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Abstract

The aim of this work is to derive an attitude control system for a nanosatellite that
stabilizes a defined orientation with respect to the Earth. The work is part of the CubeSat
Pegasus project of the TU Wien Space Team for the international QB50 mission.
The CubeSat Pegasus is built with commercial off-the-shelf hardware and uses a set of
magnetic coils to generate a control torque utilizing the Earth’s magnetic field. This
actuation principle results in an underactuated mechanical system, because the generated
torque is restricted to be perpendicular to the local magnetic field.
A mathematical framework including a general model describing the attitude dynamics
of a rigid spacecraft is derived. A general formalism for satellite trajectory planning is
presented and simplified for the desired task. The environment in the altitude of the
satellite’s orbit is described using mathematical models of the Earth’s magnetic field, the
Sun position, and disturbance torques. The satellite’s orientation is determined using
measurements of the Earth’s magnetic field and the Sun’s position in an Extended Kalman
Filter design.
In order to achieve the given requirements while considering the hardware limitations, a
sequential control strategy using two different control laws is developed. In a first control
phase, the high angular velocity of the satellite at tip-off is decreased without considering
the attitude. When the angular velocities get small enough, a PD control law is applied to
stabilize the satellite’s attitude at a pre-calculated trajectory. The stability of the control
strategy is proven, using Lyapunov methods and Khalil’s averaging theory. Thereby,
almost global stability of the rigid spacecraft is shown.
The presented theoretical results are supported with simulations of a realistic case study
including expected measurement errors. The simulation results show that the given
requirements are fulfilled and a realization of the project is possible.
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Kurzzusammenfassung

Die vorliegende Arbeit befasst sich mit dem Problem der Lageregelung eines Nanosatelli-
ten. Dieser soll in einer definierten Orientierung in Bezug zur Erde stabilisiert werden.
Die Arbeit wurde im Zuge des CubeSat Pegasus Projektes des TU Wien Space Teams
durchgeführt und soll in der internationalen QB50 Mission zum Einsatz kommen.
Der CubeSat Pegasus Satellit ist aus Standard-Hardware aufgebaut und mit mehreren
Luftspulen ausgestattet, um durch Interaktion mit dem Erdmagnetfeld ein gewünschtes
Drehmoment zu erzeugen. Diese Art der Aktuierung resultiert in einem unteraktuierten
System, da nur Momente orthogonal zum lokalen Magnetfeld erzeugt werden können.
Ein allgemeines mathematisches Modell zur Beschreibung der rotatorischen Bewegung
des Satelliten wird hergeleitet. Um die definierte Orientierung zu berechnen, wird eine
allgemeine Methode zur Trajektorienplanung für Satelliten auf das gegebene Problem
angewandt. Die Umgebungsbedingungen in der Flughöhe des Satelliten werden mit Hilfe
mathematischer Modelle des Erdmagnetfeldes, der Sonnenposition und erwarteten Stö-
rungen hinreichend genau abgebildet. Die Orientierung des Satelliten wird mit Hilfe von
Messungen des Erdmagnetfeldes und der Sonnenposition mittels Extended Kalman Filter
geschätzt.
Um die Anforderungen an die Regelung zu erfüllen, wurde unter Berücksichtigung der
bestehenden Hardwarelimitierungen eine sequentielle Regelungsstrategie bestehend aus
zwei unabhängigen Regelgesetzen entwickelt. Zunächst wird mit einem einfachen Regel-
gesetz die hohe Winkelgeschwindigkeit des Satelliten nach dem Abwurf reduziert ohne
dabei die aktuelle Lage zu berücksichtigen. Sobald die Winkelgeschwindigkeiten einen
bestimmten Grenzwert unterschreiten, wird ein PD Regelgesetz zur Stabilisierung der
Fluglage verwendet. Die Stabilität der Regelgesetze wird mittels Lyapunov Methoden
und der Averaging Theory nach Khalil überprüft. Auf diese Weise kann die sogennante
almost global stability nachgewiesen werden.
Die theoretischen Ergebnisse werden mit einer realitätsnahen Simulation unter Berück-
sichtigung von fehlerhaften Messungen und Rauschen validiert. Die Simulationsergebnisse
zeigen, dass die gestellten Anforderungen erfüllt werden und das Projekt erfolgreich
umgesetzt werden kann.
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1 Introduction

Satellites have a special image in human society. Not only in movies, books and comics the
topic is omnipresent. It is a huge ambition for young researchers to bring their work out
in the space and help to explore the big, dark unknown. This is also the very cornerstone
of this work. Deriving an attitude control system for a nanosatellite, built by students of
the TU Wien in their spare time, is an important part in the realization of the CubeSat
Pegasus project [1].
The fascination is partly a consequence of the fact that aerospace is still a young research
area. Everything started in the 1950’s with the so called space race between the USSR
and the USA [2]. Three important first missions deserve a short mention:

• Sputnik 1 was the first successfully launched satellite in general. Launched in 1957
by the USSR, it had a mass of 84 kg, was operating in a Low Earth Orbit, and had
a lifetime of 92 days.

• Explorer 1 was the first successfully launched satellite by the USA in 1958. It had a
mass of 14 kg, was operating in a Medium Earth Orbit, and had a lifetime of more
than 12 years.

• Vanguard 1 was the first successfully launched satellite of the nanosatellite class
(mass of 1 kg to 10 kg) by the USA in 1958. It had a mass of 1.5 kg, was operating
in a Medium Earth Orbit, and its lifetime can not be specified since it is still in the
orbit, although not functioning anymore1.

Unlike today it was not the intention to build small satellites, it was more an unwanted side
effect of limited launching hardware. The USSR handled this issue better and also won
the second big challenge in the early space race, to accomplish the first human spaceflight
in history with Yuri Gagarin and the spacecraft Costok 3KA. Rising research activities
on both sides were the result of these early challenges between the USA and the USSR.
With bigger dimensions, better launching equipment, special aerospace components and
high financial effort many significant missions were realized (cf. [2]). Applications like
TV-satellites or satellite positioning systems are popular developments of this era and
used nowadays without much thought.
The regained interest in nanosatellites since around millennium (cf. [3]) is first of all an
effect of the possibility to realize relatively inexpensive missions in a relatively short time,
giving young research teams and developing countries the possibilities to explore the space
on their own.
Modern applications for nanosatellites vary widely. Due to their small dimensions it is

1Vanguard 1 was also the first solar powered satellite and one of the major mission outcomes was the
insight that the assumed atmospheric models were not sufficient.

1



1 Introduction 1.1 Task description 2

possible to operate in much lower altitudes than big scale satellites. The so called Low
Earth Orbit, defined by altitudes of 200 km to 2000 km is often the area of application for
Nanosatellites [3]. Lots of satellite programs focus on observing the Earth’s atmosphere2 in
terms of weather phenomena and air pollution. Other ideas for nanosatellite applications
are worldwide internet access [4] or a space science platform to give scientists the chance to
perform their experiments in a cheap and uncomplicated way [5]. Many other commercial
missions are planned in the coming years, not to mention the military interest.

1.1 Task description
The aim of this work is to develop an attitude determination and control system (ADCS)
for the nanosatellite class using only magnetic actuation. The ADCS is developed for the
use in a standard double CubeSat [6] as part of the CubeSat QB50 program [7] and is
meant to be implemented in the CubeSat Pegasus [1] satellite built by the TU Wien Space
Team.
The considered satellite is presented in Figure 1.1. The dimensions of the satellite body
are 227 mm× 100 mm× 100 mm with a total mass of 1.622 kg.

Figure 1.1: CubeSat Pegasus with expanded antennas. (Reprinted with the permission of
the Author [8])

A control strategy has to be developed that stabilizes the satellite from an arbitrary
launch attitude and high angular velocities after the satellite is released from the launching
vehicle. The detaching of the satellite from the launching vehicle is referred to as tip-off
throughout this thesis. Operating in a Low Earth Orbit the satellite should finally achieve
a defined orientation with respect to the Earth.

2The Earth’s thermosphere is located around 80 km to 500 km
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A pointing accuracy of ±10◦ is demanded after a maximum regulation time of 3 days.
These requirements are defined for the QB50 mission orbit, which is a Sun-synchronous
circular orbit with an altitude of 450 km and an inclination of 98°.
To control the satellite in space, magnetic actuators are used to generate a torque by
interacting with the local Earth’s magnetic field. One further task of this work is to give
design suggestions for the magnetic actuators from the control engineer’s point of view.
The satellite is furthermore equipped with gyroscopes to measure the satellite’s angular
velocity, magnetometers to measure the Earth’s magnetic field and photo-diodes on each
surface to determine the direction of the incoming Sunlight.

1.2 Literature review
Magnetic attitude control of spacecrafts was of research interest from the beginning on.
One of the first publications about magnetic attitude control was written by White et
al. [9] in a feasibility study in 1961, where two-coil and three-coil configurations are
investigated. Besides the research interest in magnetic control, inertia wheels were often
used and already handled precisely in the early days [10]. Some satellites were also
launched without attitude control at all3.

The first applications of magnetic torquers were spinning-stabilized satellites. Shigehara
developed a control law where the polarity of a fixed magnetic dipole is switched [11].
Camillo investigated the application of momentum unloading of reaction wheels using
magnetic torquers [12]. Magnetic torquers are also used as additional actuators for gravity
gradient stabilized satellites to improve their performance and to give the possibility of
controlling the yaw angle as well. Martel et al. were one of the first to make use of such a
control, achieving enhanced performance of gravity gradient stabilized satellites [13].
Wen and Kreutz-Delgado [14], Cavallo [15], and Egeland and Godhavn [16] published
detailed works on the problem of attitude control for fully actuated satellites. Wen and
Kreutz-Delgado developed PD-like feedback controllers with optional feedforward terms
in singularity-free quaternion formulation. Using Lyapunov methods, global asymptotic
stability of the closed-loop system was shown. Cavallo presented a sliding manifold
approach and formulated a PD feedback controller. Special attention was given to
robustness since their control law was implemented in the CARINA spacecraft using
thrusters as actuators. Egeland and Godhavn use passivity-based control laws known
from robotic manipulators and adapted them to formulate an adaptive attitude control
law for satellite control and show global convergence of the tracking error.
The main disadvantage of magnetic torquers is that the control torque can only be

generated perpendicular to the local Earth’s magnetic field. This issue leads to local
underactuation of the spacecraft. The problem of underactuated satellite systems was
investigated by Byrnes and Isidori [17]. For a spacecraft with only two thruster jets
(failure case), they used nonlinear feedback to develop a control law that stabilizes the
system about an attractor (in this case the principle axis of the failed jet). Krishnan
[18] investigated the same problem. His main idea was to switch through a sequence of

3e. g. Sputnik 1 was launched with no attitude control at all, equipped with antennas with spherical
radiation pattern.



1 Introduction 1.2 Literature review 4

maneuvers and use locally stable controllers to construct a nonlinear discontinuous control
law to stabilize the satellite. Later, the work of Reyhanoglu et al. [19] gave impact to the
topic of underactuated systems and they confirmed Byrnes’ and Isidori’s statement that
the underactuated spacecraft can not be asymptotically stabilized using a time-invariant
continuous feedback controller.
In the case of magnetic actuation, the situation is different. Whereas the mentioned

works investigate a constant underactuation, in the case of magnetic actuation a time-
varying underactuation is given. Bhat [20] studied the controllability of magnetic actuated
spacecrafts using nonlinear control theory. Bhat’s work shows that the attitude dynamics
of a magnetic actuated spacecraft in a dipole approximation of the Earth’s magnetic field
are controllable if the orbital plane does not coincide with the geomagnetic equatorial
plane.
Musser and Ebert [21] were one of the first to develop an attitude control strategy

for satellites with magnetic actuation only and without passive stabilization like gravity
gradient. The main result of their work is a time-varying LQR law which ensures
exponential stability of a simplified, linearized system.
Wang and Shtessel [22] formulated a nonlinear control law for satellites with magnetic
actuation only. They use a backstepping concept proposed by Krstic et al. [23] and show
local stability using Krasovskii-LaSalle and Floquet’s theorem for time-periodic systems.
Wisniewski published a nonlinear time-varying control law to globally stabilize a gravity
gradient satellite [24]. First, Wisniewski derives a controller that results in four stable
equilibria (because of the gravity gradient), using methods for periodic systems and
assuming a periodic variation of the magnetic field. A nonlinear control law is given
to drive the system to the desired equilibrium. The final control strategy shows global
asymptotic closed-loop stability for the assumed time periodic magnetic field.
Lovera and Astolfi investigated the magnetic actuated spacecraft using Lyapunov

methods and Khalil’s averaging theory [25] in [26]. Based on the averaging theory the
controllability on average is proven. Using a PD control law, they show conditions yielding
to an attractive set of bounded trajectories. With the proof of local exponential stability
for all trajectories starting in this attractive set, almost global asymptotic stability is
given.
Recent work of Calloni [27] and Zanchettin [28] use methods of robust design for magnetic
actuated spacecrafts. Calloni developed a robust controller using linear time-periodic
models and linear parameter-varying models, whereas Zanchettin proposed a H∞ controller
design also using linear time-periodic models.
The work of Wood et al. [29] uses model predictive control to stabilize the magnetic
actuated spacecraft. They also use a linear approximation of the satellite dynamics and
achieve improved performance compared to PD control. Stability is proven with and
without terminal costs in the design and Floquet analysis.
Lizaralde and Wen [30] pursued another approach, assuming no angular velocity mea-
surement is provided. They suggest a nonlinear filter for the quaternion to extract the
velocity information. This filter is designed utilizing the passivity of the system. Since
they do not assume magnetic actuation and therefore have a fully actuated system, they
are able to show global asymptotic stability.

