Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technj

the Vien FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Testing and Debugging of Model
Transformations

DISSERTATION
zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

eingereicht von

DI (FH) Johannes Schonbdck
Matrikelnummer 0057399

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Diese Dissertation haben begutachtet:

(0.Univ.-Prof. Dipl.-Ing. Mag. (Associate Professor Ph.D.
Dr. Gerti Kappel) Juan De Lara)

Wien, 22.12.2011

(DI (FH) Johannes Schénbdck)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Testing and Debugging of Model
Transformations

DISSERTATION
submitted in partial fulfillment of the requirements for the degree of
Doktor der Technischen Wissenschaften
by

DI (FH) Johannes Schonbock
Registration Number 0057399

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: 0.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

The dissertation has been reviewed by:

(0.Univ.-Prof. Dipl.-Ing. Mag. (Associate Professor Ph.D.
Dr. Gerti Kappel) Juan De Lara)

Wien, 22.12.2011

(DI (FH) Johannes Schénbdck)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

DI (FH) Johannes Schonbdck
Lina 1, 4311 Schwertberg, Austria

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Acknowledgements

The completion of this thesis represents surely a major point in my academic career. Never-
theless, although the actual writing of a thesis is individual work, the research and foundations
underlying this thesis could only be achieved by an excellent teamwork. Therefore, in a first step
I deeply want the thank my colleague Angelika Kusel. Working with her was always a pleasure
and her cooperative and conscientious manner lead to memorable research results. Thank you
very much for motivating me during these three years. Of course, this would not have been possi-
ble without our always cooperative and helpful supervisors Gerti Kappel, Werner Retschitzegger,
Wieland Schwinger and Manuel Wimmer. Without the numerous common discussions, as well
as their ideas and comments, [would not have been able to deliver this kind of work. Whenever
having any kind of troubles they supported me in finding a solution. Thank you for the good
atmosphere and working environment making the hard work of doing the thesis a pleasure.

Additionally, I want to thank my reviewer Juan de Lara. When I first met him on a con-
ference, I was not only impressed by his excellent work in the area of model transformations,
but also by his cooperative manner. Thus, I have been very pleased that he agreed to act as an
external reviewer of my thesis. His valuable comments helped me a lot to incorporate new ideas
and consequently helped me to improve the outcome of the thesis. In this respect, I would like
also to thank Esther Guerra for having the pleasure to work with her together on the topic of
model transformation contracts and QVT Relations.

I am very much obliged to our secretaries Birgit Hauer and Katja Hildebrandt, who were
always supportive in the non-academic issues. Furthermore, I appreciate very much that Katha-
rina Kapplmiiller helped me to improve the English by proof-reading the thesis. I also want
to express my gratitude to my colleagues Petra Brosch, Philip Langer and Konrad Wieland,
who often served as valuable discussion partners and with whom I spent many placid hours on
conferences.

By writing these words I can by no means express how much I need to thank my family,
my mother Rosa, my dad Johann, and my brother Reinhard. They always stood by my side and
supported me in finishing my thesis. They enabled my education, trusted in me and supported
me during my whole life — thank you very much. Last but not least, I want to thank all of my
friends who encouraged me in finishing my thesis.

iii

Abstract

Model-Driven Engineering (MDE) proposes an active use of models to conduct the different
phases of software development. The major vision is a shift from the idea of “everything is an
object” in the object-oriented paradigm to the idea of “everything is a model” in MDE. Following
this vision, it becomes obvious that transformations between models play a key role. Just like
any other software, transformations should be engineered using sound and robust engineering
techniques. However, current engineering techniques focus on the implementation phase of
transformations, but fail to provide means for the analysis, design, testing and debugging phases.

In particular, to support the analysis and design phase, means are needed that allow to for-
mally describe the requirements of a certain transformation in order to allow for automatic vali-
dation in the testing phase. In case of a failure, additional means are needed to efficiently debug
model transformations. However, current transformation languages provide only scarce support
for debugging. This is mainly due to the fact that low-level information of an according execu-
tion engine is provided only, e.g., variable values. Finally, the operational semantics is hidden by
these execution engines, which further aggravates finding failures and hampers understanding of
transformation specifications.

To tackle the aforementioned limitations, this thesis provides three main contributions. First,
a declarative, visual language called PAMOMO is proposed, which allows to formally specify
requirements on model transformations by means of contracts. To test if a model transformation
fulfills the specified requirements, the contracts are compiled into check-only QVT Relations,
providing dedicated error traces in case a contract fails. These traces may then be used as
hints for debugging. To support debugging, Transformation Nets as a DSL on top of CPNs
are proposed, which provide a dedicated runtime model for model transformations, making the
hidden operational semantics explicit as a second major contribution. Finally, based on this
runtime model various means of debugging are presented as a third contribution.

To evaluate the contributions, relations to competing approaches are drawn in a first step.
Second, case studies are used to show the applicability of the presented approaches. To evaluate
the runtime model, the operational semantics of dedicated transformation languages is made
explicit in terms of Transformation Nets. Finally, the debugging support is evaluated again by
case studies and a first user study.

Kurzfassung

Modellgetriebene Softwareentwicklung riickt Modelle ins Zentrum des Softwareentwicklungs-
prozesses. Dadurch nehmen Modelle die Rolle von Objekten in der objektorientierten Software-
entwicklung ein. Durch diese zentrale Rolle entsteht die Notwendigkeit Transformationen zwi-
schen Modellen durchzufiihren. Analog zur traditionellen Softwareentwicklung sollen Modell-
transformationen auf fundierte Sprachen und Werkzeuge zuriick greifen konnen. Aktuelle Trans-
formationssprachen fokussieren allerdings nur auf die Implementierungsphase und beriicksich-
tigen weitere Phasen wie Analyse, Design, Testen und Fehlersuche nur unzureichend.

Fiir die Analyse- und Designphase werden Mittel benétigt, die es dem Transformationsent-
wickler erlauben, die Anforderungen formal zu spezifizieren und diese dann in der Testphase
gegen die implementierte Transformation zu validieren. Fiir den Fall, dass Anforderungen nicht
erfiillt sind, werden Werkzeuge und Mechanismen zur Fehlersuche benétigt. Aktuell verwen-
dete Transformationssprachen bieten hierbei aber nur unzureichende Unterstiitzung, da sie nur
Informationen bereit stellen, die von den jeweiligen Laufzeitumgebungen zur Verfiigung gestellt
werden. Da diese typischerweise in einer Programmiersprache wie z.B. Java entwickelt sind,
bestehen solche Informationen meist nur aus Werten von Variablenbelegungen. Des Weiteren
verstecken die auf niedrigem Abstraktionsniveau arbeitenden Laufzeitumgebungen die Ausfiih-
rungssemantik der Transformation, was die Fehlersuche zusétzlich erschwert.

Um diese Einschriankungen aufzuheben, werden im Rahmen der Arbeit drei Hauptbeitrige
erarbeitet. Als erster Beitrag wird die deklarative Sprache PAMOMO vorgestellt, die eine Spe-
zifikation von Transformations-Kontrakten ermoéglicht. Um zu testen, ob Transformationen die
Kontrakte erfiillen, wird QVT Relations verwendet, um im Fehlerfall Information zu erhalten,
die im weiterem fiir die Fehlersuche verwendet werden kann. Transformationsnetze stellen als
zweiten Hauptbeitrag ein explizites Laufzeitmodell fiir Transformationen zur Verfiigung und le-
gen dadurch deren operationale Semantik offen. Dieses Laufzeitmodell bildet damit die Grund-
lage fiir Methoden zur Unterstiitzung bei der Fehlersuche.

Zur Evaluierung der Arbeit werden Vergleiche zu bestehenden Arbeiten gezogen. Mittels
Fallbeispielen wird die Anwendbarkeit der vorgestellten Konzepte gezeigt. Um die Laufzeitum-
gebung zu evaluieren, wird die Ausfithrungssemantik existierender Transformationssprachen auf
Transformationsnetze abgebildet. Dadurch kénnen auch diese Sprachen von den vorgeschlage-
nen Methoden zur Fehlersuche profitieren, was wiederum mittels Fallbeispielen gezeigt wird.

vii

Preface

The research presented in this thesis was undertaken at the Institute of Software Technology and
Interactive Systems, Business Informatics Group (BIG), Vienna University of Technology, in
joint work with DI Angelika Kusel from the Institute of Bioinformatics, Working Group Infor-
mation Systems (IFS), Johannes Kepler University, Linz, and was partially funded by the Aus-
trian Science Fund under grant P21374-N13 (cf. project TROPIC!). The supervisors comprise
Prof. Dr. Gerti Kappel and Dr. Manuel Wimmer from Vienna and Prof. Dr. Werner Retschitzeg-
ger and Prof. Dr. Wieland Schwinger from Linz. The major concepts and techniques developed
during my thesis have been peer-reviewed and published in international conference proceedings
and international workshop proceedings, resulting in a list of publications as detailed below:

1. “Lets’s Play the Token Game — Model Transformations Powered By Transformation Nets”,
Co-Autors: M. Wimmer, A. Kusel, T. Reiter, W. Retschitzegger, and W. Schwinger,
in Proceedings of the International Workshop on Petri Nets and Software Engineering,
(PNSE), in conjunction with 30th International Conference on Application and Theory of
Petri Nets and Other Models of Concurrency, Paris, France, June 22-23, pp. 35-50, 2009.

2. “Reviving QVT Relations: Model-Based Debugging Using Colored Petri Nets”, Co-
Autors: M. Wimmer, A. Kusel, G. Kappel, W. Retschitzegger, and W. Schwinger, in Pro-
ceedings of the 12th International Conference on Model Driven Engineering Languages
and Systems (MoDELS’09), Denver, Colorado, USA, October 4-9, Springer, pp. 727-732,
2000.

3. “Transformation Nets - A Runtime Model for Transformation Languages”, in Proceedings
of Doctoral Symposium at ACM/IEEE 12th International Conference on Model Driven
Engineering Languages and Systems, Denver, Colorado, USA, October 4-9, pp. 28-34,
2009

4. “Catch me if you can - Debugging Support for Model Transformations”, Co-Autors: A.
Kusel, G. Kappel, W. Retschitzegger, W. Schwinger, and M. Wimmer, in Proceedings of

"http://www.modeltransformation.net

X

10.

11.

Models in Software Engineering, Workshops and Symposia at MoDELS 2009, Reports
and Revised Selected Papers, Springer-Verlag, pp. 5-20, 2010.

. “Right or Wrong? — Verification of Model Transformations using Colored Petri Nets”, Co-

Autors: M. Wimmer, G. Kappel, W. Retschitzegger, and W. Schwinger, in Proceedings of
the 9th Workshop on Domain-Specific Modeling (DSM), in conjunction with 24th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’09), Orlando, Florida, USA, October 25-29, Helsinki Business
School, 2009.

“TROPIC: A Framework for Model Transformations on Petri Nets in Color”, Co-Authors:
M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Compan-
ion to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’09), Orlando, Florida, USA, October
25-29, ACM, pp. 783-784, 20009.

. “A Petri Net based Debugging Environment for QVT Relations”, Co-Authors: M. Wim-

mer, G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Proceedings of the
24th International Conference on Automated Software Engineering (ASE’09), Aukland,
New Zealand; November 16-20, IEEE, pp. 1-12, 2009.

. “Taming the Shrew — Resolving Structural Heterogeneities with Hierarchical CPNs”, Co-

Authors: M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Pro-
ceedings of the International Workshop on Petri Nets and Software Engineering (PNSE),
in conjunction with 31th International Conference on Application and Theory of Petri Nets
and Other Models of Concurrency, Braga, Portugal, June 21-25, University of Hamburg,
pp- 141-157, 2010.

. “Surviving the Heterogeneity Jungle with Composite Mapping Operators”, Co-Authors:

M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Proceedings
of the 3rd International Conference on Model Transformation (ICMT’10), Malaga, Spain,
June 28-July 2, Springer-Verlag, pp. 260-275, 2010.

“On using Inplace Transformations for Model Co-evolution”, Co-Authors: M. Wimmer,
A. Kusel, W. Retschitzegger, W. Schwinger, and G. Kappel, in Proceedings of the 2nd In-
ternational Workshop on Model Transformation with ATL (MtATL), in conjunction with
3rd International Conference on Model Transformation (ICMT’10), Malaga, Spain, June
28-July 2, INRIA & Ecole des Mines de Nantes, 2010.

“Plug & Play Model Transformations — A DSL for Resolving Structural Metamodel Het-
erogeneities”, Co-Authors: M. Wimmer, G.Kappel, W. Retschitzegger, J. Schonbock,
and W. Schwinger, in Proceedings of the 10th Workshop on Domain-Specific Model-
ing (DSM’10), in conjunction with Systems, Programming, Languages and Applications:
Software for Humanity (SPLASH’10), Reno/Tahoe Nevada, USA, October 17-21, Online
Publication, 2010.

12.

13.

14.

15.

16.

“Towards an Expressivity Benchmark for Mappings based on a Systematic Classification
of Heterogeneities”, Co-Authors: M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
and W. Schwinger, in Proceedings of the First International Workshop on Model-Driven
Interoperability (MDI), in conjunction with 13th International Conference on Model Driven
Engineering Languages and Systems(MoDELS’10), Oslo, Norway, October 3-8, ACM,
pp. 32-41, 2010.

“From the Heterogeneity Jungle to Systematic Benchmarking”, Co-Authors: M. Wimmer,
G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Proceedings of Models in
Software Engineering - Workshops and Symposia at MoDELS 2010, Reports and Revised
Selected Papers, Springer-Verlag, pp. 150-164, 2010.

“A Comparison of Rule Inheritance in Model-to-Model Transformation Languages”, Co-
Authors: M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, W. Schwinger, D. Kolovos,
R. Paige, M. Lauder, A. Schiirr, and D. Waagelar, in Proceedings of the 4th Interna-
tional Conference on Model Transformation (ICMT’11), Zurich, Switzerland, June 27-28,
Springer-Verlag, pp. 31-46, 2011.

“Reusing Model Transformations across Heterogeneous Metamodels”, Co-Authors: M.
Wimmer, A. Kusel, W. Retschitzegger, W. Schwinger, J. S. Cuadrado, E. Guerra, and J.
de Lara, in Proceedings of the 5th International Workshop on Multi-Paradigm Modeling
(MPM’10), in conjunction with 14th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS’11), Wellington, New Zealand, October 16-20,
Springer-Verlag, 2011.

“Automated Verification of Model Transformations based on Visual Contracts”, Co-Authors:
E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, W. Schwinger,
accepted for publication in Journal for Automated Software Engineering.

Contents

(I__Introduction|

[1.3.1 Requirements and Analysis Phase|
[1.3.2 Implementation Phase|
[1.3.3 'Testing and Debugging Phase]

2.1 Model Transtormation Testing|
[2.1.1 Automated Generation of Test Input Models|. .
[2.1.2 Predictionof Output|

[2.3 Debugging of Model Transformations|
2.3.1 Comparison Criteria]

[2.3.2 Comparison of Debugging Support in Transformation Languages|

Y SUMMALY| o o s e e e e e

|3 PaMoMo: A Visual Language for Model Transformation Contracts|

[3.1 Requirements Specification for Model Transformations|
[3.1.1 Design by Contracts for Model Transformations|

|3.2 Contract Specification with PaMoMo|
[3.2.1 Modeling of Invariants|
[3.2.2 Modeling of Preconditions and Postconditions|

xiii

N NN W = e

10

14
18

21
22
23
24
28
29
30
33
38

[3.2.3 Modeling of Enabling and Disabling Conditions for Patterns| 48

X1v

[3.2.4 Modeling Patterns for Collections of Model Elements|. 51
325 PaMoMo Metamodell oo 52

[3.3 Reasoning with Patterns| oL 53
3.4 QVTRelationsmaNutshelll 56
[3.5 Operationalization of Contracts: From PaMoMo to QV'T Relations| 58
[3.5.1 Compilation of Preconditions and Postconditions| 58
[3.5.2 Compilation of Invariants| 61
[3.5.3 Compilation of Enabling and Disabling Conditions| 62
[3.5.4 Compilationof Sets| 64
[3.5.5 Summary of the Compilation|. 64

[3.6 Executing PaMoMo Contracts| 65
..................................... 67
69

70

71

73

4.3.1 Representing Object-Oriented Metamodels in Transformation Nets| . . 73
4.3.2 Going beyond Object-Oriented Metamodels| 79

{4.4 Dynamic Parts of Transformation Nets| 81
4.4.1 Representation of Transformation Logic|. 81
442 Conditions and Functions] 85
i4.4.3 Chaimning of Transitions|. 86

4.5 Modularization Concepts in Transformation Nets| 91
U451 OverviewonModules| 91
A 1 nModules. o o 91

4.6 Summary| e 93
S Rule Inheritance in Transformation Nets! 97
[5.1 Rule Inheritance in Current Transformation Languages| 98
5.1.1 Issuesin Rule Inheritance] 98
[5.1.2 Comparison Setup| 99

NEAX| . . . o e e e e e 101

[5.2.1 Syntactical Comparison of Existing Languages| 102
[5.2.2 Inheritance Related Syntax in Transformation Nets| 103

5.3 Static Semantics|.o 104
[5.3.1 Comparison of Static Semantics of Existing Languages|. 107
0.3.2 Static Semantics in Transformation Netsl. 1038

[5.4 Dynamic Semantics|. 112
[5.4.1 Comparison of Dynamic Semantics of Existing Languages| 113
[5.4.2 Dynamic Semantics in Transformation Nets| 114
..................................... 116

|6.2 Compilation of Static Parts of Transformation Nets|

[6.2.2 Compilation of Metamodels and Models|.
16.3 Compilation of Dynamic Parts of Transtormation Nets|
[6.3.1 Formalization of Dynamic Parts of Transformation Nets|
16.3.2 Compilation of Transtormation Logic|
|6.3.3 Compilation of Functions and Conditions|
|6.4 Compilation of Inheritance in Transformation Nets|
|6.4.1 Basic Concepts, Overriding Patterns and Type Substitutability|
|6.4.2 Conditions and Rule Applicability Semantics|
[6.5 Compilationof Modules| o oL

0.0 UMIMATLY| . . 0 v v v v v v v et e

[7.2.2 Inspection|.
[7.2.3 Dynamics|.
[7.3 Query-Based Debugging|
[7.3.1 Dynamic Shcing and Backwards Reasoning by Means of OCL{.
[7.3.2 Forensic Debugging|
[7.4 Property-Based Debugging| o000 L.
[7.4.1 Calculation of the State Space|
[7.4.2 Behavioral Properties for Debugging Model Transformations|.
[7.4.3 CPN Properties for Model Transformations|
[7.4.4 "Towards Model Checking of Model Transformations|
(7.5 FixmmgFailures|o
[7.5.1 Adaptingthe Model]
[7.5.2 Adapting the Transformation Logic|

O Summary| ... L L e e e e

|8 Prototype Implementation|

117
118
119
120
122
123
123
124
127
127
128
139
139
140
143
145
145
146
146
149

151
152
153
155
158
158
160
161
162
162
164
166
166
168
171
172
173
173
174
175

177
177

XV

[8.1.1 Prerequisites.| 178

XVl

[8.1.2 Formal Specification of Requirements with PAMOMoO.[. 178
[8.1.3 Specification of a VerificationJob.| 0oL 179
8.1.4 Execution of the Verification JobJ 180

[8.1.5 Inspection of Verification Results.| 181

[8.2 DEBUT - DEBUgger for Transformations| 182
B21 OverviewonDebull 182
8.2.2 Modes of Transformation Nets| 184

[8.2.3 Integration of CPN Tools into DEBUT|. 187
[8.2.4 Implementation of Debugging Features| 189

3. UMMATY| . . v v o oo v e e et e e e e e e e e e e e e e e 193
9 Evaluation| 195
1___Evaluation of PaMoM ntracts|o 195
[9.1.1 Using PAMOMO to Verity its own Translation into QVT Relations] . . 196
[9.1.2 From a Process-Interaction Language into Timed Coloured Petr1 Nets| . 198
9.1.3 Verification of Graphical DefinitionsinGMKE 200
9.1.4 Comparison to Related Workl 202
9.1.5 Summary| e 203

2 Evaluation of Runtime Model|. 203
[9.2.1 ‘Translating QV'T Relations to Transformation Nets| 204
[9.2.2 Translation of Graph Transformation Languages to Transformation Nets| 209
9.2.3 'Translating Mapping Operators to Transformation Nets|. 211
9.2.4 Comparison to Related Work|. 218
925 Summary| 220

[9.3 Evaluation of Debugging Features| 221
9.3.1 Evaluation of Debugging Features of Transformation Nets| 221
9.3.2 FixingBugs|. 228
[9.3.3 Comparison to Related Workl 231
9.3.4 Userstudy| e 232
..................................... 233
(10_Conclusion and Future Work| 235
[10.1 Conclusion] e 235
102 Future Work| o 237
[10.2.1 Extension of PAMoMo Concepts and Scenarios| 237
[10.2.2 White-Box Testing of Model Transformations|. 238
[10.2.3 Representation of Graph Transformation Languages and Hybrid Trans- |
formation Languages in Transformation Nets| 239

|10.2.4 Applying Transformation Nets to Other Scenarios|. 239
[10.2.5 Properties for Model Transformations using Temporal Logics and State |
Space Reduction Mechanisms| 240

|10.2.6 Back Propagation of Bug Fixes| 240
[10.2.7 Improvements on the Prototype and User Studies| 240

243

261

Xvii

List of Figures

(I.1__Basic Model-to-Model Transformation Patternl. 4
[1.2 Running Example: Translating Class Diagrams into Relational Schemas| 5
|1.3 Model Transtormation Development Phases| 7
[1.4 Challenges in Requirements Phase| 8
[1.5 Challenges in Implementation Phase 10
1.6 Challenges in Testing Phase| 13
[L7 _Contributions of the Thesis| 16
[2.1 Classification of Existing Approaches in Model Transformation Testing| 22
[2.2 Classification of Means for Debugging in Model Transformations| 30
2.3 Screenshot of ATL Debugger.|. 33
[2.4 Screenshot of AGG Debugger.| L . 34
[2.5 Screenshot of Fujaba Debugger witheDOBS[49]] 35
[2.6 Screenshot of GReAT Debugger [6]] 36
[2.7 Screenshot of mediniQVT Debugger.|. 37
3.1 __Contracts in Model Transformations| 41
[3.2 Automated Verification of Transformations using PAaMoMo.|. 42
[3.3 Positive Invariant Formalizing Requirement 1| 44
[3.4 Scheme of the Semantics of Positive and Negative Invariants| 44
[3.5 Semantics of Positive and Negative Invariants Applied| 45
[3.6 Additional Invariants Formalizing Requirements 2, 3and 4| 46
[3.7 Precondition (Requirement 5) and Postcondition (Requirement 6)| 46
3.8 Scheme of the Semantics of Preconditions and Postconditions| 47
[3.9 Semantics of Negative Precondition Applied|. 47
[3.10 Semantics of Negative Postcondition Applied| 48
[3.11 Invariant with Enabling Condition| 49
[3.12° Scheme of the Semantics of Enabling and Disabling Conditions| 49
[3.13 Semantics of Invariants with and without Enabling Condition| 50
[3.14 Precondition with Enabling Condition| 51

XiX

[3.17 Potential Error: Disabled Invariant due to Negative Precondition|
[3.18 Class2Relational Transformation Implemented in QV'I' Relations|.
[3.19 Compilation Scheme for Preconditions|.
[3.20 Compiling a Negative Precondition into QV'T Relations|
[3.21 Compilation Scheme for Postconditions|
[3.22 Compiling a Negative Postcondition into QVT Relations|
[3.23 Compilation Scheme for Invariants|
[3.24 Compiling a Positive Invariant into QVT Relations|
[3.25 Compilation Scheme for Enabling Conditions|
[3.26 Compiling an Enabling Condition for a Negative Invariant into QV'T Relations|. . .
[3.27 Compilation Scheme for Sets|,
[3.28 Compiling a Positive Invariant with Sets into QV'T Relations|
[3.29 Verification Results of Requirements 1-4 of Running Example]

4.1 Conceptual Architecture of Transformation Nets|.
|4.2 General Concepts of Transformation Languages|
|4.3 Packages of the Transformation Net Metamodel|
4.4 Static Elements of Transformation Nets|
H.5 The Ecore Meta-Metamodel [40]
|4.6 Representation of Metamodel Elements in Transformation Nets|.

|4.10 Overcoming Meta-Metamodel Heterogeneities in Transformation Nets|
|4.11 Dynamic Elements of Transformation Nets|
|4.12 Example Transition in Transformation Nets|
|4.13 Overview on Concrete Syntax of Patterns in Transformation Nets|.
[4.14 Example Conditions|. Lo
[4.15 Example Function|. Lo L
|4.16 Extension of Transformation Net Metamodel to Represent Trace Information| . . .
|4.17 Example Transition using Trace Information|.
|4.18 Example Transition using Intermediate Places|
|4.19 Extension of Transformation Net Metamodel to Represent Modules|

5.2 Overview on the Comparison Framework|
[5.3 Transformation example in ATL, ETL and TGGs|
5.4 Inheritance-Related Concepts of Transformation Languages|
[5.5 Extension of Transformation Net Metamodel to Represent Rule Inheritance]
[5.6 Example of Inheritance in Transformation Nets|

XX

70
72
73
74
75
76
77
77
78
80
82
83
84
85
87
88
&9
90
92
93
94

99
100
101
102
103

5.7 Rule Compatibility|
[5.8 Examples of Static Constraints: (a) Rule Ambiguity and (b) Diamond Problem|

[5.9 'Transformation Example in Transformation Nets|
|6.1 Simple Place-Transition PetriNet|
[6.2 Simple Colored PetriNet|
[6.3 Core of Petri Net Markup Language [161]]
|6.4 Compilation of Transformation Net Placesto CPNs|
6.5 Compilation of Transformation Net Tokensto CPNs|.
|6.6 Compilation of Inheritance Relationships in Transformation Nets to CPNs|
|6.7 Compilation of Transformation Nets to CPNs in Concrete Syntax|.
|6.8 Compilation of Transformation Nets to CPNs in Abstract Syntax|
[6.9 Erroneous Consumption of Source Tokens|
|6.10 Compilation of Non-Consuming Firing Behaviorf
[6.11 Compilation of Negative Pattern|
16.12 Compilation of Distinct Values and New Colors|
|6.13 Compilation of Check Before Enforce Semantics|
|6.14 Compilation of Rule Inheritance]
|6.15 Compilation of Inheriting Transitions Excluding Subtypes|
|6.16 Compilation of AbstractRules|,
|6.17 Compilation of Conditions in Inheriting Rules|
[6.18 Sample Hierarchical CPN|. o .o
[6.19 Compilation of Blackbox View| o 00
16.20 Compilation of Whitebox View|.
[7.1 Overview on Debugging Phases and Support in Transformation Nets|
[7.2 Taxonomy of Common Code-Smells in Transformation Nets|
(7.3 Wrong Pattern Granularity| o0 o oL
(7.4 Inter-Transition Code-Smells| o 00000
[7.5 Debugging Support in the Matching Phase|
[7.6 Breakpoints in Transformation Nets|

73

Backwards in Time Reasoning in Transformation Nets|

7.9

Re-Enactment: Combining PAaMoMo and Transformation Nets for Debugging| . . .

[7.10

State Space of an Exemplary Transformation Net|

711

Application of CPN Properties for Debugging of Model Transformations|.

712

Taxonomy of Transformation Errors and CPN Properties|

713

Changing the Model during Debuggmg{

!

Verification Results of Requirements 1-4 for the Running Example|

B3

Metamodel of VerificationLog|

107
110

119
121
122
125
126
126
129
130
132
134
136
137
138
140
142
143
144
145
147
148

152
153
154
157
159
160
161
163
165
167
168
172
174

178
179
180
181
182

XX1

[8.6 Components of the DEBUT prototype| 183

8.7 Screenshot of DEBUT 184
[8.8 Transformation Nets Applied in Raw Mode] 185
[8.9 Transformation Nets Applied in Transformation-Based Mode] 186
[8.10 Transformation Nets Applied in Contract-Based Mode| 187
[8.11 Integration of CPN Tools into DEBUT| 188
[8.12 Compilation Process|, 188
[8.13 Screenshot of Mechanisms to Detect Code-Smells| 190
[8.14 Screenshot of Simulation-Based Debugging Mechanisms| 191
[8.15 Screenshot of Query-Based Debugging Mechanisms| 191
[8.16 Screenshot of Property-Based Debugging Mechanisms| 192
9.1 PAMOMO (left) and QVT-Relations (right) metamodels|. 196
9.2 A Positive Invariant for PAMOMoO-to-QV'I-Relations| 197
9.3 A Negative Invariant for PAMOMO-to-QVT-Relations| 197
9.4 'Two Postconditions for PAMoOMoO-to-QV'1-Relations| 198

S APr -Interaction Modell Lo 198
9.6 Metamodel of the Process-Interaction Language| 199

(9.7 Invariants for: Translation of Parallel Servers (left), Translation of Switches (up- |
| per right), Translation of Number of Resources Produced by Resource Managers |

| (bottom right)] 200
9.8 Precondition Checking Layout Constraints n GMF 201
(9.9 Precondition Checking Child Access Constraints in GMF 202
[9.10 Representation of QV'T Relations Code in Transformations Nets (Blackbox-View)|. 205
[9.11 Correspondences between QV'T Relations and Transformation Nets| 206
[9.12 Dependencies between Metamodels, QV'T, and Transformation Nets| 206
0.13 Schemaof Translation] 207
9.14 QVT Code and Corresponding Transformation Net (Extract)] 208
9.15 AGG Code and Corresponding Transformation Net| 210
9.16 Kernel MOps| o e 212
[9.17 Solution of the Running Example|. 213
[9.18 Compilation of Copying Kernel MOps| o ... 215
[9.19 Compilation of Merging Kernel MOps| 216
[9.20 Compilation of Generating Kernel MOps| 217
[9.21 Exemplary Compilation of MOps into Transformation Nets| 219
[9.22 Simulation of Erroneous QVT Relations Code| 222
[9.23 Calculation of Properties for Running Example] 224
[9.24 Example of Non-Confluent QV'T Relations Specification| 225
[9.25 Exemplary State Space Calculation|. 227
9.26 Corrected QV'T Relations Code of Running Example] 230
10.1_Overview on the Contributions of the Thesisl 236
[10.2° Scheme of Dynamic Symbolic Execution (taken from [151])] 238

XXI1i

Do or do not...
there is no try.

— Yoda (Fictional character from George Lucas’s Star Wars)

Chapter 1

Introduction

It is not because things are difficult that we do not dare;
it is because we do not dare that they are difficult.

— Lucius Annaeus Seneca

Contents
LI Motivation] o 1
(1.2 Running Example|, 5
1.3 Deficienciesl 6
4 Contributions]. 14
M5 ThesisOutlinelo v vt i it 18

1.1 Motivation

bstraction has always been key in software engineering to deal with the omnipresent prob-

lem of growing complexity. In a first step, software engineers have tried to abstract from the
underlying computing environment, e.g., CPU and memory, as stated in [[133]]. The development
of high-level programming languages represented a major step in this direction. Nevertheless,
abstraction mechanisms in dedicated programming languages did not raise the level of abstrac-
tion in the design phase of software but only in the implementation phase since their focus was
on the solution domain, i.e., the programming languages, only. Therefore, technologies have
been developed for raising the level of abstraction in the design phase already. A first prominent
representative in this direction was Computer-Aided Software Engineering (CASE) [33]]. Simply
speaking, the main goal of CASE was to automatically generate executable code from graphical
representations of a system, i.e., graphical programming. Although CASE attained attraction in

1

1. INTRODUCTION

the research community, it has never been fully adopted in practice. This was the case because
only very general-purpose graphical representations were given, e.g., state machines, structure
diagrams, and dataflow diagrams which poorly mapped to the underlying platforms [[133]]. More-
over, due to a lack of commonly accepted middleware platforms all the necessary infrastructure
code had to be generated as well, which made it difficult to integrate the generated code with
other software. Consequently, CASE tools were mostly used to visualize the software archi-
tecture, acting as a guide for the actual manual implementation of the software only. Although
nowadays more powerful frameworks and middleware platforms are available which might over-
come some deficiencies of CASE tools, e.g., J2EE!, .NET?, CORBA?, Eclipse Platform*, and
Spring’, to mention just a few, software engineers are again confronted with growing complex-
ity. Currently, researchers try to address this problem by providing Domain-Specific Modeling
Languages (DSMLs) which are specifically tailored languages that fit into a certain problem do-
main, e.g., by employing models that are less bound to an underlying implementation technology
and are much closer to the problem domain. Thus, not only software engineers may implement
a system but domain experts are enabled to model a system by means of a DSML, which is key
to the idea of Model-Driven Engineering, as explained in detail in the following.

1.1.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [133]] proposes an active use of models to conduct the dif-
ferent phases of software development. Thus, models become first-class artifacts throughout the
different phases of the software development life cycle. This leads to a shift from the “every-
thing is an object” paradigm to the “everything is a model” paradigm [16]. Although models
have been used in software engineering before MDE arose, models rather served for documen-
tation purposes than as a program, i.e., models were not coupled with the according code. In
the context of MDE, models are abstractions of systems [38]] and serve as single source of in-
formation to specify the implementation of a system. Consequently, developers may focus on
modeling a system close to the actual problem domain [138]] and do not have to deal with the
low-level details of an underlying implementation platform or a certain programming language.
In the same way as programs have to follow certain syntactic constraints commonly described
by a grammar, models also have to follow syntactic constraints given by metamodels which de-
fine the abstract syntax. Consequently, metamodels define concepts, their relationships as well
as constraints among each other which are prevalent in a certain domain.

The Object Management Group® (OMG) standardized the concepts of MDE in their Model
Driven Architecture initiative’ [80,/104]. MDA especially focusses on providing so-called Plat-
form Independent Models (PIMs), which allow the modeler to focus on the problem domain,
and Platform Specific Models (PSMs), which enrich PIMs with platform-specific information.

'http://download.oracle.com/javaee
2http://www.microsoft.com/net/default.aspx
*http://www.corba.org

*www.eclipse.org
Shttp://www.springsource.org
Shttp://www.omg.org
http://www.omg.org/mda/specs.htm

1.1. Motivation

Therefore, PSMs are closer to a certain implementation platform. Besides models on different
level of abstractions, model transformations between models are key to the success of MDE,
e.g., to automatically transform PIMs to PSMs. Thus, in the following model transformations
are discussed in more detail.

1.1.2 Model Transformations

Transformations between different artifacts are ubiquitous in software engineering, for example,
in case of compiling high-level programs into low-level byte code and thus transformations
in general are known from other engineering domains. Thus, model transformations are closely
related to, e.g., data exchange in data engineering, when treating models as data and metamodels
as schemas. A similar analogy might be drawn for the area of ontology engineering.

In the area of data engineering, the history of engineering transformations goes back to
1976. The inventor of the Entity-Relationship (ER) model, Peter Chen discussed the problem
of generating suitable relational schemas out of ER models [34]]. Furthermore, IBM suggested
the EXPRESS (Extraction, Processing and Restructuring System) approach to transform data
between hierarchical databases [142]]. These two important publications were followed by a
huge amount of work in different areas and application domains of information integration (cf.,
e.g., [60] or [62] for an overview). This work ranges from the area of multi- and federated
database systems in the 1980s (cf., e.g., Sheth et al. [141]]), data warehouses as well as the
integration of non-relational sources in the 1990s [[117]], to efforts in the more recent past in
the areas of schema matching (cf., e.g., [122])), generic model management (cf., e.g, [S[], [14]),
mapping tools (cf., e.g., [94], [121]]) and most recently, data mashups and dataspaces [71].

The field of ontology engineering has to cope with similar transformation problems as com-
mon in the area of data engineering. For example different architectures have been proposed
for the purpose of ontology integration. The approaches may be distinguished between direct
mappings, indirect mappings via a common, shared ontology and mappings based on a library
of already mapped ontologies [114]. Additionally, numerous approaches for the discovery, rep-
resentation and reasoning of mappings have already emerged [[75].

In the context of MDE, there is a need to transform models between different languages and
abstraction levels, e.g., to migrate between language versions, to translate models into semantic
domains for analysis, to generate PSMs from PIMs, and to refine and abstract models [47]].
Thus, model transformations are comparable in role and importance to compilers for high-level
programming languages, since models have to be automatically refined until the code of the
final application is obtained. In order to describe how models should be transformed into other
models, the transformation definition takes place between the respective metamodels the models
conform to (cf. [Fig. T.1)). To specify model transformations, dedicated transformation languages,
especially tailored to the task of transforming models, exist (cf. [38]] for an overview).

Thereby, transformation languages may be divided into imperative, declarative and hybrid
approaches. Imperative approaches like Kermeta [110] and the OMG standard QVT Opera-
tional [[116] allow for an easier specification of complex transformations than declarative ap-
proaches, e.g., by providing explicit statefulness, but inducing more overhead code, as many
tasks have to be accomplished explicitly, e.g., the specification of the control flow. Declarative
and hybrid transformation languages relieve transformation designers from this burden since it

3

1. INTRODUCTION

is only necessary to specify what has to be transformed but not how this is done. The specifi-
cation is done by means of declarative rules which are then executed by dedicated transforma-
tion engines (cf. [Fig. I.T). The OMG standard QVT Relational [116] represents a declarative
approach whereas prominent hybrid representatives are, e.g., Atlas Transformation Language
(ATL) [73]], and Epsilon Transformation Language (ETL) [81]. Furthermore, graph based ap-
proaches, e.g., Triple Graph Grammar (TGG) [136[], AGG [147]], Atom3 [89], and Viatra [9],
have been proposed, being either purely declarative or they additionally include means to spec-
ify control structures. These approaches are based on the fact that models may be represented
as typed, attributed graphs [4]. These graphs may be modified using graph transformation rules
which consist of a left-hand side (LHS) and a right-hand side (RHS) pattern. During execution,
the LHS pattern is matched for the source model, and — if it is found — replaced by the RHS
pattern (in its simplest form).

Source . e Target
Metamodel Transformation Definition Metamodel
executes
conforms to conforms to

. Transformation
Source input Engine output New Target
Model :: > ol |:> Model

Figure 1.1: Basic Model-to-Model Transformation Pattern

Fig. 1.1|shows the basic model transformation pattern, where a source model conforming to
a source metamodel is transformed into a new target model conforming to a target metamodel.
This scenario is called a batch and exogenous model-to-model transformation. However, many
other scenarios are possible as well (cf. [38]]). First, the source model may change after the
transformation is executed. In this case, it is sometimes more efficient not to build the target
model from scratch but to update it. Then, transformations may also be bidirectional, if the
same specification may be used to transform from source to target and the other way round.
Transformations may also be used in check-only mode, for example, to ascertain whether two
existing models comply with the transformation definition. Finally, a model may be transformed
“in-place”, for example, for refactoring. In this case, the transformation definition only considers
one metamodel, and is called endogenous.

This thesis focuses on declarative, rule-based model-to-model transformation languages
considering a batch and exogenous scenario. The presented concepts may nevertheless be
adapted to other types of transformation languages and also to other scenarios.

4

1.2. Running Example

1.2 Running Example

efore delving into details, a small extract of the Class2Relational transformation
B problem, which has been chosen as a running example due to its popularity in the scientific
community, is introduced. This problem is used throughout this thesis (cf. [18]. In this
batch and exogenous model-to-model transformation, the goal is to transform instances of the
class metamodel into instances of the relational metamodel, i.e., this example represents
a unidirectional, batch and exogenous model-to-model transformation. In this context, six main
requirements arise:

* Requirement I: For each instance of the class Package a corresponding instance of the
class Schema should be generated, which should be equally named (cf. instances p1 and

s1 in Fig.[L.2).

* Requirement 2: For each instance of the class Class, which is persistent, a corresponding
instance of the class Table should be generated, which should be equally named (cf.

instances c2, c¢3, t1, and t 2 in[Fig. T.2).

* Requirement 3: For each instance of the class Attribute, belonging to a persistent
Class, acorresponding instance of the class Column should be generated, which should
be equally named (cf. instances a2, a3, col, and co3 in[Fig. T.2).

Class Metamodel Correspondences ______ Relational Metamodel
ModelElement
name : String
(Reql) Package -> Schema mome e
’—*—‘Package [acribute | (Req2) Class (isPersistent) -> Table [—1
namespace {:T;ISS:epser type : String (Req3) Attribute-> Column Schema Column
bCl . 4 type : String
super o[04 o (Reg4) Inherited Attribute -> Column FESE
[asses o *
5 attributes %@.ﬁﬂmmns
2 table$

classes

context Class: def allSuperClasses: Set(Class)=
self.superClasses->union(self.superClasses->
collect(s| s.allSuperClasses))

Resulting Relational Schema

E; lary Class Diagram
columns_| col: Column |
name = ‘registrNo’
cl: Class . i t1 : Table type = ‘Integer’
classes e eacnt o o] attibutes w tables
= name = ‘name’ . .
= ‘Student’ .
name = ‘Person’ type = ‘String’ name uden co02 : Column
super subclasses columns :amee-z'ssr?r:n?
namespace classes schemay| ype = g
classes : : i . :
pl: Package Q:Class | i utes. | 22:Attribute s1: Schema columns . | €03 i Column

Namespace isPersistent = true [~ name = ‘registrNo’ T - name = ‘salary’

name = ‘University* P name = ‘Student” type = ‘Integer’ name = ‘University type = ‘Integer’
namespace super subclasses schema]
classes tables t2 : Table | cod:Column |

- " name = ‘registrNo’

classes | c3:Class | attributes a3 : Attribute name = ‘Professor’ _|O'UMNS | tyne = “Integer”
isPersistent = true [~ > name = ‘salary” —

name = ‘Professor’ type = ‘Integer’ co5 : Column

Columns name = ‘name’

type = ‘String’

Figure 1.2: Running Example: Translating Class Diagrams into Relational Schemas

1. INTRODUCTION

* Requirement 4: Since the relational metamodel does not support inheritance between in-
stances of Table and since information loss should be prevented during the transforma-
tion process, for each inherited At t ribute instance a corresponding Column instance
should be generated (cf. instances co2, co4, and co5 in[Fig. 1.2).

Besides requirements that need to be satisfied by any pair of input/output models, require-
ments may exist that solely concern the input models. Such requirements are used to put further
constraints on input models to exclude those not handled by the transformation although they
conform to the source metamodel. This is due to the fact that metamodels allow in general for
many different valid models, but a certain transformation definition might only cover a subset
thereof. In the context of the example, a requirement of the input model is the following:

* Requirement 5: Class models are not allowed to contain redefined attributes, i.e., attributes
with the same name in an inheritance hierarchy, since otherwise tables containing equally
named columns would result.

Finally, a certain transformation might need to guarantee that the produced output models
fulfill certain conditions beyond metamodel constraints. In the example, the following fact is
demanded:

* Requirement 6: Relational models may not contain tables with equally named columns,
even though this is allowed by the metamodel.

By current transformation engines only syntactical correctness is checked but it is left un-
clear if the posed requirements are accordingly regarded by the specification. In case the require-
ments are not fulfilled, additionally the question arises how to find an error in a transformation
specification, i.e., which means for debugging are provided. In the following, deficiencies of
model transformation languages concerning the specification of requirements as well as short-
comings of existing support for testing and debugging are shortly elaborated.

1.3 Deficiencies

ransformation languages focus on the implementation of transformations but fail to provide

means for analysis, design, testing and debugging of model-to-model transformations [58,
98|]. However, just like any other software, transformations should be engineered using sound,
robust engineering techniques. This necessity is even more acute given the prominent role of
transformations in MDE and their increasing complexity. Hence, the MDE community demands
for methods and techniques supporting appropriate abstractions to be used in the different phases
of transformation development (cf. Fig.[I.3). In the following, the current state of the art in the
main phases as well as current deficiencies are described.

6

1.3. Deficiencies

2 | Transformation
implementation

1 Transformation
requirements

using arbitrary
transformation language |

3 Automated
\ testing

1

debugging to
track errors

N e —————

verification of
contracts

S -

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

Figure 1.3: Model Transformation Development Phases

1.3.1 Requirements and Analysis Phase

In software engineering, the determination of requirements and their analysis has been recog-
nized as an important part of the whole engineering process, reflected by the dedicated discipline
of requirements engineering [[130]]. In research as well as in industry it is widely accepted that
an accurate requirement analysis is critical to the success of a software project. Concerning
model transformations, however, the sound specification of requirements is still in its infancy
although major challenges exist (cf. [Fig. T.4). These include (i) the elicitation of requirements,
(i) the analysis of a set of requirements with respect to completeness and consistency, and (iii)
the traceability of requirements to the subsequent phases (i.e., implementation as well as testing
and debugging). Thus, the goal of the requirements phase is to achieve a formal specification of
the requirements based on the source and target metamodels. Consequently, requirements have
to be documented, measurable, and on a level of detail to be able to design the system [21].

Challenge 1: Elicitation of Requirements. A major challenge in the requirements phase
is the elicitation of them. In a model-to-model transformation scenario the main task of the
elicitation phase is to establish a coarse-grained correspondence model on basis of the source
and target metamodels. Nevertheless, as emphasized in [58]], model transformations are mainly
developed ad-hoc, i.e., the analysis phase in model transformation development has been ne-

7

1. INTRODUCTION

Source Metamodel
Formal Specification

Requirements

Target Metamodel and . -g
Analysis

K Challenge 1 - Elicitation: \

*Semantics
*Heterogeneities
*Metamodel Size

Source Metamodel Target Metamodel

Transformation

*Traces between requirements and code *Formal specification
*Reasoning

\ Requirements | «Usage in testing phase /

Figure 1.4: Challenges in Requirements Phase

Challenge 3 - Traceability: %g Challenge 2 — Analysis and Verification:

glected so far. However, in order to define the requirements on a transformation (i) semantic and
(i) syntactic heterogeneities between metamodels have to be analyzed.

To enable the realization of a model transformation, first the semantics of the metamodels
involved must be understood, such that overlaps in semantics of concepts might be identified.
For this, ideally a domain expert is available, who knows about the semantics of the meta-
models or corresponding metainformation, e.g., in the form of documentation. Otherwise, this
knowledge may be statistically re-engineered from example instances as proposed in the area
of data engineering (cf., e.g., [69]). If semantically equivalent concepts have been found syn-
tactic heterogeneities have to be analyzed. Syntactic heterogeneities typically result from the
fact that semantically equivalent or related concepts can be expressed by different metamodel-
ing concepts [94]]. Nevertheless, in in this context a major challenge is to describe the occurring
heterogeneities, since no common vocabulary for heterogeneities has been established so far.
For establishing such a common vocabulary, a starting point would be to analyze which hetero-
geneities might occur at all between metamodels, as done in [86].

Furthermore, due to the increasing complexity of systems and modeling languages, also the
size of metamodels grows and thus, mechanisms are needed to analyze large metamodels. To
support the transformation designer in this task, matching tools might be employed to enhance
understanding of large metamodels. This is since matching tools allow to derive correspon-
dences between metamodels which might help to reveal semantic relationships automatically. In
this respect, first metamodel matching tools [[42],43.(123]] inspired from schema matching [[122]
have been developed.

Challenge 2: Analysis and Verification of Requirements. Given the fact that a set of
requirements has been posed, a major question is whether this set is complete and consistent.
Thus, the language that has been used to capture the requirements should enable reasoning on

1.3. Deficiencies

them with respect to (i) metamodel coverage, (ii) redundancies, and (iii) contradictions. To allow
for automatic testing of the requirements, they have to be formally defined [[143]]. Currently, for
the specification of requirements, OCL-based approaches (cf., e.g., [29,30]) have been proposed.
Nevertheless, they do not allow for reasoning and are difficult to write and yield to verbose
specifications. Thus, in order to facilitate the specification of requirements, a more user-friendly,
but still formal language is needed, which is specific to the domain of model transformations.
This is in contrast to software engineering, where formal methods like Z [143]] or Alloy [70] have
been developed. However, such languages are specific to the domain of software engineering
in the way that they are, e.g., not capable to deal with the complex structures of models, which
makes the specification of requirements tedious. Thus, a dedicated language is needed that takes
the special requirements of model transformations into account.

Challenge 3: Traceability of Requirements. Since the recorded requirements serve as
contracts for the implementation, traceability of each requirement to the succeeding phases is
indispensable. This is also favorable to locate the area of the implementation that has violated
a certain requirement as checked in the testing phase. Thus, a mechanism is needed that allows
to manage links between requirements and their realization in the transformation code. Such a
mechanism could be a simple model allowing to store links between requirements and transfor-
mation rules.

In summary, although first approaches supporting the transformation designer in the require-
ments and analysis phase have been proposed, a dedicated support to formally specify the re-
quirements, which can subsequently be used for testing the specified transformation, is still
missing.

Deficiency 1: Missing Support for Specifying Transformation Requirements. In soft-
ware engineering, dedicated languages have been proposed to capture the requirements, e.g.,
Z [143] and Alloy [[70]. Current transformation languages do not provide means to specify
certain requirements. Instead, the requirements a transformation is supposed to fulfill are only
available in an informal way, e.g., in terms of a textual description. Furthermore, in software
testing, a so-called oracle determines if the result of a test case is correct [[13}/19], i.e., if no dif-
ferences between the generated and the expected results exist, the test run succeeds. Such oracles
may also be employed in the domain of model transformations to determine if the transforma-
tion specification fulfills the posed requirements, e.g., comparing if a generated target model
is equal to desired one (cf below). Since the expected target model is not available, usually a
so-called partial oracle may be employed to check if expected properties hold for the generated
model. Concerning the running example of if there is a Package in the source
model there should be an according Schema in the target model according to the above pre-
sented requirements. A possibility to realize partial oracles is to use design by contract which
has been introduced for object-oriented programming languages [105[]. Design by contract al-
lows to formalize requirements in terms of contracts, which may be used to test the software, i.e.,
contracts on methods specify valid input parameters and report an error in case of invalid values.
Providing a dedicated language for specifying contracts also for the domain of model transfor-
mations (i) would allow the definition of contracts that are not tied to a particular transformation
language, i.e., it should be implementation independent (which is especially favorable in MDE
since no dedicated standard transformation language has emerged in practice so far [38]]), and

9

1. INTRODUCTION

(i1) equips designers of transformations with the possibility to state explicitly desired properties
of a transformation before implementation, which could then be used in the testing phase to
verify the actual implementation.

1.3.2 Implementation Phase

Research in model engineering so far has been focussing mainly on implementation languages.
This is analogous to software engineering, where analysis and design notations came later, when
scalability became an issue [[58|]. Although numerous transformation languages have been pro-
posed (cf. [38] for an overview), some main challenges in implementation are still open. These
include (i) the automatic derivation of the transformation specification from the defined require-
ments, (ii) the provision of reusable components, and (iii) means to explicate the operational
semantics of the according transformation language (cf. [Fig. T.5).

Challenge 1: Automatic Derivation. For enhancing development efficiency, automatiza-
tion techniques may be employed to derive (parts of) the transformation logics. Existing ap-
proaches in this direction used matching techniques that try to find the correspondences between
metamodels and then interpret these correspondences to automatically derive the transformation
code [42,43,[123]]. Furthermore, example-based approaches have been proposed, that match
model instances to derive model correspondences which are used to infer metamodel corre-
spondences [146]. These metamodel correspondences are then again used to derive executable
transformation code. However, matching-based approaches may produce good results in case of
similar metamodels but fail in case of heterogeneous metamodels.

Challenge 2: Reusable Components. In order to minimize the number of failures in a trans-
formation the reuse of existing, already tested, components should be considered. Although

Source MM

Transformation
Specification

Target MM

Formal Specification ;

[Challenge 1:

Automatic Challenge 3:
Derivation Operation
Semantics
Challenge 2: ‘ 7
Reusable EET
k Components /

Figure 1.5: Challenges in Implementation Phase

10

1.3. Deficiencies

numerous reuse mechanisms (cf., e.g., [[37,/42,/159]]) have been proposed for model transfor-
mation languages it remains unclear in which situations a certain reuse mechanism is suited
best. What is missing is an in-depth comparison of proposed reuse mechanisms in rule-based
model-to-model transformation languages to highlight when to apply a certain reuse mechanism
and how reuse mechanisms complement each other. Such reuse mechanism may be applied to
provide reusable transformation components. Finally, inspired from data engineering abstract
mappings have been proposed [42]86] that allow to specify a transformation on a conceptual
level by means of high-level components. These components exhibit a well defined operational
semantics, which enables the generation of transformation code. Nevertheless, the current pro-
posal does not provide a sophisticated library of components restricting the expressive power.
Furthermore, their actual operational semantics is often hard to follow, i.e., it is not clear which
component to use in which specific transformation situation.

Challenge 3: Operational Semantics. The diversity of model transformation languages
also leads to a diversity in the underlying execution engines, which exhibit different semantics
making it hard to comprehend the semantics of a transformation language. Furthermore, current
hybrid and declarative model-to-model transformation languages (e.g., ATL [73]], TGGs [83],
and QVT Relations [[116]) specify correspondences between source and target metamodel el-
ements on a high level of abstraction, whereas accompanying execution engines operate on a
considerably lower level. For example, ATL uses a stack machine whereas TGGs are first trans-
lated to Fujaba storydiagrams [[160]], which are then again translated to Java for execution. These
execution engines act as a black-box to the transformation designer hiding the operational se-
mantics. Furthermore, comprehensibility of transformation logic is further hampered as current
transformation languages provide only a limited view on a model transformation problem. For
example, in ATL metamodels, models, the transformation specification, and trace information
are scattered across different artifacts. Graph transformation approaches using graph patterns
only reveal parts of the metamodel. Additionally, both approaches hide the transformation of
concrete model elements. The situation is even more aggravated if several tool manufacturers
implement a different semantics as is the case for QVT Relational.

In summary, although the focus of current transformation languages is on the implementa-
tion phase, further research is needed how to derive the implementation from the findings of the
requirements phase (in a model driven way) and how to provide reusable components. Addi-
tionally, the diversity of transformation languages and their underlying execution engines, which
hide the operational semantics thereof, aggravates the understanding of the actual transforma-
tion logic. Additionally this hampers debuggability of model transformations. In this respect, an
explicit runtime model, which reveals the internals of the execution engine, is needed.

Deficiency 2: Missing Runtime Model to Investigate the Operational Semantics. If in
the testing phase an error occurs, means for understanding and debugging the transformation
specification are needed to efficiently find failures. Unfortunately, as discussed above, current
transformation engines hide the actual operational semantics. In order to make the hidden oper-
ational semantics explicit and consequently following the model-driven approach, model trans-
formations should also be represented as a transformation model as stated in [17]. Although
transformation languages base on metamodels, e.g., ATL, only transformation specifications are
defined in terms of models but not their execution. If the execution would be represented in

11

1. INTRODUCTION

terms of a formal model, the runtime information could easily be used for debugging purposes
(cf. below). In this respect, commonalities of different model transformation languages should
be represented by such a transformation model which abstracts from technical realization de-
tails [17]]. Consequently, such a transformation model could not only be used as a conceptual
model but could also act as runtime model which makes the operational semantics explicit. A
runtime model needs to provide means to represent the transformation logic, the metamodels,
as well as the respective models involved in a model transformation. It is required to make
explicit which model elements are transformed by which transformation rule or due to which
circumstances a certain model element may not be transformed, e.g., in case a certain condition
is not fulfilled. Additionally, the interconnections between transformation rules need to be made
explicit in order to be able to follow the execution order of certain transformation rules which
together form the model transformation.

1.3.3 Testing and Debugging Phase

Following the IEEE Standard Glossary of Software Engineering Terminology [|68]], testing may
be seen as a way to verify a system since festing is “the process of exercising or evaluating
a system by manual or automated means to verify that it satisfies specified requirements, or
identify differences between expected and actual results”, which has also been discussed in [98]].
Baudry et. al stated in [13] that “model transformations constitute a class of programs with
unique characteristics that make testing them challenging” whereby this is further aggravated
by the complexity of input models and the different transformation languages. According to
[64], testing consists of designing test cases, executing the software with those test cases and
examining the results produced by those executions. Model transformation testing in this sense
means that a transformation specification is executed using certain input test models and the
generated target models are compared to expected target models. Consequently, methods are
needed to verify as to whether a certain source model is correctly transformed into a desired
target model. In case a failure is detected, i.e., the transformed model is not equal to the desired
target model, means for debugging are required in order to be able to examine the transformation
specification and to actually fix the failure.

Following [[13]], activities in testing of transformations include the generation of test data, the
definition of test adequacy criteria to select adequate test cases from the generated test data, and
the construction of an oracle, which predicts the expected outcome of a certain transformation.
Thus, two main challenges in testing may be described as (i) generating adequate input data and
(ii) predicting the outcome for them. Furthermore, to actually decide, whether a problem arises,
the predicted outcome must be compared to the actual outcome. Finally, after having recognized
that a problem exists, the detection of the failure, i.e., the tracking to the origin of the bug in
the code, represents the main third challenge (cf. [Fig. 1.6). To actually perform testing and
debugging, besides the source and target metamodels as well as the transformation specification
also the formal specification may be employed to produce a test protocol.

Challenge 1: Generation of Adequate Input Data. To relieve the tester from the bur-
den of specifying test input models manually, approaches have been proposed for automatically
generating valid input models [23//46,(140]. This is urgently needed due to the complex struc-
ture of models, which makes a manual creation tedious and error-prone. In this context, two

12

1.3. Deficiencies

Source MM

Test Protocol

Formal Specification

Transformation
Specification

\\

L Challenge 1: Challenge 2:
Generation of Prediction of
Adequate Input Data Outcome (Oracle)
Challenge 3:
Detection of Failure

-

Figure 1.6: Challenges in Testing Phase

main approaches may be pursued. First, input models may be generated based on the source
metamodel only. Consequently, a subsequent selection of adequate input models according to
existing preconditions must be performed, i.e., the model has to represent a valid subset of mod-
els considered by the transformation. Second, input models may be created on the basis of the
source metamodel as well as the specified preconditions. In this case, the generation process is
more complex, but the subsequent selection process may be omitted. As may be seen from this
short overview, several promising approaches concerning the generation of adequate input data
have already been brought forward.

Challenge 2: Prediction of Outcome (Oracle). A second major challenge represents the
prediction of the outcome for the generated input models, which is commonly denoted as oracle,
as already mentioned above. Thereby, complete oracles and partial oracles have been described
in literature [13}/109]], whereby a complete oracle is responsible to predict complete output mod-
els for given input models and a partial oracle predicts only properties that must hold, i.e., if a
certain property in the input model holds, a certain property in the output model must be ful-
filled. Since in the testing process it should be validated if the afore defined requirements are
fulfilled by the transformation specification, it is obvious to reuse the requirements specification
for testing. Provided that the requirements have been formally specified, the specification may
be made executable in a way that it may serve as partial oracle. Thus, a formal specification
of requirements is not only useful in the implementation phase but also in the testing phase.
To actually recognize whether failures exist in the implementation, the predicted outcome by the
oracle must be compared to the actual outcome of the transformation. Therefore, model compar-
ison techniques are needed to automatically compare an expected output model to a generated
output model [98]).

13

1. INTRODUCTION

Challenge 3: Detection of Failure. Finally, if problems have been observed, the tracking
of the origins of failures represents also a major challenge in the testing and debugging phase
[173]. Provided that the prediction of the outcome has been performed based on the formal
specification of the requirements and that they exhibit traceability means to the implementation,
a first hint to the location of a failure may be given. This may then serve as an entry point for
debugging. Otherwise, the entry point for debugging must be specified by the transformation
designer without any guidance. To enhance the detection of the failure, the provided debugger
must make the operational semantics explicit in a way that the impedance mismatch between
the transformation specification and the execution engine is kept as low as possible. Another
technique would be to apply metrics as proposed in, e.g., [3[] to detect so-called code smells.

In summary, although first approaches have been brought forward for the testing and debug-
ging phase, there are still major issues open. These include the prediction of the outcome as well
as the detection of the failure.

Deficiency 3: Inappropriate Debugging Facilities. The first major deficiency is to specify
requirements on model transformation in way the the may also be used for the testing phase.
Nevertheless, this problem has been considered already in[Subsection 1.3.1] In order to actually
find a failure in a transformation specification, according means for debugging are indispensable.
As stated above, most often, current transformation engines are implemented using common
object-oriented programming languages like Java, e.g., the stack machine of ATL. As a con-
sequence, debugging of model transformations is limited to the information provided by these
programming languages, most often just consisting of variable values and logging messages.
Thus, only a snapshot of the actual execution state is provided during debugging while coher-
ence between the specified correspondences is lost. As discussed in [98]], a model transformation
debugger may not make use of common programming language debuggers “due to the semantic
differences in abstraction between the artifacts of code and models”. The authors furthermore
clearly state that “a model transformation debugger must understand the model representation”.
In this respect, an execution of a model transformation should again be represented in terms
of a model, i.e., an execution should be an instance of the runtime model as described above,
to enable debugging on the model representation level. Furthermore, an explicit, model-based
representation of the execution state would allow to incorporate more sophisticated debugging
facilities known from traditional software engineering, e.g., tracking the origin of a failure by
means of reasoning backwards in time and slicing [[173]]. Finally, if the actual execution is based
on commonly agreed, formal methods, properties may be calculated which are useful for debug-
ging. For example, one could reason if the specified transformation terminates or if its behavior
is confluent.

1.4 Contributions

he overall goal of this thesis is to provide means to test and debug model transformations.
Thereby, the focus is on providing an implementation independent infrastructure to test
model transformations against certain requirements and to provide means to foster understand-
ability of model transformations and consequently to ease debugging of model transformations.
This thesis therefore presents three major contributions that tackle the aforementioned deficien-

14

1.4. Contributions

cies of current approaches (cf. Fig.[I.7). First, a declarative, visual language is proposed that
allows to specify transformation contracts. Transformation contracts may be used to observe
facts in model transformation testing according to [[173]], i.e., to observe what happened in a test
run. Nevertheless, further means are needed to understand and debug model transformations,
i.e., to track the origin and to find the cause of a failure according to [[173]]. Therefore, the second
contribution introduces a common runtime model based on the concepts of Colored Petri Nets
(CPNs) [72]]. This runtime model builds the basis for the third contribution being sophisticated
debugging mechanisms which are especially tailored to the domain of model transformations.
In the following the contributions are elaborated in detail.

Contribution 1: Declarative Language to Specify Visual Transformation Contracts.
For the specification of partial oracles, a visual, declarative specification language to express
properties for model-to-model transformation languages is proposed (cf. (D in . This
language is called PAMOMO (Pattern-based Modelling Language for Model Transformations)
and is aimed to allow for the formal definition of model transformation requirements, that may
later on be used for testing. First versions of PAMOMO have already been in presented in [[55,
57]). In the course of this thesis the language concepts will be modified and extended to make it fit
as a contract language. Hence, designers of transformations may use this language to (i) describe
desired properties of the transformation, as well as properties of its input and output models in
an implementation independent way. This style of properties borrows ideas from the design by
contract methodology [105]] because contracts may be used to specify preconditions, invariants,
and postconditions of model transformations. As already mentioned above, preconditions are
going beyond metamodel constraints, i.e., they are specific to a certain transformation, and need
to be satisfied by input models such that the transformation is applicable. Invariants might be
used to specify what conditions need to be satisfied by any pair of input/output models resulting
from a correct transformation. Postconditions might be used to express that an output model
should or should not contain certain configurations of elements.

One of the advantages of contracts is that they allow to define what a piece of software does
but not how it is done. In this respect, model transformation contracts may be used even be-
fore the implementation phase to specify the requirements of model transformations, which are
later on used for testing. Additionally, the contract is a useful document for the transformation
designer in the development phase, since it describes what the transformation is supposed to
do, under which conditions the transformation should be applicable, and which postconditions
a transformed model is supposed to fulfill. Thus, the contract makes explicit the requirements
of a model transformation to be implemented and may be used to define partial oracles. In this
respect, the requirements of the running example in [Section 1.2 may be formulated in terms
of contracts, i.e., it would be possible to check if a specified transformation fulfills the posed
requirements. Consequently, PaAMoMo is used for the automated testing of transformation im-
plementations. The specifications are compiled into executable, check-only transformations ex-
pressed in the standardized QVT Relations language. These transformations are executed before
(to check the preconditions) and after the transformation under test (to check invariants and post-
conditions) and provide the user with information on which property of the specification was
violated (if any) and where. In order to ease the specification and to automate the compilation
of specifications, dedicated tool support will be provided.

15

1. INTRODUCTION

O P(InheritedAttributes)

N(NoRedefinedAttrs)
q Class - Relational
Class S Relational pa.Packa\ ge

name=X

p: Class | c: Class
isPersistent = trug| .
name=C

c.general->includes(p)

ar:Attribute

a: Attribute

PaMoMo: A Visual Contract Language

specifies requirements G

TROPIC QVT Relations

@ executes <4 4

Transformation Net
Source Target
Tr i § ™y
Metamodel { Source Logic Target y /\) > \ Metamodel
% . T e
) - ¢
| Lo Places Transitions o
conforms I oke i ’ ﬂ) conforms
derVe A~ = = . = _.
Source s i e
Model

Runtime Model — Simulation and Query-based Debugging

@ — ~ t?ased on

&

e ,‘-::;

IR}

Colored Petri Nets — Verification based Debugging

Figure 1.7: Contributions of the Thesis

Contribution 2: A Runtime Model for Model Transformations. Following the idea of
model transformations as transformation models [17]], this thesis presents Transformation Nets,
a DSL on top of Colored Petri Nets (CPNs) [72], for developing, executing, and debugging
model transformations (cf. @ in [Fig. 1.7). Transformation Nets include commonalities of to-

16

1.4. Contributions

day’s declarative rule-based model-to-model transformation languages. In particular, for every
metamodel element, places in Transformation Nets are derived, whereby a corresponding place
is created for every class, every attribute and every reference. Model elements are represented by
tokens, which are put into the according places. Finally, the actual transformation logic is rep-
resented by transitions. The existence of certain model elements, i.e., tokens allows transitions
to fire and thus to stream these tokens from source places to target places representing instances
of the target metamodel to be created. This approach follows a process-oriented view towards
model transformations allowing debugging on an appropriate level of abstraction. Furthermore,
Transformation Nets provide the explicit statefulness of imperative approaches through tokens
contained within places. The abstraction from control flow known from declarative approaches
is achieved as the nets transitions may fire autonomously, thus making use of implicit, data-
driven control flow. In this respect, Transformation Nets act as a runtime model for model
transformations. A first version of Transformation Nets has already been presented in [[125]].
Nevertheless, in the course of this thesis further development of the runtime model will be con-
sidered, going beyond the contributions proposed in [125]]. Thereby, major improvements have
been considered in three different directions. First, numerous changes and extension to the ini-
tial version of Transformation Nets have been conducted in order to provide a metamodel that
represents the commonalities of current rule-based model-to-model transformation languages.
Thereby, a focus has been set on representing reuse concepts, e.g., rule inheritance and modular-
ization concepts. Besides changes in the underlying metamodel of Transformation Nets, second,
a formal basis has been provided by its full compilation into CPNs. Finally, the compilation into
CPNs enables the use of efficient standard execution languages, e.g., CPN Tools® in the pro-
totypical implementation, as well as formal properties of CPNs, which may be employed for
debugging the transformation specification.

Contribution 3: Debugging Facilities for Model Transformations. The ability to com-
bine all the artifacts involved, i.e., metamodels, models, as well as the actual transformation
logic, into a single representation makes the formalism especially suited for gaining an under-
standing of the internals of a specific model transformation. First, this formalism allows to detect
bug-smells by inspecting the static structure of the according Transformation Net. Second, the
runtime model serves as a basis to provide debugging facilities, whereby in this thesis three
dedicated mechanisms are proposed namely (i) simulation-based debugging, (ii) query-based
debugging, and (iii) property-based debugging (cf. @ and Q) in . They will shortly be
described in the following. As stated in the runtime model should also include in-
formation about the actual execution of a model transformation, i.e., which model elements have
already been transformed, which may be used for debugging purposes. This is why Transforma-
tion Nets also store the models in terms of tokens. The execution of a model transformation may
then be simulated, e.g., by firing transitions in Transformation Nets. The stepwise firing of the
transitions makes explicit the operational semantics of the transformation logic and thereby en-
ables simulation-based debugging. Furthermore, the runtime model may be exploited by means
of query-based debugging. For this, OCL queries are proposed which allow to reason backwards
in time, e.g., since the execution stack is represented in the model it is possible to query which
transition produced a certain target token and which source tokens where involved in creating

8http://cpntools.org

17

1. INTRODUCTION

a certain target token. Since the execution is stored as a model, forensic debugging is enabled
additionally, i.e., debugging might occur after having executed the transformation logic based
on the explicitly available runtime model. Finally, the formal underpinnings of CPNs allow the
application of generally accepted behavioral properties, characterizing the nature of a certain
CPN, e.g., to test if a certain target model may be created with the given transformation logic.
Thus, CPN properties enable property-based debugging.

