-specific operations such as, for example, starting and
stopping an SAP job. The physical or virtual machine running an agent is
referred to as host.

Third-party applications may eventually integrate with the automation engine
using a message-bus- and web-service-based interface. Via the message bus,
events such as the start and end of a task, as well as system messages such
as the planned or exceptional shutdown of an agent, are published. Via web
services, operations such as starting, pausing, and canceling a task are exposed.

Automation Engine

Client #0

Client #1

Client #2

Client n

...

Message
Bus

Web
Services

Interface Agents and Hosts

Agent k

Agent k + 1

...

Agent j

Agent j + 1

...

Agent 1

Agent 2

...

Figure 8.1. System Overview

8.3 Event Model

The application’s event model contains an overall number of nine event types,
from which three event types are input events (i.e., retrieved from the underly-
ing source system), two are virtual events (i.e., created during event processing)
and four are response events (i.e., sent to response event-adapters and trans-
lated into real-world actions). Table 8.1 summarizes the application’s event
types and their role in event processing.

212 8 Example

Input Events

Task Events Task events represent the end of a task in the underlying automation
engine and form the major input for detecting situations such as
delayed task executions, manual cancellations of tasks, or recurring
task failures. Via their event attributes, task events provide access to
the represented task’s type and instance ID, its activation, start and
end time, its estimated runtime (which can be defined statically or
to be calculated from past executions in the automation engine), its
end status (e.g., finished normally or with an error), the responsible
user account, and the executing agent, among others.

Message Events Message events represent noteworthy occurrences as are signified by
the automation engine; for instance, a message could indicate the
shutdown of a task-execution agent. Message events expose the rep-
resented message’s message number and string, the concerned agent,
user account, and task type (if available), among others.

Log-File Events Log-file events are semantically related to message events, however,
represent data as is written to the application’s log files and contain
detailed system-trace information such as execution times of system-
internal activities or database transactions. Log-file events expose the
represented log-file entry’s number and string, the concerned task
type (if available) and the path of the log-file from which the entry
was pulled, among others.

Virtual Events

System Checkpoint
Events

System checkpoint events are generated within the application, and
basically form an aggregation of a configurable number of incoming
task events. These events contain, for instance, the number of failed
tasks among the last x tasks, the average overtime, etc. Reducing
the overall number of task data, system checkpoint events can well
be used for detecting trends.

Database Log-File
Events

Database log-file events are special log-file events that signify
database-related entries. In addition to the basic log-file event data,
they provide event attributes for the type of database transaction
and its exact duration.

Response Events

A collection of response events are provided for responding back to the underlying source system.
These response events include Email Events, Log-File Entry Events (which cause a respective
event adapter to write an entry to log file), Command-Line Action Events, and Web-Service
Call Events.

Table 8.1. Event Types

8.4 Business Entity Model

The proposed SARI application makes use of the reference business-entity
provider implementation for scores as discussed in Section 6.4.1 and defines
an overall number of 31 score types, from which seven are used as application-
wide, persistent data structures and 24 are used internally and in memory
only. In the present version of the application, scores of the former types are
not supervised during run time using monitoring rules, but used exclusively
for the ex-post analysis of the system.

8.6 Event Processing Model 213

8.5 Correlation Model

The presented application does not require event correlation and so comes with
an empty correlation model.

8.6 Event Processing Model

Due to its focus on rule spaces, the presented application can be realized using
a single event-processing map while remaining simple in structure and easy to
understand. Figure 8.2 shows the application’s event processing model; for the
sake of readability, input ports, output ports, and event channels are colored
according to the event types they are concerned with.

On the input side of the event processing map (Figure 8.2a.), a collection of
sense event adapters (Section 3.5.2) is applied to receive task events, message
events, and log-file events from the underlying source system. Task events and
and message events are retrieved directly from the automation engine, which
publishes the data as typed, comma-separated value tuples to a message bus.
The respective adapters are based on configurable message transformers, where
application developers can define a separator character and map the individual
values to event types and event attributes. Log-file events are retrieved through
a so-called log-file adapter, which basically monitors a number of text files by
reading them and examining them for new lines at regular time intervals. Each
line is then transformed into an event instance based on user-defined mappings
similar to that of message transformers.

From the collection of sense event adapters, input events are forwarded to the
“Filter” service (b.), where illegal and irrelevant events are eliminated; for ex-
ample, task events with a run time of zero signify tasks that have actually been
discarded by the underlying automation engine due to missing preconditions,
and thus need not to be considered for subsequent event processing. The fil-
tering service is implemented as a rule service, hosting infrastructural filtering
rules for task events and message events. The applied rules are discussed in
greater detail in Section 8.7, “Infrastructural Rules”.

All remaining input events are delivered to the “Message Enrichment” service
(c.), where based on event-attribute values, additional data are retrieved from
external sources and attached to events. For all types of input events, diverse
message numbers and status codes are used to retrieve corresponding string
representations from an external data source; albeit not immediately required
for event processing, these data facilitate full-text search and easy-to-interpret

214 8 Example

M
es

sa
ge

En

ri
ch

m
en

t

Ta
sk

Ev
en

ts

Sy
st

em
 C

h
ec

kp
o

in
t

G
en

er
at

o
r

St
at

is
ti

cs

D
at

ab
as

e
Er

ro
r

D
et

ec
to

r
..

.

M
es

sa
g

e
Ev

en
ts

Lo
g

fi
le

Ev

en
ts

R
u

le
 S

p
ac

e

Ex
e

cu
to

rs

M
a

il

Lo
g

-F
ile

En

tr
y

C
m

d
-L

in
e

A
ct

io
n

W
eb

-S
er

vi
ce

C
a

ll

>
_

Ta
sk

 E
ve

n
ts

M
es

sa
ge

 E
ve

n
ts

Lo
gf

ile
 E

ve
n

ts

Sy
st

em
 C

h
ec

kp
o

in
t

Ev
en

ts
D

at
ab

as
e

M
es

sa
ge

 E
ve

n
ts

a

c

d e

f
g

h

Fi
lt

er

b

Turn clockwise to read

Figure 8.2. Event Processing Model

8.7 Infrastructural Rules 215

reports in the ex-post analysis of historic event data.2 In case of log-file events,
the type of the concerned task – if such is available – is extracted from the log-
file entry; while basic parsing mechanisms are provided by the above-mentioned
log-file adapter, more sophisticated strategies are required here due to legacy
message formats.

From the message-enrichment service, preprocessed input events are then for-
warded to the “System Checkpoint Generator” (d.), “Database Error Detec-
tor” (e.), and “Statistics” (f.) service according to their event types. In the
system-checkpoint generator, system checkpoints events are generated for each
x incoming task events using a custom .NET service implementation. In the
database-error detector service, an infrastructural rule is applied to detect
database-related log-file events by their message number and transform them
into database log-file events. In the statistics service, infrastructural rules are
applied to calculate application-wide aggregations (e.g., the number of tasks
per host, task type, and end status) using scores. The application’s business-
entity model, as well as the different infrastructural rules applied in this part of
the application, are discussed in greater detail in Section 8.4 and Section 8.7,
respectively.

Task, message, and (database) log-file events are eventually delivered to a
parallel grouping of rule services, where each rule service is associated with
exactly one rule space as discussed in Section 8.8. Although not depicted in
Figure 8.2, each rule service is provided with exactly those events that are
potentially relevant for the provided pattern-detection logic.

On the output side of the event processing map, a collection of response
event adapters allows sending emails, writing to log files, executing arbitrary
command-line actions, as well as web-service calls. Again, rule services are
connected to all event adapters that are required for the provided set of action
definitions.

8.7 Infrastructural Rules

The presented application includes an overall number of six infrastructural
rules, of which two are run on the initial “Filter” service (Figure 8.2b.) to
remove illegal and irrelevant events, one is run on the “Database-Error De-
tector” service (8.2e.) to detect database-related message events and three are
run on the “Statistics” service (8.2f.) to update application-wide scores.

Table 8.2 describes these rules in greater detail. The decision graph of rule
definition “Filter duplicate agent messages” is shown in Figure 8.3.

2 While not discussed in the course of this chapter, the presented application per-
sists noteworthy event instances and provides predefined search and visualization
templates to be used in the Event Analyzer [124, 123].

216 8 Example

Filter Service

Filter discarded tasks Filters task with a runtime of zero; such events have been discarded
in the underlying automation engine due to missing preconditions
and must not be considered for subsequent event processing. In the
rule’s decision graph, a condition component evaluates an expression

ToMillis(EndTime - StartTime) = 0

on incoming task events. Connected to the “false” port of the condi-
tion, a response-event action re-publishes the triggering task event.
The condition’s true port is left unconnected.

Filter duplicate agent
messages

Filters duplicate agent messages. Agent messages signify agent-
related occurrences such as planned or exceptional shutdowns and are
generated once per client by the underlying automation engine. To
avoid duplicate reactions, messages for all clients except of the ever-
present default client #0 are eliminated using a condition and a re-
publishing response-event action similar to “Filter discarded tasks”.

Database Error Detector Service

Database error detec-
tion

Detects database-related log-file events based on their message num-
ber and transforms them into “Database Log File” events, using a
condition component and a response-event action component. In the
response-event action component, all attributes of the triggering log-
file event are mapped to attributes of the database log-file event to be
generated, and additional attributes are derived from the triggering
event using the string-manipulation functionalities of EA Expres-
sions.

Statistics Service

Agent statistics Updates the number of activated, abnormally ended, and normally
ended agents per host and weekday based on incoming message
events. In the rule’s decision graph, scores of type “Activated agents”,
“Abnormally ended agents” and “Normally ended agents” are incre-
mented depending on the incoming event’s message number, using
a case component and three business entity actions. Key property
values are extracted from the triggering message event.

Message statistics Updates the number of errors per user, host, task name, and client, as
well as the number of access denials per task name, based on incoming
message events. In the rule’s decision graph, scores of type “Error
count” and “Access denied statistics” are updated if the message
type is set to “Error” and if the message number indicates a denied
access attempt, respectively. In both cases, a condition component is
applied together with a business entity action to model the described
functionality. Key property values are extracted from the triggering
message event.

Task statistics Updates the overall number of tasks and the number of delayed tasks
per host, task name, client, and user, based on incoming task events.
In the decision graph, scores of type “Tasks per host” and “Delay
count” are updated with any occurrence of a task event and if a task’s
runtime exceeds its estimated runtime, respectively. In both cases, a
condition component is applied together with a business entity action.
Key property values are extracted from the triggering task event.

Table 8.2. Infrastructural Rules

8.8 Sense-and-Respond Rules 217

Non-default-client agent message

Message Event

Conditions (AND)

MsgNr = 1360 OR MsgNr = 1361 OR MsgNR = 1362

Client <> 0

True False

Re-publish message event

Message Event

Event Attributes

Figure 8.3. Rule Definition “Filter duplicate agent messages”

8.8 Sense-and-Respond Rules

The presented application for event-based service assurance includes an overall
number of 36 pattern definitions and 13 action definitions, which are organized
in six rule spaces and serve as a basis for an average of about three business
patterns per pattern definition and about four business actions per action
definition. In the following, we give an overview of the application’s different
rule spaces in Section 8.8.1 and particularly focus on a selected rule space
“Runtime monitoring” – basically concerned with the detection of tasks that
outrun their scheduled execution time – when it comes to concrete pattern
detection and reaction logic in Section 8.8.2 and Section 8.8.3.

8.8.1 Rule Spaces Overview

In the proposed approach to sense-and-respond rule management, rule spaces
serve as the basic work space for business operators and expose pattern de-
tection and reaction logic according to the different operational tasks in an
application. The presented SARI application for service assurance offers six
rule spaces, where each is concerned with a different aspect of the underlying
automation engine and mapped to exactly one rule service in a parallel group-
ing of rule-space executors as shown in Figure 8.2: Runtime monitoring, access
denial monitoring, log file and error message monitoring, agent monitoring,
health monitoring, and database protection monitoring.

Table 8.3 provides an introduction to said rule spaces and their specific role
in the presented application.

218 8 Example

Runtime Monitoring An important indicator for service assurance are task runtimes. Run-
time monitoring rules allow monitoring task runtimes for exceptional
delays. Details on the rule space’s pattern definitions and business
patterns, action definitions, and business actions are discussed in
greater detail in Section 8.8.2 and Section 8.8.3 of this chapter.

Access Denial
Monitoring

Messages about access denials on objects of the automation engine
are important hints for security violations. Access-denial monitoring
rules allow detecting conspicuities in access denial messages, such as
a certain user trying to access an object unsuccessfully multiple times
within a short period, or with recurring retries after a break.

Log File and Error
Message Monitoring

In case of a failure, manifold information is available in the server log
files, indicating what led to the problem. Log file and error message
monitoring rules allow analyzing these log files in real-time, to detect
early indicators for system troubles. Frequent errors are recognized
as well as an increase in the total number of error log entries. Known
messages and indicators might also trigger an immediate alert.

