
Testing and Debugging of Model
Transformations

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

DI (FH) Johannes Schönböck
Matrikelnummer 0057399

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Diese Dissertation haben begutachtet:

(o.Univ.-Prof. Dipl.-Ing. Mag.
Dr. Gerti Kappel)

(Associate Professor Ph.D.
Juan De Lara)

Wien, 22.12.2011
(DI (FH) Johannes Schönböck)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Testing and Debugging of Model
Transformations

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

DI (FH) Johannes Schönböck
Registration Number 0057399

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

The dissertation has been reviewed by:

(o.Univ.-Prof. Dipl.-Ing. Mag.
Dr. Gerti Kappel)

(Associate Professor Ph.D.
Juan De Lara)

Wien, 22.12.2011
(DI (FH) Johannes Schönböck)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

DI (FH) Johannes Schönböck
Lina 1, 4311 Schwertberg, Austria

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

The completion of this thesis represents surely a major point in my academic career. Never-
theless, although the actual writing of a thesis is individual work, the research and foundations
underlying this thesis could only be achieved by an excellent teamwork. Therefore, in a first step
I deeply want the thank my colleague Angelika Kusel. Working with her was always a pleasure
and her cooperative and conscientious manner lead to memorable research results. Thank you
very much for motivating me during these three years. Of course, this would not have been possi-
ble without our always cooperative and helpful supervisors Gerti Kappel, Werner Retschitzegger,
Wieland Schwinger and Manuel Wimmer. Without the numerous common discussions, as well
as their ideas and comments, I would not have been able to deliver this kind of work. Whenever
having any kind of troubles they supported me in finding a solution. Thank you for the good
atmosphere and working environment making the hard work of doing the thesis a pleasure.

Additionally, I want to thank my reviewer Juan de Lara. When I first met him on a con-
ference, I was not only impressed by his excellent work in the area of model transformations,
but also by his cooperative manner. Thus, I have been very pleased that he agreed to act as an
external reviewer of my thesis. His valuable comments helped me a lot to incorporate new ideas
and consequently helped me to improve the outcome of the thesis. In this respect, I would like
also to thank Esther Guerra for having the pleasure to work with her together on the topic of
model transformation contracts and QVT Relations.

I am very much obliged to our secretaries Birgit Hauer and Katja Hildebrandt, who were
always supportive in the non-academic issues. Furthermore, I appreciate very much that Katha-
rina Kapplmüller helped me to improve the English by proof-reading the thesis. I also want
to express my gratitude to my colleagues Petra Brosch, Philip Langer and Konrad Wieland,
who often served as valuable discussion partners and with whom I spent many placid hours on
conferences.

By writing these words I can by no means express how much I need to thank my family,
my mother Rosa, my dad Johann, and my brother Reinhard. They always stood by my side and
supported me in finishing my thesis. They enabled my education, trusted in me and supported
me during my whole life – thank you very much. Last but not least, I want to thank all of my
friends who encouraged me in finishing my thesis.

iii

Abstract

Model-Driven Engineering (MDE) proposes an active use of models to conduct the different
phases of software development. The major vision is a shift from the idea of “everything is an
object” in the object-oriented paradigm to the idea of “everything is a model” in MDE. Following
this vision, it becomes obvious that transformations between models play a key role. Just like
any other software, transformations should be engineered using sound and robust engineering
techniques. However, current engineering techniques focus on the implementation phase of
transformations, but fail to provide means for the analysis, design, testing and debugging phases.

In particular, to support the analysis and design phase, means are needed that allow to for-
mally describe the requirements of a certain transformation in order to allow for automatic vali-
dation in the testing phase. In case of a failure, additional means are needed to efficiently debug
model transformations. However, current transformation languages provide only scarce support
for debugging. This is mainly due to the fact that low-level information of an according execu-
tion engine is provided only, e.g., variable values. Finally, the operational semantics is hidden by
these execution engines, which further aggravates finding failures and hampers understanding of
transformation specifications.

To tackle the aforementioned limitations, this thesis provides three main contributions. First,
a declarative, visual language called PAMOMO is proposed, which allows to formally specify
requirements on model transformations by means of contracts. To test if a model transformation
fulfills the specified requirements, the contracts are compiled into check-only QVT Relations,
providing dedicated error traces in case a contract fails. These traces may then be used as
hints for debugging. To support debugging, Transformation Nets as a DSL on top of CPNs
are proposed, which provide a dedicated runtime model for model transformations, making the
hidden operational semantics explicit as a second major contribution. Finally, based on this
runtime model various means of debugging are presented as a third contribution.

To evaluate the contributions, relations to competing approaches are drawn in a first step.
Second, case studies are used to show the applicability of the presented approaches. To evaluate
the runtime model, the operational semantics of dedicated transformation languages is made
explicit in terms of Transformation Nets. Finally, the debugging support is evaluated again by
case studies and a first user study.

v

Kurzfassung

Modellgetriebene Softwareentwicklung rückt Modelle ins Zentrum des Softwareentwicklungs-
prozesses. Dadurch nehmen Modelle die Rolle von Objekten in der objektorientierten Software-
entwicklung ein. Durch diese zentrale Rolle entsteht die Notwendigkeit Transformationen zwi-
schen Modellen durchzuführen. Analog zur traditionellen Softwareentwicklung sollen Modell-
transformationen auf fundierte Sprachen und Werkzeuge zurück greifen können. Aktuelle Trans-
formationssprachen fokussieren allerdings nur auf die Implementierungsphase und berücksich-
tigen weitere Phasen wie Analyse, Design, Testen und Fehlersuche nur unzureichend.

Für die Analyse- und Designphase werden Mittel benötigt, die es dem Transformationsent-
wickler erlauben, die Anforderungen formal zu spezifizieren und diese dann in der Testphase
gegen die implementierte Transformation zu validieren. Für den Fall, dass Anforderungen nicht
erfüllt sind, werden Werkzeuge und Mechanismen zur Fehlersuche benötigt. Aktuell verwen-
dete Transformationssprachen bieten hierbei aber nur unzureichende Unterstützung, da sie nur
Informationen bereit stellen, die von den jeweiligen Laufzeitumgebungen zur Verfügung gestellt
werden. Da diese typischerweise in einer Programmiersprache wie z.B. Java entwickelt sind,
bestehen solche Informationen meist nur aus Werten von Variablenbelegungen. Des Weiteren
verstecken die auf niedrigem Abstraktionsniveau arbeitenden Laufzeitumgebungen die Ausfüh-
rungssemantik der Transformation, was die Fehlersuche zusätzlich erschwert.

Um diese Einschränkungen aufzuheben, werden im Rahmen der Arbeit drei Hauptbeiträge
erarbeitet. Als erster Beitrag wird die deklarative Sprache PAMOMO vorgestellt, die eine Spe-
zifikation von Transformations-Kontrakten ermöglicht. Um zu testen, ob Transformationen die
Kontrakte erfüllen, wird QVT Relations verwendet, um im Fehlerfall Information zu erhalten,
die im weiterem für die Fehlersuche verwendet werden kann. Transformationsnetze stellen als
zweiten Hauptbeitrag ein explizites Laufzeitmodell für Transformationen zur Verfügung und le-
gen dadurch deren operationale Semantik offen. Dieses Laufzeitmodell bildet damit die Grund-
lage für Methoden zur Unterstützung bei der Fehlersuche.

Zur Evaluierung der Arbeit werden Vergleiche zu bestehenden Arbeiten gezogen. Mittels
Fallbeispielen wird die Anwendbarkeit der vorgestellten Konzepte gezeigt. Um die Laufzeitum-
gebung zu evaluieren, wird die Ausführungssemantik existierender Transformationssprachen auf
Transformationsnetze abgebildet. Dadurch können auch diese Sprachen von den vorgeschlage-
nen Methoden zur Fehlersuche profitieren, was wiederum mittels Fallbeispielen gezeigt wird.

vii

Preface

The research presented in this thesis was undertaken at the Institute of Software Technology and
Interactive Systems, Business Informatics Group (BIG), Vienna University of Technology, in
joint work with DI Angelika Kusel from the Institute of Bioinformatics, Working Group Infor-
mation Systems (IFS), Johannes Kepler University, Linz, and was partially funded by the Aus-
trian Science Fund under grant P21374-N13 (cf. project TROPIC1). The supervisors comprise
Prof. Dr. Gerti Kappel and Dr. Manuel Wimmer from Vienna and Prof. Dr. Werner Retschitzeg-
ger and Prof. Dr. Wieland Schwinger from Linz. The major concepts and techniques developed
during my thesis have been peer-reviewed and published in international conference proceedings
and international workshop proceedings, resulting in a list of publications as detailed below:

1. “Lets’s Play the Token Game – Model Transformations Powered By Transformation Nets”,
Co-Autors: M. Wimmer, A. Kusel, T. Reiter, W. Retschitzegger, and W. Schwinger,
in Proceedings of the International Workshop on Petri Nets and Software Engineering,
(PNSE), in conjunction with 30th International Conference on Application and Theory of
Petri Nets and Other Models of Concurrency, Paris, France, June 22-23, pp. 35-50, 2009.

2. “Reviving QVT Relations: Model-Based Debugging Using Colored Petri Nets”, Co-
Autors: M. Wimmer, A. Kusel, G. Kappel, W. Retschitzegger, and W. Schwinger, in Pro-
ceedings of the 12th International Conference on Model Driven Engineering Languages
and Systems (MoDELS’09), Denver, Colorado, USA, October 4-9, Springer, pp. 727-732,
2009.

3. “Transformation Nets - A Runtime Model for Transformation Languages”, in Proceedings
of Doctoral Symposium at ACM/IEEE 12th International Conference on Model Driven
Engineering Languages and Systems, Denver, Colorado, USA, October 4-9, pp. 28-34,
2009

4. “Catch me if you can - Debugging Support for Model Transformations”, Co-Autors: A.
Kusel, G. Kappel, W. Retschitzegger, W. Schwinger, and M. Wimmer, in Proceedings of

1http://www.modeltransformation.net

ix

Models in Software Engineering, Workshops and Symposia at MoDELS 2009, Reports
and Revised Selected Papers, Springer-Verlag, pp. 5-20, 2010.

5. “Right or Wrong? – Verification of Model Transformations using Colored Petri Nets”, Co-
Autors: M. Wimmer, G. Kappel, W. Retschitzegger, and W. Schwinger, in Proceedings of
the 9th Workshop on Domain-Specific Modeling (DSM), in conjunction with 24th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’09), Orlando, Florida, USA, October 25-29, Helsinki Business
School, 2009.

6. “TROPIC: A Framework for Model Transformations on Petri Nets in Color”, Co-Authors:
M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Compan-
ion to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’09), Orlando, Florida, USA, October
25-29, ACM, pp. 783-784, 2009.

7. “A Petri Net based Debugging Environment for QVT Relations”, Co-Authors: M. Wim-
mer, G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Proceedings of the
24th International Conference on Automated Software Engineering (ASE’09), Aukland,
New Zealand; November 16-20, IEEE, pp. 1-12, 2009.

8. “Taming the Shrew – Resolving Structural Heterogeneities with Hierarchical CPNs”, Co-
Authors: M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Pro-
ceedings of the International Workshop on Petri Nets and Software Engineering (PNSE),
in conjunction with 31th International Conference on Application and Theory of Petri Nets
and Other Models of Concurrency, Braga, Portugal, June 21-25, University of Hamburg,
pp. 141-157, 2010.

9. “Surviving the Heterogeneity Jungle with Composite Mapping Operators”, Co-Authors:
M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Proceedings
of the 3rd International Conference on Model Transformation (ICMT’10), Malaga, Spain,
June 28-July 2, Springer-Verlag, pp. 260-275, 2010.

10. “On using Inplace Transformations for Model Co-evolution”, Co-Authors: M. Wimmer,
A. Kusel, W. Retschitzegger, W. Schwinger, and G. Kappel, in Proceedings of the 2nd In-
ternational Workshop on Model Transformation with ATL (MtATL), in conjunction with
3rd International Conference on Model Transformation (ICMT’10), Malaga, Spain, June
28-July 2, INRIA & École des Mines de Nantes, 2010.

11. “Plug & Play Model Transformations – A DSL for Resolving Structural Metamodel Het-
erogeneities”, Co-Authors: M. Wimmer, G.Kappel, W. Retschitzegger, J. Schönböck,
and W. Schwinger, in Proceedings of the 10th Workshop on Domain-Specific Model-
ing (DSM’10), in conjunction with Systems, Programming, Languages and Applications:
Software for Humanity (SPLASH’10), Reno/Tahoe Nevada, USA, October 17-21, Online
Publication, 2010.

12. “Towards an Expressivity Benchmark for Mappings based on a Systematic Classification
of Heterogeneities”, Co-Authors: M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
and W. Schwinger, in Proceedings of the First International Workshop on Model-Driven
Interoperability (MDI), in conjunction with 13th International Conference on Model Driven
Engineering Languages and Systems(MoDELS’10), Oslo, Norway, October 3-8, ACM,
pp. 32-41, 2010.

13. “From the Heterogeneity Jungle to Systematic Benchmarking”, Co-Authors: M. Wimmer,
G. Kappel, A. Kusel, W. Retschitzegger, and W. Schwinger, in Proceedings of Models in
Software Engineering - Workshops and Symposia at MoDELS 2010, Reports and Revised
Selected Papers, Springer-Verlag, pp. 150-164, 2010.

14. “A Comparison of Rule Inheritance in Model-to-Model Transformation Languages”, Co-
Authors: M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, W. Schwinger, D. Kolovos,
R. Paige, M. Lauder, A. Schürr, and D. Waagelar, in Proceedings of the 4th Interna-
tional Conference on Model Transformation (ICMT’11), Zurich, Switzerland, June 27-28,
Springer-Verlag, pp. 31-46, 2011.

15. “Reusing Model Transformations across Heterogeneous Metamodels”, Co-Authors: M.
Wimmer, A. Kusel, W. Retschitzegger, W. Schwinger, J. S. Cuadrado, E. Guerra, and J.
de Lara, in Proceedings of the 5th International Workshop on Multi-Paradigm Modeling
(MPM’10), in conjunction with 14th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS’11), Wellington, New Zealand, October 16-20,
Springer-Verlag, 2011.

16. “Automated Verification of Model Transformations based on Visual Contracts”, Co-Authors:
E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, W. Schwinger,
accepted for publication in Journal for Automated Software Engineering.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Model-Driven Engineering . 2
1.1.2 Model Transformations . 3

1.2 Running Example . 5
1.3 Deficiencies . 6

1.3.1 Requirements and Analysis Phase . 7
1.3.2 Implementation Phase . 10
1.3.3 Testing and Debugging Phase . 12

1.4 Contributions . 14
1.5 Thesis Outline . 18

2 Related Work 21
2.1 Model Transformation Testing . 22

2.1.1 Automated Generation of Test Input Models 23
2.1.2 Prediction of Output . 24

2.2 Runtime Models for Model Transformations 28
2.3 Debugging of Model Transformations . 29

2.3.1 Comparison Criteria . 30
2.3.2 Comparison of Debugging Support in Transformation Languages . . . 33

2.4 Summary . 38

3 PaMoMo: A Visual Language for Model Transformation Contracts 39
3.1 Requirements Specification for Model Transformations 40

3.1.1 Design by Contracts for Model Transformations 40
3.1.2 Overview on PaMoMo . 42

3.2 Contract Specification with PaMoMo . 43
3.2.1 Modeling of Invariants . 43
3.2.2 Modeling of Preconditions and Postconditions 46

xiii

3.2.3 Modeling of Enabling and Disabling Conditions for Patterns 48
3.2.4 Modeling Patterns for Collections of Model Elements 51
3.2.5 PaMoMo Metamodel . 52

3.3 Reasoning with Patterns . 53
3.4 QVT Relations in a Nutshell . 56
3.5 Operationalization of Contracts: From PaMoMo to QVT Relations 58

3.5.1 Compilation of Preconditions and Postconditions 58
3.5.2 Compilation of Invariants . 61
3.5.3 Compilation of Enabling and Disabling Conditions 62
3.5.4 Compilation of Sets . 64
3.5.5 Summary of the Compilation . 64

3.6 Executing PaMoMo Contracts . 65
3.7 Summary . 67

4 Transformation Nets - A Runtime Model for Model Transformations 69
4.1 Transformation Nets at a Glance . 70
4.2 Core Concepts of Transformation Nets . 71
4.3 Static Parts of Transformation Nets . 73

4.3.1 Representing Object-Oriented Metamodels in Transformation Nets . . 73
4.3.2 Going beyond Object-Oriented Metamodels 79

4.4 Dynamic Parts of Transformation Nets . 81
4.4.1 Representation of Transformation Logic 81
4.4.2 Conditions and Functions . 85
4.4.3 Chaining of Transitions . 86

4.5 Modularization Concepts in Transformation Nets 91
4.5.1 Overview on Modules . 91
4.5.2 Two Views on Modules . 91

4.6 Summary . 93

5 Rule Inheritance in Transformation Nets 97
5.1 Rule Inheritance in Current Transformation Languages 98

5.1.1 Issues in Rule Inheritance . 98
5.1.2 Comparison Setup . 99

5.2 Syntax . 101
5.2.1 Syntactical Comparison of Existing Languages 102
5.2.2 Inheritance Related Syntax in Transformation Nets 103

5.3 Static Semantics . 104
5.3.1 Comparison of Static Semantics of Existing Languages 107
5.3.2 Static Semantics in Transformation Nets 108

5.4 Dynamic Semantics . 112
5.4.1 Comparison of Dynamic Semantics of Existing Languages 113
5.4.2 Dynamic Semantics in Transformation Nets 114

5.5 Summary . 116

xiv

6 Colored Petri Nets as Semantic Domain for Transformation Nets 117
6.1 Introduction to Petri Nets and Colored Petri Nets 118

6.1.1 Petri Nets in a Nutshell . 119
6.1.2 Colored Petri Nets in a Nutshell . 120
6.1.3 Petri Net Markup Language . 122

6.2 Compilation of Static Parts of Transformation Nets 123
6.2.1 Formalization of Static Parts of Transformation Nets 123
6.2.2 Compilation of Metamodels and Models 124

6.3 Compilation of Dynamic Parts of Transformation Nets 127
6.3.1 Formalization of Dynamic Parts of Transformation Nets 127
6.3.2 Compilation of Transformation Logic 128
6.3.3 Compilation of Functions and Conditions 139

6.4 Compilation of Inheritance in Transformation Nets 139
6.4.1 Basic Concepts, Overriding Patterns and Type Substitutability 140
6.4.2 Conditions and Rule Applicability Semantics 143

6.5 Compilation of Modules . 145
6.5.1 Hierarchical Colored Petri Nets . 145
6.5.2 Formalization of Modules in Transformation Nets 146
6.5.3 Compilation of Modules to Hierarchical CPNs 146

6.6 Summary . 149

7 Debugging Support for Model Transformations 151
7.1 Code-Smells in Model Transformations . 152

7.1.1 Intra-Transition Code-Smells . 153
7.1.2 Inter-Transition Code-Smells . 155

7.2 Simulation-Based Debugging . 158
7.2.1 Selection . 158
7.2.2 Inspection . 160
7.2.3 Dynamics . 161

7.3 Query-Based Debugging . 162
7.3.1 Dynamic Slicing and Backwards Reasoning by Means of OCL 162
7.3.2 Forensic Debugging . 164

7.4 Property-Based Debugging . 166
7.4.1 Calculation of the State Space . 166
7.4.2 Behavioral Properties for Debugging Model Transformations 168
7.4.3 CPN Properties for Model Transformations 171
7.4.4 Towards Model Checking of Model Transformations 172

7.5 Fixing Failures . 173
7.5.1 Adapting the Model . 173
7.5.2 Adapting the Transformation Logic 174

7.6 Summary . 175

8 Prototype Implementation 177
8.1 PaCo-Checker - PaMoMo Contract-Checker 177

xv

8.1.1 Prerequisites. 178
8.1.2 Formal Specification of Requirements with PAMOMO. 178
8.1.3 Specification of a Verification Job. 179
8.1.4 Execution of the Verification Job. 180
8.1.5 Inspection of Verification Results. 181

8.2 DEBUT - DEBUgger for Transformations . 182
8.2.1 Overview on Debut . 182
8.2.2 Modes of Transformation Nets . 184
8.2.3 Integration of CPN Tools into DEBUT 187
8.2.4 Implementation of Debugging Features 189

8.3 Summary . 193

9 Evaluation 195
9.1 Evaluation of PaMoMo Contracts . 195

9.1.1 Using PAMOMO to Verify its own Translation into QVT Relations . . 196
9.1.2 From a Process-Interaction Language into Timed Coloured Petri Nets . 198
9.1.3 Verification of Graphical Definitions in GMF 200
9.1.4 Comparison to Related Work . 202
9.1.5 Summary . 203

9.2 Evaluation of Runtime Model . 203
9.2.1 Translating QVT Relations to Transformation Nets 204
9.2.2 Translation of Graph Transformation Languages to Transformation Nets 209
9.2.3 Translating Mapping Operators to Transformation Nets 211
9.2.4 Comparison to Related Work . 218
9.2.5 Summary . 220

9.3 Evaluation of Debugging Features . 221
9.3.1 Evaluation of Debugging Features of Transformation Nets 221
9.3.2 Fixing Bugs . 228
9.3.3 Comparison to Related Work . 231
9.3.4 User study . 232

9.4 Summary . 233

10 Conclusion and Future Work 235
10.1 Conclusion . 235
10.2 Future Work . 237

10.2.1 Extension of PaMoMo Concepts and Scenarios 237
10.2.2 White-Box Testing of Model Transformations 238
10.2.3 Representation of Graph Transformation Languages and Hybrid Trans-

formation Languages in Transformation Nets 239
10.2.4 Applying Transformation Nets to Other Scenarios 239
10.2.5 Properties for Model Transformations using Temporal Logics and State

Space Reduction Mechanisms . 240
10.2.6 Back Propagation of Bug Fixes . 240
10.2.7 Improvements on the Prototype and User Studies 240

xvi

Bibliography 243

A Curriculum Vitae 261

xvii

List of Figures

1.1 Basic Model-to-Model Transformation Pattern . 4
1.2 Running Example: Translating Class Diagrams into Relational Schemas 5
1.3 Model Transformation Development Phases . 7
1.4 Challenges in Requirements Phase . 8
1.5 Challenges in Implementation Phase . 10
1.6 Challenges in Testing Phase . 13
1.7 Contributions of the Thesis . 16

2.1 Classification of Existing Approaches in Model Transformation Testing 22
2.2 Classification of Means for Debugging in Model Transformations 30
2.3 Screenshot of ATL Debugger. 33
2.4 Screenshot of AGG Debugger. 34
2.5 Screenshot of Fujaba Debugger with eDOBS [49] 35
2.6 Screenshot of GReAT Debugger [6] . 36
2.7 Screenshot of mediniQVT Debugger. 37

3.1 Contracts in Model Transformations . 41
3.2 Automated Verification of Transformations using PaMoMo. 42
3.3 Positive Invariant Formalizing Requirement 1 . 44
3.4 Scheme of the Semantics of Positive and Negative Invariants 44
3.5 Semantics of Positive and Negative Invariants Applied 45
3.6 Additional Invariants Formalizing Requirements 2, 3 and 4 46
3.7 Precondition (Requirement 5) and Postcondition (Requirement 6) 46
3.8 Scheme of the Semantics of Preconditions and Postconditions 47
3.9 Semantics of Negative Precondition Applied . 47
3.10 Semantics of Negative Postcondition Applied . 48
3.11 Invariant with Enabling Condition . 49
3.12 Scheme of the Semantics of Enabling and Disabling Conditions 49
3.13 Semantics of Invariants with and without Enabling Condition 50
3.14 Precondition with Enabling Condition . 51

xix

3.15 Invariant with Sets . 51
3.16 Metamodel of PaMoMo . 52
3.17 Potential Error: Disabled Invariant due to Negative Precondition 55
3.18 Class2Relational Transformation Implemented in QVT Relations 57
3.19 Compilation Scheme for Preconditions . 59
3.20 Compiling a Negative Precondition into QVT Relations 59
3.21 Compilation Scheme for Postconditions . 60
3.22 Compiling a Negative Postcondition into QVT Relations 60
3.23 Compilation Scheme for Invariants . 61
3.24 Compiling a Positive Invariant into QVT Relations 62
3.25 Compilation Scheme for Enabling Conditions . 62
3.26 Compiling an Enabling Condition for a Negative Invariant into QVT Relations . . . 63
3.27 Compilation Scheme for Sets . 64
3.28 Compiling a Positive Invariant with Sets into QVT Relations 65
3.29 Verification Results of Requirements 1-4 of Running Example 66

4.1 Conceptual Architecture of Transformation Nets 70
4.2 General Concepts of Transformation Languages 72
4.3 Packages of the Transformation Net Metamodel 73
4.4 Static Elements of Transformation Nets . 74
4.5 The Ecore Meta-Metamodel [40] . 75
4.6 Representation of Metamodel Elements in Transformation Nets 76
4.7 Source Metamodel Translated to Transformation Net 77
4.8 Overview on Concrete Syntax of Transformation Net 77
4.9 Source Model Translated to Transformation Net 78
4.10 Overcoming Meta-Metamodel Heterogeneities in Transformation Nets 80
4.11 Dynamic Elements of Transformation Nets . 82
4.12 Example Transition in Transformation Nets . 83
4.13 Overview on Concrete Syntax of Patterns in Transformation Nets 84
4.14 Example Conditions . 85
4.15 Example Function . 87
4.16 Extension of Transformation Net Metamodel to Represent Trace Information . . . 88
4.17 Example Transition using Trace Information . 89
4.18 Example Transition using Intermediate Places . 90
4.19 Extension of Transformation Net Metamodel to Represent Modules 92
4.20 Blackbox View on Modules . 93
4.21 Whitebox View on Modules . 94

5.1 Issues in Rule Inheritance . 99
5.2 Overview on the Comparison Framework . 100
5.3 Transformation example in ATL, ETL and TGGs 101
5.4 Inheritance-Related Concepts of Transformation Languages 102
5.5 Extension of Transformation Net Metamodel to Represent Rule Inheritance 103
5.6 Example of Inheritance in Transformation Nets 104

xx

5.7 Rule Compatibility . 106
5.8 Examples of Static Constraints: (a) Rule Ambiguity and (b) Diamond Problem . . 107
5.9 Transformation Example in Transformation Nets 110

6.1 Simple Place-Transition Petri Net . 119
6.2 Simple Colored Petri Net . 121
6.3 Core of Petri Net Markup Language [161] . 122
6.4 Compilation of Transformation Net Places to CPNs 125
6.5 Compilation of Transformation Net Tokens to CPNs 126
6.6 Compilation of Inheritance Relationships in Transformation Nets to CPNs 126
6.7 Compilation of Transformation Nets to CPNs in Concrete Syntax 129
6.8 Compilation of Transformation Nets to CPNs in Abstract Syntax 130
6.9 Erroneous Consumption of Source Tokens . 132
6.10 Compilation of Non-Consuming Firing Behavior 134
6.11 Compilation of Negative Pattern . 136
6.12 Compilation of Distinct Values and New Colors 137
6.13 Compilation of Check Before Enforce Semantics 138
6.14 Compilation of Rule Inheritance . 140
6.15 Compilation of Inheriting Transitions Excluding Subtypes 142
6.16 Compilation of Abstract Rules . 143
6.17 Compilation of Conditions in Inheriting Rules . 144
6.18 Sample Hierarchical CPN . 145
6.19 Compilation of Blackbox View . 147
6.20 Compilation of Whitebox View . 148

7.1 Overview on Debugging Phases and Support in Transformation Nets 152
7.2 Taxonomy of Common Code-Smells in Transformation Nets 153
7.3 Wrong Pattern Granularity . 154
7.4 Inter-Transition Code-Smells . 157
7.5 Debugging Support in the Matching Phase . 159
7.6 Breakpoints in Transformation Nets . 160
7.7 Visualization of Control Flow in Transformation Nets 161
7.8 Backwards in Time Reasoning in Transformation Nets 163
7.9 Re-Enactment: Combining PaMoMo and Transformation Nets for Debugging . . . 165
7.10 State Space of an Exemplary Transformation Net 167
7.11 Application of CPN Properties for Debugging of Model Transformations 168
7.12 Taxonomy of Transformation Errors and CPN Properties 172
7.13 Changing the Model during Debugging . 174

8.1 Overview of the Architecture of PACO-Checker 178
8.2 Specification of Invariant for Requirement 4 (cf. Fig. 3.6) with PACO-Checker . . . 179
8.3 Definition of a Verification Job with PACO-Checker 180
8.4 Verification Results of Requirements 1-4 for the Running Example 181
8.5 Metamodel of Verification Log . 182

xxi

8.6 Components of the DEBUT prototype . 183
8.7 Screenshot of DEBUT . 184
8.8 Transformation Nets Applied in Raw Mode . 185
8.9 Transformation Nets Applied in Transformation-Based Mode 186
8.10 Transformation Nets Applied in Contract-Based Mode 187
8.11 Integration of CPN Tools into DEBUT . 188
8.12 Compilation Process . 188
8.13 Screenshot of Mechanisms to Detect Code-Smells 190
8.14 Screenshot of Simulation-Based Debugging Mechanisms 191
8.15 Screenshot of Query-Based Debugging Mechanisms 191
8.16 Screenshot of Property-Based Debugging Mechanisms 192

9.1 PAMOMO (left) and QVT-Relations (right) metamodels 196
9.2 A Positive Invariant for PAMOMO-to-QVT-Relations 197
9.3 A Negative Invariant for PAMOMO-to-QVT-Relations 197
9.4 Two Postconditions for PAMOMO-to-QVT-Relations 198
9.5 A Process-Interaction Model . 198
9.6 Metamodel of the Process-Interaction Language 199
9.7 Invariants for: Translation of Parallel Servers (left), Translation of Switches (up-

per right), Translation of Number of Resources Produced by Resource Managers
(bottom right) . 200

9.8 Precondition Checking Layout Constraints in GMF 201
9.9 Precondition Checking Child Access Constraints in GMF 202
9.10 Representation of QVT Relations Code in Transformations Nets (Blackbox-View) . 205
9.11 Correspondences between QVT Relations and Transformation Nets 206
9.12 Dependencies between Metamodels, QVT, and Transformation Nets 206
9.13 Schema of Translation. 207
9.14 QVT Code and Corresponding Transformation Net (Extract) 208
9.15 AGG Code and Corresponding Transformation Net 210
9.16 Kernel MOps . 212
9.17 Solution of the Running Example . 213
9.18 Compilation of Copying Kernel MOps . 215
9.19 Compilation of Merging Kernel MOps . 216
9.20 Compilation of Generating Kernel MOps . 217
9.21 Exemplary Compilation of MOps into Transformation Nets 219
9.22 Simulation of Erroneous QVT Relations Code . 222
9.23 Calculation of Properties for Running Example 224
9.24 Example of Non-Confluent QVT Relations Specification 225
9.25 Exemplary State Space Calculation . 227
9.26 Corrected QVT Relations Code of Running Example 230

10.1 Overview on the Contributions of the Thesis . 236
10.2 Scheme of Dynamic Symbolic Execution (taken from [151]) 238

xxii

Do or do not...
there is no try.

— Yoda (Fictional character from George Lucas’s Star Wars)

Chapter 1

Introduction

It is not because things are difficult that we do not dare;
it is because we do not dare that they are difficult.

— Lucius Annaeus Seneca

Contents
1.1 Motivation . 1
1.2 Running Example . 5
1.3 Deficiencies . 6
1.4 Contributions . 14
1.5 Thesis Outline . 18

1.1 Motivation

Abstraction has always been key in software engineering to deal with the omnipresent prob-
lem of growing complexity. In a first step, software engineers have tried to abstract from the

underlying computing environment, e.g., CPU and memory, as stated in [133]. The development
of high-level programming languages represented a major step in this direction. Nevertheless,
abstraction mechanisms in dedicated programming languages did not raise the level of abstrac-
tion in the design phase of software but only in the implementation phase since their focus was
on the solution domain, i.e., the programming languages, only. Therefore, technologies have
been developed for raising the level of abstraction in the design phase already. A first prominent
representative in this direction was Computer-Aided Software Engineering (CASE) [33]. Simply
speaking, the main goal of CASE was to automatically generate executable code from graphical
representations of a system, i.e., graphical programming. Although CASE attained attraction in

1

1. INTRODUCTION

the research community, it has never been fully adopted in practice. This was the case because
only very general-purpose graphical representations were given, e.g., state machines, structure
diagrams, and dataflow diagrams which poorly mapped to the underlying platforms [133]. More-
over, due to a lack of commonly accepted middleware platforms all the necessary infrastructure
code had to be generated as well, which made it difficult to integrate the generated code with
other software. Consequently, CASE tools were mostly used to visualize the software archi-
tecture, acting as a guide for the actual manual implementation of the software only. Although
nowadays more powerful frameworks and middleware platforms are available which might over-
come some deficiencies of CASE tools, e.g., J2EE1, .NET2, CORBA3, Eclipse Platform4, and
Spring5, to mention just a few, software engineers are again confronted with growing complex-
ity. Currently, researchers try to address this problem by providing Domain-Specific Modeling
Languages (DSMLs) which are specifically tailored languages that fit into a certain problem do-
main, e.g., by employing models that are less bound to an underlying implementation technology
and are much closer to the problem domain. Thus, not only software engineers may implement
a system but domain experts are enabled to model a system by means of a DSML, which is key
to the idea of Model-Driven Engineering, as explained in detail in the following.

1.1.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [133] proposes an active use of models to conduct the dif-
ferent phases of software development. Thus, models become first-class artifacts throughout the
different phases of the software development life cycle. This leads to a shift from the “every-
thing is an object” paradigm to the “everything is a model” paradigm [16]. Although models
have been used in software engineering before MDE arose, models rather served for documen-
tation purposes than as a program, i.e., models were not coupled with the according code. In
the context of MDE, models are abstractions of systems [38] and serve as single source of in-
formation to specify the implementation of a system. Consequently, developers may focus on
modeling a system close to the actual problem domain [138] and do not have to deal with the
low-level details of an underlying implementation platform or a certain programming language.
In the same way as programs have to follow certain syntactic constraints commonly described
by a grammar, models also have to follow syntactic constraints given by metamodels which de-
fine the abstract syntax. Consequently, metamodels define concepts, their relationships as well
as constraints among each other which are prevalent in a certain domain.

The Object Management Group6 (OMG) standardized the concepts of MDE in their Model
Driven Architecture initiative7 [80, 104]. MDA especially focusses on providing so-called Plat-
form Independent Models (PIMs), which allow the modeler to focus on the problem domain,
and Platform Specific Models (PSMs), which enrich PIMs with platform-specific information.

1http://download.oracle.com/javaee
2http://www.microsoft.com/net/default.aspx
3http://www.corba.org
4www.eclipse.org
5http://www.springsource.org
6http://www.omg.org
7http://www.omg.org/mda/specs.htm

2

1.1. Motivation

Therefore, PSMs are closer to a certain implementation platform. Besides models on different
level of abstractions, model transformations between models are key to the success of MDE,
e.g., to automatically transform PIMs to PSMs. Thus, in the following model transformations
are discussed in more detail.

1.1.2 Model Transformations

Transformations between different artifacts are ubiquitous in software engineering, for example,
in case of compiling high-level programs into low-level byte code and thus transformations
in general are known from other engineering domains. Thus, model transformations are closely
related to, e.g., data exchange in data engineering, when treating models as data and metamodels
as schemas. A similar analogy might be drawn for the area of ontology engineering.

In the area of data engineering, the history of engineering transformations goes back to
1976. The inventor of the Entity-Relationship (ER) model, Peter Chen discussed the problem
of generating suitable relational schemas out of ER models [34]. Furthermore, IBM suggested
the EXPRESS (Extraction, Processing and Restructuring System) approach to transform data
between hierarchical databases [142]. These two important publications were followed by a
huge amount of work in different areas and application domains of information integration (cf.,
e.g., [60] or [62] for an overview). This work ranges from the area of multi- and federated
database systems in the 1980s (cf., e.g., Sheth et al. [141]), data warehouses as well as the
integration of non-relational sources in the 1990s [117], to efforts in the more recent past in
the areas of schema matching (cf., e.g., [122]), generic model management (cf., e.g, [5], [14]),
mapping tools (cf., e.g., [94], [121]) and most recently, data mashups and dataspaces [71].

The field of ontology engineering has to cope with similar transformation problems as com-
mon in the area of data engineering. For example different architectures have been proposed
for the purpose of ontology integration. The approaches may be distinguished between direct
mappings, indirect mappings via a common, shared ontology and mappings based on a library
of already mapped ontologies [114]. Additionally, numerous approaches for the discovery, rep-
resentation and reasoning of mappings have already emerged [75].

In the context of MDE, there is a need to transform models between different languages and
abstraction levels, e.g., to migrate between language versions, to translate models into semantic
domains for analysis, to generate PSMs from PIMs, and to refine and abstract models [47].
Thus, model transformations are comparable in role and importance to compilers for high-level
programming languages, since models have to be automatically refined until the code of the
final application is obtained. In order to describe how models should be transformed into other
models, the transformation definition takes place between the respective metamodels the models
conform to (cf. Fig. 1.1). To specify model transformations, dedicated transformation languages,
especially tailored to the task of transforming models, exist (cf. [38] for an overview).

Thereby, transformation languages may be divided into imperative, declarative and hybrid
approaches. Imperative approaches like Kermeta [110] and the OMG standard QVT Opera-
tional [116] allow for an easier specification of complex transformations than declarative ap-
proaches, e.g., by providing explicit statefulness, but inducing more overhead code, as many
tasks have to be accomplished explicitly, e.g., the specification of the control flow. Declarative
and hybrid transformation languages relieve transformation designers from this burden since it

3

1. INTRODUCTION

is only necessary to specify what has to be transformed but not how this is done. The specifi-
cation is done by means of declarative rules which are then executed by dedicated transforma-
tion engines (cf. Fig. 1.1). The OMG standard QVT Relational [116] represents a declarative
approach whereas prominent hybrid representatives are, e.g., Atlas Transformation Language
(ATL) [73], and Epsilon Transformation Language (ETL) [81]. Furthermore, graph based ap-
proaches, e.g., Triple Graph Grammar (TGG) [136], AGG [147], Atom3 [89], and Viatra [9],
have been proposed, being either purely declarative or they additionally include means to spec-
ify control structures. These approaches are based on the fact that models may be represented
as typed, attributed graphs [4]. These graphs may be modified using graph transformation rules
which consist of a left-hand side (LHS) and a right-hand side (RHS) pattern. During execution,
the LHS pattern is matched for the source model, and – if it is found – replaced by the RHS
pattern (in its simplest form).

Source TargetSource
Metamodel

conforms to
executes

conforms to

Transformation Definition
Target

Metamodel

Source
Model

New Target
Model

co o s to

input output
Transformation

Engine

conforms to

Figure 1.1: Basic Model-to-Model Transformation Pattern

Fig. 1.1 shows the basic model transformation pattern, where a source model conforming to
a source metamodel is transformed into a new target model conforming to a target metamodel.
This scenario is called a batch and exogenous model-to-model transformation. However, many
other scenarios are possible as well (cf. [38]). First, the source model may change after the
transformation is executed. In this case, it is sometimes more efficient not to build the target
model from scratch but to update it. Then, transformations may also be bidirectional, if the
same specification may be used to transform from source to target and the other way round.
Transformations may also be used in check-only mode, for example, to ascertain whether two
existing models comply with the transformation definition. Finally, a model may be transformed
“in-place”, for example, for refactoring. In this case, the transformation definition only considers
one metamodel, and is called endogenous.

This thesis focuses on declarative, rule-based model-to-model transformation languages
considering a batch and exogenous scenario. The presented concepts may nevertheless be
adapted to other types of transformation languages and also to other scenarios.

4

1.2. Running Example

1.2 Running Example

B
efore delving into details, a small extract of the Class2Relational transformation
problem, which has been chosen as a running example due to its popularity in the scientific

community, is introduced. This problem is used throughout this thesis (cf. Fig. 1.2) [18]. In this
batch and exogenous model-to-model transformation, the goal is to transform instances of the
class metamodel into instances of the relational metamodel, i.e., this example represents
a unidirectional, batch and exogenous model-to-model transformation. In this context, six main
requirements arise:

• Requirement 1: For each instance of the class Package a corresponding instance of the
class Schema should be generated, which should be equally named (cf. instances p1 and
s1 in Fig. 1.2).

• Requirement 2: For each instance of the class Class, which is persistent, a corresponding
instance of the class Table should be generated, which should be equally named (cf.
instances c2, c3, t1, and t2 in Fig. 1.2).

• Requirement 3: For each instance of the class Attribute, belonging to a persistent
Class, a corresponding instance of the class Column should be generated, which should
be equally named (cf. instances a2, a3, co1, and co3 in Fig. 1.2).

l i l d l

ModelElement

Class Metamodel Relational Metamodel

SchemaElement
Correspondences

name : String name : String(Req1) Package ‐> Schema
(Req2) Class (isPersistent) > Table

Package
Schema/allSuper

Classes
Column
type : String

Attribute
type : Stringnamespace

hsubClasses

(Req2) Class (isPersistent) ‐> Table
(Req3) Attribute‐> Column

Class Table0..*attributes
0..*

0..*
type : String

0..*
columns

schemasubClasses
0..*

super
Classes

0..*

(Req4) Inherited Attribute ‐> Column

isPersistent : Bool
classes

1..*
Table

tables
columns

t t Cl d f llS Cl S t(Cl)context Class: def allSuperClasses: Set(Class)=
self.superClasses‐>union(self.superClasses‐>
collect(s| s.allSuperClasses))

co1 : Columncolumns

Exemplary Class Diagram Resulting Relational Schema

c1 : Classclasses a1 : Attributeattributes
t1 : Tabletables

co1 : Column
name = ‘registrNo‘
type = ‘Integer‘

columns

isPersistent = false
name = ‘Person‘

classes
name = ‘name‘
type = ‘String‘

super

attributes
name = ‘Student‘ co2 : Column

name = ‘name‘subclasses

c2 : Classp1 : Package s1 : Schemaa2 : Attribute

super
classesnamespace schema

type = ‘String‘columnssubclasses

classes
l co3 : Columnc2 : Class

isPersistent = true
name = ‘Student‘

p1 : Package

name = ‘University‘

s1 : Schema

name = ‘University‘

a2 : Attribute
name = ‘registrNo‘
type = ‘Integer‘

attributes
namespace

columns co3 : Column
name = ‘salary‘
type = ‘Integer‘

namespace

3 Cl 3 Att ib t

super
classes

subclasses
t2 : Table co4 : Column

name = ‘registrNo‘

schema

tables
columns

classes c3 : Class
isPersistent = true
name = ‘Professor‘

a3 : Attribute
name = ‘salary‘
type = ‘Integer‘

attributes name = ‘Professor‘ type = ‘Integer‘

co5 : Column

columns

yp g co5 : Column
name = ‘name‘
type = ‘String‘

columns

Figure 1.2: Running Example: Translating Class Diagrams into Relational Schemas

5

1. INTRODUCTION

• Requirement 4: Since the relational metamodel does not support inheritance between in-
stances of Table and since information loss should be prevented during the transforma-
tion process, for each inherited Attribute instance a corresponding Column instance
should be generated (cf. instances co2, co4, and co5 in Fig. 1.2).

Besides requirements that need to be satisfied by any pair of input/output models, require-
ments may exist that solely concern the input models. Such requirements are used to put further
constraints on input models to exclude those not handled by the transformation although they
conform to the source metamodel. This is due to the fact that metamodels allow in general for
many different valid models, but a certain transformation definition might only cover a subset
thereof. In the context of the example, a requirement of the input model is the following:

• Requirement 5: Class models are not allowed to contain redefined attributes, i.e., attributes
with the same name in an inheritance hierarchy, since otherwise tables containing equally
named columns would result.

Finally, a certain transformation might need to guarantee that the produced output models
fulfill certain conditions beyond metamodel constraints. In the example, the following fact is
demanded:

• Requirement 6: Relational models may not contain tables with equally named columns,
even though this is allowed by the metamodel.

By current transformation engines only syntactical correctness is checked but it is left un-
clear if the posed requirements are accordingly regarded by the specification. In case the require-
ments are not fulfilled, additionally the question arises how to find an error in a transformation
specification, i.e., which means for debugging are provided. In the following, deficiencies of
model transformation languages concerning the specification of requirements as well as short-
comings of existing support for testing and debugging are shortly elaborated.

1.3 Deficiencies

T
ransformation languages focus on the implementation of transformations but fail to provide
means for analysis, design, testing and debugging of model-to-model transformations [58,

98]. However, just like any other software, transformations should be engineered using sound,
robust engineering techniques. This necessity is even more acute given the prominent role of
transformations in MDE and their increasing complexity. Hence, the MDE community demands
for methods and techniques supporting appropriate abstractions to be used in the different phases
of transformation development (cf. Fig. 1.3). In the following, the current state of the art in the
main phases as well as current deficiencies are described.

6

1.3. Deficiencies

Transformation
requirements

11 Transformation
implementation

22

i bitspecification of contracts using arbitrary
transformation language

Automated
t ti

33Debugging44

specification of contracts

testing

verification of
contracts

debugging to
track errors

Figure 1.3: Model Transformation Development Phases

1.3.1 Requirements and Analysis Phase

In software engineering, the determination of requirements and their analysis has been recog-
nized as an important part of the whole engineering process, reflected by the dedicated discipline
of requirements engineering [130]. In research as well as in industry it is widely accepted that
an accurate requirement analysis is critical to the success of a software project. Concerning
model transformations, however, the sound specification of requirements is still in its infancy
although major challenges exist (cf. Fig. 1.4). These include (i) the elicitation of requirements,
(ii) the analysis of a set of requirements with respect to completeness and consistency, and (iii)
the traceability of requirements to the subsequent phases (i.e., implementation as well as testing
and debugging). Thus, the goal of the requirements phase is to achieve a formal specification of
the requirements based on the source and target metamodels. Consequently, requirements have
to be documented, measurable, and on a level of detail to be able to design the system [21].

Challenge 1: Elicitation of Requirements. A major challenge in the requirements phase
is the elicitation of them. In a model-to-model transformation scenario the main task of the
elicitation phase is to establish a coarse-grained correspondence model on basis of the source
and target metamodels. Nevertheless, as emphasized in [58], model transformations are mainly
developed ad-hoc, i.e., the analysis phase in model transformation development has been ne-

7

1. INTRODUCTION

Requirements
d

Source Metamodel
Formal Specification

and
Analysis

Target Metamodel

h ll li i i

Source Metamodel Target Metamodel

Challenge 1 ‐ Elicitation:
•Semantics
•Heterogeneities
•Metamodel Size

Analysis

Challenge 2 – Analysis and Verification:

Source Metamodel Target Metamodel

Transformation

Challenge 3 – Traceability:
•Formal specification
•Reasoning
•Usage in testing phaseRequirements

•Traces between requirements and code

Figure 1.4: Challenges in Requirements Phase

glected so far. However, in order to define the requirements on a transformation (i) semantic and
(ii) syntactic heterogeneities between metamodels have to be analyzed.

To enable the realization of a model transformation, first the semantics of the metamodels
involved must be understood, such that overlaps in semantics of concepts might be identified.
For this, ideally a domain expert is available, who knows about the semantics of the meta-
models or corresponding metainformation, e.g., in the form of documentation. Otherwise, this
knowledge may be statistically re-engineered from example instances as proposed in the area
of data engineering (cf., e.g., [69]). If semantically equivalent concepts have been found syn-
tactic heterogeneities have to be analyzed. Syntactic heterogeneities typically result from the
fact that semantically equivalent or related concepts can be expressed by different metamodel-
ing concepts [94]. Nevertheless, in in this context a major challenge is to describe the occurring
heterogeneities, since no common vocabulary for heterogeneities has been established so far.
For establishing such a common vocabulary, a starting point would be to analyze which hetero-
geneities might occur at all between metamodels, as done in [86].

Furthermore, due to the increasing complexity of systems and modeling languages, also the
size of metamodels grows and thus, mechanisms are needed to analyze large metamodels. To
support the transformation designer in this task, matching tools might be employed to enhance
understanding of large metamodels. This is since matching tools allow to derive correspon-
dences between metamodels which might help to reveal semantic relationships automatically. In
this respect, first metamodel matching tools [42, 43, 123] inspired from schema matching [122]
have been developed.

Challenge 2: Analysis and Verification of Requirements. Given the fact that a set of
requirements has been posed, a major question is whether this set is complete and consistent.
Thus, the language that has been used to capture the requirements should enable reasoning on

8

1.3. Deficiencies

them with respect to (i) metamodel coverage, (ii) redundancies, and (iii) contradictions. To allow
for automatic testing of the requirements, they have to be formally defined [143]. Currently, for
the specification of requirements, OCL-based approaches (cf., e.g., [29,30]) have been proposed.
Nevertheless, they do not allow for reasoning and are difficult to write and yield to verbose
specifications. Thus, in order to facilitate the specification of requirements, a more user-friendly,
but still formal language is needed, which is specific to the domain of model transformations.
This is in contrast to software engineering, where formal methods like Z [143] or Alloy [70] have
been developed. However, such languages are specific to the domain of software engineering
in the way that they are, e.g., not capable to deal with the complex structures of models, which
makes the specification of requirements tedious. Thus, a dedicated language is needed that takes
the special requirements of model transformations into account.

Challenge 3: Traceability of Requirements. Since the recorded requirements serve as
contracts for the implementation, traceability of each requirement to the succeeding phases is
indispensable. This is also favorable to locate the area of the implementation that has violated
a certain requirement as checked in the testing phase. Thus, a mechanism is needed that allows
to manage links between requirements and their realization in the transformation code. Such a
mechanism could be a simple model allowing to store links between requirements and transfor-
mation rules.

In summary, although first approaches supporting the transformation designer in the require-
ments and analysis phase have been proposed, a dedicated support to formally specify the re-
quirements, which can subsequently be used for testing the specified transformation, is still
missing.

Deficiency 1: Missing Support for Specifying Transformation Requirements. In soft-
ware engineering, dedicated languages have been proposed to capture the requirements, e.g.,
Z [143] and Alloy [70]. Current transformation languages do not provide means to specify
certain requirements. Instead, the requirements a transformation is supposed to fulfill are only
available in an informal way, e.g., in terms of a textual description. Furthermore, in software
testing, a so-called oracle determines if the result of a test case is correct [13, 19], i.e., if no dif-
ferences between the generated and the expected results exist, the test run succeeds. Such oracles
may also be employed in the domain of model transformations to determine if the transforma-
tion specification fulfills the posed requirements, e.g., comparing if a generated target model
is equal to desired one (cf below). Since the expected target model is not available, usually a
so-called partial oracle may be employed to check if expected properties hold for the generated
model. Concerning the running example of Section 1.2, if there is a Package in the source
model there should be an according Schema in the target model according to the above pre-
sented requirements. A possibility to realize partial oracles is to use design by contract which
has been introduced for object-oriented programming languages [105]. Design by contract al-
lows to formalize requirements in terms of contracts, which may be used to test the software, i.e.,
contracts on methods specify valid input parameters and report an error in case of invalid values.
Providing a dedicated language for specifying contracts also for the domain of model transfor-
mations (i) would allow the definition of contracts that are not tied to a particular transformation
language, i.e., it should be implementation independent (which is especially favorable in MDE
since no dedicated standard transformation language has emerged in practice so far [38]), and

9

1. INTRODUCTION

(ii) equips designers of transformations with the possibility to state explicitly desired properties
of a transformation before implementation, which could then be used in the testing phase to
verify the actual implementation.

1.3.2 Implementation Phase

Research in model engineering so far has been focussing mainly on implementation languages.
This is analogous to software engineering, where analysis and design notations came later, when
scalability became an issue [58]. Although numerous transformation languages have been pro-
posed (cf. [38] for an overview), some main challenges in implementation are still open. These
include (i) the automatic derivation of the transformation specification from the defined require-
ments, (ii) the provision of reusable components, and (iii) means to explicate the operational
semantics of the according transformation language (cf. Fig. 1.5).

Challenge 1: Automatic Derivation. For enhancing development efficiency, automatiza-
tion techniques may be employed to derive (parts of) the transformation logics. Existing ap-
proaches in this direction used matching techniques that try to find the correspondences between
metamodels and then interpret these correspondences to automatically derive the transformation
code [42, 43, 123]. Furthermore, example-based approaches have been proposed, that match
model instances to derive model correspondences which are used to infer metamodel corre-
spondences [146]. These metamodel correspondences are then again used to derive executable
transformation code. However, matching-based approaches may produce good results in case of
similar metamodels but fail in case of heterogeneous metamodels.

Challenge 2: Reusable Components. In order to minimize the number of failures in a trans-
formation the reuse of existing, already tested, components should be considered. Although

Source MM

Target MM

Transformation
Specification

Formal Specification
Implementation

Analysis

Challenge 1:
Automatic
Derivation

Challenge 3:
Operation
Semantics

Analysis

p

Challenge 2:
Reusable

Components

Figure 1.5: Challenges in Implementation Phase

10

1.3. Deficiencies

numerous reuse mechanisms (cf., e.g., [37, 42, 159]) have been proposed for model transfor-
mation languages it remains unclear in which situations a certain reuse mechanism is suited
best. What is missing is an in-depth comparison of proposed reuse mechanisms in rule-based
model-to-model transformation languages to highlight when to apply a certain reuse mechanism
and how reuse mechanisms complement each other. Such reuse mechanism may be applied to
provide reusable transformation components. Finally, inspired from data engineering abstract
mappings have been proposed [42, 86] that allow to specify a transformation on a conceptual
level by means of high-level components. These components exhibit a well defined operational
semantics, which enables the generation of transformation code. Nevertheless, the current pro-
posal does not provide a sophisticated library of components restricting the expressive power.
Furthermore, their actual operational semantics is often hard to follow, i.e., it is not clear which
component to use in which specific transformation situation.

Challenge 3: Operational Semantics. The diversity of model transformation languages
also leads to a diversity in the underlying execution engines, which exhibit different semantics
making it hard to comprehend the semantics of a transformation language. Furthermore, current
hybrid and declarative model-to-model transformation languages (e.g., ATL [73], TGGs [83],
and QVT Relations [116]) specify correspondences between source and target metamodel el-
ements on a high level of abstraction, whereas accompanying execution engines operate on a
considerably lower level. For example, ATL uses a stack machine whereas TGGs are first trans-
lated to Fujaba storydiagrams [160], which are then again translated to Java for execution. These
execution engines act as a black-box to the transformation designer hiding the operational se-
mantics. Furthermore, comprehensibility of transformation logic is further hampered as current
transformation languages provide only a limited view on a model transformation problem. For
example, in ATL metamodels, models, the transformation specification, and trace information
are scattered across different artifacts. Graph transformation approaches using graph patterns
only reveal parts of the metamodel. Additionally, both approaches hide the transformation of
concrete model elements. The situation is even more aggravated if several tool manufacturers
implement a different semantics as is the case for QVT Relational.

In summary, although the focus of current transformation languages is on the implementa-
tion phase, further research is needed how to derive the implementation from the findings of the
requirements phase (in a model driven way) and how to provide reusable components. Addi-
tionally, the diversity of transformation languages and their underlying execution engines, which
hide the operational semantics thereof, aggravates the understanding of the actual transforma-
tion logic. Additionally this hampers debuggability of model transformations. In this respect, an
explicit runtime model, which reveals the internals of the execution engine, is needed.

Deficiency 2: Missing Runtime Model to Investigate the Operational Semantics. If in
the testing phase an error occurs, means for understanding and debugging the transformation
specification are needed to efficiently find failures. Unfortunately, as discussed above, current
transformation engines hide the actual operational semantics. In order to make the hidden oper-
ational semantics explicit and consequently following the model-driven approach, model trans-
formations should also be represented as a transformation model as stated in [17]. Although
transformation languages base on metamodels, e.g., ATL, only transformation specifications are
defined in terms of models but not their execution. If the execution would be represented in

11

1. INTRODUCTION

terms of a formal model, the runtime information could easily be used for debugging purposes
(cf. below). In this respect, commonalities of different model transformation languages should
be represented by such a transformation model which abstracts from technical realization de-
tails [17]. Consequently, such a transformation model could not only be used as a conceptual
model but could also act as runtime model which makes the operational semantics explicit. A
runtime model needs to provide means to represent the transformation logic, the metamodels,
as well as the respective models involved in a model transformation. It is required to make
explicit which model elements are transformed by which transformation rule or due to which
circumstances a certain model element may not be transformed, e.g., in case a certain condition
is not fulfilled. Additionally, the interconnections between transformation rules need to be made
explicit in order to be able to follow the execution order of certain transformation rules which
together form the model transformation.

1.3.3 Testing and Debugging Phase

Following the IEEE Standard Glossary of Software Engineering Terminology [68], testing may
be seen as a way to verify a system since testing is ”the process of exercising or evaluating
a system by manual or automated means to verify that it satisfies specified requirements, or
identify differences between expected and actual results”, which has also been discussed in [98].
Baudry et. al stated in [13] that “model transformations constitute a class of programs with
unique characteristics that make testing them challenging” whereby this is further aggravated
by the complexity of input models and the different transformation languages. According to
[64], testing consists of designing test cases, executing the software with those test cases and
examining the results produced by those executions. Model transformation testing in this sense
means that a transformation specification is executed using certain input test models and the
generated target models are compared to expected target models. Consequently, methods are
needed to verify as to whether a certain source model is correctly transformed into a desired
target model. In case a failure is detected, i.e., the transformed model is not equal to the desired
target model, means for debugging are required in order to be able to examine the transformation
specification and to actually fix the failure.

Following [13], activities in testing of transformations include the generation of test data, the
definition of test adequacy criteria to select adequate test cases from the generated test data, and
the construction of an oracle, which predicts the expected outcome of a certain transformation.
Thus, two main challenges in testing may be described as (i) generating adequate input data and
(ii) predicting the outcome for them. Furthermore, to actually decide, whether a problem arises,
the predicted outcome must be compared to the actual outcome. Finally, after having recognized
that a problem exists, the detection of the failure, i.e., the tracking to the origin of the bug in
the code, represents the main third challenge (cf. Fig. 1.6). To actually perform testing and
debugging, besides the source and target metamodels as well as the transformation specification
also the formal specification may be employed to produce a test protocol.

Challenge 1: Generation of Adequate Input Data. To relieve the tester from the bur-
den of specifying test input models manually, approaches have been proposed for automatically
generating valid input models [23, 46, 140]. This is urgently needed due to the complex struc-
ture of models, which makes a manual creation tedious and error-prone. In this context, two

12

1.3. Deficiencies

Source MM

Target MM
Test Protocol

Formal Specification

Testing and Debugging

Transformation
SpecificationSpecification

Analysis

Challenge 2:
Prediction of

Outcome (Oracle)

Challenge 1:
Generation of

Adequate Input Data

Challenge 3:
Detection of Failure

Figure 1.6: Challenges in Testing Phase

main approaches may be pursued. First, input models may be generated based on the source
metamodel only. Consequently, a subsequent selection of adequate input models according to
existing preconditions must be performed, i.e., the model has to represent a valid subset of mod-
els considered by the transformation. Second, input models may be created on the basis of the
source metamodel as well as the specified preconditions. In this case, the generation process is
more complex, but the subsequent selection process may be omitted. As may be seen from this
short overview, several promising approaches concerning the generation of adequate input data
have already been brought forward.

Challenge 2: Prediction of Outcome (Oracle). A second major challenge represents the
prediction of the outcome for the generated input models, which is commonly denoted as oracle,
as already mentioned above. Thereby, complete oracles and partial oracles have been described
in literature [13,109], whereby a complete oracle is responsible to predict complete output mod-
els for given input models and a partial oracle predicts only properties that must hold, i.e., if a
certain property in the input model holds, a certain property in the output model must be ful-
filled. Since in the testing process it should be validated if the afore defined requirements are
fulfilled by the transformation specification, it is obvious to reuse the requirements specification
for testing. Provided that the requirements have been formally specified, the specification may
be made executable in a way that it may serve as partial oracle. Thus, a formal specification
of requirements is not only useful in the implementation phase but also in the testing phase.
To actually recognize whether failures exist in the implementation, the predicted outcome by the
oracle must be compared to the actual outcome of the transformation. Therefore, model compar-
ison techniques are needed to automatically compare an expected output model to a generated
output model [98].

13

1. INTRODUCTION

Challenge 3: Detection of Failure. Finally, if problems have been observed, the tracking
of the origins of failures represents also a major challenge in the testing and debugging phase
[173]. Provided that the prediction of the outcome has been performed based on the formal
specification of the requirements and that they exhibit traceability means to the implementation,
a first hint to the location of a failure may be given. This may then serve as an entry point for
debugging. Otherwise, the entry point for debugging must be specified by the transformation
designer without any guidance. To enhance the detection of the failure, the provided debugger
must make the operational semantics explicit in a way that the impedance mismatch between
the transformation specification and the execution engine is kept as low as possible. Another
technique would be to apply metrics as proposed in, e.g., [3] to detect so-called code smells.

In summary, although first approaches have been brought forward for the testing and debug-
ging phase, there are still major issues open. These include the prediction of the outcome as well
as the detection of the failure.

Deficiency 3: Inappropriate Debugging Facilities. The first major deficiency is to specify
requirements on model transformation in way the the may also be used for the testing phase.
Nevertheless, this problem has been considered already in Subsection 1.3.1. In order to actually
find a failure in a transformation specification, according means for debugging are indispensable.
As stated above, most often, current transformation engines are implemented using common
object-oriented programming languages like Java, e.g., the stack machine of ATL. As a con-
sequence, debugging of model transformations is limited to the information provided by these
programming languages, most often just consisting of variable values and logging messages.
Thus, only a snapshot of the actual execution state is provided during debugging while coher-
ence between the specified correspondences is lost. As discussed in [98], a model transformation
debugger may not make use of common programming language debuggers “due to the semantic
differences in abstraction between the artifacts of code and models”. The authors furthermore
clearly state that “a model transformation debugger must understand the model representation”.
In this respect, an execution of a model transformation should again be represented in terms
of a model, i.e., an execution should be an instance of the runtime model as described above,
to enable debugging on the model representation level. Furthermore, an explicit, model-based
representation of the execution state would allow to incorporate more sophisticated debugging
facilities known from traditional software engineering, e.g., tracking the origin of a failure by
means of reasoning backwards in time and slicing [173]. Finally, if the actual execution is based
on commonly agreed, formal methods, properties may be calculated which are useful for debug-
ging. For example, one could reason if the specified transformation terminates or if its behavior
is confluent.

1.4 Contributions

The overall goal of this thesis is to provide means to test and debug model transformations.
Thereby, the focus is on providing an implementation independent infrastructure to test

model transformations against certain requirements and to provide means to foster understand-
ability of model transformations and consequently to ease debugging of model transformations.
This thesis therefore presents three major contributions that tackle the aforementioned deficien-

14

1.4. Contributions

cies of current approaches (cf. Fig. 1.7). First, a declarative, visual language is proposed that
allows to specify transformation contracts. Transformation contracts may be used to observe
facts in model transformation testing according to [173], i.e., to observe what happened in a test
run. Nevertheless, further means are needed to understand and debug model transformations,
i.e., to track the origin and to find the cause of a failure according to [173]. Therefore, the second
contribution introduces a common runtime model based on the concepts of Colored Petri Nets
(CPNs) [72]. This runtime model builds the basis for the third contribution being sophisticated
debugging mechanisms which are especially tailored to the domain of model transformations.
In the following the contributions are elaborated in detail.

Contribution 1: Declarative Language to Specify Visual Transformation Contracts.
For the specification of partial oracles, a visual, declarative specification language to express
properties for model-to-model transformation languages is proposed (cf. 1 in Fig. 1.7). This
language is called PAMOMO (Pattern-based Modelling Language for Model Transformations)
and is aimed to allow for the formal definition of model transformation requirements, that may
later on be used for testing. First versions of PAMOMO have already been in presented in [55,
57]. In the course of this thesis the language concepts will be modified and extended to make it fit
as a contract language. Hence, designers of transformations may use this language to (i) describe
desired properties of the transformation, as well as properties of its input and output models in
an implementation independent way. This style of properties borrows ideas from the design by
contract methodology [105] because contracts may be used to specify preconditions, invariants,
and postconditions of model transformations. As already mentioned above, preconditions are
going beyond metamodel constraints, i.e., they are specific to a certain transformation, and need
to be satisfied by input models such that the transformation is applicable. Invariants might be
used to specify what conditions need to be satisfied by any pair of input/output models resulting
from a correct transformation. Postconditions might be used to express that an output model
should or should not contain certain configurations of elements.

One of the advantages of contracts is that they allow to define what a piece of software does
but not how it is done. In this respect, model transformation contracts may be used even be-
fore the implementation phase to specify the requirements of model transformations, which are
later on used for testing. Additionally, the contract is a useful document for the transformation
designer in the development phase, since it describes what the transformation is supposed to
do, under which conditions the transformation should be applicable, and which postconditions
a transformed model is supposed to fulfill. Thus, the contract makes explicit the requirements
of a model transformation to be implemented and may be used to define partial oracles. In this
respect, the requirements of the running example in Section 1.2 may be formulated in terms
of contracts, i.e., it would be possible to check if a specified transformation fulfills the posed
requirements. Consequently, PaMoMo is used for the automated testing of transformation im-
plementations. The specifications are compiled into executable, check-only transformations ex-
pressed in the standardized QVT Relations language. These transformations are executed before
(to check the preconditions) and after the transformation under test (to check invariants and post-
conditions) and provide the user with information on which property of the specification was
violated (if any) and where. In order to ease the specification and to automate the compilation
of specifications, dedicated tool support will be provided.

15

1. INTRODUCTION

1111
p:Class

N(NoRedefinedAttrs)

a:Attribute

name=X

Class Relational

pa:Package
c: Class

P(InheritedAttributes)

p: Class t:Table

Class Relationalpa: Package
s: Schema

…

c:Class ar:Attribute

name=X
c.general‐>includes(p) a: Attribute

name=A
c.general‐>includes(p)

co:Column
name=A

isPersistent = true
name=C

name=C

PaMoMo: A Visual Contract Language
specifies requirements

transformation ClassToRel(
class:Class, rel:Relational){

top relation PackageToSchemaPackageToSchema{
checkonly domain class
p:Package{classes=c:Class{

isPersistent=true}};
enforce domain rel
s:Schema {tables=t:Table{}};

}

TROPIC
executes22

QVT Relations

22

Runtime Model – Simulation and Query-based Debugging
based on

33
based on

Colored Petri Nets – Verification based Debugging

Figure 1.7: Contributions of the Thesis

Contribution 2: A Runtime Model for Model Transformations. Following the idea of
model transformations as transformation models [17], this thesis presents Transformation Nets,
a DSL on top of Colored Petri Nets (CPNs) [72], for developing, executing, and debugging
model transformations (cf. 2 in Fig. 1.7). Transformation Nets include commonalities of to-

16

1.4. Contributions

day’s declarative rule-based model-to-model transformation languages. In particular, for every
metamodel element, places in Transformation Nets are derived, whereby a corresponding place
is created for every class, every attribute and every reference. Model elements are represented by
tokens, which are put into the according places. Finally, the actual transformation logic is rep-
resented by transitions. The existence of certain model elements, i.e., tokens allows transitions
to fire and thus to stream these tokens from source places to target places representing instances
of the target metamodel to be created. This approach follows a process-oriented view towards
model transformations allowing debugging on an appropriate level of abstraction. Furthermore,
Transformation Nets provide the explicit statefulness of imperative approaches through tokens
contained within places. The abstraction from control flow known from declarative approaches
is achieved as the nets transitions may fire autonomously, thus making use of implicit, data-
driven control flow. In this respect, Transformation Nets act as a runtime model for model
transformations. A first version of Transformation Nets has already been presented in [125].
Nevertheless, in the course of this thesis further development of the runtime model will be con-
sidered, going beyond the contributions proposed in [125]. Thereby, major improvements have
been considered in three different directions. First, numerous changes and extension to the ini-
tial version of Transformation Nets have been conducted in order to provide a metamodel that
represents the commonalities of current rule-based model-to-model transformation languages.
Thereby, a focus has been set on representing reuse concepts, e.g., rule inheritance and modular-
ization concepts. Besides changes in the underlying metamodel of Transformation Nets, second,
a formal basis has been provided by its full compilation into CPNs. Finally, the compilation into
CPNs enables the use of efficient standard execution languages, e.g., CPN Tools8 in the pro-
totypical implementation, as well as formal properties of CPNs, which may be employed for
debugging the transformation specification.

Contribution 3: Debugging Facilities for Model Transformations. The ability to com-
bine all the artifacts involved, i.e., metamodels, models, as well as the actual transformation
logic, into a single representation makes the formalism especially suited for gaining an under-
standing of the internals of a specific model transformation. First, this formalism allows to detect
bug-smells by inspecting the static structure of the according Transformation Net. Second, the
runtime model serves as a basis to provide debugging facilities, whereby in this thesis three
dedicated mechanisms are proposed namely (i) simulation-based debugging, (ii) query-based
debugging, and (iii) property-based debugging (cf. 2 and 3 in Fig. 1.7). They will shortly be
described in the following. As stated in Section 1.3, the runtime model should also include in-
formation about the actual execution of a model transformation, i.e., which model elements have
already been transformed, which may be used for debugging purposes. This is why Transforma-
tion Nets also store the models in terms of tokens. The execution of a model transformation may
then be simulated, e.g., by firing transitions in Transformation Nets. The stepwise firing of the
transitions makes explicit the operational semantics of the transformation logic and thereby en-
ables simulation-based debugging. Furthermore, the runtime model may be exploited by means
of query-based debugging. For this, OCL queries are proposed which allow to reason backwards
in time, e.g., since the execution stack is represented in the model it is possible to query which
transition produced a certain target token and which source tokens where involved in creating

8http://cpntools.org

17

1. INTRODUCTION

a certain target token. Since the execution is stored as a model, forensic debugging is enabled
additionally, i.e., debugging might occur after having executed the transformation logic based
on the explicitly available runtime model. Finally, the formal underpinnings of CPNs allow the
application of generally accepted behavioral properties, characterizing the nature of a certain
CPN, e.g., to test if a certain target model may be created with the given transformation logic.
Thus, CPN properties enable property-based debugging.

Prototypical Implementation. Besides discussing the contributions of the thesis from a
conceptual point of view, a prototypical implementation of the concepts is provided, which is
based on the Eclipse Platform. More specifically, the prototype is based on the Eclipse Modeling
Framework (EMF)9 [24] for specifying the metamodels of PaMoMo and Transformation Nets
and on the Graphical Modeling Framework (GMF)10 [54] for specifying the concrete, graph-
ical syntax of them. To execute PaMoMo contracts they are compiled into checkonly QVT-
Relations, more specifically the implementation of Modelmorf11 is used. CPN Tools are used
to execute Transformation Nets as well as to calculate formal properties. To enable communi-
cation between the Eclipse based implementation of Transformation Nets and CPN Tools the
ASAP platform [163, 164] is used.

1.5 Thesis Outline

The thesis is mainly structured to the well-known development cycle and along the three
major contributions depicted in Fig. 1.7. In the following, a brief overview on the structure

of the thesis is given.
Chapter 2: Related Work
In order to present the fundamentals of this thesis this chapter presents related work and state
of the art in testing and debugging of model transformations. Thereby, the main deficiencies of
current approaches are identified which are improved by the contributions of this thesis.
Chapter 3: PaMoMo: A Visual Language for Model Transformation Contracts
This chapter focuses on the introduction of the declarative, visual language PaMoMo (Pattern-
based Modelling Language for Model Transformations) which may be used to specify contracts
in terms of preconditions, invariants as well as postconditions for model transformations. Fi-
nally, it is reported how these contracts may be compiled into QVT-Relations in order to validate
the contracts against a certain transformation. The idea of contracts has been summarized in a
journal paper which was accepted for publication at the time of writing the thesis [59]
Chapter 4: Transformation Nets - A Runtime Model for Model Transformations
The basic concepts of Transformation Nets, i.e., how metamodel and model as well as the trans-
formation logic itself are represented are introduced in this section. Thus, it is shown that
Transformation Nets may serve as a runtime model for declarative model-to-model transfor-
mation languages. Parts of the findings in this chapter have been published in several peer
reviewed papers [134, 135, 169, 172], initial ideas of Transformation Nets have been published

9www.eclipse.org/emf
10www.eclipse.org/gmf
11http://www.tcs-trddc.com/trddc website/ModelMorf/ModelMorf.htm

18

1.5. Thesis Outline

in [125, 126, 170]. Furthermore, modularization concepts are discussed, i.e., modules are pre-
sented which allow the modularization of Transformation Nets and the definition of reusable
components in a transformation specification.
Chapter 5: Rule Inheritance in Transformation Nets
Whereas the previous chapter introduced basic concepts of Transformation Nets, this chapter
focuses on reuse mechanisms in Transformation Nets. In this respect, it is discussed how rule
inheritance is supported in current transformation languages (published in [167]) and how rule
inheritance may be incorporated into Transformation Nets.
Chapter 6: Colored Petri Nets as Semantic Domain for Transformation Nets
Transformation Nets represent a Domain-Specific Language (DSL) on top of Colored-Petri Nets
(CPNs) [72]. In order to make use of already existing, efficient CPN execution engines as well as
the formal underpinnings, i.e., properties, provided by CPNs, Transformation Nets may be fully
compiled to CPNs. This chapter therefore (i) introduces CPNs, (ii) formalizes Transformation
Nets according to principles of Petri Nets and presents the (iii) actual compilation.
Chapter 7: Debugging Support for Model Transformations
After translating Transformation Nets to CPNs and thus providing a formal execution engine,
this chapter discusses how (i) simulation-based debugging, (ii) query-based debugging, and
(iv) property-based debugging are realized. The findings in this chapter are partly published
in [135, 165].
Chapter 8: Prototype Implementation
Besides presenting testing and debugging of model transformations from a conceptual point of
view, this chapter provides an overview of the actual implementation. In this respect, first, the
implementation of PaMoMo is discussed, followed by the realization of Transformation Nets
and their according debugging facilities.
Chapter 9: Evaluation
In order to evaluate and to critically reflect the presented contributions this chapter presents eval-
uations on the basis of case studies and comparative reviews. First, it is shown how a transforma-
tion specification defined in QVT Relations may be tested by means of contracts and debugged
by means of a translation to Transformations Nets, partly published in [168, 171]. Second, a
comparative study driven by the identified deficiencies in related work is conducted in order to
show in which way the thesis improved the state of the art. Additionally it is shown how Trans-
formation Nets may be used to specify the operational semantics of the mapping language called
Mapping Operators (MOps) [86].
Chapter 10: Conclusion and Future Work
The thesis concludes with a summary and a critical discussion of the achieved contributions.
Finally, current limitations as well as an outlook on potential further research directions is given.

19

Chapter 2

Related Work

Because things are the way they are,
things will not stay the way they are.

— Bertolt Brecht

Contents
2.1 Model Transformation Testing . 22
2.2 Runtime Models for Model Transformations 28
2.3 Debugging of Model Transformations . 29
2.4 Summary . 38

After having shortly discussed current deficiencies, this chapter provides an in-depth overview
on related work. Thereby, the related approaches are separated into the three main deficien-

cies identified in Chapter 1. First methods are surveyed concerning testing of model-to-model
transformations and how test cases can be specified. The term testing refers to “the process of
operating a system or component under specified conditions, observing or recording the results
and making an evaluation of some aspect of the system or component” [68] in order to detect
if failures in a program exists. According to [173], a failure is an infection that is externally
observable. An infection occurs if the defect in a program is executed in a way that the desired
state of the program differs from the actual state. Debugging is then the process of locating de-
fects in a program as well as to remove the defect so that the failure no longer occurs. Therefore,
in this thesis the term failure is preferred to the term bug, which is not precisely defined [173, p.
19]. In order to find a failure, tool support is indispensable. Second, related work concerning
runtime models is presented, which may serve as basis for a debugger in declarative rule-based
model-to-model transformation languages. Finally, related work concerning debugging support
in current model transformation languages is presented.

21

2. RELATED WORK

2.1 Model Transformation Testing

The need for systematic testing of model-to-model transformations has been recognized by
the research community and has been documented by several publications, outlining the

challenges to be tackled [12, 13]. As a response, several testing approaches have been proposed
whereby Fig. 2.1 shows a classification thereof.

Model Transformation
Testing

Generation of Prediction ofGeneration of
Input Model

Metamodel‐
Centered

Transformation
Logic Centered

Prediction of
Output Model

Complete
Oracle Function

Partial Oracle
FunctionCentered Logic‐Centered Oracle Function

Model
Comparison Trace Analysis

Function

General
Properties

Custom
Properties

Intrinsic Extrinsic Contract‐
Based

Execution‐
Based

Figure 2.1: Classification of Existing Approaches in Model Transformation Testing

Basically, existing approaches can be divided into approaches (i) for the automated gen-
eration of test input and (ii) for the prediction of the desired output model. Considering ap-
proaches for the generation of input models, they can be further divided into those that make
use of the source metamodel of the transformation only, to systematically generate a large set
of test cases or those that additionally take into account the design and implementation of the
model transformation. Approaches that solely base on the metamodel are also called black-box
generation approaches, whereas those making use of the implementation are called white-box
approaches [13]. Methods that try to predict the desired output model can again be split into
those that try to predict the whole output model, i.e., that make use of a complete oracle func-
tion, and those that try to predict parts of desired target model only, i.e., partial oracle functions.
Complete oracle functions may be defined by having the expected output model at hand, which
acts as a reference model for analyzing the actual output model of a transformation, e.g., by
means of model comparison. Other approaches use the oracle function to compare an existing
trace model with the actually produced trace model (cf. trace analysis in Fig. 2.1). Since often
no desired target model is available and since it is tedious and error-prone to establish a target
model manually, approaches exists that try to ensure certain properties of a transformation by
means of partial oracle functions. Thereby, approaches consider either testing general proper-
ties such as confluence, applicability and termination of a set of transformation rules, which are
generally applicable to all transformation specifications, or custom properties which are specific
to a certain transformation specification. Considering general properties, either the transforma-
tion language itself provides means to test them, i.e., intrinsic in Fig. 2.1, or the transformation

22

2.1. Model Transformation Testing

specification is transformed to a specific language that allows to test properties, e.g., Petri Nets
or constraint solvers, i.e., extrinsic in Fig. 2.1. Finally, custom properties can be specified based
on contracts or on their execution. Contracts allow to specify preconditions, invariants and
postconditions that need to be fulfilled by a transformation specification. Execution based ap-
proaches allow to specify a formal property that can be automatically checked by analyzing the
state space, which contains all possible execution sequences of a transformation specification.
This is especially common in model checking. In the following, the classification is explained
in detail and related work in testing model transformations will be presented.

2.1.1 Automated Generation of Test Input Models

As stated, e.g., in [23], test data generation for model transformations requires to handle complex
data structures compared to the data of traditional programming. This difference requires special
means for test data generation, i.e., how to generate source input models. Due to this complexity,
the manual specification of input test models would be tedious and error prone. Therefore, auto-
mated generation is heavily needed. A distinguishing criteria amongst the approaches presented
is, as to weather the approach makes use of the metamodel only, or additionally considers the
actual transformation specification under test.

Metamodel-Centered Approaches. An approach that uses the metamodel to generate test
input models is presented in [23]. The presented algorithm first derives so-called model frag-
ments which specify parts of the metamodel that should be instantiated with interesting values
for testing, e.g., minimum values, maximum values, or null values. The presented approach then
combines and completes the fragments in a way that a valid source model results, i.e., the source
model has to conform to its according metamodel. The focus of the paper is to present different
strategies how to achieve this goal. In a subsequent work the authors present a framework to
qualify the relevance of generated input model for testing [45]. Furthermore, the framework
identifies missing model elements in input models and assists the user in improving these mod-
els. Another point that is highlighted in [140] is that a metamodel might exhibit additional
constraints, e.g., by means of OCL constraints. These constraints have to be fulfilled by the gen-
erated input models. Therefore, an automatic approach is presented which is based on constraint
satisfaction. Based on previous work of the authors presented in [139], the input metamodel and
its additional constraints are translated to Alloy1 to generate a boolean formula which is solved
using a SAT solver [107] to obtain a potential solution.

Transformation Logic-Centered Approaches. The following approaches take into account
the design and the implementation of the model transformation for constructing test cases. An
approach that considers the matching phase of graph transformation rules to test input models
is presented in [39]. Based on a fault model for graph transformations, the extracted model
that originally matches a certain graph transformation rule is systematically changed in order
to introduce errors which have to be detected during testing. In [87], a template language to
generate test models based on the structure of the rules used to implement the transformation
is presented. A given transformation rule can be transformed into a so-called metamodel tem-

1http://alloy.mit.edu/community

23

2. RELATED WORK

plate. Such metamodel templates are then used to automatically create template instances that
represent suitable test cases.

In summary, it has to be emphasized that the generation of test input models is not the focus
of this thesis. Nevertheless, the generation of input models has been discussed shortly to (i)
provide a full overview on related work concerning model transformation testing and (ii) because
the methods that will be presented throughout this thesis require according input models, which
may be generated using the above presented approaches.

2.1.2 Prediction of Output

In general, literature on model transformation testing distinguishes between two kinds of ora-
cle functions [13, 109] to predict the output of a model transformation. First, complete oracle
functions may be defined by providing a full-fledged expected output model for each test input
model, and subsequently, employing model comparison frameworks to verify the equality of
the actual output model with the expected target model. Second, partial oracle functions can
be used to test the transformation specification against desired properties, i.e., if the generated
target model contains a certain graph structure.

2.1.2.1 Complete Oracle

Verification by Model Comparison. Complete oracle functions may be defined by having
the expected output model at hand which acts as a reference model for analyzing the actual
output model of a transformation as proposed in [82, 97, 98]. Model comparison frameworks
are employed for computing a difference model between the expected and the actual output
models. If there are differences then there is an error. However, reasoning about the cause for
the mismatch solely bases on the difference model (comprising differences such as additions,
deletions, movements, and updates of model elements) is challenging. The situation is even
more aggravated since several elements in the difference model may be caused by the same
error. The transformation designer has the burden to cluster the differences by himself. For
large test input models which result in large output models, this approach seems unfeasible in
practice, and partial oracle functions are more appropriate.

Trace Analysis. Instead of applying an oracle to compare the generated target to a desired
one, in [78] an approach is presented to specify oracle functions solely on the basis of trace
links between the input models and the output models. Thereby, the authors propose an “oracle
function that compares test cases with a base of examples of existing traces”. This leads to the
fact, that no expected target model needs to be defined for every test case. Additionally, the
trace links may act as pointers to the location of a potential error. Nevertheless, this approach
assumes the existence of an initial trace as a basis for the oracle function, which is hardly the
case in practice.

In summary, complete oracle functions require the execution of the actual transformation
under test to receive the target model or the trace links required for comparison. This execution
based testing has several advantages, as stated in [97], i.e., (i) it is easy to perform the actual
testing (compared to more formal methods presented in the following), (ii) the specified model
transformation is executed in its expected environment, and finally (iii) the testing process can

24

2.1. Model Transformation Testing

be automated, i.e., it is possible to generate the input models, execute transformation and do the
comparison without user interaction. Nonetheless, often no desired target model is available for
model comparison and reasoning about the actual failure is cumbersome since only difference
models are available. To overcome these limitations, partial oracle functions have been proposed
which are discussed in the following.

2.1.2.2 Partial Oracle

Partial oracle functions have been proposed for checking properties of input models, output
models, and their relationships. Thereby, properties which are applicable to transformations in
general may be specified, i.e., properties such as termination or confluence, but also properties
specific to a single transformation, e.g., a property to check if “for every persistent class an
according table has been created” as desired in the running example.

General Properties. Several properties that are common to all model transformations may
be checked. For example, every model-to-model transformation has to be finite, i.e., the model
transformation has to terminate. Additionally, a transformation should not run into a deadlock.
Furthermore, it is desirable that a model-to-model transformation is confluent, i.e., the produced
target model should always be the same, provided that the same input model is used. Several
approaches have been presented to verify such common properties. Those are detailed in the
following. Thereby, existing approaches can further be divided into intrinsic and extrinsic ap-
proaches.

Intrinsic: A transformation language that provides support for checking general properties is
AGG [147]. Nevertheless, the proposed approach of analyzing critical pairs is applicable to any
graph rewriting system and could therefore be included in other graph transformation languages
as well. In this respect, Heckel et. al [65] showed how critical pair analysis can be applied to
check for confluence of a specified transformation. A critical pair in graph transformation rules
occurs if two transformation rules are non-parallel independent. Parallel independence means
that “two rules can be applied in any order yielding the same result. Otherwise, if one of two
alternatives is not independent of the second, the second will disable the first. In this case, the
two steps are in conflict” [65, p. 8]. Formal proofs are provided which show that if critical pairs
are confluent then also the transformation is locally confluent.

Extrinsic: The term extrinsic partial oracle means that the model transformation language
itself does not provide means to test certain properties, but instead the properties are tested
in some external formalism. Especially in the area of graph transformations, work has been
conducted that use Petri Nets to check formal properties of graph production rules. The approach
proposed in [157] translates individual graph rules into a Place/Transition Net and checks for
its termination, since termination is in general undecidable in graph grammars [119]. Another
approach is described in [90], where the operational semantics of a visual language in the domain
of production systems is described with graph transformations. The models of the production
system, as well as the graph transformation rules are transformed into Petri Nets in order to
make use of the formal verification techniques for checking properties of the production system
models. Thereby a short discussion is given, how the properties for Petri Nets presented in [112]
may be applied in the domain of model transformations. Nevertheless, these approaches make
some abstractions, i.e., the derived Petri Nets abstract from details of the model transformation.

25

2. RELATED WORK

For the approach presented in [157], it is stated that the derived Place/Transition Net is only a
simulation of the specified transformation rules, but not a bisimulation. Instead of Petri Nets, the
approach presented in [27] uses OCL to verify common properties of a transformation. Thereby,
the graph transformation rules are represented by an intermediate OCL representation which
allows to test certain properties with OCL invariants. In the paper seven general properties have
been presented, for example, applicability, i.e., if a certain rule is applicable at least once, or
conflict, i.e., two rules are in conflict if firing one rule can disable the other one.

Custom Properties. In addition to general properties, often transformation specific prop-
erties have to be checked in order to test the correctness of a specific model-to-model transfor-
mation. Mainly two approaches can be distinguished, namely contract based approaches and
approaches that make use of model checking techniques. In the following, representative papers
are presented for both categories.

Contract-Based Approaches: Contracts are a well-established technique in software engi-
neering to verify object-oriented programs [93, 105]. Inspired from these ideas, contracts have
also been applied for the verification of model transformations in previous research. In the fol-
lowing, several approaches proposed for verifying model transformations using contracts are
discussed, divided into (i) OCL based, (ii) graph pattern based, and (iii) model-fragment based
approaches.