Due to limited project budget, CubeSat Pegasus is built using commercial off-the-shelf
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microprocessors instead of special aerospace hardware. Therefore, regular software crashes
and reboots are expected due to solar radiation. Because of this drawback a control law
is chosen that does not depend on information from the past and can be computed in
short time rather than e. g. model predictive control. Because of this issue and having
almost global stability, the PD control law presented in the work of Lovera and Astolfi
[26] is used in this work.

Due to rather high angular velocities after tip-off, a simple control law without need of
attitude information is used to detumble the satellite. This control law follows the work
presented in [31] and is adapted to perform in a time-optimal manner.
Sensors for a direct measurement of the spacecraft’s orientation (e. g. star trackers)

are complex and expensive. Therefore, estimating the attitude using simpler vector
measurements was and is an ongoing research area.

The survey article of Crassidis and Markley [32] gives insight into the different estimation
methods. In practice, two main ideas for estimating the attitude using vector measurements
can be pointed out. First, the well known Extended Kalman Filter (EKF) [33] and
second, the static quaternion estimator (QUEST) [34, 35]. In [36], these two approaches
are compared in detail, using measurements of the magnetic field and the Sun vector.
Generally, the EKF shows better performance and the ability to estimate additional slowly
varying parameters like the gyroscope bias. On the contrary, the QUEST has advantages
concerning computational effort and power consumption.
In this work, an Extended Kalman Filter design is applied, following [37]. The choice

for a dynamic estimation method emerges from the better performance under the presence
of noise and the ability to give an estimation of the measurement errors.

The task of attitude control of nanosatellites is rarely solved using magnetic actuation
only and having only simple measurements to determine the attitude. The proposed
strategy of handling the lack of measurements while achieving the required performance
represents a cheap and new solution for this task.

1.3 Outline of the thesis
The thesis is structured as follows: In Chapter 2, a detailed mathematical model for
the satellite together with the actuator design and sensor models will be given. The
environmental models are investigated and an evaluation of disturbance torques is given.
The basic concepts of orbital dynamics are explained and the QB50 orbit is calculated.
Chapter 3 covers the main algorithms and methods used for attitude estimation and
control. Arguments supporting the choice of the strategy are given for each algorithm
and the stability of the control laws is proven.
The resulting statements are verified considering the QB50 requirements via simulations.
The implementation of the algorithms and simulation results are given in Chapter 4.
A summary and outlook chapter with suggestions of improvements and ideas for future
work completes the thesis.
In Appendix A, some basic quaternion mathematics are given for a better comprehension
of the calculations in Chapter 2 and Chapter 3.



2 Modeling

In this chapter, the required mathematical models are derived. First the attitude kine-
matics and dynamics of a rigid body are described. In Section 2.2, a general introduction
to the Keplerian elements and orbital dynamics is given and applied to a desired orbit.
The spacecraft’s environment in terms of the Earth’s magnetic field, the Sun position and
environmental disturbances is described in Section 2.3. In the last section of this chapter,
the CubeSat Pegasus sensor and actuator hardware is investigated and the used models
are given.
Throughout this work, four Cartesian coordinate systems are used (cf. [38], [39]). The

Earth Centered Inertial (ECI) frame denoted by the subscript I, the Earth Centered
Earth Fixed (ECEF) frame F , the orbital frame O and the body fixed frame B. These
reference frames are shown in Figure 2.1.

zI , zF

xI

xF

yI

yF

yO

xO

zO

zB

xB

yB

αgmst

θ

φ

vernal equinox

Figure 2.1: Definition of the used reference frames.

The ECI frame has its origin in the Earth’s center. The xI -axis is pointing towards the

6
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vernal equinox direction1, the zI -axis coincides with the Earth’s rotational axis, pointing
northwards and the yI -axis completes the right-handed Cartesian coordinate system. This
frame is assumed to be without rotation or translation and represents an inertial reference
frame.
Related to the ECI reference frame the ECEF frame is defined. The origin and the zF -axis
of this frame coincide with the origin and the zI -axis of the ECI frame, but the xF -axis of
the ECEF frame is pointing from the Earth’s center to the prime meridian (Greenwich,
UK). The yF -axis completes the right-handed triad.
A transformation between the ECI and ECEF reference frame is a rotation around the
common zI -axis, about the Greenwich Mean Sideral Time (gmst). The Greenwich Mean
Sideral Time is defined as the angle of the vernal equinox at the prime meridian at
Greenwich, UK. This angle between the xI -axis and the xF -axis expressed in the inertial
frame is denoted by αgmst in Figure 2.1.
The orbital frame has its origin in the satellite’s center of gravity. The xO-axis is pointing
into the desired flight direction, i. e. tangential to the orbit, the zO-axis is pointing towards
the Earth’s center. In the spacecraft context, this zO-direction is referred to as Nadir.
The yO-axis is perpendicular to the orbital plane and completes the right-handed triad.
The origin of the body frame is located in the center of gravity of the satellite. The
xB-axis points to the anterior quadratic surface, the zB-axis points to the rectangular
surface which is meant to face the Earth and the yB-axis completes the right-handed triad.
The body frame is visualized in Figure 2.2.

1The vernal equinox is the intersection of the Earth’s equatorial plane with the plane of the Earth’s orbit
around the Sun, in the direction of the Sun’s position relative to the Earth on the first day of spring
(cf. [31]).
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xB

yB

zB

Figure 2.2: The defined body reference frame of CubeSat Pegasus.

2.1 Satellite model
The quaternion representation of the attitude is chosen to avoid singularities. Quaternions
constitute the minimal representation free from singularities. Furthermore, they have
advantages concerning computational effort especially when it comes to re-normalization
which is a crucial point for this work, e. g. in the attitude estimation. A comprehensive
introduction to the theory behind quaternion algebra is given in [40] and [41], the most
important basics are summarized in Appendix A of this work.

2.1.1 Quaternion kinematics
The kinematics of different attitude representations, including the quaternion representa-
tion is described in [31]. Every rotation or sequence of rotations can be described by a
rotation axis e and a rotation angle ϑ about this axis, often combined to the axis-angle
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vector ϑ = ϑe. With these definitions, the rotation quaternion2 is defined as

q (e, ϑ) =




q0
q1
q2
q3


 =

[
cos ϑ2
e sin ϑ

2

]
(2.1a)

ϑe = ϑ , (2.1b)

with ‖e‖ = 1. The definition of the quaternion (2.1) satisfies the constraint ‖q‖ = 1 and
hence represents a unit quaternion. Rotation quaternions are free of singularities but not
unique, since a three-dimensional operation is represented by a four-dimensional quantity.
The quaternion q (e, ϑ) describes the same rotation as q (−e,−ϑ).

Defining the quaternion product ⊗ as described in (A.3) allows to calculate sequences
of rotations in the same order as it is done using rotation matrices (cf. [42]).
With the time derivative of the rotation quaternion, defined as

dq(t)
dt = lim

∆t→0

q(t+ ∆t)− q(t)
∆t (2.2)

the quaternion kinematic is derived.
The rotation described by q(t+ ∆t) is rewritten in a sequential representation using the
matrix exponential exp () defined in (A.7), giving

q(t+ ∆t) = ∆q(∆t)⊗ q(t) = [∆q(∆t)⊗] q(t) = exp
([[

0
∆ϑ
2

]
⊗
])

q(t) , (2.3a)

where [ ⊗] is the matrix representation of the quaternion product as defined in (A.3b).
A linear Taylor approximation of the matrix exponential leads to

q(t+ ∆t) ≈ q(t) +
[[

0
∆ϑ
2

]
⊗
]

q(t) . (2.3b)

Inserting (2.3b) into (2.2) yields

dq(t)
dt = lim

∆t→0

[[
0

∆ϑ
2

]
⊗
]

q(t) +���q(t)−���q(t)

∆t . (2.3c)

Defining the angular velocity ω as

ω (t) = lim
∆t→0

∆ϑ
∆t , (2.4)

and since the quaternion multiplication [ ⊗] is associative (cf. [40]), the limit of (2.2)
follows as

dq(t)
dt = lim

∆t→0

1
2

[[
0

∆ϑ
∆t

]
⊗
]

q(t) = 1
2

[[
0
ω(t)

]
⊗
]

q(t) . (2.5)

2Quaternions in general are four-dimensional vectors together with the definition of the quaternion
multiplication. In this work, quaternions are solely used as unit quaternions to represent rotations.
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Finally, the compact formulation

q̇(t) = 1
2

[[
0
ω(t)

]
⊗
]

q(t) , (2.6)

where ẋ = dx
dt holds, describes the evolution of the quaternion with time, the quaternion

kinematics.

2.1.2 Body dynamics
Euler’s second law of rigid body motion defines the dynamic relation between external
torques and change of angular momentum with time and takes the form

dlI
dt = τ I (2.7a)

lI = JIωIBI , (2.7b)

where lI is the angular momentum expressed in some inertial frame, τ I is the sum of
torques acting on the rigid body, JI is the body’s moment of inertia about the body’s
center of mass and ωIBI the body’s angular velocity expressed in the inertial reference
frame. Performing the time derivative of (2.7b) results in

τ I = d
dt
(
JIωIBI

)
= J̇IωIBI + JIω̇IBI . (2.8)

To express the quantities in the body frame, the following relations are used

JI = RT
BIJBRBI (2.9a)

ωIBI = RT
BIω

B
BI = RT

BIωBI (2.9b)
τ I = RT

BIτB , (2.9c)

where JB is constant for a rigid body and represents the body’s moment of inertia about
the center of mass, expressed in the body frame. As introduced in the nomenclature, ωBBI
is written in the simplified notation ωBI and the rotation matrix RBI in (2.9) represents
the rotational transformation from the inertial frame I to the body frame B.
The derivatives J̇I and ω̇IBI follow with (2.9) to

J̇I = ṘT
BIJBRBI + RT

BIJBṘBI (2.10a)
ω̇IBI = ṘT

BIωBI + RT
BIω̇BI . (2.10b)

Using (2.9) and the properties

ṘBIRT
BI = − [ωBI×] (2.11a)

[ωBI×]ωBI = 0 , (2.11b)

where [ ×] is the matrix representation of the cross product and substituting (2.10) into
(2.8) gives

τB = [ωBI×] JBωBI + JBω̇BI . (2.12)
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Reformulating terms of (2.12) yields the dynamics of a rigid body

ω̇BI = J−1
B (τB − [ωBI×] JBωBI) , (2.13a)

also known as Euler’s rotation equations.
The external torques τB can be defined as the sum of intended control torques τB,c
and unintended disturbance torques τB,d. The dynamic model (2.13a) with the distinct
torques reads as

ω̇BI = J−1
B (τB,c + τB,d − [ωBI×] JBωBI) . (2.13b)

Using the attitude kinematics in the global quaternion formulation (2.6) together with
the dynamics of a rigid body (2.13b) forms a 7-dimensional set of differential equations
describing the rotational motion of a rigid body. Defining the 7-dimensional state vector

x =
[
qBI
ωBI

]
gives the combined dynamic system of (2.6) and (2.13b)

ẋ = f (x) =




1
2

[[
0
ωBI

]
⊗
]

qBI

J−1
B (τB,c + τB,d − [ωBI×] JBωBI)


 . (2.14)

2.2 Orbital dynamics
Johannes Kepler’s laws of planetary motion (cf. [38]), stating

1. The orbit of each planet is an ellipse, with the Sun at one focus.

2. The line joining the planet and the Sun sweeps out equal areas in equal times.

3. The square of the period of a planet is proportional to the cube of its mean distance
from the Sun.

can be used to describe the motion of satellites orbiting the Earth. The common parame-
terization of a planetary respectively satellite orbit is given by the six classical Keplerian
orbital elements:

a′ semimajor axis i inclination
e eccentricity Ω right ascension of the ascending node
ν0 mean anomaly ω argument of perigee

The difference between the mean and true anomaly is presented in Figure 2.3. The
ellipse in Figure 2.3 represents the actual orbit of the spacecraft while the circle serves
as an imaginary circular orbit. The true anomaly ν is defined as the angle between the
perigee of the elliptical orbit and the position vector of the spacecraft. The mean anomaly
ν0 is the angular of an imaginary body moving in the circular orbit with the same orbital
period as the actual body in the elliptical orbit. A visualization of the Keplerian elements
is given in Figure 2.4.
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elliptical orbit

circular orbit

ν
ν0

Figure 2.3: About the difference between the true and mean anomaly.

