
Model-based Reverse
Engineering of Social Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Andreas Munk
Matrikelnummer 0726826

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.-Prof. Mag. Dipl.-Ing. Dr.techn. Gerti Kappel
Mitwirkung: Mag. Dr. Manuel Wimmer

Wien, 30.11.2011
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Model-based Reverse
Engineering of Social Networks

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Andreas Munk
Registration Number 0726826

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O.Univ.-Prof. Mag. Dipl.-Ing. Dr.techn. Gerti Kappel
Assistance: Mag. Dr. Manuel Wimmer

Vienna, 30.11.2011
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Andreas Munk
Blauensteinerstrasse 19, 3130 Herzogenburg

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

Im Laufe meines Studiums gab es sehr viele Höhen, aber auch wenige Tiefen. Die Anspannung
vor Prüfungen oder der Stress vor wichtigen Abgaben hatte sicherlich auch Auswirkungen auf
jene Menschen, die das Wichtigste in meinem Leben sind. Hiermit möchte ich mich bei meiner
Familie bedanken, insbesondere bei meiner Freundin Magdalena! Ihr habt mich während der
gesamten Studienzeit und während der Erstellung dieser Masterarbeit stets unterstützt und mich
in so manchen schwierigen Tagen wieder aufgebaut.

Weiters gilt mein Dank meiner Hauptbetreuerin, Frau Gerti Kappel sowie meinem Nebenbetreu-
er Manuel Wimmer. Frau Kappel unterstützte mich durch Gespräche und ihr Feedback bei mei-
ner Masterarbeit. Manuel Wimmer verdanke ich, dass es durch seine Ideen und sein Vertrauen zu
dieser Masterarbeit und meinem Beitrag im TheHiddenU Projekt gekommen ist. Außerdem un-
terstützte er mich stets mit seinem Fachwissen, seinen Vorschlägen und durch seine konstruktive
Kritik.

iii

Abstract

Social networks on the Web have seen enormous growth over the past few years, leading to a
truly widespread adoption. Every social network is focused on serving specific human needs.
Most networkers are present in a number of different networks, which leads to scattered social
content. The development of such Web-based platforms is in an early stadium, which result in
short feature release cycles. The evolving data schemas and the different ways to access social
data are resulting in tedious and error-prone development and maintenance processes of social
applications.

In this master thesis, evolution, main characteristics and features of social networks are sur-
veyed. Four platforms, namely Facebook, LinkedIn, Twitter and GooglePlus, are examined.
Class diagrams of the data schemas, based on the official documentation, give an overview of
these platforms. Each social network has its individualities of accessing the data. A widespread
data authorization system is oAuth, available in two versions, which are explained in this master
thesis and implemented in a social adaptor for a project called TheHiddenU, to enable an easy
access to the social data. To realize this access, the information about the data schema is needed.
Because of the incomplete documentation of the API, in this thesis a tool called Json2Ontology
is developed for an automatic reverse engineering of the data schema offered by the social net-
works.

In the first step the tool uses the currently implemented REST Web services. The response of
the Web service is transformed into sentences of a domain specific language of TheHiddenU
(THUDSL), which represent social user profiles and enable the generation of Java classes for
data access. Starting at one or more request URLs, the Json2Ontology tool analyze the Json re-
sponse and search for navigation possibilities, which are represented as relationships. The goal
is to extract as much information about the data structure as possible.

The Json2Ontology tool has been evaluated by comparing the information of the created class
diagrams with the generated data schema. The result depends on the authorized user and the
amount of personal data. In case of Facebook, a real world test user has been used to find the
data produced by real social interactions. The Json2Ontology tool found 79% of the classes
and 80% of the attributes. Even more important are the the newly found classes (namely 7) and
attributes (namely 162). Different settings have been evaluated to find a well balanced configu-
ration for the tool.

v

Kurzfassung

Soziale Netzwerke verzeichneten in den letzten Jahren ein enormes Wachstum. Die meisten
dieser Netzwerke spezialisieren sich auf eine bestimmte Zielgruppe, was dazu führt, dass die
Benutzer in verschiedenen Netzwerken registriert sind und dort, je nach Thema, Informationen
über sich preisgeben. Die Entwicklung sozialer Netzwerke befindet sich in einem frühen Stadi-
um und neue Funktionen oder Änderungen am Datenschema werden in kurzen Zyklen durchge-
führt. Dieser Umstand und die verschiedenen Methoden um Zugriff auf die Daten zu erhalten,
bedeuten große Herausforderungen für Entwickler von sozialen Anwendungen.

In dieser Masterarbeit wird die Evolution von sozialen Netzwerken beschrieben und grundle-
gende Funktionen und Eigenschaften definiert. Die vier Plattformen Facebook, LinkedIn, Twit-
ter und GooglePlus werden untersucht. Mit Klassendiagrammen, basierend auf der API Do-
kumentation, soll ein Überblick über die zur Verfügung stehenden Daten geschaffen werden.
Jedes soziale Netzwerk hat Eigenheiten, um auf die Daten zugreifen zu können. oAuth, ein weit
verbreitetes und von den untersuchten sozialen Netzwerken eingesetztes Autorisierungssystem,
wird in dieser Masterarbeit beschrieben. Durch die Implementierung eines Adaptors für das
Projekt TheHiddenU, soll der Zugriff auf die sozialen Daten vereinfacht werden. Um dies zu
ermöglichen, ist neben der Autorisierung auch die Information über das Datenschema notwen-
dig. Auf Grund der unvollständigen Dokumentierung der API, wird in dieser Masterarbeit ein
Ansatz beschrieben, um das Datenschema automatisch zu generieren.

Der erste Schritt in diesem Ansatz ist die beispielhafte Verwendung der von den sozialen Netz-
werken eingesetzten REST web services und die Transformation der Json Antwort in eine domä-
nenspezifische Sprache des TheHiddenU Projekts (THUDSL), welche das Profil eines Benutzers
von sozialen Netzwerken beschreibt und für die spätere Generierung von Java Klassen für den
Zugriff auf soziale Daten verwendet werden kann. Das Transformationssystem beginnt die Ana-
lyse bei einem oder mehreren Startpunkten (URLs), analysiert die entsprechenden Antworten
und sucht nach Navigationsmöglichkeiten, um Verbindungen herauszufinden und neue Objekte
zu erreichen.

Die Evaluierung des Systems wurde mit den untersuchten Plattformen durchgeführt. Mit einem
realen Facebook Profil wurde eine Abdeckung von 79% der dokumentierten Klassen und 80%
der Attribute erreicht, sowie 7 neue Klassen und 162 Attribute gefunden. Das Ergebnis ist ab-
hängig von der Datenqualität des verwendeten Profils. Unterschiedliche Konfigurationen wurden
evaluiert, um eine optimierte Basiskonfiguration des Ansatzes zu finden.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 2
1.4 Methodological Approach . 3
1.5 Structure of the Work . 4

2 Social Networks 5
2.1 History . 5
2.2 Definitions . 5
2.3 Features and Characteristics . 7

3 Survey on selected Social Networks 9
3.1 Facebook . 10
3.2 LinkedIn . 34
3.3 Twitter . 40
3.4 Google+ . 45

4 Accessing Social Data 51
4.1 REST . 51
4.2 JavaScript Object Notation (JSON) . 52
4.3 Authentication and Authorization . 54

5 Json2Ontology Tool 59
5.1 TheHiddenU Ontology Language . 59
5.2 Implementation . 61

6 Evaluation 71
6.1 Facebook . 72
6.2 LinkedIn . 76
6.3 Twitter . 76
6.4 Google Plus . 77

7 Related Work 81

ix

8 Conclusion and Future Work 83
8.1 Conclusion . 83
8.2 Future Work . 84

List of Abbreviations 87

List of Figures 88

List of Tables 90

Listings 91

Bibliography 93

x

CHAPTER 1
Introduction

1.1 Motivation

Social networks on the Web have seen enormous growth over the past few years leading to a truly
widespread adoption. According to a recent report of Nielsen [4], two-thirds of the world’s Inter-
net population visit a social network (including blogging sites), accounting now for almost 10%
of all Internet time. They publish personal information and connect themselves with friends,
former classmates or other people, even if they do not really know them. They integrate social
networks in their daily life. Facebook1, for example, with more than 740 million users is the
biggest social network in the world. 49% of the user in Austria are between 13 and 25 but in
the last months, the age groups with the fastest growth are the people from 35 to 44 and seniors
(64+). 2,6 million user in Austria and almost 21 million user in Germany2 show the importance
of social networks and the potential for social applications by using the enormous amount of
data. This is one of the major reasons to do a master thesis about social networks and make
research in how to access the data of the users to help building a social data adaptor.

Every social network is focused on serving specific human needs. Most networkers are present
in a number of different networks, which leads to scattered social content. To enable and en-
hance personalization it is necessary to collect information of the different data sources (social
networks) for data mining and profiling to build social software. Social software operate with
social data: personal information about the user and interconnections between users which gen-
erate network effects.

Social software has big advantages for business. The possibility to interact with customers in
social networks led to the situation, that many companies use Facebook, Twitter and other net-
works for marketing. The APIs of the biggest social networks help web engineers to create
more personalized web-based social software systems and benefit from the core data of social

1http://www.facebook.com
2http://www.checkfacebook.com

1

http://www.facebook.com
http://www.checkfacebook.com

networkers and connections between the users. Social software can cause a snowball effect.
With a good concept, developer can reach users who use the software and, supported by the net-
working features of the social networks, also their friends read about and use the social software.
From the perspective of a company there is the possibility to collect important personal infor-
mation about the customer or the customers opinion via social software. In former times there
had to be a strong customer relationship to get such information. One part of creating social
software is how to get access to the data. The authorization techniques as well as the different
fast moving APIs excite my interests.

In my thesis I will focus on the model based reverse engineering of social networks for further
usage like creating recommender systems such as TheHiddenU [16], a project realized by the
Department of Telecooperation and Information Systems Group (Johannes Kepler University
Linz), Business Informatics Group (Vienna University of Technology) and Netural Communi-
cation3.

1.2 Problem Statement

The enormous amount of personal data in social networks has a high potential for companies.
The derived knowledge will open new possibilities to recommend products for users. To col-
lect the maximum amount of private data about the user, a social software like a recommender
system must provide the possibility to connect to different social networks, which have different
ways to authenticate and retrieve the data. There exist no tools for an easy-access and so com-
panies have to do own implementations and spend time to get in touch with the characteristics
of the social network APIs. An automatic model generator, generic adaptor and step-by-step
instructions to use and add new social networks will help developers to create social software.

To represent the data structure we need an up-to-date ontology for every social network. The
poor documentation of the APIs and the absence of an official schema make it hard for non-
developers integrate new social networks for data collection and analysis. Different social net-
works have different information about the user. A data schema for semantic representation of a
social user profile [17] and storage of the extracted data is necessary for the further usage of the
information, for example to analyze a users habits.

1.3 Aim of the Work

The aim of this master thesis is to analyze a selection of the currently most important social
networks and build an adaptor prototype for TheHiddenU (cf. Figure 1.1). It should be easy to
add new social networks in the future and developers of other parts of TheHiddenU should have
an easy access to the extracted data. An implementation of the common authorization system
oAuth, An open protocol to allow secure API authorization4, should be realized. To have access
to an up-to-date ontology a tool called Json2Ontology (cf. Figure 1.1) should be developed and

3http://www.netural.com/
4http://oauth.net

2

http://www.netural.com/
http://oauth.net

Masterstudium:
Wirtschaftsinformatik

Diplomarbeitspräsentation

Andreas Munk

Model-based Reverse
Engineering of Social Netwoks

Technische Universität Wien
Institut für Softwaretechnik und Interaktive Systeme

Arbeitsbereich: Business Informatics Group
BetreuerIn: O.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Kontakt: andreas.munk@gmail.com

Growth of social networks
 o Austria: >30% of population on Facebook
 o USA: >50% of population on Facebook

Economic importance
 o Enormous amount of social data
 o Social customer relationship

Technological challenges
 o Continuous evolution of social data schemas
 o Complex authorization and authentication systems

Participation in a scientific project: TheHiddenU
 o A Social Nexus for Privacy-Assured Personalisation Brokerage
 o www.social-nexus.net

Survey on social networks
 o Features & characteristics
 o Reverse engineering of data schema

Social adaptors
 Authorization
 Data extraction
 Data access

Automatic reverse engineering of data schema
 Use REST web service for re-engineering
 Identification of start points (e.g. user object)
 Analysis of JSON response
 Navigation to find relations and new objects
 Transformation: JSON response → TheHiddenU ontology
 Provide information for Java class generation

Goals

Survey on social networks
 o Description of selected social networks
 o Class diagrams of data schemas

Social adaptors
 o Implementation for easy data access

Facebook: Evaluation of Json2Ontology tool
 o 1 start point (request URL)
 o 1014 requests. response time: min.202ms, max.17.276ms, avg.501ms
 o JSON data structure: 443 classes, 1811 attributes
 o Comparison with documentation:
 Detected: 79% classes, 80% attributes, 60% relations
 Newly found: 7 classes, 162 attributes, 23 relations
 o Result depends on user data

Results

Motivation

oAuth 1.0

oAuth 2.0

other Auth

A
u
t
h

Authorization service REST web service
D
a
t
a

T
o
k
e
n

R
e
q
u
e
s
t

Data access, Java Classes

THU Adaptor

Json2Ontology tool

Data schema

TheHiddenU ontology, RDF

“id”: “1356535279”,
“name”: “Andi Munk”,
“verified”: “true”,
“hometown”: {
 id”: “109713855712935”,
 “name”: “Herzogenburg”
}

Json response

Approach

Figure 1.1: Implemetation: THU Adaptor and Json2Ontology tool

deliver a model, represented by a TheHiddenU-specific ontology code which I will explain in
Section 5.1. With this ontology code we will be able to generate java classes for an easy access
to the data and class diagrams help to understand the structure. The aim of the work is a detailed
description and comparison of the selected social networks, a tool which automatically create a
model of the social networks and an easy-to-use adaptor.

1.4 Methodological Approach

1. Literature and documentation survey. As the aim of the work is to build an adaptor
prototype, my first step consists of surveying literature and documentations about social
networks to define what is a social network and which features and categories exist. I
will investigate available APIs for the future extraction of social data. The challenges,
benefits, limitations and drawbacks should be determined. With help of the feature- and
category list I will evaluate selected social networks and describe them to increase the
understanding for the following steps.

2. Implementation. An adaptive prototype for TheHiddenU should be implemented. With
this adaptor, future developers of TheHiddenU should access social networks and other
data sources. The Json2Ontology-Tool should provide ontology code (Section 5.1) to
allow to instantly get an overview of the structure of the available data (for example by
generating UML class diagrams) and create the java classes for the adaptor.

3

3. Evaluation and testing. The last step should be an evaluation of the prototype to identify
possible enhancements and a comparison if all elements and relations of the available data
has been extracted from the Json2Ontology tool.

1.5 Structure of the Work

The remaining part of this thesis is structured as follows: in Chapter 2, a definition of Social Net-
work and a description of features and a possible categorization is presented. Chapter 3 covers a
description and an evaluation of selected social networks which will be used for the further im-
plementation of the adaptor prototype. The retrieval of social data is outlined in Chapter 4 with
details about the authorization and extraction of personal data of social networkers. In Chapter
5 I will describe the developed Json2Ontology tool, which is used for the extraction of the data
schema of social networks. This the output of this tool should be evaluated in Chapter 6. Finally,
in Chapter 7 I will give an overview of related work, Chapter 8 summarizes the thesis, ending
with a conclusion and offering an outlook to future work.

4

CHAPTER 2
Social Networks

2.1 History

Since the beginnings of the public internet in the 1990s, people used tools to communicate. With
e-mails there exist an easy way for communication, e-mail lists enabled the connection of people
with same interests to get information about a specific topic and built the first online community
structures. Discussion systems like Usenet where people can read or post news to newsgroups
are predecessors of the nowadays widespread web forums with tree like directory structures. In
web forums there exist more or less mandatory memberships and so first user profile features.
Users can create so called threads in predefined categories which start a discussion about a
thread-topic and enables users to publish their comments in posts. The era of user generated
content has started with the first wiki-based system called WikiWikiWeb, developed by Ward
Cunningham in 1994 [8] and has now brought to perfection with Wikipedia1. In wikis, every
user has the possibility to create and edit articles and so collect together information and build
powerful encyclopedias. Another form of online platforms are the so called online blogs (web
logs) which first mentioned by Jorn Barger in 1997 [20] and enabled users to start their own
news platform where they can create articles, comments or share photos to their community.
People always had the desire to connect together and share information. Social networks cover
this demand in specific area of interests and combine the features for users to connect, discuss,
present themselves, share photos or exchange information.

2.2 Definitions

For the following explanation I will split up the term Social Network in his parts: ’Social’ and
’Network’. In the web we can find hundreds of definitions of the word social:

1http://wikipedia.org

5

http://wikipedia.org

• „The term Social refers to a characteristic of living organisms ... It always refers to the
interaction of organisms with other organisms and to their collective co-existence, irre-
spective of whether they are aware of it or not, and irrespective of whether the interaction
is voluntary or involuntary.“2

• „Living together in communities “3

• „tending to form cooperative and interdependent relationships with others „4

In [7], J.S. Dolwick describe three social approaches and possible the first one, in perhaps
the broadest sense will match the requirements in terms of social networks: Social means as-
sociation and come from the Latin word socius, meaning a companion or associate, with the
root, sequi, meaning ’to follow’. We can say that there is a connection or interaction between
individuals, like animals, plants or humans.

The word network is used in different areas like electrical network, graph network or business
network. They all the identical property that there exist interconnections, for example between
electrical elements, graph nodes or business persons.

As mentioned before, in both of the words there exist an interpretation, that there are connec-
tions. Moreover the association and participation of the connected actors is important in social
networks, which can be offline in the real world, or online in the internet.

Name Connection Association/Participation
sports clubs same interests, same goal

(championship, fitness)
play together in teams

workplace same department, same
tasks

work together at a com-
pany

music band same band make music together
City Council voted to represent inhabi-

tants
make decisions to im-
prove city life

Table 2.1: Social Networks in a broader sense

Nowadays nobody thinks of such offline social networks (cf. Table 2.1), most people asso-
ciates social network the online ones, where crafty enterprises develop online platforms which
exactly satisfy the needs of the actors of offline social networks, such of the ones mentioned
above.

My definition of the term Social Network in relation to this thesis is the following:

A Social Network is an online platform which satisfy the requirements of actors in terms of the

2http://en.wikipedia.org/wiki/Social
3http://www.thefreedictionary.com/social
4http://www.merriam-webster.com/dictionary/social

6

http://en.wikipedia.org/wiki/Social
http://www.thefreedictionary.com/social
http://www.merriam-webster.com/dictionary/social

category of the Social Network. The main basic requirement is the interaction with other actors.
A Social Network is a model of the reality in the internet.

2.3 Features and Characteristics

The following list is used in the evaluation of the social networks in Chapter 6, I defined some
of the most important main and global features and characteristics of a social network.

• Connections: Social actors get in contact with other actors. Such connections can be
friendships, kinships, same interests, geographical relationships, knowledge or prestige.

– Bilaterally 1:1 Connection
both actors must accept the connections.
Examples: friendship, family relation

– Bilaterally 1:n Connection
one actor can connect to a group of actors and this connection must be accepted by
a group administrator.
Examples: closed groups like virtual school classes, company group

– Unilaterally 1:1 Connection
one actor can connect to another actor without his permission.
Examples: be a fan of things like products, trademarks or humans such as celebri-
ties, politician

– Unilaterally 1:n Connection
one actor can connect to a group of actors without any permission.
Examples: open/public groups

• Private User Profile: Social networks also satisfy the desire of social actors to represent
themselves. This can be in the form of private or public profiles with relevant information
in the sense of the basic idea of the network. In business networks actors will publish
information about their career or education, in music networks they will present their
musical taste. Every social network has its individual information about the user.

• Non-Private Profiles: In addition to private user profiles, social networks allow compa-
nies to create social profiles for non-human things like trademarks, products and so on.

• Communication: Social networkers can communicate with private or public messages

• Application Programming Interface (API): With an application programming interface,
developers can use the data from users of the social network for own applications.