• OCL Based Approaches: The first approach using contracts for model transformations
was proposed by Cariou et al. [29, 30]. The authors suggest implementing transforma-
tions with OCL. In this way, the source metamodel classes are provided with operations,
which may comprise preconditions, postconditions, and invariants. Although OCL na-
tively supports design-by-contract, OCL is not intended to specify transformations and
relationships between models. Thus, the authors propose an extension for OCL that al-
lows defining mappings between input and output model elements. A similar approach for
defining contracts with OCL has been proposed in [108]. Besides other aspects, Kuester
et al. [87] also agree on the use of OCL for the definition of transformation specific con-
straints for the produced output models. Common to all these approaches is that the con-
tracts are embedded into the underlying transformation during execution. In this respect,
neither the specified preconditions nor the postconditions can be checked without the ex-
ecution of the transformation. Furthermore, a tool is needed that allows to execute the
transformation and to check the constraints at the same time, which reduces applicability,
as stated in [29].

Additionally, Cabot et. al showed in several papers, how OCL invariants can be derived
from graph transformations specified in TGGs or QVT Relations [25, 26, 28]. In this re-
spect, the invariants state conditions for a valid transformation. The derived invariants
together with the source and target metamodels form the so-called transformation model.
The transformation model is then used to test the specified model transformation using
the author’s UMLtoCSP tool [28] for analysis. Thereby the invariants are translated to
a constraint solving problem and according constraint solver can thus prove the proper-
ties. Furthermore, UMLtoCSP is able to generate a valid combination of source and target
model, which may be used to check if the generated model are equal to a desired one (cf.

26

2.1. Model Transformation Testing

above). In [52], a mechanism is presented to define properties for source models, target
models, and source-target relationships as contracts expressed in OCL based on transfor-
mation contracts. A transformation contract defines a set of properties together with a set
of valid source models. These source models are then transformed by the transformation
under test into according target models, whereby the resulting target models are checked
by the USE tool 2, which evaluates the specified OCL constraints.

In [81], the authors propose the Epsilon Unit Testing Language to test model manage-
ment operations. The language permits defining test operations where post-conditions
for the model transformation under test may be specified. In a similar vein, Giner and
Pelechano [51] propose a Test-Driven approach to the construction of model transforma-
tions. Their focus is to capture the requirements for a model transformations by means that
can be later on used for testing, i.e., the requirements are covered in the form of test cases
made of an input model, together with output fragments and OCL assertions. These test
cases act as contracts for the to be specified transformation, which can be tested against
those requirements.

In [55] and [58] TRANSML as language to cover the life-cycle of transformation develop-
ment enabling the engineering of transformations has been presented. TRANSML includes
a dedicated language for model-based testing, which enables the description of test cases.
Thereby, the expected properties may be described in an OCL like textual syntax. The
specified test cases can be executed after the according transformation under test in order
to check if the specified properties are fulfilled.

• Graph Pattern Based Approaches: In [8], the authors propose to use the patterns sup-
ported by the VIATRA2 tool to specify contracts for model transformations. However,
their patterns operate on one metamodel only, being therefore usable to specify pre- and
postconditions, but not transformation invariants.

• Model-Fragment Based Approaches: Finally, a special form of contracts was presented
in [109]. Based on the findings in [123], the authors propose to use model fragments for
defining properties which are expected for an output model produced from a specific input
model. For verifying these properties, the model fragments are matched on the produced
output model. This approach is different from the previous ones, which propose using
generic contracts solely defined on the metamodel level and not specific to a concrete
test input model. The advantage of using model fragments is to support a user-friendly
specification of test cases by reusing the graphical modeling editors, but this induces that
the constraints are described at the model level. Thus, they have to be defined for each
particular test input model.

Execution-Based Approaches: In order to verify the actual execution of a model transfor-
mation, techniques from model checking are employed to test model transformations. Model
checking [36] is a method to check a model against a certain specification. Typically the state
space of the system is calculated which is used for verifying the specification, usually expressed

2http://www.db.informatik.uni-bremen.de/projects/USE

27

2. RELATED WORK

in terms of temporal logic formula, i.e., a property that may be checked in the course of the
running example might be that there exists a state in the future where there are exactly as many
tables as classes available. In this respect, in [156] a translation of graph transformation rules to
transition systems, serving as the mathematical formalism of various different model checkers,
has been proposed. Thereby, only the dynamic parts of the graph transformation systems are
transformed to the transition system in order to reduce the state space. The GROOVE toolkit3

provides model checking facilities based on graph transformations [128]. Their main goal is to
enable verification of object-oriented programs where the behavioral semantics is expressed by
means of graph grammars. From the graph grammars an according transition system is generated
which allows to check properties expressed in a temporal logic on graphs [127]. In Rivera et.
al [129], the transformation from graph transformations into the rewriting-logic based language
Maude4 is presented, which provides explicit means for formal analysis. Consequently, model
checking and reachability analysis is enabled for graph transformations. A similar approach is
presented in [10], whereby Alloy [70] is used as a model checking language. Nevertheless, none
of the presented approaches states how the results of the verification of the properties can be
mapped back to the actual transformation language. In this respect, the upcoming implemen-
tation of the graph transformation language Henshin5 provides direct support for state-space
analysis and tries to integrate this technique into the transformation language. OCL can be em-
ployed to check for properties on the state space. Nevertheless, the analysis method are restricted
to in-place transformations only.

In summary, testing model transformations by means of partial oracles is a promising ap-
proach as the plethora of related work reveals. However, the ones based on OCL usually lead to
complex constraints, which are difficult to write in practice, yielding verbose specifications [30],
especially for the specification of relations between input and output models. Furthermore, the
specification of the partial oracles is tightly coupled with the actual transformation language.
This means that every transformation language requires specific methods to specify contracts
or to translate the transformation specification into a formal language. Finally, by using a pure
OCL-based approach, only true or false is given back as answer to the user, but no further in-
formation is accessible in standard OCL environments. Approaches based on model checking
typically provide a counter example that caused the property to fail. Nevertheless, this infor-
mation is represented by means of internal states of the model checking tools only, whereas the
mapping of the results back to the according transformation language is left open.

2.2 Runtime Models for Model Transformations

I
n general, run-time models provide means to abstract from code level details to allow for
reasoning on the runtime behavior of a system [95]. Up to now, runtime models for model

transformations have not gained much attention. In [17], it was presented that the specifica-
tion of model transformations itself should be model-based. In this respect, a metamodel for a
model transformation language has been proposed. The explicit representation allows to use the

3http://groove.sourceforge.net
4http://maude.cs.uiuc.edu
5http://www.eclipse.org/modeling/emft/henshin

28

2.3. Debugging of Model Transformations

specified transformation similar to any other model. In particular a model transformation may
again act as an input for a model transformation, which is then called a higher-order transfor-
mation [152]. Nevertheless, the proposed metamodel does not include any information on the
actual execution of a model transformation. Only the approach presented in [88] provides a first
step towards this direction. Thereby, they authors made explicit the operational semantics of
QVT Relations by representing them in terms of CPNs, allowing the transformation designer to
conclude about the operational semantics of QVT Relations. Finally, ATL [73] explicitly repre-
sents the transformation specification as a model, which is then compiled into a virtual machine.
In this respect, the underlying virtual machine could be seen as runtime model, but acting on a
very low-level of abstraction.

Considering software engineering in general, proposals exists that try to provide runtime
models on the actual execution of a system. These models are then used for runtime verifica-
tion [11]. The main idea is to extract information from a running system in order to check if
the observed behavior satisfies or violates certain properties. In this respect, runtime verification
builds the basis for many purposes, such as monitoring or debugging. Runtime verification tries
to avoid the drawbacks of formal verification techniques such as model checking, i.e., the sys-
tems needs not to be formally modeled and there is no need for the exhaustive calculation of the
state space. Nevertheless, it does not provide full coverage. Work in this area has been conducted
by Nierstrasz et al. [113], focusing on providing according abstractions and visualizations of the
runtime behavior of a system. In [32], a framework has been presented which allows a developer
to specify a certain property that should be checked by using runtime verification. In this case
the properties are injected into the code using techniques from aspect-oriented programming. If
a property fails, the according trace, i.e., which statements have been executed so far, is provided
to the programmer, which allows to check for failures. In this respect, Maoz suggested to use
model-based traces for runtime verification [102]. The runtime information provided by means
of standardized trace models can then be easily presented to the programmer, e.g., in the form
of sequence diagrams, statecharts or class diagrams. Maoz also proposed metrics and operators,
i.e., filters to hide certain parts of the execution or comparators to compare two executions of
the systems, to analyze the provided trace information. Furthermore, dependency graphs may be
built which can be used to realize dynamic slicing [173], allowing to reason about the execution
of the system.

In summary, for model transformation currently no dedicated runtime models exists that
would allow the transformation designer to reason on the execution of the specified transforma-
tion. Nonetheless, a runtime model could be employed for runtime verification techniques of
model transformations and could be used for debugging model transformations as well.

2.3 Debugging of Model Transformations

I
n order to find a failure in software engineering, a common feature of every integrated de-
velopment environment is to allow the programmer to monitor and potentially alter the state

of a running programm by means of a debugger. Nevertheless, debugging support for model
transformations is still in its infancy [85]. As stated in [101], the miss of appropriate debugging
facilities in the domain of MDE in general and in model transformations in particular hinders

29

2. RELATED WORK

the adoption of MDE in industry. Thereby, debugging on an appropriate level is of utmost im-
portance for declarative (transformation) languages as stated in [158]. This is since declarative
languages typically abstract from how something is done and the hidden operational semantics of
the transformation engine is counterproductive for debugging. Consequently, during debugging
exactly this hidden operational semantics needs to be made explicit. First approaches which
provide debugging support for model transformations focus mainly on providing runtime in-
formation from the actual underlying low-level execution engine, which is often written in a
common programming language, e.g., Java. However, the information provided consists of low-
level information only, e.g., only variable values are presented to the transformation designer.
Therefore, special debugging support is required for declarative transformation languages. In
the following, relevant criteria for debuggers of declarative model transformation languages are
presented, which are used to compare the debugging support of current transformation languages
later in the thesis.

2.3.1 Comparison Criteria

The common goal of debugging is to ease the localization of failures. A debugger should sup-
port the transformation designer in narrowing the potential set of causes to a minimum [137].
Based on the requirements defined in [173] for debugging in general and in [101] for debugging
domain-specific modeling languages in particular, criteria for debugging of declarative model-
to-model transformation languages (or the declarative parts in case of hybrid languages) are
derived. Debugging can be divided into live debugging, i.e., the transformation is investigated
during execution, and forensic debugging, i.e., the trace information (which source element has
been transformed to which target element) is analyzed to reason on potential failures, as can be
seen in Fig. 2.2. Live debugging can further be divided into means (i) to support the transfor-
mation designer in selecting a certain part of the transformation specification, (ii) to allow the
transformation designer to investigate the actual state of execution, (iii) to be able to investi-
gate the dynamic behavior and finally, (iv) to allow for adaptations during debugging. In the
following the criteria are explained in detail.

Model Transformation
Debugging

Live Debugging Forensic
Debugging

Selection Investigation Dynamics Adaptations

Matching Breakpoints State Inspection Visualization of
Control Flow

Stepwise
Execution

Backwards
Reasoning Model Logic

Figure 2.2: Classification of Means for Debugging in Model Transformations

30

2.3. Debugging of Model Transformations

2.3.1.1 Selection

Debuggers need to provide means allowing the transformation designer to select a certain part
of the transformation code for execution. Thereby, (i) the matching of models elements should
be influenceable by the transformation designer and (ii) breakpoints should be provided to stop
the execution at a certain point of time.

Visualization of Matching Process. An important step when executing model transforma-
tions is the matching process. In general, the matching of elements of the source model and
thus the potential application of rules in declarative model transformation languages involves
non-determinism. In this respect, the potential choices for matching should be accordingly pre-
sented to the transformation designer, i.e., it should be clearly pointed out which rule might be
executed. Furthermore, it should be possible to influence the choice of the rule application, i.e.,
the transformation designer should be able to chose the rule. Moreover, a rule might match for
several model objects. Consequently, it should be possible to select a certain configuration of
model elements, i.e. what binding should be used to execute a rule.

Breakpoints. Breakpoints are a common concept in debuggers, indicating that the execu-
tion should be stopped before the execution of a certain statement. Nevertheless, the situation in
declarative transformation languages offers again certain possibilities, i.e., if the breakpoint is
put on a rule, it could either stop the execution before a certain configuration of model elements
is matched, only if a certain configuration of model elements was successfully matched or even
in case a certain configuration failed to match. All of these three scenarios could be beneficial in
certain situations, i.e., the breakpoint should be configurable. Another possibility of configura-
tion is the specification of conditional breakpoints [173], i.e., the breakpoint stops the execution
only if a certain user-defined condition is fulfilled.

2.3.1.2 Investigation

In order to reason about the state of execution a transformation designer must be enabled to
inspect the current execution state. Additionally, the actual control flow should be visualized
within the transformation specification.

State Inspection. Debuggers in traditional programming languages provide means to visu-
alize the current execution state, i.e., typically a view on the memory is provided, representing
the actual values of variables. Nevertheless, not only the state of the execution engine should be
presented to the transformation designer but also the state of the rules and the trace model, e.g.,
which model elements have already been transformed by a certain rule, as well as the state of
the source and the target model, e.g., which target elements have already been created.

Visualization of Control Flow. The actual state of execution should also be shown in the
according code, e.g., in textual model transformation languages the according line of code is
highlighted or in graphical transformation languages the according rule may be highlighted.
Furthermore, not only the according rule but also the involved model elements should be visu-
alized, e.g., matched model elements in the source model.

31

2. RELATED WORK

2.3.1.3 Dynamics

To allow the transformation designer to reason about the semantics, stepwise execution needs to
be enabled. Additionally, a failure is often only detected after executing a certain piece of code.
Thus, in order to find the origin of a failure it should be possible to reason on previous execution
states.

Stepwise Execution. In order to debug the transformation specification, a stepwise execu-
tion should be enabled in order to gain an insight into the operational semantics. Nevertheless, as
stated in [137], a notion of an execution step is missing for declarative transformation languages.
This is in contrast to imperative transformation languages where instructions are typically the
smallest unit of execution which serve as according execution step in debugging. In declara-
tive programming languages the underlying execution engine might execute several actions to
perform a certain step, e.g., in order to match for model elements several steps in the underly-
ing execution engine may be required. Consequently, these abstraction from underlying details
should also be hidden during debugging, i.e., the transformation designer is not necessarily in-
terested in how a certain model element is matched but only why it can or can not be matched
by a certain transformation rule.

Backwards Reasoning. During debugging it should not only be possible to execute the
transformation in a forward direction, but it should also be possible to reason about a previous
state, i.e., it should be possible to detected failures by reasoning backwards in time to find the
origin of the failure [96,173], being closely related to omniscient debugging [120], i.e., recording
a program’s state over time, and program slicing [150]. In this respect, recent work by Ujhelyi
et al. [153] presented a dynamic backward slicing approach model transformations based on
automatically generated execution trace models of transformations.

2.3.1.4 Adaptations

Debuggers in common programming languages not only allow a programmer to inspect the exe-
cution state but also to manipulate the execution state during debugging, i.e., values of variables
might be manipulated or even the code itself might be adapted. In this respect, a debugger
for transformation languages should allow the transformation designer (i) to change the model,
i.e., to add, edit and delete model elements, and (ii) the transformation logic, i.e., it should be
possible to fix failures in the transformation logic within the debugger.

2.3.1.5 Forensic Debugging.

Hibberd et al. [66] present forensic debugging techniques for model transformations by utilizing
the trace information of model transformation executions for determining the relationships be-
tween source elements, target elements, and the involved transformation logic implemented in
Tefkat [91]. With the help of such trace information, it is possible to answer debugging questions
implemented as queries which are important for localizing failures. In addition, they present a
technique based on program slicing [162, 173], i.e., to identify only those path of a programm
that influence a certain state, for further narrowing the area where a failure might be located.
Such techniques are beneficial in addition to the debugging techniques described above.

32

2.3. Debugging of Model Transformations

2.3.2 Comparison of Debugging Support in Transformation Languages

Based on the above presented criteria in the following, the debugging support of ATL [73], AGG
[147], Fujaba [160], GReAT [6], TGG [83, 136] and QVT Relations using the implementation
of mediniQVT6 are compared, as summarized in Table 2.1.

Table 2.1: Comparison of Debugging Support in Declarative Model Transformation LanguagesTools

simple conditional

ATL          
AGG          
Fujaba   (proposed)    (proposed) (proposed)  
GReAT          
TGG (proposed) (proposed) (proposed) (proposed) (proposed) (proposed)    (proposed)
mediniQVT          

live forensic
selection investigation dynamic adaptation

breakpoint matching vis vis state execution

should

Forensic
Debugging

Live Debugging
Selection Investigation

Stepwise
Execution

Backwards
Reasoning

Model Logic

Dynamics Adaptations
Breakpoints

Matching
Visualization
of Control

Flow

State
inspection

ATL: ATL uses a stack machine implemented in Java to interpret the transformation speci-
fication. In this respect, the ATL debugger is based on the Eclipse Java debugging environment.
Since ATL does not make the involved models explicit, the transformation designer is not able
to influence the matching process. Concerning breakpoints, ATL supports simple breakpoints
only (which have to be specified in the Eclipse outline view). The information about the actual
execution state is restricted to low-level information only, i.e., the actual values of the variables
are presented to the user (cf. Fig. 2.3). Thereby, the bound objects are presented in the vari-
ables view of the Eclipse debugging environment. Nevertheless, the structure of the model gets
lost, i.e., the graph like structure is not represented. The according lines of code are highlighted
in order to visualize the control flow. A stepwise debugging is possible, i.e., the user is able
to check the evaluation of conditions or certain assignments, but only in a forward direction.
Furthermore, the values of the variables can only be inspected but cannot be changed during

6www.ikv.de

control flow

breakpoint
state inspection

visualization

breakpoint

Figure 2.3: Screenshot of ATL Debugger.

33

2. RELATED WORK

debugging. Since the ATL execution engine maintains the trace model internally and during the
actual execution only, i.e., it is not explicitly shown to the transformation designer, no forensic
debugging is supported.

AGG: Although AGG does not explicitly provide a debugger, it has nevertheless been con-
sidered in the comparison, since the execution of AGG allows for (i) an interpretation mode and
(ii) a step mode. The interpretation mode applies a whole sequence of rules and tries to match
the available rules as long as possible. In contrast to that, the step mode allows the transforma-
tion designer to select a certain rule or even a certain binding to be executed, i.e., the matching
can be influenced by the transformation designer. As can be seen in Fig. 2.4, the transformation
designer can use the interactive match mode to assign a certain element of a graph transforma-
tion rule to a certain element of the model graph. Only parts of the matches need to be specified
whereas the remaining parts can be automatically completed. Although the user is allowed to
choose an arbitrary rule in the step mode, it might happen that it cannot be bound in the cur-
rent state of execution, thus breakpoints would nevertheless be needed, but are not supported in
AGG. The current state of execution is shown in the according model graph. Furthermore, the

interactive interactive
match mode completecomplete

matching

manually matched
elements

model

Figure 2.4: Screenshot of AGG Debugger.

34

2.3. Debugging of Model Transformations

model graph visualizes the current match. Adaptations to the model and the transformation logic
are possible in AGG, but only if the according elements are not already matched by a certain
rule. Finally, no support for forensic debugging is considered since AGG does not maintain a
built in trace model, instead this has to be defined by the transformation designer.

Fujaba: Fujaba provides so-called story diagrams that allow to describe model transforma-
tions based on graph transformation rules. These graph transformation rules are then mapped to
Java for execution. In this respect, the debugging features provided by a Java IDE may be reused.
Nevertheless, in order to avoid the deficiencies of this approach, i.e., debugging on generated
source code is difficult since the developer usually does not know about the generated code,
in [49] an approach is presented that allows debugging on the story diagram level. Thereby, an-
notations are added to the generated Java code, which allows to reuse existing Java debuggers,
but to map back the results to the model level. This mapping allows then to put breakpoints on
story diagrams, whereby only a first proposal for conditional breakpoints exists [84]. Concerning
investigation support, the variables values are shown to represent the according transformation
state, together with highlighting the according elements in the story diagram. In [49] it is pro-
posed to visualize the current heap of a Java program at runtime as a UML object diagram by
means of eDOBS [50] to additionally reproduce a graphical representation of the model (cf.

eDOBS representation
of model

state inspectionstate inspection

control flow control flow
visualization

Figure 2.5: Screenshot of Fujaba Debugger with eDOBS [49]

35

2. RELATED WORK

Fig. 2.5). To execute the specified transformation stepwise, the underlying Java debugging fea-
tures are used, which may lead to the fact that for a single step in the story diagram several steps
are required in the underlying Java debugger. Finally, reasoning backwards is mentioned in [84]
to be useful when debugging story diagram, but no actual realization is presented. Finally, first
ideas are presented in which ways a model might be changed, i.e., only those elements might be
changed that are not already matched by a certain story diagram.

GReAT: The graph transformation language GReAT provides a debugger which is built
on top of the GReAT execution engine. Nevertheless, it only offers the typical features found in
traditional debuggers, e.g., breakpoints and stepwise execution [6]. A graphical window displays
a list of the transformation rules. The transformation designer can attach breakpoints to rules
and step through the transformation specification, allowing to see the results of a particular rule
or to see what elements are matched at a given time, as depicted in Fig. 2.6. During debugging,
it is not possible to change model elements or the transformation specification. Finally, forensic
debugging is not considered.

state inspection

breakpointcontrol flow
i li tivisualization

Figure 2.6: Screenshot of GReAT Debugger [6]

TGGs: Since TGG rules can be compiled to the Fujaba environment, using the MoTE plu-
gin [160], TGGs can benefit of the debugging support of Fujaba as well, but only on the level of
story diagrams and not on the level of TGGs. Therefore in [137] proposals have been made how
debugging may be enabled on the level of TGGs by aligning debugging features of program-
ming languages to TGGs. In Table 2.1, the according concepts are marked as proposed only.
With the exception of AGG, the proposed debugging support is the only one that considers the
matching of model elements as well. Furthermore, the proposal mentions that forensic debug-

36

2.3. Debugging of Model Transformations

ging could be employed in the context of TGGs since the traces are made explicit by means of
the correspondence graph.

QVT Relations: For QVT Relations only the implementation of mediniQVT provides ded-
icated debugging support. Nevertheless, the debugger is based on the Eclipse debugging envi-
ronment only. In this respect, no specific debugging support is provided to debug the matching
process, i.e., it is not possible to select certain model elements or a certain rule. Nevertheless,
besides simple breakpoints also conditional breakpoints are supported which allow the trans-
formation designer to customize when the execution of a QVT Relations transformation should
stop by means of OCL conditions. Inspection of the state is again limited to values of variables,
only (cf. Fig. 2.7). In addition to highlighting according lines of code, the debug view shows the
stack of called relations, i.e., if one relation calls another one, one can see its order of invocation.
Furthermore, it is possible to use the known step semantics, i.e., step into steps into a depen-
dent relation, step over solely executes the relation and returns the result and step out returns to
the parent relation. Finally, QVT Relations allows to alter the variables during debugging, i.e.,
the model can be changed, but it is not possible to alter the transformation specification during
debugging. Although the trace model, which is produced by the QVT engine is made explicit
to the transformation designer, no support for forensic debugging is provided. In contrast to
mediniQVT the second prominent QVT Relations tool ModelMorf [149] does not provide any
explicit debugging facilities.

called relations

inspectionstate inspection

(conditional)
breakpoint

(editable)

control flow
visualization

Figure 2.7: Screenshot of mediniQVT Debugger.

In summary, although numerous transformation languages claim debugging support for
model transformations they typically make use of the debugging features of the underlying ex-
ecution engine only. Thus, debugging occurs on a rather low-level and thus there is a consider-
able impedance mismatch between the high-level declarative specification of model transforma-
tions and the provided means for debugging. Especially, when debugging declarative languages
this impedance mismatch hinders understandability, since the hidden operational semantics of
declarative model transformation languages is not accordingly represented, e.g., only AGG pro-

37

2. RELATED WORK

vides support for debugging the matching phase of model transformations. Thus, what is needed
is a debugger that represents all parts involved in a model transformation accordingly, i.e., not
only the transformation specification itself but also the according metamodels and the models be-
ing transformed. Furthermore, a generally applicable debugging framework would be beneficial
in order to provide a common debugger for various declarative model-to-model transformation
languages.

2.4 Summary

I
n this section an overview on related work was provided. First a classification of existing
approaches to model transformation testing was given. In the following, this classification

was explained in detail and the various existing approaches have been discussed. A special
focus was put on testing transformation by means of contracts, since this is a main contribution
of the thesis, as will be discussed in Chapter 3. Nevertheless, testing might only help to observe
the fact that there exists a failure in the transformation specification but does not necessarily
provide means to detect the origin of the failure. This is why in a second step related work to
runtime models and debugging has been considered. Since the envisioned runtime model serves
as a basis for the proposed debugger, it was investigated if runtime models exist in the domain of
model transformations. As no dedicated literature could be found in this domain, the scope was
broadened to software engineering in general where runtime models have been considered to
realize runtime verification. Finally, a classification of debugging facilities was proposed which
was then used to investigate debugging support in existing model transformation languages.
Based on the findings of the comparison to related work, the following chapter focuses on the
first major contribution of this thesis being a visual, declarative language to specify contracts for
model transformation testing.

38

Chapter 3

PaMoMo: A Visual Language for
Model Transformation Contracts

Everything should be made as simple as possible,
but not simpler.

— Albert Einstein

Contents
3.1 Requirements Specification for Model Transformations 40
3.2 Contract Specification with PaMoMo . 43
3.3 Reasoning with Patterns . 53
3.4 QVT Relations in a Nutshell . 56
3.5 Operationalization of Contracts: From PaMoMo to QVT Relations 58
3.6 Executing PaMoMo Contracts . 65
3.7 Summary . 67

I
n order to support the transformation designer to specify requirements of model transfor-
mations, this chapter introduces the visual, declarative language PaMoMo (Pattern-based

Modeling Language for Model Transformations), which may be used to express model trans-
formation contracts. In a first step, it is shown in which way contracts may be applied in the
context of model transformations and the basic idea of PaMoMo is explained. After introducing
the general idea, the language features are explained in detail and it is shown how reasoning on
the specified contracts may be used to detect errors or inconsistencies within them, i.e., to check
well-formedness of contracts. Since QVT Relations is used to operationalize the contracts, first
the basic concepts of QVT Relations are introduced by providing an initial transformation spec-
ification of the running example before the actual translation of contracts specified in PaMoMo

39

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

to QVT Relations is discussed. Finally, this section concludes by showing how the contracts are
executed and how the may thus be used to test a certain transformation specification.

3.1 Requirements Specification for Model Transformations

R
equirements of model transformations should be made explicit, similar to software engi-
neering in general, as emphasized in Section 1.3. In the area of software engineering, dedi-

cated methods have been proposed to capture the requirements, ranging from informal methods,
e.g., UML models like use-case diagrams, to more formal methods like Z [143], Alloy [70], or
SysML1. Use-case diagrams are typically used in the very first step of requirements analysis by
specifying when and under which conditions certain behavior occurs [20]. For this a high-level
graphical syntax is used which typically does not allow to automatically derive properties of a
system that could be used e.g., in the testing phase. In contrast, formal methods such as Z or
Alloy make use of mathematical notations to describe properties of a system in a precise way. In
this respect, it should be described what a system does instead of how it is achieved. As stated
in [143] “formal specification may serve as single reference point for those who investigate the
customer’s needs and those who test the results”. Consequently, this means that if requirements
are specified in a formal way they could be used in the testing phase to test the programmed
systems automatically against the requirements, i.e, they might be used as an oracle function in
testing. SysML tries to combine the benefits of a high-level graphical syntax (i.e., ease of under-
standability) with the benefits of formal methods and thus supports the specification, analysis,
design, verification and validation of systems but on a more abstract level. Instead of mathe-
matical notations the (graphical) syntax bases on UML diagrams and thus is more common to
the software engineer. Nevertheless, such languages are specific to the domain of software en-
gineering in the way that they are not capable to deal with the complex structure of models and
that they are not focused to model transformations making the specification of requirements of
model transformations complex.

3.1.1 Design by Contracts for Model Transformations

The methods proposed for software engineering are too general, i.e., they tend to target the
whole software system. Therefore, on a more fine-grained level, design by contract [105] was
introduced as a means to increase quality in terms of correctness and robustness of the con-
structed software. Design by contract allows to formalize requirements (in terms of contracts)
which may be used to test the software, i.e., contracts on method specify valid input parameters
and report an error in case of invalid values. Another advantage of contracts is that they allow
defining what a piece of software does but not how it is done. Different levels of contracts may
be distinguished comprising syntactic contracts and behavioral semantic contracts [15]. The
former enforce syntactically valid programs. In the context of model transformations, syntactic
contracts are specified by the source and target metamodels since they describe the types of the
manipulated data, implying that the source and target models must conform to these types [108].
In contrast, behavioral semantic contracts put further restrictions on the required input models,

1http://www.omgsysml.org/

40

3.1. Requirements Specification for Model Transformations

the produced output models as well as their combinations [108]. In the first place, behavioral
semantic contracts may be used to precisely specify the conditions (going beyond metamodel
constraints) to be satisfied by input models such that the transformation is applicable, i.e., pre-
conditions. Second, they may be used to express whether or not an output model should contain
certain configurations of elements, i.e., postconditions. Finally, they may be used to specify what
conditions need to be satisfied by any pair of input/output models of a correct transformation,
i.e., invariants of the transformation (cf. Fig. 3.1).

Oracle is needed to check if the result of a test
case is correct, i.e., if the generated model equals

the expected model for a given input model

Source
Metamodel Transformation Definition

Target
Metamodel

Valid subset of
models considered by

Expected subset of
models produced by

conforms to conforms to

Set of all possible input models Set of all possible output models

y
the transformation?

p y
the transformation?

Figure 3.1: Contracts in Model Transformations

In the context of model transformations, contracts may be useful in several scenarios [30]:

• Implementation: A contract is a useful document for the transformation designer in the
development phase, to make explicit the requirements that need to be implemented in a
transformation.

• Documentation: Contracts serve as a useful documentation of the transformation in the
maintenance phase. Moreover, if contracts have a formal semantics, they may be used to
select transformations by matching properties of a required transformation and properties
of transformations stored in a transformation library.

• Compatibility Checking: Contracts may be used to check the compatibility of transfor-
mations in a chaining scenario, e.g., to check whether the postconditions of a preceding
transformation are compatible with the preconditions of a succeeding transformation.

• Testing: A common need in model transformation testing is to automatically compare
expected output models to generated output models [98]. Unfortunately, the oracle that
should predict the expected output models remains a major challenge [12], for which
contracts (invariants) could be used to partially determine the expected output model (cf.
Fig. 3.1).

41

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

3.1.2 Overview on PaMoMo

In order to make the requirements of model transformations explicit by the specification of
contracts, in the following PaMoMo (Pattern-based Modeling Language for Model Transfor-
mations) is introduced. PaMoMo is a declarative, formal, visual language designed to express
behavioral semantic contracts for transformations in an implementation-independent way [56].
The realization of contracts by a dedicated language has two main advantages though: (i)
the definition of contracts is not tied to a particular target transformation language, i.e., is
implementation-independent, which is especially favorable in MDE since no dedicated standard
transformation language has been brought forward so far [38] and (ii) designers of transforma-
tions may make explicit desired properties of a transformation before implementation, which
may be used for guiding the implementation. The contracts specified in PaMoMo may be ben-
eficial in each of the above discussed scenarios. The focus of this thesis is on these parts of a
contract comprising the testing scenario, i.e., how preconditions, invariants and postconditions
may be applied to test model transformations.

Fig. 3.2 outlines the basic approach. First, the transformation designer uses PaMoMo to
define a contract specifying preconditions, postconditions, and invariants for the transformation
(cf. 1 in Fig. 3.2). This contract exhibits a formal semantics and may be analyzed to discover
redundancies and contradictions in contracts, and to measure coverage of the involved meta-

Transformation requirements11
Transformation22Transformation requirements Transformation
implementation

22

c: Class

P(InheritedAttributes)

p: Class t:Table

Class Relationalpa: Package
s: Schema

isPersistent = true C

p:Class

N(NoRedefinedAttrs)

a:Attribute

name=X

l

Class Relational

pa:Package

using arbitrary

…

Compilation into QVT-Relations33

a: Attribute
name=A

c.general‐>includes(p)

co:Column
name=A

isPersistent = true
name=C

name=Cc:Class ar:Attribute

name=X
c.general‐>includes(p)

specification of contracts

transformation
implementation

transformation language

qualifying
criteria

oracle
function

Compilation into QVT-Relations33

p e e tat o
under test

preconditions invariants,
postconditions

Automated
testing

44
QVT-Relation

engine

check check

QVT-Relations
engine

engine for arbitrary
language

g

source
model

target
model

transformation
execution

verification of
contracts

Figure 3.2: Automated Verification of Transformations using PaMoMo.

42

3.2. Contract Specification with PaMoMo

models, i.e., if every metamodel element is considered by a contract. Thus the well-formedness
of several patterns and their correct interplay may be ensured. Next, the developer may use the
contract as a high-level model to implement the transformation (cf. 2 in Fig. 3.2). Although
parts of the implementation may be (semi-)automatically derived from the contracts, this is not
within the focus of this thesis. The implementation is tested by compiling the contract into the
executable QVT Relations language (cf. 3 in Fig. 3.2), and then using a QVT engine in check-
only mode in order to check if the transformed models fulfill the specified contracts. In this
mode, a transformation is not used to produce a target model, but to check if a set of existing
models conform to the transformation, and to report the locations where this is not the case.
Hence, the compiled contract acts as an oracle describing invariants that output models should
satisfy, and is used for automated testing (cf. 4 in Fig. 3.2). In this respect, first the validity of
the input model is checked by executing the preconditions; next the transformation implementa-
tion may be executed; and finally it is checked if the input and resulting output models conform
to the invariants and the postconditions. Consequently, the initial version of the PaMoMo lan-
guage presented in [56] has been accordingly extended to provide a better language support for
preconditions and postconditions (with enabling conditions), sets in invariants, and methods to
reason at the pattern level. In the following, first the syntax and semantics of PaMoMo is pro-
vided, whereby the reader is referred to [56] for details on its formal semantics. Afterwards,
the compilation into QVT Relations for the verification of a transformation implementation as a
major new contribution is discussed.

3.2 Contract Specification with PaMoMo

After introducing the basic ideas, the syntax and semantics of PaMoMo is provided next.
First, the modeling of invariants is explained and afterwards the modeling of pre- and

postconditions is described, covering the requirements of the running example (cf. Fig. 1.2).
Afterwards, enabling and disabling conditions of patterns are discussed, i.e., the satisfaction of
a pattern is only demanded when certain conditions in the source and the target occur. Finally,
sets are discussed, which allow to express properties related to the number of times a certain
structure may occur in a model.

3.2.1 Modeling of Invariants

A PAMOMO contract consists of a set of declarative visual patterns. As stated before, PaMoMo
allows to model preconditions concerning the source metamodel, invariants concerning the rela-
tionships between source and target metamodel and postconditions concerning the target meta-
model. Therefore, patterns in PaMoMo are made of two compartments containing object graphs
representing elements of the source or target metamodel. The left compartment contains objects
typed on the source metamodel, e.g., Class, while the objects to the right are typed on the
target metamodel, e.g., Relational (cf. Fig. 3.3). Consequently, patterns where only the left
compartment is not empty are called preconditions, patterns where both the source and target
compartments are not empty are called invariants and patterns where only the right compart-
ment is not empty are called postconditions. To allow the transformation designer to describe

43

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

P(Package2Schema)
Class RelationalSource compartment

t i i bj t
Target compartment

t i i bj tp: Package
name=X

s: Schema
name=X

containing an object
graph typed on the
source MM

containing an object
graph typed on the
target MM

Variable constraining the allowed attribute values

Figure 3.3: Positive Invariant Formalizing Requirement 1

necessary conditions to happen positive patterns are provided, i.e., the pattern is satisfied by
a pair of models if these contain certain elements. To additionally allow to express forbidden
situations additionally negative patterns are provided, i.e., the pattern is satisfied if certain ele-
ments are not found in the models. As an example, Fig. 3.3 shows a positive pattern formalizing
requirement 1 of the example transformation. Positive patterns are represented in green with
its name enclosed in P(...), while negative patterns are shown in red with its name enclosed
in N(...). In order to consider attributes values in contracts, objects in the source and target
compartments may have attributes that may be assigned either a concrete value, or a variable
(like X in the example). A variable may be assigned to several attributes to ensure equality of
their values, or may be used in the pattern constraint expression. These may involve elements
of the source and target compartments. The invariant of Fig. 3.3 has no expression, but variable
X is assigned to the name of the package and the schema, hence requiring the equality of both
names. Nevertheless, to allow for more complex comparisons, a constraint expression using the
Object Constraint Language (OCL) [115] may be specified.

Fig. 3.4 shows a scheme of the satisfaction of a positive (cf. Fig. 3.4(a)) and a negative
invariant (cf. Fig. 3.4(b)) over a pair of models, where EXP represents the pattern constraint
expression. Thus, the satisfaction for positive invariants amounts to check:

P(…)
Source Target

N(…)

object
graph

object
graph

Source Target
object
graph

object
graph

EXP  

graphgraph
Osrc Otar

graph

EXP

graph
Osrc Otar

Target
model

Source
model

Target
model

Source
model

(a) Semantics of (b) Semantics of
Positive Invariant Negative Invariant

Figure 3.4: Scheme of the Semantics of Positive and Negative Invariants

44

3.2. Contract Specification with PaMoMo

∀Occ(Osrc) s.t. EXP |src(Occ(Osrc))
∃Occ(Otar) s.t. EXP (Occ(Osrc), Occ(Otar))

where EXP |src is the part of the expression EXP that contains source objects, attributes and
variables only, and Occ(Osrc), Occ(Otar) represent an occurrence of the source and target ob-
ject graphs respectively. An occurrence is a binding from the objects in the object graph of the
pattern to elements in the model. A pattern invariant is therefore satisfied either if no occur-
rence of the source object graph of the pattern may be found (called vacuous satisfaction) or if
for each occurrence of the source object graph, a corresponding occurrence of the target object
graph is found (or not found if the invariant is negative). A contract is satisfied if all its patterns
are satisfied, hence a conjunction is assumed between all the patterns of the contract. The appli-
cation of the pattern covering requirement 1 presented in Fig. 3.3 is shown in Fig. 3.5(a). The
first example models fulfill the specified requirements since for the package p1 in the source
model there is an equally named schema s1 in the target models. The second scenario is true
since if no package is found in the source model then it is impossible to check if there is an
according schema in the target model. Thus, in this case the invariant vacuously holds. Finally,
the third scenario fails since the only existing university object is differently named than the
source package. If the positive invariant is changed to a negative one, then scenario one fails but
scenario three succeeds since in this case no equally named packages and schemas may exist
(cf. Fig. 3.5(b)).

Fig. 3.6 shows the invariants addressing requirements 2, 3 and 4 of the running example (i.e.,
transformation of classes, attributes and inherited attributes). The invariant to the left states that
for each persistent class c in a package p, there must be an equally named table t in a corre-
sponding schema s. The invariant in the middle states that each attribute a of a persistent class
must be transformed into a column co with the same name and type. Finally, the right-most
invariant states that if a class c has a superclass p owning an attribute a, then the table t that
corresponds to c must contain a column with the same name as the attribute. This invariant con-

s1 : Schema
name = ‘University‘

p1 : Package
name = ‘University‘

s1 : Schema
name = ‘University‘

p1 : Package
name = ‘University‘

P(Package2Schema)
l

Target ModelSource Model

satisfied pattern N(Package2Schema)
l l l

Target ModelSource Model

satisfied pattern

p: Package

Class Relational

s: Schema
s1 : Schema

name = ‘University‘

T t M d lS M d l

p: Package
X

Class Relational

s: Schema
X

s1 : Schema
name = ‘University‘

T t M d lS M d lname=X name=X Target ModelSource Model

vacuous satisfaction
name=X name=X Target ModelSource Model

vacuous satisfaction

s1 : Schema
name = ‘XYZ‘

Target Model

p1 : Package
name = ‘University‘

Source Model

s1 : Schema
name = ‘XYZ‘

Target Model

p1 : Package
name = ‘University‘

Source Model

(a) Semantics of Positive Invariant Applied (b) Semantics of Negative Invariant Applied

Target ModelSource Model

unsatisfied pattern
Target ModelSource Model

unsatisfied pattern

(a) Semantics of Positive Invariant Applied (b) Semantics of Negative Invariant Applied

Figure 3.5: Semantics of Positive and Negative Invariants Applied

45

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

P(Attribute2Column)P(Attribute2Column)
Class Relational

p: Package s: Schema P(InheritedAttributes)
P(Class2Table)
Class Relational t: Tablec: Class

name=X name=X
P(InheritedAttributes)
Class Relational

pa: Package
s: Schema

p: Package
name=X

s: Schema
name=X

t: Table
name=Y

c: Class
name = Y
isPersistent=true

c: Classp: Class t:Table
isPersistent = true name=C

t: Table
name=Yname = Y

c: Class
name = Z

a: Attribute
name = Z

co: Column
a: Attribute

c allSuperClasses‐>
co:Column

name=C
name C

isPersistent=true type = Ttype = T

(a) Requirement 2 (b) Requirement 3 (c) Requirement 4

name=A
c.allSuperClasses >
includes(p) name=A

Figure 3.6: Additional Invariants Formalizing Requirements 2, 3 and 4

tains a constraint checking that the derived property allSuperClasses of class c includes
the class p (i.e., p is a superclass of c).

3.2.2 Modeling of Preconditions and Postconditions

In contrast to invariants, which relate source and target models, (i.e., both compartments contain
object graphs), preconditions refer only to elements of the source metamodel (i.e., only the
source compartment of the pattern contains an object graph) and postconditions refer only to
elements of the target metamodel (i.e., only the target compartment contains an object graph).
The left side of Fig. 3.7 shows a precondition expressing requirement 5 in the example (i.e.,
absence of redefined attributes in class hierarchies) by a negative pattern. The right part of the
figure shows the postcondition to express requirement 6 (i.e., absence of duplicated columns in
the same table) as a negative pattern as well.

N(NoRedefinedAttrs)
Class Relational

N(NoDuplicatedColumns)
p:Class a:Attribute

name=X

Class Relational

pa:Package t:Table

Class Relational

c:Class ar:Attribute
name=X

ll l l d ()

c:Column
name=X

e:Column
name=X

(a) Negative Precondition (b) Negative Postcondition

c.allSuperClasses‐>includes(p)
name X name X

Figure 3.7: Precondition (Requirement 5) and Postcondition (Requirement 6)

Fig. 3.8 depicts the semantics of positive and negative preconditions. Positive preconditions
demand the existence of a structure in the source model satisfying the expression constraint.
Negative preconditions demand the absence of a structure in the source model satisfying the ex-
pression constraint. Postconditions have equal semantics, but are evaluated on the target model.

46

3.2. Contract Specification with PaMoMo

Pre conditionsPre‐conditions

P(…)
Source
object

N(…)
Source
object

P(…)
Target

object

N(…)
Target

objectj
graph

EXP

Osrc



j
graph

EXP

Osrc



j
graph

EXP

Otar



object
graph

EXP

Otar



Source
model

Source
model

Target
model

Target
model

(a) Semantics of Precondition (b) Semantics of Postconditions

P(…):  Occ(Osrc) s.t. EXP(Occ(Osrc))
N(…):  Occ(Osrc) s.t. EXP(Occ(Osrc))

P(…):  Occ(Otar) s.t. EXP(Occ(Otar))
N(…):  Occ(Otar) s.t. EXP(Occ(Otar))

(a) Semantics of Precondition (b) Semantics of Postconditions

Figure 3.8: Scheme of the Semantics of Preconditions and Postconditions

To explicate the semantics of preconditions, Fig. 3.9 shows the pattern modeling requirement
5 of our running example applied to several source models. Thereby, the pattern holds in the
first scenario since class c1 is a superclass of c2 and their according attributes are differently
named. In the second scenario the pattern also holds (but only vacuously) as the pattern may
not be applied as there is no package available in the source model. In the third scenario the
precondition fails since the attribute a1 and a2 exhibit equal names and their according classes
(c1 and c2) inherit from each other.

c1 : Classclasses a1 : Attributec1 : Class
isPersistent = true
name = ‘Person‘

p1 : Package
name = ‘University‘

a1 : Attribute
name = ‘name‘
type = ‘String‘

attr
namespace

s bClasses
superClasses

c2 : Class
isPersistent = true
name = ‘Student‘

classes

name = University

a2 : Attribute
name = ‘registrNo‘
type = ‘Integer‘

attrnamespace
subClasses

N(NoRedefinedAttrs)

Source Model

satisfied pattern

p:Class

f

a:Attribute
name=X

Class Rel...

pa:Package

c1 : Class
isPersistent = true
name = ‘Person‘

a1 : Attribute
name = ‘name‘
type = ‘String‘

attr

Cl

c:Class ar:Attribute
name Xc allSuperClasses‐>

pa:Package

c2 : Class
isPersistent = true

a2 : Attribute
name = ‘registrNo‘

attr

subClasses
superClasses

name=Xc.allSuperClasses >
includes(p) name = ‘Student‘

g
type = ‘Integer‘

Source Model

vacuous satisfaction

c1 : Class
isPersistent = true

classes a1 : Attribute
name = ‘name‘

attr
namespace

name = ‘Person‘

c2 : Class

p1 : Package
name = ‘University‘

type = ‘String‘

a2 : Attributeattrnamespace
subcCasses
superClasses

isPersistent = true
name = ‘Student‘

classes name = ‘name‘
type = ‘Integer‘

attr

Source Model

p

f dunsatisfied pattern

Figure 3.9: Semantics of Negative Precondition Applied

47

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

In order to also explicate the semantics of postconditions, Fig. 3.10 depicts a simple example
which requires that tables have to have a name. In this respect, again the first postcondition is
fulfilled since both tables exhibit a name whereas the second scenario holds only vacuously since
no table is available in the target model. Finally, the postconditions fails in the third scenario
since table t2 has no name.

t1 : Tabletables

s1 : Schema
name ‘University‘

name = ‘Person‘schema

N(N U dT bl)

name = University
t2 : Table

name=‘Student‘tables

Target Model

schema

N(NoUnnamedTable)

t T bl

Class Relational
s1 : Schema

satisfied pattern

t:Table
name = X

s1 : Schema
name = ‘University‘

Target Model

vacuous satisfactionX = oclIsUndefined()

t1 : Table
name = ‘Person‘

tables

h

vacuous satisfactionX oclIsUndefined()

s1 : Schema
name = ‘University‘

name = Person

t2 Table

schema

h t2 : Table
name = nulltables

Target Model

schema

unsatisfied patternunsatisfied pattern

Figure 3.10: Semantics of Negative Postcondition Applied

3.2.3 Modeling of Enabling and Disabling Conditions for Patterns

The patterns presented so far checked that for all occurrences of an object graph in the source
model, a corresponding structure in the target exists. However, some more flexibility is often
needed to demand the satisfaction of a pattern only when certain conditions in the source and
the target occur, e.g., only if a package contains at least one persistent class, then a schema has
to be created. For this purpose, patterns may define enabling and disabling conditions, which
restrict their satisfaction.

In particular, enabling and disabling conditions allow expressing properties which need to
hold only if the premise of an implication is fulfilled. Each pattern may define any number
of disabling conditions and one enabling condition, i.e., premisses. This permits formulating
properties of the form if 〈enabling〉 and (not 〈disabling1〉) ... and (not 〈disablingn〉) then
〈pattern〉. For instance, Fig. 3.11 shows an invariant with an enabling condition to the left, so
that the invariant is required to be satisfied only for packages for which there is an equally named
schema. In such a case, the invariant states that the transient classes inside the packages should
not have a corresponding table in the schema (because the invariant is negative). This pattern

48

3.2. Contract Specification with PaMoMo

N(NoTableForTransientClasses)
Enabling Condition Invariant

P(PackageAndSchema)
Class Relational

Class Relational

s:Schemap:Package

p:Package
name=Y

s:Schema
name=Y

Class Relational

t:Tablec:Classname Y name Y
name=Xname=X

isPersistent=false

Figure 3.11: Invariant with Enabling Condition

uses a non-constructive specification style, ensuring that a transformation implementation will
not accidentally translate a non-persistent class into a table.

Fig. 3.12 shows to the left the scheme of an invariant with one enabling and one disabling
condition, while the right part sketches its evaluation on a pair of models. The pattern first looks
for all occurrences of the source object graph of the invariant plus the enabling condition, which
additionally (i) fulfill the expression EXPEN of the enabling condition, and (ii) fulfill the part
of the invariant expression containing only source elements (EXP |src), and (iii) for which no
occurrence of the disabling condition (which might contain an expression EXPDS) is found.
Then, for each one of these occurrences, i.e., for all semantics, there should be an occurrence
of the target object graph of the invariant satisfying the invariant expression. Please note that
enabling and disabling conditions permit including target elements in the pattern condition.

The evaluation of invariants with enabling and disabling conditions is therefore pursued as
follows:

enabling+inv‐source

Source Target
object
graph

P(inv)P(inv)

P(enabling)
Source Target

object
h

object
h

N(disabling)
so that... then...

object
hgraph

()
Source Target

()

Source Target

graphgraph

ENsrc ENtar

N(disabling)

g
Source Target

object
h

object

ENsrc

O
+

graph

ENtar

DS

object
graph

DS

object
graph

object
graph
O

object
graph
O

EXPEN

 

N(disabling)
Source Target

 object
graph

object
graph

graph
Osrc

graph
Otar

Osrc DSsrc DStar Osrc Otar

EXP

EXP

EXPEN+EXP|src EXPDS

Source
model

DSsrc DStar
EXPDS Target

model

Figure 3.12: Scheme of the Semantics of Enabling and Disabling Conditions

49

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

∀Occ(ENsrc +Osrc, ENtar) s.t.

[(EXPEN + EXP |src)(Occ(ENsrc +Osrc, ENtar))∧
@Occ(DSsrc, DStar) s.t. EXPDS(Occ(DSsrc, DStar)) ∧ ...]
∃Occ(Otar) s.t. EXP (Occ(Osrc), Occ(Otar))

Fig. 3.13 illustrates how enabling conditions modify the semantics of a pattern, through an
example of two syntactically similar invariants for classes, one declaring an enabling condition
and the other not. The invariant in the lower left demands the existence of a schema and table
for each persistent class in a package. The models shown above fulfill this, as the class model
contains two occurrences of the source of the invariant (i.e., two classes), and for each one a
schema in the relational model may be found defining a table with same name as the class. In
contrast, the models do not satisfy the invariant to the right. This is so as this invariant demands
that for every occurrence of a persistent class, its package and equally named schema (this latter
required by the enabling condition), a table with same name as the class exists. This is not true
in this case as, for instance, for the objects p, c1 and s2, there is no table named “Person” in
s2.

Source Model Target Model

c1 : Class
isPersistent = true
name = ‘Person‘

classes

p : Package

s1 : Schema

name = ‘University‘

t1 : Table

name = ‘Person‘

tables
namespace

schema

name = Person

c2 : Class
isPersistent = trueclasses

p : Package

name = ‘University‘
namespace s2 : Schema

name ‘University‘

t2 : Table

name = ‘Student‘

tablesschema

name = ‘Student‘ name = ‘University‘ name = Student

?
P(Class2Table)
Cl R l ti l

P(ExistsSchema) P(Class2Table)

?
Class Relational

p: Package

name X

s: Schema

name X

Class Relational

p: Package s: Schema

Class Relational

p: Package s: Schema

t: Tablec: Class

name=X name=X name=X name=X
t: Table
name=Yname = Y

c: Class

name=Yname = Y
isPersistent=true

isPersistent=true

Figure 3.13: Semantics of Invariants with and without Enabling Condition

Pre- and postconditions may have enabling and disabling conditions as well. As an example,
Fig. 3.14 shows the scheme of the semantic interpretation of a precondition with an enabling
condition to the left. In this case, for each occurrence of the enabling condition, an occurrence
of the precondition needs to be found. For the sake of illustration, the right part of the figure
shows an example precondition demanding each persistent class to have at least one attribute.

50

3.2. Contract Specification with PaMoMo

()()
Source

object
graph

P(…)P(enab)
Source

 c: Class

P(persistent)
Class

P(attributed)
Class

object
graph c: Classgraph

Osrc

EXP


EXPEN

c: Class graph

ENsrc

c: Class

a: Attribute
isPersistent=true

Source model

(a) Semantics of Precondition
ith E bli C diti

(b) Example of Precondition with
Cwith Enabling Condition Enabling Condition

Figure 3.14: Precondition with Enabling Condition

3.2.4 Modeling Patterns for Collections of Model Elements

It is sometimes useful to formulate properties related to the number of times a certain structure
may occur in a model. For this purpose, patterns may define variable sets of source and target
elements (improving the expressive power compared to [56]). A set is depicted as a polygon with
a name (see for example set pclasses in Fig. 3.15) and it represents the set of all occurrences
of the structure enclosed in the polygon. Furthermore, sets may be nested and contain arbitrary
structures.

As an example, the left side of Fig. 3.15 shows an invariant making use of sets in the source
and target. The invariant states that the number of persistent classes in a package (size of set
pclasses) should be the same as the number of tables in the corresponding schema (size of
set tables). The center and right sides of Fig. 3.15 show the evaluation scheme of invariants

P(NumberOfPersistentClasses)
Class Relational

P(…)
Source Target

P(…)
Source Target

p:Package
name=Y

s:Schema
name=Y

Class Relational Source Target
object
graph

Source Target
object
graph

object
graph

object
graph

object
graph

Osrc Otar O

object
graph
OtO Oname Y name Y

t:Tablec:Class

object
graph
O  EXP

src tar Osrc Otar
object
graph
O

Oset1
Oset2

set1 set2

t:Tablec:Class
isPersistent=true

pclasses
tables

Oset1

Source

 

Target

Oset2

set1 set2
pclasses

pclasses.size() = tables.size()
EXP Source

model
Target
model

(a) Invariant with Sets (b) Semantics of Invariants with Sets(a) Invariant with Sets (b) Semantics of Invariants with Sets

Figure 3.15: Invariant with Sets

51

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

with sets. The figure in the middle represents an invariant with two sets (set1 in the source
and set2 in the target) and a constraint expression EXP that includes both sets. A pair of
models satisfies such an invariant if for each occurrence of the source object graph, there is an
occurrence of the target object graph that satisfies the constraint expression. Such an expression
may make use of the sets set1 and set2 of all occurrences of the object graphs Oset1 and
Oset2:

∀Occ(Osrc) s.t. EXP |src(Osrc, Set of all Occ(Oset1))
∃Occ(Otar) s.t.
EXP (Occ(Osrc), Occ(Otar), Set of all Occ(Oset1), Set of all Occ(Oset2))

3.2.5 PaMoMo Metamodel

The above presented concepts of PaMoMo have been specified on the basis of a metamodel
describing the abstract syntax, which is depicted in Fig. 3.16. The class Specification
represents the root container for all Patterns and allows to specify URIs to the source and
target metamodels. The abstract base class Pattern stores the constraint expression (cf. at-
tribute Pattern.OCLexpression). The two concrete subclasses PositivePattern
and NegativePattern are used to distinguish between these two types of patterns. Fur-

PaMoMo metamodel

Specification
ConstraintGraph
name : String

disablingCondition
enablingCondition

constraint

0..1

1 1
0..*

Specification
name : String
sourceMMURI : String
targetMMURI : String

name : String

G h
1..1 1..1

sourceGraph targetGraph

constraint 1..1

Graph
mmAlias : String

0..*
objects

refersTo
sets0..*

Pattern
name : String

1..*
patterns Object

name : String
type : String

refersTo
1..1 Set

name : String

0 *name : String
OCLexpression : String

Feature
S i

0..*
features

objects

0..*

PositivePattern NegativePattern name : String

AttributeReference
variable : String
value : String
type : String

Figure 3.16: Metamodel of PaMoMo

52

3.3. Reasoning with Patterns

thermore, the class Pattern refers to ConstraintGraph by means of three different roles:
(i) constraint, (ii) enabling condition and (iii) disabling conditions which are used to model the
according types of patterns as the names already imply. ConstraintGraphs act as a con-
tainer for source and target Graphs (cf. references ConstraintGraph.sourceGraph
and ConstraintGraph.targetGraph) which represent elements of the source or target
metamodel. In this respect, a graph contains Objects, which might again contain Features
(either Reference or Attribute) which merely represent aliases to the elements of the
metamodel. Last but not least, a Graph might also contain Sets to model the set semantics of
PaMoMo.

After discussing how to model patterns by using PaMoMo and representing their seman-
tics, it is elaborated on reasoning techniques which allow to check well-formedness of several
patterns and their interplay.

3.3 Reasoning with Patterns

I
n PAMOMO, contracts might exist of several patterns. Consequently, it has to be ensured
that they are well-formed concerning their interplay, i.e., the contract may never be fulfilled if

there exists a pattern with a negative pre- or postcondition and if this condition is included in a
positive pre- or postcondition, then either one of the contract fails. In order to statically prevent
such errors, the formal semantics of PAMOMO allows for reasoning on: (i) metamodel coverage,
(ii) redundancies, (iii) contradictions and (iv) pattern satisfaction on contracts, as detailed in the
following.

First, metamodel coverage means the identification of elements in the source and target
metamodels that are used in a PAMOMO contract, as well as how they are used (i.e., in enabling
or disabling conditions only, or in positive/negative patterns). This helps the transformation
designer assess which parts of a source or target metamodel are referenced by a given set of
patterns and allows for a quick identification of underspecifications, i.e., a transformation might
transform elements that are not checked by any of the patterns and consequently their correct-
ness may not be ensured. If, for instance, some element in the target metamodel is not used in
any positive invariant, it is never checked if such an element gets created correctly. In the pre-
sented example in Figs. 3.3–3.15 all elements in both metamodels are used, i.e., full metamodel
coverage is achieved.

Second, redundancies in contracts may be statically detected (cf. Table 3.1). A redundant
pattern may be safely removed yielding a simpler, more compact contract with the same se-
mantics. For instance, if a positive pre- or postcondition is included in a more comprehensive,
positive pre- or postcondition, the smaller one is redundant and may be removed. The reason
is that whenever the more comprehensive one is found, the smaller one will be found as well.
Similarly, if a negative pre- or postcondition is included in a more comprehensive one, the more
comprehensive one is redundant. Table 3.1 shows these two redundancy cases (first row), as
well as redundancies that may be identified for invariants (second row) and for the disabling
conditions of a pattern (third row). For example, if a pattern has a disabling condition included
in another one, then the more comprehensive condition is redundant.

53

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

Table 3.1: Detection of redundancies in PAMOMO contracts. Pi and Ni are a positive and a
negative pattern without enabling or disabling conditions.

Scope

Pre/Postconditions
P1  P2  P1 is

N N N iN1  N2  N2 i

Invariants

P1,src = P2,src and

P1,tar = P2,tar an

N = N anN1,src = N2,src an

N1,tar = N2,tar an

Enabling/Disabling
Conditions of a Pattern

disabling1 dis

Redundancy

 redundant

d d ts redundant

d P1,tar  P2,tar  P1 is redundant

d P1,src  P2,src  P2 is redundant

nd N  N  N is redundantnd N1,tar  N2,tar  N2 is redundant

nd N1,src  N2,src  N2 is redundant

sabling2 disabling2 is redundant

Third, contradictions which prevent the satisfaction of a contract by any pair of models (cf.
Table 3.2) may be statically detected. For example, there is a contradiction if a negative pre- or
postcondition is included in a positive pre- or postcondition. The reason is that the satisfaction
of the positive precondition requires finding an occurrence in the source model, but this means
that an occurrence of the negative precondition will be found as well. This conflict corresponds
to the first row in Table 3.2. The table includes another contradiction that may arise when two
invariants have the same source, one is positive and the other is negative, and the target of the
negative one is included in the target of the positive one. In this case the invariants may not
be simultaneously satisfied whenever an occurrence of their source part is found in the source
model. Only if a source model does not contain the source part of the invariants these would
hold (vacuous satisfaction).

Table 3.2: Detection of contradictions in PAMOMO contracts. P and N are a positive and a
negative pattern without enabling or disabling conditions. Subindex src and tar refer to the
source and target of a pattern.

Scope

Pre/Postconditions N  P contract i

Invariants N P and NInvariants Nsrc= Psrc and Ntar 

Contradiction

is unsatisfiable

P  contract is potentially unsatisfiable Ptar  contract is potentially unsatisfiable

Finally, reasoning on the satisfaction of patterns is enabled in order to detect potential errors
in a contract and reporting a warning. For instance, consider a negative precondition that is
included in the source part of an invariant or in one of its enabling conditions. In this case
there is no contradiction, but if the negative precondition holds, then the invariant will also
hold vacuously because it will never be enabled. If the precondition does not hold, then the
invariant may be satisfied or not (depending on whether its main pattern is found in the models).
Nevertheless the whole contract will not hold. Thus, this situation usually indicates an error
in the specification. Table 3.3 gathers different warnings for PAMOMO contracts concerning
satisfiability.

54

3.3. Reasoning with Patterns

Table 3.3: Detection of potential errors in PAMOMO contracts concerning satisfiability. NPre
and NPos are a negative precondition and a negative postcondition. I is a (positive or negative)
invariant. Subindex src and tar refer to the source and target of an invariant.

Scope

NPre Isrc if

N  I 
Pre/Postconditions

NPre Ienabling

NPos Itar  if

NPos Ienabling 

Enabling/Disabling
di bli

g/ g
Conditions of a Pattern

disabling  ena

Satisfaction

NPre holds, I vacuously holds

 if N holds I vacuously holds if NPre holds I vacuously holds

NPos holds I vacuously holds

 if NPos holds I vacuously holds

bli tt l h ldabling  pattern vacuously holds

As an example of this kind of reasoning, Fig. 3.17 shows a negative precondition on top
discarding the transformation of models where some package contains duplicated classes. The
invariant below, deals with the transformation of equally named classes inside a package, which
should be transformed into a single table containing columns for the attributes of the classes.
Thus, the second invariant is useless because it may only be satisfied (in a non-vacuous way) if
the input model has duplicated classes, but this is forbidden by the negative precondition. This
situation, which corresponds to the first row in Table 3.3 (i.e., NPre ⊆ Isrc), gives rise to a
warning.

N(NoDuplicatedClasses)N(NoDuplicatedClasses)
Class Relational

c1:Class c2:Class

p:Package

c1:Class
isPersistent = true
name=C

c2:Class
isPersistent = true
name=C

P(JointClasses)
Class Relationalp:Package

inclusion

c1:Class
isPersistent = true

c2:Class
isPersistent = true t:Table

s:Schema

name=Cname=C name=C

a1:Attribute
name=A1

a2:Attribute
name=A2

co1:Column
name=A1

name=C

co2:Column
name=A2

A1<>A2
name=A1 name=A2

Figure 3.17: Potential Error: Disabled Invariant due to Negative Precondition

55

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

3.4 QVT Relations in a Nutshell

After the designer has specified the transformation requirements in terms of contracts (cf.
step 1 in Fig. 3.2), the developer may start implementing the model transformation (cf.

step 2 in Fig. 3.2). Although any arbitrary transformation language might be chosen for this
task, QVT Relations is employed in our running example. This is since QVT Relations is also
used to automatically verify the specified contracts (cf. Section 3.5), and thus, the reader is not
confronted with many different languages.

QVT Relations is a declarative model transformation language standardized by the Object
Management Group (OMG) [116]. It allows for several execution scenarios, like model trans-
formation (i.e., generating a new target model from an existing source model), model synchro-
nization (i.e., synchronizing two existing models) and consistency checking (i.e., checking the
synchronization of two existing models without enforcing it).

With QVT Relations, a transformation is specified as a set of relations that must hold be-
tween a set of models, called candidate models in the QVT standard. Each relation defines local
constraints to be satisfied by the candidate models, and has two or more domains. Domains are
described by object graph patterns, and have a flag to indicate whether they are checkonly or
enforce. The models of a domain marked as enforce may be modified in order to satisfy
the relation. In contrast, the models of a domain marked as checkonly are just inspected to
check if the relation holds for the candidate models, resulting in reported errors only. Thus, in
order to realize a transformation scenario, the target domain must be marked as enforce to al-
low the creation of a new target model, and the transformation must be executed in the direction
of this domain. In the example transformation, the aim is to generate a new target model from
an existing source model, and hence the domain class is marked as checkonly whereas the
domain rel is marked as enforce.

Fig. 3.18 shows a first version of the QVT Relations implementation for the running ex-
ample. The transformation comprises two candidate models class and rel (cf. line 2)
representing a model conforming to the Class metamodel and a model conforming to the
Relational metamodel, respectively. The transformation specification contains five rela-
tions, namely PackageToSchema, ClassToTable, AttributeToColumn, Primit-
iveAttributeToColumn and SuperAttributeToColumn. Relations may be top-level
or not, which is indicated with the keyword top. The execution of a transformation requires
that all its top-level relations hold. In contrast to this the non-top level ones only need to hold
when they are invoked directly or indirectly from top-level relations. A relation holds if for
each binding of the objects in the source graph pattern (in the source model), there exists a valid
binding of the target pattern objects (in the target model).

Assuming that the execution starts with the top relation ClassToTable in the example
(cf. line 16), it is required that for each persistent class c contained in a package p, a table t
contained in a schema s exists. Furthermore, the class c and the table t must be equally named,
which is enforced by using a common variable cn.

In addition, relations may contain when and where clauses. The former express precondi-
tions under which the relation needs to hold. They usually refer to other relations, to which
they pass a number of parameters that appear as variables in the current relation. For instance,

56

3.4. QVT Relations in a Nutshell

1 transformation ClassToRel
2 (class : Class ; rel : Relational){
3
4 // map each package to a schema
5 top relation PackageToSchema {

34 // map each attribute to a column
35 relation AttributeToColumn {
36 checkonly domain class c: Class {};
37 enforce domain rel t: Table {};
38 where {p g {

6 pn: String ;
7 checkonly domain class p: Package {
8 name =pn
9 };
10 enforce domain rel s: Schema {

{
39 PrimitiveAttributeToColumn (c, t);
40 SuperAttributeToColumn (c, t);
41 }
42 }
43

11 name =pn
12 };
13 }
14
15 // map each persistent class to a table

44 // map each attribute to a column
45 relation PrimitiveAttributeToColumn {
46 an , tn: String ;
47 checkonly domain class c: Class {
48 attributes =a: Attribute {

16 top relation ClassToTable {
17 cn: String ;
18 checkonly domain class c: Class {
19 namespace =p: Package {},
20 isPersistent =true ,

49 name =an,
50 type =tn
51 }
52 };
53 enforce domain rel t: Table {

21 name =cn
22 };
23 enforce domain rel t: Table {
24 schema =s: Schema {},
25 name =cn
26 }

54 columns =cl: Column {
55 name =an ,
56 type =tn
57 }
58 };
59 }26 };

27 when {
28 PackageToSchema (p, s);
29 }
30 where {
31 AttributeToColumn (c t);

59 }
60
61 // map inherited attributes
62 relation SuperAttributeToColumn {
63 checkonly domain class c: Class {
64 superclasses sc: Class {}31 AttributeToColumn (c, t);

32 }
33 }

64 superclasses=sc: Class {}
65 };
66 enforce domain rel t: Table {};
67 where {
68 SuperAttributeToColumn (sc , t);
69 }69 }
70 }
71 }

Figure 3.18: Class2Relational Transformation Implemented in QVT Relations

the relation ClassToTable is only required to hold if the relation PackageToSchema
holds, as this latter relation appears in the when clause of the ClassToTable relation (cf.
line 28). Where clauses are used to specify relation postconditions, i.e., if the current relation
holds then the where clause should hold, and may also include references to other relations. For
instance, ClassToTable requires the relation AttributeToColumn to hold in its where
clause (cf. line 31). This second relation delegates the transformation of attributes to the rela-
tions PrimitiveAttributeToColumn and SuperAttributeToColumn in its where
clause (cf. lines 39 and 40). The relation PrimitiveAttributeToColumn transforms the
attributes of a class c into equally named and typed columns of the corresponding table. Finally,
the relation SuperAttributeToColumn deals with inherited attributes by recursively call-
ing itself (cf. line 68), i.e., attributes of super classes should be transformed as well and should
be added to the according table stemming from the subclass.

57

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

As the attentive reader might have already spotted, by the recursive call in the where clause
of the SuperAttributeToColumn relation, all super classes of a given class are visited,
but without producing additional columns for inherited attributes. In Chapter 7, it is shown how
this failure is detected by using the previously presented contract and how it may be fixed. For
this purpose, the next section shows how to use the consistency checking mechanisms of QVT
Relations to verify PAMOMO contracts.

3.5 Operationalization of Contracts: From PaMoMo to QVT
Relations

I
n order to use PAMOMO contracts as oracles, they have to be made operational. For this pur-
pose, contracts are compiled into checkonly QVT Relations transformations and it is checked

if they hold for certain models, according to the semantics shown in Section 3.2.1. In case a cer-
tain relation does not hold, the QVT engine provides information on which contract failed due
to which bindings (i.e., bound objects, values and links). Three QVT transformations are gener-
ated: one containing the generated code for the preconditions, another one for the invariants, and
the last one for the postconditions. In the following each one of them is detailed by providing
a schematic template of the generated code and a concrete example. Since preconditions and
postconditions offer many similarities they are dealt with first in a common subsection before it
is separately dealt with invariants in the subsequent subsection.

3.5.1 Compilation of Preconditions and Postconditions

Compilation Scheme of Preconditions. Precondition patterns have an empty target compart-
ment whereas postconditions have an empty source compartment since they both are specified
over a single metamodel only. However, in QVT Relations all transformations must have at least
two domains2, but it is possible that these two domains conform to the same metamodel, i.e., a
pseudo domain is introduced. Thus, in the case of pre- and postconditions, transformations with
two domains conforming to the same metamodel are generated, which are actually bound to the
same model. Fig. 3.19 shows the compilation scheme for positive and negative preconditions.
In both cases, one top relation is produced with two domains (named Source1 and Source2
in the figure), bound to the same metamodel, as preconditions act on one single model.

If the resulting transformation is executed in check-only mode in the direction Source1→-
Source2, for each occurrence of the source of each top relation, the engine has to find an
occurrence of the target of the relation to consider that the relation holds. For positive precondi-
tions, one element, which always needs to be found, which is the root node of the precondition’s
object graph, will be added to the domain Source1. The full object graph will be added to the
domain Source2 only. Furthermore, in the where clause inequalities ensuring that two objects
with compatible type may not be bound to the same object in the model are included, as well as
the OCL constraint expression EXP of the precondition.

2At least by the used engine ModelMorf [149], which has been chosen since it is currently the only one that
supports the check-only mode.

58

3.5. Operationalization of Contracts: From PaMoMo to QVT Relations

P(Pre)
Source

top relation Pre {

domain Source1 Root of Object Graph Osrcobject
checkonly domain Source2 Object Graph Osrc

where { obj-identity-inequality; EXP; }
}EXP

graph
Osrc

N(Pre)
Source

top relation Pre {

domain Source1 Object Graph Osrc
h k l d i S 2 R t f Obj t G h O 

object
checkonly domain Source2 Root of Object Graph Osrc

when { obj-identity-inequality; EXP; }
where { false; }

}

j
graph
Osrc

EXP
}

Figure 3.19: Compilation Scheme for Preconditions

Regarding negative preconditions, they demand the absence of an object graph. In this case,
the object graph is added in the Source1 domain, and the OCL constraint is included in the
when clause. Moreover, as a negative precondition has to fail whenever the object graph is found,
false is added to the where clause of the relation. Thus, finding the object graph in the source
domain makes the relation fail because of the where clause.

Example. Fig. 3.20 shows a negative precondition taken from Fig. 3.7 and the generated
QVT Relations code. The source object graph of the negative precondition pattern is compiled
into the object graph for the Source1 domain, whereas the Source2 domain includes only
the root node of this graph. In addition, three constraints are added to the when clause. The first
two check that different objects in the relation are bound to different objects in the model. This
is checked by inequalities in the identifiers of objects with same type in the where clause. Since

transform

N(NoRedefinedAttrs)

transform
top rela
X : St
domain

cla

p:Class

N(NoRedefinedAttrs)

a:Attribute
name=X

Class

pa:Package

cla

},
cla

c:Class ar:Attribute
name=X

c.allSuperClasses‐>includes(p)

p g
}

};
checko
when{when{

c<>
ar<
c.a

}}
where{

}
}

mation checkPre(Source1:uml; Source2:uml){mation checkPre(Source1:uml; Source2:uml){
ation NoRedefinedAttrs{
tring;
n Source1 pa : Package{
asses = p : Class{asses = p : Class{
attribute = a : Attribute{ name=X }

asses = c : Class{
attribute = ar : Attribute{ name=X }attribute = ar : Attribute{ name=X }

only domain Source2 p_2 : Package{};

>p;
<>a;
allSuperClasses->includes(p);

 false; }

Figure 3.20: Compiling a Negative Precondition into QVT Relations

59

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

QVT Relations supports OCL, according expressions in patterns may be directly taken without
changes in QVT Relations. Thus, the third constraint checks if the class p is a superclass of
class c. Finally, the where clause includes the false statement, to make the relation fail in case a
match for the source graph is found in the model.

Compilation Scheme of Postconditions. Fig. 3.21 shows the scheme of the compilation
of positive and negative postconditions. Positive postconditions demand an occurrence of the
target object graph, while negative postconditions are satisfied if there is no occurrence in the
target object graph. Thus, the code generated from postconditions is similar to the one generated
from preconditions but acting on the target metamodel instead.

top relation Post {

domain Target1 Root of Object Graph Otar
checkonly domain Target2 Object Graph O 

P(Post)
Target
object
graph checkonly domain Target2 Object Graph Otar

where { obj-identity-inequality; EXP; }
}

graph
Otar

EXP

top relation Post {

domain Target1 Object Graph Otar
checkonly domain Target2 Root of Object Graph Otar

N(Post)
Target
object

h
y g  j p tar

when { obj-identity-inequality; EXP; }
where { false; }

}

graph
Otar

EXP
}

Figure 3.21: Compilation Scheme for Postconditions

Example. Fig. 3.22 depicts the negative postcondition shown in Fig. 3.7 and its compilation
into QVT Relations. Please note that the resulting code is analogous to the code produced for
the negative precondition example in Fig 3.20.

transformation checkPost(Target1:rdbms; Target2:rdbms){transformation checkPost(Target1:rdbms; Target2:rdbms){
top relation NoDuplicatedColumns {
X : String;
domain Target1 t : Table {

N(NoDuplicatedColumns)
Class Relational

domain Target1 t : Table {
columns = c:Column { name=X },
columns = e:Column { name=X }

};

t:Table

c:Column e:Column };
checkonly domain Target2 t2 : Table {};
when { c <> e; }
where { false; }

c:Column
name=X

e:Column
name=X

where { false; }
}

}

Figure 3.22: Compiling a Negative Postcondition into QVT Relations

60

3.5. Operationalization of Contracts: From PaMoMo to QVT Relations

3.5.2 Compilation of Invariants

Compilation Scheme. Fig. 3.23 shows the scheme of the compilation of positive and negative
invariants. The scheme for positive invariants is similar to the one for preconditions and post-
conditions, but now the two domains are typed on different metamodels and contain different
object graphs. Moreover, the when clause includes the terms of the OCL invariant expression
containing only elements of the source graph, whereas the remaining terms of the expression are
added to the where clause.

i i 
P(inv)
Source Target

top relation inv {
domain Source Object Graph Osrc
checkonly domain Target Object Graph Otar

h {  bj id i i li   |  }
object
graph

object
graph

EXP

when { obj-identity-inequality-src; EXP|src; }
where { obj-identity-inequality-tar; EXP; }

}

top relation inv {

graph
Otar

graph
Osrc

N(inv)
Source Target

top relation inv {
domain Source Object Graph Osrc
checkonly domain Target root of Target metamodel

when { obj identity inequality src; EXP| ; }objectobject

EXP

when { obj-identity-inequality-src; EXP|src; }
where { not inv2(...); }

}
% ---
relation inv2 {

object
graph
Otar

object
graph
Osrc

EXP relation inv2 {
domain Source root of Object Graph Osrc
checkonly domain Target Object Graph Otar

where { obj-identity-inequality-tar; EXP; }where { obj-identity-inequality-tar; EXP; }
}

Figure 3.23: Compilation Scheme for Invariants

Another difference to the previous compilations is that negative invariants are split into two
relations: the first one is top and looks for occurrences of the source, and the second one is non-
top and looks for occurrences of the target when it is invoked from the where clause of the top
relation. In this way, the top relation checks that for each occurrence of the source graph there is
no occurrence of the target graph. This is latter checked by invoking the non-top relation in the
negated where clause. Note that generating a single relation with a false statement in the where
section, as done for negative pre- and postconditions (cf. Figs. 3.19 and 3.21), is not enough in
this case. The reason is that such a relation fails if it does not find the complete target graph,
however the relation should fail only if it does find both, the source and target graphs.

Example. Fig. 3.24 shows the compilation of the positive invariant modeling requirement
4 in Fig. 3.6. The generated relation has one domain for the source object graph and another
domain for the target object graph. Its when clause includes an inequality to avoid binding
the two classes p and c to the same object in the model, as well as the OCL constraint in
the invariant as it only includes source objects. An example for the compilation of negative
invariants is illustrated in the following subsection.

61

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

transformation checkInv(Source:uml; Target:rel){
top relation InheritedAttributes {
A, C : String;
domain Source pa : Package {

classes = p:Class {
attributes = a:Attribute { name = A }

P(InheritedAttributes)
Class Relational

pa: Package
},
classes = c:Class {
isPersistent = true, c: Classp: Class t:Table

pa: Package
s: Schema

name = C
}

};

c: Classp: Class t:Table
isPersistent = true
name=C

name=C

checkonly domain Target s : Schema {
tables = t:Table {

name = C,

a: Attribute
name=A

c.allSuperClasses‐>
includes(p)

co:Column
name=A

columns = co:Column { name = A }
}

};
when { p<>c; c.allSuperClasses->includes(p);}

}
}

Figure 3.24: Compiling a Positive Invariant into QVT Relations

3.5.3 Compilation of Enabling and Disabling Conditions

Compilation Scheme. Enabling conditions are translated into top relations, which are checked
in the when clause of the relation derived from the pattern they constrain. If the relation derived
from the enabling condition does not hold, the relation derived for the pattern vacuously holds.
This compilation scheme is shown in Fig. 3.25. For disabling conditions the scheme is the same,
but they are invoked in the when clause preceded by “not”. If a pattern contains several disabling
conditions, their invocations are concatenated with a logical “and”.

P(inv)P(enab)

top relation inv {
domain Source Object Graph Osrc
checkonly domain Target Object Graph Otar()

Source Target
object
graph
O

object
graph
O

()
Source Target

object
graph
EN

object
graph
EN

y g  j p tar

when { obj-identity-inequality-src;
EXP|src;
enab(…); }

EXP
OtarOsrc

EXPEN
ENtarENsrc

 
where { obj-identity-inequality-tar;

EXP; }
}
%---
top relation enab {
domain Source Object Graph ENsrc
checkonly domain Target Object Graph ENtar

where { obj-identity-inequality-src;
EXPEN|src; }

where { obj-identity-inequality-tar;
EXPEN; }

}

Figure 3.25: Compilation Scheme for Enabling Conditions

62

3.5. Operationalization of Contracts: From PaMoMo to QVT Relations

Example. Fig. 3.26 shows the code generated for the negative invariant of Fig. 3.11, which
has an enabling condition. In particular, the relations NoTableForTransientClass and
NoTableForTransientClass2 are generated from the negative invariant, and Package-
AndSchema from the enabling condition. Hence, top relation NoTableForTransientClass
only needs to hold for a particular Package and Schema when they satisfy the relation
PackageAndSchema, which is checked in the when clause.

N(NoTableForTransientClass)
Class Relational

P(PackageAndSchema)
Class Relational

Class Relational

s: Schemap: Package

p:Package
name=Y

s:Schema
name=Y t:Table

name=X

c:Class
name=X name=Xname X
isPersistent=false

top relation NoTableForTransientClass{
X : String;
d i

transformation checkInv(Source:uml; Target:rel){
top relation PackageAndSchema{

i domain Source p : Package {
classes = c:Class {

name = X,
i i

Y: String;
domain Source p : Package { name = Y };
checkonly domain Target s : Schema { name = Y };

isPersistent = false
}

};
h k l d i

}

checkonly domain Target s : Schema{};
when { PackageAndSchema(p,s); }
where { not NoTableForTransientClass2(p,s,X); }

}

relation NoTableForTransientClass2{
iX : String;

domain Source p : Package {};
checkonly domain Target s : Schema {

tables = t:Table { name = X }
};
primitive domain X2:String;
h 2where { X = X2; }

}
} //end of transformation

Figure 3.26: Compiling an Enabling Condition for a Negative Invariant into QVT Relations

In this example, the relation NoTableForTransientClass invokes NoTableFor-
TransientClass2 passing the string variable X as a parameter, which has to be defined as
a primitive domain in the invoked relation. Moreover, due to a limitation of the used QVT
Relations engine (ModelMorf [149]), which only supports relations with two domains, the com-
pilation of enabling conditions containing more than one object in the source or target requires
special treatment. This is so as any invocation of a relation must receive exactly two objects
as parameters, plus any number of primitive values. Thus, if the enabling condition contains
several objects in the source or the target, all objects should be assigned to according parameters
during invocation, which is not allowed. This problem is solved by passing the object identifiers
(which have a primitive type, i.e., string, and may therefore be passed as primitive domains)
instead of the objects themselves.

63

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

3.5.4 Compilation of Sets

Compilation Scheme. QVT Relations allows matching for collections of objects (sets, bags
or sequences) using so-called collection templates. The ModelMorf QVT engine provides two
kinds of collection templates: (i) enumerations for the extensional definition of sets, and (ii)
comprehensions for its intensional definition. Enumerations match for a certain number of mem-
bers in a collection. For instance, classes = pclasses : Set(Class) {c1, c2
++ _ } matches for two classes in the reference classes. The underscore is a wildcard
which matches for the rest of the collection. Comprehensions allow matching members in a
collection using a condition. For instance, classes = pclasses : Set(Class) {}
{pclasses->forall (c | c.isPersistent)} matches all persistent classes in the
reference classes.

As Fig. 3.27 shows, sets in PAMOMO patterns are compiled into collection templates. Enu-
merations are generated if the elements in the set are not constrained by any condition, and
comprehension otherwise. As before, the OCL expressions using only source variables and
source set variables are included in the when clause, whereas the rest are included in the where
clause.

P(…)
S T t top relation inv {Source Target
object
graph

bj

object
graph

Osrc Otar

bj t

top relation inv {
domain Source Osrc +

set-templates(set1)
checkonly domain Target Otar +

set-templates(set2)object
graph
Oset1

object
graph
Oset2

set1 set2

set-templates(set2)
when { obj-identity-inequality-src;

EXP|src; }
where { obj-identity-inequality-tar;

EXP; }

EXP

set1 set2 EXP; }
}

Figure 3.27: Compilation Scheme for Sets

Example. Fig. 3.28 lists the code generated from the invariant with sets shown in Fig. 3.15.
The set pclasses is translated into a comprehension because it contains a condition matching
for persistent classes only (isPersistent = true). In contrast, the set tabs is compiled
into a simple enumeration. The OCL expression is added to the where clause of the relation
because it relates set variables of the source and target. This expression fails if the number of
persistent classes is not equal to the number of tables.

If a set contains an arbitrary graph having more than one element, then one additional relation
is generated looking for occurrences of this graph structure. This relation is used to filter which
elements should be added to the collection (i.e., only those preserving the relation).

3.5.5 Summary of the Compilation

Table 3.4 summarizes the compilation of PAMOMO contracts into QVT Relations code. This
section has shown that PaMoMo contracts may fully be expressed in terms of checkonly QVT

64

3.6. Executing PaMoMo Contracts

transformation checkInv(Source:uml; Target:rel){
top relation NumberOfPersistentClasses {
Y : String;
domain Source pa : Package {P(NumberOfPersistentClasses)

name = Y,
classes = pclasses : Set(Class) {}

{pclasses->forAll(c| c.isPersistent) }
};

p:Package
name=Y

s:Schema
name=Y

Class Relational

checkonly domain Target s : Schema {
name = Y,
tables = tabs : Set(Table) {}

};
t:Tablec:Class

isPersistent=true tabs where { pclasses.size() = tabs.size(); }
}

}

isPersistent true

pclasses
tabs

pclasses.size() = tabs.size()

Figure 3.28: Compiling a Positive Invariant with Sets into QVT Relations

Relations offering a more compact specification of contracts than the direct use of QVT Rela-
tions. This is due to the availability of different kinds of patterns (positive and negative invari-
ants, pre- and postconditions) and features (enabling/disabling conditions, sets) of PAMOMO.
At the same time, it has to be emphasized that it is not the aim of QVT Relations to specify
transformation contracts but rather to specify model-to-model transformations. Furthermore,
using PAMOMO for contract specification reduces the effort and the number of potential errors
in comparison to directly using QVT Relations.

Table 3.4: Summary of PAMOMO-to-QVT Compilation

PaMoMo Concept

P(Pre/Post) 1 re

N(Pre/Post) 1 re

P(Inv) 1 re

N(inv)
2 re
rela

bl d
1 re

Enabling condition
1 re
rela

Disabling condition
1 re
of r

QVT Relation Representation

elation with pseudo domain

elation with pseudo domain + false in where clause

elation

elations + negated call of relation in where clause of
ation 1

elation + call of the relation from when clause ofelation + call of the relation from when clause of
ation for constrained pattern

elation + negated call of the relation from when clause
relation for constrained pattern

3.6 Executing PaMoMo Contracts

I
n the previous sections it was discussed how to formalize transformation requirements using
PaMoMo contracts, which may be made executable by means of QVT Relations in order to

test a certain transformation, i.e., whether the transformation fulfills the posed requirements or

65

3. PAMOMO: A VISUAL LANGUAGE FOR MODEL TRANSFORMATION CONTRACTS

not. This section now elaborates on the actual execution of contracts and shows how model
transformations may be tested, exemplified by means of the running example introduced in
Section 1.2. In this respect, Fig. 3.29 repeats the input model and depicts the target model
generated by the transformation under test as well as the verification log, stating which contracts
succeeded and which contracts failed. Additionally, traces to the actual model elements that
caused the contract to fail are given, which is detailed in following.