The six Keplerian elements are combined to the parameter vector

kT =
[
a′ e ν0 i Ω ω

]
.

For given Keplerian elements k, the position of the satellite in inertial coordinates can
be expressed using a series of rotational matrices as shown in Figure 2.4 (cf. [42]). By
predicting the orbital elements over time using Kepler’s Equations, a predicted attitude is
described. In this way, a time-series of the desired attitude (trajectory) is calculated (cf.
[31]).

2.2.1 Orbit of the QB50 mission
The orbit for the QB50 mission is planned to be a Sun-synchronous circular orbit with an
altitude of 450km, eccentricity e < 0.05, and inclination i ≈ 98°. A Sun-synchronous orbit
is defined to have a fixed angle between the orbital plane and the direction of the Sun as
shown in Figure 2.5.

For the prediction of the orbit, the very small eccentricity, which has only little impact,
is neglected to reduce computational effort. This simplification results in a circular orbit
with radius rO instead of an ellipse. The mean anomaly ν0 and the true anomaly ν are
equal for a circular orbit, the argument of perigee ω is arbitrary for a circular orbit. Thus,
the argument of perigee ω is set to zero.
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ascending node

orbit

zI

xI
yI

vernal equinox

Ω

ω

i

ν

a′

r

Figure 2.4: Visualization of the defined orbital elements.

Due to the rather thin atmosphere in the orbit’s altitude, a constant velocity of the
spacecraft is assumed for the time of predicting the orbital elements.

By applying these simplifications the time dependent desired Keplerian elements k̄ (t) =[
rO 0 ν (t) i Ω (t) 0

]
are defined, where rO and i are constant parameters and the

time dependent angles are calculated as

ν (t) = ν0 + 2πt
TO

(2.15a)

Ω (t) = Ω0 + 2πt
Ttrop

, (2.15b)

with the orbital period TO and the period of a tropical year Ttrop.
According to [38] the orbital period is calculated as

TO = 2π
√
rO
µ

, (2.16)

where rO is the orbital radius (Earth’s radius rE + satellite’s altitude a) and µ is the
Earth’s gravitational parameter µ = GM with the gravitational constant G and the
Earth’s mass M .
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α

α

Figure 2.5: The definition of a Sun-synchronous orbit α = const. (not to scale).

A tropical year is the time period in which the Earth encircles the Sun once, respectively
the time between two vernal equinoxes.

The constant parameters a, i and Ω0 define the size and initial position of the circular
orbit with respect to the ECI frame. The initial anomaly ν0 defines the initial position
of the satellite on the orbit. The time dependent variable ν (t) likewise represents the
position of the satellite on the orbit at the time t. The time dependency of the right
ascension Ω (t) is used to achieve Sun-synchronization. In Figure 2.6, the initial QB50
orbit is shown.

The rotation matrix ROI (t) as a function of time, representing the desired attitude of
the satellite, follows as

ROI (t) =
(
Rz,Ω(t)Rx,iRz,ν(t)RB

)T
, (2.17a)

with the notation of basic rotations as introduced. The additional rotation matrix RB is
used to align the orbital frame with the chosen body frame and is given as

RB =




0 0 −1
1 0 0
0 −1 0


 . (2.17b)

The skew-symmetric matrix of the desired angular velocity of the satellite ωOI is
obtained by taking the time derivative of (2.17a), i. e.

[ωOI×] = −ṘOIRT
OI . (2.17c)
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zI

yI

xI

Figure 2.6: QB50 orbit, expressed in the inertial coordinate system. The red triangle
denotes the satellite’s initial position and flight direction.

With the quaternion representation qOI (ROI) of the rotation matrix and the angular
velocity ωOI the desired trajectory of the system is calculated as

xOI =
[
qOI
ωOI

]
. (2.18)

The aim of the control system is to align the states x of the dynamic system (2.14)
with the desired trajectory xOI and to stabilize the system along the trajectory.

2.3 Environment model
The attitude can be determined using at least two vector measurements and two appropriate
reference vectors as long as they are not parallel. For this purpose, mathematical models
of the Earth’s magnetic field and the Sun’s position are derived.
Known disturbance torques acting on the satellite are discussed and mathematical models
of the disturbances are given.

2.3.1 Earth’s magnetic field
Utilizing the Earth’s magnetic field for control and estimation has many advantages.
Magnetic actuators - called magnetorquers - are free of moving parts, cheap and robust.
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Magnetic field sensors - Magnetometers - are inexpensive as well, easy to implement and
if realized redundantly good accuracy is achieved. In order to reach high accuracy in
estimating the attitude, a detailed model of the Earth’s magnetic field is crucial. In this
work, the widely used and accepted International Geomagnetic Reference Field (IGRF)
model is used. The IGRF model is a spherical harmonic model of the magnetic scalar
potential of a given point in space Ψ(rO, θ, φ) expressed in the ECEF reference frame,
where rO represents the distance and (θ,φ) are the geocentric coordinates of the point
as shown in Figure 2.1. The IGRF-model is updated regularly by means of parameter
identification of various measurements (cf. [43]). The magnetic field b̄F (rO, θ, φ) follows
as the negative gradient of the magnetic scalar potential

b̄F (rO, θ, φ) = −∇Ψ(rO, θ, φ) , (2.19a)

with (∇f) (x) =
(
∂f
∂x

)T
(cf. [44]).

The model of the magnetic scalar potential Ψ used in the IGRF model is given as

Ψ (rO, θ, φ) = rE

k∑

n=1

(
rE
rO

)n+1 n∑

m=0
(gmn cos (mφ) + hmn sin (mφ))Pmn (θ) , (2.19b)

with rE being the Earth’s radius, rO the radius of the orbit (Earth’s radius rE + satellite’s
altitude a), θ the geocentric co-latitude3 and φ the geocentric longitude (cf. Figure 2.1).
The scalar k defines the order of the model, the current IGRF-model4 uses the scalar
potential (2.19b) with an order of k = 13. The coefficients gmn , hmn are Gaussian coefficients
and the scalar functions Pmn (θ) are the Schmidt quasi-normalized associated Legendre
functions (cf. [31, 43]).

To calculate the geocentric coordinates θ and φ, the satellite’s position is expressed in the
ECI reference frame using the Keplerian elements of the orbit. With the Greenwich Mean
Sideral Time the position is expressed in the ECEF frame. The geocentric coordinates θ, φ
are calculated using a coordinate transformation (cf. [31]). With the geocentric coordinates
the magnetic field b̄F (rO, θ, φ), expressed in the ECEF frame, is calculated and rotated
back to the inertial frame again using the Greenwich Mean Sideral Time, i. e.

b̄I (rO, θ, φ) = Rz,αgmstb̄F (rO, θ, φ) . (2.19c)

2.3.2 Position of the Sun
The light beams radiated by the Sun are assumed to appear parallel for the whole orbit
from the satellite’s point of view, which is reasonable thanks to the long distance in
between the Sun and the Earth and the low altitude of the satellite. Therefore, the
position of the Sun can be modeled as a single vector pointing from the Sun to the Earth’s
center, denoted as the Sun vector s in this work. To express this vector in the inertial
reference frame, the period of a tropical year Ttrop is needed. The Sun vector follows as

390° minus geocentric latitude
4version 12, December 2014
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s̄I (t) =




cos
(

2π(t−t0)
Ttrop

)

cos (εO) sin
(

2π(t−t0)
Ttrop

)

sin (εO) sin
(

2π(t−t0)
Ttrop

)


 , (2.20)

where εO is the axial tilt between the Earth’s rotational axis and the rotational axis of
the Earth’s orbit around the Sun, denoted as obliquity. For this work, the obliquity is
treated as a constant with εO = 23.5° (cf. [39]).

In Figure 2.7, the obliquity and the visualization of a tropical year is shown. The initial
time t0 is the instant of time when the Sun vector equals the vernal equinox direction.

yS

zS

xS , xI yI

zI

yI
xI

zI
εO

s

vernal equinox

Figure 2.7: Visualization of the Earth orbiting the Sun (not to scale).

2.3.3 Disturbance torques
To describe the satellite’s environment in detail, the expected disturbances acting on a
satellite in low altitudes are investigated. At low altitudes there is still a considerable
amount of the Earth’s atmosphere left, which has two effects.
First, thanks to the atmosphere the solar wind is small enough to be neglected. Secondly,
the aerodynamic torque is definitely a source of errors if not taken into account (cf. [31]).
Another known external torque is the so called gravity gradient torque τ gg arising from
the decaying gravitational field and uneven mass distribution (cf. [38]).
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Gravity gradient torque

The gravity gradient can be used as a passive stabilization (cf. [24]), e. g. for so called
tethered satellites or satellites with an attached gravity gradient boom. The reason of
gravity gradient forces is the reduction of the gravitational forces by the square of the
distance to the Earth’s center.
Designing the satellite in a way that one axis has a relatively high moment of inertia
compared to the others makes the gravity gradient effect usable. Parts of the satellite
which are closer to the Earth’s center are gravitated stronger than parts further away. As
a result of the gravity gradient stabilization the satellite will tend to align the axis with
the maximum moment of inertia vertically.
In the case of a nanosatellite, characterized by small dimensions and even mass distribution
favored, the gravity gradient torque is treated as an undesired disturbance torque.
Following the arguments in [31], thinking of a particle of mass mi at the position ri

with respect to the Earth’s center of mass, the gravitational force acting on this particle
calculates as

fi,g = mig (ri) , (2.21)

where g (r) is the local gravitational field at the position r. For the gravitational field
g (r) the assumption of a spherically symmetric vector field

g (r) = − µr
‖r‖3

(2.22)

is used, where µ is the gravitational parameter calculated as µ = GM with the gravitational
constant G and the mass of the gravitating body M , in this case the Earth’s mass. Taking
into account only variations of (2.22) up to the second order and summing up the associated
torques around the satellite’s center of mass the model of the gravity gradient torque
results in (cf. [31])

τ gg = 3 µ
r3
O

(nB × (JBnB)) (2.23a)

with nB = RBO




0
0
1


 . (2.23b)

The Nadir unit vector nB is pointing towards the center of the gravitating body, expressed
in the body frame. As before, rO denotes the orbit’s radius and JB represents the satellite’s
inertia matrix, expressed in the body frame.

Aerodynamic torque

To derive a model of the aerodynamic torques acting on the satellite, the aerodynamic
normal forces onto each face of the satellite are calculated (cf. [31]). Summing up the
resulting torques around the satellite’s center of gravity gives the total aerodynamic
torque. Due to the high velocity of the satellite in a Low Earth Orbit, the velocity of the
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atmosphere itself can be neglected and the airflow is assumed acting straight from the
direction of flight with the speed of the satellite vB. With Ai the area of the i-th face
and the angle between the surface normal and the wind direction θa,i the aerodynamic
normal force acting on this face follows as

fad,i = −1
2ρCd ‖vB‖vBAi max (cos(θa,i), 0) , (2.24)

where Cd is the aerodynamic drag coefficient and ρ the atmospheric density.
The term max (cos(θa,i), 0) is needed because only surfaces that face the wind directly are
taken into account, flow effects are neglected.
The add-up torque τ ad, generated from the forces acting on each surface of the satellite,
is then given by

τ ad =
6∑

i=1
rB,i × fad,i (2.25)

with rB,i being the vector pointing from the satellites center of gravity to the geometric
center of the ith surface.