Prototypical Implementation. Besides discussing the contributions of the thesis from a
conceptual point of view, a prototypical implementation of the concepts is provided, which is
based on the Eclipse Platform. More specifically, the prototype is based on the Eclipse Modeling
Framework (EMF)° [24] for specifying the metamodels of PaMoMo and Transformation Nets
and on the Graphical Modeling Framework (GMF)!? [54] for specifying the concrete, graph-
ical syntax of them. To execute PaMoMo contracts they are compiled into checkonly QVT-
Relations, more specifically the implementation of Modelmorf!! is used. CPN Tools are used
to execute Transformation Nets as well as to calculate formal properties. To enable communi-
cation between the Eclipse based implementation of Transformation Nets and CPN Tools the
ASAP platform [163]164] is used.

1.5 Thesis Outline

he thesis is mainly structured to the well-known development cycle and along the three
major contributions depicted in Fig.[I.7] In the following, a brief overview on the structure
of the thesis is given.
[Chapter 2; [Related Work]
In order to present the fundamentals of this thesis this chapter presents related work and state
of the art in testing and debugging of model transformations. Thereby, the main deficiencies of
current approaches are identified which are improved by the contributions of this thesis.
[Chapter 3: [PaMoMo: A Visual Language for Model Transformation Contracts|
This chapter focuses on the introduction of the declarative, visual language PaMoMo (Pattern-
based Modelling Language for Model Transformations) which may be used to specify contracts
in terms of preconditions, invariants as well as postconditions for model transformations. Fi-
nally, it is reported how these contracts may be compiled into QVT-Relations in order to validate
the contracts against a certain transformation. The idea of contracts has been summarized in a
journal paper which was accepted for publication at the time of writing the thesis [|59]]
[Chapter 4: [ITransformation Nets - A Runtime Model for Model Transformations|
The basic concepts of Transformation Nets, i.e., how metamodel and model as well as the trans-
formation logic itself are represented are introduced in this section. Thus, it is shown that
Transformation Nets may serve as a runtime model for declarative model-to-model transfor-
mation languages. Parts of the findings in this chapter have been published in several peer
reviewed papers [[134},[135[169L[172], initial ideas of Transformation Nets have been published

“www.eclipse.org/emf
1%%ww.eclipse.org/gmf
http://www.tcs-trddc.com/trdde website/ModelMorf/ModelMorf.htm

18

1.5. Thesis Outline

in [[125126,/170]]. Furthermore, modularization concepts are discussed, i.e., modules are pre-
sented which allow the modularization of Transformation Nets and the definition of reusable
components in a transformation specification.

[Chapter 5; [Rule Inheritance in Transformation Nets|

Whereas the previous chapter introduced basic concepts of Transformation Nets, this chapter
focuses on reuse mechanisms in Transformation Nets. In this respect, it is discussed how rule
inheritance is supported in current transformation languages (published in [[167]) and how rule
inheritance may be incorporated into Transformation Nets.

[Chapter 6f [Colored Petri Nets as Semantic Domain for Transformation Nets|
Transformation Nets represent a Domain-Specific Language (DSL) on top of Colored-Petri Nets
(CPNs) [[72]]. In order to make use of already existing, efficient CPN execution engines as well as
the formal underpinnings, i.e., properties, provided by CPNs, Transformation Nets may be fully
compiled to CPNs. This chapter therefore (i) introduces CPNs, (ii) formalizes Transformation
Nets according to principles of Petri Nets and presents the (iii) actual compilation.

[Chapter 7k [Debugging Support for Model Transformations|

After translating Transformation Nets to CPNs and thus providing a formal execution engine,
this chapter discusses how (i) simulation-based debugging, (ii) query-based debugging, and
(iv) property-based debugging are realized. The findings in this chapter are partly published
in [[135}[165].

[Chapter 8: [Prototype Implementation|

Besides presenting testing and debugging of model transformations from a conceptual point of
view, this chapter provides an overview of the actual implementation. In this respect, first, the
implementation of PaMoMo is discussed, followed by the realization of Transformation Nets
and their according debugging facilities.

[Chapter 9; [Evaluation|

In order to evaluate and to critically reflect the presented contributions this chapter presents eval-
uations on the basis of case studies and comparative reviews. First, it is shown how a transforma-
tion specification defined in QVT Relations may be tested by means of contracts and debugged
by means of a translation to Transformations Nets, partly published in [168,|171]]. Second, a
comparative study driven by the identified deficiencies in related work is conducted in order to
show in which way the thesis improved the state of the art. Additionally it is shown how Trans-
formation Nets may be used to specify the operational semantics of the mapping language called
Mapping Operators (MOps) [86]].

[Chapter 10; [Conclusion and Future Work|

The thesis concludes with a summary and a critical discussion of the achieved contributions.
Finally, current limitations as well as an outlook on potential further research directions is given.

19

Chapter 2

Related Work

Because things are the way they are,
things will not stay the way they are.

— Bertolt Brecht
Contents
[2.1 Model Transformation Testing|. 22
2.2 Runtime Models for Model Transformationsl 28
[2.3 Debugging of Model Transformations| 29
.................................... 38

fter having shortly discussed current deficiencies, this chapter provides an in-depth overview

on related work. Thereby, the related approaches are separated into the three main deficien-
cies identified in First methods are surveyed concerning testing of model-to-model
transformations and how test cases can be specified. The term testing refers to “the process of
operating a system or component under specified conditions, observing or recording the results
and making an evaluation of some aspect of the system or component” [[68]] in order to detect
if failures in a program exists. According to [[173]], a failure is an infection that is externally
observable. An infection occurs if the defect in a program is executed in a way that the desired
state of the program differs from the actual state. Debugging is then the process of locating de-
fects in a program as well as to remove the defect so that the failure no longer occurs. Therefore,
in this thesis the term failure is preferred to the term bug, which is not precisely defined [173| p.
19]. In order to find a failure, tool support is indispensable. Second, related work concerning
runtime models is presented, which may serve as basis for a debugger in declarative rule-based
model-to-model transformation languages. Finally, related work concerning debugging support
in current model transformation languages is presented.

21

2. RELATED WORK

2.1 Model Transformation Testing

he need for systematic testing of model-to-model transformations has been recognized by
the research community and has been documented by several publications, outlining the
challenges to be tackled [[12}|13]]. As a response, several testing approaches have been proposed

whereby shows a classification thereof.

Model Transformation
Testing

L=

Generation of
Input Model

g N
Prediction of
Output Model

/—I—\

Metamodel-
Centered

Partial Oracle
Function ‘

Oracle Function

Logic-Centered

Transformation ‘ Complete

S I RN S
Model Ty General Custom
Comparison ¥ Properties Properties

Contract- Execution-
L Based Based
J

Intrinsic { Extrinsic
J

Figure 2.1: Classification of Existing Approaches in Model Transformation Testing

Basically, existing approaches can be divided into approaches (i) for the automated gen-
eration of test input and (ii) for the prediction of the desired output model. Considering ap-
proaches for the generation of input models, they can be further divided into those that make
use of the source metamodel of the transformation only, to systematically generate a large set
of test cases or those that additionally take into account the design and implementation of the
model transformation. Approaches that solely base on the metamodel are also called black-box
generation approaches, whereas those making use of the implementation are called white-box
approaches [13]]. Methods that try to predict the desired output model can again be split into
those that try to predict the whole output model, i.e., that make use of a complete oracle func-
tion, and those that try to predict parts of desired target model only, i.e., partial oracle functions.
Complete oracle functions may be defined by having the expected output model at hand, which
acts as a reference model for analyzing the actual output model of a transformation, e.g., by
means of model comparison. Other approaches use the oracle function to compare an existing
trace model with the actually produced trace model (cf. trace analysis in[Fig. 2.T)). Since often
no desired target model is available and since it is tedious and error-prone to establish a target
model manually, approaches exists that try to ensure certain properties of a transformation by
means of partial oracle functions. Thereby, approaches consider either testing general proper-
ties such as confluence, applicability and termination of a set of transformation rules, which are
generally applicable to all transformation specifications, or custom properties which are specific
to a certain transformation specification. Considering general properties, either the transforma-
tion language itself provides means to test them, i.e., intrinsic in or the transformation

22

2.1. Model Transformation Testing

specification is transformed to a specific language that allows to test properties, e.g., Petri Nets
or constraint solvers, i.e., extrinsic in Finally, custom properties can be specified based
on contracts or on their execution. Contracts allow to specify preconditions, invariants and
postconditions that need to be fulfilled by a transformation specification. Execution based ap-
proaches allow to specify a formal property that can be automatically checked by analyzing the
state space, which contains all possible execution sequences of a transformation specification.
This is especially common in model checking. In the following, the classification is explained
in detail and related work in testing model transformations will be presented.

2.1.1 Automated Generation of Test Input Models

As stated, e.g., in [23]], test data generation for model transformations requires to handle complex
data structures compared to the data of traditional programming. This difference requires special
means for test data generation, i.e., how to generate source input models. Due to this complexity,
the manual specification of input test models would be tedious and error prone. Therefore, auto-
mated generation is heavily needed. A distinguishing criteria amongst the approaches presented
is, as to weather the approach makes use of the metamodel only, or additionally considers the
actual transformation specification under test.

Metamodel-Centered Approaches. An approach that uses the metamodel to generate test
input models is presented in [23[]. The presented algorithm first derives so-called model frag-
ments which specify parts of the metamodel that should be instantiated with interesting values
for testing, e.g., minimum values, maximum values, or null values. The presented approach then
combines and completes the fragments in a way that a valid source model results, i.e., the source
model has to conform to its according metamodel. The focus of the paper is to present different
strategies how to achieve this goal. In a subsequent work the authors present a framework to
qualify the relevance of generated input model for testing [45[]. Furthermore, the framework
identifies missing model elements in input models and assists the user in improving these mod-
els. Another point that is highlighted in [[140] is that a metamodel might exhibit additional
constraints, e.g., by means of OCL constraints. These constraints have to be fulfilled by the gen-
erated input models. Therefore, an automatic approach is presented which is based on constraint
satisfaction. Based on previous work of the authors presented in [[139]], the input metamodel and
its additional constraints are translated to Alloy! to generate a boolean formula which is solved
using a SAT solver [[107] to obtain a potential solution.

Transformation Logic-Centered Approaches. The following approaches take into account
the design and the implementation of the model transformation for constructing test cases. An
approach that considers the matching phase of graph transformation rules to test input models
is presented in [39]. Based on a fault model for graph transformations, the extracted model
that originally matches a certain graph transformation rule is systematically changed in order
to introduce errors which have to be detected during testing. In [87]], a template language to
generate test models based on the structure of the rules used to implement the transformation
is presented. A given transformation rule can be transformed into a so-called metamodel tem-

"http://alloy.mit.edu/community

23

2. RELATED WORK

plate. Such metamodel templates are then used to automatically create template instances that
represent suitable test cases.

In summary, it has to be emphasized that the generation of test input models is not the focus
of this thesis. Nevertheless, the generation of input models has been discussed shortly to (i)
provide a full overview on related work concerning model transformation testing and (ii) because
the methods that will be presented throughout this thesis require according input models, which
may be generated using the above presented approaches.

2.1.2 Prediction of Output

In general, literature on model transformation testing distinguishes between two kinds of ora-
cle functions [13}/109]] to predict the output of a model transformation. First, complete oracle
functions may be defined by providing a full-fledged expected output model for each test input
model, and subsequently, employing model comparison frameworks to verify the equality of
the actual output model with the expected target model. Second, partial oracle functions can
be used to test the transformation specification against desired properties, i.e., if the generated
target model contains a certain graph structure.

2.1.2.1 Complete Oracle

Verification by Model Comparison. Complete oracle functions may be defined by having
the expected output model at hand which acts as a reference model for analyzing the actual
output model of a transformation as proposed in [82,(97,98]. Model comparison frameworks
are employed for computing a difference model between the expected and the actual output
models. If there are differences then there is an error. However, reasoning about the cause for
the mismatch solely bases on the difference model (comprising differences such as additions,
deletions, movements, and updates of model elements) is challenging. The situation is even
more aggravated since several elements in the difference model may be caused by the same
error. The transformation designer has the burden to cluster the differences by himself. For
large test input models which result in large output models, this approach seems unfeasible in
practice, and partial oracle functions are more appropriate.

Trace Analysis. Instead of applying an oracle to compare the generated target to a desired
one, in [78]] an approach is presented to specify oracle functions solely on the basis of frace
links between the input models and the output models. Thereby, the authors propose an “oracle
function that compares test cases with a base of examples of existing traces”. This leads to the
fact, that no expected target model needs to be defined for every test case. Additionally, the
trace links may act as pointers to the location of a potential error. Nevertheless, this approach
assumes the existence of an initial trace as a basis for the oracle function, which is hardly the
case in practice.

In summary, complete oracle functions require the execution of the actual transformation
under test to receive the target model or the trace links required for comparison. This execution
based testing has several advantages, as stated in [97], i.e., (i) it is easy to perform the actual
testing (compared to more formal methods presented in the following), (ii) the specified model
transformation is executed in its expected environment, and finally (iii) the testing process can

24

2.1. Model Transformation Testing

be automated, i.e., it is possible to generate the input models, execute transformation and do the
comparison without user interaction. Nonetheless, often no desired target model is available for
model comparison and reasoning about the actual failure is cumbersome since only difference
models are available. To overcome these limitations, partial oracle functions have been proposed
which are discussed in the following.

2.1.2.2 Partial Oracle

Partial oracle functions have been proposed for checking properties of input models, output
models, and their relationships. Thereby, properties which are applicable to transformations in
general may be specified, i.e., properties such as termination or confluence, but also properties
specific to a single transformation, e.g., a property to check if “for every persistent class an
according table has been created” as desired in the running example.

General Properties. Several properties that are common to all model transformations may
be checked. For example, every model-to-model transformation has to be finite, i.e., the model
transformation has to terminate. Additionally, a transformation should not run into a deadlock.
Furthermore, it is desirable that a model-to-model transformation is confluent, i.e., the produced
target model should always be the same, provided that the same input model is used. Several
approaches have been presented to verify such common properties. Those are detailed in the
following. Thereby, existing approaches can further be divided into intrinsic and extrinsic ap-
proaches.

Intrinsic: A transformation language that provides support for checking general properties is
AGG [147]. Nevertheless, the proposed approach of analyzing critical pairs is applicable to any
graph rewriting system and could therefore be included in other graph transformation languages
as well. In this respect, Heckel et. al [65] showed how critical pair analysis can be applied to
check for confluence of a specified transformation. A critical pair in graph transformation rules
occurs if two transformation rules are non-parallel independent. Parallel independence means
that “two rules can be applied in any order yielding the same result. Otherwise, if one of two
alternatives is not independent of the second, the second will disable the first. In this case, the
two steps are in conflict” [65] p. 8]. Formal proofs are provided which show that if critical pairs
are confluent then also the transformation is locally confluent.

Extrinsic: The term extrinsic partial oracle means that the model transformation language
itself does not provide means to test certain properties, but instead the properties are tested
in some external formalism. Especially in the area of graph transformations, work has been
conducted that use Petri Nets to check formal properties of graph production rules. The approach
proposed in [157] translates individual graph rules into a Place/Transition Net and checks for
its termination, since termination is in general undecidable in graph grammars [[119]. Another
approach is described in [90], where the operational semantics of a visual language in the domain
of production systems is described with graph transformations. The models of the production
system, as well as the graph transformation rules are transformed into Petri Nets in order to
make use of the formal verification techniques for checking properties of the production system
models. Thereby a short discussion is given, how the properties for Petri Nets presented in [[112]
may be applied in the domain of model transformations. Nevertheless, these approaches make
some abstractions, i.e., the derived Petri Nets abstract from details of the model transformation.

25

2. RELATED WORK

For the approach presented in [157]], it is stated that the derived Place/Transition Net is only a
simulation of the specified transformation rules, but not a bisimulation. Instead of Petri Nets, the
approach presented in [27]] uses OCL to verify common properties of a transformation. Thereby,
the graph transformation rules are represented by an intermediate OCL representation which
allows to test certain properties with OCL invariants. In the paper seven general properties have
been presented, for example, applicability, i.e., if a certain rule is applicable at least once, or
conflict, i.e., two rules are in conflict if firing one rule can disable the other one.

Custom Properties. In addition to general properties, often transformation specific prop-
erties have to be checked in order to test the correctness of a specific model-to-model transfor-
mation. Mainly two approaches can be distinguished, namely contract based approaches and
approaches that make use of model checking techniques. In the following, representative papers
are presented for both categories.

Contract-Based Approaches: Contracts are a well-established technique in software engi-
neering to verify object-oriented programs [93,/105]]. Inspired from these ideas, contracts have
also been applied for the verification of model transformations in previous research. In the fol-
lowing, several approaches proposed for verifying model transformations using contracts are
discussed, divided into (i) OCL based, (ii) graph pattern based, and (iii) model-fragment based
approaches.

* OCL Based Approaches: The first approach using contracts for model transformations
was proposed by Cariou et al. [29,(30]. The authors suggest implementing transforma-
tions with OCL. In this way, the source metamodel classes are provided with operations,
which may comprise preconditions, postconditions, and invariants. Although OCL na-
tively supports design-by-contract, OCL is not intended to specify transformations and
relationships between models. Thus, the authors propose an extension for OCL that al-
lows defining mappings between input and output model elements. A similar approach for
defining contracts with OCL has been proposed in [[108]]. Besides other aspects, Kuester
et al. [87] also agree on the use of OCL for the definition of transformation specific con-
straints for the produced output models. Common to all these approaches is that the con-
tracts are embedded into the underlying transformation during execution. In this respect,
neither the specified preconditions nor the postconditions can be checked without the ex-
ecution of the transformation. Furthermore, a tool is needed that allows to execute the
transformation and to check the constraints at the same time, which reduces applicability,
as stated in [29]].

Additionally, Cabot et. al showed in several papers, how OCL invariants can be derived
from graph transformations specified in TGGs or QVT Relations [25}26}28]. In this re-
spect, the invariants state conditions for a valid transformation. The derived invariants
together with the source and target metamodels form the so-called transformation model.
The transformation model is then used to test the specified model transformation using
the author’s UMLtoCSP tool [28] for analysis. Thereby the invariants are translated to
a constraint solving problem and according constraint solver can thus prove the proper-
ties. Furthermore, UMLtoCSP is able to generate a valid combination of source and target
model, which may be used to check if the generated model are equal to a desired one (cf.

26

2.1. Model Transformation Testing

above). In [52f, a mechanism is presented to define properties for source models, target
models, and source-target relationships as contracts expressed in OCL based on transfor-
mation contracts. A transformation contract defines a set of properties together with a set
of valid source models. These source models are then transformed by the transformation
under test into according target models, whereby the resulting target models are checked
by the USE tool 2, which evaluates the specified OCL constraints.

In [81]], the authors propose the Epsilon Unit Testing Language to test model manage-
ment operations. The language permits defining test operations where post-conditions
for the model transformation under test may be specified. In a similar vein, Giner and
Pelechano [51]] propose a Test-Driven approach to the construction of model transforma-
tions. Their focus is to capture the requirements for a model transformations by means that
can be later on used for testing, i.e., the requirements are covered in the form of test cases
made of an input model, together with output fragments and OCL assertions. These test
cases act as contracts for the to be specified transformation, which can be tested against
those requirements.

In [55] and [58] TRANSML as language to cover the life-cycle of transformation develop-
ment enabling the engineering of transformations has been presented. TRANSML includes
a dedicated language for model-based testing, which enables the description of test cases.
Thereby, the expected properties may be described in an OCL like textual syntax. The
specified test cases can be executed after the according transformation under test in order
to check if the specified properties are fulfilled.

* Graph Pattern Based Approaches: In [§], the authors propose to use the patterns sup-
ported by the VIATRAZ2 tool to specify contracts for model transformations. However,
their patterns operate on one metamodel only, being therefore usable to specify pre- and
postconditions, but not transformation invariants.

* Model-Fragment Based Approaches: Finally, a special form of contracts was presented
in [109]]. Based on the findings in [123]], the authors propose to use model fragments for
defining properties which are expected for an output model produced from a specific input
model. For verifying these properties, the model fragments are matched on the produced
output model. This approach is different from the previous ones, which propose using
generic contracts solely defined on the metamodel level and not specific to a concrete
test input model. The advantage of using model fragments is to support a user-friendly
specification of test cases by reusing the graphical modeling editors, but this induces that
the constraints are described at the model level. Thus, they have to be defined for each
particular test input model.

Execution-Based Approaches: In order to verify the actual execution of a model transfor-
mation, techniques from model checking are employed to test model transformations. Model
checking [36]] is a method to check a model against a certain specification. Typically the state
space of the system is calculated which is used for verifying the specification, usually expressed

Zhttp://www.db.informatik.uni-bremen.de/projects/USE

27

2. RELATED WORK

in terms of temporal logic formula, i.e., a property that may be checked in the course of the
running example might be that there exists a state in the future where there are exactly as many
tables as classes available. In this respect, in [[156] a translation of graph transformation rules to
transition systems, serving as the mathematical formalism of various different model checkers,
has been proposed. Thereby, only the dynamic parts of the graph transformation systems are
transformed to the transition system in order to reduce the state space. The GROOVE toolkit?
provides model checking facilities based on graph transformations [[128]]. Their main goal is to
enable verification of object-oriented programs where the behavioral semantics is expressed by
means of graph grammars. From the graph grammars an according transition system is generated
which allows to check properties expressed in a temporal logic on graphs [[127]. In Rivera et.
al [129]], the transformation from graph transformations into the rewriting-logic based language
Maude” is presented, which provides explicit means for formal analysis. Consequently, model
checking and reachability analysis is enabled for graph transformations. A similar approach is
presented in [[10]], whereby Alloy [70] is used as a model checking language. Nevertheless, none
of the presented approaches states how the results of the verification of the properties can be
mapped back to the actual transformation language. In this respect, the upcoming implemen-
tation of the graph transformation language Henshin® provides direct support for state-space
analysis and tries to integrate this technique into the transformation language. OCL can be em-
ployed to check for properties on the state space. Nevertheless, the analysis method are restricted
to in-place transformations only.

In summary, testing model transformations by means of partial oracles is a promising ap-
proach as the plethora of related work reveals. However, the ones based on OCL usually lead to
complex constraints, which are difficult to write in practice, yielding verbose specifications [30],
especially for the specification of relations between input and output models. Furthermore, the
specification of the partial oracles is tightly coupled with the actual transformation language.
This means that every transformation language requires specific methods to specify contracts
or to translate the transformation specification into a formal language. Finally, by using a pure
OCL-based approach, only true or false is given back as answer to the user, but no further in-
formation is accessible in standard OCL environments. Approaches based on model checking
typically provide a counter example that caused the property to fail. Nevertheless, this infor-
mation is represented by means of internal states of the model checking tools only, whereas the
mapping of the results back to the according transformation language is left open.

2.2 Runtime Models for Model Transformations

n general, run-time models provide means to abstract from code level details to allow for
Ireasoning on the runtime behavior of a system [95]]. Up to now, runtime models for model
transformations have not gained much attention. In [17], it was presented that the specifica-
tion of model transformations itself should be model-based. In this respect, a metamodel for a
model transformation language has been proposed. The explicit representation allows to use the

3http://groove.sourceforge.net
*http://maude.cs.uiuc.edu
Shttp://www.eclipse.org/modeling/emft/henshin

28

2.3. Debugging of Model Transformations

specified transformation similar to any other model. In particular a model transformation may
again act as an input for a model transformation, which is then called a higher-order transfor-
mation [152]. Nevertheless, the proposed metamodel does not include any information on the
actual execution of a model transformation. Only the approach presented in [88]] provides a first
step towards this direction. Thereby, they authors made explicit the operational semantics of
QVT Relations by representing them in terms of CPNs, allowing the transformation designer to
conclude about the operational semantics of QVT Relations. Finally, ATL [73] explicitly repre-
sents the transformation specification as a model, which is then compiled into a virtual machine.
In this respect, the underlying virtual machine could be seen as runtime model, but acting on a
very low-level of abstraction.

Considering software engineering in general, proposals exists that try to provide runtime
models on the actual execution of a system. These models are then used for runtime verifica-
tion [[11]. The main idea is to extract information from a running system in order to check if
the observed behavior satisfies or violates certain properties. In this respect, runtime verification
builds the basis for many purposes, such as monitoring or debugging. Runtime verification tries
to avoid the drawbacks of formal verification techniques such as model checking, i.e., the sys-
tems needs not to be formally modeled and there is no need for the exhaustive calculation of the
state space. Nevertheless, it does not provide full coverage. Work in this area has been conducted
by Nierstrasz et al. [[113]], focusing on providing according abstractions and visualizations of the
runtime behavior of a system. In [32]], a framework has been presented which allows a developer
to specify a certain property that should be checked by using runtime verification. In this case
the properties are injected into the code using techniques from aspect-oriented programming. If
a property fails, the according trace, i.e., which statements have been executed so far, is provided
to the programmer, which allows to check for failures. In this respect, Maoz suggested to use
model-based traces for runtime verification [[102]. The runtime information provided by means
of standardized trace models can then be easily presented to the programmer, e.g., in the form
of sequence diagrams, statecharts or class diagrams. Maoz also proposed metrics and operators,
i.e., filters to hide certain parts of the execution or comparators to compare two executions of
the systems, to analyze the provided trace information. Furthermore, dependency graphs may be
built which can be used to realize dynamic slicing [173]], allowing to reason about the execution
of the system.

In summary, for model transformation currently no dedicated runtime models exists that
would allow the transformation designer to reason on the execution of the specified transforma-
tion. Nonetheless, a runtime model could be employed for runtime verification techniques of
model transformations and could be used for debugging model transformations as well.

2.3 Debugging of Model Transformations

n order to find a failure in software engineering, a common feature of every integrated de-
Ivelopment environment is to allow the programmer to monitor and potentially alter the state
of a running programm by means of a debugger. Nevertheless, debugging support for model
transformations is still in its infancy [85]]. As stated in [101]], the miss of appropriate debugging
facilities in the domain of MDE in general and in model transformations in particular hinders

29

2. RELATED WORK

the adoption of MDE in industry. Thereby, debugging on an appropriate level is of utmost im-
portance for declarative (transformation) languages as stated in [158]]. This is since declarative
languages typically abstract from ~ow something is done and the hidden operational semantics of
the transformation engine is counterproductive for debugging. Consequently, during debugging
exactly this hidden operational semantics needs to be made explicit. First approaches which
provide debugging support for model transformations focus mainly on providing runtime in-
formation from the actual underlying low-level execution engine, which is often written in a
common programming language, e.g., Java. However, the information provided consists of low-
level information only, e.g., only variable values are presented to the transformation designer.
Therefore, special debugging support is required for declarative transformation languages. In
the following, relevant criteria for debuggers of declarative model transformation languages are
presented, which are used to compare the debugging support of current transformation languages
later in the thesis.

2.3.1 Comparison Criteria

The common goal of debugging is to ease the localization of failures. A debugger should sup-
port the transformation designer in narrowing the potential set of causes to a minimum [[137].
Based on the requirements defined in [[173]] for debugging in general and in [101]] for debugging
domain-specific modeling languages in particular, criteria for debugging of declarative model-
to-model transformation languages (or the declarative parts in case of hybrid languages) are
derived. Debugging can be divided into live debugging, i.e., the transformation is investigated
during execution, and forensic debugging, i.e., the trace information (which source element has
been transformed to which target element) is analyzed to reason on potential failures, as can be
seen in Live debugging can further be divided into means (i) to support the transfor-
mation designer in selecting a certain part of the transformation specification, (ii) to allow the
transformation designer to investigate the actual state of execution, (iii) to be able to investi-
gate the dynamic behavior and finally, (iv) to allow for adaptations during debugging. In the

following the criteria are explained in detail.
Model Transformation
Debugging
|

S — JEN
&:T LDZ::;;::E ‘
S I N R I
N [) ()

Selection Investigation Dynamics Adaptations

4 4 ———
Breakpoints {Stﬂ‘e w LControlFlow

Backwards
Reasoning

Execution

‘ Matching

Model ’ Logic

Figure 2.2: Classification of Means for Debugging in Model Transformations

30

2.3. Debugging of Model Transformations

2.3.1.1 Selection

Debuggers need to provide means allowing the transformation designer to select a certain part
of the transformation code for execution. Thereby, (i) the matching of models elements should
be influenceable by the transformation designer and (ii) breakpoints should be provided to stop
the execution at a certain point of time.

Visualization of Matching Process. An important step when executing model transforma-
tions is the matching process. In general, the matching of elements of the source model and
thus the potential application of rules in declarative model transformation languages involves
non-determinism. In this respect, the potential choices for matching should be accordingly pre-
sented to the transformation designer, i.e., it should be clearly pointed out which rule might be
executed. Furthermore, it should be possible to influence the choice of the rule application, i.e.,
the transformation designer should be able to chose the rule. Moreover, a rule might match for
several model objects. Consequently, it should be possible to select a certain configuration of
model elements, i.e. what binding should be used to execute a rule.

Breakpoints. Breakpoints are a common concept in debuggers, indicating that the execu-
tion should be stopped before the execution of a certain statement. Nevertheless, the situation in
declarative transformation languages offers again certain possibilities, i.e., if the breakpoint is
put on a rule, it could either stop the execution before a certain configuration of model elements
is matched, only if a certain configuration of model elements was successfully matched or even
in case a certain configuration failed to match. All of these three scenarios could be beneficial in
certain situations, i.e., the breakpoint should be configurable. Another possibility of configura-
tion is the specification of conditional breakpoints [173], i.e., the breakpoint stops the execution
only if a certain user-defined condition is fulfilled.

2.3.1.2 Investigation

In order to reason about the state of execution a transformation designer must be enabled to
inspect the current execution state. Additionally, the actual control flow should be visualized
within the transformation specification.

State Inspection. Debuggers in traditional programming languages provide means to visu-
alize the current execution state, i.e., typically a view on the memory is provided, representing
the actual values of variables. Nevertheless, not only the state of the execution engine should be
presented to the transformation designer but also the state of the rules and the trace model, e.g.,
which model elements have already been transformed by a certain rule, as well as the state of
the source and the target model, e.g., which target elements have already been created.

Visualization of Control Flow. The actual state of execution should also be shown in the
according code, e.g., in textual model transformation languages the according line of code is
highlighted or in graphical transformation languages the according rule may be highlighted.
Furthermore, not only the according rule but also the involved model elements should be visu-
alized, e.g., matched model elements in the source model.

31

2. RELATED WORK

2.3.1.3 Dynamics

To allow the transformation designer to reason about the semantics, stepwise execution needs to
be enabled. Additionally, a failure is often only detected after executing a certain piece of code.
Thus, in order to find the origin of a failure it should be possible to reason on previous execution
states.

Stepwise Execution. In order to debug the transformation specification, a stepwise execu-
tion should be enabled in order to gain an insight into the operational semantics. Nevertheless, as
stated in [[137]], a notion of an execution step is missing for declarative transformation languages.
This is in contrast to imperative transformation languages where instructions are typically the
smallest unit of execution which serve as according execution step in debugging. In declara-
tive programming languages the underlying execution engine might execute several actions to
perform a certain step, e.g., in order to match for model elements several steps in the underly-
ing execution engine may be required. Consequently, these abstraction from underlying details
should also be hidden during debugging, i.e., the transformation designer is not necessarily in-
terested in how a certain model element is matched but only why it can or can not be matched
by a certain transformation rule.

Backwards Reasoning. During debugging it should not only be possible to execute the
transformation in a forward direction, but it should also be possible to reason about a previous
state, i.e., it should be possible to detected failures by reasoning backwards in time to find the
origin of the failure [96,/173]], being closely related to omniscient debugging [[120]], i.e., recording
a program’s state over time, and program slicing [[150]. In this respect, recent work by Ujhelyi
et al. [[153]] presented a dynamic backward slicing approach model transformations based on
automatically generated execution trace models of transformations.

2.3.1.4 Adaptations

Debuggers in common programming languages not only allow a programmer to inspect the exe-
cution state but also to manipulate the execution state during debugging, i.e., values of variables
might be manipulated or even the code itself might be adapted. In this respect, a debugger
for transformation languages should allow the transformation designer (i) to change the model,
i.e., to add, edit and delete model elements, and (ii) the transformation logic, i.e., it should be
possible to fix failures in the transformation logic within the debugger.

2.3.1.5 Forensic Debugging.

Hibberd et al. [66] present forensic debugging techniques for model transformations by utilizing
the trace information of model transformation executions for determining the relationships be-
tween source elements, target elements, and the involved transformation logic implemented in
Tetkat [91]]. With the help of such trace information, it is possible to answer debugging questions
implemented as queries which are important for localizing failures. In addition, they present a
technique based on program slicing [[162}/173], i.e., to identify only those path of a programm
that influence a certain state, for further narrowing the area where a failure might be located.
Such techniques are beneficial in addition to the debugging techniques described above.

32

2.3. Debugging of Model Transformations

2.3.2 Comparison of Debugging Support in Transformation Languages

Based on the above presented criteria in the following, the debugging support of ATL [[73]], AGG
[147], Fujaba [160], GReAT [6], TGG [83,[136] and QVT Relations using the implementation
of mediniQVT® are compared, as summarized in|Table 2.1

Table 2.1: Comparison of Debugging Support in Declarative Model Transformation Languages

Live Debugging

Selection Investigation Dynamics Adaptations Aot
Breakpoints Visualization p :
. State Stepwise Backwards . Debugging
Matching simple conditional inspection of (F:Iontrol Execution Reasoning icce! legit
ow
ATL x v x v v v x x x x
AGG v x x v v v x ~ ~ x
Fujaba x v ~ (proposed) v v v ~ (proposed) |~ (proposed) x x
GReAT x v x v v v x x x x
TGG ~ (proposed) |~ (proposed) |~ (proposed)|~ (proposed)| ~ (proposed) |~ (proposed) x x x |~ (proposed)
mediniQVT x v v v v v x v x x

ATL: ATL uses a stack machine implemented in Java to interpret the transformation speci-
fication. In this respect, the ATL debugger is based on the Eclipse Java debugging environment.
Since ATL does not make the involved models explicit, the transformation designer is not able
to influence the matching process. Concerning breakpoints, ATL supports simple breakpoints
only (which have to be specified in the Eclipse outline view). The information about the actual
execution state is restricted to low-level information only, i.e., the actual values of the variables
are presented to the user (cf. [Fig. 2.3). Thereby, the bound objects are presented in the vari-
ables view of the Eclipse debugging environment. Nevertheless, the structure of the model gets
lost, i.e., the graph like structure is not represented. The according lines of code are highlighted
in order to visualize the control flow. A stepwise debugging is possible, i.e., the user is able
to check the evaluation of conditions or certain assignments, but only in a forward direction.
Furthermore, the values of the variables can only be inspected but cannot be changed during

6

www.ikv.de

€| pn2stateat! i = B |[09= Variables 32 PEICEEE N
module pn2state; = 1 Name Value i
cr::;iozi;:;xzac from IN:souzce; || € elements Object 162 I

“rule PetriNet2StateMachine(= [1I] gz{ﬁﬁi;i

from pn : source!Petrilet T <supertype> ject
= to statemachine : target!Statemachine (8 name source |
elements <- pn.elements B cepacity 0

D = =@ Object 173

) control flow € <superypes Objeet 173
visualization B copadity 4 B

“rule Element2MElem{ = @1 Object 174

from elem : source!Element L setf Object 153 il
to mElem : target!MElem(L o = . m o T
pame < elem.nams source state inspection .
3| breakpoint

® “rule Place2State extends Element2MElem{
from elem : source!Place
to mElem : target!State| - -

Figure 2.3: Screenshot of ATL Debugger.

33

2. RELATED WORK

debugging. Since the ATL execution engine maintains the trace model internally and during the
actual execution only, i.e., it is not explicitly shown to the transformation designer, no forensic
debugging is supported.

AGG: Although AGG does not explicitly provide a debugger, it has nevertheless been con-
sidered in the comparison, since the execution of AGG allows for (i) an interpretation mode and
(ii) a step mode. The interpretation mode applies a whole sequence of rules and tries to match
the available rules as long as possible. In contrast to that, the step mode allows the transforma-
tion designer to select a certain rule or even a certain binding to be executed, i.e., the matching
can be influenced by the transformation designer. As can be seen in the transformation
designer can use the interactive match mode to assign a certain element of a graph transforma-
tion rule to a certain element of the model graph. Only parts of the matches need to be specified
whereas the remaining parts can be automatically completed. Although the user is allowed to
choose an arbitrary rule in the step mode, it might happen that it cannot be bound in the cur-
rent state of execution, thus breakpoints would nevertheless be needed, but are not supported in
AGG. The current state of execution is shown in the according model graph. Furthermore, the

¢ AGG V164 (DATROPIC\repository\benchmark\benchmarklexamplel.ggx) o= =)
File Edit Mode Transform Parser Analyzer Preferences Help

G2 E [To|[o] R |[Me/ [P a|lac|[c [S6][Ts] 0] [ME B | a[Ac] £ &
&= (e 2R m]m e [EA][+][-

Tool2Tool of Example1

Nac

.

complete
matching

|1:Pub\icati0nTO0I1| |1:Pub|\cati0nTO0I1

\
\

manually matched \
1 elements)

Graph of Example1

s

Frofessor
name="Superprof’

Publication pub|Professor salan=5000
name="Puh1" name="Youngprof') B
type="Conference" salary=3000
Fublication
name="Journall"
type="Journal"
i
M Click on a source object and a target object to get a match mapping. [Tool2Tool
] D —traceLink

Figure 2.4: Screenshot of AGG Debugger.

34

2.3. Debugging of Model Transformations

model graph visualizes the current match. Adaptations to the model and the transformation logic
are possible in AGG, but only if the according elements are not already matched by a certain
rule. Finally, no support for forensic debugging is considered since AGG does not maintain a
built in trace model, instead this has to be defined by the transformation designer.

Fujaba: Fujaba provides so-called story diagrams that allow to describe model transforma-
tions based on graph transformation rules. These graph transformation rules are then mapped to
Java for execution. In this respect, the debugging features provided by a Java IDE may be reused.
Nevertheless, in order to avoid the deficiencies of this approach, i.e., debugging on generated
source code is difficult since the developer usually does not know about the generated code,
in [49] an approach is presented that allows debugging on the story diagram level. Thereby, an-
notations are added to the generated Java code, which allows to reuse existing Java debuggers,
but to map back the results to the model level. This mapping allows then to put breakpoints on
story diagrams, whereby only a first proposal for conditional breakpoints exists [84]]. Concerning
investigation support, the variables values are shown to represent the according transformation
state, together with highlighting the according elements in the story diagram. In [49] it is pro-
posed to visualize the current heap of a Java program at runtime as a UML object diagram by
means of eDOBS [50] to additionally reproduce a graphical representation of the model (cf.

" Debug - TestF4E/StatechartEditorTestZ.ctr - (===
File Edt Mawigate Search Project Run Fujaba Window Help File Edt Diagrams Import/Export Tools Options Help Activity Diagram
Ci-E B G B0 iG-S &S - o
B EHing BRBOF S Bddox® 2 mam? TE BER @LSH
[| #° eDOBS Diagram 52 @ Q EEEIE
= [s0 : StateChartFlattener Fhish] [s1: Statechart By K=
% E
% [name = Active]
£0
&
L4
eDOBS representation
rd
T of model
t6 : Transition [5ToOM) [init = true
(B label = e [name = Dialtare| —
¥ *Statecharteditor £ | [J) Test123.java = 0| %5 Debug 32 =8
StateChartFlatener: transitionTalnner (); Boolzan - i3] D RH | R -
= [3] Test123 [Java application]
=& Test123 at lacalhast:3708
=0 Thread [main] {Suspended)
» statechan = "
e otatethart |_» clmerts | or :Drstate . iStatechartEditorTest2.cir line: 150
. igtatechartEditorTest2.ctr line: 105
3, mainiStringl] ine: 12
* Larget ¥ cdrtains o c 6,0
wdestio
— < >
- woreates target Inner:State T
aToOr :Transition et 09= Yariables 53 | [| 2
Wame ale EN
O fuisha_Success : :
[suscess | {[faitare 1 © O fusba_Iteroron state inspection
O aToor Transition (id=15)
control flow b # © fujaba_TterorTolnner FHashMap§Keyoftn
O inner State (id=23)
true visualization v ® O fusba_lersceor Fiashitap§ikeyOfEn|y |
< > <] 3]
4" transitionTolnnert) 52 | 72 StateChartFlatten, .. >
create link target From aToOr o inner : g s B @

Figure 2.5: Screenshot of Fujaba Debugger with eDOBS [49]]

35

2. RELATED WORK

[Fig. 2.5)). To execute the specified transformation stepwise, the underlying Java debugging fea-
tures are used, which may lead to the fact that for a single step in the story diagram several steps
are required in the underlying Java debugger. Finally, reasoning backwards is mentioned in
to be useful when debugging story diagram, but no actual realization is presented. Finally, first
ideas are presented in which ways a model might be changed, i.e., only those elements might be
changed that are not already matched by a certain story diagram.

GReAT: The graph transformation language GReAT provides a debugger which is built
on top of the GReAT execution engine. Nevertheless, it only offers the typical features found in
traditional debuggers, e.g., breakpoints and stepwise execution [6]]. A graphical window displays
a list of the transformation rules. The transformation designer can attach breakpoints to rules
and step through the transformation specification, allowing to see the results of a particular rule
or to see what elements are matched at a given time, as depicted in During debugging,
it is not possible to change model elements or the transformation specification. Finally, forensic
debugging is not considered.

* Config.mga - GRDebuggerGLII Q@@

File W¥iew Help
m o Ed o B g

x| 0 MakeOrder3 (InHouse:I, InOrder:1)
O 1 AddTeOrder A . £ 1 begin
9 In Variables state inspection & 2 CreateOrder (RootFolder:I, PurchaseOrder: O, House:0, RootFolderi1)

@ House £ 6 begin
& has no value 4 7 end
@ Orderltem £ 3 MakeOrder { Orderltem:O, House:10, PurchaseOrder:I, Room2:P, AdjacentTo:P, Rooml P)
<> has no value £ 8 begin
£ Matchers 4 Send
& RoomZ A 4 AddToOrder (House:1, Room2:P, Rooml:P, AdjacentTa:P, Orderltem:I)

@ Roomt control flow [= 10 begin breakpoint
@ AdjacentTo visualization 11 end
O 0MakeOrder3 4 5 end

Al 12 MakeOrder2 { InHouse: 1, InOrder:1)
A 21 MakeOrder! { InOrder:1, InHouse:1)

* Loading the program using C:\Mobies\GREAT\Samples\House2OrderdConfig.mga... ~
program has been loaded
a breakpoint has been set at location 10
running ...
program has been started
a breakpoint has been hit at location 10

Ready

Figure 2.6: Screenshot of GReAT Debugger [0]

TGGs: Since TGG rules can be compiled to the Fujaba environment, using the MoTE plu-
gin [160]], TGGs can benefit of the debugging support of Fujaba as well, but only on the level of
story diagrams and not on the level of TGGs. Therefore in proposals have been made how
debugging may be enabled on the level of TGGs by aligning debugging features of program-
ming languages to TGGs. In the according concepts are marked as proposed only.
With the exception of AGG, the proposed debugging support is the only one that considers the
matching of model elements as well. Furthermore, the proposal mentions that forensic debug-

36

2.3. Debugging of Model Transformations

ging could be employed in the context of TGGs since the traces are made explicit by means of
the correspondence graph.

QVT Relations: For QVT Relations only the implementation of mediniQVT provides ded-
icated debugging support. Nevertheless, the debugger is based on the Eclipse debugging envi-
ronment only. In this respect, no specific debugging support is provided to debug the matching
process, i.e., it is not possible to select certain model elements or a certain rule. Nevertheless,
besides simple breakpoints also conditional breakpoints are supported which allow the trans-
formation designer to customize when the execution of a QVT Relations transformation should
stop by means of OCL conditions. Inspection of the state is again limited to values of variables,
only (cf. [Fig. 2.77). In addition to highlighting according lines of code, the debug view shows the
stack of called relations, i.e., if one relation calls another one, one can see its order of invocation.
Furthermore, it is possible to use the known step semantics, i.e., step into steps into a depen-
dent relation, step over solely executes the relation and returns the result and step out returns to
the parent relation. Finally, QVT Relations allows to alter the variables during debugging, i.e.,
the model can be changed, but it is not possible to alter the transformation specification during
debugging. Although the trace model, which is produced by the QVT engine is made explicit
to the transformation designer, no support for forensic debugging is provided. In contrast to
mediniQVT the second prominent QVT Relations tool ModelMorf [149]] does not provide any
explicit debugging facilities.

%5 Debug 2 I EE=TETE
8 QVT [umi2rdbms.qvt] -
#® Main thread (suspended) called relations
= PackageToSchema (line: 18), =
= ClassToTable (line: 51)
uml2rdbms.qut 54 = O][0d= variablen 23 B Y70
—-- map each packade to 2 Schema i Natmre el
(conditional) Testessher @p UmiPackage
. i @ s RdbmsSchema
breakpoint @ pn ‘myPackage
L] checkonly domain uml p : SimpleUML::UmlPackage {
1N = pr R .
| eme T e state inspection
(editable)
¥ enforce domain rdbms s : SimpleRDBMS::RdbmsSchema {
rdbmsName = pn
control flow
visualization ‘ '
'myPackage’ -
-- map each persistent class to a table
top relation ClassToTable {
s Sredimee 2
;

Figure 2.7: Screenshot of mediniQVT Debugger.

In summary, although numerous transformation languages claim debugging support for
model transformations they typically make use of the debugging features of the underlying ex-
ecution engine only. Thus, debugging occurs on a rather low-level and thus there is a consider-
able impedance mismatch between the high-level declarative specification of model transforma-
tions and the provided means for debugging. Especially, when debugging declarative languages
this impedance mismatch hinders understandability, since the hidden operational semantics of
declarative model transformation languages is not accordingly represented, e.g., only AGG pro-

37

2. RELATED WORK

vides support for debugging the matching phase of model transformations. Thus, what is needed
is a debugger that represents all parts involved in a model transformation accordingly, i.e., not
only the transformation specification itself but also the according metamodels and the models be-
ing transformed. Furthermore, a generally applicable debugging framework would be beneficial
in order to provide a common debugger for various declarative model-to-model transformation
languages.

2.4 Summary

n this section an overview on related work was provided. First a classification of existing
Iapproaches to model transformation testing was given. In the following, this classification
was explained in detail and the various existing approaches have been discussed. A special
focus was put on testing transformation by means of contracts, since this is a main contribution
of the thesis, as will be discussed in Nevertheless, testing might only help to observe
the fact that there exists a failure in the transformation specification but does not necessarily
provide means to detect the origin of the failure. This is why in a second step related work to
runtime models and debugging has been considered. Since the envisioned runtime model serves
as a basis for the proposed debugger, it was investigated if runtime models exist in the domain of
model transformations. As no dedicated literature could be found in this domain, the scope was
broadened to software engineering in general where runtime models have been considered to
realize runtime verification. Finally, a classification of debugging facilities was proposed which
was then used to investigate debugging support in existing model transformation languages.
Based on the findings of the comparison to related work, the following chapter focuses on the
first major contribution of this thesis being a visual, declarative language to specify contracts for
model transformation testing.

38

Chapter 3

PaMoMo: A Visual Language for
Model Transformation Contracts

Everything should be made as simple as possible,
but not simpler.

— Albert Einstein
Contents
[3.1 Requirements Specification for Model Transformations| 40
[3.2° Contract Specification with PaMoMo| 43
[3.3 Reasoning with Patterns|, 53
3.4 QVTRelationsinaNutshell| 56
[3.5 Operationalization of Contracts: From PaMoMo to QV'T Relations| 58
[3.6 Executing PaAMoMo Contracts| 65
.................................... 67

n order to support the transformation designer to specify requirements of model transfor-

mations, this chapter introduces the visual, declarative language PaMoMo (Pattern-based
Modeling Language for Model Transformations), which may be used to express model trans-
formation contracts. In a first step, it is shown in which way contracts may be applied in the
context of model transformations and the basic idea of PaMoMo is explained. After introducing
the general idea, the language features are explained in detail and it is shown how reasoning on
the specified contracts may be used to detect errors or inconsistencies within them, i.e., to check
well-formedness of contracts. Since QVT Relations is used to operationalize the contracts, first
the basic concepts of QVT Relations are introduced by providing an initial transformation spec-
ification of the running example before the actual translation of contracts specified in PAMoMo

39

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

to QVT Relations is discussed. Finally, this section concludes by showing how the contracts are
executed and how the may thus be used to test a certain transformation specification.

3.1 Requirements Specification for Model Transformations

equirements of model transformations should be made explicit, similar to software engi-
Rneering in general, as emphasized in[Section 1.3] In the area of software engineering, dedi-
cated methods have been proposed to capture the requirements, ranging from informal methods,
e.g., UML models like use-case diagrams, to more formal methods like Z [143]], Alloy [[70]], or
SysML!. Use-case diagrams are typically used in the very first step of requirements analysis by
specifying when and under which conditions certain behavior occurs [20]]. For this a high-level
graphical syntax is used which typically does not allow to automatically derive properties of a
system that could be used e.g., in the testing phase. In contrast, formal methods such as Z or
Alloy make use of mathematical notations to describe properties of a system in a precise way. In
this respect, it should be described what a system does instead of how it is achieved. As stated
in [143]] “formal specification may serve as single reference point for those who investigate the
customer’s needs and those who test the results”. Consequently, this means that if requirements
are specified in a formal way they could be used in the testing phase to test the programmed
systems automatically against the requirements, i.e, they might be used as an oracle function in
testing. SysML tries to combine the benefits of a high-level graphical syntax (i.e., ease of under-
standability) with the benefits of formal methods and thus supports the specification, analysis,
design, verification and validation of systems but on a more abstract level. Instead of mathe-
matical notations the (graphical) syntax bases on UML diagrams and thus is more common to
the software engineer. Nevertheless, such languages are specific to the domain of software en-
gineering in the way that they are not capable to deal with the complex structure of models and
that they are not focused to model transformations making the specification of requirements of
model transformations complex.

3.1.1 Design by Contracts for Model Transformations

The methods proposed for software engineering are too general, i.e., they tend to target the
whole software system. Therefore, on a more fine-grained level, design by contract [|[105] was
introduced as a means to increase quality in terms of correctness and robustness of the con-
structed software. Design by contract allows to formalize requirements (in terms of contracts)
which may be used to test the software, i.e., contracts on method specify valid input parameters
and report an error in case of invalid values. Another advantage of contracts is that they allow
defining what a piece of software does but not sow it is done. Different levels of contracts may
be distinguished comprising syntactic contracts and behavioral semantic contracts [15]. The
former enforce syntactically valid programs. In the context of model transformations, syntactic
contracts are specified by the source and target metamodels since they describe the types of the
manipulated data, implying that the source and target models must conform to these types [[108]].
In contrast, behavioral semantic contracts put further restrictions on the required input models,

"http://www.omgsysml.org/

40

3.1. Requirements Specification for Model Transformations

the produced output models as well as their combinations [108]. In the first place, behavioral
semantic contracts may be used to precisely specify the conditions (going beyond metamodel
constraints) to be satisfied by input models such that the transformation is applicable, i.e., pre-
conditions. Second, they may be used to express whether or not an output model should contain
certain configurations of elements, i.e., postconditions. Finally, they may be used to specify what
conditions need to be satisfied by any pair of input/output models of a correct transformation,
i.e., invariants of the transformation (cf. [Fig. 3.1).

case is correct, i.e., if the generated model equals

Oracle is needed to check if the result of a test
the expected model for a given input model

Source) - N Target
Metamodel Transformation Definition Metamodel
r 3 -~
conforms to conforms to
Valid subset of Expected subset of
models considered by models produced by
the transformation? the transformation?
Set of all possible input models Set of all possible output models

Figure 3.1: Contracts in Model Transformations

In the context of model transformations, contracts may be useful in several scenarios [30]:

* Implementation: A contract is a useful document for the transformation designer in the
development phase, to make explicit the requirements that need to be implemented in a
transformation.

* Documentation: Contracts serve as a useful documentation of the transformation in the
maintenance phase. Moreover, if contracts have a formal semantics, they may be used to
select transformations by matching properties of a required transformation and properties
of transformations stored in a transformation library.

* Compatibility Checking: Contracts may be used to check the compatibility of transfor-
mations in a chaining scenario, e.g., to check whether the postconditions of a preceding
transformation are compatible with the preconditions of a succeeding transformation.

e Testing: A common need in model transformation testing is to automatically compare
expected output models to generated output models [98]]. Unfortunately, the oracle that
should predict the expected output models remains a major challenge [12], for which
contracts (invariants) could be used to partially determine the expected output model (cf.
Fig).

41

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

3.1.2 Overview on PaMoMo

In order to make the requirements of model transformations explicit by the specification of
contracts, in the following PaMoMo (Pattern-based Modeling Language for Model Transfor-
mations) is introduced. PaMoMo is a declarative, formal, visual language designed to express
behavioral semantic contracts for transformations in an implementation-independent way [56]].
The realization of contracts by a dedicated language has two main advantages though: (i)
the definition of contracts is not tied to a particular target transformation language, i.e., is
implementation-independent, which is especially favorable in MDE since no dedicated standard
transformation language has been brought forward so far [38]] and (ii) designers of transforma-
tions may make explicit desired properties of a transformation before implementation, which
may be used for guiding the implementation. The contracts specified in PaMoMo may be ben-
eficial in each of the above discussed scenarios. The focus of this thesis is on these parts of a
contract comprising the testing scenario, i.e., how preconditions, invariants and postconditions
may be applied to test model transformations.

outlines the basic approach. First, the transformation designer uses PaMoMo to
define a contract specifying preconditions, postconditions, and invariants for the transformation
(cf. @ in|Fig. 3.2)). This contract exhibits a formal semantics and may be analyzed to discover
redundancies and contradictions in contracts, and to measure coverage of the involved meta-

name=A . 1 [name=A
C.g -

Q Transformation requirements 2 | Transformation
:” N(NoRedefinedAttrs) P(InheritedAttributes) . ‘: implemen tation
i L Class ! Relationd €125 ["par Package ,—-RSE‘::}"Z’:; i g T ~
i Q:Eo name=x : - Class Class : tTable i i Q/
|7 o o] | |
: . ! (2] i [ogonm] | | |

using arbitrary
transformation language

@Compilation into QVT-Relations

qualifying transformation oracle
criteria implementation function

> under test

preconditions '_‘;‘; i invariants,
R postconditions

Automated
testing

E QVT-ReIation engine for arbitral QVT-Relations

engine * language engine i i' i
’ ’ | |
source D transformation |:> target | | verification of !
model execution model ; _ contracts .

Figure 3.2: Automated Verification of Transformations using PaMoMo.

42

3.2. Contract Specification with PaMoMo

models, i.e., if every metamodel element is considered by a contract. Thus the well-formedness
of several patterns and their correct interplay may be ensured. Next, the developer may use the
contract as a high-level model to implement the transformation (cf. @ in . Although
parts of the implementation may be (semi-)automatically derived from the contracts, this is not
within the focus of this thesis. The implementation is tested by compiling the contract into the
executable QVT Relations language (cf. @ in , and then using a QVT engine in check-
only mode in order to check if the transformed models fulfill the specified contracts. In this
mode, a transformation is not used to produce a target model, but to check if a set of existing
models conform to the transformation, and to report the locations where this is not the case.
Hence, the compiled contract acts as an oracle describing invariants that output models should
satisfy, and is used for automated testing (cf. @ in . In this respect, first the validity of
the input model is checked by executing the preconditions; next the transformation implementa-
tion may be executed; and finally it is checked if the input and resulting output models conform
to the invariants and the postconditions. Consequently, the initial version of the PaMoMo lan-
guage presented in [56] has been accordingly extended to provide a better language support for
preconditions and postconditions (with enabling conditions), sets in invariants, and methods to
reason at the pattern level. In the following, first the syntax and semantics of PaMoMo is pro-
vided, whereby the reader is referred to [56] for details on its formal semantics. Afterwards,
the compilation into QVT Relations for the verification of a transformation implementation as a
major new contribution is discussed.

3.2 Contract Specification with PaMoMo

fter introducing the basic ideas, the syntax and semantics of PaMoMo is provided next.

First, the modeling of invariants is explained and afterwards the modeling of pre- and
postconditions is described, covering the requirements of the running example (cf. [Fig. 1.2).
Afterwards, enabling and disabling conditions of patterns are discussed, i.e., the satisfaction of
a pattern is only demanded when certain conditions in the source and the target occur. Finally,
sets are discussed, which allow to express properties related to the number of times a certain
structure may occur in a model.

3.2.1 Modeling of Invariants

A PAMOMO contract consists of a set of declarative visual patterns. As stated before, PAMoMo
allows to model preconditions concerning the source metamodel, invariants concerning the rela-
tionships between source and target metamodel and postconditions concerning the target meta-
model. Therefore, patterns in PaMoMo are made of two compartments containing object graphs
representing elements of the source or target metamodel. The left compartment contains objects
typed on the source metamodel, e.g., Class, while the objects to the right are typed on the
target metamodel, e.g., Relational (cf. [Fig. 3.3). Consequently, patterns where only the left
compartment is not empty are called preconditions, patterns where both the source and target
compartments are not empty are called invariants and patterns where only the right compart-
ment is not empty are called postconditions. To allow the transformation designer to describe

43

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

______________________ P(Package2§chema)
1 . 1 1
' Source compartment i Class i Relational ! Target compartment |
. containing an object ! : | containing an object !
| --->{|p: Package| ' |s: Schema| <-- !
' graph typed on the | N ' graph typed on the |
! source MM : name=X i | hame=X | target MM |
Lo A e . 7 . !

i NO

Figure 3.3: Positive Invariant Formalizing Requirement 1

necessary conditions to happen positive patterns are provided, i.e., the pattern is satisfied by
a pair of models if these contain certain elements. To additionally allow to express forbidden
situations additionally negative patterns are provided, i.e., the pattern is satisfied if certain ele-
ments are not found in the models. As an example, shows a positive pattern formalizing
requirement 1 of the example transformation. Positive patterns are represented in green with
its name enclosed in P (. . .), while negative patterns are shown in red with its name enclosed
inN(...). In order to consider attributes values in contracts, objects in the source and target
compartments may have attributes that may be assigned either a concrete value, or a variable
(like X in the example). A variable may be assigned to several attributes to ensure equality of
their values, or may be used in the pattern constraint expression. These may involve elements
of the source and target compartments. The invariant of has no expression, but variable
X is assigned to the name of the package and the schema, hence requiring the equality of both
names. Nevertheless, to allow for more complex comparisons, a constraint expression using the
Object Constraint Language (OCL) [115]] may be specified.

shows a scheme of the satisfaction of a positive (cf. [Fig. 3.4(a)) and a negative
invariant (cf. [Fig. 3.4(b)) over a pair of models, where EXP represents the pattern constraint
expression. Thus, the satisfaction for positive invariants amounts to check:

P(.) N(..)

Source i Target Source i Target
object ! object object |!| object
graph |;| graph graph |;| graph

osrc : 0tar osrc : otar
v| | EXP 3 V_ EXP | | /2/
=i 2 [= lji s EI

Source Target Source Target
model model model model
(a) Semantics of (b) Semantics of
Positive Invariant Negative Invariant

Figure 3.4: Scheme of the Semantics of Positive and Negative Invariants

44

3.2. Contract Specification with PaMoMo

VOcc(Ogpe) s.t. EX P|gre(Occ(Ogpre))
30cc(Oyar) s.t. EXP(Occ(Ogspe), Occ(Orar))

where EX P|. is the part of the expression EXP that contains source objects, attributes and
variables only, and Occ(Og,.), Occ(Oyq,yr) represent an occurrence of the source and target ob-
ject graphs respectively. An occurrence is a binding from the objects in the object graph of the
pattern to elements in the model. A pattern invariant is therefore satisfied either if no occur-
rence of the source object graph of the pattern may be found (called vacuous satisfaction) or if
for each occurrence of the source object graph, a corresponding occurrence of the target object
graph is found (or not found if the invariant is negative). A contract is satisfied if all its patterns
are satisfied, hence a conjunction is assumed between all the patterns of the contract. The appli-
cation of the pattern covering requirement 1 presented in is shown in [Fig. 3.5(a). The
first example models fulfill the specified requirements since for the package pl in the source
model there is an equally named schema s1 in the target models. The second scenario is true
since if no package is found in the source model then it is impossible to check if there is an
according schema in the target model. Thus, in this case the invariant vacuously holds. Finally,
the third scenario fails since the only existing university object is differently named than the
source package. If the positive invariant is changed to a negative one, then scenario one fails but
scenario three succeeds since in this case no equally named packages and schemas may exist
(cf. [Fig. 3.5(b)).

shows the invariants addressing requirements 2, 3 and 4 of the running example (i.e.,
transformation of classes, attributes and inherited attributes). The invariant to the left states that
for each persistent class ¢ in a package p, there must be an equally named table t in a corre-
sponding schema s. The invariant in the middle states that each attribute a of a persistent class
must be transformed into a column co with the same name and type. Finally, the right-most
invariant states that if a class ¢ has a superclass p owning an attribute a, then the table t that
corresponds to ¢ must contain a column with the same name as the attribute. This invariant con-

L

vacuous satisfaction

p1 : Package
name = ‘University*

s1:Schema @
name = ‘XYZ'
Target Model

Source Model

s1:Schema ; [pl: Package | sl: Schema@

L

vacuous satisfaction

p1 : Package
name = ‘University’ |]l| name = ‘University’ | [name = “University" ||| name = ’Um'
Source Model Target Model Source Model Target Model
P(Package2Schema) satisfied pattern N(Package2Schema) satisfied pattern
Class i Relational —(‘ Class i Relational \ :{
] s1:Schema i s1:Schema
p: Package : s: Schema E> name = ‘University’ | p: Package : s: Schema |f‘> name = ‘University’ |
name=X : name=X Source Model Target Model name=X : name=X Source Model Target Model

[pl : Package ‘

l name = ‘University” l

s1:Schema Yi

name = ‘XYZ*

Source Model

Target Model

unsatisfied pattern unsatisfied pattern

(a) Semantics of Positive Invariant Applied (b) Semantics of Negative Invariant Applied

Figure 3.5: Semantics of Positive and Negative Invariants Applied

45

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

P(Attribute2Column)
Class i Relational
p:Package | ' |s:Schema | | p(ipperitedAttributes)
name=X i | name=x Class i Relational
gI(C/GSSZTCIb/E) elationa] I : T pa: Package i @
g5 : Relationa c: Class i | t:Table ; —
: Package | i |s:Schema - ; _ i
B age i name = ¥ ! [name=Y | p: Class ‘ c: Class i| t:Table
name=X i | name=X isPersistent=true | ; | isPersi — !
I i I I ; isPersistent = true i | name=C
L K . [name=C : [
¢: Class i| t:Table a: Attribute i |co: Column i
name =Y i | name=Y name =Z i [name=2 a: Attribute c.allsuperClasses-> i |co:Column
isPersistent=true | type=T Vltype=T name=A includes(p) name=A
(a) Requirement 2 (b) Requirement 3 (c) Requirement 4

Figure 3.6: Additional Invariants Formalizing Requirements 2, 3 and 4

tains a constraint checking that the derived property allSuperClasses of class ¢ includes
the class p (i.e., p is a superclass of c).

3.2.2 Modeling of Preconditions and Postconditions

In contrast to invariants, which relate source and target models, (i.e., both compartments contain
object graphs), preconditions refer only to elements of the source metamodel (i.e., only the
source compartment of the pattern contains an object graph) and postconditions refer only to
elements of the target metamodel (i.e., only the target compartment contains an object graph).
The left side of shows a precondition expressing requirement 5 in the example (i.e.,
absence of redefined attributes in class hierarchies) by a negative pattern. The right part of the
figure shows the postcondition to express requirement 6 (i.e., absence of duplicated columns in
the same table) as a negative pattern as well.

I\Cll(;\:gRedef inedAtirs) e ETorel N(NoDule:catedCqumns)
p:Class }— a:Attribute : Class éReIationaI
pa:Package name=X E : t:Table
c:Class }»—ar:Attribute E E c:Column || e:Column
c.allSuperClasses->includes(p) name=x : E name=X name=X
(a) Negative Precondition (b) Negative Postcondition

Figure 3.7: Precondition (Requirement 5) and Postcondition (Requirement 6)

[Fig. 3.8 depicts the semantics of positive and negative preconditions. Positive preconditions
demand the existence of a structure in the source model satisfying the expression constraint.
Negative preconditions demand the absence of a structure in the source model satisfying the ex-
pression constraint. Postconditions have equal semantics, but are evaluated on the target model.

46

3.2. Contract Specification with PaMoMo

P(..) N(...)

. _ Target . _ Target
i |lobject i |lobject

' graph ! | graph

; otar : otar
E EXP 3/_ EXP

*}:\ ﬁj:\";;\
'arge%_J T;rjget—"
model model

P(...): 70cc(0,,,

s.t. EXP(Occ(0,,,))
N(...): 70cc(0,,,) s.t. EXP(Occ(0,,,)

P(.) N(.)
Source Source
object |! object |:
graph |; graph |i
Oyrc : Oy :
3 EXP —2/_ EXP
o]]
Sou‘rce Sou;ceJ
model model
P(...): 70cc(0,,) s.t. EXP(Occ(O,,)
N(...): Z70cc(0,,,) s.t. EXP(Occ(O,,))
(a) Semantics of Precondition

(b) Semantics of Postconditions

Figure 3.8: Scheme of the Semantics of Preconditions and Postconditions

To explicate the semantics of preconditions, shows the pattern modeling requirement
5 of our running example applied to several source models. Thereby, the pattern holds in the
first scenario since class c1 is a superclass of c2 and their according attributes are differently
named. In the second scenario the pattern also holds (but only vacuously) as the pattern may
not be applied as there is no package available in the source model. In the third scenario the
precondition fails since the attribute a1l and a2 exhibit equal names and their according classes
(c1 and c¢2) inherit from each other.

N(NoRedefinedAttrs)
" iRel.
p:Class |— a:Attribute
name=X

Class

c:Class |—ar:Attribute i

c.allSuperClasses->

name=X

o

includes(p)

classes

namespace

pl : Package

name = ‘University”

namespace’

classes

Source Model

cl: Class
isPersistent = true
name = ‘Person’

attr
|

:[superClasses

ubClasse:

€2 : Class
isPersistent = true
name = ‘Student’

>

attr

name = ‘registrNo’

a2 : Attribute

type = ‘Integer’

satisfied patte

rn

Source Model

cl: Class
isPersistent = true
name = ‘Person’

attr
F

al: Attribute(

name = ‘name’
type = ‘String’

]: superClasses

ubClasse:

€2: Class
isPersistent = true
name = ‘Student’

i

attr

name = ‘registrNo*

a2 : Attribute

type = ‘Integer’

vacuous satisfaction

classes

namespace

cl: Class
isPersistent = true

pl: Package

attr

| name = name

al: Attribuce

name = ‘University’

namespace
classes

Source Model

isPersistent = true

name = ‘Person’ type = ‘String’
superClasses
ubcCasse:
€2 : Class a2 : Attribute

attr
—3

name = ‘Student’

name = ‘name’
type = ‘Integer’

unsatisfied pattern

Figure 3.9: Semantics of Negative Precondition Applied

47

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

In order to also explicate the semantics of postconditions, [Fig. 3.10|depicts a simple example
which requires that tables have to have a name. In this respect, again the first postcondition is
fulfilled since both tables exhibit a name whereas the second scenario holds only vacuously since
no table is available in the target model. Finally, the postconditions fails in the third scenario
since table t 2 has no name.