As a first step of the execution, the preconditions are evaluated on the source model. The
test source model depicted in Fig. 3.29 fulfills the requirement five of the running example, i.e.,
it contains no redefined attributes (cf. first line in verification log). Since requirement 5 is the
only precondition, all preconditions are fulfilled and therefore the actual transformation may
be executed in order to achieve a target model. A potential solution of the transformation of
the running example was presented in Section 3.4 using QVT Relations. If this transformation
is executed, the target model depicted in Fig. 3.29 is generated. In order to test if specified
transformation is correct, in a second step, invariants are executed, checking if the target model
generated by the transformation fits to the expected (parts of the) target model of the invariants,
e.g., in the example requirements 1 to 4 are checked since they were expressed as corresponding
invariants. When executing the specified invariants, one may see that only requirements 1 to 3
are satisfied but not requirement 4 (cf. verification log in Fig. 3.29).

On inspecting the generated target model in Fig. 3.29 one may realize that the transformation
specified in Fig. 3.18 produces a Schema s1 named University which stems from the
Package p1 (cf. test input model in Fig. 3.29), checked by the first invariant. Additionally,
the second invariant checks if persistent classes are translated into equally named tables, which
is also true since two according tables have been created, i.e., only the tables named Student
and Professor have been created since their according classes are persistent, but no table
named Person has been created since the according class is not persistent. Furthermore, every

PaMoMoimplementsQVT c1 : Classl a1 : AttributeTest Source Model
ContractsCode

c1 : Class
isPersistent = false
name = ‘Person‘

classes a1 : Attribute
name = ‘name‘
type = ‘String‘

super

attributes

subclasses

ModelMorf
c2 : Class

isPersistent = true
‘St d t‘

p1 : Package

name = ‘University‘

a2 : Attribute
name = ‘registrNo‘
t ‘I t ‘

classes

attributes

namespace

classes

namespace
name = ‘Student‘name = University type = ‘Integer‘

namespace

c3 : Class a3 Attribute

super
classes

subclasses

p

classes c3 : Class
isPersistent = true
name = ‘Professor‘

a3 : Attribute
name = ‘salary‘
type = ‘Integer‘

attributes

t1 : Table
name = ‘Person‘

tables co1 : Column
name = ‘name‘
t ‘St i ‘

columns

schema

s1 : Schema
name = ‘University‘

type = ‘String‘

t2 : Table co2 : Columncolumns

schema

schema t2 : Table
name = ‘Student‘tables name = ‘registrNo‘

type = ‘Integer‘

columns

Generated Target Model of Transformation to test

schema

Verification LogVerification Log

Figure 3.29: Verification Results of Requirements 1-4 of Running Example

66

3.7. Summary

direct attribute, i.e., registrNo in case of class c2 and salary in case of class c3, has been
correctly transformed into Column instances linked to the corresponding table, as demanded
by invariant 3. Nevertheless, invariant 4 fails which is due to the fact that for the Package
named University and the Class named Student with the attribute name – included in
superclass Person – no corresponding Column in the Table named Student can be found.
It may be concluded that the implementation of the transformation in Fig. 3.18 does not handle
inherited attributes appropriately. For a more detailed discussion by applying the implemented
prototype the reader is referred to Chapter 8.

As may be seen from this example, the specified contracts helped the transformation de-
signer to detect that there is a failure in the specification, i.e., contracts are useful in observing
facts according to [173]. Since PaMoMo contracts are independent from the underlying transfor-
mation languages, there is no direct relationship between contracts and the actual transformation
rules. Therefore, a mechanism is needed to (i) first identify the rules that caused the error and
(ii) to find the origin of the defect, i.e., often a defect is introduced already earlier and caused
dependent rules to to fail. The verification log in Fig. 3.29 states which source elements caused
a certain contract to fail. This information could be used to execute the transformation with
these input elements in order to find the defect. In order to support the transformation designer
in this task, appropriate debugging facilities are required. Nevertheless, current transformation
languages and their underlying transformation engines hardly provide any debugging mecha-
nisms in order to reduce the effort in finding the defect. In this respect, the following Chapter 4
introduces a runtime model for model-to-model transformations which provides an insight into
the actual execution of the transformation and provides the basis for sophisticated debugging
facilities which are presented in Chapter 7.

3.7 Summary

I
n this section a declarative, formal, visual language to specify behavioral semantic contracts
for model-to-model transformations has been proposed which is called PaMoMo. In this way,

PaMoMo may be used to specify preconditions and postconditions to express that an input or
output model should or should not contain certain configurations of elements. Furthermore,
they may be used to specify invariants, i.e., what conditions need to be satisfied by any pair of
input/output models of a transformation. In order to execute the specified contracts, they are
translated to QVT Relations which are then executed in check-only mode in order to check if
the relation holds for the candidate models, resulting in a verification log. This verification log
shows traces to the model elements that caused the relation to fail. This information may then
be used for debugging the model transformation, which is the focus of the following chapters.

67

Chapter 4

Transformation Nets - A Runtime
Model for Model Transformations

No great discovery was ever made
without a bold guess.

— Sir Isaac Newton

Contents
4.1 Transformation Nets at a Glance . 70
4.2 Core Concepts of Transformation Nets . 71
4.3 Static Parts of Transformation Nets . 73
4.4 Dynamic Parts of Transformation Nets . 81
4.5 Modularization Concepts in Transformation Nets 91
4.6 Summary . 93

I
n order to support the transformation designer in finding the origin of a defect, this chapter
introduces the fundamentals of the Transformation Net formalism, which is a Domain Spe-

cific Language (DSL) on top of Colored Petri Nets (CPNs) [72]. Transformation Nets serve
as a runtime model for the execution of model transformations, making its execution semantics
explicit in order to foster debuggability. After introducing the general idea, first, the represen-
tation of metamodels and models in Transformation Nets is discussed followed by the transfor-
mation logic itself. Additionally, it is shown how conditions and functions may be expressed
in Transformation Nets and how the presented concepts interact together in order to specify a
model-to-model transformation. Finally, modules are discussed in order to provide modulariza-
tion concepts in Transformation Nets.

69

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

4.1 Transformation Nets at a Glance

The basic idea of runtime models is to reason about the operating environment and the run-
time behavior of systems as well as to provide appropriate abstractions from code-level

details of the applications at runtime [95]. Consequently, a runtime model for model trans-
formations should not only provide means to represent the specified transformation logic as a
model, as e.g., proposed in [17], but should also incorporate information about its actual exe-
cution, i.e., it should make the operational semantics of a model transformation explicit. This
section introduces the general idea of the Transformation Net formalism, which provides a run-
time model for model-to-model transformations. Transformation Nets thereby form a DSL on
top of Colored Petri Nets (CPN) [72]. CPNs extend the basic concepts of Petri Nets [118, 124]
by the possibility of attaching data to tokens. Petri Nets in general have been chosen in order to
profit from their runtime model and their formal semantics. On the one hand Petri Nets allow for
abstraction from control flow, which is prevalent in declarative transformation approaches. This
is achieved since transitions may fire autonomously, depending on the markings contained in
the places, only. On the other hand, also the statefullness of imperative approaches is preserved,
since the actual state of execution is represented by the current available tokens. CPNs as a
special form of Petri Nets have been chosen since they allow the tokens to carry data, which are
called token colors and are thus able to represent an actual model. By providing an inscription
language, the data values may be queried and accordingly modified when firing a transition. In
order to hide low-level details and circumventing restrictions of CPNs with respect to model
transformations, Transformation Nets as a DSL on top of it, will be presented in the following.

The conceptual architecture of Transformation Nets is pictured in Fig. 4.1, showing a source
metamodel on the left hand-side and a target metamodel on the right-hand side. Furthermore, an
input model conforming to the source metamodel, as well as an output model conforming to the
target metamodel that represents the output of the transformation is depicted. In between, the
transformation logic resides, describing the correspondences between the metamodel elements.
These common parts of model transformations have to be described by means of CPN concepts.
The middle of Figure Fig. 4.1 shows a Transformation Net, which represents the static parts of

Transformation Net
TargetSource

conforms

PlacesPlaces TransitionsTransitions

MetamodelTargetTransformation
LogicMetamodel

conforms

Source

TokenToken

New Target
Model

Source
Model

Figure 4.1: Conceptual Architecture of Transformation Nets

70

4.2. Core Concepts of Transformation Nets

the transformation (i.e., metamodels and models) as places and tokens, respectively and the dy-
namic parts (i.e., the transformation logic) as according transitions. In this respect, Transforma-
tion Nets provide an explicit, integrated representation of common concepts of model-to-model
transformations.

A first version of Transformation Nets has already been presented in [125]. Nevertheless, in
the course of this thesis further development of the runtime model has been considered, going
beyond the contributions proposed in [125]. In a first step, the common core concepts of model-
to-model transformation languages are analyzed in order to systematically integrate the concepts
in the runtime model. This leads to numerous extensions in the underlying metamodel, e.g.,
besides the more explicit representation of metamodels and models (specific types have been
introduced as discussed in the following), also the specification of functions and conditions has
been included (cf. Subsection 4.4.2). Additionally, a focus is set on representing modularization
and reuse concepts, e.g., modules and rule inheritance, which will be discussed in detail in
Chapter 5. Furthermore, a formal basis is provided by its full compilation into CPNs, which will
be discussed in Chapter 6. In this respect, Transformation Nets can be used for three different
purposes. First, they can be used as a transformation language itself, especially tailored to reuse
of transformation logics as presented in [125]. Second, Transformation Nets may serve as a
target language to which other high-level transformation languages may be compiled in order
to benefit from the provided runtime model and the integrated debugging features, which is the
focus of this thesis. Finally, Transformation Net may also serve as runtime model for a new
transformation language, as discussed in Subsection 9.2.3.

4.2 Core Concepts of Transformation Nets

Since Transformation Nets are intended to provide a runtime model for model-to-model trans-
formations, first, the common features of existing transformation languages, which need to

be accordingly supported by Transformation Nets, have to be identified. Currently, numer-
ous transformation languages are available (cf. [38] for an overview), which follow different
paradigms, i.e., declarative, imperative, or hybrid. Since imperative languages and also hybrid
ones require the transformation designer to specify the actual execution of model transforma-
tions, e.g., by using control statements like conditions or loops, the actual execution thereof
may be followed by debuggers that allow for stepwise execution of the code as known from
traditional programming languages. The situation is different for declarative transformation lan-
guages, since only what should be transformed has to be specified but not how this is done,
which is typically hidden by an according execution engine. The goal of Transformation Nets
is to make this execution explicit and thus, Transformation Nets focus on providing an explicit
runtime model for declarative, rule-based model-to-model transformation languages, in a batch
and exogenous scenario, i.e., a source model is transformed into a new target model.

To identify the required concepts, (i) the features of declarative, rule-based model-to-model
transformation languages, and (ii) the classification of model transformation approaches pre-
sented in [38] have to be analyzed. The identified features are expressed in terms of a metamodel
(shown in Fig. 4.2) which illustrates the core concepts of transformation languages, building the
basis for Transformation Nets. Since the focus is on rule-based model-to-model transformation

71

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

Transformation
MetamodelInPattern Condition

value : Exp

1..1
condition

Transformation Transformation Rulerules 0 *

1..1
inpattern

InputElement1..*
elems

value : Exp

Eclass
(from Ecore)

elem 1..1

Transformation Transformation Rule

name : String

rules 0..

OutPattern

outpattern
1..1

OutputElement

elems
1..* 1..* Assignment

(f)

elem 1..1

OutPattern OutputElement

assignments

Assignment

value : Exp

Figure 4.2: General Concepts of Transformation Languages

languages, a Transformation specification typically consists of numerous Transforma-
tionRules. These transformation rules need to provide means to specify some relationships
between elements of the source model and elements of the target model that is created. There-
fore, TransformationRules include an InPattern, referring to InputElements of
the source metamodel, and an OutPattern, referring to OutputElements of the target
metamodel (cf. references InputElement.elems and OutputElem.elems in Fig. 4.2).
A first general distinguishing criterion is the allowed number of input and output elements.
Several transformation languages allow to match for a combination of several input elements,
e.g., ATL [73] or TGGs [83], whereas others restrict themselves to a single input element, e.g.,
ETL [81]. On the one hand, matching only a single input element tends to be more efficient
in terms of execution time, since no potential combinations of input elements need to be calcu-
lated. On the other hand, this often requires to specify more complex OCL expressions in order
to navigate through the metamodel. Furthermore, transformation languages typically support
the definition of a Condition in order to filter certain model elements, most often being spec-
ified with OCL. Finally, transformation languages provide the possibility of setting the values
for target features by means of Assignments. It is important that the features are contained
in the according EClasses which are referred by the corresponding InputElements and
OutputElements, respectively.

These common concepts of transformation languages need to be accordingly represented
in Transformation Nets. The abstract syntax of the Transformation Net DSL is formalized by
means of a metamodel (cf. Fig. 4.3) conforming to the Ecore1 meta-metamodel, the Eclipse
realization of OMG’s MOF2 standard. On the one hand, the Transformation Net metamodel is
based on the concepts presented in the metamodel in Fig. 4.2 and, on the other hand, it is based
on CPN concepts [72], which are adapted to the special requirements, occurring in the domain of
model-to-model transformations. In particular, in order to be able to encode metamodels, which
corresponds to the concept of InputElements and OutputElements in transformation lan-
guages, different kinds of places (cf. Section 4.3) are introduced, represented by the package
StaticElement (cf. Fig. 4.3). Additionally, also the model elements, which are typically not
represented in current transformation languages, are explicitly represented by means of tokens.

1http://www.eclipse.org/modeling/emf/?project=emf
2http://www.omg.org/mof

72

4.3. Static Parts of Transformation Nets

The second major adaptation concerns transitions. Since transitions are used to realize the actual
transformation logic, a well established specification technique from graph transformations [41]
is adapted, which describe their transformation logic as a set of graphically encoded productions
rules (cf. Section 4.4). These are represented by concepts of the package DynamicElement.
Transitions represent TransformationRules, whereas different kinds of patterns ful-
fill the task of InPatterns and OutPatterns, as detailed in Section 4.4. The package
Connectors is responsible for connecting the static parts with the dynamic parts. Finally,
the package Container aggregates the presented concepts, i.e., containers for the source and
target metamodels and the transformation logic are provided.

TransformationNet

DynamicElement
<<access>> <<access>>

ConnectorContainer

l
<<access>>

StaticElement
<<access>>

h I h itohne Inheritance

Figure 4.3: Packages of the Transformation Net Metamodel

4.3 Static Parts of Transformation Nets

When employing Transformation Nets, in a first step, the static parts of a model transfor-
mation, i.e., metamodels and models, need to be represented in the formalism, as can

be seen in Fig. 4.4. In this respect, it is first detailed, how object-oriented metamodels, e.g.,
metamodels based on Ecore, and their conforming models can be represented in Transformation
Nets. Second, the scope is broadened to other data models as well, e.g., XML Schemas and On-
tologies, discussing how concepts of these data models relate to Ecore concepts and how they
may be represented in Transformation Nets.

4.3.1 Representing Object-Oriented Metamodels in Transformation Nets

In MDE, most of today’s transformation languages allow to specify transformations between
object-oriented metamodels (M2), which themselves conform to a meta-metamodel (M3), e.g.,
Ecore or MOF, in order to transform according models (M1). In today’s transformation lan-
guages both metamodels, i.e., source and target metamodel, must conform to the same meta-
metamodel. In order to explicate the translation of concepts in object-oriented metamodels to
Transformation Nets, the Ecore-based Class and Relational metamodels of the running
example are used in the following. First a short overview on the concepts available in Ecore is
given.

73

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

StaticElement

0..*TNPlace
name : String

Tokentokens

opposite

1..1
source

Reference Object

oid : String

Link

soid : String
t id St i

superclasses

ordered : bool 0..* «enum»

0..1

2

1

Class

target
1..1

attributes

Value

oid : String

toid : String
0..*

subclasses
isAbstract : bool

containment : bool
upperBound : Int
lowerBound : Int

DataType

‐ Bool
‐ Int
Fl t1 1

2

3
Attribute

attributes
0..*

oid : String
valueId : String
value : String

type: DataType

‐ Float
‐ String
‐ Char

1..1

class

3

1
context Class inv tokenInv:
‐‐check if contained tokens are correct
self.tokens‐>forAll(t | t.oclIsTypeOf(Object)

2
context Reference inv tokenInv:
‐‐check if contained tokens are correct
self.tokens‐>forAll(t | t.oclIsTypeOf(Link)

1
context Attribute inv tokenInv:
‐‐check if contained tokens are correct
self.tokens‐>forAll(t | t.oclIsTypeOf(Value)

3

(| yp (j)(| yp () (| yp ()

Figure 4.4: Static Elements of Transformation Nets

4.3.1.1 The Ecore Meta-Metamodel

As already mentioned, Ecore, being the Eclipse realization of OMG’s MOF standard, has reached
wide-spread adoption in practice and is part of the Eclipse Modeling Framework3 (EMF). The
Ecore meta-metamodel (cf. Fig. 4.5) is used to define metamodels, but also provides means to
generate a Java implementation of the metamodel. Since the focus of this thesis is on model
transformations between metamodels, only the concepts of Ecore that are needed for metamod-
eling, namely EClass (for representing classes), EAttribute (for representing attributes)
and EReference (for representing references), are considered. Although data types, rep-
resented by the class EDataType and enumerations, represented by the classes EEnum and
EEnumLiteral are used in metamodels, they need not be represented in Transformation Nets
explicitly. This is due to the fact that they may be treated equal to data values, i.e., on a con-
ceptual perspective there is no difference between an enumeration and an integer standard data
type, thus, none of them are explicitly represented, instead only their concrete values are taken
into account. Furthermore, please note that only single-valued attributes are considered. Finally,
concepts provided for code generation (e.g., EFactory) and for behavioral modeling (e.g.,
EOperation or EParameter), as well as annotations (EAnnotation) are not represented
in Transformation Nets.

4.3.1.2 Representing Metamodel Elements in Transformation Nets

The representation of the involved metamodels in a model-to-model transformation scenario re-
quires a conversion from the graph-based paradigm underlying Ecore into the set-based paradigm
underlying Petri Nets. The design rationale behind this translation is to rely on the core concepts
of an object-oriented meta-metamodel, i.e., the graph, which represents the metamodel, consists
of classes, attributes, and references. These metamodel elements are translated into according

3http://www.eclipse.org/emf

74

4.3. Static Parts of Transformation Nets

Figure 4.5: The Ecore Meta-Metamodel [40]

subtypes of TNPlace in Transformation Nets. Fig. 4.6 shows an overview of the proposed
translation, whereby an extract of the source metamodel of the running example is used, rep-
resented in their respective concrete and abstract syntax. In order to minimize the visual gap
between class diagrams (which are usually used to represent metamodels graphically) and Petri
Nets, Transformation Nets try to visually combine these two representations by providing an
extra compartment in terms of an oval, which is typically used to depict places in Petri Nets, as
can be seen in Fig. 4.6(d)

Representation of Classes. Both, abstract as well as concrete classes (i.e., all instances of
EClass) are translated into Class instances in Transformation Nets. Classes may be set
abstract (cf. boolean attribute Class.abstract in Fig. 4.4) and are allowed to inherit from
one or more superclasses (cf. reference Class.superClasses and its opposite reference
Class.subClasses in Fig. 4.4), which is represented in Ecore in terms of the reference
EClass.eSuperTypes. Fig. 4.7 shows the translation of the complete source metamodel of

75

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

Packagec1:EClass
name= ‘Package‘

a1:EAttribute
‘ ‘

eStructural
Feature

c1:Class
name= ‘Package‘

a1:Attribute
name= ‘name‘

attributes1 12 12

name: StringPackage
name: String

g
abstract = false name= ‘name‘

lowerBound=1
upperBound=1

eAttributeTyper1:EReference

eStructuralFeature

g
isAbstract=false

name name
type=String

source

r1:Reference
23 3

1
2name: String

classes

Class

s1:EString

eAttributeTyper1:EReference
name= ‘classes‘
ordered=false
lowerBound=1

B d 1

1..*

r1:Reference
name= ‘classes‘
ordered=false
lowerBound=1

B d 1

3
4 3

classes

Class

Class

2 ECl

upperBound=‐1
containment=false

eReferenceType

c2:Class
target

upperBound=‐1
containment=false

44 4
c2:EClass
name=‘Class‘
abstract=false

c2:Class
name=‘Class‘
isAbstract=false

44

(a) Ecore Concrete
Syntax

(b) Ecore Abstract Syntax (c) Transformation Nets Abstract Syntax (d) Transformation Net
Concrete Syntax

Figure 4.6: Representation of Metamodel Elements in Transformation Nets

the running example into Transformation Nets, i.e., the classes ModelElement, Package,
Class and Attribute are represented by according places.

Representation of Attributes. Similar to classes, all instances of EAttribute are trans-
lated into Attribute instances (cf. Fig. 4.4 and Fig. 4.6(d)). The attribute Attribute.type
stores the according datatype by means of the enumeration DataType, which provides the
available standard datatypes (Bool, Int, Float, String, Char). Again, Fig. 4.7 shows
the translation of the attributes of the source metamodel of the running example into Trans-
formation Nets, i.e., the attributes ModelElement.name, Class.isPersistent and
Attribute.type are represent by according nested places.

Representation of References. References in the involved metamodels (i.e., all instances of
EReference) are translated into Reference instances in Transformation Nets (cf. Fig. 4.6(d)
and Fig. 4.4). To not loose any information in the translation process, References provide
equal attributes and references as EReferences do, i.e., ordered, containment (to spec-
ify aggregations), lowerBound, upperBound and opposite (note, that the opposite refer-
ence is used in Ecore to express bidirectional associations). Fig. 4.7 shows the representation of
the references of the source metamodel of the running example.

4.3.1.3 Representing Models in Transformation Nets

The graph, which represents a model conforming to a certain metamodel, consists of objects,
values and links which have to be accordingly translated into Tokens (cf. Fig. 4.9(a)) in Trans-
formation Nets, which are then put into the according places (cf. Fig. 4.9(b)), which is specified
by means of the OCL constraints shown in Fig. 4.4. For example, an Object token may only be
contained in a Class place. Thus, Transformation Nets not only represent the involved meta-
models, which are required to specify the transformation logic, but also the involved models in
order to provide an explicit view on the execution of a model transformation.

Representation of Objects. For every object that occurs in a source model, an Object
instance in Transformation Nets is produced, which is put into the place that corresponds to
the respective class in the metamodel. The “color” of a token is in fact expressed by means

76

4.3. Static Parts of Transformation Nets

ModelElement
name : String

Package

0..*

super
Classes

Attribute
type : Stringnamespace

0 *

Class
isPersistent : Boolclasses

1..*

attributes

subClasses
0..*

0..

(a) Source Metamodel (M2)

ModelElement

name : String

classes

1
0..*

attributes

ClassPackage Attribute

1..*

0..*

0..*

subClassessuperClasses

1 namespace attributes
type : StringisPersistent : Bool

(b) Source Metamodel in Transformation Net Notation

Figure 4.7: Source Metamodel Translated to Transformation Net

of a unique value that is derived from the identifying attribute of the original model object (cf.
attribute Object.oid in Fig. 4.4 and Fig. 4.8). With respect to the running example, one
may see that each instance of a class got represented through a respective Object token (cf.
Fig. 4.9). Since the class NamedElement is abstract and therefore, no direct instances may
exist, no token is put into the according place.

Representation of Values. For every value as an instance of an attribute, a Value token
is produced. A value token is represented by an object id (cf. attribute Value.oid) of the
owning object (upper part of the token) as well as a unique id for a certain value (cf. attribute
Value.valueId and lower part of the token) for which again according colors are derived to
provide a visual representation. The actual value of the attribute is stored as a string representa-
tion in the attribute Value.value, and is represented by the label in the lower part of the token

o1:Object v1:Value l1:Link
f i oid = ‘o1‘ oid = ‘o1‘

valueId = ‘v1‘
value = ‘val‘

soid = ‘o1‘
toid = ‘o2‘

Transformation Net
Abstract Syntax

f
o1

o1

val

o1
o2

Transformation Net
Concrete Syntax

o1:ObjectPattern v1:ValuePattern l1:Linko2:ObjectPattern v2:ValuePattern l2:Link

oidVar = ‘x‘
negated = false
cBE = false

oidVar = ‘x‘
valueIdVar = ‘v‘
distinct = false
negated = false

f l

soidVar = ‘x‘
toidVar = ‘y‘
negated = false
cBE = false

Transformation Net
Abstract Syntax

oidVar = ‘x‘
negated = false
cBE = true

oidVar = ‘x‘
valueIdVar = ‘v‘
distinct = true
negated = false

f l

soidVar = ‘x‘
toidVar = ‘y‘
negated = true
cBE = false

cBE = false

x x

v

x
y

Transformation Net
Concrete Syntax x

cBE = false

x
v

<<CBE>> <<D>>

x
y

<<N>>

Figure 4.8: Overview on Concrete Syntax of Transformation Net

77

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

c1 : Class a1 : Attributeattributesc1 a1
c1

isPersistent = false
name = ‘Person‘

classes

name = ‘name‘
type = ‘String‘

super
Classes

namespace
subClasses

c1
Person

a1
name

a1
String

c1
false

c2 : Class
isPersistent = true
name = ‘Student‘

classes

p1 : Package

name = ‘University‘

a2 : Attribute
name = ‘registrNo‘
type = ‘Integer‘

Classes

attributes
classes

namespace

p1 c2 a2

c2
Student

a2
registr
Noa2

c2
true

classes

c3 : Class a3 : Attributeattributes

super
Classes

subClasses

a espace

c3

Student
Integer

c3 a3

() ()

namespace

isPersistent = true
name = ‘Professor‘

name = ‘salary‘
type = ‘Integer‘

p1
University

a3
Integer

c3
Professor

true a3
salary p1

(a) Source Model (M1) as Object Diagram

ModelElement

University

ModelElement

name : String a1
1

p1
Univer
sity

c1 c2
StudentPerson

a1
name

a2
registr
No

c3
Professor

a3
salary

a1
name

a1
String

c1

c1
Person

c1
false

classes

ClassP k A ib

0..*

a2 a2
registr
No

a2
Integer

c2
truec2

0..*1 namespace
0..*

attributes

ClassPackage Attribute

type : StringisPersistent: Bool

p1 c1 c2 a1 a2c3 a3

c2
Student

c2

0..* subClassessuperClasses

type : String
c1 c2
false true

a1
String

a2
Integer

c3
true

a3
Integer

a3
a3

a3
salary

c3
Professor

c3
true

c3

(b) Source Model in Transformation Net

a3
Integer

Figure 4.9: Source Model Translated to Transformation Net

(cf. Fig. 4.8). Please note that, if two attributes exhibit the same value, the same id is generated
and thus, the lower parts of the tokens are equally colored (cf. e.g., the color for attribute value
true of the tokens representing the attributes Class.isPersistent in Fig. 4.9).

Representation of Links. Finally, for every link as an instance of a reference, a Link token
is produced. The Link.soid attribute of such a token (cf. Fig. 4.3) refers to the id of the token
that corresponds to the owning object. The Link.toid is given by the id of the token that
corresponds to the linked target object. Notationally, a link token is represented as a ring de-
noting the Link.soid color surrounding an inner circle denoting the Link.toid color (cf.
Fig. 4.8). Concerning the example, one may see that for each link in the source model an accord-
ing link token is generated. Therefore, e.g., the place representing the Package.classes
reference contains three tokens, which represent the containment relationships of the Class
instances c1, c2, and c3 to the Package instance p1.

78

4.3. Static Parts of Transformation Nets

As discussed above, a source model may be translated into tokens, forming the initial mark-
ing of the Transformation Net. On executing the transformation by firing its transitions (cf. Sec-
tion 4.4), tokens are generated into places that represent the target metamodel. These tokens are
then serialized to an according graph structure again, such that a target model results that con-
forms to the target metamodel. Consequently, every Object token is translated to an according
EObject in Ecore with its attributes and references set to the values derived from the according
Value and Link tokens.

4.3.2 Going beyond Object-Oriented Metamodels

In the previous section, the focus was on translating object-oriented metamodels and their cor-
responding models into corresponding Places and Tokens in Transformation Nets. The
concepts of metamodels and models also arise in other engineering domains. In case of data en-
gineering, the role of metamodels is played by schemata (e.g., in the form of database schemata
or XML schemata), and the role of models by corresponding instance data (e.g., database tuples
or XML documents). In case of ontology engineering, the role of metamodels is played by onto-
logical concepts (the so-called T(ype)-box) and the role of models by corresponding individuals
(the so-called A(ssertional)-box). Metamodels, schemata or ontologies are themselves instances
of certain meta-metamodels, e.g., Ecore, XML schema4, or OWL5 (cf. Fig. 4.10). Since these
data models build upon common core concepts, as already stated in [67] and summarized in
Table 4.1, the according concepts may also be translated to Places and Tokens in Transfor-
mation Nets by means of adapters (cf. Fig. 4.10). In the following, such adapters from XML
schema and OWL to Transformation Nets are shortly described.

Table 4.1: Common Core Concepts in Different Meta-Metamodels

Common Core Concepts Ecore XML Schema OWL Transformation Nets
Class EClass <xs:complexType> <owl:Class> Class (place)

Attribute EAttribute <xs:attribute> <owl:DatatypeProperty> Attribute (place)
Reference EReference <xs:key>, <xs:keyRef> <owl:ObjectProperty> Reference (place)
Inheritance eSuperTypes <xs:extension base> <rdfs:subClassOf> Class.superclasses

XML Schema to Transformation Nets. The EMF framework already provides support for
XML schemas and XML models, i.e., an XML schema might be automatically translated to
an Ecore metamodel and XML models to according Ecore models whereby the details of the
translation are explained in the EMF documentation6. In this respect, an adapter which directly
translates XML schemas into Transformation Nets may follow this transformation. For example,
in the EMF documentation it is described that complexType instances may be represented
in Ecore by according EClasses. Since instances of EClasses are translated to Class
places it is natural to directly translate instances of complexType to according Class places.
Furthermore, Elements in XML schemas are mapped to according Attribute places in

4http://www.w3.org/XML/Schema
5http://www.w3.org/TR/owl-features
6http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf

79

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

case they are typed to standard datatypes or enumeration values. If elements are typed to
complex types, they represent references and are thus translated to Reference places. Valid
XML files may then be translated to according tokens. For further details, the reader is referred
to the EMF documentation.

OWL to Transformation Nets. In [76] a translation from OWL concepts to Ecore has
been presented. This proposed translation may be followed in order to provide an adapter
which directly translates ontologies into Transformation Nets. In the following, the transla-
tion is shortly summarized. The OWL concept OWLClass basically corresponds to the concept
EClass and may therefore be mapped to places similar to the way described before. Ad-
ditionally, in an OWL ontology, classes may be marked to be equivalent, in order to specify
synonyms. In contrast, Ecore allows only for distinct classes, i.e., an instance of one class may
not be an instance of another one. Nevertheless, this may be simulated by means of abstract
super classes for the equivalent classes. Thus, it is possible to either use objects of the con-
crete classes or of one of its supertypes. In this respect, equivalent classes are represented by
abstract Class places. OWLDataType-Property, which define attributes of classes, are
equivalent to EAttribute in Ecore and are mapped to according Attribute places. Fi-
nally, OWLObjectProperty in OWL defines references between classes which are similar
to EReference in Ecore and are thus mapped to according Reference places. The according
individuals are translated to the respective tokens similar to the concepts presented above.

As described before, model transformations are specified between their according meta-
models (M2) and are executed on the model level (M1), i.e., every model that conforms to its
according metamodel may be handled by the transformation. As can be seen in Fig. 4.10, these
metamodels conform themselves to a so-called meta-metamodel (M3, e.g., Ecore). Since Trans-
formation Nets abstract from the concrete metamodels and their models by means of places and
tokens, it is possible, e.g., to translate a source metamodel that conforms to the Ecore meta-
metamodel into places and the according model to tokens, and to translate a target metamodel
that conforms to the OWL metamodel into places and the according individuals into tokens.
Consequently, it is not only possible to specify transformations between source and target meta-
models (M2) that are specified using the same meta-metamodel (M3, e.g., Ecore), but also be-
tween metamodels that themselves conform to different meta-metamodels, as shown in Fig. 4.10.

Ecore XML
Schema OWL OWL XML

Schema
Ecore

Schema
<schema ... >
…

</schema>

M3 <schema ... >
…

</schema>

M3

f i
OO

instance
of

Concrete Concepts
(T b)

Concepts
(T b)

Concrete
XML S h

instance
of

OO

M2
Transformation Net

TargetTransformation
Logic

Source

Metamodel XML Schema
<schema ... >

<complexType
…

</schema>

(T‐box) (T‐box) XML Schema
<schema ... >

<complexType
…

</schema>

M2
Metamodel

PlacesPlaces TransitionsTransitions
TokenToken

instance
of

</schema> </schema>

instance
of

M1

OO
Model

of
XML Individuals

(A‐box)
Individuals
(A‐box)

XML

M1

OO
Model

M1 M1

Figure 4.10: Overcoming Meta-Metamodel Heterogeneities in Transformation Nets

80

4.4. Dynamic Parts of Transformation Nets

Therefore, Transformation Nets not only provide means to overcome structural heterogeneities,
i.e., differences resulting from applying different modeling constructs for the same semantic
concept in different metamodels that conform to a common meta-metamodel, but also meta-
metamodel heterogeneities, i.e., transformation between metamodels that themselves conform
to different meta-metamodels are enabled.

4.4 Dynamic Parts of Transformation Nets

The previous section dealt with describing how metamodels and models are represented as
the static parts of a Transformation Net. This section introduces the dynamic parts of a

Transformation Net. First, the firing behavior of Transformation Nets is explained, followed
by a discussion, how conditions and functions may be specified in Transformation Nets. The
second part of this section explains, how to chain transitions in Transformation Nets in order to
represent complex transformation logic.

4.4.1 Representation of Transformation Logic

An execution of a model-to-model transformation rule has two major phases. The first phase
comprises the matching of certain elements of the source model, from which information is
derived that is used in the second phase for producing the elements of the output model. This
matching and producing of model elements is supported within Transformation Nets by firing
transitions whereby the source model is accessed in a read only manner and the target model
in a write only manner, i.e., transitions are not allowed to match for elements in the target
model. Transitions in Transformation Nets are similar to the concept of Transfor-
mationRules, as described above (cf. Fig. 4.2 in Section 4.2). Transitions are enabled, if a
certain configuration of matching tokens is available. This configuration is expressed with the
remaining elements of the subpackage DynamicElement of the Transformation Net metamodel
(cf. Fig. 4.11). To specify the firing behavior of a transition, a mechanism is used that is
well known from graph transformation systems [41]. Thereby, two patterns of input and output
placeholders for tokens are defined, which represent a precondition and a postcondition (cf.
references Transition.queryPatterns and Transition.productionPatterns
in Fig. 4.11). Thereby, a certain configuration of tokens is matched from the input places, and
a certain configuration of tokens is produced in the output places. Once such a configuration is
found, the transition is enabled and ready to fire. In this respect, these concepts fulfill similar
tasks as InPatterns and OutPatterns in transformation languages. The details of how
to specify a transition’s firing behavior is described in the following. In order to explicate the
concepts, an extract of the running example is used, which translates Class instances into
according Table instances, as shown in Fig. 4.12.

Specification of Transition’s Firing Behavior. The firing behavior of transitions in Trans-
formation Nets is defined by means of so-called Patterns. As can be seen in Fig. 4.11 the ab-
stract class Pattern is refined by the concrete subclasses ObjectPattern, ValuePattern
and LinkPattern, which are represented by the same concrete syntax as their according to-
kens. As the names already imply, different types of patterns are used to either query or produce

81

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

DynamicElement

TPArc
(from Connector)

arcs0..*target

1 1

2

Transition

name : String
condition : String

Pattern queryPatterns
1..* productionPatterns

1..*PTArc
(from Connector)

(from Connector)
1..1source

target 1..1

inArc

TNPlace
(from StaticElement)

source
1..1

1..1

0..*
inArcs

1..1transitioncbe : Boolean

4 context Transition inv key:
key‐>forAll(k1 | k1‐>forAll(

33

condition : String
key[]: List<Pattern>

histEntries0..*

inArc0..1

0..*
arcs 1

5 5 5

k2| k2.cbe and self.
productionPatterns‐>
includes(k2)))

ObjectPattern

oidVar : String
negated : Boolean

ValuePattern

oidVar : String
valueIdVar : String
di i b l

LinkPattern

soidVar: String
toidVar : String

d l

History

precondition[]:Int
postcondition[]:String

5 5 5

distinct : bool
negated : Boolean

negated : Boolean

context PTArc inv isCompatible: t t TPA i i C tibl
1 2

P i i Cb
4

context PTArc inv isCompatible:
‐‐check if PTArc connects to a query pattern
if target.transition.queryPatterns‐>
includes(self.target) then

context TPArc inv isCompatible:
‐‐check if TPArc originates from a production pattern
if source.transition.productionPatterns‐>
includes(self.source) the

context Pattern inv isCbe:
cbe implies self.transition.productionPatterns‐>
includes(self)

if (source.oclIsTypeOf(Class) then
target.oclIsTypeOf(ObjectPattern)
else if (source.oclIsTypeOf(Attribute) then
target oclIsTypeOf(ValuePattern)

()
if (source.oclIsTypeOf(ObjectPattern) then
target.oclIsTypeOf(Class)
else if (source.oclIsTypeOf(ValuePattern) then
t t lI T Of(Att ib t)

context ObjectPattern inv PatternConstraints:
5

target.oclIsTypeOf(ValuePattern)
else if (source.oclIsTypeOf(Reference) then
target.oclIsTypeOf(LinkPattern)
else

target.oclIsTypeOf(Attribute)
else if (source.oclIsTypeOf(LinkPattern) then
target.oclIsTypeOf(Reference)
else

negated implies self.transition.queryPatterns‐>
includes(self)

context ValuePattern inv PatternConstraints :
negated implies self transition queryPatterns‐>

false
endif endif endif else
false ‐‐ no query patterns

endif

false
endif endif endif else
false ‐‐ no production patterns
dif

negated implies self.transition.queryPatterns >
includes(self)

context LinkPattern inv PatternConstraints :
negated implies self.transition.queryPatterns‐>

endif endif includes(self)

dynamic, ohn Inheritance
Figure 4.11: Dynamic Elements of Transformation Nets

according types of tokens, e.g., if an object token should be queried, an ObjectPattern is
used. Patterns may then be used in two different roles, either as query patterns to model
preconditions or as production patterns to model postconditions of a transition, as de-
tailed in the following:

• Query Patterns: Query patterns constitute the precondition or left-hand side (LHS) of
a transition. Every query pattern has to be connected to a certain place of the source
metamodel using an instance of a PTArc. It is important that the type of the place (ei-
ther Class, Attribute, or Reference) corresponds to the according type of pat-
tern, e.g., a Class place may only be connected to an ObjectPattern (cf. OCL
constraints 1 and 2 in Fig. 4.11). The actual variables (represented by the accord-
ing attributes of the patterns) are bound to the according ids of an actual input token
during matching. In order to exemplify this, Fig. 4.12(a) depicts a sample transition, con-
taining two query patterns. The pattern labeled with the variable class represents an
ObjectPattern which queries for according objects of the class Class. The pattern
labeled with the variable class and name represents a ValuePattern which queries
the ModelElement.name attribute (which may be accessed by classes since Class
inherits from ModelElement). During matching, equal variables have to be bound to
equal ids of the tokens, e.g., if the variable class of the ObjectPattern is bound to
token c1, then the variable class of the ValuePattern may only be bound to c1 as
well, i.e., the transition is only enabled, if there exists a name attribute for a certain object.
Furthermore, if two patterns are connected to the same source place, the according pattern

82

4.4. Dynamic Parts of Transformation Nets

Source MM Target MMTransformation Source MM Target MMTransformation

ModelElement

St i

SchemaElement

i

ModelElement

S i

SchemaElement

name : String

c1 c2
Student

name : String name : String name : String

Person

c3

c1 c2
StudentPerson

c3

c1 c2
StudentPerson

c3
Class2
Table

Class2
Table

Class Table Class Table

classname name class

c3
Professor

c3
Professor

c3
Professor

<<CBE>> <<cbe>>
Table Table

<<cbe>>

Class

c1 c2

Table Class

c1 c2

Table

c2c1c3 c3c3

(a) Example Transition (b) Transformation Net in Final State

Figure 4.12: Example Transition in Transformation Nets

variables must be different to ensure a non-injective matching, i.e., two objects with the
same type in the source pattern cannot get matched to the same object in the model.

Negative Pattern. Besides querying if a certain token configuration is available it is also
necessary to query if a certain token configuration is not available, e.g., only if a certain
Class instance does not exhibit a link superClass to a super class (i.e., it is a root
class), an according transition should be enabled. Since the matching algorithm of CPNs
may only match for the existence of tokens, the handling of non-existence of tokens re-
quires the introduction of list data types and conditions in CPNs (cf. Chapter 6). Since
the Transformation Net DSL is intended to hide such complexities from the transforma-
tion designer, negative query patterns have been included in the language definition, i.e.,
query patterns may be negated by setting the negated flag to true (cf. example 6
in Fig. 4.13)7. In this respect, negative patterns are comparable to negative application
conditions in graph transformations [61].

Distinct Values. In case of a ValuePattern, the situation might occur that only distinct
attribute values should be considered, e.g., only Class instances offering a different
value of the Class.name attribute should be translated into according Table instances.
Again this situation requires the handling of list data types and conditions in CPNs and
should therefore be hidden from the transformation designer in the Transformation Net
DSL. Thus, a distinct flag on ValuePatterns is provided to ease the specification (cf.
ValuePattern.distinct in Fig. 4.11 and in Fig. 4.13).

• Production Patterns: Production patterns constitute the postcondition or right-hand side
(RHS) of a transition. Every production pattern has to be connected to a place of the target
metamodel by means of TPArc instances. The variables of ProductionPatterns
depend on the variables of the QueryPatterns. In the example in Fig. 4.12(a), both
ObjectPatterns (query as well as production patterns) exhibit the variable class.

7The flag is contained in the subclasses since later on the metamodel will by extended by another pattern, which
is not allowed to be negated.

83

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

This means if, e.g., the object token c1 is bound to the variable class of the query
pattern during the matching phase, the variable class of the production token has to
be bound to c1 when firing the transition. In this respect, the object is simply copied
from a source place to a target place, as can be seen in Fig. 4.12 (b), which shows the
Transformation Net in its final stage, i.e., all transitions have fired. However, it should
also be possible to produce new objects, values or links in the target model which do not
exist in the source model, e.g., if several source objects are merged to a new target object.
In this case, a newly colored token should be produced, in order to accordingly visualize
the new element. In Transformation Nets this may be achieved if a certain variable of a
production pattern has not been used as a variable of a query pattern.

Check Before Enforce. Similar to distinct value query patterns, mechanisms for produc-
tion tokens are needed to ensure that duplicate elements are not created when the required
elements already exist, i.e., if a Schema has already been created for a certain Package,
the schema should be reused and no duplicates should be produced. For this production
patterns may be marked as check before enforce (cf. Pattern.cbe in Fig. 4.11 and
example 2 in in Fig. 4.13). As may be seen in the example in Fig. 4.12, the production
ValuePattern, which produces the name attribute and its corresponding containing
ObjectPatten are marked as check before enforce, i.e., only differently named Table
instances will result. In order to provide flexibility in specifying equality, the transforma-
tion designer is allowed to define a key by specifying the according production patterns,
which have to marked as check before enforce.

o1:Object v1:Value Link
f i oid = ‘o1‘ oid = ‘o1‘

valueId = ‘v1‘
value = ‘val‘

soid = ‘o1‘
toid = ‘o2‘

Transformation Net
Abstract Syntax

f
o1

o1

val

o1
o2

Transformation Net
Concrete Syntax

ObjectPattern ValuePattern Link
T f ti N t

ObjectPattern ValuePattern Link

oidVar = ‘x‘
negated = false
cBE = false

oidVar = ‘x‘
valueIdVar = ‘v‘
distinct = false
negated = false

f l

soidVar = ‘x‘
toidVar = ‘y‘
negated = false
cBE = false

Transformation Net
Abstract Syntax

oidVar = ‘x‘
negated = false
cBE = true

oidVar = ‘x‘
valueIdVar = ‘v‘
distinct = true
negated = false

f l

soidVar = ‘x‘
toidVar = ‘y‘
negated = true
cBE = false

cBE = false

x x

v

x
y

Transformation Net
Concrete Syntax x

cBE = false

x
v

<<CBE>> <<D>>

x
y

<<N>>

Figure 4.13: Overview on Concrete Syntax of Patterns in Transformation Nets

Firing Behavior. Transformation Nets exhibit a different default firing behavior than stan-
dard CPNs in the sense that transitions in Transformation Nets do not consume tokens per de-
fault. This is since, on the one hand, all possible token combinations must be taken into ac-
count. For example, if a transition matched Package tokens and Class tokens at once, the
transition could fire only once, although if multiple elements were available, since there is a
1:n relationship between Package and Class. On the other hand, if more than one transi-
tion accessed a certain place, consuming firing behavior would lead to erroneous race condi-
tions. By default, every transition is just reading the tokens of the connected input places and
does not delete them. In order to prevent a transition to fire more than once for a certain to-
ken configuration, the already processed configurations are stored in a history (cf. reference
Transition.histEntries and Class History in Fig. 4.11). Every History entry

84

4.4. Dynamic Parts of Transformation Nets

stores the ids of the matched tokens in the attribute History.precondition and the pro-
duced tokens in the attribute History.postcondition. A transition is only allowed to fire
if the current configuration is not found in the history entries’ preconditions. Besides prohibit-
ing multiple firings of transitions, the history thus, also reveals trace information, i.e., an explicit
correlation of which input tokens have been used to create certain output tokens.

4.4.2 Conditions and Functions

Conditions, e.g., to select a subset of potential source objects, values or links as well as func-
tions, e.g., to calculate and derive values, are key to any model transformation language. For the
specification of such conditions and functions most of today’s transformation languages employ
OCL [115]. Therefore, Transformation Nets make use of OCL as well to allow the transforma-
tion designer to specify conditions and functions.

Conditions. The running example demands that only persistent Class instances are trans-
formed into according Table instances. In this respect, the Transformation Net depicted in
Fig. 4.14(a) exhibits an according OCL condition. Since conditions influence the firing behavior
of transitions, i.e., a transition is only allowed to fire if the according condition is fulfilled, con-
ditions in Transformation Nets are specified on transitions (cf. Transition.condition in
Fig. 4.11). In order to actually evaluate OCL expressions, a so-called OCL context is needed
which represents the root of the OCL expression and thus, the starting point of the evaluation.

Source MM Target MMTransformation

Source MM Target MMT f ti

ModelElement

St i

ModelElement SchemaElement

Source MM Target MMTransformation name : String

SchemaElement
c2

Student

c1
Person

c3
Professor

a1 a2
registr

a3
l

name : String name : String
name : String

ClClass2
c2

Student
c1

Person c2
S d

c3

Attribute
2

Column

name registr
No

salary

Class

isPersistent: Bool
class name

class attr

name

Class2
Tablec3

Professor

Student Professor

c1 c2 c3

a2
registr
No

a3
salary

Table

Column
@class.isPersistent

ib

Class
isPersistent: Bool

persistent

attr

persistent

c1 c2 c3 c2 c3

c2
true

c3
true

c1
false

0..*

attributes

[@class isPersistent]

isPersistent: Bool a2

type
c2
true

c3
true

c1
false

a3

Attribute

a1 a2

[@class.isPersistent]
and

[@attr.type=‘Integer’]
a3

type : String

a1
String

a2
Integer

a3
Integer

(a) Condition with one Context (b) Condition with two Contexts

Figure 4.14: Example Conditions

85

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

The context of an OCL expression in Transformation Nets is specified by using a variable of
a query pattern. In order to be able to distinguish variables from the remaining OCL expres-
sion strings, the according variable is preceded by an “@” sign. To specify the condition of
the example, the context is set to the according class object which is queried by means of the
object pattern exhibiting the variable class, i.e., the context is set by means of @class in
the expression. Since the OCL context is determined by an object and it’s according class, only
variables of query patterns typed to ObjectPattern are valid. As soon as the context is
determined, any valid OCL expression may be specified. In this respect, the isPersistent
attribute of the class Class may be queried. Therefore, the complete condition of the example
is @class.isPersistent.

Unfortunately, OCL allows for one context per expression only which makes it cumber-
some to specify more complex OCL constraints and requires potentially complex navigation
expressions. For example, the specification of the condition “if the class is persistent and if
the type of an according attribute is integer” would require various navigation expressions. To
ease the specification and to provide flexible means to express and evaluate conditions, several
contexts are allowed in Transformation Nets. Nevertheless, in order to allow for the reuse of
existing OCL engines, it is required to explicitly delimitate the scope of a context. Brackets
are used for this purpose in Transformation Nets as can be seen in Fig. 4.14(b). To evaluate
these conditions, the OCL expression is split along the different contexts and then every context
is evaluated separately. Afterwards, the separate results are evaluated according to the boolean
operators that connected the individual contexts. Concerning the example, first the according
binding of class.isPersistent is checked and second the binding of attr.type. Only
if both parts of the condition are fulfilled, the whole condition holds. Therefore, only the bind-
ings class=c2, attr=a2, persistent=true, name=registrNo, type=Integer
and class=c3, attr=a3, persistent=true, name=salary, type=String enable
the transition.

Functions. As already mentioned, OCL may not only be employed to specify conditions but
also for functions, e.g., to concatenate values. Since a single production pattern might exhibit
several outgoing arcs, functions are specified on the according TPArcs. The specified function
may depend on the query tokens, thus the variables in the function have to be variables of the
query patterns. The example shown in Fig. 4.15 concatenates the name of a class with the postfix
_gen by adding the function @class.name.concat(’_gen’) to the outgoing arc. Since
in this case a new value is generated the according production attribute pattern exhibits a new
variable newName, i.e., the variable newName has not already been used by a query token.
Therefore the color representing the vale of the attribute SchemaElement.name exhibit a
color, that does not exist in tokens of the source model.

4.4.3 Chaining of Transitions

The presented transformations so far solely consist of a single transition only and match tokens
of the source model and directly produce tokens in the target model which would correspond to a
single rule in current transformation languages. Nevertheless, a transformation usually consists
of several rules which have to interact with each other, i.e., a chaining of transformation rules is
required. Thus, Transformation Nets provide two different means to chain the according transi-

86

4.4. Dynamic Parts of Transformation Nets

ModelElement SchemaElement

Source MM Target MMTransformation

name : String name : String
@class.name.concat

(‘_gen’)

Class2
Table

c2
Student

c1
Person

c3

c2c1
Person_
gen

c3
f

Student_
gen

Class Table

classname

newNameTablec3
Professor

Professor_
gen

c1 c2 c1

Person_
d

c2c3 c3

generated

Figure 4.15: Example Function

tions, being (i) trace information and (ii) intermediate places. On the one hand, trace information
may be used to define dependencies between transitions in a way that a transition may only fire if
another transformation has already produced some elements, i.e., trace information. On the other
hand, intermediate places are places that are neither part of the source metamodel nor the target
metamodel; instead these places may be used to make derived information explicit for further
transformations. An example thereof is the calculation of the transitive closure, since typically
only the direct superclasses are stored in the model (cf. reference Class.superclasses in
the running example), but not its indirect superclasses, e.g., in the context of our running exam-
ple (cf. Fig. 1.2 on page 5) the indirect inheritance relationship between the class Professor
and Person should be made explicit.

Trace information. Two requirements of the running example are to (i) create an according
Table instance for every persistent Class instance and (ii) to create according Column in-
stances for direct attributes of such classes in a first step (cf. requirements 2 and 3 in Section 1.2).
When inspecting the source metamodel, one may detect that Classes and Attributes
are linked by the unbounded reference Class.attributes. If the transformation designer
specified a single transition that matches for Class and Attribute instances that produced
according Table and Column instances, this would result in potentially too many Tables
(without using check before enforce production patterns). This is since there are too many
matches in case a class exhibits more than one attribute. To avoid this, the transformation de-
signer may specify two transitions, whereby the transition that generates Column instances for
Attribute instances should only be enabled if the according Class instances have already
been transformed to Table instances. To achieve this, trace information may be applied in
Transformation Nets. Trace information makes explicit which source object(s) have been trans-
lated into which target object. In this respect, the parts of the history that concern objects are
made explicit. The remaining parts of the history are not made explicit since dependent transi-

87

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

tions need to know the according object only, e.g., if a dependent transition sets a link, it only
needs to know the according source and target objects. To incorporate trace information in Trans-
formation Nets, in a first step, the StaticElement and DynamicElement packages are
extended by according metamodel elements, i.e., TracePlace, Trace and TracePattern
(cf. highlighted elements in Fig. 4.16(a)). Trace tokens and TracePatterns exhibit both
two attributes to store the information which source elements – multivalued attributes Trace.-
soid and TracePattern.soidVar, left side of token or pattern in concrete syntax – have
been translated to which target element – Trace.toid and TracePattern.toidVar,
right side of token or pattern (cf. Fig. 4.16(b)).

Fig. 4.17 shows the application of trace information to solve the above stated requirements
of the running example. The transition Class2Table provides trace information produced

StaticElementStaticElement

0..*TNPlace
name : String

Tokentokens

i

source
Reference Object

id St i

Link

id St i
superclasses

d d b l *

opposite

0..1
TracePlace

1..1
Class

target
1..1

oid : String

Value

soid : String
toid : String

0..*

subclasses
isAbstract : bool

ordered : bool
containment : bool
upperBound : Int
lowerBound : Int

0..*

Trace

DataType

‐ Bool
Int

«enum»

Attribute

target
attributes 0..*

oid : String
valueId : String
value : String

type: DataType

soid : String[]
toid : String

‐ Int
‐ Float
‐ String
‐ Char

1..1

class

DynamicElement

Transition1..* productionPatterns

TPArc
(from Connector)

arcs0..*

1..1source

target 1 1
TNPlace

(from StaticElement)

target
1..1

0..*inArcs

Pattern
name : String
condition : String

queryPatterns1..*

histEntries0 *

PTArc
(from Connector)

target 1..1

inArc0..1

(from StaticElement)

0..*
arcs

source
1..1

1..1transition

Pattern

cbe : Boolean

History

precondition[]:Int
t diti [] St i

histEntries0..*

TracePattern

soidVar[] : String

ObjectPattern

oidVar : String

ValuePattern

oidVar : String

LinkPattern

soidVar: String postcondition[]:StringsoidVar[] : String
toidVar : String

oidVar : String
negated : Boolean

oidVar : String
valueIdVar : String
distinct : bool
negated : Boolean

soidVar: String
toidVar : String
negated : Boolean

t1:Trace p1:TracePattern

(a) Transformation Net Metamodel Extended with Trace Elements

t1:Trace

soid = [‘o1‘,‘o2‘]
toid = ‘o3‘

Transformation Net
Abstract Syntax

p1:TracePattern

soidVar = [x]
toidVar = ‘y‘
cbe=false

Transformation Net
Concrete Syntax o2

o1
o3 x y

(b) Abstract and Concrete Syntax of Trace Tokens and Trace Patterns

Figure 4.16: Extension of Transformation Net Metamodel to Represent Trace Information

88

4.4. Dynamic Parts of Transformation Nets

by the production TracePattern with the two variables labeled to class. The produced
Trace tokens are stored in the ClassTrace place (cf. place with stereotype TracePlace
in Fig. 4.17). Since in this example, Class objects are only copied to Table objects, the
trace tokens are of one color only. The produced trace information may then be queried by
subsequent transitions. In the example, an Attribute instance should only be translated
to a Column instance if the according Class instance has also been translated to a Table
instance. The transition Attribute2Column does not query the Class source place but
uses the ClassTrace place to match for Class instances that have already been translated to
Table instances. As can be seen in Fig. 4.17, the transition Attribute2Column uses a
TracePattern to query the according trace information. Since in general the generated tar-
get object needs not to exhibit the same color (i.e., a new object could have been created),
the tracePattern must be capable to handle this situation as well. Therefore, the query
TracePattern exhibits different variables (colors) on its left (source) and right (target) side.
Nevertheless, during matching it is allowed that two different variables are bound to the same
id (color), e.g., in the example both, variable class and table may be bound to the same
id. The transition Attribute2Column is thus only enabled if a Table instance has al-
ready been created and if a certain Attribute (attr query token) is contained in the ac-
cording Class, expressed by a reference query token labeled to class and attr. In this
respect, the transitions Class2Table and Attribute2Column interact with each other,
since the transition Attribute2Column queries the required trace information from the tran-
sition Class2Table.

Source MM Target MMTransformation

TablesClass2
Table

class

Class

c1 c2 c3 c2 c3
<<TracePlace>>

ClassTrace

class

@class.isPersistent

isPersistent: Bool
c2
true

c3
true

c1
false

c2 c3c2 c3

<<TracePlace>>

persistent

columnsAttribute2
Column

table

attributes

Column
class

attr

table

Attribute

a1 a2

0..*

a3 a2 a3

0..*

type : String

a2

a1
String

a2
Integer

a3
Integer

a2

Figure 4.17: Example Transition using Trace Information

Intermediate Places. The last requirement of the running example is that during the trans-
formation process, for each directly or indirectly inherited Attribute instance, a correspond-

89

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

ing Column instance should be generated. Nevertheless, the specified metamodel provides
means to access direct superclasses by means of the reference Class.superClasses only
(cf. Fig. 1.2). Therefore, first indirect subclasses need to be derived, i.e., the transitive closure
has to be calculated, in order to be able to generate according Column instances. To make
such derived information explicit, so-called intermediate places may be used. In this respect,
the example depicted in Fig. 4.18 extends the previous example by using an intermediate ref-
erence place (cf. place Closure in Fig. 4.18) to store the calculated transitive closure to be
further on able to generate Column instances for indirectly inherited Attribute instances.
To calculate the transitive closure, first the Helper transition copies the links to superclasses
into the intermediate place Closure. The transition TransitiveClosure then reads these
tokens and calculates the transitive links, i.e., it checks if there exists a link from a subClass
to a superClass and from the superClass to another super class, denoted by the vari-
able baseClass. In the example in Fig. 4.18 one additional link from class c3 to c1 is
generated and put into the intermediate place Closure. This is since the class c3 inher-

Target MMSource MM

Table

Transformation

Class Class2 Table

c2

Class

isPersistent: Bool

c1 c2 c3

Table

class

c2 c3c2 c3

<<TracePlace>>

i t t

c3

c2
true

c3
true

c1
false ClassTrace

Attribute2
Column

@class.isPersistent
persistent

superclasses
0..*

attributes

Column

class

table

columns

SuperAttr2
Column

SuperAttributes
Attribute

0..*
attr

Column

0..*

Helper

Column

class

table
subClass

attr

type : String

a1 a2 a3

a1
String

a2
Integer

a3
Integer 3

Transitive

a2

a4 a5 a6superClass

superClass superColsStringIntegerInteger a3

Transitive
Closure

Closure

subClass

baseClassClosure
superClass

baseClass

Figure 4.18: Example Transition using Intermediate Places

90

4.5. Modularization Concepts in Transformation Nets

its from c2, which inherits again from c1 as may be seen from the tokens in the reference
place superClasses. The tokens in the intermediate place are then used by the transition
SuperAttribute2Column to produce the remaining Column objects and columns links.
Thereby, the transition uses the trace information provided by the transition Class2Table in
order to add the Column instances that need to be generated to the corresponding table. The last
query token of the transition SuperAttributeToColumn queries the transitive links, i.e., if
there is a certain link from a subclass to a superclass, i.e., it is searched for indirect subclasses. If
this superclass has links to according attributes, the transition is ready to fire and produces
a column for every inherited attribute as well as the according links.

To exemplify this, in case of class c3, which inherits directly from c2 and indirectly from
c1, two additional columns (a5 and a6) are created. Since the context token stemming from
the source class c3 may be bound to the context query token and since there are links from c3
to c2 and from c3 to c1 (cf. tokens in intermediate place) as well as references from c2 and
c1 to according attributes available, the transition may fire twice to produce the columns a5
and a6 as well as the according links. In this way, for every directly and indirectly inherited
Attribute instance a corresponding Column instance is generated.

4.5 Modularization Concepts in Transformation Nets

Whereas the previous sections introduced the basic concepts of Transformation Nets, this
section presents modules as a modularization concept in Transformation Nets. In this

respect, modules allow the transformation designer to divide a transformation specification into
self-contained, maintainable parts, which are discussed in the following.

4.5.1 Overview on Modules

Modules encapsulate a certain transformation logic and provide a well defined interface to its
environment. In this respect, the metamodel depicted in Fig. 4.19 highlights the elements spe-
cific to modules. It may be seen that a transformation specification might contain Modules
which may be nested again, i.e., a module may contain several other, more fine-grained modules
(cf. reference Module.children). The interfaces are defined by means of Ports of dif-
ferent types, comprising class, attribute, reference and trace ports. Ports are connected with
Places, Patterns or Ports of nested modules via Arcs. The internals of modules consist
of Transitions and Places, i.e., either trace places or intermediate places.

4.5.2 Two Views on Modules

Since modules are used to modularize the transformation specification, they should also hide
unnecessary details in order to make the approach scalable for large transformations. In this
respect, two different views on modules are provided, being (i) a so-called blackbox view, which
only shows the interfaces of a module and (ii) a so-called whitebox view, which shows the details
of the implementation of the modules in Transformation Nets. In the following, the different
views are discussed in more detail.

91

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

Container
Port

(from Connector)

Module

children

0..* ports

1..*

places
0 *

transitions1..*

TransformationSpec

Module

modules parent
0..1

Transition
(from DynamicElement) TNPlace

(from StaticElement)

0..*

0..* 0..*
transitions1..*

0..*

Net

TransformationSpec
transformation

LHSsourceMM 1..1
0..*

places

name : String
1..1

RHS
targetMM places

Connector

outgoing
Port Arc

port0..1

0..* place

pattern 0..1

outgoing
0..*

Pattern
(from DynamicElement)

g g

outgoing

place
0..*

0..1ClassPort

AttributePort ReferencePort

TracePort

...TNPlace
(from StaticElement)

0..*
incoming

(f)

Figure 4.19: Extension of Transformation Net Metamodel to Represent Modules

Blackbox View. The blackbox view on modules exhibits only its interface and the actual
bindings to a metamodel. As can be seen in Fig. 4.20, the example depicts two modules, where
the module Package2Schema translates Package instances to Schema instances and the
Class2Tablemodule translates Class instances to Table instances, encapsulating require-
ment one and two of the running example. In this example only class and trace ports are shown
in the blackbox view. This is since classes set the focus of the transformation and trace ports
make the dependencies between modules explicit. Transformations of corresponding attributes
or references are then specified in the whitebox view, as discussed in the next paragraph. In
this respect, the interface of a module should be minimal, i.e., only a minimum number of ports
should be exhibited in the blackbox view. For example, although it would be possible to attach
an attribute port to both modules in Fig. 4.20, this is omitted since such details should rather be
specified in the whitebox view, as discussed below.

Whitebox View. The actual implementation of the transformation logic encapsulated in a
module is shown in the whitebox view. The whitebox view of a module may contain an ar-
bitrary number of transitions as well as trace and intermediate places, i.e., arbitrary complex
transformation logic may be encapsulated. Fig. 4.21 shows the whitebox view of the modules
Package2Schema and Class2Table. In this example, first Package instances and their
according name attributes are copied to Schema instances, which are equally named (cf. fired

92

4.6. Summary

ModelElement ModelElement

Source TargetTransformation

name : String

ModelElement

name : String
p1

University

c2
Student

c1
Person

c3
Professor

TableClass

Package

p1

Schema
Package2
Schema

C
C

T

T

isPersistent: Bool

c1 c2
Class2
Table

C
C

T

classes tables

c3

c2
true

c3
true

c1
false

T

Figure 4.20: Blackbox View on Modules

transition in Fig. 4.21(a)). Additionally, the transition produces trace information in order to pro-
vide the information, which Package instance has been translated to which Schema instance
for dependent transitions which may be contained in different modules. This trace information is
then used by the module Class2Table which queries for persistent, named Class instances
and copies them to equally named Table instances (cf. transition in Fig. 4.21(b)). The trace
information is used to create an according link to the Schema instance, the generated Table
instance should be contained in.

Besides the transformation logic itself, the whitebox view restricts the source and target-
metamodel to the extracts that were bound in the blackbox view. Therefore, e.g., the whitebox
view of the module Package2Schema shows only the metamodel elements Package and
its superclass ModelElement. The transformation designer is then only allowed to use these
elements in the transformation logic, e.g., only the name attribute may be additionally used.

Modules may not only be used to modularize Transformation Nets, but they may also be
applied to implement patterns, i.e., patterns to resolve recurring structural heterogeneities as
done in [86]. Since the ports of modules are only typed to classes, attributes, references or trace
information, transformation logic may be implemented without relying on the types of a specific
metamodel. This encapsulated transformation logic may then be reused in other transformations
by simply binding the ports to the according metamodel elements.

4.6 Summary

I
n summary, this section presented Transformation Nets as a runtime model for model-to-
model transformations. Transformation Nets build a DSL on top of CPNs tailored to the

domain of model transformations, hiding the actual details and complexity of CPNs. Metamodel

93

4. TRANSFORMATION NETS - A RUNTIME MODEL FOR MODEL TRANSFORMATIONS

ModelElement SchemaElement

Package2Schema

name : String name : String

name

A
Ap1

University
p1

University

Package Schema

name

Package

Package

p1

Schema

p1
C

C

T

p1 p1

Trace

<<TracePlace>>

Class2Table

(a) Whitebox View Package2Schema

ModelElement

name String

SchemaElement

S i

p1 p1Package2
SchemaCtx

Tname : String name : String

package schema

T

R
R

p1
University

p1
University

c2
Student

c1
Person

c3
Professor

C
C

APackage

1

Schema

class

name

A
R

Table

C
A

Class

p1

classes
p1tables

isPersistent
@class.isPersis
tent=true

isPersistent: Bool

tent true
<<TracePlace>>

T

Trace
c1 c2 c3

c2 c3c1

(b) Whitebox View Class2Table

c2
true

c3
true

c1
false

Figure 4.21: Whitebox View on Modules

elements are represented as places and models are made explicit by means of tokens, residing
in the corresponding places. The actual transformation logic is specified using transitions which
match for tokens residing in places, representing the source metamodel and produce tokens
which are put into the places representing the target metamodel. Finally, modules as a means for
modularization of the transformation specification were introduced.

In comparison to [125], where an initial version of Transformation Nets has been proposed,
numerous improvements and extension have taken place, especially adaptations in the underly-
ing metamodels. In [125], only two types of tokens and patterns (one-colored for objects
and two-colored for attribute and references) have been distinguished. This leads to the fact

94

4.6. Summary

that in the transformation logic it was impossible to distinguish between attributes and references
due to missing type information, which led to error-prone specifications. In order to ensure cor-
rect typing, three explicit types (Class, Attribute, Reference) have been introduced in
the course of this thesis to ensure typing to the common core-concepts of metamodels. Further-
more, the visual concrete syntax has been adapted in order to minimize the gap between class
diagrams, which are the prevalent notation for metamodels in MDE, and Petri Nets. As a fur-
ther new contribution, it has been shown that not only object-oriented metamodels and models
may be compiled to Transformation Nets, but also XML schemas and ontologies as well as their
corresponding instances. Considering the dynamic aspects of Transformation Nets, a major im-
provement imposed the inclusion of OCL conditions and functions to transitions. Furthermore,
the concept of trace places and trace tokens was introduced in order to allow for chaining of
transitions, i.e., one transition may query the elements that were produced by another transition.
In the following Chapter 5, concepts of Transformation Nets will be introduced that deal with in-
heritance between transitions in order to cope with rule inheritance in transformation languages.
Finally, the version presented in [125] did not exploit the power of CPNs, since Transformation
Nets were not translated to standard CPNs for execution and state space analysis, but only made
use of a proprietary execution engine developed in Java. The translation of Transformation Nets
to standard CPNs will be presented in the subsequent Chapter 6.

95

Chapter 5

Rule Inheritance in Transformation
Nets

We are what we repeatedly do.
Excellence then, is not an act, but a habit.

— Aristotle

Contents
5.1 Rule Inheritance in Current Transformation Languages 98
5.2 Syntax . 101
5.3 Static Semantics . 104
5.4 Dynamic Semantics . 112
5.5 Summary . 116

After the previous section introduced the fundamental concepts of Transformation Nets,
this section focuses on rule inheritance in model-to-model transformation languages and

their according representation in Transformation Nets. Since existing model transformation lan-
guages exhibit different semantics of rule inheritance concepts, a detailed comparison is pursued
first. Three different comparison dimensions are considered, being (i) syntactic aspects, i.e.,
which language constructs are needed to express inheritance between transformation rules, (ii)
static semantics, i.e., whether a set of inheriting transformation rules is well-formed at compile-
time and (iii) dynamic semantics, i.e., how inheriting rules interact at run-time.

97

5. RULE INHERITANCE IN TRANSFORMATION NETS

5.1 Rule Inheritance in Current Transformation Languages

The previous chapter dealt with common concepts of all transformation languages, e.g., ev-
ery model-to-model transformation language has to provide means to query for source

elements and to produce target elements. In order to support large transformation scenarios
reuse mechanisms are indispensable. Although the concept of inheritance plays a major role
in metamodels (MMs) (as revealed, e.g., by the evolution of the UML standard [100]), inher-
itance between transformation rules has received little attention so far [79]. Currently only a
few declarative, rule based model-to-model transformation languages allow to inherit between
transformation rules. As inheritance is employed in MMs to reuse feature definitions from previ-
ously defined classes, inheritance between transformation rules is indispensable in order to avoid
code duplication and consequently maintenance problems in a transformation specification. The
situation is further aggravated by the fact that the provided language constructs to specify rule
inheritance and the inheritance semantics differ considerably between the transformation lan-
guages. Therefore, first issues in rule inheritance are identified and second, a comparison of the
inheritance mechanisms provided by the declarative model-to-model transformation languages
supporting rule inheritance is conducted.

5.1.1 Issues in Rule Inheritance

To compare rule inheritance in transformation languages, one starting point is to look at the
well-known model transformation pattern (cf. Fig. 5.1) and to examine where the introduction
of inheritance would play a role. Obviously, a transformation language must define syntactic
concepts (cf. question 1 in Fig. 5.1), which leads to the first dimension of the comparison, namely
syntax. In this respect, the following questions are of interest:

• Types of inheritance: Does the transformation language support only single or multiple
inheritance?

• Abstract rules: Is it possible to specify transformation behavior that is purely inherited
but may not be executed on its own?

In addition to syntax, further well-formedness constraints on the transformation rules must
hold (cf. question 2 in Fig. 5.1), which represents the second dimension, namely static semantics.
Thereby, the following questions may arise:

• Modification possibilities in subrules: How may the types and number of input and output
elements be changed in subrules such that they may be interpreted in a meaningful way?

• Unambiguousness issues: Are there sets of rule definitions that do not allow selecting a
single rule?

If a declarative transformation specification is well-formed, it may be compiled into exe-
cutable code, which is interpreted by a transformation engine that takes a source model and tries

98

5.1. Rule Inheritance in Current Transformation Languages

Static
Semantics When is a set of inherting rules

well‐formed at compile‐time?

2Syntax

Which syntactical inheritance
1

Source Metamodel Target Metamodel

Transformation Specification

conforms to

well formed at compile time?

conforms to

Which syntactical inheritance
concepts are offered?

Source Metamodel Target Metamodel

Rule Rule…
Condition Condition

1..n superrules

A B X Y

Rule

1..* input
l t

1..* output
l t

… …

Condition
C Z

elements elements

Source Model

i1:A i2:B

Target Model

i1:X i2:Y

conforms to conforms to

executes

i3:C i3:Z• Rule Selection
• Rule Execution

Transformation Engine

How are inheriting rules
interpreted at run‐time?

3

Dynamic Semantics

Figure 5.1: Issues in Rule Inheritance

to select and execute rules in order to generate a target model. Again, several questions concern-
ing the interpretation of inheritance at run-time arise (cf. question 3 in Fig. 5.1), which leads to
the third dimension, namely dynamic semantics:

• Scope of inheriting rules: If a rule is defined for a supertype, are the instances of the
subtype also affected by this rule?

• Execution order of inheriting rules: Are inheriting rules executed top down or bottom up
in the rule inheritance hierarchy?

As shown in Fig. 5.2, the criteria may be divided into the three dimensions of (i) syntax,
(ii) static semantics, and (iii) dynamic semantics [80]. These dimensions and the corresponding
criteria are described in the following, whereby first existing approaches are compared and then
in each case the according realization in Transformation Nets is discussed.

5.1.2 Comparison Setup

The comparison of inheritance support in model-to-model transformation languages is based on
a carefully developed test set, which includes at least one test case for each criterion, which
are presented in detail in the following (cf. Fig. 5.3). These documented test cases, including
the example code, the metamodels, and source models, may be downloaded from the project

99

5. RULE INHERITANCE IN TRANSFORMATION NETS

• Number of Input Elements

Syntax

Number of Input Elements
• Number of Output Elements
• Support for Conditions
• Type of Rule Inheritance
• Support for Abstract Rules

Static
Semantics

Support for Abstract Rules
• RefinementModes of Assignments • Dispatch Semantics

• Kind of Inheritance Execution
• Condition Evaluation
• Assignment Execution

Dynamic
Semantics

Semantics Assignment Execution

• Incompatibility of Input and Output Elements
• Non‐Instantiability of Abstract Classes
• Ambiguities in Rule Definitions
• Conflicts in Multiple Inheritance

Figure 5.2: Overview on the Comparison Framework

homepage1. For the comparison, common model-to-model transformation languages are con-
sidered which offer dedicated inheritance support and allow relationships between source and
target models to be specified in a declarative way. In this respect, only the declarative subsets
of the hybrid transformation languages ATL (version 3.1.0) and ETL (version 0.9.0) as well
TGGs provide rule inheritance support. Concerning TGGs, none of the different available im-
plementations actually implements rule inheritance. Nevertheless, TGGs were included in the
comparison, since specific literature concerning inheritance support exists [79]. The examples
presented based on the MOFLON execution engine of TGGs (MOFLON 1.5.1) In order to be
able to compare the bidirectional TGG-based model transformation approach with the unidi-
rectional languages ATL and ETL, only the unidirectional forward translation is considered in
TGGs. Please note that although the QVT standard specifies the declarative transformation lan-
guage QVT Relations, it is not included in this comparison, since QVT Relations support only
redefinition of whole rules (without being able to reuse original rule definitions) and no inher-
itance between rules. Actual refinement of transformation rules is only mentioned in the QVT
Core part, which leaves the transfer to QVT Relations open.

Fig. 5.3 shows a potential starting point for the implementation of the running example mak-
ing use of rule inheritance in ATL, ETL and TGGs. For testing purposes it should be possible
to instantiate every target class – therefore the class SchemaElement was changed from an
abstract to a concrete class. The rule Class2Table transforms persistent Class instances
into corresponding Table instances, while inheriting from the rule MElement2MElement,
which specifies the name assignment. In the context of transformation rules, both feature as-
signments and conditions should be inheritable to subrules. Basically this means when executing
the subrule Class2Table, the assignments of the superrule MElement2SElement should
be executed as well. The following sections refer to this example to clarify the details thereof.

1http://www.modeltransformation.net

100

5.2. Syntax

l MEl t2SEl t{
Source Metamodel

rule MElement2SElement{
from mElem : Class!ModelElement
to elem : Relational!ModelElement (

ModelElement
name : String

Sche
nam

to elem : Relational!ModelElement (
name <‐mElem.name
)Package

/allSuper
Attribute Schema

}

l l bl d
0..*

/allSuper
Classes type : Stringnamespace

subclasses
0..*super

Schema
schema

0..*
rule Class2Table extends
MElement2SElement {
frommElem : Class!Class(mElem isPersistent)

Class
isPersistent : Bool

l
1..*

attributes
p

classes
tables
0..*

from mElem : Class!Class(mElem.isPersistent)
to elem : Relational!Table(
)

Targeclasses

)
} (a) ATL

p1:SchemaElemen
Sample Source Model

p1:SchemaElemen

name = “University
c1:Class

name = “Person“classes
rule MElement2SElement

f El Cl !M d lElname = Person
isPersistent= false

classes transform mElem : Class!ModelElement
to elem : Relational!ModelElement {
elem name := mElem name;

p1:Package

elem.name := mElem.name;
}c2:Class

name = “Student“
Targename = “University“

classes
rule Class2Table
transform mElem : Class!Class

name = Student
isPersistent= true

to elem : Relational!Table
extends MElement2SElement {
guard :mElem isPersistent

c3:Class

name = “Professor“classes

(b) ETL
guard : mElem.isPersistent
}

name Professor
isPersistent= true

classes

M d lEl t SchemaElement

modelelem element
MElement2SElement

Target M
ModelElement SchemaElement0..1 0..1MElement2MElement(name:String)

context:Class2Table::class
inv: self.isPersistent

{ }

Class Table0..1 0..1

class placeClass2Table
Class2Table(isPersistent:Boolean, name:String)

p1:SchemaElemen

name = “University(, g)

TGG‐Schema (type level)

y

<<create>> <<create>>
<<create>>

t Li k2 MEl t2SEl t

TGG‐Schema (rule level)

s:ModelElement

name := name

t:ModelElement

name := name

tggLink2:MElement2SElement

name : name

<<create>> <<create>>
<<create>>

s:Class

i P i t t

t:Table

<<create>> <<create>>tggLink2:Class2Table

(c) TGGs
isPersistent:= p
name := name

name := name

Target Metamodel

emaElement
e : String

ColumnColumn
type : String

0..*

a

Table
0..
columns

c1 SchemaElement

t Model produced by ATL

c1:SchemaElement

name = “Person“
nt

c2:Table

“St d t“

nt

“
name = “Student“

c3:Tablec3:Table

name = “Professor“

t Model produced by ETL

c2:Tablec2:Table

name = “Student“

c3:Table

name = “Professor“name Professor

Model produced by TGGs

c1:SchemaElement

name = “Person“

c2:Table
nt

y“
name = “Student“

y

c3:Table

name = “Professor“

Figure 5.3: Transformation example in ATL, ETL and TGGs

5.2 Syntax

This subsection provides criteria for comparing transformation languages in terms of syn-
tactic concepts that they support. For this, the metamodel presented in Fig. 4.2 is extended

with inheritance related aspects as highlighted in Fig. 5.4. In the context of inheritance related
aspects, three criteria are relevant. First, a TransformationRule may inherit from 1 or 1..*
other transformation rules, depending on whether single or multiple inheritance is supported.
Second, the concept of abstract rules may be supported in order to specify that a certain rule
is not executable per se but provides core behavior that may be reused in subrules. One may
distinguish between different refinement modes by which inherited parts are incorporated into

101

5. RULE INHERITANCE IN TRANSFORMATION NETS

inheriting rules (modeled by the enumeration RefinementMode in Fig. 5.4). First, override
implies that when a subrule refines an assignment of a superrule, the assignment of the subrule
is executed together with those assignments in the superrule which are not overridden. In the
refinement mode inherit, first, the overridden assignments are executed, and then the overriding
assignment may alter the resulting intermediate result (such as by initializing some state by a
supercall and then altering this intermediate result accordingly). Finally, the refinement mode
extension induces that inherited assignments may not be changed at all. For consistency reasons,
all assignments in a rule should follow the same refinement mode, therefore the refinement mode
is specified on transformation rule level (cf. attribute TransformationRule.mode).

T f ti1 1 Transformation
Metamodel

0..*
*

subrules superrules
1..1
inpattern

InPattern

InputElement1..*
elems

Condition

value : Exp

1..1
conditionRefinementMode

‐ override
‐ inherit
‐ extend

«enum»

Transformation

Transformation Rule

name : String
abstract : Boolean
mode : RefinementMode

rules 0..*

0..* InputElement

OutPattern

outpattern
1..1

OutputElement

elems
1..* 1..*

assignments

Assignment

extend

value : ExpModule rules
0..*

0..*modules

Figure 5.4: Inheritance-Related Concepts of Transformation Languages

5.2.1 Syntactical Comparison of Existing Languages

When comparing the considered languages (cf. Table 5.1), differences in the number of allowed
input elements may be detected. Whereas ATL (multiple elements in from pattern) and TGGs
(source object graph) allow several input elements to be bound to a rule, this is not possible in
ETL (cf. single variable after transform keyword in Fig. 5.3). However, all of the languages
evaluated support multiple output elements (multiple elements in to pattern in ATL and ETL,
target object graph in TGGs). Although the number of allowed input and output elements is
not directly related to inheritance, input and output elements play also a major role in inher-
itance, which is detailed in Section 5.3. Furthermore, all transformation languages allow for
the specification of conditions (OCL expressions in ATL and TGGs, a guard in ETL, as can
be seen in Fig. 5.3). ETL and TGGs support multiple inheritance, whereas ATL is restricted
to single inheritance (keyword extends in ATL and ETL, inheritance arrow in type level of
TGGs, cf. Fig. 5.3). All languages provide means to define abstract rules (keyword abstract
in ATL, annotation @abstract in ETL, property abstract in TGGs). Finally, concerning
potential refinement modes of assignments, none of the approaches evaluated provides specific
keywords for explicitly choosing the semantics to be applied. Instead, ATL and ETL implicitly
assume override semantics, and TGGs support the refinement mode extension since only new
assignments may be added, but existing ones must not be modified.

In summary, all of the approaches evaluated support similar syntactical inheritance concepts.
The main differences lie in the type of inheritance supported and the implicitly assumed refine-
ment mode of assignments (cf. Table 5.1).

102

5.2. Syntax

5.2.2 Inheritance Related Syntax in Transformation Nets

Based on the comparison above of today’s transformation languages that support rule inher-
itance, in the following the according syntax in Transformation Nets is explained. The sub-
package DynamicElement of the Transformation Net metamodel is accordingly extended
as can be seen in Fig. 5.5. As already explained in Chapter 4, Transformation Nets allow for
an arbitrary number of input and output elements which are represented by means of query
or production patterns. This is specified in the metamodel by the two unbounded references
Transition.queryPatterns and Transition.productionPatterns, as can be
seen in Fig. 5.5. Furthermore, Transformation Nets allow for the specification of OCL condi-
tions, as discussed in Subsection 4.4.2. Concerning inheritance specific aspects, Transformation
Nets support multiple inheritance, which is specified in the metamodel in terms of the unbounded
reference Transition.superTransitions. As can be seen in Fig. 5.6, the visualization
of inheritance between transitions is equal to inheritance between classes, i.e., inheritance arrow
between subtransition Class2Table and supertransition MElement2SElement. Finally,
Transformation Nets allow to explicitly specify the refinement mode of assignments by means
of the enumeration RefinementMode and the attribute Transition.mode, as can be seen
in Fig. 5.5. As a default, override semantics is applied since it is prevalent in the evaluated
transformation languages. The attributes Transition.includeSubtypes, which is used
to influence the dynamic behavior (cf. Section 5.4) and Transition.priority, which may
be used to solve ambiguous rule definitions (cf. Section 5.3) are specific to transformations, in
order to overcome shortcomings of current mechanisms for rule inheritance in transformation
languages, as detailed in the according sections.

DynamicElement

TPArc arcs0..*target
1 1 «enum»

superTransitions

0..* 0..*

subTransitions

Pattern

cBE : Boolean
queryPatterns

1..* productionPatterns

1..*PTArc
(from Connector)

(from Connector)
1..1source

target 1..1

inArc

TNPlace
(from StaticElement)

source
1..1

1..1

0..*inArcs

1 1transition

RefinementMode

‐ override
‐ inherit

«enum»Transition
name : String
condition : String
key[]: List<Pattern>inArc0..1

0..*
arcs 1..1transition inherit

‐ extend
key[]: List<Pattern>
abstract : bool
includeSubtypes : bool
mode : RefinementMode

History

histEntries0..*

priority: int
TracePattern

soidVar[] : String
toidVar : String

ObjectPattern

oidVar : String
negated : Boolean

ValuePattern

oidVar : String
valueIdVar : String

LinkPattern

soidVar: String
toidVar : String History

precondition[]:Int
postcondition[]:String

toidVar : Stringnegated : Boolean valueIdVar : String
distinct : bool
negated : Boolean

toidVar : String
negated : Boolean

dynamic, mit Inheritance

Figure 5.5: Extension of Transformation Net Metamodel to Represent Rule Inheritance

Fig. 5.6 shows the solution of the above example by means of Transformation Nets. The tran-
sition MElement2SElements translates objects that are instances of ModelElement to ac-
cording SchemaElement instances and copies the value of name attribute. The subtransition
Class2Table inherits from the supertransition MElement2SElement, whereby the object
query pattern and the production query pattern modelElement are overridden. Thus, patterns
of a supertransition may be overridden by equal variable identifiers. The remaining patterns of
the supertransition are inherited, i.e., the subtransition Class2Table also queries for name
attributes and produces according name attributes as may be seen by the tokens in the name

103

5. RULE INHERITANCE IN TRANSFORMATION NETS

ModelElement SchemaElement

Source TargetTransformation
MElement2
SElement

name : String

SchemaElement

name : String

SElement

name

modelElement

p1
University

21 3

p1

p1
University

c1

c2
Student

c1
Person

c3
Professor

c1
Person

c2
Student

c3
Professor

TableClass

isPersistent : Bool

Class2
Table

Package Schema

modelElement

isPersistent

c1

c2 c3

p1

c1

c2 c3 c2 c3

@modelElement
.isPersistent

c2
true

c3
true

c1
false

Figure 5.6: Example of Inheritance in Transformation Nets

place. Finally, the subtransition is extended by the additional query pattern isPersistent in
order to query for persistent Class instances only. On inspecting the generated target model,
one may see that only one Table instance is generated since only class c1 is persistent. Never-
theless, since the token c2 does not fulfill the condition of the subtransition, it may be matched
by the supertransition and therefore the token c2 is typed to SchemaElement, which is dis-
cussed in more detail in Section 5.4.

Table 5.1 summarizes the comparison of the syntactical comparison of inheritance related
elements in current transformation languages as well as in Transformation Nets.

Table 5.1: Comparison of Inheritance Syntax

Rule Part Values ATL ETL TGGs TN

I t El t 1 | 1 * 1 * 1 1 * 1 *Input Elements 1 | 1…* 1..* 1 1..* 1..*

Output Elements 1 | 1…* 1..* 1..* 1..* 1..*

Condition Yes | No Yes Yes Yes YesCondition Yes | No Yes Yes Yes Yes

Type of Rule
Inheritance

Single | Multiple Single Multiple Multiple Multiple

Abstract Rules Yes | No Yes Yes Yes Yes

Refinement
Modes of

Override
| Inherit Override Override Extend

Override,
Inherit,

Assignments | Extend Extend

* Not yet implemented in MOFLON5.3 Static Semantics

I
n the previous subsection, criteria targeting the comparison of syntactic concepts have been
identified. Now, criteria relevant for checking the static semantics of inheritance are elabo-

rated. These criteria reflect the following semantic constraints: (i) incompatibility of input and

104

5.3. Static Semantics

output elements of subrules and superrules in terms of type and number, (ii) non-instantiability
of abstract classes, (iii) ambiguities in rule definitions, and (iv) conflicts in multiple inheritance.