– Authorization Type
To get access to private data of the user, an authorization system had to be used.
Examples: oAuth 1.0, oAuth 2.0, OpenID, individual authorization system

7

– Internal Applications
Developers can create applications which run inside the social network

– External Applications
Developers can use the API to access data to improve the social experience in exter-
nal applications

– Single Sign On
Developers can benefit from single sign on features when a user connect an external
application with the social network

• Customer Relationship

– Import contacts
Import your contacts from other social networks or webmail services.

– Newsletter
Periodically news updates from the social network.

– Comeback mails
Users which were not logged in for a while get mails where the features or the
attractiveness of the social network are explaineds

8

CHAPTER 3
Survey on selected Social Networks

In the following sections I evaluate 4 social networks, which I examined for my master thesis. In
order to satisfy the demand of the TheHiddenU project to grant access to different social data and
also to select the most widespread social networks in Austria, I decided to discover Facebook1,
as the biggest social network in the world with an enormous amount of daily-life data and an
easy-to-use API. More about Facebook and the other selected social networks in the following
sections. To satisfy the demand on business data, I thought about XING.

XING2, former named OpenBC (Open Business Club), was founded in 2003 in Germany and
provide a business social network for professionals from all kinds of industries. The main ideas
of XING is that users can meet up, find jobs, colleagues, new assignments, cooperation partners,
experts and generate business ideas. With more than 11 million users3 in 200 countries, XING
will meet our vision of a social network, accessed in the TheHiddenU project. After searching
for an API, I aborted the idea to use this social network. XING published an blog entry in their
dev-blog4 in April 2011, where they introduced in a feature called XING-connect where devel-
opers will be able to integrate XING in their own web sites. Unfortunately, XING-connect was
only a project of 3 XING engineers, Christopher Blum, Lennart Koopmann and Nenad Nikolic,
and in a very beta stage. The access is limited to the name, profile picture and profile url to
identify users. This and the fact that there was no further dev-blog entry about XING-connect
or an API, it will not justify the working hours to implement an XING adaptor.

Good alternatives for XING are the business social networks Viadeo5 and the selected social
network LinkedIn6.

1http://www.facebook.com
2https://www.xing.com/
3http://corporate.xing.com/english/unternehmen/xing-ag/
4http://devblog.xing.com
5http://www.viadeo.com
6http://www.linkedin.com

9

http://www.facebook.com
https://www.xing.com/
http://corporate.xing.com/english/unternehmen/xing-ag/
http://devblog.xing.com
http://www.viadeo.com
http://www.linkedin.com

Another selected social network with a very different type of data is the micro blogging service
Twitter7, where users are able to publish 140-character messages, known as Tweets. 200 million
users use this platform, also called as the „SMS of the internet“.

The fourth selected social network is Google+8, operated by Google Inc. Since the first testing
phase and launch in June 2011, Google+ reached about 40 million users. After the early beta
stadium, where some users have the possibility to invite up to 150 users, Google+ was opened
to everyone in September 2011. I selected this social network because of the high potential to
be a serious competitor of Facebook and the innovative entrance.

The selected social networks will be explained and evaluated in the following sections: Face-
book, LinkedIn, Twitter and Google+.

Because of the complexity of the whole data structure, I tried to split up the whole data struc-
ture in UML [10] class diagrams to keep a clear view on the complete system. I defined some
main classes, which will be illustrated in own class diagrams, bulky classes were splitted up to
topic-related sub diagrams (cf. Figure 3.1)

Most of the attributes in the diagrams have speaking names, others will be described in the
subsections.

3.1 Facebook

„Founded in February 2004, Facebook is a social utility that helps people communicate more
efficiently with their friends, family and coworkers. The company develops technologies that
facilitate the sharing of information through the social graph, the digital mapping of people’s
real-world social connections. Anyone can sign up for Facebook and interact with the people
they know in a trusted environment. Facebook is a part of millions of people’s lives all around
the world. Facebook is a privately-held company and is headquartered in Palo Alto, Calif.“9

This is the main description of Facebook, available in 70 languages and the biggest social net-
work in the world with more than 800 million active users. 50% of these users log on to Face-
book every day and the average number of friends an user is connected to is about 130. Users
can register for free and maintain their own user profiles, connect to other users and receive tex-
tual updates about their friends or pages in the home feed.Facebook Pages are the second main
feature. With Pages users can represent their business, brands or themselves when they do not
want to use their private profile for representation issues. With applications a Facebook Page can
be upgraded to make it more individual, make a tombola or use other methods to gather more,
so called, likes. When an user clicks on the like button of a Facebook Page, the user will receive
status information from the page in the home feed.

Facebook use oAuth 2.0 authorization, which will be explained in Section 4.3. Depending on the

7http://www.twitter.com
8https://plus.google.com
9http://www.facebook.com/press.php

10

http://www.twitter.com
https://plus.google.com
http://www.facebook.com/press.php

Figure 3.1: Social Networks: Package Overview

requested data, developers must define the needed permissions which were listed in the autho-
rization screens. For some data the access token is sufficient, other fields like email, education
require additional permissions. In the documentation10 there exist a table with all possible fields
and the required permission.

For re-engineering and discovering the Facebook data structure, I used a tool called „Graph API
Explorer “11. With this tool, provided by Facebook, developers are able to request an access
token with previous selected permissions. „GET “, „POST “and „DELETE “requests can be

10http://developers.facebook.com/docs/reference/api/
11http://developers.facebook.com/tools/explorer

11

http://developers.facebook.com/docs/reference/api/
http://developers.facebook.com/tools/explorer

issued against graph.facebook.com URLs. Another source of information is the official API
documentation12. In my evaluation I noticed, that the documentation is not 100% persistent.
Some enumerations are not described, or some fields, responded by the API were not listed.

Facebook provides an autocomplete list in the user interface to define associations to pages (or
users). The autocomplete list show appropriate pages (matching entered letters and page cate-
gory). I evaluated the user interface to create a not exhaustive list of possible page categories
for several associations listed in the class diagrams. I tried to type in different letters in the
profile field and examine the appearing pages to create a list of possible page categories. Some
associations permit exactly one page category, others are not so strictly and permit different
page categories. If the entered letters do not match, a new page with the entered name will be
automatically created. The first mentioned category in the category list is defined for the new
created page. You can find the tables after the class diagrams, captioned with „Autocomplete
List: CLASSNAME “. In a restriction column I try to assess if there are limited, topic related
categories in the autocomplete list.

Basic Features and Characteristics

The followingitems are described in Chapter 2.3.

• Connections:

– Bilaterally 1:1 Connection: Friends, Family (cf. Figure 3.2)

– Bilaterally 1:n Connection: Groups with privacy setting closed or secret (cf. Figure
3.6)

– Unilaterally 1:1 Connection User can like a fanpage (cf. Figure 3.15)

– Unilaterally 1:n Connection Groups with privacy setting open (cf. Figure 3.6)

• Private User Profile: Standard user profile after registration with lot of possibilities to
share information like (cf. Figure 3.2)

• Non-Private Profiles: Pages for business, politics, brands, ... (cf. Figure 3.15)

• Communication: Write Notes, Comments, Postings, Messages or share Videos, Photos,
Albums and Links (cf. Figure 3.4)

• Application Programming Interface (API):

– Authorization Type: Facebook Connect, oAuth 2.0

– Internal Applications: Integrate with Facebooks core experience by building apps
that operate within the platform. Pages can add applications to present themselves
in a cooperate identity, make contests or landing pages to encourage users to click
the like button on the page.

12http://developers.facebook.com/docs/reference/api/

12

http://developers.facebook.com/docs/reference/api/

– External Applications: Facebook comment box, like buttons and a lot of other
social plugins can be used in external websites

– Single Sign On: With Facebook Connect, users can use their Facebook credentials
to log on a website and use their approved social data.

• Customer Relationship

– Import contacts incredible 2590 e-mail providers are supported for importing their
contacts to Facebook. This indicate the importance of such a feature for social net-
works.

– Newsletter Only for administrators of pages with weekly statistics

– Comeback mails Information mails about friends which are active to come back
and log on to Facebook.

Facebook User Private

Object

User

+ bio
+ birthday :Date
+ email
+ first_name
+ gender :Gender
+ id
+ interested_in :Gender[]
+ last_name
+ link :URL
+ locale
+ middle_name
+ name
+ political
+ quotes
+ relationship_status :Relationship
+ religion
- third_party_id
+ timezone :Number
+ type :ClassName
+ updated_time :DateTime
+ username
+ verified :Boolean
+ website :URL

Connector

+ category :PageCategory
+ create_time :DateTime

Object

Page

- access_token
+ category :PageCategory
+ checkins :Number
+ id
+ likes :Number
+ link :URL
+ name
+ phone
- type :ClassName

Family

+ relationship :FamilyRelationship

Friendlist

+ id
+ type :FriendlistType

«enumeration»
FriendlistType

 close_friends
 acquaintances
 restricted
 user_created
 education
 work
 current_city
 family

«enumeration»
Gender

 male
 female

«enumeration»
Relationship

 Single
 In a relationship
 Engaged
 It's complicated
 Married
 In an open relationship
 Widowed
 Separated
 Divorced
 In a civil union
 In a domestic partnership

Checkin

+ created_time :DateTime
+ id
+ message
+ type :ClassName

FriendRequest

+ created_time :DateTime
+ message
+ unread :Boolean

HTTP302Redirect

+ url :URL

«enumeration»
FamilyRelationship

 nephew
 brother
 sis ter
 father
 mother
 husband
 wife
 son
 daughter
 uncle
 aunt
 niece
 cousin
 grandfather
 grandmother
 grandson
 granddaughter
 partner

+tags

*

+picture

1

1

+family

*

+friendlists

*

+
m

ut
ua

lfr
ie

nd
s

*+
fr

ie
nd

s
*

+interests

*

+activities

*

+friendrequests

* +to

1

+from

1

+books

*

+favorite_teams

*

+television

*

+games

*

+
si

gn
ifi

ca
nt

_o
th

er
1

+likes

*

+movies

*
+music

*

+members

*

1

+hometown

1
+location

1

+languages

*

+favorite_athletes

*

+checkins

* +from

1

Figure 3.2: Facebook User Private

13

In Figure 3.2 you can see the first part of the Facebook User class diagram. In this diagram,
the focus is on the private information about an individual user. Besides self speaking attributes
and associations, listed in the official documentation13, I will describe some selected elements.
HTTP302Redirect will, as you can derive out of the name, redirect the request to, in this case, an
URL where the profile picture of the user is located. Note the enumerations of the family rela-
tionship. With the family connection we can request family members including their relationship
to the current user. With Checkins user can define online, that they are at a specific place or geo
coordinates. More about the Checkin class in Figure 3.9. Facebook user can define a relation-
ship status (e.g., married, enumeration Relationship) and an association to another user instance
named significant_other (e.g. the wife or husband user account). The mutualfriends association
describes the friends between the current authorized user and the requested user. Associations
on the left side of the class diagram show a users hometown, location, languages and variations
of like connections, such as favorite teams, athletes, books, music, ... All these associations
target a Facebook Page (e.g., Figure 3.15), where further information about the object can be
found. Some of these associations have additional information about the category of the page
and the time, when the relation to the page had been added (create_time).

Data Access (GET Requests)

• User: https://graph.facebook.com/me for own user object or user id instead of ’me’

• User Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– friendlists, family, checkins, friendrequests, books, activities, likes, games, interests,
movies, music, television

• Page: https://graph.facebook.com/ID where ’ID’ is the page id of the desired object

Inline Objects (Relations) of ’User’

• languages, hometown, location, favorite_teams, favorite_athletes, significant_other

13http://developers.facebook.com/docs/reference/api/user/

14

http://developers.facebook.com/docs/reference/api/user/

Association name Page Category Restriction
language Language yes
hometown City yes
location City yes
favourite_teams Professional sports team, Amateur

sports team, School sports team, Sports
league, Community, Interest

yes

favorite_athletes Athlete, Interest, Actor/director yes
books Music, Local business, Product/ser-

vice, Community, Games/toys, Univer-
sity, Musician/band, Media/news/pub-
lishing, Tv network, Tv, Author,
Computers/technology, Movie general,
Book ...

no

activities Interest, Movie genre, Literature
genre, Anatomical structure, Field of
study, Musical genre, ...

no

likes all categories, no profile field no
games Games/toys, Interest, Community,

Computers/internet, Field of study,
Amateur sports team, ...

no

interests Interest, Tv network, Movie, Musi-
cian/band, Regional, Non-profit orga-
nization, Tv show, Magazine ...

no

movies Movie general, Tv show, Tv net-
work, Interest, Movie, Movie genre,
Book genre, City, Company, Enter-
tainer, Cars, ...

no

music Book, Musician/band, Professional
sports team, Non-profit organization,
Website, Local business, Album, ...

no

television Tv, Tv network, Actor/director, Book
genre, Tv channel, Tv show, City, In-
terest, Writer, ...

no

Table 3.2: Autocomplete List: Facebook User Private

15

Facebook User Business

Object

User

+ bio
+ birthday :Date
+ email
+ first_name
+ gender :Gender
+ id
+ interested_in :Gender[]
+ last_name
+ link :URL
+ locale
+ middle_name
+ name
+ political
+ quotes
+ relationship_status :Relationship
+ religion
- third_party_id
+ timezone :Number
+ type :ClassName
+ updated_time :DateTime
+ username
+ verified :Boolean
+ website :URL

Education

- type :EduType

Class

+ description
+ id
+ name

Object

Page

- access_token
+ category :PageCategory
+ checkins :Number
+ id
+ likes :Number
+ link :URL
+ name
+ phone
- type :ClassName

Work

+ description
+ end_date :Date
+ start_date :Date

«enumeration»
PageCategory

 Interest
 Year
 Class
 Application
 Club
 Community
 Bar
 Hotel
 Sports
 ...

«enumeration»
EduType

 Graduate School
 High School
 College
 ...

+width

* +education

*

+work

*

+location

1

+year

1

+languages

*

+classes *

+degree

1
+school

1

+position

1

+concentration

*

+employer

1

+with

*

Figure 3.3: Facebook User Business

In Figure 3.3 the Business parts of a Facebook user are focused. An array of work elements can
be defined, all with optional description, start- and end date elements. Relations to the Facebook
page of the location, position and employer of the work object extend the information. Another
part is the information about the education of a Facebook user, with an array of education el-
ements, where classes, degree, concentration, school and year can be defined as well as other
users, which also attend the same education or class.

Association name Page Category Restriction
position Work position yes
location City yes
concentration concentration or major, field of

study, interest, ...
no

degree degree, Tv show, interest, ... no
school school, University, Interest, City, Com-

pany, local business, ...
no

year year yes

Table 3.3: Autocomplete List: Facebook User Business

16

Data Access (GET Requests)

• User: https://graph.facebook.com/me for own user object or user id instead of ’me’

• Page: https://graph.facebook.com/ID where ’ID’ is the page id of the desired object

Inline Class of ’User’

• Work, Education

Inline Class of ’Education’

• Class

Inline Objects (Relations) of ’Work’

• location, position, employer

Inline Objects (Relations) of ’Education’

• year, degree, school, concentration

Inline Object (Relation) of ’Class’

• with

Facebook User Media

One of the biggest class diagram is about Facebook User Media features (cf. Figure 3.4). An user
has a lot of possibilities to share information on Facebook. Messages from one user to another,
collected in threads, or postings, photos, albums, videos, links which can be commented by users
and where the privacy settings can be defined for each object. It is possible to publish public
objects, or for all friends or just for a defined group of friends.

17

Object

User

+ bio
+ birthday :Date
+ email
+ first_name
+ gender :Gender
+ id
+ interested_in :Gender[]
+ last_name
+ link :URL
+ locale
+ middle_name
+ name
+ political
+ quotes
+ relationship_status :Relationship
+ religion
- third_party_id
+ timezone :Number
+ type :ClassName
+ updated_time :DateTime
+ username
+ verified :Boolean
+ website :URL

TagObjects

Video

+ created_time :DateTime
+ description
+ embed_html :URL
+ icon :URL
+ id
+ name
+ picture :URL
+ source :URL
+ updatedTime

Thread

+ id
+ message_count :Integer
+ snippet
+ tags :[]
+ unread_count :Integer
+ updated_time :DateTime

TagObjects

Post

+ caption
+ created_time :DateTime
+ description
+ icon :URL
+ id
+ link :URL
+ message
+ name
+ object_id :Number
+ picture :URL
+ source :URL
+ story
+ targeting
+ type :PostType
+ updated_time :DateTime

TagObjects

Photo

+ cover_photo
+ created_time :DateTime
+ icon :URL
+ id
+ link :URL
+ name
+ picture :URL
+ position :Number
+ source :URL
+ updated_time :DateTime
+ width :Number

MessageTag

+ length :?
+ offset :?

Message

+ created_time :DateTime
+ id
+ message

Link

+ created_time :DateTime
+ description
+ icon :URL
+ id
+ link :URL
+ message
+ name
+ picture :URL
+ type :ClassName

Comment

+ created_time :DateTime
+ id
+ likes :Number
+ message
+ type
+ user_likes :Boolean

Album

+ count :Number
+ cover_photo
+ created_time :DateTime
+ description
+ id
+ link :URL
+ location
+ name
+ privacy
+ type :AlbumType
+ updated_time :DateTime

Status

+ id
+ message
+ updated_time :DateTime

Tag

+ created_time :DateTime
+ type
+ x :Number
+ y :Number

PostTagged

- actions :?
- caption
- created_time
- description
- icon
- id
- link
- name
- picture
- properties :?
- type
- updated_time

Note

+ created_time :DateTime
+ icon :URL
+ id
+ message
+ subject
+ updated_time :DateTime

«enumeration»
PostType

 link
 photo
 video
 status

«enumeration»
AlbumType

 profile
 mobile
 wall
 normal
 album

+comments*

+notes *

+updates

*

+tagged

*

+to

1

+tags*

+comments+feed

*

+likes

*

+comments

*

+
co

m
m

en
ts

*+comments *

+
co

m
m

en
ts *

+messages *

+message_tags*

+outbox

*

+from

1

+from

1
+photos

*

+
co

m
m

en
ts *

1

+inbox

* +participants

*

+senders

*

+former_participants

*

+from

1

+
vi

de
os

*

+statuses

*+from

1

+from

1

+to

*

+from
1

+photos *

+links

*+from

1

+from

1

+posts

*

+from

1

+albums

*

+home

*

Figure 3.4: Facebook User Media

Data Access (GET Requests)

• User: https://graph.facebook.com/me for own user object or user id instead of ’me’

• User Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– feed, posts, home, inbox, outbox, updates, tagged, albums, statuses, links, videos,
notes

18

Facebook User System

Notifications for the user are visible in the user interface to inform the user about new friend
requests, new messages and comments or likes of published postings, links, videos, photos or
albums. The achievement object represents the achievement achieved by a user for a particular
application like games. A very new feature are orders, where users can buy something within
applications. With the account connection, the Facebook apps and pages owned by the current
user are returned. These elements are described in Figure 3.5.