N

tables t1 : Table g

_ .
schema name = ‘Person

s1: Schema
name = ‘University’
schemaT | t2:Table
tables “| hame=‘Student"
Target Model
N(NoUnnamedTable) —
satisfied pattern

U .
Classi Relational .

t:Table |:> s1:Schema (

1

i

i name = ‘University*
1 -

i name = X Target Model

! X = oclisUndefined(vacuous satisfaction

tables t1:Table @
schema name = ‘Person’

s1:Schema
name = ‘University’
shemaT___| t2:Table |

tables *| name = null
Target Model

unsatisfied pattern

Figure 3.10: Semantics of Negative Postcondition Applied

3.2.3 Modeling of Enabling and Disabling Conditions for Patterns

The patterns presented so far checked that for all occurrences of an object graph in the source
model, a corresponding structure in the target exists. However, some more flexibility is often
needed to demand the satisfaction of a pattern only when certain conditions in the source and
the target occur, e.g., only if a package contains at least one persistent class, then a schema has
to be created. For this purpose, patterns may define enabling and disabling conditions, which
restrict their satisfaction.

In particular, enabling and disabling conditions allow expressing properties which need to
hold only if the premise of an implication is fulfilled. Each pattern may define any number
of disabling conditions and one enabling condition, i.e., premisses. This permits formulating
properties of the form i f (enabling) and (not (disabling:)) ... and (not (disablingy,)) then
(pattern). For instance, shows an invariant with an enabling condition to the left, so
that the invariant is required to be satisfied only for packages for which there is an equally named
schema. In such a case, the invariant states that the transient classes inside the packages should
not have a corresponding table in the schema (because the invariant is negative). This pattern

48

3.2. Contract Specification with PaMoMo

Enabling Condition Invariant
N(NoTableForTransientClasses)
(Pack Sch) Class :Relational
P(PackageAndSchema i
Class iReIationaI ‘}Mgg‘ i ‘M‘
p:Package . s:Schema > :
name=Y i | name=Y c:Class i | t:Table
: name=X : name=X
isPersistent=false :

Figure 3.11: Invariant with Enabling Condition

uses a non-constructive specification style, ensuring that a transformation implementation will
not accidentally translate a non-persistent class into a table.

IFig. 3.12| shows to the left the scheme of an invariant with one enabling and one disabling
condition, while the right part sketches its evaluation on a pair of models. The pattern first looks
for all occurrences of the source object graph of the invariant plus the enabling condition, which
additionally (i) fulfill the expression EX PF" of the enabling condition, and (ii) fulfill the part
of the invariant expression containing only source elements (E X P)|4..), and (iii) for which no
occurrence of the disabling condition (which might contain an expression EX PP%) is found.
Then, for each one of these occurrences, i.e., for all semantics, there should be an occurrence
of the target object graph of the invariant satisfying the invariant expression. Please note that
enabling and disabling conditions permit including target elements in the pattern condition.

The evaluation of invariants with enabling and disabling conditions is therefore pursued as
follows:

. i
P(enabling) e:nab//ng I/nv source
Source i Target Source | so that... then...
g P(inv) Otr’;echt | N(disabling) P(inv)
| - i grap : Source ; Target
! Source ; Target EN. |! object [[object
| EXPEN object |:[object ; graph : graph
N(disabling) graph [!| graph src Ogrc || Oar
Source : Target (o) : O.., __EXPEN+EXP| . J EXP
object|i |object :
graph|! | graph E);(P \'"4 3
DS, || DS e)
EXPDS Source Target
model model

Figure 3.12: Scheme of the Semantics of Enabling and Disabling Conditions

49

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

VYOcc(ENgpe + Ogpey ENyar) s.t.
(EXPEN + EXPlye)(Oce(ENge + Ogre, ENyay))A

30cc(DSsre, DSiar) s.t. EXPPS(Oce(DSsre, DSiar)) A ...]
30cc(Oyqr) s.t. EX P(Occ(Ospe), Occ(Oyar))

illustrates how enabling conditions modify the semantics of a pattern, through an
example of two syntactically similar invariants for classes, one declaring an enabling condition
and the other not. The invariant in the lower left demands the existence of a schema and table
for each persistent class in a package. The models shown above fulfill this, as the class model
contains two occurrences of the source of the invariant (i.e., two classes), and for each one a
schema in the relational model may be found defining a table with same name as the class. In
contrast, the models do not satisfy the invariant to the right. This is so as this invariant demands
that for every occurrence of a persistent class, its package and equally named schema (this latter
required by the enabling condition), a table with same name as the class exists. This is not true
in this case as, for instance, for the objects p, c1 and s2, there is no table named “Person” in
s2.

Source Model Target Model
classes| €1 : Class sl:Schema |[schema tables| t1:Table
namespace] -
isPersistent = true name = ‘University’ name = ‘Person’
: Package name = ‘Person’
name = ‘University* .
namespace | c2:Class | s2 : Schema schema tables | t2 : Table
classes isPersistent = true o L, P .
. ‘ name = ‘University name = ‘Student
name = ‘Student

/’ . \\
Vie T~a

P I(Classz Table) , : Y P(ExistsSchema) P(Class2Table)

Class i Relational Class | Relational Class i Relational
p: Package ! | s:Schema p: Package | i |s: Schema :> | p: Package | i |s: Schema|
name=X ! name=X name=X i | name=x [; [

[: [! c: Class Lt Table
c: Class : t: Table name = Y i | hame=Y
name =Y i | hame=Y isPersistent=true :
isPersistent=true :

Figure 3.13: Semantics of Invariants with and without Enabling Condition

Pre- and postconditions may have enabling and disabling conditions as well. As an example,
shows the scheme of the semantic interpretation of a precondition with an enabling
condition to the left. In this case, for each occurrence of the enabling condition, an occurrence
of the precondition needs to be found. For the sake of illustration, the right part of the figure
shows an example precondition demanding each persistent class to have at least one attribute.

50

3.2. Contract Specification with PaMoMo

P(enab) P(..)

Source | | |Source | P(persistent) Pl(at”"bUted).
o ! ! Class i | Class i
object| i object| . i
graph E:>graph I c: Class i : :
ENg, : O : isPersistent=true : !
' a: Attribute | :

v EXPEN 3 EXP

e, |, {EEEE]
I_'—!l i S |
Source model
(a) Semantics of Precondition (b) Example of Precondition with
with Enabling_j Condition Enabling Condition

Figure 3.14: Precondition with Enabling Condition

3.2.4 Modeling Patterns for Collections of Model Elements

It is sometimes useful to formulate properties related to the number of times a certain structure
may occur in a model. For this purpose, patterns may define variable sets of source and target
elements (improving the expressive power compared to [56])). A set is depicted as a polygon with
a name (see for example set pclasses in Fig.[3.15)) and it represents the set of all occurrences
of the structure enclosed in the polygon. Furthermore, sets may be nested and contain arbitrary
structures.

As an example, the left side of Fig. shows an invariant making use of sets in the source
and target. The invariant states that the number of persistent classes in a package (size of set
pclasses) should be the same as the number of tables in the corresponding schema (size of
set tables). The center and right sides of Fig. [3.15show the evaluation scheme of invariants

P(NumberOfPersistentClasses) P(...) , P(..)
Class i Relational Sggjrgst ; Tgﬁgtct Jource _ iTarg.;et| —
p:Package ! | s:Schema graph : graph :Z?ﬁﬁ Igtr’é%%t : gré%%t: graph :
/r'lame=Y‘ : na'ame=\£ | Ob.smct . EI o_béacrjc : 0.y : O,y ! O, :
-7 .] grzﬁ)ch ::' gréph : _setl | : | set2
[coass |1 [tTable Ji || Opy !ii Ouc | [v ee 5[
: isPersistent=true :: ' tables _: :__se_t]_. | ::- set2 | %—‘;“ i ﬁl‘;} Z‘l
\enpelass s | EXP source | | e
pclasses.size() = tables.size()
(a) Invariant with Sets (b) Semantics of Invariants with Sets

Figure 3.15: Invariant with Sets

51

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

with sets. The figure in the middle represents an invariant with two sets (set1 in the source
and set?2 in the target) and a constraint expression £ X P that includes both sets. A pair of
models satisfies such an invariant if for each occurrence of the source object graph, there is an
occurrence of the target object graph that satisfies the constraint expression. Such an expression
may make use of the sets set1 and set?2 of all occurrences of the object graphs Oey1 and

OsetQ:

VOcc(Ogpe) s.t. EX Plgre(Ospe, Set of all Occ(Osett))
30ce(Oyar) s-t.
EXP(Oce(Ogpe), Oce(Oyar), Set of all Oce(Ogern), Set of all Oce(Oser2))

3.2.5 PaMoMo Metamodel

The above presented concepts of PaMoMo have been specified on the basis of a metamodel
describing the abstract syntax, which is depicted in Fig. [3.16] The class Specification
represents the root container for all Patterns and allows to specify URIs to the source and
target metamodels. The abstract base class Pattern stores the constraint expression (cf. at-
tribute Pattern.OCLexpression). The two concrete subclasses PositivePattern
and NegativePattern are used to distinguish between these two types of patterns. Fur-

PaMoMo metamodel enablingCondition 0..1

disablingCondition 0..*

ConstraintGraph

Specification

name : String
sourceMMURI : String

constraint 1..1

name : String

sourceGraph

targetGraph
1.1 1.1

Graph

mmaAlias : String

targetMMURI : String

0..* 0..*| sets

refersTo obJe.cts
patterns 1.1 Object Set
— name : String name : String
Pattern - type : String
name : String o— I 0 !
OCLexpression : String [@——— features :
0..* objects
Feature
PositivePattern| | NegativePattern | name : String
[4 |
[Reference | [_Attribute
variable : String
value : String
type : String

Figure 3.16: Metamodel of PAaMoMo

52

3.3. Reasoning with Patterns

thermore, the class Pattern refers to Constraint Graph by means of three different roles:
(i) constraint, (ii) enabling condition and (iii) disabling conditions which are used to model the
according types of patterns as the names already imply. ConstraintGraphs act as a con-
tainer for source and target Graphs (cf. references ConstraintGraph.sourceGraph
and ConstraintGraph.targetGraph) which represent elements of the source or target
metamodel. In this respect, a graph contains Ob ject s, which might again contain Features
(either Reference or Attribute) which merely represent aliases to the elements of the
metamodel. Last but not least, a Graph might also contain Set s to model the set semantics of
PaMoMo.

After discussing how to model patterns by using PaMoMo and representing their seman-
tics, it is elaborated on reasoning techniques which allow to check well-formedness of several
patterns and their interplay.

3.3 Reasoning with Patterns

n PAMOMO, contracts might exist of several patterns. Consequently, it has to be ensured

that they are well-formed concerning their interplay, i.e., the contract may never be fulfilled if
there exists a pattern with a negative pre- or postcondition and if this condition is included in a
positive pre- or postcondition, then either one of the contract fails. In order to statically prevent
such errors, the formal semantics of PAMOMO allows for reasoning on: (i) metamodel coverage,
(ii) redundancies, (iii) contradictions and (iv) pattern satisfaction on contracts, as detailed in the
following.

First, metamodel coverage means the identification of elements in the source and target
metamodels that are used in a PAMOMO contract, as well as how they are used (i.e., in enabling
or disabling conditions only, or in positive/negative patterns). This helps the transformation
designer assess which parts of a source or target metamodel are referenced by a given set of
patterns and allows for a quick identification of underspecifications, i.e., a transformation might
transform elements that are not checked by any of the patterns and consequently their correct-
ness may not be ensured. If, for instance, some element in the target metamodel is not used in
any positive invariant, it is never checked if such an element gets created correctly. In the pre-
sented example in Figs. [3.3H3.15|all elements in both metamodels are used, i.e., full metamodel
coverage is achieved.

Second, redundancies in contracts may be statically detected (cf. [Table 3.1)). A redundant
pattern may be safely removed yielding a simpler, more compact contract with the same se-
mantics. For instance, if a positive pre- or postcondition is included in a more comprehensive,
positive pre- or postcondition, the smaller one is redundant and may be removed. The reason
is that whenever the more comprehensive one is found, the smaller one will be found as well.
Similarly, if a negative pre- or postcondition is included in a more comprehensive one, the more
comprehensive one is redundant. shows these two redundancy cases (first row), as
well as redundancies that may be identified for invariants (second row) and for the disabling
conditions of a pattern (third row). For example, if a pattern has a disabling condition included
in another one, then the more comprehensive condition is redundant.

53

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

Table 3.1: Detection of redundancies in PAMOMO contracts. F; and [V; are a positive and a
negative pattern without enabling or disabling conditions.

Scope Redundancy

P, c P, = P, is redundant

Pre/Postconditions
N; < N, = N, is redundant

Pisc = Pyseand Py © Py = Py is redundant

Pitar= Py and Py o = P, = P,is redundant

Invariants
Nyge= Nygeand Ny, © N, o, = N, is redundant

Nytor =Nyorand Ny SN

1,src = "Y2,src

= N, is redundant

1,tar

Enabling/Disabling

Conditions of a Pattern disabling, c disabling, => disabling, is redundant

Third, contradictions which prevent the satisfaction of a contract by any pair of models (cf.
may be statically detected. For example, there is a contradiction if a negative pre- or
postcondition is included in a positive pre- or postcondition. The reason is that the satisfaction
of the positive precondition requires finding an occurrence in the source model, but this means
that an occurrence of the negative precondition will be found as well. This conflict corresponds
to the first row in[Table 3.2] The table includes another contradiction that may arise when two
invariants have the same source, one is positive and the other is negative, and the target of the
negative one is included in the target of the positive one. In this case the invariants may not
be simultaneously satisfied whenever an occurrence of their source part is found in the source
model. Only if a source model does not contain the source part of the invariants these would
hold (vacuous satisfaction).

Table 3.2: Detection of contradictions in PAMOMO contracts. P and N are a positive and a
negative pattern without enabling or disabling conditions. Subindex src and tar refer to the
source and target of a pattern.

Scope Contradiction

Pre/Postconditions N < P = contract is unsatisfiable

Invariants N,.= P,.and N, C P,

src tar =" tar

= contract is potentially unsatisfiable

Finally, reasoning on the satisfaction of patterns is enabled in order to detect potential errors
in a contract and reporting a warning. For instance, consider a negative precondition that is
included in the source part of an invariant or in one of its enabling conditions. In this case
there is no contradiction, but if the negative precondition holds, then the invariant will also
hold vacuously because it will never be enabled. If the precondition does not hold, then the
invariant may be satisfied or not (depending on whether its main pattern is found in the models).
Nevertheless the whole contract will not hold. Thus, this situation usually indicates an error
in the specification. gathers different warnings for PAMOMO contracts concerning
satisfiability.

54

3.3. Reasoning with Patterns

Table 3.3: Detection of potential errors in PAMOMO contracts concerning satisfiability. IV Pre
and N Pos are a negative precondition and a negative postcondition. I is a (positive or negative)
invariant. Subindex src and tar refer to the source and target of an invariant.

Scope Satisfaction

Pre/Postconditions

NPre <

l,..=> if Np,, holds, I vacuously holds

N Pre S Ienabling

= if N,,, holds / vacuously holds

N,,.C

Pos = 'tar

Lgr = 1f N,

Pos

holds / vacuously holds

Ny |

Pos = 'enabling

=ifN

Pos

holds / vacuously holds

Enabling/Disabling
Conditions of a Pattern

disabling — enabling = pattern vacuously holds

As an example of this kind of reasoning, shows a negative precondition on top
discarding the transformation of models where some package contains duplicated classes. The
invariant below, deals with the transformation of equally named classes inside a package, which
should be transformed into a single table containing columns for the attributes of the classes.
Thus, the second invariant is useless because it may only be satisfied (in a non-vacuous way) if
the input model has duplicated classes, but this is forbidden by the negative precondition. This
situation, which corresponds to the first row in (i.e., NPre C I.), gives rise to a

warning.

N(NoDuplicatedClasses)

Al<>A2

Class : Relational
[| i
cl:Class c2:Class :
isPersistent = true isPersistent = true ;
name=C name=C i
E inclusion
P(JointClasses) .
Class : Relational
cl:Class c2:Class ; +Tabl
isPersistent = true isPersistent = true ; —aD¢€
name=C name=C i name=C
I | 0
al:Attribute a2:Attribute ;
—_— —_—— i | col:Column || co2:Column
name=Al name=A2 i
i | name=Al name=A2

Figure 3.17: Potential Error: Disabled Invariant due to Negative Precondition

55

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

3.4 QVT Relations in a Nutshell

fter the designer has specified the transformation requirements in terms of contracts (cf.

step 1 in Fig. [3.2), the developer may start implementing the model transformation (cf.
step 2 in Fig.[3.2). Although any arbitrary transformation language might be chosen for this
task, QVT Relations is employed in our running example. This is since QVT Relations is also
used to automatically verify the specified contracts (cf. Section [3.5)), and thus, the reader is not
confronted with many different languages.

QVT Relations is a declarative model transformation language standardized by the Object
Management Group (OMG) [116]]. It allows for several execution scenarios, like model trans-
formation (i.e., generating a new target model from an existing source model), model synchro-
nization (i.e., synchronizing two existing models) and consistency checking (i.e., checking the
synchronization of two existing models without enforcing it).

With QVT Relations, a transformation is specified as a set of relations that must hold be-
tween a set of models, called candidate models in the QVT standard. Each relation defines local
constraints to be satisfied by the candidate models, and has two or more domains. Domains are
described by object graph patterns, and have a flag to indicate whether they are checkonly or
enforce. The models of a domain marked as enforce may be modified in order to satisfy
the relation. In contrast, the models of a domain marked as checkonly are just inspected to
check if the relation holds for the candidate models, resulting in reported errors only. Thus, in
order to realize a transformation scenario, the target domain must be marked as enforce to al-
low the creation of a new target model, and the transformation must be executed in the direction
of this domain. In the example transformation, the aim is to generate a new target model from
an existing source model, and hence the domain class is marked as checkonly whereas the
domain rel is marked as enforce.

shows a first version of the QVT Relations implementation for the running ex-
ample. The transformation comprises two candidate models class and rel (cf. line 2)
representing a model conforming to the Class metamodel and a model conforming to the
Relational metamodel, respectively. The transformation specification contains five rela-
tions, namely PackageToSchema, ClassToTable, AttributeToColumn, Primit—
iveAttributeToColumn and SuperAttributeToColumn. Relations may be top-level
or not, which is indicated with the keyword top. The execution of a transformation requires
that all its top-level relations hold. In contrast to this the non-top level ones only need to hold
when they are invoked directly or indirectly from top-level relations. A relation holds if for
each binding of the objects in the source graph pattern (in the source model), there exists a valid
binding of the target pattern objects (in the target model).

Assuming that the execution starts with the top relation ClassToTable in the example
(cf. line 16), it is required that for each persistent class ¢ contained in a package p, a table t
contained in a schema s exists. Furthermore, the class c and the table t must be equally named,
which is enforced by using a common variable cn.

In addition, relations may contain when and where clauses. The former express precondi-
tions under which the relation needs to hold. They usually refer to other relations, to which
they pass a number of parameters that appear as variables in the current relation. For instance,

56

3.4. QVT Relations in a Nutshell

1 transformation ClassToRel 34 // map each attribute to a column
2 (class : Class ; rel : Relational) { 35 relation AttributeToColumn {
3 36 checkonly domain class c: Class {};
4 // map each package to a schema 37 enforce domain rel t: Table {};
5 top relation PackageToSchema { 38 where {
6 pn: String ; 39 PrimitiveAttributeToColumn (c, t);
7 checkonly domain class p: Package { 40 SuperAttributeToColumn (c, t);
8 name =pn 41 }
9 }i 42}
10 enforce domain rel s: Schema ({ 43
11 name =pn 44 // map each attribute to a column
12 }; 45 relation PrimitiveAttributeToColumn {
13} 46 an , tn: String ;
14 47 checkonly domain class c: Class {
15 // map each persistent class to a table 48 attributes =a: Attribute {
16 top relation ClassToTable { 49 name =an,
17 c¢n: String ; 50 type =tn
18 checkonly domain class c: Class { 51 }
19 namespace =p: Package {}, 52 }s
20 isPersistent =true , 53 enforce domain rel t: Table {
21 name =cn 54 columns =cl: Column {
22} 55 name =an ,
23 enforce domain rel t: Table { 56 type =tn
24 schema =s: Schema {}, 57 }
25 name =cn 58 I
26 }; 59 1}
27 when { 60
28 PackageToSchema (p, s); 61 // map inherited attributes
29 } 62 relation SuperAttributeToColumn {
30 where { 63 checkonly domain class c: Class {
31 AttributeToColumn (c, t); 64 superclasses=sc: Class {}
32} 65 }i
33 } 66 enforce domain rel t: Table {};
67 where {
68 SuperAttributeToColumn (sc , t);
69 }
70}
71 }

Figure 3.18: Class2Relational Transformation Implemented in QVT Relations

the relation ClassToTable is only required to hold if the relation PackageToSchema
holds, as this latter relation appears in the when clause of the ClassToTable relation (cf.
line 28). Where clauses are used to specify relation postconditions, i.e., if the current relation
holds then the where clause should hold, and may also include references to other relations. For
instance, ClassToTable requires the relation AttributeToColumn to hold in its where
clause (cf. line 31). This second relation delegates the transformation of attributes to the rela-
tions PrimitiveAttributeToColumn and SuperAttributeToColumn in its where
clause (cf. lines 39 and 40). The relation PrimitiveAttributeToColumn transforms the
attributes of a class c into equally named and typed columns of the corresponding table. Finally,
the relation SuperAttributeToColumn deals with inherited attributes by recursively call-
ing itself (cf. line 68), i.e., attributes of super classes should be transformed as well and should
be added to the according table stemming from the subclass.

57

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

As the attentive reader might have already spotted, by the recursive call in the where clause
of the SuperAttributeToColumn relation, all super classes of a given class are visited,
but without producing additional columns for inherited attributes. In Chapter|[7] it is shown how
this failure is detected by using the previously presented contract and how it may be fixed. For
this purpose, the next section shows how to use the consistency checking mechanisms of QVT
Relations to verify PAMOMO contracts.

3.5 Operationalization of Contracts: From PaMoMo to QVT
Relations

n order to use PAMOMO contracts as oracles, they have to be made operational. For this pur-
Ipose, contracts are compiled into checkonly QVT Relations transformations and it is checked
if they hold for certain models, according to the semantics shown in Section[3.2.1] In case a cer-
tain relation does not hold, the QVT engine provides information on which contract failed due
to which bindings (i.e., bound objects, values and links). Three QVT transformations are gener-
ated: one containing the generated code for the preconditions, another one for the invariants, and
the last one for the postconditions. In the following each one of them is detailed by providing
a schematic template of the generated code and a concrete example. Since preconditions and
postconditions offer many similarities they are dealt with first in a common subsection before it
is separately dealt with invariants in the subsequent subsection.

3.5.1 Compilation of Preconditions and Postconditions

Compilation Scheme of Preconditions. Precondition patterns have an empty target compart-
ment whereas postconditions have an empty source compartment since they both are specified
over a single metamodel only. However, in QVT Relations all transformations must have at least
two domains?, but it is possible that these two domains conform to the same metamodel, i.e., a
pseudo domain is introduced. Thus, in the case of pre- and postconditions, transformations with
two domains conforming to the same metamodel are generated, which are actually bound to the
same model. Fig. [3.19]shows the compilation scheme for positive and negative preconditions.
In both cases, one top relation is produced with two domains (named Sourcel and Source?2
in the figure), bound to the same metamodel, as preconditions act on one single model.

If the resulting transformation is executed in check-only mode in the direction Sourcel—-
Source?2, for each occurrence of the source of each top relation, the engine has to find an
occurrence of the target of the relation to consider that the relation holds. For positive precondi-
tions, one element, which always needs to be found, which is the root node of the precondition’s
object graph, will be added to the domain Sourcel. The full object graph will be added to the
domain Source?2 only. Furthermore, in the where clause inequalities ensuring that two objects
with compatible type may not be bound to the same object in the model are included, as well as
the OCL constraint expression EXP of the precondition.

2At least by the used engine ModelMorf [149]], which has been chosen since it is currently the only one that
supports the check-only mode.

58

3.5. Operationalization of Contracts: From PaMoMo to QVT Relations

P(Pre) top relation (Pre) {
Source i
object |! domain Sourcel (Root of Object Graph O,,.)
graph : checkonly domain Source2 (Object Graph O..)
Osre | . .
EXP i where { (obj-identity-inequality); (EXP); }

}

top relation (Pre) {

domain Sourcel (Object Graph O_..)
checkonly domain Source2 (Root of Object Graph O.,.)

i when { (obj-identity-inequality); (EXP); }
EXP where { false; }

Figure 3.19: Compilation Scheme for Preconditions

Regarding negative preconditions, they demand the absence of an object graph. In this case,
the object graph is added in the Sourcel domain, and the OCL constraint is included in the
when clause. Moreover, as a negative precondition has to fail whenever the object graph is found,
false is added to the where clause of the relation. Thus, finding the object graph in the source
domain makes the relation fail because of the where clause.

Example. Fig. shows a negative precondition taken from Fig. and the generated
QVT Relations code. The source object graph of the negative precondition pattern is compiled
into the object graph for the Sourcel domain, whereas the Source2 domain includes only
the root node of this graph. In addition, three constraints are added to the when clause. The first
two check that different objects in the relation are bound to different objects in the model. This
is checked by inequalities in the identifiers of objects with same type in the where clause. Since

transformation checkPre (Sourcel:uml; Source2:uml) {
top relation NoRedefinedAttrs{
X : String;
domain Sourcel pa : Package({

N(NoRedefinedAttrs) classes = p : Class(

attribute = a : Attribute{ name=X }

Class
by

classes = c : Class{
attribute = ar : Attribute{ name=X }

}

p:Class }— a:Attribute

c:Class }— ar:Attribute
name=X

}i
checkonly domain Source2 p 2 : Package{};
when {

c<>p;

ar<>a;

c.allSuperClasses->includes (p) ;

c.allSuperClasses->includes(p)

}

where{ false; }

Figure 3.20: Compiling a Negative Precondition into QVT Relations

59

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

QVT Relations supports OCL, according expressions in patterns may be directly taken without
changes in QVT Relations. Thus, the third constraint checks if the class p is a superclass of
class c. Finally, the where clause includes the false statement, to make the relation fail in case a
match for the source graph is found in the model.

Compilation Scheme of Postconditions. Fig. shows the scheme of the compilation
of positive and negative postconditions. Positive postconditions demand an occurrence of the
target object graph, while negative postconditions are satisfied if there is no occurrence in the
target object graph. Thus, the code generated from postconditions is similar to the one generated
from preconditions but acting on the target metamodel instead.

P(Post) top relation (Post) {

i Target

i|object domain Targetl (Root of Object Graph O,..)

‘| graph |:> checkonly domain Target2 (Object Graph O..,)

(o)
EXP }

tar

where { (obj-identity-inequality); (EXP); }

top relation (Post) {

N(Post

domain Targetl (Object Graph O.,.)
checkonly domain Target2 (Root of Object Graph O.,.)

when { (obj-identity-inequality); (EXP); }
EXP where { false; }

Figure 3.21: Compilation Scheme for Postconditions

Example. Fig. depicts the negative postcondition shown in Fig.[3.7]and its compilation
into QVT Relations. Please note that the resulting code is analogous to the code produced for
the negative precondition example in Fig[3.20]

transformation checkPost (Targetl:rdbms; Target2:rdbms) {

N(NoDuplicatedColumns) top relation NoDuplicatedColumns {
Class i Relational 8 Stringp
H domain Targetl t : Table {
t:Table columns = c:Column { name=X },
columns = e:Column { name=X }

c:Column || e:Column }i

checkonly domain Target2 t2 : Table {};
when { c <> e; }

where { false; }

name=X name=X

Figure 3.22: Compiling a Negative Postcondition into QVT Relations

60

3.5. Operationalization of Contracts: From PaMoMo to QVT Relations

3.5.2 Compilation of Invariants

Compilation Scheme. Fig.[3.23|shows the scheme of the compilation of positive and negative
invariants. The scheme for positive invariants is similar to the one for preconditions and post-
conditions, but now the two domains are typed on different metamodels and contain different
object graphs. Moreover, the when clause includes the terms of the OCL invariant expression
containing only elements of the source graph, whereas the remaining terms of the expression are
added to the where clause.

top relation (inv) {

P(inv) v domain Source (Object Graph O,..)
Source i Target checkonly domain Target (Object Graph O,,.)
object | :[object

graph égraph when { (obj-identity-inequality-src); (EXP|..; }

Ogc |i| Oy where { (obj-identity-inequality-tar); (EXP); }

EXP }
top relation (inv) {
domain Source (Object Graph O,,.)

N(inv) checkonly domain Target (root of Target metamodel)

Source ; Target
object |i|object
graph [; graph

when { (obj-identity-inequality-src); (EXP|...); }
where { not (inv)2(...),; }

(0) (0)

EXP relation {(inv)2 {
domain Source (root of Object Graph O_..)

src

checkonly domain Target (Object Graph O,,,)

src tar

where { (obj-identity-inequality-tar); (EXP); }
}

Figure 3.23: Compilation Scheme for Invariants

Another difference to the previous compilations is that negative invariants are split into two
relations: the first one is top and looks for occurrences of the source, and the second one is non-
top and looks for occurrences of the target when it is invoked from the where clause of the top
relation. In this way, the top relation checks that for each occurrence of the source graph there is
no occurrence of the target graph. This is latter checked by invoking the non-top relation in the
negated where clause. Note that generating a single relation with a false statement in the where
section, as done for negative pre- and postconditions (cf. Figs. and [3.21)), is not enough in
this case. The reason is that such a relation fails if it does not find the complete target graph,
however the relation should fail only if it does find both, the source and target graphs.

Example. Fig. shows the compilation of the positive invariant modeling requirement
4 in The generated relation has one domain for the source object graph and another
domain for the target object graph. Its when clause includes an inequality to avoid binding
the two classes p and c to the same object in the model, as well as the OCL constraint in
the invariant as it only includes source objects. An example for the compilation of negative
invariants is illustrated in the following subsection.

61

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

transformation checkInv (Source:uml; Target:rel) {
top relation InheritedAttributes ({

A, C : String;

domain Source pa : Package {

P(InheritedAttributes) -
Class i Relational T
E attributes = a:Attribute { name = A }
u .
+ [s:Schemal ¥
: classes = c:Class {
‘ p: Class | c: Class : t:Table |:> isPersistent = true,
isPersistent = true | ¢ [name=C meEme = €
name=C ; I) }
a: Attribute c.allSuperClasses-> i |co:Column checkonly domain Target s : Schema {
name=A includes(p) name=A tables = t:Table {
name = C,
columns = co:Column { name = A }

}
}i
when { p<>c; c.allSuperClasses->includes (p);}
}
}

Figure 3.24: Compiling a Positive Invariant into QVT Relations

3.5.3 Compilation of Enabling and Disabling Conditions

Compilation Scheme. Enabling conditions are translated into top relations, which are checked
in the when clause of the relation derived from the pattern they constrain. If the relation derived
from the enabling condition does not hold, the relation derived for the pattern vacuously holds.
This compilation scheme is shown in[Fig. 3.25] For disabling conditions the scheme is the same,
but they are invoked in the when clause preceded by “not”. If a pattern contains several disabling
conditions, their invocations are concatenated with a logical “and”.

top relation (inv) {
domain Source (Object Graph O.,.)

P(enab) P(inv) checkonly domain Target (Object Graph O,,,)
Source : Target Source : Target
object '[object object : when { (obj-identity-inequality-src);
graph |i|graph :> graph |i (EXP| oro)i
EN,.|i| EN 0. | (enab)(..); }
Sl tar e where { (obj-identity-inequality-tar);
EXPEN EXP (EXD); }

top relation (enab) {
domain Source (Object Graph EN,..)
checkonly domain Target (Object Graph EN.,,)

where { (obj-identity-inequality-src);
(EXPEN| _.>; }

where { (obj-identity-inequality-tar);
(EXPEN) ; }

Figure 3.25: Compilation Scheme for Enabling Conditions

62

3.5. Operationalization of Contracts: From PaMoMo to QVT Relations

Example. shows the code generated for the negative invariant of which

has an enabling condition. In particular, the relations NoTableForTransientClass and
NoTableForTransientClass?2 are generated from the negative invariant, and Package—
AndSchema from the enabling condition. Hence, top relation NoTableForTransientClass
only needs to hold for a particular Package and Schema when they satisfy the relation
PackageAndSchema, which is checked in the when clause.

N(NoTableForTransientClass)

Class iRelational
P(PackageAndSchema) (- Pack | ; | “sch |
Class i Relational D: Package i s: >chema
i i
p:Package : s:Schema | : |
hame=Y . name=Y c:Class : t:Table
name=X i | name=X
isPersistent=false |
transformation checkInv (Source:uml; Target:rel) { top relation NoTableForTransientClass{
top relation PackageAndSchema { X : String;
Y: String; domain Source p : Package {
domain Source p : Package { name = Y }; classes = c:Class {
checkonly domain Target s : Schema { name =Y }; name = X,

} isPersistent = false
}
bi
checkonly domain Target s : Schemaf{};
when { PackageAndSchema (p,s); }
where { not NoTableForTransientClass2 (p,s,X); }

}

relation NoTableForTransientClass2{
X : String;
domain Source p : Package {};
checkonly domain Target s : Schema ({

tables = t:Table { name = X }

bi
primitive domain X2:String;
where { X = X2; }

}

} //end of transformation

Figure 3.26: Compiling an Enabling Condition for a Negative Invariant into QVT Relations

In this example, the relation NoTableForTransientClass invokes NoTableFor-—
TransientClass2 passing the string variable X as a parameter, which has to be defined as
a primitive domain in the invoked relation. Moreover, due to a limitation of the used QVT
Relations engine (ModelMorf [[149])), which only supports relations with two domains, the com-
pilation of enabling conditions containing more than one object in the source or target requires
special treatment. This is so as any invocation of a relation must receive exactly two objects
as parameters, plus any number of primitive values. Thus, if the enabling condition contains
several objects in the source or the target, all objects should be assigned to according parameters
during invocation, which is not allowed. This problem is solved by passing the object identifiers
(which have a primitive type, i.e., string, and may therefore be passed as primitive domains)
instead of the objects themselves.

63

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

3.5.4 Compilation of Sets

Compilation Scheme. QVT Relations allows matching for collections of objects (sets, bags
or sequences) using so-called collection templates. The ModelMorf QVT engine provides two
kinds of collection templates: (i) enumerations for the extensional definition of sets, and (ii)
comprehensions for its intensional definition. Enumerations match for a certain number of mem-
bers in a collection. For instance, classes = pclasses : Set(Class) {cl, c2
++ _} matches for two classes in the reference classes. The underscore is a wildcard
which matches for the rest of the collection. Comprehensions allow matching members in a
collection using a condition. For instance, classes = pclasses : Set(Class) {}
{pclasses—>forall (c | c.isPersistent) } matches all persistent classes in the
reference classes.

As Fig. shows, sets in PAMOMO patterns are compiled into collection templates. Enu-
merations are generated if the elements in the set are not constrained by any condition, and
comprehension otherwise. As before, the OCL expressions using only source variables and
source set variables are included in the when clause, whereas the rest are included in the where
clause.

P(...)

Source ; Target top relation (inv) {

object | | |object domain Source (O,,. +

graph | ! | graph set-templates (setl))

osrc i otar checkonly domain Target (O.,, +
" object | ' object ||:> | set-templates(set2))
| graph l!' graph when { (obj-identity-inequality-src);
! o] :: (o) | <EXP|src>; }
: setl I: =2 where { (obj-identity-inequality-tar);
L setl 'i_set2 | (EXP);)

EXP }

Figure 3.27: Compilation Scheme for Sets

Example. [Fig. 3.2§]lists the code generated from the invariant with sets shown in

The set pclasses is translated into a comprehension because it contains a condition matching
for persistent classes only (isPersistent = true). In contrast, the set tabs is compiled
into a simple enumeration. The OCL expression is added to the where clause of the relation
because it relates set variables of the source and target. This expression fails if the number of
persistent classes is not equal to the number of tables.

If a set contains an arbitrary graph having more than one element, then one additional relation
is generated looking for occurrences of this graph structure. This relation is used to filter which
elements should be added to the collection (i.e., only those preserving the relation).

3.5.5 Summary of the Compilation

summarizes the compilation of PAMOMO contracts into QVT Relations code. This
section has shown that PaMoMo contracts may fully be expressed in terms of checkonly QVT

64

3.6. Executing PaMoMo Contracts

transformation checklnv(Source:uml; Target:rel){
top relation NumberOfPersistentClasses {

Y : String;
P(NumberOfPersistentClasses) domain Source pa : Package {
Class i Relational name = Y,

3 ; 3 classes = pclasses : Set(Class) {}
p:Package i siSchema {pclasses->forAll(c| c.isPersistent) }
name=Y i | name=Y ;

o S~ T 0 |:> checkonly domain Target s : Schema {
- R I/ ‘I name = Y,
| cClass [!i] tTable | tables = tabs : Set(Table) {}
I| isPersistent=true |17 | gape ! 3))
|)| e 1 where { pclasses.size() = tabs.size(Q); }
I_ _ pclasses_ _ i }
pclasses.size() = tabs.size() b

Figure 3.28: Compiling a Positive Invariant with Sets into QVT Relations

Relations offering a more compact specification of contracts than the direct use of QVT Rela-
tions. This is due to the availability of different kinds of patterns (positive and negative invari-
ants, pre- and postconditions) and features (enabling/disabling conditions, sets) of PAMOMoO.
At the same time, it has to be emphasized that it is not the aim of QVT Relations to specify
transformation contracts but rather to specify model-to-model transformations. Furthermore,
using PAMOMO for contract specification reduces the effort and the number of potential errors
in comparison to directly using QVT Relations.

Table 3.4: Summary of PAMOMO-to-QVT Compilation

PaMoMo Concept QVT Relation Representation

P(Pre/Post) 1 relation with pseudo domain
N(Pre/Post) 1 relation with pseudo domain + false in where clause
P(Inv) 1 relation

2 relations + negated call of relation in where clause of

N(inv) relation 1

1 relation + call of the relation from when clause of

Enabling condition . .
& relation for constrained pattern

1 relation + negated call of the relation from when clause

Disabling condition . .
& of relation for constrained pattern

3.6 Executing PaMoMo Contracts

n the previous sections it was discussed how to formalize transformation requirements using
PaMoMo contracts, which may be made executable by means of QVT Relations in order to
test a certain transformation, i.e., whether the transformation fulfills the posed requirements or

65

3. PAMoOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

not. This section now elaborates on the actual execution of contracts and shows how model
transformations may be tested, exemplified by means of the running example introduced in
In this respect, repeats the input model and depicts the target model
generated by the transformation under test as well as the verification log, stating which contracts
succeeded and which contracts failed. Additionally, traces to the actual model elements that
caused the contract to fail are given, which is detailed in following.

As a first step of the execution, the preconditions are evaluated on the source model. The
test source model depicted in [Fig. 3.29| fulfills the requirement five of the running example, i.e.,
it contains no redefined attributes (cf. first line in verification log). Since requirement 5 is the
only precondition, all preconditions are fulfilled and therefore the actual transformation may
be executed in order to achieve a target model. A potential solution of the transformation of
the running example was presented in Section [3.4] using QVT Relations. If this transformation
is executed, the target model depicted in is generated. In order to test if specified
transformation is correct, in a second step, invariants are executed, checking if the target model
generated by the transformation fits to the expected (parts of the) target model of the invariants,
e.g., in the example requirements 1 to 4 are checked since they were expressed as corresponding
invariants. When executing the specified invariants, one may see that only requirements 1 to 3
are satisfied but not requirement 4 (cf. verification log in[Fig. 3.29).

On inspecting the generated target model in Fig.[3.29one may realize that the transformation
specified in produces a Schema sl named University which stems from the
Package pl (cf. test input model in [Fig. 3.29), checked by the first invariant. Additionally,
the second invariant checks if persistent classes are translated into equally named tables, which
is also true since two according tables have been created, i.e., only the tables named Student
and Professor have been created since their according classes are persistent, but no table
named Person has been created since the according class is not persistent. Furthermore, every

Test Source Model c1: Class - implements PaMoMo
classes (| ——====S22 fo b tes al:Attribute | | | 0 |TTTTTTTUC 7l Contracts
isPersistent = false name = ‘name’
name = ‘Person’ type = ‘String’
super subclasses
namespace classes ModelMorf
. classes €2 Class : i
1: Package | £2i2858). ivibutes aZA'#n.butel
namespace isPersistent = true H name = ‘registrNo’
name = ‘University’ P name = ‘Student’ type = ‘Integer’ I Verification Results 52
namespace super subclasses
classes Execution of Precondition 'MoRedefinedAttrs:' precondition succeeded
: Cl. : i
classes % attributes. % Execution of Invariant 'Package2Schema:’ invariant succeeded
isPersistent = true [—————>> name = ‘salary’
name = ‘Professor’ type = ‘Integer’ Execution of Invariant ‘Class2Table:' invariant succeeded
Execution of Invariant 'Attribute2Column:' invariant succeeded
tables | t1: Table columns | €01 : Column Execution of Invariant ‘InheritedAttributes:' invariant failed
J/ Eo——" " name = name | Counter sample:
name = ‘Person Crpingt Match not found for:
schema type = ‘Strin, !
il ing Package pa="University:Package”
s1:Schema pa.classes c="Student Class"
name = ‘University’ R
schemaT™ 2 : Table columns %
tables —'St ont’ name = ‘registrNo
name = ‘Student 4 .
type = ‘Integer relation 'InheritedAttributes” does not hold.
ner Target Model of Transformation L
Generated Target Model of Transformation to test Verification Log

Figure 3.29: Verification Results of Requirements 1-4 of Running Example

66

3.7. Summary

direct attribute, i.e., registrNo in case of class c2 and salary in case of class c3, has been
correctly transformed into Column instances linked to the corresponding table, as demanded
by invariant 3. Nevertheless, invariant 4 fails which is due to the fact that for the Package
named University and the Class named Student with the attribute name — included in
superclass Person — no corresponding Column in the Table named Student can be found.
It may be concluded that the implementation of the transformation in Fig. [3.18]does not handle
inherited attributes appropriately. For a more detailed discussion by applying the implemented
prototype the reader is referred to Chapter (8]

As may be seen from this example, the specified contracts helped the transformation de-
signer to detect that there is a failure in the specification, i.e., contracts are useful in observing
facts according to [[173]]. Since PaAMoMo contracts are independent from the underlying transfor-
mation languages, there is no direct relationship between contracts and the actual transformation
rules. Therefore, a mechanism is needed to (i) first identify the rules that caused the error and
(ii) to find the origin of the defect, i.e., often a defect is introduced already earlier and caused
dependent rules to to fail. The verification log in Fig. [3.29|states which source elements caused
a certain contract to fail. This information could be used to execute the transformation with
these input elements in order to find the defect. In order to support the transformation designer
in this task, appropriate debugging facilities are required. Nevertheless, current transformation
languages and their underlying transformation engines hardly provide any debugging mecha-
nisms in order to reduce the effort in finding the defect. In this respect, the following Chapter [
introduces a runtime model for model-to-model transformations which provides an insight into
the actual execution of the transformation and provides the basis for sophisticated debugging
facilities which are presented in Chapter[7]

3.7 Summary

n this section a declarative, formal, visual language to specify behavioral semantic contracts

for model-to-model transformations has been proposed which is called PaMoMo. In this way,
PaMoMo may be used to specify preconditions and postconditions to express that an input or
output model should or should not contain certain configurations of elements. Furthermore,
they may be used to specify invariants, i.e., what conditions need to be satisfied by any pair of
input/output models of a transformation. In order to execute the specified contracts, they are
translated to QVT Relations which are then executed in check-only mode in order to check if
the relation holds for the candidate models, resulting in a verification log. This verification log
shows traces to the model elements that caused the relation to fail. This information may then
be used for debugging the model transformation, which is the focus of the following chapters.

67

Chapter 4

Transformation Nets - A Runtime
Model for Model Transformations

No great discovery was ever made
without a bold guess.

— Sir Isaac Newton
Contents
M1 Transformation Netsata Glancel. 70
4.2 Core Concepts of Transformation Nets| 71
4.3 Static Parts of Transformation Nets| 73
4.4 Dynamic Parts of Transformation Nets| 81
.5 Modularization Concepts in Transformation Nets|. 91
.................................... 93

n order to support the transformation designer in finding the origin of a defect, this chapter
Iintroduces the fundamentals of the Transformation Net formalism, which is a Domain Spe-
cific Language (DSL) on top of Colored Petri Nets (CPNs) [72]]. Transformation Nets serve
as a runtime model for the execution of model transformations, making its execution semantics
explicit in order to foster debuggability. After introducing the general idea, first, the represen-
tation of metamodels and models in Transformation Nets is discussed followed by the transfor-
mation logic itself. Additionally, it is shown how conditions and functions may be expressed
in Transformation Nets and how the presented concepts interact together in order to specify a
model-to-model transformation. Finally, modules are discussed in order to provide modulariza-
tion concepts in Transformation Nets.

69

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

4.1 Transformation Nets at a Glance

he basic idea of runtime models is to reason about the operating environment and the run-

time behavior of systems as well as to provide appropriate abstractions from code-level
details of the applications at runtime [95]. Consequently, a runtime model for model trans-
formations should not only provide means to represent the specified transformation logic as a
model, as e.g., proposed in [[17]], but should also incorporate information about its actual exe-
cution, i.e., it should make the operational semantics of a model transformation explicit. This
section introduces the general idea of the Transformation Net formalism, which provides a run-
time model for model-to-model transformations. Transformation Nets thereby form a DSL on
top of Colored Petri Nets (CPN) [72]]. CPNs extend the basic concepts of Petri Nets [[118],124]
by the possibility of attaching data to tokens. Petri Nets in general have been chosen in order to
profit from their runtime model and their formal semantics. On the one hand Petri Nets allow for
abstraction from control flow, which is prevalent in declarative transformation approaches. This
is achieved since transitions may fire autonomously, depending on the markings contained in
the places, only. On the other hand, also the statefullness of imperative approaches is preserved,
since the actual state of execution is represented by the current available tokens. CPNs as a
special form of Petri Nets have been chosen since they allow the tokens to carry data, which are
called token colors and are thus able to represent an actual model. By providing an inscription
language, the data values may be queried and accordingly modified when firing a transition. In
order to hide low-level details and circumventing restrictions of CPNs with respect to model
transformations, Transformation Nets as a DSL on top of it, will be presented in the following.

The conceptual architecture of Transformation Nets is pictured in[Fig. 4.1 showing a source
metamodel on the left hand-side and a target metamodel on the right-hand side. Furthermore, an
input model conforming to the source metamodel, as well as an output model conforming to the
target metamodel that represents the output of the transformation is depicted. In between, the
transformation logic resides, describing the correspondences between the metamodel elements.
These common parts of model transformations have to be described by means of CPN concepts.
The middle of Figure shows a Transformation Net, which represents the static parts of

Transformation Net

Source Target

" { Transformation
Metamodel {E Source Logic) T?rget Metamodel
D e A .= : g
NE;
e Places Transitions
conforms oke | I conforms
Source vy il New Target
Model Model

Figure 4.1: Conceptual Architecture of Transformation Nets

70

4.2. Core Concepts of Transformation Nets

the transformation (i.e., metamodels and models) as places and tokens, respectively and the dy-
namic parts (i.e., the transformation logic) as according transitions. In this respect, Transforma-
tion Nets provide an explicit, integrated representation of common concepts of model-to-model
transformations.

A first version of Transformation Nets has already been presented in [|125]]. Nevertheless, in
the course of this thesis further development of the runtime model has been considered, going
beyond the contributions proposed in [[125]). In a first step, the common core concepts of model-
to-model transformation languages are analyzed in order to systematically integrate the concepts
in the runtime model. This leads to numerous extensions in the underlying metamodel, e.g.,
besides the more explicit representation of metamodels and models (specific types have been
introduced as discussed in the following), also the specification of functions and conditions has
been included (cf. [Subsection 4.4.2)). Additionally, a focus is set on representing modularization
and reuse concepts, e.g., modules and rule inheritance, which will be discussed in detail in
Furthermore, a formal basis is provided by its full compilation into CPNs, which will
be discussed in In this respect, Transformation Nets can be used for three different
purposes. First, they can be used as a transformation language itself, especially tailored to reuse
of transformation logics as presented in [125]. Second, Transformation Nets may serve as a
target language to which other high-level transformation languages may be compiled in order
to benefit from the provided runtime model and the integrated debugging features, which is the
focus of this thesis. Finally, Transformation Net may also serve as runtime model for a new
transformation language, as discussed in[Subsection 9.2.3|

4.2 Core Concepts of Transformation Nets

ince Transformation Nets are intended to provide a runtime model for model-to-model trans-

formations, first, the common features of existing transformation languages, which need to
be accordingly supported by Transformation Nets, have to be identified. Currently, numer-
ous transformation languages are available (cf. [38]] for an overview), which follow different
paradigms, i.e., declarative, imperative, or hybrid. Since imperative languages and also hybrid
ones require the transformation designer to specify the actual execution of model transforma-
tions, e.g., by using control statements like conditions or loops, the actual execution thereof
may be followed by debuggers that allow for stepwise execution of the code as known from
traditional programming languages. The situation is different for declarative transformation lan-
guages, since only what should be transformed has to be specified but not how this is done,
which is typically hidden by an according execution engine. The goal of Transformation Nets
is to make this execution explicit and thus, Transformation Nets focus on providing an explicit
runtime model for declarative, rule-based model-to-model transformation languages, in a batch
and exogenous scenario, i.e., a source model is transformed into a new target model.

To identify the required concepts, (i) the features of declarative, rule-based model-to-model
transformation languages, and (ii) the classification of model transformation approaches pre-
sented in [[38]] have to be analyzed. The identified features are expressed in terms of a metamodel
(shown in[Fig. 4.2)) which illustrates the core concepts of transformation languages, building the
basis for Transformation Nets. Since the focus is on rule-based model-to-model transformation

71

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

1.1 " Transformation
InPattern — Condition
condition Metamodel
>— value : Exp
il elems
inpattern 1.% elem 1.. Eclass
A InputElement
Transformation rules 0-.* Transformation Rule [@— (from Ecore)
name : String outpattern elem Tl 1
1. elems I -
52 1.% .
OutPattern 0;> OutputElement [@——>{ Assignment
assignmenty ya|ye : Exp

Figure 4.2: General Concepts of Transformation Languages

languages, a Transformat ion specification typically consists of numerous Transforma-—
tionRules. These transformation rules need to provide means to specify some relationships
between elements of the source model and elements of the target model that is created. There-
fore, TransformationRules include an InPattern, referring to InputElements of
the source metamodel, and an OutPattern, referring to OutputElements of the target
metamodel (cf. references InputElement .elems and OutputElem.elems in[Fig. 4.2).
A first general distinguishing criterion is the allowed number of input and output elements.
Several transformation languages allow to match for a combination of several input elements,
e.g., ATL [73] or TGGs [83]], whereas others restrict themselves to a single input element, e.g.,
ETL [81]]. On the one hand, matching only a single input element tends to be more efficient
in terms of execution time, since no potential combinations of input elements need to be calcu-
lated. On the other hand, this often requires to specify more complex OCL expressions in order
to navigate through the metamodel. Furthermore, transformation languages typically support
the definition of a Condition in order to filter certain model elements, most often being spec-
ified with OCL. Finally, transformation languages provide the possibility of setting the values
for target features by means of Assignments. It is important that the features are contained
in the according EClasses which are referred by the corresponding InputElements and
OutputElements, respectively.

These common concepts of transformation languages need to be accordingly represented
in Transformation Nets. The abstract syntax of the Transformation Net DSL is formalized by
means of a metamodel (cf. conforming to the Ecore! meta-metamodel, the Eclipse
realization of OMG’s MOF? standard. On the one hand, the Transformation Net metamodel is
based on the concepts presented in the metamodel in and, on the other hand, it is based
on CPN concepts [72], which are adapted to the special requirements, occurring in the domain of
model-to-model transformations. In particular, in order to be able to encode metamodels, which
corresponds to the concept of InputElementsand OutputElements in transformation lan-
guages, different kinds of places (cf. are introduced, represented by the package
StaticElement (cf. [Fig. 4.3). Additionally, also the model elements, which are typically not
represented in current transformation languages, are explicitly represented by means of tokens.

"http://www.eclipse.org/modeling/emf/?project=emf
Zhttp://www.omg.org/mof

72

4.3. Static Parts of Transformation Nets

The second major adaptation concerns transitions. Since transitions are used to realize the actual
transformation logic, a well established specification technique from graph transformations [41]]
is adapted, which describe their transformation logic as a set of graphically encoded productions
rules (cf. [Section 4.4). These are represented by concepts of the package DynamicElement.
Transitions represent TransformationRules, whereas different kinds of patterns ful-
fill the task of InPatterns and OutPatterns, as detailed in The package
Connectors is responsible for connecting the static parts with the dynamic parts. Finally,
the package Container aggregates the presented concepts, i.e., containers for the source and
target metamodels and the transformation logic are provided.

TransformationNet |

]

<<access> <<access>>
—| i~> DynamicElement |- —|
i i
1 |_>
Container - Sl Connector

<<access>>

N

1 | StaticElement -'
<<access>>

Figure 4.3: Packages of the Transformation Net Metamodel

4.3 Static Parts of Transformation Nets

hen employing Transformation Nets, in a first step, the static parts of a model transfor-

mation, i.e., metamodels and models, need to be represented in the formalism, as can
be seen in In this respect, it is first detailed, how object-oriented metamodels, e.g.,
metamodels based on Ecore, and their conforming models can be represented in Transformation
Nets. Second, the scope is broadened to other data models as well, e.g., XML Schemas and On-
tologies, discussing how concepts of these data models relate to Ecore concepts and how they
may be represented in Transformation Nets.

4.3.1 Representing Object-Oriented Metamodels in Transformation Nets

In MDE, most of today’s transformation languages allow to specify transformations between
object-oriented metamodels (M2), which themselves conform to a meta-metamodel (M3), e.g.,
Ecore or MOF, in order to transform according models (M1). In today’s transformation lan-
guages both metamodels, i.e., source and target metamodel, must conform to the same meta-
metamodel. In order to explicate the translation of concepts in object-oriented metamodels to
Transformation Nets, the Ecore-based Class and Relational metamodels of the running
example are used in the following. First a short overview on the concepts available in Ecore is
given.

73

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

StaticElement
TNPlace o tokens 0..* Token
name : String
opposite 4&
1) Reference cvpidhEses Object Link
source - - - -
ordered : bool 1.1 0.* <enum» oid : String soid : String
containment : bool Class 0.0 DataType toid : String
upperBound : Int _‘ﬁ isAbstract : bool - Bool Value
lowerBound : Int [earget subclasses It
ttribut R oid : String
11| atrbutes] o . Attribute 3 Float valueld : String
- String value : String
Jiass |_type: DataType - Char
1
context Reference inv tokeninv: context Class inv tokeninv: context Attribute inv tokenInv:
--check if contained tokens are correct --check if contained tokens are correct --check if contained tokens are correct
self.tokens->forAll(t | t.ocllsTypeOf(Link) self.tokens->forAll(t | t.ocllsTypeOf(Object) self.tokens->forAll(t | t.oclisTypeOf(Value)

Figure 4.4: Static Elements of Transformation Nets

4.3.1.1 The Ecore Meta-Metamodel

As already mentioned, Ecore, being the Eclipse realization of OMG’s MOF standard, has reached
wide-spread adoption in practice and is part of the Eclipse Modeling Framework® (EMF). The
Ecore meta-metamodel (cf. @ is used to define metamodels, but also provides means to
generate a Java implementation of the metamodel. Since the focus of this thesis is on model
transformations between metamodels, only the concepts of Ecore that are needed for metamod-
eling, namely EClass (for representing classes), EAttribute (for representing attributes)
and EReference (for representing references), are considered. Although data types, rep-
resented by the class EDataType and enumerations, represented by the classes EEnum and
EEnumLiteral are used in metamodels, they need not be represented in Transformation Nets
explicitly. This is due to the fact that they may be treated equal to data values, i.e., on a con-
ceptual perspective there is no difference between an enumeration and an integer standard data
type, thus, none of them are explicitly represented, instead only their concrete values are taken
into account. Furthermore, please note that only single-valued attributes are considered. Finally,
concepts provided for code generation (e.g., EFactory) and for behavioral modeling (e.g.,
EOperation or EParameter), as well as annotations (EAnnotation) are not represented
in Transformation Nets.

4.3.1.2 Representing Metamodel Elements in Transformation Nets

The representation of the involved metamodels in a model-to-model transformation scenario re-
quires a conversion from the graph-based paradigm underlying Ecore into the set-based paradigm
underlying Petri Nets. The design rationale behind this translation is to rely on the core concepts
of an object-oriented meta-metamodel, i.e., the graph, which represents the metamodel, consists
of classes, attributes, and references. These metamodel elements are translated into according

3http://www.eclipse.org/emf

74

4.3. Static Parts of Transformation Nets

ElfodelElerment

+eModelEl it
etadelElemen SyetEAnnOtation(source : String) : EAnnotation

0..% | +eAnnaotations A
‘ | | +eFactorylnstance

1
E,‘.ﬁ.nnmatmn ENamedElement EFactory —
source : String

gdetails | EStringToStringhapEntry e © Sl

rreate(eClass | EClass) : EOhject
ZP ®croateFromString(eDataType | EDataType, literalvalus © String) : EdavaObject

‘cnnveﬂTnStrmg(eDataType EDataType, instanceValue © EdavaObject) : String

‘ +ePackage | 1
ETypedElement EtGlassifier EPackage

aordered © hoolean = true ¢AinstanceClassMame @ String onsURI : String

@unigque : boolean = true +eType | ¢instanceClass | ElavaClass ensPrefix : String

@lowerBound : int gdefaultvalue | ElavaObject

upperBound : int =1 0.1 == - ¥yetEClassifier(name - String) - EClassifier

@
many : boolean islnstancefobject | EdavaQbject) : boolean o
reguired : hoolean yetClassifiedD() : int L ! teSubpackages | U
Q +eExceptions| 0.7 0*| +eClassifiers +ePackage +eSuperPackage
_EOperatiDn _EParameler ‘ ‘
— —
I
t +a(peration 0. EClass El:talyng
0o ¢ahstract © honlean @aarializable boglean = true
+eParameters ginterface ; boolean
+e0perations +eContainingClass Wi SuperTypeOiisometlass | EClass) : boolean A
getEStructuralFeatureifeaturelD : int) : EStructuralFeature 0= 1 -
+e4[Dperations SyetEStructuralF eatureifeatureMame ; String) | EStructuralF eature EEnumLiteral
0 0. gvalue : int
" +eRefarenceType gingtance : EEnumeratar
+eAllStructuralF eatures |0 o +eContainingClass 1 ¥R +eSuperTypes
EStructuralFeature +eliterals | 0.7
E +eStructuralFeatures +edlCortainments +ed|[SuperTypes
gthangeable . boolean = true 0
<olatile . boolean ERefarence - +eAttributeType
Stransient - honlean gcontainment : boolean 0=
edefaultvalueliteral : String gcontainer ; boolean ol +eEnum
giefaultvalue © EJavaObject gresolveProxies | boolean = true @ eferences EErum
gunsettable : boolean o.x
i)z ol +e0pposite 0.1 +eReferences @getEEnumLiteral(name : String) : EEnumLiteral
SgetFeaturelD) : int ik +ed|lAttributes WgetEEnumLiteralivalue © int) 1 EEnumLiteral
‘getCnntamerCIassO : BElJavaClass EAttribute 0.x +eAttributes
¢iD : boolean 0.1 +elDAtribute

Figure 4.5: The Ecore Meta-Metamodel [40]

subtypes of TNPlace in Transformation Nets. shows an overview of the proposed
translation, whereby an extract of the source metamodel of the running example is used, rep-
resented in their respective concrete and abstract syntax. In order to minimize the visual gap
between class diagrams (which are usually used to represent metamodels graphically) and Petri
Nets, Transformation Nets try to visually combine these two representations by providing an
extra compartment in terms of an oval, which is typically used to depict places in Petri Nets, as
can be seen in [Fig. 4.6(d)

Representation of Classes. Both, abstract as well as concrete classes (i.e., all instances of
EClass) are translated into Class instances in Transformation Nets. Classes may be set
abstract (cf. boolean attribute Class.abstract in and are allowed to inherit from
one or more superclasses (cf. reference Class.superClasses and its opposite reference
Class.subClasses in[Fig. 4.4), which is represented in Ecore in terms of the reference
EClass.eSuperTypes. shows the translation of the complete source metamodel of

75

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

T —— =
1) cl:EClass | eStructural —.2 1" : : 2 Jat:Attri
L L2 A%8 | C ture al:EAttribute m attributes al:Attribute 1) Package
name= ‘Package’— > — 0 name= ‘Package] name= ‘name’
abstract = false name= name isAbstract=false i
1 i lowerBound=1 - type=Strin -
W\ 3 eStructuralFeature upperBound=1 source name: String 2
name: String 2| rl:EReference eAttributeType \L rl:Reference
classes name= ‘classes’ name= ‘classes
3 1.% ordered=false s1:EString ordered=false ‘
4 Class lowerBound=1 lowerBound=1 3
upperBound=-1 upperBound=-1
containment=false containment=false classes \l/
a eReferenceType 4 target 4
Class
c2:EClass c2:Class
name="Class’ name="Class’
abstract=false isAbstract=false
(a) Ecore Concrete (b) Ecore Abstract Syntax (c) Transformation Nets Abstract Syntax (d) Transformation Net
Syntax Concrete Syntax

Figure 4.6: Representation of Metamodel Elements in Transformation Nets

the running example into Transformation Nets, i.e., the classes ModelElement, Package,
Class and Attribute are represented by according places.

Representation of Attributes. Similar to classes, all instances of EAttribute are trans-
lated into At t ribute instances (cf. [Fig. 4.4]and[Fig. 4.6(d)). The attribute At t ribute. type
stores the according datatype by means of the enumeration DataType, which provides the
available standard datatypes (Bool, Int, Float, String, Char). Again, shows
the translation of the attributes of the source metamodel of the running example into Trans-
formation Nets, i.e., the attributes ModelElement .name, Class.isPersistent and
Attribute.type are represent by according nested places.

Representation of References. References in the involved metamodels (i.e., all instances of
EReference) are translated into Re ference instances in Transformation Nets (cf. [Fig. 4.6(d)
and [Fig. 4.4). To not loose any information in the translation process, References provide
equal attributes and references as EReferences do, i.e., ordered, containment (to spec-
ify aggregations), lowerBound, upperBound and opposite (note, that the opposite refer-
ence is used in Ecore to express bidirectional associations). shows the representation of
the references of the source metamodel of the running example.

4.3.1.3 Representing Models in Transformation Nets

The graph, which represents a model conforming to a certain metamodel, consists of objects,
values and links which have to be accordingly translated into Tokens (cf. [Fig. 4.9(a)) in Trans-
formation Nets, which are then put into the according places (cf. [Fig. 4.9(b)), which is specified
by means of the OCL constraints shown in[Fig. 4.4] For example, an Ob ject token may only be
contained in a Class place. Thus, Transformation Nets not only represent the involved meta-
models, which are required to specify the transformation logic, but also the involved models in
order to provide an explicit view on the execution of a model transformation.

Representation of Objects. For every object that occurs in a source model, an Object
instance in Transformation Nets is produced, which is put into the place that corresponds to
the respective class in the metamodel. The “color” of a token is in fact expressed by means

76

4.3. Static Parts of Transformation Nets

ModelElement
name : String

1
super <t
pace Classes_1YP® : String
O
*
o 0..
- Class subClasses
classés

isPersistent : Bool [“@atributes

(a) Source Metamodel (M2)

ModelElement

name : String

classes 1% ‘
Package > > Class Attribute
- —
1 — attributes Col
namespace !» isPersistent : Bool _ 0-* type : String

superClasses 0..* subClasses

(b) Source Metamodel in Transformation Net Notation

Figure 4.7: Source Metamodel Translated to Transformation Net

of a unique value that is derived from the identifying attribute of the original model object (cf.
attribute Object .oid in [Fig. 4.4] and [Fig. 4.8). With respect to the running example, one
may see that each instance of a class got represented through a respective Ob ject token (cf.

[Fig. 4.9). Since the class NamedElement is abstract and therefore, no direct instances may
exist, no token is put into the according place.

Representation of Values. For every value as an instance of an attribute, a Value token
is produced. A value token is represented by an object id (cf. attribute Value.oid) of the
owning object (upper part of the token) as well as a unique id for a certain value (cf. attribute
Value.valueId and lower part of the token) for which again according colors are derived to
provide a visual representation. The actual value of the attribute is stored as a string representa-
tion in the attribute Value.value, and is represented by the label in the lower part of the token

01:Object vi1:Value 11:Link
Transformation Net |~ 707 oid = o1’ soid = 01
Abstract Syntax valueld = ‘v1° toid = ‘02"
value = ‘val’
Transformation Net o1 o1
ol 02
Concrete Syntax val

Figure 4.8: Overview on Concrete Syntax of Transformation Net

77

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

isPersistent = falsel— ~ —— name = ‘name’

namespace name = ‘Person’ type = ‘String
classes d
classes

Pl p1l : Package ® . — attributes 32 3 . Attribute

_ 4 ni P <o
name = ‘University’ hamespace

classes

‘ 21 cl: Class attributes

name = ‘salary
= c3 type = ‘Integer’
namespace | name = ‘Professorf= P BEr &3

(a) Source Model (M1) as Object Diagram

ModelElement
name : String
- @
U"::rw
2 e
N o
classes | |
Package & oo = Class Attribute
n e - 000 * %00 = @g..
1 attributes
namespace |sPer5|stent Bool _0.* type : String
a2 a3
l_ . ‘ I'-r
superCIasses 0.. subClasses

(b) Source Model in Transformation Net

Figure 4.9: Source Model Translated to Transformation Net

(cf. . Please note that, if two attributes exhibit the same value, the same id is generated
and thus, the lower parts of the tokens are equally colored (cf. e.g., the color for attribute value
true of the tokens representing the attributes Class.isPersistent in|Fig. 4.9).

Representation of Links. Finally, for every link as an instance of a reference, a Link token
is produced. The Link . soid attribute of such a token (cf. refers to the id of the token
that corresponds to the owning object. The Link.toid is given by the id of the token that
corresponds to the linked target object. Notationally, a link token is represented as a ring de-
noting the Link . soid color surrounding an inner circle denoting the Link.toid color (cf.
[Fig. 4.8). Concerning the example, one may see that for each link in the source model an accord-
ing link token is generated. Therefore, e.g., the place representing the Package.classes
reference contains three tokens, which represent the containment relationships of the Class
instances c1, c2, and c3 to the Package instance p1l.

78

4.3. Static Parts of Transformation Nets

As discussed above, a source model may be translated into tokens, forming the initial mark-
ing of the Transformation Net. On executing the transformation by firing its transitions (cf.
[tion 4.4), tokens are generated into places that represent the target metamodel. These tokens are
then serialized to an according graph structure again, such that a target model results that con-
forms to the target metamodel. Consequently, every Ob ject token is translated to an according
EObject in Ecore with its attributes and references set to the values derived from the according
Value and Link tokens.

4.3.2 Going beyond Object-Oriented Metamodels

In the previous section, the focus was on translating object-oriented metamodels and their cor-
responding models into corresponding Places and Tokens in Transformation Nets. The
concepts of metamodels and models also arise in other engineering domains. In case of data en-
gineering, the role of metamodels is played by schemata (e.g., in the form of database schemata
or XML schemata), and the role of models by corresponding instance data (e.g., database tuples
or XML documents). In case of ontology engineering, the role of metamodels is played by onto-
logical concepts (the so-called T(ype)-box) and the role of models by corresponding individuals
(the so-called A(ssertional)-box). Metamodels, schemata or ontologies are themselves instances
of certain meta-metamodels, e.g., Ecore, XML schema®, or OWL? (cf. . Since these
data models build upon common core concepts, as already stated in [[67] and summarized in
the according concepts may also be translated to Places and Tokens in Transfor-
mation Nets by means of adapters (cf. [Fig. 4.10). In the following, such adapters from XML
schema and OWL to Transformation Nets are shortly described.