Incompatibility of Input and Output Elements. In the context of transformation rules,
both, feature assignments and conditions, should be inheritable to subrules. Thus, it has to be
ensured that the types of the input and output elements of subrules have at least the features of
the types of the elements of the superrule. Therefore, types of the input and output elements of a
subrule might become more specific than those of the overridden rule. The inheritance hierarchy
of the transformation rules usually follows the inheritance hierarchy of the MMs, i.e., a superrule
always originates from a more general class the the subrule. Nevertheless, not for every class in
the inheritance hierarchy of the metamodel a certain transformation rule needs to be provided.
For example, if the source metamodel class C inherits from class B, and class B again inherits
from class A it is allowed to specify only a rule R1 that matches for instances of class A and
a rule R2 that matches for instances of class C and which inherits from rule R1. Nevertheless,
here the question arises how to treat instances of class B, which is discussed in Section 5.4.
For rule inheritance this means that co-variance for input and output elements is demanded,
conforming to the principle of specialization inheritance in object-oriented programming [77].
This is in contrast to popular design rules for object-oriented programming languages, where a
contra-variant refinement of input parameters and a co-variant refinement of output parameters
of methods is required to yield type substitutability, also known as specification inheritance [99].
Additionally, the number of input and output elements should be extensible. In this respect, four
cases of potential variations of input elements in type and number may be distinguished (cf.
Fig. 5.7):

• Same Number, Different Types (a). As an example, Fig. 5.7(a) depicts the two rules,
RuleA2X and RuleB2Y, that are bound to the source base classes A and B and to the
target base classes X and Y, where both rules simply copy the contained features. Since
source class C inherits from both classes A and B and the target class Z from the classes
X and Y, the RuleC2Z may inherit from RuleA2X and RuleB2Y. Thus, the feature
assignments of the superrules are reused (cf. grey assignments in Fig. 5.7(a)).

• Same Number, Equal (Source or Target) Types (b). This case (cf. Fig. 5.7(b)) may
be counterintuitive, since inheritance is usually used to specialize some core behavior for
subsets of instances, and subtypes are typically used to construct these subsets. In this
case – at first sight – no subsets (according to specialization inheritance) are built, and
it is unclear which rule should be executed for a combination of instances. Therefore,
the required subsets must be built by applying corresponding disjoint conditions to the
subrules in case of equal source types. In case the target type remains equal, feature
assignments refer to target elements of the superrule. These scenarios occur if either the
source or the target metamodel makes use of inheritance.

• Different Number, Different Types (c). Here, the subsets needed are built through the
specialization of at least one input element (cf. Fig. 5.7(c)).

• Different Number, Equal Types (d). In this case, only the number of input or output ele-
ments is extended, but the types of elements bound in subrules remain the same. Thereby,

105

5. RULE INHERITANCE IN TRANSFORMATION NETS

Source Metamodel Target Metamodel

A B X Y

Transformation Specification

RuleA2X RuleB2Y
Source Metamodel Target Metamodel

X
Transformation Specification

RuleA2X

f4 <‐ f1; f5 <‐ f2;

Condition ConditionA
f1

B
f2

X
f4

Y
f5

RuleA2X
Condition

A

X

Condition

C
f3

Z
f6

RuleC2Z
Condition Condition

Y ZRuleA2Y RuleA2Z

f4 <‐ f1;
f5 <‐ f2;
f6 <‐ f3;

f3

f6 < f3;
Subsets by
Subtyping

Subsets by
Conditions

S M t d l Target MetamodelTransformation Specification Source Metamodel Target MetamodelTransformation Specification

(a) Same Number of Input Elements, Different Types (b) Same Number of Input Elements, Equal Types

Source Metamodel Target Metamodel

ConditionA XRuleA2X
Source Metamodel Target Metamodel

Condition

B A

XRuleA2X

ConditionBC YRuleBC2Y
Condition

B A

YRuleAB2Y
Condition Condition

Subsets by Subsets by

(c) Different Number of Input Elements, Different Types (d) Different Number of Input Elements, Equal Types

Subsets by
Subtyping

Subsets by
Conditions

Figure 5.7: Rule Compatibility

the same problem as in case (b) arises, where the subsets must be realized by means of
conditions which may require certain relationships between the matched input elements
(cf. Fig. 5.7(d)).

One interesting question in the context of cases (b) and (d) is whether the instances that do
not fulfill any of the conditions of the subrules are matched by the superrule (provided that the
superrule is concrete). Since this question is closely related to dynamic semantics, this is further
discussed in Section 5.4.

Non-Instantiability of Abstract Classes. Since abstract classes cannot be instantiated, it
must be ensured statically that no concrete rule tries to create instances of an abstract target class
as output. Only abstract rules are allowed in this case, since they are not executed themselves
but must be refined by a subrule. The situation is different for abstract source classes: although
an abstract source class may not have any direct instances, indirect instances may be affected by
the transformation rule.

Ambiguities in Rule Definitions. An ambiguity between inheriting transformation rules
may arise if a rule requires multiple input elements, and if there is no single rule for which
the match in runtime types is closer than all the other rules. This is analogous to the problem
that arises in multiple dispatching as needed for multi-methods (cf. [1, 31]), since choosing a
method requires the run-time type not of a single input element, but of a set of input elements.
Thus, the method whose run-time types most closely match the statically specified types should
be dispatched at run-time. A simple example of such a problem is depicted in Fig. 5.8(a).
Three transformation rules are specified taking two input elements of different metamodel types,
respectively. Now, suppose that a pair of instances (b,y) of type B and Y is transformed, and
assume that the rules might also match indirect instances. The transformation engine should

106

5.3. Static Semantics

Transformation

A

Source Metamodel

X
ref

Source Metamodel Target Metamodel
Specification

A Wf4 < f1;

RuleA2W
A X

RuleB2X RuleC2Y

f1 f4
f4 <‐ f1;

B C Y
f4 <‐ f2;

.
f4 <‐f3;B

f2

C

f3

RuleB2X RuleC2Y
X

…

Y

…

Rule1(A,X)
Transformation Rules f4 <‐ f2;

OR
D

RuleD2Z

Z?
Rule2(B,X) extends Rule1
Rule3(A,Y) extends Rule1

f4 <‐ f3;… …
?

(a) Ambiguous Transformation Rules (b) Diamond Problem

Figure 5.8: Examples of Static Constraints: (a) Rule Ambiguity and (b) Diamond Problem

now look for a rule whose arguments most closely match the pair (b,y). In this case, no single
rule may be determined, since Rule2 and Rule3 are equally good matches. Thus, the set of
defined transformation rules is ambiguous.

Conflicts in Multiple Inheritance. The diamond problem [148], also referred to as fork-join
inheritance [132], arises, when contradicting assignments are inherited via different inheritance
paths. Consider, for instance, the common superrule A2W in Fig. 5.8(b), which contains an
assignment for copying a feature value. This assignment is overridden within RuleB2X and
RuleC2Y. Thus, it may not be decided in RuleD2Z which assignment should be applied,
unless assistance is given by the transformation designer.

5.3.1 Comparison of Static Semantics of Existing Languages

This part of the comparison evaluates in how far the static semantics of inheritance is checked
in each transformation language (cf. Table 5.2). Concerning input and output elements, in ATL
a violation of co-variance is detected at run-time, since missing features result in a “feature
not found” exception. In ETL no error is reported, which leaves the detection of the resulting
erroneous instances to the transformation designer or another model management operation ex-
ecuted after the transformation. In TGGs this results in a compile-time error in the upcoming
implementation, since the main principle is that applying the subrule should guarantee the ex-
istence of the subgraph created by the superrule. Concerning the number of input elements, in
ATL a run-time error occurs, if the number is changed in any way (including name changes).
Thus, ATL requires that the number of input elements remains the same. In contrast, ATL does
not raise any exception if the number of output elements is restricted, since they are produced
even if they are not re-specified. In ETL, this criterion is not applicable, since ETL restricts the
number of input elements to exactly one anyway. In ETL a run-time error (“index out of bound”

107

5. RULE INHERITANCE IN TRANSFORMATION NETS

exception) is raised if the number of output elements is restricted. In TGGs – to conform to the
main principle that applying the subrule should guarantee the existence of the subgraph created
by the superrule – only an extension of the number of input and output elements is allowed,
which is again going to be ensured statically in the upcoming implementation.

None of the languages evaluated detect concrete rules referencing abstract classes at compile-
time, throwing run-time errors instead. Concerning ambiguous rule definitions ATL does not
throw any exceptions – neither at compile-time nor at run-time. Instead, the first matching rule
defined in the transformation specification is executed. In ETL, the problem of ambiguous rule
definitions may not arise, since multiple input elements are not supported. In TGGs, a run-time
error is thrown. The diamond problem in multiple inheritance does not apply to ATL, since mul-
tiple inheritance is not supported. Although the diamond problem is detected in ETL and TGG
at compile-time, it is checked on a coarse-grained level only, i.e., diamonds that do not include
ambiguous assignments also cause errors.

In summary, static inheritance checks are poorly supported by ATL and ETL. In ATL, none
of the static semantics are checked statically. The same is true for ETL with the exception of
the diamond problem. In contrast, TGGs at least conceptually propose quite a number of static
checks that will be considered in the upcoming implementation of rule inheritance.

5.3.2 Static Semantics in Transformation Nets

As discussed before, support for checking the static semantics is limited. This gives rise to
run-time errors or – even worse – to erroneous target instances with no error message. Thus,
the tedious task of checking the static semantics is left to the transformation designer. Since
Transformation Nets are specified on basis of a metamodel, OCL invariants may be employed in
order to ensure the required static semantics and to detect invalid configurations concerning rule
inheritance, helping the transformation designer in detecting defects. Consequently, the above
presented requirements are specified as invariants over the metamodel depicted in Fig. 4.3 on
page 73, which are explained in detail in the following and summarized in Table 5.2.

Incompatibility of Input and Output Elements. Transformation Nets allow the trans-
formation designer to change the input and output elements in both, number and type. It is
allowed that a subtransition either extends the number of input and output elements. Since the
behavior specified in supertransitions may only be extended but not restricted (following the
common principle in object oriented programming), those input or output elements that are not
re-specified in the subtransition are considered nevertheless, i.e., they are inherited. Further-
more, the types might be overridden in a co-variant manner only, which is ensured by the OCL
invariant depicted in Listing 5.1 (shown for query patterns only, since it is analogous for pro-
duction patterns). For this, first all ObjectPatterns are selected from a transition’s query
patterns (cf. line 6 in Listing 5.1). For this, a derived attribute queryObjectPatterns
is used (cf. line 1 - 3 in in Listing 5.1). For every pattern it is checked if a pattern over-
rides a pattern of any supertransitions. In order to get all super transitions a derived property
allSuperTransitions is specified for transition instances (cf. Listing 5.2 and line 8 in
Listing 5.1). If the pattern variable of the subtransition is contained in the set of pattern vari-
ables from the supertransitions (cf. line 9 in Listing 5.1) the pattern overrides the basic behavior
in the supertransition. In order to ensure a covariant relationship in this case, the according

108

5.3. Static Semantics

source Class places have to be in an inheritance hierarchy, i.e., the source class of the pattern
of the subtransition is a subclass of the source class of the pattern in the supertransition. If the
class referred by the pattern of the supertransition is contained in the set of all super classes of
the class referred by the pattern in the subtransition, the invariant is fulfilled. (cf. line 10 - 13 in
Listing 5.1).

Listing 5.1: Invariant to Check Covariant Overrides
1 c o n t e x t T r a n s i t i o n : d e f q u e r y O b j e c t P a t t e r n s : Set (O b j e c t P a t t e r n)=
2 s e l f . queryTokens−> s e l e c t (x | x . o c l I s T y p e O f (Q u e r y O b j e c t P a t t e r n)) −−s e l e c t o b j e c t p a t t e r n s
3 −> c o l l e c t (x | x . oclAsType (Q u e r y O b j e c t P a t t e r n)) −−c a s t them
4 −−
5 c o n t e x t T r a n s i t i o n inv C o v a r i a n c e :
6 s e l f . q u e r y O b j e c t P a t t e r n s −>f o r A l l (qop : Q u e r y O b j e c t P a t t e r n |
7 −− s e l e c t query t o k e n s o f a l l s u p e r t r a n s i t i o n s
8 s e l f . a l l S u p e r T r a n s i t i o n s −> c o l l e c t (t : T r a n s i t i o n | t . q u e r y O b j e c t P a t t e r n s)
9 −> c o l l e c t (o idVar)−> i n c l u d e s (qop . o idVar)) i m p l i e s −− i f p a t t e r n i s o v e r r i d d e n

10 qop . inArc . s o u r c e . a l l S u p e r C l a s s e s −>i n c l u d e s (−− check c o v a r i a n c e c o n d i t i o n
11 s e l f . a l l S u p e r T r a n s i t i o n s −> c o l l e c t (t : T r a n s i t i o n | t . q u e r y O b j e c t P a t t e r n s)
12 −> f l a t t e n ()−> any (sqop : Q u e r y O b j e c t P a t t e r n |
13 sqop . o idVar = qop . o idVar) . i nArc . s o u r c e))

Listing 5.2 shows the OCL expression for calculating the set of all super transitions. Thereby
the supertransitions of a certain transition are unified with their supertransitions (by means of a
recursive call).

Listing 5.2: Derived Attribute to Calculate Transitive Closure of Transitions
1 c o n t e x t T r a n s i t i o n : d e f a l l S u p e r T r a n s i t i o n s : Set (T r a n s i t i o n)=
2 s e l f . s u p e r T r a n s i t i o n s −>a s S e t ()−> un ion (s e l f . s u p e r T r a n s i t i o n s −>
3 c o l l e c t (s | s . a l l S u p e r T r a n s i t i o n s)−> a s S e t ())

Non-Instantiability of Abstract Classes. Following the rules presented above it should be
forbidden that a concrete transition targets an abstract class. In this respect, an OCL invariant
first checks if the transition is abstract or not as can be seen in line 2 in Listing 5.3. If the
transition is concrete first all production ObjectPatterns are collected. For this, a derived
attribute getEffectiveProductionObjectPatterns (cf. line 1 in Listing 5.3) is pro-
vided which collects the set of production patterns, i.e., the patterns of the actual transitions and
all patterns of according super transitions which are not overridden. Please note that for this
task again a derived attribute getVars is defined which returns the set of the actuals variables
according to the type of the production patterns, e.g., oidVar in case of an ObjectPattern
or oidVar and valueIdVar in case of a ValuePattern. Then the according outgoing
arcs are selected and it is checked if all arcs target abstract classes (cf line 14 in Listing 5.3).

Listing 5.3: Invariant to Check Non-Instantiability of Abstract Classes
1 c o n t e x t T r a n s i t i o n inv g e t E f f e c t i v e P r o d u c t i o n O b j e c t P a t t e r n s : Set (P a t t e r n) =
2 s e l f . p r o d u c t i o n P a t t e r n s −>un ion (
3 −− s e l e c t query t o k e n s o f a l l s u p e r t r a n s i t i o n s
4 s e l f . a l l S u p e r T r a n s i t i o n s −> c o l l e c t (t : T r a n s i t i o n | t . p r o d u c t i o n O b j e c t P a t t e r n s)
5 −−s e l e c t non o v e r r i d d e n p a t t e r n s
6 −> c o l l e c t (g e t V a r s)−> e x c l u d e s (s e l f . p r o d u c t i o n P a t t e r n s . g e t V a r s))
7 −−
8 c o n t e x t T r a n s i t i o n inv N o A b s t r a c t T a r g e t C l a s s F o r C o n c r e t e R u l e :

109

5. RULE INHERITANCE IN TRANSFORMATION NETS

9 (not s e l f . a b s t r a c t) i m p l i e s −− i f t r a n s i t i o n i s c o n c r e t e
10 −− s e l e c t and c a s t o b j e c t p a t t e r n s
11 s e l f . g e t E f f e c t i v e P r o d u c t i o n P a t t e r n s () −− g e t a l l p a t t e r n s
12 −> c o l l e c t (o u t A r c s)−> f l a t t e n ()
13 −−check i f t h e t a r g e t c l a s s i s c o n c r e t e
14 −> f o r A l l (x : TPArc | not x . t a r g e t . a b s t r a c t)

Ambiguities in Rule Definitions. In order to check for ambiguous rule definitions, an
OCL invariant is provided that makes use of the derived operation isAmbiguous(), which is
called if a certain transitions exhibits more than one query object patterns and if more than one
subtransition exists, since only in this case ambiguities may arise (cf. Listing 5.4).

Listing 5.4: Invariant to Check Ambiguous Rule Definitions
1 c o n t e x t T r a n s i t i o n inv RuleAmbigui ty :
2 s e l f . a l l S u p e r T r a n s i t i o n s −> c o l l e c t (q u e r y O b j e c t P a t t e r n s)−> s i z e () > 1 and
3 s e l f . s u p e r T r a n s i t i o n −> c o l l e c t (s u b T r a n s i t i o n)−> s i z e () > 1 i m p l i e s
4 s e l f . i sAmbiguous ()

The derived operation isAmbiguous is implemented in Java since for this check a complex
data structure is needed. In the following, the basic idea of the derived property is described on
basis of the example presented in Fig. 5.8(a). In order to check the invariant, first the root of
the inheritance hierarchy in the transitions is searched, i.e., Rule1 in the exemplary realization
in Transformation Nets shown in Fig. 5.9(a). Next, the according source classes of the root
transition’s object patterns are collected, i.e., A and X in our example. Since type substitutability
should be considered, all subclasses are collected additionally, i.e., B and C for A and Y for X,
which are stored in an according matrix (cf. Fig. 5.9(b)). By building all potential combinations
of the input parameter, the most specific rule that is applicable has to be found, following the
argument subtype precedence principle presented in [1]. For example, Rule1 would be chosen
for instances of classes A and X, since objects required by the transition and the matched objects
are equally typed. If, for example, instance of classes C and Y are considered, Rule1 and

Source Transformation

A

a1 a2

Rule1

... Transformation Rules

ref

class1

class2

Rule1(A,X)
Rule2(B,X) extends Rule1
Rule3(A,Y) extends Rule1

B

b1

C

c1b2
Rule2 Rule3 A B C

Rule3(A,Y) extends Rule1

X

...
class1

...
class2 X Rule1 Rule2 Rule1

Y Rule3 Rule2/Rule3 Rule3
x1 x2

Y Rule3 Rule2/Rule3 Rule3

Y

y1 y2 y3y1 y2 y3

(a) Ambiguos Rules in Transformation Nets (b) Potential Matches

Figure 5.9: Transformation Example in Transformation Nets

110

5.3. Static Semantics

Rule3 would theoretically be applicable. Nevertheless, if no exact match is found (i.e., not all
parameters demanded are equally typed as the matched objects), the distance in the inheritance
hierarchy is calculated, i.e., since B is a direct subclass of A, the distance of B to A would be
1, whereas a direct subclass of B would have a distance of 2 to A and so on. When trying
to match Rule1, the distance of instances of classes C and Y is 2, whereas the distance of
Rule3 is only 1. Therefore, in this case Rule3 is preferred. However, if instances of classes
B and instance of classes Y should be matched, Rule1 and Rule2 exhibit both a distance of 1.
Thus, it is undecidable which transition to choose. In this case, the derived property returns
false which leads to a warning in the Transformation Net. In order to resolve this problem, the
transformation designer may either specify an according transition or he may make use of the
priority flag of the transitions (cf. attribute Transition.priority in Fig. 5.5, specifying
which transitions should be preferred, whereby a lower value indicates precedence.

It must be noted that considering the research field of multi-methods in object oriented pro-
gramming, there are approaches for explicit disambiguation (e.g., [2] proposes a minimal set
of method redefinitions necessary for disambiguation) which could be reused in transformation
languages. However, this is not the focus of this thesis.

Conflicts in Multiple Inheritance. Although both languages that support multiple in-
heritance (ETL and TGG) check the diamond problem statically, the only check is – as al-
ready mentioned – if there is a fork-join path in the inheritance hierarchy but not if contra-
dicting assignments are inherited via these different inheritance paths, i.e., no fine grained
checks are provided. In contrast to that, the OCL invariant specified for Transformation Nets
checks the diamond problem on this fine grained level. For this, it has nevertheless to be
checked if a diamond exists in the inheritance hierarchy in a first step. As shown in List-
ing 5.5 first the supertransitions are collected, once allowing duplicates (cf. derived attribute
allSuperTransitionsWithDuplicates – lines 1 to 3 in Listing 5.5), and once pro-
hibiting duplicates. If the size of these collections differs, this means that there exists a diamond,
i.e., at least one superclass may be reached by different paths in the inheritance hierarchy. A di-
amond does not necessarily lead to a conflict but if and only if transitions are found on the same
level in the inheritance hierarchy which target the same feature as depicted in Fig. 5.8(b). To
check this, all supertransitions which exhibit multiple inheritance (cf. line 9 in Listing 5.5) are
selected. From these transitions the according targets of the AttributePatterns, i.e., the
according attribute places, are selected twice, whereby once duplicate attributes are removed.
For this again a derived attribute productionAttributePatterns is specified, which
collects the according production attribute patterns. If the size of the collections differs, at least
two AttributePatterns target the same attribute which leads to an undecidable situation,
i.e., it is undetermined which transition may set the according attribute value. Therefore, the
invariant fails in this situation.

Analogously to the explicit disambiguation of ambiguous rule definitions, the transformation
designer could be supported by proposals which assignments must be overridden in rules in order
to achieve unambiguous assignment definitions.

Listing 5.5: Invariant to Check Diamond Problem
1 c o n t e x t T r a n s i t i o n : d e f a l l S u p e r T r a n s i t i o n s W i t h D u p l i c a t e s : Set (T r a n s i t i o n)=
2 s e l f . s u p e r T r a n s i t i o n s −>asBag ()−> un ion (s e l f . s u p e r T r a n s i t i o n s −>

111

5. RULE INHERITANCE IN TRANSFORMATION NETS

3 c o l l e c t (s | s . a l l S u p e r T r a n s i t i o n s W i t D u p l i c a t e s)−>asBag ())
4 −−−
5 c o n t e x t T r a n s i t i o n inv NoDiamond :
6 s e l f . a l l S u p e r T r a n s i t i o n s W i t h D u p l i c a t e s −>s i z e () >
7 s e l f . a l l S u p e r T r a n s i t i o n s −>s i z e () i m p l i e s
8 −−s e l e c t t r a n s i t i o n s w i t h m u l t i p l e i n h e r i t a n c e
9 not (s e l f . a l l S u p e r T r a n s i t i o n s −> s e l e c t (t : T r a n s i t i o n | t . s u b T r a n s i t i o n s −>s i z e () > 1)

10 −−c o l l e c t a l l t a r g e t a t t r i b u t e s o f p r o d u c t i o n a t t r i b u t e p a t t e r n s
11 −> f o r A l l (y : T r a n s i t i o n | y . s u b T r a n s i t i o n −> c o l l e c t (p r o d u c t i o n A t t r i b u t e P a t t e r n s)
12 −> c o l l e c t (o u t A r c s)−> c o l l e c t (t a r g e t)−> s i z e () >
13 −−aga in c o l l e c t t h e t a r g e t a t t r i b u t e s o f t h e p a t t e r n s b u t remove d u p l i c a t e s
14 y . s u b T r a n s i t i o n −> c o l l e c t (p r o d u c t i o n A t t r i b u t e P a t t e r n s)
15 −> c o l l e c t (o u t A r c s)−> c o l l e c t (t a r g e t)−> a s S e t ()−> s i z e ())

Table 5.2 summarizes the comparison of static semantics in current transformation languages
as well as in Transformation Nets.

Table 5.2: Comparison of Static Semantics with respect to Inheritance
Verification

Target
Fault Values ATL ETL TGGs TN

N i t [C il Ti | N E (i lid

Input
Elements

Non‐co‐variant
Type Change

[Compile‐Time|
Run‐Time|No] Error

Run‐Time Error
No Error (invalid
target model)

Compile‐Time Error Compile‐Time Error

Restriction in
N b

[Compile‐Time|
R Ti |N] E

Run‐Time Error
(l ith t i)

n.a. (cf. syntax) Compile‐Time Error
n.a. (base types need

t b ifi d)Number Run‐Time|No] Error (also with extension)
(y) p

not be respecified)

Output

Non‐co‐variant
Type Change

[Compile‐Time|
Run‐Time|No] Error

Run‐Time Error
No Error (invalid
target model)

Compile‐Time Error Compile‐Time Error

Output
Elements Restriction in

Number
[Compile‐Time|

Run‐Time|No] Error

n.a. (output elements
are still produced even
if not specified again)

Run‐Time Error
Compile‐Time Error
(except of output to
input modification)

n.a. (output elements
are still produced even
if not specified again)

Abstract
Target
Classes

Concrete Rules
for Abstract
Target Classes

[Compile‐Time|
Run‐Time|No] Error

Run‐Time Error Run‐Time Error
Run‐Time Error
(application fails)

Compile‐Time Error

Rule
Ambiguity

[Compile‐Time|
Run‐Time|No] Error

No Error (first matching
rule in file wins)

n.a. (cf. syntax) Run‐Time Error
Warning at Compile‐
Time (Transition with
lowest priority wins)

Diamond
Problem

[Compile‐Time|
Run‐Time|No] Error

n.a. (cf. syntax) Compile‐Time Error Compile‐Time Error
Warning at Compile‐

Time

5.4 Dynamic Semantics

After discussing the static semantics the focus is shifted to the dynamic semantics, i.e., how
transformation specifications may be interpreted at run-time. In this context, two main

aspects are investigated: (i) which rules apply to which instances, i.e., dispatch semantics and
(ii) how a set of inheriting rules gets executed, i.e., execution semantics.

Dispatch Semantics. In order to execute transformation specifications, it must be deter-
mined which rules apply to which instances, i.e., transformation rules must be dispatched for
source model instances. In [38], potential strategies and scheduling variations of rules were
discussed, but without any focus on inheritance. Thus, literature on dispatching rule in model
transformation does not indicate whether type substitutability should be considered. This princi-
ple is well-known in object-oriented programming and states that, if S is a subtype of T , objects
of type T may be safely replaced by objects of type S [99]. Type substitutability for transfor-
mation rules would mean that if a rule may be applied to all instances of class T , then this rule
may also be applied to all instances of all subclasses of T . Consequently, if no specific subrule

112

5.4. Dynamic Semantics

is defined for instances of a subclass, then these instances of the subclass may be transformed
by the rule defined for the superclass.

Concerning the evaluation of the condition, two main strategies may be followed during
dispatching. First, the condition may be considered as part of the matching process, i.e., if the
condition fails, the rule is not applicable, but a superrule might be applied (rule applicability
semantics). Second, the condition is not considered in the matching process, i.e., matching takes
place on the specified types of the input elements only and thus, those elements, which do not
fulfill the condition, are filtered, but never matched by a superrule anymore (filter semantics).

Execution Semantics. After having determined which rules are applicable to which source
model instances, the question arises how a set of inheriting rules is executed. A first distin-
guishing criterion is whether the concept of inheritance is directly supported by the execution
engine or whether the inheritance hierarchy is first flattened to ordinary transformation code in
a pre-processing step. Independent of whether the inheritance hierarchy is flattened or not, var-
ious strategies may be applied to evaluate conditions and to execute assignments. This raises
questions such as “Are conditions of a superrule also evaluated?” and “Are the assignments of
a superrule executed before the assignments of a subrule”. Hence, the main characteristics of
executing methods in an inheritance hierarchy in object-oriented programming [148] are inves-
tigated: (i) the completion of the message lookup, i.e., whether only the first matching method
is executed (asymmetric) or all matching methods along the inheritance hierarchy are executed
(composing), and (ii) the direction of the message lookup, i.e., whether a method lookup starts
in the subclass (descendant-driven) or in the superclass (parent-driven).

5.4.1 Comparison of Dynamic Semantics of Existing Languages

In order to compare the dynamic semantics, dispatch and execution semantics are investigated
(cf. Table 5.3). Considering dispatch semantics, one may see that the output models produced
by ATL and TGGs (Fig. 5.3(a) and (c)) include only two Table instances, since only Class
c2 and c3 fulfill the specified condition in the subrule. As ATL and TGGs support type sub-
stitutability and rule applicability semantics for conditions, instance c1 is matched by the more
general superrule MElement2MElement, and therefore creates the target ModelElement
c1. Due to type substitutability, the indirect instance p1 is matched by the superrule, and
therefore the target ModelElement p1 is created. In contrast, ETL does not support type sub-
stitutability by default. Thus, although the specifications in ETL and ATL are syntactically very
similar, the produced target models differ. ETL’s target model contains only the two Table
instances c2 and c3, produced by the rule Class2Table. The dispatch semantics may be
modified by annotating rules with @greedy in ETL. This means that such rules also match
indirect instances, but the interpretation is different than in ATL and TGGs, since the superrule
still regards all instances irrespective of whether the instances have already been matched by
subrules or not. Adding the @greedy annotation to the rule MElement2MElement in our
example would therefore create six instances in total: four SchemaElement c1, c2, c3,
p1 instances produced by the superrule MElem2MElement, and two Table instances c2 and
c3 produced by the subrule Class2Table. Even if type substitutability is enabled in ETL, the
result of the condition evaluation does not influence the dispatch semantics because the super-

113

5. RULE INHERITANCE IN TRANSFORMATION NETS

rule always matches all direct and indirect instances, disregarding specialized subrules. Thus,
the condition semantics is evaluated as not applicable in ETL.

Regarding inheritance support within the execution engine, in ATL inherited rules are flat-
tened during compilation and may thus use optimization strategies, i.e., the ATL compiler inlines
the assignments of a superrule. In contrast, ETL supports inheritance within the execution en-
gine, which reduces the amount of code generated. In TGGs, this criterion is not applicable,
since an inheriting TGG rule contains a copy of the superrules, which causes code duplica-
tion. Concerning the evaluation of conditions, all compared transformation languages exhibit
a composing completion of the lookup, i.e., an instance processed by a subrule must fulfill all
the specified conditions up the inheritance hierarchy (i.e., and conjunction). The actual evalu-
ation is parent-driven in ATL and descendent-driven in ETL but non-applicable in TGGs, since
a subrule lists all its inherited conditions. All approaches execute all assignments along the in-
heritance hierarchy (i.e., composing completion of the lookup). Finally, the direction of lookup
in assignments occurs descendent-driven in ATL and parent-driven in ETL. Thus, in ATL (i)
the assignments of the superrule, which are not overridden, (ii) the overridden assignments, and
(iii) new assignments specified in the subrule are executed realizing the optimization strategy. In
contrast, in ETL, (i) the assignments of the superrule and (ii) the assignments of the subrule are
executed. In TGGs this is again not applicable. More specifically, TGGs enforce composition
already in the syntax, which causes code duplication.

In summary, the main difference in terms of dynamic semantics lies in the application of type
substitutability, which is user-defineable in ETL, but interpreted in a different way than in ATL
and TGGs. ETL has the disadvantage that several target instances for a single source instance
are created when a superrule is annotated with @greedy. Moreover, all of the transformation
languages implement a composing behavior for conditions and assignments. Thus, the lookup
direction does not influence the result of the transformation.

5.4.2 Dynamic Semantics in Transformation Nets

As the example in Fig. 5.3 reveals, similar syntax (cf. ATL and ETL) does not necessarily
lead to the same results, which implies different dynamic semantics. This is undesirable, since
the dynamic semantics is not made explicit by any syntactical elements to the transformation
designer. Thus, the transformation designer must know the design decisions taken in each trans-
formation language in order to obtain the desired result. The current situation concerning rule
inheritance is comparable to the situation in the early stages of object-oriented programming,
where no common agreements on the dynamic semantics of inheritance had been reached. This
emphasizes the need to consider rule inheritance in the runtime model in order to make the taken
design decisions explicit. Furthermore, since different dynamic semantics are supported by the
compared languages, Transformation Nets should allow to alter the dynamic semantics.

Considering dispatch semantics, Transformation Nets employ per default type substitutabil-
ity, similar to ATL and TGGs. Nevertheless, in order to also support transformation languages
that do not make use of type substitutability, the transformation designer might change this be-
havior by setting the boolean flag Transition.includeSubtypes (cf. Fig. 5.5) to false.
If the flag is set to false, then a behavior equal to ETL (without the @greedy annotation) results,

114

5.4. Dynamic Semantics

i.e., only direct instances are transformed but not indirect instances2. Since those approaches that
support type substitutability all exhibit a rule application semantics of conditions, Transforma-
tion Nets do so as well. Therefore, the example depicted in Fig. 5.6 exhibits the same target
model as ATL and TGG did (cf. Fig. 5.3), i.e., the persistent classes c2 and c3 may be trans-
formed by the transition Class2Table and thus, only two target elements are typed to Table
whereas the remaining elements are transformed by the base rule MElement2SElement and
are therefore typed to SchemaElement only (cf. Fig. 5.6).

Regarding execution semantics, the inheritance support is flattened during compilation since
the underlying CPNs do not provide any means to deal with inheritance. Concerning the eval-
uation of conditions, Transformation Nets exhibit a composing behavior. In this respect, all
conditions along the inheritance hierarchy must be fulfilled since they are concatenated by a
logical and. The actual evaluation thereof is done in descendent-driven manner since first the
condition of the subrule is evaluated before the conditions of superrules are evaluated. Concern-
ing assignments, Transformation Nets follow a composing strategy as all other approaches do.
Depending on the actual refinement mode, different strategies are used. If the refinement mode
override is selected, the assignments of superrules which are not overridden in a subrule
are considered together with the overridden and newly added assignments of a subrule, equal
to ATL (cf. Table 5.3). If the mode extend is selected, the strategy is the other way round,
i.e., overridden assignments are not considered, but only the newly added assignments together
with those of the superrules are considered. Furthermore, this leads to a further static constraint
which raises an error in case a subtransition overrides a pattern of the supertransition. Finally, if
the refinement mode inherit is selected, the assignments of the overridden pattern are copied
to the overriding pattern of the subtransition and are executed together with the assignments of
overriding pattern. When having a look at the direction of lookup for assignments this crite-
ria is not applicable since all the assignments are aggregated during compilation and thus, it is
undecidable which assignments are executed first.

Table 5.3: Comparison of Dynamic Semantics of Inheritance
C it i S b it i V l ATLCriterion Subcriterion Values ATL

Dispatch semantics

Type
Substitutability

Yes | No Yes

Condition
Semantics

Filter |
Rule Applicability

Rule
Applicabilit

Inheritance
Support

‐
Flattened |

Direct engine support
Flattened

io
n
Se
m
an
tic
s

Condition

Completion of
lookup

Asymmetric |
Composing

Composin

Direction of
lookup

Parent‐driven |
Descendent‐driven

Parent‐drive

Ex
ec
ut
i

Assignments

Completion of
lookup

Asymmetric |
Composing

Optimized
Composin

Direction of
lookup

Parent‐driven |
Descendent‐driven

Descenden
drivenp

ETL TGG TNETL TGGs TN

User‐
Definable
(default no)

Yes
User‐Definable
(default yes)

ty
n.a. Rule Applicability Rule Applicability

d
Direct engine

support
n.a. (since flattened
in patterns already)

Flattened

g Composing
Composing
(by copy)

Composing

en
Descendent‐

driven
n.a. Descendent‐driven

d
g

Composing
Composing
(by copy)

Optimized
Composing

nt‐ Parent‐
driven

n.a.
n.a. (aggregated

during compilation)g p)

2The dynamic semantics of ETL’s @greedy is not explicitly considered, but could be simulated by independent
transitions which do not inherit from each other. Thereby, the transition that represents the transition for the according
ETL subrule has to incorporate the assignments of the superrule.

115

5. RULE INHERITANCE IN TRANSFORMATION NETS

5.5 Summary

I
n summary, this chapter has presented different inheritance concepts between transforma-
tion rules. Thereby, three different dimensions have been considered, being (i) syntactic as-

pects, i.e., which language constructs are needed to express inheritance between transformation
rules, (ii) static semantics, i.e., whether a set of inheriting transformation rules is well-formed
at compile-time and (iii) dynamic semantics, i.e., how inheriting rules interact at run-time. To
identify the concepts that should be represented by Transformation Nets, current transformation
languages supporting rule inheritance were analyzed. Based on these findings, the realization of
rule inheritance in Transformation Nets was discussed. Although rule inheritance is only consid-
ered by a few declarative model-to-model transformation languages (ATL, ETL, and TGGs) the
inclusion of inheritance concepts into the runtime model (i) broadens the scope of applicability
of the runtime model and (ii) reveals differences in the semantics of current languages, which
are not obvious at first sight.

The previous two chapters introduced the concepts considered by Transformation Nets. Fur-
thermore, it was stated that Transformation Nets represent a DSL on top of CPNs, hiding the
actual details thereof from the transformation designer. Nevertheless, in order to make use of
efficient execution engines available for CPNs and their formal execution semantics as well as
their properties, Transformation Nets may fully be compiled into standard CPNs, which is pre-
sented the following chapter.

116

Chapter 6

Colored Petri Nets as Semantic
Domain for Transformation Nets

Mathematics is the language in which
God has written the universe.

— Galileo Galilei

Contents
6.1 Introduction to Petri Nets and Colored Petri Nets 118
6.2 Compilation of Static Parts of Transformation Nets 123
6.3 Compilation of Dynamic Parts of Transformation Nets 127
6.4 Compilation of Inheritance in Transformation Nets 139
6.5 Compilation of Modules . 145
6.6 Summary . 149

The previous chapter introduced the concepts of Transformation Nets. The focus was rather
on the syntactic concepts provided, but their actual semantics was only informally pre-

sented. To define the meaning of the syntactical concepts, a mapping to a semantic domain is
required following the authors of [63] who state that “any language definition must consist of
the syntax, the semantic domain and a semantic mapping from the syntactic concepts to the se-
mantic domain”. Consequently, a semantic domain must provide means to make the semantics
of the syntactic constructs explicit. Since Transformation Nets represent a DSL on top of CPNs,
this chapter presents how CPNs may be used as a semantic domain for Transformation Nets.
Thereby, (i) the basics of Petri Nets are introduced by explaining the core concepts, which form
the basis for higher-level Petri Nets such as CPNs. The concepts are first introduced informally
and second, the formal definition is provided. After that, (ii) the concepts of Transformation

117

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Nets are formalized as well, in order to show that these concepts may be expressed by means
of CPN concepts. This formalization builds the basis for (iii) the compilation of Transforma-
tion Nets into CPNs, whereby first the compilation of places and tokens, i.e., the static parts
of Transformation Nets, and second, the compilation of transitions, patterns and conditions is
shown. Finally, (iv) the compilation of rule inheritance and modules is discussed.

6.1 Introduction to Petri Nets and Colored Petri Nets

I
n general, Petri Nets and CPNs provide formal means to model, execute and analyze systems
[72,118]. The concepts of CPNs provide the semantic domain for the specified Transformation

Net DSL, i.e., the concepts of Transformation Nets may be compiled into concepts of CPNs.
Basically, Petri Nets and CPNs exhibit the following characteristics [124], which make them
favorable as a semantic domain:

• Concise Set of Language Elements. Petri Nets in its simplest form consist of places,
transitions and tokens, only. By means of simple rules, transitions may fire and thus
stream tokens from one place to another. In this respect, since it is possible to represent
metamodels as places, the transformation logic as transitions and the models as tokens.
The actual transformation logic may be followed in a process-oriented manner. In general
the formalism is easy to understand, thus fostering understandability of model transfor-
mations.

• Formal Basis. The formal mathematical basis of Petri Nets allows to calculate properties
which may be used to verify Petri Nets. Since Transformation Nets base on CPNs these
properties may be applied in the domain of model transformations as well in order to verify
a transformation specification, i.e., it might be checked if the specified transformation
terminates or if it is confluent (cf. Section 7.4).

• Generality. Petri Nets may be used to model a broad variety of systems, especially, to
model parallel systems [124]. Since many transformation languages do not specify a
certain order concerning transformation rules, i.e., it may be undefined which rule might
fire first, Petri Nets could make these parallelism explicit. Furthermore, the concepts
build the basis for several different modeling languages such as UML Activity Diagrams.
Therefore, Petri Nets are well-known in the domain of software engineering.

• Graphical Syntax. The graphical representation allows a comprehensible visualization
of static and dynamic aspects of the modeled systems. Nevertheless, the specification of
complex inscription expressions in high-level Petri Nets, typically in a language a transfor-
mation designer is not familiar with, makes the syntax unsuitable for direct use to specify
model transformations. Therefore, Transformation Nets introduced a DSL on top of Petri
Nets, aligning the Petri Net syntax to the domain of model transformations.

• Tool Support. There are sound tools available to specify, execute and verify Petri Nets,
building the basis for the prototype presented in Chapter 8.

118

6.1. Introduction to Petri Nets and Colored Petri Nets

In order to introduce the concepts of Petri Nets, first the basics of Petri Nets are discussed.
Afterwards Colored Petri Nets are presented, which extend the basic concepts of Petri Nets, in
order to establish a common understanding of the underlying principles.

6.1.1 Petri Nets in a Nutshell

Petri Nets describe a bipartite, directed graph. Places, represented as ovals, and Transitions,
represented as rectangles, form the nodes and Arcs form the edges (cf. Fig. 6.1(a)) of the graph.
Arcs always connect a place and a transition, but never two places or two transitions. The places
from which arcs originate are called input places of a transition whereas places in which arcs
from a transition end are called output places of a transition. Places contain tokens whereby
the accumulation of all tokens in all the places is called marking. The initial marking thereby
denotes the initial token arrangement. Tokens may enable transitions if all input places of a
transition contain at least the number of tokens as required by the weights on the according arcs
and if the capacity of the target places are not exceeded after firing. If a transition is enabled, it
is allowed to fire. If a transition fires, it consumes the tokens of the input places and produces
tokens in the output places (cf. Fig. 6.1(a)).

p1 TransitionInitial
Weight p1

Output Place

p3
Place

Marking 2

p3

2

p2

p3t1
Arc

Token 5
Capacity p2

p3t1 5
Input Place

(a) Place‐Transition Petri Net initial situation (b) Place‐Transition Petri Net after firing() () g

Figure 6.1: Simple Place-Transition Petri Net

Formal Definition of Static Parts. To be more formal the definitions will be precised,
thereby resembling the definitions in [124]. A Petri Net Graph may be described as a 3-tuple
(P, T,A), where P is a finite set of places and T is a finite set of transitions. P and T are disjoint
subsets (P ∩ T = ∅) meaning that no element may be both, a place and a transition. The set of
arcsA is the cross product of places P and transitions T and vice versa, i.e.,A ⊆ P×T ∪T×P .
Furthermore, places may contain so-called tokens. Thereby, a marking is a function M that
assigns a number of tokens to each place, i.e., M : P → N. Please note that in the simplest
form of Petri Nets, so-called Condition-Event-Nets (CEN), places are only allowed to contain
either exactly one or zero tokens. In addition, Place-Transition-Nets (PTN), which are seen as a
synonym to the general term Petri-Net, allow to assign a capacity C to places, i.e., C : P → N∞
and a weight W to arcs, i.e., W : A→ N. An unbounded capacity∞ is the default, in case that
no capacity is given for places and a weight of one is the default for arcs. Thus, a CEN may be
seen as a PTN with a constant capacity and weight of one, i.e., C = 1,W = 1. Consequently,

119

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

a Petri Net Graph (P, T,A) is extended to a 6-tuple (P, T,A,C,W,M) whereby the initial
number of tokens has to be less or equal to the allowed capacity, i.e., ∀p ∈ P : M(p) ≤ C(p).

Formal Definition of Dynamic Parts. The task of a transition is then to consume to-
kens from the input places and produce tokens in the output places. Thus, firing a transition
t in a marking M consumes W (A(p, t)) tokens from each of its input places p, and produces
W (A(t, p)) tokens in each of its output places p. To allow a transition to fire, it is required that all
input places contain the necessary amount of tokens for consumption, i.e., a transition is enabled
if ∀p ∈ A(p, t) : M(p) ≥W (A(p, t)). Furthermore, it has to be ensured that the allowed capac-
ity of target places is not exceeded after firing, i.e., ∀p ∈ A(t, p) : W (A(t, p)) +M(p) ≤ C(p).
The firing of a transition changes the marking of the Petri Net in a way that the tokens of the ac-
cording input places are deleted and the produced tokens are added to the marking of the output
places, as can be seen in Fig. 6.1(b). Formally noted, firing a transition t ∈ T changes a marking
M1 : P → N to marking M2 : P → N in a way that M2 = M1 −M_ +M+ whereby

M_(p) =

{
W (A(p, t)), p ∈ A(p, t),

0, else.
M+(p) =

{
W (A(t, p)), p ∈ A(t, p),

0, else.

Please note that in a Petri Net several transitions may be enabled at the same time, and if so,
one transition may fire in a non-deterministic way. This is the main reason why Petri Nets are
especially suited to model concurrent systems.

6.1.2 Colored Petri Nets in a Nutshell

Since CENs act primarily as theoretical models, many extensions have been proposed to make
Petri Nets more flexible and applicable for practical use [72, p. 4]. These types of Petri Nets
are often called High-Level Petri Nets and combine the functionality of Petri Nets with the
functionality of programming languages. One prominent representant of High-Level Petri Nets
are Colored Petri Nets (CPNs) [72]. The main idea of CPNs is to allow to attach data values
to tokens, also called token color, in order to distinguish between different tokens. Every place
is typed to a so-called color-set (data type) which determines the valid set of token colors (data
values) (cf. Fig. 6.2(a)). To define color-sets, a so-called inscription language is provided, e.g.,
CPN ML1, in case of the most prominent tool called CPN Tools2. CPN ML thereby bases on
the functional programming language Standard ML [106, 154].

To extend the previous example from a standard Petri Net to a CPN, each place demands
a color-set, e.g., the color-set INT in Fig. 6.2(a) and (b), meaning that tokens residing in these
places require an integer value as their token color. To specify the initial marking an according
inscription is required, e.g., in the example one token with the value 4 exists in the place p1 and
two tokens with value 4, one token with the value 5 and three tokens with value 6 exist in the
place p2. The number of tokens is denoted by x̀ token, whereby x denotes the number of equal
tokens. Furthermore, a marking of a place is a multiset, whereby each different set of tokens is
delimited by ++. As can be seen in this example, markings are defined as multisets, i.e., several
tokens with the same color (value) are allowed. In order to query or produce tokens, CPNs allow

1http://www.daimi.au.dk/designCPN/man/Reference/Reference.Main3.CPN.ML.pdf
2http://cpntools.org

120

6.1. Introduction to Petri Nets and Colored Petri Nets

for variables (with optional capacity), or even functions on arcs (cf. i+k on arc from transition
t1 to place p3 in Fig. 6.2(b)). The color-sets of the variables have to be equal to the color-sets
of the according input or output place (cf. Fig. 6.2(a)). A transition is enabled, if every variable
on arcs from an input place to a transition may be bound to an according token. Furthermore,
transitions may specify a guard condition which needs to be fulfilled to enable a transition, i.e.,
the transition t1 is only enabled if the variable i may be bound to a token whose value is greater
than 3 in Fig. 6.2.

1`4 VariableColor‐set
definition

Inscription

p1

p3t1

Token

Initialcolset INT = int; INT

1`i
i + k

1 4 Variabledefinition

p1 1`i
i k

1`9

(with funtion)

p2

p3t1Initial
Marking

colset INT int;
var i, k : INT;

INT
k

INT
2`4 ++

[i>3][i>3]
Variable

p3t1INT
k

i + k

INT2`4 ++
3`6 [i>3][i>3]p2

INT

2`4 ++
1`5 ++
3`6

Guard Color‐set
Variable
definition p2

INT

INT3`6 [i>3][i>3]

(b) CPN initial situation (c) CPN after firing(a) CPN definitions

Figure 6.2: Simple Colored Petri Net

Formal Definition of Static Parts. In a formal manner, according to [72, p. 87], the struc-
ture of a CPN is defined as a nine-tuple CPN = (P, T,A,Σ, V, C,G,E, I). P , T and A follow
the same definitions as described above. Σ denotes a finite set of non-empty color-sets, i.e., the
color-sets which are defined in a certain CPN, e.g., INT in our example. V is a finite set of
typed variables such that Type[υ] ∈ Σ for all variables υ ∈ V , i.e., every variable v needs to be
typed to a defined color-set, e.g., i and k which are typed to the color-set INT in the example.
C : P → Σ is a color set function that assigns a color set to each place, i.e., in the example in
Fig. 6.2 C assigns the color-set INT to each place. G : T → Exprv is a guard function that
assigns a guard to each transition t such that Type[G(t)] = Bool, i.e., transitions may exhibit a
boolean condition. E : A→ Exprv is an arc expression function that assigns an arc expression
to each arc a such that Type[E(a)] = C(p)MS , where p is the place connected to the arc a,
i.e., the color-sets of the arc expression have to be equal to the color-set of the according place.
I : P → Expr∅ is an initialization function that assigns an initialization expression to each place
p such that Type[I(p)] = C(p)MS , i.e., a function to establish the initial marking of a CPN.

After explaining the structure of CPNs, in the following the matching and firing semantics
of transitions in CPNs are described shortly, first informally by means of an example, followed
by the formal definition thereof. The transition t1 in Fig. 6.2(b) is enabled since there are valid
bindings available that fulfill the guard. A binding denotes which value (token) is bound to
which variable, i.e., in the example the variable i may only be bound to the value 4 of place p1.
In contrast, the variable k may either be bound to the value 4, 5, or 6. Thus, there are several
valid bindings available and one of them is chosen in a non-deterministic way, e.g., i has been
bound to 4 and k has been bound to 5 in the example in Fig. 6.2(c), resulting in a target token
with the value 9, since the outgoing arc of transition t1 exhibits a simple function adding the
two values.

121

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Formal Definition of Dynamic Parts. The firing semantics of CPNs is formally defined
in [72, p. 89]. Variables of a transition t are denoted by V ar(t) ⊆ V which might appear in
guards and in arc expressions of arcs connected to t, e.g., for the above example V ar(t1) is
defined as {i, k}. Furthermore, a binding of a transition t is a function b that maps each variable
v ∈ V ar(t) into a value b(v) ∈ Type[v]. The set of all bindings for a transition t is then denoted
by B(t). In order to check if a binding enables a transition, the notion of binding elements is
defined as a pair (t, b) such that t ∈ T and b ∈ B(t). To check enabling of a transition, first the
guard has to evaluate to true for a binding element, denoted as G(t)〈b〉 = true. Second, all
arc expressions on arcs to a transition t need to be fulfilled, i.e., ∀p ∈ P : E(p, t)〈b〉 �= M(p).
Thereby, the evaluation of E(p, t) in the binding b specifies the multiset of tokens a transition t
removes from a place p, which must be smaller or equal to the actual marking M of the place p.

6.1.3 Petri Net Markup Language

As may be seen by the previous discussion, various different types of Petri Nets are available.
In order to allow interchange between different types of Petri Nets and their different tools used
to model them, the Petri Net Markup Language (PNML) has been proposed as an XML-based
interchange format for Petri Nets [161]. In this respect, the PNML is comparable to the role of
metamodels in MDE. Since the PNML is used as a target metamodel for the compilation from
Transformation Nets to CPNs, the most important parts are shortly explained in the following.
In a first step, the common core concepts of Petri Nets are considered as can be seen in Fig. 6.3.

In PNML, a PetriNetFile forms the root container, which represents a file that might
contain several PetriNets. Furthermore, each PetriNet consists of Objects, which ba-
sically model the graph structure of a Petri Net. Consequently, an object is either a Place,
a Transition or an Arc (cf. according subclasses of Object). For modularization of
Petri Nets, Pages, RefPlaces and RefTransitions are provided. Pages form sub-

PetriNetFile

0..*
nets

0 *toolinfoPetriNet
id: String
type: String

0 *
objects

Toolinfo
tool: String
version: String

0..*toolinfo

0..* toolinfo

toolinfo

0..*

0 *

Object
id: String
graphics: String

0..

Label
name: String
value: String

toolinfo

0..*

label

0..*objects

0..*

Attribute Annotation
graphics: String

NodePage Arc
source1..1

target1..1

0..*
Place RefPlace RefTransition Transition

RefNode

ref
0..*

ref

Figure 6.3: Core of Petri Net Markup Language [161]

122

6.2. Compilation of Static Parts of Transformation Nets

nets since they are allowed to consist of further objects – even nested pages are allowed. In
order to connect Petri Net Nodes on different pages, so-called ReferenceNodes are pro-
vided, i.e., a reference node may refer to any node of the Petri Net irrespective of the actual
page. Labels are used to add further meaning to objects, ranging from the name to an initial
marking or an arc inscription or even the definition of guards or functions in higher-level nets.
Thereby, Annotations represent an infinite range of legal values, i.e., textual information as
names or initial markings, whereas Attributes are restricted to a finite set of values (i.e.,
enumerations), typically influencing the graphical layout, i.e., an arc type read might result in
a bidirectional arc. In order to store layout information, Objects and Annotations provide
the attribute graphics. Finally, the class ToolInfo allows to store tool specific information.
For further details, the reader is referred to [161].

In order to allow representing the concepts of high-level Petri Nets, e.g., CPNs as presented
in Subsection 6.1.2, PNML allows to define so-called Petri Net types, which add definitions of
labels or objects that are specific to a certain kind of Petri Nets. Such a Petri Net type for CPNs
has been defined in [164], where e.g., specific labels are added to represent a marking of a place
(e.g., HLMarking) or annotations (e.g., the class Sort to represent color-sets). The CPN-
specific PNML metamodel is part of the ASAP framework [163] and is exactly the one used in
the following to explain the compilation of Transformation Nets to CPNs. This metamodel as-
sumes CPN ML as inscription language, which is used in the following as according inscription
language as well.

6.2 Compilation of Static Parts of Transformation Nets

I
n a first step, the compilation of the static parts of Transformation Nets, i.e., places and tokens,
is explained. Since the previous chapter introduced the static concepts of Transformation Nets

in an informal manner only, the concepts of Transformation Nets are furthermore formalized in
order to set the basis for the translation of Transformation Net concepts to equivalent concepts
in standard Colored Petri Nets. Finally, the actual compilation is shown in detail.

6.2.1 Formalization of Static Parts of Transformation Nets

The static parts of Transformation Nets may be formally defined as a 5-tuple StaticTNParts =
(P,ΣP , C,ΣI , I), following the principles of standard CPNs. In this respect P denotes a finite
set of TNPlaces. ΣP is a finite set of predefined data types, i.e., ΣP = {Class,Attribute,
Reference, TraceP lace}. C : P → ΣP is a data type function that assigns a data type to each
place. This means that every place has to be typed to either Class, Attribute, Reference
or TracePlace in Transformation Nets. ΣI is a finite set of predefined token types, i.e.,
ΣI = {Object, V alue, Link, Trace}. Finally, I is an initialization function that assigns a
token t to a place p such that

123

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Type[I(t)] =


Object, if Type[p] = Class
Value, if Type[p] = Attribute
Link, if Type[p] = Reference
Trace, if Type[p] = TracePlace

As may be seen from these definitions, the static parts of Transformation Nets correspond to
the according definitions in CPNs. Since Transformation Nets provide a DSL on top of CPNs,
complexities are hidden. This is achieved by restricting the set Σ of CPNs to a fixed, predefined
set of datatypes in Transformation Nets, denoted by ΣP . This simplification also leads to a
simplification concerning tokens. Since tokens (data values) have to conform to their color-
set (data types) of places, the set of valid tokens may also be restricted to these four different
types (cf. ΣI). In the following, it is shown that the static parts of Transformation Nets may be
compiled to according concepts of CPNs.

6.2.2 Compilation of Metamodels and Models

In order to compile Transformation Net places to according places in CPNs, first color-sets
need to be defined. Since the possible types of places in Transformation Nets are limited to
exactly four, according color-set definitions expressed in terms of CPN ML may be automatically
generated. Therefore, the following definitions result:

colset Class = record oid: STRING * t: STRING;

colset Attribute = record obj: Class * vid: STRING * v: STRING;

colset Reference = record source: Class * target: Class;

colset SourceCtx = list Class;

colset TracePlace = record source: SourceCtx * target: Class;

The definition of color sets is aligned to the metamodel of Transformation Nets. The color-
set Class defines a record, which consists of an oid component to identify according objects
as well as the component t to store the type of the according object. The color-set Attribute
again defines a record which consists of a component obj which identifies the object the ac-
cording value belongs to. In order to store the actual value, again a unique id is derived for every
value (cf. component vid) and the actual value is stored as string in the component v of the
record. This means that if the actual value needs to be accessed (in a condition or function),
according casts are required, e.g., the string “1” may be casted to an integer value 1 by the func-
tion valOf(Integer.fromString()). Alternatively, it would have been also possible to
specify a specific Attribute colorset for every primitive datatype. This was omitted in order
to keep the actual transformation logic specified independent of the concrete datatype, e.g., in
case of modules, according AttributePorts can be bound to any attribute, only the arc in-
scriptions need to be accordingly updated (cf. below). The record for the color-set Reference
consists of a source and a target component which refer to the source and target objects of

124

6.2. Compilation of Static Parts of Transformation Nets

a link3. The definition of the color-set TraceP lace first requires the definition of the color-set
SourceCtx as a list of Class. This list is used in the record definition of TraceP lace to store
which source objects have been used (cf. component source of record) for the production of an
object (cf. component target of the record).

After defining the required color-sets, places in Transformation Nets may be compiled to
according CPN places, i.e., places derived from the source and target metamodel as well as trace
and intermediate places have to be translated into according places in CPNs. By this, every
instance of a TNPlace in Transformation Nets is compiled into a Place instance in PNML (cf.
corresponding numbers in Fig. 6.4). Additionally, in order to assign a name to the place, the
value of the attribute TNPlace.name is compiled into an according Name instance, having
the attribute Name.text set to the value of the attribute TNPlace.name. As an example,
the Transformation Net places named Package, classes, Class and isPersistent in
Fig. 6.4 (a) (concrete syntax) and (b) (abstract syntax), are compiled into according Place and
Name instances (cf. Fig. 6.4(c) and (d)). Finally, based on the actual type of a TNPlace, i.e.,
either Class, Attribute, Reference or TracePlace, the color-set of the place in CPNs
has to be derived. The PNML metamodel represents color-sets by means of instances of the class
Sort whose attribute Sort.text must be equal to a defined color-set. For example, if a place
of type Class in Transformation Net is compiled to CPNs, a Sort instance is produced whose
attribute Sort.text is set to “Class”, which corresponds to the name of the above defined
color-set (cf. Fig. 6.4).

After the compilation of places, the contained tokens have to be translated into according
tokens in CPNs. The Transformation Net DSL hides the complex specification of tokens in CPNs
by means of CPN ML inscriptions. In Transformation Nets a predefined set of tokens exists, i.e.,

3Source and target are typed to class in order to explicate that references are between classes although for the
implementation the according ids would suffice. The same is ture for the definitions of the Attribute and TracePlace
color sets.

Package c1:Class11

p1:Placename

n1:Name

1

s1:Sort

sort

Package

1
Package c1:Class

name= ‘Package‘
isAbstract=false

source

r1:Reference

1

2

1

2

text=‘Package‘

2

text=‘Class‘

p2:Placename

n2:Name

2

s2:Sort

sort

Class

Package

classes

classes

Class

name= ‘classes‘
ordered=false
lowerBound=1
upperBound=‐1
containment=false

3

2

3

n2:Name
text=‘classes‘

s2:Sort
text=‘Reference‘

p3:Placename

3 N

3

3 S t

sort

Reference

Class

1..*

isPersistent: Bool c2:Class
name=‘Class‘
isAbstract=false

a1:Attribute
name= ‘isPersistent‘
type=Bool

attributes

target

4
3 4

4

n3:Name
text=‘Class‘

s3:Sort
text=‘Class‘

p4:Placename
4

sort isPersistent

Class

(b) T f i N Ab S
(a) Transformation Net

name

n4:Name
text=‘isPersistent‘

s4:Sort
text=‘Attribute‘

sort

Attribute

s e s s e

() CPN Ab S (PNML M d l)
(d) CPN

(b) Transformation Net Abstract Syntax
()

Concrete Syntax
(c) CPN Abstract Syntax (PNML Metamodel) Concrete Syntax

eStructuralFeature

Figure 6.4: Compilation of Transformation Net Places to CPNs

125

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

l
p1:Place initialMarking

c1:Class
name: ‘Package‘
isAbstract=false

source

p1:Place

m1:HLMarking
text=‘1`{oid=“p1“,t=“Package“}‘ Package

1o1:Object
oid=‘p1‘ 1

tokens

1 1`{oid=“p1“,t=“Package“}

Package source

r1:Reference
name= ‘classes‘
ordered=false

2

Class
p2:Place

m2:HLMarking

initialMarking

2
1`{source={oid=“p1”,t=“Package”},

target={oid=“c1”,t=“Class”}}

1 p1

ordered false
lowerBound=1
upperBound=‐1
containment=false

3
Reference

classesl1:Link
soid=‘p1‘
toid=‘c1‘

tokens 2
m2:HLMarking

text=‘1`{source={oid=“p1“,t=“Package“},
target={oid=“c1“, t=“Class“}}‘

3 Pl initialMarking 1`{oid=“c1“ t=“Class“}
classes

2

c2:Class
name=‘Class‘
isAbstract=false

target 3

Class

Class
o2:Object
oid=‘c1‘

tokens

3

p3:Place

m3:HLMarking
text=‘1`{oid=“c1“,t=“Class“}‘

initialMarking

3

1 {oid= c1 ,t= Class }
Class

3 c1

isAbstract=false

a1:Attribute

attributes 4
isPersistentv1:Value

oid=‘c1‘tokens

3 text 1 {oid c1 ,t Class }

p4:Place

m4:HLMarking

initialMarking
1`{obj={oid=“c1“,t=“Class“},

vid=“v1“,v=“true“}
4

4

isPersistent: Bool

4 c1
true

name: ‘isPersistent‘
type=Bool

Attribute
oid c1
valueId=‘v1‘
value=‘true‘

m4:HLMarking
text=‘1`{obj={oid=“c1“,t=“Class“},

vid=“v1“,v=“true“}‘

4

(b) Transformation Nets Abstract Syntax
(a) Transformation Net

Concrete Syntax
(c) CPN Abstract Syntax (PNML Metamodel) (d) CPN Concrete Syntax

Figure 6.5: Compilation of Transformation Net Tokens to CPNs

Object, Value, Link, and Trace (cf. ΣI in the formal definition), which may only reside
in type compatible places (cf. definition of I). As can be seen in Fig. 6.5, every token is
compiled to an instance of the class HLMarking, which is used to represent a marking (tokens)
in CPNs. Depending on the type of the token in Transformation Nets, a different inscription has
to be derived in a way that the inscription corresponds to the defined color-set. For example,
for an Object token, the oid component of the Class color-set record is set to the attribute
Object.oid and the type component t to the value of the attribute Class.name of the
according Class place. The same principle is followed for Value and Link tokens.

Inheritance. Since metamodels incorporate the concept of inheritance, it has to be repre-
sented by appropriate CPN concepts as well. Unfortunately, CPNs per se do not support inheri-
tance between color-sets. Nevertheless, as will be described in Section 6.4 in detail, it should be
possible that a transition which matches for tokens of supertypes also matches for tokens of sub-
types. Therefore, tokens in the places of subtypes should be copied to the corresponding place
of the supertype during compilation. This scenario is depicted in Fig. 6.6 whereby the class Y
inherits from the class X. To allow CPN transitions to match for a token of a subclass, e.g., token
y1, the marking is copied to the marking of the according supertype, e.g., marking of place X
now contains a marking comprising tokens x1 and y1, meaning that tokens are duplicated.

p1:Place initialMarking

11`{oid=“x1“ t=“X“}+++X c1:Class
name=‘X‘
isAbstract=false1

p1:Place

m1:HLMarking
text=‘1`{oid=“x1“,t=“X“}++

1`{ id “ 1“ “Y“}‘ l

X

1
x1

x1:Object
oid=‘x1‘

1tokens 1
1 {oid= x1 ,t= X }++
1`{oid=“y1“,t=“Y“}2+

1 2+

Y c2:Class

sub
classes

super
classes

1`{oid=“y1“,t=“Y“}‘ Class

1 Objk
p2:Place initialMarking

1`{oid=“y1“,t=“Y“}
2c2:Class

name=‘Y‘
isAbstract=false

23 2
Class

Y
y1

y1:Object
oid=‘y1‘

tokens
m2:HLMarking

text=‘1`{oid=“y1“,t=“Y“}‘

2
2

(b) Transformation Net Abstract Syntax
(a) Transformation Net

Concrete Syntax

4
(c) CPN Abstract Syntax (PNML Metamodel) (d) CPN Concrete Syntax

3
43 4 43

3

Figure 6.6: Compilation of Inheritance Relationships in Transformation Nets to CPNs

126

6.3. Compilation of Dynamic Parts of Transformation Nets

6.3 Compilation of Dynamic Parts of Transformation Nets

After describing the compilation of the static parts, the focus is shifted to the dynamic parts
of Transformation Nets and its compilation to CPNs in the following. For this, again

the concepts of Transformation Nets are formalized, followed by a detailed description of the
according compilation.

6.3.1 Formalization of Dynamic Parts of Transformation Nets

In order to incorporate the dynamic aspects into the formal definition, the StaticTNParts =
(P,ΣP , C,ΣI , I) must be extended to a 13-tuple TransformationNet = (P,ΣP , C,ΣI , I, T,
PT,ΣPt, PTF, PTT,A,G,E). Thereby, T denotes a finite set of transitions such that P ∩T =
∅, which is similar to standard CPNs. PT defines a finite set of Patterns. Since in Transfor-
mation Nets it is only necessary to match for either objects, attributes, references or trace tokens,
ΣPt defines a set of predefined types of patterns, i.e., ΣPt = {ObjectPattern, V alue−
Pattern, LinkPattern, TracePattern}, used to hide inscriptions from the transformation de-
signer. PTF : PT → ΣPt is a function that assigns a pattern type to each pattern, PTT : PT →
T is a function that assigns a non-empty set of patterns to each transition. Furthermore, the set of
arcsA is a subset of the cross product of places P and patterns PT , i.e., A ⊆ P ×PT ∪PT ×P
such that ∀a, b ∈ A : a(p, pt) ⇒ @b(pt, p)) and ∀a, b ∈ A : a(pt, p) ⇒ @b(p, pt)) where
pt ∈ PT, p ∈ P , i.e., a pattern is either a query pattern or a production pattern, but not both.
Furthermore, the types of places and patterns have to be compatible, i.e, function b has to evalu-
ate to true, such that:

b =



true, if Type[p] = Class ∧ Type[pt] = ObjectPattern
true, if Type[p] = Attribute ∧ Type[pt] = ValuePattern
true, if Type[p] = Reference ∧ Type[pt] = LinkPattern
true, if Type[p] = TracePlace ∧ Type[pt] = TracePattern
false, else.

This is different, compared to the definition in standard CPNs, since in CPNs arcs are di-
rectly connected to transitions, whereas in Transformation Nets there is a further step of indi-
rection via patterns. This further step of indirection allows to derive the complex arc inscription
automatically (cf. below). G : T → Exprv is a condition function that assigns a condition to
each transition t such that Type[G(t)]= Bool, i.e., transitions may exhibit a boolean condition,
equal to standard CPNs. Finally, E : A(pt, p) → Expr is an arc expression function that as-
signs an arc expression to arcs a which originate from a pattern pt and target a place p such
that Type[E(a(pt, p)]=C(p)MS , i.e., only outgoing arcs of transitions might exhibit functions in
Transformation Nets.

In summary, the main difference between Transformation Nets and standard CPNs lies in
the introduction of patterns and explicit pattern types. The introduction of patterns in the Trans-
formation Net DSL is, nevertheless, convenient for simulation, since it may easily be followed
which tokens are bound to which patterns.

127

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

The firing semantics follows the same principles as CPNs, but needs to handle the seman-
tics of patterns. Patterns exhibit a predefined set of variables, which need to be bound during
matching, denoted by V ar(pt) such that

V ar(pt) =


oid, typeName, if Type[pt] = ObjectPattern
oid, typeName, valueId, value, if Type[pt] = ValuePattern
soid, sType, toid, tType, if Type[pt] = LinkPattern
sctx, target, if Type[pt] = TracePattern.

Please note that the concrete names of the pattern variables are user-defined (cf. according
attributes in the pattern classes in the metamodel in Fig. 4.3 on page 73) whereas the names
above are of symbolic nature, only. Nevertheless, the number of variables per pattern is fixed,
e.g., an ObjectPattern always has two variables that need to be bound during matching.
Variables of a transition t are denoted by V ar(t) being the set of all pattern variables of a certain
transition. Consequently, this leads to an equal firing semantics as stated above, i.e., the desired
semantics of Transformation Nets may be expressed in terms of CPN concepts. The following
subsection describes the compilation in detail.

6.3.2 Compilation of Transformation Logic

In order to exemplify the compilation of transformation logic, Fig. 6.7(a) shows the Transforma-
tion Net already presented in Fig. 4.17 on page 89. Thereby, Packages should be transformed
into according Schemas and Classes to Tables, but only if the according Schema has been
translated before. To express this dependency, a trace place between the two transitions is used.
Fig. 6.7(b) shows the result of the compilation in CPNs, which is explained in detail in the fol-
lowing, focusing on the dynamic parts of Transformation Nets. Fig. 6.8 shows the details thereof
by means of the abstract syntax.

Transition. In a first step, Transitions in Transformation Nets are compiled into Tran-
sitions in CPNs. Thus, in our example, two instances of transitions occur, whereby the name
of the Transformation Net transition is simply copied (resulting in Name instances in the abstract
syntax), depicted by 5 and 10 in Fig. 6.7 and Fig. 6.8.

Patterns. In a second step, arcs as well as query and production patterns of Transformation
Nets have to be compiled. Whereas in Transformation Nets, patterns are source or target of arcs,
in CPNs transitions are source or target of arcs. Therefore, the source or target of a CPN arc
has to refer to the corresponding CPN transition, which originated from a Transformation Net
transition the pattern is contained in. As an example, the arc arc1 (cf. 6 in Fig. 6.8(a)) targets
the object pattern p1, which is again contained in transition t1 (cf. 5). Since the transition
t1 in the Transformation Net was compiled to transition t1 in the CPN, the generated arc a1
targets the transition t1 (cf. 6 in Fig. 6.8(b)). In order to be able to match for tokens in CPNs,
arcs require according arc inscriptions which are derived from the patterns in Transformation
Nets. As stated before, every type of pattern exhibits a predefined number of variables which
have to be correspondent with the defined color-set. Thus, for the different types of patterns
different variables need to be derived, as described in detail in the following.

128

6.3. Compilation of Dynamic Parts of Transformation Nets

6

Package

1`{oid=“p1“,t=“Package“}

SchemaPackage

{oid=package,
t=packageType}

{oid=package,
t=“Schema”}

6

18
5 7

S

Class

Package1

1`{source={oid=“p1“ t=“Package“}
Class

Schemag
2Schema

} 18

Source MM Target MMTransformation

Package SchemaPackage2
Schema

1
6

5
18

1 {source={oid= p1 ,t= Package },
target={oid=“c1“,t=“Class“}}++

1`{source={oid=“p1“,t=“Package“},
t t { id “ 2“ t “Cl “}}

{source=[{oid=package,t=packageType],
target={oid=package,t=“Schema”}}8

p1

Schema6 7

9

target={oid=“c2“,t=“Class“}}++
1`{source={oid=“p1“,t=“Package“},

target={oid=“c3“,t=“Class“}} PackageCtx9

PackageCtx

Cl 2

package

2 10
8

9

19
Reference

classes TracePlace

{ { id k

2
{source=ctx1,target={

11

classes tables

Class2
Table

schema

2 10
11

19

tables

{source={oid=package,
t=packageType},
target={oid=class,t=classType}} 19

10

oid=schema,t=schemaType}}12
15

Table
package

class

Class3 12 15
16

20 Reference

tables
Class
2Table1`{oid=“c1“,t=“Class“}++

1`{oid=“c2“,t=“Class“}++

{oid=class,t=
classType}

10 15

3

{source={oid=schema,
t=schemaType},

isPersistent: Bool

c1 c2

isPersistent

13
14

16
Class

{ , }
1`{oid=“c3”,t=”Class”}

3
[List.exists(fn contextEntry
=>(#oid contextEntry)=package)ctx1

13
c3 target={oid=class,t=“Table”}}

2 3
@class.isPersistent4

14
17 Class

Attribute
{obj={oid=class t=classType}4

andalso OCLEval(‘@class.isPersistent
|context:’^Int.toString(class))]

14
16

17 {oid=class,t=“Table”}c2
true

c3
true

c1
false

isPersistent
Class

Table

1`{obj {oid “c1” t ”Class”} vid “5” v ”true”}++

{obj={oid=class,t=classType},
vid=isPersistent,v=isPersistentVal}

4 2014

1 {obj={oid= c1 ,t= Class }, vid= 5 , v= true }++
1`{obj={oid=“c2”,t=“Class”}, vid=“5”, v=“true”}++
1`{obj={oid=“c3”,t=“Class”}, vid=“6”, v=“false”}

(a) Transformation Net Concrete Syntax (b) Colored Petri Net Concrete Syntax

Figure 6.7: Compilation of Transformation Nets to CPNs in Concrete Syntax

• ObjectPattern: The record color-set Class offers the components oid and t. Conse-
quently, in order to be able to match for object tokens, according variables need to be
derived. For the component oid the according variable specified in the pattern (cf. at-
tribute ObjectPattern.oidVar) is taken, e.g., package in case of a1 (cf. 6 in
Fig. 6.8). For the second component, again the variable of the patten is taken, but con-
catenated with the postfix ’Type’. These variables are then used in the according arc
inscription, e.g., for a1 the arc inscription {oid=package,t=packageType} is de-
rived (cf. 6 in Fig. 6.7(b) and Fig. 6.8(b)). For an arc from a transition to an output place,
the variable t is set to the value of the according class, i.e., “Schema” for the arc a6

• ValuePattern: The record color-set Attribute consists of the components obj referring to
the object (which again consists of the components oid and t) and vid and v for the ac-
tual attribute value. ValuePatterns offer two variables, i.e., ValuePattern.oid-
Var and ValuePattern.valueIdVar which are used to derive the according arc
inscription. Thereby, ValuePattern.oidVar is used to derive the inscription for the
according object as described before. Additionally, the value of the attribute Value-
Pattern.valueIdVar is used as a variable for the component vid and as a variable
for the component v of the record. For this, the value of the attribute ValuePatt-
ern.valueIdVar is concatenated with the postfix ’Val’. To exemplify this 14 in
Fig. 6.8 shows the resulting arc inscription, e.g., since the ValuePattern.oidVar of
p7 is set to ’class’ and ValuePattern.valueIdVar to ’isPersistent’ the
corresponding arc inscription is {obj={oid=class, t=classType}, vid=is-
Persistent, v=isPersistentVal}.

• LinkPattern: The record color-set Reference consists of the components source and
target which identify a certain source and target object. In this respect, the deriva-

129

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

t1:Transitioncl1:Class1 source 5tokens 6 t1:Transition
name=Package2Schema

cl1:Class
name=‘Package‘
isAbstract=false

arc1:PTArc

queryPatterns
prod
Patteproduction

Patterns

arcs
target

5
p1:Object
oid=‘p1‘

1
6

6 p1:ObjectPattern
oidVar=‘package‘

p
o

p3:TracePattern
soidVar=[‘package‘]
toidVar=‘package‘

source

1 R f
2

Patterns

source

l1:Link
soid=‘p1‘
toid=‘c1‘

2
6 8

target

r1:Refernce
name= ‘classes‘
ordered=false
lowerBound=0

arc2:PTArc
source

arcs
target

sourcearcs

arc5:TPArc
target

l2:Link
soid=‘p1‘
toid=‘c2‘

2
12

12
8

upperBound=‐1
containment=true

3

ctx1:TracePlace
name=‘PackageCtx‘

p5:LinkPattern
soidVar=‘package‘
toidVar=‘class‘

psource
target

target

3

12
9l3:Link

soid=‘p1‘
toid=‘c3‘

2

cl2:Class
name=‘Class‘
isAbstract=false

3

bj

p
so
toarcs

source

arc3:PTArc

target

arcs source

arc6:TPArc

target

c1:Object
oid=‘c1‘

tokens

tokens

3

3
11

13

13
3

a1:Attribute
name=‘isPersistent‘

attributes p4:TracePattern
soidVar=[‘package‘]
toidVar=‘schema‘

p6:ObjectPattern
oidVar=‘class‘

arc4:PTArc
source

target

c2:Object
oid=‘c2‘

tokens

3
11

14

c3:Object
oid=‘c3‘

3

4

t2:Transition

type=Bool
toidVar schema

p7:ValuePattern
oidVar=‘class‘

arc4:PTArc
arcs

target queryPatternsqueryPatterns

query
Patterns

10v3:Valuev2:Value

tokens

4
v1:Value
4

t2:Transition
name=Class2Table
condition=‘@class.isPersisten

oidVar= class
valueIdVar=‘isPersistent‘
distinct=false

queryPatterns

10v3:Value
oid=‘c3‘
valueId=‘2‘
value=‘true‘

v2:Value
oid=‘c2‘
valueId=‘2‘
value=‘true‘ 17

14

v1:Value
oid=‘c1‘
valueId=‘1‘
value=‘false‘

(a) Transformation Nets Abstract Syntax

m1:HLMarking

initialMarking
p1:Place

n1:Name
text=‘Package2Schem

a1:Arc
kind=HLArcType.NORMAL

name

source target

1
56m1:HLMarking

text=‘1`{oid=“p1“,t=“Package“}‘

initialMarking
r1:Place

t1:Transition

a2:Arc

h1:HLAnnotation
text=‘{oid=package, t=…}‘

hlAnnotation
name

a5:Arc

source

h5:H2

56

8 8
m2:HLMarking

text=‘1`{source={oid=“p1“,t=“Package“},
target={oid=“c1“,t=“Class“}….‘

a2:Arc
kind=HLArcType.NORMAL

h2:HLAnnotation hlAnnotation

source a5:Arc
kind=HLArcType.NORMAL

h5:H
text=‘{s

target

2 8

9

8

12
g { , }

initialMarking

m3:HLMarking

c2:Place
a3:Arc

kind=HLArcType NORMAL

text=‘{source={oid=p…}‘

source

ctx1:Place

n1:Name
text=‘PackageCtx‘

name

s
text=

3

9

target

m3:HLMarking
text=‘1`{oid=“c1“,t=“Class“}++
1`{oid=“c2“,t“Class“}‘++…

initialMarking

kind=HLArcType.NORMAL

h3:HLAnnotation
text=‘{oid=class, t=…}‘

hlAnnotation a7:Arc
kind=HLArcType.NORMAL

g

hlA

source

1113

m4:HLMarking
‘ `{ bj { id “ “ “Cl “} id

initialMarking
a1:Place

t2:Transiti

a4:Arc
kind=HLArcType.NORMAL

source

t t

target

hlAnno

targ4 10
14text=‘1`{obj={oid=“c1“,t=“Class“},vid=

“1“, v=“false“} ++ 1`{obj={oid=“c2“,t=“Class“},
vid=“2“, v=“true“} ++ 1`{obj={oid=“c3“,
t=“Class“,vid=“2“, v=“true“}‘

n2:Name
text=‘Class2Table‘

h4:HLAnnotation
text=‘{obj={oid=…}‘

hlAnnotation name ctarget14

1

(b) Colored Petri Net Abstract Syntax (PNML)

1

c3:Class
arc7:TPArc

187

duction
erns

name=‘Schema‘
isAbstract=false

arc7:TPArc

arcs source

target

p2:ObjectPattern
oidVar=‘package‘

source

19
7

r2:Refernce
name= ‘tables‘
ordered=false
l B d 0

arc8:TPArc
target

15
19

8:LinkPattern

lowerBound=0
upperBound=‐1
containment=true

arcs source

15
oidVar=‘schema‘
oidVar=‘class‘

target

production

15

c4:Class
name=‘Table‘arc9:TPArc

target

production
Patterns

16 20

p9:ObjectPattern

isAbstract=false
s arcs source

nt‘

p9:ObjectPattern
oidVar=‘class‘

production
Patterns

16

ma‘
h6:HLAnnotation

text=‘{oid=package, t…}‘

hlAnnotation

7

c3:Place

HLAnnotation

a6:Arc
kind=HLArcType.NORMAL

source target

18
HLAnnotation
source=[{oid=...}‘ h8:HLAnnotation

text=‘{source={oid=p…}‘

hlA t ti9

s4:Sort
=‘TracePlace‘

sort

a8:Arc
kind=HLArcType.NORMAL

hlAnnotation9
15

r2:Place
h7:HLAnnotation

text=‘{source=ctx,target…}‘
t ti

target11 19

on

otation

get source a9:Arc
kind=HLArcType.NORMAL

target
16source

cond1:Condition
text=‘[List.exists…]‘

condition c4:Place

h9:HLAnnotation
text=‘{oid=class }‘

hlAnnotation

16
7

20

text= {oid=class, …}7

Figure 6.8: Compilation of Transformation Nets to CPNs in Abstract Syntax

tion of the arc inscription is equal to ObjectPatterns. As can be seen in 12 in
Fig. 6.8 and in Fig. 6.7, the value LinkPattern.soid of p5 is set to ’package’ and
LinkPattern.toid to ’class’, resulting in the arc inscription {source={oid=
package, t=packageType}, target={oid=class,t=classType}}.

• TracePattern: TracePatterns indicate which source objects are used to generate a
certain target object. Since source objects might be merged, the record color-set Trace-
Place contains a source component which is itself a list of Class denoting the ac-

130

6.3. Compilation of Dynamic Parts of Transformation Nets

cording objects. Nevertheless, only one target element is allowed and therefore the com-
ponent target is typed to a single Class, only. If a production trace pattern is consid-
ered, the arc inscription may be created in a similar manner as described before, e.g., as
can be seen in 8 in Fig. 6.8, the array TracePattern.soidVar contains the variable
’package’. The elements of the array are used to derive the arc inscription of the source
component, whereas the TracePattern.toidVar is used to derive the target compo-
nent (in an equal way as done for object patterns). Thus, in our example the derived arc in-
scription is {source= [{oid=package, typeName=packageType}], tar-
get={oid=package, typeName=packageType}}. Please note that since the
objects are only copied, source and target components of the trace pattern are equal, which
needs not always be the case. Additionally, if several source objects are merged, the source
component list contains several entries, i.e., all the objects that should be merged.

In case that trace information should be queried by a transition, the arc inscription needs
to be adapted accordingly. Instead of producing new trace information, the arc inscription,
together with an according guard expression, needs to query, if a certain trace token con-
tains a certain source object. In 11 in Fig. 6.7(b) the arc inscription {source = ctx1,
target={oid=schema,t=schemaType}} queries the context token. Thereby, the
variable ctx1 is automatically generated, whereby the string ctx is concatenated with
the index of the context query token, whereas the arc inscription for the target com-
ponent is derived from the attribute TracePattern.toidVar. The specified guard
List.exists(fn contextEntry ⇒ (#oid contextEntry)= package)
ctx1 checks if the component source, which is bound to the variable ctx1 in the arc
inscription, contains an oid which is equal to the value bound to the variable package,
i.e., if a certain Package was transformed to a certain Schema.

As the attentive reader might have already spotted, the execution of the compiled CPN de-
picted in Fig. 6.7(b) does not produce the expected tokens (as shown in Fig. 4.17). This is since
the transition Class2Tablemight only fire once, as the only available trace token is consumed
by the first firing of the transition. Consequently, the transition Class2Table is not enabled
twice, resulting in either the net presented in Fig. 6.9(a) or the net in Fig. 6.9(b), since only one
of the persistent classes is transformed to an according table. As described in Subsection 4.4.1,
transitions in Transformation Nets do not consume tokens but just read the tokens of the con-
nected input places in order to avoid erroneous race conditions, e.g., that might occur in case of
1:n references as indicated in Fig. 6.9. Therefore, the changed default consumption behavior has
to be accordingly considered in the compilation process as described in the following.

Non-consuming Firing Behavior. In order to realize the non-consuming firing behavior in
CPNs, three adoptions are needed. First, arcs from places to transitions need to be changed to
so-called test arcs to read tokens from input places only instead of consuming them. Second, a
so-called history place to track the combinations of tokens already fired needs to be introduced.
Finally, the guard condition needs to be accordingly adapted to prevent an infinite number of
firings. Considering the first point, the attribute value Arc.kind needs to be changed from
HLArcType.NORMAL to HLArcType.TEST which results in a bidirectional arc, i.e., the
tokens that are only read from the input place (cf. e.g., 6 in Fig. 6.10). Nevertheless, this would

131

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Class

Package S hPackage
{oid=package,
t=packageType}

{oid=package,
t=“Schema”}

1`{oid=“p1“,t=“Schema“}

Package

Class

Schemag
2Schema

t packageType} t Schema }

1`{source={oid=“p1“,t=“Package“},
target={oid=“c1“ t=“Class“}}++ {source=[{oid=package,t=packageType],

PackageCtx

target={oid= c1 ,t= Class }}++
1`{source={oid=“p1“,t=“Package“},

target={oid=“c3“,t=“Class“}}

target={oid=package,t=“Schema”}}

Reference

classes
TracePlace

{ {

{source=ctx1,
target={oid=schema, 1`{source={oid=“p1“,t=“Schema“},

{ id “ 2“ “T bl “}}

tablesClass
2Table

{source={oid=package, t=
packageType},target={oid=class,
t=classType}

t=schemaType}} target={oid=“c2“,t=“Table“}}

{source {oid schema
Reference

2Table

[Li t i t (f t tE t

1`{oid=“c1“,t=“Class“}++
1`{oid=“c3”,t=”Class”}

{source={oid=schema,
t=schemaType},
target={oid=class,t=“Table”}}

Class

Class {oid=class,
t=classType} {oid=class,t=“Table”}

[List.exists(fn contextEntry
=>(#oid contextEntry)=package)ctx 1
andalso OCLEval(‘@class.isPersistentClass

Attribute
Table

|context:’^Int.toString(class))] 1`{oid=“c2“,t=“Table“}

{obj={oid=class,t=classType},
Attribute

isPersistent
Class

1`{obj {oid “c1” t “Class”} vid “1” v “false”}++

vId=isPersistent,v=isPersistentVal}

1 {obj={oid=“c1”,t=“Class”}, vid=“1”, v=“false”}++
1`{obj={oid=“c3”,t=“Class”}, vid=“2”, v=“true”}

Class {oid package {oid package

(a) First Potential Result of Firing

1`{ id “ 1“ “S h “}Class

Package

Cl

SchemaPackage
2Schema

{oid=package,
t=packageType}

{oid=package,
t=“Schema”}

1`{oid=“p1“,t=“Schema“}

Class1`{source={oid=“p1“,t=“Package“},
target={oid=“c1“,t=“Class“}}++

1`{source={oid=“p1“,t=“Package“},

{source=[{oid=package,t=packageType],
target={oid=package,t=“Schema”}}

classes TracePlace

PackageCtx

{ { p , g },
target={oid=“c2“,t=“Class“}}

{source=ctx1,
Reference

Cl

{source={oid=package, t=
packageType} target={oid=class

1`{source={oid=“p1“,t=“Schema“},
target={oid=“c3“,t=“Table“}}

{source ctx1,
target={oid=schema,
t=schemaType}}

Reference

tablesClass
2Table

packageType},target={oid=class,
t=classType}

1`{oid=“c1“,t=“Class“}++
{source={oid=schema,
t=schemaType},

Class
{oid=class,

t=classType}
[List.exists(fn contextEntry
=>(#oid contextEntry)=package)ctx 1

1 {oid c1 ,t Class }++
1`{oid=“c2”,t=”Class”}

yp },
target={oid=class,t=“Table”}}

Class

t classType}
{oid=class,t=“Table”}

>(#oid contextEntry) package)ctx 1
andalso OCLEval(‘@class.isPersistent
|context:’^Int.toString(class))] 1`{oid=“c3“,t=“Table“}

Attribute
Class

Table{obj={oid=class,t=classType},
vId=isPersistent,v=isPersistentVal}

isPersistent
1`{obj={oid=“c1”,t=“Class”}, vid=“1”, v=“false”}++
1`{obj={oid=4,t=“Class”}, vId=“2”, v=“true”}

(b) Second Potential Result of Firing

{obj {oid 4,t Class }, vId , v true }

Figure 6.9: Erroneous Consumption of Source Tokens
132

6.3. Compilation of Dynamic Parts of Transformation Nets

lead to an infinite sequence of firings, since these tokens could be matched over and over again.
In order to prevent this, the concept of a history place is introduced, which is defined by means of
the following color-set definition, representing a list that stores lists of strings, which represent
the ids of the involved elements. The History color-set is defined as follows:

colset IDs = list STRING;

colset History = list:IDs;.