Data Access (GET Requests)

• User: https://graph.facebook.com/me for own user object or user id instead of ’me’

• User Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– accounts, notifications, achievements, payments

Object

User

+ bio
+ birthday :Date
+ email
+ first_name
+ gender :Gender
+ id
+ interested_in :Gender[]
+ last_name
+ link :URL
+ locale
+ middle_name
+ name
+ political
+ quotes
+ relationship_status :Relationship
+ religion
- third_party_id
+ timezone :Number
+ type :ClassName
+ updated_time :DateTime
+ username
+ verified :Boolean
+ website :URL Account

+ access_token
+ category
+ id
+ name

Achievement(Instance)

+ created_time :DateTime
+ id

Achievement

+ id
+ title
+ type
+ url :URL

Application

+ canvas_name
+ category :AppCategory
+ company
+ daily_active_users :Number
+ description
+ icon_url :URL
+ id
+ link :URL
+ logo_url :URL
+ monthly_active_users :Number
+ name
+ namespace
+ subcategory
+ weekly_active_users :NumberNotification

+ created_time :DateTime
+ id
+ link :URL
+ title
+ unread :Boolean
+ updated_time :DateTime

Order

+ amount :Integer
+ country
+ create_time :DateTime
+ id
+ refund_reason_code :?
+ status :OrderStatus
+ updated_time :DateTime

+from 1

+payments

*

+accounts

*

1

+from

1 +achievements

*

+from

1

+apprequests

*

+banned

*

+notifications

*+to

*

+likes

*

+application

1

+application 1

+payments

*

+application1

+achievement 1

+to

1

Figure 3.5: Facebook User System

19

Facebook User Fun (cf. Figure 3.6)

Object

User

+ bio
+ birthday :Date
+ email
+ first_name
+ gender :Gender
+ id
+ interested_in :Gender[]
+ last_name
+ link :URL
+ locale
+ middle_name
+ name
+ political
+ quotes
+ relationship_status :Relationship
+ religion
- third_party_id
+ timezone :Number
+ type :ClassName
+ updated_time :DateTime
+ username
+ verified :Boolean
+ website :URL

Event

+ description
+ end_time :DateTime
+ id
+ location
+ name
+ privacy :Privacy
+ start_time :DateTime
+ updated_time :DateTime

EventStatus

+ rsvp_status

Group

+ description
+ icon :URL
+ id
+ link :URL
+ name
+ privacy :Privacy
+ updated_time :DateTime
+ version :Integer

Poke

+ created_time
+ type

Score

+ score :Number
+ type

Application

+ canvas_name
+ category :AppCategory
+ company
+ daily_active_users :Number
+ description
+ icon_url :URL
+ id
+ link :URL
+ logo_url :URL
+ monthly_active_users :Number
+ name
+ namespace
+ subcategory
+ weekly_active_users :Number

«enumeration»
Privacy

 OPEN
 CLOSED
 SECRET

+pokes

*

+to

1

+members *

+apprequests

* +banned

*

+user

1

1+scores

*

1
+scores *

+
at

te
nd

in
g *

+from

1

+
in

vi
te

d *

+owner

1+events

*

+
de

cl
in

ed *

+
no

re
pl

y *

+
m

ay
be *

+owner 1

+groups*

Figure 3.6: Facebook User Fun

Data Access (GET Requests)

• User: https://graph.facebook.com/me for own user object or user id instead of ’me’

• User Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– pokes, scores, apprequests, groups, events

Facebook Album and Photo (cf. Figure 3.7)

User and page objects can create albums and upload photos.

20

Album

+ count :Number
+ cover_photo
+ created_time :DateTime
+ description
+ id
+ link :URL
+ location
+ name
+ privacy
+ type :AlbumType
+ updated_time :DateTime

User

TagObjects

Photo

+ cover_photo
+ created_time :DateTime
+ icon :URL
+ id
+ link :URL
+ name
+ picture :URL
+ position :Number
+ source :URL
+ updated_time :DateTime
+ width :NumberHTTP302Redirect

+ url :URL

Object

- id
- name

Comment

+ created_time :DateTime
+ id
+ likes :Number
+ message
+ type
+ user_likes :Boolean

Page
Tag

+ created_time :DateTime
+ type
+ x :Number
+ y :Number

«enumeration»
AlbumType

 profile
 mobile
 wall
 normal
 album

+tags *

+from 1

+photos *

+comments

*

+photos *

+picture

1

+likes

*

+from

1

+from

1
+albums *

+from 1

+likes

*

+albums *

+from

1

+photos

*

+comments

*

+picture 1

1

Figure 3.7: Facebook Album and Photo

Data Access (GET Requests)
Additional permissions required: user_photos, friend_photos

• Album: https://graph.facebook.com/ID where ’ID’ is the album id

• Album Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

21

– photos, likes, comments

• Photo: https://graph.facebook.com/ID where ’ID’ is the photo id

• Photo Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– tags, likes, comments

Facebook Application

Applications (cf. Figure 3.8) on Facebook are used in different purposes.

SingleSignOn and data access. With Facebook applications, developers can implement a single
sign on system on their websites. New user can register using the social data like name, e-mail
address and every other information stored at Facebook. When an user is logged in on Facebook,
this is recognized by the application and the user is also logged in on the website, where the
application is integrated.

Extend possibilities on Pages. Social media agencies create small applications which they
can add to Facebook Pages, to extend the functionalities. The owner of the pages can present
themselves or their business in applications or try to get more fans with competitions or fan
gates, which are these applications which tempt users to click the like button.

Data Access (GET Requests) Applications a user administers can be retrieved via the /accounts
connection on the User object.

• Application: https://graph.facebook.com/ID where ’ID’ is the application id

• Application Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– accounts, albums*, banned, feed*, insights, links*, payments, picture, posts*, re-
views, statuses*, subscriptions, tagged*, translations, scores, achievements, videos

* ... Deprecated. Will be removed on March 1st, 2012, because the applications profile page
will be removed.

22

Application

+ canvas_name
+ category :AppCategory
+ company
+ daily_active_users :Number
+ description
+ icon_url :URL
+ id
+ link :URL
+ logo_url :URL
+ monthly_active_users :Number
+ name
+ namespace
+ subcategory
+ weekly_active_users :Number

«enumeration»
AppCategory

 Books
 Food and Drink
 Games.Action and Arcade
 Games.Board
 Games.Card
 Games.Virtual World
 Games.Word
 Games.Puzzle
 Games.Trivia
 Health and Fitness
 Music
 News
 Photos
 Sports
 Travel
 Video
 Other

Account2

+ access_token
+ id
+ login_url

Album
Object

User

+ bio
+ birthday :Date
+ email
+ first_name
+ gender :Gender
+ id
+ interested_in :Gender[]
+ last_name
+ link :URL
+ locale
+ middle_name
+ name
+ political
+ quotes
+ relationship_status :Relationship
+ religion
- third_party_id
+ timezone :Number
+ type :ClassName
+ updated_time :DateTime
+ username
+ verified :Boolean
+ website :URL

Post

+ caption
+ created_time :DateTime
+ description
+ icon :URL
+ id
+ link :URL
+ message
+ name
+ object_id :Number
+ picture :URL
+ source :URL
+ story
+ type :PostType
+ updated_time :DateTime

Insights

+ description
+ id
+ name
+ period

Link

Order

+ amount :Integer
+ country
+ create_time :DateTime
+ id
+ refund_reason_code :?
+ status :OrderStatus
+ updated_time :DateTime

HTTP302Redirect

+ url :URL

Review

+ created_time :DateTime
+ id
+ message
+ rating :Integer [1,5]

Status

+ id
+ message
+ updated_time :DateTime

Subscription

+ callback_url : (URL)
+ fields
+ object

«abstract»
TagObjects Video

Photo

Translation

+ description
+ native_

Score

+ score :Number
+ type

+translations

*

+feed *

+application 1

+subscription *

+application

1 +payments

*

+links *

+apprequests

*

+banned

*

+insights

*

+posts *

+tagged *

+accounts

*

1

+scores

*

+picture

1

+from

1+statuses *

+albums *

+from

1

+to 1

+reviews

*

+from

1+payments

*

1

+scores

*

+to

1

Figure 3.8: Facebook Application

Facebook Checkin

With Facebook Checkin (cf. Figure 3.9) a user can tag himself at a specific location, based on the
geographic coordinates. This Checkin is displayed in the user profile and, if a page is assigned
to the geographic coordinates, the Checkin is also displayed at the pages profile.

Data Access (GET Requests)
Additional permissions required: user_checkins, friends_checkins

• Checkin: https://graph.facebook.com/ID where ’ID’ is the checkin id

• Checkin Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– likes, comments

Inline Class of ’Checkin’

• Place

23

Checkin

+ created_time :DateTime
+ id
+ message
+ type :ClassName

Application

Comment

+ created_time :DateTime
+ id
+ likes :Number
+ message
+ type
+ user_likes :Boolean

Place

+ latitude
+ location
+ longitude
+ postal_addresses :?

User

Object

- id
- name

Page

+likes

*

+application 1

+from

1

+comments

*
+likes

*

+place

1

+checkins*

+tags *

+
ch

ec
ki

ns *

Figure 3.9: Facebook Checkin

Inline Objects (Relations) of ’Checkin’

• from, applications, tags

Facebook Event

„Organize gatherings, respond to invites, and keep up with what your friends are doing.“14 With
Facebook Events (cf. Figure 3.10), users can promote public or private events with an own page
where information about the event and an event picture can be published. The two main features
are the invitations and the comment box. An user can attend, decline or express that they will
maybe attend an event, attending users can invite their own friends to spread the information. In
the comment box users can discuss about the event, share pictures, links, comments or videos
with others. Facebook allows users to set individual privacy for an event, such as open for
everyone, private so that only invited user can attend or closed where only invited user can see
the event page.

14http://www.facebook.com/help/events

24

http://www.facebook.com/help/events

Event

+ description
+ end_time :DateTime
+ id
+ location
+ name
+ privacy :Privacy
+ start_time :DateTime
+ updated_time :DateTime User

EventStatus

+ rsvp_status

Venue

+ city
+ country
+ latitude
+ longitude
+ state
+ street
+ zip

«enumeration»
Privacy

 OPEN
 CLOSED
 SECRET

HTTP302Redirect

+ url :URL

TagObjects

Post

«enumeration»
PostType

 link
 photo
 video
 status

Object

- id
- name

Page

+user

1

+from 1

+events

*

+posts

+from

1

+likes

*
+to

1

+
in

vi
te

d

*

+feed *

+
at

te
nd

in
g

*+
m

ay
be

*

+venue

1

+
no

re
pl

y

*+
de

cl
in

ed

*

+events

*

+picture

1

+owner1

Figure 3.10: Facebook Event

Data Access (GET Requests)
Additional permissions required: user_events, friends_events for non-public events

• Event: https://graph.facebook.com/ID where ’ID’ is the event id

• Event Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– feed, noreply, invited, attending, maybe, declined, picture, videos

Inline Class of ’Event’

• Venue

Inline Object (Relation) of ’Event’

• owner

25

Facebook Group

A Facebook Group (cf. Figure 3.11) is a possibility for users to connect together for cases like
organizing something. The advantage to Facebook Pages is, that in groups there are privacy
settings like closed or secret, so that not everyone can attend this group.

Group

+ description
+ icon :URL
+ id
+ link :URL
+ name
+ privacy :Privacy
+ updated_time :DateTime
+ version :Integer

«enumeration»
Privacy

 OPEN
 CLOSED
 SECRET

TagObjects

Post

+ caption
+ created_time :DateTime
+ description
+ icon :URL
+ id
+ link :URL
+ message
+ name
+ object_id :Number
+ picture :URL
+ source :URL
+ story
+ targeting
+ type :PostType
+ updated_time :DateTime

User

HTTP302Redirect

+ url :URL

Document

+ can_delete :Boolean
+ can_edit :Boolean
+ icon : (URL)
+ id
+ message
+ revision
+ subject
+ updated_time :DateTime

Object

- id
- name

Page

+docs

*

+from

1

+owner 1

+groups*

+members *

+picture 1

+feed

*

+likes *+from 1 +to 1

+groups *

Figure 3.11: Facebook Group

Data Access (GET Requests)
Additional permissions required: user_groups, friends_groups for non-public groups

• Group: https://graph.facebook.com/ID where ’ID’ is the group id

• Group Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– feed, members, picture, docs

26

Inline Object (Relation) of ’Group’

• owner

Facebook Link

A link (cf. Figure 3.12) shared on a wall. The User and Page objects can publish links on walls.

Link

+ created_time :DateTime
+ description
+ icon :URL
+ id
+ link :URL
+ message
+ name
+ picture :URL
+ type :ClassName

User

Comment

+ created_time :DateTime
+ id
+ likes :Number
+ message
+ type
+ user_likes :Boolean

Object

- id
- name

Page

+links *

+from

1

+from 1

+comments

*

+likes *

+likes

*

Figure 3.12: Facebook Link

Data Access (GET Requests)
Additional permissions required: read_stream if the link is not public

• Link: https://graph.facebook.com/ID where ’ID’ is the link id

• Link Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– comments, likes

Inline Object (Relation) of ’Group’

• from

Facebook Note (cf. Figure 3.13)

Although there is a connection from user to note in the documentation15, I do not know any way
to write a note with an user account. Pages have such a possibility, which is often used.

15http://developers.facebook.com/docs/reference/api/note/

27

http://developers.facebook.com/docs/reference/api/note/

Note

+ created_time :DateTime
+ icon :URL
+ id
+ message
+ subject
+ updated_time :DateTime

User

Object

- id
- name

Page

Comment

+ created_time :DateTime
+ id
+ likes :Number
+ message
+ type
+ user_likes :Boolean

+likes

*

+notes

*

+from

1

+from 1

+comments

*

Figure 3.13: Facebook Note

Data Access (GET Requests)
Additional permissions required: user_notes, friends_notes for non-public notes

• Note: https://graph.facebook.com/ID where ’ID’ is the note id

• Note Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– comments, likes

Inline Object (Relation) of ’Note’

• from

Facebook Order

This is a very new feature, which can be accessed by the API. The order object (cf. Figure 3.14)
is used to interact with orders created by an application using Facebook credits. Credits can
bought by users and used to pay in applications.

28

Order

+ amount :Integer
+ country
+ create_time :DateTime
+ id
+ refund_reason_code :?
+ status :OrderStatus
+ updated_time :DateTime

«enumeration»
OrderStatus

 placed
 settled
 refunded
 disputed
 cancelled

Object

User

Application

+ canvas_name
+ category :AppCategory
+ company
+ daily_active_users :Number
+ description
+ icon_url :URL
+ id
+ link :URL
+ logo_url :URL
+ monthly_active_users :Number
+ name
+ namespace
+ subcategory
+ weekly_active_users :Number

+from

1

+payments

*

+to

1

+application 1

+payments *

Figure 3.14: Facebook Order

Data Access (GET Requests)
Additional permissions required: application or user access token

• Order: https://graph.facebook.com/ID where ’ID’ is the order id

Inline Objects (Relations) of ’Order’

• from, to, application

Facebook Page

A Facebook Page (cf. Figure 3.15) is the second main object on Facebook apart from a Facebook
User. On Pages it is possible to represent something like a brand, company, product, celebrity,
politician, ... A lot of companies realize the potential to get in contact with potential customers
of their products or services and present themselves or their products on Facebook. The social
media branch is growing very fast and agencies create strategies for their clients and advise them
to use the functionality of Facebook in their business case as effectively as possible. With ap-
plications a page can be extended. Worldwide brands like Red Bull16 with more than 23 million
fans which clicked the like button on their page demonstrate the power of Facebook Pages and

16http://www.facebook.com/redbull

29

http://www.facebook.com/redbull

is often mentioned as a best practise project.

There are a lot of page categories with different optional attributes and inline classes for a lot
of areas. Here are some examples: Actor/director, Amateur sports team, Application, Arts/en-
tertainment/nightlife, Arts/humanities, Athlete, Attractions/things to do, Bank/financial institu-
tion, Bank/financial services, Bar, Business services, Business/economy, Camera/photo, Cars,
Cause, City, Club, Coach, Community, Community organization, Company, Computers, Com-
puters/internet, Concentration or major, Concert tour, Consulting/business services, Course, De-
gree, Diseases, Education, Energy/utility, Entertainment, Event planning/event services, Field
of study, Food/beverages, Games/toys, Hotel, Interest Internet/software, Jewelry/watches, Lan-
guage, Legal/law, Lifestyle, Local business, Local/travel, Magazine, Media/news/publishing,
Movie, Movies/music, Musician/band, News/media, Non-profit organization, Organization, Out-
door gear/sporting goods, Product/service, Professional services, Professional sports team, Pub-
lic figure, Public places, Radio station, Real estate, Reference, Regional, Restaurant/cafe, Retail
and consumer merchandise, School, Small business, Software, Sport, Sports, Sports league,
Sports venue, Sports/recreation/activities, Telecommunication, Transportation, Travel/leisure,
Tv channel, Tv show, University, Utilities, Website, Wine/spirits, Work position, Work project
and Year.

Data Access (GET Requests) No access token required for public and non-demographically
restricted pages.

• Page: https://graph.facebook.com/ID where ’ID’ is the page id

• Page Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– feed, picture, settings, tagged, links, photos, groups, albums, statuses, videos, notes,
posts, questions, events, checkins, admins, blocked, tabs, insights

Inline Classes of ’Page’

• Location, PaymentOptions, Parking, RestaurantSpecialities, RestaurantServices, ... de-
pending on the page category

Facebook Post

Posts (cf. Figure 3.16) can be written from Pages, Users, Groups and Applications which have
a feed connections containing post objects that represent their walls. In addition to this the User
and Page objects have a connection named posts containing Posts made by the User and the Page
respectively.

Data Access (GET Requests) No access token required for public and non-demographically
restricted pages.

• Post: https://graph.facebook.com/ID where ’ID’ is the post id

• Post Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

30

Object

Page

- access_token
+ category :PageCategory
+ checkins :Number
+ id
+ likes :Number
+ link :URL
+ name
+ phone
- type :ClassName

RestaurantServices

+ catering :Boolean
+ delivery :Boolean
+ groups :Boolean
+ kids :Boolean
+ outdoor :Boolean
+ reserve :Boolean
+ takeout :Boolean
+ waiter :Boolean
+ walkins :Boolean

RestaurantSpecialities

+ breakfast :boolean
+ coffee :Boolean
+ dinner :Boolean
+ drinks :Boolean
+ lunch :Boolean

Parking

+ lot :Boolean
+ street :Boolean
+ valet :Boolean

PaymentOptions

+ amex :Boolean
+ cash_only :Boolean
+ discover :Boolean
+ mastercard :Boolean
+ visa :Boolean

Location

+ latitude
+ longitude
+ street_address

PageOptionalHTTP302Redirect

+ url :URL

Post

+ caption
+ created_time :DateTime
+ description
+ icon :URL
+ id
+ link :URL
+ message
+ name
+ object_id :Number
+ picture :URL
+ source :URL
+ story
+ targeting
+ type :PostType
+ updated_time :DateTime

«enumeratio...
PageCategory

 Interest
 Year
 Class
 Application
 Club
 Community
 Bar
 Hotel
 Sports
 ...

Setting

+ setting
+ value

«abstract»
TagObjects

Link

+ created_time :DateTime
+ description
+ icon :URL
+ id
+ link :URL
+ message
+ name
+ picture :URL
+ type :ClassName

Photo

+ cover_photo
+ created_time :DateTime
+ icon :URL
+ id
+ link :URL
+ name
+ picture :URL
+ position :Number
+ source :URL
+ updated_time :DateTime
+ width :Number

Group

+ description
+ icon :URL
+ id
+ link :URL
+ name
+ privacy :Privacy
+ updated_time :DateTime
+ version :Integer

Album

+ count :Number
+ cover_photo
+ created_time :DateTime
+ description
+ id
+ link :URL
+ location
+ name
+ privacy
+ type :AlbumType
+ updated_time :DateTime

Status

+ id
+ message
+ updated_time :DateTime

Video

+ created_time :DateTime
+ description
+ embed_html :URL
+ icon :URL
+ id
+ name
+ picture :URL
+ source :URL
+ updatedTime

Note

+ created_time :DateTime
+ icon :URL
+ id
+ message
+ subject
+ updated_time :DateTime

Question

+ created_time :DateTime
+ id
+ question
+ updated_time :DateTime

QuestionOption

+ created_time :DateTime
+ id
+ name
+ votes :Integer

Event

+ description
+ end_time :DateTime
+ id
+ location
+ name
+ privacy :Privacy
+ start_time :DateTime
+ updated_time :DateTime

Checkin

+ created_time :DateTime
+ id
+ message
+ type :ClassName

Object

User

+ bio
+ birthday :Date
+ email
+ first_name
+ gender :Gender
+ id
+ interested_in :Gender[]
+ last_name
+ link :URL
+ locale
+ middle_name
+ name
+ political
+ quotes
+ relationship_status :Relationship
+ religion
- third_party_id
+ timezone :Number
+ type :ClassName
+ updated_time :DateTime
+ username
+ verified :Boolean
+ website :URL

~250 Page Categories
~60 (optional) Attributes

Tab

+ custom_name
+ id
+ is_non_connection_landing_tab :Boolean
+ is_permanent :Boolean
+ link :URL
+ name
+ position :Integer

Application

+parking

0..1

+restaurant_services 0..1

0..1

+payment_options

0..1

+restaurant_specialities

0..1

+location 0..1

+picture1

+settings *

+from

1

+links

*

+from 1

+photos *

+owner 1

+groups *

+from 1

+albums *

+photos

*

+from

1+statuses

*

+from1

+notes*

+from

1+questions

*

+tagged*

+videos *

+from 1 +posts *

+from

1

+feed *
+options *

+from

1

+events

*

+from 1

+checkins *

+favourite_teams*

+favourite_athletes*

+languages*

+location1

+hometown1

+admin *

+blocked *

+tabs *

+application 1

Figure 3.15: Facebook Page

– comments, likes, insights

Inline Object (Relation) of ’Post’

• from, to, application

Inline Classes of ’Post’

• Place, Property, Action, PostPrivacy, MessageTag

Facebook question

A question (cf. Figure 3.17) asked by a user or page.