Agent Monitoring Agents need to be constantly up and running in order to execute the
scheduled processes. Agent monitoring rules allow monitoring agents
for availability and performance. Shutdown and failure patterns are
identified as well as trouble agents with frequent shutdowns or insuf-
ficient response times. In addition, the rule space allows monitoring
if certain tasks fail in recurring manner on an individual host.

Health Monitoring Indicators for system health include execution delays (indicating un-
balanced load), high rates of task failures, or cumulations of error
messages, among others. While individual triggers might not yet
alert, trends in the number of failures or delays might show changes in
the application stability. Health monitoring rules target exactly these
trends, alerting upon increasing numbers of also minor delays, slight
increases in error occurrences and task failures, or a combination of
all three.

Database Protection
Monitoring

The automation engine keeps track on every action in an underly-
ing database. Also, messaging is relayed over the database to keep it
reliable and persistent. Thus, the database performance is vital for
the performance of the automation engine. Database protection mon-
itoring rules allow monitoring in real-time for indicators on potential
database issues. These include log entries on critical, long-running
database calls, error messages, timeouts, or even deadlocks.

Table 8.3. Rule Spaces

8.8.2 Runtime Monitoring: Pattern Definitions, Business Patterns

In the presented SARI application, the rule space for runtime monitoring pro-
vides diverse pattern definitions based on the occurrence of delayed tasks,
where the actual execution time outruns the scheduled execution time by more
than a specified percentage. Specialized pattern-detection logic allows detect-
ing delays on certain hosts, at certain days of a week, or at certain times. With
large companies typically focusing on recurring delays rather than individual
outliers, other pattern definitions allow specifying a certain number of runtime
exceedances to be reached; depending on the pattern definition, the concerned
tasks must occur in total or within a specified time frame.

Table 8.4 and Table 8.5 summarize the pattern definitions of the runtime
monitoring rule space. Pattern definition “Task runtime exceeded per type” is
shown in full detail in Table 8.6.

8.8 Sense-and-Respond Rules 219

Task runtime exceeded

Description Triggers whenever an individual task event occurs with a relative run-
time delay greater than a user-specified threshold. Relative runtime
delays are calculated from estimated and actual runtimes of signified
task executions in the underlying automation engine.

Decision Graph A condition component evaluates an EA Expression

ToMillis(EndTime - StartTime)/ToDouble(ERT) > $AcceptedRatio

on incoming task events. Directly connected to the “true” port of the
condition, a signal component signifies the detection of delayed task
executions.

Input Parameters Maximum accepted relative runtime delay

Output Parameters Task type, agent, execution ID, start time, actual runtime, estimated
runtime

Business Patterns Available for different levels of delay, where each level is associated
with a different threshold. For maximum flexibility, an additional busi-
ness pattern enables authorized users to freely specify the demanded
threshold.

Average delay rate over threshold

Description Triggers whenever an individual system checkpoint event occurs with
an average relative runtime delay ratio greater than a user-specified
threshold.

Input Parameters Maximum accepted average relative runtime delay

Output Parameters Average relative runtime delay

Business Patterns As with “Task runtime exceeded”, business patterns for different levels
of delays, as well as a business pattern that can be freely specified by
the user, are provided.

Task runtime exceeded per type

Description Triggers whenever a user-specified number of tasks of a certain task
type occur with a relative runtime delay greater than a user-defined
threshold. No time window is specified for these occurrences.

Decision Graph A condition component evaluates to true whenever incoming task
events fulfill the specified runtime condition. In response, a rule in-
ternal score is incremented for the task’s type and tested against the
specified quantity threshold. If the threshold is exceeded, the signal
is activated and the score is reset.

Input Parameters Number of tasks, maximum accepted relative runtime delay

Output Parameters Task type

Business Patterns See above.

Task runtime exceeded per type in time window

Description Detects delayed tasks per task type similar to “Task runtime exceeded
per type”, buts extends the original pattern-detection logic by a (re-
peating) time window. (Note that this time window can be set to
infinite to imitate the behavior of “Task runtime exceeded per type”;
however, a separate pattern definition is provided to optimize event-
processing performance.)

Decision Graph Extends the original decision graph by an additional business action
condition between the initial condition component and the score up-
date. Here, the score’s initialization time stamp is tested against null
(no prior reset) and the triggering event’s time stamp. If a new time
window is reached, the score value is reset before being incremented.

Input Parameters Number of tasks, maximum accepted relative runtime delay, time win-
dow

Output Parameters Task type, beginning of current time window

Business Patterns See above; different predefined time windows

Table 8.4. Pattern Definitions

220 8 Example

Task runtime exceeded per agent

Similar to “Task runtime exceeded per type”, but aggregates delayed tasks based on their agent.

Task runtime exceeded per agent in time window

Similar to “Task runtime exceeded per type in time window”, but aggregates delayed tasks
based on their agent.

Table 8.5. Pattern Definitions (continued)

Input Parameters ID Type Validator

Accepted Delay Float x ≥ 0

Number of Tasks Integer x ≥ 1

Decision Graph

Pattern detected

Task Type: TaskEvent.Type

Output Parameters

Reset score

Task Delays per Type

(Score)

Resetf

Key Properties

Signal

True False

Task finished delayed

Task Event

Conditions

ToMillis(EndTime - StartTime) /

ToDouble(ERT) > $AcceptedRatio

Increment score

Task Delays per Type

(Score)

Increment

Parameters

Value: 1

f

Task Type:TaskEvent.Type

Key Properties

Rule ID: $RuleID

Check score

Condition (on demand):

Value > $NumberOfEvents

True False

Task Delays per Type

(Score)

Key Properties

Output Parameters ID Type

Task Type String

Table 8.6. Pattern Definition “Task runtime exceeded per type”

8.9 Discussion 221

8.8.3 Runtime Monitoring: Action Definitions, Business Actions

On its action-definition side, the runtime monitoring rule space provides di-
verse email-based actions for notifying responsible departments within a com-
pany. As overload situations may often be resolved automatically through ad-
ditional resources or rescheduling of tasks, the rule space furthermore provides
a variety of so-called system actions: Based on a web-service call, they directly
feed back into the automation engine, where they may request additional re-
sources, pause or cancel running tasks, or delay the execution of scheduled
ones.

Table 8.7 summarizes the action definitions of the runtime monitoring rule
space. Table 5.2 and Table 5.4 show the action definition “Start automation
engine object” along with an exemplary business action.

8.9 Discussion

The presented application for event-based service assurance successfully
demonstrates the applicability of our approach in the context of a real-world
use case. Infrastructural rules are applied for the filtering and transformation of
raw input events, as well as the calculation of application-wide event-data ag-
gregations using the concept of business entities. Together with the presented
set of event adapters and event services, these rules establish an event-based
image of the underlying automation platform, including all task executions,
messages, and log-file entries. End-user-defined sense-and-respond rules set up
on this image and can be added and removed safely without affecting the
proper functioning of the application. The application’s pattern and action
definitions enable domain experts to detect and counteract exceptional situa-
tions such as bottlenecks, policy violations, or failures and are organized in a
total number of six rule spaces.

Given a high-level functional specification, the described application could
be implemented by members of the UC4 Senactive development team within
eight man-days using the above-presented front-end tools. This time frame
includes several test installations of the presented application, the evaluation
of these installations against prepared test data, and subsequent refactorings.
The provided front-end tools, as well as the changed application architecture
(which is now centered around the concept of rule spaces), were well received
by the involved team members.

As a negative point, it was remarked that the given 1-to-n relationship between
rule spaces and business-level building blocks (meaning that a business-level
building block is part of exactly one rule space) may be too restrictive in case
of general-purpose reaction logic. In the described application, business actions

222 8 Example

such as “sending an email to the system administrator” were, in fact, needed
in almost any of the application’s rule spaces. This forced the application
developers to repeatedly duplicate these entities. Future research will therefore
reconsider the said relationship.

Mail notification

Description Generates events of type “Mail action”, eventually causing down-
stream email response adapters to send emails with specified con-
figurations.

Response Event
Template

Being based on the “Mail action” event type, the response event
template maps input parameters to the sender, recipient, subject,
and body event attributes. SMTP-server- and user-account-related
attributes (like host, port, use of SSL, user name, and password) are
assigned application-wide constants that are to be defined during set
up.

Input Parameters Sender, Recipient, Subject, Body

Business Actions Typically available for different departments of a company, with pre-
defined receiver addresses. Note that email actions will typically in-
corporate output-parameter values in their subject and/or body part;
thus, to support standard emails with a specified subject/body for-
mat, prepared bindings and templates will be needed in many scenar-
ios.

Start automation engine object

Description Triggers a method invocation on the web-service interface of the un-
derlying automation engine, causing the engine to start an instance
of a user-defined task type.

Response Event
Template

Based on an event type “Web Service Action”, where the exact path
to the web service description is retrieved from an application-wide
resource string, the method to be invoked is defined as a constant
string (“executeObject”) and the “Arguments” attribute is concate-
nated based on a user-defined input parameter (providing the task to
be started) and a number of application-wide resource strings (pro-
viding predefined authentication data).

Input Parameters Task type

Business Actions Available for different tasks that help improving the overall task-
execution performance of the system, e.g., by setting up and incorpo-
rating an additional host.

Pause automation engine object

Similar to “Start automation engine object”, but pauses a running task based on a user-defined
task ID.

Resume automation engine object

Similar to “Start automation engine object”, but resumes a paused task based on a user-defined
task ID.

Cancel automation engine object

Similar to “Start automation engine object”, but cancels a running or paused task based on a
user-defined task ID.

End automation engine object

Similar to “Start automation engine object”, but ends a running or paused task based on a
user-defined task ID. Unlike cancellation, ending a task results in an orderly shutdown where
possible post-execution instructions are performed.

Table 8.7. Action Definitions

9

Case Study

Abstract This chapter illustrates the structure and results of a customer project
in the manufacturing domain, where the proposed rule-management framework
was successfully applied in the context of event-based service assurance. In the
investigated project, the standard application for event-based service assurance
was extended towards enhanced hardware-level monitoring by a vendor-side
consultant and a technically experienced, customer-side infrastructure analyst. The
readily-prepared sense-and-respond rule-management system was made available to
technically less experienced users. We analyze the observed distribution of tasks and
responsibilities and discuss possible implications to future research.

9.1 Introduction

Since implemented within Sense-and-Respond Infrastructure (SARI) [114], the
proposed rule-management framework and its extensions have been success-
fully applied in use cases from different business domains, including finance,
e-commerce, and logistics. In this chapter, we illustrate the structure and re-
sults of a customer project at a leading manufacturer of agricultural machinery.
In the investigated project, SARI is used in the context of event-based service
assurance as discussed in great detail in the previous chapter. Our case study
is based on a series of interviews with the responsible pre-sales engineer at
UC4 Software GmbH and an internal experience report [9] provided by the
customer.

224 9 Case Study

Outlook

The remainder of this chapter is structured as follows: Section 9.2 and Sec-
tion 9.3 illustrate the project’s environment and objective in greater detail.
In Section 9.4, the structure of the project is presented. An overview of the
developed SARI application is provided in Section 9.5. Section 9.6 concludes
our case study and discusses possible implications to future research.

9.2 Project Environment

The customer operates two physical computer centers, housing six IBM zSeries
mainframes, over 850 servers ranging from simple two-processor to high-end
32-processor machines, and administrating over 1000 Terabytes of data with
differing availability and redundancy requirements. Several thousand servers
are located at business units and company facilities all over the world.

At the time of writing, the customer uses the UC4 Automation Engine [130]
to automate IT processes across this complex and inhomogeneous environ-
ment. Used primarily as a job scheduling engine, tasks are executed to steer
enterprise resource planning (ERP), financial, and human resources (HR) ap-
plications, to control the company’s mainframe computers, and to manage
database backups. The UC4 Automation Engine environment is staged into a
test system (running about 150,000 tasks per month), a development system
(running about 1.2 million tasks per month) and a production system (run-
ning about 2.5 million tasks per month). These systems distribute tasks on a
total number of 128 agents, from which 96 agents execute SAP R/3 tasks, 24
agents run SAP BI tasks, four agents run on Unix machines and another four
run on Windows machines. As the system grows in complexity and size, the
customer plans to evolve UC4 Automation Engine into a full-fledged workload
automation solution, then controlling more than 2000 agents.

At the customer, two persons are responsible for the administration of the
company’s Automation Engine installations. These are a senior infrastructure
analyst with about 10 years of experience with the Automation Engine and
strong technical skills in general (referred to as “infrastructure analyst” in
the remainder of this section), as well as a junior assistant (in the following
referred to as “assistant”).

9.4 Project Structure 225

9.3 Problem

The infrastructure analyst regularly experienced situations in which the per-
formance of the Automation Engine decreased without obvious reasons. These
decreases primarily manifested in longer task-execution times, but also in weak
response times of the system’s front-end tools. In such situations, the infras-
tructure analyst relied on input from the different support and service groups
of the enterprise (e.g., the database group, the network group, or the server
group) about recent performance bottlenecks in their particular part of the
infrastructure.

The aim of the observed customer project was to collect and analyze perfor-
mance data in a continuous and automated manner, therewith enabling the
infrastructure analyst to proactively investigate shortages in disk space, mem-
ory, CPU performance, or network response time, and take appropriate actions
before actual problems arise.