This history list is then matched by the according transition (cf. variable hist in Fig. 6.10).
After firing, the list is put back into the history place, whereby the matched token configuration
is inserted in a sorted manner by an according arc inscription which makes use of the custom
function InsertSorted, shown in Listing 6.1. The sorting is important in order to achieve
a unique state space, as detailed in Section 7.4. The function InsertSorted first checks if
the list to insert is nil – then it returns the current history – or the history is nil – then it wraps
the list into another list (since history is a list of lists) and returns it. Otherwise it is checked if
the list to insert is smaller than the first list of the history (cf. variable h – line 3) by means of
the custom function ListSmaller, which compares two lists. If the list is smaller than the
list of the history entry, it may be prepended, otherwise the function to find the correct insertion
position is called recursively.

Listing 6.1: Functions for Inserting History Tokens in a Sorted Manner
1 fun I n s e r t S o r t e d n i l h i s t o r y = h i s t o r y (* empty l i s t *)
2 | I n s e r t S o r t e d l n i l = [l] (* empty h i s t o r y *)
3 | I n s e r t S o r t e d l (h : : h i s t o r y) =
4 i f L i s t S m a l l e r (l , h) then (* p repend s m a l l e r l i s t *)
5 l : : h : : h i s t o r y
6 e l s e
7 h : : I n s e r t S o r t e d l h i s t o r y (* r e c u r s i v e c a l l *)
8 −−−
9 fun L i s t S m a l l e r (n i l : IDs , l i s t 2 : IDs) = t r u e (* f i r s t l i s t i s empty *)

10 | L i s t S m a l l e r (l i s t 1 : IDs , n i l : IDs) = t r u e (* second l i s t i s empty *)
11 | L i s t S m a l l e r (x : : l i s t 1 : IDs) (y : : l i s t 2 : IDs) =
12 i f x < y then (* found a s m a l l e r e n t r y *)
13 t r u e
14 e l s e i f x=y then
15 L i s t S m a l l e r (l i s t 1 , l i s t 2) (* r e c u r s i v e c a l l *)
16 e l s e
17 f a l s e

Nevertheless, the history is only able to prohibit multiple firings for equal token configura-
tions in combination with an according guard condition. As can be seen in Fig. 6.10, the guard
checks if the history already contains a list that is similar to the matched token configuration.
For this, the custom function Contains is provided which compares two lists, whereby empty
string values are not considered for comparison (needed in case of rule inheritance as discussed
in the following), as shown in Listing 6.2. If the history already contains the matched token
configuration, the guard fails and prohibits another firing for the same token configuration. As
can be seen in Fig. 6.10(b), the according CPN is now able to match for both classes since the
trace token is not consumed, resulting in the expected target model.

133

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Source MM Target MMTransformation

P k S hPackage21
5

18Package

p1

SchemaPackage2
Schema

package

1
6 7

9

18
p1

l bl

PackageCtx

Class2
Table

package

2 10
8

9

11
19

Table

classes tables

package

class

schema

Class3

11

12 15 20

isPersistent: Bool

c1 c2

@class isPersistent

isPersistent

4

13
14

16

17

c3

c2
true

c3
true

c1
false

c2 c3

(a) Transformation Net Concrete Syntax

@class.isPersistent4 17true truefalse

History

HistPackage2Schema

hist InsertSorted ([package]) hist

1`[[“p1“]]

1`{ id “ 1“ t N “P k “} 5 1`{oid=“p1“,t=“Schema“}

InsertSorted ([package]) hist
[not (List.exists(fn histEntry => Contains(
histEntry, [package],1)) hist)]

Package1

1`{oid=“p1“,typeName=“Package“}

Class

SchemaPackage
2Schema

{oid=package, t=packageType} {oid=package, t=“Schema”}

6
18

5
7

1 {oid p1 ,t Schema }

Class

8
1`{source=[{oid=“p1“,t=“Package“}],

1`{source={oid=“p1“,t=“Package“},
target={oid=“c1“,t=“Class“}}++

1`{source={oid=“p1“,t=“Package“},
target={oid=“c2“,t=“Class“}}++

{source=[{oid=package,t=packageType],
target={oid=package,t=“Schema”}}

classes {source=ctx1,target={
1112

TracePlace

PackageCtx9
{ [{ p , g }],

target={oid=“p1“,t=“Schema“}}
ta get {o d c ,t C ass }}

1`{source={oid=“p1“,t=“Package“},
target={oid=“c3“,t=“Class“}}

2
{source={oid=package,
t=packageType}, target=

1`{source={oid=“p1“,t=“Schema“},
target={oid=“c2“,t=“Table“}}++

Reference

tablesClass
2Table{oid=class,t=classType} 19

10

oid=schema,t=schemaType}}1112

151`{oid=2,t=“Class“}++
1`{oid=3,t=“Class“}++

{oid=class,t=classType}}

{source {oid schema t schemaType}

g { , }}
1`{source={oid=“p1“,t=“Schema“},

target={oid=“c3“,t=“Table“}}

Cl

Class
Reference

2Table{oid class,t classType}

3

19

[not (List.exists(
fn histEntry => Contains(histEntry,

13

hist

1`{oid=4,t=”Class”} {source={oid=schema,t=schemaType},
target={oid=class,t=“Table”}}

Class
{oid=class,t=“Table”}

y (y,
[package, class, class, class,persistent],5))

hist) andalso List.exists(fn contextEntry =>
(#oid contextEntry) = package) ctx 1 andalso
OCLEval(‘@class isPersistent|context:’^Int toString(class))]

14 16

1`{oid=“c2“ t=“Table“}++

hist

{obj={oid=class,t=classType},
vId=isPersistent,v=isPersistentVal}

Attribute

isPersistent

Cl

Table
4

20

OCLEval(@class.isPersistent|context: Int.toString(class))]

17
1 {oid= c2 ,t= Table }++
1`{oid=“c3“,t=“Table“}

InsertSorted ([package,class,
class,class,persistent]) hist

1`{obj {oid ”c1” t ”Class”} vid “1” v ”false”}++ Class

History

HistClass2Table1`[[“p1“,“c2“,“c2“,“c2“,“2“],
[“p1“,“c3“,“c3“,“c3“,“2“]]

1 {obj={oid= c1 ,t= Class }, vid= 1 , v= false }++
1`{obj={oid=“c2”,t=“Class”}, vid=“2”, v=“true”}++
1`{obj={oid=“c3”,t=“Class”}, vid=“2”, v=“true”}

(b) Colored Petri Net Concrete Syntax

Figure 6.10: Compilation of Non-Consuming Firing Behavior

Listing 6.2: Function to Check if two Lists are Equal
1 fun C o n t a i n s (c u r L i s t , t okens , l e n g t h)=
2 i f c u r L i s t = n i l then f a l s e (* empty l i s t *)
3 (* not e q u a l l e n g t h *)
4 e l s e i f (not (L i s t . l e n g t h c u r L i s t = L i s t . l e n g t h t o k e n s)) then f a l s e

134

6.3. Compilation of Dynamic Parts of Transformation Nets

5 e l s e i f l e n g t h > 0 a n d a l s o (* compare e n t r y *)
6 L i s t . n t h (c u r L i s t , l e n g t h −1) = L i s t . n t h (tokens , l e n g t h −1) then
7 C o n t a i n s (c u r L i s t , t okens , l e n g t h −1)
8 (* i g n o r e empty s t r i n g *)
9 e l s e i f l e n g t h > 0 a n d a l s o L i s t . n t h (c u r L i s t , l e n g t h −1) = " " then

10 C o n t a i n s (c u r L i s t , t okens , l e n g t h −1)
11 (* i g n o r e empty s t r i n g *)
12 e l s e i f l e n g t h > 0 a n d a l s o L i s t . n t h (tokens , l e n g t h −1) = " " then
13 C o n t a i n s (c u r L i s t , t okens , l e n g t h −1)
14 e l s e i f l e n g t h <= 0 then t r u e (* compared a l l v a l u e s *)
15 e l s e f a l s e

Negative Patterns. In CPNs, the matching process assumes the existence of a certain token,
e.g., if a class token is available generate a table token. Consequently, matching of non-existing
tokens requires more complex structures. It is necessary to provide a list of tokens to check if
a certain token is not contained, following the inhibitor arc pattern presented in [111]. In order
to compile negative patterns, first only the tokens contained in an according input place, i.e., the
places which are connected to a negated pattern, are wrapped into a list, for which the following
color-sets are defined:

colset ClassList = list Class;

colset AttributeList = list Attribute;

colset ReferenceList = list Reference;

colset TraceList = list TracePlace;

Since the reference pattern is negated in the example shown in Fig. 6.11, the tokens of place
superClass typed to the color-set Reference are replicated in an according list which
is put into the place ListSuperClasses typed to the color-set ReferenceList. The
transition then reads the list of tokens instead of a single token. The guard condition of the
transition checks if the list does not contain the negated token, e.g., in our example the guard
checks if the value of variable class does not occur as a source of a reference (cf. expression
(#soid negatedElem) which delivers the value of the soid component of a reference).
As only the class c1 does not have any superclass, i.e., it is a root class, only this class is
transformed to an according table.

Distinct Values and New Colors. Often only for distinct attribute values a certain target
element should be generated, as discussed in Subsection 4.4.1. In order to decide whether a
target element should be generated for a certain source value, the already processed values need
to be stored in a list (cf. 4 in Fig. 6.12). For this, the color-set DistinctList is provided,
which is defined as follows:

colset IDs = list STRING;

colset DistinctList = record value:IDs * target:Class.

The component value of the color-set DistinctList is defined as a list of strings in
order to store combinations of distinct values, since it is allowed that a single transition in Trans-
formation Nets exhibits several distinct patterns. In order to provide trace information, i.e., if the

135

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Table

Source MM Target MMTransformation

Class1 Class2
T bl 5 6

c1 c2

1
c3 c1

Table

class

l

3 5 6

<<N>>

superClasses

superClass

2 4

1`{oid=“c1“,t=“Class“}++
1`{oid “c2“ t “Class“}++

(a) Transformation Net Concrete Syntax

6
Class

Class TableClass
2Table

1 {oid=“c2“,t=“Class“}++
1`{oid=”c3”,t=”Class”}

{oid=class,t=“Table”}{oid=class, t=classType}1
1`{oid=“c1“,t=“Table“}

3 5 6

Class Class

InsertSorted ([class]) hist
hist

1`{source={oid=“c2“,t=“Class“},
target={oid=“c1“,t=“Class“}}++

1`{source={oid=“c3“,t=“Class“},

Reference

superClasses

[not (List.exists(fn histEntry => Contains(
histEntry ,[class],1)) hist) andalso not (List.exists(
fn negatedElem=>(#oid (#source negatedElem))=
class) listSuperClasses)]

History

HistClass2Table

1`[[“c1“]]

1 {source {oid c3 ,t Class },
target={oid=“c2“,t=“Class“}}

2
Reference class) listSuperClasses)]

4
listSuperClasses

1`[{source={oid=“c2“,t=“Class“},
target={oid=“c1“,t=“Class“}},
{source={oid=“c3“,t=“Class“},

ReferenceList

ListsuperClasses2
target={oid=“c2“,t=“Class“}}]

(b) Colored Petri Net Concrete Syntax

ReferenceList

Figure 6.11: Compilation of Negative Pattern

according object the attribute belongs to is used in a production trace pattern, the list additionally
stores which value was translated to which object by means of the component target. As can
be seen in 5 in Fig. 6.12, the arc from the transition to the place creates a new token only if
the list values did not contain the matched value before. Please note that no guard condition
was used to prevent firing, i.e., the transition should not be enabled if the list contains a certain
combination of values, since trace information should be provided for all possible combinations
of values. In this respect, the complex arc inscription labeled 6 in Fig. 6.12 first checks if an
entry in the list values is available for the combinations of the matched values. If this is the
case, then the according value of the target component of the list entry is selected and set as
value of the target component of the to be created trace token. Otherwise, a new trace token
is created. Therefore, the trace place Ctx contains three tokens whereas the list of the place
typeVals solely contains two tokens. The Transformation Net uses a new, unbound color to
represent the newly generated Type objects, as can be seen in 5 in Fig. 6.12, meaning that a
new id (color) needs to be generated for every produced token. In order to provide a new id, a
global variable newColor is defined. Please note that if a global variable is used, it needs to
be prefixed by an to receive the actual value, as may be seen for example in the arc inscription
5 in Fig. 6.12. The variable newColor is initialized by the highest id available, i.e., 5 in the
example, and is incremented after firing by means of the function increment, in the action

136

6.3. Compilation of Dynamic Parts of Transformation Nets

S MM T MMT f i

Type

Source MM Target MMTransformation

Attribute

type : String

1

8Attribute2
Type

3

5

a1 a2 a3

yp

Ctx

type : String

2

7
t2

t1 t2

Type

type type

attribute

a3t1a2t1a1

4 5

6

a1
String

a2
Integer

a3
Integer

<<D>>

7

1`{oid=“a1“,t=“Attribute“}++

(a) Transformation Net Concrete Syntax

Attribute1

{ , }
1`{oid=“a2“,t=“Attribute“}++
1`{oid=“a3“,t=“Attribute“}

Class if (List.exists(fn y=>(#value y)=type) values) then empty else

Attribute

type

Class

TypeAttribute
2Type

1`{obj={oid=“a1”,t=“Attribute”}, vid=“1”, v=“String”}++
1`{obj={oid=“a2”,t=“Attribute”}, vid=“2”, v=“Integer”}++

{obj={oid=attribute,t=attributeType},
vId=type, v=typeVal}

2
3

5
1`{oid=“t1“,t=“Type“}++
1`{oid=“t2“,t=“Type“}

y y yp p y
1`({oid=“t”^Int.toString((!newColor + 1)),t=“Type"})

action increment(1);
4 8

1 {obj {oid a2 ,t Attribute }, vid 2 , v Integer }
1`{obj={oid=“a3”,t=“Attribute”}, vid=“2”, v=“Integer”}

HistAttribute2Type

hist InsertSorted ([
attribute,type]) hist

if List.exists(fn y =>(#value y)=type) values
then values else
{value=type, target={oid=

[not (List.exists(fn histEntry
=> Contains(histEntry ,
[attribute,type],2)) hist)]

6
TracePlaceCtx7

History 1`[[“a1“,“1“],
[“a2“,“2“],
[“a3“,“2“]]

typeVals

values

{ yp g {
“t”^Int.toString((!newColor+1)),
t=“Type”}}::values

if List.exists(fn y =>(#value y)=
type) values then
{source =[{oid=attribute,
t=attributeType}], target=
({#target (valOf(List.find(fn y=>

4

DistinctList

g y
(#value y)=type) values)))}
else
{source=[{oid=attribute,
t=attributeType}],target=
{oid=“t”^Int.toString((!newColor+1)),
t “T ”}}

1`{value=[“1“],target=
{oid=“t1“,t=“Type“}}++
1`{value=[“2”],target=
oid=“t2” t=“Type”}}

1`{source=[{oid=“a1“,t=“Attribute“}],
target={oid=“t1“,t=“Type“}}++
1`{source=[{oid=“a2“,t=“Attribute“}],
target={oid=“t2“,t=“Type“}}++
1`{source=[{oid=“a3“,t=“Attribute“}],

(b) Colored Petri Net Concrete Syntax

t=“Type”}}oid= t2 ,t= Type }} { [{ , }],
target={oid=“t2“,t=“Type“}}++

Figure 6.12: Compilation of Distinct Values and New Colors

block of a transitions. Action blocks of CPN transitions allow to specify code that should be
executed immediately after a transition fired. Therefore, a new id is generated every time the
transition fires.

Check Before Enforce. Finally, in order to omit the creation of duplicate elements on the
target side, i.e., check before enforce semantics, the already produced target elements have to be
stored in a list. For this the color-set CBEVals is provided, which stores a list that contains lists
of ids, defined as follows:

colset IDs = list STRING;

colset CBEVals = list IDs;.

In the example depicted in Fig. 6.13 the production pattern exhibiting the variable package
is marked as check before enforce. Consequently, the compiled CPN contains an additional place

137

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

CBEClass2Table which stores the ids of the already created Schema instances. This means
that if the transitions fires the first time, no entry is contained in the place CBEClass2Table
and therefore the arc inscription on the arc to the Schema output place (cf. 10 in Fig. 6.13)
produces the according Schema instance. The according id of the generated token is put
into the CBEClass2Table place, e.g., p1 in the example. When the transition is enabled
a second time, again the token package with the p1 is bound. Nevertheless, since the place
CBEClass2Table now already contains the id (cf. Contains function in 10 in Fig. 6.13),

Source MM Target MMTransformation

Package

p1

Schema

p15
131

classclasses tables

p
Class2
Table

<<CBE>>

package
6

5

10

142 7 11

Class

c1 c2 c3

classes
1..*

Table

c2 c3

tables
0..*

isPersistent

@class.isPersistent

15
8

3 9
12

(a) Transformation Net Concrete Syntax

c1 c2
false true

c3
true

isPersistent : Bool

4

Package1

1`{oid=“p1“,typeName=“Package“}

Class

Schema
{oid=package, t=packageType}

if not (List.exists(fn cbeEntry
=> Contains(cbeEntry,
[package],1)) cbeVals) then
1`{ id k “S h ”}

1`{oid=“p1“,t=“Schema“}

Class

CBEVals

CBEClass2Table

1`[[“p1“]] 13
Class1`{oid=package, t=“Schema”}

else empty1`{source={oid=“p1“,t=“Package“},
target={oid=“c1“,t=“Class“}}++

1`{source={oid=“p1“,t=“Package“},
target={oid=“c2“,t=“Class“}}++

1`{source={oid=“p1“,t=“Package“},

InsertSorted (
[package]) cbeVals

6 10 10

Reference

classes

Class 11

target={oid=“c3“,t=“Class“}}

2

1`{oid=2,t=“Class“}++

{source={oid=package,
t=packageType}, target=

{oid=class,t=classType}}

1`{source={oid=“p1“,t=“Schema“},
target={oid=“c2“,t=“Table“}}++

1`{source={oid=“p1“,t=“Schema“},
target={oid=“c3“,t=“Table“}}

cbeVals

5
7

Class

Class
Reference

tablesClass
2Table{oid=class,t=classType}

3

14

[not (List.exists(
fn histEntry => Contains(histEntry,

[package class class class persistent] 5))

11

hist

1`{oid=3,t=“Class“}++
1`{oid=4,t=”Class”} {source={oid=schema,t=schemaType},

target={oid=class,t=“Table”}}8

Attribute

isPersistent Table

{oid=class,t=“Table”}

4
15

[package, class, class, class,persistent],5))
hist) andalso OCLEval(‘@class.isPersistent|

context:’^Int.toString(class))]
12

1`{oid=“c2“,t=“Table“}++
1`{oid=“c3“,t=“Table“}

InsertSorted ([package,class,
l l]) h

{obj={oid=class,t=classType},
vId=isPersistent,v=isPersistentVal}

9
isPersistent

Class

Table 15

History

HistClass2Table

class,class,persistent]) hist

1`[[“p1“,“c2“,“c2“,“c2“,“2“],
[“p1“,“c3“,“c3“,“c3“,“2“]]

1`{obj={oid=”c1”,t=”Class”}, vid=“1”, v=”false”}++
1`{obj={oid=“c2”,t=“Class”}, vid=“2”, v=“true”}++
1`{obj={oid=“c3”,t=“Class”}, vid=“2”, v=“true”}

(b) Colored Petri Net Concrete Syntax

Figure 6.13: Compilation of Check Before Enforce Semantics

138

6.4. Compilation of Inheritance in Transformation Nets

an empty token is produced, i.e., the current marking of the output place remains unchanged.
In this respect, duplicate Schema instances are prohibited, i.e., only a Table object and an
according Package.tables link are created. If several patterns exist which are marked as
check before enforce targeting the same place, it has to be ensured that all transitions use the
same CBEVals place in order to check if a target element was already created by a different
transition. For this a so-called fusion place is used (cf. Section 6.5). Finally, if a key is specified
it has to be ensured that also no values are created, which are contained in an object which is
part of the key, meaning that the according arcs exhibit also the condition on the arc expression.

6.3.3 Compilation of Functions and Conditions

The example depicted in Fig. 6.7 uses a condition (cf. 17) demanding that only persistent
classes should be transformed into according tables, realized by means of an according condition
@class.isPersistent on the Transformation Nets’ transition. This condition has to be
evaluated by the CPN when enabling transitions, i.e., the guard condition has to take care of the
conditions specified in Transformation Nets. Nevertheless, since CPNs do not allow for OCL
as inscription language, the OCL condition may not be evaluated as such in CPNs. Therefore,
the evaluation of the condition is delegated to a server using the Comms/CPN library [48],
by means of the function OCLEval, which is shown in Listing 6.3 (for details the reader is
referred to the description of the prototype in Chapter 8). The function requires on the one
hand the condition to evaluate (i.e., @class.isPersistent) and on the other hand the
object bound by the CPN engine as actual context for the OCL expression (i.e., the value of the
bound variable class). This information is sent to a remote server (cf. line 2 in Listing 6.3)
which evaluates the expression. The result returned by the OCLEval function (cf. line 3 in
Listing 6.3) is then evaluated in the guard of the CPN transition. For the evaluation of functions
in Transformation Nets, the same approach is followed but instead of expecting a boolean return
value, a string encoded return value is expected (since values are represented as strings only),
which is accomplished by the function OCLFunctionEval, shown in the lower part of Listing 6.3.
Both, OCL conditions and functions are allowed to include variables of query patterns only. This
is since Transformation Nets are not allowed to read from the target model.

Listing 6.3: Functions to delegate OCL evaluation to a remote server
1 fun OCLEval (o c l S t r i n g) =
2 (ConnManagementLayer . send (" OCLServer " , o c l S t r i n g , s t r i n g E n c o d e) ;
3 ConnManagementLayer . r e c e i v e (" OCLServer " , s t r i n g D e c o d e) = " t r u e ")
4 −−
5 fun OCLFunct ionEval (o c l S t r i n g) =
6 (ConnManagementLayer . send (" OCLServer " , o c l S t r i n g , s t r i n g E n c o d e) ;
7 ConnManagementLayer . r e c e i v e (" OCLServer " , s t r i n g D e c o d e))

6.4 Compilation of Inheritance in Transformation Nets

I
n the previous section, it was described how the dynamic parts of Transformation Nets are
compiled to CPNs, but up to now, the compilation of inheriting transitions in Transformation

Nets has been omitted. Since CPNs do not support the concept of inheritance, neither between

139

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

places and tokens, nor transitions, inheritance is flattened during compilation. The flattening of
the inheritance hierarchy of a source model was already discussed in Subsection 6.2.2, therefore
the focus is on transitions and the dynamic semantics of inheriting transitions in the following.

6.4.1 Basic Concepts, Overriding Patterns and Type Substitutability

If a transition in Transformation Nets inherits from another transition, this basically means that
the behavior of a supertransition should be reused by the subtransition. The subtransition is
allowed to extend this behavior or change it in a defined manner. In order to represent the
semantics of inheritance, the patterns of supertransitions need to be considered when compiling
a subtransition, i.e., all query and production patterns along the inheritance hierarchy have to be
collected. In this respect, the inheritance hierarchy is flattened during compilation.

Overriding Patterns. In order to collect the patterns, in a first step, the tokens of supertran-
sitions that are not overridden are added to the subtransitions. In a second step, the overriding
patterns are collected whereby overriding of tokens is achieved by equality of variable names,
i.e., the object pattern modelElement of the subtransition Class2Table overrides the ob-
ject pattern modelElement of the supertransition MElement2SElement in Fig. 6.14. The

ModelElement SchemaElement

Source MM Target MMTransformation
MElement2
SElement6

5

name : String name : String

p1
modelElement

1 6 8

9

13
7 g

name2
9

14
7

p1
University

c2c1 c3

p1
University

c2c1 c3StudentPerson Professor c2
Student

c1
Person

c3
Professor

TableClass Class2TablePackage Schema3 4
10

15 16
c1 c2

Class2Table

p1 c1

modelElement

c2

3 4
11 12

15
c3 c3

(a) Transformation Net Concrete Syntax

1`{oid=“p1“,t=“Package“}++
1`{oid=“c1“ t=“Class“}++1 {oid= c1 ,t= Class }++
1`{oid=“c2“,t=“Class“}++
1`{oid=“c3“, t=“Class“} 1`{oid=1,t=“SchemaElement“}

6 8

[not (List.exists(fn histEntry =>Contains(histEntry,
[modelElement, modelElement, name],3)) hist)]

Class

ModelElement
MElement2
SElement{oid=modelElement,

t=modelElementType} Class

SchemaElement
{oid=modelElement,
t=“SchemaElement”}

1 135
6 8

1Class t modelElementType} t SchemaElement }

hist
InsertSorted ([modelElement

7
9

1
Priority{obj={oid=modelElement,t=modelElementType},

vid=name,v=nameVal}
{obj={oid=modelElement,t=“SchemaElement”},

vid=name,v=nameVal}
1`{obj={oid=“p1”,t=“Package”}, vid=“1”, v=“University”}++
1`{obj={oid=“c1”,t=“Class”}, vid=“2”, v=“Person”}++
1`{obj={oid=“c2” t=“Class”} vid=“3” v=“Student”}++ HistMElement

InsertSorted ([modelElement,
modelElement,name]) hist

1`[[“ 1“ “ 1“ “2“] [“ 2“ “ 2“ “3“]

9 1`{obj={oid=“p1”,t=“SchemaElement”}, vid=“1”, v=“University”}++
1`{obj={oid=“c1”,t=“Table”}, vid=“2”, v=“Person”}++
1`{obj {oid “c2” t “Table”} vid “3” v “Student”}++

name

1 {obj={oid= c2 ,t= Class }, vid= 3 , v= Student }++
1`{obj={oid=“c3”,t=“Class”}, vid=“4”, v=“Professor”}

name
History

2SElement
1`[[“c1“,“c1“,“2“],[“c2“,“c2“,“3“],
[“c3“,“c3“,“4“],[“p1“,“p1“,“1“]]

2 14

1 {obj={oid=“c2”,t=“Table”}, vid=“3”, v=“Student”}++
1`{obj={oid=“c3”,t=“Table”}, vid=“4”, v=“Professor”}

Attribute Attributehist InsertSorted ([modelElement,
modelElement name]) hist

2
9

14

{obj={oid=modelElement, {obj={oid=modelElement,t=

1`{oid “c1“ t “Class“}++

modelElement,name]) hist

10
7

0 Priority

t=modelElementType},vid=
name,v=nameVal}

“Table”}, vid=name,v=nameVal}

1`{oid=“c1“,t=“Table“}++
1`{oid=“c2“ t=“Table“}++

Class
1 {oid= c1 ,t= Class }++
1`{oid=“c2“,t=“Class“}++
1`{oid=“c3“, t=“Class“}

{oid=modelElement,t=“Table”}
Class2Table

Class

Table

15

10

11 12

1 {oid= c2 ,t= Table }++
1`{oid=“c3“, t=“Table“}

Class

Class
Class

{oid=modelElement,
t=modelElementType}

4
15

[not (List.exists(fn histEntry => Contains(histEntry,
[modelElement, modelElement, name],3)) hist)]

Package

1`{oid=1,t=“Package“}
Schema

Class
3

16
Package

(b) Colored Petri Net Concrete Syntax

3

Figure 6.14: Compilation of Rule Inheritance

140

6.4. Compilation of Inheritance in Transformation Nets

collection of overridden tokens depends on the chosen refinement mode. In case of the refine-
ment mode override only the overriding patterns of the subtransition are taken into consid-
eration. If the refinement mode extend is chosen, it is not allowed to override patterns but
subtransitions might only extend the specified behavior. Consequently, an error is raised if an
overridden pattern is found. Finally, in case of inherit, assignments of overwritten patterns
are copied to the subpatterns, i.e., functions on the arc inscriptions are copied to the according
arc inscription of the subtransition.

Type Substitutability. After having collected the patterns, it has to be ensured that super-
transitions only transform those instances that are not affected by a subtransition. To achieve
this behavior, all transitions along the inheritance hierarchy share a common history place as as
can be seen in Fig. 6.14. Thereby it is important, that subtransitions and supertransitions insert
the values in the same order, i.e., in our example at index 1 there is the oid of the model ele-
ment, followed by the oid and the vid of the attribute name. If a subtransition adds additional
patterns, the list has to be enlarged. In order to be able to compare history entries in such sit-
uations, the supertransition also enlarges its history list by adding an empty string (an example
thereof is shown in Fig. 6.17 in the following subsection). Furthermore, it has to be ensured that
subtransitions fire before supertransitions, since otherwise a supertransition might transform el-
ements that could be matched by a subtransition. For this, CPNs allow to define priorities on
transitions whereby a lower value means a higher priority. In this respect, it has to be ensured
that a lower priority is assigned to a subtransition than to a supertransition. Consequently, the
transition Class2Table offers a lower priority than the transition MElement2SElement
and therefore fires first. Only if the transition Class2Table is not enabled any more, then the
transition MElement2SElement is allowed to fire. In the example, first the classes c1, c2,
and c3 as well as their according names are transformed into according tables by means of the
transition Class2Table (cf. Fig. 6.14). Afterwards the transition MElement2SElement
is enabled for the package p1 only (the history entries and the guard prohibits firing for the
tokens c1, c2, and c3), which produces the according SchemaElement p1. By this, type
substitutability is supported, being the default behavior in Transformation Nets.

Nevertheless, as described in Subsection 5.4.2, this behavior may be changed by setting
the Transition.includeSubtypes flag to false, as can be seen in Fig. 6.15 for transi-
tion MELement2SElement, as indicated by the stereotype «exclude». Exclusion of subtypes
means that supertransitions should follow an oclIsTypeOf semantics, e.g., in the example
only tokens of type ModelElement should be matched, instead of an oclIsKindOf seman-
tics, e.g., tokens typed to a direct or indirect subtype of ModelElement should not be matched.
In order to achieve this behavior in CPNs, an additional expression is added to the guard condi-
tion of the according transition, which enables a transition only if a token is of a specific type.
In the example depicted in Fig. 6.15(a), the arc 6 originates from the place ModelElement
and therefore, the guard in CPN specifies that the transition should only be enabled if the value
of the bound variable t is equal to ModelElement (cf. typeName=“ModelElement”
in Fig. 6.15(b)). In case that several object patterns are contained by a Transformation Net
transition, several expressions would be generated, which are concatenated by a logical and,
i.e., every bound object has to be of a specific type only. Therefore, in case of the exam-
ple depicted in Fig. 6.15 the generated target model does not contain the package instance

141

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

Source MM Target MMTransformation

ModelElement SchemaElement

<<exclude>>
MElement2
SElement

6
5

name : String name : String
modelElement

1 6 8

9

13
7 g

name2
9

14
7

c2c1 c3c2c1 c3

p1
University

c2
Student

c1
Person

c3
Professor

c2
Student

c1
Person

c3
Professor

TableClass Class2TablePackage Schema3 4
10

15 16
c1 c2

Class2Table

p1 c1
modelElement

c2

3 4
11 12

15
c2 c2

(a) Transformation Net Concrete Syntax

[not (List.exists(fn histEntry => Contains(histEntry,
1`{oid=“p1“,t=“Package“}++
1`{oid=“c1“,t=“Class“}++

5
6 8

[((y (y
[modelElement, modelElement, name],3)) hist)
andalso typeName=“ModelElement”]

1`{oid=“c2“,t=“Class“}++
1`{oid=“c3“, t=“Class“}

Class

ModelElement ME2ME
{oid=modelElement,
t=modelElementType} Class

SchemaElement
{oid=modelElement,
t=“SchemaElement”}

1 135
1

hist
InsertSorted ([modelElement,

d l l]) h7 9

Priority{obj={oid=modelElement,t=modelElementType},
vid=name,v=nameVal}

{obj={oid=modelElement,t=“SchemaElement”},
vid=name,v=nameVal}

HistMElement
2SEl t

modelElement,name]) hist7 91`{obj={oid=“p1”,t=“Package”}, vid=“1”, v=“University”}++
1`{obj={oid=“c1”,t=“Class”}, vid=“2”, v=“Person”}++
1`{obj={oid=“c2”,t=“Class”}, vid=“3”, v=“Student”}++

1`{obj={oid=“c1”,t=“Table”}, vid=“2”, v=“Person”}++
1`{obj={oid=“c2”,t=“Table”}, vid=“3”, v=“Student”}++
1`{obj={oid=“c3” t=“Table”} vid=“4” v=“Professor”}

1`[[“c1“,“c1“,“2“],
[“ “ “ “ “ “]

name name
History

2SElement

2 14

{ j { , }, , }
1`{obj={oid=“c3”,t=“Class”}, vid=“4”, v=“Professor”}

1 {obj={oid= c3 ,t= Table }, vid= 4 , v= Professor }[“c2“,“c2“,“3“],
[“c3“,“c3“,“4“]]

Attribute Attribute
hist InsertSorted ([modelElement,

modelElement,name]) hist

2

7
9

{obj={oid=modelElement
{obj={oid=modelElement,

t=“Table”} vid=name v=nameVal}

Cl
{oid=modelElement,
“ bl ”}

10

7
0 Priority

{obj={oid=modelElement,
t=modelElementType},vid=name,v=nameVal}

t= Table }, vid=name,v=nameVal}

1`{oid=“c1“,t=“Class“}++

1`{oid=“c1“,t=“Table“}++
1`{oid=“c2“,t=“Table“}++

Class t=“Table”}
Class2Table

Class

Table
1511 12

{ , }
1`{oid=“c2“,t=“Class“}++
1`{oid=“c3“, t=“Class“}

1`{oid=“c3“, t=“Table“}

Class

Class

Schema

{oid=modelElement,
t=modelElementType}

4

16

[not (List.exists(fn histEntry => Contains(histEntry,
[modelElement, modelElement, name],3)) hist)]

Package

Schema

Class
3

16
Class

1`{oid=1,t=“Package“}

(b) Colored Petri Net Concrete Syntax

Figure 6.15: Compilation of Inheriting Transitions Excluding Subtypes

p1 as the previous example did, since this indirect instance is not considered by the transition
MElement2SElement any more.

Abstract Rules. As stated in Subsection 5.2.2 Transformation Nets allow to specify abstract
rules in order to express that a certain rule is not executable per se, but provides core behavior
that may be reused in subrules. An example thereof is depicted in Fig. 6.16(a), whereby the
transition MElement2SElement is abstract as indicated by the stereotype «abstract». Since
abstract transitions are not allowed to fire and since inheritance between transitions is flattened
during the compilation to CPNs anyway, abstract transitions need not to be compiled to CPNs.
Therefore, Fig. 6.16(b) does not exhibit a transition for the abstract Transformation Net transition
MElement2SElement. The target model exhibits only the classes c1, c2, and c3 which are
accordingly named (since the attribute assignment of the abstract Transformation Net transition
has been inherited, cf. 7 and 9 in Fig. 6.16). Please note that the target models depicted
in Fig. 6.15 and Fig. 6.16 are equal since the transition MElement2SElement excluding
subtypes in Fig. 6.15 could never fire as no token typed to model element is available (since the
class ModelElement is abstract). Nevertheless, in general, different target models result.

142

6.4. Compilation of Inheritance in Transformation Nets

Source MM Target MMTransformation
<<abstract>>
MElement2 5

ModelElement

name : String

SchemaElement

name : String

MElement2
SElement

modelElement
1 6

5

8 13
7name : String name : String

name2
9

14
7

c2
Student

c1
Person

c3
Professor

c2
Student

c1
Person

c3
Professor

p1
University

10 16

StudentPerson ProfessorStudentPerson Professor

TableClass

c1 c2

Class2TablePackage

p1

Schema

c1
modelElement

c2

3 4
10

11 12
15 16

c2 c3

(a) Transformation Net Concrete Syntax

1`{ id “ 1“ “P k “}

SchemaElement 13

1`{oid=“p1“,t=“Package“}++
1`{oid=“c1“,t=“Class“}++
1`{oid=“c2“,t=“Class“}++
1`{oid=“c3“, t=“Class“}

Class

ModelElement Class1

1`{obj={oid=“p1” t=“Package”} vid=“1” v=“University”}++
1`{obj={oid=“c1”,t=“Table”}, vid=“2”, v=“Person”}++
1`{obj={oid=“c2” t=“Table”} vid=“3” v=“Student”}++

1`[[“c1“,“c1“,“2“],
[“c2“,“c2“,“3“],
[“c3“,“c3“,“4“]]

nameHistory

HistMElement2
SElement

14

1 {obj={oid= p1 ,t= Package }, vid= 1 , v= University }++
1`{obj={oid=“c1”,t=“Class”}, vid=“2”, v=“Person”}++
1`{obj={oid=“c2”,t=“Class”}, vid=“3”, v=“Student”}++
1`{obj={oid=“c3”,t=“Class”}, vid=“4”, v=“Professor”}

1 {obj={oid= c2 ,t= Table }, vid= 3 , v= Student }++
1`{obj={oid=“c3”,t=“Table”}, vid=“4”, v=“Professor”}

Attribute

name Attribute

hist InsertSorted ([modelElement,
modelElement,name]) hist

2
14

7
9

{obj={oid=modelElement

{obj={oid=modelElement,t=
“Table”}, vid=name,v=nameVal}

{oid=modelElement,t=“Table”}
Class2Table

,])

Table

10

7

0 Priority

{obj={oid=modelElement,
t=modelElementType},vid=name,v=nameVal}

1`{oid=“c1“,t=“Class“}++
1`{oid=“c2“,t=“Class“}++

1`{oid=“c1“,t=“Table“}++
1`{oid=“c2“,t=“Table“}++
1`{oid=“c3“, t=“Table“}

Class

Class

Class2Table

Class

Table

{oid=modelElement,
t=modelElementType}

1511 12
[not (List.exists(fn histEntry => Contains(histEntry,
[modelElement, modelElement, name],3)) hist)]

1 {oid c2 ,t Class }
1`{oid=“c3“, t=“Class“}

4

Package

Class
Schema

Class
3

161`{oid=1,t=“Package“}

Class

(b) Colored Petri Net Concrete Syntax

Figure 6.16: Compilation of Abstract Rules

6.4.2 Conditions and Rule Applicability Semantics

In the previous subsection, the basic concepts were presented how inheriting transitions in Trans-
formation Nets may be compiled into according concepts in CPNs, but conditions on inheriting
transitions were not considered. As stated in Subsection 5.4.2, Transformation Nets exhibit a
composing behavior concerning the evaluation of conditions, i.e., all conditions along the inher-
itance hierarchy have to be fulfilled in order to enable the transition. Thus, conditions defined on
supertransitions should also be included in the according guard of the subtransitions in CPNs. An
example thereof is depicted in Fig. 6.17, whereby the guard of the transition Class2Table in-
cludes an expression for the condition of the supertransition (OCLEval(’@modelElement-
.startsWith(’c’) |context:’^Int.toString(modelElement))), as well as
an expression for the condition of the subtransition (OCLEval(’@cmodelElement.isPer-
sistent |context:’^Int.toString(modelElement))). Please note that in this
example the subtransition Class2Table makes use of an additional query pattern for query-

143

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

ing the isPersistent attribute. Therefore, the history list of the subtransition would be
longer, e.g., five elements in the example, than the history list of the supertranstion, which con-
tains three elements only. Nevertheless, in order to be able to compare the lists, the history list
of the supertransition is enlarged to five elements by adding two empty string values.

Source MM Target MMTransformationSource MM Target MMTransformation

6
@modelElement

.name.startsWith(‘P’)

ModelElement SchemaElement

1 7 9 15

MElement2
SElement

c1

name : String name : String

name

modelElement
1

2

15
8 10

p1

c1

name2
16c2

Student
c1
Person

c3
Professor

p
University

c1
Person

c3
Professor

TableClass2TablePackage Schema3
11 13

17Class4 18
p1

modelElement

11 13
isPersistent: Bool

c1 c2

persistent

c3

12
2 31

c3

14
@modelElement
.isPersistent

5 c2
true

c3
true

c1
false

[not (List exists(fn histEntry => Contains(histEntry

(a) Transformation Net Concrete Syntax

1`{ id “ 1“ “P k “}

1`{oid “c1“ t “Table“}

[not (List.exists(fn histEntry => Contains(histEntry,
[modelElement, modelElement, name,0,0],5) hist)
andalso OCLEval(‘@modelElement.startsWith(‘P’)|

t t ’^I t t St i (d lEl t))]

1`{oid=“p1“,t=“Package“}++
1`{oid=“c1“,t=“Class“}++
1`{oid=“c2“,t=“Class“}++

ModelElement
MElement2
SElement{oid=modelElement

SchemaElement

1 {oid= c1 ,t= Table }

{oid=modelElement t=“Table”}1 15
67 9

context:’^Int.toString(modelElement))]1`{oid=“c3“, t=“Class“}

Class
SElement

{obj={oid=modelElement,t=modelElementType},

{oid=modelElement,
t=modelElementType} Class

{oid=modelElement,t= Table }

{obj={oid=attribute,t=“Table”},hi t

1
1
Priority{obj {oid modelElement,t modelElementType},

vId=name, v=nameVal}
{obj {oid attribute,t Table },

vId=type, v=typeVal}
hist

InsertSorted ([modelElement,
modelElement,name,0,0]) hist

8 10
1`{obj={oid=“p1”,t=“Package”}, vid=“1”, v=“University”}++
`{ b { d “ ” “ l ”} d “ ” “ ”}

History

HistMElement2
SElement 1`[[“c1“,“c1“,“2“,““,““],

[“c3“,“c3“,“4“,“c2“,“6“]]

1`{obj={oid=“c1”,t=“Class”}, vid=“2”, v=“Person”}++
1`{obj={oid=“c2”,t=“Class”}, vid=“3”, v=“Student”}++
1`{obj={oid=“c3”,t=“Class”}, vid=“4”, v=“Professor”}

1`{obj={oid=“c1”,t=“Table”}
1`{obj={oid=“c3”,t=“Table”}

Attribute

name

Attribute

name
[]]

hi t

InsertSorted ([modelElement,
modelElement,name, { bj { id d lEl t t

2 16
10

hist , ,
modelElement,persistent]) hist{obj={oid=modelElement,t=

modelElementType},vId=name,
V l}

{obj={oid=modelElement,t=
“Table”},vId=name, v=nameVal}

7

{oid=modelElement,t=“Table”}
Class2Table

v=nameVal}

Table
{oid=modelElement, t=

d l l }

1`{oid=“c3“,t=“Table“}10
13

0 Priority
1`{oid=“c1“,t=“Class“}++
1`{oid=“c2“,t=“Class“}++

Class

Class2Table

Class

TablemodelElementType}

4
1711

[not (List.exists(fn histEntry => Contains(histEntry,
[modelElement modelElement name 0 0] 5) hist)

1`{oid=“c3“, t=“Class“}

Class
Schema 1

[modelElement, modelElement, name,0,0],5) hist)
andalso OCLEval(‘@modelElement.startsWith(‘P’)|
context:’^Int.toString(modelElement)) andalso{obj={oid=modelElement,t=

12
1`{obj={oid=“c1”,t=“Class”}, vid=“5”, v=“false”}++

Class

isPersistent

OCLEval(‘@modelElement.isPersistent|
context:’^Int.toString(modelElement))]

{obj {oid modelElement,t
modelElementType},vId=
persistent, v=persistentVal}

5
14

1`{obj={oid=“c2”,t=“Class”}, vid=“6”, v=“true”}++
1`{obj={oid=“c3”,t=“Class”}, vid=“6”, v=“true”}

isPersistent

Attribute
5
1`{oid=“p1“,t=“Package“}

Package3
Class

p g

(b) Colored Petri Net Concrete Syntax

, vid=“2”, v=“Person”}++
, vid=“4”, v=“Professor”}

7

18

Figure 6.17: Compilation of Conditions in Inheriting Rules

When investigating the generated target model, one encounters that only the object c3 fulfills
both conditions, i.e., it is persistent and its name starts with the letter ’P’ and may thus be
transformed by the transition Class2Table. The object c1 may not be transformed by this
transition since it is not persistent, whereas object c2may not be transformed as it does not fulfill
the condition on the supertransition MElement2SElement, i.e., its name does not start with
the letter ’P’. On investigating the supertransition, it may be seen that it is not able to transform
object c2 either, since the condition fails. Nevertheless, it is able to transform object c1 since
it fulfills the conditions of the supertransition and has not been transformed by the subtransition

144

6.5. Compilation of Modules

already. The transition MElement2SElement transforms the object c1, resulting in a target
object typed to ModelElement. In this respect, Transformation Nets support rule applicability
semantics (as described in Subsection 5.4.2) concerning the evaluation of conditions.

6.5 Compilation of Modules

I
n the previous sections the compilation of the core concepts as well as of inheritance between
transitions have been presented. What has been omitted up to now is the compilation of

modules, which is the focus of the following subsections. First of all, modularization concepts
of CPNs, i.e, Hierarchical Colored Petri Nets, are presented. Then, second the modularization
concepts of Transformation Nets are formalized to lay the basis for third, the compilation of
modules to hierarchical CPNs.

6.5.1 Hierarchical Colored Petri Nets

In order to modularize CPNs, a CPN may be divided into several modules offering defined
interfaces, which play a similar role as modules in programming languages. CPNs that make
use of modules are called hierarchical CPNs. As can be seen in Fig. 6.18, a CPN consists of
at least one module being the root of the net. A module might contain an arbitrary number
of other modules, e.g., in the example the root module contains the modules Producer and
Consumer. Such sub-modules are referred by the parent module by means of a so-called
substitution transition (cf. P and C in the example). The interfaces of submodules are defined
by means of sockets and ports. Ports exhibit so-called prototype tags which define whether the
port is an In port, an Out port or an In/Out port. A socket, i.e., a place on the parent module,
is assigned to a port, i.e., a place at the submodule, which is only allowed if the places exhibit
an equal color-set. The socket place p1 is assigned to the port place source and the socket

Substitutioncolset INT = int; Fusion set Socket

Module

P

Transitionvar i : INT;

p1

2`4 ++1`5

b C p2

Buffer

Fusion set

Socket

Socket

INT INT INT
Socket

Producer Consumer

Name of

INT Buffer Buffer PortPort

submodule

source

INT

out

INT

pi i in

INT

consumed

INT

ci i
In Out

2`4 ++1`5

Buffer
Prototype tag

Producer ConsumerSub module

Figure 6.18: Sample Hierarchical CPN

145

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

place p2 to the port place consumed. Thus, sockets and ports are used to stream tokens
between places on different modules, whereby a socket and its according port always exhibit the
same marking. Another possibility to exchange tokens between different modules are so-called
fusion sets. Fusion sets allow places in different modules to be glued to one compound
place across the hierarchical structure of the model and are similar to global variables known
from programming languages [72]. In the example in Fig. 6.18, a fusion set Buffer is defined
to exchange data between the Consumer and Producer module, i.e., the place out, in and
b are members of the fusion set.

To be more formal, a hierarchical CPN is defined as a 4-tuple CPNH = (S, SM,PS, FS)
in [72, p. 135]. S is a finite set of modules, whereby each module consists of a non-hierarchical
CPN, extended with a set of substitution transitions being a subset of all transitions, i.e., Tsub ⊆
T , a set of port places, i.e., Pport ⊆ P , and a port type function PT : Pport → {IN,OUT, I/O}
that assigns a prototype tag to each port place. SM : Tsub → S assigns a submodule to each
substitution transition. PS is a port-socket relation function that assigns a port to a socket and
FS is a set of non-empty fusion sets (cf. [72, p. 136] for details).

6.5.2 Formalization of Modules in Transformation Nets

In order to define the relationship between modules in Transformation Nets and modules in hi-
erarchical CPNs, modules of Transformation Nets are formally defined in the following. Ac-
cording to the definition of hierarchical CPNs, a Transformation Net with modules is a 5-
tuple TransformationNetmod = {M,PO,ΣPort, PT, PA}. M defines a non empty set
of modules, which contain Transformation Nets. PO is a finite set of ports and ΣPort is
a set of predefined port types, i.e., ΣPort = {Class,Attribute,Reference, TraceP lace}.
PT : P → ΣPort is a color-set function that assigns a color-set to each port, i.e., each port is
again typed to either Class, Attribute, Reference or TracePlace. PA ⊆ P ×PO∪
PO × P ∪ PO × PO is a set of directed arcs that connects either ports and places or two ports
such that Type[P]=Type[PO] or Type[PO]=Type[PO]. In this respect, sockets and ports of
hierarchical CPNs are both represented by means of ports in Transformation Nets. Furthermore,
ports in Transformation Nets are explicitly connected via arcs. The details of the compilation
are shown in the following subsection.

6.5.3 Compilation of Modules to Hierarchical CPNs

In order to represent the modularization concepts of Transformation Nets in CPNs accordingly,
Transformation Nets using modules are compiled into hierarchical CPNs following the above
formal definitions.

Blackbox View. The example depicted in Fig. 6.19 makes use of two modules (cf. 6 and
10) in order to translate Packages to Schemas and Classes to Tables. The interfaces of
the modules are described by means of ports (cf. 7 to 9 and 11 to 13 in Fig. 6.19(a) and (b)),
whereby places and ports are connected by means of arcs. The resulting hierarchical CPN is
depicted in Fig. 6.19(c) and (d). Every instance of a Transformation Net Module is translated
to an according instance of a substitution transition (cf. 6 and 10 in Fig. 6.19(c), whereby
Instances represent substitution transitions in the abstract syntax – as may be seen in 6 and

146

6.5. Compilation of Modules

10 in Fig. 6.19(d)). Furthermore, substitution transitions refer to submodules by means of the
attribute Instance.subpageID.

o1:Object tokens 1 A 3 A
outgoing pla1

Source TargetTransformation

c1:Class
name: ‘Package‘
isAbstract=false

j
oid=‘p1‘

tokens

l1:Link

a1:Arc a3:Arc
place

port outgoing
1
2

1

7 8Source TargetTransformation

Package Schema
kC

isAbstract false
source

r1:Reference1

l1:Link
soid=‘p1‘
toid=‘c1‘

tokens p1:ClassPort p2:ClassPort

ports ports

2

2
67 8 14

7 8

p1
Package2
Schema

C
C

T

r1:Reference
name= ‘classes‘
ordered=false

1
tokens

l2:Link
soid=‘p1‘
toid ‘c2‘

m1:Module
name: ‘Package2Schema‘ports

22

9

6

lowerBound=1
upperBound=‐1
containment=true

2
toid=‘c2‘

p3:TracePort a5:Arc

9
15 9tokensl3:Link

soid=‘p1‘
2

TableClass T

classes tables

c2:Class
target

o2:Object3 tokens p6:TracePorta2:Arc
outgoing

portoutgoing

3
11

12 13 16 11
soid= p1
toid=‘c3‘1..* 0..*

isPersistent: Bool

c1 c2
Class2
Table

C
C name=‘Class‘

isAbstract=false

j
oid=‘c1‘

3 p6:TracePorta2:Arc

ports ports
ports

312 13

1012
c3

o3:Object
tokens

tokens

place

isPersistent: Bool
c1
false a1:Attribute

name: ‘isPersistent‘
4 tokens

m2:Module
name: ‘Class2Table‘

p5:ClassPort
p

410 10
c2
true

c3
true

j
oid=‘c2‘ 3
o4:Object

tokens

name: ‘isPersistent‘
type=Bool v2:Value

oid=‘c3‘
tokens ports4

o4:Object
oid=‘c3‘

tokens
tokens

v1:Value
oid=‘c1‘
valueId ‘1‘

oid= c3
valueId=‘2‘
value=‘true‘

ports
4

4
v1:Value
oid=‘c2‘

4
tokens

valueId= 1
value=‘false‘

valueId=‘2‘
value=‘true‘

6 i iti lM ki

(a) Transformation Net Concrete Syntax (b) Transformation Net Abstract Syntax

Package1

1`{oid=“p1“,t=“Package“}

Schema 14Package2
Scheme

7
6 8

1 HLM ki

initialMarking
c1:Place

1 a2:Arc
kind=HLArcType.NOR

a1:Arc
kind=HLArcType.TEST

source 7 8

Class
1

Class
Scheme

Package2
Schema

m1:HLMarking
text=‘1`{oid=“p1“,t=“Package“}‘ i1:Instance

b ID ‘ 2‘

target source
target

name
1`{source={oid=“p1“,t=“Package“},

9
initialMarking

m2:HLMarking

r1:Place
2

subpageID=‘p2‘

n1:Name a3:Arc

name
source6

9
target={oid=“c1“,t=“Class}}++
1`{source={oid=“p1“,t=“Package“},
target={oid=“c2“,t=“Class}}++

15TracePlace

PackageCtx
m2:HLMarking

text=‘1`{source={oid=“p1“,t=“Package“},
target={oid=“c1“,t=“Class“}}++…}‘

text=‘Package2Schema‘ kind=HLArcType.NORM

target

g { , }}
1`{source={oid=“p1“,t=“Package“},
target={oid=“c3“,t=“Class}}

Reference
classes2

Reference

tables
15TracePlace

1011
initialMarking

c2:Place
3

ctx1:Placesource

11Reference13 m3:HLMarking
text=‘1`{oid=“c1“,t=“Class“}++

1`{oid=“c2“ t=“Class“}++ ‘

n1:Name
text=‘Class2Tab

a4:Arc
kind=HLArcType.TESTsource

name111`{oid=“c1“,t=“Class“}++
1`{oid=“c2“,t=“Class“}++
1`{oid=“c3“ t=“Class“}

Class2
Table

Class

Class

12

1 {oid= c2 ,t= Class }++…

initialMarking
a1:Place

i2:Instance
subpageID=‘p1‘target

1 {oid c3 , t Class }

3
Class2Table target

Class

Table 16 m4:HLMarking
4

a5:Arc a6:Arc

target
source1012 131`{obj={oid=“c1”,t=“Class”}, vid=“1”, v=“false”}++

1`{obj={oid=“c2”,t=“Class”}, vid=“2”, v=“true”}++

isPersistent4
Class

16 text=‘1`{obj={oid=“c1“,t=“Class“},vid=
“1“, v=“false“}++1`{obj={oid=“c2“,t=
“Class“,vid=“2“, v=“true“}…‘

kind=HLArcType.TEST
a6:Arc

kind=HLArcType.

{ j { , }, , }
1`{obj={oid=“c3”,t=“Class”}, vid=“2”, v=“true”}

Attribute
}

(d) Colored Petri Net Abstract Syntax (PNML)(c) Colored Petri Net Concrete Syntax() y

1`{oid=1 t=“Package“}1 {oid=1,t= Package }

c3:Class
ace 14c3:Class

name: ‘Schema‘
isAbstract=false

14

source

r1:Reference 15
name= ‘tables‘
ordered=false
lowerBound=0lowerBound=0
upperBound=‐1
containment=true

c4:Class

target

16
name=‘Table‘
isAbstract=false

16

a4:Arc

place

ls

outgoing
13
p7:ClassPorts

RMAL

c3:Place
14

r2:Place

MAL
15

r2:Place

ble‘

c4:Place
16

target

NORMAL

Figure 6.19: Compilation of Blackbox View

Whitebox View. The actual transformation logic is hidden in a module’s whitebox view in
Transformation Nets or in submodules in CPNs. In this respect, Fig. 6.20 depicts the whitebox
view of the module Package2Schema and the corresponding submodule in CPNs, both in
concrete and abstract syntax. Transformation Nets narrow the scope to the involved metamodel
elements first, i.e., only the metamodel classes Package and Schema are shown in the white-
box view since they are required by the according transition. In order to represent the whitebox
view in CPNs an according submodule has to be created. Thereby, submodules are represented
by means of Page instances in the abstract syntax. The Net n1 contains two pages4, whereby
page1 contains the elements of the blackbox view, i.e., places representing the metamodel ele-
ments as well as the substitution transition (cf. 2 and 6 in Fig. 6.20(d)). Page2 contains the

4The page for the substitution transition Class2Table has been omitted due to reasons of brevity.

147

6. COLORED PETRI NETS AS SEMANTIC DOMAIN FOR TRANSFORMATION NETS

elements of the module for the substitution transition Package2Schema. The ports of a Trans-
formation Net module are compiled to ports of submodules in CPNs, which are represented by
means of so-called RefPlaces in the abstract syntax (cf. 3 - 5 in Fig. 6.20(d)). In order to
define the required socket/port assignments, i.e., which place on the parent page corresponds
to which place on the subpage, so-called ParameterAssignments have to be defined.
Thereby, the value of the attribute ParameterAssignment.parameter refers to the id of
the socket place (place on the parent page), and the value of the attribute ParameterAssign-
ment.value to the id of the port (place on subpage). Please note that the history place
HistPackage2Schema has been changed from a “normal” place to a place being a member
of a fusion set. This is since it is possible in Transformation Nets to inherit between transitions
which are encapsulated in different modules and therefore history places in CPNs need to be
shared by transitions on different pages. Furthermore, in Transformation Nets the history con-
cept is hidden from the user. The design rationale was not to introduce ports for history places
but to use fusion sets instead, in order to hide the history concept from the user in CPNs at
first sight as well and to gain the same structure in CPNs as in Transformation Nets, i.e., equal
number and types of ports. In the abstract syntax, fusion sets are represented by instances of
the class FusionGroup, whereby the reference FusionGroup.references refers to the
according members of the fusion group (cf. 7 in Fig. 6.20).

c1:Class a1:Arc
outgoing

place1Package2Schema

Package Schema p1:ClassPort

name:=‘Package‘
isAbstract=false

place
port

2 5 6

1
3outgoing

p1 p1

Package

C
C queryPatterns

o1:Object

tokens22

3

5 6

a2:Arc
g

p1:ObjectPattern
oidVar=‘package‘pattern

o1:Object
oid=1

3

T

PackageCtx

oidVar packagep

4

(a) Transformation Net Concrete Syntax (b) Tra

Package place on
page

l

Out

page
id=‘pag

Package place on
parent page

place

1 2

TracePlace

PackageCtx c1:Place
id=‘Package‘

i1:Ins
Context place on
parent page

1

{source=[package],target={
oid=package,t=“Schema”}}

subpage
ctx1:Place
id=‘PackageCtx‘

4

Class

Package SchemaPackage

{oid=package,
t=packageType}

{oid=package,
t=“Schema”} Out

g

a2:Parametea1:ParameterAssignment3
1`{oid=“p1“,t=“Package“}

Package

Class

Schema
2Schema

[not (List.exists(I/O
parameter=‘Sch
value=‘Schema‘

g
parameter=‘Package‘
value=‘Package‘

3
5

hist
InsertSorted ([package]) hist

fn histEntry => Contains(histEntry,
[package],1)) hist)] s1:Sort

text=‘Class‘

sort place

3
initialMarking rp1:RefPlace

id=‘Package‘
History

HistPackage2SchemaFS source3

7
m1:HLMarking

text=‘1`{oid=1,typeName=‘Package‘}‘

History
s4

text=‘

7

text 1 {oid 1,typeName Package } text=

n1:
‘text=‘HistPack

(d) Colore(c) Colored Petri Net Concrete Syntax

m1:Module

transitions

a4:Arc c2:Class
name: ‘Schema‘place1 6

p2:ClassPortt1:Transition

transitions

port

outgoing isAbstract=false

5
name=‘Package2Schema‘ production

Patternsproduction
Patterns

port

a4:Arc

p2:ObjectPattern
oidVar=‘package‘

p3:TracePattern
soidVar=[‘package‘]

Patterns

p3:TracePortoutgoing 4p gp g
toidVar=‘package‘

arcs
port

i

g g 4

ctx1:TracePlace
name=‘PackageCtx‘

a5:TPArc
target a6:Arcoutgoing

nsformation Net Abstract Syntax

n1:Net
page 1

1:Page
ge1‘

page2:Page
id=‘page2‘

Schema place on
parent page

place
1

p g

c3:Place
id=‘Schema‘stance

transition

place

arc6

ID=‘page2‘

parameterArssignment
rp2:RefPlace
id=‘Schema‘

s2:Sort
text=‘Class‘

rAssignment a3:ParameterAssignment

parameterArssignment id Schema

target 5
g

hema‘
‘

g
parameter=‘PackageCtx‘
value=‘PackageCtx‘

a2:Arc

t1:Transition

source

arc
t1:Transition

a1:Arc
a3:Arc

target

a4:Arc a5:Arc
source target source

a3:Arc

rp3:RefPlace sort
target

rp4:RefPlace
d ‘ ‘

4:Sort
History‘

sort
sourcetarget

rp3:RefPlace
id=‘PackageCtx‘

s3:Sort

id=‘History‘History

f 1 F i G
:name

‘

references
name 4 s3:Sort

text=‘TracePlace‘
fg1:FusionGroupkage2SchemaFS‘ 7

ed Petri Net Abstract Syntax (PNML)

Figure 6.20: Compilation of Whitebox View

148

6.6. Summary

6.6 Summary

I
n summary, this chapter presented the compilation of Transformation Nets to CPNs. In a first
step, the concepts of CPNs were introduced by example and by means of the formal definitions

thereof. In order to align the formal concepts of CPNs with Transformation Nets, the concepts of
Transformation Nets have been formalized as well, building the basis for the actual compilation
which was presented in detail. Thereby, the translation of places and tokens was discussed before
the focus was shifted to the transformation logic. First, it was mainly shown how patterns may
be represented by according arc inscriptions. Second, it was discussed how to realize the non-
consuming behavior of Transformation Nets in CPNs by introducing so-called history places.
Third, it was shown how OCL conditions and functions are compiled into according concepts
in CPNs and it was discussed how the evaluation thereof may be done, although CPNs do not
support OCL as inscription language.

After presenting the core concepts of Transformation Nets, the compilation of reuse mecha-
nisms, i.e., inheritance and modules, was discussed. Since CPNs do not support inheritance, the
concept of inheritance in metamodels and between transitions in Transformation Nets has to be
flattened during compilation. It was shown, how the requirements on the dynamic semantics of
inheritance in Transformation Nets posed in Subsection 5.4.2, may be accordingly represented
in CPNs. The chapter finished with a discussion on how to represent the module concept of
Transformation Nets in CPNs. For this purpose, hierarchical CPNs have been introduced and
the compilation of modules to hierarchical CPNs has been shown. Thus, this chapter showed
how standard CPNs may be used to as a semantic domain for Transformation Nets, addition-
ally building the basis for sophisticated debugging facilities, which is the focus of the following
chapter.

149

Chapter 7

Debugging Support for Model
Transformations

I have not failed.
I’ve just found 10,000 ways that won’t work.

— Thomas A. Edison

Contents
7.1 Code-Smells in Model Transformations . 152
7.2 Simulation-Based Debugging . 158
7.3 Query-Based Debugging . 162
7.4 Property-Based Debugging . 166
7.5 Fixing Failures . 173
7.6 Summary . 175

I
n the previous chapters Transformation Nets have been introduced as a runtime model for
model-to-model transformations and their translation to CPNs, as a semantic domain was

discussed. The introduction of a dedicated runtime model allows for sophisticated means of
debugging, which is the focus of this chapter. Thereby, dedicated support for every of the three
debugging phases proposed in [173], being (i) observing facts, (ii) tracking origins, and (iii)
fixing failures, is provided, as can be seen in Fig. 7.1. In addition to PaMoMo contracts, Trans-
formation Nets allow for further means to observe facts in a transformation specification. First,
since Transformation Nets provide an integrated view on model transformations, i.e., the meta-
models, models and transformation logic are explicitly represented, code-smells may be detected
by the transformation designer, i.e., structures in Transformation Nets that are likely to lead to
a failure. Second, formal properties of CPNs, e.g., termination or confluence, may be used to

151

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

observe errors. The phase of tracking origins is supported by (i) simulation-based debugging,
i.e., executing the transformation specification in a stepwise manner, (ii) query-based debug-
ging, i.e., employing OCL queries on the runtime model, also enabling forensic debugging, i.e.,
analyzing an already executed transformation to try to reason for failures, and (iii) property
based debugging, i.e., using CPN properties (in addition to common properties like termination)
for debugging. Finally, means for fixing a failure in Transformation Nets are discussed, i.e.,
changing the model and the transformation logic.

• PaMoMo
P(InheritedAttributes)
Class Relational

• Code‐Smells
• General Properties

?ClCl t T bl

pa: Package
s: Schema

Observing
?c: Classp: Class t:Table

isPersistent = true
name=C

name=C

Observing
Factsa: Attribute

name=A
c.allSuperClasses‐>
includes(p)

co:Column
name=A

TrackingFi i
• Simulation‐based Debugging• Changes in Model

(p)

Tracking
Origins

Fixing
Failures

• Query‐based Debugging
• Forensic Debugging
• Property based Debugging

Changes in Model
• Changes in
Transformation Logic

• Property‐based Debugging

Source TargetTransformation

Package Schema

p2p1

Package2
Schema

p1 p1

Class2

packageSelect target object

Object

Class

classes

0..*

Table

classes

0..*

Table

package

schema

c3

c1 c2 c3
class

Figure 7.1: Overview on Debugging Phases and Support in Transformation Nets

7.1 Code-Smells in Model Transformations

A
s stated above, Transformation Nets may act as a common runtime for declarative, model-
to-model transformation languages in order to provide dedicated means for testing and

debugging. The integrated view on model transformations, i.e., the representation of metamodels
and models together with the actual transformation logic, allows to detect potential failures.
For example, if a transformation specification is translated to Transformation Nets, the static
structure might already indicate failures. In the following, common code-smells, i.e., structures
that are likely to cause failures, are discussed and it is explained how they may be detected by
inspecting the structure of Transformation Nets. Fig. 7.2 classifies potential code-smells into
intra-transition code-smells, i.e., code-smells that concern a single transition only, and inter-
transition code-smells, i.e., code-smells concerning the interplay between transitions. In the
following, each category is described in a pattern like style, whereby foremost the problem is
described succeeded by a hint, how to spot these code-smells in Transformation Nets.

152

7.1. Code-Smells in Model Transformations

Transformation Net
Code‐smells

Intra‐transition
Code smells

Inter‐transition
Code smellsCode‐smells

W W d ti W ti

Code‐smells

Mi i R d d t Mi i hWrong query
pattern granularity

Wrong production
pattern granularity

Wrong connection
to query pattern

Missing
specification

Redundant
specification

Missing coherence
of rules

Figure 7.2: Taxonomy of Common Code-Smells in Transformation Nets

7.1.1 Intra-Transition Code-Smells

Pitfalls within a single transition might concern either the matching phase of input elements, or
the the production phase of the desired target elements.

• Wrong Query Pattern Granularity. A common code-smell concerns the pattern gran-
ularity, i.e., the number of 1:n relationships occurring in the precondition (LHS) side of
a transition. Starting from an object, only one 1:n relationship is preferred (e.g., be-
tween Package and Class), since a further 1:n relationship (e.g. between Class and
Attribute) could either lead to too many matches or to too few matches which is not
intended, as can be seen in Fig. 7.3(a). In this example, on the one hand the package
p1 is matched twice because the contained class c1 contains two attributes a1 and a2,
since no check before enforce semantics was applied, and therefore, too many packages
are created. On the other hand, no schema is produced for the package p2, since the class
c2 does not contain any attributes, which is probably not intended as well.

Detection in Transformation Nets: A wrong pattern granularity may be statically checked
by inspecting the involved query reference pattern. If a transition contains more than
one reference pattern and if the according source reference places offer an upper bound
greater than one, then a warning is given to the transformation designer. This is ensured
by an according OCL invariant on the transition (cf. Listing 7.1). If the transformation
specification is already executed, a wrong granularity may also be detected if the target
places or the trace places of a certain transition contain duplicates, i.e., tokens with the
same color, which again is a strong indication that there were too many matches.

Listing 7.1: Invariant to Check Granularity of Query Reference Patterns
1 c o n t e x t T r a n s i t i o n inv Q u e r y P a t t e r n G r a n u l a r i t y :
2 s e l f . q u e r y R e f e r e n c e P a t t e r n s −> c o l l e c t (inArc)−> f l a t t e n ()
3 −−check i f t h e upper bound o f t h e r e f e r e n c e i s g r e a t e r than 1
4 −> c o l l e c t (x : PTArc | x . s o u r c e . upperBound > 1)−> s i z e () <= 1

153

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

Source TargetTransformation

Package

p1

Schema

p1 p1p2 Source TargetTransformation

Package Schema

Class
package

classes
0..*

package

Package

p1

Schema

p1 p1p2 p2

attributes

c1

class

c2

Class

classes
0..*

Table

classes
0..*

class

Attribute

a1 a2

0..*
attr

c1 c1c3c2 c3c2

a1 a2

(a) Wrong Query Pattern Cardinality (a) Wrong Production Pattern Cardinality

Figure 7.3: Wrong Pattern Granularity

• Wrong Production Pattern Granularity. At the target side, it is typically not desired to
produce source and target objects as well as the link of an 1:n relationship by a single rule,
since this would lead to too many source objects of the link (if the rule does not support
a check before enforce semantics). As can be seen in Fig. 7.3(b), too many packages are
created since p1 is matched twice (i.e., in the combination package = p1 and class
= c1 and in the combination package = p1 and class = c2). Therefore matching
1:n references and producing 1:n references within a single transition should be omitted.

Detection in Transformation Nets: On the one hand this code-smell may be detected by
means of an OCL invariant if there exists a target arc to the source class place of a ref-
erence and to the target place of a reference, e.g, the places Schema and Class in the
example, and if there exists a query pattern which matches for an unbounded reference,
e.g., classes in Fig. 7.3. On the other hand, if the Transformation Net is already ex-
ecuted, again duplicate tokens may be found in the source place of the reference. Both
facts are a strong indication that the production patterns offer the wrong granularity and
therefore an according warning is raised.

Listing 7.2: Invariant to Check Granularity of Production Reference Patterns
1 c o n t e x t T r a n s i t i o n inv P r o d u c t i o n P a t t e r n G r a n u l a r i t y :
2 s e l f . q u e r y R e f e r e n c e P a t t e r n s −> c o l l e c t (inArc)−> f l a t t e n ()
3 −−check i f p a t t e r n e x i s t s w i t h upper bound g r e a t e r than 1
4 −> c o l l e c t (x : PTArc | x . s o u r c e . upperBound > 1)−> isNotEmpty () i m p l i e s
5 −−check i f s o u r c e v a r i a b l e i s a l s o used i n an o b j e c t p a t t e r n
6 s e l f . p r o d u c t i o n R e f e r e n c e P a t t e r n s −>f o r A l l (x |
7 not s e l f . p r o d u c t i o n O b j e c t P a t t e r n s
8 −> s e l e c t (y | not y . cbe)−> f l a t t e n ()−> c o l l e c t (z |
9 z . o idVar)−> i n c l u d e s (x . s o i d V a r))

154

7.1. Code-Smells in Model Transformations

• Wrong Connection to Query Pattern. A further code-smell may occur if the production
pattern is wrongly connected to the source domain pattern by missing or incorrect variable
assignments, i.e., a new instance of an object is generated instead of copying the source
element.

Detection in Transformation Nets: By comparing the colors of the query patterns on the
left side with the colors of the production patterns on the right side of a transition, it may
be seen if new objects, values, or links are created, i.e., these objects have not been bound
by variables. Nevertheless, since this might be intended in several situations, e.g., when
merging several source objects to a single target object, this situation does not raise a
warning.

7.1.2 Inter-Transition Code-Smells

Inter-transition code-smells, i.e., suspicious structures concerning the interplay of the specified
transitions, deal with metamodel coverage, i.e., if all elements of the involved metamodels are
affected by transitions, redundancies, i.e., if metamodel elements are affected by several transi-
tions, and finally coherence between transitions.

• Missing Specification. If no rule matches a certain metamodel element, then this element
will not participate in the transformation process and the according instances will not
result in any target instances, which leads to information loss during the transformation.
As on the source side, also on the target side metamodel elements may not be targeted by
a single rule and therefore no according instances may be created.

Detection in Transformation Nets: If no source arc originates from a certain source place
(cf. Fig. 7.4 where no arcs originate from the class Attribute), this metamodel element
will not be considered in the transformation. The same is true on the target side, i.e., if no
arc targets a certain place representing an element of the target metamodel, instances of
this metamodel element may not be created by the transformation. Both code-smells are
automatically detected by means of OCL invariants (cf. Listing 7.3) in Transformation
Nets leading to according warnings.

Listing 7.3: Invariant to Check Metamodel Coverage
1 c o n t e x t LHS inv SourceMMCoverage :
2 s e l f . p l a c e s−>f o r A l l (p | p . ou tgo ing−>no t I sEmpty ())
3 −−
4 c o n t e x t RHS inv TargetMMCoverage :
5 s e l f . p l a c e s−>f o r A l l (p | p . incoming−>no t I sEmpty ())

• Redundant Specification. If more than one rule matches a certain metamodel element,
then this may lead to redundant elements on the target side, unless according conditions
match for disjoint subsets. Again, the same applies to the target metamodel, i.e., if el-
ements of the target metamodel are targeted by more than one rule, then it may happen
that these parts will be produced several times (if no check before enforce semantics is
employed).

155

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

Detection in Transformation Nets: On the source side, this code-smell may be detected
if several arcs originate from one source place. On the target side, this may be detected
if more than one arc targets a certain place. Again this may be automatically checked by
employing OCL constraints, leading to according warnings in Transformation Nets (cf.
Listing 7.4). Nevertheless, since redundant specifications are common practice in some
transformation languages, e.g., QVT Relations, the validation of this code smell can be
turned off in the prototype (cf. Section 8.2). Furthermore, if the Transformation Net
is already executed and if a target place contains duplicates, i.e., same-colored tokens,
this indicates redundantly specified parts as well. As the example in Fig. 7.4 depicts, the
module PackageClasses2SchemaTables and the module Class2Table target
the class place Table, which leads to a redundant generation of table instances.

Listing 7.4: Invariant to Check for Redundant Specifications
1 c o n t e x t LHS inv SourceMMRedundancy :
2 s e l f . p l a c e s−>f o r A l l (p | p . ou tgo ing−>s i z e () > 1)
3 −−
4 c o n t e x t RHS inv TargetMMRedundancy :
5 s e l f . p l a c e s−>f o r A l l (p | p . incoming−>s i z e () > 1)

• Coherence Between Rules. Typically, rules in transformation languages interact with
each other, i.e., the result produced by one rule allows other rules to transform their corre-
sponding elements (cf. trace and intermediate places). In this respect, rules are typically
using trace information or explicit calls, i.e., when and where clauses in QVT Relations
to synchronize each other. If several unrelated rules are specified, then they work entirely
independently of each other, resulting in unconnected parts in the output model. This may
be intended, in case that the input model consists of unconnected parts too, but normally
this is not intended, especially in the context of Ecore, which demands a tree structure of
the model elements and at least a connection to the rule transforming the root container,
has to be established. Therefore, also the according Transformation Net requires traces
places to allow for interaction between transitions.

Detection in Transformation Nets: In Transformation Nets, transitions interoperate via
trace places and modules are connected via according trace ports. Therefore, if transitions
or modules are not connected via according trace places, the transitions are independent
of each other. Thus, the Table instances produced by the module Class2Table are
not linked to their according packages, as may be seen by the number of tokens in the
reference place tables in the example in Fig. 7.4. In order to provide hints to the trans-
formation designer, the target metamodel can be analyzed. In this respect, if a transition
targets a certain class and if this class offers a containment reference to another class, then
the transitions that target this class have to interoperate.

• Invalid Target Model. The generated target model of a transformation must again con-
form to its according metamodel. For example, dangling references must not occur, i.e.,
links have to point to a valid target object. An incorrect target model may result from
the fact that in Transformation Nets it is possible to match for arbitrary elements, e.g.,
to match for a value, and to produce an arbitrary element thereof, e.g., a link. This is

156

7.1. Code-Smells in Model Transformations

Source TargetTransformation

Package

p1

Schema

p1 p1p2

C
C

Class

classes
0..*

Table

tables 0..*

PackageClasses
2

SchemaTables

C

C
C

attributes

c1 c3 c1 c3c2Class2
Table

C
C

RedundantRedundant
Coherence Coherence

between rules

c2

c1 c3c2

Attribute

a1 a2

0..*

Missing
specification

p
Redundant
specification

between rules

a1 a2 pp

Figure 7.4: Inter-Transition Code-Smells

especially favorable to overcome structural heterogeneities [94], but may induce incorrect
target models. Nevertheless, this may also happen in other Transformation Languages,
e.g., in graph transformations, objects may be deleted which are still referred by some
links.

Detection in Transformation Nets: Invalid configurations of a target model may be de-
tected by inspecting the tokens of the generated target model, i.e., the colors of links and
the object color of values has to be present in the according class places. In order to ensure
such well-formed constraints, OCL invariants are added to the target places. For example,
for all tokens in attribute places it is checked if there exists an according object token.
If this is not the case, these tokens are highlighted, which may serve as starting point for
debugging. A similar constraint is put onto reference places which checks if the according
source and target objects exist. Additionally, boundedness constraints are validated, i.e., if
the number of tokens that originate from a certain link token (outer color) does not exceed
the specified upper-bound of the reference.

Listing 7.5: Invariants to Check if Generated Target Model is Correct
1 c o n t e x t A t t r i b u t e inv HasObjec t :
2 s e l f . c l a s s −>tokens−> c o l l e c t (o i d)−>
3 i n c l u d e s A l l (s e l f . t okens−> c o l l e c t (o i d))
4 −−
5 c o n t e x t R e f e r e n c e inv HasSource :
6 s e l f . sou rce−>tokens−> c o l l e c t (o i d)−>
7 i n c l u d e s A l l (s e l f . t okens−> c o l l e c t (s o i d))
8 −−
9 c o n t e x t R e f e r e n c e inv HasTarge t :

10 s e l f . t a r g e t −>tokens−> c o l l e c t (o i d)−>
11 i n c l u d e s A l l (s e l f . t okens−> c o l l e c t (t o i d))
12 −−

157

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

13 c o n t e x t R e f e r e n c e inv CheckUpperBound :
14 s e l f . upperBound <> −1 i m p l i e s s e l f . t okens−>f o r A l l (x : Token |
15 s e l f . t okens−> c o l l e c t (x . o i d)−> s i z e () <= s e l f . upperBound)
16 −−
17 c o n t e x t R e f e r e n c e inv CheckLowerBound :
18 s e l f . lowerBound <> 0 i m p l i e s s e l f . t okens−>f o r A l l (x : Token |
19 s e l f . t okens−> c o l l e c t (x . o i d)−> s i z e () >= s e l f . lowerBound)

In summary, the static structure of Transformation Nets may already indicate certain failures
in the transformation specification, providing a potential starting point for debugging. In the
following, means for debugging in Transformation Nets are discussed in detail.

7.2 Simulation-Based Debugging

Although the static analysis of Transformation Nets and the corresponding detection of code-
smells may point to failures, often failures in transformation specifications may only be

detected by means of live-debugging, i.e., simulation of the execution. The simulation of the
transformation specification allows a transformation designer to get an insight into the specifi-
cation, i.e., the hidden operational semantics is made explicit, in order to foster debugging. In
this respect, Transformation Nets provide various means to support the transformation designer
in live-debugging in order to effectively find the origin of a failure. Following the classification
presented in Section 2.3, the according means in Transformation Nets are discussed. Thereby, (i)
means for selecting a certain part of the transformation code, (ii) means for inspecting the current
execution state and, finally, (iii) means for investigating the dynamic behavior are presented.

7.2.1 Selection

Transformation Nets allow (i) to select an enabled transition and according bindings, i.e., debug-
ging of the matching process, and (ii) to set breakpoints on different elements (i.e., transitions,
places, tokens), in order to provide flexible means to the transformation designer to select a
certain starting point for debugging.

7.2.1.1 Debugging of the Matching Process

As stated in Section 2.3, debugging support during the matching phase of a model transfor-
mation is of utmost importance. Since transformation engines typically select applicable rules
non-deterministically, the debugging environment needs to accordingly visualize the rules that
are currently applicable. Since Transformation Nets build a DSL on top of CPNs, which in-
herently support non-determinism, the enabled transitions have to be made explicit. For this,
the according enabled transitions are highlighted (cf. transitions with a bold, green border in
Fig. 7.5), indicating that (only) these transitions may be fired. In the example in Fig. 7.5 both
transitions are enabled, since there already is a trace token available which enables the transition
Class2Table. Consequently, the transformation designer is allowed to chose an arbitrary
transition to fire. If an enabled transition is contained within a module, the blackbox view of the
module is accordingly highlighted as well.

158

7.2. Simulation-Based Debugging

Source TargetTransformation Source TargetTransformationg

Package

p1

Schema

p2

ga s o at o

Package Schema

21

Package2
Schema

p1

Package2
Schema

Bindings:
{p2}

p p p2p1

p1 p1

PackageCtx

package

p1

p1 p1package

Cl

classes

0..*
T bl

classes

0..*
classes

0..*

classes

0..*

Class2
Table

package

schema

Class2
Table

package

schemap1 p1

Class

c1

Table

c3c2

Class

c1

Table

c2 c3

class

p g

class

Bindings:Bindings:
{p1,(p1,c1),c1}
{p1,(p1,c2),c2}

(a) Selection of Calculated Bindings (b) Manual Selection of Bindings by Drag & Drop

P k 2

p1 p1

Package2
Schema

k p1 p1

Class2
Table

package

package

class

schema

class

Figure 7.5: Debugging Support in the Matching Phase

If a transition is enabled, it may be the case that there exist several valid bindings. Thus, the
transformation designer should be enabled to select a desired one. Transformation Nets support
this scenario by two different mechanisms being (i) selection of calculated bindings and (ii)
user-defined bindings. Concerning the first mechanism, every enabled transition may be asked
for its currently possible valid bindings, which are presented to the transformation designer and
from which he is allowed to select one, as can be seen in Fig. 7.5(a). Concerning the second
mechanism, the transformation designer may drag and drop tokens from source places to a query
pattern of the according transition. The transition checks, if the specific token is part of a valid
binding. If this is the case, the query pattern is bound to the according token. Additionally, the
remaining tokens in source places that may not be bound any more are greyed out and may not
be dropped onto query patterns of the according transition anymore (cf. Fig. 7.5(b)). On the
one hand, the transformation designer may then complete the binding by dragging and dropping
the remaining tokens to the according query patterns. On the other hand, the matching may also
be auto-completed, i.e., the transformation designer might select from the remaining calculated
bindings, meaning that only those bindings are presented that contain the already bound tokens.
If the first selected token is not part of a valid binding, an according error message is presented,
stating the reason why a certain token may not be bound, e.g., if it does not fulfill a certain
condition.

7.2.1.2 Breakpoints

Whereas in common programming languages a breakpoint is typically set to the desired line of
code, in Transformation Nets breakpoints may be set on four different types of metamodel ele-
ments, being (i) transitions, (ii) modules, (iii) tokens and (iv) places, as can be seen in Fig. 7.6(a).
Breakpoints on transitions are closest to those known from programming languages. Per default,
the execution of Transformation Nets stops at this kind of breakpoint every time the according
transition is enabled. Nevertheless, the transformation designer might change this behavior and
may configure the breakpoint such that it stops execution every time a certain transition is not
enabled. The same principle is followed concerning modules, whereby execution is stopped

159

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

every time anyone of the contained transitions is enabled or disabled depending on the configu-
ration of the breakpoint. If a breakpoint is attached to a certain token, execution is stopped if this
token is successfully bound to a transition, i.e., if it is part of a valid binding. Finally, concerning
places, execution is stopped either if a token is about to be read from a certain source place or if
a token is going to be put into a certain target place.

Source TargetTransformation Source TargetTransformationg

Package

p1

Schema

p2

ga s o at o

Package Schema

21

Package2
Schema

p1

Package2
Schema

Breakpoint on PlaceBreakpoint on Token

p1 p2 p2p1

p1 p1

PackageCtx

package

p1

p1 p1package

Breakpoint on Transition @package=‘p2’

Schema.allInstances()‐>size() >1

classes

0..*
bl

classes

0..*

classes

0..*

classes

0..*

Class2
Table

package

schema

Class2
Table

package

schema

Breakpoint on Transition @p g p

Class

c1

Table

c3c2

Class

c1

Table

c2 c3

Table allInstances()>size() >1 and

class

p g

class

(a) Breakpoints (b) Conditional Breakpoints

Table.allInstances()>size() >1 and
Schema.allInstances()>size ()>2

P k 2

p1 p1

Package2
Schema

k p1 p1

Class2
Table

package

package

class

schema

class

Figure 7.6: Breakpoints in Transformation Nets

Conditional Breakpoints. Although breakpoints may be attached to different elements,
they are not very flexible, i.e., the execution might stop too often, since it might not exactly be
the situation the transformation designer wants to debug. Therefore, conditional breakpoints are
provided, i.e., OCL expressions are used to further restrict the applicability of a certain break-
point. Conditional breakpoints may again be specified at different levels of granularity. Thus,
it may not only be defined that execution should stop, e.g., if a certain token is streamed into a
certain place, i.e., local condition, but also if a certain combination of tokens occurs in several
different places, i.e., global condition. Examples for the first case are shown in Fig. 7.6(b). The
conditional breakpoint attached to the place Package will stop execution only if more than one
package is produced and the conditional breakpoint attached to the transition Class2Table
stops execution if the variable package is bound to the token p2. An example for the lat-
ter case is shown by the breakpoint attached to the place Table, which stops execution if the
Table place contains more than one element and if additionally the Schema place contains
more than two elements.