2.4 Actuators and sensors
In the last section of this chapter, the actuators and sensors of the CubeSat Pegasus are
presented.
CubeSat Pegasus is equipped with a set of five magnetic actuators, so called magne-

torquers, giving the ability to generate any three-dimensional dipole moment m. The
magnetorquers are mounted on each rectangular surface (y,−y, z,−z) and on the anterior
quadratic surface (x), the rear quadratic surface has no magnetorquer. As stated, magne-
torquers have advantages in price and robustness but are also source of a general control
problem, namely underactuation. The applicable torque τB arises from the interaction
between the local Earth’s magnetic field bB and the generated dipole moment mB . Thus,
it is constrained to the plane perpendicular to the magnetic field bB. The calculation of
the resulting torques

τB = mB × bB , (2.26)

with × being the cross product, illustrates this fact.
The considered sensing hardware contains a 3-axis magnetometer, a 3-axis gyroscope and

solar sensors on each surface of the satellite. Using two independent vector measurements
(magnetic field b̃B and Sun vector s̃B) gives the general ability to estimate the satellite’s
attitude. The gyroscope information gives the further ability to derive dynamic filters
rather than using static methods.
The first section focuses on a general design approach for magnetorquers using static

optimization and in the second section, some widely used models for the different sensors
are presented.
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2.4.1 Magnetorquer design
For the given geometry of a rectangular magnetorquer shown in Figure 2.8, an approach for
an optimal design is derived. The magnetorquer consists of a thin copper coil manufactured
directly on a printed circuit board without any ferromagnetic core. Since the height of the
coil compared to the overall dimensions is very small, the dipole moment of the solenoid
is given as (cf. [45])

m = nAavgiem , (2.27)

where n is the number of turns, Aavg is the average area covered by the coil, and i is the
current trough the coil. The direction em of the magnetic dipole moment follows from
the right hand grip rule. The optimal values for the number of turns n and the width of

m

wt

ws

lx

ly ly,in

i

l∆

Figure 2.8: Definition of the magnetorquer dimensions.

the trace wt are asked in order to maximize the absolute value of the dipole moment m.
The dimensions lx, ly, the constant supply voltage Us, and the thickness of the circuit
board ht are known and given.

A higher number of turns n increases the total resistance Rt of the trace and therefore
decreases the maximum current i, but also increases the absolute value of the dipole
moment m. On the other hand, a wider trace wt decreases the total resistance Rt and
therefore increases the maximum current i, but limits the number of turns n due to limited
space on the circuit board.
The width of the trace wt and the space in between two traces ws are added up to
l∆ = wt + ws with ws being constant.
In order to find the optimal values (n?, w?t ) in terms of the maximal magnetic dipole
moment, a static optimization problem is formulated. First a formula for the total length
of a trace lt is needed to calculate the total resistance Rt.

By systematically reducing the dimensions by l∆ with each turn, a series formulation is
found by

lt = 2lx + ly + (ly − l∆)︸ ︷︷ ︸
2(lx+ly)−l∆

+
n−1∑

j=1
(lx − (2j − 1)l∆) + (ly − 2jl∆) + (lx − 2jl∆) + (ly − (2j + 1)l∆)︸ ︷︷ ︸

2(lx+ly)−8jl∆

(2.28a)
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and simplified using Gauss summation formula

lt = 2n(lx + ly)− (4n(n− 1) + 1)(wt + ws) , (2.28b)

where l∆ = wt + ws is substituted. With the electrical resistivity of copper ρCu and the
dimensions of the copper trace the total electrical resistance follows as

Rt = ρCu
lt

wtht
, (2.29)

where ht is the height of the trace.
For the given supply voltage Us and (2.29), the current through the coil is calculated as
(cf. [46])

i = Us
Rt

. (2.30)

Using the arithmetic mean in the form

Aavg = (lxly + (lx − 2l∆)(ly − 2l∆) + . . .) 1
n

= lxly + 1
6(2n2 + 3n+ 1)(wt + ws)−

1
2(lx + ly)(n+ 1)(wt + ws) ,

(2.31)

the average area covered by the rectangular coil is calculated.
Substituting (2.28b) into (2.29) and (2.30) and using the averaged area given by (2.31)
leads to the formulation of the magnetic dipole moment with n and wt as degrees of
freedom, given by

m (n,wt) = nAavgiem . (2.32)

The magnetic dipole moment m together with the surrounding magnetic field b is
generating a torque τ = m× b. To achieve maximum control torque, thus best control
performance, an optimization problem with constraints

(n?, w?t ) = arg max
(n,wt)

m(n,wt) (2.33a)

s.t. 0 ≤ imax − i(n,wt) (2.33b)
0 ≤ (ly − ly,in)− 2nl∆ (2.33c)

is formulated where the Euclidean norm m(n,wt) = ‖m (n,wt)‖ of the dipole moment
m(n,wt) is maximized.
The constraint 0 ≤ i(n,wt)− imax guarantees that the current through the coil i(n,wt) =

Us
Rt(n,wt) is limited to the maximum current imax. The second constraint 0 ≤ (ly − ly,in)−
2nl∆ ensures that the coil’s area is limited. Choosing ly,in = 0 limits the area of the coil
to the overall dimensions of the circuit board (lx, ly).
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2.4.2 Sensor models
Considering that the measurements are subject to various measurement errors, e. g. bias,
nonlinearity, scaling etc. (cf. [38, 47]), appropriate sensor models are important.
The measurements of the local magnetic field and the Sun vector are assumed to be

corrupted by additive, zero-mean Gaussian white noise. As generally known, gyroscope
measurements usually suffer from a slowly varying, additional bias with large amplitudes
arising, e. g., from temperature variations (cf. [48]). Denoting ηx as the additive Gaussian
white noise of the measured variable x̃ where x is the true value, the sensor models of the
three vector measurements follow as

b̃B = bB + ηb (2.34)
s̃B = sB + ηs (2.35)
ω̃BI = ωBI + β + ηω , (2.36)

with the gyroscope bias β.
The Sun vector s is calculated using the measurements of the six photo diodes equipped

on each face of the satellite.
The measured intensity I of one photo diode is proportional to the cosine of the angle
between the light beam and the photo diode’s surface normal vector. According to [31],
the Sun vector s is calculated as

s = 1
Imax



Ix − I−x
Iy − I−y
Iz − I−z


 (2.37)

where Ix denotes the intensity measured by the photo diode which is mounted on the
front surface of the satellite, the positive xB-direction. The other intensities are denoted
likewise and Imax is the maximum intensity, used to normalize s.
The light reflected from the Earth and the Moon, known as Albedo, is less intense than
the light coming direct from the Sun (cf. [49]). By taking into account only the maximum
intensity of each direction (xB, yB, zB), disturbances arising from reflections are reduced.
Using this method, (2.37) follows as

s = 1
Imax



sx
sy
sz




with sj =
{
Ij , Ij ≥ I−j
−I−j , Ij < I−j

for j ∈ {x, y, z} .

(2.38)

2.5 Chapter conclusion
In this section, the mathematical models of the satellite were presented. The derived
model of the satellite dynamics is of general nature and can be used for various types of
rigid bodies where the attitude is of interest. The orbital dynamics with the assumption of
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a perfect circular orbit constitutes a thoughtful compromise between the error in the result
and the computational effort. The presented environmental models are widely accepted
and used throughout the literature. The considered disturbance torques are known as
the main disturbance torques in low altitudes. The framework for an optimal design of
the magnetic actuators gave early impact on the design of the CubeSat Pegasus and is
believed to be used in future projects as well. The presented sensor models are standard
formulations taken from the literature, meaningful choices of the noise powers and bias
range are important to support their validity.



3 Attitude determination and control
system

In this chapter, an attitude determination and control system (ADCS) for the investigated
class of satellites is derived based on the models of Chapter 2. High angular velocities and
arbitrary orientation after detaching from the launch vehicle, limited computing capacity,
and limitations in the sensing hardware justify the chosen strategy.
At tip-off from the launch vehicle, the satellite can have rather high angular velocities.

Therefore, a detumbling controller is used to reduce the angular velocities and to stabilize
the satellite at a random attitude. Once the angular velocities are small enough and the
estimation error falls below a certain limit, a PD controller is used to stabilize the desired
attitude (2.18). The whole procedure, starting at tip-off, is displayed in the flowchart in
Figure 3.1.

The considered spacecraft uses magnetic actuators for control. As stated, the realizable
control torque generated by the magnetorquers is restricted to the plane perpendicular
to the local magnetic field. Therefore, the desired control torque u is projected onto the
plane perpendicular to the local magnetic field b.
The projection is done in order to remove ineffective components of the control torque and
save electric power. The effective torque generated by the magnetorquers is restricted by
nature. With the projection, the minimal magnetic dipole moment m and subsequently
the minimal control current i to generate the desired control action is obtained.
The control torque, applied to the satellite, follows as (cf. [31])

τB,c =
(
I3 − eb̃B

eT
b̃B

)
u , (3.1)

where eb̃B
is the unit vector of the measured local magnetic field and I3 the identity

matrix of dimension three. The matrix eb̃B
eT

b̃B
represents a projection onto the direction

of the measured magnetic field b̃. Taking in mind that the true local magnetic field bB is
unknown the measured value b̃B is used. Substituting the control torque (3.1) into the
dynamic model of the satellite (2.13b) and not taking disturbance torques into account
yields

JBω̇BI = − [ωBI×] JBωBI +
(
I3 − eb̃B

eT
b̃B

)
u . (3.2)

The input matrix (I3 − eb̃B
eT

b̃B
) is denoted by Γ (t) with the explicit mention of the

time variance arising from the time varying magnetic field b̃B (t). The matrix Γ (t) is
positive semi-definite for all times t, denoted by Γ (t) ≥ 0, with eigenvalues (1, 1, 0) at
every instance of time (cf. [26]). This loss of rank of the input matrix shows the described
underactuation in a mathematical representation.

24
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Figure 3.1: Flowchart of the proposed control strategy.
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3.1 Detumbling control
The first task for the ADCS is slowing down the satellite from the high tip-off rates after
detaching from the launch vehicle. Utilizing the gyroscope measurement ω̃BI allows to
formulate the control law (cf. [50])

u = −kbω̃BI , (3.3)

where kb is a positive scalar.
The effective control torque τB,c from (3.1) for the detumbling control law (3.3) follows

as

τB,c = −kb
(
I3 − eb̃B

eT
b̃B

)
ω̃BI . (3.4)

The intention of the control law (3.4) is to null the measured angular velocities ω̃BI . This
procedure is referred to as detumbling control in this context.
The block diagram of the detumbling controller in closed-loop, as it is used in the

simulation, is presented in Figure 3.2. The initial parameters t0 and k0 are used to predict
the IGRF reference magnetic field b̄I as described in Section 2.3.1. The sensor models add
the Gaussian noises η and the bias β to the reference values according to Section 2.4.2 and
transforms the quantities to the body frame using the satellite’s attitude qBI . The model
of the satellite’s dynamics is affected by the disturbance torques τ gg, τ ad, τ η, where τ gg
is the gravity gradient torque and τ ad is the aerodynamic torque derived in Section 2.3.3.
The additional disturbance torque τ η is assumed to be Gaussian white noise, representing
neglected sources of error.

sensor models

detumbling CubeSat model

orbit reference b̄I

ωBI

τB,c

t0

k0 τ gg τ ad τ η

ηβ

ω̃BI

b̃B

models

controller
qBI

Figure 3.2: Block diagram of the detumbling controller in closed-loop, as used in the
simulation.