9.4 Project Structure

The customer purchased UC4 Decision and UC4 Insight (the commercial dis-
tribution of SARI’s Event Analyzer [124, 125, 123]) in July 2011 to cope with
the afore-mentioned problems. UC4 Decision was installed along with the pre-
pared standard application for event-based service assurance (see Chapter 8 for
further details) by pre-sales personnel and introductory trainings were given
to the infrastructure analyst. The standard application was then used for the
ex-post analysis of the customer’s IT landscape using UC4 Insight; real-time
monitoring using event-pattern rules was not employed at this time.

In September 2011, a second on-site workshop took place to further tweak
the existing application to the particular needs of the customer and to en-
able the sense-and-respond-based detection of upcoming resource bottlenecks.
This second workshop was held by a consultant specialized in Complex Event
Processing and can be roughly separated into three phases as discussed in the
following.

Phase 1: Event-Processing Infrastructure

In a preceding requirements analysis, it had become clear that the required
event-processing functionality goes beyond the installed standard application
for event-based service assurance; not only on the level of building blocks for
sense-and-respond rule management, but also on the level of event types and
the integration of SARI with the underlying Automation Engine. In the first

226 9 Case Study

phase of the workshop, the consultant therefore extended the existing appli-
cation by new event types, event adapters, event services, and infrastructural
rules. These extensions prepare the event-data input for a newly-created rule
space “Performance Monitoring”, which is hosted on a single rule service and
serves as the point of integration between the extended event-processing in-
frastructure of the application and the end-user defined event-processing logic.

Phase 2: Building Blocks

Provided a readily-preprocessed image of the underlying source system, the
objective of the second phase was to set up the building blocks for sense-
and-respond rule management. The consultant and the infrastructure analyst
defined an overall number of four pattern definitions and corresponding busi-
ness patterns, from which the first pair was modeled by the consultant and the
last three pairs could be modeled by the infrastructure analyst alone. Business
actions and templates were modeled in similar procedures.

Phase 3: Rule Instances

In the third and final phase of the workshop, the UC4 Decision Web Client
was installed on Apache Tomcat [10] and rule instances were created according
to the current processing requirements of the company. These rule instances
remained relatively stable until today, however, could easily be changed when-
ever new processing requirements shall arise. The web client is accessible to the
infrastructure analyst and the assistant, who was little involved in the design
and modeling of the extended SARI application but received introductions to
the web client and UC4 Insight.

Although generally available, the infrastructure analyst does not currently
make use of the standard rule spaces for event-based service assurance. An
introduction to these rule spaces, as well as a further extension of the applica-
tion towards enhanced monitoring of SAP systems, will be subject to a future
workshop.

9.5 Application Overview

In the course of the investigated project, several extensions were made to
the standard application for event-based service assurance. In the following,
we discuss the extensions towards rule-based monitoring the customer’s IT
landscape, which include an additional event processing map, four new pattern
definitions, as well as a new rule space. Other extensions concern the ex-post
analysis of the system and are outside the scope of this discussion.

9.5 Application Overview 227

Performance
Monitoring Rules

System Performance
(Machine 1-4)

a

System IO Performance
(Machine 1-4)

Network Performance
Monitoring Service

(Machine 1-4)

Timer Service

Mail

d

c

e
f

System Performance Events System IO Performance Events
Timer Events Network Performance Events

Current Activities

b

Current Activities Events

Figure 9.1. Event Processing Model

Event Processing Model

Figure 9.1 shows the newly-created event processing map.

On the input side, eight sense event adapters are applied to receive “System
Performance” and “System IO Performance” events from the four Windows
machines of the customer’s IT landscape (Figure 9.1a.). System performance
events contain the machine’s current CPU load, free memory, and used mem-
ory. System IO performance events contain the machine’s average physical
disk queue length, average logical disk queue length, and available hard disk
space. Both event types are generated at regular time intervals based on Win-
dows’ performance counters; the respective sense event adapters are available
out of the box with UC4 Decision. Another sense event adapter (b.) retrieves
the current number of activities – i.e., the number of tasks in execution at

228 9 Case Study

this particular point in time – for each client of the supervised UC4 system.
These data are pulled from the automation engine’s database at regular time
intervals using a standard SQL adapter and published in the form of “Current
Activities” events.

In parallel, four event services generate “Network Performance” events for the
monitored Windows machines (c.). Network performance events contain the
response time of a monitored machine and are generated based on “ping”
commands executed executed at the event service. The application’s network-
performance monitoring services are custom .NET implementations and trig-
gered at regular time intervals by standard “Timer” events as generated by a
respectively-configured timer service (d.).1

System performance, system IO performance, and network performance events
are forwarded to the “Performance Monitoring” rule service (e.), which serves
as a host for the extended application’s novel “Performance Monitoring” rule
space. On the output side of the event processing map, a single response event
adapter for emails processes the output of the application’s sense-and-respond
rules (f.).

Sense-and-Respond Rule Management

The extended application includes four new pattern definitions as shown in Ta-
ble 9.1. All these pattern definitions are associated with the new “Performance
Monitoring” rule space, where exactly one business pattern is defined per pat-
tern definition. From the standard application’s existing action definitions, the
“Email” action definition is added to this rule space; again, exactly one busi-
ness action is defined. To provide pattern-specific default configurations for
this business action, templates are defined for all business patterns.

9.6 Discussion

Although limited in size, the investigated use case well demonstrates the appli-
cability and utility of the proposed rule-management framework in real-world
business scenarios. The project was successfully implemented within seven days
(two of them via web conferencing, five at customer-site) and yielded positive
feedback from both the involved consultant and the customer-side represen-
tative, a senior, technically versed infrastructure analyst. In the words of the

1 Network performance events would usually be generated using a respective event
adapter. However, for reasons that go far beyond the scope of this thesis, it is cur-
rently easier to integrate a custom event-service implementation than to integrate
a custom event-adapter implementation.

9.6 Discussion 229

Network response time exceeded

Description Triggers whenever two successive network performance events show a
network response time greater than a user-specified threshold.

Decision Graph A condition component tests the network response time of all incom-
ing network performance events against the user-specified threshold.
If the threshold is exceeded, the current value of a score “Network
response time” is retrieved for the triggering event’s “Host” attribute
and also tested against the specified threshold. If this condition eval-
uates to true, a signal component is activated. In any case (i.e., if
the initial condition evaluates to false, if the business entity condi-
tion evaluates to false, or if the business entity condition evaluates
to true), the “Network response time” score is updated to the most
recent network response time as is available from the triggering event.

Input Parameters Maximum accepted network response time

Output Parameters Host name, maximum accepted network response time

CPU load exceeded

Description Triggers whenever two successive system performance events show a
CPU load greater than a user-specified threshold.

Decision Graph Analog to “Network response time exceeded”, but based on “System
performance” events and the CPU load attribute.

Input Parameters Maximum accepted CPU load

Output Parameters Host name, maximum accepted CPU load

Disk space critical

Description Triggers whenever disk space falls below a user-specified percentage.

Decision Graph A condition component evaluates to true and activates the pattern
definition’s signal whenever an incoming system IO performance event
shows a free disk-space value below the user-specified percentage.

Input Parameters Minimum accepted disk space

Output Parameters Host name, free disk space

Number of activities exceeded

Description Triggers whenever the number of activities exceeds a user-specified
threshold.

Decision Graph A condition component evaluates to true and activates the pattern
definition’s signal whenever an incoming current activities events
shows a value greater than the user-specified threshold.

Input Parameters Maximum accepted activities

Output Parameters Client, Activities count, Maximum accepted activities

Table 9.1. Pattern Definitions

analyst, the project successfully “enable[d] [the customer] to create custom
alerts to inform [. . .] about potential problems so they can be addressed be-
fore they impact the system or users” [9]. The customer thereby benefits from
the full-fledged rule-management architecture not so much because of a partic-
ular need for rapid rule changes – in fact, the created rule instances remained
relatively stable until today – but because of the increased usability for end
users of the system. In an experience report, the involved infrastructure analyst
emphasized that the UC4 Modeling Studio “will only need to be referenced
when adding or removing entries from the [SARI application]” [9]. Also, the
established architecture enables technically inexpert employees to investigate
the underlying system both in real time (through sense-and-respond rules) and
retrospectively (through prepared visualization templates in UC4 Insight).

230 9 Case Study

User Roles

A particular focus of our case study was on the distribution of tasks and
responsibilities among the involved individuals. Figure 9.2 shows the involved
individuals along with their user roles in the investigated business environment,
as can be concluded from the above-described project phases.

System Operator

Solution Designer

Rule Manager

Business Operator

Consultant

Infrastructure
Analyst

Assistant

Figure 9.2. User Roles and Implementations

In the investigated use case, the consultant acts as a system operator in design-
ing and setting up the event-processing infrastructure of the extended SARI
application. At the time of the workshop, this could not be accomplished by
customer-side personnel; although significant skills in SARI application de-
velopment were acquired by the infrastructure analyst, it would have been
difficult, if not impossible, for him to develop custom event-service implemen-
tations or to write SQL statements that retrieve internal data from the under-
lying Automation Engine. A consultant-based implementation of the system
operator role seems reasonable due to the greater stability of an application’s
event processing infrastructure. Still, if further extensions to the application
are demanded, it may be more efficient to train a customer-side technician.

The infrastructure analyst implements the solution designer role as well as the
rule manager role, i.e., is responsible for the design, modeling and adminis-
tration of both event-level and business-level building blocks. A combination
of these roles seems natural in environments where a senior domain expert
has great technical skills, and/or where the number of business-level building
blocks is very small. Both is given in the investigated use case.

The assistant – technically less experienced than the infrastructure analyst
and little involved in the design and implementation of the investigated SARI
application – is expected to implement the business operator role as soon as
changes in the rule set become necessary. As such, the assistant is enabled

9.6 Discussion 231

to create, deploy and administrate sense-and-respond rules based on the pre-
defined building blocks and templates in a way that fully abstracts from the
underlying integration and rule-evaluation logic. In the medium run, it seems
reasonable to grant well-defined business-operator rights to larger user groups,
e.g., to members of the customer’s different support and service groups.

We conclude that the observed distribution of task and responsibilities com-
plies in a very natural manner with the proposed system of user roles. Still,
it is imperative for us to investigate the corporation between user groups in
larger projects. Such investigations are subject to near future work.

Rule Management Facilities

The proposed rule-management facilities proved suitable for creating, deploy-
ing, and administrating event-pattern rules in the investigated application sce-
nario. Our case study also showed, however, that the given 1-to-n relationship
between event-level building blocks and business-level building blocks does not
necessarily meet the requirements of real-world business environments. In the
presented SARI application, exactly one business-level building block is de-
fined per event-level building block. In such situations, a strict separation of
these concepts can easily become counterintuitive to end users and be per-
ceived as an administrative overhead. As reported by the consultant, it totally
made sense for the infrastructure analyst to define natural-language represen-
tations of the created event-level building blocks. It was, however, not clear to
him why this must happen in separate entities.

As a future improvement of the proposed framework, we therefore plan to intro-
duce an optional default business-level building block per event-level building
block. This default block could be defined and administrated as part of the
event-level building block to which it belongs, and implicitly be created when-
ever the event-level building block is added to a rule space. Further business-
level building blocks could be defined as usual.

10

Conclusion

10.1 Summary

In this thesis, we presented a novel rule-management framework for the generic
event-processing system Sense-and-Respond Infrastructure (SARI) [114]. The
primary goal of this framework is to cater to the needs of IT experts as well as
business users, both of which shall be supported in the creation, deployment,
and administration of event-pattern rules according to their specific needs and
requirements. This is achieved through two complementary, yet clearly decou-
pled rule-management approaches for IT experts and business users, referred to
as infrastructural rule management and sense-and-respond rule management.
Both approaches eventually result in decision graphs, which form the basis
for any rule-based event processing in SARI and are directly interpretable by
SARI’s rule engine. However, while infrastructural rule management seeks to
support the management of these decision graphs with minimal administra-
tive overhead, sense-and-respond rule management builds upon a sophisticated
template model that hides underlying complexity from business users.

The presented framework has been extended by approaches to entity-based
state management – making SARI applicable also in entity-centric business
environments – and hierarchical pattern modeling, which facilitates reuse of
pattern-detection logic on the level of event patterns. Our research is framed
by a model-driven reference description of SARI, which is intended to serve
as a basis for future research and facilitate communication, interchange, and
cooperations within the event-processing community.

Infrastructural rule management denotes the management of processing logic
through IT experts and technically versed domain experts. It particularly fo-
cuses on

(i) expressiveness – i.e., rule-authoring facilities must be expressive enough
to establish a proper image of the underlying source systems

234 10 Conclusion

(ii) efficiency of use – i.e., the creation, deployment, and administration of
rules should be as immediate, clear, and transparent as possible

(iii) full and system-wide access – i.e., users must be able to align the imple-
mented processing logic with all other elements of an application

In the proposed workflow, so-called system operators model event-pattern rules
in a single, comprehensive model, in parallel and fully integrated with the other
elements of an application’s event-processing infrastructure. The resulting rule
definitions are immediately interpretable to SARI and can be deployed by
directly assigning them to one or more of the application’s rule services. System
operators are provided a comprehensive, power-user-oriented IDE for event-
based applications, in which rule definitions are managed along with event
types, correlation sets, business entities, and event processing maps.