Table 4.1: Common Core Concepts in Different Meta-Metamodels

Class EClass <xs:complexType> <owl:Class> Class (place)
Attribute EAttribute <xs:attribute> <owl:DatatypeProperty> Attribute (place)
Reference EReference | <xs:key>, <xs:keyRef> | <owl:ObjectProperty> Reference (place)
Inheritance eSuperTypes| <xs:extension base> <rdfs:subClassOf> Class.superclasses

XML Schema to Transformation Nets. The EMF framework already provides support for
XML schemas and XML models, i.e., an XML schema might be automatically translated to
an Ecore metamodel and XML models to according Ecore models whereby the details of the
translation are explained in the EMF documentation®. In this respect, an adapter which directly
translates XML schemas into Transformation Nets may follow this transformation. For example,
in the EMF documentation it is described that complexType instances may be represented
in Ecore by according EClasses. Since instances of EClasses are translated to Class
places it is natural to directly translate instances of complexType to according Class places.
Furthermore, Elements in XML schemas are mapped to according Attribute places in

“http://www.w3.org/XML/Schema
Shttp://www.w3.org/TR/owl-features
Shttp://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf

79

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

case they are typed to standard datatypes or enumeration values. If elements are typed to
complex types, they represent references and are thus translated to Reference places. Valid
XML files may then be translated to according tokens. For further details, the reader is referred
to the EMF documentation.

OWL to Transformation Nets. In [76] a translation from OWL concepts to Ecore has
been presented. This proposed translation may be followed in order to provide an adapter
which directly translates ontologies into Transformation Nets. In the following, the transla-
tion is shortly summarized. The OWL concept OWLC1ass basically corresponds to the concept
EClass and may therefore be mapped to places similar to the way described before. Ad-
ditionally, in an OWL ontology, classes may be marked to be equivalent, in order to specify
synonyms. In contrast, Ecore allows only for distinct classes, i.e., an instance of one class may
not be an instance of another one. Nevertheless, this may be simulated by means of abstract
super classes for the equivalent classes. Thus, it is possible to either use objects of the con-
crete classes or of one of its supertypes. In this respect, equivalent classes are represented by
abstract Class places. OWLDataType-Property, which define attributes of classes, are
equivalent to EAttribute in Ecore and are mapped to according Attribute places. Fi-
nally, OWLOb jectProperty in OWL defines references between classes which are similar
to EReference in Ecore and are thus mapped to according Reference places. The according
individuals are translated to the respective tokens similar to the concepts presented above.

As described before, model transformations are specified between their according meta-
models (M2) and are executed on the model level (M1), i.e., every model that conforms to its
according metamodel may be handled by the transformation. As can be seen in these
metamodels conform themselves to a so-called meta-metamodel (M3, e.g., Ecore). Since Trans-
formation Nets abstract from the concrete metamodels and their models by means of places and
tokens, it is possible, e.g., to translate a source metamodel that conforms to the Ecore meta-
metamodel into places and the according model to tokens, and to translate a target metamodel
that conforms to the OWL metamodel into places and the according individuals into tokens.
Consequently, it is not only possible to specify transformations between source and target meta-
models (M2) that are specified using the same meta-metamodel (M3, e.g., Ecore), but also be-
tween metamodels that themselves conform to different meta-metamodels, as shown in

XML XML [3
ooy Schema @Rt OL Schema £on
M3 % <schema..» E‘:‘ E‘A chema > % M3
<Jschema> oW OWL </scherna>
N N N N N

instance H H H : : instance
of H ! | :

Concrete Concepts Concepts Concrete

XML Schema (T-box) Transformation Net (T-box) XML Schema
= (- S — Ny T <schema...>
M2 : | source) (T () <compiextype
</ . » 2 </schema>
A A Places Transitions A A
instance 3 E
of N f ; ™ 7 ; f
00 XML Individuals Individuals XML
Model = (A-box) = (A-box) v
M1 =i . \: Ea o e
==
N

Figure 4.10: Overcoming Meta-Metamodel Heterogeneities in Transformation Nets

80

4.4. Dynamic Parts of Transformation Nets

Therefore, Transformation Nets not only provide means to overcome structural heterogeneities,
i.e., differences resulting from applying different modeling constructs for the same semantic
concept in different metamodels that conform to a common meta-metamodel, but also meta-
metamodel heterogeneities, i.e., transformation between metamodels that themselves conform
to different meta-metamodels are enabled.

4.4 Dynamic Parts of Transformation Nets

he previous section dealt with describing how metamodels and models are represented as

the static parts of a Transformation Net. This section introduces the dynamic parts of a
Transformation Net. First, the firing behavior of Transformation Nets is explained, followed
by a discussion, how conditions and functions may be specified in Transformation Nets. The
second part of this section explains, how to chain transitions in Transformation Nets in order to
represent complex transformation logic.

4.4.1 Representation of Transformation Logic

An execution of a model-to-model transformation rule has two major phases. The first phase
comprises the matching of certain elements of the source model, from which information is
derived that is used in the second phase for producing the elements of the output model. This
matching and producing of model elements is supported within Transformation Nets by firing
transitions whereby the source model is accessed in a read only manner and the target model
in a write only manner, i.e., transitions are not allowed to match for elements in the target
model. Transitions in Transformation Nets are similar to the concept of Transfor—
mationRules, as described above (cf. [Fig. 4.2]in[Section 4.2). Transitions are enabled, if a
certain configuration of matching tokens is available. This configuration is expressed with the
remaining elements of the subpackage DynamicElement of the Transformation Net metamodel
(cf. [Fig. 4.11). To specify the firing behavior of a transition, a mechanism is used that is
well known from graph transformation systems [41]]. Thereby, two patterns of input and output
placeholders for tokens are defined, which represent a precondition and a postcondition (cf.
references Transition.queryPatterns and Transition.productionPatterns
in [Fig. 4.TT). Thereby, a certain configuration of tokens is matched from the input places, and
a certain configuration of tokens is produced in the output places. Once such a configuration is
found, the transition is enabled and ready to fire. In this respect, these concepts fulfill similar
tasks as InPatterns and OutPatterns in transformation languages. The details of how
to specify a transition’s firing behavior is described in the following. In order to explicate the
concepts, an extract of the running example is used, which translates Class instances into
according Table instances, as shown in|Fig. 4

Specification of Transition’s Firing Behavior. The firing behavior of transitions in Trans-
formation Nets is defined by means of so-called Patterns. As can be seen in[Fig. 4.T1|the ab-
stract class Pat t ern is refined by the concrete subclasses Ob jectPattern, ValuePattern
and LinkPattern, which are represented by the same concrete syntax as their according to-
kens. As the names already imply, different types of patterns are used to either query or produce

81

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

DynamicElement
target TPArc
1.1 (from Connector)

inArcs

TNPlace
(from StaticElement)

PTArc _
il
source | (from Connector) - cbe : Boolean |=_transition
0..1 inArc
0.* 1

1* productionPatterns

3

AT

Pattern

queryPatterns |

3 Transition context Transition inv key:

11 S

name : String

ObjectPattern

5

ValuePattern LinkPattern

key->forAll(k1 | k1->forAll(
k2| k2.cbe and self.
productionPatterns->
includes(k2)))

condition : String
key[]: List<Pattern>

0. histEntries

History

oidVar : String
negated : Boolean

oidVar : String
valueldVar : String
distinct : bool

soidVar: String
toidVar : String
negated : Boolean

precondition[]:Int
postcondition[]:String

1
context PTArc inv isCompatible:
--check if PTArc connects to a query pattern
if target.transition.queryPatterns->
includes(self.target) then
if (source.ocllsTypeOf(Class) then
target.ocllsTypeOf(ObjectPattern)
else if (source.ocllsTypeOf(Attribute) then
target.ocllsTypeOf(ValuePattern)
else if (source.ocllsTypeOf(Reference) then
target.ocllsTypeOf(LinkPattern)
else
false
endif endif endif else
false -- no query patterns
endif

negated : Boolean

2
context TPArc inv isCompatible:
--check if TPArc originates from a production pattern
if source.transition.productionPatterns->
includes(self.source) the
if (source.ocllsTypeOf(ObjectPattern) then
target.ocllsTypeOf(Class)
else if (source.ocllsTypeOf(ValuePattern) then
target.ocllsTypeOf(Attribute)
else if (source.ocllsTypeOf(LinkPattern) then
target.ocllsTypeOf(Reference)
else
false
endif endif endif else
false -- no production patterns
endif

context Pattern inv isCbe:
cbe implies self.transition.productionPatterns->
includes(self)

5

context ObjectPattern inv PatternConstraints:

negated implies self.transition.queryPatterns->
includes(self)

context ValuePattern inv PatternConstraints :

negated implies self.transition.queryPatterns->
includes(self)

context LinkPattern inv PatternConstraints :

negated implies self.transition.queryPatterns->

includes(self)

Figure 4.11: Dynamic Elements of Transformation Nets

according types of tokens, e.g., if an object token should be queried, an ObjectPattern is
used. Patterns may then be used in two different roles, either as query patterns to model
preconditions or as production patterns to model postconditions of a transition, as de-
tailed in the following:

* Query Patterns: Query patterns constitute the precondition or left-hand side (LHS) of
a transition. Every query pattern has to be connected to a certain place of the source
metamodel using an instance of a PTArc. It is important that the type of the place (ei-
ther Class, Attribute, or Reference) corresponds to the according type of pat-
tern, e.g., a Class place may only be connected to an ObjectPattern (cf. OCL
constraints (D and @) in . The actual variables (represented by the accord-
ing attributes of the patterns) are bound to the according ids of an actual input token
during matching. In order to exemplify this, [Fig. 4.12a) depicts a sample transition, con-
taining two query patterns. The pattern labeled with the variable class represents an
ObjectPattern which queries for according objects of the class Class. The pattern
labeled with the variable class and name represents a ValuePattern which queries
the ModelElement .name attribute (which may be accessed by classes since Class
inherits from ModelElement). During matching, equal variables have to be bound to
equal ids of the tokens, e.g., if the variable class of the ObjectPattern is bound to
token c1, then the variable class of the ValuePattern may only be bound to c1 as
well, i.e., the transition is only enabled, if there exists a name attribute for a certain object.
Furthermore, if two patterns are connected to the same source place, the according pattern

82

4.4. Dynamic Parts of Transformation Nets

Source MM

Transformation

Target MM

Source MM

Transformation

Target MM

ModelElement

name : String

SchemaElement

name : String

ModelElement

name : String

SchemaElement

name : String

=@ e

S Class2 Edl
= Lee]
LF {name (= 75’@’5_5:
Class e
sof L

(a) Example Transition

rnfessb

T

*’class
Table

ﬁe—fguq-aee

(b) Transformation Net in Final State

Class2 154
Table

ffffff

- D

Table

Figure 4.12: Example Transition in Transformation Nets

variables must be different to ensure a non-injective matching, i.e., two objects with the
same type in the source pattern cannot get matched to the same object in the model.

Negative Pattern. Besides querying if a certain token configuration is available it is also
necessary to query if a certain token configuration is not available, e.g., only if a certain
Class instance does not exhibit a link superClass to a super class (i.e., it is a root
class), an according transition should be enabled. Since the matching algorithm of CPNs
may only match for the existence of tokens, the handling of non-existence of tokens re-
quires the introduction of list data types and conditions in CPNs (cf. [Chapter 6). Since
the Transformation Net DSL is intended to hide such complexities from the transforma-
tion designer, negative query patterns have been included in the language definition, i.e.,
query patterns may be negated by setting the negated flag to true (cf. example 6
in 7. In this respect, negative patterns are comparable to negative application
conditions in graph transformations [[61]].

Distinct Values. In case of a ValuePattern, the situation might occur that only distinct
attribute values should be considered, e.g., only Class instances offering a different
value of the Class . name attribute should be translated into according Tab1e instances.
Again this situation requires the handling of list data types and conditions in CPNs and
should therefore be hidden from the transformation designer in the Transformation Net
DSL. Thus, a distinct flag on ValuePatterns is provided to ease the specification (cf.

ValuePattern.distinct in[Fig. 4.T1|and in[Fig. 4.13).

* Production Patterns: Production patterns constitute the postcondition or right-hand side
(RHS) of a transition. Every production pattern has to be connected to a place of the target
metamodel by means of TPArc instances. The variables of ProductionPatterns
depend on the variables of the QueryPatterns. In the example in [Fig. 4.12(a), both
ObjectPatterns (query as well as production patterns) exhibit the variable class.

"The flag is contained in the subclasses since later on the metamodel will by extended by another pattern, which
is not allowed to be negated.

83

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

This means if, e.g., the object token c1 is bound to the variable class of the query
pattern during the matching phase, the variable class of the production token has to
be bound to c1 when firing the transition. In this respect, the object is simply copied
from a source place to a target place, as can be seen in (b), which shows the
Transformation Net in its final stage, i.e., all transitions have fired. However, it should
also be possible to produce new objects, values or links in the target model which do not
exist in the source model, e.g., if several source objects are merged to a new target object.
In this case, a newly colored token should be produced, in order to accordingly visualize
the new element. In Transformation Nets this may be achieved if a certain variable of a

production pattern has not been used as a variable of a query pattern.

Check Before Enforce. Similar to distinct value query patterns, mechanisms for produc-
tion tokens are needed to ensure that duplicate elements are not created when the required
elements already exist, i.e., if a Schema has already been created for a certain Package,
the schema should be reused and no duplicates should be produced. For this production
patterns may be marked as check before enforce (cf. Pattern.cbe in and
example 2 in in [Fig. 4.13). As may be seen in the example in the production
ValuePattern, which produces the name attribute and its corresponding containing
ObjectPatten are marked as check before enforce, i.e., only differently named Table
instances will result. In order to provide flexibility in specifying equality, the transforma-
tion designer is allowed to define a key by specifying the according production patterns,
which have to marked as check before enforce.

Transformation Net

ObjectPattern

ObjectPattern

ValuePattern

ValuePattern

Link

Link

Concrete Syntax

v

v

oidVar = ‘x’ oidVar = ‘x* oidVar = ‘x’ oidVar = x’ soidVar = ‘x’ soidVar = x’
Abstract Syntax negated = false ||| negated = false valueldVar = ‘v’ valueldVar = ‘v’ toidVar = ‘y* toidVar = ‘y*
cBE = false cBE = true distinct = false distinct = true negated = false negated = true
negated = false negated = false cBE = false cBE = false
cBE = false cBE = false
Transformation Net ' . ‘ . o o

Figure 4.13: Overview on Concrete Syntax of Patterns in Transformation Nets

Firing Behavior. Transformation Nets exhibit a different default firing behavior than stan-
dard CPNs in the sense that transitions in Transformation Nets do not consume tokens per de-
fault. This is since, on the one hand, all possible token combinations must be taken into ac-
count. For example, if a transition matched Package tokens and Class tokens at once, the
transition could fire only once, although if multiple elements were available, since there is a
1:n relationship between Package and Class. On the other hand, if more than one transi-
tion accessed a certain place, consuming firing behavior would lead to erroneous race condi-
tions. By default, every transition is just reading the tokens of the connected input places and
does not delete them. In order to prevent a transition to fire more than once for a certain to-
ken configuration, the already processed configurations are stored in a history (cf. reference

Transition.histEntries and Class History in[Fig. 4.TI). Every History entry

84

4.4. Dynamic Parts of Transformation Nets

stores the 1ds of the matched tokens in the attribute History.precondition and the pro-
duced tokens in the attribute History.postcondition. A transition is only allowed to fire
if the current configuration is not found in the history entries’ preconditions. Besides prohibit-
ing multiple firings of transitions, the history thus, also reveals trace information, i.e., an explicit
correlation of which input tokens have been used to create certain output tokens.

4.4.2 Conditions and Functions

Conditions, e.g., to select a subset of potential source objects, values or links as well as func-
tions, e.g., to calculate and derive values, are key to any model transformation language. For the
specification of such conditions and functions most of today’s transformation languages employ
OCL [[115]. Therefore, Transformation Nets make use of OCL as well to allow the transforma-
tion designer to specify conditions and functions.

Conditions. The running example demands that only persistent Class instances are trans-
formed into according Table instances. In this respect, the Transformation Net depicted in
[Fig. 4.14|(a) exhibits an according OCL condition. Since conditions influence the firing behavior
of transitions, i.e., a transition is only allowed to fire if the according condition is fulfilled, con-
ditions in Transformation Nets are specified on transitions (cf. Transition.condition in
[Fig. 4.11). In order to actually evaluate OCL expressions, a so-called OCL context is needed
which represents the root of the OCL expression and thus, the starting point of the evaluation.

Source MM Transformation Target MM

ModelElement

Source MM Transformation Target MM name : String

ModelElement SchemaElement @ ,,ﬂ,m) @

& a2 a3
name : String name : String

SchemaElement

Attrizbute name : String
Z% isPersistent: Bool
Table m@@ _‘\fzg’ré"”‘

‘ A - 00
Class J : . Zﬁ
. ee @class.isPersistent b ee

Column
isPersistent: Bool att"ib"t.eséo J a2 a3
rc1Y |
*e Vo) e
= [@class.isPersistent]
Attribute and
[@attr.type=Integer’]
. a2 a3
type : String
a2 a3
‘I‘rl‘r_
(a) Condition with one Context (b) Condition with two Contexts

Figure 4.14: Example Conditions

85

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

The context of an OCL expression in Transformation Nets is specified by using a variable of
a query pattern. In order to be able to distinguish variables from the remaining OCL expres-
sion strings, the according variable is preceded by an “@” sign. To specify the condition of
the example, the context is set to the according class object which is queried by means of the
object pattern exhibiting the variable class, i.e., the context is set by means of @class in
the expression. Since the OCL context is determined by an object and it’s according class, only
variables of query patterns typed to ObjectPattern are valid. As soon as the context is
determined, any valid OCL expression may be specified. In this respect, the isPersistent
attribute of the class Class may be queried. Therefore, the complete condition of the example
is @class.isPersistent.

Unfortunately, OCL allows for one context per expression only which makes it cumber-
some to specify more complex OCL constraints and requires potentially complex navigation
expressions. For example, the specification of the condition “if the class is persistent and if
the type of an according attribute is integer” would require various navigation expressions. To
ease the specification and to provide flexible means to express and evaluate conditions, several
contexts are allowed in Transformation Nets. Nevertheless, in order to allow for the reuse of
existing OCL engines, it is required to explicitly delimitate the scope of a context. Brackets
are used for this purpose in Transformation Nets as can be seen in [Fig. 4.14(b). To evaluate
these conditions, the OCL expression is split along the different contexts and then every context
is evaluated separately. Afterwards, the separate results are evaluated according to the boolean
operators that connected the individual contexts. Concerning the example, first the according
binding of class.isPersistent is checked and second the binding of attr.type. Only
if both parts of the condition are fulfilled, the whole condition holds. Therefore, only the bind-
ings class=c2, attr=a2, persistent=true, name=registrNo, type=Integer
and class=c3, attr=a3, persistent=true, name=salary, type=String enable
the transition.

Functions. As already mentioned, OCL may not only be employed to specify conditions but
also for functions, e.g., to concatenate values. Since a single production pattern might exhibit
several outgoing arcs, functions are specified on the according TPArcs. The specified function
may depend on the query tokens, thus the variables in the function have to be variables of the
query patterns. The example shown in[Fig. 4.15|concatenates the name of a class with the postfix
_gen by adding the function @class.name.concat (' _gen’) to the outgoing arc. Since
in this case a new value is generated the according production attribute pattern exhibits a new
variable newName, i.e., the variable newName has not already been used by a query token.
Therefore the color representing the vale of the attribute SchemaElement .name exhibit a
color, that does not exist in tokens of the source model.

4.4.3 Chaining of Transitions

The presented transformations so far solely consist of a single transition only and match tokens
of the source model and directly produce tokens in the target model which would correspond to a
single rule in current transformation languages. Nevertheless, a transformation usually consists
of several rules which have to interact with each other, i.e., a chaining of transformation rules is
required. Thus, Transformation Nets provide two different means to chain the according transi-

86

4.4. Dynamic Parts of Transformation Nets

Source MM Transformation Target MM
ModelElement SchemaElement
name: String | [______________ name : String

\@class.name.concat:

[—eSl
e Person. L,
Rerson @ Class2 N e e
% Ta ble Lﬁe_le\Tan'Te_' grofessgr_
Professgr ‘ e o gel

- %G Table
200 oo

Figure 4.15: Example Function

tions, being (i) trace information and (ii) intermediate places. On the one hand, trace information
may be used to define dependencies between transitions in a way that a transition may only fire if
another transformation has already produced some elements, i.e., trace information. On the other
hand, intermediate places are places that are neither part of the source metamodel nor the target
metamodel; instead these places may be used to make derived information explicit for further
transformations. An example thereof is the calculation of the transitive closure, since typically
only the direct superclasses are stored in the model (cf. reference Class.superclasses in
the running example), but not its indirect superclasses, e.g., in the context of our running exam-
ple (cf. [Fig. T.2]on page[5)) the indirect inheritance relationship between the class Professor
and Person should be made explicit.

Trace information. Two requirements of the running example are to (i) create an according
Table instance for every persistent Class instance and (ii) to create according Column in-
stances for direct attributes of such classes in a first step (cf. requirements 2 and 3 in[Section 1.2)).
When inspecting the source metamodel, one may detect that Classes and Attributes
are linked by the unbounded reference Class.attributes. If the transformation designer
specified a single transition that matches for Class and Attribute instances that produced
according Table and Column instances, this would result in potentially too many Tables
(without using check before enforce production patterns). This is since there are too many
matches in case a class exhibits more than one attribute. To avoid this, the transformation de-
signer may specify two transitions, whereby the transition that generates Column instances for
Attribute instances should only be enabled if the according Class instances have already
been transformed to Table instances. To achieve this, trace information may be applied in
Transformation Nets. Trace information makes explicit which source object(s) have been trans-
lated into which target object. In this respect, the parts of the history that concern objects are
made explicit. The remaining parts of the history are not made explicit since dependent transi-

87

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

tions need to know the according object only, e.g., if a dependent transition sets a link, it only
needs to know the according source and target objects. To incorporate trace information in Trans-
formation Nets, in a first step, the StaticElement and DynamicElement packages are
extended by according metamodel elements, i.e., TracePlace, Trace and TracePattern
(cf. highlighted elements in [Fig. 4.16[a)). Trace tokens and TracePatterns exhibit both
two attributes to store the information which source elements — multivalued attributes Trace . —
soid and TracePattern.soidVar, left side of token or pattern in concrete syntax — have
been translated to which target element — Trace.toid and TracePattern.toidVar,
right side of token or pattern (cf. [Fig. 4.16(b)).

shows the application of trace information to solve the above stated requirements
of the running example. The transition Class2Table provides trace information produced

StaticElement
TNPlace

a tokens 0.* Token
name : String
opposite ZF

0.1 [] | |
Reference SuETEEsEs | TracePlace | Object Link
source - - - -
ordered : bool 1.1 @5 <enum» oid : String soid : String
containment : bool Class . DataType toid : String
upperBound : Int _‘ﬁ isAbstract : bool <= - Bool Value Trace
lowerBound : Int |target SLpcassss _Int
1.1 q : oid : String soid : String(]
attributes) o+ " Float valueld : String toid : String
Attribute : N
- String value : String
Class L_type: DataType - Char

DynamicElement

arcs

il

1% productionPatterns Transition
Pattern 1.% queryPatterns St
name : Strin
: Boolean transition 1.1 condition S%ring
| | | I 0"*$ histEntries
ObjectPattern ValuePattern LinkPattern TracePattern History
" " " recondition[]:Int
oidVar : String oidVar : String soidVar: String soidVar([] : String Bostconditior[l][]:String
negated : Boolean valueldVar : String toidVar : String toidVar : String
distinct : bool negated : Boolean
negated : Boolean

(a) Transformation Net Metamodel Extended with Trace Elements

tl:Trace pl:TracePattern
Transformation Net :OJS = j’%}i’oz’] :OJg\\;ar =4
old = 0. oldvar ="y
Abstract Syntax chefalse
Transformation Net mb @
Concrete Syntax 2

(b) Abstract and Concrete Syntax of Trace Tokens and Trace Patterns

Figure 4.16: Extension of Transformation Net Metamodel to Represent Trace Information

88

4.4. Dynamic Parts of Transformation Nets

by the production TracePattern with the two variables labeled to class. The produced
Trace tokens are stored in the ClassTrace place (cf. place with stereotype TracePlace
in [Fig. 4.T7). Since in this example, Class objects are only copied to Table objects, the
trace tokens are of one color only. The produced trace information may then be queried by
subsequent transitions. In the example, an Attribute instance should only be translated
to a Column instance if the according Class instance has also been translated to a Table
instance. The transition Attribute2Column does not query the Class source place but
uses the ClassTrace place to match for Class instances that have already been translated to
Table instances. As can be seen in the transition Attribute2Column uses a
TracePattern to query the according trace information. Since in general the generated tar-
get object needs not to exhibit the same color (i.e., a new object could have been created),
the tracePattern must be capable to handle this situation as well. Therefore, the query
TracePattern exhibits different variables (colors) on its left (source) and right (target) side.
Nevertheless, during matching it is allowed that two different variables are bound to the same
id (color), e.g., in the example both, variable class and table may be bound to the same
id. The transition Attribute2Column is thus only enabled if a Table instance has al-
ready been created and if a certain Attribute (attr query token) is contained in the ac-
cording Class, expressed by a reference query token labeled to class and attr. In this
respect, the transitions Class2Table and Attribute2Column interact with each other,
since the transition At t ribute2Column queries the required trace information from the tran-
sition Class2Table.

Source MM Transformation Target MM

Class ‘%':;lsez Tables

500 .00 00
Uclass v <<TracePlace>>

. . '— T
isPersistent: Boollég_r;;@_ﬁt:?@ @p ea ?
®® - @class.isPersistent ClassTrace

attributes’ -
Attribute2 columns

[) oo Column
V o0.* v Wl 0.*
Attribute "_,__ Column
. a2 a3 IOQ a2 a3

type : String
a2 a3
[YW

~-|table:

Figure 4.17: Example Transition using Trace Information

Intermediate Places. The last requirement of the running example is that during the trans-
formation process, for each directly or indirectly inherited At t ribute instance, a correspond-

&9

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

ing Column instance should be generated. Nevertheless, the specified metamodel provides
means to access direct superclasses by means of the reference Class.superClasses only
(cf. . Therefore, first indirect subclasses need to be derived, i.e., the transitive closure
has to be calculated, in order to be able to generate according Column instances. To make
such derived information explicit, so-called intermediate places may be used. In this respect,
the example depicted in extends the previous example by using an intermediate ref-
erence place (cf. place Closure in to store the calculated transitive closure to be
further on able to generate Column instances for indirectly inherited Attribute instances.
To calculate the transitive closure, first the He lper transition copies the links to superclasses
into the intermediate place Closure. The transition TransitiveClosure then reads these
tokens and calculates the transitive links, i.e., it checks if there exists a link from a subClass
to a superClass and from the superClass to another super class, denoted by the vari-
able baseClass. In the example in one additional link from class c3 to c1 is
generated and put into the intermediate place Closure. This is since the class ¢3 inher-

Source MM Transformation Target MM
Class2
Class T:;fe Table

isPersistent: Bool

'cl%s's“:.{..@ <<TracePlace>> Q e

D> P

ClassTrace

lpersistent[?

1
@class.isPersistent

=
L oe

superclasses

‘ o o :_El_;g._s_‘r‘:,-—@ oo

Attribute2
Column
: - fable]
attributes /

v @00
SO0
columns
Attribute
‘ SuperAttributes SuperAttr2
a2 a3

Column 0*

type:String | | [| . 2 ': Wai Column

subClassk”

|
Helper |---, b nntel \
‘l'ﬂ‘r @ ; { F eeron a2 a3
Q a5 a6

e e———

[Y

\L Transitive
—————— Closure
;subClassi.-— =

Closure (@) bisecis
superClass i

I
(Supertiass I

Figure 4.18: Example Transition using Intermediate Places

90

4.5. Modularization Concepts in Transformation Nets

its from c2, which inherits again from c1 as may be seen from the tokens in the reference
place superClasses. The tokens in the intermediate place are then used by the transition
SuperAttribute2Column to produce the remaining Column objects and columns links.
Thereby, the transition uses the trace information provided by the transition Class2Table in
order to add the Column instances that need to be generated to the corresponding table. The last
query token of the transition SuperAttributeToColumn queries the transitive links, i.e., if
there is a certain link from a subclass to a superclass, i.e., it is searched for indirect subclasses. If
this superclass has links to according attributes, the transition is ready to fire and produces
a column for every inherited attribute as well as the according links.

To exemplify this, in case of class c¢3, which inherits directly from c2 and indirectly from
c1, two additional columns (a5 and a6) are created. Since the context token stemming from
the source class ¢3 may be bound to the context query token and since there are links from c3
to c2 and from c3 to c1 (cf. tokens in intermediate place) as well as references from c2 and
c1 to according attributes available, the transition may fire twice to produce the columns a5
and a6 as well as the according links. In this way, for every directly and indirectly inherited
Attribute instance a corresponding Column instance is generated.

4.5 Modularization Concepts in Transformation Nets

hereas the previous sections introduced the basic concepts of Transformation Nets, this

section presents modules as a modularization concept in Transformation Nets. In this
respect, modules allow the transformation designer to divide a transformation specification into
self-contained, maintainable parts, which are discussed in the following.

4.5.1 Overview on Modules

Modules encapsulate a certain transformation logic and provide a well defined interface to its
environment. In this respect, the metamodel depicted in highlights the elements spe-
cific to modules. It may be seen that a transformation specification might contain Modules
which may be nested again, i.e., a module may contain several other, more fine-grained modules
(cf. reference Module.children). The interfaces are defined by means of Ports of dif-
ferent types, comprising class, attribute, reference and trace ports. Ports are connected with
Places, Patterns or Ports of nested modules via Arcs. The internals of modules consist
of Transitions and Places, i.e., either trace places or intermediate places.

4.5.2 'Two Views on Modules

Since modules are used to modularize the transformation specification, they should also hide
unnecessary details in order to make the approach scalable for large transformations. In this
respect, two different views on modules are provided, being (i) a so-called blackbox view, which
only shows the interfaces of a module and (ii) a so-called whitebox view, which shows the details
of the implementation of the modules in Transformation Nets. In the following, the different
views are discussed in more detail.

91

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

Container |

Port
(from Connector)

0..*

Transition b
(from DynamicElement) 0.* TNPlace
modules (from StaticElement)
1.* transitions
TransformationSpec | 0.*] 0.*
transformation 0.*
sourceMM 1-1
Net places
. targetMM 1..1
name : String & m places

Connector
.1 port attern 0.1
Port Pattern
- ETE‘E (from DynamicElement)
outgoing 0..* place outgoing
I | 0..* 0.*
| ClassPort | | TracePort |incoming 0.. outgoing
- TNPlace
I AttributePort " ReferencePort | (from StaticElement)

Figure 4.19: Extension of Transformation Net Metamodel to Represent Modules

Blackbox View. The blackbox view on modules exhibits only its interface and the actual
bindings to a metamodel. As can be seen in the example depicts two modules, where
the module Package2Schema translates Package instances to Schema instances and the
Class2Table module translates Class instances to Table instances, encapsulating require-
ment one and two of the running example. In this example only class and trace ports are shown
in the blackbox view. This is since classes set the focus of the transformation and trace ports
make the dependencies between modules explicit. Transformations of corresponding attributes
or references are then specified in the whitebox view, as discussed in the next paragraph. In
this respect, the interface of a module should be minimal, i.e., only a minimum number of ports
should be exhibited in the blackbox view. For example, although it would be possible to attach
an attribute port to both modules in this is omitted since such details should rather be
specified in the whitebox view, as discussed below.

Whitebox View. The actual implementation of the transformation logic encapsulated in a
module is shown in the whitebox view. The whitebox view of a module may contain an ar-
bitrary number of transitions as well as trace and intermediate places, i.e., arbitrary complex
transformation logic may be encapsulated. shows the whitebox view of the modules
Package2Schema and Class2Table. In this example, first Package instances and their
according name attributes are copied to Schema instances, which are equally named (cf. fired

92

4.6.

Summary

Source

Transformation

Target

ModelElement

ModelElement

name : String

pl
University

eea

S

Package
C
p1 Package2 G
Schema
U
Class T Table
< Class2
*0 . 000 -4 i P <
classes isPersistent: Bool U tables

Figure 4.20: Blackbox View on Modules

name : String

-

Schema

transition in[Fig. 4.21](a)). Additionally, the transition produces trace information in order to pro-
vide the information, which Package instance has been translated to which Schema instance
for dependent transitions which may be contained in different modules. This trace information is
then used by the module Class2Table which queries for persistent, named Class instances
and copies them to equally named Table instances (cf. transition in[Fig. 4.21b)). The trace
information is used to create an according link to the Schema instance, the generated Table
instance should be contained in.

Besides the transformation logic itself, the whitebox view restricts the source and target-
metamodel to the extracts that were bound in the blackbox view. Therefore, e.g., the whitebox
view of the module Package2Schema shows only the metamodel elements Package and
its superclass Mode1Element. The transformation designer is then only allowed to use these
elements in the transformation logic, e.g., only the name attribute may be additionally used.

Modules may not only be used to modularize Transformation Nets, but they may also be
applied to implement patterns, i.e., patterns to resolve recurring structural heterogeneities as
done in [86]. Since the ports of modules are only typed to classes, attributes, references or trace
information, transformation logic may be implemented without relying on the types of a specific
metamodel. This encapsulated transformation logic may then be reused in other transformations
by simply binding the ports to the according metamodel elements.

4.6 Summary

n summary, this section presented Transformation Nets as a runtime model for model-to-
model transformations. Transformation Nets build a DSL on top of CPNs tailored to the
domain of model transformations, hiding the actual details and complexity of CPNs. Metamodel

93

TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

Package2Schema

ModelElement

name : String

pl
University

T

Package

pl

<<TracePlace>!

pljpl

Trace

SchemaElement

name : String

pl
University

f

Schema

pl

(a) Whitebox View Package2Schema

pl Eﬁ
Universityw@pm«e;s

l

Package
pl o— [X J
classes \l/
Class

+00

isPersistent: Bool

6

> pl
University

T

a)%@
isPersistentr-
@class.isPersis

tent=true
<<TracePlace>>

Trace

Class2Table
ModelElement SchemaElement
Package2 pl‘pl
SchemaCtx
name : String U name : String
\V4

—
\l/ tables

Table

Schema

pl

(b) Whitebox View Class2Table

Figure 4.21: Whitebox View on Modules

elements are represented as places and models are made explicit by means of tokens, residing
in the corresponding places. The actual transformation logic is specified using transitions which
match for tokens residing in places, representing the source metamodel and produce tokens
which are put into the places representing the target metamodel. Finally, modules as a means for

modularization of the transformation specification were introduced.

In comparison to [[125]], where an initial version of Transformation Nets has been proposed,
numerous improvements and extension have taken place, especially adaptations in the underly-
ing metamodels. In [125]], only two types of tokens and patterns (one—colored for objects
and two—-colored for attribute and references) have been distinguished. This leads to the fact

94

4.6. Summary

that in the transformation logic it was impossible to distinguish between attributes and references
due to missing type information, which led to error-prone specifications. In order to ensure cor-
rect typing, three explicit types (Class, Attribute, Reference) have been introduced in
the course of this thesis to ensure typing to the common core-concepts of metamodels. Further-
more, the visual concrete syntax has been adapted in order to minimize the gap between class
diagrams, which are the prevalent notation for metamodels in MDE, and Petri Nets. As a fur-
ther new contribution, it has been shown that not only object-oriented metamodels and models
may be compiled to Transformation Nets, but also XML schemas and ontologies as well as their
corresponding instances. Considering the dynamic aspects of Transformation Nets, a major im-
provement imposed the inclusion of OCL conditions and functions to transitions. Furthermore,
the concept of trace places and trace tokens was introduced in order to allow for chaining of
transitions, i.e., one transition may query the elements that were produced by another transition.
In the following[Chapter 5] concepts of Transformation Nets will be introduced that deal with in-
heritance between transitions in order to cope with rule inheritance in transformation languages.
Finally, the version presented in [[125]] did not exploit the power of CPNs, since Transformation
Nets were not translated to standard CPNs for execution and state space analysis, but only made
use of a proprietary execution engine developed in Java. The translation of Transformation Nets
to standard CPNs will be presented in the subsequent [Chapter 6]

95

Chapter 5

Rule Inheritance in Transformation
Nets

We are what we repeatedly do.
Excellence then, is not an act, but a habit.

— Aristotle
Contents
[5.1 Rule Inheritance in Current Transformation Languages|. 98
..................................... 101
5.3 Static Semantics| 104
[5.4 Dynamic Semantics| 112
.................................... 116

fter the previous section introduced the fundamental concepts of Transformation Nets,

this section focuses on rule inheritance in model-to-model transformation languages and
their according representation in Transformation Nets. Since existing model transformation lan-
guages exhibit different semantics of rule inheritance concepts, a detailed comparison is pursued
first. Three different comparison dimensions are considered, being (i) syntactic aspects, i.e.,
which language constructs are needed to express inheritance between transformation rules, (ii)
static semantics, i.e., whether a set of inheriting transformation rules is well-formed at compile-
time and (iii) dynamic semantics, i.e., how inheriting rules interact at run-time.

97

5. RULE INHERITANCE IN TRANSFORMATION NETS

5.1 Rule Inheritance in Current Transformation Languages

he previous chapter dealt with common concepts of all transformation languages, e.g., ev-

ery model-to-model transformation language has to provide means to query for source
elements and to produce target elements. In order to support large transformation scenarios
reuse mechanisms are indispensable. Although the concept of inheritance plays a major role
in metamodels (MMs) (as revealed, e.g., by the evolution of the UML standard [[100]]), inher-
itance between transformation rules has received little attention so far [79]. Currently only a
few declarative, rule based model-to-model transformation languages allow to inherit between
transformation rules. As inheritance is employed in MMs to reuse feature definitions from previ-
ously defined classes, inheritance between transformation rules is indispensable in order to avoid
code duplication and consequently maintenance problems in a transformation specification. The
situation is further aggravated by the fact that the provided language constructs to specify rule
inheritance and the inheritance semantics differ considerably between the transformation lan-
guages. Therefore, first issues in rule inheritance are identified and second, a comparison of the
inheritance mechanisms provided by the declarative model-to-model transformation languages
supporting rule inheritance is conducted.

5.1.1 Issues in Rule Inheritance

To compare rule inheritance in transformation languages, one starting point is to look at the
well-known model transformation pattern (cf. and to examine where the introduction
of inheritance would play a role. Obviously, a transformation language must define syntactic
concepts (cf. question 1 in[Fig. 5.T)), which leads to the first dimension of the comparison, namely
syntax. In this respect, the following questions are of interest:

* Types of inheritance: Does the transformation language support only single or multiple
inheritance?

* Abstract rules: Is it possible to specify transformation behavior that is purely inherited
but may not be executed on its own?

In addition to syntax, further well-formedness constraints on the transformation rules must
hold (cf. question 2 in[Fig. 5.1)), which represents the second dimension, namely static semantics.
Thereby, the following questions may arise:

* Modification possibilities in subrules: How may the types and number of input and output
elements be changed in subrules such that they may be interpreted in a meaningful way?

* Unambiguousness issues: Are there sets of rule definitions that do not allow selecting a
single rule?

If a declarative transformation specification is well-formed, it may be compiled into exe-
cutable code, which is interpreted by a transformation engine that takes a source model and tries

98

5.1. Rule Inheritance in Current Transformation Languages

Svntax Static 2
- Semantics When is a set of inherting rules
Which syntactical inheritance - well-formed at compile-time?
concepts are offered? 7
conforms to X . conforms to
/
Transformation Speuflcatlon‘ .~
Source Metamodel ml W Target Metamodel
A B X Y
Rule Rule
{E f} Zﬁ 1..n superrules % {E f}
C > Condition = 7
9 >
* 1 >l=é
1. |nput output
A elements elements A
conforms to : conforms to:

Source Model | ,_Target Mode
iL:A i2:B executes iL:X i2:y
Dynamic Semantics Transformation Engine
i3:C * Rule Selection i3:2

How are inheriting rules

* Rule Execution 5 5
interpreted at run-time?

Figure 5.1: Issues in Rule Inheritance

to select and execute rules in order to generate a target model. Again, several questions concern-
ing the interpretation of inheritance at run-time arise (cf. question 3 in [Fig. 5.1)), which leads to
the third dimension, namely dynamic semantics:

» Scope of inheriting rules: If a rule is defined for a supertype, are the instances of the
subtype also affected by this rule?

» Execution order of inheriting rules: Are inheriting rules executed top down or bottom up
in the rule inheritance hierarchy?

As shown in Fig. [5.2] the criteria may be divided into the three dimensions of (i) syntax,
(ii) static semantics, and (iii) dynamic semantics [80]. These dimensions and the corresponding
criteria are described in the following, whereby first existing approaches are compared and then
in each case the according realization in Transformation Nets is discussed.

5.1.2 Comparison Setup

The comparison of inheritance support in model-to-model transformation languages is based on
a carefully developed test set, which includes at least one test case for each criterion, which
are presented in detail in the following (cf. [Fig. 5.3). These documented test cases, including
the example code, the metamodels, and source models, may be downloaded from the project

99

5. RULE INHERITANCE IN TRANSFORMATION NETS

* Number of Input Elements

* Number of Output Elements

* Support for Conditions

* Type of Rule Inheritance Syntax
* Support for Abstract Rules

* Refinement Modes of Assignments

« Dispatch Semantics
* Kind of Inheritance Execution
* Condition Evaluation

* Assignment Execution

Static
Semantics

N

* Incompatibility of Input and Output Elements — Dynamic y
* Non-Instantiability of Abstract Classes Semantics

* Ambiguities in Rule Definitions j

* Conflicts in Multiple Inheritance

Figure 5.2: Overview on the Comparison Framework

homepage!. For the comparison, common model-to-model transformation languages are con-
sidered which offer dedicated inheritance support and allow relationships between source and
target models to be specified in a declarative way. In this respect, only the declarative subsets
of the hybrid transformation languages ATL (version 3.1.0) and ETL (version 0.9.0) as well
TGGs provide rule inheritance support. Concerning TGGs, none of the different available im-
plementations actually implements rule inheritance. Nevertheless, TGGs were included in the
comparison, since specific literature concerning inheritance support exists [[79]. The examples
presented based on the MOFLON execution engine of TGGs (MOFLON 1.5.1) In order to be
able to compare the bidirectional TGG-based model transformation approach with the unidi-
rectional languages ATL and ETL, only the unidirectional forward translation is considered in
TGGs. Please note that although the QVT standard specifies the declarative transformation lan-
guage QVT Relations, it is not included in this comparison, since QVT Relations support only
redefinition of whole rules (without being able to reuse original rule definitions) and no inher-
itance between rules. Actual refinement of transformation rules is only mentioned in the QVT
Core part, which leaves the transfer to QVT Relations open.

IFig. 5.3|shows a potential starting point for the implementation of the running example mak-
ing use of rule inheritance in ATL, ETL and TGGs. For testing purposes it should be possible
to instantiate every target class — therefore the class SchemaElement was changed from an
abstract to a concrete class. The rule Class2Table transforms persistent Class instances
into corresponding Table instances, while inheriting from the rule MElement 2MElement,
which specifies the name assignment. In the context of transformation rules, both feature as-
signments and conditions should be inheritable to subrules. Basically this means when executing
the subrule Class2Table, the assignments of the superrule MElement 2SElement should
be executed as well. The following sections refer to this example to clarify the details thereof.

"http://www.modeltransformation.net

100

5.2. Syntax

Source Metamodel

Target Metamodel

ModelElement
name : String

/allsuper
Classes | _type:String

0.*
attributes

Package

{ namespace
subclasses

classes

1%
classes

isPersistent : Bool

Sample Source Model

rule MElement2SElement{
from mElem : Class!ModelElement
to elem : Relational!ModelElement (
name <- mElem.name
)
}

rule Class2Table extends
MElement2SElement {
from mElem : Class!Class(mElem.isPersistent)

to elem : Relational!Table(
) :ff
) (a) ATL

=

SchemaElement
name : String

— | —1

Schema
schema

tables

Target Model produced by ATL

cl:SchemaElement

pl:SchemaElement

name = “Person”

name = “University”

c2:Table

name = “Student”

c3:Table

name = “Professor”

cl:Class
” - rule MElement2SElement
classes T‘i’“e_‘t Pi[S(f)nl transform mElem : Class!ModelElement
IsPersistent= Talse to elem : Relational!ModelElement {
elem.name := mElem.name;
c2:Class
pl:Package N
mame = “University” |- name = “Student” I
name = "University’ isPersistent= true rule Class2Table
classes transform mElem : Class!Class
to elem : Relational!Table
c3:Class ::/
extends MElement2SElement {
classes .|name = “Professor guard : mElem.isPersistent
isPersistent= true } (b) ETL
N\
modelelem element

MElement2SElement

Target Model produced by ETL

c2:Table

name = “Student”

c3:Table

name = “Professor”

ModelElement

SchemaElement

0.1

PEa—
MElement2MElement(name:String) 0..1

T4

context:Class2Table::class
inv: self.isPersistent

2

Class2Ta

ble

Class

Table

class
0.1

Class2Table(isPersistent:Boolean, name:String)

place
0.1

TGG-Schema (type level)
TGG-Schema (rule level)
<<create>>

s:ModelElement

name := name

isPersistent:= p
name := name

<<create>>

tgglink2:MElement2SElement

<<create>>
<<create>> << >>
tgglink2:Class2Table create
s:Class - t:Table

{1

<<create>>

t:ModelElement

name := name

name := name

(c) TGGs

Target Model produced by TGGs

pl:SchemaElement

name = “University”

cl:SchemaElement

name = “Person”

c2:Table
name = “Student”

c3:Table
name = “Professor”

Figure 5.3: Transformation example in ATL, ETL and TGGs

5.2 Syntax

his subsection provides criteria for comparing transformation languages in terms of syn-

tactic concepts that they support. For this, the metamodel presented in [Fig. 4.2]is extended
with inheritance related aspects as highlighted in In the context of inheritance related
aspects, three criteria are relevant. First, a TransformationRule may inherit from 1 or 1..*
other transformation rules, depending on whether single or multiple inheritance is supported.
Second, the concept of abst ract rules may be supported in order to specify that a certain rule
is not executable per se but provides core behavior that may be reused in subrules. One may
distinguish between different refinement modes by which inherited parts are incorporated into

101

5. RULE INHERITANCE IN TRANSFORMATION NETS

inheriting rules (modeled by the enumeration Re f inementMode in[Fig. 5.4). First, override
implies that when a subrule refines an assignment of a superrule, the assignment of the subrule
is executed together with those assignments in the superrule which are not overridden. In the
refinement mode inherit, first, the overridden assignments are executed, and then the overriding
assignment may alter the resulting intermediate result (such as by initializing some state by a
supercall and then altering this intermediate result accordingly). Finally, the refinement mode
extension induces that inherited assignments may not be changed at all. For consistency reasons,
all assignments in a rule should follow the same refinement mode, therefore the refinement mode
is specified on transformation rule level (cf. attribute TransformationRule.mode).

«enum» InPattern o 1.1 Condition Transformation
RefinementMode condition Metamodel

- override subrules superrules value : Exp
- inherit . el elems
0.. inpattern 1.%
- extend 0.% T InputElement
o .

ansformation Rule o

R rules 0.] name : String outpattern
Transformation | @———>1 apstract : Boolean 1.1 elems assignments
o X 1.% B
mode : RefinementMode OutPattern ‘_1> OutputElement [@————>{ Assignment

0.*
Module s value : Exp
modules 0.*

Figure 5.4: Inheritance-Related Concepts of Transformation Languages

5.2.1 Syntactical Comparison of Existing Languages

When comparing the considered languages (cf. [Table 5.1)), differences in the number of allowed
input elements may be detected. Whereas ATL (multiple elements in from pattern) and TGGs
(source object graph) allow several input elements to be bound to a rule, this is not possible in
ETL (cf. single variable after t ransform keyword in[Fig. 5.3). However, all of the languages
evaluated support multiple output elements (multiple elements in to pattern in ATL and ETL,
target object graph in TGGs). Although the number of allowed input and output elements is
not directly related to inheritance, input and output elements play also a major role in inher-
itance, which is detailed in Furthermore, all transformation languages allow for
the specification of conditions (OCL expressions in ATL and TGGs, a guard in ETL, as can
be seen in [Fig. 5.3). ETL and TGGs support multiple inheritance, whereas ATL is restricted
to single inheritance (keyword extends in ATL and ETL, inheritance arrow in type level of
TGGs, cf. [Fig. 5.3). All languages provide means to define abstract rules (keyword abstract
in ATL, annotation @Qabstract in ETL, property abstract in TGGs). Finally, concerning
potential refinement modes of assignments, none of the approaches evaluated provides specific
keywords for explicitly choosing the semantics to be applied. Instead, ATL and ETL implicitly
assume override semantics, and TGGs support the refinement mode extension since only new
assignments may be added, but existing ones must not be modified.

In summary, all of the approaches evaluated support similar syntactical inheritance concepts.
The main differences lie in the type of inheritance supported and the implicitly assumed refine-

ment mode of assignments (cf. [Table 5.1].

102

5.2. Syntax

5.2.2 Inheritance Related Syntax in Transformation Nets

Based on the comparison above of today’s transformation languages that support rule inher-
itance, in the following the according syntax in Transformation Nets is explained. The sub-
package DynamicElement of the Transformation Net metamodel is accordingly extended
as can be seen in As already explained in Transformation Nets allow for
an arbitrary number of input and output elements which are represented by means of query
or production patterns. This is specified in the metamodel by the two unbounded references
Transition.queryPatterns and Transition.productionPatterns, as can be
seen in Furthermore, Transformation Nets allow for the specification of OCL condi-
tions, as discussed in[Subsection 4.4.2] Concerning inheritance specific aspects, Transformation
Nets support multiple inheritance, which is specified in the metamodel in terms of the unbounded
reference Transition.superTransitions. As can be seen in[Fig. 5.6 the visualization
of inheritance between transitions is equal to inheritance between classes, i.e., inheritance arrow
between subtransition Class2Table and supertransition MElement2SElement. Finally,
Transformation Nets allow to explicitly specify the refinement mode of assignments by means
of the enumeration Ref inementMode and the attribute Transition.mode, as can be seen
in As a default, override semantics is applied since it is prevalent in the evaluated
transformation languages. The attributes Transition.includeSubtypes, which is used
to influence the dynamic behavior (cf. and Transition.priority, which may
be used to solve ambiguous rule definitions (cf. are specific to transformations, in
order to overcome shortcomings of current mechanisms for rule inheritance in transformation
languages, as detailed in the according sections.

DynamicElement
superTransitions subTransitions
* * *
il target TPArC 0.. arcs e ﬁ o _
. ", (from Connector) Source ia Transition - —
inArcs 0.F o

TNPlace * productionPatterns name : Strin
i . Pattern 1 : 8
(from StaticElement) 1.1 PTArc torget 1.1 - 1.* queryPatterns condition : String - override
s source |_(from Connector) cBE : Boolean e 11 key[]: List<Pattern> - inherit
0.* abstract : bool - extend

includeSubtypes : bool
| | mode : RefinementMode

riority: int
ObjectPattern ValuePattern LinkPattern TracePattern . .
0.*| histEntries
oidVar : String oidVar : String soidVar: String soidVar[] : String —
negated : Boolean valueldVar : String toidVar : String toidVar : String History

gieStiar;ceti:‘b;:élean negated : Boolean precondition[]:Int
& : postcondition[]:String

Figure 5.5: Extension of Transformation Net Metamodel to Represent Rule Inheritance

shows the solution of the above example by means of Transformation Nets. The tran-
sition MElement 2SElement s translates objects that are instances of Mode l1Element to ac-
cording SchemaElement instances and copies the value of name attribute. The subtransition
Class2Table inherits from the supertransition MElement 2SElement, whereby the object
query pattern and the production query pattern mode1Element are overridden. Thus, patterns
of a supertransition may be overridden by equal variable identifiers. The remaining patterns of
the supertransition are inherited, i.e., the subtransition Class2Table also queries for name
attributes and produces according name attributes as may be seen by the tokens in the name

103

5. RULE INHERITANCE IN TRANSFORMATION NETS

Source Transformation Target
ModelElement Nsléllznrg\irr:ttz SchemaElement
06— -6 >
name : String 7 name : String

pl
University University

Y ee=

!# %

Package Class Class2 Table Schema

= 000>

isPersistent : Bool

G__ [.. o[
y @ 2 @modelElement

.isPersistent

pl

Figure 5.6: Example of Inheritance in Transformation Nets

place. Finally, the subtransition is extended by the additional query pattern isPersistent in
order to query for persistent Class instances only. On inspecting the generated target model,
one may see that only one Table instance is generated since only class c1 is persistent. Never-
theless, since the token c2 does not fulfill the condition of the subtransition, it may be matched
by the supertransition and therefore the token c2 is typed to SchemaElement, which is dis-
cussed in more detail in[Section 5.4

'Table 5.1| summarizes the comparison of the syntactical comparison of inheritance related
elements in current transformation languages as well as in Transformation Nets.

Table 5.1: Comparison of Inheritance Syntax

Rule Part Values ATL ETL TGGs TN
Input Elements 1]1.* 1.% 1 il 1.%
Output Elements 1]1.% 1.% 1.% 1.* 1.*
Condition Yes | No Yes Yes Yes Yes
r:ﬁ:rﬁzsie Single | Multiple Single Multiple Multiple Multiple
Abstract Rules Yes | No Yes Yes Yes Yes
Refinement Override Override,
Modes of | Inherit Override Override Extend Inherit,
Assignments | Extend Extend

5.3 Static Semantics

In the previous subsection, criteria targeting the comparison of syntactic concepts have been
identified. Now, criteria relevant for checking the static semantics of inheritance are elabo-
rated. These criteria reflect the following semantic constraints: (i) incompatibility of input and

104

5.3. Static Semantics

output elements of subrules and superrules in terms of type and number, (ii) non-instantiability
of abstract classes, (iii) ambiguities in rule definitions, and (iv) conflicts in multiple inheritance.

Incompatibility of Input and Output Elements. In the context of transformation rules,
both, feature assignments and conditions, should be inheritable to subrules. Thus, it has to be
ensured that the fypes of the input and output elements of subrules have at least the features of
the types of the elements of the superrule. Therefore, types of the input and output elements of a
subrule might become more specific than those of the overridden rule. The inheritance hierarchy
of the transformation rules usually follows the inheritance hierarchy of the MM, i.e., a superrule
always originates from a more general class the the subrule. Nevertheless, not for every class in
the inheritance hierarchy of the metamodel a certain transformation rule needs to be provided.
For example, if the source metamodel class C inherits from class B, and class B again inherits
from class A it is allowed to specify only a rule R1 that matches for instances of class A and
a rule R2 that matches for instances of class C and which inherits from rule R1. Nevertheless,
here the question arises how to treat instances of class B, which is discussed in
For rule inheritance this means that co-variance for input and output elements is demanded,
conforming to the principle of specialization inheritance in object-oriented programming [[77]].
This is in contrast to popular design rules for object-oriented programming languages, where a
contra-variant refinement of input parameters and a co-variant refinement of output parameters
of methods is required to yield type substitutability, also known as specification inheritance [|99]].
Additionally, the number of input and output elements should be extensible. In this respect, four
cases of potential variations of input elements in type and number may be distinguished (cf.

* Same Number, Different Types (a). As an example, [Fig. 5.7(a) depicts the two rules,
RuleA2X and RuleB2Y, that are bound to the source base classes A and B and to the
target base classes X and Y, where both rules simply copy the contained features. Since
source class C inherits from both classes A and B and the target class Z from the classes
X and Y, the RuleC2Z may inherit from RuleA2X and RuleB2Y. Thus, the feature
assignments of the superrules are reused (cf. grey assignments in[Fig. 5.7(a)).

* Same Number, Equal (Source or Target) Types (b). This case (cf. [Fig. 5.7(b)) may
be counterintuitive, since inheritance is usually used to specialize some core behavior for
subsets of instances, and subtypes are typically used to construct these subsets. In this
case — at first sight — no subsets (according to specialization inheritance) are built, and
it is unclear which rule should be executed for a combination of instances. Therefore,
the required subsets must be built by applying corresponding disjoint conditions to the
subrules in case of equal source types. In case the target type remains equal, feature
assignments refer to target elements of the superrule. These scenarios occur if either the
source or the target metamodel makes use of inheritance.

* Different Number, Different Types (c). Here, the subsets needed are built through the
specialization of at least one input element (cf. [Fig. 5.7(c)).

* Different Number, Equal Types (d). In this case, only the number of input or output ele-
ments is extended, but the types of elements bound in subrules remain the same. Thereby,

105

5. RULE INHERITANCE IN TRANSFORMATION NETS

Source Metamodel _ Transformation Specification | Target Metamodel | Source Metamodel __ Transformation Specification; Target Metamodel
RuleA2X Rule RuleA2X
Condition Condition Condition
f4<-f1; 15 < f2; A
RuleC2Z RuleA2Y RuleA2Z
Condition Condition Condition
f4 <-f1;
Subsets by
Subtyping | | ——
(a) Same Number of Input Elements, Different Types (b) Same Number of Input Elements, Equal Types
Source Metamodel maisiormation Specificati Source Metamodel _ 12nsformation S
RuleA2X |
Condition
B A
RuleBC2Y
v Condition
| > Subsets by ~ Subsets by
4 Subtyping Conditions
(c) Different Number of Input Elements, Different Types (d) Different Number of Input Elements, Equal Types

Figure 5.7: Rule Compatibility

the same problem as in case (b) arises, where the subsets must be realized by means of
conditions which may require certain relationships between the matched input elements

(cf. [Fig. 5.7(d)).

One interesting question in the context of cases (b) and (d) is whether the instances that do
not fulfill any of the conditions of the subrules are matched by the superrule (provided that the
superrule is concrete). Since this question is closely related to dynamic semantics, this is further
discussed in[Section 5.4

Non-Instantiability of Abstract Classes. Since abstract classes cannot be instantiated, it
must be ensured statically that no concrete rule tries to create instances of an abstract target class
as output. Only abstract rules are allowed in this case, since they are not executed themselves
but must be refined by a subrule. The situation is different for abstract source classes: although
an abstract source class may not have any direct instances, indirect instances may be affected by
the transformation rule.

Ambiguities in Rule Definitions. An ambiguity between inheriting transformation rules
may arise if a rule requires multiple input elements, and if there is no single rule for which
the match in runtime types is closer than all the other rules. This is analogous to the problem
that arises in multiple dispatching as needed for multi-methods (cf. [[1,31])), since choosing a
method requires the run-time type not of a single input element, but of a set of input elements.
Thus, the method whose run-time types most closely match the statically specified types should
be dispatched at run-time. A simple example of such a problem is depicted in [Fig. 5.8|a).
Three transformation rules are specified taking two input elements of different metamodel types,
respectively. Now, suppose that a pair of instances (b, y) of type B and Y is transformed, and
assume that the rules might also match indirect instances. The transformation engine should

106

5.3. Static Semantics

Transformation b
Specification
Source Metamodel Source Metamodel RuleA2W Target Metamodel
ref
A X A fa < f1; w
fl f4
% # RuleB2X RuleC2y [N ™, #
B C Y
B ¢ 4 <-2; 4 <-f3; L X Y
f2 3
A ‘> | Rulep2z N L 4
Transformation Rules DI 4 <- f2; 7
Rulel (A, X) OR ?
Rule? (B,X) extends Rulel f4 <- 3;
Rule3 (A,Y) extends Rulel
(a) Ambiguous Transformation Rules (b) Diamond Problem

Figure 5.8: Examples of Static Constraints: (a) Rule Ambiguity and (b) Diamond Problem

now look for a rule whose arguments most closely match the pair (b, y) . In this case, no single
rule may be determined, since Rule2 and Rule3 are equally good matches. Thus, the set of
defined transformation rules is ambiguous.

Conflicts in Multiple Inheritance. The diamond problem [|148)]], also referred to as fork-join
inheritance [|132], arises, when contradicting assignments are inherited via different inheritance
paths. Consider, for instance, the common superrule A2W in [Fig. 5.8[b), which contains an
assignment for copying a feature value. This assignment is overridden within RuleB2X and
RuleC2Y. Thus, it may not be decided in RuleD2Z which assignment should be applied,
unless assistance is given by the transformation designer.

5.3.1 Comparison of Static Semantics of Existing Languages

This part of the comparison evaluates in how far the static semantics of inheritance is checked
in each transformation language (cf. [Table 5.2)). Concerning input and output elements, in ATL
a violation of co-variance is detected at run-time, since missing features result in a “feature
not found” exception. In ETL no error is reported, which leaves the detection of the resulting
erroneous instances to the transformation designer or another model management operation ex-
ecuted after the transformation. In TGGs this results in a compile-time error in the upcoming
implementation, since the main principle is that applying the subrule should guarantee the ex-
istence of the subgraph created by the superrule. Concerning the number of input elements, in
ATL a run-time error occurs, if the number is changed in any way (including name changes).
Thus, ATL requires that the number of input elements remains the same. In contrast, ATL does
not raise any exception if the number of output elements is restricted, since they are produced
even if they are not re-specified. In ETL, this criterion is not applicable, since ETL restricts the
number of input elements to exactly one anyway. In ETL a run-time error (‘“index out of bound”

107

5. RULE INHERITANCE IN TRANSFORMATION NETS

exception) is raised if the number of output elements is restricted. In TGGs — to conform to the
main principle that applying the subrule should guarantee the existence of the subgraph created
by the superrule — only an extension of the number of input and output elements is allowed,
which is again going to be ensured statically in the upcoming implementation.

None of the languages evaluated detect concrete rules referencing abstract classes at compile
time, throwing run-time errors instead. Concerning ambiguous rule definitions ATL does not
throw any exceptions — neither at compile-time nor at run-time. Instead, the first matching rule
defined in the transformation specification is executed. In ETL, the problem of ambiguous rule
definitions may not arise, since multiple input elements are not supported. In TGGs, a run-time
error is thrown. The diamond problem in multiple inheritance does not apply to ATL, since mul-
tiple inheritance is not supported. Although the diamond problem is detected in ETL and TGG
at compile-time, it is checked on a coarse-grained level only, i.e., diamonds that do not include
ambiguous assignments also cause errors.

In summary, static inheritance checks are poorly supported by ATL and ETL. In ATL, none
of the static semantics are checked statically. The same is true for ETL with the exception of
the diamond problem. In contrast, TGGs at least conceptually propose quite a number of static
checks that will be considered in the upcoming implementation of rule inheritance.

5.3.2 Static Semantics in Transformation Nets

As discussed before, support for checking the static semantics is limited. This gives rise to
run-time errors or — even worse — to erroneous target instances with no error message. Thus,
the tedious task of checking the static semantics is left to the transformation designer. Since
Transformation Nets are specified on basis of a metamodel, OCL invariants may be employed in
order to ensure the required static semantics and to detect invalid configurations concerning rule
inheritance, helping the transformation designer in detecting defects. Consequently, the above
presented requirements are specified as invariants over the metamodel depicted in on
page (73] which are explained in detail in the following and summarized in
Incompatibility of Input and Output Elements. Transformation Nets allow the trans-
formation designer to change the input and output elements in both, number and type. It is
allowed that a subtransition either extends the number of input and output elements. Since the
behavior specified in supertransitions may only be extended but not restricted (following the
common principle in object oriented programming), those input or output elements that are not
re-specified in the subtransition are considered nevertheless, i.e., they are inherited. Further-
more, the types might be overridden in a co-variant manner only, which is ensured by the OCL
invariant depicted in (shown for query patterns only, since it is analogous for pro-
duction patterns). For this, first all ObjectPatterns are selected from a transition’s query
patterns (cf. line 6 in [Listing 5.1). For this, a derived attribute queryObjectPatterns
is used (cf. line 1 - 3 in in [Cisting 5.1). For every pattern it is checked if a pattern over-
rides a pattern of any supertransitions. In order to get all super transitions a derived property
allSuperTransitions is specified for transition instances (cf. and line 8 in
[Cisting 5.1)). If the pattern variable of the subtransition is contained in the set of pattern vari-
ables from the supertransitions (cf. line 9 in[Listing 5.1)) the pattern overrides the basic behavior
in the supertransition. In order to ensure a covariant relationship in this case, the according

108

0NN AW N —

——
W N = O 0

W N =

0NN AW =

5.3. Static Semantics

source Class places have to be in an inheritance hierarchy, i.e., the source class of the pattern
of the subtransition is a subclass of the source class of the pattern in the supertransition. If the
class referred by the pattern of the supertransition is contained in the set of all super classes of
the class referred by the pattern in the subtransition, the invariant is fulfilled. (cf. line 10 - 13 in

1sting J5.1J).

Listing 5.1: Invariant to Check Covariant Overrides

context Transition: def queryObjectPatterns: Set(ObjectPattern)=
self.queryTokens—>select(x | x.ocllsTypeOf(QueryObjectPattern)) —select object patterns
—>collect(x | x.oclAsType(QueryObjectPattern)) —cast them

context Transition inv Covariance:
self.queryObjectPatterns —>forAll(qop : QueryObjectPattern |
— select query tokens of all super transitions
self.allSuperTransitions —>collect(t : Transition | t.queryObjectPatterns)
—>collect(oidVar)—>includes (qop.oidVar)) implies — if pattern is overridden
qop.inArc.source.allSuperClasses —includes (— check covariance condition
self.allSuperTransitions —>collect (t: Transition | t.queryObjectPatterns)
—>flatten()—>any(sqop : QueryObjectPattern |
sqop.oidVar = qop.oidVar).inArc.source))

shows the OCL expression for calculating the set of all super transitions. Thereby
the supertransitions of a certain transition are unified with their supertransitions (by means of a
recursive call).

Listing 5.2: Derived Attribute to Calculate Transitive Closure of Transitions

context Transition: def allSuperTransitions: Set(Transition)=
self.superTransitions —>asSet()—>union(self.superTransitions —>
collect(s| s.allSuperTransitions)—>asSet())

Non-Instantiability of Abstract Classes. Following the rules presented above it should be
forbidden that a concrete transition targets an abstract class. In this respect, an OCL invariant
first checks if the transition is abstract or not as can be seen in line 2 in If the
transition is concrete first all production ObjectPatterns are collected. For this, a derived
attribute getEf fectiveProductionObjectPatterns (cf. line 1 in is pro-
vided which collects the set of production patterns, i.e., the patterns of the actual transitions and
all patterns of according super transitions which are not overridden. Please note that for this
task again a derived attribute getVars is defined which returns the set of the actuals variables
according to the type of the production patterns, e.g., oidVar in case of an ObjectPattern
or oidvar and valueIdVar in case of a ValuePattern. Then the according outgoing
arcs are selected and it is checked if all arcs target abstract classes (cf line 14 in|Listing 5.3).

Listing 5.3: Invariant to Check Non-Instantiability of Abstract Classes

context Transition inv getEffectiveProductionObjectPatterns : Set(Pattern) =
self.productionPatterns —>union (
— select query tokens of all super transitions
self.allSuperTransitions —>collect(t : Transition | t.productionObjectPatterns)
—select non overridden patterns
—>collect(getVars)—>excludes(self.productionPatterns . getVars))

context Transition inv NoAbstractTargetClassForConcreteRule:

109

10
11

13
14

B W=

5. RULE INHERITANCE IN TRANSFORMATION NETS

(not self.abstract) implies — if transition is concrete
— select and cast object patterns
self.getEffectiveProductionPatterns () — get all patterns

—>collect (outArcs)—> flatten ()
—~check if the target class is concrete
—> forAll(x:TPArc | not x.target.abstract)

Ambiguities in Rule Definitions. In order to check for ambiguous rule definitions, an
OCL invariant is provided that makes use of the derived operation i sAmbiguous (), which is
called if a certain transitions exhibits more than one query object patterns and if more than one
subtransition exists, since only in this case ambiguities may arise (cf. [Listing 5.4).