7.2.2 Inspection

A natural prerequisite for reasoning about the state of execution is to provide appropriate inspec-
tion mechanisms. In the following it is shown, how the actual state of execution and the control
flow is represented in Transformation Nets.

State inspection. Since Transformation Nets provide an integrated view on the transfor-
mation specification, i.e., not only the transformation logic itself is represented, but also the
involved source and target metamodels as well as their according model elements. Thus, the

160

7.2. Simulation-Based Debugging

actual state of the transformation is presented to the transformation designer at any time during
the transformation.

Visualization of control flow. As stated in Subsection 7.2.1.1, on the one hand, the visual-
ization of the control flow is achieved by highlighting the transitions ready to fire. On the other
hand, the history of transitions (which is hidden per default, but may be made explicit by the
transformation designer) as well as the trace tokens provide visual information on which source
tokens have been transformed to which target tokens (cf. Fig. 7.7). In order to make this in-
formation even more explicit, interrelationships between tokens are highlighted on mouse-over.
For example, when moving the mouse over a source object token, the relationship to according
value and link tokens that are contained by this object as well as already transformed tokens that
originate from the source object token are highlighted by means of dashed lines (cf. Fig. 7.7).

Source TargetTransformation

Package SchemaPackage2Package

p1

Schema

p1

p1 p1

PackageCtx

Schema

package

p2

Interrelationships

Trace tokens

Table

classes tables

Class2
Table

package

schema

Class

c1
class

c1 c2 c3

Query
Patterns

Production
Patterns

History

package class schema Class

p1 c1 p1 c1

Figure 7.7: Visualization of Control Flow in Transformation Nets

7.2.3 Dynamics

A transformation designer may investigate the dynamic semantics of the transformation speci-
fication by a stepwise firing of transitions. Thus, it is possible to exactly follow which source
element is transformed into which target element. Considering modules, the alternatives (i) step
into, (ii) step over, (iii) step return, known from debugging in object oriented programming,
are provided. Step into switches from the blackbox view into the whitebox view of the mod-
ules and fires an enabled transition. If more than one transition is enabled, one is chosen in a
non-deterministic way. The semantics of step over is, that all contained and enabled transitions
are fired. Please note that, if the firing of a transition enables another transition contained in
the corresponding module, this transition is also fired. Finally, step return is enabled only in

161

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

the whitebox view of a module and means that all enabled transitions contained in the module
should be fired and afterwards it should be returned to the blackbox view.

In summary, Transformation Nets support the features expected from debuggers, but rather
on the model level than on the code level, as typically provided by current debuggers integrated
in model transformation languages. Nevertheless, the explicit runtime model allows for more
sophisticated means of debugging, i.e., to tackle the known problem of reasoning backwards in
time as discussed in the following.

7.3 Query-Based Debugging

D
ebugging suffers from the well-known problem that programs execute forward in time
whereas programmers must reason backwards in time to find the origin of a bug [173].

In this respect, the transformation designer needs to carefully approach the moment when the
actual infection is observable in the transformation specification. Nevertheless, this needs not
to be the exact point where the infection has been introduced, i.e., the actual defective piece
of code. Thus, the transformation designer has to restart debugging and try to find the failure
at some earlier point in time of execution. This is typically time-consuming and cumbersome
and therefore means are needed that allow to reason backwards in time. Thereby, questions like
“where does this target element come from” should be answered, i.e., query-based debugging
should be enabled.

A first idea in this direction was the so-called omniscient debugging [120, 173], where de-
bugging is based on a before recorded run of the execution. Nevertheless, the main disadvantage
of this approach is that recording every single step is expensive in terms of memory and leads
to time intensive operations during the actual debugging process. Ideas have been presented
that tried to minimize the amount of the recorded data, i.e., it has been tried to abstract from
details by means of representing the program execution in terms of runtime models, which is
basically the idea of runtime verification [11]. Nevertheless, such a model on the execution is
only the first step, but what is needed are means to analyze dependencies, i.e., which transition
produced a certain token. The investigation of dependencies of a concrete program run is called
dynamic slicing [173], i.e., deduce those parts of the transformation specification that deal with
a certain element. In order to be able to calculate such dynamic slices, explicit trace information
is needed. Since Transformation Nets provide explicit trace information, OCL queries can be
employed to realize dynamic slicing, as discussed in the following.

7.3.1 Dynamic Slicing and Backwards Reasoning by Means of OCL

Since the execution of a transformation is stored as a model, which conforms to the Transfor-
mation Net metamodel (cf. Fig. 4.3 on 73), OCL queries may be employed to realize dynamic
slicing for Transformation Nets in order to enable backwards debugging in time for model trans-
formations. Fig. 7.8 shows the application thereof reusing the example already presented in
Subsection 4.4.3. When inspecting the generated target model, at first sight it remains unclear,
which transition and due to which configuration in the source model the column a5 has been
generated, since both transitions, Attribute2Column and SuperAttr2Column target the

162

7.3. Query-Based Debugging

place Column. The according token might be asked for the transition that created the token by
means of the derived OCL function getCreator() which is depicted in Listing 7.6. Thereby,
the function first gets its according place and collects the transition (cf. line 3). Afterwards, the
history of the transitions is checked whether it contains the id(s) of the according token in its
postconditions. The derived function getIds (cf. line 7) delivers the ids as set of the according
token, i.e., oid in case of Object tokens, the oid and the valueId in case of Value tokens,
soid and toid in case of Link tokens or soids and toid in case of Trace tokens.

Listing 7.6: GetCreator Function
1 c o n t e x t Token : d e f g e t C r e a t o r () : T r a n s i t i o n =
2 −− c o l l e c t a l l t r a n s i t i o n s t a r g e t i n g t h e token ’ s p l a c e
3 s e l f . p l a c e . inArcs−> c o l l e c t (a : TPArc | a . s o u r c e . t r a n s i t i o n)
4 −− s e l e c t t h e h i s t o r y
5 −> s e l e c t (h i s t o r y E n t r i e s
6 −−check i f t h e p o s t c o n d i t i o n c o n t a i n s t h e a c c o r d i n g i d o f t h e t o k e n
7 −> c o l l e c t (p o s t c o n d i t i o n)−> i n c l u d e s A l l (s e l f . g e t I d s ()))

TargetSource

TableClass2

Transformation

History
1

Class TableTable

c2 c3

class

Query
Patterns

Production
Patterns

class attr table attr

HistoryClass

isPersistent: Bool

c1 c2 c3

super
classes

Attribute2
Column

c2 c3

ClassCtx
c3c2

c2 a2 c2 a2

c3 a3 c3 a31

c2
true

c3
true

c1
false @class.isPersistent

Column
0..*

ClassCtx

attr

class
table

Query
Patterns

Production
Patterns

History 2

0 *

attributes
columns

SuperAttr2
l

SuperAttributes

attr

sub
Class

super
Class

attr table Super
Col

c2 c1 a1 c2 a42getInputTokens(a6)

Step2

Step60..*

Attribute

a1 a2

Column

0..*

Helper

Column

class

table
subClass

attr

c3 c1 a1 c3 a5

c3 c2 a2 c3 a6

getInputTokens(a6)
‐>at(3)getInputTokens({c3,c2})

‐>at(1)

Step6

a3 3a1 a2

Transitive

superClass

superClass superCol

Query
Patterns

Production
Patterns

History 3

tC t ()3

a3 a2

a4 a5 a6

a3

Transitive
Closure

Closure

subClass

baseClass

sub
Class

super
Class

base
Class

sub
Class

base
Class

c3 c2 c1 c3 c1

getCreator()3

C ()

getInputTokens({c3,c1})
‐>at(2)

getCreator() Step1

S 3 Step4

Step5

Closure
superClass

baseClass

(a) Transformation Net with Intermediate Place (b) Histories to Transitions

getCreator()Step3 Step4

Figure 7.8: Backwards in Time Reasoning in Transformation Nets

In the case of the example, the histories of the transition Attribute2Column and Super-
Attr2Column are investigated. As can be seen in Fig. 7.8, only the history of the transition
SuperAttr2Column contains the token a5 in the history’s production tokens and therefore
this transition is returned as according creator transition. This transition may then be asked for
the binding of the according created token, e.g., the transition SuperAttr2Column might be
asked for its query patterns by employing the OCL function getInputTokens(t), whereby
the parameter t denotes an according generated token, e.g., the token a5 in our example. The

163

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

according OCL expression is shown in Listing 7.7, whereby in line 3 first all potential source
tokens are collected. From these source tokens, only those tokens which are in the precondition
of the history of token t are selected. In line 7, it is first checked if a postconditions contains
the ids from the token t, and if this is the case, then the precondition is selected. Only if this
precondition contains the ids of a certain token (iterator variable x), this token is added to the
sequence to return.

Listing 7.7: GetInputTokens Function
1 c o n t e x t T r a n s i t i o n : d e f g e t I n p u t T o k e n s (t : Token) : Sequence { Token } =
2 −− s e l e c t t o k e n s o f t h e s o u r c e p l a c e s , whose i d i s i n t h e p r e c o n d i t i o n o f a h i s t o r y
3 s e l f −> c o l l e c t (q u e r y P a t t e r n s) . i nArc . s o u r c e . t o k e n s ()−> f l a t t e n ()
4 −−s e l e c t t h o s e t o k e n s , t h a t are i n t h e h i s t o r y o f t h e t r a n s i t i o n
5 −> s e l e c t (x : Token | (s e l f −> c o l l e c t (h i s t o r y E n t r i e s)
6 −−g e t t h e p r e c o n d i t i o n i f t h e p o s t c o n d i t i o n c o n t a i n s t h e i d o f t o k e n t
7 −> f l a t t e n ()−> s e l e c t (h : H i s t o r y | h . p o s t c o n d i t i o n −>
8 i n c l u d e s A l l (t . g e t I d s ())) . p r e c o n d i t i o n)−> i n c l u d e s A l l (x . g e t I d s ()))− > asSequence ()

In our example, the getInputTokens functions would return the context token c3|c3,
the link token having the source Class object c2 and the target Attribute object a2, as well a
link token having as source object c3 (cf. value of variable subClass) and as target object c1.
Since there is no source link from c3 to c1 available in the source model (cf. link tokens in place
superclasses), this token is further investigated. For this, the third token in the sequence is
selected. On this token again the function getCreator() is called, which delivers the only
available transition TransitiveClosure, since its history contains the according markings
(cf. 3 in Fig. 7.8). It may be seen that an additional link c3 is created (which is bound to the
variable subClass) and c1 (which is bound the variable baseClass) since there exists a link
between c3 and c2 as well as c2 and c1. In this respect, the transitive inheritance relationship
between c3 and c1 is made explicit. It is then possible to ask for the according input tokens and
their according creator again until the according tokens in the source model may be found (cf.
steps 4 to 6 in Fig. 7.8).

7.3.2 Forensic Debugging

As stated in [66], the detailed traceability available in numerous of today’s model transformation
languages would allow for forensic debugging, i.e., debugging of a model transformation after
its actual execution. In this respect, at least parts of the debugging task could be automated in
order to narrow the scope of the potential location of the defect. For this, query-based debugging
may again be incorporated. In [66], failures have mainly been divided into failures that lead to
invalid output, i.e., the generated target model does not conform to its corresponding metamodel,
or failures that lead to incorrect output, i.e., logical errors, which could be detected by means of
forensic debugging.

Invalid output may be detected in Transformation Nets by investigating the tokens in the
target places, e.g., dangling references, as already described in Section 7.1. Nevertheless, this is
only where the failure shows its effect but again, support is needed to detect the actual origin. In
this respect, query-based debugging mechanisms may be employed to reason backwards in time.
For detecting incorrect output, in [66] only informal debugging questions, e.g., “Why are there
no objects of type t in the target?” are presented, although the authors state that oracles could

164

7.3. Query-Based Debugging

be used for this purpose. However, a method called re-enactment is proposed which allows
the “selective re-execution of logical parts of the model transformation in a controlled runtime
environment to gather knowledge about specific problems” [66].

To realize re-enactment in Transformation Nets, first PaMoMo contracts (cf. Chapter 3)
may be used to check the correctness of a transformation. As a simple example, two contracts
are specified in Fig. 7.9. The first contract checks if there exists an equally named Schema
instance for every Package instance and the second one checks if for every persistent Class
there exists an equally named Table. When testing the specified QVT Relation specification
(cf. specification in the middle of Fig. 7.9) against the contracts, it may be seen that the second
contract fails, revealing which source elements caused the contract to fail (cf. verification results

1 transformation ClassToRel
2 (class : Class ; rel : Relational){

P(Package2Schema)
c1 : Class
isPersistent = true

classes

namespace

3
4 // map each package to a schema
5 top relation PackageToSchema {P(Package2Schema)

Class Relational

isPersistent = true
name = ‘Person‘

p1 : Package
name = ‘University‘

namespace

subclasses
superclass

p g {
6 pn: String ;
7 checkonly domain class p: Package {
8 name =pn

p: Package
name=X

s: Schema
name=X

c2 : Class
isPersistent = falseclasses

name = University

namespace
subclasses8 name =pn

9 };
10 enforce domain rel s: Schema {
11name X name X

name = ‘Student‘
classes

Test Source Model
11 name =pn
12 };
13 }

P(Class2Table)
Class Relational

14
15 // map each persistent class to a table
16 top relation ClassToTable {

p: Package s: Schema

p {
17 cn: String ;
18 checkonly domain class c: Class {
19 namespace =p: Package {}

t T blCl

name=X name=X 19 namespace =p: Package {},
20 name =cn
21 };
22 f d i l t T bl {t: Table

name=Yname = Y
c: Class 22 enforce domain rel t: Table {

23 schema =s: Schema {},
24 name =cn

isPersistent=true 25 };
26 when {
27 PackageToSchema (p, s);27 PackageToSchema (p, s);
28 }
29 }
30 }30 }

PaMoMo specification QVT Relation Veri

l

Source T tT f ti

translate

Q P d ti

History 1
Source TargetTransformation

Schema
Package2
Schema

Package 1
Query
Patterns

Production
Patterns

package name package name

Package
p1 p1

Schema

package

name: String name: String
p1 University p1 University

Class2

g g

name

2
p1

University
p1

University

History

p1 p1

PackageCtx

Class2
Table

schema

2

Query
Patterns

Production
Patterns

History

bl

classes tablespackage

class

package schema class persistent name schema class name

p1 p1 c1 true Person p1 c1 Perso

Table

c1 c2

Class

name
p1 p1 c2 false Student p1 c2 StudeisPersistent: Bool name: String

c2
true

c1
false

name: String
c2

Student
c1
Person

truefalse

StudentPerson

ee

s
ses

Package Package
s

classes
*

Class

classes
*

Class
isPersistent : Bool

Class
isPersistent : Bool

ification

2

e

n

ent

Figure 7.9: Re-Enactment: Combining PaMoMo and Transformation Nets for Debugging

165

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

in Fig. 7.9). Therefore, transitions that transformed these source instances need to be made
available for re-enactment, i.e., it should be possible to fire them again to check for failures.
Consequently, the precondition of the transitions’ histories are investigated by searching for
source tokens that caused the contract to fail. In order to be able to fire this transition again, the
according history entries need to be deleted (cf. history 2 in Fig. 7.9). Furthermore, the histories
of all dependent transitions are cleared as well in order to consider the dependent transitions for
re-enactment. In this respect, it is possible to identify those parts of the Transformation Net that
were likely to cause a failure. Nevertheless, it is not possible to identify the exact point where
the faliure has been introduced, for which again the afore mentioned (live) debugging features
may be employed. When investigating the potential bindings of the transition Class2Table
in the example, it may be detected that both classes c1 and c2 represent valid bindings although
only the class c1 is persistent. Therefore, the corresponding relation Class2Table of the
QVT Relation specification misses an according condition that checks for persistent classes.

In summary, Transformation Nets provide means for backwards in time debugging by em-
ploying predefined OCL functions. Additionally, custom OCL functions may be used, since the
execution of a model transformation is again represented as model, i.e., the runtime model may
be queried by any OCL expression, which allows for flexible means of query-based backwards
in time debugging. Backwards in time debugging is especially useful when oracles for testing
the transformations are employed. The differences between the actually generated and the de-
sired target model may be made explicit in the Transformation Net, i.e., if too many tokens are
created, these tokens may be highlighted since they may serve as a starting point for debugging
backwards in time.

7.4 Property-Based Debugging

T
ransformation Nets form a DSL on top of CPNs and the formal properties of CPNs may
be applied during debugging, allowing for property-based debugging. For this, the state

space of the CPN has to be constructed to calculate diverse behavioral properties. In a first
step an overview on the state space analysis methods is given, before the properties and their
applicability in the domain of model transformations are discussed in detail.

7.4.1 Calculation of the State Space

The basic idea of state spaces is to calculate all reachable states (markings) and state changes
(occurring binding elements) of the CPN. In the resulting directed graph, nodes correspond to the
set of reachable markings and the arcs correspond to occurring binding elements. Consequently,
a state space depends on a specific initial marking, i.e., the according source model in Trans-
formation Nets. State spaces provide powerful means to analyze the specified CPN and may be
created fully automatically. The construction of the state space starts with the initial marking
of a CPN. To exemplify this, Fig. 7.10 shows a simple Transformation Net, its according CPN,
as well as the calculated state space. Thereby, the state labeled 1 represents the initial marking,
which may also be seen from the fact that this is the only state without a predecessor. When
examining the transformation logic, it may be detected that the transition Package2Schema

166

7.4. Property-Based Debugging

S TfSource TargetTransformation

Package SchemaPackage2
Schema

p1

Schema

PackageCtx

Cl 2

package

classes tables

Class2
Table

schema

Table
package

class

Class

c1 c2

(a) Transformation Net Concrete Syntax
History nil

HistPackages
nil

hi tI tS t d ([k]) hi t

Package

1`{oid=“p1“,typeName=“Package“}

SchemaPackage

histInsertSorted ([package]) hist

Package

Class

Schemag
2Schema{oid=package, t=packageType} {oid=package, t=“Schema”}

Class
[not (List.exists(fn histEntry =>

{source=[{oid=package, t=packageType}],
target={oid=package,t=packageType}}1`{source={oid=“p1“,t=“Package“},

target={oid=“c1“ t=“Class“}}++

[((y
contains(histEntry, [package],1)) hist)]

TracePlace

ctx

target {oid c1 ,t Class }}++
1`{source={oid=“p1“,t=“Package“},

target={oid=“c2“,t=“Class“}}
{source={oid=package

Reference

classes
Reference

tables

{source=ctx1,target={
oid=schema,t=schemaType}}

TracePlace{source {oid package,
t=packageType}, target=

{oid=class,t=classType}}
Reference tables

Class
2T bl{oid=class t=classType}

1`{oid=“c1“,t=“Class“}++
1`{oid=“c2“,t=“Class“} {source={oid=schema t=schemaType}

Class
2Table{oid=class,t=classType}

[not (List.exists(fn histEntry =>contains(histEntry,

{ , } {source={oid=schema,t=schemaType},
target={oid=class,t=“Table”}}

Class
{oid=class,t=classType}

[package, class, class],3)) hist) andalso List.exists(fn
contextEntry => (#oid contextEntry)= package) ctx 1] hist

Class

Table
HistClasses

InsertSorted ([package,class,class]) hist
nil

Class

(b) Colored Petri Net

History

(b) Colored Petri Net

2:
CD2ER'Package 1: 1`{oid="p1" t="Package"}
2:
CD2ER'Package 1: 1`{oid="p1" t="Package"}

1:
CD2ER'Package 1: 1`{oid="p1" t="Package"}
1:
CD2ER'Package 1: 1`{oid="p1" t="Package"} CD2ER Package 1: 1 {oid= p1 ,t= Package }

CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}

CD2ER Package 1: 1 {oid= p1 ,t= Package }
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}

CD2ER Package 1: 1 {oid= p1 ,t= Package }
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}

CD2ER Package 1: 1 {oid= p1 ,t= Package }
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}

CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]
CD2ER'HistClasses 1: 1`[]
CD2ER'Table 1: empty

CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]
CD2ER'HistClasses 1: 1`[]
CD2ER'Table 1: empty

CD2ER'ctx 1: empty
CD2ER'Schema 1: empty
CD2ER'HistPackages 1: 1`[]
CD2ER'HistClasses 1: 1`[]
CD2ER'Table 1: empty

CD2ER'ctx 1: empty
CD2ER'Schema 1: empty
CD2ER'HistPackages 1: 1`[]
CD2ER'HistClasses 1: 1`[]
CD2ER'Table 1: empty

Marking in
current state

2
1:2

CD2ER Table 1: emptyCD2ER Table 1: empty

1
0:1

CD2ER Table 1: emptyCD2ER Table 1: empty

Predecessors Successors
4:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}

4:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}

3

3:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1" t="Class"}++

3:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1" t="Class"}++ 4

1:1
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]

CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]

3
1:1

CD2ER Class 1: 1 {oid= c1 ,t= Class }++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]

CD2ER Class 1: 1 {oid= c1 ,t= Class }++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]] CD2ER HistPackages 1: 1 [[p1]]

CD2ER'HistClasses 1: 1`[["p1","c1","c1"]]
CD2ER'Table 1: 1`{oid="c1",t="Table"}

CD2ER HistPackages 1: 1 [[p1]]
CD2ER'HistClasses 1: 1`[["p1","c1","c1"]]
CD2ER'Table 1: 1`{oid="c1",t="Table"}

CD2ER'HistClasses 1: 1`[["p1","c2","c2"]]
CD2ER'Table 1: 1`{oid="c2",t="Table"}
CD2ER'HistClasses 1: 1`[["p1","c2","c2"]]
CD2ER'Table 1: 1`{oid="c2",t="Table"}

5
2:0

5:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++

5:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++CD2ER Class 1: 1 {oid c1 ,t Class }++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]

`

CD2ER Class 1: 1 {oid c1 ,t Class }++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]

`

(c) State Space

CD2ER'HistClasses 1: 1`[["p1","c1","c1"],["p1","c2","c2"]]
CD2ER'Table 1: 1`{oid="c1",t="Table"}++
1`{oid="c2",t="Table"}

CD2ER'HistClasses 1: 1`[["p1","c1","c1"],["p1","c2","c2"]]
CD2ER'Table 1: 1`{oid="c1",t="Table"}++
1`{oid="c2",t="Table"}

(c) State Space

Figure 7.10: State Space of an Exemplary Transformation Net
167

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

can fire once, since there is only a single Package p1 available (represented by the state num-
ber 2 in Fig. 7.10(c)). When inspecting this state, the CPN engine is allowed to chose either
one of the two possible bindings, i.e., it may choose non-deterministically either the binding
{package=p1, class=c1} or the binding {package=p1, class=c2}. The accord-
ing state in the state space exhibits two successors. As might be already imagined by this simple
example, the main drawback of calculating the state space is the so-called state space explosion
problem [155], i.e., the size of the state space gets too large to be stored in memory. Neverthe-
less, since test input models may be assumed to be rather small, property-based debugging is
a powerful mechanism to test and debug model transformations. A discussion about the state
space explosion problem is considered in more detail in Chapter 9.

7.4.2 Behavioral Properties for Debugging Model Transformations

The calculated state space is used to calculate general properties on model transformations,
e.g, termination or confluence. In the following, it is shown how such properties (cf. [112] for
an overview) may be used to enable verification-based debugging of model transformation, as
depicted in Fig. 7.11. Please note that the calculated properties base on the calculated state space
and are therefore dependent on the actual source input models.

2:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package

2:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package

1:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++

1:
CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++

Source TargetTransformation
P k 2

{ { p , g
1`{source={oid="p1",t="Package"},target={oid="c
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}]
CD2ER'Schema 1 1`{oid "p1" t "Schema"}

{ { p , g
1`{source={oid="p1",t="Package"},target={oid="c
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}]
CD2ER'Schema 1 1`{oid "p1" t "Schema"}

{ { p , g }, g { , }}
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: empty
CD2ER'S h 1 t

{ { p , g }, g { , }}
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: empty
CD2ER'S h 1 tPackage

p1

SchemaPackage2
Schema

p1

CD2ER'Schema 1: 1 {oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]
CD2ER'HistClasses 1: 1`[]
CD2ER'Table 1: empty

CD2ER'Schema 1: 1 {oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]
CD2ER'HistClasses 1: 1`[]
CD2ER'Table 1: empty

CD2ER'Schema 1: empty
CD2ER'HistPackages 1: 1`[]
CD2ER'HistClasses 1: 1`[]
CD2ER'Table 1: empty

CD2ER'Schema 1: empty
CD2ER'HistPackages 1: 1`[]
CD2ER'HistClasses 1: 1`[]
CD2ER'Table 1: empty

PackageCtx

package
p
1

p
1

4:4:3:
CD2ER'P k 1 1`{ id " 1" "P k "}
3:
CD2ER'P k 1 1`{ id " 1" "P k "}

2
1:2

1
0:1

classes tables

PackageCtx

Class2
Table 4

1:1

CD2ER'Pac
CD2ER'clas
1`{source
CD2ER'Cla
1`{ id " 2

CD2ER'Pac
CD2ER'clas
1`{source
CD2ER'Cla
1`{ id " 2

3
1:1

CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}

CD2ER'Package 1: 1`{oid="p1",t="Package"}
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}

Table

classes tables

package

schema

Class

1:1 1 {oid="c2
CD2ER'ctx
CD2ER'Sch
CD2ER'Hist
CD2ER'Hist

1 {oid="c2
CD2ER'ctx
CD2ER'Sch
CD2ER'Hist
CD2ER'Hist

1:11 {oid c2 ,t Class }
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]
CD2ER'HistClasses 1: 1`[["p1","c2","c2"]]
CD2ER'T bl 1 1`{ id " 2" "T bl "}

1 {oid c2 ,t Class }
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]
CD2ER'HistClasses 1: 1`[["p1","c2","c2"]]
CD2ER'T bl 1 1`{ id " 2" "T bl "}class

c1 c2 c1 c2
CD2ER'TabCD2ER'TabCD2ER'Table 1: 1`{oid="c2",t="Table"}CD2ER'Table 1: 1`{oid="c2",t="Table"}

5
2:0

5:
CD2ER'Package 1: 1`{oid="p1" t="Package"}
5:
CD2ER'Package 1: 1`{oid="p1" t="Package"}CD2ER Package 1: 1 {oid= p1 ,t= Package }
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}

CD2ER Package 1: 1 {oid= p1 ,t= Package }
CD2ER'classes 1: 1`{source={oid="p1",t="Package"},target={oid="c
1`{source={oid="p1",t="Package"},target={oid="c2",t="Class"}}
CD2ER'Class 1: 1`{oid="c1",t="Class"}++
1`{oid="c2",t="Class"}
CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]
CD2ER'HistClasses 1: 1`[["p1","c1","c1"],["p1","c2","c2"]]
CD2ER'Table 1: 1`{oid="c1" t="Table"}++

CD2ER'ctx 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1
CD2ER'Schema 1: 1`{oid="p1",t="Schema"}
CD2ER'HistPackages 1: 1`[["p1"]]
CD2ER'HistClasses 1: 1`[["p1","c1","c1"],["p1","c2","c2"]]
CD2ER'Table 1: 1`{oid="c1" t="Table"}++

(a) Transformation Net Concrete Syntax (b) State Space

CD2ER Table 1: 1 {oid= c1 ,t= Table }++
1`{oid="c2",t="Table"}
CD2ER Table 1: 1 {oid= c1 ,t= Table }++
1`{oid="c2",t="Table"}

() y () p

Statistics Home Properties
‐‐‐
State Space
Nodes: 5

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Home Markings
[5] Target

Arcs: 5
Secs: 0

Boundedness Properties
Liveness Properties

Schema

p1Boundedness Properties
‐‐
Best Integer Bounds

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Dead Markings
[5]

p1

CD2ER'Package 1`{oid=1,t="Package"}
CD2ER'tables 1`{source={oid=1,t="Package“},

Upper Lower
CD2ER'Package 1 1
CD2ER'tables 0 0

Dead Transition Instances
None

Live Transition Instances

g
1`{source={oid=1,t="Package“}

CD2ER'table 1`{oid=2,t=“Class"}++
1`{oid 3 t “Class"}CD2ER tables 0 0

....
Live Transition Instances
None

Table

tables 1 {oid=3,t= Class }

Best Upper Multi‐set Bounds
CD2ER'Package 1`{oid=1,t="Package"}
CD2ER'tables empty

Fairness Properties
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
No infinite occurrence

Table

c1 c2

CD2ER tables empty
CD2ER'table 1`{oid=2,t=“Class"}++

1`{oid=3,t=“Class"}

No infinite occurrence
sequences.

....

(c) State Space Report (generated by CPN Tools) (d) Desired Target Model in Transformation Net and as C(c) State Space Report (generated by CPN Tools) (d) Desired Target Model in Transformation Net and as C

"},target={oid="c1",t="Class"}}++"},target={oid="c1",t="Class"}}++}, g { , }}
c2",t="Class"}}

,target={oid="p1",t="Schema"}}

}, g { , }}
c2",t="Class"}}

,target={oid="p1",t="Schema"}}

ckage 1: 1`{oid="p1",t="Package"}
sses 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
={oid="p1",t="Package"},target={oid="c2",t="Class"}}
ss 1: 1`{oid="c1",t="Class"}++
2" t "Cl "}

ckage 1: 1`{oid="p1",t="Package"}
sses 1: 1`{source={oid="p1",t="Package"},target={oid="c1",t="Class"}}++
={oid="p1",t="Package"},target={oid="c2",t="Class"}}
ss 1: 1`{oid="c1",t="Class"}++
2" t "Cl "}2",t="Class"}
 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
hema 1: 1`{oid="p1",t="Schema"}
tPackages 1: 1`[["p1"]]
tClasses 1: 1`[["p1","c1","c1"]]

2",t="Class"}
 1: 1`{source=[{oid="p1",t="Package"}],target={oid="p1",t="Schema"}}
hema 1: 1`{oid="p1",t="Schema"}
tPackages 1: 1`[["p1"]]
tClasses 1: 1`[["p1","c1","c1"]][[p , ,]]
ble 1: 1`{oid="c1",t="Table"}

[[p , ,]]
ble 1: 1`{oid="c1",t="Table"}

c1",t="Class"}}++c1",t="Class"}}++

",t="Schema"}}",t="Schema"}}

,target={oid=2,t=“Class"}}++g
,target={oid=3,t=“Class"}}++

CPN MarkingCPN Marking

Figure 7.11: Application of CPN Properties for Debugging of Model Transformations

168

7.4. Property-Based Debugging

7.4.2.1 Termination and Confluence Verification using Dead and Home Markings

In a batch and exogenous model-to-model transformation scenario (which is the focus of this
thesis), a model transformation is always required to terminate. Thus, the calculated state space
needs to contain at least one Dead Marking [112], which is a state in the state space without any
successors, i.e., ∃M such that M0

σ⇒M and enabled(M) = ∅, meaning that after a certain fir-
ing sequence, starting from the initial marking M0, a marking M is reached, where no bindings
are enabled any more (cf. state 5 in Fig. 7.11(b)). If such a dead marking is found, the specified
transformation is considered to be partially correct, i.e., if execution terminates, a correct target
model might be possible. Please note that although the introduced history concepts ensure that
a transition may only fire once for a specific combination of input tokens, it may not ensure
termination since if a transition occurs in a cycle, i.e., a place is both, a source and a target place
of a single transition and if the transition produces new objects (cf. new colors in Transforma-
tion Nets) every time it fires, the history concept may not ensure termination. However, such
cycles may be detected at design time and are automatically prevented for Transformation Nets1.
Therefore, termination may be statically ensured in Transformation Nets, which is in contrast to
model transformation languages based on graph grammars, where termination is undecidable in
general [119]. In this respect, the state space report generated by CPN tools shows that there
exists a dead state having the id 5 (cf. Fig. 7.11(c)).

Nevertheless, in order to formally verify termination, it has to be ensured that a dead marking
is always reachable, i.e., in every possible execution. For this, home properties are provided in
CPNs, whereby a Home Marking MHome is a marking, which may be reached from any other
reachable marking, i.e., ∀M |M σ⇒MHome [112]. As stated in [72, p. 171], this means that “it is
impossible to have an occurrence sequence starting fromM0 which may not be extended to reach
MHome”. For the example, state 5 represents a home marking, as can be seen in Fig. 7.11(c).
Consequently, if the state space contains a single Dead Marking which is equal to a single
Home Marking, i.e., both states offer the same id, it is ensured that the CPN (and thus the
according Transformation Net) always reaches a dead marking leading to a confluent CPN, i.e.,
there exists a unique terminal marking, that may always be reached. Formally this is denoted as
if ∀M,M ′M0

σ⇒M ∧enabled(M) = ∅∧M0
σ⇒M ′∧enabled(M ′) = ∅ thenM = M ′. Since

the calculated properties depend on the actual source model, in general the transformation would
have to be tested with all possible input elements. Thus the question arises, in which situations a
non-confluent behavior may occur, i.e., when does a transformation contain more than one home
or dead state. As discussed in Chapter 2, non-confluence in model transformations may occur
if two rules are non-parallel independent [65]. The same is true for CPNs if the specified net is
not persistent. A CPN is said to be persistent if “for any two enabled transitions, the firing of
one transition will not disable the other one” [112], which is equal to the definition of parallel-
independence. Consequently, this property has to be ensured for Transformation Nets, which is
ensured by the fact that the source places are only accessed in a read-only manner. Furthermore,
it is not allowed to specify conditions on trace information, which otherwise may lead to non-
determinism, as well as to use negative patterns for intermediate and trace places. In general,

1Please note that recursion in general is allowed in Transformation Nets, but only prohibited for the the special
case of new colors which would always lead to an endless recursion.

169

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

however, confluence may not be ensured statically and depends on the actual transformation
logic, i.e., a check-before-enforce scenario with a non-unique key may lead to a non-confluent
behavior (cf. Section 6.3 and Section 9.2). Since in the example above the state with the id 5 is
a dead marking as well as a home state, this transformation may be considered as confluent (cf.
Fig. 7.11(c)).

7.4.2.2 Model Comparison using Reachability and Boundedness Properties

To achieve a correct transformation result, an equal Home Marking and Dead Marking is a
necessary, but not sufficient condition, as it may not be ensured that this marking represents the
desired target model (which has to be decided by some complete oracle function). By exploring
the constructed state space, it is possible to detect if a certain marking, i.e., the target marking
derived from the desired target model, is reachable with the specified transformation logic. If
this is the case, and if this marking is equal to both, Home Marking and Dead Marking, it is
ensured that the desired target model may be created with the specified transformation logic in
any case. Nevertheless, if we consider the example presented above, the derived marking from
the desired target model (cf. Fig. 7.11(d)) is unreachable by the specified transformation, i.e.,
the marking may never be achieved.

If the desired target model is not reachable, a possible step to debug the transformation spec-
ification is to compare the target model generated by the transformation to an expected target
model. To identify wrong or missing target elements in terms of tokens automatically, Bound-
edness properties [112] (Integer Bounds and Multiset Bounds) may be applied (cf. Fig. 7.11(c)).
Upper integer bounds state how many tokens at most reside in a certain place, i.e., in a first
step only the number of tokens may be compared. Since no tokens are consumed from a place,
the number of tokens in a place representing a target metamodel element has to be equal to the
number of tokens derived from a desired target model. On the one hand, if there are too few to-
kens, the according place is highlighted to give the transformation designer a hint for debugging.
When deriving the upper integer bound of the desired target model, two tokens in place tables
would be expected, but none is actually created (cf. Fig. 7.11(c)), and therefore the according
place is highlighted in the Transformation Net (cf. Fig. 7.11(a)). Furthermore, such a situation
might indicate that the according Transformation Net either specifies a too restrictive condition
or that it misses according production patterns. On the other hand, if there are too many tokens,
this might indicate that the specified condition is too weak. In this situation, the according tokens
may be identified by using the Multiset Bounds, which contain the respective marking. These
tokens are then highlighted in the according Transformation Net and the transformation designer
might then make use of query based debugging mechanisms to actually discover the origin of
the failure.

7.4.2.3 Transition Error Detection using Liveness Properties

As stated above, missing target tokens may be detected by boundedness properties, whereby one
potential source of error might be a too strong condition on the according transition. Thereby, the
situation might occur that a certain transition specifies a condition that is never fulfilled during
the whole transformation process, i.e., the transition never fires. This situation may be detected

170

7.4. Property-Based Debugging

by means of so called Dead Transition Instances or L0-Liveness [112]. Dead transition instances
may be found in the state space report, whereby none means that no transitions exists, which has
never fired (cf. Fig. 7.11(a)). If a transition did not fire, it indicates that the source model did
not enable the transition and therefore, either the specified test model did not consider a certain
scenario, the specified transition is incorrect or even the source model is incorrect. In case of
dead transition instances, the according Transformation Net transition gets highlighted in order
to set the focus for debugging.

7.4.3 CPN Properties for Model Transformations

By applying and analyzing behavioral properties of CPNs it has been figured out which proper-
ties are useful in the context of model transformation testing and debugging and which kinds of
errors may be detected. The proposed taxonomy (cf. Fig. 7.12) investigates possible locations
of errors, classifies typical model transformations errors and shows, which properties are useful
for their detection.

During specification of model transformations there are three possible locations of errors,
either in (i) the metamodel, (ii) the model, or (iii) the transformation logic. The detection of er-
rors in the metamodel is in general out of scope of transformation languages. As model elements
are explicitly represented in Transformation Nets as tokens —in contrast to other transformation
languages which typically do not represent the models — semantic errors in the model may be
detected by liveness or boundedness properties. For example, an incorrect source model (e.g.,
a reflexive link represented by a link token with same inner and outer color) might lead to dead
transition instances or an incorrect firing behavior of a transition and thus, to an incorrect number
of tokens in the target place.

Errors in the transformation logic itself may be divided into errors local to a single transition
(Intra-Rule Error) or errors which may only be detected by examining the interrelations between
several transitions (Inter-Rule Error). Intra-rule errors may be divided into errors occurring at
the precondition (LHS) or postcondition (RHS) of a transition. Common errors on both sides
(e.g., a wrong matching pattern or a wrong instantiation of target models) may be detected by
examining the boundedness properties in comparison to an expected target model or by custom
state space functions checking if a certain marking is reachable. Due to the fact that these two
properties may be applied in various scenarios special tool support is provided. Finally, dead
transition instances point out that a given LHS specification of a transition may not be fulfilled
by the given source model.

Inter-rule errors occur if transitions depend on other erroneous transitions or, if the specified
transformation logic does not cover the whole source or target metamodel. Although these errors
may be easily detected by checking for source places that have no arc to any transition or target
places which are not target of any transitions (cf. Section 7.1), it is also possible to apply bound-
edness and reachability properties to detect these kind of errors. To verify if several transitions
interact correctly, the home state and the dead state property may be checked. Additionally, the
persistence property has to be fulfilled (which is statically ensured in Transformation Nets due
to the non-consuming firing behavior). If the CPN is persistent and if there exists a single, equal
home and dead state, then the specified transformation logic is confluent with respect to the test
input model.

171

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

Syntax Error
(non conformance to MMM)

Location Granularity Type Transformation Net CPN Property

Metamodel
(non conformance to MMM)

Semantic Error
(e.g. missing constraints)

Syntax Error
(non conformance to MM)

Model
(non conformance to MM)

Liveness
Boundedness

Semantic Error
(e.g. , reflexive links, inheritance)

Wrong source MM element Liveness

/)

Wrong tokens (e.g. , two
colored token with equal

inner/outer color)

Wrong arc from place to

Intra

Wrong source MM element

Wrong/too strong/too weak
matching pattern

Non‐satisfiable matching
pattern

Liveness
Boundedness
Reachability

Liveness

LHS

transition

Wrong/incomplete color
pattern in LHS of transition

Non‐satisfiable color pattern
with respect to MM

Transformation

‐Rule pattern

RHS
Wrong target MM element

Wrong instantiation of target
elements

Reachability
Boundedness

with respect to MM

Wrong arc from transition to
target place

Wrong/incomplete color
pattern in RHS of transitionTransformation

Logic

g

Source
MM

coverage

T t

Missing/redundant source
MM elements

Wrong intermediate
results/dependencies

Reachability
Boundedness

elements pattern in RHS of transition

Missing/redundant arcs from
source place to transition

Wrong tokens in/wrong
connection to trace place

Inter
‐Rule

Target
MM

coverage
Missing/redundant target

MM elements

results/dependencies Boundedness

Check before enforce
semantic with wrong key

Home State
Persistence

Non‐determinism/non‐
confluence

connection to trace place

Missing/redundant arcs from
transition to target place

Runtime

Non‐termination Dead State

semantic with wrong key Persistenceconfluence

Loops producing new colored
tokens

Runtime
behavior

Figure 7.12: Taxonomy of Transformation Errors and CPN Properties

7.4.4 Towards Model Checking of Model Transformations

A limitation of behaviorial properties is that they heavily depend on the initial marking of the
CPN, i.e., this means for model transformation that the properties may only be ensured to hold
for a specific input model. Nevertheless, it is often demanded to formulate more general prop-
erties. Although PaMoMo contracts may be used for this scenario, as discussed in Chapter 3,
PaMoMo does not allow to check properties concerning the actual execution of the model trans-
formation, but only allows to check for valid source-target correspondences. For example, in
PaMoMo it is not possible to check if a certain transformation rule that translates classes to ta-
bles has been executed as many times as classes are available. Theoretically, the tables might
result from other rules, which is not desired. For this, reachability analysis in CPN Tools may
be used in an automated way by means of a CTL-like logic called ASK-CTL [35]. ASK-CTL
allows to query if a certain state or a state change (e.g. the occurrence of certain transitions)
occurs sometimes or always in a certain path of the state space. For instance, the command
eval_node INV(POS(NF(“Schema for Package”, schemaForPackage))) InitNode, which re-
turns false if not for every schema a package is created by a certain transition, allows to

172

7.5. Fixing Failures

check execution specific properties. In the previous command, InitNode is the initial mark-
ing, schemaForPackage is a user-defined function that checks, if for every class a package
has been created (by comparing the markings) and if the target markings originate from a certain
transition. POS(A) demands the property A to be eventually satisfied, and INV(A) demands A
to be satisfied in all possible paths. Nevertheless, as this simple example reveals, the specifica-
tion of such functions is tedious and error-prone for a transformation designer, not being familiar
with ASK-CTL. Furthermore, Transformation Nets currently do not provide means to specify
ASK-CTL formula and the underlying CPN is hidden from the transformation designer (al-
though it could be made explicit). Further research is needed to provide transformation-designer
friendly means to specify such properties on the level of Transformation Nets. Nevertheless, this
is out of the scope of this thesis and is considered as future work (cf. Chapter 10).

7.5 Fixing Failures

The last phase in the debugging process is to actually correct the defect. In Transformation
Nets, the transformation designer is allowed to (i) alter the according model, i.e., tokens

may be added, edited or removed, and (ii) to change the specified transformation logic, which is
discussed in the following.

7.5.1 Adapting the Model

Since in Transformation Nets the model is explicitly represented by means of tokens, it should
be possible to add, edit or delete certain tokens in order to fix a defect during debugging. Adding
tokens to places is only allowed, if the according place is either a place representing a source
metamodel element, a trace place or an intermediate place. Adding tokens in trace or interme-
diate places may be useful in order to continue debugging if the transformation unexpectedly
terminated. By this questions like “would this transition fire, if there would be an according
trace token” may easily be answered. Editing or deleting tokens is more complex than adding
tokens, since those tokens might already have been matched by transitions. Thus, it may be
the case that a transition might not have fired, if the token was not present or exhibited some
different value. If a token is changed or deleted, the histories of the transitions have to be up-
dated. Please note that in both cases – either editing or deleting – the according configuration
is deleted from the transition’s history in order to allow to re-execute transitions depending on
an edited or deleted token. Consequently, also the accordingly produced tokens and also the
history of dependent transitions have to be updated. Finally, changes or deletions might also
lead to dependent changes, i.e., if an object token is deleted all dependent value and link tokens
are deleted as well. To exemplify this, Fig. 7.13 shows a simple example of how the tokens and
the histories have to be updated when the owning object of a link is changed, e.g, the link from
package p1 to class c3 is changed to a link from package p2 to class c3. In a first step the
history of those transitions are investigated, that query the reference place classes which is
the transition Class2Table in the example. Consequently, those history entries that contain
the old values of the token in the according variables, e.g., package=p1 and class=c3 in
the example, are deleted. Additionally, the produced tokens are deleted as well, e.g., the link

173

7. DEBUGGING SUPPORT FOR MODEL TRANSFORMATIONS

token from package p1 to class c3 and the object token c3 in the Table place are deleted (cf.
Fig. 7.13(b)). Therefore, the transition Class2Table is again enabled and the transformation
designer might debug the changed configuration.

Source TargetTransformation Source TargetTransformation

Package

p1

SchemaPackage2
Schema

p1p2 p2

Package

p1

SchemaPackage2
Schema

p1p2 p2

PackageCtx

Class2

package

1
p1 p2

PackageCtx

Class2

package

1
p2p1 p1 p2p2p1

Table

classes tables
Table

package

schema

Class

1

Table

classes tables
Table

package

schema

Class

1
changed owning

object

class

c1 c2

History 1

c3 c3c1 c2
class

c1 c2

History 1

c3 c1 c2

Query
Patterns

Production
Patterns

package schema class schema class

y 1
Query
Patterns

Production
Patterns

package schema class schema class

y 1

p1 p1 c1 p1 c1

p1 p1 c2 p1 c2

p1 p1 c3 p1 c3

p1 p1 c1 p1 c1

p1 p1 c2 p1 c2

p1 p1 c3 p1 c3

(a) Debugging State before Changing the Model (a) Debugging State after Changing the Model

Figure 7.13: Changing the Model during Debugging

Finally, a remaining question is, if the changes in the model should be local to the debugging
environment, i.e., the according changes in the source model should not be made persistent, or
if the changes during debugging should be made persistent. On the one hand, if the changes
are local to the debugging environment, the transformation designer is allowed to “play around”
with certain model configurations without changing the according test input model. On the other
hand, according changes in the debugging environment have to be probably repeated in the test
input model, if errors have been detected in the model. Therefore, in Transformation Nets the
changes are local to the debugging environment per default, but the transformation designer may
explicitly commit the changes in order to persist them.

7.5.2 Adapting the Transformation Logic

In general, the transformation logic represented in Transformation Nets may be changed in a
similar way as the models. In this respect, it is allowed to add transitions, trace or intermediate
places during debugging. Furthermore, it is allowed to edit existing transitions, e.g., by adding
further query tokens or deleting a production token. In any of these cases, the history of the
according transition as well as those of dependent transitions have to be updated, in order to
allow to re-evaluate the according parts of the transformation specification. Nevertheless, since
Transformation Nets intend to provide a runtime model for declarative model-to-model trans-
formation languages, i.e., it is possible to represent the actual transformation logic in terms of
Transformation Net concepts, the back propagation of changes in the transformation logic to
the actual transformation languages represents a major challenge. Currently, the back propaga-

174

7.6. Summary

tion requires the specification of an explicit transformation, i.e., not only a transformation from
the transformation language to Transformation Nets is required, but also a transformation from
Transformation Net concepts to the concepts of a specific transformation language. Thus, only
if such a transformation is provided, the transformation designer might commit changes in the
transformation logic in order to represent the changes automatically in the according transfor-
mation language. Nevertheless, a more generic back propagation, i.e., by means of an explicit
trace model derived from the forward translation to Transformation Nets, together with a model
representing specifics of a certain model transformation language might allow for an automatic
backwards translation. However, this is not in the scope of this thesis and considered as future
work (cf. Chapter 10).

In summary, on the one hand, Transformation Nets allow the transformation designer to
flexibly change the according source model. On the other hand, although transformation logic
may be changed, an explicit backwards transformation has to be provided in order to represent
the changes in the according transformation languages, which will be discussed in more detail
by means of QVT Relations in the case study in Section 9.2.

7.6 Summary

This chapter presented how the dedicated runtime model may be used for debugging model-
to-model transformations. In a first step, the detection of code-smells has been discussed,

i.e., it was shown that certain structures in Transformation Nets indicate potential sources of
defects. Second, means for simulation-based debugging were presented. The transformation
designer is enabled to execute the transformation stepwise, allowing to investigate the actual
operational semantics. Thereby, means already known from common debuggers of program-
ming languages have been adapted to the runtime model (e.g., breakpoints), but also model
transformation-specific concerns have been discussed, e.g., how the non-deterministic selec-
tion of rules and the matching of source elements may be made explicit to the transformation
designer. Besides means for live-debugging also means to tackle the well-known problem of
reasoning backwards in time during debugging have been discussed. Predefined OCL queries
allow to investigate the actual execution of a model transformation, e.g., to check which config-
uration of source tokens produced a certain target token. Furthermore, re-enactment has been
discussed as a means to realize forensic debugging and to combine the results of PaMoMo con-
tracts with the debugging features of Transformation Nets. Since Transformation Nets base on
CPNs, it was shown how their formal properties may be used for debugging. In this respect,
general properties were presented, but it was also shown how reachability analysis may be used
for debugging. Finally, means for fixing bugs in Transformation Nets were discussed.

Up to now, the presented concepts have been discussed on a conceptual level, only. There-
fore, the following chapter presents a prototypical implementation thereof, which is then used to
prove the applicability of the presented concepts in the subsequent evaluation chapter.

175

Chapter 8

Prototype Implementation

Computers are useless. They can only give you answers.

— Pablo Picasso

Contents
8.1 PaCo-Checker - PaMoMo Contract-Checker 177
8.2 DEBUT - DEBUgger for Transformations 182
8.3 Summary . 193

The previous chapters introduced PaMoMo, a language for specifying model transformation
contracts, and Transformation Nets as a runtime model for model-to-model transforma-

tion languages as well as its compilation into CPNs as a semantic domain. Thereby, the focus
was on a conceptual level rather than on implementation details. Therefore, this section shortly
elaborates on the prototypical implementations serving as a proof of concepts. First the tool
PACO-CHECKER (short for PaMoMo Contract Checker) is presented which allows to graphi-
cally specify PaMoMo contracts, as well as their automatic compilation to QVT Relations in
order to test an existing model transformation. Second, the DEBUT (short for Debugger for
Transformations) tool gives its debut, which provides a graphical editor for the runtime model.
Finally, the compilation of Transformation Nets to CPNs is discussed as well as how the CPN
Tools environment can be used for simulation and state space analysis.

8.1 PaCo-Checker - PaMoMo Contract-Checker

I
n order to verify whether a transformation logic fulfills the requirements specified by PAMOMO

contracts, the patterns are compiled to QVT Relations. For automating this process as well

177

8. PROTOTYPE IMPLEMENTATION

PaMoMo
MM

implements

QVT
MM

ATLATL
T f ti

XPandXPand
T f ti

QVT
G

Generation of Concrete Syntax

MM

instance of

MM

QVT

instance of

TransformationTransformation TransformationTransformation GrammarGrammar

QVTATL XPand

instance of

GMF‐based
Editor

PaMoMo
Model

produces

QVT
Model

QVT
Code

ATL
Engine

XPand
Engine

Source models

Model

Specification of Requirements

QVT Engine
ModelMorf

Source models

Target models

p q

configurerefers to
uses

Verification
Log

Test Suite
(Prerequisite)

PaCo‐Checker
Verification Editor

Figure 8.1: Overview of the Architecture of PACO-Checker

as for the visual specification of contracts, an EMF-based tool, called PACO-Checker has been
prototypically developed, whereby its architecture is shown in Fig. 8.1. This section provides in
the following an overview on the needed steps for the verification process, presents the different
components of the tool, and illustrates its use.

8.1.1 Prerequisites.

For using PACO-Checker, the existence of the source and target metamodels is a prerequisite,
as these are necessary to specify the contracts and to implement the transformation. In addition,
for the verification process, a suitable set of input models conforming to the source metamodel
is needed. Such input models can be manually created, which however is a tedious and error-
prone task, leading to small input models that cover parts of the metamodel only. Alternatively,
there are mechanisms available that automatically synthesize a large number of different input
models [23, 46, 140] ensuring a certain level of metamodel coverage, as already discussed in
Section 2.1. The existence of such a set of input models is assumed as well, since their generation
is out of scope of this thesis.

8.1.2 Formal Specification of Requirements with PAMOMO.

In a first step, the transformation requirements have to be formally specified using PAMOMO.
For this purpose, PACO-Checker provides an implementation of the PaMoMo metamodel (cf.
Fig. 9.1) using EMF. Based on the implementation of the metamodel, PACO-Checker provides a
graphical concrete syntax supported by a GMF-based [54] editor, which enables the visual speci-
fication of PaMoMo contracts (cf. Fig. 8.2). In order to be able to use elements of the source and
target metamodels involved in the transformation, these have to be imported into the tool palette
of the editor before starting modeling the patterns. Afterwards, the transformation designer can

178

8.1. PaCo-Checker - PaMoMo Contract-Checker

PaMoMo
elements

Positive Invariant

Source object Target objectSource object
graph

Target object
graph

Source MM
elements

Target MM Target MM
elementselements

Figure 8.2: Specification of Invariant for Requirement 4 (cf. Fig. 3.6) with PACO-Checker

use the editor to specify preconditions, postconditions and invariants forming the desired model
transformation contracts. The current implementation supports one type of pattern per contract
only (whereby one contract results in one file), i.e., in a contract the transformation designer
either specifies preconditions, postconditions or invariants. Therefore, if preconditions, post-
conditions and invariants should be used to verify a transformation, three different contract files
are needed. Fig. 8.2 shows a screenshot of the user interface whereby an invariant is modeled,
representing requirement 4 of the running example (cf. Section 1.2). As can be seen, classes
from the source or target model can be put into the according compartments of the invariant.
Additionally, the features of the according classes may be added. In order to specify conditions
on the attributes, e.g., to check if the class is persistent (boolean attribute isPersistent) or
more general conditions, e.g., if class p is a superclass of class c, according OCL expressions
may be specified at the bottom of the pattern.

8.1.3 Specification of a Verification Job.

Once the designer has specified the contracts, a verification job has to be configured. Such a job
definition allows executing all specified preconditions, postconditions, and invariants to achieve
a comprehensive verification result. Fig. 8.3 shows a screenshot of the job specification for the

179

8. PROTOTYPE IMPLEMENTATION

Specification of
Metamodels and Models

Specification of
Preconditions

Specification of
Invariants

Specification of
Postconditions

Figure 8.3: Definition of a Verification Job with PACO-Checker

running example. In a first step, the source and the target metamodel have to defined as well
as their corresponding models. In this respect a source (test) input model is needed as well
as the target model generated by the transformation specification under test. In a second step,
the contracts which shall be checked for the specified transformation have to be assigned, i.e.,
preconditions, postconditions, and invariants may be added. Thus it is possible to reuse patterns
to verify several transformations, e.g., if the source model should be transformed into several
target models by different transformations, the preconditions may be reused.

8.1.4 Execution of the Verification Job.

Once specified, the verification job can be executed if no inconsistency between the patterns of
the contract is reported by the reasoning component. In order to execute the job, an ATL trans-

180

8.1. PaCo-Checker - PaMoMo Contract-Checker

formation transforms the PAMOMO contract into a QVT model implementing the semantics of
the contract as described in Section 3.5. Since there is no execution engine available to execute
QVT Relations on the basis of its abstract syntax, the QVT concrete, textual syntax has to be
produced by means of a model-to-text transformation. For this, PACO-checker makes use of the
template-based language XPand1. The resulting QVT Relations code is finally executed by the
ModelMorf QVT Relation engine [149] in checkonly mode. The QVT Relation engine produces
the verification log, providing hints of any error in the transformation logic.

8.1.5 Inspection of Verification Results.

After executing the verification job, the tool produces a verification log. Fig. 8.4 shows to the
right the log generated for the running example, considering the input and output models to
the left. The actual output model was generated by executing the QVT Relations specification
depicted in Fig. 3.18. This log reports that requirements 1-3 are satisfied for these models, but
not requirement 4, which addresses the translation of inherited attributes (as already discussed
in Section 3.6).

PaMoMoimplementsQVT c1 : Classl a1 : AttributeTest Source Model
ContractsCode

c1 : Class
isPersistent = false
name = ‘Person‘

classes a1 : Attribute
name = ‘name‘
type = ‘String‘

super

attributes

subclasses

ModelMorf
c2 : Class

isPersistent = true
‘St d t‘

p1 : Package

name = ‘University‘

a2 : Attribute
name = ‘registrNo‘
t ‘I t ‘

classes

attributes

namespace

classes

namespace
name = ‘Student‘name = University type = ‘Integer‘

namespace

c3 : Class a3 Attribute

super
classes

subclasses

p

classes c3 : Class
isPersistent = true
name = ‘Professor‘

a3 : Attribute
name = ‘salary‘
type = ‘Integer‘

attributes

t1 : Table
name = ‘Person‘

tables co1 : Column
name = ‘name‘
t ‘St i ‘

columns

schema

s1 : Schema
name = ‘University‘

type = ‘String‘

t2 : Table co2 : Columncolumns

schema

schema t2 : Table
name = ‘Student‘tables name = ‘registrNo‘

type = ‘Integer‘

columns

Generated Target Model of Transformation to test

schema

Verification LogVerification Log

Figure 8.4: Verification Results of Requirements 1-4 for the Running Example

Additionally, the verification log may be serialized into a verification model, which may then
serve as input for the debugging process (cf. Section 8.2). The according metamodel is depicted
in Fig. 8.5. Thereby a VerificationProject holds references the the involved source
and target Metamodels which again hold a reference to the currently used source and target
Models. Furthermore, a VerificationProject stores the Patterns that should be ver-
ified. For this, different roles are provided, cf. VerificationProject.preConditions,
VerificationProject.invariants, and VerificationProject.postCondi-
tions. For every pattern an ErrorTrace may be stored in case the Pattern failed. In

1http://wiki.eclipse.org/Xpand

181

8. PROTOTYPE IMPLEMENTATION

order to allow for re-enactment of the transformation during debugging (cf. below) also a ref-
erence to the according DomainPattern stemming from the QVT Relations metamodels is
provided, i.e., it is possible the store the according bindings.

VerificationProject Pattern0..*preConditionsVerificationProject

sourceMM targetMM

0 1 0 1

Pattern

fileName : String

0..
0..*
0..*

invariants
p

postConditions

errorTrace

Metamodel

fileName : String

0..1 0..1

model

ErrorTrace

fileName : String

0..1

pattern

Model

fileName : String

model

0..1
DomainPattern

(from QVT Relations)

pattern

1..1

Figure 8.5: Metamodel of Verification Log

8.2 DEBUT - DEBUgger for Transformations

After discussing the prototypical implementation of the PACO-Checker tool for the spec-
ification and execution of PAMOMO contracts, this section elaborates on the DEBUT

prototype, which implements the proposed runtime model. Furthermore, it builds the basis for
the debugging features, whereby their implementation is discussed afterwards.

8.2.1 Overview on Debut

The DEBUT tool consists of several components in the form of Eclipse plugins, which them-
selves base on the infrastructure provided by the Eclipse Modeling Framework (EMF) and the
Graphical Modeling Framework (GMF). The component diagram depicted in Fig. 8.6 gives an
overview of the provided plugins and their interdependencies (dependencies to base plugins and
external plugins are not shown).

Transformationnet.model. The central point of DEBUT is the realization of the runtime
model, whose implementation is encapsulated in the transformationnet.model plugin.
Thereby the implementation of the metamodel follows the metamodel presented in Fig. 5.5.
Additionally, the proposed OCL invariants, e.g., to check inheritance constraints as well as the
constraints presented in Section 7.1, have been accordingly implemented.

Transformationnet.edit. These plugin serves as a controller between the model and the
clients that want to edit a Transformation Net and is generated by the EMF infrastructure.

Transformationnet.diagram. In order to provide a concrete visual syntax, a GMF based
visual editor has been implemented that allows to visualize and edit according Transformation
Nets. A screenshot thereof is depicted in Fig. 8.7.

182

8.2. DEBUT - DEBUgger for Transformations

Transformationnet.diagram.ui. This plugin provides user interface components in order to
conveniently create or edit Transformation Nets, e.g., custom property sheets, as well as dialogs
and wizards to edit a Transformation Net.

Transformationnet.debugging. The debugging features of the Transformation Net are en-
capsulated within this plugin, e.g., the definition of breakpoints and the predefined OCL expres-
sions for debugging backwards in time.

Transformationnet.debugging.ui. In order to separate the debugging logic from its con-
crete visualization, this plugin provides the necessary user interface components for the debug-
ging process, e.g., context menu entries or user interface components for the visualization of the
history.

Transformationnet.adapter. This plugin provides a basic infrastructure in order to be able
to load source and target metamodels and models from existing files. In this respect, an extension
point is provided, that allows to implement a specific adapter for a certain meta-metamodel. The
prototype provides adapters for Ecore, XML and OWL (encapsulated in according plugins, as
can be seen in Fig. 8.6). Additional meta-metamodels may be supported by providing a specific
implementation of the extension point.

Transformationnet.bridge. In order to be able to debug transformation logics specified in
declarative model-to-model transformation languages, bridges between the according transfor-
mation language and the Transformation Net formalism are needed, i.e., transformation speci-
fications in a certain transformation language should be represented in the Transformation Net
formalism. In this respect these plugins encapsulate commonalities between bridges to different
transformation languages and specify an extension point to ease the integration of bridges to
specific transformation languages. In the current prototype, bridges for QVT Relations and for
Mapping Operators (MOps) [86], which have been developed throughout the TROPIC project,

transformationnet.diagram.ui

transformationnet.diagram transformationnet.edit

transformationnet.ocl

transformationnet.debugging.ui

transformationnet.model transformationnet.cpntransformationnet.debugging

transformationnet adapter transformationnet bridgetransformationnet.adapter transformationnet.bridge

transformationnet.adapter.ecore transformationnet.adapter.xml transformationnet.bridge.qvt transformationnet.bridge.mops

transformationnet.adapter.owl transformationnet.bridge.pamomo

Figure 8.6: Components of the DEBUT prototype

183

8. PROTOTYPE IMPLEMENTATION

Initialization
and Execution

Source MM
and Model

Transformation
Logic

Target MM

Outline View Toolpalettep

Figure 8.7: Screenshot of DEBUT

are provided. The main task of bridges is to provide a (bidirectional) transformation between
the Transformation Net formalism and the according transformation language. For details on
the provided bridges, especially concerning the included transformations, the reader is referred
to Section 9.2.

Transformationnet.cpn. The compilation of Transformation Nets to CPNs is encapsulated
within this plugin. It makes thereby use of the ASAP and Access/CPN framework [163, 164],
which provides on the one hand a simulator component that is able to execute CPNs. It thereby
makes use of the de-facto standard tool for creating, editing and simulating CPNs being CPN
Tools. On the other hand, a PNML type for CPNs is provided by means of an EMF metamodel
which is used as a target metamodel for the compilation of Transformation Nets into CPNs (as
discussed in Chapter 6).

Transformationnet.ocl. In order to be able to evaluate OCL expressions within the CPN
execution engine, the prototype makes use of the Comms/CPN library [48] provided by CPN
Tools. This library allows for remote calls during execution of a CPN. Thus, the library enables
to use a server which is able to evaluate the OCL expression and to send back the actual result of
the evaluated expressions. The actual implementation of the server is implemented within this
pluging. The server parses incoming requests and loads the according metamodels and models
in order to evaluate the OCL expression.

8.2.2 Modes of Transformation Nets

The implemented prototype supports three different modes being (i) raw, to specify Transforma-
tion Nets, (ii) transformation-based to derive Transformation Nets from existing transformation
specifications, and (iii) contract-based to derive a Transformation Net from the verifcation log

184

8.2. DEBUT - DEBUgger for Transformations

of PACO-Checker, whereby one mode has to be chosen when creating a new Transformation
Net. The different modes are described in detail in the following.

Raw Mode

Transformation Nets not only provide a runtime model for model-to-model transformation lan-
guages, but they could also be used as a transformation language themselves, which is called
raw mode. In this respect, it would be possible to specify a transformation logic by means of
transitions. In a first step, the source and target metamodels as well as a source test model has
to be provided. It is possible to create the source and target places representing the according
metamodels as well as the tokens stemming from the source model by importing an existing
metamodel or model (cf. initialization buttons in Fig. 8.7). Thereby, adapters are used which
encapsulate the details on how to import a certain metamodel or model (cf. Fig. 8.8). As de-
scribed in Section 4.3, not only Ecore based metamodels and models are supported but also
those represented in XML or OWL. Further meta-metamodel formats can be supported by pro-
viding an according new adapter. In order to ease the specification of new adapters and the
integration into the existing framework, according Eclipse extensions point are provided (named
SourceAdapter and TargetAdapter). Furthermore, common base classes are provided
which may be extended. Additionally, it is also possible to manually create the metamodel and
the model by dragging according places and tokens from the toolpalette to the Transformation
Net. These manually specified metamodels and models may then be exported to any of the
supported formats. After having specified the metamodels and the source model, the transfor-
mation designer may start to create the actual transformation specification by means of a system
of interacting transitions. Thereby, the transformation designer may make use of the provided
debugging facilities already in the implementation phase.

Transformation Net

PlacesPlaces TransitionsTransitions

TargetTransformation
Logic

SourceSource
Metamodel imports/exports

Target
Metamodelimports/exports

PlacesPlaces TransitionsTransitions
TokenToken

Source

conforms
Source
Adapter

uses Target
Adapter

t

uses

New Target
d l

conforms

imports/exports
Model creates Modelimports/exports

Figure 8.8: Transformation Nets Applied in Raw Mode

Transformation-Based Mode

Besides raw mode, the DEBUT prototype may also be used in the so-called transformation-
based mode. This mode supports the debugging of declarative model-to-model transformation
languages based on the runtime model. In order to achieve this, the transformation-based mode
provides bridges to certain transformation languages (cf. Fig. 8.9). The main task of a bridge
is to define a transformation from the actual transformation language to the Transformation Net
formalism. In the current prototype, such transformations are implemented for QVT Relations

185

8. PROTOTYPE IMPLEMENTATION

and for MOps. For details on the translation the reader is referred to Chapter 9. In case that
changes in the Transformation Net should be propagated back to the transformation specifica-
tion, e.g., when fixing a failure, an additional transformation is needed (or a single bidirectional
one). The current prototype specifies separate transformations for every supported language,
i.e., transformations from QVT Relations and MOps to Transformation Nets as well as the other
way round are provided. Additionally, constraints may be defined in order to specify which el-
ements of a transformation language may be edited, added and deleted in Transformation Nets.
In this respect it is possible to constrain the possible changes in Transformation Nets, i.e., it may
be forbidden to delete a module in Transformation Nets which represents a relation of QVT (cf.
Section 9.2). Finally, a bridge encapsulates according adapters in order to be able to import and
export the involved metamodels and models.

Source
Metamodel uses

uses

Target
Metamodel

transformation ClassToRel(
class:Class, rel:Relational){

top relation PackageToSchemaPackageToSchema{
checkonly domain class

Transformation Specification

Source
Model

conforms

creates
New Target
Model

conforms
p:Package{classes=c:Class{

isPersistent=true}};
enforce domain rel
s:Schema {tables=t:Table{}};

}

MOpsQVT Relations
usesModel ModelMOpsQVT Relations

QVT B id MO B idQVT Bridge

Source
Adapter

Target
Adapter

QVT2TN
Transformation

TN2QVT
Transformation

Constraints

MOps Bridge

Source
Adapter

Target
Adapter

MOps2TN
Transformation

TN2MOps
Transformation

Constraints

imports/exports

p p p p

Transformation Net

TargetTransformation
Logic

Source

PlacesPlaces TransitionsTransitions

Logic

TokenToken

Figure 8.9: Transformation Nets Applied in Transformation-Based Mode

Contract-Based Mode

Last but not least, Transformation Nets provide the so-called contract-based mode which allows
to combine PACO-Checker and DEBUT. PACO-Checker thereby produces a verification log as
a result which can then be imported into DEBUT by an according bridge (cf. Fig. 8.10). Besides
an error-trace, i.e., which source elements did not fulfill a certain contract, the verification log
additionally contains references to the involved metamodels, the test input model as well as the
transformation specification itself. The verification log is parsed by the Verification Log
Adapter component. Equally to the transformation-based mode, in a first step the metamod-
els and the models are loaded and the transformation which translates the actual transformation
specification to Transformation Nets is executed, e.g., a QVT Relations transformation specifi-
cation is transformed to Transformation Nets. In a second step, the resulting Transformation Net
is executed. Finally, the Transformation Net is initialized for re-enactment (cf. Section 7.3), i.e.,

186

8.2. DEBUT - DEBUgger for Transformations

PaCo‐Checker

Transformation specificationMeta
model

Meta
transformation ClassToRel(

class:Class, rel:Relational){
top relation PackageToSchemaPackageToSchema{

checkonly domain class
p:Package{classes=c:Class{

isPersistent=true}};
enforce domain rel
s:Schema {tables=t:Table{}};

}

model model

conforms
conforms

uses
uses

uses generates

TROPIC QVT Relations
Test

Model Expected
Model

Generated
Model =?

Verification

generates

Verification
Log

reads

PaMoMo Bridge

Mops Bridge
Verification

QVT Bridge

Source Target QVT2TN TN2QVT Constraints

Verification
Log Adapter

Adapter Adapter Transformation Transformation

generates

Transformation Net

PlacesPlaces TransitionsTransitions

TargetTransformation
Logic

Source

TokenToken

Figure 8.10: Transformation Nets Applied in Contract-Based Mode

the tokens which represent the model elements of the error trace are marked and the histories of
the according transitions are reset in order to set a starting point for debugging.

8.2.3 Integration of CPN Tools into DEBUT

In order to be able to execute the specified Transformation Nets, they are compiled to CPNs
as discussed in Chapter 6. Fig. 8.11 shows an overview on the technical realization thereof,
mainly consisting of (i) the compilation of Transformation Nets to CPNs, (ii) the integration of
the ASAP framework in order to execute the compiled CPN, and (iii) the evaluation of OCL
constraints within CPN Tools.

Implementation of Compilation. As already mentioned, the ASAP framework provides a
PNML type to represent the specifics of CPNs. For this, an EMF implementation is provided. In
order to be able to represent the simulation results also in Transformation Nets, this metamodel
has been extended with references to the according construct(s) in Transformation Nets, e.g., the
CPN metamodel element Transition has been extended with a reference to a Transformation

187

8. PROTOTYPE IMPLEMENTATION

PNML MMTransformation Net MM CPN Tools

Transformation

ASAP framework

CPN Model SML

e od
e,

, ce

uses
communicates

PNML ModelTransformation Net

representationation

EMF

interface

CPN
Simulator

G
en

er
at
e

m
od

el
 c
o

si
m
ul
at
e,

st
at
e
sp
a

Comms/CPN

conforms to conforms to
communicates

PNML ModelTransformation Net

OCL Engine
loadsupdates

communicates

updates

CPN Tools

Figure 8.11: Integration of CPN Tools into DEBUT

Net Transition, which is the equivalent concept. In order to not “pollute” the original meta-
model, subclasses of the to be extended concepts have been provided containing the according
references. The compilation itself is written in Java due to the fact that, on the one hand complex
calculations were needed, which would require imperative code anyway. On the other hand, an
extensive and efficiently as well as easy accessible trace model is required, i.e., numerous meth-
ods are provided that provide flexible means to query the trace model. Finally, flattening of
inheriting transitions would result in complex and hard to understand transformation code.

Fig. 8.12 shows the process of the compilation. In the initialization phase a PetriNet
instance is created and it’s root page is added. Furthermore, the color-sets as well as the required
ML functions are defined. The actual compilation of Transformation Nets into CPN starts with
the compilation of every TNPlace instance into a corresponding Place instance in CPN.
These places are added to the root page of the Petri Net. After having compiled the places, the
according objects, values and links are compiled to establish the initial markings of the places.
Thereby, the tokens contained in places of a subtype are also considered in the marking of the
supertype to allow for type substitutability, as already described in Section 6.2.

After having compiled the static parts of Transformation Nets, the dynamic parts are com-
piled. In a first step, for every module in a Transformation Net, according substitution transitions
and subpages are created in the corresponding CPN. Afterwards, the inheritance hierarchy be-
tween transitions in Transformation Nets is flattened, following the principles presented in Sec-
tion 6.4. The flattened Transition instances are compiled into CPN Transition instances
and then added to the according page in the CPN. Finally, the patterns and arcs in Transformation
Nets need to be transformed to according arcs and arc inscriptions. In case the pattern belongs
to a transition which is contained in a module, additionally according ports are created and the
assignments between ports and sockets are established (as discussed in Section 6.5).

ASAP Framework. The ASAP framework not only provides an Ecore based implementa-
tion of a PNML type for CPNs but additionally encapsulates components to simulate a CPN and

Intialization Compilation of Compilation Compilation Flattening of
Rule Compilation of Compilation

of PatternsIntialization Metamodels of Models of Modules Rule
Inheritance Transitions of Patterns

and Arcs

Figure 8.12: Compilation Process

188

8.2. DEBUT - DEBUgger for Transformations

to accomplish state space analysis (cf. CPN simulator and Standard Meta Language (SML) inter-
face in Fig. 8.11). Basically, the framework provides an interface to CPN Tools and encapsulates
the communication details, e.g., serialization of objects. In this respect an extensive framework
is provided that allows to access the functionalities of CPN Tools from a Java program. After
having compiled a Transformation Net to CPN the ASAP framework is used to check the CPN,
i.e., it is analyzed if the resulting CPN is syntactically correct. If the net is correct, the simulator
component may be used in order to achieve all enabled transitions. Since a CPN Transition
instance contains a reference to its corresponding Transformation Net Transition instance,
it is possible to highlight the enabled transitions also in the Transformation Net. Furthermore,
the ASAP simulator provides means to either fire a single transition or to fire a certain number
of transitions in a non-deterministic manner. If a transition fires, the markings of the according
source and target places change. Therefore, the marking of these places is analyzed in order to
accordingly update the tokens of the Transformation Nets. In this respect, the simulation of the
Transformation Net is enabled.

Evaluation of OCL Constraints and Functions. In order to enable the evaluation of OCL
expressions within CPNs, the prototype makes use of the Comms/CPN library [48]. This library
allows for remote calls, which are used to evaluate the OCL expressions with the help of a
remote server. In a first step the specified conditions and functions in Transformation Nets
are specified in the guard in case of conditions or arc inscription in case of functions in CPN.
Thereby it is assumed that OCL queries may be only specified on basis of the source metamodel,
which is accessed in a read-only manner only. Since an OCL engine requires the according
objects for the evaluation, in a first step currently bounded ids of the object are appended to
the OCL expression. For example, the condition in Listing 8.1 requires the id of the bound
modelElement as context (denoted by the @modelElement in the expression). Therefore,
the according id bound to the variable modelElement is appended. Since several contexts
are allowed, the according element is prefixed by its name followed by a colon. The OCLEval
function sends the string via a socket connection to the server. If the server receives a message,
it is first parsed, i.e., the actual condition or function is separated from the ids of the objects. The
ids are then used to lookup the actual objects which are used to set the actual context objects for
evaluating the OCL expression. The prototype makes then use of the Eclipse OCL framework
to evaluate the expression. The evaluation result is returned to the CPN for further processing,
e.g., enabling a transition if a condition evaluates to true.

Listing 8.1: Evaluation of OCL Condition
1 −−b ind a t o k e n t o an OCL c o n d i t i o n
2 OCLEval (‘ ‘ [@modelElement] . i s P e r s i s t e n t | modelElement : ’ ’ ^ modelElement)]

8.2.4 Implementation of Debugging Features

After the general architecture of the DEBUT prototype has been described, this subsection gives
an overview of the implementation of the debugging mechanisms presented in Chapter 7. In this
respect, first the implementation of the mechanisms to detect code smells is presented followed
by mechanisms for simulation-based debugging. Finally, the implementation of query-based
and property-based debugging mechanisms is discussed.

189

8. PROTOTYPE IMPLEMENTATION

Implementation of Mechanisms to Detect Code-Smells. In order to detect code-smells,
OCL invariants are provided, which have already been presented in Section 7.1. If the Trans-
formation Net is compiled to CPNs these invariants are automatically evaluated. The results are
presented in the so-called Code-Smells View (cf. Fig. 8.13). In the example depicted in
Fig. 8.13, the transformation designer can see that the source places Package and Attribute
and the target places Schema and Column are not part of the transformation specification.

Code‐Smells View

Figure 8.13: Screenshot of Mechanisms to Detect Code-Smells

Implementation of Simulation-Based Debugging Mechanisms. As described above, the
ASAP framework allows to integrate CPN Tools into a Java application. To allow the trans-
formation designer to compile the specified Transformation Net to a CPN, the editor’s toolbar
provides an according entry (cf. Fig. 8.14). The simulator component of the ASAP framework
allows to execute a CPN, whereby the according results are visualized in the corresponding
Transformation Net, i.e., the enabled transitions are highlighted in green, as can be seen in
Fig. 8.14. During debugging the transformation designer may fire any of the currently enabled
transitions by selecting the according context-menu entry. Furthermore, it is possible to select a
possible binding in order to select specific model elements to transform, as depicted in Fig. 8.14.
The editor’s toolbox additionally allows the transformation designer to execute the transforma-
tion, i.e., the transformation is executed until it terminates or a breakpoint is reached. Finally,
it is possible to clear all tokens and to load a new model or the revert the transformation, i.e.,
all produced tokens as well as the histories of the transitions are cleared and the transformation
specification is set back to its initial state.

Implementation of Query-Based Debugging Mechanisms. Since the implementation of
Transformation Nets follows the model driven approach, i.e., a transformation specification con-
forms to the Transformation Net metamodel, OCL can be used for debugging as explained in

190

8.2. DEBUT - DEBUgger for Transformations

Delete Tokens
Compile

Execute

Enabled transition
Revert Tokens

Possible bindings

Figure 8.14: Screenshot of Simulation-Based Debugging Mechanisms

Section 7.3. In this respect, query-based debugging is enabled on the one hand by predefined
OCL expressions, which are defined in terms of methods at the according metamodel element in
order to reduce complexity and to provide the transformation designers with common debugging

Selected OCL Context

OCL Console

OCL Expression

Figure 8.15: Screenshot of Query-Based Debugging Mechanisms

191

8. PROTOTYPE IMPLEMENTATION

queries. On the other, these predefined methods may be combined with arbitrary OCL expres-
sions in order to provide flexible means for backwards in time debugging and to not restrict the
transformation designer to a limited amount of debugging questions. To specify the queries, the
OCL console, which is provided by the Eclipse OCL framework, is used. In order to set the
context of an OCL expression, arbitrary elements may be selected in the editor. In the example
depicted in Fig. 8.15, the token contained in the place SchemaElement is selected. The OCL
console depicted at the bottom of Fig. 8.15 is then used to query the Transition instance,
which created the according token by calling the predefined method getCreator().

Implementation of Property-Based Debugging Mechanisms. The ASAP framework not
only allows to simulate a CPN but also provides possibilities to create the state space of a CPN
in order to calculate behavioral properties, e.g., liveness properties or boundedness properties,
as discussed in Section 7.4. For this, arbitrary ML statements may be executed. Consequently,
statements are implemented that first calculate the state space of the underlying CPN. Further-
more, ML statements are implemented that query the state space. As a first step it is checked
if the state space contains a dead state, i.e., if there exists a state without any outgoing arcs.
If such a state is found, the according marking may be parsed and accordingly visualized in
Transformation Nets. Furthermore, the DEBUT prototype allows to check for confluence of the
specification, i.e., it is first checked if there exists a single home state and if this home state is
equal to the dead state. As a further property it is possible to check for dead transition instances,
i.e., if a transition has never been enabled. The results of the state space analysis are summarized
in an according view as can be seen at the bottom of Fig. 8.16.

Properties View

Figure 8.16: Screenshot of Property-Based Debugging Mechanisms

192

8.3. Summary

8.3 Summary

This chapter provided an overview of the implementation of the prototype. First, the im-
plementation of the PACO-Checker tool was discussed which allows the specification of

PAMOMO contracts, as well as their compilation and execution in QVT Relations in order to
test a transformation specification against contracts. As a result, a verification log is provided
which includes an error trace in case a certain contract is not fulfilled. Second, the DEBUT pro-
totype was introduced, which provides an implementation of the Transformation Net runtime
model and provides a graphical visual syntax in the form of an Eclipse editor in order to specify
and edit Transformation Nets. Furthermore, the debugging features have been integrated into
this editor. In order to benefit from the execution engine and the state space analysis methods of
CPN Tools, the integration of the ASAP framework into the prototype was shortly discussed.

193

Chapter 9

Evaluation

If your experiment needs statistics,
then you ought to have done a better experiment.

— Ernest Rutherford

Contents
9.1 Evaluation of PaMoMo Contracts . 195
9.2 Evaluation of Runtime Model . 203
9.3 Evaluation of Debugging Features . 221
9.4 Summary . 233

After having presented the concepts developed throughout the thesis, this chapter evaluates
and critically reflects on them. The evaluation is structured along the three main contri-

butions of the thesis. Thus, first, PAMOMO as a declarative language to specify visual trans-
formation contracts is evaluated by means of case studies from different domains as well as a
comparison to related work. Second, Transformation Nets as a runtime model for model trans-
formations are evaluated. It is shown how transformations expressed using QVT Relations or the
Mapping Operator (MOps) Language, a mapping language which was developed throughout the
TROPIC project, can be represented by means of Transformation Net concepts in order to show
the applicability and adequacy of the proposed runtime model. Finally, the debugging features
are evaluated, again by means of a case study and a comparison to related work.

9.1 Evaluation of PaMoMo Contracts

I
n order to illustrate the usefulness of contracts, this section presents several case studies which
were conducted in three application domains. The first one deals with the verification of the

195

9. EVALUATION

transformation from PAMOMO into QVT Relations presented in this thesis. The second one is
concerned with the verification of a complex transformation from a process-interaction simula-
tion language [44] in the area of performance evaluation into CPNs [72]. Finally, the third one
presents an application of contracts for third-party transformations, in particular the generation
of visual editors from GMF models are tackled. These case studies show the versatility of the
approach by the automated verification of an ATL transformation, a QVT Relations transforma-
tion, and the safe execution of a third party transformation (from which the source code is not
available). In each case, the use of different features of PAMOMO are stressed.

9.1.1 Using PAMOMO to Verify its own Translation into QVT Relations

In this subsection, some patterns of the contract that helped in verifying the transformation from
PAMOMO into QVT Relations are shown. The metamodels of both languages are depicted
in Fig. 9.1. The PAMOMO has been already described in Subsection 3.2.5. A transforma-
tion (cf. class RelationTransformation specified QVT Relation makes use of several
relations (cf. class Relation) which are defined between different metamodels (cf. class
TypedMode). A Relation is connected to its metamodel by means of a RelationDomain,
which contains so-called a DomainPattern. A DomainPattern is used to describe the
actual elements that match for certain elements in the source model (checkonly domain) or pro-
duce certain elements in the target model (enforce domain). The configuration of the elements
is described by means of the class ObjectTemplateExp and PropertyTemplateItem.
With this example it is stressed that PAMOMO is independent from the language used to realize
the transformations, since whereas in the running example a QVT Relations transformation is
verified, here the translation was implemented with ATL.

RelationTransformation

0 1
2..*

modelParamSpecification
ConstraintGraph
name : String

disablingCondition
enablingCondition

constraint

0..1

1..1
0..*

TypedModel
name : String

Relation

0..*

rule 0..1
typedModel

modelParam

0 1

referredRel

p
name : String
sourceMMAlias : String
targetMMAlias : String

Graph
1..1 1..1

sourceGraph targetGraph

Relation
name : String
isTopLevel : Bool

RelationDomain
name : String
isCheckable : Bool
isEnforceable : Bool

domain
*

patternh h

0..1p
MMAlias : String

O

0..*
objects refersTo

pattern
0..1

OclExpression
Pattern

when where
0..10..1
condition
Expression

Pattern
name : String
OCL diti St i

1..*
patterns Object

name : String
type : String

f

1..1

bindsTo

DomainPattern

f dV

Predicate
0..*

predicate
OclExpression

1..1OCLcondition : String

P iti P tt N ti P tt

Feature
name : String

0..*
features bindsTo

template
Expression

0..*
Variable

name : String

bindsTo
0..1

value

1..1
referredVar

0..1

Predicate

RelationCallExp

PositivePattern NegativePattern
g

Attribute
variable : String

Reference

0..1
ObjectTemplateExp

Type
name : String

type
0..1

VariableExp

() P M M t d l (b) QVT R l i d l

variable : String
value : String
type : String 0..*

PropertyTemplateItem part

(a) PaMoMo metamodel (b) QVT Relations metamodel

Figure 9.1: PAMOMO (left) and QVT-Relations (right) metamodels

The contract for the transformation contains invariants and postconditions, but it does not
contain preconditions because the translation handles all features of PAMOMO. As an example,
Fig. 9.2 shows an invariant addressing the translation of pre- and postconditions. These are

196

9.1. Evaluation of PaMoMo Contracts

patterns with either the source or target graphs empty (i.e., the size of the set of objects either
in the source graph or the target graph is 0, as checked by the condition). These patterns should
be transformed into relations with two domains (since this is required by the used Moflon QVT
Relations engine) but referring to the same TypedModel instance, as shown by the target graph
object.

InvariantsInvariants
P(ConditionsToRelationsWithPseudodomain)P(ConditionsToRelationsWithPseudodomain)

:Pattern :Relation

PaMoMo QVT‐Relations

:ConstraintTripleGraph

name=Z

constraint

name=Z

:RelationDomain
domain

:Graph

source
Graph

domain

:Graph

target
Graph :RelationDomain

:TypedModel:Object

sourceObjs

:Object

targetObjs

sourceObjs.size = 0 OR targetObjs.size = 0

Pre and postconditions are transformed into relations with two
domains referring to the same model type

Figure 9.2: A Positive Invariant for PAMOMO-to-QVT-Relations

Fig. 9.3 shows another invariant stating that positive patterns of any type without enabling
or disabling conditions (checked by the two disabling conditions) are transformed into a unique
relation. Thus, the generated relation cannot invoke other relations in its where clause (i.e., the
shown invariant) or when clause (checked by another similar invariant).