Sense-and-Respond rule management denotes the management of business
logic through business users. Its primary focus is on ease of use, i.e., the process
of creating, deploying, and administrating an event-pattern rule must fully ab-
stract from the underlying complexity of an event-processing framework. Other
emphases are

(i) personalized rule management – i.e., the system must support a notion
of rule ownership

(ii) rule activation and scheduling – i.e., it shall be possible to pause and
resume the execution of a rule either manually or based on a calendar

(iii) hot deployment – i.e., it shall be possible to create and remove rules at
any point in time, without having to restart the entire system

(iv) security – i.e., it shall be possible to clearly restrict the competences of
a business user

The proposed workflow for sense-and-respond rule management is rooted in a
two-layered model of “building blocks” of pattern-detection and action logic.
These building blocks fully abstract from underlying complexity and can be
assembled to concrete event-processing logic according to the given processing
needs of a company.

In the first step of this workflow, well-trained power users of a system prepare
so-called event-level building blocks of pattern-detection logic and reaction logic
according to the general requirements of a company. These building blocks en-
capsulate event-processing logic in a form that is interpretable to SARI; how-
ever, they are designed with focus on reusability across different application
scenarios and often too generic to be directly usable for domain experts. In the
second step of the workflow, senior domain experts therefore refine these build-
ing blocks into less flexible, yet easier-to-use business-level building blocks. The
basic aim of these building blocks is to simplify the instantiation of an under-
lying event-level building block with respect to the specific use case in which it

10.1 Summary 235

is to be used. Most notably, this is achieved by setting input parameters or re-
stricting their input domains. Eventually, business-level building blocks define
a high-level, textual description of the represented event-processing logic, with
placeholders for all input parameters. In the third and last step of the workflow,
technically inexperienced domain experts can assemble business-level building
blocks based on their textual representations to a natural language sentence
of the form “if pattern, then action(s)”. The deployment of resulting event-
pattern rules is performed transparently through the concept of rule spaces,
which group building blocks and implicitly associate resulting event-pattern
rules with one or more rule services. For the creation and administration of
sense-and-respond rules, business users are provided a simplified web applica-
tion, through which event-pattern rules can be assembled using a wizard-based
interface.

Entity-based state management addresses the problem of monitoring a com-
plex, durable entity – e.g., a counter, a customer, or a queue – which state is
accessible only in the form of continuous, low-level update events. We extended
SARI by the concept of business entity providers, which encapsulate arbitrary
state-calculation logic and manage state in the form of typed, application-wide,
identifiable data structures. These so-called business entities can then be up-
dated and monitored for exceptional states using standardized interfaces. A
particular focus of our work was on the seamless integration of business entities
with existing rule management and evaluation facilities. In a generalized cor-
relation model, semantic relationships can now be expressed not only between
events, but also between events and business entities, and between different
kinds of business entities. In an extended decision-graph model, specialized rule
components allow invoking update operations and evaluating Boolean condi-
tions on those business entities that are related to the active correlation session.
Entity-based state management was furthermore designed to naturally comple-
ment the proposed differentiation into infrastructural and sense-and-respond
rule management: Infrastructural rules can be applied to keep business entities
up-to-date and in-sync with possible real world correspondences. Sense-and-
respond rules monitor business entities as a part of the event-based image of
underlying source systems and trigger actions in response to noteworthy states.
It is essential to note, however, that such architecture is mandatory; in many
cases, it may be sufficient to update and monitor a business entity within a
single rule definition.

Hierarchical pattern modeling facilitates reuse of pattern-detection logic on
the level of pattern definitions and rule definitions, which otherwise have to
be modeled in separate, potentially highly complex and redundant decision
graphs. Reusability is achieved through special rule components – so-called
sub-pattern components – which serve as references to sub-level pattern def-
initions in the super-level decision graphs in which they are used. These rule
components can be integrated with the other elements of SARI’s graphical
event-pattern language in an accustomed workflow and can be configured to

236 10 Conclusion

the given application context through respective input-parameter values. Tai-
lored evaluation strategies enable high-performance event processing as well
as arbitrary nestings of pattern-detection logic. Similar to entity-based state
management, hierarchical pattern modeling does well integrate with, but not
immediately depend on the proposed approach to rule management. It relies,
however, on the concept of pattern definitions, which are implicitly available
when the presented rule-management framework is used.

Since implemented within SARI, the presented framework and its extensions
have been successfully applied in use cases from business domains. Experi-
ence from these projects confirmed that a separation into infrastructural and
sense-and-respond rule management is particularly useful when the high-level
business logic of an application shall be administrated by end users with re-
stricted technical skills, and/or changes frequently. Here, significant efficiency
enhancements could be achieved for both the customers’ IT departments –
which may now focus on maintaining the low-level processing logic of an ap-
plication – and the involved domain experts, which may now administrate their
rules by themselves, in a straightforward and fail-safe manner. Experience also
showed, however, that in comparison to less flexible solutions that are based on
rule definitions only, setting up a full-fledged rule-management system requires
considerable additional efforts, e.g., for identifying event-processing logic that
qualifies as a “building block”, abstracting from such logic through input and
output parameters, and defining and configuring rule spaces. Such efforts may
not be justified in smaller installations or if all users have sufficient skills any-
way. It is essential to note, though, that the proposed framework provides full
support for both kinds of architectures: If a separate sense-and-respond layer
is not rewarding, the complete functionality of an application can just as well
be implemented based on rule definitions.

Resulting in applications that are inherently generic and adaptable to the
current processing needs of an enterprise through sense-and-respond rules, ex-
isting projects eventually showed that our framework supports the definition
of “standardized” CEP solutions, which can be offered to multiple customers
with similar basic processing requirements and business environments. Cus-
tomers can then benefit from the typical advantages of commercial off-the-shelf
(COTS) software, including reduced costs, rapid deployment, well-tested and
documented functionality, and standardized updates. The idea of solution tem-
plates, which combine a prepared sense-and-respond rule management system
with so-called visualization templates for the ex-post analysis of a system, is
not a focus of this thesis but has been elaborated in a separate publication [88].

10.2 Evaluation Against Design Science 237

Guideline Description

1 Design as an Artifact Design science requires the creation of a purposeful IT
artifact.

2 Problem Relevance Design science must be relevant with respect to an im-
portant business problem.

3 Design Evaluation Design science must evaluate the utility, quality, and ef-
ficacy of a design artifact using well-executed evaluation
methods.

4 Research Contributions Design science must provide clear and verifiable contri-
butions in the areas of the design artifact, design foun-
dations, and/or design methodologies.

5 Research Rigor Design science relies upon the application of rigorous
methods in both the construction and evaluation of the
design artifact.

6 Design as a Search Process Design science must apply a search process to reach de-
sired ends while satisfying laws in the problem environ-
ment.

7 Communication of Research Design science must be presented effectively both to
technology-oriented as well as management-oriented au-
diences.

Table 10.1. Guidelines for Design-Science Research [53]

10.2 Evaluation Against Design Science

The presented research on user-oriented rule management is located at the
intersection of computer science and the Information Systems (IS) discipline,
which goal is to develop “knowledge concerning both the management of in-
formation technology and the use of information technology for managerial
and organizational purposes” [143]. It is particularly oriented towards Alan
Hevner’s well-known guidelines for Design Science in IS Research [53]; in
contrast to IS’ complementary behavioral-science paradigm that focuses on
theories about human and organizational phenomena, design science thereby
seeks to design, implement, and evaluate innovative artifacts that solve orga-
nizational problem. In the remainder of this section, Hevner’s guidelines are
discussed in the context of this thesis.

Research Contributions

This thesis contributes to the field of Complex Event Processing an innova-
tive framework for user-oriented rule management, along with its extensions
towards entity-based state management and hierarchical pattern modeling.
These contributions advance our understanding of how best to provide CEP
functionality within practical business environments where heterogeneous user
groups are concerned with the setup and maintenance of event-driven applica-
tions. Another contribution is a model-driven reference description of SARI,
which is intended to serve as a basis for future research efforts and encourage
communication, interchange, and cooperation within the community.

238 10 Conclusion

Problem Relevance

In recent times, mismatches between the complexity of CEP frameworks and
the technical abilities of their adopters have motivated an active discussion on
how to make CEP accessible to business users. Etzion and Niblett [37] list the
development from programming-centered to semi-technical development tools
as one of the emerging directions in event processing. Chandy and Schulte [27]
identify the ability to “enable business users to tailor systems to their needs”
as a major criterion for the relevance of an event-based system, and claim that
a one-size-fits-all specification of events and responses does not work. Surveys
among potential and actual adopters of CEP showed that a vast majority of
businesses would like to have rules defined by business specialists or business
analysts [33]. We conclude that a rule-management framework that is aware of
different user groups, their particular skills, responsibilities, and requirements
is demanded both in the academic world and in the industry.

Design as an Artifact

The research efforts presented in this thesis have led to a range of fully func-
tional and partly commercialized improvements of the pre-existing SARI suite.
Using the novel rule-management framework and its extensions, technical ex-
perts as well as business users are now provided workflows and tools that are
tailored to their particular skills, competences, and requirements. These tools
and workflows are applicable also in entity-centric environments which have
been difficult, if not impossible, to approach with existing rule-modeling and
evaluation facilities. We therefore argue that the developed framework qualifies
as an “purposeful IT artifact created to address an important organizational
problem” [53].

Design Evaluation

The presented concepts have been evaluated for technical feasibility, appli-
cability, and utility in practical business environments using well-recognized
methods. Technical feasibility of our concepts is proofed by their successful im-
plementation within SARI. Applicability is demonstrated using an exemplary
SARI application for event-based service assurance, where SARI is applied as
an extension to the UC4 Automation Engine [130]. Utility in practical business
environments has been investigated in a case study, conducted over a period
of seven days at a leading manufacturer of agricultural machinery.

10.2 Evaluation Against Design Science 239

Research Rigor

According to Hevner et al. [53], research rigor

“is derived from the effective use of the knowledge base – theoretical
foundations and research methodologies. Success is predicated on the
researcher’s skilled selection of appropriate techniques to develop or
construct [...] [an] artifact and the selection of appropriate means to
[...] evaluate the artifact.”

The presented work draws from existing research in the areas of event-based
computing, Business Rule Management (BRM), and active object-oriented
databases, all of which build upon a solid and well-formalized theoretical
background (e.g., [21, 51, 83, 100, 101]) and have proved effective by their
widespread use in practical enterprise computing. Template-based rule cre-
ation, which underlies our approach to sense-and-respond rule management,
has been studied in the context of BRM and is commonly recognized as a
suitable method for business-user-oriented rule creation (e.g., [47]). The ap-
plicability and generalizability of template-based rule creation strategies is
utilized in several of the market’s leading BRM systems (e.g., [38, 57]). All
throughout this thesis, particular attention is paid to solid meta-model design
as well as type safety (e.g., [79]) to assure logical validity across heteroge-
neous application scenarios. Our work is thoroughly evaluated for technical
feasibility, applicability, and utility using the afore-mentioned means.

Design as a Search Process

The presented approach to user-oriented rule management is an iterative ad-
vancement of SARI’s pre-existing rule management framework as originally
presented by Schiefer et al. [113]. This approach equally builds upon the con-
cept of decision graphs, however, is exclusively oriented towards power users
of a system and imposes a strong coupling of event patterns, actions, and
rule services for all event-pattern rules of an application. Customer feedback
showed that these restrictions do often not correspond with the organizational
framework conditions of a company. With further improvements in mind, the
present framework is designed with a particular focus on extendability and
implemented using commonly used and well-maintained technologies such as
.NET, Java, and Google Web Toolkit (GWT) [46].

Communication of Research

Our research efforts have resulted in an overall collection of six papers and
articles, all of which were presented at international conferences or accepted
for publication by international journals. These are:

240 10 Conclusion

• H. Obweger, J. Schiefer, M. Suntinger, and P. Kepplinger, “Model-driven
rule composition for event-based systems,” Int. J. Business Process Inte-
gration and Management, vol. 5, no. 4, 2011.

• H. Obweger, J. Schiefer, M. Suntinger, P. Kepplinger, and S. Rozs-
nyai, “User-oriented rule management for event-based applications,” in
DEBS ’11: Proceedings of the 5th ACM International Conference on Dis-
tributed Event-Based Systems. New York, NY, USA: ACM, 2011, pp. 39–48.

• A. Kavelar, H. Obweger, J. Schiefer, and M. Suntinger, “Web-based de-
cision making for Complex Event Processing systems,” in Services ’10:
Proceedings of the IEEE 6th World Congress on Services. Los Alamitos,
CA, USA: IEEE Computer Society, 2010, pp. 453–458.