Listing 5.4: Invariant to Check Ambiguous Rule Definitions

context Transition inv RuleAmbiguity:

self . allSuperTransitions —>collect(queryObjectPatterns)—>size () > 1 and

self .superTransition —>collect (subTransition)—>size () > 1 implies
self.isAmbiguous ()

The derived operation i sAmbiguous is implemented in Java since for this check a complex
data structure is needed. In the following, the basic idea of the derived property is described on
basis of the example presented in [Fig. 5.8(a). In order to check the invariant, first the root of
the inheritance hierarchy in the transitions is searched, i.e., Rulel in the exemplary realization
in Transformation Nets shown in [Fig. 5.9(a). Next, the according source classes of the root
transition’s object patterns are collected, i.e., A and X in our example. Since type substitutability
should be considered, all subclasses are collected additionally, i.e., B and C for A and Y for X,
which are stored in an according matrix (cf. b)). By building all potential combinations
of the input parameter, the most specific rule that is applicable has to be found, following the
argument subtype precedence principle presented in [|1]]. For example, Rulel would be chosen
for instances of classes A and X, since objects required by the transition and the matched objects
are equally typed. If, for example, instance of classes C and Y are considered, Rulel and

Source Transformation

Rulel 1,

Transformation Rules

Rulel (A, X)
Rule2 (B,X) extends Rulel
Rule3(A,Y) extends Rulel
.ﬂ"}@ Oﬁa—@ n Rulel Rule2 Rulel

S Rule3 Rule2/Rule3 Rule3

(vt y2 (3

(a) Ambiguos Rules in Transformation Nets (b) Potential Matches

Figure 5.9: Transformation Example in Transformation Nets

110

1
2

5.3. Static Semantics

Rule3 would theoretically be applicable. Nevertheless, if no exact match is found (i.e., not all
parameters demanded are equally typed as the matched objects), the distance in the inheritance
hierarchy is calculated, i.e., since B is a direct subclass of A, the distance of B to A would be
1, whereas a direct subclass of B would have a distance of 2 to A and so on. When trying
to match Rulel, the distance of instances of classes C and Y is 2, whereas the distance of
Rule3 is only 1. Therefore, in this case Rule3 is preferred. However, if instances of classes
B and instance of classes Y should be matched, Rulel and Rule2 exhibit both a distance of 1.
Thus, it is undecidable which transition to choose. In this case, the derived property returns
false which leads to a warning in the Transformation Net. In order to resolve this problem, the
transformation designer may either specify an according transition or he may make use of the
priority flag of the transitions (cf. attribute Transition.priority in specifying
which transitions should be preferred, whereby a lower value indicates precedence.

It must be noted that considering the research field of multi-methods in object oriented pro-
gramming, there are approaches for explicit disambiguation (e.g., [2] proposes a minimal set
of method redefinitions necessary for disambiguation) which could be reused in transformation
languages. However, this is not the focus of this thesis.

Conflicts in Multiple Inheritance. Although both languages that support multiple in-
heritance (ETL and TGG) check the diamond problem statically, the only check is — as al-
ready mentioned — if there is a fork-join path in the inheritance hierarchy but not if contra-
dicting assignments are inherited via these different inheritance paths, i.e., no fine grained
checks are provided. In contrast to that, the OCL invariant specified for Transformation Nets
checks the diamond problem on this fine grained level. For this, it has nevertheless to be
checked if a diamond exists in the inheritance hierarchy in a first step. As shown in
first the supertransitions are collected, once allowing duplicates (cf. derived attribute
allSuperTransitionsWithDuplicates — lines 1 to 3 in [Listing 5.5), and once pro-
hibiting duplicates. If the size of these collections differs, this means that there exists a diamond,
i.e., at least one superclass may be reached by different paths in the inheritance hierarchy. A di-
amond does not necessarily lead to a conflict but if and only if transitions are found on the same
level in the inheritance hierarchy which target the same feature as depicted in [Fig. 5.8(b). To
check this, all supertransitions which exhibit multiple inheritance (cf. line 9 in are
selected. From these transitions the according targets of the AttributePatterns, i.e., the
according attribute places, are selected twice, whereby once duplicate attributes are removed.
For this again a derived attribute productionAttributePatterns is specified, which
collects the according production attribute patterns. If the size of the collections differs, at least
two AttributePatterns target the same attribute which leads to an undecidable situation,
i.e., it is undetermined which transition may set the according attribute value. Therefore, the
invariant fails in this situation.

Analogously to the explicit disambiguation of ambiguous rule definitions, the transformation
designer could be supported by proposals which assignments must be overridden in rules in order
to achieve unambiguous assignment definitions.

Listing 5.5: Invariant to Check Diamond Problem

context Transition: def allSuperTransitionsWithDuplicates: Set(Transition)=
self .superTransitions —>asBag()—>union(self.superTransitions —>

111

5. RULE INHERITANCE IN TRANSFORMATION NETS

collect (sl s.allSuperTransitionsWitDuplicates)—>asBag())

context Transition inv NoDiamond:
self.allSuperTransitionsWithDuplicates —>size () >
self.allSuperTransitions —>size () implies
—select transitions with multiple inheritance
not (self.allSuperTransitions —>select(t: Transition | t.subTransitions —>size () > 1)
—collect all target attributes of production attribute patterns
—>forAll(y : Transition | y.subTransition —>collect(productionAttributePatterns)
—>collect (outArcs)—>collect(target)—>size () >
—again collect the target attributes of the patterns but remove duplicates
y.subTransition —>collect(productionAttributePatterns)
—>collect(outArcs)—>collect(target)—>asSet()—>size ())

summarizes the comparison of static semantics in current transformation languages
as well as in Transformation Nets.

Table 5.2: Comparison of Static Semantics with respect to Inheritance

NSt Fault Values ATL ETL TGGs ™
Target
NIR-ES TR [Complle—Tlmel Run-Time Error o ey vl Compile-Time Error Compile-Time Error
Input Type Change Run-Time|No] Error target model)
Elements Restriction in [Compile-Time| Run-Time Error na. (cf. syntax) Compile-Time Error n.a. (base types need
Number Run-Time|No] Error (also with extension) 3.ty P not be respecified)
Non-co-variant [Compile-Time| . No Error (invalid P T
T e Run-Time |No] Error Run-Time Error (e el Compile-Time Error Compile-Time Error
Output —
Elements Restriction in [Compile-Time | n.a. (gutput elements) Compile-Time Error n.a. (Qutput elements
N are still produced even Run-Time Error (except of output to are still produced even
Number Run-Time|No] Error . e N N e s e .
if not specified again) input modification) if not specified again)
blisiE: Cemeren [lzs [Compile-Time| Run-Time Error
Target for Abstract . P Run-Time Error Run-Time Error - N Compile-Time Error
Run-Time|No] Error (application fails)
Classes Target Classes
Rule [Compile-Time| No Error (first matching . Warnlng at _C_ompll_e-
- N o . n.a. (cf. syntax) Run-Time Error Time (Transition with
Ambiguity Run-Time|No] Error rule in file wins) L .
lowest priority wins)
Diamond [Compile-Time| o o Warning at Compile-
Problem AU el e n.a. (cf. syntax) Compile-Time Error ~ Compile-Time Error Time

5.4 Dynamic Semantics

fter discussing the static semantics the focus is shifted to the dynamic semantics, i.e., how

transformation specifications may be interpreted at run-time. In this context, two main
aspects are investigated: (i) which rules apply to which instances, i.e., dispatch semantics and
(i1) how a set of inheriting rules gets executed, i.e., execution semantics.

Dispatch Semantics. In order to execute transformation specifications, it must be deter-
mined which rules apply to which instances, i.e., transformation rules must be dispatched for
source model instances. In [38], potential strategies and scheduling variations of rules were
discussed, but without any focus on inheritance. Thus, literature on dispatching rule in model
transformation does not indicate whether type substitutability should be considered. This princi-
ple is well-known in object-oriented programming and states that, if .S is a subtype of T’, objects
of type T' may be safely replaced by objects of type S [99]. Type substitutability for transfor-
mation rules would mean that if a rule may be applied to all instances of class 7', then this rule
may also be applied to all instances of all subclasses of T'. Consequently, if no specific subrule

112

5.4. Dynamic Semantics

is defined for instances of a subclass, then these instances of the subclass may be transformed
by the rule defined for the superclass.

Concerning the evaluation of the condition, two main strategies may be followed during
dispatching. First, the condition may be considered as part of the matching process, i.e., if the
condition fails, the rule is not applicable, but a superrule might be applied (rule applicability
semantics). Second, the condition is not considered in the matching process, i.e., matching takes
place on the specified types of the input elements only and thus, those elements, which do not
fulfill the condition, are filtered, but never matched by a superrule anymore (filter semantics).

Execution Semantics. After having determined which rules are applicable to which source
model instances, the question arises how a set of inheriting rules is executed. A first distin-
guishing criterion is whether the concept of inheritance is directly supported by the execution
engine or whether the inheritance hierarchy is first flattened to ordinary transformation code in
a pre-processing step. Independent of whether the inheritance hierarchy is flattened or not, var-
ious strategies may be applied to evaluate conditions and to execute assignments. This raises
questions such as “Are conditions of a superrule also evaluated?” and “Are the assignments of
a superrule executed before the assignments of a subrule”. Hence, the main characteristics of
executing methods in an inheritance hierarchy in object-oriented programming [148]] are inves-
tigated: (i) the completion of the message lookup, i.e., whether only the first matching method
is executed (asymmetric) or all matching methods along the inheritance hierarchy are executed
(composing), and (ii) the direction of the message lookup, i.e., whether a method lookup starts
in the subclass (descendant-driven) or in the superclass (parent-driven).

5.4.1 Comparison of Dynamic Semantics of Existing Languages

In order to compare the dynamic semantics, dispatch and execution semantics are investigated
(cf. [Table 5.3). Considering dispatch semantics, one may see that the output models produced
by ATL and TGGs (Fig. 5.3(a) and (c)) include only two Table instances, since only Class
c2 and c3 fulfill the specified condition in the subrule. As ATL and TGGs support type sub-
stitutability and rule applicability semantics for conditions, instance c1 is matched by the more
general superrule MElement2MElement, and therefore creates the target ModelElement
cl. Due to type substitutability, the indirect instance pl is matched by the superrule, and
therefore the target Mode1Element pl is created. In contrast, ETL does not support type sub-
stitutability by default. Thus, although the specifications in ETL and ATL are syntactically very
similar, the produced target models differ. ETL’s target model contains only the two Table
instances c2 and c3, produced by the rule Class2Table. The dispatch semantics may be
modified by annotating rules with @greedy in ETL. This means that such rules also match
indirect instances, but the interpretation is different than in ATL and TGGs, since the superrule
still regards all instances irrespective of whether the instances have already been matched by
subrules or not. Adding the @greedy annotation to the rule MElement 2MElement in our
example would therefore create six instances in total: four SchemaElement c1, c2, c3,
p1 instances produced by the superrule ME1em2MElement, and two Table instances c2 and
c3 produced by the subrule Class2Table. Even if type substitutability is enabled in ETL, the
result of the condition evaluation does not influence the dispatch semantics because the super-

113

5. RULE INHERITANCE IN TRANSFORMATION NETS

rule always matches all direct and indirect instances, disregarding specialized subrules. Thus,
the condition semantics is evaluated as not applicable in ETL.

Regarding inheritance support within the execution engine, in ATL inherited rules are flat-
tened during compilation and may thus use optimization strategies, i.e., the ATL compiler inlines
the assignments of a superrule. In contrast, ETL supports inheritance within the execution en-
gine, which reduces the amount of code generated. In TGGs, this criterion is not applicable,
since an inheriting TGG rule contains a copy of the superrules, which causes code duplica-
tion. Concerning the evaluation of conditions, all compared transformation languages exhibit
a composing completion of the lookup, i.e., an instance processed by a subrule must fulfill all
the specified conditions up the inheritance hierarchy (i.e., and conjunction). The actual evalu-
ation is parent-driven in ATL and descendent-driven in ETL but non-applicable in TGGs, since
a subrule lists all its inherited conditions. All approaches execute all assignments along the in-
heritance hierarchy (i.e., composing completion of the lookup). Finally, the direction of lookup
in assignments occurs descendent-driven in ATL and parent-driven in ETL. Thus, in ATL (i)
the assignments of the superrule, which are not overridden, (ii) the overridden assignments, and
(iii) new assignments specified in the subrule are executed realizing the optimization strategy. In
contrast, in ETL, (i) the assignments of the superrule and (ii) the assignments of the subrule are
executed. In TGGs this is again not applicable. More specifically, TGGs enforce composition
already in the syntax, which causes code duplication.

In summary, the main difference in terms of dynamic semantics lies in the application of type
substitutability, which is user-defineable in ETL, but interpreted in a different way than in ATL
and TGGs. ETL has the disadvantage that several target instances for a single source instance
are created when a superrule is annotated with @greedy. Moreover, all of the transformation
languages implement a composing behavior for conditions and assignments. Thus, the lookup
direction does not influence the result of the transformation.

5.4.2 Dynamic Semantics in Transformation Nets

As the example in reveals, similar syntax (cf. ATL and ETL) does not necessarily
lead to the same results, which implies different dynamic semantics. This is undesirable, since
the dynamic semantics is not made explicit by any syntactical elements to the transformation
designer. Thus, the transformation designer must know the design decisions taken in each trans-
formation language in order to obtain the desired result. The current situation concerning rule
inheritance is comparable to the situation in the early stages of object-oriented programming,
where no common agreements on the dynamic semantics of inheritance had been reached. This
emphasizes the need to consider rule inheritance in the runtime model in order to make the taken
design decisions explicit. Furthermore, since different dynamic semantics are supported by the
compared languages, Transformation Nets should allow to alter the dynamic semantics.
Considering dispatch semantics, Transformation Nets employ per default type substitutabil-
ity, similar to ATL and TGGs. Nevertheless, in order to also support transformation languages
that do not make use of type substitutability, the transformation designer might change this be-
havior by setting the boolean flag Transition.includeSubtypes (cf. to false.
If the flag is set to false, then a behavior equal to ETL (without the @ greedy annotation) results,

114

5.4. Dynamic Semantics

i.e., only direct instances are transformed but not indirect instances?. Since those approaches that
support type substitutability all exhibit a rule application semantics of conditions, Transforma-
tion Nets do so as well. Therefore, the example depicted in exhibits the same target
model as ATL and TGG did (cf. [Fig. 5.3), i.e., the persistent classes c2 and c¢3 may be trans-
formed by the transition Class2Table and thus, only two target elements are typed to Table
whereas the remaining elements are transformed by the base rule MElement2SElement and
are therefore typed to SchemaElement only (cf. [Fig. 5.6).

Regarding execution semantics, the inheritance support is flattened during compilation since
the underlying CPNs do not provide any means to deal with inheritance. Concerning the eval-
uation of conditions, Transformation Nets exhibit a composing behavior. In this respect, all
conditions along the inheritance hierarchy must be fulfilled since they are concatenated by a
logical and. The actual evaluation thereof is done in descendent-driven manner since first the
condition of the subrule is evaluated before the conditions of superrules are evaluated. Concern-
ing assignments, Transformation Nets follow a composing strategy as all other approaches do.
Depending on the actual refinement mode, different strategies are used. If the refinement mode
override is selected, the assignments of superrules which are not overridden in a subrule
are considered together with the overridden and newly added assignments of a subrule, equal
to ATL (cf. [Table 5.3). If the mode extend is selected, the strategy is the other way round,
i.e., overridden assignments are not considered, but only the newly added assignments together
with those of the superrules are considered. Furthermore, this leads to a further static constraint
which raises an error in case a subtransition overrides a pattern of the supertransition. Finally, if
the refinement mode inherit is selected, the assignments of the overridden pattern are copied
to the overriding pattern of the subtransition and are executed together with the assignments of
overriding pattern. When having a look at the direction of lookup for assignments this crite-
ria is not applicable since all the assignments are aggregated during compilation and thus, it is
undecidable which assignments are executed first.

Table 5.3: Comparison of Dynamic Semantics of Inheritance

Criterion Subcriterion Values
User- .
Type Yes | No Yes Definable Yes UsarDaili e
Substitutability (default yes)
Dispatch semantics (default no)
Condition Filter | Rule
.a. Rule Applicabili Rule Applicabili
Semantics Rule Applicability Applicability na ule Applicability ule Applicability
Inheri Fl Di i .a. (since fl
nheritance) ' attgned | Flattened irectengine n.a (since flattened Flattened
Support Direct engine support support in patterns already)
8 Completion of Asymmetric | . . Composing .
E N lookup Composing Composing Composing (by copy) Composing
£ Condition
] Direction of Parent-dri D -
2 LERIEIE I drlverT l Parent-driven escgndent n.a. Descendent-driven
5 lookup Descendent-driven driven
e
§ Completion of Asymmet.ric | Optimizgd Composing Composing Optimi2§d
(] lookup Composing Composing (by copy) Composing
Assignments
Direction of Parent-driven | Descendent- Parent- na n.a. (aggregated
lookup Descendent-driven driven driven o during compilation)

The dynamic semantics of ETL’s @greedy is not explicitly considered, but could be simulated by independent
transitions which do not inherit from each other. Thereby, the transition that represents the transition for the according
ETL subrule has to incorporate the assignments of the superrule.

115

5. RULE INHERITANCE IN TRANSFORMATION NETS

5.5 Summary

n summary, this chapter has presented different inheritance concepts between transforma-

tion rules. Thereby, three different dimensions have been considered, being (i) syntactic as-
pects, i.e., which language constructs are needed to express inheritance between transformation
rules, (ii) static semantics, i.e., whether a set of inheriting transformation rules is well-formed
at compile-time and (iii) dynamic semantics, i.e., how inheriting rules interact at run-time. To
identify the concepts that should be represented by Transformation Nets, current transformation
languages supporting rule inheritance were analyzed. Based on these findings, the realization of
rule inheritance in Transformation Nets was discussed. Although rule inheritance is only consid-
ered by a few declarative model-to-model transformation languages (ATL, ETL, and TGGs) the
inclusion of inheritance concepts into the runtime model (i) broadens the scope of applicability
of the runtime model and (ii) reveals differences in the semantics of current languages, which
are not obvious at first sight.

The previous two chapters introduced the concepts considered by Transformation Nets. Fur-
thermore, it was stated that Transformation Nets represent a DSL on top of CPNs, hiding the
actual details thereof from the transformation designer. Nevertheless, in order to make use of
efficient execution engines available for CPNs and their formal execution semantics as well as
their properties, Transformation Nets may fully be compiled into standard CPNs, which is pre-
sented the following chapter.

116

Chapter 6

Colored Petri Nets as Semantic
Domain for Transformation Nets

Mathematics is the language in which
God has written the universe.

— Galileo Galilei
Contents
6.1 Introduction to Petr1 Nets and Colored Petri Nets 118
[6.2 Compilation of Static Parts of Transformation Nets| 123
[6.3 Compilation of Dynamic Parts of Transformation Nets| 127
[6.4 Compilation of Inheritance in Transformation Nets| 139
[6.5 Compilationof Modules| 0 L. 145
.................................... 149

he previous chapter introduced the concepts of Transformation Nets. The focus was rather

on the syntactic concepts provided, but their actual semantics was only informally pre-
sented. To define the meaning of the syntactical concepts, a mapping to a semantic domain is
required following the authors of [[63]] who state that “any language definition must consist of
the syntax, the semantic domain and a semantic mapping from the syntactic concepts to the se-
mantic domain”. Consequently, a semantic domain must provide means to make the semantics
of the syntactic constructs explicit. Since Transformation Nets represent a DSL on top of CPNs,
this chapter presents how CPNs may be used as a semantic domain for Transformation Nets.
Thereby, (i) the basics of Petri Nets are introduced by explaining the core concepts, which form
the basis for higher-level Petri Nets such as CPNs. The concepts are first introduced informally
and second, the formal definition is provided. After that, (ii) the concepts of Transformation

117

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Nets are formalized as well, in order to show that these concepts may be expressed by means
of CPN concepts. This formalization builds the basis for (iii) the compilation of Transforma-
tion Nets into CPNs, whereby first the compilation of places and tokens, i.e., the static parts
of Transformation Nets, and second, the compilation of transitions, patterns and conditions is
shown. Finally, (iv) the compilation of rule inheritance and modules is discussed.

6.1 Introduction to Petri Nets and Colored Petri Nets

n general, Petri Nets and CPNs provide formal means to model, execute and analyze systems

[72118]]. The concepts of CPNs provide the semantic domain for the specified Transformation
Net DSL, i.e., the concepts of Transformation Nets may be compiled into concepts of CPNs.
Basically, Petri Nets and CPNs exhibit the following characteristics [[124], which make them
favorable as a semantic domain:

* Concise Set of Language Elements. Petri Nets in its simplest form consist of places,
transitions and tokens, only. By means of simple rules, transitions may fire and thus
stream tokens from one place to another. In this respect, since it is possible to represent
metamodels as places, the transformation logic as transitions and the models as tokens.
The actual transformation logic may be followed in a process-oriented manner. In general
the formalism is easy to understand, thus fostering understandability of model transfor-
mations.

* Formal Basis. The formal mathematical basis of Petri Nets allows to calculate properties
which may be used to verify Petri Nets. Since Transformation Nets base on CPNs these
properties may be applied in the domain of model transformations as well in order to verify
a transformation specification, i.e., it might be checked if the specified transformation

terminates or if it is confluent (cf. [Section 7.4).

* Generality. Petri Nets may be used to model a broad variety of systems, especially, to
model parallel systems [124]]. Since many transformation languages do not specify a
certain order concerning transformation rules, i.e., it may be undefined which rule might
fire first, Petri Nets could make these parallelism explicit. Furthermore, the concepts
build the basis for several different modeling languages such as UML Activity Diagrams.
Therefore, Petri Nets are well-known in the domain of software engineering.

* Graphical Syntax. The graphical representation allows a comprehensible visualization
of static and dynamic aspects of the modeled systems. Nevertheless, the specification of
complex inscription expressions in high-level Petri Nets, typically in a language a transfor-
mation designer is not familiar with, makes the syntax unsuitable for direct use to specify
model transformations. Therefore, Transformation Nets introduced a DSL on top of Petri
Nets, aligning the Petri Net syntax to the domain of model transformations.

* Tool Support. There are sound tools available to specify, execute and verify Petri Nets,
building the basis for the prototype presented in

118

6.1. Introduction to Petri Nets and Colored Petri Nets

In order to introduce the concepts of Petri Nets, first the basics of Petri Nets are discussed.
Afterwards Colored Petri Nets are presented, which extend the basic concepts of Petri Nets, in
order to establish a common understanding of the underlying principles.

6.1.1 Petri Nets in a Nutshell

Petri Nets describe a bipartite, directed graph. Places, represented as ovals, and Transitions,
represented as rectangles, form the nodes and Arcs form the edges (cf. [Fig. 6.1fa)) of the graph.
Arcs always connect a place and a transition, but never two places or two transitions. The places
from which arcs originate are called input places of a transition whereas places in which arcs
from a transition end are called output places of a transition. Places contain fokens whereby
the accumulation of all tokens in all the places is called marking. The initial marking thereby
denotes the initial token arrangement. Tokens may enable transitions if all input places of a
transition contain at least the number of tokens as required by the weights on the according arcs
and if the capacity of the target places are not exceeded after firing. If a transition is enabled, it
is allowed to fire. If a transition fires, it consumes the tokens of the input places and produces

tokens in the output places (cf. [Fig. 6.1(a)).

Initial pL_ Weight Transition Pl Output Place
Marking
Place
Token t1 P3 5 t1 P35
p2 Arc Capacity p2 Input Place
(a) Place-Transition Petri Net initial situation (b) Place-Transition Petri Net after firing

Figure 6.1: Simple Place-Transition Petri Net

Formal Definition of Static Parts. To be more formal the definitions will be precised,
thereby resembling the definitions in [124]]. A Petri Net Graph may be described as a 3-tuple
(P, T, A), where P is a finite set of places and 7' is a finite set of transitions. P and T are disjoint
subsets (P N'T = ()) meaning that no element may be both, a place and a transition. The set of
arcs A is the cross product of places P and transitions 7" and vice versa, i.e., A C PxTUT x P.
Furthermore, places may contain so-called tokens. Thereby, a marking is a function M that
assigns a number of tokens to each place, i.e., M : P — N. Please note that in the simplest
form of Petri Nets, so-called Condition-Event-Nets (CEN), places are only allowed to contain
either exactly one or zero tokens. In addition, Place-Transition-Nets (PTN), which are seen as a
synonym to the general term Petri-Net, allow to assign a capacity C' to places, i.e., C: P — N
and a weight W to arcs, i.e., W: A — N. An unbounded capacity oo is the default, in case that
no capacity is given for places and a weight of one is the default for arcs. Thus, a CEN may be
seen as a PTN with a constant capacity and weight of one, i.e., C = 1, W = 1. Consequently,

119

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

a Petri Net Graph (P, T, A) is extended to a 6-tuple (P, T, A, C, W, M) whereby the initial
number of tokens has to be less or equal to the allowed capacity, i.e., Vp € P: M(p) < C(p).

Formal Definition of Dynamic Parts. The task of a transition is then to consume to-
kens from the input places and produce tokens in the output places. Thus, firing a transition
t in a marking M consumes W (A(p,t)) tokens from each of its input places p, and produces
W (A(t, p)) tokens in each of its output places p. To allow a transition to fire, it is required that all
input places contain the necessary amount of tokens for consumption, i.e., a transition is enabled
ifVp € A(p,t) : M(p) > W(A(p,t)). Furthermore, it has to be ensured that the allowed capac-
ity of target places is not exceeded after firing, i.e., Vp € A(t,p) : W(A(t,p)) + M(p) < C(p).
The firing of a transition changes the marking of the Petri Net in a way that the tokens of the ac-
cording input places are deleted and the produced tokens are added to the marking of the output
places, as can be seen in[Fig. 6.1(b). Formally noted, firing a transition ¢ € 7" changes a marking
M;: P — Ntomarking My: P — Ninaway that My = M; — M_ 4+ M, whereby

_ JW(A(p,1)), p€ Ap,t), _ JW(A(t,p)), pE€ A(t,p),
M_(p) = {0, else. M (p) = {O, else.

Please note that in a Petri Net several transitions may be enabled at the same time, and if so,
one transition may fire in a non-deterministic way. This is the main reason why Petri Nets are
especially suited to model concurrent systems.

6.1.2 Colored Petri Nets in a Nutshell

Since CENSs act primarily as theoretical models, many extensions have been proposed to make
Petri Nets more flexible and applicable for practical use [[72, p. 4]. These types of Petri Nets
are often called High-Level Petri Nets and combine the functionality of Petri Nets with the
functionality of programming languages. One prominent representant of High-Level Petri Nets
are Colored Petri Nets (CPNs) [72]]. The main idea of CPNs is to allow to attach data values
to tokens, also called token color, in order to distinguish between different tokens. Every place
is typed to a so-called color-set (data type) which determines the valid set of token colors (data
values) (cf. [Fig. 6.2(a)). To define color-sets, a so-called inscription language is provided, e.g.,
CPN ML!, in case of the most prominent tool called CPN Tools?>. CPN ML thereby bases on
the functional programming language Standard ML [106|154].

To extend the previous example from a standard Petri Net to a CPN, each place demands
a color-set, e.g., the color-set INT in[Fig. 6.2(a) and (b), meaning that tokens residing in these
places require an integer value as their token color. To specify the initial marking an according
inscription is required, e.g., in the example one token with the value 4 exists in the place p1 and
two tokens with value 4, one token with the value 5 and three tokens with value 6 exist in the
place p2. The number of tokens is denoted by x'token, whereby = denotes the number of equal
tokens. Furthermore, a marking of a place is a multiset, whereby each different set of tokens is
delimited by ++-. As can be seen in this example, markings are defined as multisets, i.e., several
tokens with the same color (value) are allowed. In order to query or produce tokens, CPNs allow

"http://www.daimi.au.dk/designCPN/man/Reference/Reference.Main3.CPN.ML.pdf
Zhttp://cpntools.org

120

6.1. Introduction to Petri Nets and Colored Petri Nets

for variables (with optional capacity), or even functions on arcs (cf. i+k on arc from transition
t1 to place p3 in[Fig. 6.2b)). The color-sets of the variables have to be equal to the color-sets
of the according input or output place (cf. [Fig. 6.2](a)). A transition is enabled, if every variable
on arcs from an input place to a transition may be bound to an according token. Furthermore,
transitions may specify a guard condition which needs to be fulfilled to enable a transition, i.e.,
the transition t 1 is only enabled if the variable 1 may be bound to a token whose value is greater

than 3 in[Fig. 6.2]

Color-set . Inscription
0L . Variable

definition Token - 14 (with funtion)
colset INT = int; Initial 19
vari, k: INT; Marking)

1> INT 24 ++
Variable 24 ++ |p2 3'6
definition 1'5 ++ Guard Color-set
3'6 INT
INT

(a) CPN definitions (b) CPN initial situation (c) CPN after firing

Figure 6.2: Simple Colored Petri Net

Formal Definition of Static Parts. In a formal manner, according to [[72, p. 87], the struc-
ture of a CPN is defined as a nine-tuple CPN = (P, T, A,%,V,C,G,E,I). P, T and A follow
the same definitions as described above. > denotes a finite set of non-empty color-sets, i.e., the
color-sets which are defined in a certain CPN, e.g., INT in our example. V is a finite set of
typed variables such that Type[v] € X for all variables v € V, i.e., every variable v needs to be
typed to a defined color-set, e.g., 1 and k which are typed to the color-set INT in the example.
C': P — ¥ is a color set function that assigns a color set to each place, i.e., in the example in
C assigns the color-set INT to each place. G: T — Expr, is a guard function that
assigns a guard to each transition ¢ such that T'ype[G(t)] = Bool, i.e., transitions may exhibit a
boolean condition. E: A — Expr, is an arc expression function that assigns an arc expression
to each arc a such that T'ype[E(a)] = C(p)ums, where p is the place connected to the arc a,
i.e., the color-sets of the arc expression have to be equal to the color-set of the according place.
I: P — Expryis an initialization function that assigns an initialization expression to each place
p such that T'ype[I(p)] = C(p)ms. i.e., a function to establish the initial marking of a CPN.

After explaining the structure of CPNs, in the following the matching and firing semantics
of transitions in CPNs are described shortly, first informally by means of an example, followed
by the formal definition thereof. The transition t 1 in[Fig. 6.2]b) is enabled since there are valid
bindings available that fulfill the guard. A binding denotes which value (token) is bound to
which variable, i.e., in the example the variable 1 may only be bound to the value 4 of place p1.
In contrast, the variable k may either be bound to the value 4, 5, or 6. Thus, there are several
valid bindings available and one of them is chosen in a non-deterministic way, e.g., 1 has been
bound to 4 and k has been bound to 5 in the example in [Fig. 6.2(c), resulting in a target token
with the value 9, since the outgoing arc of transition t 1 exhibits a simple function adding the
two values.

121

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Formal Definition of Dynamic Parts. The firing semantics of CPNs is formally defined
in [72, p. 89]. Variables of a transition ¢ are denoted by Var(t) C V which might appear in
guards and in arc expressions of arcs connected to ¢, e.g., for the above example Var(t1) is
defined as {i, k}. Furthermore, a binding of a transition ¢ is a function b that maps each variable
v € Var(t) into a value b(v) € Type[v]. The set of all bindings for a transition ¢ is then denoted
by B(t). In order to check if a binding enables a transition, the notion of binding elements is
defined as a pair (¢, b) such thatt € T and b € B(t). To check enabling of a transition, first the
guard has to evaluate to t rue for a binding element, denoted as G(t)(b) = true. Second, all
arc expressions on arcs to a transition ¢ need to be fulfilled, i.e., Vp € P : E(p,t)(b) <= M (p).
Thereby, the evaluation of E(p, t) in the binding b specifies the multiset of tokens a transition ¢
removes from a place p, which must be smaller or equal to the actual marking M of the place p.

6.1.3 Petri Net Markup Language

As may be seen by the previous discussion, various different types of Petri Nets are available.
In order to allow interchange between different types of Petri Nets and their different tools used
to model them, the Petri Net Markup Language (PNML) has been proposed as an XML-based
interchange format for Petri Nets [[161]. In this respect, the PNML is comparable to the role of
metamodels in MDE. Since the PNML is used as a target metamodel for the compilation from
Transformation Nets to CPNs, the most important parts are shortly explained in the following.
In a first step, the common core concepts of Petri Nets are considered as can be seen in

In PNML, a PetriNetFile forms the root container, which represents a file that might
contain several Pet riNets. Furthermore, each Pet riNet consists of Object s, which ba-
sically model the graph structure of a Petri Net. Consequently, an object is either a Place,
a Transition or an Arc (cf. according subclasses of ObJject). For modularization of
Petri Nets, Pages, RefPlaces and RefTransitions are provided. Pages form sub-

PetriNetFile
nets

0.*
. i * .
PetriNet |@- toolinfo 0 Toolinfo
id: String tool: String
type: String toolinfo version: String

objects
0.*

O»-*i’(oolinfo

objects 0.% Object Label
id: String abel name: String
graphics: String abe 0..*} value: String
l I 1..150urc 1
Page | | Node Arc | | Attribute | Annotation
4‘ 1.1 target graphics: String
RefNode
/\

0..* e b e
Place H RefPlace | | RefTransition HO Transition |
ref ref

Figure 6.3: Core of Petri Net Markup Language [[161]]

122

6.2. Compilation of Static Parts of Transformation Nets

nets since they are allowed to consist of further objects — even nested pages are allowed. In
order to connect Petri Net Nodes on different pages, so-called ReferenceNodes are pro-
vided, i.e., a reference node may refer to any node of the Petri Net irrespective of the actual
page. Labels are used to add further meaning to objects, ranging from the name to an initial
marking or an arc inscription or even the definition of guards or functions in higher-level nets.
Thereby, Annotations represent an infinite range of legal values, i.e., textual information as
names or initial markings, whereas Attributes are restricted to a finite set of values (i.e.,
enumerations), typically influencing the graphical layout, i.e., an arc type read might result in
a bidirectional arc. In order to store layout information, Ob ject s and Annotations provide
the attribute graphics. Finally, the class Tool Info allows to store tool specific information.
For further details, the reader is referred to [161]].

In order to allow representing the concepts of high-level Petri Nets, e.g., CPNs as presented
in [Subsection 6.1.2] PNML allows to define so-called Petri Net types, which add definitions of
labels or objects that are specific to a certain kind of Petri Nets. Such a Petri Net type for CPNs
has been defined in [[164], where e.g., specific labels are added to represent a marking of a place
(e.g., HLMarking) or annotations (e.g., the class Sort to represent color-sets). The CPN-
specific PNML metamodel is part of the ASAP framework [163] and is exactly the one used in
the following to explain the compilation of Transformation Nets to CPNs. This metamodel as-
sumes CPN ML as inscription language, which is used in the following as according inscription
language as well.

6.2 Compilation of Static Parts of Transformation Nets

n a first step, the compilation of the static parts of Transformation Nets, i.e., places and tokens,
Iis explained. Since the previous chapter introduced the static concepts of Transformation Nets
in an informal manner only, the concepts of Transformation Nets are furthermore formalized in
order to set the basis for the translation of Transformation Net concepts to equivalent concepts
in standard Colored Petri Nets. Finally, the actual compilation is shown in detail.

6.2.1 Formalization of Static Parts of Transformation Nets

The static parts of Transformation Nets may be formally defined as a 5-tuple StaticT N Parts =
(P,Xp,C, X, 1), following the principles of standard CPNs. In this respect P denotes a finite
set of TNPlaces. Y p is a finite set of predefined data types, i.e., ¥p = {Class, Attribute,
Reference, TracePlace}. C: P — Y p is a data type function that assigns a data type to each
place. This means that every place has to be typed to either Class, Attribute, Reference
or TracePlace in Transformation Nets. X7 is a finite set of predefined token types, i.e.,
Y1 = {Object,Value, Link, Trace}. Finally, I is an initialization function that assigns a
token ¢ to a place p such that

123

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Object, if Type[p] = Class
Value, if Type[p] = Attribute
Link, if Type[p] = Reference
Trace, if Type[p] = TracePlace

Typel[l(t)] =

As may be seen from these definitions, the static parts of Transformation Nets correspond to
the according definitions in CPNs. Since Transformation Nets provide a DSL on top of CPNs,
complexities are hidden. This is achieved by restricting the set > of CPNs to a fixed, predefined
set of datatypes in Transformation Nets, denoted by X p. This simplification also leads to a
simplification concerning tokens. Since tokens (data values) have to conform to their color-
set (data types) of places, the set of valid tokens may also be restricted to these four different
types (cf. 21). In the following, it is shown that the static parts of Transformation Nets may be
compiled to according concepts of CPNs.

6.2.2 Compilation of Metamodels and Models

In order to compile Transformation Net places to according places in CPNs, first color-sets
need to be defined. Since the possible types of places in Transformation Nets are limited to
exactly four, according color-set definitions expressed in terms of CPN ML may be automatically
generated. Therefore, the following definitions result:

colset Class = record oid: STRING * t: STRING;
colset Attribute = record obj: Class * vid: STRING * v: STRING;
colset Reference = record source: Class * target: Class;
colset SourceCtx = list Class,

colset TracePlace = record source: SourceCtx * target: Class;

The definition of color sets is aligned to the metamodel of Transformation Nets. The color-
set Class defines a record, which consists of an oid component to identify according objects
as well as the component t to store the type of the according object. The color-set Attribute
again defines a record which consists of a component ob j which identifies the object the ac-
cording value belongs to. In order to store the actual value, again a unique id is derived for every
value (cf. component vid) and the actual value is stored as string in the component v of the
record. This means that if the actual value needs to be accessed (in a condition or function),
according casts are required, e.g., the string “1”” may be casted to an integer value 1 by the func-
tion valOf (Integer.fromString ()). Alternatively, it would have been also possible to
specify a specific Att ribute colorset for every primitive datatype. This was omitted in order
to keep the actual transformation logic specified independent of the concrete datatype, e.g., in
case of modules, according AttributePorts can be bound to any attribute, only the arc in-
scriptions need to be accordingly updated (cf. below). The record for the color-set Re ference
consists of a source and a target component which refer to the source and target objects of

124

6.2. Compilation of Static Parts of Transformation Nets

a link®. The definition of the color-set TracePlace first requires the definition of the color-set
SourceCtx as alist of C'llass. This list is used in the record definition of TracePlace to store
which source objects have been used (cf. component source of record) for the production of an
object (cf. component target of the record).

After defining the required color-sets, places in Transformation Nets may be compiled to
according CPN places, i.e., places derived from the source and target metamodel as well as trace
and intermediate places have to be translated into according places in CPNs. By this, every
instance of a TNPlace in Transformation Nets is compiled into a P1ace instance in PNML (cf.
corresponding numbers in [Fig. 6.4). Additionally, in order to assign a name to the place, the
value of the attribute TNPlace.name is compiled into an according Name instance, having
the attribute Name . text set to the value of the attribute TNPlace.name. As an example,
the Transformation Net places named Package, classes, Class and isPersistent in
(a) (concrete syntax) and (b) (abstract syntax), are compiled into according Place and
Name instances (cf. [Fig. 6.4(c) and (d)). Finally, based on the actual type of a TNPlace, i.e.,
either Class, Attribute, Reference or TracePlace, the color-set of the place in CPNs
has to be derived. The PNML metamodel represents color-sets by means of instances of the class
Sort whose attribute Sort . text must be equal to a defined color-set. For example, if a place
of type Class in Transformation Net is compiled to CPNs, a Sort instance is produced whose
attribute Sort . text is set to “*Class”, which corresponds to the name of the above defined
color-set (cf. [Fig. 6.4).

After the compilation of places, the contained tokens have to be translated into according
tokens in CPNs. The Transformation Net DSL hides the complex specification of tokens in CPNs
by means of CPN ML inscriptions. In Transformation Nets a predefined set of tokens exists, i.e.,

3Source and target are typed to class in order to explicate that references are between classes although for the
implementation the according ids would suffice. The same is ture for the definitions of the Attribute and TracePlace
color sets.

1
name pl:Place sort 1
1) package 1) ci:Class nl:Name sl:Sort
— 7 text='Package’ text='Class’
name= ‘Package a
isAbstract=false 2 ass
source . 2:Place - 2
2 1 rl:Reference n2:Name s2:Sort
name= ‘classes’ text="classes’ text="Reference’ Reference
classes 0 ordered=false
\l/ B lowerBound=1 3 3.Place 3
3 Class upperBound=-1 name = sort
containment=false
n3:Name s3:Sort
3 ﬂ text="Class’ text='Class’ Class
isPersistent: Bool €2:Class [yttributes al:Attribute 4 4
name="Class’ | names= ‘isPersistent” 4
isAbstract=false type=Bool name @ p4:Place I~
n4:Name s4:Sort Attribute
text="isPersistent’ text="Attribute’
a) Transformation Net (d) CPN
fa) Concrete Syntax (b) Transformation Net Abstract Syntax (c) CPN Abstract Syntax (PNML Metamodel) Concrete Syntax

Figure 6.4: Compilation of Transformation Net Places to CPNs

1

[\l

5

COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

initialMarking
cl:Class tokens o1:0bject s —
name: ‘Package’| @~ _j__d' 1 m1:HLMarkin 1 1 1'{oid="p1“ t="Package“}
. =‘p1’ . g
isAbstract=false Loe=p { 1 PP Ry PRTRCYT— e Package
Package 4\50urce text="1'{oid="p1"t="Package"} 8
initialMarki Class
1) rl:Reference 2:Place 0—\1/) 1'{source={oid="p1”,t="Package”},
name= classes’ " target={oid="c1”,t="Class"}}
ordered=false —— m2:HLMarking 2 < classes D
2 lowerBound=1 tokens 1L:Link (2 text="1'{source={oid="| “Package“},
upperBound=-1 soid="p1’ target={oid="c1" Class“}} Reference
classes i/ containment=false toid="c1"
cl | target p3:Place initialMarking 3)| 1{oid="c1" t="Class"}
ass
c2:Class - . 1 < Class >
3) @ e okens | 02:Object | m3:HLMarking
name='Class oid="cl’ (3 R RS T Class
= = N isAbstract=false text="1"{oid="c1",t="Class"} R W i
isPersistent: Bool 4 1'{obj={oid="c1“t="Class"},
4) &2 attributes —I'V | 4‘ pa:Place initialMarking vid="v1“v="true"}
- | y2:Valuey — C isPersistent)
al:Attribute tokens | oid=‘c1” ma-HLMarkin, 4
name: ‘isPersistent’ @ valueld="v1 TR I T o Attribute
type=Bool value="true’ text="1'{obj={oid="c1“t="Class"},
il vid="v1“,v="true“}’
(a) Transformation Net . (d) CPN Concrete Syntax
Concrete Syntax (b) Transformation Nets Abstract Syntax (c) CPN Abstract Syntax (PNML Metamodel) y!

Figure 6.5: Compilation of Transformation Net Tokens to CPNs

Object, Value, Link, and Trace (cf. X7 in the formal definition), which may only reside
in type compatible places (cf. definition of I). As can be seen in every token is
compiled to an instance of the class HLMarking, which is used to represent a marking (tokens)
in CPNs. Depending on the type of the token in Transformation Nets, a different inscription has
to be derived in a way that the inscription corresponds to the defined color-set. For example,
for an Object token, the oid component of the Class color-set record is set to the attribute
Object.oid and the type component t to the value of the attribute Class.name of the
according Class place. The same principle is followed for Value and Link tokens.
Inheritance. Since metamodels incorporate the concept of inheritance, it has to be repre-
sented by appropriate CPN concepts as well. Unfortunately, CPNs per se do not support inheri-
tance between color-sets. Nevertheless, as will be described in|Section 6.4|in detail, it should be
possible that a transition which matches for tokens of supertypes also matches for tokens of sub-
types. Therefore, tokens in the places of subtypes should be copied to the corresponding place
of the supertype during compilation. This scenario is depicted in whereby the class Y
inherits from the class X. To allow CPN transitions to match for a token of a subclass, e.g., token
v 1, the marking is copied to the marking of the according supertype, e.g., marking of place X
now contains a marking comprising tokens x1 and y 1, meaning that tokens are duplicated.

initialMarkin,
pl:Place :lnma g 1'{oid="x1",t="X"}++
X c1:Class o 1:0bject [1 e 1 + 2 1\§oid=” 1“'t=“V“§
name="X’ - xooled 1:HLMarki _g : l\
! =1 H
1) = isAbstract=false % m\ f = Q/ 1)+(2
text="1"{oid="x1", H+
il super 1{oid="y1“t="Y"}" Class
classes classes initialMarki
. initialMarking
— p2:Place “foid="y1" t="y"
v Y — |[[ezpace | L fold="y1"="Y")
e tokens y1:Object 2] Q_)
2) 6 ?Z?et:Yt_f | oid="y1’ m2:HLMarking 2
1S, stract=ralse tethll‘{Oid:“ylu,t:“Y“)/ Class
(@) 'Er;:\::::t;msa"t;::xNet (b) Transformation Net Abstract Syntax (c) CPN Abstract Syntax (PNML Metamodel) (d) CPN Concrete Syntax

Figure 6.6: Compilation of Inheritance Relationships in Transformation Nets to CPNs

126

6.3. Compilation of Dynamic Parts of Transformation Nets

6.3 Compilation of Dynamic Parts of Transformation Nets

fter describing the compilation of the static parts, the focus is shifted to the dynamic parts

of Transformation Nets and its compilation to CPNs in the following. For this, again
the concepts of Transformation Nets are formalized, followed by a detailed description of the
according compilation.

6.3.1 Formalization of Dynamic Parts of Transformation Nets

In order to incorporate the dynamic aspects into the formal definition, the StaticT N Parts =
(P,Xp,C, Xy, I) mustbe extended to a 13-tuple T'rans formationNet = (P, Xp,C, %, I, T,
PT,Yp;, PTF,PTT, A,G, E). Thereby, T denotes a finite set of transitions such that PNT =
(), which is similar to standard CPNs. PT defines a finite set of Patterns. Since in Transfor-
mation Nets it is only necessary to match for either objects, attributes, references or trace tokens,
Y. py defines a set of predefined types of patterns, i.e., ¥ p; = {Object Pattern, Value —
Pattern, Link Pattern, Trace Pattern}, used to hide inscriptions from the transformation de-
signer. PT'F': PT — X p;is a function that assigns a pattern type to each pattern, PTT: PT —
T is a function that assigns a non-empty set of patterns to each transition. Furthermore, the set of
arcs A is a subset of the cross product of places P and patterns PT,i.e., AC Px PTUPT x P
such that Va,b € A : a(p,pt) = Pb(pt,p)) and Va,b € A : a(pt,p) = Pb(p,pt)) where
pt € PT,p € P, i.e., a pattern is either a query pattern or a production pattern, but not both.
Furthermore, the types of places and patterns have to be compatible, i.e, function b has to evalu-
ate to t rue, such that:

true, if Type[p] = Class N\ Type[pt] = ObjectPattern
true, if Type[p] = Attribute N\ Type[pt] = ValuePattern
b= true, if Type[p] = Reference N Type[pt] = LinkPattern
true, if Type[p] = TracePlace N\ Type[pt] = TracePattern

| false, else.

This is different, compared to the definition in standard CPNs, since in CPNs arcs are di-
rectly connected to transitions, whereas in Transformation Nets there is a further step of indi-
rection via patterns. This further step of indirection allows to derive the complex arc inscription
automatically (cf. below). G: T' — FExpr, is a condition function that assigns a condition to
each transition ¢ such that Type[G(t)]= Bool, i.e., transitions may exhibit a boolean condition,
equal to standard CPNs. Finally, E: A(pt,p) — Expr is an arc expression function that as-
signs an arc expression to arcs a which originate from a pattern pt and target a place p such
that Type[E(a(pt, p)|=C(p)ass, i-e., only outgoing arcs of transitions might exhibit functions in
Transformation Nets.

In summary, the main difference between Transformation Nets and standard CPNs lies in
the introduction of patterns and explicit pattern types. The introduction of patterns in the Trans-
formation Net DSL is, nevertheless, convenient for simulation, since it may easily be followed
which tokens are bound to which patterns.

127

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

The firing semantics follows the same principles as CPNs, but needs to handle the seman-
tics of patterns. Patterns exhibit a predefined set of variables, which need to be bound during
matching, denoted by Var(pt) such that

oid, typeName, if Type[pt] = ObjectPattern
Var(pt) = oid, typeName, valueld, value, if Type[pt] = ValuePattern

soid, sType, toid, tType, if Type[pt] = LinkPattern

sctx, target, if Type[pt] = TracePattern.

Please note that the concrete names of the pattern variables are user-defined (cf. according
attributes in the pattern classes in the metamodel in on page [73) whereas the names
above are of symbolic nature, only. Nevertheless, the number of variables per pattern is fixed,
e.g., an ObjectPattern always has two variables that need to be bound during matching.
Variables of a transition ¢ are denoted by Var(t) being the set of all pattern variables of a certain
transition. Consequently, this leads to an equal firing semantics as stated above, i.e., the desired
semantics of Transformation Nets may be expressed in terms of CPN concepts. The following
subsection describes the compilation in detail.

6.3.2 Compilation of Transformation Logic

In order to exemplify the compilation of transformation logic, [Fig. 6.7(a) shows the Transforma-
tion Net already presented in on page[89] Thereby, Packages should be transformed
into according Schemas and Classes to Tables, but only if the according Schema has been
translated before. To express this dependency, a trace place between the two transitions is used.
[Fig. 6.7(b) shows the result of the compilation in CPNs, which is explained in detail in the fol-
lowing, focusing on the dynamic parts of Transformation Nets. [Fig. 6.8|shows the details thereof
by means of the abstract syntax.

Transition. In a first step, Transitions in Transformation Nets are compiled into Tran-—
sitions in CPNs. Thus, in our example, two instances of transitions occur, whereby the name
of the Transformation Net transition is simply copied (resulting in Name instances in the abstract
syntax), depicted by 3 and in |Fig. 6.7|and |Fig. 6.8l

Patterns. In a second step, arcs as well as query and production patterns of Transformation
Nets have to be compiled. Whereas in Transformation Nets, patterns are source or target of arcs,
in CPNs transitions are source or target of arcs. Therefore, the source or target of a CPN arc
has to refer to the corresponding CPN transition, which originated from a Transformation Net
transition the pattern is contained in. As an example, the arc arc1 (cf. ® in a)) targets
the object pattern p1, which is again contained in transition t1 (cf.). Since the transition
t1 in the Transformation Net was compiled to transition t1 in the CPN, the generated arc al
targets the transition t 1 (cf. ® in b)). In order to be able to match for tokens in CPNs,
arcs require according arc inscriptions which are derived from the patterns in Transformation
Nets. As stated before, every type of pattern exhibits a predefined number of variables which
have to be correspondent with the defined color-set. Thus, for the different types of patterns
different variables need to be derived, as described in detail in the following.

128

6.3. Compilation of Dynamic Parts of Transformation Nets

[6
1'{oid="p1“t="Package”} t_‘;::;:;:};;gz') 5 {oid=package, 7
1 < Package ZP;ccr:(:riea = it Schema |18
Class Class
5 1'{source={oid="p1“ t="Package”},
Source MM Transformation Target MM i1 1=Class
S [target={oid="c1’ Class“}++ 8 {source=[{oid=package,t=packageType],
1 Package Package2 Schema (18)|] 1'fsource={oid="p1 f target={oid=package,t="Schema”}}
6 chema o target={oid="c2"
pl ‘» —_— 1'{source={oid="p1
i 9 target={oid="c3",t="Class"}} 9 PLckageCtx
~
Y 8 ? 2 classes TracePlace 11
PackageCtx Reference {source=ctx1,target={
2)0 00 Class2 (1 Q) 19 {source={oid=package 12 oid=schema,t=schemaType}}
classes 11) g tables fabactaeslybel 19
i 9‘} “55’1%"151 target={oid=class,t=classType 10 15 tables
2 - id= = Class 5
3 Class (@ 15, Table (20 1'{oid="c1“ t="Class“}++ iTa":s;;S:‘t 2Table {source={oid=schema, oo o
() e e b .@ 161> 1{oid="c2" t="Class"}++ t=schemaType},
a foid=" , 1’ t: t={oid=class,t="Table”"
- = p g (O'd; G G 13 [List.exists(fn contextEntry TEEREER S EEE)
isPersistent: Bool |—) 3 Class =>(#oid contextEntry)=package)ctx1
4 "c1) i andalso OCLEval(‘@class.isPersistent oid=class,t="Table"}
| ®® Gclas it ‘17 Class | context:’Alnt.toString(class))]
Attribute . 16
4 —_— {obj={oid=class,t=classType},
w vid=isPersistent,v=isPersistentVal} 20
1'{obj={oid="c1" t=" i Class
1'{obj={oid="
1*{obj={oid=
(a) Transformation Net Concrete Syntax (b) Colored Petri Net Concrete Syntax

Figure 6.7: Compilation of Transformation Nets to CPNs in Concrete Syntax

e ObjectPattern: The record color-set Class offers the components oid and t. Conse-
quently, in order to be able to match for object tokens, according variables need to be
derived. For the component oid the according variable specified in the pattern (cf. at-
tribute ObjectPattern.oidVar) is taken, e.g., package in case of al (cf. ® in
[Fig. 6.8)). For the second component, again the variable of the patten is taken, but con-
catenated with the postfix ' Type’. These variables are then used in the according arc
inscription, e.g., for al the arc inscription { oid=package, t=packageType} is de-

rived (cf. ® in b) and b)). For an arc from a transition to an output place,

the variable t is set to the value of the according class, i.e., “Schema” for the arc a6

* ValuePattern: The record color-set Attribute consists of the components ob j referring to
the object (which again consists of the components oid and t) and vid and v for the ac-
tual attribute value. ValuePatterns offer two variables, i.e., ValuePattern.oid-
Var and ValuePattern.valuelIdVar which are used to derive the according arc
inscription. Thereby, ValuePattern.oidVar is used to derive the inscription for the
according object as described before. Additionally, the value of the attribute Value-
Pattern.valueIdVar is used as a variable for the component vid and as a variable
for the component v of the record. For this, the value of the attribute ValuePatt—
ern.valueIdVar is concatenated with the postfix ' Val’. To exemplify this in
shows the resulting arc inscription, e.g., since the ValuePattern.oidVar of
p7issetto’class’ and ValuePattern.valueIdVarto’isPersistent’ the
corresponding arc inscription is {obj={oid=class, t=classType}, vid=is-
Persistent, v=isPersistentVal}.

* LinkPattern: The record color-set Reference consists of the components source and
target which identify a certain source and target object. In this respect, the deriva-

129

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

cl1:Class source

name="Package’
isAbstract=false

tokens

7 c3:Class |18
arc7:TPArc ———>

| target “| name='Schema’
isAbstract=false

5

name=P 2Schema

6
arcl:PTArc |

production

p1:0bject S

e target\\/ queryPatterns 9 production Patterns source
Patterns
11:Link source 6 pl:ObjectPattern p3:TracePattern 8 p2:ObjectPattern |
soid="p1’ soidVar=[‘package’] oidVar="package’ [7 Seltlies
toid="c1’ é‘ 2 toidVar="package’

rl:Refernce urce
12:Link s % o] arc2:PTArc 12 ares source r2:Refernce 19
2 “soia=p1’ ordered=false BIES 8) arc5:TPArc arc8'TPArc15 name= tables’
toid= CZ lowerBound=0 targe SRS | target | ordered=false
i upperBound=-1 p5:LinkPattern 12 lowerBound=0

containment=true soidVar="package" ctxl:TracePlace 9 ares source uppeliBound:-l
toidVar="class’ €
target
source

rue
3 cl2:Class

name="Class’
isAbstract=false

name:’PackageCtx"

p8:LinkPattern1 5
arcs SELTES soidVar='schema’ |
11 arc6:TPArc toidVar=‘class target

target

arc3:PTArc'13

production

3 €3:0bject

c2:0bject E Patt

oid="c2" al:Attribute | pd:TracePattern (11 attemns 16, target "
e pe] soidVar=[‘package’] arc9:TPAre —| - >
[ames Istersisten toidVar='schema’ I:— Tal

queryPatterns arcs source

queryPatterns

tokens type=Bool o e————— query
target Patterns|
4 \[l 4 p7:ValuePattern

vi:Value v2:Value v3:Value oidVar="class’ t2:Transition 10
oid="c1" oid="c2’ oid="c3" valueldVar="isPersistent name=Class2Table

valueld="1" valueld="2* valueld="2* distinct=false 14 |<—® condition='@class.isPersistent’
value=‘false’ value="true’ value=‘true’ queryPatterns

p9:ObjectPattern
oidVar=‘class’
16

production
Patterns

(a) Transformation Nets Abstract Syntax

hiAnnotation h6:HLAnnotation
7' text="{oid=package, t...}'

\mtlaIMarklng source
o pl:Place al:Arc target

klnd H LArcType NORMAL

Tir L h1:HLAnnotation hiAnnotation source A target
= = :Ar
text="1 (old p1“,t="Package"} toxte(oidmpackage, =} tLransition I i a6:Arc -
initialMarki paroee = SellliE2 | klnd’HLArcType.NORMALI c3:Place(18
InitialMarking
; 2 Source a5:Arc | 8) h5:HLAnnotation
mZ:HLMarking kind=HLArcType.NORMAL ||| kind= HLArcType NORMAL \ text="{source=[{oid-=...} h8:HLAnnotation

target
name \r‘
initialMarking
c2:Place target -
| 3 source a3:Arc nl:Name
| m3:HLMarking | kind=HLArcType.NORMAL text="PackageCtx’

text="1"{oid="c1“,t="Class“}++
1'{oid="c2",t“Class“}++...

text="1"{source={oid="p1“ t="Package“},
target={oid="c1“t="Class“}...."

text="{source={oid=p...}"

hlAnnotation

h2:HLAnnotation
text='{source={oid=p...}

=

|IAnnotation

ctx1:Place

0—\|/sort

s4:Sort
text="TracePlace’

rce

kind=HLArcType.NORMAL

h3:HLAnnotation 13 hiAs
text="{oid=class, t=...}'

otation

r2:Place

initialMarking
al:Place

a4:Arc e target source
| kind=HtArcType.NORMAL ||| L— == ¢ thT i
| tZ:Transition
Class“},vid= 14 it
0 hlAnnotation condition

“fase* “} ++ 1"{obj=foid="c2" t="Class"}, || _h4:HLAnnotatior cond1:Condition

uqu hict) i | i i ETE name
i 3 text="{obj={oid=...} n2:Name
t=“Class“,vid="2", v="true“}" text='Class2Table’ 17 text="[List.exists...]

), v="true"} ++ 1'{obj={oid h9:HLAnnotation'16

text="{oid=class, ...}"

(b) Colored Petri Net Abstract Syntax (PNML)

Figure 6.8: Compilation of Transformation Nets to CPNs in Abstract Syntax

tion of the arc inscription is equal to ObjectPatterns. As can be seen in @ in

[Fig. 6.8land in[Fig. 6.7} the value LinkPattern.soidof p5Sissetto ' package’ and
LinkPattern.toidto ' class’, resulting in the arc inscription { source={oid=
package, t=packageType}, target={oid=class,t=classType}}.

* TracePattern: TracePatterns indicate which source objects are used to generate a
certain target object. Since source objects might be merged, the record color-set Trace—

Place contains a source component which is itself a list of Class denoting the ac-

130

6.3. Compilation of Dynamic Parts of Transformation Nets

cording objects. Nevertheless, only one target element is allowed and therefore the com-
ponent target is typed to a single Class, only. If a production trace pattern is consid-
ered, the arc inscription may be created in a similar manner as described before, e.g., as
can be seen in in the array TracePattern.soidVar contains the variable
"package’. The elements of the array are used to derive the arc inscription of the source
component, whereas the TracePattern.toidVar is used to derive the target compo-
nent (in an equal way as done for object patterns). Thus, in our example the derived arc in-
scriptionis { source= [{oid=package, typeName=packageType}], tar-
get={oid=package, typeName=packageType}}. Please note that since the
objects are only copied, source and target components of the trace pattern are equal, which
needs not always be the case. Additionally, if several source objects are merged, the source
component list contains several entries, i.e., all the objects that should be merged.

In case that trace information should be queried by a transition, the arc inscription needs
to be adapted accordingly. Instead of producing new trace information, the arc inscription,
together with an according guard expression, needs to query, if a certain trace token con-
tains a certain source object. In @ in b) the arc inscription { source = ctxl,
target={oid=schema, t=schemaType} } queries the context token. Thereby, the
variable ctx1 is automatically generated, whereby the string ctx is concatenated with
the index of the context query token, whereas the arc inscription for the target com-
ponent is derived from the attribute TracePattern.toidVar. The specified guard
List.exists (fn contextEntry = (#0id contextEntry)= package)
ctx1 checks if the component source, which is bound to the variable ctx1 in the arc
inscription, contains an oid which is equal to the value bound to the variable package,
i.e., if a certain Package was transformed to a certain Schema.

As the attentive reader might have already spotted, the execution of the compiled CPN de-
picted in[Fig. 6.7(b) does not produce the expected tokens (as shown in[Fig. 4.17). This is since
the transition Class2Table might only fire once, as the only available trace token is consumed
by the first firing of the transition. Consequently, the transition Class2Table is not enabled
twice, resulting in either the net presented in[Fig. 6.9(a) or the net in[Fig. 6.9(b), since only one
of the persistent classes is transformed to an according table. As described in[Subsection 4.4.1]
transitions in Transformation Nets do not consume tokens but just read the tokens of the con-
nected input places in order to avoid erroneous race conditions, e.g., that might occur in case of
1:n references as indicated in[Fig. 6.9] Therefore, the changed default consumption behavior has
to be accordingly considered in the compilation process as described in the following.

Non-consuming Firing Behavior. In order to realize the non-consuming firing behavior in
CPNs, three adoptions are needed. First, arcs from places to transitions need to be changed to
so-called test arcs to read tokens from input places only instead of consuming them. Second, a
so-called history place to track the combinations of tokens already fired needs to be introduced.
Finally, the guard condition needs to be accordingly adapted to prevent an infinite number of
firings. Considering the first point, the attribute value Arc.kind needs to be changed from
HLArcType.NORMAL to HLArcType.TEST which results in a bidirectional arc, i.e., the
tokens that are only read from the input place (cf. e.g., ® in . Nevertheless, this would

131

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Class {oid=package, {oid=package, 1*{oid="p1“,t="Schema“}
:Package> t=packageType} Package t="Schema”} C Schema
2Schema
1'{source={oid="p1“,t="Package”}, Class

0@ o ol =[{oid=package,t=packageType],
target={oid="c1“ t="Class"}}++ e
Siestsloidase ass"} target={oid=package,t="Schema”}}

1'{source={oid="p1“,t="Package”},
target={oid="c3*t="Class“}} < PackageCtx

classes

TracePlace {source=ctx1,

Reference target={oid=schema, 1'{source={oid="p1“,t="Schema“},
{source={oid=package, t= t=schemaType}} target={oid="c2",t="Table“}}
packageType},target={oid=class, Class @

ables
t=classType} 2Table {source={oid=schema

t=schemaType}, Reference
target={oid=class,t="Table"}}

1{oid="c1“,t="Class“}++
1*{oid="c3”,t="Class”}

. [List.exists(fn contextEntry
=>(#oid contextEntry)=package)ctx 1 {oid=class,t=“Table”}
Class andalso OCLEval(‘@class.isPersistent
| context:’AInt.toString(class))] 1'{oid=“c2" t="Table"}
{obj={oid=class,t=classType}, Table

Attribute

vld=isPersistent,v=isPersistentVal}

isPersistent Sl
1{obj={oid="c1”,t="Class”}, vid="1", v="false” }++
1{obj={oid="c3",t="Class"}, vid="2", v="true”}
(a) First Potential Result of Firing
Class {oid=package, {oid=package, 1'{oid=“p1“,t="Schema“}
< Package > t=packageType} Package t="Schema”} SC_ Schema
2Schema

o o= = “ Class
el {9|d " p{ it " Pack”age b {source=[{oid=package,t=packageType],

e target={oid=package,t="Schema”}}
1'{source={oid="p1“t="Package”}, g P ES,

target={oid="c2“,t="Class“}} < PackageCtx

classes
TracePlace {source=ctx1,

Reference target={oid=schema, 1'{source={oid="p1“,t="Schema“},
{source={oid=package, t= t=schemaType}} target={oid="c3“,t="Table“}}
packageType},target={oid=class, Class bl
t=classType} 2Table e :< tables >

{source={oid=schema,
1'{oid="c1“,t="Class“}++ t=schemaType}, Reference

1'{oid="c2”,t="Class”} arget={oid=class,t="Table"}}
[List.exists(fn contextEntry

=>(#oid contextEntry)=package)ctx 1
andalso OCLEval(‘@class.isPersistent

| context:’AInt.toString(class))] 1'{oid="c3“ t=“Table“}
Table

{oid=class,t="Table”}
Class

{obj={oid=class,t=classType},

Attribute vld=isPersistent,v=isPersistentVal}

Class

isPersistent
1'{obj={oid="c1”,t="Class”}, vid="1", v="false” }++
1'{obj={oid=4,t="Class"}, vld="2", v="true”}

(b) Second Potential Result of Firing

132 Figure 6.9: Erroneous Consumption of Source Tokens

0NN AW —

6.3. Compilation of Dynamic Parts of Transformation Nets

lead to an infinite sequence of firings, since these tokens could be matched over and over again.
In order to prevent this, the concept of a history place is introduced, which is defined by means of
the following color-set definition, representing a list that stores lists of strings, which represent
the ids of the involved elements. The Hi st ory color-set is defined as follows:

colset IDs = list STRING;
colset History = list:IDs;.

This history list is then matched by the according transition (cf. variable hist in[Fig. 6.10).
After firing, the list is put back into the history place, whereby the matched token configuration
is inserted in a sorted manner by an according arc inscription which makes use of the custom
function InsertSorted, shown in The sorting is important in order to achieve
a unique state space, as detailed in The function InsertSorted first checks if
the list to insert is nil — then it returns the current history — or the history is nil — then it wraps
the list into another list (since history is a list of lists) and returns it. Otherwise it is checked if
the list to insert is smaller than the first list of the history (cf. variable h — line 3) by means of
the custom function ListSmaller, which compares two lists. If the list is smaller than the
list of the history entry, it may be prepended, otherwise the function to find the correct insertion
position is called recursively.

Listing 6.1: Functions for Inserting History Tokens in a Sorted Manner

fun InsertSorted nil history = history (sxempty list)
| InsertSorted 1 nil = [1] (xempty history =)
| InsertSorted 1 (h::history) =
if ListSmaller(l,h) then (xprepend smaller list)
l::h:: history
else
h::InsertSorted 1 history (xrecursive callsx)

fun ListSmaller (nil:IDs, list2:IDs) = true (xfirst list is empty=)
| ListSmaller (listl :IDs, nil:IDs) = true (xsecond list is emptys:)
| ListSmaller (x::listl:IDs) (y::1list2:IDs) =
if x <y then (xfound a smaller entry)
true
else if x=y then
ListSmaller (listl ,list2) (xrecursive call)
else
false

Nevertheless, the history is only able to prohibit multiple firings for equal token configura-
tions in combination with an according guard condition. As can be seen in|[Fig. 6.10] the guard
checks if the history already contains a list that is similar to the matched token configuration.
For this, the custom function Contains is provided which compares two lists, whereby empty
string values are not considered for comparison (needed in case of rule inheritance as discussed
in the following), as shown in If the history already contains the matched token
configuration, the guard fails and prohibits another firing for the same token configuration. As
can be seen in[Fig. 6.10(b), the according CPN is now able to match for both classes since the
trace token is not consumed, resulting in the expected target model.