31

Post

+ caption
+ created_time :DateTime
+ description
+ icon :URL
+ id
+ link :URL
+ message
+ name
+ object_id :Number
+ picture :URL
+ source :URL
+ story
+ targeting
+ type :PostType
+ updated_time :DateTime

User

Object

- id
- name

Page

MessageTag

+ length :?
+ offset :?

Property

+ name
+ text

Action

+ link
+ name

PostPrivacy

+ description
+ friends :PostPrivacyFriends
+ networks
+ value :PostPrivacyValue

«enumeration»
PostPrivacyValue

 EVERYONE
 ALL_FRIENDS
 NETWORKS_FRIENDS
 FRIENDS_OF_FRIENDS
 CUSTOM

«enumeration»
PostPrivacyFriends

 EVERYONE
 NETWORKS_FRIENDS
 FRIENDS_OF_FRIENDS
 ALL_FRIENDS
 SOME_FRIENDS
 SELF
 NO_FRIENDS

«enumeration»
PostType

 link
 photo
 video
 status

Place

+ latitude
+ location
+ longitude
+ postal_addresses :?

Comment

+ created_time :DateTime
+ id
+ likes :Number
+ message
+ type
+ user_likes :Boolean

Application

+ canvas_name
+ category :AppCategory
+ company
+ daily_active_users :Number
+ description
+ icon_url :URL
+ id
+ link :URL
+ logo_url :URL
+ monthly_active_users :Number
+ name
+ namespace
+ subcategory
+ weekly_active_users :Number

«abstract»
TagObjects

+home

*

+to 1

+posts

+from 1+likes *

+message_tags

*

1

+properties * +actions *

+privacy

+allow * +deny *

+place 1

+from

1
+likes

*

+comments

*

+posts

*

+feed

*+application

1

+feed *

+tagged

*

+tagged *

Figure 3.16: Facebook Post

Question

+ created_time :DateTime
+ id
+ question
+ updated_time :DateTime

QuestionOption

+ created_time :DateTime
+ id
+ name
+ votes :Integer

User

Object

- id
- name Page

+options *

+votes

*

+from

1

+from

1

Figure 3.17: Facebook Question

32

Data Access (GET Requests)
Additional permissions required: user_questions for questions asked by the current user,

friends_questions for questions asked by friends of the current user

• Question: https://graph.facebook.com/ID where ’ID’ is the question id

• Question Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– options

• QuestionOption Connection, https://graph.facebook.com/OPTION_ID/votes

Inline Object (Relation) of ’Question’

• from

Inline Object (Relation) of ’QuestionOption’

• from

Facebook Status

A Facebook Status (cf. Figure 3.18) is quite similar like a Facebook Post, but has no multimedia
attached.

Data Access (GET Requests)

• Status: https://graph.facebook.com/ID where ’ID’ is the status id

• Status Connections, https://graph.facebook.com/ID/CONNECTION_NAME:

– comments, likes

Inline Object (Relation) of ’Status’

• from

33

Status

+ id
+ message
+ updated_time :DateTime

PageUser

Object

- id
- name

Comment

+ created_time :DateTime
+ id
+ likes :Number
+ message
+ type
+ user_likes :Boolean

+likes

*

+statuses

*

+from

1

+from 1+likes *

+comments

*

Figure 3.18: Facebook Status

3.2 LinkedIn

LinkedIn, founded in 2002 in California and launched in 2003, is with more than 135 million
users the biggest business social network in the world and available in 14 languages (November
2011). LinkedIn filed for an initial public offering in January 2011 and traded its first shares on
May 19, 2011, NYSE. The initial priced rose from $45 to $122.70 in the first day of trading.
The main competitors of LinkedIn are Viadeo17 with about 35 million users and the German
business social network XING18 with about 10 million users.

Besides private profiles LinkedIn also provides business pages for employers but no possibility
of internal applications to enhance the business page functionalities like in Facebook.

For the manual evaluation of the data structure to create class diagrams I used the developers por-
tal19. LinkedIn use oAuth 1.0a authorization, which will be explained in Section 4.3. LinkedIn
is not qualified for an evaluation with the Json2Ontology tool because there is a basic barrier:
the LinkedIn API force developers to use a so called field selector. With this field selector the de-
veloper must specify exactly which elements the API should respond. This fact make a tool like
this useless, because I must know and list each element and will never find any hidden element.

17http://www.viadeo.com
18http://www.xing.com
19https://developer.linkedin.com

34

http://www.viadeo.com
http://www.xing.com
https://developer.linkedin.com

Basic Features and Characteristics

The followingitems are described in Chapter 2.3.

• Connections:

– Bilaterally 1:1 Connection: Connections (cf. Figure 3.19)

– Bilaterally 1:n Connection: Closed groups (request to join) (cf. Figure 3.22)

– Unilaterally 1:1 Connection -

– Unilaterally 1:n Connection Open groups (auto join) (cf. Figure 3.22)

• Private User Profile: Standard user profile after registration with lot of possibilities to
share information about the business career, Figure 3.19

• Non-Private Profiles: Pages about companies, employer, for example about the Univer-
sity of Technology Vienna20

• Communication: Write update comments, private mails, recommendation, job sugges-
tions, job bookmarks, Figure (cf. Figure 3.21)

• Application Programming Interface (API):

– Authorization Type: oAuth 1.0

– Internal Applications: -

– External Applications: ’Apply with LinkedIn’, company or member profile wid-
gets, share or recommend buttons and a lot of more plugins21

– Single Sign On: Sign In with LinkedIn22

• Customer Relationship

– Import contacts support mail providers like Gmail, Hotmail, Gmx, ...

– Newsletter weekly LinkedIn network update mails

– Comeback mails unknown

LinkedIn User Private (cf. Figure 3.19)

Data Access (GET Requests) Field selector must define all elements which are needed!

• Current User: http://api.linkedin.com/v1/people/

• User by ID: http://api.linkedin.com/v1/people/id=12345
20http://www.linkedin.com/company/166803
21https://developer.linkedin.com/plugins
22https://developer.linkedin.com/plugins

35

http://www.linkedin.com/company/166803
https://developer.linkedin.com/plugins
https://developer.linkedin.com/plugins

Person

+ associations
+ connections.total :Integer
+ current-share
+ date-of-birth.day
+ date-of-birth.month
+ date-of-birth.year
+ distance :DistanceDegree
+ first-name
+ headline
+ honors
+ id
+ industry
+ interests
+ last-name
+ location.country.code
+ location.name
+ main-address
+ num-connections-capped :Boolean
+ num-recommenders :Integer
+ picture-url :URL
+ positions.total :Integer
+ proposal-comments
+ public-profile-url :URL
+ specialities
+ summary

ImAccount

+ im-account-name
+ im-account-type :ImType

«enumeration»
ImType

 aim
 gtalk
 icq
 msn
 skype
 yahoo

Language

+ id
+ name
+ proficiency :LanguageProficiency

«enumeration»
LanguageProficiency

 elementary
 limited-working
 professional-working
 full-professional
 native-or-bilingual

MemberUrl

+ name
+ url :URL

PhoneNumber

+ phone-number
+ phone-type :PhoneType «enumeration»

PhoneType

 home
 work
 mobile

TwitterAccount

+ provider-account-id
+ provider-account-name

«enumeration»
DistanceDegree

 0
 1
 2
 3
 -1
 100

DistanceDegree
0: the member
1, 2, and 3: # of degrees apart
-1: out of network
100: share a group, but not within 3 degrees

+twitter-accounts

*

+member-url-resources

*

+languages

*

+connections *

+phone-numbers

*

+im-accounts

*

Figure 3.19: LinkedIn User Private

• User by profile URL: http://api.linkedin.com/v1/people/url=<public_profile_url>

• Example FieldSelector: http://api.linkedin.com/v1/people/ :(id,last-name,languages)

Inline Classes of ’Person’

• Language, TwitterAccount, ImAccount, PhoneNumber, MemberUrl

LinkedIn User Business (cf. Figure 3.20)

Data Access (GET Requests) Field selector must define all elements which are needed!

• Company: http://api.linkedin.com/v1/companies/ID

• Connections:

– Groups: http://api.linkedin.com/v1/people/ /group-memberships

Inline Classes of ’Person’

• Position (positions, three-current-positions, three-past-positions), Skill, Certification, Ed-
ucation, Patent,

36

Person

+ associations
+ connections.total :Integer
+ current-share
+ date-of-birth.day
+ date-of-birth.month
+ date-of-birth.year
+ distance :DistanceDegree
+ first-name
+ headline
+ honors
+ id
+ industry
+ interests
+ last-name
+ location.country.code
+ location.name
+ main-address
+ num-connections-capped :Boolean
+ num-recommenders :Integer
+ picture-url :URL
+ positions.total :Integer
+ proposal-comments
+ public-profile-url :URL
+ specialities
+ summary

Skill

+ id
+ name
+ proficiency :SkillProficiency
+ years :Number

Education

+ activities
+ degree
+ end-date.year
+ field-of-study
+ id
+ notes
+ school-name
+ start-date.year

Certification

+ authority.name
+ end-date.day
+ end-date.month
+ end-date.year
+ id
+ name
+ number
+ start-date.day
+ start-date.month
+ start-date.year

Position

+ end-date.month
+ end-date.year
+ id
+ is-current :Boolean
+ start-date.month
+ start-date.year
+ summary
+ title

Company

+ id
+ industry
+ name
+ size
+ ticker
+ type

«enumeration»
SkillProficiency

 beginner
 intermediate
 advanced
 expert

Publication

+ date.day
+ date.month
+ date.year
+ id
+ summary
+ title
+ url :URL

Patent

+ date.day
+ date.month
+ date.year
+ id
+ number
+ office.name
+ status.id :PatentStatus
+ summary
+ title
+ url :URL

«enumeration»
PatentStatus

 patent application
 granted patent

Group

+ allow-member-invites :Boolean
+ counts-by-category :Number
+ description
+ id
+ is-open-to-non-members :Boolean
+ large-logo-url
+ location.country
+ location.postal-code
+ name
+ num-members :Number
+ relation-to-viewer :ViewerRelation
+ short-description
+ site-group-url
+ small-logo-url	
+ website-url

+three-past-positions

3

+company

1

+inventors *

+patents

*

+skills

*

+educations

*

+certifications

*

+positions

*

+authors

*

+publications

*+publisher

1

+three-current-positions

3

+group-memberships *

Figure 3.20: LinkedIn User Business

LinkedIn User Media (cf. Figure 3.21)

Data Access (GET Requests) Field selector must define all elements which are needed!

• Connections:

– Jobs: http://api.linkedin.com/v1/people/ /job-bookmarks

– Jobs: http://api.linkedin.com/v1/people/ /job-suggestions

– Job by ID: http://api.linkedin.com/v1/jobs/ID

37

Person

+ associations
+ connections.total :Integer
+ current-share
+ date-of-birth.day
+ date-of-birth.month
+ date-of-birth.year
+ distance :DistanceDegree
+ first-name
+ headline
+ honors
+ id
+ industry
+ interests
+ last-name
+ location.country.code
+ location.name
+ main-address
+ num-connections-capped :Boolean
+ num-recommenders :Integer
+ picture-url :URL
+ positions.total :Integer
+ proposal-comments
+ public-profile-url :URL
+ specialities
+ summary

MailboxItem

+ body
+ subject

Recommendation

+ id
+ recommendation-type
+ reply
+ text
+ timestamp

UpdateComment

+ comment
+ id
+ timestamp

NetworkUpdate

+ is-commentable :Boolean
+ is-likable :Boolean
+ timestamp
+ update-key
+ update-type

JobBookmark

+ applied-timestamp
+ is-applied :Boolean
+ is-saved :Boolean
+ saved-timestamp

JobSuggestion

+ posting-timestamp

Job

+ active :Boolean
+ customer-job-code
+ description
+ description-snippet
+ expiration-timestamp
+ id
+ location-description
+ posting-timestamp
+ referral-bonus
+ site-job-url :URL
+ skills-and-experience

Company

+ id
+ industry
+ name
+ size
+ ticker
+ type

Product

+ creation-timestamp
+ description
+ disclaimer
+ features
+ id
+ logo-url :URL
+ name
+ product-category
+ product-deal.text
+ product-deal.title
+ product-deal.url :URL
+ sales-persons
+ type
+ video.title
+ video.url :URL
+ website-url :URL

GroupPost

+ category :PostCategory
+ creation-timestamp :DateTime
+ id
+ relation-to-viewer(is-following) :Boolean
+ relation-to-viewer(is-liked) :Boolean
+ summary
+ title
+ type :PostType

+company 1

+job

1

*

+sender 1

+job-poster

1

*

people/~/suggestions/job-suggestions

people/~/job-bookmarks

*

+job

1

1

/c
om

pa
ni

es
/ID

/p
ro

du
ct

s*

+likes

*

+
pe

rs
on 1 +like *

+
pe

rs
on 1

*

+
co

m
m

en
ts

*

+recommendations

*

+recommender

*

+recomm.-received

*

+
re

ci
pi

en
ts

* +creator 1 +likes *

Figure 3.21: LinkedIn User Media

– Company by ID: http://api.linkedin.com/v1/companies/ID

– MailboxItems: http://api.linkedin.com/v1/people/ /mailbox

– Network Updates: http://api.linkedin.com/v1/people/ /network/updates

– Posting Updates: http://api.linkedin.com/v1/people/ /person-activities

Inline Classes of ’Person’

• Recommendation (recommendations-received)

38

Inline Classes of ’Recommendation’

• Person (likes, recommender)

Inline Class of ’NetworkUpdate’

• Person (like, person), UpdateComment (comments)

Inline Class of ’UpdateComment’

• Person (persons)

Inline Class of ’JobBookmark/JobSuggestion’

• job

Inline Classes of ’Job’

• Person (job-poster), Company

Connection of ’Company’

• Products: http://api.linkedin.com/v1/companies/ID/products

LinkedIn Group (cf. Figure 3.22)

Group

+ allow-member-invites :Boolean
+ counts-by-category :Number
+ description
+ id
+ is-open-to-non-members :Boolean
+ large-logo-url
+ location.country
+ location.postal-code
+ name
+ num-members :Number
+ relation-to-viewer :ViewerRelation
+ short-description
+ site-group-url
+ small-logo-url	
+ website-url

«enumeration»
ViewerRelation

 blocked
 non-member
 awaiting-confirmation
 awaiting-parent-group-confirmation
 member
 moderator
 manager
 owner

GroupPost

+ category :PostCategory
+ creation-timestamp :DateTime
+ id
+ relation-to-viewer(is-following) :Boolean
+ relation-to-viewer(is-liked) :Boolean
+ summary
+ title
+ type :PostType

«enumeration»
PostType

 standard
 news

«enumeration»
PostCategory

 discussion

Person

PostComment

+ creation-timestamp :DateTime
+ id
+ text

+posts

*

+creator 1+likes *

+comments

*

+creator

1

+group-memberships

*

Figure 3.22: LinkedIn Group

39

Data Access (GET Requests) Field selector must define all elements which are needed!

• Group: http://api.linkedin.com/v1/groups/ID

Inline Classes of ’Group’

• GroupPost (posts)

Inline Classes of ’GroupPost’

• Person (likes, creator), PostComment (comments)

Inline Classes of ’PostComment’

• Person (creator)

3.3 Twitter

Twitter is a worldwide social network with focus on microblogging, launched in 2006 and avail-
able in 17 languages. Users can write 140 character messages called ’Tweets’ on their public
wall. When an user wants to share a tweet from another user, this is called ’Retweet’. Followers
are users, which subscribe Tweets from an user. When user A follows user B and user B follows
user A, these users are friends on Twitter. Friends also can write direct messages to each other
which are not public.

Twitter has about 100 million active users and nearly 250 million tweets per day23.

Twitter use oAuth 1.0a authorization, which will be explained in Section 4.3. The response for-
mat can be defined in the request URL, for example: https://api.twitter.com/1/users/lookup.json.

For manual re-engineering I used the documentation24 of Twitter.

Basic Features and Characteristics

The following items are described in Chapter 2.3.

• Connections:

– Bilaterally 1:1 Connection: Friend 3.23

– Bilaterally 1:n Connection: -

– Unilaterally 1:1 Connection Follower 3.23

– Unilaterally 1:n Connection -

23http://mashable.com/2011/10/17/twitter-costolo-stats/
24https://dev.twitter.com/docs/api

40

http://mashable.com/2011/10/17/twitter-costolo-stats/
https://dev.twitter.com/docs/api

• Private User Profile: Standard user profile after registration with limited information like
current location, website, short biography , Figure 3.19

• Non-Private Profiles: Enhanced profile pages, http://business.twitter.com/
advertise/enhanced-profile

• Communication: Private: Direct messages; Public: Tweets (status message) with pic-
tures, videos, user mentions, hashtags and Retweets (share status messages from others)

• Application Programming Interface (API):

– Authorization Type: oAuth 1.0

– Internal Applications: -

– External Applications: Tweet, follow an user, tweet with hashtag and tweet to an
user buttons are plugins25 for websites as well as widgets26 to present your profile
or display search results and favorite tweets.

– Single Sign On: possible with oAuth but not official supported

• Customer Relationship

– Import contacts Find-Friends function with Gmail, Yahoo, Hotmail, MSN Messen-
ger and AOL contact import function

– Newsletter optional newsletters with information about product updates

– Comeback mails ’Discover more on Twitter’-Mail with suggestions and instructions
to reset your password if you cannot log in.

Twitter User Private (cf. Figure 3.23)

The limited information about the user is available in one class ’User’.

25https://dev.twitter.com/docs/twitter-for-websites
26https://twitter.com/about/resources/widgets

41

http://business.twitter.com/advertise/enhanced-profile
http://business.twitter.com/advertise/enhanced-profile
https://dev.twitter.com/docs/twitter-for-websites
https://twitter.com/about/resources/widgets

Object

User

+ contributors_enabled
+ created_at :DateTime
+ description
+ favourites_count :Number
+ follow_request_send :Boolean
+ followers_count :Number
+ following :Boolean
+ friends_count :Number
+ geo_enabled :Boolean
+ is_translator :Boolean
+ lang
+ listed_count :Number
+ location
+ name
+ notifications :Boolean
+ profile_background_color
+ profile_background_image_url :URL
+ profile_background_tile :Boolean
+ profile_image_url :URL
+ profile_link_color
+ profile_sidebar_border_color
+ profile_sidebar_fill_color
+ profile_text_color
+ profile_use_background_image :Boolean
+ protected :Boolean
+ screen_name
+ show_all_inline_media :Boolean
+ statuses_count :Number
+ time_zone
+ url :URL
+ utc_offset :Number
+ verified :Boolean

friend

follower

Figure 3.23: Twitter User Private

Data Access (GET Requests)

• Current User: https://api.twitter.com/1/account/verify_credentials

• User Search by screen name: https://api.twitter.com/1/users/lookup.json?screen_name=twitterapi
or user_id=12345

• Show specified User by screen name or user id:

https://api.twitter.com/1/users/show.json?screen_name=twitterapi or user_id=12345

• Follower:

– List followers: https://api.twitter.com/1/followers/ids

– List friends: https://api.twitter.com/1/friends/ids

42

Twitter User Media

The focus of Twitter is on microblogging, so the media objects comprise Tweets (Class Status in
Figure 3.24). Tweets can consist of HashTags, where some topics can be tagged, UserMentions,
where users can be tagged or include URLs or images (MediaEntity). When an user publishes a
Tweet from another user, this action is called retweet.