• H. Obweger, J. Schiefer, M. Suntinger, and R. Thullner, “Entity-based
state management for Complex Event Processing applications,” in Rule-
Based Reasoning, Programming, and Applications, ser. Lecture Notes in
Computer Science, N. Bassiliades, G. Governatori, and A. Paschke, Eds.
Springer Berlin / Heidelberg, 2011, vol. 6826, pp. 154–169.

• H. Obweger, J. Schiefer, P. Kepplinger, and M. Suntinger, “Discovering
hierarchical patterns in event-based systems,” in Proceedings of the 2010
IEEE International Conference on Services Computing. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 329–336.

• H. Obweger, J. Schiefer, M. Suntinger, F. Breier, and R. Thullner, “Com-
plex Event Processing off the Shelf – Rapid development of event-driven
applications with solution templates,” in MED ’11: Proceedings of the 19th
IEEE Mediterrean Conference on Control and Automation, 2011.

Technical audiences are provided with a model-driven overview of SARI, com-
plete and formalized descriptions of the proposed rule-management framework
and its extensions, as well as architectural details on the presented reference
implementations. Researchers are therewith enabled to further extend the pro-
posed concepts. Also, researchers are encouraged to port the proposed concepts
to other CEP engines. Managerial audiences are provided with detailed de-
scriptions of the different user roles that are assumed to participate in the
creation and maintenance of event-driven applications. Potential adopters can
then decide whether or not an implementation of the proposed system is valu-
able in their particular organizational settings. A case study is presented to
illustrate the performance of the proposed architecture in real-world business
environments.

10.3 Open Issues and Future Work 241

10.3 Open Issues and Future Work

In this thesis, a novel approach to rule management has been presented and
thoroughly evaluated for technical feasibility, applicability, and utility. Despite
the mainly positive results of these evaluations, several potential improvement
points could be identified in the proposed rule-management facilities; these
have been discussed in Section 8.9 and Section 9.6 and will be subject to
further research and development over the next months. Apart from these
issues, the following ideas and open issues will drive our future research:

Luckham [72] identified “ensuring logical consistency and absence of redundan-
cies” as one of four key tasks for event-pattern rule management systems. This
task is not currently addressed with the proposed approach to user-oriented
rule management, neither on the level of individual decision graphs nor on
the level of entire rule services or rule spaces. We believe that rule-space-level
consistency checking could provide a great benefit to sense-and-respond rule
management, where business users operate in parallel and a potentially mu-
tually exclusive manner. Here, it is currently possible to trigger counteracting
actions (such as upgrading and blocking a user) in response to one and the same
event pattern, or to trigger an atomic action (such as incrementing the rating
of a customer) in several, identical copies of a sense-and-respond rule. The
definition of a semantic model, enabling application developers to mark action
definitions as counteracting, atomic, or similar, is subject to future work.

Another open issue is full versioning support as is commonly available in
business-rule management (BRM) solutions. Versioning enables users to inves-
tigate the history of a given rule instance and to revert unsuccessful changes,
e.g., if a changed threshold in an event pattern results in an unacceptably high
false-positive rate. A significant challenge here is in the strong dependency
between a rule instance and the application description of a given SARI ap-
plication; in particular, a rule instance can be rolled back to a certain version
only if this version is consistent with respect to the given set of rule spaces,
pattern definitions, and action definitions.

Future research will furthermore focus on the statistical analysis of rule in-
stances and rule spaces during the run time of a SARI application. Currently,
it is not easily possible for users of the proposed rule-management system to
answer questions like: How often does a particular event-pattern rule trigger
per hour or day? How did my recent changes affect the behavior of this rule?
Are there periods of increased activity, or is there a long-running trend? We be-
lieve that well-edited runtime data – e.g., delivered in the form of daily reports
or interactive dashboards – could help IT experts as well as business users in
creating lean and effective rule sets and reacting to emerging developments in
a proactive manner. Apart from tailored user interfaces, this extension requires
changes in the back-end and data management layer of SARI.

242 10 Conclusion

In entity-based state management, future research will focus on an effi-
cient implementation and thorough performance evaluations of business entity
providers and underlying rule evaluation strategies. In the latter case, spe-
cial emphasis is on an alternative, synchronous rule evaluation mode, where
noteworthy states are guaranteed to be detected. Another research topic is
the entity-driven analysis of historical event data; while a line-chart based vi-
sualization for scores has been implemented and incorporated into the Event
Analyzer [123, 124], tailored visualization methods for base entities and sets
are still to be designed.

In hierarchical pattern modeling, it is conceivable to exploit the hierarchi-
cal structure of decision graphs towards their optimized evaluation on incom-
ing event streams, through extensive reuse of intermediate event-processing
results. While comparable approaches have been discussed in the literature
(e.g., [68, 69, 70]), the proposed approach is unique in its extensive use of
input parameters and other configuration options, which we believe makes it
extremely difficult to achieve valuable results.

Outlook: CEP as a Service?

The presented approach to user-oriented rule management may be considered
as a first step away from the large-scale, lengthy-to-install, and difficult-to-use
IDEs that were long dominating CEP, towards tools that are tailored to the
particular requirements of their users, available “any time, anywhere”, and
usable without any preliminary steps. In the long run, we believe that this de-
velopment is highly promising and should be pursued further – not only with
respect to front-end tools, but also regarding the actual event-processing and
data-management facilities of a CEP engine. Why investing time and money
into setting up a CEP engine, why worrying about reliability, why messing
around with software updates and bug fixes, if all this could be done some-
where else by someone else, say, in cloud computing environments? At a very
final stage of this process, customers could then consume CEP “as a service”:
Subscribing to CEP functionality for exactly as long as it is needed, model-
ing the desired event-processing logic through tailored browser applications,
and integrating their business with the CEP provider using standard protocols
such as SOAP, JSON, or SMTP. CEP as a service will not be available tomor-
row, and it may not be available next year. But it could become an important
future direction for CEP, and it could become a great chance for innovative
startups to (re-)position themselves in this fast-growing market. Until then,
plenty of research problems are waiting to be worked on: How best to price such
service? How to protect your system and your customers from threats, e.g.,
through spoofed event submissions? What about availability and service-level
agreements? And, last but not least: How to process the events of hundreds or
thousands of customers in a performant and scalable manner?

List of Figures

1.1 Scope of this Thesis . 28

2.1 Preliminary Example (cf. [105]) . 41

3.1 Sense-and-Respond Loop . 45
3.2 SARI Application Overview . 45
3.3 SARI Application Model . 48
3.4 Event Type Meta-Model . 52
3.5 Exemplary Event Type. 53
3.6 Correlation Set Meta-Model . 54
3.7 Exemplary Correlation Set . 55
3.8 Correlating Events at Run Time . 56
3.9 Event Processing Meta-Model . 57
3.10 Map Element Hierarchy . 58
3.11 Exemplary Event-Processing Map . 61
3.12 Implementation Architecture . 62

4.1 Decision Graphs in the SARI Application Model 70
4.2 Decision Graph Meta-Model . 73
4.3 Event Condition Component . 76
4.4 Event Case Component . 77
4.5 Timer Component . 78
4.6 Scheduler Component . 78
4.7 Response-Event Action Component . 80
4.8 Exemplary Decision Graph . 80
4.9 Handling Decision-Graph State at Run Time 82
4.10 Exemplary Stateless Decision Graph . 83

5.1 Rule Management in Power-User-Oriented CEP Systems 86
5.2 Rule Management in CEP/BRE Architectures 87
5.3 Rule Management in SARI . 88

244 List of Figures

5.4 Infrastructural Rules vs. Sense-and-Respond Rules 89
5.5 Overview of Infrastructural Rule Management 99
5.6 Rule Definition Meta-Model . 101
5.7 Exemplary Rule Definition . 102
5.8 Overview of Sense-and-Respond Rule Management 105
5.9 Rule Spaces in a SARI Application . 109
5.10 Pattern Definition Meta-Model . 111
5.11 Signal Component . 112
5.12 Action Definition Meta-Model . 114
5.13 Business Pattern Meta-Model . 116
5.14 Business Action Meta-Model . 119
5.15 Sense-and-Respond Rule Meta-Model . 120
5.16 Exemplary Sense-and-Respond Rule . 122
5.17 Rule Space Meta-Model . 123
5.18 Rule Space Meta-Model: Prepared Bindings and Templates 123
5.19 Implementation Architecture . 127
5.20 Sense-and-Respond Rule Schema . 129
5.21 Pattern Definition Editor . 133
5.22 Action Definition Editor . 133
5.23 Pattern Page of the Rule Space Editor . 135
5.24 Action Page of the Rule Space Editor . 135
5.25 Templates Page of the Rule Space Editor . 136
5.26 Template Creation Wizard . 136
5.27 Web Client Integration . 137
5.28 Web Client Overview . 138
5.29 Dropped-Down Rule Filtering Control . 140
5.30 Rule Space Selection . 141
5.31 Pattern Selection . 142
5.32 Rule Assembling . 142
5.33 Input Parameter Dialog . 143
5.34 Defining Input-Parameter Values in Concatenation Mode 144
5.35 Rule Finalization . 145
5.36 Template Selection . 146
5.37 Template Instantiation . 147
5.38 Repairing Inconsistent Rules . 148

6.1 A High-Level View on Business Entity Providers 152
6.2 Infrastructural Rules vs. Sense-and-Respond Rules 153
6.3 SARI Application Model, including the Business Entity Model . 155
6.4 Business Entity Provider Meta-Model . 159
6.5 Score Type Meta-Model . 161
6.6 Exemplary Score Type . 163
6.7 Base Entity Type Meta-Model . 164
6.8 Exemplary Base Entity Type . 164
6.9 Queue Type Meta-Model . 166

List of Figures 245

6.10 Exemplary Set Type . 167
6.11 Generalized Correlation Set Meta-Model . 168
6.12 Exemplary Extended Correlation Set . 169
6.13 Business-Entity Action Meta-Model . 170
6.14 Business Entity Action Component . 172
6.15 Business-Entity Condition Meta-Model . 173
6.16 Business Entity Condition Component . 175
6.17 Implementation Architecture . 176
6.18 Continuous Entity Monitoring . 180
6.19 Example Overview . 181
6.20 Exemplary Updating Rule . 182
6.21 Exemplary Pattern Definition for Continuous Entity Monitoring 183
6.22 Exemplary Pattern Definition for On-Demand Entity Monitoring184

7.1 Hierarchical Event-Pattern Detection . 189
7.2 SARI Application Model with Sub-Pattern Relationships 189
7.3 Pattern Definition Meta-Model . 193
7.4 Pattern Detection with Sub-Pattern Components 195
7.5 Sub-Pattern Component Meta-Model . 195
7.6 Sub-Pattern Component . 197
7.7 Applying Expand to an Exemplary Decision Graph (1 of 2) 200
7.8 Applying Expand to an Exemplary Decision Graph (2 of 2) 200
7.9 Rule Definition “Send Email on Suspicious User Behavior” 207

8.1 System Overview . 211
8.2 Event Processing Model . 214
8.3 Rule Definition “Filter duplicate agent messages” 217

9.1 Event Processing Model . 227
9.2 User Roles and Implementations . 230

List of Tables

1.1 Guidelines for Design-Science Research [53] 30

2.1 Event Types . 41

3.1 Stages of the Sense-and-Respond Loop [114, 131] 47

5.1 Exemplary Pattern Definition . 113
5.2 Exemplary Action Definition . 115
5.3 Exemplary Business Pattern . 118
5.4 Exemplary Business Action . 119
5.5 Sources of Sense-and-Respond Rule Inconsistency 130
5.6 Sources of Sense-and-Respond Rule Inconsistency 147

6.1 Update Functions for Scores . 162
6.2 Query Properties for Scores . 163
6.3 Update Functions for Base Entities . 164
6.4 Update Functions for Sets . 166
6.5 Querying Properties for Sets . 166

7.1 Pattern Definition “Short-Term Transaction” 205
7.2 Pattern Definition “Balance Above Threshold” 206

8.1 Event Types . 212
8.2 Infrastructural Rules . 216
8.3 Rule Spaces . 218
8.4 Pattern Definitions . 219
8.5 Pattern Definitions (continued) . 220
8.6 Pattern Definition “Task runtime exceeded per type” 220
8.7 Action Definitions . 222

9.1 Pattern Definitions . 229

248 List of Tables

10.1 Guidelines for Design-Science Research [53] 237

Listings

5.1 Exemplary Sense-and-Respond Rule Description 129

List of Algorithms

7.1 Expand(d, p, sub) . 199

References

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-
H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik, “The design of the Borealis stream processing
engine,” in CIDR ’05: Proceedings of Second Biennial Conference on
Innovative Data Systems Research, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” The VLDB Journal, vol. 12,
no. 2, pp. 120–139, August 2003.

[3] A. Adi, D. Botzer, G. Nechushtai, and G. Sharon, “Complex Event Pro-
cessing for financial services,” in Proceedings of the IEEE Services Com-
puting Workshops. Washington, DC, USA: IEEE Computer Society,
2006, pp. 7–12.