The scalar kb of (3.4) is chosen in a way to achieve a bang-bang characteristic and
ensure time-optimal detumbling. The maximum control torque is not a constant value,
but depending on the local magnetic field. To calculate the required gain kb for maximum



3 Attitude determination and control system 3.1 Detumbling control 27

torque, a detour via the maximum current is used. The required current as a function of
the control torque is calculated as

iB,c = S−1 b̃B × τB,c∥∥∥b̃B
∥∥∥

= −S−1 b̃B × Γ (t) ω̃BI∥∥∥b̃B
∥∥∥

(3.5)

where S = diag (njAavg,j) , j ∈ {x, y,−y, z,−z} is a constant scaling matrix containing
the factors njAavg,j from (2.27) for each magnetorquer. The optimal gain factor is then
calculated as

k?b = |imax|
max (|iB,c,j |)

, j ∈ {x, y,−y, z,−z} , (3.6)

with the superscript ? denoting the optimality.

Proof of stability
To prove the stability of the control law (3.4), the kinetic energy of the system

V (ωBI) = 1
2ω

T
BIJBωBI (3.7)

is used as a Lyapunov function. Following Lyapunov’s direct method, the time derivative
of (3.7) with (3.2) and (3.3) results in

V̇ (ωBI) = ωT
BIJBω̇BI = −ωT

BI([ωBI×] (JBωBI) + kb(I3 − eb̃B
eT

b̃B
))ωBI . (3.8a)

With the help of the triple product

ωT
BI(ωBI × (JBωBI)) = (JBωBI)T (ωBI × ωBI)︸ ︷︷ ︸

=0

, (3.8b)

a compact solution is given by

V̇ (ωBI) = −kbω
T
BI(I3 − eb̃B

eT
b̃B

)ωBI ≤ 0 , (3.8c)

where the matrix Γ (t) = (I3 − eb̃B
eT

b̃B
) is positive semi-definite. Therefore, V̇ (ωBI) ≤ 0

holds for kb > 0 which proves the stability of the equilibrium ω̃BI = 0. Only in the
particular case where the measured magnetic field and the vector of the angular velocities
are parallel, no control torque can be generated

ωBI‖b̃B ⇒ τB,c = 0 ,V̇ = 0 . (3.9)

Although theoretically problematic, this detail can be disregarded in practical use because
of the variation of the magnetic field along the orbit (cf. [50] and [51]).
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3.2 Extended Kalman Filter
By measuring two independent vectorial values, e. g., the Earth’s magnetic field and the
Sun vector the attitude can be determined (cf. [52]). Static approaches like the quaternion
estimator (QUEST) just use the measurement information to calculate the attitude and
therefore, suffer from high noise or bad dynamic behavior. To minimize the noise an
Extended Kalman Filter based on the quaternion kinematics is used to estimate the
attitude.
Using an EKF, it is easy to extend the design to estimate various additional quantities
(cf. [36]). In this section, an EKF design is derived with the purpose of estimating the
satellite’s attitude qBI and the gyroscope bias β introduced in Section 2.4.2.

Throughout this section the states qBI , ωBI are solely expressed in the body reference
frame and describe the attitude respectively angular velocity of the inertial reference
frame with respect to the body reference frame. The subscripts BI are dropped due to
better readability. The superscripts − and + used in the description of the EKF algorithm
are used to distinguish between a priori (−) and a posteriori information (+).

Estimator model for the attitude
The quaternion, which is the minimal attitude representation free from singularities, is the
choice for most EKF designs (cf. [32]). As discussed in detail in [37], there are two widely
used formulations for attitude filtering using quaternions - the additive and multiplicative
representation. In this work, the multiplicative representation

q = δq (δϑ)⊗ q̂ , (3.10)

introduced in [53] is used. The idea is to express the true attitude q as the product of
an error quaternion δq and the estimated attitude q̂. Stating that the error quaternion
respectively the related axis-angle vector δϑ is small enough, it is possible to use the
four-dimensional quaternion q̂ as the global estimator variable and the three-dimensional
axis-angle vector δϑ̂ as a local representation. This approach reduces the dimension of
the EKF design by one and therefore decreases computational effort.
Taking the time derivative of (3.10) yields

q̇ = δq̇ ⊗ q̂ + δq ⊗ ˙̂q , (3.11)

where the true attitude q and the estimated attitude q̂ both satisfy the attitude dynamics
(2.6) given by

q̇ = 1
2

[[
0
ω

]
⊗
]

q (3.12a)

˙̂q = 1
2

[[
0
ω̂

]
⊗
]

q̂ . (3.12b)

Substituting (3.12) and (3.10) into (3.11) gives

1
2

[[
0
ω

]
⊗
]
δq ⊗ q̂ = δq̇ ⊗ q̂ + 1

2δq ⊗
[[

0
ω̂

]
⊗
]

q̂ (3.13)
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and resorting terms results in

δq̇ = 1
2

[[
0
ω

]
⊗
]
δq − 1

2δq
[[

0
ω̂

]
⊗
]

. (3.14a)

Defining the true angular velocity as the sum of the estimated angular velocity ω̂ and
some estimation error δω

ω = ω̂ + δω , (3.14b)

results in

δq̇ = 1
2

[
0
ω̂

]
⊗ δq − 1

2δq ⊗
[

0
ω̂

]

︸ ︷︷ ︸[
0

δq1:3 × ω̂

]

+1
2

[
0
δω

]
⊗ δq
︸︷︷︸

(δq−qI+qI)

. (3.14c)

Adding the term −qI + qI, with the unit quaternion qI =
[
1 0 0 0

]T
, to the last

multiplicand leaves the result unchanged but since
[

0
δω

]
and (δq − qI) are both small,

their product can be neglected concerning the linearization of the Extended Kalman Filter.
The linear approximation of (3.14a) is therefore given by

δq̇ ≈
[

0
δq1:3 × ω̂

]
+ 1

2

[
0
δω

]
. (3.15)

Using the small angle approximation of the quaternion as defined in (A.8)

δq ≈
[

1
δϑ
2

]
, δq1:3 ≈

1
2δϑ , (3.16)

allows the dynamic model for the local error angles δϑ to be formulated as

δϑ̇ = δϑ× ω̂ + δω . (3.17)

Estimator model for the gyroscope bias
Gyroscopes suffer from high bias, varying with temperature and over time. Since attitude
estimation is sensitive to an offset in the measured angular velocity, the state of the
Extended Kalman Filter is extended by an additive bias introduced in (2.36). In view of
(3.14b), the estimation of the gyroscope bias β is defined as

β = β̂ + δβ . (3.18)

The dynamics of the true bias β is given by

β̇ = ηβ (3.19)
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with the Gaussian white noise ηβ. The estimated bias β̂ is defined as a constant vector
without dynamics, therefore

δβ̇ = ηβ (3.20)

describes the dynamics of the estimation error.

Gyroscope model
With the definition of the gyroscope model from Section 2.4.2 and since the additive noise
ηω is naturally unknown, the true and estimated angular velocity follow as

ω = ω̃ − β − ηω (3.21a)
ω̂ = ω̃ − β̂ . (3.21b)

The estimation error δω = ω − ω̂ is therefore calculated as

δω = β̂ − β︸ ︷︷ ︸
δβ

−ηω . (3.22)

Substituting (3.22) into (3.17) leads to the final observer model for the attitude error

δϑ̇ = δϑ× ω̂ + δβ − ηω . (3.23)

Dynamical model of observed variables

Defining the observer state vector as χT =
[
δϑT δβT

]
and the vector of disturbances

as wT =
[
ηT
ω ηT

β

]
allows the observer model to be defined as the time-variant linear

dynamic system

χ̇ = f(χ, t) =
[
−ω̂(t)× δϑ+ δβ − ηω

ηβ

]
=
[
[−ω̂(t)×] I3

03 03

]

︸ ︷︷ ︸
A(t)

χ+
[
−I3 03
03 I3

]

︸ ︷︷ ︸
B

w . (3.24)

In order to digitally implement the EKF, the time-continuous system (3.24) is transformed
to the discrete formulation (e. g. [31])

χk+1 = Φkχk + Λkwk , (3.25)

where Φk and Λk are calculated using the matrix exponential (cf. [54]) and χk = χ (kTs)
with the sampling time Ts.

Measurement and measurement sensitivity
According to the chosen sensor models defined in Section 2.4.2, the time-discrete measure-
ment function is defined as

yk = hk (qk) + ηk =
[
R (qk) bI,k
R (qk) sI,k

]
+
[
ηb,k
ηs,k

]
=
[
bB,k
sB,k

]
+
[
ηb,k
ηs,k

]
=
[
b̃B,k
s̃B,k

]
, (3.26)
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with the true attitude q and the true values of the magnetic field b and the Sun vector s.
The matrix R (q) is the rotation matrix representation of the quaternion q as defined in
(A.5) and transforms the vector bI into the body reference frame bB.
Defining a general estimation error as the difference between some measured value and
some a priori estimation ζ = y(χ)− h(χ̂−), the full estimation error follows as

ζh,k = yk − hk
(
χ̂−k
)

. (3.27)

The measurement sensitivity matrix is given by

Hk (χk) = ∂hk
∂χk

=
[

∂hk
∂(δϑk)

∂hk
∂(δβk)

]
. (3.28)

The derivative of ∂h
∂(δϑ) is presented for a single vector measurement for simplicity.

The simplified measurement function

h† (q) = R (q) v̄I , v̄ ∈ {b̄, s̄} , (3.29a)

where the reference value v̄I is used instead of the unknown true value vI represents (3.26)
for a single vector measurement. Using the multiplicative quaternion representation (3.10)
leads to

h† (q) = R (δq) R (q̂) v̄I . (3.29b)

With the rotation matrix formulation (A.5) and the small angle approximation (A.8)
R (δq) is approximated as

R (δq) ≈ I3 − [δϑ×] . (3.29c)

This approximation means a linearization, which is characteristic for an EKF design.
Therefore, the linear approximation of (3.29a) is given by

h† (q) ≈ R (q̂) v̄I − [δϑ×] R (q̂) v̄I = R (q̂) v̄I + [R (q̂) v̄I×] δϑ . (3.29d)

From (3.29d) the measurement sensitivity ∂h†

∂(δϑ) follows as

∂h†
∂(δϑ) = [R (q̂) v̄I×] . (3.30a)

The gyroscope bias does not affect the measurement function, since only the attitude of
the satellite is affecting the direction of the measured vectors, therefore

∂h†
∂(δβ) = 0 . (3.30b)

Using the measurement sensitivity (3.30a) for the vector measurements v ∈ {b, s} gives
the full measurement sensitivity matrix (3.28) as

Hk

(
χ̂−k
)

=
[[

R (q̂k) b̄I,k ×
]

0[
R (q̂k) s̄I,k ×

]
0

]
. (3.31)
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The Kalman gain matrix Lk is calculated in the well known form (cf. [33])

Lk = P−k HT
k

(
HkP−k HT

k + Σk

)−1
, (3.32)

with the error covariance matrix P−k and the covariance matrix of the measurement noise
Σk.

Using the gain matrix Lk, the update of the observer states is calculated as

χ+
k =

[
δϑ̂

+
k

δβ̂
+
k

]
= Lk

(
yk − hk

(
χ̂−k
))

. (3.33)

With the small angle approximation δq (δϑ) = qI + 1
2

[
0
δϑ

]
, the estimated quaternion q̂

is updated as

q̂†k = δq
(
δϑ̂

+
k

)
⊗ q̂−k ≈ q̂−k + 1

2

[
0

δϑ̂
+
k

]
⊗ q̂−k

q̂+
k = q̂†k∥∥∥q̂†k

∥∥∥
,

(3.34)

where the renormalization is crucial since the addition of two normalized quaternions can
not be a normalized quaternion anymore. Equation (3.34) updates the global representation
q̂k with the a posteriori information of the local representation δϑ̂k.
The estimated gyroscope bias is updated using

β̂
+
k = β̂

−
k + δβ̂

+
k , (3.35a)

which gives the estimated angular velocity as

ω̂k = ω̃k − β̂
+
k (3.35b)

according to (3.21b).
The error covariance matrix P is updated as (cf. [33])

P+
k = (I6 − LkHk) P−k . (3.36)

The propagation of the quaternion is achieved using the exact discretization (cf. [54])
of the attitude kinematics (2.6)

q̂−k+1 = exp
(

1
2

[[
0
ω̂k

]
⊗
]
Ts

)
q̂+
k , (3.37)

where exp is the matrix exponential and Ts the sampling time.
As stated before the estimated bias does not result from a dynamic equation. Therefore,

the update follows a simple summation of the a priori information and the updated
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difference bias δβ and the propagation gives the a priori information for the next time-step
by using the actual a posteriori information

β̂
−
k+1 = β̂

+
k . (3.38)

The propagation of the error covariance matrix P is formulated using the time-discrete
dynamic model of the observed variables (3.25) (cf. [31]) and calculates as

P−k+1 = ΦkP+
k ΦT

k + ΛkQkΛT
k . (3.39)

Earth’s shadow
As pointed out before, two independent vectors are necessary to calculate the attitude.
When the Earth is located in between the Sun and the satellite, the vector to the Sun
can not be determined due to the Earth’s shadow. Without the Sun measurement the
attitude can not be determined and the attitude information can not be used to estimate
the gyroscope bias. This underdetermined problem can not be solved without additional
measurements and it was chosen to turn off the EKF during periods of being in the Earth’s
shadow.