133

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Source MM |, 5 Transformation Target MM
1 Package 6 P:f::ie: Schema (18
7
. O® .
? packagel '\ 9 ?
2 L) > e @ (19
classesl tables
3) Class Table (20
()] >~ 00
isPersistent: Bool
| 4 @@ @class.isPersistent 17
il

(a) Transformation Net Concrete Syntax

History

(HistPackage2Schema 1ip2*N
e
N

hist

[not (List.exists(fn histEntry => Contains(
histEntry, [package],1)) hist)]

InsertSorted ([package]) hist

1{oid="p1“,t="Schema“}

1'{oid=2,t="Class“}++

1'{oid="p1“,typeName="Package“} 6 A2
Package \< ;' Package 7 > Schema (18
1 v I 25chema {oid= K t="Sch " /_’
{oid=package, t=packageType} CIEFREEEHE, =" SENEm:]
Class Class
. (source:{qd: p1",t="Package"}, {source=[{oid=package,t=packageTypel,
target={oid="c1t="Class"“}}++ 8 . »)
S X target={oid=package,t="Schema”}}
1'{source={oid="p1“,t="Package”},
target={oid="c2“,t="Class“}}++ 1'{source=[{oid="p1“,t="Package”}],
1'{source={oid="p1“,t="Package”}, 9 PackageCtx | target={oid="p1“t="Schema“}}
taf&et:{:)ld= €3",t="Class"}} {source={oid=package, TracePlace 1'{source={oid="p1" t=“Schema“},
2 w 12 t=packageType}, target= 11 {source=ctx1,target={ target={oid="c2" t="Table"}}++
Reference oid=class,t=classType}} oid=schema,t=schemaType}} 1'{source={oid="p1“ t=“Schema“},
7 target={oid="c3“,t="Table“}}

15

1{oid=3,t="Class“}++
1'{oid=4,t="Class"}

3 o e

Class
{obj={oid=class,t=classType}, 14
vld=isPersistent,v=isPersistentVal

{oid=class,t=classType}

[package, class, class, class,persistent],5))
hist) andalso List.exists(fn contextEntry =>
(#oid contextEntry) = package) ctx 1 andalso
OCLEval(‘@class.isPersistent | context:’ A Int.toString(class))]

17

Attribute

wsistent
1'{obj={oid="c1”,t="Class"}, vid="1", v="false” }++
1{obj={oid="c2”,t="Class”}, vid="2", v="true” }++
1'{obj={oid="c3”,t="Class”}, vid="2", v="true”}

InsertSorted ([package,class,
class,class,persistent]) hist
1 [[“pLe “c2" “c2% “c2* 2",

[“p1,“c3" “c3" “c3“ “2"]]

>(tables
{sou rce={oid=schema,t=schemaType/},¥’ 1 9

arget={oid=class,t="Table"}}

Reference

16 {oid=class,t="Table"}

1'{oid="c2“,t="Table“}++
1'{oid="c3“,t="Table"}

N Tavle (20

Class

HistClass2Table

History

(b) Colored Petri Net Concrete Syntax

Figure 6.10: Compilation of Non-Consuming Firing Behavior

Listing 6.2: Function to Check if two Lists are Equal

fun Contains (curList ,tokens ,length)=
if curList=nil then false (xempty listx*)
(*not equal lengthx)
else if (mot (List.length curList

List.length

134

tokens)) then false

[c<BEN le WV

11
12
13
14

6.3. Compilation of Dynamic Parts of Transformation Nets

else if length > 0 andalso (:xcompare entry)
List.nth(curList ,length —1) = List.nth(tokens,length —1) then
Contains (curList , tokens ,length —1)
(xignore empty string)
else if length > 0 andalso List.nth(curList,6length—1) = "" then
Contains (curList , tokens ,length —1)
(xignore empty string)
else if length > 0 andalso List.nth(tokens,6length—1) = "" then
Contains (curList , tokens ,length —1)
else if length <= 0 then true (:xcompared all values*)
else false
Negative Patterns. In CPNs, the matching process assumes the existence of a certain token,
e.g., if a class token is available generate a table token. Consequently, matching of non-existing
tokens requires more complex structures. It is necessary to provide a list of tokens to check if
a certain token is not contained, following the inhibitor arc pattern presented in [111]]. In order
to compile negative patterns, first only the tokens contained in an according input place, i.e., the
places which are connected to a negated pattern, are wrapped into a list, for which the following

color-sets are defined:

colset ClassList = list Class;
colset AttributeList = list Attribute;
colset ReferenceList = list Reference;

colset TraceList = list TracePlace;

Since the reference pattern is negated in the example shown in the tokens of place
superClass typed to the color-set Reference are replicated in an according list which
is put into the place ListSuperClasses typed to the color-set ReferenceList. The
transition then reads the list of tokens instead of a single token. The guard condition of the
transition checks if the list does not contain the negated token, e.g., in our example the guard
checks if the value of variable class does not occur as a source of a reference (cf. expression

(#soid negatedElem) which delivers the value of the soid component of a reference).
As only the class c1 does not have any superclass, i.e., it is a root class, only this class is
transformed to an according table.

Distinct Values and New Colors. Often only for distinct attribute values a certain target
element should be generated, as discussed in [Subsection 4.4.1] In order to decide whether a
target element should be generated for a certain source value, the already processed values need
to be stored in a list (cf. @ in . For this, the color-set DistinctList is provided,
which is defined as follows:

colset IDs = list STRING;

colset DistinctList = record value:IDs * target:Class.

The component value of the color-set DistinctList is defined as a list of strings in
order to store combinations of distinct values, since it is allowed that a single transition in Trans-
formation Nets exhibits several distinct patterns. In order to provide trace information, i.e., if the

135

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Source MM Transformation ' Target MM
1) Class CT':;S: 5 Table 6
(]) OO0+
B =
4
2) 0@

superClasses

(a) Transformation Net Concrete Syntax

1{oid="c1“,t="Class“}++
1{oid="c2“,t="Class“}++
1'{oid="c3”,t="Class"}

1 T class

1'{oid="c1“,t="Table"} 6
5

{oid=class,t="Table”}

Class

3

{oid=class, t=classType}

Class
2Table

Class

1'{source={oid="c2“,t="Class"},
target={oid="c1“,t="Class“}}++

1'{source={oid="c3“,t="Class"},
target={oid="c2“,t="Class“}}

2 'superclasses)]

Reference
1'[{source={oid="c2",t="Class"}, 4
target={oid="c1“,t="Class"}}, [/
{source={oid="c3",t="Class"}, listSuperClasses

target={oid="c2“,t="Class“}}]

2 {tsuperclasses)z

Referencelist

InsertSorted ([class]) hist
hist

HistClass2Table

[not (List.exists(fn histEntry => Contains(
histEntry ,[class],1)) hist) andalso not (List.exists(
fn negatedElem=>(#oid (#source negatedElem))=
class) listSuperClasses)]

History Ull*e1])

(b) Colored Petri Net Concrete Syntax

Figure 6.11: Compilation of Negative Pattern

according object the attribute belongs to is used in a production trace pattern, the list additionally
stores which value was translated to which object by means of the component target. As can
be seen in B in the arc from the transition to the place creates a new token only if
the list values did not contain the matched value before. Please note that no guard condition
was used to prevent firing, i.e., the transition should not be enabled if the list contains a certain
combination of values, since trace information should be provided for all possible combinations
of values. In this respect, the complex arc inscription labeled ® in first checks if an
entry in the list values is available for the combinations of the matched values. If this is the
case, then the according value of the target component of the list entry is selected and set as
value of the target component of the to be created trace token. Otherwise, a new trace token
is created. Therefore, the trace place Ctx contains three tokens whereas the list of the place
typeVals solely contains two tokens. The Transformation Net uses a new, unbound color to
represent the newly generated Type objects, as can be seen in (3 in meaning that a
new id (color) needs to be generated for every produced token. In order to provide a new id, a
global variable newColor is defined. Please note that if a global variable is used, it needs to
be prefixed by an to receive the actual value, as may be seen for example in the arc inscription
®in The variable newColor is initialized by the highest id available, i.e., 5 in the
example, and is incremented after firing by means of the function increment, in the action

136

6.3. Compilation of Dynamic Parts of Transformation Nets

Source MM Transformation Target MM
1) Attribute
@=- |
Attribute2
type : String 4 Type 5 Type 8

AP OR .0
IR RS e Hiipe!
2 N '{' 6 V Ctx

7 qﬂ azltl a3b

(a) Transformation Net Concrete Syntax

1'{oid="al”t="Attribute“}++
1'{oid="a2“ t="Attribute“}++
1'{oid="a3“ t="Attribute”}

1 Attribute)

Class if (List.exists(fn y=>(#value y)=type) values) then empty else
Attribute {obj={oid=attribute, t=attributeType}, 3 1'({oid="t"AInt.toString((!newColor + 1)),t="Type"})
2 /P/ vld=type, v=typeVal} 4 r Atribute 5
~ - 2Type
1'{obj={oid="al” t="Attribute”}, vid="1", v=“String” }++
1'{obj={oid="a2",t="Attribute”}, vid="2", v="Integer” }++
1'{obj={oid="a3",t="Attribute”}, vid=“2", v="Integer”}

Class

L Type P2
|__action increment(1); 1'{oid="t1" t="Type“}++
1'{oid="t2“,t="Type"}

InsertSorted ([
attribute,type]) hist

[not (List.exists(fn histEntry
=> Contains(histEntry ,
[attribute,type],2)) hist)]

if List.exists(fn y =>(#value y)=type) values
then values else

{value=type, target={oid=
“t”Alnt.toString((!newColor+1)),

HistAttribute2Type
1[[“a1%,“17],

if List.exists(fn y =>(#value y)=

e Rl type) values then 6 [“a2“,“2“],
4 {source =[{oid=attribute, [“a3“,“2“]]
t=attributeType}], target= TracePlace

({#target (valOf(List.find(fn y=>
DistinctList (#value y)=type) values)))}
else

1'{source=[{oid="al"t="Attribute“}],
target={oid="t1"t="Type“}}++

1*{value=[“1“],target= {source=[{oid=attribute, . o vttt . @
{oid="t1“t="Type"“}}++ t=attributeType}],target= 1 {sourcef[(gldj a2” = éttnbute 1,
1'{value=[“2"] target= {oid="t"Alnt.toString((InewColor+1)), | target={oid="t2"t="Type"}}++
0id="12",t="Type"}} t="Type"}} 1'{source=[{oid="a3",t="Attribute“}],

target={oid="t2",t="Type“}}++

(b) Colored Petri Net Concrete Syntax

Figure 6.12: Compilation of Distinct Values and New Colors

block of a transitions. Action blocks of CPN transitions allow to specify code that should be
executed immediately after a transition fired. Therefore, a new id is generated every time the
transition fires.

Check Before Enforce. Finally, in order to omit the creation of duplicate elements on the
target side, i.e., check before enforce semantics, the already produced target elements have to be
stored in a list. For this the color-set CBEVals is provided, which stores a list that contains lists
of ids, defined as follows:

colset IDs = list STRING,
colset CBEVals = list IDs;.

In the example depicted in[Fig. 6.13|the production pattern exhibiting the variable package
is marked as check before enforce. Consequently, the compiled CPN contains an additional place

137

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

CBEClass2Table which stores the ids of the already created Schema instances. This means
that if the transitions fires the first time, no entry is contained in the place CBEClass2Table
and therefore the arc inscription on the arc to the Schema output place (cf. in
produces the according Schema instance. The according id of the generated token is put
into the CBEClass2Table place, e.g., pl in the example. When the transition is enabled
a second time, again the token package with the pl is bound. Nevertheless, since the place
CBEClass2Table now already contains the id (cf. Contains function in (10) in ,

Source MM Transformation Target MM

1 | Package schema 13

p1 i 5 p1

_| Table
! | Dee !
2 oo 7 >°‘°'—11 e o (14

classes\l/ L 8 >®Ei3— tables \LO..*

Class 9 >©"{sﬁe’rs’is’téﬁq Table (15

a oe i @class.isPersistent ae

isPersistent : Bool

1RO

(a) Transformation Net Concrete Syntax

1'{oid="p1“,typeName="Package"} CBEVals o n q = G eEmEr)
— » CBEClass2Table if not (List.exists(fn cbeEntry P
Package = i chema
1 8) L1 AT > Contains(cbeEntry, 13
Class id=package, t=packageType} [package],1)) cbeVals) then
R e P 1'{oid=package, t=“Schema”}
1'{source={oid="p1“ t="Package”}, 6 else empty
target={oid="c1t="Class“}}++ InsertSorted (10 10
1'{source={oid="p1“,t="Package”}, [package]) cheVals
target={oid="c2“,t="Class“}}++
1'{source={oid="p1“t="Package”},
target={oid="c3“,t="Class“}} s
_ Classes {source={oid=package; 1'{source={oid="p1",t="Schema“},
2 _)\ t=pacl§ageType}, target= cheVals target={oid="c2" t="Table“}}++
Reference 7 oid=class,t=classType}} g 1'{source={oid="p1“t="Schema“},
{ \L target={oid="c3“,t="Table“}}
1'{oid=2,t="Class“}++ Clacs 11 —
1'{oid=3,t="Class“}++ = _ tables
1‘%2:d=4 t="CIZZ§”§ {oid=class,t=classType} 2Table (source=(oid=schema,t=schemaType/),¥’ 14
!) arget={oid=class,t="Table"}} Reference
3 Class [not (List.exists(
fn histEntry => Contains(histEntr
Class

[package, class, class, class,persistent],5))
hist) andalso OCLEval(‘@class.isPersistent |
context:’AInt.toString(class))]

{obj={oid=class,t=classType}, 12 {oid=class,t="Table”}
vld=isPersistent,v=isPersistentVal}

1'{oid="c2“,t="Table“}++

4 Attribute 9 1'{oid="c3“,t="Table“}
- N InsertSorted ([package,class, -
isPersistent class,class,persistent]) hist < Table (15
i‘k’g'f“’fgf‘,cg,,'tf,‘g:ass,,)’ V!gf“;,,' T e T[[p1,“c2", “c2", “c2",“2", HistClass2Table Class
{obj={oid="c2",t="Class"}, vid="2", v="true” }++ [“p1¥,“c3% “c3" “c3" “2]]

1'{obj={oid="c3",t="Class"}, vid="2", v="true”} History

(b) Colored Petri Net Concrete Syntax

Figure 6.13: Compilation of Check Before Enforce Semantics

138

N O R W =

6.4. Compilation of Inheritance in Transformation Nets

an empty token is produced, i.e., the current marking of the output place remains unchanged.
In this respect, duplicate Schema instances are prohibited, i.e., only a Table object and an
according Package.tables link are created. If several patterns exist which are marked as
check before enforce targeting the same place, it has to be ensured that all transitions use the
same CBEVals place in order to check if a target element was already created by a different
transition. For this a so-called fusion place is used (cf. [Section 6.5)). Finally, if a key is specified
it has to be ensured that also no values are created, which are contained in an object which is
part of the key, meaning that the according arcs exhibit also the condition on the arc expression.

6.3.3 Compilation of Functions and Conditions

The example depicted in |[Fig. 6.7| uses a condition (cf. @) demanding that only persistent
classes should be transformed into according tables, realized by means of an according condition

@class.isPersistent on the Transformation Nets’ transition. This condition has to be
evaluated by the CPN when enabling transitions, i.e., the guard condition has to take care of the
conditions specified in Transformation Nets. Nevertheless, since CPNs do not allow for OCL
as inscription language, the OCL condition may not be evaluated as such in CPNs. Therefore,
the evaluation of the condition is delegated to a server using the Comms/CPN library [48§]],
by means of the function OCLEval, which is shown in (for details the reader is
referred to the description of the prototype in [Chapter §). The function requires on the one
hand the condition to evaluate (i.e., @class.isPersistent) and on the other hand the
object bound by the CPN engine as actual context for the OCL expression (i.e., the value of the
bound variable class). This information is sent to a remote server (cf. line 2 in
which evaluates the expression. The result returned by the OCLEval function (cf. line 3 in
Listing 6.3)) is then evaluated in the guard of the CPN transition. For the evaluation of functions
in Transformation Nets, the same approach is followed but instead of expecting a boolean return
value, a string encoded return value is expected (since values are represented as strings only),
which is accomplished by the function OCLFunctionEval, shown in the lower part of
Both, OCL conditions and functions are allowed to include variables of query patterns only. This
is since Transformation Nets are not allowed to read from the target model.

Listing 6.3: Functions to delegate OCL evaluation to a remote server

fun OCLEval(oclString) =
(ConnManagementLayer.send ("OCLServer",oclString ,stringEncode);
ConnManagementLayer.receive ("OCLServer",stringDecode) = "true")

fun OCLFunctionEval(oclString) =
(ConnManagementLayer.send ("OCLServer",oclString ,stringEncode);
ConnManagementLayer. receive ("OCLServer",stringDecode))

6.4 Compilation of Inheritance in Transformation Nets

In the previous section, it was described how the dynamic parts of Transformation Nets are
compiled to CPNs, but up to now, the compilation of inheriting transitions in Transformation
Nets has been omitted. Since CPNs do not support the concept of inheritance, neither between

139

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

places and tokens, nor transitions, inheritance is flattened during compilation. The flattening of
the inheritance hierarchy of a source model was already discussed in[Subsection 6.2.2] therefore
the focus is on transitions and the dynamic semantics of inheriting transitions in the following.

6.4.1 Basic Concepts, Overriding Patterns and Type Substitutability

If a transition in Transformation Nets inherits from another transition, this basically means that
the behavior of a supertransition should be reused by the subtransition. The subtransition is
allowed to extend this behavior or change it in a defined manner. In order to represent the
semantics of inheritance, the patterns of supertransitions need to be considered when compiling
a subtransition, i.e., all query and production patterns along the inheritance hierarchy have to be
collected. In this respect, the inheritance hierarchy is flattened during compilation.

Overriding Patterns. In order to collect the patterns, in a first step, the tokens of supertran-
sitions that are not overridden are added to the subtransitions. In a second step, the overriding
patterns are collected whereby overriding of tokens is achieved by equality of variable names,
i.e., the object pattern modelElement of the subtransition Class2Table overrides the ob-
ject pattern mode1Element of the supertransition MElement2SElement in The

Source MM |‘Transforma*"\n Target MM
{ i
ModelElement I 6 “2;2?3.@2{ SchemaElement
1 — 00— 3
) AmudelElement
name : String 7 @ 9 name : String
2 Unl\?elrsltv naine p1 14
% University
W@ “““““ : w@%
#\ 1 !L\
3 Package Class i C,gmb‘e Table (15 Schema |16
w 00 *|11>Q®'12 (1)
o

(a) Transformation Net Concrete Syntax

=“Class“}++ [not (List.exists(fn histEntry =>Contains(histEntry,
', t="Class"} [modelElement, modelElement, name],3)) hist)] 1'{oid=1,t="SchemaElement“}
? [WiElement? 5 o
1 > o SElement {oid=modelElement, N 13
Class t=modelElementType} 1. t="SchemaElement”} Class

{ t, Typel, (7 Ok iBrority.!
=name,v=nameVal} - InsertSorted ([modelElement)
"}, Vi “University” H+ modelElement,name]) hist

Person”H+
“Student” }++

HistMElement

“Professor”} History lement [“C3%, “c3%, “4“], [“p1", “p1*, “1

P LT
(EalTD hist| | InsertSorted ([modelElement, 9 g LTI
N {obj={oid=modelElement,t=
modelElement,name]) hist - e
‘Table”}, vid=name,v=nameVal}

1[ed” “c1, 2", [“c2 “c2” “3

&
[l

{obj={oid=modelElement,
t=modelElementType},vid= 7
name,v=nameVal}

10 0L Priority |

. 1
{oid=modelElement,t="Table"} " Tloid=
difol Class2Table 5 C tabre | Lloid=

1*{oid="c3", t="Class"} 11
- Class (15
4 Class {oid=modelElement, [not (List.exists(fn histEntry => Contains(histEntry,
t=modelElementType} [modelElement, modelElement, name],3)) hist)]

1'{oid=1,t="Package"} 16

3 C Package)

(b) Colored Petri Net Concrete Syntax

Figure 6.14: Compilation of Rule Inheritance

140

6.4. Compilation of Inheritance in Transformation Nets

collection of overridden tokens depends on the chosen refinement mode. In case of the refine-
ment mode override only the overriding patterns of the subtransition are taken into consid-
eration. If the refinement mode extend is chosen, it is not allowed to override patterns but
subtransitions might only extend the specified behavior. Consequently, an error is raised if an
overridden pattern is found. Finally, in case of inherit, assignments of overwritten patterns
are copied to the subpatterns, i.e., functions on the arc inscriptions are copied to the according
arc inscription of the subtransition.

Type Substitutability. After having collected the patterns, it has to be ensured that super-
transitions only transform those instances that are not affected by a subtransition. To achieve
this behavior, all transitions along the inheritance hierarchy share a common history place as as
can be seen in Thereby it is important, that subtransitions and supertransitions insert
the values in the same order, i.e., in our example at index 1 there is the oid of the model ele-
ment, followed by the oid and the vid of the attribute name. If a subtransition adds additional
patterns, the list has to be enlarged. In order to be able to compare history entries in such sit-
uations, the supertransition also enlarges its history list by adding an empty string (an example
thereof is shown in[Fig. 6.17)in the following subsection). Furthermore, it has to be ensured that
subtransitions fire before supertransitions, since otherwise a supertransition might transform el-
ements that could be matched by a subtransition. For this, CPNs allow to define priorities on
transitions whereby a lower value means a higher priority. In this respect, it has to be ensured
that a lower priority is assigned to a subtransition than to a supertransition. Consequently, the
transition Class2Table offers a lower priority than the transition MElement2SElement
and therefore fires first. Only if the transition Class2Table is not enabled any more, then the
transition MElement2SElement is allowed to fire. In the example, first the classes c1, c2,
and c3 as well as their according names are transformed into according tables by means of the
transition Class2Table (cf. [Fig. 6.14). Afterwards the transition MElement2SElement
is enabled for the package pl only (the history entries and the guard prohibits firing for the
tokens c1, c2, and c3), which produces the according SchemaElement pl. By this, type
substitutability is supported, being the default behavior in Transformation Nets.

Nevertheless, as described in [Subsection 5.4.2] this behavior may be changed by setting
the Transition.includeSubtypes flag to false, as can be seen in for transi-
tion MELement 2SElement, as indicated by the stereotype «exclude». Exclusion of subtypes
means that supertransitions should follow an oc1IsTypeOf semantics, e.g., in the example
only tokens of type Mode1Element should be matched, instead of an oc1IsKindOf seman-
tics, e.g., tokens typed to a direct or indirect subtype of Mode 1E1lement should not be matched.
In order to achieve this behavior in CPNs, an additional expression is added to the guard condi-
tion of the according transition, which enables a transition only if a token is of a specific type.
In the example depicted in a), the arc (® originates from the place Mode1Element
and therefore, the guard in CPN specifies that the transition should only be enabled if the value
of the bound variable t is equal to ModelElement (cf. typeName="ModelElement”
in [Fig. 6.15(b)). In case that several object patterns are contained by a Transformation Net
transition, several expressions would be generated, which are concatenated by a logical and,
i.e., every bound object has to be of a specific type only. Therefore, in case of the exam-
ple depicted in the generated target model does not contain the package instance

141

COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Source MM Transformation Target MM
<<exclude>> {
Melement2| 5
ModelElement SElement SchemaElement

1 —" 6 }Q»‘@%é\; F =

name : String name : String

;7 @:79
2 RN J ot _|_> A

3 Package Class g‘gnsb‘e Table 15 Schema 16
ot 00 —|11>Q@\-712

(a) Transformation Net Concrete Syntax

[not (List.exists(fn histEntry => Contains(histEntry,
[modelElement, modelElement, name],3)) hist)

=" 6 andalso typeName=“ModelElement”] 8
—— | 5 SCohemaElomary
1 {oid=modelElement, ME2ME) {oid=modelElement, N 13
Class t=modelElementType} t="SchemaElement”} Class
(_L; {oid: it t=m Type}, hist {obj={oid=modelElement,t=“SchemaElement”},
vid=name,v=nameVal} InsertSorted ([modelElement; vid=name,v=nameVal}

=“University” 1+ 7 modelElement,name]) hist

="Table"}, vid="2", v="Person” H++
able”}, vil “Student”}H+

istMElement

History

14

Attribute

Attribute
9 {obj={oid=modelElement,

hist InsertSorted ([modelElement,

{obj={oid=modelElement, 7 modelElement,name]) hist

t: | 1tType},vi

0| Priority |

t="Table"}

Hoi Class2Table o=
B . N\ Table —
) t="Class"} 11 12 15
== o Class
Class { [not (List.exists(fn histEntry => Contains(histEntry,
t= Type} (delEl name],3)) hist)]
1'{oid=1,t="Package”} .m 16

3 JC Package Class

(b) Colored Petri Net Concrete Syntax

Figure 6.15: Compilation of Inheriting Transitions Excluding Subtypes

p1l as the previous example did, since this indirect instance is not considered by the transition

MElementZ2SElement any more.

Abstract Rules. As stated in[Subsection 5.2.2| Transformation Nets allow to specify abstract
rules in order to express that a certain rule is not executable per se, but provides core behavior
that may be reused in subrules. An example thereof is depicted in [Fig. 6.16(a), whereby the
transition MElement2SElement is abstract as indicated by the stereotype «abstract». Since

abstract transitions are not allowed to fire and since inheritance between transitions is flattened

during the compilation to CPNs anyway, abstract transitions need not to be compiled to CPNs.
Therefore, [Fig. 6.16(b) does not exhibit a transition for the abstract Transformation Net transition
MElement2SElement. The target model exhibits only the classes c1, c2, and c3 which are
accordingly named (since the attribute assignment of the abstract Transformation Net transition

has been inherited, cf. @ and ©) in [Fig. 6.16). Please note that the target models depicted

in [Fig. 6.13] and [Fig. 6.16] are equal since the transition MElement2SElement excluding
subtypes in[Fig. 6.15|could never fire as no token typed to model element is available (since the

class ModelElement is abstract). Nevertheless, in general, different target models result.

142

6.4. Compilation of Inheritance in Transformation Nets

Source MM Transformation Target MM
<<abstract>>| 1
MElement2 5
ModelElement 6 SElement SchemaElement
L (— . 13
name : String 7 @ 9 N name : String
2) sy o] 14
S0 ™
3 Package 4 Class g}gﬂable Table 15 Schema 16
p1 —115()(): 12
00 200 2> 000

(a) Transformation Net Concrete Syntax

1'{oid="p1“ t="Package“}++
1*{oid="c1' lass“}++
1*{oid="c2' lass“}H+
1'{oid="c3", t="Class"} SchemaElement, 13
1 K ModelElement Class
Class 1'{obj={oid="c1”,t="Table"}, vid="2", v="Person” }+
“1”, v="University” }++ 1*{obj={oid="c2”,t="Table"}, v="Student” }++

1'{obj={oid="p1”,t="Package”}, vi

ent2
SElement

hist

1*{obj={oid="c1" lass”}, vi =“Person”}++ HistMElem: 1'{obj={oid="c3”,t="Table"}, vid="4", v="Professor”}
1*{obj={oid="c2" P “Student” }++
1'{obj={oid="c3",t="Class"}, vid=" =“Professor”} History

~ Attribute 14

9

Attribute {obj={oid=modelElement,t=

InsertSorted ([modelElement,

{obj={oid=modelElement, 7 modelElement,name]) hist

t=modelElementType},vid=name,v=nameVal} “Table“}++

“Table“}++

o= " {oid=modelElement,t="Table”} , t="Table“}
= , 11 12 Class 15

{oid=modelElement, [not (List.exists(fn histEntry => Contains(histEntry,
t=modelElementType} [modelElement, modelElement, name],3)) hist)]

1*{oid=1,t="Package”} .@I 16

Class
3 C Package
Class

(b) Colored Petri Net Concrete Syntax

Figure 6.16: Compilation of Abstract Rules

6.4.2 Conditions and Rule Applicability Semantics

In the previous subsection, the basic concepts were presented how inheriting transitions in Trans-
formation Nets may be compiled into according concepts in CPNs, but conditions on inheriting
transitions were not considered. As stated in [Subsection 5.4.2] Transformation Nets exhibit a
composing behavior concerning the evaluation of conditions, i.e., all conditions along the inher-
itance hierarchy have to be fulfilled in order to enable the transition. Thus, conditions defined on
supertransitions should also be included in the according guard of the subtransitions in CPNs. An
example thereof is depicted in whereby the guard of the transition Class2Table in-
cludes an expression for the condition of the supertransition (OCLEval (' @modelElement—
.startsWith(’c’) |context:’~Int.toString(modelElement))), as well as
an expression for the condition of the subtransition (OCLEval (’ @cmodelElement .isPer—
sistent |context:’ Int.toString(modelElement))). Please note that in this
example the subtransition Class2Table makes use of an additional query pattern for query-

143

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

ing the 1sPersistent attribute. Therefore, the history list of the subtransition would be
longer, e.g., five elements in the example, than the history list of the supertranstion, which con-
tains three elements only. Nevertheless, in order to be able to compare the lists, the history list
of the supertransition is enlarged to five elements by adding two empty string values.

Source MM | Transformation Target MM
1= @modelElement
6)-name.startswith(‘P’)

MElement2

ModelElement SElement SchemaElement

1 —— 00—)

meng

name : String L [_ name : String
2)" i 2 @10
|| _> e ™ 6

ee™

!L\

3)Package 4) Class Class2Table Table (17 Schema (18

- ee 111

isPersistent: Bool

SO

(a) Transformation Net Concrete Syntax

.isPersistent 14

1'{oid="p1", t="Package "}++ [not (List.exists(fn histEntry => Contains(histEntry,
B [modelElement, modelElement, name,0,0],5) hist)
andalso OCLEval(‘@modelElement.startsWith(‘P’) |

i P contexty“Int.tostring(modelElement)] 1'{oid="c1*,t="Table"}
o N 7 MElement2 I 9 o - 15
{oid=modelElement, SElement {oid=modelElement,t="Table"} N
Class t=modelElementType} 1- Class
{obj Type}, i \Brerty, obj={oid=attribute,t="Table"},
vld=name, v=nameVal} 8

InsertSorted ([modelElement, 10 vid=type, v=typeVal}

1'{obj={oid="p1",t="Package”}, vid="1", v="University” }4++ odelElement,name,0,0]) hist
1'{obj={oid: Class”}, vi “Person”H++ HistMElement2 1'{obj={oid="c1",t="Table"}, vid="2", v="Person”}++
1'{obj={oid Class” “Student”H+ SElement 1[[“c1”,” 1'{obj={oid="c3",t="Table"}, vid="4", v="Professor”}
1'{obj={oid="1 Class”}, vi “Professor”} History (==
name C rame D16
2 InsertSorted ([modelElement, 10 Attribut
Attribute hist| | modelElement,name, o5 =(oid=mode|EIemer’|‘; t: e
{obj={oid=modelElement,t= modelElement,persistent]) hist "Tajble"}vld:name v:na;"e\/a”
modelElementType},vid=name, 7
v=nameVal}
1'{oid="c1"t="Class"}++ _ " - ” 1'{oid="c3",t="Table"}
1'{oid="c2" t="Class"}++ {oid=modelElement, t= Class2Table 13 {oid=modelElement,t="Table"} Tobi
L able
1'{oid="c3", t="Class"} modelElementType} 11 Class 17

[not (List.exists(fn histEntry => Contains(histEntry,
[modelElement, modelElement, name,0,0],5) hist)

12 andalso OCLEval(‘@modelElement.startsWith(‘P’)| @
ﬁj:{oid:modelﬂement t= context:"AMnt.toString(modelElement)) andalso 18

modelElementType)vid= OCLEval(‘@modelElement.isPersistent | Class

N i 14
persistent, v=persistentVal} context:"Mnt.toString(modelElement))]

g N _isPersistent J <

Attribute

1'{oid="p1“,t="Package“}

3 (Package)

Class

(b) Colored Petri Net Concrete Syntax

Figure 6.17: Compilation of Conditions in Inheriting Rules

When investigating the generated target model, one encounters that only the object c 3 fulfills
both conditions, i.e., it is persistent and its name starts with the letter P’ and may thus be
transformed by the transition Class2Table. The object c1 may not be transformed by this
transition since it is not persistent, whereas object c2 may not be transformed as it does not fulfill
the condition on the supertransition MElement 2SElement, i.e., its name does not start with
the letter "P’. On investigating the supertransition, it may be seen that it is not able to transform
object c2 either, since the condition fails. Nevertheless, it is able to transform object c1 since
it fulfills the conditions of the supertransition and has not been transformed by the subtransition

144

6.5. Compilation of Modules

already. The transition MElement2SElement transforms the object c1, resulting in a target
object typed to Mode 1Element. In this respect, Transformation Nets support rule applicability
semantics (as described in[Subsection 5.4.2) concerning the evaluation of conditions.

6.5 Compilation of Modules

n the previous sections the compilation of the core concepts as well as of inheritance between

transitions have been presented. What has been omitted up to now is the compilation of
modules, which is the focus of the following subsections. First of all, modularization concepts
of CPNs, i.e, Hierarchical Colored Petri Nets, are presented. Then, second the modularization
concepts of Transformation Nets are formalized to lay the basis for third, the compilation of
modules to hierarchical CPNs.

6.5.1 Hierarchical Colored Petri Nets

In order to modularize CPNs, a CPN may be divided into several modules offering defined
interfaces, which play a similar role as modules in programming languages. CPNs that make
use of modules are called hierarchical CPNs. As can be seen in a CPN consists of
at least one module being the root of the net. A module might contain an arbitrary number
of other modules, e.g., in the example the root module contains the modules Producer and
Consumer. Such sub-modules are referred by the parent module by means of a so-called
substitution transition (cf. P and C in the example). The interfaces of submodules are defined
by means of sockets and ports. Ports exhibit so-called prototype tags which define whether the
port is an In port, an Out port or an In/Out port. A socket, i.e., a place on the parent module,
is assigned to a port, i.e., a place at the submodule, which is only allowed if the places exhibit
an equal color-set. The socket place p1 is assigned to the port place source and the socket

Module
colset INT = int; Substitution Fusionset | gocket
vari:INT; Transition
2'4 +41°5

Producer | |NT / Consumﬂ ANT

Name of ;
submodule /
Port
ff :
i . Out Prototype tag
e e
244415 INT INT INT
Producer Consumer

Sub module

Figure 6.18: Sample Hierarchical CPN

145

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

place p2 to the port place consumed. Thus, sockets and ports are used to stream tokens
between places on different modules, whereby a socket and its according port always exhibit the
same marking. Another possibility to exchange tokens between different modules are so-called
fusion sets. Fusion sets allow places in different modules to be glued to one compound
place across the hierarchical structure of the model and are similar to global variables known
from programming languages [72]]. In the example in a fusion set Buf fer is defined
to exchange data between the Consumer and Producer module, i.e., the place out, in and
b are members of the fusion set.

To be more formal, a hierarchical CPN is defined as a 4-tuple CPNy = (S,SM, PS, F'S)
in [72, p. 135]. S is a finite set of modules, whereby each module consists of a non-hierarchical
CPN, extended with a set of substitution transitions being a subset of all transitions, i.e., T, C
T, a set of port places, i.e., Pport C P, and a port type function PT": P,y — {IN,OUT,I/0O}
that assigns a prototype tag to each port place. SM: Ty, — S assigns a submodule to each
substitution transition. P.S is a port-socket relation function that assigns a port to a socket and
F'S is a set of non-empty fusion sets (cf. [72, p. 136] for details).

6.5.2 Formalization of Modules in Transformation Nets

In order to define the relationship between modules in Transformation Nets and modules in hi-
erarchical CPNs, modules of Transformation Nets are formally defined in the following. Ac-
cording to the definition of hierarchical CPNs, a Transformation Net with modules is a 5-
tuple TransformationNet,oq = {M, PO, YXport, PT, PA}. M defines a non empty set
of modules, which contain Transformation Nets. PO is a finite set of ports and X p,-; is
a set of predefined port types, i.e., Xpor = {Class, Attribute, Reference, TracePlace}.
PT: P — Ypy is a color-set function that assigns a color-set to each port, i.e., each port is
again typed to either Class, Attribute, Reference or TracePlace. PA C P x POU
PO x PU PO x PO is a set of directed arcs that connects either ports and places or two ports
such that Type[P]=Type[PO] or Type[PO]=Type[PO]. In this respect, sockets and ports of
hierarchical CPNs are both represented by means of ports in Transformation Nets. Furthermore,
ports in Transformation Nets are explicitly connected via arcs. The details of the compilation
are shown in the following subsection.

6.5.3 Compilation of Modules to Hierarchical CPNs

In order to represent the modularization concepts of Transformation Nets in CPNs accordingly,
Transformation Nets using modules are compiled into hierarchical CPNs following the above
formal definitions.

Blackbox View. The example depicted in makes use of two modules (cf. ® and
) in order to translate Packages to Schemas and Classes to Tables. The interfaces of
the modules are described by means of ports (cf. @ to @ and @ to @ in a) and (b)),
whereby places and ports are connected by means of arcs. The resulting hierarchical CPN is
depicted in [Fig. 6.19(c) and (d). Every instance of a Transformation Net Module is translated
to an according instance of a substitution transition (cf. ® and in c), whereby

Instances represent substitution transitions in the abstract syntax — as may be seen in (® and

146

6.5. Compilation of Modules

in[Fig. 6.19(d)). Furthermore, substitution transitions refer to submodules by means of the
attribute Instance. subpageID.

.Ohi outgoin| place
oliObject | tokent 1 /ey > =T | a3iAre || c3iClass (14
oid=p1’ — & cl:Class alL:Arc as-are
il 17 = 7| place - name: ‘Schema’
v : name: ‘Package port\l/ @outgomg .
| Source | Transformation Target isAbstract=false 7) isAbstract=false
I | i I"soid="p1" “—kokens EouTe) { pl:ClassPort | | p2:ClassPort) source
Pack: Sch e
1) Package 7 chema (14 <& | Reference 2 ports FEE rl:Reference!15
p1 —3) [Thame= classes” m1:Module (6 names= ‘tables’
tokens| ; jered-=false ports name: ‘Package2Schema’ ordered=false
’ , lowerBound=1 5 IowerBounz:o
tokens| upperBound=-1 LBE=EECHIESt
2)0 @ @ 15 h e | p3:TracePort™| a5:Arc I containment=true
classes\l/ 1. tables \l/ 0.* ? outgoing 4\ port 1 target
Class Table " outgoin -
3 12 13 16 e 3——52 Class 04“ a2:Arc pG:TracePort-‘ ca:Class| 16
ee@ =y Class2 L name="Class" Place name=‘Table’
Table isAbstract=false 12 ports @ ports isAbstract=false
: : = ports
'“:;':'“ent‘ Eodl 10 p5:ClassPort m2:Module' 10
| 4 @9 al:Attribu.o name: ‘Class2Table’
name: ‘isPersistent’ ¢4
o v2:Value 2 13 G
OKeNs tokens oid="c3" ports
p7/:ClassPort
vi:Valuel 4. valueld=2* ZClassPort
oid="c2" value="true’
valueld="1" valueld="2*

value="false’ || yalue="true’
(a) Transformation Net Concrete Syntax (b) Transformation Net Abstract Syntax
1 {oid="p1“,t="Pack: “ 6 initi l\il!g ource
(m/p’ ackaesl) 7) [[rackage2 8 1 cl:Place 7) at:Arc [[18) azarc |
1 @e cheme kind=HLArcType.TEST | | kind=HLArcType.NORMAL |
m1:HLMarking
Class Class — = = il source
1'{source={oid="p1“ t="Package"} textsilioids Package"} target c3:Place
target={oid= i king name subpagalD="p2"
9) #| rl:Place 6
m2. i
PackageCtx text="1{sour p1",t="Package"},
target={oid="cl lass“}H+..}"

TracePlace
C tables 15) initialMarking
{73

13 Reference m3:HLMarking
text="1"{oid="c1"t="Class“H+
1'{oid="c2",t="Class“}++.."

initialMarking
4
127

m4:HLMarking ;
“Class“},vid=
) =2 t=
“Class”,vid="2", v="true“}...

c4:Place 1

Table

16

1'{obj={oid= lass”}, vid:

4 _isPersistent)

Attribute
(c) Colored Petri Net Concrete Syntax

Class

(d) Colored Petri Net Abstract Syntax (PNML)

Figure 6.19: Compilation of Blackbox View

Whitebox View. The actual transformation logic is hidden in a module’s whitebox view in
Transformation Nets or in submodules in CPNs. In this respect, depicts the whitebox
view of the module Package2Schema and the corresponding submodule in CPNs, both in
concrete and abstract syntax. Transformation Nets narrow the scope to the involved metamodel
elements first, i.e., only the metamodel classes Package and Schema are shown in the white-
box view since they are required by the according transition. In order to represent the whitebox
view in CPNs an according submodule has to be created. Thereby, submodules are represented
by means of Page instances in the abstract syntax. The Net n1 contains two pages*, whereby
pagel contains the elements of the blackbox view, i.e., places representing the metamodel ele-

ments as well as the substitution transition (cf. Q) and (® in|Fig. 6.20(d)). Page2 contains the

“The page for the substitution transition Class2Table has been omitted due to reasons of brevity.

147

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

elements of the module for the substitution transition Package2Schema. The ports of a Trans-
formation Net module are compiled to ports of submodules in CPNs, which are represented by
means of so-called RefPlaces in the abstract syntax (cf. @ - B3 in d)). In order to
define the required socket/port assignments, i.e., which place on the parent page corresponds
to which place on the subpage, so-called ParameterAssignments have to be defined.
Thereby, the value of the attribute ParameterAssignment .parameter refers to the id of
the socket place (place on the parent page), and the value of the attribute ParameterAssign—
ment .value to the id of the port (place on subpage). Please note that the history place
HistPackage2Schema has been changed from a “normal” place to a place being a member
of a fusion set. This is since it is possible in Transformation Nets to inherit between transitions
which are encapsulated in different modules and therefore history places in CPNs need to be
shared by transitions on different pages. Furthermore, in Transformation Nets the history con-
cept is hidden from the user. The design rationale was not to introduce ports for history places
but to use fusion sets instead, in order to hide the history concept from the user in CPNs at
first sight as well and to gain the same structure in CPNs as in Transformation Nets, i.e., equal
number and types of ports. In the abstract syntax, fusion sets are represented by instances of
the class FusionGroup, whereby the reference FusionGroup.references refers to the

according members of the fusion group (cf. @ in|[Fig. 6.20).

I
m1:Module
1
transitions

'_

E=———— place " [T s chema’
outgoing isAbstract=false

History

Package2Schema 1
FAbstracifatse | outsoing 3 P———
o |Package 5 Schema(6 1 ClassPort t1:Transition 5)p2:ClassPort
oY =S G e name=": production
— / | aZArc | aueryPatterns tproducnon’ Patterns
3 Package] 1 ob ect Patterns
pl:ObjectPattern 3:TracePattern p2:ObjectPattern
y pattem [oidVar—package” | | soidVar='package’] oidVar=package’ | outgoing | R3:TracePort
packagecrs " toidVar="package’ 4
rt
arcs : pe
5:TPA target | ctx1:TracePlace |gOUtEOing
name="PackageCtx’
(a) Transformation Net Concrete Syntax (b) Transformation Net Abstract Syntax
page nl:Net o
Package place on place e 1
t pagel:Page lace .|
1 Ton] parentpeee 2 T s parent page page2:Page
N g id="page2’
- | cl:Place transition [~ 3 oy
Context place on 4= Package’| c3:Place (6 arc
TracePlace parent page iL:Instance id="Schemar place
{source=[package] target={ 5 suhpage\D- page2’ [s2sort |
oid=package,t="Schema’}} [ctxt:Place sZ:Sort p2:RefPlace
7 [ted=cass ||| |R2R8ettace
id="PackageCtx‘ params(emvsslgnmen(id="Schema'
Class {oid=package, {old=package, m target 5
3 rackase < tepackageTypel [Package | t="Schema’) ‘Schema al:ParameterAssignment | | a2: Parame(erAsslgnmen(a3:ParameterAssignment
25chema parameter="Package’ parameter="Schema’ parameter="PackageCtx’ aZ:Arc
1/0 1'{oid="p1",t="Package"} [not (List.exists(Class |5 value="Package’ value='Schema’ value='PackageCtx’
fn histEntry => Contains(histEntry, source
InsertSorted ([package]) hist pisg (PackegeL 1) hist)) placg
1
|
target
HistPackage2SchemaFs source \’/ | I source[arge
a5:Arc

tavge(

rp3:RefPlace

id="PackageCtx’

94 RefPIace

s3:Sort

text="TracePlace’

fgl1:FusionGroup

T

text=HistPackage2SchemaFs’

(c) Colored Petri Net Concrete Syntax

(d) Colored Petri Net Abstract Syntax (PNML)

Figure 6.20: Compilation of Whitebox View

148

6.6. Summary

6.6 Summary

n summary, this chapter presented the compilation of Transformation Nets to CPNs. In a first
Istep, the concepts of CPNs were introduced by example and by means of the formal definitions
thereof. In order to align the formal concepts of CPNs with Transformation Nets, the concepts of
Transformation Nets have been formalized as well, building the basis for the actual compilation
which was presented in detail. Thereby, the translation of places and tokens was discussed before
the focus was shifted to the transformation logic. First, it was mainly shown how patterns may
be represented by according arc inscriptions. Second, it was discussed how to realize the non-
consuming behavior of Transformation Nets in CPNs by introducing so-called history places.
Third, it was shown how OCL conditions and functions are compiled into according concepts
in CPNs and it was discussed how the evaluation thereof may be done, although CPNs do not
support OCL as inscription language.

After presenting the core concepts of Transformation Nets, the compilation of reuse mecha-
nisms, i.e., inheritance and modules, was discussed. Since CPNs do not support inheritance, the
concept of inheritance in metamodels and between transitions in Transformation Nets has to be
flattened during compilation. It was shown, how the requirements on the dynamic semantics of
inheritance in Transformation Nets posed in [Subsection 5.4.2] may be accordingly represented
in CPNs. The chapter finished with a discussion on how to represent the module concept of
Transformation Nets in CPNs. For this purpose, hierarchical CPNs have been introduced and
the compilation of modules to hierarchical CPNs has been shown. Thus, this chapter showed
how standard CPNs may be used to as a semantic domain for Transformation Nets, addition-
ally building the basis for sophisticated debugging facilities, which is the focus of the following
chapter.

149

Chapter 7

Debugging Support for Model
Transformations

I have not failed.
I've just found 10,000 ways that won’t work.

— Thomas A. Edison

Contents
(21 Code-Smells in Model Transformations| 152
[7.2 Simulation-Based Debugging] 158
[7.3 Query-Based Debugging] 162
[/4 Property-Based Debugging| 166
[75 FixingFailures| 173
.................................... 175

n the previous chapters Transformation Nets have been introduced as a runtime model for

model-to-model transformations and their translation to CPNs, as a semantic domain was
discussed. The introduction of a dedicated runtime model allows for sophisticated means of
debugging, which is the focus of this chapter. Thereby, dedicated support for every of the three
debugging phases proposed in [173]], being (i) observing facts, (ii) tracking origins, and (iii)
fixing failures, is provided, as can be seen in[Fig. 7.1 In addition to PaMoMo contracts, Trans-
formation Nets allow for further means to observe facts in a transformation specification. First,
since Transformation Nets provide an integrated view on model transformations, i.e., the meta-
models, models and transformation logic are explicitly represented, code-smells may be detected
by the transformation designer, i.e., structures in Transformation Nets that are likely to lead to
a failure. Second, formal properties of CPNs, e.g., termination or confluence, may be used to

151

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

observe errors. The phase of tracking origins is supported by (i) simulation-based debugging,
i.e., executing the transformation specification in a stepwise manner, (ii) query-based debug-
ging, i.e., employing OCL queries on the runtime model, also enabling forensic debugging, i.e.,
analyzing an already executed transformation to try to reason for failures, and (iii) property
based debugging, i.e., using CPN properties (in addition to common properties like termination)
for debugging. Finally, means for fixing a failure in Transformation Nets are discussed, i.e.,
changing the model and the transformation logic.

P(InheritedAttributes) Source ansformation | Target
Class i Relational * PaMoMo Package scnema
pa: Package [5: Schema * Code-Smells <N » S Y)
: « General Properties t 14 ‘OJ 1
| p: Class | c: Class i| t:Table 0 ® _— —>-I._1 - ®
isPersistent = true i | name=C D "mu 0.4 J H —|. ‘ ““—VEO-‘
:c ' { . \ lass. Table
— - Observing 200 - 1)
i [co:Column —
c.allSuperClasses-> — Facts
includes(p) name=A N v
; (— |+ Simulation-based Debugging
* Changes in Model .o o
« Changes in Fixing Tracking * Query-based Debugging
Transformation Logic Failures Origins « Forensic Debugging
~ ../ eProperty-based Debugging

Source Transformation Target

Package bty Schema

- i
Select target object el 1

Figure 7.1: Overview on Debugging Phases and Support in Transformation Nets

7.1 Code-Smells in Model Transformations

s stated above, Transformation Nets may act as a common runtime for declarative, model-
Ato—model transformation languages in order to provide dedicated means for testing and
debugging. The integrated view on model transformations, i.e., the representation of metamodels
and models together with the actual transformation logic, allows to detect potential failures.
For example, if a transformation specification is translated to Transformation Nets, the static
structure might already indicate failures. In the following, common code-smells, i.e., structures
that are likely to cause failures, are discussed and it is explained how they may be detected by
inspecting the structure of Transformation Nets. [Fig. 7.2] classifies potential code-smells into
intra-transition code-smells, i.e., code-smells that concern a single transition only, and inter-
transition code-smells, i.e., code-smells concerning the interplay between transitions. In the
following, each category is described in a pattern like style, whereby foremost the problem is
described succeeded by a hint, how to spot these code-smells in Transformation Nets.

152

7.1. Code-Smells in Model Transformations

Transformation Net
Code-smells

Intra-transition Inter-transition
Code-smells Code-smells
N " r i p
Wrong query Wrong production Wrong connection Missing Redundant Missing coherence
pattern granularity pattern granularity to query pattern specification specification of rules

Figure 7.2: Taxonomy of Common Code-Smells in Transformation Nets

7.1.1 Intra-Transition Code-Smells

Pitfalls within a single transition might concern either the matching phase of input elements, or
the the production phase of the desired target elements.

BRI SR

* Wrong Query Pattern Granularity. A common code-smell concerns the pattern gran-

ularity, i.e., the number of 1:n relationships occurring in the precondition (LHS) side of
a transition. Starting from an object, only one 1:n relationship is preferred (e.g., be-
tween Package and Class), since a further 1:n relationship (e.g. between Class and
Attribute) could either lead to too many matches or to too few matches which is not
intended, as can be seen in [Fig. 7.3(a). In this example, on the one hand the package
p1l is matched twice because the contained class c1 contains two attributes al and a2,
since no check before enforce semantics was applied, and therefore, too many packages
are created. On the other hand, no schema is produced for the package p2, since the class
c2 does not contain any attributes, which is probably not intended as well.

Detection in Transformation Nets: A wrong pattern granularity may be statically checked
by inspecting the involved query reference pattern. If a transition contains more than
one reference pattern and if the according source reference places offer an upper bound
greater than one, then a warning is given to the transformation designer. This is ensured
by an according OCL invariant on the transition (cf. [Listing 7.1). If the transformation
specification is already executed, a wrong granularity may also be detected if the target
places or the trace places of a certain transition contain duplicates, i.e., tokens with the
same color, which again is a strong indication that there were too many matches.

Listing 7.1: Invariant to Check Granularity of Query Reference Patterns

context Transition inv QueryPatternGranularity:
self.queryReferencePatterns —>collect (inArc)—> flatten ()
—~check if the upper bound of the reference is greater than 1
—>collect(x : PTArc | x.source.upperBound > 1)—>size () <= 1

153

DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

Source Transformation Target
Package Schema
pl . — Pl pl Source Transformation Target
? Package Schema
c® " @ . rnn®
classes \l/ ke
v g '
Class 4
. e °ce® @@7 O ‘
[iclass|
_‘ classes \l/ . O classes \l/ o
attributes? Class Table
[Xe) ®00 - —~ @00
Vo
Attribute

0 -

(a) Wrong Query Pattern Cardinality (a) Wrong Production Pattern Cardinality

O 00 1\ W B~ WM~

154

Figure 7.3: Wrong Pattern Granularity

* Wrong Production Pattern Granularity. At the target side, it is typically not desired to

produce source and target objects as well as the link of an 1:n relationship by a single rule,
since this would lead to too many source objects of the link (if the rule does not support
a check before enforce semantics). As can be seen in[Fig. 7.3(b), too many packages are
created since p1 is matched twice (i.e., in the combination package = pland class
= c1 and in the combination package = plandclass = c2). Therefore matching
1:n references and producing 1:n references within a single transition should be omitted.

Detection in Transformation Nets: On the one hand this code-smell may be detected by
means of an OCL invariant if there exists a target arc to the source class place of a ref-
erence and to the target place of a reference, e.g, the places Schema and Class in the
example, and if there exists a query pattern which matches for an unbounded reference,
e.g., classes in On the other hand, if the Transformation Net is already ex-
ecuted, again duplicate tokens may be found in the source place of the reference. Both
facts are a strong indication that the production patterns offer the wrong granularity and
therefore an according warning is raised.

Listing 7.2: Invariant to Check Granularity of Production Reference Patterns

context Transition inv ProductionPatternGranularity:
self.queryReferencePatterns —>collect (inArc)—> flatten ()

—~check if pattern exists with upper bound greater than 1
—>collect(x : PTArc | x.source.upperBound > 1)—>isNotEmpty () implies
—check if source variable is also used in an object pattern

self . productionReferencePatterns —>forAll(x |

not self.productionObjectPatterns

—>select(y | not y.cbe)—>flatten()—>collect(z |

z.oidVar)—>includes (x.soidVar))

7.1. Code-Smells in Model Transformations

* Wrong Connection to Query Pattern. A further code-smell may occur if the production
pattern is wrongly connected to the source domain pattern by missing or incorrect variable
assignments, i.e., a new instance of an object is generated instead of copying the source
element.

Detection in Transformation Nets: By comparing the colors of the query patterns on the
left side with the colors of the production patterns on the right side of a transition, it may
be seen if new objects, values, or links are created, i.e., these objects have not been bound
by variables. Nevertheless, since this might be intended in several situations, e.g., when
merging several source objects to a single target object, this situation does not raise a
warning.

7.1.2 Inter-Transition Code-Smells

Inter-transition code-smells, i.e., suspicious structures concerning the interplay of the specified
transitions, deal with metamodel coverage, i.e., if all elements of the involved metamodels are
affected by transitions, redundancies, i.e., if metamodel elements are affected by several transi-
tions, and finally coherence between transitions.

» Missing Specification. If no rule matches a certain metamodel element, then this element
will not participate in the transformation process and the according instances will not
result in any target instances, which leads to information loss during the transformation.
As on the source side, also on the target side metamodel elements may not be targeted by
a single rule and therefore no according instances may be created.

Detection in Transformation Nets: 1f no source arc originates from a certain source place
(cf. [Fig. 7.4 where no arcs originate from the class At t ribute), this metamodel element
will not be considered in the transformation. The same is true on the target side, i.e., if no
arc targets a certain place representing an element of the target metamodel, instances of
this metamodel element may not be created by the transformation. Both code-smells are
automatically detected by means of OCL invariants (cf. in Transformation
Nets leading to according warnings.

Listing 7.3: Invariant to Check Metamodel Coverage

context LHS inv SourceMMCoverage:
self.places —>forAll(p | p.outgoing—>notIsEmpty ())

context RHS inv TargetMMCoverage:
self.places —>forAll(p | p.incoming—>notIsEmpty ())

O R S

* Redundant Specification. If more than one rule matches a certain metamodel element,
then this may lead to redundant elements on the target side, unless according conditions
match for disjoint subsets. Again, the same applies to the target metamodel, i.e., if el-
ements of the target metamodel are targeted by more than one rule, then it may happen
that these parts will be produced several times (if no check before enforce semantics is
employed).

155

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

[R N

156

Detection in Transformation Nets: On the source side, this code-smell may be detected
if several arcs originate from one source place. On the target side, this may be detected
if more than one arc targets a certain place. Again this may be automatically checked by
employing OCL constraints, leading to according warnings in Transformation Nets (cf.
[Cisting 7.4). Nevertheless, since redundant specifications are common practice in some
transformation languages, e.g., QVT Relations, the validation of this code smell can be
turned off in the prototype (cf. [Section 8.2)). Furthermore, if the Transformation Net
is already executed and if a target place contains duplicates, i.e., same-colored tokens,
this indicates redundantly specified parts as well. As the example in depicts, the
module PackageClasses2SchemaTables and the module Class2Table target
the class place Table, which leads to a redundant generation of table instances.

Listing 7.4: Invariant to Check for Redundant Specifications

context LHS inv SourceMMRedundancy :
self.places —>forAll(p | p.outgoing—>size() > 1)

context RHS inv TargetMMRedundancy:
self.places —>forAll(p | p.incoming—>size () > 1)

Coherence Between Rules. Typically, rules in transformation languages interact with
each other, i.e., the result produced by one rule allows other rules to transform their corre-
sponding elements (cf. trace and intermediate places). In this respect, rules are typically
using trace information or explicit calls, i.e., when and where clauses in QVT Relations
to synchronize each other. If several unrelated rules are specified, then they work entirely
independently of each other, resulting in unconnected parts in the output model. This may
be intended, in case that the input model consists of unconnected parts too, but normally
this is not intended, especially in the context of Ecore, which demands a tree structure of
the model elements and at least a connection to the rule transforming the root container,
has to be established. Therefore, also the according Transformation Net requires traces
places to allow for interaction between transitions.

Detection in Transformation Nets: In Transformation Nets, transitions interoperate via
trace places and modules are connected via according trace ports. Therefore, if transitions
or modules are not connected via according trace places, the transitions are independent
of each other. Thus, the Table instances produced by the module Class2Table are
not linked to their according packages, as may be seen by the number of tokens in the
reference place tables in the example in In order to provide hints to the trans-
formation designer, the target metamodel can be analyzed. In this respect, if a transition
targets a certain class and if this class offers a containment reference to another class, then
the transitions that target this class have to interoperate.

Invalid Target Model. The generated target model of a transformation must again con-
form to its according metamodel. For example, dangling references must not occur, i.e.,
links have to point to a valid target object. An incorrect target model may result from
the fact that in Transformation Nets it is possible to match for arbitrary elements, e.g.,
to match for a value, and to produce an arbitrary element thereof, e.g., a link. This is

7.1. Code-Smells in Model Transformations

0NN AW~

—
N = O 0

Source Transformation Target

Package Schema

PackageClasses
2
SchemaTables

€ Class2
Table
" Coherence

etween rules Redundant
specification

Missing
specification

Attribute J

v
® -

Figure 7.4: Inter-Transition Code-Smells

especially favorable to overcome structural heterogeneities [94], but may induce incorrect
target models. Nevertheless, this may also happen in other Transformation Languages,
e.g., in graph transformations, objects may be deleted which are still referred by some
links.

Detection in Transformation Nets: Invalid configurations of a target model may be de-
tected by inspecting the tokens of the generated target model, i.e., the colors of links and
the object color of values has to be present in the according class places. In order to ensure
such well-formed constraints, OCL invariants are added to the target places. For example,
for all tokens in attribute places it is checked if there exists an according object token.
If this is not the case, these tokens are highlighted, which may serve as starting point for
debugging. A similar constraint is put onto reference places which checks if the according
source and target objects exist. Additionally, boundedness constraints are validated, i.e., if
the number of tokens that originate from a certain link token (outer color) does not exceed
the specified upper-bound of the reference.

Listing 7.5: Invariants to Check if Generated Target Model is Correct

context Attribute inv HasObject:
self.class —>tokens —>collect (oid)—>
includesAll (self.tokens—>collect(oid))

context Reference inv HasSource:
self .source —>tokens —>collect (oid)—>
includesAll (self.tokens—>collect(soid))

context Reference inv HasTarget:
self.target —>tokens —>collect (oid)—>
includesAll (self.tokens—>collect(toid))

157

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

13 context Reference inv CheckUpperBound:

14 self .upperBound <> —1 implies self.tokens—>forAll(x: Token |
15 self.tokens—>collect(x.o0id)—>size () <= self.upperBound)

16

17 context Reference inv CheckLowerBound:

18 self.lowerBound <> 0 implies self.tokens—>forAll(x: Token |
19 self.tokens—>collect(x.o0id)—>size () >= self.lowerBound)

In summary, the static structure of Transformation Nets may already indicate certain failures
in the transformation specification, providing a potential starting point for debugging. In the
following, means for debugging in Transformation Nets are discussed in detail.

7.2 Simulation-Based Debugging

Ithough the static analysis of Transformation Nets and the corresponding detection of code-

smells may point to failures, often failures in transformation specifications may only be
detected by means of live-debugging, i.e., simulation of the execution. The simulation of the
transformation specification allows a transformation designer to get an insight into the specifi-
cation, i.e., the hidden operational semantics is made explicit, in order to foster debugging. In
this respect, Transformation Nets provide various means to support the transformation designer
in live-debugging in order to effectively find the origin of a failure. Following the classification
presented in[Section 2.3] the according means in Transformation Nets are discussed. Thereby, (i)
means for selecting a certain part of the transformation code, (ii) means for inspecting the current
execution state and, finally, (iii) means for investigating the dynamic behavior are presented.

7.2.1 Selection

Transformation Nets allow (i) to select an enabled transition and according bindings, i.e., debug-
ging of the matching process, and (ii) to set breakpoints on different elements (i.e., transitions,
places, tokens), in order to provide flexible means to the transformation designer to select a
certain starting point for debugging.

7.2.1.1 Debugging of the Matching Process

As stated in debugging support during the matching phase of a model transfor-
mation is of utmost importance. Since transformation engines typically select applicable rules
non-deterministically, the debugging environment needs to accordingly visualize the rules that
are currently applicable. Since Transformation Nets build a DSL on top of CPNs, which in-
herently support non-determinism, the enabled transitions have to be made explicit. For this,
the according enabled transitions are highlighted (cf. transitions with a bold, green border in
[Fig. 7.5)), indicating that (only) these transitions may be fired. In the example in both
transitions are enabled, since there already is a trace token available which enables the transition
Class2Table. Consequently, the transformation designer is allowed to chose an arbitrary
transition to fire. If an enabled transition is contained within a module, the blackbox view of the
module is accordingly highlighted as well.

158

7.2. Simulation-Based Debugging

Source Transformation Target Source Transformation Target
Package Package2 | [Bindings: Schema Package2
schema | | {p2} Package Schema Schema
- @ Q0 & o 09
{ et '
PackageCtx

—

classes
0.*

Table

X) Class2 —> o0
Table
casses | |i | | Lo classes d/ classes
= .. 0. 0.

Class Table

Class

{p1,(pL,c1),c1}
{p1,(p1,c2),c2}

(a) ion of C: indil (b) Manual Selection of Bindings by Drag & Drop

Figure 7.5: Debugging Support in the Matching Phase

If a transition is enabled, it may be the case that there exist several valid bindings. Thus, the
transformation designer should be enabled to select a desired one. Transformation Nets support
this scenario by two different mechanisms being (i) selection of calculated bindings and (ii)
user-defined bindings. Concerning the first mechanism, every enabled transition may be asked
for its currently possible valid bindings, which are presented to the transformation designer and
from which he is allowed to select one, as can be seen in [Fig. 7.5(a). Concerning the second
mechanism, the transformation designer may drag and drop tokens from source places to a query
pattern of the according transition. The transition checks, if the specific token is part of a valid
binding. If this is the case, the query pattern is bound to the according token. Additionally, the
remaining tokens in source places that may not be bound any more are greyed out and may not
be dropped onto query patterns of the according transition anymore (cf. [Fig. 7.5[b)). On the
one hand, the transformation designer may then complete the binding by dragging and dropping
the remaining tokens to the according query patterns. On the other hand, the matching may also
be auto-completed, i.e., the transformation designer might select from the remaining calculated
bindings, meaning that only those bindings are presented that contain the already bound tokens.
If the first selected token is not part of a valid binding, an according error message is presented,
stating the reason why a certain token may not be bound, e.g., if it does not fulfill a certain
condition.

7.2.1.2 Breakpoints

Whereas in common programming languages a breakpoint is typically set to the desired line of
code, in Transformation Nets breakpoints may be set on four different types of metamodel ele-
ments, being (i) transitions, (ii) modules, (iii) tokens and (iv) places, as can be seen in[Fig. 7.6(a).
Breakpoints on transitions are closest to those known from programming languages. Per default,
the execution of Transformation Nets stops at this kind of breakpoint every time the according
transition is enabled. Nevertheless, the transformation designer might change this behavior and
may configure the breakpoint such that it stops execution every time a certain transition is not
enabled. The same principle is followed concerning modules, whereby execution is stopped

159

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

every time anyone of the contained transitions is enabled or disabled depending on the configu-
ration of the breakpoint. If a breakpoint is attached to a certain token, execution is stopped if this
token is successfully bound to a transition, i.e., if it is part of a valid binding. Finally, concerning
places, execution is stopped either if a token is about to be read from a certain source place or if
a token is going to be put into a certain target place.

Source | Transformation Source Transformation Target
Breakpoint on Token PEckaae L
Sire Package Psa:::i‘e: Schema
» & 00 @ 00 S |
*baiagéa’f;!- C VV\i[Schema aH\nslances()—>s\zE()>1r
['a ek —= =— gl j
L N . Lt i — o = 02’ — N
Ce o . [Breakpoint on Transiti . 18NS C ,. ° .)) B ENG] >
classes | classes | | classes |
0.* ox | . jeshap o
- lpackage’* - - -
Class Class —) — Table @
000 ©00
- Table.allinstances()>size() >1 and
Schema.allinstances()>size ()>2
(a) Breakpoints (b) Conditional Breakpoints

Figure 7.6: Breakpoints in Transformation Nets

Conditional Breakpoints. Although breakpoints may be attached to different elements,
they are not very flexible, i.e., the execution might stop too often, since it might not exactly be
the situation the transformation designer wants to debug. Therefore, conditional breakpoints are
provided, i.e., OCL expressions are used to further restrict the applicability of a certain break-
point. Conditional breakpoints may again be specified at different levels of granularity. Thus,
it may not only be defined that execution should stop, e.g., if a certain token is streamed into a
certain place, i.e., local condition, but also if a certain combination of tokens occurs in several
different places, i.e., global condition. Examples for the first case are shown in[Fig. 7.6(b). The
conditional breakpoint attached to the place Package will stop execution only if more than one
package is produced and the conditional breakpoint attached to the transition Class2Table
stops execution if the variable package is bound to the token p2. An example for the lat-
ter case is shown by the breakpoint attached to the place Table, which stops execution if the
Table place contains more than one element and if additionally the Schema place contains
more than two elements.

7.2.2 Inspection

A natural prerequisite for reasoning about the state of execution is to provide appropriate inspec-
tion mechanisms. In the following it is shown, how the actual state of execution and the control
flow is represented in Transformation Nets.

State inspection. Since Transformation Nets provide an integrated view on the transfor-
mation specification, i.e., not only the transformation logic itself is represented, but also the
involved source and target metamodels as well as their according model elements. Thus, the

160

7.2. Simulation-Based Debugging

actual state of the transformation is presented to the transformation designer at any time during
the transformation.

Visualization of control flow. As stated in [Subsection 7.2.1.1] on the one hand, the visual-
ization of the control flow is achieved by highlighting the transitions ready to fire. On the other
hand, the history of transitions (which is hidden per default, but may be made explicit by the
transformation designer) as well as the trace tokens provide visual information on which source
tokens have been transformed to which target tokens (cf. [Fig. 7.7). In order to make this in-
formation even more explicit, interrelationships between tokens are highlighted on mouse-over.
For example, when moving the mouse over a source object token, the relationship to according
value and link tokens that are contained by this object as well as already transformed tokens that
originate from the source object token are highlighted by means of dashed lines (cf. [Fig. 7.7).

Source Transformation Target
Package2
Package bt Schema
s &)i g 1

Interrelationships
oo @
classes\l:

Class _._—_—“,: (o _

Histon
Query Production
Patterns Patterns
T T e
pl cl pl cl /

PackageCtx

.

Class2
Table

tables

Table

:

Figure 7.7: Visualization of Control Flow in Transformation Nets

7.2.3 Dynamics

A transformation designer may investigate the dynamic semantics of the transformation speci-
fication by a stepwise firing of transitions. Thus, it is possible to exactly follow which source
element is transformed into which target element. Considering modules, the alternatives (i) step
into, (ii) step over, (iii) step return, known from debugging in object oriented programming,
are provided. Step into switches from the blackbox view into the whitebox view of the mod-
ules and fires an enabled transition. If more than one transition is enabled, one is chosen in a
non-deterministic way. The semantics of step over is, that all contained and enabled transitions
are fired. Please note that, if the firing of a transition enables another transition contained in
the corresponding module, this transition is also fired. Finally, step return is enabled only in

161

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

the whitebox view of a module and means that all enabled transitions contained in the module
should be fired and afterwards it should be returned to the blackbox view.

In summary, Transformation Nets support the features expected from debuggers, but rather
on the model level than on the code level, as typically provided by current debuggers integrated
in model transformation languages. Nevertheless, the explicit runtime model allows for more
sophisticated means of debugging, i.e., to tackle the known problem of reasoning backwards in
time as discussed in the following.

7.3 Query-Based Debugging

ebugging suffers from the well-known problem that programs execute forward in time

whereas programmers must reason backwards in time to find the origin of a bug [173]].
In this respect, the transformation designer needs to carefully approach the moment when the
actual infection is observable in the transformation specification. Nevertheless, this needs not
to be the exact point where the infection has been introduced, i.e., the actual defective piece
of code. Thus, the transformation designer has to restart debugging and try to find the failure
at some earlier point in time of execution. This is typically time-consuming and cumbersome
and therefore means are needed that allow to reason backwards in time. Thereby, questions like
“where does this target element come from” should be answered, i.e., query-based debugging
should be enabled.