[4] A. Adi and O. Etzion, “Amit – The situation manager,” The VLDB
Journal, vol. 13, no. 2, pp. 177–203, May 2004.

[5] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. New York: Oxford University Press,
1977.

[6] J. F. Allen, “Maintaining knowledge about temporal intervals,” Com-
munications of the ACM, vol. 26, no. 11, pp. 832–843, November 1983.

[7] R. Altman, W. R. Schulte, M. Pezzini, and D. Sholler, “Predicts 2012:
Cloud computing and event processing will be the key advances in appli-
cation architecture,” Gartner Research, Stamford, CT, USA, Tech. Rep.,
2011.

254 References

[8] R. v. Ammon, C. Silberbauer, and C. Wolff, “Domain specific reference
models for event patterns – for faster developing of business activity
monitoring applications,” in Proceedings of the VIP Symposia on Inter-
net related research with elements of M+I+T++, 2007.

[9] Anon., Internal Customer Report, 2011, details upon request.

[10] Apache Software Foundation, “Apache Tomcat 7,” Software, 2010.

[11] M. Bali, Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing,
2009.

[12] A. Barros, G. Decker, and A. Grosskopf, “Complex events in business
processes,” in Business Information Systems, ser. Lecture Notes in Com-
puter Science, W. Abramowicz, Ed. Springer Berlin / Heidelberg, 2007,
vol. 4439, pp. 29–40.

[13] M. Bichler, “Review of design science in information systems research,
by a. hevner et al.” Wirtschaftsinformatik, vol. 48, no. 2, pp. 133–142,
2006.

[14] C. Brett and M. Gualtieri, “Must you choose between business rules and
Complex Event Processing platforms?” Forrester Research, Cambridge,
MA, USA, Tech. Rep., 2009.

[15] R. Bruns and J. Dunkel, Event-Driven Architecture. Softwarearchitektur
für ereignisgesteuerte Geschäftsprozesse. Berlin Heidelberg: Springer-
Verlag, 2010.

[16] F. Bry and M. Eckert, “Rule-based composite event queries: The lan-
guage XChangeEQ and its semantics,” in RR ’07: Proceedings of the 1st
international conference on Web reasoning and rule systems. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 16–30.

[17] ——, “Rules for making sense of events: Design issues for high-level
event query and reasoning languages,” in Proceedings of the AAAI Spring
Symposium: AI Meets Business Rules and Process Management. Menlo
Park, CA, USA: AAAI Press, 2008, pp. 12–16.

[18] F. Bry, M. Eckert, and P.-I. Patranjan, “Reactivity on the web:
Paradigms and applications of the language XChange,” Journal of Web
Engineering, vol. 5, no. 1, pp. 3–24, 2006.

[19] B. Burton, Y. Genovese, N. Rayner, R. Casonato, M. Smith, M. A. Beyer,
T. Austin, B. Gassman, and D. Sommer, “Predicts 2011: Pattern-based
strategy technologies and business practices gain momentum,” Gartner
Research, Stamford, CT, USA, Tech. Rep., 2010.

References 255

[20] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented software architecture: A system of patterns. New York,
NY, USA: John Wiley & Sons, Inc., 1996.

[21] Business Rules Group, “Business rules manifesto Version 2.0,” Business
Rules Group, Tech. Rep., 2004.

[22] R. Casati and A. C. Varzi, “50 years of events – An annotated bibli-
ography 1947 to 1997,” Philosophy Documentation Center, Tech. Rep.,
1997.

[23] ——, “Events,” in The Stanford Encyclopedia of Philosophy, E. N. Zalta,
Ed., 2010. [Online]. Available: http://plato.stanford.edu/archives/
spr2010/entries/events

[24] A. Castro Alves, “New event-processing design patterns using CEP,” in
Business Process Management Workshops, ser. Lecture Notes in Business
Information Processing, W. Aalst, J. Mylopoulos, N. M. Sadeh, M. J.
Shaw, C. Szyperski, S. Rinderle-Ma, S. Sadiq, and F. Leymann, Eds.
Springer Berlin Heidelberg, 2010, vol. 43, pp. 359–368.

[25] S. Chakravarthy and D. Mishra, “Snoop: An expressive event specifica-
tion language for active databases,” Data Knowl. Eng., vol. 14, no. 1,
pp. 1–26, 1994.

[26] S. Chakravarthy and Q. Jiang, Stream Data Processing: A Quality of
Service Perspective Modeling, Scheduling, Load Shedding, and Complex
Event Processing. Springer Publishing Company, Incorporated, 2009.

[27] K. M. Chandy and W. R. Schulte, Event-Processing: Designing IT Sys-
tems for Agile Companies. McGraw-Hill Professional, 2009.

[28] D. Cohn and R. Hull, “Business artifacts: A data-centric approach to
modeling business operations and processes,” IEEE Data Engineering
Bulletin, vol. 32, no. 3, pp. 3–9, 2009.

[29] D. G. Conway and G. J. Koehler, “Interface agents: Caveat mercator in
electronic commerce,” Decis. Support Syst., vol. 27, no. 4, pp. 355–366,
2000.

[30] Coral8, “Complex Event Processing: Ten design patterns,” Coral8, Inc.,
Tech. Rep., 2006.

http://plato.stanford.edu/archives/spr2010/entries/events
http://plato.stanford.edu/archives/spr2010/entries/events

256 References

[31] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White, “Towards
expressive publish/subscribe systems,” in Advances in Database Technol-
ogy - EDBT 2006, ser. Lecture Notes in Computer Science, Y. Ioannidis,
M. Scholl, J. Schmidt, F. Matthes, M. Hatzopoulos, K. Boehm, A. Kem-
per, T. Grust, and C. Boehm, Eds. Springer Berlin / Heidelberg, 2006,
vol. 3896, pp. 627–644.

[32] A. v. Deursen, P. Klint, and J. Visser, “Domain-specific languages: An
annotated bibliography,” SIGPLAN Not., vol. 35, no. 6, pp. 26–36, 2000.

[33] ebizQ, “Event processing market pulse,” ebizQ, Tech. Rep., 2007.

[34] M. Eckert and F. Bry, “Aktuelles Schlagwort: Complex Event Processing
(CEP),” Informatik Spektrum, vol. 32, no. 2, pp. 163–167, 2009.

[35] Elmo, Gum, Heather, Holly, Mistletoe, and Rowan, Notes Towards the
Complete Works of Shakespeare. Kahve-Society & Liquid Press, 2002.

[36] EsperTech, “Esper,” Software.

[37] O. Etzion and P. Niblett, Event Processing in Action. Stamford, CT,
USA: Manning Publications Co., 2010.

[38] Fair Isaac Corporation, “Blaze Advisor,” Software.

[39] T. Faison, Event-Based Programming: Taking Events to the Limit.
Berkely, CA, USA: Apress, 2006.

[40] L. Fiege, “Visibility in event-based systems,” Ph.D. dissertation, Tech-
nische Universität Darmstadt, 2006.

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Ele-
ments of reusable object-oriented software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

[42] J.-P. Garbani and G. O’Donnell, “Market overview: IT process automa-
tion, Q3 2011,” Forrester Research, Cambridge, MA, USA, Tech. Rep.,
2011.

[43] B. Gassman, G. Herschel, A. Bitterer, J. Richardson, and N. Chandler,
“Cool vendors in business intelligence and performance management,”
Gartner Research, Stamford, CT, USA, Tech. Rep., 2008.

[44] G. Gatziu and K. Dittrich, “SAMOS: An active object-oriented database
system,” IEEE Data Eng. Bulletin, vol. 15, no. 4, pp. 23–26, 1992.

[45] T. Gockel, Form der wissenschaftlichen Ausarbeitung: Studienarbeit,
Diplomarbeit, Dissertation, Konferenzbeitrag. Springer-Verlag Gmbh,
2008.

References 257

[46] Google, “Google Web Toolkit 2.1.0,” Software, 2011.

[47] I. Graham, Business Rules Management and Service Oriented Architec-
ture: A Pattern Language. New York, NY, USA: John Wiley & Sons,
Inc., 2007.

[48] M. Gualtieri and J. R. Rymer, “The Forrester Wave: Complex Event
Processing (CEP) platforms, Q3 2009,” Forrester Research, Cambridge,
MA, USA, Tech. Rep., 2009.

[49] S. H. Haeckel, Adaptive Enterprise: Creating and Leading Sense-And-
Respond Organizations. Cambridge, MA, USA: Harvard Business Press,
1999.

[50] Haley, “Haley Expert Rules,” Software, 2007.

[51] B. v. Halle, Business Rules Applied: Building Better Systems Using the
Business Rules Approach. New York, NY, USA: John Wiley & Sons,
Inc., 2001.

[52] E. Hemingway, Preface to “The Great Crusade”, by Gustav Regler.
Longmans, Green and Co., 1940.

[53] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
Information Systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–
105, 2004.

[54] A. Hinze, K. Sachs, and A. Buchmann, “Event-based applications and
enabling technologies,” in DEBS ’09: Proceedings of the Third ACM In-
ternational Conference on Distributed Event-Based Systems. New York,
NY, USA: ACM, 2009, pp. 1–15.

[55] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[56] IBM, “WebSphere Business Events,” Software.

[57] ——, “IBM WebSphere ILOG JRules,” Software, 2010.

[58] JBoss, “Drools 5.1,” Software, 2010. [Online]. Available: http:
//www.jboss.org/drools

[59] ——, “Drools Fusion,” Software, 2010. [Online]. Available: http:
//www.jboss.org/drools/drools-fusion.html

http://www.jboss.org/drools
http://www.jboss.org/drools
http://www.jboss.org/drools/drools-fusion.html
http://www.jboss.org/drools/drools-fusion.html

258 References

[60] D. Jeffery, A. Kozlenkov, and A. Paschke, “State management and con-
currency in event processing,” in DEBS ’09: Proceedings of the Third
ACM International Conference on Distributed Event-Based Systems.
New York, NY, USA: ACM, 2009, pp. 23:1–23:4.

[61] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and R. T. Snodgrass,
“A glossary of temporal database concepts,” SIGMOD Rec., vol. 21, pp.
35–43, September 1992.

[62] A. Kavelar, H. Obweger, J. Schiefer, and M. Suntinger, “Web-based de-
cision making for Complex Event Processing systems,” in Services ’10:
Proceedings of the IEEE 6th World Congress on Services. Los Alamitos,
CA, USA: IEEE Computer Society, 2010, pp. 453–458.

[63] I. Kellner and L. Fiege, “Viewpoints in complex event processing: indus-
trial experience report,” in DEBS ’09: Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems. New
York, NY, USA: ACM, 2009.

[64] R. A. Kowalksi and M. J. Sergot, “A logic-based calculus of events,”
New Generation Computing, vol. 4, no. 1, pp. 67–95, 1986.

[65] S. Kumaran, P. Nandi, T. Heath, K. Bhaskaran, and R. Das, “ADoc-
oriented programming,” in SAINT ’03: Proceedings of the 2003 Sympo-
sium on Applications and the Internet. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 334–341.

[66] K. C. Laudon and C. G. Traver, Management Information Systems,
12nd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2011.

[67] P. Limbeck, M. Suntinger, and J. Schiefer, “SARI OpenRec – Empow-
ering recommendation systems with business events,” in DBKDA ’10:
Proceedings of the 2010 Second International Conference on Advances
in Databases, Knowledge, and Data Applications. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 111–119.

[68] M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and
A. Mehta, “E-Cube: Multi-dimensional event sequence processing using
concept and pattern hierarchies,” Worcester Polytechnic Institute, Tech.
Rep., 2009.

[69] ——, “E-Cube: Multi-dimensional event sequence processing using con-
cept and pattern hierarchies,” in ICDE ’10: Proceedings of the 26th IEEE
International Conference on Data Engineering, 2010, pp. 1097–1100.

References 259

[70] M. Liu and E. A. Rundensteiner, “Event sequence processing: new mod-
els and optimization techniques,” in IDAR ’10: Proceedings of the Fourth
SIGMOD PhD Workshop on Innovative Database Research. New York,
NY, USA: ACM, 2010, pp. 7–12.

[71] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2001.

[72] ——, “What’s the difference between ESP and CEP?” 2006. [Online].
Available: http://complexevents.com/?p=103

[73] ——, “A short history of Complex Event Processing – part 1:
Beginnings,” 2007. [Online]. Available: http://complexevents.com/?p=
321

[74] ——, “A short history of Complex Event Pro-
cessing – part 2: The rise of CEP,” 2007.
[Online]. Available: http://www.complexevents.com/2008/08/28/
a-short-history-of-complex-event-processing-part-2-the-rise-of-cep

[75] J. Makkonen, H. Ahonen-Myka, and M. Salmenkivi, “Applying semantic
classes in event detection and tracking,” in ICON ’02: Proceedings of
International Conference on Natural Language Processing, R. Sangal and
S. M. Bendre, Eds., Mumbai, India, 2002, pp. 175–183.

[76] P. Mangkorntong and F. A. Rabhi, “A high-level approach for defining &
composing event patterns and its application to e-markets,” in EDA-PS
’07: Proceedings of The Second International Workshop on Event-driven
Architecture, Processing and Systems, 2007.