Finally, Fig. 9.4 shows two postconditions checking that all generated relation domains areInvariantsInvariants
N(PositivePatternTo1Relation)

N(NoEnablingCondition)
PaMoMo QVT R

name=Z

N(PositivePatternTo1Relation)

p:PositivePattern
name=Z

:Relationenabling
Condition

p:PositivePattern QVT‐Relations
PaMoMo

PaMoMo
QVT‐R...

name=Z name=Z

:Pattern
rule:ConstraintTripleGraph

Condition

N(NoDisablingCondition)

:Predicate
when

di bli

p:PositivePattern

N(NoDisablingCondition)
PaMoMo QVT‐R...

:RelationCallExp
predicate

:ConstraintTripleGraph

disabling
Condition

All kinds of positive pattern (invariants, pre and post) without enabling or

(we should have a similar pattern for the where condition)

disabling conditions are transformed into a unique relation.
 Do we finally transform complex sets into relations?

Figure 9.3: A Negative Invariant for PAMOMO-to-QVT-Relations

197

9. EVALUATION PostconditionsPostconditions
N(NoChainOfWhen)

:Relation
when

QVT‐RelationsPaM...

:Relation
when

P(Domains)

l

PaM... QVT‐Relations

P(AreCheckonly)
PaM... QVT‐Relations

:Pattern

:Predicate

predicate

:Pattern

:Predicate

predicate

r:RelationDomain r:RelationDomain
isCheckable=true
isEnforceable=false

:Predicate

:RelationCallExp :RelationCallExp

condition
Expression

condition
Expression

All domains must be checkonly,
and cannot be enforced.

There are no chains of when invocations.

Figure 9.4: Two Postconditions for PAMOMO-to-QVT-Relations

checkonly (left), and that there are no chains of when relation invocations (right). Both are
constraints of the models generated by the transformation.

9.1.2 From a Process-Interaction Language into Timed Coloured Petri Nets

The second case study deals with the translation from a process-interaction simulation lan-
guage [44] in the area of performance evaluation into CPNs [72]. These two metamodels ex-
hibited large heterogeneities and therefore it should be evaluated how invariants may cope with
this situation. For modeling systems with the aim of simulating their performance, a language
in the process-interaction simulation style [44] can be used. In this kind of languages, systems
are modeled by processes made of interconnected blocks through which transactions flow.

Fig. 9.5 shows a process-interaction model. The two blocks to the left are generators of
transactions. In particular, the upper left block produces a transaction of type 1 at each [10, 20]
time steps, with a transaction length having a uniform probability between [120, 150]. Similarly,
the lower left block produces a transaction of type 2 at each [12, 24] time steps, with a length
having a uniform probability between [140, 180]. Both kinds of transactions arrive at the ad-
vance block (labeled “A”), which models a process with a delay given by a uniform probability
in the interval [2, 5]. After this delay, transactions reach a server block with a parallelism of 3,
meaning that the server can attend 3 transactions at the same time. Moreover, the server has
a delay between [4, 5]. Then, a type switch block (labeled “type”) selects the transactions de-
pending on their type. Transactions of type 1 are routed onto a server with parallelism 2, while

21

[2 5]

[1*len,3*len]
par:2 1 S

par:3
[4 5]

SA typelen=[120,150]
[10,20]

1

[2,5]
par:3
[2*len,5*len]2

S
[4,5]

12
[12,24]

len=[140,180][]

Figure 9.5: A Process-Interaction Model

198

9.1. Evaluation of PaMoMo Contracts

Figure 9.6: Metamodel of the Process-Interaction Language

transactions of type 2 are routed into a server with parallelism 3. Finally, transactions finish in a
terminate block (which counts 1 each time a transaction arrives). Altogether, this model repre-
sents a client/server system that accepts two kinds of requests, processed on different servers.

Fig. 9.6 shows the metamodel for this process-interaction language. Thus, a Simulation
model is made of Blocks and Resources. Block is an abstract class subclassed for each
different kind of block.

In order to simulate and analyse process-interaction models, a transformation of these mod-
els into Coloured Petri Nets (CPNs) [72] has been built, which allows using tools like CPN Tools
for this task. Please note that the example also makes use of the fact that CPN Tools supports
time by attaching timestamps to tokens, which can be incremented by the transitions. PAMOMO

has been used to express different requirements for this transformation. Fig. 9.7 shows some of
the specified invariants. The one to the left expresses how parallel servers should be translated
into CPNs. In particular, if the parallelism of the server is P, then we need to replicate P times
the CPN structure inside the set of servers to the right. This is indicated by the expression
servers.size()=P, i.e., the whole structure has to exist P times. The input and output
blocks of the parallel server can be of any type, hence the invariant uses objects of type Block
(represented by dotted rectangles) for them, to mean “any subclass of Block”. Moreover, the
labels LS and LT of these two blocks are used to locate the CPN places generated from them.

The upper right of Fig. 9.7 shows another invariant formalizing the translation of switches
(both TypeSwitch and SizeSwitch). They should be transformed into places with as many
output arcs as paths leaving from the switch. Finally, the bottom right of the figure shows
an invariant describing the relation between the number of resources produced by a resource
manager (with label RM) and the number of arcs that the corresponding transition should map
to the place created for the resource. In particular, a correct transformation should produce as
many arcs as the attribute num of the resource manager.

Altogether, in this complex case study the invariants made extensively use of sets. This is
due to the fact that both metamodels exhibited large heterogeneities. In particular, it was often

199

9. EVALUATION

P(ParallelServer)
Process‐
Interaction

CPNs
LS Transaction L Transaction

label=L

P(SwitchOutPaths)

L start
servers

label=LS

Transaction

L BusyL Idle

{len=tl, type=t}

1`()
()par:P

[MIN,MAX]
S

label=L

B path
switch out

label=B

L Busy

L d

L Idle
TransactionUNIT

() {len=tl, type=t}
label=LT

switch.size()=out.size()

P(ResourceManagerProduces)

@+DELS()

L end

TransactionLT

RM
arcsnum=n

label=RM

produces
Transaction

AVAILX=int with MIN..MAX;
Declarations:

LT
R

res
type=R

servers.size()=P fun DELS()=AVAILX.ran(); n=arcs.size()

Figure 9.7: Invariants for: Translation of Parallel Servers (left), Translation of Switches (upper
right), Translation of Number of Resources Produced by Resource Managers (bottom right)

the case that an attribute in the process-interaction language (like the parallelism in servers, or
the resources produced by resource managers) had to be translated into a number of replicated
structures in the CPN metamodel. Here, it can be benefited from the fact that patterns are declar-
ative, so that complex structures can be easily described graphically, as opposed to textually
encoding them using e.g., OCL navigation expressions.

9.1.3 Verification of Graphical Definitions in GMF

The Graphical Modeling Framework (GMF) [54] enables the “rapid” development of environ-
ments for visual languages. The approach taken is to specify different aspects of the editor using
a set of interrelated models. The so-called gmfgraph model has a crucial role as it contains
the specification of the graphical syntax of the language. However, only a tree-based editor is
available for the specification of the figures of the concrete syntax, which is cumbersome and
error prone. Therefore means are needed in order to verify if the specified model is correct. The
gmfgraph model is then used (together with the other models) in a transformation to generate
the so-called gmfgen model which is the basis for the final Java code generation of the editor.

A well-known problem is that if some model does not conform to a set of rules, the code
generation produces erroneous code which may override a previous successful compilation. Al-
though the framework validates some simple preconditions before the translation, like if all fields
have meaningful values, no behavioral semantic contracts are checked. Therefore, designers of

200

9.1. Evaluation of PaMoMo Contracts

GMF editors could greatly benefit from means to check whether their models conform to the set
of GMF norms that ensure a successful compilation. In the following, contracts are specified for
this purpose and some preconditions are discussed.

Layout constraints. The specifications of figures need to offer a certain Layout, e.g., a
GridLayout providing a row/column oriented alignment. Typically, a complex figure consists
not only of a single figure but also contains child figures, e.g., labels to visualize feature values.
The actual visualization of the children figures can be constrained by means of LayoutData.
However, the type of Layout for a figure, e.g., GridLayout, should correspond to the type
of LayoutData for its children, e.g., GridLayoutData. To check this, the precondition in
Fig. 9.8 may be used. The enabling condition selects figures with a certain Layout containing
a child figure with some LayoutData. Then, the OCL condition in the precondition checks
the compatibility of the Layout and the LayoutData.

L bl
LayoutData

layoutData
0..1

P(FoundLayoutData)
GMFGraph GMFGen

P(EnsureCorrectLayoutData)
GMFGraph GMFGen

Layoutable
LayoutData

GridLayoutData BorderLayoutData

layout
children
0 *

g1:Layout

l

g1:Layout

l t
...

Figure
GridLayoutData BorderLayoutData 0..*

f1:RealFigure

layout

f1:RealFigure

layout

Layout

RealFigure

0..1
f2:RealFigure

children f2:RealFigure

children

Shape

GridLayout BorderLayout Rectangle

g

layoutData
l1:LayoutData

layoutData

...
Rectangle

l1:LayoutData
(g1.oclIsTypeOf(GridLayout) and
l1.oclIsTypeOf(GridLayoutData)) or
(g1.oclIsTypeOf(BorderLayout) and
l1.oclIsTypeOf(BorderLayoutData)) or
...Extract of GMFGraph Metamodel

Figure 9.8: Precondition Checking Layout Constraints in GMF

Child access constraints. In order to be able to access the children figures of a figure in the
gmfmapmodel, every FigureDescriptor needs to specify a ChildAccess for every one
of its children. To be able to reuse a figure, e.g., if it is used several times in the concrete syntax,
it is possible to use Nodes assigning a graphical representation to a certain metamodel element.
Hence, if a Node refers not only to a FigureDescriptor but also to some ChildAccess,
then the figure referred by the ChildAccess must be a child of the FigureDescriptor.
In addition, the type of the Node has to correspond to the type of the child figure (e.g., in case
of a DiagramLabel, the type of the child figure must be Label). These two conditions can
be checked by using the precondition shown in Fig. 9.9. The second condition is encoded by the
OCL expression in the pattern.

Hence, this example shows the use of PAMOMO to make explicit certain (non-documented)
assumptions of transformations. Once these assumptions are encoded in the form of precondi-
tions, they can be checked using PACO-Checker in order to avoid errors caused by the GMF
compilation.

Finally, the kind of failures PaMoMo can detect is related to its expressiveness. There are
some limitations concerning the specification of contextual conditions for a given property, as

201

9. EVALUATION

P(F dFi D i t) P(Ens reCorre tA essors)
DiagramElement

P(FoundFigureDescriptor)
GMFGraph GMFGen

P(EnsureCorrectAccessors)
GMFGraph GMFGen

f1:FigureDescriptor f1:FigureDescriptor
AbstractNode

Node

f1:FigureDescriptor

figure

f1:FigureDescriptor

figure
Node

DiagramLabelCanvas labels 0..*

factualFigure

d1:DiagramLabel d1:DiagramLabel

FigureGallery0..*figures

d

Figure 1
figure

1

actualFigure

c1:ChildAccess

accessor

c1:ChildAccess

accessor

FigureDescriptor
0..*

descriptors

1figure

0 1
accessor

Label

f2:Figure

figure

f2:Figure

figure

accessors

ChildAccess
0..1

0..*accessors

f2.oclIsTypeOf(Label)Extract of GMF Metamodel

Figure 9.9: Precondition Checking Child Access Constraints in GMF

patterns only currently support conjunction of disabling conditions but not disjunction or any
arbitrary boolean formula over disabling conditions, or nested (i.e., recursive) conditions. The
expressiveness of the graphical part of the patterns is limited (less than first-order logic). For
example, the absence of cycles of a given relation cannot be modeled. Nonetheless, in practice,
we have found this expressiveness to be enough to build useful contracts declaring interesting
properties for our transformations.

Regarding the scalability of the approach, it depends on the size of the tested input and output
models as well as on the size of the patterns, as it is relied on a pattern matching mechanism.
Thus, the smaller the models and patterns, the higher the performance. The size or complexity
of the tested transformation implementation is not an issue though.

9.1.4 Comparison to Related Work

Even though the community has spent considerable research on verification and testing of trans-
formations up to now, and although some approaches based on contracts have emerged recently,
current approaches did not provide a high-level language which is able to express transforma-
tion properties in order to ease the specification of contracts. Therefore, in order to facilitate
the specification of contracts, this thesis proposes a dedicated visual language to define trans-
formation contracts which induces several advantages. First, the PAMOMO language is visual
and enables a succinct expression of graph patterns, which otherwise would need to be encoded
using navigation expressions in OCL, or complex expressions in the case of sets. In this respect,
the pattern-based specification of PAMOMO contracts is intuitive to the transformation designer.
Second, other languages like QVT Relations are less suitable than PAMOMO to express these
contracts, in particular concerning the expression of negative information (a negative pattern
produces two relations), or enabling conditions (which generates additional relations invoked
from another relation). Third, PAMOMO’s formal semantics enables also reasoning about meta-
model coverage, redundancies, contradictions and pattern satisfaction. Fourth, the specification
of the contracts is completely decoupled from the transformation implementation. This means
that the contracts are independent from the specified transformation rules and from the trace
model of a specific transformation execution. Finally, the translation of the contracts to QVT

202

9.2. Evaluation of Runtime Model

Relations allows for dedicated feedback in terms of the model elements that did not satisfy a
particular contract.

Compared to related work, a pure OCL-based approach, only provides true or false back
as answer to the user, but no further information is accessible in standard OCL environments.
Additionally, approaches based on OCL usually lead to complex constraints difficult to write
in practice, and yielding verbose specifications [30], especially concerning invariants defining
relations between input and output models. Furthermore, all mentioned approaches (except the
model-fragment based ones [109,123]) define contracts based on the metamodel of the input and
output models. In contrast to model-fragment based approaches, PAMOMO allows the definition
of the contracts with a visual language but we refrain from defining the contracts for a particular
test input model. Therefore, the presented approach is more general and allows to verify the
specified transformation against arbitrary input models. Hence, this thesis contributes to fill
this gap by providing a high-level, visual specification language and tool support to specify
contracts. Since the specified contracts exhibit a formal semantics, reasoning at the level of
patterns is enabled. Finally, contracts can be made operational by its compilation into QVT
Relations.

Works dealing with testing object oriented systems with contracts report some limitations
regarding the kind of failures contracts can detect [92]. For example, in object oriented systems
method pre- and postconditions have difficulties in reasoning about the global state of an object
or set of objects, as they are specified locally. For example, a prune method of a stack cannot
have a trivial local contract checking if the removed element was previously inserted by a put
method [92]. In contrast, transformation contracts are not specified at the rule level - as they are
language-independent - and hence can be used to specify global transformation properties. In
[50] it is also argued that detecting certain failures requires overly complex contracts, more than
the method implementation itself. In PAMOMO, contracts can be made more precise by: (a)
enriching a pattern with enabling or disabling conditions, (b) adding more objects in the source
or target compartments of a pattern or (c) adding more patterns to the contract. For example,
an enabling condition refines a pattern by making it fail on more models (hence, to potentially
detect more transformation failures). However, it is up to future work to investigate the degree
in which more complex contracts increase the effectiveness for failure detection (as in [22, 92]).

9.1.5 Summary

In summary, in this subsection the appropriateness of PAMOMO contracts have been demon-
strated by means of several case studies from different domains. In this respect it was shown,
that the visual, declarative nature of PAMOMO eases the specification of contracts, e.g., in con-
trast to OCL or by (directly) using QVT Relations. After the evaluation of PAMOMO, in the
following the proposed runtime model is evaluated.

9.2 Evaluation of Runtime Model

The second major contribution of this thesis is the provision of a runtime model for declara-
tive, rule-based model-to-model transformation languages. Chapter 4 introduced the con-

203

9. EVALUATION

cepts of Transformation Nets in general and Chapter 5 focused on rule inheritance in particular.
In order to evaluate the presented concepts, in the following it is first shown, how the operational
semantics of QVT Relations may be represented in Transformation Nets. Second, it is shown
how the operational semantics of the declarative mapping language called Mapping Operators
(MOps), may be specified by means of Transformation Nets. The representation of the opera-
tional semantics of both, QVT Relations and MOps, allows the reuse of the debugging features
provided by the Transformation Net formalism, which will be evaluated afterwards.

9.2.1 Translating QVT Relations to Transformation Nets

In order to show the applicability of the presented runtime model, this section evaluates if the
provided concepts are able to represent the operational semantics of current model-to-model
transformation languages. As a concrete example, the operational semantics of QVT Rela-
tions, which has been proposed as the standard declarative model transformation language by
the OMG, should be represented by the concepts provided in Transformation Nets. This allows
to reuse the debugging features of Transformation Nets also for QVT Relations.

Since transformations written in the QVT Relations language consist of declarative relations
between metamodels, unidirectional as well as bidirectional transformations are supported, al-
though the actual execution requires to specify a direction. Moreover, QVT Relations supports
check and enforce semantics, differing in if required changes on the target side are just reported
or actually undertaken, thereby supporting incremental updates which can theoretically be spec-
ified on rule level. The semantics of check and enforce, especially in combination with bidi-
rectional model transformations is not clearly defined as stated in [144]. Furthermore, the QVT
standard defines the operational semantics of QVT Relations twofold, firstly in natural language
and secondly by a translation to QVT Core, being incompatible to each other [145]. This situa-
tion led to different implementations of the operational semantics in different tools, e.g. concern-
ing the realization of when and where clauses. To circumvent these deficits of the QVT standard,
the example as well as the translation presented in the following are based on the operational
semantics of the mediniQVT1 implementation. Furthermore, the focus is on an exogenous batch
transformation scenario which creates a new target model out of an existing source model. In
case of bidirectional specifications, two different Transformation Nets are derived, one for every
execution direction. Thereby, it is assumed that all relations specify a checkonly semantics for
source model elements and enforce semantics for target model elements.

9.2.1.1 Translating QVT Relations to Transformation Nets

In order to present the translation of QVT Relations to Transformation Nets, the running example
is used. Fig. 9.10(a) shows an extract of the QVT Relations code whereas Fig. 9.10(b) shows the
according representation in Transformation Nets. In the following, the translation is described
in detail.

Representation of Source and Target Metamodels and Models. QVT Relations as well
as Transformation Nets provide containers (cf. class RelationTransformation and Net,

1http://projects.ikv.de/qvt

204

9.2. Evaluation of Runtime Model

Source TargetTransformation

ModelElement SchemaElement

Source TargetTransformation
transformation ClassToRel

(class : Class ; rel : Relational){
top relation PackageToSchema {

h k l d i l P k { }

1
2

1 2

name : String name : String

p1
Univer
sity

c1 c2
StudentPerson

a1 a2c3 a3

checkonly domain class p: Package{…};
enforce domain rel s: Schema {…};

}

top relation ClassToTable {

3

a1
name

a2
registr
No

Professor salarytop relation ClassToTable {
checkonly domain class c: Class {…};
enforce domain rel t: Table {…};
when{PackageToSchema (p,s);}

4

Package

p1

Schema
PackageTo
Schema

C
C

where{AttributeToColumn (c,t);
}

relation AttributeToColumn {

3

TableClass

c1 c2

Schema
T

c3
ClassTo
Table

C
C

T1..*

relation AttributeToColumn {
checkonly domain class c: Class {…};
enforce domain rel t: Table {…};
where {

5 4

isPersistent: Boolclasses tables

c2
true

c3
true

c1
false

Table
T

subclasses

superclasses

AttributeToC
T

PrimitiveAttributeToColumn (c,t);
SuperAttributeToColumn (c,t);

}
}

5
0..*

subclasses
0..*

Column

columns
0..*

AttributeTo
Column

C
C

T

}

relation PrimitiveAttributeToColumn {
checkonly domain class c: Class {…};
enforce domain rel t: Table { };6

6

T

0..*
attributes

Attribute type : String

PrimitiveAttributeTo
Column

C
C

T
enforce domain rel t: Table {…};

}

relation SuperAttributeToColumn {
checkonly domain class c: Class { };

6

type : String

a1 a2

a1 a2

a3

a3 SuperAttributeToC
T

checkonly domain class c: Class {…};
enforce domain rel t: Table {…};
where {SuperAttributeToColumn (sc,t);}

}

7

7
String Integer Integer SuperAttributeTo

Column
C

T

}

()(a) QVT Relations Code of Running Example (b) Representation of QVT Relations Code of Running Example in Transformation Nets

Figure 9.10: Representation of QVT Relations Code in Transformations Nets (Blackbox-View)

respectively in Fig. 9.11) for aggregating metamodels, models and transformation logic. There-
fore it is natural to represent instances of RelationTransformation, i.e., transformations,
by instances of Net and TransformationSpecification in Transformation Nets. Ev-
ery QVT Relations transformation specification requires two so-called candidate models, which
are given as parameter to the transformation specification and are represented by instances of
LHS and RHS in Transformation Nets, providing containers for places representing source and
target metamodel (cf. reference RelationTransformation.modelParameter and 1
and 2 in Fig. 9.11). These parameters, e.g., class and rel represent references to the ac-
cording source and target models and their respective metamodels (cf. metaclass TypedModel).
These references have to be set by the transformation designer before executing the transforma-
tion specification, i.e., in the runtime configuration of mediniQVT. These information is used
to derive according instances of TNPlaces of the metamodels and Tokens from the models,
following the principles described in Section 4.3.

Representation of Transformation Logic. QVT Relations uses Relations in order to
specify the transformation logics. Thereby, Relations act as a container to encapsulate so
called DomainPatterns which match for a source element and create a target element. To
incorporate the involved metamodels, QVT Relations uses RelationDomains which bind
Relations to the source or target metamodel. Consequently, Relation instances are rep-
resented as a Module instance with a contained Transition instance in Transformation
Nets. The root DomainPatterns, which have to target metamodel classes, are represented
as explicit ClassPorts in the blackbox view and as according arcs originating from the cor-
responding metamodel element, as can be seen in Fig. 9.10 and Fig. 9.11. In this respect, Arcs
in Transformation Nets are used to represent RelationDomains.

205

9. EVALUATION

RelationTransformation TypedModel
2..*

modelParameter
target1

2

Relation
isTopLevel : Bool

0..*rule

RelationDomain
isCheckable : Bool

2..*

1..1 typedModel

0..1
referredRelation children 1..*

PortArc
arcs 0..*

target

0..*

1..1

arcs

target

0..*1

3 4 4
4isTopLevel : Bool isCheckable : Bool

isEnforceable : Bool
domain

pattern1 1

when where
0..10..1

referredRelation

diti

Module

children

0..* ports

places

Transition
0..*

transitions1..*

Pattern

production
Patterns0..*

1..1

1..1

arcs

336

DomainPattern

pattern1..1

template

OclExpression
1..1

Pattern

0..1condition
Expression

TransformationSpec
t f ti

modules
parent

0..1Transition
TNPlace

0 *

0..* 0..*
transitions1..*

0..*
tokens

Pattern

0..*
query
Patterns

1

2
5 5

6
Obj V l

Variable

bindsTo

TemplateExp

template
Expression 0..1

Predicate

*predicate
RelationCallExp

0..*

Net

S i

transformation

1..1

LHSsourceMM

targetMM

1..1
0..

places

places

Token

1

1

2

Object
Pattern

Value
Pattern

Link
Pattern

Trace
Pattern

0..*
ObjectTemplateExpPropertyTemplateItem

part

name : String RHS
targetMM places

2
55 Pattern Pattern

(a) QVT Relations Metamodel (b) Transformation Net Metamodel (extract)

Figure 9.11: Correspondences between QVT Relations and Transformation Nets

To specify the actual elements that should be matched, i.e., preconditions of a transforma-
tion rule, and which elements should be created, i.e., postconditions of a transformation rule,
so-called DomainPatterns are used in QVT Relations. DomainPatterns must build di-
graphs conforming to the used metamodel (cf. Fig. 9.12 depicting the DomainPatterns
of the relation PackageToSchema), expressing correspondences between source and tar-
get metamodel elements. Unfortunately, this correspondence is hard to grasp. To get a vi-
sual clue which source element is transformed to which target element, Transformation Nets
represent the nodes of such a digraph graphically (cf. Fig. 9.12) by means of Query- and
ProductionPatterns whereby every node is connected to a certain source or target place.
Following the principles of Transformation Nets presented in Chapter 4, correspondences be-
tween source and target element are expressed by equally colored patterns.

QVT Relations specification Transformation Net TransitionSimplified Metamodel Digraph

checkonly domain class
c:Class{

namespace=
p:Package{}St i

classes

*

*

superClasses
Classconforms to represents

required Trace

Domain object creation

Package Class
c c

sp

p

c

s

<<cbe>>

c
<<cbe>>

p:Package{},
isPersistent=true
name= cn;

}

name:String
isPersistent:Boolname:String *namespace namespace

PackageisPersistent

namesub
Classes conditions and

mappings

g

<<cbe>>

sp

c

p

c

s

isPersistent

c

name:Stringname:String

tables

*schema

Table
enforce domain rel

t:Table{
schema=

conforms to represents provided Trace
Schema Table

c c

cc

cn cn

isPersistent
<<cbe>>

<<cbe>>

name:Stringg
*schema schema s:Schema{},

name=cn
};

}

name

Schema

@c.isPersistent=true

}

when {
PackageToSchema (p, s);

}}
where {
AttributeToColumn (c, t);

}

Figure 9.12: Dependencies between Metamodels, QVT, and Transformation Nets

In QVT, DomainPatterns specify the selection of model elements forming, as men-
tioned before, a digraph conforming to a metamodel using the specified domain object as root
node (cf. Fig. 9.12). The graph consists of objects (cf. class ObjectTemplExp), attributes
and links—both represented by the class PropertyTemplateItem. Starting from the do-

206

9.2. Evaluation of Runtime Model

main object (i.e., the digraph’s root node of Fig. 9.12) which is represented in Transforma-
tion Nets by an ObjectPattern within transitions, navigation in the graph is enabled using
LinkPatterns, e.g., the namespace link in Fig. 9.12. Primitive values in case of attributes
are represented by according ValuePatterns, e.g., the name attribute in Fig. 9.12. Thus, in-
stances of ObjectTemplExp in QVT Relations are expressed by ObjectPatterns and in-
stances of PropertyTemplateItem are expressed either by LinkPatterns or by Value-
Patterns in Transformation Nets, depending if the PropertyTemplate in QVT Relations
either refers to a reference or an attribute (cf. Fig. 9.13). The variables in the QVT Relations
specification are then used as a variable in the according pattern.

checkonly domain <sourceModel>checkonly domain <sourceModel>
<v1>:<ObjectTemplateExp>{

<PropertyTemplateItem> =
<v2>:<ObjectTemplateExp> {},

v1

v2

v1

<PropertyTemplateItem> =<v3>
or <OCLExp>

}
<OCLExp>

v2

v1
v3

<OCLExp>

Figure 9.13: Schema of Translation.

QVT Relations allows to specify DomainPatterns containing references of the target model
having a multiplicity greater than one, e.g., a Schema can contain an arbitrary number of
Tables. To ensure that the target domain object, e.g., a Schema, is created only once, a
QVT Relations transformation engine examines the trace information and checks if the accord-
ing target element has been created before, i.e., it makes use of a check before enforce semantics.
The check before enforce semantics ensures that, if an object matching the constraints in a re-
lation already exists in the to be generated target model, this object will not be newly created.
QVT Relations furthermore allows defining equality of objects by means of keys. In order to
represent this behavior accordingly in Transformation Nets, every production pattern is marked
with the check before enforce flag if no specific key is defined. In case a key is defined for this
object, those patterns that represent elements of the key are added int the Transition.key
array, e.g., if a key specifies, that Table instances should be differently named, then the accord-
ing ValuePattern producing the values and its corresponding ObjectPattern would be
marked as check before enforce and added to the Transition.key array.

Representation of When and Where Clauses. When and where clauses in QVT Relations
fulfill two tasks, (i) they allow to pass elements between relations and (ii) they may be used to
specify further constraints by means of OCL. In order to allow for interconnections between
Modules and their contained Transitions in Transformations Nets (which represent Re-
lations of QVT Relations in Transformation Nets), TracePatterns and TracePorts are
used in Transformation Nets. To be more precise, in case of a when clause, the Transition in-
stance contains an according TracePattern that queries the according trace place of the rela-
tion which is called in the when clause, as can bee seen in Fig. 9.12 and Fig. 9.14. Where clauses
are represented by production TracePatterns and according TracePlaces. These Trace-

207

9. EVALUATION

Places are then queried by dependent transitions. In case the when and where conditions
contain further constraints, they are transformed into according OCL conditions attached to the
according transition.

9.2.1.2 QVT Relations to Transformation Nets by means of the Running Example

Fig. 9.14 shows the translation of the QVT Relations specification using an extract of the running
example (cf. Fig. 9.14(a)) to Transformation Nets in its whitebox view (cf. Fig. 9.14(b)). The
specification of the transformation in QVT Relations consists of two relations for establishing the
one-to-one correspondences. The PackageToSchema relation matches for packages and their
names and produces equivalent schemata and names thereof. The relation ClassToTable
matches for persistent classes contained in a package as well as their names and creates a ta-
ble labeled with the class name. The reference to the according schema is set by calling the
PackageToSchema relation in the when clause of the ClassToTable relation. Even this
simple example raises questions concerning specification and execution of the transformation,
e.g., what happens if there are no persistent classes in a schema or in which order are the rela-
tions actually executed and the model elements created since both relations are marked as top?
In order to clarify these and further debugging questions, the debugging features of Transforma-
tion Nets should be available for QVT Relations as well, i.e., the QVT Relations specification
needs to be translated to Transformation Nets as depicted in Fig. 9.14(b).

ModelElement SchemaElement

PackageToSchema

4 // map each package to a schema

name : String name : String
A

Ap1
University <<cbe>>

p p

5 top relation PackageToSchema {
6 pn: String ;
7 checkonly domain class p: Package {
8 name =pn

P k h

University <<cbe>>

p

p

p

p

pn pn

8 name pn
9 };
10 enforce domain rel s: Schema {
11 name =pn

<<cbe>>

<<cbe>>

Package

p1

Schema
C

C

T

<<when>>
Package2
Schema

12 };
13 }

T

ModelElement SchemaElement

ClassToTable
15 // map persistent class to a table
16 top relation ClassToTable { ModelElement

name : String

SchemaElement

name : String

<<when>>
Package2
Schema

T

1 c21 3

16 top relation ClassToTable {
17 cn: String ;
18 checkonly domain class c: Class {
19 namespace =p: Package {},

C
C

R

p1
University

c2
Student

c1
Person

c3
Professor20 isPersistent =true ,

21 name =cn
22 };
23 enforce domain rel t: Table {

c c

p s

<<cbe>>

<<cbe>>

A

Package

p1

namespace

Schema

schema

R
23 enforce domain rel t: Table {
24 schema =s: Schema {},
25 name =cn
26 };

<<cbe>>

sp

c

p

c

s

c

C
C

TableAClass

namespace
A

c1 c2 c3

27 when {
28 PackageToSchema (p, s);
29 }
30 where {

c c

cc

cn cn

isPersistent

<<cbe>>

<<cbe>>

isPersistent: Bool
<<where>>
Class2Table

c1 c2 c3

c2
true

c3
true

c1
false

30 where {
31 AttributeToColumn (c, t);
32 }
33 }

@c.isPersistent
=true

T

(a) QVT Relations Code of Running Example (b) Representation of QVT Relation Code in Transformation Nets (Whitebox View)

Figure 9.14: QVT Code and Corresponding Transformation Net (Extract)

208

9.2. Evaluation of Runtime Model

The translation follows the principles presented above. In a first step the domain objects,
i.e., the roots of the digraphs, are mapped. Therefore, the upper Transition in Fig. 9.14(b)
matches for Package instances whose Package.name attribute is not null. In order to keep
the gap between the QVT Relations specification and the resulting Transformation Net low, the
variables of the patterns are equally named as the variables in QVT Relations. Furthermore, the
order of patterns is equal to the order of definitions in QVT Relations. Equally named variables
that are used in the checkonly and enforce domain denote assignments. Therefore, the
according patterns are equally colored in the Transformation Net, e.g., the ValuePatterns
representing the name attribute. This is different for objects, which need not to be assigned
to a common variable, e.g., although Package instances should be translated to Schema in-
stances, two different variables p and s are used in the QVT Relations specification. In order to
better visualize this correspondence and to provide visual trace information, in Transformation
Nets the production ObjectPattern is nevertheless equally colored as the according query
ObjectPattern, e.g., the ObjectPatterns are both labeled with the variable p in the
upper Transition in Fig. 9.14(b). Finally, these trace information is also made explicit by
means of a production TracePattern and an according TracePlace.

Concerning the translation of the relation Class2Table the same principle is followed,
i.e., according patterns are created for the variables used in the QVT Relations specification.
Please note that the ObjectPatterns querying for instances of Packages and producing
instances of Schema offer different colors and variables (p and s) since these variables are
also used in the when clause of the relation, i.e., it is required that a certain Schema instance
has already been created for a certain Package instance (since a when clause represents a
precondition). Therefore, the transition uses a query TracePattern which queries the trace
information of the relation called in the when clause, e.g., the trace information of the tran-
sition representing the relation Package2Schema in the example depicted in Fig. 9.14(b).
Furthermore, please note that in this case it is important, that the production ObjectPattern
producing Schema objects is marked as check before enforce. If this is the case, existing ob-
jects are reused instead of being created again, i.e., an existing Schema instance is not newly
created but only the Table.schema links in the according Table instance are created, since
no link with equal source and target object exists already.

In summary, this section showed that QVT Relations specifications may be represented by
means of Transformation Net concepts. Nevertheless, currently queries in QVT Relations as
well as inheritance between transformations, which is allowed in QVT Relations, and sequences
and set of patterns are not handled in the presented transformation. In this respect, the debugging
facilities of Transformation Nets are also available for QVT Relations, although there is a gap
between the representation in terms of Transformations Nets and the representation of the actual
QVT Relations code. Nevertheless, the similar operational semantics is achieved, which is made
explicit to the transformation designer. An evaluation thereof will be presented in Section 9.3.

9.2.2 Translation of Graph Transformation Languages to Transformation Nets

Several related work already exists that relates the domains of Graph Grammars to Petri Nets
[7, 103]. It has already been shown that the concepts of one paradigm may be expressed in the
other paradigm. Since Transformation Nets base on CPNs it is also possible to represent Graph

209

9. EVALUATION

Grammars in Transformation Nets. As a proof of concept, the implementation of AGG [147]
has been mapped to Transformation Nets on a conceptual level by means of first case studies.

Concerning the translation of the type graph (which represents a unified metamodel, i.e.,
source metamodel, target metamodel and a custom trace model), certain naming restrictions
have to be followed. This means that elements of the source metamodel are assumed to offer
the appendix _source, those of the target metamodel _target and those of the trace model
_trace to derive the according types of places, as can be seen in Fig. 9.15(a). The LHS
part of the graph transformation rule may be represented by according QueryPatterns in
Transformation Nets whereas the RHS part of a graph transformation rule may be represented
by according ProductionPatterns. Please note that, in contrast to the translation of QVT
Relations, the visual trace is lost for objects which can be seen in the Transformation Net as
the query ObjectPattern offers the variable p whereas the production ObjectPattern
offers the new variable s (cf. Fig. 9.15(b)) . This is since newly generated elements in graph
transformations have to offer a new id in the RHS. The assignment of values, e.g., the assignment
of the value of the attribute Package.name to Schema.name can be achieved by equally
colored tokens (cf. Fig. 9.15). Negative application conditions (NACs) may be encoded by
means of negative patterns which are translated to a pattern that realizes inhibitor arcs in CPNs
(cf. Section 6.3) and thus follow the principles suggested in [7, 103]. Nevertheless, NACs that
solely concern the trace model, e.g., in the example depicted in Fig. 9.15(a) the NAC solely
ensures that Package instances that have already been translated to Schema instances are not

NAC LHS

p:Package_source
name : pn

p:Package_source
name pnname = pn

x:Package2Schema_trace

source

Package source

Package2Schema

(a) Exemplary AGG Rule

Package_source

name : String

p1
C

C

A
A

p1
University

p s

p

p

s
pn pn

s

T

<<Trace>>
Package2
Schema_trace

(b) Representation of AGG Rule in Transformati

RHS

p:Package_source
name = pn

t:Package2Schema trace

source

s:Schema_target
name = pn

g _

target

Schema target

e

name pn

Schema_target

name : String

ion Nets (Whitebox View)

Figure 9.15: AGG Code and Corresponding Transformation Net

210

9.2. Evaluation of Runtime Model

matched again, are treated differently. This behavior is automatically ensured by Transformation
Nets by the history concept and therefore such NACs need not to be represented explicitly. A
challenge that arises is the representation of conditions and functions since AGG uses Java for
this purpose. Also the current prototype only supports OCL as an inscription language, on a
conceptual level also Java may be supported as inscription language in Transformation Nets as
well, i.e., instead of a server that is capable to evaluate OCL expressions, a server that evaluates
Java expressions would be needed which is then called from the compiled CPN by using the
Comms/CPN library. Concerning the interplay between the specified graph transformation rules,
AGG allows to specify layers to order the application of rules. The representation of this concept
(as well as general concepts concerning the actual execution semantics of graph transformations)
is still an open issue, as discussed in Chapter 10.

In summary, based on existing literature, first case studies for translating graph transforma-
tions specified in AGG to Transformation Nets have been conducted, which provided promising
results. Nevertheless, in order to fully evaluate the applicability a prototype is required, which
is considered as a point of future work (cf. Chapter 10).

9.2.3 Translating Mapping Operators to Transformation Nets

In the last years, approaches arose that propose to specify model transformations by means of
abstract mappings being a declarative description of the transformation, as known from the area
of data engineering [14]. A concrete implementation of such a mapping approach has been
presented in [86], where so called Mapping Operators (MOps) have been proposed, being the
second major outcome of the TROPIC project. The operational semantics of MOps is defined
by means of Transformation Nets, i.e., Transformation Nets act as a semantic domain for the
mapping language. In the following, first, a short overview on MOps is given before showing
the specification of the operational semantics by means of Transformation Nets.

9.2.3.1 Mapping Operators in a Nutshell

The main idea of mappings is to abstract a model transformation problem from a concrete trans-
formation language, allowing the transformation designer to focus on the resolution of structural
heterogeneities, i.e., the same semantics is represented by different metamodel concepts, without
having to struggle with the intricacies of a certain transformation language. Thereby, in [86] typ-
ical mapping situations have been identified, being 1:1 copying, 1:n partitioning, n:1 merging,
and 0:1 generating of objects, for which different MOps are provided. In this respect, reuse is
leveraged as the proposed MOps are generic in the sense that they abstract from concrete meta-
model types since they are typed by the core concepts of current meta-modeling languages like
Ecore or MOF (i.e., class, attributes, and references). To further structure the mapping process
two steps to specify the actual mapping are proposed.

To exemplify these tow steps and to give a broad overview of the different MOps provided
(cf. Fig. 9.16), Fig. 9.17 shows an adapted version of the running example, translating class
diagrams to entity-relationship diagrams. In a first step, composite MOps, describing mappings
between classes are applied, providing an abstract blackbox-view (cf. Fig. 9.17). Every com-
posite MOP consists of so-called kernel MOps, realizing the composite behavior in terms of a

211

9. EVALUATION

set of basic building blocks. These kernel MOPs are responsible for resolving structural het-
erogeneities and therefore, they have to be able to map classes, attributes, and references in all
possible combinations and mapping cardinalities (cf. Fig. 9.16). Kernel MOps are provided
for copying exactly one object, value, or link from source to target, respectively (denoted as
C2C, A2A, and R2R). Moreover, MOps are needed for merging objects, values, and links (de-
noted as Cn2C, An

2A, and Rn2R) resolving the structural heterogeneity that concepts in the source
metamodel are more fine-grained than in the target metamodel. Finally, MOps are needed for
generating a target element without an obvious source element (denoted as 02C, 02A, and 02R)
to resolve heterogeneities resulting from expressing the same modeling concept with different
meta-modeling concepts – a situation which often occurs in metamodeling practice. In a second
step, the composite MOps, which solely describe a mapping between classes at first, have to
be refined to also map attributes and references in the so-called whitebox-view by the usage of
kernel MOps (cf. expanded Copier (b) in Fig. 9.17). Thus, composite MOps describe patterns of
heterogeneities, which may contain an arbitrary number of kernel MOps or even other composite
MOps. Depending on the specific composite MOp, certain kernel MOps may be automatically
derived in order to further ease the mapping specification (cf. [86] for details)

Concept Copying Merging Generating

Class CC 22CC CC C22CnCn CC C220 C0 CClass
(2ClassMOps)

Attribute
(2AttributeMOps)

T

A A22A A AA

CC
T
22C C CC CC

T
22CnCn CC

T

A A22An AAn A
T

A220 A0 A

C

T
220 C0 C

Reference
(2ReferenceMOps)

T

T
RR 22R R RR

T

T
RR 22RnRn RR

T

T
R220 0 RR

Figure 9.16: Kernel MOps

As a concrete syntax for MOps a subset of the UML 2 component diagram concepts are used
enabling the specification of model transformations in a plug & play manner (cf. Fig. 9.16). With
this formalism, every MOP is defined as a dedicated component, representing a modular part of
the transformation specification which encapsulates an arbitrary complex structure and behavior,
providing well-defined interfaces. Every MOP has input ports with required interfaces (left side
of the component) as well as output ports with provided interfaces (right side of the component),
typed to classes (C), attributes (A), and references (R) (cf. Copier (b) in Fig. 9.17). Since
there are dependencies between MOps, e.g., a value can only be set after the owning object
has been created, MOps dealing with the transformation of classes additionally offer a trace
port (T) at the bottom providing context information, indicating which target object has been
produced from which source object(s). This port can be used by dependent MOps to access
context information via required context ports (T). In case of MOps dealing with the mapping of
attributes, the corresponding interface is shown via one port on top, or in case of MOps dealing
with the mapping of references via two ports, whereby the top port depicts the required source
context and the bottom port the required target context (cf. whitebox-view of Copier (b) in
Fig. 9.17).

212

9.2. Evaluation of Runtime Model

Package Schema

Source TargetMapping

a

0..*
classes

0..*
entities

C
C

b
Class

name : String

1 Entity
name : String

columns types
1

relationships

Column
name : String

0..*
columns types

0 *

attributes

relationships

referencestarget

name : String

1

type

refersTo

Attribute
name : String
type : String

0..

c

Type
name : String 0..*

Relationship
0..*

C
C

e

Reference
S i

0..*

Relationship
name : String

roles
2

CC

name : String
upperBound : Int
lowerBound : Int

1 opposite

Role
name : String

2

d

C
Copposite

Cardinality
upper : Int

cardinality
1

C

upper : Int
lower : Int

cl cl
CCC C

T

22C CC C

ref1
R

attr1
A

attr1
T

R

A A

T

A22A AA A

ref1 R RR R R
T

T

R

T

R R 22R RR R

Figure 9.17: Solution of the Running Example

For solving the example, several composite MOps have been applied as can be seen in
Fig. 9.17. Table 9.1 presents an overview of the used composite MOps to solve the example
as well as their composition of kernel MOps. Thereby, the composition of kernel MOps column
in Table 9.1 describes the actual composition of the according composite MOp in EBNF syntax.
For example, a Copier always consists of a C2C kernel MOp since it should at least copy
the objects from source to target. Additionally, a Copier may incorporate and arbitrary num-
ber of kernel MOps dealing with attributes (called 2AttributeMOps) and references (called
2ReferenceMOps). For a detailed classification and description of all available kernel as well
as composite MOps and their semantics the reader is referred to [86, 166]. To resolve the 1:1
correspondences between Package and Schema as well as between Class and Entity in
the example, two Copiers were applied since for every source object a corresponding target
object should be generated (cf. MOps (a) and (b) in Fig. 9.17)). The whitebox-view of the
Copier (b) thereby shows the mapping of class Class to class Entity using a C2C ker-
nel MOp. Moreover, the attribute Class.name is mapped to the attribute Entity.name by
using an A2A MOp. Finally, the reference Class.attributes is mapped to the reference
Entity.columns using a R2R MOp. To split the attributes of the class Reference to the
target classes Role and Cardinality a VerticalPartitioner is applied (cf. MOp
(d) in Fig. 9.17). Besides this default behavior, aggregation functionality is sometimes needed
as is the case when splitting the Attribute concept into the Column and Type concepts,
since a Type should only be instantiated for distinct Attribute.type values (cf. MOp (c)
in Fig. 9.17). Consequently, composite MOps may contain different kinds of kernel MOps, de-

213

9. EVALUATION

pending on the actual transformation scenario. To finally merge two Reference objects to a
single Relationship object, a VerticalMerger is applied (cf. MOp (e) in Fig. 9.17).

Table 9.1: Overview of Composite MOPs used in the Example

1:1 - copying Copier creates exactly one target object per
source object Copier: C2C { A2A | An

2A | 02A | R2R | Rn
2R | 02R }

1:n - partitioning VerticalPartitioner splits one source object into several
target objects VerticalPartitioner: Copier { ObjectGenerator | Copier }

n:1 - merging VerticalMerger merges several source objects to one
target object VerticalMerger: Cn

2C { A2A | An
2A | 02A |R2R | Rn

2R | 02R }

0:1 - generating ObjectGenerator generates a new target object without
corresponding source object ObjectGenerator: 02C { A2A | An

2A | 02A | R2R | Rn
2R | 02R }

Composition of Kernel MOPs (EBNF)Correspondence MOP Description

9.2.3.2 Compilation of MOps into Transformation Nets

In order to provide an operational semantics for MOps, they need to be mapped to an executable
mechanism. In the following it is shown, how the concepts of Transformation Nets may be used
to provide semantics for a new transformation language, i.e., MOps in this case.

Compilation Strategy. Every kernel MOps encapsulates a certain operational semantics. In
order to encapsulate this operational semantics also in Transformation Nets every kernel MOp
is represented in terms of a Module. Since composite MOps encapsulate kernel MOps, com-
posite MOps may be represented as Modules in Transformation Nets as well. Furthermore, as
depicted in Fig. 9.17, every MOp offers ports which are represented by according ports in Trans-
formation Nets. Since these ports provide information that needs to be part of a Transition
in Transformation Nets, for every port of a MOp additionally an according query or production
Pattern has to be created. In order to explicate the compilation, in the following the compi-
lation of copying kernel MOps is discussed first, followed by the compilation of merging kernel
MOps and concluded with the compilation of generating kernel MOps. Finally, the interaction
between MOps is discussed by showing the compilation of the example presented in Fig. 9.17.

Copying Kernel MOps. The operational semantics of copying kernel MOps, i.e., C2C, A2A,
and R2R, is to create for every source object, value, or link a corresponding target object, value
or link. To represent the operational semantics of the C2C kernel MOp, a transition comprising a
single query ObjectPattern and two production patterns (cf. Fig. 9.18) is created. Thereby,
the single query ObjectPattern matches for source object tokens and the single production
object pattern produces an equally colored target token, i.e., the object is copied from source
to target. Furthermore, trace information is created, as specified by a corresponding production
trace pattern.

This trace information may then be queried by dependent kernel MOps, e.g., by an A2A, or
an R2R, which both exhibit an according query trace pattern. In this respect, an A2A MOp ex-
hibits a value query pattern and a context query pattern. The context query pattern is responsible
to obtain the object (cf. color on the right), which has been created for the value’s owning object
(cf. color on the left). Since a newly colored object may have been produced for the original
owning object, the value may be in the context of a differently colored object. Therefore, the

214

9.2. Evaluation of Runtime Model

h h d bj
CC22CC

For each matched source object,
a target object is created

C

Matched source object Created target object

Created context information

C

T

Owning object has been adapted
according to the matched contextAA AA

For each matched source value,
t t l i t d

Matched source value

g
information

AA22AAa target value is created
A

A

T

Matched context information
Created target value

T

M t h d t t i f ti

Source object as well as target
object of the link have been

d t d di t thRR22RR

For each matched source
link, a target link is created

Matched source link

Matched context information
for source object of link

adapted according to the
matched context information

RR22RR

R

R
T

Matched context information
for target object of link

Created target link
R

T

(a) MOps (b) Transformation Nets

Figure 9.18: Compilation of Copying Kernel MOps

value production pattern comprises as owning object (cf. color on top), the color obtained from
the context pattern (cf. color on the right). The same principle is followed by the R2R MOp,
which queries a link instead of a value. Furthermore, since a link requires a source and a target
object, an R2R MOp exhibits two trace query patterns, one pattern for the source and one pattern
for the target of the link.

Merging Kernel MOps. After having discussed the operational semantics of copying ker-
nel MOps, in the following the operational semantics of merging kernel MOps is explained.
Thereby, merging MOps offer an arbitrary number of according query patterns, i.e., a Cn2C
kernel MOp comprises an arbitrary number of query ObjectPatterns, as can be seen in
Fig. 9.19. Since in case of Cn2C MOp a new merged object results, the according production
object token exhibits a new color. Furthermore, please note that the left side of the production
context pattern contains all the involved source objects. A dependent MOp, e.g., an An

2A MOp,
is then enabled if the left side of an according query pattern matches to any one of the colors of
the left side of the production pattern.

When merging several objects, the question arises under which condition these objects
should be merged, i.e., only if there exists a certain link between these objects or if the values
of two attributes are equal. In order to specify such conditions, a Cn2C MOp typically exhibits
an according OCL condition which is transferred to the according Transition in Transfor-
mation Nets. If no condition is specified, the cross-product of the to be merged objects is built.
In case of an An

2A MOp an according function needs to be defined how to merge the values of
the source attributes to a single value of the target attribute which may again be transferred from
the MOp’s function. This new target value is again represented by means of a newly colored
production ValuePattern. Finally, in case of an Rn2R Mop it is assumed that the source link
is only merged to a common target link if all links between the source and target objects exists -
therefore neither a condition nor a function is required.

215

9. EVALUATION

Matched source object 1

CnCn22CC
For each matched combination of
objects, a target object is created

Matched source object 1

Matched source object 2

Created target object

Created context information

C

C

C

T

…
Up to n source objects may be matched

condition

C

Owning object has been adapted
according to the matched context

For each combination of
matched source values a

Matched source value 1

according to the matched context
informationAnAn22AA

matched source values, a
target value is created

AMatched source value 1

Created target valueMatched source value 2

U t l b t h d

A

C

…
Matched context information

Up to n source values may be matched A

T

function

For each combination of

Source object as well as target object of
th li k h b d t d di

For each combination of
matched source links, a
target link is created

All links originate from a single
object and end in a single object

M t h d t t i f ti

the links have been adapted according
to the matched context informationRnRn22RR

Matched source link 1

Matched context information
for source object of links

Created target linkR

T
R

Up to n source links may be matched

Matched source link 2
R

…Up to n source links may be matched

Matched context information
for target object of links

T

(a) MOps (b) Transformation Nets

Figure 9.19: Compilation of Merging Kernel MOps

Generating Kernel MOps. As stated above, generating kernel MOps are required to re-
solve heterogeneities resulting from expressing the same modeling concept with different meta-
modeling concepts. Thus, kernel MOps are required that are capable to match for a concept, i.e.,
class, attribute or reference, and produce a different concept thereof. Please note that although
numerous combinations are possible, only three representative ones are discussed in detail to
present the general idea (for further details the reader is referred to [86]).

To generate an object out of distinct values, as a first generating MOp the A2C kernel MOp
is presented. The according transitions contains a value query token whose distinct flag is set to
true (cf. Fig. 9.20). In order to produce a target object, the transition exhibits a newly colored
object production token. The second production pattern creates context information for depen-
dent MOps. Since context information always comprises objects only, the context production
patterns exhibits on the left side the color of the value’s owning object. To generate attribute
values for objects, a C2A kernel MOp is provided. The according transitions in Transformation
Nets includes a query ObjectPattern and a production ValuePattern as illustrated in
Fig. 9.20. In order to be able to specify the target object to which the generated value belongs to,
a query ContextPattern is required stating which object has been created from the source
object from which the value should be generated. Additionally, the function specified on the
MOps to produce a new value has to be transferred to the transition.

216

9.2. Evaluation of Runtime Model

AA22CC
For distinct matched source

values, a target object is created

Matched source value
Created target object

Created context information

22
A

C<<D>>

Created context information
T

Owning object has been adaptedFor each matched object Owning object has been adapted
according to the matched context

information

For each matched object,
a value is created CC22AA

C

Matched context information
Created target value

Matched source object
T

C

function

Source object as well as target objectCreates a link between objects that
originate from objects which are

Matched source object 1

have been adapted according to the
matched context informationCCCC22RR

originate from objects which are
linked by the given pathExpr

CMatched source object 1

M h d bj 2
Created target link

Matched context information 1

C

T

T

Matched source object 2

Matched context information 2

C

T

(a) MOps (b) Transformation Nets

pathExpr

(a) MOps (b) Transformation Nets

Figure 9.20: Compilation of Generating Kernel MOps

Finally, MOps are required that are capable to generate links in the target model. These
MOps require information from which concepts in the source model the links’ source and target
objects in the target model have been created. In this respect, the CC2R kernel MOp establishes
links between objects that originate from objects which are connected through a corresponding
path as determined by the pathExpr. The path expression defines how the source and the
target object of the to be generated link are related in the source model.This pathExpr is
taken from the MOps definition and transformed to an according condition on the respective
Transition. In case of the CC2R kernel MOp, the transition queries for two objects (the
source and target object of the link in the source model) and two context tokens to achieve the
according objects in the target model (cf. bottom of Fig. 9.20). The link production pattern then
creates links between the objects that have been created from the original objects, i.e., the link
pattern exhibits the colors of the queried context information.

Composite MOps. Since composite MOps solely base on kernel MOps, the compilation
of composite MOps to Transformation Nets comprises the creation of an according Module
instance which contains the Module instances that are created for the according kernel MOps.
Furthermore, according Ports need to be added to the Module representing the composite
MOp. These ports need then to be connected with the according Ports of the composite MOp.
Additionally, if the transition that represents the operational semantics of a contained kernel
MOp contains a production TracePattern, an instance of a TracePlace is added to the
module representing the composite MOp in order to appropriately visualize trace information.

217

9. EVALUATION

9.2.3.3 Compilation of the Example into Transformation Nets

To exemplify the usage of MOps as well as their compilation, Fig. 9.21 presents an extract of the
example presented in Fig. 9.17. In a first step, the involved metamodels are represented as ac-
cording Places in Transformation Nets. When executing a MOp specification a source model
is required, which is represented in Transformations Nets by means of according Tokens. Af-
terwards, the mapping specification is translated to Transformation Nets.

When taking a look at the transition that represents the C2C kernel MOp between the classes
Package and Schema one can see that this MOp is represented by means of an according
Module and an according Transition as discussed above. Since the C2C is contained
within a Copier composite MOp, also the Module representing the C2C MOp is contained
in a Module, which actually represents the Copier MOp. To represent trace ports of MOps,
trace places are generated which may contain trace tokens indicating which target object has
been created from which source object(s) (cf. context places in Fig. 9.21). Since trace infor-
mation solely contains information about objects, only Transitions that generate objects,
so-called 2ClassMops, may be connected to trace places. Context places may be queried by
dependent Transitions that represents MOps dealing with the creation of attributes, i.e.,
2AttributeMOps and MOps dealing with the creation of references, i.e., 2Reference-
MOps, in order to obtain the correct context for attribute values and links. Whereas for an at-
tribute value only the context information of the transition representing the 2ClassMops that
is contained within the same composite MOP is required (cf. transition representing the A2A
that is contained within the second module representing the Copier MOp), Transitions
representing 2ReferenceMOps require a second context for setting the target object of a link.
This information is queried from the trace ports of the 2ClassMOp which translated the target
object, i.e, form the C2CMOp contained in the CopierMOp which translates Class instances
to Entity instances.

9.2.4 Comparison to Related Work

The execution engines of current declarative model-to-model transformations act as a black-box
to the transformation designer, hiding the operational semantics. For example, the specification
of QVT Relations is either translated to the low-level QVT Core language which is then again
interpreted by a transformation engine or is directly interpreted by a transforation engine, which
is implemented in a low level programming language. This engine is hidden from the transfor-
mation designer and thus it remains often unclear why e.g., a certain model element is matched
or why a certain relation is executed at a certain point of time. Especially for QVT Relations sev-
eral so-called translational approaches have been proposed for executing QVT Relations on top
of existing technologies in order to explicate the operational semantics. Jouault and Kurtev [74]
proposed to execute QVT Relations within the ATL Virtual Machine (ATL VM), by transform-
ing QVT Relations into ATL VM code. Nevertheless, the ATL VM code is on a rather low
level of abstraction and no concrete textual syntax may be derived from the VM code. Thus,
a transformation designer would have to know the ATL VM code in order to understand the
semantics of the translated code. Romeikat et al. [131] transform QVT Relations into the QVT

218

9.2. Evaluation of Runtime Model

Package Schema

Source Metamodel Target MetamodelMapping

c c
CCC CC C

entitiesLe
ve
l

r

C

R

CC C
T

22C CC C

T

T
Rr

R R 22R RR R

0..*

classes

0..*M
O
ps

T

T

c c CCC C 22C CC C
T

Class
name : String

Entity
name : Stringa

Aa

T

A A

T

A22A AA A

T

Source TargetTransformation Logic

Package SchemaCC22CC Cg

d1

Sc e a

d1

l

RR22RR
C

T T

C C
C

classes entities
Ctx

N
et
 L
ev
el T

R R

R

Class Entity
0..* 0..*

m
at
io
n
N T R

TClass

name: String

c1 c2

Entity

name: String

c1 c2

an
sf
or
m

CC22CC AA22AAC

C

T
T

C

g
c1 c2

Person Prof

g

Ctx

c1 c2
Person Prof

Tr
a 22C

C

T A

A

A

A

er
iv
e

er
iv
e

instantiat
instantiat

A
A

d1:Package
d1

d1:Schema
d1

ce
s

dede

tete

sourceElems targetEleme1:TraceEntry

classes classes
entities entities

y
In
st
an

c

e2:TraceEntrysourceElems targetElem

c1:Class
name = ‘Person‘

c2:Class
name = ‘Prof‘

c1
c2

c1:Entity c2:Entity
‘P f‘

c1
c2

em
pl
ar
y e2:TraceEntry

e3:TraceEntry

sourceElems targetElem

Exemplary Source Model

c1
Person

c2
Prof

name = ‘Person‘ name = ‘Prof‘

Resulting Target Model

c1
Person

c2
Prof

Ex
e e3:TraceEntry

Trace Models

sourceElems
targetElem

Figure 9.21: Exemplary Compilation of MOps into Transformation Nets

Operational Mappings language and execute the result with tools such as SmartQVT2. Since
QVT Operational represents an imperative transformation language, an explicit control flow has
to be given, e.g., the relations have to be called in a certain order. Thus, possible execution paths

2http://smartqvt.elibel.tm.fr/

219

9. EVALUATION

resulting from non-determinism in the declarative specification might not be accordingly repre-
sented. Greenyer and Kindler [53] propose to transform QVT Relations into TGGs. Because
QVT Relations and TGGs are conceptually and also syntactically similar, one can remain on
the same abstraction level. Nevertheless, since TGGs are not directly executable within existing
tools, they have to be translated into executable instructions in order to provide an operational
semantics. This semantics is then again hidden from the transformation designer. Another work
by de Lara and Guerra [88] proposes to translate QVT Relations directly into CPNs - on the
one hand to provide a formal semantics for QVT Relations and on the other hand to verify QVT
Relations specifications - pursuing similar ideas to the above presented translation. Neverthe-
less, the intention of the work of de Lara and Guerra is different to Transformation Nets, since
it focuses on QVT Relations only, whereby our Transformation Nets are intended to act as a
general runtime model for model-to-model transformations.

In summary, to the best of my knowledge, none of current declarative model-to-model trans-
formation languages provides an explicit runtime model that makes the operational semantics
explicit, which could then be used for debugging. In this respect, Transformation Nets provide a
runtime model that represents the transformation logic, the metamodels, as well as the respective
models involved in a model transformation within a single formalism. Since in Transformation
Nets model elements are explicitly represented, it is possible to follow which transformation rule
or due to which circumstances a certain model element may or may not be transformed, e.g., in
case a certain condition is not fulfilled. Additionally, the interconnections between transforma-
tion rules are made explicit using trace information or intermediate places This allows to follow
the execution order of certain transformation rules which together form the model transforma-
tion.

9.2.5 Summary

In this subsection, the appropriateness of the Transformation Net formalism has been evaluated.
Transformation Nets may be used for three different purposes: (i) as a stand alone transformation
language, (ii) as a runtime model and execution engine for existing transformation languages,
and (iii) as a semantic domain for new transformation languages. Concerning Transformation
Nets as a stand alone transformation language, several small extracts have been shown in Chap-
ter 4.

It has to be emphasized, however, that the focus of this thesis was more on the runtime
model aspect for existing transformation languages and on providing a semantic domain for
new transformation languages. In this respect, it was discussed in detail how the semantics of
QVT Relations (implemented by the mediniQVT tool) can be made explicit in Transformation
Nets. Furthermore, it was discussed on a conceptual level how graph transformation approaches
may be represented. Consequently it was shown that the runtime model is capable to make the
semantics of declarative model-to-model transformation languages explicit. Nevertheless, a gap
between the actual specification in a certain transformation language and Transformation Nets
has been introduced. This is mostly due to the fact that current transformation languages do
not provide any means to represent model elements which are nevertheless needed in order to
make the matching process of declarative languages explicit. In this respect, a formalism has to
be chosen that (i) offers means to represent metamodels, models and transformation logics, (ii)

220

9.3. Evaluation of Debugging Features

supports non-determinism, and (iii) provides formal underpinnings to calculate properties about
the transformation specification. In this respect, CPNs have been chosen as the most appropriate
formalism. In order to hide the low-level details thereof, Transformation Nets as a DSL on top
of it have been developed. These adaptations to the domain of model transformations allow for
an easier representation of the involved concepts. Furthermore, the visual encoding allows for
traceability.

Finally, Transformation Nets are especially useful as a semantic domain for new transfor-
mation languages as demonstrated by the compilation of MOps into Transformation Nets. This
is since Transformation Nets are not only capable to act as as a semantic domain but also pro-
vide several means for debugging. Thus, only a transformation from the actual transformation
language to Transformation Nets needs to be provided instead of the tedious implementation of
a specific execution engine and according means for debugging.

9.3 Evaluation of Debugging Features

After discussing how Transformation Nets may be used as a runtime model for existing trans-
formation languages, e.g., QVT Relations, graph transformation approaches and MOps, in

the following it is shown how the debugging mechanisms of Transformation Nets may be ap-
plied. It is presented how the errors contained in the specification of the running example may
be detected and how the failures may be fixed using the debugging features provided by Trans-
formation Nets.

9.3.1 Evaluation of Debugging Features of Transformation Nets

In order to evaluate the means provided for debugging, the running example and its solu-
tion in QVT Relations is used. When having a look at Fig. 9.10 it can be seen that sev-
eral modules are connected to the places Class and Table, which may lead to redundant
matches. Furthermore, no modules are connected to the places Attribute and Column.
Thus the question arises how Attribute instances get translated into Column instances?
Furthermore, it can be seen that the trace information that is produced by the Module named
SuperAttributeToColumn is again queried by the same module, representing a recursive
call (cf. arc between the outgoing TracePort and the incoming TracePort in Fig. 9.10 and
Fig. 9.22). Thereby the question arises, if the recursive call terminates or not. In order to clarify
these questions, simulation-based debugging may be employed as discussed in the following.

In order to debug the QVT Relations code, as a first step, a breakpoint may be attached
to the SuperAttributeToColumn relation in the QVT code or to the according module in
Transformation Nets (cf. Fig. 9.22). Please note that breakpoints which are specified in the QVT
Relations code are automatically transferred to breakpoints in Transformation Nets. Fig. 9.22
shows a potential situation when the transition within the SuperAttributeToColumnmod-
ule is enabled first. The transition is only enabled if an according trace token is available in the
place SuperAttribute2Column, since the relation is not marked as top but called in the
when clause of the relation ClassToTable. Thus, this transition has to fire before, as can be
seen by the tokens in the according target places, i.e., the Class instance c2 has been translated

221

9. EVALUATION

ModelElemenode e e

name : String

34 // map each attribute to a column
35 relation AttributeToColumn {
36 checkonly domain class c: Class {};

c2c1 cp1
University

37 enforce domain rel t: Table {};
38 where {
39 PrimitiveAttributeToColumn (c, t);
40 SuperAttributeToColumn (c, t);

Class

c2
Student

c1
Person

c
Pro

41 }
42 }

Class

isPersistent: Bo

c1 c2 c3

c2
true

c3
true

c1
false

44 // map each attribute to a column
45 relationPrimitiveAttributeToColumn { Class45 relationPrimitiveAttributeToColumn {
46 an , tn: String ;
47 checkonly domain class c: Class {
48 attributes =a: Attribute {
49 name =an

isPersistent: Bo

c1 c2 c3

c2 31ModelElement49 name =an,
50 type =tn
51 }
52 };
53 enforce domain el t Table {

c2
true

c3
true

c1
false

0..*

ode e e t

name : String

253 enforce domain rel t: Table {
54 columns =cl: Column {
55 name =an ,
56 type =tn
57 }

attributes

Attribute

c1 c2
StudentPerson

a1
name

a2
registr
No

c3
Professor a3

salary

57 }
58 };
59 } type : String

a1 a2

a1 a2

a3

a3a1
String

a2
Integer

a3
Integ

ModelEleme

61 // map inherited attributes
62 relation SuperAttributeToColumn {
63 checkonly domain class c: Class {
64 Cl Cl {}

name : String
c2

Student
c1
Person

c3
Profes

64 superClasses=sc: Class {}
65 };
66 enforce domain rel t: Table {};
67 where {

Class

c1 c2 368 SuperAttributeToColumn (sc , t);
69 }
70 }

isPersistent: B

c1 c2 c3

c2
true

c3
tru

c1
false

0..*

superC

nt SchemaElement

AttributeToColumn

<<where>>t SchemaElement

name : StringT

c2

1 c2c3

<<where>>
ClassToTable

C

<<cbe>>
c

c

t

T bl

tc

t

p1
University

c2
Student

c3
ofessor

C

C

Trace

c

ool

Tablet

c2

<<cbe>>

c2 c2

Trace

c2 c2

<<where>>
Prim...

<<where>>
Super

P i i i A ib T C l

TT
Super....

PrimitiveAttributeToColumn

T

c2 c2

<<where>>
PrimitiveAttribute
ToColumen

ool C
Cc t

c t

<<cbe>> ModelElement

Table

c2

R
Raa

a

c

s

t

C
C

columns

0..*

name : String<<cbe>>

<<cbe>>

A

A
A

a

c c
tn tn

an an
a

A
Column

c2
Student

a2

a2
registr
No

<<cbe>>

<<cbe>>

<<cbe>>

Trace

cc

type : String

c2 c2

a2
Integer

<<cbe>>

ger

T

SuperAttributeToColumn

ent SchemaElement

SuperAttributeToColumn

c2 c2

<<where>>
SuperAttribute
ToColumen

g name : String

C
C

T

ssor

t

c t

<<cbe>>

c2
Student

C
R

3

c t

sc

sc

c

C

Table

Bool

3

3
e

tsc
<<cbe>>

T

Trace c2

Classes

Figure 9.22: Simulation of Erroneous QVT Relations Code

to an according Table instance. Since the relation calls two relations in its where clause, two
trace places provide the according trace information for the called relations. Since the QVT Re-
lations standard does not explicitly specify any order concerning which called relation should be
executed first, a non-deterministic selection is assumed. In the example depicted in Fig. 9.22 first
the relation PrimitiveAttributeToColumn was executed which can be seen since there
exist already tokens in the places Column, Column.type and Table.columns. At this
point of time, the relation SuperAttributeToColumn may be called and thus the break-
point stops execution.

The transformation designer may now fire the according transition in order to stepwise de-
bug the transformation specification. The transition SuperAttributeToColumn is enabled
since there is an according trace information available and since there exists a link from the class

222

9.3. Evaluation of Debugging Features

of the trace information (c2) to a superclass (c1). The found superclass should then be handed
to the called relation in the where clause. This is represented in Transformation Nets by the
fact that there is an arc between the TracePlace of the relation and the TracePlace that
enables the transition, i.e., after firing there would be a second trace token stating that Class
c1 is mapped to the Table instance c2. Since the Class instance c1 does not have any fur-
ther links to super classes, the transition is not enabled any more. Nevertheless, no additional
Columns were created, which should be the intention behind the recursive call, according to
the stated requirements. In this respect, the origin of the error has been detected by means of
simulation-based debugging. The actual bug fixing is discussed below.

9.3.1.1 Evaluation of Property-Based Debugging

The presented methods for property-based debugging (cf. Section 7.4) base on the exploration
of the state space. Thus in a first step the state space and according behavioral properties for
the running example are calculated and discussed. Furthermore, as stated above, the state space
represents all possible paths of execution. A well known difficulty thereby is the so-called state
space explosion problem, i.e., the number of states gets to large in order to be represented in
memory. There are especially two parameters that influence the state space in CPNs compiled
from Transformation Nets being (i) the number of tokens (possible bindings) in the source model
and (ii) the number of concurrently enabled transitions. thus mechanisms are demanded that
reduce the state space, i.e., means to cluster bindings or to remove concurrency.

Calculation of Behavioral Properties for the Running Example. In order to check prop-
erties for the running example, the state space may be calculated. Fig. 9.23(a) shows the accord-
ing QVT Relations specification which is translated to Transformation Nets in a first step (cf.
Fig. 9.23(b)) in order to calculate the state space in a second step (Fig. 9.23(c) and (d)). The state
space report tells the transformation designer that the whole state space consists of 49 nodes.
This mainly results from the different bindings and due to the fact that several transitions might
be enabled concurrently. When investigating the graphical representation of the state space, one
sees that in a first step only one transition may fire with one specific binding. This is since exactly
one arc originates from the state space node 1, i.e., only the transition PackageToSchema is
enabled since there is only one Package instance available in the source model. When further
investigating the state space it can be seen that in the second step two possible paths are possible,
which represent the two possible bindings for the transition ClassToTable, i.e., only class
c2 and c3 are persistent and may thus be transformed to according Table instances. As soon
as the transition ClassToTable fires the first time, several paths through the transformation
are possible since now several transitions are enabled, i.e., either the transition ClassToTable
may fire again but using a different binding, or the transition AttributeToTable may fire.
Nevertheless, as can be seen in Fig. 9.23(d) all paths end up at the state space node with the id
49, which has no further successor nodes. Thus, this node is a dead state which always may be
reached, i.e., home state, as can be seen also in the state space report in Fig. 9.23(c). In this
respect the transformation is confluent with respect to the provided input model. Finally, the
question arises, if the transformation is correct. Assuming that the desired target model is avail-
able, it can be detected that Column instances as well as their according attributes and links are
missing by using boundedness properties. Therefore the corresponding places are highlighted in

223

9. EVALUATION

Source Transformation

ModelElement

Source Transformation

transformation ClassToRel 2 1 2

name : String

(class : Class ; rel : Relational){
top relation PackageToSchema {
checkonly domain class p: Package {…};

1

3 p1
Univer
sity

c1 c2
StudentPerson

a1 a2
registr

c3
Professor

a3
salary

checkonly domain class p: Package {…};
enforce domain rel s: Schema {…};

}

3

name
registr
No

top relation ClassToTable {
checkonly domain class c: Class {…};4

Package
kC

enforce domain rel t: Table {…};
when{PackageToSchema (p,s);}
where{AttributeToColumn (c,t);}

4

3

l

p1
Package2
Schema

C
C

T
relation AttributeToColumn {
checkonly domain class c: Class { };5 TaClass

c1 c2 c3
Class2
Table

C
C

T1..*

checkonly domain class c: Class {…};
enforce domain rel t: Table {…};
where {
P imiti eAtt ib teToCol mn (c t)

5 4
c2

isPersistent: Boolclasses

c2
t

c3
t

c1
false

Table
Tsuperclasses

PrimitiveAttributeToColumn (c,t);
SuperAttributeToColumn (c,t);

}
5true truefalse

0..*
subclasses

0..* columns
Attribute2
Column

C
C

T}

relation PrimitiveAttributeToColumn {

5

attributes
Co

T

T

{
checkonly domain class c: Class {…};
enforce domain rel t: Table {…};

}

6
6

T

0..*
attributes

Attribute type :

PrimitiveAttribute2
Column

C
C

T}

relation SuperAttributeToColumn {
h k l d i l Cl { }

6
a2

type : String

a1 a2 a3

yp
checkonly domain class c: Class {…};
enforce domain rel t: Table {…};
where {SuperAttributeToColumn (sc,t);}

7 a2
Integ

type : String
a1

String
a2

Integer
a3

Integer SuperAttribute
2Column

C
C

T}
}

7
2Column
T

() QVT R l ti C d f R i E l (b) i f Q l i C d f i l i f(a) QVT Relations Code of Running Example (b) Representation of QVT Relations Code of Running Example in Transfor

Statistics
‐‐‐
State Space
Nodes: 49
Arcs: 103Arcs: 103
Secs: 1

Boundedness Properties
‐‐
Best Integer Bounds

Upper LowerUpper Lower
CD2ER‘Column 2 0
CD2ER‘columns 2 0
....

Best Upper Multi‐set BoundsBest Upper Multi set Bounds
CD2ER‘Column 1`{oid=“a2”,t=“Attribute”}++

1`{object=“a3”,t=“Attribute"}
CD2ER‘columns 1`{source={oid=“c2”,t=“Class“},

target={oid=“c3”,t=“Attribute"}}++
1`{source={oid=“c3” t=“Class“}1 {source {oid c3 ,t Class },

target={oid=“a3”,t=“Attribute”}}
....Home PropertiesHome Properties
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Home Markings [49]

Liveness Properties
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Dead Markings [49]
Dead Transition Instances None
Li T i i I NLive Transition Instances None

Fairness Propertiesp
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
No infinite occurrence sequences.

(c) State Space Report (b) Graphical Representation of State Space

Target

SchemaElement

Target

name : String
p1

Universityc2
Student

c3
Professora2

registr a3registr
No

a3
salary

Schema

p1

able

c3

tables

0 *

olumn

0..

String

a3

g
2
ger

a3
Integer

imation Nets

Figure 9.23: Calculation of Properties for Running Example

the Transformation Net (cf. places Column, Column.type, SchemaElement.name and
Class.columns in Fig. 9.23(b)).

Detection of Non-Confluent Transformation Behavior. As stated in Section 7.4 a trans-
formation is confluent if there exists exactly one dead state which is also a home state. In the
example depicted in Fig. 9.24(c) and (d) it can be seen that there exist two different dead states,

224

9.3. Evaluation of Debugging Features

Source TargeTransformationt f ti Cl T R l

ModelElement SchemaEle

Source TargeTransformationtransformation ClassToRel
(class : Class ; rel : Relational){

name : String name : Str

key Table (name);

// map each package to a schema

A
A<<cbe>>

p p

p p
<<cbe>>

p1
Univer
sity

c1 c2
StudentPerson

c3

// p p g
top relation PackageToSchema {

pn: String ;
checkonly domain class p: Package {

p1
Univers

c2
Studentp2

p

p

p

p

pn pn

Studentcheckonly domain class p: Package {
name =pn

};
f d i l h {

FH

C
CTrace

p2p2p1p1

Package

enforce domain rel s: Schema {
name =pn

};

T

l

p1}

// map each persistent class to a table

p2

T

TableClass

c1 c2 c3

1..*

// map each persistent class to a table
top relation ClassToTable {
cn: String ;
checkonly domain class c: Class {

c2C
C

p s

isPersistent: Boolclasses

c2
t

c3
t

c1
false

checkonly domain class c: Class {
namespace =p: Package {},
isPersistent =true ,

C
R

R

c c

spc c

Ctrue truefalsename =cn
};
enforce domain rel t: Table { A

<<cbe>>

c

p s

i P i

C
C

schema =s: Schema {},
name =cn

};
A

A c c
cn cn

isPersistent
<<cbe>>

};
when {
PackageToSchema (p, s);

}

cc

@c.isPersistent
true

<<key>>
{cn}

}
}

}

<<where>>

T

Trace

=true
c2c2

(a) QVT Relations Code (b) Representation of QVT Relations Code in Transformation Nets

T

() Q () p Q

Statistics
‐‐‐
State Space
Nodes: 10
Arcs: 12
Secs: 1

Boundedness PropertiesBoundedness Properties
‐‐
Best Integer Bounds

Upper Lower
CD2ER‘Table 1 0
CD2ER‘tables 1 0CD2ER tables 1 0
....

Best Upper Multi‐set Bounds
CD2ER‘Column 1`{oid=“a2”,t=“Attribute”}++

1`{object=“a3” t=“Attribute"}1 {object= a3 ,t= Attribute }
CD2ER‘columns 1`{source={oid=“c2”,t=“Class“},

target={oid=“c3”,t=“Attribute"}}++
1`{source={oid=“c3”,t=“Class“},

target={oid=“a3”,t=“Attribute”}}
....

Home Properties
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Home Markings None

Liveness Properties
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Dead Markings [9 10]Dead Markings [9,10]
Dead Transition Instances None
Live Transition Instances None

Fairness Properties
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
No infinite occurrence sequences.

() St t S R t (b) hi l i f(c) State Space Report (b) Graphical Representation of State Space

et

ement

et

ring

sity

p2
FH

Schema

p1 p2

tables

Figure 9.24: Example of Non-Confluent QVT Relations Specification

i.e., state 9 and 10. Therefore, the transformation is non-confluent. When investigating the states
and the generated target model it can be seen that always two Schema instances get created,
which is the intended behavior. Nevertheless, only one Table instance results in any case,
which is either contained in schema p1 or p2. This is since the specified key in the QVT Re-

225

9. EVALUATION

lations specification considers only the name of a Table. Since the Class instances c2 and
c3 are both named Student, only the first, non-deterministically selected Class instance
gets translated to a Table instance. When trying to transform the second instance is matched,
no additional Table instance is created since already an instance with this key, i.e., with the
equal name, exists. If the according Package would be considered in the key as well, the
transformation would be confluent again (at least for the source model used in the example).

State Space Explosion in Transformation Nets In order to explicate the potential size of
a state space Fig. 9.25 shows two simple Transformation Nets and their according state spaces.
The Transformation Net in Fig. 9.25(a) simply copies instances of a Package to instances
of Schemas. As can be seen in Fig. 9.25(b), the size of nodes grows exponentially, but the
number of states and arcs can still be calculated within a number of seconds. The situation is
different when considering the Transformation depicted in Fig. 9.25(c). In this scenario, for
every Class instance that is contained in an according Package instance, a Table instance
should be generated. Thereby it is assumed that every package contains exactly three Class
instances. As can be seen in Fig. 9.25(d), the number of states drastically increases when the
number of Package instances is increased leading to the problem that the state space cannot
be calculated any more due to memory restrictions or timing constraints, i.e., the calculation of
the state space may last several hours. In this respect, methods for reducing the state space are
demanded.

Handling the State Space Explosion Problem. Reduction of state space is still a topic of
ongoing research. A major problem thereby is that not every reduction method preserves all
properties of the CPN, as stated in [72]. Thus, various different state space reduction methods
have been developed that typically allow to exploit certain characteristics only. When applying
a concrete method it has to be ensured that the desired properties are preserved. Furthermore,
methods can be divided into those that (i) fasten construction or (ii) allow for a more compact
representation, i.e., that reduce the numbers of nodes and thus require less memory.

Many of the proposed techniques make use of so-called on-the-fly verification [72]. Thereby
the actual verification question and the state space exploration is done relative to the provided
verification question, i.e., only those states that are needed for the verification of the desired
property are calculated and exploration is stopped as soon as an answer for the desired property
has been found. This method is especially common in model checking. Another possibility
to reduce the state space is the property preserving symmetry method [72]. The idea behind
this method is that systems often exhibit a certain degree of symmetry, i.e., similar components
whose identities are interchangeable from a verification point of view. In this respect, so-called
equivalence classes are built which represent symmetric markings and binding elements, i.e.,
each node represents a class of equivalent markings and each arc a class of equivalent binding
elements instead of just a specific one. According to [72], these reduced state spaces are typ-
ically orders of magnitude smaller than the full state space, but still allow to verify behavioral
properties. Nevertheless, the method is only applicable under certain conditions (initial marking
must be symmetric, guard expression must be symmetric, and arc expressions must be sym-
metric - cf. [72] for details) which may be statically checked before calculating the state space.
In this respect, the symmetry state space reduction method may be applied for Transformation
Nets. Since CPN Tools do currently not include an implementation of the symmetry method, no

226

9.3. Evaluation of Debugging Features

Package TablePackage2
Schema

Package SchemaPackage2
Schema classes

Class

0..*

(a) Exemplary Transformation Net (c) Exemplary Transformation Net

Packages Nodes Arcs

1 2 2

Packages Classes/
Package

Nodes Arcs

1 3 8 12
2 4 4

3 8 12

4 16 32

1 3 8 12

2 3 64 192

3 3 512 2304
4 16 32

5 32 80

10 1024 5120

4 3 4096 24576

5 3 32768 245760

10 3 1073741824 16106127360

Exponential Growth of State Space Exponential Growth of State SpaceNodes Nodes

800

1000

1200

800000000

1E+09

1,2E+09

400

600

800

400000000

600000000

800000000

0

200

0

200000000

k

(b) State Space of Transformation Net (a) (d) State Space of Transformation Net (c)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10Packages Packages

Figure 9.25: Exemplary State Space Calculation

details on the actual reduction of the state space can be presented in this thesis. An implemen-
tation of the symmetry method for CPN Tools is thus a point of future work (cf. Chapter 10).
Irrespective of the state space reduction method applied, it has to be noted that in general the
source models of the Transformation Net under test should be rather small and should focus on
a certain scenario in order to be able to calculate the state space in an appropriate amount of
time. Furthermore, please note that behavioral properties depend on the actual marking, i.e.,
source model. This means that if the source model is changed, the according properties need to
calculated again.

227

9. EVALUATION

State Space Reduction for MOPs. A specifics of MOps is that MOps access the source
model in a read only manner and the target model in a write only manner, i.e., MOps are not
allowed to read from the target model. The trace model may be accessed in a read and write
manner, nevertheless it is prohibited to specify conditions on the trace model, i.e., trace patterns
may not be included in the condition of a transition. Furthermore, no single production patterns
makes use of the check before enforce semantics. Therefore, the transformation results solely
depends on the actually matched source model element. As shown above, one source of non-
determinism is the selection of one binding out of a number of bindings. Thus, if a marking M
has n concurrently enabled bindings, the bindings may be sorted in n! ways, i.e., there are n!
paths from a source to a target marking. A possibility to reduce the state space is to order the
bindings and to consider only a single path. Thereby, the number of possible bindings may be
reduced from n! to n, i.e., the resulting number of paths in the state space is reduced to 1 since
the bindings are sequentialized. This sequentialisation preserves all properties due to the above
listed specifics of MOps.

Considering the second major factor for state space explosion, MOps also allow to reduce the
number of concurrently enabled transitions. A first step in this direction is encoded in the way
MOps are specified. This is since 2AttributeMOps and 2RelationsshipsMOps may
only fire if according trace information is available. Nevertheless, several transitions of MOps
of the same type, i.e., 2ClassMOps, 2AttributeMOps, or 2RelationsshipsMOps,
may be concurrently enabled. It would be possible to specify a different priority for every
transition, whereby the lowest priorities should be assigned to 2ClassMOps in order to fire
first. Additionally, priorities in ascending order should be assigned to 2AttributeMOps and
2ReferenceMOps. In this respect it is ensured that first all objects are created, followed by all
values and finally all links. Consequently, the possible number of paths through the state space
is reduced to exactly one, which has a length of b nodes, whereby b denotes the number of all
valid bindings that are possible.

9.3.2 Fixing Bugs

In order to allow the transformation designer to also fix bugs within the Transformation Net
formalism, a transformation from Transformation Nets to the actual transformation language
is required. As already stated in Section 8.2, as a proof of concept, such transformations are
provided for QVT Relations and MOps which will be discussed in the following in order to
evaluate the provided means for fixing bugs in Transformation Nets.

Fixing Bugs in Transformation Nets Stemming from a QVT Relations Specification.
After finding the origin of a bug, it is possible to adapt the transformation logic during debug-
ging directly in Transformation Nets and propagate the changes back to QVT Relations. Thereby
the focus is on bugs in DomainPatterns, as fixing those bugs reflects minor changes in QVT
Relations and thus can be updated in the debugging environment during the debugging pro-
cess. As described in Section 9.2 and depicted in Fig. 9.12, the graph of the domain pattern
corresponds to a metamodel and is represented in Transformation Nets in terms of Patterns
contained by Transitions. When fixing a bug in Transformation Nets it has to be ensured
that the graph remains valid. For example, if a new object, value or link should be queried, it
must be ensured that the new Pattern connects to a place which represents a possible new leave

228

9.3. Evaluation of Debugging Features

in the graph. Assuming the class Class as domain object (cf. example in Fig. 9.12), it would
be possible to add a query LinkPattern representing the reference Class.superClass
but it is not possible to query, e.g., for the attribute Attribute.name without adding the ref-
erence Class.attributes, since the attribute Attribute.name is no possible leave. If
an element of a DomainPattern is deleted, all descendent child nodes in the graph must be
deleted as well. Nevertheless, the deletion of the domain object is prohibited since this would
change the interface of the relation, which might cause also changes in dependent relations, i.e.,
relations that call this relation in its when or where clause. If such a fundamental modification
is necessary, the domain must be changed in the QVT Relations specification and debugging
must be restarted. Furthermore, during debugging it should be prohibited to change the meta-
models of the transformation as this would result in serious changes in the transformation logic.
Although model elements are not represented in QVT Relations, it is possible to add, delete,
and edit tokens, which is especially useful to alter the source models during debugging, e.g., by
specifying missing attributes.

To hide this complexity from the transformation designer, constraints may be specified which
are checked when editing the Transformation Net (as mentioned in Section 8.2). These con-
straints may either be specified by means of OCL or by implementing a Java method (Validate-
EditOperation) which is automatically called before the actual operation is executed if the
transformation-based mode is used in the prototype. In this respect, Table 9.2 shows the possi-
ble operations for fixing bugs. The constraints specified in the prototype prohibit any changes on
the PetriNet itself, i.e., it is not possible to change the involved metamodels, to add transfor-
mations (since in QVT Relations it is possible to specify several transformations within a single
file), or to delete the transformation specification. As already mentioned, changes concerning
the involved metamodels are prohibited whereas changes on the models are allowed. Concern-
ing Modules representing Relations, only changes are allowed, i.e., contained elements
may be changed with the distinction of elements representing the DomainPattern. Finally,
it is possible to edit, add or delete Patterns if a valid digraph results, as described above.