A first idea in this direction was the so-called omniscient debugging [|120,/173|], where de-
bugging is based on a before recorded run of the execution. Nevertheless, the main disadvantage
of this approach is that recording every single step is expensive in terms of memory and leads
to time intensive operations during the actual debugging process. Ideas have been presented
that tried to minimize the amount of the recorded data, i.e., it has been tried to abstract from
details by means of representing the program execution in terms of runtime models, which is
basically the idea of runtime verification [11]]. Nevertheless, such a model on the execution is
only the first step, but what is needed are means to analyze dependencies, i.e., which transition
produced a certain token. The investigation of dependencies of a concrete program run is called
dynamic slicing [|173]], i.e., deduce those parts of the transformation specification that deal with
a certain element. In order to be able to calculate such dynamic slices, explicit trace information
is needed. Since Transformation Nets provide explicit trace information, OCL queries can be
employed to realize dynamic slicing, as discussed in the following.

7.3.1 Dynamic Slicing and Backwards Reasoning by Means of OCL

Since the execution of a transformation is stored as a model, which conforms to the Transfor-
mation Net metamodel (cf. on[73), OCL queries may be employed to realize dynamic
slicing for Transformation Nets in order to enable backwards debugging in time for model trans-
formations. shows the application thereof reusing the example already presented in
[Subsection 4.4.3] When inspecting the generated target model, at first sight it remains unclear,
which transition and due to which configuration in the source model the column a5 has been
generated, since both transitions, Att ribute2Column and SuperAttr2Column target the

162

NN R W~

7.3. Query-Based Debugging

place Column. The according token might be asked for the transition that created the token by
means of the derived OCL function getCreator () which is depicted in[Listing 7.6] Thereby,
the function first gets its according place and collects the transition (cf. line 3). Afterwards, the
history of the transitions is checked whether it contains the 1d (s) of the according token in its
postconditions. The derived function get Ids (cf. line 7) delivers the ids as set of the according
token, i.e., oid in case of Ob ject tokens, the 0id and the valueId in case of Value tokens,
soid and toid in case of Link tokens or soids and toid in case of Trace tokens.

Listing 7.6: GetCreator Function

context Token: def getCreator(): Transition =
— collect all transitions targeting the token’s place
self.place.inArcs—>collect(a : TPArc | a.source.transition)
— select the history
—>select (historyEntries
—~check if the postcondition contains the according id of the token
—>collect(postcondition)—>includesAll (self.getlds ()))

Source Transformation Target 1
Class Table History
Query Production
@ e Patterns Patterns
isPersistent: Bool mmmm
c2 a2 c2 a2

super
classes

Attribute2

0.* . Column
1 | Wt w2
$90 00+ 83
attributes E O@ gy

columns

SuperAttri Step2

0..* Step6 getlnputTokens(_as)
getinputTokens({c3,c2}) ->at(3)

->at(1)

super
Class
2 uperAttr2 c2 cl al c2 a4

Eollinn 0..* a a al a3 as

Attri

fafle) Column C c2 a2 c3 a6

~J Helper»
@@ r_’_’_ { Y et 3
é\iré_r@r_gl as a6 -
Transitive 3 A getCreator()4 Patterns
T oo™ ~' e | B EEE
N OJ getinputTokens({c3,c1}) Class Class
a @ =] a a

7 i ->at(2)
_ipasebiacs)
Step3 | getCreator() |iooom—— @ Jbaseflass!
IT

Step4 \
"""" 1

(a) Transformation Net with Intermediate Place (b) Histories to Transitions

class,

“VsuperCol a2 a3

Step5

Figure 7.8: Backwards in Time Reasoning in Transformation Nets

In the case of the example, the histories of the transition Att ribute2Column and Super—
Attr2Column are investigated. As can be seen in [Fig. 7.8| only the history of the transition
SuperAttr2Column contains the token a5 in the history’s production tokens and therefore
this transition is returned as according creator transition. This transition may then be asked for
the binding of the according created token, e.g., the transition SuperAttr2Column might be
asked for its query patterns by employing the OCL function get Input Tokens (t), whereby
the parameter t denotes an according generated token, e.g., the token a5 in our example. The

163

00NN AW =

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

according OCL expression is shown in |Listing 7.7} whereby in line 3 first all potential source
tokens are collected. From these source tokens, only those tokens which are in the precondition
of the history of token t are selected. In line 7, it is first checked if a postconditions contains
the ids from the token t, and if this is the case, then the precondition is selected. Only if this
precondition contains the ids of a certain token (iterator variable x), this token is added to the
sequence to return.

Listing 7.7: GetlnputTokens Function

context Transition: def getlnputTokens(t: Token): Sequence{Token} =
— select tokens of the source places, whose id is in the precondition of a history
self —>collect(queryPatterns).inArc.source.tokens()—>flatten ()
—select those tokens, that are in the history of the transition
—>select (x:Token | (self —>collect(historyEntries)
—get the precondition if the postcondition contains the id of token t
—>flatten()—>select (h: History | h.postcondition —>
includesAll(t.getlds ())). precondition)—>includesAll (x. getlds()))—>asSequence ()

In our example, the get Input Tokens functions would return the context token c3 | c3,
the link token having the source Class object c2 and the target Attribute object a2, as well a
link token having as source object ¢ 3 (cf. value of variable subClass) and as target object c1.
Since there is no source link from c 3 to c1 available in the source model (cf. link tokens in place
superclasses), this token is further investigated. For this, the third token in the sequence is
selected. On this token again the function getCreator () is called, which delivers the only
available transition TransitiveClosure, since its history contains the according markings
(cf. ®in . It may be seen that an additional link c¢3 is created (which is bound to the
variable subClass) and c1 (which is bound the variable baseClass) since there exists a link
between c3 and c2 as well as c¢2 and c1. In this respect, the transitive inheritance relationship
between c3 and c1 is made explicit. It is then possible to ask for the according input tokens and
their according creator again until the according tokens in the source model may be found (cf.

steps 4 to 6 in[Fig. 7.8).

7.3.2 Forensic Debugging

As stated in [66], the detailed traceability available in numerous of today’s model transformation
languages would allow for forensic debugging, i.e., debugging of a model transformation after
its actual execution. In this respect, at least parts of the debugging task could be automated in
order to narrow the scope of the potential location of the defect. For this, query-based debugging
may again be incorporated. In [66], failures have mainly been divided into failures that lead to
invalid output, i.e., the generated target model does not conform to its corresponding metamodel,
or failures that lead to incorrect output, i.e., logical errors, which could be detected by means of
forensic debugging.

Invalid output may be detected in Transformation Nets by investigating the tokens in the
target places, e.g., dangling references, as already described in Nevertheless, this is
only where the failure shows its effect but again, support is needed to detect the actual origin. In
this respect, query-based debugging mechanisms may be employed to reason backwards in time.
For detecting incorrect output, in [|66] only informal debugging questions, e.g., “Why are there
no objects of type ¢ in the target?” are presented, although the authors state that oracles could

164

7.3. Query-Based Debugging

be used for this purpose. However, a method called re-enactment is proposed which allows
the “selective re-execution of logical parts of the model transformation in a controlled runtime
environment to gather knowledge about specific problems” [66].

To realize re-enactment in Transformation Nets, first PAMoMo contracts (cf.
may be used to check the correctness of a transformation. As a simple example, two contracts
are specified in The first contract checks if there exists an equally named Schema
instance for every Package instance and the second one checks if for every persistent Class
there exists an equally named Table. When testing the specified QVT Relation specification
(cf. specification in the middle of against the contracts, it may be seen that the second
contract fails, revealing which source elements caused the contract to fail (cf. verification results

1 transformation ClassToRel
2 (class : Class ; rel : Relational) {
3
4 // map each package to a schema classes | ¢1: Class
5 top relation PackageToSchema { isPersistent = true
P(Package2Schema) 7 s Bedine 1 namespace b
1 . pn: ring ; i name = ‘Person
Class i Relational 7 checkonly domain class p: Package { pl: Package superclasses
J 8 name =pn name = ‘University’ subclasses
. il e
p: PaCkagg ; s: Schema 9 }i . namespace c2: Class
name=X i name=X 10 enforfe domain rel s: Schema { froves isPersistent = false
! LI naneRepn name = ‘Student’
12 }; Test Source Model
13 }
P(Class2Table) .
o 15 // map each persistent class to a table
Class i Relational 16 top relation ClassToTable {
i 17 cn: String ; O Verification Results &1
p: Package i |s: Schema 18 checkonly domain class c: Class {
i
name=X i | name=X 19 memoomees Spe Eeelage (o Execution of Invariant ‘Package?Schem:' invariant succeeded
i 20 name =cn
I i I 21 }; Execution of Invariant ‘Class2Table: invariant failed
c: Class i| t:Table 22 enforce domain rel t: Table { Counter example:
=== i 29 oohemn —o8 Seemm (), Match not found far:
name =Y ' [name=Y 24 eme =@m Package pa="University: Packaga
. . _ 1 . pa.classes Stu(lentCIa
isPersistent=true | ; 25 1 Student.isPersistent T=false
26 when { Student.name C='Student’
27 PackageToSchema (p, s); relation "Check.Class2Table" does not hold.
28 }
29 }
q q 30} lati e
PaMoMo specification QVT Relation Verification
translate
Source Transformation Target
Package Package2 (7 Schema History
Schema Query Production
p1 Patterns Patterns
name: Sting s I I T
p1 fq p1 University p1 University
University
LN
History
tables
classes Production
Patterns
Class Table
s - mmmwmmmm
Q_e/ cl true Person p1 a Person
isPersistent: Bool name: String i i =
1) —
name: String

Figure 7.9: Re-Enactment: Combining PaMoMo and Transformation Nets for Debugging

165

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

in . Therefore, transitions that transformed these source instances need to be made
available for re-enactment, i.e., it should be possible to fire them again to check for failures.
Consequently, the precondition of the transitions’ histories are investigated by searching for
source tokens that caused the contract to fail. In order to be able to fire this transition again, the
according history entries need to be deleted (cf. history @ in[Fig. 7.9). Furthermore, the histories
of all dependent transitions are cleared as well in order to consider the dependent transitions for
re-enactment. In this respect, it is possible to identify those parts of the Transformation Net that
were likely to cause a failure. Nevertheless, it is not possible to identify the exact point where
the faliure has been introduced, for which again the afore mentioned (live) debugging features
may be employed. When investigating the potential bindings of the transition Class2Table
in the example, it may be detected that both classes c1 and c2 represent valid bindings although
only the class c1 is persistent. Therefore, the corresponding relation Class2Table of the
QVT Relation specification misses an according condition that checks for persistent classes.

In summary, Transformation Nets provide means for backwards in time debugging by em-
ploying predefined OCL functions. Additionally, custom OCL functions may be used, since the
execution of a model transformation is again represented as model, i.e., the runtime model may
be queried by any OCL expression, which allows for flexible means of query-based backwards
in time debugging. Backwards in time debugging is especially useful when oracles for testing
the transformations are employed. The differences between the actually generated and the de-
sired target model may be made explicit in the Transformation Net, i.e., if too many tokens are
created, these tokens may be highlighted since they may serve as a starting point for debugging
backwards in time.

7.4 Property-Based Debugging

ransformation Nets form a DSL on top of CPNs and the formal properties of CPNs may

be applied during debugging, allowing for property-based debugging. For this, the state
space of the CPN has to be constructed to calculate diverse behavioral properties. In a first
step an overview on the state space analysis methods is given, before the properties and their
applicability in the domain of model transformations are discussed in detail.

7.4.1 Calculation of the State Space

The basic idea of state spaces is to calculate all reachable states (markings) and state changes
(occurring binding elements) of the CPN. In the resulting directed graph, nodes correspond to the
set of reachable markings and the arcs correspond to occurring binding elements. Consequently,
a state space depends on a specific initial marking, i.e., the according source model in Trans-
formation Nets. State spaces provide powerful means to analyze the specified CPN and may be
created fully automatically. The construction of the state space starts with the initial marking
of a CPN. To exemplify this, shows a simple Transformation Net, its according CPN,
as well as the calculated state space. Thereby, the state labeled 1 represents the initial marking,
which may also be seen from the fact that this is the only state without a predecessor. When
examining the transformation logic, it may be detected that the transition Package2Schema

166

7.4. Property-Based Debugging

Source Transformation Target
Package P:f::i? Schema
pl
? PackageCtx Y
[] Class2 >
classesl tables \L
Class

(a) Transformation Net Concrete Syntax

Class

1{oid="p1“,typeName="Package“}

Package I
Package \4 [>(Schema)]
Q—/de:package, t=packageType} | 2Schema I{oid:package, t="“Schema”}

1'{source={oid="p1“,t="Package”},

target={oid=package,t=packageType}}
target={oid="c1,t="Class“}}++
1'{source={oid="p1“t="Package“}, ctx
target={oid="c2“,t="Class“}}

History nil
HistPackages

InsertSorted ([package]) hist hist

Class
[not (List.exists(fn histEntry =>

contains(histEntry, [packagel],1)) hist)] | {source=[{oid=package, t=packageType}],

{source={oid=package,

TracePlace
t=packageType}, target=

{source=ctx1,target={

i -) Reference
{oid=class,t=classType}} oid=schema,t=schemaType}}
Reference tables
1{oid="c1“,t="Class“}++
1'{oid="c2",t="Class"} i Class f
EEE {oid=class,t=classType 2Table {source={oid=schema,t=schemaType},
target={oid=class,t="Table"}}
[not (List.exists(fn histEntry =>contains(histEntry,
Class [package, class, class],3)) hist) andalso List.exists(fn .
contextEntry => (#oid contextEntry)= package) ctx 1] hist {oid=class,t=classType}
InsertSorted ([package,class,class]) hist .
nil Table
HistClasses
Class
History
(b) Colored Petri Net
1T 7
CD2ER'Package 1: 1' {oid="p1" t="Package"} CD2ER'Package 1: 1° {oid:
CD2ER'classes " t="Package"},target={oid="c1",t="Class"} } ++ CD2ER'classes 1: target={oid="c1" t="Class"}} ++
1" {source: i t="Class"}} 1" {source={oid="p1' t="Class"}}
CD2ER'Class 1: 1" {oid="c1' CD2ER'Class 1: 1" {oi
1" {oid="c2",t="Class"} 1" {oid="c2",
CD2ER'ctx 1: empty CD2ER'ctx 1: 1",t="Package"}] target={oid="p1 . .
CD2ER'Schema 1: empty CD2ER'Schema 1: 1°{ol k Marklng n
CD2ER'HistPackages 1: 1'[] CD2ER'HistPackages 1: 1°[|
CD2ER'HistClasses 1: 1'[] CD2ER'HistClasses 1: 1'[] current state
CD2ER'Table 1: empty CD2ER'Table 1: empty

Predecessors

CD2ER'classes

CD2ER'ctx 1:
CD2ER'Schema 1: 1" {oid:
CD2ER'HistPackages 1: 1'[
CD2ER'HistClasses 1: 1°[[

B3
CD2ER'Package 1: 1'{oid="p1",
1" {source={oi

CD2ER'Table 1: 1' {oid="c2" t="

4

CD2ER'Package 1: 1'{oid="p1",t="Package"}
CD2ER'classes 1: 1 { 1",t="Package"} target={oid="c1",t="Class"} } ++
} target={oid="c2",t="Class"}}

Class"}++

target={oid="c1"t="Class"} }++
e

@

,t="Package"}] target={oid="p1" !
"Schema"}

"Package"}] target={oid="p1"
hema"}

‘Schema"}}
CD2ER'Schema 1: 1" {oid:

CD2ER'HistPackages 1
CD2ER'HistClasses 1: 1°

1
c2","c2"]]
Table"}

5
CD2ER'Package 1: 1'{oid="p1"
CD2ERclasses 1: 1" {sour
1" {source={oid="p1
CD2ER'Class 1: 1' {0

1" {oid=" Class"}
CD2ER'ctx 1: 1' {source=[{ " t="Package"}] target={oid="p1",
CD2ER'Schema 1: 1' {0l chema}

CD2ER'HistPackages 1:

CD2ER'HistClasses 1: 1" [[" ne2" "c2"]]
CD2ER'Table 1: 1" {oid="c:
1" {oid="c2",t="Table"}

(c) State Space

Figure 7.10: State Space of an Exemplary Transformation Net 167

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

can fire once, since there is only a single Package p1 available (represented by the state num-
ber 2 in [Fig. 7.10(c)). When inspecting this state, the CPN engine is allowed to chose either
one of the two possible bindings, i.e., it may choose non-deterministically either the binding
{package=pl, class=cl} orthe binding {package=pl, class=c2}. The accord-
ing state in the state space exhibits two successors. As might be already imagined by this simple
example, the main drawback of calculating the state space is the so-called state space explosion
problem [[155]], i.e., the size of the state space gets too large to be stored in memory. Neverthe-
less, since test input models may be assumed to be rather small, property-based debugging is
a powerful mechanism to test and debug model transformations. A discussion about the state
space explosion problem is considered in more detail in |[Chapter 9

7.4.2 Behavioral Properties for Debugging Model Transformations

The calculated state space is used to calculate general properties on model transformations,
e.g, termination or confluence. In the following, it is shown how such properties (cf. [[112]] for
an overview) may be used to enable verification-based debugging of model transformation, as
depicted in[Fig. 7.T1] Please note that the calculated properties base on the calculated state space
and are therefore dependent on the actual source input models.

Source Transformation Target
Package2
Package || ocns e
C pL it = pL)|
o . e ; —
. . PackageCtx
LN J Class2
—— Table
:Iassesl schems | tables
Class . Table
00 00
(a) Transformation Net Concrete Syntax (b) State Space
Statistics Home Properties
State Space Home Markings]
Nodes: 5 5] Target
Arcs: 5 Schema
Secs: 0 Liveness Properties —
Boundedness Properties 1
—— Dead Markings ~ CD2ER'Package 1'{oid=1,t="Package"}
Best Integer Bounds 1s] ? CD2ER'tables 1'{source={oid=1,t="Package"} target={oid=2,t="Class"}}++
Upper Lower Dead Transition Instances 1'{source={oid=1,t="Package"} target={0id=3,t="Class"}}++
CD2ER'Package 1 1 None C_ oo CD2ER'table 1'{oid=2,t="Class"}++
CD2ER'tables 0 0 Live Transition Instances tables | 1'{oid=3,t="Class"}
None
. N N Table
Best Upper Multi-set Bounds Fairness Properties ——
CD2ER'Package 1'{0id=1,t="Package"} ——rr—rrrmrrrrmrmemmrmoeememrroree [} e
CD2ER'tables empty No infinite occurrence s
CD2ER'table 1'{oid=2,t="Class"}++ sequences.
1'{oid=3,t="Class"}
(c) State Space Report (generated by CPN Tools) (d) Desired Target Model in Transformation Net and as CPN Marking

Figure 7.11: Application of CPN Properties for Debugging of Model Transformations

168

7.4. Property-Based Debugging

7.4.2.1 Termination and Confluence Verification using Dead and Home Markings

In a batch and exogenous model-to-model transformation scenario (which is the focus of this
thesis), a model transformation is always required to terminate. Thus, the calculated state space
needs to contain at least one Dead Marking [112]], which is a state in the state space without any
successors, i.e., M such that My = M and enabled(M) = (), meaning that after a certain fir-
ing sequence, starting from the initial marking My, a marking M is reached, where no bindings
are enabled any more (cf. state 5 in[Fig. 7.11|b)). If such a dead marking is found, the specified
transformation is considered to be partially correct, i.e., if execution terminates, a correct target
model might be possible. Please note that although the introduced history concepts ensure that
a transition may only fire once for a specific combination of input tokens, it may not ensure
termination since if a transition occurs in a cycle, i.e., a place is both, a source and a target place
of a single transition and if the transition produces new objects (cf. new colors in Transforma-
tion Nets) every time it fires, the history concept may not ensure termination. However, such
cycles may be detected at design time and are automatically prevented for Transformation Nets'.
Therefore, termination may be statically ensured in Transformation Nets, which is in contrast to
model transformation languages based on graph grammars, where termination is undecidable in
general [119]. In this respect, the state space report generated by CPN tools shows that there

exists a dead state having the id 5 (cf.).

Nevertheless, in order to formally verify termination, it has to be ensured that a dead marking
is always reachable, i.e., in every possible execution. For this, home properties are provided in
CPNs, whereby a Home Marking Mpome 1s a marking, which may be reached from any other
reachable marking, i.e., VM | M 2 Muome [112]]. As stated in [[72] p. 171], this means that “it is
impossible to have an occurrence sequence starting from My which may not be extended to reach
Mprome”. For the example, state 5 represents a home marking, as can be seen in |[Fig. 7.11{c).
Consequently, if the state space contains a single Dead Marking which is equal to a single
Home Marking, i.e., both states offer the same id, it is ensured that the CPN (and thus the
according Transformation Net) always reaches a dead marking leading to a confluent CPN, i.e.,
there exists a unique terminal marking, that may always be reached. Formally this is denoted as
if VM, M' My = M Aenabled(M) = DA My = M’ Aenabled(M') = () then M = M. Since
the calculated properties depend on the actual source model, in general the transformation would
have to be tested with all possible input elements. Thus the question arises, in which situations a
non-confluent behavior may occur, i.e., when does a transformation contain more than one home
or dead state. As discussed in non-confluence in model transformations may occur
if two rules are non-parallel independent [65]. The same is true for CPNs if the specified net is
not persistent. A CPN is said to be persistent if “for any two enabled transitions, the firing of
one transition will not disable the other one” [[112]], which is equal to the definition of parallel-
independence. Consequently, this property has to be ensured for Transformation Nets, which is
ensured by the fact that the source places are only accessed in a read-only manner. Furthermore,
it is not allowed to specify conditions on trace information, which otherwise may lead to non-
determinism, as well as to use negative patterns for intermediate and trace places. In general,

"Please note that recursion in general is allowed in Transformation Nets, but only prohibited for the the special
case of new colors which would always lead to an endless recursion.

169

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

however, confluence may not be ensured statically and depends on the actual transformation
logic, i.e., a check-before-enforce scenario with a non-unique key may lead to a non-confluent
behavior (cf. [Section 6.3|and [Section 9.2)). Since in the example above the state with the id 5 is
a dead marking as well as a home state, this transformation may be considered as confluent (cf.

[Fig. 7.TT(c).

7.4.2.2 Model Comparison using Reachability and Boundedness Properties

To achieve a correct transformation result, an equal Home Marking and Dead Marking is a
necessary, but not sufficient condition, as it may not be ensured that this marking represents the
desired target model (which has to be decided by some complete oracle function). By exploring
the constructed state space, it is possible to detect if a certain marking, i.e., the target marking
derived from the desired target model, is reachable with the specified transformation logic. If
this is the case, and if this marking is equal to both, Home Marking and Dead Marking, it is
ensured that the desired target model may be created with the specified transformation logic in
any case. Nevertheless, if we consider the example presented above, the derived marking from
the desired target model (cf. [Fig. 7.T1(d)) is unreachable by the specified transformation, i.e.,
the marking may never be achieved.

If the desired target model is not reachable, a possible step to debug the transformation spec-
ification is to compare the target model generated by the transformation to an expected target
model. To identify wrong or missing target elements in terms of tokens automatically, Bound-
edness properties [112] (Integer Bounds and Multiset Bounds) may be applied (cf. [Fig. 7.11|c)).
Upper integer bounds state how many tokens at most reside in a certain place, i.e., in a first
step only the number of tokens may be compared. Since no tokens are consumed from a place,
the number of tokens in a place representing a target metamodel element has to be equal to the
number of tokens derived from a desired target model. On the one hand, if there are too few to-
kens, the according place is highlighted to give the transformation designer a hint for debugging.
When deriving the upper integer bound of the desired target model, two tokens in place tables
would be expected, but none is actually created (cf. [Fig. 7.11|c)), and therefore the according
place is highlighted in the Transformation Net (cf. [Fig. 7.11|(a)). Furthermore, such a situation
might indicate that the according Transformation Net either specifies a too restrictive condition
or that it misses according production patterns. On the other hand, if there are too many tokens,
this might indicate that the specified condition is too weak. In this situation, the according tokens
may be identified by using the Multiset Bounds, which contain the respective marking. These
tokens are then highlighted in the according Transformation Net and the transformation designer
might then make use of query based debugging mechanisms to actually discover the origin of
the failure.

7.4.2.3 Transition Error Detection using Liveness Properties

As stated above, missing target tokens may be detected by boundedness properties, whereby one
potential source of error might be a too strong condition on the according transition. Thereby, the
situation might occur that a certain transition specifies a condition that is never fulfilled during
the whole transformation process, i.e., the transition never fires. This situation may be detected

170

7.4. Property-Based Debugging

by means of so called Dead Transition Instances or LO-Liveness [[112]. Dead transition instances
may be found in the state space report, whereby none means that no transitions exists, which has
never fired (cf. [Fig. 7.11f(a)). If a transition did not fire, it indicates that the source model did
not enable the transition and therefore, either the specified test model did not consider a certain
scenario, the specified transition is incorrect or even the source model is incorrect. In case of
dead transition instances, the according Transformation Net transition gets highlighted in order
to set the focus for debugging.

7.4.3 CPN Properties for Model Transformations

By applying and analyzing behavioral properties of CPNs it has been figured out which proper-
ties are useful in the context of model transformation testing and debugging and which kinds of
errors may be detected. The proposed taxonomy (cf. investigates possible locations
of errors, classifies typical model transformations errors and shows, which properties are useful
for their detection.

During specification of model transformations there are three possible locations of errors,
either in (i) the metamodel, (ii) the model, or (iii) the transformation logic. The detection of er-
rors in the metamodel is in general out of scope of transformation languages. As model elements
are explicitly represented in Transformation Nets as tokens —in contrast to other transformation
languages which typically do not represent the models — semantic errors in the model may be
detected by liveness or boundedness properties. For example, an incorrect source model (e.g.,
a reflexive link represented by a link token with same inner and outer color) might lead to dead
transition instances or an incorrect firing behavior of a transition and thus, to an incorrect number
of tokens in the target place.

Errors in the transformation logic itself may be divided into errors local to a single transition
(Intra-Rule Error) or errors which may only be detected by examining the interrelations between
several transitions (Inter-Rule Error). Intra-rule errors may be divided into errors occurring at
the precondition (LHS) or postcondition (RHS) of a transition. Common errors on both sides
(e.g., a wrong matching pattern or a wrong instantiation of target models) may be detected by
examining the boundedness properties in comparison to an expected target model or by custom
state space functions checking if a certain marking is reachable. Due to the fact that these two
properties may be applied in various scenarios special tool support is provided. Finally, dead
transition instances point out that a given LHS specification of a transition may not be fulfilled
by the given source model.

Inter-rule errors occur if transitions depend on other erroneous transitions or, if the specified
transformation logic does not cover the whole source or target metamodel. Although these errors
may be easily detected by checking for source places that have no arc to any transition or target
places which are not target of any transitions (cf. [Section 7.1, it is also possible to apply bound-
edness and reachability properties to detect these kind of errors. To verify if several transitions
interact correctly, the home state and the dead state property may be checked. Additionally, the
persistence property has to be fulfilled (which is statically ensured in Transformation Nets due
to the non-consuming firing behavior). If the CPN is persistent and if there exists a single, equal
home and dead state, then the specified transformation logic is confluent with respect to the test
input model.

171

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

Location Granularity Type Transformation Net CPN Property
Syntax Error
(non conformance to MMM)
Metamodel Semantic Error
(e.g. missing constraints)
Syntax Error
(non conformance to MM)
Model Wrong tokens (e.g. , two L
Semantic Error colored token with equal fveness
(e.g. , reflexive links, inheritance) T Boundedness
Wrong arc from place to
Wrong source MM element i
g transition Liveness
Boundedness
LHS Wrong/too ftrong/too weak Wrong/incomplete color Reachability
matching pattern pattern in LHS of transition
Non-satisfiable matching Non-satisfiable color pattern Liveness
% pattern with respect to MM
Wrong target MM element Wrong arc from transition to
m target place Reachability
- Wrong instantiation of target Wrong/incomplete color Boundedness
Transforr‘natlon elements pattern in RHS of transition
Logic Source —
Missing/redundant source Missing/redundant arcs from
MM
MM elements source place to transition
coverage
Wrong intermediate Wrong tokens in/wrong Reachability
Target results/dependencies connection to trace place Boundedness
MM Missing/redundant target Missing/redundant arcs from
coverage MM elements transition to target place
Non-determinism/non- Check before enforce Home State
confluence semantic with wrong key Persistence
behavior
I L d lored
Non-termination H 2ope producing newicolore]& Dead State
tokens

Figure 7.12: Taxonomy of Transformation Errors and CPN Properties

7.4.4 Towards Model Checking of Model Transformations

A limitation of behaviorial properties is that they heavily depend on the initial marking of the
CPN, i.e., this means for model transformation that the properties may only be ensured to hold
for a specific input model. Nevertheless, it is often demanded to formulate more general prop-
erties. Although PaMoMo contracts may be used for this scenario, as discussed in
PaMoMo does not allow to check properties concerning the actual execution of the model trans-
formation, but only allows to check for valid source-target correspondences. For example, in
PaMoMo it is not possible to check if a certain transformation rule that translates classes to ta-
bles has been executed as many times as classes are available. Theoretically, the tables might
result from other rules, which is not desired. For this, reachability analysis in CPN Tools may
be used in an automated way by means of a CTL-like logic called ASK-CTL [35]. ASK-CTL
allows to query if a certain state or a state change (e.g. the occurrence of certain transitions)
occurs sometimes or always in a certain path of the state space. For instance, the command
eval_node INV(POS(NF(“Schema for Package”, schemaForPackage))) InitNode, which re-
turns false if not for every schema a package is created by a certain transition, allows to

172

7.5. Fixing Failures

check execution specific properties. In the previous command, InitNode is the initial mark-
ing, schemaForPackage is a user-defined function that checks, if for every class a package
has been created (by comparing the markings) and if the target markings originate from a certain
transition. POS (A) demands the property A to be eventually satisfied, and INV (A) demands A
to be satisfied in all possible paths. Nevertheless, as this simple example reveals, the specifica-
tion of such functions is tedious and error-prone for a transformation designer, not being familiar
with ASK-CTL. Furthermore, Transformation Nets currently do not provide means to specify
ASK-CTL formula and the underlying CPN is hidden from the transformation designer (al-
though it could be made explicit). Further research is needed to provide transformation-designer
friendly means to specify such properties on the level of Transformation Nets. Nevertheless, this
is out of the scope of this thesis and is considered as future work (cf. [Chapter 10).

7.5 Fixing Failures

he last phase in the debugging process is to actually correct the defect. In Transformation

Nets, the transformation designer is allowed to (i) alter the according model, i.e., tokens
may be added, edited or removed, and (ii) to change the specified transformation logic, which is
discussed in the following.

7.5.1 Adapting the Model

Since in Transformation Nets the model is explicitly represented by means of tokens, it should
be possible to add, edit or delete certain tokens in order to fix a defect during debugging. Adding
tokens to places is only allowed, if the according place is either a place representing a source
metamodel element, a trace place or an intermediate place. Adding tokens in trace or interme-
diate places may be useful in order to continue debugging if the transformation unexpectedly
terminated. By this questions like “would this transition fire, if there would be an according
trace token” may easily be answered. Editing or deleting tokens is more complex than adding
tokens, since those tokens might already have been matched by transitions. Thus, it may be
the case that a transition might not have fired, if the token was not present or exhibited some
different value. If a token is changed or deleted, the histories of the transitions have to be up-
dated. Please note that in both cases — either editing or deleting — the according configuration
is deleted from the transition’s history in order to allow to re-execute transitions depending on
an edited or deleted token. Consequently, also the accordingly produced tokens and also the
history of dependent transitions have to be updated. Finally, changes or deletions might also
lead to dependent changes, i.e., if an object token is deleted all dependent value and link tokens
are deleted as well. To exemplify this, shows a simple example of how the tokens and
the histories have to be updated when the owning object of a link is changed, e.g, the link from
package pl to class c3 is changed to a link from package p2 to class ¢3. In a first step the
history of those transitions are investigated, that query the reference place classes which is
the transition Class2Table in the example. Consequently, those history entries that contain
the old values of the token in the according variables, e.g., package=pl and class=c3 in
the example, are deleted. Additionally, the produced tokens are deleted as well, e.g., the link

173

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

token from package p1 to class ¢3 and the object token c3 in the Table place are deleted (cf.
[Fig. 7.13|b)). Therefore, the transition Class2Table is again enabled and the transformation
designer might debug the changed configuration.

Source Transformation Target Source Transformation Target

Package Package2 Schema Package packaecZ Schema
Schema Schema

" v 00 Sl S v —ae
package/ "ﬂlu l 4 3
PackageCtx
o0 0 class2 (] = [3N
Table
casses| |i | | @M cios tables

Class Table

History 1 History 1
Query Production Production
Patterns Patterns Patterns

tables

Table

I e N S I e N N K
p1 pl cl pl c1 pl pl cl pl cl
pl p1 2 pl 2 pl p1 2 pl 2
Ql pl c3 pl 3 \
(a) Debugging State before Changing the Model (a) Debugging State after Changing the Model

Figure 7.13: Changing the Model during Debugging

Finally, a remaining question is, if the changes in the model should be local to the debugging
environment, i.e., the according changes in the source model should not be made persistent, or
if the changes during debugging should be made persistent. On the one hand, if the changes
are local to the debugging environment, the transformation designer is allowed to “play around”
with certain model configurations without changing the according test input model. On the other
hand, according changes in the debugging environment have to be probably repeated in the test
input model, if errors have been detected in the model. Therefore, in Transformation Nets the
changes are local to the debugging environment per default, but the transformation designer may
explicitly commit the changes in order to persist them.

7.5.2 Adapting the Transformation Logic

In general, the transformation logic represented in Transformation Nets may be changed in a
similar way as the models. In this respect, it is allowed to add transitions, trace or intermediate
places during debugging. Furthermore, it is allowed to edit existing transitions, e.g., by adding
further query tokens or deleting a production token. In any of these cases, the history of the
according transition as well as those of dependent transitions have to be updated, in order to
allow to re-evaluate the according parts of the transformation specification. Nevertheless, since
Transformation Nets intend to provide a runtime model for declarative model-to-model trans-
formation languages, i.e., it is possible to represent the actual transformation logic in terms of
Transformation Net concepts, the back propagation of changes in the transformation logic to
the actual transformation languages represents a major challenge. Currently, the back propaga-

174

7.6. Summary

tion requires the specification of an explicit transformation, i.e., not only a transformation from
the transformation language to Transformation Nets is required, but also a transformation from
Transformation Net concepts to the concepts of a specific transformation language. Thus, only
if such a transformation is provided, the transformation designer might commit changes in the
transformation logic in order to represent the changes automatically in the according transfor-
mation language. Nevertheless, a more generic back propagation, i.e., by means of an explicit
trace model derived from the forward translation to Transformation Nets, together with a model
representing specifics of a certain model transformation language might allow for an automatic
backwards translation. However, this is not in the scope of this thesis and considered as future
work (cf. [Chapter 10).

In summary, on the one hand, Transformation Nets allow the transformation designer to
flexibly change the according source model. On the other hand, although transformation logic
may be changed, an explicit backwards transformation has to be provided in order to represent
the changes in the according transformation languages, which will be discussed in more detail

by means of QVT Relations in the case study in[Section 9.2]

7.6 Summary

his chapter presented how the dedicated runtime model may be used for debugging model-
to-model transformations. In a first step, the detection of code-smells has been discussed,
i.e., it was shown that certain structures in Transformation Nets indicate potential sources of
defects. Second, means for simulation-based debugging were presented. The transformation
designer is enabled to execute the transformation stepwise, allowing to investigate the actual
operational semantics. Thereby, means already known from common debuggers of program-
ming languages have been adapted to the runtime model (e.g., breakpoints), but also model
transformation-specific concerns have been discussed, e.g., how the non-deterministic selec-
tion of rules and the matching of source elements may be made explicit to the transformation
designer. Besides means for live-debugging also means to tackle the well-known problem of
reasoning backwards in time during debugging have been discussed. Predefined OCL queries
allow to investigate the actual execution of a model transformation, e.g., to check which config-
uration of source tokens produced a certain target token. Furthermore, re-enactment has been
discussed as a means to realize forensic debugging and to combine the results of PaMoMo con-
tracts with the debugging features of Transformation Nets. Since Transformation Nets base on
CPNs, it was shown how their formal properties may be used for debugging. In this respect,
general properties were presented, but it was also shown how reachability analysis may be used
for debugging. Finally, means for fixing bugs in Transformation Nets were discussed.
Up to now, the presented concepts have been discussed on a conceptual level, only. There-
fore, the following chapter presents a prototypical implementation thereof, which is then used to
prove the applicability of the presented concepts in the subsequent evaluation chapter.

175

Chapter 8

Prototype Implementation

Computers are useless. They can only give you answers.

— Pablo Picasso

Contents
1 PaCo-Checker - PaMoM ntract-Checked 177
[8.2 DEBUT - DEBUgger for Transformations| 182
83 Summary|. 193

he previous chapters introduced PaMoMo, a language for specifying model transformation

contracts, and Transformation Nets as a runtime model for model-to-model transforma-
tion languages as well as its compilation into CPNs as a semantic domain. Thereby, the focus
was on a conceptual level rather than on implementation details. Therefore, this section shortly
elaborates on the prototypical implementations serving as a proof of concepts. First the tool
PACO-CHECKER (short for PAMoMo Contract Checker) is presented which allows to graphi-
cally specify PaMoMo contracts, as well as their automatic compilation to QVT Relations in
order to test an existing model transformation. Second, the DEBUT (short for Debugger for
Transformations) tool gives its debut, which provides a graphical editor for the runtime model.
Finally, the compilation of Transformation Nets to CPNs is discussed as well as how the CPN
Tools environment can be used for simulation and state space analysis.

8.1 PaCo-Checker - PaMoMo Contract-Checker

In order to verify whether a transformation logic fulfills the requirements specified by PAMOMO
contracts, the patterns are compiled to QVT Relations. For automating this process as well

177

8. PROTOTYPE IMPLEMENTATION

implements

Generation of Concrete Syntax

Y PaMoMo ATL Qvt XPand Qvt
MM Transformation MM Transformation Grammar
N

|)
iinstance of 3|nstance of

ATL R QvTt XPand Qvt
Engine Model) Engine Code

Specification of Requirements e

GME-based
Editor

AN
1 instance of

produces

Source models

QVT Engine
ModelMorf

refers to = configure \| Target models

- Test Suite

(Prerequisite)

Verification Editor

PaCo-Checker

Figure 8.1: Overview of the Architecture of PACO-Checker

as for the visual specification of contracts, an EMF-based tool, called PACO-Checker has been
prototypically developed, whereby its architecture is shown in Fig.[8.1] This section provides in
the following an overview on the needed steps for the verification process, presents the different
components of the tool, and illustrates its use.

8.1.1 Prerequisites.

For using PACO-Checker, the existence of the source and target metamodels is a prerequisite,
as these are necessary to specify the contracts and to implement the transformation. In addition,
for the verification process, a suitable set of input models conforming to the source metamodel
is needed. Such input models can be manually created, which however is a tedious and error-
prone task, leading to small input models that cover parts of the metamodel only. Alternatively,
there are mechanisms available that automatically synthesize a large number of different input
models [23,/46,/140] ensuring a certain level of metamodel coverage, as already discussed in
The existence of such a set of input models is assumed as well, since their generation
is out of scope of this thesis.

8.1.2 Formal Specification of Requirements with PAMoMo.

In a first step, the transformation requirements have to be formally specified using PAMOMoO.
For this purpose, PACO-Checker provides an implementation of the PAMoMo metamodel (cf.
using EMF. Based on the implementation of the metamodel, PACO-Checker provides a
graphical concrete syntax supported by a GMF-based [54] editor, which enables the visual speci-
fication of PaMoMo contracts (cf. [Fig. 8.2)). In order to be able to use elements of the source and
target metamodels involved in the transformation, these have to be imported into the tool palette
of the editor before starting modeling the patterns. Afterwards, the transformation designer can

178

8.1. PaCo-Checker - PaMoMo Contract-Checker

£ Java - PatternsTest/slided4/ghk/requirement4. analysis_diagram - Eclipse Platform

File Edit Diagram Mavigate Search Froject Bun Window Help
Aol FEEY " . - G -
e Positive Invariant . ¥ 02 - %o~
: B o7 o
requirements.analysis_diagram =2 n .
e #eE-dag Source object Target ObJeCt
+ P(Inherited%ttributes) graph graph
B pa:Package B s:5chemd
M classes
. tables
o classes
H p:Class B cilass H t:Table
o gPersistent=T o name=C
= name==_C
' attribLtes T eoumns
H a:Attribute H co:Colurmn Source MM
= name=A o Rarme=A
elements
o + [T=true]
4 [c.ancestors- =includes(p)] Target MM
4] elements

PaMoMo]
elements

»

o Paleth
[z & &,
= Pattern

4 Positive
Pattern

4+ Megative
Pattern

4+ Megative
Pracondition

TEdge
= Atiribute
& class b
H attribute
H Class
H ModelFlement
H Package
+ ar Ll
H Column
H ModelElement
H Schema
B Table

Figure 8.2: Specification of Invariant for Requirement 4 (cf. Fig. with PACO-Checker

use the editor to specify preconditions, postconditions and invariants forming the desired model
transformation contracts. The current implementation supports one type of pattern per contract
only (whereby one contract results in one file), i.e., in a contract the transformation designer
either specifies preconditions, postconditions or invariants. Therefore, if preconditions, post-
conditions and invariants should be used to verify a transformation, three different contract files
are needed. shows a screenshot of the user interface whereby an invariant is modeled,
representing requirement 4 of the running example (cf. [Section 1.2). As can be seen, classes
from the source or target model can be put into the according compartments of the invariant.
Additionally, the features of the according classes may be added. In order to specify conditions
on the attributes, e.g., to check if the class is persistent (boolean attribute i sPersistent) or
more general conditions, e.g., if class p is a superclass of class c, according OCL expressions

may be specified at the bottom of the pattern.

8.1.3 Specification of a Verification Job.

Once the designer has specified the contracts, a verification job has to be configured. Such a job
definition allows executing all specified preconditions, postconditions, and invariants to achieve
a comprehensive verification result. Fig. [8.3]shows a screenshot of the job specification for the

179

8. PROTOTYPE IMPLEMENTATION

= verification Bditor 22 =8

Specify your Verification Job Specification of

Source Metamodel and Model MetamOdEIS and MOdElS |

Select the source metamodel and an according soLrce ~—"Select the target metamodel and an according target
maodel maodel

Metamodel: | C:feclipse_helos/rurtime-hew, Target MM: C: feclipse_helios fruntime-Me
Model: C:feclipse_heliosfruntme-Mew Target Madel: | C:feclipse_helios/fruntime-Me

Preconditions validate Preconditions
Specifiy the preconditions that need to be fuifled in Valdate the preconditions that need to be fuifiled in
order to execute a transformation order to execute a transformation
ast/fsrefverificationfrequirements. analysis Validate...

[raca=.]

Add...

Specification of

< >
Preconditions

Invariants validate Invariants
Specifiy the invariants of the ransformation Yaldate the invariants that need to be fulfiled
=stfsrefverificationfrequirementl.anabysis Validate...

=stfsrefverificationfrequirement2.anabysis
Create...
=st/fsrefverificationdaquirement3.anatysis M

astfsrefverificationrequirementd.analysis | | add. .

Specification of
Remaove... K
P N Invariants
Postconditions Validate Postconditions
Specifiy the properties that need to hold after the Yalidate the postconditions of a ransformation
transformation
Validate...
=stfarcfverificationfrequirements. analysis
- Specification of
0
< > Postconditions

Cverview | Transformation verification

Figure 8.3: Definition of a Verification Job with PACO-Checker

running example. In a first step, the source and the target metamodel have to defined as well
as their corresponding models. In this respect a source (test) input model is needed as well
as the target model generated by the transformation specification under test. In a second step,
the contracts which shall be checked for the specified transformation have to be assigned, i.e.,
preconditions, postconditions, and invariants may be added. Thus it is possible to reuse patterns
to verify several transformations, e.g., if the source model should be transformed into several
target models by different transformations, the preconditions may be reused.

8.1.4 Execution of the Verification Job.

Once specified, the verification job can be executed if no inconsistency between the patterns of
the contract is reported by the reasoning component. In order to execute the job, an ATL trans-

180

8.1. PaCo-Checker - PaMoMo Contract-Checker

formation transforms the PAMOMO contract into a QVT model implementing the semantics of
the contract as described in Since there is no execution engine available to execute
QVT Relations on the basis of its abstract syntax, the QVT concrete, textual syntax has to be
produced by means of a model-to-text transformation. For this, PACO-checker makes use of the
template-based language XPand!. The resulting QVT Relations code is finally executed by the
ModelMorf QVT Relation engine [149] in checkonly mode. The QVT Relation engine produces
the verification log, providing hints of any error in the transformation logic.

8.1.5 Inspection of Verification Results.

After executing the verification job, the tool produces a verification log. Fig. [8.4]shows to the
right the log generated for the running example, considering the input and output models to
the left. The actual output model was generated by executing the QVT Relations specification
depicted in This log reports that requirements 1-3 are satisfied for these models, but
not requirement 4, which addresses the translation of inherited attributes (as already discussed

in|Section 3.6)).

Test Source Model .l - implements PaMoMo
classes cl:Class) al:Attribute || | o, |--------- >
. attributes == Contracts
isPersistent = false name = ‘name’
name = ‘Person’ type = ‘String’
super subclasses
namespace classes ModelMorf
K classes €2 : Class 2 : Attri
pl: Package —==—=—=—=__ | attributes 7%,
namespace isPersistent = true _% name = ‘registrNo
name = ‘University’ P name = ‘Student’ type = ‘Integer’ [Verification Results 5
namespace super subclasses
classes Execution of Precondition 'NoRedefinedAttrs: precondition succeeded
classes | €3iClass | . .| 23:Attribute | Execution of Invariant ‘Package2Schema:' invariant succeeded
isPersistent = true name = ‘salary’
name = ‘Professor’ type = ‘Integer’ Execution of Invariant 'Class2Table:' invariant succeeded
Execution of Invariant 'Attribute2Column:' invariant succeeded
tables | t1: Table columns col : Column Execution of Invariant TnheritedAttributes:” invariant failed
ﬁ name = ‘name’ Counter example:
name = ‘Person’ Chping Match not found for:
schema =
type = String ="University:Package"
s1:Schema udent:Class”
name = ‘University” tent Ttrue
— i co2 : Column erson:Class”
schema’ J| 12: Table columns ame s registrNo” | pattributes a=" name:Attribute”
tables — . = ot .
name = ‘Student: . . name.name A='name
type = ‘Integer relation "Tnherited Attributes” daes not hald.
Generated Target Model of Transformation to test Verification Log

Figure 8.4: Verification Results of Requirements 1-4 for the Running Example

Additionally, the verification log may be serialized into a verification model, which may then
serve as input for the debugging process (cf. [Section 8.2)). The according metamodel is depicted
in Thereby a VerificationProject holds references the the involved source
and target Metamodels which again hold a reference to the currently used source and target
Models. Furthermore,aVerificationProject stores the Patterns that should be ver-
ified. For this, different roles are provided, cf. VerificationProject.preConditions,
VerificationProject.invariants, and VerificationProject.postCondi-
tions. For every pattern an ErrorTrace may be stored in case the Pattern failed. In

"http://wiki.eclipse.org/Xpand

181

8. PROTOTYPE IMPLEMENTATION

order to allow for re-enactment of the transformation during debugging (cf. below) also a ref-
erence to the according DomainPattern stemming from the QVT Relations metamodels is
provided, i.e., it is possible the store the according bindings.

VerificationProject |4-2reconditions 0.* Pattern
invariants 0.*
&-2ostConditions 0.*| fileName : String
L 2
¢ ¢
sourceMM targetMM errorTrace
0.1 0.1 0.1
Metamodel ErrorTrace
fileName : String fileName : String
model0 pattern
0.1 1.1
DomainPattern
Model (from QVT Relations)
fileName : String

Figure 8.5: Metamodel of Verification Log

8.2 DEBUT - DEBUgger for Transformations

fter discussing the prototypical implementation of the PACO-Checker tool for the spec-

ification and execution of PAMOMO contracts, this section elaborates on the DEBUT
prototype, which implements the proposed runtime model. Furthermore, it builds the basis for
the debugging features, whereby their implementation is discussed afterwards.

8.2.1 Overview on Debut

The DEBUT tool consists of several components in the form of Eclipse plugins, which them-
selves base on the infrastructure provided by the Eclipse Modeling Framework (EMF) and the
Graphical Modeling Framework (GMF). The component diagram depicted in gives an
overview of the provided plugins and their interdependencies (dependencies to base plugins and
external plugins are not shown).

Transformationnet.model. The central point of DEBUT is the realization of the runtime
model, whose implementation is encapsulated in the t ransformationnet .model plugin.
Thereby the implementation of the metamodel follows the metamodel presented in
Additionally, the proposed OCL invariants, e.g., to check inheritance constraints as well as the
constraints presented in[Section 7.1] have been accordingly implemented.

Transformationnet.edit. These plugin serves as a controller between the model and the
clients that want to edit a Transformation Net and is generated by the EMF infrastructure.

Transformationnet.diagram. In order to provide a concrete visual syntax, a GMF based
visual editor has been implemented that allows to visualize and edit according Transformation
Nets. A screenshot thereof is depicted in[Fig. 8.7]

182

8.2. DEBUT - DEBUgger for Transformations

Transformationnet.diagram.ui. This plugin provides user interface components in order to
conveniently create or edit Transformation Nets, e.g., custom property sheets, as well as dialogs
and wizards to edit a Transformation Net.

Transformationnet.debugging. The debugging features of the Transformation Net are en-
capsulated within this plugin, e.g., the definition of breakpoints and the predefined OCL expres-
sions for debugging backwards in time.

Transformationnet.debugging.ui. In order to separate the debugging logic from its con-
crete visualization, this plugin provides the necessary user interface components for the debug-
ging process, €.g., context menu entries or user interface components for the visualization of the
history.

Transformationnet.adapter. This plugin provides a basic infrastructure in order to be able
to load source and target metamodels and models from existing files. In this respect, an extension
point is provided, that allows to implement a specific adapter for a certain meta-metamodel. The
prototype provides adapters for Ecore, XML and OWL (encapsulated in according plugins, as
can be seen in[Fig. 8.6). Additional meta-metamodels may be supported by providing a specific
implementation of the extension point.

Transformationnet.bridge. In order to be able to debug transformation logics specified in
declarative model-to-model transformation languages, bridges between the according transfor-
mation language and the Transformation Net formalism are needed, i.e., transformation speci-
fications in a certain transformation language should be represented in the Transformation Net
formalism. In this respect these plugins encapsulate commonalities between bridges to different
transformation languages and specify an extension point to ease the integration of bridges to
specific transformation languages. In the current prototype, bridges for QVT Relations and for
Mapping Operators (MOps) [86], which have been developed throughout the TROPIC project,

g transformationnet.diagram.ui
T

transformationnet.debugging.ui f---- % transformationnet.diagram | ---= E transformationnet.edit
| |
'

0 transformationnet.ocl

<_________
<____

_____________ A
v L
gtransformationnet.debugging --------- g transformationnet.model SCEEEE T g transformationnet.cpn
A N

AN

L L
transformationnet.adapter.ecore transformationnet.adapter.xml| g transformationnet.bridge.qvt
transformationnet.adapter.ow! Etransformationnet.bridgeApamomo

Figure 8.6: Components of the DEBUT prototype

g transformationnet.bridge.mops

_____________>
>
>

183

8. PROTOTYPE IMPLEMENTATION

= Resource - CD2ER/transfor
File Edit Diagramm Navi

Net/cd_er.mops_diagram - Ecipse Pltform o s
Search Project Mylayout Run Window Help

e By The = 0505 i oo @ot o Initialization

begcet o B | A s || B w | - o] 100% < | 51 &1 LoadRHS MM LoadLHSMM X 2 5 © and Execution
[Projektexplorer 57 = 0|8 cdecore | &) erccore cd_ermops_diagram £
8% o~
= CD2ER
Source MM
and Model
| Colurn
e
= 4 ({oid=modelElement}) the B:aurv’ms et
Eoretng SN Grotte]_=0)| > .“"‘“.‘. + (oid=modeEiament) = o
f Eil 00 F @ ClossInPort
= T . T T G @ AtibuteInPor
i _F eoe® ® rscencen
® Attribute Out
Outline View Toolpalette ® oot

® Context OutPor

v |eMops

Figure 8.7: Screenshot of DEBUT

are provided. The main task of bridges is to provide a (bidirectional) transformation between
the Transformation Net formalism and the according transformation language. For details on
the provided bridges, especially concerning the included transformations, the reader is referred
to

Transformationnet.cpn. The compilation of Transformation Nets to CPNs is encapsulated
within this plugin. It makes thereby use of the ASAP and Access/CPN framework [163}/164]],
which provides on the one hand a simulator component that is able to execute CPNs. It thereby
makes use of the de-facto standard tool for creating, editing and simulating CPNs being CPN
Tools. On the other hand, a PNML type for CPNs is provided by means of an EMF metamodel
which is used as a target metamodel for the compilation of Transformation Nets into CPNs (as
discussed in [Chapter 6)).

Transformationnet.ocl. In order to be able to evaluate OCL expressions within the CPN
execution engine, the prototype makes use of the Comms/CPN library [48]] provided by CPN
Tools. This library allows for remote calls during execution of a CPN. Thus, the library enables
to use a server which is able to evaluate the OCL expression and to send back the actual result of
the evaluated expressions. The actual implementation of the server is implemented within this
pluging. The server parses incoming requests and loads the according metamodels and models
in order to evaluate the OCL expression.

8.2.2 Modes of Transformation Nets

The implemented prototype supports three different modes being (i) raw, to specify Transforma-
tion Nets, (ii) transformation-based to derive Transformation Nets from existing transformation
specifications, and (iii) contract-based to derive a Transformation Net from the verifcation log

184

8.2. DEBUT - DEBUgger for Transformations

of PAC0O-Checker, whereby one mode has to be chosen when creating a new Transformation
Net. The different modes are described in detail in the following.

Raw Mode

Transformation Nets not only provide a runtime model for model-to-model transformation lan-
guages, but they could also be used as a transformation language themselves, which is called
raw mode. In this respect, it would be possible to specify a transformation logic by means of
transitions. In a first step, the source and target metamodels as well as a source test model has
to be provided. It is possible to create the source and target places representing the according
metamodels as well as the tokens stemming from the source model by importing an existing
metamodel or model (cf. initialization buttons in [Fig. 8.7). Thereby, adapters are used which
encapsulate the details on how to import a certain metamodel or model (cf. [Fig. 8.8). As de-
scribed in [Section 4.3| not only Ecore based metamodels and models are supported but also
those represented in XML or OWL. Further meta-metamodel formats can be supported by pro-
viding an according new adapter. In order to ease the specification of new adapters and the
integration into the existing framework, according Eclipse extensions point are provided (named
SourceAdapter and TargetAdapter). Furthermore, common base classes are provided
which may be extended. Additionally, it is also possible to manually create the metamodel and
the model by dragging according places and tokens from the toolpalette to the Transformation
Net. These manually specified metamodels and models may then be exported to any of the
supported formats. After having specified the metamodels and the source model, the transfor-
mation designer may start to create the actual transformation specification by means of a system
of interacting transitions. Thereby, the transformation designer may make use of the provided
debugging facilities already in the implementation phase.

Transformation Net

Source) source) \ TL,:;:fnrmauu Target) .
Metamodel imports/exports = imports/exports Metamodel
Source uses - gges Transitions Y F— : f

I ' irconforms
/ New Target

i;’z:;ij imports/exports creates

Figure 8.8: Transformation Nets Applied in Raw Mode

Transformation-Based Mode

Besides raw mode, the DEBUT prototype may also be used in the so-called transformation-
based mode. This mode supports the debugging of declarative model-to-model transformation
languages based on the runtime model. In order to achieve this, the transformation-based mode
provides bridges to certain transformation languages (cf. [Fig. 8.9). The main task of a bridge
is to define a transformation from the actual transformation language to the Transformation Net
formalism. In the current prototype, such transformations are implemented for QVT Relations

185

8. PROTOTYPE IMPLEMENTATION

and for MOps. For details on the translation the reader is referred to In case that
changes in the Transformation Net should be propagated back to the transformation specifica-
tion, e.g., when fixing a failure, an additional transformation is needed (or a single bidirectional
one). The current prototype specifies separate transformations for every supported language,
i.e., transformations from QVT Relations and MOps to Transformation Nets as well as the other
way round are provided. Additionally, constraints may be defined in order to specify which el-
ements of a transformation language may be edited, added and deleted in Transformation Nets.
In this respect it is possible to constrain the possible changes in Transformation Nets, i.e., it may
be forbidden to delete a module in Transformation Nets which represents a relation of QVT (cf.
[Section 9.2)). Finally, a bridge encapsulates according adapters in order to be able to import and
export the involved metamodels and models.

Target

Source | | Transformation Specification
Metamodel = uses Metamodel

f
I
rconforms
'

conformsi —/ 1 :
Model uses QVT Relations MOps Model

QVT Bridge MOps Bridge
Source Target QVT2TN TN2QVT Constraints Source Target MOps2TN TN2MOps Constraints
Adapter | Adapter @ Transformation @ Transformation Adapter | Adapter = Transformation @ Transformation

imports/exports

Transformation Net

Source % { Transformation Target
(ouree) logic)

Places Transitions

Figure 8.9: Transformation Nets Applied in Transformation-Based Mode

Contract-Based Mode

Last but not least, Transformation Nets provide the so-called contract-based mode which allows
to combine PACO-Checker and DEBUT. PAC0O-Checker thereby produces a verification log as
aresult which can then be imported into DEBUT by an according bridge (cf. [Fig. 8.10). Besides
an error-trace, i.e., which source elements did not fulfill a certain contract, the verification log
additionally contains references to the involved metamodels, the test input model as well as the
transformation specification itself. The verification log is parsed by the Verification Log
Adapter component. Equally to the transformation-based mode, in a first step the metamod-
els and the models are loaded and the transformation which translates the actual transformation
specification to Transformation Nets is executed, e.g., a QVT Relations transformation specifi-
cation is transformed to Transformation Nets. In a second step, the resulting Transformation Net
is executed. Finally, the Transformation Net is initialized for re-enactment (cf. [Section 7.3)), i.e.,

186

8.2. DEBUT - DEBUgger for Transformations

PaCo-Checker

Transformation specification
Meta P Meta

model

L__uses generates /// \\\conforms
Test S 4 12 ¢ > 5
Model QVT Relations enerated | ¥ xpecte

TROPIC Model |= | Model
Q generates
Verification
Log
G reads
PaMoMo Bridge
Mops Bridge
Verification
QVT Bridge Log Adapter
Source Target QVT2TN TN2QVT Constraints

Adapter = Adapter = Transformation = Transformation

G generates

Transformation Net

(Source) " ¢ Transformation % [Target
.. Logic g

Places Transitions
‘® ®

Figure 8.10: Transformation Nets Applied in Contract-Based Mode

the tokens which represent the model elements of the error trace are marked and the histories of
the according transitions are reset in order to set a starting point for debugging.

8.2.3 Integration of CPN Tools into DEBUT

In order to be able to execute the specified Transformation Nets, they are compiled to CPNs
as discussed in [Chapter 6 [Fig. 8.11] shows an overview on the technical realization thereof,
mainly consisting of (i) the compilation of Transformation Nets to CPNs, (ii) the integration of
the ASAP framework in order to execute the compiled CPN, and (iii) the evaluation of OCL
constraints within CPN Tools.

Implementation of Compilation. As already mentioned, the ASAP framework provides a
PNML type to represent the specifics of CPNs. For this, an EMF implementation is provided. In
order to be able to represent the simulation results also in Transformation Nets, this metamodel
has been extended with references to the according construct(s) in Transformation Nets, e.g., the
CPN metamodel element Transition has been extended with a reference to a Transformation

187

8. PROTOTYPE IMPLEMENTATION

Transformation Net MM PNML MM CPN Tools

Tenifomesenies

communicates | .

=

ASAP framework

A N\ CPN Model
| representationation

;
H
H
H
SML '
interface | < -1

conforms to

Generate
model code,

H 4

»

I

I

' ' A

conforms to | H CPN V communicates
I '

Simulator
Comms/CPN

A EMF
/

__Transformation Net PNML Model

A .
1) communicates
\%

=N ; dat load E
| £ ey D e : ocL Engine/
; G updates__________! \\<jf/’/‘/

——

Figure 8.11: Integration of CPN Tools into DEBUT

Net Transition, which is the equivalent concept. In order to not “pollute” the original meta-
model, subclasses of the to be extended concepts have been provided containing the according
references. The compilation itself is written in Java due to the fact that, on the one hand complex
calculations were needed, which would require imperative code anyway. On the other hand, an
extensive and efficiently as well as easy accessible trace model is required, i.e., numerous meth-
ods are provided that provide flexible means to query the trace model. Finally, flattening of
inheriting transitions would result in complex and hard to understand transformation code.

shows the process of the compilation. In the initialization phase a PetriNet
instance is created and it’s root page is added. Furthermore, the color-sets as well as the required
ML functions are defined. The actual compilation of Transformation Nets into CPN starts with
the compilation of every TNPlace instance into a corresponding Place instance in CPN.
These places are added to the root page of the Petri Net. After having compiled the places, the
according objects, values and links are compiled to establish the initial markings of the places.
Thereby, the tokens contained in places of a subtype are also considered in the marking of the
supertype to allow for type substitutability, as already described in

After having compiled the static parts of Transformation Nets, the dynamic parts are com-
piled. In a first step, for every module in a Transformation Net, according substitution transitions
and subpages are created in the corresponding CPN. Afterwards, the inheritance hierarchy be-
tween transitions in Transformation Nets is flattened, following the principles presented in
The flattened Transition instances are compiled into CPN Transition instances
and then added to the according page in the CPN. Finally, the patterns and arcs in Transformation
Nets need to be transformed to according arcs and arc inscriptions. In case the pattern belongs
to a transition which is contained in a module, additionally according ports are created and the
assignments between ports and sockets are established (as discussed in[Section 6.5)).

ASAP Framework. The ASAP framework not only provides an Ecore based implementa-
tion of a PNML type for CPNs but additionally encapsulates components to simulate a CPN and

Compilation of Compilation Compilation Flatt::;:g of Compilation of Compilation

Metamodels of Models of Modules X Transitions of Patterns
Inheritance and Arcs

Intialization

Figure 8.12: Compilation Process

188

1
2

8.2. DEBUT - DEBUgger for Transformations

to accomplish state space analysis (cf. CPN simulator and Standard Meta Language (SML) inter-
face in[Fig. 8.TT). Basically, the framework provides an interface to CPN Tools and encapsulates
the communication details, e.g., serialization of objects. In this respect an extensive framework
is provided that allows to access the functionalities of CPN Tools from a Java program. After
having compiled a Transformation Net to CPN the ASAP framework is used to check the CPN,
i.e., it is analyzed if the resulting CPN is syntactically correct. If the net is correct, the simulator
component may be used in order to achieve all enabled transitions. Since a CPN Transition
instance contains a reference to its corresponding Transformation Net Transition instance,
it is possible to highlight the enabled transitions also in the Transformation Net. Furthermore,
the ASAP simulator provides means to either fire a single transition or to fire a certain number
of transitions in a non-deterministic manner. If a transition fires, the markings of the according
source and target places change. Therefore, the marking of these places is analyzed in order to
accordingly update the tokens of the Transformation Nets. In this respect, the simulation of the
Transformation Net is enabled.

Evaluation of OCL Constraints and Functions. In order to enable the evaluation of OCL
expressions within CPNs, the prototype makes use of the Comms/CPN library [48]]. This library
allows for remote calls, which are used to evaluate the OCL expressions with the help of a
remote server. In a first step the specified conditions and functions in Transformation Nets
are specified in the guard in case of conditions or arc inscription in case of functions in CPN.
Thereby it is assumed that OCL queries may be only specified on basis of the source metamodel,
which is accessed in a read-only manner only. Since an OCL engine requires the according
objects for the evaluation, in a first step currently bounded ids of the object are appended to
the OCL expression. For example, the condition in |Listing 8.1| requires the id of the bound
modelElement as context (denoted by the @model1Element in the expression). Therefore,
the according id bound to the variable modelElement is appended. Since several contexts
are allowed, the according element is prefixed by its name followed by a colon. The OCLEval
function sends the string via a socket connection to the server. If the server receives a message,
it is first parsed, i.e., the actual condition or function is separated from the ids of the objects. The
ids are then used to lookup the actual objects which are used to set the actual context objects for
evaluating the OCL expression. The prototype makes then use of the Eclipse OCL framework
to evaluate the expression. The evaluation result is returned to the CPN for further processing,
e.g., enabling a transition if a condition evaluates to true.

Listing 8.1: Evaluation of OCL Condition

—bind a token to an OCL condition
OCLEval(‘ ‘[@modelElement]. isPersistent | modelElement:’’*modelElement)]

8.2.4 Implementation of Debugging Features

After the general architecture of the DEBUT prototype has been described, this subsection gives
an overview of the implementation of the debugging mechanisms presented in[Chapter 7| In this
respect, first the implementation of the mechanisms to detect code smells is presented followed
by mechanisms for simulation-based debugging. Finally, the implementation of query-based
and property-based debugging mechanisms is discussed.

189

8. PROTOTYPE IMPLEMENTATION

Implementation of Mechanisms to Detect Code-Smells. In order to detect code-smells,
OCL invariants are provided, which have already been presented in If the Trans-
formation Net is compiled to CPNs these invariants are automatically evaluated. The results are
presented in the so-called Code-Smells View (cf. [Fig. 8.13)). In the example depicted in
the transformation designer can see that the source places Package and Attribute
and the target places Schema and Column are not part of the transformation specification.

#] cd.ecore #] er.ecore “| cd_enmops_diagram 3 =B
* | 58 Palette o3
NCEcyw!
(= Metamodel @
£ Class
= Atrtribute
IS S T
(= Model @
@ Object
= @ Value
-0l
(= Transformati.. <
5[} Transition
@ ObjectPattern
DT T, BT
(= Modules @
E3 Module
@ Class In Port
PO S R
(&= MOps @

= Copier

= Vertical Merger

< n G S 1 2

¥4 Tasks | & Konsole (£ Problems | ™1 Code Smells =g

Source Metamodel Coverage - The following classes are not part of the transformatian: .
Peckage Code-Smells View
Attribute

Target Metamodel Coverage - The following classes are not part of the transformation:

Schemna

Column

Figure 8.13: Screenshot of Mechanisms to Detect Code-Smells

Implementation of Simulation-Based Debugging Mechanisms. As described above, the
ASAP framework allows to integrate CPN Tools into a Java application. To allow the trans-
formation designer to compile the specified Transformation Net to a CPN, the editor’s toolbar
provides an according entry (cf. [Fig. 8:T4). The simulator component of the ASAP framework
allows to execute a CPN, whereby the according results are visualized in the corresponding
Transformation Net, i.e., the enabled transitions are highlighted in green, as can be seen in
During debugging the transformation designer may fire any of the currently enabled
transitions by selecting the according context-menu entry. Furthermore, it is possible to select a
possible binding in order to select specific model elements to transform, as depicted in[Fig. 8.14]
The editor’s toolbox additionally allows the transformation designer to execute the transforma-
tion, i.e., the transformation is executed until it terminates or a breakpoint is reached. Finally,
it is possible to clear all tokens and to load a new model or the revert the transformation, i.e.,
all produced tokens as well as the histories of the transitions are cleared and the transformation
specification is set back to its initial state.