[77] C. McGregor and J. Schiefer, “Correlating events for monitoring busi-
ness processes,” in Proceedings of the 6th International Conference on
Enterprise Information Systems, 2004, pp. 320–327.

[78] Microsoft, “StreamInsight,” Software, 2010.

[79] R. Milner, “A theory of type polymorphism in programming,” Journal
of Computer and System Sciences, vol. 17, pp. 348–375, 1978.

[80] C. H. Mooney and J. F. Roddick, “Mining relationships between inter-
acting episodes,” in SDM ’04: Proceedings of the 4th SIAM International
Conference on Data Mining, 2004, pp. 1–10.

[81] T. Morgan, Business Rules and Information Systems: Aligning IT with
Business Goals. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

http://complexevents.com/?p=103
http://complexevents.com/?p=321
http://complexevents.com/?p=321
http://www.complexevents.com/2008/08/28/a-short-history-of-complex-event-processing-part-2-the-rise-of-cep
http://www.complexevents.com/2008/08/28/a-short-history-of-complex-event-processing-part-2-the-rise-of-cep

260 References

[82] T. Moser, H. Roth, S. Rozsnyai, R. Mordinyi, and S. Biffl, “Semantic
event correlation using ontologies,” in OTM ’09: Proceedings of the Con-
federated International Conferences, CoopIS, DOA, IS, and ODBASE
2009 on On the Move to Meaningful Internet Systems. Berlin, Heidel-
berg: Springer-Verlag, 2009, pp. 1087–1094.

[83] G. Mühl, L. Fiege, and P. Pietzuch, Distributed Event-Based Systems.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[84] E. Mui and K. Kwong, “Event Insight: SAP’s first Complex Event Pro-
cessing engine for the business user,” in SAP TechEd 2010, 2010.

[85] P. Nandi, D. König, S. Moser, R. Hull, V. Klicnik, S. Claussen, M. Klopp-
mann, and J. Vergo, “Data4BPM, Part 1: Introducing business enti-
ties and the Business Entity Definition Language (BEDL),” IBM Corp.,
Riverton, NJ, USA, Tech. Rep., 2010.

[86] A. Nigam and N. S. Caswell, “Business artifacts: An approach to oper-
ational specification,” IBM Syst. J., vol. 42, pp. 428–445, July 2003.

[87] H. Obweger, J. Schiefer, P. Kepplinger, and M. Suntinger, “Discovering
hierarchical patterns in event-based systems,” in Proceedings of the 2010
IEEE International Conference on Services Computing. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 329–336.

[88] H. Obweger, J. Schiefer, M. Suntinger, F. Breier, and R. Thullner, “Com-
plex Event Processing off the Shelf – Rapid development of event-driven
applications with solution templates,” in MED ’11: Proceedings of the
19th IEEE Mediterrean Conference on Control and Automation, 2011.

[89] H. Obweger, J. Schiefer, M. Suntinger, and P. Kepplinger, “Model-driven
rule composition for event-based systems,” Int. J. Business Process In-
tegration and Management, vol. 5, no. 4, 2011.

[90] H. Obweger, J. Schiefer, M. Suntinger, P. Kepplinger, and S. Rozsnyai,
“User-oriented rule management for event-based applications,” in DEBS
’11: Proceedings of the 5th ACM International Conference on Distributed
Event-Based Systems. New York, NY, USA: ACM, 2011, pp. 39–48.

[91] H. Obweger, J. Schiefer, M. Suntinger, and R. Thullner, “Entity-based
state management for Complex Event Processing applications,” in Rule-
Based Reasoning, Programming, and Applications, ser. Lecture Notes in
Computer Science, N. Bassiliades, G. Governatori, and A. Paschke, Eds.
Springer Berlin / Heidelberg, 2011, vol. 6826, pp. 154–169.

References 261

[92] H. Obweger, M. Suntinger, J. Schiefer, and G. Raidl, “Similarity search-
ing in sequences of complex events,” in RCIS ’10: Proceedings of the 2010
Fourth International Conference on Research Challenges in Information
Science, 2010, pp. 631–641.

[93] Oracle, “Open ESB IEP SE,” Software, 2008.

[94] ——, “Oracle Complex Event Processing,” Software, 2011.

[95] Organization for the Advancement of Structured Information Standards
(OASIS), “OASIS Web Services Business Process Execution Language
2.0,” 2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.html/

[96] A. Paschke, “ECA-RuleML/ECA-LP: A homogenous Event-Condition-
Action logic programming language,” in RuleML ’06: Proceedings of the
International Conference on Rules and Rule Markup Languages for the
Semantic Web, 2006.

[97] ——, “Design patterns for Complex Event Processing,” in DEBS
’08: Proceedings of the Second International Conference on Distributed
Event-Based Systems, 2008.

[98] A. Paschke and A. Kozlenkov, “Rule-based event processing and reaction
rules,” in Rule Interchange and Applications, ser. Lecture Notes in Com-
puter Science, G. Governatori, J. Hall, and A. Paschke, Eds. Springer
Berlin / Heidelberg, 2009, vol. 5858, pp. 53–66.

[99] A. Paschke and P. Vincent, “A reference architecture for event process-
ing,” in DEBS ’09: Proceedings of the Third ACM International Confer-
ence on Distributed Event-Based Systems. New York, NY, USA: ACM,
2009, pp. 1–4.

[100] N. W. Paton and O. Dı́az, “Active database systems,” ACM Comput.
Surv., vol. 31, pp. 63–103, March 1999.

[101] L. Perrochon, E. Jang, and D. C. Luckham, “Enlisting event patterns
for cyber battlefield awareness,” in DARPA Information Survivability
Conference and Exposition. Los Alamitos, CA, USA: IEEE Computer
Society, 2000.

[102] R. G. Ross, Principles of the Business Rule Approach. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[103] H. Roth, “Event data warehousing,” Ph.D. dissertation, Vienna Univer-
sity of Technology, 2012 (to appear).

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html/

262 References

[104] H. Roth, J. Schiefer, H. Obweger, and S. Rozsnyai, “Event data ware-
housing for Complex Event Processing,” in RCIS ’10: Proceedings of the
Fourth International Conference on Research Challenges in Information
Science, 2010, pp. 203–212.

[105] S. Rozsnyai, “Managing event streams for querying complex events,”
Ph.D. dissertation, Vienna University of Technology, 2008.

[106] S. Rozsnyai, H. Obweger, and J. Schiefer, “Event Access Expressions:
A business user language for analyzing event streams,” in AINA ’11:
Proceedings of the 25th IEEE International Conference on Advanced In-
formation Networking and Applications, 2011, pp. 191–199.

[107] S. Rozsnyai, J. Schiefer, and H. Roth, “SARI-SQL: Event query lan-
guage for event analysis,” in Proceedings of the 2009 IEEE Conference
on Commerce and Enterprise Computing. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 24–32.

[108] S. Rozsnyai, J. Schiefer, and A. Schatten, “Concepts and models for
typing events for event-based systems,” in DEBS ’07: Proceedings of
the 2007 Inaugural International Conference on Distributed Event-Based
Systems. New York, NY, USA: ACM, 2007, pp. 62–70.

[109] ——, “Solution architecture for detecting and preventing fraud in real
time,” in ICDIM ’07: Proceedings of the 2nd International Conference
on Digital Information Management, 2007, pp. 152–158.

[110] R. Sandhu, R. Boppana, R. Krishnan, J. Reich, T. Wolff, and J. Zachry,
“Towards a discipline of mission-aware cloud computing,” in CCSW ’10:
Proceedings of the 2010 ACM workshop on Cloud computing security.
New York, NY, USA: ACM, 2010, pp. 13–18.

[111] G. Saurer, J. Schiefer, and A. Schatten, “Testing complex business pro-
cess solutions,” in Proceedings of the First International Conference on
Availability, Reliability and Security. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 593–600.

[112] J. Schiefer, H. Obweger, and M. Suntinger, “Correlating business events
for event-triggered rules,” in Rule Interchange and Applications, ser. Lec-
ture Notes in Computer Science, G. Governatori, J. Hall, and A. Paschke,
Eds. Springer Berlin / Heidelberg, 2009, vol. 5858, pp. 67–81.

[113] J. Schiefer, S. Rozsnyai, C. Rauscher, and G. Saurer, “Event-driven rules
for sensing and responding to business situations,” in DEBS ’07: Pro-
ceedings of the 2007 Inaugural International Conference on Distributed
Event-Based Systems. New York, NY, USA: ACM, 2007, pp. 198–205.

References 263

[114] J. Schiefer and A. Seufert, “Management and controlling of time-
sensitive business processes with sense & respond,” in CIMCA ’05: Pro-
ceedings of the International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference
on Intelligent Agents, Web Technologies and Internet Commerce Vol-1.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 77–82.

[115] B. Schilling, B. Koldehofe, U. Pletat, and K. Rothermel, “Distributed
heterogeneous event processing: Enhancing scalability and interoperabil-
ity of CEP in an industrial context,” in DEBS ’10: Proceedings of the
Fourth ACM International Conference on Distributed Event-Based Sys-
tems. New York, NY, USA: ACM, 2010, pp. 150–159.

[116] D. C. Schmidt, H. Rohnert, M. Stal, and D. Schultz, Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects.
New York, NY, USA: John Wiley & Sons, Inc., 2000.

[117] M. Seiriö and M. Berndtsson, “Design and implementation of an ECA
rule markup language,” in Rules and Rule Markup Languages for the Se-
mantic Web, ser. Lecture Notes in Computer Science, A. Adi, S. Stouten-
burg, and S. Tabet, Eds. Springer Berlin / Heidelberg, 2005, vol. 3791,
pp. 98–112.

[118] S. Sen and N. Stojanovic, “GRUVe: A methodology for Complex Event
Pattern life cycle management,” in Advanced Information Systems En-
gineering, ser. Lecture Notes in Computer Science, B. Pernici, Ed.
Springer Berlin / Heidelberg, 2010, vol. 6051, pp. 209–223.

[119] M. Shanahan, “The Event Calculus explained,” in Artificial intelligence
today, M. J. Wooldridge and M. Veloso, Eds. Springer Berlin / Heidel-
berg, 1999, pp. 409–430.

[120] G. Sharon and O. Etzion, “Event-processing network model and imple-
mentation,” IBM Systems Journal, vol. 47, no. 2, pp. 321–334, 2008.

[121] H. A. Simon, The Sciences of the Artificial. Cambridge, MA, USA:
MIT Press, 1996.

[122] StreamBase, Inc., StreamBase 7.0.3 Documentation, 2011.

[123] M. Suntinger, H. Obweger, J. Schiefer, and M. E. Gröller, “Event tun-
nel: Exploring event-driven business processes,” IEEE Comput. Graph.
Appl., vol. 28, pp. 46–55, September 2008.

[124] M. Suntinger, H. Obweger, J. Schiefer, and M. E. Gröller, “The event
tunnel: Interactive visualization of complex event streams for business
process pattern analysis,” in IEEE Pacific Visualization Symposium
2008, 2008.

264 References

[125] M. Suntinger, J. Schiefer, H. Roth, and H. Obweger, “Data warehousing
versus Event-driven BI: Data management and knowledge discovery in
fraud analysis,” in Proceedings of the International Conference on Soft-
ware, Knowledge, Information Management and Applications, 2008, pp.
129–134.

[126] Sybase, Inc., “Beyond relational operators: Programming with
FlexStreams in the Sybase Aleri Streaming Platform,” Sybase, Inc.,
Dublin, CA, USA, Tech. Rep., 2010.

[127] Sybase Inc., “Sybase Aleri Streaming Platform,” Software, 2011.

[128] TIBCO, “BusinessEvents,” Software, 2008.

[129] Y. Turchin, A. Gal, and S. Wasserkrug, “Tuning complex event pro-
cessing rules using the prediction-correction paradigm,” in DEBS ’09:
Proceedings of the Third ACM International Conference on Distributed
Event-Based Systems. New York, NY, USA: ACM, 2009, pp. 1–12.

[130] UC4, “UC4 Automation Engine V9.00,” Software, 2011.

[131] UC4 Senactive, UC4 Decision, 2011.

[132] ——, “UC4 Decision 9.0,” Software, 2011.

[133] R. Vecera, “Efficient indexing, search and analysis of event streams,”
Master’s thesis, Vienna University of Technology, 2007.

[134] K. Vidačković, I. Kellner, and J. Donald, “Business-oriented develop-
ment methodology for Complex Event Processing: Demonstration of an
integrated approach for process monitoring,” in DEBS ’10: Proceedings
of the Fourth ACM International Conference on Distributed Event-Based
Systems. New York, NY, USA: ACM, 2010, pp. 111–112.

[135] K. Vidačković, T. Renner, and S. Rex, “Marktübersicht Real-Time Mon-
itoring Software,” Fraunhofer IAO, Tech. Rep., 2010.

[136] P. Vincent, “Fair Isaac Blaze Advisor Structured Rules Language - a
commercial rules representation,” in W3C Workshop on Rule Languages
for Interoperability, 2005.