User

+ contributors_enabled
+ created_at :DateTime
+ description
+ favourites_count :Number
+ follow_request_send :Boolean
+ followers_count :Number
+ following :Boolean
+ friends_count :Number
+ geo_enabled :Boolean
+ is_translator :Boolean
+ lang
+ listed_count :Number
+ location
+ name
+ notifications :Boolean
+ profile_background_color
+ profile_background_image_url :URL
+ profile_background_tile :Boolean
+ profile_image_url :URL
+ profile_link_color
+ profile_sidebar_border_color
+ profile_sidebar_fill_color
+ profile_text_color
+ profile_use_background_image :Boolean
+ protected :Boolean
+ screen_name
+ show_all_inline_media :Boolean
+ statuses_count :Number
+ time_zone
+ url :URL
+ utc_offset :Number
+ verified :Boolean

DirectMessage

+ text
Status

+ contributors :?
+ coordinates :?
+ created_at :DateTime
+ favourited :Boolean
+ geo.coordinates.x :Number
+ geo.coordinates.y :Number
+ geo.type
+ in_reply_to_screen_name
+ in_reply_to_status_id :Number
+ in_reply_to_status_id_str
+ in_reply_to_user_id :Number
+ in_reply_to_user_id_str
+ place :?
+ retweet_count :Number
+ retweeted :Boolean
+ source :URL
+ text
+ truncated :Boolean

List

+ description
+ full_name
+ id :Number
+ member_count :Number
+ mode
+ name
+ slug
+ subscriber_count :Number
+ uri

Object

+ created_at :DateTime
+ id :Number

Entity

+ indices.end :Number
+ indices.start :Number

URL

+ display_url :URL
+ expanded_url :URL
+ url :URL

HashTags

+ text

MediaEntity

+ display_url :URL
+ expanded_url :URL
+ id :Number
+ id_str
+ media_url :URL
+ media_url_https :URL
+ type
+ url :URL

Size

+ h :Number
+ resize :ResizeType
+ w :Number

«enumeration»
ResizeType

 fit
 crop

UserMentions

+timeline

*

+retweeted

*

+mentions

0..20

+status

1

+favourites

0..20+messages

* +sender

1

+recipient

1

+retweets

*

+GET lists/statuses *

+lists

*

+user

*

+
m

ed
iu

m

1

+
th

um
b

1

+
la

rg
e

1

+
sm

al
l

1

+mentioned 1

+entities

*

Figure 3.24: Twitter User Media

• Direct Messages: https://api.twitter.com/1/direct_messages

• Outgoing Messages: https://api.twitter.com/1/direct_messages/sent

• Show specified Message: https://api.twitter.com/1/direct_messages/show/:id

• Tweets (Status), https://api.twitter.com/1/...

– Posted by the current user and user’s they follow: statuses/home_timeline

– containing @username: statuses/mentions

– Posted by the current user: statuses/user_timeline

– public: statuses/public_timeline

– statuses/retweeted_by_me

43

– statuses/retweeted_to_me

– statuses/retweets_of_me

– specified by tweet id: statuses/show/:id

– retweets of specified tweet: statuses/retweets/:id

– users who retweeted a specified tweet: statuses/:id/retweeted_by

Twitter User System (cf. Figure 3.25)

Object

User

+ contributors_enabled
+ created_at :DateTime
+ description
+ favourites_count :Number
+ follow_request_send :Boolean
+ followers_count :Number
+ following :Boolean
+ friends_count :Number
+ geo_enabled :Boolean
+ is_translator :Boolean
+ lang
+ listed_count :Number
+ location
+ name
+ notifications :Boolean
+ profile_background_color
+ profile_background_image_url :URL
+ profile_background_tile :Boolean
+ profile_image_url :URL
+ profile_link_color
+ profile_sidebar_border_color
+ profile_sidebar_fill_color
+ profile_text_color
+ profile_use_background_image :Boolean
+ protected :Boolean
+ screen_name
+ show_all_inline_media :Boolean
+ statuses_count :Number
+ time_zone
+ url :URL
+ utc_offset :Number
+ verified :Boolean

Object

SavedSearch

+ name
+ position :Number
+ query

Suggestions

+ name
+ size :Number
+ slug

+searches

*1

+GET users/suggestions

*
+

G
E

T
 u

se
rs

/s
ug

ge
st

io
ns

/:s
lu

g

*

Figure 3.25: Twitter User System

Data Access (GET Requests)

• Saved Searches of the current user: https://api.twitter.com/1/saved_searches

• Retrieve information about a specified search: https://api.twitter.com/1/saved_searches/show/:id

• Get suggested users of the current user: https://api.twitter.com/1/users/suggestions

• Follower:

44

– List followers: https://api.twitter.com/1/followers/ids

– List friends: https://api.twitter.com/1/friends/ids

Twitter Trend

With Twitter Trend (cf. Figure 3.26) you can request trends of a specific geographic location,
defined by WOEID, which is a Yahoo! Where On Earth ID. You will get an array of local trends
with a name, URL and query parameter

Trend

+ country
+ countryCode
+ name
+ placeType.code :Number
+ placeType.name
+ url :URL
+ woeid :Number

TrendTopic

+ name
+ query
+ url :URL

+topics

*

Figure 3.26: Twitter Trend

Data Access (GET Requests)

• Trend at WOEID: https://api.twitter.com/1/trends/:woeid

• Get locations where trends are available: https://api.twitter.com/1/trends/available

3.4 Google+

Google+ (GooglePlus) is a social network platform operated by Google Inc. Since the first test-
ing phase and launch in June 2011, Google+ reached about 40 million users. After the early beta
stadium, where some users have the possibility to invite up to 150 users, Google+ was opened
to everyone in September 2011. Experts expect that Google+ will be a potential rival and com-
petitor of Facebook. With the power and background of Google from the other popular products
like Google Mail, Google Maps or Google Docs they have already a big community in the first
weeks after release and lot of data about their users to use them in Google+. Suggestions to add
users to circles come from the Google Mail contacts. The photo service Picasa is integrated in
the profiles so that a new Google+ user can see the own photos in the new profile. The main
feature is the news stream, where user can publish messages, photos or videos, tag them with the
current locations and read the messages from other users, which are in so called circles, a type
of friend list. Because of the big success of social games in Facebook, Google+ also provide
a platform for social gaming companies like Zynga, well known from games like FarmVille or
MafiaWars.

GooglePlus use oAuth 2.0 authorization, which will be explained in Section 4.3.

45

For re-engineering and discovering the GooglePlus data structure, I used a tool called „Google
APIs Explorer “27. With this tool, provided by Google for all available APIs, developers are able
to request an access token with previous selected scope or with private access. The API offer the
possibility specify fields for a partial response. Another source of information is the official API
documentation28. In my evaluation I noticed, that the documentation is not 100% persistent and
a lot of documented fields were not available in the user interface or not accessible in the API.

Basic Features and Characteristics

The followingitems are described in Chapter 2.3.

• Connections:

– Bilaterally 1:1 Connection: -

– Bilaterally 1:n Connection: -

– Unilaterally 1:1 Connection Circles

– Unilaterally 1:n Connection -

• Private User Profile: Standard user profile after registration with basic private infor-
mation and information about occupation, employment, education, hometown, current
location, photos, videos and postings, (cf. Figure 3.27)

• Non-Private Profiles: Pages with more features than profiles like a +1 button and some
differences in privacy and circle possibilities29

• Communication: Send an email with Google Mail, publish news with photo, link, video
or location on the GooglePlus Stream for people who have the publisher in their circles,
privacy settings for news postings to set which circles get access

• Application Programming Interface (API):

– Authorization Type: oAuth 2.0

– Internal Applications: -

– External Applications: Plugins like Google+ Badge30, +1 Button31 and a API for
developing hangout applications32

– Single Sign On: Google Friend Connect, oAuth

27http://code.google.com/apis/explorer
28https://developers.google.com/+/overview
29http://www.socialbrite.org
30https://developers.google.com/+/plugins/badge/
31https://developers.google.com/+/plugins/+1button/
32https://developers.google.com/+/hangouts/

46

http://code.google.com/apis/explorer
https://developers.google.com/+/overview
http://www.socialbrite.org
https://developers.google.com/+/plugins/badge/
https://developers.google.com/+/plugins/+1button/
https://developers.google.com/+/hangouts/

• Customer Relationship

– Import contacts automatic import of Google Mail contacts
– Newsletter -
– Comeback mails -

Google+ User Private

This are the documented elements of the private part of a users profile (cf. Figure 3.27), there
will be a lot of other data, stored by Google about an user, but not accessible by developers.

Person

+ aboutMe
+ birthday :Date
+ currentLocation
+ displayName
+ gender :Gender
+ hasApp :Boolean
+ id
+ image.url :URL
+ kind :ResourceType = plus#person
+ name.familyName
+ name.formatted
+ name.givenName
+ name.honorificPrefix
+ name.honorificSuffix
+ name.middleName
+ nickname
+ objectType :ObjectType
+ relationshipStatus :Relationship
+ tagline
+ url :URL

«enumeration»
Relationship

 single
 in_a_relationship
 engaged
 married
 its_complicated
 open_relationship
 widowed
 in_domestic_partnership
 in_civil_union

«enumeration»
Gender

 male
 female
 other

URL

+ primary :Boolean
+ type :UrlType
+ value

«enumeration»
UrlType

 home
 work
 blog
 profile
 other

Place

+ primary :Boolean
+ value

Email

+ primary :Boolean
+ type :EmailType
+ value

«enumeration»
ObjectType

 page
 person

«enumeration»
EmailType

 home
 work
 other

+emails

*

+urls

*

+placesLived

*

Figure 3.27: Google+ User Private

Data Access (GET Requests)

• current Person: https://www.googleapis.com/plus/v1/people/me

• other Person: https://www.googleapis.com/plus/v1/people/ID where ID is the ID of the
desired person

• search Person: https://www.googleapis.com/plus/v1/people?query=...

Inline Classes of ’Person’

• Email (emails), URL (urls), Place (placesLived)

47

Google+ User Business (cf. Figure 3.28)

Person

+ aboutMe
+ birthday :Date
+ currentLocation
+ displayName
+ gender :Gender
+ hasApp :Boolean
+ id
+ image.url :URL
+ kind :ResourceType = plus#person
+ name.familyName
+ name.formatted
+ name.givenName
+ name.honorificPrefix
+ name.honorificSuffix
+ name.middleName
+ nickname
+ relationshipStatus :Relationship
+ tagline
+ url :URL

Organization

+ department
+ description
+ endDate :Date
+ location
+ name
- primary :Boolean
+ startDate :Date
+ title
+ type :OrganizationType

«enumeration»
OrganizationType

 work
 school

+organizations

*

Figure 3.28: Google+ User Business

Inline Classes of ’Person’

• Organization (organizations)

Google+ User Media (cf. Figure 3.29)

Like in Facebook, users of Google+ have a main screen where postings are displayed, which is
called ’Stream’. Users can publish messages with photos, videos, links and information about
their current geographic location. For all messages privacy settings can be defined. There exist
so called ’Circles’, where a user can add other users. These circles are not documented or
available by the API. Users are able to filter their own stream by selecting a created Circle, or
publish a message just for a specified Circle.

48

Person

+ aboutMe
+ birthday :Date
+ currentLocation
+ displayName
+ gender :Gender
+ hasApp :Boolean
+ id
+ image.url :URL
+ kind :ResourceType = plus#person
+ name.familyName
+ name.formatted
+ name.givenName
+ name.honorificPrefix
+ name.honorificSuffix
+ name.middleName
+ nickname
+ objectType :ObjectType
+ relationshipStatus :Relationship
+ tagline
+ url :URL

Object

+ content
+ id
+ objectType :ObjectType
+ originalContent
+ plusoners.selfLink
+ plusoners.totalItems :Integer
+ replies.selfLink
+ replies.totalItems :Integer
+ resharers.selfLink
+ resharers.totalItems :Integer
+ url : (URL)

Attachment

+ content
+ displayName
+ fullImage.height :Integer
+ fullImage.type
+ fullImage.url :URL
+ fullImage.width :Integer
+ id
+ image.height :Integer
+ image.type
+ image.url :URL
+ image.width :Integer
+ objectType :AttachmentType
+ url :URL

Comment

+ kind :ResourceType
+ published :DateTime
+ selfLink
+ updated :DateTime
+ verb :Verb = post

Note
Activity

+ address
+ annotation
+ crosspostSource
+ geocode
+ kind :ResourceType
+ placeholder :Boolean
+ placeId
+ placeName
+ provider.title
+ published :DateTime
+ radius
+ title
+ updated :DateTime
+ verb :Verb

Video

+ embed.type
+ embed.url :URL

«enumeration»
ResourceType

 plus#person
 plus#activity
 plus#comment

«enumeration»
Verb

 post
 checkin
 share

«enumeration»
AttachmentType

 photo
 video
 article

+actor

1

+
at

ta
ch

m
en

ts

*

+
in

R
ep

ly
T

o
*

Figure 3.29: Google+ User Media

Data Access (GET Requests)

• Plusoner of an Activity: https://www.googleapis.com/plus/v1/activities/ID/people/plusoners

• Resharers of an Activity: https://www.googleapis.com/plus/v1/activities/ID/people/plusoners

• Comments of an Activity: https://www.googleapis.com/plus/v1/activities/ID/comments

• Search for an Activity: https://www.googleapis.com/plus/v1/activities?query=...

• Activities of an User: https://www.googleapis.com/plus/v1/people/ID/activities/public

• Activity by ID: https://www.googleapis.com/plus/v1/activities/ID

• Comment by ID: https://www.googleapis.com/plus/v1/comments/ID

Inline Classes of ’Object’

• Person (actor), Attachment (attachments)

49

Google+ Activity (cf. Figure 3.30)

Object

Activity

+ address
+ annotation
+ crosspostSource
+ geocode
+ kind :ResourceType
+ placeholder :Boolean
+ placeId
+ placeName
+ provider.title
+ published :DateTime
+ radius
+ title
+ updated :DateTime
+ verb :Verb

AccessItems

+ id
+ type :AccessItemType

Access

+ description
+ kind :AccessControls

«enumeration»
AccessControls

 plus#acl

«enumeration»
AccessItemType

 person
 circle
 myCircles
 extendedCircles
 public

+access

1

+items *

Figure 3.30: Google+ User Activity

Inline Classes of ’Activity’

• Access (access)

Inline Classes of ’Access’

• AccessItems (items)

50

CHAPTER 4
Accessing Social Data

In this chapter, the methods and standards to access the social data are explained. This is neces-
sary for implementations like the Json2Ontology tool (cf. Chapter 5) or an social data adaptor.

4.1 REST

REST, which stands for Representational State Transfer was described in the dissertation „Ar-
chitectural Styles and the Design of Network-based Software Architectures“ [9] of Roy Thomas
Fielding in 2000. REST is an architecture, based on the HTTP protocol, which is used by many
web services for a data interface because of the simple usage and style. A REST web service
follows four basic design principles [1]:

• Use HTTP methods explicitly.

• Be stateless.

• Expose directory structure-like URIs.

• Transfer XML, JavaScript Object Notation (JSON), or both.

HTTP methods. There exist four HTTP methods, which are explicitly used by a REST
web service. HTTP POST is used to create resources on a server. In the topic of my master
thesis a resource may can be a new Facebook status message, which is created via the REST
web service of Facebook. To get this message or any other resource back from the server, the
HTTP GET method is used. The HTTP DELETE method will delete the status message or any
other resource. Other HTTP methods like OPTIONS, HEAD, PUT, TRACE or CONNECT are
not used in the discovered social network APIs but exist in the HTTP/1.0 RFC [18]

Be stateless. Each request from a client to a server must contain all information, so that the
server is able to execute the request and optionally send back the response. There is no stored

51

context on the server. The sessions are kept entirely on the client, which make stateless web
services more scalable. Requests like ’getNextPage’ are not possible, we have to use a request
with all information like ’getPage&id=2’.

Expose directory structure-like URIs. REST Web service URIs should be intuitive to the
point where they are easy to guess. Think of a URI as a kind of self-documenting interface that
requires little, if any, explanation or reference for a developer to understand what it points to
and to derive related resources. To this end, the structure of a URI should be straightforward,
predictable, and easily understood [1].

Transfer XML, JavaScript Object Notation (JSON), or both. The last principle recom-
mend to use structured and machine-readable languages, which are developed for the usage over
the internet to represent data structures like XML [3] or JSON. All of my selected social net-
works offer JSON as interchange format and so I decided to use it for the implementation of my
transformation strategy. This is described in the following Section 4.2.

4.2 JavaScript Object Notation (JSON)

JSON1, invented in 2006, is an open, text-based standard for a lightweight data-interchange
format for the serialization of structured data. It is easy to read an write for humans and also easy
to parse and generate for machines. REST web services2 and by most of the well-known social
network APIs use JSON as response format. With JSON we are able to represent 4 primitive
types (strings, numbers, booleans and null) and two structured types (objects and arrays) as
described in RFC 4627 [5].

Structural Characters (Tokens) in JSON

1. [left square bracket to represent the beginning of an array

2. { left curly bracket to represent the beginning of an object

3.] right square bracket to represent the end of an array

4. { right curly bracket to represent the end of an object

5. : a colon is used to separate between name and value

6. , a comma is used to separate values

1http://www.json.org
2https://www.ibm.com/developerworks/webservices/library/ws-restful

52

http://www.json.org
https://www.ibm.com/developerworks/webservices/library/ws-restful

Object Array

Attribute

+ name :String

Value

StandardValueTypes

+ type :StandardTypes

«enumeration»
StandardTypes

 Number
 String
 Boolean
 null

**

Figure 4.1: JSON Class Diagram

JSON Elements

• Objects contain attributes with name/value pairs to represent data

– A name is a string (e.g. Listing 4.1 Line 2, stringAttributeName1.

– A value must be an element like an object (e.g. Listing 4.1 Line 4-8), array (e.g.
Line 10-17), number (Line 7), string (e.g. Line 2), or one of the three literal names
‘false’, ‘null’ or ‘true’.

• Arrays contain zero or more values (e.g. Listing 4.1 Line 20) or Objects (e.g. Line 11-16)

Listing 4.1: JSON Example
1 {
2 " s t r i n g A t t r i b u t e N a m e 1 " : " v a l u e 1 " ,
3 " newObjectName " :
4 {
5 " s t r i n g A t t r i b u t e N a m e 2 " : " v a l u e 2 " ,
6 " b o o l e a n A t t r i b u t e N a m e " : t r u e ,
7 " numberAt t r ibu teName " : 12345 ,
8 } ,
9 " newArrayName1 " :

10 [
11 {
12 " s t r i n g A t t r i b u t e N a m e 3 " : " v a l u e 3 . 1 "
13 } ,
14 {
15 " s t r i n g A t t r i b u t e N a m e 3 " : " v a l u e 3 . 2 "
16 }
17] ,
18 " newArrayName2 " :
19 [
20 " value_A " , " value_B "
21]
22 }

53

4.3 Authentication and Authorization

To get access to social data, represented by JSON objects or XML an user must authenticate and
authorize. With authentication an user can confirm the own identity. Authorization means, that
an user verify that he is allowed to get access to a ressource.

OpenID

An open standard for decentralized authentication in the area of web platforms is OpenID3. An
average user in the web use a lot of platforms and services. On each platform, a registration
is needed which ends in multiple usernames and passwords. The solution is called Single Sign
On and this may can be realized with OpenID. I try to briefly explain the OpenID systems and
some terms. The Identifier is a secured (HTTPS) or non-secured (HTTP) URI, which identifies
an user, (e.g. https://myopenid.com/andreas.munk). A web platform which wants to proof the
end user need the users Identifier and is called Relying Party. The third important part is the
OpenID Provider, a server where the OpenID authentication system is installed and the private
information of the user is stored. The OpenID Provider specify the scope of the data which an
user can define and provide an individual OpenID Identifier (URI). The user has to know the
credentials for his OpenID profile for identification. The advantage is, that the user can use
the credentials and stored information to register at web platforms, which support OpenID. An
end user can freely choose which OpenID provider to use. Everyone can host an own OpenID
service provider.