Implementation of Query-Based Debugging Mechanisms. Since the implementation of
Transformation Nets follows the model driven approach, i.e., a transformation specification con-
forms to the Transformation Net metamodel, OCL can be used for debugging as explained in

190

8.2. DEBUT - DEBUgger for Transformations

BI| A~ o~ g —|@] -8t O~ | 0% < | 5) LoadRHS MM LosaLisMM- X 5 [©
‘ Execute
&) cdecore | erecore |) cd_ermops_diagram 63 . B defaultmops | Delete Tokens 5]
- A b
. Compile Y
5 Modeltlament 4 ({sid=fodelElement) 4 ({oid=modelElem i B <
—— Revert Tokens =err——= @ Melamadel
s 4s_Hnicl=modelElemeht S— :Stiing 5 Class
7 Enabled transition o @ anibute
[] - — Schema o Reference Place
= Reference
]
Select a desired binding: “% Inheitance
= Model P
Pack
[Fackage £ Column @ Object
Available Bindings: = typestring @ Value
h - v tables Link
10600356 1D100004 341 st = 1], -3 = Class’, name = 10, nameVal = ‘Professer | = @un
1D10000366.1D10000434f st = [1, modelElement = 3, modelElementVal = *Class” =5, nameVal = “Student” } @ Contest Token
o classes = namespa| | ID10000366 1010000434 hist = [], modelElement = 6, modelElementVal = *Cl 8, nameVal = "Person” |
1010000366 1010000434 hist = [], modelElement = 11, modelElementVal me = 13, nameVal = "salary" } (= Transformati...
. 1D10000366.1D10000434{ hist = [], modelElement = 1, madelElementV: ckage”. name = 2, nameVal = "University” } A2 Transi
ID10000366.1D10000434{ hist = [], modelElement = 17, modelElement) ttribute”, name = 18, nameVal = "registrNo" } fansition
1010000366 1010000434 hist = [], modelElement = 14, modelElementVal = "Attribute’, name = 16, nameVal = “name" } @ ObjectPattern
Lsr—FTebie e columns @ AttributePattem
@ ReferencePatte...
o superases)
. . = *»l @ ContextPattern
= 7 AT / A
e Possible bindings
(Y) 8 © Contet Place
v subClasses ! 4, Transition
o = isPersistent:Boclean & 4 ({oid=modelElement,val=isPersistent]) Inheritance
- e E—
| Modules
O i]+ |=Mops

Figure 8.14: Screenshot of Simulation-Based Debugging Mechanisms

In this respect, query-based debugging is enabled on the one hand by predefined
OCL expressions, which are defined in terms of methods at the according metamodel element in
order to reduce complexity and to provide the transformation designers with common debugging

4

self.getCreator()|

OCL Expression

#) cdecore | & erecore | 2 *cd_ermops_diagram 52 =5
-
— r
=T 4 gorimpoiatamanty | BBMEL] | 4 gosimmodaiBamanty [Sehamatiamen:
= ramesirng ol st e L o Metemodel |
& namatyy
Co%%% | / B Clas
P + .
A j o Atrtribute
Selected OCL Context = Reference Place
H Packoge | ashmn (= Model L
'—I L = ® obicc:
s e iinama e @ Value
| 000 »
— St e ®Link_
... .“ \7; .. .in.) | = Transformati... <o
I 3 [} Transition
oo iuTE il i i ° [Iee prshumns @ ObjectPattern
—— |— 000" | pEEmERRT @ AttributePattern
@ - 1 - = Modules @
E3 Module
7S [y s — % ok mmodiaiBlamant valisheritentl) ® ClassIn Port
—
T aea . @ Attrigute In Port
(= MOps @
=y Copier
| =p Vertical Merger
. ‘ |
) Tasks | Bl Konsole 53 . [5/ Problems| [Code Sme\lq =} Elgenschaf‘terq =8
Interactive OCL Bhoe ~ M ~ B LG X|# 8-~ =
OCL Console i
Results:
Transition MEI... @

Figure 8.15: Screenshot of Query-Based Debugging Mechanisms

191

8. PROTOTYPE IMPLEMENTATION

queries. On the other, these predefined methods may be combined with arbitrary OCL expres-
sions in order to provide flexible means for backwards in time debugging and to not restrict the
transformation designer to a limited amount of debugging questions. To specify the queries, the
OCL console, which is provided by the Eclipse OCL framework, is used. In order to set the
context of an OCL expression, arbitrary elements may be selected in the editor. In the example
depicted in the token contained in the place SchemaElement is selected. The OCL
console depicted at the bottom of [Fig. 8.15]is then used to query the Transition instance,
which created the according token by calling the predefined method getCreator ().

Implementation of Property-Based Debugging Mechanisms. The ASAP framework not
only allows to simulate a CPN but also provides possibilities to create the state space of a CPN
in order to calculate behavioral properties, e.g., liveness properties or boundedness properties,
as discussed in For this, arbitrary ML statements may be executed. Consequently,
statements are implemented that first calculate the state space of the underlying CPN. Further-
more, ML statements are implemented that query the state space. As a first step it is checked
if the state space contains a dead state, i.e., if there exists a state without any outgoing arcs.
If such a state is found, the according marking may be parsed and accordingly visualized in
Transformation Nets. Furthermore, the DEBUT prototype allows to check for confluence of the
specification, i.e., it is first checked if there exists a single home state and if this home state is
equal to the dead state. As a further property it is possible to check for dead transition instances,
i.e., if a transition has never been enabled. The results of the state space analysis are summarized
in an according view as can be seen at the bottom of

] cd.ecore] er.ecore |~ cd_ermops_diagram %1 =0
* | 5% Palette
heaam-
= Metamodel £
[Class
= Atrtribute
e DT Dlac
= Model £
@ Object
”;6 =l| @vale
P
| -_I (= Transformati... <
o e e +{[; Transition
ooe 000 @ @ ObjectPattern
I N A .
l = Modules @
o \—|_\‘ I_ 000 ST :Eodu}lep)
assIn Po
'. | e N AT T D
_E i“ ; = MOps @
;) & waristentockaan [adeEieant valmParEtant] «p Copier
E as e - - =y Vertical Merger
d i C SR
] Tasks | & Konsole L‘;,_ Problems | [Transformation Properties 2 = Eigenschaften =0

Properties of Transformation Specification:

Confluent: yes Properties View
Mumber of Dead Transitions: 0

Figure 8.16: Screenshot of Property-Based Debugging Mechanisms

192

8.3. Summary

8.3 Summary

his chapter provided an overview of the implementation of the prototype. First, the im-

plementation of the PACO-Checker tool was discussed which allows the specification of
PAMOMO contracts, as well as their compilation and execution in QVT Relations in order to
test a transformation specification against contracts. As a result, a verification log is provided
which includes an error trace in case a certain contract is not fulfilled. Second, the DEBUT pro-
totype was introduced, which provides an implementation of the Transformation Net runtime
model and provides a graphical visual syntax in the form of an Eclipse editor in order to specify
and edit Transformation Nets. Furthermore, the debugging features have been integrated into
this editor. In order to benefit from the execution engine and the state space analysis methods of
CPN Tools, the integration of the ASAP framework into the prototype was shortly discussed.

193

Chapter 9

Evaluation

If your experiment needs statistics,
then you ought to have done a better experiment.

— Ernest Rutherford
Contents
9.1 Evaluation of PaMoMo Contracts] 195
9.2 Evaluation of Runtime Modell 203
[9.3 Evaluation of Debugging Features| 221
.................................... 233

fter having presented the concepts developed throughout the thesis, this chapter evaluates

and critically reflects on them. The evaluation is structured along the three main contri-
butions of the thesis. Thus, first, PAMOMO as a declarative language to specify visual trans-
formation contracts is evaluated by means of case studies from different domains as well as a
comparison to related work. Second, Transformation Nets as a runtime model for model trans-
formations are evaluated. It is shown how transformations expressed using QVT Relations or the
Mapping Operator (MOps) Language, a mapping language which was developed throughout the
TROPIC project, can be represented by means of Transformation Net concepts in order to show
the applicability and adequacy of the proposed runtime model. Finally, the debugging features
are evaluated, again by means of a case study and a comparison to related work.

9.1 Evaluation of PaMoMo Contracts

n order to illustrate the usefulness of contracts, this section presents several case studies which
were conducted in three application domains. The first one deals with the verification of the

195

9. EVALUATION

transformation from PAMOMO into QVT Relations presented in this thesis. The second one is
concerned with the verification of a complex transformation from a process-interaction simula-
tion language [44] in the area of performance evaluation into CPNs [72]]. Finally, the third one
presents an application of contracts for third-party transformations, in particular the generation
of visual editors from GMF models are tackled. These case studies show the versatility of the
approach by the automated verification of an ATL transformation, a QVT Relations transforma-
tion, and the safe execution of a third party transformation (from which the source code is not
available). In each case, the use of different features of PAMOMO are stressed.

9.1.1 Using PAMOMO to Verify its own Translation into QVT Relations

In this subsection, some patterns of the contract that helped in verifying the transformation from
PAMOMO into QVT Relations are shown. The metamodels of both languages are depicted
in Fig. 0.1 The PAMOMO has been already described in [Subsection 3.2.5] A transforma-
tion (cf. class RelationTransformation specified QVT Relation makes use of several
relations (cf. class Relation) which are defined between different metamodels (cf. class
TypedMode). ARelationisconnected to its metamodel by means of aRelat ionDomain,
which contains so-called a DomainPattern. A DomainPattern is used to describe the
actual elements that match for certain elements in the source model (checkonly domain) or pro-
duce certain elements in the target model (enforce domain). The configuration of the elements
is described by means of the class Ob ject TemplateExp and PropertyTemplateItem.
With this example it is stressed that PAMOMO is independent from the language used to realize
the transformations, since whereas in the running example a QVT Relations transformation is
verified, here the translation was implemented with ATL.

enablingCondition 0..1

. i i TypedModel
disablingCondition 0.*<] Constr p RelationTransformation [name : Siring
i i o i il name : String B
| Specification |
name : String rule pedaiis oy lsbédMode\
sourceMMAlias : String sourceGraph | targetGraph N
targetMMAlias : String i el referredRel 0.
0 Graph 0.1 Relation
MMaAlias : String —{ name : String N RelationDomain
0.* isTopLevel : Bool domain name : String
objects refersTo

isCheckable : Bool
isEnforceable : Bool

pattern
0.1

Object
name : String | 1.1
type : String

when where
0.1 0.1

Pattern | condition
Expression.

patterns
1.*

Pattern
name : String
OCLcondition : String

OclExpression

Predicate
[

* predicate bindsTo
L 0.1 Variable kil
0.0 template
| PositivePattern H NegativePattern |

0.1 name : String 0.1

type

Attribute
variable : String
value : String
type : String

allExp | ‘ | | ObjectTemplateExp

1

PropertyTemplateltem oL+ part

(a) PaMoMo metamodel (b) QVT Relations metamodel

Figure 9.1: PAMOMO (left) and QVT-Relations (right) metamodels

The contract for the transformation contains invariants and postconditions, but it does not
contain preconditions because the translation handles all features of PAMOMO. As an example,
Fig. 0.2] shows an invariant addressing the translation of pre- and postconditions. These are

196

9.1. Evaluation of PaAMoMo Contracts

patterns with either the source or target graphs empty (i.e., the size of the set of objects either
in the source graph or the target graph is 0, as checked by the condition). These patterns should
be transformed into relations with two domains (since this is required by the used Moflon QVT
Relations engine) but referring to the same TypedModel instance, as shown by the target graph
object.

P(ConditionsToRelationsWithPseudodomain)
PaMoMo t QVT-Relations

:Pattern :Relation

name=Z name=Z

constraint .
domain

| :ConstraintTripleGraph |

i | :RelationDomain |

source target | domain

| :RelationDomain

| :Graph | | :Graph —
/7 N / N

] :TypedModel

Vs N / N
|(| :Object |\I |(| :Object |\ i

1
sourceObjs |

Graph Graph !

|
vaer ol

sourceObjs.size =0 OR targetObjs.size =0

Figure 9.2: A Positive Invariant for PAMOMO-to-QVT-Relations

Fig. shows another invariant stating that positive patterns of any type without enabling
or disabling conditions (checked by the two disabling conditions) are transformed into a unique
relation. Thus, the generated relation cannot invoke other relations in its where clause (i.e., the
shown invariant) or when clause (checked by another similar invariant).

Finally, Fig. 0.4 shows two postconditions checking that all generated relation domains are

N(NoEnab/ingCondition)_

PaMoMo : QVT—R.? N(PositivePatternTo1Relation)
| p:PositivePattern | PaMoMo EQVT-ReIat|ons
enabling :> p:PositivePattern | -Relation
Condition f name=Z i | name=z

| :ConstraintTripleGraph |

rule
:Pattern

N(NoDisablingCondition_)

PaMoMo QuT-R. when
| p:PositivePattern | t | :Predicate
disablin i
Conditiogn j i predicate
| :ConstraintTripleGraph | : | :RelationCallExp
: J A i)

Figure 9.3: A Negative Invariant for PAMOMO0-to-QVT-Relations

197

9. EVALUATION

N(NoChainOfWhen)
PaM...| QVT-Relations
| :Relation ‘ :Relation |
when § wheni
: o/
P(Domains) P(AreCheckonly) . [attern | & [:Pattern |
' v P q g .
PaM...; QVT-Relations PaM... | QVT-Relations ; pred'catei 3 pred'cate\L
: - - : - - : | :Predicate ‘ Y | :Predicate ‘
i :RelationDomain :> i | r:RelationDomain L E =
; i icondition condition
: i | isCheckable=true {Expression Expression
' | | isEnforceable=false |:Re|ationCaIIExp| |:Re|ationCaIIExp|

Figure 9.4: Two Postconditions for PAMOMO-to-QVT-Relations

checkonly (left), and that there are no chains of when relation invocations (right). Both are
constraints of the models generated by the transformation.

9.1.2 From a Process-Interaction Language into Timed Coloured Petri Nets

The second case study deals with the translation from a process-interaction simulation lan-
guage [44] in the area of performance evaluation into CPNs [72]. These two metamodels ex-
hibited large heterogeneities and therefore it should be evaluated how invariants may cope with
this situation. For modeling systems with the aim of simulating their performance, a language
in the process-interaction simulation style [44] can be used. In this kind of languages, systems
are modeled by processes made of interconnected blocks through which transactions flow.

Fig. shows a process-interaction model. The two blocks to the left are generators of
transactions. In particular, the upper left block produces a transaction of type 1 at each [10, 20]
time steps, with a transaction length having a uniform probability between [120, 150]. Similarly,
the lower left block produces a transaction of type 2 at each [12,24] time steps, with a length
having a uniform probability between [140, 180]. Both kinds of transactions arrive at the ad-
vance block (labeled “A”), which models a process with a delay given by a uniform probability
in the interval [2, 5]. After this delay, transactions reach a server block with a parallelism of 3,
meaning that the server can attend 3 transactions at the same time. Moreover, the server has
a delay between [4,5]. Then, a type switch block (labeled “type”) selects the transactions de-
pending on their type. Transactions of type 1 are routed onto a server with parallelism 2, while

[2*len,5%Ien]
len=[140,180]

Figure 9.5: A Process-Interaction Model

198

9.1. Evaluation of PaAMoMo Contracts

Simulation
Resource) Py title:String +blocks | * tinl=
-type:Strin: +resources out
ype:Sting Block
N . ¥+ consume D -label:String
+ produce <}
ResourceManager Generator Advance Server Terminate Switch Path
+ paths
-num:int -num:int -delay_min:double -par:int -count:int -exp:String
-type:String -delay_max:double | | -delay_min:int 1.*
-IAT_min:double -delay_max:int
-IAT_max:double
-length_min:String | TypeSwitch | | SizeSwitch |
-length_max:String

Figure 9.6: Metamodel of the Process-Interaction Language

transactions of type 2 are routed into a server with parallelism 3. Finally, transactions finish in a
terminate block (which counts 1 each time a transaction arrives). Altogether, this model repre-
sents a client/server system that accepts two kinds of requests, processed on different servers.

Fig.[0.6]shows the metamodel for this process-interaction language. Thus, a Simulation
model is made of Blocks and Resources. Block is an abstract class subclassed for each
different kind of block.

In order to simulate and analyse process-interaction models, a transformation of these mod-
els into Coloured Petri Nets (CPNs) [72] has been built, which allows using tools like CPN Tools
for this task. Please note that the example also makes use of the fact that CPN Tools supports
time by attaching timestamps to tokens, which can be incremented by the transitions. PAMOMO
has been used to express different requirements for this transformation. Fig. shows some of
the specified invariants. The one to the left expresses how parallel servers should be translated
into CPNs. In particular, if the parallelism of the server is P, then we need to replicate P times
the CPN structure inside the set of servers to the right. This is indicated by the expression
servers.size () =P, i.e., the whole structure has to exist P times. The input and output
blocks of the parallel server can be of any type, hence the invariant uses objects of type Block
(represented by dotted rectangles) for them, to mean “any subclass of B1ock”. Moreover, the
labels LS and LT of these two blocks are used to locate the CPN places generated from them.

The upper right of Fig. shows another invariant formalizing the translation of switches
(both TypeSwitch and SizeSwitch). They should be transformed into places with as many
output arcs as paths leaving from the switch. Finally, the bottom right of the figure shows
an invariant describing the relation between the number of resources produced by a resource
manager (with label RM) and the number of arcs that the corresponding transition should map
to the place created for the resource. In particular, a correct transformation should produce as
many arcs as the attribute num of the resource manager.

Altogether, in this complex case study the invariants made extensively use of sets. This is
due to the fact that both metamodels exhibited large heterogeneities. In particular, it was often

199

9. EVALUATION

P(ParallelServer) P(SwitchOutPaths)
Process- | CPNs !
Interaction : Transaction

switch.size()=out.size()

P(ResourceManagerProduces)

Transaction

Declarations:
AVAILX=int with MIN..MAX; type=R

servers.size()=P fun DELS()=AVAILX.ran(); n=arcs.size()

Figure 9.7: Invariants for: Translation of Parallel Servers (left), Translation of Switches (upper
right), Translation of Number of Resources Produced by Resource Managers (bottom right)

the case that an attribute in the process-interaction language (like the parallelism in servers, or
the resources produced by resource managers) had to be translated into a number of replicated
structures in the CPN metamodel. Here, it can be benefited from the fact that patterns are declar-
ative, so that complex structures can be easily described graphically, as opposed to textually
encoding them using e.g., OCL navigation expressions.

9.1.3 Verification of Graphical Definitions in GMF

The Graphical Modeling Framework (GMF) [54] enables the “rapid” development of environ-
ments for visual languages. The approach taken is to specify different aspects of the editor using
a set of interrelated models. The so-called gmfgraph model has a crucial role as it contains
the specification of the graphical syntax of the language. However, only a tree-based editor is
available for the specification of the figures of the concrete syntax, which is cumbersome and
error prone. Therefore means are needed in order to verify if the specified model is correct. The
gmfgraph model is then used (together with the other models) in a transformation to generate
the so-called gmfgen model which is the basis for the final Java code generation of the editor.
A well-known problem is that if some model does not conform to a set of rules, the code
generation produces erroneous code which may override a previous successful compilation. Al-
though the framework validates some simple preconditions before the translation, like if all fields
have meaningful values, no behavioral semantic contracts are checked. Therefore, designers of

200

9.1. Evaluation of PaAMoMo Contracts

GMF editors could greatly benefit from means to check whether their models conform to the set
of GMF norms that ensure a successful compilation. In the following, contracts are specified for
this purpose and some preconditions are discussed.

Layout constraints. The specifications of figures need to offer a certain Layout, e.g., a
GridLayout providing a row/column oriented alignment. Typically, a complex figure consists
not only of a single figure but also contains child figures, e.g., labels to visualize feature values.
The actual visualization of the children figures can be constrained by means of LayoutData.
However, the type of Layout for a figure, e.g., GridLayout, should correspond to the type
of LayoutData for its children, e.g., GridLayoutData. To check this, the precondition in
Fig. may be used. The enabling condition selects figures with a certain Layout containing
a child figure with some LayoutData. Then, the OCL condition in the precondition checks
the compatibility of the Layout and the LayoutData.

P(FoundLayoutData) P(EnsureCorrectLayoutPata)
0.q VPR GMFGraph {GMFGen GMFGraph | GMFGen
oo 2 omr = |
4 /\ gl:Layout B gl:Layout '
! ! layout children :
GridLayoutData| |BorderLayoutData| * i

T layout

f1:RealFigure

: \’/children
f2:RealFigure

\L layoutData
11:LayoutData

T layout

f1:RealFigure

\Lchi\dren

f2:RealFigure
Shape —
\L layoutData
I1:LayoutData

GridLayout

(g1.0clIsTypeOf(GridLayout) and
I11.oclIsTypeOf(GridLayoutData)) or
(g1.oclIsTypeOf(BorderLayout) and
I11.oclisTypeOf(BorderLayoutData)) or

Extract of GMFGraph Metamodel

Figure 9.8: Precondition Checking Layout Constraints in GMF

Child access constraints. In order to be able to access the children figures of a figure in the
gmfmap model, every FigureDescriptor needs to specify a ChildAccess for every one
of its children. To be able to reuse a figure, e.g., if it is used several times in the concrete syntax,
it is possible to use Nodes assigning a graphical representation to a certain metamodel element.
Hence, if a Node refers not only to a FigureDescriptor but also to some ChildAccess,
then the figure referred by the ChildAccess must be a child of the FigureDescriptor.
In addition, the type of the Node has to correspond to the type of the child figure (e.g., in case
of a DiagramLabel, the type of the child figure must be Lalbel). These two conditions can
be checked by using the precondition shown in Fig.[9.9] The second condition is encoded by the
OCL expression in the pattern.

Hence, this example shows the use of PAMOMO to make explicit certain (non-documented)
assumptions of transformations. Once these assumptions are encoded in the form of precondi-
tions, they can be checked using PACO-Checker in order to avoid errors caused by the GMF
compilation.

Finally, the kind of failures PaMoMo can detect is related to its expressiveness. There are
some limitations concerning the specification of contextual conditions for a given property, as

201

9. EVALUATION

- P(FoundFigureDescriptor) P(EnsureCorrectAccessors)
GMFGraph iGMFGen GMFGraph i{GMFGen
AN] ;
|
" :

d1:DiagramLabel

] —
accessor :

cl:ChildAccess

figure

figure
1

Figure
[aber

accessors 0..%

figure
accessor

0.1 f2:Figure f2:Figure
Childaccess [] []

Extract of GMF Metamodel - f2.0clIsTypeOfiLabel)

Figure 9.9: Precondition Checking Child Access Constraints in GMF

patterns only currently support conjunction of disabling conditions but not disjunction or any
arbitrary boolean formula over disabling conditions, or nested (i.e., recursive) conditions. The
expressiveness of the graphical part of the patterns is limited (less than first-order logic). For
example, the absence of cycles of a given relation cannot be modeled. Nonetheless, in practice,
we have found this expressiveness to be enough to build useful contracts declaring interesting
properties for our transformations.

Regarding the scalability of the approach, it depends on the size of the tested input and output
models as well as on the size of the patterns, as it is relied on a pattern matching mechanism.
Thus, the smaller the models and patterns, the higher the performance. The size or complexity
of the tested transformation implementation is not an issue though.

9.1.4 Comparison to Related Work

Even though the community has spent considerable research on verification and testing of trans-
formations up to now, and although some approaches based on contracts have emerged recently,
current approaches did not provide a high-level language which is able to express transforma-
tion properties in order to ease the specification of contracts. Therefore, in order to facilitate
the specification of contracts, this thesis proposes a dedicated visual language to define trans-
formation contracts which induces several advantages. First, the PAMOMO language is visual
and enables a succinct expression of graph patterns, which otherwise would need to be encoded
using navigation expressions in OCL, or complex expressions in the case of sets. In this respect,
the pattern-based specification of PAMOMO contracts is intuitive to the transformation designer.
Second, other languages like QVT Relations are less suitable than PAMOMO to express these
contracts, in particular concerning the expression of negative information (a negative pattern
produces two relations), or enabling conditions (which generates additional relations invoked
from another relation). Third, PAMOMO’s formal semantics enables also reasoning about meta-
model coverage, redundancies, contradictions and pattern satisfaction. Fourth, the specification
of the contracts is completely decoupled from the transformation implementation. This means
that the contracts are independent from the specified transformation rules and from the trace
model of a specific transformation execution. Finally, the translation of the contracts to QVT

202

9.2. Evaluation of Runtime Model

Relations allows for dedicated feedback in terms of the model elements that did not satisfy a
particular contract.

Compared to related work, a pure OCL-based approach, only provides true or false back
as answer to the user, but no further information is accessible in standard OCL environments.
Additionally, approaches based on OCL usually lead to complex constraints difficult to write
in practice, and yielding verbose specifications [30], especially concerning invariants defining
relations between input and output models. Furthermore, all mentioned approaches (except the
model-fragment based ones [[109,/123]]) define contracts based on the metamodel of the input and
output models. In contrast to model-fragment based approaches, PAMOMO allows the definition
of the contracts with a visual language but we refrain from defining the contracts for a particular
test input model. Therefore, the presented approach is more general and allows to verify the
specified transformation against arbitrary input models. Hence, this thesis contributes to fill
this gap by providing a high-level, visual specification language and tool support to specify
contracts. Since the specified contracts exhibit a formal semantics, reasoning at the level of
patterns is enabled. Finally, contracts can be made operational by its compilation into QVT
Relations.

Works dealing with testing object oriented systems with contracts report some limitations
regarding the kind of failures contracts can detect [92]]. For example, in object oriented systems
method pre- and postconditions have difficulties in reasoning about the global state of an object
or set of objects, as they are specified locally. For example, a prune method of a stack cannot
have a trivial local contract checking if the removed element was previously inserted by a put
method [92]. In contrast, transformation contracts are not specified at the rule level - as they are
language-independent - and hence can be used to specify global transformation properties. In
[50] it is also argued that detecting certain failures requires overly complex contracts, more than
the method implementation itself. In PAMOMO, contracts can be made more precise by: (a)
enriching a pattern with enabling or disabling conditions, (b) adding more objects in the source
or target compartments of a pattern or (c) adding more patterns to the contract. For example,
an enabling condition refines a pattern by making it fail on more models (hence, to potentially
detect more transformation failures). However, it is up to future work to investigate the degree
in which more complex contracts increase the effectiveness for failure detection (as in [22}92]).

9.1.5 Summary

In summary, in this subsection the appropriateness of PAMOMO contracts have been demon-
strated by means of several case studies from different domains. In this respect it was shown,
that the visual, declarative nature of PAMOMO eases the specification of contracts, e.g., in con-
trast to OCL or by (directly) using QVT Relations. After the evaluation of PAMOMO, in the
following the proposed runtime model is evaluated.

9.2 Evaluation of Runtime Model

he second major contribution of this thesis is the provision of a runtime model for declara-
tive, rule-based model-to-model transformation languages. introduced the con-

203

9. EVALUATION

cepts of Transformation Nets in general and [Chapter 5| focused on rule inheritance in particular.
In order to evaluate the presented concepts, in the following it is first shown, how the operational
semantics of QVT Relations may be represented in Transformation Nets. Second, it is shown
how the operational semantics of the declarative mapping language called Mapping Operators
(MOps), may be specified by means of Transformation Nets. The representation of the opera-
tional semantics of both, QVT Relations and MOps, allows the reuse of the debugging features
provided by the Transformation Net formalism, which will be evaluated afterwards.

9.2.1 Translating QVT Relations to Transformation Nets

In order to show the applicability of the presented runtime model, this section evaluates if the
provided concepts are able to represent the operational semantics of current model-to-model
transformation languages. As a concrete example, the operational semantics of QVT Rela-
tions, which has been proposed as the standard declarative model transformation language by
the OMG, should be represented by the concepts provided in Transformation Nets. This allows
to reuse the debugging features of Transformation Nets also for QVT Relations.

Since transformations written in the QVT Relations language consist of declarative relations
between metamodels, unidirectional as well as bidirectional transformations are supported, al-
though the actual execution requires to specify a direction. Moreover, QVT Relations supports
check and enforce semantics, differing in if required changes on the target side are just reported
or actually undertaken, thereby supporting incremental updates which can theoretically be spec-
ified on rule level. The semantics of check and enforce, especially in combination with bidi-
rectional model transformations is not clearly defined as stated in [[144]. Furthermore, the QVT
standard defines the operational semantics of QVT Relations twofold, firstly in natural language
and secondly by a translation to QVT Core, being incompatible to each other [[145]]. This situa-
tion led to different implementations of the operational semantics in different tools, e.g. concern-
ing the realization of when and where clauses. To circumvent these deficits of the QVT standard,
the example as well as the translation presented in the following are based on the operational
semantics of the mediniQVT! implementation. Furthermore, the focus is on an exogenous batch
transformation scenario which creates a new target model out of an existing source model. In
case of bidirectional specifications, two different Transformation Nets are derived, one for every
execution direction. Thereby, it is assumed that all relations specify a checkonly semantics for
source model elements and enforce semantics for target model elements.

9.2.1.1 Translating QVT Relations to Transformation Nets

In order to present the translation of QVT Relations to Transformation Nets, the running example
is used. [Fig. 9.10(a) shows an extract of the QVT Relations code whereas|Fig. 9.10(b) shows the
according representation in Transformation Nets. In the following, the translation is described
in detail.

Representation of Source and Target Metamodels and Models. QVT Relations as well
as Transformation Nets provide containers (cf. class RelationTransformation and Net,

Thttp://projects.ikv.de/qvt

204

9.2. Evaluation of Runtime Model

transformation ClassToRel 2 ‘ Source Transformation Target
1)(class : Class ; rel : Relatidmal){ ‘1 ModelElement 2 SchemaElement
top relation PackageToSchema {
checkonly domain class p: Package{..}; SameRIStrn - stri
enforce domain rel s: Schema {..}; z 8 name : String
’ L@
top relation ClassToTable | %:vz%

checkonly domain class c: Class {..};

4 enforce domain rel t: Table {..};
when{PackageToSchema (p,s);}

where{AttributeToColumn (c,t);
) Package 3 Schema

ot < PackageTo
relation AttributeToColumn { Schema
checkonly domain class c: Class {.}; ? T 4 = ?

5)enforce domain rel t: Table (.}; =

. I
i e OO0 [P —
PrlmltlveéttrlbuteToColumn (c, t); classes isPersistent: Bool superclasses tables
SuperAttributeToColumn (c,t);
) °0 OB <00
} subclasses| o} A o [AttributeTo
.. b columns
relation PrimitiveAttributeToColumn { Colump i/u..*
checkonly domain class c: Class {..};) oo |
3) . Column
enforce domain rel t: Table {..}; anributes\L
l PrimitiveAttributeTo
relation SuperAttributeToColumn { Attribute Column type : String
checkonly domain class c: Class {..};
enforce domain rel t: Table {..}; . N
where {SuperAttributeToColumn (sc,t);} type : String
: } .Ié%' L] Su;erAttributeTo 7
Column
(a) QVT Relations Code of Running Example (b) Representation of QVT Relations Code of Running Example in Transformation Nets

Figure 9.10: Representation of QVT Relations Code in Transformations Nets (Blackbox-View)

respectively in for aggregating metamodels, models and transformation logic. There-
fore it is natural to represent instances of RelationTransformation, i.e., transformations,
by instances of Net and TransformationSpecification in Transformation Nets. Ev-
ery QVT Relations transformation specification requires two so-called candidate models, which
are given as parameter to the transformation specification and are represented by instances of
LHS and RHS in Transformation Nets, providing containers for places representing source and
target metamodel (cf. reference RelationTransformation.modelParameter and @D
and @ in . These parameters, e.g., class and rel represent references to the ac-
cording source and target models and their respective metamodels (cf. metaclass TypedModel).
These references have to be set by the transformation designer before executing the transforma-
tion specification, i.e., in the runtime configuration of mediniQVT. These information is used
to derive according instances of TNPlaces of the metamodels and Tokens from the models,
following the principles described in|Section 4.3

Representation of Transformation Logic. QVT Relations uses Relations in order to
specify the transformation logics. Thereby, Relations act as a container to encapsulate so
called DomainPatterns which match for a source element and create a target element. To
incorporate the involved metamodels, QVT Relations uses RelationDomains which bind
Relations to the source or target metamodel. Consequently, Relation instances are rep-
resented as a Module instance with a contained Transition instance in Transformation
Nets. The root DomainPatterns, which have to target metamodel classes, are represented
as explicit ClassPorts in the blackbox view and as according arcs originating from the cor-
responding metamodel element, as can be seen in[Fig. 9.10and [Fig. 9.11] In this respect, Arcs
in Transformation Nets are used to represent Relat ionDomains.

205

9. EVALUATION

A
N . TypedModel
RelationTransformation TR TS P! 2

1
rule| o « o
P 4) 11 arcs .. 2

0.1 .| Relation {_ 2.* | RelationDomain Tget Y 4 target " N

referredRelation ~ | isTopLevel: Bool | @ o I isCheckable : Bool children e
isEnforceable : Bool 11 dorl 47 arcs
when where
condition %% 0-1
Expression | Pattern 1

{ L laces

6 0% patterns, | 3 3 Module o 1.1

Pattern Transition o o1 [

5 query -1 1 2) TNPlace

0.* patr » parent

atterns 1. transitions 2l ol
Object Value | transformatio 0.* 11
Pattern Pattern

predicate

RelationCallExp LHS oiaces
Link Trace 1) met 2
5 5 Pattern Pattern name : String targetMM L™ 1s places
0.* 2
Pi Te latel ji
ropertyTemplatel temWob;ectTemplateExp
(a) QVT Relations Metamodel (b) Transformation Net Metamodel (extract)

Figure 9.11: Correspondences between QVT Relations and Transformation Nets

To specify the actual elements that should be matched, i.e., preconditions of a transforma-
tion rule, and which elements should be created, i.e., postconditions of a transformation rule,
so-called DomainPatterns are used in QVT Relations. DomainPatterns must build di-
graphs conforming to the used metamodel (cf. Fig. [0.12] depicting the DomainPatterns
of the relation PackageToSchema), expressing correspondences between source and tar-
get metamodel elements. Unfortunately, this correspondence is hard to grasp. To get a vi-
sual clue which source element is transformed to which target element, Transformation Nets
represent the nodes of such a digraph graphically (cf. Fig. [9.12) by means of Query—- and
ProductionPatterns whereby every node is connected to a certain source or target place.
Following the principles of Transformation Nets presented in correspondences be-
tween source and target element are expressed by equally colored patterns.

Simplified Metamodel Digraph QVT Relations specification Transformation Net Transition

checkonly domain class required Trace

superClasses * ciClass{==========+
Class * Class represents namespace= === == ==+
Package classes T
R -/b**-\ b:Package 1,

Domain object creation

name:String isPersi “Bool| SUP name amespace isPersistent=true ===

Classes

conditions and
mappings

name= cn; = = === ===~

isPersistent Package }

@ el
BEagseR)
enforce domain rel
Schema tables Table Table t:Table{ ————oo— =
—— > represents _ provided Trace
name:String | ¢ homa | name:string , schema= - === == — m
name schema 1

name=cn

Schema "

4

when {
PackageToSchema (p, s); —

}
where {
AttributeToColumn (c, t) |

} 7

Figure 9.12: Dependencies between Metamodels, QVT, and Transformation Nets

In QVT, DomainPatterns specify the selection of model elements forming, as men-
tioned before, a digraph conforming to a metamodel using the specified domain object as root
node (cf. [Fig. 9.12). The graph consists of objects (cf. class Object TemplExp), attributes
and links—both represented by the class PropertyTemplateItem. Starting from the do-

206

9.2. Evaluation of Runtime Model

main object (i.e., the digraph’s root node of which is represented in Transforma-
tion Nets by an Ob jectPattern within transitions, navigation in the graph is enabled using
LinkPatterns,e.g., the namespace link in Primitive values in case of attributes
are represented by according ValuePatterns, e.g., the name attribute in[Fig. 9.12] Thus, in-
stances of Ob ject TemplExp in QVT Relations are expressed by ObjectPatterns and in-
stances of PropertyTemplateItemare expressed either by LinkPatterns orby Value—
Patterns in Transformation Nets, depending if the PropertyTemplate in QVT Relations
either refers to a reference or an attribute (cf. [Fig. 9.13). The variables in the QVT Relations
specification are then used as a variable in the according pattern.

checkonly domain <sourceModel>

<vl>:<ObjectTemplateExp>{ === === === === = = — 'P

<PropertyTemplateltem> = = = = = = = = = L"l_:\‘@
<v2>:<0ObjectTemplateExp> {}, _ o o - = — = - '—52-.”
<PropertyTemplateltem> =<v3> === === | J

|
or <OCLExp>=1, —

) ' 7

Figure 9.13: Schema of Translation.

QVT Relations allows to specify DomainPatterns containing references of the target model
having a multiplicity greater than one, e.g., a Schema can contain an arbitrary number of
Tables. To ensure that the target domain object, e.g., a Schema, is created only once, a
QVT Relations transformation engine examines the trace information and checks if the accord-
ing target element has been created before, i.e., it makes use of a check before enforce semantics.
The check before enforce semantics ensures that, if an object matching the constraints in a re-
lation already exists in the to be generated target model, this object will not be newly created.
QVT Relations furthermore allows defining equality of objects by means of keys. In order to
represent this behavior accordingly in Transformation Nets, every production pattern is marked
with the check before enforce flag if no specific key is defined. In case a key is defined for this
object, those patterns that represent elements of the key are added int the Transition.key
array, e.g., if a key specifies, that Table instances should be differently named, then the accord-
ing ValuePattern producing the values and its corresponding Ob jectPattern would be
marked as check before enforce and added to the Transition.key array.

Representation of When and Where Clauses. When and where clauses in QVT Relations
fulfill two tasks, (i) they allow to pass elements between relations and (ii) they may be used to
specify further constraints by means of OCL. In order to allow for interconnections between
Modules and their contained Transitions in Transformations Nets (which represent Re-
lations of QVT Relations in Transformation Nets), TracePatterns and TracePorts are
used in Transformation Nets. To be more precise, in case of a when clause, the Transitionin-
stance contains an according TracePattern that queries the according trace place of the rela-
tion which is called in the when clause, as can bee seen in[Fig. 9.12|and [Fig. 9.14] Where clauses
are represented by production TracePatterns and according TracePlaces. These Trace—

207

9. EVALUATION

Places are then queried by dependent transitions. In case the when and where conditions
contain further constraints, they are transformed into according OCL conditions attached to the
according transition.

9.2.1.2 QVT Relations to Transformation Nets by means of the Running Example

shows the translation of the QVT Relations specification using an extract of the running
example (cf. [Fig. 9.14(a)) to Transformation Nets in its whitebox view (cf. [Fig. 9.14(b)). The
specification of the transformation in QVT Relations consists of two relations for establishing the
one-to-one correspondences. The PackageToSchema relation matches for packages and their
names and produces equivalent schemata and names thereof. The relation ClassToTable
matches for persistent classes contained in a package as well as their names and creates a ta-
ble labeled with the class name. The reference to the according schema is set by calling the
PackageToSchema relation in the when clause of the ClassToTable relation. Even this
simple example raises questions concerning specification and execution of the transformation,
e.g., what happens if there are no persistent classes in a schema or in which order are the rela-
tions actually executed and the model elements created since both relations are marked as top?
In order to clarify these and further debugging questions, the debugging features of Transforma-
tion Nets should be available for QVT Relations as well, i.e., the QVT Relations specification
needs to be translated to Transformation Nets as depicted in[Fig. 9.14(b).

PackageToSchema

// map each package to a schema ModelElement SchemaElement

top relation PackageToSchema {

4

5

6 pn: String ; = -
name : Strin, :

7 checkonly domain class p: Package { £ name : String

8

name =pn u..i&lrsny —
9 i
10 enforce domain rel s: Schema { Zr Zﬁ
11 name =pn
12 }; Package Schema

<<when>>
Package2
Schema

13 } o s

ClassToTabl
15 // map persistent class to a table asslolanie
16 top relation ClassToTable { ModelElement P SchemaElement
17 cn: String ; Package2
18 checkonly domain class c: Class { = Schema I =
19 namespace =p: Package {}, nameﬁgg name : String
20 isPersistent =true , u"ive”;}ww %ﬁm
21 name =cn o ~
22 }; f) %
23 enforce domain rel t: Table { 's | Ao\ [
ele)) EE—N
24 schema =s: Schema {}, Package 7 c Schema
25 name =cn o1 P ’ﬁo i =
26 3; A schema
27 when { namespacel 3 @ seasE I
28 PackageToSch 8 | S By Tabl,
. ackageToSchema (p, s) Class) &) able
30 where { cl Qe
g; AttributeToColumn (c, t); EPeritertlB ool :@:f::Perslstenl v
Y aa <cwhere>»
33} Class2Table
(a) QVT Relations Code of Running E pl (b) Representation of QVT Relation Code in Transformation Nets (Whitebox View)

Figure 9.14: QVT Code and Corresponding Transformation Net (Extract)

208

9.2. Evaluation of Runtime Model

The translation follows the principles presented above. In a first step the domain objects,
i.e., the roots of the digraphs, are mapped. Therefore, the upper Transition in[Fig. 9.14(b)
matches for Package instances whose Package . name attribute is not null. In order to keep
the gap between the QVT Relations specification and the resulting Transformation Net low, the
variables of the patterns are equally named as the variables in QVT Relations. Furthermore, the
order of patterns is equal to the order of definitions in QVT Relations. Equally named variables
that are used in the checkonly and enforce domain denote assignments. Therefore, the
according patterns are equally colored in the Transformation Net, e.g., the ValuePatterns
representing the name attribute. This is different for objects, which need not to be assigned
to a common variable, e.g., although Package instances should be translated to Schema in-
stances, two different variables p and s are used in the QVT Relations specification. In order to
better visualize this correspondence and to provide visual trace information, in Transformation
Nets the production ObjectPattern is nevertheless equally colored as the according query
ObjectPattern, e.g., the ObjectPatterns are both labeled with the variable p in the
upper Transition in[Fig. 9.14(b). Finally, these trace information is also made explicit by
means of a production TracePattern and an according TracePlace.

Concerning the translation of the relation Class2Table the same principle is followed,
i.e., according patterns are created for the variables used in the QVT Relations specification.
Please note that the ObjectPatterns querying for instances of Packages and producing
instances of Schema offer different colors and variables (p and s) since these variables are
also used in the when clause of the relation, i.e., it is required that a certain Schema instance
has already been created for a certain Package instance (since a when clause represents a
precondition). Therefore, the transition uses a query TracePattern which queries the trace
information of the relation called in the when clause, e.g., the trace information of the tran-
sition representing the relation Package2Schema in the example depicted in [Fig. 9.14(b).
Furthermore, please note that in this case it is important, that the production Ob jectPattern
producing Schema objects is marked as check before enforce. If this is the case, existing ob-
jects are reused instead of being created again, i.e., an existing Schema instance is not newly
created but only the Table. schema links in the according Table instance are created, since
no link with equal source and target object exists already.

In summary, this section showed that QVT Relations specifications may be represented by
means of Transformation Net concepts. Nevertheless, currently queries in QVT Relations as
well as inheritance between transformations, which is allowed in QVT Relations, and sequences
and set of patterns are not handled in the presented transformation. In this respect, the debugging
facilities of Transformation Nets are also available for QVT Relations, although there is a gap
between the representation in terms of Transformations Nets and the representation of the actual
QVT Relations code. Nevertheless, the similar operational semantics is achieved, which is made
explicit to the transformation designer. An evaluation thereof will be presented in

9.2.2 Translation of Graph Transformation Languages to Transformation Nets

Several related work already exists that relates the domains of Graph Grammars to Petri Nets
[7,103]. It has already been shown that the concepts of one paradigm may be expressed in the
other paradigm. Since Transformation Nets base on CPNs it is also possible to represent Graph

209

9. EVALUATION

Grammars in Transformation Nets. As a proof of concept, the implementation of AGG [147]
has been mapped to Transformation Nets on a conceptual level by means of first case studies.

Concerning the translation of the type graph (which represents a unified metamodel, i.e.,
source metamodel, target metamodel and a custom trace model), certain naming restrictions
have to be followed. This means that elements of the source metamodel are assumed to offer
the appendix _source, those of the target metamodel _target and those of the trace model
_trace to derive the according types of places, as can be seen in [Fig. 9.15(a). The LHS
part of the graph transformation rule may be represented by according QueryPatterns in
Transformation Nets whereas the RHS part of a graph transformation rule may be represented
by according ProductionPatterns. Please note that, in contrast to the translation of QVT
Relations, the visual trace is lost for objects which can be seen in the Transformation Net as
the query ObjectPattern offers the variable p whereas the production ObjectPattern
offers the new variable s (cf. [Fig. 9.15(b)) . This is since newly generated elements in graph
transformations have to offer a new id in the RHS. The assignment of values, e.g., the assignment
of the value of the attribute Package.name to Schema.name can be achieved by equally
colored tokens (cf. [Fig. 9.15). Negative application conditions (NACs) may be encoded by
means of negative patterns which are translated to a pattern that realizes inhibitor arcs in CPNs
(cf. and thus follow the principles suggested in [7,/103]]. Nevertheless, NACs that
solely concern the trace model, e.g., in the example depicted in [Fig. 9.15(a) the NAC solely
ensures that Package instances that have already been translated to Schema instances are not

NAC LHS RHS

p:Package source

name = pn
p:Package source P
name : pn /[\ source
p:Package source t:Packaze2Sch '
— :Package2Schema trace
source name = pn -
x:Package2Schema trace \L target
s:Schema_target
name = pn

(a) Exemplary AGG Rule

Package2Schema

Package_source Schema_target

pl —>

: A
name : String
o

University

name : String

<<Trace>>
Package2
chema_trace.

(b) Representation of AGG Rule in Transformation Nets (Whitebox View)

Figure 9.15: AGG Code and Corresponding Transformation Net

210

9.2. Evaluation of Runtime Model

matched again, are treated differently. This behavior is automatically ensured by Transformation
Nets by the history concept and therefore such NACs need not to be represented explicitly. A
challenge that arises is the representation of conditions and functions since AGG uses Java for
this purpose. Also the current prototype only supports OCL as an inscription language, on a
conceptual level also Java may be supported as inscription language in Transformation Nets as
well, i.e., instead of a server that is capable to evaluate OCL expressions, a server that evaluates
Java expressions would be needed which is then called from the compiled CPN by using the
Comms/CPN library. Concerning the interplay between the specified graph transformation rules,
AGG allows to specify layers to order the application of rules. The representation of this concept
(as well as general concepts concerning the actual execution semantics of graph transformations)
is still an open issue, as discussed in [Chapter 10}

In summary, based on existing literature, first case studies for translating graph transforma-
tions specified in AGG to Transformation Nets have been conducted, which provided promising
results. Nevertheless, in order to fully evaluate the applicability a prototype is required, which

is considered as a point of future work (cf. [Chapter 10).

9.2.3 Translating Mapping Operators to Transformation Nets

In the last years, approaches arose that propose to specify model transformations by means of
abstract mappings being a declarative description of the transformation, as known from the area
of data engineering [14]. A concrete implementation of such a mapping approach has been
presented in [[86]], where so called Mapping Operators (MOps) have been proposed, being the
second major outcome of the TROPIC project. The operational semantics of MOps is defined
by means of Transformation Nets, i.e., Transformation Nets act as a semantic domain for the
mapping language. In the following, first, a short overview on MOps is given before showing
the specification of the operational semantics by means of Transformation Nets.

9.2.3.1 Mapping Operators in a Nutshell

The main idea of mappings is to abstract a model transformation problem from a concrete trans-
formation language, allowing the transformation designer to focus on the resolution of structural
heterogeneities, i.e., the same semantics is represented by different metamodel concepts, without
having to struggle with the intricacies of a certain transformation language. Thereby, in [86]] typ-
ical mapping situations have been identified, being 1:1 copying, 1:n partitioning, n:1 merging,
and 0:1 generating of objects, for which different MOps are provided. In this respect, reuse is
leveraged as the proposed MOps are generic in the sense that they abstract from concrete meta-
model types since they are typed by the core concepts of current meta-modeling languages like
Ecore or MOF (i.e., class, attributes, and references). To further structure the mapping process
two steps to specify the actual mapping are proposed.

To exemplify these tow steps and to give a broad overview of the different MOps provided
(cf. [Fig. 9.16), [Fig. 9.17] shows an adapted version of the running example, translating class
diagrams to entity-relationship diagrams. In a first step, composite MOps, describing mappings
between classes are applied, providing an abstract blackbox-view (cf. [Fig. 9.17). Every com-
posite MOP consists of so-called kernel MOps, realizing the composite behavior in terms of a

211

9. EVALUATION

set of basic building blocks. These kernel MOPs are responsible for resolving structural het-
erogeneities and therefore, they have to be able to map classes, attributes, and references in all
possible combinations and mapping cardinalities (cf. [Fig. 9.16). Kernel MOps are provided
for copying exactly one object, value, or link from source to target, respectively (denoted as
CsC, AgA, and RoR). Moreover, MOps are needed for merging objects, values, and links (de-
noted as C5C, AT A, and RR) resolving the structural heterogeneity that concepts in the source
metamodel are more fine-grained than in the target metamodel. Finally, MOps are needed for
generating a target element without an obvious source element (denoted as 02C, 02A, and 02R)
to resolve heterogeneities resulting from expressing the same modeling concept with different
meta-modeling concepts — a situation which often occurs in metamodeling practice. In a second
step, the composite MOps, which solely describe a mapping between classes at first, have to
be refined to also map attributes and references in the so-called whitebox-view by the usage of
kernel MOps (cf. expanded Copier (b) in Fig. 0.17)). Thus, composite MOps describe patterns of
heterogeneities, which may contain an arbitrary number of kernel MOps or even other composite
MOps. Depending on the specific composite MOp, certain kernel MOps may be automatically
derived in order to further ease the mapping specification (cf. [86] for details)

Concept Copying Merging Generating
Class GIC26 >0 | dgCnaC @ C
(2ClassMOps) T T T

. T
Attribute T)i. T

. A i.
(2AttributeMOps) A A A m)
Reference T T i
(2ReferenceMOps) R & R E &

Figure 9.16: Kernel MOps

As a concrete syntax for MOps a subset of the UML 2 component diagram concepts are used
enabling the specification of model transformations in a plug & play manner (cf. [Fig. 9.16). With
this formalism, every MOP is defined as a dedicated component, representing a modular part of
the transformation specification which encapsulates an arbitrary complex structure and behavior,
providing well-defined interfaces. Every MOP has input ports with required interfaces (left side
of the component) as well as output ports with provided interfaces (right side of the component),
typed to classes (C), attributes (A), and references (R) (cf. Copier (b) in[Fig. 9.17). Since
there are dependencies between MOps, e.g., a value can only be set after the owning object
has been created, MOps dealing with the transformation of classes additionally offer a trace
port (T) at the bottom providing context information, indicating which target object has been
produced from which source object(s). This port can be used by dependent MOps to access
context information via required context ports (T). In case of MOps dealing with the mapping of
attributes, the corresponding interface is shown via one port on top, or in case of MOps dealing
with the mapping of references via two ports, whereby the top port depicts the required source
context and the bottom port the required target context (cf. whitebox-view of Copier (b) in

212

9.2. Evaluation of Runtime Model

Source Mapping Target
Package STET S P Schema
......................... 1 gl
N Y| Coplier
classes entities
0.* @ 0.*
1 Class preveveee, @@B@ﬂ@l}’ s Entity
name:String Pesee.,, Y, d A __."‘ ------- | name : String
0) DT \ L Y R s i
q q columns types
attributes .., - ‘,."“ R 0.*
......... 0 ot S Column
0.* - K name : String
Attribute g
target references hame : String 1 (c A o type
tpe:sting | [ST\ | L refersTo 1
e VPRPartitioner saaeeeLCL TETTTRRR FNR T
> ype =
0. name : String 0.*
€ - Relationship
0.* RO, ‘e WM@U’@@ Rl name : String
Reference » ::: i }roles
| name: String »_-_ 2
upperBound : Int [Tt d R 2 Role
lowerBound : Int . H hame : String
1 opposite T - VPartitiener Y- —
g cardinality
1
™| Cardinality
upper : Int
lower : Int

Figure 9.17: Solution of the Running Example

For solving the example, several composite MOps have been applied as can be seen in
[Fig. 9.17] [Table 9.1] presents an overview of the used composite MOps to solve the example
as well as their composition of kernel MOps. Thereby, the composition of kernel MOps column
in[Table 9.1]describes the actual composition of the according composite MOp in EBNF syntax.
For example, a Copier always consists of a CoC kernel MOp since it should at least copy
the objects from source to target. Additionally, a Copier may incorporate and arbitrary num-
ber of kernel MOps dealing with attributes (called 2Att ributeMOps) and references (called
2ReferenceMOps). For a detailed classification and description of all available kernel as well
as composite MOps and their semantics the reader is referred to [86},/166]]. To resolve the 1:1
correspondences between Package and Schema as well as between Class and Entity in
the example, two Copiers were applied since for every source object a corresponding target
object should be generated (cf. MOps (a) and (b) in [Fig. 9.17)). The whitebox-view of the
Copier (b) thereby shows the mapping of class Class to class Entity using a CoC ker-
nel MOp. Moreover, the attribute Class . name is mapped to the attribute Entity.name by
using an As A MOp. Finally, the reference Class.attributes is mapped to the reference
Entity.columns using a RoR MOp. To split the attributes of the class Reference to the
target classes Role and Cardinality a VerticalPartitioner is applied (cf. MOp
(d) in[Fig. 9.17). Besides this default behavior, aggregation functionality is sometimes needed
as is the case when splitting the Attribute concept into the Column and Type concepts,
since a Type should only be instantiated for distinct Attribute. type values (cf. MOp (c)
in[Fig. 9.17). Consequently, composite MOps may contain different kinds of kernel MOps, de-

213

9. EVALUATION

pending on the actual transformation scenario. To finally merge two Reference objects to a
single Relationship object, a VerticalMerger is applied (cf. MOp (e) in[Fig. 9.17).

Table 9.1: Overview of Composite MOPs used in the Example

Correspondence MOP Description Composition of Kernel MOPs (EBNF)

creates exactly one target object per
source object

splits one source object into several
target objects

merges several source objects to one
target object

generates a new target object without
corresponding source object

1:1 - copying Copier Copier: C,C { A,A| AA| 0,A| R,R | R,R | O,R }

1:n - partitioning VerticalPartitioner VerticalPartitioner: Copier { ObjectGenerator | Copier }

n:1 - merging VerticalMerger VerticalMerger: C",C { A,A | AA | 0,A [R,R | R;R | 0,R }

0:1 - generating ObjectGenerator ObjectGenerator: 0,C { A,A | AA | 0,A| R,R | R;R | 0,R }

9.2.3.2 Compilation of MOps into Transformation Nets

In order to provide an operational semantics for MOps, they need to be mapped to an executable
mechanism. In the following it is shown, how the concepts of Transformation Nets may be used
to provide semantics for a new transformation language, i.e., MOps in this case.

Compilation Strategy. Every kernel MOps encapsulates a certain operational semantics. In
order to encapsulate this operational semantics also in Transformation Nets every kernel MOp
is represented in terms of a Module. Since composite MOps encapsulate kernel MOps, com-
posite MOps may be represented as Modules in Transformation Nets as well. Furthermore, as
depicted in[Fig. 9.17] every MOp offers ports which are represented by according ports in Trans-
formation Nets. Since these ports provide information that needs to be part of a Transition
in Transformation Nets, for every port of a MOp additionally an according query or production
Pattern has to be created. In order to explicate the compilation, in the following the compi-
lation of copying kernel MOps is discussed first, followed by the compilation of merging kernel
MOps and concluded with the compilation of generating kernel MOps. Finally, the interaction
between MOps is discussed by showing the compilation of the example presented in

Copying Kernel MOps. The operational semantics of copying kernel MOps, i.e., C2C, AgA,
and RgR, is to create for every source object, value, or link a corresponding target object, value
or link. To represent the operational semantics of the CoC kernel MOp, a transition comprising a
single query Ob jectPattern and two production patterns (cf. is created. Thereby,
the single query Ob jectPattern matches for source object tokens and the single production
object pattern produces an equally colored target token, i.e., the object is copied from source
to target. Furthermore, trace information is created, as specified by a corresponding production
trace pattern.

This trace information may then be queried by dependent kernel MOps, e.g., by an A A, or
an RoR, which both exhibit an according query trace pattern. In this respect, an A2 A MOp ex-
hibits a value query pattern and a context query pattern. The context query pattern is responsible
to obtain the object (cf. color on the right), which has been created for the value’s owning object
(cf. color on the left). Since a newly colored object may have been produced for the original
owning object, the value may be in the context of a differently colored object. Therefore, the

214

9.2. Evaluation of Runtime Model

For each matched source object,
C C a target object is created
> C2 c 4
Matched source object Created target object
| Created context information ‘
For each matched source value, meng object has been adapted
; according to the matched context
T a target value is created) B
information
Matched source value
,K A 2A Created target value
[Matched context information ‘
For each matched source -
link, a target link is created Source object as well as target
object of the link have been
T Matched context information adapted according to the
for source object of link matched context information
,_ R2 R Matched source link
R Created target link
T Matched context information
for target object of link
(a) MOps (b) Transformation Nets

Figure 9.18: Compilation of Copying Kernel MOps

value production pattern comprises as owning object (cf. color on top), the color obtained from
the context pattern (cf. color on the right). The same principle is followed by the RoR MOp,
which queries a link instead of a value. Furthermore, since a link requires a source and a target
object, an RoR MOp exhibits two trace query patterns, one pattern for the source and one pattern
for the target of the link.

Merging Kernel MOps. After having discussed the operational semantics of copying ker-
nel MOps, in the following the operational semantics of merging kernel MOps is explained.
Thereby, merging MOps offer an arbitrary number of according query patterns, i.e., a C5C
kernel MOp comprises an arbitrary number of query ObjectPatterns, as can be seen in
Since in case of C5C MOp a new merged object results, the according production
object token exhibits a new color. Furthermore, please note that the left side of the production
context pattern contains all the involved source objects. A dependent MOp, e.g., an AYA MOp,
is then enabled if the left side of an according query pattern matches to any one of the colors of
the left side of the production pattern.

When merging several objects, the question arises under which condition these objects
should be merged, i.e., only if there exists a certain link between these objects or if the values
of two attributes are equal. In order to specify such conditions, a C5C MOp typically exhibits
an according OCL condition which is transferred to the according Transition in Transfor-
mation Nets. If no condition is specified, the cross-product of the to be merged objects is built.
In case of an AZA MOp an according function needs to be defined how to merge the values of
the source attributes to a single value of the target attribute which may again be transferred from
the MOp’s function. This new target value is again represented by means of a newly colored
production ValuePattern. Finally, in case of an RjR Mop it is assumed that the source link
is only merged to a common target link if all links between the source and target objects exists -
therefore neither a condition nor a function is required.

215

9. EVALUATION

For each matched combination of
objects, a target object is created

C C C Matched source object 1 Created target object
n
2 Matched source object 2 ‘ Created context information ‘
C '0 | Up to n source objects may be matched |

For each combination of
matched source values, a
target value is created

T Matched source value 1
Matched source value 2
AlAnoA
A \ Up to n source values may be matched |

‘ Matched context information ‘

Owning object has been adapted
according to the matched context
information

Created target value

For each combination of
matched source links, a
target link is created

Source object as well as target object of
the links have been adapted according
to the matched context information

All links originate from a single
object and end in a single object

T Matched context information
for source object of links

h Rn 2 R Matched source link 1
R T Matched source link 2

\ Up to n source links may be matched |

Created target link

Matched context information .
for target object of links

(a) MOps (b) Transformation Nets

Figure 9.19: Compilation of Merging Kernel MOps

Generating Kernel MOps. As stated above, generating kernel MOps are required to re-
solve heterogeneities resulting from expressing the same modeling concept with different meta-
modeling concepts. Thus, kernel MOps are required that are capable to match for a concept, i.e.,
class, attribute or reference, and produce a different concept thereof. Please note that although
numerous combinations are possible, only three representative ones are discussed in detail to
present the general idea (for further details the reader is referred to [86]).

To generate an object out of distinct values, as a first generating MOp the A2C kernel MOp
is presented. The according transitions contains a value query token whose distinct flag is set to
true (cf. [Fig. 9.20). In order to produce a target object, the transition exhibits a newly colored
object production token. The second production pattern creates context information for depen-
dent MOps. Since context information always comprises objects only, the context production
patterns exhibits on the left side the color of the value’s owning object. To generate attribute
values for objects, a C2A kernel MOp is provided. The according transitions in Transformation
Nets includes a query ObjectPattern and a production ValuePattern as illustrated in
In order to be able to specify the target object to which the generated value belongs to,
a query ContextPattern is required stating which object has been created from the source
object from which the value should be generated. Additionally, the function specified on the
MOps to produce a new value has to be transferred to the transition.

216

9.2. Evaluation of Runtime Model

[For distinct matched source

| values, a target object is created
JalA2¢

Matched source value

Created target object

| Created context information |

For each matched object,

a value is created

T

y[c,A
Cc

[Matched context information ‘

according to the matched context

Owning object has been adapted
information

Created target value

Source object as well as target object
have been adapted according to the
matched context information

originate from objects which are

Creates a link between objects that
linked by the given pathExpr

Matched source object 1
c CCZ R R ‘ Matched context information 1 ‘
C ; Created target link
T Matched source object 2
Matched context information 2
(a) MOps (b) Transformation Nets

Figure 9.20: Compilation of Generating Kernel MOps

Finally, MOps are required that are capable to generate links in the target model. These
MOps require information from which concepts in the source model the links’ source and target
objects in the target model have been created. In this respect, the CC2R kernel MOp establishes
links between objects that originate from objects which are connected through a corresponding
path as determined by the pathExpr. The path expression defines how the source and the
target object of the to be generated link are related in the source model.This pathExpr is
taken from the MOps definition and transformed to an according condition on the respective
Transition. In case of the CCoR kernel MOp, the transition queries for two objects (the
source and target object of the link in the source model) and two context tokens to achieve the
according objects in the target model (cf. bottom of [Fig. 9.20). The link production pattern then
creates links between the objects that have been created from the original objects, i.e., the link
pattern exhibits the colors of the queried context information.

Composite MOps. Since composite MOps solely base on kernel MOps, the compilation
of composite MOps to Transformation Nets comprises the creation of an according Module
instance which contains the Module instances that are created for the according kernel MOps.
Furthermore, according Ports need to be added to the Module representing the composite
MOp. These ports need then to be connected with the according Port s of the composite MOp.
Additionally, if the transition that represents the operational semantics of a contained kernel
MOp contains a production TracePattern, an instance of a TracePlace is added to the
module representing the composite MOp in order to appropriately visualize trace information.

217

9. EVALUATION

9.2.3.3 Compilation of the Example into Transformation Nets

To exemplify the usage of MOps as well as their compilation, [Fig. 9.21] presents an extract of the
example presented in In a first step, the involved metamodels are represented as ac-
cording P1laces in Transformation Nets. When executing a MOp specification a source model
is required, which is represented in Transformations Nets by means of according Tokens. Af-
terwards, the mapping specification is translated to Transformation Nets.

When taking a look at the transition that represents the CoC kernel MOp between the classes
Package and Schema one can see that this MOp is represented by means of an according
Module and an according Transition as discussed above. Since the CC is contained
within a Copier composite MOp, also the Module representing the CoC MOp is contained
in a Module, which actually represents the Copier MOp. To represent trace ports of MOps,
trace places are generated which may contain trace tokens indicating which target object has
been created from which source object(s) (cf. context places in [Fig. 9.21)). Since trace infor-
mation solely contains information about objects, only Transitions that generate objects,
so-called 2ClassMops, may be connected to trace places. Context places may be queried by
dependent Transitions that represents MOps dealing with the creation of attributes, i.e.,
2AttributeMOps and MOps dealing with the creation of references, i.e., 2Reference-
MOps, in order to obtain the correct context for attribute values and links. Whereas for an at-
tribute value only the context information of the transition representing the 2ClassMops that
is contained within the same composite MOP is required (cf. transition representing the AgA
that is contained within the second module representing the Copier MOp), Transitions
representing 2Re ferenceMOps require a second context for setting the target object of a link.
This information is queried from the trace ports of the 2C1assMOp which translated the target
object, i.e, form the CoC MOp contained in the Copier MOp which translates C1ass instances
to Ent ity instances.

9.2.4 Comparison to Related Work

The execution engines of current declarative model-to-model transformations act as a black-box
to the transformation designer, hiding the operational semantics. For example, the specification
of QVT Relations is either translated to the low-level QVT Core language which is then again
interpreted by a transformation engine or is directly interpreted by a transforation engine, which
is implemented in a low level programming language. This engine is hidden from the transfor-
mation designer and thus it remains often unclear why e.g., a certain model element is matched
or why a certain relation is executed at a certain point of time. Especially for QVT Relations sev-
eral so-called translational approaches have been proposed for executing QVT Relations on top
of existing technologies in order to explicate the operational semantics. Jouault and Kurtev [[74]
proposed to execute QVT Relations within the ATL Virtual Machine (ATL VM), by transform-
ing QVT Relations into ATL VM code. Nevertheless, the ATL VM code is on a rather low
level of abstraction and no concrete textual syntax may be derived from the VM code. Thus,
a transformation designer would have to know the ATL VM code in order to understand the
semantics of the translated code. Romeikat et al. [[131]] transform QVT Relations into the QVT

218

9.2. Evaluation of Runtime Model

Source Metamodel Mapping Target Metamode
Package Copler P Schema
]
2
~ P> entities
3
S
0..*
" Entity
name : String -P»| name : String
Source Target
Package Schema
d1 d1
K]
>
Q
~ eae
o classes entities
HRaC °
)
g io..* J/o..*
£ Class Entity
=
8 @a @
< . "
E name: String m name: String
~ c2 2
& 2
g.
Q
N Cepier _J 2
h
3 y
d1 — — d1 —
9 d1:Package sourcdijems | a1.TraceEntry | targefflem . d1:Schema
Q
S
& classes I entities entities
£ ®
- sourceflems | e2:TraceEntry | targe}flem @)
|
Sla b IV 1y !
cl
Q cl:Class | c2:Class -) -
£ name-_'Person' [name = "Prof* cL:Entity |_C2:Entity
E g = é A | e3:TraceEntry name = ‘Person’ Izname:/Prof’
@ @rof sourcelflpms o1 c
targetElem @‘ /I\
Exemplary Source Model Trace Models Resulting Target Model

Figure 9.21: Exemplary Compilation of MOps into Transformation Nets

Operational Mappings language and execute the result with tools such as SmartQVT?2. Since
QVT Operational represents an imperative transformation language, an explicit control flow has
to be given, e.g., the relations have to be called in a certain order. Thus, possible execution paths

Zhttp://smartqvt.elibel.tm.fr/

219

9. EVALUATION

resulting from non-determinism in the declarative specification might not be accordingly repre-
sented. Greenyer and Kindler [53]] propose to transform QVT Relations into TGGs. Because
QVT Relations and TGGs are conceptually and also syntactically similar, one can remain on
the same abstraction level. Nevertheless, since TGGs are not directly executable within existing
tools, they have to be translated into executable instructions in order to provide an operational
semantics. This semantics is then again hidden from the transformation designer. Another work
by de Lara and Guerra [88|] proposes to translate QVT Relations directly into CPNs - on the
one hand to provide a formal semantics for QVT Relations and on the other hand to verify QVT
Relations specifications - pursuing similar ideas to the above presented translation. Neverthe-
less, the intention of the work of de Lara and Guerra is different to Transformation Nets, since
it focuses on QVT Relations only, whereby our Transformation Nets are intended to act as a
general runtime model for model-to-model transformations.

In summary, to the best of my knowledge, none of current declarative model-to-model trans-
formation languages provides an explicit runtime model that makes the operational semantics
explicit, which could then be used for debugging. In this respect, Transformation Nets provide a
runtime model that represents the transformation logic, the metamodels, as well as the respective
models involved in a model transformation within a single formalism. Since in Transformation
Nets model elements are explicitly represented, it is possible to follow which transformation rule
or due to which circumstances a certain model element may or may not be transformed, e.g., in
case a certain condition is not fulfilled. Additionally, the interconnections between transforma-
tion rules are made explicit using trace information or intermediate places This allows to follow
the execution order of certain transformation rules which together form the model transforma-
tion.

9.2.5 Summary

In this subsection, the appropriateness of the Transformation Net formalism has been evaluated.
Transformation Nets may be used for three different purposes: (i) as a stand alone transformation
language, (ii) as a runtime model and execution engine for existing transformation languages,
and (iii) as a semantic domain for new transformation languages. Concerning Transformation
Nets as a stand alone transformation language, several small extracts have been shown in
ter 4

It has to be emphasized, however, that the focus of this thesis was more on the runtime
model aspect for existing transformation languages and on providing a semantic domain for
new transformation languages. In this respect, it was discussed in detail how the semantics of
QVT Relations (implemented by the mediniQVT tool) can be made explicit in Transformation
Nets. Furthermore, it was discussed on a conceptual level how graph transformation approaches
may be represented. Conse