[137] S. White, A. Alves, and D. Rorke, “WebLogic event server: A lightweight,
modular application server for event processing,” in DEBS ’08: Proceed-
ings of the Second International Conference on Distributed Event-Based
Systems. New York, NY, USA: ACM, 2008, pp. 193–200.

References 265

[138] A. Widder, R. v. Ammon, P. Schaeffer, and C. Wolff, “Combining dis-
criminant analysis and neural networks for fraud detection on the base
of Complex Event Processing,” in DEBS’ 08: Proceedings of the Second
International Conference on Distributed Event-Based Systems, 2008.

[139] World Wide Web Consortium (W3C), “RDF Vocabulary Description
Language 1.0: RDF Schema,” 2004. [Online]. Available: http:
//www.w3.org/TR/rdf-schema/

[140] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event pro-
cessing over streams,” in SIGMOD ’06: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data. New York,
NY, USA: ACM, 2006, pp. 407–418.

[141] S. B. Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel, M. Balazin-
ska, and H. Balakrishnan, “The Aurora and Medusa projects,” IEEE
Data Eng. Bull., vol. 26, no. 1, pp. 3–10, 2003.

[142] D. Zimmer and R. Unland, “On the semantics of complex events in
active database management systems,” in ICDE ’99: Proceedings of the
15th International Conference on Data Engineering. Washington, DC,
USA: IEEE Computer Society, 1999, pp. 392–399. [Online]. Available:
http://dl.acm.org/citation.cfm?id=846218.847253

[143] R. Zmud, “Editor’s comments,” MIS Quarterly, vol. 21, no. 2, pp. xxi–
xxii, 1997.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://dl.acm.org/citation.cfm?id=846218.847253

Acknowledgments

I would like to thank my current and former teammates and colleagues at
UC4 Senactive GmbH, in particular Josef Schiefer, Christian Plaichner, Mar-
tin Suntinger, Albert Kavelar, Peter Kepplinger, Heinz Roth, Philip Limbeck,
Robert Thullner, Florian Breier, Christoph Bonitz, Lukas Maczejka, Martin
Sturm, Manuel Messerer, Dorel Coban, Suzanne Martini, and Szabolcs Rozs-
nyai. Without you guys, this would not have been possible. Many thanks also
to Christian Huemer for his support through this process, knowing exactly
when to contribute his knowledge and insights.

Hannes Obweger

Curriculum Vitae

Hannes Obweger

Staudingergasse 13/24

1200 Vienna, Austria

+43 650 6293437

ho@obweger.org

Personal Data

Day of birth September 05, 1985

Place of birth St. Veit a.d. Glan, Austria

Nationality Austrian

Education

2009 – today Doctoral Programme in Computer Sciences

Vienna University of Technology

2007 – 2009 Master’s Programme in

Vienna University of Technology

Pass with distinction

Master Thesis:

Awarded the INiTS

2004 – 2009 Bachelor’s Program

University of Vienna

Pass with distinction

2004 – 2007 Bachelor’s Program

Vienna University of Technology

Pass with distinction

1999 – 2004 College of Electronics specializing in Technical Computer Science

Höhere Technische Bundeslehranstalt Mössingerstraße, Klagenfurt

Pass with distinction

1995 – 1999 Gymnasium

Bundesrealgymnasium Spittal/Drau

Work Experience

2006 – today UC4 Senactive GmbH (formerly: Senactive IT Dienstleistungs GmbH)

Software development and

workload automation.

2007

Internship

SEZ AG

Development and maintenance of the

Curriculum Vitae

September 05, 1985

Veit a.d. Glan, Austria

rogramme in Computer Sciences

Vienna University of Technology

’s Programme in Software Engineering and Internet Computing (Dipl.

University of Technology

Pass with distinction

Master Thesis: Similarity Searching in Complex Business Events and Sequences thereof

Awarded the INiTS-Award 2009

Programme in Journalism and Communication Studies (Bakk.phil.)

University of Vienna

Pass with distinction

Programme in Media and Computer Science (Bakk.tech

Vienna University of Technology

Pass with distinction

College of Electronics specializing in Technical Computer Science

Höhere Technische Bundeslehranstalt Mössingerstraße, Klagenfurt

Pass with distinction

Gymnasium

Bundesrealgymnasium Spittal/Drau

ive GmbH (formerly: Senactive IT Dienstleistungs GmbH)

evelopment and research in the fields of Complex Event Processing

workload automation.

Development and maintenance of the company’s Sharepoint-based

Software Engineering and Internet Computing (Dipl.-Ing.)

Similarity Searching in Complex Business Events and Sequences thereof

Journalism and Communication Studies (Bakk.phil.)

Media and Computer Science (Bakk.techn.)

College of Electronics specializing in Technical Computer Science (Matura)

Höhere Technische Bundeslehranstalt Mössingerstraße, Klagenfurt

ive GmbH (formerly: Senactive IT Dienstleistungs GmbH), Vienna, Austria

of Complex Event Processing and

based Intranet application.

2006

Internship

SEZ AG

Development and maintenance of the company’s Sharepoint-based Intranet application.

2005

Project-based

ALRO Control Systems AG (Switzerland)

Design, implementation and rollout of a Java-based document administration tool.

Development of an interactive atlas of Swiss water plants.

2004

Project-based

ALRO Control Systems AG (Switzerland)

Design, implementation and rollout of a Java-based document administration tool.

2003

Internship

KELAG

Internship in electrical engineering

2002

Internship

KELAG

Internship in electrical engineering

2001

Internship

KELAG

Internship in electrical engineering

Additional Qualifications

Business English

Certificate (BEC)

Vantage

The BEC Vantage is an intermediate-level Cambridge ESOL exam, at Level B2 of the Council

of Europe's Common European Framework of Reference for Languages.
1

Language Skills

German Mother tongue

English Fluent

Personal Interests

 Traveling, motorbiking, blues music

Hannes Obweger

1
 http://www.candidates.cambridgeesol.org

List of Publications

Journal Articles

2011 Model-Driven Rule Composition for Event-Based Systems

International Journal for Business Processing Integration and Management (IJBPIM)

Volume 5, Number 4

with Josef Schiefer, Martin Suntinger, and Peter Kepplinger

2008 Event Tunnel: Exploring Event-Driven Business Processes

Computer Graphics and Applications

Volume 28, Number 5

with Martin Suntinger, Josef Schiefer, and M. Eduard Gröller

Conference and Workshop Papers

2011 Complex Event Processing "off the Shelf" – Rapid Development of Event-Driven

Applications with Solution Templates

19
th

 Mediterranean Conference on Control and Automation

with Josef Schiefer, Martin Suntinger, Florian Breier, and Robert Thullner

2011 Entity-Driven State Management for Complex Event Processing Applications

5
th

 International Conference on Rule-based Reasoning, Programming, and Applications

with Josef Schiefer, Martin Suntinger, and Robert Thullner

2011 User-Oriented Rule Management for Event-Based Applications

5
th

 ACM International Conference on Distributed Event-Based Systems

with Josef Schiefer, Martin Suntinger, Peter Kepplinger, and Szabolcs Rozsnyai

2011 Proactive Business Process Compliance Monitoring with Event-Based Systems

6
th

 International Workshop on Vocabularies, Ontologies and Rules for The Enterprise

with Robert Thullner, Szabolcs Rozsnyai, Josef Schiefer, and Martin Suntinger

2011 Event Access Expressions - A Business User Language for Analyzing Event Streams

25
th

 IEEE International Conference on Advanced Information Networking and Applications

with Szabolcs Rozsnyai and Josef Schiefer

2010 Web-Based Decision Making for Complex Event Processing Systems

6
th

 World Congress on Services

with Albert Kavelar, Josef Schiefer, and Martin Suntinger

2010 Discovering Hierarchical Patterns in Event-Based Systems

2010 IEEE International Conference on Services Computing

with Josef Schiefer, Peter Kepplinger, and Martin Suntinger

2010 Event Data Warehousing for Complex Event Processing

4
th

International Conference on Research Challenges in Information Science

with Heinz Roth, Josef Schiefer, and Szabolcs Rozsnyai

2010 Similarity Searching in Sequences of Complex Events

4
th

International Conference on Research Challenges in Information Science

with Martin Suntinger, Josef Schiefer, and Günther Raidl

2010 Trend-Based Similarity Search in Time-Series Data

2
nd

 International Conference on Advances in Databases, Knowledge and Data Applications

with Martin Suntinger, Josef Schiefer, and Günther Raidl

2009 Correlating Business Events for Event-Triggered Rules

International Symposium on Rule Interchange and Applications (RuleML'09)

with Josef Schiefer and Martin Suntinger

2008 Data Warehousing versus Event-Driven BI:

Data Management and Knowledge Discovery in Fraud Analysis

International Conference on Software, Knowledge, Information Management and

Applications

with Martin Suntinger, Josef Schiefer, and Heinz Roth

2008 The Event Tunnel: Interactive Visualization of Complex Event Streams for Business

Process Pattern Analysis

IEEE Pacific Visualization Symposium

with Martin Suntinger, Josef Schiefer, and M. Eduard Gröller

Patents

2009 Method Of Visualizing Sets Of Correlated Events On A Display

with Josef Schiefer and Martin Suntinger

2009 Method Of Detecting A Reference Sequence Of Events In A Sample Sequence Of Events

with Josef Schiefer, Martin Suntinger, and Christian Rauscher

	Introduction
	Motivation
	Event-Pattern Rules: Applications and Challenges
	Scope of this Thesis
	Research Method
	Contributions
	Evaluation
	Structure of this Thesis

	Principles of Complex Event Processing
	Events
	Event Types
	Event Patterns
	Event-Pattern Rules
	Complex Events
	Preliminary Example

	Sense-and-Respond Infrastructure
	Introduction
	Key Characteristics
	Sense-and-Respond Loop
	SARI Applications in a Nutshell

	A Model-Based View on SARI Applications
	Event Model
	Meta Model
	Example

	Correlation Model
	Meta Model
	Correlation Band Implementations
	Example
	Correlating Events at Run Time

	Event Processing Model
	Meta Model
	Event Adapters
	Event Services
	Intermediate Sockets
	Example

	System Architecture
	Data Layer
	Back-End Layer
	Front-End Layer

	Event Access Expressions
	Basic Operators
	Handling Collection Types
	Accessing Single Events
	Accessing Sequences of Events
	Functions

	Decision Graphs
	Introduction
	Key Characteristics
	Decision Graphs and Rules
	Outlook

	Meta Model
	Rule Components
	Common Characteristics
	Condition Components
	Time-Based Components
	Action Components

	Example
	Managing Decision Graph State
	Merging Decision-Graph States
	Stateless Decision Graphs

	A Framework for User-Oriented Rule Management
	Introduction
	Conceptual Foundations
	Related Work
	Rule Management for Event-Based Systems
	Complex Event Processing for Business Users
	Layered Event-Processing Models
	Differentiating Rules in Event Processing
	Business Rule Management Systems

	Infrastructural Rule Management
	Requirements
	Model Overview
	Rule Definitions

	Sense-and-Respond Rule Management
	Requirements
	Model Overview
	Pattern Definitions
	Action Definitions
	Business Patterns
	Business Actions
	Sense-and-Respond Rules
	Rule Spaces

	User Rights Management
	Implementation Architecture
	Data Layer
	Back-End Layer
	Front-End Layer

	Modeling Studio
	Pattern and Rule Definition Editor
	Action Definition Editor
	Rule Space Editor

	Web Client
	Integration
	Interface Overview
	Rule Monitoring
	Rule Creation from Scratch
	Rule Creation from Template
	Handling Inconsistent Rules

	Entity-Based State Management
	Introduction
	State Management in Complex Event Processing
	Business Entity Providers: An Architectural Overview
	Business Entities in SARI Rule Management
	SARI Application Model – Revisited
	Outlook

	Related Work
	Meta Model
	Exemplary Business Entity Providers
	Scores
	Base Entities
	Sets

	Correlation Model Extensions
	Meta Model
	Example

	Decision Graph Model Extensions
	Business Entity Actions
	Business Entity Conditions
	Handling Internal Business Entities

	Implementation
	Data Layer
	Back-End Layer
	Front-End Layer
	Business-Entity Management at Run Time
	Reference Business-Entity Providers

	Example
	Summary

	Hierarchical Pattern Modeling
	Introduction
	Related Work
	Decision Graph Model Extensions
	Pattern Definitions
	Sub-Pattern Component

	Evaluation
	Evaluation by Expansion
	Hierarchical Evaluation
	Discussion and Comparison

	Example

	Example
	Introduction
	System Overview
	Event Model
	Business Entity Model
	Correlation Model
	Event Processing Model
	Infrastructural Rules
	Sense-and-Respond Rules
	Rule Spaces Overview
	Runtime Monitoring: Pattern Definitions, Business Patterns
	Runtime Monitoring: Action Definitions, Business Actions

	Discussion

	Case Study
	Introduction
	Project Environment
	Problem
	Project Structure
	Application Overview
	Discussion

	Conclusion
	Summary
	Evaluation Against Design Science
	Open Issues and Future Work

	References