Besides the authentication, web platforms provide the possibility to get access to some private
data. An widespread authorization system is oAuth4:

’OAuth provides a method for clients to access server resources on behalf of a resource
owner (such as a different client or an end-user). It also provides a process for end-users to
authorize third-party access to their server resources without sharing their credentials (typically,
a username and password pair), using user-agent redirections.’ [12]

Social networks use oAuth to grant access to their resources, delivered via an API. Developers of
third-party applications have to redirect the user to an authorization flow, where the credentials
are checked and the approval to get access to the social data of the user is granted or denied. The
authorization flow depends on the used version of oAuth:

oAuth 1.0

oAuth 1.0 [12] was first released in 2007 and is used by social platforms like Twitter or LinkedIn.
Developers have problems with this system because of the complexity. There are 3 actors: the
user, the consumer (e.g. a social application) and the service provider (e.g. Twitter). The autho-
rization flow is described in Figure 4.2: In the first step, the consumer ask for an unauthorized
request token (1). This request include the following parameters: a consumer key provided by

3http://openid.net/
4http://oauth.net

54

http://openid.net/
http://oauth.net

the platform for the developer of an application, which want to get access to the data of the user.
A signature method (HMAC-SHA1, RSA-SHA1, and PLAINTEXT) and the signature which
is an encoded string containing all parameters. The last parameters are a timestamp, nonce (a
random string uniquely generated by the client to allow the server to verify that a request has
never been made before), optional the oauth version and a callback URL. The service provider
verifies the signature and the consumer key (2) and generate a request key and request token
(3). With these parameters, the consumer redirect the user (e.g. in a browser window) to the
provider’s authorization page (4). When the user grant the application, he got redirected to the
callback URL of the application with an verifier parameter (5). Together with the request token
the verifier is used by the application (6) to get an access token for further data requests, pro-
vided by the service provider (6).

For data requests (8), the consumer application also must do complex requests like mentioned
before, consisting of the consumer key, access token, signature method end the encoded signa-
ture, timestamp, nonce and the optional oAuth version.

Figure 4.2: oAuth 1.0 Flow, springsource.org

oAuth2.0

In contrast to oAuth 1.0, the second version of oAuth is quite simple to use [13]. There are a lot
of improvements like the support for desktop applications. With oAuth 1.0, desktop applications
redirect the user to the service in a web browser where the user must authenticate and copy a
generated token back to the application, where the authorization procedure continue. Beside

55

security issues, this flow is not very user-friendly. oAuth 2.0 support native applications like
desktop or mobile applications with special consideration related to security, platform capabili-
ties and end-user experience. The most important improvement is that developers no longer have
to implement cryptography, the signatures are not so complicated and the authorization flow got
reduced. There exist only one access token for data requests, which is granted for a user defined
scope. So it is possible to limit the scope to some specific data elements.

In the authorization flow of oAuth2.0 the consumer start (1) with the redirect of the user to the
provider for authorization, with the parameter client id of the consumer application, a redirect
URI and an optional scope. The user can see the authorization screen of the provider and has to
grant the permission for the data access (2). The user got redirected to the application (3) and
the consumer get an application grant (e.g a code), which allows the application to request an
access token(5).

For data requests (6), it is sufficient to concatenate the access token with the data request URI,
where it is recommended to use a secured connection (SSL).

Figure 4.3: oAuth 2.0 Flow, springsource.org

Platform specific systems

Platform specific systems like Facebook Connect or the equivalent products of Google+, LinkedIn
or Twitter combine both, an authentication and authorization system. Facebook Connect can be
used by (web) developers to enhance the social experience of the visitors, log in with their Face-
book account and have the same opportunities like with OpenID. But it is not only a single sign
on system, Facebook Connect also use oAuth for the authorization of further data exchange. The
extension of the data access can be set by developers, using the scope. With a full scope it is pos-
sible to get access to a very huge amount of data. This data access must be granted by the user

56

and is used in my implementation of the model-based reverse engineering tool ’Json2Ontology’
(cf. Chapter 5.1).

57

CHAPTER 5
Json2Ontology Tool

The maintenance of social network ontologies and access adaptors is tedious. We are in an early
stage of the development of social networks and so the expanding and frequent updates of the
platforms infer a continuous change of data structure. New classes, attributes and relations were
added, names changed or elements removed. The data structure and the request URL must be
known to access the data.

5.1 TheHiddenU Ontology Language

Thus, one approach is a maintenance-free generator of the ontology of a social network, derived
from the API response. For TheHiddenU, an individual ontology language (cf. Figure 5.1
has been developed to describe the ontology of social networks and further on the THU core
ontology. The resulting ontology can be used to generate RDF code or java classes.

Class

- comment :String
- name :String
- requestUrl :String

+ asOntologyCode() :String

ObjectProperty

- comment :String
- domainAsName :String
- domainCardMax :Integer
- domainCardMin :Integer
- name :String
- rangeAsName :String
- rangeCardMax :Integer
- rangeCardMin :Integer
- rangeType :dataType

+ asOntologyCode() :String

«enumeration»
dataType

 String
 Int
 Bool
 Float
 Char
 DateTime

Ontology

- name :String
- namespace :String

*

extend

1

*

range

1

*

domain

1

1

*

1

objectProperties

*

1

extend

*

Figure 5.1: Class diagram: THU Ontology Language

59

Default Declarations

An ontology starts with the expression ontology, followed by the name of the ontology (Line 1
of Listing 5.1). In line 3 there is an namespace definition, where http as prefix and # as suffix
will be automatically added when creating the corresponding rdf or in the future the java classes
for the TheHiddenU project. From line 5 to 31 there are default declarations which are identical
for every ontology, like basic classes, relations and the implemented data type literals String,
Int, Bool, Float, Char and Datetime.

Listing 5.1: THU Ontology Language: Default Declarations
1 o n t o l o g y theHiddenU {
2
3 namespace : " s o c i a l −nexus . n e t / t h u " ;
4
5 c l a s s Resource { }
6
7 c l a s s L i t e r a l { }
8 c l a s s S t r i n g L i t e r a l e x t e n d s L i t e r a l {
9 d a t a t y p e P r o p e r t y v a l u e : STRING ;

10 }
11 c l a s s I n t L i t e r a l e x t e n d s L i t e r a l {
12 d a t a t y p e P r o p e r t y v a l u e : INT ;
13 }
14 c l a s s B o o l L i t e r a l e x t e n d s L i t e r a l {
15 d a t a t y p e P r o p e r t y v a l u e : BOOL ;
16 }
17 c l a s s F l o a t L i t e r a l e x t e n d s L i t e r a l {
18 d a t a t y p e P r o p e r t y v a l u e : FLOAT ;
19 }
20 c l a s s C h a r L i t e r a l e x t e n d s L i t e r a l {
21 d a t a t y p e P r o p e r t y v a l u e : CHAR ;
22 }
23 c l a s s D a t e T i m e L i t e r a l e x t e n d s L i t e r a l {
24 d a t a t y p e P r o p e r t y v a l u e : DATETIME ;
25 }
26
27 o b j e c t P r o p e r t y R e l a t i o n {
28 domain : Resource as i n v e r s e R e l a t i o n ;
29 r a n g e : Resource as r e l a t i o n ;
30 }
31 }

Ontology-specific Declarations

The ontology code for a social network contains two important elements. The first element is
the class element (line 1 of Listing 5.2) which can optionally extends other classes (line 8) and
optionally can have a requestURL (line 11). The requestURL is important for the java class
generation, because an adaptor must be able to know the URL where the social data can be
requested. The second important element is the objectProperty followed by the name of this
property starting with a capital letter (line 3), wherein the domain (line 4) and range (line 5) of
the property can be defined. Both of these elements can optionally be extended with minimal
and/or maximal cardinalities, expressed by min=n and max=x (line 18). The metalanguage

60

allows to define optional names for the range and domain attributes (lines 23, 24) after an as
expression. All attributes of classes will be represented as objectPropertys.

Listing 5.2: THU Ontology Language: Ontology specific Declarations
1 c l a s s Agent { }
2
3 o b j e c t P r o p e r t y AgendID {
4 domain : Agent ;
5 r a n g e : I n t L i t e r a l [min =1 ,max = 1] ;
6 }
7
8 c l a s s User e x t e n d s Agent { }
9

10 c l a s s FBUser requestURL " h t t p s : / / r e q u e s t . u r l . com" { }
11
12 o b j e c t P r o p e r t y UserName {
13 domain : User ;
14 r a n g e : S t r i n g L i t e r a l [min = 1] ;
15 }
16
17 o b j e c t P r o p e r t y A g e n t R e l a t i o n {
18 domain : Agent [min =1 ,max = 2] ;
19 r a n g e : Resource as a g e n t R e l a t i o n ;
20 }
21
22 o b j e c t P r o p e r t y KnowsUser2UserRe la t ion e x t e n d s A g e n t R e l a t i o n {
23 domain : User [max=1] as isKnownBy ;
24 r a n g e : User [min =1 ,max=100] as knows ;
25 }

5.2 Implementation

The following information about the implementation focus on the extraction of the data structure
of Facebook. The extensive amount of data collected by Facebook make this challenge interest-
ing. Before I come to the transformation of JSON Objects (cf. Section 4.2) to THU Ontology
Code, I will explain the basic method. One important part in social networks are the connections
between objects. You can imagine this like a graph with edges (connections) and nodes (objects).
Objects can be humans, things or some else artificial individuals. In this transformation I will
use this edges to go from one node to another node or from one object to another object. One
challenge of analyzing the data structure is to get all possible attributes. Not all social networks
respond a full data structure, even if some attributes were not set by the user. The extraction
of the class data structure of a Facebook User, who has not set all attributes, connections or
relations will result an incomplete ontology. It is not sufficient to analyze only one User object
to get all possible attributes, but use the connections and relations to analyze other (user)objects
and add missing attributes to the database.

The first information we need is one or more start points (URL) where the tool begin the extrac-
tion. In Facebook, such a start point is https://graph.facebook.com/me where you
can retrieve your personal user object. Besides some basic elements, this object may includes
elements or objects which suggest that there is a connection to another object. Different to the

61

https://graph.facebook.com/me

Figure 5.2: Knowledge Extraction

62

main purpose of such RESTful web services or APIs, not the data itself cause my interest. The
important information is the data structure, the classes, request URLs, element names and the
connections or relations.

To access information an access token is needed. In future work this access token may be re-
trieved in the easy way by a web application where the user can grant the permissions to access
the data. The workaround in this prototype is to set this access token manually or, in case of
oAuth 1.0 APIs (Twitter, LinkedIn) with instructions for the user. The user has to got to an
generated URL, grant the permissions for the created test application and type in the PIN code,
provided by the authorization flow, in the console. In the documentation of Facebooks Graph
API1 there are links to your own connections like friends or the home feed where you can cut a
valid access token from the URL. This access token is not domain-based and so you can use it as
your access token for tools like this, executed on localhost. In case of Google Plus, an indepen-
dent access token will be provided by an API explorer2. Depending on the authorization method
the start point URL and each other request URL must be signed, encrypted or concatenated with
the access token or other secret keys.

Before analyzing the response of the start points, we have to define the name of the social net-
work because of the implemented individualities and for the default declarations, explained in
Section 5.1. This OntologyName also used for the namespace definition (i.e., for TheHiddenU
http://social-nexus.net/thu/adaptor/OntologyName.

For the further usage I mapped the objects from the ontology language (cf. Figure 5.1) to the
Java classes Class and ObjectProperty. To reduce execution time each analyzed URL will be
saved in a HashMap with the reference to the derived class. For testing, the JSON response is
cached to reduce the requests to the social network. The following subsection explain the differ-
ent types of elements. The function for analysis and transformations get the response text and
optional a class name and URL as parameters.

Transformation

In this section I will show some examples of a JSON response and explain how the response will
be transformed to ontology code, implemented in the Json2Ontology tool.

Class

Analyzing a JSON object from a response will generate a class. To get the name of the class
there are different approaches. Facebook supply a type attribute, which will be a good class name
(e.g. type, page). Other approaches will be explained in the sections of the different class types.
If there is no way to get a class name out of the response, the class is named „unknownClass“,
concatenated with an increasing index.

1http://developers.facebook.com/docs/reference/api/
2http://code.google.com/apis/explorer/#_s=plus&_v=v1&_m=people.get

63

http://developers.facebook.com/docs/reference/api/
http://code.google.com/apis/explorer/#_s=plus&_v=v1&_m=people.get

The following example show parts of the Facebook response of my user object with the URL
„https://graph.facebook.com/1356535279“.

Listing 5.3: JSON Response: Attributes of a Facebook User object
1 {
2 " i d " : "1356535279" ,
3 " t y p e " : " u s e r "
4 }

As mentioned above, the „type“attribute is catched for the class name. Other social networks
would have different attributes, which indicate the class name. These attributes can be optionally
added to prevent the tool naming a class „unknownClass“.

The second important thing is to discover the request URL. To use the ontology code for java
code generation an independent request URL is needed. The analyze function detect that a
value of an element in the JSON response is equal a part of the request URL, namely the
„1356535279“from the „id“attribute.

To enable the generated java code to use a valid request URL to extract the data from a specific
object (or user) the value of the id got replaced by the name of the element:

„https://graph.facebook.com/1356535279“-> „https://graph.facebook.com/__Attr__id__Attr__“

Listing 5.4: THU OntologyCode: Class definition of a Facebook User object
1 c l a s s u s e r requestURL " h t t p s : / / g raph . f a c e b o o k . com / _ _ A t t r _ _ i d _ _ A t t r _ _ " { }

Attribute

The standard name of an ObjectProperty will be composed of the class name (=domain), the
key word „__Attr__“and the name of the property (e.g. „user__Attr__location“for the attribute
location of the class user). This is necessary because of the individual defined ontology code
metalanguage and the restriction that every attribute is represented by an ObjectProperty with
an unique name. Further naming convention will be explained in the individual description of
the possible objects in the transformation of JSON to OntologyCode.

Listing 5.5: JSON Response: Attributes of a Facebook User object
1 {
2 " i d " : "1356535279" ,
3 }

Listing 5.6: THU OntologyCode: Attributes of a Facebook User object
1 o b j e c t P r o p e r t y u s e r _ _ A t t r _ _ i d {
2 domain : u s e r ;
3 r a n g e : I n t L i t e r a l [max = 1] ;
4 }

The range (type) of the objectProperty depends on the value of the attribute from the re-
sponse. In this prototype there are the following literals implemented: Int, Bool, String. Possible

64

extensions in future work can be the analysis of values occurred to infer an enumeration. The
cardinality will be max=1 if there is a standard value, no cardinality means a 1:n relation, for
example if the value is an array of strings.

InlineClass

Not every class has its own request URL. Beside the main class type I mentioned before, I will
define the new class type „InlineClass“. An InlineClass is responded inside of another (par-
ent)class. The result is a new class with attributes (ObjectProperties) and a relation from the
parent class to the new InlineClass. I will continue with an example of Facebook Page class,
where the location attribute of the Facebook page of the Vienna University of Technology is
listed.

Listing 5.7: JSON Response: Location Attribute (InlineClass) of a Facebook Page object
1 {
2 " l o c a t i o n " : {
3 " s t r e e t " : " K a r l s p l a t z 13" ,
4 " c i t y " : " Vienna " ,
5 " c o u n t r y " : " A u s t r i a " ,
6 " z i p " : "1040"
7 }
8 }

The value of the element location in the Facebook class Page is an object with the elements
street, city, country and zip. This InlineClass itself cannot be accessed directly via an URL and
therefore has no requestURL. The name of the new InlineClass is the name of the parent class,
concatenated with the name of the attribute in the JSON response.

Listing 5.8: THU OntologyCode: Location Attribute (InlineClass) of a Facebook Page object
1 c l a s s page requestURL " h t t p s : / / g raph . f a c e b o o k . com / _ _ A t t r _ _ i d _ _ A t t r _ _ " { }
2
3 o b j e c t P r o p e r t y p a g e _ _ A t t r _ _ l o c a t i o n {
4 domain : page ;
5 r a n g e : p a g e _ _ l o c a t i o n [max = 1] ;
6 }
7
8 / / i n l i n e C l a s s
9 c l a s s p a g e _ _ l o c a t i o n { }

10
11 o b j e c t P r o p e r t y p a g e _ _ l o c a t i o n _ _ A t t r _ _ s t r e e t {
12 domain : p a g e _ _ l o c a t i o n ;
13 r a n g e : S t r i n g L i t e r a l [max = 1] ;
14 }
15
16 o b j e c t P r o p e r t y p a g e _ _ l o c a t i o n _ _ A t t r _ _ c i t y {
17 domain : p a g e _ _ l o c a t i o n ;
18 r a n g e : S t r i n g L i t e r a l [max = 1] ;
19 }
20
21 o b j e c t P r o p e r t y p a g e _ _ l o c a t i o n _ _ A t t r _ _ c o u n t r y {
22 domain : p a g e _ _ l o c a t i o n ;
23 r a n g e : S t r i n g L i t e r a l [max = 1] ;

65

24 }
25
26 o b j e c t P r o p e r t y p a g e _ _ l o c a t i o n _ _ A t t r _ _ z i p {
27 domain : p a g e _ _ l o c a t i o n ;
28 r a n g e : I n t L i t e r a l [max = 1] ;
29 }

InlineObject (Relation)

InlineClasses often have much more important information than their standard attributes. Face-
book, for example, deliver with the user object hints for possible relations. Is the analyzed
snippet of the JSON response an InlineClass and do there exist attributes like an „ID“(and on
Facebook „name“), we can assume that there is a hidden relation. An important thing is that
we have registered an InlineClass, because every standard class has of course an „ID“and this
would not be a relation (to itself).

Here is an example of the JSON response of an user object with the element „hometown“.

Listing 5.9: JSON Response: Hometown Attribute (InlineObject) of a Facebook User object
1 " hometown " : {
2 " i d " : "109713855712935" ,
3 " name " : " Herzogenburg "
4 }

In addition to the procedure explained before with InlineClasses, which will generate the
two ObjectProperties „id“and „name“, the id (and name) attribute initiate the tool to generate
an additional ObjectProperty with a relation to the, up to now, unknown class. An advantage
of the Facebook API is that there exist a standard request URL, so that every object with an ID
can be requested via „https://graph.facebook.com/ID“. To extend the scope of the extraction and
discover the unknown range class of the additional ObjectProperty, the ID is used to call the an-
alyzing function for the hidden object (in this example the object with the id 109713855712935,
which is the page of the city Herzogenburg). The analyzing function return the type of the re-
sponse (in this example the class page).

The name of the new ObjectProperty which suggest the relation is a concatenation of „Current-
ClassName__Attr__object“with the current class as the domain and the name of the analyzed
related class as the range. The name of the new InlineClass is the name of the parent class,
concatenated with the name of the attribute in the JSON response.

Listing 5.10: THU OntologyCode: Hometown Attribute (InlineObject) of a Facebook User
object

1 c l a s s u s e r requestURL " h t t p s : / / g raph . f a c e b o o k . com / _ _ A t t r _ _ i d _ _ A t t r _ _ " { }
2
3 o b j e c t P r o p e r t y use r__At t r__hometown {
4 domain : u s e r ;
5 r a n g e : user__hometown [max = 1] ;
6 }
7
8 / / i n l i n e C l a s s
9 c l a s s user__hometown { }

66

10
11 o b j e c t P r o p e r t y use r__home town__At t r__ id {
12 domain : user__hometown ;
13 r a n g e : I n t L i t e r a l [max = 1] ;
14 }
15
16 o b j e c t P r o p e r t y user__hometown__At t r__name {
17 domain : user__hometown ;
18 r a n g e : S t r i n g L i t e r a l [max = 1] ;
19 }
20
21 / / I n l i n e O b j e c t : t h i s e l e m e n t r e f e r s t o a n o t h e r o b j e c t w i th more i n f o r m a t i o n
22 o b j e c t P r o p e r t y u s e r _ _ h o m e t o w n _ _ A t t r _ _ o b j e c t {
23 domain : user__hometown ;
24 r a n g e : page [max = 1] ;
25 }

InlineClass with Relation

Similar to the explained strategy of the InlineClass and the InlineObject both can be combined if
in the InlineClass exist „id“, „name“and other elements which are treated like standard attributes.
In the following example an additional attribute „description“was found.