Summarized algorithm
The covariance matrices of model errors Qk and measurement errors Σk are defined as
(cf. [55])

Qk = kQ

[
σ2
ω 0

0 σ2
β

]
(3.40a)

Σk = kΣ

[
σ2

b 0
0 σ2

s

]
, (3.40b)

where σ2
i describes the variance of the related noise vectors ηi for i ∈ {b, s,ω} and σ2

β

describes the variance of the expected bias. The positive scalar factors kΣ and kQ are
used to tune the filter. The variances σ2

i , i ∈ {b, s,ω,β} are obtained from the sensor
datasheets.
The initial error covariance matrix P0 weights the estimation error at the moment of

initializing the Extended Kalman Filter and is chosen as a diagonal matrix.
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The Extended Kalman Filter algorithm is implemented as following
initialization
q̂−0 = qOI,0, β̂

−
0 = 0, P−0 = P0

loop
if ‖s̃‖ ≤ s̃min then

q̂−k+1 = qOI,k+1

β̂
−
k+1 = β̂

−
k

P−k+1 = P−k
else

measurement
ζhk = yk − hk

(
χ̂−,k
)

Hk =



[
R
(
q̂−k
)

b̄I,k×
]

0[
R
(
q̂−k
)

s̄I,k×
]

0




gain
Lk = P−k Hk

(
HkP−k HT

k + Σk

)

update
χ̂+
k = Lkζh,k

q̂†k = q̂−k + 1
2

[
0

δϑ̂
+
k

]
⊗ q̂−k

q̂+
k = q̂†

k∥∥q̂†
k

∥∥
β̂

+
k = β̂

−
k + δβ̂

+
k

ω̂k = ω̃k − β̂
+
k

P+
k = (I6 − LkHk) P−k

propagation

q̂−k+1 = exp
(

1
2

[[
0
ω̂k

]
⊗
]
Ts

)
q̂+
k

β̂
−
k+1 = β̂

+
k

P−k+1 = ΦkP+
k ΦT

k + ΛkQkΛT
k

end if
end loop

3.3 Attitude control
As mentioned in Section 1.2, a PD control law is chosen to stabilize the attitude of the
satellite. In [26] the control law

u = −(ε2kqqBO,1:3 + εkωJBωBO) (3.41)
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with ε > 0, kq > 0, kω > 0 being scalar gains and JB being the inertia matrix of the
satellite expressed in the body frame, is used to stabilize the attitude of a magnetic
actuated satellite.
The effective control torque τB,c from (3.1) for the PD control law (3.41) follows as

τB,c = Γ (t) u = −(I3 − ebB
eT

bB
)(ε2kqqBO,1:3 + εkωJBωBO) . (3.42)

The quaternion error qBO represents the rotational transformation from the desired
orbit frame O to the body frame B and is calculated as

qBO = qBI ⊗ q−1
OI , (3.43a)

with the true attitude qBI and the desired attitude qBO, derived in Section 2.2.1. The
quaternion product ⊗ and the inverse of the quaternion are defined in Appendix A.
In a similar way, the angular velocity error ωBO represents the angular velocity of the

orbital frame O with respect to the body frame B and is calculated as

ωBO = ωBI −R (qBO)ωOI , (3.43b)

where the rotational matrix R (qBO) is used to express the desired angular velocity ωOI
in the body frame B.

The block diagram of the PD controller in closed-loop, as it is used in the simulation, is
presented in Figure 3.3. The initial parameters t0 and k0 are used to predict the IGRF
reference magnetic field b̄I and the Sun vector s̄I as described in Section 2.3. The sensor
models add the Gaussian noises η and the bias β to the reference values according to
Section 2.4.2 and transforms the quantities to the body frame using the satellite’s attitude
qBI . The trajectory planning provides the desired attitude qOI and desired angular
velocity ωOI of the satellite, as derived in Section 2.2.1. The Extended Kalman Filter
uses the measured quantities, together with the reference values to estimate the satellite’s
attitude q̂BI and angular velocity ω̂BI . The model of the satellite’s dynamics is affected
by the disturbance torques τ gg, τ ad, τ η, where τ gg is the gravity gradient torque and τ ad
is the aerodynamic torque derived in Section 2.3.3. The additional disturbance torque τ η
is assumed to be Gaussian white noise, representing neglected sources of error.



3 Attitude determination and control system 3.3 Attitude control 36

sensor
m
odels

C
ubeSat

m
odel

orbit
reference

b̄
I

ω
B
I

τ
B
,c

t0k
0

η
β

s̄
I

PD
controller

m
odels

trajectory
planning

τ
g
g
τ
a
d
τ
η

t0k
0

EK
F
observer

ω̃
B
I

s̃
B

b̃
B

ω
O
I

q̂
B
I

ω̂
B
I

q
O
I

q
B
I

Figure 3.3: Block diagram of the PD controller in closed-loop, as used in the simulation.
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Proof of stability
The stability of the state feedback control law (3.42) is proven in [26] and will be
summarized here. The proof of stability consists of two steps. First, the controllability
on average is shown and second, using Lyapunov methods and introducing an averaged
approximation of the system (2.14), the almost global stability of the system (2.14) is
shown.

Controllability on average

As pointed out earlier, the input matrix Γ (t) is singular at every instance of time,
representing the underactuation of the magnetic actuated satellite. Due to the variation
of the magnetic field along the orbit, this underactuation is not constant but varying with
time. Using Khalil’s averaging theory [25] the controllability on average is shown.
For that, the matrix ΓI (t) is averaged along the trajectory of the desired orbit

Γ̄I = lim
T→∞

1
T

∫ T

0
(I3 − ebI

(t) eT
bI

(t)) dt , (3.44)

where b̄I (t) represents the Earth’s magnetic field along the orbit, expressed in the inertial
frame. The matrix Γ̄I is positive definite as long as the orbit plane does not coincide with
the geomagnetic equator. This was shown by Bhat in [20].
According to Lemma 1 in [26], the positive definiteness of Γ̄I implies that there exists

an upper bound ωM for the spacecraft’s angular velocity ‖ωBI‖ < ωM such that Γ̄ > 0
for all t > t̄ for the lower bound 0 < t̄ <∞ with

Γ̄ = lim
T→∞

1
T

∫ T

0
(I3 − ebB

(t) eT
bB

(t)) dt (3.45)

being the average of the input matrix Γ (t) from (3.42). This Lemma is proven in [26] for
the particular case ωBI = 0. The averaged input matrix Γ̄ along the trajectory is only
singular if the magnetic field bB is constant in the body reference frame for all t ∈ [0,∞).
This particular case can only arise if the satellite’s angular velocity is sufficiently large to
compensate the natural variation of the Earth’s magnetic field bB (cf. [26] and especially
[51]).
In Figure 3.4, the evolution of the eigenvalues of the averaged input matrix Γ̄ along

the QB50 orbit is depicted. At t = 0 the matrix Γ̄ is singular with eigenvalues (1, 1, 0)
converging to a nonsingular matrix fulfilling the controllability condition Γ̄ > 0. Therefore,
controllability on average is given.
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Figure 3.4: Eigenvalues of the averaged matrix Γ̄ along the QB50 orbit.

Attitude stabilization

Using the state feedback PD control law (3.41), Lovera and Astolfi make the following
proposition.
If 0 < Γ̄I < I3 is fulfilled, then there exist some ε? > 0, kq > 0, kω > 0 with

k2
ω > kq

σ2
min

(
Γ̄
)

σmin (JB)

√
CN

(
Γ̄
)
, (3.46)

where σmin (JB) is the minimal singular value of the matrix JB and CN
(
Γ̄
)
is the condition

number of Γ̄ (cf. [56]), such that for any 0 < ε < ε? the control law (3.41) ensures local

exponential stability of the closed-loop system for the equilibrium xe =
[
qI
0

]
.

The Lyapunov function

V1 (qBO,ωBO) = λ

2ω
T
BOJ2

BωBO −
1
2ω

T
BOJBR (qBO) M (t) RT (qBO) JBωBO , (3.47)

with a sufficiently large λ > 0 and M (t) =
∫ t

0

(
ebI

(τ) eT
bI

(τ)−N
)

dτ , with the constant
matrix N ≥ 0 is used to show that Γ̄ > 0. The time derivative of (3.47) implies that
for any ωM > 0 there exists an ε > 0 such that the angular velocities of the satellite are
bounded ‖ωBO‖ < ωM . Together with Lemma 1 from [26] this proves Γ̄ > 0.
Introducing a coordinate transformation of the form

z1 = qBO,1:3, z2 = ωBO
ε

, z =



qBO,0

z1
z2


 , (3.48)
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substituting into the dynamic system of the satellite (2.14), and utilizing the control law
(3.42) gives the time-variant dynamic system of the closed-loop

ż1 = ε
1
2

[[
0
z2

]
⊗
]

z1 (3.49a)

JB ż2 = −ε [z2×] JBz2 + εΓ (t) (−kqz1 − kωJBz2) . (3.49b)

The time-variant dynamic system (3.49) fulfills all conditions to apply Khalil’s averaging
theory [25], yielding the time-invariant averaged system

ż1 = ε
1
2

[[
0
z2

]
⊗
]

z1 (3.50a)

JB ż2 = −ε [z2×] JBz2 + εΓ̄ (−kqz1 − kωJBz2) . (3.50b)

The averaging theory applied to (3.49) states that there exists an ε? > 0 such that for
any 0 < ε < ε? the trajectory of (3.50) is close to the trajectory of (3.49) and if (3.50) is
stable the time-variant system (3.49) is stable as well.
Considering the Lyapunov function

V2 (z2) = 1
2zT

2 J2
Bz2 , (3.51)

gives the possibility to show

‖z2‖ ≤
kq

kωσmin (JB)

√
CN

(
Γ̄
)

= K , for all t > t? , (3.52a)

where σmin (JB) is the minimal singular value of the matrix JB and CN
(
Γ̄
)
is the condition

number of Γ̄ (cf. [56]). Therefore, for any K > 0 the set

ZK = {(z1, z2) : ‖z2‖ < K} (3.52b)

represents an attractive, positively invariant set. By choosing kq and kω, K can be made
arbitrarily small.
Using the Lyapunov function

V3 (z1, z2) = 1
2kq(zT

1 z1 + (qBO,0 − 1)2) + 1
2zT

2 Γ̄−1z2 , (3.53)

applying Lyapunov’s direct method and Krasovskii-LaSalle’s invariance principle shows
the asymptotic stability of the averaged system if condition (3.46) is fulfilled, for all
trajectories starting in the set ZK .

Linearizing the dynamic system (3.50) around the equilibrium ze =
[
qI
0

]
yields

∆ż1 = 1
2ε∆z2 (3.54a)

JB∆z2 = −εΓ̄ (kq∆z1 + kωJB∆z2) . (3.54b)
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Applying Lyapunov’s direct method to the linearized system (3.54) using the Lyapunov
function

V4 (∆z1,∆z2) = 2kq∆zT
1 ∆z1 + ∆zT

2 Γ̄−1∆z2 (3.55)

shows the local exponential stability of the averaged system at ze.
Introducing the definition of almost global stability as written in [26], “Given a system

ẋ = f(x) we say that an equilibrium x0 is almost globally asymptotically stable if it is
locally asymptotically stable, all the trajectories of the system are bounded and the set of
initial conditions giving rise to trajectories which do not converge to x0 has zero Lebesgue
measure” and applying the prior results shows the almost global stability of the averaged
closed-loop system. The Lebesgue measure is introduced, e. g., in [57].