Table 9.2: Possible Operations for Bug Fixing

QVT Concept TN concept Edit Add Delete

RelationalTransformation Net   RelationalTransformation Net   

TypedModel TNPlace   

n.a. Token   

Relation Module   

DomainPattern
Transition and
ObjectPattern   

TemplateExp/PropertyTemplateItem Pattern   

The failure in the QVT Relations specification of the running example is that the wrong rela-
tion is called in the where clause of the relation SuperAttributeToColumn, i.e., the rela-

229

9. EVALUATION

tion SuperAttributeToColumn is called instead of the relation AttributeToColumn.
To fix this failure in Transformation Nets, the arc stemming from the TracePlace of the
module SuperAttributeToColumn needs to be connected to the TracePlace which
enables the transition in the module AttributeToColumn (cf. Fig. 9.26). Since this is a
valid edit operation, the QVT Relations code is accordingly updated, i.e., the call in the where
clause no calls to correct relation AttributeToColumn (cf. Fig. 9.26). When firing the cor-
rected version, the transition in the module SuperAttributeToColumn produces a trace
token stating that class c1 (which is the superclass of c2) is translated to table c2. This trace
token is then transferred to the trace place in the module AttributeToColumn and there-
fore enables the according transition again. Since the production ObjectPattern uses the
check before enforce semantics, no new table is generated (since an instance c2 already ex-
ists). Nevertheless, the newly produced trace information enables the transition in the module
PrimitiveAttributeToColumn, which now produces according Column instances for
the Attribute instances of the superclass.

Source TargetTransformationt f ti Cl T R l 2
ModelElement SchemaElement

Source TargetTransformationtransformation ClassToRel
(class : Class ; rel : Relational){
top relation PackageToSchema {
checkonly domain class p: Package

1
2

3

1 2

name : String name : String

p1
Univer
sity

c1 c2
StudentPerson

a1 a2c3 a3

y p g
{…};

enforce domain rel s: Schema {…};
}

3
p1

Universityc2
Student

c3
Professor

a1
a2

registr
a3

salarya1
name

a2
registr
No

Professor salary

top relation ClassToTable {
checkonly domain class c: Class {…};
enforce domain rel t: Table {…};4

name
g
No

y

a1
name

a2
registr
No

Package

p1

Schema
Package2
Schema

C
C

{ }
when{PackageToSchema (p,s);}
where{AttributeToColumn (c,t);}

l ti Att ib t T C l {

3
p1

TableClass

c1 c2

Schema
T

c3
Class2
Table

C
C

T1..*

relation AttributeToColumn {
checkonly domain class c: Class {…};
enforce domain rel t: Table {…};
where {

5 4
c2 c3

isPersistent: Boolclasses tables

c2
true

c3
true

c1
false

Table
T

subclasses

superclasses

Attribute2C
T

{
PrimitiveAttributeToColumn (c,t);
SuperAttributeToColumn (c,t);

}
}

5
0..*

subclasses
0..*

Column

columns
0..*

Attribute2
Column

C
C

T

}

relation PrimitiveAttributeToColumn {
checkonly domain class c: Class {…};6 6

T

0..*
attributes

Attribute type : String

PrimitiveAttribute2
Column

C
C

T

T
y { }

enforce domain rel t: Table {…};
}

l ti S Att ib t T C l {

6 6
a2

a3

2
a3

a1
a2

a1

type : String

a1 a2

a1 a2

a3

a3 SuperAttributeC
T

relation SuperAttributeToColumn {
checkonly domain class c: Class {…};
enforce domain rel t: Table {…};
where {AttributeToColumn (sc,t);}

7
7

a2
Integer

a3
Integer a1

Stringa2
Integer

a1
String

String Integer Integer SuperAttribute
2Column

C

T

{ (,) }
}

}

()(a) Corrected QVT Relations Code (b) Representation of Correct QVT Relations Code in Transformation Nets (Final State)

Figure 9.26: Corrected QVT Relations Code of Running Example

Fixing Bugs in Transformation Nets Stemming from a MOps Specification. For fixing
bugs in Transformation Nets, which stem from a MOps specification, only a few operations are
allowed. Similar to QVT Relations, changes concerning the metamodel, i.e., changes concern-
ing TNPlaces, are prohibited while changes concerning the models, i.e., Tokens are possi-
ble. Concerning the actual transformation logic, it is possible to delete instances of Modules,
whereby their contained elements, i.e., Ports, Transitions and contained Modules are
deleted as well, i.e., either a composite MOp or a kernel MOp may be deleted. Currently, adding
elements in Transformation Nets is not allowed (except Arcs between TracePlaces and
Ports) since the elements of Transformation Nets represent more fine grained concepts than

230

9.3. Evaluation of Debugging Features

those of MOps, i.e., every kernel MOp consists of at least a Module, corresponding Ports
as well as aTransition and their contained Patterns. Thus, it is more comfortable to al-
ter the according MOps specification and restart debugging. Furthermore, changes concerning
Modules and Transitions are prohibited since the encapsulated operational semantics is
fixed by the according MOp. Nevertheless, it is allowed to alter conditions and functions and
to change the interplay between MOps, e.g., to edit the Arcs between TracePlaces and
TracePorts.

9.3.3 Comparison to Related Work

Table 9.3 compares the debugging features of Transformation Nets to the debugging features
of the approaches discussed in Section 2.3. Considering matching support, one can see that
Transformation Nets and AGG are the only transformation languages that support the transfor-
mation designer during the matching phase of model transformations, i.e., the explicit selection
of rules/transitions to fire as well as their according bindings. Comparing the support of break-
points it can be seen that Transformation Nets support simple as well as conditional breakpoints.
Although breakpoints can be seen as a standard debugging support in current transformation
languages, Transformation Nets provide more flexible means compared to related approaches,
i.e., breakpoints can not only be attached to transitions, but also to modules, places and tokens.
Additionally, by means of conditional breakpoints it is possible to define custom breakpoints,
e.g., to stop execution if certain places contain a certain number of tokens. A proper support for
investigating the current execution state is of major importance for a debugger. Consequently,
all of the investigated tools provide support. Nevertheless, most of the tools only provide a tree
based visualization of the current variable values. Thus, it is very hard to figure out how the
actual target model looks like. Furthermore, the trace model is hidden, even during debugging.
This makes it cumbersome to find out which source element has been translated to which target
element. Only AGG provides support in the so-called step mode, which allows to follow the
evolution of the object graph. In order to investigate on operational semantics, debuggers of cur-
rent model transformation languages provide means to stepwise execute the transformation in a
forward direction only (cf. Table 9.3). What sets Transformation Nets apart is that also means
for reasoning backwards in time are provided, i.e., it is possible to query a previous execution
state by means of (predefined) OCL queries on the runtime model. To actually fix a failure dur-
ing debugging, little support is provided by current debuggers, i.e., only mediniQVT explicitly
allows to change the involved models. In contrast to that, Transformation Nets allow changes
in the model, which my be made persistent in the model or not (cf. Section 7.5) and also in the
transformation logic itself (cf. above). Finally, since Transformation Nets represent the actual
execution of a model transformation again as a model, it is possible to allow for forensic debug-
ging making again use of query based debugging techniques. Furthermore, in combination with
PAMOMO contracts, re-enactment is enabled (cf. Section 7.3).

Compared to approaches that support property-based debugging, Transformation Nets do
not make abstractions, i.e., the derived CPN fully reflects the the model transformation, which
is different compared to e.g., [90]. In this respect Transformation Nets and the underlying CPN
bisimulate the according transformation specification. Since the presented properties in [88]
base on CPNs as well, similar results may be achieved. Nevertheless, in the paper no bound-

231

9. EVALUATION

Table 9.3: Debugging Support in Declarative Model Transformation Languages
Tools

simple conditional

ATL          
AGG          
Fujaba   (proposed)    (proposed) (proposed)  
GReAT          
TGG (proposed) (proposed) (proposed) (proposed) (proposed) (proposed)    (proposed)
mediniQVT          
TNs          

live forensic
selection investigation dynamic adaptation

breakpoint matching vis vis state execution

should

Forensic
Debugging

Live Debugging
Selection Investigation

Stepwise
Execution

Backwards
Reasoning

Model Logic

Dynamics Adaptations
Breakpoints

Matching
Visualization
of Control

Flow

State
inspection

edness properties are mentioned. Furthermore, it is left open how the results of the properties
should be interpreted, i.e., the findings of the properties are not mapped back to the QVT Rela-
tions specification.

9.3.4 User study

In order to get a first user feedback if the provided runtime model and the provided means for
debugging are appropriate, an admittedly rather small case study has been conducted. Thereby,
five master students in software engineering have been selected who attended a course on MDE
at the time of writing the thesis. The students had basic knowledge about models, metamodeling
and model transformations. Nevertheless, none of the selected students had experiences in QVT
Relations nor was familiar with the Transformation Net formalism or CPNs. Three students
were selected to debug the corrected running example (cf. Fig. 9.26) which was specified in
QVT Relations by using the debugging features provided by mediniQVT. Two students were
asked to debug the same transformation but using the features provided by Transformation Nets.
The goal of this case study was to report about the transformations tasks. For example question
were asked like, what happens if a schema contains no tables or what happens with attributes of
subclasses (cf. Table 9.4). The time of debugging was limited to 20 minutes, only.

Results of User Study. The students which used mediniQVT for debugging a QVT Rela-
tions specification complained in general that the flow of control was hard to follow. They were
not able to clearly state, which model element got translated by which rule and due to which
conditions. Another major concern was that they did not see the actual state of the target model.
Only one student checked the according variables and tried to reconstruct the model from the
in-memory representation. Nevertheless, this was time consuming such that he could not finish
debugging in the given time frame. In contrast to that, students debugging with Transformation
Nets recognized the explicit visualization of the transitions ready to fire and the possibility to
select a certain binding to be helpful to understand the operational semantics. Additionally, they
also appreciated the visualization of the models, although they stated that the user needs getting
used to the encoding in terms of tokens.

Concerning the question about the operational semantics of the according transformation
specification the simple case study showed that although the mediniQVT debugger allows for
stepwise execution, the execution was hard to follow, due to the low-level representation, i.e.,
variable values only. In contrast, the more high-level view of Transformation Nets showed to

232

9.4. Summary

be a more appropriate abstraction, although it has to be stated that there is a mismatch between
the QVT Relations specification and Transformation Nets as well. In this respect, only two
out of three students stated that every package is translated to a schema (actually they counted
how often they entered to relation PackageToSchema and reasoned that every package is
translated) using mediniQVT whereas every student recognized this fact in Transformation Nets
(cf. Table 9.4). Both groups were able to figure out that only instances of persistent Classes
are matched and translated into according Table instances. Concerning the interplay between
top rules and when clauses, i.e., both relations ClassToTable and PackageToSchema
are marked as top but the relation ClassToTable calls the relation PackageToSchema
in its when clause, only one student recognized that actually first the package has to be gen-
erated by using the mediniQVT debugger. In contrast to that, students using Transformation
Nets figured out this dependency. Concerning the translation of inherited attributes, only one
student recognized that inherited attributes are added to the Tables of the according sub-
class, but all students who used Transformation Nets for debugging figured out that the relation
SuperAttributeToColumn represents a recursive call. In contrast to that, the recursive
call was interpreted right only by one student using mediniQVT. Finally, no user of mediniQVT
was able to state the correct number of the generated Column instances whereas all users of
Transformation Nets stated the right number.

Table 9.4: User Study on Debugging QVT Relations

Questions on Transformations
Given Answers

Correct behavior
mediniQVT (3 students) Transformation Nets (2 students)ed Q (3 stude ts) a s o at o ets (stude ts)

What happens if a Package contains no classes?
Are transformed (2)
Do not know (1)

Are transformed (2)
every Package is translated
to schemas

Which kinds of classes are translated? Persistent (3) Persistent (2) Persistent

Whi h l h fi bj ?
ClassToTable (2)

P k T S h (2) P k T S hWhich rule creates the first target object?
ClassToTable (2)
PackageToSchema(1)

PackageToSchema (2) PackageToSchema

What happens with inherited attributes?
Do not know(2)
Ignored (1)

Added to table of subclass (1)
Do not know (1)

Added to table of subclass

What is the task of the Recursive call (1)
Recursive call (2) Recursive call

SuperAttributeToColumn rule? Do not know (2)
Recursive call (2) Recursive call

How many columns result in total?
Do not know (2)
Two (1)

Five (3) Five

9.4 Summary

I
n summary, this chapter presented an evaluation of the proposed concepts of the thesis. First,
an evaluation of the visual declarative language PAMOMO has been conducted by means

of case studies. These case studies showed the versatility of the approach by the automated
verification of an ATL transformation, a QVT Relation transformation, and the safe execution
of a third party transformation (from which the source code is not available). In each case study,
the use of different features of PAMOMO was stressed. By comparing PAMOMO to existing
approaches the benefits have been highlighted. Second, the runtime model was evaluated by
showing how the operational semantics of QVT Relation, graph transformations and MOps can
be represented by means of Transformation Net concepts. Consequently, it was shown that the

233

9. EVALUATION

provided runtime model is able to act as an execution engine for declarative model-to-model
transformation languages, providing numerous debugging features. In this respect, third, the
debugging features provided by the Transformation Net formalism have again been evaluated by
means of case studies and a comparison to related work.

234

Chapter 10

Conclusion and Future Work

It’s the job that’s never started
takes longest to finish.

— J.R.R. Tolkien

Contents
10.1 Conclusion . 235
10.2 Future Work . 237

This chapter summarizes the contributions of the thesis and gives an outlook on potential
lines of future work.

10.1 Conclusion

MDE places models as first-class artifacts throughout the software life cycle, whereby model
transformation languages play a vital role. Several kinds of dedicated transformation lan-

guages are available, the majority of them favoring declarative, rule based specifications to ex-
press relations between source and target models. However, the focus of current model-to-model
transformation languages is rather on the implementation phase but they do hardly emphasize
phases like requirements specification, testing and debugging. Since the correctness of an auto-
matically generated target model fully depends on the correctness of the specified model trans-
formation, proper support of these phases is heavily demanded. Therefore this thesis focused on
providing means to specify requirements for model transformations as well as means to test and
debug them.

In order to enable the transformation designer to easily specify the requirements of a model
transformation, in the course of this thesis, the language PAMOMO has been adapted for the

235

10. CONCLUSION AND FUTURE WORK

specification of requirements. Furthermore, PAMOMO has been implemented in an according
tool, called PACO-Checker (cf. 1 in Fig. 10.1). By using PAMOMO and PACO-Checker the
transformation designer may formalize the requirements in terms of contracts. For this a visual,
declarative language is provided, allowing to specify preconditions, postconditions and invari-
ants on transformations. Since the contracts provide a formal semantics, it is possible to reason
for inconsistencies between the specified contracts. In order to test if a certain transformation
specification fulfills the posed requirements, the contracts are translated to QVT Relations which
are then executed in checkonly mode. In this respect it is possible to automatically test the trans-
formation specification against the posed requirements (cf. 3 in Fig. 10.1). Furthermore, a
dedicated error trace may be delivered in case a requirement is not fulfilled. This is different to
existing approaches that base on OCL were only a boolean answer is provided, i.e., the require-
ments are fulfilled or not, but no hint is given why the contract failed.

Visual Language to specify
transformation contracts11 Transformation

implementation
22

implementation

specification of requirements

using arbitrary
transformation language

A tomated testing b33Debugging based
ti d l

44
Automated testing by
QVT checkonly relations

33on runtime model

debugging to
track errors

verification of
contracts

track errors

Figure 10.1: Overview on the Contributions of the Thesis

PAMOMO contracts help a transformation designer to observe a certain fact in a transforma-
tion, i.e., that a specific requirement is not fulfilled. According to [173], observing facts is a first
step in the debugging process only. Additional means are needed to track the origin of a failure
and to actually fix it. In order to provide common means for debugging of declarative, rule
based transformation languages, Transformation Nets as a runtime model for model-to-model
transformations have been introduced making their execution semantics explicit in order to fos-
ter debuggability (cf. 4 in Fig. 10.1). Transformation Nets provide a DSL on top of CPNs,
which hide the low-level details thereof. Thereby, metamodel elements are represented as places
and the according model elements are represented as tokens. The actual transformation logic is
specified by a system of transitions.

The Transformation Net formalism provides the basis for several means of debugging in
order to find the origin of a failure, comprising means for live-debugging and forensic debugging.
First, simulation based debugging has been presented allowing the transformation designer to

236

10.2. Future Work

stepwise execute a transformation specification. Special emphasis has been put on the proper
visualization of the matching phase of the transformation execution. In Transformation Nets
it is possible to select a certain transition out of a number of enabled ones (to support non-
deterministic rule application) as well as a certain binding. Furthermore, the visualization of
the models in terms of tokens representing the current state of the transformation turned out
to improve understandability. Besides the common feature of breakpoints, the Transformation
Net Debugger additionally allows for more-fine grained conditional breakpoints. To support
forensic debugging, so called query-based debugging mechanisms are provided which allow
to reason backwards in time by exploiting the runtime model. Since Transformation Nets are
defined on the basis of a metamodel, OCL queries can be applied to achieve this task. Finally,
since Transformation Nets can be compiled to CPNs, Transformation Nets may make use of
the formal properties provided by CPNs, supporting property based debugging. In this respect,
behavioral properties may be used in order to check if a transformation specification terminates
or is confluent. Since behavioral properties require the calculation of the state space, the well-
known state space explosion problem may arise. This is especially the case large if source
models which potentially lead to a large number of possible bindings are considered.

After having introduced the concepts of PAMOMO and Transformation Nets, implementa-
tion details of the provided prototypes have been discussed. Finally, the proposed contributions
have been evaluated by means of comparison to related work as well as case studies. Thereby,
the evaluation of the contributions raised potential lines for future work.

10.2 Future Work

The work presented in this thesis leaves several issues open for further research. On the
one hand this concerns improvements and extensions of the proposed concepts but also

improvements of the presented prototype on the other hand.

10.2.1 Extension of PaMoMo Concepts and Scenarios

Concerning PAMOMO, which allows the specification of visual contracts, as a first major con-
tribution of the thesis, several extensions may be considered.

Traceability between PaMoMo contracts and Transformation Logic. A point for future
work is to provide facilities for error location in the transformation implementation. A simple
solution would be the manual annotation of the contracts and the according transformation rules,
i.e., a transformation rule may be annotated with pre- and postconditions and invariants. In
addition, a more complex but also more user friendly approach might be to employ heuristics,
used to exploit trace information provided by the execution engines. This trace information
might be matched with the error bindings provided by QVT Relations to conclude on the rules
causing the error.

From Contracts to Transformation Code. The presented compilation into QVT Relations
raises the possibility to use PAMOMO not only as a specification language for contracts, but also
as an executable, high level language to specify the actual transformation behavior. This means
that the specified invariants may automatically be translated into according transformation rules

237

10. CONCLUSION AND FUTURE WORK

of a certain transformation language. Another possibility would be to specify the operational
semantics of PAMOMO using Transformation Nets as a semantic domain and execution model.
Thus, the specified contracts could not only be made executable but additionally the provided
debugging features could be reused also for PAMOMO.

Use of Concrete Syntax. Regarding tool support, the contracts have to be specified in terms
of their abstract syntax, i.e., basically the concepts of the metamodels are represented in the tool
by means of object diagrams (cf. Fig. 8.2). Nevertheless, typically the transformation designer
is used to the concrete syntax only. Therefore, it should be possible to use the concrete syntax
of models in PAMOMO specifications as well.

Further Scenarios. The formal semantics of the contracts could not only be used to ver-
ify a single transformation but also to analyse the compatibilities of individual transformations
in a transformation chain. Additionally, PAMOMO contracts currently target model-to-model
transformations only. Consequently, as a point of future work the concepts and the expressive
power of PAMOMO contracts may be extended in a way that they may also be used for different
scenarios, e.g., in-place transformations.

10.2.2 White-Box Testing of Model Transformations

The presented approach for testing model transformations by means of contracts represents a
way of black-box testing a model transformation. This means that the transformation under
test is actually not investigated but rather the relationship between the source and the target
model. It is for example not tested if a certain rule is executed, or if every possible path of a
transformation has been executed at least once. Consequently, if a different input model is used
an undesired behavior may occur. In this respect the concept of dynamic symbolic execution
[151] might be applied also for model transformations (cf. Fig. 10.2). Thereby the specified
model transformation is first executed and the path constraints are stored. Path constraints store
the evaluation results of certain conditions, e.g., all boolean conditions included in the transition
may evaluate to true. If the transformation did not fail, in a second step, the according input
model has to be changed in a way that the path constraint is different, e.g., at least one condition

Execute Program

Empty Input

p
Execute Program

on Input

Path Constraint: Constraints on input

New Input

Modify Constraint

parameters in control flow predicates

New Path
Constraint

Solve

Figure 10.2: Scheme of Dynamic Symbolic Execution (taken from [151])

238

10.2. Future Work

now evaluates to false. Thus, a different part of the model transformation gets executed. When
continuing this process until all possible path constraints have been evaluated, the testing of the
transformation specification is finished and the transformation may be assumed to be correct.

10.2.3 Representation of Graph Transformation Languages and Hybrid
Transformation Languages in Transformation Nets

As stated in Chapter 9, currently transformations from QVT Relations and MOps are provided
in order to allow these transformations languages to reuse the debugging facilities of Transfor-
mation Nets. Additionally, the similarity between concepts of Graph Grammars and concepts
of Petri Nets have been discussed. However, a transformation from a concrete graph transfor-
mation language to Transformation Nets has been conducted on a conceptual level only. As
there are several different approaches available for executing graph transformations, e.g., by
non-deterministic rule scheduling or by the specification of an external control flow (so-called
programmable graph transformation languages). Since the external control flow determines the
execution of the rules, this control flow has to be modeled by the according Transformation Net
as well. In this respect it has to be first analyzed which methods exist to specify this control
flow and how the elements of the control flow can be expressed in terms of Transformation Net
concepts in order to support the various approaches for graph transformations.

Furthermore, Transformation Nets currently target declarative model-to-model transforma-
tions. Consequently, the question arises how to debug hybrid transformation languages like
ATL. Considering the declarative parts only, which may be represented in Transformation Nets,
is not sufficient since the imperative parts also influence the operational semantics. Since Trans-
formation Nets are a data-driven formalism, i.e., a transitions fires if a certain configuration of
tokens is available, the representation of control sequences seems to be counterintuitive. Nev-
ertheless, for imperative languages, debuggers known from common programming languages
might be reused. Thus, a potential solution might be to integrate the debugging features of
Transformation Nets and those of common programming languages into a common formalism.

10.2.4 Applying Transformation Nets to Other Scenarios

Currently, the Transformation Net formalism provides a runtime model for declarative model-to-
model transformation languages. However, as stated in Subsection 1.1.2, many other scenarios
are possible as well. As a first step for future work in this direction it should be investigated
how endogenous transformations may be incorporated into the Transformation Net formalism.
Another interesting scenario are so-called incremental update transformations since it is some-
times more efficient not to build the target model from scratch but to update it. As the enabling
and disabling of transitions in Transformation Nets solely depends on the availability of tokens,
i.e., model elements, this mechanisms seems to be promising for incremental updates. First tests
with Transformation Nets showed that indeed adding of new, additional source elements may
be easily handled. Nevertheless, further investigations are needed concerning updates and dele-
tions of elements in the source model since this might enforce to delete or update elements of
the target as well. In this respect, the history and the trace tokens could be used in a similar way
as the proposed re-enactment mechanism for forensic debugging in Section 7.3. Nevertheless,

239

10. CONCLUSION AND FUTURE WORK

in this approach the histories are updated outside the actual CPN, e.g., by using a Java program.
This is not suitable for the actual debugging of incremental updates in transformations since the
actual changes and updates in the trace model, the history as well as the target model should be
accordingly represented in the Transformation Net itself.

10.2.5 Properties for Model Transformations using Temporal Logics and State
Space Reduction Mechanisms

A major constraint concerning the application of behavioral properties to verify the transforma-
tion is that the state space typically grows exponentially depending on the number of the input
tokens available and the number of concurrently enabled transitions. In this respect, only small
transformation specifications may be handled in reasonable time. To overcome these limitations,
two different approaches may be followed, namely application of (i) relative state space explo-
ration or (ii) state space reduction mechanisms. Although CPN Tools allow for the specification
of LTL formulas which may be used for relative state space exploration, their specification is
cumbersome. This is since a model transformation designer is typically not aware of the inter-
nals of LTL. Consequently, domain specific verification languages would be needed, that allow
the transformation designer to easily specify the according property. For the actual execution,
the DSL may then be translated to the according LTL formulas.

Furthermore, CPN Tools does currently not support any reduction mechanism. Thus, as a
first step, the according algorithms need to implemented, e.g., an algorithm for the symmetry
method, in order to allow for a detailed comparison of different reduction mechanisms and their
usefulness in Transformation Nets.

10.2.6 Back Propagation of Bug Fixes

In order to propagate changes in Transformation Nets back to the original transformation spec-
ification, an according transformation is required. Nevertheless, the question arises, if this
backwards transformation may be derived from the actual forward transformation. A poten-
tial solution might be to create an explicit and detailed trace model when specifying the forward
transformation. This trace information may then be used in order to derive the backwards trans-
formation, together with a model representing the specifics of a certain transformation language.
Additionally, both transformations, i.e., the transformation to Transformation Nets and the trans-
formation back to the original transformation language, should allow for incremental updates in
order to be performant.

10.2.7 Improvements on the Prototype and User Studies

The prototype that has been developed during this thesis has been implemented only for a proof
of concept but gives room for further improvements. Although the graphical nature of Transfor-
mation Nets makes editing and understanding rather intuitive, graphical modeling languages do
not scale for large metamodels and models. The current prototype only supports basic mecha-
nisms to scale the graphical representation, e.g., by means of Modules. Such package mecha-
nisms may also be used for the representation of metamodels. Furthermore, different layers may

240

10.2. Future Work

be introduced that allow to hide certain parts of a Transformation Net. Of major importance is
also the provision of sophisticated automatic layout algorithms, especially if the Transforma-
tion Net is derived from an existing transformation specification, e.g., QVT Relations. If the
resulting Transformation Net is not properly layouted, debugging and understandability would
be aggravated. This limitations of the current prototype are also a hindering factor to conduct
larger user studies in order to evaluate the usefulness of the proposed means for debugging large
examples.

241

Bibliography

[1] Rakesh Agrawal, Linda G. Demichiel, and Bruce G. Lindsay. Static Type Checking
of Multi-Methods. In Andreas Paepcke, editor, Proceedings of 6th Annual Conference
on Object-oriented Programming, Systems, Languages, and Applications, October 6-11,
Phoenix, Arizona, OOPSLA’91, pages 113–128. ACM, 1991.

[2] Eric Amiel and Eric Dujardin. Supporting Explicit Disambiguation of Multi-Methods. In
Pierre Cointe, editor, Proceedings of the 10th European Conference on Object-Oriented
Programming, July 8-12, Linz, Austria, ECOOP’96, pages 167–188. Springer-Verlag,
1996.

[3] Marcel F. Amstel, Christian F. Lange, and Mark G. Brand. Using Metrics for Assessing
the Quality of ASF+SDF Model Transformations. In Richard F. Paige, editor, Proceed-
ings of the 2nd International Conference on Theory and Practice of Model Transfor-
mations, June 29-30, Zürich, Switzerland, ICMT ’09, pages 239–248. Springer-Verlag,
2009.

[4] Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-Jörg Kreowski,
Sabine Kuske, Detlef Plump, Andy Schürr, and Gabriele Taentzer. Graph Transformation
for Specification and Programming. Science of Computer Programming, 34:1–54, April
1999.

[5] Paolo Atzeni, Gianfor Giorgio, and Paolo Cappellari. Reasoning on Data Models in
Schema Translation. In Sven Hartmann and Gabriele Kern-Isberner, editors, Proceed-
ings of the 5th international Conference on Foundations of Information and Knowledge
Systems, February 11-15, Pisa, Italy, FoIKS’08, pages 158–177. Springer-Verlag, 2008.

[6] Daniel Balasubramanian, Anantha Narayanan, Christopher P. van Buskirk, and Gabor
Karsai. The Graph Rewriting and Transformation Language: GReAT. Electronic Com-
munications of the EASST, 1, 2007.

[7] Paolo Baldan. Modelling Concurrent Computations: from Contextual Petri Nets to Graph
Grammars. PhD thesis, University of Pisa, Department of Informatics, March 2000.

243

BIBLIOGRAPHY

[8] András Balogh, Gábor Bergmann, György Csertán, László Gönczy, Ákos Horváth, István
Majzik, András Pataricza, Balázs Polgár, István Ráth, Dániel Varró, and Gergely Varró.
Workflow-Driven Tool Integration Using Model Transformations. In Graph Transforma-
tions and Model-Driven Engineering, volume 5765 of Lecture Notes in Computer Sci-
ence, pages 224–248. Springer-Verlag, 2010.

[9] András Balogh and Dániel Varró. Advanced model transformation language constructs in
the VIATRA2 framework. In Hisham Haddad, editor, Proceedings of ACM Symposium
On Applied Computing, April 23-27, Dijon, France, SAC ’06, pages 1280–1287. ACM,
2006.

[10] Luciano Baresi and Paola Spoletini. On the Use of Alloy to Analyze Graph Transforma-
tion Systems. In Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and
Grzegorz Rozenberg, editors, Graph Transformations, volume 4178 of Lecture Notes in
Computer Science, pages 306–320. Springer Berlin / Heidelberg, 2006.

[11] Howard Barringer, Bernd Finkbeiner, Yuri Gurevich, and Henny Sipma, editors. Pro-
ceedings of Runtime Verification’05, July 12, Edinburgh, Scotland, UK, volume 144 of
Electronic Notes in Theoretical Computer Science, 2005.

[12] Benoit Baudry, Trung Dinh-trong, Jean marie Mottu, Devon Simmonds, Robert France,
Sudipto Ghosh, Franck Fleurey, and Yves Le Traon. Model Transformation Testing Chal-
lenges. In Arend Rensink and Jos Warmer, editors, Proceedings of Integration of Model
Driven Development and Model Driven Testing Workshop in conjunction with 2nd Eu-
ropean Conference on Model Driven Architecture - Foundations and Applications, July
10-13, Bilbao, Spain, ECMDA’06. Springer-Verlag, 2006.

[13] Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert France, Yves Le Traon, and Jean-
Marie Mottu. Barriers to Systematic Model Transformation Testing. Communications of
the ACM, 53:139–143, June 2010.

[14] Philip A. Bernstein and Sergey Melnik. Model Management 2.0: Manipulating Richer
Mappings. In Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors, Proceedings
of the 2007 ACM SIGMOD International Conference on Management of Data, June 11 -
14, Beijing, China, SIGMOD/PODS’07, pages 1–12. ACM, 2007.

[15] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making
Components Contract Aware. Computer, 32:38–45, July 1999.

[16] Jean Bézivin. On the Unification Power of Models. Software and System Modeling,
4(2):31, 2005.

[17] Jean Bézivin, Fabian Büttner, Martin Gogolla, Frédéric Jouault, Ivan Kurtev, and Arne
Lindow. Model Transformations? Transformation Models! In Oscar Nierstrasz, Jon
Whittle, David Harel, and Gianna Reggio, editors, Proceedings of 9th International Con-
ference on Model Driven Engineering Languages and Systems, October 1-6, Genova,
Italy, MoDELS’06, pages 440–453. Springer-Verlag, 2006.

244

Bibliography

[18] Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt, editors. Proceedings
of Model Transformations in Practice Workshop in conjunction with 8th International
Conference on Model Driven Engineering Languages and Systems, October 1-6, Montego
Bay, Jamaica, (MoDELS’05). Springer-Verlag, 2005.

[19] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Professional, Boston, MA, USA, 1999.

[20] Kurt Bittner and Ian Spence. Use Case Modeling. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[21] Pierre Bourque, François Robert, Jean-Marc Lavoie, Ansik Lee, Sylvie Trudel, and Tim-
othy C. Lethbridge. Guide to the Software Engineering Body of Knowledge (SWEBOK)
and the Software Engineering Education Knowledge (SEEK) - A Preliminary Mapping.
In Proceedings of the 10th International Workshop on Software Technology and Engineer-
ing Practice, 6-8 October, Montreal, Quebec, Canada, STEP ’02, page 8. IEEE Computer
Society, 2002.

[22] Lionel C. Briand, Yvan Labiche, and Hong Sun. Investigating the Use of Analysis Con-
tracts to Improve the Testability of Object-Oriented Code. Software: Practice and Expe-
rience, 33:637–672, 2003.

[23] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon.
Metamodel-based Test Generation for Model Transformations: an Algorithm and a Tool.
In Proceedings of the 17th International Symposium on Software Reliability Engineer-
ing, 7-10 November 2006, Raleigh, North Carolina, USA, ISSRE’06, pages 85–94. IEEE
Computer Society, 2006.

[24] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose. Eclipse Modeling Framework (The Eclipse Series). Addison-Wesley Professional,
Boston, MA, USA, 2003.

[25] Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. A UML/OCL framework
for the analysis of graph transformation rules. Software and System Modeling, 9(3):335–
357, 2010.

[26] Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. Verification and Validation
of Declarative Model-to-Model Transformations through Invariants. Journal of Systems
and Software, 83(2):283–302, 2010.

[27] Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. Analysing Graph Trans-
formation Rules through OCL. In Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio,
editors, Proceedings of the 1st international conference on Theory and Practice of Model
Transformations, July 1-2, Zürich, Switzerland, ICMT ’08, pages 229–244. Springer-
Verlag, 2008.

245

BIBLIOGRAPHY

[28] Jordi Cabot, Robert Clarisó, and Daniel Riera. Verification of UML/OCL Class Diagrams
using Constraint Programming. In Proceedings of the 1st International Conference on
Software Testing Verification and Validation Workshop, April 9-11, Lillehammer, Norway,
number ICST’08, pages 73–80. IEEE Computer Society, 2008.

[29] Eric Cariou, Nicolas Belloir, Franck Barbier, and Nidal Djemam. OCL Contracts for the
Verification of Model Transformations. Electronic Communications of the EASST, 24,
2009.

[30] Eric Cariou, Raphael Marvie, Lionel Seinturier, and Laurence Duchien. OCL for the
Specification of Model Transformation Contracts. In Thomas Baar, Alfred Strohmeier,
Ana M. D. Moreira, and Stephen J. Mellor, editors, Proceedings of OCL and Model
Driven Engineering in conjunction with 7th International Conference on The Unified
Modelling Language: Modelling Languages and Applications, October 11-15, Lisbon,
Portugal, UML’04, pages 69–83. Springer-Verlag, 2004.

[31] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In Ole Lehrmann Madsen,
editor, Proceedings of the 6th European Conference on Object-Oriented Programming,
June 29 - July 3, Utrecht, The Netherlands, ECOOP’92, pages 33–56. Springer-Verlag,
1992.

[32] Feng Chen and Grigore Roşu. MOP: An Efficient and Generic Runtime Verification
Framework. In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy
L. Steele Jr., editors, Proceedings of the 22nd Annual Conference on Object-oriented
Programming Systems, Languages and Applications, October 21-25, Montreal, Quebec,
Canada, OOPSLA ’07, pages 569–588. ACM, 2007.

[33] Minder Chen, Jay F. Nunamaker Jr., and E. Sue Weber. Computer-aided Software Engi-
neering: Present Status and Future Directions. SIGMIS Database, 20:7–13, April 1989.

[34] Peter Pin-Shan Chen. The Entity-Relationship Model—Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[35] Allan Cheng, Soren Christensen, and Kjeld H. Mortensen. Model Checking Coloured
Petri Nets Exploiting Strongly Connected Components. Technical report, Computer Sci-
ence Department, Aarhus University, 1999.

[36] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press, 1999.

[37] Jesús Cuadrado, Esther Guerra, and Juan de Lara. Generic Model Transformations: Write
Once, Reuse Everywhere. In Jordi Cabot and Eelco Visser, editors, Proceedings of 4th
International Conference on Model Transformation, June 27-28, Zürich, Switzerland,
ICMT’11, pages 62–77. Springer-Verlag, 2011.

[38] Krzysztof Czarnecki and Simon Helsen. Feature-based Survey of Model Transformation
Approaches. IBM Systems Journal, 45(3):621–645, 2006.

246

Bibliography

[39] Andrea Darabos, András Pataricza, and Dániel Varró. Towards Testing the Implemen-
tation of Graph Transformations. Electronic Notes in Theoretical Computer Science,
211:75–85, 2008.

[40] Eclipse Modeling Framework. The Ecore Metamodel. Available online
at http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.
0/org/eclipse/emf/ecore/package-summary.html. last visited in Decem-
ber 2011.

[41] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg. Handbook
of Graph Grammars and Computing by Graph Transformation: Vol. 2: Applications,
Languages, and Tools. World Scientific Publishing Co., Inc., 1999.

[42] Marcos Del Fabro and Patrick Valduriez. Towards the Efficient Development of Model
Transformations using Model Weaving and Matching Transformations. Software and
Systems Modeling, 8(3):305–324, July 2009.

[43] Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, and Clémentine Nebut.
Metamodel Matching for Automatic Model Transformation Generation. In Krzysztof
Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Völter, editors, Pro-
ceedings of the 11th International Conference on Model Driven Engineering Languages
and Systems, MoDELS’08, pages 326–340. Springer-Verlag, 2008.

[44] George S. Fishman. Discrete-Event Simulation: Modeling, Programming, and Analysis.
Springer-Verlag, 2001.

[45] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Traon. Qualifying Input
Test Data for Model Transformations. Software and Systems Modeling, 8:185–203, 2009.

[46] Franck Fleurey, Jim Steel, and Benoit Baudry. Validation in Model-Driven Engineer-
ing: Testing Model Transformations. In Proceedings of First International Workshop
on Model, Design and Validation in conjunction wiht International Symposium on Soft-
ware Reliability Engineering, November 2, Rennes, France, MoDeVVa’04, pages 29–40.
IEEE, 2004.

[47] Robert France and Bernhard Rumpe. Model-driven Development of Complex Software:
A Research Roadmap. In Lionel C. Briand and Alexander L. Wolf, editors, Proceed-
ings of International Conference on Software Engineering in conjunction with 29th In-
ternational Conference on Software Engineering, May 23-25, Minneapolis, MN, USA,
FOSE’07, pages 37–54. IEEE Computer Society, 2007.

[48] G. Gallasch and L. M. Kristensen. COMMS/CPN: A communication infrastructure for
external communication with Design/CPN. In Third Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, August 29-31, Aarhus, Denmark, CPN’01,
pages 75–91, 2001.

247

http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/package-summary.html

BIBLIOGRAPHY

[49] Leif Geiger. Model Level Debugging with Fujaba. In Uwe Aßmann, Jendrik Johannes,
and Albert Zündorf, editors, Proceedings of 6th International Fujaba Days, September
18-19, Dresden, Germany, pages 23–28, September 2008.

[50] Leif Geiger and Albert Zündorf. eDOBS - Graphical Debugging for Eclipse. Electronic
Communications of the EASST, 1, 2006.

[51] Pau Giner and Vicente Pelechano. Test-Driven Development of Model Transformations.
In Andy Schürr and Bran Selic, editors, Proceedings of 12th International Conference
on Model Driven Engineering Languages and Systems, October 4-9, Denver, CO, USA,
MoDELS’09, pages 748–752. Springer-Verlag, 2009.

[52] Martin Gogolla and Antonio Vallecillo. Tractable Model Transformation Testing. In
Robert B. France, Jochen Malte Küster, Behzad Bordbar, and Richard F. Paige, editors,
Proceedings of 7th European Conference on Modelling Foundations and Applications,
June 6 - 9, Birmingham, UK, ECMFA’11, pages 221–235. Springer-Verlag, 2011.

[53] Joel Greenyer and Ekkart Kindler. Reconciling TGGs with QVT. In Gregor Engels,
Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors, Proceedings of 10th Interna-
tional Conference on Model Driven Engineering Languages and Systems, September 30
- October 5, Nashville, USA, MoDELS’07, pages 16–30. Springer-Verlag, 2007.

[54] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional, 2009. See also http://www.eclipse.org/
modeling/gmp/.

[55] Esther Guerra, Juan de Lara, Dimitrios Kolovos, Richard Paige, and Osmar dos San-
tos. Engineering Model Transformations with transML. Software and Systems Modeling,
pages 1–23, 2011.

[56] Esther Guerra, Juan de Lara, Dimitrios S. Kolovos, and Richard F. Paige. A Visual
Specification Language for Model-to-Model Transformations. In Christopher D. Hund-
hausen, Emmanuel Pietriga, Paloma Díaz, and Mary Beth Rosson, editors, Proceedings of
IEEE Symposium on Visual Languages and Human-Centric Computing, 21-25 September,
Leganés-Madrid, Spain, pages 119–126, 2010.

[57] Esther Guerra, Juan de Lara, Dimitrios S. Kolovos, and Richard F. Paige. Inter-modelling:
From Theory to Practice. In Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen,
editors, Proceedings of 13th International ConferenceModel Driven Engineering Lan-
guages and Systems, October 3-8, Oslo, Norway, MoDELS’10, pages 376–391. Springer-
Verlag, 2010.

[58] Esther Guerra, Juan de Lara, Dimitrios S. Kolovos, Richard F. Paige, and Osmar Marchi
dos Santos. transML: A Family of Languages to Model Model Transformations. In
Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen, editors, Proceedings of 13th
International Conference on Model Driven Engineering Languages and Systems, October
3-8, Oslo, Norway, MoDELS’10, pages 106–120. Springer-Verlag, 2010.

248

http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/

Bibliography

[59] Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner
Retschitzegger, Johannes Schönböck, and Wieland Schwinger. Automated verification of
model transformations based on visual contracts. Automated Software Engineering, 2011.
Accepted for Publication.

[60] Laura Haas. Beauty and the Beast: The Theory and Practice of Information Integration.
In Thomas Schwentick and Dan Suciu, editors, Proceedings of 10th International Con-
ference on Database Theory, January 5-7, Edinburgh, UK, pages 28–43. Springer, 2006.

[61] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph Grammars with Negative
Application Conditions. Fundamental Informatics, 26:287–313, June 1996.

[62] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data integration: The Teenage Years.
In Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M.
Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim, editors, Proceedings
of the 32nd international Conference on Very Large Data Bases, September 12-15, Seuol,
Korea, VLDB ’06, pages 9–16. ACM, 2006.

[63] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of Se-
mantics? Computer, 37:64–72, 2004.

[64] Mary Jean Harrold. Testing: A Roadmap. In Proceedings of 22nd International Con-
ference on Software Engineering - The Future of Software Engineering Track, June 4-11,
Limerick Ireland, ICSE ’00, pages 61–72. ACM, 2000.

[65] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of Typed At-
tributed Graph Transformation Systems. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg
Kreowski, and Grzegorz Rozenberg, editors, Proceedings of the 1st International Con-
ference on Graph Transformation, October 7-12, Barcelona, Spain, ICGT ’02, pages
161–176. Springer-Verlag, 2002.

[66] Mark T. Hibberd, Michael J. Lawley, and Kerry Raymond. Forensic Debugging of Model
Transformations. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil,
editors, Proceedings of 10th International Conference on Model Driven Engineering Lan-
guages and Systems, September 30 - October 5, Nashville, USA, MoDELS’07, pages
589–604, Nashville, USA, 2007. Springer-Verlag.

[67] Richard Hull and Roger King. Semantic Database Modeling: Survey, Applications, and
Research Issues. ACM Computing Survey, 19(3):201–260, 1987.

[68] IEEE Computer Society. IEEE Standard Glossary of Software Engineering Terminology.
Technical report, 1990.

[69] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. CORDS:
Automatic Discovery of Correlations and Soft Functional Dependencies. In Gerhard
Weikum, Arnd Christian König, and Stefan Deßloch, editors, Proceedings of the ACM
SIGMOD International Conference on Management of Data, June 13-18, Paris, France,
SIGMOD ’04, pages 647–658. ACM, 2004.

249

BIBLIOGRAPHY

[70] Daniel Jackson. Software Abstractions. Logic, Language, and Analysis. MIT Press, 2006.

[71] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-you-go User Feed-
back for Dataspace Systems. In Jason Tsong-Li Wang, editor, Proceedings of the ACM
SIGMOD International Conference on Management of Data, June 10-12, Vancouver, BC,
Canada, SIGMOD ’08, pages 847–860. ACM, 2008.

[72] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets - Modeling and Validation of
Concurrent Systems. Springer, 2009.

[73] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A Model Trans-
formation Tool. Science of Computer Programming, 72(1-2):31–39, June 2008.

[74] Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and QVT.
ACM Symposium on Applied Computing, 2006.

[75] Yannis Kalfoglou and Marco Schorlemmer. Ontology Mapping: The State of the Art.
Knowledge Engineering Review, 18:1–31, January 2003.

[76] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Reiter,
Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Lifting Metamod-
els to Ontologies: A Step to the Semantic Integration of Modeling Languages. In Oscar
Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, editors, In Preceedings of 9th
International Conference on Model Driven Engineering Languages and Systems, October
1-6, Genova, Italy, MoDELS’06, pages 528–542. Springer-Verlag, 2006.

[77] Gerti Kappel and Michael Schrefl. Objektorientierte Informationssysteme. Springer,
1996.

[78] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. Example-Based Model-
Transformation Testing. Automated Software Engineering, 18:199–224, June 2011.

[79] Felix Klar, Alexander Königs, and Andy Schürr. Model Transformation in the Large. In
Ivica Crnkovic and Antonia Bertolino, editors, Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, September 3-7, Dubrovnik, Croatia, pages
285–294. ACM, 2007.

[80] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
2003.

[81] Dimitrios Kolovos, Richard Paige, and Fiona Polack. The Epsilon Transformation Lan-
guage. In Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors, Proceedings
of 1st International Conference on Model Transformation, July 1-2, Zürich, Switzerland,
ICMT’08, pages 46–60. Springer-Verlag, 2008.

250

Bibliography

[82] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Model Comparison: A
Foundation for Model Composition and Model Transformation Testing. In Proceedings
of International Workshop on Global Integrated Model Management in conjunction with
28th International Conference on Software Engineering, May 20-28, Shanghai, China,
GaMMa ’06, pages 13–20. ACM, 2006.

[83] Alexander Königs. Model Transformation with TGGs. In Proceedings of Model Trans-
formations in Practice Workshop in cunjunction with 8th International Conference Model
Driven Engineering Languages and Systems, October 2-7, Montego Bay, Jamaica, MoD-
ELS’05. Springer-Verlag, 2005.

[84] Alexander Krasnogolowy. Entwurf und Implementierung eines Debuggers für Story-
Diagramme (in German only). Technical report, Master Thesis, Hasso-Plattner-Institut
für Softwaresystemtechnik, University of Potsdam, 2010.

[85] Ivan Kurtev. State of the Art of QVT: A Model Transformation Language Standard. In
Andy Schürr, Manfred Nagl, and Albert Zündorf, editors, Applications of Graph Trans-
formations with Industrial Relevance, pages 377–393. Springer-Verlag, 2008.

[86] Angelika Kusel. Reusability in Model Transformations - Resolving Heterogeneites by
Composite Mapping Operators. PhD thesis, Johannes Kepler University Linz, Institute
of Bioinformatics, December 2011.

[87] Jochen M. Küster and Mohamed Abd-El-Razik. Validation of Model Transformations:
First Experiences Using a White Box Approach. In Oscar Nierstrasz, Jon Whittle, David
Harel, and Gianna Reggio, editors, Proceedings of 9th International Conference on Model
Driven Engineering Languages and Systems, October 1-6, Genova, Italy, MoDELS’06,
pages 193–204. Springer-Verlag, 2006.

[88] Juan de Lara and Esther Guerra. Formal Support for QVT-Relations with Coloured Petri
Nets. In Andy Schürr and Bran Selic, editors, Proceedings of 12th International Confer-
ence on Model Driven Engineering Languages and Systems, October 4-9, Denver, CO,
USA, MoDELS’09, pages 256–270. Springer-Verlag, 2009.

[89] Juan de Lara and Hans Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-
modelling. In Ralf-Detlef Kutsche and Herbert Weber, editors, Proceedings of 5th In-
ternational ConferenceFundamental Approaches to Software Engineering in conjunction
with Joint European Conferences on Theory and Practice of Software, April 8-12, Greno-
ble, France, FASE’02, pages 174–188. Springer-Verlag, 2002.

[90] Juan de Lara and Hans Vangheluwe. Automating the Transformation-Based Analysis of
Visual Languages. Formal Aspects of Computing, 21, Mai 2009.

[91] Michael Lawley and Jim Steel. Practical Declarative Model Transformation with Tefkat.
In Proceedings of MoDELS Satellite Events on 8th International Conference Model
Driven Engineering Languages and Systems, October 2-7, Montego Bay, Jamaica, MoD-
ELS’06, pages 139–150. Springer-Verlag, 2006.

251

BIBLIOGRAPHY

[92] Yves Le Traon, Benoit Baudry, and Jean-Marc Jezequel. Design by Contract to Improve
Software Vigilance. IEEE Transactions on Software Engineering, 32:571–586, 2006.

[93] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok. How
the Design of JML Accommodates both Runtime Assertion Checking and Formal Verifi-
cation. Science of Computer Programming, 55(1-3):185–208, 2005.

[94] Frank Legler and Felix Naumann. A Classification of Schema Mappings and Analysis
of Mapping Tools. In Alfons Kemper, Harald Schöning, Thomas Rose, Matthias Jarke,
Thomas Seidl, Christoph Quix, and Christoph Brochhaus, editors, Proceedings of the GI-
Fachtagung für Datenbanksysteme in Business, Technologie und Web, March 7-9, 2007,
Aachen, Germany, BTW’07, pages 449–464. GI-LNI, 2007.

[95] Grzegorz Lehmann, Marco Blumendorf, Frank Trollmann, and Sahin Albayrak. Meta-
Modeling Runtime Models. In Dorina C. Petriu, Nicolas Rouquette, and Oystein Hau-
gen, editors, Proceedings of 13th International Conference on Model Driven Engineer-
ing Languages and Systems, October 3-8, Oslo, Norway, MoDELS’10, pages 209–223.
Springer-Verlag, 2011.

[96] Adrian Lienhard, Tudor Gîrba, and Oscar Nierstrasz. Practical Object-Oriented Back-in-
Time Debugging. In Jan Vitek, editor, Proceedings of the 22nd European Conference on
Object-Oriented Programming, July 7-11, Paphos, Cyprus, ECOOP ’08, pages 592–615.
Springer-Verlag, 2008.

[97] Yuehua Lin, Jing Zhang, and Jeff Gray. Model Comparison: A Key Challenge for
Transformation Testing and Version Control in Model Driven Software Development.
In John M. Vlissides and Douglas C. Schmidt, editors, Proceedings of Best Practices for
Model-Driven Software Development Workshop in conjunction with 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, October 24-28, Vancouver, BC, Canada, OOPSLA’04. ACM, 2004.

[98] Yuehua Lin, Jing Zhang, and Jeff Gray. A Testing Framework for Model Transformations.
In Model-Driven Software Development - Research and Practice in Software Engineer-
ing, pages 219–236. Springer-Verlag, 2005.

[99] Barbara Liskov and Jeannette M. Wing. A New Definition of the Subtype Relation. In
Oscar Nierstrasz, editor, Proceedings of 7th European Conference Object-Oriented Pro-
gramming, July 26-30, Kaiserslautern, Germany, ECOOP’93, pages 118–141. Springer-
Verlag, 1993.

[100] Haohai Ma, Weizhong Shao, Lu Zhang, Zhiyi Ma, and Yanbing Jiang. Applying OO
metrics to assess UML meta-models. In Thomas Baar, Alfred Strohmeier, Ana M. D.
Moreira, and Stephen J. Mellor, editors, Proceedings of 7th International Conference on
The Unified Modelling Language: Modelling Languages and Applications, October 11-
15, Lisbon, Portugal, UML’04, pages 12–26. Springer-Verlag, 2004.

252

Bibliography

[101] Raphael Mannadiar and Hans Vangheluwe. Debugging in Domain-Specific Modelling.
In Brian Malloy, Steffen Staab, and Mark van den Brand, editors, Proceedings of 4th
International Conference on Software Language Engineering, July 3-6, Brage, Portugal,
volume 6563 of SLE’11, pages 276–285. Springer-Verlag, 2011.

[102] Shahar Maoz. Using Model-Based Traces as Runtime Models. Computer, 42:28–36,
October 2009.

[103] Maria Maximova, Hartmut Ehrig, and Claudia Ermel. Formal Relationship between Petri
Net and Graph Transformation Systems based on Functors between M-adhesive Cate-
gories. ECEASST, 40, 2011.

[104] Stephen J. Mellor, Scott Kendall, Axel Uhl, and Dirk Weise. MDA Distilled: Principles
of Model Driven Architecture. Addison-Wesley Professional, Boston, MA, USA, 2004.

[105] Bertrand Meyer. Applying Design by Contract. Computer, 25:40–51, October 1992.

[106] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. MIT Press,
1990.

[107] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of 38th Design Automation
Conference, June 18-22, Las Vegas, NV, USA, DAC’01, pages 530–535. ACM, 2001.

[108] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Reusable MDA Components: A
Testing-for-Trust Approach. In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna
Reggio, editors, Proceedings of 9th International Conference on Model Driven Engineer-
ing Languages and Systems, October 1-6, Genova, Italy, MoDELS’06, pages 589–603.
Springer-Verlag, 2006.

[109] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Model Transformation Testing:
Oracle Issue. In Proceedings of the IEEE International Conference on Software Testing
Verification and Validation, April 9-11, Lillehammer, Norway, ICST’08, pages 105–112.
IEEE Computer Society, 2008.

[110] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving
Executability into Object-Oriented Meta-Languages. In S. Briand and Kent L., edi-
tors, Proceedings of 8th International Conference on Model Driven Engineering Lan-
guages and Systems, October 1-6, Montego Bay, Jamaica, MoDELS’05, pages 264–278.
Springer-Verlag, 2005.

[111] Nataliya Mulyar and Wil M. P. van der Aalst. Towards a pattern language for Colored
Petri Nets. In Kurt Jensen, editor, Proceedings of 6th Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, October 24-26, Aarhus, Denmark, pages 39–58,
2005.

[112] Tadao Murata. Petri nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

253

BIBLIOGRAPHY

[113] Oscar Nierstrasz. Synchronizing Models and Code (Invited Talk). In Judith Bishop and
Antonio Vallecillo, editors, Proceedings of the 49th International Conference on Objects,
Models, Components, Patterns, June 27 - July 1, Zürich, Switzerland, TOOLS’11, pages
1–1. Springer-Verlag, 2011.

[114] Natalya F. Noy. Semantic integration: a survey of ontology-based approaches. SIGMOD
Record, 33:65–70, December 2004.

[115] Object Management Group. OCL Specification Version 2.0.
http://www.omg.org/docs/ptc/05-06-06.pdf, 2005.

[116] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
http://www.omg.org/spec/QVT/1.1/Beta2/PDF/, 2009.

[117] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object Exchange
Across Heterogeneous Information Sources. In Philip S. Yu and Arbee L. P. Chen, edi-
tors, Proceedings of the 11th International Conference on Data Engineering, March 6-10,
Taipei, Taiwan, ICDE ’95, pages 251–260. IEEE Computer Society, 1995.

[118] Carl Adam Petri. Fundamentals of a Theory of Asynchronous Information Flow. In
Cicely M. Popplewell, editor, Proceedings of IFIP Congress, August 27-September 1,
Munich, Germany, pages 386–390, 1962.

[119] Detlef Plump. Termination of Graph Rewriting is Undecidable. Fundamental Informatics,
33(2), 1998.

[120] Guillaume Pothier and Eric Tanter. Back to the Future: Omniscient Debugging. IEEE
Software, 26:78–85, 2009.

[121] Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and Mauricio A. Hernán-
dez. Clip: A Visual Language for Explicit Schema Mappings. In Proceedings of the
24th International Conference on Data Engineering, April 7-12, 2008, Cancún, México,
ICDE’08, pages 30–39, 2008.

[122] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. The VLDB Journal, 10(4):334–350, 2001.

[123] Rodrigo Ramos, Olivier Barais, and Jean-Marc Jézéquel. Matching Model-Snippets. In
Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors, Proceedings
of 10th International Conference on Model Driven Engineering Languages and Systems,
September 30 - October 5, Nashville, USA,, MoDEL’07, pages 121–135. Springer-Verlag,
2007.

[124] Wolfgang Reisig. Petri Nets, An Introduction. Springer-Verlag, 1985.

[125] Thomas Reiter. T.R.O.P.I.C.: Transformations On Petri Nets In Color. PhD thesis, Jo-
hannes Kepler University Linz, Faculty of Bioinformatics, Februar 2008.

254

Bibliography

[126] Thomas Reiter, Manuel Wimmer, and Horst Kargl. Towards a Runtime Model based on
Colored Petri-Nets for the Execution of Model Transformations. In In Proceedings of 3rd
Workshop on Models and Aspects - Handling Crosscutting Concerns in MDSD, July 30 -
August 3, Berlin, Germany, pages 19–23, 2007.

[127] Arend Rensink. Towards Model Checking Graph Grammars. In M. Leuschel, S. Gruner,
and S. Lo Presti, editors, In Proceedings of Workshop on Automated Verification of Criti-
cal Systems, April 2-3, Sourthampton, Great Britain, AVoCS’03, pages 150–160. Univer-
sity of Southampton, 2003.

[128] Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation. In J. Pfalz,
M. Nagl, and B. Böhlen, editors, Proceedings of Applications of Graph Transformations
with Industrial Relevance, AGTIVE’04, pages 479–485. Springer-Verlag, 2004.

[129] José Eduardo Rivera, Esther Guerra, Juan Lara, and Antonio Vallecillo. Software Lan-
guage Engineering. chapter Analyzing Rule-Based Behavioral Semantics of Visual Mod-
eling Languages with Maude, pages 54–73. Springer-Verlag, 2009.

[130] Suzanne Robertson and James Robertson. Mastering the requirements process. ACM
Press/Addison-Wesley Publishing Co., 1999.

[131] Raphael Romeikat, Stephan Roser, Pascal Müllender, and Bernhard Bauer. Translation
of QVT Relations into QVT Operational Mappings. In Antonio Vallecillo, Jeff Gray,
and Alfonso Pierantonio, editors, Proceedings of 1st International Conference on Theory
and Practice of Model Transformations, July 1-2, Zürich, Switzerland, ICMT’08, pages
137–151. Springer-Verlag, 2008.

[132] Marko Sakkinen. Disciplined Inheritance. In S. Cook, editor, Proceedings of 3rd
European Conference on Object-Oriented Programming, July 10-14, Nottingham, UK,
ECOOP’89, pages 39–56. Cambridge University Press, 1989.

[133] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer,
39, February 2006.

[134] Johannes Schönböck. Transformation Nets: A Runtime Model for Transformation Lan-
guages. In Proceedings of the Doctoral Symposium at Model Driven Engineering Lan-
guages and Systems, October 4-9, Denver, CO, USA, MoDELS’09. School of Computing,
Queen’s University, 2009.

[135] Johannes Schönböck, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Wieland
Schwinger, and Manuel Wimmer. Catch Me If You Can - Debugging Support for Model
Transformations. In Models in Software Engineering, Workshops and Symposia at MOD-
ELS 2009. Reports and Revised Selected Papers, LNCS 6002, pages 5–20. Springer-
Verlag, 2010.

[136] Andy Schürr. Specification of Graph Translators with Triple Graph Grammars. In
Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, Proceedings of the

255

BIBLIOGRAPHY

20th International Workshop on Graph-Theoretic Concepts in Computer Science, June
16-18, Herrsching, Germany, WG’94, pages 151–163. Springer-Verlag, 1994.

[137] Mirko Seifert and Stefan Katscher. Debugging Triple Graph Grammar-based Model
Transformations. In Uwe Aßmann, Jendrik Johannes, and Albert Zündorf, editors, Pro-
ceedings of 6th International Fujaba Days, September, Dresden, Germany, pages 23–28,
September 2008.

[138] Bran Selic. The Pragmatics of Model-Driven Development. IEEE Software., 20:19–25,
September 2003.

[139] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On Combining Multi-formalism
Knowledge to Select Models for Model Transformation Testing. In Proceedings of 1st
International Conference on Software Testing, Verification, and Validation, April 9-11,
Lillehammer, Norway, ICST’08, pages 328–337. IEEE Computer Society, 2008.

[140] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. Automatic Model Generation Strate-
gies for Model Transformation Testing. In Richard Paige, editor, Theory and Practice of
Model Transformations, LNCS, pages 148–164. Springer-Verlag, 2009.

[141] Amit P. Sheth and James A. Larson. Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases. ACM Computing Survey,
22(3):183–236, 1990.

[142] Nan C. Shu, Barron C. Housel, Robert W. Taylor, Sakti P. Ghosh, and Vincent Y. Lum.
EXPRESS: A Data EXtraction, Processing, and Restructuring System. ACM Transactions
on Database Systems, 2:134–174, June 1977.

[143] J. Michael Spivey. An introduction to Z and formal specifications. Software Engineering
Journal, 4(1):40–50, 1989.

[144] Perdita Stevens. Bidirectional Model Transformations in QVT: Semantic Issues and Open
Questions. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors,
Proceedings of the 10th International Conference on Model Driven Engineering Lan-
guages and Systems, September 30 - October 5, Nashville, USA, MoDELS’07, pages
1–15. Springer-Verlag, 2007.

[145] Perdita Stevens. A Simple Game-Theoretic Approach to Checkonly QVT Relations. In
Richard F. Paige, editor, Proceedings of 2nd International Conference on Model Transfor-
mation Theory and Practice of Model Transformations, June 29-30, Zurich, Switzerland,
ICMT’09, pages 165–180. Springer-Verlag, 2009.

[146] Michael Strommer and Manuel Wimmer. A Framework for Model Transformation By-
Example: Concepts and Tool Support. In Bertrand Meyer and Richard Paige, editors,
Proceedings of 46th International Conference on Objects, Components, Models and Pat-
terns, June 30 - July 4, Zurich, Switzerland, TOOLS, pages 372–391. Springer-Verlag,
2008.

256

Bibliography

[147] Gabriele Taentzer. AGG: A Graph Transformation Environment for Modeling and Vali-
dation of Software. In J. Pfalz, M. Nagl, and B. Böhlen, editors, Proceedings of Applica-
tions of Graph Transformations with Industrial Relevance, AGTIVE’04, pages 446–453.
Springer-Verlag, 2004.

[148] Antero Taivalsaari. On the Notion of Inheritance. ACM Computing Survey, 28(3):438–
479, 1996.

[149] TATA Research Development and Design. ModelMorf. http://www.tcs-trddc.
com/trddc_website/ModelMorf/ModelMorf.htm. Last accessed: November
2011.

[150] Frank Tip. A survey of Program Slicing Techniques. Journal of Programming Languages,
3(3):121–189, 1995.

[151] Frank Tip. Finding and Fixing Bugs in Web Applications (Invited Talk). In Judith Bishop
and Antonio Vallecillo, editors, Proceedings of 49th International Conference on Objects,
Models, Components, Patterns, June 28-30, Zurich, Switzerland, TOOLS’11, page 2.
Springer-Verlag, 2011.

[152] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean Bézivin. On
the Use of Higher-Order Model Transformations. In Richard F. Paige, Alan Hartman,
and Arend Rensink, editors, Proceedings of 5th European Conference on Model Driven
Architecture - Foundations and Applications, June 23-26, Enschede, The Netherlands,
ECMDA-FA’09, pages 18–33. Springer-Verlag, 2009.

[153] Zoltán Ujhelyi, Ákos Horváth, and Dániel Varró. Towards Dynamic Backward Slicing of
Model Transformations. In Perry Alexander, Corina S. Pasareanu, and John G. Hosking,
editors, Proceedings of 26th IEEE/ACM Conference on Automated Softweare Engineer-
ing, November 6-10, Lawrence, Kansas,USA, ASE’11, page 4. IEEE Computer Society,
2011.

[154] Jeffrey D. Ullman. Elements of ML programming (ML97 ed.). Prentice-Hall, Inc., 1998.

[155] Antti Valmari. The State Explosion Problem. In Wolfgang Reisig and Grzegorz Rozen-
berg, editors, In Proceedings of Lectures on Petri Nets I: Basic Models, Advances in Petri
Nets, based on the Advanced Course on Petri Nets, September, Dagstuhl, Germany, pages
429–528, London, UK, 1998. Springer-Verlag.

[156] Dániel Varró. Automated Formal Verification of Visual Modeling Languages by Model
Checking. Software and Systems Modelling, 3(2):85–113, 2003.

[157] Dániel Varró, Szilvia Varró-Gyapay, Hartmut Ehrig, Ulrike Prange, and Gabriele
Taentzer. Termination Analysis of Model Transformation by Petri Nets. In Andrea Cor-
radini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz Rozenberg, editors,
Proceedings of 3rd International Conference on Graph Transformations, September 17-
23, Natal, Rio Grande do Norte, Brazil, ICGT’06, pages 260–274. Springer-Verlag, 2006.

257

http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm

BIBLIOGRAPHY

[158] Philip Wadler. Why no one uses Functional Languages. SIGPLAN Notices, 33(8):23–27,
1998.

[159] Dennis Wagelaar, Ragnhild Van Der Straeten, and Dirk Deridder. Module Superimposi-
tion: A Composition Technique for Rule-Based Model Transformation Languages. Soft-
ware and Systems Modelling, 9:285–309, 2010.

[160] Robert Wagner. Developing Model Transformations with Fujaba. In Holger Giese and
Bernhard Westfechtel, editors, Proceedings of the 4th International Fujaba Days, Septem-
ber, Bayreuth, Germany, pages 79–82, 2006.

[161] Michael Weber and Ekkart Kindler. The Petri Net Markup Language. Petri Net Technol-
ogy for Communication-Based Systems, pages 124–144, 2003.

[162] Mark Weiser. Program Slicing. In Proceedings of the 5th international Conference on
Software Engineering, March 9-12, San Diego, California, USA, ICSE ’81, pages 439–
449. IEEE Computer Society, 1981.

[163] Michael Westergaard, Sami Evangelista, and Lars Michael Kristensen. ASAP: An Ex-
tensible Platform for State Space Analysis. In Giuliana Franceschinis and Karsten Wolf,
editors, Proceedings of 30th International Conference on Application and Theory of Petri
Nets and Other Models of Concurrency, June 22-26, Paris, France, PETRI NETS ’09,
pages 303–312. Springer-Verlag, 2009.

[164] Michael Westergaard and Lars Michael Kristensen. The Access/CPN Framework: A Tool
for Interacting with the CPN Tools Simulator. In Giuliana Franceschinis and Karsten
Wolf, editors, Proceedings of 30th International Conference on Application and Theory
of Petri Nets and Other Models of Concurrency, June 22-26, Paris, France, PETRI NETS
’09, pages 313–322. Springer-Verlag, 2009.

[165] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schoenboeck, and W. Schwinger.
Right or Wrong? - Verification of Model Transformations using Colored Petri Nets. In
M. Rossi, J. Sprinkle, J. Gray, and J.-P. Tolvanen, editors, Proceedings of 9th Workshop on
Domain-Specific Modeling, held in conjunction with 24th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications, October
25-26, Orlando, USA, OOPSLA’09, 2009.

[166] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schön-
böck, and Wieland Schwinger. Surviving the Heterogeneity Jungle with Composite Map-
ping Operators. In Laurence Tratt and Martin Gogolla, editors, Proceedings of 3rd Inter-
national Conference on Theory and Practice of Model Transformations, June 28-July 2,
Malaga, Spain, ICMT’10, pages 260–275. Springer-Verlag, 2010.

[167] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schön-
böck, Wieland Schwinger, Dimitris Kolovos, Richard Paige, Marius Lauder, Andy Schürr,

258

Bibliography

and Dennis Wagelaar. A Comparison of Rule Inheritance in Model-to-Model Transforma-
tion Languages. In Jordi Cabot and Eelco Visser, editors, Proceedings of the 4th Interna-
tional Conference on Model Transformations, June 27-28, Zurich, Switzerland, ICMT’11,
pages 31–46. Springer-Verlag, 2011.

[168] Manuel Wimmer, Gerti Kappel, Johannes Schönböck, Angelika Kusel, Werner Rets-
chitzegger, and Wieland Schwinger. A Petri Net based Debugging Environment for
QVT Relations. In Proceedings of the 24th International Conference on Automated Soft-
ware Engineering, November 16-20, Auckland, New Zealand, ASE’09, pages 1–12. IEEE
Computer Society, 2009.

[169] Manuel Wimmer, Gerti Kappel, Johannes Schönböck, Angelika Kusel, Werner Rets-
chitzegger, and Wieland Schwinger. TROPIC: A Framework for Model Transformations
on Petri Nets in Color. In Shail Arora and Gary T. Leavens, editors, Companion to
the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, October 25-29, 2009, Orlando, Florida, USA, OOPSLA
2009, pages 783–784. ACM, 2009.

[170] Manuel Wimmer, Angelika Kusel, Thomas Reiter, Werner Retschitzegger, Wieland
Schwinger, and Gerti Kappel. Lost in Translation? Transformation Nets to the Rescue!
In Jianhua Yang, Athula Ginige, Heinrich C. Mayr, and Ralf-Detlef Kutsche, editors,
Proceedings of 3rd International United Information Systems Conference, April 21-24,
Sydney, Australia, UNISCON’09, pages 315–327. Springer-Verlag, 2009.

[171] Manuel Wimmer, Angelika Kusel, Johannes Schönböck, Gerti Kappel, Werner Rets-
chitzegger, and Wieland Schwinger. Reviving QVT Relations: Model-Based Debugging
Using Colored Petri Nets. In Andy Schürr and Bran Selic, editors, Proceedings of the
12th International Conference on Model Driven Engineering Languages and Systems,
October 4-9, Denver, CO, USA, MoDELS’09, pages 727–732. Springer-Verlag, 2009.

[172] Manuel Wimmer, Angelika Kusel, Johannes Schönböck, Thomas Reiter, Werner Rets-
chitzegger, and Wieland Schwinger. Lets’s Play the Token Game – Model Transfor-
mations Powered By Transformation Nets. In Daniel Moldt, editor, Proceedings of the
International Workshop on Petri Nets and Software Engineering, in conjunction with 30th
International Conference on Application and Theory of Petri Nets and Other Models of
Concurrency, June 22-23, Paris, France, PNSE’09, pages 35–50. Université Paris, 2009.

[173] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging – Second Edition.
Morgan Kaufmann, 2009.

259

Johannes Schönböck

Education
since 2011 PhD Studies, Technical University Vienna, Karlsplatz 13, 1040 Wien.

PhD studies in computer science
2008–2011 PhD Studies, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz.

PhD studies in computer science
2001–2005 Diploma Studies, Upper Austria University of Applied Sciences, Softwarepark 11,

4232 Hagenberg, Degree Program Software Engineering for Business and Finance.
Diploma studies in software engineering

1995–2000 Commercial Academy, Handelsakademie Perg, Dirnbergerstraße 41, 4220 Perg.

Master thesis
Title: MDA-Editor zur Generierung von Applikationsrahmen für mobile Endgeräte

Supervisor: Dr. Werner Kurschl

Honours and Awards
Best Thesis

Award
FH-Hagenberg 2005: First Place for Diploma Thesis “MDA-Editor zur Generierung
von Applikationsrahmen für mobile Endgeräte”

Experience
since 2009 Research Associate, Institute of Software Technology and Interactive Systems, Vi-

enna University of Technology, Favoritenstrasse 9-11/188-3 13, 1040 Vienna.
since 2006 Teaching activities, FH OÖ Studienbetriebs GmbH, Softwarepark 11 4232 Hagen-

berg.
{ Lecture in Model Driven Engineering
{ Practical lecture in Programming
{ Practical lecture in Mobile Computing

2005–2009 Research Associate, FH OÖ Studienbetriebs GmbH, Softwarepark 11 4232 Hagen-
berg.

Projects
since 2009 FWF-Research Project, TROPIC - Transformations on Petri Nets in Color.

Lina 1 – 4311 Schwertberg
H 0699/12 14 82 79 • T 07262/585 85 • B schoenboeck@big.tuwien.ac.at

• Í www.big.tuwien.ac.at 1/5

261

2008–2009 BF OÖ, Telehomecare.
2007–2008 KPlus, Plant Safety System - Global Tracking of Technicians for Industrial Purposes.
2005–2007 FHplus, Gulliver - Speech Recognition Services for Wireless Mobile Devices.

Personal Data
Date of Birth 29 October 1980 in Linz
Place of Birth Linz

National Status Austria
Marital status single

Languages
German native language
English fluent
French basic skills

Community Service
Chairman of music orchestra MV Schwertberg

Publications
[1] Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Rets-

chitzegger, Johannes Schönböck, and Wieland Schwinger. Automated verification of model
transformations based on visual contracts. Automated Software Engineering, 2011. Accepted
for Publication.

[2] Gerti Kappel, Johannes Schönböck, Manuel Wimmer, Gabriele Kotsis, Angelika Kusel, Birgit
Pröll, Werner Retschitzegger, Wieland Schwinger, and Stephan Lechner. TheHiddenU - A Social
Nexus for Privacy-Assured Personalisation Brokerage. In Joaquim Filipe and José Cordeiro,
editors, Proceedings of the 12th International Conference of Enterprise Information Systems,
June 8 - 12, Funchal, Madeira, Portugal, ICEIS’2010. INSTICC Press, 2010.

[3] Werner Kurschl, Wolfgang Gottesheim, Stefan Mitsch, Rene Prokop, and Johannes Schönböck.
Evaluation of a Mobile Multimodal Application Design - Major Usability Criteria and Usability
Test Results. In Proceedings of International Conference on Mobile Business, July 9-11, 2007,
Toronto, Ontario, Canada, ICMB’07, page 68. IEEE Computer Society, 2007.

[4] Werner Kurschl, Wolfgang Gottesheim, Stefan Mitsch, Rene Prokop, and Johannes Schön-
böck. Automatic Position Determination of Fixed Infrastructure Sensor Network Nodes based
on Topology Sensing and Maps. In Hamid R. Arabnia and Victor A. Clincy, editors, Proceed-
ings of the 2008 International Conference on Wireless Networks, July 14-17, Las Vegas, Nevada,
USA, ICWN’08, pages 17–22. CSREA Press, 2008.

[5] Werner Kurschl, Wolfgang Gottesheim, Stefan Mitsch, Rene Prokop, and Johannes Schönböck.
Tele-Homecare - Medical Assistance and Habitability Improvement for Elderly People through
Ambient Intelligence. In Proceedings of FFH 2008, Wels, Austria, 2008.

[6] Werner Kurschl, Wolfgang Gottesheim, Stefan Mitsch, Rene Prokop, Johannes Schönböck,
and Wolfgang Beer. A Two-Layered Deployment Scheme for Wireless Sensor Network based
Location Tracking. In Proceedings of Fifth International Conference on Information Technology:

Lina 1 – 4311 Schwertberg
H 0699/12 14 82 79 • T 07262/585 85 • B schoenboeck@big.tuwien.ac.at

• Í www.big.tuwien.ac.at 2/5

262 A. Curriculum Vitae

New Generations, 7-8 April 2008, Las Vegas, Nevada, USA, ITNG’08, pages 726–730. IEEE
Computer Society, 2008.

[7] Werner Kurschl, Wolfgang Gottesheim, Stefan Mitsch, Rene Prokop, Johannes Schönböck, and
Wolfgang Beer. Large-Scale Industrial Positioning and Location Tracking - Are We There Yet?
In Proceedings of 7th International Conference on Mobile Business, July 7-8, Barcelona, Spain,
ICMB’08, pages 251–259. IEEE Computer Society, 2008.

[8] Werner Kurschl, Stefan Mitsch, Rene Prokop, and Johannes Schönböck. Model-Driven Devel-
opment of Speech-Enabled Applications. In Proceedings of the FH Science Day, Hagenberg,
Austria, pages 216–223, 2006.

[9] Werner Kurschl, Stefan Mitsch, Rene Prokop, and Johannes Schönböck. Development Issues
for Speech-Enabled Mobile Applications. In Wolf-Gideon Bleek, Jörg Raasch, and Heinz Zül-
lighoven, editors, Proceedings of Software Engineering 2007, Fachtagung des GI-Fachbereichs
Softwaretechnik, March 27-30, Hamburg, Germany, SE’08, pages 157–168. GI, 2007.

[10] Werner Kurschl, Stefan Mitsch, Rene Prokop, and Johannes Schönböck. Gulliver-A Framework
for Building Smart Speech-Based Applications. In Proceedings of 40th Hawaii International
International Conference on Systems Science, January 3-6, Waikoloa, Big Island, HI, USA,
HICSS-40, page 30. IEEE Computer Society, 2007.

[11] Werner Kurschl, Stefan Mitsch, and Johannes Schönböck. An Engineering Toolbox to Build
Situation Aware Ambient Assisted Living Systems. In Johnson I. Agbinya, Elmarie Biermann,
Yskandar Hamam, Ntsibane Ntlatlapa, and Keith Ferguson, editors, Proc of Third International
Conference on Broadband Communications, Information Technology & Biomedical Applications,
November 23-26, Pretoria, Gauteng, South Africa, Broadcom’08, pages 110–116. IEEE Com-
puter Society, 2008.

[12] Werner Kurschl, Stefan Mitsch, and Johannes Schönböck. MODEL-DRIVEN PROTOTYPING
SUPPORT FOR PERVASIVE HEALTH CARE APPLICATIONS. In T. F. Gonzalez, editor,
Proceedings of IASTED Internation Symposium on Distributed Sensor Networks, November
16-18, Orlando, Florida, USA, DSN 2008, pages 118–123, 2008.

[13] Werner Kurschl, Stefan Mitsch, and Johannes Schönböck. An Evaluation Framework for Per-
vasive Healthcare Applications. In Proceedings of 4th International Conference on Broadband
Communications, Information Technology and Biomedical Applications , Wroclaw, Polen, 2009.

[14] Werner Kurschl, Stefan Mitsch, and Johannes Schönböck. Model-Driven Prototyping Support
for Pervasive Healthcare Applications. In Antonio Coronato and Giuseppe De Pietro, editors,
Pervasive and Smart Technologies for Health Care: Ubiquitous Methodologies and Tools, IGI
Global. 2009.

[15] Werner Kurschl, Stefan Mitsch, and Johannes Schönböck. Modeling Distributed Signal Pro-
cessing Applications. In Benny P. L. Lo and Paul Mitcheson, editors, Proceedings of Sixth
International Workshop on Wearable and Implantable Body Sensor Networks, June 3-5, Berke-
ley, CA, USA, BSN’09, pages 103–108. IEEE Computer Society, 2009.

[16] Werner Kurschl, Stefan Mitsch, and Johannes Schönböck. Modeling Situation-Aware Ambient
Assisted Living Systems for Eldercare. In Proceedings of Sixth International Conference on
Information Technology: New Generations, April 27-29,Las Vegas, Nevada, ITNG’09, pages
1214–1219. IEEE Computer Society, 2009.

[17] Werner Kurschl, Stefan Mitsch, Johannes Schönböck, and Wolfgang Beer. Modeling Wireless
Sensor Networks Based Context-Aware Emergency Coordination Systems. In Gabriele Kotsis,
David Taniar, Eric Pardede, and Ismail Khalil Ibrahim, editors, Proceedings of 10th International
Conference on Information Integration and Web-based Applications Services, 24-26 November
2008, Linz, Austria, iiWAS’2008, pages 117–122. ACM, 2008.

[18] Werner Kurschl, Stefan Mitsch, Johannes Schönböck, Wolfgang Beer, Wolfgang Gottesheim,
and Rene Prokop. Towards a Unified Location Tracking System for Heterogeneous Industrial
Environments. In Proceedings of 6th IEEE International Conference on Industrial Informatics,
July 13 - 16, Daejeon, Korea, number INDIN’08, pages 1267–1272, 2008.

Lina 1 – 4311 Schwertberg
H 0699/12 14 82 79 • T 07262/585 85 • B schoenboeck@big.tuwien.ac.at

• Í www.big.tuwien.ac.at 3/5

263

[19] Johannes Schönböck. Modellbasierte MIDP-Entwicklung mit MDA4ME. Java Spectrum, Jan-
uary 2006.

[20] Johannes Schönböck. MDA4ME: Ein MDA-Editor zur Generierung von Applikationsrahmen für
mobile Endgeräte. Vdm Verlag Dr. Müller, 2008.

[21] Johannes Schönböck. Transformation Nets: A Runtime Model for Transformation Languages.
In Proceedings of the Doctoral Symposium at Model Driven Engineering Languages and Systems,
October 4-9, Denver, CO, USA, MoDELS’09. School of Computing, Queen’s University, 2009.

[22] Johannes Schönböck, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Wieland Schwinger,
and Manuel Wimmer. Catch Me If You Can - Debugging Support for Model Transformations.
In Models in Software Engineering, Workshops and Symposia at MODELS 2009. Reports and
Revised Selected Papers, pages 5–20. Springer, LNCS 6002, 2010.

[23] Johannes Schönböck, Florian König, Gabriele Kotsis, Dominik Gruber, Emre Zaim, and Albrecht
Schmidt. MirrorBoard - An Interactive Billboard. In Michael Herczeg and Martin Christof
Kindsmüller, editors, Proc. of Mensch & Computer 2008: Viel Mehr Interaktion, Interdisziplinäre
Fachtagung, 7.-10. September 2008, Lübeck, Germany, pages 217–226. Oldenbourg Verlag,
2008.

[24] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schönböck,
and Wieland Schwinger. Right or Wrong? - Verification of Model Transformations using Col-
ored Petri Nets. In Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling
in conjunction with 24th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, October 25 - 29, Orlando, Florida, USA, DSM’09.
Helsinki Business School, 2009.

[25] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schönböck,
and Wieland Schwinger. Plug & Play Model Transformations - A DSL for Resolving Structural
Metamodel Heterogeneities. In Proceedings of the 10th Workshop on Domain-Specific Modeling
in conjunction with Systems, Programming, Languages and Applications Software for Humanity,
October 17-21, 2010, Reno, Nevada, USA, DSM’10. Online Publication, 2010.

[26] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schönböck,
and Wieland Schwinger. Surviving the Heterogeneity Jungle with Composite Mapping Oper-
ators. In Laurence Tratt and Martin Gogolla, editors, Proceedings of the 3rd International
Conference on Model Transformation, June 28 - July 2, Malaga, Spain, ICMT’10, pages 260–
275. Springer-Verlag, 2010.

[27] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schönböck,
and Wieland Schwinger. Taming the Shrew - Resolving Structural Heterogeneities with Hierar-
chical CPN. In Daniel Moldt, editor, Proceedings of the International Workshop on Petri Nets
and Software Engineering in conjunction with 31st International Conference on Application and
Theory of Petri Nets and Other Models of Concurrency, PNSE’10, pages 141–157. University
of Hamburg, 2010.

[28] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schönböck,
and Wieland Schwinger. Towards an Expressivity Benchmark for Mappings based on a Sys-
tematic Classification of Heterogeneities. In Dorina C. Petriu, Nicolas Rouquette, and Øystein
Haugen, editors, Proceedings of the First International Workshop on Model-Driven Interoperabil-
ity (MDI 2010) in conjunction with 13th International Conference on Model Driven Engineering
Languages and Systems, October 3-8, Oslo, Norway, MoDELS’10, pages 32–41. ACM Press,
2010.

[29] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schönböck,
and Wieland Schwinger. From the Heterogeneity Jungle to Systematic Benchmarking. In
Models in Software Engineering - Workshops and Symposia at MODELS 2010, Reports and
Revised Selected Papers, volume 6627, pages 150–164. Springer Lecture Notes in Computer
Science, 2011.

Lina 1 – 4311 Schwertberg
H 0699/12 14 82 79 • T 07262/585 85 • B schoenboeck@big.tuwien.ac.at

• Í www.big.tuwien.ac.at 4/5

264 A. Curriculum Vitae

[30] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schönböck,
Wieland Schwinger, Dimitris Kolovos, Richard Paige, Marius Lauder, Andy Schürr, and Dennis
Wagelaar. A Comparison of Rule Inheritance in Model-to-Model Transformation Languages.
In Jordi Cabot and Eelco Visser, editors, Proceedings of the 4th International Conference on
Model Transformations, June 27-28, Zurich, Switzerland, ICMT’11, pages 31–46. Springer-
Verlag, 2011.

[31] Manuel Wimmer, Gerti Kappel, Johannes Schönböck, Angelika Kusel, Werner Retschitzegger,
and Wieland Schwinger. A Petri Net based Debugging Environment for QVT Relations. In Pro-
ceedings of the 24th International Conference on Automated Software Engineering, November
16-20, Auckland, New Zealand, ASE’09, pages 1–12. IEEE Computer Society, 2009.

[32] Manuel Wimmer, Gerti Kappel, Johannes Schönböck, Angelika Kusel, Werner Retschitzegger,
and Wieland Schwinger. TROPIC: A Framework for Model Transformations on Petri Nets
in Color. In Shail Arora and Gary T. Leavens, editors, Companion to the 24th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
October 25 - 29, Orlando, Florida, USA, OOPSLA 2009, pages 783–784. ACM, 2009.

[33] Manuel Wimmer, Angelika Kusel, Johannes Schönböck, Gerti Kappel, Werner Retschitzegger,
and Wieland Schwinger. Reviving QVT Relations: Model-Based Debugging Using Colored Petri
Nets. In Andy Schürr and Bran Selic, editors, Proceedings of the 12th International Conference
on Model Driven Engineering Languages and Systems, October 4-9, Denver, Colorado, USA,
MoDELS’09, pages 727–732. Springer-Verlag, 2009.

[34] Manuel Wimmer, Angelika Kusel, Johannes Schönböck, Thomas Reiter, Werner Retschitzegger,
and Wieland Schwinger. Lets’s Play the Token Game – Model Transformations Powered By
Transformation Nets. In Proceedings of the International Workshop on Petri Nets and Software
Engineering in conjunction with 30th International Conference on Application and Theory of
Petri Nets and Other Models of Concurrency, June 22-23, Paris, France, PNSE’09, pages 35–
50. Université Paris 13, 2009.

[35] Manuel Wimmer, Angelika Kusel, Johannes Schönböck, Werner Retschitzegger, Wieland
Schwinger, and Gerti Kappel. On using Inplace Transformations for Model Co-evolution. In
Proceedings of the 2nd International Workshop on Model Transformation with ATL in conjunc-
tion with 3rd International Conference on Model Transformation, June 28 - July 2, Malaga,
Spain, MtATL’10. INRIA & Ecole des Mines de Nantes, 2010.

Lina 1 – 4311 Schwertberg
H 0699/12 14 82 79 • T 07262/585 85 • B schoenboeck@big.tuwien.ac.at

• Í www.big.tuwien.ac.at 5/5

265

	Dissertation_Schoenboeck_Teil1[1].pdf
	Dissertation_Schoenboeck_Teil2[1]
	Dissertation_Schoenboeck_Teil3[1]