Listing 5.11: THU OntologyCode: Education Classes InlineClass with InlineObject
1 c l a s s u s e r _ _ e d u c a t i o n _ _ c l a s s e s { }
2
3 o b j e c t P r o p e r t y u s e r _ _ e d u c a t i o n _ _ c l a s s e s _ _ A t t r _ _ d e s c r i p t i o n {
4 domain : u s e r _ _ e d u c a t i o n _ _ c l a s s e s ;
5 r a n g e : S t r i n g L i t e r a l [max = 1] ;
6 }
7
8 o b j e c t P r o p e r t y u s e r _ _ e d u c a t i o n _ _ c l a s s e s _ _ A t t r _ _ i d {
9 domain : u s e r _ _ e d u c a t i o n _ _ c l a s s e s ;

10 r a n g e : I n t L i t e r a l [max = 1] ;
11 }
12
13 o b j e c t P r o p e r t y u s e r _ _ e d u c a t i o n _ _ c l a s s e s _ _ A t t r _ _ n a m e {
14 domain : u s e r _ _ e d u c a t i o n _ _ c l a s s e s ;
15 r a n g e : S t r i n g L i t e r a l [max = 1] ;
16 }
17
18 / / t h i s e l e m e n t r e f e r s t o a n o t h e r o b j e c t w i th more i n f o r m a t i o n
19 o b j e c t P r o p e r t y u s e r _ _ e d u c a t i o n _ _ c l a s s e s _ _ A t t r _ _ o b j e c t {
20 domain : u s e r _ _ e d u c a t i o n _ _ c l a s s e s ;
21 r a n g e : page [max = 1] ;
22 }
23 }

Metadata

Some social networks like Facebook (or Viadeo) provide additional information about the re-
quested object. By concatenating the Facebook request URL with the parameter „metadata=1“,
the response consist a metadata object with two elements, represented by objects. The „connec-
tion“object with name/value pairs for every connection from the current JSON response (object)

67

to another JSON request url. The second element is the „fields“array with objects consisting
„name“and „description“attributes. This data enable the Json2Ontology tool to comment the
resulting ontology code with the description of each extracted element to enhance the under-
standing of the ontology code when it is used for future work.

Listing 5.12: JSON Response: Metadata of a Facebook User object
1 " m e t a d a t a " : {
2 " c o n n e c t i o n s " : {
3 " f a m i l y " : " h t t p s : / / g raph . f a c e b o o k . com / ID / f a m i l y ? a c c e s s _ t o k e n = . . . " ,
4 . . .
5 } ,
6 " f i e l d s " : [
7 {
8 " name " : " t i m e z o n e " ,
9 " d e s c r i p t i o n " : " The use r ’ s t i m e z o n e o f f s e t from UTC. A v a i l a b l e on ly f o r t h e

c u r r e n t u s e r . "
10 } ,
11 . . .
12]
13 }

Connections

This information is used to navigate from one object to the corresponding relations by requesting
the extracted URL and analyze the structure of the data of the related object. The name of the
class is a concatenation of the name of the parent class(es) and the connection name (family). A
connection includes the subclass paging and a data InlineClass, which you can see below. This
InlineClass consist of several attributes, for example the „relationship“and an InlineObject to the
corresponding user.

Listing 5.13: THU Ontology Code: Connection of a Facebook User object
1 c l a s s u s e r _ _ m e t a d a t a _ _ c o n n e c t i o n s _ _ f a m i l y _ _ d a t a { }
2
3 o b j e c t P r o p e r t y u s e r _ _ m e t a d a t a _ _ c o n n e c t i o n s _ _ f a m i l y _ _ d a t a _ _ A t t r _ _ i d {
4 domain : u s e r _ _ m e t a d a t a _ _ c o n n e c t i o n s _ _ f a m i l y _ _ d a t a ;
5 r a n g e : I n t L i t e r a l [max = 1] ;
6 }
7
8 o b j e c t P r o p e r t y u s e r _ _ m e t a d a t a _ _ c o n n e c t i o n s _ _ f a m i l y _ _ d a t a _ _ A t t r _ _ n a m e {
9 domain : u s e r _ _ m e t a d a t a _ _ c o n n e c t i o n s _ _ f a m i l y _ _ d a t a ;

10 r a n g e : S t r i n g L i t e r a l [max = 1] ;
11 }
12
13 o b j e c t P r o p e r t y u s e r _ _ m e t a d a t a _ _ c o n n e c t i o n s _ _ f a m i l y _ _ d a t a _ _ A t t r _ _ r e l a t i o n s h i p {
14 domain : u s e r _ _ m e t a d a t a _ _ c o n n e c t i o n s _ _ f a m i l y _ _ d a t a ;
15 r a n g e : S t r i n g L i t e r a l ;
16 }
17
18 / / t h i s e l e m e n t r e f e r s t o a n o t h e r o b j e c t w i th more i n f o r m a t i o n
19 o b j e c t P r o p e r t y u s e r _ _ m e t a d a t a _ _ c o n n e c t i o n s _ _ f a m i l y _ _ d a t a _ _ A t t r _ _ o b j e c t {
20 domain : u s e r _ _ m e t a d a t a _ _ c o n n e c t i o n s _ _ f a m i l y _ _ d a t a ;
21 r a n g e : u s e r ;
22 }

68

Fields

The additional information about the attributes of an object can be used as comments for the
THU Ontology Code, or in future work for description or JavaDoc of the generated java classes.

Listing 5.14: THU Ontology Code: Description of Elements of a Facebook User object
1 / / The use r ’ s t i m e z o n e o f f s e t from UTC. A v a i l a b l e on ly f o r t h e c u r r e n t u s e r .
2 o b j e c t P r o p e r t y u s e r _ _ A t t r _ _ t i m e z o n e {
3 domain : u s e r ;
4 r a n g e : I n t L i t e r a l [max = 1] ;
5 }

Configuration

For an optimal extraction within time or resource limits there exist some configuration possibil-
ities.

Maximum Level

The function to analyze a JSON object is called recursive. Connections or relations between
objects cause that the generator follow the path from an object A to another object B. If there
are also connections from object B to an object C and so on it will be possible that the generator
get in an endless loop.

The user object of Facebook is a good example for a loop. The connection of the attribute
significantOther of user A, which represent a users girl- or boyfriend, refer to an user object
B, where hopefully there will be a connection of this attribute back to user A. In the Education
inline class there exist an array with User inline classes to represent users which were added by
the user because they attend the same education (e.g. a high school class in 2006). This example
show the possibility, that the generator follow the path from an user A, to another user B who
attend the same education. This user B may have some connection like the significantOther
attribute discussed before which cause the generator to go to an user C. If the maximum level
configuration is set to 2, the generator will not access this user C and continue with the analysis
of user B to reduce time and resources.

The configuration must be balanced to prevent getting into loops, but extract a complete data
structure as good as possible.

Maximum Array Depth

Some elements like the Connections or the work InlineClass in Facebook consists of JSON ar-
rays.

Let me explain the advantage of this configuration element by the friends connection of a Face-
book user. When this connection got requested, the response are user InlineObjects for all friends
of the current user. The challenge discussed in the Implementation Section that not every user

69

has filled in all elements and so this will result an incomplete data structures will be solved by
extracting more than one user object. Another example is the work InlineClass in the user object.
This attribute consist of zero or more array elements (class instances), which I will call the work
InlineClass. This InlineClass has some fixed attributes like the employer, location or position
but can be extended by additional elements like the start or end date of this work entry.

With the maximum array depth configuration it is possible to limit the analysis for the first, for
example 5 objects in the returned JSON array to do a well-balanced analysis between complete-
ness of the data and rational execution time.

Social Network Individualities

Every social network has their own characteristics. In the best case, the Json2OntologyCode
tool is able to extract a complete data structure without any adaption. This work well if the
response consist of, for example, a full user dumb with all information about the user together
with InlineClasses with all information about the relations of the user.

The extraction of a Facebook ontology could be improved with the knowledge, that InlineObjects
must have the elements name and id and could be extracted by using the standard URL together
with the id value. To know that there exist some metadata with possible connections (relations)
or description fields also enhance the tool.

Statistics

After a successful extraction the tool shows statistics about the run. These statistics include the
number of analyzed request URLs, the analysis time, the number of extracted classes and at-
tributes, the minimal, maximal and average response time.

Listing 5.15: Example Statistics of the Json2Ontology Tool
1 ______________________________
2 E x t r a c t i o n c o m p l e t e . . .
3 ∗∗∗ 90 URLs i n 40937ms a n a l y z e d
4 ∗∗∗ C l a s s e s : 36
5 ∗∗∗ A t t r i b u t e s : 155
6 ______________________________
7 S t a t i s t i c s :
8 ∗∗∗ Reques t ed URLs : 34
9 ∗∗∗ minResponse Time : 182ms

10 ∗∗∗ maxResponse Time : 1717ms
11 ∗∗∗ avgResponse Time : 330ms
12 ∗∗∗ A n a l y s i s Time : 29717ms

70

CHAPTER 6
Evaluation

In this section I will explain the evaluation of the Json2Ontology tool by comparing the result of
the tool and the documented data structure of the social network. For this evaluation I used my
own user accounts to analyze the data structure of the JSON response, returned by the API of
Facebook, GooglePlus and Twitter. Information about LinkedIn at the end of this Section. Let
me explain some basics of the evaluation, an detailed report will be in corresponding subsections
of the social network.

Data Elements. One part is to get as much data elements as possible. The amount of data ele-
ments depend on two things. First, do the API return all data elements, even if they are not set
by the user or do the API just return the elements with values. Second, is it possible to extract
more than one objects of a class. For example, Facebook allow to navigate from an user to other
objects, which my refers to other users. In this case, the user class may be extended by data
elements, which are not set by the starting user but are set by other extracted users. To do this, it
must be possible to recognize that a JSON object represent another user.

Relations. There exist different relations. When a JSON response of an user has an inline class
about the hometown, this relation from the user to the hometown got extracted very well. Not so
easy are relations, which are derived by additional knowledge. The tool must know the request
URL of the remote object and extract an appropriate name of the related object. The data quality
and quantity of the user account is very important, when relations can be extracted. If there
are no or less relations, for example if the user has no friends, this relation cannot be extracted
because the friends-object will be empty.

Class Diagram vs. OntologyCode. When you read the statistics in the following subsections,
you will notice that there are a very high number of classes and attributes. The reason is the dif-
ference between a class diagram or documented data structure and the data structure of the JSON
response or OntologyCode, respectively. Let me explain this with an example: in the Facebook
class diagram, there exist a user, a page class and a relation between them called hometown.

71

The page class represent the city, which is the hometown of an user. So we have 2 classes and
1 relation apart from the number of attributes of the two classes. The extracted ontology code
of the JSON response also extract the user and page class. The user class has an inline class
called hometown, which will extracted as an relation to a class called user_hometown. This
user_hometown class has two attributes, called id and name, which are in this case the indicator
for a further extraction of the remote class page. This remote object will effect an relation from
user_hometown to page and the extraction of the page class. Compared to the number of ele-
ments in a class diagram (2 classes, 1 relation), the extraction produce (3 classes, 2 relations and
2 additional attributes). Another reason for the difference is that some inline classes are equal to
another basic class, but it is hard work to detect the similarity. In this prototype, this case will
generate a new class for each inline class.

Configuration. To run the Json2Ontology tool, an individual configuration is needed. Besides
the standard request URL and the start point(s), the oAuth version must be set to oAuth 1.0
or 2.0. As described in Section 5.2, a maximum level for the extraction has to be defined. In
the evaluation I tried to set this level as high as possible and useful. A high level will increase
the number of requests but will not compulsory improve the result. Another setting is called
maximum array depth, described in Section 5.2.

6.1 Facebook

My test object in the evaluation of the tool with Facebook is my own user account. This account
exist since June of 2009. I am very active on Facebook and so this are good prerequisites for
the evaluation. Facebook only return data elements with values, so it will be possible, that the
attributes in classes may not be complete. Relations can be extracted in Facebook. We know that
an inline class with name and id attributes refer to another object, with perhaps more information
than achieved by the inline class itself. A hometown inline class refers to a page class about
the city, which represents the hometown of the user. To extract the extended class, we have
to know the request URL. In Facebook, there exist a standard request URL, namely https:
//graph.facebook.com, where we know that the standard request URL concatenated with
the id of the object will be the right request URL for the remote object. The

GlobalSettings

• oAuth Version: 2.0

• Preconditions for relation detection: id and name attribute in an inline class

• Standard URL: https://graph.facebook.com/

• Start Point: https://graph.facebook.com/me

Configuration tests. With the following statistics I will show the impact of the maximum level
and maximum array depth setting in this case.

72

https://graph.facebook.com
https://graph.facebook.com

maximum Level 1
maximum Array Depth 1
Requests 1
Classes 24
Attributes 144

Table 6.1: Evaluation Facebook: Configuration Test #1

The extracted data structure of the test run 1 (Table 6.1) represent the user class and the inline
classes of the user object like user__hometown, user__education. The quality is not sufficient,
lot of detected relations have no correct range, for example the relation of the user__hometown
class to the corresponding page class. The related object was not extracted because of the maxi-
mum level restriction. Because of the maximum array depth is set to 1, just the first element of
arrays like the users education is analyzed. In the worst case, the first element of the user may
contain less attributes than the second education element, which will not be reached. Therefore
in the next step the maximum array depth is increased to 5.

maximum Level 1
maximum Array Depth 4
Requests 1
Classes 26
Attributes 153

Table 6.2: Evaluation Facebook: Configuration Test #2

In this configuration test (Table 6.2), the maximum Array Depth was increased to 4 which
cause that the first 4 elements in an array got analyzed. In this test run, a higher maximum
array depth will have no effect. Comparing the OntologyCode of this run with the run before,
there are 9 new attributes and 2 classes. I found the one missing attribute in the user__work
class, where the end-date attribute (1 attribute) of a work array element did not appear in the
first run. Another missing elements of the first run are the concentration and degree attributes (2
attributes) of the user__education, with the corresponding classes (2 classes) and the attributes
in this new classes (name, id and object relation for each class(in sum 6 attributes)). Obviously,
the first element in the users education array not contain these attributes. The relation of a new
class, for example the education__degree did not have the right range which depends on the
maximum level setting. The related object was not extracted and analyzed. In the next run the
maximum level setting is increased.

73

maximum Level 2
maximum Array Depth 4
Requests 229
Classes 334
Attributes 1317

Table 6.3: Evaluation Facebook: Configuration test #3

Increasing the maximum level to 2 leads to better results, as is shown Table 6.3. All the
remote objects of detected relations in the first level will be reached. This are, for example
the page class (range of relations of classes like user__hometown, education__degree and much
more) and the 37 connections, listed in the metadata of the user object, which result in at least
37 new classes but in fact there are a lot of inline classes in this classes and so the high amount
of classes was generated. After hours of testing configurations with the goal to extract as much
classes and elements as possible and the fear of being caught by the abuse systems of Facebook
because of too much requests, I found a balanced configuration.

1 2 3 4 5

MaxLevel 1 2 3 4 5

Requests 1 229 496 1014 1068

Classes 26 337 398 443 443

Attributes 153 1317 1627 1811 1811

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Maximum Level Impact

Figure 6.1: Impact of the maximum level setting, maximum Array Depth = 4

74

maximum Level 4
maximum Array Depth 4
Requests 1014
Classes 443
Attributes 1811
minimal Response Time 202ms
maximal Response Time 17276ms
average Response Time 501ms
Analysis Time 5962ms

Table 6.4: Evaluation Facebook: Configuration test #4, final Statistics

With this run (Table 6.4), I compared the OntologyCode with the documentation1 of Face-
book to assess the result. In the documentation there are 23 objects (=classes). By analyzing
the documentation a found additional 6 inline classes, for example user-work or user-education.
These 29 classes should be at least extracted. The reason for the difference of the amount of
the documented classes and the extracted classes is explained at the top of the evaluation section
(Class Diagram vs. OntologyCode).

The result strongly depends on the user, who run the tool!

Sum of documented classes 29
Sum of extracted classes 23
documented - extracted ratio 79,31%
Sum of newly found classes 7
Sum of documented attributes 202
Sum of extracted attributes 161
documented - extracted attributes ratio 79,70%
Sum of newly found attributes 162
documented+new - extracted+new attributes ratio 88,74%
Sum of documented relations 161
Sum of extracted relations 97
documented - extracted attributes ratio 60,25%
Sum of newly found relations 23
documented+new - extracted+new attributes ratio 65,22%

Table 6.5: Evaluation Facebook: Result

The question is, what classes, attributes and relations are missing? 5 of the 6 missing classes
are Achievement, Achievement(Instance), Order, Review and Subscription, which are not used
by the authenticated user (my user account) and the Thread class is deprecated.

1http://developers.facebook.com/docs

75

http://developers.facebook.com/docs

There are 41 attributes missing: 27 attributes are not set by the user and so not responded by the
Facebook API. Example: in my user account the attribute middle-name is empty because I have
no middle name. This lack can be reduced by tool enhancements, like running the tool with more
than one accounts, described in the Future Work Section. Some attributes are only accessible
by the own user, so the navigation to other user will not improve the lack. 10 attributes were
deprecated (documented but not used anymore), 4 attributes are administrative elements, which
only are accessible by an administrator (for example of a page).

Where are the 64 relations? 4 are deprecated, 19 are not set by the authenticated user, 5 only
for administrators of a page and 32 can not be reached because a limitation, that connections of
objects, which are found itself in connections will not be analyzed. A try to disable this limitation
was aborted after the run longs more than 10 minutes and 3.000 requests were produced. There
will be possible enhancements in Future Work, Chapter 8.

7 newly found classes (or inline classes), 162 new attributes and 23 new relations demonstrate the
potential of the tool. All this elements are not documented but available and might be interesting
for developers.

6.2 LinkedIn

LinkedIn is not qualified for an evaluation because there is a basic barrier: the LinkedIn API
force developers to use a so called field selector. With this field selector the developer must
specify exactly which elements the API should respond. This fact make a tool like this useless,
because the developer must know and list each element and the tool will never find any hidden
element.

The tool could maybe used as Ontology Code generator, which will be the input for a Java Class
generator for basic data.

6.3 Twitter

Twitter has a few basic differences to Facebook or GooglePlus. The authorization method is
oAuth 1.0, all attributes were responded by the API, even if they were not set by the user and
the bad news, there is no generic way to navigate to remote objects. Twitter offer the web
service strictly in accordance with the rules of REST web services (Expose directory structure-
like URIs, Section 4.1). So, the more start-points, the better quantity of the result.

76

My start-points are:

My User https://api.twitter.com/1/account/verify_credentials.json?include_entities=true
My Timeline https://api.twitter.com/1/statuses/user_timeline.json
My Retweets https://api.twitter.com/1/statuses/retweeted_by_me.json?include_entities=true
My Friends https://api.twitter.com/1/friends/ids.json
My Searches https://api.twitter.com/1/saved_searches.json
My Suggestions https://api.twitter.com/1/users/suggestions.json
A City https://api.twitter.com/1/geo/id/674a484576216a45.json

Table 6.6: Start Points of Twitter Evaluation Run

Because of the fact that we cannot navigate, the maximum level setting is useless. In ad-
dition to this, the fact that there will be all attributes in the response, even if they are empty,
an comparison of the documented elements and the returned elements to find elements which
were not returned will not be very interesting. Twitter respond complete inline classes. When
requesting an user, the last status message for instance is returned completely.

By comparing the documented attributes with the extracted attributes of the user class, 6 new
elements were found. Like the other evaluated social networks, Twitter also has no correct
documentation, probably based on the fast development iterations.

maximum Level 1
maximum Array Depth 2
Requests 7
Classes 36
Attributes 329
minimal Response Time 670ms
maximal Response Time 4377ms
average Response Time 1804ms
Analysis Time 347ms

Table 6.7: Evaluation Twitter: final Configuration, final Statistics

6.4 Google Plus

This social network is very new and of course, my user account is very new. In GooglePlus I run
the tool with two start-points: https://www.googleapis.com/plus/v1/people/
me which represent the own user object and https://www.googleapis.com/plus/
v1/people/me/activities/public, which represent the own activities. To navigate
to remote objects the tool has to detect an attribute named selfLink, which indicate a relation.
The value of this attribute is the new request URL.

77

https://www.googleapis.com/plus/v1/people/me
https://www.googleapis.com/plus/v1/people/me
https://www.googleapis.com/plus/v1/people/me/activities/public
https://www.googleapis.com/plus/v1/people/me/activities/public

To get the comments (replies) of an activity, there exist a selfLink attribute with the value like
this: https://www.googleapis.com/plus/v1/activities/ACTIVITY_ID/comments.
After tests like described in the Facebook evaluation part, I used the result of the following con-
figuration for the comparison:

maximum Level 4
maximum Array Depth 8
Requests 89
Classes 36
Attributes 146
minimal Response Time 215ms
maximal Response Time 1019ms
average Response Time 370ms
Analysis Time 546ms

Table 6.8: Evaluation GooglePlus: final Configuration, final Statistics

With the documentation2 of GooglePlus I defined 11 classes and inline classes, which should
be extracted through the defined start-points.