Therefore, according to the averaging theory, the magnetic actuated spacecraft described
by the dynamic system (2.14) in closed-loop with the control law (3.41) is almost globally
stable.

3.4 Chapter conclusion
In this section, a strategy has been presented leading the satellite to a given trajectory.
Two different control laws were derived for two different phases of the satellite motion. If
high angular velocities are measured, e. g. after tip-off, a detumbling controller is used to
slow down the satellite. Using an Extended Kalman Filter, the attitude of the satellite is
estimated together with an estimation of the gyroscope bias. With these estimated states,
a state feedback law of PD form is used to follow the trajectory.
When the satellite is located in the Earth’s shadow the estimator and the controllers are
switched off, following the slogan better do nothing than do something wrong. For both
control laws the stability of the equilibria has been studied using Lyapunov methods and
almost global stability was proven using Khalil’s averaging theory.



4 Implementation and simulation
In this chapter, the derived attitude control strategy is verified via simulation. Details
concerning the implementation and the used set of parameters are given, followed by
various plots of the satellite’s states in comparison with the desired trajectories. Plots of
the power consumption and magnetorquer currents are given to show that the current
limits are met.
After showing the quantities for the full simulation time, a detailed investigation of

the different controllers is given. With an enlarged view of two orbits the effect of the
underactuation is discussed and the performance of the EKF attitude determination is
shown.

The models of Chapter 2 and the control strategy from Chapter 3 are implemented and
simulated using Matlab/Simulink1.

4.1 Implementation
The parameters of the CubeSat Pegasus satellite are summarized in Table 4.1. These
parameters are used to calculate the model of the rigid body dynamics (2.13b) and the
satellite’s quantities in the disturbance torques from Section 2.3.3.

quantity variable value
length in xB lx 227 mm
length in yB ly 100 mm
length in zB lz 100 mm
total mass m 1.622 kg
satellite’s geometric center in xB xgc −3 mm
satellite’s geometric center in yB ygc −0.5 mm
satellite’s geometric center in zB zgc −0.5 mm

inertia matrix

Jxx 2.70 · 10−3 kg m2

Jyy, Jzz 8.30 · 10−3 kg m2

Jxy, Jxz −2.43 · 10−6 kg m2

Jyz −40.55 · 10−6 kg m2

drag coefficient Cd 2

Table 4.1: Simulation parameters of CubeSat Pegasus.

The symmetric, positive definite inertia matrix JB (cf. [42]) with the principal moments
of inertia Jxx, Jyy, Jzz and the cross products of inertia Jxy, Jxz, Jyz from Table 4.1 follows

1version 8.6 (R2015b)

41
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as

JB =



Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz


 =




2.70 · 10−3 −2.43 · 10−6 −2.43 · 10−6

−2.43 · 10−6 8.3 · 10−3 −40.55 · 10−6

−2.43 · 10−6 −40.55 · 10−6 8.3 · 10−3


 kg m2 . (4.1)

The desired trajectory (2.18) is calculated as explained in Section 2.2.1 using the orbital
elements from Table 4.2. The initial time t0 and the initial angles Ω0 and ν0 are arbitrary
in principle, the inclination i and the altitude a are given by the QB50 requirements.

quantity variable value
initial time t0 April 16, 2016, 20:15, UTC0
altitude a 450 km
eccentricity e 0
initial anomaly ν0 84°
inclination i 98°
initial right ascension Ω0 250°
argument of perigee ω 0

Table 4.2: Simulation parameters of the QB50 orbit.

The parameters of the environment are listed in Table 4.3 (cf. [49]), where the atmo-
spheric density ρ is calculated using the Exponential Decaying Model (cf. [31]).

quantity variable value
Earth’s radius rE 6371 km
Earth’s mass M 5.974 · 1024 kg
gravitational constant G 6.673 84 · 10−11 m3/(kg s2)
period of a tropical year Ttrop 31 556 925.261 s
atmospheric density ρ 1.585 · 10−12 kg/m3

Table 4.3: Simulation parameters of the environment.

According to [31] the velocity of the satellite along the orbit is calculated as

vB =
√
µ

rO
, (4.2)

where µ = GM is the gravitational parameter of the Earth and rO = rE + a is the radius
of the orbit. Using the given values of the orbit and the environment from Table 4.2 and
Table 4.3, the satellite’s velocity vB follows as

vB = 7.6453 km/s .

The orbit period TO of the QB50 mission is calculated by

TO = 2πrO
vB

(4.3)



4 Implementation and simulation 4.1 Implementation 43

and follows as
TO = 5605.7 s = 93 min 25.7 s ,

for the particular orbit.
The measurement errors introduced in Section 2.4.2 are characterized by the parameters

of Table 4.4. The variances of the measurement errors are chosen using the sensor
datasheets and taking redundancies and oversampling into account. The power spectral
densities (PSD) are tuned to result in this given variances using band-limited white noise
with a sampling time of Ts = 100 ms.

In order to simulate the gyroscope bias, a sine wave with an amplitude βamp and the
period of the orbit TO is added to the angular velocity. The additional bias β (t) from
(2.36) is implemented as

β (t) = sin
(2πt
TO

)


βamp
−βamp
βamp


 . (4.4)

The simulation of the Earth’s shadow is implemented by multiplying the measured Sun
vector s̃ with a trapezoid function Π (t), defined as

Π (t) =





0.35−tr
0.1 , 0.25 < tr < 0.35

0, 0.35 < tr < 0.55
tr−0.55

0.1 , 0.55 < tr < 0.65
1, else

, with tr = (t mod TO)
TO

(4.5)

where (t mod TO) is the modulo of t by TO (cf. [58]).

quantity variable value
PSD of the magnetometer measurement noise Pη,b 1 · 10−14 T2/Hz
PSD of the Sun vector measurement noise Pη,s 1 · 10−5 1/Hz
PSD of the gyroscope measurement noise Pη,ω 1 · 10−7 rad2/(s2 Hz)
variance of the magnetometer measurement noise σb 3.22 · 10−7 T
variance of the Sun vector measurement noise σs 10.2 · 10−3

variance of the gyroscope measurement noise σω 1 · 10−3 rad/s
variance of the bias σβ 21.3 · 10−3 rad/s
amplitude of the gyroscope bias βamp 20 · 10−3 radian/s

Table 4.4: Simulation parameters of the sensors.

Using the design method for the magnetorquers presented in Section 2.4.1 optimal
values for the number of turns n? and the width of the trace w?t are calculated. The
optimization problem with constraints

(n∗, w∗t ) = arg max
(n,wt)

m(n,wt) (4.6a)

s.t. 0 ≤ imax − i(n,wt) (4.6b)
0 ≤ (ly − ly,in)− 2nl∆ (4.6c)
wt ≥ 150 µm , (4.6d)
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where the additional restriction wt ≥ 150 µm arises from manufacturing reasons, is
given. The fixed values used in the calculation are provided in Table 4.5. Using Mat-

quantity variable value
magnetorquer length lx 187 mm
magnetorquer width ly 93.5 mm
supply voltage Us 5 V
maximal current imax 100 mA
space between two traces ws 150 µm
height of the trace ht 105 µm
electrical resistivity of copper ρCu 17.212 · 10−9 Ω m

Table 4.5: Parameters used in the magnetorquer optimization.

lab/Simulink2 the optimal values are found to be

n? = 104.8 ≈ 105 , w?t = 150 µm . (4.7)

Because of design reasons, slightly different values where actually implemented in CubeSat

quantity variable value
area of the top surface Aavg,x 4971 mm2

number of turns of top surface nx 81
area of the other surfaces Aavg,i, i ∈ {y,−y, z,−z} 5313 mm2

number of turns of the other surfaces ni, i ∈ {y,−y, z,−z} 130
maximum current for each magnetorquer imax 100 mA

Table 4.6: Simulation parameters of the actuators.

Pegasus. The values provided by the TU Wien Space Team are listed in Table 4.6.
The scalar tuning gains of the Extended Kalman Filter, introduced in Section 3.2, are

given in Table 4.7. Their choice gives a compromise between smoothing and time lag after
starting the EKF algorithm. The gains for the PD controller and the chosen limit of the

quantity variable value
sampling time Ts 100 ms
measurement error covariance gain kΣ 5 · 103

model error covariance gain kQ 10
initial error covariance matrix P0 I6

Table 4.7: Simulation parameters of the Extended Kalman Filter.

angular velocity, where the control laws are switched, are summarized in Table 4.8.
The PD control law (3.42) utilizes the satellite’s inertia matrix. To simulate the effect

of model errors, a slightly different inertia matrix is used for the controller. Assuming a
2version 8.6 (R2015b), fmincon with sqp algorithm
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homogeneous mass distribution and using the mass and dimensions from Table 4.1, the
inertia matrix for the control law follows as

JB =




1
12m(l2y + l2z) 0 0

0 1
12m(l2x + l2z) 0

0 0 1
12m(l2x + l2y)


 =




2.7 0 0
0 8.3 0
0 0 8.3


 1 · 10−3 kg m2 ,

(4.8a)

with zeros cross products of inertia.

quantity variable value
sampling time Ts 100 ms
scalar gain for the PD controller ε 1 · 10−5

scalar gain for the attitude error kq 100
scalar gain for the angular velocity error kω 250
angular velocity limit ωPD 5 · 10−3 rad/s = 0.29 °/s

Table 4.8: Simulation parameters of the controllers.

Choosing the controller gains as stated in Table 4.8 fulfills the required stability condition

k2
ω > kq

σ2
min

(
Γ̄
)

σmin (JB)

√
CN

(
Γ̄
)

from (3.46). The evolution of this condition along the QB50 orbit is presented in Figure 4.1.
The condition is clearly fulfilled for the QB50 orbit, and therefore according to [26] almost
global stability is given.
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Figure 4.1: Condition (3.46) along the desired orbit.

The gravity gradient and aerodynamic torques acting on the satellite are implemented
as explained in Section 2.3.3. An additional Gaussian disturbance torque τ η representing
the neglected disturbances is taken into account in the simulation as well. The power
spectral density of τ η is assumed to be Pη,τ = 1 · 10−20 N2 m2/Hz with a sampling time
of 100 ms. The disturbance torque introduced in (2.13b) is calculated as

τB,d = τ gg + τ ad + τ η . (4.9)

In Figure 4.2, the groundtrack of the simulated flight is shown to support the imagination
of the simulation.
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Figure 4.2: Groundtrack of the simulated scenario. The red triangle denotes the satellite’s
initial position and flight direction.

4.2 Simulation results
The QB50 mission requires to stabilize the satellite within three days with a pointing
accuracy of ±10°. Expressed in multiples of the orbit period TO from (4.3) three days are
about 46TO. Since the derived control algorithm stabilizes the satellite much faster than
required only 20TO are shown throughout this section.

In Figure 4.3, the satellite’s attitude with respect to the inertial frame is shown, expressed
in the roll, pitch, and yaw angles as introduced in [42]. In the beginning, where the
detumbling control law (3.4) is active, the attitude is not of interest. After switching to
the PD-controller at about 1.3TO the satellite’s attitude is slowly approaching the desired
trajectory.
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Figure 4.3: Attitude of the satellite with respect to the inertial frame, for the full simulation
time.
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Figure 4.4: Attitude error in r.p.y. angles for the full simulation time. The dashed lines
show the required pointing accuracy.

The attitude error is presented in Figure 4.4 and shows relatively fast decay. The dashed
lines in Figure 4.4 represent the required accuracy of ±10°. Once the attitude error falls
below the required accuracy, the controller is capable to stabilize the satellite within this
requirements as can be seen for the time after 10TO.
The satellite’s angular velocity is shown in Figure 4.5. As desired, the high angular

velocities after detaching from the launch vehicle decays relatively fast. Once the maximum
absolute value of the measured angular velocities ω̃BI falls below the limit ωPD, the control
strategy is switched from detumbling to attitude stabilization.
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Figure 4.5: Angular velocity of the satellite w.r.t. the inertial frame for the full simulation.
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Figure 4.6: Simulated gravity gradient and atmospheric drag acting on the satellite for
the full simulation.