Sum of documented classes 11
Sum of extracted classes 10
documented - extracted ratio 90,90%
Sum of newly found classes 3
Sum of documented attributes 73
Sum of extracted attributes 48
documented - extracted attributes ratio 65,75%
Sum of newly found attributes 14
documented+new - extracted+new attributes ratio 70,45%
Sum of documented relations 15
Sum of extracted relations 14
documented - extracted attributes ratio 93,33%
Sum of newly found relations 3
documented+new - extracted+new attributes ratio 94,44%

Table 6.9: Evaluation GooglePlus: Result

The 1 missing class is the email class, which is documented but at the moment there is no
possibility in the user interface to set e-mail addresses and die API do not respond any e-mail
address, even the mandatory registration mail address is not in the JSON response.

14 attributes are documented, but not available in the user interface. One example are the rep-
2https://developers.google.com/+/api/

78

https://www.googleapis.com/plus/v1/activities/ACTIVITY_ID/comments
https://developers.google.com/+/api/

resentation attributes of a users name. I cannot find a corresponding field in the user interface
to set, for example a honorific prefix of my name. 8 attributes are documented, I can set them
in the user interface but the API do not offer them in the JSON response, for example the start-
and end-date of an employment (class organization). 3 attributes are administrative ones which
I could not access, for example a placeholder attribute in the ActivityItem class.

The 1 missing relation is the relation from the user class to the email class, as described above.

This evaluation show the the potential of a reverse engineering approach. There are a lot of
elements, which are not documented but relevant for social applications. To increase the ratio
of the documented elements which can be found, access to the data of users with a high social
activity on the platforms are needed.

79

CHAPTER 7
Related Work

Social media is a very hot topic in science and so there are many publications about social
networks. In the area of model transformations, there are some approaches with social media
aspects like API2MoL [15].

Api2mol (API to Metamodel Language) [14] is a Domain Specific Language (DSL) which al-
low to define a mapping between an API and a metamodel (i.e., API classes and metamodel
elements). The mapping definition is used to project models form/into APIs, that is, to inject/ex-
tract models by calling to API methods. With API2MoL, developers can define the mappings
between an API and a metamodel (i.e. mappings between API classes and metamodel elements).
It is also possible to automatically create a metamodel definition directly from the API informa-
tion if not existing metamodel is already available. These mappings can then be used at anytime
one need to bridge the gap between software and models.1

This scientific project has some similarities with the Json2Ontology tool, but does not deal with
authorization or navigation in REST web services and, of course, the output of the generator is
not the expected output of TheHiddenU project.

In [2], social data is continuously analyzed to observe trends in social networks. The difference
to this thesis is the type of data and the goal of the analysis. The approach in the cited paper
use real time values and compare changes to observe trends. Instead of this, the Json2Ontology
tool perform the analysis out of static data, analyze the data structure and produce a data schema.

Other projects focus on transforming given JSON objects to Java classes like ’jsonschema2pojo’2,
which also use the structural rules of JSON like I do. ’json gen beta’3 is a web based code gener-
ator that parses JSON files. Both projects make no requests or navigation to other JSON objects

1http://modelum.es/trac/api2mol
2http://code.google.com/p/jsonschema2pojo
3http://jsongen.byingtondesign.com/

81

http://modelum.es/trac/api2mol
http://code.google.com/p/jsonschema2pojo
http://jsongen.byingtondesign.com/

of a REST web service.

The main aspect to make research and develop an own generator was the precise requirements
of TheHiddenU project and the need of generating an input for java class generation in the own
THU ontology language. Another requirement will be the integration of the collected informa-
tion.

Social data exchange is of course, only a subproblem of data exchange in general which leads
to a much broader research field, namely information integration, with database integration as
its most prominent protagonist. Database integration has a long history, e.g., one of the earli-
est systems for realizing information integration was the EXPRESS system, developed in the
1970s [19]. Integration scenarios in the data engineering field mostly concern integrating dif-
ferent local schemas (e.g. of social networks) into one global schema (e.g. a core ontology for
social user profiles), however also data exchange between a source schema and a target schema
have been investigated, e.g., between relational, object-oriented, and XML databases and data
warehouses [6, 11]. In this thesis, I have focused on bridging technological heterogeneities be-
tween REST Web services and social data ontologies, needed as a major building block for
analyzing social data.

82

CHAPTER 8
Conclusion and Future Work

8.1 Conclusion

The first goal of this thesis was to identify the features and to come up with a definition of avail-
able social networks. The most important things in such networks are actors and the connections
between them. Successful social networks try map the real life in a specific topic to web based
platforms, which help people to connect and share information. I defined some basic categories
and features of social networks like the types of connections, profiles, communication and pos-
sibilities for developers and evaluated four social networks, which were selected in accordance
to the TheHiddenU project team.

With an short overview about the social networks Facebook, LinkedIn, Twitter and GooglePlus
together with the classification I started the evaluation of the selected social networks. The main
task of Chapter 6 was the creation of class diagrams out of the API documentation to represent
the data structure and help the THU team to get an overview of the possibilities for profiling.
To compare the data the diagrams have been split up into topic related an comparable diagrams.
This resulted in more than 30 diagrams as can be seen in Chapter 6.

To get access to the values of the described data structure, I studied the APIs of the social net-
works and investigated the fundamentals of REST web services as well as the different authen-
tication and authorization methods like OpenID or oAuth. This helped to develop a first adaptor
prototype for TheHiddenU, where the authorization and data extraction is an elementary task.
LinkedIn and Twitter use oAuth 1.0, which is much more complicated than oAuth 2.0 because
of the necessary encryption and the difficult signature generation. To understand the responses
of the web services I examined the JavaScript Object Notation (JSON). Most of the social net-
works use JSON for data representation of responses. With the knowledge about JSON, I was
able to pursue an idea about transformation of JSON response into a domain specific language.

The idea for the Json2Ontology tool, described in Chapter 5, was born in Linz during a project

83

meeting. I thought that it would be interesting to create a system which analyzes the response
of the API and generate a code for further usage. This THU ontology code was used to describe
the core ontology of TheHiddenU and for generating the corresponding Java classes. With a few
extensions, I could use this code as output of my tool. Another good reason to develop a tool
like this was the fast moving development of social networks and the bad documentation. Not
every element which was responded was also documented. My interests were not on the values
of a social networker, but rather on the data structure of the response. The values only were used
to detect the data type of the data element. The first transformation rules were to create a class
out of a JSON object with the attributes out of the object elements. Because of the big scope
and the good preconditions of Facebook, I decide to use Facebook as my test platform. With
oAuth 2.0 it was easy to deal with access tokens for the data access. Another advantage was that
Facebook supply metadata information about relations of the requested object which can be used
for navigation. I started an my own user object and navigated through related objects, accessed
via a standard request URL concatenated with the ID of the object and the information about
the connections. This ended in an aborted test run with more than 3000 requests to Facebook.
With the possibility to configure the maximum extraction level, this could be shortened to a run
with more than 1000 requests, 443 classes and 1811 attributes, which were extracted out of my
own user as a starting point. This amount of elements is not direct comparable with the classes
and elements of a class diagram, because the JSON response not only supply a relation but give
information about the related class, which I called InlineClass. Simple relations were detected
as InlineObjects. The amount of extracted elements strongly depend on the authorized user. If
there are just a few attributes and relations responded by the API, the tool wont produce a good
ontology. The navigation from one object to another object is one of the most important tasks,
where a lot of improvements could be done in future work. I tested the tool with the other social
networks Twitter and GooglePlus with good basic results but with limitations with the naviga-
tion because of the missing standard request URL and the leak of information about connections.
LinkedIn was not applicable because developers must specify a so called field selector, where
all desired attributes must be listed. With this barrier, unknown elements can not be extracted
and the navigation would be difficult. In Chapter 6 I evaluated the tool against the information
from the documentation of the social networks of Chapter 6. With the comparison I noticed a
lot of possibilities to enhance the basic features of the tool in future work.

8.2 Future Work

A tool like Json2Ontology is much more complex than I thought at the beginning of the work. To
read a JSON object, create the corresponding classes and attributes is well done by the tool. The
basic data types of the attributes like String or Integer can be detected by basic java features.

Enumerations. To detect enumerations an heuristic analysis of the responded values of at-
tributes must be done. The question is, what is a good indicator for an enumeration? Besides
the saved information about the data structure, the values of the attributes must be saved and
analyzed. Therefore, a lot of data samples are required to make a detection of an enumeration.
A problem could be that free text values in social networks may contain same values but are

84

free text. Another aspect is, that a detected enumeration may contain more valid values than
extracted and these missing values may be needed in use cases like in TheHiddenU [16]. To get
more data samples and enhance the quality of the result, I will come to another nice feature in
the future.

Navigation. To enhance the outreach of the tool, the navigation is very important. Some social
networks like Facebook provide a good basis to navigate from one start point to other objects
because of the connection values in the metadata of a JSON object, which hint that there is a
possibility to navigate, or the standard request URL. In other social networks it is more com-
plicated to navigate and so there always are possible enhancements or changes to make the tool
more generic.

Ontology Updates. At the moment a new ontology code is generated at each run of the tool. As
described in the evaluation of the tool (Chapter 6), the result depends on the authenticated user
who start the tool. The perfect case will be an user, who had set all fields in the profile because
we cannot assume that the REST web service respond all possible attributes, even if they are
not set by the user. A possible feature will be that a saved ontology will be used in a new run
with another user, extended by new attributes, relations or classes which were responded by the
web service. Different users have different data in their profiles. Every run with a new user will
make the resulting ontology more complete. A important task is how to handle missing elements
and detect if they are just missing in the current response or missing because of data structure
updates of the social network or web service provider.

Ontology Updates on the Fly. For projects like TheHiddenU [16], where hopefully a lot of
users will take the advantage of the platform, a lot of requests will be sent to web services
because the data is needed for profiling. Besides the profiling, the responded data could be ana-
lyzed like in Json2Ontology to make ontology updates as described before on the fly. So, every
user will enhance the ontology.

Java Generation on the Fly. Together with the updates of the ontology while profiling, the java
class generation is a possible feature. Like generating ontology code, a java code generation
function will reduce time and increase the amount of accessible data.

Class Diagram Generator. With class diagrams we can enhance the understanding for new
collaborators with minimal knowledge about a special data structure or social network. In my
thesis it was hard work to create class diagrams, especially in such huge social networks like
Facebook. An automatic generation of class diagrams will be a nice feature to keep the class
diagrams up to date, because of frequently data structure changes. The most important thing is
to keep in mind that the result of the JSON response analysis is not the same es the information
which is used in class diagrams. JSON responses have much more elements, because of inline
classes which are separate classes but responded inside another class or relations, which are re-
sponded as inline objects with a few basic information about the related class. This elements
must be cleaned before generating class diagrams to keep the diagrams small and simple.

85

Web Platform. To make it possible to incent users which might help creating a better ontology,
a web platform or application will be a good additional feature, where the user can grant the
permission to access the data of a specific social network and provide the data for data structure
analysis. The developed Json2Ontology prototype is command line based and so just for skilled
users.

86

List of Abbreviations

API Application Programming Interface

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

SMS Short Message Service

SSL Secure Sockets Layer

THU TheHiddenU Project

UML Unified Modeling Language

URL Uniform Resource Locator

XML Extensible Markup Language

87

List of Figures

1.1 Implemetation: THU Adaptor and Json2Ontology tool 3

3.1 Social Networks: Package Overview . 11
3.2 Facebook User Private . 13
3.3 Facebook User Business . 16
3.4 Facebook User Media . 18
3.5 Facebook User System . 19
3.6 Facebook User Fun . 20
3.7 Facebook Album and Photo . 21
3.8 Facebook Application . 23
3.9 Facebook Checkin . 24
3.10 Facebook Event . 25
3.11 Facebook Group . 26
3.12 Facebook Link . 27
3.13 Facebook Note . 28
3.14 Facebook Order . 29
3.15 Facebook Page . 31
3.16 Facebook Post . 32
3.17 Facebook Question . 32
3.18 Facebook Status . 34
3.19 LinkedIn User Private . 36
3.20 LinkedIn User Business . 37
3.21 LinkedIn User Media . 38
3.22 LinkedIn Group . 39
3.23 Twitter User Private . 42
3.24 Twitter User Media . 43
3.25 Twitter User System . 44
3.26 Twitter Trend . 45
3.27 Google+ User Private . 47
3.28 Google+ User Business . 48
3.29 Google+ User Media . 49
3.30 Google+ User Activity . 50

88

4.1 JSON Class Diagram . 53
4.2 . 55
4.3 oAuth 2.0 Flow, springsource.org . 56

5.1 Class diagram: THU Ontology Language . 59
5.2 Knowledge Extraction . 62

6.1 Impact of the maximum level setting, maximum Array Depth = 4 74

89

List of Tables

2.1 Social Networks in a broader sense . 6

3.2 Autocomplete List: Facebook User Private . 15
3.3 Autocomplete List: Facebook User Business . 16

6.1 Evaluation Facebook: Configuration Test #1 . 73
6.2 Evaluation Facebook: Configuration Test #2 . 73
6.3 Evaluation Facebook: Configuration test #3 . 74
6.4 Evaluation Facebook: Configuration test #4, final Statistics 75
6.5 Evaluation Facebook: Result . 75
6.6 Start Points of Twitter Evaluation Run . 77
6.7 Evaluation Twitter: final Configuration, final Statistics 77
6.8 Evaluation GooglePlus: final Configuration, final Statistics 78
6.9 Evaluation GooglePlus: Result . 78

90

Listings

4.1 JSON Example . 53
5.1 THU Ontology Language: Default Declarations 60
5.2 THU Ontology Language: Ontology specific Declarations 61
5.3 JSON Response: Attributes of a Facebook User object 64
5.4 THU OntologyCode: Class definition of a Facebook User object 64
5.5 JSON Response: Attributes of a Facebook User object 64
5.6 THU OntologyCode: Attributes of a Facebook User object 64
5.7 JSON Response: Location Attribute (InlineClass) of a Facebook Page object . . 65
5.8 THU OntologyCode: Location Attribute (InlineClass) of a Facebook Page object 65
5.9 JSON Response: Hometown Attribute (InlineObject) of a Facebook User object 66
5.10 THU OntologyCode: Hometown Attribute (InlineObject) of a Facebook User

object . 66
5.11 THU OntologyCode: Education Classes InlineClass with InlineObject 67
5.12 JSON Response: Metadata of a Facebook User object 68
5.13 THU Ontology Code: Connection of a Facebook User object 68
5.14 THU Ontology Code: Description of Elements of a Facebook User object . . . 69
5.15 Example Statistics of the Json2Ontology Tool 70

91

Bibliography

[1] IBM Alex Rodriguez. Restful web services: The basics. http://www.ibm.com/
developerworks/webservices/library/ws-restful/. [Online; accessed
10-November-2011].

[2] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and
Michael Grossniklaus. Continuous queries and real-time analysis of social semantic data
with c-sparql. In SDoW2009, volume 520 of CEUR Workshop Proceedings. CEUR-
WS.org, 2009. online http://ceur-ws.org/Vol-520/paper02.pdf.

[3] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and Francois Yergeau. W3c:
Extensible markup language (xml) 1.0 (fifth edition). http://www.w3.org/TR/
2008/REC-xml-20081126/, 2008. [Online; accessed 20-November-2011].

[4] The Nielsen Company. Global faces and networked places - a nielsen report on social
networkings new global fingerprint. http://blog.nielsen.com/nielsenwire/
wp-content/uploads/2009/03/nielsen/_globalfaces/_mar09.pdf,
2009. [Online; accessed 11-July-2011].

[5] D. Crockford. The application/json media type for javascript object notation (json), request
for comments: 4627. http://tools.ietf.org/html/rfc4627, 2006. [Online;
accessed 20-November-2011].

[6] AnHai Doan and Alon Y. Halevy. Semantic integration research in the database commu-
nity: A brief survey. AI Magazine, 26(1):83–94, 2005.

[7] Jim Dolwick. ’The Social’ and Beyond: Introducing Actor-Network Theory. Journal of
Maritime Archaeology, 4(1):21–49, June 2009.

[8] Anja Ebersbach, Markus Glaser, and Richard Heigl. Wiki : Web Collaboration. Springer,
November 2005.

[9] Roy T. Fielding. Architectural styles and the design of network-based software architec-
tures. PhD thesis, University of California, Irvine, Irvine - Irvine, CA 92697, USA, 2000.

[10] Object Management Group. Uml specification: Omg unified modeling language (omg
uml). http://www.omg.org/spec/UML/2.3/Superstructure/PDF/. [On-
line; accessed 21-October-2011].

93

http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://blog.nielsen.com/nielsenwire/wp-content/uploads/2009/03/nielsen/_globalfaces/_mar09.pdf
http://blog.nielsen.com/nielsenwire/wp-content/uploads/2009/03/nielsen/_globalfaces/_mar09.pdf
http://tools.ietf.org/html/rfc4627
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

[11] Laura M. Haas. Beauty and the beast: The theory and practice of information integration.
In 11th Int. Conf. on Database Theory (ICDT’07), 2007.

[12] E. Hammer-Lahav. The oauth 1.0 protocol, request for comments: 5849. http:
//tools.ietf.org/html/rfc5849, 2010. [Online; accessed 20-November-2011].

[13] E. Hammer-Lahav, D. Recordon, and Hardt D. The oauth 2.0 authoriza-
tion protocol, draft-ietf-oauth-v2-22. http://tools.ietf.org/html/
draft-ietf-oauth-v2-22, 2011. [Online; accessed 20-November-2011].

[14] Javier L. Izquierdo, Frédéric Jouault, Jordi Cabot, and Jesús G. Molina. API2MoL: Au-
tomating the building of bridges between APIs and Model-Driven Engineering. Informa-
tion and Software Technology, October 2011.

[15] Javier Luis Canovas Izquierdo, Frederic Jouault, Jordi Cabot, and Jesus Garcia Molina.
Api2mol: Automating the building of bridges between apis and model-driven engineering.
Information and Software Technology, (0):–, 2011.

[16] Gerti Kappel, Johannes Schönböck, Manuel Wimmer, Gabriele Kotsis, Angelika Kusel,
Birgit Pröll, Werner Retschitzegger, Wieland Schwinger, and Stephan Lechner. Thehid-
denu - a social nexus for privacy-assured personalisation brokerage. In Proceedings of the
12th International Conference of Enterprise Information Systems (ICEIS’2010). INSTICC
Press, 2010.

[17] E. Kapsammer, S. Mitsch, B. Pröll, W. Retschnitzegger, W. Schwinger, M. Wimmer, and
M. Wischenbart. A first step towards a conceptual reference model for comparing social
user profiles. In UWeb 2011 International Workshop at ESWC 2011 on User Profile Data
on the Social Semantic Web, Heraklion, Crete, Greece, 2011.

[18] J.Mogul H.Frystyk L.Masinter P.Leach T.Berners-Lee R.Fielding, J.Gettys. W3c: Hyper-
text transfer protocol – http/1.1, request for comments: 2616. http://www.w3.org/
Protocols/rfc2616/rfc2616.html, 1999. [Online; accessed 20-November-
2011].

[19] Nan C. Shu, Barron C. Housel, Robert W. Taylor, Sakti P. Ghosh, and Vincent Y. Lum.
EXPRESS: A Data EXtraction, Processing, amd REStructuring System. ACM Trans.
Database Syst., 2(2):134–174, 1977.

[20] Jenna Wortham. After 10 years of blogs, the future’s brighter than ever.
http://www.wired.com/entertainment/theweb/news/2007/12/blog_
anniversary, 2007. [Online; accessed 19-October-2011].

94

http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.wired.com/entertainment/theweb/news/2007/12/blog_anniversary
http://www.wired.com/entertainment/theweb/news/2007/12/blog_anniversary

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Social Networks
	History
	Definitions
	Features and Characteristics

	Survey on selected Social Networks
	Facebook
	LinkedIn
	Twitter
	Google+

	Accessing Social Data
	REST
	JavaScript Object Notation (JSON)
	Authentication and Authorization

	Json2Ontology Tool
	TheHiddenU Ontology Language
	Implementation

	Evaluation
	Facebook
	LinkedIn
	Twitter
	Google Plus

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work

	List of Abbreviations
	List of Figures
	List of Tables
	Listings
	Bibliography