The disturbance torques of the gravity gradient τ gg and the aerodynamics τ ad are
depicted in Figure 4.6. Both disturbances show a decaying behavior as well, which can
be physically explained. The gravity gradient torque τ gg arises from the gradient of
the gravitational force along the satellite’s body. Once the satellite is stabilized little
effective torque is produced, with the xB-axis being the axis of maximum moment of
inertia pointing perpendicular to the gravitational force. About the xB-axis, only little
gravity gradient torque is produced in general, because the satellite is built symmetrically
around this axis.
Similar statements apply to the aerodynamic torque. The stabilized satellite, facing the
air flow with the smaller squared face is only affected by little aerodynamic torques τ ad
compared to the arbitrary orientation in the beginning.

4.2.1 Detumbling controller
Using the detumbling control law (3.4) with the described procedure to achieve time-
optimal detumbling the angular velocity of the satellite is reduced until ωPD is reached.
In Figure 4.7, it is shown that the angular velocity decays in relatively short time. The
detumbling controller takes about two hours to reduce the satellite’s angular velocity from
about 100 °/s to the limit of 0.29 °/s. The oscillation of the angular rates ωBI,y and ωBI,z
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arises from the uneven moments of inertia and represents the nutation of the satellite.
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Figure 4.7: Angular velocity of the satellite w.r.t. the inertial frame for the detumbling
phase.

Due to the bang-bang detumbling controller, one of the coil-currents is always at the
maximum possible value of imax = 100 mA. This can be seen in Figure 4.8, where the
power consumption is depicted as well. At t ≈ 1.3TO the detumbling is completed and
the algorithm is switched to the PD control law.
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Figure 4.8: Current for each magnetorquer (upper graph) and the power consumption
(lower graph) for the detumbling phase.
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4.2.2 Attitude controller
The PD controller stabilizes the satellite on the desired trajectory (2.18). Since no direct
attitude measurement is available on-board as described in Section 1.2, the satellite’s
attitude used in the PD control law (3.41) is provided by the Extended Kalman Filter.
During periods where no Sun vector is measurable the control and estimation algorithm is
switched off. This situation is determined by the intensity of the measured light. Although
control is only available about 2/3 of the time for each orbit, good control performance is
achieved.
In Figure 4.9, the trend of the attitude error after switching to the PD control law

(3.41) is shown for the time after switching until the requirements are met. The desired
attitude (2.18) is reached in about 9TO after switching and about 10TO after detaching.
Compared to the required 46TO the control algorithm performs quite fast, thanks to the
time-optimal detumbling. The gray areas in Figure 4.9 show the time periods where the
satellite is in the Earth’s shadow and the controller is disabled.

Entwurf: March 17, 2016

2 3 4 5 6 7 8 9 10−200

−150

−100

−50

0

50

100

150

200

t in multiples of TO

at
tit

ud
e

er
ro

r
in

°

∆φ
∆θ
∆ψ

Figure 4.9: Attitude error in r.p.y. angles for the attitude control phase. The dashed lines
show the required pointing accuracy.

The magnetorquer currents and power consumption for this period are shown in
Figure 4.10. Figure 4.11 shows the related control torques. When the attitude controller
takes over, the attitude error is rather high, more control action is required and therefore
more power is consumed by the control algorithm. Once on the trajectory, the disturbance
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torques are small as explained in Section 4.2 and the control action reduces significantly.
Compared to the maximum possible current of imax = 100 mA the required control currents
are very small and the current restrictions are clearly met.
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Figure 4.10: Current for each magnetorquer (upper graph) and the power consumption
(lower graph) for the attitude control phase.
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Figure 4.11: Control torques for the attitude control phase.
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4.2.3 Enlarged view of stabilized flight
In Figure 4.12, the satellite’s attitude compared to the desired trajectory is shown in
detail, showing good confidence. Again the gray areas denote the times where the control
algorithm is switched off. The related attitude errors are shown in Figure 4.13, proving
that the accuracy fulfills the requirements of ±10°.
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in a closer view.
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Figure 4.13: Attitude error in r.p.y. angles in a closer view.
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Figure 4.14: Control torque in the stabilized phase.

Figure 4.14 shows the control torques during the stabilized phase, where amplitudes up
to 2 · 10−8 N m occur.

As described in Section 4.2, the disturbances acting on the satellite, if stabilized on the
trajectory, are quite small compared to the possible control action. In Figure 4.15, the
disturbances for this case are depicted. The disturbance torques show amplitudes up to
2 · 10−9 N m, which is about 10 times smaller than the control torque generated by the
magnetorquers.
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Figure 4.15: Gravity gradient and atmospheric drag acting on the satellite in a closer
view.
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Figure 4.16: Comparison between the fully actuated torque and the projected torque.

As stated, the magnetic actuated satellite suffers from underactuation (cf. Chapter 1).
In Figure 4.16, the difference between the desired control action denoted as uB,c and the
applied effective control torque τB,c can be seen. Since Figure 4.16 shows a very short
time period, a new time axis is introduced with τ for the following plots. The projection
of the full torque uB,c to the effective plane, which is perpendicular to the magnetic field
b̃B, is depicted in Figure 4.17. The projection of the vectorial quantities are given for the
time τ = 30 s.
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Figure 4.17: The projection of uB,c to the effective plane, perpendicular to b̃B.

In Figure 4.18 and Figure 4.19, the behavior of the EKF for a restart after a period of
Earth’s shadow is shown. It takes about 20-30 seconds for the EKF to reduce the observer
errors close to zero. Using two independent vector measurements, the attitude can be
calculated instantaneously. The time lag arises from the smoothing of the EKF used to
reduce noise. With the chosen set of gains from Table 4.7 a good compromise is given.
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Figure 4.19: Error of the estimated angular velocities after switching to the EKF.
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4.3 Chapter conclusion
The presented simulation results support the chosen control strategy. The given require-
ments of the QB50 mission regarding the attitude control system are clearly satisfied.
The required pointing accuracy of ±10° is achieved after a relatively short time and the
long time plots show that the error stays within the required limits.
The power consumption of the control system clearly stays below the maximum possible
values, what saves battery power.



5 Summary and outlook

The aim of this work was to develop an attitude control system for the CubeSat Pegasus.
The models derived in Section 2.1 give a general description of the attitude dynamics of a
rigid body. Together with the models of the disturbances acting on a spacecraft in low
altitudes given in Section 2.3 a mathematical framework, describing the rotational motion
of the given satellite, is obtained. These results serve as the basis for future satellite
projects of the TU Wien Space Team. The presented idea of designing a magnetorquer
layout and the given models for the sensors, which are widely used in the literature,
completes the actuator and sensor description needed for the implementation of the
attitude control system.
The derived attitude estimation and control strategy with the proof of stability represents
one possibility to solve the attitude control problem for the particular class of satellites.
The problem of underactuation, arising from the actuation principle using magnetic coils, is
discussed in detail in Section 3.3. The underactuation was taken into account in the proof
of stability for the attitude stabilization. Special attention was given to computational
robustness of the system, meaning that regular software crashes should not harm the
control performance seriously.
The simulation results of Chapter 4 with the included disturbances and measurement
errors show that the satellite can be stabilized with the proposed control strategy under
realistic conditions.
The most problematic part of the considered task was found to be the lack of Sun

measurement when the satellite is located in the shadow of the Earth, resulting in the
decision to switch off the control algorithms for about 1/3 of each orbit. Using additional
or different measurements like star trackers would help to get rid of this issue and improve
the overall performance.
Using special aerospace hardware which is shielded against radiation instead of com-

mercial off-the-shelf parts would reduce the probability of software crashes significantly.
Without the risk of regular reboots, a control law depending on information from the
past like Model Predictive Control could be used to enhance the performance. Aerospace
hardware is much more expensive than commercial products and would require a multiple
times higher project budget.
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A Quaternion mathematics

The definitions of the quaternion mathematics are based on the introduction given in [31].
A profound analysis of the quaternion concept is given in [40] and [41].

Rotation quaternion definition
The rotational quaternion is defined as

q (e, ϑ) =


 cos

(
ϑ
2

)

e sin
(
ϑ
2

)

 =




q0
q1
q2
q3


 , (A.1)

with the unit rotation axis e and the rotation angle about this axis ϑ. Since the rotation
axis e is a unit vector with ‖e‖ = 1, the rotation quaternion satisfies the constraint
‖q‖ = 1. The elements of the four-dimensional quaternion can be subdivided into the
scalar part q0 and the vector part q1:3.
The identity quaternion, following from ϑ = 0 is given by

qI =
[

1
0

]
, (A.2)

having a scalar part of 1 and zero vector part.

Quaternion product and cross product
A pair of quaternions qa,qb is multiplied using the quaternion product operation ⊗ defined
as

qa ⊗ qb =
[

qa,0qb,0 − qa,1:3 · qb,1:3
qa,0qb,1:3 + qb,0qa,1:3 − qa,1:3 × qb,1:3

]
, (A.3a)

with · as the Euclidean inner product and the three-dimensional cross product ×.
Introducing the matrix representation of the quaternion and cross product, denoted by
[ ⊗] and [ ×] gives

qa ⊗ qb = [qa⊗] qb =
[
qa,0 −qT

a,1:3
qa,1:3 qa,0I3 − [qa,1:3×]

]
qb , (A.3b)
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with the three-dimensional identity matrix I3. The three-dimensional cross product in
matrix representation for a general vector vT =

[
v1 v2 v3

]
is defined as

[v×] =




0 −v3 v2
v3 0 −v1
−v2 v1 0


 , (A.3c)

representing a skew-symmetric matrix.

Conjugate and inverse quaternion
The conjugate q∗ is defined by changing the sign of the vector part q1:3 and leaving the
scalar part q0 unchanged

q∗ =
[
q0

q1:3

]∗
=
[

q0
−q1:3

]
. (A.4a)

The inverse of a quaternion q−1 is defined as

q−1 = q∗

‖q‖2
, (A.4b)

with the Euclidean vector norm ‖ ‖.
The definition of the inverse quaternion ensures

q ⊗ q−1 = qI , (A.4c)

as required for an inverse.
Considering that a rotational quaternion satisfies the constraint ‖q‖ = 1 the inverse of a
rotation quaternion is equal to its conjugate.

Rotation matrix representation of a rotation quaternion
The rotation quaternion q can be represented as a rotation matrix R (q) using

R (q) = (q2
0 − ‖q1:3‖)I3 − 2q0 [q1:3×] + 2q1:3qT

1:3 . (A.5)

Rotation of vectors
Rotating a general vector v using the above definitions is calculated as

q ⊗
[

0
v

]
⊗ q∗ =

[
0

R (q) v

]
. (A.6a)
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Defining the quaternion product as stated above allows for calculating sequences of
rotations in the same order with rotation matrices and quaternions. A sequence of
rotations (cf. [42]) represented as rotation matrices is given by

R02 = R01R12 , (A.6b)

where R12 represents the rotational transformation from a coordinate frame 2 to a frame 1.
Likewise R01 rotates from frame 1 to frame 0. The two sequential rotations are multiplied
to achieve a transformation from frame 2 to frame 0, denoted by R02.
The same sequence in quaternion representation reads as

q02 = q01 ⊗ q12 . (A.6c)

Quaternion product in exponential representation
Recalling the definition of the rotation quaternion allows to rewrite the quaternion product
[q (e, ϑ)⊗] as

[q (e, ϑ)⊗] = cos
(
ϑ

2

)
[qI⊗] + sin

(
ϑ

2

)[[0
e

]
⊗
]

. (A.7a)

Expanding the sine and cosine in a Taylor series (cf. [56]) leads to the exponential
representation of the quaternion product

[q (ϑ)⊗] =
∞∑

j=0

[[
0
ϑ
2

]
⊗
]2j

(2j)! +
∞∑

j=0

[[
0
ϑ
2

]
⊗
]2j+1

(2j + 1)! = exp
([[

0
ϑ
2

]
⊗
])

, (A.7b)

where ϑ = ϑe is the axis-angle vector, x! denotes the factorial of x and exp() is the matrix
exponential.

Small angle approximation of the rotation quaternion
With the assumption ϑ� 1 the small angle approximation

cos (ϑ) ≈ 1, sin (ϑ) ≈ ϑ

is valid.
This argument, applied to the definition of the rotation quaternion, yields

ϑ = ϑe (A.8a)

q (ϑ) ≈
[

1
ϑ
2

]
= qI +

[
0
ϑ
2

]
, for ϑ� 1 . (A.8b)
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